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Abstract 

 

 The magnetic structures and spin reorientations of RGa (R = Gd, Dy, Ho and Er) 

intermetallic compounds have been investigated using neutron powder diffraction and 

rare earth Mössbauer spectroscopy. The aim has been to determine the magnetic 

structures of these compounds before and after their spin reorientation transitions and to 

understand the role of the crystal field and exchange interactions in the spin reorientation 

mechanism. The results have been compared with those found from previous single-

crystal susceptibility measurements on RGa and the recent 
119

Sn Mössbauer spectroscopy 

work on Sn-doped RGa compounds. The magnetic structures obtained at low 

temperatures are a simple collinear ferromagnetic in DyGa, canted ferromagnetic in 

HoGa and a non-collinear ferromagnetic in GdGa. The spin reorientation in ErGa was 

also observed by 
166

Er Mössbauer spectroscopy. These results show that both the crystal 

field and exchange interactions play an important role in the reorientation mechanism. 
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1. Introduction 

 

1.1. Background  

Rare-earth intermetallic compounds are now engaging the attention of large 

numbers of physicists, chemists, material scientists and engineers, for such compounds 

are important from both the fundamental and technological points of view. 

Fundamentally, the rare-earth intermetallic compounds show a great range and diversity 

in their structures and stoichiometries, which in some cases show unique magnetic 

behaviour, complex magnetic structures, a wide range of crystal field effects, and so on. 

From the technological point of view, rare-earth intermetallic compounds are the basis of 

the world's strongest permanent magnets and are also the subject of much recent interest 

as potential magnetic refrigerant materials. 

Research on rare earth intermetallic compounds is mainly focused on the 

compounds of rare earth (R) and transition metals (T), due to their application as 

permanent magnets. In contrast, intermetallic compounds of rare earth and non- magnetic 

metals, especially the group IIIA elements (e.g. B, Al, and Ga), have received less 

attention (Wallace 1973). RAl2, RB4, RB6 and RGa2 are the only compounds of rare earth 

and group IIIA elements that have been the subject of significant investigations over the 

past decades. RAl2 compounds have attracted most of the attention among all the rare 

earth-aluminum compounds for their complex magnetic behaviour, particularly because 

one needs to consider crystal field effects in order to get a consistent description of their 

behaviour (Buschow 1979). RB4 compounds have a wide variety of both interesting 

structural and physical properties such as magnetic phase transitions, heavy fermion 



2 
 

behaviour, mixed valence phenomena and superconductivity (Gignoux & Schmitt 1997). 

RB6 compounds have attracted some investigations due to the valence instabilities and k-f 

hybridization phenomena which produce unusual magnetic properties in these 

compounds (Gignoux & Schmitt 1997). RGa2 compounds have been investigated 

extensively, due to their complex magnetic phase diagrams which show the occurrence of 

commensurate and incommensurate magnetic structures as a function of temperature 

(Gignoux & Schmitt 1997). Recent studies of the magnetocaloric properties of RGa2 

compounds (Reis et al. 2010) show that these compounds have similar magnetocaloric 

properties as the RCo2 compounds which is one candidate system for magnetic 

refrigerant applications. 

 Several recent reports have appeared regarding the magnetocaloric effect in the 

RGa (R = Gd, Ho and Er) intermetallic compounds, showing the potential of these 

compounds as magnetic refrigerant materials (Chen et al. 2009, Zhang et al. 2009, Chen 

et al. 2010). It was found that these compounds have a large reversible magnetocaloric 

effect and a giant value of the refrigerant capacity (RC) which is related to the two 

magnetic transitions: the transition from paramagnetic to ferromagnetic and the spin 

reorientation transition. The occurrence of a spin reorientation in these compounds is 

interesting from the fundamental magnetism point of view, because the competition 

between the crystal field and exchange interactions might play an important role in the 

reorientation mechanism.  

Given the interesting magnetic behaviour and the possibility that the crystal field 

interaction might induce the spin reorientation in these compounds, we felt that more 

detailed investigations using neutron diffraction and rare earth Mössbauer spectroscopy 
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were needed, with particular emphasis on those RGa compounds with heavy rare earth 

elements (GdGa, DyGa, HoGa and ErGa). In the following sections, the previous work 

on RGa intermetallic compounds will be discussed. In section 1.2, we will discuss the 

crystal structure and the magnetic properties of the RGa compounds, and finally in 

Section 1.3, the magnetic structure and spin reorientation determinations using 
119

Sn 

Mössbauer spectroscopy on Sn-doped RGa intermetallic compounds (Delyagin et al. 

2007) will be discussed briefly. 

 

1.2. Crystal structure and magnetic properties of RGa  intermetallic 

compounds 

Equiatomic compounds of rare earth and gallium (RGa) with the CrB-type 

structure were first prepared in the early 1960's (Baenziger & Moriarty 1961, Cable et al. 

1964). Dwight et al. (1967) then extended the study to determine whether all RGa 

compounds were isostructural. They found that all RGa intermetallic compounds adopt 

the orthorhombic CrB-type structure (Cmcm space group). Both the rare earth and 

gallium occupy 4c sites with the m2m point symmetry and the atomic positions (0, y, ¼), 

(0, –y, ¾), (½, ½+y, ¼) and (½, ½-y, ¾). The structure itself can be viewed as the 

stacking of trigonal prisms along the crystallographic a-axis with rare earth atoms at the 

corners and the gallium atoms nearly at the centers (Baenziger & Moriarty 1961), as 

shown in Figure 1.1. The lattice constants of the RGa (R = Pr – Er) compounds at room 

temperature are summarized in Table 1.1. 

 Cable et al. (1964) determined the magnetic structure of TbGa using neutron 

diffraction. They reported that TbGa is a collinear ferromagnet with a Curie temperature 
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of 155 K. In their calculations of the magnetic scattering intensities, they assumed that 

the Tb moment is 9 µB, and they found that the Tb magnetic moments are oriented along 

the crystallographic c-axis at 77 K. 

 

 

 

 

 

 

 

Figure 1.1. Crystal structure of the RGa compounds. 

 

 Barbara et al. (1971) reported the magnetic properties and magnetic structures of 

both TbGa and ErGa. They performed magnetic measurements on a single-crystal of 

TbGa in fields up to 80 kOe and they showed that TbGa is ferromagnetic with the easy 

direction of magnetization being the c-axis, in agreement with Cable et al. (1964). A 

large hysteresis in both the paramagnetic and ferromagnetic regimes was also observed. 

Neutron diffraction measurements carried out at 4.2 K and 300 K (for ErGa) and at 4.2 K, 

77 K and 300 K (for TbGa) reveal that at 4.2 K the magnetic structures of ErGa and 

TbGa are both non-collinear ferromagnets. They described the magnetic structure of 

ErGa as a coexistence of ferromagnetic order along the crystallographic a-axis and 

antiferromagnetic order along the b-axis, as shown in Figure 1.2.  

  

c 
a 

b 

R 

Ga 
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 The magnetic properties of the RGa (R = Pr - Er) compounds were reported by 

Fujii et al. (1971), based on magnetization and susceptibility measurements on 

polycrystalline samples in fields up to 16 kOe from 4.2 to 400 K. They showed that all 

RGa compounds are ferromagnetic. The magnetization values were reported to be smaller 

in magnitude than the theoretical saturation moments of the R
3+

 ions which indicates that 

the external field of 16 kOe was insufficient to saturate the magnetization due to the large 

magnetocrystalline anisotropy in the RGa compounds. 

 

Table 1.1. The lattice parameters of the RGa compounds (Dwight et al. 1967). 

Compound a (Å) b (Å) c (Å) 

CeGa 4.4651(3) 11.4248(7) 4.2153(2) 

PrGa 4.4410(1) 11.3370(3) 4.1992(1) 

NdGa 4.4164(2) 11.2758(6) 4.1835(2) 

SmGa 4.3806(1) 11.1219(3) 4.1471(1) 

GdGa 4.3372(3) 11.0316(8) 4.1106(3) 

TbGa 4.3114(2) 10.9394(5) 4.0851(2) 

DyGa 4.2913(11) 10.8740(29) 4.0672(11) 

HoGa 4.2740(7) 10.8008(19) 4.0501(7) 

ErGa 4.2523(9) 10.7443(23) 4.0329(9) 

TmGa 4.2371(7) 10.6882(18) 4.0218(7) 

LuGa 4.2090(5) 10.5817(13) 4.0001(5) 

 

 

 

 

 

 

 

 

 

Figure 1.2. Schematic arrangement of the Er moments in ErGa at 4.2 K (Barbara et al. 

1971). Large and small circles indicate the Er and Ga atoms. The hatched and empty 

circles represent atoms at z = 0.75 and z = 0.25, respectively. 
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 In 1974, Iraldi et al. carried out 
161

Dy  Mössbauer spectroscopy on DyGa (Iraldi et 

al. 1974). They found similar quadrupole interaction and hyperfine field values between 

pure Dy metal and DyGa, indicating that the ground state of the Dy
3+

 ion in DyGa is 

nearly a | 
  

 
⟩ doublet. From the hyperfine field data, they were able to deduce a Dy 

moment of 9.8 µB. 

 The work carried out by Fujii et al. (1971) was extended by Shohata et al. (1974) 

and Shohata (1977) with magnetization and susceptibility measurements on single-crystal 

RGa (R = Pr – Er) compounds. The magnetic properties of the RGa compounds are 

summarized in Table 1.2. Shohata et al. found that DyGa, TbGa and HoGa are simple 

ferromagnets with the easy magnetization direction along the c-axis. TbGa and DyGa 

were found to exhibit large hysteresis along their easy magnetization direction which 

might be a consequence of the intrinsic domain wall freezing associated with a large 

anisotropy energy. Magnetization measurements on single-crystal ErGa reveal that the 

easy direction of magnetization is the b-axis. Shohata et al. noted that the saturation 

moment of Er along the b-axis is smaller than the theoretical value of 9 µB for the Er
3+

 

ion, which could indicate a non-collinear magnetic structure in ErGa. They also found a 

sudden increase in magnetization along the a-axis at about 5 kOe as shown in Figure 1.3, 

which they assumed to be caused by a spin flip of the Er
3+

 moments. From the 

magnetization curves, the saturation values of the R moments in PrGa, NdGa and SmGa 

were found to be smaller than the theoretical „free-ion‟ values. This reduction in moment 

may originate from a partial quenching of the R
3+

 magnetic moment in each compound 

by the crystal field. The paramagnetic susceptibilities of SmGa did not obey the Curie-

Weiss law. This behaviour can be interpreted in terms of Van Vleck theory as the 
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admixture of higher energy J multiplets into the ground state. They were also able to 

deduce the second-order diagonal and off-diagonal crystal field parameters B20 and B22 

from the paramagnetic Curie temperature based on the molecular field theory (equation 

(2.16)) as listed in Table 1.3. However, it should be noted that the above cited authors 

were unable to describe the magnetic properties of GdGa. 

 

 

 

 

 

 

 

 

 

Figure 1.3. Magnetization curves of ErGa at 4.2 K (Shohata 1977) 

 

 

Table 1.2. The Curie temperature, paramagnetic Curie temperature (θp), and 

paramagnetic Curie temperatures along the a, b and c-axes (θa, θb and θc respectively) 

of single-crystal RGa compounds. (Shohata 1977) 

Compound Tc (K) θp (K) θa (K) θb (K) θc (K) 

PrGa 32 18 28 8 46 

NdGa 44 30 41 34 43 

SmGa 108 - - - - 

GdGa 183 199 - - - 

TbGa 158 161 134 134 175 

DyGa 116 119 94 68 133 

HoGa 63 53 53 42* 68 

ErGa 32 26 35 35 12 

* erroneously written as 22 K in the original paper 
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Table 1.3. The crystal field parameters of the RGa compounds (Shohata 1977) 

 B20 (K)* B22 (K)* 

PrGa 1.23 -1.16 

NdGa 0.28 -0.10 

TbGa 0.41 -1.23 

DyGa 0.61 -0.80 

HoGa 0.21 -0.26 

ErGa -0.15 0.46 

* all values have been converted to SI units from the original paper 

 

 

1.3. Spin reorientation in RGa intermetallic compounds – 
119

Sn 

Mössbauer study on Sn-doped RGa compounds 

 Nesterov et al. (1992) reported spin reorientation transitions in NdGa, HoGa and 

ErGa upon cooling below the Curie temperature. This work was extended by Delyagin et 

al. (2007) based on 
119

Sn Mössbauer spectroscopy on Sn-doped RGa compounds. The Sn 

dopant (which occupies the Ga sites) is non-magnetic thus any hyperfine field at this site 

is transferred from the neighbouring magnetic order of the R sublattice. Information 

about the ordering direction can be deduced by determining the orientation of the 

hyperfine field within the principal axis frame of the Electric Field Gradient (EFG) at the 

119
Sn site.  Therefore, the 

119
Sn Mössbauer spectra will reflect the magnetic structure of 

the RGa compounds.  

 Delyagin et al. observed that all spectra can be fitted with a single magnetic sub-

spectrum for 
119

Sn impurity atoms at the Ga site, except the spectrum of GdGa (Figure 
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1.4). For GdGa, two magnetic subspectra of equal intensity were needed to fit the 

spectrum below the spin reorientation transition (~110 K) which suggests the existence of 

a non-collinear magnetic structure in GdGa at low temperatures. It was also observed that 

this non-collinear structure becomes collinear above the spin reorientation temperature. 

In addition, spin reorientations were observed in SmGa, NdGa, HoGa and ErGa, 

consistent with the previous findings of Nesterov et al. (1992). Delyagin et al. showed 

that the above-mentioned compounds undergo spin reorientations from the bc-plane to 

the a-axis, although in their paper they were only able to resolve the canting angle of the 

Ho and Nd moments in HoGa and NdGa as a function of temperature below the spin 

reorientation transition. However, they commented that their result was insensitive to the 

azimuthal angle defining the direction of the R moments.  

 

 

Figure 1.4. 
119

Sn Mössbauer spectrum for Sn atoms in Ga sites in GdGa at 5 K. 

The spectrum is well fitted using two magnetic subspectra indicated by the dashed 

curves. (Delyagin et al. 2007) 
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 From the hyperfine field data, they concluded that these compounds only have 

two possible orientations of the magnetic moments at temperatures between the spin 

reorientation and Curie temperatures, namely the crystallographic b and c-axes. They 

argued that the spin reorientations in the RGa compounds are due primarily to the 

competition between the exchange interaction and the crystal field effects. The spin 

reorientation transitions do not occur in PrGa, TbGa and DyGa which have the largest 

value of the electric quadrupole moment, defined as     
 

 
      

       )) 

(Delyagin et al. (2007)), hence the crystal field interactions dominate the exchange 

interactions in these compounds. 

 

1.4. Summary 

 In this chapter we have reviewed the previous work on the crystallography, 

magnetic properties and magnetic structures of the RGa intermetallic compounds, 

concentrating on the magnetic anisotropy and the occurrence of spin reorientations in 

these compounds. It was shown that the RGa compounds possess large 

magnetocrystalline anisotropy. ErGa shows a unique magnetic behaviour which might 

indicate the occurrence of a non-collinear spin structure at low temperatures. Based on 

119
Sn Mössbauer spectroscopy, the magnetic structure of GdGa is a non-collinear 

ferromagnet below the spin reorientation temperature. The Ho moments were also found 

to be canted away from the bc-plane to the a-axis upon cooling below the spin 

reorientation temperature.   
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2. Theoretical Background 

 

2.1. Magnetic Neutron Scattering 

 Neutron scattering has become one of the most powerful techniques for 

microscopic condensed matter studies due to the unique properties of the neutron 

(Squires 1978, Rossat-Mignod 1987, Chatterji 2006). One of its important properties is 

that the neutron has a magnetic moment (spin ½), so it can interact with the unpaired 

electrons in a magnetic atom. Inelastically, this interaction provides information about the 

magnetic excitation energies. Elastic neutron scattering, which will be used intensively in 

this work, gives information about the magnetic structure of the scattering system.  

 In this section, the general formulation of the neutron scattering cross section 

from a magnetic material and a simple method for determining the direction of the 

magnetic moments in a ferromagnet will be discussed briefly. Readers should refer to 

Squires (1978) and Rossat-Mignod (1987) for more detailed derivations. 

 In a neutron scattering experiment, the counting rate C in a detector that makes a 

solid angle    and has an efficiency   is given by (Rossat-Mignod 1987) 

 
         (

  

  
) (2.1)  

where   is the flux of the incoming neutron beam and (
  

  
) is the number of neutrons 

scattered per second into a solid angle    which is known as the differential cross 

section. From the above equation, only the (
  

  
) term is actually measured in a scattering 

experiment and it contains information about the scattering system. Therefore, in the 

following discussion we will focus on this term only and the mathematical expressions 
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relevant to neutron scattering experiments on a magnetic material. 

 Suppose our scattering system is a magnetic crystal. For an unpolarized incoming 

neutron beam, there will be no interference between the nuclear and magnetic scattering 

(Rossat-Mignod 1987), thus the total differential section can be written as 

 
(
  

  
) ( ⃗⃗ )  (

   

  
) ( ⃗⃗ )  (

   

  
) ( ⃗⃗ ) (2.2)  

where (
   

  
) ( ⃗⃗ )and (

   

  
) ( ⃗⃗ ) are the elastic nuclear and magnetic cross sections, 

respectively. The elastic nuclear cross section is usually written as 

 
(
   

  
) ( ⃗⃗ )   

   ) 

  
∑|  ( ⃗⃗ )|

 

 

 ( ⃗⃗   ⃗ ) (2.3)  

where N is the total number of atoms in the unit cell, and vo is the volume of the unit cell. 

The  ( ⃗⃗   ⃗ ) term is actually the nuclear Bragg relation, i.e. Bragg scattering only 

occurs when the scattering vector  ⃗⃗    
⃗⃗  ⃗    

⃗⃗⃗⃗  equals the reciprocal lattice vector  ⃗ . 

Figure 2.1 illustrates the elastic condition for diffraction in reciprocal space. Bragg 

scattering only occurs when a reciprocal lattice point lies on the surface of the Ewald 

Sphere of radius |  
⃗⃗  ⃗|  |  

⃗⃗⃗⃗ |  
  

 
   Moreover, in equation (2.3),   ( ⃗⃗ ) is the nuclear 

structure factor and is given by 

   ( ⃗⃗ )  ∑  
̅̅̅    (  ⃗⃗   ⃗ )         )

 

 (2.4)  

where    is the scattering length of the atom r. The scattering length itself is a complex 

number. There are two types of nuclei based on their scattering length. First, those nuclei 

that have a large imaginary component of the scattering length which varies rapidly with 

the energy of the neutron. Since the imaginary part corresponds to neutron absorption, 

such nuclei strongly absorb incoming neutrons. Second are those nuclei that have a small 
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imaginary component of the scattering length and the scattering length is effectively 

independent of the energy of the neutron. The         ) term is the Debye-Waller 

factor which represents the thermal vibration of the scattering atoms about their 

equilibrium positions. 

 

 

 

 

 

 

 

 

 

Figure 2.1.Scattering triangle for  ⃗⃗   ⃗  

 

The elastic magnetic cross section is given by (Squires 1978) 

 
(
   

  
) ( ⃗⃗ )  

    )
 

 
 

   ) 

  
       ) ∑ ( ⃗⃗   ⃗  )

  

 

                          ∑       ̂  )̂
  

∑   ( ⃗⃗ )   ( ⃗⃗ )

   

 

                                           ⃗⃗    ⃗   ⃗  )  

(2.5)  

where ro is the classical radius of the electron, equal to 2.818 × 10
-15

 m, γ is a constant 

with value of 1.913 and   ( ⃗⃗ ) is the magnetic form factor of atom r, arising from the 
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Fourier transform of the magnetization distribution of the magnetic atoms. The      is 

the β
th

 Cartesian component of the moment belonging to atom r. The  ( ⃗⃗   ⃗  ) term 

has a similar meaning as in the nuclear Bragg scattering, i.e. the magnetic Bragg 

scattering occurs only for  ⃗⃗   ⃗  . The vector  ⃗  
 
is the reciprocal lattice vector of the 

magnetic structure which is usually written as 

  ⃗    ⃗   ⃗⃗  (2.6)  

where  ⃗⃗  
represents the magnetic periodicity and is known as the wave or propagation 

vector of the magnetic structure (see Figure 2.2). In order to get a better understanding, 

we will apply equation (2.5) to the simplest type of magnetic order, which is 

ferromagnetic. 

 

 

 

  

 

 

 

Figure 2.2. Scattering triangle showing the relation between the scattering vector  ⃗⃗  and 

the propagation vector  ⃗⃗  . Note that in ferromagnetic order, where   ⃗⃗    , the Bragg 

relation  ⃗⃗   ⃗   
is obtained. 

 

 In ferromagnetic order, the magnetic periodicity is identical to the 

crystallographic periodicity, i.e. the magnetic contributions simply add to the nuclear 
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contributions in the reciprocal space (in Figure 2.2,  ⃗⃗   ). Furthermore, in 

ferromagnetic order the moments are parallel to each other. Assuming that all moments 

point in only one direction, denoted z, we can simplify equation (2.5) using 

 

 

 
|∑    

 

   (  ⃗⃗   )|

 

 ∑    

 

   (  ⃗⃗   ⃗ ) 

                                ∑     

 

       ⃗⃗   ⃗  ) 

                                           ∑                 ⃗⃗    ⃗   ⃗  ) 

   

 

(2.7)  

therefore, equation (2.5) can be written as 

 
(
   

  
) ( ⃗⃗ )  

    )
 

 
 

   ) 

  
       ) ∑ ( ⃗⃗   ⃗ )

 

 

                          ∑       ̂  )̂
  

∑   ( ⃗⃗ )

 

         ⃗⃗   ⃗  )  

(2.8)  

Based on the above assumption, we can see that the ∑        ̂  )̂   term can be 

simplified, since we only consider one direction of the moment. If we define a unit vector 

 ̂  for the moment direction of    , we obtain 

 ∑       ̂  )̂
  

 ̂  ̂    ( ̂   ̂)
 
 (2.9)  

then equation (2.8) becomes 

 
(
   

  
) ( ⃗⃗ )  

    )
 

 
 

   ) 

  
       ) ∑ ( ⃗⃗   ⃗ )

 

 

                          (  ( ̂   ̂)
 
) ∑   ( ⃗⃗ )

 

         ⃗⃗   ⃗  )  

(2.10)  
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 For the powder diffraction, in most cases (except structures with high symmetry 

such as cubic) the   ( ̂   ̂)
 
 term enables us to determine the direction of the magnetic 

moment. If the net magnetic moment m is parallel to the reciprocal lattice vector  ⃗  
(recall 

Bragg relation,  ⃗⃗  ⃗   ⃗ ), then   ( ̂   ̂)
 

   and (
   

  
) ( ⃗⃗ )   , i.e. there will be no 

magnetic scattering contributions. For example, if one observes no magnetic intensity at 

the (h 0 0) peak, that implies that the moments must be parallel to the crystallographic a-

axis. However, as mentioned earlier, this simple method cannot be used in the high 

symmetry structures such as cubic, because one would still see magnetic intensity at the 

(h 0 0) peak position even though the moments are parallel to the a-axis, since in a cubic 

system (h 0 0) is equivalent to (0 h 0)  and (0 0 h), and the   ( ̂   ̂)
 
 term is non-zero 

for the last two reflections. 

 

2.2. Magnetic Space Groups 

 In crystallography, there are 230 possible space groups, which are made from the 

combination of all available symmetry operations (point groups, glides and screws) with 

the Bravais translations. These have been developed to describe crystal structures. These 

space groups are tabulated in the International Tables for Crystallography (2005). In the 

case of a magnetic crystal, we have to replace point atoms with axial vector moments, as 

we must consider both the location and the orientation of the magnetic moments in order 

to describe fully a magnetic structure. However, since the magnetic moment is an axial 

vector which may be visualized as an Ampèrian current loop, and not a polar vector that 

simply indicates a direction, the symmetry operations that were developed to describe the 

crystal structures are insufficient to describe magnetic structures.  
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 The time-reversal operator (1ʹ or usually indicated with the primed symmetry 

operator) is added to the symmetry elements used to describe the crystal structure to 

construct new groups called magnetic groups (Prandl 1978). The time-reversal operator is 

equivalent to a time transformation, e.g. tʹ = - t, which changes the rotational direction of 

a current loop, hence resulting in a further set of symmetry operations. Figure 2.3 

illustrates the effect of adding the time-reversal operator. It can be seen that an unprimed 

mirror symmetry will reverse a current loop whose normal lies parallel to the mirror 

plane, thus reversing the axial vector, but does not reverse the axial vector that lies 

perpendicular to the mirror plane. The primed mirror symmetry will reverse the axial 

vector that lies perpendicular to the anti-mirror plane but not the axial vector that lies 

parallel to the plane. 

 

 

 

 

 

 

 

 

Figure 2.3. The effect on axial vectors of adding the time-reversal operator to a mirror 

symmetry. 

 

The combination of the primed and unprimed symmetry operators leads to a total of 1651 

magnetic space groups known as Shubnikov groups. 
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2.3. Magnetocrystalline Anisotropy 

 As mentioned earlier in Chapter 1, the RGa compounds possess a large 

magnetocrystalline anisotropy (MCA), in which the magnetization process is different 

when the field is applied along different crystallographic axes. One of the origins of the 

MCA in the rare-earth compounds is the interaction of the 4f electrons with the electric 

charges of the surrounding lattices, known as the crystal field interaction. In this section, 

we will focus on the crystal field interaction as one of the origins of the MCA in the RGa 

compounds. More detailed treatments of crystal field theory can be found in Hutchings 

(1964) and Barbara et al. (1988), therefore only a brief discussion of the crystal field 

interaction will be presented here. 

 The MCA determines the anisotropy energy (Ea), which may be described by a 

series expansion in      . Relevant to our work, the anisotropy energy in an 

orthorhombic cell can be written as (Cadogan et al. 2000) 

            
      )          

   
         

      )       

                
         

          
        )       

(2.11)  

where the polar angles θ and   represent the direction of magnetization relative to the c- 

and a-axes respectively. The K0, K1, K1
ʹ
 ... K3

ʹʹʹ
 are the anisotropy constants and are related 

to the crystal field parameters (see Cadogan et al. (2000) for more detailed derivations). 

The crystal field interactions of the R ions with the surrounding charges can be described 

by the crystal field hamiltonian (Hutchings 1964) 

 

    ∑ ∑    

 

   

   

 

   

 (2.12)  
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where the     are the Stevens operator equivalents, which are polynomials in the angular 

momentum operators   ,    and    (Stevens 1952). The     are the crystal field 

parameters and are given by 

        〈  〉   (2.13)  

where 〈  〉 are the 4f radial expectation values and the    are known as the Stevens 

coefficients, frequently indicated by   ,    and    for n = 2, 4 and 6 respectively. Their 

values for the R
3+

 ions are listed in Table 2.1. The     are the crystal field coefficients. 

Their values determine the strength of the crystal field parameters     and depend on the 

crystal structure. 

For the 4f electrons (l = 3), the summation of n is restricted to n = 6, since they 

cannot have multipole charge distributions with n > 6. Moreover, the odd terms of n are 

omitted  because for n odd the     terms vanish due to the inversion symmetry of the 

crystal field potential (Buschow & De Boer 2003, Kuz'min & Tishin 2007). The trivial n 

= 0 term is usually neglected because its effect is only to shift all energy levels by the 

same amount (Kuz'min & Tishin 2007). Therefore, in practice, the above summation is 

only over n = 2, 4 and 6.  

 The simplest method to calculate the coefficients     is the point-charge model 

(Hutchings 1964) in which the coefficients     are given by 

 
    

   

    
∑

  

  
            )

 

 (2.14)  

where          ) are the spherical harmonic polynomials. The summation is evaluated 

over all neighbouring charges    and their corresponding positions          ) relative to 

the origin atom being considered. The problem with this model is that all surrounding 
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ions are considered as point charges, also the magnitude and the sign of    in most cases 

is not accurately known. This is particularly problematic in the case of metallic 

compounds due to conduction electrons. However, since the distances between the origin 

atom and its neighbouring atoms are known, this model can be used to predict    , 

which can be compared with the experimental values.  

 In this work, the R
3+

 ions occupy the 4c sites in the orthorhombic Cmcm cell with 

the m2m point symmetry. The appropriate crystal field Hamiltonian for the R
3+

 site is 

given by (Cadogan et al. 2000) 

                                        

                                         
(2.15)  

There are nine crystal field parameters in the above Hamiltonian {   ...    } , but in 

general, the second-order crystal field parameter     is the most important term in 

determining the easy magnetization direction of the magnetic materials just below the 

ordering temperature. In a crystal with uniaxial symmetry, i.e. the c-axis is unique, if 

      then the easy magnetization direction is along the c-axis, whereas if       the 

easy magnetization direction is perpendicular to the c-axis. (see Buschow & De Boer 

(2003) for a more detailed discussion). 

 The signs and magnitudes of the crystal field parameters can be obtained by 

experimental methods such as inelastic neutron scattering, measurement of the 

temperature dependence of the specific heat, as well as single-crystal susceptibility 

measurements. The latter method has been employed to determine the second order 

crystal field parameters (    and    ) in the RGa compounds (listed in Table 1.3) by 

Shohata (1977) and Shohata et al. (1974). Following Aleonard et al. (1969), Shohata et 
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al. deduced the second-order crystal field parameters using the following equations, 

 
     

     )     )        )

    
 

     
     )     )   

   
 

     
     )     )        )

    
 

(2.16)  

where    ,  , and    are the paramagnetic Curie temperatures along the a, b and c-axes, 

respectively. The   is the paramagnetic Curie temperature due to the molecular field, 

which can be expressed as 

 
  

     
      )

   
 (2.17)  

where   and   are the Landé g-factor and the Weiss molecular field constant, 

respectively. Given that the values of   ,   , and    are known from experiment, one can 

then determine exactly the signs and magnitudes of the second-order crystal field 

parameters (    and    ).  
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Table 2.1. The total angular momenta (J) and the Stevens coefficients for the R
3+

 ions 

(Stevens 1952). 

R
3+

 J                         

Ce
3+

 5/2 -5.7143 63.4921 0.0000 

Pr
3+

 4 -2.1010 -7.3462 60.9940 

Nd
3+

 9/2 -0.6428 -2.9111 -37.9880 

Sm
3+

 5/2 4.1270 25.0120 0.0000 

Eu
3+

 0 0.0000 0.0000 0.0000 

Gd
3+

 7/2 0.0000 0.0000 0.0000 

Tb
3+

 6 -1.0101 1.2244 -1.1212 

Dy
3+

 15/2 -0.6349 -0.5920 1.0350 

Ho
3+

 8 -0.2222 -0.3330 -1.2937 

Er
3+

 15/2 0.2540 0.4440 2.0699 

Tm
3+

 6 1.0101 1.6325 -5.6061 

Yb
3+

 7/2 3.1746 -17.3160 148.0001 

 

 

 

 

 

 

 



23 
 

2.4. Mössbauer effect 

2.4.1. Introduction 

 The Mössbauer effect is the recoil free emission of a γ-ray photon by a nucleus 

and its subsequent recoilless absorption by an identical nucleus. It was discovered by 

Rudolph Mössbauer (1958) for which he was awarded the Nobel Prize in 1961. The 

Mössbauer effect has been detected in at least 88 γ-ray transitions in 72 isotopes of 42 

different elements and has been an important technique in physics, chemistry and biology 

(Greenwood & Gibb 1971) 

 In this work, 
155

Gd and 
166

Er Mössbauer spectroscopy will be used to study 

hyperfine interactions in GdGa and ErGa. Figures 2.4 and 2.5 show the decay schemes 

associated with 
166

Er and 
155

Gd Mössbauer spectroscopy. The 
155

Gd Mössbauer 

spectroscopy uses the 86.5 keV level which is populated by the β
-
 decay of 

155
Eu, 

whereas 
166

Er Mössbauer spectroscopy uses the 80.65 keV level which is populated by 

the β
- 
decay of 

166
Ho. 

 

2.4.2. Hyperfine Interactions 

 A nucleus may interact with electric and magnetic fields from its surrounding 

environments. Such interactions are known as hyperfine interactions and can shift energy 

levels and lift their degeneracy. In the Mössbauer effect, there are three types of 

hyperfine interaction, namely the electric monopole interaction, the magnetic dipole 

interaction and the electric quadrupole interaction. In the following sections, these 

interactions will be discussed briefly. More detailed discussions can be found in Gonser 

(1975) and Greenwood & Gibb (1971) 
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Figure 2.4. Decay scheme associated with 
166

Er Mössbauer spectroscopy 

 

 

 

 

 

 

 

 

Figure 2.5. Decay scheme associated with 
155

Gd Mössbauer spectroscopy 

 

 

2.4.3. Electric Monopole Interaction 

 This interaction arises due to the finite size of the nucleus and the electric charge 

density from the s-electrons within it, resulting in a Coulombic interaction between them. 

This interaction has the effect of shifting all energy levels by varying amounts and is 
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known as the isomer shift (δ). Following Greenwood & Gibb (1971), the isomer shift is 

given by 

 
  

  

 
 | |  〈  

 〉  〈  
 〉) |   )| 

 
 |   )| 

 
) (2.18)  

where 〈  
 〉 and 〈  

 〉 are the mean square radii of the excited and ground nuclear states. 

|   )| 
 
 and |   )| 

 
 are the s-electron densities at the absorber and source nuclei, 

respectively. This shift is normally reported with respect to a standard, such as the source 

or a reference absorber. 

 

2.4.4. Magnetic Dipole Interaction 

 A nucleus with a non zero spin      has a magnetic moment    , which interacts with 

internal hyperfine fields acting at the nucleus (e.g. Cadogan & Ryan (2006)). The 

interaction is described by the following Hamiltonian  

         ⃗    

                        ̂   ⃗    

(2.19)  

where    is the nuclear magneton,  ⃗    is the hyperfine magnetic field and    is the g-

factor of the nuclear state in question. The corresponding eigenvalues of the above 

magnetic Hamiltonian are 

               (2.20)  

where             is the nuclear azimuthal spin quantum number. It can be seen 

that this interaction splits a nuclear state | ⟩ into      equally spaced states.  

 Related to this work, the 
166

Er nucleus has excited and ground states of |   ⟩ 

and |   ⟩ respectively. In the presence of the magnetic dipole interaction, the excited 
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state will split into five levels, while the ground state does not split. The allowed 

transitions obey the selection rules for the dipole transition with         

       , giving five possible Mössbauer transitions. Moreover, in 
166

Er Mössbauer 

spectra, the relative intensities are 1:1:1:1:1. 

 The 
155

Gd nucleus has excited and ground states of |  
 

 
⟩ and |  

 

 
⟩ 

respectively. Under the influence of the magnetic dipole interaction, the excited state 

splits into six levels, and the ground state splits into four levels. The allowed transitions 

are         , giving twelve possible Mössbauer transitions with the relative 

intensities of 10:6:3:1:4:6:6:4:1:3:6:10 (Figure 2.6). 

Figure 2.6. Simulated spectrum of 
155

Gd with Bhf = 20 T, eQVzz = 0, η = 0 and line width 

of Γ = 0.05 mm/s. A small Γ was chosen to make the transitions more clearly resolved. 

(Drawn using the MOSPLV software (Chipaux 1990)). 
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2.4.5. Electric Quadrupole Interaction 

 A nucleus with spin   
 

 
 has a non-spherical charge distribution and thus 

possesses a non-zero quadrupole moment (Q) which represents the deviation of the 

nuclear charge from spherical symmetry. Such nuclei can interact with an 

inhomogeneous electric field described by the electric field gradient (EFG) at the 

nucleus. The EFG is a 3×3 second rank tensor that has contributions from the unfilled 

electron shells, valence electrons, and surrounding lattice charges and may be written in 

the form (Gonser 1975) 

 
    

   

     
            ) (2.21)  

where     are the EFG tensor components and   is the electrostatic potential at the 

nucleus. The diagonal elements of     are dependent, since they must satisfy the Laplace 

equation 

               (2.22)  

in other words, the EFG tensor is traceless. A unique axis system known as the principal 

axis frame of the EFG is defined such that the off-diagonal terms disappear and 

 |   |  |   |  |   | (2.23)  

Furthermore, it is convenient to introduce the asymmetry parameter 

 
  

       

   
 (2.24)  

which represents the deviation of the EFG from uniaxial symmetry. Based on equation 

(2.23), the value of   is restricted to       . With this standard terminology, the 

electric quadrupole Hamiltonian may be written in the form 
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       )
[  ̂ 

 
  ̂  

   ̂ 
 
  ̂ 

 
)

 
] (2.25)  

  is the nuclear spin quantum number,  ̂ is the nuclear spin operator,  ̂   ̂    ̂  are 

raising and lowering operators, and  ̂   ̂ ,  ̂  are the nuclear spin component operators 

(Greenwood & Gibb 1971). 

 For the 4f electrons, there are two sources which contribute to the total EFG, 

namely the 4f electron shell and the surrounding lattice charges. Thus, the diagonal EFG 

tensor components can also be expressed as (Stewart 1985, Stewart et al. 2000) 

         〈   〉           (2.26)  

              〈   〉           (2.27)  

where  

 
     

  | |

    
     )〈   〉   

      
 

 

     )

     )
 

(2.28)  

The    is the second-order Stevens coefficient appropriate for the rare earth in question 

and    is the atomic Sternheimer effect. The (    ) term represents the correction to 

the 4f quadrupole interaction due to the screening of the valence electrons from the 

nucleus by inner shell electrons (Gonser 1975). The    and    are the Sternheimer 

antishielding factor and the lattice shielding factor respectively. The      ) term 

represents the enhancement of the lattice quadrupole interaction, due to the distortion of 

the closed electron shell by the surrounding lattice charges. Moreover, the first terms in 

(2.26) and (2.27) correspond to the temperature-dependent contribution due to the crystal 

field distortion of the 4f shell, and the second terms are the contribution from the 
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surrounding lattice charges which is relatively independent of temperature (lattice 

contraction or expansion gives some temperature dependence to this term). 〈   〉  and 

〈   〉  are the Boltzmann averages of the Stevens operators over the thermally populated 

crystal field levels.     and     are the second-order crystal field coefficients. 

 

2.4.6. Mixed Magnetic and Quadrupole Interactions 

 The Hamiltonian for mixed magnetic and quadrupole interactions is given by (e.g. 

Cadogan & Ryan (2004)) 
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                                  ) 

(2.29)  

where   and   are the polar angles of the R
3+

 magnetic moment relative to the principal 

axes of the EFG. In general, the total Hamiltonian can be quite complex since the 

principal axes of the EFG and the reference axes of the magnetic moment may not 

coincide. The energy level splittings relevant to 
166

Er in the presence of the magnetic and 

quadrupole interactions are shown in Figure 2.7. 
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Figure 2.7. Energy level splitting in 
166

Er (Cadogan & Ryan 2004) 

 

2.5. The Rietveld Method 

2.5.1. Introduction 

 The Rietveld method was developed by Hugo Rietveld (Rietveld 1969) and has 

been successfully applied to determining the structure of materials from x-ray and 

neutron powder diffraction data. This method had an advantage over the other powder 

methods at that time, since it was able to refine a diffraction pattern that contained many 

overlapping reflections. This section will focus on the general formulation of the Rietveld 

method including a discussion about the criteria of fit in this method. Readers should 

refer to Young (1993) and McCusker et al. (1999) for more detailed discussions. 

 

2.5.2. General Formulation 

 Basically, the Rietveld method uses a non-linear least squares algorithm to 

minimize the residual function Sy which is given by 
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 (2.30)  

where   
   

 and   
     are the observed and calculated intensites at the i

th
 data point. The 

summation is evaluated over all data points. In general, for a given powder diffraction 

pattern there are many Bragg reflections contributing to the   
   

. The intensities of these 

reflections    ) are proportional to the square of the absolute value of the structure factor 

|  |  where K stands for the Miller indices h, k, l. Based on that information, the 

calculated intensities can be determined from the calculated values of |  |  derived from 

a given structural model, including also the contribution from the instrumental geometry 

and the background. Thus, the calculated intensities can be written in the form 

   
      ∑   

 

|  |          )        (2.31)  

where s is the scale factor and    contains the Lorentz-polarization and multiplicity 

factor. The Lorentz-polarization factor depends on the instrumental geometry, detector, 

monochromator, and sample positioning, whereas the multiplicity factor can be defined 

as the number of different crystal planes which have the same spacings.   is the 

reflection profile function,    is the preferred orientation function, A is an absorption 

factor and     is the background intensity at the i
th

 data point. In the following 

discussions, some of these terms will be discussed briefly. 

 The structure factor    takes the form 

 
   ∑     

 
          

                 )

 

 (2.32)  

where h, k, l are the Miller indices,   ,   ,    are the coordinates of the j
th

 atom in the unit 
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cell,    is the site occupancy multiplier for the j
th

 atom which is equal to the actual site 

occupancy divided by the general site multiplicity.    is the atomic scattering factor and 

   is the root mean square thermal displacement of the j
th

 atom. This term will determine 

the intensity of the calculated scattering peak. 

 In equation (2.31), the reflection profile function          ) approximates the 

effects of both instrumental and specimen features of the reflection  profile, such as 

transparency and broadening. There are many profile functions that have been developed, 

e.g Gaussian, Lorentzian, Pseudo-Voigt, Pearson VII, etc. The profile term also contains 

parameters which determine the width of the peak intensity (FWHM) and is typically 

modelled as (Cagliotti et al. 1958) 

                      (2.33)  

where U, V and W are refineable parameters.  

 The absorption factor A varies with instrument geometry. For neutron powder 

diffraction experiments where the sample holder is usually a cylindrical Vanadium can, 

the absorption correction factor is given by (Dwiggins 1975) 
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                 )       

(2.34)  

where R is the radius of the cylinder,    is the linear absorption of the sample and   is the 

Bragg angle. A numerical table related to the above equation is given in Table 6.3.3.2 in 

the International Tables for Crystallography vol. C (Maslen 2004).  

 Related to our work, this correction was employed to the raw neutron diffraction 
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data of DyGa (section 4.2) via 

 
  

     
  

   

  
 (2.35)  

The Lobanov/Alte da Veiga absorption function (Lobanov & Alte da Veiga 1998) was 

then employed in the refinement of the corrected patterns. This empirical function for 

        3 cm
-1

 is given by 

                     )        )        )   (2.36)  

where 

             

   (                   
 
  )                   )

                     )  

                                      

                                        

                                       

(2.37)  

 

2.5.3. Criteria of Fit 

 The quality of the fit to the observed data can be given numerically and is usually 

done in terms of agreement indices or R values (McCusker et al. 1999). Several fitting 

criteria that are now commonly used are given below 
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(2.41)  

and the “goodness of fit” indicator is given by 

 
    

   

    
 

(2.42)  

 

2.6. Summary 

 In this chapter, we have discussed the theoretical background relevant to our 

work, encompassing a discussion of magnetic neutron scattering, Mössbauer effect, 

crystal field interactions and the Rietveld method. 
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3. Experimental Methods 

 

3.1. Sample Preparation 

 All polycrystalline samples of RGa (R = Gd, Dy, Ho and Er) were prepared by arc 

melting the consituent elements of purity better than 99.9 wt% under a high purity argon 

atmosphere (less than 1 ppm  impurity). The elements used in the sample preparation 

were purchased from Alfa Aesar. It was found necessary to add an excess of 2-3% of rare 

earth before melting, in order to compensate for weight loss during melting. To ensure 

that no unaccounted for weight loss had occurred, the samples were weighed before and 

after melting.  

 A schematic diagram of the argon arc furnace is shown in Figure 3.1. The argon 

arc furnace has a tungsten electrode and a copper hearth. An electric discharge between 

the positive tungsten electrode and the negative copper hearth in the chamber filled with 

argon gas will create an argon arc (plasma). This arc or plasma can be used to melt any 

type of metal. Both electrode and copper hearth are water-cooled. 

 The melting process can be described in the following way. First, pieces of R and 

solid gallium were transferred to the water cooled copper hearth with the R pieces placed 

on top of the gallium. This procedure was done to ensure that both elements are mixed 

well during the melting because gallium has a very low melting temperature (~30
0
 C) and 

it will splash around if the electric arc directly hits it. The pressure inside the chamber 

was then pumped down to lower than 5 kPa, and flushed again with high purity argon 

gas. To ensure that there was no oxygen inside the chamber, this pumping and flushing 

process was repeated at least 4 times. The chamber was then filled with high purity argon 
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gas, and the initial electric current was set to ~70A. The constituent elements were then 

melted together. After the first melting, the resulting ingot was turned over and re-melted 

with a higher current of ~80 A. This process was repeated at least twice to ensure the 

homogeneity of the sample. The resulting ingots were crushed and powdered using a 

mortar and pestle. No samples required post-annealing since it was found that annealing 

did not improve the quality of the samples. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Schematic diagram of the argon arc-furnace 
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3.2. Phase Identification 

 X-ray powder diffraction was used to identify the phases present in the sample. 

The measurements were carried out at room temperature using Cu-Kα radiation on the 

PANalytical X‟Pert Pro and SIEMENS D500 diffractometers. The data were collected in 

the 2θ range 15-80
0
 with a step width of 2θ = 0.02

0
. All x-ray diffraction patterns were 

analyzed by the Rietveld method using the Fullprof/WinPlotr suite (Rodríguez-Carvajal 

1993, Roisnel & Rodríguez-Carvajal 2001). 

 

3.3. Bulk Resistivity Measurement 

 Electrical resistivity measurements on HoGa were made using a four-point probe 

method. The data were taken at 1 K intervals from 5 to 180 K in a JANIS SHI-950-X 

closed-cycle helium refrigerator. The sample was cut from the large ingots into a small 

rectangular shape of approximately 10 mm length and 3 mm × 3 mm in cross section. 

The voltage and current contacts made with 20 µm diameter gold wire were bonded on 

the polished surface of the sample using silver paste. The voltage across the sample was 

recorded using a lock-in amplifier model SR530 from Stanford Research System, while a 

constant alternating current of 0.23 mA / 55 Hz was passed through the sample. 

 

3.4. Neutron Powder Diffraction 

 Neutron diffraction measurements on the DyGa and HoGa samples were made on 

the Echidna high resolution powder diffractometer at the OPAL reactor in Sydney, 

Australia (Liss et al. 2006).  The data were collected at various temperatures in the range 

of 3 K – 125 K with a neutron wavelength of 1.6220(5) Å. The effects of the high neutron 
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absorption associated with the rather high (50 at.%) Dy content of the DyGa sample were 

included in the Rietveld refinement of the neutron diffraction data using the 

Lobanov/Alte da Veiga absorption function (Lobanov & Alte da Veiga 1998) as 

implemented in the GSAS/EXPGUI package (Toby 2001, von Dreele & Larson 2004). 

The HoGa patterns were corrected for absorption effects and refined via the Rietveld 

method using the Fullprof/Winplotr suite (Rodríguez-Carvajal 1993, Roisnel & 

Rodríguez-Carvajal 2001). 

 

 

 

 

 

 

 

 

 

Figure 3.2. C2 High Resolution Powder Diffractometer (NRC-CNBC 2009) 

 

 Neutron diffraction  measurements on GdGa were carried out on the C2 multi-

wire high resolution powder diffractometer (DUALSPEC) at the NRU reactor, Canadian 

Neutron Beam Centre, Chalk River, Ontario (Figure 3.2). The data were collected at three 

different temperatures of 220 K, 110 K and 3.6 K. Natural gadolinium is the strongest 

neutron absorbing element, therefore the high Gd content of the GdGa sample (50 at.%) 

will entirely absorb the incoming neutron beam from the reactor, making it impossible to 

obtain a diffraction pattern using the standard Vanadium can as a sample holder.  A flat-
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plate sample mounting technique (Ryan & Cranswick 2008) was employed to obtain a 

usable diffraction pattern. Basically, this technique uses a flat-plate sample holder with 

silicon single-crystal windows in which the powder sample is thinly spread and covers a 

significant area of the incoming neutron beam, thus simply turning the powder into a 

„thin film‟ (Figure 3.3). It is worth mentioning that the neutron absorption of natural Gd 

also varies rapidly with the neutron energy (Lynn & Seeger 1990). The absorption cross-

section has a value of 49700 b (almost 20 times larger than Cd, a commonly used neutron 

shielding material) for λ = 1.80 Å (Lynn & Seeger 1990) and decreases to ~35000 b at λ 

= 1.33(1) Å (Cadogan et al. 2009). Thus, in order to minimize the neutron absorption 

cross-section we used the shorter neutron wavelength of 1.33(1) Å. No absorption 

correction was applied and analyses of the patterns were accomplished via the Rietveld 

method using the Fullprof/Winplotr suite (Rodríguez-Carvajal 1993, Roisnel & 

Rodríguez-Carvajal 2001).  All magnetic structures derived from the neutron 

diffraction refinements were drawn using the Fullprof Studio Program (Chapon & 

Rodríguez-Carvajal 2008). 

 

 

 

 

 

 

 

Figure 3.3. Photograph of the silicon flat plate sample holder that was used to obtain the 

neutron diffraction patterns of GdGa (Ryan & Cranswick 2008). 
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3.5. 
155

Gd and 
166

Er Mössbauer Spectroscopy 

 
166

Er Mössbauer spectroscopy on ErGa and 
155

Gd Mössbauer spectroscopy on 

GdGa were carried out in the Centre for the Physics of Materials at the Physics 

Department, McGill University, Montreal, Quebec (Ryan 2011). The 
155

Gd Mössbauer 

pattern was obtained at 5 K in transmission mode using a neutron-irradiated 
154

SmPd3 

source prepared at the NRU reactor, Canadian Neutron Beam Centre, Chalk River, 

Ontario. The spectrometer‟s drive system was calibrated using a laser interferometer and 

velocities were cross-checked against 
57
CoRh/α-Fe at room temperature and the 

155
Gd 

Mössbauer spectrum of GdFe2 at 5 K. The temperatures of both sample and source were 

maintained at 5 K. The spectrum was fitted using a non-linear least squares algorithm to 

the full nuclear hyperfine Hamiltonian for the 
155

Gd 5/2  3/2 transition.  

 The 
166

Er Mössbauer spectra were obtained at various temperatures in the range of 

5 – 35 K using 
166

Ho sources prepared by neutron-activation of Ho0.6Y0.4H in the 

SLOWPOKE reactor at Ecole Polytechnique, Montreal. The spectrometer was calibrated 

using the 819.4 T magnetic splitting in ErFe2 at 1.4 K. All spectra were fitted using a 

non-linear least squares algorithm to the full nuclear hyperfine Hamiltonian. A dynamic 

model as proposed by Blume & Tjon (1968) was included in the fitting process to 

account for the electronic relaxation effects in the 
166

Er Mössbauer spectra. 

 

3.6. Summary 

 In this section, we have described briefly the experimental techniques that were 

used in this work, including sample preparation and other techniques relevant to our 

study of the magnetic structures and spin reorientations in RGa compounds. 
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4. Magnetic structures of DyGa and HoGa  

 

4.1. Phase identification 

 Both HoGa and DyGa compounds were prepared in an argon arc furnace. The 

detail of the arc melting procedures have been discussed in section 3.1. The arc-melted 

ingots were crushed and checked with x-ray powder diffraction. Figure 4.1 shows the 

refinement of the x-ray diffraction patterns for both samples. The refinements confirmed 

the formation of the CrB-type Cmcm orthorhombic structure. Both R (Ho and Dy) and Ga 

atoms occupy 4c sites, generated by the special atomic position (0 y ¼). The refined 

values of the positional y parameters are 0.3590(3) for the Dy and 0.0766(6) for the Ga in 

DyGa. For HoGa, the refined values of the positional y parameters are 0.3600(4) for the 

Ho and 0.0782(5) for the Ga. Any impurity phases present amounted to less than 1 wt%, 

indetectable in the powder diffraction pattern. The refined lattice parameters along with 

the conventional R-factor fit indicators for HoGa and DyGa are summarized in Table 4.1. 

 

Table 4.1. The refined lattice parameters at room temperature and conventional R-factor 

values of DyGa and HoGa 

 

 
Lattice parameters (Å) Refinement indicators 

a b c RF R-Bragg GOF 

DyGa 4.2929(7) 10.866(6) 4.0627(7) 15.4 13.5 1.4 

HoGa 4.2774(4) 10.787(8) 4.0446(4) 8.95 14.5 1.3 
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Figure 4.1.X-ray powder diffraction patterns of DyGa and HoGa obtained at 295 K with 

Cu–Kα radiation. Red dots, black, and blue lines  indicate the observed, calculated and 

difference patterns respectively. The vertical red lines indicate the Bragg markers 

 

DyGa 

HoGa 
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4.2. Magnetic structure of DyGa 

 Neutron powder diffraction patterns of DyGa were recorded at 125 K and 3 K. 

DyGa is a ferromagnet with a Curie temperature of 115(2) K (Fujii et al. 1971, Iraldi et 

al. 1974, Shohata et al. 1974, Shohata 1977, Nesterov et al. 1992, Delyagin et al. 2007),  

therefore the 125 K pattern corresponds to the nuclear scattering and was used to 

determine the crystal structure, whereas the 3 K pattern comprises both nuclear and 

magnetic scattering and was used to determine the magnetic structure of this compound. 

 The neutron diffraction patterns of DyGa at 125 K and 3 K are shown in figure 

4.2. The refined lattice parameters at 125 K are a = 4.2980(3) Å, b = 10.8537(6) Å, c = 

4.0592(3) Å. The refinement shows no unfitted peaks. The conventional R-factors for this 

refinement are Rp = 2.78, Rwp = 2.21 and χ
2
 = 1.86. 

 The diffraction pattern recorded at 3 K shows considerable magnetic contributions 

from the Dy sublattice. There are no additional peaks that would indicate 

antiferromagnetic order and all magnetic contributions simply add to the existing Bragg 

nuclear peaks, thus the propagation vector k is [0 0 0]. In order to determine the magnetic 

ordering mode for DyGa, we carried out symmetry analysis for the Dy site. There are 

sixteen possible magnetic space groups corresponding to the Cmcm spacegroup 

associated with Dy atoms at the 4c sites. Eight of these magnetic space groups involve 

anti-C order (Cp) and can be ruled out since they necessarily produce antiferromagnetic 

structures, due to the fact that moments related by the C translation  *
 

 
  

 

 
  + are 

antiparallel. The remaining eight magnetic space groups are shown in Table 4.2.  The 

only magnetic space groups that produce ferromagnetic order of the Dy sublattice in 

DyGa are Cmcʹmʹ, Cmʹcmʹ and Cmʹcʹm with ferromagnetic order along the orthorhombic 
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crystal a, b and c-axes respectively. 

 

 

Figure 4.2. Neutron powder diffraction patterns of DyGa obtained at (a) 125 K and (b) 3 

K, with a neutron wavelength of 1.6220(5) Å. Arrows indicate three important peaks used 

in determining the direction of the Dy magnetic moments (see text). 
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Table 4.2. Magnetic space groups belonging to Cmcm on the 4c site associated with a C 

magnetic lattice. X, Y, Z indicate non-zero components of the magnetic moment (Prandl 

1978) 

 

 

  

 

 

 

 

 

 The direction of the Dy magnetic moments can be determined as follows. From 

Figure 4.2, one can see considerable magnetic contributions to the (020) and (200) peaks. 

On the other hand, there is no magnetic intensity at the (002) position. These observations 

clearly indicate ferromagnetic order of the Dy sublattice along the c-axis corresponding 

to the Cmʹcʹm magnetic space group. The refinement of the 3 K pattern using the Cmʹcʹm 

magnetic space group is satisfactory with the conventional R-factors of Rp = 4.87, Rwp = 

3.78 and χ
2
 = 2.26.. We also find a refined Dy magnetic moment of 9.6(3) µB, which is 

essentially the „free-ion‟ value for the Dy
3+

 ion (gJ = 10).  

 The observation of a full Dy moment at 3 K is in complete agreement with the 

result of the 
161

Dy Mössbauer spectroscopy study of DyGa by Iraldi et al. (1974). The 

observation of c-axis magnetic order is also consistent with the signs and relative 

magnitudes of the diagonal and off-diagonal second-order crystal field terms derived 

from single-crystal susceptibility measurements by Shohata (1977) which are listed in 

Table 1.3. 

 
Atomic positions 

0, y, 1/4 0, −y, 3/4 ½, y+½, 1/4 ½, −y+½, 3/4 

Cmcm     

Cmʹcm +Z −Z +Z −Z 

Cmcʹm     

Cmcmʹ +X −X +X −X 

Cmʹcʹm Z Z Z Z 

Cmcʹmʹ X X X X 

Cmʹcmʹ Y Y Y Y 

Cmʹcʹmʹ +Y −Y +Y −Y 
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4.3. Bulk resistivity measurement on HoGa 

 Figure 4.3 shows the temperature dependence of the normalized electrical 

resistivity of HoGa. It can be seen that this compound shows metallic behaviour at high 

temperature, i.e. the resistivity increases linearly with increasing temperature. The data 

show a clear change in slope at around 63 K. A weak change in slope is also observed in 

the resistivity around 19 K.  

Figure 4.3. Normalized resistivity of HoGa. Arrows indicate the first and second 

transitions 

 

 The observation of these two transitions is in complete agreement with the 

previous results from magnetic measurements and 
119

Sn Mössbauer spectroscopy on 

HoGa (Delyagin et al. 2007, Chen et al. 2010), thus confirming that the first (at 63 K) and 

second transition (at 19 K) in our resistivity measurement are related to the transition 
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from the paramagnetic state to the ferromagnetic state and the spin reorientation 

transition, respectively. 

 

4.4. Magnetic structure and spin reorientation of HoGa 

4.4.1. Neutron Powder Diffraction 

 Neutron powder diffraction patterns of HoGa were recorded at 80 K, 45 K, 22 K 

and 4 K. HoGa is a ferromagnet with a Curie temperature of 66(3) K (Shohata 1977, 

Nesterov et al. 1992, Delyagin et al. 2007, Chen et al. 2010), therefore the 80 K pattern 

corresponds to the nuclear scattering from the orthorhombic Cmcm cell and was used to 

determine the lattice and atomic positions parameters. The refinement shows no unfitted 

peaks. Table 4.3 shows the refined atomic positions for HoGa at 80 K. The conventional 

R-factors for this refinement are Rp = 15.9, Rwp = 13.7 and χ
2
 = 2.33. 

 

Table 4.3. The atomic positions for HoGa, refined from the neutron 

diffraction pattern at 80 K 

Atom x y z 

Ho 0 0.3592(3) ¼ 

Ga 0 0.0750(6) ¼ 

 

  

The diffraction patterns recorded at 45 K, 22 K and 4 K show considerable magnetic 

contributions from the Ho sublattice. There are no extra peaks that would indicate 

antiferromagnetic order and all magnetic contributions simply add to the existing Bragg 

nuclear peaks, i.e. the propagation vector k is [0 0 0]. We used a similar refinement 

approach as in the case of DyGa. As before, we can immediately rule out the 

antiferromagnetic Cp groups. The remaining eight magnetic groups are given in Table 



48 
 

4.2. From these eight possible magnetic space groups, we can rule out the 

antiferromagnetic space groups Cmʹcm, Cmcmʹ, and Cmʹcʹmʹ based on single-crystal 

susceptibility measurements that clearly indicate ferromagnetic order (Shohata 1977).  

Thus we are left with three magnetic space groups that produce ferromagnetic order 

along one of the orthorhombic crystal axes. The observation of substantial magnetic 

contributions to the (020) and (200) peaks, combined with the absence of any magnetic 

intensity at the (002) peak, clearly indicates ferromagnetic order along the c-axis, 

corresponding to the Cmʹcʹm magnetic space group (Figure 4.4). At 45 K, we find a 

refined Ho magnetic moment of 6.2(2) µB. The conventional R-factors for this refinement 

are Rp = 11.7, Rwp = 11.3, Rmag = 6.31 and χ
2
 = 3.47. 

 The neutron diffraction pattern collected at 22 K is shown in Figure 4.5. Since 

similar intensity changes as with the pattern at 45 K were observed, the magnetic 

structure of the Ho sublattice was determined using the same arguments as those at 45 K. 

We find a refined Ho magnetic moment of 8.2(2) µB pointing along the c-axis at 22 K. 

The conventional R-factors for this refinement are Rp = 10.0, Rwp = 10.4, Rmag = 4.51 and 

χ
2
 = 4.55. 

 Upon further cooling below 22 K, we observe an increase in the magnetic 

intensity at the (021) peak, relative to the magnetic intensity at the (110) peak (Figure 

4.5). Similar changes also occur at other peaks, indicating that the Ho magnetic moments 

cant away from the c-axis. The refinement of the 3 K pattern shows that the canting Ho 

moments tip towards an intermediate planar arrangement between the crystallographic a- 

and b-axes. We find canting angles of θ = 30(2)
0
 and φ = 49(4)

0
. We also find that the Ho 

magnetic moments reach 8.8(2) µB i.e. the „free-ion‟ value (9 µB) at 3 K. Figure 4.6 
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illustrates the difference between the magnetic structure of HoGa at 22 K and 3 K. The 

conventional R-factors for this refinement are Rp = 7.74, Rwp = 8.45, Rmag = 2.70 and χ
2
 = 

3.46. The refined lattice parameters and the refined values of the magnetic moments and 

orientation of the Ho sublattice at different temperatures are summarized in Tables 4.4  

and 4.5 respectively. 
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Figure 4.4. Neutron powder diffraction patterns of HoGa collected at 80 K and 45 K with 

a neutron wavelength of 1.6220(5) Å. Arrows indicate three important peaks used in 

determining the direction of the Ho magnetic moments 
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Figure 4.5. Neutron powder diffraction patterns of HoGa collected at 22 K and 3 K with a 

neutron wavelength of 1.6220(5) Å.  
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Figure 4.6. Magnetic structure of the Ho sublattice in HoGa at (a) 22 K and (b) 3 K.  

 

 

 

Table 4.4.The lattice parameters for HoGa at different temperatures. 

T (K) 
Lattice parameters (Å) 

a b c 

80 4.2779(3) 10.7596(8) 4.0353(3) 

45 4.2764(5) 10.7575(10) 4.0345(4) 

22 4.2758(5) 10.7582(11) 4.0337(5) 

3 4.2763(3) 10.7584(8) 4.0332(3) 

 

 

 

 

 

(b) 

(a) 

a 
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b 
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Table 4.5.The refined magnetic data for HoGa at different temperatures. 

T(K) Ho moment (µB) θ (
0
) φ (

0
) 

80  0 − − 

45  6.2(2) 0 0 

22  8.1(2) 0 0 

3  8.8(2) 30(2) 49(4) 

 

 The observation of the canted ferromagnetic structure of HoGa which initially 

orders along the c-axis is in contrast with the ferromagnetic order of the isostructural 

compound DyGa which shows no spin reorientation upon cooling below Tc (Section 4.2). 

This difference illustrates the effect of the crystal field acting on the R
3+

 ions in RGa. As 

shown in Table 4.6, although both ions have negative second- and fourth-order Stevens 

coefficients, their sixth-order terms have opposite signs. Clearly, the spin reorientation of 

HoGa is driven by competition between the different crystal field orders, with the higher 

order (6
th

) term becoming significant as the temperature is lowered.  

 The observation of c-axis magnetic order is consistent with the signs and relative 

magnitudes of the diagonal and off-diagonal second-order crystal field terms derived 

from single-crystal susceptibility measurements by Shohata (1977) specifically, B20 > 0 

and B22
c 

< 0, where the crystallographic b-axis was taken as the principal axis (Z) of the 

crystal field Hamiltonian (see Table 1.3). 
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Table 4.6. Signs of the Stevens coefficients (second-order αJ , fourth-order βJ and sixth-

order γJ ) for the Dy
3+

 and Ho
3+

 ions (Elliott & Stevens 1953). 

 

Ions αJ βJ γJ 

Dy
3+

 − − + 

Ho
3+

 − − − 

 

 

 

4.4.2. The Interpretation of the 
119

Sn Mössbauer Spectroscopy data on 

Sn-doped HoGa 

 As discussed earlier in Chapter 1, Delyagin et al. (2007) used 
119

Sn doping in the 

RGa compounds to study the magnetic order of the R sublattice by 
119

Sn Mössbauer 

Spectroscopy. They showed that the EFG axes are collinear with the orthorhombic axes, 

as expected from the m2m point symmetry of the Ga 4c sites, with the particular 

identification of the EFG axes being (ZXY) = (abc). Within this EFG frame, the 

temperature dependence of the quadrupole splitting showed that above about 20 K the 

hyperfine field makes an angle of 90
0
 with the Z(EFG) axis, along the Y(EFG) axis. In 

other words, Ho magnetic ordering is along the c-axis, consistent with the result from our 

neutron diffraction. At 5 K, Delyagin et al. deduced a canting angle of 58
0
, with the 

hyperfine field lying in the YZ(EFG) plane, i.e. Ho magnetic order in the crystallographic 

ac-plane. In Figure 4.7 we show the orientational relationship between the Mössbauer and 

neutron diffraction results, in terms of the crystal (abc) and EFG (XYZ) axes. 

 The quadrupole splitting in a magnetically split Mössbauer spectrum can be 

expressed as  



55 
 

 
    

     

 
                  )       )  (4.1)  

where α and β are the polar angles of the hyperfine field in the principal axis frame of the 

EFG and η  is the asymmetry parameter of the EFG tensor. Delyagin et al. (2007) 

deduced eQVzz = 1.10(8) mm/s and η = 0.65(9). Hence, using the canting angle of α = 

58
0
 and β = 90

0
, they  obtain the observed value of QSH =     0.087(4) mm/s. 

 As mentioned before, we find canting angles of θ = 30(2)
0
 and φ = 49(4)

0 
relative 

to the crystallographic c-axis. The principal Z-axis of the EFG frame itself lies along the 

crystallographic a-axis. It is straightforward to show that our aforementioned angles 

correspond to  α = 71(3)
0
 and β = 66(3)

0
 in the EFG frame employed in the Mössbauer 

work. Thus, by using equation (5.1), we get a QSH value of -0.15(4) mm/s, which is 

consistent with the Mössbauer result. 

 

 

Figure 4.7. Orientation of the Ho magnetic moment relative to the crystal (abc) and EFG 

(XYZ) axes, used in the interpretation of the neutron powder diffraction and Mössbauer 

data. 
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4.5. Summary 

 We have shown that the magnetic order of the Dy and Ho sublattices in DyGa and 

HoGa is ferromagnetic along the orthorhombic c-axis below their Curie temperatures. At 

3 K, the refined magnetic moments of the Dy and Ho atoms are 9.6(3) µB and 8.8(2) µB, 

respectively. We have also shown that below 22 K the Ho moment cant away from the c-

axis towards the ab-plane, and at 3 K the Ho magnetic order is defined by the polar 

angles of θ = 30(2)
0
 and φ = 49(4)

0
 relative to the crystallographic c-axis. 



57 
 

5. Magnetic Structure and Spin Reorientation of GdGa 

 

5.1. Phase Identification 

 Figure 5.1 shows the x-ray powder diffraction pattern of GdGa. Refinement of 

this pattern confirmed the formation of the CrB-type Cmcm orthorhombic structure with 

impurities of GdGa2 (space group P6/mmm) and Gd2O3 (space group Ia ̅) present in the 

total amount of less than 4 wt%. The lattice parameters of GdGa are a = 4.3447(6) Å, b = 

11.019(11) Å and c = 4.1080(6) Å.  The crystallographic data for the Gd and Ga sites are 

given in Table 5.1. 

Figure 5.1. X-ray powder diffraction pattern of GdGa collected at room temperature with 

Cu-Kα radiation. The Bragg markers, from top to bottom, represent GdGa, Gd2O3 and 

GdGa2 respectively. 
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Table 5.1. Crystallographic data for GdGa. 

Atom x y z 

Gd 0 0.3614(3) ¼ 

Ga 0 0.0785(4) ¼ 
 

5.2. Neutron Scattering Length of Gd 

 As shown earlier in Chapter 2, the nuclear cross-section depends on the scattering 

length of the atom. The scattering length itself is a complex number and varies with the 

energy of the neutron. In this work, we used the scattering length tabulation by Lynn and 

Seeger (1990), to determine the scattering length for natural Gd corresponding to our 

neutron wavelength (λ = 1.33(1) Å and E = 46.34 meV). The values of the real and 

imaginary parts of the scattering length of natural Gd corresponding to our neutron 

wavelength are 10.54 fm and -12.66 fm respectively. 

 

5.3. Neutron Powder Diffraction 

 We have mentioned in section 3.4 that the neutron wavelength was 1.33(1) Å, in 

order to minimize the absorption cross-section of natural Gd. However, the use of such a 

neutron wavelength has a disadvantage, since it will compress the diffraction pattern 

including the magnetic peaks, into a lower scattering angle (2θ), although in this work we 

are able to distinguish each magnetic peak clearly. Due to the impact of angle-dependent 

absorption effects (Ryan & Cranswick 2008), and considering the small values of the 

magnetic form factor of Gd
3+

 at high angles (large Q values), only the data within 5
0 

< 2θ 

< 36
0 
(0.41 Å

-1 
< Q < 2.92 Å

-1
) were considered in the refinement.  

 Neutron powder diffraction patterns of GdGa were obtained at 220 K, 110 K and 
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3.6 K. GdGa is a ferromagnet with a Curie temperature of 185(4) K (Shohata 1977, 

Leithe-Jasper & Hiebl 1996, Delyagin et al. 2007, Zhang et al. 2009), therefore the 220 K 

pattern corresponds to the nuclear scattering from the orthorhombic Cmcm cell and was 

used to determine the crystal structure. One broad peak at 2θ ~ 34
0
 was identified as an 

artefact by comparing data obtained at different times at the same temperature (see 

Appendix A). Therefore, this artefact was excluded from the refinement. In Figure 5.2, 

we show the neutron diffraction pattern obtained at 220 K. The refined lattice parameters 

are a = 4.329(2) Å, b = 11.064(4) Å, c = 4.087(2) Å. Table 5.2 gives the refined atomic 

positions for GdGa at 220 K.  

 

Figure 5.2. Neutron powder diffraction pattern of GdGa collected at 220 K with a neutron 

wavelength of 1.33(1) Å. 
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 For the low temperature refinements, we used the difference between the high and 

low temperature patterns (110 K – 220 K and 3.6 K – 220 K patterns) to minimize the 

ambiguity in the refinements. These difference patterns will reflect only the magnetic 

contributions of the Gd magnetic moments. The purely nuclear scattering at 220 K was 

used to set scale factors and the instrument parameters. These parameters were then fixed 

during the refinement of the difference patterns. 

 

 

Table 5.2. The atomic positions for GdGa, refined from the neutron 

diffraction pattern at 220 K 

Atom x y z 

Gd 0 0.3558(3) ¼ 

Ga 0 0.1076(7) ¼ 

 

 Figure 5.3 shows the fitted difference between the 220 K and 110 K patterns. 

Despite the poor signal-to-noise ratio of the pattern, one is still able to see clear magnetic 

contributions arising from the magnetic ordering of the Gd sublattice. The strongest 

magnetic peaks occur at the (110), (021) and (111) positions with scattering angles 2θ = 

19.1
0
, 23.4

0
 and 26.9

0
, respectively. All of the magnetic peaks occur at the same 

scattering angles as the nuclear peaks and no additional peaks were observed, indicating 

ferromagnetic order of the Gd sublattice with a propagation vector k = [0 0 0], therefore a 

similar approach as used to determine the direction of the Dy and Ho sublattices in DyGa 

and HoGa (chapter 4) can be employed. 

 As in the cases of DyGa and HoGa, we can immediately rule out the 

antiferromagnetic Cp groups. From the eight possible magnetic space groups shown in 

Table 4.2, we can rule out the antiferromagnetic space groups Cmʹcm, Cmcmʹ, and 
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Cmʹcʹmʹ based on susceptibility measurements that indicate ferromagnetic order (Leithe-

Jasper & Hiebl 1996). The absence of a magnetic contribution to the (020) peak allows us 

to rule out all magnetic space groups except the Cmʹcmʹ space group corresponding to 

ferromagnetic order along the crystallographic b-axis. At 110 K, we find a refined Gd 

magnetic moment of 4.6(2) µB. 

Figure 5.3. The refinement of the difference between the 220 K and 110 K patterns of 

GdGa using the Cmʹcmʹ space group.
 

 

 Magnetic measurements on GdGa carried out  by Zhang et al. (2009) were used to 

check our refinement. The average magnetization at 110 K can be determined by 

extrapolation of the isothermal magnetization to zero field. According to their 

measurement (Figure 3(a) from (Zhang et al. 2009)), the magnetization value of GdGa is 

about 110 J/T.kg at 110 K, which corresponds to an average moment of 4.47 µB/Gd. Our 
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neutron diffraction refinement at 110 K yields a refined Gd magnetic moment of 4.6(2) 

µB which is in excellent agreement with their result. 

 The 3.6 K – 220 K difference pattern is shown in Figure 5.4. All of the magnetic 

peaks occur at the same positions as the nuclear peaks and no additional peaks were 

observed, indicating ferromagnetic order of the Gd sublattice with a propagation vector k 

= [0 0 0]. We also observe an increase in the magnetic intensity at the (040)/(130) and 

(110) peaks indicating that the Gd magnetic moments cant away from the b-axis. 

Figure 5.4. The difference between the 220 K and 3.6 K patterns. The labeled Bragg 

markers indicate some important reflections. 

 

 A recent 
119

Sn Mössbauer spectroscopy study on Sn-doped GdGa (Delyagin et al. 

2007) showed that below Tsr, which is reported to be 110 K, the Gd magnetic moments 

form a non-collinear magnetic structure in either the crystallographic ac or ab-plane, 
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since the Mössbauer measurement was found to be insensitive to the azimuthal angle of 

the Gd moment direction. According to this study, the Gd magnetic moments at 5 K point 

in two different directions (θ1 ~ 30
0
 and θ2 ~ 60

0
). Given the poor signal-to-noise ratio of 

the difference pattern in the present refinement, the possible magnetic structure will be 

deduced by trial and error. However, it was found necessary to refine the lattice 

parameters, to account for the lattice contraction as the temperature is lowered. 

To begin with, we use the simplest ordering mode of a collinear ferromagnetic 

structure and also a fixed magnetic moment of 7 µB. As discussed earlier, there are eight 

possible magnetic space groups corresponding to the Cmcm space group associated with 

Gd atoms at the 4c sites, as shown in table 4.2. Simulated patterns were generated for all 

eight possible magnetic space groups but none gave a good qualitative agreement with 

the experimental data, which suggests a non-collinear structure. The non-collinear 

structure itself can be considered as a combination of ferromagnetic and 

antiferromagnetic structures in which the magnetic moments point in two different 

directions. Initially, we consider the simplest non-collinear structure which is a non-

collinear ferromagnetic structure. For a given eight possible magnetic space groups listed 

in Table 4.2, we will have 3 simple non-collinear ferromagnetic structures, derived from 

the combination of the Cmcʹmʹ, Cmʹcmʹ and Cmʹcʹm magnetic space groups confined to 

either the crystallographic ab-, ac- or bc-plane, to be compared against the experimental 

pattern. After several trial and error refinements, the best combination that gave good 

agreement with the experimental data is a non-collinear ferromagnet in the bc-plane 

which is the combination of the Cmʹcmʹ and Cmʹcʹm magnetic space groups. 

Once the possible magnetic structure has been identified, the refinement can 
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proceed by varying the moment and the canting angles.  The best refinement using this 

non-collinear structure is shown in Figure 5.5. The refined value of the Gd moment is 

6.0(2) µB, somewhat lower than the „free-ion‟ value for the Gd
3+

, i.e. 7 µB. We also find 

that the Gd magnetic moments are oriented in two different directions, i.e. θ1 = 44(7)
0
 and 

θ2 = 6(7)
0
, with respect to the c-axis as shown in Figure 5.6 which is in contrast with the 

result from 
119

Sn Mössbauer spectroscopy result on Sn-doped GdGa. 

 

Figure 5.5. The refinement of the difference between the 220 K and 3.6 K patterns for 

GdGa. The Bragg markers were generated using the   ̅ space group. 
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Figure 5.6. Magnetic structure of the Gd sublattice in GdGa above (a) and below (b) the 

spin reorientation temperature.  

 

 Gd
3+

 is an S-state ion which has spherical charge distribution of the 4f electron 

shell. In such a case, the 4f electron shell distortion due to the crystal field interaction is 

negligible, thus the direction of the Gd magnetic moments is solely determined by the 

exchange interaction. The observation of a non-collinear magnetic structure at low 

temperature as illustrated in Figure 5.7 in which the Gd moments located at z = 0.25 point 

in a different direction from the Gd moment at z = 0.75, implies that there are two 

exchange fields acting on a different ab-plane. 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) a 
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Figure 5.7. Schematic arrangement of the Gd magnetic moments in GdGa at 3.6 K 

projected onto the bc-plane.  

 

 

5.4. 
155

Gd Mössbauer Spectroscopy on GdGa 

 The 
155

Gd Mössbauer spectrum of GdGa collected at 5 K is shown in figure 5.8. 

The spectrum could not be fitted with a single component and thus was fitted using two 

equal-area subspectra. The values of Bhf, eQVzz, isomer shift (δ), and the asymmetry 

parameter (η) for both spectra were kept similar, while the polar angles θ and φ were 

varied independently for both spectra. The isomer shifts are 0.46 and 0.47 mm/s, relative 

to the SmPd3 source. The fitting parameters are summarized in Table 5.3. 

 Due to the m2m point symmetry of the Gd site in GdGa, the principal axes of the 

EFG (XYZ) coincide with the crystallographic axes (abc). Although we cannot identify 

directly the individual axes, in the following discussion we shall show that we can use the 

second-order crystal field parameters deduced by Shohata (1977) and Shohata et al. 

(1974) to determine the axial correspondences.  

 The EFG at the R sites contains contributions from both the 4f electronic shells of 

the R
3+

 ion and the surrounding charges (Cadogan & Ryan 2004). Gd
3+ 

is an S-state ion, 

thus the contribution of the 4f shell to the total EFG is zero and the dominant contribution 

to the total EFG comes from the surrounding lattice charges. It has been shown before 

z = 0.75 

z = 0.25 
b 

c 
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that there are relationships between the EFG tensor components and the second-order 

crystal field coefficients, in particular         and             ) (see section 

2.4.5). Despite the fact that there is also contribution from the asphericity of the valence-

electron charge density to the EFG (Coehoorn et al. 1990), these useful approximations 

can be used in the following discussion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8. 
155

Gd Mössbauer spectrum of GdGa collected at 5 K. 

 

 

Table 5.3. The hyperfine parameters of the 
155

Gd Mössbauer spectrum at 5 K. 

 

 
eQVzz 

(mm/s) 
B

hf
 (T) η θ (

0
) φ (

0
) 

Area 

(%) 

Gd1  1.43(3) 39.8(3) 0.88(1) 49(2) 90 50 

Gd2  1.45(4) 39.5(3) 0.87(1) 0(2) 90 50 
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 The second-order crystal field parameters of RGa were deduced by Shohata 

(1977) and Shohata et al. (1974) using the crystallographic b-axis as the principal Z-CEF 

(Crystalline Electric Field) axis with the particular identification of (abc) = (YZX). 

According to their results (listed in Table 1.3), the average values of     and     across 

the RGa series are    280 K/Å
2
 and 464 K/Å

2
 respectively. It is conventional to choose the 

principal axes of the EFG such that 

 |   |  |   |  |   | (5.1)  

Using the above assumptions, i.e.         and             ), it can be seen that 

the average values of the measured     and     lead to |   |  |       |, which 

implies that the b-axis is not the principal Z-EFG axis. Under this condition, one needs to 

rotate the CEF axes, until the requirement in (5.1) is met, i.e. |   |  |   |. This can be 

done using the spin-operator rotational transformations (Rudowicz 1985):  

 
   

  
 

 
         )    

 

 
               

   
  

 

 
          

 

 
        )           

 

(5.2)  

where the prime signs indicate the rotated parameters. It is straightforward to show that 

under a rotation of θ = 90
0
, φ

 
= 0

0
 with respect to the b-axis, the values of    

  and    
  

are 372 K/Å
2
 and    188 K/Å

2
. Under such rotation, the c-axis is now the principal Z-EFG 

axis. A further rotation of θ = 0
0
, φ

 
= 90

0 
with respect to the c-axis yields the    

  and 

   
  values of 372 K/Å

2
 and 188 K/Å

2
, i.e. the condition of |   |  |   |  |   | is 

fulfilled. Furthermore, under such a rotation we can identify the appropriate EFG axes as 

(abc) = (XYZ).  

 The rotated crystal field coefficient    
  was also used to check our measured 
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electric quadrupole coupling constant eQVzz value. As mentioned earlier, we can assume 

that there is a direct relationship between the diagonal EFG tensor components and the 

second-order crystal field coefficients. Under this assumption, one often writes the 

following equation to derive the second-order crystal field coefficient (   ) from Vzz 

(Stewart 1985) 

 
   

   
 

 
    (

    

    
) (5.3)  

where    and     are the Sternheimer antishielding factor and the lattice shielding factor 

respectively. The approximate value of (
    

    
)  for Gd

3+
 is 212 ± 9, which is reasonably 

applicable to all Gadolinium intermetallic compounds (Cadogan et al. 2007). Hence, the 

average value    
  of 372 K/Å

2
 yields Vzz =    (2.72   0.12) 10

21
 V/m

2
. Using the electric 

quadrupole moment of the 
155

Gd ground state, Q = 1.30 ± 0.02 barns, one obtains a 

deduced eQVzz value of     (5.66   0.34) 10
-26
 J which converts to    (1.22   0.08) mm/s 

(note that for the 86.5 keV Mössbauer transition in 
155

Gd, 1 mm/s converts to 4.625×10
-26

 

J (Cadogan et al. 2007)), in agreement with the average eQVzz value from our results, 

which is      1.44(5) mm/s. 

 From Table 5.3, it can be seen the Gd moments point in two different directions,  

θ1 = 49(2)
0
 and θ2 = 0(2)

0
 with respect to the Z-EFG (the crystallographic c-axis). This 

result is consistent with our neutron diffraction refinement which shows that the Gd 

magnetic moments point in two different directions θ1 = 44(7)
0
 and θ2 = 6(7)

0 
with 

respect to the c-axis on the bc-plane. 
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5.5. The Interpretation of 
119

Sn Mössbauer Spectroscopy on Sn-doped 

GdGa  

 As discussed earlier, Delyagin et al. (2007) used 
119

Sn Mössbauer spectroscopy to 

examine the spin reorientation in Sn-doped GdGa. They showed that the 
119

Sn  spectrum 

at 5 K can be well fitted using two magnetically split subspectra which led to the 

suggestion of a non-collinear structure of the Gd sublattice. Although we have shown that 

we observe a different magnetic structure, we still have one remaining question to answer 

which is whether the magnetic structure derived from our neutron diffraction refinement 

at 3.6 K is able to explain the magnetic splitting in the 
119

Sn Mössbauer spectra. 

 In order to examine the transferred hyperfine field at the Sn sites in Sn-doped 

GdGa, we have determined the nearest-neighbour environments of the Sn atoms using the 

BondStr program embedded in the Fullprof Suite program. Using the lattice parameters 

and atomic positions from the neutron diffraction refinement at 220 K, we find that each 

Sn atom (which occupy the Ga sites) is surrounded by seven Gd atoms in the range of 

distances between 2.70 Å and 3.6 Å.  

 There are four Sn atoms in Sn-doped GdGa. The nearest-neighbour environment 

for each Sn atom based on the magnetic structure of GdGa at 3.6 K is illustrated in Figure 

5.9.  Two of the Sn atoms (labelled as Sn1) experience a different direction of the net 

transferred hyperfine field than the other two atoms (Sn2). This difference in transferred 

hyperfine field splits these four Sn atoms into two groups, which leads to the two 

magnetically split subspectra observed by 
119

Sn Mössbauer spectroscopy. 
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Figure 5.9. Nearest-neighbour environment of the Sn sites in the Sn-doped GdGa. Red 

and green arrows represent the canting angles of θred = 44
0
 and θgreen = 6

0
, obtained by 

neutron diffraction. 

 

5.6. Summary 

 We have examined the magnetic structure and spin reorientation of GdGa by 

neutron powder diffraction and 
155

Gd Mössbauer spectroscopy. At 110 K, the Gd 

moments are aligned ferromagnetically along the crystallographic b-axis. Upon cooling 

below the spin reorientation temperature, the Gd moments are canted away from the b-

axis. At 3.6 K, we find that the Gd moments form a non-collinear ferromagnetic structure 

with the Gd magnetic moments pointing in two different directions θ1 = 44(7)
0
 and θ2 = 

6(7)
0 

with respect to the c-axis within the bc-plane. This results is consistent with our 

155
Gd Mössbauer spectroscopy result  in which we observe the two Gd moments pointing 

in two different directions,  θ1 = 49(2)
0
 and θ2 = 0(2)

0
 with respect to the Z-EFG axis. 

b 

c 
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6. Spin Reorientation of ErGa 

 

6.1. Phase Identification 

 Figure 6.1 shows the x-ray powder diffraction pattern for ErGa. The refinement of 

this pattern confirmed the formation of the CrB-type Cmcm orthorhombic structure with 

impurities of Er2O3 (space group Ia ̅) and Er3Ga5 (space group Pnma) present in the total 

amount of less than 4 wt%. The lattice parameters are a = 4.2619(2) Å, b = 10.7349(2) Å 

and c = 4.0320(1) Å.  The crystallographic data for the Er and Ga sites are given in Table 

6.1. 

Figure 6.1. X-ray powder diffraction pattern of ErGa collected at room temperature with 

Cu-Kα radiation. The Bragg markers, from top to bottom, represent ErGa, Er2O3 and 

Er3Ga5 respectively. 
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Table 6.1. Crystallographic data for ErGa. 

Atom x y z 

Er 0 0.3593(1) ¼ 

Ga 0 0.0788(2) ¼ 
 

6.2. 
166

Er Mössbauer Spectroscopy 

 The 
166

Er Mössbauer spectra on ErGa collected at various temperatures from 35 K 

to 5 K are shown in Figure 6.2. All spectra were fitted with a single subspectrum with an 

asymmetry parameter of η = 0. All spectra below 20 K show a well-resolved pentet as 

expected from the 
166

Er 2  0 transition. The spectra above 20 K are broadened and 

collapse towards the center with increasing temperature, due to magnetic relaxation 

effects. It can also be noticed that for the spectra below 17.5 K, the splitting between the 

4
th

 and 5
th
 intensity lines (with the 1

st
 intensity line being the left-most line) is increased 

relative to the splitting between the 1
st
 and 2

nd
 intensity lines. These differences are due to 

the quadrupole interaction and are related to the increasing value of the quadupole 

splitting parameter eQVzz, which in the case of 
166

Er Mössbauer with η = 0 and θ = 0 can 

be written as (Cadogan & Ryan (2004)) 

 
      

 

 
       )        )  (6.1)  

where    represent the line positions measured in mm/s. The hyperfine parameters for 

each temperature are summarized in Table 6.2. 
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Figure 6.2. 
166

Er Mössbauer spectra for ErGa obtained at various temperatures 

 

 

 

 

 

% 
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6.2.1. Magnetic Hyperfine Field 

 The hyperfine field values obtained at various temperatures were used to 

determine the ordering and spin reorientation temperatures. Assuming both the reduced 

magnetization,   
   )

   )
 and the reduced hyperfine field,     

     )

     )
  follow the same 

temperature dependence, molecular field theory for T ≤ Tc shows that the temperature 

dependence of the hyperfine field can be determined using a Brillouin function     ) 

(Greenwood & Gibb 1971) which is given by 

      )       )    ) (6.2)  

where 

 
    )  

    

  
    (

    

  
 )  

 

  
    (

 

  
 )        

  
  

   

   

 
      

 

  
  

(6.3)  

In the case of the Er
3+

 ion with J = 15/2, equation (6.3) can be written as 

 
   

 

  )  
  

 
    (

  

 
 )  

  

 
    (

  

 
 )      

  

  

   

 
        

 

  
 (6.4)  

  

 The temperature dependence of the hyperfine field is shown in Figure 6.3. The 

hyperfine field values above 15 K can be fitted using the Brillouin function    

 

 following 

equation (6.2) with      ) = 727(3) T and Tc = 33(1) K (indicated with the solid line). 

From the figure, we can also see that the change in slope corresponding to the spin 

reorientation transition Tsr occurs at around 17 K. These values are in agreement with the 

reported values of Tc = 32(1) K (Fujii et al. 1971, Shohata 1977, Delyagin et al. 2007, 

Chen et al. 2009) and Tsr ~ 15 K (Delyagin et al. 2007, Chen et al. 2009). Moreover, the 
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hyperfine field at 5 K is 751.65 ± 1.64 T. Using the moment to field conversion factor of 

87.2 ± 1.2 T/µB (Ryan et al. 2003), this hyperfine field value converts to an Er moment 

of 8.6(2) µB, which is in excellent agreement with the neutron diffraction results of 

Barbara et al.(1971) i.e. an Er moment of 8.7(5) µB at 4.2 K. 

 

Table 6.2. The 
166

Er hyperfine parameters of ErGa obtained at various temperatures. 

 

T (K) eQVzz (mm/s) Bhf (T) δ (mm/s) 

5.0 16.88 ± 0.36 751.65 ± 1.64 0.57 ± 0.08 

7.5 16.43 ± 0.24 741.72 ± 1.06 0.41 ± 0.05 

10.0 15.86 ± 0.29 727.70 ± 1.30 0.36 ± 0.06 

12.5 13.99 ± 0.28 695.88 ± 1.33 0.30 ± 0.06 

13.75 12.33 ± 0.30 670.21 ± 1.49 0.30 ± 0.07 

15.0 10.35 ± 0.32 641.88 ± 1.60 0.13 ± 0.07 

17.5 8.61 ± 0.29 593.83 ± 1.50 0.14 ± 0.07 

20.0 7.76 ± 0.43 557.50 ± 2.30 0.33 ± 0.10 

22.5 7.27 ± 0.44 511.78 ± 2.61 0.35 ± 0.11 

25.0 6.20 ± 0.60 450.23 ± 3.84 0.30 ± 0.15 

30.0 4.50 ± 0.50 313.96 ± 40.38 0.30 ± 0.00 

35.0 4.62 ± 0.50 0 0.30 ± 0.00 
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Figure 6.3. The temperature dependence of the 
166

Er hyperfine field. The solid line 

represents the Brillouin function    

 

 . The dashed curve is a guide to the eye.  

 

 

6.2.2. Electric Quadrupole Interaction 

 The quadrupole splitting parameter eQVzz shows a strong temperature 

dependence as seen in Figure 6.4. In contrast with 
155

Gd where the total EFG comes from 

the surrounding lattice charges, the contribution to the total EFG at the 
166

Er nucleus 

mostly comes from the crystal field distortion of the 4f shell, hence it has a temperature-

dependence. The sudden increase in eQVzz by about ~ 5 mm/s between 17 K and 10 K is 

related to the spin reorientation transition. At 4 K, the eQVzz value is 16.9(4) mm/s, close 

to the „free-ion‟ value of 16.3(7) mm/s (Bleaney 1979), although it is slightly higher, 

indicating a lattice contribution to the total EFG. 
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Figure 6.4. The temperature dependence of the 
166

Er quadrupole splitting parameter 

eQVzz. The sudden increase about 5 mm/s between 17 and 10 K is clear. 

  

 The total EFG at the 
166

Er nucleus in the presence of hyperfine field can be 

written as (Cadogan et al. 2003) 

 
              

         

 
         ) (6.5)  

assuming the asymmetry parameter η = 0 from the Mössbauer fitting. The angle   

represents the direction of the hyperfine field with respect to the principal Z-EFG axis. 

The           for ErGa can be estimated from the purely lattice contribution to the total 

EFG in GdGa, using the relation 

 
            )              )  

    )

    )
 

     )

     )
 (6.6)  

where     ) and     ) are the electric quadrupole moments of 
166

Er and 
155
Gd, equal 

to    1.9(4) and 1.30(2) barns respectively.      ) and      ) are the transition energies 
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for 
155

Gd
 
 and 

166
Er equal to 86.546 and 80.557 keV, respectively. Using our average 

eQVzz value of     1.44(5) mm/s for 
155

Gd in GdGa, one obtains an             ) of 

2.26(60) mm/s. Moreover, the angular term in (6.5) has minimum and maximum values 

of     1 (for θ = 90
0
) and +2 (for θ = 0

0
), hence we expect a maximum change of the 

          of 3.39 mm/s due to the lattice contribution only. As mentioned earlier, we 

observed a sudden increase in eQVzz of about 5 mm/s, indicating that this change cannot 

be attributed solely to the change in          , but also the change in         due to 

the crystal field interaction. The dominant contribution to the       comes from the 

temperature-dependence of  〈   〉 where        
       ). This term is essentially 

the Boltzmann average of the Stevens operator over the thermally populated crystal field 

levels. For the m2m point symmetry of the Er site in ErGa, the total energy of the system 

can be described by a Hamiltonian containing the interaction of the Er
3+

 ion with the 

crystal field and the exchange field, which can be written as 

                  

                                                  

                                                   ⃗      

(6.7)  

where    is the Landé g-factor of Er
3+ 

ion, equal to 1.2, and the  ⃗      is the exchange 

field acting at the Er site. The diagonalization of the Hamiltonian in (6.7) can be used to 

calculate the expectation value of 〈  〉 via 

 〈  〉  ∑  

 

⟨  |    |  ⟩ (6.8)  

where 
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)

 
                         ∑    

   

  
)

 

 (6.9)  

  is the partition function and | ⟩ is the eigenstate corresponding to the eigenvalue    of 

the Hamiltonian in (6.7). It can be seen that the expectation value of 〈  〉 depends on the 

crystal field parameters     ...    . Thus, we can say that the sudden increase in eQVzz is 

not only due to the change in the Er moment direction with respect to the principal Z-

EFG axis, but also the change in the expectation value of 〈  〉 because of the crystal field 

interaction. Unfortunately, we could not determine the Er moment direction solely from 

this 
166

Er Mössbauer measurement, and neutron powder diffraction measurement at 

various temperatures are planned in the near future to give a definitive determination. To 

this end, we have already prepared a large sample of ErGa sufficient for the neutron 

diffraction experiments. 

 

6.3. Summary 

 We have used 
166

Er Mössbauer spectroscopy to study the spin reorientation in 

ErGa. Both the quadrupole splitting parameter and the hyperfine field show sudden 

increases at around 17 K, which are related to the spin reorientation transition. From the 

hyperfine field value at 5 K, we are able to deduce an Er moment of 8.6(2) µB which is in 

excellent agreement with the previous neutron diffraction result of 8.7(5) µB (Barbara et 

al. 1971). 
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7. General Conclusions and Suggestions for Future Work 

 

7.1. General Conclusions 

 The magnetic structures and spin reorientations of the RGa (R = Gd, Dy, Ho and 

Er) intermetallic compounds have been studied using neutron powder diffraction and rare 

earth Mössbauer spectroscopy. The magnetic structure determination was performed 

using a symmetry analysis based on the magnetic space groups and all neutron diffraction 

data were refined using the Rietveld method. 

 Neutron diffraction data on DyGa and HoGa shows that both the Dy and Ho 

sublattices order ferromagnetically along the c-axis below their Curie temperatures. At 3 

K, the Dy moment is 9.6(4) µB. However, no spin reorientation was observed in this 

compound. In contrast, neutron powder diffraction data on HoGa at 3 K shows that the 

Ho moments cant away from the c-axis towards the ab-plane. The refined magnetic 

moment for the Ho ion is 8.8(2) µB at 3 K, and its direction is defined by the polar angles 

of θ = 30(2)
0
 and φ = 49(4)

0
 relative to the crystallographic c-axis. This behavior is 

driven by competition between the different crystal field orders, with the higher order 

(6
th

) term becoming significant as the temperature is lowered. 

 Neutron diffraction on GdGa reveals that the Gd sublattice orders 

ferromagnetically along the b-axis just below the Curie temperature. To our knowledge, 

this is the first clear determination of the Gd moment‟s direction in GdGa. Upon cooling 

below the Curie temperature, the Gd magnetic moments cant away from the b-axis. At 

3.6 K, the refined Gd moment is 6.0(2) µB and the Gd moments
 
form a non-collinear 

ferromagnetic structure with the Gd magnetic moments pointing in two different 
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directions θ1 = 44(7)
0
 and θ2 = 6(7)

0 
with respect to the c-axis within the bc-plane. 

155
Gd 

Mössbauer spectroscopy on GdGa confirms our neutron diffraction refinement, in which 

we observe canting angles of θ1 = 49(2)
0
 and θ2 = 0(2)

0
 with respect to the Z-EFG axis at 

5 K. It has also been shown that the individual EFG axes are (XYZ) = (abc), based on 

average value of the second-order crystal field parameters obtained by Shohata et al. 

(1977). 

 The spin reorientation in ErGa has been studied using 
166

Er Mössbauer 

spectroscopy. The quadrupole splitting parameter value (eQVzz) shows a strong 

temperature-dependence. Sudden increases in both the quadrupole splitting parameter and 

the hyperfine field are observed at 17 K and are related to the reorientation of the Er 

moments. It has been shown that the sudden increase in eQVzz of  ~ 5 mm/s cannot be 

attributed solely to the change in the Er moment direction with respect to the principal Z-

EFG axis, but also encompasses the change in the expectation value of 〈   〉 due to the 

crystal field interaction. Based on the hyperfine field value at 5 K, we deduce an Er 

moment of 8.6(2) µB which is in excellent agreement with the previous neutron 

diffraction result of Barbara et al. (1971), i.e. an Er moment of 8.7(5) µB at 4.2 K. 

   

7.2. Suggestions for Future Work 

a. Neutron powder diffraction measurement on ErGa should be carried out at a 

number of temperatures (above Tc, just below Tc, above Tsr, below Tsr) to 

determine the magnetic structures before and after spin reorientation transition. 

The original data, obtained at 4 K (Barbara et al. 1971) only show the low 

temperature magnetic structure, and our analysis of the existing magnetometry 
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work (Shohata 1977) suggests that the spin-reorientation in ErGa at 17 K may in 

fact be a spin-flip from the b-axis to the a-axis 

b. It would be interesting to do 
155

Gd and 
157

Gd NMR spectroscopy in GdGa, and 

compare the results with the hyperfine parameters obtained from the 
155

Gd 

Mössbauer spectroscopy at 5 K. 

c. Until now, there is no report regarding the magnetic structure of TmGa. It would 

be interesting to investigate its magnetic structure using both neutron powder 

diffraction and 
169

Tm Mössbauer spectroscopy. 
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Appendix A 

The comparison of the normalized 3.6 K pattern of GdGa taken at different times. The 

patterns are plotted versus Q to show the effect of wavelength on the resolution. The 

artefact mentioned in the discussion is indicated with the asterisk.  

 
 


