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ABSTRACT

This thesis is concerned with the synthesis of multivariable
network functions.

The realizations of multivariable network functions by simple
decomposition techniques are investigated. The conditions for
a multivariable rational function to be realizable in certain simple
structures with constituent building blocks invoiving functions of
reduced complexity are derived. Three different configurations are
considered:

(1) A sum connection of immittances which are functions of
mutually disjoint sets of variables.

(2) A cascade connection of single-variable passive lumped
networks, the cascaded subnetworks are also assumea loss-
less except the last termination.

(3) An extended Bott-Duffin type structure.

Apart . from the general formulations in terms of the mﬁltivariable
positive reality condition, more direct and explicit alternative
approaches are also presented.

The synthesis of independent zeros of the even part of a multi-
variable positive real function is studied. In addition to the usual
cascade extraction by the basic sections, viz., the Richards’',
Brune, type C, type E and type D sections, removal methods without
resorting to gyrators and transformers are presented. The developments
of the latter are primarily based on Miyata's separation concept of the

even part function in single variable synthesis theory.

1)




The problem of synthesizing a class of networks composed of -
cascaded noncommensurate transmission lines separated by passive lumped
lossless two-ports and terminated by a passive lumped network is
considered. A new set of realizability conditions is presented. The
proposed set of cdnditions, which is simple in application, circumvents
the difficulty associated with the test of multivariable positive
- reality. Several inﬁeresting special cases are also considered and
the realizability conditions are accordingly modified to produce much

simpler synthesis procedures.

(11)
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CHAPTER I
INTRODUCTION

The concept of multivariable networks was first introduced by
O0zaki and Kasami [15] arising from their work on variable-parameter
networks. The theory has since been investigated extensivgly in the
study of analysis and synthesis of many other classes of networks
[20,27,33], in particular, the class of mixed lumped—-distributed
networks.

One of the prominant features of a multivariable formulation is
that the resulting network functions are rational functions of a set
of complex variables. Each of these variables characterizes a special
type of component. For example, consider a class of networks made up
of mixed lumped elements and noncommensurate transmission lines [25,27].
The associated network functions are not rationmal in the complex
frequency variable p. However,_such functions may be conveniently
expressed as multivariable rational functiqns by characterizing the
lumped RLC elements by the frequency variable p and the i-th type
transmission lines by its Richards' [25] variable By = tanhrip, where
T is the basic electrical length of the i~th type line.

It should be noted that the independent variables in a multi-
variable formulation, in general, are not necessarily physically
independent. For instance, in the example given above, the Richards'

variables ui's are in fact functions of the frequency variable p.
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Furthermore, it is also not necessary to require that each vériable
be a function of the frequency p; as in the case of variable-
parameter networks where some of the variables could be functions of
some outside factors such as temperature, a control setting, etc..

Similar to single variable theory, the concept of multivariable
positive reality is of paramount importance in multivariable synthesis
theory. The following are the fundamental definitions:

A multivariable rational function Z(p) of a set of complex
variables p = (pl,pz,...,pn) is said to be a multivariable positive
(m.p.) function if and only if (iff)

Re Z(p) > 0 for Rep, >0, i-= 1;2,...,n,

i
where Re denotes "The real part of'. An m.p. function Z(p) is
said to be multivariable positive and real (m.p.r.) iff 2Z(p) 1is real
when all the variables are real. |
An m.p. function Z(E) is said to be multivariable para-odd iff
Z(p) +2,() =0,
where Z,(p) is the para-conjugate of Z(p) and is defined as
Z*(E) = Z*(—B*), where the upper asterisk denotes the conjugate
operation. For real rational functions, one has Z*(E) = Z(—E), and
an m.p.r. function Z(p) is said to be a multivariable reactance
function iff
Z(p) + Z(-p) = 0.
A multivariable rational function s(p) of a set of complex
variables p = (pl,pz,...,pn) is said to be a multivariable bounded

function iff

ls@| <1 for Rep, 20, 1=1,2,...,n,




A multivariable bounded function S(E) is said to be multivariable
bounded real iff s(p) 1is also real when all the variables are real.

Since its introduction [15] in 1960, a substantial amount of work

-on multivariable synthesis has been reported in the literature.
Detailed reviews of the early developments have been given by Scanlan

[27] and Youla [33], and recently a comprehensive bibliography has been

presented by Ramachandran and Rao [20]. In spite of the extensive

developments in the past, the multivariable synthesis proved to be

unwieldy, and consequently more straightforward synthesis techniquéé
are expected to emerge. This study is concerned with the development
of simple and straightforward special synthesis methods. Furthermore,
it is noted that although the multivariable positive reality is a
compact gauge for the measurement of the realizability of a multi-

variable function, the verification of such a property is difficult and

laborious. 1In this study; a special emphasis is also placed upon deriving
possible alternative explicit realizability-conditions, which would
replace this prerequisite condition by some simpler conditions.

In Chapter II, the realizations of multivariable rational func-

tions, ih the forms of certain simple étructures with component
building blocks involving functions of reduced complexity, are inves-

tigated. -Three different configurations are considered:

- (1) A sum connection of immittances which are functioﬁsbof’
mutually disjoint sets of variables. |
(2) A cascade of single-variable blocks.
(3) A Bott-Duffiﬁ type structure.

The realizability conditions are formulated in terms of the




‘decomposability of the given function into certain special forms. 1In
addition to the general formulations based on the multivariable posi-
tive reality condition, more direct and explicit approaches are also
discussed.

Chapter IiI is the study of the removal of independent zeros of
the even part of a multivariable positive real function. Apart from
the discussion of the cascade extraction by the basic sections, viz.,
the Richards', Brune, type C, type E and type D sections, realization
methods without resorting to gyrators and transformers are also
presented.

In Chapter IV, the problem of synthesizing a class of networks
comprising cascaded noncommensurate transmission lines separated by
passive lumped lossless two-ports and terminated by a passive lumped
network is considered. A new set of realizability conditions is
presented. The advantage of the proposed set of conditions is that it
replaces the multivariable reality test and facilitates the synthesis
procedure in a straightforward manner. Several interesting special
cases are also considered and the:realizability conditions are duly

modified into much simpler forms.




CHAPTER 1I

SYNTHESIS OF MULTIVARIABLE NETWORK FUNCTIONS

BY SIMPLE DECOMPOSITION METHODS

The synthesis of general m.p.r. functions was first proposed by
Koga [13]. He proved that the multivariable positive reality ié‘;
 sufficient condition for realizability. However, his approach,
involving certain factorization processes of multivariable matrices, -
is kndwn to be'aifficult and laborious. Furthermore, the validity of
his result has been qgestioned'recently by Bose [37], ﬁho provides a
counter example indicating that his method does not always work. To
circumvent the inherent difficulties of the general synthesis broblem,
some workers [3,4,30] have recently developed special techniques for
certain classes of functions. The essential idea of these developmeﬁts
is to derive simple criteria for the decompbsition of a given~m;p;r. |
function‘into‘a sum of éingle variabié p.r. functions sbAthat'ﬁﬁé
synthesis may .be performed by the well-established single variable'
methods. " In tﬁis chapter, we consider a more general aspect of synthe-
sizing multivariable network funCtions'in the forms of cerfaiﬁ simpie' 
structﬁres wi;h‘constituent building blocks involving functions of
reduced complexity. Three different configurations. are conéidered}

(lj A sum connection of.immittancés being functions of‘mﬁtually

disjoint sets éf va:iables.
(2) A cascade connection of single variable subnetworks,kwhich,

are lossless except the last termination.




(3) An extended Bott-Duffin type structure.
The realizability conditions are formulated in terms of the decomposa-

bility of the given function into certain special forms. Furthermore,

since the verification of the multivariable positive reality, in
general, is rather unwieldy and intricate, we shall, in the following,
also develope possible alternative explicit formulations which remove

this p:érequisite condition in favour of some one-variable type

conditions.

2.1 SUM DECOMPOSITION

| The concept éf realizing a élass of-multivariable reactance
functions in terms of single variable reactance functions in a sum form
was first advanced by Soliman and Bose [30]. Recently, Bose [3] extended
the method by presenting a revised version for the previous result.
However, the above work mainly dealt with the complete deéomposability

of an m.p.r. function into a sum of single variable p.r. functions;

moreover, the decomposition algorithm for the case of reactance

functions involves laborious steps of extracting various constants.

In this section, we consider the more general problem of decomposing

a class of m.p.r. functions into a sum of such functions each having
a smaller number of variables than the original one. In particular,

the decomposition of the class of multivariable reactance functions

into a sum of single variable reactance functions is reinvestigated.
Results are presented in Section 2.1.1 and illustrated by examples in-

Section 2.1.3. Explicit forﬁulations are discussed in Section 2.1.2.




2.1.1 General MPR Approach
In the following, we first establish a simple criterion, stated
in the form of Theorem 2.1, for the decomposability of a given m.p.r.
function into a sum of m.p.r. functions with fewer variables.
Several interésting consequences of the theorem are then discussed.
For the speciél class of multivariable reactance functions, an
extremely simple decomposition method is given in Thebrem‘2.21_[16]
which eliminates the laborious steps of constant extractions.as
required by the algorithm given in [3].
Theorem 2.1
Let Z(p) be a multivariable positive real function of a set of

complex variables p = (pl,pz,...,pn). Then Z(p) can be deCoﬁposed

- as

i(g) = Zl(pl,pz?...,pl)v+ Zz(p£+1,p2+2,...,pn) , f<n (2.1)
Where Zl(pl’pZ""’pl) is m.p.r. in. PysPys+= 5P and
Zz(p2+i,p2+2,...,ph) is m.p.r. in p2+1,p2+2,.f.,pn, 1f and only if

Z(p) —'Z(pl,pz,...,pz,l,l,.j.;1) ' : - (2.2)
is not a function of pl,pz,...,éz;

Proof: The necessity is evident. We shall show the sufficiency;
Since Z(p) is m.p.r., Z(pl,pz,...,pl,l,l,...,l)' is alSo’m.p.r;
Let p, = ju; , 1=1,2,...,¢, be the minimum point of Re Z(jwys3wys

°..,jmz,l,l,...,l) with the minimum'value» K;» where Re Z denotes

1  Independently, a similar result was also reported recently in [23].’




the real part of Z. By repeated applications of the maximum modulus

theorem of a function of a complex variable, it can be shown that
Re Z(pl,pz,,..,pz,l,l,...,l) -K>0 (2.3)
for Re P; >0, i=1,2,...,%.

Let Z1 be defined as

Zl = Z(p19p29°°'apz,19'°'31) - K H ' ’ (214)

then with (2.3), it follows immediately‘from the definition of an m.p.r.
function that Z1 is m.p.r. in pl’PZ""’P2°

Now, let Z2 be defined as

ZZ = Z(E) - Zl(PlsP29°-°sP2) ° (2.5)

By hypothesis (2.2), it is apparent that '22 so defined is not a
function of PysPysecesPye Hence, by selecting P, = jwio,.i=l,2,...,2,

and taking the real part of both sides of (2.5) it is seen that

Re Z2 = Re Z(leo’jwzo’°"’jsz’P2+1’°°"Pn) >0,
for Rep, >0, i= 2+1,9+2,...,n.

Therefore, Z2 is also m.p.r. in Po41°Pgap = 9Pye The sufficiency
thus follows from (2.5).
Note that apart from an additive constant the component functions

Z, and Z, are completely defined by (2.4) and (2.5). For & =1,

1 2
Theorem 2.1 yields the following useful corollary which enables us to
detect the possibility of extracting a single variable p.r. function

from a given m.p.r. function while leaving the remaining function still

m.p.r. and having one variable less.




Corollary 2.1.1
A necessary and sufficient condition for an m.p.r. function Z(p)

to be decomposed as
Z(E) = zl(Pl) + zz(Pz:p3s-°-’Pn) s

where Zl(pl) is a single variable p.r. function in Py and

ZZ(pZ’P3"'°?pn) is m.p.r. in PysPgseecsP s ;s that
Z(E) - Z(P191’1’°°'.31)

is not a function of P (The component function Zl(pl) may be
determined according to (2.4) as follows
Zl(pl) = Z(pl,l,l,...,l) -~ Min Re Z(jwl,l,l,...,l)) . (2.6)
“1
By répeated applications of Corollary 2.1.1, we obtain the
following corollary, which corresponds to the special case considered
in [3].
Corollary 2.1.2
A necessary and sufficient condition for am m.p.r. function-‘Z(E)-
to be decomposed as
| n
z(p) = iil z;,(py) >

where zi(Pi) is a single variable p.r. function in ;s is that
Z(p) - Z(l,...,l,pi,l,...,l)

is not a function of Pys for i=1,2,...,n-1,
As in (2.6), the sub~functions Zi(pi) may be derived from

(2.4) as follows
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Zi(pi) = Z(l,...,l,pi,l,...,l) - Ki’ i=1,2,...,n-1, 2.7
and
n-1
z ()= z(p) - _E Z,(@;)s (2.8)
i=1
where
Ki = Min Re Z(l,...,l,jwi,l,...,l) . . (2.9
w.
i

Note that Corollary 2.1.2 is essentially équivalent to the main theorem e

given in [3]. However, it may be noted fhat the condition. that
F(n—l)(pn) in [3] (Zn(pn) of (2.8) above) be p.r. is superfluous as
far as the realizability is concerned. The fact is that the p.r. nature
of F(n—l)(pn) is automatically satisfied from the hypothesis that the
given function is m.p.r.. As evident from Corollary 2.1.2 above, no
further p.r. test at any stage is necessary provided that the given
‘function is m.p.r.. |

From (2.7), it is observed that the determination of the sub-
functions Zi(pi)'s involves the extraction of a maximum possible
. positive constant from a p.r. functionm. For reactance functions,
howe&er,‘such laborious stéps may be avoided by fully exploiting the
property of reactance functions. The improved result is summarized in
the following theorem.

Theorem 2.2

A necessary and sufficient condition for a multivariable reactance

function

P(p)
Q(p)
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t6 be decomposed as
n
z(p) = iil Zi(pi) s
where Zi(pi) is a single variable reactance function in P for
i=1,2,...,n, is that the denominator Q(p) can be factored as
n
Q(p) = izl q; (p;) » : (2.10)
where qi(pi) is a single variable polynomial in Py i=1,2,...,n.

Furthermore,

(i) 1If qi(pi) does not vanish at the origin, then
zi(Pi) = Z(O,...,O,pi,o,.,.,O). (2.11)

(ii) 1f qi(pi) vanishes at the origin, defining a new function

>

1 (2.12)

1 Pi

e

Z(p) = Z(p) -
i

where
& Ai = piZ(E) 'Pi=0

is the residue of Z(p) -at Py = 0, then
. A,

Zi(pi) = Z(O,...,pi,O,...,O) + 5;- . (2.13)

Proof: The necessity is evident. We shall prove the sufficiency.

It is observed that a multivariable reactance function Z(E) is

an m.p.r. function satisfying the following additional condition
z(p) + Z(-p) =2 0 . (2.14)

With (2.14), it can be shown that a pole of a multivariable reactance
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function in a pi—plane, independent of all other variables, lies on
the imaginary axis of the pi—plane.

Also, according to a result due to Ozaki and Kasami [15], the
residue of an imaginary axis independeﬁt pole including the origin and
infinity of a m.p.r. function is a positive constant, and the rémoval
of such a pgle yields a remaining function which is also m.p.r..

By hypothesis, the denominator of Z(p) can be factored in the
form of (2.10), therefore all the poles of Z(p) are independent poles.
Consequently, it follows from the above two results that Z(p) ‘can be

expressed in the form

A A, p ’ .
2(p) = A, p, + 24+ p 2L Ly, ' (2.15)
4 11 P 2 2 2°=
1 L pl + wll _

\
where Alm, A10 and All s

It is apparent from (2.15) that the denominator of ZZ(B) is free

are non-negative and ZZ(E) is m.p.r..

of the variable Py- Therefore, it can be shown from the degree
property of m.p.r. functions that ZZ(E) is no more a function of Py

Applying the analogous procedure successively, we can deéomposef

Z(p) as
“n - A, . A, Dp.
-z(E)= T (Aiwpi+__"!'9.+<z___2.i-u_2_)
i=1 P; L p, +tw
i ig
n o
T Z,(p,) ' . (2.16)
4=1 1177 : _ ‘

where the Zi(pi)'s are obviously.single variable reactance functions.

Now, if qi(pi).‘does not vanish at therrigin, then Aio = 0 -for

every 1. ‘By setting Py = 0 for every k except k = i, it follows

from (2.16) that

A




z,(p,) = 2(0,...,0,p;,0,...,0) .

Moreover, if qi(pi) has p;, as a factor, we can always remove
the terms —= 's by inspection in advance to yield a new function
i

which satisfies the same condition . as the previous one. Hence, we can

write (2.13) as a consequence of (2.11) and (2.12). Q.E.D.

2,1.2 'Explicit Approéch
Due to the particular nature of the problems cbnsidered in
Corollary 2.1.2 and Theorem 2.2, the requirement of the multivariable
positive reality on the given function can therefore be relaxed by
reformulating the propositions'into the folloWing alternative forms.
Theorem 2.3
Let Z(p) be a multivariable rational function. The following
two conditions
(i) Z(l,...,l,pi,l,...,l) is a single'variable p.r. function of
p., i=1,2,...,n-1.
(i1) The function
- n~=1 ,
z =2(p) _.izl z;(py) ' , (2.17)

is a single variable p.r. function in P> where

Zi(pi)'= Z(l,..f,l,pi,l,...,l) - Ki | (2.18)
with
Ki = min Re Z(l,...,l,jwi,l,...,l).
wy

are necessary and sufficient for Z(p) to be a member of a subclass of

13
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m.p.r. functions, which can be decomposed as a sum of single variable
p.r. functions.

Proof: The proof is straightforward.

Necessity: Since Z(p) is m.p.r., condition (i) is obviously
satisfied. Next, we shall show that Zn defined by (2.17) is a single
variable p.r. function of P

Since Z(l,...,l,pi,l,...,l) is p.r. in Py the functions

Zi(pi)'s defined by (2.18) are also p.r. and minimum, viz.,
Re Zi(jwio) =0, i=1,2,...,n~1 (2.20)

where jwio is the mimimum point of (2.19).

Since Z(E) is decomposable into a sum of single variable p.r.
functions, it can be shown that Zn defined by (2.17) is solely a
function of P - Consequently, by selecting p; = jwio fqr

i=1,2,...,n~1 and taking the real parts of both sides of (2.17) then

comparing with (2.20), we have
Re Zn(pn) = Re Z(jwlo’ijO""’jwn—lo’pn) . (2.21)

Since Z(p) is m.p.T.,

Re Z(jwlo,jwzo,...,jwn_lo,pn) >0 for Re P, >0. (2.22)
Therefore,
Re Zn(pn) >0 for Rep >0. (2.23)

With (2.23), it is apparent from the definition of p.r. function that
Zn(pn) is p.r. in P,
Sufficiency: As shown above condition (i) coupled with equation

(2.18) indicates that the Zi(pi)'s, i=1,2,...,0-1, are alsc p.r..
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The sufficiency is thus evident from (2.17). Q.E.D.

Since independent poles at the origin of pi—plane can easily be
removed by inspection in advance, in the following theorem, we shall
assume without lack of generality that the given function does not
possess poles at the origin.

Theorem 2.4

Let

be an irreducible multivariable rational function having no poles at
the origin. The necessary and sufficient conditions for Z(E) to be

decomposed into a sum of single variable reactance functions in the

form of
n  a.(p,)
Z(p) = I L L
are

(i) The denominator can be factored as

n

Q(E) = igl qi(pi)s

where qi(pi) are even polynomials of Py
(ii) The numerator can be expressed as
n .
P()= T oa,(p;) T q,(,) ,
=1 T gy MTH
where
P(0yeees0,p.30504.,0)
o, (p,) = =
i*i *

I q,(0)
i F




(i1ii) ai(pi)/qi(pi) is a reactance function of py-

Proof: It is noted that the first two conditions assure the
separability of the given function into a sum form; while the third
condition attests to the reactance nature of the component functions.

The proof is straightforwardband thus omitted for brevity.

2.1.3 Examples

Example 2.1.1: Consider the following m.p.r. function in

P = (Pl’p2 sP3 ,Pl’)

- P1P2p3p4 + Plp3p4 + 3plp2P3 + zplpz + p3p4 + 2P1 + 3P3 + 2

Z(p)

It is required to determine the decomposability of (2.24) into a sum of

(plp2 + 1) (p3p4 + 2)

m.p.r. functions having fewer wvariables.

- It is_observed that

3p4 = P3P, — 2

Z(B) - Z(Pl’szlsl) =

is notva function of Py and Py>

Theorem 2.1 that Z(p) can be decomposed as

3P4

therefore, it follows from

Z(E) = 'Z]-(Pl’Pz)v + ZZ(P3’P4) .

Using (2.4) we obtain

Zl(PI;PZ) = Z(pl’pzﬁlsl) -

_ P

plp2 + 1

min Re Z(jml,jwz,l,l)-

w199

+ 2
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Hence from (2.25) the desired decomposition is

P pp4+3p3+2
2e) - 1+1+ : + 2 )
P1P2 P3P4

Example 2.1.2: It is desired to determine whether the following

multivariable reactance function1 in p = (pl,pz,pB)

2 2 2 2 2 2
o) P(p) Splpzp3 + PoPy + P1Ps + 20p2p3 + 30plp3 +6pl+4p2+120p3
ZP = =
= 2 2 2 2
Q(p) PiP, + 4p2 + 6p1 + 24

can be decomposed into a sum of single variable reactance functions.

We see that the denominator Q(p) is factorable as

2 2 2
Q) = (p + 6)p] + bp, + 24

(o2 + 6) (o5 + &)

Therefore, using Theorem 2.2, the given function is decomposable as

Py
Py + 4
Py
Py + 6

Z3(P3) = Z(O,O’p3) = 5P3

Py Py
Z(p) = 5 + 5 + 5p3 .
+ 4 Py + 6

The proposed technique, as evidenced above, is much simpler than the
method given in [30] where laborious steps of constant extractions are

required in the process of deriving the component functions.

1 For comparison, the identical problem given in [30] is considered.




2.2 CASCADE DECOMPOSITION

The synthesis of an m.p.r. function as an input impedance of the
cascade structure shown in Fig. 2.2 was first considered in [6] and
recently in [2]. However, Reference [6] considers only the very

special case that the extraction order of the pi—variable two-ports is s

interchangeable. TFor interchangeable configurations, the input impedances

are more restricted. Furthermore, their conditions assume certain
special forms for the even part functions, and this consequently limits
their applicatioﬁs to non-reactance functions. The cénditions given

in [2] are more relaxed and include reactance functionms. However,

their development is based on the single variable Darlington theory [71,
and the results are therefore restricted to reciprocal realizationms.

In addition, as it 1s pointed out in thevAppendix that the formulation
presented in [2] leads to faulty conclusion under certain dircumstances.‘
In this section, we taékle the problem with a'different approach; The
realizability conditions are derived from the chaiﬁ parameter charac-
terization of passive lumped lossless two-ports. As a consequence,.

the results obtained are simpler and more general.

2.2.1 Genefal MPR Approach
First, we establish a fundamental lemma which is essential té the
subsequent developmenté.
Lemma 2.1

The 2x2 real polynomial matrix

L | A Be
—_— : (2.26)

£(p) c(p) -D(pi
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- -
p,~PLLN Z; (PysPgsevesP )

Z(Pl’pZ’ e ’pn)

Fig. 2.1 Realization of Z(p;,P,s...,P.) 1in the form of a
12F2 n
p,-variable passive lumped lossless two-port closed
ot an (n-l)-variable impedance ZL(pz,p3,...,pn).

e —® —--
— p;~PLLN p,-PLLN , | p,_g PLLN ZL(pn)

Z(pl,pz,.--,pn)

Fig. 2.2 A cascade of single~variable passive lumped lossless two-ports
terminated by a single variable passive impedance.
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represents the chain matrix of a passive lumped lossless two-port iff
(1) A(p) ana D(p) are either both even or odd, while
oppositely, B(p) and C(p) are either both odd or even.
(2) A(p)+B(p)+C(p)+D(p) = G(p)H(p), where H(p) is strictly
Hurwitz, and G(p) is either even or odd and is a common divisor of
A(p)+B(p) and C(p)+D(p).

(3) A(P)D(p)-B(p)C(p) = ef(p)f(~p), where £(p) is a real

polynomial, e=1 if A(p) is even and e=-1 if A(p) is odd.

In particular, the two-port is reciprocal iff the following
additional condition is satisfiéd.

(4) A(P)D(p)-B(p)C(p) = fz(p), i.e., f(p) dis even iff A(p) is
even and f(p) is odd iff A(p) 1is odd.

The above lemma is a classical result and a brief proof may be
found in [32].

Lemma 2.2

A necessary and sufficient condition for the n-variable p.r.
function Z(p) to be realizable as an input impedance in the form of
a pl—variable passive lumped lossless two-port terminated by an (n-1)-
variable p.r. impedance as shpwn in Fig. 2.1 is that Z(p) can be
decomposed as

P(p) alpdh(pysPgseeesp )+ B(P)8(PysPgsee5P))

Z(p) = s (2.27)

Q)  YIh(P,spyseep ) + 8P IE(R, P50 - 5Py)

where P(p) and Q(p) are assumed to be relatively prime in Re Py >0

for every i, and a(pl) and G(pl) are both even polynomials of P>

whereas, B(pl) and Y(pl) are odd polynomials of Py
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In particular, the pl—variable two~-port is reciprocal iff
a(p,)8(p,) - B(p)Y(py) = £ (p;)
1 1 1 1 172

where f(pl) is either even (for e=1) or odd (for e=-1).
Proof:
Necessity: It is noted that if the output terminals of a two-port

characterized'by the chain matrix

are terminated by an impedance ZL’ then the input impedance seen
looking into the input terminals is given by

AZ_ + B »
7 = . (2.28)

CZL + D

The necessity is therefore evident from (2.28) and Lemma 2.1.

Sufficiency: First we show that h(pz,pB,...,pn)/g(Pz,p3,---,Pn)

is an (n-1)-variable p.r. function.
As a consequence of a result due to Ramachandran et al. [22], we

have that if

k kt1 r

P t Cp4rPy tee- topy (2.29)
k' k'+1 r'

APy Hpggpy TF es Py

z(p) =

is an n-variable p.r. function, where the ci'

s and di's are
“polynomials of PysPgsecesP and ck’dk"cr’dr' # 0, then
k-k' = *1 or 0, r-r' =11 or O and the quotions ci/di for

max (k,k') < i < min (r,r') are (n-1)-variable p.r. functions of

.pz,p3,;-«,pne




By hypothesis, we have that a(pl) and G(pl) are both even and
B(pl) and Y(pl) are both odd, therefore by writing (2.27) in the

form of (2.29) and taking any 1 within the defined range, it follows

22

from the above result that h/g is (n-1)-variable p.r. in PysPgsecesP .

Now, let o© be an arbitrary positive constant, then it is clear

from the definition of m.p.r. functions that

h(0’09°-°90)

=K > 0 (2.30)
8(0,05...,0)

and

alp )X + 8(p,)

Z(pl,c,o,...,o) = (2.31)

is p.r. in Py-

By assumption, P(p) and Q(p) are relatively prime in Re P >0
for every i, therefore, a(pl)K+B(p1) and Y(pl)K+6(p1) 'are also
relatively prime in Re Py > 0. Consequently, it can be shown from the

properties of single variable p.r. functions that
G(Pl) +8(py) + Y(Pl)‘+ 6(p1) is strictly Hurwitz
and a(pl)é(pl) - B(pl)y(pl) can be factored as
a(p)é(p) - 8(pv(py) = £(PIEC-P)

where f(p) 1is a real polynomial.

Hence by virtue of Lemma 2.1, the following matrix

1 a(p,) B8(py)

[f] = (2.32)
P
1 f(pl) Y(Pl) 6(p1)

represents the chain-parameter matrix of a lumped passive lossless ;wo—
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port in the variable Py-
Therefore, by letting
(2.33)

9

R
=

it is apparent from (2.27), (2.28) and (2.32) that Z(p) 1is realizable
in the form of Fig. 2.1.

Now, ,for the case of reciprocal realization, it may be shown from
condition (4) of Lemma 2.1 that

(i) If f is even, then
1 a B
[t} = — (2.34a)
PL £ |y &

h

(ii) If f is odd, then

1 | B @
[t} = — (2.35a)
P1 £ ls v

g L
ZL = —h—- (2.35b)

Theorem 2.5
Let Z(p) be an n-variable p.r. function. Then, ~Z(p) is
realizable as an input impedance of the cascade structure shown in

Fig. 2.2 iff Z(p) is decomposable into the following form




24

2(o) P(R) oy (p)Ihy(PysPgseesp ) + B,(p)8y(PysPgseeesp,)
B =

Q) Y, (PP (PuP s )+ §,(PI8,(PysPyseeesp )

hz(Pz:p3’-"spn) _ az(pz)h3(P3ap4s--~apn) + 82(p2)8>3(p39p4a-°'spn)

b ]
gz(pz,ps,---,pn) Yz(pz)h3(p3,p4,---,pn) + 62(p2)g3(p3,p4,---,pn)

(2.36)

h _( _1oP) ) o . b ) +8 (I ()

gn—l(pn—l’pn) Yn—l(pn-l)hn(pn) * Gn—l(pn—l?gn(pn)

where P(p) and Q(p) are assumed to be relatively prime in Re Py >0
for every i, and both ai(pi) and Gi(pi) are even polynomials of
Py while oppositely, both Bi(pi) and yi(pi) are odd polynomials

of 1 for i=1,2,...,n-1.

In addition, the pi-variable two—-ports are reciprocal iff
a,(p,)sS (é ) - B.(py,(p,) = ¢ fz(p ) i=1,2 n-1
b Bl A AL | S AL LS | i7ivi7 rEece» :

~ where fi(pi) is either even (for €1=1) or odd (for si=—1).

Proof: The theorem follows immediately by repeated applications
of Lemma 2.2 to (2.36), successively.
It may be noted from (2.32) and (2.33) that, in general, a

realization may be obtained with thé chain matrices of the pi—two-ports

given by

1 a.(p,) B,(p,)
[f] = — | % 178 L er 1=1,2,...,0-1  (2.372)

Yi(Pi) §,(p,)
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and the terminating impedance given by

h_(p)
. _nPa’ (2.37b)

z
L
& (pn)

As for reciﬁrocal realizations, it can be shown from (2.34) and

(2.35) that

0 17i-1[a,(p.) B8.(p,) o 1%
1
1, =—— i7i (2.38a)
i G (1 o Y () 8, (p)) 1 0
for 1i=1,2,...,n-1, and
( h (p )
_n-n’ 1f v =0
gn(pn)
z, = $ (2.38b)
g (p)
-—}—l'n L if Vo1~ 1,
{ a(Po)

wvhere v (with v, = 0) is introduced for convenience and is defined as

k 0
k
0 if n f is even.
=1 *
v = (2.39)
' k
1 if i) fl is odd.
=1

2.2.2 Explicit Approach
Similar to the previous section, we first present a preliminary
lemma then establish the main theorem from the lemma.
Lemma 2.3
The n-variable rational function 2Z(p) may be realized as a
driving-point impedance of the structure showvn in Fig. 2.1 iff Z(p)

~can be decomposed in the form of (2.27) with the following conditions.
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1) a(p1)+8(Pl)+Y(pl)+6(pl) is strictly Hurwitz.

(2) alp)8(p )-8 Y (py) = £(p)E(-p,), where f(p;) is a
real polynomial.

(3) h/g 1is an (n-1)-variable p.r. function of PysPgsesesP

Moreover, the pl—two—port is reciprocal iff

(4) f(pl) is either even or odd.

Proof: The lemma is a direct consequence of (2.28) and Lemma 2.1.

Theorem 2.6

A'necéssary and sufficient condition for the n-variable ratiomnal
function Z(p) to be realizable as a driving point impedance of the
cascade structure of Fig. 2.2 is that Z(p) is decomposable into the
form of (2.36) with the following conditioms.

1 ai(pi)+Bi(pi)+yi(pi)+éi(pi) is strictly Hurwitz, i=1,2,...,n-1.

@) 0, (,)8; ()8, ()Y, () = £, (-p), 1= 152,071,
where fi(pi) is a real polynomial of P,

3) hn/gn is a p.r. function of P -

Furthermore, the pi—two—ports are reciprocal iff

4) fi(pi)’ i=1,...,n~1, dis either even or odd.

Proof: The proof follows by repeated applications of the above
lemma to the set of expressions (2.36) starting from the last expression
to the first one, succesively. Realizations may be obtained with the

-same set of equations as (2.37) and (2.38).

2.2.3 Examples
Example 2.2.1: Consider the feasibility of realizing the following
m.p.r. function Z(p) in p = (pl,pz,p3,p4) as a driving point impedance

of the cascade structure of Fig. 2.2




P(p)
z(p) = —— (2.40)
Q(p)
where
2 2 2. 2. 22 2 2
P(p) = 2p;p,pyp, + 5PyP,P3 t PyP5 + 2p1P,P, + 2DP4P,
2 2 2 2
3PPy * OP1Py * Py + 2PypoPy + GpyPyPp, + 10P,PyPy
+ 2p,p, + 4p p2p + 10p p2 + 2p2 + 4p,p, + 4p.p
172 27354 7 TTF2R3 3 274 3%
+ 10p2 + 1Op3 + 2
and

42 2 2 2 2 2
Q(p) = 4pyp,p5 + 8P1P,P4p, + 20p|P,P4 + 4P1P, + 2P P,R3P,
2 2
* 3P1PyP3 * PyPy t 2PyPyP, 2P PgPy + SPyPy + 5PPy
2
+ Py + 2p2p3 + 4p2p3p4 + 10p2p3 + 2p2 .

Rewriting P(p) and Q(p) as polynomials of Pps it can be

shown that Z(p) can be decomposed as

2
(p1+2)h2 + 2p1g2

Z(p) = 3 , where (2.41a)
pyhy, + (4p1+2)8,
"h h, + p,g
zZ . 3 23 , Where (2.41b)
:J) Pyhs
2
h (p+h, + p.g
83 = 3 3 4 374 , where (2.41c)
3 (pytl)g, . .
h4 i : '
= . (2.414)
g4 '2p£+5

Therefore, by virtue of Theorem 2.5, Z(p) is realizable in the

form of Fig. 2.2.
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Now, from (2.36) and (2.41) it can be identified that

Therefore, we have

i

282 = ByYy

]
]

and from (2.39), we




and
= + N
ZL 2p4 5
A complete realization is given in Fig. 2.3.
Example 2.2.2: Consider the following 2-variable rational
function

2 2
(p1+1)(6p2+3) + 10p1p2

Z(pl,pz) = (2.42)

2 2
p1(6p2+3) + 5(p1+l)p2

Comparing (2.42) and (2.27), we see that

alpy) = p% +1 B(p)) = 2p;
Y(p) = p, s(p) = pp + 1
h(p,) = 6p5 + 3
glp,) = 5p, .

Thus, it can be seen that

(1) ot+Bty+s = 2p2+3p +2 is strictly Hurwitz.
1 1

2,..2 2 4
(P1+1) "ZPl = p1+1 = f(Pl)f(‘Pl): where

(2) as-By
£(py)

(3) h/g = (6p§+3)/5p2 is obviously p.r..

(p3+/Zp +1)

Therefore, by virtue of Lemma 2.3, Z(p,,p,) is realizable in the
1°%2

form of Fig. 2.1 with

- 2
1 p,+1 2p
Eﬂ 1 1

b, T T 2
1 pl+/§bl+1 Py p1+1

and

29
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e o ® 1 b—=e _l_ —o—— 0
Py 4P1 1/P3 é s
p
3
2
T ™
' & ©

Fié. 2.3 Example 2.2.1.

1/p1

g T U

Fig. 2.4 Example 2.2.2,




31

6p§ + 3

L 5p,
A complete realization is given in Fig. 2.4. It is noted that

(2.42) is excerpted from Example 2 of [2] which is shown not to be

realizable in the form of Fig. 2.1. However, the reverse is true as

evident above. This is due to the fact that the formulation given in

[2] is not general enough to cater for non-reciprocal two-ports.

2.3 BOTT-DUFFIN TYPE DECOMPOSITION

In this section, we present a different type of realization.

As far as the mathematical decomposition of the given function is
concerned, it bears a similar form to that discussed in Section 2.2.
However, as to network configuration, it resembles the cyclic bridge
form of a realization obtained by the Bott-Duffin process [31].

The classi;al Bott-Duffin synthesis process [7] is developed from
Richards' Theorem [24] which was first .introduced to multivariable
synthesis by Saito [26]. Soliman and Bose. [31], later, extended
Saito's version to a more general case. Based on the mulqivariable
Richards' theorem, they derived a set of sufficient conditions for
the realization of a class of m.p.r. functions bilinear in all
variables except one by repeated applications of the Bott-Duffin
process. In essence, at each cycle, an impedance Z(pl’pz""’Pn)
bilinear in Py is realized in terms of a pl-capacitor, a pl—inductor
and two impedances Z1 and 22 which are free of pl; the four |
components are connected in a bridge form as shown in Fig. 2.5. 1In the

following, we consider a more general case shown in Fig. 2.6, where a
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k3pl
Z,(PysPyseevsP) 1! £1)
]
O 1:1/?1 : |
}} 1 Zz(pz,p3,.u.,pn)
—
e

Z(Pl’P29-°~spn)

Fig. 2.5 The Bott-Duffin realization of Z(p
in terms of a p,-capacitor, a p,-in

sPysreeesP ) bilinear in p
uctor and"two (n-1)-variable

. 1
impedances Zl(pz,pB,...,pn) and Z (pz,p3,...,pn)
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A

k3/2 (P

kzzl(stP3, LA 9pn?

.

klZLC(pl) kazz(pz,p3,---,p )

L4

Z(pl,pz,-.-,pn)

Fig., 2.6 Realization of Z{p, sP ,...,pn) in terms of a pl—variable
reactance function “Z.  (p,), its reciprocal 1/Z_ . (p,) and

. . LC 51

two (n~l)-variable impédafices Zl(pz,p »ee+sP_) and
Zz(pz,pg,...,p ); ‘the four compOnenits”are connected in the

Bott-Duffin brgdge form.




general pl-variable reactance function ZLC(pl) and its reciprocal

have replaced the pl—capacitor and pl—inductor in Fig. 2.5, respectively.
As a consequence, the class of functions to be covered is wider than
the one considered in [31], i.e., the bilinear constraint on the

given function is now relaxed.

2,3.1 General MPR Approach
As previously, we first derive a lemma which gives the realizability
condition for an m.p.r. function to be realizable in the form of Fig.2.6
and then establish the main result from the lemma.
Lemma 2.4
A necessary and sufficient condition for the n-variable p.r.
function Z(E) to be realizable as a driving point impedance in the

form of Fig. 2.6 is that Z(E) can be decomposed as

_P(p) _ kja(pIh(py,pgs-vesp ) + k)B(p)8(PysPgs v vsP,)

Z(p) , (2.43)

Q(p) k3B(P1)h(p2,p3,...,pn) + k4a(p1)g(p2,p3,.=f,pn)

where P(p) and Q(p) are expressed as relatively prime in Re 1 >0
for every i, a(pl) is a monic even polynomial of Py and B(pl) is
a monic odd polynomial of Py (The ki's >0, i =1,2,3,4 are introduced
to take care of the degenerate cases).

Proof: Necessity is evident. We shall show the sufficiency.

Since the cases with more than one of the ki's equal to zero are
trivial, in the following, we assume that only one of the four ki's
may vanish.

First, we shall establish that h/g is (n-1)-variable p.r. in

PysPgsesesP and .a(pl)/B(pl) is a reactance function of P
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It is observed that (2.43) and (2.27) are of similar forms,

therefore it follows from the proof of Lemma 2.2 that

h/g is (n-1l)-variable p.r. in PysPqs-e«sP
and
ka(p)K + k,B(p;) (2.44a)

k36(p1)K + k4a(p1) (2.44b)

are Hurwitz polynomials of Py» where K 1is given by (2.30).
Since.it is assumed that only one of the four ki's ﬁay vanish,
by taking either (2.44a) or (2.44b) it can be shown from the property
of Hurwitz polynomials that
a(p;)
8(p,)

is a reactance function of- Py-

Now, from (2.43), it can be seen that Z(E) is decomposable

into the following form

Z(p) = (2.45)

P
R
~
e
[
~r

Therefore, by letting

( a(Pl)
Z _(p) = ——m
LC pl B(Pl)
h(Pz,P3s-'-,Pn)
Z,(PysPqse+esP ) = ’
1772773 n 8(p23.p39°'-,pn)
, g(PZ,P3a~"spn)
Z,(PysPaseeesD ) = >
2 2, 3 s n h(p23P3,"',pn)
k k - k “ k
~ »~ 2 2
k:._l k=—l, k3=k— and k4=-k—,
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the realization of Z(E) in the form of Fig. 2.6 with the dotted line
replaced by a solid line is apparent from (2.45).

Next, it is observed that

A

k k.k

(). —23 I
lLC 1”7 2 k
rc Py 3*4
and
S, 1h ke k1%
kyZylyZy = (=005 2) = o .
4 & 3 3°4

Therefore, similar to the Bott-Duffin cycle, the structure of Fig. 2.6
is a balanced bridge. Hence, the dotted line may be replaced by any
impedance without altering the input impedance Z(p). Q.E.D.
Theorem 2,7
A sufficient condition for the n-variable p.r. function Z(p) to
be completely realizable by successive applications of the process
depicted in Fig. 2.6 is that Z(p) can be decomposed in the following

form

P(E) - kllal(Pl)hz(P29P3s--nPn) ‘+ klzsl(Pl)gz(stp?’s-°~:Pn)

z(p) = :
- Q(E) leBl(pl)hZ(pZ’p3""’pn) + k14a1(P1)82(P2,P3,---9Pn)

Eg _ k az(Pz)h (p3,p4,...,p:) + k22 2(p2)g3(p3,p4,...,p )

82 k23 2(P2)h (P3,P4,---’P ) + k24 2(P2>g3(P3,P4,-..,pn)
(2.46)

hn—1 - kn—l,lan-l(pn—l)hn(Pn) +-kn—1,26n—1(pn—1)gn(pn)

En-1 knfl,BBn-l(pn—l)hn(pn)'+ kn—_l,ltan—l(pn—l)gn(pn)




where P(p) and Q(g) are expressed as relatively prime in Re 1 >0
for every 1, qi(pi) is a monic even polynomial of P> Bi(pi) is a
monic .odd polyﬁémial of P; and kij >0 for i=1,2,...,n-1 and
j=1,2,3,4.

Proof: The proof may be shown by repeated applications of the

above lemma to the set of expressions (2.46), successively.

2.3.2 Explicit Approach
First, we establish a basic lemma and then derive the main result
from the lemma.
Lemma 2.5
The n-variable rational function 2Z(p) may be realized as a
driving point impedance in the structure of Fig. 2.6 iff Z(E) can be
decomposed in the form of (2.43) with the following conditioms
(1) a(pl)/B(pl) is a reactance function of P;e
(2) h/g 1is an (n-1)-variable p.r. function of PysPgseeesP
Proof: Apart from the fact that it is now given that a/B is a
reactance function of Py and h/g is m.p.r. in PpsPgsecesPss the
proof follows along the same lines as those of Lemma 2.4 and is thus
omitted for brevity.
Theorem 2.8
The n-variable rational function 2Z(p) may be completely realized
by successive applicatipns of‘thé process described in Fig. 2.6 if
Z(p) can be decomposed in the form of (2.46) with the following
conditions, :

(1 ai(pi)/Bi(pi) is a reactance function of Py> i=1,2,...,n-1.

(2) hn(Pn)/gn(pn) is p.r..
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Proof: The proof follows directly by repeated applications of the
above lemma to (2.46) starting from the last expression to the first
one, successively.

If the degp. Z(p) =1 for i=1,2,...,n-1, we have the following
corollary. .

Corollary 2.8.1
A sufficient condition for the n-variable rational function Z(p)

bilinear in pl,pz,...,p to be completely realizable by successive

n-1
applications of the process described in Fig. 2.5 is that Z(p) can be

decomposed in the following form

k11h2(p2’p3""’pn) + k12p1g2(p2’p3""’pn)

Z(p) =

k13p1h2(p2,p3,--.,pn) + k14g2(p2,p3,---,pn)
EZ } k21h3(p3,p4,--‘,pn) + k22p283(p3,p4,»--,pn)

+
gz k23pzh3(p3’p4,...,Pn) k2483(93ap49°-',Pn)
(2.47)

e R 0 T LN e L L
8n-1 kn—1,3pn—1hn(pn) + kn—l,égn(pn)

with the following conditions.

@) kij >0 for i=1,2,...,n-1 and j = 1,2,3,4.

(2> b (p)/g (p) 4is p.r...

Note that apart from a few degenerate cases it may be shown that
Corollary 2.8.1 is equivalent to Theorem 3 given in [31]. Nevertheless,

the simplicity of the former over the latter could be easily noted.




Firstly, it replaces the multivariable p.r. test by the simple verifica-
tion of the nonnegativeness of a set of constants and one l-variable
P.T. fest, viz., conditions (1) and (2) of the corollary. Secondly,

it replaces the computational work involved in the testing of the
applicability of the multivariable Richards' theorem by the simple re-

arrangements of polynomials in the form of (2.47).

2.3.3 Examples

- Example 2.3.1: Consider the following multivariable rational
"function

2p§p3+12pf+§fp2+p1§2p3+6p1p2+5p1+2p3+p2+12

p1p2p3+6p1p2+5p1+4p1p3+2p1p2+24p1+p2p3+6p2+5

. - (2.48)

Rewriting Z(pl,pz,p3) as a function of P> it can be easily

seen that
(p2+1)h. +
Py, T P8y
Z(pysP,sP3) = 5 ,
2p 1h2 + (p1+1) g2
where
E& ) 2(p4*6) + p,
&y py(py+6) + 5

Thus we can identify
- . = = 2 ‘=
kyg Skpp =k =1 k3=2 olpp) =pptl o B(pp) =1y
kyg =2 kyy =kya =1 ky =5 a,(py) =1 B,(py) =p,

h3(p3) = pyt6 83(Pé) =1.
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Clearly, a1/61 and a2/82 are single variable reactance functions,

and h3/g3 is p.r..

is realizable by the

To realize Z(p,,p,sP,), we write (2.48) in the form of (2.45)
1°%2°%3

Therefore by virtue of Theorem 2.8,

process of Fig., 2.6.

Z( ) ! + 1
Py:sP,HsP =
1°F2°F3 2p 1 2
_L_*.___ P1+1 1.
p2Hl 2 N
1 Py 2
where
h 1 1
z) = 2 - + h
&y Py 585 5 3
2 hy = P, 8,4
Z., = °2 = - + !
2 op 4 g 2p, 4h
2 —+ 2 Eé- —2,_-3
Py 3 5 g3

A complete realization is given in Fig. 2.7.

Example 2.3.2:

function

2 2 ‘
4p1p2 + 4p1p2 + p2 + p2 + 16p1 + 1

Consider the following 2-variable rational

Z(pl,pz) =

It is observed t

Z(pl,pz) as a functi

2 2
4(p2+p2+4)p1 + Py + Py +1

7 2
PiPy * PPy, t P, t Pyt oy 4

hat Z(pl,pz)

on of Py, we have

is bilinear in Py-

Z(pl !pz) =

2 2
(p2+p2+1)p1 + P, + Py + 4

Z(pl,pz,p3)

By rewriting




41

2p3/5 12/5 1/6 p3/2 6/2 5/24
CSFP—ANM— AAN — T WA AMA
1Py R
1R P2/4 RE
1t — N T |
o— 2/p, p,/5 Py 5/2p,
o
S
1
1 1/2p, 1}
1/p4
Fig. 2.7 Example 2.3.1.
8 8/P2 -5 °Sp2
AM——] — AN T
4p2 J— l/Pz
J1 AA/\ - 66 \
° bl 8 .5 JV\S/‘
| ~¥0
1/131 4pq
’_

Fig. 2.8 Example 2.3.2.
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Comparing (2.50) and (2.47), we see that

k..=1 > 0

11
k.,=4 > 0

12 (2.51)
k13 =1 > 0
k14=1 > 0

and
2

h2 P, + 1% +1
- = is clearly p.r.. , (2.52)

Thus, by virtue of Corollary 2.8.1 Z(pl,pz) is realizable in the

form of Fig. 2.5. To realize Z(pl,pz), we write (2.50) in the form

of (2.45),
1 1
Z(py»>py) = Tt 1 ;
P17 7 W, 7,
1 1 2
where
p2 + p, +1
2 2
2 2
p2 + p2 + 4

2
4(p2 + P, + 4)

(pg +p, + 1)
A complete realization is given in Fig. 2.8.

The example (2.49) is excerpted from the example of [31]. 1In
contrast to the method presented in [31], here we have demonstrated

that

(1 The given function does not have to be known to be m.p.r. to

sttt

FERNE Ungy

¥ replace “myfn

begin with. Instead, the 2 simple tests of (2.51) and (2.5
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this prerequisite condition.
(2) Besides the two tests mentioned above, no further computational
work is required for testing of the applicability of the multivariable

Richards' Theorem.




CHAPTER III

SYNTHESIS OF INDEPENDENT ZEROS OF THE EVEN PART OF

A MULTIVARIABLE POSITIVE REAL FUNCTION

It is well-known that the even part zero removal techniques play
~an important role in the synthesis of single variable p.r. functioms.
For multivariable functions, the even part of an m.p.r. function Z(p)

with respect to all the variables p = (Pl’p2""’pn) is defined as
l .
EvE z(p) = 5 [ z(p) +2,(p) 1. , (3.1)

Some aspects of the syﬁthesis of the pi—variable indépendent zerosl'of
(3.1) have been reported [9,26,34] for certain classes of mixgd lumped—
distributed networks, and also a special development has béen given
recently in [6]. However, the eésence of these coﬁtributions:is the
extension of Youla's [32] single variable éascade theory to multivariable
functioné. As to the treatment of realization without gyrators and
transformers, only meager results have been reported [10,31,36]. In this
chapter, we present a more general development for the synthesis of
independent zeros of the even part of m.p.r. functions. Spécial

- emphasis will be placed on the development of realization methods

without using gyrators and transformers. In the following, Section 3.1

1 Let f(g) be an irreducible multivariable rational function.
If f(p) can be expressed as f(p) = (pi_pio) f(E)’_ where  f(p)
‘does not possess the (pi—pio) factor, then P; = pio is calléq
an pi-independent zero of multiplicity r of £(p).
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is devoted to the fundamental development of various forms of Richards'
theorem [24,32]. Section 3.2 deals with general realizations with no
constraint on the use of coupling elements. Section 3.3 is concerned

with realizations without transformers.

3.1 DEVELOPMENT OF VARIOUS FORMS OF RICHARDS' THEOREM

The well-known Richards' theorem [24] corresponding to a positive

real constant of single variable theory was first introduced to multi-
variable synthesis by Saito [26], and subsequentiy Saito's Qersion was
extended to a more general case by Soliman et al. [31]. The Richards'_
‘theérem [32] corresponding to a cqnjugate pair of complex constanté
with positive real part was first applied to the multivariable synthesis
of mixed lumped-distributed networks by Kamp [9] and Youla et al. [34],
and a more formal extension was given recently by Fujimoto et al. [6].
Since these theorems form the fundamental core for the subsequent
developments, we shall, in this sectioh, give a detailed preséntation
together‘with their proofs. Our derivations here, which are based on
~Belevitch's [1] arguments on one—portbsynthesis byaall-péss‘extraction,
are'&ifferent from those givén in [6;34] and aré more compact and
.systematic. :

We shall first establish a lemﬁa which can be . considered as ﬁhe’
fundamental véfsibn.of Richards' theorem for a multivariable positive
(not necéssarily‘real) function corfesponding to a complex cénstant
with positive real part. The other forms of Richards' theorem are then

" derived from this lemma.
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Lemma 3.1
Let Z(p) be a multivariable rational positive (not necessarily
real) function of a set of complex variables p = (pl,pz,...,pn).
Let Py = Pig = 610+jw10 (010>0) be a fixed point in the right-half
pl—plane. If Z(p) at P1=P1g is a constant independent of all

other variables

z<2)| _ =z, = R, +iX_ (3.2)
P;"P1p O o =0

then Z(p) can be expressed as

A_(p,) W(p) + B, (p,)
z(p) = 2 1~ 2.1 , (3.3)
C,(py) W(p) + Dz(pl)

where
Ay (py) = 0;0Rg + w Xy + IP; Xy
B,(py) = PiRy * 3(0y%y - wygRg) |
(3.4)
CZ(Pl) = Pl - leo
DZ (Pl) = 010 $

and the residual function

D, (p )'Z(p) - B,(p,)
Ww(p) = 2.1 . 21 (3.5)
—Cz(pl) Z(E) + Az(pl)

possesses the following properties.
(1) W(p) is an m.p. function.
(2) deg_ W(p) < deg. 2Z(p) for every 1i. (3.6)
pi = - pi - .
(3) 1In particular, if Pio is a pl—independent zero of the even

part function EVE.Z(E)’ then

deg_ W(p) = deg_ Z(p) -1 . (3.7
P Py~ . |




(degpi Z(p) 1is the degree of Z(p) with respect to Py and is
defined as the maximum degree of Z(p) in Py when all the variables
except p, are held constant, whereas the degree of a single variable
rational function is defined as the totality of its poles including
poles at the origin and infinity and counting multiplicities.)

Proof:
10 > 0, R0 is positive.
Therefore the reflectance s of Z(p) with respect to Z0 = R0+jXO

(1) Since Z(p) 4is m.p. and o©

. = - (3.8)

is a multivariable bounded function, i.e.,

s 1is regular in Re p; > 0 and (3.9)

|s] <1 for Re p; =0, (3.10)

for every 1.

Now, let Sy be defined as

*
Z.-2Z() patP
9 01 (3.11)

Z0 + Z(p) plO - Pl

Since at P; = Pig» Z(p) = Z, which is a constant independent of
all other variables, the numerator of s possesses the factor
Pig = Py- Consequently; the f;ctor Pig ~ Pq in the denominator of
sW is cancelled out by the same factor in Z0 - Z(E)° Therefore, it
follows from (3.9) that Sy is regular in Re P; > 0, for every 1.

It is noted that

=1 for Re P; = 0. (3.12)
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Thus, it follows from (3.10), (3.11) and (3.12) that [s | <1  for

Re p, = 0 for every i, and consequently s is a multivariable
i W

bounded function. Therefore, the corresponding impedance

1-s
W(p) = —— (3.13)

1+ sW

is a multivariable positive function.

Substituting (3.11) into (3.13) with Zy = RytiX, and

Pig = 010+3w10, we obtain (3.5) with the parameters Az(pl), BZ(pl)’

Cz(pl) and Dz(pl) satisfying (3.4). By solving (3.5) for Z(p),
(3.3) is obtained.

(2) Condition 2 is evident from the cancellation of the factor
Pjg =~ Pp P and down in Sy
(3) 1f P1o is an independent zero of EvE Z(p), it can be

shown that
* _ _o%
Z( PlO,PZ,---:Pn) - ZO °
Thus, Zg + Z(p) possesses the factor pio + Py- The degree property

of (3.7) results from the cancellation of the factors (plo - pl) and

(P;O + pl) up gnd down in s Q.E.D.

"W

It is observed that if Z(E) is multivariable positive and real,

then, from the real-property of m.p.r. functions, X0 = 0 for Wy =

This fact implemented in (3.4) yields
910%(®) - P1Rg

W(p) = | 3.14
F e v oy, N
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which is now real when all the pi's are real. By setting
F(p) = ROW(E)’ we have the following theorem:

Theorem 3.1

Let Z(p) be an m.p.r. function. If at Py =0 > 0

10
Z (P_) - =- R s
P1%0p0 0
where Rb is a constant independent of all other variable&s, then
Z(p) can be expressed as
o, F(p) + p,R
10" = 170
Z(p) = 1 s (3.15)
x. P1F® * 95,

0

and the residual function F(p) satisfies the following conditions.
(1) F(p) is m.p.r..
(2) F(p) possesses the identical degree properties as given
in Lemma 3.1 for W(p).
Corollary 3.1.1

Let Z(p) be an m.p.r. function. If at P; = 910 0 g

10
Z(p) = R, - (3.16)
] _ ! 7
E{ Z(E) = ZO s (3.17)

)
where R0 and Z0 are constants independent of all other variables,

then Z(g) can be expressed as

A(p)) F(p) + B(p))

Clp;) F(p) + D(p)

z(p) = . (3.18)




where
Alp,) = a,p? + a, = [(R+o. 23/ (R -0, 2)]p2 + o
1 2 1 0 0 10 0 0 10 0 1 10
B(py) = 27y = 120 Ro/ Rgboy O)]pl
(3.19)
C(py) = bypy = [2015/ (Ry-015 o)]Pl
D(p,) = b,p0 + by = [(Ry=00Z0)/ Retoy Zo) 162 + o2
1 21 0 10 0 0 10 0 1 10 °
The residual function f(g)_ satisfies the following conditionms.
(1) F(p) is m.p.r..
(2) degp F(p) i_degp Z(p) for every i. (3.20)

i i

(3) In particular, if P; = 99 is a pl—independent zero of

EvE Z(p), then

is a simple zero.
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deg_ Z(p) - 2 if the multiplicity is 2 or higher.

Proof:

(3.21)

(1) Since (3.16) holds, Theorem 3.1 is applicable to Z(p).

By solving (3.15) for F(p), we have

910%(R) - P4Ry

At p; =0 (3.22) is of indeterminate form,

10°
L'Hospital's rule to (3.22), we have
Ry~ 910% o

R = %o
10 RO + 01020

1
&

F(g)

(3.22)

Applying

(3.23)




Since F is a constant, we have

0
o. F(p) + p.F
P 0
Fp) = — o , (3.24)
F, pF(R) + 94

where ﬁ(g) is m.p.r..
Substituting F(B) of (3.24) into (3.15), we have

2 2 .a
[(R./Fp, + 0, JF(p) + o, (F +R )p
S ! 1077 = 100 0°F1 . (3.25)

2() = - 2
[010FGtRy) /RGF QIR F(R) + (Fo/Rodpy + 0y

and by substituting F_, of (3.23) into (3.25), we obtain (3.18) with

0
the parameters A(pl), B(pl), C(pl) and D(pl) satisfying (3.19).

(2) Condition 2 is evident when (3.6) is applied to F(E) and
F(p):

deg ﬁ(p) < deg_ F(p) < deg_ Z(p) for every 1i.
pi = = pi - - pi -

(3) It is observed that if P; = 919 is a simple zero of
EvB Z(p), then EvE F(p) does not have the same zero at Py = 999
However, if the multiplicity of the zero is equal to 2 or higher, then
this same zero is retained in EvE F(p) with multiplicity reduced
by 1. The degree property (3.21) is therefore apparent from (3.7).
Q.E.D.

Theorem 3.2:
Let Z(p) be an m.p.r. function. If at P; = Pyg = 10 + oy,

(010> 0

z(p) = Z. = R, + jX

P17P10 0 0 0

where Z0 is constant independent of all other variables, then Z(p)
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may be expressed as

A(p)F(p) + B(p;)
z(p) = s (3.26)
C(p,)¥(p) + D(p,) ‘

where
A 2 _ 2., 2 .2
(py) = aypy *+ 3y = [(wygRo*oq o Xg)/ (g gRy=01 oK) Ipy + o) g,
Blo.) = _ 2,2
(py) = a;py = [20qu10Rg*¥p)/ (g gRytoy oX ) 1Py
, (3.27)
€(py) = Bypy = 1205 gu10/ (w1 gRy=010%) Tpy
D(p,) = b p2 + b, = [(w,Ry-0 'X )/ (w, R +o. X )]p2 + o2 4?2
1 271 0 100 100 1000 "10°70 1 16 710
The residual function F(p) satisfies
(1) F(p) 1is m.p.r..
(2) deg_ F(p) < deg_ Z(p) for every 1. ' (3.28)
(3) 1In particular, if P; = Pyg is an independent zero of
Ev_ Z(p), then
E -—
degp F(p) = degp Z(p) - 2 . (3.29)

1 1
Proof:
Since Z(p) at P; = Pig is constant independent of all other
variables, it follows from Lemma 3.1 that Z(p) may be expressed in

terms of an m.p. function W(p) as follows

(9, 0Rgt010%gTIP1 X W(R) + PyRy*S (o (Xo-w; R))

Z(p) = . (3.30)

(pl"jwlo)w(g) + 010

Since the reciprocal of an m.p. function is also m.p.,
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1 -(p,-jw,2Z(p) + o, R +w. X +jp.X
cp) = _ 1°%10 1070 1070 *F170 (3.31)
w(p) 0102(®) ~ P1Ry7I (00X R
is m.p..
_ . %
Evaluating G(p) at Py = Pygr Ve have
w, ~R +0, X -2w, X
c(p) ) =p* _ 107071070 3 1000 - R, * 3%, . (3.32)
1710 934R07%0%0 “10%910%0

which is clearly a constant. Applying Lemma 3.1 again to - G(p),

we have

A (p,)W.(p) + B.(p,)
6(p) = CG e G 1 ’ (3.33)
G(pl)WG(g_) + DG(pl)

where WG(B) is an m.p. function and

Ag(py) = 01 gRew X + 3P X
Bg(py) = PyRe + (0 Xotu gRe)

(3.34)
CG(pl) =Py * Jugg

Delpy) =075 -

If we let K1 be a real constant and K2 be a positive real

constant, then it is apparent that F(p) defined as

F(p) = Ky( - 1K) (3.35)

1
WG(g)

is also an m.p. function.
From (3.33) and (3.35), it can be shown that
By(p)F(@) + [AL(p)+iK B (b)) IK,

G(p) = - . (3.36)
D, (p)F(p) + [C,(py)+iK, D (P ) K,
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By letting
Kl = XO/R0 (3.37)
K, = (wlOR0 - cloxo) / (mlORO + olOXO) (3.38)

and substituting W(p) = 1/G(p) into (3.30), Z(p) 1is expressed in
the form of (3.26) where the parameters A(pl), B(pl)’ C(pl) and
D(pl) assume (3.27).

With (3.35), it has been shown that F(p) is m.p.. By hypothesis,
Z(p) is m.p.r., therefore Z(p) is real when all the pi's are real.
Also, A(pl)’ B(pl), C(pl) and D(pl) as given by (3.27) are
obviously real for real Py- Therefore, it can be seen from (3.26)
that F(p) is real when all the variables are real. F(p) is thus
multivariable positive and real.

The degree properties are evident from (3.6) and (3.7).

Corollary 3.2.1

Let Z(p) be an m.p.r. function. If at Py = Py

z(p) = 2, = Ry + jX,

P} | ] ‘l
-a-{)IZ(E) —ZO~R0+3X0

]
where Z, and Z, are constants independent of all other variables,

0 0
then Z(p) may be expressed as
A(py)F(p) + B(p))

z(p) = — - - (3.39)
C(p)F(p) + D(py)

with
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~ 4 ~ A2 2
a,8,P; + [ao(a2+a2)+alb1]p1 + a,

A(pl)

~ _ A A 3 A
B(pl) = (azal--l—albz)pl + ao(a1+al)p1

. A N R (3.40)
C(pl) = (bla2+b2bl)pl + ao(bl+b1)pl
B(p.) = b,b.pt + [a,(b,+tD,)+b.a 102 + a2
1 2°2P1 0'P27P2/ P11 1Fy 0o °
where
a, = 1/b, = (w;4Ry + 010%g) / (W1gR5 = 915%,)
N 2 2
a; = 20y g0, Ry + Xp) [ (wygRg + 990%4)
~ (3.41)
by = 20,40y [ (WygRy = 996%p)
2 2
a5 = 90 t Y10
and’ a2, b2, a1 and bl are obtained from a,s b2, ay and bl
by replacing R0 and XO by RF and XF’ respectively, where
R, + iXp = F(p)| with F(p) defined in (3.26). The residual
R - P1=P10 = R

function F(E) exhibits the following properties.
(1 ﬁ(g) is m.p.r..
(2) deg ﬁ(p) < deg_ Z(p) for every i.
R N 1
(3) In particular, if P; = Pyg is an independent zero of

E YA , th
vE (E) en

de ﬁ = de Z -2 if = is a simple zero.
gpl (p) gpl (@) Py = Py | p
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degp Z(p) - 4 if the multiplicity is 2 or higher.

1

The corollary may be shown in a similar manner as Corollary 3.1.1

and is thus omitted for brevity.




The development thus far deals with the points in the strict right
" half pl—plane. For the particular case of Py = jmlo, we have the
following Brune [7,15] result.
Theorem 3.3
tet Z(p) be an m.p.r. function. If Z(p) at Py = juig is a

purely imaginary constant independent of all other variables

2| .. =X
Pl"J wlo . o
then Z(p) may be'expfessed as

A(p,)F(p) + B(p;) .
Z(p) = (3.42)
C(p)F () + D(py) :

with
A(p,) = a p2 +a. = [(w X'+X Y/ (w X'-X )]P2 + mz
1 2P1 7 3 10%0"%07/ *¥10%07 %07 'P1 T “10
- = [20, X2/ (0, (X HX
Blpy) = aypy = [2010%0/ (w10%gt%p) 1Py |
, E - ©(3.43)
Clpy) = bypy = [2074/ (0o X5=Xg) 1Py
D(p,) = b.p> + by = [(w, X X )/(w XX ) Ip2 + w? B
: 1 2P1 7 o T 1¥10%0 %0’/ Y¥10%0 M0/ P1 T P10 2
where X0 = 53—-Z(p) . The residual function F(p) possesses
Py TIPITI%g ) -

the following properties.
(1) F(p) is m.p.r..

(2) deg_ F(p) < deg. 2(p) 1i#1

Py Py .

deg  F(p) = deg_ Z(p) - 2
Pl e Pl -

The theorem can bé’proved by the direct step by step reélizatidn

of a Brune cycle [15] and is thus omitted for brevity.
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3.2 GENERAL REALIZATIONS WITH NO CONSTRAINT ON THE USE OF TRANSFORMERS

The development of the various forms of Richards' theorem
presented in the previous section resulted in extended applications [5,
26,34] of Youla's [32] cascade theory with regard to multivariable
functions. In this section, we shall summarize previous results in the
form of the following two theorems and proceed to develop: realization
methods eliminating the use of gyrators.

Theorem 3.4

Let Z(p) be an m.p.r. function and let P; = P1g = 910 + jwlo

be an independent zero of Evp Z(p). Then the even part zero p; = Py,

may be removed from Z(p) by a pl—variable Richards' section1 (for

Wi = 0, Theorem 3.1) or Brune section (for 910 = 0, Theorem 3.3) or
type E section (for %0 # 0, wlo.# 0, Theorem 3.2) if
Z(p) _ = Z = R, + 3jX

is a constant independent of all other variables. Furthermore, the
terminating impedance after the extraction is the same residual
function F(p) of the corresponding theorem.

Theorem 3.5

Let Z(p) be an m.p.r. function and let P; = Pig = %10 + jwlo

(010 # 0) be an independent zero of Evp Z(p). Then the even part

zero p; = pyy may be realized by a pl—variable type C section

(for w,, = 0, Corollary 3.1.1) or type D section (for 0 # 0,

10

Corollary 3.2.1) if at Py = Pyg

1 A detailed description for the Richards', Brune, type C, type E and
type D sections may be found in [32].
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Z(p) = Z0 = RO + jXO

1 ]

5 .
ot 3%,

T
'é—p—l-Z(E) =ZO=R

where Z0 and Zé are constants independent of all other variables.
Furthermore, the terminating impedance after the extraction is the same
residual function %(p) of the corresponding corollary.v

It is observed that the Brumne, type C and typé D sections are
reciprocal two-ports, whereas the Richards' and type E sections are
not. In single variable theory, the Richards' and type E ;ections can
always be augmented by appropriate non zero-producing sections to yield
the reciprocal type C and type D sections, respectively. Nevertheless,
such a process is not always possible for multivariable functions. As
is seen from Theorem 3.5, the removal of an independent even part zero

+ with 010 # 0 by the type C or type D sections

P17 %10 T %10
requires an additional condition that the partial derivative with

respect to of Z(E) evaluated at Py = o is constant

Py 10 ¥ 3910
independent of all other variables. However, in the following, we
shall show that gyratorless realization without resorting to this
additional condition can be made possible by relaxing the cascade

constraint. Using a separation approach similar to that of Miyata [7],

we decompose Z(p) into two m.p.r. functions
Z(p) = z,(p) + Z2,(p) (3.44)

such that each individual component function is amenable to realization

without gyrators. We shall discuss the two cases: Wig = 0 and

®10 # 0, separately.
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Case 1: w,, = 0. This corresponds to the familiar lst order

10

real-axis Bott-Duffin separation. From (3.15), we have

a,aF(p) p.R
2(p) = ——0 LRn—— ~ (3.45)
“iE'PlF(E)+°1o 7§6'P1F(2)+°10

= 21(2) + ZZ(B) .

The realization of 2Z(p) in terms of Zl(E) and Zz(g) is given

in Fig. 3.1.

Case 2: wjg # 0.
It may be noted from Lemma 2.1 of the previous chapter that a
pl—variable two-port characterized by a chain matrix
A(py) B(py)
£ { e Do)
where A(pl), B(pl), C(pl), D(pl) and f(pl) satisfying condi-

tions 1, 2 and 3 of Lemma 2.1, is reciprocal iff

e(p?) = A(p)D(p,) - B(p)C(p,)

is a perfect (or the negative of a perfect) square.

From (3.27), we have

e(®2) = A(p)D(p;) - B(p)C(p,)

2 2.2, 2. 2 .
10%10°P1 * 910tv10 -

pi + 2( (3.46)

It is seen that e(pi) is neither a perfect nor the negative of a
perfect square. However, we can decompose e(pi) into two perfect

square terms and then construct two m.p.r. component functions




60

z,(p) Z,(p)

A T T T
| P (p) 1 RMEE
! 1 P N g e
— =
! oy |

O]
| 010??/P1 T RoP1/990 |
! 11 | : o' I'Ds !
b e e e e d e e e e e J

——t
@
z(p)

Fig. 3.1 The lst order Bott-Duffin realization
of equation (3.45).

Mpl
o— 7
Lpy L,P, o) M =_1/32
=n /
_l_ C]_pl L2 b2/b1
2(p) c, = b-l/b0
c, = bz/Blz
p) p — k = B.,,/b
) 3P1 12/P2
Tczpl Fle
°-i 4

Fig. 3.2 A gyratorless realization of a complex pl—variable
independent even part zero.




associated with these two terms so as to make each individual function
amenable to reciprocal realizations. Let Z(p) of (3.26) be

decomposed as

- A(p)F(p) + B(p,) 2 A, (pIF(p) + B, (py)
Z(p) = = ¥
- C(p)¥(p) + D(p,) i=1  C(p)F(p) + D(p;)

z,(®) + Z,(p) . (3.47)

Therefore ,

™M N

(@) = = [A,(p)D(p) - B (p)C(p)] = e, (p2) + e,(p3).(3.48)

i=1

An examination of (3.46) indicates that the decomposition is not

unique, here we present a simple convenient possibility.

2, _ .2 2 2,2, 2 2_ 2 2
e(Pl) = [p1 + 079 T vyl 401 4P el(pl) + ez(pl) (3.48)

. . 2, _ 2 2 2 2
By assigning el(pl) = (pl + %o + wlo) to Zl(E)’ we have

A (D) = B (pIC(k,) = (02 + o2y + uip® .

With .D(pl) and C(pl) as given in (3.27), we can solve for

R 40, X
1 02 “10%0°°10% 2 2 .2
A (p,) =— p, + b, = Py + o 4w (3.49a)
1P’ T 0 _ 1 10?10
2 ©10%07%10%0
2,2 .2
» 20, X (o5 Hws.)
0
Bl(pl) = By1P1 = 10 10 10 Py - (3.49b)
w, (w, R +o )
10 Y1070 °106%0
Thus ,
L pZ+b IF(p) + B, .p
b, "100" R 11P1

2
blplF(B) + b2p1 + bo
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. .. 2, _ 2 2
Similarly, by assigning ez(pl) = —2010pl to ZZ(B)’ we have

|
o]

AZ(pl) = s (3.50a)

20101080 = 910%0)

“10

Bz(Pl) = By,Py = (3.50b)

and

B.,P
z,(p) = 1271 . | (3.50¢)

2
blplF(E) + b2p1 + b0

It is ébserved that Zl(E) of (3.49¢) satisfies Theorem 3.3 and
is thus realizable by a Brune section terminated in F(p). ZZ(E) as
given by (3.50c) may be realized by a simple parallel connection.

The complete realization is given in Fig. 3.2.

Example 3.1: Consider the following 2-variable p.r. impedance

) .
, + +
2(o.1p) = p(pysP))  2pypy * PPy + 3py Fpy 1 (3.51)
’ - - ] i .
1720 acpg.p,) PP, + ] + 3pip, + Py + 2

First, we compute

2p,p, + DA - pD)
Ev Z(Pl’pz) = °

It is seen that Py = 1 is a real independent even part zero.

Evaluating Z(pl,pz) at Py = 1, we have
Z(l,pz) = RO =1 .
Thus, by virtue of Theorem 3.1, Z(pl,pz) may be expressed as

F(pl,pz) +p;

Z(p,spP,) =
1772 plF(pl,pz) +1
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where

z(pysPy) — Py PP, * Py tp, v 1

P Z(Pyopy) 1 P1Py *+ 2

Therefore, Z(pl,pz) may be realized by a Richards' section
terminated on F(pl,pz) as shown in Fig. 3.3a.

Alternatively, if a realization without gyrator is desired,

we try the partial derivative condition

)
— Z(p

p; 12P2) p,<1 ™ %o

It is seen that Zé is constant. Therefore Corollary 3.1.1 is

satisfied and Z(pl,pz) may be expressed as

2 FN
(p1 + 1)F(pl,p2) + 2p1

Z(P sp)= s
1°%2 ~ 2
ZPIF(pl,pZ) +p;t1
where
2
. _ (pl + l)Z(pl,pz) - 2py 2pqp, tp, +1
F(pl,pz) = =

2
-2p,Z(py5P,) + ] + 1 PP, + Py + 2

L]

Therefore, the even part zero‘at Py 1 may be removed by

the reciprocal type.C section terminated on f(pl,pz) as shown

in Fig. 3.3b.

Example 3.2: Consider the following 2-variable p.r. impedance

.3 3.2 2 .
P(pl,pz) 12p1p2+4p1+13p1p2+12p1+6p1p2+7p1+4p2+6
Z(pl’pz) = Q( ) - 3 2 2 .
_ P1sP, p1p2+6plp2+3p1+6p1p2+6p1+2

(3.52)

We have,




Richards' section ' -p1/2 p2/2 )

(a)

Fig. 3.3 (a) A realization of Example 3.1.
‘ (b) An alternative gyratorless realization of (a).

Type E section

{F(py5py)
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4
12(p7 + 1) (p,p, + 1)°
1 1P2
Evp P Z(pl,pz) = .
1°%2 Q(p,,p,)Q(-p;,-P,)

Therefore, it is seen that Py = Pjg = v2/2 + 3vV2]2 is a complex
independent even part zero. Evaluating Z(pl,pz) at P, = Pio°

we have

- v 32 V2
2(pyg:Py) = Ro + 3Ky = Tm+ 3 5

which is a constant independent of Pye Thus by virtue of Theorem 3.2,

Z(pl,pz) may be expressed as

2

Z(pl!pz) = 2 9 (3-53)
plF(pl,pz) + .5p] + 1 .
where
2
-p12(pyspy) + 2py + 1
3p.p, + p, + 2p, + 3
12 1 2 ) (3.54)
PP, +1

Therefore, Z(pl,pz) is realizable by a type E section
terminated in F(pl,pz) as shown in Fig. 3.4.

Next, an evaluation of the partial derivative of Z(pl,pz) with
respect to Py at Py = pld shows that it is not a constant.
Therefore Theorem 3.5 is not satisfied. Consequently, the complex
even part zero Py = Pjo can not bé removed by a reciprocal type D
section. However, to obtain a gyratorless realization we may employ

the second approach described above.
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According to (3.48), we have

2 2 2 _ 4
(2pl + 1)(.5pl + 1) -~ 2.5p1 =P + 1

e(pi)

2 2 2 2 2
(p1 + 1" - 2p = el(pl) + ez(pl)

From (3.49) and (3.50), we have

, 2
By(py) = -5py
Az(Pl) =0

Therefore, Z(pl,pz) is decomposable as

2

p,F(p,,p,) + (.5p;+1) p,F(p,,p,) +7(.5p7+1)
1 ‘F1°P2 1 1" YWF12P2 1

The complete network is then given by Fig. 3.2 with the following
set of element values: M =1, Ll = 2, L2 = .5, ¢y = 1, c, = .25,
L, = .5, k=14 and .F(pl,pz) as given by (3.54).

3
3.3 REALIZATIONS WITHOUT TRANSFORMERS
In the previous section, we have presented how independent zeros
-of the even part function EvE Z(p) may be realized by the basic
cascade sections as well as by a separation method without using
gyrators. In this section, we develope realization methods without
using coupling elements. The following presentation is divided into

three cases according to the location of the even part zero.
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Case 1: Realjaxis zero.

Real-axis zero may be realized in the same manner as discussed in
Case 1 of Section 3.2.

Case 2: Imaginary-axis zero.

The classical Bott-Duffin method for the realization of imaginary-
axis even part zero has been extended to multivariable synthesis by
Soliman et al. [31]. Here, we establish a different method which is
based on Seshu's [29] minimum bridge network.

In the article [29], Seshu demonstrated that if a single variable
biquadratic minimum function Z(p) satisfies either one of the

following two conditions

4Z(0)

Z(=)
(0>

4Z (=) ,

then Z(p) is realizable by a simple bridéé network without coupling
elements. This particular result may be easily generalized as follows.
Lemma 3.2
Let Z(p) be an m.p.r. function. If Z(p) 1is expressable in

either one of the following two forms

| b.b
(4b,p2 + bE(R) + —12,—19 )p,
Z(p) = 5 (3.55a)
byPyF(R) + (bp] + by)
b.,b
1,2 2°0
(5 bypy + bF(p) + ( —ZEI )Py =
Z(p) = R (3.55b)

2
b,p,Flp) + (b,py + by)

then Z(p) is realizable as an input impedance of ome of the two

structures shown in Fig. 3.5.
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©
21 = 2b2/bl
Z(E) ¢y = bl/bO
2F (p) 21P1
-2
(a)
@
1/c2pl .5F (p) |
/ 2971 %y = bylhn,
Z(p) LI -
14 <, Zbl/bo
.5F(p) /\ 1/e,py
©
(b)
Fig. 3.5 (a) Network configuration for expression (3.55a)

(b) Network configuration for expression (3.55b).
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Now, let Py = jwlo

z(p) P = IX,

173979

where XO

be an independent zero of EvE 2(2) and let

is a real constant independent of all other variables.

$

by virtue of Theorem 3.3, Z(p) bmay be expressed as

A}
mlOXO+X

1
X -X

¢
¥10

0

0

2
P1

+ iy JF(R) + ———p,

2
2 zwlOXQ_

W, ~X . +X

1000 ) (3.56)

Z(p) =
2w10

——— pF(p) +

2 0%0~%0

In order for Z(p)

]
wlOXO + X0

2

Thus, (3.56) reduces to

2, 2
(2p] + 0] IF(R) + .5w,,%.pPy

2

1
XO—X
' 10

“10

0 pi + w
XO+XO

“10

of (3.56) to be amenable to (3.55), we set

1]
4 . This yields X, = 3X0/w10 .

Z(p) =

With b, = .5, b = wz

2 0
Z(p) satisfies (3.55a).

1
w, X + X
10%0 * %o
1) (—
“10% ~ %o

)

10

2

Thus, (3.56) reduces to

2. 2
(.Sp1 + wlo)F(B) - wlOXOPI

2
(wlo/xo)plF(E) + .Spl + 0l

2 .

and b, =

1 wlO/XO’ it is apparent that

1 . v
% This yields X0 = —BXO/wlo .

Z(p) =

2
(-mlo/ZXO)plF(E) + 2pl + w1g

2 °

and b1 = -wlO/ZXO, Z(p) now

Then

(3.57)

(3.58)
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assumes the form of (3.55b).

Hence, we obtain the following theorem.

Theorem 3.6

Let Z(p) be an m.p.r. function and let Py = jmlo be an

independent zero of Ev_ Z(p). If

(1) z(p)

p1=jw10 = JXO, where XO is a real constant

independent of all other variables

]
v(ii) XO = i3X0/wlO, where Xé = 3%; Z(p)

s

P173%0
then the even part zero pl=jwlo may be realized by Fig. 3.5a for

' . v .
X, = 3X0/m10 or Fig. 3.5b for X, = 3Xo/wlo.

Example 3.3: Consider the following 2-variable p.r. function

3. 2 2
P(pysPy)  4pIP,5pIP,H4PIH2D PP 2D ,+2

Q(pl,pz) P1P,+2P P, tP +4p P +2p +2
We have
2
4% + D%p.p, + )2
1 172
Evp ,p Z(pysP,)
1°F2 Q(pl,pz)Q(—pl,—pz)
Therefore, Py = j1 dis an imaginary-axis even part zerc. Evaluating
Z(pl’PZ) at Py = jl, we have
z(31,p,) = X, = il .
Since XO = 1 > 0, with reference to [31], we set P, =0 and

solve for o from

Z(c,pz) = UXO/wlo . (3.60)




With Wig = 1 and X0 =1, (3.59) and (3.60) yield

p,0° + (1 - 2000 + 2(p, + 1) = 0 (3.61)

Solving (3.61), we see that there exists no positive real o
independent of Py. Therefore, according to [31], the even part zero
Py = jl1 of this example can not be removed by the multivariable Bott-

Duffin process. However, evaluating

. ]
we see that X0 = 3Xo/w10. Therefore, Theorem 3.6 is satisfied.
From (3.57), we have

2
(2p; + DF(py5p,) + .54
Z(Pl’PZ) - 2 1
PlF(pl,pz) +.5p, +1

where
2
i _ (Spp+ DZ(p,py) - 5py PRyt Ryt
(pysPy) = 2 - p.p. +1 (3.62)

énd Z(pl;pz) is thus realizable in the form of Fig. 3.5a with
21 = ci =1 and F(pl,pz) as glven by (3. 62)

Case 3: Compiex Zero.

vIn single—vafiable'synthesis theory, a complex even part zero may
be realized by first shiftingvthe zero to the imaginary axis then
applying the Bott-Duffin procedure to remove this newly generated
imaginary—akis zero. In a broader sense than the Brune'svpfocéss of

minimum resistance extraction, the complex zero may be shifted to the

imaginary—axis by decomposing the given function into a sum of two
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sub-~functions one of which may be realized by inspection and the
other possessing the desired imaginary-axis even part zero. Such a

preliminary extraction step is also possible for multivariable

s

functions, however, the resulting imaginary-axis even part zero might
not meet the realizability conditions required by the methods discussed
previously. As to the Fialkow-Gerst's [1] method, on the contrary,

the difficulty associated with multivariable functions arises at the .

first preliminary process of deriving a new impedance which is purely

real at the complex even part zero.

To circumvent all these difficulties, we develope, in the
following, a simple separation approach which is based on Kim's [11,12]
work on transformerless synthesis.

It is noted that the input impedance Z(E) of a pl—variable
lossless reciprocal two-port closed on an impedance ZL(E) ‘may be

expressed in terms of the z-parameter of the two-port as

2, (R) + [2); )2y, (0) = 25(p)1/2,4 (p))

VA =
® = 2y, AR

(3.63)

From (3.26), the impedance Z(p) can be rewritten as

A(py) F(p) + B(p,)/A(p;)
z(p) = - (3.64a)
C(py) F(p) + D(pp)/Clp,)

B(p;) 1/F(p) + A(p,)/B(p,)
= . (3.64b)
D(py) 1/F(p) + C(py)/D(p,)

Comparing (3.63) and (3.64), we have the following two distinct

identifications:
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z),(p)) = AG)/C()) (3.65a)
z,,(p;) = D(p;)/C(p,) ' ' (3.65b)
2,(;) = Ye(D/Cp) (3.650)
z, (p) = F(p) (3.654)
and
zq,(py) = B(p;)/D(p,). (3.66a)
z,,(Py) = C(py)/D(p,) (3.66b)
21,() = YepD) /DG (3660
2. (p) = 1/F(p) , (3.66d)

where e(pi) = A(pl)D(pl) - B(pl)C(Pl)-

It may be noted that the pl-variable two-port is realizable by
simple structures without trénsformers if either one of the following
two cases are satisfied:

Case a: e(pi) is a perfect square and the residues of zlz(pl)
of (3.65c) are not greater than those of the corresponding poles of
zll(pl) and zzz(pl) of (3.65a) and (3.65b), respectively.

Case b: e(pz) is the negative of a perfect square and the
1

residues of zlz(pl) of (3.66¢c) are not greater than those of the

corresponding poles of (3.66a) and (3.66b).

-

As in (3.46), we see that

2 4 2 2.2, 2. 2
elpy) = py + 20wy - 039)p; + o35%wg,
which is neither a perfect nor the negative of a perfect square.

However, we may decompose e(pi) in the manner shown in (3.68) so as

to make each individual term.satisfy’either case a or case b,
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Let Z(p) of (3.26) be decomposed as

A(p)F(p) + B(p,) A, (DF(®) + B, ()
Z(p) = =3I a,
- Cp)F(p) +D(p)) & = C(p)F(p) + D(p))

i @2, (p) . (3.67)

Therefore, we have

(] = oyl epDGey) - By (Ck] = I e 6 - (369

Case a and case b actually amount to the following simple situations:

e, (82) = A (6)D(p)) - B, (p,)C(p,) = b (3.692)
e,(0) = A, (p,)D(p,) - B,(p,)C(p,) = ~(b;p,)° (3.69b)
e5(p2) = A,(0)D(p)) - B4(p)C(p)) = (b,p2)° (3.69¢)
e, (®2) = A, (D)) - B, ()6 = (b,p> + b L (3.694)

Solving for Al(pl) and Bl(pl) from (3.69a), we have

b F(p) + (b,b,/b,)p
z,(p) = —> e (3.70)
bip F(p) + (byp +b)

Since case a holds, we have

(1) _ (1) 0
z =z = e
11 12
b,Py
b b
z(l) = _2-p + 90 and Z(l)(p) = F(p) .
22 b, 1 byp L

Similarly, we have




b.p
1P1
Z,(p) = 5 . (3.71)
blplF(E) + b2p1 + bo
L@@ @ PP o)
%11 T %12 222 2 and  Z;77(p) = 1/F(p),
b2pl + b0

2
b,pF(R) + (bybo/b )p,

23(2) - . , (3.72)
bypF(p) + b,ypy + by
b
3 _ .3 _ 2
211 T %12 Ty P o
1
b b
2 2
ég) = SSpp and 53)(p) F(p)
1 1P1
and
(bzpi + b )F(p)
2@ - 2 , | (3.73)
bypyF(p) + bypy + by
L8 &) &) Y20 D0 2 ) = Fp)
211 T %12 T Zp2 by P b.p; Lk .

Network configurations for the Zi's are given in Fig. 3.6.

To extend the range of applicability, we may also add to (3.67)
the two simple bridge structures given by (3.55a) and (3.55b).

By assigning Z5 and Z6' corresponding to the impedances of
(3.55a) and (3,55b), respectively, we derive the following set of
equations with respect to (3.67).

ey + o, + 4a5 +..25a6 = a2/b2

oy + o, + e + ap = 1 (3.74)

2
ay + (bllbobz)a2 + aq + ag + .25&6 = a b /b .
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b,py /by
o o
zl (p) p bO/blpl
&
(a)
bo/blp1
11
@ 1
[

(c)

Fig. 3.6

(a) Network. for
(b) Network for
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The synthesis problem is now reduced to the simple problem of

's satisfying system (3.74).

solving for a set of positive ay
Usually. the ai's may be obtained by simple inspections; nevertheless,
in general, the problem can be handled systematically and easily on a
digital computer. In the following, for illustration, we show some
special cases.

.Example 3.4: In this example, we consider the solution of a

combination composed of only the first three component functions.

By setting o, = a. = ag = 0, from (3.74), we have

4 5
oy = 1
a, = [a,b, - b.(a, + Db )]/b2
2 11 0" 2 2 1
@y = az/b2

Substituting the ai's and the bi's of (3.27) into the ai's
above, we have
a, =1
0, = 202 - w2 ) [(w, R - 05 X3/ (ws R + o, X1 (3.75)
2 10 10 1070 1070 1070 1070

_ _ 2
ag = [l oRy + 01 0%)) /(wy Ry = 03X 1" -

It is clear that @y and ay are positive, and a, >0 if
2
10 " ¥1020

or equivalently

| /P10 | < 45° .
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Therefore, we can conclude that if the complex independent
even part zero P1g lies within the sector l plOl §_45°, then the
zero can always be removed by a combination of the first three
component functions.

For instance, the complex even part zero Py = Pig = /572+j/§72

_ -1, _ ,.0
P1g = tan "1 = 457,

Therefore, it is realizable by this combination. From (3.75), we have

of the example of (3.52) is located at

o, =1, a, = 0 and ag = 4 .

Since a, = 0, only Zl(E) and 23(2) are necessary. A complete
realization is given in Fig. 3.7.

Example 3.5: Consider the following 2-variable p.r. impedance

3 3 2 2

2 , - P(pl,pz) ) 4plp2+8pl+4.5p1p2+4p1+p1p2+6.5p1+l

1?2 T Qe ap) 3 2 2 , -

1°Po plp2+.4p1p2+l.8p1+plp2+.4pl+l
We have
(4pi + 3.2p§ + 1)(p1p2 + 1)2

Ev Z(p,5p,) =

P+5P 1’72 ( - -

1°F2 Qlp;,p,)Q(-p;5-P,)

Solving the equationb Api + 3.2p§ + 1 =0, we see that

Py =Py = .223 + j.672 1is a complex even part zero. Evaluating
Z(Pl,PZ) at p; = Pyg> We have

Z(pysPy) = 3.36 + 33.36

~which is a constant. Therefore, by virtue of Theorem 3.2, Z(pl,pz)

~may be expressed as
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.5p1
e I
Zl(Pl,Pz) :_—_'_1__ []F(pl’pz)
P
Z(Plspz) 4'/?1
ti
423(pl,p2) 2p; | 4F(pl,p2)

Fig. 3.7 A transformerless realization
of expression (3.53).

e
z, L 2 3?1 1
T 57, 5 F(p;,P,)
5/2p
1
z ] 1
5 |
2F(p,,p,) 5p
1°P2 1
©

Fig. 3.8 Example 3.5.




2

2
'.2p1F(pl,p2) + .5p1 + .5

where

2
(.5p7 + .5)Z(py5p,) - 2.25p;

F(P P ) =
2 2

1 —.ZpIZ(pl,pz) + 2p1 + .5

p1p2 + 2pl + 1

+
Ple 1

The argument of Pip = .223 + §.672 is

Pig = tan 1(.672/.223) = 71.56° > 45°.

Thus Pyg. lies outside the realizability region discussed in the
previous example. Therefore, it is not possible to remove Pig by
any combination of the first three component functions. Howeyer, from
(3.76), it is easily seen that Z(pl,pz) can be decomposed as

2
(Zpl+.5)F(pl,p2)+1.25pl . Py

2 , 2
.2p1F(pl,p2)+.5p1+.5 .2p1F(pl,p2)+.5p1+.5

= ZS(B) + ZZ(B) .

Hence, Z(pl,pz) is realizable by a combination of 22 and Z5

as shown in Fig. 3.8.
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CHAPTER IV
SYNTHESIS OF A CLASS OF MIXED LUMPED-DISTRIBUTED NETWORKS

It is well-recognized [27]‘that much of the multivariable theofy
was motivaﬁed by its practical appiications to mixed lumped-distributed
- networks. In this chapter, we consider the synthesis of a class of
networks made up of m cascaded noncqmmensurate transmission lines (also
referred to as unit elements) separated by passive lumped lossless t&o-
ports and terminated on a passive lumped network. A similar problem
was first tackled in [28]; howeyer, here we employ a more general and
explicit approach which includes the possibility of a reactive termination
and’eliminates the multivariable positive-reality condition in fayor of
some simpler one—variéble type condition. Explicit formulae fof the
chain‘matrices of the lumped passive lossless two-ports and the
terminating impedancé are derived. Several interesting special cases
- are also considered and the realizability conditions.are accordingly
modified to produce much simpler synthesis procedures.

for convenience, in this chapter, we denote a set of m complex
variablgs by (n) = (ul,uz,...,um); ;.and the symbol (u)zzg:::: will
represent a particular point (u) with the variables cprrespondiﬁg ﬁo
the upper indices assuming a value of 1, the lower indices assuﬁing 0
and the variables that are not indicated assuming any arbitray values.
For instance, (u)§’5 -implies that My = 1, u# =ug = O‘Iand the

remaining’variables HosHys etc, may assume any arbitrafy values.
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4.1 REALIZABILITY CONDITIONS

The synthesis of the class of networks (Fig. 4.1) composed of
m-cascaded noncommensurate . transmission lines, separated by passive
lumped lossless two-ports and terminated by a positive resistor was
first advanced in {28]. It is shown that necessary and sufficient
conditions under which the multivariable rational function Z[p, (u)]
may be realized as a driving point impedance of the structure shown
in Fig. 4.1 are

(a) Z[p,(y)] is a bilinear function1 in the set of variables
(W) = (uysmyseeesm ).

() Zlp,(u)] is a multivariable positive real function

(¢) zZlp, (W] + Z, [p,(W)] =0 at w =1 for i=1,2,...,m.

(@ zlp, (W1 + Z.[p, (W] # O,
where the lower asterisk denotes the reversal of sign of all the
independent variables.

It is noted that condition b is impfacticable and unwieldy to
verify. To circumvent this difficulty, we take a more direct and
explicit approach and derive an alternative new set of realizability
conditions, stated in the form of the following main theorem, which
replaces condition b by some simpler one-variable type conditions.
Also, in order to be able to cater for the possibility of a reactive
termination. The more general structure shown in Fig. 4.2 is

considered, where the terminating network is lumped and passive

but otherwise arbitrary. Furthermore, since the extraction order of

1 Z[p,(u)] is said to be bilinear in the set of variables (u)
if degu Zlp,(w)] = 1 for every 1i. .
1 : v
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the transmission lines can always be determined in advance [18],

in the following, we shall assume without loss of generality that

the extraction order is {pl,uz,...,uﬁ}.

4.,1.1 The Main Theorem

The necessary and sufficient conditions for the multivariable

rational function Z[p,(y)] bilinear in the set of variables

(u) = (ul,uz,...,um) to be realizable as a driving point impedance of

the structure shown in Fig. 4.2 are as follows

i i n, (p)
(1) Z[p,(U)l,z,...,i"l] - —Z*[p’(U)l,Z,...,i-l] = di(p) (4'
for i=1,2,...,m, where ni(p) and di(p) are polynomials of p
only and are expressed as being relatively prime.
(2) With n_=d =1 and
) )
n
mtl
I I ] 1l
where no4 and dm+l are relatively prime, formulate
Ay moy®y = Gy g%y g (agtngy) = (ny gomy 000 (d5-d,0)
By = B30 = (&g gHds ) (aymny) = (ny gm0, (a4 )
(40
€ = 4% = ~(dy ydy 1) (o, 0+ (ny _pny 0,0(d;-d,,)
Dy =849 = =03 97d; ) (agmy) + (ny_y¥my 4,0 (dg+d; )

for 1i=1,2,...,m1, where © is the greatest common factor of A

Bi’ Ci

and D,. Then
i

i

(2a) ai+Bi+Yi+Gi is strictly Hurwitz.

'(2b) aiG

i

-8

iYi can be factored as

1)

2)

i’




aiGi - BiYi = eififi* (4.3)
where fi is a real polynomial and € is a constant which is equal
to +1 if o, is even and -1 if ay is odd.

Synthesis Procedure: A realization in which all the passive
lumped lossless two-ports are all-pass free on their output sides may
be obtained by the following

(i) The passive lumped lossless two-ports are characterized by the

following chain matrices

1| %4 B
[T]i = 3 ' for i=1,2,...,m. (4.4)
i Yy 6 ’

(ii) The characteristic impedances of the unit elements are

normalized to unity,

in =1 for i=1,2,...,m. (4.5)

(iii) The terminating impedance is given by

%1 T B
7, ~ =y ) (4.6)
w1 T O

Proof of the Main Theorem: The necessity is evident from simple
analysis. In the following, we shall show the sufficiency.
By (4.2), it is observed that Ai and Di are even polynomials

whereas Bi and Ci are odd. Consequently, both o, and Gi are of

the same parity (that is, both are even or odd depending on whether the

greatest common factor ¢i is even or odd), while Bi and Yi are of

parity opposite to that of o, and Gi. This fact together with

i
conditions 2a and 2b show that the matrices defined by (4.4) represent




the chain matrices of realizable lumped lossless two-ports.
On extracting from Z[p,(u)] a two—port characterized by [T]1

and an unit element corresponding to with unity characteristic

Y1
‘dimpedance in succession, the remaining impedance is of the following

form

(GlZ[p,(u)]—Sl) - ul(—le[p,(u)]+a1)
-ul(ﬁlz[p,(u)]—ﬁl) + (—le[p,(u)]+al)

. .7

Zl’[p, (w1 =

From (4.2), we have
al = n1 + nl*
g, = n, - nl*
LT T I
61 = dl + dl* 3

and from (4.1), we have

: n
zlp, W' = - z,0p, (1) = L .

1

Therefore, it can be shown that both the numerator and the denominator

~of (4.7) possess the common factor (l—uz). Hence;
1

degu Z;lps ()] = deg, Zlp, (W)l ~1 .

1 1
By hypothesis, Z[p,(u)] is bilinear in Bys it therefore follows
that the remaining impedance Zl[p,(u)] is free of the variable My
Féllowing a similar argument, we can extract from Zl[p,(u)] a
two-port characterized by [T]2 and a uz—unit~e1ement with 202 =\l

in succession to obtain a remaining impedance further free of the

variable u2.
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In short, condition 2 guarantees the successful extractions of
the passive lumped lossless two-ports, and condition 1 assures the

's variables. The same aforementioned

degree reduction in the Hy
procedure can be repeated m times until all the unit elements are
extracted. The synthesis is then completed by a final cascade
realization of the terminating impedance ZL which is given by (4.6)
and is p.r. as evident from conditions 2a and 2b with i = m + 1.

It may be noted that the passive lumped lossless two-ports defined
by (4.4) are all-pass free [1,35] on their output sides. This is due
to the assumption that the polynomial pair n, and di is expressed
as a relatively prime pair. The all-pass section, if it exists, on the
output side of the i-th two-port is passed over the ui—unit—element
section to the (i+l)-th two-port and becomes a front all-pass of the
latter. Such an all-pass section can be easily identified [1] by
recégnizing the common factors between the two polynomials (ai+6i+yi+éi)
and (ai—Bi+Yi—61). Different syntheses may be generated by re-
distribution of the all-pass sections.

~ It is also worthwhile to note that although (4.5) yields a realiza-
tion with unity characteristic impedances, the denormalization of the
characteristic impedances can always be achieved by appropriate

eliminations of transformers. This process is carried out in the

proofs of the following corollaries and also demonstrated in Example 4.1.

4,1.2 Special Cases
The Main Theorem is established for a general structure. In the
following, we derive some interesting corollaries for several special

cases. According to the particular natures of the passive lumped




88

lossless two-ports of these special cases, condition 2 of the Main
Theorem is modified into much simpler forms to greatly facilitate the
synthesis procedures.
Corollary la

The multivariable rational function Z[p,(#)] bilinear in ﬁhe set
of variables (y) = (ul,uz,...,um) may be realized as a driving-point
impedance of the resistively terﬁinated cascade of m ﬂoncommensurate
‘transmission lines separated by series—arm parallel-LC sections as
shown in Fig. 4.3a if and only if Z[p,(u)]_ satisfies conditionll of:i_~"'
the Main Theorem plus the following conditiﬁn: . |

(2c) The function ni/di defined in the Main Theorem may bé

expressed in the form

.n i G .
i _ T _k + in | - (4.8) -
d; k=1 8 : : o
for i=1,2,...,m1, where
"y
Zpy; = lim is a positive constant, ‘ - (4.9
pre 9y

and Gk and I assume one of the follbwiﬁg cases:

gk =1 and Gk = 2kp (Zk > 0). This corresponds to the

case that the k-th parallel-LC connection degenerates to a single

Case 1:

inductor arm with.inductance Zk.

Case 2: = p aﬁd” Gk = 1/ck > 0. This corresponds to the case

Bk
that the k-th LC section degenerates to a single capacitor arm with

capacitance S

N

Case 3: Kk

2
8y (mk > 0) and Gk zkp (Zk > 0). Both
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(b)

Fig. 4.3 A resistively-terminated cascade of m noncommensurate
transmission lines separated by (a) series-arm
parallel-LC sections, (b) shunt—-arm series~LC sections.
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elements of the k-th parallel LC section exist with inductance £ and

k
capacitance ¢, = l/wzl .
k k'k
The characteristic impedances Z,.'s of the transmission lines

0i

are given by (4.9) for i = 1,2,...,m and the terminating resistance
is R = Zomtl (also from (4.9)).

Proof: The necessity is obvious from Simple analysis. We shall
prove that condition 2c implies condition 2 of the Main Theorem .and the
set of formulae (4.4), (4.5) and (4.6) leads to the desired realization
of Fig., 4.3a.

With Z.. =1, gy = 1 and G, = 1, it can be shown from (4.2)

00 0
and (4.8) that the set of parameters o Bi’ \ and Si, i=1,2,...,m1,

assume one of the following four cases depending on whether 85 and

i-1
the product polynomial I g, are even or odd:
k=1
i-1
(i) Both g, and [ g are even,
i 2%k
k=1
o = 2018y
By = Oy
, (4.10a)
Yy © 0
8; = %p1-18; -
i-1
(ii) g. is evenand 1 g, is odd,
i k
k=1
a; = 0
By = 2017181
(4.10b)
Yi T 2018
8§, =G .

o
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i-1
(1id) 84 is odd and @ g is even,
=1 k
%y =6
By = 20484
(4.10c)
Yi = 201184
61'—'0 °
i-1
(iv) Both 84 and T g  are odd,
=1 k
%5 = 204-184
Bi =0
(4.104)
Yy =6
81 = Zp184
Therefore, we always have
OBy = Gyt (Zgi+2g; 1)y (4.11)
and
aiGi - BiYi = sififi* (4.12)
for i =1,2,...,m1, where fi = VZOiZOi-l 8» €, = 1 if 8 is
even and e = -1 if 84 is odd.

Consequently, from (4.12), it is obvious that condition 2b is

and Z

satisfied. Also, from (4.11) and the definitions of Gi’ 84 0i

given in the corollary, condition 2a is satisfied. Hence, according
to the Main Theorem, Z[p,(u)] is realizable in the general structure
of Fig. 4.2. Next, we show that the set of formulae (4.4), (4.5) and

(4.6) leads to the particular structure of Fig. 4.3a.




From (4.4), (4.6) and (4.10), it can be shown that

1
[T], =

1
201%0i-1

for i =1,2,...,m, and

81 Gl

Z0m 8ol

Zom Bkl

81RO

Vi

(4.13)

(4.14)

where the parameter Vi is introduced for convenience and is defined

as follows

1 if
2

0 if

2=0

It is noted that if the parameters vy

not equal to 0, the factor

B

-

is odd.

is even.

(4.15)

-1 and v, in (4.13) are

indicates the presence of gyrators in the i-th two-port. However, we

shall show that such gyrators can always be eliminated. To do this,

let us consider two adjacent two-ports

Vv,
o 171 ¥z &
0i —
. gi
1 0 0 z

[T]i and [T]

i+l

o141 1] [0
Bi+1
oz, |1

92
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It is observed that the factor

Vv
o 171

1 0

of the i-th two-port can always be passed over the ui-unit—element

section and cancels out the same factor of the (i+l)-th two-port.

“By a similar argument, all the gyrators can be combined and thus be

‘eliminated. Hence, the chain matrix representation of the overall

network can be shown to be

G : G — G — - G -
1 201 g-l- LMY, gz Z0m -g—“—‘ Lot} ————gm+1 RL}
2 | o +1
VA /1-p2 0 1l u, 1 0 2z 0 2 ! w1 [i0 zm 1
0i" My 1 01 © o Com-1f | Mm Om I

Upon denormalization of the characteristic impedances of the unit

elements, we have

G i G c G I j
1 1 1 1ozgu ||l 2 1 mj| 1 zgu |1 Cmtl}|R
2 gl 1 g2 gm 1 gm+l
lpy |0 1 5=y 1 0 1 0 1 |lz—u 1 0 z_ 1
L l_01 _Om .
(4.16)

The desired realization of Fig. 4.3a is apparent from (4.16) above.
By a dual consideration, we have the following corollary for the
~structure of Fig. 4.3b. |
Cérollary 1b
The multivariable rational function Y[p,(u)l bilineér in the set
of variables (n) = (ul,uz,...,um) may be realized as a driving-point

admittance of the structure shown in Fig. 4.3b iff Y[p,(n)] satisfies
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condition 1 of the Main Theorem (with Z replaced by Y) plus the
following condition:
(2d) The function ni/di defined in the Main Theorem (with Z

replaced by Y) can be expressed as
et
—_ = §] = 4 Y (4.17)
di

for i =1,2,...,ml, where

n,
= <
YOi 1im p >0 (4.18)
P i
and Gk and g, assume one of the following cases:
Case 1: g =1 and G = P (ck > 0). This corresponds to the

case that the k-th series-LC connection degenerates to a single

capacitor shunt arm with capacitance Cp*

Case 2: =p and G, = 1/2k > 0. This corresponds to the case

& k

that the k-th series-LC section degenerates to a single inductor shunt

arm with inductance &, .
k

2,2 2 B
Case 3: g, =P +wk (wk > 0) and Gk = g P (ck > 0). Both

elements of the k-th series-LC connection exists with a capacitance °x

- 2
and inductance %y = l/mkck.

Corollary 2a

The multivariable rational function Z[p,(u)] bilinear in the set
of variables (u) = (ul;uz,..,,um) may be realized as an input
impedance of the resistively terminated cascade of m noncommensurate
transmission lines separated by low-pass LC sections as shown in

Fig. 4.4a iff Z[p,(n)] satisfies condition 1 of the Main Theorem
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(b)

Fig. 4.4 A resistively-terminated cascade of m noncommensurate
: transmission lines separated by (a) low-pass LC sectiomns,
(b) high-pass LC sections.




plus the following condition:
(2e) The function ni/di defined in the Main Theorem can be

expressed in the following cumulantl forms

2i Kk

n L a; kP (2 c,p —— 4 c,p+Y..)

i _ k=0 I Uide U 1P %3P 01 6.19)
T o T ; . NG
dg 5 b, p" (c1Psfgp ——— A;psc pHY ;)

k=0 ik
where
b
iC
YOi = = >0 (4.203a)
4i0
bil i-1
c, = (— - I cj ) >0 (4.20b)
aiO j=1
ail i-1

Q,i=(—-- -z ﬁj)zo (4.20¢)

io 3=

1 Cumulant is a convenient mathematical tool in dealing with ladder
networks, detail on the subject may be found in [8]. A cumulant
denoted by (a,,a a »a_) 1is defined as the determinant of

. 1°72 n-1’"n
the matrix

5 1 o 6o o o
-1 a, 1 o o o
0 -1 a o o o
0 0 o 0,1 0
0 o o . =1 a1 1
_.o~o 6 . . . 0 -1 %_J

Simple rules for evaluating cumulants are given in [8].
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The 2.'s

are the element values of the inductors

and capacitors, respectively, i = 1/YOi for 1 =1,2,...

,l are

-the characteristic impedances of the transmission lines and RL=1/Y

is the terminating resistance.

Om+1

We shall show that condition 2e

The necessity is evident.

implies condition 2 of the Main Theorem and the set of formulae (4.4),

(4.5) and (4.6) leads to the particular realization of Fig. &4.4a.

From the even and odd parts of n, and di’ it can be easily

verified taht

= 2(21p,clp

ZYOi(Clp,sz ci_lp,zip) otherwise

= 2(clp,22p

2y00.,mtl,

Using the following cumulant identity [8]

8-208,_1°3,) = (a; 903,902,

it can be shown from (4.2) and (4.21) that

2
Yo5-1(&405P )0,

= Y51-1%01

(4.21a)

(4.21b)

(4.21c)

(4.214d)
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for 1 =1,2,...,ml, where Y00 =1 and.

9, = 2{(c1p———li_1p)(llp———ci_lp) - @p—2; iP)(ejp—c, i)}

Therefore,

- 2
@y = Yoy-1(Fe4P HD)
B, =Y . .Y 2.p
i | 0i-1704i % (4.22)
Yy = ¢4P
6; = Yo1 3
and we have
- 2
a +B Y S, = YOiflzicip + (YOi_lYOizi+ci)p + YOi_l+YOi (4.23)
and
aiai - BiYi = fifi* > : (4.24)
where £, = ¥¥_.Y . .
i 0i 0i-1

By hypothesis, ‘YOi > 0, li > 0 and ¢, > 0, therefore, it is
appargnt from (4.23) that condition 2a is satisfied. .Also, condition 2b
is satisfied as evident from (4.24). Hence, according to the Main
Theorem, Z[p,(u)] 1is realizable in the general form of Fig. 4.2.

Next, we prove that the set of formulae (4.4), (4.5) and (4.6) leads to

the particular structure of Fig. b.ba.

From (4.4), (4.6) and (4.22), we have

2
Toi-1384P +D Yo 170540

4P Yo1
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1 Ir : T N
_—_ 0 2,c.p2+l L.p|lvZ 0
S i7i i 0i
0i~-1
= + (4.25)
0 Y2, || <o 1{]lo L
el L V7
— B - L - 0i
for i =1,2,...,m, and
(L ,.c p2+l) + R & ,.p
~ rt1 k1 R w1
zL = YOm (4.26)

bcm+1p + RL

From (4.25) and (4.26), it can be shown that the chain matrix

representation of the overall network is given by

1 22c2p +1 22p 1 ZOZUZ
m
Il 1-u 1
=1 c,P 1 Er—ul 1
02 -
— 1 -~ 2 e B
Lep+l Lp 1 zOmum £m+lcm+lp +1 Qm+lp RL
¢ 1| 1 ¢ 1 1
L J[[0m dL JL 1.
(4.27)

Therefore, the desired realization of Fig. 4.4a is apparent from

(4.27) above.

On replacing p by 1/p, by 1/5i and c, by llﬁi in

Ly i

Corollary 2a, we have the following corollary for the structure of

Fig. 4.4b.
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Corollary 2b
The multivariable rational function -2[5,(u)] bilinear in the set

of variables () = (ul,uz,...,um) may be realized as a driving point

impedance of the structure shown in Fig. 4.4b if and only if the

function Z[p,(x)] obtained by

zlp, (w1 = Z[p,(u)] 5

=1
P

satisfies Corollary 2a with Zi and s being replaced by 1/6i and

1/§i, respectively.

Corollary 3a

The multivariable rational function Z[p,(u)] bilinear in the set
of variables (u) = (ul,uz,...,um) may be realized as a driving point
impedance of the resistively terminated cascade of m noncommensurate
transmission lines separated by series-arm series-LC sections as(shown
in Fig. 4.5a if and only if Z[p,(u)] satisfies condition 1 of the
Main Theorem plus the following condition:

(2f) The function ni/di defined in the Main Theorem can be

expressed as

ni Si
E—-= Lip + E—-+ ZOi s (4.28)
i
where
2oy > 0>
Li 3-L1-1 >0 with L0 =0,
S. > 8 >0 with §. =0,

i-—"i-1 - 0

for i =1,2,...,mtl,




L | Lo Ca lm Cn lm+|CmH
e—r—]— | ——e---- o—rr—| ]
Zol Zo2 Zom RL
ad H2 Hm
e = ——e~---C ==
(a)
e — —— 8-~ -& —=
Zo 1 7o 1 Zom L_j %
W3 ==c l2 Cz ln3 ==Crm,, 3 ==C_, 3R
o g [ [re o [T e [

(b)

Fig. 4.5 A resistively-terminated cascade of m noncommensurate
transmission lines separated by  (a) series-arm
series-LC sections, (b) shunt-arm parallel-LC sections.
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The characteristic impedances, the terminating resistance, the

inductances 2i's and the capacitances ci's are given by

ZOi for 1i=1,2,...,m,

R = Zome1 >

respectively.
Corollary 3b

The multivariable rational function Y([p,(u)] bilinear in the set
of variables (u) =(u1,u2,.,.,um) may be realized as an input.
admittance of the structure of Fig. 4.5b if and only if Y[p, (u)]
satisfies condition 1 of the Main Theorem (with Z replaced by Y)
plus the following condition?

(2g) The function ni/di defined in the Main Theorem (with 2

replaced by 'Y) can be expressed as

-n—i-=cp+—r-i-+Y (4.30)
di i P 0i :
where
YOi >0,
€;2C 120 with Cj=0,
I‘iz_ri_l>0 with Ty =0,

for 1 =1,2,...,ml.

The characteristic impedances, the terminating resistance, the

1

g 8 are given by

inductances zifs and the capacitances ¢
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respectively.
The proofs of these two corollaries may be shown in a similar

manner as the previous ones and are thus omitted for brevity.

4.2 EXAMPLES

Example 4.1: Consider the following multivariable function

N[p,(n)]

zlp, =
. 1 = S

where

N[p,()] = (11p>+11p+13p+4)u + (6p4+6p3+21p2+15p+12)uluz

1M2¥3

+ (9p4+9p3+29p2+20p+18)u1u + (20p2+9p+4)u2u

3 3

+ (9p3+9p2+12p+6)ul + (12p3+6p2+27p+12)u2

349p2+38p+18) 1, + (15p>+6p+6)
3

+ (18p
and
- 4 3 2 3 2
Dip,(w)1 = (18p +18p~+29p +11p+9)u1u2u3 + (12p~+12p +9p+3)u1u2
3 2 3 2
+ (13p~+13p +llp+2)u1p3 + (36p~+18p +20p+9)u2u3
4 3 2 2
+ (12p +12p~+21p +9p+6)u1 + (18p +6p+3)u2

+ (2zp2-+9p+2)u3 + (24p3+12p2+15p+6) .

First, we shall determine the order by which the unit elements are
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extracted. Following similar lines described in [18], we compute

2
1,2, p +pt+2
zlp, 20 =
SR 2p~+ptl
3 2
Z[p’(U)Z,S] = 3 ’

4p +4p2+3p+2

2
2 pHp+2
Z[P,(U)l 3] = =
? 2p +p+l
and
3 3p242p+6
Z[p’ (u)l 2] = —_2_-—_-_—- .
? 4p“+3p+2
Since

ztp, %771 = zlp, 03 41,

the first unit element to be extracted corresponds to Ho-

Next, we compute

3p2+2p+6

1,3
Z{p, (u)2 ] 4p2+3p+2

It is observed that

2lp, ;"1 = 2zlp, (W) |1

‘Therefore,the second unit element to be extracted corresponds to u3.
Hence, it follows that the order of extraction is {uz,u3,u1}.
Knowing the extraction order, we are now in a position to verify

the realizability conditions.




(1) Condition 1 of the Main Theorem is satisfied, since

2p, 7]

2[p, ()31

2[p, (1) 5]

4 (ii) From the set of equations (4.

al = p"+2
Bl =p
Yy =P
6, = 2p+1
a, = 3
82 =0
Yy = 0
52 =2
ag = 1
83 =0
Yy = 3p
63 =3
a4 =1
B& =0
Y4 =P
§, =1

~2,[p, ()]

= —2,(p, (W))]

= -2,Ip, ()5 3] =

al+el+yl+61

@967 = By

a2+32+72+62

a,6, - B

22 T FaYy

a3+83+y3+63

a8, - B

3°3 7 P3Y3

a,+B, by, 8,

§

%84 = By,

p2+p+2

2p2+p+l
2

3p T +2p+6

lp2+3pt2

3p2+2p+2

3

i
d +4pZ+3pt2

3 4p

2), we have

3p2+2p+3

]

2 (p2+1) 2

3pté

105
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Therefore,it is obvious that conditions 2a and 2b are satisfied.
Hence, according to the Main Theorem Z[p,(u)] is realizable as an
input impedance of the structure of Fig. 4.2 with the extraction order
Tuysugsug b

Using the set of formulae (4.4), (4.5) and (4.6), a complete
realization is given in Fig. 4.6a. Upon eliminating of transformers,
‘we have an alternative realization shown in Fig. 4.6b in which the
scharacteristic impedances are denormalized.

Example 4.2: Realize

Nip, (W]

Zlp, =
e, G =

where
5 4 2
N[p, ()] = (p™+bp +9p3+24p +5p+8)u1u2u3 + (sp"+16p3+8p2+2op+2)ulu2
+ (2p5+2p4+18p3+12p2+10p+4)ulu3 + (4p4+12p3+9p2+12p+2)p2u3

+ (1op“+8p3+16p2+1op+4)u1 + (p5+4p‘*+7p3+12p2+7p+8)u2

3 4 3

+ (8p4+6p +l8p2+6p+4)u3 + (2p5+2p +14p +6p2+14p+4)

and

4

D[p, ()] = (2p4+4p3+5p2+8p+2)u + (p5+4p +3p3+12p2+2p+8)u1u2

1H2M3

4., 3 2

+ (4p4+2p3+10p2+4p+4)u1u3 + (p5+4p +4p +12p +4p+8)u2u3

4,. 3

+ (2p7+2p"+6p +ep HhpHan, + (p 3p D),

3

+ (2p5+2p4+8p +6p2+8p+4)u3 + (2p4+6p2+4) .

First, following the same steps as in Example 4.1, the extraction

order is determined as {u3,ul,u2}.
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Next, we see that condition 1 is satisfied, since

2
n
3 3 1 p +3pt+2
Zlp, (W) = -Z,[p, ()] = - T
1 p +2
1, 1, Py pitapdesplespr2
zlp, (154l = -Z*[p,(u)3] =1 5 7
2 (p™+1) (p7+2)
2 2 Dy p5+2p4+7p3+6p2+7p+4
Z[p,(u)3’1] = -Z*[p,(u)B,ll e .

3 (p2+1) (p2+2)

Upon performing partial fraction expansions for the functions

ni/di for i =1,2,3,4, we have

n 3p ‘

. T+ 1 (4.32a)
d]_ p +2

n 3

2. 2 L, P (4.32b)

d2 p2+2 p2+1

n 3 p
3. ~§E— + —— +p+ 2 (4.32¢)
d3 p +2 p +1
n 3 P
e ot —tp 1l . (4.32d)

4 ) +2 p t+1

Therefore, condition 2c¢c is satisfied. Hence, according to Corollary 1la,

Z[p5(1)] is realizable as an input impedance of the structure of
Fig. 4.2a with the extraction order {u3,u1,u2}. The element values

can be easily identified from (4.32). A complete realization is given

in Fig. 4.7.

Example 4.3: Realize

Nfp, (1)1
Z[?:(U)] = ;5%:'—'%"’ s
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where
. _ 4 3 2 5 4 3 2
Nlp,(#)3}= (20p +40p~+13p +18p+l)ulu2u3 + (20p~+40p +27p +46p +7p+8)ulu2
4(40p4+20p3+26p2+9p+2)u1u3 + (8p5+16p4+20p3+24p2-i-6p+4)u2u3

+(4op5+2op4+s4p3+23p‘+14p+4)ul + (8p6+15p5+26p4+36p3+18p2+15p+2)u2

5

+(16p +8p4+4op3+12p2+12p+2)u3 + (16p0+8p +52p™+18p +36p2+8p+4)

and

Ddlp, () 1= (20p3+40p2+8p+8)u1u2p3 + (20p4+4op3+17p2+26p+1)u1u2

+(40p3+20p2+l6p+4)u1u3 + (8p%+16p°o

+18p2+20p+2)u2u3

+(4op“+20p3+34p2+13p+2)u1 + (8p5+16pl‘+22p3+28p2+8p+4)u2

5

+(16p’*+8p3+36p2+1op+4)u3 + (L6p +8p +hbp +14p2+16p+2) .

The extraction order of this example can be shown to be {u3,ul,u2}.

Condition 1 of the Main Theorem is satisfied, since

2
nl : 2pT+p+l

3 ,
2lp, (7] = -2, lp, 7] = === (4.33a)
L 1 2p+l
4 3,c.2
1 1 y 4p +2p~45p°+1.5p+1
Z[P,(u)3] = “Z*[P,(U)B] = = 3 2 (4.33b)
dz 4p~+2p“+3p+.5
2 _ 2 ) 4p6+4p5+l3p4+9p3+9p2+4p+1
Z{PS(U)3 l] - —z*[p’(U)3 l] = -— = 5 4 3 2
’ ’ d3 4p~+b4p +11p +7p +4p+l
(4.33c)

Now, let us assume that the given function is realizable in the
form of Fig. 4.4a, then the element values can be easily identified

from (4.20), (4.33) and the following function
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n, |  4pPe2pP+13ptHs. spropZe2ptl
= =zlp, (W) , 4l = (4.34)
d, 242 4p +2p +11p~+3.5p“+4p+.5
We have
Y =1 Y, =5 Y,=1, R =1/Y, =2,
8,=1, 1, =2, 2y=1, 2, =0,
ey = 2, e, = 1, cy = 1, e, = 0.

To show that Z[p,(u)] is indeed realizable in the form of
Fig. 4.4a, we need to verify that condition 2e of Corollary 2a is
satisfied. Evaluating the cumulants defined on the right hand side

of (4.19) and comparing with (4.33) and (4.34), we have

- _ 5.2 _
(llp,c1P+Y01) = (p,2p+l) = 2p“4p+l = ny

(e pHY (2p+1) = 2p+l = d

o) = 1
. 4 3 2
(Elp,clp,lzp,c2p+Y02) = (p,2p,2p,p+.5) = 4p +2p +5p“+1.5p+1 = n,

342p%4+3p+.5 = d

(clp,zzp,c2p+Y02) = (2p,2p,p+.5) = 4p 9

(8,P5C P> %,P5C,PsL,P5c,Pp+Y ) = (P,2p,2p,p,p,ptl)
IS Ll Lt/ il Lk LAt
6 4

14
4p +4p~+13p +9p3+9p2+4p+1 =n

3
(€1Ps2,P5CyP5243P5CoPFY10) = (2p,2p,P,P,p+1)

4p5+4p4+11p3+7p2+4p+1 =d

3

(21P5¢9P52,P5C,P524P5C3P5 L, Psc, P+ ) = (P52P,2P,P,P,P,0,0+.5)

= 4p6+2p5+13p4+4.5p3+9p2+2p+1 =n,

(e1Ps2,P5CyP524P5CaPs L, P5C, P+, ) = (2p,2p,P,P,P,0,0+.5)

tp +2p +11p3+3. 5pZlpt.5 = d

4 o
Therefore, Corollary 2a is satisfied. A complete realization is given

in Fig. 4.8.
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Fig., 4.7 Example 4.2.

Fig. 4.8 Example 4.3.
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CHAPTER V
CONCLUSIONS

The realizations of multivariable network functions in the forms
of certain simple strpctures with constituent building blocks involving
functions of reduced complexity have been investigated. Three different
configurations have been considered:

(1) A sum connection of immittances which are functions of mutually
disjoint sets of variables.

(2) A cascade connection of single-variable passive lumped net-
works, the cascaded subnetworks are also assumed lossless
except the last termination.

(3) An extended Bott-Duffin type structure.

The reali;abiliﬁyrconditions have been formulated in terms of the
decomposability of the given function in certain special forms., Apart
from the geheral formulations based on the multivariable positive
reality condition, more direct and explicit alternative approaches have
also been discussed. The improvements and generalizations of the
presented results over the existing ones have been illustrated by
examples.

The synthesis of independent zeros of the even part of a multi-

variable positive real function has been studied. Besides the
discussion of the usual cascade extraction: by the basic sections,

viz., the Richards', Brune, type C, type E and type D sections,
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removal methods without resorting to gyrators and transformers have
been presented. The developments of the latter were primarily based on

Miyata's separation concept of the even part function in single variable

synthesis theory. In particular, Seshu's results on the minimal
‘realization of biquadratic single variable minimum functions have
also been generalized to multivariable functions as a means to
realize imaginary-axis.independent even part zeros without using

transformers.

The problem of the synthesis of a class of networks made up of m
cascaded noncommensurate transmission lines separated by passive lumped
lossless two-ports and glosed on a passive lumped network has been
é ' considered. A new set of realizability conditions ﬁas béen presented.
| . The advantage of the proposed set of'conditions is that it requires no
multivariable p.r. test and is simple to apply. Explicit formulae for

‘the chain matrices of the passive lumped lossless two-ports and the

terminating impedance have been derived. Several interesting special
cases have also been considered and the realizability conditions have

accordingly been modified in such a way that the synthesis is carried

out almost by simple inspection;,




In a recent article [2], the synthesis of a two-variable driving

point impedance Zl(s,p)

APPENDIX

@

o

I Zl(s,p)

Fig. Al The basic network configuration considered in [2].

It was shown that the necessary and'suffici;nt condition for
Zl(s,p), a two-variable p.r. function of two complex variable
p, to bela driving pqint.impedance realizable by an s-variable loss-
less two-port network with a p~variable driving point iméedance Zo(p)

termination are that Zl(s,p) can be written as

ml(S)f(p) + nl(s)g(p)

. s=variable

lossless

in the form of Fig. Al is considered.

Zo(p)

zl(sap) =

m,(s)g(p) + ny()£(p)

where m1 and m, are even and ny

in s with the following conditions:

are odd polynomials

(i) F(s) = [ml(S)+n1(S)]/[m2(8)+n2(8)] is p.r..

(ii) G(s) = ml(s)mz(s)—nl(s)nz(s) is a perfect (or negative of

a perfect) square.

(iii) The rational function £(p)/g(p)

is p.r..
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‘In the following, we observe that
: (1) The 2-variable positive reality requirement is superfluous.

Nevertheless, if it is indeed the author's intention to regard it as

a prerequisite condition on the given function, then conditions (i)
and (ii) of the theorem are redundant.

(2) The theorem has not beén formulated in a proper manmner and
consequently leads tb.faulty result under certain circﬁmstances. For

example, consider the following function

(sz+l)p - 2s

Z.(s,p) = c
1 -2sp + (sz+1)

Here, we see that

m, +ny s241 - 2s
(i) == = 1  is obviously p.r..
m, + n, s +1 - 2s

(ii) m,m, - n,n, = (sz+1)2—4s2 = (52—1)2 is clearly a
perfect square.

... £ .
(iii) -——— = p dis evidently p.r..
g(p) _

Although all the three conditions of the theorem are satisfied,

Zl(S,p) is not a realizable function.
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