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ABSTRACT

The thesis consists mainly of two parts. The first part gives a review of the
properties of the components involved in blood flow in arteries affected by
arteriosclerosis. The blood flow in arteries includes flow through porous medium
(deposited cholesterol), as well as flow past porous medium (in the arterial
channel). The second part gives a mathematical analysis of the flow in an artery
whose cross section is a circle and the porous medium forms an annulus which is
a doubly connected region. Analytical expressions are derived for the velocities
of the flow, concentrations, and volume flux for both the porous medium and the
channel. The results for the velocity components are illustrated by numerical
computation for a set of parameters. A new approach to find the rate of growth

per unit width per unit time of the cholesterol deposit is also given.

vii



CHAPTER 1

Introduction

1.1 The Problem and the Scope

The radial incorporation of cholesterol in an arterial (arteriolar or capillary) wall
gives form to deposits which grow inward and restrict blood flow. In time, this
produces a disease called arteriosclerosis, prevalently found in é!derly people
and it may lead to cerebral and coronary thrombosis, myocardial infarctions, and
others. These ailments are becoming more common throughout the world and
much research has gone into elucidating the various factors determining this
condition.

Generally speaking, the heart is a muscular pump which contracts about seventy
times a minute and is capable of doing so for over eighty years. Like all muscles,
it must have a blood supply to carry oxygen and nutriment to it. The blood supply
of the heart is carried by three small blood vessels arising from the aorta and
known as the coronary arteries. The coronary arteries have a smooth inner

lining, the endothelium, and it is this lining that gradually becomes thicker due to

1



the progression of arteriosclerosis. This process is largely due to deposition on
the endothelium of substances containing cholesterol. When the endothelium
becomes laden with cholesterol, it seriously impedes the fiow of blood to tissue,
and in the case of coronary arteriosclerosis, the musculature of the heart begins
to suffer the effects of an inadequate blood supply. Ultimately, a coronary artery
may even become blocked.

Am important problem related to arteriosclerosis is the rate of accumulation of
cholesterol into plaques. As like many other authors, we approach the problem
by constructing an idealized model.

Thus, the problems discussed in this thesis have the following objectives:

(@ A biological model of blood flow through and past porous medium will be
elaborated.

(b) Cholesterol mass transport in arteries is calculated to further analyze mass
transfer and accumulation within the arterial wall. The accumulation of

cholesterol is due to diffusion of the blood plasma lipoproteins.

1.2  Brief Description of the Biological Model

The biological problem can be presented mathematically in various levels of
generality. To be rigorous, it seems evident that the heart, aorta, arteries, and
veins should be represented by a three-dimensional network, and the special
geometry and materials of construction of various organs must be described and
incorporated in the model. In practice it is useful to consider simplified, unrefined

models first, learn the general features, identify the important parameters, and
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then add details when feasible, on the assumptions that these important
characteristics are retained in the complex system.

To understand the events occurring in the arteries, we consider the following
simple model that shows similarities with models studied by other authors: each
artery is treated as an infinite, isolated, circular cylindrical rigid tube; the blood is
taken to be a viscous, Newtonian, incompressible, and homogeneous fluid. We
approximate the flow to be steady, laminar, and along the axis of the tube.

The blood flows through and past a porous medium and is driven in both media
by the same pressure gradient. The porous medium consists of tissue fluid,
lymph, lymphatic vessels, and other cells and particles, including cholesterol, and
it is considered to be homogeneous and isofropic. As we can see in Figure 1.1,
between the interior channel and the porous medium there exists an imaginary
wall that we treat as permeable to both blood, which constitutes the solvent in a
solution containing cholesterol solute, and to solute. The exterior wall of the

artery is considered impermeable, and thus the tangential component of velocity

porous medium - y i . impermeable wall

channel _ permeable wall

Figure 1.1 Schematic drawing of the idealized model.



will be zero. This property of the impermeable boundary is called a no-slip
condition.

We assume the velocity of the flow to have only one component along the z-axis
which is the longitudinal axis of the two concentric cylinders as shown in

Figure 1.2.

¥yl porous meadium

“~. channel

Figure 1.2 System of coordinates for the idealized model.

Such a model represents a biomechanical problem. Consequently, it is important
to know the characteristics of the flow through and past porous media. Therefore

we will briefly review some features of these types of flow.

1.2.1 Flow Through a Porous Medium

Flow in a porous medium in general is an ordered flow in a disordered geometry.
The transport process of flow through a porous medium involves two substances:
the fluid and the porous matrix, and therefore it will be characterized by specific

properties of these two substances (see Figure 1.3).



Figure 1.3 Flow in a porous medium (From Ockendon [25]).

A porous medium usually consists of a large number of pores each of which is
filled with the fluid. Intuitively, pores are void spaces which must be distributed
more or less frequently through the material if it is to be called porous. Extremely
small voids in a solid are called molecular inferstices, and very large ones are
called caverns (see Scheidegger [32]).

The structure of the pores is often highly complicated and differs from medium to
medium. Pores are invisible to the naked eye in the majority of porous media.
The porous nature of a material is usually established by performing a number of
experiments on a sample and observing its behavior.

Appropriate experiments lead to the determination of various macroscopic
parameters which are often uniquely determined by the pore structure of the
sample and do not depend on any other property. The most important
macroscopic pore structure parameters are the porosity, the permeability, the
specific surface area, the formation resistivity factor, and the reduced
breakthrough capillary pressure, as given by Dullien [11]. For our analysis,
following Rudraiah [30], only the permeability parameter will be taken into

account.



Permeability is the term used for the conductivity of the porous medium with
respect to permeation by a Newtonian fluid. Permeability, used in this general
sense, is of limited usefuiness since its value in the same porous sample may
vary with the properties of the permeating fiuid and the mechanism of permeation.
It is advantageous to separate out the parameter which measures the
contribution of the porous medium to the conductivity and is independent of fluid
properties and flow mechanisms. The quantity is the specific permeability k,
which will be referred to as permeability, hereinafter. Its value is uniquely
determined by the pore structure (see Dullien [11]).

The microscopic pore structure is extremely difficult to analyze due to the great
irregularity in pore geometry.

The pores in a porous system may be inferconnected or non-interconnected.
Flow of interstitial fluid is possible only if at least part of the pore space is
interconnected. According to this description, the following are examples of
porous media: towers packed with pebbles, beds formed of sand, granules:
porous rocks such as limestone, pumice, dolomite; fibrous aggregates such as
cloth, filter paper; catalytic particles containing extremely fine micro-pores.

When a fluid percolates through a porous layer, because of the complexity of
microscopic flow in the pores, the actual path of a singular particle cannot be
followed analytically. In this case, one has to consider the gross effect of the
phenomena represented by a macroscopic view applied to the masses of fluid. In
our study case, the porous medium represents the tissue space surrounding the
blood vessel. Also, it will be assumed that the porous medium is saturated with

fine solid particles uniformly scattered and fixed in space.



1.2.2 Flow Past a Porous Medium

Flow past a porous medium takes place in the channel space described in
Figures 1.1 and 1.2. The flow past the porous medium is assumed to be laminar,
along the axis of the channel and in steady state. For such a viscous flow, it is
important to use appropriate boundary conditions at the permeable wall.

It has been presumed, prior to 1967, that the tangential component of the velocity
is zero, i.e. the no-slip condition is valid at the porous interface. In 1967, Beavers
and Joseph [2] showed that, in general, the no-slip condition is no longer valid for
this type of boundary. They have postulated the existence of a slip at the nominal
surface and experimental support was provided. The existence of the slip at the
porous bed is due to the transfer of momentum from the free flow in the channel
into the porous medium. Since the medium is saturated, as noted in the previous
section, this momentum will be converted into drag. Beavers and Joseph have
established experimentally that the effects of viscous force in the free flow will
penetrate beneath the permeable surface to form a boundary layer region in the
porous medium.

The usual boundary condition used at the common boundary of the channel and
the porous space is the one that matches the velocities found in each medium.
One can employ any of these boundary conditions (and many others) depending
on the complexity of the model. There does not seem to be a universally
approved type of behavior of the fluids at the interface of the channel flow and the

flow in the porous medium.



1.2.3 Method of Description of Fluid Flow

In simple terms, a fluid is a substance which cannot resist a shear force or stress
without moving as can a solid. Liquids and gases are classified as fluids. A liquid
has intermolecular forces which hold it together so that it possesses volume but
no definite shape. Ligquids have slight compressibility and the density varies littie
with temperature or pressure (see Hughes [18]).

The fluid is treated as a continuous medium. The continuum theory enables us to
use the concept of local velocity of the fluid, and we must consider how the field
of flow may be specified as an aggregate of such local velocities. Two distinct
specifications are possible. The first one is called the Eulerian method and it
describes various physical quantities at fixed points in the flow field. The second
one, or the Lagrangian method, traces the motion of individual fluid particles.
The Eulerian method is commonly used in studying fluid flow since standard

instruments for measuring pressure or velocity are installed at fixed locations.

1.3 Review of Previous Work

The purpose of this review is to highlight the background literature of the
problems discussed in the subsequent chapters. Also, we would like to
emphasize that our analysis is a continuation of previous research developed for
a different geometry, that is fluid flow through paraliel plates.

The previous section presented a model of cholesterol deposition in the arterial

wall.  Consequently, the two basic aspects of this biological problem are
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cholesterol and arteries. Cholesterol is well described in Cook's [8] book
"Cholesterol: Chemistry, Biochemistry and Pathology". A representative book
about arteries and blood flow through them is McDonald's [21] book "Blood Flow
in Arteries”. It has elaborate discussions on the structure of arteries and also a
detailed mathematical description of the implications of blood flowing through the
arteries.

Biood flow in vessels has, for many years, been an interesting and challenging
subject, and intensive research has been dedicated to it. Tang and Fung [36]
developed in 1975 a model of lung alveolar sheet. The smallest microscopic
blood vessels in the human lung are organized into sheet-like networks. These
sheets form the walls of the 300 million alveoli in which air flows due to breathing.
Each sheet is idealized into a channel bounded by two thin layers of porous
media. Blood flow in the channel and water movement in the porous wall were
investigated.

Later, in 1985, Rudraiah [31] studied the steady laminar flow in a parallel plate
channel bounded below by a porous layer of finite thickness and above by a rigid
impermeable plate moving with uniform velocity. He considered the two cases
where the porous medium being bounded below: (i) by a static fluid and (ii) by a
rigid impermeable stationary wall. He also derived a modified slip condition
involving the thickness of the porous medium. This slip condition is related to the
slip condition postulated by Beavers and Joseph [2] in 1967. Their experiments
showed that the mass outflow of a Poiseuille flow over a naturally permeable
block is greatly enhanced over the \}afue it would have if the block were
impermeable, indicating the presence of a boundary layer in the block. The

velocity presumably changes across this layer from its Darcy value to some slip
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value immediately outside the permeable block. This condition was subsequently
named the BJ-slip condition.

Complicated models take into consideration blood flow through a channel with
varying gap. Guha and Chaudhury {16] studied the fluid mechanical effects of the
permeability of the wall of an arteriosclerotic blood vessel by idealizing the tissue
space as a porous medium bounding the blood vessel and the arteriosclerotic
biood vessel as a constricted axisymmetric tube of slowly but arbitrarily varying
cross-section.

Vafai and Thiyagaraja [38] analyzed fluid flow and heat transfer at the interface
region of a porous medium. They discussed three general and fundamental
classes of problems in porous media: the interface region between two different
porous media, the interface region between a fluid region and a porous medium,
and the interface region between an impermeable medium and a porous medium.
These three types of interface zones constitute a complete investigation of the
interface interactions in a saturated porous medium. They derived detailed
analytical solutions for the velocity and temperature distributions for all interface
conditions.

An important result on the modeling of porous media was obtained in 1985 by
Kim and Russel [20]. Part of their research was based on Brinkman's model with
an effective viscosity. The use of the Brinkman equation leads to an apparent
slip velocity at the boundary of a porous medium. They calculated the bulk stress
via volume averaging and thus determined the effective viscosity and the slip
coefficient for dilute porous medium. Kim and Russel found that the averaging
technique failed since the Brinkman equation itself was no longer valid. They

proposed a new form of the Brinkman equation.
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In 1886, Shivakumar et al. [33] considered blood flow in arteries idealized into a
channel of varying gap bounded by porous layers. They analyzed the problem
using the BJ-slip condition. The mathematical results were then applied to a
problem of smooth constriction in an artery with stenosis already set in.

Misra and Singh [22] investigated pulsatile flow of blood through arteries by
treating blood vessel as a thin-walled anisotropic, non-linearly viscoelastic,
incompressible circular cylindrical shell. They also considered nonlinearities of
the flow of blood. The displacement components at the vessel wall were
obtained from the equations of equilibrium. The influence of the wall deformation
on the flow properties of biood was taken into account in their analysis.

A closely related subject to blood flow in arteries is particle diffusion in arteries.
An important contribufor to this field was Taylor [37] who published a paper on
dispersion of particles in a solvent in 1953. His research was based on the fact
that when a soluble substance is introduced into a fluid flowing slowly through a
small-bore tube it spreads out under the combined action of molecular diffusion
and the variation of velocity over the cross section. He showed analytically that
the distribution of concentration is centered on a point that moves with the mean
speed of flow. He aiso gave a new method for measuring diffusion coefficients.
Taylor's results have been a major factor in the development of the subject. In
1975, Fung and Tang [13] and [14] extended Taylor's study to the case of flow in
a channel bounded by porous layers. Their interest was in longitudinal dispersion
of tracer particles in the blood flowing in a pulmonary alveolar sheet. They
showed that the mean coefficient of apparent diffusivity is smaller in a channel
bounded by porous layers than that in a channel with impermeable walls for the

case when the channel walis are permeable to solvent but not to tracer. When
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the channel walls are permeable to both solvent and tracer, the mean coefficient
of apparent diffusivity is nearly the same as that of a channel with impermeable
walls. They also proved that if a tracer is permeable through the membrane that
separates the blood from the tissue space, which in turn is limited by an
impermeable wall, then, at a steady state, the concentration of that tracer is
uniform in both compartments. If a tracer is restricted to the vascular space by a
semipérmeab!e membrane, then its concentration is non uniform.

Later, in 1980, Chandrasekhara, Rudraiah and Nagaraj [6] also followed the
analysis of Taylor and attempted to construct a deterministic model for the
longitudinal dispersion in a porous medium. Their model gives, for the first time in
the literature, information about the behavior of the diffusion coefficient with the
particle size of a porous medium.

Pal et al. [26] considered, in 1984, longitudinal dispersion of solute in a channel
bounded by porous layers using the BJ-slip condition. They found that the effect
of slip is significant only in the case when the membrane is permeable to solvent
but not to the tracer.

More recently, in 1990, Neumann et al [24] developed a mathematical model of
the transient incorporation of cholesterol in the arterial wall. The experimental
investigation supported their hypothesis that hemodynamics and the endothelial
lining influence wall flux in intact vessels. Exposure to altered hemodynamics
was associated with increased incorporation of cholesterol. Based upon
measurements of vessel wall forces and endothelial cellular morphology
accompanying hemodynamic simulations, the authors suggested that
hemodynamicaily induced alterations to endothelial structures led to the

increased permeability, convection and incorporation observed in the study.
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Perktold, Thurner and Kenner [28] carried out computer simulations of pulsatile
non-Newtonian blood flow in different human carotid artery bifurcation models.
Two rigid walled models were analyzed, differing in the bifurcation angle and the
bifurcation region, in order to contribute to the study of the geometric factor in
atherosclerosis. The results showed a significant difference in the wall shear
stress and in the flow separation. Also, flow velocity and wall shear stress
distribution were analyzed in a compliant carotid artery bifurcation model. In the
mathematical model, the non-Newtonian flow field and the idealized elastic wall
displacement were coupled and calculated iteratively at each time step. The
investigation demonstrated that the wall distensibility alters the flow field and the
wall shear stress during the systolic phase. Comparison with corresponding rigid
wall results showed that flow separation and wall shear stress were reduced in
the distensible wail model.

To investigate the role of fluid mechanical factors in atherogenesis, Deng, King
and Guidoin [10] studied theoretically, using a two dimensional T-junction model,
the effect of blood flow on the transfer of low density lipoproteins from flowing
blood to the luminal surface. The flow fields in the junction were obtained by
solving the Navier-Stokes equations numerically and the concentration
distribution of low density lipoproteins at laminar surface was determined using a
finite difference analysis. The transfer of low density lipoproteins from flowing
biood to the surface of the vessel wall was greatly enhanced in the two regions of
this third flow, one in the main vessel, the other in the subsidiary vessel. The
authors' mathematical model predicted that locally disturbed blood flows at

arterial bifurcations and junctions provided favorable conditions for the
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accumulation of atherogenic substances at the luminal surface, thus increasing
the potential for lipid infiltration into the vessel wall.

Cavalcanti [5] investigated the hemodynamics in the early stages of the
atherosclerotic process. A local, slight increase in the wall thickness of a canine
femoral artery was simutated using an original two-dimensional mathematical
model of arterial hemodynamics and the effects induced on the velocity field by
the simulated mild stenosis were analyzed. The model incorporated: fluid non-
linear inertial forces, viscoelastic wall motion, anatomical taper, unsteady flow,
pressure propagation and reflections on both the proximal and distal vessel ends.
The distribution along the vessel during the cardiac cycle of both the velocity
profile and wall shear stress, were shown. The shape of velocity distributions
- was strongly perturbed by the stenosis and disturbances were clearly evident
whatever instant of the cardiac cycle was considered. The reported results
provided a coherent explanation of the critical role that hemodynamic factors may

play in the early stages of atherogenic process.

1.4  Thesis Qutline

The thesis is divided into two main parts. The first part consists of chapters 2
and 3 dealing with the biological aspects of ocur model. The second part of the
thesis contains chapters 4 and 5 which studies the mathematics of the biological
model.

In chapter 2, we study blood flow in arteries in general. We review the

composition and the rheclogy of blood. Special attention is given to the viscous
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properties of the blood and their implications in the consideration of blood flow.
We examine the structure of arteries and their physiological properties.

In chapter 3, we describe the role of cholesterol in arteries. After a brief
presentation of the history of cholesterol, we investigate different aspects
influencing the physiology of cholesterol, such as diet, race, and age. The
significant part is the analysis of the pathological manifestation of cholesterol, in
particular, the cholesterol deposition. Dispersion of cholesterol in arteries is then
studied and general mathematical description of it is given.

Chapter 4 provides the basic equations of mass, motion and concentration
associated with any flow problem. Those equations are then formulated to suit
our biological problem. Related boundary conditions are also supplied.

The aim of the thesis is to solve analytically the equations presented in chapter 4
and provide numerical computations and graphs for the velocity components of
the flow in both regions for a particular and representative set of numerical values
for the parameters involved.

The contribution of the thesis is in chapter 5, where the analytical solutions of the
equations governing the flow in the channel and in the porous medium are
obtained. The solutions are then used to analyze mass transport in arteries,
including the volume flux of blood flowing through arteries and the mass transfer
of cholesterol to the wall. In section 5.5, we obtain significant results on
cholesterof deposition: the amount of deposited cholesterol and the growth of

cholesterol per unit width per unit time.
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CHAPTER 2

Arterial Blood Flow

2.1 Composition of Blood

The circulatory blood system that we analyze is complex. Attempting to develop
an adequate model of this system and its behavior is almost an impossible task.
in order to make any progress, we consider a simplified model.

Under normal conditions, blood flow in the human circulatory system depends
upon the pumping action of the heart. Here we concentrate on a small section of
this circuit, the relatively straight section following point A in Figure 2.1. We could
imagine that blood flow in this part would behave in much the same way as water
in a cylindrical fube. However, this is a gross simplification of the situation. To
understand this last statement we have to depict. some important facts and

properties regarding bicod flow and arteries.
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Figure 2.1 Schematic description of an aorta.

When blood is centrifuged in a centrifuge, it separates into a fluid called plasma
and formed elements: blood cells and platelets (or thrombocytes) . There are
two types of blood cells: red cells or erythrocytes and white cells or
leukocytes. Leukocytes can be either granufocytes (and further classified as
being of neutrophil 65%, eosinophil 4%, or basophil 1% variety) or agranulocytes
(and further classified as being fymphocyte 25%, or monocyte 5%).

Blood plasma is a fluid containing about 90% water by weight, acting as a
solvent, and the following solutes:

(a)  plasma protein 7%. It consists of albumin 55%, globulin 44.8%, and
fibrinogen 0.2%. Fibrinogen, for example, is important in blood clotting.

(b)  nitrogenous waste substances that a carried from their site of production to
the kidneys.

(c) inorganic salts of sodium, calcium, magnesium, and potassium, the most
common being sodium chioride.

(d) organic nutrients. The most important are: (i) blood sugar, mainly glucose
derived from the breakdown of foods. The precise level of blood sugar is critical

for maintaining homeostasis' and is controlled by a negative feedback

Thomeostasis = the maintenance by an organism of a constant internal envircnment.
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mechanism in which insufin plays a major part. (ii) blood fipids such as fats and
cholesterol, derived from dietary intake or activity of the liver.

(e) hormones manufactured in the endocrine glands.

(fH dissolved gases such as nitrogen, small quantities of oxygen, and carbon
dioxide.

The blood cells mainly consist of red blood cells, about 5 million per mm?3 of
blood. The erythrocytes occupy approximately 45% of the blood volume. The
cell carries carbon dioxide from tissues to lungs, and contains hemogliobin
pigment for oxygen transport from lungs to tissues. It is a small cell (7.2 um in
diameter and 2.2 um thickness), non nucleated, has definite biconcave shape,
and a flexible membrane.

The white blood cells are unpigmented cells and they make up less than
1/ 600th of the total cellular volume. The leukocyte count is usually about 10,000
cells per mm?3 of blood. This is not the total body count, because leukocytes are
found as much in tissues such as spleen, thymus, and kidney as in blood. The
cells have a round shape and a short life span, 2 to 14 days. Their primary role is
to defend the human body against invading organisms and other foreign material.
Platelets form about 1 / 800th of the total cellular volume. They consist of non
nucleated cytoplasmic fragments of large bone-marrow cells 3 um in diameter,
called megakaryocytes, that have entered the blood circulatory system. Platelets
play an important role in blood clotting.

Rubinow [29] defines the specific gravity of a cell as the ratio p / p,, where pis
the mass density of the cell, and p, is the mass density of water, under normal

conditions. Thus, the specific gravity of an erythrocyte is about 1.06, and that of
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plasma is 1.03. As a result, if blood stands in a container, the red cells will settle
out of suspension.

When plasma was tested in a viscometer it was found to behave like a Newtonian
viscous fluid. A Newtonian liquid is, by definition, one in which the coefficient of
viscosity is constant at all rates of shear. The non-Newtonian nature of blood is
a direct conseqguence of the fact that blood is a suspension, with plasma the
suspending medium, and red cells for the most part being the suspended
particles. Therefore, when whole blood was tested in a viscometer, it showed

abnormal viscous properties which revealed its non-Newtonian character.

2.2 Rheology? of Blood

When analyzing our model, we are concerned with the laws governing the flow of
blood in cylindrical tubes. One example might be that of a long straight tube with
a constant rate of flow, steady flow, along it. In such a system, steady flow can
be maintained by applying a constant pressure to the liquid.

Unfortunately, in only a smali part of the circutation can the flow be regarded as
steady. As described by McDonald [21], the heart pump produces a pressure
gradient throughout the arterial and venous network. This pressure gradient
consists of two components, one of which is constant or non-fluctuating and the
other fluctuating or pulsatile. The flow in large arteries is highly puisatile, but the
flow oscillations are progressively diminished with the ramification of the system.

Capillary flow is normally steady. In the arterioles that are close to the capillaries

2rheology = the study of the properties and behavior of flowing substances.
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significant oscillations of flow are seen. Flow in peripheral veins is regarded as
steady, but close to the heart, within the thorax, venous flow becomes very
pulsatile.

Steady flow in a cylindrical tube is described by the Poiseuille equation:

_ (B - B)aR

Q 8ul

(2.2.1)

1

where Q is volume flow, P, - P, is the pressure drop, R is the radius of the tube, L
is the length of the tube, and u is the viscosity of the fluid. Poiseuille formula only
applies to steady state flow. In arterial channels where the flow is pulsatile this
might be thought to be inapplicable. Pulsatile arterial flow, however, has a steady
component, say the mean flow, so it is possible, and valid, to apply Poiseuille
formula to this mean flow.

McDonald [21] gives details about the experiment of dye injected into liquid
flowing in a tube under the above mentioned conditions. It is observed that the
liquid in the axis of the pipe is moving much faster than that near the wall. After a
short time, the dye takes a parabolic shape. The reason is that the particles of
liquid (blood, in our study case) are flowing in layers parallel to the sides of the
tube, while the fluid in contact with the wall is stationary (see Figure 2.2). Each
layer (or lamina) is slipping against the viscous friction of the layers outside it.
The resulting flow motion is called laminar {or streamlined). If the rate of flow
through a tube is continuously increased, the resistance to flow also increases
and the Poiseuille law no longer can be applied. When dye is injected in such a

flow, it can be seen that the fluid is mixing across the tube and that the particles

20



of dye are no longer moving regularly in the line of flow but are following more or

less random paths over the tube (as in a Brownian motion). The flow is said to

3
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Figure 2.2 Velocity profile in steady laminar flow.

be turbulent. The pressure-flow relationships of turbulent flow are not
predictable with precision. Thus, when studying any type of flow, we have to
precisely determine whether the flow is laminar or turbulent. However, it should
be mentioned that this classical difference between the types of flow is only
correct for steady flow in rigid tubes and there are intermediate stages of
instability in the liquid which become of importance in the irregular flow systems of

a living animal.

2.3  Viscous Properties of Blood

Viscosity is a closely related notion to how liquids flow. We can define viscosity

in the following way: if a force is applied to a portion of a mass of liquid it will
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begin to flow but if the force is removed the movement will be brought to rest (see
McDonald [21]). On the other hand, if a similar part of liquid is kept moving, the
movement will be transmitted to the rest of the fluid.

Cohesive forces between blood and the blood vessel wall prevent the
infinitesimally thin layer of plasma which is in contact with the wall from moving
even when the blood farther away is flowing. When liquids come in contact with
the walis of a tube, there is no-slip at the wall. Burton [4] states that blood
behaves in this same way too. It follows that when blood is forced through the
blood vessels by the pressure gradient, generated by the action of the heart,
there must be a gradient of velocity across the vessel, with the highest velocity
of flow along the axis of a cylindrical vessel.

The successive cylindrical layers of blood, as we proceed from the axis, move
with decreasing velocity, untii at the wall the velocity is actually zero.
Consequently, the resistance of blood to flow is not due to a friction between
blood and the wall of the blood vessel. The resistance is rather attributed to the
friction between adjacent laminae of blood, in other words to the viscosity of
blood.

Newton was the first one to make theoretical remarks on viscosity in his work
Principia Mathematica in 1706. The hypothesis on which he based his derivation
was "that the resistance which arises from the defect of slipperiness of the parts
of the liquid, other things being equal, is proportional to the velocity with which the
parts of the liquid are separated from one another.". Here, he used the words
defect of slipperiness for the modern word viscosity (or intemal friction).

Newton's hypothesis describes the fact that velocity gradient exists in a direction
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perpendicular to the surface. We call this velocity gradient rate of shear, and we

have the following formula:

dv
= j — 2.3.1
T H (2.3.1)
where %“é is the rate of shear when r is the distance from the axis, u is the

coefficient of viscosity, and 7 is the stress (see Figure 2.3).
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Figure 2.3 Shearing flow.

Newton did not studied this viscosity problem further, and for the next hundred
years there were no reports. But his name remains to be used for Newtonian
fluids.

Poiseuille’s law given by equation (2.2.1) is often used to determine the viscosity
coefficient of viscous fluids. When blood is investigated in this manner, its

coefficient of viscosity is 0.035 P (P = poise), while the coefficient of viscosity of
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plasma is 0.012 P, both calculated at the normal physiological temperature of
37°C. Since the effective viscosity coefficient of blood, as determined by means
of Poiseuille’s law, depends on the radius of the vessel bore in which it is
measured suggests that blood is NOT a Newtonian fluid for which x is a constant.
Most homogeneous liquids® approximate a Newtonian liquid but suspensions of
particles (such as blood) show deviations from it. Fluids that have complex
molecular structure, and in which the suspended particle size becomes
appreciably large in comparison with the dimensions of the channel they are

flowing through, are in general non-Newtonian.

2.3.1 Anomalies in the Viscosity of Blood

There are two types of anomalies observed in the viscosity of blood. The first
one is called low shear and it can be observed at low shear rates when the
viscosity increases notably. The second anomaly is the high shear effect and it
can be detected at high shear rates. In this case, the viscosity is smaller in small
tubes than in large tubes. This progressive diminution with tube size begins to be
noticeable with tubes of internal diameter less than 1 mm and becomes
significant in tubes of the order of 100-200 p in diameter. These two anomalies
are of interest because when studying fluid flow in the circulatory system we have
to accurately measure the viscosity of blood.

As already mentioned, plasma has a Newtonian viscosity. Many tests have been

made in concentric viscometers and in capillary tubes over a range of shear rates

3homogeneous liquids = a liquid for which its properties are independent of position.
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from 0.1 to 1,200 sec' (see McDonald [21]). The reported viscosity for plasma
was 1.6 relative to water (the coefficient of viscosity for water is 0.007 P). Other
experiments have reported plasma to be non-Newtonian when the measurement
apparatus allows plasma-air interfaces to occur. The abnormal resuits are due to
a denatured protein layer at the interface. Since plasma is a colloidal suspension
of protein, it is not unusual that it presents deviations from the behavior of a pure
liquid. However, deviations of viscosity are not observed until particle size is a
much larger fraction of tube diameter. The longest dimension of any of the
particles found in plasma is the length of the fibrinogen molecule, that is 50 mp.
Even in a capillary of 5 u this particle dimension would only be 1% of the lumen4.
Nevertheless, most studies showed plasma to have a Newtonian viscosity.

If red cells are progressively added to plasma the viscosity increases. Significant
non-Newtonian properties become noticeable when the concentration of cells
exceeds 10%. The volume concentration of erythrocytes is called hematocrit,
which in normal physiological circumstances lies in the range 0.41 - 0.44.

When experimental calculations are pen‘ormed in tubes with an internal radius of
about 0.5 mm or farger, and shear rates which are not less than 200 - 300 sec,
the coefficient of viscosity will be effectively independent of tube size but will vary
with the cell concentration (see Figure 2.4). The experimental data show that
viscosity varies linearly with cell concentration from 0% (plasma) to a hematocrit
of about 45%. In fact, this range covers most clinical conditions. For cell
concentrations more than 45%, it was observed that viscosity rises rapidly. Also,

in any given tube the apparent viscosity decreases as the shear rate increases;

4lumen = any cavity enclosed within a cell or structure.
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Figure 2.4 The variation of viscosity with
hemaltocrit values (From McDonald [21]).

when the shear rate is greater than some 200-300 sec!, the viscosity becomes

virtually constant, as outlined by McDonald [21].

2.3.2 Why is the Free-Cell Zone Important?

When blood is flowing through a cylindrical tube, the region adjacent to the wall
has a low cell concentration that will imply a lowered viscosity, one close to that
of plasma. The smaller the tube, the greater the proportion of the whole that
would consist of this cell-free layer, and thus the lowering of the overall viscosity

will be more significant. it is generally accepted that this is not only the simplest,
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but also an adequate explanation of the so called wall-effect, that is the
reduction of the apparent viscosity of blood in small tubes.

This behavior was observed by Fahraeus and Lindquist [21] in 1930, who
experimented blood suspensions in tubes of diameter in the range 50-500 um. In
1971, Barbee and Cokelet [21] extended the experiment and showed that the
phenomenon continued at least for tubes of diameter 29 um (when human blood
was used). In 1929, Fahraeus found that when blood of a constant hematocrit is
allowed to flow from a large feed reservoir into a small tube, the hematocrit in the
tube decreases as the tube diameter decreases. Barbee and Cokelet [21]
demonstrated that complete agreement with the experimental calculations can be
obtained if the apparent viscosity 6f blood in a large vessel is measured as a
function of the hematocrit, and then the apparent viscosity of the same blood is
computed in a smaller tube at the actual hematocrit. This was an important
discovery because it extended the usefulness of the apparent viscosity
measurements.

The dependence of viscosity on tube diameter occurs not only in blood but in any
suspensions and it has been named the sigma phenomenon, as noted by
McDonald [21]. In regions of flow that are unsheared the existence of particles of
finite size will make normal integration of flow in infinitely thin layers to be invalid
(Poiseuille's law is deduced by performing an "integration"). Hence, a summation
of a series of layers of finite thickness is more appropriate in this case. It should
be mentioned that the precise analysis of the causes of the sigma phenomenon is
not fully agreed on, but most experimentalists comply that the major cause is due
to a low viscosity in the marginal zone of the tube, the cell-free zone. The

explanation for the existence of such a cell-free zone has been named the wall-
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exclusion principle. Assume a liquid suspension of solid particles of finite size, in
which the concentration is uniform throughout a large volume of fluid.
Mathematically this can be imagined as a distribution of points representing the
centers of the particles. By placing a solid wall in this liquid all such points will be
excluded up to a distance equal to the mean radius of the particles because they
can only be in contact with the wall. In 1959, Bayliss {21] has measured that in a
tube of 100 um diameter the cell-free zone was not greater than 2-5 um wide.
We recall that the radius of an erythrocyte is 5 um. Thus, it can be seen that the
radius approximates closely the measured width of the layer found to be deficient
in cells.

An important consequence of the cell-free zone near the wall is that more of the
cells are in the central region of the fube. This is also the region where flow
velocity is higher and hence the cells of biood will traverse at a higher net velocity

than the plasma.

2.4 The Significance of Motion and Flexibility of Red Cells

The primary function of the circulation is to transport materials through blood flow
to and from tissues. The performance of the circulatory system is determined by
the rhythmic contraction of the heart, the capacitative resistance and exchange
functions of the vascular system, and the flow condition.

Blood is a suspension of deformable cells (erythrocytes, leukocytes, and
platelets) in plasma. The motion, even of a sphere, in a flowing liquid is

complicated, and that of a non-spherical deformable particle is even more
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complicated. Experiments show that a very small degree of flow of blood results
in an overall orientation of the cells, specifically where they have room to be
oriented. Burton [4] describes such an experiment which was based on a large
scale model of blood flow in artery. A fluid full of small rubber discs (to imitate
erythrocytes) was pumped down through a transparent tube. The orientation and
continuatl rotation of the discs in the stream was obvious, and when the flow was
increased, there was axial accumulation of the rubber discs. In general, it was
observed that there was a continuous, but not uniform, rotation of particles in a
shear gradient. Although this behavior shows a laminar flow on the macroscopic
view, on a smaller scale there is nonlinear "microturbulence" with motion of
plasma between the cells in all directions, and motion of the contents of the red
cell within its membrane. At normal hematocrits, the blood contains so many
cells that their flexibility greatly affects the ease of flow. The rheological behavior
of erythrocytes varies with flow condition. At low rates of shear, there is
insufficient shear stress to cause cell deformation and alignment of deformed
cells with flow. Increases in shear stress cause cell deformation.

Chien [7] explains that the remarkable deformational behavior of erythrocytes is
due to: (i) the fluidity of the internal hemoglobin-rich fluid; (i) the favorable
geometric relationship between membrane surface area and cell volume, and (iii)
the viscoelastic properties of the cell membrane.

The assumption that the red cell consists of a flexible membrane is based on the
following observation: when blood flows through capillaries whose diameter is
less than that of a red cell, it is obvious that the erythrocyte gets deformed. In
narrow capillaries with diameters of 7-10 um, erythrocytes and leukocytes move

in single file. The white cells generally travel more slowly than the red ceils,
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which consequently accumulate behind the white cell. Downstream of the
leukocyte, a region depleted of erythrocytes is formed. Once such a group of
blood cells reach a vessel with slightly increased diameter to above 10 um, the
erythrocytes will pass the leukocytes. Hence, the white cell is pressed toward the
wall and rolls along it. The interactions between red and white cells have been
modeled in large scale experiments on elastic disks (erythrocytes) and rigid
spheres (leukocytes) flowing through a straight cylinder. In such a tube, the disks
position themselves preferentially edge-on when close {o the center and have a
higher velocity than the sphere. Whether the disks can pass the sphere depends
on their sizes, the tube diameter and the radial positions of these particles. If the
diameter of the cylinder is only slightly larger than the sum of the sphere diameter
and the disk thickness, the disks rarely can pass the sphere. As a result, several
disks gather behind the sphere at close spacing, leaving an empty space

downstream, phenomenon which is similar to the condition in vivo.

2.5 The Importance of Reynoids Number in Circulation

One of the characteristics of the flow assumed in our mode] was that the flow is
siow. More precisely, it is necessary to state what "slow" means by using a
reference velocity. Mathematically this is accomplished by introducing the non-

dimensional quantity Re called Reynolds number given by

Re = 2 (2.5.1)
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where p is the fluid density, r is the radius of the particle, x is the viscosity of the
fluid, and v is the mean velocity of the particle. For a large straight tube,
Reynolds found that if Re exceeded a value of about 1,000 (if v is the mean
velocity of the flow) or 2,000 (if v is the maximal velocity on the axis, which is
twice the mean) the flow changed from faminar to turbulent. Thus, the property
of a flow to be slow is directly related to the laminar nature of it.

Hagen and Poiseuille observed that the law relating pressure and fiow was no
longer true when the rate of flow increased. This phenomenon was due to the
breakdown of laminar flow and the appearance of turbulent flow. Osborne
Reynolds was though the first one to accurately describe in his work in 1883 the
transition from laminar to turbulent flow.

A classic experiment performed by Reynolds was to inject a thin lamina of dye in
the axis of a long cylindrical tube. The motion of the fluid was smooth and regular
untit he increased the rate of flow to a critical value when it became turbulent
instead. In turbulence, the whole tube was filled with vortex-like eddies (see
Burton [4]). The critical point was found to be dependent on the radius of the
tube, the mean velocity of the flow, and the density and viscosity of the fluid.
Equation (2.5.1) expresses this relationship. The fraction u / p is known as the
kinematic viscosity, v. The evaluation of the Reynolds number is not
necessarily sufficient to prove the existence of laminar or turbulent flow. The best
way to demonstrate turbulence is to calculate the pressure-flow relationship and

show that this deviates from that of laminar flow.
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2.6  The Structure of Arteries

An artery is an elastic tube whose diameter varies with pulsating pressure and, in
addition, it propagates pressure and flow waves created by the ejection of blood
by the heart, at a certain velocity that is largely determined by the elastic
properties of the wall.

The blood arterial wall consists of three zones: the tunicas intima, media and
adventitia (see Figure 2.5). The arterial wall encloses a cavity called fumen.
The demarcation between the intima and media layers is by the internal efastic
lamina, while the one between the media and the adventitia layers is by the

external elastic lamina. The internal lamina has a complex structure which
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Figure 2.5 Transverse section of an artery.

contains of a fenestrated membrane of elastin lined on the intima border by a
coarse fibrous network. The external lamina is a region of collagen and some
elastin tissue which joins the surrounding connective tissue and includes the vasa
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vasorum - the small vessels which run into and supply the wall of the large
arteries with blood, nerves and lymphatics.

McDonald [21] describes the intima as consisting of the vascular endothelium
which is a single layer of lining cells together with a thin layer of elastin and
collagen fibres by which it is coupled to the internal elastic lamina. The lining
cells of the endothelium have the important role to provide a smooth wall and to
offer a selective permeability to water, sugars, and other substances transferred
from the blood stream to the tissues. It would appear that this transport function
is most developed in the endothelium of the capillaries, although transfers must
occur through the lining of the walls of all vessels. Different vessels have
different permeabilities because of the basement membranes located behind the
endothelial cells, and also in the very much greater surface area of the wall of the
capillaries.

The endothelial cells, once they are released from the cement substance holding
them to the membranes behind them, become spherical. Burton [4] explains that
experiments show that the lining cells in small blood vessels, such as arterioles,
can enter the lumen and may even close the lumen altogether. This is how
complete closure could occur in a very thick-walled vessel. Other experiments
performed by Fry in 1968 and later have shown that the endothelium may be
easily damaged by shearing stresses that are not much in excess of those
normally found in the circulation due to viscous drag.

The tunica media forms the large part of the wall. The intermediate layers have a
fibrous structure, the fibres being displayed in circles or in a tight helix. Between
these layers lie muscle cells mostly parallel to the elastin found in the externai

elastic lamina. The structure of the media contains an orderly array of lamellar
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units. Elastin and collagen fibres and smooth muscle cells are meticulously
oriented and form well defined layers. The function of these two elastic elements
(elastin and collagen fibres) in the wall is to maintain a constant tension to hold
the wall in equilibrium against the so called transmurai pressure exerted by the
blood in the vessels.

Although the analysis of the arterial wall clearly shows that the artery has an
elastic wall, in our biological model we will consider the much simpler situation of

a rigid straight artery.
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CHAPTER 3

Cholesterol in Arteries

3.1 History of Cholesterol

Cholesterol was discovered as a major component of gallstones in the 18th
century. The French chemist Chevreul partly described it in 1816 and called it
cholesterine from Greek: chole = bile, and steros = solid. He found cholesterine
in 1824 in human and animal bile. In 1938, Lecanu [8] discovered it in human
blood, while in 1834 Couerbe found it in human brain.

Cook [8] and Gurr [17] give excellent reviews on the history of cholesterol. In
1846, Gobley wrote a detailed analysis on cholesterol in egg yolk. It was
thereafter gradually recognized as a normal component of all animal cells and
several secretions, as well as a part of specific pathological deposits.

Later it was shown to be present in alcoholic extracts of blood and in 1859
Berthelot identified it as an alcohol and prepared cholesterol esters! by heating

the sterol with fatty acids at 200°F.

lester = a compound formed from an alcohol and an acid.
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Cholesterol composition was elucidated by the work of Windaus [8] and his
associates. His research was also helped by the ones conducted by Wieland [8]
on the chemically related bile acids and by Mauthner and Suida [8] on derivatives
of cholesterol. In 1919, Windaus [8] arrived at a tentative chemical formula which
was changed in 1932 to the one now accepted.

In early stages experiments on cholesterol were mostly focused on the
concentration of cholesterol and its esters in blood and particularly in plasma or
serum. This was studied in connection with meals of varying composition with
respect to fat and cholesterol and in relation to menstrual cycle, pregnancy, and
to diseases such as atherosclerosis, lipidoses, xanthoma?2, and diseases of the
liver and thyroid. High interest is showed in research on the presence of

cholesterol in lipoproteins3 in connection to atherosclerosis.

3.2 Physiology* of Cholesterol

Cholesterol is a steroid5 that occurs in the cell membranes of animal celis, but not
in plants. Cholesterol is produced in the liver and when in excess is excreted in
the bile. Alternatively, if there is excess circulating cholesterol in the blood, it may

be deposited on the walls of the blood vessels, obstructing them.

2yanthoma = a skin disease marked by the presence of small yellowish disks formed by the
deposit of lipoids.

3lipoprotein = a water soluble molecule made up of a protein containing a lipid group.

“4physiology = the study in animals and plants of internal processes and functions associated
with life.

Ssteroid = an important type of lipid, formed of four rings of carbon atoms with various side
groups.
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The earliest work on the circulating cholesterol was obtained from analysis of
extracts of whole blood, but later, in 1937, the distribution of this steroid between
cells and plasma was also studied. Experiments showed that cholesterol
concentration of plasma was modified by certain factors, while the cholesterol
component of the erythrocytes was unaffected. Thus, plasma was the medium
choice of experimentalists for further quantitative tests.

The circulating cholesterol is present in two chemically distinct thermostable
compounds, namely free or unesterified cholesterol and esterified
cholesterol. The proportion of free sterol to sterol ester varies from tissue to
tissue, species to species. In the human body, the free cholesterol to ester
cholesterol ratio in red blood cells is about 4:1, in' white blood cells it is about 3:1.
The plasma cholesterol is synthesized almost exclusively in the liver. This sterol
is bound to proteins and discharged into the extracellular fluid. The resultant
cholesterol-protein complexes penetrate the arterial and capillary endothelium
and circulate through veins and lymphatics back into the blood. This cycle occurs
repeatedly for several days until the circulating sterol is removed from the
~ extracellular fluid for utilization or degradation. Hence, changes in the
concentration of plasma cholesterol could be attributed to many factors such as
an aiteration in plasma volume or in capillary permeability, redistribution of
existing extracellutar fluid for utilization or degradation.

The level of the plasma cholesterol in the normal human is fow in infancy (35 mg
per 100 ml) and reaches a value of 180-230 mg per 100 m! in normal adult males
in Western communities at the fourth decade of life.

There are several factors influencing the physiological level of the plasma

cholesterol, such as: race, diet, age, and others.
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3.2.1 The Influence of Diet

Diets are affecting plasma cholesterol levels. They may vary in caloric content or
be isocaloric with different distributions of calories between protein, fat and
carbohydrate®. Plasma cholesterol levels are also infiuenced by the caloric

balance between energy intake and energy expenditure.

1. The Effect of Calories

When humans consume food that is in excess of caloric requirements they will
always gain weight, and thus their serum cholestero!l level will be elevated.
Underfeeding implies loss of weight that causes depression of the serum
cholesterol concentration. Cook [8] notes that in 1955 Mann has shown that if
healthy young men consume twice their normal caloric intake their plasma
cholestero! levels remain unchanged as long as they increase their energy
expenditure accordingly. When their energy output is restricted while on this

regimen their serum cholesterol levels rise significantly.

2. The Effect of Cholesterol

In man the plasma cholesterol is greatly independent of dietary cholesterol.
Piasma cholesterol level is slightly influenced by excess cholesterol intake.
However, very farge amounts of cholesterol, such as 150 g of egg yolk powder
{(containing 2.5% cholesterol) in 400 ml of milk twice a day for 48 days produce a

marked increase in plasma cholesterol in man. In contrast with this phenomenon,

Scarbohydrate = a family of organic molecules ranging from simple sugars, such as glucose and
fructose, to complex molecules, such as starch and celiulose.
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reduction of dietary cholesterol does not induce a significant decrease in plasma

cholesterol.

3. The Effect of Fat

Diets rich in fat, but not necessarily in cholesterol, are associated in humans with
high levels of plasma cholesterol. Fat has a much higher effect on plasma
cholesterol level than any other dietary component. A rice-fruit diet that doesn't
contain cholesterol and fat produces a prompt and substantial (35%) fall in the
plasma cholesterol of men with normal cholesterol levels. There are two kinds of
fats: animal (or saturated) and vegetable (or unsaturated). Experiments show
that saturated fats are associated with high plasma cholesterol levels: lack of
unsaturated fats may also result in elevation of the serum cholesterol. Some
unsaturated oils have a greater depressant action on the circulating cholesterol
than others. For example, corn oil is more effective than sardine oil and

sunflower seed oil.

3.2.2 Influence of Age and Sex

Age and sex are also influencing the plasma cholesterol levels. In newborn
infants its level is situated at an average of 35 mg per 100 ml, but rises rapidly
within the first 10 days to about 130 mg per 100 ml. From the age of 11 year
there seems to be no significant increase in plasma cholesterol until puberty, and

after that subsequent changes depend on sex.
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In men there is a rapid increase in prevalence of elevated total cholesterol from
age 18 to 44, whereas in women, the rise is more gradual until age 44 when it
increases to exceed the men's rate at age 55. Cholesterol levels in the females
are influenced after puberty by the menstrual cycle, pregnancy and menopause.
Other factors that influence the plasma cholesterol levels are: seasonal variation,

endocrine and chemical substances, and others.

3.3  Pathological Manifestation of Cholesterol

Quantitative cholesterol analysis have produced considerable data on the
concentration of cholesterol in the body fluids and tissues of man under
physiological and pathological conditions. The total amount of cholesterol in the
body is determined by the balance between the rate of increase due to absorption
of cholesterol from the diet plus biosynthesis in tissues and the rate of decrease
due to metabolic utilization and excretion.

The cholesterol content of blood shows the following anomalies:
hypercholesteremia, hypocholesteremia, and cholesterol deposition.
Hypercholesteremia is a metabolic disturbance determined by elevated serum
cholesterol levels. In contrast, hypocholesteremia is determined by lowered
serum cholesterol levels. Cholesterol deposition is by far the most significant
cholesterol content anomaly developed in the circulatory system of the human
body. |

Cholesterol is deposited in a variety of tissues under diverse pathological

conditions. Depending on their site, cholesterol depositions may or may not
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disturb the normal functioning of the organism. Cholesterol is deposited in certain
types of lesions? and lipidoses, and in gallstones.

Atherosclerosis is the most frequent and important pathological alteration of the
intima in the arteries. The disease is characterized by the accumulation of
cholesterol and other lipid components in the arterial wall. Analysis of lesion
material suggests that the méjority of this accumulated cholesterol is derived from
the blood plasma lipoproteins. As noted by Neumann et al [24], intimal
accumulation of lipoproteins beneath the artery's endothelial cellular lining is
postulated to result from permeability defects of the resistive endothelial cell
layer. The atherosclerotic lesion represents a subgroup of a wider pathological
entity defined as arteriosclerosis. Such pathological conditions as medial
calcification and arteritis obliterans are often included in the entity of
arteriosclerosis.

The atherogenic process is dependent not only on blood lipoprotein leveis and
endothelial permeability but also on the distribution and removal of these
macromolecules within the arterial wall. Experiments show that atherosclerosis
has a higher occurrence in conditions associated with abnormaily high serum
cholesterol levels. On the other hand, abnormally low cholesterol levels are
related with a fow incidence of atherosclerosis. It is generally believed that low
serum lipid levels are connected to the dietary habits of population groups,
especially to the low consumption of saturated (animal) fat, although other dietary
factors such as low protein and high carbohydrate, and such special conditions as
ethnic differences, parasitic infestation, climatic influence, and different social and

economic environment are also taken in consideration.

7lesion = a localized area of diseased tissue.
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Coronary heart disease, that is reduced blood supply to the heart, is an illness
usually due to atherosclerotic lesions. The formation of a thrombus, or blot clot,
in @ major coronary artery, may cause cessation of the blood supply to the heart.
This failure of blood supply {(myocardial infarction) leads either to degeneration
of part of the contractile heart tissue and then replacement by non-contractible

scar tissue, or else to complete cessation of heart beat (see Gurr [17]).

3.4 Dispersion of Cholesterol in Arteries

When a soluble substance is introduced into a fluid flowing slowly through a
small-bore tube it spreads out under the combined action of molecular diffusion
and the variation of velocity over the cross-section, that is convection. This
spreading out is referred to as dispersion.

Diffusion is a process by which a substance is transported from regions of high
concentration to regions of low concentration of that substance, that is down a
concentration gradient. A sofution consists of a fluid called the solvent (in our
problem, blood), in which some particles has been dissolved, the solute (in this
case, cholesterol). The composition of the solution is characterized by its mass
concentration C, which is the mass of dissolved matter per volume of liquid.
Crank [9] defines diffusion as a phenomenon that occurs as a result of the
thermal motion of each solute molecules. In a dilute solution each molecule
behaves independently of the others, which it seldom meets, and each is

constantly undergoing collision with solvent particles, having no preferred
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direction of motion towards one or the other. The motion of a single molecule can
be described in terms of the mathematical theory of probability as random walk.
The mathematical theory of diffusion was first developed by Fick.

Let us consider a solution in which simple molecular diffusion is taking place, the
fluid being otherwise at rest. The transport of solute is governed by concentration
differences. If the solution occupies a three dimensional space, the concentration
will be C=C(t, x, y, z) and the equation representing conservation of solute

transport is the equation of continuity:

X _pvec (3.5.1)
ot

where the differential operator V? is called the Laplacian and D is called the
diffusion coefficient and it is a characteristic of the solute in the fluid. The
solvent is considered to be homogeneous and isotropic so that D is
independent of position and is the same in all directions and therefore D is
constant. Equation (3.5.1) represents Fick's second law of diffusion.

When a solute is in a moving liquid entrained by the flow, the resulting motion of
the solute is called convective transport. This transport is additional to the
diffusive motion described above. Let us examine a small cross-sectional area
through which the fluid flows with velocity g=q(u, v, w). The equation of

convective diffusion is given by

X L gve = DVC, (3.5.2)
o
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if D is constant and if the fluid is also incompressible, so that V.g = 0. Equation

(3.5.2) will be used later in order to find the flux of solute molecules (in our case,

cholesterol) passing through a unit width of the tube in a unit time.
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CHAPTER 4

Mathematical Formulation of the Biological Problem

4.1 Fundamental Equations

The biological problem that we propose to analyze is based on the model
presented in section 1.2. In order to develop mathematical equations that fully
characterize the model, we give governing eguations and conditions.

The phenomena considered within the domain of fluid dynamics are
macroscopic: any small volume element of the fluid is supposed to be so large
that it still contains a very large number of molecuies. Hence, the fiuid is
regarded as a continuum.

The basic variables in a three-dimensional space are the velocity components
and the thermodynamic properties. Any two of the thermodynamic properties,
such as pressure, temperature, density, enthalpy, entropy, etc., suffice to
determine the state and all the other properties. The fluid flow is specified by the

velocity vector g and by the thermodynamic attributes. For the problem, we have
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the equation of motion, a continuity equation and an energy equation. In
turbulent flow, additional unknowns appear for the same number of equations,
which prevents a complete theoretical formuiation of the problem.

For an incompressible fluid the energy equation is not needed since density is
taken as known and only pressure and velocity need be found to fully describe
the fluid flow. The number of unknowns decreases whenever the velocity field is
one- or two-dimensional.

The problems discussed here can be grouped in the following broad categories:

1. flow in an infinite circular cylindrical channe!l bounded by a permeable wall.
2. flow through a porous medium.

The following assumptions regarding the fluid flow are given:

1. the fluid is homogeneous, incompressible, viscous, Newtonian, and flowing
under steady condition.

2. the chemical effects are negligible.

3. the porous medium is homogeneous and isotropic on a macroscopic scale

and the physical properties like viscosity, permeability etc., are assumed to be

constants.

4. the porous layer is completely saturated.

5. the artery is a rigid infinite cylindrical tube of uniform circular cross section.
6. the effects of body force and inertia are neglected.

Under the above assumptions we formulate the fundamental equations for the
fluid flow described, namely, conservation of mass, conservation of momentum

and conservation of mass flux.
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4.1.1 Conservation of Mass

The mass-conservation equation is given by the continuity equation

ie+v.(pq) =0, (4.1.1)
ot

where p is the density and q is the velocity of the fluid. For an incompressible

fluid, pis a constant. The equation of continuity (4.1.1) becomes

V.g=0. (4.1.2)

4.1.2 Conservation of Momentum

The momentum equation gives the basic mathematical relationships of fluid
motion. The conservation of momentum has the following form for the fluid

flowing past the porous medium (see Hughes [18]):

P2 = p v uVig + pg. (4.13)

where p is pressure, g is the velocity of the fluid, p and u are, respectively, the
constant density and viscosity of the fluid, and g is the acceleration due to

gravity. The term pg represents a body force. Egquation (4.1.3) is the Navier-
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Stokes equation for an incompressible Newtonian viscous fluid and it equates
the rate of change of momentum and the forces acting on the fluid.
If the fluid is flowing through the porous medium, Brinkman [3] models the flow

by

Dq 2 H
— = =V \% - =g, 414
P b p+upuvaq+pg P ( )

where k is the permeability of the porous medium.

A basic model of flow of a viscous fluid through a porous medium assumes
besides an obvious microscopic flow scale defined by the pore size, that there is
a much larger macroscopic scale over which the problem is to be studied. One
can use an intermediate scale which is small compared to the macroscopic scale
and yet contains enough pores for an averaged velocity g and pressure p to be
defined. We can see in Figure 1.3 on page 5 that although the direction of the
actual flow has large variations on the pore size scale, the average velocity over
a large number of pores will be a flow which goes from left to right. We expect
then that on the macroscopic scale both g and p will be smoothly varying
functions (see Ockendon [25]). In 1856 Darcy was the first one to verify that the

flow through a porous medium obeys the law

q = %(—VP + pg9), (4.1.5)

where q is the mean filter velocity and k is the permeability of the porous medium,

as determined by Muskat [23]. Equation (4.1.5) represents an equilibrium of
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forces in the sense that the driving force necessary to move a specific volume of
fluid at a certain speed through the porous medium is in equilibrium with the
resistance force generated by internal friction between the fiuid and the pore
structure. The resistance force results from a pressure gradient Vp and the
gravity force pg.

Equation (4.1.5) may be taken as the dynamical basis for the study of motion of a
Newtonian fluid through a porous medium. The flow governed by this law is of
potential type rather than a boundary layer type. Also, in 1979, Rudraiah [30] has
shown that Darcy's law is valid when k is very large . However, in many practical
problems the permeability k is small near the boundary due to the existence of
the cell-free zone. In 1962, it has been experimentally observed by Benenati and
Brosilow [27] that in a bounded porous medium the porosity is not uniform
everywhere in the region of the interest but has a maximum vaiue near the wall,
due to sparse distribution of particles and has a minimum value at the central
regions where the particles at the wall are densely packed. Thus, there exists a
boundary layer near the surface. In this boundary layer, viscous effects are very
important, even though they are negligible in the main part of the flow. An
inviscid fluid does not exert any stress, but a viscous fluid (as we have seen in
section 2.3) presents a stress component. The viscous effects become important
in a boundary layer because the velocity gradients in a boundary layer are much
larger than they are in the main part of the flow due to a substantial change in
velocity across a very thin layer. Acheson [1] states that in this way the viscous
stress becomes significant in a boundary fayer, even though the viscosity is small

enough for viscous effects to be negligible elsewhere in the flow.
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The existence of this boundary layer thickness was experimentally demonstrated
by Beavers and Joseph [2] in 1967. Therefore, the form of Darcy's law still needs
to be refined in view of many practical applications, especially ones that involve
porosity analysis. To completely characterize the flow through porous medium,
we have to add a viscous resistance term x Vg to equation (4.1.5). This aspect
was first considered by Brinkman [3] in 1947 and hence is called the Brinkman
model.

The Brinkman boundary layer type equation has the form

Vp = pg — f:—q + uvVg (4.1.6)

The validity of the Brinkman mode! depends on the magnitude of k / h?, where A
is the vertical thickness of the porous medium. For example, if the porous matrix
is made up of small uniform identical spherical particles then the Brinkman model
is valid up to the magnitude of k / h*> of order 103, This corresponds to
considerably high values of d / h, where d is the diameter of the fillings. It
should be noted that for such values of d / h the porous medium may not be
homogeneous anymore, as suggested by Rudraiah [30]. If the porosity of the
porous medium is close to unity, Darcy's law is not valid. One has to use a non-
Darcy equation incorporating the inertia due to the curvature of the curvilinear
path through the medium at high speed of flow and the viscous shear due to
distortion of velocity. In 1948, Lapwood incorporated the inertial term (g - V)q
into the Darcy equation (4.1.5). Whence, whenever the porosity is close to unity

we have to use a non-Darcy equation of the form
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ot k

which is known as the Lapwood-Darcy equation. Later, many authors have used
this equation to study linear and nonlinear convection in a porous medium.
Darcy's law was subsequently generalized because equation (4.1.7) presents the
problem of an under-specified system of equations in some cases (see Pal [27]).
The inertial acceleration and viscous force terms were added and the resulting

equation has the following form:

A 4 (q-V)q = -Vp+pg - £ q+ uviq,
ot k

which is exactly (4.1.4).

4.1.3 Conservation of Mass Flux

The equation of conservation of mass flux or of convective diffusion was
described in section 3.5. We consider a model that has two components: the
solvent, which is a fluid, and the solute, which is matter dissolved in the solvent.

The equation of conservation of mass flux is given by

X (- v)C = DVC, (4.1.8)
ot
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where C is the concentration of solute, g is the velocity of the fluid, énd Dis a
constant coefficient of diffusion. Equation (4.1.8) is true only for an

incompressible fluid, so that the divergence of the velocity vector is zero.

4.2  Flow in the Cylinder

The understanding of the flow phenomenon in a cylindrical channel bounded by a
porous medium is of considerable physiological importance. In arteries, blood
flows through a tube covered by an endothelial wall onto which different particles
such as cholesterol deposit.

In their paper, Guha and Chaudhury [16] mentioned the need for a fluid-
mechanical study and showed that endothelial wall deterioration and growth is
closely related to the shear stress acting on the cells. They initiated such a fluid
mechanical study of the blood flow in an arteriosclerotic blood vessel and
analyzed the idealized mathematical problem of viscous flow in a circular tube
having a local constriction.

Shivakumar et al [33] studied the blood flow in arteries idealized into a channel of
varying gap bounded by a porous layer. The motivation for this investigation
comes from the study of abnormal flow in the arterial system caused by the
presence of occlusion or stenosis. Recently, in 1990, Neumann et al [24] also
considered the problem of radial incorporation of cholesterol into the arterial wall
using a mathematical model that predicts macromolecular transport in such a

biological system.
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The physical configuration and the system of coordinates chosen for our problem

are shown in Figure 4.1.

porous medium y ) impermeable wall

channel A permeable wall

Figure 4.1 Schematic drawing of the biological system.

The viscous fluid in the channel space and in the porous medium space is
assumed to be homogeneous, incompressible and Newtonian. The flow in the
channel and in the porous medium is driven by common uniform and constant
pressure gradient, such that the pressure p is p=p(z), and it is coupled through
boundary conditions. The velocity of the flow is one-dimensional in both spaces.
The only non zero component of the velocity vector is along the channel and thus
along the z-axis of the system of coordinates. The flow is also steady, so that the
velocity does not depend on time.

The two regions form two concentric circles. The radius of the channel space is

a, while the thickness of the porous medium is b - a. If g,,q,, and g, are the

velocities in the r, &, and z directions respectively, we have the following
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Material derivative: —Q—— f—+ £+q 1iq+q g
ot T a S T YTty

, 18 1 &7 o2
Laplacian w-< 1 9 , 491
P ot ror r? 8P 522 ( )
Divergence: V.q = 1% (rq,) + 11?,@. + j’?_z_ _
r or r oo oz

The operations D / Dt and V? listed above are for operations on a scalar.

For simplicity in notation we denote the channel by region 1 and the porous
medium by region 2, so that all the variables related to the channel will carry the
subscript "1", while those in the porous medium will carry the subscript "2".

Let us consider that the velocity vector of the flow in the channel is
q, = q,(0,0, u), and the one of the flow in the porous medium is g, = q,(0,0, v).
The effective viscosity of the fluid in the porous medium, 7, is assumed to be
different from that of pure viscous fluid, g, in the channel. We will denote the
concentration of the solute in the channel by C,; and the constant diffusion
coefficient by D;. In the porous medium we will use the notation C» for the

concentration of solute and D for the constant diffusion coefficient.

4.2.1 Channel Region

Using (4.2.1), the three conservation equations may be rewritten to satisfy the

conditions given by our model in the channel.
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For an incompressible fluid, applying the divergence formula on the velocity

vector g,, we obtain the equation of continuity

M _o. (4.2.2)

-

oz

Therefore, u=u(r) due to symmetry in 8. The velocity field u(r) will obey the

equation of motion

2
du ddu_1p (4.2.3)

dr*  rdr oy Jz

Following the analysis developed by Taylor [37], it will be assumed that the
concentration is symmetrical about the axis of the cylindrical tube so that C, is a

function of r, z, and { only. Thus we obtain the equation of convective diffusion

~2 2
£+U—£=D10C2:1+1§C1+521 . (4.2.4)
ot oz ar r or &z

Equations (4.2.2) to (4.2.4) completely describe the model in the channel space.

In the next section we will derive equations in the porous medium.
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4.2.2 Porous Medium

Since the velocity vector in the porous medium is q, = q,(0,0,v), we obtain a

similar equation of continuity as in the channel space, namely

o
oz

=0. (4.2.5)

Thus, v=v(r) due to symmetry in 8. The equation of motion for the flow in the
porous medium is based on (4.1.4). Kim [20] proposed a siightly different
Brinkman equation in which the effective viscosity z is considered. Using Kim's
procedure, we have the following equation governing the flow in the porous

medium

2 -~
av  ldv 4, _1p (4.2.6)
dr rdr gk i oz

We derive a diffusion equation in the porous medium using similar reasoning
applied to Cz and D2 as in the previous section. C; depends on r, z and {, while

D2 is the constant diffusion coefficient. We get

(4.2.7)

5*C, 14C, aZc?_J
+ — + .
r or oz

+V»-: :D2(42 N2

Equations (4.2.5) to (4.2.7) fully characterize the system in the porous medium.
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4.3 Boundary Conditions for the Biological Problem
4.3.1 Boundary Conditions on Velocities

We will analyze in this section a few classes of boundary conditions for different

types of boundaries.

1. impermeable Boundaries

This kind of boundary is also called a rigid wall and it is existent at the exterior of
our geometry shown in Figure 4.1 on page 53. It is assumed that such an
insulating boundary does not allow any substance exchange between the exterior
of the wall and the porous medium in our case.

Observations of viscous fluid flow reveal that all the components of fluid velocity
at a rigid boundary must be equal to those of the boundary itself. Thus, if the

boundary is at rest, ¢ = 0 there. For our model this implies
v = 0, atr = b . (4.3.1)

The condition on the tangential component of velocity is known as the no-slip
condition, and it holds for a fluid of any kinematic viscosity v = 0, no matter
how small v may be (see Acheson [1]). In 1985, Rudraiah [31] showed that the
no-slip condition is valid only when we invoke the concept of boundary layer
which inevitably arises when the Brinkman equation (4.2.7) is used to describe

the flow through a porous medium.
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2. Permeable Boundaries
Permeable boundaries permit several conditions to be used, depending on the

characteristics of the porous medium, especially its thickness.
(a) u=v atr = a. (4.3.2)

The velocity v in the channel has to match the velocity v in the porous medium at

the permeable wall, i.e. r = a.
(b) H— = {— atr = a. {(4.3.3)

The viscous shear due to the distortion of velocity in the porous layer should be
taken into account because the fluid occupies almost ali parts of the porous
medium. Thus, the fluid and the solid should each receive a shearing stress from

the external stream. We assume that the shear produced by the fiuid in the

channel, i.e. du / dr, must be proportional to that in the porous layer, dv / dr.

du a

() dy " TE‘(UB - Q), (4.3.4)

where o is the slip parameter assumed to be independent of velocity, k is the
permeability of the porous medium, u, is the slip velocity at the nominal surface, u

is the velocity of the flow in the channel in the z direction (in Cartesian
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coordinates), and Q is the drag velocity or Darcy velocity. In the absence of body

forces, Darcy's law is given by
Q-_kao (4.3.5)
i

When a permeable boundary arises in a problem, the no-slip condition is not
satisfactory to be utilized. As an alternative to this, Beavers and Joseph [2] were
the first ones to postulate and verify experimentally the slip boundary
condition, also called the BJ-slip condition, namely equation (4.3.4). The
existence of the slip at the porous bed, due to the transfer of momentum from the
free flow in the channel to Darcy flow which sets up the drag, is connected with
the presence of a very thin boundary layer of streamwise moving fluid just
beneath the nominal surface of the permeable material. The fluid in this layer is
pulled along by the flow in the channel.

it should be mentioned that the BJ-slip condition is valid only in a densely packed
porous medium or very large thickness so that the variation of velocity in it can be

ignored and the flow is governed by Darcy's equation.

(d) au _ 1'[——;1 tanh(sh)(u, — ¢2Q), (4.3.6)

dy Jk

where 2 is the viscosity parameter, ¢ is the porosity, f is the thickness of the

porous medium, and § = 2k .
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The BJ-slip condition is valid only when the velocity distribution in the porous
medium is governed by the Darcy equation (4.3.5). If the thickness of the porous
medium is shallow and the flow is described by the Brinkman equation, Rudraiah
[31] has modified the BJ-slip condition to solve the Navier-Stokes equation in the
channel and Brinkman equation in the porous medium. The new boundary
condition is called the BJR-slip condition and is given by (4.3.6). In the limit,
when the thickness of the porous layer approaches infinity and if @ = /1, the

BJR-slip condition (4.3.6} tends to the BJ-slip condition (4.3.4).

() u = %[(p2 - py) - olm, - x,)], (4.3.7)

where p; and p, are hydrostatic pressures in the porous space and the channel
respectively, z; and 7z, are corresponding osmotic pressures, and o is the
reflection coefficient of the wall.

In 1896, Starling [35] proposed a hypothesis to account for the steady state
distribution of water between the blood and the tissues. He suggested that the
outward filtration of water, resulting from a higher hydrostatic pressure in the
capillary lumen than in the extracapillary fluid, is balanced by reabsorption of fluid
from the tissues into the blood down a gradient of osmotic pressure! resulting
from the higher concentration of protein in the interstitial fluid. Equation (4.3.7) is

commonly accepted in physiology problems.

fosmotic pressure = a measure of the tendency for water to move into a solution by osmosis.
Osmosis is the movement of a solvent through a differentially permeable
membrane from a solution with high water concentration and low solute
concentration to one with low water concentration and high solute concentration.
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4.3.2 Boundary Conditions for Concentrations

The boundary condition which expresses the fact that the exterior wall is

impermeable is

C, =G, atr = b. (4.3.8)

At the permeable boundary we will match the two concentrations and thus obtain

C, = C atr = a. (4.3.9)

atr = a. (4.3.10)
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CHAPTER 5

Solution of the Biological Problem

5.1 Overview

The purpose of this chapter is to solve the equations presented in the previous
chapter and to study the longitudinal dispersion of cholesterol in arteries. We
evaluate the velocity fields in the channel and the porous medium by matching
them through boundary conditions, and use them to calculate the concentration
distributions of solute in both regions under stated boundary conditions. The
velocity and concentration distributions are then used to find the volume of flow
and the mass transport of solute in the channel and the porous medium. We also
give an expression for the rate of growth of cholesterol thickness. The results for
the velocity components are illustrated by numerical computations and graphs for

a particular set of values of the parameters.
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5.2 Determination of Velocity Fields

As given in section 4.2.1, the velocity distribution in the channel is, from (4.2.3),

1{_0‘_ (r Qﬂ]] _ P (5.2.1)
rldr dr

and u is the coefficient of viscosity of the fluid in the channel.

On integration of (5.2.1), we obtain the solution in the channel in the form
R 2
u(r) = ) re+cinr+c,, (5.2.2)

where ¢, and ¢, are constants of integration to be determined.
We first observe that r = 0 is in the channel region and since the velocity is

finite everywhere, ¢, = 0. Weletc, = C and get
u(r) = %rz +C, (5.2.3)

where C will be determined from the boundary conditions.
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For the porous medium we define the constants P, and « as

where y is the coefficient of viscosity of fluid in the porous medium.

From (4.2.6) the velocity field equation for the porous medium can be written as

2
2 gr‘zf + rC;_V — & = Pt (5.2.4)
r

Equation (5.2.4) is a modified Bessel equation of order zero that has the following

general solution
R
v(r) = Aklar) + BKy(ar) - =, (5.2.5)
[#4

where [y(ar) and Ky(ar) are Bessel functions of first and second kind and of order
zero, and A and B are constants to be determined from the boundary conditions.
We invoke now the boundary conditions presented in section 4.3. At the exterior

impermeable boundary we have

v(r) = 0 atr = b . (5.2.6)

At the permeable interface between the channel and the porous medium we

assume
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u{r) = vir) atr = a, (5.2.7)

and

H— = [ — atr = a. (5.2.8)

From (5.2.6) and (5.2.7) we get

Aly(ab) + BK,(ab) - 522- = 0. (5.2.9)
a

Using (5.2.3), (56.2.5) and (5.2.7) we obtain

Aly(aa) + BK,(aa) - &2 = %az +C, (5.2.10)
[#4

and using the following identities (see Spiegel [34])

f' (x) = f(x) (5.2.11)
and
Ko' (x) = —K(x) , (5.2.12)

we obtain from (5.2.8)

,u-gla = ﬁ[Aa’li(aa) - BaK1(aa)] . (5.2.13)
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Solving (5.2.9) and (5.2.13), we get

-K (aa) 2 + Ky(ab) P

A = = (5.2.14)
11(aa)K0(ab) + ly(ab)K (aa)

anu

li(aa) a~~ fo ()

B = 2op (5.2.15)
L{aa)Ky(ab) + Ij(ab)K, (aa)

Substitution of {(5.2.14) and (5.2.15) into (5.2.10) gives us the constant C as,

[l(@a)K (aa) + K,(aa)l(aa)] izz
T I(aa)K,(ab) + I (ab)K (aa)

[ly(c@)Ko(ab) — Iy(ab)Ky(aa)] 8‘01;’

- A (5.2.16)
L{aa)K,(ab) + I ,(ab)K,(aa) o 4

Hence, the velocities u(r) (in the channel) and v(r) (in the porous medium) given
by equations (5.2.3) and (5.2.5) respectively, are completely determined.

We define the mean velocity in the channel & and the mean velocity in the

porous medium v by

— 1
= dS 5.2.17
u —3 J;J' u ( )
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and

\7:——-——;;25}2 vdsS .

By direct substitution of (5.2.3) into (5.2.17), we obtain

2z

_ 1 r
= " C|rdrdé,
ﬂajj( e )rr

where C is given by (5.2.16), and yielding

Substituting (5.2.5) into (5.2.18), we get

<l

1 27
- Jr(b2 - az) ;';

L S

{Afe(ar) + BK, (ar) - —P%} rdrdg,
a

where A and B are given by (5.2.14) and (5.2.15) respectively.
Using the following formulas given by Erdelyi [12],

jxfo(x) dx = xI,(x)

and
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(5.2.19)

(5.2.20)



[ xKo(x) dx = —xK,(x) , (5.2.21)

we obtain the mean velocity in the porous medium as

2{ A[bl,(ab) ~ af1(aa)]2+ 5[3K1(aa) ~ bKi(ab)]} _ 5 (5222
a(b —a ) @

From (6.2.19) and (5.2.22), we can express P, in terms of i and P, in terms of ¥

as follows:
u
p =2, 5223
=5 (5.2.23)
where U is given by
82
U = —é—* -+ C' (5224)
and
v
p, =Y 5.2.25
2 = (5.2.25)

where Vs given by

_ 2 [bhiab) - alae)] + BlaKea) - bK(@D)} 1 o) oo

- a(b2 - az) o?
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A", B', and C'in (5.2.24) and (5.2.26) are defined by the relations

A=PRA, (5.2.27)
B = PB, (56.2.28)
C =RC. (5.2.29)

To illustrate the results of this section, we select a set of assumed numerical
values used by other authors to graph representative velocity components of the
flow in the channel and in the porous medium. The numerical evaluations of the
analytical velocity components in both regions and the graphs were done on
Mathematica.

We use the following set of values for the parameters involved:

4 = 0.04dyne-sec/cm?.
k =107,
b -a = 001tcm.

= 011,10

==

Also, we denote P = %2 )

z

We present velocity graphs for different sets of values of a, b, and 7z in Figures

5.110 5.8.
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Figure 5.1 Velacity profile in the channel for a = 0.19 and # = 0.4.
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Figure 5.2 Velocity profile in the porous medium for a = 0.19 and 7 = 0.4.

v{r} /P

.0oos
0007
.0006
.000s
. 0004
. Q003
.0002
.0001

OO cCcCoo0og

radius
0.190.1920.1940.1965.196 0.2

Figure 5.3 Velocity profile in the porous medium for a = 0.19 and 4 = 0.04.

For 1 = 0.4, the velocity profiles shown in Figures 5.1 and 5.2 match at the point

0.0002393, as we can also see from Table 5.1.
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Figure 5.4 Velocity profile in the channel for a = 1.00 and 7z = 0.4.
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Figure 5.5 Velocity profile in the porous medium for a = 1.00 and ¢ = 0.4.
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Figure 5.6 Velocity profile in the porous medium for a = 1.00 and & = 0.004.

In the last three graphs, the velocity profiles in the channel and in the porous

medium match at the point 0.0012518.
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In Table 5.1, we give corresponding matching vaiues of u(r) and v(r) at the

uf{r) /P

I_*““hx\
15 -
10

5

radius

0.250.50.75 1 1.251.51.75

Figure 5.7 Velocity profile in the channei fora=1.75and 1 =0.4.

vir} /P
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0.00z2
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1.751.7521.7541.7561.758 1.76

Figure 6.8 Velocity profile in the porous medium for a =1.75 and i =0.4.

interface r= a.

i< 0.19 0.5 0.75 1.00 1.25 1.75
04 2.39377e-04 | 6.26875e-04 1 9.39375e-04 | 1.25183e-03 | 1.56437e-04 | 2.18937e-03
0.04 7.52916e-04 | 1.97829¢-03 | 2.96651e-03 | 3.95472e-03 | 4.94293e-04 | 6.91935e-03
0.004 2.37687e-03 | 6.25187e-03 | 9.37687e-03 | 1.25018e-02 | 1.56268e-05 | 2.18768e-02

Table 5.1 Values of u(r) and v{r) at the interface r = a.
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53 Determination of Concentrations

In section 4.2.1 we gave the equation of concentration of solute in the channel in

the form
-2 ~2
AL N Y RS A s ALY (5.3.1)
ot bz or r or oz

where C,=Cy(r, z, ), D, is the constant diffusion coefficient and u is given by
eguation (5.2.3).

In order to solve this equation, we follow Taylor's [37] analysis on dispersion of
solute particles. A first assumption that we make is that the longitudinal diffusion

is much less than the radial diffusion, that is

FC, &G,

532
6z°% == or? ' ( )
and (5.3.1) is now approximated by
Gy B D1i[g[ré?ij}. 5.33)
ot oz r|éor or

The combined effect of longitudinal convection (given by the second term in
(5.3.3)) and radial diffusion (given by the right hand side of the same relation) is
to disperse the solute longitudinally relative to a plane moving at the mean speed
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of flow by a mechanism which obeys the same law as ordinary one-dimensional
diffusion relative to a fluid at rest (see Rudraiah [31]). Equation (5.3.3) also
expresses the fact that the distribution of concentration C, of the solute depends
on the balance between the convection along the channel due to variation of
velocity over the cross section and normal molecular diffusion.

Since we are considering convection across a plane moving with the mean speed

of flow, the fluid velocity relative to this plane w,(r} is given by

®|10

w(r) = u(r) - 7 = 2 (2r* - &%) (5.3.4)

Using the following non dimensional quantities

, (5.3.5)

% .

..:'"‘l] —

LW D1 W§C1 _ (5.3.6)
i L 2¢ a n 7

We will make the following two assumptions. The first one is the Taylor [37]
longitudinal condition, namely: if the time of decay (the time in which the
concentration degenerates into a uniform concentration) for radial diffusion is

much shorter than the time necessary for convection to make an appreciable
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change in concentration, time which is of order L / i, then the approximation that
C, is a function only of 7 will be valid. Hence, assuming C, is independent of 1,

we get

11 8 ( &cC, a> AC,
—_ TS e =24 . 53.7
7 [ﬁfi (U on H LD, 2, wilen) 537

The second assumption is that (following Taylor [37]), &C, / J¢&, is independent of

1. Using (5.3.4), we obtain

3

(27° - 7). (5.3.8)

-

o &) &P &
0\

on 8LD, ¢,

On integration with respect to 7, the concentration C, in the channel has the form
4 4 2
C,(n) = i@[ﬂ—-%}+51nn+,c, (5.3.9)

where E and F are constants of integration. We observe that r = 0 is in the

region and for C, to be finite we assume £=0. Thus,

a4P1 501 (774

L W S 5.3.10
64LD, 2¢, )+ (5:3.10)

Ci(n) =

where F will be determined from the boundary conditions.
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The distribution of concentration in the porous medium is, from equation 4.2.7,

given by

~2 ~2
eC, Ay 5’?2 _ 92[0 iz + _1.§C2 + e c’;?) (5.3.11)
ot oz or r or oz

where C,=C,(r, z, 1), D, is the constant diffusion coefficient in the porous medium,
and v is given by equation (5.2.5). Since the equation in C, (5.3.11) is similar to

the equation in C, (5.3.1), a parallel analysis with the non dimensional quantities

t - L z — vt r
= =, t, = —, = , = —, 5.3.12

(& 3 2 v & [ n a ( )
yield

11 6 &G, a® oCc,

LI A G B | I BT B 5.3.13

" {ﬁn [’7 Z ﬂ o, 2z, " (63.19)
where w, is given by

Wo() = vin) — V. (5.3.14)

in the above relation, &C, / &£, is taken to be independent of 7. To find Cy(#), it

is more convenient to substitute relation (5.3.14) into (5.3.13) and obtain
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” 2
2 (1 %) - 2 2 anpaan + Bokifaan) - o]

on on LD, &¢,
-
_av ., (5.3.15)
LD, 3¢,
Integrating once (5.3.15) and using formulas (5.2.20) and (5.2.21), we get
2
e - 2 T2 a1 (aan) - BK,(aan)
on LD, ¢, aa
2
__& % (f% + VJ:; + & (5.3.16)
2LD, 2¢, \«a n

where G is an integration constant to be determined. Integrating (5.3.16) and
using relations (5.2.11) and (5.2.12), we obtain the final form of the distribution of

concentration in the porous medium

1 aC
C = 2 Al (aan) + BK,(aa
(1) azLDZ 0,,{:2[ olaan) ola 7?)]
a® éC,(P,  _\.
- —= | = Gl H 5317
41D, 22, [of " V]” g (5:3.17)

where G and H will to be determined from the boundary conditions.

The conditions at the boundaries stated in section 4.3.2 now become
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b
C,(n) = C, atn = ., (5.3.18)

at the impermeable boundary, while at the permeable boundary

Cy(n) = () aty =1 (5.3.19)
and
D Gy _ D,— atnp =1 (5.3.20)
“on ' on
Substituting (5.3.17) into (5.3.18) we obtain
1 C, b* oc, (P ~]
—2 [Al(ab) + BK,(ab)| - 212 4+ v
a’LD, &¢, [Alo(ab) + BHo(eb)] 4LD, o, (0‘2
b
+GIn—+H =C, . (6.3.21)
a
Equation (5.3.19) becomes
a‘P, oC, 1 A&C
_ AL F = T2 1Al (ca BK, (aa
64LD, O, LD, oi, Ablea) + BKy(a)
2
_ 4?0 222 (525 + \7) v H, (5.3.22)
2 2

while the boundary condition (5.3.20) is equivalent to
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2
a 502(52—+V]+G}

a oC
D 2 [Al - BK -
2{0{1_92 552[ i(a8) - BK(aa)] 2LD, &, \a?
=0. (5.3.23)
From (5.3.23) the constant G is determined and is given by
a oC, |alP _ 1
G = 22 - — Al - BK . 5.3.24
D, 2% { [a2 + v] _[Ah(aa) g(aa)]} (5.3.24)

The constant H is found by direct substitution of (5.3.24) into equation (5.3.21)

1 G, {-1- [Aly(ab) + BKy(ab)] + %[% + \7)

H=C, -
° LD, 8¢, |a?
-(za2 In b_ sz _ 2 [Al{aa) — BK,(aa)]In 2} . (5.3.25)

a o a
Substituting (5.3.25) into (5.3.22) yields
a‘P, oC 1 8C, [ 1
F=C i 1 2 Al (ca) - I,(ab
o T 8aLD, JE, | LD, 7, {a:z 1Allo(a8) — fo(ab)]
+B[Kq(ca) — Kylab)]} + %(5@- + V](bz - a® - 2a° In SJ
(5.3.26)

a b
+ g[AJTT(.:ra) - BK1(aa)] In E} )
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Equations (5.3.10) and (5.3.17) completely determine the concentration
distributions in the channel and in the porous medium. We now continue our
investigation concerning mass transport in arteries.

5.4 Mass Transport in Arteries

5.4.1 Volume Flux of Blood

The volume flux of blood per unit width per unit time Q, in the channel is given by

21 &8

Q = [fuds = [fJu(ryrdrdo.
00
Using (5.2.3) and integrating, we obtain
2 P1 2
Q = 7a (—é—a + C], (5.4.1)

where Cis given by (5.2.16).
Similarly, the volume of flux of blood per unit width per unit time Q, in the porous

medium is given by

27 b

Q = [[vds = [Jvryradrae.

80



Using (5.2.5), we get on integration

Q - -‘2;‘. [Alabl,(ab) - aal,(a)] - BlabK,(ab) - aaK,(aa)]

_ %(bz _ 32)} , (5.4.2)

where A and B are given by (5.2.14) and (5.2.15) respectively.

5.4.2 Mass Transport of Cholesterol

In section 5.3 we have analyzed and obtained solutions of the concentration
distributions in the channel and in the porous medium. The assumptions that we
made relative to deriving the forms of C, and C, are important when dealing with
the calculation of the mass transport of solute through arteries. We recall that the
derivation of C; (and similarly of C,) was based on the consideration that
convection takes place across a plane moving with the mean speed of flow and

thus, the flow velocity relative to such a plane was given in the channel by

Therefore, in the channel, the mass transfer of solute M, through a unit width of

the tube per unit time is (see Taylor [37] and Chandrasekhara [6])
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M, = [[Cw, dS. (5.4.3)

Using polar coordinates, (5.4.3) becomes

C(rw,(r) r dr d@ . (5.4.4)

T
it

Oty B0

Empioying

r=an, (5.4.5)

(5.4.3) becomes

X
I

27a” [ C(nw,(n) 7 dy (5.4.6)

17 _a 2
J{G4LTD iii nt - 2772) + F:!{Raa (27}2 - 1)}7 dn .
0O k]

On integration and evaluation, we get

maP? &

. (5.4.7)
3072LD, ¢,

M, = -

Following Taylor [37], we assume that the variations of C; with 7 are small

compared with those in the longitudinal direction and if 5, is the mean
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concentration over a section of the channel, 2C, / ¢, is indistinguishable from

aC, 1 8¢, so that (5.4.7) can be written as

__ mPh X

= - s (5.4.8)
3072LD, 2,

This shows that C, is dispersed relative to a plane which moves with velocity &

exactly as though it were being diffused by a process which obeys the same law
as molecular diffusion but with modified diffusion coefficient, say D,”. The

continuity equation for 5, is given by

(5.4.9)

where 7 Jr, represents differentiation with respect to time at a point where  is

constant. Differentiating (5.4.8) with respect to &,, we obtain

oM, m’PR’  FC

= - 1 (5.4.10)
¢, 3072LD, &,

Substituting (5.4.10) into (5.4.9), we get

A 2 G,
e . = —718a
3072LD, g&? 7
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which is equivaleni io

~602 -~

or,  3072LD, Q¢&?

#C
2 )

= D; —
&,

where the diffusion coefficient for the channel is:

62
pr = 2H
3072LD,

Using (5.2.23), D,” becomes

. atu?
D=t
3072LD,U

(5.4.11)

(5.4.12)

(5.4.13)

Relation (5.4.12) represents Fick's second law of diffusion introduced in section

3.5 and governs the longitudinal dispersion of cholestero! in the channel.

We now calculate M,, the mass flux of solute through a unit width of the tube per

unit time, in the porous medium. Applying the same analysis as in the case of

M;, M, can be calculated using the formula
M, = [[C,w, dS .
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This is equivalent to

I:]
M, = 2z[ C(r)w,(r) r dr do (5.4.15)
= 272° | Cy(mw,(n) ndn . (5.4.16)
1

on employing (5.4.5). Using
£
w,(n) = Al(aan) + BK(aan) - 5 + V], (5.4.17)

and C,(1) given by (5.3.17), (5.4.16) becomes

1.8,
M, = 2;:32{ 5. G j[A%;/ (aan) + 2AByly(can)K,(aan)
2

+827]K02(aar])] dn

b7

+[H 1 &G (% + Vﬂ j[A;;IO(aar]) + BnK,(aan)] dn

a’LD, J&, f

b

5% (P + v] f[An lo(aan) + Bi*Ko(aan)] dn

" 4LD, 5%,

2

Aa )% 3
+ V d
" 4LD, a(:z( M” 7

%

+G [[AnIn 7 l(ean) + By in i Ky(aan)] d

t
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= _ b
~E 4+ V jnlnrydry
a ki

(
P, _\
“H(}}% + v j ndn} , (5.4.18)
’ 1

where A, B, C, F, G, and H are given by (5.2.14), (5.2.15), (5.2.16), (5.3.26),
(5.3.24), and (5.3.25) respectively.

We give a set of identities involving Bessel functions in the Appendix to enable
the evaluation of the integrals in (5.4.18). Identities (1) to (4) were specifically
developed for the calculation of M,. Identities (5) to (7) needed changes from the
forms that can be found in Erdelyi [12]. The last two identities, i.e. (8) and (9) are
given in Spiegel [34]. Thus, we calculate separately each definite integral in

(5.4.18).

]

[Azr]ioz(aan) + 2ABnl(aamK,(aan) + quKoz(aaz;)] dn

it e

- ”gz"{[A/o(ab) + BKy(ab)]” = [Al(ab) - BK,(ab)]'}
—{[Afo(aa) + BK,(ca)]" - [Al(aa) - BK,(aa)f} , (5.4.19)

on using identities (5), (8) and (7) from the Appendix.

86



[ [Anh(aan) + Buky(aan)] dn

- é{’q[b“ab) - al,(@a)] - B[bK(ab) - aK,(ca)]},  (5.4.20)

on using identities (5.2.20) and (5.2.21).

b

T[Amfo(aa??) + Br*Ky(aan)] dn
1

_ a4;4 [tab)® + 4ab][AL(ab) ~ BK,(ab)]

- [(ea)® + 4cal[Al,(a8) — BK,(aa)]-2(ab)*[Aly(ab) + BK,(ab)]

+2(aa)’[Aly(aa) + BKy(ca)]} (5.4.21)

on using identities (1) and (2) from the Appendix.

| 7 dnp = — (b* - a*). (5.4.22)

Sa

b b
I[Ar; In 77 fy(can) + Bpin gy Ko(aary)] dn = o [A)}(ab) - BK1(ab)] In 2
1

- ;—;157 {Allo(ab) - l(ea)] + B[Kq(ab) - Ko(aa)]} (5.4.23)

oh using identities (3) and (4) from the Appendix.
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a al 2
[ninpdy = E'L%—(In?- - %) + 1} (5.4.24)

[ndn = — (b - a%) . (5.4.25)

Putting together all the results, M, is

_ 2ma® &G,
* LD, o5

.S+C, T, (5.4.26)

where S is given by

S = —é—i—; {—g; {[Ak(ab) + BKy(@b)] - [Ah(ab) - BK (ab)]'}

Al (aa) + BK (ea)]" - [AlL(ea) - BK (ca)] |}

b [H'— 1 (%— + VH{A[bf1(ab) - al,(aa)] - B[bK,(ab) - aK,(ca)]}

aa’® a

~ ﬁ (% + V){[(abf + 4ab][Al(ab) - BK(ab)] - [(ca)® + 4ca]

{Al(ea) ~ BK,(aa)] - 2(ab)}[Al,(ab) + BK,(ab)]
+2(aa)’[Aly(aa) + BK,(aa)]}
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b b
+G {;a—z [Al,(ab) — BK,(ab)]In -

— s {All(ab) — ly(aa)] + B[Ky(ab) - Ko(aa)]}}

G'(Pz _}{bz[ b 1) 1}
-— |+ Vl=|n-==i+=
2 \«a a a 2 2

o (_2 . v](az ), (5.4.27)

and T is given by

T - ng [A[bl,(ab) - al(aa)] - B[bK,(ab) ~ aK,(aa)]}

1 (fz_ . V)(az ). (5.4.28)

2a° \ a?

In equation (5.4.27) G' and H' are defined by the following relations:

1 &,

G = e (5.4.29)
LD, 2%, .
and
1 oC
H=C 2 . 5.4.30
° " 1D, 7, | ( )
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Applying for M, the same analysis as for M,, we consider that if 52 is the mean
concentration over a section of the porous medium then &C, / 8&, is

indistinguishable from 2C, / J&, so that (5.4.26) becomes

M, = ag .S+GC,-T. (5.4.31)

Relation (5.4.31) shows that C, is dispersed relative to a plane which moves with
velocity v exactly as though it were being diffused by a process which obeys the
same law as molecular diffusion but with modified diffusion coefficient, say D,".

The continuity equation for C, is given by

M, _ ~n(b® - a%) =2, (5.4.32)

ot Jr,

where &/ Jr, represents differentiation with respect to time at a point where &,

is constant. We differentiate (5.4.31) with respect to &,

oM,  2ma°S &°C,

= . (5.4.33)
A&, LD, &}
Equation (5.4.32) becomes
2m8’S 5°C, _ ~a{b® - az)—é??—, (5.4.34)
LD, 0"522 Ity



which can be written as

o, 2a’Ss  F°C,

6r,  LD,(b* - &%) 5

-
& C,

=D ,
* g’

where the diffusion coefficient for the porous medium is:

. 2a°’S

P Dbt - &%)

S can be expressed in the form
S =FRS,

so that using (5.2.25), D,” becomes

. _ 23SV
LD,V(p? - a*)

2

(5.4.35)

(5.4.36)

(5.4.37)

Equation (5.4.36) represents Fick's second law of diffusion and it is the eguation

governing the longitudinal dispersion of cholesterol in the porous medium.
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Thus, we have determined the analytical formulas for the mass fiux of solute in

the channel and in the porous medium. The new guantities that we introduced in

this section, Df and Dz*, are called Taylor's diffusion coefficients.

5.5 Cholesterol Deposition

Using Taylor's diffusion coefficients D, and D, introduced in the previous
section, we can calculate the volumetric amount of cholesterol 6 deposited at the
interface and the rate of growth of cholesterol x per unit width per unit time. We

denote by y; and y, the amount of cholesterol dispersed in the channel and in the

porous medium. y, and y, are given by

D/

I PRV 55.1

. 2 (5.5.1)
and

D,

—= =1+ , 55.2

D, Yo ( )

where D,” and D,” are known from (5.4.13) and (5.4.37), and D, and D, are given

constani diffusion coefficients. We expect DD—1 > 1, DD—2 >1,and y, > ¥y, .
1 2

Hence, we have the following equation for finding &:

V.=V, =3 . (5.5.3)
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he rate of growih of cholesterol x per unit width per unit time satisfies the

relation

§ = ma® - z(a - x)°. (5.5.4)

Geometrically, the right hand side of equation (5.5.4) can be visualized in Figure
5.9, where a is the radius of the channel, b - a is the thickness of the porous

medium, and x is the rate of growth of cholesterol per unit width per unit time.

/. channel

Figure 5.9 Schematic drawing of cholesterol deposition.

Equation (5.5.4) is a quadratic equation that admits two real solutions, namely

, (5.5.5)
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for a® — ° =z 0 . Since x < a , then the increase in the radial thickness of the
s

cholesterol deposit is given by

x=a-la2-2 (5.5.8)
/s
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5.6 Conciusions

The bioiogicai modei investigated in this thesis led to analyticai solutions of the
equations of velocity, concentration, volume flux of blood and mass transfer of
cholesterol in the channel and in the porous medium.

For the first time, an expression for the amount of cholesterol deposit and the rate
of growth of cholesterol per unit width per unit time is given. The mathematical
expressions derived are relevant to the prediction of the development of
arteriosclerosis in the human circulatory system. The relevancy wouid have to be
supported by further research showing good agreement with experimental data.
Ultimately, by solving this problem, the intend is to give an accurate method for
predicting the rate of growth of cholesterol within a time frame.

The analysis of the model is theoretical rather than experimental. Therefore, for
numerical evaluations, we need to have experimental values for the parameters,
in addition to assumptions on material properties. The topic of porous media is
still in the stage of developments with a large variety of views regarding the
properties of the porous media itself, as well as the boundary conditions at
interfaces. Although we have developed a set of conditions fairly consistent with
recent work on the topic, the mode! does not reach a level of sophistication for
which comparison with experimental medical data is suitable.

The biological model can be further developed, making it less restrictive in
assumptions. Further work can consist of using more complex conditions like slip
boundary conditions, different kinds of diffusion, more complicated structures of

the porous medium etc.
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APPENDIX
Table of Bessel Integrals

[ X2h(x) dx = (x® + ax)(x) - 2x21(x) .
fxaKo(x) dx = —(x° + 4x)K,(x) = 2x2K,(x) .
_[xio(x) Inx dx = x/[(x)Inx = [,(x).
[ xKo(x) In x dx = —xK,(x) In x = Ky(x) .
2 x? 2 2
[ xB2x) dx = —2—[;0 (x) — |, (x)].
2 x? 2 2
[ xK2(x) dx = ?[Ko (x) - K, (x)] .
jxfo(ax)Ko(ax) dx = i;i[i{,(ax)Kﬂ(ax) + l(ax)K (ax)] .
1

X} = l(x) = — h{x) .

K () = Ko = K ()
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