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Abstract 

In recent years, decarbonization of transportation has aroused great attention in the world. 

The transportation sector generates approximately one-fourth of global CO2 emission 

yearly and the amount is predicted to be double in 2050. To deal with this issue, 

sustainable development is forcing transportation sectors to minimize carbon emission 

produced by the cargo fleets. This thesis introduces vehicle routing models with a mixed 

fleet to deal with the sustainable development effort of the transportation industry. The 

mixed fleet in VRP models consists of heterogeneous hydrogen vehicles and 

conventional vehicles for the distribution system. The hydrogen vehicle has been 

introduced as an alternative fuel vehicle (AFV) in vehicle routing models for the first 

time in this work. The fuel consumption of the vehicles is realistically considered as a 

function of traveled distance, speed, and on-board cargo load. The problems include 

constraints of vehicle capacity, backhaul, time windows, and maximum tour length for 

the routes. In addition, the composition of fleets should respect the CO2 emission cap 

imposed by the government for the distribution system. 

The thesis studies three VRP models.  A new hybrid metaheuristic, combining the 

particle swarm optimization (PSO) and problem specific variable neighborhood search 

(VNS), is proposed to solve each of the investigating problems in this work. Firstly, it 

considers a clustered vehicle routing problem (CluVRP). In CluVRP, customers are 

grouped into different clusters. A vehicle visiting a cluster cannot leave the cluster until 

all customers in the same cluster have been served. Each cluster and customer has to be 

served only once. The proposed hybrid PSO algorithm is tested on numerous benchmark 

instances with various sizes obtained from the CluVRP literature. The thesis then 
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considers the mixed fleet green vehicle routing problem with backhaul and time windows 

(MFGVRPTW). Extensive computational experiments have been performed on newly 

generated instances and numerous benchmark instances with various sizes obtained from 

the literature of VRPB, VRPTW, and VRPBTW. The obtained results of the proposed 

algorithm are compared with the results found in the literature. Finally, a comprehensive 

VRP model called GCluVRPBTW is developed for the first time in this thesis. The 

performance of the proposed hybrid algorithm is evaluated by testing on newly generated 

GCluVRPBTW instances. The proposed hybrid PSO algorithm for GCluVRPBTW is 

also tested on newly generated instances of CluVRPB, CluVRPTW, and CluVRPBTW. 

The proposed algorithm proved to be superior to the state-of-the-art algorithms on the 

CluVRP, VRPB, VRPTW, and VRPBTW.                    
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CHAPTER ONE 

Introduction 

 

1.1 Background 

Decarbonization of transportation is no longer a passion; it is an obligation and a mostly 

unquestioned vital issue for one and all worldwide. In this view, world organizations, 

such as the conference of parties (COP), European Commission, are on the pathway to 

put CO2 emission limit cap for the countries and businesses, and penalty cost otherwise 

(Yang et al. 2015; Figliozzi 2010). The International Energy Agency (IEA) states the 

transport sector consumes more than a quarter of global energy and generates the second-

highest CO2 emission (Chen et al. 2019; Bahramara and Golpîra 2018). The emissions 

from vehicles are more harmful to human health as vehicle releases CO2 in very 

proximity to human receptors giving less opportunity for the environment to dilute the 

emission. Besides, in most shopping malls and warehouses areas, all roads locate nearby 

the buildings making emission concentration more intensified by reducing the wind speed 

at emission sources than an open road. Eventually, vehicle transports become a 

distinguished source of CO2 than other sources (Colvile et al. 2001). Transportation 

systems are the essential pillar of countries’ economic development (Corlu et al. 2020). 

Transportation activities contributed to the GDP of the USA and Europe by 5.6% and 

5.00% respectively in 2016 (the U.S. Bureau of transportation statistics, 2018). In such, 

transportation system can be called as “obvious foe” for the world. 
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Of the transportation services, road transport, the main mode of inland transporting goods 

on the supply chain, is the major emitter of CO2 emission (Bektas et al. 2019; 

Kabadurmuş et al. 2019). The transport activities in terms of tonne-km have increased 

gradually (on average 2.8% each year) from 1995 to 2005. This radical growth can 

principally be attributed to escalates in road transportation (on average 3.5% per year), 

which is still the leading transport mode in this region. Low costs in freight transport, 

strategic policies of business such as global sourcing, and Just-in-time (JIT) are found as 

reasons for road transportation to make them famous mode (Aronsson and Huge-Brodin 

2006; Golicic et al. 2010). Currently, road transportation carries about 47% of total 

freight transport activities in the EU (Mahieu 2009). In this way, companies’ 

transportation logistics are greatly contributing to its overall CO2 emission also (Zhang et 

al. 2018; Jimenez and Flores 2015), which eventually makes transportation logistics in 

businesses as an ultimate contributor toward global warming of the earth. Therefore, it is 

the area where organizations and industry can contribute significantly to both economic 

and social development, and CO2 emission reduction (Fares et al. 2015; Lin et al. 2014; 

Treitl et al. 2014; Offer et al. 2010; Piecyk and McKinnon 2010). 

Globally the transportation sector needs to be transformed into a safer scheme by 

reducing greenhouse gas emissions, air pollution, and its dependency on unsafe fossil 

fuels (Egbue and Long 2012). In this context, many efforts around the world have been 

through over long decades such as; motivating travelers to use public transit rather than 

personal automobiles and use freight rail rather than a truck, increasing public awareness 

about running down of global oil reserves and energy security concerns, attracting 
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businesses to introduce cleaner fuel energies and efficient vehicle technologies cause to 

decreased emissions amount for the same miles journeyed and larger mileage per unit of 

fuel or energy used. Such individual effort is mainly aimed at reducing vehicle miles 

traveled on roads and reducing fossil-fuel usage. Rather a comprehensive approach in 

place of adopting individual effort is approvingly recommended (Montoya et al. 2015; 

Erdogan and Miller-Hooks 2012). Such a comprehensive approach is to explore 

alternative greener sources of fuel, i.e., electricity, hydrogen, biodiesel, ethanol, natural 

gas (liquid-LNG or compressed-CNG), methanol, and propane (US DOE 2010).  

 Evidence also shows that European transport systems are still increasing their 

greenhouse gas emissions, which consist mainly of CO2 emissions (Taefi, et al. 2016; 

Eurostat 2013). The scenarios are almost the same throughout the globe, which 

necessitates significant efforts to be instrumented to reduce emissions at the national level 

and organization level around the world (Sarkis and Cordeiro 2012; Vazquez-Brust and 

Sarkis 2012). Such as the European regulation no. 443/2009 and 333/2014 have been 

introduced by the European Commission on emission standards for light-duty vehicles to 

reduce CO2 emissions in road passenger transport. It also defines, for vehicle 

manufacturers, an ambitious target of 95 gram CO2 emissions per km for the whole new 

vehicle fleet of passenger vehicles (M1 vehicle segment) in 2025. Instead, transport 

expert viewed target in 2030 should be about 70 gram CO2 per km to meet GHG 

emission reduction target in this sector in 2050 of at least 60% compared to 1990 values. 

Under another EU regulation, 510/2011, a penalty of 95€ is imposed on vehicle 

manufacturers for every exceeding gram of CO2 emission above 147 gram CO2/km of 
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manufacturers’ average emission for each vehicle started in 2019 and onwards (Climate 

action, 2016). In addition, some governments around the world offer incentives for the 

adaptation of low-carbon alternative fuel vehicles (AFVs) (Pollet et al. 2012). These 

imply environmental (ecological) and social effects must be taken into consideration 

when designing transportation logistics policies in the businesses, in addition to the 

conventional costs solely. 

 

1.2   Green vehicle routing problem (GVRP) 

The vehicle routing problem (VRP) is designated as a core problem in the road 

transportation optimization strategy (Solomon 1987; Kim et al. 2015). The VRP was first 

introduced by Dantzig and Ramser (1959) as a linear programming formulation. The 

VRP aims to obtain a list of least-cost vehicle routes serving several geographically 

scattered customers under various supply and demand constraints, such as vehicle 

capacity, fleet size, time windows, route length, and precedence relations between 

customers, etc. It is commonly studied as a combinatorial optimization model in network 

design problems and it is an NP-hard problem (Lenstra and Kan 1981). Numerous 

variants of VRP have been discussed in the literature for around six decades since it was 

introduced. The most common VRP variant is the capacitated vehicle routing problem 

(CVRP). The other variants of VRP are arose focusing different aspects of real-world and 

business situations and their subsequent constraints on route design, such as clustered 

VRP, heterogeneous VRP, VRP with multiple driving ranges, VRP with time windows, 

stochastic VRP, VRP with backhauls (VRPB), Open VRP, multi-trip VRP, multi-depot 
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VRP, green VRP (GVRP), VRP with pickup and delivery, waste collection VRP, multi-

period horizons VRP, split delivery VRP, multi-compartment VRP, VRP in Omni-

channel, and VRP for a mid-day meal delivery system  (Sevaux and Sörensen 2008; 

Gajpal and Abed 2009a;  Gajpal and Abed 2010; Letchford and Salazar-Gonzalez 2019;  

Madankumar and Rajendran 2019; Soleimani et al. 2018; Vornhusen and Kopfer 2015; 

Xiao and Konak 2015; Abdulkader et al. 2015; Crainic et al. 2015; Abdulkader et al. 

2018; Zhang et al. 2019; Gajpal et al. 2017; Gajpal et al. 2019).  

 It is assumed in classical VRPs that a number of fixed fleet of vehicles with 

homogeneous capacity held in a single depot. Implementing green logistic ideas in VRPs 

and the use of AFVs in fleet vehicle give rise to the new optimization problems named as 

green vehicle routing problems (GVRPs). The GVRP, first proposed by Erdogan and 

Miller-Hooks (2012), intends not only at the lowest monetary cost routes but also an 

environmentally sustainable logistics (Bektas et al. 2016; Sbihi and Eglese 2010). The 

GVRP models create numerous opportunities for CO2 emission reduction in the 

companies by integrating wider environmental and economic goals on their objective 

functions (Bektas and Laporte 2011). One opportunity is to incorporate emission costs 

beyond fuel utilization into the VRP objective functions, hence environmental and 

economic goals can be traded off (Figliozzi 2010). Another opportunity is the 

deployment of low or zero emission alternative fuel vehicles (AFVs) such as electric 

vehicles (EVs) or fuel cell hydrogen vehicles (HVs) in routing operation (Schneider et al. 

2014). Using heterogeneous and mix fleet vehicles are another recommended approach in 

green vehicle routing models because mixed heterogeneous fleet offers various driving 
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range, total cost, and vehicle utilization flexibility as accordance with the requirement in 

the routing operation (Maden et al. 2010; Goeke and Schneider 2015; Kopfer et al. 2014; 

Juan et al. 2014; Kopfer and Kopfer 2013). Thus, the GVRPs have received great 

attention from governments, environmentalists, and business organizations nowadays 

(Ball and Weeda 2015; Lin et al. 2014). For example, the Chinese government is 

promoting electric vehicles and environmentally friendly transportation policies in China 

(Zhang et al. 2017). Moreover, expansion of green transportations is more triggered 

nowadays by strict environmental laws, fluctuation of energy costs, social concerns, 

increased transportation activities, and green practices in organizations in order to keep 

the global average temperature rise below 2
0
C  (Santos 2017; Dhar et al. 2017).   

 The VRP with backhauls (VRPB), first introduced by Deif and Bodin (1984), is 

another important variant of VRP that aims at the efficient utilization of vehicles for 

sustainable development. The VRPB delivers cargo in outbound trips and picks up cargo 

in the inbound trips. Combining the pickup and delivery operations in VRPB improves 

the efficiencies in the routes (Bergmann et al. 2020). In practice, VRPB is seen when 

outbound customers are needed priority than inbound customers to avoid rearranging the 

load inside the vehicles. As the capacitated VRP is proven to be an NP-hard problem, the 

VRPB is also NP-hard (Thangiah et al. 1996; Kücükoglu and Öztürk 2015).   

In the view of green logistics, several companies have already employed AFVs 

instead of using conventional vehicles (CVs) in their last-mile delivery operations, e.g., in 

the field of small-package shipping, like UPS, DHL, and DPD particularly in their Urban 

areas (Kleindorfer et al. 2012; IPC 2011) or the distribution of food (National Renewable 
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Energy Laboratory 2014) and beverages, like Coca-Cola in the USA, (Heineken 

International, 2014; Priselac, 2013) as AFVs have no local tailpipe (tank-to-wheels, TtW) 

greenhouse gas emission, emit only water as a by-product. Fuel cell hydrogen vehicles 

(HVs), one of the AFVs, are the hydrogen vehicles in which hydrogen fuel is converted 

into the electricity to power on-board electric motors for vehicle momentum. The 

advantages of HVs are as follows: compared to EVs, the driving range of HVs are almost 

double with their longer operating time despite of further cost, effort, or stress. In 

addition, HVs do not require any battery replacement and can be refueled very fast and 

easily in less than 5 minutes. These benefits increase the productivity of operators and 

lower operational expenses. Like EVs, HVs emit zero (tank-to-wheels, TtW) tailpipe 

emission and only water as a bi-product. The well-to-wheels (WtW) CO2 emissions of 

HVs (0.20 kg CO2 eq/mile) are slightly less than EVs (0.22 kg CO2 eq/mile). Hydrogen 

fuel cells do not require any centralized distribution grid. This grid-independence, in turn, 

implies that as soon as the source of power and water is available, the driving fuel for 

vehicles by the hydrogen fuel cell can be despatched. Compared to CVs, in a well-to-

wheel analysis (WtW), the US department of energy (DOE) approximated 55% less CO2 

(kg/mile) emission and 25% less emission than a hybrid vehicle.   

Furthermore, HVs have been treated a successful alternative to CVs due to their 

less messy and minimal noise fuel cell operation because of their identical driving range 

with CVs. Thus, decarbonising of road transportation is significantly achieved from the 

deployment of HVs by reducing transport dependencies on fossil fuel (oil and gas) 

around the globe. HVs in the road have approximately 40% more fuel economy than 
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diesel or gasoline transports.  In total cost of ownership (TCO) analysis for useful vehicle 

life, HVs are more economical than EVs because of the higher acquisition cost of 

batteries in EVs, and HVs are expensive than CVs. But in regards to CO2 emissions and 

their adverse health costs consideration, HVs and EVs are far away preferable than CVs. 

HVs are also invincibly favourite than EVs for larger daily distances (Jimenez and Flores 

2015). Overall, business distribution logistics are tremendously offered to be more 

competitive by the distinguishing features of hydrogen fuel cell vehicles (HVs) (Koc and 

Karaoglan 2016).  

Hydrogen fuel cell vehicles (HVs) have not been studied so far in the VRP field, in 

our best knowledge. HV has been studied for the first time in GVRP in this work, which 

makes a novelty of this research study. HVs with their many distinguishing features 

associate with the green economic aspect of routing planning problems make a 

substantial area in VRP field, especially in its variant GVRP. 

Overall, the VRP with backhaul and time windows (VRPBTW) provides a great 

perspective for reducing environmental impact and cost of transportation, as it reduces 

running of empty vehicles and fuel consumptions from better utilization of vehicle 

capacity combining two different services in the distribution services (Corlu et al. 2020; 

Santos et al. 2019; Pradenas et al. 2013). Moreover, as the VRPs of transportation 

distribution logistic contribute to the country’s both GDP and CO2 emission worldwide, it 

can be concluded that even a small improvement in routing problems and their solutions 

can bring in large cost reductions and environmental sustainability (Küçükoglu and 

Öztürk 2015). The heterogeneous fleet vehicles provide additional opportunities to 
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reduce carbon emissions in the routes (Yu et al. 2019). In this view, the mixed fleet based 

green vehicle routing problems with backhaul and time windows are studied in the thesis 

work. The consideration of backhaul customers, mixed fleet vehicles, CO2 emission cap, 

and hydrogen AFV in the routing problem brings sustainability concerns in the studied 

works.  

 

1.3   Motivation of the study 

The entire study is motivated by the fact that transportation logistics are reportedly 

viewed as a significant contributor to the CO2 emission globally which has a substantial 

effect on the environment, society (public health), and economy. In the future, the CO2
 

emission cap is expected to be enforced strictly due to growing environmental concerns 

worldwide to keep the global average temperature rise below 2
0
C. The CO2

 
emission is 

mainly generated from burning fossil fuels such as gasoline and diesel (Koc et al. 2014). 

This will enforce organizations to use alternative fuel vehicles (AFVs) such as hydrogen 

vehicles to protect the environment. However, conventional vehicles cannot be 

eliminated completely because of their lower operational cost. Thus, a mixed fleet with 

different types of vehicles is becoming common for most of the company’s logistics in 

real-life. A mixed fleet helps to prevent environmental pollution, improve customer 

satisfaction, and provide opportunities for vehicles choice in the distribution logistics. 

Moreover, the mixed fleet operation provides the privilege of meeting non-equal 

customer demands with preferred time windows efficiency from various vehicles having 

different speed limits, driving range, carrying load capacity, and notably distinct 
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environmental pollutant emission level. Consequently, mixed fleet vehicles reduce CO2 

emission in distribution logistics from a competent combination of multiple vehicles. 

These observations inspired us to consider the mixed fleet of hydrogen and conventional 

vehicles and keep the composition of fleets in such a way that it adheres to the 

government regulation regarding CO2
 
emission. Overall, the entire study is motivated by 

many facts such as worldwide commitment to decarbonize the transportation, CO2 

emission cap for the logistics, employment of AFVs in the distribution logistics. In 

addition, the VRP with backhaul and heterogeneous fleet provides more opportunities to 

reduce the CO2 emission in the routes. This thesis provides a comprehensive VRP model 

considering many aspects of the existing VRP model such as a realistic model for fuel 

consumption, CO2
 
emission cap, clustered customers, backhaul customers, time windows 

restrictions, and a mixed fleet vehicle.    

 

1.4   Contributions of the study 

In this work, different problems in the logistic distribution network are investigated. The 

thesis first starts with the clustered vehicle routing problem (CluVRP) followed by the 

mixed fleet green VRP with backhaul and time windows (MFGVRPBTW) model and 

finally the green clustered VRPBTW (GCluVRPBTW) model.  Each of the investigated 

models denotes a variant of the VRP. Two of the studied problems are represented as new 

variants of VRP. The problem formulation and mathematical model for each variant are 

provided in this research. A solution approach for each problem is developed to solve the 

problems. The proposed metaheuristic is based on the combination of the particle swarm 
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optimization (PSO) and problem specific variable neighborhood search (VNS). We 

include new features in the PSO algorithm such as the use of two types of particle and 

improvement scheme for the personal best solutions. This hybrid PSO is targeted to 

achieve a better quality solution for the studied problems. Extensive computational 

experiments have been performed on problem instances. Several benchmark solutions 

and new best-known solutions have been generated in this work. The proposed algorithm 

can solve many variants of the VRP problem and can produce better solution than 

existing algorithms. The main contributions of this research work can be summarized as 

follows: 

 

 Clustered vehicle routing problem 

 We study the clustered vehicle routing problem (CluVRP) as a variant of the 

classical capacitated vehicle routing problem. Our proposed hybrid PSO metaheuristic 

solution method solves the problem and it is evaluated on the benchmark instances found 

in CluVRP literature. Many new best-known solutions for the CluVRP benchmark 

instances within competitive CPU time are found in the work.  

 

 Mixed fleet green vehicle routing problem with backhaul and time windows 

We introduce a mixed fleet green vehicle routing problem with backhaul and time 

windows (MFGVRPBTW). In the work, a comprehensive green VRPB model 

comprising different variants of VRPB is presented. To the best of our knowledge, this is 

the first work to introduce such a comprehensive VRPB model. This research also 
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contributes in terms of the solution method, which can be testified with the scalability of 

the proposed algorithm in the numerical experiment section. The proposed hybrid PSO 

metaheuristic is tested on the newly generated MFGVRPBTW instances. It generates 

many new best-known solutions out of benchmark instances while tested on VRPTW, 

VRPB, and VRPBTW instances obtained in the literature.  

 

 Green clustered vehicle routing problem with backhaul and time windows 

We introduce a new green clustered vehicle routing problem with backhaul and 

time windows (GCluVRPBTW). A mathematical model of the problem is formulated and 

a new hybrid PSO algorithm based solution approach is designed in the work. The new 

instances for GCluVRPBTW, CluVRPB, CluVRPTW, and CluVRPBTW are generated, 

and solutions for each of the problems are obtained. Overall, the GCluVRPBTW is 

believed to be an important contribution in the field of green VRP, clustered VRP, and 

also in VRP with backhaul areas.          

 

1.5   Thesis organization 

The thesis work is intended to study many VRP models with mixed fleet of hydrogen and 

conventional vehicles. The work includes three variants of VRP. Overall, the thesis is 

structured as herein described. The literature of GVRP is reviewed in chapter two, where 

detailed literature on energy minimizing VRP, fuel consumption VRP, pollution-routing 

problem, PSO, and VNS are highlighted. In chapter three, the clustered vehicle routing 

problem is studied. The hybrid particle swarm optimization algorithm is designed to 
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solve the problem, and many new best-known solutions were generated for benchmark 

instances in the chapter. Chapter four introduces the hydrogen and mixed fleet based 

green vehicle routing problem with backhaul and time windows (MFGVRPBTW) in the 

view of dealing with the sustainable development effort of the transportation industry. In 

this chapter, our designed hybrid PSO algorithm is used to solve the MFGVRPBTW. The 

proposed metaheuristic efficiently capable of solving the newly generated 

MFGVRPBTW instances. It is also tested on the benchmark instances of VRPB, 

VRPTW, and VRPBTW available in the literature.  In chapter five, we introduce a new 

variant of VRP called the green clustered vehicle routing problem with backhaul and time 

windows (GCluVRPBTW). Our proposed solution method is tested on the new instances 

for GCluVRPBTW, CluVRPB, CluVRPTW in the chapter. Finally, the conclusion of the 

work, limitation of the research, and future research directions have been provided in 

chapter six. 



 

14 
 

CHAPTER TWO 

Literature review of GVRP 

  

The literature related to the GVRP problem is reviewed in this chapter. The literature is 

divided into three chunks: firstly, energy minimizing vehicle routing problem (EMVRP), 

and fuel consumption vehicle routing problem (FCVRP). Secondly, pollution-routing 

problem (PRP) with time window and finally, alternative fuel vehicles (AFVs) based 

GVRP with time window and recharging station. There is no literature study found on 

fuel cell hydrogen vehicles (HVs) in the fields of overall VRP or GVRP because the HV 

has been proposed in this research for the first time in the areas of overall routing 

problems. 

A comprehensive study on GVRP was studied in Bektas et al. (2016), where the 

areas of EMVRP, FCVRP, and PRP were explained concisely. The two GVRP variants, 

EMVRP and FCVRP, were viewed generally as the simpler form of PRP. In PRP, time 

window constraints and decisions on speeds were included. In EMVRP and FCVRP, 

distance and weighted load function (product of load and distance) were taken into 

account.   
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2.1 Energy minimizing vehicle routing problem (EMVRP) and fuel consumption 

vehicle routing problem (FCVRP) 

The sustainability in conventional VRP is imperative in the present time, which includes 

the environmental cost and social cost on top of the conventional economic efficiency of 

VRP model (Sbihi and Eglese 2010). A survey study on environmental sustainable VRP 

was obtained in Eglese and Bektas (2014). The environmental issue, amount of CO2 

emission model, in vehicle routing was affected by vehicle traveled distance, cycle 

duration of the vehicle route, vehicle carry load, speed, road gradient, vehicle type, 

engine type, vehicle design environment, traffic congestion, driver’s attitude, and 

operations factors, and many other factors (Demir et al. 2011; Demir et al. 2014). Several 

methods considering different factors were compared in a study carried out by Frey et al. 

(2010) and Demir et al. (2011). The CO2 emission methods were mainly based on 

analytical emission models. The inclusion of green aspects for CO2 emission in VRP 

affects the VRP optimization models in different ways. 

 A concise study on various issues related to linking the green logistics with 

combinatorial optimization of vehicle routing and scheduling problem was highlighted in 

research work (Sbihi and Eglese 2010). The authors in the study focused on many aspects 

of real-time problems such as time-dependent features, transportation features for 

hazardous materials, and dynamic optimization feature. Different problems arisen from 

environmental orientation in VRP were also emphasized in this study. The energy 

minimizing vehicle routing problem was introduced by study Kara et al. (2007) in which 

a new weighted load-based (vehicle load multiplied by distance on the arc) cost function 
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was optimized. The polynomial size integer programming formulations were presented 

for the model. The formulation model did not consider the vehicle speed and emission 

model. In another study (Scott et al. 2010), the influence of road topology (gradient), and 

payload of vehicles were investigated to minimize routing CO2 emission.  In the study, 

fixed vehicle speed and fuel utilization rate were considered on the arcs. The emission 

minimization models in VR were divided into two prime categories, such as models with 

time-independence and models considers with time-dependent road traffic congestion 

(Qian and Eglese 2016). The amount of CO2 emissions was proportional to the fuel 

consumption of vehicles in all models. The environmental issues in the VRP field were 

firstly considered by Palmer (2007), a time-independent model, in which CO2 emission 

cost was integrated in vehicle routing model for goods vehicles with time window 

scenarios under the variation of tour duration and distance due to speed change in 

congestions conditions. This research work was aimed to develop a software based VPR 

model to estimate the CO2 emission matrix considering different speeds level under 

scenarios of road surface topography (mount, hills, gradient, etc.), time window and 

vehicle distance traveled.  A VRPTW heuristic was used to solve the problem.  The 

solution showed that the amount of CO2 emission was minimized (approximately 5%) 

when the environmental cost was valued based on the total traveled distance or total 

cycle time of the route than typical. Another time-independent routing problem studied 

by Ubeda et al. (2011) in which authors investigated how green logistics could be 

affected in VRP model of a Spanish distribution company. Distance-based methods were 

applied in model formulation. Two heuristics, such as Mole and Jameson (1976) method 
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and the nearest neighbour insertion algorithm, were developed for estimating CO2 

emission based on factors, such as vehicle type and its load, fuel type, and road topology. 

The emission matrices based on each arc explained by Palmer (2007) were used in this 

study. Jaramillo (2010) introduced a new variant of conventional VRP offering a new 

objective function of minimizing Ton-Mile instead of minimizing travel distance. The 

CO2 emission was considered as a function of payload. Single vehicle was used for small 

instances in the problem solved by a local search algorithm. The new problem was named 

as the green single vehicle routing problem (GSVRP). A similar kind of study was 

carried out by Peng and Wang (2009) by using a genetic algorithm, ant colony 

optimization, and PSO algorithm. Xiao et al. (2012) considered the fuel consumption for 

the vehicle, calculated as a product of load and distance, in CVRP was named as fuel 

consumption vehicle routing problem (FCVRP). The model was intended to reduce CO2 

emission cost and routing cost in the problem, where FCR was linearly proportional to 

the vehicle load. A metaheuristic simulated annealing with a hybrid exchange rule was 

designed as a solution method. The proposed FCVRP model could minimize fuel 

consumption by around 5% compared to the CVRP model. Fixed vehicle speed was in 

fuel emission calculation models. A method similar to Xiao et al. (2012) estimating the  

FCR was used in a study by Harris et al. (2011) where the impact of cost optimization on 

the CO2 emission model was also assessed as a bi-objective problem. The author claimed 

that problem formulation improved the vehicle usage rate that eventually reduced logistic 

costs and energy consumption. Many other studies such as Apaydin and Gonullu (2008), 

Fagerholt (1999), Marašs (2008), Nanthavanij et al. (2008), Sambracos et al. (2004), and 
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Taveares et al. (2008) aimed at minimizing total fuel consumption. Nie and Li (2013) 

proposed an FCVRP model to minimize the routing cost while meeting the constraint of 

the emission limit for the network. A more detailed FCR was discussed in a review study 

by Lin et al. (2014). Maden et al. (2010) studied a case study of vehicle routing and 

scheduling problem with time window where vehicle speed varied on the hours of a day 

caused by the road traffic. The amount of CO2 emission was considered as a linear 

function of speed. A heuristic solution was proposed to explain the problem saving about 

7% of CO2 emission cost. Similarly, Jabali et al. (2012) studied a VRP and scheduling 

problem which accounted for travel time between arcs (customers), fuel cost, and CO2 

emission cost. But, the amount of CO2 emission was estimated as a non-linear function of 

vehicle speed. Finally, a tabu search algorithm for emission based time-dependent routing 

problem was proposed to obtain optimum speed as regards to CO2 emission. Moreover, 

in a view of reducing CO2 emission, a mathematic model was offered to calculate fuel 

consumption where vehicle speed and the travel duration on the arc were dependent on 

the time of travel in routing. In another study by Kuo (2010), time-dependent speed, and 

travel time were considered VRP. The vehicle speed, distance, and load were used in the 

problem formulation to estimate the optimum fuel consumption level. A benchmark 

dataset from literature (Solomon, 1987) was solved in this study by a simulated annealing 

algorithm. The same problem was again formulated by a Tabu search in another study 

(Kuo and Wang 2011). Saberi and Verbas (2012) devised the Solomon problem instances 

once again in their study, in which a model for time-depended VRP with CO2 emission 

was minimized optimally. In a study by Figliozzi (2011), vehicle travel speed was 
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introduced as a decision variable to minimize fleet size, distance traveled and cost of the 

route in a time-dependent VRP. The CO2 emission was also estimated by trading-off 

between soft time windows (or congestion levels), and the company’s policy restriction. 

The algorithm, iterated route construction and improvement (IRCI), was used to solve the 

problem. Before this, Figliozzi (2010a) introduced the emission vehicle routing problem 

(EVRP) which was an extension of the time-dependent VRP (TDVRP). The objective of 

the study was to minimize the emission cost and fuel consumption. The amount of 

emission and energy consumption in the problem was calculated based on the MEET 

methodology (Hickman et al. 1999; INFRAS 1995). In the methodology, only speed and 

distance were considered with standard conditions (zero road gradient, empty vehicle, 

etc.). The problem considering the Solomon instances was solved by an algorithm, where 

a TDVRP algorithm was implemented to minimize the number of vehicles; the emission 

was minimized subject to vehicle capacity. The departure times for each pair of 

customers were also optimized in the algorithm. Three different conditions for traffic 

congestion such as no congestion, fair congestion, and full congestion, were considered 

in conjunction with vehicle speed. In a study by Figliozzi (2010b), the amount of CO2 

was minimized by considering average vehicle speed combined with acceleration rates in 

the problem formulation.    

 

2.2 Pollution-routing problem (PRP) with time windows 

Bektas and Laporte (2011) presented a new variant of VRP, a time-independent model, 

called as pollution-routing problem (PRP) model including energy, fuel consumption, and 
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emission of homogenous conventional internal combustion vehicles in the routes. The 

emission was estimated by speed, load, and soft or hard time windows, using the 

emissions functions where the instantaneous engine-out emission rate was directly related 

to the fuel consumption rate suggested by Barth et al. (2005); Scora and Barth (2006); 

Barth and Boriboonsomsin (2008); Barth et al. (2009).  The amount of energy consumed 

by the vehicle on the arc was directly translated into fuel consumption. The cost of 

emission (pollution), driver costs, and fuel consumption cost were included in the 

objective function where vehicle loads, speed of arcs were changed. Vehicle speed was 

used as one of the decision variables. The PRP model was investigated under three 

different objective functions, such as distance, weighted load, and energy (fuel) cost 

minimization. Detailed computational analysis as an integer linear programming problem 

was carried out to provide the trade-off between three objective functions considering the 

effect of various speed, load, and time window constraints. The formulation model in that 

study (Bektas and Laporte 2011) was only valid with a speed level of more than 40 km/h. 

But in many cases of practical scenarios (traffic congestion), vehicle speed remains lower 

than 40 km/h. In this view, Demir et al. (2012) extended the single objective PRP model 

studied in Bektas and Laporte (2011) by taking into account for vehicle speeds 40 km/hr 

or lower. In the extension, the PRP model with the time windows consisting of a fixed 

fleet (homogenous) vehicle was proposed by two-stage meta-heuristics. In the first stage, 

the VRPTW was solved by adoptive large neighbourhood heuristics (which was the 

extension of the large neighborhood search (LNS) heuristic first proposed by Shaw 

(1998) and this heuristic can be embedded within the local search heuristics (simulated 
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annealing or tabu search). In the second stage, the initial solution of VRPTW results was 

used in vehicle speed optimization on arcs using a recursive algorithm, speed 

optimization algorithm (SOA), in order to minimize the cost of fuel consumption and 

driver wages. Many data instances consist of a large number of customers (with up to 

200) were used in computational analysis. The objective function presented in the 

previous two studies (Bektas and Laporte 2011; Demir et al. 2012), relating to fuel 

consumption and driving wage minimizations, were conflicting. Thus, these two 

objective functions were presented separately to form a new extension of PRP called bi-

objective PRP presented in Demir et al. (2014a). The adaptive large neighborhood search 

algorithm (ALNS), combined with a speed optimization procedure (SOP) was presented 

to solve this bi-objective PRP. While in PRP (or in any variants of VRP) with time 

window, the vehicle was allowed to arrive at customers’ locations before starting the 

service at the preferred time window. This phenomenon was called ‘idle waiting’ 

emerged to avoid traffic congestion. The idle waiting was first introduced in PRP by 

Franceschetti et al. (2013) in which the time-dependent PRP was considered by an integer 

linear programming formulation. Kramer et al. (2015a) dealt with PRP in a view of 

minimizing fuel consumption cost and operation cost. Fuel consumption level was 

considered as dependent on travel distance and load. Vehicle speed was considered as a 

decision variable satisfying the time window constraint in the model. The vehicle 

departure time delay was not considered in the model. The vehicle department time delay 

was included in another study by the same authors (Kramer et al. 2015b), which utilized 

an iterated local search-based metaheuristic to combine the speed, scheduling, and the 
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distance in order to optimize fuel cost and operational costs of the VRP. A single data set 

from the Demir et al. (2012) and authors’ own created data sets were used as benchmark 

instances in both studies, Kramer et al. (2015a and 2015b). Qian and Eglese (2016) 

considered a VRP with scheduling problem to minimize CO2 emission in the problem, 

where speed was dependent on time. The objective of the model was to obtain optimum 

routes and the speed of vehicles on the arcs was the decision variable. A tabu search 

algorithm based on column generation was present to solve the problem. Zhang et al. 

(2015) studied a VRP problem with constant vehicle speed considering the cost of fuel 

consumption, CO2 emission cost, and vehicle usage cost in routes. These three costs were 

taken into the models in a view of sustainable VRP formulation. Fuel consumption cost 

includes mainly the oil cost, CO2 emission cost involved the social and abatement cost 

for pollution from CO2 emission, and vehicle usage costs comprised the vehicle 

depreciation cost, insurance cost, and the drive wages cost, etc. A novel iterated local 

search algorithm, route splitting tabu search (RS-TS) was proposed to solve the model.   

Another important variant of VRP is the VRP with a mixed fleet or heterogeneous 

vehicle. The research area of VRP with heterogeneous vehicle was introduced by Golden 

et al. (1984). When different types of vehicles instead of a single type are obtained in 

routing problems, then VRP with heterogeneous problems arise. Baldacci et al. (2008) 

stated heterogeneities were obtained from five various conditions, such as limited vehicle 

numbers, unlimited vehicle numbers, fixed cost of vehicles are included, no fixed costs 

are included, and variable cost for different vehicle types as regard to heterogeneity in 

vehicles. Although, vehicles with various carrying capacities, different fuel types, 
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dissimilar CO2 emission rates were also more common in vehicles heterogeneity. Ubeda 

et al. (2011) examined the effect of utilizing various degrees vehicles on CO2 emission by 

considering distance minimization and CO2 emission minimization approach. In the view 

of reducing CO2 emission in VRP, the study carried out by Jaramilo (2010) was extended 

by Kopfer and Kopfer (2013) considering various vehicle categories (heterogeneous fleet 

type) and of fuel consumption in contrast of Jaramilo (2010). Four different categories of 

vehicle compliance with EC regulation were considered in this study. The amount of CO2 

emission was considered as a function of distance travelled and the amount of carried 

load on the arcs. The problem in the study was formulated by traditional VRP, EMVRP, 

and EMVRP-VC concepts. The heterogeneous feature of vehicle fleet was included in the 

objective function, and emission and fuel consumption varying with vehicle categories 

were aimed to minimize in the problem model. The computational results were generated 

on smaller instances (up to 10 customers) by using the exact algorithm, CPLEX. The 

computational results showed that the EMVRP model reduced the CO2 emission by 1.5 

% (approximately) and increased traveled distance by 1.9% compared to the VRP model. 

The EMVRP-VC (emission minimization VRP with heterogeneous vehicle) reduced CO2 

emission by 13% compared to the EMVRP and by 14.5% compared to the VRP. The 

EMVRP-VC increased travel distance by 24.7 % and 22.3% compared to the EMVRP 

and VRP model due to the added number of vehicles. Kopfer et al. (2014) further studied 

the EVRP-VC model to reduce the fuel consumption rate and the CO2 emission amount 

conjointly in addition to vehicle distance only for heterogeneous vehicle fleets. The 

heterogeneous vehicles had different payload-dependent fuel consumption features. 
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Computation results were generated with the CPLEX solver on smaller instances (up to 

14 customers). Results showed that using the heterogeneous vehicle in VRP, a significant 

amount of CO2 emission could be reduced. Vornhusen and Kopfer (2015) extended the 

EMVRP-VC problem to EMVRPTWSD-VC by considering more classes of 

heterogeneous vehicles (from four previously to six), split delivery, and time window 

features in the problem formulation. The decision variables such as arcs, vehicle types 

with their corresponding CO2 emission model for the preferred time window formed this 

problem as a mixed-integer programming model. The objective of the problem model 

was to minimize CO2 emission and travel distance. Computational results showed that 

permitting split delivery only with the homogeneous fleet (gross weight 12, 20, 26 tons), 

models generated an overall reduced amount of emission by 1.03%. The overall distance 

and number of vehicle usages were also decreased by 1.30% and 3.69% respectively. 

Computational results also highlighted that orientation of more heterogeneous vehicles 

(from 4 to 6 vehicles having their gross weight between 3.5 to 40 tons), reduced average 

CO2 emission furthermore by 16.16%. The overall distance and number of vehicle usages 

were also reduced by 14.00% and 15.49% respectively. Gusikhin et al. (2010) studied the 

consumption of fuel of heterogeneous mixed fleet vehicle in a routing problem. The 

authors emphasized different road types, highways, and city roads, in addition to several 

vehicle types affecting CO2 emission. Although the authors did not consider any load as 

the study focused on only passenger cars. Kwon et al. (2013) measured the CO2 emission 

for a vehicle routing problem with the heterogeneous fixed fleet. A fixed type of vehicle 

diversified with carrying capacity and CO2 emission level was considered in this study. 
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The problem formulation was intended to minimize operation costs and carbon emission 

trading net costs. The vehicle operation cost was directly proportional to the vehicle 

distance traveled. The cost-benefit related to CO2 emission trading was calculated from 

the deviation between the estimated CO2 emissions in the routing and permitted cap 

(upper limit) for CO2 emission. A mixed integer programming model was adopted to 

denote the problem mathematically. The solutions obtained by the Tabu search algorithm 

show the CO2 emission could be decreased without increasing costs because of the 

benefits of carbon trading.  Koc et al. (2014) introduced the fleet size and mix pollution-

routing problem (FSMPRP), which as basically an extension of the pollution-routing 

problem with heterogeneous vehicle fleet with time windows. The problem aimed at 

minimizing the cost function contained vehicle operation costs, fuel costs, and CO2 

emission costs. Vehicles were considered with a speed function as described by Bektas 

and Laporte (2011). A hybrid evolutionary metaheuristic was developed having features 

of a heterogeneous adaptive large neighborhood search procedure and a split algorithm 

with a speed optimization algorithm. Experimental results highlighted various trade-off 

options between fuel costs, CO2 emission costs, distance, vehicle fixed costs, driver 

wages, and total routing cost. The authors emphasized on using heterogeneous vehicles 

over homogenous vehicles with a remarkable outcome that heterogeneous fleet with fixed 

speed offered greater cost benefits compared to the homogenous fleet with optimum 

speed inclusion.  
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2.3 Multi-objective GVRP  

Many studies reveal that fuel consumption and CO2 emission are greatly influenced the 

vehicle types (Demir et al. 2011, 2014b). In manufacturing businesses, light-duty 

vehicles are prospective to increase total routing distances and they are also more likely 

to increase CO2 emissions, even though heavy-duty vehicles have larger engines 

consuming more fuel per distance unit than the light-duty vehicles (Campbell 1995a, 

1995b). In addition, heavy-duty vehicles are recommended to replace by heterogeneous 

vehicles for a purpose of minimizing routing CO2 emission (Kopfer and Kopfer 2013; 

Kopfer et al. 2014; Vornhusen and Kopfer 2015). Heterogeneity of the vehicles occurs 

from several engine friction coefficients, engine speed, engine displacement co-efficient, 

aerodynamic drag force factor, frontal surface area, driven train efficiency factor, curb 

weight and carrying capacity, payload of the vehicles (Bektas and Laporte 2011). 

Moreover, in the context of vehicle speed, the characteristics of GVRP are also 

conflicting. Such as, higher vehicle speeds denote the tendency of shorter routing 

distance but concurrently higher speeds result in a greater amount of CO2 emission. 

Therefore, the reduction of pollution and CO2 emission is required an optimum vehicle 

speed to be maintained in the routing instead of minimum speed. Because the same as 

higher vehicle speed, minimum speed also results in higher CO2 emission. Even 

minimum vehicle speed could generate feasible solutions with empty or severely smaller 

routes. Subsequently, VRP formulation with the optimum vehicle speed (greater than 

minimum speed) can generate more CO2 emission with larger routing distance. 

Accordingly, better integration of vehicle speed and vehicle type possibly with many 
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other factors is highly recommended to be included in routing problem formulation 

(Kramer et al. 2015a). Overall, the green orientation in the conventional VRP problem 

leads to GVRP as a bi-objective (or multi-objective) optimization problem that intends to 

reduce CO2 emission and distance traveled. Conventionally, the amount of CO2 and 

distance traveled are directly related to fuel consumption and operational cost in the 

routing. The multi-objective optimization attitude offers a set of Pareto optimum 

solutions that facilitates a systematic trade-off analysis between conflicting objective 

functions in a problem. The Pareto optimality of the multi-objective problem is evaluated 

in a manner in which one objective is kept fixed, and the other two objectives are 

compared and so on. The Pareto front is generated from the best solution of one objective 

function while other objective functions’ coefficients are varied according to the cost and 

other constraints happen in real-life scenarios (Chaudhari et al. 2010).  Jabir et al. (2015) 

proposed a multi-objective optimization model for GVRP where the objective was to 

reduce the CO2 emission while preventing an increase in economic cost. Economic costs 

included fixed costs, route cost, fuel consumption cost, and other operational costs. CO2 

emission costs (in terms of cost of tons of CO2 emission) represent the environment 

impact measured as a function of load, vehicle type, and vehicle engine coefficients. The 

optimization solution for conflicting objective functions forced to generate Pareto optimal 

solution. The hybrid metaheuristic was used in solving the problem, in which ant colony 

optimization (ACO) was utilized to find the economic optimum routes. Then, the low 

CO2 emission routes were generated by a variable neighborhood search (VNS). Molina et 

al. (2014) generated and solved a multi-objective mixed-integer linear programming 
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optimization problem having three goals such as minimizing internal cost, NO2, and CO2 

emission. The problem was considered for a heterogeneous fleet with time window 

constraint. The problem consisted of a supermarket problem with 17 delivery points 

served from a single depot. A multi-objective heuristic algorithm based on a well-known 

Clark and Wright saving algorithm modified for the heterogeneous vehicle was proposed 

to solve the optimization problem. NO2 and CO2 emission were calculated from fuel 

consumed by the vehicle types multiplied by the emission factor for each emission type. 

Another multi-objective green cargo routing problem with cost and emission function 

was carried out by Siu et al. (2012). The two objectives of this study were to optimize the 

CO2 emission and traditional operation cost in the routing. Different transport modes 

such as scheduled flights and train service were considered in the problem. Each arc 

connecting the customer has its weight carrying limit (cap) and transportation fee per km. 

The genetic algorithm was implemented for the problem, then after Martins’ label-setting 

algorithm was used for the multi-objective problem. (Martins’ algorithm was a 

generalization of the famous Dijkstra’s shortest path algorithm for a multi-objective 

problem with multiple decision variables). Martins’ algorithm was used to generate the 

Pareto optimal solution for the problem. The research work, stated previously in this 

research, carried out by Demir et al. (2014a) was also a bi-objective optimization 

problem with CO2 emission and driving time reduction. The original study was proposed 

by Bektas and Laporte (2011), and then studied by Demir et al. (2012) as single-objective 

problem to reduce the CO2 emission and routing cost of the optimization problem. Kumar 

et al. (2015) studied a multi-objective optimization problem of pollution routing problem 
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with soft time window (with waiting penalty charge). The conflicting objective functions 

were dealt to reduce operation cost and CO2 emission that was equivalent to fuel 

consumption. Various speed levels of homogeneous vehicle and their carrying loads for 

each arc were considered a decision variable. Vehicle speed and loads were also used to 

estimate the fuel consumption level on the arc as a basic equation used in Demir et al. 

(2012, 2014a) but modified for a multi-period time window. This multi-objective 

optimization problem was solved by generating Pareto optimal solutions. Pareto frontier 

or non-dominated solution was the optimum solution which cannot be improved further 

without breaking another optimum solution or any constraint (Melián-Batista et al. 2014). 

An algorithm called self-learning particle swarm optimization (SLPSO) was proposed to 

obtain the Pareto fronts in the problem. In the field of VRP, many other multi-objective 

optimization problems were studied such as Jozefowiez et al. (2009) where distance 

travelled, and route imbalance were optimized, Tan et al. (2006) optimized two 

conflicting objective functions such as optimization of the number of vehicles and total 

route distances. A hybrid multi-objective evolutionary algorithm (HMOEA) was used in 

the study to solve the benchmark 56 VRPTW Solomon’s 100 customer instances. 

Androutsopoulos and Zografos (2012) studied another bi-objective VRP and scheduling 

problem with time window and time-dependent feature for hazardous material 

distribution. Kaiwartya et al. (2015) proposed a multi-objective dynamic VRP with time 

seed based problem which was solved by Particle swarm optimization. Kovavs et al. 

(2015) presented a multi-objective optimization problem by extending the generalized 

consistent VRP. Two exact solution approach and one heuristics algorithm were used to 
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solve the problem. Similarly, Ghoseiri and Ghannadpour (2010) presented a multi-

objective VRP with time window. A goal programming approach and an efficient genetic 

algorithm were aimed to solve the problem. Franceschetti et al. (2013) presented a linear 

integer programming based VRP.   

 

2.4 GVRP with time windows  

When time windows of the customers, preferred service time, are added in VRP then a 

new variant of CVRP is formed called the VRP with time windows (VRPTW). The 

chosen time window can either be a hard or soft condition. The hard time windows do not 

allow the vehicles to serve the customers out of the preferred time window. Vehicles are 

normally permitted to wait at no cost if they arrive earlier but later arrival is not allowed. 

On the contrary, the soft time windows allow the vehicles both early and late servicing at 

customers out of the preferred time window but subject to some penalty cost of customer 

inconvenience. The VRP with time window was surveyed in studies of Bräysy and 

Gendreau (2005a, 2005b), and Toth and Vigo (2014). Tas et al. (2014) proposed two 

exact algorithms, a column generation and a branch-and-price, for a vehicle routing 

problem with soft time window (VRPSTW), where time-independent travel time was 

considered as stochastic due to traffic congestion in real life. The model dealt with 

uncertainly in travel time following known probability distribution. In another study, Tas 

et al. (2014) focused on VRPSTW with dissimilarity from their study that time-dependent 

stochastic travel times were utilized. The Factual travel times (arrival times) were 

converted from time-independent travel time (arrival time). Two meta-heuristics such as 
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a Tabu Search and an Adaptive Large Neighborhood Search were developed in this study 

to solve the problem.  A VRPSTW problem was addressed in a study where two exact 

algorithms such as standard branch-and-cut-and-price and bi-objective optimization 

based on the bisection method (Salani et al. 2016). The VRPSTW was also studied in 

many other studies (Bhusiri et al. 2014; Fu et al. 2008; Liberatore et al. 2011; Qureshi et 

al. 2009; Chiang and Russell 2004). A benchmark time-dependent VRP with time 

window (VRPTW) was introduced by Figliozzi (2012). Another VRPTW problem with 

split delivery was studied by an exact algorithm, branch and price and cut in Archetti et 

al. (2011). A VRP with hard time windows was proposed in a study by Ehmke et al. 

(2015) where travel times on the paths were stochastic (probabilistic) rather than fixed. 

The probabilistic travel time resulted in a probability of violating time window 

constraints, while the objective of the model was to minimize the routing cost. The 

Solomon benchmark data sets were used to investigate the problem model by the 

LANTIME tabu search algorithm. The VRPTW was also investigated in many studies 

such as Baldacci et al. (2012), Gendreau and Tarantilis (2010), Kallehauge (2008), Vidal 

et al. (2012) and Hashimoto et al. (2013). Dhahri, et al. (2015) addressed a VRPTW with 

preventive maintenance activities as a scheduling problem. A variable neighborhood 

search (VNS) metaheuristic was proposed to solve the problem.  
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2.5 Alternative fuel vehicle (AFV) based GVRP with time windows and recharging 

station  

Evidence shows that in the last lustrum companies, governments, and other organizations 

have been using remarkably increased numbers of AFVs in the transport operation. The 

orientation of AFV in GVRP forms another important facet of GVRP in which the 

alternative fuel vehicles (AFVs) in routs. So far, AFVs in GVRP include biodiesel, 

hydrogen, electricity, methanol, ethanol, liquid-LNG natural gas, and compressed-CNG 

natural gas. Generally, AFVs have limited tank capacity, so vehicles need to visit 

alternative fuel stations (AFSs) en-route. The study carried out by Artmeier et al. (2010) 

was the first that extended the conventional short-path algorithms to address energy-

optimal routing considering battery powered-electric vehicles. The study had the 

objective of finding energy-efficient routes satisfying the energy limit for the road 

logistics and the remaining charge of the battery was maximal. Energy consumption of 

the battery was calculated by multiplying distance of the arc with a factor represent the 

speed conjunction with deceleration and acceleration while running the vehicles. Vehicle 

routes were considered feasible only if their required energy did not go beyond the 

charging level of the battery. Authors claimed that the features of EV such as limiting 

driving range, larger recharging time, and ability to regain energy during deceleration 

while running require a new routing algorithm. The problem was solved by an energy-

optimal routing algorithm. Formally, the use of AFVs in an extended CVRP work to 

GVRP with time window was introduced in a study by Erdogan and Miller-Hooks 

(2012). In the problem, each customer (each edge) was related to a travel time where 
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vehicle speed was constant. There were non-uniformly distributed AFSs around the 

routes. These jagged distributions of AFSs lead to deciding the time for vehicles to visit 

the refueling stations. The limited driving range of the vehicles corresponded to the fuel 

tank capacity limitation in the study. The time window constraint forced to choose the 

required vehicle with a suitable driving range to optimize total tour duration within the 

given maximum tour duration. AFSs and depot, opted as refueling stations, were 

permitted to visit multiple times during the tour. The mathematical formula was proposed 

to minimize the total travelled distance by the AFVs in a given time. The arc, fuel level 

and the arrival time at the customer were chosen as decision variables. Two heuristics 

such as the modified Clarke and Wright saving algorithm (Clark and Wright 1964) to 

take account of AFSs node, and the density based clustering algorithm (DBCA) for 

spatial clustering properties of the problem were proposed to solve the problem. A local 

search method was adopted after the feasible routes were obtained from the previous 

results. A randomly generated dataset and a case study data set from real (consisted of 

500 customers and 21 AFSs) world were utilized in this study. Schneider et al. (2014) 

introduced the electric vehicle in GVRP with time window and recharging stations. The 

limited driving range due to restricted battery capacities of the vehicles dictated to visit 

the recharging stations in order to complete the routes. Available researching stations 

were allowed to visit unlimitedly. The recharging time was not fixed as it depended on 

the current battery level and battery capacity while it was being charged. For the sake of 

simplicity, the recharging process was considered as linear with time in this study.  

Though, the recharging process is not linear in real-life as it requires increased time for 
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the last 10%-20% of the battery capacity (Marra et al. 2012). Vehicle speed was 

considered as constant and the remaining fuel level, cargo load, and arrival time at the 

customer were considered as decision variables in the problem. The model was intended 

to minimize the total travelled distance of the vehicles. A hybrid heuristic combining 

variable neighborhood search (VNS) and tabu search as a technique for local 

optimization was presented to solve the problem. The well-known Solomon instances for 

VRPTW were modified with recharging station and the dataset used in Erdogen and 

Miller-Hooks (2012) have also been utilized in the study for computation analysis. The 

proposed approach in the study was also applied to the dataset used for the multi-depot 

VRP with inter-depot routes (MDVRPI) (Crevier et al. 2007; Tarantilis et al. 2008). The 

presented approach in the study was capable of improving previous MDVRPI results and 

new solutions had been obtained for the dataset. Moreover, two sets of benchmark dataset 

for E-VRPTW were designed in this study, such as asset of small size instances that able 

of being solved by exact solution with CPLEX to evaluate the performance of proposed 

VNS/TS, and a set of instances with realistic size set of instances to assess the 

effectiveness of the proposed hybrid heuristics. Conrad and Figliozzi (2011) presented a 

new variant of VRP called the recharging vehicle routing problem (RVRP). In RVRP, the 

electric vehicles with a limited driving range due to restricted battery capacity were 

permitted to get recharge at certain customers’ locations within the route instead of 

recharging form the dedicated recharging stations. The authors claimed that this feature 

has more practical applications because of the quick recharging capabilities of electric 

vehicles. Independent of current recharge level with respect to battery capacity, vehicles 



Chapter Two: Literature review of GVRP 
 

35 
 

can be recharged taking a fixed time. Phenomenon implied that recharging and service at 

the customer location can happen simultaneously. Every customer has a soft time 

window constraint to be served. There were three decision variables: conventional binary 

variable from one node to another, binary variable if a vehicle was recharged at customer 

or not, and service start time at customers. The objectives of the formulation were to 

minimize the number of routes and to minimize the cost of distance traveled, service 

time, and vehicle recharging cost. The Solomon datasets for VRPTW were used to 

perform the computation results though hard time window the dataset was relaxed for this 

study. An iterative construction and improvement heuristic algorithm was used in this 

study. A similar algorithm was also used in another study Figliozzi (2010b). Goeke and 

Schneider (2015) presented a mixed fleet based VRP with electric vehicle and 

conventional internal combustion vehicle with hard time window. Rather, considering 

energy consumption to be linearly related to travel distance (Erdogan and Miller-Hooks 

2012; Schneider et al. 2014), a realistic energy consumption model was considered which 

was dependent of speed, gradient, and carrying load on the arcs. The authors highlighted 

that the realistic energy consumption model plays an important impact on routing models 

which considers fuel cost and vehicle emission (Bektas and Laporte 2011; Jabali et al. 

2012). Although a mixed fleet of the electric and conventional vehicle was considered but 

all vehicles had a fixed carrying capacity in the proposed model. Recharging stations 

were allowed to be visited for electric vehicles but there were no refueling stations for 

conventional combustion vehicles. Recharging time was dependent on fixed recharging 

rate and difference between maximum battery capacity and the current charge state of the 
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battery. Arrival time at the customers, remaining cargo load at the customers, and 

remaining battery capacity were considered as decision variables. The model had the 

objective function of minimizing vehicle travel distance, cost consisted of vehicle usage 

cost and driver cost, and cost including battery replacement cost. One interest 

modification had made in the computational analysis that was the gradient and speed was 

considered constant on the arcs, where these two variables were considered as a 

dependency for fuel consumption in the proposed model. Finally, an adaptive large 

neighborhood search algorithm was proposed to solve the model. Desaulniers et al. 

(2014) generated an effective branch-price-and-cut exact algorithm for the four variant of 

EVVRTW problem that originally was introduced by Schneider et al. (2014). The four 

variants were introduced regarded to recharging the battery. These were: a single and full 

recharging battery, multiple recharges and full recharging (Schneider et al. 2014), single 

recharge and partial recharging, and multiple and partial recharging battery per route. The 

instances consisted of up to 100 customers and 21 battery recharging stations were 

adopted for computational experiments in this study. Although, computational 

experiments showed that some instances with 50 customers can result in their optimum 

results. Felipe et al. (2014) presented a GVRP with multiple technologies and partial 

recharges (GVRP-MTPR), which was an extension of the GVRP study introduced by 

Erdogan and Miller-Hooks (2012). Erdogan and Miller-Hooks (2012) was the first study 

that introduced recharging stations for electric vehicles in VRP. Schneider et al. (2014) 

extended their work by introducing customer time windows constraint in E-VRP with 

recharging station, where vehicles were allowed to recharge the battery at the recharging 
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station. Probably in this evolution, Felipe et al. (2014) extended the work carried out by 

Erdogan and Miller-Hooks (2012) in a new way by considering partial charging at the 

recharging station. Partial recharging has several positive influences in routing such as 

cost saving because remaining recharging can be done at the depot at a much lower price, 

time saving in routing assist making certain for total maximum duration constraint. 

Besides, battery recharging operation can be performed in various ways with different 

technologies, such as plugging the battery in elected grid by recharging point that 

compatible with the conventional petrol pump station. Charging on household plug 

though it may take longer time, it was cheaper but due to a longer time, it was 

recommended for night time at the depot and vehicle start the routing with a fully 

charged battery. Recharging can be done in an hour by the technology called CHAdeMO 

protocol (Paschero et al. 2013). Moreover, many wireless recharging systems are 

available that capable of recharging at twice faster than CHAdeMO. Wireless recharging 

systems are comparatively expensive but also enable recharging while the vehicles are 

located on a platform. In the study, multiple visits even simultaneous visits to recharging 

stations are allowed. Therefore, different recharging speeds and recharging costs are 

considered in the work. Energy consumption was considered as proportional to the 

distance traveled. There was a maximum duration constraint for each route and there 

were limited numbers of vehicles in the problem. There are many decision variables 

considered such as amount energy available when arriving the node and when leaving the 

node, amount of remaining load when leaving a node, amount of energy recharged at the 

node using a technology, amount of energy recharged at the depot, departure time at the 
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node, and conventional binary variable. The objective of the study was to minimize the 

cost consisted of recharging cost at the depot at night time and at recharging station at 

day time, and fixed cost related to battery cycles. As a new problem, authors in this study 

created a new dataset for this problem along with some instances from similar literature 

Schneider et al. (2014) and Erdogan and Miller-Hooks (2012). The overall dataset was 

solved by several heuristics in this problem.  Another GVRP with zero emission vehicles 

was presented by Montoya et al. (2014), where two-phase heuristic was generated to 

solve the problem. In another study, Schneider et al. (2015) described the vehicle routing 

problem with intermediate stops (VRPIS) where the requirements for stopping at 

intermediate facilities were taken into account. Authors hereby incorporated some 

practical scenarios in VRP when intermediate stops have to happen such as refill the 

products, refueling or recharging, and waste disposal, etc. These kinds of stops are 

different from the regular VRP stops in two aspects for example, intermediate stops are 

optional and they rely on the state of vehicles’ load and fuel or charge level. Optional 

customers stop were considered in many studies like Archetti et al. 2013; Tarantilis et al. 

2008), which were contrasted in Schneider et al. (2015) that intermediate stops were 

aimed to keep the vehicle operational, not directly related to profit maximization or even 

customer service. Moreover, Schneider et al. (2014) studied E-VRPTW with recharging 

station and a heuristic method was used to solve the problem by the VNS algorithm. In 

the solution, initially, number of the vehicles in the route was minimized then travel 

distance of the vehicles was minimized. On the contrary, Schneider et al. (2015) 

considered a constraint of maximum rout duration. The service time required in the 
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intermediate stoppage was incorporated in time window constraints in the VRP model. 

The aimed to minimize the total cost consists of total travel costs and total fixed costs of 

the vehicles. The authors generated an adaptive variable neighborhood search (AVNS) 

for solving the VRPIS. In real-life scenarios, intermediate stops happen when 

intermediate stops for refueling or recharging, for example, some companies have their 

dedicated refueling or recharging station which offers cheaper refueling. In addition, 

battery electric vehicles require recharging during their longer routes due to their limited 

driving range. The visit for recharging was not fixed in the routes but depends on the 

current charging level of the battery, in this way VRP with recharging station can be 

considered as a special case of VRPIS (Schneider et al. 2015). Hiermann et al. (2016) 

introduced the electric fleet size and mix vehicle routing problem with time window and 

recharging stations (E-FSMFTW) based on the FSMVRPTW by Braysay et al. (2008) 

and E-VRPTW by Schneider et al. (2014). It was claimed that the limited battery capacity 

of the electric vehicles was the main deficiency for their competitiveness in the routing 

problem. The mixed fleet of electric vehicles was different in terms of their capacity, 

battery size, and acquisition fees, which was the difference from the study by Geoke and 

Schneider (2015). The decision variable includes the vehicle types, recharging time, and 

recharging location in completing the routes. The objectives of the study were to 

minimize the acquisition costs (fixed cost) of vehicles and total traveling costs for each 

vehicle. The authors created the new dataset for the problem. The two conditions were 

considered in the objective function calculation, a researching station did not require to 

be visited at all in the solution and a recharging station was allowed to visit at most once 
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by a single vehicle. The mathematical formulation was defined as mixed integer 

programming (MIP). The branch-and-price algorithm was proposed initially in the study 

for the VRPTW to generate benchmark exact solution results by solving smaller 

instances. In addition, a metaheuristic algorithm based on adaptive large neighborhood 

search (ALNS) enhanced was by local search and labeling procedures. Barco et al. (2013) 

proposed a comprehensive VRP related to a real-life scenario of airport shuttle operation 

by battery electric vehicles. The case study considered carrying the airport passengers 

from airport to hotels carried out by plug-in electric battery vehicles. The problem was 

proposed to minimize the routing cost, operating cost of vehicles with better scheduling 

for recharging within time window. A differential evolution algorithm was proposed to 

solve the problem. In the algorithm, at first, the energy consumption of each road was 

calculated by using longitudinal dynamics equation considering acceleration and speed 

change on the road (Munoz et al. 2012), then based on the energy consumption, routes 

were selected satisfying preferred time window. When energy consumption and routes 

were developed, the schedule for recharging the battery was generated and optimizes the 

whole model. Preis et al. (2014) studied an energy-optimized electric vehicle routing 

problem with time window and static recharging time. The study aimed to optimize the 

energy consumption of the vehicle in the routs.  The energy consumption of the vehicle 

depended on the vehicle carrying load and gradients of the arc. The problem was 

formulated as mixed-integer programming. The authors generated a number of 160 sets 

of test instances having a diameter of 10 km as basin shape. Only one depot was assumed 

to be located at the center and customer numbers varied from 10 to 100 but the number of 
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recharging stations was accepted at fixed three. Electric vehicles were assumed as 

homogeneous with an unlimited number having an unfilled weight of 2 tons and 

maximum carry capacity was 200 kg. Vehicle speed assumed as fixed at 15 km/h. An 

adapted tabu search heuristic was proposed to solve the problem instances. Yang et al. 

(2015) studied a new variant of VRP problem, named the environmental VRP with soft 

time window and multiple vehicle types. A multi-objective VRP problem with three 

different vehicle types such as environmental, sub-environmental, and conventional 

energy-consumption vehicles was presented in the study which had the conflicting aims 

of reducing costs, increasing customer satisfaction, and reducing environmental pollution. 

Five attributes were considered for each vehicle in the heterogeneous fleet such as 

variable operation (traveling) cost per unit of time, fixed cost, maximum speed, load 

carrying capacity, and environmental emission factor. Problem formulation was to decide 

the routes, vehicle type and speed, and carrying load to satisfy the customer with 

minimum emission pollution. The vehicle traveled distance and vehicle type were the 

determinants of environmental pollution in the problem model. The authors created a 

dataset for the computational analysis in this study. A hybrid genetic algorithm was 

proposed to solve the problem successfully. In addition, Pareto optimality analysis of 

three-objective optimization models was carried out. Sensitivity analysis showed that 

operation cost and environmental emission had a strong correlation with vehicle speed 

and load carrying capacity of vehicles had an impact on operation cost, environment 

emission, and customer satisfaction. Bruglieri et al. (2015a) proposed a routing and 

scheduling problem of electric vehicle with time window and partial recharging. It was 
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viewed that partial recharging at recharge station had a positive influence on decreasing 

total recharging time and vehicle serving the customers in time. Vehicles were assumed 

to be homogeneous with fixed carrying capacity, speed, battery consumption, and 

recharging rate. The arrival time, remaining vehicle capacity, and battery level at each 

customer location were considered as decision variables. The mathematical formulation 

of the problem was seen as mixed integer linear programming (MILP) to minimize the 

number of vehicles and the total route duration for the vehicles. Total time was calculated 

from the sum of recharging time, traveling time, and waiting time of the vehicle. The 

problem was solved by the proposed metaheuristic algorithm, the variable neighborhood 

search branching (VNSB). Several benchmark instances generated from the Solomon 

benchmark VRPTW study had been used for computation analysis in the study. An 

introductory part of the work was carried by another study Bruglieri et al. (2015b) where 

all most same scenario of the problem was considered but only differed in the 

mathematical formulation of the problem. In the study by Bruglieri et al. (2015a) 

considered MILP formulation under the constraints of total time and battery level at 

customer location where a study by Bruglieri et al. (2015b) considered optimization 

problem as MILP under the battery level constraint only. Keskin and Catay (2016) 

studied another electric-VRP with time window and partial recharge (EVRPTW-PR) 

problem. In EVRPTW, vehicle leave from the depot or recharging station with full-

charged battery and return at the deport or station with any degree of charge but in 

EVRPTW-PR, the vehicle leaves the deport or recharging station at any level of charge 

and return at the depot or station with an empty charged battery. The recharge amount 
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was considered as a continuous decision variable. The recharging amount was determined 

from the remaining charge level at depot or recharging station. The service starting time 

and remaining cargo load were also considered as decision variables. The objective was 

to minimize the total traveled distance in the routes. The problem was formulated as 0-1 

mixed-integer linear programming (MILP) and generated an adaptive large neighborhood 

search (ALNS) algorithm to solve the problem optimally. The performance of the 

proposed algorithm was validated using EVPTW instances used in Schneider et al. 

(2014). Of them, the proposed approach improved the four problems. That consequence 

showed that partial recharging scheme improved the solution obtained for full-charging 

scheme in the problem. Sassi et al. (2015a) studied the vehicle routing problem with 

mixed fleet and time window. Mixed fleet vehicles include heterogeneous electric 

vehicles and conventional vehicles. The heterogeneity of electric vehicles was 

characterised in terms of dissimilar battery capacities and operating costs; and all 

conventional vehicles had identical carrying capacity. The electric vehicles were allowed 

to be partial recharging. The study differed from the other studies in such a way that 

recharging stations were different in terms of fast recharging technologies compatible 

with heterogeneous electric vehicles and recharging cost was time-dependent. The 

problem was considered for a specific time horizon [0, T], for example a day, which was 

divided into many time intervals having a time length and their time duration. Although 

there were several recharging stations, some of them offered maximum charging power 

during a time window and subject to time dependent recharging cost. Vehicles must have 

to wait to match the time period for that offer. Furthermore, three different charging 
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technologies were considered named as, level 1- slowest charging with the power of 3.7 

kW, level 2- medium charging with the power of 22KW, and level 3-fastest charging 

with the power of 53Kw. At various predefined time period, different charging 

technology was available at fixed recharging stations such as, during time period [0, T], a 

fixed number of level 1 charger were obtainable at the depot, during time period [T0 -T] 

some predefined chargers of level-2 were available and so on. When charging happened, 

only the required amount of charge was added to the vehicle that was partial recharging. 

The objective function was aimed to minimize total costs for mixed fleet operation in 

routes. Total cost composed of five costs were routing cost linearly related to distance 

traveled and operating cost, recharging cost at the depot, recharging cost at other 

recharging station, total fixed cost and total waiting cost needed for EVs in case of their 

arrival out of preferred charging time. The computation results were conducted based on 

9 real-life instances collected from a French company. The instances consisted of 

between 300 to 500 nodes and there were many charging stations ranges from 15 to 35 in 

number. A metaheuristic, multi-start iterated local search (ILS), was proposed to solve 

the problem. Overall the study (Sassi et al. 2015a) was a modified work of the study by 

Sassi and Oulamara (2014), where the joint scheduling and optimal charging of electric 

vehicle routing problem was investigated under the same contexts. Sassi and Oulamara 

(2014) modeled their optimization problem as a mixed-integer linear programming 

(MILP). The small and medium data instances were solved by the exact algorithm 

(CPLEX) and large instances were solved the heuristics algorithm. Sassi et al. (2015b) 

investigated the same problem with a mathematical optimization model solved by a 
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different mathematic procedure called by the multi-start iterated tabu search (ITS) based 

on a large neighborhood search (LNS). The LNS was used in the intensification and 

diversification phase of the ITS. ITS-LNS showed better results than their previous 

studies that implied LNS adoption in ITS improved the solution as compared to other 

neighbourhood search algorithm procedures such as 2-opt search. Before that same 

optimization problem was studied by Sassi et al. (2014), where authors used a different 

meta-heuristic as distinct to solve the problem. Metaheuristic consisted of a charging 

routing heuristic to build initial solutions and then an inject-eject-based local search 

embedded with three different insertion strategies. Juan et al. (2014) studied a VRP with 

multiple (heterogamous) driving ranges (VRPMDR), an extension of CVRP. The 

heterogeneous fleet consisted of a number of electric and hybrid-electric vehicles. The 

driving ranges of the vehicles were not the same that implied that the total distance for 

each vehicle was limited to their available maximum driving range. The conventional 

internal combustion vehicles have an unlimited driving range. All vehicles, both electric 

and hybrid, have a maximum carrying capacity. The objective of the problem was to 

minimize the total cost of vehicles travel with alternative fleet subject to the vehicle 

carrying load and available different driving ranges of the vehicles, and to assess how 

total costs were changed as ICV substituted by electric vehicle. The mathematical 

formulation was formed as integer programming and the model was solved by a multi-

round heuristic algorithm. A total number of twenty well-known classic VRP benchmark 

instances were chosen randomly from the website http://www.branchandcut.org for 

computation analysis in the study. Three types of vehicles such as internal combustion 

http://www.branchandcut.org/
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vehicle, plug-in hybrid electric vehicle with unlimited driving range, electric vehicle with 

medium driving range (up to 200 km), and electric vehicle with short driving range (up to 

100 km) were considered in the study. Moreover, the electric vehicle in distribution 

logistics was studied in a survey work by Pelletier et al. (2015). Grandinetti et al. (2016) 

considered the electric vehicles pick-up and delivery problem with soft time windows. 

The problem was mathematically formulated as a multi-objective MILP model with the 

objective function of minimizing the total cost for the EVs used, the total travel distance, 

and the total penalty cost for the unsatisfied time windows. Moreover, a time dependent 

green CVRP was addressed by proposing a dynamic programming based solution method 

in Soysal and Çimen (2017). Mancini (2017) addressed a hybrid vehicle routing problem 

where the decision process was involved to decide both when to switch from a CV to an 

EV and when to recharge. A metaheuristic based on a large neighborhood search was 

developed to solve the problem and it was tested on the GVRP benchmark instances. 

Leggieri and Haouari (2017) designed a new exact solution method for solving the 

GVRP. Zhang et al. (2018) studied an electric VRP with recharging stations to minimize 

the energy consumption of the vehicles. An ant colony based solution approach was 

tested on newly generated instances. Andelmin and Bartolini (2019) investigated a green 

VRP considering AFVs and vehicle tour length constraint. The fuel consumption for the 

vehicles was assumed to be linearly related to the distance travelled. A multi-start local 

search heuristic method was designed to solve the problem. The proposed method was 

tested on 52 benchmark instances obtain from the literature. Bruglieri et al. (2019) 

designed a path-based solution method exact solution to solve a green vehicle routing 
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with AFVs and their visit to the alternative fuel stations (AFSs). Zhang et al. (2020) 

considered a multi-depot green VRP to minimize CO2 emissions of the vehicles. A two-

stage ACO was designed to solve the problem and it was tested on newly generated 

problem instances. 

 

2.6 Particle swarm optimization and neighbourhood search  

Literature shows that heuristics and metaheuristic methods are hybridized to obtain good 

solution quality within reasonable CPU time. Local search schemes are used for most of 

the hybridization. This observation motivated us to hybridize the PSO to improve its 

performance in this study. Our study proposes a hybrid PSO based solution for CluVRP, 

and new variants of VRPB named as MFGVRPBTW and GCluVRPBTW in this thesis 

work. The PSO is a population-based combinatorial optimization solving technique 

originally introduced in Eberhart and Kennedy (1995). The technique has been inspired 

by social collective behaviors seen in many natural swarms. The PSO algorithm starts 

with a population (called swarm) of many feasible solutions (denoted as particles). Each 

solution is randomly initialized in a multidimensional solution space. Each particle is 

characterized by two vectors, such as position and velocity vector. The optimal solution 

is obtained through iterations. In iterations, particles update their vectors according to 

their inertial behavior, individual cognitive behavior, and social learning behavior; and 

follow their personal best solutions and the global best solution of the swarm. A 

predefined fitness function is used to evaluate the performance of each particle. The PSO 
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has well been evidenced in the literature to be a very effective, powerful, and competitive 

algorithm for solving VRPs and their variants (Li et al. 2019; Marinakis et al. 2019).  

For instance, Ai and Kachitvichyanukul (2009a) solved a VRP with simultaneous 

pickup and delivery by proposing a PSO algorithm. The proposed PSO was developed 

based on global-local-neighbor particle swarm optimization (GLNPSO). Local searches 

and route optimization methods were implemented to obtain a quality solution. Shao et 

al. (2009) studied a VRP with stochastic travel time and designed a hybrid PSO based 

algorithm to solve it. In the algorithm, an initial set of the solution was created by 

arranging randomly generated position values of particles in ascending order. The 

solutions were further improved by using the dynamic neighbor operator. Marinakis and 

Marinaki (2010) studied a CVRP and proposed a hybrid PSO based solution. In the 

hybrid PSO, the initial solution was created by using greedy randomized adaptive search 

procedure, a multiple phase neighborhood search, then standard PSO combined with a 

genetic algorithm, expanding neighborhood search strategy, and many local searches to 

obtain a competitive solution tested on benchmark instances. Marinakis et al. (2010) 

designed a hybrid PSO based solution method for a CVRP. Instead of using a randomly 

created solution, the initial solution was generated using the MPNS–GRASP. The 

solution was improved by adopting an expanding neighborhood search strategy. The path 

relinking strategy was used to obtain a local optimal and global optimum solution. 

Marinakis et al. (2013) proposed a hybrid algorithmic approach based on PSO for solving 

CVRP with stochastic demands. Initially, the routes of each particle were created from 

random nodes and velocity was initialized as zero.  The 2-opt and 3-opt local search 
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algorithms were used to improve the solution. The path relinking strategy was used to 

represent the solutions, where each element of the solutions was transformed into floating 

point interval (0, 1), velocity and position values of all particles were calculated, and then 

position values were converted back to integer values using relative position indexing 

method. Belmecheri et al. (2013) developed a PSO based solution approach to solve a 

heterogeneous fleet VRP with mixed backhauls and time windows. Vehicles were 

different in capacities and variable costs. The initial solutions were created by randomly 

generated position values in decreasing order. The solution was improved by using a 

local search method. The algorithm was validated on Solomon’s instances. Xu et al. 

(2015) proposed a hybrid solution method combining PSO with a genetic algorithm for 

the VRP with time windows. The routes were decoded from a real number coding of 

particles, and the crossover operation of the genetic algorithm was used to find an 

optimal solution. The algorithm was tested on Solomon instances. Norouzi et al. (2017) 

introduced a modified PSO based algorithm to solve a time-dependent VRP. The 

algorithm resulted in reduced carbon emission from a minimal travel time of the vehicles. 

In the algorithm, initial solutions were created from randomly generated position values. 

The neighborhood searches, such as crossover and 2-opt operators were used to improve 

the solutions further. The Solomon’s test cases were used for solution method evaluation. 

Li et al. (2019) designed a modified PSO algorithm for a green VRP for cold chain 

logistics considering the GHG emission and a total of six costs in the logistics. Initial 

solutions of each particle were created from randomly generated integer values. The 

solution approach was tested on a case study. Zhang et al. (2018) proposed an 
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evolutionary scatter search PSO to solve a VRPTW to minimize the total travel distance. 

Chen and Shi (2019) introduced a multi-compartment VRP with time windows and 

proposed two PSO based solution approaches, i.e. hybrid PSO and conventional PSO 

based solutions. In both solution approaches, initial solutions were created by random 

scanning and greedy algorithm. Many local searches were used to find neighbor solutions 

and path relinking algorithm was used to obtain new solutions from two different 

solutions. In the hybrid PSO, simulated annealing was used to avoid the shortage of 

premature convergence of conventional PSO and to jump the solutions out of local 

optimum. Then a further better global optimal solution was obtained. The algorithms 

were tested and compared with each other on Solomon’s instances. Marinakis et al. 

(2019) developed a multi-adaptive PSO algorithm to solve a VRP with time windows. In 

the unique solution approach, diversified initial solutions were created by an adaptive 

strategy based on GRASP. Another adaptive strategy denoted as adaptive combinatorial 

neighborhood topology, where a path relinking procedure was used for the movement of 

the particles from one solution to another. All parameters of the algorithm, including 

main iterations and local search iterations, were adapted during the procedure by the third 

adaptive strategy in the algorithm. A problem specific variable neighborhood search 

(VNS) was utilized on both the initial solution and iteration’s solutions in each particle to 

obtain improved solutions. The algorithm was tested on Solomon’s instances. 

The variable neighborhood search (VNS) was first introduced by Mladenovic and 

Hansen (1997) to solve a traveling salesman problem in 1997. Usually, a VNS is used as 

a local search algorithm to obtain a local best solution. The VNS is also a widely used 
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heuristic search method in VRPs (Hansen and Mladenovic, 2003). Many studies found 

using the VNS with the PSO for solving several optimization problems, where PSO 

solution was used as a global search algorithm. Marinakis et al. (2010) generated a hybrid 

PSO metaheuristic to solve a CVRP, by producing an initial solution from a greedy 

randomized adaptive search procedure and by improving the solution further by a VNS 

algorithm. Goksal et al. (2013) introduced a hybrid metaheuristic based on PSO and 

variable neighborhood descent (VND), a lower-level VNS, to solve a vehicle routing 

problem with simultaneous pickup and delivery. Besides, Marinakis et al. (2013) 

proposed a multi-adaptive PSO solution approach for a vehicle routing problem with time 

windows, where the PSO solutions were improved by applying VNS for each particle in 

the swarm. Zou et al. (2013) presented a novel PSO algorithm hybridized with VNS to 

solve a multi-objective VRP with pickup and delivery problem with time windows. 

Zhang et al. (2019) designed a hybrid solution based on VNS integrated with binary PSO 

to solve a location-routing problem (LRP). Marinakis (2015) hybridized a PSO combined 

with a VNS for solving a capacitated LRP. In another study, Moghaddam et al. (2015) 

used VNS in an advanced PSO based solution approach to solve a VRP with uncertain 

demands. A novel decoding algorithm was used to increase the efficiency of the solution 

approach. The decoding was designed for generating vehicle routes and updating particle 

values. Moreover, due to the dominant behavior of PSO in producing a strong global 

solution and VNS having the advantages of generating a best local solution, PSO and 

VNS have also been using widely in job scheduling problem (Moslehi and Mahnam 

2011). Liu et al. (2006) used a hybrid metaheuristic based on PSO combined with VNS to 
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solve a multi-objective flexible job-shop scheduling problem. In additional work by 

Pongchairerks and Kachitvichyanuku (2007), it was shown that a simpler VNS algorithm 

without hybridization with PSO produces a better quality solution with shorted CPU time 

than a hybrid PSO with a VNS algorithm for the job-shop scheduling problems. 

Furthermore, a hybrid metaheuristic combining a PSO and VNS algorithm was proposed 

for solving an unconstrained global optimization problem in Ali et al. (2014). In the 

study, the PSO was used to perform a wider diversification and deep intensification in the 

solution space, and VNS was used as a local search algorithm. Furthermore, a PSO-based 

hybrid metaheuristic was designed for a permutation flow shop scheduling problem 

(Zhang and Wu 2014). In the work, a PSO algorithm was incorporated with a stochastic 

VNS, a variant of VNS proposed in Hansen and Mladenovic (2001), hybridized with 

simulation annealing to enhance the exploration ability of PSO in the solution approach. 

Gumaida and Luo (2019) developed a new hybrid optimization technique based on PSO 

combined with a VNS to enhance the localization process in wireless sensor networks. 

Marinakis et al. (2017) designed a hybrid PSO incorporated with VNS to solve a 

constrained shortest path problem. Motivated by this observation, this thesis work 

embeds the VNS with the PSO to obtain a good quality solution of the CluVRP, 

MFGVRPBTW, and GCluVRPBTW problems. 
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2.7   Conclusion 

The literature shows that the VRP, GVRP, and their variants were solved using various 

heuristics and metaheuristics algorithms. It is apparent that architecting a framework to 

integrate multiple algorithms with different characteristics extensively improves the 

overall performance of a hybrid algorithm. Motivated by this observation, this thesis 

work designs a hybrid PSO based solution approach to solve the problems and to obtain a 

good quality solution of the clustered VRP, MFGVRPBTW, GCluVRPBTW. The 

performances of the proposed algorithms are tested by comparing many state-of-the-art 

algorithms for different variants of CluVRP, VRPB, VRPTW, and VRPBTW.  
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CHAPTER THREE 

Clustered vehicle routing problem 
 

In this chapter, a variant of capacitated vehicle routing problem (CVRP), called the clustered 

VRP (CluVRP), is studied. In CluVRP, customers are partitioned into predefined groups called 

clusters. The customers corresponding to a single cluster must all be visited by the same vehicle 

before it leaves the cluster. The notion of clustering in VRP has been well known due to its 

economic implications and its reduced complexity in modeling and solving a great range of real-

life applications (Expósito-Izquierdo et al. 2016). The CluVRP is a generalized form of the 

CVRP. As the CVRP is proven to be an NP-hard problem, the CluVRP is also NP-hard (Toth 

and Vigo 2002). 

The comprehensive CluVRP introduced by Sevaux and Sörensen (2008) focused on a 

real-world parcel delivery problem in courier companies. The consignment parcels were 

arranged into the bins corresponding to the specific delivery zones. The consignees belonged to 

the same zone designated as a cluster. The CluVRP can also arise in many scenarios such as 

transporting elderly people when the customers prefer to move with friends or neighbors, 

providing service to gated communities, collecting urban solid waste, providing the services of 

common repairmen, delivering healthcare providing service in both precedence ordered 

multitude of emergency environments and in logistics operations in an order-picking (Schmid et 

al. 2013; Expósito-Izquierdo et al. 2016).  
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Sevaux and Sörensen (2008) proposed a mixed integer linear programming formulation 

of a CluVRP for a distribution operation in a famous courier services company. Barthélemy et al. 

(2010) designed a heuristic for a CluVRP, where a big value was added to all inter-cluster edges 

to convert the CluVRP into a CVRP and solve it by simulated annealing method. Pop et al. 

(2012) presented two integer programming based exact solution approaches for a CluVRP. In 

another study, based on the integer programming formulation, two exact solution approaches 

such as branch-and-cut and branch-and-cut-and-price were presented by Battarra et al. (2014). A 

new hybrid algorithm based on the genetic algorithm combined with simulated annealing was 

developed to solve a CluVRP by Marc et al. (2015). Vidal et al. (2015) proposed two hybrid 

metaheuristics for solving a CluVRP. The first one was based on the iterated local search (ILS) 

algorithm designed by Subramanian (2012) while the second one was based on the unified 

hybrid genetic search (UHGS). An approximate two-level optimization technique was suggested 

to solve a CluVRP in Expósito-Izquierdo et al. (2016). Defryn and Sörensen (2017) developed an 

efficient two-level variable neighborhood search (VNS) heuristic to solve a CluVRP. In a study 

by Pop et al. (2018) addressed a unique two-level optimization approach to solve a CluVRP. The 

problem was divided into two sub-problems: the upper-level (cluster) sub-problem and the 

lower-level (customer) sub-problem. In the approach, the route visiting the clusters was obtained 

by a genetic algorithm, then, the customers’ visiting order within the clusters was determined by 

the Concorde TSP solver. The recent trend of metaheuristics shows its hybridization for 

performance improvement. Recently, Hintsch and Irnich (2018) presented a large multiple 

neighborhood search (LMNS) based metaheuristic algorithm for the CluVRP. The problem was 

broken down into three sub-problems: assigning clusters to the routes, intra-cluster routing, and 

routing the clusters.  In the LMNS approach, multiple destroy and repair moves for clusters were 
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used first, then a VND-based local search improvement scheme was employed for further 

optimization. The CluVRP in this thesis work is investigated by the hybridized PSO algorithm. 

The PSO is hybridized by variable neighborhood search (VNS) for solving a CluVRP. 

 

3.1 Problem definition of CluVRP 

The CluVRP can be defined on an undirected graph 𝐺 = (𝑉, 𝐸), where 𝑉 = {0, 1, 2 … … 𝑛}, a set 

of nodes (vertices) including the customers {1, 2 … … 𝑛} and a depot 0. A homogenous fleet of 

vehicles is situated at the depot, where the vehicles start and end their trip while serving the 

customers. Customers are grouped into predefined clusters.  The parameters and mathematical 

formulation for the CluVRP used in this work is inspired by the study (Expósito-Izquierdo et al., 

2016).   

 

Parameters 

𝑛 Total number of customers 

C Total number of clusters 

0 The depot 

nl The number of customers for the 𝑙𝑡ℎ cluster 

m Individual vehicle 

M Total number of vehicles available in the network 

r Individual cluster (mutually exclusive non-empty disjoint), r ∈ R 

R Group of the clusters 

dr Demand of cluster, r (aggregated over all customers in the cluster), dr > 0 

tcij The nonnegative travel cost for the edges from i to j, (i, j) ∈ E 

Q Maximum loading capacity of each vehicle, Q > 0 

Cr The group of customers within a cluster, Cr = { i ∈ n: ri = r}, ∀ r ∈ R 

 
V Set of vertices 

𝑆 subset of vertices that is different from V 

𝛿+(𝑆) Set of edges (𝑖, 𝑗) ∈ 𝑆 × 𝑁\𝑆 

𝛿−(𝑆) Set of edges (𝑖, 𝑗) ∈ 𝑁\𝑆 × 𝑆 
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The binary decision variables are: 

 

𝑥𝑖𝑗𝑚 = { 
1      vehicle 𝑚 travels from customer 𝑖 to 𝑗
0      otherwise

 

𝑦𝑖𝑚 = {
 1        customer 𝑖 is served by vehicle 𝑚 
0        otherwise

 

 

 

The CluVRP can be formulated as follows:  

 

 

 

Minimize ∑ ∑ 𝑡𝑐𝑖𝑗𝑥𝑖𝑗𝑚

𝑀

𝑚=1(𝑖,𝑗)∈𝐸

  (1) 

 

s.t., 
 

 ∑ 𝑦𝑖𝑚

𝑀

𝑚=1

= 1 ∀𝑖 ∈ {1,2, … … 𝑛} (2) 

 ∑ 𝑦0𝑚

𝑀

𝑚=1

≤ 𝑀  (3) 

 𝑦0𝑚 ≥ 𝑦𝑖𝑚 ∀𝑚 ∈ {1,2, … 𝑀}, ∀𝑖 ∈ {1,2, … … 𝑛} (4) 

 ∑ 𝑥𝑖𝑗𝑚

𝑛

𝑗=1

= ∑ 𝑥𝑗𝑖𝑚

𝑛

𝑗=1

=  𝑦𝑖𝑚 ∀𝑚 ∈ {1,2, … 𝑀}, ∀𝑖 ∈ {0,1,2, … 𝑛} (5) 

 ∑ 𝑑𝑖𝑦𝑖𝑚

𝑛

𝑖=0

≤ 𝑄 ∀𝑚 ∈ {1,2, … 𝑀} (6) 

 ∑ ∑ 𝑥𝑖𝑗𝑚

𝑀

𝑗≠𝑆𝑖∈𝑆

≥ 𝑦ℎ𝑚 ∀𝑆 ⊆ {1,2, … 𝑛}, ℎ ∈ 𝑆, 𝑚 ∈ {0,1,2, … 𝑀} (7) 

 ∑ ∑ 𝑥𝑖𝑗𝑚

𝑀

𝑚=1(𝑖,𝑗)∈𝛿+(𝐶𝑟)

=  ∑ ∑ 𝑥𝑖𝑗𝑚

𝑀

𝑚=1(𝑖,𝑗)∈𝛿−(𝐶𝑟)

= 1 ∀𝑟 ∈ 𝑅 
(8) 

 

 ∑ 𝑑𝑖𝑦𝑖𝑚

𝑛

𝑖=1

≥ ∑ 𝑑𝑖𝑦𝑖𝑚+1

𝑛

𝑖=1

 ∀𝑚 ∈ {1,2, … 𝑀 − 1} (9) 

 
𝑥𝑖𝑗𝑚 ∈ {0,1} 

∀ (𝑖, 𝑗) ∈ 𝐸, ∀𝑚 ∈ {1,2, … 𝑀} (10) 

 
𝑦𝑖𝑚 ∈ {0,1} 

∀𝑖 ∈ {0,1,2, … 𝑛}, ∀𝑚 ∈ {1,2, … 𝑀} (11) 
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In CluVRP work, the objective of minimizing the total travel cost is determined by eq. 

(1). Constraint (2) guarantees that each customer is visited exactly once. Constraint (3) assures 

that the number of vehicles used does not exceed the number of available vehicles. Constraint (4) 

enforces the rule that each vehicle in the route should visit the depot. That the arriving and 

departing vehicle is the same for a given customer is ensured by constraint (5). Constraint (6) 

states the maximum loading capacity of the vehicles is satisfied. Constraint (7) represents the 

sub-tour elimination constraint. Constraint (8) ensures that each cluster can be visited exactly 

once by a unique vehicle. Constraint (9) is the inequality ensuring partial symmetry.     

 

3.2 Proposed hybrid PSO for the CluVRP 

The proposed approach is a hybrid PSO algorithm that combines the standard PSO and 

the VNS.  The structure of VNS in the proposed approach is inspired by a study by Vidal et al. 

(2015). Generally, the performance of the PSO is largely affected by the accuracy of the problem 

mapping. Thus, the PSO is modified in accordance with problem specifications in this study. The 

main features of the proposed hybrid PSO are the use of two types of particles representing 

clusters and customers, and the use of improvement scheme for the personal best solutions. The 

pseudo-code of the proposed hybrid PSO for the CluVRP is shown in Algorithm 3.1.  

 

 

 

 

 

 



Chapter Three: Clustered vehicle routing problem 
 

59 
 

The proposed hybrid PSO uses the following definition: 

𝛼𝑖𝑙 Current cluster position value of 𝑖𝑡ℎ particle in  𝑙𝑡ℎ dimension  

𝛾𝑖𝑗 Current customer position value of 𝑖𝑡ℎ particle in  𝑗𝑡ℎ dimension  

𝛽𝑖𝑙 Current cluster velocity value of 𝑖𝑡ℎ particle in  𝑙𝑡ℎ dimension  

𝛿𝑖𝑗 Current customer velocity value of 𝑖𝑡ℎ particle in  𝑗𝑡ℎ dimension  

𝑓𝑖 Fitness function of particle, 𝑖 

𝛼𝑖𝑙
𝑏  Personal best cluster position value found so far for the 𝑖𝑡ℎ particle in the 𝑙𝑡ℎ 

dimension 

𝛾𝑖𝑗
𝑏  The personal best customer position value found so far for the 𝑖𝑡ℎ particle in the 𝑗𝑡ℎ 

dimension 

 

 
𝑓𝑖

𝑏 Fitness function of best particle, 𝑖  

 𝛼𝑙
∗ Global best cluster position value found in the 𝑙𝑡ℎ dimension 

 𝛾𝑗
∗ Global best customer position value found in the 𝑗𝑡ℎ dimension 

𝑓𝑔 Fitness function of global best particle  

𝑤 Inertia coefficient 

𝑐1 Cognitive coefficient 

𝑐2 Social coefficient 

𝑟1, 𝑟2  Independent random numbers 

𝐾 Total number of the particles 

𝑋 Position matrix for customer swarm 

𝑌 Position matrix for cluster swarm 

𝑈 Velocity matrix for customer swarm 

𝑉 Velocity matrix for cluster swarm 

𝑋𝑏/𝑋𝐺  Customer personal best/global best position value for swarm 

𝑌𝑏/𝑌𝐺  Cluster personal best/global best position value for swarm 

 𝑆𝑏 Personal best solution for swarm 
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Algorithm 3.1: Pseudo-code of the proposed algorithm for CluVRP 

1: Initialization  

2: Set parameters: 𝑤 = 0.7, 𝑐1 = 𝑐2 = 2, 𝑟1 = 𝑟2 = 0.5, 𝐾 = 𝑛/4. 

3: Initialize position matrix 𝑋, 𝑌 and velocity matrix 𝑈 , 𝑉  

4: Initialize the personal best fitness vector 𝑓𝑏  

5: Initialize the global best fitness vector 𝑓𝑔   

6: Main phase  

7: Do while 

8:  𝑆𝑠 ← GenerateCluVRPSolution (𝑋, 𝑌, 𝑈, 𝑉) 

9:  𝑆𝑠 ← VNS ( 𝑆𝑠) 

10: Update personal best matrix 𝑋𝑏 , 𝑌𝑏 , fitness vector 𝑓𝑏 , and  personal best 

solution matrix 𝑆𝑏 

 

 

11: Improve personal best matrix using improvement scheme  

 𝑆𝑏 ← Improvement scheme (𝑆𝑏) 

 

 

12: Update the best particle 𝑋𝐺 , 𝑌𝐺  and fitness vector 𝑓𝑔 

 
13: Update (𝑋, 𝑌, 𝑈, 𝑉) 

14: End Do 
 

 

3.2.1 Initialization phase   

The position and velocity vectors are initialized as follows: 

𝛼𝑖𝑙= 𝛼𝑚𝑖𝑛 + (𝛼𝑚𝑎𝑥 − 𝛼𝑚𝑖𝑛) ∗ 𝑈(0,1) ∀𝑖 ∈ {1,2, … 𝐾}, ∀𝑙 ∈ {1,2, … 𝑐} (12) 

𝛾𝑖𝑙= 𝛾𝑚𝑖𝑛 + (𝛾𝑚𝑎𝑥 −  𝛾𝑚𝑖𝑛) ∗ 𝑈(0,1) ∀𝑖 ∈ {1,2, … 𝐾}, ∀𝑗 ∈ {1,2, … 𝑛} (13) 

𝛿𝑖𝑙= 𝛿𝑚𝑖𝑛 + (𝛿𝑚𝑎𝑥 −  𝛿𝑚𝑖𝑛) ∗ 𝑈(0,1) ∀𝑖 ∈ {1,2, … 𝐾}, ∀𝑙 ∈ {1,2, … 𝑐} (14) 

𝛽
𝑖𝑙

= 𝛽𝑚𝑖𝑛 + (𝛽𝑚𝑎𝑥 −  𝛽𝑚𝑖𝑛) ∗ 𝑈(0,1) ∀𝑖 ∈ {1,2, … 𝐾}, ∀𝑗 ∈ {1,2, … 𝑛} (15) 

Where 𝛼𝑚𝑎𝑥 =  𝛾𝑚𝑎𝑥 =  𝛿𝑚𝑎𝑥 = 𝛽𝑚𝑎𝑥 = 4;      𝛼𝑚𝑖𝑛 =  𝛾𝑚𝑖𝑛 =  𝛿𝑚𝑖𝑛 = 𝛽𝑚𝑖𝑛 = −4.  

Here, 𝑈(0,1) represents a uniform random number generated between 0 and 1. The personal best 

fitness vector for the particle, 𝑖 and fitness vector of a global particle are initialized as infinity. 

      𝑓𝑖
𝑏 =  ∞   ∀𝑖 ∈ {1,2, … 𝐾} 

                                                                           𝑓𝑔 =  ∞ 
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3.2.2 Mapping position vectors to generate CluVRP solution  

The PSO usually maps the position values of the particles to generate the solution for a 

given problem. The two-phase approach is used in many studies to generate CluVRP solutions 

(Defryn and Sörensen 2017; Pop et al. 2018). In the proposed PSO, the solution is generated in 

two phases. In the first phase, the cluster route for the vehicles is generated, while the customer 

route for each cluster is generated in the second phase.  

Phase 1: Generating cluster route  

 The generation of the cluster route starts with the empty trip for each vehicle, 

where the vehicles start and finish their trip at the depot. The clusters are iteratively 

added to the vehicle routes to find the complete solution. Firstly, the clusters with the 

highest position values are chosen for inclusion in the vehicle route, then the chosen 

cluster is inserted into the vehicle routes by using the cheapest insertion method. 

However, cluster insertion might face a situation where no vehicle has enough capacity 

for inserting a chosen cluster. In this situation, a tabu search based searching method is 

used to insert the chosen cluster. This method tries to maximize the available vehicle 

capacity using swap (1,1) and shift (1,0) neighborhood move. The selected swap move 

between cluster 𝑖 and 𝑗 is forbidden for next 𝑈 (
𝑐2

8
,

𝑐2

4
 ) iteration. Similarly, in shift (1,0) 

move, insertion of cluster 𝑖 is forbidden in cluster 𝑗  for next 𝑈 (
𝑐∗𝑣

8
,

𝑐∗𝑣

4
 ) iteration. 

To understand the mapping procedure, consider an instance with 6 clusters and 2 

vehicles with vehicle capacity 80. In any iteration t, consider the following position 

values and demands related to 6 clusters.     
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Clusters 1 2 3 4 5 6 

Position values, 𝛾𝑖𝑗 1.99 3.67 -2.25 2.50 -0.09 1.08 

Cluster demand, 𝑑𝑟 45 10 25 15 25 30 

 

In the mapping, first clusters are arranged in non-increasing order of their 

position values. The resultant order will be π = 2-4-1-6-5-3. The two vehicles routes 

initially start with the first two clusters from π. The initial route will be {0-2-0; 0-4-0} 

and the remaining vehicle capacity for each vehicle is updated accordingly. Then, 

cluster 1 is chosen for insertion on vehicle routes. The insertion cost (i.e., increase in 

total route length) of cluster 1 is evaluated on every position of two routes {0-2-0; 0-4-

0}. Suppose the cheapest insertion of cluster 1 is obtained by inserting at position 3 of 

vehicle 2. Then the new route will be {0-2-0; 0-4-1-0}. In the next iteration, cluster 6 is 

chosen for insertion. Suppose the cheapest insertion of cluster 6 is obtained by inserting 

at position 3 of vehicle 1. Then the new route will be {0-2-6-0; 0-4-1-0}. In the next 

iteration, cluster 5 is chosen for insertion. Suppose the cheapest insertion of cluster 5 is 

obtained by inserting at position 2 of vehicle 1. Then the new route will be {0-5-2-6-0; 

0-4-1-0}. At this point, the remaining capacities for the two vehicles will be 15 and 20. 

But the demand for unassigned cluster 3 is 25 and no vehicle has the required capacity 

to accommodate cluster 3. In this situation, we use the tabu search with swap (1, 1) and 

shift (1, 0) with the objective function of maximizing remaining vehicle capacity. The 

tabu search is stopped when objective function (i.e., remaining vehicle capacity) 

becomes at least 25. Let assume the tabu search finds the new routes as {0-4-5-2-6-0; 0-

1-0}. The remaining capacities will be 0 and 35 for vehicle 1 and vehicle 2 respectively. 

Finally, cluster 3 is chosen for insertion. Suppose the cheapest insertion of cluster 3 is 
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obtained by inserting at position 3 on vehicle 2. Consequently, the final routes will be 

{0-4-5-2-6-0; 0-1-3-0}. 

Phase 2: Generating customer route  

      Once the clusters routes are constructed, a sequence of the customers for each 

cluster is generated to find the complete solution of the CluVRP. The sequence of the 

customers is generated by selecting customers similar to the clusters routes generation 

method described in phase 1. 

 

3.2.3 Variable neighborhood search (VNS) for CluVRP  

The proposed PSO considers the position vector as a region instead of a particular point. 

The solution generated in the mapping phase represents one solution in the region, which might 

not be the best solution of the region. Therefore, the VNS is employed to achieve the local 

optima. The VNS procedure consists of three local search moves, which are inter-route search, 

intra-route search, and intra-cluster search. Both of the inter-route search and intra-route search 

focus on the cluster level; whereas, the intra-cluster search focuses on the customer level. The 

neighborhood operators which are used at cluster level: shift, shift2, swap, swap (2,1), swap 

(2,2), and 2-opt in the inter-route search; and shift, or-opt2, or-opt3, 2-opt, and swap in the intra-

route search. The 𝑁𝐿𝑐 is the list of all inter-route neighbourhood searches. The neighborhood 

operators that are adopted for intra-cluster search (customer level) are shift, 2-opt, and swap; 

these explore all moves within each cluster. The detail of the operators can be found in the 

literature (Vidal et al. 2015; Subramanian 2012; Subramanian et al. 2010). The structure of each 

operator is shown in Fig.1 and Fig. 2. The first move adoption strategy is adopted for all local 

search moves. In this strategy, the solution is updated whenever an improved solution is found. 
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In all local searches, all neighbourhood move is selected only once for possible improvement 

instead of iterative strategy. The overall structure of the VNS for the CluVRP is shown in 

Algorithm 3.2.  

 

Algorithm 3.2: Variable neighborhood search (VNS) for the CluVRP  

 

1: Method VNS: 

2: Initial solution, 𝑠; 

3: Do 

4: Set previous solution, 𝑠𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑠; 

5: List (𝑁𝐿𝑐) for the inter-route search; 

6: While 𝑁𝐿𝑐 ≠ ∅ 

7: Choose randomly a neighborhood from 𝑁𝐿𝑐; 

8: Find best 𝑠¬ of 𝑠 ∈ neighbourhood; 

9: if 𝑓(𝑠¬) < 𝑓(𝑠)  

10: 𝑠 ← 𝑠−; 

11 𝑠 ← Intra-route search(𝑠) 

12: Update 𝑁𝐿𝑐; 

13: Else 

14:                                Remove neighbourhood from 𝑁𝐿𝑐; 

15              end While  

16:           𝑠 ← Intra-cluster search (𝑠); 

17: While (𝑠 < 𝑠𝑖𝑛𝑖𝑡𝑖𝑎𝑙) 

18: return 𝑠; 

19: end VNS; 
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      Fig.3.1: Inter-route neighbourhood search operators 



Chapter Three: Clustered vehicle routing problem 
 

66 
 

 

      Fig. 3.2:  Intra-route and inter-cluster neighbourhood search operators 
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3.2.4 Updating position and velocity vectors  

The personal best position value for each particle is updated if the current solution is 

obtained better than the current personal best solution. Similarly, the global best value is updated 

if the new best solution is found better than the current global best value. 

 

The velocity and position vectors are updated as follows:  

𝛿𝑖𝑙 = 𝑤𝛿𝑖𝑙 +  𝑐1𝑟1(𝛼𝑙
𝑝 − 𝛼𝑖𝑙) + 𝑐2𝑟2( 𝛼𝑙

∗ − 𝛼𝑖𝑙) ∀𝑖 ∈ {1,2, … 𝐾}, ∀𝑙 {1,2, … 𝑐} (16) 

𝛽𝑖𝑙 = 𝑤𝛽𝑖𝑙 + 𝑐1𝑟1 (𝛾
𝑗
𝑝 − 𝛾𝑖𝑙) + 𝑐2𝑟2 ( 𝛾

𝑗
∗ − 𝛾𝑖𝑙) ∀𝑖 ∈ {1,2, … 𝐾}, ∀𝑗 {1,2, … 𝑛} (17) 

𝛼𝑖𝑙 = 𝛼𝑖𝑙 +  𝛿𝑖𝑙 

 

∀𝑖 ∈ {1,2, … 𝐾}, ∀𝑙 {1,2, … 𝑐} (18) 

𝛾𝑖𝑙 = 𝛾𝑖𝑙 +  𝛽𝑖𝑙 

 

 

 

∀𝑖 ∈ {1,2, … 𝐾}, ∀𝑗 {1,2, … 𝑛} (19) 

3.2.5 Improvement scheme 

The improvement scheme is used to improve the personal best solution. This is one of the 

new features of PSO used in this study. In our knowledge, this feature is not used in the existing 

literature of PSO. In the improvement scheme, at first, the solution is perturbed to generate a new 

solution. The perturbed solution is then optimized using the VNS scheme. A perturbation 

technique is implemented in both cluster and customer levels. In the perturbation scheme, firstly 

the  Δ1/Δ2  number of clusters/customers are removed and then reinserting again using the 

cheapest insertion method. The structure of the improvement scheme used in hybrid PSO for 

CluVRP is shown in Algorithm 3.3. The parameters Δ1 and Δ2 are randomly generated 

between [ 0.5c, 0.75c] and [0.5𝑛𝑙 , 0.75𝑛𝑙] respectively.  
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    Algorithm 3.3: Improvement scheme used in hybrid PSO for CluVRP 

 1: Method Improvement scheme: 

2: Initial solution, 𝑠; 

3: 𝑠∗ ← Perturbation (𝑠)  

4: 𝑠∗∗ ← VNS (𝑠∗) 

5:      Update 𝑠    

 

 
6: if 𝑓(𝑠∗∗) < 𝑓(𝑠) 

7:                          𝑠 = 𝑠∗∗   
 

 

 

 

8: return 𝑠; 

9: end Improvement scheme; 

 

 

3.3 Computational experiments 

The proposed hybrid PSO algorithm for CluVRP is implemented using the C++ 

programming language to solve several benchmark datasets from the literature of CluVRP. The 

experiments are run on a Linux server with four 2.1GHz processors with 16-core each and a total 

of 256GB of RAM.  

 

3.3.1 The benchmark CLuVRP instances 

The performance of the hybrid-PSO is tested on the CluVRP benchmark instances 

composed of 20 major customers groups named as, A, B, P, M, and Golden instances (Golden 1 

to Golden 20) with a total of 298 individual instances. These CluVRP instances are originally 

adopted from the GVRP instances by Bektas et al. (2011).  The characteristics of the benchmark 

dataset are summarized in Table 3.1. 
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Table 3.1: The summary of the benchmark instances 

Instance 

type 

No. of 

instances 

No. of 

customers  

No. of  

Clusters 

Vehicle capacity  

(No. of vehicles) 

Source 

A 27 31-79 11-27 100 (2-5) Bektas et al. (2011) 

B 23 30-77 11-23 100 (2-5) Bektas et al. (2011) 

M 4 100-261 34-76 200 (3-8) Bektas et al. (2011) 

P 24 15-100 6-51 35-400 (1-8) Bektas et al. (2011) 

Golden 220 201-483 17-97 550-1000 (4-12) Battarra et al. (2014) 

 

 

The following notations are used for the results reporting purpose in this study: 

Notations  Algorithms 

BC  The branch and cut method of Battarra et al. (2014) 

UHGS The unified hybrid genetic search approach of Vidal et al. (2015) 

Two-level  The two level algorithm results of Expósito-Izquierdo et al. (2016) 

Two-level VNS  The two level variable neighborhood search results of Defryn and Sorensen 

(2017) 

Decomposition-based method The decomposition method of Horvat-Marc et al. (2015) 

Two-level optimization The two-level optimization approach by Pop et al. (2012) 

LMNS  The large multiple neighborhood search result of Hintsch and Irnich (2018) 

Hybrid PSO The algorithm proposed in this work for CluVRP  

 

The PSO parameters are set by performing sensitivity analysis using the problem instances 

of sets A, B, M, and P. We use PSO solution without VNS and without improvement scheme for 

100 iterations to set the parameters. The sensitivity analysis is started with the parameter values 

found in the literature (Marinakis et al. 2013; Ai and Kachitvichyanukul 2009b; Marinakis et al. 

2010). The parameter values are set one by one in the order of 𝑤, 𝑐1, 𝑐2, 𝑟1, 𝑟2, and 𝐾. A number 

of different alternative values for each parameter are tested as 𝑤 = {0.5, 2}; c1= {2, 5}; c2= {2, 
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5}; r1= {0, 1}; r2 = {0, 1}. Finally we set our best parameters as 𝑤 = 0.7; 𝑐1 = 𝑐2 = 2; 𝑟1 = 𝑟2 = 

0.5; 𝐾 = 𝑛/4. The proposed hybrid PSO is run for 500 iterations (i.e., algorithm termination 

criterion) to maintain reasonable CPU time. We observe that the improvement of results after 

500 iterations is very marginal. 

 

3.3.2 Performance evaluation of different algorithms  

All the results in this study are evaluated by comparing the results reported by the Battarra 

et al. (2014) using the branch and cut (BC) algorithm to solve the CluVRP problem. They could 

not achieve the optimal solutions for all the problem instances but reported the best feasible upper 

bound solutions obtained during the execution of their algorithms. The solutions by Battarra et al. 

(2014) are denoted by 𝑈𝐵. Overall, the performance of the algorithms, including algorithms 

obtained from the literature, is evaluated by two criteria. The first criterion is that in how many 

instances does the algorithm finds a better solution than the upper bound, UB solution. It is 

reported in the tables under the “No. of improved UB”. The second criterion is the 

improvement% of the algorithm compared to the UB. It is measured by the eq. (20), where 𝑆𝑜𝑙 is 

used to denote the solutions found by the other algorithms. The improvement% of a group 

instance is reported as “improvement%” in the tables. Furthermore, the processing time (CPU 

time) is reported as t(s). The following formula is used to calculate improvement% from the UB. 

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡% =  
𝑈𝐵 − 𝑆𝑜𝑙

𝑈𝐵
× 100 

 

(20) 

        Table 3.2 and Table 3.3 show all the results of this study including reported results 

from the literature. 
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In the performance evaluation, a statistical test, non-parametric Friedman test is used to 

check any significant difference exists in the performance of algorithms. The statistical software 

IBM SPSS version 19 is used to run the Friedman test using α = 0.05 as the level of significance.     

 

3.3.2.1 Performance evaluation for A, B, M and P instances  

Table 3.2 reports the results for the instances groups A, B, M, and P. The two-level VNS 

algorithm, decomposition-based method, two-level optimization, and the hybrid PSO are 

evaluated in the table. The comparison shows that all of the two-level VNS, the decomposition-

based method, and the two-level optimization obtain the improved UB solution for one instance 

out of 75 instances; whereas, the hybrid PSO is capable of obtaining the improved UB solution 

for a total of 2 instances out of 78. In addition, the overall improvements obtained are -0.03%, -

5.00%, and -1.7% respectively in the two-level VNS, decomposition-based method, and two-

level optimization, which shows that all the two-level VNS, the decomposition-based method, 

and two-level optimization are inferior to BC solutions. In the case of the hybrid PSO solution, 

the overall improvement is found to be 0.05% compared to BC solution, which also indicates 

that the hybrid PSO solution is superior to the two-level VNS by 0.08% (from -0.03% to 0.05%), 

decomposition-based method by 5.05% (from -5.00% to 0.05%), and to two-level optimization 

approach by 1.12% (from -1.7% to 0.05%). Although the CPU time is observed to be better in 

two-level VNS (0.23 sec) compared to the hybrid PSO algorithm (1.31 sec). In the Friedman test, 

it is found to be a significant statistical difference in comparing the performance of hybrid PSO 

with all algorithms (p values=0.000). 
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Table 3.2: Summarised results of A, B, M, and P instances 

Instances in BC Two-level VNS Decomposition-based 

 method 

Two-level optimization Hybrid PSO 

Group No. of 

instance
s 

No. of 

Cust- 
omer 

No. of  

improved 
UB 

Improve

-ment  
% 

t(s) No. of  

improved 
UB 

Improve 

-ment  % 

t(s) No. of  

improved 
UB

  

Improve 

-ment  % 

t(s) No. of 

improved 
UB 

Improve 

-ment % 

t(s) 

A 27 31-79 0/24 -0.07% 0.05 1 -2.6% ... 1 -1. 21% …  0 0.00% 0.46 

B 23 30-77 0 -0.03% 0.04 0 -3.0% … 0 -1.63% …  0 0.00% 0.50 

M 4 100-261 1  0.11% 3.48 0 -32.3% … 0 -5.32% …  1 0.16% 15.05 

P 24 15-100 0 -0.01% 0.07 … … … … … …  1 0.13% 0.75 

Total 78 … 1/75 … … 1/78 … … 1/78 … …  2/78 … … 

Avg … … … -0.03% 0.23 … -5.00% … … -1.7% …   … 0.05% 1.31 

 

The Fig.3.3 reveals that the two-level optimization algorithm obtains negatively dispersed 

results from the UB for most of the instances. The two level VNS achieves nearly closer results 

with the UB but the proposed hybrid PSO achieves more nearest results to the UB. The 

decomposition-based method omitted in Fig.3 because the results of the algorithm are far away 

from the UB for the instances.    

 

 

        Fig. 3.3: Improvement% of the algorithms results for A, B, M instances. 
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3.3.2.2 Performance evaluation for Golden instances 

Table 3.3 reports the result for the Golden instances. This set includes a total of 220 

instances. The results by the UHGS, the two-level, two-level VNS, LMNS, and by the hybrid 

PSO are evaluated in the table. In the comparison study (in table 3.3), we omit 5 instances out of 

220 instances (2 instances from instance group n = 360 and 3 instances from group n = 420), 

because the results produced by the proposed PSO is found to be exceptionally better than other 

algorithms. Although we report all results of the CluVRP study in the appendix tables (Table A1 

to Table A7). The comparison shows that the LMNS improves the UB solution for 114 instances 

and the UHGS improves for 4 instances; whereas, the hybrid PSO improves a total of 154 

instances. The two-level algorithm and two-level VNS algorithm obtain no improved UB 

solution of the Golden instances.   

The overall average improvement for Golden instances using LMNS, UHGS, the two-

level, two-level VNS is -0.18%, -0.03%, -2.40%, and -1.08% respectively. The hybrid PSO 

obtains an overall average improvement of 0.57%, which is better than all existing algorithms. In 

terms of solution quality, our nearest competitor is LMNS and UHGS. The CPU time for the 

LMNS and UHGS is as 9.5 seconds and 626.70 seconds respectively; whereas, the CPU time for 

the hybrid PSO is 59.10 seconds only. The hybrid PSO uses a Linux server with four 2.1GHz 

processors with 16-core each and a total of 256 GB of RAM.  And, the UHGS uses a Xeon CPU 

with 3.07 GHz with 16 GB of RAM running under Oracle Linux Server 6.4. In terms of speed, 

these two computers are comparable. Therefore, it can be concluded that the hybrid PSO is 

superior to UHGS in terms of both solution quality and CPU time. 

The statistical analysis here again shows that there are significant differences in the 

comparison of the performance of hybrid PSO to all algorithms in the Friedman test 
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(𝑝 𝑣𝑎𝑙𝑢𝑒𝑠 = 0.000).  However, it is important to mention that Friedman’s test only reveals the 

significant difference exists between two algorithms instead of showing which particular group is 

different from each other in comparison (Ezugwu et al. 2017).  

As it can be noted from Fig. 3.4, the hybrid PSO improves the solution for most instances 

group. The two-level algorithm obtains relatively worse results followed by the two-level VNS 

algorithm. The LMNS algorithm generates comparatively better results but not as good as UHGS 

algorithm results. The UHGS finds the results nearly close to the UB for most of the instances.   

 

 

        Fig. 3.4: Improvement% of the algorithms results for 16 groups of Golden instances. 
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Table 3.3: Summarised results of Golden instances 

Golden 

instance 
UHGS Two-level Two-level VNS LMNS Hybrid PSO 

n 
No  of        

instances 

No of 
improved 

UB 

Improve- 

ment % 
t (s) 

No of 
improved        

UB 

Improve-

ment % 
t(s) 

No of 
improved    

UB 

Improve-

ment % 
t(s) 

No of 
improved    

UB 

Improve-

ment % 
t(s) 

No of 
improved 

UB 

Improve-

ment % 
t(s) 

200 11 0 0.00% 2866.56 … -4.61% 10 0 -0.07% 10 8 -0.10% 9.9 8 1.12% 13.00 

240 22 0 0.00% 154.93 … -2.39% 10 0 -0.44% 10 17 -0.05% 3.7 15 1.14% 17.90 

252 11 0 -0.01% 127.15 … -0.50% 10 0 -0.53% 10 8 -0.10% 1.4 11 1.08% 16.38 

255 11 0 -0.02% 135.45 … -3.69% 10 0 -1.33% 10 8 -0.09% 2.1 11 1.08% 16.04 

280 11 0 0.00% 3848.31 … -2.94% 10 0 -0.71% 10 7 -0.05% 20.1 8 0.82% 31.18 

300 11 0 0.00% 197.93 … -1.04% 10 0 -0.93% 10 8 -0.06% 6.3 11 1.36% 

 

27.91 

 
320 22 0 -0.02% 202.49 … -1.26% 10 0 -0.85% 10 13 -0.10% 4.9 22 0.87% 

 

41.54 

323 11 0 -0.08% 175.74 … -4.94% 10 0 -0.93% 10 6 -0.26% 2.6 0 -0.58% 

 

30.73 

 
360 20 0 0.00% 1250.15 … -2.87% 10 0 -1.02% 10 17/22 -0.09% 

-5 

17.9 14 0.60% 60.36 

396 11 0 -0.05% 292.26 … -1.54% 10 0 -1.37% 10 1 -0.41% 2.4 4 -0.49% 66.03 

399 11 0 -0.06% 225.26 … -4.96% 10 0 -2.15% 10 4 -0.32% 2.8 5 0.02% 58.98 

400 11 0 -0.01% 1384.18 … -2.56% 10 0 -1.26% 10 3 -0.15% 19.5 11 0.76% 94.89 

 
420 8 0 0.00% 361.86 … -2.60% 10 0 -1.11% 10 8/11 -0.12% 15.4 8 0.65% 

 

111.77 

 
440 11 0 -0.02% 1017.64 … -3.67% 10 0 -1.32% 10 2 -0.21% 19.9 10 0.42% 

 

90.00 

 
480 22 0 -0.01% 1434.94 … -3.42% 10 0/21 -1.49% 10 6 -0.33% 15.6 13 0.09% 136.07 

483 11 4 -0.07% 405.87 … -4.93% 10 0 -2.23% 10 1 -0.33% 2.9 3 -0.22% 127.90 

 
Total 215 4/220 … … … … … 0/219 … … 114/220 ….  154/215 … … 

Avg.  … -0.03% 626.70 … -2.40% 10 … -1.08% 10 …. -0.18% 9.5 … 0.57% 

 

59.10 
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The CPU time of some algorithms (LMNS, two-level VNS, and two level algorithm) 

are approximately 10 seconds, which is lower than the CPU time of our algorithm. In order to 

make a valid comparison, we observe the results of our algorithm for 100 iterations. The 

improvement% of our algorithm is 0.17% (with 9.33 seconds CPU time) when it is executed 

for 100 iterations. The improvement% of LMNS, two-level VNS, and two-level algorithms are         

-0.18%, -1.08%, and -2.40% respectively. The results indicate the superiority of our algorithm 

compared to other existing algorithms.    

 

3.3.2.3 Effect of hybridizing and improvement scheme on PSO’s performance 

The effect of hybridizing the proposed PSO on solution quality is presented in Table 

3.4. The performance of the hybridization of the PSO is evaluated for the 20 major customers 

groups with a total of 298 instances under three settings: PSO without VNS and without 

improvement scheme; PSO with VNS and without improvement scheme; and the proposed 

PSO (i.e., PSO with VNS and with improvement scheme). The number of iterations for each 

setting is changed to maintain approximately the same computational time. All other 

parameters in the PSO framework are the same for all settings. 

Table 3.4 shows that hybridizing the PSO with VNS and without improvement scheme 

improves the solution quality of the PSO without VNS and without improvement scheme by 

73.74% (from -74.55% to -0.81%). The solution quality of the PSO with VNS and without 

improvement scheme is further improved by 12.4% (from -0.81% to 0.43%) by hybridizing the 

PSO with VNS and improvement scheme. Thus, the table denotes that the performance of PSO 

is enhanced if hybridization with VNS and with improvement scheme. These results justify the 
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hybridization of the PSO with the VNS and with the inclusion of the improvement scheme in 

PSO.   

In the pure improvement scheme, we implement the improvement scheme on the 

randomly generated initial solution for a specified number of iterations. In the scheme, the 

initial solution is perturbed, and then local searches of the improvement scheme are 

implemented. The process is repeated until the specified number of iterations is reached. Thus, 

the pure improvement scheme without PSO can be called as iterative local searches (ILS) 

(Macrina et al. 2019; Vidal et al. 2015). The result of the pure improvement scheme is found as 

the improvement% of 0.16% and it improves the UB solution for 121 instances with CPU time 

of 56.79. The total iterations for pure improvement are 70000. The result of the proposed 

hybrid PSO is found as the improvement% of 0.43%, which is 0.27% (from 0.16% to 0.43%) 

superior to the pure improvement scheme result. The result of the improvement scheme is close 

to the proposed PSO algorithm. This observation brings an interesting fact about the potential 

of ILS. A further investigation is needed to design an efficient ILS for solving the clustered 

vehicle routing problem. 
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Table 3.4:  Effect of hybridization on CluVRP solution quality 

Degree of hybridization 
Number of 

iterations 
No. of improved UB Improvement % t(s) 

PSO without VNS and  without 

improvement scheme 

15000 0 -74.55% 60.80 

PSO with VNS 

and without improvement scheme 

1800 2 -0.81% 57.37 

Pure improvement scheme 70000 121 0.16% 56.79 

Proposed PSO 500 156 0.43% 51.86 

 

3.4 Conclusion       

The combinatorial optimization problem, CluVRP, is considered in this chapter. The objective 

of the problem is to find the optimal distribution costs for the logistic network serving all 

customers by using the available vehicles. A new hybrid PSO algorithm is designed to solve 

the CluVRP. Here, the intensification capabilities of VNS obtaining local optimal with the 

swarm based diversification abilities of the PSO are combined to form the hybridized PSO 

algorithm. The algorithm is tested on the benchmark instances found in CluVRP literature. The 

new best-known solutions for a total of 156 instances out of 293 benchmark instances are 

generated with an average CPU time of 43.71 seconds by the proposed hybrid PSO. The new 

features in the PSO algorithm have been added such as the use of two types of particles and 

improvement scheme for the personal best solution. By considering the architecture of the 

proposed algorithm, it is believed that the proposed hybrid PSO algorithm to have great 

potential for solving instances other variants of VRP. With the capability of a quality solution 

on relatively acceptable CPU time, the algorithm has the perspective to use in many practical 
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scenarios such as distribution logistics with CO2 emission cap leading to a penalty, the problem 

of perishable items, and transportation problems in military operations, etc. 
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CHAPTER FOUR 

Mixed fleet green vehicle routing problem with backhaul 

and time windows 

 

Improving operational practices, and fuel efficiency, transferring to cleaner fuels, lowering 

travel demand are effective approaches to reduce the CO2 emission in transportation (Fukasawa 

et al., 2016).  In this light, a hydrogen and mixed fleet based green vehicle routing problem 

with backhaul with time windows (MFGVRPBTW) is proposed in this chapter of thesis work. 

The routing problem consists of a heterogeneous fleet of conventional internal combustion 

vehicles (CVs) and fuel cell hydrogen vehicles (HVs) characterized by different CO2 emission 

models and carrying capacities. Time windows of all nodes, upper limit (cap) of CO2 emission 

for the network, and vehicle capacity are considered as constraints. In this research work, the 

fuel cell hydrogen vehicle (HV) is introduced in the vehicle routing field. The HVs have better 

fuel economies but almost the same driving range compare to CVs. Besides, the HVs have 

almost the same fuel economies but higher driver range compare to electric vehicles. So, HVs 

are considered to have better fuel economies than the CVs and no visit to refueling or 

recharging stations is measured for vehicles in this study. 

 The vehicle routing problem with backhauls (VRPB) is an importation variant of VRP 

that addresses a realistic scenario of logistic operation considering the pickup and delivery 

problem. The VRPB comprises two sets of customers, identified as linehauls for the delivery 

problem on outbound trip and backhauls for pickup problem on the return trip.
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Each vehicle serves both sets of customers in a manner that linehaul customers must be served 

first followed by backhaul customers that result in a reduced number of total vehicles and a 

shorter routing time compare to a conventional VRP for the delivery customer or pickup 

customer only. Contrary to the conventional VRP where vehicle returns to the depot with an 

empty load, vehicles pick up the backhaul loads and return to the depot with total picked up 

loads after serving all linehaul customers. In practice, VRPB is seen in many instances where 

delivery customers need priority than pickup customers. For instance, in the grocery industry, 

the supermarkets and shops are linehaul customers; and grocery suppliers are backhaul 

customers (Walmart 2017); in the drink distribution industry, delivering full bottles are linehaul 

customers and collecting empty bottles are backhaul customers (Coca-Cola 2017). In reverse 

logistics, delivering new products are linehaul customers, and damaged or non-conforming or 

recycling products are backhaul customers (ex., Tesco retails, DS Smith 2017). In the 

manufacturing business, final products are delivered to final customers (linehaul), raw 

materials are picked up from distributions (backhauls) to the depot. Similar applications are 

found in airline scheduling, railway fleet routing, and scheduling problems (Thangiah et al. 

1996). 

Over the last decades, many variants of VRPB have been seen in literature, for examples, 

the mixed VRPB (introduced by Wade and Salhi 2002), multi-depot VRPB (first studied by 

Salhi and Nagy 1999), VRPB with time windows (first studied by Gelinas 1991), VRPB with 

heterogeneous fleet (introduced by Tavakkoli-Moghaddam et al. 2006), single VRP with 

unrestricted backhaul (first proposed by Süral and Bookbinder 2003), mixed VRPB (Hoffet al. 

2009), time-dependent VRPB (Wang and Wang 2009), VRPB with inventory control decisions 

(introduced by Liu and Chung 2009),  VRP with clustered backhauls (Belloso et al. 2015), 
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VRP with clustered back- hauls and with 3D loading constraints (Bortfeldt et al. 2015), VRP 

with clustered and mixed backhauls (Belloso et al. 2017a), multi-objective VRPB (García-

Nájera et al. 2015), multi-trip VRPB (Wassan et al. 2016), and Green VRPB (Pradenas et al. 

2013). Adding the time windows constrain into the VRPB forms a new variant, known as VRP 

with backhauls with time windows (VRPBTW), where customers are defined with a time 

windows where they prefer to be visited. The VRPBTW provides a great perspective for 

reducing environmental impact and cost of transportation, as it reduces running of empty 

vehicles and fuel consumptions from better utilization of vehicle capacity combining two 

different services in the distribution services (Corlu et al. 2020; Santos et al. 2019; Pradenas et 

al. 2013). As the capacitated VRP is proven to be an NP-hard problem, the VRPBTW is also 

NP-hard (Thangiah et al. 1996; Kücükoglu and Öztürk 2015).  

The objective of the MFGVRPBTW problem is to determine the cost effective optimal 

routes of the vehicles serving all customers. As a variant of VRP, the MFGVRPBTW is an NP-

hard problem and it is hard to solve by exact method within a reasonable computation time. 

Therefore, it is intended to develop a hybrid particle swarm optimization (PSO) based solution 

approach to solve the problem. Moreover, metaheuristics integrated by local searches or route 

construction heuristics can be more effective and powerful solution method for the 

combinatorial optimization problem (Kücükoglu and Öztürk 2015). In this response, a hybrid 

particle swarm optimization (PSO) based solution approach is designed to solve the problem. 

This hybrid PSO integrating a classical PSO with a neighborhood search and improvement 

scheme is targeted to achieve a better solution quality for the different VRPB instances. 

Toth and Vigo (2002) presented the first review work on VRPB literature until 2002. 

Parragh et al. (2008) reviewed the VRPB until 2007. Irnich et al. (2014) briefly reviewed 
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various VRPB papers published from 2002-2014. Koç and Laporte (2018) comprehensively 

reviewed the VRPBs until 2017. Recently Santos et al. (2019) presented a review study on 

VRPB with a sustainability perspective suggesting the sustainability concern would be the 

future researches line in the field of VRPB.  

Since its introduction, the standard VRPB and its variants have been extensively studied. 

Yang et al. (2020) considered a VRP with mixed backhauls and time windows (VRPMBTW). 

In the problem, the linehaul and backhaul customers were visited in any order of sequence, in 

contrast to the pure backhaul problem where backhaul customers are served only after linehaul 

customers. An augmented lagrangian relaxation approach was proposed as a solution approach. 

The variant, standard VRPB with time windows (VRPBTW) have also gained popular 

attention.  Gelinas (1991) developed an exact solution using a branch-and-bound algorithm for 

the VRPBTW consists of up to 100 customers (Goetschalckx and Jacobs-Blecha 1993). 

Thangiah et al. (1996) studied a VRPBTW by proposing a route construction heuristic inspired 

by the study of Kontoravdis and Bard (1992). The proposed heuristics were tested on a total 

number of 45 Gélinas et al. (1992) instances and 24 newly generated instances involving up to 

500 customers. Potvin et al. (1996) proposed a greedy insertion heuristic coupled genetic 

algorithm for solving a VRPBTW. Duhamel et al. (1997) developed a tabu search based 

solution approach for the VRPB with time windows. Reimann et al. (2002) presented an 

insertion based ant system solution approach for the VRPB with time windows. Another study 

by Cho and Wang (2005) generated a metaheuristic for solving VRPBTW. The metaheuristic 

was based on the threshold accepting heuristics coupled with modified nearest neighbor and 

exchange procedures. In addition, Ropke and Pisinger (2006) proposed a large neighborhood 

search algorithm to solve a VRPB with time windows. The proposed algorithm was found 
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superior to the previous solution when tested on both benchmark Gélinas et al. (1992) and 

Thangiah et al. (1996) instances. Reimann and Ulrich (2006) studied a VRPBTW and 

generated an ant colony optimization (ACO) based solution method. Zhong and Cole (2005) 

investigated a VRPB with time windows with and without customer precedence. A proposed 

guided local search approach heuristic was tested on benchmark instances and compared to 

Potvin et al. (1996). Küçükoglu and Öztürk (2014) developed a differential evolution algorithm 

to solve a VRPBTW. Küçükoglu and Öztürk (2015) presented an advanced hybrid 

metaheuristic algorithm to solve a VRPBTW. The hybrid algorithm was comprised of 

simulated annealing and tabu search algorithm. The proposed algorithm was tested for VRPTW 

on Solomon’s R1 instances and for VRPBTW on Gélinas et al. (1995) instances. 

Tuntitippawan and Asawarungsaengkul (2016) presented an artificial bee colony algorithm to 

solve the VRPBTW. Brandão (2018) studied a VRPBTW by designing an iterated local search 

based algorithm and tested on benchmark instance of Gélinas et al. (1992) and Thangiah et al 

(1996). Worawattawechai et al. (2019) developed an artificial bee colony algorithm for the 

VRPBTW. Quila et al. (2020) investigated a VRPBTW by proposing a new mathematical 

model. The problem was formulated based on the study of Küçükoglu and Öztürk (2015). The 

proposed model was tested on newly generated instances with customer size up to 30 

customers. Eguia et al. (2013) presented a green VRPBTW with a heterogeneous fleet and 

different fuel types. A mixed VRPBTW with heterogeneous fleet was studied by Belmecheri et 

al. (2013). The problem was solved by a hybrid PSO metaheuristic, where classical PSO was 

combined with ACO and with many local searches. Pradenas et al. (2013) introduced a GHG 

emissions function in a VRPBTW. The author developed a scatter search heuristic based 

solution approach and tested on the Gélinas et al. benchmark instances.   
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This thesis work designs a new hybrid PSO based solution approach for MFGVRPBTW 

to obtain a good quality solution. The performance of the proposed algorithm is tested by 

comparing many state-of-the-art algorithms for different variants of VRPB.  

 

4.1 Problem definition and mathematical formulation  
 

4.1.1 Problem definition 

The MFGVRPBTW is defined on a complete, directed graph 𝐺 = (𝑁, 𝐴), where 𝑁 is a set of 

nodes.  The set has three separate sets, 𝑁 = {0, 𝐿, 𝐵}. The node 0 is the depot, the nodes set 

𝐿 = {1, 2 … … 𝑛} is the linehaul customers, and nodes set 𝐵 = {𝑛 + 1, … … 𝑛 + 𝑚} is the 

backhaul customers. The arc set 𝐴 denotes all possible connections between the nodes, defined 

as {(𝑖, 𝑗): 𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗}. Each customer is either linehaul customer or backhaul customer that 

implies each customer requires either delivery service or pick up service but can’t be requiring 

both services. Each node 𝑖 ∈ 𝑁 is associated with a non-negative amount of load either to be 

delivered (𝑎𝑖) or picked up (𝑏𝑖) in the routes and a hard time windows [𝑒𝑖, 𝑙𝑖], where 𝑒𝑖 and 𝑙𝑖 

are the earliest and latest arrival time at the nodes respectively with a 𝑠𝑖 non-negative service 

time (loading or unloading) of the vehicles. A hard time window specifies vehicles are not 

allowed to start their service late but waiting in case of early arrival at the nodes is possible. 

Each node also has the following properties such as Euclidian distance 𝑑𝑖𝑗, travel speed 𝑣𝑖𝑗 , 

and travel time 𝑡𝑖𝑗 =
 𝑑𝑖𝑗

 𝑣𝑖𝑗
. A mixed fleet of heterogeneous vehicles consists of a number of 𝑘𝑐𝑣 

conventional vehicles and 𝑘ℎ𝑣 hydrogen vehicles are located at depot. Both the conventional 

and hydrogen vehicles are used to serve both linehaul and backhaul customers to generate the 

best routes in the network. Linehaul customers must be visited before the backhaul customer 

are served in the vehicle routes. The heterogeneity of the vehicles includes different vehicle 
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capacities and CO2 emission amounts. The capacities of conventional and hydrogen vehicles 

are denoted by 𝑄𝑐𝑣 and 𝑄ℎ𝑣 respectively. Let  𝑘 is any vehicle of the fleet size of 𝐾. 𝑀∗ is a 

very large value. 𝑇𝑚𝑎𝑥 is the maximum allowable driving time for vehicle 𝑘. 𝐸𝑐𝑎𝑝 is the given 

CO2 emission cap for the logistics network. The vehicle’s tailpipe emission is calculated from 

the instantaneous fuel consumption model (Barth et al. 2005; Bektas and Laporte 2011). The 

pragmatic fuel consumption model for the vehicles in this study is realistically considered as a 

function of traveled distance, speed, and cargo load over the arcs, instead of only distance 

function (Li et al. 2018; Goeke and Schneider 2015). Because considering the fuel 

consumption model as a linear function of the traveled distance of vehicles only is not useful in 

studying green logistics of businesses. The fuel consumption model of hydrogen vehicle for an 

arc (𝑖, 𝑗) is estimated by Eq. (21), (22), and (23) used in Bektas, et al. (2016), and Goeke and 

Schneider (2015) for AFV.  

 𝐶𝑏𝑖𝑗 ≈ 𝛼𝑖𝑗(𝑤0 + 𝑢𝑖𝑗𝑘)𝑑𝑖𝑗 + 𝛽𝑣𝑖𝑗
2 𝑑𝑖𝑗 

 

(21) 

 𝛼𝑖𝑗 = 𝑎 + 𝑔𝑠𝑖𝑛𝜃𝑖𝑗 + 𝑔𝐶𝑟𝑐𝑜𝑠𝜃𝑖𝑗    (22) 

 𝛽 = 0.5CdA𝜌 (23) 

 

The fuel consumption model of conventional vehicle for an arc (𝑖, 𝑗) is estimated as 

follows: 

𝐶𝑓𝑖𝑗 ≈ 𝐹𝐸𝑓𝑎𝑐𝑡𝑜𝑟  . {𝛼𝑖𝑗(𝑤0 + 𝑢𝑖𝑗𝑘)𝑑𝑖𝑗 + 𝛽𝑣𝑖𝑗
2 𝑑𝑖𝑗} 

 

(24) 

 

Where, 𝐶𝑏𝑖𝑗 and 𝐶𝑓𝑖𝑗 are the fuel consumption amount by the hydrogen vehicle and 

conventional vehicle respectively in the arc (𝑖, 𝑗). Here 𝛼𝑖𝑗  is the arc specific constant, 𝛽 is the 

vehicle specific constant, 𝑢𝑖𝑗𝑘 is the on-board cargo load for the vehicle, 𝑘, on the arc (𝑖, 𝑗). 

𝐹𝐸𝑓𝑎𝑐𝑡𝑜𝑟 = 1.2  is the fuel economy factor used for the conventional vehicle compared to the 

hydrogen vehicle (Thomas 2009). The typical values of all parameters in the emission models 

are shown in Table 4.1. The fuel consumption amount is found by the equations in joules 
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(J = kg
m2

s2
 ), which can be converted into kilowatt-hour ( kWh ). The CO2 emission of the 

vehicle for traveling on the arc (𝑖, 𝑗) is calculated as estimated in Shin et al. (2019) in kgram = 

207.68 *fuel consumption amount (in kWh).  

 

Table 4.1: Parameters used in emission models (adopted from Demir et al. 2014) 

Notation Description  Typical value  

  w0 Curb weight (empty vehicle weight) (kg) 6,350 

𝑎 Acceleration in the (𝑖, 𝑗). 0 

𝜃 Gradient in the (𝑖, 𝑗). 0 

g Gravitation constant (m/s
2
) 9.81 

Cd Coefficient of aerodynamic drag 0.7 

𝜌 Air density (kg/m
3
) 1.2041 

A Frontal surface area 3.912 

Cr Coefficient of rolling resistance 0.01 

vi,j Speed limit for the vehicle in the arc (meter/second) 5.5 ~ 20.83 (20~75 kilometer/hour) 

 

 

4.1.2 Mathematical formulation 

Similar to VRP in the MFGVRPBTW problem, many geographically located customers are 

given with their demand. There are two types of customers: linehaul customers who need 

deliveries, and backhaul customers who need pickup services. Multiple conventional and 

hydrogen heterogeneous vehicles located on a single depot are utilized to serve the customers. 

The decision variables are defined as follows: 

 

𝑥𝑖𝑗
𝑘      = 1 if arc (𝑖, 𝑗) is travelled by vehicle 𝑘 otherwise 0.  

𝑦𝑖
𝑘      = 1 if linehaul customer 𝑖 is visited by vehicle 𝑘 otherwise 0. 

𝑧𝑖
𝑘      = 1 if backhaul customer 𝑖 is visited by vehicle 𝑘, otherwise 0. 

𝑢𝑖𝑗𝑘 Specifies the on-board cargo load in the vehicle, 𝑘, while in the arc (𝑖, 𝑗). 

𝑇𝑖,𝑘 Service start time of vehicle 𝑘 for customer, 𝑖.  
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Objective function:  

 Minimize total travel distance = ∑ ∑ ∑ 𝑑𝑖,𝑗

𝐾

𝑘=1

𝑛+𝑚

𝑗=0

𝑛+𝑚

𝑖=0

. 𝑥𝑖,𝑗
𝑘  (25) 

 

Constraints:  
 

 
∑ 𝑎𝑖

𝑛

𝑖=1

𝑦𝑖
𝑘 ≤ 𝑄𝑘                   ∀𝑘 ∈  𝐾 

 

(26) 

 ∑ 𝑏𝑖

𝑛+𝑚

𝑖=𝑛+1

𝑧𝑖
𝑘 ≤ 𝑄𝑘                ∀𝑘 ∈  𝐾 (27) 

 ∑ (𝑥𝑖𝑗
𝑘𝑐𝑣 + 𝑥𝑖𝑗

𝑘ℎ𝑣)

𝑁

𝑗=0

= 1       ∀𝑖 ∈  𝑁 (28) 

 
∑ 𝑦𝑖

𝑘

𝐾

𝑘=1

= 1                       𝑖 = 1, . . , 𝑛 
(29) 

 ∑ 𝑧𝑖
𝑘

𝐾

𝑘=1

= 1                       𝑖 = 𝑛 + 1, . . , 𝑛 + 𝑚 (30) 

 ∑ 𝑥0,𝑗
𝑐𝑣

𝑛+𝑚

𝑗=1

≤ 𝑘𝑐𝑣                        (31) 

 ∑ 𝑥0,𝑗
ℎ𝑣

𝑛+𝑚

𝑗=1

≤ 𝑘ℎ𝑣                        (32) 

 
∑ 𝑥𝑖𝑗

𝑘  

𝑛+ 𝑚

𝑖=0

=  {
𝑦𝑗

𝑘 , 𝑖𝑓 𝑗 = 1, … . . 𝑛

𝑧𝑗
𝑘 , 𝑖𝑓 𝑗 = 0, 𝑛 + 1, … . . 𝑛 + 𝑚

            ∀𝑘 ∈  𝑘𝑐𝑣 

       

(33) 

 
∑ 𝑥𝑖𝑗

𝑘  

𝑛+ 𝑚

𝑗=0

=  {
𝑦𝑖

𝑘 , 𝑖𝑓 𝑖 = 1, … . . 𝑛

𝑧𝑖
𝑘 , 𝑖𝑓 𝑖 = 0, 𝑛 + 1, … . . 𝑛 + 𝑚

            ∀𝑘 ∈  𝑘𝑐𝑣 

       

(34) 

 
∑ 𝑥𝑖𝑗

𝑘  

𝑛+ 𝑚

𝑖=0

=  {
𝑦𝑗

𝑘 , 𝑖𝑓 𝑗 = 1, … . . 𝑛

𝑧𝑗
𝑘 , 𝑖𝑓 𝑗 = 0, 𝑛 + 1, … . . 𝑛 + 𝑚

            ∀𝑘 ∈  𝑘ℎ𝑣 

       

(35) 
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∑ 𝑥𝑖𝑗

𝑘  

𝑛+ 𝑚

𝑗=0

=  {
𝑦𝑖

𝑘 , 𝑖𝑓 𝑖 = 1, … . . 𝑛

𝑧𝑖
𝑘 , 𝑖𝑓 𝑖 = 0, 𝑛 + 1, … . . 𝑛 + 𝑚

            ∀𝑘 ∈  𝑘ℎ𝑣 

       

(36) 

 ∑ ∑ 𝑥𝑖𝑗
𝑘

𝑛+𝑚

𝑗=0,𝑛+1

= 1

𝑛

𝑖=0

            ∀𝑘 ∈  𝐾  (37) 

 𝑇𝑗,𝑘 ≥ 𝑇𝑖,𝑘 + (𝑠𝑖 + 𝑡𝑖𝑗)(𝑥𝑖𝑗
𝑘 ) − 𝑀∗. (1 − 𝑥𝑖𝑗

𝑘 )       ∀𝑖 ∈  𝑁,   ∀𝑗 𝑁,   ∀𝑘 ∈  𝐾          (38) 

 𝑒𝑖 ≤ 𝑇𝑖,𝑘 ≤  𝑙𝑖         ∀𝑖 ∈  𝑁     ∀𝑘 ∈  𝐾     (39) 

 0 ≤ 𝑇0,𝑘 ≤  𝑇𝑀𝑎𝑥     ∀𝑘 ∈  𝐾          (40) 

 ∑ ∑ ∑ ∑ (𝐶𝑓𝑖,𝑗. 𝑥𝑖𝑗
𝑘𝑐𝑣 + 𝐶𝑏𝑖,𝑗. 𝑥𝑖𝑗

𝑘ℎ𝑣)

𝑘ℎ𝑣

𝑘=1

𝑘𝑐𝑣

𝑘=1

𝑛+𝑚

𝑗=0

𝑛+𝑚

𝑖=0

 ≤  𝐸𝑐𝑎𝑝 (41) 

 ∑ 𝑢𝑗𝑖𝑘  

𝑛+ 𝑚

𝑗=0;𝑗≠𝑖

− ∑ 𝑢𝑖𝑗𝑘  

𝑛+ 𝑚

𝑗=0;𝑗≠𝑖

=  {
𝑎𝑖 , 𝑖𝑓 𝑗 = 1, … . . 𝑛

𝑏𝑖 , 𝑖𝑓 𝑗 = 0, 𝑛 + 1, . . 𝑛 + 𝑚.   𝑖, 𝑗 = 1, . . 𝑛 + 𝑚.    𝑘 = 1, . , 𝐾  
             (42) 

 𝑎𝑖−1. 𝑥𝑖,𝑗
𝑘 ≤ 𝑢𝑖𝑗𝑘 ≤ (𝑄𝑘 − 𝑎𝑖). 𝑥𝑖,𝑗

𝑘       𝑖, 𝑗 = 1, . . 𝑛 + 𝑚;        𝑘 = 1, . . , 𝐾   (43) 

 𝑏𝑖−1. 𝑥𝑖,𝑗
𝑘 ≤ 𝑢𝑖𝑗𝑘 ≤ (𝑄𝑘 − 𝑏𝑖). 𝑥𝑖,𝑗

𝑘       𝑖, 𝑗 = 1, . . 𝑛 + 𝑚;        𝑘 = 1, . . , 𝐾   (44) 

 𝑥𝑖𝑗
𝑘 ∈ {0,1}     ∀𝑖 ∈  𝑁,       ∀𝑘 ∈  𝐾   (45) 

 𝑇𝑖,𝑘 ≥ 0;         ∀𝑖 ∈  𝑁, ∀𝑘 ∈  𝐾  (46) 

 

 

In this MFGVRPBTW problem, the objective function (25) minimizes the total distance 

traveled by the vehicles in the routes. Constraints (26), and (27) ensure the capacity of 

conventional and hydrogen vehicles cannot be exceeded while serving linehaul and backhaul 

customers. Constraint (28) restricts each customer visit has only one successor which means 

that each customer (vertex) has only one arc enters and one arc leaves. Constraint (29), and 

(30) guarantee each linehaul and backhaul customer must be served by exactly one vehicle. 
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Constraints (31) and (32) ensure the maximum number of used vehicles for each type in the 

route must follow the fleet composition. Constraint (33), (34), (35), and (36) represent the flow 

conservation ensuring each node must have an incoming number of arcs equal to outgoing arcs 

for each vehicle.  Constraint (37) enforces the priority assigned to the linehaul customers where 

all linehaul customers are served first before the backhaul customers for each vehicle. The time 

window constraints are confirmed by the constraints (38), and (39). The constraint (38) 

becomes 𝑇𝑗,𝑘 ≥ 𝑇𝑖,𝑘 + (𝑠𝑖 + 𝑡𝑖𝑗)(𝑥𝑖𝑗
𝑘 ) if arc (𝑖, 𝑗) is traveled by a vehicle of 𝑘𝑐𝑣 or 𝑘ℎ𝑣 

otherwise, it remains 𝑇𝑗,𝑘 ≥ 𝑇𝑖,𝑘 + (𝑠𝑖 + 𝑡𝑖𝑗)(𝑥𝑖𝑗
𝑘 ) − 𝑀∗. (1 − 𝑥𝑖𝑗

𝑘 ). Constraint (40) guarantees the 

route length restriction for each vehicle. Constraint (41) ensures the total amount of CO2 

emissions in the model must not go beyond the emission Cap, 𝐸𝐶𝑎𝑝. Constraint (42), (43), and 

(44) confirm flow balance, that denotes the flows as increasing (for linehaul customers) or 

decreasing (for backhaul customers) by the amount of each customer demand. Constraint (45), 

and (46) define the decision variables in the model. 

 

4.2 The proposed hybrid PSO for the MFGVRPBTW 

The MFGVRPBTW problem becomes a very complex model after considering all the 

constraints. The hybrid PSO based algorithm is designed in this study to solve the 

MFGVRPBTW model and obtain an optimal solution within a reasonable computation time. 

To the best of our knowledge, a hybrid PSO based solution method has not been proposed so 

far in the literature to solve a green vehicle routing problem with backhaul and time windows. 

The proposed hybrid PSO approach is a combination of standard PSO and neighborhood search 

algorithms. The neighborhood search consists of four renowned local search methods. The 

neighborhood search algorithm is adopted to overcome the shortage of premature convergence 
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attributes of standard PSO and to obtain an improved solution quality of the algorithm. Using 

neighborhood search in PSO and another technique of hybridizing PSO are seen in many 

studies in the literature. But the novelties of the proposed algorithm include neighborhood 

search that is not only applied on all initial solutions but also through an improvement scheme 

on a list of best solutions (named as Elitist solutions). A perturbation technique is proposed and 

used on each best solution before going through the additional neighborhood search. The 

pseudo-code of the proposed hybrid PSO for the MFGVRPBTW is shown in Algorithm 4.1.   

 

The proposed hybrid PSO uses the following definition: 

𝛼𝑖𝑙 Current position value of 𝑖𝑡ℎ particle in  𝑙𝑡ℎ dimension  

𝛾𝑖𝑙 Current velocity value of 𝑖𝑡ℎ particle in  𝑙𝑡ℎ dimension  

𝐹𝑖 Fitness function of particle, 𝑖 

𝛼𝑖𝑙
𝑏  Personal best position value found so far for the 𝑖𝑡ℎ particle in the 𝑙𝑡ℎ dimension 

𝐹𝑖
𝑏 Fitness function of best particle, 𝑖  

 𝛼𝑙
∗ Global best position value found in the 𝑙𝑡ℎ dimension 

𝐹𝑔  Fitness function of global best particle  

𝑤, 𝑐1, 𝑐2 Inertia, Cognitive, Social coefficient respectively 

𝑟1, 𝑟2 Independent random numbers 

𝑀 Total number of the particles 

𝑋 Position matrix for swarm 

𝑍 Velocity matrix for swarm 

𝑋𝑏/𝑋𝐺 Personal best/global best position value for swarm  

𝑆𝑏 Personal best solution for swarm 

𝐸𝑏 Number of best solutions, Elitist solutions 

𝑃𝑢𝑟𝑏𝑁𝑢𝑚  Number of perturbation  
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Algorithm 4.1: Pseudo-code of the proposed algorithm for the MFGVRPBTW 

1: Initialization  

2: Set parameters 

3: Initialize position matrix 𝑋, velocity matrix 𝑍 

4: Initialize the personal best fitness vector, 𝐹𝑖
𝑏   

5: Initialize the global best fitness vector, 𝐹𝑔   

6: Main phase  

7: Do while 

8: S← GenerateH-MFGVRPBTWSolution (𝑋, 𝑍) 

9: S ← Neighborhood search (𝑆) 

10: Update  personal best matrix 𝑋𝑏 , fitness vector  𝐹𝑖
𝑏, personal best solution 

matrix 𝑆𝑏, and  Elitist solution matrix 𝐸𝑏 

11: Improve personal best matrix using improvement scheme  

𝐸𝑏∗ ← Improvement Scheme (𝐸𝑏) 

 

 

12: Update the best particle 𝑋𝐺  and fitness vector 𝐹𝑔 

 
13: Update (𝑋, 𝑍) 

14: End Do 

 

 

One of the important features of the proposed algorithm is the introduction of the 

improvement scheme for the personal best solution as indicated in line 11. The proposed PSO 

maintains a pool of best solutions encountered so far. Usually, the solutions remain stagnant 

after a few iterations. Our proposed method tries to diversify the solutions using the mutation 

operator for diversification. Another feature of the proposed PSO is the consideration of vector 

as a region and not a particular point. The competitiveness of the proposed hybrid PSO 

algorithm can be attributed to these new features.   
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4.2.1 Initialization phase   

The PSO parameters are set by performing sensitivity analysis within a limited time period for 

a few instances. The parameters are initialized as  𝑤 = 0.7, 𝑐1 = 𝑐2 = 2, 𝑟1 = 𝑟2 = 0.5, 𝐸𝑏 =

20, 𝑃𝑢𝑟𝑏𝑁𝑢𝑚 = 4, and 𝑀 = 20, 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 100. 

 

The position and velocity vectors are initialized as follows: 

𝛼𝑖𝑙= 𝛼𝑚𝑖𝑛 + (𝛼𝑚𝑎𝑥 − 𝛼𝑚𝑖𝑛) ∗ 𝑈(0,1) ∀𝑖 ∈ {1,2, … 𝑀}, ∀𝑙 ∈ {1,2, , … 𝑛 + 𝑚} (47) 

𝛾𝑖𝑙= 𝛾𝑚𝑖𝑛 + (𝛾𝑚𝑎𝑥 −  𝛾𝑚𝑖𝑛) ∗ 𝑈(0,1) ∀𝑖 ∈ {1,2, … 𝑀}, ∀𝑙 ∈ {1,2, … , 𝑛 + 𝑚} (48) 

Where 𝛼𝑚𝑎𝑥 =  𝛾𝑚𝑎𝑥 = 4;      𝛼𝑚𝑖𝑛 =  𝛾𝑚𝑖𝑛 = −4.  Here 𝑈(0,1) represents a uniform 

random number generated between 0 and 1. The personal best fitness vector for the particle, 𝑖 

and fitness vector of a global particle are initialized as infinity. 

      𝐹𝑖
𝑏 =  ∞   ∀𝑖 ∈ {1,2, … 𝑀} 

                                                                         𝐹𝑔 =  ∞ 

 

4.2.2 Mapping position vectors to generate MFGVRPBTW solution  

The PSO usually maps the position values of the particle to generate the solution (𝑆𝑏) for a 

given problem. The generation of the customer route starts with the empty trip for each vehicle, 

where the vehicles start and finish their trip at the depot while serving linehaul and backhaul 

customers. The linehaul customers with the highest position values are iteratively added to 

each vehicle route first given to vehicle capacity constraint, and then backhaul customers are 

started serving. All customers are chosen for inclusion in the vehicle route in a similar fashion 

to complete the solution. The generated solutions can be infeasible if the constraints of time 

windows of each customer and 𝐶𝑂2 emissions cap of the network are not respected. The 
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neighborhood search is used to establish the solutions feasible and also to improve the 

solutions.     

 

4.2.3 Neighborhood search  

The proposed PSO considers the position vector as a region instead of a particular point. The 

solution generated in the mapping phase represents one of the solutions of the region, which 

might not be the best solution of the region. Therefore, the neighborhood search is employed to 

find the local optima. The neighborhood search includes customer shift (1, 0), shift (2, 0), swap 

(1, 1), and swap (2, 1) based on the current solution. In shift (1, 0) move, one customer is 

shifted from one route to another route, i.e., reinserting. In shift (2, 0) move, two consecutive 

customers from a route, either linehauls or backhauls, are shifted from one route to another 

route in a similar sequence. In swap (1, 1), one customer is interchanged between two routes. 

In Swap (2, 1), two consecutive customers, either linehauls or backhauls, are interchanged with 

a customer from another route. In the neighborhood search iterations, local searches are 

randomly selected one by one. Each local search is started with an additional penalty function 

of three constraints, such as vehicle capacity, time windows, and 𝐶𝑂2 emission constraints. In 

the iterations, the penalty for each constraint is increased if infeasible routes are generated from 

the constraints, and vice versa. A list of feasible personal best solutions, 𝐸𝑏 , (named as Elitist 

solutions) is generated at the end neighborhood search iterations.   
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4.2.4 Updating position and velocity vectors  

The personal best position value for each particle is updated if the current solution is found 

better than the current personal best solution. Similarly, the global best value is updated if the 

new best solution is found better than the current global best value. 

The velocity and position vectors are updated as follows:  

𝛾𝑖𝑙 = 𝑤𝛾𝑖𝑙 + 𝑐1𝑟1(𝛼𝑖𝑙
𝑏 − 𝛼𝑖𝑙) + 𝑐2𝑟2( 𝛼𝑙

∗ − 𝛼𝑖𝑙) ∀𝑖 ∈ {1,2, … , 𝑛 + 𝑚}, ∀𝑙 {1,2, … 𝑀} (49) 

𝛼𝑖𝑙 = 𝛼𝑖𝑙 + 𝛾𝑖𝑙 
∀𝑖 ∈ {1,2, … , 𝑛 + 𝑚}, ∀𝑙 {1,2, … 𝑀} (50) 

 

 

4.2.5 Improvement scheme 

The improvement scheme is used to improve the personal best solution. This is one of the new 

features of PSO used in this study. To our best knowledge, this feature is used for the first time 

in the literature of PSO. In the improvement scheme, each solution from the list of elitist 

solutions (𝐸𝑏) is perturbed to generate a new solution. The perturbed solution is then improved 

using a neighborhood scheme. In the perturbation mechanism, a customer is removed randomly 

from a route and reinserted in a random position in another route. In traditional PSO, a 

monotonic learning pattern is used to follow the same strategy for all the particles. As a result, 

the algorithm may easily get trapped in a local optimum that requires the population of the 

algorithm to be more diversified for solving a complex problem especially. The perturbation 

technique can be used to strengthen the algorithm by increasing the diversity of the population. 

However, all input data are deterministic in conventional VRPs, so a small perturbation on 

input data can lead to impractical or suboptimal results by a solution method as local optima 

can be far away from the global optimum as a result of ineffective diversification (Moghaddam 
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et al. 2012). Thus, the perturbation technique is imperatively needed to be effective in the 

proposed hybrid PSO through a perturbation operator. In the hybrid PSO, the perturbation 

technique runs for a time of PurbNum on each solution. The structure of the improvement 

scheme used in the proposed hybrid PSO for the MFGVRPBTW is shown in Algorithm 4.2. 

Overall, both intensification of local searches and an effective diversification behavior of the 

perturbation technique are employed in the light of enhancing the performance of PSO in the 

proposed algorithm. 

 

    Algorithm 4.2: Improvement scheme used in proposed hybrid PSO for MFGVRPBTW  

 1: Method Improvement scheme: 

2: Personal best solution,  𝑆𝑏; 

3:  𝑆𝑏∗ ← Perturbation ( 𝑆𝑏)  

4:  𝑆𝑏∗∗ ← Neighborhood search ( 𝑆𝑏∗) 

5:      Update  𝑆𝑏    

 

 
6: if 𝑓( 𝑆𝑏∗∗) < 𝑓( 𝑆𝑏) 

7:                           𝑆𝑏 =  𝑆𝑏∗∗ 
 

 

 

 

8: return  𝑆𝑏; 

9: end Improvement scheme; 

 

 

4.3 Numerical experiments  

The proposed hybrid PSO algorithm is implemented using the C++ programming language to 

solve the MFGVRPBTW. The experiments are run on a Linux server with four 2.1GHz 

processors with 16-core each and a total of 256GB of RAM.  The proposed algorithm is tested 

on several MFGVRPBTW instances modified from benchmark VRPBTW instances of Gelinas 

et al. (1995) study. The proposed MFGVERBTW is a generalized version of the many variants 
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of the VRP problem. Hence, the algorithm developed for H-MFGVRPTW can solve many 

variants of VRP. 

We tested our algorithm on many benchmark instances for the VRPB, VRPTW, and 

VRPBTW studies found in the literature to test the effectiveness of the proposed algorithm. 

Overall, when tested on these benchmark instances, the performance of the proposed algorithm 

is evaluated by two criteria. The first criterion is how many new best solution (BS) is generated 

by proposed the algorithm. The literature already has reported best known solutions (BKS) 

from existing algorithm for different variations of VRPB. Our algorithm found new best 

solutions which are denoted as a new BS. The second criterion is the relative deviation % of the 

obtained solution by the proposed algorithm compared to the BKS. The relative deviation % of 

an instance is reported as “%Gap” in the tables of results. It is measured by the eq. (31), where 

𝑆𝑜𝑙 denotes the solutions (total distance) found by the other algorithms. In addition, the 

processing time (CPU time) is reported as t in second. The following formula is used to 

calculate %Gap from the existing best known solution (BKS). 

 

%Gap =  
𝑆𝑜𝑙 − 𝐵𝐾𝑆

𝐵𝐾𝑆
× 100% 

 

(51) 

  It is worth mentioning that a negative value of %Gap means improved solution 

quality, and a positive value of %Gap means worse solution quality with respect to existing 

BKS. Moreover, distances refer to the corresponding Euclidian distances. Double precision 

distances with no rounding or truncation are considered in entire computational experiments.   

 

4.3.1 Numerical experiments on MFGVRPBTW 

The primary objective of this study is to solve the hydrogen and mixed fleet based green 

vehicle routing problem with backhaul and time windows (MFGVRPBTW). The datasets for 
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the MFGVRPBTW are created from the Gelinas et al. (1995) VRPBTW instances which 

include 100 customers. In the Gelinas et al (1995) instances, the travel time of the vehicle 

between two nodes is equal to the distance between two nodes, because vehicle speed is 

considered as 1 kilometer/hour. However, in the newly generated 15 datasets for this study of 

MFGVRPBTW, each node is designated with a randomly chosen speed of the vehicle from a 

speed range of 20~75 kilometer/hour. The datasets consist of a mixed fleet of conventional and 

hydrogen vehicles. Each vehicle type has a specific number of vehicles but the total number of 

vehicles remains the same as Gelinas et al. (1995) instances. The heterogeneity of the vehicles 

also includes different vehicle capacity and CO2 emission amount for each type of vehicle. 

Moreover, each instance has a CO2 emission cap for the network. The capacity of conventional 

vehicles is considered as 200 the same as Gelinas et al. (1995) instances but the capacity of 

hydrogen vehicles is chosen as 150. All other attributes of Gelinas et al. instances remain the 

same in the newly generated instances for the MFGVRPBTW. 

Since the MFGVRPTW problem is proposed for the first time in this work, we report the 

improvement of the proposed algorithm from the first iteration to the last iteration as %Gap. 

Table 4.2 represents the comparative results between initial solutions and the final solutions of 

hybrid PSO when it is tested on the newly generated MFGVRPBTW instances for 100 

customers in this study. Initial solutions refer to the solution obtained in the first iteration of 

complete hybrid PSO, and final solutions denote the final solution of the complete hybrid PSO 

algorithm. Here, the %Gaps are calculated for final solutions by comparing them with the 

initial solution of hybrid PSO. Results show that the hybrid PSO algorithm improves solution 

quality for all new H-MFGVRPBTW instances. The overall %Gap is found as -6.18% with a 

CPU time of 163.83 seconds, with an average result of initial solutions and final solutions are 
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1371.38 and 1287.10 respectively. The results also indicate that solution improvement usually 

increases when the percentage of backhaul increases.   

 

4.3.2 Effect of elitist solution on PSO’s performance 

One of the novel features of the proposed algorithm is the introduction of tracking a set 

of elitist solutions. The set of elitist solutions are the best solutions obtained so far. The elitist 

solutions are improved using perturbation and local search schemes in every iteration of PSO. 

The effect of using the elitist solution with the proposed PSO on the solution quality is 

presented in Table 6. The performance of the PSO is evaluated on the newly generated 

MFGVRPBTW instances for 100 customers under two settings: PSO without elitist solutions 

and the hybrid proposed PSO (i.e., PSO with elitist solution scheme). The effect of elitist 

solutions is shown as %Gap. The number of iterations for each setting is changed to maintain 

approximately the same computational time. All other parameters in the PSO framework are 

the same for all settings. Table 4.3 shows that the elitist solutions with the PSO scheme 

improve the solution quality of the PSO without elitist solution by -2.15% from its solution 

1315.11. Thus, the table denotes that the performance of PSO is enhanced if elitist solutions are 

employed with the hybrid PSO and it justifies the use of elitist solutions with the PSO.   
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Table 4.2: Comparison results between initial solutions and final solutions of hybrid PSO on 

newly generated MFGVRPBTW instances for 100 customers   
 

 Instance 

 type 
 %BH 

Initial Solutions of Hybrid PSO Final solutions of Hybrid PSO 

Distance  t (s) Distance   %GAP  t (s) 

 New R101 

 10 1514.87  1.16 1476.1 -2.56% 143.67 

 30 1641.81  1.21 1564.01 -4.74% 132.30 

 50 1736.83  1.23 1593.84 -8.23% 123.40 

 New  R102 

 10 1378.5  1.65 1307.02 -5.19% 172.76 

 30 1474.47  1.42 1387.26 -5.91% 151.67 

 50 1511.72  1.50 1432.18 -5.26% 140.41 

 New  R103 

 10 1150.69  2.01 1127.15 -2.05% 198.23 

 30 1283.77  1.64 1215.12 -5.35% 173.21 

 50 1298.38  1.48 1217.98 -6.19% 158.85 

 New R104 

 10 1054.05  2.04 976.985 -7.31% 218.05 

 30 1110.24  1.86 999.706 -9.96% 202.95 

 50 1120.68  1.67 1023.91 -8.63% 189.87 

 New R105 

 10 1359.59  1.49 1302.06 -4.23% 165.0 

 30 1446.43  1.39 1329.62 -8.08% 150.12 

 50 1488.65  1.26 1353.53 -9.08% 136.85 

 Average  1371.38  1.53 1287.10 -6.18% 163.83 
 

 

 

Table 4.3:  Effect of elitist solutions on the solution quality for MFGVRPBTW instances for 

100 customers   
 

PSO without elitist solution  Proposed hybrid PSO (PSO with elitist solution)  

Iteration Solution  t(s) Iteration %Gap t(s) 

 140  1315.11 178.65 100 -2.15% 163.83 

 

 

4.3.3 Numerical experiments on VRPB 

Performance of the proposed hybrid PSO on VRPB is evaluated using the well-known 

Goetschalckx and Jacobs-Blecha’s (1989) benchmark instances. The instances contain 14 

primary problem sets (A-N) which include a total of 62 instances with different vehicle 

capacities and various numbers of vehicles. Several algorithms from literature (shown in Table 

4.4) are used to compare the obtained solutions of the proposed algorithm. Detailed comparison 
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results are shown in Table 4.5. It is found that the proposed hybrid PSO generates a total of 12 

are new BS out of 62 instances. The overall %Gap is obtained as 0.37% with a CPU time of 

190 seconds, which is 3.51% superior to the FMOP algorithm (from 3.88% to 0.37%). The 

most successful algorithms for VRPB are MACO (Gajpal and Abad 2009b), UHGS (Vidal et 

al. 2014), and ILSA (Brandão 2016) as they produce better solution qualities with a %Gap of 

0.1%~0.3% with reasonable CPU time.    

 

Table 4.4: List of algorithms used in the evaluation of proposed algorithm for VRPB   

Notations  Algorithms 

TS Tabu search by Brandão (2006) 

ALNS Adaptive large neighborhood search in Ropke and Pisinger (2006) 

MACO Multi-ant colony optimization by Gajpal and Abad (2009b) 

LS Local search algorithm in Zachariadis and Kiranoudis (2012) 

ILS  Iterated local search algorithm by Cuervo et al. (2014) 

UHGS Unified hybrid genetic search in Vidal et al. (2014) 

FMOP Fuzzy multi-objective programming algorithm in Yalcın and Erginel (2015) 

ILSA Iterated local search algorithm in Brandão (2016) 

ILS-SP ILS combined with set partitioning in  Subramaniana and Queiroga (2020) 

Hybrid PSO The algorithm proposed in this chapter of the thesis work 

 

 

4.3.4 Numerical experiments on VRPTW 

The proposed hybrid PSO is also evaluated for VRPTW on the mostly used 56 instances of 

Solomon’s benchmark with 100 customers. The instances have six sets of problems: C1, C2, 

R1, R2, RC1, and RC2. Existing algorithms (shown in Table 4.6) are used to compare their 

results with the proposed hybrid PSO algorithm results. Table 4.7 exhibits the entire 

comparison results for VRPTW. As can be noted, the first column refers to instances, the 

second column refers to the BKS found in the literature, the algorithm used for BKS is stated  



Chapter Four: Mixed fleet green vehicle routing problem with backhaul and time windows 

102 

 

Table 4.5: Comparison results of Goetschalckx and Jacobs-Blecha (1989) for VRPB  

Instance n BKS 

TS (2006) ALNS (2006) MACO (2009) LS (2012) ILS (2014) UHGS(2014) ILSA (2016) ILS-SP (2020) FMOP  (2015) Hybrid PSO 

%GAP t(s) %GAP t(s) %GAP t(s) %GAP t(s) %GAP t(s) %GAP t(s) %GAP t(s) %GAP t(s) %GAP t(s) Distance %GAP t(s) 

A1 25 229,886 0.00% 40 0.00% 7 0.00% 1.00 0.00% 2.7 0.00% … 0.00% 7 0.00% 1.0 0.00% 0.1 0.00% 1.762 229886 0.00% 1.09 

A2 25 180,119 0.00% 25 0.00% 8 0.00% 1.75 0.00% 1.6 0.00% … 0.00% 7 0.00% 1.2 0.00% 0.1 0.78% 1.127 180119 0.00% 1.75 

A3 25 163,405 0.00% 25 0.00% 9 0.00% 3.00 0.00% 1.1 0.00% … 0.00% 8 0.00% 1.2 0.00% 0.1 3.25% 0.873 155796 -4.66% 2.89 

A4 25 155,796 0.00% 14 0.00% 11 0.00% 1.88 0.00% 1.6 0.00% … 0.00% 10 0.00% 0.8 0.00% 0.1 8.48% 1.011 155796 0.00% 2.90 

B1 30 239,080 0.00% 53 0.00% 9 0.00% 2.13 0.00% 7.5 0.00% … 0.00% 8 0.00% 1.3 0.00% 0.1 1.53% 5.737 239080 0.00% 2.00 

B2 30 198,048 0.00% 24 0.00% 10 0.00% 2.50 0.00% 6.4 0.00% …. 0.00% 9 0.00% 1.3 0.00% 0.2 1.33% 1.709 198048 0.00% 3.35 

B3 30 169,372 0.00% 18 0.00% 14 0.00% 2.00 0.00% 2.7 0.00% … 0.00% 11 0.00% 0.9 0.00% 0.1 4.19% 0.127 169372 0.00% 5.42 

C1 40 249,448 0.44% 75 0.44% 13 0.44% 3.88 0.44% 11.8 0.44% … 0.45% 13 0.44% 2.2 0.44% 0.3 1.55% 12.89 250557 0.44% 3.90 

C2 40 215,020 0.00% 80 0.00% 16 0.00% 4.13 0.00% 10.7 0.00% … 0.00% 14 0.00% 2.5 0.00% 0.3 8.04% 2.106 215020 0.00% 6.07 

C3 40 199,346 0.00% 37 0.00% 18 0.00% 4.88 0.00% 6.4 0.00% … 0.00% 14 0.00% 2.1 0.00% 0.4 1.30% 0.421 195367 -2.00% 10.1 

C4 40 195,366 0.00% 37 0.00% 19 0.00% 3.88 0.00% 4.8 0.00% … 0.00% 14 0.00% 1.8 0.00% 0.4 0.98% 3.137 195367 0.00% 10.04 

D1 38 322,530 0.00% 115 0.00% 12 0.00% 6.13 0.00% 9.7 0.00% …. 0.00% 11 0.00% 2.5 0.00% 0.3 0.05% 5.242 316709 -1.80% 2.76 

D2 38 316,709 0.00% 113 0.00% 12 0.00% 6.25 0.00% 8 0.00% … 0.00% 10 0.00% 2.2 0.00% 0.3 0.56% 20.97 316709 0.00% 2.72 

D3 38 239,479 0.00% 136 0.00% 13 0.00% 5.63 0.00% 5.4 0.00% … 0.00% 11 0.00% 2.0 0.00% 0.3 0.13% 3.844 239479 0.00% 4.90 

D4 38 205,832 0.00% 99 0.00% 15 0.00% 6.50 0.00% 5.9 0.00% … 0.00% 14 0.00% 2.6 0.00% 0.3 1.45% 3.245 205832 0.00% 7.92 

E1 45 238,880 0.00% 134 0.00% 18 0.00% 6.75 0.00% 14.5 0.00% … 0.00% 16 0.00% 3.9 0.00% 0.3 1.18% 2.369 238880 0.00% 8.41 

E2 45 212,263 0.00% 172 0.00% 22 0.00% 6.50 0.00% 10.7 0.00% … 0.00% 19 0.00% 2.2 0.00% 0.5 0.87% 0.724 212263 0.00% 15.92 

E3 45 206,659 0.00% 123 0.00% 26 0.00% 10.38 0.00% 11.8 0.00% …. 0.00% 22 0.19% 2.6 0.00% 0.6 5.43% 1.307 206659 0.00% 20.63 

F1 60 263,173 0.00% 249 1.48% 29 0.00% 11.13 0.00% 18.2 0.00% … 0.00% 23 0.00% 8.7 0.00% 0.9 2.26% 275.7 263173 0.00% 19.52 

F2 60 265,213 0.11% 210 0.00% 28 0.00% 9.13 0.00% 19.3 0.00% … 0.00% 23 0.00% 4.6 0.00% 1.0 3.19% 75.84 263174 -0.77% 19.32 

F3 60 241,120 0.00% 138 0.35% 35 0.00% 11.25 0.00% 15 0.00% … 0.00% 29 0.00% 7.0 0.00% 1.1 0.38% 0.72 241970 0.35% 33.83 

F4 60 233,861 0.00% 201 0.56% 42 0.00% 15.00 0.00% 17.2 0.00% … 0.00% 32 0.00% 5.7 0.00% 1.2 6.19% 5.054 234342 0.21% 47.23 

G1 57 306,306 0.00% 342 0.00% 22 0.08% 18.00 0.00% 20.4 0.00% … … … 0.00% 9.4 0.00% 0.9 3.37% 54.59 305002 -0.43% 12.96 

G2 57 245,441 0.00% 371 0.00% 27 0.00% 10.38 0.00% 17.2 0.00% …. 0.00% 23 0.00% 4.9 0.00% 0.8 2.71% 25.58 245441 0.00% 26.28 

G3 57 229,507 0.00% 196 0.00% 30 0.00% 14.25 0.00% 16.6 0.00% … 0.00% 26 0.00% 6.8 0.00% 0.8 5.67% 15.32 231045 0.67% 35.97 

G4 57 232,521 0.00% 183 0.00% 31 0.00% 21.75 0.00% 20.4 0.00% … 0.00% 27 0.00% 7.5 0.00% 0.8 5.51% 3.543 231045 -0.63% 35.79 

G5 57 221,730 0.00% 242 0.00% 35 0.00% 20.38 0.00% 17.2 0.00% … 0.00% 28 0.00% 6.5 0.00% 1.0 4.81% 6.826 218485 -1.46% 48.99 

G6 57 213,457 0.00% 213 0.00% 39 0.00% 20.63 0.00% 13.4 0.00% … 0.00% 32 0.00% 6.4 0.00% 1.1 6.60% 3.739 213457 0.00% 63.95 

H1 68 268,933 0.00% 363 0.00% 39 0.00% 24.50 0.00% 20.4 0.00% … 0.00% 37 0.00% 10.3 0.00% 1.7 2.29% 37.76 268933 0.00% 48.20 

H2 68 253,365 0.00% 398 0.00% 47 0.00% 21.50 0.00% 18.8 0.00% …. 0.00% 34 0.00% 9.2 0.00% 1.8 2.61% 4.617 253365 0.00% 69.06 
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H3 68 247,449 0.00% 345 0.00% 53 0.00% 20.25 0.00% 19.3 0.00% … 0.00% 38 0.00% 8.6 0.00% 2.0 2.16% 2.032 247449 0.00% 92.07 

H4 68 250221 0.00% 167 0.00% 52 0.00% 27.13 0.00% 21.5 0.00% … 0.00% 35 0.00% 10.4 0.00% 1.9 4.29% 2.193 247449 -1.11% 91.88 

H5 68 246,121 0.00% 188 0.00% 55 0.00% 26.00 0.00% 18.8 0.00% … 0.00% 37 0.00% 9.6 0.00% 2.2 1.84% 3.234 251505 2.19% 113.92 

H6 68 249,135 0.00% 161 0.00% 55 0.00% 30.25 0.00% 22.5 0.00% … 0.00% 35 0.00% 9.9 0.00% 2.3 4.64% 3.647 246121 -1.21% 112.49 

I1 90 350246 0.05% 648 0.00% 52 0.00% 41.63 0.00% 35.9 0.00% … 0.00% 53 0.00% 27.3 0.00% 3.7 3.05% 1001 349160 -0.31% 53.75 

I2 90 309,944 0.00% 542 0.00% 63 0.00% 37.50 0.00% 32.7 0.00% …. 0.00% 51 0.00% 20.4 0.00% 3.4 7.65% 457.2 314141 1.35% 84.71 

I3 90 294507 0.00% 574 0.00% 81 0.00% 43.88 0.00% 29.5 0.00% … 0.00% 59 0.00% 25.6 0.00% 4.2 4.25% 5.827 297173 0.91% 153.73 

I4 90 295988 0.00% 630 0.00% 76 0.00% 46.63 0.00% 35.4 0.00% … 0.00% 55 0.42% 21.6 0.00% 4.3 3.19% 16.04 298581 0.88% 159.05 

I5 90 301226 0.00% 504 0.00% 74 0.00% 47.38 0.00% 38.6 0.00% … 0.00% 49 0.38% 20.9 0.00% 4.3 1.83% 1.941 298588 -0.88% 159.44 

J1 94 335007 0.00% 965 0.00% 56 0.00% 66.63 0.00% 52 0.00% … 0.00% 50 0.00% 33.3 0.00% 3.3 2.55% 428.7 336325 0.39% 90.94 

J2 94 310417 0.12% 946 0.00% 65 0.00% 59.25 0.00% 48.3 0.00% … 0.00% 50 0.00% 41.7 0.00% 5.0 2.77% 53.72 311307 0.29% 292.62 

J3 94 279219 0.03% 764 0.00% 84 0.00% 77.63 0.00% 41.8 0.00% …. 0.00% 56 0.00% 30.6 0.00% 4.5 10.53% 27.2 281917 0.97% 273.86 

J4 94 296533 0.11% 859 0.00% 72 0.00% 62.75 0.00% 47.2 0.00% … 0.00% 67 0.36% 37.2 0.00% 4.9 1.87% 26.42 297141 0.21% 415.92 

K1 11 394071 0.23% 1334 0.08% 81 0.26% 104.8 0.00% 54.2 0.00% … 0.00% 80 0.26% 36.9 0.00% 10 3.83% 2941 399201 1.30% 337.17 

K2 11 362130 0.47% 1302 0.00% 96 0.00% 96.88 0.00% 44 0.00% … 0.00% 84 1.00% 37.3 0.00% 7.7 4.64% 972.3 365181 0.84% 329.40 

K3 11 365694 0.15% 1204 0.00% 95 0.00% 114.2 0.00% 48.3 0.00% … 0.00% 78 0.92% 47.6 0.00% 7.5 4.50% 1030 365943 0.07% 244.00 

K4 11 348950 0.69% 1150 0.00% 108 0.26% 106.0 0.00% 46.7 0.00% … 0.00% 77 0.39% 58.2 0.00% 8.1 2.75% 70.66 352220 0.94% 342.06 

L1 15 417897 2.03% 2366 1.94% 149 0.01% 148.3 0.00% 88.5 0.00% …. 0.00% 236 0.13% 86.8 0.00% 19.2 6.81% 1004 417616 -0.07% 446.70 

L2 15 401228 0.23% 2477 0.00% 176 0.00% 142.0 0.00% 72.9 0.00% … 0.00% 178 0.18% 89.1 0.00% 20.3 8.10% 1013 414427 3.29% 575.12 

L3 15 402678 0.43% 2333 0.00% 174 0.00% 160.6 0.00% 92.8 0.00% …. 0.00% 164 0.12% 95.2 0.00% 17.9 5.71% 1911 415353 3.15% 572.75 

L4 15 384637 0.09% 2287 0.00% 205 0.00% 159.5 0.00% 75.1 0.00% … 0.00% 141 0.24% 87.2 0.00% 19.6 7.85% 1250 394351 2.53% 551.28 

L5 15 387565 0.38% 2258 0.00% 200 0.00% 158.0 0.00% 82.6 0.00% … 0.00% 163 0.25% 92.0 0.00% 20.6 5.78% 190.8 387826 0.07% 569.08 

M1 12 398593 0.45% 1858 0.08% 102 0.03% 229.5 0.00% 70.8 0.00% … 0.00% 95 0.72% 65.7 0.05% 21.4 3.81% 127 398871 0.07% 498.75 

M2 12 396917 0.51% 1913 0.61% 100 0.10% 183.3 0.00% 64.4 0.00% … 0.00% 143 0.60% 53.4 0.04% 64.7 3.69% 289.8 402361 1.37% 440.84 

M3 12 375695 0.46% 1878 0.40% 114 0.43% 183.7 0.00% 56.8 0.00% … 0.00% 162 0.61% 90.5 0.13% 28.7 5.98% 2259 385296 2.56% 462.71 

M4 12 348140 0.27% 1858 0.08% 137 0.08% 164.1 0.00% 50.4 0.00% …. 0.00% 103 0.15% 99.5 0.00% 13.3 4.81% 19.42 360777 3.63% 450.58 

N1 15 408101 0.35% 2468 0.66% 155 0.00% 213.8 0.00% 103 0.00% … 0.00% 163 0.14% 70.3 0.00% 22.4 5.36% 1003 423010 3.65% 494.04 

N2 15 408066 0.05% 2430 0.32% 153 0.00% 214.3 0.00% 90.6 0.00% … 0.00% 153 0.32% 90.7 0.00% 24.8 5.63% 1003 409060 0.24% 439.48 

N3 15 394338 0.00% 2441 0.00% 170 0.00% 199.7 0.00% 77.2 0.00% … 0.00% 148 0.05% 73.8 0.00% 20.3 5.05% 71.1 406002 2.96% 593.09 

N4 15 394788 1.07% 2298 1.06% 170 0.00% 219.0 0.00% 105.1 0.00% … 0.00% 142 0.05% 83.3 0.00% 22 5.00% 20.5 396681 0.48% 585.26 

N5 15 373477 0.82% 2494 0.00% 210 0.07% 272.0 0.00% 81.5 0.00% … 0.00% 187 1.47% 112.7 0.01% 20.8 6.57% 39.07 376022 0.68% 596.73 

N6 15 373759 0.27% 2468 0.00% 209 0.00% 255.0 0.00% 91.2 0.00% …. 0.00% 205 0.84% 101.8 0.00% 22.2 7.23% 32.46 379036 1.41% 579.97 

Average 290,558 0.16% 815 0.13% 69 0.03% 67.56 0.01% 35.1 0.01% …. 0.01% 63.52 0.17% 30.49 0.1% 10.5 3.88% 288 292,201 0.37% 190.00 
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in parenthesis in the column, and other columns refer to the algorithm’s results and their %Gap.  

 The comparison shows that the proposed hybrid PSO algorithm obtains a total of 11 new 

BS solutions out of 56 instances. The hybrid PSO obtains the average %Gap of 0.47% for the 

problems, which is 0.07% (from 0.54% to 0.47%), 0.44%, and 0.72% superior to the algorithm 

of HS, CGH, and hybrid ACS respectively. The hybrid GA attains 0.17% overall %Gap, which is 

0.30% (from 0.47% to 0.17%) better than the hybrid PSO algorithm. Table 4.8 shows the 

comparative results for each problem type of Solomon’s instances. Average results comparison 

shows that hybrid PSO improves the existing BKS for the problem class of R1 by 0.60% (from 

1179.95 to 1172.90). The results for problem classes of C1 and C2 are found as their BKS 

(%Gap=0). 

   

Table 4.6: List of algorithms used in the evaluation of proposed algorithm for VRPTW   

Notations  Algorithms 

TS Tabu search with probabilistic diversification and intensification technique by Rochat and 

Taillard (1995) 

GLS Guided local search by Kilby et al. (1997) 

AGA A messy genetic algorithm by Tan et al. (2001) 

Hybrid GA Hybrid genetic algorithm by Jung and Moon (2002) 

CGH Column generation heuristic by Alvarenga et al. (2007) 

HS Hybrid search that combines simulated annealing with non-monotonic temperature control, 

random start and hill-climbing by Oliveira and Vasconcelos (2010) 

Hybrid ACS A hybrid ant colony system with  brain storm optimization algorithm by Shen et al. (2019) 

MAPSO Multi-adaptive particle swarm optimization algorithm by Marinakis et al. (2019) 

Hybrid PSO The algorithm proposed in this chapter of the thesis work 
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Table 4.7: Comparison results of Solomon’s 56 instances with 100 customers for VRPTW  

Instance BKS 
TS (1995) mGA (2001) Hybrid GA (2002) CGH (2007) HS (2010) Hybrid ACS (2019) Hybrid PSO 

Distance %GAP Distance %GAP Distance %GAP Distance %GAP  Distance %GAP   Distance %GAP Distance %GAP 

C101 828.94 (TS)  828.94 0.00% 828.94 0.00% 828.94 0.00% 828.94 0.00% 828.94 0.00% 828.94 0.00% 828.94 0.00% 

C102 828.94 (TS) 828.94 0.00% 828.94 0.00% 828.94 0.00% 828.94 0.00% 828.94 0.00% 828.94 0.00% 828.94 0.00% 

C103 828.06 (TS) 828.07 0.00% 859.78 3.83% 828.06 0.00% 828.06 0.00% 828.06 0.00% 828.06 0.00% 828.07 0.00% 

C104 824.78 (TS) 824.78 0.00% 893.23 8.30% 824.78 0.00% 824.78 0.00% 824.78 0.00% 824.78 0.00% 824.78 0.00% 

C105 828.94 (TS) 828.94 0.00% 828.94 0.00% 828.94 0.00% 828.94 0.00% 828.94 0.00% 828.94 0.00% 828.94 0.00% 

C106 828.94 (TS) 828.94 0.00% 828.94 0.00% 828.94 0.00% 828.94 0.00% 828.94 0.00% 828.94 0.00% 828.94 0.00% 

C107 828.94 (TS) 828.94 0.00% 828.94 0.00% 828.94 0.00% 828.94 0.00% 828.94 0.00% 828.94 0.00% 828.94 0.00% 

C108 828.94 (TS) 828.94 0.00% 830.94 0.24% 828.94 0.00% 828.94 0.00% 828.94 0.00% 828.94 0.00% 828.94 0.00% 

C109 828.94 (TS) 828.94 0.00% 849.03 2.42% 828.94 0.00% 828.94 0.00% 828.94 0.00% 828.94 0.00% 828.94 0.00% 

C201 591.56 (TS) 591.56 0.00% 591.56 0.00% 591.56 0.00% 591.56 0.00% 591.56 0.00% 591.56 0.00% 591.56 0.00% 

C202 591.56 (TS) 591.56 0.00% 591.56 0.00% 591.56 0.00% 591.56 0.00% 591.56 0.00% 591.56 0.00% 591.56 0.00% 

C203 591.17 (TS) 591.17 0.00% 618.00 4.54% 591.17 0.00% 591.17 0.00% 591.17 0.00% 591.17 0.00% 591.17 0.00% 

C204 590.60 (TS) 590.60 0.00% 609.02 3.12% 590.60 0.00% 590.60 0.00% 590.60 0.00% 590.60 0.00% 590.60 0.00% 

C205 588.88 (TS) 588.88 0.00% 616.32 4.66% 588.88 0.00% 588.88 0.00% 588.88 0.00% 588.88 0.00% 588.88 0.00% 

C206 588.49 (TS) 588.49 0.00% 615.92 4.66% 588.49 0.00% 588.49 0.00% 588.49 0.00% 588.49 0.00% 588.49 0.00% 

C207 588.29 (TS) 588.29 0.00% 636.62 8.22% 588.29 0.00% 588.29 0.00% 588.29 0.00% 588.29 0.00% 588.29 0.00% 

C208 588.32 (TS) 588.32 0.00% 611.29 3.90% 588.32 0.00% 588.32 0.00% 588.32 0.00% 588.32 0.00% 588.32 0.00% 

R101 1642.87 (HGA) 1650.80 0.48% 1648.86 0.36% 1642.88 0.00% 1642.87 0.00% 1642.88 0.00% 1642.88 0.00% 1615.46 -1.67% 

R102 1472.62 (CGH) 1486.12 0.92% 1486.71 0.96% 1472.81 0.01% 1472.62 0.00% 1475.35 0.19% 1479.55 0.47% 1439.10 -2.28% 

R103 1213.62 (HGA) 1213.62 0.00% 1234.43 1.71% 1213.62 0.00% 1213.62 0.00% 1222.68 0.75% 1225.31 0.95% 1212.09 -0.13% 

R104 976.61 (HGA) 982.01 0.55% 1024.38 4.89% 976.61 0.00% 986.10 0.97% 990.78 1.45% 1002.62 2.59% 974.89 -0.18% 

R105 1360.78 (HGA) 1377.11 1.20% 1372.71 0.88% 1360.78 0.00% 1360.78 0.00% 1363.74 0.22% 1365.66 0.36% 1358.78 -0.15% 

R106 1240.47 (HGA) 1252.03 0.93% 1271.11 2.47% 1240.47 0.00% 1241.52 0.08% 1244.58 0.33% 1249.51 0.72% 1244.90 0.36% 

R107 1073.34 (HGA) 1159.85 8.06% 1106.19 3.06% 1073.34 0.00% 1076.13 0.26% 1081.88 0.80% 1091.21 1.64% 1067.35 -0.56% 

R108 947.55 (HGA) 980.05 3.43% 992.12 4.70% 947.55 0.00% 948.57 0.11% 952.37 0.51% 960.23 1.32% 949.46 0.20% 

R109 1101.37 (mGA) 1235.68 12.19% 1101.37 0.00% 1151.84 4.58% 1151.84 4.58% 1153.89 4.77% 1165.71 5.52% 1151.08 4.51% 

R110 1072.41 (HGA) 1080.36 0.74% 1119.12 4.36% 1072.41 0.00% 1092.35 1.86% 1087.94 1.45% 1090.92 1.70% 1066.52 -0.55% 

R111 1053.50 (HGA) 1129.88 7.25% 1083.05 2.81% 1053.50 0.00% 1053.50 0.00% 1053.80 0.03% 1063.69 0.96% 1047.37 -0.58% 

R112 953.63 (HGA) 953.63 0.00% 1020.52 7.01% 953.63 0.00% 960.68 0.74% 973.34 2.07% 976.28 2.32% 947.82 -0.61% 

R201 1147.80 (HS) 1281.58 11.66% 1198.15 4.39% 1149.68 0.16% 1148.48 0.06% 1147.80 0.00% 1161.20 1.15% 1150.29 0.22% 

R202 1034.35 (HGA) 1088.07 5.19% 1057.56 2.24% 1034.35 0.00% 1049.74 1.49% 1039.32 0.48% 1058.83 2.31% 1030.12 -0.41% 

R203 874.87 (HGA) 948.74 8.44% 922.38 5.43% 874.87 0.00% 900.08 2.88% 874.87 0.00% 883.42 0.97% 874.87 0.00% 

R204 735.80 (HS) 869.29 18.14% 791.78 7.61% 736.52 0.10% 772.33 4.96% 735.80 0.00% 756.93 2.79% 746.59 1.47% 
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R205 954.16 (HS) 1063.24 11.43% 1015.99 6.48% 955.82 0.17% 970.89 1.75% 954.16 0.00% 978.47 2.48% 973.67 2.04% 

R206 879.89 (HGA) 912.97 3.76% 884.65 0.54% 879.89 0.00% 898.91 2.16% 884.25 0.50% 906.27 2.91% 888.29 0.95% 

R207 797.99 (HS) 814.78 2.10% 875.76 9.75% 799.86 0.23% 834.93 4.63% 797.99 0.00% 812.35 1.77% 821.82 2.99% 

R208 705.45 (HGA) 738.60 4.70% 778.38 10.34% 705.45 0.00% 723.61 2.57% 705.62 0.02% 725.05 2.70% 722.92 2.48% 

R209 859.39 (HGA) 944.64 9.92% 920.34 7.09% 859.39 0.00% 879.53 2.34% 860.11 0.08% 879.01 2.23% 876.36 1.97% 

R210 910.70 (HGA) 967.50 6.24% 961.18 5.54% 910.70 0.00% 932.89 2.44% 910.98 0.03% 923.43 1.38% 912.76 0.23% 

R211 755.82 (HS) 949.50 25.63% 820.23 8.52% 755.96 0.02% 787.51 4.19% 755.82 0.00% 776.17 2.62% 759.13 0.44% 

RC101 1623.58 (TS) 1623.58 0.00% 1659.68 2.22% 1643.41 1.22% 1639.97 1.01% 1642.83 1.19% 1643.78 1.23% 1641.08 1.08% 

RC102 1461.23 (HGA) 1477.54 1.12% 1492.10 2.11% 1461.23 0.00% 1466.84 0.38% 1480.46 1.32% 1464.63 0.23% 1480.95 1.35% 

RC103 1249.86 (mGA) 1262.02 0.97% 1249.86 0.00% 1277.54 2.21% 1264.71 1.19% 1308.64 4.70% 1275.65 2.02% 1271.56 1.74% 

RC104 1135.52 (CGH) 1135.83 0.03% 1202.12 5.87% 1136.81 0.11% 1135.52 0.00% 1162.75 2.40% 1156.92 1.85% 1160.04 2.16% 

RC105 1518.58 (HGA) 1733.56 14.16% 1585.34 4.40% 1518.58 0.00% 1518.60 0.00% 1534.60 1.05% 1535.78 1.12% 1534.98 1.08% 

RC106 1377.35 (CGH) 1384.92 0.55% 1449.30 5.22% 1381.23 0.28% 1377.35 0.00% 1386.82 0.69% 1378.45 0.08% 1378.18 0.06% 

RC107 1212.83 (HGA) 1230.95 1.49% 1303.36 7.46% 1212.83 0.00% 1212.83 0.00% 1247.53 2.86% 1216.65 0.31% 1202.66 -0.84% 

RC108 1117.53 (HGA) 1170.70 4.76% 1197.13 7.12% 1117.53 0.00% 1117.53 0.00% 1135.87 1.64% 1134.28 1.48% 1136.60 1.71% 

RC201 1265.56 (HGA) 1438.89 13.70% 1354.96 7.06% 1265.56 0.00% 1274.54 0.71% 1266.11 0.04% 1284.71 1.49% 1277.90 0.98% 

RC202 1095.64 (HGA) 1165.57 6.38% 1151.46 5.09% 1095.64 0.00% 1113.53 1.63% 1096.75 0.10% 1127.02 2.78% 1099.54 0.36% 

RC203 926.89 (HS) 1079.57 16.47% 1018.09 9.84% 928.51 0.17% 945.96 2.06% 926.89 0.00% 943.13 1.72% 941.14 1.54% 

RC204 786.38 (HGA) 806.75 2.59% 865.51 10.06% 786.38 0.00% 799.67 1.69% 786.38 0.00% 807.71 2.64% 796.72 1.31% 

RC205 1157.55 (HGA) 1333.71 15.22% 1225.69 5.89% 1157.55 0.00% 1161.81 0.37% 1157.55 0.00% 1170.98 1.15% 1176.82 1.66% 

RC206 1054.61 (HGA) 1212.64 14.98% 1122.23 6.41% 1054.61 0.00% 1059.89 0.50% 1056.21 0.15% 1093.64 3.57% 1054.76 0.01% 

RC207 966.08 (HGA) 1085.61 12.37% 1047.86 8.47% 966.08 0.00% 976.40 1.07% 966.08 0.00% 986.70 2.09% 969.56 0.36% 

RC208 779.31 (HGA) 833.97 7.01% 854.75 9.68% 779.31 0.00% 795.39 2.06% 780.72 0.18% 785.60 0.80% 787.34 1.03% 

Average 976.21 1021.97 4.55% 1016.69 4.32% 978.20 0.17% 984.54 0.91% 982.51 0.54% 988.48 1.19% 980.64 0.47% 

 

Table 4.8: Comparative results of each problem type of Solomon’s 56 instances with 100 customers for VRPTW 

Instance 

type 
BKS 

TS (1995) GLS (1997) mGA (2001) Hybrid GA (2002) CGH (2007) HS (2010) MAPSO (2019) Hybrid ACS (2019) Hybrid PSO 

Distance %GAP Distance %GAP Distance %GAP Distance %GAP Distance %GAP Distance %GAP Distance %GAP Distance %GAP Distance %GAP 

C1 828.38 828.45 0.01% 830.75 0.29% 859.81 3.79% 828.38 0.00% 828.38 0.00% 828.38 0.00% 828.38 0.00% 828.38 0.00% 828.38 0.00% 

C2 589.86 590.32 0.08% 592.24 0.40% 617.10 4.62% 589.86 0.00% 589.86 0.00% 589.86 0.00% 589.86 0.00% 589.86 0.00% 589.86 0.00% 

R1 1179.95 1202.31 1.89% 1200.33 1.73% 1260.71 6.84% 1179.95 0.00% 1196.80 1.43%  1186.94 0.59% 1209.99 2.55% 1192.80 1.09% 1172.90 -0.60% 

R2 878.71 969.29 10.31% 966.56 10.00% 1058.52 20.46% 878.71 0.00% 899.90 2.41% 878.79 0.01% 952.06 8.35% 896.47 2.02% 886.98 0.94% 

RC1 1341.70 1368.03 1.96% 1388.15 3.46% 1447.06 7.85% 1343.64   0.14% 1341.70 0.00%  1362.44 1.55% 1384.18 3.17% 1350.77 0.68% 1350.76 0.67% 

RC2 1004.20 1155.47 15.06% 1133.42 12.87% 1169.41 16.45% 1004.20   0.00% 1015.90 1.17%   1004.59 0.04% 1119.60 11.49% 1024.94 2.07% 1012.97 0.87% 
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4.3.5 Numerical experiments on VRPBTW 

The proposed hybrid PSO algorithm is evaluated for VRPBTW using Gelinas et al. (1995) 

benchmark instances. Gelinas et al. (1995) instances were generated from the first five datasets 

of Solomon’s R1-type VRPTW instances comprising 100 customers. These instances were 

created by randomly selecting backhaul customers of 10%, 30%, and 50% nodes given the same 

all other attributes. Additionally, 30 instances were constructed by considering only first 25 or 50 

customers from Solomon’s R1-type VRPTW instances for 100 customers. Thus a total of 45 

Gelinas et al. (1995) VRPBTW instances are used to evaluate the performance of the proposed 

algorithm and the results are compared with the BKS retrieved from the literature algorithms 

solutions (shown in Table 4.9). All the results of Gelinas et al. (1995) instances are summarized 

in Tables 4.10, 4.11, and 4.12. The used algorithms for BKS generation are stated in parenthesis. 

Table 4.10 reports the results for 25 customers’ instances. The overall %Gap found by the 

hybrid PSO is 0.31% with a CPU time of 3.23 seconds, which is better than all existing 

algorithms. The overall %GAP is 0.07% better than the HMA (from 0.38% to 0.31%) and 0.09% 

superior to the GA algorithm. The hybrid PSO improves the solution quality of the HA algorithm 

by 1.96% (from 2.27% to 0.31%). 

Table 4.11 shows the results for 50 customers’ instances. Here, the hybrid PSO generates 

solutions with an overall %Gap of 0.38%, which is also superior to all the available algorithms. 

For example, overall hybrid PSO’s result is 0.34% better than the HMA algorithm (from 0.72% 

to 0.38%). The results are 0.85% and 2.41% better than the GA and HA algorithm respectively.   

Table 4.12 denotes the results for 100 customers’ Gelinas et al. instances. The hybrid PSO 

obtains a total of 9 new BS out of 15 instances. The overall %Gap between BKS and the 

proposed hybrid PSO is noted as -0.38% that indicates the improvement in solution quality of 
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hybrid PSO compared to all existing solutions. The hybrid PSO is found to be 1.38% better than 

the HMA algorithm (from 1.00% to -0.38%), following 2.73% and 2.98% superior to the GA and 

UH algorithms respectively.  

Overall, the proposed hybrid PSO generates a better solution for Gelinas et al. instances 

compared to the existing BKS available in the literature. The proposed hybrid PSO improves the 

solution quality for 25 customers by 0.07% compared to its nearby competitor algorithm, HMA. 

The solution quality is also improved by 0.34% compared to its closest competitor algorithm, 

HMA, in the case of the hybrid PSO algorithm for 50 customers. A noticeable improvement is 

seen for large sizes instances with 100 customers, when hybrid PSO obtains 9 new BS out 15 

instances with an improved solution quality of -0.38% compared to previous BKS. The result is 

1.38% improvement over its nearby competitor, HMA algorithm.   

 

Table 4.9: List of algorithms used in the evaluation of the proposed algorithm for VRPBTW   

Notations  Algorithms 

B&B Branch-and-bound approaches based on column generation in Gelinas  et al. (1995) 

GA Genetic Algorithm in Potvin et al. (1996) 

HA Heuristic Approaches in Thangiah et al. (1996) 

ASA Ant System approach based on Insertion algorithm by Reimann et al. (2002)  

GLSA Guided local search approach in Zhong and Cole (2005) 

UH A unified heuristic in Ropke and Pisinger (2006) 

HMA Hybrid simulated annealing and tabu search algorithm in Küçükoglu and Öztürk (2015) 

Hybrid PSO The algorithm proposed in this chapter of the thesis work 
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4.4 Conclusion  

A new combinatorial optimization problem, the hydrogen and mixed fleet based green vehicle 

routing problem with backhaul and time windows (MFGVRPBTW), is introduced in this chapter 

of the thesis paper. The sustainability concerns are brought in the proposed model with the 

constraints of CO2 emission cap for the network and the maximum route length in the 

distribution logistic. The problem is proposed to optimize the routes of heterogeneous vehicles 

serving the linehaul and backhaul customers with time windows. The hybrid PSO algorithm is 

designed to solve the introducing MFGVRPBTW. The efficiency of the newly designed 

algorithm is proved by testing it on the newly generated MFGVRPBTW instances and also on 

the benchmark instances of VRPB, VRPTW, and VRPBTW available in the literature. The 

suggested hybrid PSO algorithm generates 11 new best known solutions out of 56 instances 

Solomon VRPTW, 12 new best known solutions out of 62 Goetschalckx and Jacobs-Blecha 

VRPB instances, and attains 9 new best known solutions out of 15 Gelinas et al. (1995) 

VRPBTW instances for 100 customers. Overall, the comparative result ensures the superiority of 

the proposed algorithm to the state-of-the-art algorithms on the VRPB, VRPTW, and VRPBTW. 

Thus, considering both of the features of the problem and the proven efficiency of the proposed 

algorithm, this study has great potential in the field of green VRP with backhaul and time 

windows.  
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Table 4.10: Comparison results on Gelinas et al. (1995) VRPBTW instances for 25 customers   

 

Instance 

 type 
 %BH 

 B&B (1995) 
  BKS 

  GA (1996)  HA (1996)  HMA (2015)  Hybrid PSO 

 Optimal solution   %GAP   t(s)  %GAP  t(s)  %GAP  t(s)  Distance     %GAP  t(s) 

 R101 

 10 643 643 (B&B)  0.06% …  6.02% …  0.06%  0.5  644.759  0.27%  3.29 

 30 711.1 711.1 (B&B)  1.50% …  0.83% …  1.50%  0.3  712.369  0.18%  2.81 

 50 674.5 674.5 (B&B)  1.16% …  3.87% …  0.34%  0.3  675.932  0.21%  2.5.5 

 R102 

 10 563.5 563.5 (B&B)  0.00% …  0.27% …  0.00%  1.4  564.617  0.20%  3.60 

 30 622.3 622.3 (B&B)  0.00% …  1.40% …  0.93%  1.4  629.128  1.10%  3.07 

 50 584.4 583 (B&B)  0.24% …  0.00% …  0.24%  2  585.577  0.44%  2.86 

 R103 

 10 476.6 476.6 (B&B)  0.00% …  4.07% …  0.46%  1.6  477.739  0.24%  4.17 

 30 507 507 (B&B)  0.00% …  2.56% …  0.00%  1.4  508.309  0.26%  3.24 

 50 475.6 475.6 (B&B)  1.56% …  6.18% …  1.56%  2.4  477.022  0.30%  2.97 

 R104 

 10 452.5 452.5 (B&B)  0.07% …  1.88% …  0.29%  3.2  453.761  0.28%  4.11 

 30 467.6 467.6 (B&B)  0.19% …  0.51% …  0.19%  2.3  468.736  0.24%  3.22 

 50 446.8 446.8 (B&B)  0.00% …  0.27% …  0.00%  2.9  448.057  0.28%  3.15 

 R105 

 10 565.1 565.1 (B&B)  0.00% …  4.71% …  0.00%  1.6  566.364  0.22%  3.89 

 30 623.5 623.5 (B&B)  1.07% …  1.14% …  0.00%  0.8  624.787  0.21%  2.86 

 50 591.1 591.1 (B&B)  0.17% …  0.30% …  0.17%  1.5  592.529  0.24%  2.57 

 Average  560.31 560.21  0.40% …  2.27% …  0.38%  1.57  561.98  0.31%  3.23 
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Table 4.11: Comparison results on Gelinas et al. (1995) VRPBTW instances for 50 customers   

 Instance 
 type 

 %BH 
B&B (1995) BKS GA (1996) HA (1996) HMA (2015) Hybrid PSO  

 Optimal solution  %GAP  t(s)  %GAP  t(s)  %GAP  t(s)  Distance   %GAP  t(s) 

 R101 

10  1122.3 1122.3 (B&B) 1.42% ….. 3.39% ….. 1.20% 5 1122.9 0.05% 24.04 

30  1191.5 1191.5 (B&B) 0.10% ….. 2.78% ….. 0.01% 3.2 1194.38 0.24% 22.95 

50  1168.6 1168.6 (B&B) 1.31% ….. 3.65% ….. 1.31% 3.5 1168.58 0.00% 25.64 

 R102 

10 974.7 974.7 (B&B) 0.22% ….. 0.44% ….. 0.22% 9 977.063 0.24% 25.58 

30  1024.8 1024.8(B&B) 0.43% ….. 1.39% ….. 2.07% 10 1052.85 2.74% 24.03 

50  1057.2 1057.2(B&B) 0.24% ….. 0.45% ….. 0.42% 7 1060.06 0.27% 26.21 

 R103 

10  811.4 811.4(B&B) 0.23% ….. 4.63% ….. 0.51% 25 813.988 0.32% 27.78 

30  882.8 882.8(B&B) 1.12% ….. 5.46% ….. 0.74% 17 884.837 0.23% 25.52 

50  882.1 882.1(B&B) 0.39% ….. 2.37% ….. 0.63% 10 884.307 0.25% 27.91 

 R104 

10   … 687.7(HMA) 0.22% ….. 0.48% ….. 0.00% 34 688.569 0.13% 32.80 

30   … 736.8(HMA) 2.00% ….. 0.98% ….. 0.00% 38 737.349 0.07% 27.92 

50  733.6 733.6(B&B) 1.06% ….. 4.42% ….. 0.63% 42 736.339 0.37% 29.41 

 R105 

10  970.6 970.6(B&B) 3.29% ….. 2.64% ….. 0.81% 13 973.174 0.27% 26.42 

30  1007.5 1007.5(B&B) 4.00% ….. 5.26% ….. 1.91% 10 1010.4 0.29% 24.60 

50  993.4 993.4(B&B) 2.48% ….. 3.54% ….. 0.28% 12 996.221 0.28% 27.05 

 Average  986.19 949.67 1.23% ….. 2.79% ….. 0.72% 15.91 953.40 0.38% 26.52 
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Table 4.12: Comparison results on Gelinas et al. (1995) VRPBTW instances for 100 customers   

 

 

 

 

 

 

 

Instance 
 type 

 %BH 

B&B (1995) 

BKS 

GA (1996) HA (1996)  ASA(2002) GLSA (2005) UH (2006) HMA (2015) Hybrid PSO  

 Optimal  

 solution 
 %GAP   t(s)  %GAP   t(s)  %GAP   t(s) %GAP   t(s)  %GAP   t(s)  %GAP   t(s)  Distance   %GAP   t(s) 

 R101 

10  1767.9 1767.9(B&B) 2.66% ….. 4.21% ….. 3.6% ….. 0.05 25.00 2.9% 109 2.47% 76 1773.43 0.31% 107.45 

30  1877.6 1877.6(B&B) 1.01% ….. 2.72% ….. 6.5% ….. 0.08 27.00 4.4% 103 0.72% 90 1884.97 0.39% 108.99 

50  1895.1 1895.1(B&B) 0.57% ….. 2.24% ….. 2.6% ….. 0.09 27.00 2.3% 101 0.85% 108 1900.7 0.30% 108.44 

 R102 

10 1600.5 1600.5(B&B) 1.40% ….. 3.35% ….. 4.8% …..  …  … 3.3% 121 1.45% 105 1605.4 0.31% 120.05 

30  1639.2 1639.2(B&B) 2.98% ….. 7.63% ….. 7.0% …..  ….  …. 6.8% 114 5.17% 90 1652.27 0.80% 120.13 

50  1721.3 1721.3(B&B) 0.84% ….. 1.42% ….. 3.5% …..  ….  …. 3.2% 113 2.24% 132 1722.42 0.07% 118.80 

 R103 

10  ….. 1343.7(GA) 0.00% ….. 2.08% ….. 0.4% …..  ….  …. 3.3% 128 0.24% 124 1339.11 -0.34% 125.58 

30  ….. 1381.6(GA) 0.00% ….. 6.95% ….. 1.0% …..  ….  …. 0.6% 115 0.31% 102 1367.77 -1.00% 128.96 

50  ….. 1456.48(UH) 0.01% ….. 5.95% ….. 0.8% …..  ….  …. 0.0% 115 0.58% 87 1433.92 -1.55% 119.90 

 R104 

10  ….. 1084.17(UH) 3.09% ….. 12.56% ….. 11.2% …..  ….  …. 0.0% 132 0.85% 182 1081.35 -0.26% 143.71 

30  ….. 1128.3(ASA) 3.62% ….. 15.44% ….. 0.0% …..  ….  …. 2.4% 122 0.74% 176 1122.38 -0.52% 136.54 

50  ….. 1189.6(HMA) 1.19% ….. 13.20% ….. 1.6% …..  ….  …. 0.1% 119 0.00% 194 1160.78 -2.42% 134.23 

 R105 

10  ….. 1516(HMA) 6.93% ….. 2.47% ….. 1.9% ….. 0.05 34.00 3.0% 109 0.00% 80 1502.46 -0.89% 110.19 

30  ….. 1581.5(HMA) 4.51% ….. 7.90% ….. 0.7% ….. 0.05 55.00 0.1% 102 0.00% 81 1577.93 -0.23% 128.14 

50  ….. 1604.1(HMA) 6.40% ….. 3.32% ….. 1.8% ….. 0.06 64.00 6.6% 100 0.00% 78 1593.68 -0.65% 126.84 

 Average  1750.27 1519.14 2.35% ….. 6.1% ….. 3.2% ….. 6.3% 38.67 2.60% 113.53 1.00% 113.67 1514.57 -0.38% 122.53 
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CHAPTER FIVE 

Green clustered vehicle routing problem with backhaul 

and time windows 

 

In this chapter, we introduce a new variant of the capacitated vehicle routing problem (CVRP) 

called as the green clustered vehicle routing problem with backhaul and time windows 

(GCluVRPBTW). The GCluVRPBTW is a generalized form of standard CVRP because it 

includes some additional constraints compared to the CVRP. Additional constraints are 

customers are partitioned into clusters, there are two sets of customers: linehaul customers and 

backhaul customers, time window constraint for each customer. Customers in each set are 

partitioned into predefined clusters, which imply linehaul clusters consisting of linehaul 

customers and backhaul clusters consisting of backhaul customers. Linehaul clusters must be 

served in the vehicle routes before the backhaul clusters are visited. Linehaul clusters require 

delivery operations and backhaul clusters need pickup operations in the problem. The customers 

belonging to a cluster (linehaul or backhaul cluster) must be served by the same vehicle before 

the vehicle visits customers from a different cluster or before it returns to the depot. Each cluster 

of linehaul and backhaul clusters has aggregated positive demand, which is to be delivered or 

picked up, over all customers in the cluster. The objective of the work is to obtain a set of 

feasible vehicle routes with minimum travel distance serving each customer and each cluster 

exactly once given to satisfying all constraints in the problem.  
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The clustered vehicle routing problem with backhaul appears in many practical situations 

where linehaul and backhaul customers are grouped into clusters. For example, in the grocery 

distribution networks, the supermarkets and shops (customers) located in specific locations are 

served as linehaul clusters and grocery suppliers of identical products or located in specific 

locations are visited as backhaul clusters; in the gas cylinders distribution network, delivering 

same gas cylinders are linehaul clusters and pulling empty cylinders of same type are backhaul 

clusters; in the drink distribution network, delivering identical bottles are linehaul clusters and 

collecting identical empty bottles are backhaul clusters; in the patient transportation services, 

dropping off service on outbound trips for similar type of patients as linehaul clusters, and 

picking up same types of patients are backhaul cluster on return trip; in reverse logistics, 

delivering identical products of different types are linehaul clusters and collecting recycling or 

damaged products of different groups are backhaul clusters, distributing similar goods and 

collecting identical goods to and from rough, remote geographical places or gated communities 

are linehaul clusters and backhaul clusters respectively; and in the healthcare service, delivering 

similar types of medicines are linehaul clusters and collecting same types of testing samples are 

backhaul clusters. 

In our best knowledge, the clustered vehicle routing problem with backhaul has not been 

studied so far in the literature. So, this is the first work to introduce the problem. In the pathway 

of decarbonizing transportation, the CO2 emission cap for the network is also considered as a 

constraint for this problem in addition to considering a mixed fleet of conventional and hydrogen 

vehicles in the network. The fuel consumption model for the vehicles is also realistically 

considered as a function of traveled distance, speed, and cargo load over the arcs, instead of 

considering only distance function. As a variant of VRP, the GCluVRPBTW is an NP-hard 
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problem and it is hard to solve by exact method within a reasonable computation time. 

Therefore, it is intended to develop a metaheuristic method to investigate the problem. 

 

5.1. Problem definition and mathematical formulation  
 

5.1.1 Problem definition 

The GCluVRPBTW is defined on a complete, directed graph 𝐺 = (𝑁, 𝐴), where 𝑁 is a set of 

nodes. The set has three separate sets, 𝑁 = {0, 𝐿, 𝐵}. The node 0 is the depot, the nodes set 

𝐿 = {1, 2 … … 𝑛} is the linehaul customers, and nodes set 𝐵 = {𝑛 + 1, … … 𝑛 + 𝑚} is the 

backhaul customers. The arc set 𝐴 denotes all possible connections between the nodes, defined 

as {(𝑖, 𝑗): 𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗}.  

 

Parameters 

𝑅 : Total number of clusters 

𝑐𝐿 : set of linehaul clusters 𝑐𝐿 ∈ 𝑅 

𝑐𝐵 : set of backhaul clusters 𝑐𝐵 ∈ 𝑅 

𝑟 : Individual cluster (mutually exclusive non-empty disjoint), 𝑟 ∈ 𝑅 

𝐶𝑟 The group of customers within a cluster, 𝐶𝑟 = { 𝑖 ∈ 𝑛: 𝑟𝑖 = 𝑟}, ∀ 𝑟 ∈ 𝑅 

 
𝑎𝑟 : Delivery demand of a linehaul cluster (a non-negative aggregated over all 

customers in the cluster) 

𝑏𝑟 : Pickup load of a backhaul cluster (a non-negative aggregated over all customers 

in the cluster) 

𝑛𝑙  : The number of customers for the 𝑙𝑡ℎ cluster 

[𝑒𝑟 , 𝑙𝑟] : A hard time windows where 𝑒𝑟 and 𝑙𝑟 are the earliest and latest arrival time at 

the nodes respectively with a 𝑠𝑟 non-negative service time (loading or 

unloading) of the vehicles 

 𝑑𝑖𝑗 : Euclidian distance 

 𝑣𝑖𝑗 : Travel speed, and travel time 𝑡𝑖𝑗 =
 𝑑𝑖𝑗

 𝑣𝑖𝑗
 

𝑘 : Individual vehicle 

𝑘𝑐𝑣 : Numbers of conventional vehicles 
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𝑘ℎ𝑣 : Numbers of hydrogen vehicles 

𝐾 : Total number of vehicles available in the network 

𝑄𝑐𝑣, 𝑄ℎ𝑣 : Capacities of conventional and hydrogen vehicles respectively 

𝑀∗  : A very large value 

𝐸𝑐𝑎𝑝 : Given CO2 emission cap for the logistics network 

𝑆 Set of vertices that is different from 𝑉 

𝛿+(𝑆) Set of edges (𝑖, 𝑗) ∈ 𝑆 × 𝑉\𝑆 

𝛿−(𝑆) Set of edges (𝑖, 𝑗) ∈ 𝑉\𝑆 × 𝑆 

 

Similar to the hydrogen and mixed fleet based green vehicle routing problem with backhaul with 

time windows (MFGVRPBTW) work, the heterogeneity of the vehicles in the GCluVRPBTW 

includes different vehicle capacities and CO2 emission amounts. The emissions of both types of 

vehicles are calculated similarly to the MFGVRPBTW work in chapter four. 

 

5.1.2 Mathematical formulation 

Each cluster and customer must be served only once by multiple conventional and hydrogen 

heterogeneous vehicles located on a single depot. The decision variables are defined as follows: 

 

𝑥𝑖𝑗
𝑘      = 1 if arc (𝑖, 𝑗) is traveled by vehicle 𝑘 otherwise 0.  

𝑦𝑖
𝑘     = 1 if linehaul customer 𝑖 is visited by vehicle 𝑘 otherwise 0. 

𝑧𝑖
𝑘     = 1 if backhaul customer 𝑖 is visited by vehicle 𝑘, otherwise 0. 

𝑢𝑖𝑗𝑘 Specifies the on-board cargo load in the vehicle, 𝑘, while in the arc (𝑖, 𝑗). 

𝑇𝑖,𝑘 Service start time of vehicle 𝑘 for customer, 𝑖.  
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Objective function:  

 Minimize total travel distance = ∑ ∑ ∑ 𝑑𝑖,𝑗

𝐾

𝑘=1

𝑛+𝑚

𝑗=0

𝑛+𝑚

𝑖=0

. 𝑥𝑖,𝑗
𝑘  (52) 

 

 

Constraints:  
 

 
∑ 𝑎𝑖

𝑛

𝑖=1

𝑦𝑖
𝑘 ≤ 𝑄𝑘                   ∀𝑘 ∈  𝐾 

 

(53) 

 ∑ 𝑏𝑖

𝑛+𝑚

𝑖=𝑛+1

𝑧𝑖
𝑘 ≤ 𝑄𝑘                ∀𝑘 ∈  𝐾 (54) 

 ∑ (𝑥𝑖𝑗
𝑘𝑐𝑣 + 𝑥𝑖𝑗

𝑘ℎ𝑣)

𝑁

𝑗=0

= 1                   ∀𝑖 ∈  𝑁 (55) 

 
∑ 𝑦𝑖

𝑘

𝐾

𝑘=1

= 1                       𝑖 = 1, . . , 𝑛 
(56) 

 ∑ 𝑧𝑖
𝑘

𝐾

𝑘=1

= 1                       𝑖 = 𝑛 + 1, . . , 𝑛 + 𝑚 (57) 

 ∑ ∑ 𝑥𝑖𝑗
𝑘

𝐾

𝑘=1(𝑖,𝑗)∈𝛿+(𝐶𝑟)

=  ∑ ∑ 𝑥𝑖𝑗
𝑘

𝐾

𝑘=1(𝑖,𝑗)∈𝛿−(𝐶𝑟)

= 1                         ∀𝑟 ∈ 𝑅 (58) 

 ∑ 𝑥0,𝑗
𝑐𝑣

𝑛+𝑚

𝑗=1

≤ 𝑘𝑐𝑣                        (59) 

 ∑ 𝑥0,𝑗
ℎ𝑣

𝑛+𝑚

𝑗=1

≤ 𝑘ℎ𝑣                        (60) 

 
∑ 𝑥𝑖𝑗

𝑘  

𝑛+ 𝑚

𝑖=0

=  {
𝑦𝑗

𝑘 , 𝑖𝑓 𝑗 = 1, … . . 𝑛

𝑧𝑗
𝑘 , 𝑖𝑓 𝑗 = 0, 𝑛 + 1, … . . 𝑛 + 𝑚

            ∀𝑘 ∈  𝑘𝑐𝑣 

       

(61) 

 
∑ 𝑥𝑖𝑗

𝑘  

𝑛+ 𝑚

𝑗=0

=  {
𝑦𝑖

𝑘 , 𝑖𝑓 𝑖 = 1, … . . 𝑛

𝑧𝑖
𝑘 , 𝑖𝑓 𝑖 = 0, 𝑛 + 1, … . . 𝑛 + 𝑚

            ∀𝑘 ∈  𝑘𝑐𝑣 

       

(62) 
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∑ 𝑥𝑖𝑗

𝑘  

𝑛+ 𝑚

𝑖=0

=  {
𝑦𝑗

𝑘 , 𝑖𝑓 𝑗 = 1, … . . 𝑛

𝑧𝑗
𝑘 , 𝑖𝑓 𝑗 = 0, 𝑛 + 1, … . . 𝑛 + 𝑚

            ∀𝑘 ∈  𝑘ℎ𝑣 

       

(63) 

 
∑ 𝑥𝑖𝑗

𝑘  

𝑛+ 𝑚

𝑗=0

=  {
𝑦𝑖

𝑘 , 𝑖𝑓 𝑖 = 1, … . . 𝑛

𝑧𝑖
𝑘 , 𝑖𝑓 𝑖 = 0, 𝑛 + 1, … . . 𝑛 + 𝑚

            ∀𝑘 ∈  𝑘ℎ𝑣 

       

(64) 

 ∑ ∑ 𝑥𝑖𝑗
𝑘

𝑛+𝑚

𝑗=0,𝑛+1

= 1

𝑛

𝑖=0

            ∀𝑘 ∈  𝐾  (65) 

 𝑇𝑗,𝑘 ≥ 𝑇𝑖,𝑘 + (𝑠𝑖 + 𝑡𝑖𝑗)(𝑥𝑖𝑗
𝑘 ) − 𝑀∗. (1 − 𝑥𝑖𝑗

𝑘 )       ∀𝑖 ∈  𝑁,   ∀𝑗 𝑁,   ∀𝑘 ∈  𝐾          (66) 

 𝑒𝑖 ≤ 𝑇𝑖,𝑘 ≤  𝑙𝑖         ∀𝑖 ∈  𝑁     ∀𝑘 ∈  𝐾     (67) 

 0 ≤ 𝑇0,𝑘 ≤  𝑇𝑀𝑎𝑥     ∀𝑘 ∈  𝐾          (68) 

 ∑ ∑ ∑ ∑ (𝐶𝑓𝑖,𝑗. 𝑥𝑖𝑗
𝑘𝑐𝑣 + 𝐶𝑏𝑖,𝑗. 𝑥𝑖𝑗

𝑘ℎ𝑣)

𝑘ℎ𝑣

𝑘=1

𝑘𝑐𝑣

𝑘=1

𝑛+𝑚

𝑗=0

𝑛+𝑚

𝑖=0

 ≤  𝐸𝑐𝑎𝑝 (69) 

 ∑ 𝑢𝑗𝑖𝑘  

𝑛+ 𝑚

𝑗=0;𝑗≠𝑖

− ∑ 𝑢𝑖𝑗𝑘  

𝑛+ 𝑚

𝑗=0;𝑗≠𝑖

=  {
𝑎𝑖 , 𝑖𝑓 𝑗 = 1, … . . 𝑛

𝑏𝑖 , 𝑖𝑓 𝑗 = 0, 𝑛 + 1, . . 𝑛 + 𝑚.   𝑖, 𝑗 = 1, . . 𝑛 + 𝑚.    𝑘 = 1, . , 𝐾  
             (70) 

 𝑎𝑖−1. 𝑥𝑖,𝑗
𝑘 ≤ 𝑢𝑖𝑗𝑘 ≤ (𝑄𝑘 − 𝑎𝑖). 𝑥𝑖,𝑗

𝑘       𝑖, 𝑗 = 1, . . 𝑛 + 𝑚;        𝑘 = 1, . . , 𝐾   (71) 

 𝑏𝑖−1. 𝑥𝑖,𝑗
𝑘 ≤ 𝑢𝑖𝑗𝑘 ≤ (𝑄𝑘 − 𝑏𝑖). 𝑥𝑖,𝑗

𝑘       𝑖, 𝑗 = 1, . . 𝑛 + 𝑚;        𝑘 = 1, . . , 𝐾   (72) 

 𝑥𝑖𝑗
𝑘 ∈ {0,1}     ∀𝑖 ∈  𝑁,       ∀𝑘 ∈  𝐾   (73) 

 𝑇𝑖,𝑘 ≥ 0;         ∀𝑖 ∈  𝑁, ∀𝑘 ∈  𝐾  (74) 

 

The objective function (52) minimizes the total distance traveled by the vehicles in the 

routes. Constraints (53), and (54) ensure the capacity of conventional and hydrogen vehicles 

cannot be exceeded while serving linehaul and backhaul customers. Constraint (55) restricts each 

customer visit has only one successor. Constraint (56), and (57) guarantee each linehaul and 

backhaul customer must be visited by exactly one vehicle. Constraint (58) specifies that each 
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cluster is served exactly one time. Constraints (59) and (60) restrict the maximum number of 

used vehicles for each type in the route that must follow the fleet composition. Constraint (61), 

(62), (63), and (64) represent the flow conservation ensuring each node must have an incoming 

number of arcs equal to outgoing arcs for each vehicle.  Constraint (65) enforces the priority 

assigned to the linehaul customers where all linehaul customers are served first before the 

backhaul customers for each vehicle. The time window constraints are confirmed by the 

constraints (66), and (67). The constraint (66) becomes 𝑇𝑗,𝑘 ≥ 𝑇𝑖,𝑘 + (𝑠𝑖 + 𝑡𝑖𝑗)(𝑥𝑖𝑗
𝑘 ) if arc (𝑖, 𝑗) is 

traveled by a vehicle of 𝑘𝑐𝑣 or 𝑘ℎ𝑣 otherwise it remains 𝑇𝑗,𝑘 ≥ 𝑇𝑖,𝑘 + (𝑠𝑖 + 𝑡𝑖𝑗)(𝑥𝑖𝑗
𝑘 ) − 𝑀∗. (1 − 𝑥𝑖𝑗

𝑘 ). 

Constraint (68) guarantees the route length restriction for each vehicle. Constraint (69) ensures 

the total amount of CO2 emissions in the model must not go beyond the emission Cap, 𝐸𝐶𝑎𝑝. 

Constraint (70), (71), and (72) confirm flow balance, where constraint (71) denotes the flows are 

increasing for linehaul customers and constraint (72) ensures flows are decreasing for backhaul 

customers by the amount of respective customer demand. Constraint (73), and (74) define the 

decision variables in the model. 

 

5.2 Proposed hybrid PSO for the GCluVRPBTW 

The hybrid PSO based solution approach is architected to solve the newly introduced green 

clustered vehicle routing problem with backhaul and time windows (GCluVRPBTW). The 

proposed hybrid PSO is a combination of standard PSO and neighborhood search (NS) 

algorithms. The neighborhood search includes several renowned local searches in both cluster 

level and customer level. The PSO structure is designed following the problem specifications of 

the GCluVRPBTW. Two types of particles denoting clusters and customers are used in the 
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proposed hybrid PSO algorithm for the GCluVRPBTW.  The pseudo-code of the proposed 

hybrid PSO for the GCluVRPBTW is shown in Algorithm 5.1. 

The proposed hybrid PSO uses the following definition: 

𝛼𝑖𝑙 Current cluster position value of 𝑖𝑡ℎ particle in  𝑙𝑡ℎ dimension  

𝛾𝑖𝑗 Current customer position value of 𝑖𝑡ℎ particle in  𝑗𝑡ℎ dimension  

𝛽𝑖𝑙 Current cluster velocity value of 𝑖𝑡ℎ particle in  𝑙𝑡ℎ dimension  

𝛿𝑖𝑗 Current customer velocity value of 𝑖𝑡ℎ particle in  𝑗𝑡ℎ dimension  

𝑓𝑖 Fitness function of particle, 𝑖 

𝛼𝑖𝑙
𝑏  Personal best cluster position value found so far for the 𝑖𝑡ℎ particle in the 𝑙𝑡ℎ 

dimension 

𝛾𝑖𝑗
𝑏  The personal best customer position value found so far for the 𝑖𝑡ℎ particle in the 𝑗𝑡ℎ 

dimension 

 

 
𝑓𝑖

𝑏 Fitness function of best particle, 𝑖  

 𝛼𝑙
∗ Global best cluster position value found in the 𝑙𝑡ℎ dimension 

 𝛾𝑗
∗ Global best customer position value found in the 𝑗𝑡ℎ dimension 

𝑓𝑔 Fitness function of global best particle  

𝑤 Inertia coefficient 

𝑐1 Cognitive coefficient 

𝑐2 Social coefficient 

𝑟1, 𝑟2  Independent random numbers 

𝑀 Total number of the particles 

𝑋 Position matrix for customer swarm 

𝑌 Position matrix for cluster swarm 

𝑈 Velocity matrix for customer swarm 

𝑉 Velocity matrix for cluster swarm 

𝑋𝑏/𝑋𝐺  Customer personal best/global best position value for swarm 

𝑌𝑏/𝑌𝐺  Cluster personal best/global best position value for swarm 

 𝑆𝑏 Personal best solution for swarm 

𝐼𝑇𝑀𝑎𝑥 Maximum iteration number, the algorithm termination criterion.  
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Algorithm 5.1: Pseudo-code of the proposed algorithm for the GCluVRPBTW 

1: Initialization  

2: Set parameters  

3: Initialize position matrix 𝑋, 𝑌 and velocity matrix 𝑈 , 𝑉  

4: Initialize the personal best fitness vector 𝑓𝑏  

5: Initialize the global best fitness vector 𝑓𝑔   

6: Main phase  

7: Do while 

8: S← Generate GCluVRPBTWSolution (𝑋, 𝑌, 𝑈, 𝑉) 

9: S ← neighborhood search (𝑆) 

10: Update personal best matrix 𝑋𝑏 , 𝑌𝑏 , fitness vector 𝑓𝑏 , and  personal best 

solution matrix 𝑆𝑏 

 

 

11: Update the best particle 𝑋𝐺 , 𝑌𝐺  and fitness vector 𝑓𝑔 

 
12: Update (𝑋, 𝑌, 𝑈, 𝑉) 

13: End Do 

 

 

5.2.1 Initialization phase   

The PSO parameters are set by performing sensitivity analysis within a limited time for a few 

instances. The parameters are initialized as  𝑤 = 0.7, 𝑐1 = 𝑐2 = 2, 𝑟1 = 𝑟2 = 0.5,   𝑀 = 20, and 

𝐼𝑇𝑀𝑎𝑥=100. 

 

The position and velocity vectors are initialized as follows: 

𝛼𝑖𝑙= 𝛼𝑚𝑖𝑛 + (𝛼𝑚𝑎𝑥 − 𝛼𝑚𝑖𝑛) ∗ 𝑈(0,1) ∀𝑖 ∈ {1,2, … 𝑀}, ∀𝑙 ∈ {1,2, … 𝑐} (75) 

𝛾𝑖𝑙= 𝛾𝑚𝑖𝑛 + (𝛾𝑚𝑎𝑥 −  𝛾𝑚𝑖𝑛) ∗ 𝑈(0,1) ∀𝑖 ∈ {1,2, … 𝑀}, ∀𝑗 ∈ {1,2, … 𝑛} (76) 

𝛿𝑖𝑙= 𝛿𝑚𝑖𝑛 + (𝛿𝑚𝑎𝑥 −  𝛿𝑚𝑖𝑛) ∗ 𝑈(0,1) ∀𝑖 ∈ {1,2, … 𝑀}, ∀𝑙 ∈ {1,2, … 𝑐} (77) 

𝛽
𝑖𝑙

= 𝛽𝑚𝑖𝑛 + (𝛽𝑚𝑎𝑥 −  𝛽𝑚𝑖𝑛) ∗ 𝑈(0,1) ∀𝑖 ∈ {1,2, … 𝑀}, ∀𝑗 ∈ {1,2, … 𝑛} (78) 
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Where, 𝛼𝑚𝑎𝑥 =  𝛾𝑚𝑎𝑥 =  𝛿𝑚𝑎𝑥 = 𝛽𝑚𝑎𝑥 = 4;      𝛼𝑚𝑖𝑛 =  𝛾𝑚𝑖𝑛 =  𝛿𝑚𝑖𝑛 = 𝛽𝑚𝑖𝑛 = −4.  

Here 𝑈(0,1) represents a uniform random number generated between 0 and 1. The personal best 

fitness vector for the particle, 𝑖 and fitness vector of a global particle are initialized as infinity. 

      𝑓𝑖
𝑏 =  ∞   ∀𝑖 ∈ {1,2, … 𝐾} 

                                                                           𝑓𝑔 =  ∞ 

 

5.2.2 Mapping position vectors to generate GCluVRPBTW solution 

In PSO, the initial solution(𝑆) of a given problem is usually generated by mapping the 

position values of the particles. In the proposed PSO for GCluVRPBTW, the solution is 

generated in hierarchical two phases. The solution consists of an assignment of clusters sub-

problems in phase-1, and an assignment of customers’ sub-problem in phase-2.  

Phase 1: Assignment of clusters sub-problem  

  In phase-1, cluster routes for linehaul and backhaul clusters are generated.  The 

assignment of cluster sub-problem starts with an empty load for each vehicle in the 

routes, where all vehicles start and finish their trip at the depot while serving linehaul 

and backhaul clusters. The clusters are assigned one by one into the vehicles to 

complete the solution. Firstly, linehaul clusters with highest position values are assigned 

one by one to each vehicle subject to vehicle capacity constraint, then backhaul cluster 

with highest position values are similarly assigned one by one to the vehicle subject to 

vehicle capacity constraint. All clusters in the network are added to the vehicle route in 

a similar way to generate the complete solution of a problem. While assigning clusters 

to the route, we do not impose constraints on the CO2 emission cap. Therefore, the 

assignment of clusters in the routes can generate an infeasible solution if constraints of 
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time windows of each customer and CO2 emissions cap of the network are not satisfied. 

The neighborhood search (NS) is designed in such a way in this work that it establishes 

the solutions feasible and also improves the solutions.         

 

Phase 2: Assignment of customers’ sub-problem 

      After the phase-1, where cluster routes are generated, a sequence of the customers 

for each cluster is generated to obtain the complete solution of the GCluVRPBTW. In 

the assignment of customers’ sub-problem, the assignment of the customers for each of 

linehaul and backhaul cluster is completed by selecting customers similar to the clusters 

routes generation method described in phase 1. 

 

5.2.3 Neighborhood search (NS)  

The proposed PSO considers the position vector as a region instead of a particular point. The 

solution generated in the mapping phase represents one of the solutions of the region, which 

might not be the best solution of the region. Therefore, the neighborhood search is employed to 

find the local optima. The neighborhood search consists of several local search moves applied on 

the cluster level and customer level. The customer level neighborhood searches are shift (1,0), 

shift(2,0), and 2-opt moves based on the current solution. The cluster level neighborhood 

searches are swap (1, 1), swap (2, 1), shift (1, 0), and shift (2, 0) moves based on the current 

solution. The moves at both the customer level and cluster level are selected randomly one by 

one. The customer level moves are applied on the customers within a cluster and it continues for 

all clusters one after another. The cluster level moves are applied on the clusters both on within 

same route and different routes. The detailed structures of the operators are explained in chapter 
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three and chapter four. Each local search move in the cluster level is started with an additional 

penalty function of three constraints, such as vehicle capacity, time windows, and 𝐶𝑂2 emission 

constraints. In the iterations, the penalty for each constraint is increased if infeasible routes are 

generated from the constraints, and vice versa. The overall structure of the NS used with the 

hybrid PSO for the GCluVRPBTW is shown in Algorithm 5.2. 

 

Algorithm 5.2: Neighborhood search (NS) used with hybrid PSO for the GCluVRPBTW 

 

 

 

 

5.2.4 Updating position and velocity vectors  

The personal best position value for each particle is updated if the current solution is found better 

than the current personal best solution. Similarly, the global best value is updated if the new best 

solution is found better than the current global best value. 

 

1: Method NS: 

2: Initial solution, 𝑠; 

3:  Set previous solution, 𝑠𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑠; 

4:        𝑠 ← Intra-cluster search (𝑠); 

5:    update 𝑠    

 6:                   if 𝑓( 𝑆𝑏) < 𝑓(𝑠) 

7:                    𝑠 =  𝑆𝑏 
 

 

 

 

8:       return 𝑠 

9:  Set previous solution, 𝑠𝑏∗ = 𝑠; 

10:     𝑠𝑏∗ ← Intra-route and inter-route search (𝑠); 

11:   update 𝑠    

 

 
12:                   if 𝑓( 𝑆𝑏∗) < 𝑓(𝑠) 

13:                    𝑠 =  𝑆𝑏∗ 
 

 

 

 

14:     return 𝑠 

15: end NS; 
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The velocity and position vectors are updated as follows:  

𝛿𝑖𝑙 = 𝑤𝛿𝑖𝑙 +  𝑐1𝑟1(𝛼𝑙
𝑝 − 𝛼𝑖𝑙) + 𝑐2𝑟2( 𝛼𝑙

∗ − 𝛼𝑖𝑙) ∀𝑖 ∈ {1,2, … 𝑀}, ∀𝑙 {1,2, … 𝑐} (79) 

𝛽𝑖𝑙 = 𝑤𝛽𝑖𝑙 + 𝑐1𝑟1 (𝛾
𝑗
𝑝 − 𝛾𝑖𝑙) + 𝑐2𝑟2 ( 𝛾

𝑗
∗ − 𝛾𝑖𝑙) ∀𝑖 ∈ {1,2, … 𝑀}, ∀𝑗 {1,2, … 𝑛} (80) 

𝛼𝑖𝑙 = 𝛼𝑖𝑙 +  𝛿𝑖𝑙 
∀𝑖 ∈ {1,2, … 𝑀}, ∀𝑙 {1,2, … 𝑐} (81) 

𝛾𝑖𝑙 = 𝛾𝑖𝑙 +  𝛽𝑖𝑙 ∀𝑖 ∈ {1,2, … 𝑀}, ∀𝑗 {1,2, … 𝑛} (82) 

 

 

5.3 Numerical experiments  

Similar to CluVRP and MFGVERBTW, the proposed hybrid PSO algorithm is implemented 

using the C++ programming language to solve the GCluVRPBTW. The experiments are run on a 

Linux server with a total of 256GB of RAM and four 2.1GHz processors with 16-core each. As 

the GCluVRPBTW is studied for the first time in this work, the proposed algorithm is tested on 

several newly generated GCluVRPBTW instances. The new GCluVRPBTW instances are 

generated from benchmark VRPBTW instances of Gelinas et al. (1995) study for 100 customers 

with 30% backhaul and 50% backhaul customers. A number of 20 GCluVRPBTW instances are 

generated from VRPBTW instances for 100 customers with 30% backhaul customer by selecting 

both clusters’ number (linehaul and backhaul clusters) of 15%, 20%, 25%, and 30% given all 

other attributes the same. Similarly, A number of 20 additional GCluVRPBTW instances are 

generated from VRPBTW instances for 100 customers with a 50% backhaul customer by 

selecting both clusters’ number (linehaul and backhaul clusters) of 15%, 20%, 25%, and 30% 

given all other attributes the same. However, in the newly generated 40 datasets for this study of 

GCluVRPBTW, each node is designated with a randomly chosen speed of the vehicle from a 
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speed range of 45~90 kilometer/hour. The datasets consist of a mixed fleet of conventional and 

hydrogen vehicles. Each vehicle type has a specific number of vehicles but the total number of 

vehicles remains the same as Gelinas et al. (1995) instances. The heterogeneity of the vehicles 

includes different vehicle capacity and CO2 emission amount for each type of vehicle. Moreover, 

each instance has a CO2 emission cap for the network. The capacity of conventional vehicles is 

considered as 200 the same as Gelinas et al. (1995) instances but the capacity of hydrogen 

vehicles is chosen as 150. All other attributes of Gelinas et al. instances remain the same in the 

newly generated instances for the GCluVRPBTW. The proposed GCluVRPBTW is a generalized 

version of the many variants of the CluVRP problem. Hence, the algorithm developed for 

GCluVRPBTW can solve many variants of CluVRP. 

The performance of the proposed hybrid PSO is also evaluated on the instances for 

CluVRPB, CluVRPTW, and CluVRPBTW. The 40 instances for each of the CluVRPB, 

CluVRPTW, and CluVRPBTW are generated in a similar way to the GCluVRPBTW from 

VRPBTW instances of Gelinas et al. (1995) study for 100 customers with 30% backhaul and 

50% backhaul customers. In the studies of CluVRPB, CluVRPTW, and CluVRPBTW, instead of 

a mixed fleet of heterogeneous vehicles, a homogeneous fleet of conventional vehicles with a 

capacity of 200 is considered and the vehicle speed is considered as 1 kilometer/hour. Thus, a 

total of 160 instances are used to evaluate the performance of the proposed hybrid PSO for the 

GCluVRPBTW. 

 

5.3.1 Numerical experiments on GCluVRPBTW 

The GCluVRPBTW in this study is a problem with a mixed fleet of conventional and hydrogen 

vehicles. Table 5.1 represents the hybrid PSO results for the GCluVRPBTW with a mixed fleet, 
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GCluVRPBTW with conventional vehicles only, and with hydrogen vehicle only. The average 

solutions (total travel distances), CPU time (in seconds), CO2 emission (in gram) for each 

problem instance are reported in the table. Table 5.1 shows that average distance, average CPU 

time, and the average CO2 emission of the mixed fleet are 2290.36, 42.39, and 1407.43 

respectively. The average distance, average CPU time, and the average CO2 emission of hybrid 

PSO with conventional vehicles only are 2275.48, 83.65, and 1598.56 respectively. The result 

indicates that the average distance is obtained as 0.64% less for the GCluVRPBTW with 

conventional vehicles only than the GCluVRPBTW with mixed fleet results. But the average 

CO2 emission for the GCluVRPBTW with conventional vehicles only is 13.58% greater than the 

results with the mixed fleet. It also specifies that if only conventional vehicles are employed in 

the routes, it reduces total travel distances but increases CO2 emission in the network, as 

expected because of higher vehicle capacity and higher CO2 emission rate of conventional 

vehicles. Moreover, the average distance, average CPU time, and the average CO2 emission of 

hybrid PSO with hydrogen vehicles only are 2336.31, 41.63, and 1172.62 respectively. The 

result indicates that the average distance is found as 2.00% greater with hydrogen vehicles only 

than the mixed fleet results. But the average CO2 emission for the GCluVRPBTW with hydrogen 

vehicles only is 16.68% less than the results for the GCluVRPBTW with mixed fleet results. It 

also specifies that if only hydrogen vehicles are employed in the routes, it increases total travel 

distances but decreases CO2 emission in the network, as expected because of lower vehicle 

capacity and lower CO2 emission rate of conventional vehicles. Thus considering real-life 

scenarios of distribution networks, we consider the mixed fleet of conventional and hydrogen 

vehicles in the routes in the work. The mixed fleet of conventional and hydrogen vehicles help to 

keep the CO2 emission within the considered CO2 emission cap in the distribution network.    
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5.3.2 Numerical experiments on GCluVRPBTW, CluVRPB, CluVRPTW, and 

CluVRPBTW 

This section presents the GCluVRPBTW problem as a generalized version of the many VRP 

problems such as GCluVRPBTW, CluVRPB, CluVRPTW, and CluVRPBTW. Here, we 

compare the results of GCluVRPBTW with the CluVRPB, CluVRPTW, and CluVRPBTW. The 

purpose of this analysis is to observe the effect of solution parameters on a different version of 

the reduced problems. Table 5.2 shows the hybrid PSO results for the GCluVRPBTW, 

CluVRPB, CluVRPTW, and CluVRPBTW.  

In the CluVRPB, some constraints are relaxed compared to the GCluVRPBTW such as 

CO2 emission for the vehicles in the network and time window constraints; and one additional 

constraint is imposed. The additional constraint is a vehicle route is not permitted to consist 

entirely of backhaul clusters and each route must have at least one linehaul cluster. In addition, 

the travel time of the vehicle between two nodes is equal to the distance between two nodes, 

because vehicle speed is considered as 1 kilometer/hour. Table 5.2 shows that the average 

solution for GCluVRPBTW is 2290.36 with the CPU time of 42.39 seconds; and the average 

solution for CluVRPB is 2152.84 with the CPU time of 21.71 seconds, which is 5.94% less than 

the average solution of GCluVRPBTW. The results highlight the effect of CO2 emission 

calculation for the vehicles and time window constraint for customers in the network. The 

reduced solution with less CPU time for CluVRPB can also be seen as the effect of considering 

homogenous conventional vehicles in the CluVRPB.   

In CluVRPTW, the constraint of CO2 emission for the vehicles in the network is relaxed 

compared to the GCluVRPBTW and there are no backhaul clusters and customers in the problem 

of CluVRPTW. The travel time of the vehicle between two nodes is also equal to the distance 
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between two nodes because vehicle speed is considered as 1 kilometer/hour. Table 5.2 shows the 

average solution for CluVRPTW is 2279.98 with the CPU time of 128.1 seconds, which is 

0.45% less than the average solution of GCluVRPBTW and 5.90% higher than the average 

solution of CluVRPB. The results highlight the effect of CO2 emission calculation for the 

vehicles in the network. The reduced solution with comparatively higher CPU time for 

CluVRPTW can also be seen as the effect of considering homogenous conventional vehicles in 

the CluVRPB.    

 In CluVRPBTW, the constraint of CO2 emission for the vehicles in the network is relaxed 

compared to the GCluVRPBTW. The additional constraint for the vehicle route of not permitted 

entirely of backhaul clusters is also relaxed in CluVRPBTW compared to CluVRPB. So, routes 

are permitted to consist of entirely linehaul clusters, mixed of linehaul and backhaul clusters, and 

entirely backhaul clusters. The travel time of the vehicle between two nodes is also equal to the 

distance between two nodes because vehicle speed is considered as 1 kilometer/hour. Table 5.2 

shows the average solution for CluVRPTW is 2279.94 with the CPU time of 59.70 seconds, 

which is 0.46% less than the average solution of GCluVRPBTW. The results highlight the effect 

of CO2 emission calculation for the vehicles in the network. The reduced solution with 

comparatively higher CPU time for CluVRPTW can also be seen as the effect of considering 

homogenous conventional vehicles in the CluVRPB. 
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Table 5.1: The hybrid PSO results for GCluVRPBTW with mixed fleet, conventional vehicle only, and with hydrogen vehicle only  

 
Instance 

type 

 %BH  % 

 Cluster 

 With mixed fleet   With conventional vehicles only  With hydrogen vehicles only 

 Distance t (s) CO2 Emission  Distance t (s) CO2 Emission  Distance t (s) CO2 Emission 

 

 

 

 

GCluVRPBTW- 

       R101 

 30 

  15  2049.04 157.73 1223.12  2062.17 159.29 1407.74  2089.05 157.24 1106.29 

  20  2065.49 23.27 1385.92  2055.87 24.14 1506.6  2092.23 22.73 1050.84 

  25  2293.94 41.11 1165.98  2261.15 41.58 1601.72  2328 39.9 1105.97 

  30  2452.68 61.67 1693.94  2423.62 66.38 1632.96  2481.28 59.81 1159.38 

 50 

  15  2254.92 16.54 1514.17  2238.66 15.93 1556.59  2302.84 14.89 1104.27 

  20  2274.88 23.58 1280.39  2257.83 23.04 1592.44  2317.88 22.96 1237.32 

  25  2436.61 39.24 1301.79  2399.17 44 1659.78  2471.93 37.94 1196.94 

  30  2335.82 58.97 1395.15  2313.69 68.91 1646.48  2380.35 57.57 1169.65 

 

 

 

 

GCluVRPBTW- 

       R102 

 30 

  15  2120.81 17.6 1393.43  2120.81 14.98 1498.44  2311.75 22.87 1108.68 

  20  2253.39 23.01 1396.26  2239.78 23.05 1483.63  2272.45 23.47 1142.56 

  25  2462.94 37.97 1686.79  2439.62 84.12 1847.62  2513.73 46.57 1310.14 

  30  2707.21 61.62 1691.03  2670.82 1210.48 1888.15  2730.75 59.61 1288.25 

 50 

  15  2294.8 17.9 1587.44  2282.05 17.82 1628.73  2317.82 16.49 1279.32 

  20  2340.37 23.53 1433.57  2331.16 22.97 1588.76  2492.37 22.86 1220.67 

  25  2450.1 39.33 1351.04  2437.98 45.53 1608.6  2462.17 38.42 1156.83 

  30  2342.08 57.69 1511.18  2313.16 81.99 1739.31  2372.55 56.23 1155.86 

 

 

 

 

GCluVRPBTW- 

       R103 

 30 

  15  2061.05 18.51 1496.86  2042.78 16.29 1503.18  2093.18 17.67 1217.31 

  20  2065.99 24.06 1401.62  2042.73 24.47 1613.87  2113.54 22.87 1121.02 

  25  2292.66 41.13 1503.16  2255.17 41.69 1605.85  2333.13 40.06 1166.39 

  30  2482.24 61.02 1527.29  2453.61 76.99 1682.02  2504.61 59.13 1236.97 

 50 

  15  2235.46 17.27 1472.89  2224.72 16.27 1560.23  2292.37 16.29 1234.29 

  20  2277.43 23.76 1346.37  2292.65 23.31 1521.53  2328.14 22.63 1196.37 

  25  2437.87 39.54 1393.21  2449.13 42.03 1573.57  2505.33 38.18 1286.97 

  30  2319.86 57.94 1416.89  2327.02 74.81 1530.17  2375.92 56.57 1062.64 

 

 

 

 

GCluVRPBTW- 

       R104 

 30 

  15  2052.71 18.27 1248.78  2029.82 16.38 1519.44  2087.57 17.84 1089.47 

  20  2045.36 23.87 1126.83  2040.42 24.51 1435.53  2078.21 23.03 1028.02 

  25  2297.18 40.42 1493.46  2260.87 41.17 1564.31  2334.74 39.33 1116.37 

  30  2430.99 60.86 1205.55  2406.97 79.57 1712.76  2463.64 58.99 1155.29 

  

 50 

  15  2154.3 18.43 1530.75  2142.07 17.31 1481.93  2203.48 19.39 1213.53 

  20  2383.52 23.39 1443.47  2364.24 67.8 1721.56  2485.79 22.48 1283.08 

  25  2287.97 184.36 1326.43  2278.02 190.8 1479.48  2320.54 175.95 1139.11 

  30  2538.32 58.13 1356.89  2531.04 337.52 1754.25  2579.71 56.87 1249.78 

 

 

 

 

 30 

  15  2099.66 19.24 1243.38  2080.64 16.9 1448.99  2124.31 18.93 1138.72 

  20  2073.31 23.82 1326.07  2045.84 24.39 1452.52  2089.7 23.01 1063.84 

  25  2257.65 40.81 1342.06  2253.34 41.98 1459.98  2313.38 39.65 1008.63 

  30  2417.46 61.78 1423.48  2401.35 70.36 1733.92  2447.76 60.23 1249.88 
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GCluVRPBTW- 

       R105 
 50 

  15  2205.35 16.13 1406.43  2205.35 15.57 1537.3  2278.41 15.87 1242.47 

  20  2316.35 23.71 1368.2  2283.43 23.54 1595.24  2338.36 24.84 1246.19 

  25  2422.85 39.69 1421.73  2435.73 44.03 1716.71  2447.8 38.95 1175.24 

  30  2324.12 58.74 1464.54  2324.91 74.46 1850.78  2375.96 57.13 1190.59 

Average     2290.36 42.39 1407.43  2275.48 83.65 1598.56  2336.31 41.63 1172.62 
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Table 5.2: The hybrid PSO results for GCluVRPBTW, CluVRPB, CluVRPTW, and   

CluVRPBTW 

 
Instance 

type 

 %BH  % 

 Cluster 

 GCluVRPBTW  CluVRPB  CluVRPTW  CluVRPBTW 

Distance t (s) Distance t (s) Distance t (s) Distance t (s) 

 

 

 

 

GCluVRP 

BTW- R101 

 30 

  15  2049.04 157.7

3 

1989.19 10.9

4 

2086.47 200.

21 

2059.65 190.0

8   20  2065.49 23.27 1947.11 15.2

8 

2087.59 23.8

6 

2042.48 25.88 

  25  2293.94 41.11 2145.59 25.2 2286.57 46.7

7 

2269.37 44.06 

  30  2452.68 61.67 2258.05 37.7

4 

2402.52 72.8

6 

2442.72 66.15 

 50 

  15  2254.92 16.54 2136.67 10.4

3 

2301.31 33.1

6 

2230.98 37.62 

  20  2274.88 23.58 2198.85 14.3

7 

2288.81 23.8

5 

2287.07 24.35 

  25  2436.61 39.24 2288.7 24.0

3 

2406.38 46.8

4 

2421.26 42.1 

  30  2335.82 58.97 2137.38 36.9

6 

2285.63 73.7

9 

2322.47 64.15 

 

 

 

 

GCluVRP 

BTW- R102 

 30 

  15  2120.81 17.6 2058.21 10.5

4 

2162.55 13.6

7 

2109.74 15.78 

  20  2253.39 23.01 2124.79 14.6

7 

2249.68 482.

57 

2239.18 24.36 

  25  2462.94 37.97 2275.86 22.8

9 

2418.86 41.8

5 

2445.31 39.61 

  30  2707.21 61.62 2514.87 37.5

4 

2669.71 755.

41 

2677.68 478.5 

 50 

  15  2294.8 17.9 2136.67 10.4

5 

2289.15 12.2

5 

2278.62 17.27 

  20  2340.37 23.53 2198.85 14.4 2301.09 78.8 2324.99 24.64 

  25  2450.1 39.33 2288.7 24.0

3 

2395.27 46.2

3 

2434.14 41.61 

  30  2342.08 57.69 2258.05 37.8

1 

2389.14 72.2

1 

2469.88 65.17 

 

 

 

 

GCluVRP 

BTW-`R103 

 30 

  15  2061.05 18.51 1989.19 10.9

5 

2109.57 13.9

6 

2042.39 16.6 

  20  2065.99 24.06 1947.11 15.2

9 

2069.27 24.2

1 

2055.59 26.13 

  25  2292.66 41.13 2145.59 25.1

8 

2293.65 152

1.69 

2268.97 44.33 

  30  2482.24 61.02 2137.38 36.8

6 

2289.6 73.7

9 

2304.98 61.98 

 50 

  15  2235.46 17.27 2136.67 10.4

3 

2314.08 223.

7 

2238.57 16.83 

  20  2277.43 23.76 2198.85 14.4 2307.55 23.9

5 

2291.8 24.74 

  25  2437.87 39.54 2288.7 24.1

7 

2391.47 46.5

8 

2433.91 41.93 

  30  2319.86 57.94 2137.38 36.8

3 

2275.35 73.2 2305.38 62.3 

 

 

 

 

GCluVRP 

BTW-R104 

 30 

  15  2052.71 18.27 1989.19 10.9

6 

2085.88 13.8 2045 16.94 

  20  2045.36 23.87 1947.11 15.3 2063.9 202.

06 

2031.38 138.4

1   25  2297.18 40.42 2145.59 25.1

8 

2268.51 46.4

2 

2272.59 43.62 

  30  2430.99 60.86 2258.05 37.7

4 

2428.71 72.8

8 

2424.87 66.89 

  

 50 

  15  2154.3 18.43 1991.93 10.3

8 

2097.32 93.1

5 

2136.78 17.17 

  20  2383.52 23.39 2254.75 14.9

9 

2373.69 24.1

7 

2360.39 24.92 

  25  2287.97 184.3

6 

2121.88 21.8 2246.45 258.

43 

2285.96 219.2 

  30  2538.32 58.13 2365.29 35.9

4 

2515.87 73.1

6 

2554.14 63.2 

 

 

 

 

GCluVRP 

BTW- R105 

 30 

  15  2099.66 19.24 1989.19 10.9

5 

2077.62 13.7

5 

2092.19 18.23 

  20  2073.31 23.82 1947.11 15.2

7 

2080.43 23.8

9 

2057.49 25.58 

  25  2257.65 40.81 2145.59 25.1

6 

2248.17 46.3

5 

2245.09 44.3 

  30  2417.46 61.78 2258.05 37.7

5 

2375.82 73.5

6 

2441.79 67 

 50 

  15  2205.35 16.13 2136.67 10.4

2 

2299.91 12.4

1 

2226.87 16.46 

  20  2316.35 23.71 2198.85 14.3

7 

2277.56 24.0

7 

2303.43 24.59 

  25  2422.85 39.69 2288.7 24.0

5 

2415.29 46.6

6 

2408.68 43.09 

  30  2324.12 58.74 2137.38 36.8

5 

2273.04 74.2

7 

2314.16 62.5 

Average     2290.36 42.39 2152.84

4 

21.7

125 

2279.98 128.

111 

2279.94 59.70

675  
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5.4 Conclusion  

This chapter introduces the green clustered vehicle routing problem with backhaul and 

time windows (GCluVRPBTW). The objective of the GCluVRPBTW is to optimize the 

routing of a mixed fleet of the problem. Similar to the MFGVRPBTW, the mixed fleet 

consists of several conventional vehicles and hydrogen vehicles. In the problem, all the 

predefined linehaul and backhaul clusters and customers must be served only once 

respecting all constraints of the problem. The new problem of the GCluVRPBTW has 

many real-life applications such as in the health care system, gas cylinder distribution 

system, drink distribution system, grocery distribution system, and good distribution 

system in remote and gated communities, etc. In order to address the problem, we design 

the PSO based solution approach that is hybridized by the neighborhood search method. 

The neighborhood search includes the many well-known local search moves in both 

customer level and cluster level. The neighborhood search is intended to find the local 

optima. Thus, the proposed hybrid PSO algorithm is a well architecture of the 

intensification behavior of local search and diversification behavior of PSO that aimed to 

solve the problem. The newly generated GCluVRPBTW instances are used to evaluate 

the performance of the proposed hybrid PSO in this introducing work. The newly 

generated instances of CluVRPB, CluVRPTW, and CluVRPBTW are also tested to check 

the performance of the hybrid PSO algorithm. The key contributions of the work include 

introducing a new green clustered vehicle routing problem with backhaul and time 

windows (GCluVRPBTW), formulating a mathematical model of the problem, 

developing a new hybrid PSO algorithm based solution approach, generating new 
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instances for GCluVRPBTW, CluVRPB, CluVRPTW, and CluVRPBTW, and obtaining 

solutions for each of the problems. Overall the GCluVRPBTW is believed to be an 

important contribution in the field of green VRP, clustered VRP, and also in VRP with 

backhaul areas.          
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CHAPTER SIX 

Conclusions 

  

6.1  Overview  

This thesis focuses on the sustainable development of road transportation by investigating 

a comprehensive VRP model. First, the CluVRP model is considered, followed by the 

mixed fleet green VRPBTW model. Finally, the thesis combines these two VRP models 

and presents a comprehensive VRP model that can be considered as a generalization of 

many VRP models. We develop an effective and integrated hybrid metaheuristic solution 

approach to solve the problems. The solution approach is enabled to deal with many 

situations such as mixed fleet vehicles, fuel consumption calculation, CO2 emission cap, 

backhauling, and time windows constraints in the distribution networks. The fuel 

consumption model is realistically considered as a function of traveled distance, speed, 

and on-board cargo load. The proposed solution approaches help to obtain new best-

known solutions for the studied problems and to generate benchmark solutions for the 

other two new problems with a minimized CO2 emission discharged by the vehicles in 

the distribution network.  

In the first model, the clustered vehicle routing problem (CluVRP) is considered with 

the aim of finding the optimal distribution costs for the logistic network serving all 

customers by using the available vehicles.  In the CluVRP, customers are partitioned into 

predefined clusters. The same vehicle is assigned to serve all customers consecutively 
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under a cluster before it moves to another cluster or returns to the depot. Our proposed 

hybrid PSO algorithm is tested on the benchmark instances found in CluVRP literature. 

The hybrid PSO solution approach finds the new best-known solutions for a total of 156 

instances out of 293 benchmark instances with an average CPU time of 43.71 seconds. 

In the second model, a mixed fleet based green vehicle routing problem with 

backhaul and time windows (MFGVRPBTW), is introduced. The work brings 

sustainability concerns in the proposed model by considering backhaul customers, 

hydrogen AFV, as well as CO2 emission cap imposed by the government for the 

distribution logistic. The problem is proposed to optimize the routes of heterogeneous 

vehicles serving the linehaul and backhaul customers with time windows. The CO2 

emission cap for the network and the maximum route length constraints are included in 

the problem. The efficiency of the proposed algorithm is proved hereby testing it on the 

newly generated MFGVRPBTW instances and also on the benchmark instances of 

VRPB, VRPTW, and VRPBTW available in the literature. While testing on Solomon’s 

VRPTW benchmark instances, the hybrid PSO metaheuristic generates 11 new best 

known solutions out of 56 instances. The VRPB is tested on the Goetschalckx and 

Jacobs-Blecha’ benchmark instances and obtains a total of 12 new best known solutions 

out of 62 instances. The proposed hybrid PSO is tested for VRPBTW using Gelinas et al. 

benchmark instances and attains 9 new best known solutions out of 15 instances for 100 

customers. 

In the third model, we introduce the green clustered vehicle routing problem with 

backhaul and time windows (GCluVRPBTW) to optimize the routing of a mixed fleet 
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green CluVRP with backhaul and time windows. The mixed fleet also consists of several 

conventional vehicles and hydrogen vehicles. In the problem, customers are apportioned 

into predefined linehaul and backhaul clusters. All customers in a cluster must be served 

one by one by the same vehicle before it starts serving another cluster or returns to the 

depot. Since the GCluVRPBTW is the first work in this study, the performance of the 

proposed hybrid algorithm is evaluated by testing on newly generated GCluVRPBTW 

instances. The proposed hybrid PSO algorithm for GCluVRPBTW is tested on newly 

generated instances of CluVRPB, CluVRPTW, and CluVRPBTW. The proposed hybrid 

PSO algorithm solves each of the problems successfully.    

In addition to generating many new best-known solutions for the CluVRP, VRPB, 

VRPTW, and VRPBTW benchmark instances, this thesis contributed by adding new 

features in the PSO algorithm such as the use of two types of particles and improvement 

scheme for the personal best solution in the newly designed hybrid PSO. In the 

improvement scheme, the personal best solutions of the swarm are further improved by 

adopting the perturbation and VNS method. With the complementary nature of the hybrid 

PSO which combines the local optimal improvement capabilities of neighborhood search 

with the swarm based diversification abilities of the PSO. Hence, the proposed algorithm 

has great potential for solving instances of other variants of VRP. With the capability of a 

quality solution on relatively acceptable CPU time, the algorithm has the perspective to 

use in many practical scenarios in VRPs. 
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6.2  Limitations of the thesis and future research directions  

We acknowledge some limitations of this thesis work. Firstly, the scenario of traffic 

congestion on the road is not included in the problem. Moreover, the fuel consumption of 

the vehicles while they are on stops is not considered in this research. It is assumed that 

no energy for the vehicles is required during the vehicle service is being provided to both 

of the customers, linehaul, and backhaul customers. All parameters used in the problems 

are assumed to be deterministic but in practical, some parameters in the routing problem 

are known to be uncertain.   

Future research could be done in the following areas to address the limitations 

mentioned above. Traffic road congestion could be considered to minimize CO2 emission 

in the case of VRP with backhaul problem. There are many VRP works available in the 

literature working on congestions, but no VRP with backhaul problem has yet considered 

the traffic congestion for the vehicles. Similarly, no VRP with backhaul problem has yet 

measured the energy consumption on stops while vehicle service is being provided. 

Moreover, time-dependent parameters are practical in the urban and city logistics, it 

would be realistic to comprise time dependencies on the green VRP with backhaul. As 

some parameters are realistically known to be dynamic instead of deterministic, it would 

be more convincing to consider a dynamic version of green VRP with backhaul. Finally, 

in our knowledge, no study has yet been considered electric vehicles for VRP with 

backhaul and time window. Our thesis work introduces the hydrogen vehicle for the first 

time in VRP with backhaul and time window. We strongly believe that there are still exist 

meaningful and significant research opportunities on AFVs VRPB extensions.   
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Research outcomes 

The thesis is designed from the following research events: 

Journal papers: 

 Md. Anisul Islam, Yuvraj Gajpal, and Tarek Elmekkawy (2020). Mixed Fleet 

Green Vehicle Routing Problem with Backhaul and Time Windows. Transportation 

Research Part E: Logistics and Transportation Review (submitted). 

 Md. Anisul Islam, Yuvraj Gajpal, and Tarek Elmekkawy (2018). Hybrid Particle 

Swarm Optimization Algorithm for Solving the Clustered Vehicle Routing 

Problem. Applied Soft Computing (revised version submitted). 

Working paper: 

 Md. Anisul Islam, Yuvraj Gajpal, and Tarek Elmekkawy (2020). Green Clustered 

Vehicle Routing Problem with Backhaul and Time Windows. Preparing to submit 

to the European Journal of Operational Research. 

Conference presentations and proceeding: 

 Md. Anisul Islam, Gajpal, Y. and ElMekkawy, T. Y. (2019). A hybrid particle 

swarm optimization algorithm for mixed fleet of hydrogen and conventional 

vehicles routes. Administrative science association of Canada (ASAC). May 24-27, 

2019, the Goodman school of business, Brock University, Niagara region of 

Ontario, Canada. 
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 Md. Anisul Islam, Gajpal, Y. and ElMekkawy, T. Y. (2018). Heuristics and 

metaheuristic solutions for mixed fleet of hydrogen and conventional vehicles. 

Administrative science association of Canada (ASAC). May 27-29, 2018, Ryerson 

University, Toronto, Canada. 

 Md. Anisul Islam, Gajpal, Y. and ElMekkawy, T. Y. (2017). Route design for mixed 

fleet of hydrogen and conventional vehicles. The 21th conference of the international 

federation of operational research societies (IFORS), July 17-21, 2017, Quebec City 

convention center, Quebec, Canada. 

 Md. Anisul Islam, Gajpal, Y. and ElMekkawy, T. Y. (2016). A hybrid particle 

swarm optimization algorithm for the clustered vehicle routing problem. The 5th 

biennial supply chain management conference, December 15–16, 2016, Indian 

Institute of management Bangalore (IIMB), Bengaluru, India. 

 Md. Anisul Islam, Gajpal, Y. and ElMekkawy, T. Y. (2016). Heuristics and 

metaheuristic for the clustered vehicle routing problem. Canadian operational 

research society (CORS), 58th annual conference, May 30–June 1, 2016, Banff 

Center, Banff, Alberta, Canada.  

 Md. Anisul Islam, Gajpal, Y. and ElMekkawy, T. Y. (2016). Nearest neighborhood, 

sweep, and saving algorithm for the clustered vehicle routing problem. 

Administrative science association of Canada (ASAC), Global perspectives in 

business. June 4-6, 2016, Shaw Conference Centre, Edmonton, Alberta, Canada. 
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 Md. Anisul Islam, Gajpal, Y. and ElMekkawy, T. Y. (2016). Heuristics solution for 

the clustered vehicle routing problem. Hickson research day, Poster event 2016. 

Asper School of Business, University of Manitoba, Canada. 
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Appendix A:  The detailed computational results for 

CluVRP study  
 

       Table A1:  Results for the instances A, B for CluVRP study 

Instance BC  Hybrid PSO  

Group n c m UB Solution CPU t(s)  Improvement % 

A 31 11 2 522 522 0.079 0.00% 
A 32 11 2 472 472 0.122 0.00% 
A 32 11 2 562 562 0.094 0.00% 
A 33 12 2 547 547 0.13 0.00% 
A 35 12 2 588 588 0.149 0.00% 
A 36 13 2 569 569 0.183 0.00% 
A 36 13 2 615 615 0.151 0.00% 
A 37 13 2 507 507 0.143 0.00% 
A 38 13 2 610 610 0.191 0.00% 
A 38 13 2 613 613 0.157 0.00% 
A 43 15 2 714 714 0.199 0.00% 
A 44 15 3 712 712 0.315 0.00% 
A 44 15 3 664 664 0.307 0.00% 
A 45 16 3 664 664 0.354 0.00% 
A 47 16 3 683 683 0.356 0.00% 
A 52 18 3 651 651 0.577 0.00% 
A 53 18 3 724 724 0.542 0.00% 
A 54 19 3 653 653 0.493 0.00% 
A 59 20 3 787 787 0.679 0.00% 
A 60 21 4 682 682 0.817 0.00% 
A 61 21 3 778 778 0.777 0.00% 
A 62 21 4 801 801 0.827 0.00% 
A 62 21 3 865 865 0.594 0.00% 
A 63 22 3 773 773 0.89 0.00% 
A 64 22 3 725 725 0.809 0.00% 
A 68 23 3 814 814 0.898 0.00% 
A 79 27 4 972 972 1.637 0.00% 
B 30 11 2 375 375 0.097 0.00% 
B 33 12 2 416 416 0.128 0.00% 
B 34 12 2 562 562 0.12 0.00% 
B 37 13 2 431 431 0.142 0.00% 
B 38 13 2 321 321 0.155 0.00% 
B 40 14 2 476 476 0.19 0.00% 
B 42 15 2 415 415 0.219 0.00% 
B 43 15 3 447 447 0.279 0.00% 
B 44 15 2 506 506 0.265 0.00% 
B 44 15 2 391 391 0.221 0.00% 
B 49 17 3 467 467 0.415 0.00% 
B 49 17 3 666 666 0.455 0.00% 
B 50 17 3 585 585 0.394 0.00% 
B 51 18 3 427 427 0.481 0.00% 
B 55 19 3 433 433 0.556 0.00% 
B 56 19 3 634 634 0.654 0.00% 
B 56 19 3 753 753 0.601 0.00% 
B 62 21 3 685 685 0.641 0.00% 
B 63 22 4 526 526 0.832 0.00% 
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B 65 22 3 687 687 0.934 0.00% 
B 66 23 4 626 626 1.09 0.00% 
B 67 23 3 588 588 0.983 0.00% 
B 77 26 4 721 721 1.65 0.00% 

 

Table A2: Results for the instances M, P for CluVRP study 

Instance BC Hybrid PSO 

Group n c m UB Solution CPU t(s) Improvement % 

M 100 34 4 607 607 3.506 0.00% 
M 120 41 3 691 691 7.559 0.00% 
M 150 51 4 804 804 13.048 0.00% 
M 199 67 6 914 908 36.083 +0.66% 
P 100 51 5 679 658 7.163 +3.09% 
P 15 6 4 253 253 0.016 0.00% 
P 18 10 2 186 186 0.013 0.00% 
P 19 7 1 200 200 0.011 0.00% 
P 20 7 1 190 190 0.017 0.00% 
P 21 8 1 202 202 0.018 0.00% 
P 21 8 4 365 365 0.047 0.00% 
P 22 8 3 279 279 0.037 0.00% 
P 39 14 2 396 396 0.212 0.00% 
P 44 15 2 440 440 0.252 0.00% 
P 49 17 4 491 491 0.403 0.00% 
P 49 17 3 447 447 0.441 0.00% 
P 49 17 3 460 460 0.357 0.00% 
P 50 17 4 537 537 0.433 0.00% 
P 54 19 4 500 500 0.55 0.00% 
P 54 19 6 595 471 0.577 0.00% 
P 54 19 3 462 462 0.565 0.00% 
P 54 19 3 471 595 0.524 0.00% 
P 59 20 4 552 552 0.703 0.00% 
P 59 20 5 611 611 0.611 0.00% 
P 64 22 4 619 619 0.969 0.00% 
P 69 24 4 643 643 1.196 0.00% 
P 75 26 2 581 581 1.421 0.00% 
P 75 26 2 581 581 1.395 0.00% 
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Table A3: Results for the Golden instances 1– 4 for CluVRP study 

Instance BC  Hybrid PSO  

Group n c m UB Solution CPU t(s)  Improvement % 

Golden 1 240 17 4 4831 4750 23.067 1.68% 
Golden 1 240 18 4 4847 4757 17.04 1.86% 
Golden 1 240 19 4 4872 4787 17.071 1.74% 
Golden 1 240 21 4 4889 4790 17.132 2.02% 
Golden 1 240 22 4 4908 4821 17.476 1.77% 
Golden 1 240 25 4 4899 4821 18.47 1.59% 
Golden 1 240 27 4 4934 4848 17.088 1.74% 
Golden 1 240 31 4 5050 4951 18.657 1.96% 
Golden 1 240 35 4 5102 5047 20.981 1.08% 
Golden 1 240 41 4 5097 5058 25.569 0.77% 
Golden 1 240 49 3 5000 4949 34.797 1.02% 
 
Golden 2 320 22 4 7716 7613 44.146 1.33% 
Golden 2 320 23 4 7693 7578 43.227 1.49% 
Golden 2 320 25 4 7668 7568 40.281 1.30% 
Golden 2 320 27 4 7638 7526 39.301 1.47% 
Golden 2 320 30 4 7617 7529 36.109 1.16% 
Golden 2 320 33 4 7640 7547 35.296 1.22% 
Golden 2 320 36 4 7643 7550 37.713 1.22% 
Golden 2 320 41 4 7738 7640 42.795 1.27% 
Golden 2 320 46 4 7861 7786 48.713 0.95% 
Golden 2 320 54 4 7920 7825 58.271 1.20% 
Golden 2 320 65 4 7892 7824 82.016 0.86% 
 
Golden 3 400 27 4 10540 10465 111.31 0.71% 
Golden 3 400 29 4 10504 10374 87.507 1.24% 
Golden 3 400 31 4 10486 10385 64.024 0.96% 
Golden 3 400 34 4 10465 10392 68.672 0.70% 
Golden 3 400 37 4 10482 10397 75.34 0.81% 
Golden 3 400 41 4 10501 10434 78.611 0.64% 
Golden 3 400 45 4 10485 10374 78.444 1.06% 
Golden 3 400 51 4 10583 10510 83.915 0.69% 
Golden 3 400 58 4 10776 10724 96.522 0.48% 
Golden 3 400 67 4 10797 10747 125.7 0.46% 
Golden 3 400 81 4 10614 10552 173.75 0.58% 
 
Golden 4 480 33 4 13598 13568 108.73 0.22% 
Golden 4 480 35 4 13643 13634 100.26 0.07% 
Golden 4 480 37 4 13520 13523 148.29 -0.02% 
Golden 4 480 41 4 13460 13395 124.67 0.48% 
Golden 4 480 44 4 13568 13516 115.78 0.38% 
Golden 4 480 49 4 13758 13744 109.78 0.10% 
Golden 4 480 54 4 13760 13743 115.54 0.12% 
Golden 4 480 61 4 13791 13737 148.57 0.39% 
Golden 4 480 69 4 13966 13938 147.53 0.20% 
Golden 4 480 81 4 13975 13953 170.61 0.16% 
Golden 4 480 97 4 13775 13759 242.04 0.12% 
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  Table A4: Results for the Golden instances 5– 8 for CluVRP study 

Instance BC  Hybrid PSO 

Group n c m UB Solution CPU t(s) Improvement % 

Golden 5 200 14 4 7622 7462 16.546 2.10% 
Golden 5 200 15 3 7424 7424 15.15 0.00% 
Golden 5 200 16 3 7491 7491 15.408 0.00% 
Golden 5 200 17 3 7434 7434 14.172 0.00% 
Golden 5 200 19 4 7576 7484 10.54 1.21% 
Golden 5 200 21 4 7596 7489 10.195 1.41% 
Golden 5 200 23 4 7643 7532 12.029 1.45% 
Golden 5 200 26 4 7560 7436 10.795 1.64% 
Golden 5 200 29 4 7410 7299 11.318 1.50% 
Golden 5 200 34 4 7429 7321 12.35 1.45% 
Golden 5 200 41 4 7241 7130 14.518 1.53% 
 
Golden 6 280 19 3 8624 8636 43.251 -0.14% 
Golden 6 280 21 3 8628 8633 37.288 -0.06% 
Golden 6 280 22 3 8646 8651 30.392 -0.06% 
Golden 6 280 24 4 8853 8727 27.107 1.42% 
Golden 6 280 26 4 8910 8770 27.943 1.57% 
Golden 6 280 29 4 8936 8839 23.312 1.09% 
Golden 6 280 32 4 8891 8799 23.379 1.03% 
Golden 6 280 36 4 8969 8860 25.362 1.22% 
Golden 6 280 41 4 9028 8920 28.009 1.20% 
Golden 6 280 47 4 8923 8823 35.821 1.12% 
Golden 6 280 57 4 9028 8969 41.084 0.65% 
 
Golden 7 360 25 3 9904 9950 58.636 -0.46% 
Golden 7 360 26 3 9888 9934 54.108 -0.47% 
Golden 7 360 28 3 9917 9960 55.438 -0.43% 
Golden 7 360 31 4 10021 9937 55.158 0.84% 
Golden 7 360 33 4 10029 9975 49.814 0.54% 
Golden 7 360 37 4 10131 10042 59.732 0.88% 
Golden 7 360 41 4 10052 9979 68.169 0.73% 
Golden 7 360 46 4 10080 9990 53.545 0.89% 
Golden 7 360 52 4 10095 10009 66.216 0.85% 
Golden 7 360 61 4 10096 10023 70.67 0.72% 
Golden 7 360 73 4 10014 9931 93.347 0.83% 
 
Golden 8 440 30 4 10866 10755 72.164 1.02% 
Golden 8 440 32 4 10831 10743 73.996 0.81% 
Golden 8 440 34 4 10847 10738 75.17 1.00% 
Golden 8 440 37 4 10859 10804 79.01 0.51% 
Golden 8 440 41 4 10934 10881 76.273 0.48% 
Golden 8 440 45 4 10960 10936 77.094 0.22% 
Golden 8 440 49 4 11042 11018 68.908 0.22% 
Golden 8 440 56 4 11194 11202 77.402 0.07% 
Golden 8 440 63 4 11252 11235 91.29 0.15% 
Golden 8 440 74 4 11321 11288 122.7 0.29% 
Golden 8 440 89 4 11209 11208 175.96 0.01% 
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    Table A5: Results for the Golden instances 9– 12 for CluVRP study 

Instance BC  Hybrid PSO  

Group n c m UB Solution CPU t(s)  Improvement % 

Golden 9 255 18 4 300 296 14.349 1.33% 
Golden 9 255 19 4 299 295 14.152 1.34% 
Golden 9 255 20 4 296 293 13.991 1.01% 
Golden 9 255 22 4 290 289 13.698 0.34% 
Golden 9 255 24 4 290 288 13.588 0.69% 
Golden 9 255 26 4 288 285 13.27 1.04% 
Golden 9 255 29 4 292 291 13.531 0.34% 
Golden 9 255 32 4 297 292 14.866 1.68% 
Golden 9 255 37 4 294 289 17.3 1.70% 
Golden 9 255 43 4 295 291 20.277 1.36% 
Golden 9 255 52 4 296 293 27.451 1.01% 
 
Golden 10 323 22 4 367 369 25.743 -0.54% 
Golden 10 323 24 4 361 363 24.971 -0.55% 
Golden 10 323 25 4 359 359 24.41 0.00% 
Golden 10 323 27 4 361 365 24.98 -1.11% 
Golden 10 323 30 4 367 371 25.642 -1.09% 
Golden 10 323 33 4 373 377 26.215 -1.07% 
Golden 10 323 36 4 385 388 26.106 -0.78% 
Golden 10 323 41 4 400 401 28.454 -0.25% 
Golden 10 323 47 4 398 399 33.684 -0.25% 
Golden 10 323 54 4 393 394 41.718 -0.25% 
Golden 10 323 65 4 387 389 56.109 -0.52% 
 
Golden 11 399 27 5 457 452 42.24 1.09% 
Golden 11 399 29 5 455 455 42.692 0.00% 
Golden 11 399 31 5 455 459 42.905 -0.88% 
Golden 11 399 34 5 455 456 43.153 -0.22% 
Golden 11 399 37 5 459 461 44.32 -0.44% 
Golden 11 399 40 5 461 459 45.737 0.43% 
Golden 11 399 45 5 462 461 50.074 0.22% 
Golden 11 399 50 5 458 457 56.757 0.22% 
Golden 11 399 58 5 456 453 69.104 0.66% 
Golden 11 399 67 5 454 456 87.073 -0.44% 
Golden 11 399 80 5 451 453 124.7 -0.44% 
 
Golden 12 483 33 5 535 539 65.866 -0.75% 
Golden 12 483 35 5 537 539 66.781 -0.37% 
Golden 12 483 38 5 535 540 66.963 -0.93% 
Golden 12 483 41 5 537 541 67.389 -0.74% 
Golden 12 483 44 5 535 542 116.86 -1.31% 
Golden 12 483 49 5 533 540 75.547 -1.31% 
Golden 12 483 54 5 535 540 138.84 -0.93% 
Golden 12 483 61 5 538 542 118.95 -0.74% 
Golden 12 483 70 5 546 537 202.09 1.65% 
Golden 12 483 81 5 546 541 260.03 0.92% 
Golden 12 483 97 5 560 548 227.61 2.14% 
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    Table A6: Results for the Golden instances 13– 16 for CluVRP study 

Instance BC  Hybrid PSO  

Group n c m UB Solution CPU t(s)  Improvement % 

Golden 13 252 17 4 552 548 13.953 0.72% 
Golden 13 252 19 4 549 543 14.783 1.09% 
Golden 13 252 20 4 548 540 14.458 1.46% 
Golden 13 252 22 4 548 540 12.803 1.46% 
Golden 13 252 23 4 548 542 12.666 1.09% 
Golden 13 252 26 4 542 535 14.404 1.29% 
Golden 13 252 29 4 540 535 13.561 0.93% 
Golden 13 252 32 4 543 537 15.948 1.10% 
Golden 13 252 37 4 545 541 19.711 0.73% 
Golden 13 252 43 4 553 548 20.997 0.90% 
Golden 13 252 51 4 560 554 26.903 1.07% 
 
Golden 14 320 22 4 692 687 41.384 0.72% 
Golden 14 320 23 4 688 683 24.206 0.73% 
Golden 14 320 25 4 678 675 37.666 0.44% 
Golden 14 320 27 4 676 674 37.577 0.30% 
Golden 14 320 30 4 678 676 28.588 0.29% 
Golden 14 320 33 4 682 679 36.76 0.44% 
Golden 14 320 36 4 687 680 24.754 1.02% 
Golden 14 320 41 4 690 686 31.529 0.58% 
Golden 14 320 46 4 694 691 35.407 0.43% 
Golden 14 320 54 4 699 698 45.384 0.14% 
Golden 14 320 65 4 703 699 62.841 0.57% 
 
Golden 15 396 27 4 842 850 46.669 -0.95% 
Golden 15 396 29 4 843 852 46.33 -1.07% 
Golden 15 396 31 4 837 849 46.639 -1.43% 
Golden 15 396 34 4 838 851 45.11 -1.55% 
Golden 15 396 37 4 845 853 48.034 -0.95% 
Golden 15 396 40 4 849 851 50.478 -0.24% 
Golden 15 396 45 5 853 852 57.041 0.12% 
Golden 15 396 50 5 851 848 65.184 0.35% 
Golden 15 396 57 5 850 849 77.337 0.12% 
Golden 15 396 67 5 855 853 102.31 0.23% 
Golden 15 396 80 5 857 857 141.17 0.00% 
 
Golden 16 480 33 5 1030 1026 85.664 0.39% 
Golden 16 480 35 5 1028 1024 85.726 0.39% 
Golden 16 480 37 5 1028 1026 88.754 0.19% 
Golden 16 480 41 5 1032 1032 85.406 0.00% 
Golden 16 480 44 5 1028 1029 90.299 -0.10% 
Golden 16 480 49 5 1031 1031 97.59 0.00% 
Golden 16 480 54 5 1022 1022 116.76 0.00% 
Golden 16 480 61 5 1013 1015 131.57 -0.20% 
Golden 16 480 69 5 1012 1015 162.17 -0.30% 
Golden 16 480 81 5 1018 1022 217.37 -0.39% 
Golden 16 480 97 5 1018 1021 300.39 -0.29% 
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Table A7: Results for the Golden instances 17– 20 for CluVRP study 

Instance BC  Hybrid PSO  

Group n c m UB Solution CPU t(s)  Improvement % 

Golden 17 240 17 3 418 419 14.967 -0.24% 
Golden 17 240 18 3 419 421 14.56 -0.48% 
Golden 17 240 19 3 422 423 13.351 -0.24% 
Golden 17 240 21 3 425 426 13.796 -0.24% 
Golden 17 240 22 3 424 425 14.085 -0.24% 
Golden 17 240 25 3 418 419 12.844 -0.24% 
Golden 17 240 27 3 414 414 12.952 0.00% 
Golden 17 240 31 4 421 411 13.566 2.38% 
Golden 17 240 35 4 417 406 14.73 2.64% 
Golden 17 240 41 4 412 403 17.777 2.18% 
Golden 17 240 49 4 414 404 23.884 2.42% 
 
Golden 18 300 21 4 592 586 28.133 1.01% 
Golden 18 300 22 4 594 589 27.81 0.84% 
Golden 18 300 24 4 592 587 28.314 0.84% 
Golden 18 300 26 4 590 578 24.567 2.03% 
Golden 18 300 28 4 577 570 21.963 1.21% 
Golden 18 300 31 4 578 571 22.187 1.21% 
Golden 18 300 34 4 582 574 22.884 1.37% 
Golden 18 300 38 4 586 578 24.77 1.37% 
Golden 18 300 43 4 594 584 26.842 1.68% 
Golden 18 300 51 4 601 590 33.65 1.83% 
Golden 18 300 61 4 599 590 45.928 1.50% 
 
Golden 19 360 25 10 925 806 54.799 12.86% 
Golden 19 360 26 10 924 803 52.665 13.10% 
Golden 19 360 28 4 808 813 54.733 -0.62% 
Golden 19 360 31 4 811 816 50.376 -0.62% 
Golden 19 360 33 4 797 800 47.209 -0.38% 
Golden 19 360 37 5 799 789 42.522 1.25% 
Golden 19 360 41 5 789 775 46.074 1.77% 
Golden 19 360 46 5 788 774 51.689 1.78% 
Golden 19 360 52 5 800 787 57.843 1.63% 
Golden 19 360 61 5 807 796 72.84 1.36% 
Golden 19 360 73 5 810 802 99.174 0.99% 
 
Golden 20 420 29 11 1220 1079 99.2 11.56% 
Golden 20 420 31 12 1232 1069 84.198 13.23% 
Golden 20 420 33 12 1208 1056 78.686 12.58% 
Golden 20 420 36 5 1059 1053 80.535 0.57% 
Golden 20 420 39 5 1052 1043 83.127 0.86% 
Golden 20 420 43 5 1052 1045 87.669 0.67% 
Golden 20 420 47 5 1053 1047 95.474 0.57% 
Golden 20 420 53 5 1058 1050 84.69 0.76% 
Golden 20 420 61 5 1058 1049 123.07 0.85% 
Golden 20 420 71 5 1049 1053 145.61 0.57% 
Golden 20 420 85 5 1049 1045 193.98 0.38% 

 


