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Abstract

Let Σ be a bordered Riemann surface of genus g > 0 with n ≥ 1 borders Γ1, . . . ,Γn,

each one homeomorphic to the unit circle S1. This surface can be described as

a compact Riemann surface R of the same genus with finitely many simply con-

nected domains Ω+
1 , . . . ,Ω

+
n removed. That is, Σ = R\ ∪nk=1 cl(Ω+

k ), ∂Ω+
k = Γk.

Let fk be a conformal map from the unit disc D in C onto Ω+
k for each k =

1, . . . , n. We first generalize the classical Faber and Grunsky operators, to operators

on Σ associated to the maps f = (f1, . . . , fn). These two operators are used to

characterize the holomorphic Dirichlet space D(Σ). More precisely, we show that

the pull-back of the conformally-non-tangential boundary values of functions in

D(Σ) under f is the graph of the Grunsky operator. We also show that the Grunsky

operator is a bounded operator of norm strictly less than one. So far this had only

be proven for the genus zero case.

The central problem is to prove that the Faber operator is a bounded isomor-

phism. This is done by using the Schiffer operators, which we generalize it for Σ in

this work. We characterize the function space on which the Schiffer operator is a

bounded isomorphism. This characterization depends on the topology of the sur-

face. The condition that the boundary curves are quasicircles plays a vital role in

this proof. This is also a generalization of the genus zero case.

The Grunsky operator is used to define a map, say Πg, on the Teichmüller space

of Σ. The map Πg has some analogies with the classical period map defined for

compact surfaces. We conclude the thesis with a conjecture regarding the holo-

morphicity of this map for g, which was an important source of motivation for the
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results of the thesis.
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Introduction

In this thesis, we start with a bordered Riemann surface Σ of type (g, n).

That is, let Σ be a bordered Riemann surface of genus g ≥ 0 with n ≥ 1

boundary curves such that each boundary curve is homeomorphic to the

unit circle S1. This surface can be obtained from a compact Riemann surface

R with n simply connected domains Ω+
1 , . . . ,Ω

+
n removed. Fix conformal

maps fk from D, the unit disc in complex plane C, onto Ω+
k admitting a

quasiconformal extension on an open neighbourhood of cl(D) for each k =

1, . . . , n. The thesis answers the following two problems/questions about

the surface Σ.

• Problem 1. What does the holomorphic Dirichlet space of Σ look like?

In other words, how can one characterize the pull-back of D(Σ) under the

conformal maps fk? This requires characterizing the boundary values of

functions in D(Σ).

• Problem 2. How can one define a period map on the Teichmüller space

of Σ which is similar to the classical period map defined for compact Rie-

mann surfaces? In other words, how can one find a map, say Πg, on the

Teichmüller space of Σ into some Banach space of bounded operators (on

some Hilbert space) such that Πg is symmetric, satisfies I − ΠgΠg > 0 (posi-

tive definite) and also Πg is holomorphic?

These two questions have both already been answered in the case g = 0.
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The second question for the one boundary curve case (n = 1) was answered

by L. A. Takhtajan and L.-P. Teo [76] (with some roots in A. A. Kirillov and D.

Yur’ev [28], S. Nag and D. Sullivan [39]), and independently by Y. L. Shen

[67]. The first and second questions for the case of zero genus and many

boundary curves (n > 1) were answered by D. Radnell, E. Schippers, and

W. Staubach [46, 47].

The solutions for the genus zero case have roots in classical complex

analysis, univalent function theory including the Faber, Grunsky and Schif-

fer operators on planar domains, the jump problem, the Dirichlet and Rie-

mann boundary value problems, and the L. Bers’ construction of the uni-

versal Teichmüller space. To construct a similar machinery to solve these

problems, we first generalize these three operators from the planar case to

surfaces such as Σ of type (g, n) where g > 0. As expected, some topological

obstacles appear when we move to higher genus and we address them in

the thesis.

Another technical issue is that we are required to deal with some bound-

ary value problems on Riemann surfaces; in particular, the jump problem

for quasicircles. We use some recent results of E. Schippers and W. Staubach

[63] to overcome this issue.

We show that the Faber operator corresponding to Σ is a bounded iso-

morphism when all the boundary curves are quasicircles. This generalizes

some results in the planar case; see Chapter 2. For this choice of boundary

curves, we show that the Grunsky operator corresponding to Σ is a bounded

operator of norm strictly less than one. This generalizes a result of Ch. Pom-

merenke and R. Kühnau in the planar case; see e.g. Ch. Pommerenke [41].

The proof that the Faber operator is a bounded isomorphism, aside from
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the boundary regularity, relies on the properties of the Schiffer operator. We

find a subspace of L2 holomorphic 1-forms, depending on the topology of

the surface, on which the Schiffer operator is a bounded isomorphism. The

adjoints of these operators are also calculated. This is based on the results of

E. Schippers and W. Staubach [62] for the one boundary curve case (surfaces

of type (g, 1), g ≥ 1) including the first calculation of the adjoint formula;

also M. Schiffer [55] and S. Bergman and M. Schiffer [10] for the planar case.

To prove that the norm of the Grunsky operator is strictly less than one

when all the boundary curves are quasicircles, we require some density the-

orems. They were stated and proven by E. Schippers, W. Staubach and the

author in a joint paper [59].

The above two important results (the Faber operator is a bounded iso-

morphism and the norm of the Grunsky operator is strictly less than one)

are the cornerstones for characterizing the pull-back ofD(Σ); that is the first

problem above. We show that this pull-back is the graph of the Grunsky

operator, generalizing the work done by D. Radnell, E. Schippers and W.

Staubach [46] for surfaces of type (0, n), n ≥ 1. This part of the thesis an-

swers the first question above.

The Grunsky operator is used to define a period map on the Teichmüller

space of Σ. The properties proven for the Grunsky map are enough to show

that this map satisfies the positive definiteness property mentioned above.

The holomorphicity, however, is left as a conjecture. Therefore, the second

question above, except the holomorphicity part, is answered in the thesis.

Using Grunsky operator to define period maps on Teichmüller spaces has

some roots in recent works of Takhtajan and Teo [76], Shen [67], and Rad-

nell, Schippers and Staubach [46, 47] and some others on period maps on
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Teichmüller spaces. Finally, we also discuss some open problems related to

above results.

Here is a brief outline of the thesis.

In chapter 1, we review all the main definitions and theorems that we

need in the rest of the thesis. Some notation is also introduced.

Chapter 2 is devoted to historical aspects and literature review of Faber

polynomials, Grunsky coefficients and their connections to Teichmüller spaces.

A more comprehensive history of period maps, however, is given in Chap-

ter 4. We review some important results relevant to the thesis problems.

This chapter is divided into two parts: Faber polynomials, series or opera-

tor; and Grunsky coefficients, inequality, or operator.

Chapter 3 includes the main results of the thesis. This chapter is di-

vided into two parts, surfaces with one boundary curve and surfaces with

more than one boundary curve. The classical Faber, Grunsky, and Schiffer

operators are generalized to bordered Riemann surfaces of type (g, n). We

characterize some function spaces on which these operators behave nicely.

Finally, the pull-back of Dirichlet holomorphic space of Σ is described as the

graph of the Grunsky operator.

Chapter 4 is about the second problem mentioned above, namely the

definition of a period map on the Teichmüller space of Σ via the Grunsky

operator and the proof of its holomorphicity. A short history of the problem

is provided. Some connection to the Grunsky operator, defined in Chap-

ters 2 and 3, is explained in different cases of genus and boundary curves.

We close this chapter, and the whole thesis, by a conjecture concerning the

holomorphicity of the period map defined on the Teichmüller space of Σ.
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Chapter 1

Preliminaries

In this chapter we review some basic and important definitions, theorems

and notation that will be used in the thesis. We try to keep it as minimal as

possible. Some references are provided for further studies. We assume the

reader is familiar with the concept of a Riemann surface.

1.1 Basic Notation

Let C and C denote the complex plane and the Riemann sphere, respectively.

We have D = {z ∈ C : |z| < 1}, the unit disc in C, and D− = {z ∈ C : |z| > 1}

the complement of its closure in C. H = {z ∈ C : Im z > 0} denotes

the upper half plane. cl(G) is used to indicate the closure of a set G in a

topological space.

We use the notation (ak)
n
k=1 to denote the n-tuple (a1, . . . , an). As a linear

operator IA denotes the identity operator on a normed space A.

For a Riemann surface R, open or compact, g ≥ 0 is used to denote its

genus i.e. the number of handles. By a domain G in a Riemann surface R

we mean an open, connected subsurface of R such that the inclusion map is

holomorphic.
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When we say a bordered Riemann surface we mean it is bordered in the

sense of Ahlfors and Sario [4, II. 3A].

Suppose (X, ‖.‖X) and (Y, ‖.‖Y ) are some Banach spaces. B(X, Y ) de-

notes the Banach space of all bounded linear operators from X into Y . We

also have B(X) := B(X,X).

1.2 Some Function Spaces

We briefly recall the definition of some function spaces here which will be

used later in the thesis.

1.2.1 Spaces of Univalent Functions

The following two spaces are seen frequently in literature (see e.g. P. L.

Duren [14]).

S = {f : D→ C : f is one-to-one and holomorphic, f(0) = 0, f ′(0) = 1}

Σ =
{
g : D− → C : g is one-to-one and holomorphic, g(∞) =∞ with residue 1

}
.

It is also customary to represent a univalent (i.e. one-to-one) function by its

Taylor expansion about zero by

f(z) = z + a2z
2 + . . . ,

for elements in S or about∞ by

g(z) = z + b0 + b1z
−1 + b2z

−2 + . . . ,
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for elements in Σ.

Σ0 is used to indicate those functions in Σ with b0 = 0. Finally, we need

the following important theorem [3].

Theorem 1.2.1 (Riemann Mapping Theorem). Let G be a simply connected

domain which is a proper subset of the complex plane. Let ζ be a given point in G.

Then there exists a unique function f which maps G conformally onto the unit disc

and has the properties f(ζ) = 0 and f ′(ζ) > 0.

The map f in above theorem may be called the Riemann map of the

domain G.

1.2.2 Harmonic Functions and Forms and Dirichlet Spaces

Here we review some standard definitions on a Riemann surface R with

atlas {(U, φ)} of holomorphic charts. For this subsection, we mostly use H.

L. Royden [52] or H. M. Farkas and I. Kra [17] as references.

For a chart (U, φ) the map z = φ(w), w ∈ U may be called a uniformizer.

Let Σ be a domain of R, which could be R. A differential 1-form or

simply a 1-form α on Σ is assigning to each holomorphic chart (U, z = x+iy)

of Σ a pair of functions a and b (i.e. a dx+ b dy) such that if Uk ∩Uj 6= ∅, then

ak
bk

 =
∂(xj, yj)

∂(xk, yk)

aj
bj

 on Uk ∩ Uj.

If z = x + iy is a local holomorphic parameter, the dual of 1-form α is

defined by

?α = ?(a dx+ b dy) = a dy − b dx.
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The conjugate of α is defined by

ᾱ = ā dx+ b̄ dy.

A 1-form α is called harmonic on R if both α and ?α are closed 1-forms.

That is dα = d ? α = 0.

Fix a holomorphic chart (U, z) on R. The operators ∂ and ∂ denote the

Wirtinger derivatives where the output is understood as 1-form. That is, for

a function f(z) = f(x+ iy) with continuous first order partial derivatives in

U , one has

∂f

∂z
:=

1

2

(
∂f

∂x
− i∂f

∂y

)
, ∂f :=

∂f

∂z
dz,

∂f

∂z̄
:=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
, ∂f :=

∂f

∂z̄
dz̄.

We may use ∂z or ∂z when derivatives are taken with respect to a specific

variable z. Also d denotes ∂ + ∂.

A function u is said to be harmonic on Σ if at each point ζ of Σ it is

harmonic function of a holomorphic chart (U, z) of Σ about ζ for every holo-

morphic chart (U, z) about ζ . That is, u is C2 in U and d?du = 0 (the Laplace

equation).

On the vector space of all harmonic 1-forms on Σ, we define the follow-

ing inner product and subspaces.

< α, β >Aharm(Σ) =
1

2

∫∫
Σ

α ∧ ?β, α, β are harmonic 1-forms on Σ,

Aharm(Σ) := {α : α is a harmonic 1-form on Σ and < α, α >Aharm(Σ)<∞},

Dharm(Σ) := {h : Σ→ C : h is harmonic and dh = ∂h+ ∂̄h ∈ Aharm(Σ)}.
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We callAharm(Σ) the Dirichlet space of harmonic 1-forms on Σ andDharm(Σ)

the Dirichlet space of harmonic functions on Σ, or simply the harmonic

Dirichlet space of Σ.

Define A(Σ) the subspace of Aharm(Σ) which contains all the holomor-

phic 1-forms in Aharm(Σ). Similarly A(Σ) contains all the anti-holomorphic

ones. We naturally have

Aharm(Σ) = A(Σ)⊕ A(Σ).

When Σ is simply connected, a similar decomposition for Dharm(Σ) may be

written.

We may use Dharm(Σ)q to indicate the set of functions in Dharm(Σ) which

vanish at q ∈ Σ. D(Σ)q and D(Σ)q may be defined similarly. By Aharm(Σ)e

we mean the exact elements in Aharm(Σ). That is, if α ∈ Aharm(Σ)e, then

there exists h ∈ Dharm(Σ) such that dh = α. A(Σ)e and A(Σ)e are defined in

the same way.

If α is an element in Aharm(Σ) the Dirichlet semi-norm of α is defined by

‖α‖2
Aharm(Σ) :=< α, α >Aharm(Σ) .

Similarly for an element h ∈ Dharm(Σ), we have

‖h‖Dharm(Σ) := ‖dh‖Aharm(Σ)
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as it is known that the differential of a harmonic function on Σ is a harmonic

1-form on Σ. This implies that both operators

∂ : D(Σ)→ A(Σ)e

h→ ∂h

and

∂ : D(Σ)→ A(Σ)e

h̄→ ∂h̄

are isometries. They, however, are not isomorphisms, in general.

Elements in Aharm(Σ) (Dharm(Σ)) may be called L2 bounded harmonic

1-forms (functions) on Σ.

Remark 1.2.2. One way to make ∂ and ∂ isomorphisms is to define them onD(Σ)q

and D(Σ)q for some q ∈ Σ, respectively.

If there is no risk of confusion, we usually drop the index in< α, β >Aharm(Σ)

or in the semi-norm expressions.

Suppose A and B are two regions of some Riemann surfaces and φ :

A → B is a biholomorphism. It is easy to show that h ∈ Dharm(B) if and

only if h ◦ φ ∈ Dharm(A). In particular, the composition with φ preserves the

Dirichlet semi-norm. That is

‖h‖Dharm(B) = ‖h ◦ φ‖Dharm(A).
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In other words, the composition operator defined by

Cφ : Dharm(B)→ Dharm(A)

h→ h ◦ φ

is an isometry with respect to Dirichlet semi-norm.

Every harmonic function h ∈ Dharm(G) on a simply connected domain

G (on a Riemann surface), can be decomposed as h1 + h2 for h1, h2 ∈ D(G)

where h1 and h2 are determined uniquely by the condition that h1(p) = 0 for

fixed p ∈ G. Define the projection operator

PG : Dharm(G)→ D(G)p

taking h to h1. Similarly, define the projection

PG : Dharm(G)→ D(G)

taking h to h̄2. In particular, by PD and PD (PD− and PD−) we mean the

projection operators for D (D−) in C where p = 0 (p =∞). Note that PG(a) =

0, and PG(a) = a, for any constant a ∈ C.

We may also need to project a harmonic 1-form on a given region G

(not necessarily simply connected) to its holomorphic and anti-holomorphic

parts. By P (G) and P (G) we mean the projection operators of harmonic 1-

forms onG to the holomorphic and the anti-holomorphic parts, respectively.
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1.2.3 Bergman Space

For a domain G of C, the Bergman space A2(G) is defined as the space of

all holomorphic square integrable functions on G with respect to the usual

planar Lebesgue measure dAz. That is

A2(G) = Hol(G) ∩ L2(G).

It is known that A2(G) is Hilbert space equipped with the inner product

< φ,ψ >=

∫∫
G

φ(z)ψ(z) dAz.

1.3 Quasiconformal Maps, Quasicircles, and Qua-

sidiscs

Among all different (equivalent) ways to define a quasiconformal map, let

us start with the following analytic one; see [41].

Definition 1.3.1 (Quasiconformal Map). Let G be a domain in C and 0 ≤

k < 1. A sense (orientation) preserving homeomorphism h on G is called a k-

quasiconformal map if h satisfies the following two conditions.

• On each finite rectangle in G, h(x + iy) is absolutely continuous in x for

almost all y and absolutely continuous in y for almost all x. This property is called

absolutely continuous on lines (ACL).

• For almost all z ∈ G one has

∣∣∣∣∂h∂z̄ (z)

∣∣∣∣ ≤ k

∣∣∣∣∂h∂z (z)

∣∣∣∣ . (1.1)
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The second condition above may also be written as

∥∥∥∥∂h∂z̄
∥∥∥∥
L∞
≤ k

∥∥∥∥∂h∂z
∥∥∥∥
L∞

,

where ‖.‖L∞ is the essential sup norm.

We say a function h ∈ Σ admits a k-quasiconformal extension to C if

it has a homeomorphic extension to C which satisfies Definition 1.3.1 for

G = D and k. A similar formulation can be given for elements in S. These

will be used in Subsection 2.2.1, and Section 4.3.

Example 1.3.2. For fixed 0 ≤ k < 1, the map h(z) = z+kz̄ is a k-quasiconformal

map.

Definition 1.3.3 (Quasidisc). A domain G in C is called a quasidisc if G = h(D)

for some quasiconformal map h.

Definition 1.3.4 (Quasicircle). A Jordan curve Γ in C is called quasicircle if Γ =

h(S1) for some quasiconformal map h.

It worth noting that not every quasicircle is rectifiable (i.e. of a finite

length) and not every rectifiable curve is necessarily a quasicircle [2]. Here

are some other important properties of quasiconformal maps and quasicir-

cles.

Theorem 1.3.5. 1. The composition of two quasiconformal maps is a quasicon-

formal map.

2. Quasicircles have planar Lebesgue measure zero.

3. Quasiconformal maps preserves sets of logarithmic capacity zero.

4. A Quasiconformal maps small circles to small ellipses of bounded eccentricity.
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Proof. See [19], [32], [41], and references therein.

Here is the definition of quasiconformal maps between Riemann sur-

faces.

Definition 1.3.6. A homeomorphism h between two Riemann surfaces R1 and R2

is called k-quasiconformal if for any holomorphic chart (Uk, φk) of Rk, k = 1, 2, the

mapping φ1 ◦ h ◦ φ−1
2 is k-quasiconformal map in the sense of Definition 1.3.1.

This definition is one of the key definitions that one need to define the

analytic Teichmüller space of a Riemann surface, see Section 1.9. We may

apply this to quasiconformal maps between open subsets of Riemann sur-

faces.

1.4 Transmission Operator and CNT Limits

Definitions and notations in this section are the same as Schippers and Staubach

[62, 63]. Let R be a compact Riemann surface. Then we have the following

definitions.

• A Jordan curve in R is a homeomorphic image of S1.

• A subset G is called a doubly connected neighbourhood of a Jor-

dan curve Γ in R if G is an open connected subset of R containing Γ and

bounded by two non-intersecting Jordan curves, each one homotopic to Γ

within the closure of G.

• The pair (G, φ) whereG is as above and φ : G→ A is a biholomorphism

to some annulus A in C is called a doubly connected chart for Γ.

• Every Jordan curve Γ in R which has a doubly connected chart is called

a strip-cutting Jordan curve.
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•A collar neighbourhood of a Jordan curve Γ in R is an open connected

subset A of R bordered by Γ and Γ′, where Γ′ is a Jordan curve in R which

is homotopic to Γ from within the closure of A and such that Γ∩Γ′ is empty.

• A collar chart for a Jordan curve Γ in R is a collar neighbourhood A

together with a biholomorphism φ : A→ A, for some annulus A in C.

• A Jordan curve Γ on a Riemann surface R is called quasicircle if there

exists a biholomorphism φ : A → B, where A is a doubly connected neigh-

bourhood of Γ in R and B is doubly connected region in C, such that φ(Γ)

is a quasicircle in C.

We define the following conformally non-tangential (abbreviated by CNT)

boundary limits for harmonic functions defined on simply connected re-

gions of a compact Riemann surface R. This is like the well-known notion

of non-tangential limit of harmonic functions defined on D in C.

Definition 1.4.1 (CNT Boundary Limit). Let R be as above. Let Ω be a simply

connected domain of compact Riemann surface R bounded by a strip-cutting Jordan

curve Γ. Let also s ∈ Γ and f : D → Ω a conformal map. We say that h : Ω → C

has CNT limit at s if h ◦ f has non-tangential limit at f−1(s).

Suppose Γ is a strip-cutting Jordan curve dividing R into two connected

subsurfaces Σ1 and Σ2. Suppose also that q ∈ Σ1 and Γ is positively oriented

with respect to Σ1. Two problems regarding the existence of CNT limits

need to be addressed here.

Problem 1. We need a notion of potential-theoretically small sets on Γ.

Using the Green’s function of Σ1 with singularity at q, it was shown in

[62] that there existsA, a collar neighbourhood of Γ in Σ1, with a biholomor-

phism

φ0 : A→ A
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where A is an annulus in C, such that φ0(Γ) = S1. φ0 is called the canonical

collar chart with respect to q and Σ1. Now we have the following definition.

Definition 1.4.2 (Null Set). A Borel set I in Γ is called a null set (with respect to

Σ1 and q) if φ0(I) has logarithmic capacity zero in S1.

It can be shown that this definition is independent of the choice of the

point q. Moreover, when Γ is a quasicircle the definition is also independent

of the choice of Σ1 ∈ Σ1. That is, I is null set with respect to Σ1 if and only if

it is a null set with respect to Σ2.

Lemma 1.4.3. Let R, Γ, Σ1, Σ2 and φ0 be as above. Then a finite union of null sets

in Γ is a null set in Γ.

Proof. This was proven in E. Schippers and W. Staubach paper [60, Theorem

2.14]. Briefly, they proved it by using the the sub-additivity of the outer

capacity under countable unions and Choquet’s theorem, which says that

for bounded Borel sets in S1 the outer capacity is the capacity.

Having defined the above, here is a theorem [15], rephrased confor-

mally invariantly in [63], showing the existence and uniqueness of the CNT

boundary values for harmonic functions on simply connected domains of

R.

Theorem 1.4.4 (Beurling-Zygmund). Let R, Γ, Ω, and f be the same as Defi-

nition 1.4.1. Then for every h ∈ Dharm(Ω), h has CNT limit at p for all p except

possibly on a null set in Γ with respect to Ω. If h1, h2 ∈ Dharm(Ω) have the same

CNT boundary values except possibly on a null set in Γ, then h1 = h2 on Ω.
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Schippers and Staubach proved a stronger result. Namely, for the exis-

tence of the CNT boundary values of a function h on Ω, under some condi-

tions, h is only required to be defined on a collar neighbourhood of Γ in Ω.

Here is their theorem [63, Theorem 3.17].

Theorem 1.4.5. Let R,Γ,Σ1 and Σ2 be as above. LetA be a collar neighbourhood of

Γ in Σ1. Then for any h ∈ Dharm(A), h has conformally non-tangentially boundary

values on Γ except possibly on a null set in Γ. Furthermore, there exists a unique

H ∈ Dharm(Σ1) whose CNT boundary values agrees with those of h except possibly

on a null set in Γ.

Problem 2. Suppose h1 ∈ Dharm(Σ1) with CNT boundary value function

H1 on Γ. Then a question naturally arises here: Is there any function h2 ∈

Dharm(Σ2) with CNT boundary value function H2 on Γ such that H1 = H2

on Γ except possibly on a null set in Γ? It is good to mention that if one has

a Jordan curve, the notion of null set changes from one side to the other.

The notation O(Σ1,Σ2)h1 is being used for h2 if such h2 exists and we

will say h2 is the transmission of h1 through the Jordan curve Γ. O(Σ1,Σ2)

is clearly linear on Dharm(Σ1) for which the transmission exists.

Example 1.4.6. If R is the Riemann sphere and Γ = S1, then such a transmission

can be written explicitly. That is, for every h1 ∈ Dharm(D−) we have

[O(D−,D)h1](z) = h1(
1

z̄
).

In particular, O(D−,D)( 1
zn

) = z̄n, where by 1
zn

we mean the harmonic function

h1(z) = 1
zn
, n ≥ 0. The operator O(D,D−) on Dharm(D) can be written similarly.
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Remark 1.4.7. For a polynomial h ∈ Dharm(D), the above example shows that

O(D,D−)h admits a holomorphic extension to every annulus A with outer bound-

ary equal to S1.

Schippers and Staubach [63, Theorem 3.29] showed the existence and

the boundedness of the transmission operator for quasicircles on compact

Riemann surfaces.

Theorem 1.4.8 (Schippers and Staubach). Let R,Γ,Σ1 and Σ2 be as above,

where Γ is a quasicircle. O(Σ1,Σ2) is a bounded linear operator from Dharm(Σ1)

onto Dharm(Σ2) with respect to the Dirichlet semi-norm.

In other words, they proved that for every h1 ∈ Dharm(Σ1) there exists

a unique h2 ∈ Dharm(Σ2) such that both h1 and h2 have the same CNT

boundary values on Γ except possibly on a null-set in Γ. A similar result

for O(Σ2,Σ1) is clearly valid due to the symmetry of the definition.

1.5 G Operator

Let R, Γ, Σ1, and Σ2 be as the previous section. For a given harmonic func-

tion h on a collar neighbourhood A of Γ in Σ1, Theorem 1.4.5 ensures that

the following operator is well defined and is bounded.

G(A,Σ1) : Dharm(A)→ Dharm(Σ1)

h→ h̃

where h̃ and h have the same CNT boundary values except possibly on a

null set in Γ.



1.6. Cauchy Kernel and Green’s Function on Riemann Surfaces 15

It was shown that the condition that Γ is a quasicircle is sufficient for

G(A,Σ) to be bounded [63, Theorem 3.22].

1.6 Cauchy Kernel and Green’s Function on Rie-

mann Surfaces

The well-known Cauchy kernel

1

2πi

dζ

ζ − z
,

for z ∈ C, has a simple pole of residue 1 at z and a simple pole of residue

−1 at∞ (after composition with holomorphic chart ζ → 1
ζ
) on the Riemann

sphere. This property is essential and we would like to have it on arbitrary

compact Riemann surfaces R of genus g. The point∞, however, has to be

changed by a fixed point, say q 6= z on R. This generalization is classical,

for example in H. L. Royden’s paper [54, Proposition 1] the existence of the

Green’s function for R is proved and its derivative plays a similar role.

Here, we recall his definition and the existence theorem.

Definition 1.6.1 (Logarithmic Pole). A function f on R is said to have a loga-

rithmic pole of massm at the point q ∈ R if in some holomorphic chart (U, φ) about

q one has

f(p) = −m log |φ(p)− φ(q)|+ ψ(p),

where ψ ∈ C∞(U).
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Definition 1.6.2 (Green’s Function). A function g on R which is harmonic on

R except at the points q and q0 and has logarithmic poles there with masses +1 and

−1, respectively, is called the Green’s function for R with poles at q and q0.

Royden indicates that if such a function exists, then it is unique up to

additive constants. He, therefore, suggested the notation g(p, p0; q, q0) which

indicates the normalization in which g is zero at p0. Here is [54, Proposition

1].

Theorem 1.6.3 (Royden). If p0 6= q, q0, the Green’s function g(p, p0; q, q0) exists.

Here we have changed Royden’s notation a little bit. That is, by Green’s

function we mean g(w,w0; z, q) where g is as above. He showed the follow-

ing essential properties of the Green’s function [54, Proposition 2]:

g(w,w1; z, q) = g(w,w0; z, q)− g(w1, w0; z, q),

g(w0, w; z, q) = −g(w,w0; z, q),

g(z, q;w,w0) = g(w,w0; z, q).

As we mentioned we are interested in forming a kernel analogous to the

Cauchy kernel from the derivative of g. The first equation above indicates

that ∂wg is independent of the choice of w0, so we do not write w0 for sim-

plicity. That is,

g(w; z, q) := g(w,w0; z, q).

The last equation shows the harmonicity of g in z variable when we are

away from w,w0. Royden showed that ∂wg is a differential 1-form whose

coefficients with respect to a coordinate system at w are harmonic functions

of z with dipole singularities at w.
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For a domain Σ in R the Green’s function can be defined like the planar

cases. That is, gΣ( . , z) is called the Green’s function of Σ with singularity at

z ∈ Σ if

• gΣ(w, z) is harmonic function in w everywhere on Σ\{z}.

• If (U, φ) is holomorphic chart containing z in Σ, then gΣ(w, z)+log |φ(z)−

φ(w)| is harmonic in w for w ∈ U .

• limw→w0 gΣ(w, z) = 0 for every w0 ∈ ∂Σ, when the limit is taken from

within Σ.

The existence of such a function is not trivial; see e.g. L. V. Ahlfors and L.

Sario book [4] for a proof of its existence in the case that R is compact and

no boundary curve of Σ reduces to a point in R.

1.7 RBVP, Cauchy-Type Integral Operators

The Riemann boundary value problem (RBVP) can be stated as:

Suppose Ω is domain in C bounded by a curve Γ, Σ = C\(Ω ∪ Γ) and H is a

function on Γ. Are there any holomorphic functions hΩ on Ω and hΣ on Σ such that

H = HΣ −HΩ,

on Γ, where HΩ and HΣ are the boundary value functions of hΩ and hΣ on Γ,

respectively.

It is customary to call the pair hΩ and hΣ a jump decomposition of H .

This problem can be formulated on Riemann surfaces (compact or open)

and it has extensive literature both in the complex plane and in Riemann
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surfaces; see Y. L. Rodin [49], B. A. Kats and D. B. Katz [27], E. Schippers

and W. Staubach [60, 64] (the quasicircle case), and references therein.

In general, the existence of a jump decomposition depends on the reg-

ularity of the curve Γ and of the function H on Γ. We particularly inter-

ested in the case that H is the boundary values of a function in Dharm(Ω) (or

Dharm(Σ)) and the curve Γ is analytic or quasicircle.

Example 1.7.1. Let R be a compact Riemann surface and Γ be a quasicircle in R

which divides R into two connected subsurfaces Ω and Σ. It is clear that if H is

the boundary values of an element h ∈ D(Ω) on Γ except on a null set in Γ, then a

jump decomposition is given by

hΩ = −h+ a, hΣ = a,

where a is any constant complex value.

This example also shows that to solve the Riemann boundary value prob-

lem for the boundary values arising from Dharm(Ω), when Ω is simply con-

nected, it suffices to take care of elements in D(Ω). The reason is that since

Ω is simply connected domain, every harmonic function on Ω can be de-

composed to a holomorphic part plus an anti-holomorphic part, and the

problem is trivial for the boundary values of the holomorphic part. That is,

elements in D(Ω).

The following formulation of the RBVP is what we frequently need in

the thesis.

Let Γ be a strip-cutting Jordan curve (quasicircle, or smooth curve in the thesis)

on a compact Riemann surface R dividing that into two subsurfaces Ω and Σ. LetH
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be a function on Γ. The question is are there functions hΩ ∈ D(Ω) and hΣ ∈ D(Σ)

(not just holomorphic but of finite Dirichlet semi-norm) with CNT boundary values

HΩ and HΣ on Γ, respectively, such that

H = HΣ −HΩ,

except possibly on a null set in Γ?

A certain Cauchy-type integral operator can be used to solve the above.

The approach that is used here is the one suggested by Royden [54], one of

the several approaches to this problem. We start with recalling the definition

of the Cauchy-type integral operator after the following remark.

Remark 1.7.2. In many cases in the thesis we are dealing with a domain G with

quasicircle boundary curve Γ. Since quasicircles might not be rectifiable we can

not calculate a line integral by traversing through Γ. Therefore, we formulated the

integral operators in this case by using the analytic level curves

Γpε = {w ∈ G : gG(w, p) = ε}

of the Green’s function of G with singularity at fixed p ∈ G. These are indeed

analytic curves for ε sufficiently small. These curves approach Γ from within G as

ε > 0 tends to zero.

Definition 1.7.3 (Cauchy-Type Integral Operator). Let R be a compact Rie-

mann surface and Γ be a Jordan curve dividing R into two connected subsurfaces

Ω and Σ. Let gΩ(., p) be the Green’s function of Ω with singularity at p ∈ Ω and Γpε
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be the level curves of gΩ(., p). For q ∈ R\Γ fixed, the operator

Jq(Γ) : Dharm(Ω)→ Dharm(Ω ∪ Σ)

h→ − lim
ε→0+

1

πi

∫
Γpε

∂wg(w; z, q)h(w),

where z ∈ R\Γ, is called the Cauchy-type integral operator with respect to the

curve Γ.

Remark 1.7.4. For a proof of the existence of the above limiting integral, its inde-

pendence of the choice of p ∈ Ω, and its boundedness see [62, Section 4.1].

The output of Jq(Γ) is a harmonic function on R\Γ = Ω∪Σ and is clearly

zero at z = q by the properties of the Green’s function g(w; z, q). We may use

D(Ω∪Σ)q to indicate this vanishing property at q. The Cauchy-type integral

operator for other component of R\Γ is defined similarly; see [62] for more

detail.

In the case that both points q and z are in Σ, by applying Stokes’ theorem

the operator Jq(Γ) can be rewritten as a double integral on Ω. That is,

[Jq(Γ)h](z) = − 1

πi

∫∫
Ω

∂wg(w; z, q) ∧ ∂h(w), z ∈ Σ.

We may use the notation [Jq(Γ)h]A or simply Jq(Γ)Ah (or both once we

have a double restriction) to indicate that the output of this operator is re-

stricted on a set A.

A restriction of the Cauchy-type integral operator for holomorphic func-

tions in a collar neighbourhood of a curve Γ in R is given in [62, Section 4.3

]. Here is the definition and some of its properties.
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Definition 1.7.5. Let R, Γ, Σ, Ω, and Γpε be as Definition 1.7.3. Let A be a collar

neighbourhood of Γ in Ω. Define

[J ′q(Γ)h](z) = − lim
ε→0+

1

πi

∫
Γpε

∂wg(w; z, q)h(w),

where h ∈ D(A) and q ∈ Σ.

The above Cauchy-type integral operator is defined for holomorphic

functions inAwhereas the Cauchy-type integral operator in Definition 1.7.3

is defined for harmonic functions in Ω. By the holomorphicity of the in-

tegrand the integral is independent of the choice of the analytic curve Γpε

provided that ε is small enough such that Γpε ∈ A. The following shows a re-

lationship between these two Cauchy-type integral operators [62, Theorem

4.9].

Theorem 1.7.6 (Schippers-Staubach). Let R, Γ, Σ, Ω, and Γpε be as Definition

1.7.3. Let A be a collar neighbourhood of Γ in Ω. If Γ is a quasicircle, then

[J ′q(Γ)h](z) = [Jq(Γ)G(A,Ω)h](z)

for every z, q ∈ R\Γ.

1.8 Kernel Functions on Riemann Surfaces

Consider a finite multiply-connected domainG in C bounded by n pairwise

disjoint closed analytic curves with the Green’s function g. Schiffer [55] and
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Bergman and Schiffer [10] defined the following two important kernel func-

tions, which we call kernel functions of the first and second kind,

K(z, ζ̄) = − 2

π

∂2g(z, ζ)

∂z ∂ζ̄
,

L(z, ζ) = − 2

π

∂2g(z, ζ)

∂z ∂ζ
.

These kernels are analytic functions in each variable on G. The paper of

Bergman and Schiffer is devoted to discovering the most important proper-

ties of the above two kernel functions. In particular, the decomposition

L(z, ζ) =
1

π(z − ζ)2
− l(z, ζ)

for the L kernel, where l for fixed ζ is an analytic function on G, was given.

They defined l-transform by

Tf(z) =

∫∫
G

l(z, ζ)f(ζ) dAζ

where f ∈ A2(G), the Bergman space of G. It was shown that Tf is analytic

everywhere in C except on the boundary of G.

The above kernel functions may be extended to compact Riemann sur-

faces with small changes. For a compact Riemann surface R with the Green’s

function g(w; z, q) having singularities at z and q, the following two bi-

differential forms, also called kernel functions, are well-known. The Schif-

fer kernel is defined by

LR(z, w) =
1

πi
∂z∂wg(w; z, q),
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and the Bergman kernel is defined by

KR(z, w) = − 1

πi
∂z∂wg(w; z, q).

The following theorem summarizes some important properties of these ker-

nels; see M. Schiffer and D. Spencer [58, Chapter 4] or [62, Proposition 3.3]

for a proof.

Theorem 1.8.1. Let R, g(w; z, q), LR and KR be as above. Then

1. LR and KR are independent of the choice of the points q and w0.

2. LR(z, w) is holomorphic in both variables w and z, except for a pole of order

two when w = z.

3. KR(z, w) is holomorphic in z for fixed w, and is anti-holomorphic in w for

fixed z.

4. LR(w, z) = LR(z, w).

5. KR(w, z) = −KR(z, w).

If Σ is a bordered Riemann surface with Green’s function gΣ(w, z) the

above two kernels can be defined simply by substituting gΣ instead of g.

Then Theorem 1.8.1, except its first item, is valid for KΣ(z, w) and LΣ(z, w).

Moreover, we have two more identities for these kernels explained here.

The reproducing property of the Bergman kernel on Σ can be written as

∫∫
Σ

KΣ(z, w) ∧ α(w) = α(z)

for all α ∈ A(Σ).
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The following identity concerning the Schiffer kernel was stated by Schif-

fer for finite domains in C bounded by analytic curves [55, Equation 17].

Schippers and Staubach [62, Theorem 3.7] generalized it to domains on Rie-

mann surfaces bordered by a strip-cutting Jordan curve. That is,

∫∫
Σ

LΣ(z, w) ∧ α(w) = 0

for all α ∈ A(Σ).

1.9 Teichmüller Space

Let R be a Riemann surface with no boundary. Consider the set of all qua-

siconformal mappings f of R onto other Riemann surfaces (see Section 1.3

for a definition). Two quasiconformal mappings f1 and f2 are said to be

equivalent whenever f2 ◦f−1
1 is homotopic to a conformal mapping of f1(R)

onto f2(R). We will use f1 ∼ f2 to indicate this relation.

In the case that R has boundary, there is a definition for the Teichmüller space

of R in the literature. Nevertheless, in this thesis we restrict to some type of

surfaces with boundary, namely bordered Riemann surfaces in the sense of

Ahlfors and Sario [4, II. 3A].

On this surfaces, the only change to the above definition is f2 ◦ f−1
1 is ho-

motopic to a conformal mapping of f1(R) onto f2(R) “rel boundary". “Ho-

motopic rel boundary" means the homotopy is constant on the boundary of

R.

Definition 1.9.1 (Teichmüller Space). The Teichmüller space TR of the Riemann

surface R is the set of all the equivalence classes of quasiconformal mappings of R.
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In other words, consider the set of all (R, f1,R1), where R1 = f1(R) for

quasiconformal map f1 on R. Two (R, f1,R1) and (R, f2,R2) are equivalent

if f1 and f2 satisfy the above mentioned equivalence relation. [R, f1,R1]

may be used to indicate the equivalence class (R, f1,R1) in TR. Therefore,

one symbolically has

TR = {(R, f1,R1)} / ∼

= {[R, f1,R1] : f1 is a quasiconformal map from R onto R1} .

As a special case of this definition, the universal Teichmüller space, mod-

elled on D− or equivalently on the upper half plane H, can be defined.

Definition 1.9.2 (Universal Teichmüller Space). If R = D−, then T (1) := TR

is called the universal Teichmüller space.

The universal Teichmüller space was first introduced by L. Bers; see [76],

also O. Lehto [31, Chap V, Sec 2.1]. There are other equivalent models for the

universal Teichmüller space. We explain one of them here. First note that

by Caratheódory’s theorem, a quasiconformal map can be extended home-

omorphically to its boundary if the boundary is a quasicircle.

Theorem 1.9.3. The space T (1) can be identified with the following space

{f : H→ H : f is a quasiconformal map and fixed 0, 1,∞} / ∼ .

where f1 ∼ f2 if and only if f1|R = f2|R.

There are some other (equivalent) ways to define the universal Teich-

müller space. In Chapter 4 we will talk more about them. Each Teich-

müller space is a complex manifold; for compact Riemann surfaces they are
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of finite dimension; see [31, 37]. It is well-known that the universal Teich-

müller space contains all the Teichmüller spaces as complex sub-manifolds.

In Chapter 4 we will see another type of Teichmüller spaces, namely the

rigged Teichmüller space, corresponding to bordered surfaces for which the

borders have parametrization using conformal maps.

1.10 Marking and Period Matrices

Let R be a compact Riemann surface of genus g. Consider a canonical ho-

mology basis {a1, . . . , ag, b1, . . . , bg} on the surface R. This basis may also be

called a marking of R. By a canonical basis we intuitively mean ak and aj

(similarly bk and bj) do not intersect if k 6= j; aj interests bk if and only if

j = k. See Farkas and Kra [17, Subsection III.1] for a precise definition.

It is known that the set of all holomorphic 1-forms on R is a complex

vector space of dimension g [17, Proposition III.2.7]. In particular, there is

no holomorphic 1-form on the Riemann sphere.

Now we have the following important theorem [17, Proposition II.2.8].

Theorem 1.10.1. Let R be as above. There exists a unique basis {α1, . . . , αg} for

the space of holomorphic 1-forms with the property

∫
aj

αk = δjk.

Furthermore, for this basis, the matrix π = (πjk) with

πjk :=

∫
bj

αk,

is symmetric with positive imaginary part.
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The above theorem says that one can assign a g × g matrix π to each

compact Riemann surface of genus g called the period matrix, such that

π = πt, Im(π) =
1

2i
(π − π) > 0.

By t we mean the transpose operator, and by > 0 we mean the positive

definiteness. These are consequences of bilinear relations of Riemann. This

assignment may be called the classical period map in the thesis.

We may use πg to include the genus of R when it is necessary. It can

be shown that this assignment is invariant under the equivalence relation

defined in Section 1.9 for Teichmüller space, see S. Nag [37, Section 4.1].

Therefore, period matrices can be considered as operators on the Teich-

müller space of R, which maps the Teichmüller space into a space called

the Siegel upper half space Dg of genus g. The Siegel upper half space is a

complex manifold, in fact it is an open subset of g × g symmetric matrices

with entries in C [17, Subsection VI. 1.1].
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Chapter 2

Grunsky Coefficients and Faber

Polynomials, Old and New

It is well-known in function theory that to each simply connected domain

G with the Riemann map φ, one can assign a set of polynomials called the

Faber operators. These polynomials can be used to approximate holomor-

phic functions on cl(G)c, the complement of cl(G). They can also be used

to define the Grunsky coefficients corresponding to the map φ. These co-

efficients, and some inequalities corresponding to them, have had many

applications in classical complex analysis and the analytic theory of Teich-

müller spaces. In this chapter, we review the history and the literature of

both the Faber polynomials (and operator) and the Grunsky coefficients

(and operator). We recall some of their definitions for different choices of

domains and function spaces. We see how they were used to define a pe-

riod maps on the universal Teichmüller space. Additionally, some gener-

alizations of these polynomials and coefficients to Riemann surfaces, other

than the Riemann sphere, are mentioned. At the end of the chapter, we talk

more about the problem of the thesis in this context.
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2.1 Faber Polynomials, Series, and Operator

We give a historical overview of the subject and also provide a brief sum-

mary of the more recent papers relevant to my research problem. Of course,

we do not claim to be comprehensive. Before defining the Faber polyno-

mials, we recall that by the celebrated Riemann mapping theorem there is

a correspondence between the set of all normalized univalent functions de-

fined on D and the set of all simply connected proper subsets of C. This

means that each univalent function on D can be viewed as a simply con-

nected proper subset of C and vice versa [14, Chp3].

There are many ways to define Faber Polynomials associated to a con-

formal map f . These definitions are often equivalent but sometimes with

subtle differences. The reader may find the following general comments

helpful.

To define Faber polynomials on the complex plane or the Riemann sphere,

we deal with three objects:

•A subsetG, which itself could be a simply connected domain in C, such

that G (or cl(G)) has simply connected complement. The Faber polynomials

of the domain G are associated to the Riemann map of the complement of G.

•A simple closed curve Γ, usually the boundary ofGwhich is positively

oriented with respect to Gc.

•A conformal map φ (or f,Φ,Ψ, . . . ) which either φ or φ−1 maps the sim-

ply connected domain cl(G)c with boundary Γ conformally onto D (or D−).

The map φ may be called the generating map for the Faber polynomials.

In the literature, the Faber polynomials are variously said to be associ-

ated to a conformal map or to a domain. On the other hand, it is known that
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G. Faber himself defined them as being associated with an analytic curve

[16]. That is, Γ is the boundary of Im(φ) (or Dom(φ)), see J. L. Ullman [82] or

P. K. Suetin [75] for more detail.

We briefly talk about some of the aspects of the Faber polynomials and

their importance and show some other ways to define them. Let us start

with the following definition. Then, in sequence, two other definitions of

these polynomials will be provided.

Definition 2.1.1 (Faber Polynomials I). Let f be a holomorphic function defined

on a neighbourhood of zero, such that f ′(0) 6= 0. For integers n ≥ 0, let

(f−1(z))−n =
∞∑

k=−n

α
(n)
k zk

be the Laurent series of (f−1)−n in the disc B(0, r) for r > 0 sufficiently small.

Then the n-th Faber polynomial of f , Φn(f), is defined by

Φn(f)(z) =
−1∑

k=−n

α
(n)
k zk.

Remark 2.1.2. The (n) on top α(n)
k indicates the coefficients α(n)

k are correspon-

dence to the n-th power of 1
f−1 . The notation Φn(f) should not be confused with

the composition of Φn with f . This is used to indicate the dependence of Φn’s on the

map f .

Faber polynomials provide us a systematic way to define and calculate

the Grunsky coefficients of a univalent function (defined shortly here and

with more detail in the next section). To see this we can recall for example

I. Schur [65] work here. He introduced the following definition of Faber

polynomials.
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Definition 2.1.3 (Faber Polynomials II). Let

f(z) = z + a1 +
a2

z
+
a3

z2
+ · · · = z

∞∑
k=0

akz
−k = zg

(
1

z

)
, a0 = 1,

be a formal power series (no convergence assumption is made). There is a unique

polynomial Pm of degree m,m = 1, 2, . . . , such that

(Pm ◦ f)(z) = zm +
∞∑
k=1

cmk
1

zk
. (2.1)

Pm is called the m-th Faber polynomial of f .

The existence and the uniqueness can be proven by recursion on m as-

suming P0 ≡ 1. Shur could show cmk in (2.1) (called the Grunsky’s coeffi-

cients) are polynomials of am with non-negative integer coefficients; he pro-

vided a complicated algebraic formula for cmk in terms of these coefficients.

He also proved that

k cmk = mckm

for each m, k, which is known as the Grunsky’s identity (or the Grunsky’s

theorem).

Another Matrix-Algebraic approach to the Faber polynomials, can be

found in E. Jabotinsky [25]. It takes advantage of the representation of a

holomorphic function f(z) by an infinite matrix (fnm) defined as follows.

Let ρ > 0 and f be a holomorphic function on |z| < ρ with the expansion

f(z) =
∞∑
n=1

fnz
n, f1 6= 0.



2.1. Faber Polynomials, Series, and Operator 33

By raising f to integer powers m we generate the coefficients fmn as follows

[f(z)]m =
∞∑

n=−∞

fmnz
n

which is valid on |z| < ρ′, for some ρ′ > 0. It is clear that fmn = 0 for n < m.

Jabotinsky provided an explicit formula for the n-th Faber polynomial of

f(z) based on this infinite matrix. Here is his theorem [25, Theorem III].

Theorem 2.1.4 (Jabotinsky). The m-th Faber polynomial of the map f(z) is

Fm(t) = φ−m0 +
m∑
p=1

m

p
fpmt

p,

where (φmn) is the matrix that represents the inverse of the function f .

Remark 2.1.5. By the help of an identity relating the coefficients of φ and f , it

can be shown that the above equation is equivalent to Definition 2.1.1 of the Faber

polynomials.

Another important aspect of Faber polynomials is their role in approx-

imation theory. One may approximate holomorphic function g on a do-

main G in terms of Faber polynomials generated by the Riemann map of

the complement of G. The analytic properties of this approximation, in gen-

eral, depend on the regularity of the boundary of G and the analytic and the

boundary behaviour of the function g on G and ∂G, respectively. See e.g.

H. Tietz [79] when Γ is an analytic curve and also P. K. Suetin [74] for more

varieties of the curve Γ and the function g.

Despite the approximation property they do not form an orthogonal sub-

set of polynomials on their domain of definition.
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H. Tietz in his illuminating paper [79] by the method of "Laurent Decom-

position" compared a Faber series

∞∑
n=0

anFn

with the power series (in φ)
∞∑
n=0

anφ
n,

having the same coefficients.

More precisely, let Γ be an analytic curve in C dividing that into I(Γ) and

A(Γ) to which Γ is positively and negatively oriented, respectively. Let φ be

the Riemann map, mapping A(Γ) conformally onto {z ∈ C : |z| > k} for

some k > 0, with φ(∞) = ∞. He defined the Faber polynomial Fn relative

to the curve Γ as follows.

Definition 2.1.6 (Faber Polynomial III). Let Γ and φ be as above. For n ≥ 0 the

n-th Faber polynomial of Γ is defined as

Fn = L(φn),

where by L we mean the continuous linear operator

[L(ψ)](z) =
1

2πi

∫
Γ

ψ(ζ)

ζ − z
dζ, z ∈ I(Γ)

for every holomorphic function ψ on (a collar neighbourhood of) Γ.

By “Faber series
∑∞

n=0 anFn" here we mean the series is convergent uni-

formly on compact subsets of I(Γ). Tietz showed the following relationship

between these two series [79, Theorem 2].
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Theorem 2.1.7 (Tietz). Let
∑∞

n=0 anFn be a Faber series, let F (z) denote its sum in

I(Γ), and let g(z) =
∑∞

n=0 anφ
n. Then the function F (z)− g(z) can be continued

analytically throughout A(Γ) ∪ Γ and vanishes at∞.

This shows that when the boundary curve Γ is analytic, the Faber series

behaves similar to power series in φ. Given F analytic on I(Γ), the paper

also shows that F has a unique convergent Faber series for z ∈ I(Γ) and a

Laurent expansion in φ for z close to Γ [79, Theorem 1].

T. Kövari and Ch. Pommerenke [29] tried to answer the question of when

the Faber series of f converges to f uniformly on G, in the case that G is a

continuum with simply connected complement in C. Here is one of their

results when G is a Jordan domain.

Theorem 2.1.8. (Kövari and Pommerenke) LetG be a closed Jordan domain, whose

boundary Γ is of bounded rotation and has no zero exterior angles. Suppose that

f is analytic in the interior of G, continuous on G, and moreover satisfies Dini’s

condition ∫ h

0

ωf (x)

x
dx <∞

for some h > 0, where ωf is the module of the continuity of f . Then the Faber

(series) expansion of f converges uniformly on G to f .

For a similar result but with different choices of the regularity of the

boundary curve Γ, less smooth but still rectifiable, see F. D. Lesley, V. S.

Vinge and S. E. Warschawski [33].

There are some connections between Faber series and Fourier series. J.

H. Curtiss [13] shows some interesting connections of this kind. He pointed

out the difficulties that may arise to prove convergence theorems concerning

Faber series to its generating function on G when neither f nor φ can be
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extended analytically pass the boundary curve Γ. He also (by investigating

S. Ya A’lper and V. V. Ivanov [7] and Kövari and Pommerenke [29]) showed

that the behaviour of Faber series of f and the Fourier series of f(φ(eiθ))

are tightly related and is a tool in investigating different regularities for the

curve Γ and the function f .

The operator theoretic point of view of Faber polynomials shows another

aspect of them. The Faber operator, like the Faber polynomials, has many

different definitions and settings. Putting analytical assumptions aside tem-

porarily, a definition of the Faber operator can be given as follows.

Definition 2.1.9 (Faber Operator I). If Ψ is the Riemann map of D− onto C\K

for K a compact subset of C with simply connected interior, then the Faber operator

is defined by

(Tf)(z) =
1

2πi

∫
|w|=1

f(w)
Ψ′(w)

Ψ(w)− z
dw. (2.2)

The properties of the Faber operator clearly depend on the function space

on which it operates and also the regularity of the boundary curve Γ = ∂K.

We now go through some examples of the Faber operator and a short history

of that.

J. M. Anderson [8] discussed about the boundedness of the Faber op-

erator and its inverse on many function spaces including the disc algebra.

He showed some relationships between the Faber operator and the approx-

imation by polynomials or rational functions on compact subsets of C. In

particular, he posted the following conjecture

Let G be closed Jordan domain with rectifiable boundary in C. Then the Faber

operator T is an isomorphism of Bp onto Bp(G) for 1 < p < ∞, where Bp and
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Bp(G) are the Besov spaces of analytic functions on the closed unit disc and on G,

respectively.

Later on H. Y. Wei, M. L. Wang and Y. Hu [85] disproved Anderson’s

conjecture for the case p = 2. They assumed the boundary of G is rectifiable

and p = 2. By these assumptions, they proved that the Faber operator is an

isomorphism if and only if ∂G is a rectifiable quasicircle.

A rather complete book on Faber polynomials, Faber series and Faber

operator is the one was written by Suetin [75]. Chapter VII of the book,

seems to be one of the first systematic treatments towards the Faber opera-

tor.

Remark 2.1.10. The book of Suetin [75] was originally published in Russian in

1984. The translation, published in 1998, has an extensively updated bibliography

in addition to its original one.

Definition 2.1.11 (Faber Operator II). Let G be a finite domain bounded by rec-

tifiable Jordan curve Γ and let ϕ(t) be an analytic function in D and have angular

boundary values almost everywhere on S1. Suppose Φ maps D− to cl(G)c and

ψ = Φ−1. If ψ′(t) ∈ H2 in D−, then

F0 : H2 −→ Hol(G)

ϕ −→ 1

2πi

∫
Γ

ϕ(Φ(ζ))

ζ − z
dζ,

for z ∈ G, is called the Faber operator corresponding to the domain G (or the curve

Γ).

As was pointed out in [75], all we need to define the above operator is

conditions on Γ and ϕ such that those conditions ensure the function ϕ ◦ Φ
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is integrable on Γ. The choice of ψ′(t) ∈ H2 in D− and H2 as the domain is

just one of the many possibilities.

Then the book provides some examples of function spaces such that the

Faber operator would be an isomorphism if it is defined on them and a

few sufficient conditions which make the Faber operator a bounded isomor-

phism. It, however, does not include anything concerning Faber operator

(also Faber series) for domains bounded by quasicircles; see [75, Page 285].

The work of A. Çavuş [11] concerned approximation of functions in the

Bergman spaceA2(G) of a finite domainG in C with a quasicircle boundary,

using what was called the generalized Faber series. By generalized Faber

series there he means a series in F ′m, the derivative of Faber polynomials

corresponding to G.

Let 0 ∈ G, and φ be the conformal map which maps C\cl(G) onto D−

with

φ(∞) =∞ and lim
z→∞

φ(z)

z
> 0;

let also Ψ be the inverse of φ.

To each element f ∈ A2(G) a generalized Faber series
∑∞

m=1 am(f)F ′m(z)

was assigned. The coefficient am(f), called the generalized Faber coefficient,

is defined by

am(f) = − 1

π

∫∫
D−

f(RΓ(Ψ(w))) Ψ′(w)

wm+1

∂RΓ

∂ζ̄
(Ψ(w)) dAw, m = 1, 2, . . . .

where RΓ (y in the paper’s notation) is a differentiable k-quasiconformal

reflection with respect to Γ and ζ = Ψ(w).
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Theorem 2.1.12 (Çavuş). Let G, φ, and f be as above. If

∞∑
m=1

am(f)F ′m(z)

is the generalized Faber series of f , then
∑∞

m=1 am(f)F ′m(z) converges uniformly

to f on every compact subset of G.

We emphasize that ∂G is quasicircle in above theorem, making the re-

flection well-defined. In other words, if Ψ admit a quasiconformal exten-

sion to C, then each element in A2(G) can be expanded in a generalized

Faber series, converging uniformly and absolutely on compact subsets of

G. Nothing was mentioned about the converse of this theorem. The con-

verse was later proven by Y. L. Shen [68]. Another important point is the

independence of the expansion on the choice of the reflection RΓ [11, page

33].

D. Gaier [18] defined a Faber operator operating like equation (2.2) but

from A(D) to A(G) where A(G) is the Banach space of functions holomor-

phic in G and continuous on cl(G) for any Jordan domain G in C. He could

show that if Γ = ∂G is piecewise Dini-smooth the Faber operator is bounded

and gave an example of a rectifiable quasicircle Γ for which the operator is

unbounded.

J. Müller [35] extends the Faber operator to C(S1). That is, the space

of continuous functions on S1, rather than defined on A(D). Assume G is

a compact subset of C (having at least two points) with simply connected

complement in C generating the Faber polynomials. His operator maps

C(S1) to Har(G), where Har(G) is the Banach space of functions φ harmonic
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on int(G) and continuous on G, endowed with sup-norm

‖φ‖G = sup
z∈G
|φ(z)| .

He showed that if Γ is of bounded boundary secant variation, then the Faber

operator is a bounded operator.

Shen [68] defined an operator on `2(C), the space of complex square

summable sequences, into a function space of holomorphic functions. To

be more precise, we have to recall his definitions here. Let us start with the

following definition of the Faber polynomials given in [41, Chapter 3] with

slightly different formulation.

Definition 2.1.13 (Faber Polynomials IV). Let g ∈ Σ where Σ is the one in

Section 1.2.1. Consider the expansion

log
g(ζ)− w

ζ
= −

∞∑
n=1

1

n
Fn(w) ζ−n

around the point∞ for w ∈ C. Then Fn(w) is called the n-th Faber polynomial of

g (F0(w) ≡ 1).

Remark 2.1.14. In the above definition, the function g need not be analytic on

D− nor be in Σ0 (defined in Section 1.2.1). All we need is g to be analytic in a

neighbourhood of the point∞ and univalent near that point.

For f ∈ Σ0 define D∗ = Im(f) and E = C\D∗ and D is the interior of E.

D could be empty but throughout his paper he assumed it is not. AD(D) in

his paper is D(D) in the thesis notation. Here is his definition of what we

will call the sequential Faber operator.
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Definition 2.1.15 (sequential Faber operator). The operator P is defined by

P : `2(C)→ AD(D)

x→ Px

where

x = (xn), Px(w) =
∞∑
n=1

xn√
n
Fn(w), w ∈ D,

and Fn(w) is the n-th Faber polynomials of f .

Shen did not call P the Faber operator. It’s worth mentioning that by

defining the operator on `2(C) (rather than as an integral over the boundary)

he avoids making any assumptions on the regularity of the boundary.

It was shown that P is a bounded operator and ‖P‖ ≤ 1. Finally, he gave

the following beautiful theorem which reveals more connections between

the boundary behaviour of D and the properties of the operator P .

Theorem 2.1.16 (Shen). The operator P : `2(C)→ AD(D) is a bounded isomor-

phism if and only if the map f can be extended to a quasiconformal map into the unit

disk D.

In other words, P is a bounded isomorphism if and only if ∂D is a qua-

sicircle or equivalently D is a quasidisc. Shen’s result gives a converse to

Çavuş’ in a sense.

V. V. Napalkov, Jr. and R. S. Yulmukhametov [84] defined a Hilbert trans-

form H mapping A2(G) into A2(C\cl(G)), where G is an open, simply con-

nected subset of C whose boundary is a Jordan curve. With some small

changes in the domain, the operator H is exactly the Schiffer operator for-

mulated in [64]. They showed that H is bounded and injective operator; H



42 Chapter 2. Grunsky Coefficients and Faber Polynomials, Old and New

is surjective if and only if the boundary of G is quasicircle. This is the first

proof showing that the Schiffer operator is a bounded isomorphism if and

only if the boundary of G is a quasicircle.

Y. E. Yidirir and R. Çetintaş [86] defined the Faber operator F0 from the

Hardy-Orlicz space HM(D) into the Smirnov-Orlicz space EM(G). Here G

is a bounded domain in C with Dini-smooth boundary Γ. They also de-

fined the inverse Faber operator and proved that under above condition on

G, both F0 and its inverse are bounded operators. That is, F0 is an isomor-

phism.

E. Schippers and W. Staubach [64] formulated the Faber operator as an

operator between the normalized Dirichlet spacesD∗(D−) andD∗(Ω−). More

precisely, let Γ be a Jordan curve not passing through ∞ dividing the Rie-

mann sphere into two simply connected domains Ω± with ∞ ∈ Ω−. They

definedH±(Γ) to be the set of boundary values of functions in Dharm(Ω±) in

a sense that can be shown to be like the CNT boundary limits, see Section

1.4 for the definition. They used a family of curves approaching the possibly

non-rectifiable boundary or an equivalent L2 integral. Here is one of their

results [64, Theorem 2.5].

Theorem 2.1.17 (Schippers and Staubach). Let Γ and Ω± be as above. If Γ is a

quasicircle, thenH+(Γ) = H−(Γ).

That is if h1 ∈ Dharm(Ω+) with CNT boundary value function H1, then

there exists h2 ∈ Dharm(Ω−) with CNT boundary value functionH2 such that

H1 = H2 except possibly on a set of logarithmic capacity zero. Therefore

for quasicircles H(Γ) := H+(Γ) = H−(Γ) definition makes sense. As was

mentioned in Section 1.4, they generalized their result, see [62, Theorem

4.10] and the note after that in the paper.
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Remark 2.1.18. Schippers and Staubach used different setting for the boundary

limits in [64]. That is, in the Osborn sense. The CNT boundary values obtained are

equivalent to the boundary values obtained in their original formulation.

They showed that the Faber operator, defined on the Dirichlet space, is a

bounded isomorphism precisely for quasicircles.

Remark 2.1.19. Assume we define the Faber polynomials Φn(f) corresponding to

the map f : D → Ω+ by Definition 2.1.1. It was shown in [64] that Φn(f) maps

{z−n : n > 0}, which is a dense subset of harmonic functions on D−, to Faber

polynomials. In another word,

Φn(f) = If (z
−n) ; n > 0.

Later on, Radnell, Schippers and Staubach [46] generalized the Faber

operator to the case of arbitrary n (n ≥ 1) conformal maps fk : D → Ω+
k

where Ω+
k are non-overlapping domains of the Riemann sphere, i.e. a genus

zero Riemann surface.

Very recently, M. Müller in his thesis [36] investigated a harmonic Faber

operators correspondence to G, a simply connected domain in C. Müller

tried to find a set of harmonic polynomials in G approximating harmonic

functions in G by using the approximation property of

T = {zn}n≥0 ∪ {z̄n}n>0,

for the harmonic functions in D. This is like the Faber idea about approxima-

tion of elements in Hol(G). He showed that when ∂G is an analytic Jordan

curve, the harmonic Faber operator, primarily defined on T , has continuous



44 Chapter 2. Grunsky Coefficients and Faber Polynomials, Old and New

extension. It will be an isomorphism with respect to the locally uniformly

convergent topology between the space of the harmonic functions in D onto

the space of harmonic functions in G. Similar results for the case that ∂G is

a Dini-continuous curve were proven.

We have seen some examples of how to define the Faber operator and the

space it acts on. We now talk about a point which is common in all the ap-

proaches. Assume a Faber operator If is defined between the function space

A and B (e.g. Dirichlet space, Bergman space, . . . ) each one corresponding

to a domain on some Riemann surfaces R and S. Assume for some analytic

condition, this operator is a bounded isomorphism. Then this isomorphism

maps a dense subset in A to a dense subset of B; therefore approximation

by meromorphic functions If (A) makes sense. In another word, the role of

“If is an isomorphism" is to transfer a dense subset of functions in A to a

dense subset of functions in B. This is the main reason that we are looking

for conditions which makes our Faber operator a bounded isomorphism. In

other words, surjectivity is approximability, and injectivity is uniqueness of

the approximation.

In the next section, once we defined the Grunsky coefficients of a con-

formal map, we will see more applications of the Faber polynomials and/or

operators.
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2.2 Grunsky Coefficient, Grunsky Inequality and

Grunsky Operator

Grunsky coefficients provide much information about holomorphic func-

tions. For example, they can be used to state a necessary and sufficient con-

dition for a given holomorphic function on a domain to be univalent. There

is no room to talk about all the known important aspect of these coefficients

and their generalizations here. We, therefore, try to focus on those aspects

that are more relevant to the thesis results; see [14, Chap 4], [41, Chap 3, 4]

and [20] for more detail.

Like the Faber polynomials, the Grunsky coefficients or matrix of a holo-

morphic function f can be defined in different settings. The original formu-

lation of H. Grunsky [21] for what later called the Grunsky inequality can

be summarized as follows. Let

f(z) = z +
a1

z
+
a2

z2
+ . . .

be a holomorphic function on a multiply-connected subset B of C contain-

ing the point∞. Let also the Grunsky coefficients cmn of f be defined by the

equation (2.1). He first proved that for every m ≥ 1 there exist functions Am

and Bm on B with the following series expansions about the point∞;

Am(z) = zm +
am1

z
+ . . . ,

Bm(z) =
bm1

z
+
bm2

z2
+ . . . ,
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such that on each boundary curve Γk, k = 1, 2, . . . , n, of B there exists a

unique complex constant dmk satisfying

Bm = Am + dmk.

He then showed that both matrices {n amn} and {n bmn} are symmetric.

Here is the original Grunsky inequality theorem [21, Section II, 4].

Theorem 2.2.1 (Grunsky). Let f , B, amn, bmn and cmn be as above. Then the

function f is univalent in B if and only if

∣∣∣∣∣
m∑

µ,ν=1

ν (cµν − aµν) xµ xν

∣∣∣∣∣ ≤
m∑

µ,ν=1

νbµν xµ xν ; m = 1, 2, . . . ,

for any finite arbitrary complex variables xµ. In particular, when B is D− we have

∣∣∣∣∣
m∑

µ,ν=1

νcµν xµ xν

∣∣∣∣∣ ≤
m∑

µ,ν=1

ν |xµ|2 .

Finding the Grunsky coefficients of holomorphic map is, in general, a

difficult task. A method was given to find an explicit formula for these coef-

ficients. After Shur [65] and J. A. Hummel [23], P. G. Todorov [81] provides

a less complicated formula to explicitly calculate the Grunsky coefficients of

a function f when its Taylor expansion is given. Both Hummel and Todorov

used the Grunsky coefficients of the function f(zp)
1
p , p ≥ 1 in their calcula-

tions. On the other hand, some machine computations, to find finitely many

of the coefficients, were also done e.g. A. R. Miller [34]. However, the ana-

lytic methods showed their advantages and also the complicated nature of

these coefficients.
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M. Schiffer [56] provided a generating function for the Grunsky coeffi-

cients of a holomorphic function and derived the Grunsky inequality via his

variational method. Here is the definition given by Schiffer, taken from the

Pommerenke’s book [41, Chap 3].

Definition 2.2.2 (Grunsky Coefficients). Let

g(z) = z +
∞∑
n=0

bnz
−n

be an analytic function in some neighbourhood of ∞ and univalent for |z| > R,

for some R > 0. This ensures that the left hand side of the following equality

is a holomorphic functions on |z|, |ζ| > R. Therefore, the left hand side has an

expansion

log
g(z)− g(ζ)

z − ζ
= −

∞∑
k=1

∞∑
l=1

ckl z
−kζ−l. (2.3)

The coefficients {ckl} are called the Grunsky coefficients or matrix of g.

These coefficients are independent of b0, satisfying ckl = clk and ck1 = bk

for k, l ≥ 1.

The so called Grunsky inequalities for a function g ∈ Σ, then can be read

by

∞∑
k=1

k

∣∣∣∣∣
∞∑
l=1

cklλl

∣∣∣∣∣
2

≤
∞∑
k=1

|λk|2

k
,

∣∣∣∣∣
∞∑
k=1

∞∑
l=1

ckl λkλl

∣∣∣∣∣ ≤
∞∑
k=1

|λk|2

k
,

for arbitrary complex variables λk’s, provided that the right hand side series

converges.
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The Grunsky operator, corresponding to the map g, is defined by

Grg : `2(C)→ `2(C)

(xk)→

(
∞∑
l=1

√
kl ckl xl

)
.

(2.4)

Pommerenke showed that the Grunsky inequalities have the following op-

erator theoretic forms

‖Grgx‖ ≤ ‖x‖ , |< x,Grgx >| ≤ ‖x‖2 .

Therefore the Grunsky operator is a bounded operator of norm less than

or equal to one for g ∈ Σ. It has been known that when the domain g(D−) is

a quasidisc the Grunsky operator norm is strictly less than one; see the next

subsection for more explanation.

Remark 2.2.3. A similar definition of the Grunsky coefficients and operator can be

written for holomorphic functions defined on a neighbourhood of zero.

S. Bergman and M. Schiffer in their fundamental paper [10], by using the

kernel functions, derived a different formulation of the Grunsky inequali-

ties which are equivalent to the Grunsky’s. Namely [10, Eq 9.9] which are

sometimes called the Bergman and Schiffer inequalities or condition. They

showed that they in totality form a sufficient condition for a holomorphic

map f on B to be univalent where B is a finite multiply-connected domain

with n non-overlapping analytic closed boundary curves.

V. Singh [73] worked on the same domain B but with the extra assump-

tion that the map f is bounded holomorphic. He could derive similar Grun-

sky inequalities.



2.2. Grunsky Coefficient, Grunsky Inequality and Grunsky Operator 49

A nice modification of the Grunsky inequalities for bounded univalent

functions on a neighbourhood of zero in C was given by Z. Nehari [40].

A more general version, including the result of Singh, was given by Yu.

E. Alenitsyn [5, 6]. His result concerns a system of n ≥ 1 holomorphic and

univalent functions fk defined on a multiply-connected finite domain B of

C. B is bounded by a finite number of closed analytic curves with mutually

disjoint images. He found an inequality like that of Grunsky, which includes

the Bergman kernel functions of the first and second kind. The Bergman and

Schiffer inequalities can be derived from his inequalities.

D. Aharonov introduced the concept of a pair which after J. A. Hummel’s

paper [24] is now called the Aharonov pairs of analytic functions [1]. If F (z)

and G(z) are analytic and univalent functions on D, then we call them an

Aharonov pair if

F (z)G(ζ) 6= 1 for every z, ζ ∈ D.

Hummel proved a matrix form of the Grunsky inequalities for such a pair

of analytic functions which generalizes Aharonov’s result. His work can be

considered as deriving Grunsky inequalities for a pair of non-overlapping

functions in the genus zero Riemann surface case.

G. L. Jones [26] by considering the derivatives of Equation (2.3) as an in-

tegral operator kernel, defined the operator Γg, called the Grunsky operator,

on the Bergman space of D. Here g is the conformal mapping which maps

D into a finite domain G bounded by a Jordan curve Γ. More precisely,

[Γgf ](z) =

∫ (
1

(z − ζ)2
− g′(z) g′(ζ)

(g(z)− g(ζ))2

)
f(

1

ζ
) dA(ζ), f ∈ A2(D). (2.5)



50 Chapter 2. Grunsky Coefficients and Faber Polynomials, Old and New

This integral operator was also mentioned in Bergman and Schiffer [10].

One of the two main results of the paper concerning the operator Γg is

Theorem 2.2.4 (Jones). The Grunsky operator lies in the p-th Schatten ideal (p ≥

1) of operators on the Dirichlet space if and only if log g′ ∈ Bp, the Besov space.

The condition log g′ ∈ Bp can be replaced by “g admits a quasiconformal

extension G to C with

µG ∈ Lp(dλ)

where dλ = dA(z)/(1 − |z|2)2 is the hyperbolic area density". Jones’ theo-

rem introduces another characterization of the quasiconformal extendibil-

ity. The author also used the idea of projection on holomorphic and anti-

holomorphic parts and considering G as a region in Riemann sphere.

A. Baranov and H. Hedenmalm [9] defined the Grunsky operator corre-

sponding to a map φ ∈ S by

Bφ[f ](z) = p.v.

∫∫
D

φ′(z)φ′(w)

(φ(z)− φ(w))2
f(w) dA(w), z ∈ D.

As we see, in comparison to the Jones’ definition, they removed the fac-

tor 1
(z−w)2 in the kernel and changed the domain of the integration.

As was claimed, using the unitary properties of the Beurling operator on

L2(C), they obtained an operator identity. Namely,

Bφ −Bid = PBφ,

where P is the orthogonal projection on the analytic functions inL2(D). That

is, PD in the thesis’ notation, see Subsection 1.2.2 . They showed that this

operator identity implies the Grunsky inequalities. Later on H. Hedenmalm
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[22] extended this result to the weighted Hilbert space with the weight func-

tion |z|2θ, for 0 ≤ θ ≤ 1, and found a reformulation of generalized Grunsky

inequalities for the weighted L2
θ(D) space.

As was mentioned, the Grunsky coefficients have had many applications

in complex analysis. In the next section, we will talk about some special

applications of these coefficients to Teichmüller spaces defined in Section

1.9.

2.2.1 Grunsky Coefficients and Teichmüller Spaces

Connections discovered between the spaces S (or equivalently Σ) and the

Teichmüller spaces reveal other aspects of the Grunsky coefficients and in-

equalities. Some applications of the Grunsky inequalities in the Teichmüller

spaces date back to 1980s. The paper of I. V. Z̆uravlev [83] seems to be one

of the first rigorous works in the subject. The key relation is the following

definition and theorem.

Let g ∈ Σ and 0 ≤ k ≤ 1. We say g ∈ Σ(k) if

∣∣∣∣∣
∞∑
k=1

∞∑
l=1

cklλkλl

∣∣∣∣∣ ≤ k
∞∑
k=1

|λk|2

k
(2.6)

where λk are arbitrary complex numbers and ckl are the Grunsky coefficients

of g defined by Equation 2.3.

Here is an important theorem regarding this set of holomorphic func-

tions in Σ.

Theorem 2.2.5 (Kühnau). If g ∈ Σ and has k-quasiconformal extension (0 ≤

k < 1) to C, then g ∈ Σ(k).
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M. Schiffer and G. Schober claimed that the above theorem was first

proved by R. Kühnau, see [57], [41] and the references therein for more

detail. Pommerenke [41, Theorem 9.12] and later on Z̆uravlev proved the

converse. That is,

Theorem 2.2.6 (Pommerenke and Z̆uravlev). If g ∈ Σ(k), then g admits a k′-

quasiconformal extension to C such that k′ ≥ k.

H. Shiga [69] investigated the boundary of Teichmüller spaces by using

the Grunsky inequalities and other function-theoretic tools. It was claimed

that the method is motivated by Z̆uravlev paper; see also H. Shiga [70].

H. Shiga and H. Tanigawa [71] improved a result of S. Krushkal regard-

ing the equality of Kobayashi and Carateódory metrics on Teichmüller space.

Grunsky inequalities were used in some of their proofs.

More connections between the Grunsky map, which maps each element

[µ] in a Teichmüller space to the Grunsky operator of the homomorphic map

corresponding to [µ], and Teichmüller spaces were recently found. See S. L.

Krushkal’s survey [30] and the references therein.

Takhtajan and Teo [76, Remark 2.11] defined a map called “the univer-

sal period mapping" on the universal Teichmüller space. It was defined via

the Grunsky coefficients of a conformal map from D into C. They showed

that the universal period mapping is holomorphic; also this map coincides

with the map that was defined by Kirillov and Yur’ev [28], Nag and Sulli-

van [39], defined on the universal Teichmüller space. They called this map

KYNS period mapping of T (1). In our context, i.e. surfaces with bound-

aries, they worked on the g = 0 and n = 1 case, where the boundary curve

is a quasicircle.
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Shen [67], taking the same definition as the one given by (2.4) for the

Grunsky operator associated to f ∈ Σ0, showed that the Grunsky operator

is a holomorphic map on the universal Teichmüller space T (1). To define

the Grunsky operator on T (1) for each [µ] ∈ T (1) we have Gr([µ]) := Grf

where f = fµ|D− . He mentioned some previous similar attempts at this

result: S. L. Krushkal (1985), H. Shiga-H. Tanigawa (1993).

Schippers and Staubach [64], using their Faber operator, defined the

Grunsky operator on D∗(D−) into D(D). They showed that the Grunsky

operator is a bounded operator with norm less than or equal to one. The

norm is strictly less than one if and only if Γ, the boundary of Ω+, is a quasi-

circle [64, Theorem 3.13]. The paper also provides an integral representation

of the Grunsky operator which is similar to Equation (2.5).

In Chapter 4, we will explain the connection between the Teichmüller

spaces and the Grunsky coefficients and/or inequalities in more detail. In

the next section we will review some work corresponding to Faber polyno-

mials and Grunsky coefficients on Riemann surfaces.

2.3 Faber Polynomials and Grunsky Coefficients

on Riemann Surfaces

All the objects in the previous two sections involve only the complex plane

or the Riemann sphere (g = 0). Let us write a few words about some work

that has been done on Riemann surfaces of arbitrary genus g > 0. This

seems not to be as much investigated as the planar case.

H. Tietz [77] constructs a system of functions and a system of 1-forms

(later called the Faber-Tietz functions or differentials) on a closed Riemann



54 Chapter 2. Grunsky Coefficients and Faber Polynomials, Old and New

surface R. This system plays the same approximation role on surfaces that

of the Faber polynomials’ in the plane. That is, assume G ⊂ R is a domain

bounded by an analytic curve whose complement is simply connected. He

assumed the complement ofG contains a non Weierstrass point, say p. Then

he showed that every holomorphic function (1-form) on G can be expanded

by functions (1-forms) in this system. These functions were rational func-

tions with only singularity at p. This expansion was later called the Faber-

Tietz expansion. See also H. Tietz [78] and H. Röhrl [50] for removing the

Weierstrass point restriction.

Tietz, in another paper [80], using the Laurent decomposition analogue

on Riemann surfaces extends this results to open Riemann surfaces. In par-

ticular, he derived an expansion in Faber functions for analytic functions on

some subdomains of an open Riemann surface.

H. Röhrl [51] generalized the Faber-Tietz expansion (in the sense of [78]

and [50]) on open Riemann surfaces of finite genus. He used a theorem

proved by S. Bochner and L. Sario stating that any open Riemann surface

of finite genus can be embbeded in a closed Riemann surface. That is, for

an open Riemann surface R∗ of finite genus, there exists a closed Riemann

surface R such that R∗ is a connected subsurface of R.

Generalization of the Grunsky coefficients of conformal maps into Rie-

mann surfaces and their Grunsky inequalities have been occasionally ob-

tained. K. Reimer and E. Schippers [48] consider the Grunsky coefficients

for a conformal map f from a neighbourhood of zero into a torus, which is

a Riemann surface of genus one. Their work was based on the Faber-Tietz

meromorphic functions and 1-forms defined by Tietz [77]. They showed a

generalized Grunsky inequality for these coefficients. A few first Grunsky
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coefficients of f , using the Weierstrass ℘ function on torus, were also calcu-

lated explicitly by them.

Now the reader is familiar with Faber polynomials and Grunsky coeffi-

cients corresponding to a conformal map, and some generalizations of them

in different senses. To conclude this chapter we would like to state two im-

portant results. As was mentioned the Faber and Grunsky operators cor-

responding to a set of conformal maps (f1, . . . , fn) with non-overlapping

images Ω+
k , were defined on the Riemann sphere [46],. It was shown that

under some boundary condition (the boundary curves are quasicircles) the

Faber operator is a bounded isomorphism and the Grunsky operator has

norm strictly less than one. It was also shown that the pull-back of D(Σ),

where Σ = C\ ∪nk=1 Ω+
k , under the map f = (f1, . . . , fn) is the graph of the

Grunsky operator corresponding to f . In the next chapter, we will talk more

about these problems and generalize them on some bordered Riemann sur-

faces of arbitrary genus.
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Chapter 3

Faber Isomorphism and Grunsky

Inequality on Bordered Surfaces

In Chapter 2, we reviewed some generalizations of the Faber polynomials,

or operator, and the Grunsky coefficients, or operator, on the complex plane

and Riemann surfaces. As was mentioned in the introduction, the first main

problem of the thesis is to characterize the holomorphic Dirichlet space of Σ,

where Σ is a bordered Riemann surface of genus g > 0 with n ≥ 1 boundary

curves homeomorphic to S1 in C. This chapter is about this problem. In

addition to that, the results here will be used in Chapter 4 to solve the second

problem mentioned in the introduction.

This chapter is divided into two parts. The first part is about surfaces

with one boundary curve (i.e. n = 1) and the second part is about surfaces

with more than one boundary curve (i.e. n > 1). In each part, by using a

Cauchy-type integral operator, the Faber operator corresponding to Σ is de-

fined. When all the boundary curves are quasicircles, the Grunsky operator

is also defined. This definition is based on the Faber operator and a trans-

mission operator which was recently developed for quasicircles on Riemann
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surfaces by Schippers and Staubach [63]. We will see that the Grunsky oper-

ator has norm strictly less than one in this case. In addition to the boundary

regularity, the Grunsky’s norm proof requires a density theorem on open

Riemann surfaces. This work, joint with Schippers and Staubach is now

submitted. [59].

The Schiffer operator is defined and we find its adjoint operator. A short

history of this operator, including its adjoint calculation in genus zero, is

provided. We show that on which function space, depending on the topol-

ogy of the surface, this operator is a bounded isomorphism. The Schiffer

operator is used to show that in the case that all the boundary curves are

quasicircles, the Faber operator is a bounded isomorphism.

Finally, we obtain a characterization of D(Σ) in terms of the generaliza-

tions of the Faber and Grunsky operators for Σ. We show that when all the

boundary curves are quasicircles, the pull-back of D(Σ) under the confor-

mal maps parametrizing the boundary of Σ, is the graph of the generalized

Grunsky operator.

3.1 Surfaces with One Border

In this section, unless otherwise mentioned, we assume that R is a compact

Riemann surface of genus g > 0, and Γ is a strip-cutting Jordan curve on

R (see Section 1.4 for definition) which separates R into two subsurfaces Ω

and Σ. Note that not every strip-cutting Jordan curve separates. We assume

that Γ is positively oriented with respect to Ω. In the case that Ω is a simply

connected subsurface, we fix a point p ∈ Ω, and assume that there exists a
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biholomorphism

fp : D→ Ω,

such that fp(0) = p. We usually drop the point p in fp notation if there will

be no risk of confusion. The conformal map f may be called a uniformizing

map (or a boundary parametrization) of Ω (of Γ).

Now, the surface Σ = R\cl(Ω) = R\cl(f(D)) is a Riemann surface of

genus at most g with one boundary curve homeomorphic to S1. We aim

to characterize the holomorphic Dirichlet space of Σ in terms of pull back

under f .

Remark 3.1.1. The results of this section, surfaces with one boundary, was submit-

ted as a part of a joint paper with Radnell, Schippers and Staubach. See D. Radnell,

E. Schippers and W. Staubach [45, Section 3] for more detail.

3.1.1 Schiffer Operator for Surfaces with One Boundary

We first give the definition of the Schiffer operator and some of its important

properties from [62]. We then write a few words about the history of the

Schiffer operator.

Let R, Γ, Σ and Ω (not necessarily simply connected) be as above. The

integral operators

T (Ω; Σ) : A(Ω)→ A(Σ)

α→ 1

πi

∫∫
Ω,w

∂z∂wg(w; z, q) ∧ α(w),
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where z ∈ Σ, and

S(Ω) : A(Ω)→ A(R)

α→ − 1

πi

∫∫
Ω

∂z∂wg(w; z, q) ∧ α(w),

are called the Schiffer (or Schiffer comparison) operators.

In other words, in terms of the kernel functions defined in Section 1.8,

the Schiffer operator T maps α to

∫∫
Ω

LR(z, w) ∧ α(w),

and the Schiffer operator S maps α to

∫∫
Ω

KR(z, w) ∧ α(w).

Note that the assumption z ∈ Σ makes the kernel of the integration in T

operator a non-singular one, see Theorem 1.8.1. The operator T (Σ; Ω) may

be defined by exchanging the role of Σ and Ω in the definition above.

The integration for the case T (Ω; Ω); that is, when z is in Ω, is under-

stood in the principal value sense. In this case, and similarly for T (Σ; Σ),

the Schiffer operator can be shown to be equal to

T (Ω; Ω) : A(Ω)→ A(Ω)

α→
∫∫

Ω,w

(LR(z, w)− LΩ(z, w)) ∧ α(w),

where z ∈ Ω.

Schippers and Staubach showed that the output of above operator is in
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A(Ω). They proved that the Schiffer operator, in all the above cases, is in-

dependent of the choice of holomorphic chart. Last but not the least, they

showed that this operator is bounded operator [62, Theorem 3.9]. See e.g.

R. Seeley [66] for the theory of singular integral operators on compact man-

ifolds for more detail.

In the case that R is the sphere, the Schiffer operator is the restriction of

the Beurling transformation on Ω to the space of all L2 anti-holomorphic 1-

forms on Ω. It can also be considered as a special case of Calderón-Zygmund

integral operator on manifolds.

Schiffer [55] and then Bergman and Schiffer [10] defined this operator on

planar domains bounded by analytic curves. Schiffer and Spencer extended

the operator to Riemann surfaces. Schiffer considered the case of nested

open domains in the sphere in a chapter in the book of R. Courant [12]. See

E. Schippers and W. Staubach [61] for more historical detail.

Napalkov, Jr. and Yulmukhametov [84] formulated the Schiffer operator

as a Hilbert transform on the dual space of the Bergman space of a subdo-

main G in C. They showed that this operator is one-to-one. It is an onto

operator if and only if the boundary of G is a quasicircle, that is, if and only

if G is a quasidisc.

Schippers and Staubach [64] named this operator the Schiffer compari-

son operator and extended the definition to domains bounded by quasicir-

cles, i.e. quasidiscs. They also make a change to the domain of this operator.

That is Schiffer defined the above operator on the space of L2 holomorphic

1-forms on the given domain which makes the operator anti-complex linear,

whereas the above operator is a complex linear one. One important result

of their work is providing a formula for the adjoint of the Schiffer operator.
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Other results will be discussed ahead.

Later on, in Section 3.2 we will generalize the Schiffer operator to the

case of many boundary curves for the first time. That is, we generalize the

Schiffer operator to Riemann surfaces bounded by n > 1 non-overlapping

strip-cutting Jordan curves Γk, k = 1, . . . , n.

We conclude this subsection by recalling a theorem [62, Theorem 4.2]

which shows the relationship between the derivatives of the Cauchy-type

integral operator defined in Section 1.7 and the Schiffer operator.

Theorem 3.1.2. Let R, Γ, Σ and Ω be as Section 3.1. For all h ∈ Dharm(Σ) and

any q ∈ R\Γ, we have

∂[Jq(Γ)h](z) = −T (Ω,Σ)∂h(z), z ∈ Σ

∂[Jq(Γ)h](z) = ∂h(z)− T (Ω,Ω)∂h(z), z ∈ Ω

∂[Jq(Γ)h](z) = S(Ω)∂h(z), z ∈ Ω ∪ Σ.

This theorem will be generalized in Subsection 3.2.4 for surfaces with

more than one boundary curve, see Theorem 3.2.37.

In the next subsection we introduce some spaces of harmonic functions

and forms which will be used to define Faber and Grunsky operators corre-

sponding to Σ.

3.1.2 Some Subspaces of Functions and 1-Forms

In this subsection, we will introduce some spaces of harmonic functions or

harmonic 1-forms corresponding to subsurfaces of R. Let start with the
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following definition

WΩ =

{
h ∈ Dharm(Ω) : lim

ε→0+

∫
Γpε

hα = 0 , ∀α ∈ A(R)

}
. (3.1)

Here the curves Γpε are as Remark 1.7.2.

Remark 3.1.3. We know that A(R) is a vector space of dimension g over the field

C. Therefore, the integral condition used in (3.1) for each function h ∈ WΩ imposes

g linear integral conditions. This is where the topology of the surface plays a role.

We could define the same space for the other subsurface Σ. Here is a

consequence of this definition. See [62] for a proof.

Theorem 3.1.4. Let R, Γ, Σ and Ω be as in Section 3.1. Suppose that the domain

of the Cauchy-type integral operator Jq(Γ) (Definition 1.7.3) is restricted to WΩ.

Then the output of Jq(Γ) is a holomorphic function on Σ.

Here is a theorem [62, Theorem 4.13] that will be frequently used in the

thesis. We call it the transmitted-jump formula.

Theorem 3.1.5 (Schippers-Staubach). Let R, Γ, Σ, Ω and q ∈ R\Γ be as Section

3.1. If h ∈ WΩ and Γ is a quasicircle, then

−O(Σ2,Σ1)Jq(Γ)Σh = h− Jq(Γ)Ω.

The following theorem, which is a consequence of [62, Corollary 4.28],

shows another aspect of this definition when the curve Γ is a quasicircle.

Theorem 3.1.6. Let R, Γ, Σ, and Ω be as Section 3.1. Suppose Γ is a quasicir-

cle. If h ∈ WΩ, then the CNT boundary values of h on Γ, say H , has a jump

decomposition. The decomposition is unique up to additive constants.
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They showed that the jump decomposition for h ∈ WΩ is given by

hΩ = Jq(Γ)Ωh, hΣ = Jq(Γ)Σh.

in the sense that

H = HΣ −HΩ,

except on a null set in Γ, where the HΣ and HΩ denote the boundary values

of hΣ and hΩ, respectively.

It worth noting that there are some other approaches other than the

Cauchy-type integral operator to find the components of a jump decom-

position. This approach was suggested by Royden [54]. What Schippers

and Staubach did was to weaken the analytic condition on the curve and

the boundary function on the curve.

As we mentioned in Section 1.7, the jump problem for holomorphic func-

tions inWΩ is trivial; therefore, we are particularly interested in anti-holomorphic

functions inWΩ, namelyWΩ ∩ D(Ω). We also need to apply the normaliza-

tion of vanishing at a fixed point p ∈ Ω. Now defineW ′Ω =WΩ ∩ D(Ω)p.

To work on the space of holomorphic 1-forms we define the following

space

VΩ =

{
α ∈ A(Ω) :

∫∫
Ω

α ∧ β = 0, ∀β ∈ A(R)

}
=
{
α ∈ A(Ω) :< α, β >Aharm(Ω)= 0, ∀β ∈ A(R)

}
= A(Ω) ∩ A(R)

⊥
.

(3.2)

VΣ may be defined similarly. These spaces are the ones that meet the neces-

sary conditions for the existence of a jump.
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Lemma 3.1.7. Let R, Γ, Σ and Ω be as Section 3.1. Then

1. For every function h̄ ∈ W ′Ω we have ∂̄h̄ ∈ VΩ.

2. If Ω is simply connected domain, then

∂ :W ′Ω → VΩ

h̄→ ∂̄h̄

is an isometric isomorphism with respect to Dirichlet norm.

Proof. If h ∈ W ′Ω, then clearly ∂h ∈ A(Ω). Now for β ∈ A(R) we have the

following

d(hβ) = dh ∧ β + hdβ = ∂h ∧ β + 0 = ∂h ∧ β.

Therefore, Stokes’ theorem implies

< ∂h, β >Aharm(Ω) =
1

2

∫∫
Ω

∂h ∧ ?(β) = − i
2

lim
ε→0+

∫
Γpε

hβ.

the last integral is zero because of our choice of h. Therefore ∂h is in VΩ.

The first part proves that the operator ∂|W ′Ω is well-defined. Now we

show that it is one-to-one, onto and (semi) norm preserving.

Let α ∈ VΩ. There exists a unique h ∈ D(Ω)p (h(p) = 0) such that ∂h = α

as Ω is simply connected. We now show that h is inWΩ by calculations like

the one above. If β ∈ A(R), then

lim
ε→0+

∫
Γpε

hβ = 2i < ∂h, β >Aharm(Ω)= 2i < α, β >Aharm(Ω)= 0
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since α was in VΩ. This implies that h ∈ WΩ. Therefore, for every α ∈ VΩ

there exists a unique h ∈ W ′Ω such that ∂h = α. Clearly

∥∥h∥∥Dharm(Ω)
=
∥∥∂h∥∥

Aharm(Ω)
= ‖α‖Aharm(Ω) ,

by its definition. The choice of normalization makes the Dirichlet semi-

norm a norm. This completes the proof of the second part.

In the case that Ω is simply connected, we are interested in the pull back

of those functions in W ′Ω under the map f . Thus we make the following

definition.

Definition 3.1.8. Let p ∈ Ω be fixed and f = fp be a uniformizing map of Ω.

Define

D(D)v = CfW ′Ω =
{
H ∈ D(D) : H ◦ f−1 ∈ W ′Ω

}
.

The subindex v is used to indicate the relation to the space VΩ. In other

words, forH ∈ D(D)v we have ∂ (Cf−1H) ∈ VΩ. The p normalization ensures

that every H ∈ D(D)v vanishes at zero; therefore, the only constant function

in D(D)v is the zero function.

Now we are ready for the next subsection in which we define the Faber

and Grunsky operators.

3.1.3 Faber and Grunsky Operators

In this subsection, we assume R, Γ, Σ and Ω are defined as in Section 3.1

with the extra assumption that Ω is a simply connected domain. Thus we



3.1. Surfaces with One Border 67

have the uniformizing map f for Ω. We will define two operators corre-

sponding to the map f or equivalently the bordered surface Σ. These defini-

tions are motivated by their definitions in the complex plane or the Riemann

sphere case reviewed in Section 2.1.

Definition 3.1.9. Let R, Γ, Ω, Σ, f and q be as above. The operator

If : D(D)v → D(Σ)q

H → −[Jq(Γ)Cf−1H]Σ

is called the Faber operator corresponding to f (or Σ).

Definition 3.1.10. Let R, Γ, Ω, Σ, f and q be as above. Assume that Γ is a

quasicircle. The operator

Grf : D(D)v → D(D)

H → PDCfO(Σ,Ω)IfH

is called the Grunsky operator corresponding to f (or Σ).

It should be noted that to define the Faber operator we did not assume

that Γ is a quasicircle. However, the definition of the Grunsky operator,

because of the transmission operator, requires the curve Γ to be a quasicircle.

Theorem 3.1.4 and Definition 3.1.8 ensure that the output of the the Faber

operator is in D(Σ)q. Similarly Theorem 1.4.8 and the projection operator

defined in Section 1.2.2 ensure that the output of the Grunsky operator is in

D(D).

Remark 3.1.11. We will say "Faber (Grunsky) operator" rather than "Faber (Grun-

sky) operator corresponding to f" when the map f is clear from context.
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Here is a generalization of some classical theorems concerning the iso-

morphism property of the Faber operator. See Definition 2.1.9 and the ref-

erences afterwards.

Theorem 3.1.12. Let R, Γ, Ω, Σ, f and q be as above. Assume Γ is a quasicircle.

Then the operator If is a bounded isomorphism.

Proof. The operators ∂ : D(Σ)q → A(Σ)e and ∂ : W ′Ω → VΩ are bounded

isomorphisms by Remark 1.2.2 and Lemma 3.1.7, respectively. When Γ is a

quasicircle, then the Schiffer operator T (Ω,Ω)|VΩ
is also a bounded isomor-

phism by [62, Theorem 4.20]. Furthermore, by Theorem 3.1.2 one has

T (Ω,Ω)∂ = ∂Jq(Γ),

Therefore, Jq(Γ)|W ′Ω :W ′Ω → D(Σ)q is a bounded isomorphism.

On the other hand, Cf−1|D(D)v
: D(D)v → W ′Ω is an isomorphism by the

composition map properties and Definition 3.1.8.

Therefore, by the the definition of the Faber operator, If is a bounded

isomorphism from D(D)v onto D(Σ)q.

We will show that the transmission part in above definition can be sim-

plified provided that the boundary curve is a quasicircle.

Lemma 3.1.13. Let R, Γ, Ω, Σ, q and f be as the above. If Γ is a quasicircle, then

Grf (H) = −Cf [Jq(Γ)Cf−1H]Ω,

for all H ∈ D(D)v.
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Proof. Since Γ is a quasicircle, by the transmitted-jump formula (Theorem

3.1.5) for every h ∈ WΩ we have

−O(Σ,Ω)[Jq(Γ)h]Σ = h− [Jq(Γ)h]Ω.

Now let h = Cf−1H . Therefore, by the definitions of the Grunsky and Faber

operators we have

Grf (H) = PDCfO(Σ,Ω)IfH

= PDCfO(Σ,Ω)[−Jq(Γ)Cf−1H]Σ

= PDCf
(
Cf−1H − [Jq(Γ)Cf−1H]Ω

)
= PDH − PDCf [Jq(Γ)Cf−1H]Ω

= −Cf [Jq(Γ)Cf−1H]Ω.

In the last identity, PDH is zero since H is an anti-holomorphic function.

Also

PDCf [Jq(Γ)Cf−1H]Ω = Cf [Jq(Γ)Cf−1H]Ω

since Cf [Jq(Γ)Cf−1H]Ω is a holomorphic map on D.

As we saw, this new formula is independent of both the transmission

and Faber operators. The following theorem is an analog to Theorem 2.2.5

for compact Riemann surfaces.

Theorem 3.1.14. Let R, Γ, Σ, Ω, q and f be as above. If Γ is a quasicircle, then the

Grunsky operator Grf is a bounded operator of norm less than one.

Proof. By Lemma 3.1.13 we have Grf (H) = −Cf [Jq(Γ)Cf−1H]Ω for all H ∈

D(D)v. By applying the inverse of Cf on both sides and invoking Theorem
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3.1.2 with Σ1 = Ω and Σ2 = Σ we have

Cf−1GrfH = −[Jq(Γ)Cf−1H]Ω,

which implies

∂ Cf−1GrfH = −∂ [Jq(Γ)Cf−1H]Ω

= −∂ Cf−1H − T (Ω; Ω)∂ (Cf−1H)

= 0− T (Ω; Ω)∂ (Cf−1H).

Therefore,

∥∥∂ Cf−1GrfH
∥∥
Dharm(Ω)

=
∥∥T (Ω; Ω)∂ Cf−1H

∥∥
Dharm(Ω)

for all H ∈ D(D)v.

On the other hand, for H ∈ D(D)v one has ∂Cf−1H is in VΩ. Then [62,

Theorem 4.20] (VΩ here is V1 in the theorem) implies that

‖∂ Cf−1Grf‖D(D)v→A(Ω)
= ‖T (Ω; Ω)|VΩ

‖VΩ→A(Ω) < 1.

By the isometric properties of ∂ and Cf−1 , see Section 1.2.2, the left hand side

of the first identity above is ‖Grf‖D(D)v→D(D) which completes the proof.

We showed that when Γ is a quasicircle, the Faber operator is an isomor-

phism and in particular, an one-to-one operator. Now a left inverse of this

operator is provided and is shown to be bounded.

Theorem 3.1.15. Let R, Γ, Σ, Ω and f be as above. If Γ is a quasicircle, then

PDCfO(Σ,Ω) is a left inverse of If .
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Proof. Since Γ is a quasicircle by applying the transmitted-jump formula for

H ∈ D(D)v we have

PDCfO(Σ,Ω)If (H) = PDCfO(Σ,Ω)[−Jq(Γ)Cf−1H]Σ

= PDCf
(
Cf−1H − [Jq(Γ)Cf−1H]Ω

)
= H − 0 = H.

Remark 3.1.16. Even though we consider g > 0, in the case of the Riemann sphere

a left inverse for the Faber operator exists see [60, Lemma 3.14]. This inverse in the

case of Riemann sphere connects to a classical identity regarding the Faber polyno-

mials that we recall it here. It is an easy consequence of Definition 2.1.1 that

(
f−1(z)

)−n
= Φn(f)(z) +

∞∑
k=0

a
(n)
k zk.

Thus one has the well-known identity

Φn(f) (f(ζ)) = ζ−n +
∞∑
k=0

cnkζ
k

for some cnk which as we know they are called the Grunsky coefficients of f . By

taking the projection PD− from both sides we have

PD−Φn(f) (f(ζ)) = ζ−n
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or equivalently [PD−CfΦn(f)](ζ) = ζ−n. Finally, the identity Φn(f) = If (ζ
−n)

(where ζ−n denotes the map ζ → ζ−n) shows that

PD−CfIf (ζ−n) = ζ−n.

We should say that the projection operator used in [60] maps constants to zero

and is a bit different from the one used in this thesis. We temporarily changed our

definition of PD here to send constants to zero.

Therefore, the operator PD−Cf is a left inverse for monomials. By the bounded-

ness of the operators and the density of these monomials in D(D−) this is true for

every element in D(D−) vanishing at infinity.

A similar identity for a compact Riemann surface of genus g can be found in the

paper of Tietz [77, Satz 4] corresponding to his normalization of the meromorphic

1-form α, see Section 2.3.

Here is one of the most important results of the thesis for surfaces with

one boundary curve.

Theorem 3.1.17. Let R be a compact Riemann surface of genus g > 0 and Γ be a

quasicircle curve in R separating R into two subsurfaces Σ and Ω. Assume Ω is

simply connected and Γ is positively oriented with respect to Ω and q ∈ Σ fixed.

Assume also that f : D → Ω is a uniformizing map with f(0) = p for fixed

p ∈ Ω. Then the pull back of the transmissions of the holomorphic functions in

D(Σ)q under the conformal map f is the graph of the Grunsky operator; that is,

graph(Grf ).
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Proof. Let h ∈ D(Σ)q. By Theorem 3.1.12 there exists H ∈ D(D)v such that

IfH = h. Therefore,

CfO(Σ,Ω)h = CfO(Σ,Ω)IfH ∈ Dharm(D),

and we have

(CfO(Σ,Ω)IfH) = [PD + PD](CfO(Σ,Ω)IfH)

= PDCfO(Σ,Ω)IfH + PDCfO(Σ,Ω)IfH

= Grf (H) +H ∈ graph(Grf ).

by Theorem 3.1.15 and the definition of the Grunsky operator.

Remark 3.1.18. For the genus g = 0 case, a similar result with slightly different

formulation was proven in Radnell, Schippers and Staubach [46]. So we could say

that the pull back of functions in D(Σ)q is the graph of the Grunsky operator for

all bordered Riemann surfaces of arbitrary genus g ≥ 0 (with one boundary curve

homeomorphic to S1).

Theorem 3.1.19. Let R, Γ, Σ, Ω and f be as above. If Γ is a quasicircle, and

H ∈ D(D)v, then

∥∥Grf (H)
∥∥2

Dharm(D)
=
∥∥H∥∥2

Dharm(D)
−
∥∥If (H)

∥∥2

Dharm(Σ)
.

Proof. Let Σ1 = Ω, andΣ2 = Σ. Here is an identity given inside the proof of

[62, Theorem 4.20]

‖T (Ω; Σ)α‖2
Aharm(Σ) = ‖α‖2

Aharm(Ω) − ‖T (Ω; Ω)α‖2
Aharm(Ω) ,
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for all α ∈ VΩ. This implies that for each h̄ ∈ W ′Ω we have

∥∥T (Ω; Σ)∂̄h̄
∥∥2

Aharm(Σ)
=
∥∥∂̄h̄∥∥2

Aharm(Ω)
−
∥∥T (Ω; Ω)∂̄h̄

∥∥2

Aharm(Ω)
.

Now by Theorem 3.1.2 one has

∥∥−∂[Jq(Γ)h̄]Σ
∥∥2

Aharm(Σ)
=
∥∥h̄∥∥2

Dharm(Ω)
−
∥∥∂h̄− ∂[Jq(Γ)h̄]Ω

∥∥2

Aharm(Ω)∥∥[Jq(Γ)h̄]Σ
∥∥2

Dharm(Σ)
=
∥∥h̄∥∥2

Dharm(Ω)
−
∥∥[Jq(Γ)h̄]Ω

∥∥2

Dharm(Ω)
.

by the identity ‖∂̄h̄‖Aharm(Ω) = ‖h̄‖Dharm(Ω).

On the other hand, there exists H ∈ D(D)v such that h̄ = Cf−1H . There-

fore we have

∥∥[Jq(Γ)Cf−1H]Σ
∥∥2

Dharm(Σ)
=
∥∥Cf−1H

∥∥2

Dharm(Ω)
−
∥∥[Jq(Γ)Cf−1H]Ω

∥∥2

Dharm(Ω)∥∥IfH∥∥2

Dharm(Σ)
=
∥∥H∥∥2

Dharm(D)
−
∥∥GrfH

∥∥2

Dharm(D)

by Theorem 3.1.13 and the fact that Cf |D(Ω) : D(Ω) → D(D) and Cf |D(Ω) :

D(Ω)→ D(D) are isometries with respect to the Dirichlet semi-norm.

Corollary 3.1.20. Let R, Γ, Σ, Ω, q and f be as above. If Γ is a quasicircle, then

‖If‖ ≤ 1.

The fact that the Faber operator is an isomorphism when Γ is a quasi-

circle, is exactly what we need to approximate holomorphic functions on Σ

via anti-holomorphic functions in H ∈ D(D)v. This is exactly the idea of

Faber for planar domains. That is, to find a set of holomorphic functions

corresponding to a simply connected domain G in C which play the same

approximation role for Hol(G) as the polynomials {zn : n ≥ 0} are playing

for Hol(D).
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Now we can talk about surfaces with more than one boundary curves.

3.2 Surfaces with Finitely Many Borders

In this section, we generalize the operators and theorems from one bound-

ary curve case to many ones. We start with some definitions and introduce

some notation.

Throughout the section, unless otherwise mentioned, we use the follow-

ing notation. Let Σ be a bordered Riemann surface of genus g > 0 with

boundary curves Γk, k = 1, . . . , n, homeomorphic to S1. As was mentioned

in introduction, Σ can be modelled as follows. We assume there exists a

compact Riemann surface R, of genus g, and pairwise disjoint simply con-

nected domains Ω+
k , k = 1, . . . , n, of R such that Σ is biholomorphic to

R\ ∪nk=1 cl(Ω+
k ). We assume there are conformal maps fk : D → Ω+

k . The

map fk may be normalized by assuming fk(pk) = 0 for fixed point pk ∈ Ω+
k .

fk may be called a uniformizing (or a boundary parametrization) of Ω+
k (of

Γk). It can be assumed that each Γk is a strip-cutting Jordan curve. Define

Ω−k = R\cl(Ω+
k ). It is clear that Ω−k includes Σ. For simplicity, we sometimes

use Ω as an abbreviation for ∪nk=1Ω+
k and Γ for ∪nk=1Γk.

To illustrate, in Figure 3.1, one can see a sketch of a compact Riemann

surface R for which g = 2, and n = 4. Also in Figure 3.2 one can see a sketch

of the bordered Riemann surface Σ obtained from R.

Remark 3.2.1. In Chapter 4 we will see that Σ is a bordered Riemann surface of

type (g, n), but for now we do not use that terminology; see Definition 4.2.1.
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FIGURE 3.1: A Compact Riemann Surface R

FIGURE 3.2: The Bordered Surface Σ Obtained From R

By Γpkε , we mean the level curves of the Green’s function of Ω+
k with

singularity at pk ∈ Ω+
k . For fixed k and ε > 0, these are analytic curves

which approach Γk from within Ω+
k as ε→ 0+, see Remark 1.7.2.

For above set of conformal maps define f = (f1, . . . , fn). We will assign

operators to f which generalize the Faber and Grunsky operators from the

case of one boundary curve to the many ones.
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3.2.1 Some Operators and Subsurfaces of Functions and 1-

Forms

Definition 3.2.2 (Composition Operator). The composition operator for a set of

conformal maps f = (f1, . . . , fn) is defined by

C̃f :
n⊕
k=1

Dharm(Ω+
k ) −→ Dharm(D)n

(g1, . . . , gn) −→ (Cf1g1, . . . , Cfngn).

Similar definitions for the inverse functions, C̃f−1 , can be given. These

operators are clearly bounded isometries with respect to Dirichlet semi-

norm.

Definition 3.2.3. Let Gk, k = 1, . . . , n, be a collection of pairwise disjoint simply

connected subsets of a Riemann surface R. Let G denote ∪nk=1Gk. Pick a point

pk ∈ Gk, for each k = 1, . . . , n. Define

P̃G :
n⊕
k=1

Dharm(Gk) −→
n⊕
k=1

D(Gk)

(h1, . . . , hn) −→ (PG1h1, . . . , PGnhn).

where PGk projects hk ∈ Dharm(Ak) to its holomorphic part, as was defined in

Section 1.2.2.

The projection to the anti-holomorphic part P̃G is defined similarly. The

projections P̃ (G) and P̃ (G) on harmonic 1-forms can be defined as well.

One of the operators that was used for the case of one boundary curve

was the transmission operator O(Ω,Σ) or O(Σ,Ω). We need a modification
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of this transmission for the the case of many boundary curves. The proof of

its existence, however, makes use of the one boundary curve case.

For fixed j = 1, . . . , n, we will define O(Σ,Ω+
j ); that is, the transmission

from Σ to Ω+
j . We start with Bj a collar neighbourhood of Γj in Σ and let

Res(Σ, Bj) be the restriction from Σ to Bj operator. We have the following

definition.

Definition 3.2.4. O(Σ,Ω+
j ) := O(Ω−j ,Ω

+
j )G(Bj,Ω

−
j )Res(Σ, Bj).

Every operator on the right hand side of the above definition is bounded,

so O(Σ,Ω+
j ) is a bounded operator. We usually drop the restriction operator

Res(Σ, Bj) it is clear from the context.

We will need the following version of the transmission operator.

Definition 3.2.5 (Transmission Operator). The transmission operator for Σ is

defined by

Õ(Σ,Ω) : Dharm(Σ) −→
n⊕
k=1

Dharm(Ω+
k )

h −→
(
O(Σ,Ω+

1 )h, . . . ,O(Σ,Ω+
n )h
)
.

We generalize the subspace 3.1 to the case of many boundary curves as

follows.

Definition 3.2.6. Define

W :=

{
(h1, . . . , hn) ∈

n⊕
k=1

Dharm(Ω+
k ) : lim

ε→0+

n∑
k=1

∫
Γ
pk
ε

hkα = 0 ; ∀α ∈ A(R)

}
.

We define the Cauchy-type integral operator for Ω+
1 , . . . ,Ω

+
n , as follows.
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Definition 3.2.7 (Cauchy-Type Integral Operator). Let z, q ∈ R\Γ. The Cauchy-

type integral operator for domains Ω+
1 , . . . ,Ω

+
n , is defined by

Jq(Γ) :
n⊕
k=1

Dharm(Ω+
k )→ Dharm(R\Γ)q

(h1, . . . , hn)→ − lim
ε→0+

n∑
k=1

1

πi

∫
Γ
pk
ε

∂wg(w; z, q)hk(w).

It should be noted that Γ here is understood as∪nk=1Γk. AlsoDharm(R\Γ)q

may need clarification. By this we mean the output of the Jq(Γ) operator is

a harmonic function on Σ if z ∈ Σ and is a harmonic function on Ω+
k if

z ∈ Ω+
k for some k = 1, 2, . . . , n. The output does not extend to a continuous

function on R.

Theorem 3.2.8. Let Jq(Γ) be defined as above. Then we have the following

1. The output of Jq(Γ) is in Dharm(R\Γ)q.

2. The operator [Jq(Γ)]Σ is a bounded operator from
⊕n

k=1Dharm(Ω+
k ) equipped

with norm ‖.‖⊕nk=1Dharm(Ω+
k ) to Dharm(Σ) equipped with norm ‖.‖Dharm(Σ).

The same result is true for the restriction [Jq(Γ)]Ω+
k

on each Ω+
k .

3. If the domain of [Jq(Γ)]Σ is restricted to W , then the output will be a holo-

morphic function on Σ.

Proof. We start with proving (1) and (2) together. The Cauchy-type integral

operator Jq(Γ) can be rewritten as a finite sum of the Cauchy-type integral

operators for the one boundary curve case. That is

Jq(Γ)(h1, . . . , hn) =
n∑
k=1

Jq(Γk)hk. (3.3)
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Recall that Jq(Γk) is harmonic everywhere on R except on Γk and vanishing

at q, therefore the right hand side of the above sum is harmonic everywhere

on R except on Γ and vanishes at q. The boundedness can be proven in the

same way.

For the part (3), the proof is similar to the one boundary curve case

proven in [62].

In the above proof note that even though the sum in the right hand side

of (3.3) when is restricted to Σ is a holomorphic function on Σ, not each term

in the sum is necessarily a holomorphic function on Σ.

As in the case of one boundary curve, fix pk ∈ Ω+
k for each k and define

W ′ =
n⊕
k=1

D(Ω+
k )pk ∩W .

whereD(Ω+
k )pk is the set of those anti-holomorphic functions inD(Ω+

k ) which

vanish at pk ∈ Ω+
k . For notational simplicity we define the following opera-

tor.

Definition 3.2.9. Define the operator

K :W ′ → D(Σ)q

by

K(h1, . . . , hn) = [Jq(Γ)(h1, . . . , hn)]Σ =
n∑
k=1

[Jq(Γk)Ω−k
hk]Σ.

As we see, the operator K is the operator Jq(Γ) when we apply some

restrictions to both its domain and its output. The boundedness of the oper-

ator K is a consequence of part (3) in the above theorem. In the definition of
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K, we purposely use [Jq(Γk)Ω−k
hk]Σ to indicates that although the function

Jq(Γk)hk is ultimately restricted to Σ, it carries an extension to the bigger

domain Ω−k .

To find an appropriate function space on the complex plane for the do-

main of Faber operator in many boundary curve case, we will pull back

functions inW ′ to D(D)
n
, we therefore have this definition

Dv(D)
n

:=
{

(H1, . . . , Hn) ∈ D(D)
n

: C̃f−1(H1, . . . , Hn) ∈ W ′
}
. (3.4)

In particular, Hk(0) = 0 for each k here.

In the next subsection, we will show that this function space will be the

right domain for the Faber operator corresponding to Σ, exactly as in the

one boundary curve case.

We continue by extending the G operator, defined in Section 1.5, to the

many boundary curve case. Let Ak be a collar neighbourhood of Γk in Ω+
k

for each k = 1, . . . , n. Let A denote ∪Ak and Ω denote ∪Ω+
k . Define G̃(A,Ω)

by

G̃(A,Ω) :
n⊕
k=1

D(Ak)→
n⊕
k=1

Dharm(Ω+
k )

(h1, . . . , hn)→
(
G(A1,Ω

+
1 )h1, . . . ,G(An,Ω

+
n )hn

)
.

G̃(A,Ω) is clearly a bounded operator since for each k, the operator G(Ak,Ω
+
k )

is bounded.

The following density theorem is similar to a density theorem proven in

[62] to show that the transmitted-jump formula is valid. We want to gener-

alize it from the one boundary curve case to the many ones. This theorem
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will be used to show the existence of a left inverse for the K operator.

Theorem 3.2.10. Let Ak be a collar neighbourhood of Γk in Ω+
k and let Γ′k be a

simple closed analytic curve in Ak, isotopic to Γk from within Ak for each k =

1, 2, . . . , n. If

E =

{
(h1, . . . , hn) ∈

n⊕
k=1

D(Ak) :
n∑
k=1

∫
Γ′k

hkα = 0 ; ∀α ∈ A(R)

}
,

then G̃(A,Ω)E is dense inW .

Proof. LetP :
⊕n

k=1D(Ak)→ E be the orthogonal projection to the subspace

E. Fix a basis {α1, . . . , αg} for A(R), where g is the genus of R. Define the

operator Q by

Q :
n⊕
k=1

D(Ak)→ Cg

(u1, . . . , un)→

(
n∑
k=1

∫
Γ′k

ukα1, . . . ,
n∑
k=1

∫
Γ′k

ukαg

)
.

For fixed j the map (u1, . . . , un) →
∑n

k=1

∫
Γ′k
ukαj is a bounded linear func-

tional on
⊕n

k=1D(Ak). By using the Reisz representation theorem and the

Gram-Schmidt process, there exists a C > 0 such that

‖P(u1, . . . , un)− (u1, . . . , un)‖⊕n
k=1Dharm(Ak) ≤ C‖Q(u1, . . . , un)‖Cg .

The operator Q1 is defined by

Q1 :
n⊕
k=1

Dharm(Ω+
k )→ Cg

(h1, . . . , hn)→

(
lim
ε→0+

n∑
k=1

∫
Γ
pk
ε

hkα1, . . . , lim
ε→0+

n∑
k=1

∫
Γ
pk
ε

hkαg

)
.
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By the definition of W , Q1(h1, . . . , hn) = 0 if (h1, . . . , hn) ∈ W . Similarly

there exists D > 0, such that

‖Q1(h1, . . . , hn)‖Cg ≤ D ‖(h1, . . . , hn)‖⊕n
k=1Dharm(Ω+

k ) .

Furthermore, [62, Theorem 4.9] implies

Q(u1, . . . , un) = Q1(G(A1,Ω
+
1 )u1, . . . ,G(An,Ω

+
n )un) = Q1G̃(A,Ω)(u1, . . . , un).

Now let (h1, . . . , hn) ∈ W . By the density of G(Ak,Ω
+
k )D(Ak) in Dharm(Ω+

k )

[62, Theorem 4.6], for each hk ∈ Dharm(Ω+
k ) there exists uk ∈ D(Ak) such that

∥∥G(Ak,Ω
+
k )uk − hk

∥∥
Dharm(Ω+

k )
≤ ε√

n
.

Thus, by the Minkowski inequality we have

∥∥∥G̃(A,Ω)P(u1, . . . , un)− (h1, . . . , hn)
∥∥∥

≤
∥∥∥G̃(A,Ω)P(u1, . . . , un)− G̃(A,Ω)(u1, . . . , un)

∥∥∥
+
∥∥∥G̃(A,Ω)(u1, . . . , un)− (h1, . . . , hn)

∥∥∥
≤
∥∥∥G̃(A,Ω)‖‖P(u1, . . . , un)− (u1, . . . , un)

∥∥∥
+
∥∥(G(A1,Ω

+
1 )u1 − h1, . . . ,G(An,Ω

+
n )un − hn

)∥∥

(3.5)

where all the norms are ‖.‖⊕n
k=1Dharm(Ω+

k ) except the operator norm
∥∥∥G̃(A,Ω)

∥∥∥.



84 Chapter 3. Faber Isomorphism and Grunsky Inequality

Since Q1(h1, . . . , hn) = 0 the second part of the first term in (3.5) can be esti-

mated as

‖P(u1, . . . , un)− (u1, . . . , un)‖ ≤ C ‖Q(u1, . . . , un)‖Cg

= C
∥∥∥Q1G̃(A,Ω)(u1, . . . , un)

∥∥∥
Cg

= C
∥∥∥Q1

(
G̃(A,Ω)(u1, . . . , un)− (h1, . . . , hn)

)∥∥∥
Cg

≤ CD
∥∥∥G̃(A,Ω)(u1, . . . , un)− (h1, . . . , hn)

∥∥∥ .
By our choice of uk, for the second term in (3.5) we have

∥∥(G(A1,Ω
+
1 )u1 − h1, . . . ,G(An,Ω

+
n )un − hn

)∥∥
=

(
n∑
k=1

∥∥G(Ak,Ω
+
k )uk − hk

∥∥2

Dharm(Ω+
k )

) 1
2

≤

(
n∑
k=1

ε2

n

) 1
2

= ε.

Finally, by inserting the above two inequalities in (3.5) one has

∥∥∥G̃(A,Ω)P(u1, . . . , un)− (h1, . . . , hn)
∥∥∥

≤ CD
∥∥∥G̃(A,Ω)

∥∥∥ ∥∥∥G̃(A,Ω)(u1, . . . , un)− (h1, . . . , hn)
∥∥∥+ ε

≤ CD
∥∥∥G̃(A,Ω)

∥∥∥ ε+ ε = (CD
∥∥∥G̃(A,Ω)

∥∥∥+ 1)ε.

Therefore, for given ε > 0 and (h1, . . . , hn) ∈ W , there exists P(u1, . . . , un) ∈

E such that

∥∥∥G̃(A,Ω)P(u1, . . . , un)− (h1, . . . , hn)
∥∥∥ ≤ (

∥∥∥G̃(A,Ω)
∥∥∥CD + 1)ε.

which shows that G̃(A,Ω)E is dense inW .
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We need the following lemma to show that the K operator has a left

inverse and also for some other points in thesis. We temporary change the

definitions of Σ and Ω in the following lemma.

Lemma 3.2.11. Let Γ be a quasicircle in R separating R into two subsurfaces

Ω and Σ. If A is a collar neighbourhood of the curve Γ in Ω, then for all h ∈

D(cl(Σ) ∪ A) the following is true:

O(Σ,Ω)(h|Σ) = G(A,Ω)(h|A).

Proof. By Theorem 1.4.4 we need to show that both sides of the above equal-

ity have the same CNT boundary values except possibly on a null set in Γ.

The harmonic function O(Σ,Ω)(h|Σ) has the same CNT boundary values on

Γ as h|Σ has except possibly on a null set in Γ.

On the other hand, G(A,Ω)(h|A) is the unique element in Dharm(Ω) for

which its CNT limits equal to h|A except possibly on a null set in Γ. Fur-

thermore, the equality h|A = h|Σ on Γ is clearly true since h is defined on

cl(Σ) ∪ A. Therefore, O(Σ,Ω)(h|Σ) = G(A,Ω)(h|A) except possibly on a null

set in Γ by Lemma 1.4.3, and they are equal on Ω by Lemma 1.4.3 and The-

orem 1.4.4.

Theorem 3.2.12. The operator −P̃ΩÕ(Σ,Ω) is a bounded left inverse of the K

operator .

Proof. For each k = 1, 2, . . . , n, let Ak be a collar neighbourhood of Γk in Ω+
k ,

let also hk ∈ D(Ak). Define E = ∪nk=1(Ω+
k \Ak) and O = ∪nk=1Ω+

k which are

a closed subset and an open subset of R, respectively. Γ = ∪nk=1Γk is the

boundary of O. We also have O\E = ∪nk=1Ak.
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We want to first show that for elements in E, the −P̃ΩÕ(Σ,Ω) operator

is a bounded left inverse of the K operator; then by density of G̃(A,Ω)E in

W (Theorem 3.2.10) and the boundedness of the operators here, the claim is

true for every element inW ′ which is a subset ofW .

Let (h1, . . . , hn) ∈ E. Define h =
∑n

k=1 hkχAk . Here χAk is the character-

istic function of Ak. By applying H. L. Royden [53, Theorem 4], there exists

H1 ∈ D(O) (F − f in the theorem) and H2 ∈ D(R\E) = D(cl(Σ) ∪ (∪nk=1Ak))

(−f in the theorem) which satisfy

h(z) = H1(z)−H2(z) ; ∀z ∈ O\E = ∪nk=1Ak.

We take the CNT boundary value limits of the above equation when z goes

to points on ∂O = ∪nk=1Γk from within ∪nk=1Ak. Using the same notation h

for the boundary value function of h, we have

h(z) = H1(z)−H2(z) ; ∀z ∈ ∂O.

Note that by restricting to each Ak, k = 1, . . . , n, or equivalently on each

Γk, the above equation generates in fact n equations. Now we restrict the

above equation to Ω+
j for a fixed j = 1, . . . , n. By Lemma 3.2.11, the CNT

boundary values of the function O(Σ,Ω+
j )(H2|Σ) on Γj is equal to CNT bound-

ary values of the function G(Aj,Ω
+
j )(H2|Aj) or equivalently H2|Aj except
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possibly on a null set in Γ. Therefore,

hj(z) = h|Aj(z) = H1|Aj(z)−H2|Aj(z) ; ∀z ∈ Γj,

G(Aj,Ω
+
j )hj(z) = G(Aj,Ω

+
j )(H1|Aj)(z)−G(Aj,Ω

+
j )(H2|Aj)(z) ; ∀z ∈ Ω+

j ,

G(Aj,Ω
+
j )hj(z) = H1|Ω+

j
(z)−O(Σ,Ω+

j )(H2|Σ)(z) ; ∀z ∈ Ω+
j .

(3.6)

We proceed by calculating H1 restricted on Ω+
j and H2 restricted to Σ

using the explicit formula that was given in Royden’s theorem [53, Theorem

4]. Let Γ′ = ∪nk=1Γ′k and z ∈ Ω+
j ⊂ O. We then have

H1|Ω+
j

(z) = [J ′q(Γ
′)h]O(z) = − 1

πi

∫
Γ′

(
n∑
k=1

hkχAk)(w) ∂wg(w; z, q)

= − 1

πi

n∑
k=1

∫
Γ′k

hk(w) ∂wg(w; z, q)

=
∑
k 6=j

[J ′q(Γ
′
k)Ω−k

hk]Ω+
j

(z) + [J ′q(Γ
′
j)Ω+

j
hj](z)

=
∑
k 6=j

[Jq(Γk)Ω−k
G(Ak,Ω

+
k )hk]Ω+

j
(z)

+ [Jq(Γj)Ω+
j
G(Aj,Ω

+
j )hj](z)
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where the last equality is coming from [62, Theorem 4.9]. On the other hand,

if z ∈ Σ, we have

H2|Σ(z) = [J ′q(Γ
′)h]Σ(z) = − 1

πi

∫
Γ′

(
n∑
k=1

hkχAk)(w) ∂wg(w; z, q)

= − 1

πi

n∑
k=1

∫
Γ′k

hk(w) ∂wg(w; z, q)

=
n∑
k=1

[J ′q(Γ
′
k)Ω−k

hk]Σ(z)

=
n∑
k=1

[Jq(Γk)Ω−k
G(Ak,Ω

+
k )hk]Σ(z).

By these two equalities, the last equation in (3.6) can be written as

G(Aj,Ω
+
j )hj(z) =

∑
k 6=j

[Jq(Γk)Ω−k
G(Ak,Ω

+
k )hk]Ω+

j
(z) + [Jq(Γj)Ω+

j
G(Aj,Ω

+
j )hj](z)

−O(Σ,Ω+
j )

n∑
k=1

[Jq(Γk)Ω−k
G(Ak,Ω

+
k )hk]Σ(z) ; ∀z ∈ Ω+

j .

(3.7)

Recall that H1 ∈ D(Ω+
j ) and O(Σ,Ω+

j )(H2|Σ) ∈ Dharm(Ω+
j ) in the last line

of (3.6). By applying the projection operator PΩ+
j

to the both sides of this

equation we have

PΩ+
j
G(Aj,Ω

+
j )hj(z) = PΩ+

j
H1(z)− PΩ+

j
O(Σ,Ω+

j )(H2|Σ)(z)

= 0− PΩ+
j
O(Σ,Ω+

j )(H2|Σ)(z)

= −PΩ+
j
O(Σ,Ω+

j )(H2|Σ)(z)

= −PΩ+
j
O(Σ,Ω+

j )
n∑
k=1

[
Jq(Γk)Ω−k

G(Ak,Ω
+
k )hk

]
Σ

(z),

for all z ∈ Ω+
j . Now by density of G̃(A,Ω)E inW and the boundedness of
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each operator that we have used, we derive the following important equa-

tion,

PΩ+
j
hj(z) = −PΩ+

j
O(Σ,Ω+

j )
n∑
k=1

[Jq(Γk)Ω−k
hk]Σ(z). (3.8)

for all (h1, . . . , hn) ∈ W and z ∈ Ω+
j . We can simplify this equation further

by expanding the transmission operator O(Σ,Ω+
j ) to each term

PΩ+
j
hj(z) = −PΩ+

j
O(Σ,Ω+

j )
n∑
k=1

[Jq(Γk)Ω−k
hk]Σ(z)

= −PΩ+
j

n∑
k=1

O(Σ,Ω+
j )[Jq(Γk)Ω−k

hk]Σ(z)

= −PΩ+
j

∑
k 6=j

O(Σ,Ω+
j )[Jq(Γk)Ω−k

hk]Σ(z)

− PΩ+
j
O(Σ,Ω+

j )[Jq(Γj)Ω−j
hj]Σ(z)

= −PΩ+
j

∑
k 6=j

[Jq(Γk)Ω−k
hk]Ω+

j
(z)

− PΩ+
j
O(Ω−j ,Ω

+
j )[Jq(Γj)Ω−j

hj](z)

(3.9)

for z ∈ Ω+
j , which is again valid for all (h1, . . . , hn) ∈

⊕n
k=1Dharm(Ω+

k ).

Finally, if (h1, . . . , hn) ∈
⊕n

k=1D(Ω+
k ) ∩W , then by (3.8) we have

hj(z) = PΩ+
j
hj(z) = −PΩ+

j
O(Σ,Ω+

j )
n∑
k=1

[Jq(Γk)Ω−k
hk]Σ(z)

= [−PΩ+
j
O(Σ,Ω+

j )K(h1, . . . , hn)](z).

(3.10)

Therefore, a left inverse of the operator K is

−P̃ΩÕ(Σ,Ω).
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The above theorem has some consequences for the Faber operator which

will be defined soon.

Lemma 3.2.13. Let f : D → Ω+ ⊂ R be a conformal map and P and Cf be

the projection to the anti-holomorphic part and the composition with f operators,

respectively. Then

PD Cf = CfPΩ+ .

Proof. Given any h ∈ Dharm(Ω+), h◦ f ∈ Dharm(D) can be written as H1 +H2

for some Hk ∈ D(D), k = 1, 2, with H1(0) = 0. Therefore, PD Cfh = PD(H1 +

H2) = H2.

The above equality implies also that h can be written as H1 ◦ f−1 + H2 ◦

f−1, thus the right hand side is CfPΩ+h = Cf (H2 ◦ f−1) = H2. Since h ∈

Dharm(Ω+) was arbitrary this completes the proof.

Remark 3.2.14. The same result is clearly valid for PΩ+ and PD or the composition

with the map f−1.

Before defining the Faber and Grunsky operators for the many bound-

ary curve case we need another density theorem. In the next section we

introduce this theorem.

3.2.2 A Density Theorem

In order to prove some inequalities regarding the Grunsky operator norm,

as in Theorem 3.2.26 ahead, we need a density theorem. This density theo-

rem was obtained in a joint work with Schippers and Staubach [59]. Here

we restate this theorem using the notation used here.
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Theorem 3.2.15. Let R, Σ, Γk’s, Ω±k ’s be the same as Section 3.2. Suppose each

boundary curve Γk is a quasicircle. For each k = 1, 2, . . . , n, and ε > 0 sufficiently

small, define

Ω+
kε =

{
w ∈ Ω+

k : gΩ+
k

(w, pk) < ε
}
,

for some pk fixed in Ω+
k . Then the set of the restrictions of functions in D(cl(Σ) ∪

Ω+
1ε ∪ · · · ∪ Ω+

nε) to Σ is dense in D(Σ).

Each Ω+
kε here is in fact a collar neighbourhood of Γk in Ω+

k by the defini-

tion given in Section 1.4.

3.2.3 Faber and Grunsky Operators

Definition 3.2.16 (Faber Operator). Let f = (f1, . . . , fn) be as above. Define the

Faber operator corresponding to f (or Σ), by

If : Dv(D)
n
→ D(Σ)q

(H1, . . . , Hn)→ −KC̃f−1(H1, . . . , Hn).

In other words,

If (H1, . . . , Hn)(z) = −
n∑
k=1

[Jq(Γk)Ω−k
Cf−1

k
Hk]Σ(z) ; z ∈ Σ.

Since the output of each term [Jq(Γ)Ω−k
Cf−1

k
Hk] in the sum is a harmonic

function on Ω−k , the sum is a harmonic function on Σ = ∩nk=1Ω−k . Since

C̃f−1(H1, . . . , Hn) is inW ′, the sum is in fact holomorphic on Σ and is zero at

the point q by Theorem 3.2.8, so the above definition makes sense.
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Remark 3.2.17. It should be noted that the composition operator C̃f−1 used in the

definition of the Faber operator is in fact C̃f−1 |Dv(D)
n : Dv(D)

n
→W ′. However, we

still use the same notation for that.

Corollary 3.2.18. The Faber operator If is a bounded operator fromDv(D)
n

equipped

with the norm ‖.‖Dharm(D)n to D(Σ)q equipped with the norm ‖.‖Dharm(Σ).

Here is a corollary to Theorem 3.2.12.

Corollary 3.2.19. The operator C̃f P̃ΩÕ(Σ,Ω) is a bounded left inverse for the

Faber operator If . Therefore, If is a one-to-one operator.

Similar to the generalization of the Faber operator, we would like to gen-

eralize the Grunsky operator corresponding to f = (f1, . . . , fn) or equiva-

lently to Σ.

Definition 3.2.20 (Grunsky Operator). Let f = (f1, . . . , fn) be as above. As-

sume all the boundary curves of Σ are quasicircles. Define

Grjk(f) : D(D)→ D(D),

by

Grjk(f)H =


−PDCfj [Jq(Γk)Ω−k

Cf−1
k
H]Ω+

j
, if j 6= k

−PDCfjO(Ω−j ,Ω
+
j )[Jq(Γj)Ω−j

Cf−1
j
H], if j = k.

Then the Grunsky operator corresponding to f (or Σ) Grf : Dv(D)
n
→ D(D)n is

defined by

Grf
(
H1, . . . , Hn

)
=

(
n∑
k=1

Gr1k(f)Hk, . . . ,
n∑
k=1

Grnk(f)Hk

)
.
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We emphasize that inside each component we are adding finitely many

holomorphic functions on the unit disc in the complex plane, so the com-

ponent is a holomorphic function on D. Note that each Grjk(f) is defined

on the bigger domainD(D) whereas Grf is only defined onDv(D)
n

which is

not clearly
(
D(D)

)n.

By Definitions 3.1.9 and 3.1.10 it turns out that Grjj(f) is simply Grfj .

Remark 3.2.21. For the Riemann sphere, the g = 0 case, a similar formulation

of the Grunsky operator for a family of conformal maps f = (f1, . . . , fn) with non

overlapping images in C was given in [46, Definition 4.6].

The proof of the boundedness of the operator Grf is not as easy as the

one for the operator If , and is one of the main results of the thesis. Here we

will show that if each boundary curve Γk of Ω+
k is a quasicircle, then Grf is

a bounded operator of the norm less than one. The complete proof of norm

is strictly less than one will be done later. To accomplish that we first need

a few lemmas.

We did not make use of the holomorphicity of the function h in the pre-

vious proof except to prove the existence of the CNT boundary values on Γ.

Therefore, Lemma 3.2.11 is also true for harmonic functions on cl(Σ) ∪ A.

Lemma 3.2.22. Let R and Σ be as above and Ω be a simply connected subsurface

of R bordered by a strip-cutting Jordan curve. Let f : D → Ω be a conformal map

onto Ω and A be an annulus in D whose outer boundary is the unit circle. Suppose

f maps A conformally to a collar neighbourhood A = f(A) of Γ in Ω. Then for

every h ∈ Dharm(A) one has

G(A,D)Cfh = CfG(A,Ω)h.
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Proof. First note that the operator Cf on the left hand side is in fact Cf |A ; we,

however, use the same notation as Cf for simplicity. The existence of the

CNT limits of h and Cfh follows from Theorem 1.4.5.

If h ∈ Dharm(A), then by definition of G(A,D), G(A,D)Cfh is the unique

function in Dharm(D) such that G(A,D)Cfh and Cfh have the same non-

tangential limits except possibly on a set of logarithmic capacity zero in S1.

Similarly, G(A,Ω)h is the unique function inDharm(Ω) such that G(A,Ω)h

and h have the same CNT boundary values on Γ except possibly on a null set

in Γ. By Definition 1.4.1 this means that CfG(A,Ω)h and Cfh have the same

non-tangential limits on S1 except possibly on a set of logarithmic capacity

zero in S1.

Therefore, G(A,D)Cfh and CfG(A,Ω)h have the same non-tangential lim-

its on S1 except possibly on a set of logarithmic capacity zero in S1, so they

are equal on D by Lemma 1.4.3.

The Laurent expansion of a holomorphic function h on an annulus A in

the complex plane is well-known. Using the Laurent expansion of h ∈ D(A),

we obtain two holomorphic functions of finite Dirichlet norm h+ ∈ D(D)

and h− ∈ D(cl(D−) ∪ A) such that h = h+ + h− on A. Note that h− has a

holomorphic extension to C\{0}. For later use, here we express this theorem

on D(D) in terms of both the G and O operators.

Lemma 3.2.23 (Laurent Decomposition). A function h ∈ D(A) can be decom-

posed to h+ + h− where h+ and h− are as follows,

h+ = PDG(A,D)h ∈ D(D),

h− = O(D,D−)PDG(A,D)h ∈ D(D−).
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Proof. Note that G(A,D)zn = zn for n ≥ 1, G(A,D)z−n = z̄n for n ≥ 0,

O(D,D−)zn = (1
z̄
)n for n ≥ 1, and O(D,D−)z̄n = (1

z
)n for n ≥ 0. Then the

density of the polynomials in zn and z−n in the Dirichlet spaceD(A) and the

boundedness of the O and G operators completes the proof.

Lemma 3.2.24. The transmission operator O(D,D−) has norm one, so it is an

isometry with respect to the Dirichlet semi-norm. That is,

∥∥O(D,D−)h
∥∥
Dharm(D−)

= ‖h‖Dharm(D) ,

for every h ∈ Dharm(D). A similar result is true for O(D−,D).

Proof. It can be shown that this is true for monomials. Then by the den-

sity of these elements in Dharm(D) and the boundedness of the transmission

operator we have it in general.

Recall Remark 1.4.7 for the following theorem.

Lemma 3.2.25. Let H and G be holomorphic functions on D. Then

∫
γr

(O(D,D−)H(z))′ G(z) dz = 0,∫
γr

(O(D,D−)H(z)) G′(z) dz = 0,

where γr = {z ∈ C : |z| = r} for 0 < r < 1.

Proof. The proof is essentially based on the Taylor expansions of H(z) =∑∞
n=0 anz

n and G(z) =
∑∞

m=0 bmz
m in the unit disc and Remark 1.4.7. Fix
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0 < r < 1, then

∫
γr

(O(D,D−)H(z))′ G(z) dz =

∫
γr

(O(D,D−)
∞∑
n=0

ānz̄
n)′ (

∞∑
m=0

bmzm) dz

=

∫
γr

(
∞∑
n=0

ān z
−n)′(

∞∑
m=0

b̄m z̄
m) dz

=

∫
γr

(−
∞∑
n=0

n ān z
−n−1)(

∞∑
m=0

b̄m z̄
m) dz

= −
∫
γr

(
∞∑
n=1

n ān z
−n−1)(

∞∑
m=0

b̄m r
2m z−m) dz

= −
∫
γr

(
∞∑
n=1

∞∑
m=0

n ān b̄m r
2m z−m−n−1

)
dz

= −
∞∑
n=1

∞∑
m=0

n ān b̄m r
2m

∫
γr

z−m−n−1dz.

The only case that one can get a non-zero integral is when−n−m = 0 which

is impossible by non-negativity of these two numbers. The second equality

can be proven similarly.

Here is one of the most important result of the thesis which generalizes

similar results explained in Section 2.2 to the many boundary curve case.

Theorem 3.2.26. Let R, Σ, Γk and Ω+
k , and fk, k = 1, . . . , n be as in Section 3.2.

Assume all the boundary curves are quasicircles. Then the Grunsky operator

Grf : (Dv(D)
n
, ‖.‖Dharm(D)n) −→ (D(D)n, ‖.‖Dharm(D)n)

(
H1, . . . , Hn

)
−→

(
n∑
k=1

Gr1k(f)Hk, . . . ,
n∑
k=1

Grnk(f)Hk

)
,
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is a bounded operator of norm less than or equal to one. Furthermore, one has

∥∥If (H1, . . . , Hn)
∥∥2

Dharm(Σ)
= −

∥∥Grf (H1, . . . , Hn)
∥∥2

Dharm(D)n

+
∥∥(H1, . . . , Hn)

∥∥2

Dharm(D)n
.

(3.11)

Proof. Let us recall the definitions of norms here:

∥∥(H1, . . . , Hn)
∥∥2

Dharm(D)n
=

n∑
k=1

∥∥Hk

∥∥2

Dharm(D)
,

∥∥Grf (H1, . . . , Hn)
∥∥2

Dharm(D)n
=

n∑
j=1

∥∥∥∥∥
n∑
k=1

Grjk(f)Hk

∥∥∥∥∥
2

Dharm(D)

.

The proof will proceed as follows. We first prove the claim for the set

of all (H1, . . . , Hn) in Dv(D)
n

such that If (H1, . . . , Hn) ∈ D(Σ)q has a holo-

morphic extension past the boundary of Σ. More precisely, we assume that

If (H1, . . . , Hn) carries a holomorphic extension on a collar neighbourhood

Ak of the boundary curve Γk in Ω+
k for each k = 1, . . . , n. The proof on this

set of functions is rather straightforward. Then by the density theorem, The-

orem 3.2.15, and the boundedness of the operators involved in the proof, the

claim holds for every element in D(Σ)q. To apply the density theorem prop-

erly, we assume Ak = Ω+
kε for some sufficiently small ε > 0 depending on

(H1, . . . , Hn).

By the above assumption and the finiteness of the number of the curves,

there is a number 0 < R < 1 such that the image of γR = {z ∈ C : |z| = R}

under fk is entirely in Ak for all k = 1, . . . , n. In other words, there is an

annulus A = {z ∈ C : R < |z| < 1} such that

fk|A : A→ Ak
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is a conformal bijection for each k = 1, . . . , n. Note that we may have to

shrink Ak’s to find such an A but we keep using the same notation for them.

For fixed Γk and R < r < 1, the curves f(γr) are analytic curves in Ω+
k .

These curves approach Γk from within Ω+
k as r approaches one. IfR < r < 1,

then by the Green’s identity and the fact that Γk’s are negatively oriented

with respect to surface Σ we have

∥∥If (H1, . . . , Hn)
∥∥2

Dharm(Σ)
=

∫∫
Σ

∣∣If (H1, . . . , Hn)′
∣∣2

= − 1

2i
lim
r→1−

∫
∪fj(γr)

If (H1, . . . , Hn)′(z) If (H1, . . . , Hn)(z) dz

= − 1

2i
lim
r→1−

n∑
j=1

∫
fj(γr)

If (H1, . . . , Hn)′(z) If (H1, . . . , Hn)(z) dz

= − 1

2i
lim
r→1−

n∑
j=1

∫
fj(γr)

(
−

n∑
k=1

[Jq(Γk)Ω−k
Cf−1

k
Hk]Aj(z)

)′

×

(
−

n∑
k=1

[Jq(Γk)Ω−k
Cf−1

k
Hk]Aj(z)

)
dz

= − 1

2i
lim
r→1−

n∑
j=1

∫
γr

(
−

n∑
k=1

[Jq(Γk)Ω−k
Cf−1

k
Hk]Aj(fj(w))

)′

×

(
−

n∑
k=1

[Jq(Γk)Ω−k
Cf−1

k
Hk]Aj(fj(w))

)
dw.

We have used (Ω+
j , fj) as holomorphic charts to set up the integrals on the

Riemann surface R, which defines the variable zj = fj(w) in each term. For

simplicity we used z = zj . We continue simplifying the above integral by

using the composition operator. Here by Cfj we mean Cfj |A . We obtained
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that the above integral is equal to

= − 1

2i
lim
r→1−

n∑
j=1

∫
γr

(
−Cfj

n∑
k=1

[Jq(Γk)Ω−k
Cf−1

k
Hk]Aj(w)

)′

×

(
−Cfj

n∑
k=1

[Jq(Γk)Ω−k
Cf−1

k
Hk]Aj(w)

)
dw

(3.12)

Note that the assumption of an existence of the extension of If past the

boundary of Σ implies that for fixed j = 1, 2, . . . , n, the sum
∑n

k=1[Jq(Γk)Ω−k
Cf−1

k
Hk]

has a holomorphic extension past the boundary curve Γj toAj . If k 6= j, then

each term Jq(Γk)Ω−k
Cf−1

k
Hk in the sum admits such a holomorphic extension

by its definition. So our assumption, in fact, implies that Jq(Γj)Ω−j
Cf−1

j
Hj

admits a holomorphic extensions to Aj .

We proceed by simplifying the integrand in (3.12). The choice of annulus

A implies that −Cfj
∑n

k=1[Jq(Γk)Ω−k
Cf−1

k
Hk]Aj ∈ D(A). Therefore, by apply-

ing Lemma 3.2.23, we have the identity

− Cfj
n∑
k=1

[Jq(Γk)Ω−k
Cf−1

k
Hk]Aj

=
[
O(D,D−)PDG(A,D)(−Cfj

n∑
k=1

[Jq(Γk)Ω−k
Cf−1

k
Hk]Aj)

]
+
[
PDG(A,D)(−Cfj

n∑
k=1

[Jq(Γk)Ω−k
Cf−1

k
Hk]Aj)

]
,



100 Chapter 3. Faber Isomorphism and Grunsky Inequality

and by applying Lemma 3.2.22 the above is equal to

= −
[
O(D,D−)PDCfjG(Aj,Ω

+
j )(
∑
k 6=j

[Jq(Γk)Ω−k
Cf−1

k
Hk]Aj)

]
−
[
O(D,D−)PDCfjG(Aj,Ω

+
j )[Jq(Γj)Ω−j

Cf−1
j
Hj]Aj

]
−
[
PDCfjG(Aj,Ω

+
j )(
∑
k 6=j

[Jq(Γk)Ω−k
Cf−1

k
Hk]Aj)

]
−
[
PDCfjG(Aj,Ω

+
j )[Jq(Γj)Ω−j

Cf−1
j
Hj]Aj

]
.

Then Lemma 3.2.11 and the definition of G(Aj,Ω
+
j ) imply that

= −
[
O(D,D−)PDCfj

∑
k 6=j

[Jq(Γk)Ω−k
Cf−1

k
Hk]Ω+

j

]
−
[
O(D,D−)PDCfjO(Ω−j ,Ω

+
j )[Jq(Γj)Ω−j

Cf−1
j
Hj]Ω−j

]
−
[
PDCfj

∑
k 6=j

[Jq(Γk)Ω−k
Cf−1

k
Hk]Ω+

j

]
−
[
PDCfjO(Ω−j ,Ω

+
j )[Jq(Γj)Ω−j

Cf−1
j
Hj]Ω−j

]
.

By Lemma 3.2.13 and Definition 3.2.20, the above is equal to

= O(D,D−)Cfj
[
−
∑
k 6=j

(PΩ+
j

[Jq(Γk)Ω−k
Cf−1

k
Hk]Ω+

j
)

− PΩ+
j
O(Ω−j ,Ω

+
j )[Jq(Γj)Ω−j

Cf−1
j
Hj]Ω−j

]
+
∑
k 6=j

Grjk(f)Hk +Grjj(f)Hj.
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Applying Equation (3.9) implies that

= O(D,D−)Cfj
[∑
k 6=j

(−PΩ+
j

[Jq(Γk)Ω−k
Cf−1

k
Hk]Ω+

j
)

− PΩ+
j
O(Ω−j ,Ω

+
j )[Jq(Γj)Ω−j

Cf−1
j
Hj]Ω−j

]
+

n∑
k=1

Grjk(f)Hk

= O(D,D−)Cfj
(
PΩ+

j
Cf−1

j
Hj

)
+

n∑
k=1

Grjk(f)Hk;

finally, applying Lemma 3.2.13 one more time implies that

= O(D,D−)Hj +
n∑
k=1

Grjk(f)Hk.

Therefore, we have the following important identity

−Cfj
n∑
k=1

[Jq(Γk)Ω−k
Cf−1

k
Hk]Aj = O(D,D−)Hj +

n∑
k=1

Grjk(f)Hk. (3.13)
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Now by inserting Equation (3.13) in (3.12) and also by the extension

property of O(D,D−)Hj explained in Remark 1.4.7, we have

∥∥If (H1, . . . , Hn)
∥∥2

Dharm(Σ)

= − 1

2i
lim
r→1−

n∑
j=1

∫
γr

(
O(D,D−)Hj(w) +

n∑
k=1

Grjk(f)Hk(w)

)′

×

(
O(D,D−)Hj(w) +

n∑
k=1

Grjk(f)Hk(w)

)
dw

= − 1

2i
lim
r→1−

n∑
j=1

∫
γr

(
O(D,D−)Hj(w)

)′ (
O(D,D−)Hj(w)

)
dw

− 1

2i
lim
r→1−

n∑
j=1

∫
γr

(
n∑
k=1

Grjk(f)Hk(w)

)′( n∑
k=1

Grjk(f)Hk(w)

)
dw

− 1

2i
lim
r→1−

n∑
j=1

∫
γr

(
O(D,D−)Hj(w)

)′( n∑
k=1

Grjk(f)Hk(w)

)
dw.

− 1

2i
lim
r→1−

n∑
j=1

∫
γr

(
n∑
k=1

Grjk(f)Hk(w)

)′ (
O(D,D−)Hj(w)

)
dw.

(3.14)

The first integral in the above identity can be simplified as follows

− 1

2i
lim
r→1−

n∑
j=1

∫
γr

(
O(D,D−)Hj(w)

)′ (
O(D,D−)Hj(w)

)
dw

=
n∑
j=1

∥∥O(D,D−)Hj

∥∥2

Dharm(D−)

=
n∑
j=1

∥∥Hj

∥∥2

Dharm(D)
.

Here we have used lemma 3.2.24, the Green’s identity, and the fact that

O(D,D−)Hj is in Dharm(cl(D−) ∪ A) and γr’s are negatively oriented with

respect to cl(D−) ∪ A.
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For the second term in (3.14), we similarly have

− 1

2i
lim
r→1−

n∑
j=1

∫
γr

(
n∑
k=1

Grjk(f)Hk(w)

)′( n∑
k=1

Grjk(f)Hk(w)

)
dw

= −
n∑
j=1

∫∫
D
|

(
n∑
k=1

Grjk(f)Hk

)′
|2 = −

n∑
j=1

∥∥∥∥∥
n∑
k=1

Grjk(f)Hk

∥∥∥∥∥
2

Dharm(D)

.

since γr’s are positively oriented with respect to the domain of the integra-

tion.

Now consider the fourth term in (3.14):

− 1

2i
lim
r→1−

n∑
j=1

∫
γr

(
n∑
k=1

Grjk(f)Hk(w)

)′ (
O(D,D−)Hj(w)

)
dw = 0.

by Lemma 3.2.25 and the fact that Gj :=
∑n

k=1 Grjk(f)Hk is holomorphic on

D. Applying Lemma 3.2.25 one more time shows that the third term in (3.14)

is also zero. Therefore, (3.14) becomes

= −
n∑
j=1

∥∥∥∥∥
n∑
k=1

Grjk(f)Hk

∥∥∥∥∥
2

Dharm(D)

+
n∑
j=1

∥∥Hj

∥∥2

Dharm(D)

= −
∥∥Grf (H1, . . . , Hn)

∥∥2

Dharm(D)n
+
∥∥(H1, . . . , Hn)

∥∥2

Dharm(D)n
.

Finally, by the above equation and (3.12) we have the following

∥∥If (H1, . . . , Hn)
∥∥2

Dharm(Σ)
= −

∥∥Grf (H1, . . . , Hn)
∥∥2

Dharm(D)n

+
∥∥(H1, . . . , Hn)

∥∥2

Dharm(D)n
.

(3.15)

This completes the proof for those (H1, . . . , Hn) ∈ Dv(D)
n

for which If (H1, . . . , Hn)

admits a holomorphic extension past the boundary of Σ.
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By Theorem 3.2.15 and the boundedness of the operators we have (3.15)

for all elements in Dv(D)
n

which completes the proof.

We are as yet unable to prove that the norm of the Grunsky operator is

strictly less than one. To do so, we will first show that the Schiffer operator

and as a result the Faber operator, for the many boundary curve case, are

isomorphisms when the boundary curves are quasicircles. Then we will

prove that in this case the Grunsky operator norm is strictly less than one;

see Corollary 3.2.45.

Exactly like the case of one boundary curve, to prove some isomorphisms

theorems for Faber operator, we need the Schiffer operator. In the next sec-

tion we will define the Schiffer operator for the many boundary curve case

and prove some important properties of that. The dependence to the regu-

larity of the boundary curves will be discussed.

3.2.4 Schiffer Operator for Surfaces with Many Borders

We define the Schiffer operator for the many boundary curve case based on

the Schiffer operators T (Ω; Σ) and T (Σ; Ω) for a compact Riemann surface

with one boundary curve.

By the definition of Ω±j , for fixed j = 1, . . . , n, the Schiffer operator can

be written as

T (Ω+
j ; Ω−j ) : A(Ω+

j )→ A(Ω−j )

α→ 1

πi

∫∫
Ω+
j ,w

∂z∂wg(w; z, q) ∧ α(w),

where z ∈ Ω−j . Therefore the following definition is well-defined.
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Definition 3.2.27 (Schiffer Operator for n > 1). Let R, Γk’s, Ω±k ’s and Σ be as

Section 3.2. Define the Schiffer operator by

T (Ω+
1 , . . . ,Ω

+
n ; Σ) :

n⊕
k=1

A(Ω+
k )→ A(Σ)

where for (α1, . . . , αn) ∈
⊕n

k=1A(Ω+
k ) and z ∈ Σ one has

[T (Ω+
1 , . . . ,Ω

+
n ; Σ)(α1, . . . , αn)](z) :=

1

πi

n∑
k=1

∫∫
Ωk,w

∂z∂wg(w; z, q) ∧ αk(w)

=
n∑
k=1

[T (Ω+
k ; Ω−k )αk]Σ(z).

For fixed j = 1, . . . , n, the Schiffer operator is defined by

T (Ω+
1 , . . . ,Ω

+
n ; Ω+

j ) :
n⊕
k=1

A(Ω+
k )→ A(Ω+

j )

where for z ∈ Ω+
j on has

[T (Ω+
1 , . . . ,Ω

+
n ; Ω+

j )(α1, . . . , αn)](z) :=
n∑
k=1
k 6=j

[T (Ω+
k ; Ω−k )αk]Ω+

j
(z)

+ [T (Ω+
j ; Ω+

j )αj](z).

Similar to the space VΩ defined in (3.2) let V be defined by

V =

{
(α1, . . . , αn) ∈

n⊕
k=1

A(Ω+
k ) :

n∑
k=1

∫∫
Ω+
k

β ∧ αk = 0 ; ∀β ∈ A(R)

}
.

Before proceeding further we would like to first investigate the relationship

between the function spaceW and space V of anti-holomorphic 1-forms.
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Lemma 3.2.28. The operator

∂̃ :
n⊕
k=1

D(Ω+
k ) ∩W → V

(h1, . . . , hn)→ (∂ h1, . . . , ∂ hn),

is a surjective operator which preserves the semi-norm.

Proof. If (h1, . . . , hn) ∈
⊕n

k=1D(Ω+
k ) ∩W , then

∂̃(h1, . . . , hn) = (∂ h1, . . . , ∂ hn) ∈ V

by Stokes’ theorem, the first identity in (3.16) below, and the fact that each

∂ hk is in A(Ω+
k ). So the operator ∂̃ is well-defined.

On the other hand, let (α1, . . . , αn) ∈ V , since each Ω+
k is a simply con-

nected domain of R there exists (unique up to constant) hk ∈ D(Ω+
k ) such

that ∂ hk = αk. It should be shown that (h1, . . . , hn) ∈
⊕n

k=1D(Ω+
k ) ∩W . Let

α ∈ A(R). Stokes’ theorem implies that

lim
ε→0+

n∑
k=1

∫
Γ
pk
ε

hkα =
n∑
k=1

∫∫
Ω+
k

∂ hk ∧ α =
n∑
k=1

∫∫
Ω+
k

αk ∧ α = 0, (3.16)

where the last equality holds because (α1, . . . , αn) ∈ V . Since αwas arbitrary

this is true for every α ∈ A(R). Therefore, (h1, . . . , hn) ∈
⊕n

k=1D(Ω+
k ) ∩ W

and

∂̃(h1, . . . , hn) = (∂ h1, . . . , ∂ hn) = (α1, . . . , αn).

The operator ˜̄∂ preserves the norm since the operator ∂̄ is norm preserv-

ing.

The above lemma then implies that
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Corollary 3.2.29. The restriction ∂̃ operator to W ′ is an isometric isomorphism

onto V .

Proof. By Lemma 3.2.4 and Lemma 3.1.7 for the one boundary curve case.

We need an integral operator with the Bergman kernel. Recall the S(Ω)

operator defined in Subsection 3.1.1.

Definition 3.2.30 (Schiffer Operator for n > 1). The Schiffer (comparison) op-

erator is defined by

S(Ω+
1 , . . . ,Ω

+
n ) :

n⊕
k=1

A(Ω+
k )→ A(R)

(α1, . . . , αn)→
n∑
k=1

∫∫
Ω+
k ,w

KR(z, w) ∧ αk(w),

for z ∈ R.

Although the Schiffer comparison operator has the same kernel as the

Bergman operator, the domain of the integration is different than the Bergman

ones. Schiffer considered this in a chapter in the book by Courant [12]. Sim-

ilar to the T operator, the S operator can be reduced to a finite sum of oper-

ators corresponding to each Ω+
k . That is,

S(Ω+
1 , . . . ,Ω

+
n )(α1, . . . , αn) =

n∑
k=1

S(Ω+
k )αk.

The output of the integral operator S is defined everywhere on the Riemann

surface R even on the boundary curve Γ.
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We also need a conjugate of S operator.

S(Ω+
1 , . . . ,Ω

+
n ) :

n⊕
k=1

A(Ω+
k )→ A(R)

(α1, . . . , αn)→ S(Ω+
1 , . . . ,Ω

+
n )(α1, . . . , αn),

or equivalently

S(Ω+
1 , . . . ,Ω

+
n )(α1, . . . , αn) =

n∑
k=1

S(Ω+
k )αk.

Using our notation, we recall the definition

T (Ω+
j ; Ω−j ) : A(Ω+

j )→ A(Ω+
j )

α→ T (Ω+
j ; Ω−j )α,

for every α ∈ A(Ω+
j ).

For brevity we may simply say T or S operators to refer to the above

operators when the number of boundary curves is clear from the context.

Thanks to [62, Theorem 3.11] the adjoint operators of both T and S can

be found in the case of n > 1 boundary curves. The following theorem [62,

Theorem 3.11] shows one of the applications of this operator. It seems that

this result was not investigated by Schiffer; see Schippers and Staubach [62]

for more details.

Theorem 3.2.31 (Schippers and Staubach). Let R be a compact Riemann sur-

face. Let Γ be a strip-cutting Jordan curve with measure zero and assume that Γ is

separating R into two connected components Ω±. Then the adjoint of T (Ω+; Ω−)

operator is T (Ω−; Ω+).
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We frequently need to restrict holomorphic 1-forms from a surface to its

subsurfaces or extend them on the other way (if it exists). For that purpose,

we define two operators. Let B and A be two subsurfaces of a Riemann

surface R such that B ⊂ A. Let KA be the Bergman kernel of A.

S(B;A) : A(B)→ A(A)

α→
∫∫
B
KA(z, w) ∧w α(w).

for z ∈ A. We may simply write S(B) when A = R which is the same as

the definition given in Subsection 3.1.1 for S(B). Another operator is the

restriction operator

Res(A,B) : A(A)→ A(B)

α→ α|B.

similarly Res(B) stands for the restriction from R to B. It is clear from the

definition and the reproducing property of the Bergman kernel, see Section

1.8, that S(A;A) is identity operator IA(A). Trivially we have Res(A,A) =

IA(A). We are ready to talk about the adjoint of the S(B;A) operator. This

result will be used to find the adjoint of T .

Lemma 3.2.32. S(B;A)? = Res(A,B).
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Proof. Let α ∈ A(B) and β ∈ A(A). By part (5), Theorem 1.8.1 and the

reproducing property of the Bergman kernel, one has

< S(B;A)α, β >Aharm(A) =

∫∫
A,z

[S(B;A)α](z) β(z) dAz

=

∫∫
A,z

(∫∫
B,w

(2i)KA(z, w)α(w) dAw

)
β(z) dAz

=

∫∫
B,w

(∫∫
A,z

(2i)KA(z, w) β(z) dAz

)
α(w) dAw

=

∫∫
B,w

(
−
∫∫
A,z

(2i)KA(z, w) β(z) dAz

)
α(w) dAw

=

∫∫
B,w

(∫∫
A,z

(2i)KA(w, z) β(z) dAz

)
α(w) dAw

=

∫∫
B,w

β(w)α(w) dAw =< α,Res(A,B)β >Aharm(B) .

To justify the change in the order of the integration note that the Bergman

kernel is holomorphic and bounded on R; therefore, Fubini’s theorem is

applicable. See [59] for a complete proof.

Remark 3.2.33. The above result for general domains in the complex plane was

first shown by E. Schippers in an unpublished note.

Theorem 3.2.34. For the Schiffer operator we have

1. The adjoint of T (Ω+
1 , . . . ,Ω

+
n ; Σ) is

T (Ω+
1 , . . . ,Ω

+
n ; Σ)? :A(Σ)→

n⊕
k=1

A(Ω+
k )

α→
(
T (Ω−1 ; Ω+

1 )S(Σ; Ω−1 )α, . . . , T (Ω−n ; Ω+
n )S(Σ; Ω−n )α

)
.
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2. For j = 1, . . . , n, the adjoint of T (Ω+
1 , . . . ,Ω

+
n ; Ω+

j ) is

T (Ω+
1 , . . . ,Ω

+
n ; Ω+

j )? :A(Ω+
j )→

n⊕
k=1

A(Ω+
k )

α→
(
T (Ω−1 ; Ω+

1 )S(Ω+
j ,Ω

−
1 )α, . . . , T (Ω−n ; Ω+

n )S(Ω+
j ; Ω−n )α

)
.

Proof. For the case n = 1, we have Ω−1 = Σ. Therefore, S(Σ; Ω−1 ) = IA(Ω−1 ) and

T (Ω+
1 ; Σ)? = T (Ω+

1 ; Ω−1 )? = T (Ω−1 ; Ω+
1 ) which is Theorem 3.2.31. We therefore

continue by assuming that n > 1.

For (α1, . . . , αn) ∈
⊕n

k=1 A(Ω+
k ) and for α ∈ A(Σ) we have the following

< T (Ω+
1 , . . . ,Ω

+
n ; Σ)(α1, . . . , αn), α >Aharm(Σ)

=
n∑
k=1

< [T (Ω+
k ; Ω−k )αk]Σ, α >Aharm(Σ)

=
n∑
k=1

< Res(Ω−k ,Σ)[T (Ω+
k ; Ω−k )αk], α >Aharm(Σ)

=
n∑
k=1

< αk, [Res(Ω
−
k ,Σ)T (Ω+

k ; Ω−k )]?α >Aharm(Σ)

=
n∑
k=1

< αk, T (Ω+
k ; Ω−k )?Res(Ω−k ,Σ)?α >Aharm(Ω+

k )

=
n∑
k=1

< αk, T (Ω−k ; Ω+
k )S(Σ; Ω−k )α >Aharm(Ω+

k )

=< (α1, . . . , αn), (T (Ω−1 ; Ω+
1 )S(Σ; Ω−1 )α, . . . , T (Ω−n ; Ω+

n )S(Σ; Ω−n )β) >⊕n
k=1 Aharm(Ω+

k ),

therefore,

T (Ω+
1 , . . . ,Ω

+
n ; Σ)?α =

(
T (Ω−1 ; Ω+

1 )S(Σ; Ω−1 )α, . . . , T (Ω−n ; Ω+
n )S(Σ; Ω−n )α

)
,

which completes the proof of the first part.
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The second part can be proven in the same way as the first part using the

identity S(Ω+
j ,Ω

+
j ) = IA(Ω+

j ).

It was shown in [62, Theorem 3.10] that for the one boundary curve case

the adjoint of operator S(Σ) is the restriction operatorRes(Σ). We will show

that the same relationship is also true in the many boundary curve case if

we modify the restriction operator a bit.

Definition 3.2.35 (Restriction Operator). Define

Res(Ω+
1 , . . . ,Ω

+
1 ) : A(R)→

n⊕
k=1

A(Ω+
k )

α→
(
Res(Ω+

1 )α, . . . , Res(Ω+
n )α

)
.

The above operator can be clearly extended to Aharm(R).

Theorem 3.2.36. The adjoint of the S(Ω+
1 , . . . ,Ω

+
n ) operator is Res(Ω+

1 , . . . ,Ω
+
1 ).

Proof. Let (α1, . . . , αn) ∈
⊕n

k=1 A(Ω+
k ) and β ∈ A(R), then

< S(Ω+
1 , . . . ,Ω

+
n )(α1, . . . , αn), β >A(R)

=<
n∑
k=1

S(Ω+
k )αk, β >A(R)

=
n∑
k=1

< S(Ω+
k )αk, β >A(R)

=
n∑
k=1

< αk, S(Ω+
k )?β >Aharm(Ω+

k )

=
n∑
k=1

< αk, Res(Ω
+
k )β >Aharm(Ω+

k )

=< (α1, . . . , αn), (Res(Ω+
1 )β, . . . , Res(Ω+

n )β) >⊕n
k=1 Aharm(Ω+

k )

=< (α1, . . . , αn), Res(Ω+
1 , . . . ,Ω

+
1 )β >⊕n

k=1 Aharm(Ω+
k )
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where the first equality is just the definition of the S operator and the third

is a result of the adjoint of S(Ω+
k ) when it is considered as the one boundary

curve case. Finally, the next to last equality is just the definition of the inner

product on
⊕n

k=1Aharm(Ω+
k ). The above identity shows that

S(Ω+
1 , . . . ,Ω

+
n )? = Res(Ω+

1 , . . . ,Ω
+
1 ),

which completes the proof.

We want to know what is the relationship between the derivatives of

the Cauchy-type integral operator and the Schiffer operator for the many

boundary curve case. See Theorem 3.1.2 for the one boundary curve case.

This theorem will be used to show some properties of the Faber and Grun-

sky operators corresponding to Σ.

Theorem 3.2.37. If (h1, . . . , hn) ∈
⊕n

k=1Dharm(Ω+
k ) and q ∈ R\Γ, then

∂[Jq(Γ)(h1, . . . , hn)]Σ = −T (Ω+
1 , . . . ,Ω

+
n ; Σ)(∂h1, . . . , ∂hn),

∂[Jq(Γ)(h1, . . . , hn)]Ω+
j

= −T (Ω+
1 , . . . ,Ω

+
n ; Ω+

j )(∂h1, . . . , ∂hn) + ∂hj,

∂[Jq(Γ)(h1, . . . , hn)]R\Γ = S(Ω+
1 , . . . ,Ω

+
n )(∂h1, . . . , ∂hn).

Proof. We will use Theorem 3.1.2 for different choices of Σi. Take Σ1 = Ω+
k

and Σ2 = Ω−k , k = 1, . . . , n. To prove the first identity, let z ∈ Σ = ∩Ω−k then
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by (3.3) one has

∂[Jq(Γ)(h1, . . . , hn)]Σ(z) = ∂
n∑
k=1

[Jq(Γk)Ω−k
hk]Σ(z) =

n∑
k=1

∂[Jq(Γk)Ω−k
hk]Σ(z)

=
n∑
k=1

[−T (Ω+
k ; Ω−k )∂hk]Σ(z)

= −[T (Ω+
1 , . . . ,Ω

+
n ; Σ)(∂h1, . . . , ∂hn)](z).

Fixing j and leting z ∈ Ω+
j , we have

∂[Jq(Γ)(h1, . . . , hn)]Ω+
j

(z) = ∂

n∑
k=1

[Jq(Γk)hk]Ω+
j

(z)

=
∑
k 6=j

∂[Jq(Γk)Ω−k
hk]Ω+

j
(z) + ∂[Jq(Γj)Ω+

j
hj](z)

=
∑
k 6=j

[−T (Ω+
k ; Ω−k )∂hk]Ω+

j
(z) + ∂hj(z)

− [T (Ω+
j ; Ω+

j )∂hj](z)

= −[T (Ω+
1 , . . . ,Ω

+
n ; Ω+

j )(∂h1, . . . , ∂hn)](z) + ∂hj(z).

The last equality can be proven similarly.

Now we are ready to see one of the reasons to define the V space.

Lemma 3.2.38. The restriction of T (Ω+
1 , . . . ,Ω

+
n ; Σ) operator to V maps V into

A(Σ)e.

Proof. Let (α1, . . . , αn) ∈ V . By Corollary 3.2.29 there exists a unique (h1, . . . , hn)

inW ′ such that (∂ h1, . . . , ∂ hn) = (α1, . . . , αn). Furthermore, sinceW ′ ⊂ W ,

the function [Jq(Γ)(h1, . . . , hn)]Σ is a holomorphic on Σ. Thus, by the first
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part of Theorem 3.2.37 one has

T (Ω+
1 , . . . ,Ω

+
n ; Σ)(α1, . . . , αn) = T (Ω+

1 , . . . ,Ω
+
n ; Σ)(∂ h1, . . . , ∂ hn)

= −∂[Jq(Γ)(h1, . . . , hn)]Σ ∈ A(Σ)e.

That is, T (Ω+
1 , . . . ,Ω

+
n ; Σ)|V(V) ⊂ A(Σ)e which completes the proof.

To prove the injectivity of the T operator we need a way to transfer the

exact harmonic 1-forms on Σ to exact harmonic 1-forms on Ω+
j , for each

j = 1, . . . , n. For an exact harmonic 1-form α on Σ there exists a function

h ∈ Dharm(Σ) such that dh = α up to additive constant. For fixed Ω+
j , we

define Oe(Σ,Ω
+
j )α to be the differential of the unique element O(Σ,Ω+

j )h. In

other words,

Oe(Σ,Ω
+
j ) : Aharm(Σ)e → Aharm(Ω+

j )e

where Oe(Σ,Ω
+
j )α = dO(Σ,Ω+

j )(h) for α = dh. We can extend the definition

to include all Ω+
k . That is,

Oe(Σ,Ω
+
1 , . . . ,Ω

+
n ) : Aharm(Σ)e →

n⊕
k=1

Aharm(Ω+
k )e

α→
(
Oe(Σ,Ω

+
1 )α, . . . ,Oe(Σ,Ω

+
n )α

)
.

Theorem 3.2.39. Let R, Σ, Γk and Ω+
k , and fk, k = 1, . . . , n be as in Section 3.2.

Assume all the boundary curves are quasicircles. Then

−P̃ (Ω)Oe(Σ,Ω
+
1 , . . . ,Ω

+
n )|A(Σ)e
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is a bounded left inverse for T (Ω+
1 , . . . ,Ω

+
n ; Σ)|V ; therefore, T (Ω+

1 , . . . ,Ω
+
n ; Σ)|V is

an injective operator from V into A(Σ)e.

Proof. In Theorem 3.2.38 it was shown that T (Ω+
1 , . . . ,Ω

+
n ; Σ)|V(V) ⊂ Ae(Σ).

Now we show the injectivity of the T operator when it is restricted to V .

For (α1, . . . , αn) ∈ V , by Lemma 3.2.28, there exists a hk ∈ D(Ω+
k ) such that

∂ hk = αk for k = 1, . . . , n, and (h1, . . . , hn) ∈
⊕n

k=1D(Ω+
k ) ∩W . By (3.7) and

Theorem 3.2.10, for each hk we have

hk(z) =
∑
k 6=j

[Jq(Γk)Ω−k
hk]Ω+

j
(z) + [Jq(Γj)Ω+

j
hj](z)−O(Σ,Ω+

j )
n∑
k=1

[Jq(Γk)Ω−k
hk]Σ(z),

∀z ∈ Ω+
j . By taking the differential d = ∂ + ∂ of both sides, and applying

Theorem 3.2.8, we have

dhj(z) = ∂ hj(z) =
∑
k 6=j

[∂Jq(Γk)Ω−k
hk + ∂Jq(Γk)Ω−k

hk]Ω+
j

(z)

+ [∂Jq(Γj)Ω+
j
hj + ∂Jq(Γj)Ω+

j
hj](z)

−Oe(Σ,Ω
+
j )

n∑
k=1

[∂Jq(Γk)Ω−k
hk + ∂Jq(Γk)Ω−k

hk]Σ(z).

In other words,

αj(z) =
∑
k 6=j

[T (Ω+
k ; Ω−k )αk]Ω+

j
(z) + ∂hj(z) + [T (Ω+

j ; Ω+
j )αj](z)

−Oe(Σ,Ω
+
j )

n∑
k=1

[T (Ω+
k ; Ω−k )αk]Σ(z)

=[T (Ω+
1 , . . . ,Ω

+
n ; Ω+

j )(α1, . . . , αn)](z)

−Oe(Σ,Ω
+
j )[T (Ω+

1 , . . . ,Ω
+
n ; Σ)(α1, . . . , αn)](z).
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Therefore, we derive the following important equation on Ω+
j :

αj = T (Ω+
1 , . . . ,Ω

+
n ; Ω+

j )(α1, . . . , αn)−Oe(Σ,Ω
+
j )T (Ω+

1 , . . . ,Ω
+
n ; Σ)(α1, . . . , αn).

We now apply the projection operator P (Ω+
j ) to both sides of the above

equation:

αj = P (Ω+
j )αj = P (Ω+

j )T (Ω+
1 , . . . ,Ω

+
n ; Ω+

j )(α1, . . . , αn)

− P (Ω+
j )Oe(Σ,Ω

+
j )T (Ω+

1 , . . . ,Ω
+
n ; Σ)(α1, . . . , αn)

= −P (Ω+
j )Oe(Σ,Ω

+
j )T (Ω+

1 , . . . ,Ω
+
n ; Σ)(α1, . . . , αn),

where the last equality follows from the fact that the output of the Schiffer

operator is a holomorphic 1-form. The above identity implies that

−P̃ (Ω)Oe(Σ,Ω
+
1 , . . . ,Ω

+
n )|A(Σ)e ,

is a left inverse for the Schiffer operator T (Ω+
1 , . . . ,Ω

+
n ; Σ) on V . The Schiffer

operator T (Ω+
1 , . . . ,Ω

+
n ; Σ) restricted on V is therefore a one-to-one operator.

In order to prove that T (Ω+
1 , . . . ,Ω

+
n ; Σ)|V is surjective, we need to show

that the Cauchy-type integral operator Jq(Γ), like the case of one boundary

curve, is independent of the side that the limiting curves of the integration

are taken from. The following important relation shows this relation pre-

cisely.

We use the notation Jq(Γk,Ω+
k ) to indicate that our curves of integration

are taken within Ω+
k . The following can be considered as to be a generaliza-

tion of [62, Theorem 4.10] from the one boundary curve to n > 1 boundary
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curves.

Lemma 3.2.40. Let R, Σ, Ω+
k ’s and Γk’s be the same as in Theorem 3.2.39. Then

for h in D(Σ) we have

h =
n∑
k=1

Jq(Γk,Ω
+
k )Σ[O(Σ,Ω+

k )h].

Proof. Since the function h is holomorphic on Σ, by the residue theorem, it is

equal to the sum of the limiting integrals from within Σ along the boundary

curves Γk. That is

h(z) = − lim
ε→0+

1

πi

n∑
k=1

∫
Γkε

∂wg(w; z, q)h(w) dw

where z ∈ Σ and by Γkε we mean the level curve of the Green’s function

gΩ−k
( . , pk) for some choice of pk ∈ Ω−k fixed. We consider the negative orien-

tation with respect to Σ.

For each fixed curve Γk, choose a collar neighbourhood Ak in Σ which

is contained in Σ. Since the integrand is holomorphic on Σ one can replace

each integral in the above sum by the integral over a fixed analytic curve Γ′k

in Ak. That defines an operator J ′q(Γk, Ak). By [62, Theorem 4.9], for every k

we have

J ′q(Γk, Ak)Σ(h|Ak) = Jq(Γk,Ω
−
k )Σ[G(Ak,Ω

−
k )(h|Ak)].

Since G(Ak,Ω
−
k )(h|Ak) ∈ Dharm(Ω−k ) we can apply [62, Theorem 4.10] sep-

arately for each curve Γk to obtain the following:

Jq(Γk,Ω
−
k )Σ[G(Ak,Ω

−
k )(h|Ak)] = Jq(Γk,Ω

+
k )ΣO(Ω−k ,Ω

+
k )[G(Ak,Ω

−
k )(h|Ak)].
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Finally, by taking a sum over all the terms and by Definition 3.2.4 we

have

h =
n∑
k=1

[J ′q(Γk, Ak)Σ(h|Ak)]

=
n∑
k=1

Jq(Γk,Ω
−
k )Σ[G(Ak,Ω

−
k )(h|Ak)]

=
n∑
k=1

Jq(Γk,Ω
+
k )ΣO(Ω−k ,Ω

+
k )[G(Ak,Ω

−
k )(h|Ak)]

=
n∑
k=1

Jq(Γk,Ω
+
k )Σ[O(Σ,Ω+

k )h],

which completes the proof.

Theorem 3.2.41. Let R, Σ, Ω+
k and Γk, k = 1, . . . , n, be the same as Theorem

3.2.39. If q ∈ Σ, then the operator T (Ω+
1 , . . . ,Ω

+
n ; Σ)|V is an onto operator from V

to A(Σ)e.

Proof. Theorem 3.2.39 shows that T (Ω+
1 , . . . ,Ω

+
n ; Σ)|V maps V into A(Σ)e.

Now we show that every element in A(Σ)e is in the image of T .

If β ∈ A(Σ)e, then there exists a unique h ∈ D(Σ)q such that ∂zh = β. Let

hk ∈ Dharm(Ω+
k ) such that O(Σ,Ω+

k )h = hk. That is, h and hk have the same

CNT boundary values on Γk except possibly on a null set in Γk. Clearly,

dhk = ∂zhk + ∂zhk ∈ A(Ω+
k )e
⊕

A(Ω+
k )e. Lemma 3.2.40 and Stokes’ theorem
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now imply that

β = ∂zh = ∂z

n∑
k=1

Jq(Γk,Ω
+
k )Σ[O(Σ,Ω+

k )h]

= ∂z

(
− 1

πi
lim
ε→0+

n∑
k=1

∫
Γ
pk
ε

∂wg(w; z, q)hk(w)

)

= ∂z

(
− 1

πi

n∑
k=1

∫∫
Ω+
k ,w

∂wg(w; z, q) ∧ ∂whk(w)

)

= − 1

πi

n∑
k=1

∫∫
Ω+
k ,w

∂z∂wg(w; z, q) ∧ ∂whk(w)

= T (Ω+
1 , . . . ,Ω

+
n ; Σ)(∂h1, . . . , ∂hn).

The change in the order of the differentiation and integration is legitimate

since the integrand is non-singular. We need to prove that (∂h1, . . . , ∂hn) is

in V which shows that β will be in the image of T operator restricted to V .

Suppose α ∈ A(R). We need to show that
∑n

k=1

∫∫
Ω+
k ,w

α ∧ ∂hk = 0.

n∑
k=1

∫∫
Ω+
k ,w

α ∧ ∂hk =
n∑
k=1

∫∫
Ω+
k ,w

α(w) ∧ ∂whk(w)

=
n∑
k=1

∫∫
Ω+
k ,w

(∫∫
R,z

KR(w, z) ∧z α(z)

)
∧w ∂whk(w)

=
n∑
k=1

∫∫
R,z

α(z) ∧z

(∫∫
Ω+
k ,w

KR(z, w) ∧w ∂whk(w)

)

=
n∑
k=1

∫∫
R,z

α(z) ∧z

(∫∫
Ω+
k ,w

∂z∂wg(w; z, q) ∧w ∂whk(w)

)

=

∫∫
R,z

α(z) ∧z

(
n∑
k=1

∫∫
Ω+
k ,w

∂z∂wg(w; z, q) ∧w ∂whk(w)

)
.
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The last equation is zero if

n∑
k=1

∫∫
Ω+
k

∂z∂wg(w; z, q) ∧w ∂hk = 0.

We now show that this equality is valid. By applying Lemma 3.2.40 one

more time, we have

h(z) = − 1

πi

n∑
k=1

∫∫
Ω+
k ,w

∂wg(w; z, q) ∧ ∂whk(w).

On the other hand, ∂zh(z) = 0 by holomorphicity of h; so

n∑
k=1

∫∫
Ω+
k

∂z∂wg(w; z, q) ∧w ∂hk = 0,

as was claimed. Therefore, every exact L2 holomorphic 1-form on Σ is in the

image of T (Ω+
1 , . . . ,Ω

+
n ; Σ)|V .

These two steps complete the proof.

Theorems 3.2.41 and 3.2.39 have the following important consequences.

Corollary 3.2.42. Let R, Σ, Ω+
k and Γk, k = 1, . . . , n, be the same as Theorem

3.2.39. The restriction of the Schiffer operator T (Ω+
1 , . . . ,Ω

+
n ; Σ) to V is a bounded

isomorphism from V onto A(Σ)e.

We now show that how Theorem 3.2.41 implies that the Faber operator

If is onto.

Theorem 3.2.43. Let R, Σ, Ω+
k and Γk, k = 1, . . . , n, be the same as in Theorem

3.2.39. Then the Faber operator If : Dv(D)
n
→ D(Σ)q is onto.
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Proof. Let h ∈ D(Σ)q. By the surjectivity of the T (Ω+
1 , . . . ,Ω

+
n ; Σ)|V operator

there exists (α1, . . . , αn) in V such that

T (Ω+
1 , . . . ,Ω

+
n ; Σ)(α1, . . . , αn) = dh = ∂h ∈ A(Σ)e.

By Corollary 3.2.29 and Theorem 3.2.37 there exists a unique (h1, . . . , hn) ∈

W ′ such that

∂−1T (Ω+
1 , . . . ,Ω

+
n ; Σ)(α1, . . . , αn) = −[Jq(Γ)(h1, . . . , hn)],

or equivalently h = K(−h1, . . . ,−hn). So for an arbitrary h ∈ D(Σ)q we have

shown that there exists (−h1, . . . ,−hn) ∈ W ′ such that

h = K(−h1, . . . ,−hn).

This proves the operator K is a surjective operator.

On the other hand, since C̃f−1 is an isomorphism (with respect to the

Dirichlet semi-norm) this completes the proof.

Corollary 3.2.44. Let R, Σ, Ω+
k and Γk, k = 1, . . . , n, be the same as Theorem

3.2.39. Then the Faber operator If : Dv(D)
n
→ D(Σ)q (corresponding to Σ) is a

bounded isomorphism.

It should be noted that, like the case of one boundary curve, the Faber

operator is an isomorphism when all the boundary curves are quasicircles

(in R). See Section 2.1 for similar examples of the Faber operator which are

isomorphisms for quasicircles.
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Corollary 3.2.45. Let R, Σ, Ω+
k and Γk, k = 1, . . . , n, be the same as in Theorem

3.2.39. Then the norm of the Grunsky operator (corresponding to Σ) is strictly less

than one.

Proof. By Corollary 3.2.44 there exists a constant 0 < c < 1 such that

c
∥∥(H1, . . . , Hn

)∥∥
Dharm(D)n

≤
∥∥If (H1, . . . , Hn

)∥∥
Dharm(Σ)

.

Now (3.15) and the above inequality complete the proof.

The characterization ofD(Σ); that is the first problem presented in intro-

duction, will be discussed in the next section for surface with many borders.

3.2.5 Graph of the Grunsky Operator for Many Borders

We need to define some new operators to show that as in the one boundary

curve case, in the many boundary curve case the pull back of the functions

inD(Σ)q under the conformal maps f = (f1, . . . , fn) is the graph of the Grun-

sky operator Grf .

Theorem 3.2.46. Let R, Σ, Ω+
k and Γk, k = 1, . . . , n, be the same as in Theorem

3.2.39. Then

C̃fÕ(Σ,Ω)D(Σ)q = graph(Grf ).

In other words, the set of pull back of the transmission of functions in D(Σ)q under

f = (f1, . . . , fn) is the graph of the Grunsky operator Grf .

Proof. By Corollary 3.2.44, we know that If is an isomorphism from Dv(D)
n

onto D(Σ)q. The proof proceeds in two steps:
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Step one: we calculate the composition of Õ(Σ,Ω) with If
(
H1, . . . , Hn

)
.

Õ(Σ,Ω)If (H1, . . . , Hn) = Õ(Σ,Ω)(−
n∑
k=1

[
Jq(Γk)Ω−k

Cf−1
k
Hk

]
Σ

)

= −

(
O(Σ,Ω+

j )
n∑
k=1

[
Jq(Γk)Ω−k

Cf−1
k
Hk

]
Σ

)n

j=1

= −

 n∑
k=1
k 6=j

[
Jq(Γk)Ω−k

Cf−1
k
Hk

]
Ω+
j

+ O(Ω−j ,Ω
+
j )[Jq(Γj)Ω−j

Cf−1
j
Hj]


n

j=1

,

where O(Σ,Ω+
j )
∑n

k=1

[
Jq(Γk)Ω−k

Cf−1
k
Hk

]
Σ

in the second line is the j-th com-

ponent of n-tuple Õ(Σ,Ω)If (H1, . . . , Hn).

Step two: the identity above can be justified as follows. Note that for

fixed j = 1, . . . , n, if k 6= j, the function Jq(Γk)Ω−k
Cf−1

k
Hk is harmonic on

Ω+
j ⊂ Ω−k . Therefore, by Definition 3.2.4 the transmission of this term to Ω+

j

is itself. For this j, the function Jq(Γj)Ω−j
Cf−1

j
Hj is defined and is harmonic

on Ω−j ; this implies that

O(Σ,Ω+
j )[Jq(Γj)Ω−j

Cf−1
j
Hj]Σ = O(Ω−j ,Ω

+
j )G(Bj,Ω

−
j )[Jq(Γj)Ω−j

Cf−1
j
Hj]Bj

= O(Ω−j ,Ω
+
j )[Jq(Γj)Ω−j

Cf−1
j
Hj]

whereBj is defined in the same way as Definition 3.2.4, for each j = 1, . . . , n.
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Now let (H1, . . . , Hn) be in Dv(D)
n
. Then

[
P̃D C̃f Õ(Σ,Ω)If

]
(H1, . . . , Hn) = P̃D C̃f Õ(Σ,Ω)

(
−

n∑
k=1

[
Jq(Γk)Ω−k

Cf−1
k
Hk

]
Σ

)

= −P̃D C̃f

 n∑
k=1
k 6=j

[
Jq(Γk)Ω−k

Cf−1
k
Hk

]
Ω+
j

+ O(Ω−j ,Ω
+
j )[Jq(Γj)Ω−j

Cf−1
j
Hj]


n

j=1

= −P̃D

 n∑
k=1
k 6=j

Cfj
[
Jq(Γk)Ω−k

Cf−1
k
Hk

]
Ω+
j

+ CfjO(Ω−j ,Ω
+
j )[Jq(Γj)Ω−j

Cf−1
j
Hj]


n

j=1

=

 n∑
k=1
k 6=j

(−PD Cfj
[
Jq(Γk)Ω−k

Cf−1
k
Hk

]
Ω+
j

)− PDCfjO(Ω−j ,Ω
+
j )[Jq(Γj)Ω−j

Cf−1
j
Hj]


n

j=1

=

 n∑
k=1
k 6=j

Grjk(f)Hk +Grjj(f)Hj


n

j=1

=

(
n∑
k=1

Grjk(f)Hk

)n

j=1

=

(
n∑
k=1

Gr1k(f)Hk, . . . ,
n∑
k=1

Grnk(f)Hk

)
= Grf (H1, . . . , Hn).

Therefore, P̃D C̃f Õ(Σ,Ω) If = Grf as bounded operators.
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On the other hand, by invoking Lemma 3.2.13 to each map fj , we have

[
P̃D C̃f Õ(Σ,Ω) If

]
(H1, . . . , Hn) = P̃D C̃f Õ(Σ,Ω)

(
−KC̃f−1(H1, . . . , Hn)

)
= P̃D C̃f

(
−O(Σ,Ω+

j )KC̃f−1(H1, . . . , Hn)
)n
j=1

= P̃D

(
−CfjO(Σ,Ω+

j )KC̃f−1(H1, . . . , Hn)
)n
j=1

=
(
−PD CfjO(Σ,Ω+

j )KC̃f−1(H1, . . . , Hn)
)n
j=1

=
(
−Cfj PΩ+

j
O(Σ,Ω+

j )KC̃f−1(H1, . . . , Hn)
)n
j=1

=
(
Cfj(Cf−1

j
Hj)

)n
j=1

=
(
H1, . . . , Hn

)
= IDv(D)

n(H1, . . . , Hn).

where next to the last equality is coming from Equation (3.10). Therefore,

IDv(D)
n = P̃D C̃f Õ(Σ,Ω) If . Finally, by the above two equalities we have the

following

C̃f Õ(Σ,Ω)If (H1, . . . , Hn) =
[
(P̃D + P̃D)C̃f Õ(Σ,Ω)If

]
(H1, . . . , Hn)

=
[
P̃D C̃f Õ(Σ,Ω)If

]
(H1, . . . , Hn)

+
[
P̃D C̃f Õ(Σ,Ω)If

]
(H1, . . . , Hn)

= Grf (H1, . . . , Hn) + IDv(D)
n

(
H1, . . . , Hn

)
which is in graph(Grf ). This completes the proof.

Remark 3.2.47. For the Riemann sphere case, a similar result was proven by Rad-

nell, Schippers and Staubach. See [46, Theorem 4.1] for the n = 1 boundary curve

case and [46, Theorem 4.10] for the n > 1 boundary curve case.

As was briefly explained in Subsection 2.2.1, the fact that the Grunsky

operator norm is less than one has many consequences in Teichmüller spaces.
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In the next chapter, we will explain how in our case, namely open Riemann

surfaces with n boundary curves homeomorphic to S1, we may have similar

results.
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Chapter 4

A Period Map On the

Teichmüller Space of Bordered

Surfaces

In the previous chapters, we have seen the definitions and some important

properties of the Faber and Grunsky operators on bordered Riemann sur-

faces. In Chapter 3, we saw that how these operators can be used to charac-

terize the pull-back of D(Σ) under f . As was mentioned in the introduction,

our second main problem is to define a period map on the Teichmüller space

of a bordered Riemann surface which is analogous to the classical period

map.

In this chapter, we will recall the definition of the period map on the

universal Teichmüller space given by the Grunsky operator. It will be ex-

plained why these maps can be considered to be a generalization of the

classical period map defined for compact Riemann surfaces. We will also

review the literature concerning the holomorphicity of this period map on

Teichmüller spaces in the case g = 0 and n ≥ 1. A definition of a period

map, may also be called the Grunsky map, for bordered Riemann surfaces
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of arbitrary genus will be provided here.

This chapter will conclude by a conjecture due to Radnell, Schippers, and

Staubach regarding the holomorphicity of the Grunsky map in the case g >

0 and n ≥ 1. If this conjecture is true, then the Grunsky map for bordered

surfaces would share one more analogy with the classical period map; so

it could be considered to be a generalization of the classical period map to

bordered Riemann surfaces (for g, n as above).

4.1 A Short History of the Problem

Here we briefly recall the relations discovered between the classical period

map defined for compact Riemann surfaces and some period maps defined

for bordered surfaces. Then in the rest of chapter we will provide precise

definitions and theorems in this regard. We start with the universal Teich-

müller space T (1) defined in Section 1.9. The universal Teichmüller space

is the Teichmüller space for D−. Clearly, D− can be modelled as the Rie-

mann sphere from which the closure of the unit disc removed. Therefore,

the existent proofs concerning the holomorphicity of the period map on the

universal Teichmüller space and its equality with the Grunsky map, can be

interpreted as the case in which Σ is bordered surface with g = 0 and n = 1;

see [47].

As was mentioned in Section 1.10, to each compact Riemann surface of

finite genus g > 0 we may assign a matrix which is symmetric and has pos-

itive imaginary part and this assignment depends holomorphically on the

Riemann surface. Recall that the Teichmüller spaces of compact Riemann

surfaces are finite dimensional complex manifolds.
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Let Diff(S1) be the set of all orientation-preserving diffeomorphisms from

S1 onto S1; also let Möb(S1) be the set of all Möbius transformations of C that

preserve S1. It can be shown that Diff(S1)/Möb(S1) is a subspace of T (1).

Kirillov and Yur’ev [28], later continued by S. Nag [38], showed that there

is a period map, which we denote by Π, on this subspace of the universal

Teichmüller space. Nag [38] showed that this map shares many analogies

with the classical period maps defined on Teichmüller spaces of compact

surfaces. That is, it is symmetric and I − Π Π > 0, where by “> 0" we mean

the left hand side operator is positive definite.

Nag and Sullivan [39] extended the period map Π from Diff(S1)/Möb(S1)

to the whole space T (1). Additionally, they provided a proof for the holo-

morphicity of this map. They proved this map is Gateaux holomorphic, and

Takhtajan and Teo showed that it was holomorphic [76, Appendix B].

Takhtajan and Teo [76] defined a map called the “universal period map-

ping" from T (1) into the Banach space of bounded operators on the Hilbert

space `2(C). Then they proved that this map is holomorphic and more im-

portantly showed that it coincides with the period map Π that had been

introduced by Kirillov, Yur’ev, Nag and Sullivan (called the KYNS period

map). Takhtajan and Teo discovered that the KYNS period map is given

by the Grunsky map; see Definition 4.3.1 ahead. Similar results with a bit

different formulation regarding the holomorphicity of the Grunsky map on

T (1) were independently proven by Shen [67]. We will provide a slightly

different model of T (1) in the next section to describe Takhtajan and Teo,

and Shen’s results.

Later on, Radnell, Schippers and Staubach generalized the above period

map to the Teichmüller space of bordered surfaces of genus zero with n ≥ 1
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boundary curves (each one homeomorphic to S1) and demonstrated its con-

nection to the Grunsky map; see D. Radnell, E. Schippers [44], and Radnell,

Schippers and Staubach [47] and the references therein. To explain these

connections in more detail we need to introduce an intermediate kind of

Teichmüller space, called the rigged Teichmüller space in the next section.

4.2 Rigged and Universal Teichmüller Spaces

For a Riemann surface (either compact or bordered) R, the Teichmüller space

TR was defined in Subsection 1.9. For the following surfaces, the rigged Te-

ichmüller space can also be defined.

Definition 4.2.1 (Surfaces of Type (g, n)). Let g ≥ 0, n ≥ 1. A Riemann surface

RB is called a bordered surface of type (g, n) if

1. the border of RB consists of n ordered non-overlapping simple closed curves,

each homeomorphic to S1.

2. there is a biholomorphism between RB and S, where S is a compact Riemann

surface of genus g with n non-overlapping simply connected domains (each

one biholomorphic to D in C) removed.

A Riemann surface RP is called a punctured surface of type (g, n) if it is biholo-

morphic to a compact Riemann surface of genus g with n ordered points removed.

Remark 4.2.2. If 2g − 2 + n > 0, then the Teichmüller space of RP given in the

above definition is of finite dimension as a complex manifold; see Lehto [31].

A set of conformal maps can be assigned to a punctured Riemann sur-

face. These maps were used to define rigged Teichmüller spaces; see D.

Radnell and E. Schippers [43].
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Definition 4.2.3 (Rigging). Let RP be a punctured Riemann surface of type (g, n)

with punctures p1, . . . , pn. Define Oqc(RP ) the set of all f = (f1, . . . , fn) of injec-

tive conformal maps fk : D→ RP such that for k, j = 1, . . . , n, we have

• the map fk has a quasiconformal extension to an open neighbourhood of cl(D),

• fk(0) = pk,

• cl(fk(D)) ∩ cl(fj(D)) = ∅ whenever k 6= j.

Each element f ∈ Oqc(RP ) is called a rigging of RP .

We now ready to define the rigged Teichmüller space which was first

introduced by D. Radnell [42] in his Ph.D thesis. For brevity, by “QCM" in

the following definition we mean “quasiconformal map".

Definition 4.2.4 (Rigged Teichmüller Space). Let RP be a punctured Riemann

surface of type (g, n). The rigged Teichmüller space of RP is

T̃RP =
{

(RP , F1,S
p, f) : F1 is a QCM between RP and Sp, f ∈ Oqc(RP )

}
/ ∼ .

The relation ∼ is defined as follows: (RP , F1,S
p
1, f) ∼ (RP , F2,S

p
2,g) whenever

there is a biholomorphism τ : Sp
1 → Sp

2, preserving the punctures and their order,

such that F−1
2 ◦ τ ◦ F1 is homotopic to the identity. The homotopy is constant on

the punctures and gk = τ ◦ fk for k = 1, . . . , n.

It is easy to show that ∼ defines an equivalence relation. Similar to TR,

let [RP , F1,S
p, f ] denote the equivalence class of (RP , F1,S

p, f).

Radnell and Schippers [43, Section 5.4] showed that the Teichmüller space

TRB of bordered Riemann surface RB of type (g, n) covers the rigged Teich-

müller space T̃RP of RP for g ≥ 0, n ≥ 1. This needs a word of explanation.

First of all RB is obtained from RP by removing some caps (=image of D
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via fk’s in the rigging) and is not arbitrary. Now let PModI(RB) be the mod-

ular group consisting of quasiconformal self maps of RB which are identity

on the boundary of RB, modulo homotopy rel boundary; see Section 1.9 for

the definition. These maps fix the ordering of the boundary components.

The modular group PModI(RB) acts by biholomorphisms on TRB . More

precisely, for [ρ] ∈ PModI(RB) and [RB, f,S] ∈ TRB one has

[ρ]∗[RB, f,S] = [RB, f ◦ ρ−1,S].

This action is fixed point free and properly discontinuous [43, Lemmas 5.10,

5.11]. Let also DB(RB) be the subgroup of PModI(RB) generated by Dehn

twists around the boundary curve of RB. This subgroup is isomorphic to

Zn (n = the number of boundary curves of RB) [43, Proposition 2.2]. Let

P : TRB → T̃RP be the covering map mentioned above. It was shown in

[43] that P(p) = P(q) if and only if there exists a [ρ] ∈ DB(RB) such that

[ρ]∗p = q, where p, q ∈ TRB . Therefore, the quotient map from TRB/DB(RB)

into the rigged Teichmüller space T̃RP is a bijective map. In other words,

this covering induces a complex manifold structure on the rigged Teich-

müller space of RB. We consider the rigged Teichmüller space endowed

with this complex structure.

Remark 4.2.5. Whenever we say the Teichmüller space of a Riemann surface, we

simply mean the usual Teichmüller space of the surface in the sense of Definition

1.9.1.

To describe the results of Takhtajan and Teo [76] and that of Shen [67]

on period maps on Teichmüller spaces, we need the following model of the
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universal Teichmüller space. This definition is modelled on D by using Bel-

trami differentials in contrast to the one given in Subsection 1.9 modelled

on D− by using quasiconformals. Here is a definition.

L∞(D) =

{
µ(z)

dz

dz̄
: µ : D→ C is essentially bounded and measurable on D

}
.

This is an infinite dimensional complex Banach space endowed with the

essential sup norm. Let L∞(D)1 be the open unit ball of L∞(D).

Remark 4.2.6. We do not want to add more technicalities to the thesis here by

recalling the definition of (m,n)-differentials; it is, however, good to mention that

each element in L∞(D) is understood as (−1, 1)-differential form. This is called

a Beltrami differential in the literature; see e.g. [31, Section IV. 1.4]. We may

interchangeably use terms (−1, 1)-differential form, or Beltrami differential to call

elements in L∞(D) when there is no risk of confusion.

For every µdz
dz̄
∈ L∞(D)1 one can extend µ to be zero on D−, known as

the Bers’ idea. We continue using the same notation for this extended dif-

ferential. Now by [31, Theorem I. 4.4] there exists a quasiconformal map

fµ : C → C, unique up to a composition with a conformal map, such that

one has

∂fµ = µ ∂fµ

almost everywhere in C. Note that fµ is holomorphic on D− since µ is zero

there. We normalized fµ by assuming that fµ ∈ Σ0; see Subsection 1.2.1 for

the definition. With this notation, we are ready now to give another model

of the universal Teichmüller space.
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Definition 4.2.7 (Universal Teichmüller Space). Let µ, ν ∈ L∞(D)1. We say

µ ∼ ν if and only if fµ|D− = fν |D− . The universal Teichmüller space is then

L∞(D)1/ ∼. We use [µ] to denote the equivalence class of the Beltrami differential

µ in this space.

Remark 4.2.8. The proof that the two definitions of the universal Teichmüller space

given in the thesis are equivalent exists in the literature; see for example [31, 37].

Thus, we may use T (1) to denote L∞(D)1/ ∼ as well.

The universal Teichmüller space has a unique infinite dimensional com-

plex Banach manifold structor such that the projection

p : L∞(D)1 → T (1),

is a holomorphic submersion [76]. That is, the differential of p is surjective

everywhere.

4.3 Period Maps and Grunsky Maps

Recall the definition of the period map for compact surfaces from Section

1.10. We saw that for a compact Riemann surfaces R, the period map is a

map from the Teichmüller space of R into the Siegel upper half space.

Recall also the Grunsky operator Grg on `2(C) defined in Chapter 2 by

(2.4). It is a bounded operator due to the Grunsky inequalities. The Grunsky

operator may be seen as an assignment of a bounded operator Grg on `2(C)

to each holomorphic map g on D− univalent on |z| > R for some R > 0.

The Grunsky operator, therefore, introduces a map from the universal Te-

ichmüller space into a space of bounded linear operators. Recall that B(X)
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is the Banach space of all bounded linear operators on X . By “UTS", for

brevity, we mean the “universal Teichmüller space".

Definition 4.3.1 (Grunsky Map on UTS). The Grunsky map on UTS is defined

by

Gr : L∞(D)1/ ∼ → B(`2(C))

[µ]→ Grfµ|D− ,

where Grfµ|D− is as (2.4).

This is clearly a well-defined operator.

Here is a nice theorem, first proved by Takhtajan and Teo [76, Theorem

B] and then independently by Shen [67, Theorem 1], concerning the holo-

morphicity of the Grunsky map in the sense of complex Gateaux deriva-

tive between complex Banach manifolds. Although both theorems claim

the same thing, the formulation of theorems are not the same within these

two papers; they used different models for the universal Teichmüller space.

Here we state the theorem using the formulation of Shen [67].

Theorem 4.3.2 (Takhtajan-Teo, Shen). The Grunsky map Gr is a holomorphic

map between the complex Banach spaces T (1) (=L∞(D)1/ ∼) and B(`2(C)).

Remark 4.3.3. In the context of this thesis, we may say that what Theorem 4.3.2

claims is the holomorphicity of the Grunsky map on the Teichmüller space of a bor-

dered Riemann surface of genus zero with one boundary curve (homeomorphic to

S1). That is, g = 0, n = 1 or a surface of type (0, 1).

It should be noted that the above boundary curve is a quasicircle be-

cause of the definition of the universal Teichmüller space. In other words,
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fµ|D− has a quasiconformal extension to C, as a result the boundary is the

quasicircle fµ(S1). A question which naturally arises here is: what happens

if one increases the number of boundary curves in the genus zero case?

The results of Radnell, Schippers, and Staubach [46, 47, 64] address this

question. Their formulation is on bordered Riemann surfaces. We require a

few more definitions and theorems to explain their result. We may use Rg

(similarly RP
g , or RB

g ) to indicate that the genus of R is g.

Let RP
0 = C\{p1, . . . , pn} for some distinct ordered set of points p1, . . . , pn ∈

C. Let also

B(
n⊕
k=1

A(D−),
n⊕
k=1

A(D))

=

{
T :

n⊕
k=1

A(D−)→
n⊕
k=1

A(D) : T is a bounded linear operator

}
.

For simplicity, we use B(n) to indicate B(
⊕n

k=1 A(D−),
⊕n

k=1A(D)). This

shorter notation was used in [47]. In [47, Section 2.1], the Grunsky oper-

ator Ĝr is modelled as an element in B(n). They first defined the follow-

ing period map on the rigged Teichmüller space of RP
0 . Then they lifted it

to the Teichmüller space of a bordered surface that was obtained from RP
0

by removing caps. For brevity by “RTS" we mean the “rigged Teichmüller

space".

Definition 4.3.4 (Period Map on RTS of RP
0 ). Let RP

0 and B(n) be as above.

Define the period map Π̃0 by

Π̃0 : T̃RP0 → TRP0 ×B(n)

[RP
0 , F1,R

P
1 , f ]→

(
[RP

0 , F1,R
P
1 ], Ĝr(f)

)
,
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if n > 3, and for n = 1, 2, 3 by

Π̃0 : T̃RP0 → B(n)

[RP
0 , F1,R

P
1 , f ]→ Ĝr(f).

Then by using the fibration P : TRB0 → T̃RP0 they defined a period map

Π0 on the Teichmüller space of RB
0 . That is, Π0 = Π̃0 ◦ P . They showed that

these period maps are holomorphic [47, Theorem 3.9].

Theorem 4.3.5 (Radnell, Schippers, and Staubach). The period map Π̃0 and Π0

are both holomorphic.

In the context of this thesis, we could say what the above theorem claims

is the holomorphicity of the Grunsky map on the usual and rigged Teich-

müller spaces of punctured surfaces of genus zero with one or more than

one boundary curves. That is, g = 0, n ≥ 1 or equivalently for punctured

surfaces of type (0, n), n ≥ 1.

4.4 Conjecture

We now are able to define a period map on the Teichmüller space of bor-

dered Riemann surface RB by using the Grunsky operator corresponding

to Σ = RB defined in Chapter 3. Afterwards, we express the conjecture con-

cerning the holomorphicity of this period map which may also be called the

Grunsky map, on the Teichmüller space of a punctured compact surface of

arbitrary genus. Let g > 0, n ≥ 1, and RP
g be a punctured Riemann surface

of type (g, n) with punctures p1, . . . , pn.
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Let f = (f1, . . . , fn) be a rigging in the sense of Definition 4.2.3 for this

surface. If we remove all domains cl(fk(D)) from RP
g , then RB

g = RP
g \ ∪nk=1

cl(fk(D)) is a bordered Riemann surface of the same genus g with n bound-

ary curves. To the Riemann surface RB
g one may assign the Grunsky and

Faber operators as they were defined in Chapter 3. As a result, the following

period map may be assigned to RP
g . Recall Definition 3.2.20 of the Grunsky

operator Grf corresponding to f = (f1, . . . , fn) and the definition of Dv(D)
n

given by Equation (3.4).

Definition 4.4.1 (Period Map on RTS of RP
g ). Let RP

g , g > 0, and n ≥ 1 be as

above. Let

B(n,V) := B
(
Dv(D)

n
,D(D)n

)
be the set of all bounded linear operators fromDv(D)

n
intoD(D)n. Define the period

map Π̃g by

Π̃g : T̃RPg → TRPg ×B(n,V)

[RP
g , F1,S

P
g , f ]→

(
[RP

g , F1,S
P
g ],Grf

)
,

where Grf is as Definition 3.2.20.

This map, clearly, generalizes the one given in Definition 4.3.4. Here is

the conjecture based on the above theorems and definitions.

Conjecture (Radnell, Schippers, and Staubach): The period maps Π̃g,

and as a result Πg = Π̃g ◦ P are holomorphic maps on T̃RPg and TRg , respec-

tively.

Π̃g and Πg may also be called the Grunsky map. Takhtajan and Teo [76],

and Shen [67] modelled the period map on the bounded operators on `2(C)
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space, whereas the period map of Radnell, Schippers and Staubach [47] was

modelled on the bounded operators on
⊕n

k=1 A(D−). Despite this, as was

mentioned in [47] Radnell, Schippers and Staubach period map is a gener-

alization of the period map defined by Takhtajan and Teo [76]. If we tempo-

rary let g = 0, then D(D)
n

v is simply
(
D(D)

)n
. This is because the V space is

trivial in this case. The anti-holomorphic Dirichlet spaceD(D) is isomorphic

to A(D−) as the unit disc D is simply connected. Therefore, our conjecture

generalizes the g = 0 case and in fact all the previous cases.

4.5 Positive Definiteness of Period Map

Other than the holomorphicity of the period maps (classical and the one

above) on Teichmüller spaces, there is another important analogy between

the classical period map and the Grunsky map on Teichmüller spaces. As

was mentioned in Section 1.10, the classical period map has a positive def-

inite imaginary part. On the other hand, in Chapter 3 we showed that the

norm of the Grunsky operator Grf is strictly less than one when all the

boundary curves are quasicircles; see Corollary 3.2.45. This corollary can

be considered as the generalization of the imaginary part of the classical pe-

riod map is positive definite. This was pointed out by Takhtajan and Teo

[76, Remark 2.3], Radnell, Schippers, and Staubach [47]. Here instead of the

Siegel upper half plane we consider an equivalent Siegel disk picture; see

C. L. Siegel [72]. In the Siegel disk picture, for a period map Z (= π,Πg, . . . ),

the condition I − ZZ > 0 takes the place of the condition that Im(Z) > 0.

The norm being strictly less than one can be written as I − ZZ∗ > 0.
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4.6 Some Open Problems

Here is a list of problems which now may be posted in continuation of this

thesis.

• Prove that the conjecture presented in the previous section is true.

• As was explained in Chapter 2, the Faber operator has an important

role in the approximation theory of holomorphic functions both on planar

domains and domains on Riemann surfaces. This role has not been inves-

tigated in my thesis. To show that the operator If corresponding to Σ can

be used to approximate holomorphic functions in D(Σ) seems not to be a

far-reaching goal to achieve.

• In the case of g = 1, n ≥ 1 (torus with finitely many non-overlapping

simply connected domains removed) one may be able to find explicit for-

mulas for both the Faber and the Grunsky operators via the Weierstrass ℘

function. Another advantage of working on the torus is that the space of

holomorphic 1-forms has dimension one; that is, α = dz on the plane passes

down to the only holomorphic 1-form (up to a multiplicative constant) on

the torus. Therefore, we may be able to explicitly talk about the approxima-

tion property of Faber operator in this case. As was mentioned in Section

2.3, this was done in a different formulation for one boundary curve using

the results of Tietz [77]; see Reimer and Schippers [48].
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