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ABSTRACT

This thesis investigates the desígn of canonic wave digital ñlters (lVDFs) based on elliptic

reference ûlters, and the minimization of their realization requirements.

Two synthesis approaches are considered: cascade s¡mthesis, in which the WD

structure is composed of a chain of adaptors, and WD lattice synthesis in which the

structure is based on an analog symmetrical lattice.

The use of the Brune adaptor in cascade synthesis is desireable as it allows the

canonic (i.e. minimal) realization of IVDFs based on elliptic ladder reference filters. A

derivation of this adaptor and several examples of its application are presented.

Lattice WDFs, which are based on analog symmetrical lattice protot)pes, are also

desireable as they, too, allow canonic realization of odd-order elliptic reference filters.

WDFs have the property of low parameter sensitivity, which can be e:rploited to

often achieve very short multiplier wordlengths. The possibility of replacing actual mul'

tipliers by binary shifts and additions allows further reduction of a filter's complexity.

An algorithm is proposed here which attempts to minimize the total number of

shifts and additions required to realize a given design. A number of design examples are

presented which illustrate the success of this approach for fifth- and seventh-order filters

realized using cascades of Brune and other adaptors. The fifth-order examples, since

they are sufficiently small, have been verified using a direct (exhaustive) search

approach. Also, some examples illustrating the applicability of the scheme to WD lattice

ñlters are presented, and which compare favourably to previously published results.
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I. TNTRODUCTION

Filtering is a process by which an Ínput signal is reshaped to yield an output signal having

different characteristics, speciûed in the time, or more commonly, the frequency domain.

Most filters are frequency selective in that some frequencies are attenuated while others are

passed or amplified.

Filtering may be performed on continuous signals or on signals which exist only at

discrete instants of time. A discrete-time filter may then be viewed as a computational alge.

rithm operating on an input seguence of numbers to produce an output sequence.

The theory of discrete-time systems and frlters is well-developed, but is based on the

assumption that signal representations and arithmetic operations are carried out to infinite

precision. In practice, only finite precision is available since discrete-time systems usually are

implemented using digital processors. The signals in digital systems, then, are discrete in time

and also discrete in amplitude.

Digital filters are often classiñed into one of two broad categories, those which are recur-

sive in nature and thore which are not. Recursive filters are capable of high stopband

attenuation and require lower computational complexity than for non-recursive structures.

A digitat filter is essentially an approximation to a discrete-time prototype upon which

finite precision constraints have been imposed. Deviations in behavior of the digital filter

from its unrestricted prototype arise, and are due to what are generally termed finite

wordlength effects (FWLEs) [1-4]. Finite wordlength effects are comprised of the following

categories:

1) coefficient quantization error, which occurs due to the quantÞation of the filter

coefficients to a finite precision, and

2) signal quantization error, n'hich is the error introduced by quantÞation of input, output,

and intermediate signal quantities to finite precision.

Coefficient quantÞation error, or roundoff noise, is a linear deterministic error which has the

effect of deviating the frequency response from the desired response. Signal quantization

error is a random additive error produced due to the discard of portions of the signal too

small (underñow) or too large (overflow) to be represented by the given precision [5]. In the

case of recursive filters, underflow or overffow errors may be correlated such that oscillations,

known as limit cycles or parasitic oscillations, are sustained, even under zero'input, conditions.

Digital filters must be designed to control and minimize these undesirable effects.
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Finite wordlength effects can be reduced, for a given discrete time realization, by simply

increasing the precision used, at greater costs of implementation. An alternative is to choose

structures inherently less susceptable to FWLEs [68]. Structures which exploit the well-

known [9,10] relationship between roundoff noise and coefficient sensitivities have been

derived [11-16]. Also, low-order sections able to suppress all types of limit cycles have been

developed Il7-221. Further, filter realizations which are designed to suppress the highly des-

tructive overflow oscillations have been investigated 12+271. Of course, those which, in addi-

tion, are low in reálization requirements are preferable.

An alternative structure which behaves favorably under FWL conditions is the wave

digitat filter (WDF) proposed by Fettweis [2S] and developed by him and others [29-37]. They

are high order recursive structures capable of high stopband attenuations. Wave digital filters

are based on the premise that analog reference filters possessing the properties of good sensi-

tivity and passivity can be transformed to an equivalent digital structure such that the desir-

able qualities are preserved. This transfonnation is achieved using a voltage wave network

desiription and the bilinear z-transform. It has the effect of replacing analog reactive ele-

ments by simple delays, and simulates analog interconnections by means of wave adaptors.

Advantages of WDFs are very low coefficient sensitivity and corresponding low roundoff

noise. In addition, Fettweis and Meerkõtter have shown via the concept of stored pseude'

power that all zero.input limit-cycles may be suppressed in canonic WDFs [39]. A disadvan-

tage of WDFs is the requirement of a larger number of additions than for conventional reali-

zations such as parallel or cascade connections of direct form low-order sections. Also, WD

filters derived from reference filters non-minimal in reactance elements witl be non-minimal in

delays. Subseguent removal of these redundancies invalidates the simple stability criterion,

requiring more complex means to achieve limit-cycle suppression [29,40,68,69].

More recently, contributions of the lattice adaptor [41], and the Brune adaptor 142-441

allow canonic realization of symmetric lattice and ladder topologies, respectively. AIso, the

low scnsitivity of WDFs can be exploited to often drastically simplify multiplier requirements

and hence reduce overall computational complexity [43,4149].

The problem of minimizing digital filter hardware requirements has been addressed

largely by means of optimization techniques [5G63], concentrating on cascades of low-order

sections. Wegener and Owenier [a5-a9] have given optimized WDF designs of symmetric lat-

tice and ladder prototypes, although the ladder realizations have been non-canonic-

The thesis presented herein is concerned with the reduction of the realization require-

ments of canonic, limit-cycle-free IVDFs in which e:rplicit multipliers have been replaced by
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binary shifts and additions. The reduction of realization reguirements is formulated as an

optimization problem in which the total number of shifts and additions is to be minimÞed.

Canonic, limit-cycle free implementations of ladder networks of arbitrary order are obtained

through the use of the Brune adaptor.

Chapter 2 presents background to the WD approach and covers the introduction of vol-

tage wave variables and the bilinear z-transformation. Next, fundamental analog network ele-

ments and interconnections are related to their WD counterparts. A state-variable description

of a WDF is developed by partitioning an analog network via reactance extraction, and then

transforming the subnetworks into their WD equivalents. The reflection-free property is

introduced to allow the interconnection of adaptors. Finally, sufficient conditions are given

for ensuring stabitity of a WD network despite the nonlinear nature of FWL conditions.

In chapter 3, technigues for the synthesis of canonic, stable WDFs are given. In particu-

lar, the design of WDFs using the adaptors of Fettweis and the Brune adaptor of Jarmasz [43]

are presented. A discussion of the WD lattice or Jaumann structure [a1] is included since it is

exceptionally low in realization requirements and so has gained popularity. The chapter con-

cludes with the representation of multipliers in the canonical signed digital code (CSDC) and

its eonscquences to some methods of physical implementation.

Chapter 4 formulates the problem of reducing realization requirements of cascade WDFs

as an optimization problem. Two t)¡pes of adaptors are covered: those for which sirrple fixed

flowgraphs exist, such as the Fettweis adaptors, and adaptors, such as the general Brune, for

which no simple flowgraph exists. (A simpte flowgraph is one in which each multiplier appears 
-

only once) An optimization algorithm suited to reduction of the realization reguirements of

rilDFs based on both kinds of adaptors is presented. Several examples are given to demon-

strate the capabilities of this approach.



4

2. INTR.ODUCTION TO WAVE DIGITAL FILTER,S

Wave digital filters (WDFs) comprise a class of digital structures which imitate classical reac-

tance filters so as to exploit their desirable properties. In particular, classical reactance net-

works are lossless and, when terminated by resistances and resistive sources, are relatively

insensitive to element variations. These characteristics have the consequence of low passband

sensitivity to coefficient variations, good dynamic range, and the possibility of the suppression

of parasitic oscillations in the corresponding WDF.

2.1. The Weve Dlgltel Tr¡núorm¡tlon

A \ryDF is derived from a classical reactance network, called its reference network, by

replacing the conventional signal quantities of voltage v and current i by voltage wave vari'

ables defined by

ø(r) = v(r)+R i(r), ä(r) = v(t)-R i(r) Q.r)

á(ù) = v({,)+R r(ú), B(ú) = v(ù)-R r(ù)

where, as depicted in Fig. 2.L, a and ä are the incident and reflected waves, respectively, and

R is an arbitrary port reference resistance. The digital equivalent of the reference network is

derived by applying the transformation

g=#=t"oh*, zle'r (23)

where s is the Laplace transform variable and T is the digital sampling period. lVe see that

the filter voltage transfer characteristic described by

v (ù) = ä (ü) E (ú)' (2.4)

is transformed by tetting Rr=Rs and R2=R¿, yielding

¿{r(ú)=Er(ü), Br(Ú)=2V1-81 Qsa)

,{z(ú) = 0, Bz(û) = ZVz, (25b)

from which the voltage wave transfer function is given by

trl.!!='!, 
e.6)¡{r(t) E1'

The voltage wave transfer function is therefore identical to the voltage transfer function

(22)
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except for the constant 2.

R

Figure 2.1 Delinìtíon of wavc varìùlcs øt one Porî

The application of the transformations (2.1), (2.2) and (23) to some elementary analog

one-ports and the WD equivalents which result is illustrated n Fig2.2.

In order for two ports to be interconnected they must be compatible, that is

Vy=V2t ìt=-iZ Q:7)

and

4t=b2, d2=bb Rt=R2,

which ensure that Kirchhoff's current and voltage laws are obeyed at the interconnection. To

fulûll the last requirement the port voltage waves must be adapted to prop€rly simulate the

connection.

2.2. Voltrge Wevc Scettcrlng Descrlptlon

Consider a doubly terminated lossless reactance network N (Fig.23) consisting of two

subnetworks M and ,t7. Net*ork ú contains the reactive elements of N , and M contains

only interconnections and possibly ideal transformers. Define port voltage and current vectors

describing the ports of M and partitioned with respect to ports containing resistive sources

(possibly of zero value), inductances, and capacitances as follows:

o

-+
+

v

+-
b

(28)

"=[;J, r=[J Q.e)

[":J' .' = 
[l;]

where

Yl= (2.10)
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1..

R
+

0=ê

b=2v-e

o( n)

b(n) = -o(n -1)

o(n)

v=ê-Ri

V = 1/rllC

-1

+

L =tþL

+

I1

b(n)= o(n-1)

o,,t nt *{þ br(n) = o'(n -1 )
+

v2

+

vl

b r 
(n)'--.-----*------* o z( n )

Figure 2,2 Sottt¿ analog circuil clements and their wave-digítal equivalents

Y2= (2.11)

We may now deñne the port wave vectors of M to be

t=v*Rl, b:v-Rl (2.12)

where R is a real diagonal matrix of arbitrary port reference resistances, and ¡ and b are par-

titioned conformable to v and I . The voltage wave (scattering) variable description of M is

then

Y1

Y¿ o=[l:]

R
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b =S¡ (2.13)

where S is a real constant matrir describing the interconnections within M. Similarly, we may

define voltage, current and voltage wave vectors describing rú,

' = [:]' '= [l:] 
(zt4)

õ=i*Éi, 6=v-i,i (2.15)

É =S¡ (2.16)

where 5 is given by

and

s= 1-rl,
1+ú

(-u"¿ + u"c) (2.17\

1-rl,
1+ù

s

We define I as

t - -ura i u"", (2.18)

and i denotes direct sum. At the interconnection Kirchhoff's voltage and current laws must

be satisfred, implying

Y2: i, lz= -i (2'19)

or, in terms of scattering variables,

rz=6, b2=ã, Rz=ñ. Q.n)

A convenient choice for R is

R = díag(ßs,R¿ ,LyL2,..., LrL,lfc¡l/c2, ..., Uc,") (2.21)

where the partitioning is conformable to Y and l.

Application of the bilinear transformation (23) to M and ú yields the equations

B(z)=sa(z), É1r¡=*t^u, Q-n)



I

g r
I

I

o2 -õ -t

R

I

o

E

b1 _Þ
L

Figure 2.3 Doubly-terminated n¿twork slnwìng reactonce extractíon pütítioníng

or equivalently

b(n) =Se(n), É1n¡ = I õ(n-1) Q.n)

The above equations describe the computation of filter output and delay signal quantities. A

natural and convenient extension of this is the state variable description of the filter.

23. Stetc-Verleblc Descrlptlon

A digital filter may be descríbed in terms of the state variable matrices { A, B, C, D } :

r(n+l) = Ax(¿) + Bu(n) (224\

y(n)=Cr(n)+Du(n)

where x(z), u(n), y(n) are the state, the input and the output vectors at the z'å sample

instant. The WDF described above can be written as

I b2(n) = sz(n +1) = ¿ üz ¡z(n) + E $1r1(n) (2.X')

br(o) = S¡2 e2(n) + S11 a1(n)

so that the state variable description of a WDF can be given by

[r nì tr$z rürl
(2.26)["o.|=[ s¡2 s,,.J'

This system specifies the computation required to realize S. It remains that S be calculated

J

+

v1 R1 *r;, uM M
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from the reference frlter. For this, the work of Martens and Meerkõtter [65,6ó] provides a

means to frnd S directly from an arbitrary analog network.

2.4. The N-Port Descrlptlon

Consider an n-port reference network consisting of interconnections and ideal

transformers only. The port voltage and current vectors may be partitioned into link ports I

and twig ports t,

" = [Ï;]' '= [ï] 
(z'27)

and similarly for the port wave vectors'

The link and twig quantities are related by

Y¡ = Nr Y¡, lr = -N lt (2'29)

where the turns ratio matrix N is real. Define a constant matrix K given by

K = (G, + Nc¡Nr)-r NG¡ (230)

where G, and G¡ are the diagonal branch conductance matríces for twig and link ports,

respectively. Martens and Meerkötter have shown that the scattering matri¡ of a constant

lossless network can be expressed as

"=[::]' '=[i:J

zNTK_U zNT(U-KNT)
2K U _ 2KN7

S=FTF

(2.28)

(2sl)

or

$=

f'= -U NT

OU f= -u0
-2K U

(2s2)

ç,here

Matrices F and T are self-inverse, and so S is also self-inverse, i.e.

(2s3)
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52=U (zi4)

The matrix N ean usually be found directly from the oriented graph derived from the net'

work; the matrir K can be found through a convenient network interpretation :

i) terminate all tree ports in their reference resistances,

ii) terminate all link ports wíth a voltage source c in series with the port reference resis-

tance.

The relationship between twig voltages v, and the excitations G¡ is given by

v¡ =Ke¡. (23s)

This voltage transfer matrix can be obtained analytically from the network, usually by applica'

tion of Thevenin's theorem and superposition only.

Note the number of degrees of freedom of K is r'I, which may not necessarily be the

canonic number for the transfer function. This is the case for elliptic ladder filters- A

representation for K in terms of a canonic number of multipliers has been shown to exist for

several topologies, found by a suitable redefinition of the parameters used in obtaining K from

the network.

The network of interconnections M may be (non-uniquety) decomposed into a number

of smaller subnetworks. Fettweis and his colleagues have chosen to use adaptors with at most

three ports, modelling series and parallel electrical interconnections as series and parallel

adaptors, respectively, as depicted in Fig. 2.4. This is often convenient because each of the

adaptors shown has a fixed flowgraph containing design Parameters as multipliers. Adaptors

for Brune, symmetrical lattice, Darlington C and D sections, and twin-T networks have also

been derive d l4L-44,671.

2.5. The Reflectlon-Free Propcrty

A potential realizability problem arises with the interconnection of adaptors in that a

delay-free loop, an unrealizable network [38], may be created, as shown in Fig.2.5. This prob-

lem can be avoided by constraining the reflected wave at a port to be instantaneously indepen-

dent of the incident wave at the same port, that is by making the port reflection-free [37].

Thus the scattering matrix S of a sub-network having port i reflection'free will have su =9.

Two examples of adaptors having a refiection-free port are given in Fig2.6.

A reflection-free port can be interpreted to have its reference resistance equal to the

port driving-point resistance when all other ports are terminated by their reference
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Figure 2.5 A delay-f ree loop conditíon.

resistances. The introduction of this constraint reduces the number of degrees of freedom of

the adaptor by one, preserving the canonic number of degrees.

An example of a network, a third order elliptic ladder filter, realized by the interconnec'

tion of series and parallel adaptors is given in Fig2-7.

2.6. Non-Llnear Steblllty

Wave digital filters can be designed to have the important property of complete stability

under normal operating conditions in whieh arithmetie operations are performed with finite

precision [39,43,68]. Stabitity under ideal (infinite precision) conditions is directly achieved

since the bilinear transform maps a stable analog reference filter onto a stable discrete-time

one. However, with finite wordlength arithmetic the possibility of overflow and granularity

oscillations also arises. We now specify, following Fettweis and Meerkötter [39], conditions

which lead to complete stability and which may easily be taken into account in the arithmetic

operations of a practical filter implementation.

The incident and reflected waves for a lossless, frequency-independent reciprocal net-

work ¡V are related by

b(n)=Sa(n). (236)

Let G be the positive-definite diagonal port reference conductance matrix. Then the instan-

taneous pseudopower absorbed by N at the nt¡ time instant is given by

px @\ = cr (n) G e(r ) - bt (") G b(n) (2-37>

= ¡r(n) G e(n) - cr(o) SrC S a(n).

Network tV is pseudopassive if p¡(n)>0, and pseudolossless if p¡r(r)=0 for all r(n). For N

pseudolossless we have
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@ o

o3

-1 -1

o1

o2

-1

b2

G1
:-'-----'-þr*þg

Gr= G,* G, Rr= R' * R2

Figure 2.6 A parallel ønd a scríes 3-port daptor, each havìng a reflectÍon-free Port

¡t(o) (c - src s) a(n)=o

for all a(n), which imPlies

G=STGS

Since 52 = U, we can obtain from (239)

GS = STG

@

ol

b1

b3b2

2

b2 b3

o3b1

Y Y,=
R2

Rr* Rz

(238)

(2se)

which states that M is reciprocal with respect to the reference conductance matrix G.

Q.n)
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L
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@

1
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b

Fìgure 2.7 a) A third-order clliptic ladder filter, ønd b) its realization using series ønd

parallel adøptors.

Consider now the pseudopower absorbed by N at the n'å time instant, given by

p(n') = s{ (") G724(n)- (2'4L)

The decrease in absorbed pseudopower is then

Ap(n) =p(n) -p(n+l) (2.42)

= szr (n) Gp 4(n) - s{ (n +7) Gn e2(n +1)

Using (220) and (223),

Ãp(") = qr (n) G22 q(n) - ( Xb2(n))r G222b2(n) (2.43)

oz= o

TT

T
TT

I-#I
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= tzr Gzz ¡z(¿) - s2r(¿) Sz.Êzzsnul¿.)

= hr (n) (Gn - SnGnS22 ) r2(n).

From (239) it follows that

Gz = SurGu Sp * srf ens2 (2.44\

we obtain

Lp(") = qr (n) SutGr¡ S¿ e2(n)

= ( Su e2(n))rG11 Ss e2(n)

= brr(n) G1¡ b1(n).

(2.4s)

Since G11 is positive definite,

Âp(n) = 0 (2.46)

which is sufficient for output stability in the sense of Lyapunov, if thep(n) is the Lyapunov

function.

The above condition holds when arithmetic computations are performed exactly. '!Ve

also wish it to hold under Ênite precision operation, which has the effect of introducing quan-

tizers into the linear system. Define a system ii which is eguivalent to N except that each of

the output signals ¡,(o) is given by

6,@) = e(h@)) (2.47)

where Q is a non-linear quantization function. Define the decrease in stored pseudopower

^p 
(n) in a manner similar to Ap (n ). A sufficient condition for output stability of IV is then

^p(") 
> Ap (n) (2.48)

which is implied by

ir'GuÉz= bzr0nbz. Q.49)

Since G is positive definite and diagonal, this is implied by

l62t I 3 lbzt I for cvery i. (250)

A scheme which satisfies this condition for the underflow case is sign- magnitude truncation;
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saturation arithmetic may be used for the overflow case. Fettweis and Meerkötter have

extended the stability argument to the case when JV is composed of an interconnection of

adaptors, provided that (2.50) is true at all ports of each adaptor.

Minimality, both in detays and in degrees of freedom, plays an important role in the

preceding development. Note that the condition

Ap(") = qr (n) Gnqþ) - t{ (n +1) G22 e2(n +1)

= brr(n) G¡1b1(n)

=Q

(251)

can be true when br(o) = 0 for a non-zero state vector e2(n) only if the system is unobserv-

able. Therefore only output stability is guaranteed by (251). To guarantee complete stability,

the system must, in addition to (2.51), be observable. Ashley has shown [a0] that reciprocal,

observable WD networks are also controllable and therefore minimal in delays. Thus minimal

WD networks are completely stable in the sense of Lyapunov.

tWDFs based on non-canonic analog networks are themselves non-minimal in delays.

Methods for removing the redundant delays have been developed [29], but these change the

WD network by introducing off-diagonal entries in the conductance matrix G, and as a conse-

quence (250) may no longer be sufficient. Recently, methods for diagonalizing the reference

conductance matrix have been developed to overcome this problem by means of an exact diag-

onalization transformat iod laû,721.

Of course, this problem could be circumvented by choosing a canonic reference network

such as the Jaumann symmetric lattice structure. Alternatively, the non-minimal network may

be transformed into an equivalent network canonic in reactances, but yet containing a surplus

parameter. It has been shown that the extra parameter may be expressed in terms of a suit-

able redeûnition of the canonic design parameters such that the extra parameter will be finite

wordlengrh binary (FIVLB) if the canonic parameters are FWLB. The develoPment of this

idea will be covered in the next chapter.
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3. SYNTHESTS OF WAVE DIGTTAL FILTERS

The design of canonic stable WDFs is essentially the mapping of a suitable analog network

onto an adaptor or interconnection of adaptors whose ports are terminated in delays. Ulti-

mately the adaptors, which deñne a computational algorithm, are to be realized physically. In

this chapter the derivation of discrete-time wave filters from analog reference filters, and some

possible digital implementation will be discussed.

The synthesis of a stable WD filter generally involves the following stePs:

i) specification of the frequency domain nagnitude response, most often specified as a max-

imum allowable error in the passband and minimum attenuation in the stopband.

iÐ choice of a suitable II (t), which in most cases can be satisfied by an equiripPle transfer

function and found with the aid of design tables or a computer program. For

specifications which are not equiripple, either perturbation, continuous optimization, or

other techniques could be used.

iii) realÞation of II (rt¡) as a doubly-terminated lossless reactive network, which may contain

inductances, capacitances, unit elements, and ideal transformers. The ladder realization

of If (rl) is widely available from tables. This step is not actually necessary, but an ana-

log realization of fl (r!) must exist.

ir) possible removal of redundant reactances via a suitable network transformation.

v) transformation of the analog network into an eguivalent 'WD network by replacing the

reactive elements with delays, possibly in series with an inverter, and by replacing the

interconnections by a IVD multiport or an interconnection of adaPtors.

vi) approximate the canonic design parameters by binary fractions such that the design

specifications are still met.

vii) scale the digitat frlter to minimÞe the probability of overflow and to maximize dynamic

range.

viii) implement the filter as an algorithm on general- or special purpose hardware, ensuring

that (250) holds, such as by sigu-magnitude truncation at the states.

Two methods for the design of \ilDFs will be considered:
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Ð transformation of a ladder network to a WD network canonic in delays and consisting of

a cascade of first- and second-order sections. The removal of the reactive redundancies

will be achieved by simple analog network transformations (which, incidentally, are

equivalent to the diagonalization of Ashley [a0].

ii) realizing a transfer function as the equivalent of a symmetric lattice, and using first,

second, or higher-order cascades of unit elements to realize the two lattice reactances.

This realization is inherently canonic in delays and multipliers, but has the disadvantages

of high stopband sensitivity and that it is restricted to symmetric (odd-order) filter net-

works.

Consider the ladder realization, shown inFig23, of a third-order elliptic transfer func-

tion as the reference ûlter for a V|¡DF. A redundant reactance, a capacitor, exists within the

loop of capacitors CbCz, and C3 (the dual network would contain a redundant inductor in

one of its cutsets). A network canonic in reactances can be obtained via a network transfor-

mation [73], given in Fig.3.1, the result of which would be equivalent to deriving the WDF

from the non-minimal network, removing the redundancy, and rediagonalizing the port refer-

ence conductance matrix G. Applícation of this transformation to the capacitive loop in the

filter of Fig2.7 yields the network shown in Fig3.2. A corresponding WDF (a caseade realiza-

tion) can then be derived through application of the Brune adaptor of Martens and Jarmasz

and a parallel adaptor, as depicted in Fig.33, where the Brune adaptor was arbitrarily chosen

to have the reflection-free port. The design of the Brune adaptor follows.

3.1. Deslgn of thc Brune Adaptor

Consider the Brune section shown in Fig3.4a). To proceed with an N-port adaptor

representation of the Brune section, vr=Ke¡ and v¡=Nry, must be found, which requires that

the network first be partitioned into link and twig ports. Although there are six possible par-

titionings, the one which yields the simplest entries for N is used. By inspection of Fig3.4b),

the loop equations are

V3=V1*v2 (3.1)

t4=Vt1-.nV2

or

Y¡ = NTV¡, (32)
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where

n" = [l l], ", = [î], ", 
: [iJ (33)

Terminate twig ports in their reference conductances and link ports in their reference conduc-

tances in series with a voltage source, as shown in Fig35. We may now analyze the network

to obtain the voltage transfer relationship between link-port sources and twig voltages, and

hence obtain K. To simplify the analysis process, the ideal transformer can be elinrinated via



1

o b2

b o
2

Figure 3.3 Third-order elliptic WDF reelized usitig a Brune and ø parallel adaptor

v3

a_4_._

!__

G3

nGG

2t

(3.4)

(35)

2 V
v1

2
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the network transformation of Fig3.1 to yield the network of Fig3.6a). Application of

Thdvenin's theorem together with the definition of some naturally-occurring constants yields

the network of Fig3.6b), where

G5 Gs
ol = 

æ, 
Q2= Gr+ Gr

Continuing this process, we find the twig voltages v 1 and v2r

cbtvr=ffiL a2 ca * (1-c1-c2) ea * o,1e4l
J

è,

ñVz

+ v3
1n

V¿

v1

+

++

= o2dgCX * t
t
ca(l-c) + c1(1-ca) e4
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o¡=ffi-
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Gao+=ffi= 1

+
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+

+

vz

+
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+

t+(cz-"crXc# -ft1 (38)
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(3.e)

(3.10)

1

Now the relation Y¡ = K€¡ can be written as

[;J = [:;:: 
"u:;ä']"1 :'::;"0 ] f l

Ita -

1-2[ca(1-c1)+c1]
-2ca(1-c1)
2 -Zlq + (ca+ca)(1-cr1)l

2-21(o.fnca)(1-c)+cf

1 .!
G3+G4' G1rG5 G¡TGa

The overall scattering matrix for the adaptor is given by

-Zla2o.s(l-n) * ncr3(1-c1) + n ci
| -2la,2da(1-z) + aca(l-c1)l

2 - Zl(q + ca)(n (1-c1-c2)+c2) + acll
2n - 2l(d2(1-z) + n(1-c1))(cr3*zca) * ncl

2o2a3

2o.2o.4

2o2(o3*no.a)

2cr2(ca*n cra)

2[cr3(1 -c) + cr1(1-ca)]

2ca(l-c1-cr2)
2[(cr3+ca)(1-c1-c2) * c1]

2[(ca+n cra)(1-c 1-c2) + c1]-1

1)

The matrix K has now been expressed in terms of the design parameters {c} and n.

Only four degrees of freedom exist in the original network (three independent conductance

ratios and the parameter n), and so the new parameter set is non-minimal. [n solving equa-

tions (3.4,3.7,38) for the conductance ratios we find

G | (1-orþ¿

6 =;F;;;;'
G4 n dlc4

-=G2 l-n o.3 * n ct d4'

and that the folloç¡ing dependence relation holds:

G3o2n cl c4

G2 l-oz t-n ca * n c1 c4

Gs d'l Cl¿

G2 ca*na1c4
(3.13)

(3.12',)

(3.14)^ _ c¡ (l-nXl-az)or=ffi'

Through a suitable redefinition of parameters, using {c} together with (3.1a); a minimal

parameter set can be obtained. A definition will be suitable if expressing the new set as
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binary fractions ensures that the old set will also be expressible as binary fractions. If the

relationship between the new and old sets can be expressed in sum-of-products (SOP) form,

this is sufficient. Following the approach of Jarmasz [43], three suitable redefinitions are

found to exist, one of which is given here :

Þt=tt
Þz=a¡
Þr=a¿

cr = (1-Þr) Þz Þ¿

az = 1-Fr (l-Êz-F¡)Ê¿ (3.ls)

The choice of which definition to use is not generally clear, but for a given Parameter set,

each will have different implications for realization requirements. A summary of all Brune

adaptor design and analysis equations is given in Appendix A.

3.1.1. Port I Reflectlon-Free Brune Sectlon

Either port one or two could be reflection-free to allow the interconnection of adaptors.

An additional dependence relationship is obtained for each case by setting the appropriate

diagonal term in the adaptors scattering matrix to zero. For the case of port one reflection-

free we have

2(1-cr)(1-ca)- 1=0. (3.16)

Solving for c1 and substituting into the dependence relation (3.14), we can solve for c4,

ca = (1-cr3)[, - z"lr-"xt:"t l. (3.17)
f n(1-2a) 

J

Rational entries in K are created by the substitution of cr1 and ca. Those terms in K which

pose a problem are:

,,z'4:"rl-"rþ -',li,:Ì!i"u] o",

and

o - 
l-o,

P4 - o (l-ct3-ca)

cld4=ffirt-",,[rffi] (3.1e)

One suitable redeûnition of parameters sufficient to eliminate these rational expressions from
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2,4

(3.æ)

(3.22',)

(3.23)

(3.ù1)

(3.2s)

Þt=n
Þz=al

1-oroP3:æb

L-2þ,o' = ãñf
a2=1-ÞrFr$-2þz)
ca = (1-2pz (1-Þù F¡Xl-Þz)

3.1.2. Port 2 Reflectlon'Free Brunc Adaptor

If port 2 is to be reflection-free, the following condition must hold:

c2cta(l-n) * nca(l-c1) : å. (3.21)

To eliminate a1 and az from the K-matrix, solve the above equation for c1, and the depen-

dence relation (3.14) for c2, yielding

and substituting these into the K-matrix, we find the following rational terms in K:

ca(2ca-1)o'= îf,ilIËõ'

- (2sa-1)(1-ca-ca)
L - a2: l(l-a;Gõ;

- (2ca-1)(1-ca-ca) 
'l

r - 41-"-X1-')"4 jd.2Cr3 = Ca

cr3(2ca-1)
(3.26)clc4 =

?;lto'a(L-aa)

ca(1-ca)(2ca-1)
c1(1-cr3) = ?.no.a(l-aa\

(3.27)

In this case it is necessary to define two new parameters to convert to SOP form the entries of

K. One of the two choices for a parameter set is

(7 - h&z(l-ÊJ)Þ¡
cl=

Þr=n a4

1-ca-ca

" - z(t-r)ca(1-ca)

oz=l - þrÞzÊ¡

ca = (1-ca)(1-2cap2(1-p¡))

on=ÊrÞr+å2o.¡-l
þr= Z-

(3.28)
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The above equations ensure that the entries of K, and hence S, will contain only SOP func-

tions of the canonic parameters {Þ}, and as a consequence will allow a Brune adaptor to be

implemented as a binary-arithmetic, digital algorithm.

3.1,3. Slmpllfled Brune Sectlon

A simplified design for a Brune section without reflection-free Ports can be obtained by

imposing the constraint

&l=t-o2 (3.2e)

or eguivalently

G1 Ge
(3.30)

G5 G4'

which, using (3.14) also implies

ca = n(1-44) (3.31)

The resulting K-matrix is

l(=
(1 -c 1)n (l-cta) c ¡

(1-c1)ca 0
(332)

which represents a reduction in design complexity compared to the unconstrained design of $

3.1. An appropriate Parameter set is simply

Þr=n, þz=2(1 -crù, P3=2c1c5. (333)

The resulting adaptor has a corresponding flowgraph, which is shown in Fig3.7. For the port

2 reflection-free case, imposition of (321) yields the K-matri¡

l(: (334)
0

Although the constraint (329) reduces the number of degrees of freedom by one, e:rperience

has shown that many designs can be satisfactorily realized regardless. Similar adaptors are

possible through different choices for the simplifying constraint.

Various designs for the Brune section have been presented above, and are summarized in

dr)-c"(+
1
2
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Figure 3.7 Flowgraph of non-reflection-free símplified Brune adaptor. If port 2 is to be

reflection-!ree íts two-port ødaptor ís símply replaced by a straíght connection.

Appendix A. Next we will consider the WD lattice configuration

3.2. Lattlce Weve Dlgltel Fllters

A second, recently popularized approach to WDF design is through the use of a classical

doubly-terminated symmetrical lattice as the reference structure. The symmetrical lattice and

an equivalent (Jaumann) structure is shown in Fig38. Its voltage wave transfer function may

be e:rpressed as

TVo B, 1srr=î =-Ar=i(t, -sr) (3.35)

where the reflectances.î1 and .f 2 are given by

1

+

B1

ß3

ß2

I

zt-R zz-Rst:ñ, s2=ffi (33ó)
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Figure 3.8 a) A symnætrical lattic¿ and b) the equìvalent Jaumann structure.
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Figure 3.9 ttløvc flow díagron of tlu unidirectionøI WD laüce

Fettweis has given a \ilD structure which can realize (3.35), which is shown in Fig3.9.

'We choose to describe the analog network in terms of the canonic form of the scattering

matrix for a lossless reciprocal two'port Í7U751, given by

z

R
R

E

R

E

b2

s=1
I

h af,
Í -ch.

(33óa)

where Í , g , and å are the canonic polynomials. Some properties of the canonic scattering

matrix are:

i) .f , g, and l¡ are real polynomials in the complex frequency variable r!,
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iÐ g is Hurwitz,

iii) either g or f is monic,

it) o:!1,
v) hh. + fl, = ggr holds.

The t indicates the Hurwitz conjugate which in the case of real polynomials corresponds to

replacing ù by -û.
For the symmetric case, t = 1'/Í = -h,/h, which implies

ss, =a Ç -h)(f +h). (337)

The polynomial g can be expressed as a unigue product such that the following hold [a5] :

g = gt gz, gt gz, = J' +h, g!,gz = a(Í -h), (338)

from which we may derive the reflectances

and the canonic impedances

sr=-1, S2=L
8z

z, = R(*\, zr: n(*).

(3.3e)

(3.40)

(In the case of elliptic and similar transfer functions it has been shown that the zeros of g are

distributed alternately on the jor-axis between f,1 and Sz176l.) The impedances Z1aîd 22, or

alternately.Í1 and.S2, may then be realized by any number of classical synthesis techniques.

tüe shall choose cascades of ñrst- and second-order all pass sections or n-th order cascades of

unit elements [77,78].

3.2.1. Csscedc of Flrst- snd Second-Order All-Pess Sectlons.

To realize a reflectance .S as a cascade of ûrst and second order all pass sections it is

necessary only to express.Í in the following factored form:

where k=-o in the case of .S¡ and É=1 for the synthesis of .S2. Each second-order section

can be realþed simpty by apptication of Richard's reactance extraction [79]. The resulting
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(3.42)

R1 = Ral

b,
no =Ri

Rz+r = R, Í:1(1)dat' 2

l-at
?1 =-

L+41

a¡-b¡-t'ta=ffi
l-bt

"tzt+t = 
ø,

ì:t0)+.

If n is even, the first order section is simply omitted.

k=11

Fìgure 3.10 Realízøtion of an impedance via a cascade of first- and second-order all-pass

sectíons.

3.2.2. Chaln of Unlt Elements

To realize a reflectance S =(Z -R)/(Z +R) as a chain of unit elements Richard's reactance

extraction may be applied to Z according to the following recursive relation

Z, - ùR,zt+!=*tffi' zt=z' i:l(l)¡' (3'43)

which will terminate in either a short or open circuit, and where

bo
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R¡ = Z¡(1) = -4?l). (3.44)

A WD cascade of unit elements is given in Fig3.11, where the multiplíers {1} are given by

&-r-&r, = ffi, Í=1(1)n, Ro:R. (3'45)

Depending on whether the recursion terminates in an oPen or short circuit, the constant È

will be 1 or -1, resPectivelY

k=t1

Fìgure 3.II Realízatíon of an ìmpedancc by ø chaÍn of unit elcments

Different choices for the method of realizing Sl and 52 will yield a different set of mul-

tipliers, some of which may lead to simpler hardware realizations than others. Wegener has

established some rules for this choice [45,49], which attempt to minimize a multiplier's sensi'

tivity in the neighborhood of its nominal value. The synthesis of WD lattice filters is of secon-

dary importance here, and so their realization will not be dealt with in further detail.

3.3. Dlgltal Fllter Implementetlon

For a digital filter to be implemented as a digital algorithm using binary arithmetic (gen-

erally two's complement), the filter multipliers must be expressed as binary fractions of the

form

t = ;)ô, 2r, ô, ( {0,1}, ¡nsi3n, (3.4ó)

lqn

where the multiplier wordlength is defined as w:n -m*l'

If the muttipliers can be implemented as a seguence of multiplications or divisions by a

multiple of two and additions (shift and add), the use of actual hardware multipliers can be

avoided. The sensitivity properties of WDFs generally allow the multipliers to be of low

wordlength compared to other structures, assuming that some design margin existi, and hence

fewer shifts and adds will be required.

o

b

T

,JYî
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Usually the operation of negation is simpler to implement than addition. In such a case

it is advantageous to express the multiplier in canonical signed digital code (CSDC), which is

of the form

I = ådtl, d¡ ( {0,+ Ll, m=isl (3.47)
I =,n

such that

dt dt-t = 0 lor every í (3.48)

lsn*7 (3.4e)

Elements of CSDC have a canonic number of non-zero digits [80], and so require the

and

ted the shift-add method.

The excellent sensitivity properties of WDFs allow signiñcant reductions in multiplier

wordlength reguirements, and correspondingly low roundoff noise. Due to the interaction of

roundoff noise and dynamic range [10] one can expect good dynamic range behavior. How'

ever, some scaling of internal variables is necessary to produce the optimal overall dynamic

range, that is a balance between the level of roundoff noise and the probability of arithmetic

overflow for all nodes having the potential for overflow. The tr2'norm scaling of Jackson cr al

[81] can always be used to achieve this. To avoid the introduction of additional multipliers for

scaling, the scale values are approximated by simple shifts and are absorbed into the filter

structure wherever possible.

The actual implementation of digital ñlters will take the form of an interconnection of

adaptors, delay elements, inverters, and possibly including pairs of inverse multipliers for scal'

ing. Each adaptor is described in terms of its scattering matrix S, from which the adaptor out-

put signals are calculated from the adaptor inputs. For each of n outputs a calculation will be

required of the form

b, =f, ,,¡o¡. (350)
i-r

It is advantageous to calculate this inner product as efficiently as possible. We now examine

two distributed arithmetic methods for this PurPose.
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3.3.1. Shtft-end-Add Algorlthm

An algorithm, developed by Moon and Martens [82], allows the inner-product expression

to be computed as a series of shifts (division by two in binary arithmetic) and additions,

weighted by a unimodular factor c ( {0,+ 1}.

Since the entries of S are binary fractions we may write

sti d íjk 2-L d¡¡¡ ( {0,1} (3.s1)

or equivalently in CSD code

crr¡ ( {0,t 1} (3s2)

We may express rhe inner product (3.50) such that the only multiplication is by an integer

power of two, thus,

a 'Ilå,=ålctnl-k+ (353)
i =l l-0

Qtn
= > (> c¡¡¡a¡)Z-L

l-0 /-t

e¡

= \x¡Z-kt-0

= ( .. .1(@r,/2) + xr,-r)tz + xr,-z)/z + .''x1)12 + x¡.

The use of CSDC ensures that the minimum number of additions will be requíred. Also, com'

mon partial sums among {.r¡} for each output may be removed so as to further reduce the

number of additions. The actual implementation takes the form of a specialized structure,

different for a different set of coefficients, and consisting of a near- minimum number of

adders and shifters.

Q¡

t{l

Q¡

sr¡ = I cux2-L
t-0
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3.3.2. Stored-Prodoct Algorlthm

An alternative way of expressing the inner product (350) developed by Peled and Liu,

and Crosier et aI183,841, is based on representing an input signal a¡ in two's complement form

ø¡¡ ( {0,È 1}, (354)

Since a¡¡ ( {0,1}, the e¡¡ can have only 2' discrete values, in practice often few enough for

them to be stored in a lookup table. This is known as the stored-product method. An actual

implementation consists of the memory lookup table containing the partial products cs, îî
adder, shifter, and some registers. To change the coefficients the memory contents need only

be changed.

Both of the above two methods circumvent the use of hardware multipliers via distri'

buted arithmetic and specialized hardware. Current technology has made available general'

purpose signal processors, most of which are capable of fast hardware multiplication, so the

problem of minimþing realization requirements (in this case code size or execution speed) is

redefined in terms of the new processing resource. At least one implementation of \ilD filters

has been presented [8fl which utilizes the features of a single-chip signal processor such as the

lntel 2120. The problem of implementing digital frlters on general processors deviates from

the current topic and will not be discussed here.

r-l
a! =-a!o+la¡x2-k

l-l

where a¡6 is the sign bit and r is the wordlength. Substituting this equation in the inner pro'

duct (350) yields

s t-l Å

år =Is¡¡lo¡z-k -a¡o|rsy (3.55)

l-r t-l l-r

='å: 
I 
f,s'¡o¡r'-k] - n' å"'

¡-l
= lcç?-L - c¡¡.

l-1
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4. OFTIIÌtrZATION A¡¡D EXAMPLES

A digital ñlter is derived from a nominal discrete-time design by approximating the signal

quantities and filter coefficients to a number of bits sufficient to meet the design

specifications. The cost of a digital filter realization depends on the complexity of the digital

ñlter algorithm, whether it is realized as specialized hardware comPonents or as software, and

on the signal and multiplier wordlengths. In both of the synthesis techniques discussed in the

previous chapter,.only a minimal number of delays and multipliers are required, so any

reduction in complexity depends on the way in which the canonic number of multipliers is

implemented, and on the signal wordlengths used.

Multiplier wordlength has a large effect on ûlter complexity, since the increase in signal

wordlengh due to multiplication implies that more hardware will be required to carry or store

the resultant signals, and may place greater wordlength demands on subsequent operations.

Therefore multiplier wordlength is an important component of a ûlter's complexity figure of

merit.

Often it is feasible to implement multiplications by the shift-add method, in which a

filter's complexity depends on the number of shifts (equivalent to multiplier wordlength) and

additions needed. In the case of a fixed-flowgraph structure, a parallel adaptor for example,

the number of additions required to implement it is the sum of a fixed number required to

implement the ñowgraph, plus a variable number required to implement the multipliers as a

seguence of shifts and additions (or subtractions). Hence, it is desirable to include this vari'

able number of additions in a filter's complexity figure of merit, if the filter is to be imple'

mented using the shift-add method.

In the case of the unsimplified Brune adaptor, it cannot be implemented as a simple

fixed flowgraph, but instead could be implemented as a matrix-by-vector multiplication.

Reduction of the number of operations required to implement the overall multiplication

would then be the goal, and not simply the requirements of the design Parameters. As it is

generally cumbersome to calculate the number of additions required to implement a matrix

multiplication, we will assume that a reduction wordlength of the entries of the matrix will

result in a reduction in the number of additions as well. Also, overall wordlength reduction

of the matrix entries is desirable when the stored product method is used.

Two measures will be used to evaluate a digital filter's merit. The first describes the

degree to which the design specifications are met, and the second describes the relative reali-

zation requirements. We now formulate the first of these two functions.
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4.1. ObJectlvc Functlon lor thc Frequency Responsc

Consider the freguency response of a filter It(ú,f) having a parameter vector 1, and an

attenuation function defined as

Á(r, r) = -201o916 I A(ltanf , r) | (4.1)

We define an error function

f r =.?frT,,(Gn, e,) / F^o

max
o € [or,øl

(42)

where

cp max (r{ (.,r) - Á6) / 6(ro), (43)
o C [0,orl

is the passband error,

ct= ô(r) / (Á (<o,1) - A6) (4.4)

is the stopband error, E(or) is a tolerance function describing the design specifications, and Á6

is a gain constant chosen so that

Áo : _Ploor,zl(or,r). (45)

The constants ol¡ and {ùs âre the passband and stopband cutoff frequencies, respectively. The

constant Fr", is chosen, typicalty equal to unity, to allow a tradeoff between realization

requirements and slight deviations from the speciñcations. The speciñcations are satisfied

when F ,s 1. The smaller F 1 is, the larger the design margin and the larger the expected pos-

sible improvement in multiplier values. In practice, a discrete number of frequency points are

used to evaluate F1, the number and locations of which are best determined through some

experimentation; placing a greater number of points near the critical frequencies top and <ll5 is

an appropriate strategy.

4.2. Obþctlve Functlon for Rc¡Ilzetlon Rcqulrcmcnt¡

The second ûgure of merit describes the implementation cost of a filter. The complexity

of simple and of complex adaptor realizations depends chiefly on the wordlength of the design

parameters, and on the overall scattering matrix wordlength, respectively. In the case of sim'

ple adaptors, the design parameters are present as multipliers in the adaptor's flowgraph. For
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more complex adaptors, expressions including sums of products of the design parameters

determine the matrix wordlength.

A simple adaptor's complexity, if implemented via a shift-and-add method, depends

depends solely on the wordlengths of each of the design parameters and the number of addi-

tions required to implement them. (If the adaptor is implemented via the stored-product

method, the number of additions required by a design parameter is irrelevant.) Typically, it is

preferable that all parameters have similar wordlengths. Consider a single multiplier 1¡,

expressed in CSDC,

,ni

,, = )d,,2-t ,
l4

drj € {0,+ 1}. (4.6)

(4i)

(4.e)

Therefore the number of additions required to implement 11 is given by

"l¡D, : I tdul -1.
J-0

We may then define an objective function describing relative hardware requirements as

(48)

A change in multiplier wordlengh most greatly affects F2.

A slightly different approach is reguired for more complex adaptors, such as the general

Brune. In their implementation, the scattering matrix entries are the multipliers, and each

entry is a function of the design parameters. There are three distinct parameter defrnitions

possible for a Brune adaptor having no reflection-free ports, and three definitions for a Brune

adaptor with one reflection-free port. Instead of calculating the $matrix to evaluate its

wordlength, it is simpler to evaluate the wordlength of two matrices of which it is composed,

the voltage transfer matrix K, and the turns ratio matrix N. The entries of the turns-ratio

matrix N contain only simple occurrences of one design parameter, so reduction of the

wordlength of K, which contains SOP functions of the design parameters, is the prime con-

sideration.

Examine the X-matrix in terms of the design parameters {c}.

rr=fD,{'
t-l

l(=
c2o3 cr3(1-c2) + c1(1-c)
tzo,¿ ca(l-c1-c2)

It can be readily calculated in terms of each of the parameter sets defined in Chapter 2. In
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terms of parameter set 1 for a non-reflection-free Brune adaptor (3.15) we have

Xrr = [1-Fr(1-Þz-F¡)Þ¿]Fz (4.10)

K 2t = [1-Þr(1-Þz-Þ¡)Þ¿lF¡

K tz = ÞzÞ¿[l-Þz-FrÞ¡l

Kn = Þ¡F¿[Þr(l-Þr) - Þz].

The wordlength of K is then

Qt = mu(qrb Qt2t qzt, Qzz) (4.11)

where 4i¡ is the wordlength of. K¡¡. We choose to define an objective function F2 to be

Fz=ZQ'. (4.12)

which would be appropriate for either stored-product or shift-add realizations. Similar expres-

sions can be derived for the two other parameter sets, and for the cases of port one or port

two reflection-free adaptors.

The wordlength @¡ of the scattering matrix must satisfy

Qs = (gx-r) + Qn (4.13)

where O,v is the wordlength of the turns-ratio n. Since reduction of Qr and Qy does not

guarantee a minimum number of additions for S, this is partially solved by also considering

the wordlengths of individual design parameten¡ during optimization.

Given the objective functions F1 and F2 which characterize the relative merit of a filter's

frequency response and coefficient realization requirements, a suitable optimization scheme

will find a parameter set { I } which minimizes F2 subject to Fts 1.

4.3. Search Algorlthm

Heuristic schemes have been presented based on the well-known Hooke and Jeeves pat-

tern search [8ó] and which have given good results [49,63]. It is a univariate search with an

acceleration feature. A multivariate version of the search is illustrated in Fig.4.1. It has the

advantages of simplicity and the ability to conform to the restrictions of a parameter space

consisting of a uniform rectangular grid. However, it is a continuous optimization algorithm

and as such is not appropriate for the minimization of a wordlength-based objective function
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such as F2.
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A number of modifications have been made to the pattern search to better suit the

characteristics of F2. The number of variables that can be varied at once has been generalized

to account for the strong effect of the interaction of parameters in the Brune section K-

matrix. Different parameter index orderings have been made possible, the most useful of

which is based on the parameter sensitivity with respect to F 1, so that the wordlength of the

most sensitive parameters will be reduced frrst. Each parameter is given a different probe step

size according to its current wordlength, so that during the search only grid points which offer

an improvement in wordlength will be tested. The contraction step and exit criterion are

unnecessary and have been eliminated

The discrete search is designed to be part of an algorithm having the following features.

Any subset of parameters can be optimized while allowing those parameters not yet optimized

to be varied freely so as to attempt to satisfy F1=l while taking advantage of improvements

in F2 based on the parameter subset. This is to allow each section of a cascade realization, or

parameters whose interaction greatly affects F2 to be considered together. Also, the order in

which these subsets are optimized can be chosen to allow sections which are expected to

demand the greatest realization requirements to be considered earlier in the process, and so

take advantage of the larger design margin available then. Other optimization schemes can

and have been used, although only a global search guarantees optimality. The approach given

lends versatility to allow a compromise between computational requirements and the quality

of the final solution.

A more detailed description of the discrete search follows; a flowchart diagram is given

in Fig.42 (Appendix B contains a program listing). The search is applied to the task of

minimizing F2 under the condition that Ftsl is maintained. An initial point in discrete

parameter space with Ftsl must first be available. Such apoint can be found by approximat-

ing the coefficients of the nominal design to sufficiently long wordlengths. Beginning at the

initial basis point 1, a probe operation is performed in which the objective function F2 is

evaluated at neighboring points. If any improvement in F2 is found, say at 1s, F1(1r) is

evaluated. If F1>1, and some parameters have not been included in this search and are

therefore free, an optimization is performed on them to minimize F l. If F rs 1, a new point is

calculated by extrapolating through the 1r and the search is started anew with this as the new

basis point. If no improvement is found, then the previous best point is used for the new basis

point. After two consecutive failures the search stops.

The largest proportion of computational effort is expended in the calculation of F1, thus

to save time the condition Fr>l is recognized early in order to avoid unnecessary exact
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calculation. The response at critical frequencies, those most likely to deteriorate, are

evaluated first.

A useful property of WDFs is that each is a direct mapping via the bilinear transform to

an analog network. This is convenÍent for optimization applications since the frequency

response can conveniently be calculated from a filter's corresponding analog equivalent using

the frequency variable mapping

{l' = tan(¡f /Fs)' Fs = sranplíng frequency. (4.14)

Several examples are presented in the next section to illustrate the design and optimiza-

tion procedures. The search used is designed for use with cascade filter realizations which

include Brune sections. However good results were obtained for the WD lattice filters, and so

these are included to illustrate the search's merit as a more general tool. For smaller exam-

ples, ít is often feasible to use an exhaustíve search approach economically. However, for

filters of order > 7 this is generally not feasible. A comparison with results obtained using a

global search is given for fifth-order filters to show the consistently good results of the pro'

posed technique.

4.4. Deslgn Eremples

4.4.1. Flfth-Order Ledder Fllter¡

Eremple I
The first example is described by the following specification :

AsO3 dB, f (.10,3.41kH2,

A>32.0 dB, / ([4.6,16.01kH2, Fs=32kHz

These specify a digital filter used in an interpolator which increases the sampling rate from 8

ktlz to 32 kltz [36]. To find a suitable analog prototype, we calculate the corresponding ana-

log critical freguencies,

op = ,^lrrft = 034677, o, = tanrf = 0.4E503, (1,/Ap:139872

From the design tables [87], we ñnd that a 5th order elliptic filter designated CC051548 will

satisfy the specifications, and allow some margin in the passband and stopband. The topologl

of the analog prototype and a rWD equivalent are given in Fig.43, in which

'fFIh: 
Liitj I\',i¡iSl"tr"V üF tvf,q¡\lTöffiA Ll&RAR[Ë$
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ô5=cs * G7, ô6:G5* Gs, èt =Gs* n1G7 * n2Gs, (4.1s)

and the analog element values and corresponding design parameters are given in Table 4.1.

Design equations for this configuration of adaptors are listed in Appendix C. Although other

adaptor configurations are also feasible, the symmetrical structure given here is generally

preferable.

It is desirable that the constraints

GtGz = GtGs, GaGs: G2G6 (4.16)

be applied so as to simplify the two Brune sections, if the specifications can still be met. A

fixed-ñowgraph realÞation will then be available. The constraint is most easily applied to G¡

and G2, and so we have

Gy = GsGTfGs = 1.40509, G2 = GaGsfG6 = 0.47316

Using the objective function Fl of (42) and the frequency response algorithm of Appendix D,

it was found that the imposition of the two constraints perturbed the frequency response

beyond tolerance limits. A continuous optimization, based on the Simplex algorithm [88], was

employed to find a suitable nominal design.

An expression describing hardware requirements for this configuration is given by

Fr: I Q,, $'L7)
t=1

where

2

O, t'Qt =2
l-l

(4.18)

and D¡ is the number of non-zero bits in the CSDC representation and rn¡ is the wordlength

of the it¡ multiplier of the ltr section. The optimization procedure was applied to the filter

using the F1 given by (a2) and the F2 given above. Three stages were used, one for both

Brune adaptors, then two for each parameter of the parallel adaptor. The program found the

design given in Table 42, which is identical to the one found using a direct (exhaustive)

search approach. Its freguency response is presented in Fig.4.4. Only 19 adders are required

for a shift-add implementation of the ñlter:7 for the first Brune adaptor's flowgraph,5 for the

second Brune, ó for the parallel adaptor flowgraph, and I addition due to the multipliers. A

total of 14 050 evaluations of F1 were used, requiring the filter frequency response to be
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evaluated at 172 9zt0 points; 713 evaluations of F2 were needed. Only 7.93 seconds of Amdahl

5850 CPU time was expended compared to the 2 minutes, 55 seconds used by the direct search,

which required 2 27O 2ó8 evaluations of F1 using 2 557 670 frequency points. (The final
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Tablc 4J Inítìsl Desìgnfor Example I.

n Conductances Parameters

normalized denormalized

I
2
3
4
5
6
7
I
9

1.0
1.0
0.Kr62
t.24@t
0.æ911
o.64vL
0.98340
tsz876
0.70459

1.0
1.0
029878
0.43208
0.60303
185542
2835884
4.¿t085E

2.0318ó1

0331313
0.188890
0.175356
0.n7370
0.038815
0.035578

solution for direct search was picked by hand from a number of feasible designs.)

Tøblc 42 FÍnaI Conductonces and Parømcters tor Exatnple I.

n Conduc-
tances

Parameters

rational csDc adaptor

1

2
3
1
5
6
7

I
9

48
9

t6
3

48
9

744
135

27

u4
u4
u4
u4

7lt6
312%

.01

.0 I

.0 1

.0 1

.0001

.0000 010-1

1

1

2
2
3
3

Example 2

A second example is specified by the following requirements

A30J dB, I <lo, 36El kHz,

Á >45.0 dB,l C.1656, 16OlkHz, Fs=32 kHz.

These describe a filter first presented by Wanhammer [89]. From the design tables, we find

thar the fifth order etliptic filter designated CC052532 will satisfy the requirements when

freguency-scaled and allow a fair margin, particularly in the passband. The initial element

values are given in Table 43, referred to the topologl of the previous example. We attempt to

use the simpliflng constraints (4.16), yielding

Gy = GxGT / Gs= 485404, G2= GaGe / Ge = 183613,
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Tablc 43 InÍtíøl Condt¿ctances and Parømetcrs Íor Example 2.

n Conductances Parameters

normalized denormalized

I
2
3
4
5
6
7
8
9

1.0
1.0
081617
0.92697
0.08787
02ß97
13830
2.05013
t2s268

1.0
1.0
030841
o3fi27
o232y
0.6324t
3.6@
5.4255t
3315t2

o570t2
o.35644
0.0597¡lO

0.1ó021
0.04290
0.043518

from which a nominal parameter sct is obtained. This design does not satisfy the

specifications, so a continuous optimization is again used to obtain a satisfactory set. The

resulting parameter set allows some design margin. The objective function F2 used for the

previous example will again be suitable.

As before, the Brune sections are first optimized together, followed by one stage for

each of the two parameters of the parallel adaptor. The parameter set which resulted, given

in Table 4.4, reguired 9287 evaluations of F1 , a total of 54 714 frequency points, and 414

evaluations of. F 2. An equivalent parameter set was yielded by a direct search approach,

which required 712 8W evaluations of F1 and a total of 906 204 frequency points- The fre-

quency response is given in Fig.45.

A shift-add implementation of the design will require 23 adders: 18 for the adaptors, as

in Example 1, plus 5 adders due to the multipliers.

Table 4.4 Fìnal Conductaices a¡td Po¡ameters lor Exanple 2

n Conduc-
tances

Parameters

rational csDc adaptor

7

2
3
4
5

6
7
I
9

105

45
15

15

9
25
63

189
75

5/8
g8
u8
u4

71t28
3164

.101

.10-1

.001

.01

.0001 00-1

.00010-1

1

1

2
2
3

3
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Erample 3

Consider the following specifications:

A30J5 dB,l <l0,2.4lkHz
Á s 1.45 dB, r C.12.4, 3.Ol kHz

A3288 dB, I <13.O,3.41kHz

A¿ -015 dB,l (.10,3.41kHz

A > 40.7 dB, I <14.6, 321 hH z, Fs =64 kflz

These describe a digital filter used in an interpolator which increases the sampling rate from I
kHz to ó4 kHz [451. From Saal [90] we find that the Sth-order elliptic filter designated

CC055048 can satisfy the speciñcations. A set of element values are given in Table 45. As

usual we attempt to impose the the constraints

G1= GIGT / Gs = 1.45343, G2: GaGe / Gc = 056872

and use the conductances to calculate a nominal design parameter set. This nominal design

still satisfies the specifications despite the imposition of (4.16), but a continuous optimization

was performed to improve the design margin. \Ue may again use the objective function of the

previous examples.

Tablc 45 Initìal Conductønccs and Parameters for Exanple 3,

n Conductances Parameters

normalized denormalized
1

2
3
4
5
6
7
I
I

1.0
1.0
1.12338

1.49094
02726/,
0.76988
2,.0%n
2A94t6
t74325

1.0
1.0
0.18925
025rt6
1.61839
4570

12.4295
148053
10348

0.10469
0.052097
0.11521
030634
0.0084788
0.0088221

Now we may apply the optimization procedure to minimize F2. ìVe choose to minimize

the Brune adaptors first, followed by the parallel adaptor in the same manner as for the previ'

ous examples. The parameter set given in Table 4.6 was obtained, and required a total of 5558

evaluations of F¡,57 305 frequency points to be checked, and 421 evaluations of F2. The

direct search approach yielded the same design but required 425984 evaluations of F1 and 748

977 frequency points to be checked. Its frequency response is given in Fig.4.6. Only 20 adders

are required to implement the design.
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Tablc 4.6 Fì¡t¿l Conductarccs lor Exanple 3.

n Conduc-
tances

Parameters

rational csDc adaptor

1

2
3
4
5
6
7
I
9

42
2t
6
7

58

105

406
315

532

3132

ut6
1/8
ll4

u728
ut28

.0010-1

.00001

.001

.01

.0000 001

.0000 001

1

1

2
2
3
3

Preceding examples have shown the merit of the proposed optimÞation procedure rela-

tive to an exhaustive search approach. Verification by exhaustive search was possible since the

parameter space for these examples is sufficiently small. Some examples will now be presented 

-
for which exhaustive search is not feasible.

4.4.2. Seventh-Order EremPlec

Erample 4

Consider the following specifications [4fl :

.Á s0.11 dB, Í <10,2ßJ kHz,

As022 dB, Í (l2.8,32lkHz
A<0.44 dB, Í (l32,3.4lkflz
Á ¿ -0.11 dB, r <10,4.01kHz
Á > 30.0 dB, Í <14.0, 4ßl kHz

Á > 40.0 dB, r <14.8, 5.41 kHz

Á > 50.0 dB, I (.15.4,12.01 kïz, Fs=24 kHz

They describe a filter intended to be part of a transmultiplexer system proposed by Fettweis

[91]. Its passband attenuation is 7120 of the CCITT reguirements for channel filters, and the

stopband specification depends on the solution for other parts of the transmultiplexer. These

can be satisfied with the 7th order equiripple elliptic transfer function designated CCf7?Jff,

although with little margin in the equiripple sense. The conductance values are given in Table

4.7 tor normalized and denormalized cutoff frequencies. Using the ladder network shown in

Fig.43 as the reference filter, we may consider several rilDF realizations.
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Fígure 4.7 Seventh-order elliptíc protorype lilter contaíning reøctíve redundøncìes.

Tablc 4.7 Initial Conducta¡rces f or 7th-Order Examples-

n Conductances

normalized denormalized

1

2
3
4
5
6
7
8
I

10

11

72

1.0
1.0

081ó1
t22LO
1.13ó85
0.16141
081628
057779
t20207
1.603v2
139365
0.90654

1.0

1.0
0.3893
o.ß?37
0.v225
0.33840
L.7Lt37
1.27136
2.5202
3.%269
2.v278
1.9006

Given that three Brune sections and a parallel adaptor will be used, there are 16 possible

configurations. We will consider three which have been chosen, somewhat arbitrarily, to

include each of the three options for reflection-free ports of a Brune adaptor for the middle

adaptor. As usual, we will attemPt to impose the constraints

G1 G3 G2 G5
(4.1e)

Gs G6' Gp GE

whenever possible so as to simplify two of the Brune adaptors so as to allow their subsequent

realization as fixed-flowgraph structures.

Initiatly we shall attemPt to implement the rilDF as shown in Fig.48, in which

ô6=G5*Gs, ôt=Gt+Grt+n2Gt2, (4'20)

G1

E
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Figure 4.8 a) Seventh-order equívalent løddcr tilter involving Brune secrions, ønd b) a

corresponding WDF (Jor Example 4).

ôa = Gs + Gp, ôr = Gto * nv0s* n3(G11 + n2Gp)

This conñguration has a non-reflection- free Brune adaptor and two adaptors having the sim-

ptifying constraints, which are

G1= GsGs / Gc = 289894, G2 = G5Gp / Gs= 08507E

We obtain the initial parameter set, given in Table 48, which does not satisfy the

specifications. A continuous optimization was employed, and found a satisfactory set. A fair

design margin exists and indicates that improvements in hardware requirements are probable.

The function describing hardware requirements may be e:rpressed as the sum

F2: Fs * F25 $.21)

where F2 is the objective function for a non-reffection-free Brune adaptor computed

G2

T

t^,2

TTT

122221 B

III

B

III v

B

t,

TTT
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Table 4E Inìtìal Paratncters for Example 4.

n Parameters

1

z
3
4
5
6
7
8
9

0.11838
053495
0.065939
o3n79
o26753
026677
5.02998
038926
03w22

according to (4.12), and F25 is given by (48), in which the parameters for adaptors one, two

and four, which all have simple flowgraphs, are included.

A t¡'pical strategy for minimization is as follows. Since adaptor three is the most com-

plex, it will be minimized first, so as to allow the largest portion of the design margin to be

used in finding a favourable combination of parameters for the section. The turns-ratio,

because it is present in both N and K, will be the first parameter considered, followed by the

fourth parameter, since it is greater than than unity and often allows cancellations between

the numerator and denominator of the entries of K. The remaining parameters are minimized

last. Next, adaptor four is minimized, followed by adaptors one and two. Application of this

strategy resulted in the design of Table 4.9, which satisfies the specifications, as can be seen

from its frequency response in Fig.4.9. A total of 553 evaluations of F2 were required, and a

total of 515 614 evaluations of F¡, using 6 429 794 frequency points. Execution time for the

procedure was about 9 minutes.

Excluding adaptor three, 21 adders are required, of which 5 are required to implement

the multipliers. The scattering matrix for adaptor three was found to have an overall

wordlength of 19 bits. An attempt to decompose the matrir into a shift-add structure yielded

an impractical reguirement of 70 adders. A stored-product implementation of this adaptor

would be more suitable.

Eramplc 5

As a further example consider realÞing the same filter using the ladder network and

'IVDF structure shown in Fig.4.10, in which

ê5=G6*Gs, êt=Gn*G7*n1?s, (4.22)
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Tahlc 49 Filø,l Cotúuctlnces s¡td Psruteters for Exømple 4

n Conductances Parameters

rational csDc adaptor

1

2
3
4
5
6
7
I
9

10

11

tz

024195
023268
0.080649
0.11417
0.09104E
o.M27n
031250
0.10989
0.18818
0.64541
0.60852
028082

u4
9lt6
uL6
5lt6

t7164
t7164

5
9132

29164

0.0 1

0.1001
0.0001
00101
0.0100 01
0.0 10 0 01

101.0
0.0 1001
0.100-1 01

1

1

4
3
3
3
3
2
2

ôe = Ge * Go, ôc= Gr.r n2Ge* z3(G1s * n¡Ge)

This realization differs from the previous ones in that it includes a Brune section having port

one reflection-free. An initial attempt to apply both constraints (4.19) was unsuccessful, as no

satisfactory design could be found through continuous optimization. Application of the single

constraint (4.19b) was attempted instead. From the conductances given in Table 4.7 we may

calculate the set of design parameters given in Table 4.10. A continuous optimization algo'

rithm found a nominal design which satisfies the specifications. We choose the wordlength

objective function to be

Fz=Fæt+F2Bz*F25, $'23),

where F .,,rand F .,'rare evaluated according to (4.12), excePt that for F 2¡rthe K'matrix is cal-

culated in terms of the parameter set { p } of (320) for a port 1 reflection-free Brune adaptor.

The term F2ç is computed according to (a3) in which the parameters for the simplified Brune

and parallel adaptors are included-

The order in which the adaptors in the cascade will be minimized is : adaptor three, fol-

lowed by adaptor one, then adaptor four, and adaptor two last. Within each of the

unsimplified Brune adaptors the turns-ratios will be reduced first, then their last parameter,

followed by the remaining parameters, as described in Example 4. Application of this strategt

resulted in the parameter set of Table 4.11, which was found after 182 330 evaluations of F 1,

a total of. Z 451 587 frequency points, and requiring 352 evaluations of. F2. The search took

about 3 minutes, 32 seconds to complete. A ptot of the filter frequency response is given in
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Tablc 4J0 Initiat Desìgn Paroneters f or Example 5'

T
TTT

t22
B

II
Z1

I
I

v

B

III
B

t

T
t

TT

Parametersn
0.11838
o.r522S
0.11121
533344
031855
o.14233
327422
0.064193
03892ó
o3WZz

1

2
3
4
5

6
7
I
9

10

ttt'n':];." 
two adaptors do not have fixed flowgraphs, rearization requirements for this design

aregreatertbanforthepreviousexample.Ashift-addimplementationofBruneadaptorsone
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and three is again impractical, as their scattering matrices have wordlengths of 18 and 23 bits

respectively. The 18-bit scattering matrix would require 64 adders for its shift'add implemen-

tation, and so the stored-product method should be considered instead. Requirements for the

adaptors two and four are 9 and 4 adders respectively.

Tabte 4JI Fìnøl Conducta!7ccs and Psrømeters for Exonple 5

n Conductances Parameters

rational csDc adaptor

1

2
3
4
5
6
7
I
9

10

11

t2

2.02fi
0.48693
082955
o.49727
026400
0.ó2500
t.4027
0.4400
4i750
55316
t.t428
08115ó

U8
5t32
5132

5
3lL6
Llt6
9lz

u76
451r28

3/8

0.001
0.00101
0.00101

10 1.0

0.01 0 -1
0.0001

100.1
0.0001
0.10-1 0 -101
0.1 0 -1

1

1

1

1

3
3
3
4
2
2

Eremple 6

Consider a second choice of WDF configuration for realizing the network of Fig.4.8a),

shown in Fig.4.12, in which the parallel adaptor has no reflection-free ports and the remaining

adaptors are Brune sections with port two reflection-free. We attempt to apply the two con'

straints (4.19) to the conductances given in Table 4.7, yielding the set of initial parameters

tabulated in Table 4.12. These initially caused an unacceptable deviation in frequency

response, but by use of a continuous optimization, a satisfactory nominal Parameter set was

obtained. The function F2 will be (4.19), as it was for Example 4, except that the set { Þ } of

(3.18) for a port 2 reflection-free Brune adaptor will be substituted for the non'reflection'free

adaptor. We apply the following strategy to minimize the hardware requirements: reduce the

turns-ratio of adaptor three, followed by its fourth parameter, then the remaining parameters;

optimÞe adaptor four; optimize the remaining adaptors. The parameter set of Table 4.13 was

obtained. It just satisfies the specification, as shown in Fig.4.13. A total of 108 529 evaluations

of F1, 2D3Z 427 frequency points, and L92 evaluations of F2 was required. Execution time

was 2 minutes,5l seconds.

Adder requirements for this design are as follows: for adaptor one, 7 adders for the

ñowgraph and 3 for the multipliers were needed; for adaptor four, 6 adders for the flowgraph
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Tablc 4J2 Initial Pa¡amctcr Set for Examplc 6

-'l
T

ot
2

b

ob1 2

n Paramcters

I
2
3
4
5
6
7
I
9

0.r183E
053495
0.0ó5939
032779
026753
026677
5.02998
0i8926
03fB22

and I for the multiplicrs; for adaptor two,5 addcrc for thc flowgraph and 3 for thc multiplicrs.

A wordlcngth of 15 bits is requircd for adaptor thrcc's scattcring matrix. Thc adaptor can bc

implementcd via the shift-add method using 34 addcrs, although the stored-product method

would bc morc practical.

Thc abovc rcsults indicatc a eigniûcant rcduction in hardwarc rcquircd for thc implc-

mentation of cascadc WDF$ using Brunc adaptors and parallel adaptors at a reasonablc cost of

computation. Rcsults cquivalcnt to thc global optima for thc Sth-ordcr cxamplcs wcrc found.

The optimization procedurc presentcd has becn designcd for cascade realizations including

Brunc adaptors. Somc succcss has also bccn achicvcd for the ìJ/D latticc structurc, as thc fol-

lowing cxamplcs will show.
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n Conductances Parameters

rational csDc adaptor

1

2
3
4
5
6
7
8
9

10
11

t2

0.20000
0.1ó034
0.09091
0.083ó86
0.M2741
o.t5L52
0.18750
0.0806ó7
0.33333
0.64583
0.50452
0.20615

5lt6
EE
u4

59tzft
6

il16
3164
9132
7176

0.0101
0.1 0 -1
0.0 1

0.0 100 0-10-1
10-10.0

0.0001
0.00010-1
0.01001
0.100-1

1

1

3
3
3
4
4
2
2

61

Tablc 4JJ Final Condttctonces and Pøraneters for Exømple 6

o1

-1

b2

1/2

Figurc 4.14 Filth-order latícc WDF lor Examplc 7.

4.5. WD Lgttlce Examples

Eremple 7

Consider again the digital ûlter specifications of Example 3, which may be met with a

frfth-order etliptic transfer function. lile wilt realize the filter as a WD lattice structure, as

shown in Fig.4.14, which employs chains of unit elements for the first and second arms- A

computer program was used to obtain an initial parameter set, given in Table 4.14, which was

then optimized to maximize the design margin. For the wordlength objective function we
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shall use

Fr=f D,, (4.u)
t-l

where D, is the ñgure of merit for the it¡ multiplier, given by (aS). The minimization pre

cedure is then applied, yielding the parameter set given in Table 4.14. A frequency resPonse

plot is presented in Fig.4.15. The design is eguivalent to the one originally given by Wegener

t451. A total of 6823 evaluations of F1 using 85 464 frequency points, and 59 evaluations of F2

were required.

Adder reguirements for this design are 16 for the flowgraph and 4 for the multipliers.

The latter figure assumes that the appropriate parameter definition for each two'port adaptor

will be used. (Proper choice of one of the three possible defrnitions always allows the multi-

plier component I I to be eliminated [35J.)

Table 4.14 Initial and Fínal Parameters for Exønple 7.

n Initial Final
rational csDc

1

z
3
4
5

-0.78418
0.98438

-0.95703
-0.79590
0.96875

-1.0 1 0 -1
1.0000 0-1

-1.00010-1
-1.0 10 -1 0 0 -1
1.0000-1

-tEt6
63/64

-6U64
-t05lLzg

3U32

Erample I

As the last example, consider the realization of a WD lattice filter of the form shown in

Fig.4.17 which satisfies the speciñcations of g 4.4.2. An initial equiripple design, listed in Table

4.15, was obtained with the aid of tables [87]. It exhibits a sufficient design margin so that a

preliminary optimization is not required. By applying the minimÞation procedure we obtain

the design of Table 4.15, whose frequency response is plotted in Fig.4.17. A total of 108 529

evaluations of F ¡ using 2 032 427 frequency points, and 192 evaluations of F2 were required.

Adder reguirements for this design are 22 adders for the flowgraph and 9 adders due to

the multipliers. These results are comparable in terms of the number of shifts and adders to

those presented by Wegener [45J.
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Túlc 4J5 Initial and Final Puømeters for Example 8.

n Initial Final
rational csDc

1

2
3
4
5
6
7

-o52y,o
0ß287t

-0"80580
-0.v2647

o.6t7L3
-057721
033801

-tlz
27132

-314

-6U64
19132

-35164

LOu728

0.-1
1.00-10-1

-1.0 1

-1.00010-1
0.1010-1
0,100-1 01
1.0-100101

The above two examples illustrate the potential of the minimization procedure for WD

lattice filters. They also show the relative complexity of two filters realized using the WD lat-

tice as compared to a cascade of Brune adaPtors.

1
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5. CONCLUSTON

This thesis has proposed an approach to the minimization of WDF realization requirements

through discrete optimization. Methods for the design of cascade WDFs involving a recently'

introduced Brune adaptor, and for lattice WDFs were presented, both of which allow

economical implementations when actual multipliers are replaced by binary shifts and addi'

tions. The problem of reducing the total number of operations for a given implementation

realized using the shift-and-add method was formulated as an optimization problem. Objec-

tive functions were given describing two (relatively unrelated) properties of a digital filter: its

ability to satisfy a desired transfer characteristic, and the relative number of shifts and addi'

tions required to effect the multiplications. An algorithm was then proposed to efficiently

minimize the 'hardware" objective function subject to the condition that the transfer charac-

teristic remain within design specifications.

Most WD adaptors have frxed flowgraphs and so changes in the number of shifts and

additions depend solely on the design parameter values. The general Brune adaptor, however,

does not have a simple fixed flowgraph represcntation and so we instead considered imple-

menting the adaptor as a matrix multiplication. Since the evaluation of the number of shifts

and additions required to implement a matrix multiplication is prohibitively time'consuming,

we turned to wordlength reduction of the matrix entries, presuming that a reduction in adder

count would ensue. Alrc, overall wordlength reduction implies reduced costs for an alternate

means of implementing a scattering matrix, namely the stored-product method. The problem

was simplified by considering the wordlengths of the two matrices, N and K, of which S is

composed.

The optimÞation algorithm was applied to a number of S/D filters of ñfth and seventh

orders, based on ladder and lattice analog prototypes. Designs requiring a minimum number

of shifts and additions were found for the fifth-order filters, and were verified using an

exhaustive search. The two \VD lattice filters given here compare favourably to previously-

published results.

We have assumed that the above designs will be implemented using specialized

hardware, or in rcme other way in which the use of distributed arithmetic is uniformly advan'

tageous. T¡'pical target technologies such as microprocessors and VLSI introduce críteria in

the minimum-cost design problem that have not been considered here. We suSSest that future

work might include digitat frlter cost minimization schemes which take into greater account

the restrictions imposed by various specific technologies, such as a particular micropr(rcessor.
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Appendb A. Summsry of Brune Adaptor Deslgn Equatlons

A Brune section and its eguivalent ladder network are shown in Fig*4,.1.

G
3

G

E

Fìgurc A.I A Brune sectíon and íts cquìvøIcw lødder tutwork.

G

G

E

G2
G1

2

Gan=ffi, G4=Ga*G5

A sumnary of the various design and analysis eguations for the Brune adaptor follow

Simplified designs have the constraint Gt/Gs = Gt/G+ imposed.

A.l Non-reflectlon-free

1Gr=

definition 1

Þr=n

þz=
G1 + (l-n)ôa

GT

G2 - n(l-n)Ga

Gr

G1 + (1-n)ca Gs r nôa G2 - n(1-n)Ga

?,=Eh-(1-n)

X= uh . n(l-n)

G3 1

Þ¡=

G^
Ê¿=*Ity

A= (ËF;F;F; -"
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deÊnition 2

Þr=tt

definition 3

þt=n

þz=

Þr=

G^
Bt=-*

G3*. nGa

G-Þa=ffi

G, _ (1-o)Þz

G4 l-þz
Got
T, = n(t-r)[t +

G1 + (1-n)Ga G1

fr=ffi Ga

Gt 
= 4Þl

ô4 1 - Þ¡

G1 (1-n)Þz

è4 l-þz

X="(,-')[,. e' 
J

G¡ 1

A= 1r-pr¡pn 
-n

G2 Þr(2-Þr)
Þr

Þr

1-Þr
l-þz

G2 (1-FilÊz

G7

G1 + (1-nlGa
GT

G1 + (1-n)Ga

cr+(1 -n)G¿
Þ¿= (1-r)(G3 + zô4)

simplified

Þr=n
G1

G1

G3
þz=
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4.2 Port I Reflectlon-Frec

Þt=n

þz=
G1- -n 4

Þr=

2Gt
Gr

(1-n)(c2 +,rC+\

ô4 r-2þz
t-n

2þz

G1 t - 2(t-n)þ2þ¡

G3 t G¿_:
cr Ê¡(1-n) Cr

G1

G2
+ n(t - 2þ2)

Á'.3 Port 2 Reflectlon-Free

definition 1

Þt:n
G2

þz= n(G1+ (1-n)ô¿) G2

G1 1 (l-n)c¿
G2

G¡

nþz G2

1 - 2þtI - nþz
,ô^

þt= 6
1 + 2p3(1-n)

ô4 2Ft
G2 n

definition 2

Þl:n #-Þz(l-n)
t 2þ*

Gr

G2

G3

I - 2þt

2-= G'
(1-n)(c3 + nGa)

þr=ry
G2

ê4
Þz(1-n)

2Ft

t-n

G2 t-n
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simplified

Þr=tl

G¡ I
G2

Gs

Þr

1

Pr:c#; G2

d4

1-Fr
l-þz

G2 (1-ÊùÞrÞz
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Appendh B. Program Ltstlng ol Optlmlzetlon Algorlthm

A listing of the optimization program, input requirements and some sample data are given

below.

S/N, DPATTERN PENFORMS D¡SCNETE FATÎBRN SEARCH TO MINIMIZE II.0|RDLENGTfT

N,EQ{JIN,EMENTS ìVHTLE SATTSFY¡NO TREQUENCY SPgCIF ¡CAT¡ONS
VEn.SION: JUN 06't5, STARTED: SEPT ?' 1984
DESCRIPTION OT INPUT DATA¡

PLOTT ING:
ìVCI . LOWEST FREQ{JENCY TO AE PLOTTED
WC . HIGÍIEST FREQUENCY TO 8E PLOTTED
WS . STOPBAND ED1GE
RW - PASSBAND RIPPLE
ASMTN . MINIMUM ATTENUATION TN STOPBAND

HT.NES FI ROUTINE:

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

NX
NPX .
NSX
R, , BTOL

M.AIN FT
NPAS S
NSTOP
F.TOL

OPT IMI ZAT ¡ ON
NSTC
N tNC, V tNC,

SF¡X .

ROUT INE:

I
1
I
L

FN,EQUENCY SAMPLE POTNTS
PASSBAND N.ANGES
STOPBAND R.ÀNGES
OF FREQUENCY N/{NOES AND TOLENJ{NCES

PASSAAND POINTS
STOPEAND POINTS
OP fREQUENCY POINTS AND TOLERANCES

TAGES :
OP STAGBS

OF
OF
OF

tsT

OF
OF
ST

I
I
L
s
I

LIST OF I OF PAN,AMETBRS ¡NCLUDBD IN A STAGE,
INDTCES OF THE PARÀ,ÍS. INCLUDED. AND
A LTST O! ND T'S OR, O'S TNDICATTNG WHICH PARj\IS. AN'E
cuRneNTLY FIXED (r) OR FnEE (0)

CONT INUOUS OPT IMIZAT tON PAR,{METERS :

¡DC . DEBUG PARAMETER (SEE DBUO)
MOC - ì{Aix . I oF vAn ¡ABLES ( SEE M0 )
NOPTC - I OF CONTINUOUS OPTTM¡ZATTON AÎTEMPTS (SEE NOPT)
CNTRC - CoNTnÁCTloN FAcToR¡ SHOULD AE Po\tEn OF 2
Exrrc - LOC AASE 2 0F EXlr CnlraRloN

MI SCELLANEOTJS :

TIEXIT . MAXTMUM ALLOWAALE VALUE OA Fl
MO . MAXIMUM É OP VARIABLES VARIED AT ONCE IN DPATTS
QìÍAX . MAXIMUM QUANTIZATION WDRDLENGTH
ON,ED . INDTCATES WHETHER INITIAL BINARY FRACTIONS ARE TO BE

REDUCED (l) On NOT (0)
DBUG . A DEBUCGING PARJ{METEN, FON DPATTS. ¡N THE NANGE f'I'4I

CAUS¡NG NO OUTPUT (-t) uP TO FULL OUTPUT (4)
ICOPT . INDTCATES WUETHER CONTINUOUS OPT¡MTZAÎION IS TO BE

TNCLUDED tN DPATTS (l) On NOT (0)
NRPT . J OB TIMES THS MATN ROUTINE IS TO BE RAPEATED'

TO ALLOIY DIFFERENT STARTING POINTS 10 BE USBD
NOPT . A OT TTMES TO NAPEAT DPATTS AT EACH STACE
N@PT - I OF ATTEMPTS AT CONTINUOUS OPTIM¡ZAT¡ON ¡F

rNIT IAL QUANTIZAT ION FAILS
ISTOP . T TF THE PROCN,ÂM SHOULD BE STOPPED AFTER

QU¡INT¡ZATION. ELSB 0; USED lN PRELIM. CHECKS oF D^TA

aaaaaaaaaaataaaaaaaaaaataaaaaaaaaaaaaaaaaaaaaattttt"""t"""t"t"'

LOCICAL OPTOX, FAST
TNTEGER q(20), TTITLE(T44), QMAX, QM, OUT' DAUG' DTM' TITLE(80) '&Drrvfrr^x, oÀD(io), Po(zti¡, rzvo, P2r, FIX(20), QRED' INC(20)' vlNc(

t2o), slNc(e, 20), sFrx(e,2ol, Do(20). oo(20)
neÁl cn¡zô1, ot20), Dx(20). D¡N(20), DLg(20). DUB(20)' ToL(100)'

¿rwprs(rori), lìvprs(ioo), c(t28,20), D0(20)' R(2. 30)' BToL(30)
REAL'8 DSEED, GRD(20)
COrvf\þN / PUNCS / ND. D. Q. NPASS' NSTOP' TOL. wPTs. AìVFTs' PlExlT.

èDLB, DUB. OR.D, rlX, lP, Pt, FAST
CO}fvþN / FCN2 / INC' ICOPT
COlvfì/þN / IOUT / lN, OUT, DBUG
COIVII/þNIPLTIITITLE
Colùn/þN t PLT¿ / WC, ASMIN' RìY' wcl
COI\itfþN/SMFY/PQ
colrñ/þN / SRCH / C, Mo, QI{AX, F1EXT
coñtvþN/DSRC/MoD
COtyl!þN / CONTTN / lDC, EXITC' NOPTC' CNTRC' MoC
Pt - 4, ' ATAN(1.)
PlZ - Pl t 2'
Pt256 - Pt t 2t6.
lN-5
OUT-ó
CALL UGETTO(r, NlN, NoUT)
[.EAD (lN,400) (TITLE(¡). I - l' 80)
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t0

20

60

30
¡10

50

n.BAD (NrN
READ ( IN.
READ ( IN.
n,EAD ( rN,
NTx - NPX
Do l0 I -
RSAD ( rN.
READ ( lN,
NSPEC - N
READ ( IN,
nEAD ( lN.
tP (NSTG
DO 40 J -
n.EAD ( lN,
Do 20 I -
srNc(r. I
DO 30 I -
srNc(J. V
CONT INUE
RAA.D
REAI)
READ

tN.
tN.
li:

DSEBD -
ßIEXT -
IrO(-7
P2M0 -
P2l - I
DO 90 I
DO 80 J
c(J, r)

,110) (trrTLE(t)' l - I' r44).) lr'cr, wc. ws, nw, ASMIN
') ND, DEN' (D(l), t - r, ND).) NX, NPX, NSX
+ NSX
I. NTX.) n(r, t). R(2. t), BToL(l).) NPASS. NSTOP

PASS + NSTOP.) (WPTS(t). ToL(l). ¡ - l. NSPEC
. ) NSTG
.EO, 0) GO TO 50
I, NSTG.) NlNc, (vtNC(l), r - r, N¡Nc)r
¡, ND

)'0t, NlNc
lNc(r)) - I

' ) F rEX lT , M0 . Ctlt{^X, ORED.) DBUC, ICOPT. NRPT, NOPT. NCIOPTo) rDc. Moc, NoPTc. CNTRC. EX¡TC.

(sPrx(r. r). r r, ND)

I STOP

MOD - M0
DO 60 I - l, ND
D(l)-D(l)/DEN
rvRrTE (ouT,11o) (T¡TLE(l), r
wRrTE (OUT,450) ìvc¡, wc. \Ys.

&FIEXIT, MO, ICOPT
wR ITE (oUT , ¡l 60 ) lDc. EX lTc.

TN@PT
wnrTE (ouT.4?0) NSTG
DO ?0 , - l, NSTO
wRtTE (ouT,480) J, (SINC(J,
wRrTE (OUÎ,190) (SFtX(r, l),
CONT INUE

GENERATB SEARCH PATTERN MATN'IX

- t. t0). ND. (D(l). | -
RW, ASMIN. NPASS, NSTOP,

NOPT. CNTRC. MOC. ISTOP, QMAX.

I, ND)
DBUG. NRPT,

NOPT,

l), I
l-l

- ¡, ND)
. ND)

70
c.
c
c-

P2l - P2l
CONT INUE
DO t00 I
.ATYPTS ( I )

IF
DO

ro(

I . À,Ð(
t , P2M0
| . 2 .lìþD((,
.2

- I, NSPEC
- TAN(wPTs(r)

tl t P2l, 2)

ND)

TEX
D
E

2

00I
c
c
c

t20

t0

90

130

l¡l 0

t50

Pr256)

PREPARB INTTIAL PAR.ÀMETER SET. PERTURB INITIAL SET ON REPEAT

DO¡201-l,ND
D0(l) - P¡¡¡
CONT INUE
Do 380 IRPT - I,
ìYRTTE (OUÎ ,500)

D(l) - ¡s1¡¡
CONT INUE

. ( (GGUBPS (DSEED)

wR¡TE (oUT,5lo) (D(l). r - r. ND)

NRPT
IRPT
GO TO 140rRPT .LE. l)

30 I - I, ND

ND

R

0.5) . 0.4 + l)

DO 150 I - t'
Flx(l) - 0
oRD(l) - I
NFE-0
NFPTS - 0
FAST - .FALSE.
Pl - 0
lP - I
CALL rUNCT(Fr,
lP - 0
CALL XD2C(
CALL PLOT2
CALL PUNCX

NO,

ìYR ¡TE
WR ITE
¡F (Fr

ND

D, ND, NFE. NFPTS)

D, NC. GR, IER)
Gn, r)

BTOL, NX, NPX, NSX. PT)
(cR(l),¡-r'NG)6 ,420 )

6,4!0) (D(I)' I - l,
.LE. FIEXIT) GO TO I

c
c
c

SPEC NOT MET INITIALLY.

IQoPT - 0
ìYRITE (OUT,5?0) IQOPT
STDLEN - l. / 2 " 4
DOt70l-l,ND
Dx(l) - SIDLEN

ló0

t?0

OPT IMIZE
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NPEI - 0
CALL OPT ( tDC, DX . S IDIEN, EX ITC. NOPTC ' CNTRC.

&NSRCft, ¡OPT)
wR.tTE (oUT,530) lt, (D(r)' ¡ - r, ND)
CALL XD2C(ND, D, NG, GR, ¡ER)
ìvRrTE (6,1201 (Gn(l), r - l, NG)
CALL PLOTz(NG. 6R, l)
rF (8r ,GT. FIEXlT ,OR. .NOT, OPIOI') GO TO t50

c^rt. FUNCT(
wRrTE (OUT,
wRrTe (ouT,
rP (Pr .LE.
eM-eM+l

QM
ArNT(DrN( r)
. TN,UE .

orJT , 5 50 )our,56o)
I - l. ND

FI. D. ND. NFE.
5s0) Pr, (D(r),
560) (o(l)' I -
PIEXIT) GO TO

NFPTS )
I - l. NDI
r, ND)

240

OPTOT. FI. NPET.

FRACTIONS lF QRED-1

tE0

c-...-
C IF SPEC HAS AESN MST
c--.-- rF (tsToP .Eo. r)
C CNJANT¡ZE PARÂMETERS TO A¡NART NUMBERS
c- -. -.

wRrrE (our,540)

r90

M.AXB¡T _ eMjrx
Do190l-r,ND
oR.D(l) - I 'DIN(l) - D(l)
tF (QRED .EQ. l) GO TO 200
QM - M.AXBIT
co To 220

CONT INUE

(x) To 19 0

F lEX IT

700--- QM '. DOz
a(t)

2lO QM -
220 DO 2

o(t)zto D(r)
FAST
Pl -

0
0l-
- rNT
AMAXO

l. ND
¿rLoG(l / ABs(ft(l))) / ALoiG(2.0) + 0.5)
o( r ), oM)
I, ND0

.2.. Q(t) + SlcN(0.5. DtN(t))) / 2 .. Q(r)

c. -
240

250

¡P (QM .LE. MAXBIT) GO TO 220
IQOPT-IQOPT+l
r8 ( lctoPT .LE. NQOPI) GO TO l60
GO TO 3ó0

c.. -..
C PAN.AMETERS SUCCESSFULLY OUANTIZBD. A.EDUCE BINARY

'¿óñiNú;'
rF (aRBD ,EQ. 0) GO To 280
DO250l-r,ND

| - 2 " Q(l)
70 I - t, ND
D(¡) . PQ(r)

A¡NT(DT)
DTI?

DT ,NE.- o(¡)

NA. DT)
2,6 0

ArNT(DT) )-l
TO 260

PQ
DO
DT
IF
DT
IF
o(
co

I
2

I
(
)

co To 270

co To 270

270
2AO

CONT INUE
CONT INUE

c.
c
c.

290

300

c
c
c

PREPÀRE FOR DISCN,BTS MINIMIZATION.fii;;'
WN ITE
DO 290

DO 320
DO 300
lNc( r
Frx( r

Pr. (D(l),
(o(¡). I -

-;
ND

. ND)
)

rNc (
oRD(
coNl

) -r
) -t
NUE

CALL
lP -
NFA I
NFE 2
NAP I

I
I
I
E

lP -
Twn (ouT.570)

uNc2(F2. O.

NFEIC -c----.
C LOOP FOR STAGES
c. -. ..

D. ND. NFE)

¡Nc(r), l t. ND)

I
F
0

0
0
0

0

NSTGISTG -
I - I,
- s INC
- SFIX

CONT INUE
ìvnrrE (ouT,6o
wn tTB (ouT,6 l

ND
t sTG,
I STG.

r)
r)

0
0

t sTo,
(8rx( r I. ND)

PßNFON,.ù' DI SCRETE OPT IMIZAT TON

GALL DOPT(D8UG, NOPT, OPTOK, El. P2, NPEVAI-, NFPTS. NFEVz. NFEVC,
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¿Do, QO)
NFEI - NFE¡ +
NFE2 - NP82 +
NFPI - NPPI +
NfEIC - NFEIC
Do 3r0 I - l.
oR.D(l) - |
Fr - 1000

NFBVAL
NFEV2
NFPT S
+ NFEVC
ND

320

t30

3¡l 0

3t0

c

380

FAST
DO3
oRD(
DOt
rNc(

cAlL PUNCT(Pl, D,
CONT TNUE

ND. NFE, NFPTS)

ND, NFE. NFPTS)

c. - - -...
C ATTER
c. -.. - - -

IP

SÎAGES, PR NT STAT¡STICS AND PLOT PREO. NBSPONSE

I

l0 r
l) -40 ¡
l) -

PALSE.
- l. ND
I
- l. ND
I

CALL XD2C(ND, D, NG, Gn, lEn)
wR¡rE (ouT,650) (cR(¡), I - I' Nc)
NFIT-NPgl+NPerc
S¡RITE (OUT.66O) NPET, NFEIC, NPIT. NFPl.
CALL PLOT2(NG. GR, t)
lP - 0
co To 3r0

C ERNOR MESSAGES
c..
350

wRtTE (OUT
CAI.L FUNC2
CALL FUNCX
CALL FUNCT

Wn' ITB
GO TO
ìYR ITE
lP - I
AAST - .PALSE,
cAtL FUNCT(FI, D,
CONÏ INUE

620)
F2, Q, D, ND, NFE)
n, 8TOL, NX, NPX, NSX, Fr)
F I , D, ND, NFE, NFPTS )

NFE2

360
3?0

ouT,680)
70

(ouT. 6 e0 )

c
c
c

DONE

t90 IVR ¡TB (OUT , 6 ?O )
STOP

c- -...
400 fORJttAT
4I O PORÀ'AT
12O FORMAT
430 PORJ|I T
4 4 O FORÀIAT

tloN' /
ês:', l3

;.;i; '
72^t'
'oDPM: GR-' / (' ', locrl.5))
'0D-'/ (' ', locl3.5))
't' | ' '. 72(,.') / ' DtctTAL FTLTER $OnDLENGTH MTNIMIZAT
', 72( '-') / '0TITLE: ', toAl / '0'' 'NUMBEn OP PAn,{METER

/ '0¡NPUT PAR METERS|' t ' 0" l0Fr2.5)
'0', 'wCt:" Fl2.f , T20, 'ìvC:', Al2'5, 1'l 0, 'lvs:" F12'5'
:'. F12.5, T80,'ASMIN:'.812.5' TI00"NPASS:" l4' T120'
, 14 t '0DBU6:'. t!, T20. 'NRPT: 

" 
l2' T40. 'PlExtT: 

"60, 'M0:', 14, T80' 'ICOPT:', 14)
'0lDC:t,15, T2O,'EX¡TC:', F12.5. T10,'NOPT:" 15. T60'
, P12.5. T8O, 'M0C:', 15. Tl00''lSTOP:'. 15. Tl20"QIrlÂX;
'0NOPT:', t3. Tl0. 'NQOPT:', l3)

'oNSTG:', l4)
'OSTACE', t3, T1Í,'INCLUD8D:', T30, 20r3)
'0'. Tl5,'PIXED:" T30, 20r3)
'0" ?2('.'l / 'oTRlÀL r 

" 
¡2)

'0CBNEn TED STARTTNG POINT:', ( t '0', locr3.5))
'0PRELTMtNART LtNEAn OPT. REQUtRED, l" ¡3)
'oCONT. OPT. PAR METER SET: Fl-', Gll.5 t ( '0', rOCl3.5))
' OQUANT IZAT ION STEP' )
'OQUANTTZED PAR.AMETEI SET¡ Fl-', Clt.5. ( / '0" 1Ocr3.5)

'oQUANTtZ^TtoN WDnDLENGTH:', ( / '0" t0(4X, 12, Txlll
'0¡NlTrAL F2:')
'oUPPER STAB¡LITY EoUND:'. ( / '0'. locll.5))
'oLowER STABTLTTY BoUND:' . ( / '0' . rocr3.5) )
'0STAGE ', 12 t '0INCLUDED: ', Tl5. 20¡3)
'0aIXED: '. Tl5, 2013)
'o>> P tNÀL VALUES' )
'0G.RÁTlos, TNCLUD¡NG TERMINATIONS:' / ('0 

" 
5G25 ' 16 ) )

'o'. r0lr2 t <'0'. t0ll2))
'0G-RATIOS:' / ('O', locl3'5))
'0r Pr EVAL DTSCRETE" lt0. ' t El EVAL coNT." ll0' ' t P

êl EVAL TOTALT', ll0' # FREQ.PTS.USED:', ll0, t 3 BZ EvAl:', fl0)

450 FORMAT (
&T60. 'RW
è'NSTOP:'
¿tct3.5, T

460

170
¡l 80
490
500
5r0
520
530
540
550

560
570
5r0
590
ó00
610
620
ó10
640
650
660

FORJìíAT
&'CNTRC :

c'. 15.
PONMAT
FON.MAT
FOR¡'ÂT
PORÀ{AT
IOR}'AT
PORJVIAT
PORJì{AT
PORIúAT
POAMÀT

¿)
FORIYIAT
PORJI{AT
FORTIAT
AOR¡IAÎ
FORMAT
FOR¡IAT
AORÀ'AT
FONÀ'AT
PORIvtAT
FORÀtAT
FORMAT

670 FORJìíAT ('t')
680 FORMÀT ('OeAOnreo: lNtrtAL ll ls oREATER T}IAN FlEXlr')
690 FORMAT ('oABORTED: CANNOT QUANTIZE TO MEET SPEC')

END
aaaaaaaaaaaaaaaaaaeaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaataaaoôataaôtõ

a
c
c
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C S/R BITS CALCULATES THE CSDC REPRESENTATION OF N AND THE NUMBER '
C OF NON.ZEN,O BITS N,EOUIRED. STARTED 85 APR 02
c'
caaaaaaaaaaaaraaoaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaa"'

SUBNOUTTNE B¡TS(NIN. Q. BITCNT. K)
TMPLTCIT TNTEOAn.(A - z)
TNTEGER [( l )
N-NlN
BITCNT - I
x( 1) ' À/þD(N. 2)
N-N/2

Dol0l-2'Qr
x( ¡) - ÀrcD(N. 2)
N-N/2
rF (K(r) .EQ. 0) Go TO r0
EITCNT-8!TCNÎ+l

Otre+l

r) .EQ. 0) Go TO r0
-.- f(t . r)
(r)

x(l) - o
BITCNT-BITCNT.l

I O CONÎ INUE
BETUN,N
END

caaaaaaaaaaararaaaaaaaataaaaaaa a a a aa aaaaaa aa aa a aa aa a aa aaa...

c'
C S/R COPT PEN,FONMS A CONT¡NUOUS OPTIMIZATION TO NEDUCE FI AFTER .
c A DSnCH STAGS. PEE 2r'8t, SEPT2o't4
c'
ca a a a a a a a a a aa a aa a a a a a a a a aa a a a aa a aa aa a aa aa t aa a aa a a aa a a a

SUAROUTINE COPT(P. X. N. Q. NFß, NFPTS, NPEI)
LoctcAL 8AS1
rNrEcEn sPrx(20), soRD(20), o(20)
REAL X(r). Do(20), Dxo(20), sD(20)
co¡rÀ/pN / auNcs / ND. D(20) , lo( 20)

er00), AWPTs( 100), FrExlT, DL8(20),
&, PI, FAST

COlvÍvþN / PCNZ / INC(20), ICOPT
COI!{riþN / IOUT / lN, lo. lDl
CoÈfi/þN / CoNTIN / ¡D, BX¡T, NoPT, CNTRCT, MOC

(rcoPT .NE. r) RETUnN

ND

10

DX( rORD( I
D( roRD( r )

N
PtvR(a( r ) )

- x(l)

tF (
f(t
N-

x(t -
- t)
N+Í,

-F
t0 I
l) -¡) -20 1

0l=
(t) -(l) -
rNc( r
INUE

l0
?0
r)
( t)

Dx( 20 )
NPASS, NSTOP, lOL(100), WPTS(

DU8(20), roRD(20), rFrx(20), tP

IF
FO
DO
DX
SD
DO

Et
PWn.
D

a

CALL STABND(ND,
rF (D( lonD( r ) )
rF (D( roRD( r ) )
CONT I NUB
DO3

oRD(r), DLA,
DLA(¡oRD(r))
DUB(roRD(r))

D,
LE
ce

120
t20

DUB )
) GOTo
)coTo

20

30

40

70

IORD
tonD

sF tx
SOR.D
tF (
CONT

r, ND
¡Prx(r)
roRD( r )) .sa. l ) tPlx(l) - t

NDIM - ND
NFIX - 0
l-l
rP (rFrx(roRD(t)) .EQ. 0) Go ro 50
NFIX - NFIX + I
lT - loRD(l)

NDIM-NDIM- l
oo To 60
l-l+t
rP (l .LE. ND¡M) GO TO ¿¡0

STEP - 4.
F-
DO
Do(
DXO

l) - loRD(NDIM)
NDIM) - lT

l - I, ND
- D(loRD(l))

- Dx(IORD(l)) ' STEP
CONT ¡ NUE
DXMIN - 0.
rF (NDIM .LE. 0) CO TO 90
DO 80 I - l. NDIM
DXMIN - AMAXI(DxMlN' Dx( loR.D( l) ) )
CONT ¡ NUE
CALL PATTRN(NDIM, DO, DXO, DXIìtlN,
NPE-NFE+NPEI
NFPTS.NPPTS+NPPÎSI
DO 100
D( roRD
tF rx( r
toRD( r

NDE t,)-
sFl

I
( t))-)-

DO
x

80
90

SOR.D

cNTRCT, P, NFEl , NSnCH, NFPTS T )
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r20
t30
l¡l 0

r00

tt0

l0

20

CONT INUB
¡P (F .GT. Ftex¡Tl Go To
DOtl0l-l.ND
x(¡) - D(¡onD(l))
CONT INUE
RETUN,N
F - r00
DOl40l-l.ND
D(l) - 5P¡¡¡
NETURN

IQM - 20
NFEv¡tL - 0
NFPTS - 0
NCFEV - 0
NFE2V - 0
NFE-0
DO l0 l - l. ND
Dx(¡) - Pwn'(lQM)
CAIL RELSEN(DX, NPA, NPPTS' S)
NFEVAL-NFEVA|-+NFE
YvarTE (ó,r?0) NPEVAL. NFPTS
DO 20 I - t. ND
DsAvE(l) - D(l)

130

rNc(oRD(r)) .EQ. l) Go ro 80

FNDWL(DO( r ). rQM, OO( I ) )

- l. ND)

, DX. Fl. F2. OtNC, NrE, NSRCH, NFP, NF2,

END
çrroooiaaaaaa a aa aaaaaaaaaaaaaaaaaaa" tt tt t ttt"t""t"t t tt t" tt tt t tt tt'

c'
c sln oopr PEn.FoRJllS A DISCnETE CONSTRATNED OPTIMTZ^TIoN. AUG !0,19t4 '
C vERslON: 85 PEE 2l
c'
çaaraaaaaaoaaaaaaaaaaaaaaoaataaaaaa"t""t"""""tt"""tttttttttt'

SUBRoUTTNE DoPT(DBUG. NoPT. oPTof' Fl' P2. NFEVAL' NFPTS' NFE2V,
êNCrEV, DN, OO)

LO(]TCAL OPTOT. FAST
iñreoen o(20); Qo(20). oRD(20). r¡x(20) ' soRD(20, z0), DBUc' QBEsr

¿r(20), otNc(20), Qs^va(20). DN(l)
ie¡i-o(20); Dx(20), Do(20). DLg(20). DUB(20). s(20) ' lo¡-( 100) '&\yPTs(ldo). AwPrs(lo0). o(20), D8ESÎ(20), DsAvE(20)
N,EAL.8 DSEED
colvs1þN/FUNcs/ND.D.Q.NPAss'NEToP'ToL.lYPTs.AlYPTs'FrExlT'

&DLA, DUA, ORD, FIX, IP' PI ' FAST
COI!Iì/0N / FCN2 / rNC(20)' rcoPT
RoUND(x) - AINT(X + SIGN(o.5 ' X) )
DseED - D(l)
oPTOK - .TnUe.

-o
l) -

.LTPT
DO 40 ¡ - 2, NOPT
CAI.L GGPEN,(DSEED,
DO 30 J - r, ND

osAvE (
soRD ( r
rF (No

r)

NFPTS -
NFEzV -
DO r10 I
D(OnD( r )

(t)
onr( r)

.2)GOTO50

t0
40
50

soRD(1, J) - ORD(J)
CONT INUE
PBEST - l.850
DO 150 IOPT - I' NOPT
DO 60 I - I' ND
D(l) - DsAvE(¡)
A(l) - QsAvE(l)
oRD(l) - soRD(loPT. l)
CONT INUE
NDIM - ND
NFIX - 0
l-t
rr (Frx(oRD( l) ) .EQ. 0 .AND
NF|X - NFIX + I
lT - oRD(l)
oRD(l) - oRD(NDIM)
oRD(NDIM) - lT
NDIM-NDIM.l
GO TO 90
l-l+¡
tF (r ,La. NDIM) GO TO ?0
DOl00l-l.ND

ND. ORD)

Do(l) - D(onD(l))
Oo(l) - O(onD(¡))
otNc(l) - lNc(oRD
rF (orNc(r) .EQ.
Dx(¡) - PìvR(Qo(r)
CONT INUE

))
CALL

wR¡TE (6,2r0) (oRD( l), I
Pt - FIEXIT
CALL DPATTS(NDIM, DO. QO

&NCPE )
NFEVAL-NFEVAL+NPE
NCPEV-NCPEV+NCFE

60

70

80
90

t00

NFPÎS + NPP
NPE2V + NF2

- I. NDIM
) - Do(l)
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ll0
o(oRD( r ) )
CONT TNUE
lt (Fl .GT
FAEST - P2
DO r20 I
DBEsT( t )
oEEST( r )
CONT tNUE
DO 140 I - t
@(l) - ltlAixo
Do(l) - P1¡¡
DN(l) - ¡t9¡¡
CONT INUE

- ao(l)
StEXtT .On. F2 .GT. FAEST) CO TO l30

ND
t. 2 .. Q(¡))
' oo(l)

t20
tl0

. I. ND
- D(l)
- o(t)

(ó,rro)
(6.re0)
(6.200)

¡40

t50

ló0

t0

20

WR ITA
WR ITE
wn ITE

t - r, N)
wntTE ( ro,
wRrTE ( ro,
wRrTE ( ¡o,
wn. lTE ( to,
tr ( .Nor,
CONT ¡NUE

toPT, Fr. F2. (DO
(Qo(l).1-l.ND
(D(l),r-r.ND)
ND

¡), r r. ND)

CONÎ INUE
DO 160 I - ¡
D(l) - ¡sssa
O(l) - O88sr
CONT INUE
RSTURN

t?0 FORì{AT ('0DOPT: NFEVAL AFTER RELSEN-', Grt.6, ' NFPTS-" Gr3.6)
180 FoRì{AT ('OOPTfMtZATtON'. 12 I r0Al- '. GI3.5 I'OF2- 

" 
Gr3.5 /

&oPARAMETER sET:' / ('0', 20F8.0))
190 FOruvfAT ('0'.201t)
2O0 8OnÀ{ÂT ('0'. rocr3,5)
210 POnMAT (' DOPT: ORD-'. 20¡4)

END
caaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
c'
C S/n DPATTS PBRFORMS ,{ DTSCRETE PATTERN SE^RCH TO MINIMIZE A WORD'
C LBNOTH.EASAD FUNCTtON.
c vEn.SlON 85 MAR 15, STARTSD 8,1 OcT 12c'
caaaaaaaaaaaaaaaaaataaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

suBRouTtNs DPATTS(N. X, Q. E, Fl, F. lNC, NFE. NSRCH, NPPTST NFE2'
¿lNcFE )

LOC¡CAL IMPnOV
INTEGSR A(t), OE(20). aMAX. ¡Nc(20)
REAL XB(20), X(r), DX(l), E(20), c(tzt,20).88(20)
CONflþN / IOUT / lN' ¡O' lD
coÈfrþN / sRcH / C, lMo, QMIUI(. FtEXtT
COfrirþN/DSRC/M0
NFE-0
NSRCH - 0
NFE2 - 0
NFPTS - 0
NCFE - 0
CALL FUNCT(A¡, X, N, NFE. NPPTS)
CALL FUNCz(F. Q, X, N. NFE2)
NFE-0
NFB2 - 0
NPPTS - 0
MAiXRPT - 5
NRPT - 0
MOl - M0
M0 - MlNo(M0. N)
rF ( tD

WT TTE
WN ITB
wn, tTE
FE-F
DO
XE
QE
EE
CONT I NUE
CALL DSRCH(Pr,

&NFPTS, TMPROV)
¡F ( rD .LT. 2l
wRtTE (¡O.r2o)

.LT. 0) GO TO t0
(ro.90) N. rD, M0(ro,ro0) (x(r), I(¡o,l3o) (o(r), ¡

N

F F
N)
N)

,N)
I, N)
r, N)
I, N)

20 l - 1,(¡) - x(l)(l) - o(r)(t) - E(l)

150)
r40)
r60)
l?0)

FE. XE.

GOTO!
F. PI,

QE, EE. N, ¡NC, NFE. NFE2,

0
FE. NSRCH. NPE. NFEz, NCFE,

NSRCH, NCFE,

NFPrs, (x( r )

o(
XE
QE
EE

I
(
(
(

t-
t-
t-

30
40

IMPROV) GO TO 70

2) wRrTE ( lO, r r0)
,N

)
EO

+ s lcNo

tr
DO
xv
x(l
o(t
E( I
xB(
IP
EE(

tD .cg
0 l-l
x(l)
- xE(r
- oE( |
- EE( I
- xE(

Nc(r)
(EE(r), xE(l) - xv)
LL FNDTYL(XE(l). Orú X, oE(l))

- PìvR(OE( I )
CA
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50

60

70

t0
90

zo

30

wRrTE ( ro, r70)
rF ( rMPnov) Go
tF ( rD .çE-. 2l TE ( rO, rr0)
GO TO l0
CONT tNUS
tF (rD .LT. 0) GO TO t0
NPEI - 0
Al - 1000
cArL FUNCT(,F1, X, N. NFEI. NFS1)
wRrTE ( to, t9o) P. Rl. NPE. NSRCH.

, ¡NC. NFE. NFB2. NSRCH, NCFE,

NFE. NFEz, NCFE, NFPTS. (X(l). r

NFE2. NCFE. NFPTS' (x(t)' ¡ - r

CONT INUE
F-FE
c^LL DSRCH(Fl.

eNFPTS, IMPROV
rF (rD .LT. 2

wR rrs ( ro, l 20
& - I, N)

ìYR rTE ( r
wRrTE ( r
wRrTE ( I

eN)
wRrTE (
M0-M0
NETURN
PORÀ'AT ('

¿ÈNONL INEAN

TO 60
Ft. 88, NSRCH,

I
(
(
(
4

FE,

GO
P,

(o(
(xE
(oB
(EE
TO
s'n I

XE, QE, AE, N

o, t50
o.l¿l 0
o,160

.N)
t. N)
t. N)
l. N)

I
t
I

)
I
I
I
0

lo,r30) (o(r), ¡
I

r, N)

t, t t / tx, ?0('-')
MIN¡MTZATION'I LX,

) , , 5X, 'N
tX, 'Fl -'. Gl3.t
'0INPUT VECTOR:' / ('
'oEXTR PoLAT¡ON:')t F-', 013.5, 'rl-',
l¡l , 'NFA2-', l4,

/ ' DISCRETE
70('-') t t

tt / 5x. 'tD
t 5x, 'F2
0'. rocr3.t))

PATTEN,N SEARCH FOR
'TNPUT DATA:' / 5X

. t3 / 5X, 'M0
-'' cr3 .5 )

5X,

t00
tl0
t20

t30
t40

ê. rr('-
Þ"ttI

FORMÀT
FORMAT
FORMAT

ê'NFE-'
¿t 0Gt 3. 5

FORMAT
FORJTIAT
FORJVIÂT
FORJTIAT
f ORTúAT
FOR¡vlAT
FOR.tt{ÀT

ct 3. 5.
NCFE-' ,

' FE-'. Gr3.j.
Itl. 'NFPTS-'

'NSRCH_', t4,
lll / ' XÈr,

'oìVOA.OLENGTHS : ''xa'. locr3,5)
' AEr. l0rr3)
'QE" l0lt3)
'a-,, t0c¡t.5)
'oRETREAT: ' )

t0 t t 3 ) )

'. ', 4X, 'PINAL OAJECTIVE FUNCTION VALUE:', cI3.5 / '0'¡
¿tX, 'FINAL SPEC. PUNcTtoN VALUE:', Gl?'5 I ' 0'. 4X' 'NUMaER oF FUN
¡tCTfON eVALUATIONS:', 16 t '0', tlX, 'NUMBER OF SEARCH STACES:" l6
t. t 'O', lZX. 'NUMDER OP WL fCN EVALS:" 16 / '0', l0X, 'NUMAER OF

('0"

150
t60
r70
180
r90

&CONTIN.P.EVALS:'.
t'0PINAL POINT:' /

END

ló
('0

/ 'o'. I
'. loct3

lX, 'NUMBER Of FREQ PTS USED: 
" 

l13 /
.5))

ca a a a a aa a a a a a a a a aa a a a aa a aa aa a a a a a a aa a a a a a a a aa a a a aa a aa a a aa aa a

c'
C S/R DSRCH PERPORMS MULTTVAN,¡AÎE PATTERN SBAR,CH PROAE !þVEMENT. .
C VERSTON: tS FEB 2lc'
ca a a a a a a a a a aa a a a ao a aa aa a a a aa a a a a aa aa a aa a a a aa a a a a a aa a a a aa a a a a a aa aa a

suBRouTlNE DSRCH(Fl. F0. X, Q. tt, N, lNC, NPE1, NFE2, NSn' NCPB.
¿NFPTS. TMPROV)

LOGICAL IMPROV
INTEGER O(r). P2M. Os(20), QB(20). O¡r{Ax' lNc(20)
REAL x(l), D(1), Ds(20), c(17t, z0), xs(20), x8(20)
coÀrfì&N / louT / lN. ¡o, lD
COÈfvþN / SRCH / C. rMO. QMirX. FIEXIT
colvfì/þN/DsRc/M0
tMPnOv - .FALSA.
NCFE0 - 0
NSR-NSR+l
FE-F0
F - F0
FIB - Fl
NPEAS - 0
rP (lD .LT. 3) CO TO l0
wR¡TA (ro,t?0) P0, FlB, (O(l)i l - I, N)
wRllE (lo'le0) (x(t). r - l, N)

l0 Fl - 1000
c^rl ßuNcr(Fl. x. N. NFEr, NFPTS)
cÂl-L FUNC2(FE, O. X. N. NPEz)
rF (FE .GT. F) CO TO 40
rP (FE ,EO, I .AND. FT .GE. FlB) GO TO 4O

rF (Fr .Le. FTEXTT) GO
CALL COPT(Fr, X, N. Q.
lF (F1 .GT. lrEXrT) GO
NFEAS-NFEAS+l
DO !0 I - I
x8(t) Ê x(l
aB(l) - O(l
CONT INUE
P-FE
FIB - Fl

N

¡F (rD .LT. 4)
I -0
wRrTE (lo,¡80)

TO 20
NCrE, NFPTS, NCFEo)
TO 40

GO TO 5040

I, t, r, FE. P, Ft, NCFEo, (a(10). l0 r, N)
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CEtF (rD 4) wnrrE (¡o,re0) (x(lo), lo
,M0
.N
, PzM

Mr z. N) + t

r, N)

r)
CALL FNDIVL(x(L), OrìtÀX. O(L))

Pr, NCAEo, (A(r0
(x(10)' l0 - l. N

50

60

160

70

80

90

t00

DO
P2M
DO
DO
NCP
DO
L-
Ds(
xs(
os(
D(L
x(L
IF

I

I
I
E
6

50 M - I
- z .. lÁ
40 L - I
20 J - I
0-0
0 t - l.
ÀþD( ¡ +
) - D(L)
) - x(L)
) - a(L)
- D(L)
- x(L)

rNc (L )

,
L
t

' c(
+D(
EO

CONT INUE
Fl - 1000
CALL FUNCT(PI, X. N, NPEI' NFPTS)
cArL FUNC2(rE, Q, X, N. N8E2)
lP (FE .GT. F) GO TO 90
rp (FE .EQ. F .AND. rl .GE. PIB) OO TO 90
tF (Fl ,LE. FtEXTT) GO TO 70
CALL COPT(FT, X. N. Q. NCFE' NFPTS. NCFEO)
tF (Ft ,GT, PTEXtT) GO TO 90
NFEAS.NFEAS+I
Do 80 I - I N
XB
QA
CONT INUE
F-PE
Fr8 - Pl
rF (rD .LT. 1)
warTE (ro.rt0)
tP ( ¡D .GS
DO 110 I -
L - À'toD(l

(t) - x(l(t) - o(r

t 00
M, FE, F
( ro, re0)
+l

GO TO,. r.
WRITE

M
- 2, N)

s

s
s

t0 r, N)

Gl3,5, 'Q:'. 20r3)
2,'FE:'. G13.5, 'F:',
. 'Q:'. 20f3)

('ODSRCHi F0:'. Cl3'5,'FlB:'
(' J:', 12, 'K:', 12,'M:'.
'Fl:', Gl3.5, 'NCFEo:', Gl3
('X:'. locr3.5)

2
NE

PÌYR(L0)

A¡NT(X) ) GO TO 20

0.) Go To r0

4)

x.
I

+
r)
r)
r)

x(L)
D(L )
a(L )
CONT

Bx
-D-o

INUEtt0
t20

130

140

r50

CONT INUA
rP (NFEAS .LT. l) GO TO 140
Do r30 I - l, N
x(l) - ¡s1¡¡
o(l) = a8(l)
D(¡) - Pwn(Og(¡))
CONT INUE
IMPROV - .TRUE'
NFEAS - 0
CONT INUB
tF (F .LT. P0) GO TO t60
CONT INUE
F0-F
Fl - PIA
RETUN,N
Fl - PIB

170
It0
190

P0 - F
RETURN
FONMÂT
FOAì'AT

&ct I . 5,
PONÀ{AT
END

caa a a a aa a a a aa a a a a a a a a a a a.a a a a a a a a a a 
" " "" ' 

t 
" " 

t" 
" ' 

t t t t t" tt tJ

c
c
c
c
c

S/N, PNDWL FINDS THE SHONTEST WORDLENGTH N,EQUTN,ED TO N,EPRSSENT XI '
vgnstoN M R 26, 1985, STARTAD OCT l2' l9t4

a a a aa a a a a a a a . a aa a a a a a a aa a aa a" 
" " " " " 

t" 
" 

t"t 
" " 

t t 
" 

t t 
"" '

suBRouTlNE FNDWL(Xl, Lo, Lr)

t0

Lt -X-X
X-X
rF (x
Ll -

LO
I

I

Li
¡F (X.NE.
ll - 0

20 NETURN
END

aaaaaa aa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"t "t" " 
t tt tt t t"t"t"t"tt'

a

S/N FUNCT BVALUATES THE OBJECTIVE FUNCTION EASED ON FREQ{JENCY .
vens¡or¡ FEB 21',t5, o]cT 25'84

aa a a a a a a a a a a .aaa a a a a a a aa a a a a a 
" "" ' " 

t 
" 

e 
" 

t t t t t t"t 
"t 

t t 
'

SUBROUTTNE FUNCT(F, DO. N' NFE. NFPTS)
LOGICAL PAST
rNrsGER OR.D(20), O(20), Flx(20)
REAL DO(l), FR(¡00)

c
c
c
c
c
c
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coùìþN / FUNCS / ND, D(20). a, NPASS,
tArvpTs( r00), FrEx¡T. DLB(20), DUB(20),

COI\â/þN / rR.EOPT / NG. C(20), w, Fnl
NPE.NFE+I
rP (N .LE. 0) GO TO 20
Do l0 I - I' N
D(oil)(l)) - Do(¡)
DO 30 I - I, ND
CATL STABND(ND. D. I. DLA. DU8)
rr (D(r) .GE, DUB(l)) Co To 120
rF (D( r ) .LE. DLA( I ) ) CO To 120
CONT INUE
CALL XD26(ND. D, NG. G, IER)
tF (lEn ,EQ. r) oo ro rl0
FCoMP - F
FRMÀiX - 0
FP-0
PRMIN - 0
DO ¿l 0 I - 1.. NPÀss
w - AIYPTS(l)
NFPTS.NFPTS+I
CAIL FRQPT
FR¡ - - 20.0 ' ALoGr0(FRt)
rR(l) - P¡¡
FRMIN - AMtNt(PRMIN. Pnl)
FRÀ{AX - AilAXl(FaJúAx' 8Rt)

NSTOP, TOL(
oRD, FlX, ¡

). wPTs(100),
Pr. FAST

100
P,

t0
20

30

PP - AIvlAXl (FP. (PRl . FRMIN) / ToL( I ) ' ABs (PRMIN
C FP-AMAXr (FP, (FRt.PRIrllN) /ToL( t ) )

tF (FP .GT, FCOMP .AND. FAST) GO TO t00
4O CONT¡NUE

¡P (FRMIN .GE. 0) CO TO 60
Do 50 I - I, NPASS
aP - ÂMAlXl(FP' (PR(l) - FnMIN) / ToL(l))
lF (FP .GT, FCOMP .AND. FAST) GO TO 100

5O CONT ¡NUE
60 ATTMIN - 1000

NSIENPASS+t
NS2-NPASS+NSTOP
FS - 0.
DO 70 I - NSl, NS2
w - AwPTs(l)
NFPTS-NPPTS+l
CALL FNQPT
PRI - - 20.0' ALOGI0(fRl)
Fn(l) - ¡¡¡
ATTMIN - AMINI (PRr ' ATTMTN)
DFS-ARt-PR"tllN
tP (DFs .EQ. 0') DFS - l.E ' r0
FS - A¡rl Xl(Fs. ABs(ToL(¡) / DFs))
tP (PS .GT. FCOMP .AND. FAST) GO TO ll0

7O CONT INUE
P - AMAXr(PP' Fs)
lP (rP .NE. l) GO TO 90

/ ToL(NPASS)))

WR, ITB
WN ITE
DO 80
RELATT .
wRrTE (6
CONÎ ¡NUE
RETURN
P-FP
RETURN
F - FS
RETURN
F - 500.
RETURN
F - 501'
N,ETURN

6.I,IO) TRM¡N. PnJúAX' ATTMTN' F
6,r50)

(
(
I - tr

PR(
,160

NS2
t ) . FRÀflN
) r. ryprs(r). rR(l), RELATT, roL(l)

80
90
r00

tt0
t20

t30

140 FORIVtAT (' oMIN.ATTEN
¿tol3.5,'OBr.FCN.:',

Gt3.5,'MAX.PAss, :', Gl3.5"M¡N'STOP' :',
5)

t5o FoRMAT (' . 
" 

4X) 'POINT' . 4X, 'FREQ' , l0X. 'ATTEN(ABS) 
" 

9X' 'ATTE
¿r,N ( REL ) 

" 
?X, 'ÎOL' )

r60 PoRÀtAT (' '. 6X, t2, lX, 5(2X, G13.5. 2X))
END

caaaaaaaaataaaaoaaaaaaaaaaaaaataaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaataaaa
c
c
c
c
c

S/N, FUNCX EVALUATES THE FREQUENCY RESPONSE OBJECTIVE FUNCTION WITH
HIGH RESOLUTION. OCT. IO't4

suERouTlNE SUNCX(R. ETOL,
LOO¡CAL FAST
TNTEGER ORD( 20 ) , O( 20 ) , P
nEAL R(2, 30), BTOL(30),
coifiáoN / FUNCS / ND. D(20

¡lArvPTs( 100 ), F¡ExtT. DLB(2
corr¡\rfoN / FnEOPT / NG, G(2
CALL XDzC(ND, D, NG. G, t

N, NP. NS, F)

tx
AT
),
0)
0)
EN

20t
300 )
Q, NPASS.
DUB(20).
w, PRt

NSTOP
ORD,

, TOL
Ftx.

roo), rvPTs(r00),
P, Pl, F^ST
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PPMIN - t000
DO l0 r - l.
WD - (t - l.
It - TAN (rìD '
CALL FRQPT
FRI - - 20.
AT(ll - PRI

. ALO(¡I0(Fn¡)

PPMTN) GO TO r0
r28.

N
),N
?t t 2,)

.GT
$/D
FR, ¡

CONT INUE
DO 20 r - r. NP
w - T,1N(R(2. l) ' Pt t 2s6.1
CA.LL FRQPT
FRI -.20. ' ALoGl0(FRl)
AT(t+N)-rrttF (PRr .CT, FPM¡N) 60 TO 20
WPMIN - R(2, ¡)
FPMIN - FRI
CONT INUE
DO 30 I - r. NS
w-TAN(R(I.t+NP).Pl/
CAI.L FRQPT
fRl -.20. 'ALOC10(Fnt)
AT(l+N+NP)=FRl
rF (FR¡ .GT. FPMIN) GO TO 30
ìVPM¡N - n(1. I + NP)
FPMTN - PRI
CONT INUE
FP - 0.
DO 50 I
Ll - INT
L2 - INT
PPM¡¡IX -
DO 40 

'rF (AT( J

,NP
t, ¡
2, I

IF
WPM
FPM

APMAiX - AT
wPrì{AX - (,
CONT INUE

t r28 .1
t t28.)

+2
+l

N / r28.)
N / ¡2r.)

+2
+l

RI(F
IN
IN

l0

20

30

40

50

2s6 . I

(R

Í*
)

N
N

1000
Lt.
.LE.
(, )

L2

r)
FP - AMAxr(FP,
TP
IF

- (AT(N +
(TP .LE.

r)
FP) GO TO 50

PP.TP
lvPlÌfAX - R(2, l)
FPMAX-AT(N+t)
CONT TNUB

FPM X) GO TO ¿l 0

. l2t. / N

(FPÀ|AX . FPMIN) / BToL(l))
. FPMrN) / BTOL(r)

FS - 0,
lr - NP
l2 - NP
DO ?0 I
Ll - INT
L2 - INT
FSMIN -
DO 60 J
rr (AT(J
FSMIN -
\YSMIN -

+l
+N
-t
(R(
(R(
100
-L
)
AT(
(r

2
)
)

s
I,
l,
2.
0
t, LZ

. FSMIN) GO TO 60

t) . t2t. / N
óO CONT ¡NUE

FS - AMAXr(Ps, BTOL(l) / 
^Bs(FsMlN 

' PPM¡N))
TS - BToL(l) / Aas(AT(N + l)' FPMIN)
tF (TS .LE. FS) GO TO ?0
FS-TS
lvsMlN - R(1. l)
FSMTN_AT(N+t)

7O CONT INUE
P - AMÐ(l(FP, Fs)
wRrTE (6'80) N' F' FP, ì\'PM,{X' FPMAX, FS, wSMIN' SSMIN' FPMIN'

&IVPMIN
RETURN

80 FORÀ'AT ('-oBJ.FCN(" t4. 'POINTS)-" Glt.5 t '0F lN PB.:'. Gl3'5'
&T30, 'AT:'. Gl!.t' T50, 'V.ALUE:'. Gtl.5 / '0F lN SB.:" Gl3.5' T30
ô.'AT:', Gr3.J, T50"VALUE:', Gl3'5 /'0ATT.MlN.:'. 613.5' T30'
&AT:', Cl3.5)

END
ca a a a a a a t a a a a a aa aa t a a aa a aa a a a a a a a a ar a a.... a a a a t a

c'
C S/R OPT PERPONMS A CONT¡NUOUS CONSTRAINSD OPT MIZAT¡ON' .
C vERsloN: APR 02't5 , STARTED JULY l9'8'l
c'
caaaaaaaaaaaaaaaaaaaaaaaaaaaaaa a aaaaaa..¡.

suBRouTlNE oPT(D8UG, DX, SIDLEN, eXll, NOPT, CNTRCT, OPTOK, A,
&NFEVAL . NSRCH. IOPT )

LOGTCAL OPTOX, PAST
INTEGEA. O(20), ORD(20), FIX(20). SORD(20, 20). DBUC, ORDI(20)
REAL D(20), Do(20). DLB(20). DUB(20). s(20), Dxo(20). ToL(100),

eìvPTs(r00), AWPTs(100), o(20), Fs(20), Dx(20), DBEsl(20)
N,EAL'I DSEED
colv¡/þN / BUNcs / ND, D, Q, NPASs, NsToP' ToL, IYPTS' AlvPTs, PlExlT'

GS
J)
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êDLB, DU8
DSEeD -
NFE -
NFPTS
FBE ST
DO l0
DBEST
¡P (F
CALL
rP (D
lP (D

GO TO
l-l
rP ( l
DO tt0
DO( I
Dxo(

:
I

(r
lx
ST
(r
(r

. onD, Flx,
ABs(D( r ) )

tt, ?1, FAST

0
r000
- I. ND

) - D(¡)
(r) .EQ. o) GO To lo
ABND(ND, D. I. DLA, DUB)
) .cE. DU8(l)) Go ro 160
) ,LE. DL8(¡)) cO TO l60

t00
+l
.LE. ND!M) GO TO t0
I - l. ND

. DBEST(ORD(I))
- Dx(oRD(t))

l0

20

CONT INUE
cAl.L RELSeN(DX, NFE, NFPTS, S)
DO 20 ¡ - r. ND
sonD(1. r) - o8D(¡)
oRD(t) - |
CONT I NUE
tF (NOPT .LT. 2) GO TO 50
DO 40 I - 2. NOPT
cArL GCPER(DSEED, ND, ORDI)
DO 30 , - l. ND
soRD(l' ,) - oRDl(J)
CONT INUE
NFEVAL - 0
DXJrllN-l, I2"EXIT
OPTor - .TRUA.
IOPT - I
CONT INUE
DO ?0 t - l. ND
oRD(l) - soRD(1, l)
NDIM - ND
NFIX - 0
l-t
rF (Frx(onD(r)) .EQ. 0) Go To e0
NF|X-NFIX+l
tT - oRD(l)
oRD( l) - OnD(NDIM)
oRD(ND¡M) - lT
NDrM-NDIM- l

l0
40
50

90
r00

60

70

80

¡t0

120

150

r60

)
I

r30
r40

CONT I NUE
IAST - .TRUE.
cAl.L PATTnN(NDlM. DO,
NFEVAL-NPEVAL+NFE
Fs(loPT) - F
Do120l-l,ND
D(oRD(l)) - Do(l)
wRlTe (6, re0) roPTr F
IF (P .GE. FBEST) GO
FDEST - F
DOl30l-t'ND
DBEsr(oRD(l)) - Do(t)
CONT INUE
loPT-toPT+l
tF (FBEST.GT. FIEXIT
P - FBBST
DOt50l-t,ND
D(¡) - DBE5T(l)

DXO. DXJrilN, CNTRCT, F. NFE, NSRCH. NFPTS)

I - r, ND)
TO

AND. IOPT .LE. NOPT) GO TO 60

(D(t),
140

(
2

t70
r80
t90

('('
t0G

NETURN
OPTOT
RETUNN
FORMAÎ
FOR}IAT
AORÀ{AT

¿('o' .
PORMAT
PORù{AT
FOR,IúAT
END

ORD: ' /
DO:' /
DO:' /

0

" 
10G13 .

, locl3.5
, loct3,5

PALSE

ORD:'. locl3.5)
F¡X:'. 10C13.5

OOPTIMIZAT¡ON ' .
¡3.5

( 'ooPT

, locr3.5))
'0F- ', Gl3.5 / 'OPARâMETER SET:' /

200
2t0
220

' OOPT ¡
'0oPT2

5))
))
))

ca a a a a a a a a a a a a aa aa a aa aa a a a aa a aa a a a aa a aa aa a a a a a a a o" " ' 
t t t t"

c'
C S/N PATTRN PERFORMS }ÍTJLTIVANIATB CONTINUOUS fATTERN SEARCH .
c vERsroN t5 PEB 21, OCT 5't4
c'
ca a a aa a a a a a a a a a a a a a a a a a a aa a a a a a a aa aa a a a a a a a aa a a a a a a a t a a a a t a a a t a a a a

SUSROUTINE PÀTTRN(N, X, DX, DXMIN. CNTRCT, F' NFE' NSRCH' NFPTS)
REAL XE(20), X(1), DX(r)
COIrfi'lON / IOUT / lN. lO, lDr
corñ¡oN / sRcH t c(r28, 20). MoD, lQIt{AX, FTEXIT
CO!vf\,þN / CONTlN / lD, EXtT ' NOPT' CNTnCl, M0
NFE-0
NSRCH - 0
NFPTS - 0
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MOl - M0
M0 - MIN0(Mo, N)
rP ( lD .LT. o) CO TO ro
CALL FUNCT(F, X, N, NPE, NFPTS)
ìvR tTE ( lo, r 5 0 ) N. rD, Dx.MlN, M0 . CNTRCT, P
tF (N .LS. 0) GO TO to
wRITE (lo,l60) (x(l). ¡ - r, N)
lvRtTa (lo,l70) (Dx(l)' t - l. N)
F - 1000
CALL FUNCT(F. X, N, NFE. NFPTS)
tF (N .LE. 0) GO TO 140
8E-F
Do 20 t - l. N
xE(l) - x(l)

50

60

?o

80

lr0

l0

20

190

XE
GO
F.

TO
FE,
( t)
TO

N)

N)

30
40

t20
130

t60
t?0
t80

(t)

CALL SEARCH(PE.
rF (rD ,LT. 3)
wRtTE ( ¡O, r80)
wn.rTe (ro.200)
lP (PE .CE. 8)
CONT I NUE
Do 50 ¡ - l. N
xv - x(l)
x(l) - ¡g
xE(l) - 2
CONT ¡ NUE
F-FE
tr (rD ,LT. t)
wRITE (¡O,2r0)
rvRtrE ( to.200)
CALL PUNCT(FE,

tF ( tD .LT. 2
wR.tTE ( ro, r90

rF (AEs (Dx( r )rP (tD ,LT. 0
rvntTe ( ro,220
rvRtTe (lo,l?0
M0 - MOl
RETURN

DX, N, NFE. NSRCH. NFPTS)
30
NsncH, NPE. (X(r). I - r,

, t - r, N)
t0

CALL SBARCH(PA. XE. DX, N, NFE, NSRCH, NFPTS)

(xE
co

xE(¡) - xv

co To 60

(x8(l),1 - ¡, N)
XE. N. NFB, NFPTS)

GO TO ?O
F, FE, NSRCH' NFE. (x(l). I - l.

.GT. DXMTN) OO TO 120
co To t¡0
F, NPB. NsRcH, (X(l)' I - l, N)(Dx(l)' r - t. N)

ìYRITE (1o,200) (xE(r), I - I, N)
tF (NPE .GT, 2000) GO TO ¡00
tF (FE .LT. F) GO TO 40
GO TO l0
CONT INUE
DO 90 I - I, N

90
100

290
210
220

110

Do 130 I - l. N
Dx(l) -Dx(l) / cNTRcT
rF (¡D.cE.2) wn.llE (lo'230) (Dx(l)' I - I' N)
GO TO l0
rF (rD ,GE. 0) rvRrTE (ro,240) F
M0 = MOl
NETUNN
FOR!úAT ('r' / t t tx, 70('.') / 'MULTIVARIATE PATTBRN SEARCH FOR

&' , 'NONLINEAR MINIMIZATtON' / lX' 70('-') / t t 5X, 'INPUT DATA:'
A. tSX, ll('.'l t t SX.'N 13 / 5X,'lD -', 13 / 5X.'DX
&.trllN -', F8.¡l / 5X, 'MMAJ( -'. t3 / 5X, 'CNTRCT-', FE.4 I 5X, 'F lN
ê¡T-., P8.¡t)

PoRMAT ('0INPUT VECTORt' t ( '0', locll.5))
FoRMAT ('oDx vECToR:' / ('0'l locl3.5))
FORÀ'AT ('oRETREAT:' t'P-'. G13.5, T20,'Fe-', Gr3.5, T40,'NSRCH

¿t-" t4. T60,'NpE=" t4 t'x-" 10cr3.5 /''10cr3.5)
AORMAT ('OBXTRAPOLATION:' / ' FBr, C13.5, T20, 'FB=', Gll.5, T40,

¿t'NSRCH-', ¡4, Tó0, 'NFE-', 14 t ' XE', 9c13.5 / ' ', rocr3.5)
FORJvIAT ('Xe-', gGr3.5 / ' ', t0G13.5)
FORJTIAT (' AFTER EXTRÂPOLATIoN:' )
FORj|IAT ('-', 4X, 'PlNA|. OBJECTIVE FUNCTION VALUE:', Cl3.5 / '0',

&4X, 'NUMBER OP FUNCT¡ON EVALUÀTIONS:', 16 / '0'. llX. 'NUMBER OF S

t50

êEAnCH STAGES:', 16 t 'oPINAL POINT:' / '0' . 1ocr 3 . 5 ) )
zto PoRJì{AT (
240 FOnl\{AT (

'oDx REDUCED TO:', 9G13.5 / ('0 locr3.5)
4X, 'oBJECTIVS FUNCTION V^LUE:' . Gl3

¿ FREE PAR.AMETERS' )
END

ca a a a a a a a a a c a a a a a a a a a a a a

S/N PLOT PLOTS THE PREQUENCY N,ESPONSE OP TTIE FILTER
OCT 3't4 lT-0: PLOT ONLY

lT-l: PLOT AND TABLE
lT-2: TABLE ONLY

aaaaaaaaaaaaaaaaaaaataaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

SUBROUT INE PLOT ( NA.NGE , IT)
TNTEGER lrvÂa4(5r5r), ITTTLE(r41). ICHAR(t0). O(r)
REAL ATTEN(1024. r). PREO(r024), R NCE(4)
COIVß/þN I PLT I ¡T TTLE
COlv¡iON / FREOPT / NG, G(20), w, FRI
DÀTA ICHAn(l) / rH t
lY - 1024
N - l2t

)
5 I '0 

" 
4X, 'NO

c
c
c
c
c
c
c
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t0

50

20
30
40

M-l
INC-t
loPT - I
Pl - ¡l ' ATAN(1.)
ATTMIN - t.850
DO t0 ¡ - t. N
w - (l . l) ' nâ,Nae(2) / N
PREQ(t) - w
W-TAN(W'Pl/2./N)
CAI.L FN,QPT
ATTEN(1, r) - - 29.' ALOGT0(FRl)
rp (ATTM|N .LT. ATTSN(t, r)) OO TO r0
ATTMIN - ATTEN(1, r)
MATT - I
CONT INUE
rF (rT .Le. 0) Go ro 30
wRrrE (6.70)
N4-N/¡l
DO 20 I - t., N¿l
wnrrE (6.r0) (8nEo((J . r) . N1 + r), ATTEN((J

&, - r. 4)
CONT TNUE
DO 40 I - I, N
ATTEN(1. l) - AMrNl(ATTEN(1, l)' R^NGE(4))
Do 50 I - lr N
ATTEN(l' l) - ATTIN(t.
CONT INUE
lF (rT .GE. 2) GO TO 60
cA|.L UsPLT(FnEQ, 

^TTEN.&rÀ{AG4, rER)
wRrrE (6,e0) (R^NGE(r).
RETURN

r ) - ATTMIN

IY. N, M, TNC. ITITLS

l. 4), fREa(MArT),

FOR"Ù'AT ('1' / '0 
" 

40X. 'FILTER AITENUATrON (AS
&10x, ¡l(2x, 'FnEQ', 8X, 'ATTEN(DB)',4xl t '0')

FoRJì|AT (' ', l0X. 4(F8.0, 5X, F9.,1 . 5x))
FoRMAT (' -n^NGES: FReq: ' . zct 3 .5 , ' ATTEN: ' ,

ô. AT FRAO.:'. O13,5, 'ATTEN.:'. Gr3.5)
END

r) . N4 + ¡. r),

60
7g

80
90

RANGE. I CftAR ,

ATTMIN

PLOTTED)' /

20¡3.5, 'MrN.

loPT,

ATTEN

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaattaaaraaaaataaaaaaaaaaaaaaaaaa

S/¡, PLOT2 PLOTS TITE PASSBAND AND THE FULL BAND
a

c
c
c
c
c

c
c
c
c
c
c
c
c

t0

suaRouTtNE PLoT2(NC¡. Gr, rr)
n.EAL R.ÀNce(1). Cr(r)
CO¡vfì/þN I PLTZ / IVC , ASMIN, nW, ìYC I
COIìî/þN / FREQPT / NG, G(20), W. PRr
Nõ - NGt
DO t0
o(l) -
nANCE (
RANGE
NANGE
R,ANGE
CAl-L
rF (r
R,.ANGE
R,ANGE
RANGE
N,ANGS
CALL

Gi
)
)
)
)

l)
2l
3)
4)

I
2
3
4

T
(
(
(
(
P

I, NG
r)
0.
128.
0.

(

ASMIN t.5
PLOT(R NGE, rr)

GE. 2)
wc
wc
0.
l.

RETURN

. 17, I t6

25 . RW
LoT(R.ANGA, 0)

RETURN
END

ca a a a a a a a a a a a a r a t.

c s/n PIYR COMPUTES PWR-I/2"1c'
aa a aaaaaaaaaaaaaaaaa a a a aa a aa aa aaaaaa

FUNCT rON PrvA ( ¡ )
rA - rA.Bs(r)
rF (rA .GE. 3l) OO TO r0
PIVR-2"lA
lF (l .CE. 0) PwR - l. / P\'YR
N,ETURN

l0 PrvR - l. t 21474t3647
RETUN,N
END

S/R N.ELSEN COMPUTES THE NELATIVE SENSITIVITY OP EACH FILTER
PARAMETEN, B.ASED ON THE OVERALL OAJECTIVE FUNCTION AND CN,EATES A
vEcTon tNDExtNc THEM tN ORDEI OF DECREASING SENS¡TlVlTY. JUNE 20,1984
VEnSION: FEB 2l't5

SUBROUTINE RELSEN(DXIN. NFE, NFPTS, S)
LOOTCAL XCHG, rAST
TNTEGER ORD(20), PrX(20), O(20), DXCNT
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l0

20

REAL D(20). s(r). DLE(20). DUB(20), TOL(100), lvPTs(100), AwPrs(r00
¿l). DxrN(l)

COì'fvþN / FUNCS / ND, D. Q' NPASS, NSTOP, TOL, IYPTS' AwPTs, flExll'
¡iDLB, DUB, ORD. 8lX, lP, Pl, FAST

J -0
DXI - 20.
DO l0 I - l. ND
Dxl - AMINr(DxlN(t). DXI)
Do 20 I - t, ND
oRD(l) - r
DO 60 I - I' ND
F - r000
PA-F
F8-F
DXCNT - 0
rP (Prx(r) .Eo. 0) Go ro 30
s(l) - 0.
GO TO ó0
DX - Dxl
Ds - D(¡

90

100

t10

30

40

50

60

70

80

l0

D(t)
CAIL
rF(
D(t)
CAIL
tF (
D(t)

DO ?O M -
Pzli- 2'
DO 60 X -
Do 50 J -
DO t0 I -

x(L)
CONT
CALL
rP ( tD

WR ITE
ìYR ITE
IP (FE
F-FE

¡. M0.M

F
FA

F
FA

t) + Dx
UNCT(TA. D. ND. NFE, NFPTS)

.LT. 500) GO TO to
D(f) z. . Dx

UNCT(FÀ, D, ND, NTE, NPPTS)
,LT. 500) GO TO 50
D(t) + DX

Dx - DX t 2.
DXCNT-DXCNT+l
tF (DXCNT .GE. 20) GO TO 100
GO TO 40
D(l) - Pg
CALL FUNCT(P, D, ND. NFE, NFPTS)
s(l) -ABs((F. lA) / Dx)
CONT I NUE
L-ND
XCHG - .FALSE.
Do 80 I - 2, L
, - oRD(l)
,l - oRD(l . t)
rF (s(J) .LE. s(Jr)) co To t0
XCHG - .TRUE.
oRD(l) - ¡1
oRD(t-l)-,
CONT INUE
t8 ( .NOT. XCHC) GO TO 90
L-L-l
rP (L ,GE. 2) GO TO ?o
CONT I NUE
RETUNN
wRrTE (6.rr0) F, FA' 84, DX' (D(l)' r - r' ND)
RETUR,N
FORII{^T ('-ABORT DURING RELSEN: DX REDUCED TOO !úANY TIMES' / '0P="

¿rcr3.5, ' FA-', cl3.5, ' FB-', G¡3.5. 'DX-', Gr3.5 / '0D VECTOR:'
Ir / ('0'. l0ol3.5))

END
c
c
c
c
c
c

aaaaaaaaaaaaraaaataaaaaaaaaaaaaaaaaraaaaaaataaaaaaaaaaaaaaaaaaaaaaaaaaa
a

S/N SEARCH PEN,FORMS MULTIVARIATE PROEE ¡VþVEMENT 8OR IVEGENER'S SEARCH. '
VERSION FEA 2r'85. OCT 5'E4

a

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaataaaaaaaaaaaaaaaaataaaaaaaa

suBnouTrNE sEÂRcH(F0. X, DX, N, NFE. NSR, NFP)
INTECER P2M. QTúAjX
REAL x(r), DX(r). B(20), B(20), c(t28,201
COIñ'ÍON / SRCH / C' MOD' QrYl X, f IEXIT
coñfidoN / ¡ouT / lN, lo, lDl
COrin'þN / CONTIN / lD, EXIT' NOPT, CNTRCT, M0
lP (tD.GE.4) wn. lTE (ro'110) (X(l). l - 1' N)
PE-P0
P-F0

t
I
t
+

(L
L)

)
)
L)

L
E
B
DX

.N
, PzM
.Mx . 2,
)

N)+l- ÀtPD( I
-DX_x(
- s¡cN(Dx(L), c(J.

- x(L) + DX(L)
INUE
FUNCT(PE, X, N, NFA,

¡) )

NFP )

,, F. FE. (x(l), I - I, N)
- I, N)

.LÎ .

to,90
to, l0
,GE.

)coTo20
NFE. K, M,

) (Dx( l), r
)coTo30

4

)
0
F20
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c
c
c
c
c

co To 60
30 DO 40 I - l. M

L-ltlOD(l+r-2,N)+
x(l-) - 8(l)
Dx(L) ' s1¡ ¡

4O CONT INUE
5O CONT INUE
6O CONT INUE

rF (F .LT. F0) Go TO t0
7O CONT INUE
t0 NSR-NSI'+l

90

r00
t¡0

aaaaaaaaaaaa

SUBROUT
CONÍ\'oN
COMPLEX

'NFEr'. f5.'Kr',13,'M:'. ll,'r:" 13" F:'. Gll.5

'DX:'. tooll.5 / ' ', l0cr3.5)
'0BASrS PorNT:'.9Gll'5 / ("' rocll.5))

END
aaaaaaaaaaaaaaaaaaraaaataaaaaaaaaataaaaaaaaaaaaaaaaaaaaaaataataaaaataaa

S / R S IGNO PERFOR.ùIS TR NSFER OF S lGl'¡lVtTH ZERO FEATURE.
a

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaattt""tt"ttt'

FUNCT I ON S I GNo (MAG , SGN )
REAL MAG
tF (sGN .eQ. o.) GO TO l0
SIGNo - srGN(MAG' sGN)
NElURN

l0 SIGNo - 0.
RETUNN
END

ca a a aa aa a a a aa a a a aa a aa a a a aa aa a a a a aa a a a a a t a a a a a a a a a a 
"t 'c'

C S/R SMPLFY FINDS THE MINTA'IIJM ìVORDLANGTH REQUTRED TO REPRESENT D. .
c'
ca a a a a a a a a a aa a a a aa a aa ta a aa ao o a a a a a a a a l. a a a a a a a at at t 

" 
t 

" 
t 

" '
SUBROUT INA SMPLFY (ND, D, O)
rNrEcEn o( I ) , PO( 2o )
REAL D( T )
coÄ,fi,oN/SMPY/PQ
DO 20 I - 1. ND
DT_D(r).PQ(t)
rF (ArNT(DT) .NE. DÎ) OO TO 20

l0DT-DT/2
rP (DT .NE. AINT(DT) ) GO TO 20
O(l) -O(l) - r
GO TO l0

20 CONT INUE
RETURN
END

c=====E=rEE
C THB FOLLOWTNG SUBROUT¡NES ARE CASE.DEPENDSNT AND USER.SUPPLIED.

F0-P
RETUN,N
FOIM¡{T

&, ' FE:
FOR-tvfAT
FONMAT

w2

C--
c'. aaaaaaaaaaaaaaaaaaaaaaataaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa¡aaataaaaaa

ac
c
c
c
c

c
c
c
c
c
c
c
c

S/R FRQPT EVAIUATES THE FREQUENCY RESPONSE AT ONE POINT fOR A
?ÎH ORDEN ELLTPTIC FILTER. SEPT 29'14

aaaaaa aa aaa aaaaaaaaaaaaaaaataaalaataaaaaataa aa aaataaaaaaaa'

INE PRQPT
/ FREQPT / NON,, GR(20), lY, FP
Y(ro), z(3).s,

CMPLX (GR( I 9Y(l
z(r
1(Z
z(2
Y(3
z(t
Y(4
Y(5
Y(6
Y(?
Y(8
Y(eï(r
FP

w

)-

), ìY'
w/ (Ga
ìv.
tv/
w.

9
0Y

Y

GR
(3CMPLX ( 0 .

CMPLX ( 0 .

CMPLX ( 0 .

CMPLX ( 0 .

CMPLX(0.
CMPLX (GR

GR( r0
(cR(4
GR(rl

. cR(6)))

. cR(7)))

. oR(6)))

w2

w2

rv2
)2

cA8

I
Y
t
Y
Y

z(L+y
z(t+y
+z

)'
Gn( r

.+
(t)
.+
(4)
(5)
Y(6
s( (

w / (cR(5
2), W . GR
'Y(t)2) . Y(5)
' Y( 4 )3) . Y(7)

2) . Y(6)
(7) + Y(s)
+ GR(2) )

Y
(

RETUNN
END

a a a a a a a a a a a a a a a aa a aa a a a aa aa a aa r a a a a a a a a a a a a ar a a a a a a a a a a a aa aa a a a a a a a a a a a

S/R FUNC2 EVAIUATES THE WON,DLENGTH OB'ECT¡VE TUNCTION PON' A
7TH ORDER ELLTPTTC FILTEN, M¡DDLE ERUNE PORT 2 REFLECTION-FREE.
NI AND N2 CONSTRAINED
ven.S ION: 15 ltlAY I 5 ' STARTED A4 OCT 22

aaaaaaaaaaaaaaaaaaataaaaaaaaaaaaaaaaaaaaataaaaaaaaaaaaaaaaaaaaaaaaaaaaa

suBRourtNE ruNcz(F2, Q¡N. X, N, NFE)
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TMPLtCtT TNTEGER(r - N
LOOICAL FAST
TNTEGEn ArN(r), O(20).
REAL x(20), r(2, 2, 2l
COliñ/þN / SUNCS / ND, P

¿tAwPTS( r00). FrExlT, DL
CONIì/þN/FcN2/ rNC(20
QMAix - 2 6
DO r0 I - I' N
P(oRD(l)) - x(l)
O(oRD(l)) - AIN(r)

Ptx(zo ), BM(32)

, NPASS, NSTOP, TOL( r00), ìVPTS( r00) ,
DUA(20), ORD. FlX, lP, Pr, FAST

(?o

.o
),

,o)
ORD

(20)
E(20), r COPT

c

t0

70

30

40

50

c.
60

70

c.
80

P2
fl
L2
xl
tr1

0
0
0
0
0

P2
co
cl
c2
c3
C¿l
c6
x(

Do 20 I -rF (rNc(r)
PQ - PìVR(Q
CALL EtTS(
ßl-lB/
CONT INUE
PZ-F2+ KI

ISUM - lNc(3)
rP ( ISUM .EQ.
rF ( tsuM .EQ.
Do 40 I - 3, I
¡F (lNc(r) ,Eo
PA - PwR(a(l))

t,2
.EO. o) OO TO 20
t))
Frx(P( r) / Pa), o( l) . lB, aM)
Q+rl

(
I
P

c..
+
0
I

+ rNc(5)
60
50

4)
TO
TO

rNc (
GO
GO

0) Go To 40

CALL BrTS(¡FrX(P(l) / PQ), O(r). r8, 8M)
f2-tB/PO+X,2
CONT INUE

2 ' lt2. Cl
- c2, ,
l) - car) - czr) - c¡

c2
I,
2,
t.
2.

P2
60

P(3
ct
l-¡-(r
t.
t.
2,

TO

I,
2.
t.
)
z,

+K2

5
)
+ 0

P(5)

xoLE ( r
5) GO

- P(. P(
c3. c6tc4

) . P(4) . C2

x
P(5) . (2 . P(1)

&cr(
CALL
CALL
CAt-L
CALL
X2-
F2-

DO ?0 I - 6, 7
¡F (¡NC(¡) .EQ. o) GO TO 7o
Pa - PWR(Q(t))
cÂrl. ErTs( rF¡x(P( l) / PQ), a( r) ,L3-lB/PO+K3
CONT ¡NUE
F2 - F2 + Kl

(r P(3)) + Cr) + c6 t (r
r)2, t) -

FNDWL ( K
PNDWL ( ß
FNDIYL ( K
TNDWL ( K
MÄXO (QA
F2+l

P(5) - x
QIì',AX, QA
QMAX, QA
QrYrAX, QC
QùrÂx. QD

oD)

- c3
l, I
t. t
2, I
2, I
'ocQ8

2

;ó' ;;' i 
':

rP ( rNc( r
PQ - PwR(
CALL A¡TS
ß4-18/

Pwa, ( ß.2 )

8,
) .EO. o)
o(t))(¡Frx(P(¡)

PQ+X4

STABND

rB, aM)

GO TO 90

/ PO), Q( r) . rB, 8M)

9O CONT¡NUE
E2-P2+f,1

c-.---
100 NFa ¡ NrE + I

rF (rP .EO. 0) CO TO rr0
wRtTE (6'120) F2' Kl' x2. X'3' l{1' ((x(t, J. t). J'r,2), l: r'

e2l
I I O RETURN
l2O fon¡ú T ('0F2: ', Glt.6i ' SECTIONS:', 4G13.6 / '0X MATRIX;',

&2G13,6 t lzx, 2G13.6)
END

ca a a a a a a a a a t a a a a a a a a a a a a a a a a a a a a a a a a a a a t t a

C S/N STABND EVALUAIES THE SÎÀBILITY BOUNDS TOR ONE VAR,TABLE. .
C ?TH.ORDER ELLIPTIC, M¡DDLE SNUNE PORT 2 RF
C VERSION: 85 APR 02

ca a a a a a a a a a a a a a a a a a a a a a a a a a t a a a a a a a a a a aa a a a a a a o a a a a...

SUAROUT INE
nEAL X(I),
rF (¡ .EO.
xolE(l) - 0

NX, X, I
, xouo( I

, xol-8, xou8)
)

TO 10
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xorjB ( r )
NETURN

t0 xoLE
xoua

0.
t00

RETU¡N
END

c
c

C S/n' XD2C TRÂNSPORMS DESIGN PÂRÂMETARS INTO G.RATIOS POR TTH.ORDER
C ELL¡PTIC PILTER WITH 2 CONSTRAINTS, MTDDLE ARUNE PORT 2 R.A,
c vEnstoN APR 02. 1985, STARTED OCT 12'64

aaaaaaaaaaaaaaaaaraaaaaaaaaaataaaaaaaaaaaaaaaaaaaoaaaaaaaaaaaaaaataaaaa

suBRouTtNE xDzG(NP. t. NOn, Gn, ¡ER)
REAL P(20), Cn(20), W¡. FP

/ P(r) t ?(21

2
.c
P(7)

-c3

IE
CR
CR
c
GR
cl
Gn
GN
cn
ct
c

R-0
(t0) - ¡(e) - (r
- P(r) '-c I(r. -

- P(6
- P(ó

(:)
(3)(¡)
(:o

¡c

GR

P
P(
(e
l.
l)

0)

0)
P((r

P
)

(6) P(?)
2)) . P(6)
) - P(lt)
)ct
P(r)

(8))
/ P(e)
zl
)

OR
P
P

Gn(?)
Cl -
Gn(1)

t
I

P
PP(4 ) '

- P(? ) cl
cR(1)
co To t0
cl

cR( ? )
c

GR(
P( r ) GR( r2)

NGN,
RETURN

l0 IER - I
NGn-NP+t
N,ETURN
END

//oo.sYstN DD .
TYEGENEN ?TH.ORD ELL¡PTIC. POR,T
ÀTTENUAT ION CHANÂCTEN ¡ ST IC
FREQUENCY

c2
T2
¡r
c,t
GR
GR
GR
GR
GR
cn
OR
GR

36.26 17 .7 . 55 50.
l. .lr2ló4 .502707

33
29 .86 .22

tó 34.13 .33
l l 36 .26 .55
7 51.2 30.0
2 57.6 10.0
6 tz1. 50.0
I

2 REFL.FRAE, EXAMPLE 6

DA ATTBNUATION

252t71
/wct ,lvc,

2t7 02t 6
rvs,nìv,AsM¡N
,539907

(

1
I
2
5
I
I
t
I

P(?l + cr, . c2
2 .EO. 0
c2tT2
- cR( 4 )

) - cR(l
-c4 t
-c1 t
- (1. -

) - cR(8
- cn(I)

) -c3 'NP+3

T

r)
(e

r
(
5

GR

0.
9
256
0.

29.
31.
42.
5t.
5t.

/NX,NPX,NSX
/n.( r, r ),R(2, r) ,BroL( r )

/NPASS,NSTOP
/wPTs(r),roL(r)

14.
93.
t2.
31.
29.
29.
77.
2,5.
2t.
2t.
l?.
ll.
It.
42.
48.
5t.
54.
57 ,
ó6.
80.
95.
?

26

5

86

7

2

6

2Z
2Z
22
22
22
22
22
22
22

0
0
0
0
0
0
0
0

/NSTO
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4S
?
2
I
t2 0
ttl
3 2. 9

/NrNC.V¡NC( r ) , SFrX( J , r )

/ F TEX IT,MO , OMÀX, QRED
/DAUG, TCOPT .NRPT,NOPT ,NQOPT
/ tDc , Moc , NoPTc , CNTRC, EX r rC , I STOP
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Appendh C. Deslgn and Analysls F,quatlons for Ledder'Based Eremples

The design and analysis equations (given in the left and right columns, respectively) used for

the ladder-based design examples are included here in algorithm form.

C.l Sth-Order Elllptlc Ladder Fllter

þ'= Gft;
øz=¿þ60

u=¿þç,

on= oþç,

o- Þt
P5 - - c8+p4(c2+ce)rr-3¡þftffi
- þ+þsGzÞr:lã

B.ct=Ë

or= E
Þs'¡: lñf

on=#

", 
: --l--1^Fr

t-
ca - r'þz
G5 = clGg

G5 = c2G4

G7 = c1G1

Gs= c2G1

o, = t-ff-#

C.2 7th-Order Elllptlc Fllter' Mlddle Brune Non-Reflectlon'Free.

G6,t=ffi,
G8

n2
Gt + Gt2

G7
ll3 = G7+Gfl*n2Gp
Fr=nt

cr = ÊrGt
Gt

Bâ=J
Gr+Ge

cS=G¡*n2G72
cz=Gn*n1Gg4.ngca

Gt=þ+
c¡=1-Þ¿
c+= t/þt
c1= cafþ5- ca

cz= c+/þc * Þ¿c¡

cn: Ftr;-Þn
Gz: ct/þs

c, = Éprl'
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c1t c2

ca=c1*.C2

ca = (l-þc\/Fc
Gs = caG5

Gp = cgG2

Gu=ca-þaG1p
ct=þlaz

C4: I
+1

n2G2 t ca Ca t G7 ca - tr3cs

CJ 7th-Order Elllptlc Fllter, Mlddle Brune Port I Reflectlon-Frec,

g.=-å
n2G2* c5

F6=L
CX - lt3C5

þt=(Gt+c)/c4
Êg=nr

G"tu=ffi

-G5Þr: @frce
g, = --!!-G8+G12

ct=Cß+ÊrGc
G"

$r=J
G71' c1

GtO=c2-ct-Þ¿cr
c = (1-þ)c 1/þ2

Cc=c/þt

co=Ér
Ct

Ga=-- 1-Êr
Gt= ct/þt
Gtg=Gn-c

c2=G5*Gs
cg=c1*G7
c4=G6 lGp
cs=G¡+þcGt2*Þscr

Ic6= - þcGlu

Gc: þtþz
Gc = (l-Þr)P¿

G1=7/p2-Gs
Gs:1/(1-þz-þù - Gt

cc=l/þt-ÊrGr
c1 : c5(1-2p6)

c2 : p7(1-p5)

c1
c¡=îã

Gt = þsct
Ga=c5fc2-G7

+1c2+c;' ci+c]
c7=c5*c6

1

1 + 1
C6=C1*

Ca * G7 ct - þsct
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+1+1
G3 * pp2 ca - p1(1-pfc2

"r:Z*&ã
cz : csþs1

G1 + (1-p1)c2

þz=
ca

Þ¡=

cl + (1-p1Þ2

ca

ca - p1(1-p¡)c2

þ4 = cTlcs

Þo=(ce -Q-þs)pù/2"s

1

o-: ct¡'t (t-FsXc¿ + Ê¡c¡)

Ês=+Cg+C6

øn= oft;

cg=

c2=

Cz
(r< : 

-

" 1-Þc
Gs = (l-p1o)Gs/þn

Gz = cilþc
ca=cA-G7

c¿= þtGc
Gl0=Ct-c4
cs : (l-Êc)Ca

G n = cs/Fg

Gll = ct- c7 - cs - ÞScS

C.4 7ah Order Elllptlc Fllter, Mlddle Brune Port 2 Reflectlon-Free.

Êt=nt
go:9

Gr+G5

Þ¡ = tt¡

cs=Gl¡.1.nxG72

11
T-

nsG2 * c5 Ga * G7

c2

Glo = 1 - Fo - Þz

Ge = (1-P)9c/þßz
c = GrÊc

c'=tr

cr=1-Þr
Gt = þo/c t
G t : þo/þt
Gß=Gn-c
ct = 2þs9t

c = crþl

6r-'L' l-F¡

cr : P¿(l-Þl)
Gq=þt/ct
c2=þ74'c

1
- ltSC s

Þ¿= (l-n)(ca + Gù

Fs = c s/Zcz

ct=Gfi*n1Gg*ngca

C4=Cl*c2*c1
þø= ct/c+

Ft = cz/c+
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þe=nz

c2

"4= T4;iõ; - ct

Ga=Ga-G7
Gt6=Gn-c
Gz = c ¿/þe

C¿G.=*- 1-Þe
Gs = (l-Þr)/Þc
F 

-õ ^rt 12 - rtzt.tE

G6 = GsGg

G¡=cs-þsGn

ør=¿ft;
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AppcndL D. Frequency Responsc Algorlthms for Flfth- ¡nd Seventh-Order L¡ddcr E[lptlc
Fllter¡

D.l Sth-Order Elllptlc Lcdder Fllter Networt.

Yt=Gtt.jal'GT
Ys=GzforGe

ú)

"r=&
ú)zz=ffi

Yt=Gt1'roGs
ú)

Y2=otGg
Yq=t+Z{r
Ys=Yt+Y2Y4
Yc=Y+*Z2Yg

G,IG"F =l---L-lYs+Y3y6

Yq=Gz*aGp
Ys=tiZf1
Yo=Yt1.Y2Y5
Yt=t+Z{¿
Ya=Y¿*YsY7
Yg:Ys*22Y6
Yp=Y5Y7*YsYs

G,*G"
F = l-.:....-.---,Í- |

Yn

D.2 7th-Order Elllptlc L¡dder Fllter Network.

Zr=
Ge - u2G5

Y2 = rulGp

(ù¿.=-' G4- a"Gt

Y3 = olG11

o)

"3=ãÆ
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