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ABSTRACT

The thesis consists mainly of two parts. The first part gives a review of the

properties of the components involved in blood flow in arieries affected by

arteriosclerosis. The blood flow in arteries includes flow through porous medium

(deposited cholesterol), as well as flow past porous medium (in the arterial

channel). The second part gives a mathematical analysis of the flow in an ariery

whose cross section is a circle and the porous medium forms an annulus which is

a doubly connected region. Analytical expressions are derived for the velocities

of the flow, concentrations, and volume flux for both the porous medium and the

channel. The results for the velocity components are illustrated by numerical

computation for a set of parameters. A new approach to find the rate of grolvth

per unit width per unit time of the cholesterol deposit is also given.



CHAPTER 1

lntroduction

1.1 The Problem and the Scope

The radial incorporation of cholesterol in an arterial (arteriolar or capillary) wall

gives form to deposits which grow inward and restrict blood flow. ln time, ihis

produces a disease called arteriosclerosis, prevalently found in elderly people

and it may lead to cerebral and coronary thrombosis, myocardial infarctions, and

others, These ailments are becoming more common throughout the world and

much research has gone into elucidating the various factors determining this

condition.

Generally speaking, the heart is a muscular pump which contracts about seventy

times a minute and is capable of doing so for over eighty years. Like all muscles,

it must have a blood supply to cârry oxygen and nuiriment to it. The blood supply

of the heart is carried by three small blood vessels arising from the aorta and

known as the coronary arter¡es. The coronary arter¡es have a smooth inner

lining, the endothelium, and it is this lining that gradually becomes thicker due to



the progression of arteriosclerosis. This process is largely due to deposition on

the endothelium of substances containing cholesterol. When the endothelium

becomes laden with cholesterol, it seriously impedes the flow of blood to tissue,

and in the case of coronary arteriosclerosis, the musculature of the heart begins

to suffer the effects of an inadequate blood supply. Ultimately, a coronary artery

may even become blocked.

Am important problem related to arteriosclerosis is the rate of accumulation of

cholesterol into plaques. As like many other authors, we approach the problem

by constructing an idealized model.

Thus, the problems discussed in this thesis have the following objectives:

(a) A biological model of blood flow through and past porous medium will be

elaborated.

(b) Cholesterol mass transport in arteries is cafculated to further analyze mass

transfer and accumulation within the arterial wall. The accumulation of

cholesterol is due to diffusion of the blood plasma lipoproteins.

1.2 Bríef Description of the Biological Model

The biological problem can be presented mathematically in various levels of

generality. To be rigorous, it seems evident that the heart, aorta, arteries, and

veins should be represented by a three-dimensional network, and the special

geometry and materials of construction of various organs must be described and

incorporated in the model. ln practice it is useful to consider simplified, unrefìned

models first, learn the general features, identify the important parameters, and



then add details when feasible, on the assumptions that these important

characteristics are retained in the complex system.

To understand the events occurring in the arteries, we consider the following

simple model that shows similarities with models studied by other authors: each

artery is treated as an infinite, isolated, circular cylindrical r¡g¡d tube; the blood is

taken to be a viscous, Newtonian, incompressible, and homogeneous fluid. We

approximate the flow to be steady, laminar, and along the axís of the tube.

The blood flows through and past a porous medium and is driven in both media

by the same pressure gradient. The porous medium consists of iissue fluid,

lymph, lymphatic vessels, and other cells and particles, including cholesterol, and

it is considered to be homogeneous and isotrop¡c. As we can see in Figure 1.1,

between the interior channel and the porous medium there exists an imaginary

wall that we treat as permeable to both blood, which constitutes the solvent in a

solution containing cholesterol solute, and io solute. The exterior wall of the

artery is considered impermeable, and thus the tangential component of velocity

porous medium

channel

impermeable wall

permeable wall

X

Figure 1.1 Schematic drawing of the ideal¡zed model.



will be zero, This property of the impermeable boundary is called a no-slip

condition.

We assume the velocity of the flow to have only one component along the z-axis

which is the longitudinal axis of the two concentric cylinders as shown in

Figure 1.2.

porous medium

Figure 1.2 System of coordinates for the ¡dealized model.

Such a model represents a biomechanical problem. Consequently, ¡t is important

to know the characteristics of the flow through and past porous media. Therefore

we will briefly review some features of these types of flow.

1.2.1 Flow Through a Porous Medium

Flow in a porous medium in general is an ordered flow in a disordered geometry.

The transport process of flow through a porous medium involves two substances:

the fluid and the porous matrix, and therefore it will be characterized by specific

properties of these two substances (see Figure I .3).



Figure 1.3 Flow in a porous medium (From Ockendon [25]).

A porous medium usually cons¡sts of a large number of pores each of which is

filled with the fluid. lntuitively, pores are void spaces which must be distributed

more or less frequently through the material if it is to be called porous. Extremely

small voids in a solid are called molecular rnfersfices, and very large ones are

called caverns (see Scheidegger [32]).

The structure of the pores is often highly complicated and differs from medium to

medium. Pores are invisible to the naked eye in the major¡ty of porous media.

The porous nature of a mater¡al is usually esiablished by performing a number of

experiments on a sample and observing its behavior.

Appropriate experiments lead to the determination of various macroscopic

parameters which are often uniquely determined by the pore structure of the

sample and do not depend on any other property. The most important

macroscopic pore structure parameters are the poros¡ty, lhe permeability, lhe

specific su¡face area, the formation resistivity factor, and the reduced

breakthrough capíllary pressure, as g¡ven by Dullien [11]. For our analysis,

following Rudraiah [30], only the permeability parameier will be taken into

account.



Permeability is the term used for the conductivity of the porous medium with

respect to permeation by a Newtonian fluid. Permeability, used in this general

sense, is of limited usefulness since its vafue in the same porous sample may

vary wiih the properties of the permeating fluid and the mechanism of permeat¡on.

It is advantageous to separaie out the parameter which measures the

contribution of the porous medium to the conductivity and is independent of fluid

properties and flow mechanisms. The quantity is the specific permeability k,

which will be referred to as permeability, hereinafter. lts value is uniquely

determined by the pore structure (see Dullien [1 1]).

the mícroscopic pore structure is extremely difficult to analyze due to the great

irregularity in pore geometry.

The pores in a porous system may be interconnected or non-interconnected.

Flow of interstitial fluid ¡s possible only if at least part of the pore space is

interconnected. According to this description, the following are examples of

porous media: towers packed with pebbles, beds formed of sand, granules;

porous rocks such as limestone, pumice, dolomite; fibrous aggregates such as

cloth, filter paper; catalytic particles containing extremely fine micro-pores.

When a fluid percolates through a porous layer, because of the complexity of

microscopic flow in the pores, the actual path of a singular particle cannot be

followed analytically. ln this case, one has to consider the gross effect of the

phenomena represented by a macroscopic view applied to the masses of fluid. ln

our study case, the porous medium represents the tissue space surrounding the

blood vessel. Also, it will be assumed that the porous medium is saturated with

fine solid particles uniformly scattered and fixed in space.



1.2.2 Flow Past a Porous Medium

Flow pasi a porous medium takes place in the channel space described in

Figures 1.1 and 1,2. The flow past the porous medium is assumed to be laminar,

along the axis of the channel and in steady state. For such a viscous flow, it is

important to use appropriate boundary conditions at the permeable wall.

It has been presumed, prior to 1967, that the tangential component of the velocity

is zero, i.e. the no-slip cond¡tion is valid at the porous interface. ln 1967, Beavers

and Joseph [2] showed that, in general, the no-slip condition is no longer valid for

this type of boundary. They have postulated the existence of a slip at the nominal

surface and experimental support was provided. The existence of the slip at the

porous bed is due to the transfer of momentum from the free flow in the channel

into the porous medium. Since the medium is saturated, as noted in the previous

sect¡on, this momentum will be converted into drag. Beavers and Joseph have

established experimentally that the effects of viscous force in the free flow will

penetrate beneath the permeable surface to form a boundary layer region in the

porous medium.

The usual boundary condition used at the common boundary of the channel and

the porous space is the one that matches the velocities found ín each medium.

One can employ any of these boundary conditions (and many others) depending

on the complexity of the model. There does not seem to be a universally

approved type of behavior of the fluids at the interface of the channel flow and the

flow in the porous medium.



1.2.3 Method of Description of Fluid Flow

ln simple terms, a fluid is a substance which cannot resist a shear force or stress

without moving as can a solid. Liquids and gases are classified as fluids. A liquid

has intermolecular forces which hold it together so that it possesses volume but

no definite shape. Liquids have slight compressibility and the density varies little

with temperature or pressure (see Hughes [18]).

The fluid is treated as a cont¡nuous medium. The continuum theory enables us to

use the concept of local velocity of the fluid, and we must consider how the field

of flow may be specified as an aggregate of such local velocities. Two distinct

specifications are possible. The first one is called the Eulerian method and it

describes various physical quantities at fixed points in the flow field. The second

one, or the Lagrangian method, traces the motion of individual fluid particles.

The Eulerian method is commonly used in studying fluid flow since standard

instruments for measuring pressure or velocity are installed at f¡xed focations.

1.3 Review of Previous Work

The purpose of this review is to highlight the background literature of the

problems discussed in the subsequent chapters. Also, we would like to

emphasize that our analysis is a continuaiion of previous research developed for

a different geometry, that is fluid flow through parallel plates.

The previous section presented a model of cholesierol deposition in the arterial

wall. Consequently, the tlvo basic aspects of this biological problem are



cholesterol and arter¡es. Cholesterol is well described in Cook's [B] book

"Cholesterol: Chemistry, Biochemistry and Pathology". A representative book

about arteries and blood flow through them ís McDonald's [21] book "Blood Flow

in Arteries". lt has elaborate discussions on the structure of arteries and also a

detailed mathematical description of the implications of blood flowing through the

arteries.

Blood flow in vessels has, for many years, been an interesting and challenging

subject, and intensive research has been dedicated to it. Tang and Fung [36]

developed in 1975 a model of lung alveolar sheet. The smallest microscopic

blood vessels in the human lung are organized into sheet-like networks. These

sheets form the walls of the 300 million alveoli in which air flows due to breathing.

Each sheet is idealized into a channel bounded by two thin layers of porous

media. Blood flow in the channel and water movement in the porous wall were

investigated.

Later, ín 1985, Rudraiah [31] studied ihe steady laminar flow in a parallel plate

channel bounded below by a porous layer of finite thickness and above by a rigid

impermeable plate moving with uniform velocity, He considered the two cases

where the porous medium being bounded below: (i) by a static fluid and (ii) by a

rigid impermeable stationary wall. He also derived a modified slip condition

involving the thickness of the porous medium. This slip condition is related to the

slip condition postulated by Beavers and Joseph [2] in 1967. Their experiments

showed that the mass outflow of a Poiseuille flow over a naturally permeable

block is greatly enhanced over the value it would have if the block were

impermeable, indicating the presence of a boundary layer in the block. The

velocity presumably changes across this layer from its Darcy value to some slip



value immediately outside ihe permeable block. This condition was subsequently

named the BJ-slip condition.

Complicated models take into consideration blood flow through a channel with

varying gap. Guha and Chaudhury [16] studied the fluid mechanical effects of the

permeability of the wall of an arteriosclerotic blood vessel by idealizing the tissue

space as a porous medium bounding the blood vessel and the arteriosclerotic

blood vessel as a constricted axisymmetric tube of slowly but arbitrarily varying

cross-section.

Vafai and Thiyagaraja [38] analyzed fluid flow and heat transfer at the interface

region of a porous medium. They discussed three general and fundamental

classes of problems in porous media: the interface region between two different

porous media, the interface region between a fluid region and a porous medium,

and the interface region between an impermeable medium and a porous medium.

These three types of interface zones constitute a complete invesiigation of the

interface interactions in a saturated porous medium They derived detailed

analytical solutions for the velocity and temperature distributions for all interface

conditions.

An important result on the modeling of porous media was obiained in 1985 by

Kim and Russel [20]. Part of their research was based on Brinkman's model with

an effective viscosity. The use of the Brinkman equation leads to an apparent

slip velocity at the boundary of a porous medium. They calculated the bulk stress

via volume averaging and thus determined the effective viscosity and the slip

coeffic¡ent for dilute porous medium. Kim and Russel found that the averaging

technique failed since the Brinkman equation itself was no longer valid. They

proposed a new form of the Brinkman equation.

10



ln 1986, Shivakumar et al. [33] considered blood flow in arteries idealized into a

channel of varying gap bounded by porous layers. They analyzed the problem

using the BJ-slip condition. The mathematical results were then applied to a

problem of smooih constriction in an artery with stenosis already set in.

Misra and Singh [22] investigated pulsatile flow of blood through arteries by

treating blood vessel as a thin-walled anisotropic, non-linearly viscoelastic,

incompressible circular cylindrical shell. They also considered nonlinearities of

the flow of blood. The displacement components at the vessel wall were

obtained from the equations of equilibrium. The influence of the wall deformation

on the flow properties of blood was taken ¡nto account in their analysis.

A closely related subject to blood flow in arteries is particle ditfusion ¡n arteries,

An important contributor to this fleld was Taylor [37] who published a paper on

dispersion of particles in a solvent in 1953. His research was based on the fact

thai when a soluble substance is introduced into a fluid flowing slowly through a

small-bore tube it spreads out under the combíned action of molecular diffusion

and the variation of velocity over the cross section. He showed analytically that

the d¡stribution of concentration is centered on a point that moves w¡th ihe mean

speed of flow. He also gave a new method for measuring diffusion coefficients.

Taylor's results have been a major factor in the development of the subject. ln

1975, Fung and Tang [13] and [14] extended Taylofs study to the case of flow in

a channel bounded by porous layers. Their interest was in longitudinal dispersion

of tracer particles in the blood flowing in a pulmonary alveolar sheet. They

showed that the mean coefficient of apparent diffusivity is smaller in a channel

bounded by porous layers than that in a channel with impermeable walls for the

case when the channel walls are permeable to solvent but not to tracer. When

11



ihe channel walls are permeable to both solvent and tracer, the mean coeffìcient

of apparent diffusivity is nearly the same as that of a channel with impermeable

walls. They also proved that if a tracer is permeable through the membrane that

separates the blood from the t¡ssue space, which in turn is limiied by an

impermeable wall, then, at a steady state, the concentration of that tracer is

uniform in both compartments. lf a tracer is restricted to the vascular space by a

semipermeable membrane, then its concentration is non uniform.

Later, in 1980, Chandrasekhara, Rudraiah and Nagaraj [6] also followed the

analysis of Taylor and attempted to construct a deterministic model for the

longitudinal dispersion in a porous medium. Their model gives, for the first time in

the literature, information about the behavior of the diffusion coefficient with the

particle size of a porous medium.

Pal et al. [26] considered, in 1984, longitudinal dispersion of solute in a channel

bounded by porous layers using the BJ-slip condition. They found that the effect

of slip is significant only in the case when the membrane is permeable to solvent

but not to the tracer.

More recently, in 1990, Neumann et al l24l developed a mathematical model of

the transient incorporation of cholesterol in the arterial wall. The experimental

investigation supported their hypothesis that hemodynamics and the endothelial

lining influence wall flux in intact vessels. Exposure to altered hemodynamics

was associated with increased incorporation of chofesterol. Based upon

measurements of vessel wall forces and endothelial cellular morphology

accompanying hemodynamic simulations, the authors suggested that

hemodynamically induced alterations to endothelial structures led to the

increased permeability, convectíon and incorporation observed in the study.

12



Perktold, Thurner and Kenner [28] carried out computer simulations of pulsatile

non-Newtonian blood flow in ditferent human carotid artery bifurcation models.

Two rigid walled models were analyzed, differing in the bifurcation angle and the

bifurcation region, in order to contribute to the study of the geometric factor in

atherosclerosis. The results showed a significant difference in the wall shear

stress and in the flow separation. Also, flow velocity and wall shear stress

dístribution were analyzed in a compliant carotid artery bifurcat¡on model. ln the

mathematical model, the non-Newtonian flow field and the idealized elastic wall

displacement were coupled and calculated iteratively at each time step. The

investigation demonstrated that ihe wall distensibility alters the flow field and the

wall shear stress during the systolic phase. Compar¡son with corresponding rigid

wall results showed that flow separation and wall shear stress were reduced in

the distensible wall model.

To investigate the role of fluid mechanical factors in atherogenesis, Deng, King

and Guidoin [10] studied theoretically, using a two dimensional T-junction model,

the effect of blood flow on the transfer of low density lipoproteins from flowing

blood to the luminal surface. The flow fields in the junction were obtained by

solvrng the Navier-Stokes equations numerically and the concentration

distr¡bution of low density lípoproteins at laminar surface was determined using a

finite difference analysis. The transfer of low density lipoprote¡ns from flowing

blood to the surface of the vessel wall was greatly enhanced in the two regions of

this third flow, one in the main vessel, the other in the subsidiary vessel. The

authors' mathematical model predicted ihat locally disturbed blood flows at

arterial bifurcations and junctions provided favorable conditions for the



accumulation of atherogenic substances at the luminal surface, thus increasing

the potential for lipid infiltration ¡nto the vessel wall.

Cavalcanti [5] investigated the hemodynamics in the early stages of the

atherosclerotic process. A local, slight increase in the wall thickness of a canine

femoral artery was simulated using an original two-dimensional mathematical

model of arterial hemodynamics and the effects induced on the velocity field by

the simulated mild stenosis were analyzed. The model incorporated: fluid non-

linear inertial forces, viscoelastic wall mot¡on, anatomical taper, unsteady flow,

pressure propagat¡on and reflections on both the proximal and distal vessel ends.

The distribution along the vessel during the cardiac cycle of both the velocity

profile and wall shear stress, were shown. The shape of velocity distributions

was strongly perturbed by the stenosis and disturbances were clearly evident

whatever instant of the cardiac cycle was considered. The reported results

provided a coherent explanation of the critical role that hemodynamic factors may

play in the early stages of atherogenic process.

1.4 Thesis Outline

The thesis is divided into two main parts. The first part consists of chapters 2

and 3 dealing with the biological aspects of our model. The second part of the

thesis contains chapters 4 and 5 which studies the mathemat¡cs of the biological

model.

ln chapter 2, we study blood flow in arteries in general. We review the

composition and the rheology of blood. Special attention is given to the viscous
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properties of the blood and their implications in the consideration of blood flow.

We examine the structure of arteries and their physiological properties.

ln chapter 3, we describe the role of cholesterol in arteries. After a brief

presentation of the history of cholesterol, we investigate different aspects

influencing the physiology of cholesterol, such as diet, race, and age. The

significant part is the analysis of the pathological manifestation of cholesterol, in

particular, the cholesterol deposition. Dispersion of cholesterol in arteries is then

studied and general mathematical description of it is given.

Chapter 4 provides the basic equations of mass, motion and concentration

associated with any flow problem. Those equations are then formulated to suit

our biological problem. Related boundary conditions are also supplied.

The aim of the thesis is to solve analytically the equations presented in chapter 4

and provide numerical computations and graphs for the velocity components of

the flow in both regions for a particular and representative set of numerical values

for the parameters involved.

The contribution of the thesis is in chapter 5, where the analytical sotutions of the

equations governing the flow in the channel and in the porous medium are

obtained. The solutions are then used to analyze mass transport in arteries,

including the volume flux of blood flowing through arteries and the mass transfer

of cholesterol to the wall. ln section 5.5, we obtain significant results on

cholesterol deposition: the amount of deposited cholesterol and the growth of

cholesterol per unit width per unit time.



CHAPTER 2

Arterial Blood Flow

2.'l Composition of Blood

The circulatory blood system that we analyze is complex. Attempt¡ng to develop

an adequate model of this system and its behavior is almost an impossible task.

ln order to make any progress, we consider a simplified model.

Under normal conditions, blood flow ¡n the human circulatory system depends

upon the pumping action of the heart. Here we concentrate on a small section of

this circuit, the relatively straight section following point A in Figure 2.1 . We could

¡mag¡ne that blood flow in this part would behave in much the same way as water

in a cylindrical tube. However, this is a gross simplification of the situation. To

undersiand this last statement we have to depict some important facts and

properties regarding blood flow and arteries,



Figure 2,1 Schematic descr¡ption of an aorta.

When blood is centrifuged in a centrifuge, ¡t separaies into a fluid called plasma

and formed elements: blood cells and platelets (or thrombocytes) . There are

two types of blood cells: red cells or erythrocytes and white cells or

leukocytes. Leukocytes can be either granulocytes (and further classified as

being of neutrophil 65%, eosinophil 4o/o, or basophil 1o/o variely') or agranulocytes

(and further classified as being lymphocyte 25o/o, ot monocyte 
'Vo).

Blood plasma is a fluid containing about 90% water by weight, acting as a

solvent, and the following solutes:

(a) plasma protein 7o/o. lt consists of albumin 55%, globulin 44.8o/o, and

fibrinogen 0.2ol0. Fibrinogen, for example, is important in blood clotting.

(b) nitrogenous wasfe substances that a carried from their site of production to

the kidneys.

(c) inorganic sa/fs of sodium, calcium, magnesium, and potassium, the most

common being sodium chforide.

(d) organic nutrients. The most important are (i) blood sugar, mainly glucose

derived from the breakdown of foods. The precise level of blood sugar is critical

for maintaining homeostasisr and is controlled by a negative feedback

thomeostasis 
= the maintenance by an organism of a constant jnternal env¡ronment,
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mechanism in which insulin plays a major part. (ii) blood lipids such as fats and

cholesterol, derived from dietary intake or activity of the liver.

(e) hormones manufactured in the endocrine glands.

(f) disso/ved gases such as nitrogen, small quantities of oxygen, and carbon

díoxide.

The blood cells mainly consist of red blood cells, about 5 million per mmr of

blood. The erythrocytes occupy approximately 45o/o of the blood volume. The

cell carries carbon dioxide from tissues to lungs, and contains hemoglobin

pigment for oxygen transport from lungs to tissues, lt is a small cell (7.2 ptm in

diameter and 2.2 ¡rm thickness), non nucleated, has definiie biconcave shape,

and a flexible membrane.

The white blood cells are unpigmented cells and they make up less than

1 / 600th of the total cellular volume. The leukocyte count is usually about 10,000

cells per mm3 of blood. This is noi the total body count, because leukocytes are

found as much in tissues such as spleen, thymus, and k¡dney as in blood. The

cells have a round shape and a short life span, 2 to 14 days. Their primary role is

to defend the human body against invading organisms and other foreign mater¡al.

Platelets form about 1 / 800th of the total cellular volume. They consist of non

nucleated cytoplasmic fragments of large bone-marrow cells 3 ¡m in diameter,

called megakaryocytes, that have entered the blood circulatory system. Platelets

pfay an important role in blood clotting.

Rubinow [29] defines the specific gravity of a cell as the ratio p I po, where p is

the mass densiiy of the cell, and po is the mass density of water, under normal

conditions. Thus, the specific gravity of an erythrocyte is about 1.06, and that of



plasma is 1.03. As a result, if blood siands in a container, the red cells will settle

out of suspension.

When plasma was tested in a viscometer ii was found to behave like a Newtonian

viscous fluid. A Newtonian liquid is, by definition, one ¡n which the coefficient of

viscosity is constant at alf rates of shear. The non-Newtonian nature of blood is

a direct consequence of the fact that blood is a suspension, with plasma the

suspending medium, and red cells for the most part being the suspended

particles. Therefore, when whole blood was tested in a viscometer, it showed

abnormal viscous properties which revealed its non-Newtonian character.

2.2 RheologY2 of Blood

When analyzing our model, we are concerned with ihe laws governing the flow of

blood in cylindrical tubes. One example might be that of a long straight tube with

a constant rate of flow, steady flow, along it. ln such a system, steady flow can

be maintained by applying a constant pressure to the liquid.

Unfortunately, in only a small part of the circulaiion can the flow be regarded as

steady. As described by McDonald [21], the heart pump produces a pressure

gradient throughout the arterial and venous network. Th¡s pressure gradieni

consists of two components, one of which is constant or non-fluctuating and the

other fluctuating or pulsatile. The flow in large arter¡es is highly pulsatile, but the

flow oscillations are progressively diminished with the ramif¡cation of the system.

Capillary flow is normally steady. ln the arterioles that are close to the capillaries

2rheology = the study of the propert¡es and behav¡or of flow¡ng substances
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signifìcant oscillations of flow are seen. Flow in peripheral veins is regarded as

steady, but close to the heart, within the thorax, venous flow becomes very

pulsatile.

Steady flow in a cylindrical tube is described by the Poiseuille equation:

n_(Pr-Pr)rRao - 8rL '
(2.2.1)

where Q is volume flow, P' - P, is the pressure drop, R is the radius of the tube, L

is the length of the tube, and p is ihe viscosity of the fluid. Poiseuille formula only

applies to steady state flow. ln arterial channels where the flow is pulsatile this

might be thought io be inapplicable. Pulsatile arterial flow, however, has a steady

component, say the mean flow, so it is possible, and valid, to apply Poiseuille

formula to this mean flow.

McDonald [2'1] gives details about the experiment of dye injecied into liquid

flowing in a iube under the above mentioned conditions. lt is observed that the

liquid in the axis of the pipe is moving much faster than that near the wall. After a

short time, the dye takes a parabolic shape. The reason is thai the particles of

liquid (blood, in our study case) are flowing in layers parallel to the sides of the

tube, whife the fluid in contact with the wall is stationary (see Figure 2.2). Each

layer (or lamina) is slipping against the viscous friction of the layers outside it,

The resulting flow motion is called laminar (or streamlined). lf the rate of flow

through a tube is continuously increased, the resistance to flow also increases

and the Poiseuille law no longer can be appfied. When dye is injected in such a

flow, it can be seen that the fluid is mixing across the tube and that the pârticles



of dye are no longer moving regularly in the line of flow but are following more or

less random paths over the tube (as in a Brownian motion). The flow is said to

Figure 2.2 Velocity profile in steady laminar flow.

be turbulent. The pressure-flow relationships of turbulent flow are not

predictable with precision. Thus, when study¡ng any type of flow, we have to

precisely determine whether the flow is laminar or turbulent. However, it should

be mentioned that this classical difference between the types of flow is only

correct for steady flow in rigid tubes and there are intermediate stages of

instability in the lÌquid which become of importance in the irregular flow systems of

a living animal.

2.3 Viscous Properties of Blood

Viscosity is a closely related notion to how liquids flow. We can define viscosity

in the following way: if a force is applied to a portion of a mass of liquid it will
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begin to flow but if the force is removed the movement will be brought to rest (see

McDonald [21]). On the other hand, if a similar part of liquid is kept moving, the

movement will be transmitted to the rest of the fluid.

Cohesive forces beiween blood and the blood vessel wall prevent ihe

infinitesimally thin layer of plasma which is in contact with the wall from moving

even when the blood farther away is flowing. When liquids come in contact with

the walls of a tube, there is no-slip at the wall. Burton [4] states that blood

behaves in this same way too. lt follows that when blood is forced through the

blood vessels by the pressure gradieni, generaied by the action of the heart,

there must be a gradient of velocity across the vessel, with the highest velocity

of flow along the axis of a cylindrical vessel.

The successive cylindrical layers of blood, as we proceed from the axis, move

with decreasing velocity, until at the wall the velociiy is actually zero,

Consequently, the resistance of blood to flow is not due to a friction between

blood and the wall of the blood vessel. The resistance ¡s rather attributed to the

friction between adjacent laminae of blood, in other words to the viscosity of

blood.

Newton was the first one to make theoretical remarks on viscosity in his work

Principia Mathematica in 1706. The hypothesis on which he based his derivation

was "that the resisiance which arises from the defect of slipper¡ness of the parts

of the liquid, other things being equal, is proportional to the velocity with which the

parts of the liquid are separated from one another.". Here, he used the words

defect of slipperiness for the modern word vrscos/y (or internal fríction).

Newton's hypothesis describes the fact that velocity gradient exisis in a direction



perpendicular to the surface. We call this velocity gradient rate of shear, and we

have the following formula:

(2.3.1)

Figure 2.3 Shearing flow.

Newton did not studied this viscosity problem further, and for the next hundred

years there were no reports. But his name remains to be used for Newtonian

fluids.

Poiseuille's law given by equation (2.2.1) is often used to determine the viscosity

coefficient of viscous fluids. When blood is investigated in this manner, its

coefficient of viscosity is 0.035 P (P = poise), while the coefficient of v¡scoslty of

dv,_,dr

wnere { is the rate of shear when r is the distance from the axis, p is the
dr

coefficient of viscosiiy, and ¡ is the stress (see Figure 2.3).
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plasma is 0.012 P, both calculated at the normal physiological temperature of

37'C. Since the effective v¡scosity coefficient of blood, as determined by means

of Poiseuille's law, depends on the radius of the vessel bore in which it is

measured suggests that blood is NOT a Newtonian fluid for which p is a constant.

Most homogeneous liquids3 approximate a Newtonian liquid but suspensions of

particles (such as blood) show deviations from it, Fluids that have complex

mofecular structure, and in which the suspended particle size becomes

appreciably large in comparison with the dimensions of the channel they are

flowing through, are in general non-Newtonian,

2.3.1 Anomalies in the Viscosity of Blood

There are two types of anomalies observed in the viscosity of blood. The first

one is called low shear and it can be observed at low shear rates when the

viscosity increases notably. The second anomaly is the high shear effect and it

can be detected at high shear rates. ln this case, the viscosity is smaller in small

tubes than in large tubes. This progressive diminution with tube size begins to be

noticeable with tubes of ínternal diameter less than 'l mm and becomes

significant in tubes of the order of 100-200 ¡r in diameter. These two anomalies

are of interest because when studying fluid flow in the circulatory system we have

to accurately measure the viscosity of blood.

As already mentioned, plasma has a Newtonian viscosity. Many tests have been

made in concentric viscometers and in capillary tubes over a range of shear rates

3homogeneous liquids = a liquid for which ¡ts properties are ¡ndependent of pos¡tion.
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from 0.1 to 1,200 sec-r (see McDonald [21]). The reported viscosity for plasma

was 1.6 relative to waier (the coefficient of viscosity for water ¡s 0.007 P). Other

experiments have reported plasma to be non-Nevvtonian when the measurement

apparatus allows plasma-air interfaces to occur. The abnormal results are due to

a denatured protein layer at the interface. Since plasma is a colloidal suspension

of protein, it is not unusual that it presents deviations from the behavior of a pure

liquid. However, deviations of viscosity are not observed until particle size is a

much larger fraction of tube diameter. The longest dimension of any of the

particles found in plasma is the length of the fibrinogen molecule, thai is 50 m¡-r.

Even in a capillary of 5 ¡r this particle dimension would only be 1% of the lumen+.

Nevertheless, most studies showed plasma to have a Nevytonian viscosity.

lf red cells are progressively added to plasma the viscosity increases. Significant

non-Newtonian properties become noticeable when the concentration of cells

exceeds 10%. The volume concentration of erythrocytes is called hematocrit,

which in normal physiological circumstances lies in the range 0.41 - 0.44.

When experimental calculations are performed in tubes with an internal radius of

about 0.5 mm or larger, and shear rates which are not less than 200 - 300 sec¡,

the coefficient of viscosiiy will be effectively independent of tube size but will vary

with the cell concentration (see Figure 2.4). The exper¡mental data show that

viscosity varies linearly with cell concentration from 0% (plasma) to a hematocrit

of aboul 45o/o. ln fact, this range covers most clinical conditions. For cell

concentrations more than 45%, it was observed that viscosiiy rises rapidly. Also,

in any given tube the apparent viscosity decreases as the shear rate increases;

4¡umen = any cavity enclosed wjth¡n a cell or structure
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Hematocrit

Figure 2.4 The var¡ation of viscos¡ty w¡th
hematocrit values (From McDonald [21]).

when the shear rate is greater than some 200-300 sec-l, the v¡scosity becomes

virtuafly constant, as outlined by McDonald [21].

2.3.2 Why is the Free-Cell Zone lmportant?

When blood is flowing through a cylindrical iube, the region adjacent to the wall

has a low cell concentration that will imply a lowered viscosity, one close to that

of plasma. The smaller the tube, the greater the proportion of the whole that

would consist of this cell-free layer, and thus the lowering of the overall viscosity

will be more significant. lt is generally acceptecl that ihis is not only the simplest,



bui also an adequate explanation of the so called wall-effect, that is the

reduction of the apparent viscosity of blood in small tubes.

This behavior was observed by Fahraeus and Lindquist [21] in 1930, who

experimented blood suspensions in tubes of diameter in the range 50-500 ¡rm. In

1971, Barbee and Cokelet [21] extended the experiment and showed that the

phenomenon continued at least for tubes of diameter 29 ¡rm (when human blood

was used). ln 1929, Fahraeus found that when blood of a constant hematocrit is

allowed to flow from a large feed reservoir into a small tube, the hematocrit in the

tube decreases as the tube diameter decreases. Barbee and Cokelet [21]

demonstrated that complete agreement with the experimental calculations can be

obtained if the apparent viscosity of blood in a large vessel is measured as a

function of the hematocrit, and ihen the apparent viscosity of the same blood is

computed in a smafler tube at the actual hematocr¡t. This was an important

discovery because it extended the usefulness of the apparent viscosity

measurements.

The dependence of viscosity on tube diameter occurs not only in blood but in any

suspensions and it has been named the sþma phenomenon, as noted by

McDonald [21]. ln regions of flow that are unsheared the existence of particles of

finite size w¡ll make normal integration of flow in infinitely thin layers to be invalid

(Poiseuille's law is deduced by performing an "¡ntegration"). Hence, a summation

of a series of layers of finite thickness is more appropriate in this case. lt should

be mentioned that the precise analysis of ihe causes of the sigma phenomenon is

not fully agreed on, but most experimentalísts comply that the major cause ís due

to a low viscosity in the marginal zone of the tube, ihe cell-free zone. The

explanation for the existence of such a cell-free zone has been named the wall-



exclus¡on principle. Assume a liquid suspension of solid part¡cles of finite size, in

which the concentration is uniform throughout a large volume of fluid.

Mathematically this can be imagined as a distribution of points representing the

centers of the particles. By placing a solid wall in this liquid all such points will be

excluded up to a d¡stance equal to the mean radius of the particles because they

can only be in contact with the wall. ln 1959, Bayliss [21] has measured that in a

tube of 100 pm diameter the cell-free zone was not greater than 2-5 ¡rm wide.

We recall that the radius of an erythrocyte is 5 ¡rm. Thus, it can be seen that the

radius approximates closely the measured width of the layer found to be def¡cient

in cells.

An important consequence of ihe cell-free zone near the wall is that more of the

cells are in the central region of the tube. This is also the region where flow

velocity is higher and hence the cells of blood will traverse at a higher net velocity

than the plasma.

2.4 The Significance of Motion and Flexibility of Red Cells

The primary function of the circulation is to transport materials through blood flow

to and from tissues. The performance of the circulatory system is determined by

the rhythmic contraction of the heart, the capacitative resistance and exchange

functions of the vascular system, and the flow condition.

Blood is a suspension of deformable cells (erythrocytes, leukocytes, and

platelets) in plasma. The motion, even of a sphere, in a flowing liquid is

complicated, and that of a non-spherical deformable particle is even more
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complicated. Experiments show that a very small degree of flow of blood results

in an overall orientation of the cells, specif¡câlly where they have room to be

oriented. Burton [4] describes such an experiment which was based on a large

scale model of blood flow in artery. A fluid full of small rubber discs (to imitate

erythrocytes) was pumped down through a transparent tube. The orientation and

continual rotation of the discs in the stream was obvious, and when the flow was

increased, there was axial accumulation of the rubber discs. ln general, it was

observed that there was a continuous, but not un¡form, rotation of particles in a

shear gradient. Although this behavior shows a laminar flow on the macroscopic

view, on a smaller scale there is nonlinear "microturbulence" with motion of

plasma between the cells in all directions, and motion of the contents of the red

cell within its membrane. At normal hematocrits, the blood contains so many

cells that lheir flexibility greatly affects the ease of flow. The rheological behavior

of erythrocytes varies with flow condition. At low rates of shear, there is

insufficient shear stress to cause cell deformation and alignment of deformed

cells with flow. lncreases in shear stress cause cell deformation.

Chien [7] explains that the remarkable deformational behavior of erythrocytes is

due to: (i) the fluidity of the internal hemoglobin-rich fluid; (ii) the favorable

geometric relationship between membrane surface area and cell volume, and (iii)

the viscoelastic properties of the cell membrane.

The assumption that the red cell consists of a flexible membrane is based on the

following observation: when blood flows through capillaries whose diameter is

less than that of a red cell, it ¡s obvious that the erythrocyte gets deformed. ln

narrow capillaries with diameters of 7-10 ¡rm, erythrocytes and leukocytes move

in single file. The white cells generally travel more slowly than the red cells,



which consequenily accumulate behind the white cell. Downstream of the

leukocyte, a region depleted of erythrocytes is formed. Once such a group of

blood cells reach a vessel with slightly increased diameter io above 10 pm, the

erythrocytes will pass the leukocytes. Hence, the white cell is pressed toward the

wall and rolls along it. The interactions between red and white cells have been

modeled in large scale experiments on elastic disks (erythrocytes) and rigid

spheres (leukocytes) flowing ihrough a straight cylinder. ln such a tube, the disks

position themselves preferentially edge-on when close to the center and have a

higher velocity than the sphere. Whether the disks can pass the sphere depends

on their sizes, the tube diameter and the radial positions of these particles. lf the

diameter of the cylinder is only slightly larger than the sum of the sphere diameter

and the disk thickness, the disks rarely can pass the sphere. As a result, several

disks gather beh¡nd the sphere at close spacing, feav¡ng an empty space

downstream, phenomenon which is similar to the condition rn vivo.

2.5 The lmportance of Reynolds Number in Circulation

One of the characteristics of the flow assumed in our model was that the flow is

slow. More precisely, it is necessary to state what "slow" means by using a

reference velocity. Mathematically this is accomplished by introducing the non-

dimensional quaniity Re called Reynolds number given by

Re = 4!,
p
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where p is the fluid density, r is the radius of the part¡cle, p is the viscosity of the

fluid, and v is the mean velocity of the particle. For a large straight tube,

Reynolds found that if Re exceeded a value of about 1,000 (if y is the mean

velocity of the flow) or 2,000 (if v is the max¡mal velocity on the axis, which is

twice the mean) the flow changed from laminar to turbulent. Thus, the property

of a flow to be slow is directly related to the laminar nature of it.

Hagen and Poiseu¡lle observed that the law relating pressure and flow was no

longer true when the rate of flow increased. This phenomenon was due to the

breakdown of laminar flow and the appearance of turbulent flow. Osborne

Reynolds was though the first one to accurately describe in his work in 1883 the

transit¡on from laminar to turbulent flow.

A classic experiment performed by Reynolds was to inject a thin lamina of dye in

the axis of a long cylindrical tube. The motion of the fluid was smooth and regular

until he increased the rate of flow to a critical value when it became turbulent

instead. ln turbulence, the whole tube was filled with vortex-like eddies (see

Burton [4]). The critical point was found io be dependent on the radius of the

tube, the mean velocity of the flow, and the density and viscosity of the fluid.

Equation (2.5.1 ) expresses this relationship. The fraction p I p is known as the

kinematic viscosity, ru. The evaluation of the Reynolds number is not

necessarily suffTcient to prove ihe existence of laminar or turbulent flow. The best

way to demonstraie turbulence is to calculate the pressure-flow relationship and

show that this deviates from that of laminar flow.

a/l



2,6 The Structure of Arteries

An artery is an elastic tube whose diameter varies with pulsating pressure and, in

addition, it propagates pressure and flow waves created by the ejection of blood

by the heart, at a ceriain velocity that is largely determined by the elastic

properties of the wall.

The blood arterial wall consists of three zones: the tunicas intima, media and

adventitia (see Figure 2.5). The arterial wall encloses a cavity called lumen.

The demarcation between the intima and media layers is by lhe internal elastic

/amrna, while the one between the media and the adventitia layers is by the

external elastic lamina. The internal lamina has a complex structure which

endotheliunL

/""'' 'u 
tn

_'--_ intima
internal elast¡c

lem¡ne
-....--\ mediâ

external elast¡c-../
lamina '/ .- âdventit¡a

F¡gure 2.5 Transverse section of an artery.

contains of a fenestrated membrane of elastin lined on the intima border by a

coarse fibrous network. The external lamina is a region of collagen and some

elastin tissue which joins the surrounding connective tissue and includes the vasa
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vasorum - the small vessels which run into and supply the wall of the large

arteries with blood, nerves and lymphatics.

McDonald [21] describes the intima as consisting of the vascular endothelium

which is a single layer of lining cells together with a thin layer of elastin and

collagen fibres by which it is coupled to the internal elastic lamina. The lining

cells of the endothelium have the important role to provide a smooih wall and to

offer a selective permeability to water, sugars, and other substances transferred

from the blood stream io the tissues. lt would appear thai this transport function

is most developed in the endothelium of the capillaries, although transfers must

occur through the lining of the walls of all vessels. Ditferent vessels have

different permeabilities because of the baseme nt membranes located behind the

endothelial eells, and also in the very much greater surface area of the wall of the

capillaries.

The endothelial cells, once they are released from the cement subsfance holding

them to the membranes behind them, become spherical. Burton [4] explains that

experiments show that the lining cells in small blood vessels, such as arterioles,

can enter the lumen and may even close the lumen altogether. This is how

complete closure could occur in a very thick-walled vessel. Other experiments

performed by Fry in 1968 and later have shown that the endothelium may be

easily damaged by shearing stresses that are not much in excess of those

normally found in the circulation due to viscous drag.

The tunica media forms the large part of the wall. The intermediate layers have a

f¡brous structure, the fibres being displayed in circles or in a tight helix. Between

these layers lie muscle cells mostly parallel to the elastin found in the external

elastic lamina. The structure of the media contains an orderly array of lamellar
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units. Elastin and collagen fibres and smooth muscle cells are meiiculously

oriented and form well defined layers. The function of these two elastic elements

(elastin and collagen fibres) in the wall is to maintain a constant tension to hold

the wall in equilibrium against the so called transmural pressure exerted by the

blood in the vessels.

Although the analysis of the arterial wall clearly shows ihat the artery has an

elastic wall, in our biological model we will consider the much simpler situation of

a rigid straight artery.
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CHAPTER 3

Cholesterol in Arteries

3.1 History of Cholesterol

Cholesterol was discovered as a major component of gallsiones in the lgth

century. The French chemist Chevreul partly described it in 1816 and called it

cholesterine from Greek: chole = bile, and steros = solid. He found cholesterine

in 1824 in human and animal bile. ln 1938, Lecanu [8] discovered it in human

blood, while in 1834 Couerbe found it in human brain.

Cook [8] and Gurr [17] give excellent reviews on the history of cholesterol. ln

1846, Gobley wrote a detailed analysis on cholesterol in egg yolk. lt was

thereafter gradually recognized as a normal component of all animal cells and

several secretions, as wefl as a part of specific pathological deposits.

Later ii was shown to be present in alcoholic exiracts of blood and in 1gS9

Berthelot identified it as an alcohol and prepared cholesterol estersr by heating

the sierol with fatty acids at 200.F.

lester = a compound formed from an alcohol and an acid.
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Cholesterol composit¡on was elucidated by the work of Windaus [8] and his

associates. His research was also helped by the ones conducted by Wieland [8]

on the chemically related bile acids and by Mauthner and Suida [8] on derivatives

of cholesterol. ln 1919, Windaus [B] arrived at a tentative chemical formula which

was changed in 1932 to the one now accepted.

ln early stages experiments on cholesterol were mostly focused on the

concentration of cholesterol and its esters in blood and particularly in plasma or

serum. This was studied in connection with meals of varying composition with

respect to fat and cholesterol and in relation to menstrual cycle, pregnancy, and

to diseases such as atherosclerosis, lipidoses, xanthoma2, and diseases of the

liver and thyroid. High interest is showed in research on the presence of

cholesterol in lipoproteinsr in connection to atherosclerosis.

3.2 Physiologya of Cholesterol

Cholesterol is a steroids that occurs in the cell membranes of animal cells, but not

in plants. Cholesterol is produced in the liver and when in excess is excreted in

the bile. Alternatively, if there is excess circulating cholesterol in the blood, it may

be deposited on the walls of the blood vessels, obstructing them.

2xanthoma = a skin disease marked by the presence of small yellow¡sh disks formed by the
deposit of lipo¡ds.

3lipoprotein = a water soluble molecule made up of a protein contain¡ng a ¡¡pid group.
aphysiology = the study in animals and plants of internâl processes and functioñs associated

w¡th l¡fe.
5steroid = an imporiant type of l¡pid, formed of four rings of carbon atoms with various side

groups.
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The earliest work on the circulating cholesterol was obtained from analysis of

extracts of whole blood, but later, in 1937, the distribution of this steroid between

cells and plasma was also studied. Experiments showed that cholesterol

concentration of plasma was modified by certain factors, while the cholesterol

component of the erythrocytes was unaffected. Thus, plasma was the medium

choice of experimentalists for further quantitative tests.

ïhe circulating cholesterol is present in two chemically distinct thermostable

compounds, namely free or unesterified cholesterol and esterified

cholesterol. The proportion of free sterol to sterol ester varies from tissue to

tissue, species to species. ln the human body, the free cholesierol to ester

cholesterol ratio in red blood cells is about 4:1, in'white blood cells it is about 3:1.

The plasma cholesterol is synthesized almost exclusively in the liver. This sterol

is bound to proteins and discharged into the extracellular fluid. The resultant

cholesterol-protein complexes penetrate the arterial and capillary endothelium

and circulate through veins and lymphatics back into the blood. This cycle occurs

repeatedly for several days until the circulating sterol is removed from the

extracellular fluid for utilization or degradation. Hence, changes in the

concentrat¡on of plasma cholesterol could be attributed to many factors such as

an alteration in plasma volume or in capillary permeability, redistribution of

existing extracellular fluid for utilization or degradation.

The level of the plasma cholesterol in the normal human is low in infancy (35 mg

per 100 ml) and reaches a value of 180-230 mg per 100 ml in normal adult males

in Western communities at the fourth decade of life.

There are several factors influencing the physiological level of the plasma

cholesterol, such as: race, diet, age, and others.



3,2,1 The lnfluence of Diet

Diets are affecting plasma chofesterol levels. They may vary in caloric content or

be isocaloric with different distributions of calories between protein, fat and

carbohydrateo. Plasma cholesterol levels are also influenced by the caloric

balance between energy intake and energy expenditure.

1. The Effect of Calories

When humans consume food that is in excess of caloric requirements they will

always gain weight, and thus their serum cholesterol level w¡ll be elevated,

Underfeeding implies loss of weight that causes depression of the serum

cholesterol concentration. Cook [B] noies that in 1955 Mann has shown that if

healthy young men consume twice their normal caloric intake their plasma

cholesterol levels remain unchanged as long as they increase their energy

expenditure accordingly. When their energy output is restricted while on ihis

regimen their serum cholesterol levels rise significantly.

2. The Effect of Cholesterol

ln man the plasma cholesterol is greatly independent of dietary cholesterol.

Plasma cholesterol level is slightly influenced by excess cholesterol intake.

However, very large amounts of cholesterol, such as '150 g of egg yolk powder

(containing 2.5% cholesterol) in 400 ml of milk twice a day for 48 days produce a

marked increase in plasma cholesterol in man. ln contrast with this phenomenon,

6carbohydrate = a family of organ¡c molecules rangìng from simple sugars, such as glucose and
fructose, to complex molecuies, such as starch ând cellulose.

38



reduction of dietary cholesterol does not induce a significant decrease in plasma

cholesterol.

3. The Effect of Fat

Diets rich in fat, but not necessarily in cholesterol, are associated in humans with

high levels of plasma cholesterol. Fai has a much higher effect on plasma

cholesterof level than any other dietary component. A rice-fruit diet that doesn,t

contain cholesterol and fat produces a prompt and substantial (Sb%) fall in the

plasma cholesterol of men with normal cholesterol levels. There are two kinds of

fats: animal (or saturated) and vegetable (or unsaturated). Experiments show

that saturated fats are associated with high plasma cholesterol levels; lack of

unsaturated fats may also result in elevation of the serum cholesterol. Some

unsaturated oils have a greater depressant action on the circulating cholesterol

than others. For example, corn oil is more effective than sardine oil and

sunflower seed oil.

3,2.2 lnfluence of Age and Sex

Age and sex are also influencing the plasma cholesterol levels. ln newborn

infants its level is situated at an average of 35 mg per 100 ml, but rises rapidly

within the first 10 days to about 130 mg per 100 ml. From the age of 11 year

there seems to be no significant increase in plasma cholesterol until puberty, and

after that subsequent changes depend on sex.
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ln men there ¡s a rapid increase in prevalence of elevated total cholesterol from

age 18 to 44, whereas in women, the rise is more gradual until age 44 when it

increases to exceed the men's rate at age s5. cholesterol levels in the females

are influenced after puberty by ihe menstrual cycle, pregnancy and menopause.

other factors that influence the plasma cholesterol levels are: seasonal variation,

endocrine and chemical substances, and others.

3,3 Pathological Manifestation of Cholesterol

Quantitative cholesterol analysis have produced considerable data on the

concentration of cholesterol in the body fluids and tissues of man under

physiological and pathological conditions. The total amount of cholesterol in the

body is determined by the balance between the rate of increase due to absorption

of cholesterol from the diet plus biosynthesis in tissues and the rate of decrease

due to metabolic utilization and excretion.

The cholesterol content of blood shows the following anomalies:

hypercholesteremia, hypocholesteremia, and cholesterol deposition.

Hypercholesteremia is a metabolic disturbance determined by elevated serum

cholesterol levels. ln contrast, hypocholesteremia is determined by lowered

serum cholesterol levels. cholesterof deposition is by far the most significant

cholesterol conient anomaly developed in the circulatory system of the human

body.

Cholesterol is deposited in a variety of tissues under diverse pathological

conditions. Depending on their site, cholesterol depositions may or may not



disturb the normal functioning of the organism. Cholesterol is deposited in certain

types of lesionsT and lipidoses, and in gallstones.

Atherosclerosis is the most frequent and important pathological alteration of the

intima in the arteries. The disease is characterized by the accumulation of

cholesterol and other lipid components in the arterial wall. Analysis of lesion

material suggesis that the majority of this accumulated cholesterol is derived from

the blood plasma lipoproteins. As noted by Neumann et al [24], intimal

accumulation of lipoproteins beneath the adery's endothelial cellular lining is

postulated to result from permeability defects of ihe resistive endothelial cell

layer. The atherosclerotic lesion represents a subgroup of a wider pathological

entity defined as arterioscleros is. Such pathological conditions as mediat

calcification and arteritis oblíterans are often included in the entity of

arteriosclerosis.

The atherogenic process is dependeni not only on blood lipoprotein levels and

endothelial permeability but also on the distribution and removal of these

macromolecules within the arterial wall. Experiments show that atherosclerosis

has a higher occurrence in conditions associated with abnormally high serum

cholesterol levels. On the other hand, abnormally low cholesterol levels are

related with a low incidence of atherosclerosis. It is generally believed that f ow

serum lipid levels are connected to ihe dietary habits of population groups,

especially to the low consumption of saturated (animal) fat, although other dietary

factors such as low protein and high carbohydrate, and such special conditions as

ethnic differences, parasitic infestation, climatic influence, and different social and

economic environment are also taken in consideration.

Tlesion = a local¡zed area of diseased tissue.



Coronary heart disease, that is reduced blood supply to the heart, is an illness

usually due to atherosclerotic lesions. The formation of a thrombus, or blot clot,

in a major coronary artery, may cause cessation of the blood supply to the heart.

This failure of blood supply (myocardial infarction) leads either to degeneration

of part of the contractile heart tissue and then replacement by non-contractible

scar tissue, or else to complete cessation of heart beat (see Gurr [17]).

3.4 Dispersion of Cholesterol in Arteries

When a soluble substance is introduced into a fluid flowing slowly through a

small-bore tube it spreads out under the combined action of molecular diffusion

and ihe variation of velocity over the cross-section, that is convection. This

spreading out is referred to as dispersion.

Diffusion is a process by which a substance is transported from regions of high

concentration to regions of low concentration of ihat substance, that is down a

concentration gradient, A solution consists of a fluid called the solvent (in our

problem, blood), in which some particles has been dissofved, the solute (in this

case, cholesterol). The compos¡tion of the solution is characterized by its mass

concentration C, which is the mass of dissolved matter per volume of liquid.

Crank [9] defines diffusion as a phenomenon that occurs as a result of the

thermal motion of each solute molecules. ln a diluie solution each molecule

behaves independently of the others, which it seldom meets, and each is

constantly undergoing collision with solvent particles, having no preferred
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direction of motion towards one or the other. The motion of a single molecule can

be described in terms of the mathematical theory of probability as random walk.

The mathematical theory of diffusion was first developed by Fick.

Let us consider a solution in which simple molecular diffusion is taking place, the

fluid being otherwise at rest. The transport of solute is governed by concentration

differences. lf the solution occupies a ihree dimensional space, the concentration

will be C=C(l x, y, z) and the equation representing conservation of solute

transport is the equation of continuity:

DV2C, (3.s.1)

where the ditferential operator V2 is called the Laplacian and D is called the

diffusion coefficient and it is a characterist¡c of the solute in the fluid. The

solvent ¡s considered to be homogeneous and isotropic so that D is

independent of position and is the same in all directions and therefore D is

constant. Equation (3.5. I ) represents Fick's second law of diffusion.

When a solute is in a moving liquid entrained by the flow, the resulting motion of

the solute is called convective transport. This iransport is additional to the

diffusive motion described above. Let us examine a small cross-sectional area

through which the fluid flows with velocity q=q(u, v, w). The equation of

convective diffusion is given by

æ
at

fi*ø.vc=Dy2c, (3.5.2)



if D is constant and if the fluid is also incompressible, so that V.g = 0 Equation

(3.5.2) will be used later in order to find the flux of solute molecules (in our case,

cholesterol) passing through a unit width of the tube in a unit t¡me.



CHAPTER 4

Mathematical Formulation of the Biological Problem

4.1 Fundamental Equations

The biological problem that we propose to analyze is based on the model

presented in section 1.2. In order to develop mathematical equations that fully

characterize the model, we give governing equations and conditions.

The phenomena considered within the domain of fluid dynamics are

macroscopic: any small volume element of ihe fluid is supposed to be so large

that it still conta¡ns a very large number of molecules. Hence, the fluid is

regarded as a continuum.

The basic variables in a three-dimensional space are the velocity components

and the thermodynamic properties. Any two of the thermodynamic properties,

such as pressure, temperature, density, enthalpy, entropy, etc., suffice to

determine the state and all the other properties. The fluid flow is specified by the

velocity vector g and by the thermodynamic attr¡butes. For the problem, we have
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the equation of motion, a continuity equation and an energy equation. ln

turbulent flow, additional unknowns appear for the same number of equations,

which prevents a complete theoretical formulation of the problem.

For an incompressible fluid the energy equation is not needed since density is

taken as known and only pressure and velocity need be found to fully describe

the fluid flow. The number of unknowns decreases whenever the velocity field is

one- or two-dimensional.

The problems discussed here can be grouped in the following broad categories:

1. flow in an infinite circular cylindr¡cal channel bounded by a permeable wall.

2. flow through a porous medium.

The following assumptions regarding the fluid flow are given:

1. the fluid is homogeneous, incompressible, viscous, Newtonian, and flowing

under steady condition.

2. the chemical effects are negligible.

3, the porous medium is homogeneous and isotropic on a macroscopic scale

and the physical properties like viscosity, permeability etc., are assumed to be

constants.

4. the porous layer is completely saturated.

5. the artery is a rigid infìnite cylindrical tube of uniform circular cross section.

6. the effects of body force and inertia are neglected.

Under the above assumptions we formulate the fundamental equations for the

fluid flow described, namely, conservaiion of mass, conservation of momentum

and conservation of mass flux.
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4.1.1 Conservation of Mass

The mass-conservat¡on equation is given by the continuity equation

"P+v.(od\=o
ôt

,#=-vp+pY'g+ps,

where p is the density and g is the velocity of the fluid. For an incompressible

fluid, p is a constant. The equation of coniinuity (4.1.1) becomes

v'g=0. (4.1.2)

4,1.2 Conservation of Momentum

The momentum equation gives the basic mathematical relationships of fluid

motion. The conservation of momentum has the following form for the fluid

flowing past the porous medium (see Hughes [18]):

(4.1.1)

(4.1.3)

where p is pressure, g is the velocity of the fluid, p and p are, respectively, the

constant dens¡ty and viscosity of the fluid, and g is the acceleration due to

gravity. The term pg represenis a body force. Equation (4. I .3) is the Navier-
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Stokes equation for an incompressible Newtonian viscous fluid and ¡t equates

the rate of change of momentum and the forces acting on the fluid.

lf the fluid is flowing through the porous medium, Brinkman [3] models the flow

by

-Vp + pY2q + (4.1.4)

where k is the permeability of the porous medium.

A basic model of flow of a viscous fluid through a porous medium assumes

besides an obvious microscopic flow scale defined by the pore size, that there is

a much larger macroscopic scale over which the problem is to be studied. One

can use an intermediate scale which is small compared to the macroscopic scale

and yet contains enough pores for an averaged velocity g and pressure p to be

defined. We can see in Figure 1.3 on page 5 that although the direction of the

actual flow has large variations on the pore size scale, the average velocity over

a large number of pores will be a flow which goes from left to right. We expect

then that on the macroscopic scale both q and p will be smoothly varying

functions (see Ockendon [25]). ln 1856 Darcy was the first one to verify that the

flow through a porous medium obeys the law

uN-îsDq
'Dt

kq=_(-vp+pg),
p (4.1.5)

where g is the mean filter velocity and k is the permeability of the porous medium,

as determined by Muskat [23]. Equation (4.1 .5) represents an equilibr¡um of
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forces in the sense that the driving force necessary to move a specific volume of

fluid at a certain speed through the porous medium is in equilibrium with the

resistance force generated by internal friction between the fluid and the pore

structure. The resistance force results from a pressure gradient Vp and the

gravity torce pg.

Equation (4.1.5) may be taken as the dynamical basis for the study of motion of a

Newtonian fluid through a porous medium. The flow governed by this law is of

potential type rather than a boundary layer type. Also, in 1979, Rudraiah [30] has

shown that Darcy's law is valid when k is very large . However, in many practical

problems the permeability k is small near the boundary due to the existence of

the cell-free zone. ln 1962, it has been experimentally observed by Benenati and

Brosilow [27] that in a bounded porous medium the porosity is not uniform

everywhere in the region of ihe interest but has a maximum value near the wall,

due io sparse distribution of particles and has a m¡nimum value at the centrai

regions where the particles at the wall are densely packed. Thus, there ex¡sts a

boundary layer near the su¡face. In this boundary layer, viscous effects are very

important, even though they are negligible in the main part of the flow. An

inviscid fluid does not exert any sfress, but a viscous fluid (as we have seen in

section 2.3) presents a stress component. The viscous effects become important

in a boundary layer because the velocity gradients in a boundary layer are much

larger than they are in the main part of the flow due to a substant¡al change in

velocity across a very thin layer. Acheson [1] states that in this way the viscous

stress becomes significant in a boundary layer, even though the viscosity is small

enough for viscous effects to be negligible elsewhere in the flow.



The existence of this boundary layer thickness was experimentally demonstrated

by Beavers and Joseph [2] in 1967. Therefore, the form of Darcy,s law still needs

to be refined in view of many practical applications, especially ones that involve

porosity analysis. To completely characterize the flow through porous medium,

we have to add a viscous resistance term p v2q to equation (4.1.5). This aspect

was firsi considered by Brinkman [3] in 1947 and hence is called the Brinkman

model.

The Brinkman boundary layer type equation has the form

vp=ps-f,ø+ñ'o (4.1 .6)

The validíty of the Brinkman model depends on the magnitude o1 k I h2 , where h

is the vertical thickness of the porous medium. For example, if the porous matrix

is made up of small un¡form identical spherical particles then the Brinkman model

is valid up to the magnitude o1 k I h2 of order 10-s. This corresponds to

considerably high values of d I h, where d is the diameter of the fillings. lt

should be noted that for such values of d I h the porous medium may not be

homogeneous anymore, as suggested by Rudraiah [30]. lf the porosity of the

porous medium is close to unity, Darcy's law ¡s not valid. One has to use a non-

Darcy equation incorporating the inertia due to the curyature of the curvilinear

path through the medium at high speed of flow and the viscous shear due to

distortion of velocity. ln 1948, Lapwood incorporated the inertial term (g . V)g

into the Darcy equation (4.1.5). Whence, whenever the porosity is close to unity

we have to use a non-Darcy equation of the form
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(4.1.7)

which is known as the Lapwood-Darcy equation. Later, many authors have used

this equation to study linear and nonlinear convection in a porous medium.

Darcy's law was subsequently generalized because equation (4.1.7) presents the

problem of an under-specified system of equat¡ons in some cases (see pal l27l).

The inertial acceleration and viscous force terms were added and the resulting

equation has the following form:

-vp+pg-f,ø+av"ø,

which is exactly (4.1.4)

4.1.3 Conservation of Mass Flux

The equation of conservation of mass flux or of convective diffusion was

described in section 3.5. We consider a model that has two components: the

solvent, which is a fluid, and the solute, which is matter dissolved in the solvent.

The equation of conservation of mass flux is given by

**rn.v)c=Dv2c, (4.1.8)

4#.,n

4#.(s v)sl =

ots] = -o, * ps - ls,



where C is the concentration of solute, g is the velocity of the fluid, and D is a

constant coetficient of diffusion. Equation (4.1 .B) is true only for an

incompressible fluid, so that the divergence of the velocity vector is zero.

4.2 Flow in the Cylinder

The understanding of the flow phenomenon in a cylindrical channel bounded by a

porous medium is of considerable physiological importance. ln arteries, blood

flows through a tube covered by an endothelial wall onio which different particles

such as cholesterol deposit.

ln their paper, Guha and Chaudhury [16] mentioned the need for a fluid-

mechanical study and showed that endothelial wall deterioration and growth is

closely related to the shear stress acting on the cells. They initiated such a fluid

mechanical study of the blood flow in an arteriosclerotic blood vessel and

analyzed the idealized mathematical problem of viscous flow in a circular tube

having a local constr¡ction.

Shivakumar et al [33] studied the blood flow in arteries idealized into a channel of

varying gap bounded by a porous layer. The motivation for this investigat¡on

comes from the study of abnormal flow in the arterial system caused by the

presence of occlusion or stenosis. Recently, in 1990, Neumann et al [24] also

considered the problem of radial incorporation of cholesterol into ihe arterial wall

using a mathematical model that predicts macromolecular transport in such a

biological system.



The physical configurat¡on and the system of coordinates chosen for our problem

are shown in Figure 4.'1 .

porous medium

channel

yl impermeable wall

permeable wall

X

Fígure 4.1 Schematic drawing of the biolog¡cal system.

The viscous fluid in the chânnel space and in the porous medium space is

assumed to be homogeneous, incompressible and Newtonian. The flow in the

channel and ¡n the porous medium is driven by common uniform and constant

pressure gradient, such that the pressure p is p=p(z), and it is coupled through

boundary conditions. The velocity of the flow is one-dimensional in both spaces.

The only non zero component of the velocity vector is along the channel and thus

along the z-axis of ihe sysiem of coordinaies. The flow is also steady, so that the

velocity does not depend on time.

The two regions form two concentric circles. The radius of the channel space is

a, while the thickness of the porous medium is b - a. lÍ q,, en, and % are the

velocities in the r, 0, and z directions respectively, we have the following
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Material derivative:

Laplacian 1ê2â2
12 ô02 ' ô22 '

D â ô 1ô â
Dt = A * a, a, * Ani ae* Q, dr,

d 1ê
òr' r ðr

(4.2.1)

Divergence:

The operaiÌons D I Dt and V2 lisied above are for operations on a scalar.

For simplicity in notation we denote the channel by region 1 and the porous

medium by region 2, so that all the variables related to the channel will carry the

subscript "1", while those in the porous medium will carry the subscript "2',.

Let us consider that the velocity vector of the flow in the channel is
g, = g,(0,0,ri), and the one of theflowin the porous medium is g, = gr(0,0, y).

The effective viscosity of the fluid in the porous medium, p, is assumed to be

ditfereni from that of pure viscous fluid, p, in the channel. We will denote the

concentration of the solute in ihe channel by C' and the constant diffusion

coefficient by D'. ln the porous medium we will use the notation Cz for the

concentration of solute and Dz for the constant diffusion coefficient.

4.2.1 Channel Region

Using (4.2. 1), the three conservation equations may be rewritten to satisfy the

conditions given by our model in the channel.

v.s= !4vn.t*!4+*4.' ròr"" r ôe ôz



For an incompressible fluid, applying the divergence formula on the velocity

vector gr, we obtain the equation of continuity

(4.2.2)

Therefore, u=u(r) due to symmetry in d. The velocity field u(r) will obey the

equation of motion

ôu

ôz

d2u 1 du
dr2'rdr-

!aP
pôz (4.2.3)

Following the analysis developed by Taylor [37], it will be assumed that the

concentratíon is symmetrical about the axis of the cylindrical tube so that C., is a

functíon ot r, z, and f only. Thus we obtain the equation of convectíve diffusion

(4.2.4)

Equations (4.2.2) lo (4.2.4) completely describe the model in the channel space.

ln the next section we will derive equations in the porous medium.

ñ, n, et = oÍt9 * l&t n ð'c:\
o't o2 '\ ôr' r Ar ôr' )
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4.2.2 PorousMedium

Since the velocity vector in the porous medium is q, = gr(0,0, v), we obtain a

similar equation of continu¡ty as in the channel space, namely

(4.2.5)

Thus, v=v(r) due io symmetry in e. The equation of motion for the flow in the

porous medium is based on (4.1.4). Kim [20] proposed a slightly different

Brinkman equation in which the effective viscosity I is considered. Using Kim's

procedure, we have the following equation governing the flow in the porous

medium

(4.2.6)

We derive a diffusion equation in the porous medium using similar reasoning

applied to Cz and Dz as in the previous section. Cz depends on i,, z and f, while

Dz is the constant diffusion coefficient. We gei

tu =0.
ôz

d'v 1dv u 1ôp
---LV=--dr' rdr pk pâz

^ 
( â'c, 1 ñ, ê'c,\

= ,,1-r* * VÉ. ui)
æ. æ"
ôt âz

(4.2.7)

Equations (4.2.5) to (4,2.7) lully characterize the system in the porous medium
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4.3 Boundary Conditions for the Biological Problem

4.3.1 Boundary Conditions on Velocities

we will analyze in this sect¡on a few classes of boundary condit¡ons for different

types of boundaries.

1. lmpermeableBoundaries

This kind of boundary is also called a rigid wall and it is existent at the exierior of

our geometry shown in Figure 4.1 on page 53. lt is assumed that such an

insulating boundary does not allow any substance exchange between the exterior

of the wall and the porous medium in our case.

Observaiions of viscous fluid flow reveaf that all the components of fluid velocity

at a rigid boundary must be equal to those of the boundary itself. Thus, if the

boundary is at rest, g = 0 there. For our model this implies

v = 0, atr = b (4.31)

The condition on the tangential component of velocity is known as the no-slip

condition, and it holds for a fluid of any kinematic viscosity y + O, no matter

how small v may be (see Acheson [1]) ln 1985, Rudraiah [31] showed that the

no-slip condition is valid only when we invoke the concept of boundary layer

which inevitably arises when the Brinkman equation 9.2.7) is used to describe

the flow through a porous medium.



2. PermeableBoundaries

Permeable boundaries permit several conditions to be used, depending on the

character¡stics of the porous med¡um, especially its thickness.

alr = a (4.3.2)

The velocity u in the channel has to match the velocity y in the porous medium at

the permeable wall, i.e. r = a.

(a)

{b) u d'
or

(c) #=ft(,"-a),

-dv' dr
alr = a (4.3.3)

The viscous shear due to the distortion of velocity in the porous layer should be

taken into account because the fluid occupies almost all parts of the porous

medium. Thus, the fluid and the solid should each receive a shearing stress from

the external stream. We assume that the shear produced by the fluid in ihe

channel, i.e. du I dr, must be proportional to that in the porous layer, dv t dr.

(4.3.4)

where a is the slip parameter assumed to be independent of velocity, k is the

permeability of the porous medium, u, is the slip vefocity at ihe nominal surface, u

is the velocity of the flow in the channel in the z direction (in Cartesian



coordinates), and Q is the drag velocity or Darcy velocity. ln the absence of body

forces, Darcy's law is given by

(4.3 5)

When a permeable boundary arises in a problem, the no-slip condition is not

satisfactory io be utilized. As an alternative to this, Beavers and Joseph [2] were

ihe fìrst ones to postulate and ver¡fy experimentally the slip boundary

condition, also called the BJ-slip condition, namely equation (4.3.4). The

existence of the slip at the porous bed, due to the transfer of momentum from the

free flow in the channel to Darcy flow which sets up the drag, ¡s connected with

the presence of a very thin boundary layer of streamwise moving fluid just

beneâth the nominal surface of the permeable material. The fluid in this layer is

pulled along by the flow in the channel.

It should be mentioned that the BJ-slip condition is valid only in a densely packed

porous medium or very large thickness so that the variation of velocity in it can be

ignored and the flow is governed by Darcy's equation.

a=-L+paz

(d) g! 
=oy

"útann{aÐ(u" 

- óAQ), (4.3.6)

where 2 ¡s the v¡scosity parameter, I is the porosity, h is the thickness of the

porousmedium,and 6 = J),k .

59



The BJ-slip cond¡tion is valid only when the velocity distribution in the porous

medium is governed by the Darcy equaiion (4.3.5). lf the thickness of the porous

medium is shallow and the flow is described by the Br¡nkman equation, Rudraiah

[31] has modified the BJ-slip condition to solve the Navier-Stokes equation in the

channel and Brinkman equation in the porous medium. The new boundary

condition is called the BJR-sl¡p condition and is given by (4.3.6). ln the limit,

when the ihickness of ihe porous layer approaches infinity and if a = J7, tne

BJR-slip condition (4.3.6) tends to the BJ-slip condition (4.3.4).

(e) , = 
f,lto, - 

p,)- o(r, - r,)1, (4.3.7)

where p' and p, are hydrostatic pressures in the porous space and the channel

respectively, q and n, are corresponding osmotic pressures, and o is the

reflection coefficient of the wall.

ln 1896, Starling [35] proposed a hypoihesis to account for the steady siate

disiribution of water between the blood and the tissues. He suggested that the

outward filtration of water, resulting from a higher hydrostatic pressure in ihe

capillary lumen than in the extracapillary fluid, is balanced by reabsorption of fluid

from the tissues into the blood down a gradient of osmotic pressurel resulting

from the higher concentration of protein in the interstitial fluid. Equation (a.3.7) is

commonly accepied in physiology problems.

losmotic pressure = a measure of the tendency for water to move into a solu on by osmosis.
Osmosis is the movement of a solvent through a differentially permeable
membrane from a solut¡on w¡th high water concentration and low solute
concentration to one w¡th low water concentration and high solute concentration.
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4.3.2 Boundary Conditions for Concentrations

The boundary condition which expresses the fact that the exterior wall is

impermeable is

Cz = Co alr = b. (4.3.8)

At the permeable boundary we will match the iwo concentrations and thus obtain

Cz = Ct alr = a.

Another boundary condition that is considered at the permeable wall is

_æ. _æ-
Di :-:-L = D. :-:-L al f = a .'dr 'r)r

(4 3.e)

(4.3. 1 0)



CHAPTER 5

Solution of the Biological Problem

5.1 Overview

The purpose of this chapter is to solve the equations presented in the previous

chapter and to study the longitudinal d¡spersion of cholesterol in arteries. We

evaluate the velocity fields in ihe channel and the porous medium by matching

them through boundary conditions, and use them to calculate the concentration

distributions of solute in both regions under stated boundary conditions. The

velocity and concentration distributions are then used to find the volume of flow

and the mass transport of solute in ihe channel and the porous medium. We also

give an expression for the rate of growth of cholesterol thickness. The results for

the velocity components are illustrated by numerical computations and graphs for

a particular set of values of the parameters.



5.2 Determination of Velocity Fields

As given in section 4.2.1, the velocity distribut¡on in the channel is, from (4.2,3),

(5.2.1)

where P1 is a constant given by

and p is the coefficient of viscosity of the fluid in the channel.

On integration of (5.2.1), we obtain the solution in the channel in the form

Du(r)=+r'+crlnr+c2, þ.2.2)4

where cr and c, are constants of integration to be determined.

We first observe that r = 0 is in the channel region and since the velocity is

finite everywhere, q = 0. We let cz = C and get

:l*?#)1 ,

^ 1âp
' uôz'

P
u(r) = '11 r' + C ,

4

where C will be determined from the boundary conditions.
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For the porous medium we define the constants P, and a as

ttk

where 4 is the coefficient of viscosity of fluid in ihe porous medium.

From (4.2.6) the velocity field equation for the porous medium can be wr¡tten as

- a2 r2v = Prr' . (5.2.4)

Equation (5.2.4) is a modified Bessel equation of order zero that has the following

general solution

o-1ôP
poz

" d'v dv
dr' dr

D
v(r) = AIo@r) + BKo(ar) -' 2

d"'
(5.2.5)

where /o(ar) and Ko@r) are Bessel functions of first and second kind and of order

zero, and A and B are constanis to be determined from the boundary conditions.

We invoke now the boundary cond¡tions presenied in section 4.3. At the exterior

impermeable boundary we have

v(r) = g alr = b (5.2.6)

At the permeable interface

assume

beiween the channel and the porous medium we
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u(r)=v(r) atr=a,

du -dvp-. =It. âtr=a.or or

From (5.2.6) and (5.2.7) we get

Ato@b)+BKo@b)-1=o

Using (5.2.3), (5.2.5) and (5.2.7) we obtain

(5.2.7)

(5.2.8)

(5.2.e)

(5.2.11)

(5.2.12)

(5.2.13)

AIo@a)+BKo@a) 3=!a'+c, (5.2.10)

and using the folfowing identities (see Spiegel [34])

/.'(x) = /,'(x)

and

K.'(x) = -K'(x) ,

we obtain from (5.2.8)

Þ_
, ; u = VfAal,(aa) - BaK,(aa)]
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Solving (5.2.9) and (5.2.13), we get

n - -K,(aa)'å. *"rr"*fu,
lr(aa)Ko@b) + lo@b)Kr(aa)'

t,<"d3 - uøø)#

(5.2.14)

(5.2.15)

(5.2.16)

B=
lr(aa)Ko@b) + lo@b)Kr(aa)

Substitution ot (5.2.14) and (5.2.15) inio (5.2.10) gives us the constant C as,

^ [to@a)K.,(aa) + Ko@a)t,,(@]þ
a-

l,(aa) Ko@b) + lo@b)Kr(aa)

I6@a) Kokrb) - t o@b)Ko@dl 
a:i!

' 'J 2ou P^

l,(aa)Ko@b) + lo@b)Kr(aa) (r'
D

4

Hence, the velocities u(r) (in the channel) and v(r) (in ihe porous medium) given

by equations (5.2.3) and (5.2.5) respectively, are completely determined.

We define the mean velocity in the channel u and the mean velociiy in the

porous medium 7 by

4 --[= " lludsra- ul (5.2.17)



- 1 rft = ;@t-ã) JJ v as

By direct substitution of (5.2.3) into (5.2.17), we obtain

4 2!".( D I
u = -+ l.J[".'+c)rdrde,

where C is given by (5.2.16), and yielding

D;1 t1^2 , r-u--c¡-t-9.a

Substituting (5.2.5) into (5.2.18), we get

1 2!b,f P1¡ = ;@'z -11 J¡eu"a + BKo@r) - å|a' ae 
'

where A and B are given by (5.2.14) and (5.2.15) respectively.

Using the following formulas given by Erdelyi [12],

J ",.t*l 
dx = xtt(x)

and

(5.2.18)

(5.2. 1e)

(5.2.20)



From (5.2.19) and (5.2.22), we can express P, in terms of u and P, in terms of 7

as follows:

J xK"(x) dx = -xKt(x) ,

we obtain the mean velocity in the porous medium as

_ 2{AlbL@b) - at,(aa)l + BlaK,(aa) - bK,(ab))} p2"= -7

P.=u, U'

where U is given by

U=!-+C'.

and

iì

'v

where V is given by

(5.2.21)

(5.2.22)

(5.2.23\

(5.2.24)

(5.2.25)



A', B', and C in (5.2.24) and (5.2.26) are defined by the relations

A = PzA',

B = PzB',

c=nc'.

(5 2.27)

(5 2.28)

(5.2.2e)

To illustrate the results of this section, we select a set of assumed numer¡cal

values used by other authors to graph representative velocity componenis of the

flow in the channel and in the porous medium. The numerical evaluations of the

analyiical velocity components in both regions and the graphs were done on

Mathematica.

We use the following set of values for the parameters involved:

p = 0.04dyne.sec/cm2.

k=10-7.

b-a=0.01cm.

1 = o.t ,t,to.p

Also. we denote P =êP'âz

We present velocity graphs for different sets of values of a, ó, and ¡r in Figures

5.1 to 5.8.
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ufr¡/P
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Figure 5.1 Velocjty profile in the channel for a = 0.19 and P = 0.4

radi us
o, 19 0. 1920. 194Ð, 1960. 198 0,2

F¡gure 5,2 Veloc¡ty profile in the porous med¡um for a = 0.19 and Z = 0,4

V(EJ/P

v(r)1P

E adius
o. 19 0. 1920. 1940. 1960. 198 0,2

Figure 5.3 Velocity prof¡le in the porous med¡um for a = 0.19 and p = O.Oq

ForV = 0.4, the veloc¡ty profiles shown in Figures 5.1 and 5.2 match at the point

0.0002393, as we can also see from Table 5.1 .
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F¡gure 5.4 Veloc¡ty profile in the channel for a = 1.00 and p = O.4.
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t,toz
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Figure 5,5 Velocity profile in the porous medium for a = 1.00 and p = 0.4

v(r)./P
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F¡gurê 5.6 Velocity profile ¡n the porous med¡um for a = 1 .00 and p = O.0O4.

In the last three graphs, the velocity profiles ¡n the channel and in the porous

medium mâtch at the point 0.0012518.
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Figure 5.7 Veloc¡ty profile in the channel for a = 1.75 and u = O.4
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Figure 5.8 Velocity profile in the porous medium for a = 1,75 and p = 0.4.

ln Table 5.1, we give corresponding matching values of u(r) and v(Ò at

interface r = a.

Table 5,1 Vâlues of u(r) and v(r) at the inleúace r = a.

N 019 o5 o75 100 1 .25

o.4 2 39?77Þ-îtÁ 6 ?6875Ê-04 I ?q3?5ê-0¿ 'L5lÂ1ê-03 2.18937e-03

0.04 7 52916ê-0¡ I S7A2Se-03 2 96651Þ-03 3 C5¿7rê-oi 4 94t91Þ-îá, 6.91935e-03

0.004 2 37687ê-03 6 25147È-(t3 q 37647ê'03 'I )5¡1P.Þ-1,2 2.18768e-02
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5.3 Determination of Concentrations

ln section 4.2.1 we gave the equation of concentration of solute in the channel in

the form

(5.3. 1)

where C,'=Ct(r, z, t), D., is the constant diffusion coefficient and u is given by

equation (5.2.3).

ln order io solve this equation, we follow Taylor's [37] analysis on dispersion of

solute particles. A first assumption thai we make is that the longitudinal diffusion

is much less than the radial diffusion, that is

æ. æ.
-------! + u -----Jôt ôz

4^ou,
--__=r <<
âz'

û,*r&=o.1lu(rq)l
ôt ôz 'r lôr \ ar ))

^(3c, .1ñ, , dcr\
'\ ôf r àr ,rz' )

dC,
of'

(5.3.2)

and (5.3.1) is now approximated by

(5.3.3)

The combined effect of longitudinal convection (given by the second term in

(5.3.3)) and radial diffusion (given by the right hand side of the same relation) is

to disperse the solute longitudinally relaiive io a plane moving at the mean speed



of flow by a mechanism which obeys the same law as ordinary one-dimensional

diffusion relative to a fluid at rest (see Rudraiah [31]). Equation (5.3.3) also

expresses the fact that the distribution of concentration C, of the solute depends

on the balance between the convection along the channel due to variaiion of

velocity over the cross section and normal molecular diffusion.

Since we are considering convection across a plane moving wiih ihe mean speed

of flow, the fluid velocity relative to this plane q (r) is given by

w,(r) = u(r) - u = f;{rr, - ",)

Using the following non dimensional quantities

z-ut
L'

where L is the characteristic lengih along the flow direction, (5.3.3) becomes

1ñ,,wrû,
t,, ôr, L A€,

t=L
tt - 7, L1 - 

=,Ll u

r,a

(5.3.4)

(5.3.5)

(5.3.6)
D. 1l ô ( æ.\1

- -,1 I lr r l¡
a qLaryl'' an ))'

We will make the following tlvo assumptions. The first one is the Taylor [37]

longitudinal condition, namely: if the time of decay (the time in which the

concentration degenerates into a uniform concentration) for radial diffusion is

much shorter than the time necessary for convection to make an appreciable
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change in concentration, time which is of order L / 7, then the approximation that

C,' is a function only of 4 will be valid. Hence, assuming C, is independent of 2,,

we get

The second assumption is that (following Taylor [37]),

ry. Using (5.3.4), we obtain

(5.3.7)

æ1 I â& is independent of

(5.3.8)

in the channel has the form

tl a ( æ.ll
-l ^ l/i ^ ll
4ldq \ dn ))

ô ( ,c.l
oÌl\ oq ) #EQ,t"-n)

On integration w¡th respect to ry, the concentration C1

ElnrT+F

where F will be determined from the boundary conditions.

?'l .

tt (5.3. e)

is in the

(5.3.10)

where E and F are constants of integration. We observe that r = 0

region and for Ct to be finite we assume E = 0. Thus,

c,(ù=:Z+(no-zn)*r,
64LD1 d€.
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The ciistribuiion of concentraiion in the porous medium is, from equation 4.2.7,

given by

(5.3. I I )

where Cr=Cr(r z, t), D, is the constant diffusion coefficient in ihe porous medium,

and y is given by equation (5.2.5). Since the equation in C2 (5.3.1 1) is similar to

the equation in C,' (5.3.1), a parallel analysis with the non dimensional quantities

(5.3.1 2)

yield

æ" æ" -(dc^ 1æ^ fa\
òt ôz 'l âr' r ôr ôz' )

***,tnt,LU, d4,

t - L - z-Vt r
', - lr' '2 - v t 12 - L 't - a

+lâ0Hl (5.3. r 3)

where w2 is given by

wr(ù=v(rù-l (5.3. 1 4)

ln the above relation, æ2 I â€2 is taken to be independent of 4. To find Cr(4), it

is more convenient to substitute relation (5.3.14) into (5.3.13) and obtain



u (,æ'\ = n 
ælnat"1o"a¡ 

+ B4Ko@afl - þ rlàq\' òn ) LD,

-*+, (s3.1s)
LD2 âË2 '

lntegrating once (5.3.15) and using formulas (5.2.20) and (5.2.21), we get

æ. = =L 4z 1 
lA:,(aar) - BK,(aafllô4 LD, â{, aa

a' æ"(P" -\----:- | --:- + v t?1 +
2LD, â(, \a. )' i (5 3 16)

where G is an integration constant to be determined. lntegrating (5.3.16) and

using relations (5.2.11) and (5.2.12), we obtain the f¡nal form of the distribution of

concentration in the porous medium

c,(n) = -+ +lNo@afl + BKo@a4)l
a'LD, âÇ,

a'æ"(P" -\"- - 
--'l'^+vln'+Gln4+H, (5.3.17)

4LD, â(, \a' .) ',

where G and Hwill to be determined from the boundary conditions.

The conditions at the boundaries stated in section 4.3.2 now become



cJù=Co ^rr=*,

at the impermeable boundary, while at the permeable boundary

Cr(Ò = C.(rÌ) atn = 1

and

D,+ = D,+ at4 = 1.' à4 âr7

Substituting (5.3.17) inio (5.3.18) we obiain

(5.3. 1 8)

(5.3. 1e)

(5.3.20)

-1 ñ, 
lAt^(ab\ + BK^(ab\l - b2 4.(2 - o\

a"LD, â(r' "' " 4LD2 âËr \a' )

+Gln4+H=Co. (5.3.21)

Equation (5.3. 1 9) becomes

#hft . r = hftlo,"øa + BKo@a)l

at ñ, (P" \
- rlù r;lå+v)+ H' (53'22)

while the boundary condition (5.3.20) is equivalent to
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o-[ " Ñ,lAt.(oa\ - BK.(aa\] - a' 4t(2* ul * ol'laLD" ôÇ, L r\ 'r 2LD, ôÇ, \a' ) )

=0. (53.23)

From (5.3.23) the constant G is determined and is given by

G = a Ðt[z(2. o\ - llat.roat - BK.ha\]\. ß2.24\
LD, o^(, l2\a' ) a'

The constant H is found by direct substitution o't (5.3.24) into equation (5.3.21)

1æ"(, 1(z -lH = co - Tt;ålþl,aut"ø¡ + BKo@b)l. ;l#. o)

(2"'n! - b') - |lar,{ou) - er,r"utlrn l} . (s.3.2s)

Substituting (5.3.25) into (5.3.22) yields

F = co. #+æ. +æ{+{nto",a¡ - to@b)l

+BlKo@a) - K,(,b)lj . +(þ. o)[o' - "' - r,',n!)

+ ![nr,1aa¡ - ax.,øay L] . (s.s.26)
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Equations (5.3.f 0) and (5,3.17) completely determine the concentration

distributions in the channel and in the porous medium. We now continue our

investigation concerning mass transport in arteries.

5.4 Mass Transport in Arteries

5,4.1 Volume Flux of Blood

The volume flux of blood per unit w¡dth per unit time Q, in the channel is given by

Using (5.2.3) and integrating, we obtain

(5.4.1 )

where C is given by (5.2.16).

Similarly, the volume of flux of blood per unit width per unit time Qz in the porous

medium is given by

2na

a.=jJuds= JIrVlrdrdo.00

t'D \
o, = -'[i a'z + c),

2zb

o, = ljvas = J Jv()rdrd0.oP 
go



Using (5.2.5), we get on integration

A, = î; {Alobl,(ob) - aat,(aa)f - BlabK'(ab) - aaKJaa))

, ,r, _ r,\\ , (s.4.2)-;t, ,)

where A and B are given by (5.2.14) and (5.2.15) respectively.

5.4.2 Mass Transport of Cholesterol

ln section 5.3 we have analyzed and obtained solutions of the concentration

disiributions in the channel and in the porous medium. The assumpiions that we

made relative to deriving the forms of C, and C, are important when dealing with

the calculation of the mass transport of solute through arteries. We recall that the

derivation of C. (and similarly of Cr) was based on the consideration that

convection takes place across a plane moving with the mean speed of flow and

thus, the flow velocity relative to such a plane was given in the channel by

wt=U-d'

Therefore, in the channel, the mass transfer of solute M,' through a unit width of

the tube per unit time is (see Taylor [37] and Chandrasekhara [6])



*. = IJ c,w, ds .

Using polar coordinates, (5.4.3) becomes

2Íê
M, = J lC,lr¡w,1r¡ r dr dg .

o0

Employing

r = arl ,

(5.4.3) becomes

^t oa"n' ñ,tvtl-- î,o?rn, âq.,

1

M, = zra" t c,þ:)wr(rù r¡ drt (5.4.6)
0

=,^'il#hfiv - zn') *ii+ qzu' - t)]nan

On integration and evaluaiion, we get

(5.4.3)

(5.4.4)

(5.4.5)

(5.4.7)

Following Taylor [37], we assume that the variations of C' with 4 are small

compared with those in ihe longitudinal direction and if Q is the mean
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concentrat¡on over a section of the channel, Ær

æ, I ô4, so that (5.4.7) can be written as

I â(, is indistinguishable from

(5 4.8)

(5.4.e)

(5.4.1 0)

"ñ.
âr,

where ô ár1 represents differeniiation with respect to time at a point where

constant. Differentiating (5.4.8) with respect to á1, we obtain

M, = - "a" 
P,"

' 3072LD1

ôMt =_ ,auA' .49
ôË, 3072LD1 âË,' 

'

Substituting (5.4.10) into (5.4.9), we get

- ^"1' ¿9 = -*, ñ,
3072Lq ôË,, "- ôr,

.ñtut
âÉ.,

This shows that C,, is dispersed relative to a plane which moves with velocity u

exactly as though it were being diffused by a process which obeys the same law

as molecular diffusion but w¡th modified diffusion coeffîcient, say D1.. The

continuity equation for Q is given by

ôM,

â€,



which is equivalent to

æ, = aun' .de,
âr, 3072Lq â€,'

(5.4.11)

(5.4.12)_D,
4^aut
^,2 'd4,

where ihe diffusion coefficient for the channel is:

D:= au n'
3072LD.,

Using (5.2.23), D,' becomes

n'- au u'
3072LDlJ2

(5.4.1 3)

Relation (5.4.12) represents Fick's second law of diffusion introduced in section

3.5 and governs the longitudinal dispersion of cholesterol in the channel.

We now calculate M2, ihe mass flux of solute through a unit width of the tube per

unit time, in the porous medium. Applying the same analysis as in the case of

M.t, Mrcan be calculated using the formula

M, = ÏCrw"dS
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This is equivalent to

b

M, = 2"1 cr()wr(r) r dr do, (5.4.15)

b.

= zlra'J CJflwr(fl a d4 , (5.4.16)
1

on employing (5.4.5). Using

w,(ù = A:o@ar) + BKo@afl - (þ. r)

and Cr(îù given by (5.3.17), (5.4.16) becomes

(5.4.17)

rø, = z 
^, { -,,1=- þ' i I 

e,,7 t o' 1o, q) + 2 A B r7 t, (aa 4) K o@a r¡)

ld-LU2 aÇ2 i L

+B'4Ko'@afl)dry

.1, - hæ(3. ")]Ï lnaro@arl) + B4Ko@aÌù)d,t

a, ñr(o \ou
- 4LD, ,6,é + v)llnn't"<oa4) + B43Ko@aflldq

* " 4.(Z*ul i,.a,
ALD, â5, \a' ) t, '

bÁ

+a Jlnnk:' q to@a4) + Br¡tn r¡ Ko@arl)lda
tuu



-al4 *¡ll ntn¡tdrt\d- )i

lD \': I
-Hl4+vllndnl ,\a,- )i )

(5.4.18)

where A, B, C, F, G, and H are given by (5.2.14), (5.2.15), (5.2 16), (5.3.26),

(5.3.24), and (5.3.25) respect¡vely.

We give a set of identities involving Bessel functions in the Appendix to enable

ihe evaluation of the integrals in (5.4.18). ldentities (f ) to (4) were specifically

developed for the calculation ol Mr. ldentities (5) to (7) needed changes from the

forms that can be found in Erdelyi [12]. The last two identities, i.e. (8) and (9) are

given in Spiegel [34]. Thus, we calculate separately each definite integral in

(5.4.18).

Jln'ryÉlaaq¡ + 2AB4to@ar7)Ko@ar) + B24Ko2(aa7)f dq
1

= *[o,"ro) + BKo@b))'? - lu,1aø¡ - BK,(afi]'?]

-{l,ah{"u) + BKo@a)12 - [AL,(aa) - BK.,(aQ]2|, (5.4.1e)

on using identities (5), (6) and (7) from the Appendix.



jlrtnto{oun) + BryKo@ar¡)f drl
1

4 _-
= þ{elw,t"b) - at,(aa))- a[øx,1aø¡ - aK,(aa)]], (5.4.20)

on using identities (5.2.2o) and (5.2.21).

Jln,f h1aary¡ + B4'Ko@ar¡)ldq
I

1 rr. ..
= A,{[t"of * Aab]lAt,(..b) - BK,(ab)l

- [{aa)' + +aa]lAl,(aa) - BK1@a)l-2(db)'luo1aø¡ + BKo@b))

+2(oa)2lAlo@a)+ BK"(oa)ll , $.4.21)

on using identities (1) and (2) from the Appendix.

in" an = fi@' - "') (5.4.22)

jfoo,n 4 to@aq) + 84tnr7 Ko@ar))a, = #lu,1aø¡ - BK,(ob))hL
1

1 -_- u--L {elogb) - 6@a)l + alxolaø¡ - Ko@a)l} , (s.4.23)
d-a- ' -

on using identities (3) and (4) from the Appendix.
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Í ntn ndn = )i\fi^Y- il. iltr' 2La,\ a 2) 2)
(5.4.24)

(5.4.25)'jror=þ(ø,-",)

Putt¡ng together all the results, M, is

M, = 
2,T' *.s + co .r , þ.4.26)' LD2 âË2

where S is given by

s = ${5[o,"r", + BKo@b)]2 -[er,gø¡ - BK,(afi]'?]

-{leu"a) + BKo@a))2 - let,laa¡ - ax,@ù1',}}

. f-l n'- !( E \.1

(/a'L o'\oI +v)){'alw'taø) - afiaa)l- aføx'1aø¡ - aK'(aa))}

;*(þ .')rU*¡' + +aølln,@b) - BK,(ob)) - l@ù" + taaf

.lu,1aa¡ - BKJaa)l - 2(db)2fAto@b) + BKo@b)l

+2(aa)2lrA I o@a) + B K o@a)lj
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I ( P" _ì".,
_L _ t----a )- \t Itn _â t' 

16a2 ld2 )\- - )

(h - h
+G' l-:- lA¡(ob\ - BK,(ab)ltn !

lda" ' a

1 ,.".... .,ì
- o%,IAll"(ob) - l,(aa)l + alxolaø¡ - Kr("")llj

_G'(2.,l[4 (,n9 _tì. t]
2 \a' JLa' ( a 2) 2)

H',(2 _1,+= "14+vl(a'- b'), $.4.27)2a'\a' J\

and f is given by

4 -_
T = -- {n[w,1aø¡ - at.(oa)f - BlbKl@b) - aK,(aa)]l(1a' ' '

!(Z*ulla'-¡'). þ.4.28)2"2 loz ' )\"

ln equation (5.4.27) G' and H' are defined by the following relations:

f^ 1 Ñ, /\tLt=-
LD2 â62 .

H=c^* 1 Ñ'.H'.
" LDz A62

(5.4.2e)
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Applying for Mr lhe same analysis as for M', we consider that if C, is the mean

concentration over a section of ihe porous medium then Æ, lô{" is

indistinguishable 'from ñ, I â(, so that (5.4.26) becomes

+Co.f (5.4.31)

Relation (5.4.31) shows that C, is dispersed relative to a plane which moves with

velocity v exactly as though it were being diffused by a process which obeys the

same law as molecular diffusion but with modified diffusion coefficient, say Dr'.

The continuity equation for C, is given by

M^ = 
2¡ra2 Ð, . ,' LDz âË2

^r, Ñ,
-ø )r-uL2

(5.4.32)

where á I ât, represents differentiation with respect to time at a point where f,
is constant. We differentiate (5.4.31) with respect to á2:

2ra2S dd,
L4 a* (s.4.33)

ôM^ t. .

- 

= -lLlU.aE \ut2

Equation (5.4.32) becomes

2zra2 S de, I t-2 ^r¡ ñ"
LD, ô1". ' 'âr,

âMz 
=
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which can be wriiten as

tuz za \> Ouz
ôr, LDr(b' - ,') a€r'

.d^
-*o\r-- ut ---------- ,

u9z

where ihe diffusion coefücient for the porous medium is:

2a2 st) - -
LD2(b2 - a2)

S can be expressed in ihe form

S = PrS',

so that using (5.2.25), Dr. becomes

rì . _ 2a'S'v,J2 - -Tñ@ _4

(5.4.35)

(5.4.36)

(5.4.37)

Equation (5.4.36) represents Fick's second law of diffusion and it is the equation

governing the longitudinal dispersion of cholesterol in the porous medium.
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Thus, we have determined the analytical formulas for the mass flux of solute in

ihe channel and in the porous medium. The new quaniities that we introduced in

this section, D'" and Dr' , are called Taylor's diffusion coefficients.

Cholesterol Deposition

Using Taylor's diffusion coefficients D,. and Dr' introduced in the previous

section, we can calculate the volumetric amount of cholesterol é deposited at the

interface and the rate of g rowth of cholesterol x per unit width per un¡t time. We

denote by y1 and yz the amount of cholesterol dispersed in the channel and in the

porous medium. y., and y, are given by

Di=r*r.
D1

(5.5.1)

(5.s.2)

and

Hence, we have the following equation for finding ó:

Yt-Yz=6'

where D'. and Dr. are known from (5.4.13) and (5.4.37), and D, and D, are given

constantdiffusioncoeffic¡ents. Weexpect{t f ,Zr 1 ,and yt> yz.'DjD2
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The rate oi growth of cholesterol x per unit width per unit time sat¡sfies the

relation

6=rã2-n(a-x)t (5.5.4)

Geometrically, the right hand side of equation (5.5.4) can be visualized in Figure

5.9, where a is the radius of the channel, ó - a is the thickness of the porous

medium, and x is the rate of growth of cholesterol per unit width per unit time.

porous medium

Figure 5,9 Schematic drawing of cholesterol deposit¡on

Equation (5.5.4) is a quadratic equation that admits two real solutions, namely

X = ã+ (5.5.5)



íor a2 - 4 t O. Since x < a, then the increase in the radial thickness of the
7f

cholesterol deposit is given by

(5.5.6)
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5.6 Conciusions

The bioiogicai modei invesi¡gatecj in ihis ihesis ied to analyticai soiuiions of ihe

equations of velocity, concentration, volume flux of blood and mass transfer of

cholesterol in the channel and in the porous medium.

For the first time, an expression for the amount of cholesierol deposit and the rate

of growth of cholesterol per unit width per unit time is given. The mathematical

expressions derived are relevant to the prediction of the development of

arter¡osclerosis in the human circulatory system. The relevancy would have to be

supported by further research showing good agreement with experimental data.

Ultimately, by solving this problem, the intend is to give an accurate method for

prediciing the râte of growth of cholesterol within a time frame.

The analysis of the model is theoretical rather than experimental. Therefore, for

numerical evaluations, we need to have experimental values for the parameiers,

in addition to assumptions on material properties. The topic of porous media is

siill in the stage of developments with a large variety of views regarding the

properties of the porous media itself, as well as the boundary conditions at

interfaces. Alihough we have developed a sei of conditions fairly consistent with

recent work on the topic, the model does not reach a level of sophist¡cation for

which comparison with experimental medical data is suitable.

The biological model can be further developed, making it less restr¡ctive in

assumptions. Further work can consist of using more complex conditions like slip

boundary conditions, different kinds of diffusion, more complicated structures of

the porous medium etc.



APPENDIX

Table of Bessel lntegrals

J*'1"(") a, = (r" + ax)1,1x¡ - 2x26g).

J"'xo(") dx = -(x3 + tx)x,qx¡ - 2x2KoU) .

Jxl"(x) ln x dx = x/'(x) ln x - Iog) .

J *^.t"1 ln x dx = -xK,(x)ln x - Kog) .

! xrjlx¡ or = f;|o'1x¡ - r,,1x¡).

- -2-
I xxjlx¡ ax = il^o,$) - x,,$)].

! xtoþx)Ko@x) * = +Uoølx)Korlx) 
+ r,(ax)K,,(ax)).

1

ti 8) = t"(x) - ; IJx) .

Ki $) = -K.(x) - ! ^,Ol 
.

"na

(1)

\¿)

(3)

(4)

(5)

(6)

(7)

(8)

(e)
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