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ABSTRACT

This thesis investigates the design of canonic wave digital filters (WDFs) based on elliptic

reference filters, and the minimization of their realization requirements.

Two synthesis approaches are considered: cascade synthesis, in which the WD
structure is composed of a chain of adaptors, and WD lattice synthesis in which the

structure is based on an analog symmetrical lattice.

The use of the Brune adaptor in cascade synthesis is desireable as it allows the
canonic (i.e. minimal) realization of WDFs based on elliptic ladder reference filters. A

derivation of this adaptor and several examples of its application are presented.

Lattice WDFs, which are based on analog symmetrical lattice prototypes, are also

desireable as they, too, allow canonic realization of odd-order elliptic reference filters.

WDFs have the property of low parameter sensitivity, which can be exploited to
often achieve very short multiplier wordlengths. The possibility of replacing actual mul-

tipliers by binary shifts and additions allows further reduction of a filter’s complexity.

An algorithm is proposed here which attempts to minimize the total number of
shifts and additions required to realize a given design. A number of design examples are
presented which illustrate the success of this approach for fifth- and seventh-order filters
realized using cascades of Brune and other adaptors. The fifth-order examples, since
they are sufficiently small, have been verified using a direct (exhaustive) search
approach. Also, some examples illustrating the applicability of the scheme to WD lattice

filters are presented, and which compare favourably to previously published results.
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1. INTRODUCTION

Filtering is a process by which an input signal is reshaped to yield an output signal having
different characteristics, specified in the time, or more commonly, the frequency domain.
Most filters are frequency sclective in that some frequencies are attenuated while others are

passed or amplified.

Filtering may be performed on continuous signals or on signals which exist only at
discrete instants of time. A discrete-time filter may then be viewed as a computational algo-

rithm operating on an input sequence of numbers to produce an output sequence.

The theory of discrete-time systems and filters is well-developed, but is based on the
assumption that signal representations and arithmetic operations are carried out to infinite
precision. In practice, only finite precision is available since discrete-time systems usually are
implemented using digital processors. The signals in digital systems, then, are discrete in time

and also discrete in amplitude.

Digital filters are often classified into one of two broad categories, those which are recur-
sive in nature and those which are not. Recursive filters are capable of high stopband

attenuation and require lower computational complexity than for non-recursive structures.

A digital filter is essentially an approximation to a discrete-time prototype upon which
finite precision constraints have been imposed. Deviations in behavior of the digital filter
from its unrestricted prototype arise, and are due to what are generally termed finite
wordlength effects (FWLEs) [1-4]. Finite wordlength effects are comprised of the following

categories:

1) coefficient quantization error, which occurs due to the quantization of the filter

coefficients to a finite precision, and

2) signal quantization error, which is the error introduced by quantization of input, output,

and intermediate signal quantities to finite precision.

Coefficient quantization error, or roundoff noise, is a linear deterministic error which has the
effect of deviating the frequency response from the desired response. Signal quantization
error is a random additive error produced due to the discard of portions of the signal too
small (underflow) or too large (overflow) to be represented by the given precision [S]. In the
case of recursive filters, underflow or overflow errors may be correlated such that oscillations,
known as limit cycles or parasitic oscillations, are sustained, even under zero-input conditions.

Digital filters must be designed to control and minimize these undesirable effects.



Finite wordlength effects can be reduced, for a given discrete time realization, by simply
increasing the precision used, at greater costs of implementation. An alternative is to choose
structures inherently less susceptable to FWLEs [6-8]. Structures which exploit the well-
known [9,10] relationship between roundoff noise and coefficient sensitivitics have been
derived [11-16]. Also, low-order sections able to suppress all types of limit cycles have been
developed [17-22]. Further, filter realizations which are designed to suppress the highly des-
tructive overflow oscillations have been investigated [24-27]. Of course, those which, in addi-

tion, are low in realization requirements are preferable.

An alternative structure which behaves favorably under FWL conditions is the wave
digital filter (WDF) proposed by Fettweis [28] and developed by him and others [29-37]. They
are high order recursive structures capable of high stopband attenuations. Wave digital filters
are based on the premise that analog reference filters possessing the properties of good sensi-
tivity and passivity can be transformed to an equivalent digital structure such that the desir-
able qualities are preserved. This transformation is achieved using a voltage wave network
description and the bilinear z-transform. It has the effect of replacing analog reactive ele-

ments by simple delays, and simulates analog interconnections by means of wave adaptors.

Advantages of WDFs are very low coefficient sensitivity and corresponding low roundoff
noise. In addition, Fettweis and Meerkdtter have shown via the concept of stored pscudo-
power that all zero-input limit-cycles may be suppressed in canonic WDFs [39]. A disadvan-
tage of WDFs is the requirement of a larger number of additions than for conventional reali-
zations such as parallel or cascade connections of direct form low-order sections. Also, WD
filters derived from reference filters non-minimal in reactance elements will be non-minimal in
delays. Subsequent removal of these redundancies invalidates the simple stability criterion,

requiring more complex means to achieve limit-cycle suppression [29,40,68,69].

More recently, contributions of the lattice adaptor [41], and the Brune adaptor [42-44]
allow canonic realization of symmetric lattice and ladder topologies, respectively. Also, the
low sensitivity of WDFs can be exploited to often drastically simplify multiplier requirements

and hence reduce overall computational complexity [43,45-49].

The problem of minimizing digital filter hardware requirements has been addressed
largely by means of optimization techniques [50-63], concentrating on cascades of low-order
sections. Wegener and Owenier [45-49] have given optimized WDF designs of symmetric lat-

tice and ladder prototypes, although the ladder realizations have been non-canonic.

The thesis presented herein is concerned with the reduction of the realization require-

ments of canonic, limit-cycle-free WDFs in which explicit multipliers have been replaced by



binary shifts and additions. The reduction of realization requirements is formulated as an
optimization problem in which the total number of shifts and additions is to be minimized.
Canonic, limit-cycle free implementations of ladder networks of arbitrary order are obtained

through the use of the Brune adaptor.

Chapter 2 presents background to the WD approach and covers the introduction of vol-
tage wave variables and the bilinear z-transformation. Next, fundamental analog network ele-
ments and interconnections are related to their WD counterparts. A state-variable description
of a WDF is developed by partitioning an analog network via reactance extraction, and then
transforming the subnetworks into their WD equivalents. The reflection-free property is
introduced to allow the interconnection of adaptors. Finally, sufficient conditions are given

for ensuring stability of a WD network despite the nonlinear nature of FWL conditions.

In chapter 3, techniques for the synthesis of canonic, stable WDFs are given. In particu-
lar, the design of WDFs using the adaptors of Fettweis and the Brune adaptor of Jarmasz [43]
are presented. A discussion of the WD lattice or Jaumann structure [41] is included since it is
exceptionally low in realization requirements and so has gained popularity. The chapter con-
cludes with the representation of multipliers in the canonical signed digital code (CSDC) and

its consequences to some methods of physical implementation.

Chapter 4 formulates the problem of reducing realization requirements of cascade WDFs
as an optimization problem. Two types of adaptors are covered: those for which simple fixed
flowgraphs exist, such as the Fettweis adaptors, and adaptors, such as the general Brune, for
which no simple flowgraph exists. (A simple flowgraph is one in which each multiplier appears
only once.) An optimization algorithm suited to reduction of the realization requirements of
WDFs based on both kinds of adaptors is presented. Several examples are given to demon-

strate the capabilities of this approach.



2. INTRODUCTION TO WAVE DIGITAL FILTERS

Wave digital filters (WDFs) comprise a class of digital structures which imitate classical reac-
tance filters so as to exploit their desirable properties. In particular, classical reactance net-
works are lossless and, when terminated by resistances and resistive sources, are relatively
insensitive to element variations. These characteristics have the consequence of low passband
sensitivity to coefficient variations, good dynamic range, and the possibility of the suppression

of parasitic oscillations in the corresponding WDF.

2.1. The Wave Digital Transformation

A WODF is derived from a classical reactance network, called its reference network, by
replacing the conventional signal quantities of voltage v and current i by voltage wave vari-

ables defined by
a(®)=v(E)+R i(t), b(t) =v(t)-R i(t) 2.1)
AW) =V(@)+R W), B() =V()-RI(Y) 22)

where, as depicted in Fig. 2.1, a and b are the incident and reflected waves, respectively, and
R is an arbitrary port reference resistance. The digital equivalent of the reference network is

derived by applying the transformation

¥ = -:—-I-% = tanh%—, z 2T 23)

where s is the Laplace transform variable and T is the digital sampling period. We see that

the filter voltage transfer characteristic described by
V@) = H@) E(b), 24)
is transformed by letting R;=Rs and R,=R, , yielding
Ay(Y) = E«(¥), By(¥) =2V, - E, (2.52)
Az(¥) = 0, Bay(¥) =2V, (25b)
from which the voltage wave transfer function is given by

By(V) _2Va

A (W) Ey° @26)

The voltage wave transfer function is therefore identical to the voltage transfer function



except for the constant 2.

Figure 2.1 Definition of wave variables at one port.

The application of the transformations (2.1), (2.2) and (2.3) to some elementary analog

one-ports and the WD equivalents which result is illustrated in Fig.2.2.

In order for two ports to be interconnected they must be compatible, that is
V1=V, i1=—i, 27n
and
a;=bjy, a;=b;, R1=Ry, - (28)

which ensure that Kirchhoff’s current and voltage laws are obeyed at the interconnection. To
fulfill the last requirement the port voltage waves must be adapted to properly simulate the

connection.

2.2. Voltage Wave Scattering Description

Consider a doubly terminated lossless reactance network N (Fig.2.3) consisting of two
subnetworks M and M. Network M contains the reactive elements of N, and M contains
only interconnections and possibly ideal transformers. Define port voltage and current vectors
describing the ports of M and partitioned with respect to ports containing resistive sources
(possibly of zero value), inductances, and capacitances as follows:

ot ]

:‘] 29)

where

v = [:i] I = [:i] (2.10)
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Figure 2.2 Some analog circuit elements and their wave-digital equivalents.

v, = [:f; ] L, = [:z] (2.11)

We may now define the port wave vectors of M to be
a=v+Ri, b=v-—-Ri (2.12)

where R is a real diagonal matrix of arbitrary port reference resistances, and a and b are par-
titioned conformable to v and 1 . The voltage wave (scattering) variable description of M is

then



b=Sa

where S is a real constant matrix describing the interconnections within M

define voltage, current and voltage wave vectors describing M,

)
Ve ic
a=v+Rl, b=v-Ri
and
b=8a
where § is given by-
§= 150 (U, + Uy
_ 1y
1+
We define 3 as
=-u, +U,,

(2.13)

. Similarly, we may

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

and + denotes direct sum. At the interconnection Kirchhoff’s voltage and current laws must

be satisfied, implying

or, in terms of scattering variables,

A convenient choice for R is
R = diag(Rs,R,_,Ll, Lz, v ey L"L’ 1/C1, 1/C2, .

where the partitioning is conformable to v and 1.

2 1/Cay )

(2.19)

(2.20)

(2.21)

Application of the bilinear transformation (2.3) to M and M yields the equations

B(z) =SAG), B()= —21- 3 AG)

(2.22)



Figure 2.3 Doubly-terminated network showing reactance extraction partitioning

or equivalently
b(n) =Sa(r), b@r)=23ar-1). 223)
The above equations describe the computation of filter output and delay signal quantities. A

natural and convenient extension of this is the state variable description of the filter.

2.3. Statc-Varlable Description

A digital filter may be described in terms of the state variable matrices { A,B,C,D }:
x(n+1) = A x(n) + B u(n) (2.24)
y(n) =Cx(n) + D u(n)

where x(n), u(n), y(n) are the state, the input and the output vectors at the n™ sample

instant. The WDF described above can be written as
2 by(n) = ay(n +1) = 2 Sy ay(n) + 2 Sy ay(n) (2.25)
bir) = Siz ax(n) + Sz ay(n)
so that the state variable description of a WDF can be given by

AB
CD

(2.26)

%8y 2521]
Sy Su

This system specifies the computation required to realize S. It remains that S be calculated



from the reference filter. For this, the work of Martens and Meerkdotter [65,66] provides a

means to find S directly from an arbitrary analog network.

2.4. The N-Port Description

Consider an n-port reference network consisting of interconnections and ideal
transformers only. The port voltage and current vectors may be partitioned into link ports !

and twig ports ¢,

=kl b

bbb
The link and twig quantities are related by
vy =Nv, | =-Nj (2.29)
where the turns ratio matrix N is real. Define a constant matrix K given by
K = (G, + NG;N")! NG, (230)

where G, and G, are the diagonal branch conductance matrices for twig and link ports,
respectively. Martens and Meerkdtter have shown that the scattering matrix of a constant

lossless network can be expressed as

2NTK - U 2N"(U - KNT)

S=1 x U - 2KN7 @31)
or
S = FTF (232)
where
-U N -U 0
F=1 ouvu ] = | -2k U]' (233)

Matrices F and T are self-inverse, and so 8 is also self-inverse, i.c.
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§?=U. (2.34)

The matrix N can usually be found directly from the oriented graph derived from the net-

work ; the matrix K can be found through a convenient network interpretation :
i)  terminate all tree ports in their reference resistances,

ii) terminate all link ports with a voltage source e in serics with the port reference resis-

tance.

The relationship between twig voltages v, and the excitations e, is given by
vV, = Ke;. (2.35)

This voltage transfer matrix can be obtained analytically from the network, usually by applica-

tion of Thevenin’s theorem and superposition only.

Note the number of degrees of freedom of K is ¢, which may not necessarily be the
canonic number for the transfer function. This is the case for elliptic ladder filters. A
representation for K in terms of a canonic number of multipliers has been shown to exist for
several topologies, found by a suitable redefinition of the parameters used in obtaining K from

the network.

The network of interconnections M may be (non-uniquely) decomposed into a number
of smaller subnetworks. Fettweis and his colleagues have chosen to use adaptors with at most
three ports, modelling series and parallel electrical interconnections as series and parallel
adaptors, respectively, as depicted in Fig. 2.4. This is often convenient because each of the
adaptors shown has a fixed flowgraph containing design parameters as multipliers. Adaptors
for Brune, symmetrical lattice, Darlington C and D sections, and twin-T networks have also

been derived [41-44,67].

2.5. The Reflection-Free Property

A potential realizability problem arises with the interconnection of adaptors in that a
delay-free loop, an unrealizable network [38], may be created, as shown in Fig.2.5. This prob-
lem can be avoided by constraining the reflected wave at a port to be instantancously indepen-
dent of the incident wave at the same port, that is by making the port reflection-free [37].
Thus the scattering matrix S of a sub-network having port i reflection-free will have s;=0.

Two examples of adaptors having a reflection-free port are given in Fig26.

A reflection-free port can be interpreted to have its reference resistance equal to the

port driving-point resistance when all other ports are terminated by their reference



R1'R2
Ry*R,

ob,

Figure 2.4 Some basic wave-digital adaptors: a) 3-port parallel adaptor, b) 3-port series

adaptor, c) 2-port parallel adaptor.
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Figure 2.5 A delay-free loop condition.

resistances. The introduction of this constraint reduces the number of degrees of freedom of

the adaptor by one, preserving the canonic number of degrees.

An example of a network, a third order elliptic ladder filter, realized by the interconnec-

tion of series and parallel adaptors is given in Fig2.7.

2.6. Non-Linear Stability

Wave digital filters can be designed to have the important property of complete stability
under normal operating conditions in which arithmetic operations are performed with finite
precision [39,43,68]. Stability under ideal (infinite precision) conditions is directly achieved
since the bilinear transform maps a stable analog reference filter onto a stable discrete-time
one. However, with finite wordlength arithmetic the possibility of overflow and granularity
oscillations also arises. We now specify, following Fettweis and Meerkdtter [39], conditions
which lead to complete stability and which may easily be taken into account in the arithmetic

operations of a practical filter implementation.

The incident and reflected waves for a lossless, frequency-independent reciprocal net-

work N are related by
b(n) = S a(n). (2.36)

Let G be the positive-definite diagonal port reference conductance matrix. Then the instan-

taneous pseudopower absorbed by N at the n** time instant is given by
py(n) = 4" (n) G a(n) — b” (1) G b(n) (2.37)
=a’(n) G a(n) —a” (n) STG S a(n).

Network N is pseudopassive if py(n)=0, and pseudolossless if py (n)=0 for all a(r). For N

pseudolossless we have



@ by 0
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[
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2
¥
b,e
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Figure 2.6 A parallel and a series 3-port adaptor, each having a reflection-free port.

a’ (n) (G — S7G S) a(n)=0 (2.38)
for all a(n), which implies
G =S'GS. (2.39)
Since §? = U, we can obtain from (2.39)
GS =§7G (2.40)

which states that M is reciprocal with respect to the reference conductance matrix G.
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Figure 2.7 a) A third-order elliptic ladder filter, and b) its realization using series and

parallel adaptors.
Consider now the pseudopower absorbed by N at the n'™ time instant, given by
p(n) = 2" (n) Gy ay(n). (2.41)
The decrease in absorbed pseudopower is then
Ap(n) =p(n) = p(n+l) (2.42)
= 8,7 (n) Gy ay(n) — 8" (n +1) Gz B(n +1)
Using (220) and (223),

Ap(n) =& (n) Gz ax(n) = (Zb2(n))" Gz Tby(n) (243)
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= 2" Gy my(n) — 8" (1) Sz Gz S #y(n)
= a8’ (n) (G2 — Sz G2 Sz ) ay(n).
From (239) it follows that
Gn =8,"Gy S + 82 G Sn (244)
we obtain
Ap(n) = 8" (n) Si2" Gyy Sz @y(n) (2.45)
= (Spz 82(n))" G11 Sz ay(n)
= b;" (n) Gy by(n).
Since Gy is positive definite,
Ap(n) = 0 (2.46)

which is sufficient for output stability in the sense of Lyapunov, if the p(n) is the Lyapunov

function.

The above condition holds when arithmetic computations are performed exactly. We
also wish it to hold under finite precision operation, which has the effect of introducing quan-
tizers into the linear system. Define a system N which is equivalent to N except that each of

the output signals b, (n) is given by
bi(r) = Q(b(n)) (247)

where Q is a non-linear quantization function. Define the decrease in stored pseudopower

Aj(n) in a manner similar to Ap(n). A sufficient condition for output stability of N is then
85 ()= Ap(n) | (248)
which is implied by
by’ G2, by = b7 Gy by. (2.49)
Since G is positive definite and diagonal, this is implied by
thy | < lby | for everyi. - (2.50)

A scheme which satisfies this condition for the underflow case is sign- magnitude truncation;
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saturation arithmetic may be used for the overflow case. Fettweis and Meerkétter have
extended the stability argument to the case when N is composed of an interconnection of

adaptors, provided that (2.50) is true at all ports of each adaptor.

Minimality, both in delays and in degrees of freedom, plays an important role in the

preceding development. Note that the condition
Ap(n) = 8, (n) Gy ax(n) — &, (n +1) Gz ay(n +1) (2.51)
= by’ (n) G11 by(n)
=0

can be true when by(n) = 0 for a non-zero state vector a)(n) only if the system is unobserv-
able. Therefore only output stability is guaranteed by (2.51). To guarantee complete stability,
the system must, in addition to (2.51), be observable. Ashley has shown [40] that reciprocal,
observable WD networks are also controllable and therefore minimal in delays. Thus minimal

WD networks are completely stable in the sense of Lyapunov.

WDFs based on non-canonic analog networks are themselves non-minimal in delays.
Methods for removing the redundant delays have been developed [29], but these change the
WD network by introducing off-diagonal entries in the conductance matrix G, and as a conse-
quence (2.50) may no longer be sufficient. Recently, methods for diagonalizing the reference
conductance matrix have been developed to overcome this problem by means of an exact diag-

onalization transformation [40,72].

Of course, this problem could be circumvented by choosing a canonic reference network
such as the Jaumann symmetric lattice structure. Alternatively, the non-minimal network may
be transformed into an equivalent network canonic in reactances, but yet containing a surplus
parameter. It has been shown that the extra parameter may be expressed in terms of a suit-
able redefinition of the canonic design parameters such that the extra parameter will be finite
wordlength binary (FWLB) if the canonic parameters are FWLB. The development of this

idea will be covered in the next chapter.
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3. SYNTHESIS OF WAVE DIGITAL FILTERS

The design of canonic stable WDFs is essentially the mapping of a suitable analog network

onto an adaptor or interconnection of adaptors whose ports are terminated in delays. Ulti-

mately the adaptors, which define a computational algorithm, are to be realized physically. In

this chapter the derivation of discrete-time wave filters from analog reference filters, and some

possible digital implementation will be discussed.

iii)

vi)

vii)

viii)

The synthesis of a stable WD filter generally involves the following steps:

specification of the frequency domain magnitude response, most often specified as a max-

imum allowable error in the passband and minimum attenuation in the stopband.

choice of a suitable H (¢), which in most cases can be satisfied by an equiripple transfer
function and found with the aid of design tables or a computer program. For
specifications which are not equiripple, either perturbation, continuous optimization, or
other techniques could be used.

realization of H (¥) as a doubly-terminated lossless reactive network, which may contain
inductances, capacitances, unit elements, and ideal transformers. The ladder realization
of H(¥) is widely available from tables. This step is not actually necessary, but an ana-

log realization of H () must exist.
possible removal of redundant reactances via a suitable network transformation.

transformation of the analog network into an equivalent WD network by replacing the
reactive elements with delays, possibly in series with an inverter, and by replacing the
interconnections by a WD multiport or an interconnection of adaptors.

approximate the canonic design parameters by binary fractions such that the design
specifications are still met.

scale the digital filter to minimize the probability of overflow and to maximize dynamic
range.

implement the filter as an algorithm on general- or special purpose hardware, ensuring

that (2.50) holds, such as by sign-magnitude truncation at the states.

Two methods for the design of WDFs will be considered:
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i)  transformation of a ladder network to a WD network canonic in delays and consisting of
a cascade of first- and second-order sections. The removal of the reactive redundancies
will be achicved by simple analog network transformations (which, incidentally, are

equivalent to the diagonélization of Ashley [40]).

ii) realizing a transfer function as the equivalent of a symmetric lattice, and using first,
second, or higher-order cascades of unit elements to realize the two lattice reactances.
This realization is inherently canonic in delays and multipliers, but has the disadvantages
of high stopband sensitivity and that it is restricted to symmetric (odd-order) filter net-

works.

Consider the ladder realization, shown in Fig2.7, of a third-order elliptic transfer func-
tion as the reference filter for a WDF. A redundant reactance, a capacitor, exists within the
loop of capacitors Cy, C,, and C, (the dual network would contain a redundant inductor in
one of its cutsets). A network canonic in reactances can be obtained via a network transfor-
mation [73], given in Fig.3.1, the result of which would be equivalent to deriving the WDF
from the non-minimal network, removing the redundancy, and rediagonalizing the port refer-
ence conductance matrix G. Application of this transformation to the capacitive loop in the
filter of Fig.2.7 yields the network shown in Fig3.2. A corresponding WDF (a cascade realiza-
tion) can then be derived through application of the Brune adaptor of Martens and Jarmasz
and a parallel adaptor, as depicted in Fig. 3.3, where the Brune ada_ptor was arbitrarily chosen

to have the reflection-free port. The design of the Brune adaptor follows.

3.1. Design of the Brune Adaptor

Consider the Brune section shown in Fig34a). To proceed with an N-port adaptor
representation of the Brune section, v, =Ke; and v;=N"v, must be found, which requires that
the network first be partitioned into link and twig ports. Although there are six possible par-
titionings, the one which yields the simplest entries for N is used. By inspection of Fig3.4b),

the loop equations are
vy =vy + vy (3.1)
vyg=vyitn v,y
or

v = NTVt, (3.2)
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Figure 3.2 Equivalent third order elliptic filter.
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C,7C,*nC,

G3)

Terminate twig ports in their reference conductances and link ports in their reference conduc-

tances in series with a voltage source, as shown in Fig3.5. We may now analyze the network

to obtain the voltage transfer relationship between link-port sources and twig voltages, and

hence obtain K. To simplify the analysis process, the ideal transformer can be eliminated via
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Figure 33 Third-order elliptic WDF realized using a Brune and a parallel adaptor.
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Figure 3.4 a) A Brune section showing branch voltages, and b) an oriented graph for the net-

work.

the network transformation of Fig3.1 to yield the network of Fig3.6a). Application of
Theévenin’s theorem together with the definition of some naturally-occurring constants yields

the network of Fig.3.6b), where

JU i S B G4
1761 +Gs” 2 G+ Gy )
Continuing this process, we find the twig voltages v; and v,
T et —————— + -— —
Y1= G 7G5+ G, | @2 €3 (1-ay—ay) es |+ aeq (35)

=qa, 03e3 + [a3(1—a2) + ay(1—as) ] ey
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Figure 3.5 Brune network for calculation of the K matrix.

Figure 3.6 a) Network after application of equivalence of Fig3.l. and b) after further

simplification.
G, 1
B met——— + — —_ X
Y2 GG, nGy [az e3 + (1~ay—az) eq | (3:6)
= azagesy + ay(l-ag—az) ey
in which
Gy 1
ay = = G
G, +G; +Gs 1 1
1+(G{+GC +
(@ ’)(03 + G, Gz—nGs)
G
oy - = ! ' (38)

1,1 )
Gy +Gs Gi+Gs

) 1+(Gz—'n05)(
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and where

(39)

2
I

1
» Gp =
11 b
03+G4 GI+GS 63+G4 Gz"‘nGs

Now the relation v, = Ke; can be written as

vy az ay ax(1-ay) + a(l-as) | fes
- e (3.10)

V2 azay  ag(l-ay —az)

The overall scattering matrix for the adaptor is given by

1 - 2[as(1—ay) + a4] —2[asas(1—n) + nay(1-a;) + nay}
—2a4(1—ay) 1 - 2[aza4(1-n) + noay(l-a;)]
§ =1 2-20a;+ (atadl-a)] 2 -2[(as + adn(-a;—ar)+ar) + naj]

2 = 2(astnag)(l-a;) + a)]  2n —2[(ax(1-n) + n(1—ap)(asztray) + noyl

20503 2[az(1-az) + ay(1-aj)]

2&2(!4 2(!4(1"'(11"'(!2)

205(aztnay)  2[(aztag)(l-a;—a;) + af]
2(12((!34"1 (!4) 2[(a3+n (!4)(1—(!1"‘(!2) + (!1]"1

(3.11)

The matrix K has now been expressed in terms of the design parameters {a} and n.
Only four degrees of freedom exist in the original network (three independent conductance
ratios and the parameter n), and so the new parameter set is non-minimal. In solving equa-

tions (3.4, 3.7, 3.8) for the conductance ratios we find

Gy __(-apay Gy % _n aag G.12)
Gz [+ %} +n g oy ' Gz 1"‘(!2 1-n (2%} +n ajoay )
G o a G aja
Gs _ _n il I 104 (3.13)
G, 1-n a3 +n ajay G, as+n ajay

and that the following dependence relation holds:

a3 (1-n)(1-a,)
n(l-a3—ag)’

a; = (3.14)

Through a suitable redefinition of parameters, using {a} together with (3.14), a minimal

parameter set can be obtained. A definition will be suitable if expressing the new set as
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binary fractions ensures that the old set will also be expressible as binary fractions. If the
relationship between the new and old sets can be expressed in sum-of-products (SOP) form,
this is sufficient. Following the approach of Jarmasz [43], three suitable redefinitions are

found to exist, one of which is given here :

Br=n

B2 = aj a; = (1-By) B2 Bs

By =oay ay = 1-B; (1-B2—B3)B4 (.15
1 )

Bs=

n (1"03—'(!4)

The choice of which definition to use is not generally clear, but for a given parameter sct,
each will have different implications for realization requirements. A summary of all Brune

adaptor design and analysis equations is given in Appendix A.

3.1.1. Port 1 Reflection-Free Brune Section

Either port one or two could be reflection-free to allow the interconnection of adaptors.
An additional dependence relationship is obtained for each case by setting the appropriate
diagonal term in the adaptors scattering matrix to zero. For the case of port one refiection-

free we have
2(1—a)(1-aj3) -1 =10. (3.16)

Solving for «; and substituting into the dependence relation (3.14), we can solve for a,,

2a3(1-n)(1-as) ] (.17)

*= (1_“3)[1 T h(12a))

Rational entries in K are created by the substitution of a; and a,. Those terms in K which

pose a problem are:

1_ —
ap oy = az(l—as) [1 - 2(!35' (12283)0‘2)] (3.18)
and
120y _ 2a3(1-n)(1-ay)
ay oy = —-———-—2(1_(!3) (1-aj3)|1 n(1-203) ] (3.19)

One suitable redefinition of parameters sufficient to eliminate these rational expressions from



Kis
o = 1-2B,
Bi=n 1T 2(1-8y)
Bz = a3 az =1 - B1Bs (1-28,) (3:20)
1-aj oy = (1-2B; (1-B1) B3)(1-B2)

B3 B n(1—2a3)

3.1.2. Port 2 Reflection-Free Brune Adaptor

If port 2 is to be reflection-free, the following condition must hold:
as0(1-n) + nagl-ajy) = % (321)

To eliminate a; and a, from the K-matrix, solve the above equation for aj, and the depen-

dence relation (3.14) for a,, yielding

R
and substituting these into the K-matrix, we find the following rational terms in K:
om0 = oag] 1 - %?;:231;?:;:? (3.24)
o0y = o — (Z;Z;}l(:);:j;; ) (3.25)
oy = —23%%:% (3.26)
ay(l—az) = as(l-a;3)(2ay—1) 3.27)

2nay(l-ay)

In this case it is necessary to define two new parameters to convert to SOP form the entries of

K. One of the two choices for a parameter set is

_ (1 — 20,482(1-B4))Bs

oy
Br=n @4
_ l-ayag az =1~ BBaBa
Bz = 2(1-n)as(1-ag) a3 = (1-ag)(1-2a4p2(1-B1)) (3.28)
_ 2471 oy = Bifs + =

3% T o 2
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The above equations ensure that the entries of K, and hence S, will contain only SOP func-
tions of the canonic parameters {B}, and as a consequence will allow a Brune adaptor to be

implemented as a binary-arithmetic, digital algorithm.

3.1.3. Simplified Brune Section

A simplified design for a Brune section without reflection-frec ports can be obtained by

imposing the constraint

a;=1—a; (3:29)
or equivalently
G; _ G,
5. =G (3.30)
which, using (3.14) also implies
as = n(l-ay) (331)

The resulting K-matrix is

[(1-0‘1)" (1-ay) a;
K =

(1-ajjay O (332)

which represents a reduction in design complexity compared to the unconstrained design of §

3.1. An appropriate parameter set is simply
Bi=n, B2=2(1-ap, B3=2a0s (3:33)

The resulting adaptor has a corresponding flowgraph, which is shown in Fig3.7. For the port

2 reflection-free case, imposition of (321) yields the K-matrix

1
n(3—a1) o

K= 1o | (334)
2

Although the constraint (3.29) reduces the number of degrees of freedom by one, experience
has shown that many designs can be satisfactorily realized regardless. Similar adaptors are

possible through different choices for the simplifying constraint.

Various designs for the Brune section have been presented above, and are summarized in



Figure 3.7 Flowgraph of non-reflection-free simplified Brune adaptor. If port 2 is to be

reflection-free its two-port adaptor is simply replaced by a straight connection.

Appendix A. Next we will consider the WD lattice configuration.

3.2. Lattice Wave Digital Filters

A second, recently popularized approach to WDF design is through the use of a classical
doubly-terminated symmetrical lattice as the reference structure. The symmetrical lattice and
an equivalent (Jaumann) structure is shown in Fig.3.8. Its voltage wave transfer function may

be expressed as
Sy=——=====(5,-51) (3.35)

where the reflectances ¢ and §, are given by

Z,-R Z,-R
sl= ’ 2= .
Zx+R Zy+R

(3.36)
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Figure 3.9 Wave flow diagram of the unidirectional WD lattice.

Fettweis has given a WD structure which can realize (3.35), which is shown in Fig3.9.

We choose to describe the analog network in terms of the canonic form of the scattering

matrix for a lossless reciprocal two-port [73-75], given by

1 h O’fo
S=31r -oh (3.362)

where f , g, and h are the canonic polynomiafs. Some properties of the canonic scattering

matrix are:

i) f,g,and h are real polynomials in the complex frequency variable ,



ii) g is Hurwitz,

iii) either g or f is monic,

iv) o==%1,

v) hhe + ff+ = gg« holds.

The * indicates the Hurwitz conjugate which in the case of real polynomials corresponds to
replacing by —.

For the symmetric case, ¢ = f./f = —h. /h, which implies

gge = o (f —h)(f +h). (337)

The polynomial g can be expressed as a unique product such that the following hold [45] :
8§ =818, 818» =f+h, gug2=0c(f —h), (3:38)

from which we may derive the reflectances

Sy =-— s, S 3.39
1 . 2= (339)
and the canonic impedances
z,=r(E2y, z,=RCEX). (3.40)
&1e 820

(In the case of elliptic and similar transfer functions it has been shown that the zeros of g are
distributed alternately on the jo-axis between gy and g, [76].) The impedances Z and Z,, or
alternately §; and §;, may then be realized by any number of classical synthesis techniques.
We shall choose cascades of first- and second-order all pass sections or n-th order cascades of

unit elements [77,78].

3.2.1. Cascade of First- and Second-Order All-Pass Sections.

To realize a reflectance S as a cascade of first and second order all pass sections it is

necessary only to express § in the following factored form:

Lin-1)

kg -y +a; 2 Z-aqy+b
s = 8 _ Y 1 ‘bz g L (341)
4 ¥ +a = Y taptb

where k =—0 in the case of §; and k¥ =1 for the synthesis of S, . Each second-order section

can be realized simply by application of Richard’s reactance extraction [79]. The resulting
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analog network and corresponding WD flow diagram for n odd is shown in Fig3.10, where

- 1-a1
R1 = Ral N 1+a1
_ o o -b;—1
R . n—-1 1-b -1
Rosy = =, i=1(1)"=— I S
26 +1 a : ( ) 2 Y21 +1 1+b‘ s 1 1(1) )

If n is even, the first order section is simply omitted.

Y3 l 2?1/»1 l
‘
AL o |

P

Figure 3.10 Realization of an impedance via a cascade of first- and second-order all-pass

sections.

3.2.2. Chain of Unit Elements
To realize a reflectance § =(Z —R)/(Z +R) as a chain of unit elements Richard’s reactance

extraction may be applied to Z according to the following recursive relation

Z, — YR
Ziv =R }':’T%Zf" z,=2, i=1()n, : (3.43)

which will terminate in either a short or open circuit, and where
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R =2;(1) = -Z,(-1). (3.44)
A WD cascade of unit elements is given in Fig3.11, where the multipliers {y} are given by

_ R - R

= m, i=1(Dn, Ro=R. (3.45)

Yi

Depending on whether the recursion terminates in an open or short circuit, the constant k

will be 1 or -1, respectively.

T T2

i

bo—-—(— Y1 yz e = = —————— Y

Figure 3.11 Realization of an impedance by a chain of unit elements.

. Different choices for the method of realizing S and S, will yield a different set of mul-
tipliers, some of which may lead to 'sirnpler hardware realizations than others. Wegener has
established some rules for this choice [45,49], which attempt to minimize a multiplier’s sensi-
tivity in the neighborhood of its nominal value. The synthesis of WD lattice filters is of secon-

dary importance here, and so their realization will not be dealt with in further detail.

3.3. Digital Filter Implementation
For a digital filter to be implemented as a digital algorithm using binary arithmetic (gen-
erally two’s complement), the filter multipliers must be expressed as binary fractions of the

form

n
y=282, 8 €{01}, msi=n, (3.46)
i=m

where the multiplier wordlength is defined as w =n —m +1.

If the multipliers can be implemented as a sequence of multiplications or divisions by a
multiple of two and additions (shift and add), the use of actual hardware multipliers can be
avoided. The sensitivity properties of WDFs generally allow the multipliers to be of low
wordlength compared to other structures, assuming that some design margin exists, and hence

fewer shifts and adds will be required.
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Usually the operation of negation is simpler to implement than addition. In such a case

it is advantageous to express the multiplier in canonical signed digital code (CSDC), which is

of the form
vy = id,z‘, d; € {0,x1}, msisl (3.47)
f=m
such that
d d;_y =0 foreveryi (3.48)
and
! = n+l. (349

Elements of CSDC have a canonic number of non-zero digits [80], and so require the

/_minimum number of additions when implemented using the shift-add method.

The excellent sensitivity properties of WDFs allow significant reductions in multiplier
wordlength requirements, and correspondingly low roundoff noise. Due to the interaction of
roundoff noise and dynamic range [10] one can expect good dynamic range behavior. How-
ever, some scaling of internal variables is necessary to produce the optimal overall dynamic
range, that is a balance between the level of roundoff noise and the probability of arithmetic
overflow for all nodes having the potential for overflow. The L,-norm scaling of Jackson er al
[81] can always be used to achieve this. To avoid the introduction of additional multipliers for
scaling, the scale values are approximated by simple shifts and are absorbed into the filter

structure wherever possible.

The actual implementation of digital filters will take the form of an interconnection of
adaptors, delay elements, inverters, and possibly including pairs of inverse multipliers for scal-
ing. Each adaptor is described in terms of its scattering matrix S, from which the adaptor out-
put signals are calculated from the adaptor inputs. For each of n outputs a calculation will be

required of the form

bi = 2 S‘jal'. (3.50)

i=1

It is advantageous to calculate this inner product as efficiently as possible. We now examine

two distributed arithmetic methods for this purpose.
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3.3.1. Shift-and-Add Algorithm

An algorithm, developed by Moon and Martens [82], allows the inner-product expression
to be computed as a series of shifts (division by two in binary arithmetic) and additions,

weighted by a unimodular factor ¢ € {0,+1}.

Since the entries of S are binary fractions we may write

9
SU = Edljk Z_k, dijk € {0,1} (3.51)
k=0
or equivalently in CSD code
9
Si5 = zc;ij"k, Cijk € {O,i 1} (3.52)
k=0

We may express the inner product (3.50) such that the only multiplication is by an integer

power of two, thus,

n U

b = 2 2 Cijx 27 g (3.53)
=1 k=0

% n
= 2 (2 Cijk aj)z—k
k=0 j=1
9;
= Exk 2-"
k=0
=( (G /2) + 2g-1)2 + x4 2)/2 + -2 x1)/2 + xo.

The use of CSDC ensures that the minimum number of additions will be required. Also, com-
mon partial sums among {x;} for each output may be removed so as to further reduce the
number of additions. The actual implementation takes the form of a specialized structure,
different for a different set of coefficients, and consisting of a near- minimum number of

adders and shifters.
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3.3.2. Stored-Product Algorithm

An alternative way of expressing the inner product (3.50) developed by Peled and Liu,

and Crosier et al [83,84], is based on representing an input signal a; in two’s complement form
r—-1

a; = —aj + zajkz—k, a5 € {0,t 1}, (3.54)
k=1

where a; is the sign bit and r is the wordlength. Substituting this equation in the inner pro-

duct (3.50) yields

n r-1 n
b‘ = Esuzajk 2_k b ajoz SU (3.55)
Cj=l k=l =1

-1 LA
= '2 ‘i suaﬂzz—k] — aje j}_}l’u

k=1 | j=1

r=1
= ze‘kz_k - €0
k=l
Since e; € {0,1}, the e; can have only 2" discrete values, in practice often few enough for
them to be stored in a lookup table. This is known as the stored-product method. An actual
implementation consists of the memory lookup table containing the partial products ez, an
adder, shifter, and some registers. To change the coefficients the memory contents need only

be changed.

Both of the above two methods circumvent the use of hardware multipliers via distri-
buted arithmetic and specialized hardware. Current technology has made available general-
purpose signal processors, most of which are capable of fast hardware multiplication, so the
problem of minimizing realization requirements (in this case code size or execution speed) is
redefined in terms of the new processing resource. At least one implementation of WD filters
has been presented [85] which utilizes the features of a single-chip signal processor such as the
Intel 2920. The problem of implementing digital filters on general processors deviates from

the current topic and will not be discussed here.



4, OPTIMIZATION AND EXAMPLES

A digital filter is derived from a nominal discrete-time design by approximating the signal
quantities and filter coefficients to a number of bits sufficient to meet the design
specifications. The cost of a digital filter realization depends on the complexity of the digital
filter algorithm, whether it is realized as specialized hardware components or as software, and
on the signal and multiplier wordlengths. In both of the synthesis techniques discussed in the
previous chapter,.only a minimal number of delays and multipliers are required, so any
reduction in complexity depends on the way in which the canonic number of multipliers is

implemented, and on the signal wordlengths used.

Multiplier wordlength has a large effect on filter complexity, since the increase in signal
wordlength due to multiplication implies that more hardware will be required to carry or store
the resultant signals, and may place greater wordlength demands on subsequent operations.
Therefore multiplier wordlength is an important component of a filter’s complexity figure of

merit.

Often it is feasible to implement multiplications by the shift-add method, in which a
filter’s complexity depends on the number of shifts (equivalent to multiplier wordlength) and
additions needed. In the case of a fixed-flowgraph structure, a parallel adaptor for example,
the number of additions required to implement it is the sum of a fixed number required to
implement the flowgraph, plus a variable number required to implement the multipliers as a
sequence of shifts and additions (or subtractions). Hence, it is desirable to include this vari-
able number of additions in a filter’s complexity figure of merit, if the filter is to be imple-

mented using the shift-add method.

In the case of the unsimplified Brune adaptor, it cannot be implemented as a simple
fixed flowgraph, but instead could be implemented as a matrix-by-vector multiplication.
Reduction of the number of operations required to implement the overall multiplication
would then be the goal, and not simply the requirements of the design parameters. As it is
generally cumbersome to calculate the number of additions required to implement a matrix
multiplication, we will assume that a reduction wordlength of the entries of the matrix will
result in a reduction in the number of additions as well. Also, overall wordlength reduction

of the matrix entries is desirable when the stored product method is used.
Two measures will be used to evaluate a digital filter’s merit. The first describes the

degree to which the design specifications are met, and the second describes the relative reali-

zation requirements. We now formulate the first of these two functions.
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4.1. Objective Function for the Frequency Response

Consider the frequency response of a filter H (§,y) having a parameter vector vy, and an

attenuation function defined as
A(®, v) = ~20 logy | H(jtan-‘%, 1 @4.1)

We define an error function

Fi= max (€,,€)/Fmu (42)
© ¢ [0,3]
where
€, = max (A(w,y) — Ag)/8(w), “3)
o € [O,u’]
is the passband error,
¢ = max_B(6)/(A(0.) - Ao) (44)

is the stopband error, 8(w) is a tolerance function describing the design specifications, and A,
is a gain constant chosen so that

Ap= min A(o,y). 45
0= min (0.v) 45)

The constants wp and wg are the passband and stopband cutoff frequencies, respectively. The
constant F ., is chosen, typically equal to unity, to allow a tradeoff between realization
requirements and slight deviations from the specifications. The specifications are satisfied
when F;=<1. The smaller F is, the larger the design margin and the larger the expected pos-
sible improvement in multiplier values. In practice, a discrete number of frequency points are
used to evaluate F;, the number and locations of which are best determined through some
experimentation; placing a greater number of points near the critical frequencies wp and oy is

an appropriate strategy.

4.2. Objective Function for Realizatlon Requirements

The second figure of merit describes the implementation cost of a filter. The complexity
of simple and of complex adaptor realizations depends chiefly on the wordlength of the design
parameters, and on the overall scattering matrix wordlength, respectively. In the case of sim-

ple adaptors, the design parameters are present as multipliers in the adaptor’s flowgraph. For
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more complex adaptors, expressions including sums of products of the design parameters

determine the matrix wordlength.

A simple adaptor’s complexity, if implemented via a shift-and-add method, depends
depends solely on the wordlengths of each of the design parameters and the number of addi-
tions required to implement them. (If the adaptor is implemented via the stored-product
method, the number of additions required by a design parameter is irrelevant.) Typically, it is
preferable that all parameters have similar wordlengths. Consider a single multiplier vy,,

expressed in CSDC,
”;
v =3,d;27, d; €{0,x1}. (4.6)
j=0
Therefore the number of additions required to implement v, is given by
m;
D=3 Id;!l -1 4.7)
i=0
We may then define an objective function describing relative hardware requirements as

n
F,=3 D, 2™ 48)
i=1

A change in multiplier wordlength most greatly affects F,.

A slightly different approach is required for more complex adaptors, such as the general
Brune. In their implementation, the scattering matrix entries are the multipliers, and each
entry is a function of the design parameters. There are three distinct parameter definitions
possible for a Brune adaptor having no reflection-free ports, and three definitions for a Brune
adaptor with one reflection-free port. Instead of calculating the S-matrix to evaluate its
wordlength, it is simpler to evaluate the wordlength of two matrices of which it is composed,
the voltage transfer matrix K, and the turns ratio matrix N. The entries of the turns-ratio
matrix N contain only simple occurrences of one design parameter, so reduction of the
wordlength of K, which contains SOP functions of the design parameters, is the prime con-

sideration.

Examine the K-matrix in terms of the design parameters {a}.

azay ay(l-ay) + aj(l-ay)

K= axx, as(l-a;—ay) ’ “49)

It can be readily calculated in terms of each of the parameter sets defined in Chapter 2. In
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terms of parameter set 1 for a non-reflection-free Brune adaptor (3.15) we have
Ky = [1-B1(1-B2~B3)B4IB2 (4.10)
K21 = [1-B1(1-B2—B3)B4lBs
K12 = BaBa[1-B2~PB1B3]
K2 = B3BaB1(1-B3) — B2l

The wordlength of K is then

Qr = max(q11, 912, 9215 922) (4.11)

where g;; is the wordlength of K;;. We choose to define an objective function F, to be
F,=2% (4.12)

which would be appropriate for either stored-product or shift-add realizations. Similar expres-
sions can be derived for the two other parameter sets, and for the cases of port one or port

two reflection-free adaptors.

The wordlength Q5 of the scattering matrix must satisfy
Qs = (Qx-1) + O (4.13)

where Qy is the wordlength of the turns-ratio n. Since reduction of Qx and Qy does not
guarantee a minimum number of additions for S, this is partially solved by also considering

the wordlengths of individual design parameters during optimization.

Given the objective functions F; and F; which characterize the relative merit of a filter’s
frequency response and coefficient realization requirements, a suitable optimization scheme

will find a parameter set { ¥ } which minimizes F, subject to F;<1.

4.3. Search Algorithm

Heuristic schemes have been presented based on the well-known Hooke and Jeeves pat-
tern search [86] and which have given good results [49,63]. It is a univariate search with an
acceleration feature. A multivariate version of the search is illustrated in Fig.4.1. It has the
advantages of simplicity and the ability to conform to the restrictions of a parameter space
consisting of a uniform rectangular grid. However, it is a continuous optimizatioh algorithm

and as such is not appropriate for the minimization of a wordlength-based objective function



such as F,.

PROBE1:Fo, ¥,

OPT:F,v, 8

* Fp~F
F’F('Y) FE_FOO
Fg-F me 1
YE~ Y ]

[PROBEI.—FE.VE,bl [ k-1 ]
i1

Flowchart Symbol Glossary
F,Fy - frequency response objective function
L7 - vector of coefficicnts, & point in N-dimensiopal discrete parameter space
) - step size vector
Q - wordlength vector
Fg - objective function at point resulting from probe movement
Yx - point resulting from probe movement
N - number of coefficients
L - indicates direct product
F, - wordlength objective function
Fyu - maximum allowable value for F,
My - maximum number of cocfficients to be varied at once
¢ - vector containing j* pattern for probe movement

Figure 4.1 Multivariate pattern search. Also used as a subroutine for Fig.42.
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A number of modifications have been made to the pattern search to better suit the
characteristics of F,. The number of variables that can be varied at once has been generalized
to account for the strong effect of the interaction of parameters in the Brune section K-
matrix. Different parameter index orderings have been made possible, the most useful of
which is based on the parameter sensitivity with respect to Fi, so that the wordlength of the
most sensitive parameters will be reduced first. Each parameter is given a different probe step
size according to its current wordlength, so that during the search only grid points which offer
an improvement in wordlength will be tested. The contraction step and exit criterion are

unnecessary and have been eliminated

The discrete search is designed to be part of an algorithm having the following features.
Any subset of parameters can be optimized while allowing those parameters not yet optimized
to be varied freely so as to attempt to satisfy F ;=1 while taking advantage of improvements
in F, based on the parameter subset. This is to allow each section of a cascade realization, or
parameters whose interaction greatly affects F, to be considered together. Also, the order in
which these subsets are optimized can be chosen to allow sections which are expected to
demand the greatest realization requirements to be considered earlier in the process, and so
take advantage of the larger design margin available then. Other optimization schemes can
and have been used, although only a global search guarantees optimality. The approach given
lends versatility to allow a compromise between computational requirements and the quality

of the final solution.

A more detailed description of the discrete search follows; a flowchart diagram is given
in Fig42 (Appendix B contains a program listing). The search is applied to the task of
minimizing F, under the condition that F;<1 is maintained. An initial point in discrete
parameter space with F (=<1 must first be available. Such a point can be found by approximat-
ing the coefficients of the nominal design to sufficiently long wordlengths. Beginning at the
initial basis point vy, a probe operation is performed in which the objective function F, is
evaluated at neighboring points. If any improvement in F, is found, say at yg, F(yg) is
evaluated. If F{>1, and some parameters have not been included in this search and are
therefore free, an optimization is performed on them to minimize F;. If Fy=<1, a new point is
calculated by extrapolating through the y; and the search is started anew with this as the new
basis point. If no improvement is found, then the previous best point is used for the new basis

point. After two consecutive failures the search stops.

The largest proportion of computational effort is expended in the calculation of Fy, thus

to save time the condition F;>1 is recognized early in order to avoid unnecessary exact
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calculation. The response at critical frequencies, those most likely to deteriorate, are

evaluated first.

A useful property of WDFs is that each is a direct mapping via the bilinear transform to
an analog network. This is convenient for optimization applications since the frequency
response can conveniently be calculated from a filter’s corresponding analog equivalent using

the frequency variable mapping
Q =tan(nf /[Fs), Fs = sampling frequency. (4.14)

Several examples are presented in the next section to illustrate the design and optimiza-
tion procedures. The search used is designed for use with cascade filter realizations which
include Brune sections. However good results were obtained for the WD lattice filters, and so
these are included to illustrate the search’s merit as a more general tool. For smaller exam-
ples, it is often feasible to use an exhaustive search approach economically. However, for
filters of order = 7 this is generally not feasible. A comparison with results obtained using a
global search is given for fifth-order filters to show the consistently good results of the pro-

posed technique.
4.4. Design Examples
4.4.1. Fifth-Order Ladder Filters

Example 1

The first example is described by the following specification :

A<03dB, f €[0,34] kHz,
A=320dB, f €[4.6,160) kHz, Fs=32 kHz.

These specify a digital filter used in an interpolator which increases the sampling rate from 8
kHz to 32 kHz [36]. To find a suitable analog prototype, we calculate the corresponding ana-

log critical frequencies,

Q, = tanmlZ = 034677, Q, = tamr!f- = 048503, Q,/0, =139872.
§ S

From the design tables [87], we find that a 5th order elliptic filter designated CC051548 will
satisfy the specifications, and allow some margin in the passband and stopband. The topology

of the analog prototype and a WD equivalent are given in Fig.43, in which
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és = Gs + Gr, 65 = Gg¢ + Gy, é-, =Gg + n1G7 + nyGo, (4.15)

and the analog element values and corresponding design parameters are given in Table 4.1.
Design equations for this configuration of adaptors are listed in Appendix C. Although other
adaptor configurations are also feasible, the symmetrical structure given here is generally

preferable.

It is desirable that the constraints
0307 = Gle, G4Gg = 6265 (416)

be applied so as to simplify the two Brune sections, if the specifications can still be met. A
fixed-flowgraph realization will then be available. The constraint is most easily applied to G

and G,, and so we have
61 = 0367/65 = 140509, Gz = 0409/65 = 0.47316.

Using the objective function F; of (42) and the frequency response algorithm of Appendix D,
it was found that the imposition of the two constraints perturbed the frequency response
Beyond tolerance limits. A continuous optimization, based on the Simplex algorithm [88], was

employed to find a suitable nominal design.

An expression describing hardware requirements for this configuration is given by

3
Fy=3 0, (4.17)
I=1
where
2 .
Q=3 D;2" (4.18)
i=1

and D, is the number of non-zero bits in the CSDC representation and my, is the wordlength
of the i** multiplier of the /™ section. The optimization procedure was applied to the filter
using the F,; given by (42) and the F, given above. Three stages were used, one for both
Brune adaptors, then two for each parameter of the parallel adaptor. The program found the
design given in Table 4.2, which is identical to the one found using a direct (exhaustive)
search approach. Its frequency response is presented in Fig4.4. Only 19 adders are required
for a shift-add implementation of the filter: 7 for the first Brune adaptor’s flowgraph, 5 for the
second Brune, 6 for the parallel adaptor flowgraph, and 1 addition due to the multipliers. A

total of 14 050 evaluations of F; were used, requiring the filter frequency response to be
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Figure 4.3 Fifth-order elliptic ladder filter, its equivalent network involving Brune sections,

and a corresponding WDF .

evaluated at 112 940 points; 713 evaluations of F, were needed. Only 7.93 seconds of Amdahl

5850 CPU time was expended compared to the 2 minutes, 55 seconds used by the direct search,

which required 2 270 268 evaluations of F; using 2 557 670 frequency points. (The final



Table 4.1 Initial Design for Example 1.

n Conductances Parameters
normalized I denormalized

1 1.0 10 0.331313

2 1.0 1.0 0.188890

3 0.86162 0.29878 0.175356

4 1.24601 043208 0.477310

5 0.20911 0.60303 0.038815

6 0.64341 1.85542 0.035578

7 0.98340 2.835884

8 1.52876 4.40858

9 0.70459 2.031861

solution for direct search was picked by hand from a number of feasible designs.)

Table 42 Final Conductances and Parameters for Example 1.

n | Conduc- Parameters
tances
rational CSDC adaptor

1 48 14 01 1
2 9 1/4 01 1
3 16 /4 01 2
4 3 1/4 01 2
5 48 1/16 0001 3
6 9 3/256 0000010-1 3
7 144

8 135

9 27

Example 2
A second example is specified by the following requirements:

A=07dB, f €[0, 368] kHz,
A=450dB, f €[656, 16 0] kHz, Fgs=32 kHz.

These describe a filter first presented by Wanhammer [89]. From the design tables, we find
that the fifth order elliptic filter designated CC052532 will satisfy the requirements when
frequency-scaled and allow a fair margin, particularly in the passband. The initial element
values are given in Table 4.3, referred to the topology of the previous example. We attempt to

use the simplifying constraints (4.16), yiclding

Gy =GsG;/Gs=485404, G,=G,Gy/Gg=183613,
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Table 4.3 Initial Conductances and Parameters for Example 2.

n Conductances Parameters
normalized | denormalized

1 10 10 0.57012

2 1.0 10 0.35644

3 0.81617 030841 0.059740

4 0.92697 035027 0.16021

5 0.08787 023254 0.04290

6 0.23897 0.63241 0.043518

7 1.3830 3.660

8 2.05013 5.42551

9 125268 331512

from which a nominal parameter set is obtained. This design does not satisfy the
specifications, so a continuous optimization is again used to obtain a satisfactory set. The
resulting parameter set allows some design margin. The objective function F, used for the

previous example will again be suitable.

As before, the Brune sections are first optimized together, followed by one stage for
each of the two parameters of the parallel adaptor. The parameter set which resulted, given
in Table 4.4, required 9287 evaluations of F, , a total of 54 714 frequency points, and 414
evaluations of F,. An equivalent parameter set was yiclded by a direct search approach,
which required 712 800 evaluations of F; and a total of 906 204 frequency points. The fre-
quency response is given in Fig.4.5.

A shift-add implementation of the design will require 23 adders: 18 for the adaptors, as

in Example 1, plus 5 adders due to the multipliers.

Table 44 Final Conductances and Parameters for Example 2.

n | Conduc- Parameters
tances
rational CSDC adaptor

1 105 5/8 101 1
2 45 3/8 10-1 1
3 15 18 001 2
4 15 14 01 2
5 9 7/128 000100-1 3
6 25 3/64 0001 0-1 3
7 63

8 189

9 75
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Example 3

Consider the following specifications:

A=<075dB, f €[0, 2.4] kH:z

As1454dB, f ¢[24,30] kH:z

As288dB, f €[3.0, 34] kH:z

A=—0.75dB, f €[0, 34] kHz

A=40.7dB, f €[4.6,32] kHz, Fg=64 kHz.

These describe a digital filter used in an interpolator which increases the sampling rate from 8
kHz to 64 kHz [45]. From Saal [90] we find that the Sth-order elliptic filter designated
CC055048 can satisfy the specifications. A sct of element values are given in Table 4.5. As

usual we attempt to impose the the constraints
Gl = 0367 /Gs = 145343, Gz = G4Gg / Gg = 056872

and use the conductances to calculate a nominal design parameter set. This nominal design
still satisfies the speciﬁcafions despite the imposition of (4.16), but a continuous optimization
was performed to improve the design margin. We may again use the objective function of the

previous examples.

Table 4.5 Initial Conductances and Parameters for Example 3.

n Conductances Parameters

normalized | denormalized
1 1.0 10 0.10469
2 1.0 1.0 0.052097
3 1.12338 0.18925 0.11521
4 1.49094 0.25116 0.30634
5 0.27264 1.61839 0.0084788
6 0.76988 4570 0.0088221
7 2.09392 12.4295
8 249416 14 8053
9 1.74325 10348

Now we may apply the optimization procedure to minimize F,. We choose to minimize
the Brune adaptors first, followed by the parallel adaptor in the same manner as for the previ-
ous examples. The parameter set given in Table 4.6 was obtained, and required a total of 5558
evaluations of Fi, 57 305 frequency points to be checked, and 421 evaluations of F;. The
direct search approach yielded the same design but required 425 984 evaluations of F; and 748
977 frequency points to be checked. Its frequency response is given in Fig.4.6. Only 20 adders

are required to implement the design.
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Table 4.6 Final Conductances for Example 3.

n | Conduc- Parameters
tances
rational CSDC adaptor

1 42 332 0010-1 1
2 21 1/16 00001 1
3 6 1/8 001 2
4 7 1/4 01 2
5 58 1/128 0000001 3
6 105 1/128 0000001 3
7 406

8 315

9 532

Preceding examples have shown the merit of the proposed optimization procedure rela-
tive to an exhaustive search approach. Verification by exhaustive search was possible since the
parameter space for these examples is sufficiently small. Some examples will now be presented __

for which exhaustive search is not feasible.
4.4.2. Seventh-Order Examples

Example 4

Consider the following specifications [45] :

A=011dB, f €[0, 28] kHz,

A=022dB, f €[28,32] kHz

A=044 dB, f €[32,34] kHz

A=-011dB, f €[0, 40] kHz

A=300dB, f €[40, 48] kHz

A=400dB, f €[48, 54] kHz

A=500dB, f €[54,120] kHz, Fs=24 kH:z

They describe a filter intended to be part of a transmultiplexer system proposed by Fettweis
[91]. Its passband attenuation is 1/20 of the CCITT requirements for channel filters, and the
stopband specification depends on the solution for other parts of the transmultiplexer. These
can be satisfied with the 7th order equiripple elliptic transfer function designated CC072056,
although with little margin in the equiripple sense. The conductance values are given in Table
4.7 for normalized and denormalized cutoff frequencies. Using the ladder network shown in

Fig.4.7 as the reference filter, we may consider several WDF realizations.



32.00

o
Z FULL BAND
w M
Do /
o
N6
gff' ;//////////////////////////////////
—_ %
- /
(@n
53 2
g 2
l-—N L/
'—_
= |7
o 4
S %
C., — Ly T T T
0.00 6.40 12 .80 18.20 25.80
FREQUENCY/KHZ
O
S PASS BAND
nw Y
i /
S 7
go 7222
=< /]
a o~ f/ééaé
> :
A PP NP I PP I IIIIIIIIIIIIV V4
o T~ o
e :
G:-—-c ///]////‘////////{jZI/////'////////‘////////
'0.00 0.80 1.60 2.40 3.20

FREQUENCY/KHZ

Figure 4.6 Frequency response for Example 3.

4.00



3/ G, /v

Gy /0

51

e L
o ‘pG']

A

r~

Gy

i
v Gg

:«ueé 5,

Figure 4.7 Seventh-order elliptic prototype filter containing reactive redundancies.

Table 4.7 Initial Conductances for 7th-Order Examples.

n Conductances
normalized | denormalized
1 1.0 1.0
2 10 1.0
3 0.8161 0.3893
4 12210 0.58237
5 1.13685 0.54225
6 0.16141 0.33840
7 0.81628 1.71137
8 0.57779 1.21136
9 1.20207 2.5202
10 1.60392 3.36269
11 1.39365 29218
12 0.90654 1.9006

Given that three Brune sections and a parallel adaptor will be used, there are 16 possible

configurations. We will consider three which have been chosen, somewhat arbitrarily, to

include each of the three options for reflection-free ports of a Brune adaptor for the middle

adaptor. As usual, we will attempt to impose the constraints

(4.19)

whenever possible so as to simplify two of the Brune adaptors so as to allow their subsequent

realization as fixed-flowgraph structures.

Initially we shall attempt to implement the WDF as shown in Fig4.8, in which

é6=GG+Gg, é7=G7+Gll+n20u,

(4.20)
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corresponding WDF (for Example 4).
Gsg=Gg+Gyp, Gy=Gy+nGy+nyGy +nGp)

This configuration has a non-reflection- free Brune adaptor and two adaptors having the sim-
plifying constraints, which are

Gl = 6309 /Gﬁ = 289894, Gz = GSGIZ /GS = 085078

We obtain the initial parameter set, given in Table 4.8, which does not satisfy the
specifications. A continuous optimization was employed, and found a satisfactory set. A fair

design margin exists and indicates that improvements in hardware requirements are probable.

The function describing hardware requirements may be expressed as the sum
Fo=Fop + Fy ' (4.21)

where F,p is the objective function for a non-reflection-free Brune adaptor computed
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Table 48 Initial Parameters for Example 4.

Parameters
0.11838
0.53495
0.065939
0.32779
0.26753
0.26677
5.02998
0.38926
0.30922

C O WN =B

according to (4.12), and F o is given by (4.8), in which the parameters for adaptors one, two

and four, which all have simple flowgraphs, are included.

A typical strategy for minimization is as follows. Since adaptor three is the most com-
plex, it will be minimized first, so as to allow the largest portion of the design margin to be
used in finding a favourable combination of parameters for the section. The turns-ratio,
because it is present in both N and K, will be the first parameter considered, followed by the
fourth parameter, since it is greater than than unity and often allows cancellations between
the numerator and denominator of the entries of K. The remaining parameters are minimized
last. Next, adaptor four is minimized, followed by adaptors one and two. Application of this
strategy resulted in the design of Table 4.9, which satisfies the specifications, as can be seen
from its frequency response in Fig.4.9. A total of 553 evaluations of F; were required, and a
total of 515 614 evaluations of F, using 6 429 794 frequency points. Execution time for the

procedure was about 9 minutes.

Excluding adaptor three, 21 adders are required, of which 5 are required to implement
the multipliers. The scattering matrix for adaptor three was found to have an overall
wordlength of 19 bits. An attempt to decompose the matrix into a shift-add structure yielded
an impractical requirement of 70 adders. A stored-product implementation of this adaptor

would be more suitable.

Example §

As a further example consider realizing the same filter using the ladder network and

WDF structure shown in Fig.4.10, in which

éﬁ = Gﬁ + Gg, é7 = Gm + G7 + ang, (4.22)



Table 4.9 Final Conductances and Parameters for Example 4.

n | Conductances Parameters
rational | CSDC adaptor
1 0.24195 1/4 001 1
2 0.23268 9/16 01001 1
3 0.080649 /16 00001 4
4 0.11417 5/16 00101 3
5 0.091048 17/64 00100 01 3
6 0.062727 17/64 00100 01 3
7 031250 5 1010 3
8 0.10989 9/32 001001 2
9 0.18818 29/64 0100-101 2
10 0.64541
11 0.60852
12 0.28082

Gy =Gy +Gp, Gy=Gy+nGp+ny(Gy + niGo)

This realization differs from the previous ones in that it includes a Brune section having port
one reflection-free. An initial attempt to apply both constraints (4.19) was unsuccessful, as no
satisfactory design could be found through continuous optimization. Application of the single
constraint (4.19b) was attempted instead. From the conductances given in Table 4.7 we may
calculate the set of design parameters given in Table 4.10. A continuous optimization algo-
rithm found a nominal design which satisfies the specifications. We choose the wordlength

objective function to be
F2=F”1+F282+F23, (4.23)

where Fop, and F oy, are evaluated according to (4.12), except that for F oy, the K-matrix is cal-

culated in terms of the parameter set { B } of (3.20) for a port 1 reflection-free Brune adaptor.
The term F 5 is computed according to (4.8) in which the parameters for the simplified Brune

and parallel adaptors are included.

The order in which the adaptors in the cascade will be minimized is : adaptor three, fol-
lowed by adaptor one, then adaptor four, and adaptor two last. Within each of the
unsimplified Brune adaptors the turns-ratios will be reduced first, then their last parameter,
followed by the remaining parameters, as described in Example 4. Application of this strategy
resulted in the parameter set of Table 4.11, which was found after 182 330 evaluations of Fy,
a total of 2 451 587 frequency points, and requiring 352 evaluations of F,. The search took

about 3 minutes, 32 seconds to complete. A plot of the filter frequency response is given in
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Figure 4.10 a) Alternate configuration of equivalent ladder filter involving Brune sections

and b) a corresponding WDF (for Example 5).

Table 4.10 Initial Design Parameters for Example 5.

Paramecters

0.11838
0.15225
0.11121
533344
031855
0.14233
327422
0.064193
038926
030922
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Fig4.12.

Since two adaptors do not have fixed flowgraphs, realization requirements for this design

are greater than for the previous example. A shift-add implementation of Brune adaptors onc
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and three is again impractical, as their scattering matrices have wordlengths of 18 and 23 bits
respectively. The 18-bit scattering matrix would require 64 adders for its shift-add implemen-
tation, and so the stored-product method should be considered instead. Requirements for the

adaptors two and four are 9 and 4 adders respectively.

Table 4.11 Final Conductances and Parameters for Example 5.

n | Conductances Parameters
' rational | CSDC adaptor

1 2.0250 U8 0001 1
2 0.48693 5/32 000101 1
3 0.82955 5/32 000101 1
4 0.49727 5 1010 1
5 0.26400 3/16 0010-1 3
6 0.62500 1/16 00001 3
7 1.4027 - 92 100.1 3
8 0.4400 1/16 00001 4
9 43750 45/128 010-10 -101 2

10 55316 3/8 010-1 2

1 1.1428

12 0.81156

Example 6

Consider a second choice of WDF configuration for realizing the network of Fig.4.8a),
shown in Fig.4.12, in which the parallel adaptor has no reflection-free ports and the remaining
adaptors are Brune sections with port two reflection-free. We attempt to apply the two con-
straints (4.19) to the conductances given in Table 4.7, yielding the set of initial parameters
tabulated in Table 4.12. These initially caused an unacceptable deviation in frequency
response, but by use of a continuous optimization, a satisfactory nominal parameter set was
obtained. The function F, will be (4.19), as it was for Example 4, except that the set {B}of
(3.18) for a port 2 reflection-free Brune adaptor will be substituted for the non-reflection-free
adaptor. We apply the following strategy to minimize the hardware requirements: reduce the
turns-ratio of adaptor three, followed by its fourth parameter, then the remaining parameters;
optimize adaptor four; optimize the remaining adaptors. The parameter set of Table 4.13 was
obtained. It just satisfies the specification, as shown in Fig.4.13. A total of 108 529 evaluations
of Fy, 2 032 427 frequency points, and 192 evaluations of F, was required. Execution time

was 2 minutes, 51 seconds.

Adder requirements for this design are as follows: for adaptor one, 7 adders for the

flowgraph and 3 for the multipliers were needed; for adaptor four, 6 adders for the flowgraph
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Figure 4.11 Frequency response for Example 5.



and 1 for the multipliers; for adaptor two, 5 adders for the flowgraph and 3 for the multiplicrs.
A wordlength of 15 bits is required for adaptor three's scattering matrix. The adaptor can be

implemented via the shift-add method using 34 adders, although the stored-product method

;
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Figure 4.12 Alternate WDF for the network of Fig.4.10.

Table 412 Initial Parameter Set for Example 6.

Paramecters

OIS W=D

0.11838
053495
0.065939
032779
026753
026677
502998
038926
030922

would be more practical.

computation. Results cquivalent to the global optima for the Sth-order examples were found.
‘The optimization procedure presented has been designed for cascade realizations including

Brune adaptors. Some success has also been achicved for the WD lattice structure, as the fol-

lowing examples will show.

The above results indicate a significant reduction in hardware required for the imple-

_ mentation of cascade WDFs using Brune adaptors and parallel adaptors at a reasonable cost of
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Figure 4.13 Frequency response for Example 6.



61

Table 4.13 Final Conductances and Parameters for Example 6.

n | Conductances Parameters
rational CSDC adaptor
1 0.20000 5/16 00101 1
2 0.16034 3/8 010-1 1
3 0.09091 14 001 3
4 0.083686 59/256 00100 0-10-1 3
5 0.062741 6 10-100 3
6 0.15152 1/16 00001 4
7 0.18750 3/64 000010-1 4
8 0.080667 9/32 001001 2
9 0.33333 7/16 0100-1 2
10 0.64583
11 0.50452
12 0.20615
- {1
i i i
Y1 = YZ _— Y3

Figure 4.14 Fifth-order lattice WDF for Example 7.

4.5. WD Lattice Examples

Example 7

Consider again the digital filter specifications of Example 3, which may be met with a
fifth-order elliptic transfer function. We will realize the filter as a WD lattice structure, as
shown in Fig.4.14, which employs chains of unit elements for the first and second arms. A
computer program was used to obtain an initial parameter set, given in Table 4.14, which was

then optimized to maximize the design margin. For the wordlength objective function we
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shall use
s
Fp= 21 D;, (4.24)
=

where D, is the figure of merit for the i** multiplier, given by (4.8). The minimization pro-
cedure is then applied, yielding the parameter set given in Table 4.14. A frequency response
plot is presented in Fig.4.15. The design is equivalent to the one originally given by Wegener
[45]. A total of 6823 evaluations of F; using 85 464 frequency points, and 59 evaluations of F,
were required. '

Adder requirements for this design are 16 for the flowgraph and 4 for the multipliers.
The latter figure assumes that the appropriate parameter definition for each two-port adaptor
will be used. (Proper choice of one of the three possible definitions always allows the multi-

plier component * 1 to be eliminated [35].)

Table 4.14 Initial and Final Parameters for Example 7.

n Initial Final
rational | CSDC

-0.78418 -13/16 -1010-1
0.98438 6364 10000 0-1
-0.95703 -61/64 -10001 0-1
-0.79590 | -105/128 -1010-1 00-1
0.96875 332 10000-1

WV WN -

Example 8

As the last example, consider the realization of a WD lattice filter of the form shown in
Fig.4.17 which satisfies the specifications of § 4.4.2. An initial equiripple design, listed in Table
4.15, was obtained with the aid of tables [87]. It exhibits a sufficient design margin so that a
preliminary optimization is not required. By applying the minimization procedure we obtain
the design of Table 4.15, whose frequency response is plotted in Fig.4.17. A total of 108 529

evaluations of F using 2 032 427 frequency points, and 192 evaluations of F; were required.
Adder requirements for this design are 22 adders for the flowgraph and 9 adders due to
the multipliers. These results are comparable in terms of the number of shifts and adders to

those presented by Wegener [45].
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Figure 4.16 Seventh-order lattice WDF for Example 8.

Table 4.15 Initial and Final Parameters for Example 8.

n Initial Final
rational CSDC
1 | -052340 -1/2 0.-1
2 | 082871 27/32 100-10-1
3 | -0.80580 -3/4 | -101
4 | -092647 -61/64 | -1.0001 0-1
5 0.61713 19/32 01010-1
6 | -0.57121 -35/64 0-100-1 01
7 0.83801 101/128 10-100101

The above two examples illustrate the potential of the minimization procedure for WD

lattice filters. They also show the relative complexity of two filters realized using the WD lat-

tice as compared to a cascade of Brune adaptors.
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5. CONCLUSION

This thesis has proposed an approach to the minimization of WDF realization requirements
through discrete optimization. Methods for the design of cascade WDFs involving a recently-
introduced Brune adaptor, and for lattice WDFs were presented, both of which allow
economical implementations when actual multipliers are replaced by binary shifts and addi-
tions. The problem of reducing the total number of operations for a given implementation
realized using the shift-and-add method was formulated as an optimization problem. Objec-
tive functions were given describing two (relatively unrelated) properties of a digital filter: its
ability to satisfy a desired transfer characteristic, and the relative number of shifts and addi-
tions required to effect the multiplications. An algorithm was then proposed to efficiently
minimize the "hardware” objective function subject to the condition that the transfer charac-

teristic remain within design specifications.

Most WD adaptors have fixed flowgraphs and so changes in the number of shifts and
additions depend solely on the design parameter values. The general Brune adaptor, however,
does not have a simple fixed flowgraph representation and so we instead considered imple-
menting the adaptor as a matrix multiplication. Since the evaluation of the number of shifts
and additions required to implement a matrix multiplication is pfohibitively time-consuming,
we turned to wordlength reduction of the matrix entries, presuming that a reduction in adder
count would ensue. Also, overall wordlength reduction implies reduced costs for an alternate
means of implementing a scattering matrix, namely the stored-product method. The problem
was simplified by considering the wordlengths of the two matrices, N and K, of which § is

composed.

The optimization algorithm was applied to a number of WD filters of fifth and seventh
orders, based on ladder and lattice analog prototypes. Designs requiring a minimum number
of shifts and additions were found for the fifth-order filters, and were verified using an
exhaustive search. The two WD lattice filters given here compare favourably to previously-

published results.

We have aésumed that the above designs will be implemented using specialized
hardware, or in some other way in which the use of distributed arithmetic is uniformly advan-
tageous. Typical target technologies such as microprocessors and VLSI introduce criteria in
the minimum-cost design problem that have not been considered here. We suggest that future
work might include digital filter cost minimization schemes which take into greater account

the restrictions imposed by various specific technologies, such as a particular microprocessor.
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Appendix A. Summary of Brune Adaptor Design Equations

A Brune section and its equivalent ladder network are shown in Fig.A.L

O —— | G,
n:1 ' JW\'T

I

Figure A.1 A Brune section and its equivalent ladder network.
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A summary of the various design and analysis equations for the Brune adaptor follow.

Simplified designs have the constraint G,/Gs = G3/G4 imposed.

A.1 Non-reflection-free

1
GT =
S S L S—
Gl + (1"'”)04 03 + nG4 Gz - n(l-—n)G4
definition 1
Bl =n Gl 1
— = —(l-n
B, = Gr G, BB (1=n)
Gx + (1‘”)04 GZ + (1 )
—_—= n(l-n
33 - GT G4 BSB4
Gz - n(l—n)G4 03 1
A _—= ———————— —
_ G G, (1-B2—B3)Bs
Bs = —=—



definition 2

Br=n
Gy
Bz = ==
Gy + (1-n)G,
G;
BS - 63 + né4
Gr
By = —————=—
n(l—n)G4
definition 3
Bi=n
G,
B2
G+ (1-n)G,
Gr
By=——T—>"
G+ (1-n)G,

Gl + (1“” )é4

4=

simplified
Bi=n
By = —— !
2 Gy + (l—n)é4
nG

~ (1-n)G3 + nGy)

Gy _ (1-n)B,
é4 1-8;

G

-2 = n(1-n)|l +
G,

Gs _ _nBs

é4 1- B3
Gy _ (-n)B,
64 1- BZ

G

2= n(l-n)|1 +
G,

Gs 1

64 (1‘32)64

Ga _ B1(2—Ba)
G, Bs
Gy B1

Gy 1-B4
Gy _ 1-8
G, (1-ByB2

Ba

1 - By(n(1-B,) + (1-n)(1-B3))

Bs

n(1-B,)(1-B3(1 + (1-n)B4))
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A.2 Port 1 Reflection-Free

Bi1=n
_ Gy —(1-n)G,
B2 =
2G,
G,
Bs

 (1-n)(G; + nGy)

A.3 Port 2 Reflection-Free

definition 1

Br=n
G,

By = =
n(61 + (1“")04)
nG,

By = G,

definition 2
By=n
Ga

B = =

(1-n)(G3 + nGy)
_ (1-n)G,

3 2G,

_1-28,
T 1-n
_ 2B,
T T-20-n)Bss n(1 - 2hs)
1 _ G
Bs(1-n) G,
__1_ _ (1-n)G4
np; G2
= 1 ! — 23
T+ 2p1-n) "P2
_ 2B
n
" ! ~2Bs
Trops. P~
__ 1 2B
B(1-n) 1-n
_ _2Bs
1-n
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simplified

By
B2

=n

© G+ (1-n)G,

1-p,
1-B,

B (1-B1)B1B2
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Appendix B. Program Listing of Optimization Algorithm

A listing of the optimization program, input requirements and some sample

 below.

Coc000000000000.0'000tooto'otottototo'ooloaotootooovtoooo'o0000000000000

S/R DPATTERN PERFORMS DISCRETE PATTERN SEARCH TO MINIMIZE WORDLENGTH
REQUIREMENTS WHILE SATISFYING FREQUENCY SPECIFICATIONS

VERSION: JUN 06'8S5S, STARTED: SEPT 7, 1984

DESCRIPTION OF INPUT DATA:

PLOTTING:

wC1 - LOWEST FREQUENCY TO BE PLOTTED

wC - HIGHEST FREQUENCY TO BE PLOTTED

wSs - STOPBAND EDGE

RW . PASSBAND RIPPLE

ASMIN - MINIMUM ATTENUATION IN STOPBAND
H1-RES F1 ROUTINE:

NX - % OF FREQUENCY SAMPLE POINTS

NPX - # OF PASSBAND RANGES

NS§X % OF STOPBAND RANGES

R,BTOL - L1ST OF FREQUENCY RANGES AND TOLERANCES
MAIN F1 ROUTINE:

NPASS - # OF PASSBAND POINTS

NSTOP - % OF STOPBAND POINTS

F,TOL - L1ST OF FREQUENCY POINTS AND TOLERANCES
OPT IMIZAT ION STAGES:

NSTG - # OF STAGES

NINC,VINC,

SF1X - LIST OF # OF PARAMETERS INCLUDED IN A STAGE,

L
L]
.
-
*
*
.
*
.
.
*
.
*
»
Ld
L]
L
.
.
.
*
.
.
*
INDICES OF THE PARMS. INCLUDED, AND .
A LIST OF ND 1'S OR 0'S INDICATING WHICH PARMS. ARE  *
CURRENTLY FI1XED (1) OR FREE (0) .
CONT INUOUS OPTIMI1ZATION PARAMETERS : .
L

*

.

L

L4

L

*

*

.

L]

[ ]

L

.

.

.

*

.

.

.

*

.

.

L4

Ld

1DC - DEBUG PARAMETER (SEE DBUG)

MoC - MAX. # OF VARIABLES (SEE M()

NOPTC - % OF CONTINUOUS OPTIMIZATION ATTEMPTS (SEE NOPT)

CNTRC - CONTRACT ION FACTOR; SHOULD BE POWER OF 2

EXITC - LOG BASE 2 OF EXIT CRITERION

MISCELLANEOUS :

F1EXIT - MAX IMUM ALLOWABLE VALUE OF F1

MO . MAXIMUM #% OF VARIABLES VARIED AT ONCE IN DPATTS

QMAX - MAX IMUM QUANT 1 ZAT 10N WORDLENGTH

QRED - INDICATES WHETHER INIT1AL BINARY FRACTIONS ARE TO BE
REDUCED (1) OR NOT (0)

DBUG - A DEBUGGING PARAMETER FOR DPATTS, IN THE RANGE [-1,4]
CAUSING NO OUTPUT (-1) UP TO FULL OUTPUT (4)

1COPT - INDICATES WHETHER CONTINUOUS OPTIMIZATION 18 TO BE
INCLUDED IN DPATTS (1) OR NOT (0)

NRPT - % OF TIMES THE MAIN ROUTINE 1S TO BE REPEATED,
TO ALLOW DI1FFERENT STARTING POINTS TO BE USED

NOPT - % OF TIMES TO REPEAT DPATTS AT EACH STAGE

NQOPT - % OF ATTEMPTS AT CONTINUOUS OPTIMIZATION IF
INIT1AL QUANTIZATION FAILS

I1sTOP - 1 1F THE PROGRAM SHOULD BE STOPPED AFTER

QUANT 1ZATION, ELSE 0; USED IN PRELIM. CHECKS OF DATA

P IO PEIPECEOEIELOOERGEISEOSEIOPISIEIOENIVOIEIOIISIOIOEEOEPEIIINIECESEIIOIISIEPROINIECITITTOIEOGES

LOG1CAL OPTOK, FAST
INTEGER Q(20), ITITLE(14
&DIMMAX, ORD(20), PQ(20),
&20), SINC(9, 20), SFIX(9
REAL GR(20), D(20), DX(2
&WPTS(100), AWPTS(100), C
REAL*8 DSEED, GRD(20)
COMMON / FUNCS / ND, D, Q, NPASS, NSTOP, TOL, WPTS, AWPTS, FI1EXIT,
&DLB, DUB, ORD, FI1X, 1P, Pl, FAST
COMMON / FCN2 / INC, 1COPT
COMMON / 10UT / 1IN, OUT, DBUG
COMMON / PLT / ITITLE
COMMON / PLT2 / WC, ASMIN, RW, WCl
COMMON / SMFY / PQ
/
/
/

NONOOANANANANANAARANANRAAANANANANNAANNAAANAANNNANNNOAON

4), QMAX, QM, OUT, DBUG, DIM, TITLE(80),
P2MO, P21, F1X(20), QRED, INC(20), VINC(
, 20), DO(20), QO(20)

0)., DIN(20), DLB(20), DUB(20), TOL(160),
(128, 20), D0(20), R(2, 30), BTOL(30)

COMMON SRCH / €, MO, QMAX, FIEXT

COMMON DSRC / MOD

COMMON CONTIN / 1DC, EXITC, NOPTC, CNTRC, MOC
Pl = 4, * ATAN(1.)

P12 = Pl / 2.

P1256 = P1 / 256.

IN = 5

OUT = 6

CALL UGET1O(1, NIN, NOUT) .

READ (IN,400) (TITLE(1), 1 = 1, 80)

71

data are given



READ (NIN,410) (ITITLE(1), 1 = 1, 144)
READ (IN,*) WC1, WC, WS, RW, ASMIN
READ (IN,*) ND, DEN, (D(1), ! = 1, ND)
READ (IN,*) NX, NPX, NSX
NTX = NPX + NSX
DO 16 } = 1, NTX

10 READ (IN,*) R(1, 1), R(2, 1), BTOL(1)

READ (IN,*) NPASS, NSTOP

NSPEC = NPASS + NSTOP

READ (IN,*) (WPTS(1), TOL(1), 1 = 1, NSPEC)

READ (IN,°*) NSTG

IF (NSTG .EQ. ¢) GO TO 50

DO 40 ) = 1, NSTG

READ (IN,°®) NINC, (VINC(1), 1 = 1, NINC), (SFIX(J, 1}, 1 =1, ND)
DO 20 1 = 1, ND

20 SINC(3, 1) = 0
DO 30 1 = 1, NINC
30 SINC(J, VINC(1)) =1
40 CONT INUEB .
50 READ (IN,*) F1EXIT, MO, QMAX, QRED

READ (IN,*) DBUG, 1COPT, NRPT, NOPT, NQOPT
READ (IN,*) IDC, MOC, NOPTC, CNTRC, EXITC, 1STOP

Cevoconnnnnn feeceeecectecanen s feicaeneaea e tecemeceeeenn e

MOD = MO
DO 60 } = 1, ND
60 p(1) = D(1) / DEN

WRITE (OUT,440) (TITLE(1), 1 = 1, 80), ND, (D(1), 1 = 1, ND)
WRITE (OUT,450) WCi1, WC, WS, RW, ASMIN, NPASS, NSTOP, DBUG, NRPT,
&F1EXI1T, M0, 1COPT
WRITE (OUT,460) IDC, EXITC, NOPT, CNTRC., MOC, 1STOP, QMAX, NOPT,
&NQOPT
WRITE (OUT,470) NSTG
DO 70 ) = 1, NSTG
WRITE (OUT,480) 3, (SINC(J, 1), 1 = 1, ND)
WRITE (OUT,490) (SF1X(J), 1), 1 = 1, ND)
70 CONT INUE
Cevevnmocsnasnnsssoseccsssssconscscsonscsacancccecss
C GENERATE SEARCH PATTERN MATRIX
Cecroencoosensnsccovnca
DSEED = D(1)
F1EXT « FI1EXIT
MX = 7
P2MO =~ 2 ** MX
P21 = 1
DO %0 1 =
DO 80 J =
80 c(}, 1) =
P21 = P21
90 CONT INUE
DO 100 1 = 1, NSPEC
100 AWPTS(1) = TAN(WPTS(1) * P1256)
Ceeromnucee O R A I I I ]
C PREPARE lNlTlAL PARAMETER SET. PERTURB INITIAL SET ON REPEAT.
Coevnnnacncosanansnnsn F T R R sesrecsnemeareeene
DO 120 1 = 1, ND
DO(1) = D(1)
120 CONT INUE
DO 380 1RPT = 1, NRPT
WRI1TE (OUT,500) 1RPT
1F (1RPT .LE. 1) GO TO 140
DO 130 1 = 1, ND
D(1) = DO(1) * ((GGUBFS(DSEED) - €.5) * 0.4 + 1)
130 CONT INUE
WRITE (OUT,S106) (D(1), 1 = 1, ND)
140 DO 156 1 = 1, ND
FI1X(1) = 0
150 ORD(1) = 1
NFE = 0
NFPTS = O
FAST = .FALSE.
F1 =
1P =
CALL FUNCT(F1, D, ND, NFE, NFPTS)
IP = 0
CALL XD2G(ND, D, NG, GR, 1ER)
CALL PLOT2(NG, GR, 1)
CALL FUNCX(R, BTOL, NX, NPX, NSX, F1)
WRITE (6,420) (GR(1), 1 = 1, NG
WRITE (6,430} (D(1), 1 = 1, ND)
1F (F1 .LE. F1EXIT) GO TO 180
Ceovonnsronncancess P R I R )
C 1F SPEC NOT MET INITIALLY, OPTIMIZE
Cecvnoncenne “eemeveovenn P I IR oo emme
1QOPT = ¢
160 WRITE (OUT, 520) 1QOPT
SIDLEN = 1. / ¢* 4
po 170 1 = 1, ND
170 DX(1) = SlDLEN

1,

1, P2MO

1 2 * MOD((2 - 1) / P21, 2)
L]

2

-
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NFE1 = 0

CALL OPT(IDC, DX, SIDLEN, EXITC, NOPTC, CNTRC, OPTOK, F1, NFEIl,
&NSRCH, 10PT)

WRITE (OUT,530) F1, (D(1), 1 = 1, ND)

CALL XD2G(ND, D, NG, GR, IER)

WRITE (6,420) (GR(1), 1 = 1, NG)

CALL PLOT2(NG, GR, 1)

IF (Fl :GT. F1EXIT ‘OR. .NOT. OPTOK) GO TO 350

WRITE (OUT,540)
MAXBIT = QMAX
DO 190 1 = 1, ND
ORD(1) = 1.
190 DIN(1) = D(1)
1¥ (QRED .EQ. 1) GO TO 200
QM = MAXBIT
GO TO 220
200 —QM = 0
- DO 210 I = 1, ND
Q1) = INT(ALOG(1 / ABS(D(1))) / ALOG(2.0) + 0.5)
210 QM = AMAXO0(Q(1), QM)
220 DO 230 1 = 1, ND
Q(l) = QM
230 D(1) = AINT(DIN(1) * 2 ** Q1) + SIGN(0.5, DIN(1})) / 2 ** Q(1)
FAST = .TRUE.
F1 = F1EXIT
CALL FUNCT(F1, D, ND, NFE, NFPTS)
WRITE (OUT,$506) F1, (D(1), I = 1, ND)
WRITE (OUT,560) (Q(1), 1 = 1, ND)
IF (F1 .LE. F1EXIT) GO TO 240
QM = QM + 1t
IF (QM .LE. MAXBIT) GO TO 220
1QOPT = 1QOPT + 1
IF (1QOPT .LE. NQOPT) GO TO 160
GO TO 360
Cevvovosescnosnsnononnannonsan s e s es e seranae . e+ m e s s e e am ...,

C PARAMETERS SUCCESSFULLY QUANTI1ZED, REDUCE BINARY FRACTIONS 1IF QRED-

240  CONTINUE
IF (QRED .EQ. 0) GO TO 280
DO 250 ! = 1, ND
250  PQ(1) = 2 ** Q(1)
DO 270 1 = 1, ND
DT = D(1) * PQ(1)
1F (AINT(DT) .NE. DT) GO TO 270
266 DT = DT !/
\F (DT .NE. AINT(DT)) GO TO 270
Q1) = Q1) -
GO TO 260
276  CONTINUE
280  CONTINUE
Ceveeoneanncaca t et e s e s e mmrmee e sy W e e s v e eunreeeee s e st -
C PREPARE FOR DI1SCRETE MINIMIZATION
[ o “e e s e eensaneee e rrmesenuna= s o ve v oo e eemmm e e v e s e v aame .
WRITE (OUT,S$$0) F1, (D(1), 1
WRITE (OUT,560) (Q(1), & = 1,
DO 290 1 = 1, ND
INC(1) = 1
ORD{1) = 1
290  CONTINUE
WRITE (OUT,570)
1P =1
CALL FUNC2(F2, Q, D, ND, NFE)
1P = 0
NFE1 = 0
NFE2 = 0
NFP1 = 0
NFEIC = 0
c LOOP FOR STAGES
Ceoocncen eeerereccsevecacnacs st acs e nmunna [, f et e weeeeee e
PO 320 1STG = 1, NSTG
DO 300 1 = 1, ND
INC(1) = SINC(1STG, 1)
FIX(1) = SFIX(1STG, 1)
306 CONTINUE
WRITE (OUT,600) ISTG, (INC(1), 1 = 1, ND)
WRITE (OUT.610) (F1X(1), 1 = 1, ND)
C PERFORM D1SCRETE OPT 1M1ZAT 10N

Comeenascceonsssconsenconnuennesesnesasnn= e e deeea et

CALL DOPT{DBUG, NOPT, OPTOK F1, F2, NFEVAL, NFPTS, NFEV2, NFEVC,
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a4po, QO)

NFE1 = NFEl1 + NFEVAL

NFE2 = NFE2 + NFEV2

NFP1 = NFP1 + NFPTS

NFEIC = NFE1C + NFEVC

DO 310 } = 1, ND
310 ORD(1) = 1

F1 = 1000

CALL FUNCT(F1, D, ND, NFE, NFPTS)
320 CONT INUE
Cevernossosvnocossosnsrrneasvescnessvessnonancucoss s mesesesese e e e e
C AFTER STAGES, PRINT STATISTICS AND PLOT FREQ. RESPONSE

Cevoonmonnenns ceeesnctasecessasnsarevenaaeaae et eneeceaen e aaan P

FAST = .FALSE.
DO 330 1 = 1, ND
330 ORD(1) = }
DO 340 1 = 1, ND
34¢ INC(1) = 1.
WRITE (OUT,620)
CALL FUNC2(F2, Q, D, ND, NFE)
CALL FUNCX(R, BTOL, NX, NPX, NSX, F1)
CALL FUNCT(F1, D, ND, NFE, NFPTS)
CALL XD2G(ND, D, NG, GR, lER)}
WRITE (OUT,650) (GR(1), 1 = 1, NG)
NF1T = NFEl + NFEIC
WRITE (OUT,660) NFE1, NFEIC, NF1T, NFP1, NFE2
CALL PLOT2(NG, GR, 1)
1P = 0
GO TO 380

Cevcvnennonmacann e e rer e tessecemcenrcusasennaosons e er e e ee e

C ERROR MESSAGES

Covcncrnenes Ceeeereae e ceeereeanaa e Ceereenaan Ceeeee e e

350 WRITE (OUT,680)

GO TO 370
360 WRITE (OUT,6%0)
370 1P = 1
FAST = ,FALSE,
CALL FUNCT(F1, D, ND, NFE, NFPTS)

380 CONT INUE

Cocvcrsoanennnannamnans fecereeeenaaan fe e ecee e Ceraeeaan Cee et e

C DONE

Crevevenennonnnens feeccesriansns et e Ceececesre s

390 WRITE (OUT,670)

STOP

Crvvennnnnnn Ceesenemananene ceeeenn temveeen e Ceveserenc e,

400 FORMAT (80A1)

410 FORMAT (72A1)

420 FORMAT ('ODPM: GR=' / (' ', 1

430 FORMAT ('0D=' / (' ', 10G13.5

440 FORMAT ('1' / ' ', 72('-') [/ DIGITAL FILTER WORDLENGTH MINIMIZAT
&ION' 1 7 72('-') / 'OTITLE: ', 80A1 / '0', 'NUMBER OF PARAMETER
&s:', 13 !/ O INPUT PARAMETERS:' / '0', 10F12.5)

450 FORMAT ('¢ 'wCt:', P12.5, T20, 'WC:', F12.5, T40, 'Ws:', F12.5,
&T60, 'RW:', F12.S. T806, 'ASMIN:', F12.5, T100, 'NPASS:', 14, T120,
&'NSTOP:', 14 / 'ODBUG:', 13, T20, 'NRPT:', 12, T40, 'FIEXIT:’
&G13.5, T60, 'MO:', 14, T80, '1COPT:’, 14)

460 FORMAT ('@1lDC:', 15, T20, 'EXITC:', F12.5, T40, 'NOPT:’, 15, Té60,
&'CNTRC:', F12.5, T80, 'MOC:', 15, T100, '1STOP:’, 15, T120, ’'QMAX:
&', 15, / 'ONOPT:', 13, T10, ’'NQOPT:', 13)

470 FORMAT ('ONSTG:', 14)

480 FORMAT ('OSTAGE ', 13, T15, "INCLUDED:', T30, 2013)

490 FORMAT ('0', T15, 'FIXED:', T30, 2013)

500 FORMAT ('0', 72('-") / 'OTRIAL # ', 12)

(
(

.,c
-0
o

w
wn
o
ot

510 FORMAT (' O0GENERATED STARTING POINT:', ( / '0', 10G13.5))

520 FORMAT (' OPRELIMINARY LINEAR OPT. REQUIRED, #', 13)

530 FORMAT ('OCONT. OPT. PARAMETER SET: Fi=', G13.5 / ('¢', 10G13.5))

540 FORMAT (' O0QUANTI1ZATION STEP')

550 FORMAT ('OQUANTI1ZED PARAMETER SET: Fl=', G13.5, ( / '0’, 10G13.5)
&)

560 FORMAT

570 FORMAT

580 FORMAT

OQUANT 1ZAT 10N WORDLENGTH: "’ (/7 0", 10(4X, 12, 7X}))
OINITIAL F2:')

OUPPER STABILITY BOUND: (/7 '0
590 FORMAT OLOWER STABILITY BOUND" (/0
600 FORMAT ('OSTAGE ', 12 / 'OINCLUDED' 'y T1

¢

¢

( 10G13.5))
2 )

610  FORMAT ('OFIXED: ', T15, 2013)

¢

¢

('

¢’

(’

'y 10G13.5
5, 2013)
620 FORMAT 0>> FI1INAL VALUES )
630 FORMAT OG RAT10S, INCLUDING TERMINATIONS:' / ('0', 5G25.16))
640 FORMAT ', 16212 7/ ('6', 16112))
650 FORMAT OG RATIOS:' / ('6°, 10G13.5))
660 FORMAT 0# F1 EVAL DISCRETE‘ 110, ' # F1 EVAL CONT.', 110, ' # F
&1 EVAL TOTAL:', 110, ' #% FREQ.PTS.USED:', 110, ' # F2 EVAL:', 110)
670 FORMAT ('1')
680 FORMAT ('OABORTED: INITIAL F1 1S GREATER THAN F1EXIT')
690 FORMAT ('OCABORTED: CANNOT QUANTIZE TO MEET SPEC’')
END

Ctotoi000o'000to000.'ooo00000t'obo0000000oooooo0000000.00000000000toba'o
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C S/R BITS CALCULATES THE CSDC REPRESENTATION OF N AND THE NUMBER ¢
C OF NON-ZERO BI1TS REQUIRED. STARTED 85 APR 02 .
.
*

Coooooooooooooooo'oo.oooo..oooooo.o'oco000oooaco-cooooooooo'oo.oooooooo

SUBROUTINE BITS(NIN, Q, BITCNT, K)
IMPLICIT INTEGER(A - Z)

INTEGER K(1)

N = NIN

BITCNT = 1

K(1) = MOD(N, 2)

DO 10 1 = 2, Q1
K(1) = MOD(N, 2)

N =N/ 2

1F (K(1) .EQ. 0) GO TO 10
BITCNT = BITCNT + 1

1F (K(: - 1) .EQ. 0) GO TO 10

XK(1 - 1) = - K(1 - 1)

N = N + K(1I)

K(1) = ¢

BITCNT = BITCNT . 1
10 CONT INUE

RETURN

D
Cootot00000ooo'tootoooottt.toooauttvoooto.to'00otooocot'oaootooooooottto

C L 4
C S/R COPT PERFORMS A CONTINUOUS OPTIMIZATION TO REDUCE F! AFTER .
C A DSRCH STAGE. FEB 21°'8S, SEPT20'84 .
*
.

Coooot0000.tcoo.oooooo'oaotoooo.oooo.oooooooobotoootooooto'ooo.oooooooo

SUBROUTINE COPT(F, X, N, Q, NFE, NFPTS, NFE1)

LOGICAL FAST

INTEGER SF1X(20), SORD(20), Q(20

REAL X(1), DO(20), DXO(20), SD(2

COMMON / FUNCS / ND, D(20}, 1Q(2
&100), AWPTS(1060), FIEXIT, DLB(2¢0
&, P1, FAST

COMMON / FCN2 / INC(20), 1COPT

COMMON / 10UT / IN, 10, 1D1

COMMON / CONTIN / 1D, EXIT, NOPT, CNTRCT, MOC

IF (1COPT .NE. 1) RETURN

Y. DX(20)
}, NPASS, NSTOP, TOL(100), WPTS{(
L]

)
Q
0
), DUB(20), JORD(20), 1F1X(20), 1P

FO = F
DO 10 I = 1, ND
DX(1) = PWR(1Q(1))
10 SD{1) = D(1)
DO 20 1 =1, N
DX(10RD(1)) = PWR(Q(1))

D(IORD(1)) = X(1)
CALL STABND(ND, D, 10RD(1), DLB, DUB)
IF (D(IORD(1}) .LE. DLB(IORD(1))) GO TO 120
IF (D(10RD(1)) .GE. DUB({10RD(1})) GO TO 120
20 CONT INUE
DO 36 1 = 1, ND
SFIX(1) = IF1X(1)
SORD(1) = IORD(1)
1F (INC(1) .EQ. 1) IFIX(1)} = 1

3¢ CONT INUE
NDIM = ND
NFIX = 0
1 =1
40 IF (1FIX(I1ORD(1)) .EQ. 0) GO TO 58

NFiX = NFIX + 1

IT = 10RD(1)

10RD(1) = 1ORD(NDIM)
1ORD(NDIM) = IT
NDIM = NDIM - 1

GO TO 60

50 1 =1 + 1

60 1F {1 .LE. NDIM) GO TO 490
STEP = 4.
F = 1000.

DO 76 1 = 1, ND
DO{1) = D{IORD(1)})
DXO(1) = DX(I1ORD(1)) * STEP
70 CONT INUE
DXMIN = 0.
1F (NDIM .LE. 0) GO TO 5¢
DO 80 1| = 1, NDIM
DXMIN = AMAX1(DXMIN, DX(10RD(1}))
80 CONT INUE
90 CALL PATTRN(NDIM, DO, DXO, DXMIN, CNTRCT, F, NFEl, NSRCH, NFPTS1)
NFE = NFE + NFEI
NFPTS = NFPTS + NFPTSI1
DO 100 3} = 1, ND

D(1ORD(1)) = DO(1)
1F1X(1) = SFIX(1)
10RD(1) = SORD(1)
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76

100 CONT INUE
IF (F .GT. F1EXIT) GO TO 130
DO 110 | = 1, ND
X(1) = D(IORD(1))
110 CONT INUE
RETURN
120 F = 100
130 PO 140 1 = 1, ND
140 D(1) = SD(1)
RETURN
END

co.o0000000000000000000000t'to.oo'ootooocoooocooo00000000000000000000000

c

C S/R DOPT PERFORMS A DISCRETE CONSTRAINED OPTIMIZATION. AUG 30,1984 M

C VERSION: 85 FEB 21 .
L]
.

Cotoottoutotoooo00'000000000000000000.00000'00000oootooott'otooootvoooc

SUBROUT INE DOPT(DBUG, NOPT, OPTOK, F1, F2, NFEVAL, NFPTS, NFE2V,
&NCFEV, DN, QO)
LOGI1CAL OPTOK, FAST
INTEGER Q(20), QO(26), ORD(20), F1X(20), SORD(20, 20), DBUG, QBEST
&(20), OINC(20), QSAVE(20), DN(1)
REAL D(20), DX(20), DO(20), DLB(20), DUB(20), $(20), TOL(100),
&WPTS({100), AWPTS(100), G(20), DBEST(20), DSAVE(20)
REAL*8 DSEED
COMMON / FUNCS / ND, D, Q, NPASS, NSTOP, TOL, WPTS, AWPTS, FIEXIT,
&DLB, DUB, ORD, F1X, 1P, P}, FAST
COMMON / FCN2 / INC(20), 1COPT
ROUND(X) = AINT(X + SIGN(0.35, X))
DSEED = D(1)
OPTOK = .TRUE.
1QM = 20
NFEVAL = 0
NFPTS =
NCFEV =
NFE2V =
NFE = 0
DO 10 } = 1, ND
10 DX(1) = PWR{1QM)
CALL RELSEN(DX, NPE, NFPTS, §)
NFEVAL = NFEVAL + NFE
WRITE (6,170) NPEVAL, NFPTS
DO 20 1 = 1, ND
DSAVE(1) = D(1)
QSAVE(1) = Q(1)
20 SORD(1, 1) = ORD(1)
1IF (NOPT .LT. 2) GO TO 50
DO 40 1 = 2, NOPT
CALL GGPER(DSEED, ND, ORD)

0
L]
o

DO 30 J) = 1, N
30 SORD(1, J) = ORD(J)
40 CONT INUE
56 FBEST = 1.ES50

DO 150 10PT = 1, NOPT
DO 60 )} = 1, ND
D(1) = DSAVE(1l)
Q(1) = QSAVE(1)

ORD(1) = SORD(I1OPT, 1)

60 CONT INUE
NDIM = ND
NF1X = 0
1 = 1
70 1¥ (FIX(ORD(1)) .EQ. 0 .AND. INC(ORD(1)) .EQ. 1) GO TO 890

NF1X = NF1X + 1
IT = ORD(1)

ORD(1) = ORD(NDIM)
ORD(NDIM) = IT
NDIM = NDIM - 1

GO TO 90
80 1 = 1 + 1
90 tF (1 .LE. NDIM) GO TO 70

DO 100 1 = 1, ND

PO(1) = D(ORD(1))

QO(1) = Q(ORD(1})

OINC(1) = INC(ORD{1))

IF (OINC(1) .EQ. 1) CALL FNDWL(DO(1), 1QM, QO(1))
PX(1) = PWR(QO(1))

100 CONTINUE

WRITE (6,210) (ORD(1), 1 = 1, ND)

F1 = F1EXIT

CALL DPATTS(NDIM, DO, QO, DX, F1, F2, OINC, NFE, NSRCH, NFP, NF2,
&NCFE)

NFEVAL = NFEVAL + NFE

NCFEV = NCFEV + NCFE

NFPTS = NFPTS + NFP

NFE2V = NFE2V + NF2

DO 110 1 = 1, NDIM

D(ORD(1)) = DO(1)
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Q(ORD(1)} = QO(1)
110  CONTINUE
1F (F1 .GT. F1EXIT .OR. F2 .GT. FBEST) GO TO 130
FBEST = F2
DO 120 ) = 1
DBEST(1) = D
QBEST(1) = Q
120  CONTINUE
130 DO 140 1 = 1
Qo(1) = 0
pO(1) = D(1)
DN(1) = DO(1
140  CONTINUE
WRITE (6,18
WRITE (6,19
WRITE (6,20
150  CONTINUE
DO 160 1 = 1,
D(1) = DBEST(1
Q(l) = QBEST(1
160  CONTINUE
RETURN
170  FORMAT ('O0DOPT: NFEVAL AFTER RELSEN=', G13.6, ' NFPTS=', G13.6)
180 FPORMAT ('0OPTIMIZATION ', 12 / 'OF1= ', G13.5 / 'OF2= ', G13.5 / '
&0PARAMETER SET:' / ('0', 20F8.0))
190  FORMAT ('6', 2018)
200 FORMAT ('0', 10G13.S)
210 FORMAT (' DOPT: ORD=', 2014)
C.....E§?.'...OO...0.0.00'...00...'.QO..'O.‘O...'.0.0..."'..0.00...0...
C »
C S/R DPATTS PERFORMS A DISCRETE PATTERN SEARCH TO MINIMIZE A WORD- .
C LENGTH-BASED FUNCTION. .
C VERSION 85 MAR 15, STARTED 84 OCT 12 .
*

(DO(1}, 1 = 1, ND)
)

Cttooo00000000000000000000to000toaot'000000000000to'oooottvo.tooto'ooooo

SUBROUT INE DPATTS(N, X, Q, E, F1, F, INC, NFE, NSRCH, NFPTS, NFE2,
&NCFE)

LOGICAL 1MPROV

INTEGER Q(1), QE(20), QMAX, INC(20)
REAL XE{20), X(1), DX(1), E(20), C(128, 20), EE(20)
COMMON / 1OUT / IN, 10, ID

COMMON / SRCH / €, IMO, QMAX, FIEXIT
COMMON / DSRC / M0

NFE = 0

NSRCH = 0

NFE2 = 0

NEPTS = 0

NCFE = 0

CALL FUNCT(F1, X, N, NFE, NFPTS)
CALL FUNC2(F, Q, X, N, NFE2)

NFE = 0

NFE2 = 0

NFPTS = ¢

MAXRPT = 5

NRPT = 0

MOl = MO

MO = MING (MO, N)

IF (1D .LT. 6) GO TO 10

WRITE (10,90) N, 1D, MO0, F1, F
WRITE (10,100) (X(1}, 1 = 1, N)
WRITE (10,130) (Q(1), 1 = 1, N}

10 FE = F
DO 20 1
XE(1) =
QE(1) =
EE(1) =

20 CONT INUE
CALL DSRCH(F1, FE, XE, QE, EE, N, INC, NFE, NFE2, NSRCH, NCFE,

&NFPTS, IMPROV)

IF (1D .LT. 2) GO TO 30

WRITE (10,120) F, F1, FE, NSRCH, NFPE, NFE2, NCFE, NFPTS, (X(1), 1
a =1, N)

WRITE (10,150) (Q
WRITE (10,140) (X
WRITE {10,160) (Q
WRITE (10,170) (E

30 IF ( .NOT. IMPROV)

a9 CONT INUE
IF (1D .GE. 2) WRITE {10,110)
DO 50 1 = 1,

XV = X(1)

X(1) = XE(
Q(1) = QE(
E(1) = EE(
XE(1) = XE(1) + S1
IF (INC(1) .EQ. 1)
EE(1) = PWR(QE(1))

=1, N
X(1)
Q1)
E(1)

i,
1,
1,

)
)
)
1

-

GNO(EE(1), XE(1) - XV)

N
CALL FNDWL(XE(1), QMAX, QE(1))



50

60

70

840
90

100
110
120

130
140
150
160
170
180
190

CONT INUE
F = FE

CALL DSRCH(F1, FE, XE, QE, EE, N, INC, NFE, NFE2, NSRCH, NCFE,
&NFPTS, IMPROV)

I¥ (1D .LT. 2) GO TO 60

WRITE (10,120) F, F1, FE, NSRCH, NFE, NFE2, NCFE, NFPTS, (X(1), 1
& = 1, N)

WRITE (10,150) (Q(1), 1 = 1, N)
WRITE (10,140) (XE(1), 1 = 1, N)
WRITE (10,160) (QE(1), 1 = 1, N)
WRITE (10,170) (EE(1), } = 1, N)
1F (IMPROV) GO TO 40

tF (1D .GE. 2) WRITE (10,180)

GO TO 140

CONT INUE

IF (1D .LT. 0) GO TO 80

NFEl1 = 0

F1 = 1000

CALL FUNCT(F1, X, N, NFE1, NFEgl)
WRITE (10,190) P, F1, NFE, NSRCH, NFE2, NCFE, NFPTS, (X(1), I = 1,
&N)
WRITE (10,1308) (Q(1), &I = 1, N)
MO = MO1
RETURN

FORMAT ('1' / / [/ 1X, 70('-') / ' DISCRETE PATTERN SEARCH FOR ', '
&NONL INEAR MINIMIZATION' / 11X, ?70('-')} / [/ | $X, 'INPUT DATA:’ [/ 5X
&, 11('-') 1 / SX, 'N =', 13 / 5X, 'ID =', 13 /7 35X, 'MO =
&', 13 / 5X, 'F1 -', G13.5 / 5X, 'F2 =', G13.5)

FORMAT ('OINPUT VECTOR:' / ('0', 10G13.5))

FORMAT ('OEXTRAPOLATION:')})
FORMAT (' F=', G13.5, ' Fl=', G13.5, ' FE=', G13.5, ' NSRCH=', 14,
&' NFE=', 14, ' NFE2=', 14, ' NCFE=', 111, ' NFPTS=', 111 / ' X=',

&10G13.5)
FORMAT (' OWORDLENGTHS:' / (’0', 10113)}))
FORMAT (' XE', 10G13.5)
FORMAT (' Q=', 10113)
FORMAT (' QE', 10113)
FORMAT (°' E=', 10G13.5)

FORMAT (' ORETREAT:')

FORMAT ('-*', 4X, 'FINAL OBJECTIVE FUNCTION VALUE:', G13.5 / '0°',
&8X, 'FINAL SPEC. PUNCTION VALUE:', G13.5 / '0', 4X, 'NUMBER OF FUN
&CTI1ON EVALUATIONS:', 16 / '0', 11X, 'NUMBER OF SEARCH STAGES:', 16
& / '0', 12X, 'NUMBER OF WL FCN EVALS:', 16 / '0', 16X, 'NUMBER OF
&CONTIN.F.EVALS:', 16 / '0', 11X, 'NUMBER OF FREQ PTS USED:’', 113 /
&' OFINAL POINT:' / ('0’, 10G13.5))

coo'to00000ooo'o00.00'0000000000ooooo000000000000to‘o‘.tot.ooooo’oootoo.
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C S/R DSRCH PERFORMS MULTIVARIATE PATTERN SEARCH PROBE MOVEMENT.

.
.
C VERSION: 85 FEB 21 .
.
.

Cooo0000‘000000000000Oto0'.000000000000000000000000000000000.00.000'000

10

20

30

40

SUBROUTINE DSRCH(F1, FO, X, Q, D, N, INC, NFEl, NFE2, NSR, NCFE,
&NFPTS, IMPROV)

LOGICAL 1MPROV

INTEGER Q(1), P2M, QS(20), QB(20), QMAX, INC(20)

REAL X{(1), D(1), DS(26), C(128, 20), XS(20), XB{(20)

COMMON / 10UT / IN, 10, 1D

COMMON / SRCH / €, IM0, QMAX, FI1EXIT

COMMON / DSRC / MO

IMPROV = .FALSE.

NCFES = 0

NSR = NSR + 1

FE = F0

F = FO

F1B = Fl1

NFEAS = 0

1F (1D .LT. 3) GO TO 10

WRITE (10,176} F0, F1B, (Q(1), 1 = 1, N)

WRITE (10,186} (X{(1), 1 = 1, N)

F1 = 1000

CALL FUNCT(F1, X, N, NFE1, NFPTS)

CALL FUNC2(FE, Q, X, N, NFE2)

1F (FE .GT. F) GO TO 40

\F (FE .EQ. F .AND. F1 .GE. F1B) GO TO 40

IF (F1 .LE. F1EXIT) GO TO 20

CALL COPT(F1, X, N, Q, NCFE, NFPTS, NCFEQ)

IF (F1 .GT. F1EXIT) GO TO 40

NFEAS = NFEAS + 1

DO 3¢ 1 = 1, N

XB(1) = X(1
QB(1) = Q(1
CONT INUE

F = FE

F1B = F1

IF (1D .LT. 4) GO TO 5@

1 = 0

WRITE (10,186) 1, 1, 1, FE, F, F1, NCFEO, (Q(10), 10 = 1, N)
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IF (1D .GE. 4) WRITE (10,190) (X(10), 16 = 1, N)
50 DO 150 M = 1,

P2M = 2 ** M

DO 140 K = 1, N

DO 120 ) = 1, P2M

NCFEQ = 0

X(L) = X{

1F (INC(L)
60 CONT INUE

F1 = 1000

CALL FUNCT(F1, X, N, NFEl, NFPTS)

CALL FUNC2(FE, Q, X, N, NFE2)

IF (FE .GT. F) GO TO %0

IF (FE .EQ. F .AND. F1 .GE. F1B) GO TO 90

IF (F1 .LE. F1EXIT) GO TO 70

CALL COPT(F1, X, N, Q, NCFE, NFPTS, NCFE()

IF (F1 .GT. F1EXIT) GO TO 90
70 NFEAS = NFEAS + 1

poO 80 1 = 1, N

XB{1) = X(

aQB(1) = Q(
80 CONT INUE

F = FE

F1B = P1
90 IF (1D .LT. 4) GO TO 100

WRITE (10,180) 3, K, M, FE, F, F1,

IF (1D .GE. 4) WRITE (10,180) (X(10
160 DO 110 1 = 1, M

CALL FNDWL(X(L), QMAX, Q(L))

L = MOD(1 + K - 2, N) + 1
X(L) = XS(1)
D(L) = DS(1)
Q(L) = Qs(1)

110 CONTINUE
120  CONTINUE

1IF (NFEAS .LT. 1) GO TO 140

DO 136 1 = 1, N

X(1) = XB(1)

Q(1) = QB(1)

D(1) = PWR(QB(1))

130  CONTINUE
IMPROV = .TRUE.
NFEAS = 0

140  CONTINUE

tF (F .LT. FO0) GO TO 160
150 CONTINUE

FO = F

F1 = F1B

RETURN

166 F1 = F1B
FO = F
RETURN
170 FORMAT ('ODSRCH; FO0:', G13.5, 'F1B:', G13.5, ' Q:'
180 FORMAT (' J:', 12, ' K:', 12, * M:', 12, ' FE:', G
&G13.5, ' F1:', G13.5, ® NCFEO:', G13.5, ' Q:', 201
196 FORMAT (' X:', 10G13.5)

END
c.'.......‘."‘0.0.‘."........0....0‘...'..0..0.0..0.......0.00........O
c
C S/R FNDWL FINDS THE SHORTEST WORDLENGTH REQUIRED TO REPRESENT X1. .
C VERSION MAR 26, 1985, STARTED OCT 12, 1984 .
L]
C'0.00.'00‘..0.0..‘.'.'..0...0..'.‘00...'0..O...0.......'.O.."O.....OOO

SUBROUT INE FNDWL (X1, LO, L1)

Ll = LO
X = X1 / PWR(LO)
10 X =X / 2.
IF (X .NE. AINT(X)) GO TO 20
L1 = L1 - 1
tF (X .NE. 0.) GO TO 10
Ll = 0
20 RETURN
END
Cvoo.ooooo.oatooooooooo'oao000ooooooqoutoooooooctooooaoctooato&ooootttoo
c .
C S/R FUNCT EVALUATES THE OBJECTIVE FUNCTION BASED ON FREQUENCY .
C VERSION FEB 21'85, OCT 25'84 A
.
.

Ctobtottoto00000ttctoooa0000000ttt00ooooooovo'0000000000000000000000000

SUBROUT INE FUNCT(F, DO, N, NFE, NFPTS)
LOGI1CAL FAST

INTEGER ORD(20), Q(20), F1X(20)

REAL DO(1), FR(100)
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COMMON / FUNCS / ND, D(20), Q, NPASS, NSTOP, TOL({100), WPTS(100),
&AWPTS(100), FIEXIT, DLB(20), DUB(20)}, ORD, F1X, 1P, Pl, FAST
COMMON / FREQPT / NG, G(20), W, FRI1

NFE = NFE + 1

IF (N .LE. 0) GO TO 20

DO 10 1 = 1, N

D(ORD(1)) = DO(1)

DO 3¢ 1 = 1, ND

CALL STABND(ND, D, 1, DLB, DUB)

1F (D(1) .GE. DUB(1)) GO TO 120

1F (D(1) .LE. DLB(1)) GO TO 120

CONT INUE

CALL XD2G(ND, D, NG, G, 1ER)

IF (1ER .EQ. 1) GO TO 130

FCOMP = F

FRMAX = 0

FP = 0

FRMIN = 0

DO 40 1 = 1, NPASS

W = AWPTS(1)

NFPTS = NFPTS + 1

CALL FRQPT

FR1 = - 20.0 * ALOGI10(FR1)

FR(1) = FR1

FRMIN = AMIN1(FRMIN, ERIl)

FRMAX = AMAX1(FRMAX, FRI1)

FP = AMAX1(FP, (FR1 - FRMIN) / TOL(1), ABS(FRMIN / TOL(NPASS)))
FP=AMAX1! (FP, (FR1-FRMIN)/TOL(1))

IF (FP .GT. FCOMP .AND. FAST) GO TO 100
CONT INUE

IF (FRMIN .GE. 0) GO TO 60

DO 50 1 = 1, NPASS

FP = AMAXI(FP, (FR(1) - FRMIN) / TOL(1))
IF (FP .GT. FCOMP .AND. FAST) GO TO 100
CONT INUE

ATTMIN = 1000

NS1 = NPASS + 1

NS2 = NPASS + NSTOP

FS = ©.

DO 70 1 = NS1, NS2

W = AWPTS(1)

NFPTS = NFPTS + 1

CALL FRQPT

FRI = - 20.0 * ALOGIO(FR1)

FR(1) = FR1

ATTMIN = AMINI (FR1, ATTMIN)

DFS = FR1 - FRMIN

IF (DFS .EQ. 0.) DFS = 1.B - 10

FS = AMAX1(FS, ABS(TOL(1l) / DFS))

IF (FS .GT. FCOMP .AND. FAST) GO TO 110
CONT INUE

F = AMAX1 (PP, FS)

1F (1P .NE. 1) GO TO 90

WRITE (6,140) FRMIN, FRMAX, ATTMIN, F
WRITE (6,150

( FRMIN

WRITE (6,160) 1, WPTS(1), FR(1), RELATT, TOL(1)}
CONT INUE

RETURN

F = FP

RETURN

F = FS§

RETURN

F = 500,

RETURN

F = 501.

RETURN

FORMAT (' OMIN.ATTEN.:', G

13.5, "MAX.PASS.:', G13.5, 'MIN.STOP.:",
&G13.5, 'OBJ.FCN.:', G13.5)

FORMAT ('-', 4X, 'POINT', 4X, 'FREQ', 10X, 'ATTEN(ABS)', 9X, 'ATTE

&N(REL)', 77X, 'TOL’)
FORMAT (' ', 6X, 12, 1X, 5(2X, G13.5, 2X})
END

C S/R FUNCX EVALUATES THE FREQUENCY RESPONSE OBJECTIVE FUNCTION WITH
C HI1GH RESOLUTION. OCT. 10’84

Coooot000000000'00000000tt0000000000tcoot00000ocoooooo0000000000000000'

SUBROUT INE FUNCX(R, BTOL, N, NP, NS, F)

LOGI1CAL FAST

INTEGER ORD(20), Q(20), FiX(20)

REAL R(2, 30), BTOL(30), AT(300)

COMMON / FUNCS / ND, D(20), Q, NPASS, NSTOP, TOL(100), WPTS(100),
&AWPTS(100), FIEXIT, DLB(20), DUB(20), ORD, FIX, 1P, Pl, FAST

COMMON / FREQPT / NG, G(20), W, FRI]

CALL XD2G(ND, D, NG, G, 1ER)

8§0
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70
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FPMIN = 1000.
DO 10 ! = 1, N

WD = (1 - 1.) /N

W = TAN(WD * P1 / 2.}

CALL FRQPT

FR1 = . 20. * ALOG10(FR1)
AT(1) = FRI

IF (FR1 .GT. FPMIN) GO TO 10
WPMIN = WD * 128.

FPMIN = FRI

CONT INUE

DO 20 1 = 1, NP

W = TAN(R(2, 1) * Pl / 256.)
CALL FRQPT

FR1 = . 20. * ALOGIO(FR1)
AT(1 + N) = FR1

I'F (FRI .GT. FPMIN) GO TO 20
WPMIN = R(2, 1)

FPMIN = FRI

CONT INUE

DO 30 1 = 1, NS

W = TAN(R(1, 1 + NP) * P1 / 256.)
CALL FRQPT

FR1 = . 20. °* ALOG10(FR1)
AT(1 + N + NP) = FRI

\F (FR1 .GT. FPMIN} GO TO 30
WPMIN = R(1, 1 + NP)

FPMIN = FR1

CONT INUE

DO 40 ) =
IF (AT())
FPMAX = AT(
WPMAX = (J - 1) * 128. / N

CONT INUE

PP = AMAXI(FP, (FPMAX - FPMIN) / BTOL(1))
TP = (AT(N + 1) - FPMIN) / BTOL(1)

1F (TP .LE. FP) GO TO 50

FP = TP
WPMAX = R(2, 1
FPMAX = AT(N + 1)
CONT INUE

FS = 0.

11 = NP + 1
12 = NP + NS
DO 70 1 = 11
L1 = INT(R(1
L2 = INT(R(2
FSMIN = 1000
DO 60 J = L1, L
IF (AT(J) .GE. FSMIN) GO TO 60

FSMIN = AT(J)

WSMIN = (J - 1) * 128. / N

CONT INUE

FS = AMAX1(FS, BTOL(1)} / ABS(FSMIN . FPMIN})

TS = BTOL(1) / ABS(AT(N + 1) - FPMIN)

1F (TS .LE. FS) GO TO 70

PS = TS

WSMIN = R(1, 1)

FSMIN = AT(N + 1)

CONT INUE

F = AMAX1(FP, FS)

WRITE (6,80) N, F, FP, WPMAX, FPMAX, FS, WSMIN, FSMIN, FPMIN,
&WPMIN

PMAX} GO TO 490

1
, 1Yy * N/ 128.) + 2
. 1) * N/ o128.) + 1

N e N

RETURN

FORMAT ('-OBJ.FCN(', 14, ' POINTS)=', G13.85 / 'OF IN PB.:', G13.5,
&T30, 'AT:', G13.5, TS50, 'VALUE:', G13.5 / 'OF IN 8B.:', G13.5, T30
&, 'AT:', G13.5, TS50, 'VALUE:', G13.5 / 'OATT.MIN.:', G13.5, T30, °
&AT:', G13.5)

END

COP o v e retrerorisretssstosrssisssstrstsiatrertoritstoreorsstsovesosovecveces

C

C S/R OPT PERFORMS A CONTINUOUS CONSTRAINED OPTIMIZATION.

c

L
.
C VERSION: APR 02°'85 , STARTED JULY 19’84 .
.
*

Coe v ettt 000000680000000000000000000000000 000000000 0000080000000t see

SUBROUTINE OPT(DBUG, DX, SIDLEN, EXI1T, NOPT, CNTRCT, OPTOK, F,
&NFEVAL, NSRCH, 10PT)

LOGICAL OPTOK, FAST

INTEGER Q(20), ORD(20), F1X{(20), SORD(20, 20), DBUG, ORD1(20)

REAL D(20), DO(20), DLB(20), DUB(20), S$(20), DXO(20), TOL(100),
&WPTS(100), AWPTS(100), G(20), FS(20), DX(20), DBEST(20)

REAL*8 DSEED

COMMON / FUNCS / ND, D, Q, NPASS, NSTOP, TOL, WPTS, AWPTS, FI1EXIT,

81



&DLB, DUB, ORD, F1X, IP, Pl, FAST
DSEED = ABS(D(1))

NFE = 0
NFPTS = 0
FBEST = 1000

DO 16 1 = 1, ND
DBEST (1) = D(1)
1F (FI1X(1) .EQ. 0)

GO TO 10
CALL STABND(ND, D, 1
)
)

, DLB, DUB)
) GO TO 166
} GO TO 160

IF (D(1) .GE. DUB(1
1P (D(1) .LE. DLB(1
10 CONT INUE
CALL RELSEN(DX, NFE, NFPTS, §)
DO 20 1 = 1, ND
SORD(1, 1) = ORD(1)
ORD(1) = 1
20 CONT INUE
ItF (NOPT .LT. 2) GO TO 50
DO 40 1 = 2, NOPT
CALL GGPER(DSEED, ND, ORD1)
DO 30 )} = 1, ND

30 SORD(1, J)) = ORD1(J)
40 CONT INUE
50 NFEVAL = ¢

DXMIN = 1, / 2 ** EXIT
OPTOK = .TRUE.
10PT = 1
60 CONT INUE
PO 70 1 = 1, ND
70 ORD(1) = SORD(1, 1)
NDIM = ND
NFIX = 0
1 =1
80 IF (F1X(ORD(1}) .EQ. 6) GO TO 90
NFIX = NFIX + 1
IT = ORD(1)
ORD(1) = ORD(NDIM)
ORD(NDIM) = IT
NDIM = NDIM - 1
GO TO 100
90 1 =1 + 1
100 IF (1 .LE. NDIM) GO TO 8¢
DO 110 1 = 1, ND
DO(1) = DBEST(ORD(1))
DXO(1) = DX(ORD(1))
116  CONTINUE
FAST = .TRUE.
CALL PATTRN(NDIM, DO, DXO, DXMIN, CNTRCT, F, NFE, NSRCH, NFPTS)
NFEVAL = NFEVAL + NFE
FS{10PT) = F
DO 120 1 = 1, ND
120 D(ORD(1}) = DO(1)
WRITE (6,190) 10PT, F, (D(1), 1 = 1, ND)
IF (F .GE. FBEST) GO TO 140
FBEST = F
DO 130 1 = 1, ND
DBEST(ORD(1}) = DO(1!)
130  CONTINUE
140 10PT = 10PT + 1
IF (FBEST .GT. F1EXIT .AND. 1OPT .LE. NOPT) GO TO 60
F = FBEST
DO 150 1 = 1, ND
156 D(1) = DBEST(1)
RETURN
160 OPTOK = .FALSE.
RETURN
170  FORMAT (' ORD:', 10G13.5)
180 FORMAT (' F1X:', 10G13.§ / (' ', 10G13.5))
190 FORMAT ('0OPTIMIZATION ', 12 / 'OF= ', G13.5 / 'OPARAMETER SET:' /
&('6', 10G13.5))
200 FORMAT ('0OPT1; ORD:' / ('
210  FORMAT ('GOPT1; DO:' / ('0
220 FORMAT ('0OPT2; DO:' / ('0

, 10G13.5))

0', 10613.5))
', 10613.5))"

Cooooo0000000000000000000000000ootoo0000000000ooototooooooooooootooooooc

C

C S/R PATTRN PERFORMS MULTIVARIATE CONTINUOUS PATTERN SEARCH ¢

C VERSION 85 FEB 21, OCT 584 *
.
L]

Cooc0#000000000000u0000000000000000000000000’00000000.00000000tcoooooot

SUBROUT INE PATTRN(N, X, DX, DXMIN, CNTRCT, F, NFE, NSRCH, NFPTS)
REAL XE(20), X(1), DX(1)

COMMON / 10UT / N, 10, 1D1

COMMON / SRCH / C(128, 20), MOD, 1QMAX, FIEXIT

COMMON / CONTIN / 1D, EXIT, NOPT, CNTRCI, MO

NFE = 0

NSRCH = 0

NFPTS = 0
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MO1 = MO
M0 = MINO(MO, N)
1F (1D .LT. 0) GO TO 10

CALL FUNCT(F,

X, N, NFE, NFPTS)

WRITE (10,150) N,

1D, DXMIN, MO,

CNTRCT, F

1IF (N .LE.

0) GO TO 10

WRITE (10,160) (X(1), 1

WRITE (10,170} (DX(1), 1
F = 1000

CALL FUNCT(F, X, N, NFE,
IF (N .LE. 6) GO TO 140

FE = F

DO 20 1 = 1, N

XE(1) = X(1)

CALL SEARCH(FE, XE, DX,

IF (1D .LT. 3) GO TO 30

WRITE (10,186} F, FE, NS
WRITE (10,200} (XE(1), 1
\F (FE .GE. F) GO TO B¢

CONT INUE

DO S0 1 = 1, N

XV = X(1)

X(1) = XE(1)

XE(1) = 2. * XE{1) - XV

CONT INUE

F = FE

I'F (1D .LT. 3) GO TO 60

WRITE (10,210)

WRITE (10,200) (XE(1), 1
CALL FUNCT(FE, XE, N, NF
CALL SEARCH(FE, XE, DX,

IF (1D .LT.

2) GO TO 70

-1, N)
= 1, N)

NFPTS)

N, NFE, NSRCH, NFPTS)

RCH, NFE, (X(1), 1 = 1, N)
= 1, N)

= 1, N)
E, NFPTS)
N, NFE, NSRCH, NFPTS)

WRITE (10,190) F, FE,
WRITE (10,200) (XE(1),

NSRCH, NFE, (X(1), I = 1, N)
1 = 1, N}

IF (NFE .GT.
1F (FE .LT.
GO TO 10
CONT INUE

DO 90 1 = 1,
IF (ABS(DX(1
1F (1D .LT.

2000) GO TO 100

F} GO TO 40

N
)} .GT. DXMi
0) GO TO 110

N} GO TO 12¢

WRITE (10,220) F, NFE, NSRCH, (X(1), 1 = 1, N)
WRITE (10,170) (DX(1)}, 1 = 1, N)
110 MO = M01
RETURN
120 DO 130 1 = 1, N
130 DX(1) = DX(1) / CNTRCT
IF (1D .GE. 2) WRITE (10,230) (DX(1), 1 = 1, N)
GO TO 10
140 1F (1D .GE. 0) WRITE (10,240) F
MO = MO}
RETURN
150 FORMAT ('1' / / / 1X, 70('-') / ' MULTIVARIATE PATTERN SEARCH FOR
&', 'NONLINEAR MINIMIZATION' / 1X, 70{'-') / / ! 5X, 'INPUT DATA:’
& / SX, 11('-') 1 5X, 'N -, 13 / S$X, 'ID ', 13 / 5X, 'DX
AMIN =', F8.4 / 5X, 'M MAX =', 13 / 5X, 'CNTRCT=', F8.4 / 5X, 'F IN
&1T=', F8.4)
160  FORMAT ('OGINPUT VECTOR:' / ('0
Vo

170 FORMAT (' 0DX VECTOR:' / ('0’', 10G13.5))

180 FORMAT ('ORETREAT:' / ' F=', G13.5, T20, 'FE=', G13.5, T4¢, 'NSRCH
&=', 14, T60, 'NFE=', 14 / ' X=', 10G13.5 / ' '10G13.5)

19¢ FORMAT ('OEXTRAPOLATION:' / ' F=', G13.5, T20, 'FB=', G13.5, T40,
&'NSRCH=', 14, T60, 'NFE=', 14 / ' X=', 9G13.5 / ' ', 10G13.5)

200 FORMAT (' XB=', 9G13.5 / ' ', 10G13.5)
210 FORMAT (' AFTER EXTRAPOLATION:')

220 FORMAT ('-', 4X, 'FINAL OBJECTIVE FUNCTION VALUE:', G13.5 / 0",
&4X, 'NUMBER OF FUNCTION EVALUATIONS:', 16 / '0’, 11X, 'NUMBER OF §
&EARCH STAGES:', 16 / 'OFINAL POINT:' / (’0', 10G13.5))

230 FORMAT ('0DX REDUCED TO:', 9G13.5 / ('0', 10G13.5)

3

240 FORMAT ('-', 4X, 'OBJECTIVE FUNCTION VALUE:', G1
& FREE PARAMETERS’)
END

CPre00 00 0000600000000 65000 0000000000000 000000b00tlrtististsssvrisrsvesiiy

c L]
C S/R PLOT PLOTS THE FREQUENCY RESPONSE OF THE FI1LTER. ¢
C OCT 31’84 1T=0: PLOT ONLY ¢
C 1T=1: PLOT AND TABLE i
(¢} 1T=2: TABLE ONLY ¢
C L]

Ld

COOe 0400606000008 000005000000 008008t ts0stttrtostsirsisitisstotssssisvensy

SUBROUTINE PLOT(RANGE, 1T)

INTEGER IMAG4(5151), ITITLE(144), ICHAR(10), Q(1)
REAL ATTEN(1024, 1), FREQ(1024), RANGE(4)

COMMON / PLT / ITITLE

COMMON / FREQPT / NG, G(20), W, FR1

DATA 1CHAR(1) / 1H /

1Y = 1024

N = 128
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Ma=1
INC = 1

10PT = 1

Pl = 4 * ATAN(1.)

ATTMIN = 1 .ES0

DO 10 1 = 1, N

W = (1 - 1) * RANGE(2) / N

FREQ(1) = W

W = TAN(W * P1 / 2. / N)

CALL FRQPT

ATTEN(1, 1) = - 20. * ALOG10(FR1)

IF (ATTMIN .LT. ATTEN(I1, 1)) GO TO 10
ATTMIN = ATTEN(1, 1)

MATT = 1

10 CONT INUE

IF (IT .LE. 0) GO TO 3¢

WRITE (6,70)

N4 =N/ 4

DO 20 1 = 1, N4

WRITE (6,80) (FREQ((J - 1) * N4 + 1), ATTEN((J - 1} * N4 + 1, 1),
&) = 1, 4)

20 CONT INUE

3¢ DO 40 1 = 1, N

40 ATTEN(1, 1) = AMINI1(ATTEN(1, 1), RANGE(4))
DO 50 1 = 1, N

1]

ATTEN(1, 1} = ATTEN(1, 1} - ATTMIN

50 CONT INUE
IF (1T .GE. 2) GO TO 60

CALL USPLT(FREQ, ATTEN, 1Y, N, M, INC, ITITLE, RANGE, 1CHAR, IOPT,

&1MAG4, 1ER)

WRITE (6,%0) (RANGE(1), 1 = 1, 4), FREQ(MATT), ATTMIN
60 RETURN

70 FORMAT ('1' / '0°', 40X, 'FILTER ATTENUATION (AS PLOTTED)’ / '.',
&10X, 4(2X, 'FREQ', 8X, 'ATTEN(DB)', 4X) / '0')
80 FORMAT (' ', 10X, 4(F8.0, 5X, F9.4, 5X))
90 FORMAT (' -RANGES: FREQ:', 2G13.5, ' ATTEN:’', 20G13.5, 'MIN. ATTEN
&. AT FREQ.:', G13.5, ' ATTEN.:', G13.5)
END

Qo000 0000000008000 0000500008000 000slttistivististiIesrossovsessossesvrsossss
(] .
C S/R PLOT2 PLOTS THE PASSBAND AND THE FULL BAND .

.
CPeev00 0000008600000 0080000000000 0000000080000 ltrtitorressesectsrststrovese

SUBROUT INE PLOT2(NG1, GI1, IT)

REAL RANGE(4), GI(1)

COMMON / PLT2 !/ WC, ASMIN, RW, WC1
COMMON / FREQPT / NG, G(20), W, FRI1

-
PO S
e W
) 4
. Q

10 G(1)

MIN * 1.5
GE, 1T)

} RETURN

1

17. / 16.

¢ RW
9)

rezz.}

aw
muw

END

P ot r oo srrorrersestrsssresssrttssrstssrosrerosssroseessoresortssosorsvesaee
c ¢
C S/R PWR COMPUTES PWR=1/2°°] d

.
00000ttt 000 ttorestor tasesttesresttotessortostotsrroserssvssnsstvsvosvsves

FUNCTION PWR(1)

1A = 1ABS(1)

1F (1A .GE. 31) GO TO 10

PWR = 2 °*°* 1A

I1¥ (1 .GE. 0) PWR = 1. / PWR

RETURN
10 PWR = 1. / 2147483647
RETURN
END
LR R R R R R R R R
.
S/R RELSEN COMPUTES THE RELATIVE SENSITIVITY OF EACH FILTER .
PARAMETER BASED ON THE OVERALL OBJECTIVE FUNCTION AND CREATES A hd

VECTOR INDEXING THEM IN ORDER OF DECREASING SENSITIVITY. JUNE 20,1984°¢
VERSION: FEB 21°'85 ¢

OO P E 0P 0OEPEIIPEIIOECEICEIENGRLOIIPNFPOISIOESEIOEIEINENIEEENESIILEIOEIOESIIIOIOIGENIOGERLIOGES

SUBROUT INE RELSEN(DXIN, NFE, NFPTS, 8)
LOGICAL XCHG, FAST
INTEGER ORD(20), F1X(20), Q(20), DXCNT

.

aaonann



REAL D(20), S(1), DLB(20), DUB(20), TOL(100), WPTS(100), AWPTS(100
&), DXIN(1)
COMMON / FUNCS / ND, D, Q, NPASS, NSTOP, TOL, WPTS, AWPTS, FI1EXIT,
&DLB, DUB, ORD, FI1X, 1P, Pl, FAST
) = 0
DX1 = 20.
DO 10 1 = 1, ND
10 DX1 = AMINI1(DXIN(1), DX})
DO 20 1 = 1,
20 ORD(1) = 1
DO 60 1 = 1, ND
F = 10060
FA = F
FB = F
DXCNT = 0
1F (F1X(1) .EQ. ¢) GO TO 30
${1) = 0.
GO TO 60
30 DX = DX1
DS = D(1)
190 D(1) = D(1) + DX
CALL FUNCT(FA, D, ND, NFE, NFPTS)
IF (FA .LT. 500) GO TO 50
D(1) = D(1) - 2. * DX
CALL FUNCT(FA, D, ND, NFE, NFPTS)
1F (FA .LT. 500) GO TO 5¢
D(1} = D{(1) + DX
DX = DX / 2.
DXCNT = DXCNT + 1
1F (DXCNT .GE. 20) GO TO 100
GO TO 440
50 D(1}) = DS
CALL FUNCT(F, D, ND, NFE, NFPTS)
S(1) = ABS((F - FA) !/ DX)

60 CONT INUE
L = ND
70 XCHG = .FALSE.

DO 80 I = 2, L

J = ORD(1)

J1 = ORD(1 - 1)

1F (S(J) .LE. S(J1)) GO TO 80
XCHG = .TRUE.

ORD(1) = J1

ORD(! - 1) =}

80 CONT INUE
IF ( .NOT. XCHG) GO TO %0
L =1L -
IF (L .GE. 2) GO TO 70
90 CONT INUE
RETURN
100 WRITE (6,110) F, FA, FB, DX, (D(1), I = 1, ND)
RETURN
110 FORMAT (' -ABORT DURING RELSEN: DX REDUCED TOO MANY TIMES®' / 'QOF="',
&G13.5, ' FA=', G13.5, ' FB=', G13.5, ' DX=', G13.5 / '0D VECTOR:’

& / ('0', 10G13.5})

o0 PP e s eees et tor st es v evosrtorsrestsrosssosssvsssvstssssrossssovrvscrveny
c .
C S/R SEARCH PERFORMS MULTIVARIATE PROBE MOVEMENT FOR WEGENER'S SEARCH.*
C VERSION FEB 21°'85§, OCT 5'84 M

.
G0 0000 EEIEICISEISICECEEOERBSOIINOROIOISOENICEIIINEOEIGINOINIIITIEISEONIIIOIIIOELIOIOIESIESDS
C

SUBROUT INE SEARCH(FO0, X, DX, N, NFE, NSR, NFP)
INTEGER P2M, QMAX

REAL X(1), DX(1), E(20), B(20), C(128, 20)
COMMON / SRCH / C, MOD, QMAX, F1EXIT

COMMON / IOUT / IN, 10, 1D1

COMMON / CONTIN / 1D, BXIT, NOPT, CNTRCT, MO
IF (1D .GE. 4) WRITE (10,110) (X(1), 1 = 1, N)
FE = F0

F = PO

PO 10 M = 1,
P2M = 2 ** M
DO 60 K .
DO 56 J .
Do 10 1 .
L = MOD(
B(1) = DX(
B(1) = X(L)

R E e

K - 2, N) + 1

1
1
1
+
L)

DX(L) = SIGN(DX(L), C(J, 1))
X(L) = X{L) + DX(L)

10 CONT INUE
CALL FUNCT(FE, X, N, NFE, NFP)
1F (1D .LT. 4) GO TO 2

(o}

WRITE (10,90) NFE, K
WRITE (10,100) (DX(1},

20 1F (FE .GE. F) GO TO 3
F = FE

3}, F, FE, (X(1), 1 = 1, N)
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GO TO 60
30 DO 40 1 = 1 M
L = MOD(I + K - 2, N) + 1
X(L) = B(1)
DX(L) = E(1)
40 CONT INUE
50 CONT INUE
60 CONT INUE
IF (F .LT. FO0) GO TO 80
70 CONT INUE
80 NSR = NSR + 1
FO = F
RETURN
94 FORMAT (° NFE:', 15, ' K:', 13, " M:’, 13, " J:', 13, " F:', G13.5
&, ' FE:', G13.5 / ' X:', 10G13.5 / ' ', 10G13.5)
100 FORMAT (' DX:', 10G13.5 / ' ', 10G13.5)
110 FORMAT ('OBAS!S POINT:', 9%G13.8 ¢/ (' ', 10G13.5))

END

PP 00000000t otneessottrsossotsthesrssssssssossssororessanstovsssvssrsoesose
c . -
C S/R SIGNO PERFORMS TRANSFER OF SIGNWITH ZERO FEATURE. .

.
CF P oo 00000000 ssssssssssssertorssssrviassssssssrsrsssesrvrsrorscsssresnes

FUNCT1ON S1GNO (MAG, SGN)
REAL MAG
IF (SGN .EQ. 6.) GO TO 160
SIGNO = SIGN(MAG, SGN)
RETURN

10 SIGNG = ©.
RETURN
END

G000 000b00000storstersstosessotetsssssvvsesssvseensesssstbosoresssssoccey
c .
C S/R SMPLFY FINDS THE MINIMUM WORDLENGTH REQUIRED TO REPRESENT D. .
c .
Cor o PP eessstsosssrerorroreoorosssttsrossssrersssrsrrosssssssorssrssnseses

SUBROUT INE SMPLFY(ND, D, Q)

INTEGER Q(1), PQ(20)

REAL D(1)

COMMON / SMFY / PQ

DO 20 1 = 1, ND

DT = D(1) * PQ(1)

IF (AINT(DT) .NE. DT) GO TO 20
10 DT = DT / 2

IF (DT .NE. AINT(DT)) GO TO 20

Q1) = Q(1) - 1

GO TO 10
20 CONT INUE

RETURN

END

PP R DL DL L L EE T

C THE FOLLOWING SUBROUTINES ARE CASE-DEPENDENT AND USER-SUPPLIED.

o B L
C...0.0"..O..'.'...'OO..000....'.00....‘0......‘.....‘....0.0'00.....0.

C .
C S/R FRQPT EVALUATES THE FREQUENCY RESPONSE AT ONE POINT FOR A .
C 7TH ORDER ELLIPTIC FILTER. SEPT 29’84 .

.
Coo00000000'attoooo0'000ootcoo'000000totooaooo000000000000000.00000..000

SUBROUT INE FRQPT
COMMON / FREQPT / NGR, GR(20), W, FP
COMPLEX Y(10), Z(3)

W2 =W *W

CMPLX (GR
CMPLX (0.
CMPLX (0.
CMPLX (0.
CMPLX (0.
CMPLX (0.
CMPLX (GR
1. + Z(1

)
- W2 * GR(6)))

- W2 * GR(8)))

GR(
R(3)
(10)
R{4) - W2 * GR(7)))
(11)
R(5)
GR(12))

O RNO D WU NN
3 et et "t et ot Nt "t ot Nt e
fEA R BEREREEDR

Cotboo00000oo00000000000ot'00'otoooo00000toooooooootootoooototiooooooooo

S/R FUNC2 EVALUATES THE WORDLENGTH OBJECTIVE FUNCTION FOR A M
7TH ORDER ELLIPTIC FILTER, MIDDLE BRUNE PORT 2 REFLECTION-FREE, ¢
N1 AND N2 CONSTRAINED i
VERSION: 85 MAY 15, STARTED 84 OCT 22 .
L]
*

OG00S0 IOV ECEOEEIEOEIOIEOPPESCECEPIOIOPEIEENELOOEIOPOEIPEIEIPIOIEIESIEIIOEOICOIOINOEPOESEESEDS

SUBROUT INE FUNC2(F2, QIN, X, N, NFE)

aanannn
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IMPLICIT INTEGER(1 - N, Q)

LOGI1CAL FAST

INTEGER QIN(1), Q(20), ORD(20), FIX(20), BM(32)

REAL X(20), X(2, 2, 2)

COMMON / FUNCS / ND, P(20), Q, NPASS, NSTOP, TOL(100), WPTS(100),
&AWPTS(100), F1EXIT, DLB(20), DUB(20), ORD, F1X, 1P, P11, FAST
COMMON / FCN2 / INC(20), 1COPT

QMAX = 26

DO 10 1 = 1, N
) = X(1)

1)
10 Q(ORD(1)) = QIN(1)

DO 20 I = 1, 2
IF (INC(1) ..EQ. 0) GO TO 20
PQ = PWR(Q(1))
CALL BITS(IF1X(P(1) / PQ), Q(1), 1B, BM)
X1 = IB / PQ + K1
20 CONT INUE
F2 = F2 + K1

C et cvoocecsasssnserersvceresvroseses esnsnanssaneanaansssnenansencsnssersesnnereenes
30 1SUM = INC(3) + INC(4) + INC(S5)
IF (1SUM .EQ. 0) GO TO 60
IF (1SUM .EQ. 3) GO TO 50
DO 40 } = 3, §
IF (INC(1) .EQ. 0) GO TO 49
PQ = PWR(Q(1))
CALL BITS(1FIX(P(1) 7 PQ), Q(1), 1B, BM)
K2 = 1B / PQ + K2
40 CONT INUE
F2 = F2 + K2
GO TO 60
50 C1 = P(3) * P(5)
C2 =C1 + 0.5
C3 =1 - 2 * (1 - P(3)) * P(4) * C2
Cq4 =1 - 2 ¢ C1 * P(4)
Cé6 = (1 - C2) * C3
K(1, 1, 1) = C4 * C6
K(2, 1, 1) = C2 * C4
K(1, 2, 1) = C3 * P(5) * (2 * P(4) * (1 - P(3)) + C3) + C6 * (1 -
&ca)
K(2, 2, 1) = C2 - C3 * P(5) - K(2, 1, 1)
CALL FNDWL{K(1, 1, 1), QMAX, QA)
CALL FNDWL{K(2, 1!, 1), QMAX, QB)
CALL FNDWL(K(1!, 2, 1), QMAX, QC)
CALL FNDWL(K(2, 2, 1), QMAX, QD)
K2 = MAX0(QA, QB, QC, QD)
F2 = F2 + 1 / PWR(K2)
Crovecnsnsvesonannsoenmnesncacacoensessennossnsscnsesnansesocesessoncennasenssnssae
60 DO 70 1 = 6, 7

1F (INC(1) .EQ. 0) GO TO 170
PQ = PWR(Q(1))
CALL BITS(1FIX(P(1) / PQ), Q(l), 1B, BM)
K3 = 1B / PQ + K3

70 CONT INUE
F2 = F2 + K3

80 DO 90 1 = 8, 9
IF (INC(1) .EQ. 6) GO TO 590
PQ = PWR(Q(1))
CALL BITS(IF1X(P(1) / PQ), Q(1), 1B, BM)
K4 = 1B / PQ + K4
90 CONT INUE
F2 = F2 + K4

100 NFE = NFE + 1
IF (1P .EQ. 0) GO TO 110
WRITE (6,120) F2, K1, K2, K3, K4, ((K(1, J, 1), ) =1, 2}, 1 =1,
&2)
110 RETURN )
120 FORMAT ('OF2: ', G13.6, ' SECTIONS:', 4G13.6 / 'OK MATRIX:’,
&2G13.6 / 12X, 2G13.6)

END
C'.00.0.0.'0..0...00...00000000.‘000.'000000000'00'00000000.0.0'000.0.00
c *
C S/R STABND EVALUATES THE STABILITY BOUNDS FOR ONE VARIABLE. .
C 7TH-ORDER ELLIPTIC, MIDDLE BRUNE PORT 2 RF .
C VERSION: 85 APR 02 4
*
COOOOOOOO0000000000000..0.00.00.000.000000000000000000000'00.000000.'000

SUBROUT INE STABND(NX, X, 1, XOLB, XOUB)
REAL X(1), XOLB(1), XOUB(1)

1F (1 .EQ. §) GO TO 190

X0LB(1}) = 0.

87



XOoUB(1) = 1.
RETURN

10 XoLe(l1) = 0.
XOUB(1) = 100.
RETURN
END

PO G OIS PGSR CEICOEEINOEIPIEOOPIPELPIIOEELIELIEIPOEEIEIINROECEEIEIOPIESISIEESIENSEOIOEOGELDS

.
S/R XD2G TRANSFORMS DESIGN PARAMETERS INTO G-RAT10S FOR 7TH-ORDER .
ELLIPTIC FILTER WITH 2 CONSTRAINTS, MIDDLE BRUNE PORT 2 R.F, .
VERSI1ON APR 02, 1985, STARTED OCT 12'84 ¢
L
.

CO G000 CE I CRIOPIIPROPEOEOCOCORIELIIINLIINGIOINROIIEIEORIOOSIEIONOESISIIIIPIOISIOS

SUBROUT INE XD2G(NP, P, NGR, GR, 1lER)
REAL P(20), GR(20), W1, FP

IER = 0
GR(10) = 1.

ananann

6) - P(7)
y) * P(6) / P(1) 1 P(2)

P(1))

—e. 0y
LY IR
e~
[

e~~~ .
DNy e
P~ et —~e
~ .. S~~~y
-

1F (T2 .EQ. 0) GO TO 10
C4 = C2 /T2 - C3

GR(4) = GR(4) - GR(7)
GR(10) = GR{16) - C

GR(2) = C4 / P(8)

GR(5) = C4 / (1. 8))
GR(8) = (1. - P(9 P(9)

GR(12) = GR(8)
GR(8) = GR(8) * G
GR(11) = C3 - P(8
NGR = NP + 3
RETURN

10 1ER = 1
NGR = NP + 3
RETURN
END

/11GO.SYSIN DD ¢

WEGENER 7TH-ORD ELLIPTIC, PORT 2 REFL-.FREE, EXAMPLE 6§

ATTENUAT ION CHARACTERISTIC

FREQUENCY DB ATTENUATION
0. 36.26 42.7 .55 50. /WC1,WC, WS, RW, ASMIN
9 1. .112164 .502707 .252173 .217023 6.539907
256 3 3 INX ,NPX ,NSX
0. 29.86 .22 JR(1,1),R(2,1),BTOL(1)

29.86 34.13 .33
34.13 36.26 .55
42 .17 51.2 30.0
51.2 57.6 40.0

57.6 127. 50.0
19 8 INPASS ,NSTOP
36.26 .55 /WPTS(1),TOL(1)
36 . .55

35.5 .55

35. .55
34.13 .33

34, .33

33. .33

32. .33

31, .33
29.86 .22

29, .22

27. .22

25. .22

23. .22

21, .22

17. .22

13. .22

11, .22

42.17 30.

48. 30.

51.2 40.

54. 40,

57.6 50.

66 . 50.

80. 50.

95. 50.

? I/NSTG
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ININC,VINC(1),SFiX(J,1)

/F1EX 1T ,M0,QMAX, QRED
/DBUG, 1COPT ,NRPT ,NOPT ,NQOPT
1 1DC ,MO0C ,NOPTC ,CNTRC,EXITC, 1STOP
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Appendix C. Design and Analysis Equations for Ladder-Based Examples

The design and analysis equations (given in the left and right columns, respectively) used for

the ladder-based design examples are included here in algorithm form.

C.1 Sth-Order Elliptic Ladder Filter

_ Gy G = Bs
=G +o, 1= 8,
G, Be

Bo= "+ Gy =—

G, + Gy Ba
_Gs __Bs
By = Gs +Gq Cs = (1-B3)

Gg Bs
T ee———— G o ——
Pe= Get Gy ey
1
cg=-—-1
7By
B - Bl Cy = ‘%—1
? GytBGatGs) ™
Bi(Bs(G1+Gy)) ST 13
BaBsG2 Ge = 2G4
STy Gy =<0,
Gg = CzGl
Gg = 1""'@'5""‘§2
Bt B2

C.2 7th-Order Elliptic Filter, Middle Brune Non-Reflection-Free.

G

"1 G + G
ny = Gg Gq7=p4

Gs + Gy c3=1-B,
ny = G, cs=1/B7

G7+ Gy +nGpp cy1=c4/Bs—c3
B1=ny
¢y =BGy ca = c4/Bs + Bacs

_ Gy C4
By = m G,= '1__'6';'5;"34
cs=Gy +nGp Gy =c1/Bs
¢y =Gy + n1Gy + nscs cq
Gs=

1-Bg



€y

By = o +0234="2
Cc3 = Cq + (]
cn = 1
4=
1 + 1 + 1
nyG, + cg G4 + G, €3~ niCs
C4
Bs = n,G, +es
C4
Bs = €3 — R3Cs
By =(G7 + cs)/fcq
Bs = n3
G,
Bo =TT
Gy + Gy

Gg

By =

Gg + Gy

Gg

Bz = Gy + Gy,

c1 =Gy + B1Gy
G,

B3 - G7 + Cl

C2=GG+09
03=01+G7
C4=Gg+Gu

cs =G + ByGyp + Bscy

L 1 1 1 — PGz
G, +Gpp Gs + Gy
c7=cs+tcg
cg=cy+ 1 1
G4 +Gy7  c7-Bscy

cg = (1-Bg)/By
Gy = c3Gs

Gy = cgG,

Gy =c3— BsGp
¢y = B2

G =cy—cy— PBycs

¢ = (1-Br)c1/B2

Gy =c /By
c
G =
67 1-p,
€1
Gq =
P 1-py
Gy =c1/B1
Gp=Gp~—c

C.3 7th-Order Elliptic Filter, Middie Brune Port 1 Reflection-Free.

Gsl = B1B2
Gy = (1-B41)Bs4
Gi=1/By — Gy

G3 =1/(1-B2—B3) — G¢

cg =1/B3 — B1Gy
c1 = cg(1-2B¢)

¢z = B7(1-Bs)
€37 1-Bs
Gy = Bscs

G4 =cgfcs — Gy
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Ce
cg = ZBsm
€= 1 + 1 c7 =cgPg
Gi1+(1-Bi)ca Gz +PBica ez — Bi(1-By)e2
B, = ¢
27 Gy + (1-By)e2 G. = _C7
By = Cy ST 1-py
T ey B1(1-By)c Gs = (1-B10)G5/B1o
B4 = cay/fcy G, = cq/By
Bs = (cg — (1-Bs)c3)/2cs c3=c3— Gy
cg
- = B,G
B1 = BG4 + Brea) A
ce 10 = €3~ Cy4
Bs = e b oo cs = (1-By)Gs
G, G =cs/By

Giyu=cg—cy—cs— Pscs

C.4 7th Order Elliptic Filter, Middle Brune Port 2 Reflection-Free.

B =ny
B2 = G, +Gq
By = nj

Cg = Gu + n3012

€y = 1
1 + 1
niGy +cs Gy + Gy
Pe= Wona(Gs + G)
Bs = cs/2c,

c3 = Gm + ang + nicg

cg=cyt+cytey
Bs = c1/cs

By = cafcy

— RBiCs

Gip=1-8s— B
Gy = (1-B2)Bs/B1B2

¢ =GBy
Ge= —

67 1-p
c1=1-p
G3 = Bg/cy
Gy = Be/B1
Gyp=Gp-c
c3 = 2BsB,
¢ =c3ps

_ ¢
G = 1-Bs
c1 = B4(1-Ba)
G4 = By/cy
=P tec



€2

€4 = "1":-;2—/&7 —C3
Gs=G,4 -G,
Gip=Gp~—c
Gz =co/Bs
€4
Cs = 1-Ps
Gg = (1-Bg)/By
Gy = G,Gg
Gy = GgGs

Gy =c3— BsGn2
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Appendix D. Frequency Response Algorithms for Fifth- and Seventh-Order Ladder Elliptic
Filters

D.1 5th-Order Elliptic Ladder Fiiter Network.

Y1 =Gy + joG; Y2 =Gy
Ys =G, + wGs Yo=1+2Z4,
Y5=Y1+Y2Y4
Z,=—2
Gi — ©%Gs Ye=Y,+205
G +G
Zy = Fo= o110
G4"0)266 Y5+Y3Y6

D.2 7th-Order Elliptic Ladder Filter Network.

Y; =Gy + oG, Y,=G; +t oGy
z, = mz Ys=1+2,¥,

Gi — 0w°Gg Ye=Y1+Y,Ys
Y, =Gy Y;=1+2Z4Y,

© Yg=Y4+7YsY,

iRy =

4 7 Yo=Ys+2Z5Y4
Y3 =0Gy Yio=Ye¢¥; +Yg¥y
Zy=—2 I‘.=|(71‘*‘Gz|

Gs - (I)ZGB YID
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