IDENTIFICATION OF TWO GENETIC ENHANCERS OF CELL MIGRATION DEFECTS AND THEIR ROLES IN DISTAL TIP CELL GUIDANCE IN C.ELEGANS.

BY
MEGAN SCHWABIUK

A Thesis submitted to The Faculty of Graduate Studies in Partial Fulfillment of the Requirements for the Degree of:

MASTER OF SCIENCE

Department of Biochemistry and Medical Genetics
University of Manitoba
Winnipeg, Manitoba, Canada
October 2006
© Megan Schwabiuk, October 2006

THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES
ㅊㅊㅊㅊㅎ
COPYRIGHT PERMISSION

IDENTIFICATION OF TWO GENETIC ENHANCERS OF CELL MIGRATION DEFECTS AND THEIR ROLES IN DISTAL TIP CELL GUIDANCE IN C.ELEGANS.

BY

Megan Schwabiuk

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University of
Manitoba in partial fulfillment of the requirement of the degree
OF
MASTER OF SCIENCE

Megan Schwabiuk © 2006

Permission has been granted to the Library of the University of Manitoba to lend or sell copies of this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film, and to University Microfilms Inc. to publish an abstract of this thesis/practicum.

This reproduction or copy of this thesis has been made available by authority of the copyright owner solely for the purpose of private study and research, and may only be reproduced and copied as permitted by copyright laws or with express written authorization from the copyright owner.

TABLE OF CONTENTS

TABLE OF CONTENTS ii
LIST OF FIGURES v
LIST OF TABLES vi
LIST OF ABBREVIATIONS vii
ACKNOWLEDGEMENTS ix
ABSTRACT 10

1. INTRODUCTION 12
1.1 Cell guidance and biological processes. 12
1.2 Mechanisms of cellular migration. 12
1.3 Cell guidance molecules. 14
1.4 Netrin/UNC-6 and receptors UNC-40 and UNC-5 15
1.5 The UNC5 receptor and human disease. 23
1.6 C.elegans distal tip cells and their role in patterning the gonad morphology 24
1.7 UNC-6/UNC-5/UNC-40 and their roles in DTC guidance. 27
1.8 The genetic screen for enhancers of DTC migration defects. 31
1.9 Project summary. 32
2. MATERIALS AND METHODS 34
2.1 Solutions and media preparation. 34
2.2 Maintenance and handling of C.elegans. 34
2.3 C.elegans strains. 35
2.4 C.elegans mutant strain generation. 35
2.5 C.elegans phenotype analysis. 42
2.5.1 General phenotype analysis 42
2.5.2 Identifying and scoring DTC migration defects. 42
2.5.3 Live C.elegans imaging. 43
2.5.4 Still C.elegans imaging. 43
2.6 Preparation of agarose gels. 43
2.7 Cosmid microinjections. 44
2.7.1 Cosmid preparation. 44
2.7.2 Injection mixture preparation 45
2.7.3 Microinjections 45
2.8 Sequencing. 46
2.8.1 C.elegans genomic DNA isolation. 46
2.8.2 Primer design and PCR amplification. 47
2.8.3 Gel extraction and quantification of DNA fragments. 49
2.8.4 DNA sequence alignments. 50
2.9 DTC migration defect enhancement/suppression assays. 50
2.10 SNP mapping. 51
2.10.1 Selection of genetic recombination markers. 51
2.10.2 SNP selection and amplification. 51
2.10.3 Recombinant identification. 52
2.10.4 DNA isolation from recombinant strains. 52
2.10.5 PCR amplification. 52
2.10.6 Restriction digest of PCR amplified DNA fragments. 54
2.10.7 Mapping the recombination. 54
2.11 RNAi media preparation. 54
3 RESULTS AND DISCUSSION 57
3.1 Cloning and characterizing the DTC guidance roles of mig(ev648). 57
3.1.1 The gonad morphology of the mig(ev648) mutants. 57
3.1.2 Genetic interactions of mig(ev648), unc-5 and unc-6. 58
3.1.3 Suppression/enhancement of evIs 99 DTC migration defects in a mig(ev648) background. 61
3.1.4 Cosmid phenotype rescue in mig(ev648). 64
3.1.5 Sequencing nas-33 66
3.1.6 mig(ev648) and mig-23 complementation test. 66
3.1.7 Sequencing mig-23. 69
3.2 Cloning and characterizing the DTC guidance roles of enh(ev697). 72
3.2.1 High resolution SNP mapping 73
3.2.2 abl-I RNAi in enh(ev697) mutants. 77
3.2.3 Cosmid phenotype rescue in enh(ev697). 79
3.2.4 Sequencing $s d n-1$. 82
3.2.5 Genetic interactions of enh(ev697), unc-5, unc-40 and unc-6. 86
3.2.6 Suppression/enhancement of evIs99 DTC migration defects in an enh(ev697) background. 90
3.2.7 Determining the presence of SDN-1 within the DTCs. 91
3.2.8 Hypodermal vs. axonal expression of sdn-1 for DTC guidance. 94
3.2.9 Genetic interactions of $s d n-1$, growth factors and unc-5 96
4 CONCLUSIONS 104
4.1 The mig(ev648) enhancer allele. 104
4.2 The enh(ev697) enhancer allele. 105
5 FUTURE DIRECTIONS 106
6 APPENDIX 108
6.1: Solutions. 108
6.2: C.elegans mutant strain generation outlines. 112
6.3: Cosmid descriptions. 121
6.4: Alignments of the nas- 33 sequencing results. 122
6.5: Alignments of mig-23 sequencing results. 138
6.6: MIG-23 protein alignments. 153
6.7: Alignments of $s d n-1$ sequencing results. 154
6.8: SDN-1 protein alignments from translated $s d n-1$ sequences 166
7 REFERENCES 167

LIST OF FIGURES

Figure 1: Schematic of UNC-6, UNC-40 and UNC-5 protein domains. 17
Figure 2: C.elegans hermaphrodite gonad morphology and the DTC migration pattern25
Figure 3: Images of N2 wild-type, unc-5, mig(ev648) and enh(ev697) mutants. 29
Figure 4: The L4440 vector for RNAi assays in C.elegans. 56
Figure 5: Images of $t n I s 5$ and $t n I s 5 ; m i g(e v 648)$ gonad morphologies. 59
Figure 6: Images of N 2 wild-type and evls 99. 63
Figure 7: A summary of the mig(ev648) genetic region. 65
Figure 8: Images of mig-23(kl80) and mig(ev648). 68
Figure 9: A summary of mig-23 gene and MIG-23 protein sequence alignments. 70
Figure 10: Cross-species MIG-23/NDPase protein sequence alignments. 71
Figure 11: SNP mapping outline. 74
Figure 12; SNP mapping results. 75
Figure 13: A summary of the enh(ev697) genetic region. 80
Figure 14: A summary of the $s d n-1$ sequence and $\mathrm{SDN}-1$ protein alignments. 84
Figure 15: Cross-species syndecan protein alignments. 85
Figure 16: Images of embryonic elongation defects in $s d n-1$ (ev697) and $s d n-1(z h 20)$ mutants. 87
Figure 17: Images of SDN-1::GFP localization in the DTC of opIs 170 animals. 93

LIST OF TABLES

Table 1 : Orthologues of C.elegans UNC-6, UNC-5 and UNC-40. 15
Table 2 : Summary of the alleles identified in the screen for enhancers of DTC defects in
unc-5(e152) mutants... 32
Table 3 : Summary of the C.elegans strains used in this project. 36
Table 4 : Primers used for sequencing nas-33. ... 48
Table 5 : Primers used for sequencing mig-23. ... 48
Table 6 : Primers used for sequencing $s d n-1$. ... 49
Table 7 : SNPs used for mapping enh(ev697). .. 53
Table 8 : DTC migration defects of unc-5 and mig(ev648). ... 60
Table 9 : DTC migration defects of evIs 99 and evIs99;mig(ev648) 62
Table 10 : DTC migration defects of mig(ev648) at $16^{\circ} \mathrm{C}, 20^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$. 72
Table 11 : DTC migration defects of unc-5(e152);enh(ev697) fed with abl-1 RNAi. 78
Table 12 : DTC migration defects of unc-5, unc-40, unc-6 and sdn-1. 88
Table 13 : DTC migration defects of evIs99 and evIs99;sdn-1 (ev697). 91
Table 14 : Hypodermal/axonal restricted $s d n-1$ expression and DTC
migration defects. .. 95
Table 15 : DTC migration defects of unc-5 and growth factor like mutants. 97
Table 16 : DTC migration defects of unc-5, sdn-1 and growth factor mutants 99

LIST OF ABBREVIATIONS

Ant.	Anterior
ARP2/3	Actin related protein
β	beta
BLAST	Basic local alignment search tool
bp	base pair
Ca^{2+}	Calcium
cAMP	cyclic adenosine monophosphate
CHCl_{3}	Chloroform
C.elegans	Caenorhabditis Elegans
CGC	Caenorhabditis Elegans Genetics Centre.
cGMP	Cyclic guanosine monophosphate
cm	centimetre
${ }^{0} \mathrm{C}$	degrees Centigrade
DCC	Deleted in Colorectal Cancer
$\mathrm{ddH}_{2} 0$	Double distilled water
dATP	Deoxyadenosine triphosphate
dCTP	Deoxycytosine triphosphate
dGTP	Deoxyguanosine triphosphate
DIC	Differential interference contrast
DNA	Deoxyribonucleic acid
dNTP	Deoxynucleotide triphosphate
dsRNA	Double stranded ribonucleic acid
dTTP	Deoxythymidine triphosphate
Dpy	Dumpy phenotype, reduced body length
DTC	Distal tip cell
EBI	European Bioinformatics Institute
E.Coli	Escherichia coli
ECM	Extracellular matrix
EDTA	Ethylene diaminetetraacetic acid
EGF	Epidermal growth factor
Egl	Egg-laying defect phenotype.
EMS	Ethyl methane sulfonate
EtBr	Ethidium bromide
EtOH	Ethanol
FAK	Focal adhesion kinase
FGF	Fibroblast growth factor
FGF-R	Fibroblast growth factor receptor
F1	First generation progeny from one mating.
g	gram
g	Earth's gravitational constant
GFP	Green fluorescent protein
HA	Hemagglutin
HSPGs	Heparan sulphate proteoglycans

IDT	Intergrated DNA Technologies
Ig	Immunoglobulin
IPTG	isopropylthiogalactoside
Kb	Kilobase
LB	Luria Bertani
L1	Larval stage one.
L2	Larval stage two.
L3	Larval stage three.
L4	Larval stage four.
LGX	Linkage group X
M	Molar
$\mu \mathrm{g}$	microgram
mins	minutes
$\mu 1$	microlitre
ml	millilitre
mM	millimolar
mm	millimetre
NCBI	National Centre for Biotechnology Information
NDPase	nucleoside diphosphatase
ng	nanogram
NGM	Nematode growth medium
nM	nanomolar
N2	Wild-type C.elegans strain.
PCR	Polymerase chain reaction
PKA	Cyclic AMP-dependent protein kinase
pM	picomolar
PM	Plasma membrane
Post.	Posterior
RNA	Ribonucleic acid
ROBO	Roundabout
Rpm	Revolutions per minute
SDS	Sodium dodecyl sulphate
SH2	Src homology 2
SH3	Src homology 3
SNP	Single nucleotide polymorphism
TAE	Tris-Acetic Acid EDTA buffer
Taq	Thermus aquaticus
TGFß	Transforming growth factor beta
Tyr	Tyrosine
Unc	uncoordinated, locomotion defect phenotype.

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my supervisor Dr. David Merz for providing me with the opportunity to learn and practice science in his laboratory. Your guidance, advice and beliefs in the value of academic freedom have made this an incredibly rewarding learning experience for me. My committee members Dr. Dana Schroeder and Dr. Jeff Wigle, thank-you for your time, guidance and interest in this project.

Thank-you Merz lab members, Allison for sharing our graduate student experiences together, Lu for the refreshing conversations and advice and Cheryl; your help, counselling and companionship throughout this entire project was invaluable and will always be greatly appreciated.

For Rick, Dr. Pind, Dr. Allison Elliot. The guidance, scientific knowledge and expertise you have offered me is greatly appreciated and thank-you for always taking a moment from your busy schedules to listen and share your opinions. Thank-you Dr. Barbara Triggs-Raine for the counselling and critique you took the time to offer. Our talks were essential to leading me in the right direction for my future endeavours.

Dianna, Scarlet and Shauna. I am very grateful to have become acquainted with three remarkable women in science and I value the friendships we have made throughout the past years.

Thank you to all of my friends, whom I treasure for your continual encouragement. To my families, your never ending patience, support and faith in me have meant so much. Mom and Dad, you taught me that the world is an open door and I can achieve anything if I put my mind to it, so I did and Dev, your compassion, kindness and most of all your laughter brightens up my days and my life.

And Rob, merci pour ton amour, ton sourire et un rapel continuel de la joie de vivre.

Megan.

Abstract

Cell motility is critical for many biological processes such as cellular re-organizations during organogenesis and disease states such as tumour metastasis. The secreted netrin guidance molecule and its receptors play roles in directing cell and growth cone migrations during axon patterning, lung and vascular development. Despite the significance of this cell guidance pathway, there is still much to learn about the signalling and regulatory mechanisms of netrin receptors. In C.elegans, ventrally expressed UNC-6/Netrin and netrin receptors UNC-5 and UNC-40 guide the migration of growth cones and distal tip cells (DTCs) along the ventral/dorsal axis. Migrating DTCs cap each tip of the gonad arm and direct the formation of the C-shaped bi-lobed gonad. Mutations in unc-6, unc-5 or unc-40 genes disrupt the ventral to dorsal DTC migration phase resulting in visibly misshapen gonads providing an ideal model for studying UNC-6/UNC-40/UNC-5 cell guidance mechanisms in vivo.

A genetic screen for enhancers of DTC migration defects generated 28 mutants. Two of these mutants, defined by enhancer alleles mig(ev648) and enh(ev697) mapped to chromosomal regions containing no known DTC migration genes. We have identified the mig(ev648) enhancer as an allele of the gene mig-23 that encodes a nucleoside diphosphatase and have shown the role of mig-23(ev648) in DTC guidance is not limited to UNC-6/UNC-5/UNC-40 mediated guidance. enh(ev697) has been identified as an allele of $s d n-1$ (syndecan), a trans-membrane heparan sulfate proteoglycan. The $e v 697$ allele encodes a truncated form of SDN-1 and $s d n-1(e v 697)$ guidance mechanisms appear to only affect $u n c-5$ mediated DTC guidance. $s d n-1$ is functions cell non-autonomously and appears to be

involved in limiting growth factor molecules EGL-17/FGF, UNC-129/TGF- β, DBL-1/TGF- β EGL-20/WNT and LIN-3/EGF within the extra-cellular environment for DTC guidance.

1. INTRODUCTION

1.1 Cell guidance and biological processes.

Directional guidance of motile cells is required in diverse biological and developmental processes. For example, chemokines produced during an inflammatory response attract monocytes/macrophages from the blood stream towards the site of tissue damage (Ridley 2001). During oogenesis in Drosophila, migration of border cells along a specified path from the most anterior region of the oocyte to the midline is required for oocyte fertility and embryonic patterning (Montell 2003). Wiring the human nervous system involves guidance of growth cone-tipped axonal projections from neurons to specified distant targets for the formation of neurological synapses. Cells can also acquire aberrant migratory abilities resulting in disease states such as tumour metastasis and invasion. By modulating cellular interactions with the extra-cellular micro-environment to favour aberrant migration/invasion and initiating intra-cellular pathways for cellular motility, tumour cells gain the ability to become motile and invade through tissues ultimately attaining the blood stream or lymphatic system (Hanahan and Weinberg 2000). Despite the significance of guided cellular migrations there is still much to learn about the temporal and spatial regulation of cell motility and guidance.

1.2 Mechanisms of cellular migration.

In order to become motile cells execute several key processes. These include breaking initial contacts with the ECM(extra-cellular matrix)/neighbouring cells and extending portions of plasma membrane, remodelling the ECM in its pathway, initiating new contacts with the ECM/neighbouring cells and retracting the trailing edge of the cell. A
moving cell (broadly speaking) can be segregated into two parts, a leading edge and a retracting edge (Lauffenburger and Horwitz 1996). At the leading edge, actin filament polymerization (Pollard and Borisy 2003) via activation of ARP2/3s(Actin Related Proteins) forces the plasma membrane (PM) to protrude in the form of lamellipodia and filopodia. Activation of ARP2/3 is indirectly mediated by RhoGTPases Rac and Cdc42. RhoGTPases Rac and Cdc42(for protrusions) and Rho(for retraction) play a major role in regulating the intra-cellular signalling pathways involved in the regulation of actin dynamics (Raftopoulou and Hall 2004). The leading edge of a migrating cell favours the formation of focal adhesion integrin clusters, arbitrated by RhoGTPases, that mediate adhesion of cell membrane protrusions by linking actin filaments within the cell to the ECM (Lauffenburger and Horwitz 1996). Integrin adhesion also triggers signalling pathways inducing actin polymerization regulated by cAMP/PKA (cyclic AMP-dependent protein kinase) signalling pathways (Howe 2004). Within the retracting edge, actin polymerization and the formation of focal adhesions is attenuated and cross-linking of myosin light chains to actin filaments for contraction is mediated by Rho, ultimately causing retraction of the PM and breakage of focal adhesion contacts from the ECM (Lauffenburger and Horwitz 1996). Increased levels of Ca^{2+} within the trailing edge have been associated with the activation of contractile pathways and detachment of adhesion structures (Lee et al. 1999). In addition to the intracellular dynamics, proteases for ECM remodelling and degradation, such as the matrix metalloproteases (Vu and Werb 2000), are required on the cell surface in order to create a pathway within the ECM through which the cell can move. Conferring migratory direction to a motile cell fequires spatial and temporal activation and courdination of each
aforementioned process mediated via ligand/receptor interactions for activation of intracellular pathways.

1.3 Cell guidance molecules

Guidance cues work through their respective receptors to trigger and co-ordinate intra-cellular events promoting cellular motility and guidance of a cell towards or away from their source. Guidance molecules are either bound to extra-cellular substrates (contact repulsion or attraction) or disseminated usually as a gradient throughout the extra-cellular environment of the migrating cell (chemoattraction/chemorepulsion) (Tessier-Lavigne and Goodman 1996). At any given moment, a cell's migration pathway can be influenced by a number of guidance cues acting on the cell at once. The numerous cues/receptor interactions regulating cell motility processes, coupled with the finding that most cell guidance pathways are redundant, renders the study of cellular guidance challenging. Conserved families of guidance molecules and their respective receptors Slit/ROBO (Roundabout), semaphorins/Plexin and Neuropilin, ephrins/Ephs and netrin/Unc5/DCC (Deleted in Colorectal Cancer) (Dickson 2002) have been identified. However, mechanisms linking guidance receptors to the activation and co-ordination of intracellular cell motility pathways are not well defined. In addition, regulation of the spatial distribution of guidance cues used by these receptors within the extra-cellular environment and the integration and co-ordination of various receptor responses within the cell required to confer direction to a migrating cell have yet to be fully elucidated.

1.4 Netrin/UNC-6 and receptors UNC-40 and UNC-5

Netrins and their receptors make up one of the conserved cell guidance systems. Orthologues of netrins and netrin receptors have been identified in Drosophila, C.elegans, and vertebrates (outlined in Table 1) exhibit strong sequence similarities and their roles in mediating cell and axon guidance along the ventral-dorsal axis are highly conserved.

Table 1: Orthologues of C.elegans UNC-6, UNC-5 and UNC-40s.

C.elegans	Drosophila	Vertebrate
UNC-6	NetA, NetB	Netrin1-4, Netrin-G
UNC-5	Unc-5	UNC5A-UNC5D
UNC-40	Frazzled	DCC/Neogenin

Adapted from (Barallobre et al. 2005)
Netrin ligands are secreted into the extra-cellular space and act as both a chemoattractant (for cells expressing trans-membrane receptor DCC/UNC-40 on their surface) and as a chemorepellant (for cells expressing trans-membrane receptors UNC5 and DCC/UNC-40 on their surface). Both netrin receptors are members of the immunoglobulin superfamily (Leung-Hagesteijn et al. 1992, Chan et al. 1996). Roles of proteins in the immunoglobulin superfamily include mediating adhesive interactions between other immunoglobulin family proteins, integrin recognition and binding to the ECM (Brümmendorf, Rathjen 1996). Although each receptor has putative intracellular protein binding domains, it is still a mystery how these receptors work to mediate a response to netrins for cellular guidance. Adding to the complexity of this guidance system, netrins play the dual role of mediating cellular repulsion or attraction depending on the netrin receptor
expressed on the surface of the migrating cell. For the context of this project a review of the structural and functional properties of netrins and netrin receptors will focus on UNC-6, UNC-40 and UNC-5 in C.elegans.

The secreted, laminin-related netrin ligand was initially identified in C.elegans as an axon guidance molecule and termed unc-6 (Brenner 1974; Hedgecock, Culotti and Hall 1990). C.elegans unc-6 mutants are Unc (uncoordinated, locomotion defects) due to axon guidance defects, exhibit slight egg-laying defects and mesodermal DTC migration defects (Hedgecock, Culotti and Hall 1990). unc-6 expression in motorneurons within the ventral nerve cord during the first larval molt into adult stages is required for the migration of pioneer axons and DTCs along the ventral/dorsal axis (Wadsworth, Bhatt and Hedgecock 1996). The regulation of the UNC-6 diffusion pattern from these cells, which results in a ventralized restriction of UNC-6, is still uncharacterized. The UNC-6 ligand consists of conserved domains VI, V-1,V-2, V-3 and C (Figure 1) (Ishii et al. 1992). Each V domain exhibits similarities to laminin subunits while the C domain is not similar to laminins. unc-6 plays a dual guidance role by interacting with unc-40 for ventral guidance of axons (Chan et al. 1996) and with both unc-40 and unc-5 for ventral to dorsal guidance of axons (Colavita et al. 1998) and mesodermal cells (Merz et al. 2001). Functional analysis of UNC-6 domains has demonstrated both V-2 and V-3 domains are involved in dorsal axon and cell guidance while V-3 is required for ventral cell guidance, suggesting the V-2 domain possibly interacts with UNC-5 to mediate a repulsive response to UNC-6 (Lim and Wadsworth 2002). Supporting this observation, the rh202 allele of unc-6 encoding a V-2 domain deletion behaves like an unc-5 loss of function mutation during DTC guidance (Merz et al. 2001).

UNC-40

UNC-5

Figure 1: Schematic of UNC-6, UNC-40 and UNC-5 protein domains.

The C domain is not required for guidance but rather has a role in inhibiting axon branching and deletion of V-3 and C domains abolishes UNC-6 guidance functions (Wadsworth, Bhatt and Hedgecock 1996). The β subunit motif within the VI domain is required for all UNC-6 guidance functions, possibly via interactions with the ECM (Lim and Wadsworth 2002). Although the roles of each UNC-6 domain have been characterized by genetic interaction analysis, direct in vivo interactions of UNC-40, UNC-5 and possibly additional molecules with the UNC-6 ligand have yet to be elucidated.

Deleted in Colorectal Cancer (DCC), the UNC-40 vertebrate homologue, was identified as a tumour suppressor gene inactivated in colorectal cancer (Hedrick et al. 1994) prior to being recognized as a netrin receptor in C.elegans (Hedgecock, Culotti and Hall 1990; Chan et al. 1996) and rodents (Keino-Masu et al. 1996). C.elegans unc-40 mutants are uncoordinated and exhibit a slight reduction in body length in addition to defects in DTC migration patterns. UNC-40 functions cell-autonomously in migrating DTCs and axons to guide cells along a ventral source of UNC-6 (Chan et al. 1996). In addition, UNC-40 can mediate repulsion from UNC-6 independently or in combination with the UNC-5 receptor in C.elegans DTCs (Merz et al. 2001). The ectodomain of C.elegans UNC-40 trans-membrane receptor consists of four V-like immunoglobulin domains and four fibronectin type 3 domains (Figure 1). In vitro pull-down assays have demonstrated vertebrate DCC binds directly to a recombinant form of Netrin-1 via its $5^{\text {th }}$ fibronectin type III domain (Geisbrecht et al. 2003), the same DCC domain that is found to interact with heparan sulfate (Bennett et al. 1997). However, binding of the recombinant Netrin-1 appears to abrogate DCC and heparan sulfate interactions (Geisbrecht et al. 2003). UNC-40 interactions with heparan sulfate in C.elegans have not been characterized to date. The UNC-40 cytodomain consists of P1, P2 and P3 domains with little resemblance to other protein domains but high sequence
similarities between UNC-40 homologues. In vitro experiments suggest that the DCC P1 domain is required for DCC interactions with the UNC5 receptor in response to Netrin-1 (Hong et al. 1999). Recently, FAK(focal adhesion kinase), a tyrosine kinase with a role in mediating downstream signalling of integrins, was found to act downstream of DCC in a Netrin-1 dependent matter (Li et al. 2004). Additional in vitro assays have shown DCC mediates neurite outgrowth in response to Netrin-1 by associating directly with the SH3 domains of the RhoGTPase activator Nck adaptor protein (Li et al. 2002a) and via indirect activation of Rac1 and Cdc42 RhoGTPases (Li et al. 2002b), suggesting a direct link between the DCC receptor and control of actin polymerization. In vivo assays in C.elegans have confirmed that unc-40 genetically interacts with ced-10/Rac in one pathway (possibly through the P2 domain) and unc-34/Enabled (possibly through the P1 domain) in a parallel pathway to mediate axon attraction to UNC-6 (Gitai et al. 2003). An additional, UNC-6 independent guidance role of the UNC-40 receptor in C.elegans involves direct interactions with the ROBO receptor in mediating cellular repulsion from dorsal slt-1 expression for ventral axon and neuron guidance (Yu et al. 2002). However, UNC-40/ROBO interactions have not been defined for DTC guidance.

The UNC-5 trans membrane receptor was also initially identified in C.elegans (Brenner 1974; Hedgecock, Culotti and Hall 1990a). unc-5 mutants are uncoordinated and exhibit DTC migration defects similar to unc-40 and unc-6 mutants. In C.elegans, ectopic expression of unc-5 in migrating touch neurons turns them away from their ventral migration pathway along an UNC-6 source (Hamelin et al. 1993) indicating that UNC-5 mediates axons guidance cell-autonomously away from an UNC-6. This guidance role of UNC-5 has also been demonstrated in the DTCs (Su et al. 2000). UNC-5 mediates DTC migration away from UNC-6 independently or in concert with UNC-40, although repulsion from UNC-6 is
most efficient when both receptors are present on the surface of the migrating cell (Merz et al. 2001). The UNC-5 ectodomain domain consists of two immunoglobulin domains followed by two thrombospondin type 1 domains (Leung-Hagesteijn et al. 1992) (Figure 1). In vitro assays using a recombinant form of Netrin-1 have shown Netrin-1 interacts with both Ig domains of UNC5 (Geisbrecht et al. 2003), however the direct interactions between C.elegans UNC-6 and UNC-5 have yet to be characterized. The UNC-5 trans-membrane domain is followed by a short glycine tract (possibly acting as a hinge adjusting UNC-5 conformation upon ligand or receptor binding or possibly creating conditions for homodimerization) and a sequence weakly resembling an SH 3 domain that is characteristic of intra-cellular signalling molecules involved in regulating actin, suggesting UNC-5 may have a role in directly regulating cell motility (Leung-Hagesteijn et al. 1992). The cytodomain of the UNC-5 receptor between the trans-membrane domain and the ZU5 domain, encompassing the previously mentioned regions has been named the juxtamembrane domain (Figure 1). The juxtamembrane domain is required for UNC-40 dependent UNC-5 mediated repulsion and harbours a tyrosine phosphorylation site required for UNC-5 mediated guidance in DTCs and motorneurons in vivo (Killeen et al. 2002). Genetic interaction analysis in C.elegans has confirmed these results as the $e 152$ allele of $u n c-5$, encoding an UNC-5 protein with a deletion after the sixth amino acid of the ZU5 domain, retains the UNC-40 dependent functions of UNC-5 (Merz et al. 2001). In the ZU5 domain, in vivo assays have shown that an HA(hemagglutin) tagged UNC-5 in C.elegans is phosphorylated on Tyr ${ }^{568}$ upon UNC-6 stimulation and co-immunoprecipitates with the tyrosine phosphatase Shp2 (Tong et al. 2001), which has been associated with regulating cell motility processes including cell spreading and focal adhesion turnover (Yu et al. 1998). Interactions between UNC-5 and SRC-1 kinases (which associate with FAKs) have been identified although the
phosphorylated tyrosine residues within the UNC-5 cytodomain that mediate SRC-1/UNC-5 interactions are not defined (Lee, Li and Guan 2005). In addition, SRC -1 was found to be essential for UNC-5 mediated DTC guidance, as animals able to escape a lethal phenotype caused by src-1 RNAi knockdown exhibit DTC migration defects (Lee, Li and Guan 2005). The UNC-5 C terminal death domain, a domain characteristic of proteins involved in cell death signalling and innate immune responses, is dispensable for UNC-5 mediated guidance. Interestingly, the UNC-5 protein sequence does not code for a signal sequence (LeungHagesteijn et al. 1992).

Several genetic screens conducted in C.elegans have identified genes that interact genetically with unc-5. A screen for suppressors of aberrant growth cone steering caused by ectopic expression of unc-5 identified axon guidance genes unc-44/ankyrin and unc34/Enabled, novel genes seu-1(suppressors of ectopic unc-5), seu-2, seu-3 and unc-129 (TGF β (transforming growth factor)) as suppressors of aberrant growth cone migration, suggesting these genes interact in an unc-5 mediated guidance mechanism to steer axons dorsally (Colavita and Culotti 1998). unc-129(TGF β) has been implicated in unc-5 mediated DTC migrations (Merz et al. 2003) and ectopic expression of unc-129 in ventral muscle band in addition to the dorsal muscle band causes the aberrant DTC migration patterns observed in unc-40, unc-5 and unc-6 mutants (Colavita et al. 1998). Thus a dorsal/ventral distribution pattern of unc-129 appears to be required for dorsal/ventral guidance functions of the DTC. The aforementioned genetic assays provide evidence for interactions between these genes and the UNC-5 receptor both in axon and DTC guidance, however their roles in the guidance mechanisms of the UNC-5 receptor have yet to be defined.

The study of cellular guidance mediated by netrins and their receptors is complex due to the receptors abilities to either work together or separately to instruct a cell to migrate
away from or towards an UNC-6 source. In vitro analysis of UNC5 and DCC receptor interactions in Xenopus cultured spinal neurons demonstrated that UNC5 expressing cells were repelled from a Netrin-1 source and that the intracellular domains of both DCC and UNC5 interact directly to mediate Netrin-1 repulsion, as receptors co-immunoprecipitate together via their cytodomains (Hong et al. 1999). In vivo assays in C.elegans support the direct interactions between each UNC-6 receptor (Merz et al. 2001). In addition, UNC-40 and UNC-5 both appear to signal via unc-34/Enabled in C.elegans axons (Colavita and Culotti 1998, Gitai et al. 2003). Another shared signalling mechanism of UNC5 and DCC is the ability of DCC to associate with FAK and both DCC and UNC5 to bind Src-1 (Li et al. 2006). These findings suggest FAK/Src may be the key players in initiating the switch in cell motility towards or away from a Netrin-1 source. However, UNC-40 and FAK associations have yet to be identified in C.elegans. Another event associated with the directional guidance switch of netrin receptors is an apparent variation in intra-cellular Ca^{2+} concentrations. UNC5 binding to DCC has been shown to modulate cyclic nucleotide signalling pathways. Xenopus spinal neuron growth cones that are attracted to a Netrin-1 source exhibit increased intracellular levels of Ca^{2+} the via activation of cAMP signalling pathways. and cells expressing UNC5, in response to a Netrin-1 source, exhibit reduced Ca^{2+} gradients by the activation of cGMP pathways (Nishiyama et al. 2003). It is still unclear how netrin receptors are directly involved in regulating intracellular levels of Ca^{2+}, what other proteins are involved and whether the same modulation of intra-cellular calcium levels occurs in vivo.

1.5 The UNC5 receptor and human disease.

Netrins and the UNC5 receptor were initially identified and studied for their role in axon guidance in the model organism C.elegans. Mice homozygous for mutations in Unc5c were ataxic and exhibited small cerebella and abnormal migration of granule cells and Purkinje cell precursors (Ackerman et al. 1997; Przyborski, Knowles and Ackerman 1998), indicating that the UNC5C receptor is also a key player in neuronal development of higher organisms. Expression of UNC5A-D was detected in various tissues other than those of the nervous system and vascular system, such as testis, ovaries, thymus, spleen, bladder and kidney tissues (Ackerman et al. 1997), suggesting that the UNC5 receptor may have additional roles in biological processes other than axon guidance during development. Expression of Unc5b was observed in the endothelial tip cells located at the leading edge of developing vessels in the vascular system (Lu et al. 2004) and Unc5b mutant mice exhibited abnormal extension of filopodia and navigation defects in endothelial tip cells. Unc5b mutants died at day 12.5 due to heart failure demonstrating an important role for UNC5B in the morphogenesis of the vascular system. In addition to various roles in development, recent evidence suggests UNC5 is functioning as a tumour suppressor since UNC5A-C expression was down regulated in a number of cancers (Thiebault et al. 2003). UNC5 has been termed a dependence receptor with the ability to initiate apoptosis and prevent tumour cell extension, invasion and/or metastasis upon exiting an environment containing the Netrin1 ligand. Unc5b is a target of the tumour suppressor p53 transcription factor (Tanikawa et al. 2003) and is implicated in mediating the ability of p53 to suppress tumour cell transformation processes including growth and invasion. The recurring role of the UNC-5 receptor in the guidance and regulation of cell migrations is evidently conserved among various biological processes. Using C.elegans as a model for studying the mechanisms of UNC-5 in cell
guidance enables a simplified compilation of data and results that can later be examined in higher organisms.

1.6 C.elegans distal tip cells and their role in patterning the gonad morphology.

The C.elegans hermaphrodite gonad is a tubular structure in the form of two mirror image, C shaped arms (Figure 2). The gonad ultra-structure has been reviewed by Hall et al. (1999). Five gonadal sheath cell pairs shape each anterior and posterior tubular arm. In the most distal region of each gonad arm, germ line nuclei proliferation occurs within a syncytium and is regulated by the DTC (Kimble and White 1981). The germ cells mature into oocytes as they migrate along the gonad arm bend and then pass through the spermatheca were fertilization occurs. Fertilized oocytes move into the common uterus shared by each gonad arm. Here, embryos begin to mature and are then laid through the vulva. The structure, function and formation of the gonad in C.elegans males differs from that of the hermaphrodite gonad and will not be addressed here.

The gonad morphology of a hermaphrodite is patterned by the mesodermal DTCs, one of the largest cell types in C.elegans. DTC have an asymmetric shape and cap the distal end of the forming gonad. Two DTCs are born at L1 (larval stage 1) from Z1 and Z4 precursors cells located centrally along the anterior/posterior axis and each begins their migration pattern towards opposite ends of the animal initiating the first of three migration phases (Figure 2). Interestingly evidence suggests that the posterior migration pattern of the DTCs is regulated differently than the anterior migration pattern (Nishiwaki 1999). Defects in DTC migration patterns result in aberrant gonad morphology phenotypes visible at low magnification, simplifying the identification of defective cell migration patterns throughout large numbers of animals.

Figure 2: The C.elegans hermaphrodite gonad morphology and the DTC migration pattern. A) A schematic depicting hermaphrodite gonad morphology and associated structures. B) Outline of the DTC migration pattern. In L1, DTCs arise from Z1 and Z4 precursors and migrate along the ventral muscle band until early L4, where the DTCs turn dorsally and migrate towards the dorsal muscle band. During L4, DTCs return towards the central anterior/posterior axis along the dorsal muscle band forming two mirror image, C shaped gonad arms.

The DTC migration pattern consists of three distinct migration phases each occurring along a different substrate. Migration phase I, initiated in early L2 larval stage occurs, longitudinally and centrifugally on the ventral side of the animal along the basement membrane of ventral muscle band. In gon-1 (a secreted metalloprotease) mutants the DTCs fail to extend away the gonadal primordium resulting in a failure to initiate the first DTC migration phase (Blelloch et al. 1999). Migration phase II is initiated during the late L3 stage, when the DTC, now located at the furthest anterior/posterior end, at a precise time makes a 90 degree turn and begins migrating towards the dorsal side of the animal along the basement membrane of the hypodermis. Initiation of this migration phase is largely dependent on the up-regulation of unc-5 expression by daf-12 (nuclear hormone receptor) (Su et al. 2000a). Other genes involved in the DTC migration phase II include TGF β growth factors, $d b l-1$ and unc-129 (apparently in an unc-5 dependent mechanism) (Merz et al. 2003), src-1 as src-1 RNAi knockdown causes a failure in the DTC to initiate the second migration phase and the third migration phase resulting in a straight gonad arm that fails to reflux back toward the midline (Lee, Li and Guan 2005) and clr-1. CLR-1 (CLeaR-1) is a receptor tyrosine phosphatase implicated in limiting UNC-40 mediated attraction in AMV axons to an UNC-6 source thus negatively regulating netrin attraction in axons (Chang et al. 2004). Supporting this theory, clr-1 positively regulates DTCs migration away from an UNC-6 source as clr-1 enhances the DTC migration defects in unc-5(e152) and unc-5(e53) mutants indicating that clr-1 functions in an UNC-5 parallel guidance pathway for DTC guidance during the second migration phase (Merz et al. 2003). However it is still unclear exactly how clr-1 is working within the UNC-40/UNC-6 guidance pathway in DTCs.

Once the DTC reaches the dorsal muscle band it makes another 90 degree turn back towards the centre of the anterior/posterior axis and migrates centripetally and longitudinally
along the basement membrane of dorsal muscle band to complete the DTC migration phase III. The ced-5 (Wu and Horvitz 1998) ced-2 and ced-I0 (Reddien and Horvitz 2000) genes encode C.elegans homologues of CrkII, DOCK180(associates with the Crk adaptor involved in integrin signalling to the actin cytoskeleton) and RacGTPase respectively. Gonad morphology defects in ced-2, ced-5 and ced-10 mutants illustrate that the DTCs in these mutants stop prematurely along the ventral muscle band during migration phase I and make extra turns, suggesting a role for cytoskeletal regulatory elements in DTC pathfinding. MIG17, a disintegrin and matrix metalloprotease is also involved in DTC pathfinding as DTCs in mig-17 mutants either do not execute the second ventral to dorsal migration phase or do so and are unable to migrate in a straight line along the dorsal muscle band (Nishiwaki, Hisamoto and Matsumoto 2000).

Mechanisms regulating the spatial and temporal guidance of DTC migration are still largely unknown and appear to be somewhat distinctive due to a lack of hallmark cell migration structures such as filopodia, lamellipodia and pseudopodia at the leading edge of the DTC. It has been suggested that DTCs are not propelled by an inner source but rather are pushed by developing gonadal sheath cells and guide the extension of the gonad tubular arms by changing the substrate over which the DTC migrates, from the ventral muscle band to the hypodermis to finally the dorsal muscle band. However these speculations have not been proven.

1.7 UNC-6/UNC-5/UNC-40 and their roles in DTC guidance.

Although unc-6, unc-40 and unc-5 are involved in guiding several cell types in C.elegans, their role in initiating and maintaining the second ventral to dorsal DTC migration phase was used as the basis for our genetic screen to identify novel DTC guidance genes.

Mutations in unc-6, unc-5 or unc-40 genes disrupt the ventral to dorsal migration phase causing the DTC to reflux and complete the third migratory phase along the ventral muscle band. As the DTCs pattern the gonad morphology, mis-positioning of the gonad arm pushes the intestine dorsally resulting in visibly misshapen gonads (Figure 3), thus providing an ideal model for studying UNC-6/UNC-40/UNC-5 cell guidance.

In C. elegans, UNC-6 is secreted along the ventral midline. During the first ventral migration phase of DTC migration along the UNC-6 source, unc-40 is expressed at a constant level in the DTC (Chan et al. 1996). Interestingly, unc-40 mutants exhibit no defects in DTC migration along the ventral muscle band (Chan et al. 1996), suggesting this migration phase is regulated by another UNC-40 independent DTC guidance/adhesion mechanism. Reporter constructs have not been able to demonstrate that unc-5 expression in the DTC during migration phase I, however genetic interaction assays suggest low levels of unc-5 expression occur during this migration phase (Su et al. 2000). At a precise time during the late L3 larval stage, as the DTC is migrating along the ventral muscle band, expression of unc-5 in the DTC is up-regulated by DAF-12 and DAF-9 resulting in DTC migration away from UNC-6 towards the dorsal muscle band (Su et al. 2000). Taken together, these data suggest unc-5 expression is somehow down regulated or inhibited prior to the DTC turning time and at the turning time, the inhibitor is removed and expression is up-regulated by DAF12. Up-regulation of unc-5 expression plays a key role in initiating the second DTC migratory phase. The initiation of DTC turning is determined intrinsically by the DTC rather than the surrounding environment. For example, DTCs migrate the same distance along the ventral muscle band in lon-2 mutants with elongated body length as they do in wild-type animals as it is only the environment at DTC turning onset has been changed in lon-2 mutants and not the instrinsic DTC turning program (Su et al. 2000). As previously

Figure 3 : Photographs of $\mathbf{N} 2$ wild-type, unc-5, mig(ev648) and enh(ev697) mutants. Bright field live images taken at 10X magnification for A) wild-type, B) unc-5(e152), C) mig(ev648) and 20X magnification for D) enh(ev697).
mentioned, this migration phase is most efficiently executed when both UNC-5 and UNC-40 are present in the DTC. However each receptor can mediate this migration phase independently (Merz et al 2003). Genetic interactions analysis suggests unc-129(TGF β) and $d b l-1$ TGF β are limited to an unc-5 mediated guidance mechanism during the ventral to dorsal migration phase. However, other than the role of UNC-52/perlecan in limiting unc-129 and $d b l-1$ distribution with the extracellular environment for the unc-5 receptor, the exact role of unc-129 and dbl-1 in guiding the DTCs along the dorsal/ventral axis is not known (Merz et al. 2003).

Defects in the second DTC migration pattern of unc-5 null mutants are not fully penetrant suggesting a parallel unc-5 independent DTC guidance pathway is involved in guiding the DTC dorsally, compensating for the residual DTC guidance observed in mutants without a functional UNC-5 (a null mutant). One such pathway may involve the egl-17/FGF (fibroblast growth factor), as it appears to be functioning in an unc-5 parallel guidance pathway for DTC guidance (Merz et al. 2003). Interestingly, the activity of C.elegans FGFR(fibroblast growth factor receptor) EGL-15 is attenuated by CLR-1 (Kokel et al. 1998) and CLR-1 has been shown to positively regulate DTC migration away from UNC-6 (Merz et al. 2003). Thus CLR-1, FGF and the FGF-R possibly represent an additional, unc-5 independent dorsal/ventral DTC guidance pathway.

It should be noted that the UNC-6/UNC-40/UNC-5 guidance system is not the sole guidance system used by the DTC (although they do appear to be the dominant guidance mechanism) as DTC migration defects in the second DTC migration phase are not fully penetrant in unc-6 null mutants representing a complete loss of unc-5 and unc-40 function in the DTC. Thus netrin independent guidance mechanisms must be functioning in the DTC to account for the residual DTC guidance along the ventral/dorsal axis observed in these unc- 6
null mutants. In addition, slight differences are observed in the guidance mechanisms of the UNC-6/UNC-40/UNC-5 pathway in DTCs and in axon guidance. Studying the role of UNC6, UNC-40 and UNC-5 proteins in the guidance of C.elegans DTCs provides a model for understanding the mechanisms, the regulation and the interactions of these guidance molecules within an in vivo system.

1.8 The genetic screen for enhancers of DTC migration defects.

C.elegans is an invaluable model system that can be employed for facilitating mass genetic screens in order to identify and characterize genetic interactions between genes involved in a signalling pathway for a particular biological process (Jorgensen and Mango 2002). This model was used for our genetic screen designed to identify candidate C. elegans genes involved in DTC guidance during the second phase of DTC migration.
unc-5(el52) (an unc-5 allele causing significantly lower DTC migration defect frequencies compared to those caused by an unc-5 null allele) were mutagenized with EMS (ethyl methane sulphonate) to induce small deletions and point mutations, particularily GCAT transitions in the DNA (Meuth and Arrand 1982). F1 progeny were cloned out and allowed to replicate. Plates with F2 progeny exhibiting higher DTC migration defect frequencies were examined for phenotypes other than those observed in unc-5 mutants. These phenotypes define the alleles of candidate DTC guidance genes. For example, an unc40 null mutation (e1430) enhances the frequency of DTC migration defects in unc-5(e152), as unc-40 is itself a DTC migration gene and is directly involved in unc-5 mediated DTC guidance. unc-40 mutants are uncoordinated and slightly Dpy (dumpy, reduced body length), thus these phenotypes define the DTC migration defect enhancer allele e1430 of the gene unc-40.

From this screen, 28 enhancers of ventral to dorsal DTC migration defects were isolated. The majority of the enhancer alleles cloned to date have been identified as alleles of previously characterized DTC migration genes (Table 2).

Table 2 : Summary of the alleles identified in the screen for enhancers of DTC defects in unc-5(e152) mutants.

Mutant	LG	\# of Alleles	Identity
unc-53	II	5	actin-binding
unc-52	II	3	Perlecan
unc-40	II	2	netrin-receptor
unc-5	IV	3	netrin-receptor
lon-2	X	2	novel, secreted
ced-5	IV	1	DOCK 180 homologue.
lin-7	II	1	PDZ domain
sma-9	$\mathrm{X}+2.5$	1	Schnurri homologue.
enu(IVA)	IV+3.5	$?$	$?$
ev675	$\mathrm{V}+6.5$	$?$	$?$
ev676	$\mathrm{III}+4.1$	$?$	$?$
ev648	$\mathrm{X}-2.9$	$?$	$?$
ev697	$\mathrm{X}+2.0$	$?$	$?$

Two enhancer mutants, mig(ev648) and enh(ev697) were genetically mapped to chromosomal regions lacking any known DTC migration genes at the time of mapping. Thus mig(ev648) and enh(ev697) appear to be alleles of novel cell migration genes involved in DTC guidance either via UNC-6/UNC-5 or parallel DTC guidance pathways.

1.9 Project summary.

Gonad morphology patterning, regulated by the migration and guidance of DTCs in C.elegans provides an ideal model for studying UNC-6, UNC-5, UNC-40 and additional cell guidance molecules functioning in their endogenous environment. The capability to organize mass genetic screens in C.elegans is a powerful resource for taking the preliminary steps to
identify genes involved in regulating and guiding cell migrations. Once these genes are identified further analysis can be continued in C.elegans and later their function can be assayed in more complex model organisms. Identifying genes involved in regulating and guiding cellular migrations is a crucial first step towards elucidating the fundamentals of cell motility and cell guidance.

For this project, I propose to 1)Physically map and clone enhancers mig(ev648) and enh(ev697) and 2) Define their roles in DTC guidance.

Cloning each enhancer can result in two possible outcomes. The enhancer may be an allele of a previously cloned gene and thus this screen identifies the genes involvement in DTC migrations and possibly in UNC-6/UNC-5 mediated DTC guidance. However, the enhancer allele may be an allele of a novel DTC migration gene and the identification and characterization of this novel gene requires analysis of its roles in DTC guidance and its interactions in UNC-6/UNC-40/UNC-5 DTC mediated guidance.

2. MATERIALS AND METHODS

2.1 Solutions and media preparation.

Chemicals used for this project were purchased from Sigma, Fisher, Invitrogen New England Biolabs, USB, Qiagen, Roche and Promega and are all of molecular biology grade. All solutions and media used in this project are listed in Section 6.1.

2.2 Maintenance and handling of C.elegans.

Bristol C.elegans strains were cultured on NGM (nematode growth medium) agar in sterile 9 cm or 5 cm Petri Dishes (Fisher) with a lawn of E.coli(Escherichia coli)OP50 (Caenorhabditis Elegans Genetic Centre) on which the nematode feeds. The E.coliOP50 strain is a uracil auxotroph with limited growth preventing bacterial over-growth on plates. NGM agar was prepared, autoclaved, poured into petri dishes to 7 mm thickness and left to solidify for one day. Once the medium solidified, plates were seeded with 1 ml of liquid E.coliOP50 cultured in LB(Luria Bertani) broth overnight in a shaker incubator at $37^{\circ} \mathrm{C}$. For each plate, 1 ml of liquid E.coliOP50 was spread using a flame sterilized glass "hockey stick" ensuring no contact with the edge of the plate creating a centralized lawn of bacteria on each plate. The E.coliOP50 was left to dry on the plates overnight and the following day plates were ready for use.

Animals were transferred between plates with a sterilized worm pick; a pasteur pipette with a 1.5 cm long platinum wire melted into the pipette tip. Between each animal transfer the wire was flame sterilized and cooled on an area of NGM agar devoid of E.coliOP50. Animals were collected under a LeicaMZ6 dissecting microscope by gently amassing E.coliOP50 onto the worm pick tip and lightly tapping the sticky E.coliOP50
covered pick tip on top of the animal. Once adhered, animals were transferred to new plates by lightly pressing the pick onto the NMG agar of the new plate and allowing animals to crawl off. Strains were grown in a $20^{\circ} \mathrm{C}$ incubator (VWR).

2.3 C.elegans strains.

The C.elegans strains utilized for this project are summarized in Table 3.

2.4 C.elegans mutant strain generation.

For this project, the following strains were generated as outlined in Section 6.2:
6.2.1 tnIs5;mig(ev648)
6.2.2 unc-40(e1430);unc-5(e53);mig(ev648)
6.2.3 dpy-6(e14)enh(ev697)egl-15(n484)
6.2.4 unc-5 (e152);sdn-1(zh20) and unc-5(e53);sdn-1 (zh20)
6.2.5 unc-40(e1430);sdn-1 (ev697) and unc-40(e1430);sdn-1 (ev697)
6.2.6 unc-6(ev400)sdn-1 (ev697)
6.2.7 unc-5(e152);sdn-1(zh20);opEx1159, unc-5(e152);sdn-1(zh20);opEx1206 and unc-5(e152);sdn-1(zh20);opEx1198.
6.2.8 unc-129(ev554) unc-5(e152);sdn-1 (ev697)
6.2.9 unc-5(e152)egl-20(mu39);sdn-1 (ev697)
6.2.10 unc-5(e152)lin-3(e1413);sdn-1(ev697)
6.2.11 unc-5(el52);dbl-1(ev580);sdn-1 (ev697)
6.2.12 unc-5(e152);egl-17(e1313)sdn-1 (ev697)

For each mating, a ratio of five males to one hermaphrodite was utilized.

Table 3: Summary of the Celegrars strains used in this project.

Strain name	Source	Phenotype	Description
N2	Cannorhabditis elegras Genetics Centre(CGC).	Wild-type.	The Celegans Bristol wild-type referencestrain
mig(ev648)	EMS, screen for enhancers ofDIC migrationdefects.	DIC migation defects in the 2nd and 3rdDTC migation phases resulting in vertral clear patches.	$?$
enh(ev697)	EMS, screen for enhancers of DTC migrationdefects.	Enhryonic elongation defects (low penetrance).	?
2nc-5(el52)	EMS, (Hedgeocock, Culdati and Fall 1990) (COC).	Uncoordinated, (defective backwards locomotion), moderate penetrance of DTC migration defects in the second DIC migration phase resulting in veriral clear patches.	UNC-5 rexeptor cytoplasmic tuncation in the $Z 5$ domain resulting ina patially finctional UNC-5. (Mezet al. 2001)
unc-5(e53)	$\begin{aligned} & \text { EMS, (Bremer 1974), } \\ & \text { (CGC). } \end{aligned}$	Severly unooordinated defective backwards locomotion, DTC migration defects in the second DIC migration phase resulting in ventral clear patches.	UNC-5 receptor tuncation prior to the first Ig domain in the extra-cellular region of the protein (NUL) (Killeen et al. 2002)
unc-5(dmll)	Mezz (unublished).	Slightly uncoordinated, very, very low pentrance of DTC migration defects in the 2nd DTC migration phase resulting in vertral clear patches.	UNG5 receptor cytoplasmic truncation after the $Z 5$ domain, retains the majority of UNC-5 functions.

unc-6(ev400)	EMS (Hedgecock, Culotti and Hall $1990)$, CGC	Uncoordinated, moderately egg-laying defective (animals are bloated), moderate penetrance of DTC migration defects in the 2nd DTC migration phase resulting in ventral clear patches.	Stop codon before the VI domain. (NULL) (Wadsworth, Bhatt and Hedgecock 1996).
unc-40(e1430)	EMS (Hedgecock, Culotti and Hall 1990) CGC.	Uncoordinated, slightly dumpy(reduced body length), low penetrance of DTC migration defects in the 2nd DTC migration phase resulting in ventral clear patches.	Stop codon after the first Ig domain. (NULL) (Chan et al. $1996)$
unc-5(e53);mig(ev648)	Merz	Uncoordinated with unc-5(e53) and mig(ev648) DTC migration defects.	
unc-5(e152);mig(ev648)	Merz	Uncoordinated with unc-5(e152) and mig(ev648) DTC migration defects.	
unc-40(eI430);unc-5(e53)	Merz.	Severely uncoordinated, DTC migration defects, slightly dumpy and egg-laying defective.	Uncoordinated with unc-5(e53) DTC migration defects and enh(ev697) embryonic elongation defects.
unc-5(e53);enh(ev697)	Merz	Uncoordinated with unc-5(e152) DTC migration defects and enh(ev697) embryonic elongation defects.	
unc-5(e152);enh(ev697)	Merz		

evIs99*	(Su et al. 2000)	Dorsal clear patches due to precocious turning of the DTC dorsally during the first DTC migration phase.	Transgenic strain with unc-5 expression regulated by the emb-9 promoter, resulting in early ectopic unc-5 expression in DTCs during the first, ventral migration phase. Array integrated on LGI.
evIs99; mig(ev648)	Merz		Dorsal clear patches due to precocious turning of the DTC dorsally and mig(ev648) DTC migration defects.
evIs99; enh(ev697)	Merz	Dorsal clear patches due to precocious turning of the DTC dorsally and enh(ev697) embryonic elongation defects.	Reduced body length (dumpy, dpy) and uncoordinated.
dpy-6(e14)unc-115(e2225)	Merz D, (unpublished).	Reduced body length (dumpy, dpy) and egg-laying (egl) defective resulting in the formation of live worm sacs.	Merz D, (unpublished).
dpy-6(e14)egl-15(n484)	(Hall et al. 1999), CGC	Gonadal sheath cells 1-4 express GFP, outling gonad morphology.	A transgenic strain with 2.23Kb of lim-7 upstream regulatory sequence fused to the genetic coding sequence for the first 61 amino acids of LIM-7 protein in frame with a GFP sequence, resulting in expression of the LIM-7::GFP fusion protein in gonadal sheath cells.
tnIs5			

mig-23(kl80)	(Nishiwaki et al. 2003) from a genetic screen for defects in gonad morphogenesis. (CGC).	DTC migration defects in the second DTC migration phase, not fully penetrant.	NULL (Nishiwaki et al. 2003)
$s d n-1(z h 20)$	EMS, (Rhiner et al 2005) obtained from C. Rhiner via personal communication.	Variable egg-laying defects resulting in bloated animals, defects in backward locomotion and a low penetrance of embryonic elongation defects.	Deletion of 1260bp within the coding region. NULL (Rhiner et al 2005)
sdn-1(ev697)	EMS, screen for enhancers of DTC migration defects.	Embryonic elongation defects.	A $610 \mathrm{G}>\mathrm{T}$ mutation in the $s d n-1$ coding sequence resulting in a E203X creating a truncation in SDN-1 before the trans-membrane domain.
mig-23(ev648)	EMS, screen for enhancers of DTC migration defects.	DTC migration defects in the second and third DTC migration phases resulting in ventral clear patches.	A 335C $>$ T mutation in the mig-23 coding sequence resulting in a A112V substitution.
dbl-1(ev580)	CGC.	Reduced body length (fully penetrant).	
egl-17(e1313)	CGC.	Severe bloating due to egg laying defects (fully penetrant).	
unc-129(ev554)unc-5(e152)	(Merz et al 2003).	Uncoordinated, moderate penetrance of DTC migration defects in the 2nd DTC migration phase resulting in ventral clear patches.	unc-129(ev554) NULL.

unc-5(e152)egl-20(mu39)	(Merz et al. 2003) .	Uncoordinated, DTC migration defects in the 2nd DTC migration phase resulting in ventral clear patches, bloated due to defects in egg-laying.	
unc-5(el52)lin-3(e1413)	(Merz et al. 2003)	Uncoordinated, moderate incidence of DTC migration defects in the 2nd DTC migration phase resulting in ventral clear patches, vulvaless and bloated due to defects in egg-laying.	
opEx1159**	(Rhiner et al. 2005) obtained from C.Rhiner via personal communication.	Strong GFP expression in the head and tail, weaker GFP expression in all 6 touch cell neurons, variable egg laying defects (bloated animals) and embryonic elongation defects.	A transgenic strain, $s d n-l(z h 20)$ with an extra-chromosomal array comprising 216 bp of $d p y-7$ promoter fused to $s d n$ - 1 cDNA (hypodermal expression of $s d n-1)$ and a lin- 48 promoter fused to GFP as a marker. (Rhiner et al. 2005)
opEx1206	(Rhiner et al. 2005) obtained from C.Rhiner via personal communication.	Strong GFP expression in the head and tail, weaker GFP expression in all 6 touch cell neurons, variable egg laying defects (bloated animals) and embryonic elongation defects.	A transgenic $s d n-1(z h 20)$ strain with an extra-chromosomal array comprising 2189 bp of $u n c-119$ promoter fused to $s d n-1$ cDNA (hypodermal expression of $s d n-1$) and lin-48 promoter fused to GFP as a marker. (Rhiner et al. 2005)

opEx1198	(Rhiner 2005) obtained from C.Rhiner via personal communication.	Strong GFP expression in the head and tail, weaker GFP expression in all 6 touch cell neurons, variable egg laying defects (bloated animals) and embryonic elongation defects.	A transgenic strain with an extrachromosomal comprising 2.8 Kb of $s d n$ 1 promoter fused to $s d n-1$ cDNA (hypodermal expression of $s d n-1$) and lin-48 promoter fused to GFP as a marker. In addition, a mec-4 ::gfp transgene in integrated on LGI for visualization.(Rhiner et al. 2005)
opls 170	(Rhiner et al. 2005) obtained from C. Rhiner via personal communication.	SDN-1::GFP expression in hypodermis, ventral nerve cord, nerve ring and commissures.	A transgenic sdn-1(zh20) strain with an integrated array comprised of 2.8 Kb of $s d n-1$ promoter sequence followed by the entire $s d n-1$ coding sequence in frame with a GFP sequence.(Rhiner et al. 2005)

Note : Phenotype descriptions for each strain only describes the phenotypes relevant to this project. Additional phenotype information for each strain can be obtained from www.wormbase.org. * Is: strain has an integrated transgenic DNA array, ${ }^{* *} E x$: strain

2.5 C.elegans phenotype analysis.

2.5.1 General phenotype analysis.

In C.elegans, phenotypes are used to deduce the genotype of a particular strain. For example, animals of a mutant unc-5 strain exhibit ventral clear patches and uncoordinated movement. A LeicaMZ6 dissecting microscope was utilized for the majority of the C.elegans general manipulations such as transferring animals between plates as well as for general phenotype analysis for deducing strain genotype. For phenotype analysis requiring higher magnification a Zeiss Stemi M2BIO QUAD stereomicroscope with 10X and 20X magnification was utilized. This microscope is equipped with a Zeiss AxioCam HRm and AxioCam 4.0 software and was also used for imaging.

2.5.2 Identifying and scoring DTC migration defects.

DTCs that fail to reach the dorsal muscle band during their second migration phase cause a gonad morphology defect that is identified by a ventral clear patch in the animal. The clear patch is easily visualized under the LeicaMZ6 dissecting microscope at low magnification facilitating DTC migration defect scoring.

DTC migration defects were scored in animals at the L4 larval stage of F1 progeny from a single clone. DTC migration defects in the ventral to dorsal migration phase were counted based on their occurrence (anterior or posterior/ventral or dorsal clear patches) for each F1 progeny. Proportions of anterior and posterior DTC migration defects for each strain were calculated assuming a binomial distribution. Proportions were expressed as percentages and standard errors calculated as described in (Hedgecock, Culotti and Hall 1990).

2.5.3 Live C.elegans imaging.

Live photographs of animals (bright field or with a 470 GFP filter) on NGM agar plates were taken using a Zeiss Stemi M2BIO QUAD stereomicroscope equipped with a Zeiss AxioCam HRm and AxioCam 4.0 software. Magnifications (10X or 20X) are specified in each photograph. For all live photographs, the anterior posterior axis runs from left to right and the dorsal ventral axis runs top to bottom.

2.5.4 Still C.elegans imaging.

For phenotype analysis requiring higher magnifications, animals were mounted on a 2.5% agarose pad dried to a thin cover slip and immobilized with 1 mM levamisol (Brenner 1974). A Zeiss Axio Imager equipped with an Axiocam MRc camera and Axiovision Rel 4.4 software was used and photos were taken with a 63 X lens with DIC (differential interference contrast). For all still photographs, the anterior posterior axis runs from left to right and the dorsal ventral axis runs top to bottom.

2.6 Preparation of agarose gels

Agarose gels were prepared in either a $100 \times 115 \mathrm{~mm}$ small casting tray (Fisherbrand horizontal unit mini-plus) or $130 \times 150 \mathrm{~mm}$ medium casting tray (Fisherbrand horizontal unit midi). Appropriate amounts of agarose (Promega) were weighed out and mixed with the appropriate amount of 1 X TAE (depending on the desired size and width of the gel) in a glass 250 ml flask (Pyrex). The mixture was gently shaken and placed to boil in a microwave until the agarose dissolved. A magnetic stir bar was added to the flask and the mixture was placed on a P-353 stirrer on a low setting. Ethidium Bromide $(10 \mathrm{mg} / \mathrm{ml})$ was added to the mixture (10% of total TAE buffer volume) and stirred. Casting trays were positioned
vertically in the trays, combs (with various well numbers) inserted and the gel was poured into the tray and left to set. Once the gel solidified the comb was remove and the tray was rearranged horizontally and submerged in 1 X TAE buffer with 10% ethidium bromide. Samples were loaded with an OrangeG running dye (1:6 of total volume being loaded) and run against a 1 Kb DNA ladder (Invitrogen). The gels were run at $80-90$ volts (mini-plus) or 100-120 volts (midi) (Fisher FB300 power pack) until desired band resolution was achieved. Gels were visualized on an AlphaImager2200 trans-illuminator and photographed with the AlphaEaseFC software.

2.7 Cosmid microinjections

2.7.1 Cosmid preparation

Cosmids C03B1, T22E5, K10C2, K04E7, C15B12, F22A3, T14E8 and T28B4 (spanning the region that mig(ev648) was mapped to) and cosmids F41E7, R07E3, F46F6, ZC504, C39B10, C33D3, F14F3, F59F5, F57C7, M79, F11A1, F13E6, C46B5, T01C1, R07A4 (spanning the area that enh(ev697) was mapped to) were obtained from Alan Coulsan, Cambridge University UK (Described in Section 6.3). Cosmids arrived previously transformed in E.coli and were immediately streaked out onto LB agar (in 9 mm diameter plates) with kanamycin $(75 \mu \mathrm{~g} / \mathrm{ml})$ or LB agar plates with ampicillin $(75 \mu \mathrm{~g} / \mathrm{ml})$. Plates were incubated at $37^{\circ} \mathrm{C}$ overnight. Ampicillin/Kanamycin resistant colonies were picked with a 1$10 \mu \mathrm{l}$ pipette tip and aseptically placed in 10 ml sterile culture tubes (Simport) containing 4 ml of liquid LB broth with $50 \mu \mathrm{~g} / \mathrm{ml}$ of kanamycin or ampicillin. Liquid cultures were incubated at $37^{\circ} \mathrm{C}$ overnight in a shaking incubator. A Qiagen mini-prep kit was utilized to isolate cosmids (as per manufacturers instructions). Cosmid identity was verified by resolving restriction enzyme digest patterns (New England Biolabs) on a 1\% agarose gel.

2.7.2 Injection mixture preparation.

The cosmid injection mixture consisted of $10 \mathrm{ng} / \mu \mathrm{l}$ of the appropriate cosmid in elution buffer, $50 \mathrm{ng} / \mu \mathrm{l}$ of a pTG96GFP plasmid used as a co-transformation marker, $40 \mathrm{ng} / \mu \mathrm{l}$ pKS plasmid and $\mathrm{ddH}_{2} 0$ for a total volume of $20 \mu \mathrm{l}$. The pTG96GFP construct (Gu, Orita and Han 1998) contains a GFP coding sequence regulated by the nuclear specific promoter of sur-5 inducing GFP expression in all nuclei of transgenic animals.

2.7.3 Microinjection.

Each cosmid mixture was microinjected using a fine capillary needle and compressed air (nitrogen) into the syncytial distal region of adult mig(ev648) and enh(ev697) animal gonads. Using a dissecting microscope, animals were placed in mineral oil covering a thin pad of 2.0% agarose that was dried onto a 24 X 50 microscope cover glass (Fisher). Once the animal adhered to the pad, the cover glass was transferred to an inverted LeicaDMIL DIC microscope equipped with a manoeuvrable stage and injection needle micromanipulator. Injection needles were made from glass capillaries using a needle puller. The injection mixture was added into a capillary needle and the needle was attached to the micromanipulator. The needle micromanipulator was connected to tubing and joined to a Nitrogen pressure tank forcing air through the needle and ejecting the mixture in a controllable manner. Using the movable stage the animal was positioned onto the needle ensuring that the needle pierced through the cuticle and into the gonad syncytium. The air was activated and the cosmid mixture was forced into the distal gonad region. Microinjection of transgenic DNA in C.elegans is reviewed in (Mello and Fire 1995). Briefly, DNA fragments contained within the mixture microinjected into the gonad syncytium of C.elegans undergo recombination forming multi-copy, extra-chomosomal (Ex)
arrays of repeating GFP, pKS and cosmid DNA fragments in no particular order or number. Arrays within the syncytium are taken up by germ cells as their plasma membrane is formed and expressed using the animals endogenous transcription factors. The extra-chromosomal arrays remain present in the nucleus and have a $5 \%-95 \%$ transmission frequency.

Injected animals were cloned onto NGM plates and F1 progeny were analysed for GFP expression. F1 progeny expressing GFP were cloned out and the stability of the transgene was examined in the F2 progeny. At least two independent stable transgenic lines for each cosmid microinjected were generated and used for analysis. Rescue was deduced by phenotype analysis using a Zeiss Stemi M2BIO QUAD microscope equipped with a 470 GFP lense.

2.8 Sequencing.

2.8.1 C.elegans genomic DNA isolation.

C.elegans genomic DNA was prepared from N2 (wild-type), mig(ev648) and enh(ev697) strains. Each strain was grown up on three, 150 mm thick Rich Agarose Plates until just before starvation for a total of nine plates. Each strain was washed from plates with M9 buffer and collected into a 15 ml plastic conical tube (Corning). To remove bacterial residue, each tube was centrifuged for 30 seconds at $300-500 \mathrm{xg}$, the supernatant was removed and the pellet was re-suspended in $\mathrm{ddH}_{2} 0$ and centrifuged again. After three washings, the animal pellet was re-suspended in $1 \mathrm{ml} \mathrm{H}_{2} 0$, transferred to a 1.5 ml Eppendorf tube and centrifuged for 1 min at 13200 rpm . The supernatant was removed and 500 ul of genomic worm lysis solution was added. Tubes were incubated in a $-80^{\circ} \mathrm{C}$ dry ice bath for 30 mins, thawed and then re-incubate for $30-60 \mathrm{mins}$ in a water bath at $55-65^{\circ} \mathrm{C}$ with occasional agitation. Lysate was then centrifuged at 13200 rpm and the aqueous phase was
transferred to a new tube, leaving behind the eggshells and worm carcasses. To clean the DNA, an equal volume $(\sim 500 \mu \mathrm{l})$ of phenol/ CHCl_{3} was added to the tube and centrifuged at 13200 rpm for 1 min . The aqueous phase was transferred to a new sterile Eppendorf tube, an equal volume of CHCl_{3} was added and the mixture was re-centrifuged at 13200 rpm for 1 \min. Addition of CHCl_{3} followed by centrifugation and removal of the aqueous phase was repeated for a total of three times. After the third centrifugation, the aqueous phase was transferred into another tube and 2.5 volumes of $100 \% \mathrm{EtOH}$ was added to precipitate the DNA from solution. The mixture was centrifuged for 15 mins at $16,000 \mathrm{xg}$. The aqueous phase was then removed and 1 ml of low TE was added. The tube was sealed with parafilm and the DNA was re-suspended into solution on a slow moving rotator at $-4^{\circ} \mathrm{C}$.

2.8.2 Primer design and PCR amplification.

Primers for mig-23, sdn-1 and nas-33 sequencing were designed based in the most recent gene sequences submitted to WormBase (www.wormbase.org). Primers for nas-33 were designed to amplify exonic regions and primers for mig-23 and $s d n-1$ were designed to amplify the entire gene coding sequence including introns. Primer sets were chosen based on their melting temperatures, tendencies to form hair-pins and their abilities to homodimerize and heterodimerize as deduced by IDT Oligoanalyzed3.0. (http://www.idtdna.com/analyzer/Applications/OligoAnalyzer/Default.aspx). Primers were blasted against the entire C.elegans genome (NCBI BLAST) to ensure specificity. Primers for each gene are described in Tables 4, 5 and 6 and were ordered through Qiagen(nas-33) and Invitrogen (mig-23 and sdn-1).

Table 4 : Primers used for sequencing nas-33

Primer Name	Primer Sequence (5' to 3')
MSK04-F1	CAACACCACCCATTGAGACG
MSK04-R1	GCAAAGCCGTCCTTGGTGAAC
MSK04-F2	GGTCTTTGAGTGGGAGCTGT
MSK04-R2	CACTCTCAAAGCAGCAACGA
MSK04-F3	TCGTTGCTGCTTTGAGAGTG
MSK04-R3	CACCGTTGAACCCAGTAGACCT
MSK04 - F4	GGCAGTTTATCCGATTGGTGC
MSK04 - R4	GGTGATGGATGTGAAACGGT
MSK04-F5	GGTCTCGCTTGTTCATGCCA
MSK04-R5	GCTCAAAACGGCTTTCGTGT
MSK04-F6	CGAGACCACGTTGTTCCGTT
MSK04-R6	CTGAGCCGGAACCACAACAA
MSK04-F7	CCACTGGACGGGATTACAGT
MSK04 - R7	CCTTGGCATCGGTGAGATTT

Table 5 : Primers used for sequencing mig-23

Primer NamePrimer sequence	\#bp	Tm	
Mig-1A	TCG GAA GTG CGC TTT GAA TG	20	56.1
Mig-1B	GACACGCATAGGATCACCGCA	21	59.6
Mig-2A	TCC GAA TTG CAG CGT CCG A	19	59.7
Mig-2B	CTGAACGACCGATTTCCACCA	21	57.4
Mig-3A	TCC CTG AAA AAC CGC CGA AAA	20	57.5
Mig-3B	CTTGGGCAGGTTTTGTTCCA	20	56
Mig-4A	GTG ATG CAG GGT CAA CTG GA	20	57
Mig-4B	CTT GCA TGT GCT GGC GAG GTT 21	60.9	
Mig-5A	TGGAACAAAACCTGCCCAAG	20	56
Mig-5B	GTCTTCCCTGCATCCGAGGT	20	59
Mig-6A	GATATGGGTGGAGCAAGTGCT	21	57
Mig-6B	TCCGCATCATACTGTCCTCCA	21	57
Mig-7A	GTCTGTAAAGCTGAAGCGGCA	21	57
Mig-7B	AGCTGAAACCGTGCTGCAA	20	59
Mig-8A	GTACCCGAGAGCTGACGAGGA	21	60
Mig-8B	GAAACCAAGGCCCAATCCCA	20	59
Mig-9A	CAATGGGCTCTCGGAGCAATG	21	58
Mig-9B	GAGGACCGACGTTTGTCATC	20	55.6
Mig-10A	TGGGATTGGGCCTTGGTTTC	21	58.6
Mig-10B	CATCTGGAGGTTCCTGCTTG	20	55.6

Table 6 : Primers used for sequencing $\boldsymbol{s} d \boldsymbol{n}-1$

Primer Name	Primer Sequence	\#bp	Tm
sdn-1A	TCCTCCTCCACCACAACACCA	21	60.5
sdn-1B	TTCGTCGTCGGTTGGGTAG	19	56.9
sdn-2A	TTGCAGCAGGTCGAAGGAAG	20	57.8
sdn-2B	CTCCTTGTCGTTTGCCGCTG	20	59.2
sdn-3A	CTACAGCGGTTTGTGTCGGC	20	58.8
sdn-3B	GAAGCCATTTGCCAGTGTCT	20	55
sdn-4A	CAGAACGCCAAGGTCAGCAG	20	58
sdn-4B	AAGAGGCCACGCCATCTGTC	20	60
sdn-5A	CAAGCCTATCCGTTCCGTCTG	21	57.7
sdn-5B	CTCTCATCGTCTTCCCACCA	20	56.8
sdn-6A	CAGAATGGGGACCCCTTCGT	20	59.4
sdn-6B	CTTCCGTCCCACCATCCCGA	20	61
sdn-7A	CTGAGCAGCATCCCACATC	19	56
sdn-7B	CACCGCAACGAGAACACCT	19	58
sdn-8A	GTGTCTGTGAGGAAAAGGGGA	21	56.7
sdn-8B	GTCTTGCTTGCTTGGGTTCATC	21	57
sdn-9A	AGGTGTTCTCGTTGCGGTG	19	58
sdn-9B	TCCCTACCCCTAAGTGGGTCT	21	59

PCR fragments for sequencing were amplified using an Invitrogen Platinum Taq DNA polymerase kit. For each primer set, a temperature gradient setting on the Eppendorf Mastercycler was used to determine primer set melting temperatures for optimal and specific DNA amplification. Each gene was sequenced in the C.elegans N2 wild-type strain in addition to the mutant strain.

2.8.3 Gel extraction and quantification of DNA fragments.

PCR amplified DNA fragments to be sequenced were resolved on a 1.5% agarose gel and excised from the gel using a clean scalpel. A Qiagen Gel extraction kit was utilized to extract product from the gel (as per manufacturers instructions). To ensure that the final DNA fragment concentration was at least $50 \mathrm{ng} / \mu \mathrm{l}$ (as recommended by the The Centre for Applied Genetics Sequencing Facility in Toronto), 1μ l of the fragment solution was diluted
in 9ul of low TE and resolved on a 1% agarose gel against a low mass ladder (Invitrogen). PCR fragments were sent for sequencing (along with their respective primers at a concentration of $5 \mathrm{pmol} / \mu \mathrm{l}$ and a minimum volume of $10 \mu \mathrm{l}$) to The Centre for Applied Genetics Sequencing Facility in Toronto. Each fragment was sequenced using both forward and reverse primers in order to validate the accuracy of all sequencing results.

2.8.4 DNA sequence alignments.

Automated sequencing results were sent from Toronto to Winnipeg via email in text format. The ClustalW alignment program provided by EBI (www.ebi.ac.uk/clustalw/) was used for all alignment (sequences and protein). The most recent sequences submitted to Wormbase (www.wormbase.org) (nas-33: GenBank Assession\# U39666; mig-23:GenBank Assession\#NM_076593; sdn-1: GenBank Assession\#NM_171972) were used to compare the sequences obtained from N2 and mutant strains for each fragment. Mutations were deduced based on observed variations in the sequences compared by alignment.

2.9 DTC migration defect enhancement/suppression assays.

Previous studies have established a methodology for analyzing genetic interactions of $u n c-5 / u n c-40 / u n c-6$ with various other cell migration genes in order to deduce their roles in cell guidance and place them within the hierarchies of cell guidance signalling pathways. For example, the frequency of DTC migration defects in unc-5(e53);unc-6(ev400) mutants and unc-40(e1430);unc-6(ev400) mutants is not enhanced compared when to the frequency of DTC migration defects in unc-6(ev400) (Hedgecock, Culotti and Hall 1990; Merz et al. 2001). Eliminating $u n c-6$ and its receptors $u n c-5$ and unc-40 results in the same outcome as simply eliminating unc-6 as unc-6 signals through its downstream receptors for ventral-
dorsal DTC guidance. Placing each enhancer allele in unc-5/unc-40/unc-6 genetic backgrounds can assess whether the roles of mig(ev648) and enh(ev697) alleles in DTC guidance are limited to unc-5/unc-40/unc-6 or whether each allele functions in a parallel DTC guidance pathway.

2.10 SNP mapping.

2.10.1 Selection of genetic recombination markers.

Three factor genetic mapping mapped enh(ev697) to LGX:+2.0. The genes $d p y$ $\sigma($ LGX:0.0) and egl-15(LGX:2.86) were chosen as genetic markers for identifying recombinant animals. Phenotypes of both dpy-6(e14) and egl-15(n484) mutant strains, reduced body length and egg-laying deficiencies respectively, are easily distinguishable at low magnification facilitating phenotypic analysis of high numbers of animals.

2.10.2 SNP selection and amplification.

An alternate C.elegans strain, CB4856 Hawaiian, bears SNPs (single nucleotide polymorphisms) in its DNA sequence relative to the commonly used Bristol strain. These SNPs have been identified, mapped and recorded in Wormbase (www.wormbase.org). SNPs in the Bristol strain within the genetic region between LGX:1.8 and LGX:2.86 were selected. Three verified SNPs were identified, pkP6128(LGX:1.932), pkP6040(LGX:2.31) and pkP6160(LGX:2.54) (Table 7) and primers for amplifying the area surrounding and including each SNP were ordered (Qiagen).

2.10.3 Recombinant identification.

A dpy-6(e14)enh(ev697)egl-15(n484) mutant strain was generated as outlined in Section 6.2.3. Hawaiian males were crossed to a Bristol dpy-6(e14)enh(ev697)egl-15(n484) hermaphrodite and wild-type F1 progeny (Bristol-dpy-6(e14)enh(ev697)egl15(n484)/Hawaiian $-+;++$) were selected and cloned out. Recombinations occurring between the Bristol dpy-6(e14)enh(ev697)egl-15(n484) chromatid and Hawaiian $+;+;+$ chromatid were recovered by isolating F2 progeny that were Egl and non Dpy or Dpy and non Egl. From these progeny, seven egl-15(n484), non-Dpy lines were isolated and labelled C1 to C9.

2.10.4 DNA isolation from recombinant strains.

DNA from the recombinant strains was isolated using the single worm lysis method. Five animals from each recombinant strain were placed in 0.2 ml thin walled PCR tubes (Biocan) filled with single worm lysis buffer. Samples were placed in an ethanol and dry ice bath for 15 mins . $1 \mu \mathrm{l}$ of mineral oil was added to each sample and the tubes were placed in the Eppendorf Mastercycler where they were incubated at $60^{\circ} \mathrm{C}$ for 1 hour, $95^{\circ} \mathrm{C}$ for 15 mins and immediately stored at $-20^{\circ} \mathrm{C}$.

2.10.5 PCR amplification.

SNPs in each recombinant were PCR amplified with an Invitrogen Platinum Taq DNA polymerase kit utilizing the appropriate primers. The temperature gradient setting on the Eppendorf Mastercycler was used for each primer set to determine melting temperatures for optimal and specific DNA amplification. PCR amplification products were resolved on a 1% agarose gel to ensure that the correct fragment was amplified.

Table7: SNPs used for mapping enh(ev697)

SNP Name	Lenetic	Lorward Primer		Reverse Primer		Fragment	

2.10.6 Restriction digest of PCR amplified DNA fragments.

PCR amplification fragments spanning each SNP were treated with the appropriate restriction enzyme to verify their restriction pattern and determine whether fragments were of Bristol or Hawaiian origin. All restriction enzyme reactions were performed in Eppendorf tubes and consisted of $1 \mu \mathrm{l}$ of the PCR amplified DNA fragment, $1 \mu \mathrm{l}$ of enzyme (NEB), $2 \mu \mathrm{l}$ of the appropriate restriction enzyme buffer (NEB) and $16 \mu \mathrm{l}$ of $\mathrm{ddH}_{2} 0$. All restriction digests were performed in a $37^{\circ} \mathrm{C}$ water bath (enzyme manufacturers instructions) for at least 1 hour. Digested products were resolved on a 1\% agarose gel and visualize as described in Section 2.6.

2.10.7 Mapping the recombination.

The restriction enzyme digest pattern of each SNP DNA fragment was used to deduce the origin (Bristol or Hawaiian) of each SNP fragment from the recombinant strains. Once the origin of each SNP fragment from each recombinant was deduced, the genetic recombination position for each recombinant strain was inferred. Recombinants were scored for the presence of the enh(ev697) embryonic elongation phenotype and enh(ev697) was mapped relative to the location of the recombination between the two SNPs.

2.11 RNAi media preparation.

RNA interference by feeding method is described in (Kammath 2001). The E.coli HT115 strain X-5K23 was obtained from P.Roy (University of Toronto). This bacterial strain is deficient in RNAse III, can induce T7 bacteriophage polymerase activity in the presence of isopropylthiogalactoside (IPTG) and contains the L4440 vector described in Figure 4 (Timmons and Fire 1998). The vector contains an ampicillin resistance gene for
selection and the abl-1 fragment inserted into an EcoRV site flanked with T7-polymerase promoters allowing bi-directional transcription of the fragment to produce abl-1 dsRNA. NGM agar was prepared and carbenicillin (Fisher) [25ug/ml] and IPTG [1mM] (Fisher) $(1.5 \mathrm{mg} / \mathrm{ml})$ were added prior to pouring. The media was poured into 9 cm petri dishes (Fisher) and allowed to solidify for 4-7 days. A 10 ml liquid culture of the X-5K23 E.Coli was prepared in liquid LB broth with $50 \mathrm{ug} / \mathrm{ml}$ ampicillin and incubated in a shaking incubator overnight at $37^{\circ} \mathrm{C}$. The following day the plates were seeded with X-5K23 E.Coli and allowed to dry overnight. Plates were stored at $+4^{\circ} \mathrm{C}$ until used to maintain the stability of the IPTG. enh(ev697) mutants at the L3 larval stage were cloned out onto the prepared RNAi plates. Plates were left at room temperature and F1 progeny were analysed within three days.

(Kamath 2001)

Figure 4 : The L4440 vector for RNAi assays in C.elegans. Schematic diagram depicting the L4440 vector and its components in an HT115(DE3) E.coli cell.

3 RESULTS AND DISCUSSION

3.1 Cloning and characterizing the DTC guidance roles of mig(ev648).

The mig(ev648) allele was identified in a genetic screen for enhancers of DTC migration defects in unc-5(e152) mutants. mig(ev648) mutants in an unc-5 wild-type or unc5 mutant background exhibit DTC migration defects in the second and third DTC migratory phases. Specifically, the DTCs fail to migrate dorsally causing the third migration phase to occur along the ventral muscle band (as seen in unc-5, unc-6 or unc-40 mutants) or the DTC executes the ventral to dorsal migration phase and during the third migration phase wanders on and off of the dorsal muscle band. These aberrant DTC migratory pathways in mig(ev648) mutants were observed upon examining differences in clear patches of unc$5(e 152)$ and $m i g(e v 648)$ (Figure 3).

3.1.1 The gonad morphology of the mig(ev648) mutants.

Phenotypic differences in the ventral clear patches of unc-5 and mig(ev648) mutants resulting from the gonad morphology defects caused by aberrant DTC migration patterns were observed at low magnification (Figure 3). Clear ventral patches in mig(ev648) mutants appear blurry and the edges not well defined when compared to unc-5(e152) clear patches, suggesting a structural gonad morphology defect (possibly due to defects in the position or structure of the gonadal sheath cells) in mig(ev648) mutants rather than a positional gonad morphology defect due to aberrant DTC migration patterns such as those observed in unc$5 / u n c-40 / u n c-6$ mutants. The adult hermaphrodite gonad structure has been reviewed (Hall et al. 1999). Five gonadal sheath cell pairs join together to form each tubular gonad arm. The most distal sheath cell pair enclosing the syncytium containing the germline nuclei, are
located in the area of the gonad arm along the dorsal muscle band patterned by the third phase of DTC migration. The transgenic strain tnIs 5 expresses GFP under the regulation of the gonadal sheath cell specific $\lim -7$ promoter allowing for the visualization of the distal gonad morphology outline. The $\operatorname{tn} 155 ;$ mig(ev648) strain was generated as outlined in Section 6.2.1 and the gonad morphology of $\operatorname{tnIs} 5 ;$ mig(ev648) mutants was compared to the gonad morphology in wild-type tnls5 (Section 2.5.3). An irregular gonad morphology was observed in tnIs5;mig(ev648) (Figure 5). Sheath cells appeared to be normal and properly localized in tnIs5;mig(ev648) indicating gonad morphology defects observed in mig(ev648) appear to be a result of aberrant DTC migration patterns rather than structural defects caused by the aberrant structure of the sheath cells. In $\operatorname{tn} 1 s 5$, DTC migrate along the dorsal muscle band resulting in a straight, linear gonad arm. In tnIs5;mig(ev648) the DTC wanders off the dorsal muscle band during the third DTC migration phase resulting in a meandering distal gonad arm. Thus the mig(ev648) allele appears to play a role in DTC guidance during the second and third DTC migration phases and possibly is involved in either mediating the DTCs or the gonadal sheath cells ability to adhere to the dorsal muscle band or is required for selecting the substrate over which the DTC migrates.

3.1.2 Genetic interactions of mig(ev648), unc-5 and unc-6.

Our genetic screen identified mig (ev648) as an enhancer of DTC migration defects in unc-5 (e152) mutants indicating mig(ev648) has a role in guiding DTC migrations. However it remains to be shown whether or not mig(ev648) is involved in unc-6/unc-5/unc-40 DTC guidance mechanisms during the second migration phase or whether it is limited to parallel, $u n c-5$ independent guidance pathways. This uncertainty can be addressed by employing

Figure 5 : Images of $\boldsymbol{t n I s 5}$ and $\boldsymbol{t n I s 5 ; m i g}($ ev648) gonad morphologies. Live, bright-field photographs. Gonad morphology of $\operatorname{tnIs} 5(\mathrm{~A}, \mathrm{~B})$ and $t n I s 5$;mig(ev648) (C,D) mutants visualized with a GFP regulated by the $\lim -7$ promoter for gonadal sheath cell specific expression. The gonad morphology of tnIs 5 (B) is representative of a straight DTC migration pattern whereas the gonad morphology of tnIs5;mig(ev648) (D) is representative of an aberrant, non-linear DTC migration pathway along the dorsal muscle band. Brightfield images depict the clear patches (representing DTC migration defects) present in mig(ev648) mutants (C) and not observed in N2 (A). Photos were taken on the M2BIO QUAD stereoscope.
classical genetic methods to elucidate genetic interactions of mig(ev648) with unc-5/unc-6/unc-40 for DTC guidance (Section 2.9).

The unc-5 (e152) allele encodes a truncated form of the UNC-5 protein retaining partial DTC guidance function. The e 152 allele was used in the genetic screen in order to recover DTC guidance genes otherwise undetectable with a complete loss of unc-5 function as all components directly involved in UNC-5 guidance functions and signalling pathways are silenced. Therefore, if a gene does not enhance the frequency of DTC migration defects in unc-5(e53)(a null), this gene must be dependent on unc-5 function for DTC guidance. Alternatively, if a gene enhances the frequency of DTC migration defects in $u n c-5(e 53)$, this gene must be functioning, at least in part, in some parallel guidance pathway that has also been disrupted in addition to the complete loss of unc-5 guidance.

To determine the role of mig(ev648) in unc-5 mediated DTC guidance, DTC migration defects in unc-5(e53);mig(ev648) were scored and compared to the frequency of DTC migration defects in unc-5 (e53). The frequency of posterior DTC migration defects in the unc-5(e53);mig(ev648) mutants was significantly increased in the posterior compared to the frequency observed in unc-5(e53) (Table 8).

Table 8 : DTC migration defects in unc-5 and mig-23(ev648) mutants.

unc-5	mig-23	Anterior DTC	Posterior DTC	n
e152	WT	8 ± 1	40 ± 1	1464
WT	mig(ev648)	36 ± 2	54 ± 2	400
e152	mig(ev648)	$32 \pm 2^{* *^{\text {a }}}$	$71 \pm 2^{* *}$	201
e53	WT	28 ± 2	53 ± 2	951
e53	mig(ev648)	$31 \pm 2^{*}$	$76 \pm 2^{* *}$	407
e53;unc-40(e1430)	WT			
e53;unc-40(e1430)	mig(ev648)	66 ± 2	88 ± 1	708

[^0]The enhancement of DTC migration defects in unc-5(e53);mig(ev648) double mutants demonstrates mig(ev648) is functioning, at least in part in a parallel DTC guidance pathway and is not limited to unc-5 mediated guidance of the DTCs. To assess the possibility that mig(ev648) is limited to unc-40 or unc-6 for DTC guidance, an unc-40(e1430);unc-5(e53);mig(ev648) triple mutant was generated (Section 6.2.2). unc-40(e1430);unc-5(e53) mutants (both null alleles) represent a complete loss of the UNC-6 guidance pathway as DTC migration defect frequencies in unc-40(e1430);unc-5(e53) are identical to the frequencies in unc-6(ev400) (Hedgecock, Culotti and Hall 1990; Merz et al. 2001). An unc-6(ev400)mig (ev648) mutant is the ideal strain for this assay. However, unc-6 and mig(ev648) are closely linked on LGX and isolating recombinants would be extremely difficult. The frequency of DTC migration defects in unc-40(e1430); unc-5(e53);mig(ev648) mutants was calculated and compared to unc-40(e1430);unc-5(e53). The frequency of DTC migration defects in triple mutants was significantly greater compared to the frequency in unc-40(e1430);unc-5(e53) (Table 8). This increase is conclusive evidence confirming the role of mig-23 in DTC migrations is not limited to the unc-6/unc-40/unc-5 guidance pathway and that it is acting, at least in part, in a parallel DTC guidance pathway.

3.1.3 Suppression/enhancement of evIs99 DTC migration defects in a mig(ev648) background.

The previous data has indicated mig(ev648) is not limited to the unc-6/unc-5/unc-40 guidance pathway but has not ruled out the possibility that mig(ev648) is directly involved in unc-5/unc-40/unc-6 mediated DTC guidance. To assess whether mig(ev648) has a role in unc-5 mediated DTC guidance, an evIs $99 ; m i g(e v 648)$ strain (Section 2.3) was generated. The $e v I s 99$ transgenic strain contains an integrated DNA array with the entire unc-5 coding
sequence regulated by the $e m b-9$ promoter, resulting in the early expression of unc-5 during the first ventral DTC migration phase thus causing a precocious dorsalward turn of the DTC (Su et al 2000). This aberrant DTC migration pattern is identified at low magnification by a dorsal clear patch in the animal (Figure 6). If a gene directly involved in unc-5 mediated DTC guidance is placed in an evIs 99 background, the frequency of precocious DTC migration defects is suppressed due the disruption of a component required for unc-5 mediated guidance. For example, the frequency of precocious DTC turns in evIs99;unc$6(e v 400)$ is 0% for both anterior and posterior DTC compared to 66% (anterior) and 75% (posterior) precocious DTC turns in evls99 animals (Su et al 2000). A gene dispensable for $u n c-5$ mediated guidance will not suppress DTC migration defects in an evIs 99 background as unc-5 retains its ability to turn the DTC dorsally. evIs99;mig(ev648) was scored for the frequency of precocious DTC turns and compared to evIs 99 alone (Table 9).

Table 9 : DTC migration defects of evIs 99 and evIs99;mig(ev648)

	Anterior DTC	Posterior DTC	n
evIs99	24 ± 2	40 ± 2	392
evIs99;mig(ev648)	31 ± 4	42 ± 4	108

The statistical comparison is against the frequency of DTC migration defects in the evIs99 strain alone. ${ }^{*} P<0.05 ; * * P<0.001$.

Figure 6: Images of N2 wild-type and evIs 99 . Two clear dorsal patches (denoted by the two arrows) are visible in evIs99 (B) and are a result of the precocious DTC turn caused by early unc-5 expression during the first DTC migration phase. These patches are not observed in N 2 (A).

The frequency of precocious DTC turns was not significantly changed in $\mathrm{evIs} 99 ; m i g(e v 648)$, suggesting that mig(ev648) does not play a role in unc-5 mediated DTC guidance.

3.1.4 Cosmid phenotype rescue in mig(ev648).

The mig(ev648) enhancer allele was mapped to LGX-2.9 between genes lon-2(-6.75) and unc-6(-2.0), a genetic region with (at the time) no known genes involved in DTC migrations or guidance, (Figure 7) suggesting that mig(ev648) was possibly an allele of a novel DTC migration gene. Cloning mig(ev648) began by microinjection of wild-type cosmids into mig(ev648) mutants and testing whether the cosmids rescued the DTC phenotype (Section 2.7). Overlapping cosmids spanning the region LGX-3.0 to LGX-2.74 were obtained from the CGC and prepared as described in Section 2.7.1. Eight cosmid mixtures (Section 2.7.2) were microinjected separately into individual mig(ev648) mutants and eight transgenic lines stably expressing each cosmid (denoted by GFP expression) were generated. Each transgenic line expressed GFP and exhibited the mig(ev648) DTC migration defect phenotype indicating that cosmids spanning LGX-3.05 to LGX-2.74 did not rescue the mig(ev648) DTC migration defect phenotype. This finding suggests that the mig(ev648) enhancer allele maps to an alternate genetic region not covered by these cosmids. The lack of rescue observed could be explained by limitations associated with microinjecting DNA arrays for creation of transgenic C.elegans lines. Possible complications with DNA microinjections include gene over-expression due to increased gene copies contained within the transgenic array, variations in gene expression patterns from one animal to the next due to varying amounts of the array being transmitted to progeny and the presence of a gene silencing mechanism in C.elegans triggered by tandem sequence repeats

Figure 7: A summary of the mig(ev648) genetic region. A schematic of the cloned genes (www.wormbase.org, 2003) and overlapping cosmids within the genetic region surrounding mig(ev648). Actual cosmid sizes summarized in Section 6.3.1.
that occur within the injected array (Praitis et al. 2001). To refine mig(ev648) mapping and to confirm the cosmid rescue data obtained was not a result of transformation complications, higher resolution gene mapping using SNPs (single nucleotide polymorphisms) was undertaken.

3.1.5 Sequencing nas-33

Genes within the mapped mig(ev648) region were evaluated for a potential role in DTC guidance that has not been identified to date. The gene nas-33 located at LGX-2.9 (Figure 7) encodes an astacin-like protein (Mohrlen, Hutter and Zwilling 2003). Astacins are a family of metalloproteases with various defined roles in pattern formation, morphogenesis and cell migrations (Basbaum and Werb 1996). As roles for metalloproteases mig-17 (Nishiwaki, Hisamoto and Matsumoto 2000) and gon-1 (Blelloch et al. 1999) in DTC guidance have been previously described, nas-33 was a putative candidate gene for the $m i g(e v 648)$ enhancer allele.

The nas-33 gene in was sequenced in N 2 wild-type and mig(ev648) strains (Section 2.8) and sequencing results were aligned and analysed for any differences (Section 6.4). The N 2 wild-type nas-33 sequence was identical to the nas-33 gene sequence in the mig(ev648) mutant strain confirming that the mig(ev648) enhancer is not an allele of the nas-33 gene.

3.1.6 mig(ev648) and mig-23 complementation test.

A paper was published in January 2004 identifying and describing a novel gene involved in DTC migrations, mig-23 (Nishiwaki et al. 2004). mig-23 encodes a membrane bound nucleotide diphosphatase (NDPase) involved in glycosylating and localizing MIG-17, a disintegrin and matrix metalloprotease with a role in DTC guidance. Gonad morphology
defects in mig- 23 mutants closely resembled the wandering gonad arm observed in our tnIs5;mig(ev648) strain. Although mig-23 maps to LGX:-4.0 (Nishiwaki et al. 2004), the similarities in the gonad morphology defects observed in mig-23 and mig(ev648) strongly suggested that mig-23 was a good candidate gene.

The mig-23(kl80) strain (a mig-23 null allele) was obtained from the CGC (Caenorhabditis Elegans Genetics Centre). At low magnification, gonad morphology defects in the mig-23(kl80) strain closely resembled those observed in mig(ev648) (Figure 8). To assess whether mig(ev648) was an allele of mig-23 a complementation test was performed by crossing mig(ev648) males to mig-23(k180) hermaphrodites. If F1 progeny from this cross were phenotypically wild-type, mig(ev648) and mig-23(kI80) complement each other and thus are not the same gene. On the contrary, if F1 progeny from the cross exhibited identical gonad morphology defects observed in mig(ev648), mig(ev648) and mig-23(k180) do not complement each other and thus are the same gene.

Five mig(ev648) males were mated with one mig-23(k180) hermaphrodite. To ensure mating occurred and F1 progeny were cross progeny and not mig-23(kI80) hermaphrodite self-progeny, a high presence of males in the F1 progeny was used as an indication that mig(ev648) males mated with the mig-23(kl80) hermaphrodite. In each of the four arranged crosses, a strong presence of F1 males was observed and F1 hermaphrodites exhibited a high frequency of the identical gonad morphology defects observed in both mig(ev648) and mig. $23(k 180)$ mutants. Thus mig-23(k180) and mig(ev648) do not complement each other indicating that mig(ev648) is indeed an allele of the gene mig-23.

Figure 8: Images of mig-23(k180) and mig(ev648). Gonad morphology defects in mig$23(k 180)$ (A) and mig(ev648) (B) mutants bear significant similarities.

3.1.7 Sequencing mig-23.

To confirm that enhancer mig(ev648) is an allele of mig-23, mig-23 was sequenced in both N2 wild-type and mig(ev648) strains (Section 2.8) and sequencing results were aligned and analysed for differences (Section 6.5). The mig-23 sequence in mig(ev648) mutants differed from the wild-type mig-23 sequence at base pair 335 in exon 3 of the mig- 23 coding sequence resulting in a GC-AT transition. The mutation causes an amino acid substitution at position 112 in the protein of an alanine for a valine (Figure 9). MIG-23, a member of the apyrase protein family has 5 apyrase conserved regions and trans-membrane domains at both the carboxy and amino termini (Nishiwaki et al. 2004). In mig-23(ev648) mutants the alanine to valine substitution occurred in a region of the protein that is relatively conserved but not within an apyrase conserved region described by (Nishiwaki et al. 2004) (Figure 10).

Assays used to genetically map mig(ev648) suggested that the enhancer allele was temperature sensitive. For example, the unc-130(ev505) allele is a temperature sensitive null allele, as DTC migration defect frequencies in unc-130(ev505) grown at $25^{\circ} \mathrm{C}$ exhibit more than double the percentage of DTC migration defects than unc-130(ev505) mutants grown at $16^{\circ} \mathrm{C}$ in the posterior and more than triple the percentage in the anterior (Nash et al. 2000). mig(ev648) mutants were grown at $16^{\circ} \mathrm{C}, 20^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$ and the frequency of DTC migration defects was determined for each temperature (Section 2.5.2). mig(ev648) mutants grown at $25^{\circ} \mathrm{C}$ exhibited a significant increase in the frequency of posterior and anterior DTC migration defects when compared to mig(ev648) mutants grown at $20^{\circ} \mathrm{C}$ and $16^{\circ} \mathrm{C}$ (Table 10), suggesting the mig(ev648) allele is temperature sensitive. $\mathscr{8}$
CTTGCCGAAAGACATATCCCAGAAGAAAAAAGGCGGTATACACGTGTTTTGATTTTTGCC 297 CTTGCCGAAAGACATATCOCAGAAGAAAAAAGGCOGTATACACCTGTTTTCATTTTTGOC 267 CTTGCCGAAAGACATATCCCAGAAGAAAAAAGGCCGTATACACCTGTTTTCATTTTTGCC 299
 CTTGTGGAAGACATATCOCAGAMAAAA2AGGOOGTATACACOTGTTTTCATTTTTGCC 300

CIUSTAL W (1.83) multiple sequence alignment

	Mig-23wormbase	MRVSLRFTILAVSAMIFFPVIVFIYYwEAHTSPKVIADDQERSYGVICDAGSTGTRLFVY 60
	Mig-23WT	HRVSIRFTILAVSAMIFFPVIVFIYWVEAHTSPKYIADDQERSYGVICDAGSTGTRIFVY 60
	Mig-23N2	MRVSLRFTILAVSAMIFFPVIVFIYwVEAHTSPKYIADDQERSYGVICDAGSTGTRLFVY 60
	Mig-23ev_648_	MRVSIRFTILAVSAMIFFPVIVFIYVVEAHTSPKVIADDQERSYGYICDAGSTGTRIFVY 60
		*
8	Mig-23wormbase	NWISTSDSELIQIEPUIYDNKPUMKKISPGISTFGTKPAQAAEYIRPLMEIAERHIPEEK 120
	Mig-23WT	NWISTSDSELIQIEPVIYDNKPVMKKISPGLSTFGTKPAQAAEYIRPLMELAERHIPEEK 120
	Mig-23N2	WWISTSDSEIIQIEPVIYDNKPVMKKISPGISTFGTKPAQAAEYIRPLMELAERHIPEEK 120
	Mig-23ev_648_	HWISTSDSELIQIEPVIYDNKPUMKKISPGISTFGTKPAOAAEYIRPLMEIVERHIPEEK 120
	Mig-23wormbase	RPYTPUFIFATAGMRLIPDEQKEAVIKHLRNKLPKITSMQULKEHIRIIEGKWEGIYSWI 180
	Mig-23WT	RPYTPVFIFATAGMRIIPDEQKEAVLKKLRNKLPKITSMQVIKEHIRIIEGKWEGIYSWI 180
	Mig-23N2	RFYTPUFIFATAGMRIIPDEQKEAYIKKLRNKLPKITSMQULKEHIRIIEGKWEGIYSWI 180
	Mig-23ev_648_	RFYTPYFIFATAGMRIIPDEQKEAVLKNLRNKIPKITSMQUIKEHIRIIEGKWEGIYSUI 180

Figure 9: A summary of mig-23 gene and MIG-23 protein sequence alignments. A) The region taken from the fourth mig-23 DNA fragment sequenced demonstrating the CG-TA transition. (For entire sequence alignment, see Section 6.5). mig- 23 wt is the genetic mig- 23 sequence obtained from www.wormbase.org. DNA sequenced from wild-type animals is denoted as N 2 , DNA sequenced from $\operatorname{mig}(e v 648)$ mutants is denoted as ev_648 and for each, A represents sequence results from forward primers and B represents sequence results from reverse primers. B) A region taken from the MIG-23 protein alignments demonstrating the alanine to valine amino acid substitution at position 112 in mig -23(ev648) mutants. (For entire sequence alignment, see Section 6.6). Mig-23wormbase: MIG-23 protein sequence from www.wormbase.org, Mig23WT: translated mig-23 wormbase gene sequence, Mig-23N2: translated mig-23 gene sequence obtained from the N2 strain, Mig-23ev_648_: translated mig-23 gene sequence obtained from the mig(ev648) strain.

$\frac{\text { WTP1 CAEEL } / 16-434}{\text { MIG23 CAEEL/35-482 }}$ YND1 YEAST/1-483 ENP1 MOUSE/40-471 NTPA PEA/35-454 $\frac{\text { APY SOITU/37-454 }}{\text { GDA1 YEAST/84-518 }}$ $\frac{\text { WTP1 CAEEL } / 16-434}{\text { MIG23 CAEEL/35-482 }}$
 ENP1 MOUSE/40-471 ENP1 HUMAN/40-471
NTPA PEA/35-454 $\frac{A P Y}{\text { GOLTU }}$ GO-454 4 NTP1 TOTG0/56-556

NTP1 CAEEL $/ 16-434$ YND1 YEAST/1-483 ENP1 MOUSE/40-471 NTPA FEA $/ 35-454$
$A P Y$ SOLTU/37-454 GDA1 YEAST/84-518
NTP1 TOXGO/56-556

NTP1 CAEET $/ 16-434$ MLG23 CAEEL/35-402 EWP1 YOUSE / $40-47$ ENP1 HUMAN $/ 40-471$ ERPA PEAR $35-454$ APY 5OITJ/37-454 GDA1 YEAST/84-518

 PUGGYKFTNPFWTRPTTGAEEGIEAFTTENHESRRGGEDPARCMIDEYEVKQCRNDLKGYYEVGGASAQIYERTQ. EG

 ‥NSTIESP. ENSLQFRYGEDY. . . TVYTHSFLCYGKDQALWQKLYKDIQVSSGG. VMKDREENPG

-

DGEN DKT.K	HLEOSVIMIAGEE	Q2ATGAII YHSKDLKENL	IEQSEYA
DGESYDKT. H	NKEOSVSTIACOE	UQIAEGAMIYHMREPPRRD	SSRNEIVK
EGEDMPRIDVD	PPLFOS EKMEERE	HSUTIGRITLTASESIKAG1	KKFFIPEK
QSYNETDSSU	EOTHFUGKIEDSN	GCOTMGYHNTEMIPA	ERPESPP
QGYHTADSW	EHHHFISKIOSSD	AGYTESYSNETNHIP閏	EQPISTP
DGEGEDPI	QKITSEKEIEYQDA	EAAMPISNAUESTSALPK	FEREMYE
DGRETNPH	KEATV1HDYQYKYY	GAAWPGEADSHYSSTTN	KIRYASS
TGYDIELQ	REERTGKKIANKE.	MGECHGASEPMLKADN复.	KCKIOSA
SDESGDVE	ELAEAERETCCSSEy	FIRTDEPVICZPNGRGEQK	LNSENFD

Figure 10: Cross species MIG-23/NDPase protein sequence alignments. A multiple alignment of NDPase/MIG-23 related proteins obtained from the Pfam database. The A112V mutation encoded by mig-23(ev648) is within a relatively conserved domain of the protein (${ }^{*}$) although not with one of the five Apyrase Conserved Regions (ACR) defined by Nishiwaki et al. 2004 (-----).

Table 10 : DTC migration defects of $\operatorname{mig}(e v 648)$ at $16^{\circ} \mathrm{C}, 20^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$.

	Anterior DTC	Posterior DTC	n
mig(ev648) @ $16^{\circ} \mathrm{C}$	$30 \pm 2^{*^{\mathrm{a}}}$	58 ± 2	475
$\operatorname{mig}(e v 648) @ 20^{\circ} \mathrm{C}$	36 ± 2	54 ± 2	400
mig(ev648) @ $25^{\circ} \mathrm{C}$	$53 \pm 3^{* *}$	$63 \pm 3^{*}$	279

[^1]MIG-23 functions in the muscle cells of the body wall and is essential for the glycosylation and localization of MIG-17 for DTC guidance during the second and third DTC migration phase. Genetic interactions between mig-17 and mig- 23 demonstrated mig23 has mig-17 independent DTC guidance roles (Nishiwaki et al. 2004). Nishiwaki et al. (2004) have shown mig-23(kl80) is a DTC migration gene directly interacting with mig-17 for DTC guidance. However mig-17 enhances DTC migration defects in an unc-6(ev400) background (Nishiwaki, Hisamoto and Matsumoto 2000), suggesting mig-23/mig-17 guidance mechanisms are unc-6 independent. We have confirmed the role of mig-23(ev648) in DTC guidance is unc-5 independent and have demonstrated that mig(ev648) is a temperature sensitive allele.

3.2 Cloning and characterizing the DTC guidance roles of $e n h(e v 697)$.

The enh(ev697) allele was identified in the genetic screen for enhancers of DTC migration defects indicating that the allele has a role in DTC guidance. However, enh(ev697) mutants do not exhibit DTC migration defects unless they are in an unc-5(e152) background suggesting the role of enh(ev697) in DTC guidance can be compensated by additional guidance mechanisms. The enh(ev697) mutant strain exhibits a low frequency of embryonic elongation defects (Figure 3) and in a heterozygous state (enh(ev697)/+), enh(ev697)
enhances DTC migration defects in unc-5(e152) mutants, suggesting this allele may cause a dominant effect or a gain of function which in turn results in the enhancement of DTC migration defects in unc-5(e152).

3.2.1 High resolution SNP mapping

enh(ev697) was mapped by three factor mapping to LGX between LGX 1.88 and LGX 2.86, a genetic region covered by over 40 cosmids and encompassing over 20 genes. In order to refine the genetic mapping of enh(ev697) within this region and narrow down the number of candidate cosmids required for phenotype rescue, enh(ev697) mapping using SNPs(single nucleotide polymorphisms) was outlined. An alternate C.elegans strain Hawaiian, with almost complete genome sequence similarities to the commonly used C.elegans Bristol strain bears SNPs that are mapped throughout the entire Bristol genome. The SNPs of each strain can be distinguished by PCR amplification and restriction enzyme digest patterns and utilized to map recombination events between a Bristol chromatid and a Hawaiian chromatid that span a genomic region flanked by two phenotype markers for recombinant animal identification. If a gene of interest is situated between these markers the gene can be mapped relative to the position of the recombination (identified using SNPs) between a Bristol and Hawaiian chromatid (Figure 11).

Genes $d p y-6(e 14)(L G X: 0.0)$ and egl-15(n484)(LGX:2.86) flanking the region to which enh(ev697) maps were chosen as markers for recombinant animal identification as their phenotypes (Dpy; reduced body length and Egl; egg-laying defective and bloated) are easily distinguishable. Within the genetic region flanked by these markers, three verified SNPs were identified (Figure 12) and are described in Section 2.10.2. A dpy-6(e14)enh(ev697)egl-15(n484) strain was generated as outlined in Section 6.2.3

Figure 11: SNP mapping outline.
enh(ev697)
$d p y-6$

Figure 12: SNP mapping results.
and $d p y-6(e 14) e n h(e v 697) e g l-15(n 484)$ hermaphrodites were crossed with Hawaiian males. Seven Egl non-Dpy recombinants were identified and labelled C1-C7 (Recombinant Clones). DNA was prepared from each recombinant strain (Section 2.10.4) and all three SNP fragments were amplified in each recombinant (Section 2.10.5). In order to identify the origin of each SNP, fragments were digested with their respective restriction enzymes (Table 7) and resolved on an agarose gel (Section 2.10.6).

The first SNP analysed in the recombinants was pkP6160. From the restriction digest patterns resolved on the pKP6160 gel in Figure 12, the pkP6160 SNP in all recombinants was of Bristol origin indicating that the recombination in each strain occurred to the left of this SNP. Analysis of the pkP6128 SNP followed as it was the furthest to the left and would determine whether or not the recombination took place before or within the group of SNPs. The restriction enzyme digest patterns on the pkP6128 gel in Figure 12 indicated the only recombinant line with a Hawaiian SNP at this loci was C3. As the recombination in $\mathrm{C} 1, \mathrm{C} 2$, C 5 and C 6 occurred to the left of pkP6128 and amplifying DNA from the C 4 and C 7 lines was problematic, $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 6$ and C 7 were put aside for the time being and the C 3 recombinant was used for the remaining SNP mapping analysis.

Examining egg-laying defective and bloated recombinants for the presence of the enh(ev697) embryonic elongation defect was challenging. The enh(ev697) phenotype is present at a low penetrance and Egl animals not only produce lower brood sizes but also form sacs of eggs and young larvae that mask the enh(ev697) phenotype. As the recombination in C3 was clearly mapped and I had confidently confirmed the presence of enh(ev697) in C3, SNP mapping continued in this recombinant strain. The final SNP, pkP6040 was analysed in the C3 recombinant to further delineate the region between the SNPs pkP6128 and pkP6160 in which the recombination occurred. The final pkP6040 agarose gel in Figure 12
demonstrated the pkP6040 SNP in C3 was of Bristol origin. Thus the recombination happened between 1.932 and 2.38 on LGX in C3. Together these data confirm the enh(ev697) allele is situated between pkP6128 at 1.932 and egl-15 at 2.86. The genetic area flanked by these markers contains no additional verified SNPs and thus the $d p y$ -6(e14);enh(ev697);egl-15(e484) strain was once again mated to Hawaiian males in order to isolate additional recombinants and continue mapping. As this was underway, the genetic region between 1.932 and 2.86 was analysed for candidate genes with potential roles in DTC guidance.

3.2.2 abl-1 RNAi in enh(ev697) mutants.

The gene abl-1 maps to LGX +2.35 and was chosen as a possible candidate gene for the enh(ev697) allele. ABL-1 is a non-receptor tyrosine kinase with SH 2 and SH 3 domains and has been shown to play a role in axon guidance (Wills et al. 1999). In Drosophila, Abl (Abelson) mediates downstream signalling of the ROBO axon guidance receptor in combination with Ena,(Enabled, Abl substrate) an actin cytoskeletal regulator for cell migrations (Bashaw et al. 2000). In a screen for suppressors of ectopically expressed unc-5, unc-34 (a C.elegans Ena homologue) suppressed a dorsal reorientation of axon growth cones resulting from ectopically expressed unc-5 suggesting unc-34 plays a role in UNC-5 mediated axon guidance (Colavita and Culotti 1998b). Thus it is plausible that abl-1 is working with $u n c-34$ to mediate UNC-5 responses during cell guidance.

An RNAi vector containing the C.elegans abl-1 double stranded gene fragment transformed into the appropriate E.coli strain was readily available and was kindly provided by P.Roy at the University of Toronto. Cultures and media for the RNAi experiments were prepared as described in Section 2.11. Wild-type N 2 animals and enh(ev697) animals were
picked at the L3 stage and cloned separately onto plates seeded with E.Coli expressing abl-1 dsRNA. Animals were left to lay their eggs and F1 progeny were examined at the L4 stage for the presence of the $\operatorname{enh}(e v 697)$ embryonic elongation defect. If $\operatorname{enh}(e v 697)$ is a loss of function allele of abl-1, it would be expected that RNAi knockdown of abl-1 in N2 animals would induce the embryonic elongation defect observed in enh(ev697). However, N2 progeny cloned onto the RNAi plates did not exhibit this phenotype. As our previous data suggests enh(ev697) causes some type of dominant effect, enh(ev697) animals were cloned onto the RNAi plates to determine whether abl-1 RNAi knockdown could rescue the wildtype phenotype in these mutants. If enh(ev697) is an allele of abl-1 and is causing a gain of function mutation, silencing abl-1 expression thus reducing the dominant effect of the allele should result in the elimination of the embryonic elongation defect phenotype. This was not the case as enh(ev697) animals grown on abl-1 dsRNA still exhibited the embryonic elongation defect phenotype.

As enh(ev697) is suspected to have a role in DTC guidance, we assessed the outcome of abl-1 knockdown on the role of enh(ev697) in enhancing DTC migration defects. unc5(e152);enh(ev697) animals were grown on E.coli expressing abl-1 dsRNA and their DTC migration defects scored. If enh(ev697) is an allele of abl-1, then abl-1 knockdown should suppress the enhancement of DTC migration defects observed in unc-5(e152);enh(ev697) mutants. Data summarized in Table 11 confirms abl-1 RNAi knockdown does not suppress the frequency of DTC migration defects in unc-5(e152);enh(ev697).

Table 11 : DTC migration defects of unc-5(e152);enh(ev697) fed with abl-1 RNAi.

	Anterior DTC	Posterior DTC	n
unc-5(e152);enh(ev697)	22 ± 2	64 ± 2	713
unc-5(e152);enh(ev697). abl-1 RNAi	23 ± 2	65 ± 3	522

Taken together the abl-1 RNAi assays indicate $e n h(e v 697)$ is not an allele of the abl-1 gene.

3.2.3 Cosmid phenotype rescue in $e n h(e v 697)$.

SNP mapping refined enh(ev697) to the area between 1.932 and 2.86. Cosmids described in Section 6.3.2 spanning this region (Figure 13) were obtained and prepared as described (Section 2.7.1). As previous data suggests enh(ev697) could be a gain of function allele the cosmid rescue strategy used for cosmid phenotype rescue in the mig-23(ev648) strain was altered accordingly for cosmid rescue in enh(ev697). If the enh(ev697) allele is causing a gain of function, microinjecting the wild-type version of the allele into enh(ev697) mutants will likely not inhibit the dominant effect resulting in continued occurrence of the embryonic elongation phenotype in enh(ev697) mutants. If enh(ev697) were a loss of function allele, microinjecting the wild-type version of the allele should rescue the wild-type phenotype in enh(ev697) mutants. Thus each cosmid mixture in addition to being microinjected into enh(ev697) mutants, was microinjected into wild-type N 2 mutants to assay whether increasing the gene copy and expression of the enh(ev697) allele could induce the enh(ev697) phenotype in a wild-type background. As embryonic elongation defects in enh(ev697) are not fully penetrant, cosmid phenotype rescue was deduced by a lack of GFP expressing enh(ev697) "commas" on the plate, as those "commas" appearing in a strain with cosmid rescue would be those that have lost the array and are no longer being rescued. On the contrary, stable injected GFP lines exhibiting enh(ev697) "commas" with GFP indicate that the cosmid does not rescue.

Several cloned genes are located centrally in the genomic region delineated by SNP mapping (Figure 13). As abl-1 was a candidate gene for enh(ev697), cosmid phenotype

Figure 13: A summary of the $\operatorname{enh}(\mathbf{e v 6 9 7})$ genetic region. A schematic representation of the genetic region between pK6128 and egl-15 markers to which enh(ev697) maps. Cloned genes are shown in addition to the cosmids spanning the region selected for phenotype rescue assays.
rescue assays began with the F57C7 cosmid. Four stable N2 and four stable enh(ev697) transgenic lines each expressing the GFP and cosmids F57C7, M79, F11A1 and F59F5 were generated and analysed. N2 and enh(ev697) lines expressing M79, F11A1 and F59F5 appeared phenotypically normal. The presence of the enh(ev697) embryonic elongation defect was not detected in each of the GFP expressing N 2 wild-type lines and GFP expression was detected in the "commas" of the enh(ev697) lines, indicating that M79, F11A1 and F59F5 do not rescue enh(ev697) and thus do not carry the gene of the enh(ev697) allele. However, this was not the case for the F57C7 cosmid. Cosmid phenotype rescue of enh(ev697) began by microinjection of each M79 and F57C7 cosmid mixtures with identical cosmid concentrations into enh(ev697) mutants taken from the same plate. When the F1 progeny from the hermaphrodites microinjected with the M79 cosmid were verified for GFP expression, more than ten GFP expressing progeny were cloned out to isolate stable transgenic lines. The hermaphrodites microinjected with the F57C7 cosmid mixture only produced one single transgenic GFP F1 progeny which itself, produced a very small amount of progeny, although one of those was an enh(ev697) GFP "comma". As microinjections of the F11A1 and F59F5 cosmids were generating many transgenic animals, a new cosmid mixture with the F57C7 cosmid concentration reduced from $10 \mathrm{ng} / \mu \mathrm{l}$ to $5 \mathrm{ng} / \mu \mathrm{l}$ was prepared. The mixture with a reduced F57C7 cosmid concentration was microinjected into enh(ev697) animals and F1 GFP eggs were observed the following day. However, GFP expressing larvae hatched from the eggs did not survive to produce any progeny. A new cosmid mixture was prepared with the F 57 C 7 cosmid concentration reduced to $0.5 \mathrm{ng} / \mu \mathrm{l}$ and microinjected into enh(ev697) animals. Reducing the F57C7 cosmid concentration resulted in the generation of transgenic GFP F1 progeny that were cloned out to isolate stable transgenic lines expressing F57C7. Interestingly, progeny from the transgenic, GFP expressing F1s
exhibited an observable increase in the frequency of the embryonic elongation defects expressing the GFP. Thus for each transgenic line, the F57C7 cosmid was being expressed (denoted by the GFP expression), was toxic in higher concentrations and in lower doses affected the appearance of $\operatorname{enh}(e v 697)$ embryonic elongation defects. Together these results strongly suggest F57C7 contains the gene of the enh(ev697) allele but could not be complemented by phenotype rescue. The genetic area covered by F57C7 was analysed for candidate genes while strategies for further characterizing the effects of the F57C7 cosmid, including quantification of the elongation defect in transgenic animals and microinjection into unc-5(e152) mutants were outlined.

3.2.4 Sequencing $\boldsymbol{s} d \boldsymbol{n}-1$.

Results from the microinjections of the F57C7 cosmid in 3.2.3 suggested that F57C7 contains the gene of the enh(ev697) allele. The F57C7 cosmid spans a genetic region that includes genes $n h x-5$ and $s d n-1$. $n h x-5$ encodes a sodium/proton exchanger and mutants exhibit no obvious phenotype (www.wormbase.org) and $s d n-1$ encodes a heparan sulfate proteoglycan and mutants are slightly egg-laying defect (Minniti et al. 2004). Although the reported phenotype of $s d n-1$ mutants does not resemble the phenotype of enh(ev697), a role for proteoglycans in DTC guidance has previously been characterized (Merz et al. 2003) and thus $s d n-1$ was chosen as a candidate gene for sequencing.

The $s d n-1$ gene was sequenced in both N 2 wild-type and enh(ev697) strains (Section 2.8) and sequencing results were aligned and analysed for differences (Section 6.7). The $s d n-1$ sequence in enh(ev697) mutants differed from the wild-type $s d n-1$ sequence at base pair 610 in exon 5 of the $s d n-1$ coding sequence resulting in a GC-AT transition and causing a premature stop codon that truncates the protein at amino acid 203 (Figure 14). The $s d n-1$
gene sequencing results in Figure 14 also demonstrated that our N2 wild-type strain had an apparent polymorphism at the same base pair position of the $s d n-1$ sequence in which the enh(ev697) mutation occurs. Although the gene was not sequenced, it was presumed the $s d n$ 1 sequence in the unc-5(e152) strain used for the genetic screen, in which the initial enh(ev697) mutation would have occurred, matched the wild-type sequence in Wormbase. This result, together with the mapping data confirms $\operatorname{enh}(e v 697)$ is an allele of the $s d n-1$ gene, $s d n-1(e v 697)$.

SDN-1 is a trans-membrane proteoglycan whose ectodomain consists of conserved serine residues that connect modifiable heparan sulfate side-chains (Minniti et al. 2004) and a highly conserved short cytodomain containing a PDZ-binding motif (Rhiner et al. 2005). An alignment between SDN-1 and syndecans proteins in other species identifies a highly conserved endodomain of SDN-1 and a highly conserved trans-membrane domain (Figure 15). As the ev697 allele encodes a stop codon that precedes the trans-membrane domain, $s d n-1$ (ev697) mutants may be expressing an unbound form of SDN-1.

Two sdn-1 alleles have been identified to date, ok449 (Minniti et al. 2004) and zh20 (Rhiner et al. 2005). The ok449 allele encodes an SDN-1 protein with a deletion from amino acid 52 to 120 abolishing two glycosaminoglycan attachment sites. The $z h 20$ allele encodes a deletion of exons $1-5$ resulting in a presumed null. Both zh20 and ok449 mutants exhibit egg-laying deficiencies in addition to neural cell and axon migration defects. Specifically $\mathrm{DD} / \mathrm{VD}$ commissures fail to reach the dorsal nerve cord or inappropriately branch out and PQV axons exhibit aberrant midline crossings. The role of $s d n-1$ in axon guidance is cellautonomous and different modifications on the SDN-1 GAG chains are associated with SDN1 guidance mechanisms of the different axon types (Rhiner et al. 2005).

```
                            *
sdn3
sdn3N2&
3dn3N2B
sdn35E68A
Sdn35E6旦
A
sca4uT
Sdn4N2A
Sdn4N2B
Sdn45EGAB
Sdn45Eb日B
GAACGCGAAGGTCAGCAGCCACAAATCGACETEGAGAGGAGCCAECAATGGTCACATCAA 4TG
Sdnuormbase
Sdnut
SdnN
SdnFy
```

TYRPIVYATTSTPRSAATNPPRQQPPMUTSTISSGPFSPFHE TLANGFYAAIAGGVLYAV こ4D TYRPTVVATTSTPRSAA TNPPRQQPPMVTSTISSGPF SPFHE TLANGFYAAIAGGVLVAY ב4D TYRPIVVATTSTPRSAATNPPRQEPPMVTSTISSGPFSPFHE TLANGFYAAIAGGVLVAY ᄅ4D TYRPIVVAT TSTPRSAA TNPPRQ－PPMVTSTISSGPFSPFHE TLANGF YAAIAGGVLVAV こコף

Figure 14：A summary of the $\boldsymbol{s d n}$－1 sequence and SDN－1 protein alignments．A）The regions taken from the third and fourth $s d n-1$ DNA fragments sequenced demonstrating the GC－TA transition＊．（For entire sequence alignments，see Appendix 6．7）．Sdn3／Sdn4WT is the $s d n-1$ coding sequence obtained from www．wormbase．org．DNA sequenced from wild－type animals is denoted as N2，DNA sequenced from enh（ev697）mutants is denoted as 5E68 and for each，A represents the sequence results from forward primers and B represents sequence results from reverse primers．B）A region taken from the SDN－1 protein alignment demonstrating the premature truncation（－）at position 203 in $s d n-1$（ev697）mutants． （For entire sequence alignment，see Appendix 6．8）．Sdnwormbase：SDN－1 protein sequence from Wormbase，SdnWt：translated $s d n-1$ wormbase gene sequence， SdnN ：translated $s d n-1$ gene sequence obtained from the N 2 strain， SdnEv ：translated $s d n-1$ gene sequence obtained from the $s d n-1(e v 697$ ） strain．

PSSATTKS	DKVTSPSHEVUTAK	P . TTVPTTTASEKPPVQPKP . . . K
ATTT. TTT. ITISTTVATSKPTTTQRFLPPFVTKA TTPATTIET. . . PTTSIPETSVLTEYTTSRLIPSSTAK		
PATAATTAPSTPEAPPATATVADVRTTGIQGHLPLPHTTARTEKITTPAA . . . PSPPTTVATLDTEAPTPRLYNTATSR		
PSEQATTEATTT. ETVRTTEURRIQP. YVVVSTEIHMTSSST. . . EKEMFTWEATDEQEMTRFNTESGRYV		
FigGEKPEE.	GEPMAHVEAEPDETARDK	EREATTRPRETTQTPVTQQASTA.AR
PAGEKPEE	GEPVIHVEAEPGETARDK	EKEVTTRPRETVQEPITQRAST , VR
PAGEKPGE	GEPMI IAEVDTSSTTWDK	EIEITTRPRETTOHEVTHRYST . AR
PagEGEKE	GESYULPEVEPGTTAR	EOEATPRPRETTOLPTTHO4ST . TT

WHY FYYER FKKDEGSYASDEPKOARPYASYGYTKASTKEF
AEY MMTHYRUIKKDEGSYTJEEPKOAK . VTYQKPDKQ. EEF
 WRLYMA YTYRHKKKDEGSYAUEEPKFAS. VSYQRPETH. EEE WGYAMETYYKKKKDEGSYSTEEPKQANG GAYOKPTKQ. EEE WYHAFMYPRYKKDEGSYSTEEPKOANG. GAYOKPTKQ. EEF YCTHGEMHRUKKABEGSYSTEEPKOMHG GAYOKPTKQ. EFF WEITGEMUYRMKBKDEGSYSIEEPXQSN. GGYQKPRAQ. REF
The coloured markup was created by Jalview (Michele Clamp)

Alignments are coloured using the ClustalX scheme in Jalview (orange:glycine (G); yellow: Proline (P); blue: small and hydrophobic amino-acids (A, V, L, W); green: hydroxyl and amine amino-acids (S, T, N, Q); red: charged amino-acids (D, E, R, K); cyan: histidine (H) and tyrosine(Y)).

Figure 15 : Cross-species syndecan protein alignments. Obtained from the Pfam database, alignment compares the syndecan protein sequences across various species (C.elegans SDN-1is the first sequence). The N terminal at the beginning of the sequence (ectodomain) and the C terminus is at the end of the sequences (endodomain). * denotes where the truncation occurs in $s d n$ 1(ev697). The trans-membrane domain is located at the end of the fifth sequence row, denoted by the blue, hydrophobic amino acids. Note the highly conserved cytoplasmic domain at the terminal end of the sequence.

A GFP tagged SDN-1 localizes to the ventral nerve cord motor neurons, the nerve ring, the vulva and the hypodermis.

The sdn-I(zh20) strain was a kind gift from C. Rhiner. Upon phenotype analysis at low magnification the embryonic elongation defects observed in enh(ev697) were apparent in $\operatorname{sdn-1(zh20)}$ although at a much lower frequency (Figure 16). A complementation test between the alleles was attempted but not achieved due to low mating efficiencies of males in both ev697 and zh20 strains.

3.2.5 Genetic interactions of enh(ev697), unc-5,unc-40 and unc-6.

In our genetic screen for enhancers of DTC migration defects, sdn-1(ev697) was identified for its ability to enhance the frequency of DTC migration defects in unc-5(e152) mutants indicating that $s d n-1$ has a role in guiding DTC migrations and suggesting the possibility that $s d n-1$ may be involved in unc-5 mediated DTC guidance. Classical genetic methods were employed to elucidate the genetic interactions of sdn-1 with unc-5/unc-6/unc40 for DTC guidance (Section 2.9).

An unc-5(e152);sdn-1 (zh20) mutant was generated as outlined in Section 6.2.4 and the DTC migration defects scored. As summarized in Table 12, $\operatorname{sdn}-1(z h 20)$ enhanced the frequency of DTC migration defects in unc-5(e152) mutants.

Figure 16: Images of embryonic elongation defects in $s d n-1$ (ev697) (A) and $s d n-1(z h 20)$ (B) mutants.

Table 12 : DTC migration defects of unc-5, unc-40, unc-6 and sdn-1.

unc-5	sdn-1	Ant. DTC	Post. DTC	n
WT	ev697	0	0	200
WT	zh20	0	0	150
e152	WT	8 ± 1	40 ± 1	1464
e152	ev697	$20 \pm 1^{* *^{a}}$	$63 \pm 2^{* *}$	476
e152	zh20	$36 \pm 2^{* *}$	$77 \pm 1^{* *}$	249
$d m 11$	WT	0.2 ± 0.1	3 ± 0.5	948
$d m 11$	ev697	$2 \pm 0.5^{* *}$	$15 \pm 1^{* *}$	708
$d m 11$	zh20	0.5 ± 0.2	$8 \pm 1^{* *}$	847
e53	WT	28 ± 1	53 ± 2	951
e53	ev697	25 ± 3	56 ± 3	186
e53	WT	$23 \pm 2^{*}$	$60 \pm 3^{*}$	321
unc-40(e1430)	zh20	5 ± 1	24 ± 1	833
unc-40(e1430)	WT	3 ± 1	$40 \pm 3^{* *}$	339
unc-6(ev400)	ev697	34 ± 2	68 ± 2	434
unc-6(ev400)	$41 \pm 3^{*}$	71 ± 3	299	

[^2]In addition, both ev697 and zh20 enhanced the frequency of DTC migration defects in unc-5(dm11) mutants (a very weak unc-5 allele) (Table 12) clearly indicating that $s d n-1$ has a role in DTC guidance.

To determine whether the role of $\operatorname{sdn}-1$ in DTC guidance is limited to unc- 5 mediated guidance, unc-5(e53);sdn-1(ev697) and unc-5(e53);sdn-1(zh20) strains were generated (Section 6.2.4) and DTC migration defects scored. As previously described, the e53 allele represents a complete loss of unc-5 function in the DTC and thus an enhancement in the frequency of DTC migration defects in unc-5(e53);sdn-1(ev697) or unc-5(e53);sdn-1(zh20)
suggests that the role $s d n-1$ in DTC guidance is not limited to unc-5, and the enhancement accounts for the additional role of $s d n-1$. In the $u n c-5(e 53) ; s d n-1(e v 697)$ mutants, the frequency of anterior and posterior DTC migration defects did not increase when compared to the frequency observed in unc-5(e53) (Table 12) and only a small increase was observed in unc-5(e53);sdn-1(ev697). These results suggest the role of $s d n-1$ for DTC guidance along the ventral/dorsal axis is limited mainly to the UNC-5 mediated DTC guidance pathway.

As a principle goal of the genetic screen was to identify genes involved with unc-5 for DTC guidance, these results prompted further analysis of the role of $s d n-1$ not only in DTC guidance but in the UNC-6/UNC-40/UNC-5 guidance pathway. Thus genetic interactions between $s d n-1$ the DTC guidance receptor gene unc-40 were analysed to identify whether the role of $s d n-1$ in DTC guidance involves unc-40. As with unc-5 this entailed putting each $s d n-1$ allele into an unc-40 null (e1430) background and comparing the DTC migration defect frequencies of both double mutants to unc-40(e1430) mutant. Strains unc-40(e1430);sdn-1(ev697) and unc-40(e1430);sdn-1(zh20) were generated as outlined in Section 6.2.5 and the frequencies of DTC migration defects scored (Section 2.5.2). The unc-40(e1430);sdn-1(zh20) demonstrated significantly higher frequencies of DTC migration defects when compare to $u n c-40(e 1430)$ mutants (Table 12) indicating the role of $s d n-1$ in DTC guidance is not limited to unc-40, consistent with the unc-5 results. However, $s d n$ 1 (ev697) in an unc-40(e1430) background causes lethality, thus scoring DTC migration defects in unc-40(e1430);sdn-1(ev697) was not possible. Taken together, these results strongly suggest that the ev697 allele behaves differently than the zh20 sdn-1 allele. To further characterize the role of $s d n-1$ in unc- 5 mediated DTC guidance, an $u n c-6(e v 400) s d n$ 1 (ev697) strain was generated as outlined in section 6.2.6. The null unc-6 allele ev400 causes a complete loss of UNC-6 function (Wadsworth, Bhatt and Hedgecock 1996) and thus a loss
of UNC-40 and UNC-5 mediated DTC guidance as unc-5(e53);unc-6(ev400) and unc-40(e1430);unc-6(ev400) (Hedgecock, Culotti and Hall 1990) do not enhance DTC migration defect frequencies observed in unc-6(ev400). An enhancement of DTC migration defects in unc-6(ev400)sdn-l(ev697) was observed only in the anterior, suggesting that the role of sdnI in DTC guidance is limited to $u n c-6$ for the posterior DTC (Table 12). Thus the genetic interaction assays have demonstrated the role of $s d n-1$ in DTC guidance is mostly limited to $u n c-5$ for anterior and posterior DTC migrations and limited to unc-6 for posterior DTC guidance.

3.2.6 Suppression/enhancement of $e v I s 99$ DTC migration defects in an enh(ev697) background.

To confirm the role of $s d n-1$ in DTC guidance is limited to unc-5 (Section 3.3.1) an $e v I s 99 ; s d n-1(e v 697)$ strain (Section 2.3) was generated. The evIs99 transgenic strain contains an integrated DNA array with the entire unc-5 gene coding sequence regulated by the $e m b-9$ promoter causing premature expression of unc-5 during the first ventral DTC migration phase resulting in a precocious dorsalward turn of the DTC. This precocious turn is identified at low magnification by a dorsal clear patch in the animal. If a gene directly involved with unc-5 mediated DTC guidance is placed in an evIs 99 background the frequency of precocious DTC migration defects is suppressed due to a disruption in a component required for unc-5 mediated guidance preventing the precocious DTC turn. However if the gene is dispensable for unc-5 function placing it in an evIs 99 background will not suppress DTC migration defects as unc- 5 still retains its ability to turn the DTC dorsally. The evIs 99 ; sdn-1 (ev697) strain was scored for the frequency of DTC migration defects and compared to evIs99 alone. As expected, sdn-1(ev697) suppressed the precocious turn of the

DTC in evIs 99 (Table 13), confirming sdn-1(ev697) has a direct role in unc-5 mediated DTC guidance.

Table 13 : DTC migration defects of evis99 and evIs99;sdn-1(ev697)

	Anterior DTC	Posterior DTC	n
evIs99	24 ± 2	40 ± 2	392
evIs99;sdn-1(ev697)	$9 \pm 2^{* * a}$	$28 \pm 2^{* *}$	250

${ }^{\text {a }}$ The statistical comparison is against the frequency of DTC migration defects in the $e v I s 99$ strain alone. ${ }^{*} P<0.05 ; * * P<0.001$.

However, before we can begin to understand the link between $s d n-1$ and unc-5, the role of $s d n-1$ in DTC guidance requires further characterization.

3.2.7 Determining the presence of SDN-1 within the DTCs.

The initial step taken to deduce the role of $s d n-1$ in DTC guidance was to determine whether sdn-1 acts cell-autonomously or cell non-autonomously. Transgenic lines $s d n$ 1(zh20);opEx1206 (sdn-1 cDNA under the regulation of the unc-119 pan-neural promoter), sdn-1(zh20);opEx1159 (sdn-1 cDNA under the regulation of the dpy-7 hypodermal promoter) and $s d n-1(z h 20)$;opEx1198 (sdn-1 cDNA under the regulation of the $s d n-1$ promoter) as the control (Section 2.3) were generated by Rhiner et al. (2005) to demonstrate that $s d n-1$ acts cell-autonomously in axons for guidance. Our results have confirmed the involvement of sdn-1 in unc-5 mediated DTC guidance and interestingly, SDN-1 localization studies in both Minniti et al. (2004) (using an anti-syndecan-4 phospho-specific polyclonal antibody) and Rhiner et al. (2005) (using a GFP tagged SDN-1) experiments did not detect the presence of

SDN-1 in the DTCs, suggesting that the role of $s d n-1$ in DTC guidance is not cellautonomous and thus represents an uncharacterized $s d n-1$ cell guidance role in C.elegans

The transgenic line opls170 (Section 2.3) with a GFP tagged SDN-1 protein was a kind gift from C. Rhiner. opIs170 animals were prepared and analysed as described in Section 2.5.4. In agreement with the previous studies, SDN-1 was not detected in the DTCs (Figure 17) during the second DTC migration phase where it would be required for unc-5 mediated turning of the DTC towards the dorsal muscle band. However, this result requires further analysis as Rhiner et al. (2005) have not indicated whether the GFP tagged SDN-1 can rescue the wild-type $\mathrm{SDN}-1$ functions. As our cosmid phenotype rescue assay demonstrates the complications that occur by introducing an ectopic source of SDN-1, it is possible the SDN-1::GFP does not accurately represent endogenous SDN-1 localization within the animal. Phenotypic analysis suggests the SDN-1::GFP cannot rescue the egglaying defect in sdn-1 mutants as opIs 170 mutants are still egg-laying defective. In addition, the GFP tag is attached to the C terminus of the conserved endodomain of SDN-1, possibly interfering with endogenous SDN-1 functions, expression or localization. In order to confirm the GFP tag is not interfering with endogenous SDN-1 functions, an opIs170;unc$5(e 152) ; s d n-1(z h 20)$ strain would have to be generated and the frequency of DTC migration defects in this strain determined and compared to those of unc-5(e152);sdn-1(zh20). If opIs170;unc-5(e152);sdn-1(zh20) can suppress the enhancement of DTC migration defects in unc-5(e152);sdn-1(zh20), the SDN-1::GFP tagged protein retains wild-type SDN-1 mechanisms for DTC guidance. As independent SDN-1 localization studies demonstrate that SDN-1 is not present in the DTC, it is highly probable $s d n-1$ is functioning cell nonautonomously for DTC guidance.

Figure 17 : Images of SDN-1::GFP localization in the DTC of opIs170 animals. A) DIC bright-field image of an L1 animal. (Arrowhead denotes the DTC leading the gonad arm along the second dorsal-ward migratory phase and arrow denotes the position of the vulva.) The DTC nucleus is visible in this photograph. B) SDN-1::GFP expression in the same animal. SDN-1 expression is detected in the vulva and the ventral nerve cord (arrows) but is not present in the DTCs (arrowhead).

3.2.8 Hypodermal vs. axonal expression of $\boldsymbol{s d n - 1}$ for DTC guidance.

As previously described, transgenic lines $s d n-1(z h 20) ; o p E x 1206$ (sdn-1 cDNA under the regulation of the unc-119 pan-neural promoter), sdn-1(zh20);opEx1159 (sdn-1 cDNA under the regulation of the $d p y-7$ hypodermal promoter) and $\operatorname{sdn-1(zh20);opEx1198(sdn-1~}$ cDNA under the regulation of the $s d n-1$ promoter) as the control (Section 2.3) were generated to demonstrated $s d n-1$ is required cell-autonomously in axons for guidance (Rhiner et al. 2005). Results from the previous section indicate that SDN-1 is not present in the DTCs during the second migration phase, arguing that SDN-1 is functioning cell nonautonomously for DTC guidance. Each transgenic array was separately crossed into an unc$5(e 152)$ background to determine whether hypodermal or axonal expression of $s d n-1$ is critical for DTC guidance. The unc-5(e152);sdn-1(zh20);opEx1206[P $P_{u n c-119:: s d n-1], ~ u n c-~}^{\text {- }}$ 5(e152);sdn-1(zh20);opEx1159[P $\left.P_{d p y-7}:: s d n-1\right]$ and unc-5(e152);sdn-1(zh20);opEx1198[P $P_{s d n-}$ $1:: s d n-1]$ strains were generated as outlined in Section 6.2.7. Each transgenic line was generated in a sdn-1(zh20) background resulting in exclusive SDN-1 expression from either the hypodermis (opEx1159[P $\left.\left.P_{d p y-7}:: s d n-1\right]\right)$ or axons (opEx1206[$\left.P_{u n c-119}:: s d n-1\right]$). As the control, unc-5(e152);opEx1198[P $\left.P_{s d n-1}:: s d n-1\right]$ should suppress the enhancement of DTC migration defect frequencies in unc-5(e152);sdn-1(zh20). Summarized in Table 14, sdn-1 expression regulated by the $s d n-1$ promoter ($o p E x$ 1198) did not rescue the enhancement of DTC migration defects in unc-5(e152);sdn-1(zh20) mutants and of the three constructs the most significant rescue was observed with opExI206[$\left.P_{\text {unc-119 }}:: s d n-1\right]$ indicating axonal expression and to a lesser extent hypodermal expression of $s d n-1$ is required for DTC guidance.

Table 14 : Hypodermal/axonal restricted $s d n-1$ expression and DTC migration defects.

unc-5	Sdn-1	Other	Ant. DTC	Post. DTC	N
e152	zh20	WT	36 ± 4	78 ± 3	831
e152	zh20	Psdn-1::sdn-1	$26 \pm 3^{*}$	$67 \pm 4^{*}$	156
e152	zh20	Punc-119::sdn-1	$18 \pm 2^{* *}$	$52 \pm 3^{* *}$	339
e152	zh20	Pdpy-7::sdn-1	$26 \pm 4^{*}$	$69 \pm 4^{*}$	117

[^3]The data in this table are in agreement with the data in Rhiner et al. (2005) as $o p E x 1198\left[P_{\text {sdn-1 }}:: s d n-1\right]$ did not fully rescue axon guidance defects in $s d n-1(z h 20)$ mutants and axonal expression of $s d n-1$ rescued DTC migration defects to a significant extent while hypodermal $s d n-1$ expression rescued to a lesser extent. The inability of the $\left[P_{s d n-1}:: s d n-1\right]$ construct to fully rescue DTC migration defects in unc-5(e152);sdn-1(zh20) is not surprising as cosmid rescue assays with F57C7 (with the sdn-1 gene) caused lethality when microinjected at high concentrations. The amount of SDN-1 produced from each construct has not been shown but could be verified using anti-syndecan- 4 immunofluorescence in each transgenic strain. In combination with the SDN-1 GFP localization results, this data confirms $s d n-1$ is not required cell-autonomously for DTC guidance as axonal and to a lesser extent hypodermal expression of $s d n-1$ significantly suppressed DTC migration defects in unc-5(e152);sdn-1(zh20) mutants.

Heparan sulfate proteoglycans (HSPGs) are the core proteins, either secreted (perlecan) or membrane bound (syndecan/glypican) for the attachment of heparan sulfate
(HS) polysaccharides side chains at key serine residues. These side chains are extensively modified and vary in length accounting for the diversity of ligand/receptor interactions with HSPGs. HSPGs have numerous diverse roles [reviewed in (Bernfield et al. 1999)] including interactions within the TGF β, WNT, EGF and FGF signalling pathways during development (Baeg and Perrimon 2000) and during axon guidance (Charron and Tessier-Lavigne 2005). In C.elegans, a role for HSPG UNC-52/perlecan in localizing growth factors for DTC guidance has been characterized (Merz et al. 2003). The heparan sulfate proteoglycan $s d n-1$ has been shown to have a role in axon guidance by acting cell-autonomously in neurons in C.elegans and additionally, a role in DTC guidance that is cell non-autonomous. As migrating DTCs appear to require an axonal source of SDN-1 for guidance, $s d n-1$ is most probably acting in a manner similar to UNC-52 by limiting or localizing growth factors for DTC guidance.

3.2.9 Genetic interactions of $s d n-1$, growth factors and $u n c-5$.

unc-52 was identified in the genetic screen for enhancers of DTC migration defects in unc-5(e152) mutants. However unlike $s d n-1$, unc-52 is not limited to unc-5 mediated DTC guidance as unc-52(e1421);unc-5(e53) mutants exhibit significant increases in DTC migration defects when compared to frequencies in unc-5(e53) alone (Merz et al. 2003). The role of growth factors UNC-129(TGF β), DBL-1(TGF β), EGL-20(WNT) and EGL17(FGF) in DTC guidance is an apparent gain of function mechanism that disrupts DTC guidance in the absence of UNC-52, suggesting UNC-52 localizes or limits these growth factors in a specific manner required for DTC migration. For example, unc-52 enhances DTC migration defects in unc-5(e152), but this enhancement is partially suppressed when unc-52 and unc-5 are in an unc-129, dbl-1, egl-20 or egl-17 background (Merz et al.
2003), suggesting UNC-52 is involved in suppressing a mechanism involving each growth factor that causes disruptions in the wild-type DTC migration pattern and removal of this suppression (unc-52;unc-5(e152)) induces DTC guidance disruptions. However, removal of each growth factor in addition to their suppressor reverts the DTC migration closer to wildtype. Guidance mechanisms of growth factors, regulated by unc-52 for DTC guidance are redundant with other DTC guidance pathways as DTC migrations defects are not observed in $u n c-52$ mutants nor any of the aforementioned growth factor mutants. Their guidance roles are not apparent unless DTC migration defects are sensitized with an unc-5 mutation.

Growth factors themselves are directly involved with DTC guidance as $d b l-1$, unc129 and egl-20 (posterior only) enhanced DTC migration defect frequencies in unc-5(e152) mutants (Table 15) in a wild-type unc-52 background.

Table 15 : DTC migration defects of unc-5 and growth factor like mutants.

unc-5	Other	Ant. DTC	Post. DTC	n
e152	WT	7 ± 1	40 ± 1	1464
e152	lin-3(e1413)	10 ± 2	$46 \pm 3^{*^{a}}$	252
e152	egl-17(e1313)	9 ± 2	43 ± 3	213
el52	egl-20(mu39)	$21 \pm 1^{* *}$	$49 \pm 2^{* *}$	738
el52	dbl-1(ev580)	$24 \pm 2^{* *}$	$59 \pm 3^{* *}$	322
e152	unc-129(ev554)	$27 \pm 4^{* *}$	$69 \pm 4^{* *}$	146

[^4]C.elegans growth factors UNC-129/TGF β (Colavita and Culotti 1998a), DBL1/TGF β, (Suzuki et al. 1999), EGL-20/WNT (Maloof et al. 1999), EGL-17/FGF (Burdine et al. 1997) and LIN-3/EGF (Hill and Sternberg 1992) were selected as candidates for characterizing the interactions of growth factors with $s d n-1$ for DTC guidance. Each growth
factor gene was placed in an unc-5(e152);sdn-1(zh20) and unc-5(e152);sdn-1(ev697) background (outlined in Section 6.2.8). As described for unc-52, if removing $s d n-1$ function results in the delocalisation/gain of function of growth factors resulting in the enhancement of DTC migration defects in unc-5(e152);sdn-1 (zh20) mutants, removing the growth factors should suppress the enhancement. Summarized in Table 16, suppression in unc-5(e152);sdn1 (ev697) by egl-17 and egl-20 and to a lesser extent unc-129 and lin-3 was limited to posterior DTC migrations and dbl-1 did not suppress the enhancement of unc-5(e152);sdn1(ev697). However, each growth factor partially suppressed DTC migration defects mutants with a complete loss of $s d n-1$ function ($z h 20$) in both anterior and posterior DTC, indicating a role for SDN-1 in limiting growth factors UNC-129, DBL-1, EGL-20, LIN-3 and EGL-17. In addition, variation of the results between each allele was observed, further confirming $z h 20$ and ev697sdn-1 alleles behave differently.

Table 16 : DTC migration defects of unc-5, sdn-1 and growth factor mutants.

unc-5	sdn-1	Other	Ant. DTC	Post. DTC	n
e152	ev697	WT	20 ± 1	63 ± 2	476
e152	ev697	lin-3(e1413)	22 ± 2	$55 \pm 5^{*}$	400
e152	ev697	egl-17(e1313)	18 ± 2	$43 \pm 3^{* *}$	249
e152	ev697	egl-20(mu39)	22 ± 2	$52 \pm 2^{* *}$	512
e152	ev697	dbl-1(ev580)	21 ± 2	68 ± 2	369
e152	ev697	unc-129(ev554)	23 ± 2	$56 \pm 2^{*}$	407
e152	zh20	WT	36 ± 2	77 ± 1	831
e152	zh20	lin-3(el413)	$17 \pm 2^{* *}$	$55 \pm 3^{* *}$	330
e152	zh20	egl-17(el313)	$18 \pm 2^{* *}$	$49 \pm 3^{* *}$	314
e152	zh20	egl-20(mu39)	$16 \pm 3^{* *}$	$46 \pm 2^{* *}$	502
e152	zh20	dbl-1(ev580)	$17 \pm 2^{* *}$	$51 \pm 3^{* *}$	296
e152	zh20	unc-129(ev554)	$16 \pm 2^{* *}$	$45 \pm 2^{* *}$	453
${ }^{2}$ Each					

[^5]A recent review paper (Lee and Chien 2004) proposed four models for the roles of HSPGs in axon guidance:

1) HSPGs act as co-receptors and mediate ternary receptor complex formation between a HSPG, a ligand and its receptor.
2) HSPGs locally increase ligand concentrations at the cell surface and recruit membrane receptors forming lipid rafts.
3) HSPGs themselves can act as axon guidance ligands and receptors.
4) HSPGs regulate and limit the distribution of axon guidance ligands.

In the context of the DTCs and HSPG sdn-1, the first three of the four proposed models likely do not depict the role of $s d n-1$ in DTC guidance, as HSPGs mediate axon guidance in these models in a cell-autonomous fashion and our results have demonstrated HSPG $s d n-1$ is functioning cell non-autonomously for DTC guidance. If $s d n-1$ were required specifically for the mechanisms of UNC-5/UNC-40 receptor mediated guidance within the DTC by formation of ternary complexes between UNC-40/UNC-5 and UNC-6 or as a ligand itself, one would expect to see DTC migration defects in the $s d n-1$ mutant which is not the case. However, a role for heparan sulfate in stabilizing FGF and FGFR interactions has been described (Ornitz 2000) and interestingly in our study, egl-17(FGF) significantly suppressed DTC migration defects in unc-5(el52);sdn-1(zh20) mutants, suggesting a possible cell nonautonomous role for HSPGs in mediating FGF/FGFR interactions.

Cell guidance roles have been described for egl-17 (Sex myoblast migration, (Burdine et al. 1997)) and egl-20 (QL/QR neuroblasts, (Whangbo and Kenyon 1999)) and a role for unc-129, dbl-1 and egl-20 in DTC guidance has been shown (Merz et al. 2003), Table 15. However, $d b l-1$, unc-129, lin-3, egl-17 and egl-20 mutants, like HSPG/sdn-1 mutants and HSPG/unc-52 mutants do not exhibit DTC migration defects in an otherwise wild-type background, suggesting the limitation of growth factors by HSPGs in addition to the cell guidance roles of growth factors for DTC guidance are redundant. In addition, the limitation/regulation of one growth factor could directly affect another growth factor. For example, lin-3(EGF) is involved in inducing vulva cell fate in the vulva precursor cells and is expressed by the anchor cell located centrally amongst the vulva precursor cells (Hill and Sternberg 1992). egl-17(FGF) is expressed in vulva precursor cell P.6.p. and expression is required for sex myoblast (sex muscle precursors) migration to the developing gonad
(Burdine, Branda and Stern 1998). Taken together, one could speculate that lin-3 is possibly involved in regulating egl-17 function or expression for the formation of a functioning vulva.

A model for the role of SDN-1 limited growth factor distribution in DTC guidance can be postulated. As we have shown the role of $s d n-1$ in DTC guidance is limited to unc-5, one possible model pertains to the either the regulation of unc-5 expression or the activation of UNC-5 in response to UNC-6, in that $s d n-1$ in the ventral nerve cord or hypodermis limits the localization of growth factors in a manner that sequesters growth factors away from unc-5/UNC-5 (if the growth factors are acting as activators) or makes them available to unc-5/UNC-5 (if the growth factor are acting as repressors) during the first migration phase and both require a reversal at the time of DTC turning towards the dorsal muscle band. The role of HSPGs in either restricting or facilitating diffusion of morphogens is supported by recent findings in Drosophila. The diffusion patterns of Hh (hedgehog) and Wgl (wingless, WNT) are altered in sotv (sister of tout velu) and ttv (tout velu) mutants and in addition, Dpp (Decapentaplegic, BMP/TGF β) signalling is disrupted as these mutants exhibit defects in glycosaminoglycan (GAG) chain synthesis and thus have reduced levels of heparan sulfate (Bornemann et al. 2004). In addition, the HSPG Dally (glypican) was found to modulate the Dpp gradient in Drosophila (Fujise et al. 2003). Interestingly, results in Table 16 indicate DTC migration defect frequencies in triple mutants unc-5(e152);dbl-1(ev580);sdn-1(zh20) and unc-129(554)unc-5(e152);sdn-1(zh20) are much lower then the DTC migration defect frequencies in the double mutants unc-5(e152);dbl-1(ev580) and unc-129(554)unc-5(e152) (Table 15). The enhancement of DTC migration defect frequencies caused by each TGF β in $u n c-5(e 152)$ mutants indicates their involvement in the ventral to dorsal guidance of the DTC. In addition, Merz et al. (2003) have proposed the unc-129 and dbl-1 DTC guidance mechanisms are limited to $u n c-5$ mediated guidance and that both $u n c-129$ and $d b l-1$ interact
within the same guidance pathway. Our $s d n-1$ data suggests two possible theories, 1) $s d n-1$ limits $d b l-1$ and unc-129 (removal of $s d n-1$ disrupts the $d b l-1$ and unc-129 role in DTC guidance) and 2) dbl-1 and unc-129 can compensate for each other's guidance functions. For example, when you take one TGF β away (unc-5(e152);dbl-1(ev580) mutant) and delimit UNC-129 (unc-5(e152); dbl-1 (ev580);sdn-1(zh20) mutant), delimited UNC-129 can compensate for the loss of DBL-1 resulting in a lower frequency of DTC migration defects observed in unc-5(e152); dbl-1(ev580);sdn-1(zh20)). As unc-129 is expressed dorsally and dbl-1 is expressed ventrally, it is quite possible a specific gradient of each TGF β growth factor, limited by $s d n-1$, is required for DTC guidance along the ventral-dorsal axis. However further characterization of the role for each growth factor and their respective receptors in DTC guidance is required before we can begin to understand the complete picture.

We have proposed that HSPG $s d n-1$ has a role in limiting EGL-17(FGF), UNC129(TGF β), DBL-1(TGF β), EGL-20(WNT) and LIN-3(EGF) growth factor molecules for DTC guidance. As we have shown the role of sdn-1 in DTC guidance is limited to unc-5 guidance mechanisms, our finding suggests these growth factors are functioning within an unc-5 mediated guidance mechanism. However further analysis is require to confirm that the role of these growth factors, regulated by $s d n-1$, in DTC guidance are limited to unc-5.

We have identified an allele of $s d n-1$ encoding the truncated, SDN-1 ectodomain, which appears to be present and possibly functional in the animal as suggested by the repeated differences between ev697 and zh20 alleles in our results. Shedding of the syndecan-1 ectodomain, induced by FGF2 and MMP7 (matrix metalloprotease 7) was shown to be associated with tumour progression in pancreatic cancer cells (Ding et al. 2005). Thus the ev697 allele may serve as a potential model in C.elegans for further study of the role of
$s d n-1$ in the progression of this disease. Further more, $s d n-1$ and DTC guidance provides a system for modelling the diverse roles of $s d n-1$ in cell migrations.

4.0 CONCLUSION

4.1 The mig(ev648) enhancer allele.

The enhancer mig(ev648) identified in the genetic screen for enhancers of DTC migration defects is an allele of the nucleoside diphosphatase mig-23 gene. mig-23 is required for the glycosylation of the matrix metalloprotease mig-17 for proper localization during DTC migrations (Nishiwaki et al. 2004). We have identified a previously uncharacterized allele of mig-23, ev648 consisting of a 335C-T mutation in the mig-23 coding sequence resulting in an A112V mutation in the MIG-23 protein. This mutation is not within an apyrase conserved domain of the protein described by (Nishiwaki et al. 2004) but is within a relatively conserved region of NDPases and the allele appears to be partially temperature sensitive.

We have demonstrated the role of mig-23 in DTC guidance is not limited to unc-5/unc-40/unc-6 guidance mechanisms and does not have a role in unc-5 mediated DTC guidance. Genetic interactions have suggested mig-17 guidance mechanisms are not limited to unc-5/unc-6/unc-40 DTC guidance mechanisms (Nishiwaki et al. 2000) and genetic interactions of mig-23 and mig-17 suggests mig-23 has additional DTC guidance roles independent of mig-17 mediated guidance (Nishiwaki et al. 2004). As mig-17 did not arise in our genetic screen for enhancers of DTC migrations in unc-5(e152) mutants, it is reasonable to hypothesize that the mig-17 independent DTC guidance mechanisms of mig-23 are perhaps associated with unc-40 or unc-6 DTC guidance mechanisms. However, further analysis is required.

4.2 The $\operatorname{enh}(e v 697)$ enhancer allele.

The enhancer enh(ev697) allele identified in the genetic screen for enhancers of DTC migration defects is an allele of the heparan sulfate proteoglycan $s d n-1 . s d n-1$ is involved in guiding axons and neurons along specified migration patterns (Rhiner et al. 2005). We have identified a previously uncharacterized allele of $s d n-1$, ev697, consisting of a $610 \mathrm{C}-\mathrm{T}$ mutation in the $s d n-1$ coding sequence resulting in a Q203X mutation in the SDN-1 protein, possibly resulting in a truncated, un-tethered form of $s d n-1$ whose presence is suggested by the differences in behaviour observed between the ev697 and null zh20 alleles. The role of $s d n-1$ in DTC guidance appears to be limited to unc-5 mediated guidance. In contrast to the role of $s d n-1$ in axon guidance, $s d n-1$ functions cell non-autonomously for DTC guidance as an axonal source of SDN-1 rescues DTC migration defects, as does a hypodermal source but to a lesser extent. In accordance with these data, our genetic interaction analysis suggests $s d n-1$ has a role in limiting growth factors unc-129(TGFß), $d b l-1$ (TGF β), egl-17(FGF), lin3(EGF), and (egl-20)WNT within the extra-cellular environment for DTC guidance, possibly in an unc-5 dependent manner.

Recently roles for semaphorin guidance cues and their receptors plexins/neutropilins have been identified in biological processes other then axon guidance including immune function regulation, angiogenesis and cancer [reviewed in (Tamagnone and Comoglio 2000)]. As Netrins and their receptors appear to be following the same pathway, a concrete understanding of the mechanisms and regulation of Netrins and their receptors is essential. Identifying genes involved in regulating cell motility and assembling genes into pathways and hierarchies contributes to our understanding of the mechanisms of cell guidance that are crucial for diverse biological and developmental processes.

5 FUTURE DIRECTIONS

The roles of mig- 23 in DTC cell guidance have been characterized and are relatively well defined (Nishiwaki et al. 2004). However, the possibility that the MIG-23 NDPase is functioning with UNC-6 or UNC-40 for DTC guidance has yet to be investigated. Further characterization of the genetic interactions between mig-23 and unc-6 or unc-40 is required to determine whether mig-23/mig-17 play a role in UNC-6 or UNC-40 DTC guidance mechanisms.

This is the first study to identify a cell non-autonomous role for SDN-1 in DTC guidance involving growth factors. The $s d n-1$ allele we have generated encodes a truncation before the trans-membrane domain of SDN-1, potentially resulting in an unbound form of the syndecan ectodomain. Our data suggests the ev697 form of SDN-1 is present, however Western blot analysis would be required to confirm the presence of this truncated form of SDN-1.

To support our finding that $s d n-1$ is functioning cell non-autonomously for DTC guidance, a construct with the $s d n-1$ coding sequence regulated by the DTC specific promoter lag-2 in an unc-5(e152);sdn-1(zh20) would conclusively determine whether $s d n-1$ within the DTC is enough to rescue the enhancement of DTC migration defects in unc$5(e 152) s d n-1(z h 20)$. In addition, (Rhiner et al. 2005) have generated additional transgenic lines with the constructs used in this study to determine whether expression of $s d n-l$ in axon or the hypodermis is required for DTC migration.

Embryonic elongation defects present in $s d n-1(e v 697)$ suggests a role for $s d n-1$ during embryogenesis. An increase in penetrance of this phenotype in unc-40(e1430);sdn1 (ev697) suggests unc-40 is involved in this uncharacterized role of $s d n-I$. Further analysis of the HS binding abilities of UNC-40 may elucidate these potential interactions.

As our data suggests egl-17(FGF) is possibly directly involved in unc-5 mediated DTC guidance, further analysis of the genetic interaction between $c l r-1$ and unc-5 and unc-5 and egl-15 using the evIs99 strain would determine whether these genes mediate DTC guidance in an unc-5 dependent manner. As CLR-1 is a tyrosine phosphatase, analysis of UNC-5 phosphorylation in egl-15, egl-17 and clr-1 mutants would determine whether CLR-1 has direct interactions with UNC-5. In addition, as egl-17, egl-20, lin-3, dbl-1 and unc-129 suppressed DTC migration defects in unc-5(e152);sdn-1 (zh20), analysing unc-5 expression in a mutant background of each growth factor would determine whether growth factors are involved in regulating unc-5 expression. sdn-1 was originally identified in C.elegans for its role in axon guidance and analysis of its interactions with growth factors in mediating axon guidance defects would determine whether $s d n-1$ guidance mechanisms are conserved among different cell types.

SDN-1 is a heparan sulfate proteoglycan with modifiable heparan sulfate side chains. Genetic interactions in C.elegans between sdn-1 and heparan sulfate modifying enzymes hse5 (C5-epimerase) and hst-2(20-sulfotransferase) in axons have indicated that different heparan sulfate modifications of $s d n-1$ are required for the guidance of different neurons (Rhiner et al. 2005). The nature of $s d n-1$ heparan sulfate side-chain modifications required for DTC guidance has yet to be shown.

Thus by employing a combination of genetic interaction analysis and biochemical assays, the model organism C.elegans can be used to further our understanding of the roles of growth factors and heparan sulfate proteoglycans in cell guidance and axon guidance.

6 APPENDIX

6.1 : Solutions

Nematode Growth Medium Agar	
NaCl	3 o
Agar	17 g
Peptone	2.5 g
Cholesterol $(5 \mathrm{mg} / \mathrm{ml}$ in EtOH)	1 ml
$\mathrm{dH}_{2} \mathrm{O}$	975 ml

Autoclave, then add the following using sterile technique

$\mathrm{CaCl}_{2} 1 \mathrm{M}$	1 ml
$\mathrm{MgSO}_{4} 1 \mathrm{M}$	1 ml
potassium phosphate 1 M pH 6	25 ml

LB broth	
Truntone	10 o
Yeast Extract	5 g
NaCl	10 g
$\mathrm{H}_{2} \mathrm{O}$	1 L

0.5M EDTA (pH8.0)	
FDTA	14.61 o
NaOH	2 g
$\mathrm{H}_{2} \mathrm{O}$	to $80 \mu \mathrm{l}$

50 X TAE	
Tris hase	747 o
Glacial acetic acid	57.1 ml
0.5 EDTA (pH8.0)	100 ml
ddH20	1 L
For 1X TAE (Agarose gel electrophoresis running buffer),	
add 20ml 50X TAE to 1000 ml dH20	

1% agarose gel	5 mm		10 mm	
Small	Agarnse	TAF	Aoarnse	TAF
Medium	0.2 g	20 ml	0.45 g	45 ml

1.5% agarose gel	5 mm		10 mm	
	Aoarnse	TAF	Aoarose	TAF
Small	0.3 g	20 ml	0.675 g	45 ml
Medium	0.9 g	60 ml	1.875 g	125 ml

Ethidium Bromide	
$\mathrm{F}+\mathrm{Br}$	1 o
$\mathrm{dH}_{2} \mathrm{O}$	100 ml
Stir for several hours in container covered with foil.	

Orange G (6X loading dye)	
Clvcernl	30 ml
Orange G	0.25 g
O.5M EDTA	$400 \mu \mathrm{l}$
$\mathrm{dH}_{2} \mathrm{O}$	100 ml

Low TE (10mM Tris, 1mM EDTA pH8)	
1M Tris. nH8	1 ml
0.5 M EDTA, pH8	0.2 ml
$\mathrm{dH}_{2} \mathrm{O}$	98.8 ml

DNA Ladder (Invitrogen)	
Oranoe (r dve	170_{nl}
DNA ladder	$50 \mu \mathrm{l}$
Low TE	$780 \mu \mathrm{l}$

LB agar	
Truntone	10 g
Yeast Extract	5 g
NaCl	10 g
Agar	15 g
$\mathrm{H}_{2} \mathrm{O}$	1 L

Rich Agarose Plates (500ml=20 plates)					
50 mM NaCl	1.56σ				
$5 \mathrm{ug} / \mathrm{ml}$ cholesterol (autoclaved)	$500 \mu \mathrm{l}$				
1.5% agarose	7.5 g				
Mix in 500 ml water and autoclave.					
$1 \mathrm{mM} \mathrm{CaCl}_{2}$ (autoclaved)	$500 \mu \mathrm{l}$				
1 mM MgSO		(autoclaved) $\quad 500 \mu \mathrm{l} .	$	$25 \mathrm{mM} \mathrm{K}-\mathrm{PO}_{4}$ (pH 6.0) (autoclaved)	12.5 ml
:---	:---				

M9 Buffer	
$\mathrm{KH}_{3} \mathrm{PO}_{1}$	2ρ
$\mathrm{Na}_{2} \mathrm{HPO}_{4}$	6 g
$\mathrm{NaCl}^{\mathrm{MgSO}_{4} 1 \mathrm{M}}$	5 g
$\mathrm{H}_{2} \mathrm{O}$	1 ml

Genomic Worm Lysis Solution (store at $-20^{\circ} \mathrm{C}$)	
1 M Tris $(\mathrm{nH} 8.5$)	1 ml
100 mM NaCl	0.058 g
0.5 M EDTA	1 ml
10% SDS	1 ml
1% beta-mercaptoethanol	$100 \mu \mathrm{l}$
$100 \mathrm{ug} / \mathrm{ml}$ proteinase K	$65.36 \mu \mathrm{l}$
$\mathrm{ddH}_{2} 0$	6.2 ml

Phenol/ CHCl_{3} (Phenol alcohol:CHCl 3 :isoamyl alcohol. 25:24:1)

Phenol alcohol	250 ml
CHCl_{3}	240 ml
Isoamyl alcohol	10 ml

$\mathrm{CHCl}_{3}(24: 1)$	
isnamvl alcohnl	10 ml
CHCl_{3}	240 ml

10 mM dNTP (Invitrogen kit)	
100 mM dTTP	10 nl
100 mM dGTP	$10 \mu \mathrm{l}$
100 mM dATP	$10 \mu \mathrm{l}$
100 mM dCTP	$10 \mu \mathrm{l}$
$\mathrm{ddH}_{2} \mathrm{O}$	$60 \mu \mathrm{l}$

General mixture for 50ul PCR**.	
Worm lvsis	7 ml
$10 \times$ PCR Buffer (Invitrogen)	$5 \mu \mathrm{l}$
25 mM MgCl (Invitrogen)	$3 \mu \mathrm{l}$
10 mM dNTP	$1 \mu \mathrm{l}$
10 pM primer 1	$1 \mu \mathrm{l}$
10 pM primer 2	1 ul
Taq (DNA polymerase or Platinum, Invitrogen)	$0.125 \mu \mathrm{l}$
ddH $_{2} 0$	36.875 l

**PCR reactions were optimized by adjusting worm lysis and primer concentrations.

Single worm lysis buffer (1 ml aliquots in $-20^{\circ} \mathrm{C}$)	
1 M KCl	0.5 ml
1 M Tris	0.1 ml
1 M MgCl	
10% Triton	0.025 ml
10% Tween-20	0.45 ml
10% gelatin	0.45 ml
$20 \mathrm{mg} / \mathrm{ml}$ proteinase K	0.1 ml
$\mathrm{ddH}_{2} \mathrm{O}$	$30 \mu \mathrm{ml}$

Agarose 2\%	
Agarose	1 g
$\mathrm{dH}_{2} \mathrm{O}$	5 ml

6.2 C.elegans mutant strain generation outlines

6.2.1,tnIs5;mig(ev648)

F1

From GFP clones, pick progeny with mig(ev648)
DTC migration defects and strong GFP

Ensure all clones carry the GFP and exhibit mig(ev648) DTC migration defects.

6.2.2 unc-40(e1430);unc-5(e53);mig(ev648)

F1

From clones, pick progeny with mig(ev648) DTC migration defects and clone out.

From mig(ev648) clones, pick uncoordinated progeny with mig(ev648) DTC migration defects and clone out. [unc-5(e53);mig(ev648)]

From unc-5(e53);mig(ev648) clones, pick egl, dpy and uncoordinated progeny and clone out.

unc-40(e1430);unc-5(e53);mig(ev648)

6.2.3 dpy-6(e14)enh(ev697)egl-15(n484)

Fl $\frac{d p y-6(e l 4)+e \operatorname{egl-15(n484)}}{+} \uparrow$

From clones pick gl non $d p y$ progeny and clone out.

Ensure gl non dy clones have enh(ev697) embryonic elongation defects in their progeny.

enh(ev697)egl-15(n484)
enh(ev697)egl-15(n484)

$\mathrm{F} 1 \frac{d p y-6(e 14) u n c-115(e 2225)}{+}+\frac{e n h(e v 697) e g l-15(n 484)}{}$ ¢

From clones, pick egl and dy non inc progeny.

Confirm enh(ev697) in progeny of gl and dy non inc progeny.

dpy-6(e14)enh(ev697)egl-15(n484)
6.2.4 unc-5(e152);sdn-1(zh20)

F1
Clone out wild-type heterozygotes

From clones, pick unc animals with DTC migration defects and clone out. [unc-5(e152)].

From unc-5(e152) clones, pick uncoordinated progeny that are bloated and clone out.

From the suspected unc-5(e152);sdn-1(zh20) clones, pick at least 10 uncoordinated progeny that are bloated from plates with $s d n-1$ embryonic elongation defects.

Ensure all 10 uncoordinated and bloated animals chosen have $s d n-1$ embryonic elongation defects in their progeny.

$$
u n c-5(e 152) ; s d n-1(z h 20)
$$

unc-5(e53);sdn-1(zh20)
Repeat the same instructions for unc-5(e152);sdn-1(zh20) mutant generation but use $\left.\frac{u n c-5(e 53)}{+}\right\} s$

6.2.5 unc-40(ev1430);sdn-1(ev697)

 $\operatorname{sdn-1(ev697)~} \uparrow$

Fl

From clones, pick uncoordinated, bloated progeny with DTC migration defects and clone out.[(unc-40(e1430)]

In unc-40(e1430) clones, look for ev697 embryonic elongation defects in the progeny and from these plates, clone out at least 10 uncoordinated animals.

Ensure all 10 uncoordinated and bloated clones have ev697 embryonic elongation defects in their progeny.

unc-40(ev1430);sdn-1(ev697)
unc-40(ev1430);sdn-1(zh20)
Repeat the same outline for unc-40(ev1430);sdn-1 (ev697) mutant generation but use $\frac{\operatorname{sdn}-1(z h 20)}{+} \oint^{s}$
unc-6(ev400)

 \uparrow

Fl

From clones, pick uncoordinated progeny that are severely bloated and clone out.

Check clones the following day to ensure they are egg-laying defective and uncoordinated.

Confirm that all bloated and uncoordinated clone progeny are bloated and uncoordinated.

unc-6(ev400)egl-15(n484)

Fl \qquad $+$ egl-15(n484)

From clones, pick progeny that is uncoordinated and not bloated and clone out.

Confirm the presence of enh(ev697) embryonic elongation defects in unc non-egl clone progeny.

unc-6(ev400)enh(ev697)
6.2.7 unc-5(e152):sdn-1 (zh20);opEx1206[P $P_{\text {unc-119 }}:$:sdn-1]

From clones pick uncoordinated progeny with strong GFP expression in tail and head and DTC migration defects and clone out.

From unc-5(e152) GFP clones, look for $z h 20$ embryonic elongation defects in the progeny of each clone and from these plates, clone out at least $10 \mathrm{GFP} / b l o a t e d /$ uncoordinated animals.

Ensure all 10 clones are GFP/bloated/uncoordinated and have zh20 embryonic elongation defects in their progeny.

unc-5(e152); sdn-1(zh20);opEx1206[P $\left.P_{u n c-119:: s d n-1}\right]$,

The same outline was utilized for generating:

- unc-5(e152);sdn-1(zh20);opEx1159[P $\left.{ }_{d p y 7}:: s d n-1\right]$
- unc-5(e152);sdn-1(zh20);opEx1198[P $P_{\text {sdn-1 }}:$ sdn-1]

6.2.8 unc-129(ev554)unc-5(e152);sdn-1(ev697)

F1

From clones, pick uncoordinated progeny with DTC migration defects and clone out.

Look for ev697 elongation defects in the progeny of each clone and from these plates, clone out at least 10 uncoordinated animals.

Ensure all 10 clones are uncoordinated and have ev697 embryonic elongation defects in their progeny.

unc-5(e152);unc-129(ev554);sdn-1(ev697)

6.2.9 unc-5(e152)egl-20(mu39);sdn-1(ev697)

sdn-1(ev697)

F1

From clone,s pick uncoordinated bloated progeny with DTC cell migration defects and clone out.

Look for ev697 elongation defects in the progeny of each clone and from these plates, clone out at least 10 uncoordinated and bloated animals.

Ensure all 10 clones are uncoordinated and bloated and have ev697 elongation defects in their progeny.

unc-5(e152)egl-20(mu39);sdn-1(ev697)

F1
Clone out wild-type heterozygotes

From clones, pick uncoordinated, bloated and valvaless progeny with DTC migration defects and clone out.

Look for ev697 embryonic elongation defects in the progeny of each clone and from these plates, clone out at least 10 uncoordinated and bloated animals.

Ensure all 10 clones are uncoordinated and bloated and have ev697 embryonic elongation defects in their progeny.

unc-5(e152)lin-3(e1413);sdn-1(ev697)

6.2.11 unc-5(e152):dbl-1(ev580);sdn-1(ev697)

unc-5(e152);sdn-1 (ev697)

From clones, pick dumpy, uncoordinated progeny with DTC migration defects and clone out.

Look for ev697 elongation defects in the progeny of each clone and from these plates, clone out at least 10 dumpy and uncoordinated animals.

Ensure all 10 clones are unc/egl and have ev697 embryonic elongation defects in their progeny.

unc-5(e152);dbl-1(ev580);sdn-1(ev697)

6.2.12 unc-5(e152);egl-17(e1313);sdn-1(ev697).

unc-5(e152);sdn-1 (ev697)

egl-17(e1313) $+$

F1

From clones, pick bloated and uncoordinated progeny with DTC migration defects and clone out.

Look for ev697 elongation defects in the progeny of each clone and from these plates, clone out at least 10 bloated and uncoordinated animals.

Ensure all 10 clones are unc/egl and have ev697 embryonic elongation defects in their progeny.

unc-5(e152);egl-17(e1313);sdn-1 (ev697)

6.3 Cosmid descriptions.

6.3.1 Summary of the cosmids used for mig(ev648) rescue.

Cosmid	Approximate size (Kb)	Kan/Amp?
C03B1	43	AMP
T22E5	34.5	KAN
K10	34	KAN
K07	11	KAN
C15B12	44	AMP
F22A3	30	KAN
T14E8	37	KAN
T28B4	27	KAN

6.3.2 Summary of the cosmids used for enh(ev697)

 rescue.| Cosmid | Approximate size
 (Kb) | Kan/Amp? |
| :--- | :---: | :---: |
| F41E7 | 36 | KAN |
| R07E3 | 40 | AMP |
| F46F6 | 25 | KAN |
| ZC504 | 38 | AMP |
| C39B10 | 38 | AMP |
| C33D3 | 18 | AMP |
| F14F3 | 35 | KAN |
| F59F5 | 35 | KAN |
| F57C7 | 30 | KAN |
| M79 | 34 | AMP |
| F11A1 | 40 | KAN |
| F13E6 | 40 | KAN |
| C46B5 | 1.6 | AMP |
| T01C1 | 28 | AMP |
| R07A4 | 37 | AMP |

6.4 Alignments of nas- 33 sequencing results.

CLUSTAL W (1.82) multiple sequence alignment

N2	GATCCTTAGACAGTTATCTGAAGGTCATAGATGTTATGATTCAAACTAGATTCCGCTTCT 60
1N1-F1	
1N1-R1	
1E5-F1	
1E5-R1	
N2	CCTTCTATITITCTMATTCAGTTCGGATGCGTCACCCCTGTTCTCACTGGAACACAGACA 120
1N1-F1	
1N1-R1	
1E5-F1	
1E5-RI	-
N2	CCTCTTGAAAGAACAAATCTGGCACAACACCACCCATTGAGACGTTTTACACGATGTGAG 180
1N1-F1	-------------------------------1TTAC-NGANTTGAN 15
1N1-R1	-------TIMTNTAAANCCAACNCCACCCATTGAGANGTTTTACANGATGTGAG 47
1E5-F1	------------------------TTTTAA-CGANTN-AN 14
1E5-R1	--------TMITINNNNCCCNAACACNCCCCATMGAGACGITITACACGATGTGAG 48
	${ }^{* * * * *} 919^{* *} 9199^{*} 4$

N2	ACTGAATTTCGGAAGTTATCAATHTAAATITHTCAGTTCCTAGTTCTTACTCTGAGTTTG 240
1N1-F1	ACTGAATTTCNGAAGTTATCAATTTAAATTTTTTCAGTTCCTAGTTCTTACTCTGAGTTTG 75
1N1-R1	ATTGAATITNGGAAGTTATCAATTTAAATTTMTCAGTTCCTAGTTCTTANTNGGAGTTTG 107
1E5-F1	ACTGAATTTCGGAAGTTATCAATTTAAATTTTTCAGTTCCTAGTTCTTACTCTGAGTTTG 74
1E5-R1	ACTGAATTTCGGAAGTTATCAATTTAAATTITTCAGITCCTAGITICTTACTCTGAGTITG 108
N2	AAGAACACTGCGITITCCCCTGGTGGTTCCTTGTGCACATGGCTGAGTATTACAGACTCT 300
1N1-F1	AAGAACACTGCGTTTMCCCCTGGTGGTTCCTTGFGCACATGGCTGAGTATTACAGACTCT 135
1N1-R1	AAGAACANTGNGTTTTCCCCTGGNGGTTCCTTGNGCACATGGGNGAGTATTACNGANTNT 167
1E5-F1	AAGAACACTGCGTTTTCCCCTGGTGGITCCTTGTGCACATGGCTGAGTATTACAGACTCT 134
1E5-R1	AAGAACACTGCGTTTTCCCCTGGTGGTTCCTTGTGCACATGGNTGAGTATTACAGACTCT 168
	4
N2	TGTTTGTITAGCTGATCTICTGGAAAAAAAAACTGTTAAATTAATTAGGACTTTMTAAAG 360
1N1-F1	TGTTTGTTTAGCTGATCTTCTGGAAAAAAAAACTGTTAAATTAATTAGGACTTTTTAAAG 195
1N1-R1	TGTTTGTTTAGNTGATNTTNTGGAAAAAAAAACTGTTAAATTAATTAGGACTTTTTAAAG 227
1E5-F1	TGTTTGTTYAGCTGATCITCTGGAAAAAAAAACTGTTAAATTAATTAGGACTTTTTAAAG 194
1E5-R1	TGTTTGTTTAGCTGATNTTCTGGAAAAAAAAACTGTTAAATTAATTAGGACTTTTTAAAG 228
	*********** ${ }^{* * * *} \mathbf{p}^{* *} \mathrm{f}^{* ~}$
N2	CTTACAAGCAATTCGTTGTACTTGTACATCTTTCTCTATACTGAGTACCACAAGAACCAC 420
1N1-F1	CTTACAAGCAATTCGTTGTACTTGTACATCTTTTCTCTATACTGAGTACCACAAGAACCAC 255
1N1-R1	CTTACAAGCAATTCGTTGTACTTGTACATCTTTCTCTATACTGAGTACCACAAGAACCAC 287
1E5-F1	СTTACAAGCAATTCGTTGTACTTGTACATCTTTCTCTATACTGAGTACCACAAGAACCAC 254
1E5-R1	CTTACAAGCAATTCGTTGTACTTGTACATCTTTCTCTATACTGAGTACCACAAGAACCAC 288

N2	AATITTCAGAGCATCTTGICCAACCGGACCACAGTAAAGAATAACTTC゙TTGGAGCAGCAA 480
1N1-F1	AATTTTCAGAGCATCTTGTCCAACCGGACCACAGTAAANAATAACTHCTTGGAGCANCAA 315
1N1-R1	AATTTTCAGAGCATNTTGTCCAACCGGACCACAGTAAAGAATAACTHNTTTGAGCAGCAA 347
1E5-F1	AATTTTCAGAGCATCTTGTCCAACCGGACCACAGTAAAGAATAACTTCTTGGAGCAGCAA 314
1E5-R1	AATTTTCAGAGCATNTTGTCCAACCGGACCACAGTAAAGAATAANITNTTGGAGCAGCAA 348
N2	CCCTGACAGGGGGTGGTCTITGAGTGGGAGCTGTT CCATCTAAAACTTGTCGTGGTTAGA 540
1N1-F1	CCCTGACAGGGGGTGGTCTTTGAGTGGGAGCTGTA CCATCTAAAACTTGTCGNGGTTAGA 375
1N1-R1	CCCTGACAGGGGGTGGTCTITGAGTGGGAGCTGTACCATNTAAAACTTGTCGTGGTTAGA 407
1E5-F1	СССTGACAGGGGGTGGTCTITGAGTGGGAGCTGTA CATCTAAAACTTGTCGTGGTTAGA 374
1E5-R1	CCCTGACAGGGGGTGGTCTTTGAGTGGGAGCTGTACCATCTAAAACTTGTCGTGGTTAGA 408
	***********************************\|**************** ${ }^{\text {******* }}$
N2	TTCAAAAATCACAAATAATAAACCTTCTCTATATCTGAGTACAAATTGTGAGTT-CTGAG 599
1N1-F1	TTCAAAAATCACAAATAATAAACCTHCTCTATATCTGAGTACAAATTGTGAGTT-CTGAG 434

1N1-R1	THCAAAAATCACAAATAATAAACCTTCTCTATATCTGAGTACAAATTGTGAGTTTCTGAG	467
1E5-F1	TTCAAAAATCACAAATAATAAACCTTCTCTATATCTGAGTACAAATTGTGAGTT-CTGAG	433
1E5-R1	TTCAAAAATCACAAATAATAAACCTTCTCTATATCTGAGTACAAATTGTGAGTTTCTGAG	468
N2	TAGCTITTGAAATAATCAGAACACTGTTTCCTTTGCTAATTCGTTCACCAAGGACGGCTT	659
1N1-F1	TAGCTMTTGAAATAATCANAACACTGTTTCCTTTGCTAATTCGITCACCAAGGACNGNTT	494
1N1-R1		507
1E5-E1	TAGCTHTTGAAATAATCAGAACACTGTTTCCTTTGCTAATTCGTTCACCAAGGACGGGTT	493
1E5-R1	TAGCTTTTIGAAATAATCAGAACACTGTTTCA-TTGTTATTC ****************** $\boldsymbol{q}^{* * * * * * * * * *} \mid$ *** **	508
N2	TGCAACACTGCCGGTATCCGGTTGCTTCATGACTATATTCIGCTMTCATCTGAAAACAGG	719
1N1-F1	TTTCAAAAAAAAA	507
IN1-R1		
1E5-F1	TTTCAAAANAAAAAA	508
1E5-R1	--------	
N2	AATGGTATTAAAATAACAAAAAAGGTTAAACAAAATACCTCAACAAACTCTTCACATACT	779
1N1-F1		
1N1-R1		
1E5-F1		
1E5-R1		
N2	GGAGAACATCTATACATCACATAGGTGAGCTCAAAACGTACATTGCCGCCGTTTGCCTGA	839
1N1-F1		
1N1-R1	--------	
1E5-F1		
1E5-R1		
N2	AATAAAAATTATTCGAAAAGTAGCAAGCCAGAATTTGATAAAATAGGAACAATTTTAAAA	899
1N1-F1		
1N1-R1		
1E5-F1		
1E5-R1	------------------	
N2	GCGTTCAATGICGITCAATEAAGTCGTITAATAAAGTATCAGGGGCACAGAACTGTTAGA	959
1N1-F1	----------	
1N1-R1		
1E5-F1		
1E5-R1		

2N2-R2	TTCAAAAATCACAAATAATAAACCTNCTNTATATCTGAGTACAAATTGTGAGTTCTGAGT 11
2E5-F2	THCAAAAATCACAAATAATAAACCTTCTCTATATCTGAGTACAAATTGTGAGTTCTGAGT 83
2E5-R2	TTCAAAAATCACAAATAATAAACCTTCTCTATATCTGAGTACAAATTGTGAGTTCTGAGT 11
	**
N2	AGCTTTMGAAATAATCAGAACACTGTTTCCTसTGCTAATTCGTTCACCAAGGACGGCTTT 660
2N2-F2	AGCITTTGAAATAATCAGAACACTGTTTCCTTTGCTAATTCGTTCACCAAGGACGGCTTT 143
2N2-R2	AGCTTTTGAAATAATCAGAACACTGTTTCCTTTGNTAATTCGTTCACCAAGGANGGNTTT 175
2E5-F2	AGCTITTGAAATAATCAGAACACTGTTTCCTTTGCTAATTCGTTCACCAAGGACGGCTTT 143
2E5-R2	AGCTITTGAAATAATCAGAACACTGTTTCCTTTGNTAATTCGTTCACCAAGGACGGCTITP 175
	q ${ }^{*}$ **
N2	GCAACACTGCCGGTATCCGGITGCTTCATGACTATATTCTGCTTTCATCTGAAAACAGGA 720
2N2-F2	GCAACACTGCCGGTATCCGGTTGCTHCATGACTATATTCTGCTTTCATCTGAAAACAGGA 203
2N2-R2	GCAACACTGCCGGTATCCGGTTGCTTCATGACTATATTTTGCTTTCATCTGAAAACAGGA 235
2E5-F2	GCAACACTGCCGGTATCCGGTTIGCTTCATGACTATATTCTGCTTTCATCTGAAAACAGGA 203
2E5-R2	GCAACACTGCCGGTATCCGGTTGCTTCATGACTATATTCTGCTTTCATCTGAAAACAGGA 235

N2	ATGGTATTAAAATAACAAAAAAGGTTAAACAAAATACCTCAACAAACTCTTCACATACTG 780
2N2-F2	ATGGTATTAAAATAACAAAAAAGGTTAAACAAAATACCTCAACAAACTCTTCACATACTG 263
2N2-R2	ATGGTATTAAAATAACAAAAAAGGTTAAACAAAATACCTCAACAAACTCTTCACATACTG 295
2E5-F2	ATGGTATTAAAATAACAAAAAAGGTTAAACAAAATACCTCAACAAACTCTTCACATACTG 263
2E5-R2	ATGGTATTAAAATAACAAAAAAGGTTAAACAAAATACCTCAACAAACTCTTCACATACTG 295
N2	
2N2-F2	GAGAACATCTATACATCACATAGGTGAGCTCAAAACGTACATTGCCGCCGTTTGCCTGAA 323
2N2-R2	GAGAACATCTATACATCACATAGGTGAGCTCAAAACGTACATTGCCGCCGTITIGCCTGAA 355
2E5-F2	GAGAACATCTATACATCACATAGGTGAGCTCAAAACGTACATTGCCGCCGTTTGCCTGAA 323
2E5-R2	GAGAACATCTATACATCACATAGGTGAGCTCAAAACGTACATTGCCGCCGTTTGCCTGAA 355
N2	ATAAAAATTATTCGAAAAGTAGCAAGCCAGAATTTGATAAAATAGGAACAATTTTAAAAG 900
2N2-F2	ATAAAAATTATTCGAAAAGTAGCAAGCCAGAATTTGATAAAATAGGAACAATTTTTAAAAG 383
2N2-R2	ATAAAAATTATTCGAAAAGTAGCAAGCCAGAATTTGATAAAATAGGAACAATTTTAAAAG 415
2E5-F2	ATAAAAATTATTCNAAAAGTAGCAAGCCAGAATTTGATAAAATAGGAACAATTTTAAAAG 383
2E5-R2	ATAAAAATTATTCGAAAAGTAGCAAGCCAGAATTTGATAAAATAGGAACAATTTTAAAAG 415
	杖**
N2	CGTTCAATGTCGTTCAATTAAGTCGTTCAATAAAGTAT
2N2-F2	CGTTCAATGTCGTTCAATTAAGTCGTTCAATAAAGTATC-AGGGGCACAGAACTGTTAGA 442
2N2-R2	CGTTCAATGTCGTTCAATTAAGTCGITCAATAAAGTATC-AGGGGCACAGAACTGTTAGA 474
2E5-F2	CGTTCAATGTCGTTCAATTAAGTCGITCAATAAAGTATC-AGGGGCACAGAACTGTTAGA 442
2E5-R2	CGTTCAATGTCGTTCAATTAAGTCGTTCAATAAAGTATCCAGGGGCACAGAACTGTTAGA 475

| | $* ~$ |
| :--- | :--- | (GGAAATATGATAATCTTGAAAATTGAATAAATTAGATTTCGTTGCTGCTTTGAGAGTGTT 1019

N2	GAAATATGATAATCTTGAAAATTGAATAAATTAGATTTCGTTGCTGCTTTGAGAGTGTTTT 1020
3N2-F3	--CT
3N2-R3	-CCTITTTTNGNNNCNCTINGAGAGTGITTT 28
3E5-F3	
3E5-R3	--CTCTPTTTTNNGGNNCTTTGAGAGTGITT 29
N2	
3N2-F3	TGGCCTGTNTATATTGTACTT-CAACAAGCAAAGACAAACAAATTTGATCTGAACATTTC 61
3N2-R3	tGTCTTGAATATATTGTACTTACAACAAGCAAAGACAAACAAATTTG-TNTGAACATTTC 87
3E5-F3	-----ATATNGTACTT-CAACAAGCAAAGACAAACAAATMTGATCTGAACATTTC 49
3E5-R3	TGTCTTGAATATATTGTACTTACAACAAGCAAAGACAAACAAATTTGATCTGAACATTTC 89
N2	AATATGATATAGAAATGTCTTTTAGTTGTAATTATTATGTAAATTTGGTGCAAAATAAT 1140
3N2-F3	AATATGATATAGAAAATGTCTTITAGTTGTAATTATTATGTAAATTTGGTGCAAAATAAT 121
3N2-R3	AATATGATATAGAAAATGTCTTTNAGTTGTAATTATTANGTAAATTTGGTGCAAAATAAT 147
3E5-F3	AATATGATATAGAAAATGTCTTTTAGTTGTAATTATTATGTAAATTTGGTGCAAAATAAT 109
3E5-R3	AATATGATATAGAAAATGTCTTTTTAGTTGTAATTATTATGTAAATTTGGTGCAAAATAAT 149
N2	GATAAATTCAATGAAACTTTCAAACTGTATACTGAAAICAAAAAGGTGAAATGTTTCAAG 1200
3N2-F3	GATAAATTCAATGAAACTTTCAAACTGTATACTGAAATCAAAAAGGTGAAATGTTTCAAG 181
3N2-R3	GATAAATTCAATGAAACTTTCAACCTGTATACTGAAATCAAAAAGGTGAAATGTTTCAAG 207
3E5-F3	GATAAATTCAATGAAACTTTCAAACTGTATACTGAAATCAAAAAGGTGAAATGTTTCAAG 169
3E5-R3	GATAAATTCAATGAAACTTTCAAACTGTATACTGAAATCAAAAAGGTGAAATGTTTCAAG 209
	**
N2	ATCGAAACTGATTGAAGTTTCTTTTTTTAATATACACCTAdCGAAACAATTCTCCAATAA 1260
3N2-F3	ATCGAAACTGATTGAAGTTTCTTTTTTTTAATATACACCTACCGAAACAATTCTCCAATAA 241
3N2-R3	ATCGAAANTGATTGAAGTTTCTTTTTTTTAATATACACCTACCGAAACAATTCTCCAATAA 267
3E5-F3	ATCGAAACTGATTGAAGTTTCTTTTTTTTAATATACACCTACCGAAACAATTCTCCAATAA 229
3E5-R3	ATCGAAACTGATTGAAGTTTCTTTPTTTTAATATACACCTACCGAAACAATTCTCCAATAA 269
	*******早**
N2	CAGTCAGATGATCCCGAATAGGAAATATTTCTCCATGAGTAATCTGCCCGTGGAAGTTCC 1320
3N2-F3	CAGTCAGATGATCCCGAATAGGAAATAITTICTCCATGAGTAATCTGCCCGTGGAAGTTCC 301
3N2-R3	CAGTCAGATGATCCNGAATAGGAAATATTTCTCCATGAGTAATCTGCCCGTGGAAGTTCC 327
3E5-F3	CAGTCAGATGATCCCGAATAGGAAATATTTCTCCATGAGTAATCTGCCCGTGGAAGTTCC 289
3E5-R3	CAGTCAGATGATCCCGAATAGGAAATATTTICTCCATGAGTAATCTGCCCGTGGAAGTTCC 329
N2	ACACCGCAATCTGAATTTCTTCACCGATGAAAATCCTCTATGGAAAATGACTCACTAGAA 1380

3N2-F3	ACACCGCAATCTGAATTTCTTCACCGATGAAAATCCTCTATGGAAAATGACTCACTAGAA	361
3N2-R3	ACACCGCAATCTGAATTTCTTCACCGATGAAAATCCTCTATGGAAAATGACTCACTAGAA	387
3E5-F3	ACACCGCAATCTGAATTTCTTTCACCGATGAAAATCCTCTATGGAAAATGACTCACTAGAA	349
3E5-R3	ACACCGCAATCTGAATTHCTHTCACCGATGAAAATCCTCTATGGAAATGACTCACTAGAA **	389
N2	GTTTGCAGTCGTTCACAATATGTTCCTTCCAGTCCTGTCGGACACGTACATTGCCCACAA	1440
3N2-F3	GTTTGCAGTCGTTCACAATATGTTCCTTCCAGTCCTGTCGGACACGTACATTGCCCACAA	421
3N2-R3	GTTTGCAGTCGTTCACAATATGITCCTTCCAGTCCTGTCGGACACGTACATTGCCCACAA	447
3E5-F3	GTTTGCAGTCGTTCACAATATGTTCCTTTCCAGTCCTGTCGGACACGTACATTGCCCACAA	409
3E5-R3	GITTTGCAGTCGTTCACAATATGTTCCTTCCAGTCCTGTCGGACACGTACATTGCCCACAA ***	449
N2	TTGTTGGGATCCGCGTAACCGCCGTGTTGGCAGTTTATCCGATTGGTGCAAATGTCTGAA	1500
3N2-F3	TTGTTGGGATCCGCGTAACCGCCGTGTTGGCAGTTTATCCGATTGGTGCAAATGTCTGAA	481
3N2-R3	TTGTTGGGATCCGCGTAACCGCCGTGTTGGCAGTTTATCCGATTGGTGCAAATGTCTGAA	507
3E5-F3	TTGTTGGGATCCGCGTAACCGCCGTGTTGGCAGTTTATCCGATTGGTGCAAATGTCTGAA	469
3E5-R3	TTGTTGGGATCCGCGTAACCGCCGTGTTGGCAGTTTATCCGATTGGTGCAAATGTCTGAA	509
	4	
N2	GTCAAATAAACGTGGAAAAATTATTICCGTAAACTGACTAGAACAGAAAGCCGTATTGAGC	1560
3N2-F3	GTGAAATAAACGTGGAAAAATTATTCCGTAAACTGACTAGAACAGAAAGCCGTATTGAGC	541
3N2-R3	GTGAAATAAACGTGGAAAAATTATTCCGTAAACTGACTAGAACAGAAAGCCGTATTGAGC	567
3E5-F3	GTGAAATAAACGTGGAAAAATTATTCCGTAAACTGACTAGAACAGAAAGCCGTATTGAGC	529
3E5-R3	GTGAAATAAACGTGGAAAAATTATTCCGTAAACTGACTAGAACAGAAAGCCGTATTGAGC	569
N2	AACTTAAGATC-AAGGAATGAAGGTTCCACTCTGTTTCCAATAGTGTTAATGAATGCAGG	1619
3N2-F3	AACTTAAGATC-AAGGAATGAAGGTTCCACTCTGTTTCCAATAGTGTTAATGAATGCAGG	600
3N2-R3	AACTTAAGATCCAAGGAATGAAGGT-CCACT-	597
3E5-F3	AACTTAAGATC-AAGGAATGAAGGTTCCACTCTGTTTCCAATAGTGTTAATGAATGCAGG	588
3E5-R3	AACTTAAGATC-AAGGAATGAAGGT-CC	595
	***********昂************* **	
N2	ATCTACTGGTTCAACGGTGTTCATTGTTGAAGATTTGGAAAAAGACTGAAAATGGTTAAA	1679
3N2-F3	TCTACTGGGGGTITTING	617
3N2-R3		
3E5-F3	TCTACTGGGGGTTTTNG	605
3E5-R3		
N2	TrCATACGGAACAACAATGTAAGAACACACTTTIGGTCCGTAATGCATAACCGATCCATA	1739
3N2-F3		
3N2-R3		
3E5-F3		

4N2-F4	
4N2-R4	
4E5-F4	
4E5-R4	
N2	GTTTGCAGTCGTTCACAATATGTTCCTTCCAGTCCTGTCGGACACGTACATTGCCCACAA 1440
4N2-F4	
4N2-R4	
4E5-F4	
4E5-R4	
N2	TIGTTGGGATCCGCGTAACCGCCGTGTTGGCAGTTTPATCCGATTGGTGCAAATGTCTGAA 1500
4N2-F4	---------------AAGGCTGAT 11
4N2-R4	------------TTTTGGGCA-TMTATCCGATTGGTGCAAATGTCTGAA 36
4E5-F4	
4E5-R4	----------------------TTGGCA-TNNATCCGATTGGTGCAAATGTCTGAA 33
N2	GTGAAATAAACGTGGAAAAATTATTCCGTAAACTGACTAGAACAGAAAGCCGTATTGAGC 1560
4N2-F4	-CNAAATAAACGTGGAAAAATTATTCCGTAAACTGACTAGAACAGAAAGCCGTATTGAGC 70
4N2-R4	GTGAAATAAACGTGGAAAAATTITTCCGTAAACTGACTAGAACAGAAAGCCGTATTGAGC 96
4E5-F4	--GAAATAA-CGTGGAAAAATTATTCCGTAAACTGACTAGAACAGAAAGCCGTATTGAGC 57
4E5-R4	GTGAAATAAACGTGGAAAAATTATTCCGTAAACTGACTAGAACAGAAAGCCGTATTGAGC 93 (3)
N2	AACTTAAGATCAAGGAATGAAGGTTCCACTCTGTTTCCAATAGTGITAATGAATGCAGGA 1620
4N2-F4	AACTTAAGATCAAGGAATGAAGGTTCCACTCTGTYTCCAATAGTGTTAATGAATGCAGGA 130
4N2-R4	AACTTAAGATCAAGGAATGAAGGTTCCACTCTGTTTCCAATAGTGTTAATGAATGCAGGA 156
4E5-F4	AACTTAAGAICAAGGAATGAAGGTTCCACTCTGTTTCCAATAGTGTTAATGAATGCAGGA 117
4E5-R4	AACTTAAGATCAAGGAATGAAGGTHCCACTCTGTTTCCAATAGTGTTAATGAATGCAGGA 153 ***
N2	TCTACTGGTTCAACGGTGTTCATTGTTGAAGATTTGGAAAAAGACTGAAAATGGTTAAAT 1680
4N2-F4	TCTACTGGTTCAACGGTGTTCATTGITGAAGATTTGGAAAAAGACTGAAAATGGTTAAAT 190
4N2-R4	TCTACTGGTTCAACGGTGTTCATTTGITGAAGATITTGGAAAAAGACTGAAAATGGTTAAAT 216
4E5-F4	TCTACTGGTTCAACGGTGTTCATTIGTTGAAGATTTGGAAAAAGACTGAAAATGGTTAAAT 177
4E5-R4	TCTACTGGTTCAACGGTGTTCATTGTTGAAGATTTGGAAAAAGACTGAAAATGGTTTAAAT 213 ***)
N2	TCATACGGAACAACAATGTAAGAACACACTTTTGGTCCGTAATGCATAACCGATCCATAA 1740
4N2-F4	TCATACGGAACAACAATGTAAGAACACACTTPTGGTCCGTAATGCATAACCGATCCATAA 250
4N2-R4	TCATACGGAACAACAATGTAAGAACACACTTTTGGTCCGTAATGCATAACCGATCCATAA 276
4E5-F4	TCATACGGAACAACAATGTAAGAACACACTTTHGGTCCGTAATGCATAACCGATCCATAA 237

4E5-R4	TCATACGGAACAACAATGTAAGAACACACTTTTGGTCCGTAATGCATAACCGATCCATAA 273
N2	TCATAAGGTAAGCTGTATTCGTTAACTTCCGACCACGATCTCTTGTCGAATTGGCCTTCA 1800
4N2-F4	TCATAAGGTAAGCTGTATTCGITAACTTCCGACCACGATCTCTTGTCGAATTGGCCTTCA 310
4N2-R4	TCATAAGGTAAGCTGTATTCGTTAACTHCCGACCACGATCTCTTGTCGAATTGGCCTTCA 336
4E5-F4	TCATAAGGTAAGCTGTATTCGTTAACTTCCGACCACGATCTCTTGTCGAATTGGCCTTCA 297
4E5-R4	TCATAAGGTAAGCTGTATTCGTTAACTTCCGACCACGATCTCTFGTCGAATTGGCCTTCA 333
N2	AGACCATTTATAGCATITT'GGCGATTGATTCTGATAAACTGGCATGTTTTATTTTTCAAT 1860
4N2-F4	AGACCATTTATAGCATTTTGGCGATTGATTCTGATAAACTGGCATGTTTTTATTTTTTCAAT 370
4N2-R4	AGACCATTTATAGCATTTTGGCGATTGATTCTGATAAACTGGCATGTTHTATTTTTTCAAT 396
4E5-F4	AGACCATTTATAGCATHTTGGCGATTGATTCTGATAAACTGGCATGTTTTTATTTTTCAAT 357
4E5-R4	AGACCATTTATAGCATTTTGGCGATTGATTCTGATAAACTGGCATGTTTTIATITTTTCAAT 393
N2	TITCAAAACTCACCTAACGTATGAATCTCGTTCAGGTCTCGCTTGTTCATGCCAAAATCC 1920
4N2-F4	TITCAAAACTCACCTAACGTATGAATCTCGTTCAGGTCTCGCTTTGTTCATGCCAAAATCC 430
4N2-R4	TITCAAAACTCACCTAACGTATGAATCTCGTTCAGGTCTCGCTTTGTTCATGCCAAAATCC 456
4E5-F4	TTTCAAAACTCACCTAACGTATGAATCTCGTTCAGGTCTCGCTTIGTTCATGCCAAAATCC 417
4E5-R4	THTCAAAACTCACCTAACGTATGAATCTCGTTCAGGTCTCGCTTTGTTCATGCCAAAATCC 453
	 (3)
N2	TAAAGCATGACCCACTTCATGAGTAATAATTCCGAGCTAAAATTACACCATTTCCACTAT 1980
4N2-F4	TAAAGCATGACCCACTTCATGAGTAATAATTCCGAGCTAAAATTACACCATTTTCACTAT 490
4N2-R4	TAAAGCATGACCCACTTCATGAGTAATAATTCCGAGCTAAAATTACACCATTTTCCACTAT 516
4E5-F4	TAAAGCATGACCCACTTCATGAGTAATAATTCCGAGCTAAAATTACACCATTTCCACTAT 477
4E5-R4	TAAAGCATGACCCACTTCATGAGTAATAATTCCGAGCTAAAATTACACCATTTCCACTAT 513
N2	TAAAAAAGTAATTTCCAGTAAATATATGAAAAAAATTTCTAACCGTTTCACATCCATCAC 2040
4N2-F4	TAAAAAAGTAATTTCCAGTAAATATATGAAAAAAATTTCTAACCGTTTCACATTTCACCC 550
4N2-R4	
4E5-F4	TAAAAAAGTAATTTCCAGTAAATATATGAAAAAAATTTCTAACCGTTTCACATTTCANCC 537
4E5-R4	TAAAAAAGTAATTTTCCNGNAAATCTATG \qquad
N2	CAATAGAAATTTCCTGAGGGCCTCCCAATCIGCCAACACTAGAATAGCATCTAAAATCAA 2100
4N2-F4	
4N2-R4	
4E5-F4	
4E5-R4	

N2	TCATAAGGTAAGCTGTATTCGTTAACTTCCGACCACGATCTCTTGTCGAATTGGCCTTCA 1800
5N2-F5	
5N2-R5	
5E5-F5	
5E5-R5	
N2	AGACCATTTATAGCATTTTGGCGATTGATTCTGATAAACTGGCATGTTITATTTTTTCAAT 1860
5N2-F5	
5N2-R5	
5E5-F5	
5E5-R5	
N2	TTTCAAAACTCACCTAACGTATGAATCTCGTTCAGGTCTCGCTTGTTCATGCCAAAATCC 1920
5N2-F5	-A 1
5N2-R5	---TTITGGTCTCGCTTGTTCATGCCAAAATCC 30
5E5-F5	----------------A 1
5E5-R5	-------------------------1TTTTGGTCTCGCTTGTTCATGCCAAAATCC 32
N2	TAAAGCATGACCCACTTCATGAGTAATAATTCCGAGCTAAAATTACACCATTTCCACTAT 1980
5N2-F5	CTAAGNTTGACC-ACTTTCATGAGTAATAATTCCGAGCTAAAATTACACCATTTCCACTAT 60
5N2-R5	TAAAGCATGACCCANTTCATGAGTAATAATTCCGAGCTAAAATTACACCATTTCCACTAT 90
5E5-F5	CTAAGTTNGACC--CTTCATGAGTAATAATTCCGAGCTAAAATTACACCATTTCCACTAT 59
5E5-R5	TAAAGCATGACCCACTTCATGAGTAATAATTCCGAGCTAAAATTACACCATTTCCACTAT 92 4
N2	TAAAAAAGTAATTTCCAGTAAATA \ddagger ATGAAAAABATTTCTAACCGTTTCACATCCATCAC 2040
5N2-F5	TAAAAAAGTAATTTCCAGTAAATATATGAAAAAAATTTCTAACCGTTTCACATCCATCAC 120
5N2-R5	TAAAAAAGTAATTTCCAGTAAATATATGAAAAAAATTTCTAACCGTTPTCACATCCATCAC 150
5E5-F5	TAAAAAAGTAATITCCAGTAAATATATGAAAAAAATTTCTAACCGTTTCACATCCATCAC 119
5E5-R5	TAAAAAAGTAATTTCCAGTAAATATATGAAAAAAATTTCTAACCGTTTCACATCCATCAC 152
N2	CAATAGAAATTTCCTGAGGGCCTCCCAATCTGCCAACACTAGAATAGCATCTAAAATCAA 2100
5N2-F5	CAATAGAAATTTCCTGAGGGCCTCCCAATCTGCCAACACTAGAATAGCATCTAAAATCAA 180
5N2-R5	CAATAGAAATTTCCTGAGGGCCTCCCAATCTGCCAACACTAGAATAGCATCTAAAATCAA 210
5E5-F5	CAATAGAAATTTCCTGAGGGCCTCCCAATCTGCCAACACTAGAATAGCATCTAAAATCAA 179
5E5-R5	CAATAGAAATTTCCTGAGGGCCTCCCAATCTGCCAACACTAGAATAGCATCTAAAATCAA 212

N2	TCAATATTTGCTGTTGITATTCTITTTTCTAAAAACAAAACGGACCCTTCTCCTTTTGCTAA 2160
5N2-F5	TCAATATTTGCTGTTGTTATTCTTTTTTCTAAAAACAAAACGGACCCTTCTCCITHGCTAA 240
5N2-R5	TCAATATTTGCTGTTGTTATTCTTTHTTCTAAAAACAAAACGGACCCTTNTCCTTTGCTAA 270
5E5-F5	TCAATATTTGCTGTTGTTATTCTITTTTCTAAAAACAAAACGGACCCTTCTCCTTTGCTAA 239
5E5-R5	TCAATATTTGCTGTTGTTATTCITTITTCTAAAAACAAAACGGACCCTTCTCCTTTGCTAA 272
N2	AAACCAGGTAATCCGAGCCACCTCCATTIGAGAGAAAACGTATGCAAGTGTTTCTTTTCAT 2220
5N2-F5	AAACCAGGTAATCCGAGCCACCTCCATTGAGAGAAAAACGTATGCAAGTGTTTCTTTTCAT 300
5N2-R5	AAACCAGGTAATCCGAGCCACCTCCATTGAGAGAAAAACGTATGCAAGTGTTTCTTTTCAT 330
5E5-F5	AAACCAGGTAATCCGAGCCACCTCCATTGAGAGAAAAACGTATGCAAGTGTTTTCTTHICAT 299
5E5-R5	AAACCAGGTAATCCGAGCCACCTCCATTGAGAGAAAAACGTATGCAAGTGTTTCTTTTCAT 332
N2	AGTGTCTTAAACCGTTTGTTATTTGAGATTGCCAGTTACCTGAAACATGTTGATAATTTC 2280
5N2-F5	AGTGTCTPAAACCGTTTGTTATTTGAGATHGCCAGTTACCTGAAACATGITGATAATTTC 360
5N2-R5	AGTGTCTTAAACCGTTTGTTATTTTGAGATHGCCAGTTACCTGAAACATGTTGATAATTTC 390
5E5-F5	AGTGTCTTAAACCGTTTGTTATTTGAGATTGCCAGTTACCTGAAACATGTTGATAATTTC 359
5E5-R5	AGTGTCTTAAACCGTTTGTTATITGAGATTGCCAGTTACCTGAAACATGTTGATAATTTCC 392
N2	AGATAAACATTATTTGTACATACCATCAGTATCTAAAAAACGATAAGGAATGTTTCGAGA 2340
5N2-F5	AGATAAACATTATTTGTACATACCATCAGTATCTAAAAAACGATAAGGAATGTTTCGAGA 420
5N2-R5	AGATAAACATTATTTGTACATACCATCAGTATCTAAAAAACGATAAGGAATGTTTCGAGA 450
5E5-F5	AGATAAACATTATTTGTACATACCATCAGTATCTAAAAAACGATAAGGAATGTTTCGAGA 419
5E5-R5 W2	AGATAAACATTATTTGTACATACCATCAGTATCTAAAAAACGATAAGGAATGTTTCGAGA 452 HE, (6)
N2	CCACGTTGTHCCGTTY
5N2-F5	CCACGTTGTHCCGTMCA--AATTCATTTTTTCGITTCACACGAAAGCCGNTITGAGCAAAA 478
5N2-R5	
5E5-F5	CCACGTTGTTCCGITLCA--AATTCATTTTTTCGTPTCACACGAAAGCCGNTTTGAGCAAAA 477
5E5-R5	
N2	TTATTCATITGTGAAACCGTTAAAGCCTGAAAAAAAATTATTCAGCATTTTTTAAACCTT 2458
5N2-F5	
5N2-R5	
5E5-F5	
5E5-R5	
N2	CTAAACTAACCATATCACTTTCAAACATAACTGCAGCAATTTTGCTATTTGCAGCCATTT 251
5N2-F5	
5N2-R5	

$\begin{aligned} & \text { 7E5-F7 } \\ & 7 \mathrm{E} 5-\mathrm{R} 7 \end{aligned}$	
N2	TTGTTGTAAATCCCACTGGACGGGATTACAGTGTTTATATCCTGCATAGGA犋TTTTATA 2580
7N2-F7	--------------------TGTTAANCTTCA --ANGAATTTTATA 24
7N2-R7	----TCCCCCCGAGGGGGGATTACAGTGTITATATCCTGCATAGGAAATTTTATA 51
7E5-F7	----TIGGTTATATCTTTTA--GGAAATTTTTATA 28
7E5-R7	\qquad TTCCCNCCGNNGGGGATTACAGTGTTTATATCCTGCATAGGAAATTTTIATA 51
N2	AAAATATTTCAAAAAATGACTCACATATTGAGATCCTGATTTTCGATTAAAATAAGAACT 2640
7N2-F7	AAAATATTTCAAAAAATGACTCACATATTGAGATCCTGATITTCGATTAAAATAAGAACT 84
7N2-R7	AAAATATTTCAAAAAATGACTCACATATTGAGATCCTGATTTTCGATTAAAATAAGAACT 111
7E5-F7	AAAATATTTCAAAAAATGACTCACATATTGAGATCCTGATTTTCGATTAAAATAAGAACT 88
7E5-R7	AAAATATTTCAAAAAATGACTCACATATTGAGATCCTGATHTTCGGATTAAAATAAGAACT 111
N2	CATAATCTGGATAACTTTATCATAACTITCTCCGGGGCGCTGGAACGCAGCTGTATPCTG 2700
7N2-F7	CATAATCTGGATAACTTTATCATAACTTTCTCCGGGGCGCTGGAACGCAGCTGTATTCTG 144
7N2-R7	CATAATCTGGATAACTTTATCATAACTTTCTCCGGGGCGCTGGAACGCAGCTGTATTCTG 171
7E5-F7	CATAATCTGGATAACTTTATCATAACTTTCTCCGGGGCGCTGGAACGCAGCTGTATTCTG 148
7E5-R7	CATAATCTGGATAACTTTATCATAACTTTCTCCGGGGCGCTGGAACGCAGCTGTATTCTG 171
N2	GTTCACACTATTGACAACCTGAATTCTAACGTATTTGCATATTTTTTCTATTAAACTAAC 2760
7N2-F7	GTTCACACTATTGACAACCTGAATTCTAACGTATTTGCATATTTTTTCTATTAAACTAAC 204
7N2-R7	GTTCACACTATTGACAACCTGAATTCTAACGTATTTGCATATPTTTTCTATTAAACTAAC 231
7E5-F7	GTTCACACTATTGACAACCTGAATTCTAACGTATTTTGCATATTMTTTTCTATPAAACTAAC 208
7E5-R7	GTTCACACTATTGACAACCTGAATTCTAACGTATTTGCATATTTTTTCTATTAAACTAAC 231
	6_{7}
N2	CTTGTCTATATCTIGACTAAACATAACTTGCGGCTGATCTTGTTGTGGTTCCGGCTCAGG 2820
7N2-F7	CTTGTCTATATCCTGACTAAACATAACTTGCGGCTGATCTHGTIGIGGTTCCGGCTCANG 264
7N2-R7	CITGTCTATATCCTGACTAAACATAACTTGCGGCTGATCTTGTTIGTGGTTCCGGCTCAGG 291
7E5-F7	CTTGICTATATCCTGACTAAACATAACTTGCGGCTGATCTTGTTGTGGTTCCGGCTCANG 268
7E5-R7	CTTGTCTATATCCTGACTAAACATAACTTGCGGCTGATCTIGTTGTGGTTCCGGCTCAGG 291
	**)
N2	CGGAGGAGGCGGTGGCGGGAGACCCTTAAACCTTTGATGAAAATTTGTAGTTTTAGGCTG 2880
7N2-F7	CGGAGGANGCGGTGGCGGGAGACCCTTAAACCTTTGATGAAAATTTGTAGTTTTAGGCTG 324
7N2-R7	CGGAGGAGGCGGTGGCGGGAGACCCTTAAACCTTTGATGAAAATTTGTAGTTTTTAGGCTG 351
7E5-F7	CGGAGGAGGCGGTGGCGGGAGACCCTTAAACCITTTGATGAAAATTTGTAGTTTTIAGGCTG 328
7E5-R7	CGGAGGAGGCGGTGGCGGGAGACCCTTAAACCTTTGATGAAAATTTGTAGTTTTAGGCTG 351
	**)

N2	GTTACCCATGGAGGTCTTCTATGCCATGGAGGTCTTCGCCAAGGTGGCGGTGGTCGATCC 2940
7N2-F7	GTTACCCATGGAGGTCTTCTATGCCATGGAGGTCTICGCCAAGGTGGCGGIGGTCGATCC 384
7N2-R7	GTTACCCATGGAGGTCTTCTATGCCATGGAGGINITCGCCAAGGTGGCGGTGGTCGATCC 411
7E5-F7	GTTACCCATGGAGGTCTHLTATGCCATGGAGGTCTTCGCCAAGGTGGCGGTGGTCGATCC 388
7E5-R7	GTTACCCATGGAGGTCTTCTATGCCATGGAGGTNTTCGCCAAGGTGGCGGTGGTCGATCC 411
N2	CATGGAGGTGGGGGTCCGAATGGCGGAGGACCTCGGTTTCTAAAACTTTGTTTTAATATG 3000
7N2-F7	CATGGAGGTGGGGGTCCGAATGGCGGANGACCTCGGTTTCTAAAACTTTGTTTTAATATG 444
7N2-R7	CATGGAGGTGGGGGTCCGAATGGCGGAGGACCTCGGTTTCTAAAACTITGTTTTAATATG 471
7E5-F7	CATGGAGGTGGGGGTCCGAATGGCGGAGGACCTCGGTTTCTAAAACTITGTTTTAATATG 448
7E5-R7	CATGGAGGTGGGGGTCCGAATGGGGGAGGACCTCGGTTTCTAAAACTTTGTTTTAATATG 471 ***************************\|********************************
N2	AAAACCTYGGCATTCTACACGTGCGAAAACGTGCTTTHIACAAAGTTCTATTMATATATTC 3060
7N2-F7	AAAACCTTGGCATTCTACACGTGCGAAAACGTGCTTTTIACAAAGTTCTATTTATATATTC 504
7N2-R7	AAAACCTTGGCATTCTACACGTGCGAAAACGTGCTTTTTACAAAGTTCTATTTATATATTC 531
7E5-F7	AAAACCTTGGCATTCTACACGTGCGAAAACGTGCTTTTTACAAAGTTCTATTTATATATTC 508
7E5-R7	AAAACCTIGGCATTCTACACGTGCGAAAACGTGCTTTMTACAAAGTTCTATTTTATATATTC 531 **
N2	TTGGATTAGCATGCTGATTITTTCAAATTCAGTTATGTTTGCAATTCTTCTGGAATCAAA 3120
7N2-F7	TTGGATTAGCATGCTGATTTTTTCAAATTCAGTTATGITTGCAATTCTTCTGGAATCAAA 564
7N2-R7	TTGGATTAGCATGCTG-TTTTTTCAAATTCAGTTATNG---AACATT--TTNANTCAAG 584
7E5-F7	TTGGATTAGCATGCTGATTTHTTCAAATTCAGTTATGTTTGCAATTCTTCTGGAATCAAA 568
7E5-R7	TTGGATTAGCATGCTGATTTTMTCAAATTCAGTTATNT----AACATTCNTNAANTNAAG 587
N2	GTGAAATCTCACCGATGCCAAGGTGGAGGCGGTCCCCAAGGCCGAAGAGGTCCTGGAAAA 3180
7N2-F7	
7N2-R7	
7E5-F7	
7E5-R7	
	*
N2	AACCAATCTGTAAACCGGAACGTATMTCATTATTTTTATACTTCCGTTYTMPATCAAATTC 3240
7N2-F7	
7N2-R7	
7E5-F7	
7E5-R7	-------------------------
N2	CAGGCAAAATTITTICAATTITCAGATAAAAAAATAAGTAAGTGTCAGCTGATGGCGATAA 3300
7N2-F7	

6.5 Alignments of mig- 23 sequencing results.

lig-231WT	
121A	
:v_648_1A	
$\mathrm{V}^{-648}{ }^{-1 \mathrm{~B}}$	CTGMGTCATTMGGATATATTGTCAAAAACAACAAATGTGAGAAGCGACMAGGATATTGAG 60
lig-231WT	--TCGGAAGTGCGCTITGAATGAAATACAGGCAAACCTGTTT 40
121A	---CAAGGCACTGT 11
:V 648_1A	--AMATACTGT 9
:V_648_1B	AACAATAAAATTACGGTACTTYGGAAGTKYCCTTTGAATGAAATACAGGCAAACCTKTTT 120
lig-231WT	TGAATTTCAATTAAAATGAAAGTCAAAATATAATTTTTAAAACTTTTATAAATTTATTTT 100
121A	TTGATTTCATT--AAATGAAAGTCAAAATATAATTTTTAAAACTTTTATAAATTTATTTT 69
:V_648_1A	TTGATTTCATT--AAATGAAAGTCAAAATATAATTTTTAAAACTTTTATAAATTTATTTT 67
v_648_1B	TGAATTTCAATTAAAATGAAAGTCAAAATATAATTTTTAAAACTTTTATAAATTTATTTT 180
[ig-231WT	TGGTACTTATGTAGGAGCCATACCACAAAATTTTAAAACCATTTTTAAAAGTTGCAGTGA 160
121A	TGGTACTTATGTAGGAGCCATACCACAAAATTTTAAAACCATTTTTAAAAGTTGCAGTGA 129
:V_648_1A	TGGTACTTATGTAGGAGCCATACCACAAAATTTTAAAACCATTTTTAAAAGTTGCAGTGA 127
:V_648_1B	TGGTACTTATGTAGGAGCCATACCACAAAATTTTAAAACCATTTTTAAAAGTTGCAGTGA 240
lig-231WT	CCTTTTTTTACAATGGTATGCTTTGAAATAGTGGTTTTTAAGCGTAAAAATACAACATAA 220
121A	CCTTTTTTTACAATGGTATGCTTTGAAATAGTGGTTTTTAAGCGTAAAAATACAACATAA 189
:v_648_1A	CCTTTTTTTACAATGGTATGCTTTGAAATAGTGGTTTTTAAGCGTAAAAATACAACATAA 187
:V_648_1B	CCTTTTTTTACAATGGTATGCTTTGAAATAGTGGTTTTTAAGCGTAAAAATACAACATAA 300

IIg-231WT	CATCAAGATTCGATtAGACTAGAATTTAATGGAAATTAAATTTTTAGGTACAGCTACTAC	280
121A	CATCAAGATTCGATTAGACTAGAATTTAATGGAAATTAAATTTTTAGGTACAGCTACTAC	249
:V648_1A	CATCAAGATTCGATTAGACTAGAATTTAATGGAAATTAAATTTTTAGGTACAGCTACTAC	247
:V_648_1B	CATCAAGATTCGATTRGACTAGAATTTAATGGAAATTAAATTTTTAGGTACAGCTACTAC 	360
IIg-231WT	ACCAGTACCGTAATTTTATTGTTCTCAATATCCTTGTCGCTTCTCACATTTGTTGTITTT	340
121A	ACCAGTACCGTAATTTTATTGTTCTCAATATCCTTGTCGCTTCTCACATTTGTTGTTTTT	309
:V_648_1A	ACCAGTACCGTAATTTTATTGTTCTCAATATCCTTGTCGCTTCTCACATTTGTTGTTTTT	307
:V_648_1B	ACC	363

lig-231WT	TGACAATATTATTCCGAATTGCAGCGTCCGAATGCGGTGATCCTATGCGTGTC-- 393
121A	TGACAATATTATTCCGAATTGCAGCGTCCGAATGCGGTGATCCTATGCGTGTCA- 363
:V648 1A	TGACAATATTATTCCGAATTGCAGCGTCCGAATGCGGTGATCCAATGCGTGTMAA 362
v-648-1B	

Iig-231WT
$121 A$
$: v-648 _1 A$
$: V-648 _1 B$

CTA
CTGMGTCATTMGGATATATTGTCAAAAACAACAAATGTGAGAAGCGACMAGGATATTGAG 60
Iig-231WT
121 A
$: \mathrm{v}-648$ _1A
$\mathrm{v}-648 _1 \mathrm{~B}$
--------------------TCGGAAGTGCGCTTTGAATGAAATACAGGCAAACCTGTTT 40
 9
AACAATAAAATTACGGTACTTYGGAAGTKYCCTTTGAATGAAATACAGGCAAACCTKTTT 120

* ${ }^{1}$TTGATTTCATT--AAATGAAAGTCAAAATATAATTTTTAAAACTTTTATAAATTTATTTT 69TTGATTTCATT--AAATGAAAGTCAAAATATAATTTTTAAAACTTTTATAAATTTATTTT 67TGAATTTCAATTAAAATGAAAGTCAAAATATAATTTTTAAAACTTTTATAAATTTATTTT 180
lig-231WT
121A
:v_648_1A
:v_648-1B
lig-231WT
121A
:v_648_1A
$: \mathrm{V}_{-648}-1 \mathrm{~B}$
Lig-231WT
121A
:V_648 1A
: $\mathrm{V}^{-648} 1 \mathrm{~B}$
lig-231WT 121A.
:v 648 1A
:v_648-1B

Lig-231WT 121A :V_648_1A : $\mathrm{v}^{-} 648$ _1B
lig-231WT 121A :v_648_1A : V-648_1B
lig-231WT 121A :V_648-1B
lig-231WT
121 A
$: \mathrm{v}-648$ _1A
$: \mathrm{V} _648 _1 \mathrm{~B}$

Iig-231WT 121A
$\checkmark 648$ 1A : v_648_1B

TGGTACTTATGTAGGAGCCATACCACAAAATTTTAAAACCATTTTTAAAAGTTGCAGTGA 160 TGGTACTTATGTAGGAGCCATACCACAAAATTTTAAAACCATTTTTAAAAGTTGCAGTGA 129 TGGTACTTATGTAGGAGCCATACCACAAAATTTTAAAACCATTTTTAAAAGTTGCAGTGA 127 TGGTACTTATGTAGGAGCCATACCACAAAATTTTAAAACCATTTTTAAAAGTTGCAGTGA 240 ***)

CCTTTTTTTACAATGGTATGCTTTGAAATAGTGGTTTTTAAGCGTAAAAATACAACATAA 220 CCTTTTTTTACAATGGTATGCTTTGAAATAGTGGTTTTTAAGCGTAAAAATACAACATAA 189 CCTTTTTTTACAATGGTATGCTTTGAAATAGTGGTTTTTAAGCGTAAAAATACAACATAA 187 CCTTTTTTTACAATGGTATGCTTTGAAATAGTGGTTTTTAAGCGTAAAAATACAACATAA 300
***)

> CATCAAGATTCGATTAGACTAGAATTTAATGGAAATTAAATTTTTAGGTACAGCTACTAC 280 CATCAAGATTCGATTAGACTAGAATTTAATGGAAATTAAATTTTTAGGTACAGCTACTAC 249 CATCAAGATTCGATTAGACTAGAATTTAATGGAAATTAAATTTTTAGGTACAGCTACTAC 247 CATCAAGATTCGATTRGACTAGAATTTAATGGAAATTAAATTTTTAGGTACAGCTACTAC 360

ACCAGTACCGTAATTTTATTGTTCTCAATATCCTTGTCGCTTCTCACATTTGTTGTTTTT 340 ACCAGTACCGTAATTTTATTGTTCTCAATATCCTTGTCGCTTCTCACATTTGTTGTTTTT 309 ACCAGTACCGTAATTTTATTGTTCTCAATATCCTTGTCGCTTCTCACATTTGTTGTTTTT 307

TGACAATATTATTCCGAATTGCAGCGTCCGAATGCGGTGATCCTATGCGTGTC-- 393 TGACAATATTATTCCGAATTGCAGCGTCCGAATGCGGTGATCCTATGCGTGTCA- 363 TGACAATATTATTCCGAATTGCAGCGTCCGAATGCGGTGATCCAATGCGTGTMAA 362

lig-23WT	-TCCGAATTGCAGCGTCCGAATGCGGTGATCCTATGCGTGTCAGTCTTAGATTCACCATT	59
12-2A	GGCAKCGTGTM-GTCTTAGATTC-CCAYT	27
$12-2 B$	TTYCGAATTGCAGCGTCCGAATGCGGTGATCCTATGCGTGTCAGTYTTAGATTCACCATT	60%
:V6482A	GACGTAATGCGTGTM-GTCTTAGATTM-CCATT	31
:V6482B	SGTCCGAATGCGGKGATCCTATGCGKGTCAGTYTTAGATTCACCATT	47
lig-23WT	CTTGCCGTTTCGGCAATGATATTCTTTCCAGTTATTGTATTTATTTATGTGGTAGAAGCA	119
12-2A	CTTGCCGTTTCGGCAATGATATTCYTTCCMGTTATTGTATTTATTTATGTGGTAGAAGCM	87
$12-2 \mathrm{~B}$	CTTGCCGTTTYGGCAATGATATTCTTTCCAGTTATTGTATTTATTTATGTGGTAGAAGCA	120
: 6482 A	CTTGCCGTTTCGGCAATGATATTCTTTCCAGTTATTGTATTTATTTATGTGGTAGAAGCA	91
:V6482B	CTtGCCGTTTCGGCAATGATATTCTTTCCAGTTATTGTATTTATTTATGTGGTAGAAGCA	107
lig-23WT	CACACATCTCCAAAAGTGATAGCAGATGGTGAGTTGTTTGGATTTTTGAAGTTTTTATTA	179
12-2A	CMCMCMTCYCCMAAAGTGATAGCMGATGGTGAGTTGTTTGGATTTTTGAAGTTTTTATTA	147
$12-2 B$	CACACATCTCCAAAAGTGATAGCAGATGGTGAGTTGTTTGGATTTTTGAAGTTTTTWTTA	180
:V6482A	CACACATCTCCAAAAGTGATAGCAGATGGTGAGTTGTTTGGATTTTTGAAGTTTTTATTA	151
:V6482B	CACACATCTCCAAAAGTGATAGCAGATGGTGAGTTGTTTGGATTTTTGAAGTTTTTWTTA 	167
lig-23WT	TACAAAAGTATAAAAAAGATTATAAATAATTTTTGGAAAAAAAACTTTGATACATAAATT	239
12-2A	TACMAAAGTATAAAAAAGATTATAAATAATTTTTGGAAAAAAAACTTTGATACMTAAATT	207
12-2B	TACAAAAGTATAAAAAAGATTATAAATAATTTTTGGAAAAAAAACTTTGATACATAAATT	240
:V6482A	TACAAAAGTATAAAAAAGATTATAAATAATTTTTGGAAAAAAAACTTTGATACATAAATT	211
:V6482B	TACAAAAGTATAAAAAAGATTATAAATAATTTTTGGAAAAAAAACTTTGATACATAAATT	227
	***s**	
lig-23WT	TGAAACAATAGAATCCGTATTATCAGAACCTATTGAAAAACATCATTAATAACGTGTAAT	299
$12-2 \mathrm{~A}$	TGAAACAATAGAATCCGTATTATCARAACCYATTGAAAAACMTCATTAATAACGTGTAAT	267
12-2B	TGAAACAATAGAATCCGTATTATCAGAACCTATTGAAAAACATCATTAATAACGTGTAAT	300
:v6482A	TGAAACAATAGAATCCGTATTATCARAACCTATTGAAAAACATCATTAATAACGTGTAAT	271
:V6482B	TGAAACAATAGAATCCGTATTATCAGAACCTATTGAAAAACATCATTAATAACGKGTAAT	287

lig-23WT TGGCTAATAGAAACGTTAACTAATTAAGTAATTTCGATAACTAACCGAGCAGGACCGTGT 359
12-2A
12-2B
:V6482A
:v6482B
lig-23WT
$12-2 \mathrm{~A}$
$12-2 B$
:V6482A
:v6482B
lig-23WT
12-2A
$12-2 B$
:V6482A
:V6482B
TGGCTAATARAAACGTTAACTAATTAAGTAATTTCGATAACTAACCGAGCAGGACCGTGT 327
TGGCTAATAGAAACGTTAACTAATTAAGTAATTTCGATAACTAACCGAGCAGGACCGTGT 360
TGGCTAAWARAAACGTTAACTAATTAAGTAATTTCRATAACTAACCGAGCAGGACCGTGT 331
KGGCTAATAGAAACGTTAACTAATTAAGTAATTTSGATAACTAACCGAGCAGGACCGKGK 347

GTAACTTCCCTGAAAAACCGCCGAAAGTATTGTTAGTTTTTGAAATTCTTTGCAAACTTT 419 GTAACTTCCCTGAAAAACCGCCRAAAGTATTGTTAGTTTTTGAAATTCTTTGCAAACTTT 387 GTAACTTCCCTGAAAAACCGCCGAAAGTATTGTTAGTTTTTGAAATTCTTTGCAAACTTT 420 GTAACTTCCCTGAAAAACCGCCRAAAGTATTGTTAKTTTTTGAAATTCTTTGCAAACTTT 391 GTAACTTCCCTGAAAAACCGCCGAAAGTATTGTTAGTTTTTGAAATTCTTTGCAAACTTT 407

ACTTTAAATGATTTCAAAAATAAAAAAACAATTAAAGCTTCACAGACTTTGTTAGTTTTG 479 ACTITAAATGATTTCAAAAATAAAAAAACAATTAAAGCTTCMCAGACTTTGTTAGTTTTG 447

ACTTTAAATGATTTCAAAAATAAAAAAACAATTAAAGCTTCACARACTTTGTTAGTTTTG 451
ACTTTAAATGATTTCAAAAATAAAAAAACAAT-AAAGCT-CACAGACTT------------454 45

iig-23WT GTGGAAATCGGTCGTtCAG- 498
12-2A
12-2B
:V6482A
GTGGAATG---------------- 455
v6482B
GTGGAAATCGGTCGTTCAGA 471

lig-233WT	TCCCTGAAAAACCGCCGAAAGTATTGTTAGTTTTTGAAAT---TCTTTGCAAACTTTACT	57
$123 A$	$---T T C C C T G A A A A A C C G C C G A A A G T A T T G T T A G T T T T T G A A A T T C T T T G C A A-C T T T A C T ~$	

lig-23WT	ATtTTCTTTGTATTtATTTTTTTGATATTTAGGAAAGTTCAACAAAACAGCTACATTGGA 597
124A	ATTTTCTTTGTATTTATTTTTTTGATATTTAGGAAAGTTCAACAAAACAGCTACATTGGA 567
124 B	ATTTTCTTTGTATTTATTTTTTTGATATTTAGGAAAGT-CAACAAAACAGCTACAGAACC 598
:V_648_4A	ATTTTCTTTGTATTTATTTTTTTGATATTTAGGAAAGTTCAACAAAACAGCTACATTGGA 569
:V_648_4B	ATTTTCTTTGTATTTATTTTTTTGATAITTAGGAAAGT-CAACAAAACAKCWCGAKT-CC 598

lig-23WT	TTTCCCGGGAACCTCGCCAGCACATGCA--- 625
124 A	TTTCCCGGGAACCTCGCCASA---------- 588
124B	GGTA--------------------------162020
(V_648_4A	TTTCCCGGGAACCTCGCCAGCACATGCAAGA 600
V_648_4B	

$\begin{aligned} & \operatorname{lig}-235 \mathrm{WT} \\ & 125 \mathrm{~A} \end{aligned}$	--TGGAACAAAACCTGCCCAAGCTGCAGAATATCTGAGGCCACTTATGGAACTTGCCGAA 58
125B	TTGGAACAAAAAMCTGCCCAAGCTGCAGAATATCTGAGGCCACTTATGGAACTTGCCGAA 60
:V_648_5A	GCATAASATCTGAGCCTTATGGA-CTTGTCGAA 32
v-648_5B	ACCTGCCCAAGCTGCAGAATATCTGAGGCCACTTATGGAACTTGTCGAA 49
lig-235WT	AGACATATCCCAGAAGAAAAAAGGCCGTATACACCTGTTTTCATTTTTGCCACTGCTGGA 118
25A	AGACATATCCCAGAAGAAAAAAGGCCGTATACACCTGTTTTCATTTTTGCCACTGCTGGA 76
25B	AGACATATCCCAGAAGAAAAAAGGCCGTATACACCTGTTTTCATTTTTGCCACTGCTGGA 120
v_648_5A	-GACATATCCCAGAAGAAAAAAGGCCGTATACACCTGTTTTCATTTTTGCCACTGCTGGA 91
v_648_5B	AGACATATCCCAGAAGAAAAAAGGCCGTATACACCTGTTTTCATTTTTGCCACTGCTGGA 109
ig-235WT	ATGAGATTGATTCCTGACGAGTATGTTTTAATCGGGTGATATCATGGTTTCCTTTTTCTA 178
25A	ATGAGATTGATTCCTGACGAGTATGTTTTAATCGGGTGATATCATGGTTTCCTTTTTCTA 136
25B	ATGAGATTGATTCCTGACGAGTATGTTTTAATCGGGTGATATCATGGTTTCCTTTTTCTA 180
v_648_5A	ATGAGATTGATTCCTGACGAGTATGTTTTAATCGGGTGATATCATGGTTTCCTTTTTCTA 151
v_648_5B	ATGAGATTGATTCCTGACGAGTATGTTTTAATCGGGTGATATCATGGTTTCCTTTTTCTA 169
ig-235WT	AAATTTCAAACTTTCAGACAAAAAGAAGCTGTTCTCAAAAACCTACGTAATAAGCTACCA 238
25A	AAATTTCAAACTTTCAGACAAAAAGAAGCTGTTCTCAAAAACCTACSTAATAAGCTACCA 196
25B	AAATTTCAAACTTTCAGACAAAAAGAAGCTGTTCTCAAAAACCTACGTAATAAGCTACCA 240
v_648 5A	AAATTTCAAACTTTCAGACAAAAAGAAGCTGTTCTCAAAAACCTACGTAATAAGCTACCA 211
v_648_5B	AAATTTCAAACTTTCAGACAAAAAGAAGCTGTTCTCAAAAACCTACGTAATAAGCTACCA 229
ig-235WT	AAAATTACATCGATGCAAGTACTGAAAGAGCATATCAGGATAATCGAAGGAAAATGGGAA 298
25A	AAAATTACATCSATGCAAGTACTGAAAGAGCATATCAGGATAATCSAAGGAAAATGGGAA 256
25B	AAAATTACATCGATGCAAGTACTGAAAGAGCATATCAGGATAATCGAAGGAAAATGGGAA 300
v 648 5A	AAAATTACATCGATGCAAGTACTGAAAGAGCATATCAGGATAATCGAAGGAAAATGGGAA 271
v 648_5B	AAAATTACATCGATGCAAGTACTGAAAGAGCATATCAGGATAATCGAAGGAAAATGGGAA 289
ig-235WT	GGAATTTATAGTTGGATTGCAGTCAATTATGCTCTTGGTAAGGTTTTCAATATTTTCTTT 358
25A	GGAATTTATAGTTGGATTGCAGTCAATTATGCTCTTGGTAAGGTTTTCAATATTTTCTTT 316
25B	GGAATTTATAGTTGGATTGCAGTCAATTATGCTCTTGGTAAGGTTTTCAATATTTTCTTT 360
v_648_5A	GGAATTTATAGTTGGATTGCAGTCAATTATGCTCTTGGTAAGGTTTTCAATATTTTCTTT 331
v_648_5B	GGAATTTATAGTTGGATTGCAGTCAATTATGCTCTTGGTAAGGTTTTCAATATTTTCTTT 349
ig-235WT	GTATTTATTTTTTTGATATTTAGGAAAGTTCAACAAAACAGCTACATTGGATTTCCCGGG 418
25A	GTATTTATTTTTTTGATATTTAGGAAAGTTCAACAAAACAGCTACATTGGATTTCCCGGG 376
25B	GTATTTATTTTTTTGATATTTAGGAAAGTTCAACAAAACAGCTACATTGGATTTCCCGGG 420
v_648_5A	GTATTTATTTTTTTGATATTTAGGAAAGTTCAACAAAACAGCTACATTGGATTTCCCGGG 391
v_648_5B	GTATTTATTTTTTTGATATTTAGGAAAGTTCAACAAAACAGCTACATTGGATTTCCCGGG 409
ig-235WT	AACCTCGCCAGCACATGCAAGGCAAAAAACTGTTGGAATGATTGATATGGGTGGAGCAAG 478
25A	AACCTCGCCAGCACATGCAAGGCAAAAAACTGTTGGAATGATTGATATGGGTGGAGCAAG 436
25B	AACCTCGCCAGCACATGCAAGGCAAAAAACTGTTGGAATGATTGATATGGGTGGAGCAAG 480
v_648_5A	AACCTCGCCAGCACATGCAAGGCAAAAAACTGTTGGAATGATTGATATGGGTGGAGCAAG 451
V_648_5B	AACCTCGCCAGCACATGCAAGGCAAAAAACTGTTGGAATGATTGATATGGGTGGAGCAAG 469
ig-235WT	TGCTCAAATTGCATTTGAGCTTCCTGACACTGACAGTTTTAGCAGTATTAATGTGGAAAA 538
25A	TGCTCAAATTGCATTTGAGCTTCCTGACACTGACAGTTTTAGCAGTATTAATGTGGAAAA 496
25B	TGCTCAAATTGCATTTGAGCTTCCTGACACTGACAGTTTTAGCAGTATTAATGTGGAAAA 540
- 648_5A	TGCTCAAATTGCATTTGAGCTTCCTGACACTGACAGTTTTAGCAGTATTAATGTGGAAAA 511
v_648_5B	TGCTCAAATTGCATTTGAGCTTCCTGACACTGACAGTTTTAGCAGTATTAATGTGGAAAA 529 ***)

```
ig-235WT TGTGAGTTTTGCTTTAAGTAACTACTTTTTAAATATGTGCAATTTTAAGATTAACCTCGG 598
25A
25B
v_648_5A
v_648_5B
    TGTGAGTTTTGCTTTAAGTAACTACTTTTTAAATATGTGCAATTTTAAGATTAAMMSCRR 556
    TGTGAGTTTTGCTTTAAGTAACTACT---TAAATATGCATTCT----------------------}58
    TGTGAGTTTTGCTTTAAGTAACTACTTTTTAAATATGTGCAATTTTAARATTAACCTCGG 571
    TGTGAGTTTTGCTTTAAGTAACTACT---TAAATATGCATGG----------------------
    *************************** |********
ig-235WT ATGCAGGG-AAGAC----- 611
25A
25B
v_648_5A
SWAMAGGGGAARACCAMA 574
v_648 5B
ATGARGGG-AARACCA-- 586
```

(ig-236WT
126A
126B
:v_648_6A
v_648_6B
lig-236WT 26A
26B
v_648_6A
v_648_6B
ig-236WT
26A
26B
v_648_6A
$\mathrm{v}_{-} 648$ - 6 B
ig-236WT
26 A
26 B
v 648_6A
$\mathrm{v}_{-} 648 _6 \mathrm{~B}$
ig-236WT
26A
26B
v_648_6A
$\mathrm{v}_{-}^{-} 648_{-}^{-} 6 \mathrm{~B}$
ig-236WT
26A
26B
v_648_6A
$\mathrm{v}^{-} 648$ - 6 B
ig-236WT 26A
26 B
v_648_6A
v_648_6B

```
ig-236WT
26A
26B
v_648_6A
\nabla_648_6B
```

ig-236WT
26A
26B
v_648_6A
v_648-6B
-GATATGGGTGG-AGCAAGTGCTCAAATTGCATTTGAGCTTCCTGACACTGACAGTTTTA 58 ---------------------------------TTKCR---CTCTGACC-TGACAGTTTTA 24 TKATATGGGGKKGAGCAAGTGCTCAAATTGCATTTGAGCTTCCTGACACTGACAGTTTTA 60 ---------------CGRRKTRK-RCRTSGCAKMTGR---CTCTGMC--TGAC-GTTTTA 38 TKATATGGGKKG-AGCAAGTGCTCAAATTGCATTTGAGCTTCCTGACACTGACAGTTTTA 59 $\star \star \star * * * * * * * \leftrightarrow \star \star \star \star * *$

GCAGTATTAATGTGGAAAATGTGAGTTTTGCTtTAAGTAACTACTTTTTAAATATGTGCA 118 GCAGTATTAATGTGGAAAATGTGAGTTTTGCTTTAAGTAACTACTTTTTAAATATGTGCA 84 GCAGTATTAATGTGGAAAAGGGAGTTTTGCTTTAAGTAACTACTTTTTAAATATGTGCA 120 GCAGTATTAATGTGGAAAATGTGAGTTTTGCTTTAAGTAACTACTTTTTAAATATGTGCA 98 GCAGTATTAATGTGGAAAATGTGAGTTTTGCTTTAAGTAACTACTTTTTAAATATGTGCA 119
 ATTTTAAGATTAACCTCGGATGCAGGGAAGACGACTCGTTATTCAAGTATAAACTGTTTG ATTTTAAGATTAACCTCGGATGCAGGGAAGACGACTCGTTATTCAAGTATAAACTGTTTG 144 ATTTTAAGATTAACCTCGGATGCAGGGAAGACGACTCGTTATTCAAGTATAAACTGTTTG 180 ATTTTAAGATTAACCTCGGATGCAGGGAAGACGACTCGTTATTCAAGTATAAACTGTTTG 158 ATtTTAAGATTAACCTCGGATGCAGGGAAGACGACTCGTTATTCAAGTATAAACTGTTTG 179

TGACAACATTTCTTGGCTACGGAGTCAACGAAGGAATCCGGAAGTACGAGCACATGTTGC 238 TGACAACATTTCTTGGCTACGGAGTCAACGAAGGAATCCGGAAGTACGAGCACATGTTGC 204 TGACAACATTTCTTGGCTACGGAGTCAACGAAGGAATCCGGAAGTACGAGCACATGTTGC 240 TGACAACATTTCTTGGCTACGGAGTCAACGAAGGAATCCGGAAGTACGAGCACATGTTGC 218 TGACAACATTTCTTGGCTACGGAGTCAACGAAGGAATCCGGAAGTACGAGCACATGTTGC 239

TGTCAAAATTGAAAGATCAAAATGGAACAGTCATTCAAGATGATTGCATGCCACTGAACT TGTCAAAATTGAAAGATCAAAATGGAACAGTCATTCAAGATGATTGCATGCCACTGAACT tGTCAAAATTGAAAGATCAAAATGGAACAGTCATTCAAGATGATTGCATGCCACTGAACT TGTCAAAATTGAAAGATCAAAATGGAACAGTCATTCAAGATGATTGCATGCCACTGAACT TGTCAAAATTGAAAGATCAAAATGGAACAGTCATTCAAGATGATTGCATGCCACTGAACT

tacatananccgtcacactggananccgagananttttgtccgangagtatgttgttttt TACATAAAACCGTCACACTGGAAAACGGARAAAATTTTGTGCGAAGAGTATGTTGTTTTT 324 tACATAAAACCGTCACACTGGAAAACGGAGAAAATTTTGTGCGAAGAGTATGTTGTTTTT 360 TACATAAAACCGTCACACTGGAAAACGGARAAWATTTTGTGCGAAGAGTATGTTGTTTTT 338 TACATAAAACCGTCACACTGGAAAACGGAGAAAATTTTGTGCGAAGAGTATGTTGTTTTT 359

TGGGCTTATTTGAAAATTCGAATAAAATTATTTTTAGGGTACCGGAAACTGGAATACTTG 418 tGGGCTTATTTGAAAATTCRAATAAAATTATTTTTAGGGTACCGGAAACTGGAATACTTG 384 tgGgcttatttgananttcgantananttatttttagg taccgainactg gatacttg 420 tGGGCTTATTTGAAAATTCGAATAAAATTATTTTTAGGGTACCGGAAACTGGAATACTTG 398 TGGGCTTATTTGAAAATTCGAATAAAATTATTTTTAGGGTACCGGAACTGGAATACTTG 419 ***

TTCAAATGAAGTGAAAAAGCTTCTCAATCCGGAATCAAGTTCGGAAGTCTGTAAAGCTGA 478 TTCAAATGAAGTGAAAAGCTTCTCAATCCGGAATCAAGTTCGGAAGTCTGTAAAGCTGA 444 TTCAAATGAAGTGAAAAGCTTCTCAATCCGGAATCAAGTTCGGAAGTCTGTAAAGCTGA 480 TTCAAATGAAGTGAAAAGCTTCTCAATCCGGAATCAAGTTCGGAAGTCTGTAAAGCTGA 458 TTCAAATGAAGTGAAAAGCTTCTCAATCCGGAATCAAGTTCGGAAGTCTGTAAAGCTGA 479

AGCGGCAAAATGCTATTTTGGAGCTGTTCCTGCTCCGAGTATACCACTGTCGAACATTGA 538 AGCGGCAAAATGCTATTTTGGAGCTGTTCCTGCTCCGAGTATACCACTGTCGAACATTGA 504 AGCGGCAAAATGCTATTTTGGAGCTGTTCCTGCTCCGAGTATACCACTGTCGAACATTGA 540 AGCGGCAAAATGCTATTTTGGAGCTGTTCCTGCTCCGAGTATACCACTGTCGAACATTGA 518 AGCGGCAAAATGCTATTTTGGAGCTGTTCCTGCTCCGAGTATACCACTGTCGAACATTGA 539

lig-236WT	GATGTATGGGTTCTCAGAATACTGGTACTCAACCCATGATGTATTGGGTCTTGGAGGACA 598
126A	GATGTATGGGTTCTCAGAATACTGGTACTCAACCCATGATGTATTGGGTCTTGGAGGACA 564
126B	
:v_648_6A	GATGTATGGGTTCTCARAATACTGGTACTCAACCCATGATGTATTGGGTCTTGRAGGACA 578
:V_648_6B	
lig-236WT	GTATGATGCGGA- 610
126 A	G-AWG------- 568
126B	-------------
:v_648_6A	GTATGATGCGGAA 591
:v_648-6B	-------------

lig-238WT	GTACCCGAGAGCTGACGAGGAAAGATTAAGAACTCAGTGCTTTAAGTCGGCATGGATA 58
128A	-GCKACTM-GTGCTTTA-GTCGGCATGGATA 28
1288	TTKTWCCCGAGGGCTGACGRGGAAAGATTAAGAAMTCAGTGCTTTAAGTYGGCATGGATA 60
:V_648_8A	TCGGACTM-GTGCTTTA-GTCGGCATGGATA 29
:V_648_8B	TTKTACCCGAGGGCTGRCGRGGAAAGATTAAGAAMTCAGTGCTTTAAGTYGGCATGGATA 60
lig-238WT	ACATCAGTGTTGCATGATGGGTTCTCAGTAGATAAGACTCACAACAAATTCCAGGTAATA 118
128A	ACATCAGTGTTGCATGATGGGTTCTCAGTAGATAAGACTCACAACAAATTCCAGGTAATA 88
128 B	AMATCAGTGTTGCMTGATGGGTTYTCMGTAGATAAGACTCMCAACAAATTCCMGGTAATA 120
:v_648 8A	ACATCAGTGTTGCATGATGGGTTCTCAGTAGATAAGACTCACAACAAATTCCAGGTAATA 89
:V_648-8B	ACATCAGTGTTGCMTGATGGGTTYTCMGTAGATAAGACTCMCAACAAATTCCMGGTAATA 120
lig-238WT	CAATTTGAACAAATCTTGAATAAGTTGAGCATTGATCGAATGAAAAAGTACCTTAATTAG 178
128A	CAATTTGAACAAATCTTGAATAAGTTGAGCATTGATCGAATGAAAAAGTACCTTAATTAG 148
28B	CAATTTGAACAAATYTTGAATAARTTGAGCMTTGATYGAAWGAAAAARTACCTTAATTAG 180
v_648_8A	CAATTTGAACAAATCTTGAATAAGTTGAGCATTGATCGAATGAAAAAGTACCTTAATTAG 149
v_648_8B	CAATTTGAACAAATYTTGAATAARTTGAGCATTGATYGAAWGAAAAARTACCTTAATTAG 180
ig-238WT	CATAATTATTTTGAATTAATTTTTCGCCACCGCTAAACTATTGTGGTCAAGGTTTGAAAT 238
28A	CATAATTATTTTGAATTAATTTTTCGCCACCGCTAAACTATTGTGGTCAAGGTTTGAAAT 208
28B	CATAATTATTTTGAATTAATTTTTYGCCMCCSCTAAAMTATTGTGGTCAAGGTTTGAAAW 240
$v \times 648$ 8A	CATAATTATTTTGAATTAATTTTTCGCCACCGCTAAACTATTGTGGTCAAGGTTTGAAAT 209
v_648_8B	CATAATTATTTTGAATTAATTTTTYGCCMCCSSTAAAMTATTGTGGTCAAGGTTTGAAAW 240
ig-238WT	TGCAGCACGGTTTCAGCTTTTTTCGATTTTTTTTTGAAACGCTATATTTTCTTTTTAAAA 298
28A	TGCAGCACGGTTTCAGCTTTTTTCGATTTTTTTTTGAAACGCTATATTTTCTTTTTAAAA 268
28B	TGCAGCMCGGTTTYAGCTTTTTTYGATTTTTTTTTGAAACGCTATATTTTCTTTTTAAAA 300
v_648_8A	TGCAGCACGGTTTCAGCTTTTTTCGATTTTTTTTTGAAACGCTATATTTTCTTTTTAAAA 269
v_648_8B	TGCARCMCGGTTTYARCTTTTTTYGATTTTTTTTTGAAACGCTATATTTTCTTTTTAAAA 300
ig-238WT	TTTTTAAAATGTCTCCTTTAAATTCTCGATCCGTCTAGACAATTTTTAGGATTAAAAAAA 358
28A	TTTTTAAAATGTCYCCTTTAAATTCYCGATCCGTCTARACAATTTTTAGGATTAAAAAAA 328
28B	TTTTTAAAATGTCTCCTTTAAATTCTCGATCCGTCTAGACAATTTTTAGGATTAAAAAAA 360
v_648 8A	TTTTTAAAATGTCTCCTTTAAATTCTCRATCCGTCTARACAATTTTTAGGATTAAAAAAA 329
v_648_8B	TTTTTAAAATGTCTCCTTTAAATTCTCGATCCGTCTAGACAATTTTTAGGATTAAAAAAA 360
ig-238WT	ATTCGCCACCACATGTATAAATAATTTAGAGTGTTTCCACAATAGCAGGACAAGAAGTTC 418
28A	ATTCSCCMCCACATGTATAAATAATTTARAGKGTTTCCMCAAWAGCAGGACAARAAKTTC 388
28B	ATTCGCCACCACATGTATAAATAATTTAGAGTGTTTCCACAATAGCAGGACAAGAAGTTC 420
V_648_8A	ATTCSCCMCCACAKGTATAAATAATTTARAGKGTTTCCMCAAWAGCAGGACAARAAKTTC 389
v_648_8B	ATTCGCCACCACATGTATAAATAATTTAGAGTGTTTCCACAATAGCAGGACAAGAAGTTC 420
ig-238WT	AATGGGCTCTCGGAGCAATGATCTATCATATGAGATTCTTTCCCCTTCGGGATTCTTCTA 478
28A	AAKGGGCTCYCGRAGCAATGATCTATCAWATGARATTCTTTCCCCTTCGGGATTCTTCTA 448
28B	AATGGGCTCTCGGAGCAATGATCTATCATATGAGATTCTTTCCCCTTCGGGATTCTTCTA 480
v-648_8A	AAKGGGCTCYCGRAGCAATGATCTATCAWATGARATTCTTTCCCCTTCGGGATTCTTCTA 449
v_648_8B	AATGGGCTCTCGGAGCAATGATCTATCATATGAGATTCTTTCCCCTTCGGGATTCTTCTA 480
ig-238WT	GAAATCTCATCGTTAAAGAGTATGTTCCTAAAAATGGGATTGGGCCTTGGTTTC-532
28A	RAAATCTCATCGTTAAARAGTATGTTCCTAAAAAKGGGATTGGCCTTKGGTTYCA 503
28B	
v_648_8A	RAAATCTCATCGTTAAARAGTATGTTCCTAAAAAKGGGATKGGGCCTTGGTTTMA 504
v_648_8B	

lig-239WT	-CAATGGGCTCTCGGAGCAATGATCTATCATATGAGATTCTTTCCCCTTCGGGATTCTTC 59
129A	----AAWRCRGATCTTT--CCCTTCGGGAT-CTTC 28
129A2	-AAWRCRGATCTTT--CCCTTCGGGAT-CTTC 28
129 B	TTAATGGGCTCTCGGAGCAATGATCTATCATATGAGATTCTITCCCCTTCGGGATTCTTC 60
:V_648_9A	-AATCACCTCAGCCAGRWYTTT--CCCTTCGGGATTCTTC 37
: $\mathrm{V}_{-648 \text { - } 9 \mathrm{~B}}$	-WAAWGGGCTYTSGGAGCAATGATMTATCATATGAGATTCTTTCCCCTTCGGGATTCTTC 59
lig-239WT	TAGAAATCTCATCGTTAAAGAGTATGTTCCTAAAAATGGGATTGGGCCTTGGTTTCATAT 119
129A	TAGAA-TCTCATCGWTAAAGAGTATGTTCCTAAAAATGGGATTGGGCCTTGGTTTCATAT 87
129 A 2	TAGAA-TCTCATCGWTAAAGAGTATGTTCCTAAAAATGGGATTGGGCCTTGGTTTCATAT 87
129B	TAGAAATCTCATCGTTAAAGAGTATGTTCCTAAAAAWGGGATTGGGCCTTGGTTTCATAT 120
:V_648_9A	TAGAAATCTCATCGTTAAAGAGTATGTTCCTAAAAATGGGATTGGGCCTTGGTTTCATAT 97
: $\mathrm{V}^{-648 \text {-9B }}$	TAGAAATCTCATCGTTAAAGAGTATGTTCCTAAAAATGGGATTGGGCCTTGGTTTCATAT 119
lig-239WT	TTTGGGTTATTCCAGGACTCATTCTTCCTCCGAAAGCTTATGGGCTCCGCTATTCTTCCT 179
129 A	TTTGGGTTATTCCAGGACTCATTCTTCCTCCGAAAGCTTATGGGCTCCGCTATTCTTCCT 147
129 A 2	TTTGGGTTATTCCAGGACTCATTCTTCCTCCGAAAGCTTATGGGCTCCGCTATTCTTCCT 147
129B	TTTGGGTTATTCCAGGACTCATTCTTCCTCCGAAAGCTTATGGGCTCCGCTATTCTTCCT 180
v-648 9A	TTTGGGTTATTCCAGGACTCATTCTTCCTCCRAAAGMTTATGGGCTCCGCTATTCTTCCT 157
: \quad _648_9B	TTTGGGTTATTCCCAGGACTCATPCTTCCTCCGAAAGMWTATGGGMTCCGCTATTMTTCCT 179
1ig-239WT	TTCCGCCGTTTTCTGTCTTTTCGTCTTGGTATGCGCTAAGGAGCAGTCTGTACTATGCTT 239
29A	TTCCGCCGTTTTCTGTCTTTTCGTCTTGGTATGCGCTAAGGAGCAGTCTGTACTATGCTT 207
29A2	TTCCGCCGTTTTCTGTCTTTTCGTCTTGGTATGCGCTAAGGAGCAGTCTGTACTATGCTT 207
29B	TTCCGCCGTTTTCTGTCTTTTCGTCTTGGTATGCGCTAAG-AGCAGTCRWCAC--------232 232
v_648_9A	TTCCGCCGTTTTCTGTCTTTTCGTCTTGGTATGCGCTAAGGAGCAGTCTGTACTATGCTT 217
v_648_9B	
ig-239WT	TGATGACAAACGTCGGTCCTC---- 260
29A	TGATGACAAACGTMRGTCCTC---- 228
29A2	TGATGACAAACGTMRGTCCTC---- 228
29B	
v_648_9A	TGATGACAAACGSCSRTCCTCCAAA 242
V_648_9B	

lig-2310WT	-TGGGATTGGGCCTTGGTTTCATATTTTGGGTTATTCCAGGACTCATTCTTCCTCCGAAA 59
210A	TATGTTMTGACTMTTCTTCCTCCGAA- 26
210 B	TTKGGATTGGGGCTTGGTTTCATATTTTGGGTTATTCCAGGACTCATTCTTCCTCCGAAA 60
v_648_10A	AAATGGCTTWAATGACTMTTCTTCCTCCGAA- 31
v_648_10B	TTKGGATTGGGCCTTGGTTTCATATTTTGGGTTATTCCAGGACTCATTYTTCCTYCGAAA 60
:ig-2310WT	GCTTATGGGCTCCGCTATTCTTCCTTTCCGCCGTTTTCTGTCTTTTCGTCTTGGTATGCG 119
210A	GCTTATGGGCTCCGCTATTCTTCCTTTCCGCCGTTTTCTGTCTTTTCGTCTTGGTATGCG 86
210 B	GCTTATGGGCTCCGCTATTYTTCCTTTCCGCCGTTTTCTGTCTTTTYGTCTTGGTATGCG 120
\checkmark 648_10A	GCTTATGGGCTCCGCTATTCTTCCTTTCCGCCGTTTTCTGTCTTTTCGTCTTGGTATGCG 91
v_648_10B	GCTTATGGGCTCCGCTATTYTTCCTTTCCGCCGTTTTYTGTCTTTTYGTCTTGGTATGCG 120
ig-2310WT	CTAAGGAGCAGTCTGTACTATGCTTTGATGACAAACGTCGGTCCTCTTTTGGGATGTCAC 179
210A	CTAAGGAGCAGTCTGTACTATGCTTTGATGACAAACGTCGGTCCTCTTTTGGGATGTCAC 146
210 B	CTAAGGAGCAGTYTGTACTATGCTTTGATGACAAACGTCGGTCCTYTTTTGGGATGTCAC 180
- 648_10A	CTAAGGAGCAGTCTGTACTATGCTTTGATGACAAACGTCGGTCCTCTTTTGGGATGTCAC 151
v_648_10B	STAAGGAGCAGTYTGTACTATGCTTTGATGACAAACGTCGGTCCTYTTTTGGGATGTCAC 180 s***********:********************************
ig-2310WT	GCAGTCAATACTCCTACAAAATGCTTAAAGAAAACCGTACTTCTTCTTCATTTCTTGAGA 239
210A	GCAGTCAATACTCCTACAAAATGCTTAAAGAAAACCGTACTTCTTCTTCATTTCTTGAGA 206
210 B	GCAGTCAATACTCCTACAAAATGCTTAAAGAAAACCGTACTTYTTYTTCATTTYTTGAGA 240
จ_648_10A	GCAGTCAATACTCCTACAAAATGCTTAAAGAAAACCGTACTTCTTCTTCATTTCTTGAGA 211
v_648_10B	GCMGTCAATACTCCTACAAAATGCTTAAAGAAAACCGTACTTYTTYTTCATTTYTTGAGA 240
1g-2310WT	ACTTTGCCTAGTCAATCTTTCTAATCGTGTGTGTTCCAATACGTGTTTTATTGTCAAATC 299
210 A	ACTTTGCCTAGTCAATCTTTCTAATCGTGTGTGTTCCAATACGTGTTTTATTGTCAAATC 266
210 B	ACTTTGCCTAGTCAATCTTTYTAATCGTGTGTGTTCCAATACGTGTTTTATTGTCAAATC 300
v_648_10A	ACTTTGCCTAGTCAATCTTTCTAATCGTGTGTGTTCCAATACGTGTTTTATTGTCAAATC 271
$\mathrm{V}^{-648} \mathbf{6}$-10B	ACTTTGCCTAGTCAATCTTTYTAATYGTGTGTGTTYCAATACGTGTTTTATTGTCAAATC 300
ig-2310WT	ACATCGCACTTCAATTGCCTTCCAAAGTTTTATTGTCCTGTCTTTTTTGTTAGATCTTAC 359
210A	ACATCGCACTTCAATTGCCTTCCAAAGTTTTATTGTCCTGTCTTTTTTGTTAGATCTTAC 326
210 B	ACATCGCACTTCAATTGCCTTCCAAARTTTTATTGTCCTGTCTTTTTTGTTAGATYTTAC 360
v_648_10A	ACATCGCACTTCAATTGCCTTCCAAAGTTTTATTGTCCTGTCTTTTTTGTTAGATCTTAC 331
- 648 - 10 B	ACATCGCACTTCAATTGCCTTCCAAARTTTTATTGTCCTGTCTTTTTTGTTAGATYTTAC 360
ig-2310WT	GGGTTTAGTAATTTATATGTGATACTTTTTAATGTATTGAAAATAATTTATCTTGACATG 419
210A	GGGTTTAGTAATTTATATGTGATACTTTTTAATGTATTGAAAATAATTTATCTTGACATG 386
210 B	GGGTTTAGTAATTTATATGTGATACTTTTTAATGTATTGAAAATAATTTATCTTGACATG 420
$\checkmark 64810 \mathrm{~A}$	GGGTTTAGTAATTTATATGTGATACTTTTTAATGTATTGAAAATAATTTATCTTGACATG 391
V-648_10B	GGGTTTAGTAATTTATATGTGATACTTTTTAATGTATTGAAAATAATTTATCTTGACATG 420
ig-2310WT	TAATCAGTTACGATTTATATTTTTACCGGGAATTTTGATAATTTTTCAATTCTAAATAAA 479
210 A	TAATCAGTTACGATTTATATTTTTACCGGGAATTTTGATAATTTTTCAATTCTAAATAAA 446
210 B	TAATCAGTTACGATTTATATTTTTACCGGGAATTTTGATAATTTTTCAATTCTAAATAAA 480
v_648_10A	TAATCAGTTACGATTTATATTTTTACCGGGAATTTTGATAATTTTTCAATTCTAAATAAA 451
\% 648 -10B	TAATCAGTTACGATTTATATTTTTACCGGGAATTTTGATAATTTTTCAATTYTAAATAAA 480
ig-2310WT	TTTTTATTTATTTATTTTTTAATGGCAACAATACAAGTTCGAGATACAAGTGTCTAGTAT 539
210 A	TTTTTATTTATTTATTTTTTAATGGCAACAATACAAGTTCGAGATACAAGTGTCTAGTAT 506
210 B	TTTTTATTTATTTATTTTTTAATGGCAACAATACAAGTTCGAGATACAAGTGTYTAGTAT 540
- 64810 A	TTTTTATTTATTTATTTTTTAATGGCAACAATACAAGTTCGAGATACAAGTGTCTAGTAT 511
- ${ }^{-648 \text {-10B }}$	TTTTTWTTTATTTWTTTTTTAATGGCAACAATACAAGTTCGAGATACAAGTGTYTWGTAT 540

lig-2310WT	ACAATTATGACCCGCAATCGGAAAAATTAACTTTCAAATGCCCACCAAAAAACGAATGTA 599
1210 A	ACAATTATGACCCGCAATCGGAAAAATTAACTTTCAAATGCCCACCAAAAAACGAATGTA 566
1210 B	ACAATTATGACCCGCAATCGGAAAAATTAACTTTCAAATGCCCACCAAAAAACGAATGTA 600
:V_648_10A	ACAATTATGACCCGCAATCGGAAAAATTAACTTTCAAATGCCCACCAAAAAACGAATGTA 571
:V_648_10B	ACAATTATGACCCGCMATCGGAAAAATTAACTTTCAAATGCCCACCAAAAAACGAATGTA 600
lig-2310WT	TGTTTTCTGTTTATTGCTACCAAAAAAAATATCCAAAGACAATCTCCAAAAAATATCAAG 659
1210A	TGTtTTCTGTTTATTGCTACCAAAAAAAATATCCAAAGACAATCTCCAAAAAATATCAAG 626
1210 B	TGTTTTCTGTTTATTGCTACCAAAAAAAAW-TCCAAAGACA---TCWTCAGGTTAGARAT 656
:v_648_10A	TGTTTTCTGTTTATTGCTACCAAAAAAAATATCCAAAGACAATCTCCAAAAAATATCARG 631
:V_648_10B	TGTTTTYTGTTTATTGCTACCAAAAAAAAT-WCCAA-GACA---TCCAGMACAATGCGRT 655 ****** **********************; 川 *********: **
lig-2310wT	CAGGAACCTCCAGATG- 675
1210A	CAGGCC----------- 632
1210B	C---------------- 657
:V_648_10A	CAGGAACCTCCARAKGA 648
:V_648_10B	T-----------------65 65

6.6 MIG-23 protein alignments from translated mig-23 sequences.

CLUSTAL W (1.83) multiple sequence alignment
mig-23wormbase
mig-23WT
mig-23N2
mig-23_ev648
mig-23wormbase
mig-23WT
mig-23N2

> MRVSLRETILAVSAMIFFPVIVFIYVVEAHTSPKVIADDQERSYGVICDAGSTGTRLFVY 60 MRVSLRETILAVSAMIFFPVIVFIYVVEAHTSPKVIADDQERSYGVICDAGSTGTRLFVY 60 MRVSLRETILAVSAMIFFPVIVFIYVVEAHTSPKVIADDQERSYGVICDAGSTGTRLFVY 60 MRVSLRFTILAVSAMIFFPVIVFIYVVEAHTSPKVIADDQERSYGVICDAGSTGTRLFVY 60

> NWISTSDSELIQIEPVIYDNKPVMKKISPGLSTEGTKPAQAAEYLRPLMELAERHIPEEK 120 NWISTSDSELIQIEPVIYDNKPVMKKISPGLSTFGTKPAQAAEYLRPLMELAERHIPEEK 120 NWISTSDSELIQIEPVIYDNKPVMKKISPGLSTFGTKPAQAAEYLRPLMELAERHIPEEK 120 NWISTSDSELIQIEPVIYDNKPVMKKISPGLSTEGTKPAQAAEYLRRLMELVERHIPEEK 120

RPYTPVFIFATAGMRLIPDEQKEAVLKNLRNKLPKITSMQVIKEHIRIIEGKWEGIYSWI 180 RPYTPVFIFATAGMRLIPDEQKEAVLKNLRNKLPKITSMQVLKEHIRIIEGKWEGIYSWI 180 RPYTPVFIFATAGMRLIPDEQKEAVLKNLRNKLPKITSMQVLKEHIRIIEGKWEGIYSWI 180 RPYTPVFIFATAGMRLIPDEQKEAVLKNLRNKLPKITSMQVLKEHIRIIEGKWEGIYSWI 180

AVNYALGKFNKTATLDFPGTSPAHARQKTVGMIDMGGASAQIAFELPDTDSFSSINVENI 240 AVNYALGKFNKTATLDFPGTSPAHARQKTVGMIDMGGASAQIAFELPDTDSFSSINVENI 240 AVNYALGKFNKTATLDFPGTSPAHARQKTVGMIDMGGASAQIAFELPDTDSFSSINVENI 240 AVNYALGKFNKTATLDFPGTSPAHARQKTVGMIDMGGASAQIAFELPDTDSESSINVENI 240

NLGCREDDSLEKYKLFVTTFLGYGVNEGIRKYEHMLLSKLKDQNGTVIQDDCMPLNLHKT 300 NLGCREDDSLFKYKLFVTTFLGYGVNEGIRKYEHMLISKLKDQNGTVIQDDCMPLNLHKT 300 NLGCREDDSLFKYKLFVTTFLGYGVNEGIRKYEHMLLSKLKDQNGTVIQDDCMPLNLHKT 300 NLGCREDDSLFKYKLFVTTELGYGVNEGIRKYEHMLLSKLKDQNGTVIQDDCMPLNLHKT 300

VTLENGENFVRRGTGNWNTCSNEVKKLLNPESSSEVCKAEAAKCYFGAVPAPSIPLSNIE 360 VTLENGENFVRRGTGNWNTCSNEVKKLLNPESSSEVCKAEAAKCYFGAVPAPSIPLSNIE 360 VTLENGENFVRRGTGNWNTCSNEVKKLLNPESSSEVCKAEAAKCYFGAVPAPSIPLSNIE 360 VTLENGENFVRRGTGNWNTCSNEVKKLLNPESSSEVCKAEAAKCYFGAVPAPSIPLSNIE 360

MYGESEYWYSTHDVLGLGGQYDAENIAKKTQQYCSKRWSTIQAESKKQLYPRADEERLRT 420 MYGFSEYWYSTHDVLGLGGQYDAENIAKKTQQYCSKRWSTIQAESKKQLYPRADEERLRT 420 MYGFSEYWYSTHDVLGLGGQYDAENIAKKTQQYCSKRWSTIQAESKKQLYPRADEERLRT 420 MYGFSEYWYSTHDVLGLGGQYDAENIAKKTQQYCSKRWSTIQAESKKQLYPRADEERLRT 420

QCFKSAWITSVLHDGFSVDKTHNKFQSVSTIAGQEVQWALGAMIYHMRFFPLRDSSRNLI 480 QCFKSAWITSVLHDGFSVDKTHNKFQSVSTIAGQEVQWALGAMIYHMRFFPLRDSSRNLI 480 QCEKSAWITSVLHDGFSVDKTHNKFQSVSTIAGQEVQWALGAMIYHMRFFPLRDSSRNLI 480 QCFKSAWITSVLHDGFSVDKTHNKFQSVSTIAGQEVQWALGAMIYHMRFFPLRDSSRNLI 480

VKETHSSSESLWAPLFELSAVFCLFVLVCAKEQSVLCFDDKRRSSFGMSRSQYSYKMLKE 540 VKETHSSSESLWAPLFFLSAVFCLFVLVCAKEQSVLCFDDKRRSSFGMSRSQYSYKMLKE 540 VKETHSSSESLWAPLFFLSAVFCLFVLVCAKEQSVLCEDDKRRSSFGMSRSQYSYKMLKE 540 VKETHSSSESLWAPLFFLSAVFCLFVLVCAKEQSVLCFDDKRRSSFGMSRSQYSYKMLKE 540

NRTSSSFLENFA 552
NRTSSSFLENFA 552
NRTSSSFLENFA 552

6.7 Alignments of $s d n-1$ sequencing results.

1Sdn-1WT
$2 \mathrm{Sdn}-1 \mathrm{~N} 2 \mathrm{~B}$
3Sdn-15E68Aasis
4Sdn-15E68B

1Sdn-1WT
2Sdn-1N2B
3Sdn-15E68Aasis
4Sdn-15E68B

1Sdn-1WT
$2 S d n-1 N 2 B$
3Sdn-15E68Aasis
4Sdn-15E68B

1Sdn-1WT
2Sdn-1N2B
3Sdn-15E68Aasis
4 Sdn-15E68B

1Sdn-1WT
2Sdn-1N2B
3Sdn-15E68Aasis
4Sdn-15E68B

-TCCTCCTCCACCACAACACCAATTGCTTTTTCAGGGGTAAAGAGAGTTTCCAAAGAGAT 59 -TCCTCCTCCCMCACAACACCAATTGCTTTTTCAGGGGTAAAGAGAGTTTCCAAAGAGAT 59
 --------------------------------------TAGAGAGTTTCCAA-GAGAT 19
 TTCCTCCTCCACCACAACACCAATTGCTTTTTCAGGGGTAAAGAGAGTTTCCAAAGAGAT 60

$\star \star \star \star \star \star \star \star \star \star * * * \quad \star \star * \star \star$

GCCGGTCAGGTGATTACACCAACAAGACAATATGATTCTGAAACTCAATTTCTGCCTGTC 119 GCCGGTCAGGTGATTACACCAACAAGACAATATGATTCTGAAACTCAATTTCTGCCTGTC 119 GCCGGTCAGGTGATTACACCAACAAGACAATATGATTCTGAAACTCAATTTCTGCCTGTC 79 GCCGGTCAGGTGATTACACCAACAAGACAATATGATTCTGAAACTCAATTTCTGCCTGTC 120

GACTTACTCGGTCCTCATTCTCCTATCCTTATCTACACAAGCTTTCGCCGCAAATCAAGC 179 GACTTACTCGGTCCTCATTCTCCTATCCTTATCTACACAAGCTTTCGCCGCAAATCAAGC 179 GACTTACTCGGTCCTCATTCTCCTATCCTTATCTACACAAGCTTTCGCCGCAAATCAAGC 139 GACTTACTCGGTCCTCATTCTCCTATCCTTATCTACACAAGCTTTCGCCGCAAATCAAGC 180 **

AAAAACGAAAGTGGTCCCTTCGTCAACTATTTCTACGAAAAGCTTGAAAAATGGAATATC 239 AAAAACGAAAGTGGTCCCTTCGTCAACTATTTCTACGAAAAGCTTGAAAAATGGAATATC 239 AAAAACGAAAGTGGTCCCTTCGTCAACTATTTCTACGAAAAGCTTGAAAAATGGAATATC 199 AAAAACGAAAGTGGTCCCTTCGTCAACTATTTCTACGAAAAGCTTGAAAAATGGAATATC 240

TGAAGTAAGTTATTATATAAATTTATCATAATGTTACAATACGATACTACGAAATTCATT 299 TGAAGTAAGTTATTATATAAATTTATCATAATGTTACAATACGATACTACGAAATTCATT 299 TGAAGTAAGTTATTATATAAATTTATCATAATGTTACAATACGATACTACGAAATTCATT 259 TGAAGTAAGTTATTATATAAATTTATCATAATGTTACAATACGATACTACGAAATTCATT 300

CACCAGCGCACTTTTTGTTTGCGCAAAGCAGGCTCGAATCTGAAGCGCGGCAAATGCGCA
359 CACCAGCGCACTTTTTGTTTGCGCAAAGCAGGCTCGAATCTGAAGCGCGGCAAATGCGCA CACCAGCGCACTTTTTGTTTGCGCAAAGCAGGCTCGAATCTGAAGCGCGGCAAATGCGCA 319 CACCAGCGCACTTTTTGTTTGCGCAAAGCAGGCTCGAATCTGAAGCGCGGCAAATGCGCA 360
$\star \star \star \star \star \star \star \star \star \star * * \star \star *$

CCAAAATATTTGCATTATTCAAACAGATATAATGGGCGATGGAGCGCGCGTAACATAAAT
419 CCAAAATATTTGCATTATTCAAACAGATATAATGGGCGATGGAGCGCGCGTAACATAAAT 419 CCAAAATATTTGCATTATTCAAACAGATATAATGGGCGATGGAGCGCGCGTAACATAAAT 379 CCAAAATATTTGCATTATTCAAACAGATATAATGGGCGATGGAGCGCGCGTAACATAAAT 420

AATAATATTAATAATAATAACGAATAATATTTATTTAAATAATATAATAATAATATTGGC 479 AATAATATTAATAATAATAACGAATAATATTTATTTAAATAATATAATAATAATATTGGC 479 AATAATATTAATAATAATAACGAATAATATTTATTTAAATAATATAATAATAATATTGGC 439 AATAATATTAATAATAATAACGAATAATATTTATTTAAATAATATAATAATAATATTGGC 480

AATATGAATAATTTGAAACTTTTGCAGCAGGTCGAAGGAAGTGCAAACATTCCCGGCAGG 539 AATATGAATAATTTGAAACTTTTGCAGCAGGTCGAAGGAAGTGCAAACAT-CCCGGCAGG 538 AATATGAATAATTTGAAACTTTTGCAGCAGGTCGAAGGAAGTGCAAACATTCCCGGCAGG 499 AATATGAATAATTTGAAACTTTTGCAGCAGGTCGAAGGAAGTGCAAACAT-CCCGGCAGG 539

TTAGCAGACATCGAAGTCAATGGATCCGGCTACCCAACCGACGACGAA-- 587
T-AGCAGACAT---1 548
TTAGCAGACATCGAAGTCAATGGATCCGGCTACCCAACCGAACGACRAAA 549
T-AGCAGACAT---19 549

```
Sdn-2WT
Sdn-2N2A
Sdn-2N2Brevcomp
Sdn-25E68A
Sdn-25E68B
```

Sdn-2WT
$\mathrm{Sdn}-2 \mathrm{~N} 2 \mathrm{~A}$
Sdn-2N2Brevcomp
Sdr-25E68A
Sdn-25E68B
Sdn-2WT
Sdn-2N2A
Sdn-2N2Brevcomp
Sdn-25E68A
Sdn-25E68B
Sdn-2WT
Sdn-2N2A
Sdn-2N2Brevcomp
Sdn-25E68A
Sdn-25E68B

Sdn-2WT
Sdn-2N2A
Sdn-2N2Brevcomp
Sdn-25E68A
Sdn-25E68B
Sdn-2WT
Sdn-2N2A
Sdn-2N2Brevcomp
Sdn-25E68A
Sdn-25E68B
------------------------------------1TTGCAGCAGGTCGAAGGAAGTGCA 2

WYCAWWGAMTTCGWGTTGCTMACCRCTKGAATGTTTTTGCAGCAGGTCGAAGGAAGTGCA 201 TCCATTGAGWCGATGTSTGCAACMGCKGGAMTGTATTTGCAGCAGGTCGAAGGAAGTGCA 235 AACATTCCCGGCAGGTTAGCAGACATCGAAGTCAATGGATCCGGTTACCCAACCGACGAC 84 -------------AGCTAGCAGACATCGAAGTCAATGGATCCGGCTACCCAACCGACGAC 47 AACATTCCCGGCAGGTTAGCAGACATCGAAGTCAATGGATCCGGCTACCCAACCGACGAC 261 --------------- GCTAGCAGA-ATCGA-GTCAATGGATCCGGCTACCCAACCGACGAC 44 AACATTCCCGGCAGGTTAGCAGACATCGAAGTCAATGGATCCGGCTACCCMACCGACGAC 295

GAAGACGGTGATGATGTCCATGGGTCAGGTGGGTATTTTGAATTGTTCTTGACAACTGTG 144 GAAGACGGTGATGATGTCCATGGGTCAGGTGGGTATTTTGAATTGTTCTTGACAACTGTG 107 GAAGACGGTGATGATGTCCATGGGTCAGGTGGGTATTTTGAATTGTTCTTGACAACTGTG 321 GAAGACGGTGATGATGTCCATGGGTCAGGTGGGTATTTTGAATTGTTCTTGACAACTGTG 104 GAAGACGGTGATGATGTCCATGGGTCAGGTGGGTATTTTGAATTGTTCTTGACAACTGTG 355

AGAAATCCTGTTAGAAAAGCGTTAGTCCAGATGCAAATTTAATTGTGTGCGCCGCTTGCA 204 AGAAATCCTGTTAGAAAAGCGTTAGTCCAGATGCAAATTTAATTGTGTGCGCCGCTTGCA 167 AGAAATCCTGTTAGAAAARCGTTAGTCCAGAWGCAAAWTTAATTGTGTGCGCCGCTTGCA 381 AGAAATCCTGTTAGAAAAGCGTTAGTCCAGATGCAAATTTAATTGTGTGCGCCGCTTGCA 164 AGAAATCCTGTTAGAAAARCGTTAGTCCAGATGCAAAWTTAATTGTGTGCGCCGCTTGCA 415

GTTTTCAATCTGTGACAGACAAATTTGAAAACCTTTTTTAGGCAAGCCGCCATCTTCAGC 264 GTTTTCAATCTGTGACAGACAAATTTGAAAACCTTTTTTAGGCAAGCCGCCATCTTCAGC 227 GTTTTCAATCTGTGACAGACAAATTTGAAAACCTTTTTTAGGCAAGCCGCCATCTTCAGC 441 GTTTTCAATCTGTGACAGACAAATTTGAAAACCTTTTTTAGGCAAGCCGCCATCTTCAGC 224 GTTTTCAATYTGTGACAGACAAAWTTGAAAACCTTTTTTAGGCAAGCCGCCATCTTCAGC 475

TACCACAAAATCGGACAAGGTTACATCTCCAAGCCATGCTGTTGTGACTGCAAAGCCGAC 324 TACCACAAAATCGGACAAGGTTACATCTCCAAGCCATGCTGTTGTGACTGCAAAGCCGAC 287 TACCACAAAATCGGACAAGGTTACATCTYCAAGCCATGCTGTTGTGACTGCAAAGCCGAC 501 TACCACAAAATCGGACAAGGTTACATCTCCAAGCCATGCTGTTGTGACTGCAAAGCCGAC 284 TACCACAAAATCGGACAAGGTTACATCTYCAARCCATGCTGTTGTGACTGCAAARCCGAC 535

Sdn-2WT	AACGGTACCTACTACTACAGCGGTTTGTGTCGGCTTTTTCTTTTGATGTGTTTTACCGCA 384
Sdn-2N2A	AACGGTACCTACTACTACAGCGGTTTGTGTCGGCTTTTTCTTTTGATGTGTTTTACCGCA 347
Sdn-2N2Brevcomp	AACGGTACCTACTACTACAGCGGTTTGTGTCGGCTTTTTCTTTTGATGTGTTTTACCGCA 561
Sdn-25E68A	AACGGTACCTACTACTACAGCGGTTTGTGTCGGCTTTTTCTTTTGATGTGTTTTACCGCA 344
Sdn-25E68B	AACGGTACCTACTWCTACAGCGGTTTGTGTCGGCTTTTTCTTTTGATGTGTTTTACCGCA 595
Sdn-2WT	ATCTTTCATTCTTCAGAGCTTCAAGCCTCCTGTTCAGCCCA
Sdn-2N2A	ATCTTTCATTCTTCAGAGCTTCAAGCCTCCTGTTCAGCCCAAGCCTAAGCCAGCGGCAAA 407
Sdn-2N2Brevcomp	
Sdn-25E68A	ATCTTTCATTCTTCARAGCTTCAAGCCTCCTGTTCAGCCCAAGCCTAAGCCAGCGGCAAA 404
Sdn-25E68B	
Sdn-2WT	CGA-CAAGGAG- 454
Sdn-2N2A	CGA-CAAGGAGA 418
Sdn-2N2Brevcomp	------------
Sdn-25E68A	CGAACAAGGAGA 416
Sdn-25E68B	

$5 \operatorname{dn} 3$
$\operatorname{sdn} 3 \mathrm{~N} 2 \mathrm{~A}$
$\operatorname{sdn} 3 \mathrm{~N} 2 \mathrm{~B}$
sdn35E68A
Sdn35E68B
sdn3
$\operatorname{sdn} 3 \mathrm{~N} 2 \mathrm{~A}$
$\operatorname{sdn} 3 \mathrm{~N} 2 \mathrm{~B}$
sdn35E68A
Sdn35E68B
sdn 3
$\operatorname{sdn} 3 \mathrm{~N} 2 \mathrm{~A}$
sdn3N2B
sdn35E68A
Sdn35E68B
sdn 3
$\operatorname{sdn} 3 \mathrm{~N} 2 \mathrm{~A}$
sdn 3 N2B
sdn35E68A
Sdn35E68B
sdn 3
$\operatorname{sdn} 3 \mathrm{~N} 2 \mathrm{~A}$
$\operatorname{sdn} 3 \mathrm{~N} 2 \mathrm{~B}$
sdn35E68A
Sdn35E68B
sdn 3
$\operatorname{sdn} 3 \mathrm{~N} 2 \mathrm{~A}$
sdn3N2B
sdn35E68A
Sdn35E68B
sdn 3
sdn 3N2A
$\operatorname{sdn} 3 \mathrm{~N} 2 \mathrm{~B}$
sdn35E68A
Sdn35E68B
sdn 3
$\operatorname{sdn} 3 \mathrm{~N} 2 \mathrm{~A}$
$\operatorname{sdn} 3 \mathrm{~N} 2 \mathrm{~B}$
$\operatorname{sdn} 35 \mathrm{E} 68 \mathrm{~A}$
Sdn35E68B
$\operatorname{sdn} 3$
$\operatorname{sdn} 3 \mathrm{~N} 2 \mathrm{~A}$
$\operatorname{sdn} 3 \mathrm{~N} 2 \mathrm{~B}$
sdn35E68A
Sdn35E68B

KfacAGCGG-TTTGTGTCGGCTtTtTCTtTtGATGTGTtTtACCGCAATCTTTCATTCTT 59
 CTACARCSGGTTTGTGTCGGCTTTTTCTTTTGATGTGTTTTACCGCAATCTTTCATTYTT 60 -TACARCGG-TTTGTGTCGGCTTTTTCTTTTGATGTGTTTTACCGCAATCTTTCATTYTT 58

* **** ** ** ** CAGAGCTTCAAGCCTCCTGTTCAGCCCAAGCCTAAGCCAGCGGCAAACGACAAGGAGATC 119 CAGAGCTTCARGCCTCCKGTTCAGCCCARGCCWARGCCASCGGYAAACGACAAGGAGATC 78 CAGAGCTTCAAGCCTCCTGTTCAGCCCAAGCCTAAGCCAGCGGCAAACGACAAGGAGATC 120 C-GAGCTTCARGCCTCCKGTTCAGCCCAAGCCTAAGCCMGCGGCAAACGACAAGGAGATC 86 YAGAGCTTCAARCCTCCTGTTCAGCCCAAGCCTAAGCCAGCGGCAAACGACAAGGAGATC 118

AAGGTCGAGGAGGACGAGGACGATGATGAAGATGAGGATGAAGATGATGAGGATGATGAA 179 ARGGTCGAGRAGGACGAGGACRATGATGAARATGAGGATGAAGATGATGAGGATGATGAA 138 AAGGTCGAGGAGGACGAGGACGATGATGAAGATGAGGATGAAGATGATGAGGATGATGAA 180 AAGGTCGAGGAGGACGAGGACGATGATGAAGATGAGGATGAAGATGATGAGGATGATGAA 146 AAGGTCGAGGAGGACGAGGACGATGATGAAGATGAGGATGAAGATGATGAGGATGATGAA 178

GAAGATTTTGCTGATGAGAATATTCATAATGATGAAGATTTCTTCACAACTACTACTACA

ACAACGTATCGACCTATTGTTGTAGCTACCACCTCGTATGTTTTTCATTTGAACAAAAAA
299 ACAACGTATCGACCTATTGTTGTAGCTACCACCTCGTATGTTTTTCATTTGAACAAAAAA 258 ACAACGTATCGACCTATTGTTGTAGCTACCACCTCGTATGTTTTTCATTTGAACAAAAAA 300 ACAACGTATCGACCTATTGTTGTAGCTACCACCTCGTATGTTTTTCATTTGAACAAAAAA 266 ACAACGTATCGACCTATTGTTGTAGCTACCMCCTYGTATGTTTTTCATTTGAACAAAAAA 298

CAAAACTATTCTAATGCCCTCCAGGGCCCAGGATTTATGCATCTAGAAATGTATTAATTA 359 CAAAAYTATTCTAATGCCCTCCAGGGCCCAGGATTTATGCATCTAGAAAKGTATTAATTA 318 CAAAACTATTYTAATGCCCTCCAGGGCCCAGGATTTATGCATCTAGAAATGTATTAATTA 360 CAAAACTATTCTAAKGCCCTCCAGGGCCCAGGATTTATGCATCTARAAATGTATTAATTA 326 CAAAACTATTYTAATGCCCTCCAGGGCCCAGGATTTATGCATCTAGAAATGTATTAATTA 358 ***** **** *** ****************************** *** *********

TCTTGTCAATCAACAAATCCCCGAAAACATCTAGCAGCCAATTTAATTTTCAATTTTCCCA TCTTGTCAATCAACAAATCCCCRAAAACWTCTAGCAGCCAWTTTAWTTTTCAWTTTTCCA 378 TCTTGTCAATCAACAAATCCCCGAAAACATYTAGCAGCCAATTTAATTTTCAATTTTCCA 420 TCTTGTCAATCAACAAATCCCCRAAAACATCTAGCAGCCAATTTAATTTTCAATTTTCCA 386 TCTTGTCAATCAACAAATCCCCGAAAACATCTAGCAGCCAATTTAATTTTCAATTTTCCA 418 ********************** ***** * ********* **** ****** *******

GAACGCCAAGGTCAGKAGCCACAAATCCACCTCGACAGCAG̈CCACCAATGGTCACATCAA 479 RAACYCCAAGGTCAGCASCCACAAATCCACCTCGACRGGAGCCACCAAKGGTCACATCAA 438 GAACGCCAAGGTCAGCAGCCACAAATCCACCTYGACAGGAGCCACCAATGGTCACATCAA 480 RAACGCCAAGGTCAGCAGCCACAAATCCACCTCGACAGTAGCCACCAATGGTCACATCAA 446 GAACGCCAAGGTCAGCRGCCACAAATCCACCTCGAC GTAGCCACCAATGGTCACATCAA 478

ССАТСTCATCTGGACCATTCTCGCCATTCCATGAGACACTGGCAAATGGCTTC: 532 CCAYCTCATCKGGACCATTCTCGCCWTTCCATGARACACKGGCAAAKGG---- 487 CCATCTCATCTGATCATYCSACGCCA--------------------------------10. 506 CCATCTCATCKGGACCATTCTCGCCATTCCATGARACACTGGCAAAKGGCTYM 499 ССАТСТCATCTGAGCAT--195
$\operatorname{sdn} 4 W T$
Sdn4N2A
$\operatorname{Sdn} 4 \mathrm{~N} 2 \mathrm{~B}$

- Sdn45E68A

Sdn45E68B
sdn4WT
Sdn4N2A
Sdn4N2B
Sdn45E68A
Sdn45E68B
sdn4WT
Sdn4N2A
Sdn4N2B
Sdn45E68A
Sdn45E68B
sdn4WT
$\operatorname{Sdn} 4 \mathrm{~N} 2 \mathrm{~A}$
Sdn4N2B
Sdn45E68A
Sdn45E68B
sdn4WT
Sdn4N2A
Sdn4N2B
$\operatorname{Sdn} 45 E 68 \mathrm{~A}$
Sdn45E68B
$\operatorname{sdn} 4 \mathrm{WT}$
$\operatorname{Sdn} 4 \mathrm{~N} 2 \mathrm{~A}$
$\operatorname{Sdn} 4 \mathrm{~N} 2 \mathrm{~B}$
Sdn45E68A
Sdn45E68B
sdn4WT Sdn4N2A $\operatorname{Sdn} 4 \mathrm{~N} 2 \mathrm{~B}$ Sdn45E68A Sdn45E68B
$\operatorname{sdn} 4 W T$ $\operatorname{Sdn} 4 \mathrm{~N} 2 \mathrm{~A}$
Sdn4N2B
Sdn45E68A
Sdn45E68B
--CAGAACGCCAAGGTCAGCACCCACAAATCCACCTCGACAGCAGCCACCAATGGTCACA 58
----------------------------------CTCGAC-GGAGCCACCAAIGGTCACA 25
-TAGAACGCCCCAGGTCAGCAGCCACAAATCCACCTCGACAGGAGCCACCAATGGTCACA 59
--------------------------------CTCGTM-GTAGCCACCAATGGTCACA 25
TTAGAACGCCA-AGGTCAGCAGCCACAAATCCACCTCGACAGTAGCCACCAATGGTCACA 59

TCAACCATCTCATCTGGACCATTCTCGCCATTCCATGAGACACTGGCAAATGGCTTCTAT 118 TCAACCATCTCATCTGGACCATTCTCGCCATTCCATGARACACTGGCAAATGGCTTCTAT 85 TCAACCATCTCATYTGGACCATTCTCGCCATTCCATGAGACACTGGCAAATGGCTTCTAT 119 TCAACCATCTCATCTGGACCATTCTCGCCATTCCATGARACACTGGCAAATGGCTTCTAT 85 TCAACCATCTCATYTGGACCATTCTCGCCATTCCATGAGACACTGGCAAATGGCTTCTAT 119

GCAGGTATGTGTGAAGCAAAACTCATTTCAATTAATTTTGCATTGGGACCTTTGATCGTC 178 GCAGGTATGTGTGAAGCAAAACTCATTTCAATTAATTTTGCATTGGGACCTTTGATCGTC 145 GCAGGTATGTGTGAAGCAAAACTCATTTCAATTAATTTTGCATTGGGACCTTTGATCGTC 179 GCAGGTATGTGTGAAGCAAAACTCATTTCAATTAATTTTGCATTGGGACCTTTGATCGTC 145 GCAGGTATGTGTGAAGCAAAACTCATTTCAATTAATTTTGCATTGGGACCTTTGATCGTC 179

CGGAGTGTAACTATCATTAGTGGGAGCAGATGCAAATGTACATAAATCGCCCGGTCAGTG 238
CGGAGTGTAACTATCATTAGTGGGAGCAGATGCAAATGTACATAAATCGCCCGGTCAGTG 205
CGGAGTGTAACTATCATTAGTGGGAGCAGATGCAAATGTACATAAATCGCCCGGTCAGTG 239 CGGAGTGTAACTATCATTAGTGGGAGCAGATGCAAATGTACATAAATCGCCCGGTCAGTG 205 CGGAGTGTAACTATCATTAGTGGGAGCAGATGCAAATGTACATAAATCGCCCGGTCAGTG 239

TGATGGCGTCGGCGAATGATTTGTTGCGAGATGATAAATTGATGTCTTCTCGTCAATCGA 298 tGATGGCGTCGGCGAATGATtTGTTGCGAGATGATAAATTGATGTCTTCTCGTCAATCGA 265 TGATGGCGTCGGCGAATGATTTGTTGCGAGATGATAAATTGATGTYTTYTCGTCAATCGA 299 TGATGGCGTCGGCGAATGATTTGTTGCRAGATGATAAATTGATGTCTTCTCGTCAATCGA 265 TGATGGCGTCGGCGAATGATTTGTTGCGAGATGATAAATTGATGTCTTCTCGTCAATCGA 299 **************************** ***************** ** **********

AGGCAACACGGTTGCATTCAATATATTCGGCCACTGTATTCCGGGGGAATATGCTGCCTC 358 AGGCAACACGGTTGCATTCAATATATTCGGCCACTGTATTCCGGGGGAATATGCTGCCTC 325 AGGCAACACGGTTGCATTCAATATATTCGGCCACTGTATTCCGGGGGAATATGCTGCCTC 359 AGGCAACACGGTTGCATTCAATATATTCGGCCACTGTATTCCGGGGGAATATGCTGCCTC 325 AGGCAACACGGTTGCATTCAATATATTCGGCCACTGTATTCCGGGGGAATATGCTGCCTC 359 **

AAGCCTATCCGTTCCGTCTGTTCCGGATGGGCAAATATACACAAAAATATGAGACTTGCA 418 AAGCCTATCCGTTCCGTCTGTTCCGGATGGGCAAATATACACAAAAATATGAGACTTGCA 385 AAGCCTATCCGTTCCGTCTGTTCCGGATGGGCAAATATACACAAAAATATGAGACTTGCA 419 AAGCCTATCCGTTCCGTCTGTTCCGGATGGGCAAATATACACAAAAATATGAGACTTGCA 385 AAGCCTATCCGTTCCGTCTGTTCCGGATGGGCAAATATACACAAAAATATGAGACTTGCA 419
tAAAAGTATGCATACTTTTTGCATTCCGGACACTCATCCCGTCCATtTTTCGCGACCAGT 478 TAAAAGTATGCATACTTTTTGCATTCCGGACACTCATCCCGTCCATTTTTCGCGACCAGT 445 TAAAAGTATGCATACTTTTTGCATTCCGGACACTCATCCCGTCCATTTTTCGCGACCAGT 479 TAAAAGTATGCATACTTTTTGCATTCCGGACACTCATCCCGTCCATTTTTCGCGACCAGT 445 tAAAAGTATGCATACTTTTTGCATTCCGGACACTCATCCSGTCCATTTTTCGCGACCAGT 479 ***
$\operatorname{sdn} 4 W T$
Sdn4N2A
Sdn4N2B
Sdn45E68A
Sdn45E68B

CTATCAATCAATGTGTACAGCTCGAGGATGTGCTAGTTTGTTGTCGAGCTGTTTCTTAAT 538
CTATCAATCAATGTGTACAGCTCGAGGATGTGCTAGTTTGTTGTCGAGCTGTTTCTTAAT 505
CTATCAATCAATGTGTACAGCTCGAGGATGTGCTAGTT-GTG--CGAGCTC---------- 527 CTATCAATCAATGTGTACAGCTCGAGGATGTGCTAGTTTGTTGTCGAGCTGTTTCTTAAT 505 CTATCAATCAATGTGTACAGCTCGAGGATGTGCTAGTT-GTG--CGAGGC------------- 526
************************************** ** ****
sdn4WT GACAGATGGCGTGGCCTCTT--- 558
$\operatorname{Sdn} 4 \mathrm{~N} 2 \mathrm{~A}$
Sdn4N2B
$\operatorname{Sdn} 45 \mathrm{E} 68 \mathrm{~A}$
GACAGATGGCKKGGGCCTCTATG 528
GACAGATGGCKKGGGCCTWTA-- 526

Sdn5WT	-CAAGCCTATCCGTTCCGTCTGTTCCGGATGGGCAAATATACACAAAAATATGAGACTTG 59
Sdn5N2A	--CAAAATATGAGACTTG 16
Sdn5N2B	TCAAGCCTATCCGTTCCGTCTGTTCCGGATGGGCAAATATACACAAAAATATGAGACTTG 60
Sdn55E68A	-------------------ATTAMCAGAATATGAGACTTG 23
Sdn55E68B	TCAAGCCTATYCGTTCCGTCTGTTCCGGATGGGCAAATATACACAAAAATATGAGACTTG 60
Sdn5WT	CATAAAAGTATGCATACTTTTTGCATTCCGGACACTCATCCCGTCCATTTTTCGCGACCA 119
Sdn5N2A	CATAAAAGTATGCATACTTTTTGCATTCCGGACACTCATCCCGTCCATTTTTCGCGACCA 76
Sdn5N2B	CATAAAAGTATGCATACTTTTTGCATTCCGGACACTCATCCCGTCCATTTTTCGCGACCA 120
Sdn55E68A	CATAAAAGTATGCATACTTTTTGCATTCCGGACACTCATCCCGTCCATTTTTCGCGACCA 83
Sdn55E68B	CATAAAAGTATGCATACTTTTTGCATTCCGGACACTCATCCCGTCCATTTTTCGCGACCA 120
Sdn 5 WT	GTCTATCAATCAATGTGTACAGCTCGAGGATGTGCTAGTTTGTTGTCGAGCTGTTTCTTA 179
Sdn5N2A	GTCTATCAATCAATGTGTACAGCTCGAGGATGTGCTAGTTTGTTGTCGAGCTGTTTCTTA 136
Sdn5N2B	GTCTATCAATCAATGTGTACAGCTCGAGGATGTGCTAGTTTGTTGTCGAGCTGTTTCTTA 180
Sdn55E68A	GTCTATCAATCAATGTGTACAGCTCGAGGATGTGCTAGTTTGTTGTCGAGCTGTTTCTTA 143
Sdn55E68B	GTCTATCAATCAATGTGTACAGCTCGAGGATGTGCTAGTTTGTTGTCGAGCTGTTTCTTA 180
Sdn5WT	ATGACAGATGGCGTGGCCTCTTCTTCGTCTTCTTGTGCTTGTGTCACAGAATGGGGACCC 239
Sdn5N2A	ATGACAGATGGCGTGGCCTCTTCTTCGTCTTCTTGTGCTTGTGTCACAGAATGGGGACCC 196
Sdn5N2B	ATGACAGATGGCGTGGCCTCTTCTTCGTCTTCTTGTGCTTGTGTCACAGAATGGGGACCC 240
Sdn55E68A	ATGACAGATGGCGTGGCCTCTTCTTCGTCTTCTTGTGCTTGTGTCACAGAATGGGGACCC 203
Sdn55E68B	ATGACAGATGGCGTGGCCTCTTCTTCGTCTTCTTGTGCTTGTGTCACAGAATGGGGACCC 240 **
Sdn5WT	CTTCGTATGAATGATGCACCACCACACATACTCTTCTTTCCCCCATGTGTCTAATTATTC 299
Sdn5N2A	CTTCGTATGAATGATGCACCACCACACATACTCTTCTTTCCCCCATGTGTCTAATTATTC 256
Sdn5N2B	
Sdn55E68A	CTTCGTATGAATGATGCACCACCACACATACTCTTCTTTCCCCCATGTGTCTAATTATTC 263
Sdn55E68B	
Sdn5WT	CTGGTGGGAAGACGATGAGAG- 320
Sdn5N2A	CTGGTGGGAAGACRATGAGAGA 278
Sdn5N2B	--------------------1
$\operatorname{Sdn} 55 \mathrm{E} 68 \mathrm{~A}$	CTGGTGGGAAGACRATGAGAG- 284
Sdn55E68B	

Sdn6WT
Sdn6N2A Sdn6N2B Sdn65E68A
Sdn65E68B

Sdn 6 WT Sdn6N2A Sdn6N2B Sdn65E68A
Sdn65E68B

Sdn 6 WT Sdn 6 N 2 A Sdn 6 N 2 B Sdn65E68A Sdn65E68B

Sdn6WT Sdn 6N2A
Sdn6N2B
Sdn65E68A
Sdn65E68B

Sdn6WT
Sdn6N2A
: Sdn 6 N 2 B Sdn65E68A
Sdn65E68B

Sdn 6WT Sdn6N2A Sdn6N2B Sdn65E68A
Sdn65E68B

Sdn 6WT Sdn6N2A Sdn6N2B
Sdn65E68A
Sdn65E68B

Sdn6WT
Sdn6N2A
Sdn6N2B
Sdn65E68A
Sdn65E68B
-CAGAATGGGGACCCCTTCGTATGAATGATGCACCACCACACATACTCTTCTTTCCCCCA 59
 TCAGAATGGGGACCCCTTYGTATGAATGATGCACCACCACACATACTCTTCTTTCCCCCA 60
 TCAGAAWRRKGACCCMTTYGTATKAWWRKKGCACCACCSCWCATKCTMTWSTTTCCCCCA 60 $\star \star \star \star * * * * * * \star \star \star *$

TGTGTCTAATTATTCCTGGTGGGAAGACGATGAGAGCTCTTCTTTCTTATTGAAAGAAAC 119 TGTGTCTAATTATTCCTGGTGGGAAGACGATGAGAGCTCTTCTTTCTTATTGAAAGAAAC 83 TGTGTCTAATTATTCCTGGTGGGAAGACGATGAGAGCTYTTCTTTYTTATTGAAAGAAAC 120 TGTGTCTAATTATTCCTGGTGGGAAGACGATGAGAGCTCTTCTTTCTTATTGAAAGAAAC 79 TSTGTSTAATTAWTCCTGGTGGGAAGMCGATGASAGCTYTTCTTTCTTATTGAAAGAAAC 120 $\star \star \star \star * * \star \star \star \star * * * * * * * * * * * * * * * * \star \star *$ CAACAAGTATTGGTGAATGACACGCCAGAAATTATATTATTGAAAACGGAGAGATGATGA 179 CAACAAGTATTGGTGAATGACACGCCAGAAATTATATTATTGAAAACGGAGAGATGATGA 143 CAACAAGTATTGGTGAATGACACGCCAGAAATTATATTATTGAAAACGGAGAGATGATGA 180 CAACAAGTATTGGTGAATGACACGCCAGAAATTATATTATTGAAAACGGAGAGATGATGA 139 CAACAAGTATTGGKGAATGACAMGCCAGAAATTATATTAWTGAAAACGGMRAGATGATGA 180

TGATGATGAGGATCAAGATGGGTCCAAATTATATATGAGTGCCACTGAACGAGACACTTC 239 TGATGATGAGGATCAAGATGGGTCCAAATTATATATGAGTGCCACTGAACGAGACACTTC 203 TGATGATGAGGATCAAGATGGGTCCAAATTATATATGAGTGCCACTGAACGAGACACTTY 240 TGATGATGAGGATCAAGATGGGTCCAAATTATATATGAGTGCCACTGAACGAGACACTTC 199 TGATGATGAGGATCAAGWTGGGTCCAAATTATATAWGAGTGCCYCYGAACGAGACACTTY 240

TCAAGTTTTCTATTTTGGCGCAAAAATGTAGGCAGAGATGTTTAGTTTTTTTCTTTCCAC 299 TCAAGTTTTCTATTTTGGCGCAAAAATGTAGGAAGAGATGTTTAGTTTTTTTCTTTCCAC 263 TCAAGTTTTYTATTTTGGCGCAAAAATGTAGGAAGAGATGTTTAGTTTTTTTCTTTCCAC 300 TCAAGTTTTCTATTTTGGCGCAAAAATGTAGGAAGAGATGTTTAGTTTTTTTCTTTCCAC 259 TCAAGTWTTYTATTTTGGCGCAAAAATGTAGGAAGAGATGTTTAGTTTTTTTCTTTCCAC *************************************

AACACTTGCTTTGAACAAACTTTTTTGTGTTTACTGCCTTTTGTGAGGAAGTACAGATGC AACACTTGCTTTGAACAAACTTTTTTGTGTTTACTGCYTTTTGTGAGGAAGTACAGATGC 323 AACACTTGCTTTGAACAAACTTTTTTGTGTTTACTGCCTTTTGTGAGGAAGTACAGATGC 360 AACACTTGCTTTGAACAAAYTTTTTTGTGTTTACTGCCTTTTGTGAGGAAGTACAGATGC 319 AACACTTGCTTTGAACAAACTTTTTTGTGTTTACTGCCTTTTGTGAGGAAGTACAGATGC 360

CTTGAAATGGGTTTTTAAAGAAAACATAGACCCCTTATGACGCGTGTCTCAAAATGTGGG 419 CTTGAAATGGGTTTTTAAARAAAACATAGACCCCTTATGACGCGTGTCTCAAAATGTGGG 383 CTTGAAATGGGTTTTTAAAGAAAACATAGACCCCTTATGACGCGTGTCTCAAAATGTGGG 420 CTTGAAATGGGTTTTTAAAGAAAACATAGACCCCTTATGACGCGTGTCTCAAAATGTGGG 379 CTTGAAATGSGTTTTTAAAGAAAACATAGACCCCTTATGACGCGTGTCTCAAAATGTGGG 420

GAAAGACGAATTGTTCAGTAAAGTTGACATCTCTTCTCAAAACTTGCTATGCTTTCTTCT 479 GAAAGACRAATTGTTCAGTAAAGTTGACATCTCTTCTCAAAACTTGCTATGCTTTCTTCT 443 GAAAGACGAATTGTTCAGTAAAGTTGACATCTCTTCTCAAAACTTGCTATGCTTTCTTCT 480 GAAAGACRAATTGTTCAGTAAAGTTGACATCTCTTCTCAAAACTTGCTATGCTTTCTTCT 439 GAAAGACGAAWTGTTCAGTAAAGTKGACATCTCTTCTCAAAACTTGCTATGCTTTCTTCT480

Sdn6WT

- $\operatorname{Sdn} 6 \mathrm{~N} 2 \mathrm{~A}$

Sdn6N2B
Sdn65E68A
Sdn65E68B

TTTGTGGTTATCAAAATCTGAGCAGCATCCCACATCTAACAAAGGAGCCCCAGCTCTATT 539 TTTGTGGTTATCAAAATCTGAGCAGCATCCCACATCTAACAAAGGAGCCCCAGYTCTATT 503 TTTGTGGTTATCAAAATCTGAGCAGCATCCCACATCTAACAAAGGAGCCCCAGCTCTAT- 539 TTTGTGGTTATCAAAATCTGAGCAGCATCCCACATCTAACAAAGGASCCCCAKYTCTATT 499 TTTGTGGTTATCAAAATCTGAGCAGCATCCCACATCTAACAAAGGAGCCCCAGCTCTATC 540

Sdn6WT
$\operatorname{Sdn} 6 \mathrm{~N} 2 \mathrm{~A}$
Sdn6N2B
Sdn65E68A
Sdn65E68B

CTCTTGAGAAAAAGGGCCTGAGGTTCGGGATGGTGGGACGGAAG- 583
CTCTTGAGAAAAARGGCCTGAGGTTCGGGATGGTGGGACGGAAGA 548
CTCKAGAAATTCTT-------------------------------------1 553
CTCTTGAGAAWAAGGGCYTKARGTTCGGRATGGTGGGACGGAAG- 543

* *

Sdn7WT	-CTGAGCAGCATCCCACATCTAACAAAGGAGCCCCAGCTCTATTCTCTTGAGAAAAAGGG 59
Sdn7N2A	--CTTGAGAAAAGRKC 14
Sdn7N2B	TCTGAGCAGCCACCCACATCTAACAAAGGAGCCCCAGCTCTATTCTCTTGAGAAAAAGGG 60
1 Sdn75E68A	---GCAGCTCTATTCTCTTGAGAAA--GGG 25
Sdn75E68B	

$\operatorname{Sdn} 7 W T$	CCTGAGGTTCGGGATGGTGGGACGGAAGCCGCTGAAGAAAGAAGGAAGGCAAGGTCAAGG 119
Sdn7N2A	CKCRARGTTCRGGATGGTGGGACGSAAGCCGCWGAW-MAASMAGGAMRGCAAGGTCAAGG 73
Sdn7N2B	CCTGAGGTTCGGGATGGTGGGACGGAAGCCGCTGAAGAAAGAAGGAAGGCAAGGTCAAGG
Sdn75E68A	CCTGAGGTTCGGGATGGTGGGACGGAAGCCGCTGAAGAAAGAAGGAAGGCAAGGTCAAGG
Sdn75E68B	8

Sdn7WT	GTCGCATTTTGTGCATATTTGATTTTATGACACTGAGTGGAGGAAGTGTCTGTGAGGAAA	179
Sdn7N2A	GTCSCATTTTGYGCATATTTGATTTTMTRACACTGASTGGAGGAAGKGYCWGYGAGGAMA	133
Sdn7N2B	GTCGCATTTTGTGCATATTTGATTTTATGACACTGAGTGGAGGAAGTGTYTGTGAGGAAA	180
Sdn75E68A	GTCGCATTTTGTGCATATTTGATTTTATGACACTGAGTGGAGGAAGTGTCTGTGAGGAAA	145
Sdn75E68B	-	

Sdn7WT Sdn7N2A Sdn7N2B Sdn75E68A Sdn75E68B

> AGGGGAACCTTTTGAATGAAAGGTTTTGAGAGAAGATGACGGTTTTGAAAGGATTTAGTG 239 AGGGGAMCCTTTTGAAKGAAAGGTTYTGMGASAASATGACSGTTTTGAAMGGATTKAGTG 193 AGGGGAACCTTTTGAATGAAAGGTTTTGAGAGAAGATGACGGTTTTGAAAGGATTTAGTG 240 AGGGGAACCTTTTGAATGAAAGGTTTTGAGAGAAGATGACGGTTTTGAAAGGATTTAGTG 205

Sdn7WT
$\operatorname{Sdn} 7 \mathrm{~N} 2 \mathrm{~A}$
Sdn7N2B
$\operatorname{Sdn} 75 \mathrm{E} 68 \mathrm{~A}$
Sdn75E68B
AGTTGGAAAGGAAAACTAAAATTTTTTTTCACTTAGTTACAAAATTAAACTCTTATTGAA 299
ASTTGGAAAGGAAAACTAAAATTTTTTTTCMCTTAKYTACAAAATTAAACSCTTATTGAA 253
AGTTGGAAAGGAAAACTAAAATTTTTTTTCACTTAGTTACAAAATTAAACTCTTATTGAA 300 AGTTGGAAAGGAAAACTAAAATTTTTTTTCACTTAGTTACAAAATTAAACTCTTATTGAA 265

Sdn7WT
Sdn7N2A
Sdn7N2B
Sdn75E68A
Sdn75E68B

Sdn7WT
Sdn7N2A
Sdn7N2B
Sdn75E68A
Sdn75E68B

Sdn7WT
$\operatorname{Sdn} 7 N 2 A$
Sdn7N2B
Sdn75E68A
Sdn75E68B

Sdn7WT
: $\operatorname{Sdn} 7 \mathrm{~N} 2 \mathrm{~A}$ Sdn7N2B Sdn75E68A
Sdn75E68B

TTACTGATATTATATGTTGTCCTTACGGGTTGAGATCATAAAAATATGTTTGGAATAAAG 419 TTACTGATATTATATGTTGTCCTTACGGGTTGAGATCATAAAAATATGTTTGGAATAAAG 373 TTACTGATATTATATGTTGTCCTTACGGGTTGAGATCATAAAAATATGTTTGGAATAAAG 420 TTACTGATATTATATGTTGTCCTTACGGGTTGAGATCATAAAAATATGTTTGGAATAAAG 385
ATTATTCACTACCAAGAAAGTTCAATTTAGGACAATGCAATATTTCTTACATGCATCGCA 359 ATTATTCACTACCAARAAAGTTCAATTTAGGACAATGCAATATTTCTTACATGCATCGCA 313 ATTATTCACTACCAAGAAAGTTCAATTTAGGACAATGCAATATTTCTTACATGCATCGCA 360 ATTATTCACTACCAAGAAAGTTCAATTTAGGACAATGCAATATTTCTTACATGCATCGCA 325
\qquad

CACAAAGCTTATTTATTTTTTAGTAACGAAAAGATTTAAAGTTGTAGAATTATCTATTTT 479
CACAAAGCTTATTTATTTTTTAKTAACGAAAAGATTTAAAGTTGTARAATTATCTATTTT 433
CACAAAGCTTATTTATTTTTTAGTAACGAAAAGATTTAAAGTTGTAGAATTATCTATTTT 480
CACAAAGCTTATTTATTTTTTAGTAACGAAAAGATTTAAAGTTGTAGAATTATCTATTTT 445

AATTTGATTTAATTTGATATTTTCAGCTATTGCCGGAGGTGTTCTCGTTGCGGTG-534 AATTTGATTTAATTTGATATTTTCAGCTATTGCCGGAGGTGTTCTCGTTSCSGKG- 488 AATTGA--TTAATTGAATG---4 497 AATTTGATTTAATTTGATATTTTCAGCTATTGCCGGAGGTGTTCTCGTTGCGGTGA 501
-----------------A---1

Sdn8WT
Sdn8N2A
Sdn8N2B
1 Sdn85E68A
Sdn85E68B

Sdn8WT
Sdn8N2A
Sdn8N2B
Sdn85E68A
Sdn85E68B

Sdn8WT
$\operatorname{Sdn} 8 \mathrm{~N} 2 \mathrm{~A}$
Sdn8N2B
Sdn85E68A
Sdn85E68B

Sdn8WT
Sdn8N2A
Sdn8N2B
Sdn85E68A
Sdn85E68B

Sdn8WT
$\operatorname{Sdn} 8 \mathrm{~N} 2 \mathrm{~A}$
Sdn8N2B
Sdn85E68A
Sdn85E68B
$\operatorname{Sdn} 8 \mathrm{WT}$
$\operatorname{Sdn} 8 \mathrm{~N} 2 \mathrm{~A}$
Sdn8N2B
$\operatorname{Sdn} 85 \mathrm{E} 68 \mathrm{~A}$
Sdn85E68B

Sdn8WT
$\operatorname{Sdn} 8 \mathrm{~N} 2 \mathrm{~A}$
Sdn8N2B
Sdn85E68A
Sdn85E68B

Sdn8WT
Sdn8N2A
Sdn8N2B
Sdn85E68A
Sdn85E68B
--GTGTCTGTGAGGAAAAGGGGAACCTTTTGAATGAAAGGTTTTGAGAGAAGATGACGGT 58

TTKTGTYTGTTGGGAAAAGGGGAACCTTTTGAATGAAAGGTTTTGAGAGAAGATGACGGT 60
---TGAGAGAGATGAC 13
--GTGTYTGTGAGGAAAAGGGGAACCTTTTGAATGAAAGGTTTTGAGAGAAGATGACGGT 58
T-TTGAAAGGATTTAGTGAGTTGGAAAGGAAAACTAAAATTTTTTTTCACTTAGTTACAA 117
TTTYGAAAGGWTTYMGTGAGTTGGAAAGGAAAACTAAAATTYTTTYYYACTTAGTTACAA 64
T-TTGAAAGGATTTAGTGAGTTGGAAAGGAAAACTAAAATTTTTTTTCACTTAGTTACAA 119
GGTTTTGAAGGWTTAGTGAGTTGGAAAGGAAAACTAAAATTTTTTTTCACTTAGTTACAA 73
T-TTGAAAGGATTTAGTGAGTTGGAAAGGAAAACTAAAATTTTTTTTCACTTAGTTACAA 117

AATTAAACTCTTATTGAAATTATTCACTACCAAGAAAGTTCAATTTAGGACAATGCAATA 177 AATTAAACTCTTATTGAAATTATTCACTACCAAGAAAGTTCAATTTAGGACAATGCAATA 124 AATTAAACTCTTATTGAAATTATTCACTACCAAGAAAGTTCAATTTAGGACAATGCAATA 179 AATTAAACTCTTATTGAAATTATTCACTACCAAGAAAGTTCAATTTAGGACAATGCAATA 133 AATTAAACTCTTATTGAAATTATTCACTACCAAGAAAGTTCAATTTAGGACAATGCAATA 177
$\star \star \star *$

TTTCTTACATGCATCGCATTACTGATATTATATGTTGTCCTTACGGGTTGAGATCATAAA 237 TTTCTTACATGCATCGCATTACTGATATTATATGTTGTCCTTACGGGTTGAGATCATAAA 184 TTTCTTACATGCATCGCATTACTGATATTATATGTTGTCCTTACGGGTTGAGATCATAAA 239 TTTCTTACATGCATCGCATTACTGATATTATATGTTGTCCTTACGGGTTGAGATCATAAA 193 TTTYTTACATGCATCGCATTACTGATATTATATGTTGTCCTTACGGGTTGAGATCATAAA 237

AATATGTTTGGAATAAAGCACAAAGCTTATTTATTTTTTAGTAACGAAAAGATTTAAAGT 297 AATATGTTTGGAATAAAGCACAAAGCTTATTTATITTTTAGTAACGAAAAGATTTAAAGT 244 AATATGTTTGGAATAAAGCACAAAGCTTATTTATTTTTTAGTAACGAAAAGATTTAAAGT 299 AATATGTTTGGAATAAAGCACAAAGCTTATTTATTTTTTAGTAACGAAAAGATTTAAAGT 253 AATATGTTTGGAATAAAGCACAAAGCTTATTTATTTTTTAGTAACGAAAAGATTTAAAGT 297

TGTAGAATTATCTATTTTAATTTGATTTAATTTGATATTTTCAGCTATTGCCGGAGGTGT 357 TGTARAATTATCTATTTTAATTTGATTTAATTTGATATTTTCAGCTATTGCCGGAGGTGT 304 TGTAGAATTATCTATTTTAATTTGATTTAATTTGATATTTTCAGCTATTGCCGGAGGTGT 359 TGTAGAATTATCTATTTTAATTTGATTTAATTTGATATTTTCAGCTATTGCCGGAGGTGT 313 TGTAGAATTATCTATTTTAATTTGATTTAATTTGATATTTTCAGCTATKGCCGGMKGW-T 356

TCTCGTTGCGGTGATTACAGCCATTCTACTCGTGCTCTTTGTAGTCTTTCGAATCAGGAA 417 TCTCGTTGCGGTGATTACAGCCATTCTACTCGTGCTCTTTGTAGTCTTTCRAATCAGGAA 364 TCTCGTTGCGGTGATTACAGCCATTCTACTCGTGCTCTTTGTAGTCTTTCGAATCAGG-- 417 TCTCGTTGCGGTGATTACAGCCATTCTACTCGTGCTCTTTGTAGTCTTTCRAATCAGGAA 373 TCTSGTTGMGWTGRYTMYWMCCMTYWTACTSGTGCTCKTTGTWTCSAKGMWWCWGAGSMW 416 *** **** * ** * ** * **** ****** **** **

AAA-AGATGAAGGGTCATACGCATTGGATGAACCCAAGCAAGCAAGAC- 464 AAA-ARATGAAGGGTCATACGCATTGGATGAACCCAAGAAAGCAARAMY 412

AAA-AGATGAAGGGTCATACGCATTGGATGAACCCAAGAAAGCAARAMY 421
AGACAAGTRWWRWKTCCMRYKYGC-------------------------------440 440

Sdn9WT	--AGGTGTTCTCGTTGCGGTGATTACAGCCATTCTACTCGTGCTCTTTGTAGTCTTTCGA 58
Sdn9N2A	-CGGMMGTC--WCTCGTGCTCTTTGTAGTCTTTCGA 33
Sdn9N2B	TRAWGKGKTYYYSKKGSGGGGRWTWMMSSCMWTYTWMTYKKGKTTTTTKKWRKYTTTYGR 60
Sdn95E68A	-AGCMATC--WCTCGTGCTCTTTGTAGTCTTTCGA 32
Sdn95E68B	TSWRWGKKTYYYGKKGSGGKGRWTWMMRSCMWTYTWMTYGKKSTYTTTKKWRTYTTTYGR 60
Sdn9WT	ATCAGGAAAAAAGATGAAGGGTCATACGCATTGGATGAACCCAAGCAAGCAAGACCATAT 118
Sdn9N2A	-TCAGGAAAAAAGATGAAGGGTCATACGCATTGGATGAACCCAAGCAAGCAAGACCATAT 92
Sdn9N2B	AWYMRGRAAAAARRWGRARGGKYWWWMSCMWTGGRWKRAMCCMARCMARRMARRMCMWWW 120
Sdn95E68A	-TCAGGAAAAAAGATGAAGGGTCATACGCATTGGATGAACCCAAGCAAGCAAGACCATAT 91
Sdn95E68B	AWYMRGRAAAAARRWGRARGGKYWWWMSCMWTGGRWGRAMCCMARSMARRMARRCCMWWW 120
Sdn9WT	GCCTCGTATGGTTATACCAAAGCATCGACAAAAGAATTTTACGCGTAATCTCTACTGTCA 178
Sdn9N2A	GCCTCGTATGGTTATACCAAAGCATCGACAAAAGAATTTTACGCGTAATCTCTACTGTCA 152
Sdn9N2B	KCCTYGKWWGGKTWTWMCMAARSMWYSRMMAAAGRAWTTTWMGSGKWAWYTYTWWYKKYM 180
Sdn95E68A	GCCTCGTATGGTTATACCAAAGCATCGACAAAAGAATTTTACGCGTAATCTCTACTGTCA 151
Sdn95E68B	KCCTYGKWWKGKTWWWMCMAARSKWYGRMMAAARRAWTTTWRGSGKWAWYTYTWMYKKYM 180
Sdn9WT	TTTGTTCAAAATCTTCTATCACTCAATCACCTTTCAAATCATTTTTATGATTCTGTTCTC 238
Sdn9N2A	TTTGTTCAAAATCTTCTATCACTCAATCACCTTTCAAATCATTTTTATGATTCTGTTCTC 212
Sdn9N2B	WTTKKTYMAAATTTTYTWWCMMYYMAWYMCCYTTYMAATYMWTTTTWWKRWTYYKKTTTY 240
Sdn95E68A	TTTGTTCAAAATCTTCTATCACTCAATCACCTTTCAAATCATTTTTATGATTCTGTTCTC 211
Sdin95E68B	WTTKKTYMAAAWYTTYTWWCMMYCMATYMCCYTTYAAAWYMWTTTTWWGRWTYSGKTYTY 240
Sdn9WT	AGACTTCATTCCAATCTGCCATACCTTTCAATTTGTTTTTTTCCCACTCCCATTTTTTTC 298
Sdn9N2A	AGACTTCATTCCAATCTGCCATACCTTTCAATTTGTTTTTTTCCCACTCCCATTTTTTTC 272
Sdn9N2B	MRRMYTYMWTYCMATTTKSCMWWCCYTTYMAWTTKKTTTTTTYCCMMYYCCMWTTTTTTY 300
Sdn95E68A	AGACTTCATTCCAATCTGCCATACCTTTCAATTTGTTTTTTTCCCACTCCCATTTTTTTC 271
Sdn95E68B	SRRMTTYMWTYCMATTTKCCMWWCCYTTYMAWTTKKTTTTTTYCCMMYYCCMWTTTTTTY 300
Sdn9WT	AAACCCTCCCCCCCCCCGCCTTCCTTTCGTAAAGGTCATTACTCTCTGTTCTACTCGTGA 358
Sdn9N2A	AAACCCTCCCCCCCCCSSCYTYCYTTYCKWAARGGYMWTWAYYYYYKKTYYYYYYSKWRA 332
Sdn9N2B	MAAMCCYYCCCCCCCCCGCCTTCCTTTCGTAAAGGTCATTACTMTSTGTTCTACTCGTGA 360
Sdn95E68A	AAACCCTCCCCCCCCCCSCYTYCYTTYCSWAARGKYMWTWYYYYYYKKSYCWYYYCKKRW 331
Sdn95E68B	MAAMCCYYCCCCCCCCCGCCTTCCTTTCGTAAAGGTCATTACTCTCTGTTCTACTCGTGA 360 ** ** ******** * * * ** * ** * *
Sdn9WT	TAATTTGATAATATAAACTGATCTGACTCCATGGTGCCAAATATTTGAATATAATCTTTT 418
Sdn9N2A	WAWTTKRAWAAWAWAAMYKRYYYKRAYYCMRKGGKGCCAAAWWTTKRAWWWWAWYYTTTK 392
Sdn9N2B	TAATTTGATAATATAAACTGATCTGACTCCATGGTGCCAAATATTG--AAWWWWYCTT-- 416
Sdn95E68A	WAWTTTRAWAAWAWAAAYKRAYYKRMYYCCWKGGKGCCAAAWWTTTRAAWWWAWYYTTTK 391
Sdn95E68B	TAATTTGATAATATAAACTGATCTGACTCCATGGTGCCAAATATK----AATWWTCT--- 413

Sdn9WT
Sdn9N2A
Sdn9N2B
Sdn95E68A
Sdn95E68B

```
GTAGACCCACTTAGGGGTAGGGA-- 441
GWAAMCCCMYTWAGGGGKWRGGRAA 417
GRARMCCCMYTWAGGGKWRGGRAA- 415
```


6.8 SDN-1 protein alignments from translated $s d n-1$ sequences.

SdnWormbase	MILKLNECLSTYSVLILLSLSTQAFAANQAKTKVVPSSTISTKSLKNGISEQVEGSANIP 60
SdnWt	MILKLNFCLSTYSVLILLSLSTQAFAANQAKTKVVPSSTISTKSLKNGISEQVEGSANIP 60
SdnN	MILKLNECLSTYSVLILLSLSTQAFAANQAKTKVVPSSTISTKSIKNGISEQVEGSANIP 60
SdnEv	MILKLNECLSTYSVLILLSLSTQAEAANQAKTKVVPSSTISTKSLKNGISEQVEGSANIP 60
SdnWormbase	GRLADIEVNGSGYPTDDEDGDDVHGSGKPPSSATTKSDKVTSPSHAVVTAKPTTVPTTTA 120
SdnWt	GRLADIEVNGSGYPTDDEDGDDVHGSGKPPSSATTKSDKVTSPSHAVVTAKPTTVPTTTA 120
SdnN	GRLADIEVNGSGYPTDDEDGDDVHGSGKPPSSATTKSDKVTSPSHAVVTAKPTTVPTTTA 120
SdnEv	GRLADIEVNGSGYPTDDEDGDDVHGSGKPPSSATTKSDKVTSPSHAVVTAKPTTVPTTTA 120 ***
SdnWormbase	SFKPPVQPKPKPAANDKEIKVEEDEDDDEDEDEDDEDDEEDEADENIHNDEDEFTTTTTT 180
SdnWt	SEKPPVQPKPKPAANDKEIKVEEDEDDDEDEDEDDEDDEEDFADENIHNDEDFFTTTTTT 180
SdnN	SEKPPVQPKPKPAANDKEIKVEEDEDDDEDEDEDDEDDEEDFADENIHNDEDEFTTTTTT 180
SdnEv	SFKPPVQPKPKPAANDKEIKVEEDEDDDEDEDEDDEDDEEDFADENIHNDEDEETTTTTT 180
SdnWormbase	TYRPIVVATTSTPRSAATNPPRQQPPMVTSTISSGPFSPEHETLANGFYAAIAGGVLVAV 240
SdnWt	TYRPIVVATTSTPRSAATNPPRQQPPMVTSTISSGPESPEHETLANGFYAAIAGGVLVAV 240
SdnN	TYRPIVVATTSTPRSAATNPPRQEPPMVTSTISSGPESPFHETLANGFYAAIAGGVLVAV 240
SdnEv	TYRPIVVATTSTPRSAATNPPRQ-PPMVTSTISSGPFSPEHETLANGFYAAIAGGVLVAV 239
	***..............
SdnWormbase	ITAILLVLFVVFRIRKKDEGSYALDEPKQARPYASYGYTKASTKEFYA-2
SdnWt	ITAILLVLEVVFRIRKKDEGSYALDEPKQARPYASYGYTKASTKEFYA- 2
SdnN	ITAILLVLFVVERIRKKDEGSYALDEPKQARPYASYGYTKASTKEFYA- 2
SdnEv	ITAILLVLFVVFRIRKKDEGSYALDEPKQARPYASYGYTKASTKEEYA- 2

7 REFERENCES.

Ackerman SL, Kozak LP, Przyborski SA, Rund LA, Boyer BB, Knowles BB (1997) The mouse rostral cerebellar malformation gene encodes an UNC-5-like protein. Nature 386:838-842

Baeg GH, Perrimon N (2000) Functional binding of secreted molecules to heparan sulfate proteoglycans in drosophila. Curr Opin Cell Biol 12:575-580

Barallobre MJ, Pascual M, Del Rio JA, Soriano E (2005) The netrin family of guidance factors: Emphasis on netrin-1 signalling. Brain Res Brain Res Rev 49:22-47

Basbaum CB, Werb Z (1996) Focalized proteolysis: Spatial and temporal regulation of extracellular matrix degradation at the cell surface. Curr Opin Cell Biol 8:731-738

Bashaw GJ, Kidd T, Murray D, Pawson T, Goodman CS (2000) Repulsive axon guidance: Abelson and enabled play opposing roles downstream of the roundabout receptor. Cell 101:703-715

Bennett KL, Bradshaw J, Youngman T, Rodgers J, Greenfield B, Aruffo A, Linsley PS (1997) Deleted in colorectal carcinoma (DCC) binds heparin via its fifth fibronectin type III domain. J Biol Chem 272:26940-26946

Bernfield M, Gotte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68:729-777

Blelloch R, Anna-Arriola SS, Gao D, Li Y, Hodgkin J, Kimble J (1999) The gon-1 gene is required for gonadal morphogenesis in caenorhabditis elegans. Dev Biol 216:382-393

Bornemann DJ, Duncan JE, Staatz W, Selleck S, Warrior R (2004) Abrogation of heparan sulfate synthesis in drosophila disrupts the wingless, hedgehog and decapentaplegic signaling pathways. Development 131:1927-1938

Brenner S (1974) The genetics of caenorhabditis elegans. Genetics 77:71-94
Brümmendorf T, Rathjen F.G (1996) Structure/function relationships of axon-associated adhesion receptors of the immunoglobulin superfamily. Curr Opin Neurobio 6:584-593.

Burdine RD, Branda CS, Stern MJ (1998) EGL-17(FGF) expression coordinates the attraction of the migrating sex myoblasts with vulval induction in C. elegans. Development 125:1083-1093

Burdine RD, Chen EB, Kwok SF, Stern MJ (1997) Egl-17 encodes an invertebrate fibroblast growth factor family member required specifically for sex myoblast migration in caenorhabditis elegans. Proc Natl Acad Sci U S A 94:2433-2437

Chan SS, Zheng H, Su MW, Wilk R, Killeen MT, Hedgecock EM, Culotti JG (1996) UNC-40, a C. elegans homolog of DCC (deleted in colorectal cancer), is required in motile cells responding to UNC-6 netrin cues. Cell 87:187-195

Chang C, Yu TW, Bargmann CI, Tessier-Lavigne M (2004) Inhibition of netrin-mediated axon attraction by a receptor protein tyrosine phosphatase. Science 305:103-106

Charron F, Tessier-Lavigne M (2005) Novel brain wiring functions for classical morphogens: A role as graded positional cues in axon guidance. Development 132:2251-2262

Colavita A, Culotti JG (1998) Suppressors of ectopic UNC-5 growth cone steering identify eight genes involved in axon guidance in caenorhabditis elegans. Dev Biol 194:72-85

Colavita A, Krishna S, Zheng H, Padgett RW, Culotti JG (1998) Pioneer axon guidance by UNC-129, a C. elegans TGF-beta. Science 281:706-709

Dickson BJ (2002) Molecular mechanisms of axon guidance. Science 298:1959-1964
Ding K, Lopez-Burks M, Sanchez-Duran JA, Korc M, Lander AD (2005) Growth factorinduced shedding of syndecan-1 confers glypican-1 dependence on mitogenic responses of cancer cells. J Cell Biol 171:729-738

Fujise M, Takeo S, Kamimura K, Matsuo T, Aigaki T, Izumi S, Nakato H (2003) Dally regulates dpp morphogen gradient formation in the drosophila wing. Development 130:1515-1522

Geisbrecht BV, Dowd KA, Barfield RW, Longo PA, Leahy DJ (2003) Netrin binds discrete subdomains of DCC and UNC5 and mediates interactions between DCC and heparin. J Biol Chem 278:32561-32568

Gitai Z, Yu TW, Lundquist EA, Tessier-Lavigne M, Bargmann Cl (2003) The netrin receptor UNC-40/DCC stimulates axon attraction and outgrowth through enabled and, in parallel, rac and UNC-115/AbLIM. Neuron 37:53-65

Gu T, Orita S, Han M (1998) Caenorhabditis elegans SUR-5, a novel but conserved protein, negatively regulates LET-60 ras activity during vulval induction. Mol Cell Biol 18:4556-4564

Hall DH, Winfrey VP, Blaeuer G, Hoffman LH, Furuta T, Rose KL, Hobert O, Greenstein D (1999) Ultrastructural features of the adult hermaphrodite gonad of caenorhabditis elegans: Relations between the germ line and soma. Dev Biol 212:101-123

Hamelin M, Zhou Y, Su MW, Scott IM, Culotti JG (1993) Expression of the UNC-5 guidance receptor in the touch neurons of C. elegans steers their axons dorsally. Nature 364:327-330

Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57-70
Hedgecock EM, Culotti JG, Hall DH (1990) The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron 4:61-85

Hedrick L, Cho KR, Fearon ER, Wu TC, Kinzler KW, Vogelstein B (1994) The DCC gene product in cellular differentiation and colorectal tumorigenesis. Genes Dev 8:1174-1183

Hill RJ, Sternberg PW (1992) The gene lin-3 encodes an inductive signal for vulval development in C. elegans. Nature 358:470-476

Hong K, Hinck L, Nishiyama M, Poo MM, Tessier-Lavigne M, Stein E (1999) A ligandgated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion. Cell 97:927-941

Howe AK (2004) Regulation of actin-based cell migration by cAMP/PKA. Biochim Biophys Acta 1692:159-174

Ishii N, Wadsworth WG, Stern BD, Culotti JG, Hedgecock EM (1992) UNC-6, a laminin-related protein, guides cell and pioneer axon migrations in C. elegans. Neuron 9:873-881

Jorgensen EM, Mango SE (2002) The art and design of genetic screens: Caenorhabditis elegans. Nat Rev Genet 3:356-369

Kamath RS, Martinez-Campos M, Zipperlen P, Fraser AG, Ahringer J (2001) Effectiveness of specific RNA-mediated interference through ingested doublestranded RNA in caenorhabditis elegans. Genome Biol 2:RESEARCH0002

Keino-Masu K, Masu M, Hinck L, Leonardo ED, Chan SS, Culotti JG, Tessier-Lavigne M (1996) Deleted in colorectal cancer (DCC) encodes a netrin receptor. Cell 87:175-185

Killeen M, Tong J, Krizus A, Steven R, Scott I, Pawson T, Culotti J (2002) UNC-5 function requires phosphorylation of cytoplasmic tyrosine 482, but its UNC-40independent functions also require a region between the $\mathrm{ZU}-5$ and death domains. Dev Biol 251:348-366

Kimble JE, White JG (1981) On the control of germ cell development in caenorhabditis elegans. Dev Biol 81:208-219

Kokel M, Borland CZ, DeLong L, Horvitz HR, Stern MJ (1998) Clr-1 encodes a receptor tyrosine phosphatase that negatively regulates an FGF receptor signaling pathway in caenorhabditis elegans. Genes Dev 12:1425-1437

Lauffenburger DA, Horwitz AF (1996) Cell migration: A physically integrated molecular process. Cell 84:359-369

Lee J, Ishihara A, Oxford G, Johnson B, Jacobson K (1999) Regulation of cell movement is mediated by stretch-activated calcium channels. Nature 400:382-386

Lee J, Li W, Guan KL (2005) SRC-1 mediates UNC-5 signaling in caenorhabditis elegans. Mol Cell Biol 25:6485-6495

Lee JS, Chien CB (2004) When sugars guide axons: Insights from heparan sulphate proteoglycan mutants. Nat Rev Genet 5:923-935

Leung-Hagesteijn C, Spence AM, Stern BD, Zhou Y, Su MW, Hedgecock EM, Culotti JG (1992) UNC-5, a transmembrane protein with immunoglobulin and thrombospondin type 1 domains, guides cell and pioneer axon migrations in C . elegans. Cell 71:289-299

Li W, Aurandt J, Jurgense C, Rao Y, Guan KL (2006) FAK and src kinases are required for netrin-induced tyrosine phosphorylation of UNC5. J Cell Sci 119:47-55

Li W, Lee J, Vikis HG, Lee SH, Liu G, Aurandt J, Shen TL, Fearon ER, Guan JL, Han M, Rao Y, Hong K, Guan KL (2004) Activation of FAK and src are receptorproximal events required for netrin signaling. Nat Neurosci 7:1213-1221

Li X, Meriane M, Triki I, Shekarabi M, Kennedy TE, Larose L, Lamarche-Vane N (2002a) The adaptor protein nck-1 couples the netrin-1 receptor DCC (deleted in colorectal cancer) to the activation of the small GTPase Rac1 through an atypical mechanism. J Biol Chem 277:37788-37797

Li X, Saint-Cyr-Proulx E, Aktories K, Lamarche-Vane N (2002b) Racl and Cdc42 but not RhoA or rho kinase activities are required for neurite outgrowth induced by the netrin-1 receptor DCC (deleted in colorectal cancer) in N1E-115 neuroblastoma cells. J Biol Chem 277:15207-15214

Lim YS, Wadsworth WG (2002) Identification of domains of netrin UNC-6 that mediate attractive and repulsive guidance and responses from cells and growth cones. J Neurosci 22:7080-7087

Lu X, Le Noble F, Yuan L, Jiang Q, De Lafarge B, Sugiyama D, Breant C, Claes F, De Smet F, Thomas JL, Autiero M, Carmeliet P, Tessier-Lavigne M, Eichmann A (2004) The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system. Nature 432:179-186

Maloof JN, Whangbo J, Harris JM, Jongeward GD, Kenyon C (1999) A wnt signaling pathway controls hox gene expression and neuroblast migration in C. elegans. Development 126:37-49

Mello C, Fire A (1995) DNA transformation. Methods Cell Biol 48:451-482
Merz DC, Alves G, Kawano T, Zheng H, Culotti JG (2003) UNC-52/perlecan affects gonadal leader cell migrations in C. elegans hermaphrodites through alterations in growth factor signaling. Dev Biol 256:173-186

Merz DC, Zheng H, Killeen MT, Krizus A, Culotti JG (2001) Multiple signaling mechanisms of the UNC-6/netrin receptors UNC-5 and UNC-40/DCC in vivo. Genetics 158:1071-1080

Meuth M, Arrand JE (1982) Alterations of gene structure in ethyl methane sulfonateinduced mutants of mammalian cells. Mol Cell Biol 2:1459-1462

Minniti AN, Labarca M, Hurtado C, Brandan E (2004) Caenorhabditis elegans syndecan (SDN-1) is required for normal egg laying and associates with the nervous system and the vulva. J Cell Sci 117:5179-5190

Montell DJ (2003) Border-cell migration: The race is on. Nat Rev Mol Cell Biol 4:13-24
Mohrlen F, Hutter H, Zwilling R (2003) The astacin protein family in caenorhabditis elegans. Eur J Biochem 270:4909-4920

Nash B, Colavita A, Zheng H, Roy PJ, Culotti JG (2000) The forkhead transcription factor UNC-130 is required for the graded spatial expression of the UNC-129 TGF-beta guidance factor in C. elegans. Genes Dev 14:2486-2500

Nishiwaki K (1999) Mutations affecting symmetrical migration of distal tip cells in caenorhabditis elegans. Genetics 152:985-997

Nishiwaki K, Hisamoto N, Matsumoto K (2000) A metalloprotease disintegrin that controls cell migration in caenorhabditis elegans. Science 288:2205-2208

Nishiwaki K, Kubota Y, Chigira Y, Roy SK, Suzuki M, Schvarzstein M, Jigami Y, Hisamoto N, Matsumoto K (2004) An NDPase links ADAM protease glycosylation with organ morphogenesis in C. elegans. Nat Cell Biol 6:31-37

Nishiyama M, Hoshino A, Tsai L, Henley JR, Goshima Y, Tessier-Lavigne M, Poo MM, Hong K (2003) Cyclic AMP/GMP-dependent modulation of Ca2+ channels sets the polarity of nerve growth-cone turning. Nature 423:990-995

Ornitz, DM (2000) FGFs, heparan sulfate and FGFRs: complex interactions essential for development. BioEssays 22:108-112

Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453-465

Praitis V, Casey E, Collar D, Austin J (2001) Creation of low-copy integrated transgenic lines in caenorhabditis elegans. Genetics 157:1217-1226

Przyborski SA, Knowles BB, Ackerman SL (1998) Embryonic phenotype of Unc5h3 mutant mice suggests chemorepulsion during the formation of the rostral cerebellar boundary. Development 125:41-50

Raftopoulou M, Hall A (2004) Cell migration: Rho GTPases lead the way. Dev Biol 265:23-32

Reddien PW, Horvitz HR (2000) CED-2/CrkII and CED-10/Rac control phagocytosis and cell migration in caenorhabditis elegans. Nat Cell Biol 2:131-136

Ridley AJ (2001) Rho proteins, PI 3-kinases, and monocyte/macrophage motility. FEBS Lett 498:168-171

Rhiner C, Gysi S, Frohli E, Hengartner MO, Hajnal A (2005) Syndecan regulates cell migration and axon guidance in C. elegans. Development 132:4621-4633

Su M, Merz DC, Killeen MT, Zhou Y, Zheng H, Kramer JM, Hedgecock EM, Culotti JG (2000) Regulation of the UNC-5 netrin receptor initiates the first reorientation of migrating distal tip cells in caenorhabditis elegans. Development 127:585594

Suzuki Y, Yandell MD, Roy PJ, Krishna S, Savage-Dunn C, Ross RM, Padgett RW, Wood WB (1999) A BMP homolog acts as a dose-dependent regulator of body size and male tail patterning in caenorhabditis elegans. Development 126:241250

Tamagnone L, Comoglio PM (2000) Signalling by semaphorin receptors: Cell guidance and beyond. Trends Cell Biol 10:377-383

Tanikawa C, Matsuda K, Fukuda S, Nakamura Y, Arakawa H (2003) p53RDL1 regulates p53-dependent apoptosis. Nat Cell Biol 5:216-223

Tessier-Lavigne M, Goodman CS (1996) The molecular biology of axon guidance. Science 274:1123-1133

Thiebault K, Mazelin L, Pays L, Llambi F, Joly MO, Scoazec JY, Saurin JC, Romeo G, Mehlen P (2003) The netrin-1 receptors UNC5H are putative tumor suppressors controlling cell death commitment. Proc Natl Acad Sci U S A 100:4173-4178

Timmons L, Fire A (1998) Specific interference by ingested dsRNA. Nature 395:854

Tong J, Killeen M, Steven R, Binns KL, Culotti J, Pawson T (2001) Netrin stimulates tyrosine phosphorylation of the UNC-5 family of netrin receptors and induces Shp2 binding to the RCM cytodomain. J Biol Chem 276:40917-40925

Vu TH, Werb Z (2000) Matrix metalloproteinases: Effectors of development and normal physiology. Genes Dev 14:2123-2133

Wadsworth WG, Bhatt H, Hedgecock EM (1996) Neuroglia and pioneer neurons express UNC-6 to provide global and local netrin cues for guiding migrations in C. elegans. Neuron 16:35-46

Whangbo J, Kenyon C (1999) A wnt signaling system that specifies two patterns of cell migration in C. elegans. Mol Cell 4:851-858

Wills Z, Marr L, Zinn K, Goodman CS, Van Vactor D (1999) Profilin and the abl tyrosine kinase are required for motor axon outgrowth in the drosophila embryo. Neuron 22:291-299

Wu YC, Horvitz HR (1998) C. elegans phagocytosis and cell-migration protein CED-5 is similar to human DOCK180. Nature 392:501-504

Yu DH, Qu CK, Henegariu O, Lu X, Feng GS (1998) Protein-tyrosine phosphatase shp-2 regulates cell spreading, migration, and focal adhesion. J Biol Chem 273:2112521131

Yu TW, Hao JC, Lim W, Tessier-Lavigne M, Bargmann CI (2002) Shared receptors in axon guidance: SAX-3/Robo signals via UNC-34/Enabled and a netrinindependent UNC-40/DCC function. Nat Neurosci 5:1147-1154

[^0]: ${ }^{2}$ Each statistical comparison is against the frequency of DTC migration defects in unc-5 or unc-5; unc-40 strain alone. ${ }^{*} P<0.05 ;{ }^{* *} P<0.001$.

[^1]: ${ }^{\text {a }}$ Each statistical comparison is against the frequency of DTC migration defects in mig(ev648) grown at $20^{\circ} \mathrm{C} .{ }^{*} P<0.05 ; * * P<0.001$.

[^2]: ${ }^{2}$ Each statistical comparison is against the frequency of DTC migration defects in unc$5, u n c-40$ or $u n c-6$ strain alone. ${ }^{*} P<0.05 ;{ }^{* *} P<0.001$.

[^3]: ${ }^{\text {a }}$ Each statistical comparison is against the frequency of DTC migration defects in unc-5, sdn-1 strain alone. ${ }^{*} P<0.05 ; * * P<0.001$.

[^4]: ${ }^{\text {a }}$ Each statistical comparison is against the frequency of DTC migration defects in the unc-5 strain alone. ${ }^{*} P<0.05 ; * * P<0.001$.

[^5]: ${ }^{a}$ Each statistical comparison is against the frequency of DTC migration defects in unc$5 ; s d n-1$ strain alone. ${ }^{*} P<0.05 ; * * P<0.001$.

