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ABSIR.A,Cl

Thls thesis ls concerned r¡l.th the synthesis of srultivarlable

network functíons

The realizatlons of multivarfable netr¡ork functions by sinple

decomposítion techniques are investigated. The condítions for

a multivariable ratLonal function to be realizable ín certain sirnple

structures wÍth consÈituent buil-ding blocks invoiving funclions of

reduced complexity are derived., Three different confígurations are

consldered:

(1) A sum connection of inmittances r¡hich are fr¡nctions of

mutually disjoint sets of variables

(2) A cascade connecÈion of single-variable passive lunped

net!¡orks, the cascaded subnetworks are also assumed loss-

less except the last termínaÈion.

(3) An extended Bott-Duffin type sÈructure.

Apart. from the general formulatÍons in terms of the mult,ivarÍable

posltive reallty conditlon, ruore direct and explicit alternative

approaches are also present,ed.

The synthesis of Índependent zeros of the even Part of a nultf.-

varlable positÍve real function is studied. In additlon to Èhe usual

cascade extraction by the basic sectfons, vÍ2., the RÍchardst,

Brunen type C, type E and type D sections, removal nethods l¡ithout

resortfng to gyrators and transfor¡rers are presented. The developments

of the laËter are prfnarlly based on MlyaÈats separation concePt of the

even part functÍon in single varfable synÈhesfs theory.
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The problem of synthesfzÍng a class of networks composed of

cascaded noncormensurate transmission llnes separated by passive lumped

lossless two-ports and terminated by a passÍve lumped netr,Tork ís

consl-dered" A new set of realizabí1ity conditions is presented. The

proposed set of conditions, which ís simple ín applicatíon, circumvents

the diffículty associated with the test of multivaríable posítíve

reallty. SeveraL interestíng specíal cases are also consídered and

the realizabíLLty conditíons are accordíngly rnodified to produce much

simpler synthesis procedures.
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CHAPTER I

INÏRODUCTION

The concept of rnuLtivariabl-e neÈworks was first íntroduced by

Ozaki- and Kasamí [15] arising from their work on variable-parameËer

networks. The theory has since been investigated extensively Ín Ëhe

sËudy of analysis and synthesis of many other cl-asses of neËworks

l2or27r33]r- in particular, t,he class of mixed Lr:mped-distribuÈed

networks.

One of the prominant features of a mul-tivariable formulation is

that the resulting network funcËíons are rational functions of a set

of complex variabl-es. Each of Ëhese varíables characterízes a specíal

Èype of component. For examplen consider a class of networks made up

of uríxêd lumped elements and noncommensurate transmissíon lines 125,27J.

The associated neÈr.¡ork funcËions are not rational in the cornplex

frequency variable p" However, such funcËÍons may be conveniently

expressed as ¡oul-LÍvariable ratÍonal funcÈions by characterizing the

lumped RLC elenents by Ëhe frequency variable p and the í-th type

transmission lines by its Richardst [25] variable Ui = tanhrrPr where

r. Ís the basic el-ectricaL J-ength of Èhe i-th type l1ne"
L

It should be noted Èhat the independent variables in a multi-

varÍable formulaÈ1on, in general, aTe noË necessarily physÍcally

independent. For instance, in the example gíven above, the Richardsf

varlables u.ts are in fact functions of the frequency varÍable p.'r-
l:-..-:!-i" ----



Furthermore, ít fs also not necessary to require that each variable

be a function of the frequency p; as in the case of variable-

parameter networks where some of the varíables could be funcËions of

some outside facÈors such as terperaÈure, a control setting, eËc..

Simíl-ar to single variable Ëheory, the concept of multivariable

posÍtÍve reality is of paranount importance in mulËivariable synthesis

theory. The followíng are the fundanental definitions:

A multivaríabl-e rational function Z(p-) of a set of ,complex

varíables p = (pt tp2t... rprr) is said to be a multivariable posiÈíve

(n.p.)'function Íf and only if (iff)

Re Z(p) > 0 for Re p. > 0, Í = l- ,2,...,rr,

where Re denotes t'The real part of"" An n.p. function Z(p_) is

saíd to be mul-tivaríabLe positive and real (n.p.r") Íff Z(Z) is real

when all the variables are real.

An m.p. function Z(g) is said to be multÍvariable para-odd iff

z(p)+zn(p)=0,

where zo(g) is the para-conjugate of z(p_) and is defined as

**
Zn(p) = Z (-g ), where the upper asÈerisk denotes Ëhe conjugaËe

operaÈion. For real rational- functions, one has Z*(p) = Z(-p), and

an m.p.r. function Z(p) is said to be a multÍvariable reactarice

function íff

z(P)+z(-P)=0.

A multlvariable rat,ional- function s(g) of a set of conplex

variabl-es p = (prrp2r...rpo) is said to be a multivarlable bounded

function iff

lr iiì.a::-..;t:¡ri
i . .- . -.::- : r

Js(p)l .1for Repr>0, !=L,2¡o".¡D.



A multivariabl-e bounded functfon s(p) is sal-d Èo be multlvarlable

bounded real iff s(p) Ls also real when all the varfables are real.

SÍnce iÈs introducÈion [15] ln 1960, a substantíal amor¡rt of work

on multivarlable synthesis has been reported in the literaÈure.

Detatled revier,rs of the early developments have been gíven by Scanlan

Í277 and Youla [33], and recently a cosprehensive bibliography has been

presented by Ramachandran and Rao t2O]. In spite of the extensive

deveJ.opments in the past, the mrrltivariable synthesls proved to be

unwleldy, and consequentl-y more straightforuard synthesis technfques

are expected to emerge. This study ls concerned with the development

of sirrple and straLghtfor:urard special synthesis methods. Furthermore,

it 1s noted that although the multivariable posltÍve realíÈy is a

compact gauge for the measurement of the realizability of a multi-

varfable functlon, the verifícation of such a property is dÍfficult and

LaborLous. In thLs study, a speclal emphasís fs also placed upon derÍving

possible alternatfve explicLt realizability conditions, which would

replace this prerequíslte condition by sorne simpler conditions.

In ChapÈer II, the reallzations of nultivariable rational func-

tions, in Èhe forms of certaín simple structures with componqnÈ

bullding blocks lnvolvlng functions of reduced complexity, are inves-

tfgated. Three different conflgurations are considered:

(1) A sum connectlon of imnittances whfch are funcËions of

mutually dlsJoínt sets of variabLes.

(2) e cascade of single-variable bl-ocks.

(3) A Bott-Duffin type structure.

The reallzabll-ity conditfons are f ormulated fn terms of the



decomposabiLÍty of the given function into certain special forms. In

addition Ëo the general formulaËions based on the nultivariable posi-

tive reality condition, more direct and explicít approaches are also

discussed.

chapter III is the study of the removal of independent zeros of

the even part of a mulËívariable posiËive reaL function" Apart from

the discussíon of the cascade extraction by the basic sections , viz.,

the Richardsr, Brune, type C, type E and type D sections, realization

methods without resort,ing to gyrators and transformers are also

presented

In Chapter IV, Èhe problem of synÈhesízing a class of neÈworks

comprising cascaded noncormensurate transmission l-ines separaÈed by

passlve 1-tunped lossless t\.to-ports and terminated by a passive h.rmped

network is consídered. A new seË of reaLízability conditions is

presented" The advantage of the proposed set of conditions is that it

replaces the nultivariable reality test and facilítates the synthesis

procedure in a straightforward manner. Several inËeresting special

cases are also considered and the reaLizabíLíty conditions are duly

rnodÍfied into much simpler forms.



CHAPTER II

SYNTHESIS OF MI.ILTIVARIABLE NETI^TORK FT]NCTIONS

BY SIMPLE DECOMPOSITION METHODS

The synthesis of general- m.p.r. functlons hras first proposed by 
;:,,,,:,,,,:,
,',' 

t ì t'.

Kogat13].Heprovedthatthemu1tivarÍab1epositiverea1-ityfsa

sufficfent condition for realizability. However, hfs approach, j'".":""

fnvolvíng certaln factorízaÈfon processes of multfvariabl-e matrices, '

1s known to be difficul-t and laborlous. Furthermore, the validity of 
I

his result has been questloned recently by Bose I37l ' who provides a 
f

counter example indícaÈÍng that his method does not al-ways work. To f

l

circumventtheinherentd1fflcu1tíesofthegenera1synthesisprob1em,
I

some workers 1,3r4r30] have recently developed specíal techniques for
i

certain classes of functlons. The essentíal idea of these developments

Ls to derive sirnple criteria for Èhe decomposition of a given m;p.r.
-, ,,, ,,, 

,.

function ínto a sum of single varÍable p.r. functíons so thaÈ Èhe 
;t,.,',t,..:..:. :.

sy4thesis may.be performed by the r¿ell-established síngle variable 1,,,,,.,,.,.,,

methods. In thf-s chapter, v¡e consider a more general asPect of synthe

sizing multívariable netr¡ork funcÈions in the forms of certaín símp1e

structures wf th constítuenÈ buildíng blocks involvíng funcÈions of i,::.:.::r:
i,,,,.,, _,.,, .

reduced complexity. Three dlfferent configurations are consídered:

(f) A sum connecÈion of imnittances being functions of mutually
'

disJoint sets of variables.

(2) A cascade connectl-on of single variable subneËworks, which 
.|,,: ..:
l'.:...'

are lossless except the last terminatlon.



(3) An exÈended BoÈt-Duffln tyPe structure.

The real-lzabíLity condítíons are formulated in terms of the decomposa-

bility of the gíven function lnto certain special- forms. Furthermore,

since the verification of the mulËiva:iable posítive realíty' in

general, ís rather unwieldy and intricate, r¿e shall, in Ëhe foll-owíng'

also develope possibl-e alternative expl-icÍt formulations which remove

this prerequisite condÍtíon ín favour of some one-variable type

conditlons.

2.L ST]M DECOMPOSITION

The concept of realízíng a class of roulÈivariable reactance

funcÈions in terms of single variable reacÈance functions Ín a surn form

was first advanced by SolÍrnan and. Bose I30]. Recently, Bose [3] extended

the nethod by presenting a revÍsed version for the previous result.

However, the above work maínly dealt wÍth the complete decomposability

of an m.p.r.function into a sum of single variable p.r. functions;

noreover, the decomposition al-gorithn for the case of reactance

functions involves laborious steps of extracting various constånÈs.

In thÍs section, we consider the more general problen of decomposing

a class of m.p.r. functÍons into a sum of such functions each havíng

a snaller number of vaiiabl-es than the original one. In parËicular,

the decomposition of the cLass of multivaríable reacËance functíons

fnto a surn of single variable reacËance funcËions is reinvestigated.

Results are presented in Section 2.L.I and il-l-ustrated by examples in

¡sed in Section 2.L.2.

i:.'.]ì
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z.L.L General MPR APProach

In the folJ-owing, we first establlsh a simple crlterion, stated

fn the forn of Theorem 2.L, for the decomposabÍlity of a given m.P.r.

funcËion into a sum of m.P.r. funct,fons with fer,rer varíabl-es.

Several lnterestlng consequences of the theorem are then discussed.

For the speclal class of mul-tivarlable reactance functions, an

extremel-y simple decomposition method is given in Theorem 2.21 t16l

which eliminaÈes Ëhe laborl-ous sËeps of consËant extractions as

required by the algorÍthm given 1n [3].

Theorem 2.1

Let Z(p) be a multivariable positlve real function of a set, of

complex varfabl-es p = (Pl ,P2t...,Prr). Then z(p-) can be decomposed

as

z(P) = r{ptrp2r...,P¿) * zz(Pr.*L,PL+2,.-.,Prr), [<û (2.1)
,LLI.TL

,Z(Po*t,PL+z,... rPrr) fs m.p.r. ln Pg+lrPg+2r... rPn, 1f and only if

z(g) - Z(pt,pZr...rp¿,lrl,...rl) Q.2)

fs not a functlon of PyP2r... rPg

Proof: The necessity 1s evident. We shall shor¿ the sufficÍency.

Since Z(p-) is m.p.r., Z(vyV2¡...¡PL,1,1r...,1) is also m.p.r.
LL

Let pl = jrlo, I = !r2r...rL, be the minimum poinÈ of Re Z(jtorri@Z,

...rjo^r1rlr...r1) with the minlmr:n value Kr where Re Z denotes

1 Independentl-y, a slmllar result was also reported recently tn [23].



the real part of Z. By repeated applications of the maximum modulus

theorem of a funcÈlon of a complex varíable, it can be shown that

Re Z(prtp2t...rpL,1r1r...rl) - K > 0

for Re p. > 0, i = 1rzr...rL.

Let Zt be defined as

ZL= z(PLtP2t"""PL'1,""1) - K '

(2.3)

(2.4)

then with (2.3), it follows ínunediately from the definition of an m.p.r. 
-,,:..

:::!':

function that Zt is n.p.r. in p1rp2r"..rpg.

Now, 1et ZZ be defined as

Zz = Z(p_) - zr(p1 rp2t.. .,pg) (2.s)

By hypothesis (2.2), it is apparenÈ that ZZ so defined is not a

funcËion of p¡tp2t... rpy. Hence, by selecting pÍ = jrior. í=1 ,2r...,L,

anC taking the real part of both sídes of (2.5) it Ís seen that

Re Z. = Re Z(jo16,jur2g,..",jo!,.,pg+1,...,prr) > 0 ,z

for Re p. > 0, i = .Q,*1 ,L+zr...,n. :

:.::::.::: -:::. 1

, ,.1,.:i:',.:i,i

Therefore , ZZ is also m.p.r. Í.n pp.+Lrpt+Zr...,pn. The sufficiency 
,r:,' ..t:t,. ':..

thus fo1lor¿s from (2.5) . 

o' ' þ t L r¡ 
:::1r':i:ì::ì:;:::i::l

Note that apart from an additive constant the component functíons

zt and zz are completely defined by (2.4) and (2"5). For 0 = 1, 
,,¡..',¡.;,;;;,.

Theorem 2.1 yields the following useful corollary which enabl-es us to ':."r 1. 
'':

detect the possibility of extracting a single variable p.r. function

from a given m.p.r. function while Leaving the remaining funetion stil1

m.p.r. and having one variable less.
i' r.::r :.:1..: : ;.:.,,
I i t-t,:_I._il
_.r:. ,:.,r:::rÌ,.



Corol-lary 2.L.L

A necessary and sufficient condltion for an m.p.r. function Z(p)

to be deconposed as

in pl and

that

,:.::i:.:.'..:

i;.:::,:

Z(p_) = zr(tr) + zr(p2rp3r.. ",prr) ,

where Zr(Vl is a single varíable p.r. funcÈíon

zzbz,p3,...lpr,) is m.p.r. ín p2;p3. .. " rpo¡ is
tti:ì.:._

Z(p_) - Z(pt, 1,1,. . .'1)

Ís not a function of pl. (The courponent function Zr(nr) may be

determined according to (2.4) as follows

zr(nr) - z(pt,1,1,...,1) - Min Re z(j0rr,1,1,...,1)) (2.6)
,1

By repeated applicatÍons of Corollary 2"1.1, we obtain the

fo1-lowing corollary, which corresponds to t,he speclal case considered

1n [3].

Corollary 2.L.2

A necessary and suffícient conditíon for an m.p.r; function Z(p)

to be decomposed as

n
z(p) = t 2.,(er) ,

i=l

røhere Zr(er) is a single variable p.r. funcËfon in Pi, is that

z(g) - z(L,...r1,pt,1,...,1)

1s not a function of pÍ, for Í = 1r2r.."rn-l.

As in (2.6), the sub-functions zr(li) may be derived from

(2.4) as follows

i.: :



--'-----i':!- :t::' i

z.(p=) = z(Lr"..rlrPirlr.."11) -Ki, i= 1r2r"'rn-l , (2'7)
l- -a

and
n-1

Zrr(nrr) = z(p-) - _.:, zr(v), (z'g)
I-I

:''t1 
':"

where

K, = Min Re Z (1r. . . rlriorrlr. . . 11) Q'9) ..ar
(¡) --i 

. ,,.,,.rrìot,,,,

NotethatCoro11ary2.1.2Ísessentia11yequiva1entËothemaintheo

given in [3]. Hor,rever, it may be noted thaÈ the condition that ' :: 
''

,ì,.,''1'.1,.

r(o-1) (po) in [3] (zrr(nrr) of (z.B) above) be p.r. is superf luous as

far as Èhe real-izabíILty is concerned. The facË is that Èhe p'r' naLure

of f(t-1) (prr) is auromatically satísfied from the hypothesis thet the

gÍven function is m.p.r.. As evident from Corol-lary 2.L.2 above, no

further p.r. test at any stage is necessary provided thaË the given

i

function is m.p.r.. r

Fron (2 .7), ít is observed that Èhe determinatíon of the sub-

functions Zr(nr)'s involves the extraction of a maximr:m possible

positive constanË from a p.r. function. For reactance functions 
,.,,,,,i

howeverr'such laboríous stePs may be avoided by ful1y exploiting the 
"

property of reactance functions. The inproved result is summarized in ':"': ':::::

the following theorem.

Theorem 2.2

A necessary and suffícient conditÍon for a multÍvariable reaeËance .r.,,:-,
l:jt;..:::.:

function

10

p (p)
z(p) = ¿

a(p)



. I ^.t 
¡_r1i:

to be decomposed as

n
Z(p)= Z Zr(Vr),

a=I

where Zr(nr) is a single variable reactance function in pi, for

i = 1r2r...rn, is that the denominator a(p) can be factored as

11

where Ar(nr) Ís a single variable polynonial ín pi, i =' 1r2,...,n.

Furthermore,

(í) If er(nr) d.oes not vanistr at the orígin, then

zr(nr) = z(0, ". " rorpÍr0,. ".,0). (2. I 1)

(ii) If Sr(nr) vanishes aË Ëhe orígin, definÍng a nerv function

n
Q(p) = II e,.(n.,) ,

l_=I

^nA.z(?)=z(y)- x *,
Í=1 Pi

where

" Af = Prz(g)'nr=o

Ls the resÍdue of z(p) at pi = 0, then

(2. 10)

(2.r2)

(2. r3)

Proof: The neeessity is evident. We shal1 prove the sufficiency.

It is observed that a multÍvarÍabl-e reactance functÍon Z(g) is

an m.p.r. function satisfying the fol-lowing additionaL conditíon

z(g)+z(-e)=0" (2.14)

I^Iith (2.14), it can be shor¿n that, a pole of a multivarlable reactance
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function in a p1-plane, independent of all other variables, lles on

the fnaglnary axis of the p1-plane.

Also, according to a result due to Ozaki and Kasami [15], the

resldue of an iuragLnary axis índependent pol-e lncludlng the origin and

l-nflnfty of a m.p.r. function is a posl-tlve constant, and the removal

of such a pole yields a remainl-ng functÍon whlch is al-so m.p.r..

By hypothesis, the denominator of Z(Ð can be factored ln the

forn of (2.10), therefore all the poJ-es of Z(Ð are Índependent pol-es.

Consequently, it follows from the above two results thaÊ Z(p_) can be

expressed in the fo:m

(2. 1s)

where A1-, AtO and Alot" are non-negative and zr(g) is m.p.r..

It is apparent fron (2.15) that the denominator of Zr(g) is free

of the variable pl. Therefore, it can be shown from the degree

property of m.p.r. functions that Zr(Q is no more a functíon of pl.

Applying the analogous procedure successívely, we can decornpose,

z(ù as

'n A. A.-p.
z(p)= (41-P1 +-1o*'\#)

1=I 'i s pi * ,Iu

= i z, (nr) , (2.16)
1=1 rt

where the Zr(nr)'s are obvÍously single variable reactance funct,ions.

Now, tf er(nr) does not vanish at Ëhe origin, then Alo = 0 for

every f. By setting pk = 0 for every k except k = l, ft follo!ús

fron (2.16) that

o¡g 
-,- " 

All,Pl
z(P) = Ar-Pl . o, * ,.ffi+ zr(n-) ,
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Zr(v) = Z(O,...,O,Pi,0r...,0)

Moreover, if Cr(nr) has pt as a factor, úIe

A.
the terms :to ts by inspectíon in advance to yfel-d

D.-1-

whfch satÍsfies the same conditÍon, as the previous

¡.rrite (2.L3) as a consequence of (2.11-) and (2.12).

(i) Z(L,...,1,pÍ,1,...,1)

Pi, i = l- r2r,.. rn-l-
(ii) The function

nrl
Z =z(p)- , z.(p.)n -:' i"i-'

. , 
]-=I

is a singLe variable p.r. function in

zr(nr) = z(Lr...,1-,pi,1r... r1)

urith

Ís a single varíable p.r. function of

(2.L7)

can always remove

a nerù function

one. Hence, hre can

Q.E.D.

(2.18)

2.L.2 Explicit Approach

Due to the partícular naÊure of the problems considered in

Corollary 2.L.2 and Theoresr 2.2, tine requírement of the multívariable

posftlve realíty on the given function can therefore be relaxed by

refornul-ating the propositions into the foll-owing alternative forms.

Theorem 2.3

Let Z(p) be a muLÈivariable rational- functfon. The following

t¡¿o conditions

D . where

-K.1

Kt = min Re Z(1r...r1rjrDirlr...11)
o.

l-

are necessary and sufficient for Z(p) to be a member of a subclass of



m.p.r. functions, whlch can be decomposed as a sum of single varlable

p.r. functions.

Proof : The proof ís straightforç,rard.

Necessity: Since Z(?) is m.p.r., condition (í) is obviously

satísfÍed. Next, we shall show that Zo defined bV Q.L7) is a single

varlable p.r. functÍon of ' pn

Sínce Z(Lr... r1rpir1r... rl) fs p.r" fn Pi, the functíons

Zr(lr)ts defined by (2.18) are also p.r. and minimr:m, viz,.,

neZr(julro)=0, i=1r2r...rn-1 Q.20)

where o, ís the minimr:n poínt of. (2.19).
l-o

Sínce Z(g) is decomposable into a sr¡m of single variable p.r.

functions, it can be shown that Zo defíned by (2.L7) is solely a

function of pn" Consequently, by selecting PÍ = jtio for

i = 1,2?...,n-1 and taking Èhe real parts of both sides of (2,L7) Èhen

cornparÍng with (2 .2O) , we have

ne Zo(lrr) = Re Z(jto1g,jur2g,. "., jon-lg,Prr) (2.2L)

Since Z(p) ís m.p.r.,

Re z(jurr.,jtr2g,...,jon-lgrPo) > 0 for *" Pn > 0 . Q.22)

Therefore,

ReZ(p)>0 for Rep->0. Q.23)ll-'n -n- 

"tt""tI,tith (2"23), it is apparenÈ from the definition of p"r. funcÈ1on that

zo(eo) is p.r. ín pn.

SuffÍciency: As shovm above condition (í) coupled wÍth equaËion

(2.1-8) índÍcates that the Zr(pr) ts, i = 1,2,... rn-l, are al-so p.r.. 
i.;,,;,,i , .:..:

L4

1..:....-..

i\iåì -'
"iÈæ,.

''i:.
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The sufflcíency is. thus evídent fron (2.77). Q.E.D.

Sínce independent poles at the orígin of p --plane can easily be

removed by ÍnspecÈion in advance, ín t,he following theorem, we shall

assume without lack of generality that the given functÍon does not

possess poles aÈ the orígín.

Theorem 2.4

Let

z(?) = ffi
be an írreducibr" LrrrtraríabLe'rational funcËíon having no poles at

the orígín. The necessary and sufficient conditÍons for Z(2) Ëo be

decomposed into a sum of single varíab1e reacËance functions in Ëhe

forn of

n c,(p,)
z(P) =

í=1 ei (nr)

are

Ít) 
the denominator can be factored as

n
Q(p) = er(nr),

f_=I

where er(er) are even polynomials of pi.

(Íi) The numeraËor can be e:çressed as

n
P(p) = -x_ or(nr) 

^lJ. 
q¿(ns) ,

i=l )Lrt

P(0r... r0rpír0r.. . r0)ar(nr)=ff
9'+r þ

¡¡here



(fff) ar(nr)/er(nt) ls a reactance functlon of Pi'

Proof: It is noted that the fLrst two conditLons assure the

separablltty of the given funcËion 1nËo a sum form; l¡tríl-e the thírd

condftf.on atÈests to.the reactance nature of the component functions.

The proof is straightforward and thus onltted for brevity.

2.L.3 Examples

Example 2.L.L: Consider the fo1-lowing m.P.r. funcÈÍon Ín

P = (er,l2 ,P3 ,P4)

P1p2p3p4 + l1l3n4 + 3ptPZP3 + 2ptPz+ p¡P4 + zP.-+ 3pt+ 2

z\p) = ,tttt . t) ,ttr- *

(2.24)

It is requÍred to determine the decomposabillty of (2.24) into a sum of

m.p.r. functions having fer¡er variables

. It is observed that

3P3 P3P4 - 2
(g)-z(vt,v2,1,1)= 

--

zP4+ 2

fs not'a functlon of pl and PZ, therefore, it foll-ows from

Theorem 2.I- that Z(e) can be decomposed as

z(p.) = zr(vr,vr) + zz(p3,p 4)

Uslng (2.4) we obtain

(2.25)

Zr(vr,v2) - 2(Pt,P2rL,1) - min Re zQrt_,j12,1,1)

^L'^z

=lPl ,

PlPe + 1

L6

.i:1..

.:,. a,
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Ilence fuom (2.25) the desfred decompositÍon is

Pt PgP4 + 3P, + 2

Z(g.) =---- + ---:---
PLPZ* 1 plP4+ 2

Exarrple 2.I.2: IË is desired to determíne whether the following

multivariable reactance functlonl in P = (lrrnrrnr)

p(e) t ?rln, + plpt + p?pz + zoplv.' + gøTp¡ *y!gr*t'vt
Z(p)=-= --- õ-õ- ; ,

a (g) vivi + 4P; 6v-, + 2a

can be decomposed inEo a sum of single variable reacËance functions.

I,Ie see that the denominator Q(p) Ís factorable as

ttt
Q(g) = bi+ 6)ri + avi+ 2a

= b?r+ o)(nl + +>

Therefore, using Theorem 2.2, cne given function is decomposable as

zr(nr) -z(pt,o,o) =+
ei+4

zr(v) =Z(0,P2,0) =;=
vi+ a

zr(nr) =z(o,o,p3) - 5P3

z(s) = +.+ -* sP3

'.ni++ vi+' 
,,,:,,,,,

The proposed technique, as evidenced above, is much simpler than the ': "

method given in [30] where laborious steps of constanË extractíons are

requfred in the process of deriving Èhe componenÈ funcÈions

1 For comparíson, the identical- problem given ín [30] ís considered.
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2.2 CASCADE DECOMPOSITION

The synthesis of an m.p.r. function as an lnput lmpedance of the

cascade structure shown in Fig.2.2 was flrst consLdered in [6] and

recently fn l2l. However, Reference t6l considers only the very

special case that the extraction order of the pr-vartabl-e two-ports is s

interchangeable. For lnterchangeable configurations, the ínput impedances

are more restricted. Furthermore, their conditions assume cerÈain

speclal forrns for the even part frrnctions, and this consequently ltrnits

thelr applications to non-reactance functlons. The condltions given

1n [2] are more rel-axed and include reactance functlons. However,

their development f s basecl on the single variabl-e DarlJ.ngton theory [7],

and the results are therefore restricted to reciprocal- realÍzatíons.

In addition, as it 1s pointed out in the Appendix that the formulation

presented Ín f,21 leads to faulty conclusion under certain circumsÈances.

In thls section, we tackle the problern ürith a different approach. The

realizabilíty condiÈions are derived from the chain parameter charac-

terÍzatÍon of passive lumped lossless t\,ro-ports. As a consequencer.

the results obtained are símpler and more general.

2.2.L General- MPR Approach

First, we establish a f¡:ndamental leurna whfch Ís essential to the

subsequent developments .

Lenrna 2.1

The 2x2 real a1 maÈrixpoJ-ynomi

s (p)l

o(n) l
r l-r<Pl

-t
r(n) 

[_ c(n)

(2.26)



z(vre2,...,Po)

RealizaÈíon of Z(ptrptr...rp.) in the forn of a
p,-variable passive-luñped lo3'sl-ess tvro-port closed
oå 

"n 
(n-1)-variable impedance rfþZ,p3r...,prr).

Z(or,vr,...,Po)

L9

Flg. 2.L

Fig. 2"2 A cascade of
terninated by

síngle=variable passfve lumped lossless tr,ro-ports
a singJ-e variable passive impedance.

zr$Zrp3,. . .,prr)P1-PLLN

P2-PLLNpI-PLLN zr(vn)o --PLLN'n-l
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represenÉs the chain matrix of a passlve Lumped l-ossless tl^ro-port iff

(1) A(p) and u(p) are either both even or odd, while

opposítel-y, B(p) and C(p) are elÈher both odd or even. 
,,,-,:, ,

(2) A(p)+B(p)+C(p)+D(p) = G(p)H(p), where tt(p) is strictly 
"'':""'

Hurwitz, and G(p) ís eíther even or odd and is a conrmon divisor of

A(p)+B(p) and c(p)+D(p)

(3) A(p)D(p)-B(p)C(p) = ef (p)f (-p), where f (p) is a real ¡;i':;,::i,

polynomial, e=l íf. A(p) is even and e=-1 if A(p) is' odd. 
,,, .,
;''..', 'In particular, the two-port is recíprocal iff the foIl-owing

additional condition is satisfied.

(4) A(p)D(p)-B(p)c(p) = 12(p) , i.e., f (p) is even irf A(p) is

even and f(p) ís odd iff A(p) is odd

The above lerrrma is a classical result and a brief proof may be

found Ín [ 32]
t,

ì
Lem,a 2.2 

,

A necessary and suffícient conditíon for the n-variabl-e p.r.

functíon Z(g) to be realizabl-e as an input impedance in the form of 
,;:,,.1.,,,.

a pr-varlable passive lumped lossless two-port terminated by an (n-1) '

varlable p.r. impedance as shown 1n Fig. 2.1 is that z(g) can be "','ì'''":

decomposed as

p(g) c(nr)h(erP3,... ;pn) + ß(nr) E(P2',P3,"',P,.)
z(e) =- a(g) Y(ur)h(prrP3r...,Prr) + ô(pr)e(nr,nr, "',Prr) ,..4,;,...

where p(e) and a(q) are assumed to be relaÈively prime ln Re p. > 0

for every i, and c(n1) and ô(er) are both even polynomials of Pl'

r¡hereas' ß(nr) and v(er) are odd polynomials of Pl. 
:

' ',.''.'',
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In particular., the pr-varfable tlro-port 1s reclprocaL íff

to(pt)6(pr) - ß(tt)v(nr) = ef-(pr) '

where f(pf) ís either even (for e=1) or odd (for e=-1).

Proof:

Necessity: It is noted that if the output terminals of a t!'ro-port

characterlrzed by the chain uatri-x

=[::]
are termínated by an impedance ZL, then the input impedance seen

looking into the input te:rminals is gÍven by

A7,, + B
-l¿z- - (2.28) ì

cz- +D
t

the necessÍty is therefore evident fron (2"28) and Lennna 2.1-.
l

SuffÍciency: First we show thaÈ h(p2,p3,...,po) /e(e,Vr,...,prr)

is an (n-1)-variable p.r. functíon.

As a consequence of a result due Ëo Ramachandran et a1 . 1221 , we 
., ,',.,.' :.':-_.'

have that if .: .:.':

kk+l r
F, \ tkPl * "k+rPl +'"" * 

"rPlL\P) =

fo,nf 
'+an,+r.pl'*1+ ... +dr,PT

is an n-variable p.r. funet,ion, where the "Ít" and dit" are

polynonials of p2tp3t... rpn and 
"krdkr rcrrdrr É 0, then

k-kt = tl or 0, r-rr = +1 or 0 and the quotions cr/d, for

max (krkr) = r 1uin.(rrrt) are (n-1)-variabl-e p.r. functfons of

.P2rP3r.. . rPn.

(2.2e)



By hypothesis, we have that a(pl) and 6(pf) are both even and

ß(nr) and V(nr) are both odd, therefore by writíng (2.27) in the

form of (2.29) and Èaking any I within the defined range, it follows

from the above result thaÈ h/g is (n-1)-variable p.r. in P2,P3r...rPn.

Now, let 6 be an arbltrary positíve constant, then Ít ís clear

from the definition of m.p.r. functions that

h(o,o, ".. ro)
=( > 0 (2. 30)

g(o ro, .. . ro)

and

Z(pLro,or...,d) =
o(p1)K + ß(pr)

(2.31)
v(nr)K + ô(pt)

Ís p.r" in pl.

By assunption, p(g) and a(g) are relatively prime in Re Pi t 0

for every i, therefore, a(pr)K+ß(nr) and r(nr)K+ô(nr) are also

rel-atively prime ln Re p, > 0. ConsequenËly, it can be shown from the

properties of single variabl-e p.r. functions that

c(pt) + ß(pt) + Y(pl) + ô(pr) 1s strictly Hurwítz

and a(nt)6(pt) - ß(nt)v(et) can be factored as

e(n1)ô(pr) - ß(nr)v(p1) = f(p)f(-p) ,

22

where f (p) Ls a real pol-ynomial-.

Ilence by vÍrËue of Lemma 2.1,

[rJ nr f(nr)

matrix

(2.32)

he

1)

'r )

t

(p

(p

rL

ß

ô

mat

[- a(r1)

[,ro,r

ollowingf

rf

I

I

xrepresents the chain-parameËer o a lurnped passlve lossless two-
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port in the varíable pl.

therefore, by lettÍng

it Ís apparenË fron (2.27), (2.28) and (2.32) that Z(p) ís realizabl-e

in the form of Fig. 2.L.

Nowr,for the case of recÍprocal realizaLíon, iË may be shown from

condítíon (4) of Leurna 2.L that

(f) If f is even, then

r [-a ß-1¡tJnr , L., ,_l (z'34a)

h
7=Lg

(ii¡ If is odd, then

1 [ß "ltTl = -- 
| I.-rD_ - I I11 t Lô yl

o
6

t7_'uLh

Theorem 2.5

Let Z(p_) be an n-variable p.T. function. Then, z(p_) is

reaLizable as an input impedance of the cascade structure shown Ín

FÍg. 2.2 íff. Z(p) Ís decomposable into the following form

.h
zL= g '

(2.34b)

(2.35a)

(2.3sb)
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P (p)
Z(p) = 

-=a(P)

hz(.Pzrp3r.. .,prr)

ar(pr)hr(p,pr,.. .,prr) + Br(pr)gr(p'pr,.. .,prr)

vr(nr)hr(nr,nr,.. .,prr) + ôr(er)e r(vr,p3, . . .,prr)

ar(vr)hr(e'R0,,..,p,.,,) + Bz(l)er(n'p4,.. .,prr)

erílrrp3r...,prr) vr(er)hr(Rr,Ro,...,po) + ôr(nr)er(nr,p4r...,prr)

(2"36)

hrr-r(prr-r,prr) or,-l(pr,-l)hrr(nrr) + ßr,-1(nrr-t)srr(nrr)

E.(p .,P) Y ,(p .)h(p)+ô .(p .)e(p)n-I n-l n n-r n-I n n n-l n-I n n

where p(p) and a(g) are assuned to be relatively prlme in Re p, > 0

for every 1, and both cr(nr) and ôr(nr) are even polynomials of

pi, while oppositely, both ßr(nr) and rr(nr) are odd polynomlals

of pi for f = l r2r... rn-l.

In addítion, Èhe pr-variable Èwo-ports are reciprocal lff

c*(nr)6r(nr) - Br(nr)vr(nr) = ,rrl(nr) , Í = 1,2,...,n-1,

where fr(nr) Ís either even (for ef=l) or odd (for ei=-l).

Proof : The theorem follows i'r¡'nediately by repeated applicaËions

of Leuma 2.2 to (2.36), successively.

It nay be noted frorn (2.32) and (2.33) that, in general, a

realization rnay be obtained v¡ith the chaln natrices of the pi-tr.ro-ports

given by

'::::,. ::
, : .: :: : :i. :.,;.\r:.i:.,

¡rJ nr

ß, (rr)

6* (er)

[- cr(nr)

['t<otr
f,T

for 1 = 1rzr...rn-l (2.37a)



25

and the terminatl-ng lmpedance glven by

hr, (Rrr)
v = .'.--L s (p)n-n

As for recíprocal

(2.35) rhat

realízaÈlons, it can be shown

(2.37b)

from (2.34) and

where uk

u-=R--

eo(nrr)

eo(en)

ho(to)

= 0) Ís introduced

k
ff II fo 1s

X=1

k
if II f.o ls

l=1

ß, (nr)

ô, (nr)

v
¡r- I

vrt-l = I '

for convenience and

even.

odd.

(2. 38b)

is defined as

(2.3e)

¡rJnr
[:

and

(nn)hn

l[::]'
r lvr-r f- crr(er)

'J Ivrrnrr

=$if

(2. 38a)
fr(nr)

for l= l"2r...rn-l,

\{

(with u0

['

1,
2.2"2 Explicit Àpproach

Sl¡nf1ar to the previous sectfon, we flrst present a preliminary

lenma then establish the ¡nain theorem from the lsÍrma.

Leura 2.3

The n-variable rational functlon Z(ù may be realized as a

drivfng-point inpedance of the structure shown 1n Ffg. 2,1 tf.f. Z(g)

can be decomposed fn the fom of (2.27) wLth the followtng condltlons.

1...- r:: . -l



(1) a (rr)+ß (nt)+v (nt)+ô (nt) is sÈrícËlv Hurwítz '

(2) a(pr)ð(pr)-e(nr)v(nr) = f (p1)f (-lr), where f (pr) is a

reaL polynomial-.

(3) h/g ís an (n-l-)-variabl-e p.r. functfon of P2fi3r... rPn. ,'..,..',

Moreover, the P1-tr,to-port ís recíprocal- Íff

(4) f(pf) is eiÈher even or odd.

Proof.: The l-enrma Ís a di::ect consequence of (2"28) ¿¡d tsÍrm¿ 2.1. ,,,1
:i.: ..;l: :

'::_-:l-t

Theorem 2.6 ".

A necessary and suffÍcient conditÍon for the n-varíable raÈional ..'t',',

function Z(g) to be realizable as a drívíng poinË impedance of the

cascade sÈrucÈure of Fig. 2.2 ís that Z(y) ís decornposable into the

forn of (2.36) wiÊh the folLowing conditions.

(1) a* (p*)+ß. (nr)+rr(lr)+ôr(nr) is stricË1y Hurwitz, L=L,2," ',n-l'l- -l- l- -l- I l- l- r

(2) cr(nr)ôr(rr)-ßr(er)vr(nr) = tr(rr)fr(-lr), i = L,2," ',D-1,

where fr(nr) ís a real- polynornial of pi.

(3) ho/Bo ís a P.r. function of Pn.

FurÈhermore, the pr-two-porÈs are reciprocal íff 
.:.:;:.::,:

(4) fr(nr), Í = 1" -..,r-1, is eíther even or odd' ::-:-'::

Proof : The proof follows by repeaËed applicatíons of the above :'l-',.
:j:i::

lemma to the set of expressÍons (2"36) starting from the last expression

to the first one, succesively. Realizations may be obtained w1th Èhe

sâñe set of equations as (2.37) anð. (2.38). 
,,,,,

2.2.3 Examples

Example 2.2.L2 Consider the feasibil-ity of real-'izing the followÍng

m.p.r. function z(p-) ín p = (n'e2rP3,P4) as a dríving poÍnt Ímpedance

of the cascade stTucture of Fig. 2.2
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where

and

z(p-) =

P(p) =

Q(g) =

+

Rewriting

shorm that Z(g)

z(p) =

27

P (p)

Q(p)

prhz + {+pl+z¡s,

hg * PzBg

(2.40)

(2.4Ia)

(2.41b)

(2.4lc)

(2.41d)

is realizable in the

zplozp2tp++ splpzp3* pîp?+ zplpzp++ zplpsprr

splpz + spip¡ * n? * zvrorv?, + 4vrvrvrp4 + lop tpzp3

2rfz+ apzpzlp,r+ toprv?r* ro'r+ 4pzp4+ 4p3p4

lOpr+10er+2

+vlvrvz3 + splpepgvo * zoplp2p3 + ,rplpz + 2p+ zpSpq

srl. zrtr + p1p3 + 2vrervo + 2ernrno + 5ptp2 + 5plp3

Pt + 2pzp3 * orrnrP4 + loprP3 + 2pz

p(g) and a(g) as polynomíals of pl, it can be

can be decomposed as

$l+z¡n, * 2pt'z

"h2

82

hg

oo3

, where

where

, where

Pzhs

trf+rlno * pse4

h¿=

E4

cnl+rt eo

I
,rr, 5

Therefore, by virtue of Theorem 2.5, Z(p)

fonn of Fig. 2"2.



Now, from (2.36) and (2.4I) it can be ide.ntffled that

ßr = 2P1
,)

ôr=4ni+2

o2= L

12= P2

,cr=ni+1
Y3=o

Therefore, we have

o1ô 
1

o26z

o3ô 
3

+<e!+t2
2

-P2

rvlu2

z crl+r>

P2

<n!*tl

28

or= nl* z

Yl=Pl

92=Pz

62=o

ß3=P3

or=nf+t

f nl*z z¡r I
L Pr +rl*z )

¡rlnr i [;l :f =

¡'Jnz= t [; :l t: :] = ; [:' ,; ]

¡',ns L[: :][: :l t: :] à['::',i,j

BtYt

ßzY z

BgYg

-a

->

u3 = 1'

ft

fz

fz

and from lZ.lS), we have

ur=o'

Consequently from

u2=1 and

(2.38), we have

zçpln)
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and

ZL= 2pO+ 5

A conplete reaLlzation is given fn Fig. 2.3.

Exanple 2.2"2: ConsÍder the fo1-I-owing 2-variabLe rational

function

tnf+rl <oel+t + roprn,
z(pL,Pz) =

vr6vl+z> + s(nf+r)n,
(2.42)

Comparing (2.42) and (2.27), ne see that

a(pt) =n?* I ß(tr)=2e,

v(nr) = n, ð(nr) = nf + r

h(pz) = opl+ t

e@) - slz

Thus, it can be seen that

(1) c+ß+y+ô = zpl+Spr+Z is sËricËly HurwiÈ2.

(z) e6-ßy = (nl+r¡2-2p?, = nf+t = f(pr)f(-pr), where

r(pr) = (gl+ñ{r+t¡ ,

(3) hlg = çopl+Ðlsv, is obviously p.r..

Therefore, by vÍrtue of Lemma 2.3¡ Z(pfrpZ) is realízabl-e in the

form of Ffg. 2.1 with

and



tlv2

Flg. 2"3 Example 2.2.L.

6prl s

p1 3/50,

'ãe
)nr'
¡ñr

Llvl

Êí9" 2.4 Example 2"2.2.
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øp|+ z
zL=

5p2

A courplete reaLLzation is given in Fíg. 2.4. It is noted that

(2.42) fs excerpted from ExampJ-e 2 of [2] whÍch is shown not to be

tealízabLe 1n the form of Fig. 2.L. However, Ëhe reverse ís true as

evident above. This is due to the fact that the formulation given in

[2] 1s not general enough to cater for non-reciprocal tr¡ro-port,s.

2.3 BOTT-DUFFIN TYPE DECOMPOSITION

In this section, Ìse present a different type of. reaLization.

As far as the mathematj.cal decompositÍon of the given functíon is

concerned, ít bears a simÍlar form to that diseussed in Sectíon 2.2.

llowever, as to network configuration, it resembles the cyclic bridge

form of a realízation obtained by the Bott-Duffin process [ 31].

The cl-assical Bott-Duffín synthesis process 17l is developed from

RÍchardst Theorem [24] whích was fírst -introduced to multivariable

synthesis by SaÍto 1261. Soliman and Bose [31], laËer, extended

Saitors versíon to a more general case. Based on the multivariable

Richardst theorem, Ëhey derived a set of suffícient condÍËions for

the reaLizatíon of a class of m.p.r. functíons bilinear in all

variabLes except one by repeated appl-icaÈÍons of Ëhe Bott-Duffin

process. In essence, at each eycle, an impedance Z(VyV2r... rpo)

bilinear Ln pl is real-ized 1n terms of a pr-capacftor, a pr-inductor

and trvo impedance" ZI and ZZ which are free of pti the four

components are connected 1n a bridge form as shown in Fig. 2.5. In the

followLng, rìre consLder a more general case shor'rn in Fig. 2.6, where a
i.',., .t,'.-r:,,'.;,
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I i'.ì-Ì i. : :

z(PLrP2,'" ,Pr,)

FÍg" 2.5 The Bott-Duffin realization of
in terms of a p,-capacitorr â p.
impedancet ZL(i*v r,. . .,prr) "*

. rP,.,) bilinear in Pl
and-'tv¡o (n-1) -variablê
3r.ô.rPrr).

Z(P, rPn,...4 1-l-nductor
d ZZ(V2,V
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kr/zt (vr)

z(vyvr,. ..,prr)

Fíg. 2.6 Realization of Z(pt,pt, . . . ,p-) in terms of a p., -variable
reactance function '2,2(p.), '^its reciprocal I/z:^(p.) and
ts¡o (n-1)-variable inþEaatces 2.,(pe,pq,...,p-) ttndt
Zr(v7rP1r...,P-); Èhe four compöneñts-are coïinected in the
Bõtr:Duffin brÏdge form.
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general pl-varíable reactance function 2""(vl and its reciprocal

have replaced the pl-capaclËor and pr-inductor Ín Fig. 2.5, respectíve1y.

As a consequence, the class of functions to be covered is wider than

the one considere¿ fn [31], i.e., the bil-inear consËraínË on Lhe

gíven funcËion is now rel-axed.

2.3.L General MPR Approach

As previously, rnre first derive a l-emma which gives the real

condition for an m.p.r. functíon to be realízabLe ín the fbrm of

and then establísh the main result from the lemna.

Le¡nna 2.4

A necessary and sufficient condÍtion for the n-variabl_e p.r

function Z(y) to be realizable as a drivÍng point l-mpedance in

forn of Fig. 2.6 ís that Z(p) can be decomposed as

r :.-:: lizabílity ,,...,:,
1:-:

Fig.2.6 ,., l

the

z(p) =i+- 
krq(pr)h(prpr""'prr) + krß(pr)e(plpr""'pn) 

, (2.13)- q(P) krß(nr)h(p2zp3t. ".,prr) r koc(nr)e (vyvr,...,prr)

where p(p) and a(g) are expressed as relativel-y prime in Re p. > 0

for every i' c(pl) ís a monic even polynomial of pl and B(nr) ís

a monic odd pol-ynomial of pl (The kr.t" :0, i =1 ,2r3r4 are lntroduced

to t,ake care of the degenerate cases).

Proof : Necessíty is evident. tr'Ie shal-l- shor¡ the sufficíency.

SÍnce the cases with more than one of the kít" egual to zero are

trfvÍal , Ln the foLlowÍng, \^re assume that only one of the four kit"

nay vanish.

First, we shall- establlsh that h/g is (n-1)-variable p.r. in

P2,P3r... rPn and c(Pl)/ß(nr) is a reactance function of pl.
r.:.1:
ì ,ll': t¡



r:.1 ,-:...;r.:1

It fs observed that (2.43) and (2.27) are of sfmílar forms,

therefore it follows from the proof of Lema 2.2 that
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and

h/g is (n-1)-variable p.r. in p2,p3;...,pn

kro(pr)K + krß(nr)

krß(rr)K + koa(pr)

(2.44a)

(2.44b)

are Hurr.ríÈz poLynornials of pl, where K is given by (2.30).

Since.it is assumed that only one of the four kit" may vanish,

by takíng elther (2.44a) or (2.44b) it. can be shown frorn the property

of Hurwitz polynomials that

Ì ; :.1. j

a (P1)
is a reactance function of- pl.

e (er)

Now, froin (2.43), lt can be seen Ëhat Z(p) is decomposable

into the foj-lowlng forn

z(p_)= ffi*ry (2.4s)

E"Ð*\n Ç;"Eeo¡
Therefore, by letting

a(p,)
zr.(er) = ta"-t

ztþzrP3,...,Po) = 
h(Pz'Pg" " "Po] ,
B(pr,p3,...,Po)

zr(vrre r,. . . ,Po) = 
8(P2'P3" " 'Po) ,
h(P2,P3,. .. ,Po)

^kr^klîkz:kZkr= d, k2= {, k3= E and k4= E '
l:...,: : : i
.: : r:
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Ëhe real-l-zatilon of Z(g) fn the form of Fig. 2.6 wlth the dotted 1íne

replaced by a solid l-lne ls apparent from (2"45).

Next, it ls observed that,

^ k. ktkz
ktztc(nr). ffi = tr-,

k' h.,kze. ktkz
kzzL.k4zz = ( k:; r, t'f I = 

k^k_

and

4s-k¡h kgk¿

Therefore, similar to the BotË-DuffÍn cycle, the structure of Fig. 2.6

fs a bal-anced bridge. Hence, the dotted line may be replaced by any

impedance r¿ithout altering the input, impedance Z(p) " Q.E.D.

Theorem 2.7

A suffÍcient condition for the n-variabJ-e p.r" function Z(p_) to

be courpletely realizable by successive appl-ications of the process

depicted in Fig. 2.6 is that Z(g) can be decomposed in the fo1-LowÍng

form

p (p)
Z(p) = -: =

a(c)

hz 
= 

krrar(pr)hr(pyp*'... 'pn) + krrßt(pr)gr(pypo'... 
'prr)

Ez kzgïz(tr)hr(n'p4r.. .,p.r) * k24oz(nr)sr(nr,no, .. .,prr)

kn-I lan-I (uo-t)hr,(prr) * k r-I. 21n-L(nrr-t)er,(no)hn-I

kllot(nr)hr(n2,nr,...,prr) * ktzEr(nr) er(ær,p3,. ..,prr)

kt¡ßt(nr)trr(p2,p3, . . ",prr) * kt4ot(nr)e, (p2,p3,. ..,prr)

(2.46)

8n-l k -1,3ßn-1(nrr-1)hr,(po) + k -t,4cn-l(lo-1)srr(nrr)
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where p(g) and 9(gl are expressed as relatively prlme 1n Re p, > 0

for every i, 1r(n*) moníc even polynomlal of pi, ßr(nr) is a

monic odd polynomial of pi and nrj I O for i = 1 r2,...,n-1 and

j = I ,2r3r4.

Proof: The proof may be shor^m by repeated applicatLons of the

above le¡nma to the set of expressions (2.46), successivel-y.

2.3.2 Explieit Approach

Firsta !¡e establish a basic lemna and then derive the'maín resul-t

from the lemua.

Lema 2.5

The n-varlable rational function Z(g) may be real-ized as a

driving poÍnt impedance in the structure of Fig.2.6 i-f.f. Z(y) can be

decouposed in Èhe form of (2.43> with the following conditíons

(1) a(nr)/0(nr) is a reactance function of pl.

(2) n/e is an (n-1)-variable p.r. function of p2tp3r... rprr.

Proof: Apart from the fact that ít is now given that o./B is a

reactance function of pl and nlg is m.p.r. in p2rp3r... ,Pr, r the

proof follows along the same lines as those of Lenma 2.4 and Ís thus

omitted for brevity.

Theoren 2.8

The n-varÍable rational function Z(p) may be compl-etely realized

by successive appl-ícations of'the process descrlbed ln F1g. 2.6 7f.

Z(p) can be decomposed in the form of (2.46) qrith the foJ-lowing

conditÍons. .

(1) cr(nr)/ßr(nr) is a reactance functfon of Pi, I=L12,...,n-1.

(2, hrr(to)/err(nrr) Ls p.r. "

.'i':'.',.t.-.:
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Proof: The proof follov¡s direcrly by repeated appl-Ícations of the

above leruua to (2.46) starting from the last expressj-on to the first

one, successfvely.

If the deg^ Z(p_) = I for i = l r2r...rn-l, we have the following
Yi

corolLary.

Corollary 2.8.L

A sufficient condition for the n-variable rational function Z(p_)

bllinear in pytp2r...:prr_1 to be courpletely realLzable by successíve

applications of the process described in Fig. 2.5 is that Z(p) can be

decomposed in the folI-owing form

u /_\ _ ktthz (vyv3" ' ' 'PF) 
+ ktzPtïz(R1nr,'" ,Prr)

¿.\P ) -- kt:vrhr(errp3r...,p.r) + kvrlz(vr,vr,...,prr)

hz 
= 

krrhr(PyPo' " ',Prr) + krrPrgr(P3,Po, "',Prr)
82 kzsPzhs(Ryno,...,prr) * kz,rlz(nyRo,...,prr)

(2.47 )

hn-l k r-1 . thn(nrr) * krr-I. ren-rerr(nrr)
8n- 1 ko- I , 3Po- tho (Pr,) * krr- I , 4gn 

(pn)

with the folJ-owing conditions.

(1) Or,j ì0 for i = 1,2,...,n-1 and i = 1,213,4.

(2) hrr(nrr)/gr,(po) Ls p.r..

Note that apart fro¡o a few degenerate cases it rnay be shown that

Corollary 2.8.1 is equivalent to Theorem 3 given in [31]" Nevertheless,

the sÍrnpllclËy of the former over the latter could be easlly noted.

'



Flrstly, 1t replaces the ¡nultl-varfable p.r. test by the slmple veriflca-

tlon of the nonnegatlveness of a seÈ of constanÈs and one l-variable

p.r. test, vLz,, condltlons (1) and (2) of the corollary. Secondly,

ft replaces the computational- work Ínvolved in the testíng of the

appllcabillty of the multfvariable Rlchards' theorem by the simple re-

arrangements of polynonials in the form of. (2.47).

2.3.3 Examples

Example 2.3.f: Conslder the following multivariable rational

functlon

Z(Pr rP' rPo) =

2plp r+Lzpl+vlv rm rp2p3+6p rp r+5p r+2v r+v r+12 . (2.48)
1' vl " 3' - 

nfn2nr+on ln r*srl*+P 1P3+2p f 2+24p r+p 2v r+6v r+5

Rewritlng Z(V*V,V') as a function of pl, 1t can be easl.ly

seen that

39

,(ni+t¡t', * Ptçz
Z(PtrPc,P1) = 'L ¿' ' 2pth, + (pi+L)g,

¡¡here

hz 2(pr+6) + p,

s2 P2(P3+6) + 5

Thus we can ldentif¡¡

krI =k:rz=kL4 =r kt_3=2 or(e1¡=el+r ßa(or)=n,

k2L=2 kZZ=k23=1 k24=5 ar(vr)=L Br(vr)=v2

hr(nr)=p3+6 e3(nr)=t.
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Clearly, ot/Bt 
"lU oZIBZ are single variable reactance

and hZ/"5 is p.r.. Therefore by virtue of Theorem 2.8,

is realizable by the process of Fíg. 2.6"

To xeaLí2" Z(Vt,p2,p3), wê wríte (2.48) ín the form

Z(vr'vr,P3) = 2pL

vzr+t

1

where

II

z(pr'Pz)

oët
?='2 2h,

P.
"+

2

tp*S + 4prp2 +

p?+t
I

-+
pl

I
;l%-
-+-P2 s3

1
I-'2pn 4h.

L.J

5 5s3

functions,

z(v *v r,v r)

of (2.4s)

(2,49)

By rewriting

(2. s0)

+

1

zz

I+-
zL

zr=
hz=
oÞ2

'a

ls¡
2hg

48q
-+2 

-
Pz n,

A conplete reaLízatíon is given Ín Fig " 2.7.

Exanple 2.3.2: Consider the fol-lowíng 2-variable rational

functíon

*pZ 16nr+1
z(pL,P2) =

2p2

,rrl * PtPz +

1s observed that Z(p."pZ)

as a function of p1r r,re

z(prPz) =
aþl+pr+a)n, +

(nl+nr+l)p, +

,Pã*Pz+Pr+4

is bilinear in pl.

have

,p;+p2+1

v?r+ vr+ +



2prls

Ll2v,

P1 5l2Pz

4L

z(vr,vr,vr)

Fig. 2.7 Example 2"3.I.

8lP2 .5p 
2
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Cornparing (2.50)

kll=l t 0

kLz= 4 ' o

k13=1t 0

kI4=1t 0

and (2.47), we see that

and

(2. s 1j

(2.s2)

th2 ei+ vr+ t
sz vi+vr++

1s clearly p.r.. ,

Thus, by virtue of Corollary 2"8.1

form of FÍg. 2.5. To realiz" Z(pt,p2),

of (2.45),

Z(PL,Pz) =
+1

zt
p1

where

(l) The gfven functÍon does

begLn with. Instead, the 2 simple

Z(pf,pZ) is realízable in the

we write (2.50) ln the form

+ 11
-+-oo, 

'2

vïr+ vr+ t
zt

n?r* nr*

aiçl + v,

4

+4)
zz

<oL* P2 + t)

A cornplete realizatlon is given 1n Fig. 2.8.

The example (2.49) is excerpted from the example of [31]. In

contrast to the method presented in [31], here we have demonstrated

that

not have to be known to be

;:alij

tests of (2.51) and (2.
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Ëhis prerequisite conditlon.

(2) Besides the two rests

v¡ork is requfred for testing of

Richardsr Theorem.

mentloned above, no

the applicabllity of

further compuËational

the multívaríable



CHAPTER III

SYNTIIESIS OF INDEPENDENT ZEROS OF T}IE EVEN PART OF

A MIILTIVARIABLE POSITIVE REAI FUNCTION

It ls wel-l--known that Ëhe even parB zeto romoval techniques play

an ímportant role in the synthesis of single varJ.able p.r. functions.

For multivaríable functlons, the even parÈ of an m.p.r. functlon Z(Z)

wlth respect to alL the variables p = (e1rn2r...rprr) 1s deflned as

(3.1)

Some aspecÈs of the synthesls of Ëhe p.-variable independent zerosl of

(3.f) havebeen reported lg126134] for cerËain classes of mixed Ltrmped-

dlstributed netr,¡orks, and also a special development has been given

recenÈly in t6]. However, the essence of these contributions is the

extensíon of Youlars [32] single variable cascade theory to multivaríable

functlons. As Ëo the treatment of realization wíthout gyraËors and

transformers, only meager resulÈs have been reported, [10r31r36]. In this

chapter, hre present a more general devel-opment for the synthesís of

independent zeros of the even part of m.p.r. functlons. Special

emphasis will be placed on Èhe devel-opment of. realízation meÈhods

without using gyrators and transformers. ïn the following, SectÍon 3.1

I- Let f (g) be an írreducibl-e multívariabl-e rational function.
If t(p) can be expressed as f (p) = (nr-nro)tÊ(g), where Êfg)

does not possess the (nr-ero) factor, then pl = pLo 1s called
an pr-independent zero of multlplicity r of f (p).

Ev, z(p) = t, , ,(p) + zo(p) I .

L::: :...:

l:: -: : -.:;

iilrr.i:1:

l._:'-
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Ls devoted to the fundamental development of various for¡rs of Richardsr

theorem [24r32]. Sectl-on 3.2 deals wiÈh general reallzaÈions r¿Íth no

constraint on the use of coupling elemenËs. Section 3.3 is concerned

3.]. DEVELOPMENT OF VARIOUS FORMS OF RICHARDSI THEORH'Í

the well-known Ríchardst theorern l24J corresponding to a positíve

real constant of single variable theory was first inËroduced to uultÍ-

varlable synthesis by Saito L26f, and subsequently Saitors version was

exÈended to a more general case by Solirnan et aL. t311. The Ríchardsl

theorem [32] correspondíng to a conjugate pair of compl-ex constants

with positive real part was first applied to the mul-tivariable synthesis

of mixed lurnped-dÍstríbuted networks by l(anp [9] and Youla eÈ al. [34],

and a more formal- extension was given recently by Fujimoto et al. t6].

Since these theorems form the fundamental core for the subsequent

developments, r¡re shall, in thís section, give a detailed presentation

together r¿Íth theír proofs. Our derívations here, which are based òn

BelevíËchrs [1] argunents on one-port synthesis by'all-pass extraction,

are dífferent from those given in [6134] and are more compact and

systematíc.

We shall first establish a lemma r,rhich can be considered as the

fundanental versÍon of Richardst theoren for a multivariable positive

(not necessaríly real) function corresponding to a complex constant

with positive real part. The other forms of Richard.sr theorem are then

derived from this lerma.



Lemna 3"1

Let Z(y) be a multivarlable rational posíËive (not necessaríly

real) function of a set of complex varíables p = (nr,err...,prr).
fLet pf = plO = or'*jor' (or.>0) be a fíxed point in the right-half

p1-plane. If Z(Ð at p1=p10 fs a constant independent of all

other variables
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then Z(p_) can be expressed as

where

I

z(?) lpl=pr_o zo = Ro + jxo

er(nr) = oloRo * rj.oxo + jtrxo

Ar(er) w(g) + Br(nr)
u\y/ cr(v) !ü(g) + Dr(er)

(z.z)

(3.3)

(3.4)

(3. s)

(3.6,)

or(er) z(p_) - rr(nr)
w \P,, -- -cr(nr) z(p) + er(e1)

possesses the foll-owing propertfes. 
.

(1) W(g) is an n.p. function.

(2) deepr !r(p) . deen, z(p) for every :.
(3) In particular, if ptO is a pr-independent zero of the even

part functÍon Ev*. Z(g), then

nr(nr) = P1R0 + i (otOxO - oroR')

cr(vr)=pr-jurro

or(nr) = olo ,

and the residual functÍon

deepl w(g) = U.tn, z(p) - I . (3.7)



(deg- Z(Z) is the degree of Z(p_) rùith respect to pi and ís
Pt

defined as the maxímum degree of Z(g) fn pf when all the varíables

except pi are held consËant, whereas the degree of a single varíable

rational function is defined as the totalÍty of Íts poles includíng

poles at the origin and infinity and counting multiplicities.)

Proof:

(1) SÍnce Z(g) is m.p. and ol' t 0n R0 is positive.

Therefore Èhe reflectance s of Z(p_) with respect to ZO = RO+jXO

z^ - z(p)U-
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e= xz + z(p)-0

is a multfvariabl-e bounded function, i.e.,

(3. 8)

(3. e)

(3.10)

s is regular in Re p. > 0 and

l=l . 1 for Re p. = 0 ,

for every i.

Now, let "W be defined as

*
zO - z(p) pro + pr

( 3. 11)"" = 
T rr_ rr, r,

Slnce at pl = pl., Z(p_) = ZO which Ís a constant independent of

all other variables, the nunerator of s possesses the factor

ptO - pt. Consequently; the factot p10 - pl in the denominator of

"I^I is cancelled out by the same factor 1n ZO - Z(g) " Therefore, ít

foll-ows fron (3.9) that "W is regular in Re p. > 0, for every i.

It 1s noted that

*
Plo + Pt

Pto - Pt
i: :,:'
ii:: : ::

-1 for Repl=Q. (3.12)
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Thus, it fol-lows from (3.L0), (3.11-) and (3.12) that l"r'l :1 . for

Re p, = 0 for every i, and consequently "W is a mult.ivaríable

bounded function. Therefore, the corresponding impedance

1-s.,
}l(p) = r¡r

1*s"

fs a multivariable positíve function.

Substituüing (3.1-1) into (3.13) with ZO = RO+jXO and

p10 = o10*jrl_0, we obtain (3.5) with the parametert Az(nr), Br(n1),

cr(nr) and Dr(nr) satisfyinc (3.4). By solving (3.5) for z(p),

(3.3) is obtained.

(2) Condítion 2 Ís evident from the cancellation of the factor

PtO - Pt uP and do'"¡n in sW.

(3) If pt' ís an independenË zero of Ev, Z (p), it can be

shown that

z(-nlg tP2;.. . ,Prr) = -zå 
I r' 'r;'rr

Thus, ZI + Zçp¡ possesses the facËo. eTO * pl The degree property

of (3.7) results from the cancellation of the factors (nr' - nr) and

(nf' + pr¡ up and down Ín s,o. Q.E.D.

It is obseived that if Z(y) is multivariable positive and rea1,

then, from the real-property of m.p.r. functÍons, *O = 0 for ,10 = 0.

This fact implemented in (3.4) yíelds

oroz(p) - prR.

(3.13)

!l(p) =

:.':: ::

i . -.'.'

-nrz(n) + o10Ro
(3.14)
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which is now real when all the pit" are real. By setting

F(p) = R.,W(p)r w€ have the following theorem:
,.,",,r,.

Theorern 3. 1

Let Z(p-) be an m.p.r. function. If at pl = o10 > 0

Z(o\l = R-'-' lPr=oro Ro ' 
.,,.:
i,tt",

where Ro is a constant índependent of all other variableb, Ëhen 
;,:.;:,,

Z(g) can be expressed as

z(p) =
oroF(g) * plRo

(3.1s)

t. ortat) + oro

and the residuai- function f(g) satisfies the following conditíons¡

(1) r(p) is m.p.r..

(2) f(p) possesses the ídentical- degree pïoperties as given

in Le¡una 3.1 for W(g).

Corol-l-ary 3.1. 1

Let Z(p) be an m.p.r. functÍon. If at pl = o10 > 0

z(p) = Ro (3.16)

lr
r^- z(p) = ,O , (3.17)
oPl

where RO and ,; are constants lndependenË of all- other variables,

then Z(p) can be expressed as

c(pr) F(p) + D(er)

i:-!)

(3.18)
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v¡here

A(pf) = ^rr2, 
*

s(pf) = "tpl

c(ur) = blpL

o(pr) = rrvl+ ao

"o = [ C*o*roti)/ (Ro-ororo>lr', * olo

= tzoronfr/(no+orozå, lo,

l2o r'l (no-or'zo) 1 n,

rfrt
[(Ro-orozo) / (no+orozo) lni * oio

The residual function f(p) satísfies the foll-owing conditions.

(1) r(e) is n.p.r..

(2) degpi F(p) . degn. z(¿)

(3) In particular, if pl =

z(p), then

des- ;(p)
YL

for every i.

o10 is a pr-independent zero

(3.le)

( 3. 20)

of

des_ z(p) - L
P1

des_ z(p) - 2
P1

Proof:

(1) Since (3.16) holds, Theorem 3.1

sol-ving (3.15) for F(p), we have

F(p) =
orOz(p) - prRo

if pl = ol' ís a simple zero.

if the rnultiplicíty is 2 or hígher.

(3. 21)

Ís applícable to Z(p).

(3.22)

Applying

{

By

- 
fu'nrt(P) 

+ oro

At Pl = o10, ß'22) is of indeterninate form'

LrHospltalts rule to (3.22), we have

F(P)lPl=olo=*od;* = Fo (3.23)
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Since FO is a constant, we have

or-oÊ(e) * nlto
r(p) =

t nrÊ(p) + oro

rrhere Êfgl is m.p.r..

Substitutíng f(q) of (3.24) into (3.15), we have

t (R0/F0)p2, * "lofi(g) + oro(Fo+Ro)n1

ß.24)

(3.2s)z(p) =
lo10(Fo+Ro)/RoFoirrÊcql + (ro/Ro) nl * "2r,

and by substituting t0 of (3.23) into (3.25), we obtain (3.18) with

the parameters A(pl), B(pr), C(nr) and o(pf) satisfying (3.f9) '

(2) Condition 2 is evidenË when (3.6) is applied to F(g) and

Ê(n) 
'

deepi r(p) . deepi r(g) : degr. z(9) for every i.

(3) It is observed that if Pl = o10 is a simple zero of

EvrZ(p-), then Evn F(p) does not have Ëhe same zero at Pl = olo'

However, if the nu1-tiplíciÈy of the zero is equal to 2 ot hígher, then

thfs same zero is reüained in Ev, F(g) with multiplicity reduced

by 1. The degree properry (3.21) is therefore apparent from (3.7).

Q.E.D.

Theorem 3.2:

Let Z(p-) be an m.P.r. funcÈÍon. If at Pl = PIO = ol' * j'tO

(oto t o)

z(p) lpl=plo zo = Ro + jxo r

where ZO ís consÈant fndependent of all oÈher variables, then Z(p)

.,.'.":-': :: :

:.:;r:;ì:..::.
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may be expressed as

z(p.) =
A(pr)r(q) + B(pr)

c(nr)r(p) + D(pr)
(3.26)

(3.27)

where

i:,.':..,,

A(pr) = ^2p1,* "0 = [(urroRo+oroxo)/(oroRo-oroxo) .l.l+ olo*^To

B (pr) = tLpl = [ 2olorro Cnfr*xfr> / (coroRo+oroxo) J n,

c(nr) = bl_pl ='[2oroo16/ (urroRo-oroxo) ln1

o(pr) = orn?,* b0 = [(oroRo-oro*o)/(oroRo+oroxo) .r.l+ o1,o*r?,

The residual- function p(p) satisfies

(1) r (g) is m. p. r. .

(2) degpl F(P) ' deen, z(p) for everv i.
(3) In particular, if pl = pl' is an ÍndependenÈ zero of

Ev, z(p), then

oeBpl F(p) = degpt z(p) - 2 (3.29)

Proof:

SÍnce Z(g) at pl = pl' is constant independent of al_l other

variabl-es, it follows from Lenma 3.1 that z(y) uray be expressed in

terns of an m.p. function W(p) as follows

z(p_) =
(ot0R0*rroxo+j ptXo)w(g) + prRo+j (or'xo-urroRo)

(nr-jt^rr.)t,I(p) + orO

(3.28)

Since the reciprocal of an m.p. functfon is also m.p. r

. (3.30)



- (nr-jurro)z (g) * oroRo*ortoxo+jptxo

ofOz(p) - nrR.-j (orOXO-orrORO)

c(p)lo-=o1^ = #., #L J nr r ix. (3.32)
lPl "l-0 t10R0-o10x0 ti_oR'-oloxo e

which 1s clearly a constant. Applying Lenrma 3.1 again to . G(p),

we have

c(p) =

A.(nr)w.(p¡ + r.(nr)
(3. 33)c.(nr)I{r(e) + Dr(nr)

where W"(g) is an m.p. funcËion and

Ac(pl) = oroRr-url'xc + jptXc

na(nr) = ptRc + j(oroxa+rt'Rc)
(3.34)

ca(et)=Pr*jor'

Dr(nr) = o1o

If we l-et Kt be a real consËant and KZ be a positive real_

constant, Èhen ít is _apparent Èhat f(p) defined as
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1
G(p) =-=

w(p)

fs n.p" 
"

¿
Evaluating C(p) at pf = piO, we have

F(p) = -r, 
".A, 

- iKr )

Ls also an m.p. function.

(3.31)

Frorn (3.33)

G(p) =

and (3.35), it can be shown that

B.(nr)r(e¡ + [A.(nr)+irrr.(nr) 1r,

(3.3s)

(3. 36)

l-.-:,,,':i-

, : 
' 

I :: r Ì'. ..'': i ' ,,

Ì. I :,: :.: 1.:D.(nr)F(n¡ + [c.(nl)+jKlDc(pt) ]K2
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By lerring

Kl = xo/RO (3.37)

( 3. 38)

and substitutíng !ü(P) = l/e(p) ínto (3.30), Z(P) is expressed in

the form of (3.26) where the parameters A(pf) ' B(pt) ' C(pt) and

¡(pf) assume (3.27)-

With (3.35), it has been shorm that f(g) is m.p.. By hypothesis,

Z(p) is m.p.r., therefore Z(g) is real when all- the Pit" are real.

Al-so, A(pf), B(pt), c(pt) and o(pf) as given by (3.27) are

obvÍously real for real pl. Therefore, ít can be seen frorn (3.26)

that f(p) is real when all the variables are real. f(p) is thus

multivariable posiÈive and real.

The degree properties are evÍ.dent frorn (3.6) and (3.7).

Corol-lary 3.2,L

Let Z(g) be an m.p.r" function" If at Pl = P10

z(9.)=ZO=R0+jXO

S zts) - ,; ni + :xi.I

where ZO and Z'O are constants independent of all other varíables,

then Z(p) may be expressed as

A(pr)r(p) + s(pr)
(3.3e)

ôtnrtÊcsl + ô(pr)

K, = (oron' - or'x') / (torORO + orOXO)

z(p) =

¡¡ith
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l! ^ n-2 2A(pr) = ara2pi * lao (ar+ar)ta.,btJnl + a[

Ê(pr) = {"râr+"rû2)el + ao(ar+âr)e,

(3.40)
ô(pr) = {trâr+trû1)nl + ao(ur+ûr)n,

lL^22
D(nr) = ararvf * [a0(b2+b2)+bt"tJnl + "õ ,

vrhere

ar= Llbr= (rtORO + oroX') / (rfO*O - orOXO)

= 2ol_orr.<n2o * x2ol /.(rroRo * otoxo)

= 2or.ur' / (tfORO - orOXO)
(3.41)

22
"o=o1o*'l-o

and àr, b2, tl and bt are obtained from ^2, b2, "l and bt

by repLacing *0 and X0 by h and h' respectively, where

\ + jh = r(p)l with F(p) defined in (3.26). The residual
Pr-=P1o

functíon ÊCgl exhibiÈs the following propert'ies.

(1) t(g) is m.p.r. 
"

(2) degni Ê(gl < dego. Z(p) for everv i.

(3) In particul-ar, if Pl = P10 ls an independenË zero of

Ev- Z(p), then

degpl f(p) = 
[U.tn, 

z(fl'2 íif. Pl = P].0 is a simple zero'

l'
I 

U"rn, z(g) - 4 if the multipl-icitv is 2 or hÍgher'

The corollary may be shown in a sinllar manner as CorolJ.ary 3'1'1-

and is thus omitted for brevftY.

tr-

bt
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The devel-opment thus far deals v¡1th the poÍnts 1n the strÍct rfght

half pr-plane. For the particular case of Pl = JtlO, t. have the

following Brune [7,15] resul-t.

Theorem 3.3

Let Z(p) be an m.p.r. functLon. Tf. Z(p-) at pl = jt10 is a

purely i*"gil".y constanÈ independent of al-l other variables

,(t) 
lnr=¡rro 

= J*o ,

then Z(p-) này be expressed as

A(p,)F(p) + B(p,)
z(ç')= r - r

c(nt)F(g) + D(pt)
ß.42)

(3. 43)

¡rith

A(pl) = ,zp?* "0 = t(oroxi+xo)/(rroxi-xo)lnf * ,10

s(pr) =rtpt = lzuroxf,l{urroxj+xo)1n,

c(pl) = blp1 = fzurol {trroxi-xo)Jt,

o(pr) = bzn!-* b0 = t(urroxi-xo)/(oroxi+xo>tnl * '10 ,

r â'where *O = ln, z{g) 
lpl-=jrl0 

. The residual function r(g) possesses

the following propertiã".

(1) e (g) Ls m.p.r. .

(2) des^ F(9) < deg^ z(p) I + L
P1 Pi

deepL F(P) = deepl z(P) - 2

The theorem can be proved by the dfrect sËep by step reallzaÈion

of a Brune cycle [15] and is thus omLtted for brevlty. 
,,,..,,,.,

'
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3.2 GENERA]. REALIZATIONS i^[TH NO CONSTRAINT ON THE USE OF TRANSFORMERS

The development of Ëhe varÍous forms of Richardsr theorem

presented ín the previous section resulted in extended applications [5,

26,34f of Youla's [32] cascade theory wÍth regard Èo multívaríable

functions. In this section, we shal1 sunrmarize previous resulËs in the

form of the following two theorems and proceed to develop, realizatíon

neÈhods eliminating the use of gyraÈors.

Theoren 3.4

Let Z(y) be an m.p.r. functíon and let Pl = PlO = o1O * jrtO

be an independent zero of Ev, Z(g). Then the even Part zero Pl = P10

may be removed from z(p-) by a pr-variable Ríchardsr sectionl (fot

,10 = 0, Theorem 3.1) or Brune secÈíon (for o10 = 0, Theoreur 3.3) or

type E section (for ol' # 0, ,10 # 0, Theorem 3.2) if

,(p) 
lnr=nro 

= zo = Ro + jxo

ís a constant independent of all ot.her variables. Furt.hermore, the

terminating irnpedance after Èhe extracti.on is the same resídual

function f(p) of the corresponding theorem.

Theorem 3.5

Let Z(g) be an m.p.r" function and let Pl = PlO = o1O + jot.

(or' * 0) be an independent zero of Evo z(p). Then Ëhe even Part

zeto pl = p10 may be realízed by a pr-variable type C section

(for ,10 = 0, corollary 3.1.1) or type D sectíon (for r,:ro # 0,

Coroll-ary 3.2.1) if at pl = pl-'

L A deÈailed descriptíon for the Richardsr, Brune, type C, Èype E and
type D secÈfons may be found in [32].
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Z(p_) = ZO .- RO + jXO

lrll

frz(p)=zo=Ro+jxo-I

where ZO and Z; are constants independent of all other variables.

Furthermore, the Èerminating irnpedance afËer the exÈraction is the same

residual function Ê(pl of the correspondíng corollary.

It is observed that the Brune, Èype C and type D secÈíons are

reciprocal two-porËs, whereas the Richardsr and Ëype E sections are

noË" In single variable theory, Ëhe RÍchardsf and type E sections can

always be augmented by approprÍate non zero-producing sections to yield

the recíprocal type C and type D sections, respecËively. NeverÈheless,

such a process is not always possíble for rnultívariable functions. As

is seen from Theorem 3.5, Èhe removal of an independent even part zero

pl- = o10 + jot' wÍth otO t 0 by the type C or type D sections

requires an additional condítíon that the partial derivatíve with

respect to pl of Z(p_) evaluated aÈ pl = o10 * jrro is constant

independent of all other variables. However, Ín the following, we

shal1 shor¡ Ëhat gyratorless rea1-izatjon vríthout resorting to this

additional condition can be made possible by reJ-axing Ëhe cascade

constraint. Using a separation approach sÍmilar to that of Miyata [7L

we decompose Z(g) into two m.p.r. functions

z(p)=zr(p)+zr(y) (3.44)

such that each individual component function is amenable to realízation

wíthout gyrators. I.Ie shall discuss the two casest ,10 = 0 and

rtO * 0, separately.

'r..lt:tl



Case 1: ,fO ] 0. This corresponds to the famil-Íar lst order

real-axís Bott-Duffin separation. Fron (3.15), r¡e have

59

z(p)= -otoF(P) -
{ n1t<o)+oto

PtRo

1
Ro nrF(r)+oro

(3.4s)

(3.46)

The real-ization of Z(Ð in terms of Zr(Q and Zr(p) ís gíven

in Fig. 3.1.

Case 2: urr' * 0.

It nay be noted from Lemna 2.L of the previous chapter that a

pr-variable two-port characterized by a chaín matrix

[- e(p, ) B(p, ) I1l ' 'l
r(Pr) 

[ccnr) D(Pl) ]
where A(pr), B(pt), c(pt), D(pt) and f(pr) satísfyíng condi-

tions L, 2 and 3 of Lernma 2.L, is recíprocal Íff

,
"(pi) = A(pl)D(Pr) - B(pr)c(pr)

ls a perfect (or the negatÍve of a perfect) square.

Fron (3.27), we have

"tnl) = A(pl)D(pr) - B(pr)c(pr)

i: !L:1:

It is seen that

perfect square.

sguare terms and

nor the negative of a

te(ni) Ínto tr¡o perfect

- nÍ * z{,fo-ofo)nl + "ïo*10 :

.tnf) fs neither a perfect

However, ü¡e can decompose

then construct trilo m.p.r" component functlons
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z. (p) z^(p)

r (p)r (p)

z(g)

Fig. 3.l- The
of

lsË order BoËÈ-Duffín real-ization
esuation (3.45).

r(p)
u = Llbz

Ll = l/b2b1

L, = br/b,
e, = br/b.
c, = brlßr,
t, = b'/ßr,
k = Brrlb,

tr":a

z(y)

Fig. 3,2 A gyratorless realizat{on of
indePendent even Part zero'

RoPt/oto

zPt

a complex Pr-variabl-e
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assocíated with these two t.erms so as to make each indLvidual functÍon

amenabl-e to reciproc"t re"tizatíons. Let Z(p) of (3 .26) be

decomposed as

c(or)r(p) + ¡(pr) i=l c(pr)r(!) + l(pr)

(3.47)

::jì.1ì

Therefore , :'::::

,2 t , ...:e(ni) = 
ilr [At(nt)D(Pr) - Bt(nt)c(nt) J = et(ri) + er(ei). (3.48) 1t,,.,

An exauination of (3.46) indicates that the decomposition is not 
I

unique,herewePresentasimp1econvenientpossibi1-ity.

"tnl) = tel + olo * ^1.0f - o"lorl= "r{nl) *.rcol> (3.48)

By assigning "r<oll = þ?* olo * 'lol2 to zr(u-), we have

Ar(nr)D(rr) - Br(nr)c(er) = tnl * o?o* 
^1,ù'

I{ith O(pf) and C(pf) as given in (3 .27), we can solve for

'toRotutoxo z 2.2
.,1d;"-xo nt + oIo+oto (3'4ea)

zoroxfr c"fo+.lo>
rt(nt) = ßlLPl_ ffi pl (3.4eb)

Thus ,

,L 7(r, pi*bo)r(g) * ß*Pr
z.| (g) . (3.49c)
' brprF(p) + brni + bO

6L

ar(nr) =tn'r*bo

)l ,:
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Sinflarly, by assÍgning 
"rfv21) 

= -rol*rl Lo Zr(g), we have

Ar(nr) = o ,

nr(nr) = ß12P1 =
2or'(u:rORO - otOXO)

(3.50a)

(3. sob)
(rt

10

and

z^(p) =
StzPt

(3. 50c)
brnrF(n) +arvzr+ao

It is observed that Zr(fl of (3.49c) satísfíes Theorem 3.3 and

is thus reaLizabLe by a Brune section terminated in f(g) " Zr(g) as

gíven by (:.50c) raay be realized by a sirnple para11el connection.

The conplete realization is given in Fig. 3.2.

Example 3.1: Consíder the following 2-variable p.r. impedance

n (n,,er)
z(pL,Pz) =

zp?pz*plPz*3P1+pr+L

PiPz* Pi * 3prp2+ pr+ 2Q (n, , er)

Ffrst, we compute

EtP1,P, z(PyPz)

t,Z(vrvr+1)-(1 -pi)= 
a(nr,or) a(-nr-o/

is a real independenÈ even part zero.

Pl = 1, we have

',....:.'

It is seen that pl =

Evaluating Z(pr,pZ)

Z(l,pr) = RO

Thus, by virtue

1

aÈ

=l
li :i:i::., rì ;. :'. ì

of Theorem 3.1, Z(pypZ) may be expressed as

F(pt'Pz) + Pt

ì.iti
1::,.:. )

i1..

z(pL'Pz) =
nrr(nr,nr) + J.
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where

z(pyPz) - Pt PtPz + P1 + n, + 1

E(pr,pz) =-=-
-ptz(pt,vr) + L zpLpz+ 2

Therefore, Z(pLrPZ) may be realized by a Richardsr section

terminated on F(pt'pZ) as shovm in Fig. 3.3a.

Alternatively, íf a realizaËion r"liËhout gyraËor is desired,

ere try the partial. derívative condition

ùr(ernr)lnr=l. 
=z'o=o .

It is seen that ZO is eonstant. Therefore Corollary 3.1.1 is

satisfied and Z(pfPZ) may be expressed as

? .^.
z(Pt,Pz) = ipi-1 r)r(:t'p'l + 3pt ,

2PtF(Pt,vr) + P; + I

rshere

)
. _ (ni + L)z(nr'nr) - 2PL 2PrPz + P, + 1

F(prpz)=-=:-;
-zpL (nr,nr) * ní * 1 P1P2+ PL+ 2

Therefore, the even part zero at pl = 1 may be removed by

the reciprocal type-C sectíon terminated on f {e'nr) as shor¡n

in Fig. 3.3b"

Exanpl-e 3.2: Consider the fol-lowing 2-variabJ-e p.r" impedance

z (p tp z) = ffi# = "'þ *?T):þ t:!_?+!?YT^' r',

( 3.s2)

I,le havet

: ..iÌ i

i.ir. 1. '::
Ì:::':':¡ 'r .



64

Rfchards I section
r---------l!rr

rl
L______ -_J

(a)

Type C section
l----

pL/2 P212

F(pt'pz)

Ll2v, Ll2

of (a).
Ffe. 3.3 (a) A

(b) An

Ll2

(b)

real-ization of Exanpl-e 3.1.
alternatíve gyrat,orless realization

z(pr,pz)

Type E sectfon

i-- - õ-----t'

L--- - --J

Flg. 3.4 Exanple 3.2.

F (Pt 
' 
Pz)
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E,o..o^ z(p'pz) = ':::i I :I'1', I l"PyP2 - L'- ¿. Q(nr,er)Q(-rr,-rr)

Therefore, ít is seen that pl = p10 = õ/Z + iã/z is a complex

independent even part zero. Eval-uating Z(p."pZ) aË p1 = p1g,

we have

Z(pto,pz) =R0* jX.= +.J+
which is a constant independent of p2. Thus by virtue of'Theorem 3.2,

Z(pypZ) may be expressed as

Qpl + r)F(P'rr) + 2.spL
z(PtPz) =

u'here

n1F(nr,nr) +.svl+t

(.spl +L)z(nr,nr) - r.spl

(3.s3)

(3. s4)

F(pl'Pz) =
-prz(prPr) + zpl+ t

3ptPz * Pt 2p, + 3

P1P2 + I
:1.- t:.:.:

Therefore , Z(p 
. ,pz) is realízable by a type E secÈion ,,,,:,,.,,

Èerninated in F(ptrpz) as shown in Fig. 3.4. 
:':ì"r"'

Next, an evaluation of the partial derivatíve of Z(pypZ) r¿ith

respect to pl at pf = pfò shol¡s that it is not a constanË. 
i,.,.:i,.,

Therefore Theorem 3.5 is not satÍsfled. Consequently, the conplex i''."'l:

even part zero pl = p10 can not be removed by a reciprocal type D

section" Horvever, to obtain a gyratorless realization we may employ

the second approach described above.

¡:.:..tr1,,
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Accordfng to 
.(3.48), 

we have

"cnfl - epl+ r.)( .sp2L* L) - z.tn? ,!* ,

From (3.49) and (3.50), we have

,er(nr) = zpi+ L '...: .::...

=ì'.r'..itr(lr) - '5P1 
,,i,,.,r,:

Ar(nr) = 0 ':""'

Br(nr) - 2pL

Therefore, Z(Vr,er) is decomposable as

z(pyP2) =

t
(2p;+1-)F(p1,p2) * .sp1 zpL

nrr(nrer) + (.Spf*rl prF(e'nr) +-(.spî+rl

= zr(p1,pù + zzb*vr)

The conplete neÉwork ls then given by Fíg " 3"2 with the foI1owÍng

set of element values: M = 1, LL= 2" LZ=.5, 
"L = 1, "2= .25,

L3 = .5, k = 4 and .F(nr,er) as gíven by (3.54).

3.3 REALIZATIONS WITHOUT TRANSFORMERS

rn the previous section, we have presented how independent zeros 
,,i:.iì;,i.

of the even parË functÍon Ev- z(g) may be reallzed by the basic i"ii'::"
P-i-

cascade sections as well as by a separatíon method withouË using

gyrators" In thfs secÈion, we develope realization methods without
l

usLng coupl-ing eLemenÈs. The followÍng presentatíon ís dlvlded tnto 
,..,,.:::,

three cases accordfng to the Location of the even part zeto. i'i.,,ì.tì,i
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Case l-: Real--axfs zero.

Real--axis zeto may be reallzed in the same manner as discussed in

Case L of SecËfon 3.2.

Case 2: Imaginary-axis zeto.

The classícal Bott-DuffLn method for the realízation of lmaginary-

axis even patt zeto has been extended to multivariable synthesis by

Solíman et al. [3]-1. Here, we establish a different method which ís

based on Seshuts [29] minimum bridge netv¡ork.

In the article 1291, Seshu demonstrated that íf a single variable

biquadratic mínimum functíon Z(p) satisfies eiEher one of Èhe

foJ,J-owing Ëwo conditions

Z(-) = 4z(O)

Z(0) = 4Zç-¡ '

then Z(p) is realizable bY a simPle

elements. This particular resul-t may

Leuma 3.2

I¡et Z(y) be an m.P.r" function.

either one of the foilowing two forms

bridge network without coupling

be easily generalized as follows.

If Z(p) is expressabl.e in

Garvl+ bo)F(s) *' ( ? ,n,
z (p) --

brnrr(g) + (azp?+ bo)

arvl+bo)r(s)*täln,('å

(3.55a)

( 3. 55b)
brerr(p)+(¡zpÎ+bo)

then Z(g) is realizable as an fnput f'mpedance

structures shornm tn Fig. 3.5.

z(g) =

of orie of the two
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(a)

(b)

NeËwork eonfíguration
Network configuration

2b zlbl
b1/b0

b zla\t
2btlbo

expressíon (3.55a)
expression (3.55b) i

n-
l-

-t_z(p)

z(p)

Fig. 3.5

Lz =

"2=

(a)
(b)

for
for

L/ cLpL

. sr (p)

. sF (p)



Now, 1-et pf I JrfO be an fndependent zero of Evn Z(p) and l-et

z(ùlpr_=j310 = jxo e

where XO is a reaL consEant independent of all other variables. Then

by vírtue of Theorem 3.3, Z(p) may be expressed as

,2, * ,lo )r(p) +
zurox?o

------î- Pl

'1oxo*xoz(p.) = (3. s6)

69

'roxo*xo
t

tloxo-xo

"îo prF(P)

^tOX'-XO 
¿

22
P1 *'10

In

(i)

order for Z(p_)

I

o

2

set

(3. s7)

Thus, (3.56)

-x0

reduces to

Z(p) =

I{ith b2 =

Z(p) satisfies

(oro/xo) prF (p)

2.5, bO= ,10

(3.55a).

* .sv|*'10

and b, = r,rrO/XO, it is apparent that

(ir) ,'roxg*xo . Thts yields xi = -:x'l^r'
2.

.l) =:
4

'toxo 
+ xo

tloxo

I

. 'r-oxo-xof-
I

,10X0*XO

f (3.56) to be amenable to (3.55), we

=4 This yíe1ds XO = 3XO/urrO

,rr',* rfolrCg> + .5urroxon,

tr.oxo - xo

Thus, (3.56) reduces to

z(p) =
,.tnf *,fol.ts) - rroxopr

(-urr'/2xo)nrr¡p¡ * ,r?,* ,10

-2bo ='10llirh b2 = 2, and bL = -rl0/2x0, z(y) norü

( 3. s8)
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assumes t,he form of (3.55b).

Hence, we obtain the following theorem.

Theorem 3.6

Let Z(Ð be an m.p.r. function and let p1 = jror' be an

independent zero of Ev, Z(p). Tf.

(í) z(P) 
lpl=jrl' = jxo, r¡here xo is a real constant

independent of all other variables

(ii¡ X0 = t3X0/^r* where *å = t z(P) 
lp1=jrrr.,o ,

then Èhe even part zero pl=jrl' may be realízed by Fig. 3.5a for

xi = 3XO/t:rO or FÍg. 3.5b for Xi = -3x'/rr'.

Exanple 3.3: Consider the following 2-variable p.r. funcËion

P (nr, n,) +p3rv r+Splv r+av2r+zp1p r+vr+2v r+2z(prrpr) = 

-

" 1" 2' Q(nr,nr) vlvr*zvlr2+vl+apror+2vr+Z

We have

Ev- Z(p.r rpr) =
ob?* r)2(prpz + Ð2

PyP2 -\YL'Y2' 
Q(nr,nr)Q(-nr,-nr)

Therefore, p1 = il is an inagínary-axis even part zera. Evaluating

Z(pfpZ) at pl = jl, we have

Z(jI,pZ)=jXO=jl

Since XO = 1 > 0, with reference to [:t], we set pL = o and

solve for o from

70

Z(o,pZ) = oXO/r,rrO (3.60)
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I^rith ,10 = 1 and X0 = 1, (3.59) and (3.60) yleld

')p2o' +(1 -2pz)o*z(pz*1)=6 (3.61)

Solvlng (3.61), Ire see that there exists no posftive real o

lndependent of pZ. Therefore, according to [31] ' the even parb zero

p1 = jl- of this example can not be removed by the mulÈivariable Bott-

Duffln process. However, evaluating

*å = t z(p)lpl=jr = i ,

we see that XO = 3XO/¡rrO. ThereforerTheorem 3.6 1s satlsfied.

Fro¡n (3.57), we have

,
z(pt,pz) =

where

t(.spi + L)z(n'nr) - .5p1 p*pz + p2 + 1

F(pt,pZ) = =-, (3.62)
-Ptz(Pt,nr) * 2Pí PtPz * 1

and Z(plpZ) fs thus realizabl-e in the forn of Flg. 3.5a with

0, = c, = 1 and f(ptrPZ) as gíven by (3.62)

Case 3: Complex zero

In singl-e-varlabl-e synthesis theory, a complex even part zero may

be realized by first shffting the zero to the inaginary axis then

applyíng the Bott-Dufffn procedure to remove this newly generated

l-maginary-axis zeto. In a broader sense than the Brunets process of

minimr:m reslstance extraetion, the cornplex zero may be shlfted to the

imaglnary-axis by decourposing the gfven function inËo a sum of two

i:;::i:rlj
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sub-funcÉíons one of v¡hich may be reaLized by Ínspectíon and the

other possessing the desired imaginary-axÍs even part zero. Such a

preliminary extractLon step is also possible for multivariable

functions, however, the resultíng lmaginary-axfs even part zero might

not meet the realizablLíty conditions required by the methods discussed

previously. As to the Fial-kow-Gerstf s [1] urethod, on the conËrary,

the dífficui-ty assocÍated wÍËh multivariable functions arises at the

first preliminary process of derivíng a new impedance which Ís purely

real- at the complex even pa:.t zeto.

To circumvenÈ all t.hese difficultíes, we develope, ín the

followíng, a símple separation approach whÍch is based on Kimfs [1]-rl-2]

work on transformerl-ess synthesís.

It Ís noted that the inpuË impedance Z(ù of a pr-variable

lossless reciprocaL two-port cl-osed on an impedance Zr(p) rnay be

expressed in terms of the z-parameter of the two-port as

z(g) = z1r(nr)
z"(y) + [z* $lzrr(vl - ,lr(rr)1 /zrr(vr)

zr(u) + zrr(vr)

(3. 63)

From (3 .26) , the írnpedance Z(p_) can be revrrirten as

A(pr) F(p) + B(pt)/A(pt)
Z(p)= _-r___ (3.64a)c(nr) F(g) + D(pr)/c(nr)

s(pr) 1/r(p) + A(pr)'/B(pr)
= -Ð ffi (3'64b)

Comparlng (3.63) and (3.64), r¡e have the followíng two distÍnct

identifications : i:,,..,.;,.,
r1: .':.ì-r:

i.: :.
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and

z,r(nr) = A(pr)/c(pr)

zr2br) = D(pr)/c(p1)

zrr(vr) = /$tc(nr)
z, (p) = F(p)

zrr(nr) = B(pr)/D(pt)

zr2(vr) = c(pr)/o(pr)

zr2br) = ,E<$t¡(pr)

(3.65a)

(3. 6sb)

(3. 65c)

(3.6sd)

(3. 66a)

(3.66b)

(3. 66c)

(3. 66d)z, (p) = l/F(p) ,

ç,here .(pi) = A(pr)D(pt)

It may be noted that

sÍrrpl-e sËructures wit.hout

t!'ro cases are satisfied:

Case a, .fnl) Ís a perfect square and the residues of zrr(Vr)

of (3.65c) are noË greater than those of the corresponding poles of

zrr(Or) and zrr(Vr) of (3.65a) and (3.65b), respectively.

Case br *tef) is the negative of a perfect square and the

resldues of zrr(vr) of (3.66c) are not greater than those of the

eorresponding poles of (3.66a) and (3.66b)"

As Ln (3.46), we see that

"tnfl = eT + zuls - o2ro.l'l* olo*,lo

which is neÍther a perfect nor the negaÈfve of a perfeet, square.

However, rre may d,ecompose .Cnf) in the manner shom in (3.68) so as

to make each fndividual Eerm satfsfy'eLther case a or case b.

- B(pr)c(nr).

the pr-variable two-port is reallzable by

transformers 1f either one of the following



Let Z(g) of (3.26) be decomposed as

A(pr)F(p)*n(pr) _ Ar(nr)F(p¡+Br(nr)

c(pr)F(p) +o(nr) i a c(pr)r(p) + n(pr)

= X crZr(g)

Therefore, we have

t-2..:e(ni) =TorlAr(nr)D(nr) -rr(nr)c(nr)l =rarer(ni) (3.68) ,',.
j.

Case a, and case b actually amount to the foll-owÍng sinpl.e si.tuaËíons: ,,-

"r(nf) = Ar(er)D(nr) - Br(nr)c(nr) = tfr (3.6ea)

"r<rl> = Ar(nr)D(rr) - Br(er)c(nr) = -(brnr)' (3.69b)

"r(nf) = Ar(er)D(nr) - nj(rr)c(nr) = <ornl>' (3.6ec)

.r,bî) = Ao(er)D(rr) - Bo(nr)c(nr) = {arel+ b0)2 (3.6ed)

Solvlng for a., (er) and Br(nr) fron (3.69a), we have

zt(P)=ffi (3.70)

Slnce case a holds, we have
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ß.67)

-(1)--(1)- 
bo

'11 -'L2 btpt '

. ..' . .t, .tt ,

't' = I ,, . +h and 
'{1) 

tsr = r(P)

Sinllarly, we have
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z^(p)= 
o'n' 

= , (3.71)-2'Y' 
brnrr(p) + trnl + uo '

.Í1, = ,Í3, = ,tî) = : 
oän1 

: and ,ÍÐ <o-> = l/F(p),
D2p1 1- D0

urnlrlp¡ + {uruo/br)n,

and

t' :ì ,.',
,:j: ::'ttl"Íi'= ,:|'= l"

,ttr'= ïnr. ú and ,i3)csr=F(p)

$rvl+ uo)r(9)

zr(9) =3'E' brptr(g) + trnl + uo

4\Y't brprF(g) + urel + uo '

"Íl'=,:t'=,tt'= lor* Ë and

(3.72)

(3. 73)zr,(2) =

Network configuratíons for the ,r'= are gÍven in Fig. 3.6.

I 1o exÈend the range of applícabilíty, Ìre rnay also add to (3.67)

the tr¡o sÍmp1e bridge structures given by (3.55a) and (3.55b).

By asslgnÍng ZS and Z, c;arrespondíng Èo Ëhe impedances of

(3;55a) and (3,55b), respectively, we derive the following set of

equations wj-th respecÈ to (3.67).

o3 * o4 + 4c, + .25aU= 
^r/O,

o1 *o4*ar*o6=1 ß.74)
,

o1 * (bílb0b2)o2 + cl3 * c, * .25a, = arbr/b'b, "



r(p)

(a) (b)

to/bre,

r (p)

(c) (d)
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1

brvr/a,

boi bror

Fie.3.6 (a)
(b)
(c)
(d)

Network for 2., (g)
Netv¡ork for Z)(g)
Netr¿ork for Z"(y)
Network for ziQ)

of (3.70)
of (3.71)
of (3.72)
of (3.73)

b 2vt/bt



The synthesis problem is norr reduced to the simple problen of

solvíng for a set of positíve oít" saÈisfying system (3.74).

Usually.the oit" may be obtained by sinple inspectíons; nevertheless,

in general, the probleu can be handled systematically and easily on a

dígital computer. In Ëhe fo1lowÍng, for ill-ustration, we show some

special cases.

Example 3.4: In this example, l¡e consider the sol-ution of a

combinatÍon composed of only the first three component functíons.

By setting s4 = o5 = o6 = 0, froin (3.74), u'e have

o1 =1

a, = [arb, - b'(a, +b))/b|

a, = ar/b, "

Subsrituting the "it" and the bÍ'" of (3.27) into the oi'"

above, we have
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o1 =1

e, = 2(o2ro - 'ïo)[(rro*o - oroxo)/(orono + oroxo)12 (3.7s)

o3 = [(rtO*O * otO"O)/(urr'n' - orOXO)12

It ls cl-ear that c1 and s. are positive, and d^ > 0 ifa 3 ' ' z-
, :. ;.:.r:;:::--.,:

2 Z :.,'.:,,,,r-..,

oiO - riO t 0 :"ì':;

or equfvalently

1. , r-:.-.

lful .¿ro



Therefore, t¡e can conclude that if the cornplex Índependent

even part zero ptO lies r¡ithin the sector 
lfrql 

t OtO, rhen rhe

zero carr a1-ways be removed by a combínation of the first three

component funcËÍons.

For instance, the complex even part zero pl = p10 = ãlZ+jãlZ

of the exaurple of (g.52) is located at 
¿þ = tan-11 = 45o"

Therefore, ít is realizable by this combination. Fron (3 .75), we have

o1 = 1, o2= 0 and o3= 4

Sínce o2.= 0, only Zr(fl and Zr(g) are necessary. A complete

re.allzation is given in Fig. 3.7 "

Example 3.5: Consider the following 2-variable p.r. ímpedance

P (e1'e2) +pfnr+anf +a . svlp r+,rp|+ rp z*6 . 5nr+1-
Z(P,,P.) - 

-:- 
=L'Y2' Q(nr,p2) rlnr*.+o'rrr*t.tnlmro¡^rr*t
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Ì{e have

E,o-.o^ z(prpz) = toor 
I l''n1,l,t"nrlr,* 

t>2

PyP2 -'L" z. Q(nr,nr)Q(-n,,-p2)

SolvÍng rhe equarion 4pT, 3.2p2L* 1 = 0, we see rhar

pl ='pl' = .223+ i.672 is a eomplex even part zero. Evaluating

Z(ptrpZ) at p1 = plgr we have

Z(nto'lt)=3'36+j3'36

"whlch is a consÈant. Therefore, by vírËue of Theorern 3.2, Z(pypZ)

'may be expressed as



.5pL

zt(vyvr)

42r(nyer)

79

F (pt, pz)

4F (p 
r,p z)

Fig.3.7 A transformerless realízaËíon
of expressíon (3.53).

F(pt'pz)

z(pt'pz)

l¡'::-
:

fF 
(e,,nr)

2F(pt,pz)

Ffg.3.8 Exanpl-e 3.5.
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,rr?, * .5)F(pr,p ,) + z.zspt
z(pL,Pz) =

.2prF(pl, v) + .srl * .s '
(3.7 6)

where

F(Pl'P2) =
{.snf + .s)z(n'nr) - 2.25e,

-.zpLz(nr,nr) + Zezr+ .S

P1PZ+2Pt+1

P1P2 + 1

The argument of p10 = "223 + J"672 is

/ Pto = tan-l( .672/.223) = 7i-56o t 45o.

Thus ptO l-íes outside the reafi-zability region discussed in the

prevíous exanple. Therefore" it is not possible to remove ptO by

any combinaËÍon of the first three ccmponent. functions. However, fro¡n

(3.76), Ít is easily seen thaË Z(plpZ) can be decomposed as

z(pL,Pz) =

t(2ei+.s)F(p'p2)+1.2sp1 pl

.2prF(p' pr)+.tn|*.s .2p1F(e'nr)+.snl+.s

= Z*(p) + z,r(g)

Itrence, Z(pypZ) is real-Ízable by a combÍnation of ZZ and ZS

as shown in Fig. 3.8.



CIIAPTER IV

SY.IITHESIS OF A CLASS OF MI)GD LTIMPED-DISIRIBUTED NETI^IORKS

It is well-recognized l27l that much of the multÍvarlable theory 
i.,ì,,,1

was motivated by its practical applications Èo míxed lumped-distríbuted i''j:::':':'

networks. In thls chapter, r^re consider the synthesis of a class of 
.,:,,,.-..'

nett¡orks made up of m cascaded noncomniensurate transmission lines (also

referred to as r,nlt elements) separated by passive lurnped lossless two-

ports and terrninated on a passive lumped neÈwork. A sirnilar problern
l

was fLrst tackled in [28]; howe'r¡er, here r¿e ernpJ.oy a more general and

expllcf t approach r^rhlch includes the possibil-Íty of a reacËÍve termination

and elÍminates the mulÈivarÍable positive-rea1íty condítion ín favor of '

isone simpler one-variable type condítion. Explieit fornul-ae for the 
i

chafn matríces of the lumped passive lossless two-ports and the

teminatlng iurpedance are derived. Several interesËing specíal cases 
i',,.,,,:,.:

are also considered and the realÍzability conditions.are accoidingly ,;'..,-1,.
. :r.:.:.. : .

urodlfied to produce much simpl-er synthesis procedures.

Forconvenience,inthisehapter,wedenoteasetofmcomp1ex

varlabJ-es by (p) = (ur,ur,. . .,ur) i i.and Ëhe symbo L @1,,!L:'.'.'. witt- 
i,,,,,,,,.
i i._J _-":

represent a particul-ar polnt (u) wf th the variables correspondf.ng Èo i':'.': ,r'¡'

the upper indíces assuming a value of 1, the l-ower indices assr:ming 0

and the variables that are not lndicated assuming any arbftray values.
.1For instance, (U)i,, 1nplles that !1 = 1, U, = u, = 0 and the

remalnl.ng varLable" !2rr4r etc. may assume any arbitrary values. i;t:t:
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4 "L REAI.IZABILITY CONDITIONS

the synthesis of the class of networks (Fig. 4.1) conposed of

m-cascaded noncoumensurate transmission l1nes, separated by passive

lumped lossless two-ports and terminated by a positive resistor was

first advanced in [28]. It is shown that necessary and sufficient

conditions under r¡hich the nultivariable raÈional- function ZIpr(u)]

may be tealLzed as a driving point Ímpedance of the structure shown

1n Fig. 4.1 are

(a) Z[p,(u)] is a bilinear functio*l Ír, the set of variables

(u) = (ur,u2,...,rr).

(b) Z[p, (u) ] is a mulÈivariable positÍve real function .

(c) zl.p,(u)l + z*lp,(u)l = 0 at !i = 1 for i = 1,2,...,m,

(d) zlp, (u) I + Z*[p, (u) ] É O,

rrhere the lor.rer asterisk denotes the reversal of sign of all the

independent varíab1es.

It is noted thaÈ conditÍon b is irnpractícable and unwieldy to

verify. To cÍrcumvent this difficulty¡ wê take a more direct and

explicit approach and derive an alternative new set of 'reaLízabilÍty

conditÍons, stated in the fonn of the following main theorem, v¡hich

replaces condition b by some sirnpler one-variable type conditíons.

Also, in order to be able to cater for the possibility of a reactive

termÍnation. The more general structure shor¡n in Fíg. 4.2 Ís

considered, where the ter¡ninating netn'ork is l-unped and passive

but othen¡1se arbitrary. Furthernore, since the extractfon orcier of

L Z[p,(u)] is said to be bilinear ln the set of variables (u) . _ .,,ff U.tlr, [p, (u) ] = 1 for every i. 
1,"-,ì,.'
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the transmíssion lf-nes can always be determlned in advance [lg],
1n the foL1-owíng, we shall assume wfEhout loss of generality that

the ext.raction order is {UrrUrr...,Uo,}.

4.1.1 The Maín Theorem

The necessary and sufficÍent condití.ons for the mul-tivariable

ratÍonal function Z[p,(U)] bi1-inear 1n the set of varÍables

(u) = (ur,ur,...,rr) to be real-izable as a driving point impedance of

the structure shor¿n in Fig " 4.2 are as follows

(1) zlp,(u)i^ -'l =', L,2,. c.,i-11 ='-z*LP, (u)i, 2,...,i-l.l = 
# 

(4.1)

for i = l- ,2,. , . ,8, where nr(n) and ar(n) are polynomiaLs of p

only and are expressed as being rel-ativeLy prÍrne.

(2) I^Iith no = do = 1 and

n*il-
z[p' (u) L,2,...,r] = t': ,*ml1

where D- , , and d- , " are relatively prirne, formul-atemFl rft

A. = o.0, = (di_t*dr_1*) (rr+n.s) - (nr_l-ri_lo) (di-di*)

B, = Br0, = (di_t*di_1*) (nr-n.¡) - (n._t-ri_'o) (d.+di*)

ci = yfÕÍ = -(dÍ_l-dr_to) (n.+nr¡) + (ri_ttui_l*)(d.-di*)

D, = ô.Õ. = -(di_t-dr_tn)(n.-nr¡) + (rt_ttuÍ_l*)(di+di*)

for i = 1r2r...rrr|-l, where 0t is the greatest common factor of Ai,

8.. C. and Ð.. Then1- l- r-

(2a) cr+ßr+Vr+ô, Ís strfcrly Hurvtrz.

(2b) crôr-ßrV, can be factored as
ilr:::,



:t

otôi-ßiyi=rtffft* (4. 3)

(4. s)

(4.6>

r.i!-j--'.:r,;:
--...:...i,..,:...i
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where f.. is a real pol-ynomial and e. 1s a constanË which is equalL^'i

Ëo +'1 Íf c. is even and -1 if o. is odd.1-1

Synthesis Procedure: A realizalLon i.n which all the passive

lumped lossless tr,ro-ports are alJ--pass free on their ouËput sídes may

be obtaíned by the follorring

(i) The passive h:mped lossless two-ports are characterized by the

following chain matrices

r [-a¡ ß., IlTli= +l ' ^'I rot i=1,2,...,m. (4.4)-i Lt, orJ

(ii) the characteristic impedances of the unit elements are

nornalized to unity,

ZOI= I for i = 1r2r...rm.

(Íii) The terminating impedance is glven by

oll+1 * ß*ri
Yr+t * 6r+tzL=

Proof of the Main Theorem: The necessíty is evídenË fron sinpl-e ,,,, I ,,.:"
analysis" In the following, l¡e shall shor¿ the sufficiency.

By (4.2), it Ís observed that Ai and Di are even poly.nomials

whereas Bt and ci are odd" consequently, both oi and ôi are of 
1.',.,1,:-.:.. :,

the same parity (that is, both are even or odd depending on whether the

greatest conmon factor Õt is even or odd), =rn'hile ßi and yÍ are of

parity opposite to that of of and ôf. This fact together !¡ith

condfÈions 2a and 2b show that the matríces defined by (4.4) represent
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the chaln matrfces of reallzable hurped lossless t\,ro-ports.

On extracting fron Z[p,(u)] a two-port characterlzed by [f]f

and an unit element correspondÍng to Ul l¡íth unlty characterisÈic

dmpedance Ln succession, the remaining Ínpedance is of the following

form

(o,ztp,j1)l-1r) - urGtrz[p,(u)]+ar) G.7)z.l.p, (u) l =t -u1(61zlp, (u) l-Ê1) + G^f tZlp, (u) IÐr) ,,

Fron (4.2), r.re have

o1=tl*tlo

ßl_=11 -r1o

Yr-=dt-d1*

ô1=dl*dlo ;

and from (4.f), we have

- 1- r nl
zlp,(u)-l = - zol.p,(u)-l =ï

Therefore, it can be shown that both the nr¡merat,or and the denominator 
::r,:,.:r..j

of (4.7) possess the conmon factor fr-uf). Hence" " ""
i..t.

degul [p,(u)] - d.Butzlp,(u)l - r

By hypothesis , Z [p, (u) ] fs bilinear ln Il, lt therefore follorn¡s

that the remaÍning impedance Zr[n,(u)J is free of the variable ul. 
: ,.:,'.,

, Following a sÍmilar argument, ure can extract from Zr[nr(U)l a

tsro-port characterízed by [T]Z and a ur-unf.t-element with ZO2 = L

fn succession to obtain a remainLng irnpedance further free of the

varlable ]u2' 
. :,,
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ìä':

In short' condftion 2 guarantees the successful extractions of

the passÍve 1-unped l-ossless two-ports, and condiËÍon 1 assures Ëhe

degree reduction in the uit" varíables. The same aforenenËíoned

procedure can be repeated m tirnes until all the unít elements are

extracted. The synEhesís ís then completed by a final- cascade

reaLization of the ËerminaÈing Ímpedance zt which is given by (4.6)

and is p.r" as evídent from conditÍons 2a and 2b wíth i = m * l.
It nay be noted that the passíve lunped lossless tr.ro-ports defined

by (t+.4) are all-pass free [1,9s] on their output sides. This is due

to the assumption that the polyrromial pair ol and di is expressed

as a relatÍvely príme pair. The all-pass section, if it exísÈs, on the

output sfde of the i-th tr,ro-port is passed over the ur-unit-element

sectíon to the (i+l)-th tÞro-port and becomes a front all-pass of the

latter. such'an all--pass section can be easíl-y ídentífied t1] by

recognízing the conmon factors beËr,reen the two polynomials (cl.+ß.+1.+ôr)

and (a.-ßi+yf-ôr.). Different synÈheses nay be generated. by re-

dfstrÍbution of the al-l-pass sectÍons.

'7 It 1s also worthvrhÍLe to note that although (4.5) yíelds a realiza-

tíon ¡+ith unÍty characteristic impedances, the denormalizatlon of the

characteristic Ímpedances can always be achieved by appropriate

elininations of transformers. This process is carried out in the

p:coofs of the following corollaries and also demonstrated in Exampl-e 4.1.

4.1.2 Special Cases

The Maln Theorem 1s established for a general structure. In the

following, we derive some interesting corollaríes for several special

cases. According to the particular natures of the passlve lurnped

i :.r''

Ì iri:'ii
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lossless two-ports of these special cases, condÍtion 2 of the Main

Theorem is nodified into mueh simpler forms to greatl-y facilftate Èhe

synthesis procedures.

CorolJ.ary 1a

The nultfvarlable rational functÍon Z[pr(u)] blllnear in the ser

of varÍables (u) = (urrur,...,lrr) nay be realrirzed, as a drfvfng-point

fmpedance of the resistlvely terminated cascade of m noncormensuraËe

transnission lines separated by series-arm parallel-LC sections "" ,

shown fn Flg. 4.3a if and only if Z[pr(u)] satfsffes condirion l of "

the Main Theorem p1-us the following conditÍon:

(2c) the function oi/di defÍned 1n the Main Theorem may be

expressed in the form

. o' 
= * 

Gt 
+ zn, , ',, (4.8) .;, , ..

dt k=r gk ur .r ,_. 
.

for i = 1r2r...rn+l, where

n.
ZO.- = lim 1 ls a positive constant,, (4.g)

P')co df

:

and Gt and gk assume one of the followíng cases:

Case 1' gk = and Gn = tnp (lk r 0). Thfs corresponds to the

case that the k-th parallel-LC connection degenerates to a single

inductor arn wÍËh. Ínductance Î,u.

Case 2: Bk = p and Gn = l/cU > 0. Thls corresponds to the case

that the k-th LC section degenerates to a single capacitor arn wiËh

capacitance %.
Case 3: gk = p2 + ürí (r,:f t o) and Gn = lnp (lt t 0). Boch
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[¡¡+l

C¡
zot
ltt

Cz
Zoz

Pz

(o)

( b)

Ftg. 4.3 A resistj.vely-terminated cascade of n nonconnensurate
transnission lines separated by (a) series-årm
parallel-LC sections, (b) shunt-arm serÍes-LC sections.
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elements of the k-th parall-el LC section exist wíth inductance uk and
,

capacítance en = Uu:il,n.

The characteristic Ímpedances Zo.ts of the transmÍssion lines

are given by (4.9) for í = Lr2¡o..¡m and the terrninatíng resistance

is t = ZOor*1 (also frorn (4.9)).

Proof : The necessiÈy is obvious from sirople analysis. hle shal-l-

prove that conditi.on 2e inplies conditíon 2 of the Main Theorem and the

set of formulae (4.4), (4.5) and (4.6) leads to the desired realizarion

of Fig. 4.3a.

With ZOO = L, gO = 1 anå G0 = 1, ft can be shown from (4.2)

and (4.8) Èhat the set of parameter" oi, ß1, yi and ôi, i = l,zr...rmfl, ì

assume one of the foll-owÍng four cases <iepending on whether gi and
i-1

the product polynomíal I gi. are even or odd:
k=1
i-1

(i) Borh gi and 
tlr 

tk are even'

oi = zoLLi

--õl.(. - (t .
l-

v.=0¡a

ò-Zöi = 'oi-18i
i-1

(fr¡ gi Ís even and 
tl, 

tO is odd,

oi=o

ß1 = zg1-181

Yí = zoi8i

ôr=Gi

(4. L0a)

(4.10b)
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(iri) sr rs odd and 
::i r- is even,

c.=G-11

BL = zoL9r

Ír = zoL-rEL

6i=o

i-1(iv) Both gi and 
n], 

gk are odd,

oi = Zoi-18Í

ßí=o

Yi=Gi

ôi = Zoi8i

Therefore, we always have

ar+ß .+.¡ .+ô . = G.+(Zaf*ZOr_t) 8,

(4.10c)

(4.10d)

(4 . L1)

and

ot6i-ßÍyi="ffÍfio (4.L2)

for i = 1r?r...rm+l, where fr= ffi "r, 
,i = I if gi ís

even and .i = -1 if gi is odd.

consequently, frorn (4.L2), it is obvious that condÍtion 2b is
éatfsfied. Also, from (4.1r) and the definirions of Gl, gi and zoi
given 1n the corollary, condftion za is satlsfied. Hence, according

to the Main Theorem, z[p,(u)J is realfzable in the general structure
of Fig. 4.2. Next, we show that the set of formulae (4.4), (4.5) and

(4.6) leads to the partfcular structure of Fig. 4.3a. i:.f.-... i L
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(4. fO) , f t can be shor.sn Èhat

o rlvr-rfro, Gi I Io

, ..J Lo"' ;L J L,

Fron (4.4), (4.6) and

rI
[T], =- i, ,æ;l

ifv=
m

(4 "L4)

if v =l-
m

for conveníence and is defined

(4. 1s)

ín (4.13) are

However, we

To do this,

1

or*,. þfl F
si+r I Io 
'ot I L-t

uced

t-

I

rod

+G
mf

-*t

8r+t

+GË

is int

and

gor+r\

zo^

'o^
goÉr\

uk

rDr= Lr2,

zL=

for f

where the parameter

as follows

I
c

( t Ír ^l^ ,u is odd.

"n={ 
u;o

I o Ír 
o]o 

tu is even'

It is noted that if the parameters ui_l_ and ui
not equal to 0, the factor

ro rl
[t o]

Índfcates the presence of gyrators in the i-th two-porË"

shall show that such gyrators can always be eliurinaËed.

let us consíder two adjacent Ëwo-ports [T]f and [t]r.*

v.

L: ,]""[':'ä,.J I l"'[,,il l"'f
vi+l
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I
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a
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Upon denormalization of the characteristic impedances of the unit

nts, we have

[' i] [' ',,',.1 F A F *] [' "*.] It Hl t"l

L, îl l*,,Jþ il þ i-l l*.,Jl,,;lL,J
(4.16)

The desired realizaËíon of Fig " 4.3ais apparent from (4.76) above.

By a dual consideration, we have the following corollary for the

m

I
i=1

It is observed that the

of the i-th

secÈion and

By a similar

eliminated.

network can

fact,or

v.
rl 1

I

oJ

always be passed over the Ur-uniÈ-element

the same factor of the (i+1)-th t$to-port.

all the gyrators can be combined and thus be

chain matrix representation of the overall

'or[t,
m

l
i=1

eleme

I
r--;/t-ul'l-

structure of Fig" 4.3b

Corollary lb

The muLtivariable raEional function Y[p,(u)] bilinear in the set

of variables (tr) = (ur'ur,...,u*) rnay be reálized as a driving-poínt

admittance of the s¡ructure shown in Fig. 4.3b tff Y[p,(U)] satisfies
i:,
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condition I of the Main Theorem (with z repLaeed b¡r y) plus the

following condition:

(2d) The functíon nr/d, defined in the Main Theorem (wírh Z

replaced by Y) can be expressed as

ti=ltnr-v
dr tlr sk ' ^ol

for i = 112r...rÐ+1 , trhere

n.
Y^. = lim 1 > 0U1 Ã

P->- -i

(4.r7)

(4.18)

and Gt and gk assume one of Èhe following cases:

Case 1' gk = and Gk = "kp (cn > 0), Thís corresponds to the

case Èhat the k-th series-LC connect.ion degenerates Ëo a single

capacitor shunt arsr wiÈh eapacitance ck.

Case 2: gk = p and Gk = l/gk > 0. This corresponds to the case

that the k-th series-LC sectÍon degenerates to a single inductor shunt

arm with inductancu 0k.

Case 3' sk = pz+rî (rf t ol and ck = gkp ("o , o). Both

el-ements of the k-th series-LC connecÈion exists v¡ith a capacitance 
"k

andinduct,ance -'2lk = r/okck'

Corollary 2a

, The multÍvariable rational functÍon Z[p,(rr)] bil-inear in the set

of varfables (u) = (ur,urn...,!r) may be realized as an input

f-mpedance of the reslstively termÍnated cascade of m noncomnensurate

transmission lines separated by Iow-pass LC sectlons as shown Ín

Flg. 4.4a tff z[p,(u)] satisfies condirfon 1 of the Maín Theoren
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Il l2

(q)

(b)

À reslstively-t,erninated cascade of
Èransmission lines separated by (a)
(b) hÍgh-pass' LC sections.

m nonconmensurate
low-pass LC sections,

I m+l

Ĉz

Flg.4.!+
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pl-us the following condítion:

(2e) The function n./¿. definecl in the Main Theorem can be

expressed in t,he following c,.m.rl"nËl forms

tikP
(.Q,re 

' "lP 
- 

Î.rP, crl+Yo, )

2í
T

k=0
n.

t-

d.
1

2L-L
K¿ b..p

k=O l-K'
(crP, LZP 

- 
lrn,crn+Y'r)

(4.re)

(4.20a)

(4 .20b)

(4 ,20c)

where

'oi -
bto

tío

bit
d

i0

a.-r-l

%

c.
1

=(

>0

i-1
I c.

j=l J

í-1
-çc

j=l J

) >.0

) >of,i=(

for i = 1 ,2, ... ,ûrl1 .

cumulant, is a conveníent mathematical tool in dealing with ladder
netr^'orks, detail on t.he subject may be founä in [B]. A cumulanÈ
denoted b-v (^I,^Z 

"r,_l ,an) is defined as the deterniinanÈ of
the matrix ¡¡ ¿ r¡

.tl 0

-1 "Z!

:': '

;;;
000
0.0 0

.000

.000

.000

. . ^1 oÈ1

. -t r -1A-r

.0-lr
a

Sirnple rules for evaluating cumulanËs are given ín [8].
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The tr.t" and "it" are the element values of the inductors

and capacitors, respectívely, ZO! = ,1"0, for f_ = Ir2r... rm are

the characterÍstic impedances of the transmissÍon línes and \=1/r0*t
, is Ëhe terninating resistance.

Proof: The necessity is evident. we shal-l show that condition 2e

inplles condition 2 of the Main Theorem and the set of formulae (4.4),

', 
(4.5) and (4.6) leads to the particulat reaLization of FÍg. 4.4a.

From the even and odd parts of ri and dÍ, it can be easÍly
:.

':'"---) verífied taht

ti * tio = 2(9.Lp,"ro 

-9rn,cre)n. - ni* = 2"Oi(trn,crp 
"Í_j_p,gip)

d, - di* = 2(crP,O.rO- grnocre)

for i = 112r...rm+l .

Using the follovring cumulant identity [8]

(at an-2ran-lr"r) = (ar-an_2ran_l)an

*,tr-- 
^n_Z) ,

it can be shown fton (4.2) and (4.2L) rhar

At = Y0i-r{rr"*e2+t)0,

Br = Yor--tYottiPot

C, = crpQ,

Df = Yofoi

(4.2la)

(4.zLb)

(4.z]-c)

(4.zrd>
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for i =1r2r...rm+l, where YOO = 1 and

0i = 2{ (crn-or_rt) (trn-"r_tp)

Therefore,

oi = Yoi-r(l.c.p2+t¡

ßi = Yoi-tYoisiP

Yf = cip

ôi=Yoil'

and we have

and

oiôÍ-ßiyi=fifio

r¡here r. = ffi.

- (srp-ør_re) ("tp cr_rn))

(4.22)

(4.24)

cr+ßr-Fyi+ôi = Y0Í- L9,.ctpz * (YOi-tYO.t.+cr)n + Yoi-L*Yoi G'23)

By hypothesis, YOi , 0, [i , 0 and "i 
t 0, therefore, it is

apparent f.ron (4.23) that condiÈion 2a is satisfied. Also, condition 2b

is satisfied as evident from (4 .24). Hence, acccrding to the Main

Theorem, Z[p,(u)] is realÍzable in the general form of Fíg. 4.2,

Next, rre prove that the set of formulae (4.4), (4.5) and (4.6) leads to

the partÍcul-ar structure of Fig. 4.4a.

From (4.4), (4.6) and (4.22), we have

'*t)
lrlr

i:.: ¡:.:

! r:'

"ot-t"oturo IYor l
1

orYoi-t
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:. L

Tr-,
0

for i = 1 ,2r. .. ,m, and

7 =Y'L '0m

Frorn (4. 25)

rePresentation of

9. .c.p
l- l--

c.DL'

2+t
9,.p

l-'

1 F
0

I
aot

(4.2s)

(4.26)
(lnrrlc*+rp2+t) + \s*+rp

cm+tP + \.

and (4.26), it can be shown Ehat rhe chaín matrix

the overall network is given by

t'l[ ' 'orur] lz"zv2*r'll*, lL "'zP
['"'o
1"1

m
ll¡t

i=1 æ

2+L

P

\

1

':l 

L*,* 
":'l

*+l"*+lp2rl u*ro-l

"*rlp ' 
I

(4.27)

Therefore, the desired reaLizatíon of Fig. 4.4a i-s apparent from

(4.27) above.

0u replaclng p

Corollary 2a, we have

Fig.4.4b.

tlî" e.t by t/î., and "r by t/î.1 in

following corollary for the structure of

by

the
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CorolJ:ry 2b

The nultívarfable ratíonal function 2tp,(u)] bíl_ínear in the seÈ

of variables (u) = (urrur,... rur) nay be realized as a driving point

impedanee of the structure shor.¡n in Fig. 4.4b if and only if the ,,,,,,,,, .

function Zl,p , G) I obtaíned by

zl.p,6)1 = 2tô, (u) l ^1D=-'p

satisfies corollary 2a with nt and "i being replaced by L/¿í and

L/î"L, respectively.

Corollary 3a

The nultivaríable rational funcËion zlp,fu)l bílinear in the ser

of varíables (u) = (ur,urr...rllr) may be realized as a driving point

lmpedance of the resístively terminated cascade of m noncor¡rnensuraËe

transmission línes separated by series-arm series-LC sections as shown

in Fig. 4.5a if and only íf zlp,fu)l sattsfies condirlon I of the

Main Theorem plus the following condÍtion:

(2f) rue funcrion n./d. defined in the Main Theorem can be

expressed as

n. S-1=L-p+j*zoL,
dt1-P (4.28)

where

Zoito,

trìtr_rlo wíth Lo=0,

S1ìS1_1>0 wLrh SO=0,

for I = 11 2r... r¡É1 .

l..j:lj;ì:r:1...::
i, :_.i-:i:::-:::
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:].j .:l

L ¡ Cr L2 Cz [m Cm [ *o¡ Crn+r

e--rT--l l€--€ o-{rT.-jF=-=---rr*-11-
Zot Zoz Zom

þt
RL

Fie.4.5

lLz

(o)

( b)

A resístively-terminated cascade of
Ëransmission l-ines separated by (a)
series-LC sections, (b) shunt-arn

t

m noncommensurate
series-arm

parallel--LC sectíons 
"

L.:1
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The characteristic impedanees, the terrninatf.ng resistance, the

lnductances Urt" and the capacftanees "ft" are given by

,Of fot 1= 112r...r8,

\ = Zo*rr

LL = Lí - Lt_t and

L/e, = Si - St-t ,

respectively.

Corollary 3b

The nultivariable rational funct,Íon Y[p,(u)] bilinear in the set

of variables (u) =(urrurr...rpr) may be realized as an Ínput

admittance of the structure of Fig.4.5b if and only if Y[p,(u)]

satisfies condition 1 of the Main Theorern (with Z repLaeed by Y)

plus the foJ-Lowing condi.tÍon:'

(2g) The function nr/d, defíned in the I'fain Theorern (vriÈh Z

replaced by Y) can be expressed as

n. I.J=ç.D+J*toi
dt 1' -P

(4. 3o)

r¡here

Yoito'

ct\dr_rìo with co=0,

rfìrr-fì0 r¡fth l0=0,

for 1= 112r.,.rn+l .

The characteristlc impedances, the terminatlng resistance, the
:.

fnductances irt" and the capacftances .it" are given by ¡.çli
tt;'':'
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ZO!= 1/Y0f 1= 1,2,...,m,

\, = 1/"0*r 
,

L19.. = It - ft-t and

c. = C. - C. - cL t- 1-l-

resPecti're'Y' 
, ,.. .,,

, The proofs of these two corollaries rnay be shown in a similar ,,:',,t.:.:
r1, a,.. 

'. 
.

manner as the previous ones and are thus omitted for brevity. . l

'.:-:._'::-::

4.2 E)GMPLES

Exanple 4.1: Consider the following rnultivarÍable function

where

and

zrp,(u)r = i+#*i ,

N[p,(u)]=(ttp3+trp2*t¡p*¿)utuzu3+(6p4+6p3¡21p2+t5p+12)u,u2

+ (sp4+op3*29p2*zop+18) uru, + (zop2+sp+4) uzu3

+ (ep3+sp z*tzp*ø¡u, + (I-2p 3*6p2*ztp+Ll)y, '.'. ':'

+ (t8p3+sp2*38p*t8)u, + çrspz+op+o) 'it-''.,

D[p,(u)] = (tgp4+tep3*29p2*rtp+9)utuzu, + (12p3+tzp2+9p+3)uru, 
l,:.;,,:l

+ (t 3p 
3+t zpz+tlp+z) uru, + ( s6p 

3+rsp 2+zop+9 
) u ru,

+ (tzp4+t zp3+ztp2+9p+6)p, + (tep2+op+3)u2

+ (zzp2+sp+2)ug + (24p3+rzp2+rsp+ø¡ . :

First, we shall determlne the order by whleh the unit elements are



t.: :'-:.ì- ¡

104

extracted. FollowÍng slmllar lines described Ín [tg], we compute

z[p,(u)r'2'37 = zlp,{u)l,r] ,

the first uniË element to be extracted corresponds to v2.

Next, r^te compute

1 I 3o2+2o+Gzl.p,6)i," j = 
o

It 1s observed that

','r, =ztp,{u)l,rl 
:

z'tp , $)i
I,,,nt-¡i,'

Therefore, the second unit element to be ext,racted, corresponds to U3.

Hence, ft follows that the order of extraction is {Urrurrur}.

Ihowingtheextractionorder,9'earenowína.posÍtÍontoverffy

the realizability conditions; 
i",,Ìïr,.
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(1) ConditÍon 1 of the Main Theorem ís satisfíed, since

. .2- -2- ot p?+p+z
z[p, (u)-) = -zxl.p, (u)-] = j 

=dr zpz+p+t

z[p,(,,v>]l = -z*Íp,{u)ll = l= H
.,,

zlp,(v)tr,r1 = -zolv,{u)},31 = ä= ffi
(íi) Fron the set of equations (4.2), we have

o, = pz+z

ßr-=P

Yl =P

ô1 = 2P2+1

er+ß1+y1+ð1 = 3p2+2p+3

o1ô1-ßlyL= z1p2+t)2

er+ßr+y2+62 = 5

o2õ2- Brtr= 6

cr+ß3+y3+ð, = 3pt4

o3ô3-ßrvr=3

o,O+84+y4+ôO = p*2

o464 - BOvO= I

o2= 3

ßz= o

12= o

62 = 2

o3=1

83=o

Y3=3P

ô3=3

c, = l-
4

ß, = 0
at

y¿r=p

ô. - I
4



thereforerít is obvfous Èhat condltions 2a and 2b are satlsfíed.

Henceraccording Èo the Maln Theorem Z[p,(U)] is reallzabl-e as an

lnput lmpedance of the structure of Fig. 4.2 with Èhe extraction order

{ur,ur,ur}.

Using the set of formulae (4.4), (4.5) and (4.6), a compl-ete

realization is given in Fig. 4.6a. Upon elininating of transforners,

we have an alternatíve reaLLzation shown ln Fig. 4.6b in which the

characteristÍc impedances are denormalized.

Exanple 4.2: Realize

NIp, (u) ]Zlp,(u)l =
olp, (u) l

where

and

106

N [p , (u ) ] = çp5++p4+lp3*24p2*sp+8)u tu zu 3 + (sp4+ro p3*Bp2*zop+2)u tu z

+ (zps +Zp4*tsp 3*tzp2*top*a¡u 
tu 3 + ç+p4+tzp3+9p2+Lzp+2)v rv.,

+ (top4+8p3*t6p2*t0p+4)¡r, + 1p5++p4 +-tp3+tzp2+7p+8)p,

+ (ap4+op3*18p2*6p+4)u3 + (zps+zp4+L4p3+6p2*t+p*4¡

D[p, (u) ] = (zp4+4p3+.sp2+ap+z¡u1u2u3 + 1p5+4p4+3p3+tzp2+2p+8)prp 2

+ (4p4+zp3*top2*4p+4) utu¡ + 1p5+ap4 +4p3+tzp2+4p+8)¡rr¡r3

+ (2p5+zp4*6p3*øp2'r4p+4)u, + (p4+ tpz+z¡v, ,,-',,,

+ (zp5+zp4*ap3*6p2+Bp+4)u, + (zp4+6p2+4)

FLrst, following the same steps as Ln Exaurple 4.1, the extracÈ1on

order fs deternined as {urrurrur}.
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Next, r/e see that conditlon 1 is

i'.- "'- -;ì::'
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z [p, (u) 3f = -rolp, (u) 3] 
=

ztp,fu)\, = -r*te,(u)|l =

satísffed, since

p2*3p*2
= ---.-

p'+2

p4*4p3*tp 2+5p+2
----;-__

(p'+t) (p'+2)

t1
dt

nz

dz

upon performing partial. fraction expansions for the functions

nr/d. for i = 11 2r3r4, we havel-1

_ 2 _ - .2 _ 13
Z[p,(u)ã,11 = -zole,(u)i,rJ = ;- =

3

p5*zp4*tp3*6p2*7p*4

1n2+:.) (pz+z)

3p

-r 

1

',IP-+2

3pp+-i-+1
p-+2 p'+1

3pP= +T+p*2
p-+2 p-*1

3pP
= T r.pti .

p-+2 p-+1

tl
d1

42

d2

t3
d¡

n4

dr,

(4.32a)

(4.32b)

(4.32c)

(4.32d)

Therefore, condition 2c is satísfied. Hence, according to corollary la,
z[p,(u)] is reallzabLe as an input impedance of the structure of

Fig. 4.2a with the extraction orrler {U'U',U2}. The eleurent val_ues

can be easily identifLed from (4.32). A complete realization is glven

tn Ffg . 4.7 .

Exanple 4.3: Real-Lze

. zlp, (u) I = N[p' (u) ] 
-

Dlp, (u) J '
l.:.
i:



¡¡here

N[p,(u)]= (zop4+aop3*t3p2*t8p+1)utuzu, + (20p5+40p4+ztp3*46p2*7p+8)utuz

+(t+op4+zop3*26p2*9p+2)u1u3 + çBps+top4*zop3*z+p2+øp++)yry., 
,,,,, ,

+ ( 4 op 
5+zo 

p4 *s 4p3 *23p2 +L4p+4) u, + I ep 
6+r 

op 
5 +z øp4 +Iøp3 *tap2 *t 6p+z) lr z

+ ( t 6p 
5+Bp 4 * 4op3 *rzpz *tzp*z¡u, + ( 1 6p 

6+ep 5+s 
zp 

4+l 
ap 

3+3 
ep 

2+8p+4 
)

':. _.-

and ..,.,,.,,

Dlp,(u)l= (zop3++op2+ap+8¡utu2u3 + (zop4++0p3+t7p2+26p+1)prp z 
t¡"¡a,,,

+(+op3+zopz*rop*+.¡utu3+1sp4+top3+t8p2+20p+2)|2v3

+ç+op4+zop3*34p2*t3p+2)u,+(8p5+l6p4+22p3*28p2*8p*4)!z

+(t6p4+Bp3*:op2*top+4)u: + (16p5+8 p4++4p3+t4p2+tap+z) .

:

The extraction order of this exanple can be shovm to be {urru, }2}. '

Condition I of the Main Theorem is satisfied, sínce

t
zlp, (u) 3J = -ro[p, (u) 3] = Ït = 2p'+p+L 

(4.33a)- dl Zp+L

'r .r nr 4oq+2oJ+so'+1 . 5o+1z[p,tu)\t = -rorn,(u)fJ = l= # (4.33b)

- .2 - ). - o3 4p6+4p5+t3p4+ep3+ep2+4p+1zlp,(u)ã,1J=-z*1.p,(u)!,11 = 
U= 

.

(4.33c)

Now, let us assume that the given function is real-izable in the

form of Fig. 4.4a, then the element values ean be easily identified

fron (4.20), (4.33) and Èhe fol-I-owing funcrlon

109
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\ = ,[p, (u) r,2,3f =d4r

I.Ie have

4p 
6+zp5+t 

3p4 +4 . sp3+9 p2 +zp+t

4p5 +zp4 +ttp 3+3 . sp2 +4p+ . s
(4.34)

YOl = 1, Y02 = .5, YO3 = 1, \ = 1/YO4= 2,

01=1, L2=2, 93=1, L4=0,

cL= 2, cZ= L, . "3 = 1, "4 = 0.

1o show thaË Z[p,(u)] is indeed realízable in the form of

Fig. 4.4a, we need to verify that condítion 2e of Corollary 2a is

satfsfied. Evaluating the crrrnulants defined on the right hand side

of. (4.19) and comparing with (4.33) and (4.34), we have

(l,rp,crn+Yor) = (p,2p+1-) = 2p2+p+1 = ol

(crt+Y'r) = (2p+1) = 2p*1 = d,

(1,1p,c1p,g2p ,crp*Yor) = (p,2p,2p,p*.5) = 4p4+zp3+5p2+t 5p*1 = n,

(erp,9,rp,crp*Yoz) = (2p,2p,p+.5) = 4p3+'2p2+3p*.5 = dz

(Î,rprc1p,g2p tc2pt lrp,crp*Y'3) = (p,2p,2p,p,p,p*1)

= 4p6+4p5+13p4+9p3+9p2+4p+r = n,

(crp, Lrp,crp,lrp,crp*Y'3) = (2p,2p,p,p,p*1)

= 4p5+4p4+1r-p3+7p2+4p*1 = d,

(crn, crn I L 
2p t 

c 
rp,, 

!, 
3pr 

c3p r 0Ot, cOn*Y'4) = (p, 2p " 2p,p, p, p, 0, o+. 5)

= 4p6+zp5+t3p4+4.sp3+9p2+2p*L = no

(crp r t 2p, c 
zp,.c3p r cap r ¿4p, con+Yo4) = (2p,2p,p, p r p, 0, 0+. 5)

= 4p5+2p4+1tp3+1.5p2+4p+.5 = d4 
c

Therefore, Corollary 2a is satfsfied. A conplete realizatlon Ls given

1n Flg. 4.8.
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Fig. 4.7 Exanple 4,2.

Fíg.4.8 ExampJ-e 4.3.



CHAPTER V

CONCLUSIONS

The real-izations of mul-tivarlable netr¿ork functions ín the forms 
:.: :ì.of certain sÍurple structures wiÈh constituent buiLding blocks involving ,,ì,,..'
.functfons of reduced compLexity have been investigated. Three different 

.,.,.,.,;.:

conflguratfons have been considered: ¡::,:.'.:;'

(1) A sum connection of immittances v¡hich are functions of mutually

dísjoint sets of variables

(2) A cascade connecËion of sÍngle-variable passive lurnped net-

works, the cascaded subnetrsorks are also assuned lossless

except the last termination. i

i(3) An extended Bott-Duffín Èype structure. 
,,

The realízability conditions have been formul_ated in terms of the

decomposability of the given functÍon in certain special forrns. Apart 
:;.:.1,:
:Ì'-i ; :.::fron the general formulations based on the mulÈivariable posíÈive 
,,, ,.:
':::;..reality condition' more direct and explicit alternative approaches have .',',",;,

also been discussed. The improvements and generalÍzations of the

presented results over the existing ones have been illustrated by

:l.,ti l:..,1examPles ' ;. :.:.:,:

the synthesis of independent zetos of the even part of a nulti-
variable posltive real functfon has been studied. Besides the

discusslon of the usual cascade extractfon; by the basfc sections,

ví2. , the Rf-chards ? , Brune ' type c, type E and type D sectÍons, 
,.,:,,::.,;:r
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removal methods wlthout resortfng to gyrators and transformers have

been presented. The developnents of the latter were prinarlly based on

Miyatats separatÍon concept of the even part functÍon in single varl.able

synthesÍs theory. rn partfcular, seshurs results on the rninfmal

realf.zatlon of btquadratÍc single variable minimum functions have

also been generalized t,o mulËivariable funcËions as a means to

reaLlze imaginary-axÍs lndependent even part zeros r,rlthout using

transformers.

The problem of the synthesis of a class of networks made up of m

cascaded noncorrrmensurate transmission lines separated by passive tr-unped

lossless tno-ports and closed on a passfve lumped network has been

consldered. A ner¿ set of realizabÍlity condiÈions has been presented.

The advantage of the proposed set of condítions is that it requÍres no

multfvariable p.r. test and is sinple to apply. Explicít formulae for

the chain matrices of the passive J-umped lossless two-ports and the

terninatíng inpedance have been derived. Several interesting specfal

cases have also been considered and the realízability conditions have

accordf.ngly been nodified in such a h'ay that the synthesís is carríed

out almost by sinple ÍnspectÍon..
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APPENDIX

In a recent artÍcle [2]n Èhe synthesís of a two-variable driving

point impedance Zr(s,tr) in the form of Fig. A1 is considered.

| 
"r(s,p)

Fig. At The basic netr¡rork configuration consídered in [2].

It vras shown that the necessary and suffi"i.nt condition for

Zr(srl), a t\to-variable p"r" functíon of two complex variable s and

p, to be a driving point impedance realizable by an s-variable l-oss-

less tno-port neÈr.rork wíth a p-variable driving point impedance zoþ)

terniuation are that Zr(srn) can be written as

zr(s,P) = ff)t(t) 
. "t(")t(o

mr(s)e(p) + nr(s)f(n)

where 11 and 12 are even and 11 and oz

f.n s r¿ith the following eonditions:

(1) F(s) = [n,(s)+n,(s)]/[n,(s)+n,(s)J

(ii) G(s) = urr(s)nr(s)-nt(s)nr(s) is a

a perfect) square.

(i11) The rationaL functÍon f(p)/e(p)

are odd polynomials

1s p.r..

perfect (or negative of

s-variabLe
lossless

zoft)

Ls p.r" .
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In the following, !,re observe that

' (1) The 2-variabLe posítíve reality requirement Ís superfluous.

Nevertheless, if it is índeed the authorfs intention to regard it as

a prerequísíte condition on the gíven functÍon, then condÍËions (i)

and (ií) of the theorem are redundant

(2) The theorem has not been formulaËed in a proper manner and

conseguenÈly leads to faulty result under certain circr¡ustances. For

example, consÍder the folJ-owíng function

("2+1)p - 2s
Z.r \s rp,/ =- -2sp * ("2+r)

Here, we see thaË

m., * n., 
"2+L - 2,

(í) = --- = 1 is obvíouslY P.r..
^z*nz s.+1 _2s 

i

(ii) r1r2 - r1o2 = ("2+r) 2-4"2 = ("2-t)2 is clearly a 
j

.perfect square

f (p) :'-:';:.
(iii) -- = p ís evidently p.r.. r:;-:r'::::,:

c (p) .,,,.i,..

,.'._,t ,'. 
t'

Although all the three conditLons of the theorem are satísfied, :

Zr(s,n) is not a reaLízable function.

I . .: i r:
.:-a
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