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Abstract

Duration models are often concerned with time intervals between trades, longer

durations indicating a lack of trading activities. In this thesis, we study parameter

estimation for the Autoregressive Conditional Duration (ACD) and Stochastic Con-

ditional Duration (SCD) models. Maximum likelihood methods can usually be used

in the case of ACD models. However, the SCD models are based on the assumption

that durations are generated by a dynamic stochastic latent variable which is often

perturbed by Exponential, Weibull, Gamma or Log-Normal distributed innovations.

This makes the use of maximum likelihood methods difficult.

One alternative method of parameter estimation, in this case, consists in using

quasi-maximum likelihood after transforming the original nonlinear model into a

state-space model and using the Kalman filter, a similar filtering scheme or the

Generalized Method of Moments (GMM). We use the nonlinear filter and GMM

method to analyze the Quadratic Stochastic Conditional duration model as well.
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Chapter 1

Introduction

1.1 Motivation

Finance, perhaps the most popular area of Economics, is concerned with resource

allocation, as well as resource management, acquisition and investment. In partic-

ular, Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models

are among the most popular tools in financial market analysis because they are intu-

itive and easy to estimate. Furthermore, they capture the most important stylized

facts of volatility. The following are key features of volatility:

• volatility clustering: there exists clustering of changes in returns i.e. small

changes tend to be followed by small changes and or large changes by large

changes.

• volatility is leptokurtic: the distribution of returns has a higher probability
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mass in the tail area (“fat tails”) and a higher peak at the mean than that of

a standard normal distribution;

• heteroscedasticity: volatility is time-varying and non-constant;

• The squared values of the returns exhibit a high level of correlation whereas

the values of the returns do not have much correlation.

As an example, consider the daily closing prices and returns for Standard & Poor’s

100-share index (S&P100), recorded from January 2, 1991 to December 29, 2000.

The S&P100 data exhibits the above 4 properties.

Indeed, Figure 1.1a shows the daily closing prices pt and Figure 1.1b shows the re-

turns yt, where yt = ln( pt
pt−1

). From the both figures, the variability of closing prices

is seen to vary with low and high price fluctuations, indicating volatility clustering.

Figure 1.1c shows the observed distribution of yt. It exhibits a leptokurtic character

with a high peak at the mean, a thin midrange and “fat tails”. The Figure 1.1d

(QQ plot) agrees as well. Figure 1.1e and Figure 1.1f respectively display the sample

autocorrelation functions (SACF) of returns yt and squared returns y2
t . From these

graphs, the majority of the sample autocorrelations for y2
t are significant, while those

of yt mostly are not. The next example will show that the simple model yt = ε2t−1εt

(εt is a Gaussian white noise with variance σ2
ε ) can generate high peakedness. This

model was considered by Gouriéroux (1997). The resulting process yt is stationary

having variance Var(yt) = 3σ6
ε and conditional variance Var(yt|εt−1) = σ2

ε ε
4
t−1, which

2



(a) Weekly closing prices pt (b) Returns yt

(c) Probability distribution curve of yt (d) QQ-plot of yt

(e) SACF of return yt (f) SACF of return y2t

Figure 1.1: Sample Autocorrelation Function for the S&P 100 dataset
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depends on lagged residuals. According to

E(ε2nt ) = σ2n
ε

(2n)!

2nn!
,

we can get that E(y4
t ) = 315σ12

ε so that the kurtosis of the process yt is K(y) = 35.

1.2 Some Time Series Models

The following time series models are introduced. Suppose that at is a sequence of

uncorrelated random variables having mean zero and constant variance σ2
a.

• Autoregressive (AR) model

The yt process is called Autoregressive of order of p when it satisfies

yt − µ =

p∑
i=1

φi(yt−i − µ) + at,

under the stationary condition the solutions about the c for φ(c) = 0 should lie

outside the unicircle.

• Moving Average (MA) model

A moving average process of order q is defined by

yt = µ+ at −
q∑
i=1

θiat−i,
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where the parameter µ is the mean of the process and θi are the coefficients for the

process. These processes are well know in the time series literature and have been

used successfully in recent decades.

• Autoregressive Moving process (ARMA) model

The yt process is called ARMA (p,q) when it satisfied

(1− φ1B − · · · − φpBp)(yt − µ) = (1− θ1B − · · · − θqBq)at,

or, in other words,

yt − µ =

p∑
i=1

Biφi(yt−i − µ) + at −
q∑
j=1

Bjθjat−j

where B denotes the backward shift operator, and µ is the mean of the process.

The φi and θj are the coefficients for the process.

• Autoregressive Conditional Heteroskedasticity (ARCH) model

The ARCH model, introduced by Engle (1982), was the first model to provide a

systematic framework for volatility modeling. In order to understand the ARCH

model well, the structure of the model ARCH(p) is first introduced. It is given by

yt|Fyt−1 =
√
htZt,

5



ht = ω +

p∑
i=1

αiy
2
t−i,

where p > 0, ω > 0, αi ≥ 0, and Ft−1 is the past information set available at time

t. Note that the structure of the model, for ht, is similar to an MA model, where y2
t

plays the role of the innovations. To make σ2
t finite we assume that, 0 ≤ αi < 1. In

additional, Zt is taken to be a sequence of independent and identically distributed

(i.i.d.) random variables with zero mean and unit variance (we write Zt ∼ (0, 1) for

this) that is uncorrelated with ht. Then, it can be seen that

E(yt) = E[E(yt|Fyt−1)] = E[
√
htE(Zt)] = 0,

and

V ar(yt) = E(y2
t ) = E[E[y2

t |F
y
t−1]] = E[htE(Z2

t )]

= E[ω +
∑p

i=1 αiy
2
t−i]E[Z2

t ] = ω +
∑p

i=1 αiE[y2
t−i].

The stationarity of the process and the fact that E[yt] = 0 implies that

V ar(yt) = V ar(yt−i) = E(y2
t−i),

so that

V ar(yt) =
ω

1−
∑p

i=1 αi
.

Details will be given in Section 2.2.1. The Autocorrelation function and Partial

Autocorrelation function of the ARCH model will be shown in Figure 1.2.

6



(a) Autocorrelation of Residuals y (b) Autocorrelation of Residuals of y2

(c) Partial Autocorrelation of Residuals y (d) Partial Autocorrelation of Residuals y2

Figure 1.2: Sample ACF and PACF of ARCH(1) model yt and y2
t , when ω=2.5,

σ=0.2 and α1=0
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• Normal GARCH Model

Bollerslev (1986) introduced a useful extension known as the generalized ARCH

(GARCH) model. This GARCH(P,Q) time series model is given by

yt =
√
htZt,

ht = ω +
P∑
i=1

αiy
2
t−i +

Q∑
j=1

βjht−j,

where Zt is i.i.d. N(0,1), ω > 0, αi ≥ 0, βj ≥ 0, P ≥ 0, and Q ≥ 0. Note that the

assumption of normality of Zt implies that yt|Fyt−1 ∼ N(0, ht). Comparing this to

the ARMA model, we note the structure of the ht process is essentially ARMA with,

as before, y2
t playing the role of the innovations. Details will be given in Section

2.2.2.

• GARCH Model with conditional t-distribution

Originally, the GARCH model was introduced by Zaköıan (1994), with the normal-

ity assumption, that implied that yt|Fyt−1 ∼ N(0, ht). Alternatively, the conditional

density of yt can be a student-t distribution with a degree of freedom, given by

f(yt|Fyt−1) =
Γ(v+1

2
)

Γ(v
2
)
√
π(v − 2)ht

[
1 +

y2
t

v − 2

]−v + 1

2
,

8



where the gamma function is defined as

Γ(a) =

∫ ∞
0

xa−1e−xdx,

and where the degree of freedom, v > 2. It is a well-known property of the Student’s

t-distribution that, as the number of the degrees of freedom increases without bound,

the t-distribution approaches a standard normal distribution. For finite v, however,

the t-distribution has fatter tails than the corresponding normal distribution.

In Chapter 2, we mainly introduce volatility models. Volatility is a measure

of price variability over some period of time. It typically describes the standard

deviation of returns. The greater the volatility, the higher the risk. The volatil-

ity of price returns will be mainly described by GARCH and Stochastic volatility

models. Then, some nonlinear time series models are introduced. In Chapter 3,

Autoregressive Conditional Duration (ACD) models are introduced and the esti-

mation of parameters are discussed in detail. In Chapter 4, linear SCD model are

introduced and we discuss parameter estimation using Quasi-maximum likelihood

method (QML) based on Kalman filtering and GMM methods. In Chapter 5, the

new class of quadratic SCD models is presented along with parameter estimation

based on QML and GMM methods.

9



Chapter 2

Nonlinear Models

2.1 Introduction

In the early 1990s, many nonlinear time series models have been introduced and

studied in different areas. In this section, we begin by describing some of the

important nonlinear models that can be found in the literature.

2.1.1 Random Coefficient AR Models

In engineering, econometrics, hydrology, meteorology and biology, the literature has

demonstrated that many data sets can’t be adequately modeled by classical linear

time series models. For this reason, Nicholls & Quinn (1982) introduced the random

coefficient autoregressive (RCAR) models, a family of models where coefficients have

random characteristics. Since then, RCAR models attracted a lot of attention. The

10



RCAR models will be described in what follows. A pth order RCAR, or RCAR(p),

model is defined by

Zt =

p∑
i=1

(αi + b
(i)
t )Zt−i + at, (2.1)

where the following conditions are met for {Zt} to be a strictly stationary process

(i) {at} is a sequence of i.i.d. r.v.’s with mean 0 and variance σ2
a <∞;

(ii) α1, α2, . . . αp are constants;

(iii) {bt = (b
(1)
t , b

(2)
t , . . . , b

(p)
t )′} is a sequence of i.i.d. random vectors with zero

mean vector and dispersion matrix E(btb
′
t) = Σ;

(iv) {bt} and {at} are mutually independent.

Taking p = 1, the RCAR(1) model is reduces to

Zt = (α + bt)Zt−1 + at. (2.2)

When bt = 0 with probability 1, (2.2) reduces to an ordinary AR(1) model. As an

example where such a model is valid, let Zt−1 be the amount of a given substance

present in a system at the end of epoch t − 1, t = 1, 2, . . . with Z0 = 0. Suppose

an amount at of this substance is introduced during the time interval (t− 1, t] and

during the same interval a modification of the amount Zt−1 to (α + bt)Zt−1 takes

place. Then the total substance present at epoch t is described by model (2.2).

Assuming that {at} and {bt} are mutually independent and normally distributed

sequences, Nicholls & Quinn (1982) carried out the statistical analysis of model

11



(2.1). Specifically, they discuss maximum likelihood estimation of α1, α2, . . . , αp.

For the RCAR(1) model, they also obtain the conditional least squares (CLS) esti-

mator of α, given by

α̂ = (
N∑
t=2

ZtZt−1)/(
N∑
t=2

Z2
t−1).

They show it is consistent and asymptotically normal. Tjøstheim (1986) also studies

the problem of estimation in RCAR(p) models by using a maximum likelihood type

penalty function. Finally, parameter estimation in RCAR(p) models using the

theory of estimating functions is discussed by Thavaneswaran & Abraham (1988)

and Chandra & Taniguchi (2001).

2.1.2 Bilinear Time Series

Bilinear time series, which were introduced by Granger & Anderson (1978), are

another useful tool suitable for describing a nonlinear model. The general form of

a bilinear time series model is given by

Zt +

p∑
i=1

αiZt−i = at +

q∑
j=1

βjat−j +
P∑

m=1

Q∑
m=1

γmnat−mZt−n, (2.3)

where {at} is a sequence of i.i.d. r.v.’s with mean zero and finite variance. Fur-

thermore, for s < t, at and Zs are independent. We can denote the model (2.3)

by BL(p,q,P,Q). Though the model is nonlinear, it is linear in {at} and {Zt} when

they are considered separately. If we set P = Q = 0 then (2.3) reduces to an

12



ARMA(p,q) model and hence, can be considered as a generalization of an ARMA

model. Statistical analysis of this model in its general form is very difficult. One of

the simplest form of the model is given by

Zt = γZt−kat−l + at (2.4)

where, as before, {at} is a sequence of i.i.d. random variables with zero mean and

finite variance. When 0 ≤ γ < 1, {Zt} is a stationary process.

2.1.3 Threshold Models

When a time series shows sudden changes at certain time points, threshold models

can often be used. The basic idea here is that a nonlinear model can sometimes be

described as having different regimes over its state space. Then within each regime,

the model could be linear. The first model of this type was introduced by Tong

(1983).

In what follows, we briefly present different families of threshold models. Let

{c0, c1 . . . , cm} denote a ordered subset of real numbers such that c0 < c1 · · · < cm

where c0 = −∞ and cm = +∞. We denote the state-space as R and let Rj =

(cj−1, cj] so that {R1, R2, . . . , Rm} forms a partition of the real line.

The Threshold Autoregressive (TAR) model of order p is given by

Zt = α
(j)
0 +

pj∑
i=1

α
(j)
i Zt−i + αt if Zt−d ∈ Rj, j = 1, 2, . . . ,m,

13



where {at} is an i.i.d. innovation sequence with mean 0 and variance σ2, and d is

called the delay parameter, which is integer. If Zt−d ∈ Rj then the model is said to

be in regime j at time t. Within each regime, Zt follows an autoregressive model,

but not necessarily of the same order. The parameters involved in the model are

σ2, d, α
(j)
i , cj, i = 1, 2, . . . , pj, j = 1, 2, . . . ,m − 1. Note that the order p1, . . . , pm of

the model in the different regimes are assumed known.

As an example, consider a self-exciting Threshold Autoregressive (SETAR) model

with two regimes:

Zt =


α

(1)
0 +

∑p1
i=1 α

(1)
i Zt−i + at if Zt−d ≤ c

α
(2)
0 +

∑p2
i=1 α

(2)
i Zt−i + at if Zt−d > c

where 0 < d < c and c is the threshold parameter. This model was introduced by

Tong (1983). Petruccelli (1986) studied the properties of the least squares estimator

of the parameters in this model when α
(1)
0 = α

(2)
0 = 0 and p1 = p2 = 1.

A second example of a slightly different nature is the smooth Threshold Autore-

gressive (STAR) model (also with two regimes), introduced by Chan & Tong (1986)

and given by

Zt = α
(1)
0 +

p∑
i=1

α
(1)
i Zt−i +

[
α

(2)
0 +

p∑
i=1

α
(2)
i Zt−i

]
F (
Zt−d − γ

s
) + at,

where s acts as a smoothing parameter and F (.) is the distribution function of a

14



standard normal variate.

A threshold moving average (TMA) model with m regimes can been defined as

Zt = θ
(j)
0 + a

(j)
t +

qj∑
i=1

θ
(j)
i a

(j)
t−i if Zt−d ∈ Rj, j = 1, 2, · · · ,m,

where a {a(j)
t } is a sequence of independent Gaussian random variables with zero

mean and variance σ2
j . Finally, a threshold ARMA model has also been introduced

by Brockwell, Liu and Tweedie (1992) and is given by

Zt =
m∑
j=1

[
α

(j)
0 +

p∑
i=0

α
(j)
i Zt−i +

q∑
i=1

θ
(j)
i at−i

]
I{Zt−d∈Rj} + at

where IA denotes the indicator function of a set A and the other variables and

parameters are defined as before.

2.2 Modelling Variance: Conditional Heteroscedas-

ticity

Changes in variance, or volatility, over time can be modelled using an approach

based on autoregressive conditional heteroscedasticity. In the real word, share prices

and foreign exchange rates are known to exhibit such conditional heteroscedasticity,

which is detectable through the following phenomena.
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1. Large and small values frequently show in the data, suggesting a non-normal

heavy-tailed distribution.

2. Sample autocorrelations of the observed process are small whereas sample

autocorrelations of the absolute and squared process are significantly different

from zero even for large lags.

Such phenomena, including the important concept of conditional heteroscedasticity,

may be simply modeled by assuming that

yt = Zt
√
ht, (2.5)

where {Zt} is a sequence of i.i.d. symmetric random variables with zero mean and

unit variance. Further, {ht} is a sequence of non-negative random variables such

that Zt and ht are independent for every fixed t. In this model, the conditional dis-

tribution of yt|ht has variance ht and we refer to {ht} as the time varying stochastic

volatility of {yt}. Now, some features of model (2.5) will be studied according to

how the process {ht} is specified.

2.2.1 Autoregressive Conditional Heteroscedasticity

In 1982, Engle introduced ARCH models which perhaps now form the most popular

family of models used to describe changing volatility. ARCH models allow for vary-

ing volatility by letting ht depend on the past values of the process yt. Specifically,

16



the order p ARCH model is defined by

yt = Zt
√
ht,

ht = ω +

p∑
i=1

αiy
2
t−i,

(2.6)

where p > 0, ω > 0, αi ≥ 0, and Zt is a sequence of independent and identically

distributed random variables with zero mean and unit variance (i.e. Zt ∼ (0, 1)).

In order to make σ2
t finite, it is usually assumed that 0 ≤ αi < 1. Milhøj (1985)

proved that the ARCH(p) process is stationary if and only if

α1 + α2 + · · ·+ αp < 1. (2.7)

We now briefly discuss conditions that guarantee the existence of higher order mo-

ments. First, from the previous assumptions on {Zt}, it follows that

E(yt) = E(E(yt|Ft−1)) = E[
√
htE(Zt)] = 0,

and

Cov(yt, ys) = Cov(Zt
√
ht, Zs

√
hs) = 0,

since for s 6= t, Zt is independent of Zs and {Zt} is independent of {ht}. Under

condition (2.7) we have seen that

E(y2
t ) = ω +

∑p
i=1 αiE(y2

t−1),
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so that, as previously claimed, we see that

V ar(yt) = E(y2
t ) =

ω

1−
∑p

i=1 αi
<∞,

implying that, {yt} is a white noise process.

In order to understand the ARCH model well, the structure of the ARCH(1)

model is examined more thoroughly. First, in this case model (2.6) simplifies to

yt = Zt
√
ht,

ht = ω + α1y
2
t−1.

(2.8)

From the previous calculations, under the normality assumption, {yt} is such

that E[y2k+1
t ] = 0 for any integer k > 0, and E(y2

t ) = 1. In order to simplify, let

E(Z4
t ) = λ. In particular, if Zt is a standard normal variate, λ = 3 according to the

formula

E(y4
t ) = σ4

y

(4)!

222!
= 3.

Thus, in the ARCH(1) model, {yt} has the following properties. First, we have

E(yt) = E(y3
t ) = 0, E(y2

t ) = E(ht) =
ω

1− α1

, if 0 ≤ α1 < 1.

The autocorrelation function of {y2
t } is Corr(y2

t , y
2
t−k) = αk1, which is always non-
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negative. The fourth moment of yt is given by

E(y4
t ) =

λω2(1 + α1)

(1− α1)(1− λα2
1)
, if λα2

1 < 1.

Indeed, this is obtained using the independence of Zt and ht, since

E(y4
t ) = E(Z4

t h
2
t ) = E(Z4

t )E(h2
t )

= λE(ω + α1y
2
t−i)

2

= λω2 + α2
1E(y4

t−1) + 2ωα1E(y2
t−1)

= λω2 + α2
1E(y4

t−1) + 2ω2 α1

1− α1

.

Using the stationary of {yt}, we can now solve the previous equation, which leads

to

E(y4
t ) =

λω2(1 + α1)

(1− α1)(1− λα2
1)
,

as was claimed. The coefficient of kurtosis follows easily and is given by

Ky =
E(y4

t )

{E(y2
t )}2

=
λ(1− α2

1)

(1− λα2
1)
, if λα2

1 < 1. (2.9)
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We may rewrite (2.8) as

y2
t = ht + y2

t − ht

= ht + ht(Z
2
t − 1)

= ω + α1y
2
t−1 + µt, (2.10)

where {µt = ht(Z
2
t −1)} is a sequence of uncorrelated r.v.’s with zero mean, implying

that (2.10) defines an AR(1) model in y2
t with {µt} as an innovation sequence.

The definition of the ARCH(1) model implies that the kurtosis of the conditional

distribution of yt given ht is the same as that of Zt denoted by λ. However if

0 ≤ α1 < 1 and λ > 1, from (2.9) it is clear that the kurtosis of the marginal

distribution of {yt} exceeds λ. For example, if Zt is a standard normal variate then

λ = 3 and K exceeds 3. Thus the unconditional distribution of yt is leptokurtic and

model (2.8) could be suitable for modeling heavy-tailed financial series.

Suppose that Zt in (2.6) has a standard normal distribution. Then, it follows that

the conditional distribution of yt given {ys, s ≤ t−1} is normal with mean zero and

variance ht. The unknown parameter vector to be estimated is θ = (ω, α1, · · · , αp).

The log-likelihood function of θ, conditional on the observed data, is given by

 L(θ) =
N∑
t=1

log f(yt|yt−1, yt−2, · · · , yt−p; θ)

= −(
N

2
log(2π)− 1

2

N∑
t=1

log ht −
1

2

N∑
t=1

(y2
t /ht)), (2.11)
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with ht = ω +

p∑
i=1

αiy
2
t−1.

The MLE of θ can be obtained by maximizing  L(θ). This is possible only by

numerical methods. Hamilton (1994) describes a number of methods for obtaining

the MLE. In certain practical situations, the normality assumption on Zt may not

be applicable. Bollerslev (1987) discussed the likelihood analysis of ARCH models

when Zt has a student t-distribution and Nelson (1991) studied such problems by

assuming a generalized error distribution for Zt. Next, we consider a generalized

version of the ARCH(p) model.

2.2.2 Generalized ARCH Models

In 1986, Bollerslev introduced a useful extension known as generalized ARCH, or

GARCH models. The difference between GARCH models and ARCH models is

that a linear combination of lagged values of ht are also added in the equation for

conditional variance.

Specifically, the GARCH (p, q) model is given by

yt = Zt
√
ht,

ht = ω +

p∑
i=1

αiy
2
t−i +

q∑
j=1

βjht−j,
(2.12)

where ω > 0, αi ≥ 0, βj ≥ 0 and {Zt} is a process of i.i.d. r.v.’s with mean zero and
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unit variance. In this case, the sequence {yt} is covariance stationary if and only if

p∑
i=1

αi +

q∑
j=1

βj < 1.

In the original formulation of GARCH models, as they were introduced by Boller-

slev, it is assumed that Zt is a standard normal variate. Obviously, other distribu-

tions for Zt could also be considered.

The above restrictions imposed on the parameters ensure that the conditional

variance ht is non-negative. Other authors observed, in empirical studies, that the

variance remains non-negative and finite even if some of the constraints on the

parameters are relaxed.

The simplest version of a GARCH model is the GARCH(1,1) model, given by

yt = Zt
√
ht,

ht = ω + α1y
2
t−1 + β1ht−1.

(2.13)

This may be rewritten as a non-Gaussian ARMA(1,1) model in terms of y2
t as

follows,

y2
t = ht + y2

t − ht

= ω + α1y
2
t−1 + β1ht−1 + µt,
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where µt = (y2
t − 1)ht. This can be further simplified to

y2
t = ω + (α1 + β1)y2

t−1 − β1µt−1 + µt, (2.14)

which is in the form of an ARMA(1,1) model. Note that model (2.13) is stationary

if α1 + β1 < 1.

It is readily verified that, under the normality assumption, for yt defined by (2.13),

E(yt) = E(y3
t ) = 0,

E(y2
t ) = E(ht) = ω/(1− α1 − β1), if 0 ≤ α1 + β1 < 1.

The coefficient of kurtosis can also be shown to be

K =
λ(1 + α1 + β1)(1− α1 − β1)

1− λα2
1 − β2

1 − 2α1β1

if λα2
1 + β2

1 + 2α1β1 < 1,

and the autocorrelation function of {y2
t } is

Corr(y2
t , y

2
t−k) =

α1(α1 + β1)k−1 − α1(α1 + β1)k+1 + α2
1(α1 + β1)k

1− (α1 + β1)2 + α2
1

.

Note that the GARCH model introduces flexibility in the structure of kurtosis and

autocorrelations, when compared with the ARCH specification. Assuming that Zt is

a standard normal variate, the likelihood function of θ = (ω, α1, · · · , αp, β1, β2, · · · , βq)

can be written as (2.11) with ht given by (2.12).
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Bayesian analysis of ARCH and GARCH models is discussed in Bauwens, Lu-

brano & Richard (1999). The unconditional marginal distributions of GARCH

processes have tails that are fatter than those of the normal distribution. Pawlak

& Schmidt (2001) studied the tail behavior of y2
t in GARCH models and obtained

some bounds for the distribution function.

Abraham & Balakrishnan (2001) mentioned that the ARMA(1,1) representation

of the GARCH(1,1) model given by (2.14) reveals that if α1 + β1 = 1 then y2
t will

have a unit root. In this case, the model (2.13) is referred to as an Integrated

GARCH or IGARCH model.

2.3 Stochastic Volatility Models

As noted before, the volatility of financial series tends to change over time. The

ARCH/GARCH models described earlier serve as tools for modeling and estimating

the time-varying conditional variance. These models assume that volatility is driven

by past observations. Alternatively, Taylor (1986) argued that the volatility process

should be driven by some unobservable or latent economic force rather than by the

movement of prices. The class of models that is formulated under this kind of belief

is generally referred to as stochastic volatility (SV) models.

2.3.1 Linear stochastic Volatility Models

Stochastic volatility (SV) models were introduced by modeling the logarithm of

volatility by a stochastic process. Stochastic Volatility models differ from ARCH
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models which can specify a process for the conditional variance of return. Important

contributions to the Stochastic Volatility literature were made by Clark (1973),

Taylor (1982), and Tauchen & Pitts (1983). But the ARCH/GARCH literature

evolved much more rapidly than the one devoted to Stochastic Volatility models.

One main advantage of ARCH/GARCH models is that they can easily be estimated

using maximum likelihood methods, while this methodology is difficult to use for

Stochastic Volatility models. A state space model will be used to present the SV

model. One of the possible specifications of this type for model is given by

yt = Zt exp(ht/2), (2.15)

where

ht+1 = ω + αht + ηt+1, (2.16)

and {Zt} is a sequence of i.i.d. symmetric r.v’s with mean zero and unit variance.

Further, {Zt} and {ηt} are assumed independent for each t. In this context, ht can

be interpreted as information which is very difficult to model directly into financial

markets (see Tauchen & Pitts, 1983). In the initial developments of this model,

it was assumed that {Zt} and {ηt} are independent i.i.d. Gaussian sequences with

mean 0 and variances 1 and σ2
η respectively. This model is referred to as a log-normal

SV model.

Observe that the sequence {Zt} is always stationary and hence {yt} is stationary

whenever {ht} is. If |α| < 1 then {ht} defines a stationary Gaussian AR(1) process
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with

E(ht) =
ω

1− α
= µh and V ar(ht) =

σ2
η

1− α2
= σ2

h.

The distribution of yt is symmetric about zero and hence E(ykt ) = 0 for odd k.

When k is even

E(ykt ) = E(Zk
t )E(e

kht
2 )

=
k!

2k/2(k/2)!
exp{k

2
µh +

k2σ2
h

8
}.

The kurtosis of yt is then given by (see also (2.9))

K = 3 exp(σ2
h) ≥ 3,

which shows that, under this SV model, the marginal distribution of yt has fatter

tails than the corresponding normal distribution. The autocorrelation function of

{yt} vanishes while that of {y2
t } is given by

corr(y2
t , y

2
t−k) =

exp(σ2
hα

k)− 1

3 exp(σ2
h)− 1

,

which can be negative if α < 0, contrary to the case of ARCH models.

The dynamic properties of this SV model can also be revealed by using logarithms.

Indeed, model (2.15) implies that

log y2
t = ht + logZ2

t
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with ht defined by (2.16). If Zt is a standard normal variate, then logZ2
t has mean

-1.27 and variance 4.93. The autocorrelation function of {log y2
t } is given by (c.f.

Shephard, 1996).

ρklog y2t
=

1

(1 + 4.93/σ2
h)
αk1.

The SV model (2.15)- (2.16) may also be defined by

yt = Zt
√
ht (2.17)

where

log ht+1 = ω + α1 log ht + ηt+1. (2.18)

This form of the model is discussed in Jacquier et al. (1994). If Zt and ηt are normal

r.v.’s as before, then all the properties discussed above can also be shown to follow

similarly from (2.17) and (2.18).

2.3.2 Inference for SV Models

The following lemma and models were originally discussed by H. Gong & A. Tha-

vaneswaran (2008) . Consider

θt+1 = aθt + (b+ θt)εt+1 + c,

yt+1 = Aθt +Bet+1 + C,
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where {εt+1} and {et+1} are correlated Gaussian sequences having mean zero and

variances σ2
ε and σ2

e respectively, and cov(et, εt) = ρσeσε. Here, {θt} is an unobserved

process and {yt} is the observed process. Now, define b1 =
√
E[(b+ θt)2] and

b2 = E[b + θt]. After some transformation, the nonlinear time series model can be

written in linear form as

θt+1 = aθt + b1ε̃t+1 + c,

yt+1 = Aθt +Bet+1 + C,

where E[ε̃t] = 0, E[ε̃tε̃t+1] = 0, and {ε̃t} is sequence of uncorrelated random vari-

ables. Before introducing different models, we first present a Lemma that is useful

to study volatility.

Lemma 2.3.1. The conditional mean of the filtered estimate of θt given F y
t , θ̂t =

E[θt|F y
t ] is

θ̂t+1 = aθ̂t + c+ (
aAγt +Bb1ρσeσε
A2γt +B2σ2

ε

)[yt+1 − Aθ̂t − C]

and its conditional variance is γt = E[(θt − θ̂t)2|F y
t ], is given by

γt+1 = E[(θt+1 − θ̂t+1)2|Fyt+1]

= a2γt + b2σ2
ε −

(aAγt +Bb1ρσeσε)
2

A2γt+B2σ2
e
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According to the Lemma 2.3.1, the recursive estimation will be given and the

model parameters will be estimated. A proof is given in Appendix A.

2.3.3 Taylor’s SV model

In 1982, Taylor introduced a Stochastic Volatility model with a lognormal (LN)

specification for volatility. Wiggins (1987) and Scott (1987) analyzed prices of stock

options based on Taylor’s SV model. Chesney & Scott (1989) analyzed currency

options. Specifically, Taylor’s model specifies that logarithmic volatility follows an

AR(1) process according to

yt+1 = σtzt+1,

log σt+1 = φ log σt + ηt+1,

(2.19)

where |φ| < 1 for stationarity, zt are i.i.d N(0, 1), ηt are i.i.d N(0, σ2
η), and {zt} and

{ηt} are independent processes. Note that this implies that logt σ ∼ N(0, σ2
η/(1 −

φ2)) for all t. Using the transformations

log σt = θt and z̃t+1 =
eθt√
E[(eθt )

2]
zt+1,
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where Ez̃ = 0, E[z̃tz̃t+1] = 0, and Ez̃2
t = 1. The model (2.19) becomes

yt+1 = σtzt+1 = elog(σt)zt+1 = eθtzt+1 = βz̃t+1,

θt+1 = φθt + ηt+1,

where β =
√
E[eθt ]2 =

√
exp(2σ2

η/(1− φ2)). Now, from Lemma 2.3.1 the recur-

sive estimates for the conditional mean of θt given Fyt , θ̂t = E[θt|Fyt ], and their

conditional mean squared error, γt = E[(θt − θ̂t)2|Fyt ], are given by

θ̂t = φθ̂t−1,

γt = φ2γt−1 + σ2
η,

from using A = 0, B = β and C = 0, a = φ, b1 = 1, c = 0, and ρ = 0 due to

independence.

2.3.4 Quadratic SV model

Kawakatsu (2007) proposed a new stochastic volatility model which involves a

quadratic term. Specifically, he used

yt+1 = θt + exp(a+ bθt + cθ2
t )zt+1,

θt+1 = φθt + ηt+1,
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where {zt} and {ηt} are two uncorrelated sequences of i.i.d random variables with

zero mean and unit variance. Since this is not a linear system, the following trans-

formation is necessary:

z̃t+1 =
exp(a+ bθt + cθ2

t )√
E[(exp(a+ bθt + cθ2

t ))
2]
zt+1,

where b1 =
√
E[(exp(a+ bθt + cθ2

t ))
2]. By applying

E[exp(a(z + b)2)] = exp(
1

2
ln(1− 2a) +

ab2

1− 2a
),

then

b1 =
√
c(θ + b

2c
)2 + a− b2

4c

=
√

exp(−1
2

ln(1− 4c) + b2

4c(1−2c)
+ a− b2

4c
),

and filtered estimate of θt and its conditional Mean squared error follow from Lemma

2.3.1.
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Chapter 3

Conditional Duration Models

3.1 Introduction

In financial markets, high-frequency data are often observed daily or at a finer time

scale. These data have recently attracted more attention because, in empirical stud-

ies of market microstructures, they provide significant information. Transaction-by-

transaction or trade-by-trade data in security markets represent the ultimate high-

frequency data, with time often being measured in seconds. Tsay (2005) mentioned

several reasons for the usefulness of high-frequency financial data. First, they can

be used to compare the efficiency of different trading systems in price discovery,

which is defined as the process of establishing a market price at which demand and

supply for an item are matched. Examples of trading systems that one could be

interested in comparing are the open out-cry system of the NYSE and the computer

trading system of NASDAQ. The second reason for the usefulness of high-frequency

32



data is that they can be used to study the price discovery, liquidity, and volatility

of stock markets.

As mentioned above, empirical studies have been very popular in finance, espe-

cially in the last 20 years. In particular, for studying stock markets, closing price

is an interesting variable. However, if focusing solely on closing price, intraday

events will be neglected. Because of the developments in computer technology and

increased automation of financial markets, intraday data are now often available in

the form of price, volumes and other factors. The analysis of high-frequency data

(HFD) can deeply facilitate our understanding of market activity. There are several

types of HFD which researchers are interested in, for example, transaction data or

tick-by-tick data, 5-minute returns in financial exchanges and 1-minute returns on

the cash market. These types of data have several important features that make

their analysis quite challenging for financial economists and statisticians. Some of

these characteristics are:

1. irregular time intervals,

2. discrete values, e.g. prices in multiples of tick size,

3. very large sample size,

4. multi-dimensional variables, e.g. price, volume, quotes, etc.

To highlight these characteristics, we briefly study the IBM transaction data

recorded from November 1, 1990 to January 31, 1991. There are a total of 60328

trades done over a period of 63 days, 60265 of which are intraday trades. Table 3.1

presents a summary of these data. The following points are worth noting.
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Table 3.1: Frequencies of price change in Multiples of Tick Size for IBM Data

Number(tick) ≤ -3 -2 -1 0 1 2 ≥ 3

percentage 0.66 1.33 14.53 67.06 14.53 1.27 0.63

• About 2/3 of the intraday transactions are associated with no price change.

• Approximately 29% of the intraday transactions are associated with a change

in price of one-tick.

• Less than 4% of the transactions are associated with a change of two ticks or

more.

• The distribution of changes is almost perfectly symmetric about zero.

3.2 Autoregressive Conditional Duration Models

As was mentioned above, analyzing high frequency data is a very important part of

many financial modelling problems. While some high frequency data are recorded

at fixed time intervals, most of the transactions occur at irregular time points. In

such a case, we lose part of the useful information if the data are recorded on a

fixed interval. In order to avoid that loss, Engle & Russell (1998) introduced the

autoregressive conditional duration (ACD) model. The modelling of time between

events is the objective of ACD models. In particular, ACD models and their exten-

sions can be used to model the behavior of irregularly spaced financial data. Engle

(2000,2002) illustrated that ACD models share many features with GARCH models

and that having irregular time-intervals is the main characteristic of HFD. In order

34



to model durations, we let the conditional expected duration between the (t− 1)th

and tth trades be

ψt = E[yt|Fyt−1],

where Fyt−1 is past information, in this case past durations, up to and including the

(t− 1)th trade. The basic ACD model is defined as

yt = ψtεt,

ψt = ω +

p∑
j=1

αjyt−j +

q∑
j=1

βjψt−j,
(3.1)

where ω > 0, αj > 0, βj > 0 and {εt} is a sequence of independent identically

distributed random variables such that E(εt) = 1. In order for this condition to

be satisfied, we standardized distributions for the innovation process. Typically, εt

follows a standard exponential or a standardized Weibull distribution. Note that

this model structure implies V ar(yt|Fyt−1) = ψ2
t V ar(εt). This is referred to as the

ACD (p,q) model. In order for yt to be covariance-stationary, it is sufficient for the

parameters of model (3.1) to satisfy

p∑
j=1

αj +

q∑
j=1

βj < 1.

Moreover, when the roots of [1-
∑p

j=1 αjB
j-
∑q

j=1 βjB
j] and [1-

∑q
j=1 βjB

j] lie outside

the unit circle, both the stationary and invertibility conditions are satisfied. In this

case the conditional mean of yt is, by definition, equal to ψt, but the unconditional
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mean of yt can be shown to be

E(yt) =
ω

(1−
p∑
j=1

αj −
q∑
j=1

βj)

.

In order to see the impact of the distribution of the errors εt in the ACD model,

we simulated series of 5000 observations from the ACD(1,1) model as given in (3.1).

For this, we used four different innovational distributions for εt.

For the first example, the error term was simulated using the standard exponential

distribution with the parameter θ = 1. For the second, εt follows the standard

Weibull distribution with parameter γ = 1.5, the scale parameter being set to

θ =
1

Γ(1 + 1
γ
)
, so that E[εt] = 1 (see the Appendix C for the details). In the third

case, the gamma distribution with parameter κ = 1.5 and scale parameter θ =
1

κ

was used, again to ensure that E[εt] = 1. Finally, the error term follows a standard

log-normal distribution with parameters µ = −σ2

2
and σ = 1.5. For the remainder

of this section, the four cases mentioned above are briefly examined. Parameter

estimation will be discussed in the next section. In all cases, the parameter values

used for simulations were ω = 0.3, α = 0.2, and β = 0.7.

As a first example, consider the EACD(1,1) model given by (3.1), where p =

q = 1 and εt follows the standard exponential distribution. From the properties of

exponential random variables, we have E[εt] = 1 and V ar[εt] = 1, implying that

the conditional moments of yt are E(yt|Fyt−1) = ψt and V ar(yt|Fyt−1) = ψ2
t . For the
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first marginal (unconditional) moment of yt, it follows that

E(yt) = E[E[ψtεt|Fyt−1]] = E(ψt),

and

E(ψt) = ω + αE(yt−1) + βE(ψt−1).

Assuming the stationary condition holds, we know that

E(ψt) = E(ψt−1)

E(yt−1) = E(yt)

so that the mean of yt is given by

E[yt] = E[ψt] =
ω

1− α− β
.

Time plots, histograms and graphs of sample autocorrelation function are provided

in Figures 3.1 to 3.3 for simulation of EACD(1,1), EACD(1,2) with α1 = 0.2,

β1 = 0.3, β2 = 0.4 and EACD(2,1) with α1 = 0.2, α2 = 0.3 and β1 = 0.4.

As another example, consider now the GACD(1,1) model given by (3.1), where

the error term follows a gamma distribution G(κ, θ) with θ = 1
κ
. According to the

properties of the gamma function, we know that E(εt) = θκ = 1 and Var(εt) =
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(a) Time plot for EACD (1,1) (b) Histogram for EACD (1,1)

(c) Autocorrelation function

Figure 3.1: Simulated EACD (1,1) series with 5000 observations.
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(a) Time plot for EACD (2,1) (b) Histogram for EACD (2,1)

(c) Autocorrelation function for a EACD (2,1)

Figure 3.2: Simulated EACD(2,1) series with 5000 observations.
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(a) Time plot for EACD (1,2) (b) Histogram for EACD (1,2)

(c) Autocorrelation function for a EACD (1,2)

Figure 3.3: Simulated EACD(1,2) series with 5000 observations.
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θ2κ = 1
κ
. If the stationary condition α + β < 1 is satisfied, we know that

E(yt) = E[E[ψtεt|Fyt−1]] = E(ψt).

so that

E[yt] = θκE[ψt] = θκ
ω

1− α− β
=

ω

1− α− β
,

and the conditional variance of yt is

V ar(yt|Fyt−1) = ψ2
t V ar(εt) = ψ2

t θ
2κ =

ψ2
t

κ
.

In our simulations, we considered a standard Gamma-distributed ACD model with

parameters κ = 1.5 and θ = 2
3
. A time plot, histogram and graph of the sample

autocorrelation function obtained from the simulated data are provided in Figure

3.4.

For the standard Weibull distributed ACD model with parameter γ = 1.5 and

θ = 1
Γ(1+ 1

1.5
)
, data were simulated and we produced a time plot, histogram and a

graph of the autocorrelation function which are given in Figure 3.5.

For the standard Log-normal distribution with parameters µ = −σ2

2
and σ = 1.5,

the Lognormal-ACD(1,1) was simulated. A time plot, histogram and the sample

autocorrelation function of the simulated data are provided in Figure 3.6.

Note that all the histograms are skewed to the right and most of the data are

between 0 and 10. From the plots of the ACF function, it seems that the autocor-
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(a) Time plot for GACD (1,1) (b) Histogram for GACD (1,1)

(c) Autocorrelation function for GACD (1,1)

Figure 3.4: Simulated GACD(1,1) series with 5000 observations.
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(a) Time plot for Weibull ACD (1,1) (b) Histogram for Weibull ACD (1,1)

(c) Autocorrelation function for Weibull ACD (1,1)

Figure 3.5: Simulated WACD(1,1) series with 5000 observations.
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(a) Time plot for Log-normal ACD (1,1) (b) Histogram for Log-normal ACD (1,1)

(c) Autocorrelation function for Log-normal ACD (1,1)

Figure 3.6: Simulated log-normal ACD(1,1) series with 5000 observations.
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relation function is heavily influenced by the distribution of the innovations.

3.2.1 Parameter Estimation in ACD Models

Pathmanathan & Peiris (2009) mentioned ACD(p,q) models, for which the joint

density of the durations y1, . . . , yT is

f(yt|Θ) = [
T∏

t=t0+1

f(yt|FyT−1,Θ)]× f(yt0|Θ),

where t0 = max(p, q), Θ is the parameter vector and T is the sample size. As the

sample size increases, the impact of the marginal density function, f(yt0 |Θ) on the

likelihood function will be ignored. Thus, the considered (approximate) likelihood

function is written as

L(Θ|FyT ) =
T∏

t=t0+1

f(yt|Fyt−1,Θ).

Note that this can also be thought of as a conditional likelihood obtained by con-

ditioning on the first t0 observations. For an EACD model, the conditional log
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likelihood function is then

`(Θ|FyT ) =
T∑

t=t0+1

[
ln(

1

yt
) + ln(

yt
ψt

)− yt
ψt

]
,

=
T∑

t=t0+1

[
− lnψt −

yt
ψt

]
.

For the GACD model, the conditional log likelihood function is

`(Θ|FyT ) =
T∑

t=t0+1

[
κ ln(κ)− ln(Γ(κ)) + (κ− 1) ln(

yt
ψt

)− ytκ

ψt
− ln(ψt)

]

For a WACD model, the conditional log likelihood function is

`(Θ|FyT ) =

{ T∑
t=t0+1

γ ln[Γ(1 + 1/γ)] + ln(γ/yt) + γ ln(yt/ψt)

−
[

Γ(1 + 1/γ)yt
ψt

]γ }
,

when γ = 1, the conditional log likelihood function of the Weibull distribution can

be reduced to exponential distribution.

Finally, for the log-normal ACD model, the conditional log likelihood function is

instead

`(Θ|FyT ) =
T∑

t=t0+1

[
− ln(

√
2πσ)−

( yt
ψt

+ 1
2
σ2)2

2σ2
− ln(yt)

]
.
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In what follows, we consider simulated data generated from the EACD(1,1),

EACD(1,2), EACD(2,1), GACD(1,1),WACD(1,1), and Log-normal ACD(1,1) mod-

els. For each model, we generated 100 samples, each with 5000 observations, and

used maximum likelihood estimation based on the log-likelihood functions given

above to estimate the parameter vector Θ. The following is a summary of our

estimation results.

Table 3.2: Estimation results for simulated EACD(1,1) series.

EACD(1,1) Model

Parameter ω α1 β1

True 0.3 0.2 0.7

Estimate 0.3023565 0.2007812 0.6981083

Standard Error 0.03719354 0.01580355 0.02268156

Table 3.3: Estimation results for simulated EACD(2,1) series.

EACD(2,1) Model

Parameter ω α1 α2 β1

True 0.1 0.2 0.3 0.4

Estimate 0.1011735 0.1999071 0.3016044 0.395243

Standard Error 0.00913526 0.02835351 0.02086202 0.02900106

Table 3.4: Estimation results for simulated EACD(1,2) series.

EACD(1,2) Model

Parameter ω α1 β1 β2

True 0.1 0.2 0.3 0.4

Estimate 0.1014653 0.1966242 0.289038 0.4121622

Standard Error 0.01466038 0.01976934 0.07921241 0.09425074
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Table 3.5: Estimation results for simulated WACD(1,1) series.

WACD(1,1) Model

Parameter ω α1 β1 γ

True 0.3 0.2 0.7 1.5

Estimate 0.2995685 0.1986205 0.7010674 1.500781

Standard Error 0.03336015 0.00996145 0.01711365 0.01442231

Table 3.6: Estimation results for simulated GACD(1,1) series.

GACD(1,1) Model

Parameter ω α1 β1 κ

True 0.3 0.2 0.7 1.5

Estimate 0.3039000 0.1973360 0.7014792 1.505007

Standard Error 0.02297376 0.01207850 0.0151672 0.02646482

Table 3.7: Estimation results for simulated Log-normal ACD(1,1) series.

Log-normal ACD(1,1) Model

Parameter ω α1 β1 σ

True 0.3 0.2 0.7 1.5

Estimate 0.3043936 0.2001154 0.6986063 1.500403

Standard Error 0.03138267 0.01681737 0.02030652 0.01569941

We used the conditional likelihood approach and obtained the results shown in

Tables 3.2 to 3.6. It appears that the method we used to estimate the parameter is

reasonable and leads to little bias and has small variaility.

3.3 ACD models in finance

In real financial analysis, ACD models are a useful and popular tool. In this section,

we consider time between transactions of IBM stocks on five consecutive trading
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days from November 1, 1990 to November 7, 1990. Specifically, we analyze these

data using maximum likelihood estimation, as outlined in Section 3.3. While there

are 3534 observations in total for this time period, the positive transaction durations

were what we focused on. Specifically, we fitted different ACD (1,1) models to this

data by considering the four families of distributions discussed previously. The

results are shown in Tables 3.8 to 3.11.

Table 3.8: EACD(1,1) model fitted to the data

Maximum Likelihood Estimation

EACD(1,1) ψt = 0.1813522 + 0.06522795yt−1 + 0.8805849ψt−1

(0.04874086) (0.00962901) (0.02088729 )

Table 3.9: WACD(1,1) model fitted to the data

Maximum Likelihood Estimation

WACD(1,1) ψt = 0.16954624 + 0.06421319yt−1 + 0.88471054ψt−1

(0.05094409) (0.01052793) (0.02213189)

γ̂ 0.87883443

(0.01126365)

Table 3.10: GACD(1,1) model fitted to the data

Maximum Likelihood Estimation

GACD(1,1) ψt = 0.18135869 + 0.06522923xt−1 + 0.88057686ψt−1

(0.0529322) (0.01034544) (0.0226847)

κ̂ 0.84790936

(0.01750003 )

From the estimation results, we observed that parameters based on different inno-

vational distributions are quite similar, suggesting some kind of robustness against
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Table 3.11: Lognormal ACD(1,1) model fitted to the data

Maximum Likelihood Estimation

Lognormal ACD(1,1) ψt = 0.1481680 + 0.0684174yt−1 + 0.9029417ψt−1

(0.04815235) (0.01156778) (0.01858372)

σ̂ 1.2962554

(0.01542123)

model miss-specification in this case. The estimates of ω suggest that the expec-

tation of the ψt is not zero. All estimates of β are around 0.9 suggesting that the

duration process is invertible. The obtained estimates also suggest that α+ β < 1,

or that the process is stationary.
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Chapter 4

Stochastic Conditional Duration

Models

4.1 Definition and Properties

In order to analyze intraday market activity, Gouriéroux et al. (1999) introduced

duration models. They defined new classes of durations, which help to illustrate

some important features of market activity. Specifically, they analyzed a class of

parametric models for durations which they referred to as stochastic conditional

duration (SCD) models. Bauwens & Veredas (2004) proposed to use SCD models

for the inter-event duration processes where the conditional duration is modelled as

a latent variable. The motivation for using a latent variable is that it captures the

random flow of information that, in the case of financial markets, is very difficult

to observe directly.
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Usually, SCD models are used for modelling sequential durations. This is based

on the assumption that there exists a stochastic latent variable which generates

the durations. The observed duration yt is modelled as the product of a latent

variable Ψt and a positive random error term εt, which is an independent identically

distributed random variable. The model can be defined as

yt = Ψtεt, where Ψt = eψt

ψt = ω + βψt−1 + ut

(4.1)

where |β| < 1, ut|Fyt−1 follows a N(0, σ2
u) distribution, εt|Fyt−1 follows some distri-

bution with positive support and ut is independent of εt|Fyt−1 for all t. Note that

ψt = ω + βψt−1 + ut is essentially imposing a Gaussian AR(1) structure on the

logarithm of the latent variable Ψt. Fyt−1 denotes the information set based on past

values of ψt and yt up to time t− 1. The marginal distribution of yt is determined

by the distribution of the error term εt and the lognormal distribution of Ψt which

comes from the fact that ψt is normally distributed. The only assumption imposed

on εt is the existence of its moments

m1 = E(ε1)

mp = E(εt −m1)p, p = 2, . . .

Finally, let ϑ = m2/m
2
1.
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The following two important theorems give the form of the moments of the ob-

servations and latent variable up to the second order.

Theorem 4.1.1. The durations and latent variables of model (4.1) have the follow-

ing moments

µΨ = e
ω

1−β+ 1
2

σ2u
1−β2 ,

µy = m1µΨ,

σ2
Ψ = µ2

Ψ(e
σ2u

1−β2 − 1),

σ2
y = µ2

y(ϑe
σ2u

1−β2 − 1).

Proof. According to (4.1), {ψt} is a Gaussian Stationary AR(1) process. As we

know, this implies ψt ∼ N( ω
1−β ,

σ2
u

1−β2 ), which in turn implies that Ψt follows a

lognormal distribution, specifically

Ψt ∼ LN(
ω

1− β
,

σ2
u

1− β2
).

The expressions for µΨ and σ2
Ψ follow from the properties of lognormal distributions.

The mean and variance of durations are obtained using the independence between

Ψt and εt. Indeed, for the mean, we have

µy = E(yt) = E(Ψt)E(εt) = m1µΨ.
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and for the variance,

σ2
y = E[y2

t ]− [E[yt]]
2

= E[Ψ2
t ]E[ε2t ]− (m1µΨ)2

= µ2
y(ϑe

σ2u
1−β2 − 1),

upon using the previous definition of ϑ.

Theorem 4.1.2. The autocorrelation function (ACF) of the durations in model

(4.1) is given by

ρys =
e
σ2uβ

s

1−β2 − 1

ϑe
σ2u

1−β2 − 1

∀ s ≥ 1

Proof. We know that

ρys = [E(ytyt−s)− µ2
y]/σ

2
y, (4.2)

so that the main purpose of this proof is to calculate the expectation of ytyt−s. For

this, we write

E(ytyt−s) = m2
1E(eψt+ψt−s) = m2

1E(eλt,s),

where λt,s = ψt − ψt−s. From the autoregressive equation of ψt, we can write

λt,s = ψt + ψt−s = 2ω + β(ψt−1 + ψt−1−s) + ut + ut−s

= 2ω + βλt−1,s + ut + ut−s,

implying that {λt,s} is a ARMA(1,s) process. Because E(λt,s) = 2ω + βE(λt−1,s),
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then µs = 2ω
1−β . The variance σ2

s of λt,s can be given by

σ2
s = βγ1,s + σ2

u + (1 + βs)σ2
u,

γ1,s = βσ2
s + βs−1σ2

u,

where γ1,s = Cov(λt,s, λt−1,s). Solving for σ2
s , we get

σ2
s =

2σ2
u(1 + βs)

1− β2

This, in turn, implies that

E(eλi,s) = eµs + 0.5σ2
s = exp{ 2ω

1−β + σ2
u(1+βs)
1−β2 }

= u2
ye

σ2uβ
s

1−β2 ,

upon using the properties of lognormal distributions. Hence by (4.2) the result

follows.

4.2 Quasi Maximum Likelihood Estimation and

the Kalman Filter

In this section, we adopt a state-space approach based on Kalman filtering and

the QML method. This kind of approach is has been considered by Harvey (1994)
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to model the stochastic volatility of stock prices. The main benefits of using the

Kalman filter with QML for estimation is the relative simplicity of the approach

and the consistency of the obtained estimates.

4.2.1 State-space models and the Kalman filter

All time series models can be represented in state-space form. The Kalman filter is

one of the most important tool in the application of time series modelling based on

state-space representations. It is a recursive procedure used to optimally estimate

parameters of the state vector at each time point. Filters are mainly used for

prediction and smoothing of time series, which plays a key role in optimization

problems. Specifically, the Kalman filter is a popular tool used in likelihood function

estimation through the prediction error decomposition optimization. By using the

Kalman filter to minimize the mean square error (MSE), the complex modelling of

time series becomes realistic.

Before formally introducing the Kalman filter, a brief general description of state-

space models is in order. (For details, see Bauwens & Veredas 2004 and Harvey,

1994 ) Generally speaking, a state-space model can be written as

Yt = Ztαt + dt + εt, t = 1, . . . , T,

where Yt is a multivariate time series with N elements, αt is an unobservable m× 1

vector known as the state vector, Zt is an N ×m matrix, dt is a N × 1 vector and

εt is an N × 1 random vector. It is assumed that the error εt are uncorrelated with
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mean 0 and covariance matrix Ht, that is, E(εt) = 0 and Cov(εt) = E(εtε
′
t) = Ht.

In general, the elements of the unobservable αt are assumed to be generated by

αt = Btαt−1 + ct +Rtηt, t = 1, . . . , T,

where Bt is an m×m matrix, ct is an m× 1 vector, Rt is an m× g matrix and the

g × 1 innovation vectors ηt satisfy E(ηt) = 0, Cov(ηt) = Qt and are independent.

We refer to Zt, dt, Ht and Bt, ct, Rt and Qt as system matrices. If the sys-

tem matrices do not change over time, the model is said to be time-homogenous.

Although the class of time-homogenous models is much broader than the class of

stationary models, many time-homogenous models have a stationary form which

can be obtained by applying a transformation such as differentiating.

In what follows, we focus on the univariate model, where N = 1, so that the

measurement equation simplifies to

yt = Ztαt + dt + εt, t = 1, . . . , T, (4.3)

where yt univariate and V ar(εt) = ht. The transition equation is written as

αt = Btαt−1 + ct +Rtηt, t = 1, . . . , T, (4.4)

where αt is unobservable, Bt is an m × m matrix, ct is an m × 1 vector, Rt is

m× g matrix and {ηt} is a sequence of g× 1 uncorrelated vectors with mean 0 and

covariance matrix Qt, that is E(ηt) = 0 and Cov(ηt) = Qt.
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Two essential assumptions are made about the initial state vector α0:

1. we fix E(α0) = a0 and V ar(α0) = P0,

2. the random vectors εt and ηt are uncorrelated with each other in all time

periods, and also uncorrelated with the initial state, that is

E(εtη
′

t) = 0,

and

E(εtα
′

0) = E(ηtα
′

0) = 0,

where for all t = 1, . . . , T .

In what follows, the linearity in α of the state-space model, given by (4.3) and

(4.4), is crucial. Now, let at be the estimator of αt and let Pt denote the m × m

covariance matrix of the estimation error. Then, we can write

Pt = E[(αt − at)(αt − at)
′
]

and the optimal estimator of αt, given at−1 and Pt−1, is given by

at|t−1 = Btat−1 + ct, (4.5)

which has conditional covariance, given the prior information,

Pt|t−1 = BtPt−1B
′

t +RtQtR
′

t, (4.6)
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for t=1,. . . , T. Equations (4.5) and (4.6) are called the prediction equations. De-

noting E[yt|Fyt−1] = ŷt|t−1, the updating equations can be written as

at = at|t−1 + Pt|t−1Z
′

tF
′

t (yt − Ztat|t−1 − dt), (4.7)

and

Pt = Pt|t−1 − Pt|t−1ZtF
−1
t Z

′

tPt|t−1, (4.8)

and

vt = yt − ŷt|t−1 = yt − Ztat|t−1 − dt, (4.9)

where

Ft = E[(yt − ŷt|t−1)(yt − ŷt|t−1)
′ |Fyt−1] = ZtPt|t−1Z

′

t +Ht, (4.10)

for t = 1, . . . , T . Equations (4.5) to (4.8) together make up the Kalman filter. They

are derived under the assumption that all innovations are normally distributed.

The Kalman filter’s starting values can be specified in term of a0 and P0 or a1|0

and P1|0. Given these initial conditions, the Kalman filter delivers the optimal

estimation of the state vector by sequential updating. This optimality is valid only

under the normality and linearity mentioned previously. For the initial values, we

first get from (4.4) that

P0 = Cov(α0) = (R0Q0R
′
0)(I −B0B

′
0)−1,
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and from (4.6) that

P1|0 = B1P0B
′

1 +R1Q1R
′

1,

so that

F1 = Z1P1|0Z
′

1 +H1.

Also, the initial value α0 has expectation E(α0) = c1(I −B)−1. According to

vt = yt − Ztat|t−1 − dt,

at|t−1 = Btat−1 + ct,

we know that

v1 = y1 − Z1a1|0 − d1 = y1 − Z1(B1c1(I −B1)−1 + c1)− d1.

The filtering of the series is then completed by cycling through (4.5) to (4.8) to

obtained the sequential estimates a1, a2, . . . , at.
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4.2.2 Maximum Likelihood Estimation and the Prediction

Error Decomposition

In the current context, the observations are not independent, so that the likelihood

is decomposed as the product of conditional distributions according to

L(y;ψ) = f(y1, y2, . . . , yt|ψ) =
T∏
t=1

f(yt|Fyt−1), (4.11)

where f(yt|Fyt−1) is the distribution of yt conditional on the information set at time

t−1. Recalling the derivation of the Kalman filter, equation (4.11) can be rewritten

as

logL = −NT
2

log 2π − 1

2

T∑
t=1

log |Ft| −
1

2

T∑
t=1

v
′

tF
−1
t vt, (4.12)

when assuming normality of the innovations, where the residuals vt are given by

(4.9) and the covariance matrix Ft is given by (4.10).

4.2.3 QML Estimation based on the Kalman Filter

For estimating latent variable models, several estimation methods have been pro-

posed. Estimating the parameters of this kind of unobservable variable model is

generally difficult because the likelihood function can’t be evaluated easily. Here, a

logarithmic transformation is used to estimate the parameters of the SCD model.
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Using such a transformation, the SCD model (4.1) can be rewritten as

ln yt = ψt + ξ̃t + µ, (4.13)

and

ψt = ω + βψt−1 + ut, (4.14)

where ξ̃t = ξt − µ, ξt = ln εt and µ = E[ξt] = E[ln εt]. Model (4.1) has thus

been linearized and we can hope to use the Kalman filter successfully to estimate

its parameters. Equation (4.13) is called the measurement equation and (4.14) is

called the updating equation or transition equation.

In the case where εt follows a Weibull (α,1) distribution, ξt = ln εt has probability

density function

f(ξ) = αeαξe−e
αξ

, ξt ∈ R.

In order to estimate the vector of parameters (ω, β, α, σu)
′

we compute the log

likelihood function of the above model by making use of (4.12) and of the Kalman

filter to obtain values for ψ1, ψ2, . . . , ψT for given values of all other parameters.

Note that doing this would lead to the exact likelihood function if ξt were normally

distributed with mean 0 and variance σ2
ξ depending on α. Obviously, this is not the

case and so an approximate value of the likelihood is obtained instead. This explains

the “quasi” in the name quasi maximum likelihood. To use this approach, we need

to calculate the moments of ξt = ln εt. We do this by deriving its distribution. First,
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εt follows the Weibull(α, 1) distribution, that is

f(εt|α) = αεα−1
t e−(εt)α .

Now, let ξt = ln εt so that εt = eξt . The Jacobian of this transformation is given by

J = eξt , so that

f(ξt|α) = α(eξt)α−1e−(eξt )αeξt

= αeαξte−e
αξt
, (4.15)

for εt ∈ R, which corresponds to an Extreme Value distribution. Indeed, when a

random variable X follows the Extreme value distribution with parameters θ and

η, its pdf is given by

f(x|θ, η) = 1
θ
e(x−η)/θ−e(x−η)/θ .

According to the properties of Extreme Value distribution, we know that E(X) =

−γθ + η and V ar(X) = π2

6
θ2, where γ = −0.5772 is the famous Euler-Mascheroni

constant. Going back to the previous distribution, it is now clear that (4.15) implies

ξt ∼ EV (1/α, 0) so that µ = E(ξt) = −0.5772/α, and σ2
ξ = V ar(ξt) = π2/6α2. For

the time-homogenous stationary model, ψ0 is set to be E[ψ0] = ω
1−β . Finally, we
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can get

E(ln yt) = E(ψt + ξ̃t + µ) =
ω

1− β
− 0.5772

α
,

and

V ar(ln yt) =
σ2
u

1− β2
+

π2

6α2
.

Now we can estimate the parameters by the quasi maximum likelihood method

based on the previous discussion. For the prediction, we use the formulae

Pt|t−1 = BtPt−1B
′
t +RtQtR

′
t,

Ft = ZtPt|t−1Z
′
t +Ht,

Pt = Pt|t−1 − Pt|t−1Z
′
tF
−1
t ZtPt|t−1.

The prediction error decomposition of the quasi log-likelihood function is given by

(ignoring the constant term)

lnL(θ) = −1

2

N∑
t=1

lnFt −
1

2

N∑
t=1

v2
t

Ft
, (4.16)

where vt = xt− x̂t|t−1, with x = ln yt and x̂t|t−1 = ̂ln yt|t−1, so that vt is the difference

between the log-duration and its prediction, and Ft is an estimate the conditional
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variance of vt. Hence,

vt = ln yt − E(ln yt|Fyt−1) = ln yt − [βψ̂t−1 + ω + µ]

= ln yt − βψ̂t−1 − ω + 0.5772
α

,

and Ft is given by (4.10). For the initial values, we use

v0 = ψ0 + ln ε0 −
ω

1− β
+

0.5772

α
,

and

F0 =
σ2
u

1− β2
+

π2

6α2
.

Approximate estimates of the parameters are obtained by optimizing the quasi log-

likelihood function derived above.

4.3 Using a nonlinear filtering scheme

Thavaneswaran & Gong (2009) studied recursive estimation for a class of continu-

ous time nonlinear non-Gaussian stochastic volatility models used for option pric-

ing in finance. Comparing to the kalman filter, nonlinear filter can be used in

non-Gaussian distribution. They suggested a filtering procedure for discrete time

stochastic volatility models associated with a nonlinear state space model given by
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yt = Aθt−1 + zt,

θt = aθt−1 + (1 + θt−1)ηt,

where {zt} is a sequence of independent and identically distributed innovations with

mean 0 and variance σ2
Z , {ηt} is a sequence of independent and identical distribution

random variables with mean 0 and variance σ2
η, and the sequences {zt} and {ηt}

are independent. The {yt} process is observed and {θt} is a nonobservable random

parameter process.

Lemma 4.3.1. In the above context, the MSE optimal sequential estimate θ̂t of θt

is

θ̂t = aθ̂t−1 +
Aaγt−1

A2γt−1 + σ2
z

(yt − Aθ̂t−1),

and the MSE γt = E[(θt − θ̂t)2|Fyt−1] of this minimizing estimator is

γt = a2γt−1 + b2
1σ

2
η −

(aAγt−1)2

A2γt−1+σ2
z

=
a2σ2

zγt−1

A2γt−1 + σ2
z

+ b2
1σ

2
η,

where b1 =
√
E(1 + θt−1)2.

In what follows, we adapt the argument used by Thavaneswaran & Gong (2009)
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to the SCD model setup. First, the model can be rewritten as

ψt = βψt−1 + ω + ut,

xt = ψt−1 + ξt + c

where xt = ln yt, ξt = ln εt − µ and c = µ = E[ln εt]. The following theorem

establishes a nonlinear filtering scheme for the SCD model.

Theorem 4.3.2. For the SCD model, the MSE optimal linear sequential estimator

ψ̂t and its MSE γt = E[(ψt − ψ̂t)2|Fyt ] are given by

ψ̂t = βψ̂t−1 + ω +
βγt−1

γt−1 + σ2
ξ

(xt − ψ̂t−1 − c),

γt = β2γt−1 + σ2
u −

β2γ2
t−1

γt−1 + σ2
ξ

= σ2
u + β2γt−1

(
1− γt−1

γt−1 + σ2
ξ

)
.

Proof. First, proceeding like Gong & Thavaneswaran (2009), we consider condi-

tional linear predictions of the form

ψ̂t = βψ̂t−1 + ω +Gt(xt − ψ̂t−1 − c),

where the choice of Gt is made by minimizing the prediction MSE. Note that, we
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can write

ψt − ψ̂t = βψt−1 + ω + ut − [βψ̂t−1 + ω +Gt(xt − ψ̂t−1 − c)]

= β[ψt−1 − ψ̂t−1] + ut −Gt(xt − ψ̂t−1 − c)

= β[ψt−1 − ψ̂t−1] + ut −Gt(ψt−1 − ψ̂t−1 + ξt),

since

xt − ψ̂t−1 − c = ψt−1 + ξt + c− ψ̂t−1 − c = ψt−1 − ψ̂t−1 + ξt. (4.17)

By using (4.17), then we can write

γt = E[(ψt − ψ̂t)2|Fyt−1]

= E[(β(ψt−1 − ψ̂t−1) + ut −Gt(yt − ψ̂t−1 − c))2|Fyt−1]

= E[(β(ψt−1 − ψ̂t−1) + ut −Gt(ψt−1 − ψ̂t−1 + ξt)
2|Fyt−1]

= E

[
β2(ψt−1 − ψ̂t−1)2 + u2

t +G2
t (ψt−1 − ψ̂t−1 + ξt))

2 +

2β[ψt−1 − ψ̂t−1]ut − 2Gt(ψt−1 − ψ̂t−1 + ξt)(β(ψt−1 − ψ̂t−1) + ut)

]
= β2E[(ψt−1 − ψ̂t−1)2] + σ2

u +G2
tE[(ψt−1 − ψ̂t−1 + ξt)

2]−

2GtβE[(ψt−1 − ψ̂t−1 + ξt)(ψt−1 − ψ̂t−1)]. (4.18)
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Now, note that the independence of ψt and ξt+1 allows us to write

E(ψt−1 − ψ̂t−1 + ξt)
2 = E{(ψt−1 − ψ̂t−1)2 + ξ2

t + 2(ψt−1 − ψ̂t−1)ξt}

= E(ψt−1 − ψ̂t−1)2 + E(ξt)
2

= γt−1 + σ2
ξ ,

and

E[(ψt−1 − ψ̂t−1 + ξt)(ψt−1 − ψ̂t−1)] = E(ψt−1 − ψ̂t−1)2 + E[(ψt−1 − ψ̂t−1)ξt]

= E(ψt−1 − ψ̂t−1)2

= γt−1

Going back to (4.18), we get

γt = β2γt−1 + σ2
µ +G2

t (γt−1 + σ2
ξ )− 2Gtβγt−1

= G2
t (γt−1 + σ2

ξ )− 2Gtβγt−1 + β2γt−1 + σ2
µ

= (γt−1 + σ2
ξ )
[
G2
t − 2Gt

βγt−1

γt−1+σ2
ξ

+ ( βγt−1

γt−1+σ2
ξ
)2 − ( βγt−1

γt−1+σ2
ξ
)2
]

+ β2γt−1 + σ2
µ

= (γt−1 + σ2
ξ )(Gt − βγt−1

γt−1+σ2
ξ
)2 − β2γ2t−1

γt−1+σ2
ξ

+ β2γt−1 + σ2
µ.

Obviously, the best prediction of the form (5.2) is obtained when Gt =
βγt−1

γt−1 + σ2
ξ

.

The stated result follow directly.

In order to estimate the model parameters, the filter we introduced here can
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also be applied to compute the likelihood function for an SCD model. For this,

we still use the QML method to estimate the parameters based on the prediction

decomposition given in (4.16). However, the vt and Ft are now obtained using the

second filtering scheme. Specifically, we know vt = xt − x̂t|t−1, where x̂t|t−1 is the

conditional mean of xt = ln yt, so that

vt = xt − [βψ̂t−1 + ω + c].

and Ft is the conditional variance of vt, that is

Ft = V ar(vt|Fyt−1) = V ar(ψt − ψ̂t + ξt)

= γt + π2

6α2 .

4.4 Estimation based on the Generalized Method

of Moments

In this section we describe the generalized method of moments (GMM) and its use in

estimation for SCD models with applications in finance. Hansen (1982) formalized

the GMM approach to estimation and, since then, GMM has become one of the most

widely used estimation method for statistical models in finance. The method has

been used successfully to estimate stochastic volatility (SV) models by Ruiz (1994)

and Andersen & Sorensen (1996). In our model, Bauwence & Vededas did suggest

it may be a suitable estimator. The main problems for GMM are which moments
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to match and how many moments to include in the estimation. We here follow the

suggestion of Andersen & Sorensen (1996). Having obtained all the moments, SCD

models can be estimated following standard GMM procedure. Under the regularity

conditions, the GMM estimators are consistent and asymptotically normal.

For the problem at hand, we select moments with the following considerations.

Firstly, in determining the numbers of moments, we keep in mind the findings of

Andersen & Sorensen (1996): using more moments improves the estimation perfor-

mance but causes a deterioration in the estimation of the weighting matrix. One

should try to achieve a reasonable trade-off between using too many or not enough

moments. Secondly, since the autocorrelation is varying over different lags, we use

cross moments to capture the dependence. Thirdly, the first four moments should be

included to capture the mean, variance, skewness and kurtosis of the data. Conse-

quently, we choose the first four univariate moments and the first ten cross moments,

namely E[ymt ] for m = 1, 2, 3, 4. and E[ytyt−r] for r = 1, . . . , 10 to estimate all the

parameters.

The following theorem gives useful theoretical moments for the sequence of dura-

tions yt. Knight & Ning (2008) originally derived these results for the Weibull SCD

model.

Theorem 4.4.1. For model (4.1), the moments and cross-moments of durations

are given by

E[ymt y
n
t−r] = exp(ω(m+n)

1−β + m2+n2+2mnβr

2(1−β2)
σ2
u)Γ(m/γ + 1)Γ(n/γ + 1), (4.19)
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for m,n ≥ 0.

Proof. From model (4.1), we know that εt ∼ i.i.d Weibull (γ, 1), and ut ∼ N(0, σ2
µ),

so that ψt ∼ N( ω
1−β ,

σ2

1−β2 ). Now, note that

E[ymt y
n
t−r] = E[exp(mψt + nψt−r)ε

m
t ε

n
t−r].

On the other hand, we also have

ψt = ω + β[ω + βψt−2 + ut−1] + ut

= ω + ωβ + β2ψt−2 + βut−1 + ut

...
...

...

=
ω(1− βr)

1− β
+ βrψt−r +

r−1∑
j=0

βjut−j,

which allows us to write, when m,n > 0,

E[ymt y
n
t−r] = E[exp(mψt + nψt−r)ε

m
t ε

n
t−r]

= E

{
exp

[
m(ω

1− βr

1− β
+ βrψt−r +

r−1∑
j=0

βjut−j) + nψt−r

]}
E[εmt ε

n
t−r]

= E

{
exp(mω(1−βr)

1−β ) + (n+mβr)ψt−r +m
r−1∑
j=0

βjut−j

}
E[εmt ε

n
t−r]

= exp

(
mω(1−βr)

1−β

)
E

[
exp(m

r−1∑
j=0

βjut−j)

]
E

[
(n+mβr)ψt−r

]
E[εmt ε

n
t−r]

= exp

(
mω(1− βr)

1− β

)
· A ·B · C
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where we let

A = E

[
exp(m

r−1∑
j=0

βjut−j)

]
,

B = E

[
exp[(n+mβr)ψt−r]

]
,

C = E

[
εmt ε

n
t−r

]
.

Now, the value of A is,

A = E

[
exp(m

r−1∑
j=0

βjut−j)

]
= E

[
exp(mZr)

]
,

where Zr =
r−1∑
j=0

βjut−j ∼ N(0,
1− β2r

1− β2
σ2
u). A simple expression for A then easily

follows by making use of the moment generating function of Zr, that is

A = exp

{
m2σ2

u

2

(1− β2r)

1− β2

}
.

Similarly, since ψt ∼ N( ω
1−β ,

σ2
u

1−β2 ) for all t, we have that

B = E

{
exp

[
(n+mβr)ψt−r

]}
= exp

[
(n+mβr)ω

1− β
+

(n+mβr)2σ2
u

2(1− β2)

]
.
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Finally, we know that for X ∼ Weibull (α, β),

E(Xm) = βΓ[1 +
m

α
].

This implies here that

C = E[εmt ε
n
t−r]

= Γ(1 + m
γ

)Γ(1 + n
γ
).

To complete the proof, note that n = 0, E[ymt y
n
t−r] reduces to

E[ymt ] = E[exp(mψt)ε
m
t ] = exp

[
mω

1− β
+

m2σ2
u

2(1− β2)

]
Γ(1 +

m

γ
),

since ψt ∼ N( ω
1−β ,

σ2
u

1−β2 ). A similar result is easily obtained when m = 0.

Note that in the case where m = n = 1, (4.19) is equivalent to

E[ytyt−j] = exp

[
2ω

1− β
+

(2 + 2βj)σ2
u

2(1− β2)

]
[Γ(1 +

1

γ
)]2,

where j = 1, . . . 10. Finally, for m = n = 2,

E[y2
t y

2
t−j] = exp[

4ω

1− β
+

(8 + 8βj)σ2
u

2(1− β2)
][Γ(1 +

2

γ
)]2,
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where j = 1, . . . 10.

Since the all necessary theoretical moments are available, the parameters of the

SCD model can be estimated using the GMM method. An R function can com-

pute the necessary moments for j = 1, . . . 10. and use these to obtained parameter

estimates.

4.5 Simulation Study

For this simulation study, we simulated series of length 5000, which is considered to

be representative of the typically large sample sizes that are associated with transac-

tion data. Following the work of Knight & Ning (2008), we set Θ = (ω, β, γ, σu)
t =

(0.001 0.95 0.9 0.1)t. In order to make the model stationary and invertible, |β|

should be less than 1. The time plot and histogram of a typical observed Weibull

SCD series is shown in Figure 4.1. In what follows, we refer to QML with Kalman

filtering as method 1, QML with the filter introduced in Theorem 4.3.2 as method

2, GMM as method 3.

The histogram of the QML estimators using the Kalman filter obtained from 100

simulated series of length 5000 are shown in Figure 4.2. We did the same in Figure

4.3 and for the QML estimator using the filter introduced in Theorem 4.3.2, and in

Figure 4.4 for the GMM estimator. From those histograms, it seems the sampling

distributions are concentrated around the true values of the parameters, suggestting

that the methods we used are reasonable. The result obtained in the GMM case

are however suggesting the resulting estimators more biased. Comparing the three
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(a) Time plot for Weibull SCD (b) Histogram for Weibull SCD

Figure 4.1: Simulated Weibull SCD series with 5000 observations.

methods based on these histograms, it seems that for Weillbull SCD model, method

2 is best for fitting the SCD model, and method 1 is better than method 3.

The estimation results based on the three methods discussed above are given in

the Table 4.1. To help with the comparison, Table 4.2 gives the Average Squared-

Error (ASE) (the sample equivalent of the traditional MSE) for the estimation of

each parameter with each estimation method. From this, we see method 1 achieves

lower ASE than all the other methods in the estimation of β, γ, and σ. Method 2

gives slightly smaller ASE than all the other method when estimating ω. Finally,

note that for each parameter, the mean of all estimates fall within one standard

error of the true parameter value.
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(a) Distribution of estimates ω=0.001 (b) Distribution of estimates β=0.95

(c) Distribution of estimates γ=0.9 (d) Distribution of estimates σ=0.1

Figure 4.2: Histogram of QML estimators using the kalman filter.
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(a) Distribution of estimates ω=0.001 (b) Distribution of estimates β=0.95

(c) Distribution of estimates γ=0.9 (d) Distribution of estimates σ=0.1

Figure 4.3: Histogram of QML estimators using nonlinear filter.
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(a) Distribution of estimates ω=0.001 (b) Distribution of estimates β=0.95

(c) Distribution of estimates γ=0.9 (d) Distribution of estimates σ=0.1

Figure 4.4: Histogram of GMM estimators.
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Table 4.1: Simulation Summary for the three Estimation Methods

parameters True value Method 1 Method 2 GMM

ω 0.001 0.001359561 0.001269947 0.0005527

(0.002123128) (0.001929450) (0.001730760)

β 0.95 0.947831 0.9432045 0.9614191

(0.01487210) (0.02181952) (0.02800412)

γ 0.9 0.9000105 0.9019865 0.9101544

(0.01311689) (0.01553524) (0.01616926)

σ 0.1 0.09729156 0.1086845 0.05808528

(0.01998328) (0.02864012) (0.04565775)

Table 4.2: Comparison of Average Squared Error

parameters ASE

Method 1 Method 2 GMM

ω 0.002101897 0.001910156 0.001713452

β 0.01472338 0.02160132 0.02772408

γ 0.01298572 0.01537989 0.01600757

σ 0.01978345 0.02835372 0.04520117

4.6 Application of SCD Models in Finance

In this section, we will apply the SCD model to the IBM data. This data contains

information on IBM trades from November 1, 1990 to January 31, 1991. Specifically,

the data set includes data/time, volume, bid and ask price, and transaction data.

We only use the data from the November 1, 1990 to December 21, 1990 in order to

avoid holiday effects. This data set includes 35 trading days over 2 months, with

31668 observations. However, since IBM trading halted for over one hour and 15

minutes on November 23, the data from this day is deleted. Furthermore, we delete

the trades that occurred before 9:50 am and after 4:00 pm in order to eliminate
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irregularities during opening and closing periods. This leads to a set of “working

data” containing 25542 observations, with an observed sample mean of the adjusted

duration of 2.888828 and a standard deviation of 3.644924. Note that the maximum

observation is 47.31872 and the minimum is 0.079026. The three methods described

previously were used to fit a Weibull SCD model to the IBM data. The resulting

estimates of the model parameters and their standard error are shown in Table 4.3.

All estimates of β are close to one, showing high persistency of the duration

process. Also, the fact that all estimates are less than one suggests the process is

stationary. The estimates of σu are all significantly different from zero. According

to Bauwens & Veredas (2004) and Knight & Ning (2008), the dispersion ratio, which

we denote Dy, should help detect overdispersion in the observed data. This ratio

is defined as Dy = σy
µy

, the standard deviation of durations divided by the mean

duration. Based on the Weibull SCD model we have here that

Dy =

√√√√ Γ(1 + 2
γ
)

(Γ(1 + 1
γ
))2

exp(
σ2

1− β2
)− 1.

We estimate Dy by substituting estimated parameters in the above formula. This

“plug-in” approach leads to the model-based estimates of the dispersion ratio given

in Table 4.3. From these results, it is reasonable to conclude that the true Dy is

greater than 1, meaning that overdispersion is present here. Also, it seems trade du-

rations exhibit persistency. Here, we use the Hessian matrix to obtain the standard

errors of all estimates. It turns out that the inverse of the Hessian matrix approxi-

mates the variance/covariance matrix of parameter estimates. The Hessian matrix
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(and asymptotic standard errors for the parameters) can be computed via finite

difference approximations. This procedure yields very precise asymptotic standard

errors for all estimation methods. In the present case, where the sample size is

finite, these are used as approximations to the unavailable finite sample standard

errors.

Table 4.3: Estimates for both QML methods and GMM

QML based on QML based on GMM

parameter Kalman filter nonlinear filter Estimates

ω 0.02146828 0.02153400 0.0084164

(0.002598241) (0.002611913) (0.01554)

β 0.97592862 0.97594709 0.9908986

(0.002846242) (0.002850144) (0.01678)

γ 1.05149445 1.04415237 0.8917806

(0.005547853) (0.005024234) (0.00807)

σ 0.11526654 0.09865976 0.0467896

(0.007257183) (0.006524264) (0.04422)

Estimated 1.232487 1.163427 1.246262

Dispersion Ratio
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Chapter 5

Quadratic SCD Models

Kawakatu (2007) considered quadratic SV models in an attempt to capture the

heavy-tailed property of asset returns. We do the same here for Conditional Dura-

tions.

5.1 Definition and Properties

Here, we introduce another type of nonlinear stochastic volatility models, the Quadratic

Stochastic Conditional Duration (QSCD) model. The model is defined as

yt = Ψtεt,

= exp(aψ2
t + bψt + c)εt,

(5.1)
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where Ψt is again a latent variable, and

ψt = βψt−1 + ω + ut. (5.2)

In general, εt > 0, ut ∈ R, are the two innovation sequences and are uncorrelated. In

what follows, we focus on the case where εt ∼ Weibull (α, 1) and ut ∼ N(0, σ2
u) and

{εt} and {ut} are independent. Under the normality assumption on ut, it follows

that ψt is a stationary Gaussian AR(1) process whenever |β| < 1. More specifically,

ψt ∼ N( ω
1−β ,

σ2
µ

1−β2 ) and hence, the moments are given by

E(ψt) =
ω

1− β
,

E(ψ2
t ) = V ar(ψt) + [E(ψt)]

2 =
σ2
u

1− β2
+

(
ω

1− β

)2

,

and

E(ψ4
t ) = 3

(
σ2
u

1− β2

)2

.

The following two theorems are important in order to understand the properties of

QSCD models.

Theorem 5.1.1. The latent variable of model (5.1) has mean

µΨ =
√

1−β2

1−β2−2aσ2
u

exp

{
(ω + βω + bσ2

u)
2

2σ2
u(1− β2 − 2aσ2

u)
− ω2(1 + β)

2σ2
u(1− β)

+ c

}
,
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and variance

σ2
Ψ =

√
1− β2

1− β2 − 4aσ2
u

exp

{
(ω + βω + 2bσ2

u)
2

2σ2
u(1− β2 − 4aσ2

u)
− ω2(1 + β)

2σ2
u(1− β)

+ 2c

}
− µ2

Ψ.

Theorem 5.1.2. For the model given by (5.1) and (5.2), the moments of the

duration yt are

E[ymt ] = E{exp[m(aψ2
t + bψt + c)]εmt } = E{exp[m(aψ2

t + bψt + c)]}E[εmt ]

=
√

1−β2

1−β2−2amσ2
u

exp

[
(ω + βω +mbσ2

u)
2

2σ2
u(1− β2 − 2amσ2

u)

− ω2(1 + β)

2σ2
u(1− β)

+mc

]
Γ(1 +m/γ).

In addition, the cross-moments of durations yt and yt−r are

E(ytyt−r) =
1√

1− 2aσ2
Z

1√
(1− 2Aσ2

ψ)
exp(B) exp

{
C2σ2

ψ

2(1− 2Aσ2
ψ)

}
(Γ(1 + 1/γ))2,

where

A = a(β2r + 1) + 4λa2β2r,

B =
aω2(1− βr)2

(1− β)2
+ bω

1− βr

1− β
+ 2c+ λ

(
b+

2aω(1− βr)
1− β

)2

,

C = 2
aωβr(1− βr)

1− β
+ b(βr + 1) + 4λaβr

(
b+

2aω(1− βr)
1− β

)
,

85



σ2
Z =

1− β2r−1

1− β2
σ2
u and σ2

ψ =
σ2
µ

1− β2
. In order for these moments and cross-moments

to exist, the following conditions should be satisfied

1− β2

1− β2 − 8aσ2
u

> 0, (5.3)

1− 2aσ2
Z > 0, (5.4)

1− 2Aσ2
ψ > 0. (5.5)

Proof. For the moments of the duration yt, we use again the fact that ψt is normal

when |β| < 1. Doing this, we have

E(ymt ) = E{exp[m(aψ2
t + bψt + c)]}

=

∫
R

1√
2π σ2

u

1−β2

exp

[
−

(ψt − ω
1−β )2

2σ2
u

1−β2

]
exp[m(aψ2

t + bψt + c)]dψt

=
1√
2πσ2

u

1−β2

∫
R

exp

[
−
ψ2
t −

2ωψt
1−β + ω2

(1−β)2

2σ2
u

1−β2

+ amψ2
t + bmψt +mc

]
dψt
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=
1√
2πσ2

u

1−β2

∫
R

exp

[
−

(ψt − ω+ωβ+bmσ2
u

1−β2−2amσ2
u
)2

2σ2
u

1−β2−2amσ2
u

exp[
(ω + βω + bmσ2

u)
2

2σ2
u(1− β2 − 2amσ2

u)
− ω2(1 + β)

2σ2
u(1− β)

+mc]

]
dψt

=

√
2πσ2u

1−β2−2amσ2u√
2πσ2u
1−β2

exp

[
(ω + βω + bmσ2

u)
2

2σ2
u(1− β2 − 2amσ2

u)
− ω2(1 + β)

2σ2
u(1− β)

+mc

]

×
∫
R

1√
2πσ2

u

1−β2−2amσ2
u

exp

[
−

(ψt − ω+ωβ+bmσ2
u

1−β2−2amσ2
u
)2

2σ2
u

1−β2−2amσ2
u

]
dψt

=
√

1−β2

1−β2−2amσ2
u

exp

[
(ω + βω + bmσ2

u)
2

2σ2
u(1− β2 − 2amσ2

u)
− ω2(1 + β)

2σ2
u(1− β)

+mc

]
.

Now, recall that

ψt = βrψt−r + ω 1−βr
1−β +

r−1∑
j=0

βjut−j

= βrψt−r + ω 1−βr
1−β + Zr,

where

Zr =
r−1∑
j=0

βjut−j ∼ N

(
0,

(
1− β2r−1

1− β2

)
σ2
u

)
,

and the fact that Zr is independent of {εt} and of ψt−j for j = r, r+ 1, . . . Similarly,

we can also get
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ψ2
t =

{
βrψt−r + ω

1− βr

1− β
+ Zr

}2

= β2rψ2
t−r +

ω2(1− β)2

(1− β2)
+ Z2

r + 2ω
1− βr

1− β
βrψt−r+

2βrψt−rZr + 2ω
1− βr

1− β
Zr.

We can now calculate the cross effect between yt and yt−r where r = 1, . . . , 10.

Using the two expressions obtained above, we can write

ψt + ψt−r = βrψt−r + ψt−r + ω
1− βr

1− β
+ Zr

= (βr + 1)ψt−r + ω
1− βr

1− β
+ Zr (5.6)

and

ψ2
t + ψ2

t−r = β2rψ2
t−r + ψ2

t−r +
ω2(1− βr)2

(1− β2)
+ Z2

r

+2
ωβr(1− βr)

1− β
ψt−r + 2βrψt−rZr + 2

ω(1− βr)
1− β

Zr

= (β2r + 1)ψ2
t−r + 2

ωβr(1− βr)
1− β

ψt−r +
ω2(1− βr)2

(1− β2)

+Z2
r +

(
2βrψt−r +

2ω(1− βr)
1− β

)
Zr (5.7)
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Combining (5.6) and (5.7), we get

a(ψ2
t + ψ2

t−r) + b(ψt + ψt−r) + 2c

= a(β2r + 1)ψ2
t−r + 2

aωβr(1− βr)
1− β

ψt−r +
aω2(1− βr)2

(1− β)2

+aZ2
r + a

(
2βrψt−r +

2ω(1− βr)
1− β

)
Zr + b(βr + 1)ψt−r + bω

1− βr

1− β
+ bZr + 2c

= a(β2r + 1)ψ2
t−r +

[
2
aωβr(1− βr)

1− β
+ b(βr + 1)

]
ψt−r +

aω2(1− βr)2

(1− β)2

+bω
1− βr

1− β
+ 2c+ aZ2

r +

[
b+ 2aβrψt−r +

2aω(1− βr)
1− β

]
Zr

For the cross-moments of durations, we can then write

E(ytyt−r) = E{exp[a(ψ2
t + ψ2

t−r) + b(ψt + ψt−r) + 2c]}E(εt)E(εt−r)

= E

{
exp

[
a(β2r + 1)ψ2

t−r +

[
2
aωβr(1− βr)

1− β
+ b(βr + 1)

]
ψt−r

+
aω2(1− βr)2

(1− β)2
+ bω

1− βr

1− β
+ 2c+ aZ2

r

+

(
b+ 2aβrψt−r +

2aω(1− βr)
1− β

)
Zr

]}
E(εt)E(εt−r)

(5.8)

From Ghahramani & Thavaneswaran (2010), we know that

E[er(aY+bY 2)] =
1√

1− 2brσ2
Y

exp
r2a2σ2

Y

2(1− 2bσ2
Y )
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when b <
1

2rσ2
Y

. From (5.8), we know

E

{
exp[aZ2

t,r + (b+ 2aβrψt−r +
2aω(1− βr)

1− β
)Zt,r]|Fψ

t

}

=
1√

1− 2aσ2
Z

exp

{
σ2
Z

2(1− 2aσ2
Z)

(
b+ 2aβrψt−r +

2aω(1− βr)
1− β

)2}

and 1 > 2aσ2
Z then a <

1

σ2
Z

. Here we let λ =
1√

1− 2aσ2
Z

, then (5.8) can be written

1√
1− 2aσ2

Z

exp

{
λ2σ2

Z

2

(
b+ 2aβrψt−r +

2aω(1− βr)
1− β

)2}
=

1√
1− 2aσ2

Z

exp

{
λ2σ2

Z

2

(
b+

2aω(1− βr)
1− β

)2

+ 2λ2a2σ2
Zβ

2rψ2
t−r

+2aλ2σ2
Zβ

r

(
b+

2aω(1− βr)
1− β

)
ψt−r

}

From (5.8), we know

E

{
E

{
exp

[
a(β2r + 1)ψ2

t−r +

(
2
aωβr(1− βr)

1− β
+ b(βr + 1)

)
ψt−r+

aω2(1− βr)2

(1− β)2
+ bω

1− βr

1− β
+ 2c+ a[Zt,r]

2+(
b+ 2aβrψt−r +

2aω(1− βr)
1− β

)
Zt,r

]}
|Fψ
t

}
E(εt)E(εt−r)
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= E

{
exp

[
a(β2r + 1)ψ2

t−r +

(
2
aωβr(1− βr)

1− β
+ b(βr + 1)

)
ψt−r+

aω2(1− βr)2

(1− β)2
+ bω

1− βr

1− β
+ 2c

]}
×

1√
1− 2aσ2

Z

exp

{
λ

(
b+

2aω(1− βr)
1− β

)2

+ 4λa2β2rψ2
t−r + 4λaβr(b+

2aω(1− βr)
1− β

)ψt−r

}
=

1√
1− 2aσ2

Z

E

{
exp

[
a(β2r + 1) + 4λa2β2r

]
ψ2
t−r+[

2
aωβr(1− βr)

1− β
+ b(βr + 1) + 4λaβr

(
b+

2aω(1− βr)
1− β

)]
ψt−r+

aω2(1− βr)2

(1− β)2
+ bω

1− βr

1− β
+ 2c+ λ

(
b+

2aω(1− βr)
1− β

)2}

Let

A = a(β2r + 1) + 4λa2β2r,

B =
aω2(1− βr)2

(1− β)2
+ bω

1− βr

1− β
+ 2c+ λ

(
b+

2aω(1− βr)
1− β

)2

,

C = 2
aωβr(1− βr)

1− β
+ b(βr + 1) + 4λaβr

(
b+

2aω(1− βr)
1− β

)
.

Then, we can write

E(ytyt−r)

=
1√

1− 2aσ2
Z

exp(B)× E
[

exp(Aψ2
t−r) + cψt−r

]
E(εt)E(εt−r)

=
1√

1− 2aσ2
Z

1√
(1− 2Aσ2

ψ)
exp(B) exp

[
C2σ2

ψ

2(1− 2Aσ2
ψ)

](
Γ(1 + 1/γ)

)2

,

as claimed.
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5.2 QML Estimation based on Nonlinear Filter-

ing

As we have done in Chapter 4, we will use a logarithmic transformation to estimate

the parameters of the QSCD model. For this, we rewrite (5.1) as

ln yt = aψ2
t + bψt + c+ ln εt

= aψ2
t + bψt + c∗ + ξt, (5.9)

where as before, we use xt = log yt, ξt = ln εt−µ, µ = E(ln εt) and c∗ = c+µ. From

previous result, we know that ln εt follows the extreme value distribution (0,
π2

6α2
).

From (5.2), we can get

ψ2
t = (βψt−1 + ω)2 + et + σ2

u,

where et = 2(βψt−1 + ω)ut + u2
t − σ2

u is such that E(et) = 0 and

E(e2
t ) = E[u4

t + 4(βψt−1 + ω)2u2
t + 4(βψt−1 + ω)u3

t ]

+σ4
u − 2σ2

uE[2(βψt−1 + ω)ut + u2
t ]
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= 3σ4
u + 4E[(β2ψ2

t−1 + ω2 + 2βωψt−1)u2
t ] + σ4

u − 2σ4
u

= 2σ4
u + 4σ2

u[β
2( σ2

u

1−β2 + ω2

(1−β)2
) + ω2 + 2βω2

1−β ]

=
2 + 2β2

1− β2
σ4
u +

4ω2σ2
u

(1− β)2
= τ,

and is uncorrelated with ψt−1.

Using the same method of minimizing the prediction MSE, γt = E[ψ2
t−1 − ψ̂2

t−1]2

as that presented in Section 4.3, the optimal recursive filtering scheme is given in

the next theorem.

Theorem 5.2.1. In the current context, an MSE optimal sequential estimator of

ψ2
t is

ψ̂2
t = (βψ̂t−1 + ω)2 +Gt(xt − aψ̂2

t−1 − bψ̂t−1 − c∗),

with conditional MSE

γt = (β2 − aGt)
2γt−1 + (2ωβ − bGt)

2

(
σ2
µ

1−β2 + ( ω
1−β )2 − 2( ω

1−β )ψ̂t−1 + ψ̂2
t−1

)
+2(β2 − aGt)(2ωβ − bGt)ψ̂t−1

(
ψ̂2
t−1 − ω

1−β ψ̂t−1 − (
σ2
µ

1−β2 + ( ω
1−β )2)

)
+τ +G2

t

π2

6α2
,
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where Gt =
At
Bt

,

At = 2β2aγt−1 + 4ωβb( σ2
u

1−β2 + ω2

(1−β)2
− 2 ω

1−β ψ̂t−1 + ψ̂2
t−1)

+2(β2b+ 2aβω)

(
ψ̂3
t−1 − ( ω

1−β )ψ̂2
t−1 − ( σ2

u

1−β2 + ω2

(1−β)2
)ψ̂t−1

)
,

and

Bt = 2a2γt−1 + 2b2(
σ2
µ

1−β2 + ( ω
1−β )2 − 2 ω

1−βψt−1 + ψ2
t−1)

+2 π2

6α2 + 4abψ̂t−1(ψ̂2
t−1 − ω

1−β ψ̂t−1 − (
σ2
µ

1−β2 + ( ω
1−β )2)).

Proof. First, proceeding as in Thavaneswaran & Gong (2009), we consider condi-

tional predictions of the form

ψ̂2
t = (βψ̂t−1 + ω)2 +Gt(xt − aψ̂2

t−1 − bψ̂t−1 − c∗)

where the choice of Gt is made by minimizing the prediction MSE.

Here, we write

(ψ2
t − ψ̂2

t )
2 =

[
(βψt−1 + ω)2 + et − (βψ̂t−1 + ω)2 +Gt(log yt − ψ̂t−1 − c)

]2

=

[
(βψt−1 + ω)2 − (βψ̂t−1 + ω)2 + et

+Gt(ξt + aψ2
t−1 + bψt−1 + c∗ − aψ̂2

t−1 − bψ̂t−1 − c∗)
]2
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=

[
β(ψt−1 − ψ̂t−1)(β(ψt−1 + ψ̂t−1) + 2ω) + et

+Gt(ξt + a(ψ2
t−1 − ψ̂2

t−1) + b(ψt−1 − ψ̂t−1))

]2

=

[
(β2 − aGt)(ψ

2
t−1 − ψ̂2

t−1) + (2ωβ − bGt)(ψt−1 − ψ̂t−1) + et −Gtξt

]2

= (β2 − aGt)
2(ψ2

t−1 − ψ̂2
t−1)2 + (2ωβ − bGt)

2(ψt−1 − ψ̂t−1)2 + e2
t +G2

t ξ
2
t

+2(β2 − aGt)(2βω − bGt)(ψ
2
t−1 − ψ̂2

t−1)(ψt−1 − ψ̂t−1) + 2(β2 − aGt)(ψ
2
t−1 − ψ̂2

t−1)et

−2(β2 − aGt)Gtξt(ψ
2
t−1 − ψ̂2

t−) + 2(2ωβ − bGt)(ψ
2
t−1 − ψ̂2

t−1)et

−2(2ωβ − bGt)(ψt−1 − ψ̂t−1)Gtξt − 2Gtξtet

From this, we further have

γt = E[(ψ2
t − ψ̂2

t )
2|Fyt−1]

= (β2 − aGt)
2γt−1 + (2ωβ − bGt)

2E[ψt−1 − ψ̂t−1]2 + E(e2
t ) +G2

tE(ξ2
t )

+2(β2 − aGt)(2βω − bGt)E[(ψ2
t−1 − ψ̂2

t−1)(ψt−1 − ψ̂t−1)]

+2(β2 − aGt)E[(ψ2
t−1 − ψ̂2

t−1)et]

+2(2ωβ − bGt)E[(ψ2
t−1 − ψ̂2

t−1)et]

= A+B + C +D1 +D2

where

A = (β2 − aGt)
2γt−1 + E(e2

t ) +GtE(ξ2
t )

= (β2 − aGt)
2γt−1 + τ +GtE(ξ2

t ),
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B = (2ωβ − bGt)
2E[ψ2

t−1 − 2ψt−1ψ̂t−1 + ψ̂2
t−1]

= (2ωβ − bGt)
2

[(
σ2
u

1− β2
+

ω2

(1− β)2

)
− 2ω

1− β
ψ̂t−1 + ψ̂2

t−1

]
,

= (4ω2β2 − 4ωβbGt + b2G2
t )

[(
σ2
u

1− β2
+

ω2

(1− β)2

)
− 2ω

1− β
ψ̂t−1 + ψ̂2

t−1

]
,

C = 2(β2 − aGt)(2βω − bGt)E[(ψ3
t−1 − ψ2

t−1ψ̂t−1 − ψt−1ψ̂
2
t−1 + ψ̂3

t−1)]

= 2(β2 − aGt)(2βω − bGt)

[
ψ̂3
t−1 − (

2ω

1− β
)ψ̂2

t−1 − (
σ2
u

1− β2
+

ω2

(1− β)2
)ψ̂t−1

]
,

D1 = 2(β2 − aGt)E[(ψ2
t−1 − ψ̂2

t−1)et] = 0,

D2 = 2(2ωβ − bGt)E[(ψ2
t−1 − ψ̂2

t−1)et] = 0,

so that

γt = (β4 − 2β2aGt + a2G2
t )γt−1 + τ +G2

tE(ξ2
t )

+(4ω2β2 − 4ωβbGt + b2G2
t )

[(
σ2
u

1− β2
+

ω2

(1− β)2

)
− 2ω

1− β
ψ̂t−1 + ψ̂2

t−1

]
+2(β2 − aGt)(2βω − bGt)

[
ψ̂3
t−1 − (

2ω

1− β
)ψ̂2

t−1 − (
σ2
u

1− β2
+

ω2

(1− β)2
)ψ̂t−1

]

It is now straightforward to minimize γt with respect to Gt since the former is a

degree two polynomial in the latter. This leads to the stated result.

In order to estimate the model parameters, the filter introduced above can be

applied to compute a quasi-likelihood function for the model given by (5.2) and

(5.9) as we did previously in Chapter 4 for the regular SCD model. Specifically, we
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find the value of θ maximizing the quasi-likelihood

lnL(θ) = −NT
2

log 2π − 1

2

N∑
t=1

lnFt −
1

2

N∑
t=1

v2
t

Ft
,

where vt = xt − x̂t|t−1, x̂t|t−1 is the conditional mean E[xt|Fyt−1],

vt = xt − [aψ̂2
t−1 + bψ̂t−1 + c∗]

and Ft is the conditional variance of vt, that is

Ft = V ar(vt|Fyt−1)

= E[v2
t |F

y
t−1]−

(
E[vt|Fyt−1]

)2

.

Note that (5.2) implies

vt = aψ2
t−1 + bψt−1 + c∗ + ξt −

(
aψ̂2

t−1 + bψ̂t−1 + c∗
)

= a(ψ2
t−1 − ψ̂2

t−1) + b(ψt−1 − ψ̂t−1) + ξt.

and

v2
t = a2(ψ2

t−1 − ψ̂2
t−1)2 + b2(ψt−1 − ψ̂t−1)2 + ξ2

t + 2ab(ψ2
t−1 − ψ̂2

t−1)(ψt−1 − ψ̂t−1)

+2a(ψ2
t−1 − ψ̂2

t−1)ξt + 2b(ψt−1 − ψ̂t−1)ξt.
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From this, we have that

E(v2
t |F

y
t−1) = a2γ + b2E(ψt−1 − ψ̂t−1)2 +

π2

6α2
+ 2abE(ψ2

t−1 − ψ̂2
t−1)(ψt−1 − ψ̂t−1),

and

E(vt|Fyt−1) = aE(ψ2
t−1 − ψ̂2

t−1) + bE(ψt−1 − ψ̂t−1),

implying(5.2) can be rewritten as

V ar(vt|Fyt−1) = a2γ + b2

(
σ2
u

1− β2
+

ω2

(1− β)2
+ ψ̂2

t−1 − 2
ωψ̂t−1

1− β

)
+
π2

6α2
− a2

(
σ2
u

1− β2
+

ω2

(1− β)2
− ψ̂2

t−1

)2

−b2

(
ω

1− β
− ψ̂t−1

)2

− 2ab

(
σ2
u

1− β2
+

ω2

(1− β)2

)(
ω

1− β

)
.

5.3 GMM Estimation

For the model defined by (5.1) and (5.2), estimating the parameters can also be done

using the GMM method. Bauwens & Veredas (2004) suggested this method may

lead to suitable estimators. Using the approach of Andersen & Sorensen (1996), we

calculate the expected value of ymt , m = 1, 2, 3, 4, and ytyt−r, where r = 1, . . . , 10.

These moments and cross-moments of duration were derived in Theorem 5.1.2.
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5.4 A Simulation Study

We simulated series of length 5000. To allow for the use of the GMM method,

conditions (5.3) to (5.5) should be satisfied. From (5.3), it is required that a <

1− β2

8σ2
u

. In order to make the model stationary and invertible, |β| should be less than

1. The parameters σu and α should both be greater than 0. For the simulation study,

we let β = 0.95 and σu = 0.1 implying parameter a should be less than 1.21875,

for condition (5.3) to be satisfied. Following the work of Kawakatsu (2007) we set

Θ ∈ (ω, β, γ, σ, a, b, c)t = (0.001, 0.95, 0.9, 0.1, 0.1, 0.45, 0). For the other

two conditions, we see from Table 5.1 that they are both satisfied in all considered

cases. Note the dependence on r of σ2
Z . Estimation results are shown in Table 5.2.

Table 5.1: Parameter Values used for simulation of QSCD data.

parameters β σu a σ2
Z

1−β2

1−β2−8aσ2
u

r = 10 0.95 0.1 0.1 0.063861175 1.089>0

r = 1 0.95 0.1 0.1 0.005128205 1.089>0

parameters 1− 2aσ2
Z λ A 1− 2Aσ2

Ψ

r = 10 0.9872278>0 0.03234369 0.1363124 0.972>0

r = 1 0.9989744>0 0.002566735 0.1903427 0.9989>0

parameters β σu a σ2
Z

1−β2

1−β2−8aσ2
u

r = 10 0.9 0.1 0.1 0.04552183 1.043956>0

r = 1 0.9 0.1 0.1 0.00526358 1.043956>0

parameters 1− 2aσ2
Z λ A 1− 2Aσ2

Ψ

r = 10 0.9908956>0 0.02297004 0.1122694 0.988>0

r = 1 0.9989474>0 0.002634352 0.1810854 0.981>0

Both methods discussed earlier were used: the QML optimization relying on the

nonlinear filter and the GMM method. For comparison, in Table 5.3 we give the
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ASE of the estimates obtained from both methods. The GMM estimates provide the

smallest ASE for ω and γ, while the QML method gave a lower ASE for parameters

β, σ, a, b, and c.

Table 5.2: Simulation Estimations of QML and GMM

parameters True value QML GMM

ω 0.001 -0.01192816 -0.0031345

(0.02647389) (0.006553696)

β 0.95 0.9496733 0.9232761

(0.02288866) (0.07948605)

γ 0.9 0.8998673 0.9064824

(0.01778818) (0.01398802)

σu 0.1 0.08692612 0.061956

(0.02190208) (0.05289102)

a 0.1 0.1019410 0.1828681

(0.02496394) ( 0.2391935)

b 0.45 0.4467866 0.4329538

(0.02681089) (0.1866534)

c 0 -0.009498322 0.01661534

(0.02144684) (0.02972771)

Table 5.3: Average Squared Error (ASE) of parameter estimates for the QSCD
model

parameters ASE

QML GMM

ω 0.02597438 0.006488808

β 0.0224568 0.07869906

γ 0.01745255 0.01384953

σ 0.02148883 0.05236735

a 0.02449292 0.2368252

b 0.02630502 0.1848054

c 0.02104218 0.02943337
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5.5 Another look at the IBM data

We here take another look at the IBM data introduced in Section 4.6. In Table 5.4,

we give the estimates of each parameter. Note that the standard errors of these

estimates are not provided. This is because the standard errors provided by the

standard optimization method that we used are unreliable here. This difficulty has

been raised by others who have suggested that the complexity (and nonlinearity)

of the model makes it extremely difficult to numerically approximate second or-

der derivatives. They also suggested that the values of the estimates should still

by reasonably accurate as they are obtained without making use of higher order

derivatives.

Again, all estimates of β are close to one, and smaller than one, suggesting persis-

tency of the duration process and stationarity. As before, we define the dispersion

ratio Dy = σy
µy

, the standard deviation of durations divided by the mean duration.

We can calculate this ratio, based on the Weibull QSCD model formulae given in

Theorem 5.2.1, which leads to

Dy =

√√
1−β2

1−β2−4aσ2
u

exp{ (ω + βω + 2bσ2
u)

2

2σ2
u(1− β2 − 4aσ2

u)
− ω2(1 + β)

2σ2
u(1− β)

+ 2c}Γ(1 + 2/γ)− µ2
y√

1−β2

1−β2−2aσ2
u

exp{ (ω + βω + bσ2
u)

2

2σ2
u(1− β2 − 2aσ2

u)
− ω2(1 + β)

2σ2
u(1− β)

+ c}Γ(1 + 1/γ)

.

We obtain estimates of the dispersion ratio by substituting estimated parameters.

These estimates are given in Table 5.4, along with all other parameter estimates

obtained with both methods, and once again suggest that overdispersion is present
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here.

Table 5.4: Estimates of QSCD model parameters obtained with QML and GMM

QML based on GMM

parameter Thava’s filter Estimates

ω 0.05365050 -0.02669

β 0.97489427 0.50186

γ 0.92376087 0.83362

σ 0.13471760 0.1007

a 0.10553067 0.15909

b 0.44141709 1.61973

c 0.08332539 1.02253

Estimated 1.473206 1.242109

Dispersion Ratio
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Chapter 6

Conclusions

In this thesis, two estimation method were developed for the estimation of the

parameters in SCD models and in quadratic SCD models. As there is no closed

form likelihood for both models, maximum likelihood available estimation method

can’t be applied. However, it is shown that the analytical form of the filter and

moments can be derived, therefore QML methods based on filtering methods and

GMM are two reasonable approaches. For the linear SCD model, two different

filtering schemes were used one of which is the popular Kalman filter. However, the

complexity of quadratic the SCD model, which has a quadratic form for the latent

variable, made it impossible to use the QML approach based on Kalman filtering.

A nonlinear filter was used instead. In both cases, the GMM methodology was also

successfully applied to estimate model parameters.
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Appendix A

Proof of Lemma 2.3.1 in Chapter 2

Proof. Using the same approach as Gong & Thavaneswaran (2008) , we have

θ̂t+1 = aθ̂t + c+Gt(yt+1 − Aθ̂t − c∗),

so that

θt+1 − θ̂t+1 = a(θt − θ̂t) + b1ε̃t+1 −Gt(yt+1 − Aθ̂t − c∗),
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and

γt+1 = E[θt+1 − θ̂t+1]2

= E[a(θt − θ̂t) + b1ε̃t+1 −Gt(yt+1 − Aθ̂t − c∗)]2

= a2E[θt − θ̂t]2 + b2
1σ

2
ε +G2

t (yt+1 − Aθ̂t − c∗)2+

2ab1(θt − θ̂t)E[ε̃t+1]− 2aE[Gt(θt − θ̂t)(yt+1 − Aθ̂t − c∗)]−

2b1GtE[ε̃t(yt+1 − Aθ̂t − c∗)].

Now, note that

E[yt+1 − Aθ̂t − c∗] = E[A(θt − θ̂t) +Bet+1],

or

E[yt+1 − Aθ̂t − c∗]2 = A2E[(θt − θ̂t)2] +B2σ2
e .

Also, we have that

E[(yt+1 − Aθ̂t − c∗)(θt − θ̂t)] = E[(θt − θ̂t)(A(θt − θ̂t) +Bet+1)]

= AE[(θt − θ̂t)2],
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E[(yt+1 − Aθ̂t − c∗)ε̃t−1b1] = E[b1[A(θt − θ̂t +Bet+1] b+θt
b1
εt+1]

= E[b2(A(θt − θ̂t +Bet+1)εt+1]

= b2BE[et + 1εt+1]

= b2B{Cov(et+1εt+1)− E(et+1)E(εt+1)}

= b2Bρσeσε.

These results allow us to write

γt+1 = a2γt + b2
1σ

2
ε +G2

t (A
2γt +B2σ2

e)− 2aAγtGt − 2b2GtBρσeσε

= (A2γt +B2σ2
e)

[
Gt −

aAγt +Bb2ρσeσε
A2γt +B2σ2

e

]2

−

(aAγt +Bb2ρσeσε)
2

A2γt +B2σ2
e

+ a2γt + b2
1σ

2
ε ,

which is minimized by letting

Gt =
aAγt +Bb2ρσeσε
A2γt +B2σ2

e

.

In this case, we get

γt+1 = a2γt + b2
1σ

2
ε −

(aAγt +Bb2ρσeσε)
2

A2γt +B2σ2
e

.
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Appendix B

R code

USE KALMAN FILTER TO ESTIMATE THE SCD MODEL PARAMETERS

for (j in 1:100){

SCD_Simul<- function(n, Coeff){

# inputs: n length of desired series. m the replication number

# parms vector of parameters for SCD process; has the form:

# (omega,beta,gamma,sigma,)

# model: e_(t) is any special distribution for the error term

# mu_(t) is normal distribution

# d_t = exp(psi_t)* e_(t)

# psi_t = omega + beta*psi_(t-1) + mu_t

# output: dur series

# usage: Coeff=c(0.001,0.95,0.9,0.1)

# distrib= "weibull"
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# scd = SCD_Simul(5000,Coeff,distrib,forma)

# error term

er <- rweibull(n, shape=Coeff[3], scale = 1)

psi <- rep(1,n)

dur <- rep(1,n)

mu <- rnorm(n,mean=0,sd=Coeff[4])

psi[1] <- Coeff[1]/(1-Coeff[2])

# initial value for the psi

dur[1] <- exp(psi[1])*er[1]

# initial value for the duration

for (i in 2:n){

psi[i] <- Coeff[1]+ Coeff[2]*psi[i-1]+ mu[i]

# Eq psi_(i)=w + b*psi_(i-1)+u_(i)

dur[i] <- exp(psi[i])*er[i]

# Eq y_(i)=e^(psi_(i))*e_(i)

# install each series duration into the column of sumdur

}

return(dur)

}

Coeff=c(0.001,0.95,0.9,0.1)

n=5000

scd_wei=SCD_Simul(n,Coeff)

# simulate data

#For Estimation part
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scd <- scd_wei

n <- length(scd)

estimscd <- function(pars){

estimscd <-0

H <- pi^2/(6*pars[3]^2)

# it is the variance about error term

u <- (-0.5772/pars[3])

# it is constant d_i=-0.5772/alpha

p <- rep(1,n)

# give the number for the P

p[1]<- pars[4]^2/(1-pars[2]^2)

# initial value for the P

pcon <- rep(1,n)

# give the number for the conditional P

pcon[1]<- (pars[2]^2)*p[1]+pars[4]^2

# intial value for the conditional P

F <- rep(2,n)

# covaraince for the series duration Y

F[1]<- pcon[1]+H

a <- rep(1,n)

a[1] <- pars[1]/(1-pars[2])

acon <- rep(1,n)

acon[1]<- pars[2]*a[1]+pars[1]

v <- rep(1,n)
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v[1]<- log(scd[1])-acon[1]-u

for (t in 2:n){

acon[t] <- pars[2]*a[t-1]+pars[1]

# the prediction equation for conditoanl a_i

pcon[t] <- (pars[2]^2)*p[t-1]+pars[4]^2

# the prediction equation for conditoanl p_i

v[t] <- log(scd[t])-acon[t]-u

# Eq v_i=y_i-E(y_i)

a[t] <- acon[t]+(pcon[t]*(F[t]^(-1)))*v[t]

# the updating equation for the a_i

F[t] <- pcon[t]+H

# the updating equation for the covarance F_i

p[t] <- pcon[t]-pcon[t]^2/F[t]

# the updating equation for the p_i

estimscd <- estimscd+0.5*log(abs(F[t]))+0.5*(v[t]^2)/F[t]

#qusi-maximum likehood function

}

return(estimscd)

}

# Using the package to estimate the parameters

pars=c(0.001,0.95,0.9,0.1)

scd_par=optim(pars,estimscd,method="Nelder-Mead",hessian= TRUE)

cat(j,"\n")

cat(scd_par$par,"\n")
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j=j+1

}

USE THAVA’S FILTER TO ESTIMATE THE SCD MODEL PARAMETERS

for (j in 1:100){

SCD_Simul<- function(n, Coeff){

# inputs: n length of desired series.

# parms: vector of parameters for SCD process; has the form:

# (omega,delta,gamma,sigma,)

# model: e_(t) is any special distribution for the error term

# mu_(t) is normal distribution

# d_t = exp(psi_t)* e_(t)

# psi_t = omega + delta*psi_(t-1) + mu_t

# output: dur series

# usage: Coeff=c(0.001,0.95,0.9,0.1)

# distrib= "weibull"

# scd = SCD_Simul(5000,Coeff,distrib,forma)

# error term

er <- rweibull(n, shape=Coeff[3], scale = 1)

psi <- rep(1,n)

dur <- rep(1,n)

mu <- rnorm(n,mean=0,sd=Coeff[4])

psi[1] <- Coeff[1]/(1-Coeff[2])

# initial value for the psi
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dur[1] <- exp(psi[1])*er[1]

# initial value for the duration

for (i in 2:n){

psi[i] <- Coeff[1]+ Coeff[2]*psi[i-1]+ mu[i]

# Eq psi_(i)=w + b*psi_(i-1)+u_(i)

dur[i] <- exp(psi[i])*er[i]

# Eq y_(i)=e^(psi_(i))*e_(i)

# install each series duration into the column of sumdur }

return(dur)

}

Coeff=c(0.001,0.95,0.9,0.1)

n=5000

scd_wei=SCD_Simul(n,Coeff)

scd <- scd_wei

n <- length(scd)

estimscd <- function(pars){

estimscd<-0

H <- pi^2/(6*pars[3]^2)

# give the initial value for the variance Q

u <- (-0.5772/pars[3])

gamma<- rep(1,n)

gamma[1]<- (pars[4]^2)/(1-pars[2]^2)

theta<- rep(1,n)

theta[1]<- pars[1]/(1-pars[2])

112



F <- rep(2,n)

F[1]<- ((pars[2]^2)/(1-pars[2]^2)+1)*(pars[4]^2) + H

v <- rep(1,n)

v[2]<- log(scd[2])-pars[2]*theta[1]-pars[1]-u

for (t in 2:n){

gamma[t] <- ((pars[2]^2)*gamma[t-1]) + (pars[4]^2) -

(pars[2]^2*gamma[t-1]^2)/(gamma[t-1]+H)

theta[t] <- pars[2]*theta[t-1] + pars[1]+

((pars[2]*gamma[t-1])/(gamma[t-1]+H))*

(log(scd[t])-pars[2]*theta[t-1]-pars[1]-u)

v[t] <- log(scd[t])-pars[2]*theta[t-1]-pars[1]-u

F[t] <- gamma[t] + H

estimscd <- estimscd+0.5*log(abs(F[t]))+0.5*(v[t]^2)/F[t]

#weilk0=weilk0 + 0.5*abs(log(ft[i])) +0.5*v[i]^2/ft[i]

}

return(estimscd)

}

pars=c(0.001,0.9,0.9,0.01)

scd_par=optim(pars,estimscd,method="BFGS",hessian= TRUE)

cat(j,"\n")

cat(scd_par$par,"\n")

j=j+1

}

USE GMM METHOD TO ESTIMATE THE SCD MODEL PARAMETERS
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library("gmm")

library("fMultivar")

for (j in 1:100){

SCD_Simul<- function(n, Coeff){

# inputs: n length of desired series. m the replication number

# parms vector of parameters for SCD(1,1) process; has the form:

# (omega,beta,gamma,sigma,)

# model: e_(t) is any special distribution for the error term

# mu_(t) is normal distribution

# d_t = exp(psi_t)* e_(t)

# psi_t = omega + beta*psi_(t-1) + mu_t

# output: dur series

# usage: Coeff=c(0.001,0.95,0.9,0.1)

# distrib= "weibull"

# scd = SCD_Simul(5000,Coeff,distrib,forma)

# error term

er <- rweibull(n, shape=Coeff[3], scale = 1)

psi <- rep(1,n)

dur <- rep(1,n)

mu <- rnorm(n,mean=0,sd=Coeff[4])

psi[1] <- Coeff[1]/(1-Coeff[2])

# initial value for the psi

dur[1] <- exp(psi[1])*er[1]

# initial value for the duration
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for (i in 2:n){

psi[i] <- Coeff[1]+ Coeff[2]*psi[i-1]+ mu[i]

# Eq psi_(i)=w + b*psi_(i-1)+u_(i)

dur[i] <- exp(psi[i])*er[i]

# Eq y_(i)=e^(psi_(i))*e_(i)

# install each series duration into the column of sumdur

}

return(dur)

}

Coeff=c(0.001,0.95,0.9,0.1)

n=5000

scd_wei=SCD_Simul(n,Coeff)

scd.wei<- scd_wei

scd.moments <- function(parm,data1=NULL){

omega <- parm[1]

beta <- parm[2]

alpha <- parm[3]

sigma <- parm[4]

exv.d <- c(exp(omega/(1-beta) + sigma^2/(2*(1-beta^2)))*gamma(1/alpha+1),

exp(2*omega/(1-beta) + 2*sigma^2/(1-beta^2))*gamma(2/alpha+1),

exp(3*omega/(1-beta) + 9*sigma^2/(2*(1-beta^2)))*gamma(3/alpha+1),

exp(4*omega/(1-beta) + 16*sigma^2/(2*(1-beta^2)))*gamma(4/alpha+1))

exv.dd <- c(exp(2*omega/(1-beta) + (1+beta^(1:10))*sigma^2/(1-beta^2))*

(gamma(1/alpha+1))^2)
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gmat <- c(exv.d,exv.dd)

t(t(data1)-gmat)

}

scd.four <- cbind(abs(scd.wei), scd.wei^2, abs(scd.wei)^3, scd.wei^4)

initial.val <- scd.four[-(1:10),]

dcorre.val <- tslag(scd.wei, 1:10, trim=T) * as.vector(scd.wei[-(1:10)])

scd.data <- cbind(initial.val, abs(dcorre.val))

parm <-c(0.01,0.9,0.9,0.1)

result <- gmm(scd.moments, x=scd.data, t0=parm, type=c("iterative") )

cat(summary(result)$coefficients[1:4])

cat(j,"\n")

j=j+1

}

USE THAVA’S FILTER TO ESTIMATE THE QUADRATIC SCD MODEL PA-

RAMETERS

for (j in 1:50){

SCD_Simul<- function(n, Coeff)

{

# inputs: n length of desired series

# parms vector of parameters for SCD(1,1) process; has the form:

# (omega,delta,alpha,sigma,a,b,c,)

# Coeff[1]=omega, Coeff[2]=beta, Coeff[3]=alpha, Coeff[4]=sigma

# Coeff[5]=a, Coeff[6]=b, Coeff[7]=c
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# model: e_(t) is any special distribution for the error term

# mu_(t) is normal distribution

# d_t = psi_(t)* e_(t)

# Cpsi_t = exp(psi_t)

# psi_t = omega + delta*psi_(t-1) + mu_t

# output: dur series

# usage: Coeff=c(0.001,0.95,0.9,0.1,0.1,0.45,0)

# distrib="weibull"

# scd=SCD_Simul(5000,Coeff)

e <-rweibull(n, Coeff[3], scale = 1)

psi <- rep(1,n)

Calpsi <- rep(1,n)

dur <- rep(1,n)

mu <- rnorm(n,mean=0,sd=Coeff[4])

psi[1]<- Coeff[1]/(1-Coeff[2])

dur[1]<- psi[1]*e[1]

for (i in 2:n){

psi[i]<- Coeff[1]+ Coeff[2]*psi[i-1]+ mu[i]

Calpsi[i]<- exp(Coeff[5]*psi[i]^2+Coeff[6]*psi[i]+Coeff[7])

dur[i]<- Calpsi[i]*e[i]

}

return(dur)

}

Coeff=c(0.001,0.95,0.9,0.1,0.1,0.45,0)
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n=5000

scdq_wei=SCD_Simul(n,Coeff)

scd<-scdq_wei

n <- length(scd)

estimscd <- function(pars){

estimscd=0

mu <-rnorm(n,mean=0,sd=pars[4])

# general n normal distribution in order to create the psi2

H <- pi^2/(6*pars[3]^2)

# give the initial value for the variance Q

u <- (-0.5772/pars[3])

# u=E(log(epsilon_(t+1)))=-0.5772/alpha

c1 <- pars[4]^2/(1-pars[2]^2)

# var(psi_(t))=sigma^2/(1-beta^2)

c2 <- pars[1]/(1-pars[2])

# E(psi_(t))=omega/(1-beta)

lamda <- ((2+2*pars[2]^2)/(1-pars[2]^2))*pars[4]^2

+(4*(pars[1]^2)*(pars[4]^2))/(1-pars[2])^2

# E(e_(t+1)^2)

psi2 <- rep(1,n)

psi2[1]<- c1+c2^2

# E(psi_(t+1)^2)=sigma^2/(1-beta^2)+(omega/(1-beta))^2

psi1 <- rep(1,n)

psi1[1]<- sqrt(psi2[1])
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gamma<- rep(1,n)

gamma[1]<- (pars[4]^2/(1-pars[2]^4))*(2*pars[4]^2+(4*pars[2]^2*pars[1]^2

+4*pars[2]*pars[4]^2)/(1-pars[2]^2)+4*pars[1]^2)

# var(psi_(t+1)^2)

F <- rep(2,n)

F[1]<- pars[5]^2*gamma[1] + H + pars[6]^2*c1

# f_(t)=a^2*var(pai_(t)^2)+b^2*var(par_(t))+var(epsilon_(t+1))

v <- rep(1,n)

v[2]<- log(scd[2])-(pars[5]*psi2[1] + pars[6]*psi1[1]+ pars[7] + u)

d <-rep(1,n)

numer <-rep(1,n)

G <-rep(1,n)

for (t in 2:n){

d[t-1] <- 2*pars[5]*(pars[2]^2)*gamma[t-1]+4*pars[1]*pars[2]*pars[6]

*(c1+c2^2-2*c2*psi1[t-1]+psi2[t-1])+2*((pars[2]^2)*pars[6]

+2*pars[5]*pars[1]*pars[2])*psi1[t-1]*(psi2[t-1]-c2*psi1[t-1]

-(c1+c2^2))

numer[t-1]<- 2*(pars[5]^2)*gamma[t-1]+2*(pars[6]^2)*(c1+c2^2-2*c2*psi1[t-1]

+psi2[t-1])+2*H+4*pars[5]*pars[6]*psi1[t-1]*(psi2[t-1]

-c2*psi1[t-1]-(c1+(c2^2)))

G[t-1] <- d[t-1]/numer[t-1]

gamma[t] <-((pars[2]^2-pars[5]*G[t-1])^2)*gamma[t-1] + lamda

+H*G[t-1]^2 +((2*pars[1]*pars[2]-pars[6]*G[t-1])^2)

*(c1+c2^2-2*c2*psi1[t-1]+psi2[t-1])+ 2*(pars[2]^2
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-pars[5]*G[t-1])*(2*pars[2]*pars[1]-pars[6]*G[t-1])*psi1[t-1]

*(psi2[t-1]-c2*psi1[t-1]-(c1+c2^2))

psi2[t] <- (pars[2]^2)*psi2[t-1]+ (pars[1]^2)+ mu[t]^2

+2*pars[1]*pars[2]*psi1[t-1]+2*pars[2]*psi1[t-1]*mu[t]

+2*pars[1]*mu[t]

psi1[t] <- sqrt(psi2[t])

v[t] <- log(scd[t])-pars[5]*psi2[t-1]-pars[6]*psi1[t-1]-u-pars[7]

F[t] <- (pars[5]^2)*gamma[t]+(pars[6]^2)*(c2^2+c1+psi2[t-1]-2*c2*psi1[t-1])

+H-pars[5]^2*(c2^2+c1-psi2[t-1])^2

-pars[6]^2*(c2-psi2[t-1])^2-2*pars[5]*pars[6]*(c2^2+c1)*(c1)

estimscd <- estimscd+0.5*log(abs(F[t]))+0.5*(v[t]^2)/F[t]

}

return(estimscd)

}

pars=c(0.001,0.95,0.9,0.1,0.1,0.45,0) # yong 0

scdq_par=optim(pars,estimscd,method="CG",hessian= TRUE)

cat(j,"\n")

cat(scdq_par$par,"\n")

j=j+1

}

USE GMM METHOD TO ESTIMATE THE QUADRATIC SCD MODEL PA-

RAMETERS

library("gmm")
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library("fMultivar")

for (j in 1:50){

SCD_Simul<- function(n, Coeff)

{

# inputs: n length of desired series

# parms vector of parameters for SCD(1,1) process; has the form:

# (omega,delta,alpha,sigma,a,b,c,)

# Coeff[1]=omega, Coeff[2]=beta, Coeff[3]=alpha, Coeff[4]=sigma

# Coeff[5]=a, Coeff[6]=b, Coeff[7]=c

# model: e_(t) is any special distribution for the error term

# mu_(t) is normal distribution

# d_t = psi_(t)* e_(t)

# Cpsi_t = exp(psi_t)

# psi_t = omega + delta*psi_(t-1) + mu_t

# output: dur series

# usage: Coeff=c(0.001,0.95,0.9,0.1,0.1,0.45,0)

# distrib="weibull"

# scd=SCD_Simul(5000,Coeff)

e <-rweibull(n, Coeff[3], scale = 1)

psi <- rep(1,n)

Calpsi <- rep(1,n)

dur <- rep(1,n)

mu <- rnorm(n,mean=0,sd=Coeff[4])

psi[1]<- Coeff[1]/(1-Coeff[2])
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Calpsi[1]<- exp(Coeff[5]*psi[1]^2+Coeff[6]*psi[1]+Coeff[7])

dur[1]<- Calpsi[1]*e[1]

for (i in 2:n){

psi[i]<- Coeff[1]+ Coeff[2]*psi[i-1]+ mu[i]

Calpsi[i]<- exp(Coeff[5]*psi[i]^2+Coeff[6]*psi[i]+Coeff[7])

dur[i]<- Calpsi[i]*e[i] }

return(dur)

}

Coeff=c(0.001,0.95,0.9,0.1,0.1,0.45,0)

n=5000

scdq_wei=SCD_Simul(n,Coeff)

scd.wei<-scdq_wei

r=10

scd.moments <- function(parm,data1=NULL){

omega <- parm[1]

beta <- parm[2]

alpha <- parm[3]

sigma <- parm[4]

a <- parm[5]

b <- parm[6]

c <- parm[7]

z.v <- ((1-beta^(2*(1:r)-1))/(1-beta^2))*(sigma^2)

psi.v <- sigma^2/(1-beta^2)

lamda <- z.v/(2*(1-2*a*z.v))
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A <- a*(beta^(2*(1:r))+1)+4*lamda*a^2*beta^(2*(1:r))

B <- a*omega^2*(1-beta^(1:r))^2/(1-beta)^2+b*omega*(1-beta^(1:r))/(1-beta)+

2*c+lamda*(2*a*omega*(1-beta^(1:r))/(1-beta)+b)^2

C.1 <- (2*a*omega*beta^(1:r)*(1-beta^(1:r))/(1-beta)+b*(beta^(1:r)+1))

C.2 <- 4*lamda*a*(beta^(1:r))*(2*a*omega*(1-beta^(1:r)/(1-beta))+b)

C <- C.1+C.2

G <- 1/sqrt(abs(1-2*b*z.v))

T <- 1/sqrt(abs(1-2*A*psi.v))

exv.d <-

c(sqrt((1-beta^2)/(1-beta^2-2*a*sigma^2))*

exp((omega+beta*omega+b*sigma^2)^2/(2*sigma^2*(1-beta^2-2*a*sigma^2))-

(omega^2*(1+beta))/(2*sigma^2*(1-beta))+c)*gamma(1+1/alpha),

sqrt((1-beta^2)/(1-beta^2-4*a*sigma^2))*

exp((omega+beta*omega+2*b*sigma^2)^2/(2*sigma^2*(1-beta^2-4*a*sigma^2))-

(omega^2*(1+beta))/(2*sigma^2*(1-beta))+2*c)*gamma(1+2/alpha),

sqrt((1-beta^2)/(1-beta^2-6*a*sigma^2))*

exp((omega+beta*omega+3*b*sigma^2)^2/(2*sigma^2*(1-beta^2-6*a*sigma^2))-

(omega^2*(1+beta))/(2*sigma^2*(1-beta))+3*c)*gamma(1+3/alpha),

sqrt((1-beta^2)/(1-beta^2-8*a*sigma^2))*

exp((omega+beta*omega+4*b*sigma^2)^2/(2*sigma^2*(1-beta^2-8*a*sigma^2))-

(omega^2*(1+beta))/(2*sigma^2*(1-beta))+4*c)*gamma(1+4/alpha))

exv.dd <- c(G*T*exp(B)*exp(C^2*psi.v/(2*(1-2*A*psi.v)))*(gamma(1/alpha+1))^2)

gmat <- c(exv.d,exv.dd)

t(t(data1)-gmat)
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}

scd.four <- cbind(abs(scd.wei), scd.wei^2, abs(scd.wei)^3, scd.wei^4)

initial.val <- scd.four[-(1:10),]

dcorre.val <- tslag(scd.wei, 1:10, trim=T) * as.vector(scd.wei[-(1:10)])

scd.data <- cbind(initial.val, abs(dcorre.val))

parm=c(0.001,0.9,0.9,0.01,0.1,0.45,0)

res.gmm.simg <- gmm(scd.moments, x=scd.data, t0=parm, type=c("twoStep"))

cat(summary(res.gmm.simg)$coefficients[1:7])

cat(j,"\n")

j=j+1

}
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