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Abstract 

Data mining has gained popularity over the past two decades and has been considered one of the most prominent 
areas of current database research. Common data mining tasks include finding frequent patterns, clustering and 

classifying objects, as well as detecting anomalies. To handle these tasks, techniques from different fields—such as 

database systems, machine learning, statistics, information retrieval, and data visualization—are applied to provide 

business intelligent (BI) solutions to various real-life problems. In this survey, we focus on the task of frequent 

pattern mining, which non-trivially extracts implicit, previously unknown and potentially useful information in the 

form of frequently occurring sets of items. Mined frequent patterns can be considered as building blocks for 

association rules, which help reveal associative relationships between items or events on the antecedent and the 

consequent of rules. Here, we describe some classical algorithms, as well as some recent innovative algorithms, for 

mining precise data (in which users are certain about the presence or absence of data items) and uncertain data (in 

which users are uncertain about the presence or absence of data items and they only know that data items 

probably occur). 
 

Keywords: Index Terms—Data mining, association rule mining, frequent patterns, precise data, uncertain data, 

probabilistic databases.  
 

Resumo 
Mineração de Dados ganhou popularidade nas últimas duas décadas e tem sido considerada uma das mais 

proeminentes áreas dentro da área de Banco de Dados. Dentre as tarefas comumente realizadas em mineração de 

dados encontram-se busca de padrões frequentes, clusterização e classificação de objetos, como também detecção 

de anomalias. Para manipular estas tarefas, técnicas de diferentes campos – tais como sistemas de banco de dados, 
máquinas de aprendizado, estatística, recuperação de informações e visualização de dados – são aplicadas para 

oferecer soluções para problemas em nível de Business Intelligent (BI). Nesta pesquisa, nós focamos em tarefas 

relacionadas a mineração de padrões frequentes, que implica na extração de informações potencialmente úteis, 

não triviais e previamente desconhecidas, na forma de ocorrências de conjunto de itens frequentes. Mineração de 

padrões frequentes pode ser considerados como blocos de informações para a construção de regras de associação, 

os quais auxiliam na identificação de relacionamentos entre itens ou eventos que participam das partes 

antecedente e consequente de uma regra. Neste trabalho são descritos alguns algoritmos clássicos, como também 

alguns algoritmos inovadores recentes, para mineração de dados precisos (para os quais o usuário têm certeza da 

presença ou ausência dos itens de dados) e dados incertos (para os quais usuários tem somente uma certeza 

probabilística da presença ou ausência de determinados itens de dados) 
 

Palavras-chave: Mineração de Dados; Mineração de Regras de Associação; Dados Precisos; Dados Incertos; Banco 

de Dados Probabilísticos. 
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1 INTRODUCTION: DATA MINING 

In the last few years, we have witnessed a massive increase in data storage. This results in useful 

information being dormant in huge hard drives. As a consequence, the field of data mining has gained 

popularity as a way of discovering new opportunities and information on data that was usually doomed to 

be forgotten. 

Some people treat data mining as a synonym for knowledge discovery from data (KDD), whereas 

some other people view data mining as an essential step in the KDD process. With the latter view, other 

steps of the KDD process include (a) data selection (which retrieves from databases those target data, i.e., 

data relevant to the analysis task), (b) data pre-processing (which integrates target data from various 

sources and cleans target data by removing noise and inconsistent data), (c) data transformation (which 

summarizes or aggregates the pre-processed data into appropriate forms for mining), as well as (d) 

pattern evaluation and knowledge interpretation (which identifies interesting ones from the mined 

patterns and represents or visualizes these interesting patterns or knowledge to users). As such, data 

mining refers to the systematic extraction of patterns from (transformed) data stored or captured in large 

databases, data streams, data warehouses, or information repositories (Han, 2009). More formally, 

Piatetsky-Shapiro and Frawley (1991) referred to data mining as the “non-trivial extraction of implicit, 

previously unknown, and potentially useful information from data”. Data mining combines different 

research fields including database systems and data warehousing, machine learning and pattern 

recognition, statistics, information retrieval, high-performance computing, as well as more specific 

application fields like WWW, multimedia and bioinformatics (Han, 2009) (Han & Kamber, 2011). Common 

data mining tasks include association rule mining/frequent pattern mining, clustering, classification, 

outlier detection, and sequential mining. 

Association rule mining (Agrawal, Imielinsky, & Swami, 1993) (Cheng & Han, 2009) is a data mining task 

that discovers interesting relationships among frequently occurring patterns in databases. The mining 

process consists of two key steps. The first key step is frequent pattern mining (Cheng & Han, 2009) 

(Leung, 2009), which finds sets of items (i.e., itemsets) that occur frequently in the data. Once these 

frequent patterns are found, the second key step of association rule mining is to generate rules that 

represent interesting relationships (e.g., association, correlation) between the mined frequent patterns. A 

very common real-life application for association rule mining/frequent pattern mining is shopping market 
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basket analysis, where store managers want to find hidden relations among independent shopping items. 

For example, with frequent pattern mining, store managers may find that bread, milk and butter are 

frequently purchased by customers. With association rule mining on these frequent patterns, the store 

managers may also discover that 90% of the customers who purchased milk also purchased bread. 

Similarly, bookstore staff can use association rule/frequent pattern mining to reveal the sets of books 

frequently bought together by readers. Web administrators can use association rule or frequent pattern 

mining to know the collection of web pages also viewed by web surfers who view a particular web page. 

Clustering (Hartigan, 1975) (Agrawal, Gehrke, Gunopulos, & Raghavan, 1998) (Gunpulos, 2009) (Jain, 

2010), is sometimes referred to as unsupervised learning or segmentation, is a data mining task that 

assigns data objects to groups of similar objects (i.e., clusters). These objects are grouped in such a way 

that those in the same cluster are very similar to each other while at the same time are very dissimilar 

from objects in other groups. Objects are usually grouped using partitioning, hierarchical, density-based, 

grid-based, or probabilistic model-based methods. The resulting clusters are very useful in getting insight 

into the distribution of data objects. Consider a shopping market database, in which each transaction 

records the items purchased by a customer. Using clustering techniques, store managers can divide 

customers into different groups according to the items they purchased so that customers with similar 

buying patterns are in the same cluster. This clustering analysis helps store managers to characterize 

customers based on their buying patterns and discover significant customer groups. Moreover, clustering 

can also be useful in applications like data reduction, hypothesis generation and testing, bioinformatics 

(e.g., gene expression analysis), spatial data analysis (e.g., for city planning), as well as web mining. 

Furthermore, clustering can be applicable to pre-processing data for other data mining tasks like 

classification. 

Classification (Mitchell, 1997) (Liu, 2009) (Witten, 2009) (Alpaydin, 2011), is sometimes referred to as 

supervised learning, is a data mining task that predicts categorical class labels for unseen new data 

instances (i.e., test data) based on the previously known information (i.e., training data). Data are usually 

classified using decision tree induction, rule-based classification, Bayesian and neural networks, support 

vector machines, k-nearest neighbour classification, linear regression, associative classification and 

frequent pattern-based classification, genetic algorithms, or rough set and fuzzy set approaches. Credit 

approval, target marketing, and diagnosis are some real-life classification applications, in which decisions 
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involving judgement were made. For example, bank officers often make decisions on approving or 

denying new loan applications based on information about previous applicants (e.g., their age, marital 

status, income, education). Specifically, bank officers predict whether the new applicants are classified as 

high-, medium-, or low-risk applicants based on information about previous applicants. Similarly, based on 

the classification results, store managers can find appropriate target marketing customers and apply 

appropriate promotion and marketing strategy to these focused groups of customers. 

Outlier detection (Hawkins, 1980) (Patcha & Park, 2007) (Papadimitriou, 2009), is sometimes referred to 

as anomaly detection, is a data mining task that finds abnormal data objects (i.e., data objects with 

behaviours that are very different from expectation). Note that association rule/frequent pattern mining 

finds frequently occurring patterns, whereas outlier detection finds rarely occurring patterns. Moreover, 

clustering finds the majority patterns in a dataset, whereas outlier detection captures exceptional cases 

that substantially deviate from the majority patterns. Exceptional data objects are usually detected by 

statistical, clustering-based, classification-based, distance-based, or density-based methods. The 

detection of outliers or anomalies is important in security-related applications such as credit card fraud 

detection, in which credit card companies analyze buying behaviours of card holders. Any unusual 

transactions trigger an alert (e.g., to contract the card holders). Other real-life applications include the 

monitoring of computer systems or networks (for computer security), civil infrastructures (for 

maintenance and safety), patients (for pervasive healthcare), and industrial production chain process (for 

quality control). 

Sequential mining (Agrawal & Srikant, 1995) (Dong & Pei, 2007) (Wang, 2009) refers to the analysis of 

data objects that change over time. Sequential mining can be considered as extensions to association 

rule/frequent pattern mining by considering the additional dimension: time. For instance, association 

rule/frequent pattern mining looks for what collections of merchandise items are frequently purchased by 

customers. Here, the order in which the items were purchased is unimportant. In contrast, sequential 

mining looks for how the frequently purchased merchandise items change over time. Other real-life 

application of sequential mining include detection of erroneous sentences, discovery of block correlations 

in storage systems, as well as analysis of stock market fluctuations, web click log streams and DNA 

sequences.  

So far, we have introduced the five common data mining tasks. An observant reader may notice that, 
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among these tasks, association rule/frequent pattern mining can be used for clustering and classification 

(as in associative clustering and associative classification). Outlier detection (which finds rarely occurring 

patterns) can be considered as dual problems of association rule/frequent pattern mining (which finds 

frequently occurring patterns). Data that substantially deviate from frequent patterns can be considered 

as outliers. Moreover, sequential mining can be considered as extensions to association rule/frequent 

pattern mining by considering the additional time dimension. Hence, in the remainder of this paper, we 

will focus on association rule/frequent pattern mining due to its close connection and fundamental role to 

the other four data mining tasks. 

 

2 BACKGROUND FOR FREQUENT PATTERN MINING 

 

Many existing algorithms mine frequent patterns from precise transaction databases, in which 

each transaction contains a collection of domain items. Each of these items usually takes only one of the 

binary states: The item is either present in, or absent from, the transaction. Since the introduction of the 

association rule mining problem in (Agrawal, Imielinsky, & Swami, 1993), numerous algorithms have been 

proposed to mine frequent patterns from precise data and to use the mined patterns to form interesting 

association rules. Over the past few years, several researchers have described and compared these 

algorithms (Cheng, Ke, & Ng, 2007) (Aggarwal, Li, Wang, & Wang, 2009) (Goethals, 2010) (Mabroukeh & 

Ezeife, 2010). For example, Ceglar & Roddick (2006) provided a review on association rule mining. Han et 

al. (2007) discussed current algorithms available for data mining, which includes association rule mining.  

As we are living in an uncertain world, data may not necessarily be precise. Sometimes, data may 

be uncertain. This leads to the mining of frequent patterns from uncertain datasets, in which users are not 

sure about the presence of domain items in transactions of the datasets. One way to express the 

uncertainty is to associate each transaction item with an existential probability value which indicates its 

likelihood of being present in that transaction. In recent years, researchers have proposed algorithms to 

mine frequent patterns from uncertain data. Recently, Leung (2011) reviewed the most recent 

developments in mining frequent patterns from uncertain data.  

In the remainder of this paper, we will give a high-level overview of some notable algorithms 

designed for mining frequent patterns from precise data as well as for uncertain data. 



MINING FREQUENT PATTERNS FROM PRECISE AND UNCERTAIN DATA 
 

 

 

8 

 

Revista de Sistemas e Computação, Salvador, v. 1, n. 1, p. 3-22, jan./jun. 2011 
http://www.revistas.unifacs.br/index.php/rsc 

 

a. Frequency or Support of a Pattern 

For a set of transactions D, each transaction can be identified by its unique transaction ID (TID). 

Each transaction �� is made of a set of items so that �� � �, where I is set of m items in the domain: 

� � ���, �
, ��, … , �
�. Then, an association rule is a relationship between two or more items of the form 

� � �, where �, � � �. A set of items (i.e., an itemset) is considered to be frequent if the number of 

transactions that contain it is no less than a user-defined minimum support threshold (minsup).  

The actual support (or frequency) of a set of items X is the number (or percentage) of transactions 

in a database that contains X. For example, if bread, milk and butter are purchased together in 120 of the 

200 transactions in D, then the support of {bread, milk, butter} is 120 (or 60%). 

Similarly, the actual support of a rule � � � is the number (or percentage) of transactions in a 

database that contain � � �. The confidence of the rule is the percentage of transactions that contain 

itemset X that also contains itemset Y. For example, out of the 160 transactions in D (i.e., 80% of all 200 

transactions) containing milk, 140 of them contain both milk and bread. Then, the support of the rule 

“milk � bread” is 140 (or 70%) and its confidence is 140/160 = 87.5%. 

b. Uncertain Data 

Data are imprecise or uncertain if users do not have a perfect or complete description of a 

situation in the real world (Zimanyi & Pirotte, 1997). One way to interpret these uncertain data is to use 

the “possible world” interpretation (Chui & Kao, 2008), which takes in account the existential probability 

associated with each item. Given a domain item � in a single transaction in ��, there are two “possible 

words” �� where the item � is present in �� and �
 where � is absent from ��. If the probability of �� to 

be the true world is ������, then the probability of �
 to be the true world is 1 �  ������. This can be 

extended to datasets with more than one transaction, which usually contain more than one item per 

transaction. For a transaction with two independent domain items � and �, the possibility of the world 

that contains both of them is ������  � ������. In general, the number of possible worlds is given by 2!, 

where " is the number of independent items in all transactions (Leung, 2011). Following the same 

interpretation, the expected support for an itemset X over all possible worlds in a dataset # can be 

computed by summing the product of existential probabilities of all items in X: 

$�%&'%��, #� � ( ) ������
*+,

|.|

�/�
. 
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Unlike frequent pattern mining from precise data (which finds patterns with actual support ≥ 

minsup), frequent pattern mining from uncertain data finds patterns with expected support ≥ minsup. 

 

 

3 FREQUENT PATTERN MINING ALGORITHMS 

 

a. Mining Precise Data 

After Agrawal et al. (1993) introduced the research problem of association rule/frequent pattern 

mining, Agrawal and Srikant (1994) developed the classical Apriori algorithm. This algorithm relies on a 

generate-and-test approach and an important property: the Apriori property. This property is also known 

as anti-monotone property, and it is a basic pillar of the Apriori algorithm. It states that all non-empty 

subsets of a frequent itemset must be frequent. For example, if itemset �1, 2, 3� is a frequent itemset, 

then all of its subsets �1�, �2�, �3�, �1, 2�, �2, 3� and �1, 3� must be frequent. In other words, if an itemset 

is not frequent, than none of its supersets can be frequent. As a result, the list of potential frequent 

itemsets eventually gets smaller as mining progresses. 

To find frequent patterns, Apriori makes one first pass over the database to find the frequent 1-

itemsets. Once this pass is completed, the algorithm generates candidate 2-itemsets based on these 

frequent 1-itemsets. The algorithm then scans the database again to find frequent 2-itemsets. In the next 

step, the algorithm uses these frequent 2-itemsets to generate candidate 3-itemsets. The algorithm then 

scans the database to find frequent 3-itemsets from these candidates. This process is repeated until no 

larger frequent itemsets are found illustrates how Apriori finds frequent patterns from a sample database. 
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Although it is one of the early data mining algorithms, Apriori has the benefit of producing 100% 

accurate results. Moreover, it achieves good performance when dealing with very sparse databases. 

However, it degrades rapidly when databases get denser. The reason is that the algorithm scans 

databases as many times as the longest frequent pattern (Zaki & Gouda, 2003). 

Park et al. (1995) observed that one potential problem of the Apriori algorithm is the huge number 

of candidate k-itemsets (especially, candidate 2-itemsets) generated and tested by the algorithm. To deal 

with this potential problem, they developed the Direct Hash and Pruning (DHP) algorithm. The DHP 

algorithm uses a hash table to prune away infrequent candidate k-itemsets. At the beginning of each level 

k, the DHP algorithm hashes each itemset to a bucket by using a hash function. Once all itemsets have 

been hashed, the counter at each bucket is checked. If the count is smaller than the minsup value, all 

candidates in that bucket are discarded since they cannot be frequent. As a result of having fewer 

candidates to check for, the hashing technique speeds up the mining process and reduces the number of 

candidates to be tested. Moreover, Park et al. also presented a trimming technique to reduce the size of 

the database as the process evolves so that successive passes search on fewer transactions and items. As 

the database grows in size, the bigger is the gap between the runtime of DHP and Apriori. The 

performance of DHP depends on the size of the hash table and of the number of infrequent itemsets 

being hashed into the same bucket. For example, if several distinct infrequent itemsets are being hashed 

into the same bucket, the count of the bucket may exceed minsup. Consequently, DHP cannot prune away 

these (infrequent) itemsets, which can be considered as false positives in the intermediate levels. 

A variation of DHP is the Perfect Hashing and Pruning (PHP) algorithm (Özel & Güvenir, 2001), 

which uses perfect hashing to avoid false positives in the intermediate levels of the mining process. As a 

Figure 1. Example run of the Apriori algorithm with a minimum 

support of 2. 
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result, each bucket shows the actual support of every itemset, and thus saves some computation. 

Similarly, Pavón et al. (Pavón, Viana, & Gómez, 2006) proposed the Matrix Apriori algorithm to 

speed up the mining process. It reduces the number of candidate itemsets by utilizing matrix and vector 

structures. 

Many Apriori-based algorithms (including DHP and PHP) require numerous database scans, which 

incur high I/O costs, and thus slow down the mining process. The Partition algorithm (Savasere, Edward, 

& Navathe, 1995) is another technique to improve Apriori-based algorithms by dividing the database in a 

number of non-overlapping segments. After the first database scan, itemsets that are frequent locally in 

each segment can be found. For an itemset to be globally frequent in the database, it must be locally 

frequent itemset in at least one partition (or segment). So, after gathering all local frequent itemsets, the 

Partition algorithm scans the database for the second and last time to check which of those local frequent 

itemsets are actually frequent globally in the whole database. As a result, this technique reduces 

drastically the number of scans needed by Apriori-based algorithms to only two. Note that the Partition 

algorithm depends on the data distribution and the number of segments. 

To further tackle the problem associated with numerous database scans and to avoid the 

candidate generate-and-test process, Han et al. (2000) proposed a pattern-growth approach. The 

corresponding algorithm is called Frequent Pattern Growth (FP-growth). It only needs two scans to get 

the information about the database. As contents of this database are captured in a tree structure, 

frequent patterns are mined from the tree structure. Consequently, FP-growth avoids the candidate 

generation step because the algorithm traverses the tree structure when mining frequent patterns. 
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Specifically, FP-growth starts by scanning the database once to find all frequent 1-itemsets. 

Afterwards, the algorithm makes a ranking table, in which items appear in descending frequency order. All 

infrequent items are then discarded. During the second pass, the algorithm orders the items in each 

transaction according to the ranking created in the first pass. At the same time, infrequent items in the 

transaction are ignored. Following the rank order, frequent items are inserted in a tree structure called 

FP-tree. Since all transactions follow the same order, they can be merged if they share the same prefix. 

This property ensures that the FP-tree is never bigger than the database itself, and in fact, is usually a lot 

smaller. Once the FP-tree is built for the database, the algorithm constructs a conditional FP-tree for each 

frequent item so that all frequent patterns can be found by just traversing that structure shows the FP-

tree that results of applying the FP-growth algorithm on a small database. 

The FP-tree algorithm usually outperforms Apriori-based variations in runtime (Grahne, 2003). The 

worst case scenario for FP-tree occurs when mining huge but very sparse databases. In these cases, the 

tree becomes very big. To improve these cases, Grahne & Zhu (2003) used an array structure to reduce 

the number of traversals of FP-trees. 

Note that arranging transaction in descending order does not guarantee the smallest tree 

structure possible. In fact, itemsets could be put in any order as long as each path follows the same order. 

Following this line of thinking, Leung et al. (2005) developed a different structure called Canonical-order 

Tree (CanTree) that takes only one database scan in total. Instead of using the descending frequency 

order, their algorithm reads the database once and uses a predefined order to insert transactions into the 

Figure 2. An FP-tree used in the FP-growth algorithm for mining 

frequent patterns with a minimum support of 3. 
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structure so that changes in the frequency of the itemsets do not alter this order. As a consequence of 

this non-changing ordering property, CanTree is also very suitable for incremental mining, where one can 

insert, delete or modify transactions without the need to rebuild the tree structure.  

Another tree structure developed for incremental mining is the Compact Pattern Tree (CP-tree) 

(Tanbeer, Ahmed, Jeong, & Lee, 2009). It gives similar performance as that of the CanTree, but it keeps 

the frequency order and rearranges the nodes in the tree by using an auxiliary list so that the process 

does not take too much time. 

Pei et al. (2001) developed H-Mine, an algorithm that uses dynamic linked lists to maintain a 

hyperlink array structure called H-struct. The algorithm tries to improve the mining time by using this 

structure.  Once the H-struct is built, the H-Mine algorithm just needs to maintain and update the 

numerous links that point from one transaction to the next that contains the same set of items.  Since H-

Mine keeps all transactions that contain frequent items in memory, there is no need to read the database 

more than once (just to construct the H-struct). From that point on, all information is extracted from the 

H-struct. Pei et al. (2001) showed that H-Mine outperformed Apriori by finding frequent patterns quicker 

and requiring less memory than FP-growth, especially with small minimum support threshold. As the 

minimum support gets larger, FP-growth outperforms H-Mine in terms of memory usage and their 

runtime is almost the same shows the early stages of the H-struct on the same database used in the 

Figure 2. 

All the algorithms we have described so far use a horizontal representation of the datasets. As 

explained by Shenoy et al. (2000), the most common representation is called horizontal item-list (HIL), 

where each transaction has an ID and a list of items. Another horizontal representation is the horizontal 

item-vector (HIV) representation, which stores the database as a set of rows identified by a unique ID and 

a bit vector where each item is represented by a 1 or a 0 depending on whether it is present or absent, 

respectively. 

Besides these horizontal representations, there are also vertical representations to represent the 

datasets. When using the vertical tid-vector (VTV), the database is stored as a set of columns, one for each 

item, where the transactions are represented by a 1 or a 0 whether they contain the item or not. The 

fourth and last representation is the vertical tid-list (VTL) which is similar to VTV. The exception is that, 

instead of storing 0s and 1s, it stores only the transactions IDs where the item appears shows a 
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comparison of these four types of data representation using the same database as in. 

 One of the algorithms that benefits from the vertical representation is Vertical Itemset 

Partitioning for Efficient Rule-extraction (VIPER) (Shenoy, Haritsa, Sudarshan, Bhalotia, Bawa, & Shah, 

2000). VIPER uses VTV and takes advantage of the fact that this representation allows one to calculate the 

support of a given pattern by just getting the intersection of the items in it (this means using the AND 

operation among vectors of items contained in a given itemset). Another advantage is that operations are 

fast because VIPER is using only binary values, which also give one a chance to compress the vectors.  

VIPER scans the database once to find the frequent 1-itemsets and builds “snakes”—binary 

vectors—for each itemset. A second database scan is needed to count the frequent 2-itemsets and avoid 

Figure 3. An H-struct used in the H-Mine algorithm for mining 

frequent patterns with a minimum support of 3. 

Figure 4. Four representations of datasets. 
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the overhead of combining all the snakes of singletons. Afterwards, larger frequent itemsets are 

generated by ANDing the snakes of the items contained in the patters interesting to the user. VIPER offers 

a good runtime performance mainly because of the advantage of using binary values. Other algorithms 

using similar techniques include CLIQUE and Eclat (Zaki, Parthasarathy, Ogihara, & Li, 1997). 

Although both VIPER and Eclat require short runtime and low memory consumption, their weak 

point comes from the costly intermediate stages of the frequent pattern generation because snakes need 

to be combined and created for the new ones, thus taking up more memory. As an alternative approach 

to remedy this problem, Zaki and Gouda (2003) developed a new technique called diffset, which also uses 

vertical mining representation but specifically VTL in this case. Instead of actually storing the whole vector 

for each itemset, diffset only stores the difference between the candidate patterns and the generated 

frequent patterns, improving on the weak points of VIPER and Eclat. They applied these concepts on Eclat, 

and called the new algorithm dEclat. In terms of memory usage: dEclat requires 80% less space than Eclat. 

b. Uncertain Data 

One of the earliest algorithms for uncertain data is part of the generate-and-test approach. Chui et 

al. (2007) adapted the classic Apriori algorithm for uncertain data and called it U-Apriori. The process is 

almost the same as in the original algorithm, but now the expected support of a given pattern is 

incremented by the product of all existential probabilities of the items in the pattern. Expecting the 

performance of U-Apriori to be even worse than that of the original Apriori because of the effect of 

multiplying small numbers several times, Chui et al. proposed a trimming strategy to reduce the database 

by removing items with low probability. So, the number of candidates is lower and the database is 

smaller, but the mining process itself is still very slow and takes a lot of space nonetheless. 

Chui and Kao (2008) explained that this strategy can be counter-productive when most items have 

small probability values and the savings obtained may not compensate for the overhead caused. As a 

result, they developed a technique called Decremental Pruning (DP) to further improve the performance 

of U-Apriori. DP scans the database once to estimate bounds for each 1-itemset and stores this value in a 

decremental counter for all patterns that contain this item. As the database is scanned, this counter is 

updated by subtracting the corresponding “over-estimate” for each item in the pattern. If the counter 

gets below the minimum support, any pattern containing that item cannot be frequent and hence can be 

pruned. DP—with its two improvements—is a very effective technique and it improves both runtime and 
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memory requirements of U-Apriori. Even though it is still bounded by the generate-and-test approach 

limitations, the application of the decremental technique (known as UCP-Apriori algorithm) is a 

reasonable Apriori-based adaptation for uncertain data. 

 Leung et al. (2008) developed an adaptation of FP-growth for uncertain data, and they called the 

resulting algorithm UF-growth. The only difference of this algorithm when compared to the original one 

for precise data is that now it analyzes not only the item itself, but also the probability value associated to 

it. As a result, two nodes in the tree structure are merged only if both their probability value and the item 

are the same; otherwise, a new branch is created. Moreover, Leung et al. also proposed two 

improvements for this algorithm to speed up the mining process. The first one discretizes the probability 

value of each node up to " decimal places so that more nodes can be merged and less memory occupied. 

The second one proposes to build conditional trees only for the 1-itemsets to save even more memory. 

Both improvements can be implemented together. 

Aggarwal et al. (2009) adapted another algorithm that is also part of the pattern-growth approach 

to work with uncertain data: H-Mine. The resulting UH-Mine algorithm uses the same basic principles as it 

counterpart for precise data and the only difference is that now the H-struct also stores the probability of 

each item besides the link and the item itself. Aggarwal et al. showed that UH-Mine outperforms UCP-

Apriori in both runtime and memory usage. 

A completely different approach was explored by Calders et al. (2010). Problems like the size of 

the data for the generate-and-test approach which affects the scalability of the algorithm and the fact 

that the pattern-growth techniques take a lot of memory to put the datasets in the structure is a 

motivation to develop a new approach that samples the database a number of times defined by the user 

to find the frequent itemsets with a very accurate approximation of the support. The technique works by 

producing a random number for each transaction and comparing it with the probability associated with 

each item in the transaction. If the number produced is greater than the probability of an item, then this 

item will be included in the currently sampled transaction. This technique is used in two algorithms: U-

Eclat and UFP-growth, variations of the original Eclat and FP-growth respectively. The experimental 

results showed that U-Eclat outperformed UCP-Apriori and UH-Mine in terms of runtime, making it 

possibly the faster algorithm for finding frequent patterns using uncertain data. Its accuracy was high 

even for a small number of samples—between 92% and 99% for less than 5 iterations. The only issue with 
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this technique is that it may produce false positives or false negatives when the support of an itemset is 

very close to the minimum support threshold. 

 

4 COMPARISON 

 

a. Precise Data Algorithms 

In terms of performance, the Apriori algorithm and its numerous variations are usually 

outperformed by algorithms that use the pattern-growth approach or vertical data representation. The 

main reason is the large number of candidates generated at each step that need to be tested against the 

database to make sure they are actually frequent. Even with improvements like Partition and DHP, these 

generate-and-test algorithms are bounded by the intrinsic properties of the approach. The gap is even 

bigger when dealing with small minsup values because only a small fraction of the candidates can be 

pruned in the early stages of the process.  

The algorithms that use the pattern-growth approach work very well when dealing with precise 

data because many nodes can be merged every time we insert a new transaction in the tree and this 

property keeps a compact structure that is easily traversed to find the frequent patterns. They usually 

outperform generate-and-test algorithms in most situations. 

Algorithms like Eclat and VIPER that use the vertical data representation are fast because they take 

advantage of the efficient bitwise operations (i.e., intersection of two bit vectors). 

In terms of memory consumption, Apriori-based algorithms generate numerous candidates. 

Pattern-growth algorithms usually assume the FP-tree to be fit into the memory. With sparse databases, 

the FP-tree gets very bushy because new branches appear as new transactions are added. Although this is 

not a common case, it gives the worst case scenario for this approach and can produce worst runtime 

when compared with Apriori. H-Mine is usually not badly affected by sparse databases H-struct does not 

merge array entries that share the common prefix (cf. paths sharing the common prefix are merged in the 

FP-tree). 

Among the algorithms that use vertical data representation, VIPER optimizes memory 

consumption due to the way items are represented by using only binary values. dEclat also requires small 

space by shrinking the “snakes” and allocating only memory that is strictly necessary, and eliminating 
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costly intermediate itemsets. As a result, algorithms with vertical data representations lead the pack in 

memory usage performance. 

b. Uncertain data algorithms 

Although uncertain data provides a completely different scenario and most algorithms give very 

different performances than their counter parts with precise data, U-Apriori inherits the problems of 

generating-and-testing large number of candidates. As the UCP-Apriori algorithm detects infrequent 

candidates they support drop below the minimum support value, its performance is better than the U-

Apriori. However, it is still bounded by the Apriori intrinsic problems. 

UF-growth with improvements and UH-Mine are fast enough to be on top of UCP-Apriori. 

Although UF-growth may suffer from the problem of having very big trees as a result of many different 

probability values for the same items, its improvements truncate probability values and thus merge more 

nodes. As a result, they decrease the chance of having very big trees and the algorithm needs small 

memory space. However, they require longer runtime than U-Eclat.  

U-Eclat is the algorithm that requires less memory to mine frequent patterns from uncertain data 

when taking few database samples. The way U-Eclat samples the database to find all frequent patterns 

allows it to have a very good approximation of the actual support value of each itemset and makes it an 

appropriate algorithm when speed is the most important mining criteria. However, the more samples 

were taken by U-Eclat, the longer it would take to finish. This can have a great impact on the overall 

runtime. 

In terms of accuracy, both U-Apriori and UF-growth provide 100% accuracy at the cost of long 

runtimes and great memory consumption. UH-Mine also provides 100% accuracy and with good memory 

and time trade-off. Although UF-growth with improvement may lose some precision by truncating the 

probability values, the algorithm is accurate enough for most common tasks and scenarios when keeping 

the first and second decimal values. 

 

 

U-Eclat may introduce some inaccuracy in the results when aiming for fast runtime and small 

memory requirement. However, the more samples were taken, the more accurate were the results. This 

is a trade-off among accuracy, runtime, and memory consumption.   
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Even though we have compared these frequent pattern algorithms according to their performance 

in most common scenarios, the order can easily change drastically under different conditions. This is the 

reason why so many different algorithms exist for users to choose a suitable one for their needs. 

 

 

5 CONCLUSION 

Frequent pattern mining—the first step in the association rule mining—has drawn a lot of 

attention from researchers lately and is a very important process in the data mining field. It started as a 

way of analyzing shopping market basket transactions but has extended to different fields and provides 

useful data to the early stages of other data mining tasks such as classification and outlier detection. 

In this paper, we analyzed the most well-known algorithms to find frequent patterns from both 

precise and uncertain data. We covered three common approaches when describing these algorithms: 

generate-and-test, pattern growth, and vertical mining algorithms. The classical Apriori algorithm is the 

referent of the first group and works by generating frequent pattern candidates and checking the 

database to keep those that are indeed frequent. FP-growth uses a tree structure to store the frequent 

items and mines the frequent patterns from it. H-Mine is similar to FP-growth but uses linked lists instead 

of a tree. Eclat and VIPER use vertical data representations instead of the horizontal one used by the 

others. Eclat uses binary values to indicate the presence or absence of each item in a given transaction, 

while VIPER have vectors containing the transactions in which each item appears. dEclat represents only 

the difference between the candidate and the actual frequent itemset in the next level. Among the 

uncertain data mining approaches, most were adapted from the precise data algorithms by adding the 

probability value to each item. Among the improvements to each classic adaptation the decremental 

technique for U-Apriori decrements the expected support of each itemset and prunes it away as soon as it 

drops below the minimum support value. UF-growth truncates the probability value after the second 

decimal position to avoid very big trees. U-Eclat samples the database as many times as set by the user 

and mines the frequent patterns from these samples. 

Each of the algorithms that we have described in this paper possesses very different features, and 

the performance of each depends heavily on the characteristics of the databases. 
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