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1 Introduction

Over the past two decades, there has been growing interest in the higher-dimensional
structures of the nucleon in the studies of the non-perturbative strong interactions de-
scribed by quantum chromodynamics (QCD). Consequently, generalized parton distribu-
tions (GPDs) [1–3] that unify the elastic form factors (FFs) and Parton Distributions
Functions (PDFs) into a single set of 3-dimensional (3D) functions and contain important
information about the nucleon mass, angular momentum and mechanical properties [2, 4, 5]
have gained increasing attention. While it is believed that GPDs can be experimentally
accessed by exclusive productions of particles off nucleons such as deeply virtual Comp-
ton scattering (DVCS) [6] and deeply virtual meson production (DVMP) [7, 8], obtaining
them and the corresponding nucleon 3D structures from experimental data has remained
a dream. On the one hand, persisting efforts are needed for an adequate amount of data
as required for the extraction of such high-dimensional quantities. On the other hand, the
extraction of the critical information from experimental data has also been challenging.

Several recent breakthroughs have made this possible. Large data sets of exclusive
measurements are generated at Jefferson Lab (JLab) [9–12], and more will come from the
planned Electron-Ion Collider (EIC) [13, 14] at Brookhaven National Lab (BNL). Addition-
ally, novel developments in lattice QCD allow the access to the nucleon structures from first
principle calculation [15–18], providing information almost impossible to get with current
and future experiments. This recent progress, together with the perennial efforts on the
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global extraction of PDFs [19–21], FFs [22] as well as lattice calculation of generalized form
factors [23–26], have pushed the study of nucleon 3D structures to a new stage, which, on
the other hand, requires extra works to put all the above inputs together through global
analysis to obtain the state-of-art nucleon 3D structures with GPDs.

Therefore, we are in need of a global analysis program of GPDs with both experimental
data and lattice computation. Lots of efforts are put into parameterizing and accessing
GPDs from various inputs in the literature [27–35]. However, a framework that could com-
bine experimental data and lattice computation still seems to be lacking. In the previous
work [36], we proposed the GPDs through universal moment parameterization (GUMP)
program for such a purpose and studied the zero-skewness case as an illustrative example.
In this work, we follow the previous setup and extend it to non-zero skewness, which allows
us to also include the exclusive measurements in the global analysis. With such a program,
we perform the global analysis of GPDs that includes global PDFs [19–21], FFs [22] and
DVCS measurements from both JLab [9–12] and previous H1 [37] experiments at Hadron-
Electron Ring Accelerator (HERA) along with the relevant lattice calculations related to
GPDs [17, 23] for the first time.

The organization of the paper is as follows. In section 2, we introduce the setup for the
GUMP program and discuss how to build the 3D GPDs with a handleable set of parameters.
In section 3, we discuss more details of the fit and present the extracted Compton form
factors (CFFs) and GPDs, where we also discuss how to extend the present framework to
accommodate more future inputs. In the end, we conclude in section 4.

2 Conventions and fitting procedure

In the previous work [36], we discussed how GPDs can be parameterized in terms of their
moments based on the technique that has been systematically developed in ref. [30] and
used for instance in ref. [31]. In this section, we will discuss how we apply such a framework
to GPDs at non-zero skewness, including GPDs of various species and flavors.

2.1 Convention and decomposition of GPD

We start by considering the four leading-twist GPDs H,E, H̃ and Ẽ, where each of them
has different flavors u, d and g corresponding to the up and down quarks as well as the
gluon. Although the strange quark might have sizable effects that should be considered
for a more careful treatment, the flavor separation of GPDs is typically challenging due
to the lack of a flavor-sensitive probe [38]. Strange quark distributions will not be well
constrained with just DVCS measurements, and thus we will leave this for the future work
with more flavor-sensitive measurements.

For simplicity, the four different species of GPDs will be treated almost equally in
this work. Except that the vector GPDs H and E satisfy slightly different scale evolu-
tion equations from the axial-vector ones H̃ and Ẽ [39], the same parameterization will
be used for all four GPDs. Although GPDs or combinations of GPDs of different species
H,E, H̃ and Ẽ correspond to different helicity amplitudes and might have different behav-
iors accordingly, knowledge of different GPDs species is limited and thus implementing a
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different parameterization for them individually may not lead to any significant difference.
Therefore, we collectively denote all GPDs as Fq,g(x, ξ, t) where F = {H,E, H̃, Ẽ} and
q = {u, d}, with x the parton momentum fraction, ξ the skewness parameter and t the to-
tal momentum transfer squared and parameterize them in the same manner. We note that
the skewness parameter ξ generally takes the value from −1 to 1, but it will be considered
to be positive hereafter, as GPDs are commonly defined to be symmetric in ξ, subject to
their parity symmetry.

An intriguing feature of the GPDs is that they consist of two regions with totally
different physical interpretations. In the PDF-like region where x > ξ or x < −ξ, GPDs
resemble the PDFs which are interpreted as the amplitudes of emitting and reabsorbing
a parton (quark, antiquark or gluon). On the other hand, in the distribution amplitude
(DA)-like region where −ξ < x < ξ, they resemble the DAs instead and are interpreted as
the amplitudes of emitting/absorbing a parton-antiparton pair. Therefore, GPDs do not
naturally have distinguishable quark and antiquark components, especially in the DA-like
region. This feature indicates that the parameterization of GPDs should be flexible in both
the PDF and DA-like regions, since different physics are involved.

Motivated by such property, one can write GPDs as,

Fq(x, ξ, t) ≡ Fq̂(x, ξ, t)∓ Fq̄(−x, ξ, t) + Fqq̄(x, ξ, t) , (2.1)

where the ∓ depends on the parity of the GPDs which takes − for vector GPDs H and
E and + for axial vector GPDs H̃ and Ẽ. Here the subscript q̂ stands for the quark
distributions excluding antiquark, to be distinguished from the subscript q for the quark
flavor. The three terms above describe the amplitudes corresponding to the quark, anti-
quark, and quark-antiquark pair respectively. Accordingly, Fq̂(x, ξ, t) and Fq̄(x, ξ, t) have
support x > −ξ, while the Fqq̄(x, ξ, t) has support ξ > x > −ξ. In the semi-forward limit
where ξ = 0 and t generally non-zero, Fq̂(x, ξ, t) and Fq̄(x, ξ, t) reduce to the quark and
antiquark t-dependent PDFs with support x > 0, whereas Fqq̄(x, ξ, t) vanishes with its
vanishing support. We note that GPDs can always be decomposed into such three parts
that each term represents the behavior of GPDs in different regions respectively. The extra
DA terms Fqq̄(x, ξ, t) allow extra flexibility for the parameterization of GPDs particularly
in the DA-like region, as we will discuss with more details in the next section.

While the quark and antiquark GPDs Fq̂(x, ξ, t) and Fq̄(x, ξ, t) are the natural gener-
alization of the quark and antiquark PDFs, the DA terms Fqq̄(x, ξ, t), also known as the
D-terms in some other contexts [40], only exist in the off-forward case. Such terms live in
the DA-like region only, and they will be the dominant effects in the large ξ limit ξ → 1
or the asymptotic limit where renormalization scale µ → ∞ [41, 42]. Since the DA terms
vanish at the crossover line x = ±ξ, they can always be expressed with a set of complete
polynomials like Gegenbauer polynomials, which is precisely the conformal moment ex-
pansion. Therefore, each of the three terms can be expressed in terms of their conformal
moments and satisfies the polynomiality condition.

In this work, we will focus on the quark and antiquark GPDs Fq̂(x, ξ, t) and Fq̄(x, ξ, t),
whereas the extra DA terms Fqq̄(x, ξ, t) will not be put into the global analysis for two
reasons. First, as discussed in the previous work, we will consider the high-energy limit
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where ξ → 0 ideally and the DA-like region disappears in such a limit. Second, since the DA
terms vanish at the crossover line x = ±ξ, they are hard to extract with measurements of
DVCS or similar processes which provide effectively just CFFs — the DA terms contribute
to the real part of the CFFs only, corresponding to the subtraction terms in the dispersion
relations of CFFs [31]. Consequently, the behaviors of GPDs in the DA-like region given
by the quark and antiquark GPDs Fq̂(x, ξ, t) and Fq̄(−x, ξ, t) will be ambiguous, since one
can add extra DA terms without affecting the CFFs too much in the small ξ limit. This
will be discussed with more details in the next section.

We note that another notation of quark and antiquark GPDs has been used in the
literature, see for instance ref. [43]

Fq̂(x > ξ, ξ, t) = Fq(x, ξ, t) ,
Fq̄(x > ξ, ξ, t) = ∓Fq(−x, ξ, t) ,

(2.2)

with the same convention for the ∓ sign. Since the quark and antiquark GPDs are defined
with the same function Fq(x, ξ, t) partitioned into two parts, the full quark GPD Fq(x, ξ, t)
cannot be written as the sum of them Fq(x, ξ, t) 6= Fq̂(x, ξ, t) ∓ Fq̄(−x, ξ, t). With such a
partition of GPDs, the two pieces Fq̂(x, ξ, t) and Fq̄(x, ξ, t) will not satisfy the polynomiality
condition respectively. Also, the quark GPD Fq̂(x, ξ, t) do not vanish at x = −ξ and the
antiquark GPD Fq̄(x, ξ, t) do not vanish at x = ξ in this case. Therefore, it is difficult to
identify them as the quark/antiquark GPDs, and it is beneficial for our modelling strategy
to not use such parametrization.1

To summarize, we will consider quark and antiquark GPDs Fq̂(x, ξ, t), Fq̄(x, ξ, t) as
well as the gluon GPDs Fg(x, ξ, t) in this work with four twist-two GPDs H,E, H̃ and Ẽ,
forming a basis with 20 GPDs. Conventionally, we also rewrite the basis by defining the
valence combination: FqV (x, ξ, t) ≡ Fq̂(x, ξ, t)−Fq̄(x, ξ, t), and thus the basis can be written
with FqV (x, ξ, t), Fq̄(x, ξ, t) and Fg(x, ξ, t) equivalently, analogous to the basis commonly
chosen for PDFs global analysis in the literature [19–21].

2.2 Parameterization of moments

After introducing the GPDs necessary for consideration, we briefly discuss the parame-
terization method for GPDs. We have introduced the GUMP parameterization in the
previous work [36] and more about the conformal moment representation can be found in
refs. [30, 31]. Generally, we express all GPDs F (x, ξ, t) in terms of their conformal moments
Fj(ξ, t) in the form of,

F (x, ξ, t) =
∞∑
j=0

(−1)jpj(x, ξ)Fj(ξ, t) for |x| < ξ , (2.3)

with pj(x, ξ) the known conformal wave functions. Therefore, all GPDs F (x, ξ, t) are
equivalently given by Fj(ξ, t). With the polynomiality condition of GPDs [3], the moments

1Although this decomposition is written in the previous work [36], the shift of definition will not cause
inconsistency as it was in the zero-skewness limit where the DA-like region does not exist.
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can be expressed as polynomials of ξ of given order:

Fj(ξ, t) =
j+1∑

k=0,even
ξkFj,k(t) , (2.4)

and then these Fj,k(t) can be used to construct the GPD F (x, ξ, t).
In the high-energy limit, the skewness parameter ξ = xB/(2− xB) +O(Q−2) is small

where the first few terms dominate, and we have [31]

Fj(ξ, t) = Fj,0(t) + ξ2Fj,2(t) +O(ξ4) , (2.5)

where we implicitly assume that the Fj,k(t) are only non-zero for j > k according to the
polynomiality condition. Practically, the moments Fj,k(t) can be written in terms of the
shape governed by the Euler beta function B, the Regge trajectory for the t-dependence
and the extra residual term β(t):

Fj,k(t) =
imax∑
i=1

Ni,kB(j + 1− αi,k, 1 + βi,k)
j + 1− k − αi,k
j + 1− k − αi,k(t)

β(t) , (2.6)

with which the GPDs are parameterized in terms of the free parameters in eq. (2.6). In
the simplest case, only one set of ansatz is needed, so we set imax to be just 1.

In the previous work, we simply set the residual function β(t) to be 1 for the extraction
of valence quark distributions in the zero-skewness case, since their algebraic decaying
behaviors in |t| can be parameterized well by the Regge trajectory. However, for the
sea distributions, it has been observed that in high-energy processes, the different cross-
sections drop exponentially as the momentum transfer |t| increases e.g., for DVCS [37, 44],
which differs from the power-law behavior indicated by the Regge theory. Therefore, we
incorporate the extra exponential behavior into the β(t) to set β(t) = exp(bt). Two β(t)s
of different b slope are embedded in the parameterization of the vector GPDs Hq̄,g and the
axial vector GPDs H̃q̄,g respectively, with q = {u, d} for sea quarks. We note that due to
the lack of flavor-sensitive probe, we assume the same b slope for the gluon and sea quarks
of different flavor and also the same Regge slope α′ for them which is fixed to be α′q̄,g = 0.15
from the pomeron trajectory [45].

Even with such simplification, the parameters are still too many to be fully determined
from measurements. The lack of off-forward constraints makes it almost impossible to get
the shape of GPDs at non-zero skewness, which is known as the deconvolution problem
of GPDs [46], stating that the shape of GPDs cannot be uniquely determined from CFFs.
Therefore, extra empirical constraints are still needed for the extraction of GPDs. The
simplest choice for the ξ-dependent terms is to set them to be proportional to the leading
terms, as has been done in ref. [31]:

Fj,k(t) = RkFj−k,0(t) , (2.7)

with Rk the ratio between them. In this work, we have just one parameter R2 for the ξ2

terms for each GPD F (x, ξ, t) that accounts for its extra ξ-dependence.
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GPDs species and flavors Fully parameterized GPDs linked to
Proportional

constants

HuV and H̃uV 4 - -

EuV and ẼuV 4 - -

HdV
and H̃dV

4 - -

EdV
and ẼdV

8 EuV and ẼuV R
E/Ẽ
dV

Hū and H̃ū 4 - -

Eū and Ẽū 8 Hū and H̃ū R
E/Ẽ
sea

Hd̄ and H̃d̄ 4 - -

Ed̄ and Ẽd̄ 8 Hd̄ and H̃d̄ R
E/Ẽ
sea

Hg and H̃g 4 - -

Eg and Ẽg 8 Hg and H̃g R
E/Ẽ
sea

Table 1. A summary of how each GPDs with different species and flavors are parameterized
respectively. Fully parameterized GPDs are expressed in terms of eq. (2.6), whereas the other
GPDs are linked to the fully parameterized GPDs with proportional constants.

Another difficulty in GPD parameterization is about the flavors and species of GPDs.
While the extraction of one 3D function is already challenging, the simultaneous extraction
of GPDs with multiple flavors and species is yet more difficult. Two of the four different
species of GPDs, E and Ẽ, do not have corresponding forward PDFs, unlike H and H̃ which
reduce to the PDF f(x) and helicity PDF ∆f(x) respectively, adding extra difficulties to
their extraction. Consequently, we have to reduce the number of parameters associated to
these two GPDs due to the lack of constraints. To do so, we set the two valence quark
distributions to be proportional (EuV ∝ EdV

and ẼuV ∝ ẼdV
) and the sea quark as well

as the gluon distributions to be proportional to the corresponding H and H̃ GPDs.
We note that these extra empirical constraints, both for the ξ-dependent terms and

for the E/Ẽ GPDs, are added for purely practical purposes. As mentioned above, they
simply represent the lack of information of GPDs in the off-forward region, which can
and should be improved in the future with more inputs from both lattice calculations and
experimental measurements. In table 1, we collect whether GPDs of different species and
flavors are either parameterized independently with eq. (2.6) or linked to the other GPDs
with some empirical assumptions in this work.

Finally, we comment on the comparison of the GUMP program to the other GPD global
analysis programs with the conformal moment framework, specifically the Kumerički-
Müller (KM) model and its extensions [31, 39, 47, 48]. As clearly stated in the previous
work [36], the GUMP program follows the general conformal moment parameterization of
GPDs, and adopts many useful observations there to make the GUMP parameterization
practical. On the other hand, this program focuses more on the extraction of all four
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leading-twist GPDs including both valence and sea quarks of different flavors with the
combined inputs from both lattice calculations and experiments. Therefore, though in a
similar spirit, the GUMP program allows a more comprehensive study of the GPDs, espe-
cially the valence parts which are effectively constrained by lattice calculations while less
accessible from experiments.

2.3 Inputs and fitting strategy

With the above parameterization, the global analysis can be performed with adequate
inputs to pin down all the parameters. In this subsection, we will discuss how we select
inputs from all the available results for the global analysis.

We start with the forward inputs where GPDs reduced to PDFs. While we could have
various inclusive measurements as the inputs rather than the global PDFs extracted from
a specific work to avoid the bias, there are several reasons we choose the extracted PDFs
for the GPD global analysis. First, the extraction of the PDFs themselves is considerably
involved and requires dedicated work, especially for the simultaneous extraction of both
unpolarized and polarized PDFs [49, 50]. Second, much less is known about the off-forward
behaviors of GPDs compared to the forward ones. Consequently, a fine forward analysis
cannot be matched with an equivalent off-forward analysis, making it less urgent to improve
the forward part of the analysis. Therefore, we avoid repeating the forward fittings that
have been studied extensively by the PDF global analysis community and take their globally
extracted PDFs as the inputs. More specially, we consider one of the recent analyses by
the JAM collaboration [49], where both the unpolarized and polarized proton PDFs are
extracted simultaneously.

The off-forward inputs, on the other hand, consist of various constraints including
globally extracted FFs [22], lattice calculations [17, 23] and exclusive measurements, or
the DVCS measurements [9–12, 37] more specifically for this work. For the form factors,
we take the globally extracted charge FFs [22] rather than fit to the elastic scattering
data directly [35] for the same reasons as for the PDFs. Since the charge form factors are
averaged over all flavors, we combine the charge form factors of both proton and neutron
to obtain the charge form factors of up and down quarks respectively, assuming isospin
symmetry and ignoring the contributions of strange and other heavy flavors.

We also note that only 30 points are sampled from the global analysis for each PDF
and 10 points for each FF, given the overly simplified ansatz we used in this work compared
to that of the global analysis. More sample points require a more flexible ansatz which,
however, cannot be effectively constrained when moving on to the off-forward fit due to
the lack of off-forward inputs.

The lattice inputs include both calculations of generalized form factors and x-depen-
dence of GPDs [17, 23]. Putting the lattice QCD results together with other experimental
measurements can be quite subtle, due to the systematic uncertainties of the lattice results
that are hard to fully understand. Progress has been made in getting the systematic
uncertainties under control and calculations from different groups are converging for certain
quantities like the (axial) charge form factors, see for instance the review in ref. [51], but
more efforts are still in demand to get the other results consistent. Therefore, in this work
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we consider the lattice results from a single group only [17, 23]2 to avoid the potential
tension among lattice results from different groups. On the other hand, we adjust their
weights in the global analysis by increasing the uncertainties of the results to account for
the unknown systematic uncertainties.3 We note that the calculation of the x-dependence
of GPDs at non-zero skewness has been done in the literature [17], although the reliable
regions with controlled systematic uncertainties get even more subtle due to the irregular
behavior of GPDs at x = ξ. Thus, the inclusion of the x-dependence of GPDs at non-zero
skewness in the global analysis will be left to the future work.

Last but not the least, we have the experimental exclusive measurements. In principle,
the exclusive measurements can and should include as many processes as possible to get
better constraints on the GPDs as well as to test the universality of GPDs. However, the
main challenge for putting different processes together is the mismatch in the amount of
data available. Two types of Compton scattering processes, DVCS and Time-like Compton
Scattering (TCS) [52], have been measured at JLab. Much more DVCS data have been
obtained than that of TCS, of which the first measurement was made recently [53]. On
the other hand, DVMP typically requires much larger virtuality than DVCS to suppress
the unwanted contributions of transverse polarization, which are mostly accessible with
colliders such as HERA [45, 54] and the future EIC [13, 14]. Therefore, we start by consid-
ering the DVCS measurements only, which has the broadest global kinematical coverage
among these process that includes both the low xB region covered by H1 [37] at HERA and
the medium xB region covered by various experiments at JLab [9–12]. It is worth noting
that the DVCS process is mostly sensitive to the quark distributions whereas the gluon
distributions are best obtained from meson production or other gluon-sensitive processes.
Obtaining the gluonic distributions from them is indeed of high interest and importance,
which will be carried out in a separate work.

With all the inputs above, it seems straightforward to simply put them together and
perform the global analysis with the parameterization described before. However, it will
not be quite practical with the large number of free parameters, which typically means
extremely slow convergence in the search of best-fit parameters. Besides, the evaluation of
GPDs, especially with scale evolution, is much more computationally intensive, compared
to that of the PDFs for instance, making the global analysis even less handleable. Therefore,
we split the global analysis into two steps by first performing the semi-forward fit at
zero skewness ξ = 0 (while the momentum transfer squared t can still be non-zero) and
then fit to the off-forward inputs with non-zero skewness ξ 6= 0. Apparently, the two-
step fitting introduces a bias that favors the semi-forward constraints over the off-forward
constraints. However, given the fact that much more semi-forward constraints can be
obtained from lattice and experiments than the off-forwards ones, it is a reasonable and
practical assumption for such a large system of parameters.

2Here the choice is made by considering only the variety of GPD related calculations and does not reflect
a preference over the other lattice calculations.

3Namely, we assign a relative uncertainty of 20% to the lattice calculations of the x-dependence of
GPDs, estimated based on the uncertainties of the lattice calculations of PDFs and the fact that these
GPDs calculations are still in early stage.
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Figure 1. A plot showing the fitting procedure of the GUMP program. The semi-forward (ξ = 0)
fit that consists of four individual fits for each t-dependent PDF is performed before the off-forward
(ξ 6= 0) fit. The results of the semi-forward fit are then passed to the off-forward fit as fixed
parameters, whereas the off-forward parameters will be determined with the off-forward constraints.

3 Global analysis and extracted GPDs

In the previous section, we discussed the parameterization of GPDs as well as the inputs
to constrain the parameters, so we would need to find the set of parameters that fit to the
measurements best, for which we employ the iminuit interface of Minuit2 [55, 56] as the
minimizer. In this section, we will present the results of the global analysis as well as the
extracted CFFs and GPDs.

3.1 Basics of the fit

As discussed before, the whole fit will be split into the semi-forward (ξ = 0) part and
the off-forward (ξ 6= 0) part to avoid dealing with the huge parameter set in a single fit.
Furthermore, in the semi-forward case, constraints on different species H, E, H̃, and Ẽ

decouple, unlike the off-forward case where all four of them are involved. This allows
one to further decompose the semi-forward fit into four separate fits that do not interfere
with each of the four t-dependent PDFs. Therefore, the whole fitting procedure eventually
consists of five individual fits as shown in figure 1. Correspondingly, the total χ2 can be
decomposed into five parts:

χ2
tot = χ2

fwd + χ2
off-fwd = χ2

H + χ2
E + χ2

H̃
+ χ2

Ẽ
+ χ2

off-fwd , (3.1)

where each term χ2
F with F = {H,E, H̃, Ẽ} stands for the χ2 for the semi-forward fits of

the corresponding t-dependent PDFs. Then one just needs to minimize these χ2s separately
to perform the fit and the results are summarized in table 2. More details of the fitted
parameters are presented in appendix A.

Several comments are as follows: first, we take the globally fitted unpolarized and
polarized PDFs [49] with 31 points sampled in the region x ∈ [0.005, 0.6] for each flavor,
indicating 155 points for the t-dependent PDFs H and H̃ respectively. Note that since the
parameterization we used has only 3 parameters in the forward limit for each PDF, much
less than the PDF global analysis [19], the sample size cannot be too large correspondingly.
The extra constraints from PDFs on H and H̃ account for their larger Ndata as shown in
table 2, while the other around 50 data for each t-dependent PDF are taken from the
globally fitted FFs [22] and lattice calculations [17, 23].

Second, in the interest of this work, we select the JLab DVCS data with larger Q2

(Q > 1.8GeV) and smaller xB (xB < 0.5). The larger Q2 is required by the factorization
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Sub-fits χ2 Ndata χ2
ν ≡ χ2/ν

Semi-forward
tPDF H 281.7 217 1.41
tPDF E 59.7 50 1.36
tPDF H̃ 159.3 206 0.84
tPDF Ẽ 63.8 58 1.23

Off-forward
JLab DVCS 1413.7 926 ∼ 1.53
H1 DVCS 19.7 24 ∼ 0.82
Off-forward total 1433 950 1.53
Total 2042 1481 1.40

Table 2. A table summarizing the total χ2 versus the number of data points Ndata as well as the
χ2 per degree of freedom χ2

ν . Since the JLab and H1 DVCS measurements are fitted simultane-
ously in the off-forward fit, the χ2/ν is replaced with χ2/Ndata instead to estimate their separate
contributions.

theorem and also to suppress the higher twist effects, while the low xB region is selected
in accord with the small ξ(xB) expansion such that we have the expansion parameter
ξ2 . 0.1. Even with such selection, it still leaves much more JLab DVCS data than the H1
data (which do not need selection as they are already in the large Q2 and small xB region),
since both the azimuthal φ dependence and beam-polarized cross-sections are measured at
JLab. Therefore, the JLab data will form the dominant input in the off-forward fit even
though they cover about the same number of kinematical points on the (xB, t) space. In
figures 2, we show the kinematical coverage of the DVCS measurements at both JLab and
H1 and present some typical examples of the fit to the DVCS measurements.

To summarize, the reduced χ2s are all around 1, which indicates generally good fits.
For the forward fit, the main issue is that the 3 forward parameters for the H PDF can-
not perfectly describe the x-shape ranging from x ∈ [0.005, 0.6]. Although this could
be improved with more sets of model ansatz, it would also require more off-forward in-
puts accordingly. As for the off-forward fit, the main challenge seems to be the potential
higher-twist effects in the JLab DVCS measurements given that the typical Q2 of them
is around 4GeV2, which still allows sizeable twist-three contributions or even twist-four
contributions, especially at large momentum transfer [12, 58, 59]. For instance, the LU
cross-section plot at the lower-right of figure 2 still deviates from a perfect sine shape as
predicted in the Q2 →∞ limit, which could be due to the higher-twist effects.

3.2 The extraction of Compton form factors

As discussed before, since the off-forward inputs contain DVCS measurements only which
are effectively combinations of CFFs, they do not constrain the x shape nor the flavor
structures of GPDs well. Thus, the flavor-dependent x shape of GPDs extracted under
the empirical constraints in subsection 2.2 will be obviously model-dependent. Therefore,
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Figure 2. The top left panel shows the kinematical coverage of the DVCS measurements including
both JLab and H1. The top-right panel shows the fit to the DVCS measurements at H1 with
the azimuthal angel φ integrated, whereas the lower two figures show examples of the fit to the
JLab DVCS cross-section measurements at Q2 = 3.65 GeV2 in the azimuthal angel φ for both
polarized and unpolarized beam. Contributions of Bethe-Heitler process are calculated with the
electromagnetic form factors in ref. [22]. The DVCS and interference cross-sections are calculated
with the formulas in ref. [57] including the contributions of twist-two CFFs only.

before moving on to the extracted GPDs which rely on the choice of ansatz, we first discuss
the extracted CFFs of which the comparison is less model-dependent. More specifically, we
will compare the CFFs extracted in this work with the locally extracted CFFs in ref. [12]
and the CFFs predicted by the KM15 model [60] based on the global analysis of CFFs.
The comparison of the CFFs is shown in figure 3.

Before commenting on the comparison of the extracted CFFs, we first note that even
the local extraction of CFFs suffers from the degeneracy issue. The total DVCS cross-
sections are generally quadratic equations of all the 8 CFFs:

dσPbPt = dσPbPt
DVCS + dσPbPt

INT + dσPbPt
BH =

∑
i,j

APbPt
ij F iF j +

∑
i

BPbPt
i F i + CPbPt , (3.2)

with Fi = {ReH, ImH,ReE , ImE ,ReH̃, ImH̃,ReẼ , ImẼ} which are the real or imaginary

– 11 –



J
H
E
P
0
5
(
2
0
2
3
)
1
5
0

Figure 3. A comparison of the CFFs extracted in this work with the locally extracted CFFs in
ref. [12] as well as the CFFs predicted by the KM15 model [60]. The three different kinematical
points with xB = 0.36, 0.48, 0.60 have momentum transfer t = −0.345,−0.702,−1.050GeV2 re-
spectively. The CFFs in ref. [12] are extracted from data with various different Q2, whereas the
theoretical values are calculated at the reference scale Q2 = 4GeV2.

parts of the CFFs corresponding to the GPDs H, E, H̃ and Ẽ. For each combination
of beam polarization Pb and target polarization Pt, the pure DVCS (DVCS), interference
(INT) and Bethe-Heitler (BH) contributions are quadratic, linear, and constant in the
CFFs respectively. Ideally, one would need all 8 possible combinations of Pb and Pt to
disentangle the 8 CFFs, see for instance ref. [61], but there could still be degeneracy in the
solutions as the nature of quadratic equations.

In this work, the degeneracy will be more severe, since only two polarization configura-
tions, unpolarized or polarized beam with unpolarized target (UU and LU), are considered.
For instance, one can show that with UU and LU cross-section, the CFF Ẽ only shows in
the quadratic terms, multiplied to either itself or H̃, implying that the quadratic terms are
invariant under the transformation

ReH̃ → −ReH̃ ,ReẼ → −ReẼ , (3.3)

and the same for the imaginary part. This degeneracy of CFFs in the DVCS cross-sections
leads to the ambiguity in the sign of the extracted ReH̃ and ReẼ as well as the ImH̃ and
ImẼ shown on the right of figure 3, where the extracted CFFs in this work seem to take
opposite sign compared to that of the local extraction.4 Besides this explicit example,
there might be other implicit degeneracies in the extracted CFFs which could affect the
reliability of such an extraction.

4We note that when testing the fitting program with slightly different set-up, the extracted CFFs indeed
turn out to have different signs.

– 12 –



J
H
E
P
0
5
(
2
0
2
3
)
1
5
0

Although such degeneracy makes the comparison of the extracted CFFs more subtle
and less intuitive, it can certainly be improved in the future with more polarization config-
urations taken into consideration. On the other hand, many of the CFFs extracted in this
work agree well with the local extraction as shown in figure 3, adding more confidence to
the extraction of those CFFs.

3.3 The extracted GPDs at non-zero skewness

Compared to the CFFs extraction discussed in the previous subsection, the extraction of
GPDs will involve more model dependence. The lack of off-forward constraints except the
CFFs is the main challenge in the GPD extraction, and the extracted x-shape of GPDs
will depend on the ansatz chosen correspondingly. In addition, as the CFFs are averaged
over different flavors, the extracted flavor structures could be ambiguous as well. Though
suffering from these ambiguities, we still present the extracted GPDs here as an illustration
of how GPDs are constrained by the inputs, with the caveat that the GPDs, especially
their off-forward behaviors, are not uniquely determined at this point. These results can
certainly be improved with more lattice calculation at non-zero skewness as well as more
flavor-sensitive data in the future.

In figure 4, we present the extracted PDFs H, E and H̃, and Ẽ at ξ = 0, t = 0, and
the reference scale µ0 = 2GeV. The two PDFs H and H̃ are fully parameterized and fitted
to the globally extracted unpolarized and polarized PDFs in ref. [49], and therefore they
agree well with the reference values there, which are not shown in the plots, though. On
the other hand, due to the lack of the information, the PDFs E and Ẽ are extracted with
the empirical constraints summarized in table 1 with globally extracted FFs and lattice
calculation of form factors as well as GPDs. The Ẽ PDFs turn out to be quite significant
due to the contributions of the pion pole, according to the lattice calculated form factors
of Ẽ [23] that we fit the Ẽ PDF to. As for the E PDFs, the shape of the E PDFs is
obtained by combining the lattice calculation of E GPDs and other relevant form factors
from both experiments and lattice results. The u and d quark E GPDs are almost the
opposite of each other, in accord with the observation that the flavor isoscalar form factors
Bu+d and gluonic gravitational form factors Bg are consistent with zero according to the
lattice results [23, 62, 63]. We note that the valence part of the above PDFs are obtained
in the semi-forward fit of the previous work [36] as well. However, they are quantitatively
slightly different from the previous results because of the different constraints used here as
well as the effects of the sea quark distributions that were not considered in the previous
work.

In figure 5, we present quark GPDs at ξ = 1/3 and t = −0.69GeV2 and reference scale
µ0 = 2GeV. In general, the extracted GPDs oscillate in the DA-like region (−ξ < x < ξ)
with a damping tail in the PDF-like region (x > ξ or x < −ξ), as the result of the
conformal partial wave expansion which expands the GPDs in the DA-like region in terms
of Gegenbauer polynomials that oscillate. We note that due to the DA terms of GPDs,
namely the Fqq̄ terms in eq. (2.1), the behavior of GPDs in the DA-like region could look
very different from here. With off-forward inputs mainly just CFFs, only the GPDs at the
crossover line x = ±ξ are effectively constrained, which are then extrapolated with decaying
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Figure 4. Plots present some examples of the extracted quark PDFs at ξ = 0, t = 0 and the
reference scale µ0 = 2GeV. The H and H̃ are obtained from the polarized and unpolarized PDFs
whereas the E and Ẽ are constrained by the form factors and lattice calculation of form factors
as well as GPDs. The gluon PDFs are also implemented in this work, and they enter the scale
evolutions and mix with the quark GPDs. However, since they are not as constrained by the DVCS
measurements, they are not presented here.

tails to the PDF-like region, whereas the DA-like regions are not uniquely determined which
we will discuss more in the next subsection.

The above extracted PDFs and GPDs are generated with the open-source codes of
this program [64] which could be used to generate other observables including DVCS cross-
section measurements as well, although we should note that only the central values of them
are available at present. While the error propagation is a crucial part of a global analysis,
the process is extremely computationally intensive. With 20 functions of three variables
where each point must be calculated through a numerical contour integral, sampling them
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Figure 5. Plots of quark GPDs at ξ = 1/3, t = −0.69 GeV2 and reference scale µ0 = 2GeV.
The DA-like regions of the GPDs (−ξ < x < ξ) are shaded, and the curves there are plotted in
lighter color for distinction. The oscillating behaviors of the GPDs in the DA-like region are the
results of the conformal partial wave expansion, since the GPDs here are expanded in terms of the
Gegenbauer polynomials there. We note that the shape of GPDs is determined by the model choice
of the moments and the CFFs effectively constrain the GPDs at the crossover line x = ±ξ only to
the leading order.

over more than 50 parameters for the statistical uncertainties would be very challenging
though not as useful since the main uncertainties are still from the systematics. Therefore,
we will leave the error estimation to the future works once the task will be more practical.

3.4 GPDs in the DA-like region and DA terms

At the end of this section, we discuss more about the GPDs in the DA-like region. Recall
that in the previous section, we discussed that in the small xB expansion the DA-like region
gets less relevant, and so we did not consider the DA-terms Fqq̄ in the global analysis.
However, the behavior of GPDs in this region is of genuine interest as well, which is less
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Figure 6. The isovector GPD Hu−d tuned to fit the reference value calculated on lattice [17] at
reference scale µ0 = 2GeV. The dashed line is the original extracted shape of GPDs. By adding
extra terms in the DA-like region, we obtain the tuned GPDs as the black curve which approaches
the reference value shown as blue blocks.

known compared to our knowledge of GPDs in the PDF-like region e.g., from PDFs. This
region of GPDs is equally important and can be accessed directly from lattice calculations
at non-zero skewness [17]. We note that these constraints on GPDs in the DA-like regions
were not imposed in the global analysis since only very few of them are available at present.
However, in this subsection, we will discuss how the current framework under small xB
expansion can be extended to accommodate these constraints with the extra DA-terms Fqq̄
and produce smoother GPDs in the DA-like region.

In eq. (2.3), we showed that GPDs can be expressed as the sum of their conformal
partial wave, where each term is given by a rescaled Gegenbauer polynomial [30]:

(−1)jpj(x, ξ) ≡ ξ−j−1
2jΓ

(
5
2 + j

)
Γ
(

3
2

)
Γ(j + 3)

[
1−

(
x

ξ

)2
]
C

3
2
j

(
x

ξ

)
for |x| < ξ , (3.4)

that is non-zero only the in DA-like region. Therefore, one can always add finite terms like
this to the GPDs freely without changing the GPDs in the PDF-like region. Such terms
are called the DA terms in this work. Since the Wilson coefficients are antisymmetric in x
for the CFFs H and E , adding terms with even j which are symmetric in x will keep both
the CFFs H and E invariant, which correspond to the so-called shadow GPDs [46]. On the
other hand, adding terms with odd j which are antisymmetric in x will modify the real
part of the CFFs H and E while keeping their imaginary parts the same, which are also
known as the subtraction terms [31]. Similar arguments apply to the H̃ and Ẽ CFFs too,
except that their Wilson coefficients are symmetric in x.
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Figure 7. The isovector GPD Hu−d on the (x, ξ) plane tuned to fit the reference value calculated
on lattice [17] at t = −0.69GeV2 and reference scale µ0 = 2GeV. The blue (x = ξ) and yellow
(x = −ξ) curves correspond to GPDs on the two crossover lines respectively. A cut at ξ = 0.1 is
made since GPDs in the DA-like region −ξ < x < ξ get singular when ξ approaches 0.

These terms are in principle hard to extract from experiments. However, they do
affect the generalized form factors and can be constrained by the FFs as well as lattice
calculations. Therefore, one should parameterize these extra DA terms, at least part
of them, and fit them to these constraints to obtain the shape of GPDs in the DA-like
region. There have been lattice calculations of the GPD shape [17], which could be used
to constrain such terms and determine the shape of GPDs in the DA-regions. However,
since the results contain only the isovector u− d combination of H and H̃ GPDs and such
calculations will break down at x = ±ξ, they do not pose enough constraints on the GPDs
for global analysis. Therefore, we will leave the extra fitting of the DA terms to those
constraints in the future work with further information in the DA-like region. In figure 6,
we show an example of how GPDs can be tuned with the extra DA terms to fit to the
constraints in the DA-like regions, where we take the isovector GPDs Hu−d calculated on
lattice [17] as the reference value.

In figure 7, we also show the tuned isovector GPD Hu−d on the (x, ξ) plane at t =
−0.69GeV2 and reference scale µ0 = 2GeV. We again note that such results are obtained
under the ansatz and empirical constraints used in this work.

At the end of the section, we comment on the general strategy to extend the small ξ
expansion framework to the non-zero or even larger ξ region. As discussed in the previous
work [36], the ansatz of the moments used here does not apply to the large ξ region —
obviously GPDs in the PDF-like region with x > ξ must vanish when ξ approaches 1 as
x will approach 1 as well. Correspondingly, it is crucial to require the ansatz in this work
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to vanish as ξ approaches 1. This has not been done due to the lack of information in the
complete ξ dependence of these moments, especially in the larger ξ region. However, it
turns out that for a medium value of ξ (around 0.3 in this work), no significant deviation
from 0 has been found at the endpoints even without manually imposing such constraints.
Therefore, we will leave the studies to the future work when a larger ξ is concerned.

On the other hand, we note that the DA terms which have not been systematically
studied in the context of small ξ expansion will be of increasing significance when non-zero
ξ is concerned. This is shown clearly above that one cannot fit to the lattice calculation
without these DA terms. Consequently, even for a medium value of ξ, one shall treat these
DA terms seriously, rather than regarding them as free fitting parameters.

Thus, we note that the general strategy to extend the small ξ expansion framework
to the larger ξ region includes the proper suppression of forward moments as well as more
focus on the DA terms as ξ increases. While the former seems most important in the large
ξ region, the latter is shown to be relevant even for a medium value of ξ.

4 Conclusion and outlook

We extend the previous work [36] of the GUMP program to the non-zero skewness case
and perform the global analysis of quark GPDs combing experimental measurements of
DVCS, relevant lattice calculations for GPDs and PDFs and FFs from global analysis for
the first time, whereas the gluon GPDs will be carried out in a separate work with other
gluon-sensitive processes such as DVMP.

We argue that empirical constraints are still needed for the global analysis of GPDs,
given the huge system of GPDs that one needs to consider and the limited knowledge
of them currently. With these empirical constraints, we extract the GPDs from global
analysis with the above inputs and present the globally extracted PDFs, CFFs and GPDs,
with the caveat that more inputs, including more polarization configurations for the DVCS
measurements and more lattice results of GPDs at non-zero skewness, are still needed to
improve the reliability of such an extraction.

We also discuss the general framework to extend the current program which focuses on
the small ξ region of GPDs to allow the analysis of the DA-like regions of GPDs that will be
more relevant at larger ξ. We argue that besides the quark and antiquark GPDs, the extra
DA terms are crucial in describing the GPDs in the DA-like regions, which can improve
the parameterization with more flexibility and without damaging the physical constraints
like polynomiality conditions. We present an example of how the DA terms could modify
the GPDs in the DA-like region while keeping the CFFs the same, and therefore can be
used to parameterize and fit the shape of GPDs in this region.

In the future works, we will consider the meson production processes in the global
analysis to better constrain the gluon GPDs. In addition, we also consider adding the
strange quark distributions to the analysis, which might have sizable effects. Besides, we
will also include the DA terms in the global analysis to fit the GPDs in the DA-like region
once enough constraints on the GPDs in the DA-like region are obtained.

– 18 –



J
H
E
P
0
5
(
2
0
2
3
)
1
5
0

Acknowledgments

We thank K. Kumerički for discussions related to the subject of this paper as well as
the Gepard package [65] for the useful open-source codes. This research is supported
by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under
contract number DE-SC0020682, and the Center for Nuclear Femtography, Southeastern
Universities Research Association, Washington D.C. This research is also supported by
the 3D quark-gluon structure of hadrons: mass, spin, and tomography (QGT) topical
collaboration.

A GUMP parameters and their best-fit values

In this appendix, we present more details of the fit, especially the best-fit parameters
obtained from the global analysis. In table 3, we show all the independent parameters with
their statistic uncertainties estimated by the Hessian matrix with the Minuit2 package.

We note that the N,α, β, α′, b are the parameters in the moments of GPDs according to
eq. (2.6) where α(t) ≡ α+α′t corresponds to the linear Regge trajectory and β(t) = exp(bt)
corresponds to the extra exponential term. Each of these parameters has a superscript
representing its GPD species (H, E, H̃ or Ẽ) and a subscript representing its flavor (uV ,
ū, dV , d̄ or g). The REsea and RẼsea are the ratio of the E(Ẽ) GPDs to the H(H̃) GPDs for
the sea quarks and gluons. Besides them, there are also parameters like RHu,2 that are the
ratio of the ξ2 terms to the forward terms as defined in eq. (2.7) for GPDs with different
species and flavors. We again note that more details of them and the GUMP program that
generates the GUMP GPDs, CFFs and cross-sections are available online [64].
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Vector GPDs H and E Axial-vector GPDs H̃ and Ẽ

Parameter Value (uncertainty) Parameter Value (uncertainty)

NH
uV

4.923 (89) N H̃
uV

4.833 (429)

αHuV
0.216 (7) αH̃uV

-0.264 (34)

βHuV
3.229 (23) βH̃uV

3.186 (122)

α′HuV
2.347 (51) α′H̃uV

2.182 (175)

NH
ū 0.163 (8) N H̃

ū 0.070 (33)

αHū 1.136 (10) αH̃ū 0.538 (112)

βHū 6.894 (207) βH̃ū 4.229 (1320)

NH
dV

3.359 (170) N H̃
dV

-0.664 (170)

αHdV
0.184 (18) αH̃dV

0.248 (76)

βHdV
4.418 (77) βH̃dV

3.572 (477)

α′HdV
3.482 (171) α′H̃dV

0.542 (103)

NH
d̄

0.249 (12) N H̃
d̄

-0.086 (42)

αH
d̄

1.052 (10) αH̃
d̄

0.495 (137)

βH
d̄

6.554 (216) βH̃
d̄

2.554 (897)

NH
g 2.864 (108) N H̃

g 0.243 (304)

αHg 1.052 (8) αH̃g 0.631 (330)

βHg 7.413 (165) βH̃g 2.717 (2865)

NE
uV

0.181 (38) N Ẽ
uV

7.993 (3480)

αEuV
0.907 (17) αẼuV

0.800 (116)

βEuV
1.102 (245) βẼuV

6.415 (1577)

α′EuV
0.461 (86) α′ẼuV

2.076 (933)

NE
dV

-0.223 (47) N Ẽ
dV

-2.407 (1239)

REsea 0.768 (169) RẼsea 38 (8)

RHu,2 0.229 (0.032) RH̃u,2 0.246 (81)

RHd,2 -2.639 (202) RH̃d,2 1.656 (375)

REu,2 0.799 (285) RẼu,2 2.684 (171)

REd,2 3.404 (1157) RẼd,2 38 (2)

bHsea 3.448 (133) bH̃sea 9.852 (1330)

Table 3. A summary of the obtained independent GUMP parameters.
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