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Abstract

Visual saliency and eye movements have been well studied, mostly in the capac-

ity of predicting topographical spatial saliency maps. In this thesis, we examine the

problem of sequential selection and sampling of image content in detail. Careful

scrutiny is applied to existing metrics for measuring success of sequential selection

strategies, and a new family of metrics is proposed with an intuitive interpretation

and that provides more discriminative power in revealing differences between viewing

patterns or computational models. This is accompanied by experimentation based on

classic strategies for simulating sequential selection from traditional representations

of saliency, and deep neural networks that produce sequences by construction. Ex-

periments provide strong support for the necessity of sequential analysis of attention

and a roadmap for moving forward.
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Chapter 1

Introduction

1.1 General Introduction

Human and animal brains have significant yet limited computational power, es-

pecially when considering the amount of sensory data available to them. Given this

limitation, the brain appears to have evolved to provide an efficient solution to actively

control the stream of information. Attention is the process of selectively concentrating

on some portion of available information, at the expense of ignoring other perceivable

parts. It is a combination of behavioral and cognitive processes and it may be defined

subjectively or objectively. It has been widely researched in cognitive and perceptual

psychology and regardless of discipline, the usage has been identified to be critical to

Information Reduction and filtering.

Visual attention is a form of attention that allows humans and animals to control

and allocate their limited visual processing resources. The form of control varies

across species. Attention is a complex process that may also include physical actions

1



2 Chapter 1: Introduction

like eye or head movements. In humans, it has been posited that more than 60% of

the brain is involved in processing visual data; a high portion of activated capacity.

It is not that there is too much information, the problem is that each component

of each stimulus can be matched to many different objects or types of scenes in our

memory resulting in a explosion of potential interpretations. In general, attention is

a crucial mechanism for animals and humans survival.

Sequences of successive eye movements during scene exploration are described as

visual scanpaths. The human eye reveals a rapid drop-off in visual acuity and most

neurons are positioned in front of the fovea as can be seen in Fig 2.1. This means

that humans have to move their gaze to effectively place a region of interest (ROI)

in front of their fovea where they have the highest visual acuity. During sequences

of eye movements, the eyes tend to pause briefly on certain locations that are known

as fixations. Fixations are followed by saccades, which involve rapid changes in eye

position driven by a ballistic action that rapidly accelerates the rotation of the eyes

to land at a new target (and with some imprecision). Extracting visual information

takes place during the fixation period and the whole process enables humans to do

fine-grained analysis of the scene. A more detailed review of different types of eye

movements is discussed in section 2.1.1. From one side, not all of the spatial locations

will be viewed and from the other side, the selective process and ordering becomes

important. Other parameters are also involved in this. Visual inhibition of return

(IOR) facilitates foraging by discouraging re-examination of recently fixated locations

[66]. Due to the limited capacity of visual working memory (VWM), effects of IOR

gradually fade over time, which allows the possibility to re-fixate previously attended
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regions.

Saliency and visual attention have been studied in a computational context for

decades. Much of the emphasis of studies has been focused on the notion of saliency,

defined by Koch et al. [43] as a two-dimensional topographic representation of con-

spicuity for every location (pixel) in the image. This has been used to characterize

the spatial density of visual fixations [13], objects of interest in a scene [35; 36], the

degree of objectness [48] of pixels or bounded regions and other less common defini-

tions. Other efforts have also sought to attach task to this, examining these densities

from a top-down perspective [2]. Moreover, the notion of attention has become in-

creasingly prevalent in the context of deep-learning wherein recurrent mechanisms

or reinforcement learning drive the gradual solution to a problem, in some instances

involving spatial selection [76].

While this problem has been studied in some detail, the overwhelming majority

of work in this domain considers a static problem wherein the distribution of gaze,

attention or salience is marked by its spatial distribution. However, spatial selection

by an attentive mechanism is inherently a sequential sampling process in humans

and many artificial vision systems. This evidently gains additional importance as

sequential attention mechanisms in artificial vision systems are becoming increasingly

prevalent. There may be a strong bias to examine certain parts of a scene right

away before moving on to other interesting regions. On the other hand, there may

be several equally interesting regions of a scene and no particular order. This is a

characteristic that most modeling and analysis to date has failed to address in detail.

While some efforts have been devoted to analyzing sequential models of fixation, the
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case may be made (as it is in this thesis) that existing metrics fall short in adequately

capturing model performance, and similarities and differences among sequences of

selected regions.

1.2 Motivation and Contributions

Established algorithms for saliency prediction have been improving over the years

in predicting patterns derived from gaze data. However, in the vast majority of

cases, they have been tested with datasets containing few salient objects and more

importantly, the focus of this analysis and measurement of success has been based on

2D topographical representations of what is salient. Moreover, with more crowded and

occluded scenes including many natural images, the attentive behaviour of humans

varies significantly from one person to another. Given that this is not about right or

wrong patterns of viewing, sequential analysis could be a more insightful avenue for

investigation.

In general, simulating and modeling the human visual system has the advantage

that it results in human-like behavior. This is beneficial for systems that need to

interact with humans in a natural manner. Seeking simple solutions to derive a

sequence of fixation points while exploring a scene could also help attentive models

produce higher accuracy for their specific task. High-level strategies for optimal

information gathering are key to the field of computer vision. Most applications

in computer vision function primarily in a passive way. Meanwhile, active control

over the acquisition of image data is fundamental to efficient development of robust

and general computer vision solutions for unconstrained environments. The advent



Chapter 1: Introduction 5

of Deep Learning has been something of a revolution in machine vision capabilities

and has brought a significant boost in the capabilities and performance of solutions.

However, even in this domain there is no escaping the large amount of computing

power necessary to adequately treat input especially if the desire is a solution that is

possible to run in real-time. Incorporating attention in models could help converge

to a better solution. This also raises the question of what value can be gained, or

what can be understood in comparing the attentive policy of models built on machine

learning models for specific tasks with humans.

Motivated by the aforementioned observations, we seek to revisit the space of

metrics currently used in the domain of analyzing gaze trajectories, viewing patterns

and saliency in order to arrive at a consensus on intuitive interpretations of inter-

sequence distances, and also towards redefining metrics that produce meaningful and

significant contrast among observations. In the balance of this thesis, we present

metrics and experimentation that advocates for alternative metrics to any appearing

in the literature deemed ScanPath Plausibility (SPP). This is tested in considering a

wide variety of extant saliency models coupled with a selection mechanism.

Contributions of this thesis are therefore as follows:

• A detailed analysis and review of metrics available for scanpath comparison.

Before this, metrics were discussed from a theoretical standpoint without em-

pirical experiments or quantification of metric behavior.

• Revealing strengths and weaknesses of metrics from both an axiomatic and

empirical standpoint along with recommendations for analysis.

• Constructing the first benchmark of computational saccadic models based on



6 Chapter 1: Introduction

a series of simple post-processing techniques on saliency models, and the very

limited set of models that produce sequences by construction.

• Comparative studies based on information in a sequence and showing the wealth

of information comparing to static representation.

1.3 Thesis Outline

The remainder of this thesis is organized as follows: In Chapter 2, background

and related work are reviewed and discussed. Chapter 2 also introduces a variety

of metrics covered in this thesis including static and sequential metrics for compar-

ing gaze patterns, and their relationship to inter-observer congruency. Chapter 3

demonstrates an empirical study on the behaviour of sequential metrics and provides

an in depth benchmark of the performance of saliency algorithms while discussing

various factors related to benchmarking and performance. Furthermore, this chap-

ter introduces the ScanpPath Plausibility metric (SPP) for measuring Inter-observer

congruency also providing an upper bound for models performance. Chapter 4 delves

into some of the cases where sequential analysis can be more enlightening than static

measures. In particular, it is revealed that interpretation of data changes when viewed

through the lens of sequential metrics, which underscores their value and necessity.

Finally, Chapter 5 concludes the thesis describing limitations and directions for future

research.
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1.4 Open data & Source Code

The Python implementation of all experiments can be accessed through the fol-

lowing link: https://github.com/rAm1n/msc-thesis. The evaluation data including

the materials, datasets, individual scanpaths, metrics and figures can be downloaded

from the same link.



Chapter 2

Background and Related Works

In this section, related works and studies similar to those considered in this thesis

are reviewed. Starting with human gaze behaviour, different types of eye movements

are discussed. Following this two most common methods of computational modeling

of eye tracking data will be reviewed: i. Static saliency map prediction or ii. tem-

poral saccadic models. In the literature, the extent of agreement across observers

is measured and quantified according to an inter-observer congruency (IOC) score.

This plays a role primarily in benchmarking in measuring the capacity for the raw

human fixation data to predict behavior of other humans in the experiments, and to

provide a bound on how well an algorithm may perform in the best case. As we use

IOC extensively in Chapter 3, this is defined in more detail.

8
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2.1 Visual Attention

Attention is the process of selectively concentrating on some facet of available

visual information, while ignoring other perceivable parts. Visual attention allows us

to focus our visual processing resources, tuning the sensitivity of neurons to relevant

stimuli, and filtering out distractors and noise in a dynamic process. A more detailed

discussion of the factors involved in this process while taking into account neuro-

biological considerations is necessary for the purposes of the understanding the data

presented in this thesis.

Two kinds of visual attention exist. The first involves eye movements (overt

orienting) while the other shifts within the focus of the mind without moving the

eyes (covert orienting). Helmholtz [57] first demonstrated that covert fixations or

shifts of attention over a scene without eye movements were real. With that said, we

are far from having a complete neuro-biological understanding despite now knowing

much more about eye movements, components of the human imaging system and

overt attention. In general, three main factors play a role in visual attention systems:

Eye movements, the foveal gradient of resolution and also neural processing. Eye

movements are rich source of information. As the fovea captures information in

the highest detail, given the high density of cone receptive cells in fovea, the eye

moves around quickly to areas containing certain stimuli so that light from regions of

interest falls directly on the fovea. Studies strongly suggest that an early pre-attentive

stage in which eye movements are purely stimulus driven helps in the creation of a

mental model of a scene. Following this, an attentive stage of fixation helps to form

a model that accounts for a supposed goal. During this process, perception of the
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scene is fabricated through continuous analysis by the brain of the time-varing image

captured on the retina [12].

Figure 2.1: Inside humans eyes - Fovea [1]

2.1.1 Eye movements

There has always been a debate among researchers as to whether eye movements

are stimulus driven or task/experience/memory driven. Yarbus study showed that the

task at hand can significantly impact eye-movement behaviour, however, an attracting

stimuli leads to a much more consistent behaviour [77]. In general, from a top-down

point of view, eye movement patterns are related to personal characteristic. It can

either be conscious as in performing tasks at hand or unconscious driven by factors

such as health, age, gender or personality. From a bottom-up approach, the process

is related to the visual stimulus; It might be low-level based on local image features

or high-level (e.g. based on social context). The last factor is related to oculomotor
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system, such as the spatial bias that comes from the tendency to fixate the center

region of an image or scene.

Eye movements that take place while freely viewing a scene provide significant

information about context or an observers intent. Eye-movements are the most ob-

vious external manifestation of a change of visual attention and one might consider

more specifically different types of eye movements in this context. We are principally

concerned with a sequence of fixations or pause following by saccades.

Saccades are rapid changes in eye position, allowing the eyes to jump from pointing

at one position in space to another. The human visual system has a rapid drop-off

in acuity and most photo-sensitive neurons are positioned right in front of the lens,

at the fovea. Therefore, fixations aim to bring objects of interest into the fovea.

The process of extracting visual information takes place during the fixation period.

Planning and execution of a single saccade takes about 150 to 200ms and the average

span of a saccade is 20-40ms. Mathematically they are normally defined by amplitude,

velocity, direction, duration and latency.

There are 6 category of eye-movements when broadly considering their definition

based on physiological parameters. Vestibular-Ocular Reflex are non-voluntarily re-

flex functions to stabilize images on the retinae during head movement (or external

movement of the world) by producing eye movements in the direction opposite to

head movement. The objective of these movements is to retain the point of interest

on the fovea during head and body movements. Smooth Pursuit of the eyes happens

when voluntarily tracking moving stimuli. The difference between smooth pursuit

and saccadic movements is that saccades happen as uneven jumps. Nystagmus or
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Saccade voluntary fast & ballistic movements

Vestibular-Ocular Reflex compensatory changes in eye position as head moves

Smooth Pursuit voluntary tracking of moving stimuli

Nystagmus Reset by a primitive saccade similar to reaching the orbit limit

Optokinetic Nystagmus low-frequency rotations at constant velocity.

Vergence Coordinated movements - converging or diverging

Torsion Coordinated rotation, dependent on head tilt and eye elevation.

Table 2.1: Summary of eye-movements

dancing eyes and Optokinetic Nystagmus, are a condition of involuntary eye move-

ment, acquired in infancy or later in life, that may result in reduced or limited vision.

Nystagmus may be caused by congenital disorders and they can be detected where

the eye aims to remain fixed but move rapidly instead. Vergence is the simultaneous

movement (rotation) of both eyes in opposite directions to obtain or maintain single

binocular vision. This is useful in cases where depth changes. The eyes may move

in opposite directions inward to examine a closer object, or outward to observe an

object farther away. Finally, Torsion is the movement that brings the top of the eye

toward the nose (intorsion) or away from the nose (extorsion) [73].

2.1.2 Eye Tracking Datasets

As eye trackers have become cheaper and affordable to a larger audience, more

datasets have been published. At the time of writing this thesis, the list of datasets

available according to well established MIT benchmark of saliency [17] includes 26
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datasets and continues to increase. In order to delve into various aspects of sequential

analysis for eye-tracking data, different datasets have been employed, a list of which

can be found in table 2.2.

Name Size Observer duration Fixations Type

OSIE [75] 700 15 3 X

CROWD [40] 500 16 5 X

PASCAL-S [52] 850 12 2 X

CAT2000 [10] 2000 18 5 X

FIGRIM [16] 2787 15 2 X

LOWRES [75] 168+25 15 3 X

SALICON [38] 10000 60 - X

Table 2.2: Available Datasets for training & evaluating models of gaze behaviour.
Note that this list derives from careful consideration of all available datasets, their
curation, and modifications in how information is extracted to engage in both spatial
and temporal analysis.

2.2 Computational modeling of eye movements

Data collected from eye-tracking is a very complex signal that can carry different

meanings and allow for different types of analysis. Eye movements may be different in

nature and in their impetus based on a variety of aspects including but not limited to

age, health, experience, task, attractiveness of stimuli and many others. This data is

a rich (albeit noisy) reflection of the inner workings of the human brain and has been

used to understand the behaviour and the under-laying cognitive process leading to

perception. It is now much cheaper to collect large sets of eye-tracking data and with
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Figure 2.2: Saliency (static) models vs. Saccadic models

ethical concerns limited mostly to nonscientific experiments, eye tracking is one of the

most effective and efficient solutions to gather rich data that allows for understanding

many aspects of brain behaviour. At a high level, looking at the data recorded by

eye-trackers reveals sequence of somewhat stochastic fixations that have four main

dimensions Position, Shape, Duration and Order. There has been a longstanding

effort trying to replicate and model any of these four fundamental features by different

computational strategies. Two major categories of studies have either focused on

modeling position and areas of attention, or tried to replicate plausible scanpaths

and eye-movements covering all four dimensions. In this section, techniques used in

both categories are reviewed in detail and the following chapters leverage some of

these considerations in focusing on evaluating results from computational models.
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Figure 2.3: Scanpaths and salient regions – the ordering reveals a compelling differ-
ence among observers, even when over loci of fixations are consistent.

2.2.1 Spatial Distribution of Fixation Positions

The most extensively studied technique in attention prediction is based on com-

puting a saliency map (heat-map) which represents the amount of attention received

by each pixel (spatial information). The salient locations in a scene depend on the

composition of the scene including areas of contrast, objects present and prior expe-

rience or knowledge. The emphasis of these models has largely been based on non-

ordered prediction of fixations and variety of solutions have been proposed. Saliency

maps model bottom-up attention in free viewing tasks without any particular goal.
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A series of images is presented to different observers without providing any particular

instructions about what to search for in the images. This type of strategy is assumed

by most models of image saliency. Such analysis reveals image understanding related

to color, shape, orientation, or motion irrespective of specific objects. The post-

processed data comes from blurring the fixation map of all observers and Koehler [44]

showed that saliency maps show better approximates explicit judgments than gaze

points in fixation data.

Traditional models have adopted different techniques including but not limited

to information theory [14; 68], cognitive approaches [43; 37; 58] graphical models

[33] and Bayesian analysis [72; 78]. Learning based approaches, specifically Deep

Learning has raised the bar on performance for many problems in computer vision,

including saliency prediction. In the last few years, multiple deep learning based

models [47; 70; 46; 39] have been proposed and achieve promising results for the

static problem. Reinforcement learning [79] and Adversarial learning [61] are other

types of learning based solutions that have revealed some success. Evaluation metrics

are discussed in detail in the next section.

2.2.2 Scanpath Analysis and Saccadic Models

There exists another category of work exist that aims to add temporal information

to the previous models. These approaches aim to predict scanpaths or the sequence

of fixation points. This task in nature is relatively harder than predicting heat-maps

because of the disagreements of different viewers (i.e, different viewers might visit

same salient objects but with different order). Early interest in saccadic sequences
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was influenced by Noton and Starks scanpath theory [60], which was largely devoted

to the memory encoding and recall of images. The theory suggests that individuals

recognizing a previously seen image follow a scanpath similar to their initial viewing

of the image. Meaning that observers reproduce the same sequences of eye movements

when recognizing or imagining a stimulus. Noton and Stark limited their study to

visual inspection to determine whether two scanpaths were similar but there have

since been efforts [29; 27; 15] trying to examine their findings based on scanpath

similarity metrics. This has been proven to be correct by Foulsham et al. [29] and

they further [27] found that also scanpaths are more similar within an individual than

between individuals. Even if visual memory is not heavily influenced by scanpaths,

there are nevertheless a number of applications that can still make good use of fixation

modeling. This includes all commercial applications of saliency analysis including

graphical figures [31], active camera control for robotics tasks [55][65], omnidirectional

camera systems [30], self-driving vehicles [45] etc. Bottom-up saliency models have

been used to estimate the scanpath. Itti and Kochs models [37; 43] utilize a Winner

Take All (WTA) selection for generating scanpaths using the predicted saliency map.

Le Meur [56] includes a bottom-up generated saliency map, oculomotor biases, and

IOR in their proposed framework to predict scanpaths.

Deep learning solutions have also been proposed for saliency driven scanpath gen-

eration [7]. Assens et al. [7] proposed a feed forward Convolutional Neural Network

(CNN) to predict saliency maps quantized in time. Instead of predicting one density

map, they predict 10 maps which represent saliency according to the chronological

period of time. However, the generated scanpath accuracy is highly dependent on the
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quality of saliency volume and sampling strategies. Ngo [59] proposed an encoder-

decoder framework that extracts image features using a CNN and then forwards those

features to standard Long Short Term Memory (LSTM) to generate scanpath points

at different time steps. Similarly, Chen et al. [19] proposed to use a ConvLSTM as the

decoder to generate scanpaths while learning Inhibition of Return (IOR) along with

bottom-up attention. PathGAN is a recently proposed solution based on adversarial

learning. A detailed analysis of metrics for Scanpaths are discussed in 3 including

associated analysis.

2.3 Eye Movement Analysis - Evaluation

Given the right question, eye movements can provide deep insight into the inner

workings of the mind. Sometimes the goal is to analyze and understand the under-

lying mechanisms and sometimes replicating visual attention is the goal. Looking at

the evaluation part in general, when the goal is to understand similarity measures

among gaze patterns are critical. Proper similarity metrics for comparing human eye

movements can used as a starting point for more complex analyses. Looking for pat-

terns and matching with external signals while also finding common sub-sequences of

eye movements is another common approach in evaluation criteria. As outlined in the

previous section, in this section evaluation criteria for both cases will be discussed.

2.3.1 Spatial Approaches

Spatial approaches for analyzing eye-tracking data, especially those that only con-

sider position, have a long standing history in the literature. Spatial metrics are highly
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Figure 2.4: 3D visualization of a saliency map. The height of the surface represents
the expected degree of interest in a particular image location.

trusted and have been used in the vast majority of research efforts surrounding eye-

tracking. The notion of “Saliency” has changed meaning and normally refers to the

topological maps or spatial distributions of attention usually visualized as a heat-map

overlayed on an image. They can be grouped in two categories: location-based and

distribution-based. These metrics sometimes show inconsistency in how they rank

saliency models and can often leave performance open to interpretation. There are

Empirical and deep investigations are already published in the literature on analyzing

different aspects of metrics [26; 51; 49; 18] and much has been said specifically about
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spatial metrics. Table- 2.3.1 published by Bylinskii et al. [18] summarizes important

aspects of these metrics.

Table 2.3: A summary of static metrics for comparing gaze patterns (by Bylinskii et
al. [18])

2.3.2 Scanpath Analysis Approaches

Different metrics have been proposed to compare two scanpaths. The simplest

form of these metrics are methods based on constructing a grid and use string-edit

distances [20; 23]. More sophisticated vector based methods try to geometrically align

scanpaths (e.g. MultiMatch [22]). These methods do not necessarily provide a mea-

sure of models of visual exploration that is readily interpretable and moreover, these

methods often rely heavily on free parameters (e.g. the grid resolution). Table 2.4

highlights the most commonly used metrics.

In the following section, metrics used in this thesis will be reviewed in detail. Given

two scanpaths in two dimensional Cartesian coordinates, namely P = (p1, p2, ..., pn),

Q = (q1, q2, ..., qm) with scanpath lengths N and M on stimuli with sides W and H,

this discussion examines metrics that have been introduced for comparing sequences

based on various criterion. In this chapter, the goal is to thoroughly investigate
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Metric abrv Quantization Target

1 Euclidean distance EUC Direct Position

2 Mannan distance [53] MAN Direct Position

3 Eyeanalysis [54] EYE Direct Position

4 Levenshtein distance [63] LEV Grid Position, Order

5 ScanMatch [21] SMT Grid/Temporal Position,Order,Duration

6 Hausdorff distance [34] HAU Direct Position

7 Frechet distance [24] FRE Direct Position, Order

8 Dynamic time warp [8] DTW Direct Position, Order

9 Time delay embedding [74] TDE Direct Position

10 MultiMatch Shape [22] MM S Direct Shape

11 MultiMatch Direction(angualr)[22] MM A Direct Direction

12 MultiMatch Length [22] MM L Direct Length

13 MultiMatch Position [22] MM P Direct Position

14 MultiMatch Duration [22] MM D Direct Duration

15 Recurrence [5] REC Radius Position

16 Determinism [5] DET Radius Fixation Trajectories

17 Laminarity [5] LAM Radius Fixation Persistence

18 Corm [5] COR Radius Leading/Following

Table 2.4: Common metrics for evaluation of Scanpaths.

the effectiveness and focus of each metric, understand associated behaviours and

finding similarities among them. An overview of the metrics included in this thesis

is presented in Table 2.4. Shape, ordinal ordering, duration and other factors are

critical to the extent to which metrics lend themselves to interpretation. These are

explored systematically in Chapter 3.

Euclidean distance

Euclidean distance or straight-line distance is one of the basic and initial metrics

that was used in comparing scanpaths. This metric only works with scanpaths that
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have equal lengths. Assuming l is the minimum length among two scanpaths, the

distance can be calculated as the sum of the distances between each fixation pair:

DEUC(P,Q) =
min (N,M)∑

i=1

√
(XP −XQ)2 + (YP − YQ)2

Euclidean distance has been internally used in many of the metrics. Given the

simplicity and only supporting scanpaths with equal lengths, we won’t include it our

analysis.

Levenshtein similarity (Edit distance)

The use of Levenshtein similarity or edit distance [63] for the purpose of compar-

ing scanpaths dates back to Noton and Stark [60] as one of the very first metrics used

in literature. The Levenshtein algorithm originally compares two set of DNA strings

A(a1, a2, , ..aa), B(b1, b2, ..bb) with lengths a and b based on the minimum number of

insertions, deletions and substitutions to produce 2 identical sequences:

dA,B(i, j) =



max(a, b) ifmin(i, j) = 0

min



dA,B(i− 1, j) + 1

dA,B(i, j − 1) + 1

dA,B(i− 1, j − 1) + 1(ai 6=bj)

otherwise

To be able to use this algorithm for scanpath comparison, fixation coordinates

needs to be converted to a string. As originally used in Noton studies [60], a static

grid is overlayed on the stimulus to discretize areas of interest; Each grid cell is as-

signed an alphabetic character. Following this, a series of fixations can be represented
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using a string of characters and the Levenshtein algorithm can be used to compare

strings representing them. As powerful as it may seem in considering ordinal infor-

mation, there are various aspects related to this algorithm and other string-based

metrics that aren’t fully taken into account. The spatial position of fixations are not

well represented and this can have consequences for the similarity metric. Two fixa-

tions that are spatially close, can land on different bins of the grid which could lead to

an inaccurate distance. Similarly, fixations occupying the same bins are often grouped

and represented with one letter. This has the effect of ignoring local differences in eye

movement control and ongoing cognitive process. In general, the Levenshtein algo-

rithm is blind to the semantic contents of an image and can’t distinguish differences

in substitutions of fixations from different regions. Moreover, duration of fixations is

completely ignored in this algorithm.

ScanMatch

ScanMatch can be seen as advanced and improved version of Levenshtein distance.

It has recently emerged in the literature [21] and has been widely used in studies

[62; 69; 28]. ScanMatch tries to solve some of the shortcomings of Levenshtein distance

in considering semantic information and duration of fixations. Levenshtein distance

treats all differences between strings equally. The edit cost of substituting, inserting

and deleting is the same in all cases, and this results in being blind about information

lying within other areas of interest. The advantage of this metric comes from use of

NeedlemanWunsch pair-wise algorithm that aligns two string with one another to

maximize a similarity score. The NeedlemanWunsch algorithm uses a substitution
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matrix containing all of the pairings in two strings. This makes it possible to weight

the substitution operation for various areas of interest. For instance two pairings

can have similar low-level information like color and luminance, or fall on the same

semantically meaningful objects based on the goal of comparison when constructing

the matrix.

Figure 2.5: a) Visualization of scanpath record in c. b) pre-processing stage for trans-
forming scanpaths to strings. ”eDeEeDfDdGcFbDcBc” without considering duration
and” eDeDeEeEeDeDfDdGcFbDbDbDcBcBcBcEcE” when T=100ms.

ScanMatch metrics follow a similar pre-processing steps to Levenshtein distance

for converting scanpaths to a sequence of strings. Following this, the objective is

to fill a comparison matrix representing two strings on different axis based on the

substitution matrix. The algorithms search for an optimal path through this matrix

from top-left to bottom-right to calculate the similarity score and then the normal-

ized score subject to the length of the sequence provides the final resulting score

ranging between 0 and 1. A score means of identical scanpaths according to the

pre-processing step and also most notably the substitution matrix. It’s important

that substitution matrix should properly capture the connection between semantic or

visual content among different areas of interest (AOI) but this shouldn’t be subjec-
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tive. While ScanMatch has the advantage of not being blind to the semantic content,

similar to Levenshtein distance, it still suffers from problems arising as the result of

discretizing the AOIs and ignoring the exact positions of fixations. Also, ScanMatch

doesn’t respect similarities in shape. Two scanpaths can be very similar in terms of

shape but have different scales. Similarly, a scanpath rotated in angular space won’t

be similar according to the metric.

One interesting feature that can be included in this process is the duration of

fixations points. The duration of a fixation can be quantized according to a fixed

temporal bin and for as long as the fixation stays, the string representing the AOI

can be repeated in the overall sequence. For instance, if a fixation takes t ms and the

bin is T ms, the character representing the bin will be repeated for d t
T
e times.

Mannan distance

Mannan distance [53] is a direct measure that considers fixations exact position

rather than quantizing AOIs. For each fixation, the pair-wise euclidean distance with

all fixations in other sequences is recorded in d. The Mannan distance is equal to the

mean of minimum distances for each and every fixation when compared with all of

other fixations in the other sequences.

DMAN = [1− D
Dr

] ∗ 100

D2 =
N∗

M∑
j=1

min d2i,j+M∗
N∑
i=1

min d2i,j

2∗N∗M∗(W 2+H2)

Considering absolute positions in this way has both benefits and disadvantages.

It doesn’t need to quantize the space; it’s simple and easy to calculate and also might
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make it possible to use raw data from eye-trackers. However, as each fixation is

associated with its nearest neighbor, the ordinal information is mostly ignored and

it softens the impact of individual fixations. This makes it very difficult to retain

and consider one of the main characteristics of scanpaths, the nature of sequential

information.

Eyeanalysis

A few alternative approaches [29; 32; 71] have been proposed to rectify some

of the shortcomings of Mannan distance. Eyeanalysis [54] proposes double mapping

instead of mapping one fixation to one other fixation. This provides the lowest overall

position variability but still may lead to several points in one scanpath being mapped

to just one in the other. There exists also the possibility of including the duration

of fixation. It’s not a direct measure for ordering of fixations but would allow the

temporal characteristics of the sequence to be taken into account to a limited degree.

DEY E =
(
M∑
i=1

min d2i,j+
N∑

j=1
min d2i,j)

max(N+M)

Dynamic Time Warping

Dynamic time warping [8] can compare two time-series with varying (and differ-

ing) lengths. Given two sequences with length N and M, DTW tries to build an NxM

matrix in which each cell keeps the euclidean distance between the fixations with

respect to their position in the sequence. Following this, it tries to find an optimal

path to match both sequences while preserving three conditions: Boundary, Conti-

nuity and Monotonicity to make sure that the path respects the time. The optimal
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solution is the minimum among all the paths in order to get from (0,0) to (N,M).

Algorithm 1 Dynamic Time Warp

procedure DTW(P,Q)

D ← array[0..n, 0..m]

D[:, 0]← infinity

D[0, :]← infinity

D[0, 0]← 0

for i← 1 : N do

for j ← 1 : M do

D[i, j]← minimum(D[i− 1, j], D[i, j − 1], D[i− 1, j − 1])

D[i, j]← D[i, j] + d(P [i], Q[j])

end for

end for

returnD[n,m]

end procedure

Discrete Frechet distance

The Frechet distance[6; 25] is a measure of similarity between two curves. Unlike

Hausdorff that doesn’t respect the ordering of fixations, Frechet accounts for the

location and ordering of points along the curves. Consider a dog walking along one

curve and the owner walking along the other curve connected by a leash. With both

walking continuously from their respective starting points, and varying their speed

but not backtracking, Frechet distance between the two curves is the length of the
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shortest leash sufficient for traversing the curves:

DFRE(A,B) = inf
α,β

max
t∈[0,1]

{
d
(
P (α(t)), Q(β(t))

)}
(2.1)

Hausdorff distance

Hausdorff distance[34] represents the degree of mismatch between two sets by

measuring the farthest distance from one set to the other. Hausdorff is mostly used

for measuring the distance between two curves in space and is very useful for computer

vision tasks. However, it doesn’t consider temporal information. Given two Scanpaths

P and Q, Hausdorff distance is defined as follows:

DHAU(P,Q) = max(h(P,Q), h(Q,P )) (2.2)

h(A,B) = max
a∈P

min
b∈Q
||a− b||

In simple words, it measures how far is the maximum distance among the mapping

between sets based on minimum distance.

Time delay embedding

Time delay embedding[67] has been widely used in the study of dynamical systems

and was introduced for scanpath comparison by Wang[74] et al. The last few metrics

discussed in this section have meaningful and similar intuition behind them with slight

differences, somehow involving euclidean distance. TDE tries to make consecutive

sub-samples. P and Q go through the same pre-processing step which break each of

them into consecutive samples with length K. The final output comes from calculating
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mean or maximum (Hausdorff) of pair-wise euclidean distance between sub-samples

from each scanpath. The parameter K, plays a key role as change in ordinal order is

one of 8 common categories of noises for scanpath data, which is discussed in depth

in chapter 3. With a proper K, this metric is very powerful in handling this type of

noise.

MultiMatch

MultiMatch [56] is one the widely used metrics in the literature. It calculates the

distance based on five components: Shape, length, direction, position and duration,

fundamental characteristics of saccades between fixations. The main advantage of the

MultiMatch method is that it provides several measures to choose from for assessing

scanpath similarity, and each measure on its own captures a unique component of

scanpath similarity. Given the multiplicity of measures, it remains difficult to assess

at measure, or what set of measures, is most applicable in a given scenario. Further-

more, because each scanpath is initially simplified it is also not clear how robust each

measure is to scanpath variations [3].

The algorithm follows a pre-processing stage where scanpaths are simplified in

order to cluster fixations and saccades that are close together or represent local scan-

ning. It starts with direction and continues with length and for as long as there are

consecutive saccades that are smaller than a fixed threshold, they are either merged or

removed. Some precautionary measures need to be taken into account when simplify-

ing scanpaths. Merging saccades with small changes in direction while they are large

in terms of amplitude might cause a loss of some important information. Following
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the pre-processing step, scanpaths are aligned based on their shape using Dijkstra

algorithm. Alignment could happen based on any of other 4 parameters but it’s com-

mon to do so based on shape. This alignment reduces the comparisons sensitivity to

small temporal or spatio-temporal variations, and allows the algorithm to find the

best possible match between the pair of scanpaths. Now, for each of the 5 parameters

the difference is as follows:

MultiMatch Vector similarity is computed as the vector difference between aligned

saccade pairs. the Length similarity is computed as the absolute difference in the am-

plitude of aligned saccade vectors and the position similarity is computed as the

Euclidean distances between aligned fixations. All three of these measurements are

normalized by the screen diagonal and averaged over scanpaths. The Direction Sim-

ilarity is computed as the angular difference between aligned saccades, normalized

by π and averaged over scanpaths. Finally, the duration similarity is computed as

the absolute difference in fixation durations of aligned fixations, normalized by the

maximum duration and averaged over scanpaths.

Recurrence, Determinism, Laminarity, Corm

Recurrence quantification analysis (RQA) has been successfully used for describ-

ing dynamic systems that are too complex to be characterized adequately by standard

methods in time series analysis. It has been recently introduced for scanpath analysis

by Anderson et al. [4]. Despite the simplicity of definition, this family of metrics has

a clear interpretation and intuitive meaning which makes them able to capture global

and local temporal characteristics of a sequence by a small number of RQA measures.



Chapter 2: Background and Related Works 31

All four metrics are somehow based on recurrence matrix r. Two fixations are con-

sidered to be recurrent if they are closer than a fixed threshold ρ. The Closeness”

function d can be defined in several ways; It can be Euclidean distance or use a grid

similar to Levenshtein or ScanMatch and fixations that fall on the same AOIs will be

considered close. The recurrence matrix is presumed to be diagonal. If the length of

scanpaths are not identical, one of them will be truncated to be in the same length

(N).

Figure 2.6: Recurrence matrix based on euclidean distance with ρ = 2 ∗ 24(visual
angle)

Let C be the sum of recurrences, i.e., R =
N∑
i=1

N∑
j=1

rij . Further, let DL be the

set of diagonal, HL the set of horizontal, and VL the set of vertical lines in the

cross-recurrence matrix, all with a length of at least L, and let |.| denote cardinality.

Therefore:

The Cross-Recurrence (REC) measures the percentage of fixations that match

as are close between the two fixation sequences.

DREC(P,Q) = 100 ∗ C
N2
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The Determinism (DET) measures the percentage of cross-recurrent points

that form diagonal lines and represents the percentage of fixation trajectories common

to both fixation sequences. That is, it quantifies the overlap of a specific sequence of

fixations, preserving the sequential information. The minimum line length of diagonal

line elements was set to L = 2. Similarly, the Laminarity (LAM) represents

locations that were fixated in detail in one of the fixation sequences, but only fixated

briefly in the other fixation sequence(L = 2). Finally, the Center of recurrence

mass (CORM) is defined as the distance of the center of gravity from the main

diagonal, normalized such that the maximum possible value is 100. The CORM

measure indicates the dominant lag of cross recurrences. Small CORM values indicate

that the same fixations in both fixation sequences tend to occur close in time, whereas

large CORM values indicate that cross-recurrences tend to occur with either a large

positive or negative lag. [3]

DCOR(P,Q) = 100 ∗

min(M,N)∑
i=1

min(M,N)∑
j=1

((j−i)rij

(min(M,N)−1)C

DDET (P,Q) = 100 ∗ |DL|
R

DLAM(P,Q) = 100 ∗ |HL|+|VL|
2∗C

2.3.3 Inter-observer Congruency

Eye-tracking data is a subjective source of information. As discussed in section-

2.1.1 various aspects and prior experiences in human life can play a role in driving

the movements of our eyes. Different people may find different locations of an image

interesting and there can be little agreement between observers. This is one source

of confusion for models trying to learn to predict saliency and but also makes it
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difficult to interpret evaluation scores and rankings among models. To address this

issue, efforts have been made towards trying to find an upper bound on performance

for predicting saliency across datasets, models or in particular, observers. In the

literature, the extent of the agreement across observers has been introduced and

quantified according to an inter-observer congruency (IOC) score.

Figure 2.7: Visualization of 15 observers viewing the same image revealing differences
in viewing

IOC score is also known as leave one out way approach. Given N observers, it uses

(N-1) observer’s fixations to predict the one left out then averages over the results

of (N) evaluation scores per stimulus sample. Following Le Meur et al. [50] that

tried to predict the IOC, other researchers also continued analyzing various aspects

of this [11; 64; 42]. In [50], they showed that the correlation is not significant within

a low confidence interval between predicted results and actual IOC scores. It was also

noted that duration of viewing plays an important rule on the variability and free

viewing data is less predictable than viewing data derived from specific tasks. Given

the fact that ordering and time spent on each fixation is known in sequential analysis,
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we seek to revisit IOC scores for sequential data and inspect various dimensions of it

including the sequential analogue of IOC.

2.4 Summary

Given the right question, eye movements can provide deep insight into the inner

workings of the mind and can have many more applications in other areas including

image comparison, object tracking, depth estimation and other areas. Broadly looking

at the data recorded by eye-trackers, this is marked by a sequence of fixations involving

a somewhat stochastic process that have four principal dimensions namely Position,

Shape, Duration and Order. Spatial approaches for analyzing eye-tracking data

only consider the position. They are highly established in the literature, trusted by

many researchers and have a long history of use in gaze based analysis. As much

as analysis has focused on the static perspective, relatively little has happened for

sequential analysis; this is especially the case when comparisons are made between

computational models. In this chapter, prior work on computational modeling of eye-

tracking data, and metrics for evaluating the models have been reviewed. Moreover,

the subtext surrounding this presentation also offers insight beyond the original work

into the relative strengths and weaknesses of different approaches, and some general

characteristics that may be important to consider in what makes a metric suitable.

This exercise has also involved a comprehensive examination of datasets, selection

of those that lend themselves to analysis of sequential viewing patterns, and scripts

and methods to extract the relevant information from extant datasets that have been

used almost exclusively for position based analysis. In the Chapter that follows, we
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make use of these various datasets to measure and study interpretability, strengths

and weakness of sequential metrics.



Chapter 3

Sequential Analysis of Eye

Movements

3.1 Introduction

3.1.1 What Can a Similarity Measure Do?

Scanpath similarity metrics can be used as a starting point for many more com-

plex analyses. Collecting large amounts of eye-tracking data is easy and is getting

easier, but analyzing the data in an appropriate way with the increasing wealth of

information is not. It’s important to develop new and powerful tools for the analysis

of eye movement data. Similarity metrics can be used as a starting point for more

complex analyses and developing and testing models. When it comes to similarity

measures in a free-viewing task, two major approaches have normally been taken that

are for model evaluation data analysis for different purposes. As discussed in Chapter

36
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2, Saccadic models exists that aim to replicate human scanpaths. Humans exhibit

complex behaviours when viewing an image, which all factor into observed position,

order, shape and duration of fixations and saccades. As alluded to in Chapter 2, this

can relate to personal characteristics, or alternatively, depend on the properties of

stimuli (e.g. what’s in the image). A similarity metric should be able to weigh differ-

ences and similarities among models, and in particular to differentiate and rank the

models. From a different perspective, a good similarity measure should help answer

a specific but common class of questions. As noted by Cristino et al. [54], ”it allows

you to cluster similar eye movement sequences together, or detect differences between

predefined groups of eye movement sequences”. They considered 4 common scenarios

for experiments:

1. Detecting differences between predefined sets: Given sets of eye-tracking data of

recorded subject with different conditions, the similarity measure should help to

determine the effect of manipulating conditions of experiment. To answer this

question, normally the average similarity of pairs of eye movement sequences

within sets (defined by an experimental condition) should be larger than the

similarity of sequence pairs between sets.

2. Supporting scanpath theory: A similarity measure should also evaluate whether

two sequences of viewing that belong to the same person (encoding and recog-

nition) viewing the same scene (effect of person) are on average more similar

than two sequences of the same person viewing different scenes (effect of image)

and two sequences of different people viewing the same scene.

3. Diagnostic use: Given known groups of data, a suitably designed similarity
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measure (or metric) are able to assign exemplars from a new set of eye-tracking

data to known categories based on similarities. For instance, eye-tracking has

been used to diagnose Alzheimer’s [9] and works reasonably well as a diagnostic

tool.

4. Data-driven clustering: With a large set of data, a metric should differentiate

well enough so that clustering techniques should be able to find similar clusters

in data. This might comprise different people with similar viewing strategies,

the same person viewing different content, different individuals viewing a com-

mon image or other explicit or implicit groupings.

3.1.2 What Makes a Metric Suitable?

It is difficult to assess the value of metrics without an associated reference frame.

Some studies have produced models that reveal no significant difference when com-

pared with human data. On the basis of this, there is the temptation to assume

that the model is successfully replicating human gaze patterns. However, this can be

equally the success of a model, or failure of a metric. Moreover, success at discrim-

inating between different models according to performance may be strong but lack

specificity. One example of this is analysis that is purely spatial (e.g. static AUC).

Another example is metrics that consider only summary statistics of gaze patterns

like MultiMatch.

Given this context, we can state some guiding principles (axioms) that should

inform the choice of a suitable metric. Specifically the metric should:

1. Be capable of measuring distances between sequences of fixations.
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2. Have an intuitive interpretation.

3. Be able to effectively capture the order, position, duration of fixations and shape

of a scanpath[22].

4. Provide a level of sensitivity that allows for reasonable separation of models

that produce good vs. poor sequences

5. Should not consist only of coarse grained saccade or fixation statistics

Each of these can be considered both in the context of the 4 principal measure-

ments defined in Chapter 2, and in light of the guiding principles proposed by Cristino

et al. [54].

3.1.3 What is Missing in Scanpath Comparison?

While the problem of saliency prediction has been studied in some detail, the

overwhelming majority of work in this domain considers a static problem wherein

the distribution of gaze, attention or salience is marked by its spatial distribution.

However, spatial selection by an attentive mechanism is inherently a sequential sam-

pling process in humans and many artificial vision systems. This evidently gains

additional importance as sequential attention mechanisms in artificial vision systems

are becoming increasingly prevalent.

There maybe be a strong bias to examine certain parts of a scene right away

before moving on to other interesting regions. Alternatively, there may be several

equally interesting regions of a scene and no particular order. This is a characteristic

that most modeling and analysis to date has failed to address in detail. While some
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efforts have been devoted to analyzing sequential models of fixation, the case may

be made that existing metrics fall short in adequately capturing model performance,

and similarities and differences among sequences of selected regions.

Table- 2.4 shows 18 metrics for comparing scanpaths. This clearly illustrates the

amount of interest in the subject but strangely shows the lack of exploration at the

meta-level in the value of metrics for analyzing behaviours and outlining strengths and

weakness of these metrics. In many cases, studies that used eye-tracking data, each

introduced their own metric for analyzing the data (perhaps in support of showing a

desired result) but little is known about the interpretation of their metrics.

Motivated by the aforementioned observations, we revisit the space of metrics

currently used in this domain to arrive at a consensus on intuitive interpretations of

inter-sequence distances, and also towards redefining metrics that produce meaningful

and significant contrast among observations. The balance of this chapter, presents

experiments that ultimately advocate for an alternative metric to any appearing in

the literature, ScanPath Plausibility (SPP). While this is a novel metric, the essence

of SPP builds on existing metrics albeit with some additional intuition related to the

guiding principles established above. This is tested in considering a wide variety of

extant saliency models coupled with a selection mechanism.

3.2 How do Metrics Measure Up?

As alluded to earlier in this thesis, a wide variety of different metrics have been

proposed, and yet it is unclear the extent to which these are suitable for measuring

similarity among sequences of gaze points. While many of these are grounded in
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measuring distances between trajectories or in computational geometry, there is a

relative lack of domain knowledge inserted into the choice and use of such metrics. We

therefore consider an alternative approach, and present careful analysis of information

carried by different metrics and means of determining which are most discriminative.

We have used various datasets for the analysis but most of the numbers are based on

OSIE [75]; however, we have confirmed similar results on CROWD [40] and CAT2000

[10] datasets.

3.2.1 Imposters and Noise Handling

In order to better ground the interpretation of metrics, we have conducted ex-

periments that consider human vs. human scanpath similarity. That is, given n

observers, one can perform a leave-one-out analysis, treating the instance left out as

our exemplar, and using the remaining observers to predict gazed at points of the

individual left out and determine a bound on expected model performance. We have

carried out this experiment for the set of metrics considered measuring human vs.

human similarity, and also human vs. imposter, where the imposter scanpath is a

real scanpath but drawn from a different image. In this manner, we have the capacity

to consider the extent to which scanpaths that are plausible in general conform to

scanpaths that are plausible for a particular image. In practice, a good metric should

be capable of discerning what sequences belong to a common image vs. those that are

not specific to the image considered. In considering the overall distributions of scan-

path distances A and B with mean and standard deviations µA and σA, and µB and

σB respectively, where A is all instances of leave-one-out comparisons from the same
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Figure 3.1: Intersection of two normalized distribution.

image, and B is all instances of leave-one-out where the comparator is an imposter,

we can readily calculate the overlap among the 2 distributions. This corresponds to

the proportion of instances that belong to one distribution, but would be classified

as belonging to the alternative. A lower degree of overlap is diagnostic of a more

powerful metric for discerning these 2 groups (following classic decision theory). If

C is presumed as the center of the intersection and F is the cumulative distribution

function, the ratio of intersection is given by:

P (X1 > c) + P (X2 < c) = 1− F1(c) + F2(c)

= 1− 1
2erf

(
c−µ1√
2σ1

)
+ 1

2erf
(
c−µ2√
2σ2

)
where C can be calculated by:
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c =
µ2σ

2
1−σ2

(
µ1σ2+σ1

√
(µ1−µ2)2+2(σ21−σ22) log

(
σ1
σ2

))
σ21−σ

2
2

This assumes that histograms must follow a normal distribution. As shown in

Figure- 3.2, we tried a normality test based on Agostino and Pearsons tests. The

test combines skew and kurtosis to produce an omnibus test of normality and all

the metrics rejected the null hypothesis. Final Results are shown in Table 3.2. It

is immediately evident that a few metrics have poor power of discrimination while

others stand out. It is also the case that some that lack discriminative power fail to

meet some of the considerations defined under section- 3.1.2.

In addition to revealing behaviour of metrics the results of this experiment for SPP

are unequivocal. The SPP distances show significantly higher capacity for separating

these classes in part due to resilience to domain relevant noise that is intrinsic to

inter-observer variability, but also given the high intrinsic variability of scanpaths

that implies a large distance when an imposter is considered.

To take this analysis further, we ask a different question. Suppose inter-observer

scanpath similarity is considered for a given image, and this is compared with inter-

observer scanpath similarity where an increasing number of imposters is introduced to

the observer pool. In this case, leave one out analysis is performed on the group for all

N observers with K imposters (K < N-1). One can also consider how the distributions

diverge as the observer pool is increasingly polluted with random scanpaths from other

images. The results of this analysis appear in Figure 3.3. One can see that the SPP

based on a min distance across observers is much less sensitive to noisy samples being

introduced. Moreover when the sample is entirely or almost entirely imposters, the
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Figure 3.2: Histogram of metrics show a normal distribution.
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distributions become very distinct. On the other hand, the standard metrics show a

monotonic and linear drop-off revealing the sensitivity to noise and also again hinting

at weaker discrimination in the space of comparing scanpaths.

Figure 3.3: Sensitivity to increasing number of imposter samples to the test set in
measuring inter-observer distances. This shows the ratio of intersection vs K, the
number of imposters introduced to the observer pool.

3.2.2 Robustness to Issues in Scanpath Comparison

Taking a principled approach, one may consider various types of perturbations

that can occur from one scanpath to another. In a natural setting, one might expect

these differences to be predominately driven by differences among viewing patterns

across observer or from one image to another. However, the discernibility of differences
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can be studied in the context of a family of specific perturbations. It is worth noting

that some of these perturbations may also occur by virtue of noise in measurement

of gaze position, or by virtue of the stochastic nature of gaze points.

Figure 3.4: A depiction of different conditions that may reveal sensitivity of sequential
metrics. These may happen by virtue of small differences in viewing patterns, noise
in data capture, or the overall stochastic nature of the process. (Derived from [22])

A set of possible perturbations is shown in figure 3.4. This figure reveals different

perturbations of a scanpath that should result in differences in similarity scores, but

also provides significant insight into the degree of sensitivity of different measurements

to these perturbations. These are as follows:

1. Spatial Noise: The individual fixation locations may be perturbed spatially and

independently, while maintaining their overall order.

2. Spatial Offset: Individual fixation locations may be perturbed in a common

fashion, where each is subject to the same transformation.

3. Ordinal Offset: The specific ordering may be offset. (e.g. supposing two se-



Chapter 3: Sequential Analysis of Eye Movements 47

quences are identical, but one subsequence starts at fixation N and the other at

fixation N+1 with equal lengths.

4. Reversed: All fixation locations are identical, but the order they are visited in

is reversed.

5. Scaled: The overall geometry of the fixation patterns are identical, but one of

the two is subject to global spatial scaling so that the degree of eccentricity of

fixations is smaller or larger in the scaled case.

In all of these instances, a metric should be capable of discerning differences, albeit

the point of interpretability can be understood much more clearly in the context of

observing the degree of sensitivity to such perturbations.

In this regard, we observe the following:

Figure 3.5: Spatial noise: Each fixation has been moved according to a random sample
from a Gaussian distribution with σ according to degree of visual angle

Figure 3.5 reveals the sensitivity of different metrics to the addition of spatial

noise. There is a notable dropoff for increasing spatial offset, that is linear in most
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Figure 3.6: Spatial offset: all of fixation have been moved according to a random
sample from a Gaussian distribution with σ according to degree of visual angle

instances for the ScanMatch and MultiMatch metrics; some metrics show less sen-

sitivity to spatial offset. For other metrics, the behaviour is much more mixed. A

family of metrics show common patterns in their behaviour as distance of spatial off-

set is increased, the average distance produced by the models increases monotonically.

Some models fail to adhere to this behaviour. For the case of “tied” spatial offset

where all points are subject to a common transformation, the family of metrics that

are well behaved for random perturbations show the same well-behaved monotonic

increase in inter-scanpath distance.

Figure 3.7 depicts sensitivity to ordinal offset. As the degree of ordinal offset

increases, one observes a decrease for the ScanMatch and MultiMatch metrics and

virtually no change for SMT, HAU and EYE metrics. In the case of decrease, this

follows a inverse sigmoid profile. For other metrics (in particular those that are well-

behaved with respect to spatial perturbations), there is consistency in an increase in

distance subject to spatial offset, which is followed by a decrease for larger ordinal
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Figure 3.7: Ordinal offset: average distance when scanpaths have temporally shifted
in clockwise

Figure 3.8: Reverse Ordinal offset: average distance when scanpaths have temporally
shifted in counter-clockwise

offsets. Note that this is a byproduct of the number of sequences that are sufficiently

long to allow such an ordinal offset to be considered, which is much higher for 5

than for any of the cases beyond this. The reversed ordinal offset shown in Figure

3.8 demonstrates sensitivity to distance subject to a reversal of the sequence. In

this case, virtually all of the metrics show a relatively small degree of sensitivity to

reversal albeit this becomes quite pronounced for the higher reverse ordinal offset. It
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is interesting to note that the SPP results (that appear in the appendix) don’t show

the same sensitivity beyond a defined length, because of the minimum rule used in

calculating their distance.

Overall, this analysis reveals some interesting characteristics of the sensitivity of

distances to different types of perturbations. In some instances, scores are quite

erratic, or vary in a manner that is counterintuitive. In other cases, models appear

well behaved, and we also seem some degree of correlation appearing at a qualitative

level among how these distances vary as the degree of correlation is varied. Models

that seem to show the most sensitivity include EYE, DTW, DET and to a lesser

extent LEV, HAU, TDE. However, EYE and DET seem to show weakness to ordinal

offset, the former by construction.

3.3 What is Captured by Different Metrics?

Most metrics proposed have a history that derives from measuring similarity of

trajectories, or have roots in sequential comparisons which tend to imply metrics

that cast trajectories as strings. While some comparisons have been made among

such metrics [3], there is not yet a consensus on what makes for a suitable metric.

Moreover, little attention has been paid to the intuitive interpretation of these metrics

or their qualitative behaviour.

Figure-3.9 and Figure- 3.10 show for a variety of metrics a reference scanpath in

green, and a number of sequences from other observers ranked from most similar to

least similar (left to right) each according to a specific metric. The specific metrics

shown are referenced in the figure caption. As this figure reveals, there is some
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Figure 3.9: Base scanpath

intuitive sense that at least a subset of these metrics is representative of the degree of

agreement between pairs of scanpaths. It is not clear however how to discern which

metric is most useful. Moreover, it can be seen that scanpaths can be highly divergent

even if there is general agreement on a few items in the scene lending support to the

argument put forth for metrics that capture scanpath plausibility (SPP).

Given that there are a variety of metrics, one might also surmise that some of

these may carry similar information, while others may differ significantly in their

characterization of distance. One way of considering this directly is by examining the

correlation structure among different metrics across a wide array of saliency models

and images to determine which produce similar model rankings, or more specifically,

to what extent is the structure of relative model rankings similar. To this end, we

examine a variety of different saliency algorithms and quantify the Pearson correla-

tion among different metrics across algorithms. This analysis appears in Table A.

Note that the balance of this paper provides specific recommendations for metrics

and corresponding justification for their use and for this reason, the specific saliency
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(a) DTW,FRE,LEV,TDE,HAU

(b) SMT, MultiMatch family

Figure 3.10: Comparison between a reference scanpath (green) and scanpaths from
other observers (red). Observer scanpaths are shown based on degree of similarity to
the reference (left: most similar to right: least similar). Each column corresponds to
a different metric that characterizes the degree of similarity (Top to Bottom: DTW,
Frechet, Levinshtein, TDE, Hausdorff).
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models considered, and an associated benchmark of their performance based on our

proposed methods are deferred to the latter part of section 3.5.

Table 3.1: The Spearman rank correlation among different metrics across algorithms

Note that some metrics (e.g. Levenshtein distance) are poorly correlated with

others while others show a greater degree of agreement. With that said, it remains

unclear what power these metrics carry in quantifying how well a pair of scanpaths

match or how well a predicted scanpath matches a set of ground truth exemplars.
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3.4 Scanpath Plausibility: Towards a More Intu-

itive Interpretation

Consider a scene with k regions that tend to be gazed at. There are several

possibilities in this scenario; it is possible that some of the regions/objects are gazed

at preferentially and tend to be visited in some particular order. In the extreme case,

this order may be random. At the other extreme, every observer might assume the

same specific order. The reality for most images is likely to be somewhere intermediate

to this. E.g. Most observers might first fixate one item before shifting to a second with

equal probability and some preference. Alternatively, there may be a rank ordering

built into selections that are made coupled with some randomness in this order. All of

these considerations present challenges for metrics. Moreover, as an image becomes

more complex and contains more regions that tend to be focal points, combinatorics

may imply an explosion in the degree of variability among observers (given a fixed

number of focal points, there is a combinatorial explosion of sequences as the number

of focal points increases) even if the amount of randomness is small.

It is evident from this line of thinking that a metric that uses averaging may be

inappropriate. If N observers produce ≈M different strategies for viewing an image,

and a model is successful in reproducing one of these strategies, this still implies

that
M − 1

M
of instances included in the metric are in some sense noise. The nature

of the problem when trying to predict average behaviour inherently struggles with

the problem of plausible patterns being drowned out by the large number of equally

plausible alternatives.
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With this in mind, we propose a set of metrics deemed ScanPath Plausibility

(SPP). The heart of SPP is to measure the min distance between a model’s output

sequence, and the set of observer scanpaths. This may be coupled with any metric, but

we specifically propose a few appealing options SPPDTW , and SPPTDE for reasons

discussed in the balance of this section with particular emphasis placed on SPPDTW .

Is SPP More Useful in Determining Model Performance?

In section- 3.2, a decision theoretic definition was put forth for measuring how

discriminative two models are with respect to a metric. The crux of this, is that if a

metric is applied to two different populations of data (e.g. viewers of the same image

vs. different images) each of these implies a distribution of distances for the within-

image and different-image comparison. For example, if N-1 observers are measured

in their distance to 1 observer N times in a leave one out fashion, this can be done

for either the 1 left out, or a random imposter from another image. In this manner,

we are able to measure the extent to which a metric can discern whether two viewers

examined the same image or different images. Results from this experiment are shown

in Table 3.2. In particular, the comparison of the pool of observers with the left-out

sample elicits a distribution, for both within-class and imposter cases. The area of

overlap between these two distributions is a useful measure of the degree of confusion

one might expect, where 0 implies no overlap among distances. In this instance, it

is clear that there is a significant advantage to some metrics, but also to the SPP

variant in particular.

In addition to revealing behaviour of metrics the results of this experiment for SPP
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Figure 3.11: Sensitivity of pollution of the observer pool by an increasing number
of imposter samples. This effectively measures inter-observer similarity for a pool of
N−k observers where k are sequences chosen at random from observers of a different
image. k is gradually increased to examine the degree of sensitivity to noise samples.

EUC MAN EYE LEV SMT HAU FRE DTW TDE REC DET LAM CORM MM S MM A MM L MM P

MEAN 0.82 1.00 0.29 0.61 1.00 0.71 0.90 0.60 0.58 1.00 0.75 1.00 0.90 1.00 1.00 1.00 1.00

SPP 0.67 1.00 0.15 0.49 1.00 0.46 0.71 0.37 0.46 1.00 0.46 1.00 1.00 1.00 0.98 1.00 1.00

Table 3.2: Area of intersection for two distributions. One is based on distances of
observers viewing the same image, and the other is between images. In practice, a
strong metric should elicit a very different distribution.

are unequivocal. The SPP distances show significantly higher capacity for separating

these classes in part due to resilience to domain relevant noise that is intrinsic to

inter-observer variability, but also given the high intrinsic variability of scanpaths

that implies a large distance when an imposter is considered.



Chapter 3: Sequential Analysis of Eye Movements 57

To take this analysis further, we ask a different question. Suppose inter-observer

scanpath similarity is considered for a given image, and this is compared with inter-

observer scanpath similarity where an increasing number of imposters is introduced

to the observer pool. In this case, leave one out analysis is performed on the group

for all N-1 observers (with K < N − 1 imposters). One can also consider how

the distributions diverge as the observer pool is increasingly polluted with random

scanpaths from other images. The results of this analysis appear in Figure 3.11. One

can see that the SPP (Table A.4) based on a min distance across observers is much

less sensitive to noisy samples being introduced. Moreover when the sample is entirely

or almost entirely imposters, the distributions become very distinct. Alternatively,

the standard metrics show a monotonic and somewhat linear drop-off revealing the

sensitivity to noise and also again hinting at weaker discrimination in the space of

comparing scanpaths.

This confirms the observation that more separation can be observed based on

SPP , and that traditional metrics would lead one to conclude that the 2 sets of

observations are identical for many metrics. At first glance, one might be inclined to

rely on the EYE metric for it’s separability and behaviour as imposters are introduced.

However, it is notable that ordinal perturbations are irrelevant. For this reason,

one might consider using both DTWSPP and EY E in concert to measure model

performance or compare populations of observers.
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3.5 A Sequential Model Benchmark

In this section, we leverage the observations made to date in order to assess existing

models of saliency or gaze prediction through the lens of sequential analysis. The

number of models that are sequential by design is extraordinarily small compared

with those that consider a spatial focus of attention. For this reason, we have applied

a simple method for simulating scanpaths from static saliency maps following classic

work in saliency [37].

In this analysis, static methods that elicit a heatmap-style representation of saliency

are sampled based on their strongest point (this is known as Winner-Take-All in prior

work). Subsequently, the sampled region is suppressed and the next highest point is

selected in order to simulate a scanpath from the static sample set. Given that the

models are relatively capable of identifying the strongest regions of interest to a hu-

man observer, this approach tends to produce as output a sequence in some order

between the top several locations. In this fashion, we can consider what base spatial

saliency models have a static mapping that lends itself well to sequences consistent

with human observers, or consider the limited set of models that are inherently se-

quential by design (LeMeur,PathGAN).

Table 3.3 reveals benchmark scores for an array of models induced to produce scan-

paths, or those that produce scanpaths natively in comparison to human scanpaths for

the same images. Importantly, this presents the first comprehensive demonstration

of a means of comparing scanpaths across different models, experimental conditions,

images or populations that is sequential. Moreover, it establishes what metrics make

most sense, their sensitivity, and capacity to successfully separate observations that
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derive from different conditions. Somewhat surprising is the effectiveness of the WTA

mechanism given a base representation of saliency. For the more discernible metrics, it

is clear that the LeMeur approach fares slightly better, however the recent PathGAN

is significantly worse on most accounts.

EUC MAN EYE LEV SMT HAU FRE DTW TDE REC DET LAM CORM MM S MM A MM L MM P

AIM 831.78 23.27 168.98 15.35 0.76 242.37 386.23 2032.22 113.64 4.33 0.66 8.27 40.86 0.84 0.67 0.86 0.77

AWS 828.08 23.48 164.34 15.11 0.76 244.82 383.03 2010.82 113.07 4.90 0.83 9.25 40.15 0.84 0.67 0.86 0.77

CAS 761.36 24.29 167.34 15.19 0.77 230.77 353.70 1910.34 102.37 4.63 0.93 7.94 41.36 0.85 0.66 0.88 0.79

CVS 898.08 1.83 235.55 16.07 0.76 291.37 413.44 2353.33 128.56 2.70 0.45 6.42 42.24 0.84 0.67 0.86 0.76

DVA 847.99 19.93 176.01 15.48 0.76 251.78 392.54 2088.77 116.76 4.13 0.70 8.35 39.27 0.84 0.67 0.86 0.76

GBVS 707.28 32.96 147.79 14.85 0.77 202.24 323.15 1730.56 94.50 5.64 1.13 8.41 41.84 0.86 0.67 0.89 0.81

IKN 777.06 25.81 164.95 15.20 0.77 228.45 358.76 1913.76 105.72 4.47 0.75 7.73 41.67 0.85 0.67 0.88 0.79

IMSIG 796.70 23.28 166.60 15.12 0.77 236.84 370.47 1959.85 105.25 5.01 0.94 8.72 40.49 0.85 0.67 0.87 0.78

QSS 909.77 9.17 200.28 15.77 0.76 287.47 424.04 2267.87 130.19 3.77 0.65 8.09 40.51 0.84 0.67 0.86 0.76

SSR 874.44 15.22 188.71 15.54 0.76 262.36 408.29 2159.36 120.03 4.16 0.76 7.98 40.24 0.84 0.67 0.87 0.77

SUN 850.72 16.39 185.09 15.59 0.76 256.88 393.81 2117.18 117.92 3.83 0.69 8.13 40.05 0.84 0.67 0.86 0.76

cG 599.08 18.56 187.09 15.11 0.78 220.50 286.53 1693.72 87.20 4.46 1.14 7.03 45.62 0.85 0.49 0.85 0.81

SAM-VGG 728.45 47.33 106.02 14.03 0.77 187.48 340.53 1600.90 94.71 6.10 1.06 10.60 39.63 0.86 0.70 0.88 0.82

OpenSalicon 730.94 41.46 120.34 14.19 0.77 200.00 348.58 1639.66 91.99 6.57 1.11 10.83 38.31 0.85 0.69 0.88 0.82

SALGAN 1112.63 -14.12 213.76 15.66 0.76 424.14 555.35 2611.46 171.14 4.92 0.81 11.04 33.30 0.83 0.69 0.83 0.77

PathGAN 1218.31 -80.62 443.05 17.52 0.73 414.35 552.11 3711.61 173.52 0.17 0.17 8.10 32.01 0.67 0.48 0.61 0.60

LeMeur 427.38 109.58 116.62 12.48 0.57 128.85 182.75 1246.36 56.40 0.01 0.00 0.00 12.18 0.66 0.12 0.63 0.50

Table 3.3: A benchmark of saliency models that considers trajectories rather than
spatial distributions subject to a variety of different metrics.

3.6 Summary

In this chapter we have examined the problem of scanpath prediction with an

emphasis on suitable metrics for comparing scanpaths. In doing so, we have demon-

strated the surprising capability of simple winner-take-all mechanisms built atop

static saliency maps in eliciting reasonable approximations of human scanpaths.

Moreover, we have shown how metrics that have traditionally been used in this
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domain lack an intuitive interpretation, and also provide weak contrast for reveal-

ing differences in model capabilities. We have provided careful analysis of different

metrics and their characteristics and proposed a viable alternative that provides a

stronger measure for model-human or model-model distances. Finally, we provide

some specific recommendations for metrics and considerations that are important in

moving forward.



Chapter 4

Secrets of Sequential Analysis

Comparisons using spatial metrics are a core part of the literature involving gaze

prediction. However, as alluded to in earlier chapters, there is reason to be opti-

mistic that sequential analysis might show more insight regarding the data, including

revealing differences that are not observable through traditional spatial analysis.

With this consideration in mind, this chapter is dedicated to application of the

body of work we earlier developed surrounding metrics to a variety of studies of

gaze patterns. As the results and discussion demonstrate, the richer representation

afforded by sequential data produces a different interpretation of data than has been

revealed prior using traditional spatial analysis.

4.1 Stimuli Effect

Among studies that consider gaze data, there are a few including one larger dataset

(CAT2000) that is grouped according to stimulus category. An interesting question

61
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that arises in the context of sequential analysis is as follows: Do sequential metrics

provide a good degree of resolution in revealing general differences in the similarity of

viewing patterns for different categories?

This question has been addressed directly in applying the set of metrics we have

considered to the variety of stimulus categories in CAT2000. The results of this

analysis are presented in Table 4.1.

It is interesting to see that there is a wide spread in inter-observer distance as

a function of category. More abstract scene representations including fractals, line

drawings and inverted scenes seem to elicit less similar viewing patterns. More stan-

dard imagery shows an intermediate range of similarity, while simple images including

simple patterns or noise show a high degree of similarity. In this latter case, this is

likely owing to a relative lack of structure in viewing or eccentricity for noise, and

simple viewing strategy for basic patterns. These observations are made quite pal-

pable by sequential gaze analysis whereas more simplistic analysis based on spatial

distributions don’t reveal such significant contrast across viewing conditions.

4.2 Resolution

Another experimental parameter that may be varied systematically is the resolu-

tion at which the image is presented. For example, a common size for presenting the

image may be used while in some instances this is an upsampled version of a coarse

grained image. The effect of varying stimuli resolution and viewing behaviour has

been assessed in [41] based on spatial analysis. The authors have performed an eye

tracking study by showing images at different resolutions to a set of non-overlapping
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EUC MAN EYE LEV SMT HAU FRE DTW TDE REC DET LAM CORM MM S MM A MM L MM P

Affective 1554.69 32.17 200.55 30.73 0.40 429.68 571.34 5638.05 113.33 4.00 2.75 13.08 34.18 0.90 0.70 0.91 0.86

BlackWhite 1468.51 31.68 210.74 30.06 0.39 431.53 558.50 5470.13 116.43 3.59 2.34 11.85 34.55 0.90 0.70 0.91 0.86

Fractal 1632.23 26.11 227.07 31.16 0.37 452.68 598.80 6069.34 127.71 3.16 2.10 11.34 34.82 0.89 0.70 0.90 0.84

Inverted 1703.50 25.84 225.79 31.94 0.37 442.19 595.13 6287.62 129.76 2.58 1.91 10.63 34.67 0.89 0.71 0.91 0.84

Line Drawing 1683.26 25.44 229.55 32.54 0.35 441.17 593.74 6444.01 133.39 2.60 1.75 10.56 34.89 0.89 0.69 0.91 0.84

Noisy 1208.06 33.65 220.39 27.44 0.36 440.41 536.13 4771.37 116.06 4.22 2.06 11.79 36.71 0.89 0.65 0.90 0.86

Outdoor 1513.83 30.19 212.57 30.72 0.38 438.72 581.14 5697.78 118.53 3.50 2.21 11.38 34.89 0.89 0.70 0.90 0.85

Pattern 1375.97 29.68 223.07 29.57 0.37 445.03 558.78 5400.19 120.59 3.66 2.03 11.42 35.92 0.89 0.67 0.91 0.85

Satellite 1547.59 26.45 231.41 30.17 0.36 454.31 588.80 5813.68 128.96 3.06 1.96 11.11 34.96 0.89 0.69 0.91 0.85

Social 1463.49 37.10 187.82 30.25 0.41 396.76 536.32 5327.27 107.14 4.09 2.73 13.00 34.43 0.90 0.71 0.92 0.87

MEAN 1515.29 29.84 216.85 30.46 0.38 437.21 571.86 5691.83 121.17 3.44 2.19 11.63 34.96 0.89 0.69 0.91 0.85

SPP 644.87 23.21 129.99 21.38 0.16 233.79 373.51 3418.67 53.06 0.04 0.00 0.43 12.52 0.83 0.42 0.81 0.75

Table 4.1: Inter observer results per category for CAT2000

observers. The resolutions range from 4x4-512x512 px and images were interpolated

to a fixed size before being displayed to observers. The main point of the Judd et

al. study is on the consistency of fixations across resolutions. Using spatial methods

that are not able to capture sequential dynamics, the consistency remains constant

for 32px and above. This experiment may be re-examined in the context of sequential

metrics in order to confirm or revisit these findings. To this end, we consider DTW to

compare scanpaths of images at 8 different resolutions to one another. This results in

an 8x8 set of comparisons and the results were then normalized by the inter-observer

distance of the base resolution. Figure 4.2 shows the results of this analysis and it

is evident that changes in behaviour continue for 64x64 images and possibly even for

the 128x128 case. After this point viewing behaviours starts to become consistent.

Nevertheless, this presents another compelling example of the strength of sequential

metrics in revealing more above viewing patterns, especially when an appropriate

metric is selected.



64 Chapter 4: Secrets of Sequential Analysis

Table 4.2: Inter observer score for different resolutions of an image. Results have
been normalized normalized by the inter-observer distance of the base resolution.

4.3 Eye-tracking vs Mouse-tracking

With the considerable time and cost of collecting eye tracking data, combined

with the need for large-scale data to make use of deep learning models, it has recently

become common that saliency models are pre-trained on datasets collected using

different proxies for gaze. There a few options to achieve this including mouse-tracking

and web-cam based tracking. Salicon [39] is the most used dataset and has been

collected through Amazon Mechanical Turk based on mouse-tracking data. In their

experiments, to show the effectiveness of their method, they also collected mouse-

tracking data for the OSIE dataset for which eye tracking data is available. Given

the large number of samples captured by mouse-movements, k-Means clustering is

applied to raw mouse coordinates to produce a simulated scanpath using k-means
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EUC MAN EYE LEV SMT HAU FRE DTW TDE REC DET LAM CORM MM S MM A MM L MM P

mouse-mouse 703.29 27.26 136.40 10.75 0.77 179.95 314.08 1446.57 89.85 4.56 1.27 0.87 34.60 0.71 0.62 0.73 0.66

mouse-mouse spp 432.03 20.81 83.52 7.89 0.72 94.09 188.37 906.49 58.87 0.06 0.00 0.00 12.35 0.62 0.41 0.61 0.54

Mouse-eye 824.88 8.72 213.97 15.97 0.76 256.13 370.25 2145.35 121.03 6.45 23.08 17.64 44.92 0.83 0.66 0.85 0.76

Mouse-eye SPP 591.79 49.19 143.45 13.26 0.74 169.53 247.31 1528.37 85.19 4.10 22.67 13.37 18.58 0.74 0.42 0.70 0.64

Table 4.3: Mouse tracking vs Eye tracking data on OSIE dataset. This shows a
remarkable difference in considering within and between class distances, and provides
strong evidence for the view that mouse-tracking proxies can’t help saccadic models
as effectively as static models.

centriods as putative fixation points. The average length of eye tracking scanpaths

are 8 fixations for OSIE dataset and therefore we consider 8 centers for simulated

scanpaths based on k-means. The results show quite remarkable difference for inter-

observer distances between eye-tracking and mouse-tracking data. Table 4.3 shows

the results for the mean version of the metrics and also the SPP. This is another

case where spatial metrics may show a subtle difference but sequential metrics clearly

show a very large substantive difference, suggesting that mouse data is a poor proxy

for simulating gaze data.

4.4 Saliency in Time

It has been observed that viewing patterns tend to diverge over time with some of

the most prominent targets for gaze having been exhausted, or attention disengaged.

This analysis is outside of the realm of possibility in considering traditional spatial

analysis since there is no notion of time and all fixations are treated equally. In

spatial terms, it has been observed that the common pattern of centre-bias expands

to a higher degree of eccentricity, but there is relatively little precision exercised in

examining how gaze patterns may diverge over longer time periods, and whether
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metrics have the sensitivity to reveal this.

To this end, we consider per-image inter-observer viewing patterns for the OSIE,

restricting sequence lengths as a function of total viewing time. The expectation is

that one might see an increase in distance among gaze patterns. Figure 4.1 reveals

the expected trend wherein distances increase subject to time up to a critical time-

point. Note that each metric is normalized according to its maximum score over the

time intervals considered. Moreover, the more sensitive metrics we have identified

previously also reveal this contrast much more strongly. Interestingly, some metrics

have the characteristic that there is a marginal drop in inter-observer distances after

some time, most likely owing to concentric viewing or exhausting of the set of targets

of interest. It is interesting to note that in this case DTW shows the expected trend

while the EYE model that showed good discriminability runs in contrast to this trend,

likely owing to its lack of consideration to order gaze points and associated benefit of

having more overall fixations.

Figure 4.1: Inter observer distance by quantizing according to duration of viewing
and normalized by maximum IOC distance per metric



Chapter 5

Summary, Limitations and Future

Work

In general, simulating and modeling the human visual system has the advantage

that it results in human-like behavior. This is beneficial for systems that should

interact with humans in a natural manner. Seeking simple solutions to produce an

appropriate sequence of spatial selections in the form of fixation points is of value for

many human-centric problems as well artificial vision systems that may benefit from

active and attentive exploration of a scene.

In this thesis, we have presented a deep analysis of metrics for analyzing human

gaze data. In particular, we have focused on the sequential nature of gaze patterns

and presented new metrics for analysis of gaze as a sequential process. In doing

so, we have also done a critical appraisal of existing metrics in the literature and

provided a demonstration of strengths and weaknesses of different approaches. The

balance of this chapter summarizes the main contributions / findings of this thesis,

67
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and limitations or directions for future work.

5.1 Summary

While this thesis focuses on a narrow topic, treatment of this topic requires ad-

dressing a substantial breadth of literature, methods, models and carefully considering

prevailing thinking in this realm over several decades. This has resulted in a variety

of interesting a specific outcomes, which we state in what follows to provide a sense

of the big picture that this thesis reveals:

• In Chapter 2, we present a critical appraisal of a very comprehensive set of

literature. This is not only at the level of analyzing what has been considered

for sequential metrics, but also includes analysis of different proposals that sets

the stage for the more technical contributions of Chapter 3.

• There are a vast number of datasets in the literature, but given the heavy

focus on spatial analysis of gaze patterns, only few of these are suitable for

sequential analysis and discerning this requires careful examination of available

data. In the context of this thesis a comprehensive review of available datasets

is presented, and those that lend themselves to sequential or spatiotemporal

analysis have been identified. Moreover, these have been transformed into a

format that allows for training of models, use of our metrics or further work in

this domain.

• There is a vast space of metrics, and Chapter 3 presents a series of carefully

designed studies to understand these metrics. This begins with identifying what
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properties one would hope to see from a good metric. Subsequent experiments

reveal strengths and weaknesses of different metrics and their sensitivity to

different perturbations of the data.

• The results of Chapter 3 identify a few metrics that are especially discrimina-

tive in separating gaze patterns that derive from different populations. This

notably includes the metric we propose and a few others. Among the others,

the thorough nature of experiments reveals some of the caution that may be

required in exercising these such as the degree of sensitivity to the ordering of

fixation points.

• There are no convincing benchmarks for saliency models that consider the prob-

lem from a sequential perspective, and this work presents such a benchmark in

addition to a justification for the metrics supporting model superiority.

• The thesis begins with the claim that there should evidently be more infor-

mation in a sequence than a static representation. In chapter 4, a variety of

examples are provided that show that conclusions that are based on spatial

analysis alone fail to hold up, or change when viewed through the lens of se-

quential analysis. Each of these results is important in it’s own right, but also

as a justification for the careful study of sequential models of gaze in moving

forward.

Finally, on the balance of the work presented in this thesis the author hopes that

this will inspire others to more deeply consider the intriguing and rich problem of

sequential analysis of gaze.
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5.2 Limitations and Future works

The nature of the domain covered by this thesis implies that analysis could go on

forever. There are many problems in the realm of top-down vs. bottom up viewing,

the role of emotion, complexity of images and other factors that could be analyzed

in much greater detail. There is also a wealth of existing work that authors might

choose to revisit in making use of the results of this thesis to provide new perspectives

on their own data. Finally, there is a very short history of computational models

that address the problem of saliency, attention and gaze sequentially and further

exploration of such models is warranted. The work in this thesis provides a foundation

for computational modeling efforts in this domain to be explored with confidence in

the metrics that support the outcomes that are yet to be revealed.
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AP1.

EUC MAN EYE LEV SMT HAU FRE DTW TDE REC DET LAM CORM MM S MM A MM L MM P MM D

0 703.85 44.50 101.73 13.97 0.45 196.94 326.33 1559.30 76.91 24.34 8.02 26.48 39.39 0.86 0.69 0.89 0.83 0.50

1 711.85 41.39 110.30 14.18 0.43 201.49 328.95 1609.35 79.37 23.08 7.71 25.97 39.35 0.86 0.68 0.89 0.83 0.50

2 722.77 38.41 118.70 14.47 0.42 205.32 331.15 1666.83 82.14 21.79 7.43 25.45 39.31 0.86 0.68 0.89 0.82 0.50

3 730.13 35.13 127.61 14.74 0.41 209.79 333.05 1722.08 84.53 20.64 7.15 24.83 39.32 0.86 0.67 0.88 0.82 0.50

4 737.48 32.13 136.09 14.96 0.40 214.14 334.86 1771.37 86.98 19.32 6.81 24.29 39.27 0.86 0.67 0.88 0.82 0.50

5 744.68 29.01 144.46 15.21 0.38 218.35 336.20 1822.85 89.06 18.20 6.57 23.84 39.30 0.85 0.67 0.88 0.81 0.50

6 752.79 25.80 152.97 15.47 0.37 222.74 337.91 1877.78 91.14 17.17 6.35 23.32 39.31 0.85 0.66 0.88 0.81 0.50

7 759.13 22.99 161.08 15.72 0.36 225.95 338.95 1923.53 93.17 16.17 6.10 22.65 39.45 0.85 0.66 0.88 0.80 0.50

8 765.75 19.82 169.88 15.98 0.35 230.27 340.36 1975.00 95.57 15.17 5.80 21.91 39.94 0.85 0.65 0.88 0.80 0.50

9 772.88 16.74 178.57 16.16 0.33 234.68 342.07 2021.15 97.93 13.99 5.44 21.31 40.07 0.85 0.65 0.88 0.79 0.50

10 776.90 13.88 186.98 16.32 0.32 238.56 342.81 2059.89 99.91 12.83 5.02 20.55 40.41 0.85 0.65 0.87 0.79 0.50

11 785.33 10.89 195.21 16.58 0.31 242.51 345.37 2113.29 102.55 11.46 4.58 19.88 40.46 0.84 0.64 0.87 0.79 0.50

12 792.32 7.83 204.33 16.74 0.30 246.62 347.13 2159.77 105.23 10.06 4.14 19.09 40.66 0.84 0.64 0.87 0.78 0.50

13 795.56 5.03 212.60 16.93 0.28 249.84 346.87 2199.74 107.08 9.16 3.79 18.40 41.07 0.84 0.63 0.87 0.78 0.50

14 806.46 2.21 220.63 17.21 0.27 253.53 348.14 2251.63 109.64 7.97 3.40 17.55 41.43 0.84 0.63 0.87 0.77 0.50
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Table A.1: The Spearman rank correlation among different metrics across algorithms
(SPP)
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EUC MAN EYE LEV SMT HAU FRE DTW TDE REC DET LAM CORM MM S MM A MM L MM P

AIM 593.92 22.19 116.54 11.61 0.58 158.59 273.56 1444.21 86.60 0.35 0.00 0.20 19.86 0.77 0.42 0.76 0.66

AWS 593.23 23.72 109.86 11.38 0.58 161.36 271.98 1407.45 85.77 0.57 0.00 0.43 18.85 0.76 0.41 0.75 0.66

CAS 532.63 21.02 112.93 11.50 0.58 152.50 242.07 1312.11 75.73 0.44 0.00 0.16 20.11 0.78 0.41 0.78 0.68

CVS 659.01 52.73 170.68 12.43 0.57 213.22 304.00 1735.46 100.06 0.16 0.00 0.06 22.62 0.77 0.43 0.75 0.65

DVA 615.52 27.60 121.59 11.84 0.58 166.80 280.03 1491.45 89.73 0.35 0.00 0.26 18.96 0.76 0.42 0.75 0.65

GBVS 487.70 7.35 100.39 11.13 0.58 130.77 215.79 1176.68 69.77 0.74 0.00 0.33 19.59 0.79 0.42 0.79 0.70

IKN 550.60 16.57 114.01 11.49 0.58 151.81 250.14 1347.33 80.05 0.43 0.00 0.21 19.38 0.77 0.42 0.77 0.67

IMSIG 562.50 23.95 110.11 11.38 0.58 152.12 258.72 1346.12 77.43 0.60 0.00 0.28 19.04 0.77 0.41 0.76 0.66

QSS 672.74 40.35 143.32 12.11 0.57 203.34 312.80 1675.07 103.47 0.27 0.00 0.13 19.73 0.76 0.42 0.75 0.65

SSR 639.80 32.53 132.01 11.83 0.58 176.81 295.52 1558.77 92.35 0.41 0.00 0.17 19.93 0.77 0.42 0.76 0.66

SUN 613.25 30.00 128.63 11.89 0.58 172.51 281.01 1506.95 90.78 0.28 0.00 0.22 19.68 0.77 0.43 0.75 0.65

cG 425.96 25.20 124.23 11.30 0.59 153.05 186.99 1147.19 60.49 0.39 0.00 0.10 22.07 0.77 0.21 0.70 0.73

SAM-VGG 502.56 6.08 66.11 10.20 0.58 96.95 227.88 1052.29 68.58 0.64 0.00 1.07 16.90 0.78 0.43 0.77 0.70

opensalicon 493.05 2.53 75.73 10.35 0.58 105.61 227.40 1064.80 66.15 0.81 0.00 0.72 16.81 0.77 0.41 0.76 0.68

salgan 815.41 69.93 158.61 11.96 0.59 337.08 436.59 2054.97 144.33 0.50 0.00 0.78 16.77 0.75 0.43 0.73 0.66

pathgan 878.71 165.25 330.67 13.88 0.55 327.80 408.63 2598.86 128.85 0.00 0.06 1.42 19.95 0.57 0.21 0.48 0.46

Table A.2: The benchmark - SPP results

Time EUC MAN EYE LEV SMT HAU FRE DTW TDE REC DET LAM CORM MM S MM A MM L MM P

600 216.10 52.81 166.30 4.18 0.42 188.70 217.59 420.02 26.95 24.41 0.97 13.87 80.40 0.89 0.57 0.89 0.88

800 290.85 49.15 155.68 5.50 0.42 203.50 248.20 575.89 65.88 23.06 2.33 17.28 62.87 0.87 0.56 0.88 0.86

1000 358.09 46.80 144.83 6.81 0.43 209.60 268.46 726.90 82.44 21.68 3.35 18.97 53.28 0.86 0.56 0.88 0.85

1200 422.14 45.17 135.30 8.10 0.43 212.52 285.75 874.13 85.51 20.20 4.07 19.85 47.69 0.86 0.58 0.88 0.84

1400 480.79 44.11 127.39 9.32 0.43 212.85 299.27 1019.08 84.85 19.01 4.61 20.53 44.33 0.85 0.60 0.88 0.84

1600 528.57 43.72 121.09 10.35 0.43 211.13 307.42 1137.91 83.39 18.05 5.02 21.01 42.37 0.86 0.62 0.89 0.83

1800 559.07 43.52 117.55 11.01 0.43 209.98 312.34 1214.99 82.16 17.45 5.24 21.26 41.31 0.86 0.63 0.89 0.83

2000 569.69 43.45 116.50 11.20 0.43 209.56 313.70 1236.92 81.83 17.21 5.30 21.31 40.99 0.86 0.64 0.89 0.83

2200 570.96 43.49 116.40 11.23 0.43 209.51 313.91 1239.15 81.79 17.18 5.31 21.31 40.94 0.86 0.64 0.89 0.83

2400 571.02 43.49 116.40 11.23 0.43 209.51 313.89 1239.25 81.79 17.18 5.31 21.31 40.94 0.86 0.64 0.89 0.83

2600 572.29 43.23 118.23 11.05 0.43 211.45 315.94 1230.42 83.50 17.22 5.26 20.75 41.47 0.86 0.63 0.88 0.83

2800 703.85 44.50 101.73 13.97 0.45 196.94 326.33 1559.30 76.91 24.34 8.02 26.48 39.39 0.86 0.69 0.89 0.83

Table A.3: Saliency in time - SPP results



74 Appendix A: AP1.

EUC MAN EYE LEV SMT HAU FRE DTW TDE REC DET LAM CORM MM S MM A MM L MM P MM D

Affective 685.96 32.24 107.11 9.30 0.14 190.35 201.39 2712.41 53.60 6.11 5.57 9.82 17.03 0.04 0.17 0.06 0.06 0.19

BlackWhite 659.40 29.71 100.18 9.12 0.14 180.38 192.49 2524.98 52.31 5.90 5.53 10.07 18.35 0.04 0.16 0.06 0.06 0.19

Fractal 761.61 31.14 100.95 9.13 0.13 183.53 197.63 2613.20 56.01 6.08 5.47 10.30 19.26 0.04 0.16 0.06 0.06 0.18

Inverted 686.92 30.29 96.57 8.58 0.13 172.23 187.76 2431.32 52.90 4.75 5.31 10.08 19.64 0.03 0.14 0.05 0.06 0.18

Line Drawing 708.23 29.50 93.04 8.78 0.12 168.59 177.14 2491.01 54.75 6.06 5.26 10.37 20.35 0.03 0.14 0.05 0.06 0.18

Noisy 622.31 30.75 100.73 9.89 0.15 178.69 197.67 2421.20 58.80 8.56 5.64 10.92 20.08 0.04 0.18 0.06 0.06 0.20

Outdoor 683.76 30.95 96.43 9.06 0.14 184.42 198.42 2465.37 52.76 6.48 5.49 10.13 18.84 0.04 0.17 0.06 0.06 0.19

Pattern 653.08 31.71 105.42 9.80 0.14 180.26 195.58 2639.35 56.26 7.19 5.43 10.55 19.83 0.04 0.16 0.06 0.06 0.19

Satellite 719.24 32.91 106.05 8.91 0.14 185.62 203.48 2628.73 58.27 5.88 5.42 10.58 19.64 0.04 0.16 0.06 0.06 0.19

Social 712.32 30.71 96.41 9.39 0.14 180.79 205.10 2691.31 49.06 6.68 5.71 9.85 17.33 0.04 0.18 0.05 0.06 0.19

Table A.4: Standard deviation of Inter observer distances per category for CAT2000
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curves, revisited. In European Symposium on Algorithms, pages 52–63. Springer,

2006. 27

[7] M. Assens, X. Giro-i Nieto, K. McGuinness, and N. E. OConnor. Saltinet: Scan-

path prediction on 360 degree images using saliency volumes. In ICCV Workshop,

2017. 17

[8] D. J. Berndt. Using dynamic time warping to find patterns in time series. In

KDD workshop, volume 10, pages 359–370. Seattle, WA, 1994. 21, 26

[9] J. Biondi, G. Fernandez, S. Castro, and O. Agamennoni. Eye-movement behavior

identification for ad diagnosis. arXiv preprint arXiv:1702.00837, 2017. 38

[10] A. Borji and L. Itti. Cat2000: A large scale fixation dataset for boosting saliency

research. arXiv preprint arXiv:1505.03581, 2015. 13, 41

[11] A. Borji, D. N. Sihite, and L. Itti. Quantitative analysis of human-model agree-

ment in visual saliency modeling: A comparative study. IEEE Transactions on

Image Processing, 22(1):55–69, 2013. 33

[12] N. Bruce. Evolutionary design for computational visual attention. Master’s

thesis, University of Waterloo, 2003. 10

[13] N. Bruce, C. Catton, and S. Janjic. A deeper look at saliency: Feature contrast,

semantics, and beyond. pages 516–524, 2016. 3

[14] N. Bruce and J. Tsotsos. Saliency based on information maximization. In Ad-

vances in neural information processing systems, pages 155–162, 2006. 16



Bibliography 77

[15] M. Burmester and M. Mast. Repeated web page visits and the scanpath theory:

A recurrent pattern detection approach. Journal of Eye Movement Research,

3(4), 2010. 17

[16] Z. Bylinskii, P. Isola, C. Bainbridge, A. Torralba, and A. Oliva. Intrinsic and

extrinsic effects on image memorability. Vision research, 116:165–178, 2015. 13

[17] Z. Bylinskii, T. Judd, A. Borji, L. Itti, F. Durand, A. Oliva, and A. Torralba.

Mit saliency benchmark. 12

[18] Z. Bylinskii, T. Judd, A. Oliva, A. Torralba, and F. Durand. What do different

evaluation metrics tell us about saliency models? IEEE transactions on pattern

analysis and machine intelligence, 2018. vii, 19, 20

[19] Z. Chen and W. Sun. Scanpath prediction for visual attention using ior-roi lstm.

In IJCAI, pages 642–648, 2018. 18

[20] F. Cristino, S. Mathôt, J. Theeuwes, and I. D. Gilchrist. Scanmatch: A novel

method for comparing fixation sequences. Behavior research methods, 42(3):692–

700, 2010. 20

[21] F. Cristino, S. Mathôt, J. Theeuwes, and I. D. Gilchrist. Scanmatch: A novel

method for comparing fixation sequences. Behavior research methods, 42(3):692–

700, 2010. 21, 23

[22] R. Dewhurst, M. Nyström, H. Jarodzka, T. Foulsham, R. Johansson, and

K. Holmqvist. It depends on how you look at it: Scanpath comparison in mul-



78 Bibliography

tiple dimensions with multimatch, a vector-based approach. Behavior research

methods, 44(4):1079–1100, 2012. v, 20, 21, 39, 46

[23] A. T. Duchowski, J. Driver, S. Jolaoso, W. Tan, B. N. Ramey, and A. Robbins.

Scanpath comparison revisited. In Proceedings of the 2010 Symposium on Eye-

Tracking Research & Applications, pages 219–226. ACM, 2010. 20

[24] T. Eiter and H. Mannila. Computing discrete fréchet distance. Technical report,
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