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Abstract

The purpose of this thesis is two-fold. First, to develop an interface between Matlab and
Numerical Electromagnetics Code (NEC2). Matlab is a popular commercial
mathematical programming environment. NEC2 is a command-line driven numerical
electromagnetic field solver in popular use due to its powerful capabilities to handle
many varieties of wire antennas and their feed networks, and the fact that its Fortran
source code is freely available. The second and main purpose of this thesis is to use this

NEC2/Matlab interface to study adaptive antenna array processing.

With its origins in adaptive signal processing and adaptive filter design, adaptive antenna
array processing has developed much by direct analogy of spatial filtering in antenna
beam-space with signal filtering in frequency space. Two methods of generalized
sidelobe cancelation are studied, the Linearly Constrained Minimum Variance (LCMV)
method and the Least Mean Squares (LMS) method. The objective is to reduce antenna
array gain at the angle of arrival of interference. It is shown that both methods have
strengths and weaknesses, but that the LMS method is more robust for a wider range of
interference angles. The LCMV method, at least as formulated in this thesis, has some

extreme problems that are identified and discussed.

Typically, geometric interference patterns, known as the array factor, are used for a
first-order approximation to antenna array patterns but do not address the effects of
mutual coupling between antennas. The computed solution of NEC2 does account for

this, however its need for cryptic text files to represent structures and define simulations




is cumbersome. The Matlab interface automates much of this process and overcomes this

obstacle in addition to offering powerful graphical display options for the output.

The interface allows for the automated study of the adapted array patterns throughout the
adaptive process and over a range of conditions. This study shows that the computed
radiation pattern of the array can differ dramatically from the array factor. This
knowledge can be used to design optimized antenna arrays to perform closer to

expectation in real world applications.
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1.0 Introduction

The purpose of this introductory chapter is to introduce the three facets of this thesis,
antenna arrays, NEC~ the numerical electromagnetic computation program with its

Matlab interface, and adaptive processing as applied to antenna arrays.

A brief overview of each topic is given, and the appropriate conventions for symbols,
configuration and notation used in this document are established. Vectors and arrays

appear in boldface while scalars are given in italics.

a) Linear array b) Planar Array

Figure 1.1 Linear and planar array of wire antennas.

1.1 Array Theory Background

Consider a linear or planar array of antenna elements, as shown in Figure 1.1. For the
case of all elements being coplanar, as is considered in this work, the antenna elements

are defined to lie in an xy plane, with the z-axis perpendicular to the array and pointing in
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a direction defined as broadside. An antenna element can be any physical antenna, such

as a wire monopole or dipole, a microstrip patch or a microwave horn.

Incoming radiation is assumed to be a plane wave, and its direction is measured with
respect to the z-axis using the standard spherical polar coordinates 6, the angle as
measured from the z-axis and ¢, the angle as measured from the x-axis. Angles can be in

radians or degrees, and units will be given.

The three basic considerations of an antenna array are /) the array factor— the geometric
interference of waves given the geometry of the array, 2) the element pattern— the
radiation pattern produced by a single antenna, and 3) the mutual coupling of antenna

elements when positioned in an array— a basic effect of Faraday s law of induction.

This thesis deals only with the case of a linear array of wire dipole antennas, but the
analysis can readily be extended to planar arrays of wire antennas or wire-mesh

approximations to surfaces using NEC.

The array factor of an array of antenna elements is the geometric interference pattern
resulting from the positions of the elements. In general, elements are spaced apart
distances less than or equal to a half-wavelength (d < A/2) of the design frequency.
Inter-element spacing larger than A/2 gives rise to grating lobes. Grating lobes are a
periodic repetition of the pn’rhary pattern due to the spacing, a form of spatial sampling

theorem directly analogous to the Nyquist theorem for discrete time sampling.

Given a linear array of elements, with an incident plane wave arriving at 0,, the signal
received at each element will differ in phase based upon the propagation constant, &, and

the element spacing, d, as shown in Figure 1.1. As can be seen, the delay distance is
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d sin6,, which, when combined with the propagation constant, k = 2%/, produces a phase
delay of ¢, = kd sin6),, between adjacent elements. The desired signal is obtained at the

array output by delaying and summing the signal at each antenna element.

The inter-element phase delay, given by

@, = kd sin6, W

is known as electrical angle of arrival.

Consider the linear antenna array of M elements shown in Figure 1.2, illuminated by an

incident plane wave, which when sampled is of the form

u(n) = e 1.2)

where @ = 2nifis the angular frequency, & is the wavenumber, and n would take on

Incident wave

/dsine

Linear array

Figure 1.2— An incident plane wave arriving at a linear array
at an angle of &, from normal to the array [1].
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uniformly spaced instances in time given the sampling frequency, F;.

For a linear array of elements, with an incident plane wave arriving at 6,, the signal
received at each element will differ in phase based upon the propagation constant, k, and
the element spacing, d, as shown in Figure 1.2. Given the separation distance of d metres,
the path length difference is d sin6, metres. At any given instant in time, a line
perpendicular to the direction of propagation of the plane wave is, by definition, a line of
constant phase. For a propagation constant, or wavenumber, of & = %/, radians per
metre, this translates into a phase delay of ¢, = kd sin8, radians between each element.
This quantity ¢,, called the electrical angle of arrival, is an inter-element phase delay. The
desired signal is obtained at the array output by delaying and summing the signal at each

antenna element.

If an end element is designated as the first, or 0™, element, the phase progression across

the array is given by

s(@)=[1,e7, ..., /MM (1.3)

where T'is the transpose operator, and M is the number of antenna elements. This vector,
s(¢), is called the steering vector because it steers the direction of the mainbeam of the
array. That is, by multiplying the vector of signals received at the antenna terminals by

the steering vector, the inner product is the delayed and summed output of the array.

The output of the array, y(n), is given by

M-1

y(n) =uy(n) ; er_jwa (1.4)
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where u,(n) is the signal received at time # by the end antenna element #0 in Figure 1.2. |

The wy in (1.4) represent the driving-point voltage or current for a transmit mode, or the
scaling factor (weighting) of the electrical signals (current or voltage) at the antenna

terminals in receive mode.

The normalized array factor for a uniform weighting is given by

_VE wanr o
AF =77 ée =w, s(¢) (15)

where H is the Hermitian operator of conjugate transpose, ¢, is the electrical scan angle
and ¢ is the electrical angle of the point in space where the array factor is to be
calculated. To produce a normalized directive gain radiation pattern for a given array
scanned to an electrical angle ¢, across the field of view given by -90° < < 90°, one
need only choose a suitable number of & angles as far-field sample points, convert them
to the electrical angle using (1.3), and perform the summation given in (1.5), or perform

the vector inner product of the weights with the steering vector.

A typical array factor directive gain pattern is as shown in Figure 1.3 for an array of 7

elements spaced at 4 =%/, and scanned to = 15°,
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Directive Gain, 7-element Array
20 T T T T T T T

dB

20

-40} -

50 L : i I 1 1 L i )
-100 -80 -£0 40 -20 0 20 40 80 80 100

8, degrees

Figure 1.3~ Array factor example for 7-element array scanned to 15°.

1.2 NEC2- Numerical Electromagnetic Computations

NEC?2 is a popular program, with available source code, for the purpose of numerical
electromagnetic computations based on the moment method. The original program NEC
was written in the early 198G sat Lawrence Livermore Laboratories, and was designed to
take its input from punch cards. A text file has replaced the punch card, but the data
arrangement follows the same 80-column format. The output is written to an ASCII text

file, with headers followed by tables of values.

NEC is a* full-wave’ electromagnetic field solver, which means that it determines the

overall electromagnetic behavior from the charge and current distribution resulting from
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sources applied to a radiating structure. NEC2 is double precision, a modification
introduced in 1985. The Internet NEC Archives [2] contains the updated source code in C

and Fortran, with executables compiled for several platforms.

The original Numerical Electromagnetics Code (NEC) was developed during the late
1970 s at the Lawrence Livermore Laboratory by contract of the United States Naval
Ocean Systems Center and the Air Force Weapons Laboratory. Further development by
G. J. Burke and A. J. Poggio of Lawrence Livermore Laboratory resulted in the presently

available NEC.

The popularity of NEC is apparent by the volume of daily email from the Internet mailing
list, NEC-LIST [3], and the number of links returned using an Internet search engine. The
NEC-LIST site gives links to the available Fortran source code and some pre-compiled
NEC executables. Subscribers to the NEC-LIST enter a global forum for exchanging
discussions, questions and answers about using NEC for a wide variety of applications,
from antenna analysis to electromagnetic compatibility. Often, the discussion centers on

how to get a better graphical representation of the tabular output files.

There are several commercial NEC packages available, built on the freely available
source code, and offering a graphical user interface (GUI) and post-processing
visualization tools. There is Mini-NEC from EM Scientific Corp. [4], the NEC-Win
series from Nittany Scientific, Inc. [5] and the popular SuperNEC from The Poynting
Group, [6]. The prices range from a few hundred to a few thousand dollars, with some
limited version free downloads available.Each commercial package has varying strengths

and weaknesses, and is priced accordingly.
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In order to implement any systematic study of many small changes in an array geometry
in Mini-NEC, for example, would have the user navigating through GUI menus manually
setting each one. Such a tedious and time-consuming activity is eliminated with an
interface that performs these changes automatically as part of an optimization-driven
process. SuperNEC offers such a process in GUI environment, but is at the top of the
price scale for Software built on the NEC engine. There are other independent full-wave
electromagnetic field solvers on the market for tens of thousands of dollars, utilizing
various solver techniques - the finite-element method (FEM), the method of moments
(MOM), the boundary-element method (BEM) or the finite-difference time domain
method (FTDT). The FEM calculates a solution based on a discretization of space with
absorbing boundaries to represent infinite space. The MoM and the BEM compute a
solution based on discretization of the model structure and fields can be calculated
anywhere in space. The FDTD produces a solution by considering the instantaneous

interaction at discrete points in time.,

NEC2 returns a steady-state frequency domain solution to the input problem file based on
the MoM. The underlying principle of the moment method is the numerical solution of
integral equations for the currents induced on a structure by sources and incident
electromagnetic fields. In general, the desired unknown quantity is either the current or
charge distribution, and it appears within the integrand of the integral equation. In order
to solve this inverse problem, the integral is reduced to a series of linear algebraic

equations and solved using matrix equation methods.

Briefly described, the moment method solution has the general form
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F(g)=h | (1.6)

where F'is the known linear operator (integration), 4 is the known excitation function,
and g is the desired response function (charge or current). The moment method technique
is to represent g as a linear combination of A terms, which, for a thin wire located on the
z-axis, is given as [7]:

y
g(z") = Zag (z") an

By convention, primed coordinates represent source points and unprimed coordinates

represent observation points.

The coefficients a, are unknown constants to be determined, and the g, are known basis
functions, also called expansion functions. Substituting (2) into (1) and using the
principle of linearity to bring F into the summation gives

F(g.)=h
"Z;a,, (g,) 8

However, this is still one equation with N unknowns. In order to solve for the N unknown
coefficients, a,, (3) must be evaluated while enforcing the boundary conditions at N

points. This, known as point-matching, or collocation, results in N equations of the form

[7]:

N
al(g)=h,, m=12,.. .N
~Z=1: (1.9)

which can readily be expressed as the matrix equation
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[F(g)l[@n] = [hn] (1.10)

where [F(g,)] is an N x N matrix. The unknown a, can be found using matrix inversion

and multiplication, as shown in (6).

_ -1
[an] = [F(g)]" [n)] (1.11)

The above has been a simplified overview of the Method of Moments. To improve thé
accuracy of the collocation solution given in (4), an inner product of the basis function
with a weighting, or testing, function is frequently implemented. The problem is that the
boundary conditions are only enforced at the collocation points in (4) and rriay deviate
significantly between points. This deviation, called a residual, can be minimized such that
its average over the entire structure is zero using a method of“ weighted residualg’ in
conjunction with the inner product. There are many published works on this subject.
When the basis and weight functions are the same, the procedure is known as Galerkir s
method. In NEC, the basis and weight functions are different. The weighting function is
the Dirac delta function, resulting in the boundary conditions only being enforced at
discrete points of the structure. For wires, the sample point is the midpoint of each

segment, and for surface patches, it is at the center of each patch.

For time-harmonic electromagnetic fields, the integral equations are commonly
represented as the electric field integral equation (EFIE) and the magnetic field integral
equation (MFIE). The EFIE enforces the boundary condition on the tangential electric
field, and is well suited for thin-wire structures of small conductor volume. The EFIE is
valid for open or closed conductor surfaces, and is preferred for thin structures or
surfaces separated by a small distance. The MFIE enforces the boundary condition on the

tangential magnetic field components, which fails for the thin wire case due to being
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valid only for closed surfaces. It is preferable, however, for large structures of smooth
surfaces. The NEC code uses both the EFIE and the MFIE, and for models containing
both wires and surfaces, the two are coupled. A rigorous derivation of how the EFIE and

MFIE are used in NEC is given in [8][9].

NEC can support non-uniform segmentation of wires, and represents the current on each
short, straight segment by three terms - a constant, a sine and a cosine. The added
advantage of using sinusoids is that the integrations can be computed analytically, thus
sparing computation time and discretization error. Currents on surface patches are
modeled as a set of pulse functions (constant levels), except where a wire joins a surface

patch. Current continuity and charge balance are enforced at all nodes.

Due to the nature of the Greert s functions (kernels), the choice of basis functions is much
more critical for wires than for surface patches. All patches will use the pulse basis
functions, but for wire geometry, the user has the choice of a thin-wire, extended
thin-wire or large-distance kernel. The thin-wire kernel is appropriate when the ratio of
the wire length to the wire radius is greater than 8, and the extended thin-wire for a ratio
greater than 2 but less than 8. In both cases, the wire should be divided into at least 10
segments per wavelength. The large-distance kernel uses a current element
approximation, modeling the segment current as an infinitesimal current element at the

segment s center.

1.3 Automating NEC2 with Matlab

Matlab® is a very powerful matrix and math software package, with advanced file I/O

and graphical display capabilities. This work demonstrates the combination of NEC2, for
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the electromagnetic computation, with Matlab, for the composing of input files and the
graphical display of the results. Because the input file to NEC2 adheres to strict rules, the
numerical data can be prepared in Matlab and then concatenated with the appropriate
strings and written to a text file. Matlab can call the NEC2 executable from within one of
its scripts (called m-files), and then read in the resulting NEC2 output file for further
analysis. In essence, NEC2 becomes a solver driven by Matlab. Given an optimization
strategy, Matlab can iterate the above-mentioned process until convergence or another
criteria are met. This work presents Matlab-NEC2 automation as applied to adaptive

array antenna synthesis and design.

1.4 Adaptive Antenna Array Background

Adgptive array antennas define a class of antenna arrays combined with signal processors
for the purpose of recursively or adaptively changing the antenna parameters. The aim is
to optimize the overall antenna pattern for desired performance. One example is to
minimize the reception of noise interfefence from the current environment, ideally as the
noise background changes. The adaptive signal processing is implemented in the feed

structure of the array.

Whereas a fixed beam, switched beam or phased array will have a pre-selected amplitude
distribution with the beam directed by a progressive phase shift across the elements, an
adaptive array uses the amplitude and phase of each element as a complex weight that

can be optimized.

There are applications, such as broadcasting, which benefit from wideband omni-

directional antenna systems, but there is increasing demand for highly directive antennas
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that can be rapidly scanned or beamformed to any desired direction or shape.
Applications where high power interference or jamming is a problem require some
method of steering nulls to the source of interference, while maintaining gain in the
desired direction. Cellular systems where capacity is limited by multi-user interference
can utilize greater capacity using beamforming and null-steering networks [10][11][12].
Target tracking and intelligent signal detection systems can be optimized by developing
antennas that focus on the moving target while eliminating sources of interference that
lead to false alarms [13][14]. These systems are in use in such applications as radar, air

traffic control, and naval ice detection.

An adaptive array uses signal processing to adjust the amplitude and phase weights of
each element. By so doing, the main beam can be steered to the desired direction while

nulls are placed in the directions of interference.

Investigations into array adaptivity began in the mid-1950 s with Paul W. Howells and
Sidney Applebaum [15], who began working with the Heavy Military Equipment
Department of the United States to overcome radar sensitivity to jamming. Their initial

method is as shown in Figure 1.4(d), and was patented as the IF Sidelobe Canceller.

It was known that a uniformly weighted array gives the optimal signal to noise ratio
(SNR) when the noise power at each element was equal and uncorrelated. This is valid
for inherent element and sky noise. It was found, however, that when there is directional
noise from other in-band transmitters or jammers, the noise is correlated and may arrive
at the elements with unequal power. Thus, uniform weighting will not yield the best

SNR. Sidney Applebaum published a seminal paper [16] in which he tackled the problem
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of calculating the array weights to maximize the SNR for any type of noise environment.

The result became known as the Howells-Applebaum Method.

Applebaunt sblock diagram for the optimum linear combiner is shown in Figure 1.4(c).
He referred to this adaptive array as a linear combiner because of the weighted
summation of antenna element outputs. Compare the similarity of this diagram to that

shown in Figure 1.4(a).
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Types of adaptive arrays: a) Delay and sum, e) Applebauni sblock diagram for an
b) Beamformer matrix, delay and sum, optimum adaptive array [1].
c) Partially adaptive, and d) Auxiliary detection

[17].

Figure 1.4 a) to d) Basic types of adaptive arrays,
e) Sydney Applebauni s 1966 initial investigation into the subject is an application of

type a).
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In the* delay and sum” beamformer, the signal at the antenna terminal is multiplied by
the complex weight w; to scale it (amplify or attenuate) by the modulus and delay it by
the phase before being summed with the other antenna outputs. It turns out that this is a
direct analogy to transversal filtering. The antenna array is a spatial representation of the

discrete time-domain filtering process.

This thesis looks at the delay and sum beamformer as a generalized sidelobe canceller

{GSC) using two different algorithms.
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2.0 Development and Testing of NEC/Matlab Interface

2.1 NEC2 Input/Output Format and MATLAB

The applied source can be an incident plane wave, for scattering or electromagnetic
compatibility analysis, or an applied delta-gap voltage source. In addition, non-radiating
networks such as transmission lines, lumped circuit networks, or a combination of both,
connecting different parts of the model can be included. In this way, impedance loading
at various locations of the design can be modeled. The presence of a ground plane can be
modeled, which requires an additional program, SOMNEC, to be run prior to NEC, to

produce a text file to be used in conjunction with the Sommerfeld/Norton approximation.

The output file consists of a restatement of the input problem - the geometry, frequency,
loading, environment, excitation and the time to fill the matrix. The segmentation data is
listed, giving the coordinates of each segment s center, its length and radius, and the

nodes to which it is connected.

The remaining output depends on the requested quantities, and may be the currents on
each segment, the near fields, far-field power patterns, charge densities on wire segments,
maximum coupling between segments and the driving-point impedance for each assigned

voltage source.

Originally, the input was entered on a set of 80-column punch cards, one card per
command. This has been replaced with an input text file. The typical format is one line
per command, with the first two columns containing a mnemonic indicating the type of

command, such as GW for* geometry wir€’ . The remaining columns specify the wire s
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details, such as the wire number (called Tag number), number of segments, radius and
coordinates. An example of an entry line to generate a string of segments to represent a

straight wire is:

GW,1,15,-2.9,-0.24,0.25,-2.9,0.24,0.25,0.001
The line describes wire number 1 composed of 15 segments, from
(x1, y1, 21) = (-2.9,-0.24,0.25) to (x2, y2, 22) = (-2.9,0.24,0.25), and with a radius of 1mm.

All dimensions are given in metres.

The fields are described in Table 2.1, where if a parameter begins with“ I’ the field will

contain an integer, and if it begins with* P’ the field will contain a floating-point value.

If the user wishes to use units other than metres, the geometry must be scaled to metres
using a Geometry Scale (GS) command. The GS command must appear after the

geometry input, and before the Geometry End (GE) command.

The input file format begins with comment lines, then geometry data, then program
control cards. The program control cards indicate such parameters as the kernel to be
used (KH), frequency (FR), presence of ground (GN), excitation (EX), loading (LD), and
then the output desired such as coupling (CP), near (NE, NH) or far (RP) fields, output
plotting data (PL) and finally the command to execute the solver (XQ). These commands
can appear in any order, and can cause several executions of the solver within one file.

These commands and there use are described fully in the manual given in [1].

Matlab, like C or Fortran, has powerful file input and output capabilities. In addition,
Matlab offers the user a workspace in which to easily view data and apply mathematical

and numerical procedures.
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Table 2.1- NEC Geometry input parameters for a wire element.

Cols. | Parameter | Description

11-2 GwW Wire specification
3-5 I ITG - Tag number
6-10 |12 NS - # of segments
11-20 { F1 XW1 - xy coord.
21-30 | F2 YW1 -y, coord.
31-40 | F3 ZW1 - z; coord.
41-50 | F4 XW?2 - x» coord.
51-60 | F5 YW2 -y, coord.
61-70 | F6 ZW?2 - z5 coord.
71-80 | F7 RAD - radius

External executables can be called from within Matlab M-files (program scripts) by
preceding the command with a“ I’ character. Thus, for this work, the NEC2 code was
modified to always look for a file named“ input.nec’ and always output to a file named
“output.txt” . Matlab can then be directed to write the data to the input.nec text file, run
the solver, and then read in the output.txt file to plot the output, or make decisions based

on the output and run another simulation.

It should be noted that NEC has powerful capabilities to run various scenarios within one

input file. For instance, if the user wants to calculate the scattered fields due to several
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incident fields, it is more efficient to execute the solver for each incident field within one
file, rather than have Matlab re-run the analysis for each incident field. This way, the
matrix need only be built once in NEC and only the excitation changes. For small files,
there may not be much difference, but for large models the time saving could be
considerable. The result is only that Matlab needs to be programmed to read in and sort
out a larger output file. However, with Matlabi s text string search capabilities, this poses

no difficulty.

In addition, NEC has commands to exploit symmetry, rotate geometry and repeat
geometry, so the user can take advantage of these commands in the composition of input
files. Finally, a fixed structure and its environment can be modeled and the factored
interaction matrix saved in a file. This is called the numerical Green s function (NGF)
and in subsequent runs ig can be read in to replace the free-space Green' s function. The
purpose is to avoid re-calculating an entire complex model when only a part of the model
will be modified. Thus, if an antenna is moved in an otherwise fixed environment, the
self-interaction matrix of the environment can be saved and only the self-interaction
matrix for the antenna and the mutual antenna to environment interactions need to be
calculated. These points are made to indicate that some motivations for automation in
Matlab may already be more efficiently handled in the NEC solver. Knowing this, these

features can still be taken advantage with in the Matlab workspace.
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2.2 Using MATLAB with NEC2 Input/Output Files

The NEC output files are composed of headers followed by columns of data. The headers
describe the subsequent data, such as radiation pattern, and contain the column headings
to identify the data below - angle, field quantity, polarization and so on. If a run is taking
advantage of NEC s ability to evaluate volumetric spatial data, particularly for several
excitations, these files can become very large. Without some form of visualization tool,

the data is difficult to review.

With Matlab s text search capabilities, the data can readily be parsed into the workspace.
Particular identifying strings in the headers are found, and then knowing the format of the

following data, it is read into an array.

The following example calculates the current distribution and scattered fields for a linear
array of 13 dipoles. The dipoles are parallel to the y-axis, 0.4836m in length and 0.25m
above the xy-plane. The array is centered on the x-axis; the elements are separated by
0.4836m. The excitation is a linear y-polarized plane wave, arriving from § = 75° and

¢ =0°.

A Matlab script composes the NEC input file, and requests the radiation pattern for 1801
points from -90° < #< 90° when ¢ = 0°, and for 361 points for 0° < ¢ < 360° for 8= 90°.
In addition, the current magnitude and phase at the central node of each element is

returned. One example of the output is as shown in Figure 2.1. Matlab has an extensive

graphical visualization capability, including three-dimensional plots with shading,

In addition to the generated figure, the following data is printed in the Matlab workspace,

shown in Figure 2.2.
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Fforn the output and workspace data, we sce that scattered field peaks at -73.3°, which is
nearly the angle of incidence, and that the beam is quite wide. Glo and Ghi are the power
gain at the two points where the beamwidth was calculated. As can be seen, due to the
angle, it is not quite a 3 dB beamwidth. For such a simple array, the program executed in
a fast 4.44 seconds. Figure 2.1 indicates that the phase progression is what is expected for
the angle of the scattered field, and the current magnitude is greater at the incoming end
of the array. The azimuthal pattern shows strong endfire scattering, and in combination

with the elevation pattern indicates an overall disk-shaped scattered field in 3-D space.

o phase |- degress -

101234557"- ‘—432101234567"
- element s 1-1‘: e!emen; : :

Figure 2.1 - Matlab figure of output data.
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>> runit

Numerical Electromagnetics Code, double precision version {nec2d)

developed at Lawrence Livermore Lab., Livermore, CA., by G. Burke

{burke@icdc.llnl.gov) and A. Poggic.

Fortran file was created 4/11/80, last changed: Jan 15, 96, by

J. Bergervoet (bergervoBprl.philips.nl}

Maximum number of segments in core : MAXMAT= 2800
Stop - Program terminated.
time = 4.436 seconds.

Max Gain: 15.0326 at theta = -73.3 degrees.

HPBW = 27.1

Glo = 13.9836, 1.049 dB down
Ghi = 12.0644, 2.9682 dB down
>>

Figure 2.2 - Matlab workspace output.
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2.3 NEC2 for Mutual Coupling Analysis of a Finite Phased Array
Antenna

Having tested and verified the operation of the Matlab interface with NEC, it is of interest
to compare the output of NEC with that of the array factor to observe the computed
cffects of mutual coupling. It should be noted that the Matlab interface is not necessary to
compare NEC results with array factor results. An individual can create the NEC input
files with a text editor, run NEC2 from a command line, parse the text file output into a
graphical plotting or visualization package and then do the same with the output of an
array factor calculation package. An individual can easily program the array factor
output in the language of their choice using the equation given in (1.5). The Matlab
interface as described in the previous chapter is intended to simplify and automate this

process while taking advantage of Matlab s powerful visualization tools.

The first comparison looks at an 11-element array of half-wavelength dipoles arranged as
shown in Figure 1.1(a). Figure 2.3 shows the plots comparing the output of NEC2 with

the Array Factor for scan angles 0°, 20°, 40°and 60°.

Matlab has features that allows the user to zoom in and out and pick points from
anywhere in the graphical region, on or off of a trace. It returns the coordinates to a
variable in the workspace. These features are useful in identifying points of interest on

output plots.

From Figure 2.3(a), the radiation pattern of NEC is seen to be in excellent agreement

with the array factor to the third sidelobe level (SLL). The broadside half-power
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beamwidth (HPBW) is measured at 9.5° with a first SLL 13.3dB down from the

mainbeam.
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Figure 2.3— Plots comparing the output of NEC2 with the Array Factor
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for scan angles 0°, 20°, 40°and 60°.

The array factor theory as outlined in [7] gives closed-form equations to approximate the

performance of a broadside array of M elements. A comparison of computed points and

the results of these equations are given in Table 2.2 alongside a zoom in of the broadside
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Table 2.2— Comparison of computed NEC output and
Array Factor output with theoretically expected results.

Broadside Array | NEC2 Array
M = 11 elements Factor
Theory [7].
Mainbeam Gain, | 13.737 10.4
dB
HPBW, ° 9.5 9.24
First Null,® | =+11 +10.5
First SLL, dB 0.6 0.28
First SLL, ° +15.3 15.8
Second Null, ° + 21 +21.3
(AF)
Second Null, ° +22 +21.3
(NEC)

mainbeam and first sidelobes shown in Figure 2.4, The broadside maximum gain is

13.7dB.

Looking at Figure 2.3 and Figure 2.4, the NEC computed effects of mutual coupling
show a slight broadening of the mainbeam, and an outward displacement of the nulls
starting from the second null. Also, NEC shows a general lowering of the outward nulls
for broadside and near scan, and a rising of the outward nulls for larger scan angles. This
generally is not an issue in practice, as the outer sidelobes usually are of low enough gain
(>20dB down at the third SLL) to not be a concern unless a very strong source of

interference is located in that direction.
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Figure 2.4— Zoom of plot comparing the output of NEC2 with the Array Factor for AoA = (°,

Interesting to note is the rise of the coma lobe as shown in Figure 2.3(¢) and (d), for scan
angles of 40° and 60°. The coma lobe is the first sidelobe trailing the mainbeam scan and
tends to rise with scan angle while the leading sidelobe tends to be suppressed. These
effects are much more pronounced in the computed results of NEC than the array factor.
This is because the effects of mutual coupling become greater for large scan angles, as
will be shown in the next section where element impedance as a function of scan angle is

presented.

Chapter 2: Development and Testing of NEC/Matlab Interface 26



Now consider the application of a constraint matrix C as a beamformer, the theory for

which is developed in the next chapter. By designating the constraint matrix to be a

multi-column steering vector of electrical angles of interest, and by composing the gain

vector to indicate whether each angle is a beam or a null, various beamformed array

patterns can be created, as shown in Figure 2.5 for an 11-element array.
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b) Two mainbeams, at -30° and 55°.
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Figure 2.5— Comparison of NEC2 with the Array Factor output for multiple-beam and
constrained-null beamforms,
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The full-wave results of NEC2, which take into consideration the inter-element mutual
coupling, indicate very good agreement with the array factor at the mainbeams and
constrained nulls. The output of NEC shows lower far sidelobes than anticipated by the
array factor, which is consistent in both the scan tests of Figure 2.3 and the beamformed
tests of Figure 2.5. Note in Figure 2.5, however, that the computed gain for the beams at
30° are consistent with the array factor, but the beam at 60;’ shows more drop in gain than
indicated by the array factor, or as indicated by the computed NEC results in Figure

2.3(d).

The beamforming as shown in Figure 2.5 is an example of static, not adaptive,
beamforming. This would be appropriate in a communication link with known fixed
sources of interference, such as other transmitter towers. Adaptive interference
techniques can be combined with fixed beamforming to suppress the effects from

intermittent or mobile sources of interference.

It is important to keep in mind that the computed results of NEC include the
inter-element effects of mutual coupling, as seen in the radiation patterns, but dor t
include the effects of impedance mismatch with the feed network due to impedance

changes with scan angle, as will be demonstrated in the following section.
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2.4 Application to Study Active Impedance of a Phased Array Antenna

The Matlab-NEC2 interface can be used to study a wide variety of parameters of
antennas, arrays, and any interaction with radiating or reflective structures. For example,
the input impedance or the radiation pattern can be studied as a function of element
length or spacing, or as a function of objects in the vicinity. Non-uniform variation of the
element length and spacing in an array or Yagi-Uda design can be studied to optimize
desired characteristics such as gain, wideband performance or efficiency using
user-directed optimization strategies such as random or gradient searches or genetic

algorithms.

In this section, the radiation pattern and input impedance is observed as a function of scan
angle. Figure 2.6 shows the results for a 5-element array scanned from 0° to 60° in 15°
increments. The radiation pattern shows the broadening of the beam and the reduction in
gain as the scan angle increases. The impedance plot shows that the magnitude of the
impedance is fairly constant for broadside, with an increase at the end elements. The
phase plot shows a slightly non-uniform phase progression, but clearly indicates the tilt

with scan.

As the scan angle increases, the magnitude of the impedance becomes increasingly
non-uniform. The element furthest away from the scan angle generally has the lowest

magnitude but largest phase angle, indicating the most reactive end.
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Figure 2.6— Radiation pattern and impedance behavior as a function of scan angle for a 5-element

array.
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A half-wavelength dipole has to be shortened somewhat to attain a purely resistive
impedance, which is approximately 73 ohms (£2). From the impedance plots of Figure
2.6, it is shown that for scan angles from 0° to 30°, lthe impedance magnitude remains
fairly consistent between 50 and 80 ohms, and apart from the furthest end element, the

phase plot shows very little reactive component.

Typically, coaxial feedlines are either S0 (RG-8, RG-58, RG-213) or 72Q (RG-11,
RG-59). In order to deliver all of the power to the antenna, the feedline impedance must
be matched to the element impedance. A mismatch results in a reflection of power,

known as return loss, and is related to the reflection coefficient, I, given by

Z,+7, @.1)

where Z; is the antenna, or load, impedance and Z; is the characteristic impedance of the
feedline. When the impedances are matched, Z; = Z,, there is zero reflection of power

and all of it is delivered to the load.

A measure of mismatch is defined as the standing wave ratio (SWR) and is given by

_1+4r]

SWR =
1-|r] 2.2)

which we recognize is a real number between 1 and infinity, with SWR = I indicating a

perfectly matched load at the resonant frequency.

Standard measure for good performance requires a SWR less than 2, which corresponds

to a maximum reflection coefficient of |I'| = '/3. Looking at the impedance plot,
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considerable mismatch can be predicted at large scan angles. Using a 72-ohm line and

(2.1), the magnitude of the reflection coefficient is presented in Table 2.3.

Table 2.3 - Magnitude of the reflection coefficient for 5-element scanned array.

[T Antennal | Antenna2 | Antenna3 | Antennad4 | Antennas
0=0° 0.081427 0.16221 0.10552 0.16221 0.081427
0=15° 0.16954 0.10009 0.11444 0.11021 0.032477
6 =30° 0.25032 0.072998 0.10283 0.13636 0.1316
0 =45° 0.34509 0.34065 0.28884 0.25334 0.18321
0 =60° 0.46444 0.59279 0.56196 0.49418 0.34465

With a rough guideline of |I'] < 0.33, unacceptable levels of mismatch begin at the far-end

elements for a scan angle of 45°, and all elements show poor matching at 60°. This type

of impedance mismatch leads to a phenomenon known as scan blindness. At certain

angles of scan, the mismatch is so bad that little or no power is delivered to the load in

transmit mode, or in receive mode all of the incoming signal is reflected away from the

array.

Table 2.3 gives the reflection coefficient as the ratio of reflected wave to the incident

wave on the terminal, based on the impedance of the feed line and the element. The

waves can be currents or voltages. Another standard measure is the return loss (RL), a

power measure expressed in decibels based on the magnitude of the reflection coefficient

as given by (2.3).
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= )%
RL = 20%*log;o(|I'] ), dB (2.3)

The dB value of the return loss, also known as the Sy, scattering parameter in microwave
network theory, ranges from 0 dB for total reflection of the incoming wave to -oo dB for
zero reflection and total transmission into a perfectly matched load (ideal). For a

SWR < 2, [I'| £0.33 such that the return loss Sy, < -9.54dB.

Because it is typical for a network analyzer to display the S, return loss in dB over a
range of frequencies, this analysis is applied to the 5-element array for the scan angles

studied above. The point where Sy, is minimum indicates the resonant frequency, with the
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Figure 2.7~ Return Loss of center element of 5-element array over 10% bandwidth.
The horizontal line at -9.54dB corresponds to a SWR = 2.
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ideal antenna perfectly matched to the feed network returning Sy, = -c0 dB at resonance.

Figure 2.7 shows the Sy, return loss for the center element as the frequency is scanned
from 285MHz to 315MHz for each of the five scan angles. This represents a 10%
bandwidth study for a center frequency of 299.79 MHz, chosen as the design frequency
to normalize the free-space wavelength to 1 metre. The horizontal line at -9.54dB
corresponds to a SWR = 2. Points below this line indicate good performance where

SWR < 2.

Clearly, the impedance mismatch at a scan angle of 60° results in too much reflected
power over the entire bandwidth indicating that this element will contribute to scan

blindness at this angle. In fact, the array does not have a 10% bandwidth even for

broadside radiation, as can be seen by the &, = 0° curve. This curve crosses the SWR =2

line at 290MHz and 310MHz, for an approximately 7% bandwidth.

In Figure 2.8, the return loss of the remaining elements shows that the array as a whole

has an approximate 7% bandwidth at broadside but shifts and narrows with scan.

Note that for this study, the antenna elements are indexed from 1 to 5, with 3 being the

center element and 1 and 5 being the end elements. Generally, either zero

indexing (0, 1, ..., M-1) or unit indexing (1, ..., M) can be used as long as one element

is assigned zero phase with respect to the radiation, and the other elements are phased

with respect to this one according to the steering vector.
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Figure 2.8— Return Loss of non-center elements of 5-element array over 10% bandwidth,
The horizontal line at -9.54dB corresponds to a SWR = 2.

The plots of Figure 2.8 are arranged with antenna 1 above antenna 5 and antenna 2 above

antenna 4 for comparison. By symmetry, the &, = 0° curves are identical for these pairs.

It is apparent that the array will have poor performance at a scan angle of 60° and

potentially poor performance at 45°, particularly at the high end of the bandwidth.
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It is interesting to note that except for antenna 5, at the end to which the beam is scanned,
all elements shift the point of minimum return loss to a lower resonant frequency as the
scan angle increases. Antenna 5 is the first antenna to receive the incoming radiation, or
conversely is the last element to be directing energy from the array. In either case, there
are no elements* upstreami’ of it to be reflecting or scattering radiation to induce mutual
coupling. Only the elements downstream contribute. This may account for the more
consistent shape of the curves with antenna 5, but raises the question as to why the

resonant frequency shifts down with scan.

Figure 2.6(b), which shows how the impedance changes with scan angle, may offer some
insight. Notice how the downstream elements become more inductively reactive with
increased scan angle, as indicated by the increased phase shift for antennas 1 to 4. It is
standard to inductively load antennas to increase the electrical length of an antenna that is
physically short with respect to the wavelength. As the mutual coupling due to the scan
angle increases the inductance of the antennd s impedance, the element appears
electrically longer. A longer antenna is resonant at a lower frequency, and so the

downward shift of the resonant frequency is observed with increased scan angle.

In summary of this section, it is important to note that the impedance and return loss
behavior of this 5-element array have been studied but not optimized. The NEC2/Matlab
interface developed in this work is well suited to the optimization task of minimizing

return loss for a specified bandwidth, but remains for future work.

Chapter 2: Development and Testing of NEC/Matlab Interface 36



3.0 Adaptive Array Processing and Design Overview

This chapter develops the specific theory of adaptive array signal processing using
adaptive filter theory by considering the antenna array as a spatial filter as opposed to a

frequency filter.

There are many applications for adaptive signal processing broadly pertaining to system
identification, inverse modeling of an unknown noisy process, best prediction of the
present value of a random process based on previous values, and interference canceling.
Hence, there is a wealth of information on adaptive filtering and signal processing from _
which a specific implementation of the antenna array as an adaptive spatial filter can be

developed.
Regardless of which application is being studied, the parameters common to each are:

1. An applied input signal, u(n), at the antenna terminals.
2. The output of the filter or array, y(n).
3. A desired response, d(n).

4. An estimation error, e(n), where e(n) = d(n)— y(n).

Given these basic parameters, the objective becomes an optimization of the output signal,
y{n), by a minimization of the estimation error, e(n). Two specific methods of this will be

presented.

A reasonable observation is that the desired signal is the transmitted signal, x(n), before
being corrupted by noise and loss as given in #(»}. This signal could be random and
unknown a priori, such as with a communication message. On the other hand, in an

application such as radar, the signal may already be known.
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Generalized Sidelobe Cancellation (GSC) is just one specific method in the broad field of
antenna array beamforming. As will be shown in this chapter, the complex weighting, w,
of the antenna elements is separated into a quiescent part, w,, and an adaptive part, w,,
related by the signal-blocking matrix, C,, such that w = wy— Cow,, where C, is the
orthogonal complement to the constraint matrix C. The quiescent portion of the weight,
w,, forms the beam according to the underlying constraints given in C such as single or
multiple main beam direction and fixed deep nulls, as was shown in Figure 2.5. The
adaptive part, w,, works to cancel the unwanted effects of a changing noise environment

by minimizing the output power of the array.

The noise environment is measured according to Signal-to-Noise Ratio (SNR) for the
additive white Gaussian noise (AWGN) appearing at the antenna terminals due to thermal
noise and the general noise background, assumed to be uncorrelated. The interference
environment is due to unwanted coherent narrowband signals arriving at the array from a
direction other than the mainbeam scan angle. This interference will be correlated along
the array as it is just a delayed version of the same signal appearing at the antenna
terminals. Interference is measured either as interference-to-noise ratio (INR) or
interference-to-signal ratio (ISR). Given the SNR, either can be determined from the
other. It is assumed that the signals are zero-mean, such that the signal power is the ac

power given by the variance, o°.

In the case of no jammer, both the LCMV and the LMS push towards the uniform
amplitude distribution described by w,, as shown by the lowered standard deviation of

the weight vector amplitudes in Figure 3.1 for a 5-element array.
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Figure 3.1 Sidelobe canceler, standard deviation of weight vector over 300 iterations.
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In this figure, 300 iterations, or time steps, are considered. At each iteration, the standard
deviation of the magnitudes of the five weights is calculated. For the LMS algorithm, it is
clearly seen to be the case, but for the LCMYV algorithm, it tends to be the case. This
raises some issues as to the weaknesses of the LCMV algorithm, which will be discussed
later. Looking at the LMS results in Figure 3.1(b), however, note that in the absence of
interference the magnitude of the weights remain virtually uniform for the entire 300
iterations, as indicated by the standard deviation remaining basically zero. In the presence
of an interference source, it can be noted that the algorithm starts with the uniform weight

distribution, but converges to a non-uniform distribution in about 150 iterations.

In the subsequent analyses, all arrays are composed of wire dipole antennas with the

initial parameters as given in Table 3.1.

Table 3.1 Initial parameters common to tests.

Frequency, f 299.792458 MHz, for a free-space wavelength A = Im.

Element separation, d half-wavelength, */.

Dipole length, L *, % 0.996; half-wavelength dipole slightly shortened for
optimization.

Wire radius, » 1 mm.

Number of elements, A/ Number of antenna elements in the coplanar linear array.

Angle of Arrival, 404 &,, scan angle of mainbeam to source direction (transmit or
receive), degrees or radians.

Angle of Interference, Aol | €, direction of arrival of interference, degrees or radians.

Spatial phase factor, ¢ ¢ = kd sin@ = 7 sin6, since wavenumber k = °"/;, and d = */».
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As defined in Table 3.1, the spatial phase factor will be used to determine the signals at
the antenna terminals due to both the source signal and the interference, via the
corresponding steering vectors. Note that the source signal is the signal (transmit or
receive) at the antenna terminals after having been corrupted with interference and noise,
and is not to be confused with the original transmitted signal. In addition to these basic

initial parameters, Table 3.2 lists the definitions of the signals and noise.

Table 3.2— Definitions of source and interference signals and terminal noise.

Original signal, x(1) x(n) = e’ a complex signal of unit power, o' =1.

Interference signal, m(n) 2 (o, k)

m(n)=+/o’e , a complex signal of power o .

2
/a .
v(n) = 2” (v,, +J -vj.), of power O'f , where v, and v; are

Terminal noise, v(n .
> V() random values taken from a zero-mean, Gaussian normal

distribution with a variance of one, i.e. &% =1. Also known
as complex Additive White Gaussian Noise {AWGN).

Source signal, u(n) u(n) = x(m) + m(n) +v(n).

s(@)=[1, e, ..., e /™" where T represents the
transpose operator and this steering vector is for an end
element being the reference, or 0, element.

Steering vector, s(@)

In the definitions in Table 3.2, @ = 2nf’is the angular frequency and k is the wavenumber.
In general, @, = @,,, and since the incoming signals are plane waves, the exp(~jkr) term
appears in the simulations as the inter-element phase shift with respect to a reference
element (usually an end or center element) and the spatial phase factor, ¢, as it appears in

the steering vector.
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The following sections present the simulations of the LCMV and LMS algorithms for a
5-element array with no interference and one source of interference. The tests consider
noise and interference environments of differing ISR and SNR, but for comparison of the
two methods the same* randoni” noise will be applied to both the LCMV and the LMS
methods. That is, the complex random noise is generated and saved, and then applied to
each system so that a direct comparison of the two systems can be made for the same

noise environment.

uln) uln-1) uin-2) u{n-M+2) u(n-M+1)
& z-1 z- > nus z-1
1
OB OBNORENOENC
A 4 ¥in)
® @ —(® ®

Figure 3.2— The Transversal Filter [1].

3.1 The Filter Model

Both the Linearly Constrained Minimum Variance (LCMV) method and the Least Mean
Squares (LMS) method are applications of a linear optimum discrete-time filtering
solution known as the Wiener filter, after Norbert Wiener [18]. The LCMYV is a direct
application of the Wiener optimal filter theory, while the LMS converges to the optimal

Wiener solution in a stochastic gradient search method. The optimal estimate of filtering
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a process corrupted by noise requires the solution of a set of integral equations, known as

the Wiener-Hopf equations, which in discrete matrix form is given by

Rwo=p 3.1)

where R is the M x M correlation matrix of the tap inputs, w, is the M x 1 vector of
optimum weights and p is the M x 1 cross-correlation vector between the tap inputs and

the desired response.

Consider the transversal filter model shown in Figure 3.2 for M stages, where u(n) is a
discrete-time digital signal and z ~ is the unit-delay operator, the complex weights, w;, are
conjugated as denoted by the asterisk, and the output of each weight is connected to an
adder. The filter order is denoted by the number of delay elements, which is M-1. The
transversal filter, also called a tapped delay-line filter, is a finite-duration impulse
response (FIR) filter, as is evident by the lack of feedback from the output to an input. An
FIR filter is inherently stable, in contrast to the infinite-duration impulse response (11R)

filter, which can become unstable in certain situations.

Because the adaptive process includes a form of feedback through the error signal, e(#),
an FIR filter is usually used to reduce complexity and stability issues. Although an IIR

filter can be used, extra care must be taken in the implementation to ensure stability.

Within the class of FIR filters, three structures are predominantly applied to adaptive
filters, the transversal filter, the lattice filter and the systolic array. Definitions of each of
these filter structures can be found in [1]. Because of the direct analogy to the antenna

array, this thesis focuses on the transversal filter implementation.
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The output of the transversal filter shown in Figure 3.2 is given by the convolution sum

in (3.2).

M-l

y(n) = AZ:(; w;u(n - k) (3.2)

Consider the linear antenna array of M elements shown in Figure 3.3, illuminated by an

incident plane wave, which when sampled is of the form

o n-kry

u(n)=e (3.3)

where @ = 27fis the angular frequency, & is the wavenumber, and » would take on

uniformly spaced instances in time given the sampling frequency, F;.

Recall from the introductory chapter that given the element spacing, 4, the path length
difference is d sin@, metres, which with &k = 7/, radians per metre, translates into a phase
delay of ¢, = kd sin6, between each element. The electrical angle, ¢, is an inter-element
phase delay and is analogous to the digital unit-delay operator, z~ . The term* electrical
angle’ can be misleading, since although it is related to the spatial angle of arrival, it

really defines the phase delay between adjacent elements due to that angle of arrival.

The output of the array, y(n), is given by

M-1

Y = up(m) 3 wie ™ (3.4)

where u,(n) is the signal received at time » by the end antenna element #0 in Figure 3.3.
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incident wave

Linear array

Figure 3.3— An incident plane wave arriving at a linear array
' at an angle of &, from normal to the array

Comparing Figure 3.3 with Figure 3.2, and (3.4) with (3.2), the direct analogy between
the transversal filter and an array of antenna elements can clearly be seen for a sinusoidal

excitation, #(n) and uniform antenna spacing, d.

The next two sections will present the specific methods with which the LCMV and LMS
algorithms adaptively determine the complex weights, wy, for a particular interference. In
both cases, the formulations are dependent upon generating a constraint matrix, C, and its
orthogonal complezﬁent, C,, which acts as the signal blocking matrix. This presentation is
adapted from the detailed development given in [1] and forms the basis of the code

development and analysis used in this thesis.

Looking at (3.4) and noting that for the specified scan angle ¢,, at a given time # the
output y(77) can be interpreted as the input at the zeroth element, u,(n) multiplied by a

complex scalar gain factor, g, given by
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AM-1

* ik
2owie " =g (3.5)

k=0

On the left-hand side of this (3.5), one can recognize the vector inner-product of the

tap-weight vector, w, and the steering vector, s(¢,) such that

wfs(‘%) =g (3.6)

In terms of an optimization process, the gain g is considered a constraint such that the
output of the array is constrained to have gain g when pointed to ¢, regardless of the

varying elements of the weight vector w. In general, (3.6) can be extended to include
multiple linear constraints by introducing a constraint matrix, C, and a gain vector, g,

given by

Ho_
C'w=g 3.7)

such that each column of the constraint matrix is the steering vector for the electrical
angle at which to apply the constraint given at the corresponding element in the gain

column vector g.

For example, the constrained weights to form the beamformer output shown in Figure

-2.5(d) were obtained by setting up the following constraint equation

1

[s() s(¢) s($,)]"w=|0 (3.8)
1
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where ¢; = (d,, ¢1, ¢2) are the electrical angles for &, = (-30°, 8.5°, 55°) as defined in
Table 3.1, s(¢;) is the steering column vector as defined in Table 3.2 and the gain vector
constrains two mainbeams, at -30° and 55° with a null at 8.5°. It should be noted that the
gain vector need not be only ones and zeros. A range of values will give more gain to the

beam in the corresponding direction.

Also, for the example given in (3.8), C is obviously an M x 3 matrix, so can’ tjust be
inverted to determine w. Given L number of constraints, C is size M x L and this is where
the M x (M-L) orthogonal complement matrix, C,, is required to form an M x M

partitioned matrix U such that

c’c,=Cc’C=0, and
U=[C:C,] (3.9

where 0 is a 0 matrix of size L x (M-L) or (M-L) x L. By defining the M x 1 weight vector
in terms of U, such that w = Uq, or conversely q = U 'w, this vector q can be partitioned

such that

1= (3.10)

where vis an L x 1 vector, and w, is (M-L) x 1 and represents the part of the weight

vector that can be used for adaptive weighting.

From w = Uq we get
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w=[Cic,
—w (3.11)
=Cv-C,w,

Using (3.7) yields

H =
cfev-cCc,w= g (.12)

But, by definition of the orthogonal complement, C” C, =0 so that C” Cv = g, or
subsequently, v=(C” Cv)"' g. Now, looking at (3.1 1) where w = Cv— C,w,, a quiescent

weight vector can be defined such that

w,=Cv= (c” ¢y’ g

3.13)
so that (3.11) becomes
w=w,— C,w, (3.14)
Multiplying this weight vector by C” as given in (3.7) results in
cf Wy— c? Cw,=¢g
or
(3.15)
c” wW; =g

since C C, = 0. This shows that with respect to (3.7), it is the quiescent portion of the
weight vector that satisfies the constraints. Indeed, the quiescent weight vector is
determined by the constraints. In contrast, by (3.11) and (3.12) we see that the constraints

in C do not affect the adaptive weight portion, w,,.
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Thus, to summarize, the Generalized Sidelobe Canceller (GSC) operates by minimizing
sensitivity to interference while maintaining maximum sensitivity to a prescribed ““ look”
direction, or scan angle. It does this by minimizing the output power while maintaining
the constraints established in C with respect to the gain vector, g. This is intuitively
sensible, as the output power of the array will be the sum of the desired signal received
by a mainbeam and the interference received by a sidelobe region. If the constraints on
the desired signal are being maintained, the minimization process will affect only the
interference. The adaptive portion of the weight vector should have no effect on the
constraints, as they have to be maintained. This is shown by (3.15). The quiescent weight
vector, wy, is called such first because it is the fundamental weighting that forms the
desired beam in a quiet environment without considering interference, and second
because in a quiet environment with adaptive processing, the adapted weight vector will
converge to the quiescent weight vector. That is, the adaptive portion, w,, will tend to

ZCro.

By (3.4) and (3.6), and by noting that

u(n) =u,(n) E, CRANI ]= u,(n)s(¢,) (3.16)

where u(n) is the signal at the antenna terminals across the array, u,(z) is the signal
arriving at the zeroth element and s(¢,) is the steering vector, the output of the array can

be written in matrix form as

wn) = wHu(n) G.17)

which, by substitution of (3.14) becomes
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y()=wlu(n)-wlClu(n) (3.18)

where it is expressed in terms of the quiescent and adaptive weight vectors. This leaves
the specific methods for determining the optimum adaptive weight vector w, to be

established in the subsequent sections on the LCMV and the LMS algorithms.

Having established the constraint matrix C and its orthogonal complement C,, the
essence of the filtering problem is to minimize the mean-square value of the estimation

error, e(n), where e(n) = d(n)— y(n). In terms of the output, this is given as

y(n) = d(n)_— e(n) (3.19)

By considering the mean-square value of e(n), the problem is formulated in terms of a
second-order equation of the unknown weights and takes on a paraboloid shape with a
unique minimum defining the optimal solution. Because the problem is formulated in

terms of second-order statistics, wide-sense stationary stochastic signals are assumed.
Thus, the cost function to be minimized is given by

J = Ep(n)e* (n)]
_E e(n)]z] (3.20)

where E is the statistical expectation operator.

The result to this minimization problem is found by defining a complex gradient operator
in terms of the first-order partial derivatives of the unknown complex weight coefficients,
wy. The specific details, as outlined in [1] and from which these derivations are drawn,

result in
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V. J ==2E[u(n~k)e (n)]
(3.21)

which is a minimum when this gradient is set equal to zero. Thus, letting e, denote the

estimation error when the determined weight vector is optimal, then

Elu(n—ke,(n)]=0 (3.22)

By using (3.2) and e(n) = d(n)— y(n), (3.22) can be formulated as:

E[u(n - k)(a'*(n) - iﬂ w, (1 ~i)H =0, £=0,1,2,... (3.23)

where wy,; is the i™ coefficient in the impulse response of the optimal filter.

Rearranging the terms in (3.23) yields

gwm.E[u(n — k)" (n—i)] = Efu(n—-k)d" (n)] (3.24)

Note that the expectation on the left-hand side of the equation is the autocorrelation
function of the filter input for a lag of i— £, denoted as r(i— %), and the expectation on the
right-hand side of the equation is the cross-correlation of the filter input and the desired

response for a lag of -k, denoted by p(-k).

This results in an infinitely large system of simultaneous equations, known as the

Wiener-Hopf equations, describing the optimal filter solution, and expressed as

; Wair(i - k) = p(_k) (3.25)
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In matrix form for an M-tap filter, the Wiener-Hopf equations are expressed in terms of
R, an M x M correlation matrix of the tap inputs, u(n), the M x 7 tap input vector, and P,
the M x I cross-correlation vector u(n) and d(n), and are expressed in compact matrix

form as

R = E[u(m)u” (n))]
u(n) =[u(n),u(n-1),...,u(n—M +1)]
p=Elu(md (n)], and (3.26)
Rw, =p
where the boldface represents a matrix or vector, and the non-boldface represents a

scalar,

Solving the matrix equation for the unknown optimal weight vector is obtained by

multiplying both sides of the equation by the inverse of the correlation matrix, giving

-l
w,=R7p (3.27)

Thus, determination of the optimum weight vector reduces to requiring the knowledge of
two quantities, the autocorrelation of the tap inputs, and the cross-correlation of the tap
inputs with the desired signal. This, combined with basic principle that the output is used
to provide an estimate of a desired response, is the essence of Wiener linear optimal
filtering. As stated in the introduction to this chapter, the best desired signal would be the
transmitted signal x(n) itself, before being corrupted by noise, interference and loss like
how it arrives at the array as u(n). This is reasonable in an application such as channel
modeling, where both the transmit and receive ends know the transmitted signal and the

received signal is used to determine the channel characteristics. However, everyone
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would agree that a wireless communication system would be unnecessary if the
transmitted signal was already known. In this situation, it is reasonable to say that the
desired signal is the received signal without the presence of interference.

From the point of view w, = w,— C,w,, as expressed in (3.14), and the formulation for
the output, y(n)=w, w(n)—w.CJu(n), from (3.18), the optimal Wiener linear filtering

problem must be put into the form of (3.19), namely y(n) = d(n)— e(n), where the error
e(n) is phrased in terms of the variable of optimization, w,. The next two sections present
the LCMV and the LMS implementations of this concept. Both the LCMV and the LMS
methods were implemented in Matlab code based on the above formulations, and it was

verified that for a signal with no noise, the output, y(n), equals the input, u(n), identically.

3.2 The Linearly Constrained Minimum Variance (LCMYV) Method

The LCMYV method is a direct application of the Wiener linear optimal filter theory as
expressed in (3.26) and (3.27), with the minimization of error obtained by the

minimization of output power.

To rewrite (3.18), the output of the array is
—wH wHOH
y(n)y=w  u@—w, Clu(n) (3.28)
By defining

d(n) =w, u(n)

x(n) = C7u(n) (3.29)
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The standard Wiener filter form becomes

y(m) =d(n)—w. x(n) (3.30)

where optimization of w, can be performed over the data space of x(n) instead of u().

Thus (3.27) is with respect to x(n) but is linked to u(n) through (3.29).

The optimization problem becomes a minimization of the variance of y(#), assumed

Zero-mean, as given by

min Ef| y(n) '] = min(c —pZw_, —w7p_+w'R_
in Ef| y(n) [*] = minog —p'w, —w/p, +W/Rw,) 3.31)

Using the definitions of autocorrelation, crosscorrelation and (3.29), the optimum
solution of wy, is determined as given in (3.32), where it is shown to be a function of the
quiescent weight vector, the autocorrelation of the antenna terminal inputs and the

orthogonal complement of the constraint matrix.
1 ~H
W.,.= ((:fRCa) Cﬂ R“"q (3.32)

Because the solution contains the correlation matrix R in the denominator with C,, the
LCMY requires there to be some noise in order to avoid a singularity. The reason for this
can be seen by considering (3.16) and (3.26), with respect to u(n), R, and the orthogonal

relationship of C and C,,.

In particular, if there is no random noise component, then u(n) = u,(n)s(8,). Since, by
definition, s(8,) is orthogonal to C,, without sufficient random noise the denominator in

(3.32) will be, or tend to, zero.
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An implementation of this method is shown in Figure 3.4 for a 5-element array scanned
to -11.54° with a SNR of 10dB and an ISR of 10dB incident at 0°. The figure shows the
accumulated variance of the signal and the accumulated mean-square error for 300
iterations, or time steps. With a sample frequency of almost 900MHz, three times the
carrier frequency, 300 iterations are about 1/3™ of a microsecond. A start-up transient is
evident because the data is accumulated, meaning the statistic is calculated as the vector

Srows.

There are several ways to consider the performance of an adaptive algorithm. The
adapted output of the array, y(»), and the desired output of the array, d(x), can be
compared to the original noiseless signal, x(#), by comparing the variance of the signals
and by comparing the mean-squared error of y(n) and d(n) with respect to x(n). Recall
that x (n) is normalized with a variance of one, d (1) is output of the array using only the
quiescent weights, and y (n) is the output of the array adapted to the noise and

interference environment.

Looking at Figure 3.4, two things are immediately observable. First, from the lowered
variance and mean-squared error of the adapted output compared to the output of the
quiescent weights alone, the algorithm is working very well. Secondly, the LCMV is
working well right away — there is no iteration fo a good solution. This is because the
LCMYV calculates the best weights instantaneously at each sample, based on the signals at

the array elements at that instant in time.
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LCMV: Accumulated Variance of Signals
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Figure 3.4~ Variance and Mean-Squared Error for LCMV 5-element array,
AoA =-11.537°, Aol = (0°.
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LCMV, Directive Gain
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Figure 3.5—- LCMYV adaptive nulling, AoA =-11.53°, Aol = 0°,
SNR = 10dB, ISR = 10dB for an INR = 20dB.

Another obvious way to view the performance of the adaptive algorithm is by looking at
the far-field radiation patterns for the quiescent and adapted weights using either the
array factor, NEC or both. As is seen in Figure 3.5 for the array factor, the interference is
arriving in the mainbeam, and the LCMV method has shifted the main beam over by
almost 11°. This has had the effect of lowering the gain in the AoA“ looK’ direction by
2.7dB but with an improvement in nulling out the interference by 14dB, lowering the

gain at the Aol from -3.46dB to— 17.8dB.

Consider a source of interference that is not in the mainbeam, but rather a sidelobe. The

radiation pattern is shown in Figure 3.6 for ISR = 11dB, SNR = 10dB, an AoA =-11.53°

and an Aol = -53°.
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Directive Gain, LCMV 5-element Array
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Figure 3.6— Gain Pattern, LCMV, AoA =-11.53°, Aol =-53°,
ISR = 11dB SNR = 10dB.

Here, less displacement of the mainbeam is observed, but with a slight widening of 3-dB
beamwidth. The main beam is shifted less than 5° with a corresponding drop in gain of
less than 0.5dB. At the Aol, the gain has dropped 13dB from— 12.1dB to—25.1dB, which
represents approximately /oo™ of the previously received interference signal strength. The

corresponding variance and error performance are shown in Figure 3.7.
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AOA = -11.537, Aol = -53 deg, ISR = 11.0384dB, LCMV: Accum. o2
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Figure 3.7— Variance and mean-squared error, LCMV, AoA =-11.53°, Aol =-53°, ISR = 11dB,
SNR = 104dB.
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In the above simulations, the interference was a delayed version of u(x), modulated by
random noise as given by (3.33). Note in Figure 3.7 that the variance of the output is less
than that of the input signal, but the variance of d(n) is still*“ farther away’ from that of
x(n) in an absolute sense. The power spectral density plot of the above noise source,
shown in Figure 3.8, indicatés it is a noisy narrowband signal at the carrier frequency of

300MHz, the same as u(#).

jm=o} [l " Ju(n)e”?”

where v; is a 0-mean, unit variance normal random variable.

(3.33)

As will be shown in more detail in the next section, the representation of the interference,
whether AWGN, pure sinusoidal or noise-modulated sinusoidal, has an effect on the

behavior and performance of both the LCMV and the LMS methods.

Seeing an output variance less than the input, as in Figure 3.7, is at first counter-intuitive
because we would think that the presence of any interference at a sidelobe would increase
the output power of the array. This, however, is a result of destructive cancellation with
the interference signal that is at the same carrier frequency as u(n) but phase shifted by

3%/s radians. As can be seen in Figure 3.7(b), the error is still less in the adapted output.
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Figure 3.8— Power spectral density of sinusoidal interference
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Figure 3.9— Directive gain comparison of noise amplitude-modulated
interference in-phase and phase-shifted with u(n) at the carrier frequency.
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Figure 3.9 shows the array factor results of the LCMV method for both the in-phase and
phase-shifted amplitude modulated noise interference. Note that performance differs, but

is good in both cases.

To further illustrate this, Figure 3.10 compares the data of Figure 3.7 with an interference
signal that is in phase with u(#n). In both simulations, for consistency, exactly the same

terminal and modulating noise was used. The only difference is the phase shift.

To summarize this section on the LCMYV method, the first observation is that the
algorithm calculates the best weights based on the statistics of the current sample instant
across the array. The second observation is that modulated noise interference signals
have results that vary slightly depending on the phase of the interference with respect to

the desired signal, but both show good performance.
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3.3 The Method of Least-Mean Squares (LMS)

The formulation for the LMS method is different for the LCMV, where the weights were
determined by the correlations of the instantaneous signals at the array antenna terminals.
Still, the LMS method is based on the ideas of the Wiener linear -optimurn filter, but
converges on the solution by means of a stochastic gradient search. The object is still to
estimate the gradient vector of the quadratic error surface as given in (3.21) and to find

the minimum.

The error surface, given in (3.31) as the minimization of the output signal power, can be

expressed as
J(m)y=0; —w" (mp—p”wrn)+w" (n)Rw(n) (3.34)

A steepest descent algorithm takes an initial value weight vector, u(n), and computes the
complex gradient vector of J(n), denoted by Vj(n). Unless there is some a priori
knowledge of u(n), the initial guess is usually the null vector. The next guess for u(x) is
calculated by making a step-size change in the direction opposite to that of the gradient
vector. Intuitively, by moving in the direction of the negative to the gradient, which is the
direction of steepest descent, the algorithm will arrive at the minimum error at the

optimum value w,,.

The steepest descent algorithm is given by:

w(n+1) =w(n)+1 u[-VJ(n)] (3.35)
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Looking at (3.34) and differentiating with respect to w, an estimation of the gradient of

the error surface is

V.J(n) = -2p + 2Rw(n) (3.36)

but since R and p are unknown for the true signal, they must be estimated from the

instantaneous values.

An estimate of the instantaneous values of since R and p are denoted with a caret, as

given in (3.37) and (3.38).

R(n) = u(mu’ (n) 3.37)

p(n) = u(”)d* (n) (3.38)
Thus the corresponding instantaneous estimate of the gradient vector is:
VJ(n) ==2u(n)d’ (n)+ 2u(mu’ (n)W(n) (3.39)

which is a biased estimate, since it depends on the random vector [(n) (the tap weight
estimate vector) which in turn depends on the tap input vector, u(n). Now (3.39) can be

substituted into the steepest descent algorithm in (3.35) to obtain

W(n+1) = W)+ m(n)d () —u” (1) W(n)] (3.40)

where the hat symbol indicates that the resultant weight vector is not the ideal weight

vector that would be returned by (3.35). The significant feature of the LMS method is

Chapter 3: Adaptive Array Processing and Design Overview



that the algorithm uses the product e; " u(n-k) to estimate VJ(n) for the kth element. A true

steepest descent algorithm would use the expectation, Efey u(n-k)} to estimate VJn).

This reduces the number of computations, making the algorithm more efficient, but has

the detrimental effect of introducing gradient noise.

We can now write the algorithm in terms of its input and output:

1. Filter output:
y(n)=w" (n)u(n) (3.41)
2. Estimation error:
e() = d(n)~ y() (3.42)
3. Tap-weight adaptation:
W(n+1) = W(n)+ m(n)e’n (3.43)

Now, consider the definitions for d(n) and x(n), given in (3.29) and repeated here in

(3.44) for convenience, but instead let the error signal e(#) be as given in (3.45).

d(n) = wiu(n)

x(1) = C¥u(n) - (3.44)

e(n) = w™u(n)
=wiu(m)-w.Clu(n) (3.45)
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Note that in (3.45), the definition for w is the same as that used for the LCMV and given
in (3.14), only now e(n) is defined as y(n) was for the LCMV in (3.18). This relationship

is depicted in the signal flow chart block diagram of Figure 3.11 [1].

din)

uin)

Adaptive e(n)
control -2
mechanism

Figure 3.11— Block diagram of LMS implementation of the GSC [1].

The block diagram of Figure 3.11 shows the feedback path inherent in the LMS adaptive
algorithm. Because the LMS algorithm utilizes feedback, stability must be ensured by
requiring that J(n) — J(oo) as n — oo, If the algorithm satisfies this condition, it is said to
be convergent in the mean square. In order to satisfy this condition, the step-size, u, has
to satisfy certain conditions related to the correlation matrix of the inputs. If a small value
of 4 is used, the adaptive process progresses slowly and the effects of gradient noise are

reduced.
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Now the LMS algorithm for the calculation of the adaptive weights can be derived from
the block diagram and based on (3.41) to (3.43), but with a change of notation of ef)} for

y(n) in (3.41), w, for O and x(») for u(n) in (3.43), giving

w, (n+1)=w, (1) + ux(n)e’ (n) (3.46)

The formulation in (3.46) and the calculation of C and C, form the basis for the Matlab
code development that the following analyses use. It should be noted that now e(n) is the

beamformer output.

It is interesting to note that the LCMV implementation derives the best weights based on
the noise environment in each moment, whereas the LMS method iterates to a best
solution in response to a consistent noise presenée. This can be seen in both Figure 3.12
and Figure 3.13, as compared to Figure 3.4.

The behavior over 900 iterations, in Figure 3.13, shows the convergence of the algorithm

and compares the rate of convergence for 1 = 1e-3 and p = le-4.

Figure 3.14 shows the radiation pattern for the statistical parameters plotted in Figure
3.12. When the interference is in the mainbeam, the LMS algorithm also shifts the
mainbeam, as was the case for the LCMYV in Figure 3.5. the mainbeam is shifted 7.2°
away from the Aol, with a corresponding gain reduction of -1.64dB at the AoA.

However, at the Aol the gain is reduced from -3.8dB to -26.7dB.
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LMS: Accumulated Variance of Signals
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Figure 3.12— LMS Method, Variance and MSE, 5-element array, 300 iterations, p = le-4.
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LMS: Accum Var of Signals, AcA = 35.5, Aol = -25 deg, ISR = 10.3dB
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for p=1e-3 and u = le-4.
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LMS, Directive Gain
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Figure 3.14— LMS, Quiescent and Adapted Array Factor. 5-element
Array, AcA =-11.54°, Aol =0°, n = le-4, after 300 iterations.

Consider a source of interference that is not in the mainbeam, but rather a sidelobe. The
radiation pattern is shown Figure 3.15 in for ISR = 10dB, SNR = 10dB, an

AoA =-11.53° and an Aol =-53°,

Here, a displacement of less than 2° of the mainbeam is observed, but also with a slight
widening of 3-dB beamwidth. At the AoA, there is a drop in gain of less than 0.1dB. At
the Aol, however, the gain has dropped 13dB from— 12.2dB to— 31.6dB, but shows the

deepest null being slightly off of the desired Aol. The corresponding variance and error

performance are shown in Figure 3.16.
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It is important to consider the performance of the LMS algorithm for in-phase and

phase-shifted interference as was considered for the LCMV in Figure 3.10. Because the

LMS also shows the impact of sinusoidal cancellation on lowering the variance of the

output, the analysis is combined with a study of the adaptation scaling parameter p.

Directive Gain, LMS
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Figure 3.15— LMS cancellation of off-mainbeam interference. Quiescent
and Adapted Array Factor for 5-element Array, AoA =-11.54°,
Aol =-53° 1 = le-4, after 300 iterations.
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LMS: Accum Var of Signals, AcA = -11.54, Aol = -53 deg, ISR = 10dB, p = 0.0001
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LMS: Accum MSE of Signals, AcA = -11.54, Aol = -53 deg, ISR = 10dB, 1 = 0.0001
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Figure 3.16— LMS Method, off-mainbeam interference, Variance and MSE, 5-element array, 450
iterations, pu = le-4.
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H1 H2 M3 Hy Hs L [VF

Te-5 | 2.1544e-5 | 4.6416e-5 | 0.0001 | 0.00021544 | 0.00046416 | 0.001

Table 3.3~ Seven logarithmically spaced values for u for testing LMS.

To do this, seven logarithmically spaced values for p are used, as listed in Table 3.3.

In Figure 3.17, not only does this sinusoidal cancellation produce an output with lower
variance and higher mean squared error, but also it is observed that the best output is that

of the quiescent weights, and that increasing p only makes things worse.

To further illustrate this, Figure 3.18 shows the LMS output with an interference signal
that is in phase with u(n). Here the output is more according to expectation, with the
LMS method improving performance over just the quiescent mode. Also, the rate of
convergence as a function of increasing | is apparent, but also shows the effect that if the
choice of n causes the variance of the adapted output to drop below that of the original

signal, then the result is an increase in the mean square error of the output.

In fact, the points where the variance of the output of the array (the solid lines of y;(i) in
Figure 3.18) drop below the unit variance of the original signal cause a corresponding
inflection in the diminishing curves of the mean squared error. It is seen that the third

value, p = 4.64e-5, provides the best performance in this case.
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LMS: Accum Var of Signals, AcA =-11.54, Aol = -53 deg, ISR = 11dB
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Figure 3.17— Variance and mean-squared error as u varies, LMS, AoA =-11.53°,
Aol =-53° ISR = 11dB, SNR = 10dB. Quiescent output, d(n), is dashed line. Interference is
phase-shifted noise-modulated carrier frequency.
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LMS: Accum Var of Signals, AcA = -11.54, Acl = -53 deg, ISR = 11dB
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Figure 3.18— Accumulated variance and mean-squared error comparison of noise
amplitude-modulated interference in-phase with u(#) at the carrier frequency.
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Thus we can see judicious choice of the adaptive parameter, p, is very important in

obtaining satisfactory performance from LMS algorithm. The directive gain patterns for

both the in-phase and phase-shifted instances of noisy interference are shown in Figure
3.19. Here, it is observed that the LMS algorithm has no beneficial effect when there is
phase related cancellation between the desired signal and the interference. If there is
phase coherence, then there can be some adaptive nulling and Figure 3.19(b) indicates

that the performance is best for ps.

Finally, consider the response of the LMS algorithm to broadband white noise, such as
may be downconverted to baseband in a frequency modulated system. In this case, the

LMS method performs really well, as shown in Figure 3.20.

The reason for the consistent shape of the mean-squared error curves as 1 increases is
because the identical noise environment has been used for each test to keep the noise

constant while observing the effects of changing p.
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Directive Gain, LMS 5-element Array
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Figure 3.19— Array factor for 5-element array with sinusoidal interference for various p.
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Figure 3.21— Array factor for 5-element array with baseband
noise interference for various pL.

Figure 3.21 shows the array factor directive gain patterns for baseband random noise
interference. The LMS method clearly performs well for all p,, with the best performance

being for p on the order of 2e-4.

3.4 Summary

In summary of this chapter, the overview of adaptive antenna array processing as an
analogy to spatial digital filtering has been developed. The specific methods for
determining both the quiescent and the adaptive weight portions of the composite weight
vector have been presented for both the LCMV and the LMS algorithms. It was shown
that both methods perform well in steering a null toward the source of interference for the

angles of arrival and interference presented.
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The LCMV method, based on instantaneous statistics, determines the best adaptive
weight component at each sample instant in real time. This method is equally robust for
sinusoidal interference, modulated carrier interference and baseband noise interference as
was seen in Figure 3.9. It showed difficulty with phase-shified carrier interference due to
sinusoidal cancellation, but still produced results that were superior to the non-adapted
output. When the source of interference was in the mainbeam, the algorithm shifted the
mainbeam over while steering the null into the interference. This effect was not so

pronounced for interference in the sidelobes.

The LMS method iterates to the best solution at a rate dependent on an adaptive scaling
parameter p. The method had difficulty with the phase-shifted carrier interference, again
due to sinusoidal cancellation. The method produced an output inferior to the
non-adapted output for all values of p. If the interference was in-phase with the desired
signal, the method produced an output which performed better than without adaptation.
Still, the best performance of the LMS method was observed when the interference was
baseband random noise. This implies that the LMS adaptive process should be applied at

a stage where the incoming array signals have already been downconverted to baseband.

For interference in the mainbeam region, the LMS method produced less shifting of the
mainbeam and a lower drop in gain at the angle of arrival of the desired signal than did

the LCMV method.
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4.0 Performance Measures of LCMYV and LMS

This-chapter investigates the behavior of the Linearly Constrained Minimum Variance
(LCMV) method and the Least-Mean Squares (LMS) technique of adaptive antenna array
processing as applied to the Generalized Sidelobe Canceller (GSC). The LCMV and
LMS methods will Be studied for several noise and interference environments and for a
variety of angles of arrival of signal and interference. The methods will be compared
from the performance criteria of the variance and the mean-squared error of the output
with respect to the input. In the following chapter, the effects of adaptation on the overall
array pattern will be observed and compared using Array Factor (AF) theory and NEC

program output, as driven by the Matlab interface.

In the previous chapter, which presented the theory, formulations, testing and verification
of the LMS and LCMYV algorithms, only a few angles of arrival (AoA) and angles of
interference (Aol) were considered. In particular, the LCMYV was tested for an

AoA = -11.537° with the Aol = 0° and -53°. The LMS method was tested for

AoA =-11.537° and 35.5°, for the Aol = 0°, -25° and -53°, The performance of both
methods was shown to work well at these angles, with the exception of sinusoidal

cancellation effects degrading the performance of the LMS method as discussed.

In order to develop a greater performance measure of these methods, a larger set of pairs
of angles for AoA and Aol need to be considered, and for differing levels of interference.
This has yielded some interesting results. In particular, the LCMV method only works
well for certain regions of angle pairs, and it seems to be an odd function with respect to

the diagonal line of AoA = Aol on a scatter plot. The LMS algorithm performs well for
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any arbitrary pair of angles. In the region where the LCMV works well, it maintains good
performance right up to the ISR test limit of 50dB. In contrast, the LMS method performs
well to an ISR threshold of about 35dB, after which it is worse than the non-adapted

output. The details of these analyses are the subject of this chapter.

4.1 LCMYV Performance Tests and Discussion

Recall that the LCMV process calculates the adaptive weight component by considering
the instantaneous correlation matrix of the signals across the array. Thus, except for the
assumption of wide-sense stationary noise and interference across the array, the weights

from moment to moment are independent of each other.

From the figures showing the accumulated variance and mean squared error of the output
with respect to the original signal, the instantaneous adaptive nature of the LCMV can be
readily seen. Given roughly 50 samples for the transient to settle down, the LCMV
method subsequently provides almost constant performance. It was observed, however,
that the performance of the LCMV was not consistent for arbitrary angles of arrival
(AoA) of the desired signal and arbitrary angles of interference (Aol) of the jammer.

This will now be discussed in detail.
It was initially found that for a scan angle of AoA =sin(-0.2) =-11.537°, the LCMV
performs well for an Aol of 0°, in the mainbeam, and -53°, in the first sidelobe. The array

factor for (AoA,Aol) = (-11.54°,0°) is shown in Figure 4.1 for two sets of adapted

weights, one from the 150" iteration and one from the 300" iteration.
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This test is for a broadband interference noise of 10dB over the desired signal strength.
The element SNR is also 10dB. The shifted mainbeam and subsequent gain at the angles
of interest are consistent at the two time snapshots, but the sidelobe pattern varies
considerably. This can be due to the fact that at the two instants the random interference

and terminal noise components are different and the weights are adapted accordingly.

LCMV 5-element array, ISR = 10dB, SNR = 10dB

10 F

— Quiescent
----- LCMV, 150 fer.
= LCMV, 300 ier.
e Aol ver. fine
=== AoA, ver. line

-10+-
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=30

A0

-50
-100

0, degrees

Figure 4.1— Array factor radiation patterns for AoA = -11.537°,
Aol =0°.
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Figure 4.2— LCMV 5-element array poor performance for (AoA,Aol) = (0°,35.5°).
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By translation, one would expect that moving the mainbeam to broadside at 0° and
directing the interference to the first sidelobe would yield equally good behavior, but
such was not the case, as seen in Figure 4.2. Figure 4. shows that a 5-element broadside
array produces its first sidelobe at +35.5°. The output statistics are worse and the array
factor showed a suppression of the opposite first sidelobe and a gain in the sidelobe to be
suppressed. Intuitively, one immediately thinks of a forgotten negative sign, or a phase
shift of 90° or 180°, or even a complex conjugate issue. The formulations have been

examined extensively and no error was found. The following performance evaluation and

discussion will present more detail.

LCI\Q{}{ 5-el. array, AoA = 0 and Aol at 35.5 deg, ISR = SNR = 10dB
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Figure 4.3— LCMV 5-element array radiation pattern for (AoA,Aol) = (0°,35.5°).

Chapter 4: Performance Measures of LCMV and LMS 86



First, the LCMV method was tested by varying element noise power to find that higher
SNR resulted in worse performance. This test was to determine if the potentially

ill-conditioned denominator of (3.32) was causing the problem. It was not.

This led to an investigation of the performance of the LCMV and LMS algorithms as a
function of AoA, Aol, interference and noise power. First, an AoA with known good
LCMYV performance for an Aol was chosen, and the Aol was swept 500 equally spaced
points from -75° to 75°. The AoA =-11.537°, as was used in the previous examples for
an Aol = 0°, and shown in Figure 4.1 where reasonable working performance was
established. Shown in Figure 4.4 for both random baseband and pure sinusoidal
interference at an ISR = 10dB and with SNR = 10dB, this test indicates that the LCMV
method is an improvement on quiescent weighting for angles of interference from

-75° to -40°, -11° to 10° and above 45° for both types of interference. The curves are of
the mean squared error (MSE) in dB of the quiescent and adaptive output with respect to
the original signal, #(n). Indeed, it indicates that good performance is to be expected for
an Aol = 0°, as has been studied. However, there are clearly regions where the LCMV

method worsens the performance of the array.

Looking at the behavior of Figure 4.4, it is seen that for an AoA = -11.54°, an Aol = -51°
gives good performance and an Aol = 23° yields inferior performance, at least for an
ISR = 10dB. Thus, this became the focus of a power level test, by varying the
interference power level from 107 to 10°, for -30dB < ISR < 50dB, as shown in Figure

4.5 and Figure 4.6 below.
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Figure 4.4 A sweep of Aol over 500 points from -75° to 75° for an AoA of—11.537°, using both
baseband random and sinusoidal interference, showing the MSE in dB vs. angle. Lower levels
indicate better performance.
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Figure 4.5~ Mean squared error performance of quiescent output d(») and LCMV adapted output
¥(n) as interference power level varies for -30dB < ISR < 50dB for (AoA,Aol) = (-11.54°,-51°).
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Figure 4.5 indicates that indeed the LCMV method gives improvement for ISR levels
above 0dB, but is surprisingly worse for levels below. In addition, the lines are parallel
indicating that the gain in performance is a constant ratio regardless of the ISR, right up

to the maximum level of 50dB. Note that the y-axis is on a log scale.

Figure 4.6, on the other hand, shows that the LCMV method offers no improvement at
the troublesome angles of (AoA,Aol) = (-11.54°,23°), except for marginal results
between 0 and -10dB. It is interesting to note that now the degradation in performance is
a constant ratio, as indicated by the parallel lines. In both cases it was found that whether

the interference was sinusoidal or random noise did not make much of a difference.

From these tests, it was concluded that neither the SNR nor the ISR was the cause of the
poor performance of the LCMV algorithm for certain AoA and Aol angle pairs. In both
cases, improvement of the output by LCMV adaptive processing did not become apparent

until the ISR was greater than 0dB.

'The next consideration is to determine how the LCMV method behaves when either the
AoA or the Aol is set to 0° for a range of values of the other. In addition, it will be useful
to look at the behavior of the output as a scatter plot of points of better or worse

performance for Aol versus AoA.

It was found that if the AoA was set to 0° (broadside), the performance was worsened for
almost all angles of interference. However, if the Aol was set to 0°, the LCMV method
improved the performance for all angles, as shown in Figure 4.7. Note that the

fundamental quiescent patterns are similar to the directive gain pattern of the array.
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Figure 4.6— Mean squared error performance of quiescent output d(n) and LCMV adapted output
y(n) as interference power level varies for -30dB < ISR < 50dB for (AoA,Aol) = (-11.54°,23°).
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Looking at Figure 4.7 from the point of view that this error curve relates to the directive

gain pattern, it confirms expectation that maximum error would be at angles of maximum

gain. Where the adapted output is worse than the quiescent output in a null, it is really of

no consequence to the validity of the method.
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Figure 4.7— LCMYV shows poor performance for AoA = 0° but good performance when Aol = 0°.
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If the interference is already appearing in a null of the quiescent array pattern, it is

already being suppressed. Thus, Figure 4.7(c) and (d) show excellent performance.

Thus, to investigate this unexpected performance more exhaustively, a test was set up to
randomly select 5000 angle pairs for (AoA,Aol), between -75° and 75°, and determine

- the LCMV method s performance at each point. The test was performed for a
complex-noise amplitude modulated interference signal with an ISR of 15.7dB, as given
in (3.33) and shown in Figure 3.8. The results of this test are shown in the scatter plots of
Figure 4.8 and Figure 4.9, where better performance means that the array factor gain at

the Aol is lower for the adapted weight vector than for the quiescent weight vector.

Figure 4.8 clearly indicates a performance problem. In fact, of the 5000 test points, 2904
returned adapted output that was worse than quiescent output. Note how these scatter

plots seem to be an odd function with respect to the diagonal line of Aol = AoA.

Figure 4.9(a) shows the better and worse performance together, but only for regions
where the quiescent gain pattern would be within 20dB down from the peak. Thus, the
bands of deep nulls are visible. The odd function, as rotated around the Aol = AoA line is

again apparent and hints of some fundamental difficulty in the formulations.

Figure 4.9(b) shows a scatter plot of adapted gain versus quiescent gain, with a point for
each (AoA,Aol) pair. The diagonal line is where the adapted gain is equal to the
quiescent gain. Any point below this line indicates a lowering of gain at the angle of
interference and thus an improvement in performance. The distribution about this
diagonal indicates that for arbitrary angle pairs the user cannot be confident that the

LCMYV method will yield a net improvement in performance.
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As a brief discussion of this, it is important to note two things. First, there are two stages
in the computation of the algorithm - /) the formulation of the constraint matrix C and its
orthogonal complement C, and the steering vector for the interference from the given
(AoA,Aol) and 2) the formulation of the subsequent LCMV algorithm using these
quaniities. The LMS method, which works very well as will be shown in the next section,
uses the exact same quantities, C, C, etc.‘, determined in the first stage and differs only in
the formulation of the subsequent LMS algorithm. Since the LMS method demonstrates
exceptional performance, if there is a flaw in the formulations it cannot come from the

first stage of computations.

The second point to note is that the underlying assumption in the formulation of the
LCMYV method is that there is some knowledge of the true probability density functions
of the signals as expressed by the presence of the mathematical expectation operator.
However, the true statistics are being estimated by the sample statistics via the mean
ergodic theorem, which if it applies states that the statistics along the discrete sample
(time, or in our case the number of antennas in the array) converge to the statistics across
the process as the length of the discrete sample tends to infinity. For a 5-element array,
the discrete sample is only of length five. It is difficult to assume that five instantaneous
values represent the statistics of a stochastic process. The test was performed using larger
arrays, up to 33 elements, but performance did not improve. Further, the mean ergodic
theorem applies if the process is asymptotically uncorrelated. The random element noise
is uncorrelated, but the desired signal and the interference are both correlated across the

array by the inter-element phase delay.
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Figure 4.9— LCMYV scatter plots of Aol versus AoA and Adapted Gain versus Quiescent Gain.
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Two possible avenues of investigation have not been explored. One is that the statistics
across the array at each iteration could be stored and accumulated such that as the process
continues from start-up it bases the correlation estimates on larger and larger numbers of
samples. However, accumulating and averaging the autocorrelation of the signals across
the array before composing the correlation matrix was studied, but with no benefit. The
other is that perhaps there is some normalization going on, or lack thereof, that is not
being considered, either analogous to the normalized angular frequency of filter theory,
or in terms of appropriately scaling the adaptive weight portion with respect to the
quiescent weight portion. The latter was investigated to a small extent with inconsistent
results. A tangible explanation for the poor general performance of the LCMV method

remains inconclusive.

4.2 LMS Performance Tests and Discussion

This section repeats much of the testing of the previous section using the LMS algorithm.
In general, the LMS method performs very well given an appropriate rate of convergence
p and understanding the effects of sinusoidal interference. Unless otherwise stated, the

value p = le-4 is used in the analyses of this section.

Similar to Figure 4.7 for the LCMV method, the first test holds the AoA fixed at 0° while
sweeping the Aol from -75° to 75°, and then holds the Aol fixed at 0° while sweeping the
AoA from -75° to 75°. The ISR = SNR = 10dB. Each test is performed for an in-phase

noiseless sinusoid and for baseband random noise interference.

The results of this test are shown in Figure 4.10 and indicate that the LMS method is less

sensitive to varying angles, but more sensitive to sinusoidal interference. One sees that
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Figure 4.10— LMS shows good performance for noise interference, ISR = SNR = 10dB, but
good performance only in the mainbeam when the interference is sinusoidal.

the noise interference results in good performance everywhere, but the sinusoidal

interference is canceled sufficiently at this power level only if it appears in the

mainbeam. Sinusoidal interference to the sidelobes is not handled well.
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Figure 4.11— Mean squared error performance of quiescent output d(n) and LMS adapted output
y(n) as interference power level varies for -30dB < ISR < 50dB for (AoA,Aol) = (-11.54°,-51°).
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Figure 4.11 shows the LMS method performance as a function of interference power
levels ranging over -30dB < ISR < 50dB, for (AoA,Aol) = (-11.54°,-51°). The
performance is plotted as the mean squared error versus ISR, with the MSE on a log
scale. Figure 4.12 shows the same for {AoA,Aol) = (-11.54°,23°). Several interesting
points are worth observing, the first of which is the incredible improvement in canceling
out interference up to a threshold of approximately ISR = 33dB for both noise and

sinusoidal interference.

Now look at the Aol sweep test performed for AoA =-11.537° and ISR = SNR = 10dB in
Figure 4.13. Clearly, when the Aol = -51°, the LMS algorithm should improve the
performance for noise interference and worsen the performance for sinusoidal
interference. In addition, we expect to see an improvement in performance for both

interference types at Aol = 23°, although marginal for the sinusoidal interference.

With respect to Figure 4.11 and Figure 4.12, for which a zoom of the low-ISR regions is
shown in Figure 4.14, poor performance is expected for sinusoidal interference at
(AoA,Aol) = (-11.537°,-51°) up to approximately ISR = 11dB, after which the method
will show an improvement. At 23°, marginal improvement in interference suppression is
expected, and will improve dramatically as the ISR increases. In all cases, we see
marginal or no improvement in performance for low ISR levels. This is as to be expected,
since for low levels of interference, the algorithm should converge to the quiescent

weight vector.
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Figure 4.12— Mean squared error performance of quiescent output d(n) and LMS adapted output
¥(n) as interference power level varies for -30dB < ISR < 50dB for (AoA,Aol) = (-11.54°,23°),
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Figure 4.13— LMS performance for AcA =-11.537°, -75° < Aol £ 75°. ISR = SNR = 10dB.
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A few key points can now be summarized. The LMS algorithm performs well for noise
interference and coherent sinusoidal interference above a minimum ISR. The striking
observation in general is that the mean squared error of the adapted output reaches a
threshold and remains constant as the ISR increases, up to a certain ISR level. At that
peak ISR level something in the algorithm breaks down, rendering the output useless.

This is apparent by the MSE curve for y(n) going vertical in Figure 4.11 and Figure 4.12.

This threshold of the mean squared error of the adapted output indicates that as the
interference gets“ louder” the null gets deeper. This behavior is illustrated graphically in

the array factor directive gain patterns of Figure 4.15.

It is reasonable to observe _the improvement in performance by looking at the variance,
MSE or directive gain plots and still wonder what is the effect on the time signal itself.
To look at this, the sample frequency was increased to 3607 and the simulation was run
for 3 cycles of f~ 300MHz at ISR = 10dB and ISR = 20dB. The output is shown in
Figure 4.16. Note that the transient settling time is noticeable at the beginning of the
output. It should be realized that the transient settling time is related to the number of
iterations, which would usually span several cycles of / because the sampling frequency
is usually 2f (Nyquist) or greater. A test sample frequency of 360 was used to produce an

output clearly showing the sinusoidal nature by having a point per degree.
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Figure 4.14— Close-up of low ISR regions in Figure 4.11 and Figure 4.12.
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Figure 4.15— Array factor directive gain patterns for LMS method as ISR

increases.
(AoA,Aol) = (-11.54°,-51°), p = le-4, 440 iterations.

The plots of Figure 4.16 indicate very good performance and demonstrate the LMS
algorithmi s ability to output adapted signals with comparable mean squared error over a
range of ISR, as compared to the original noiseless signal #(n). It should be kept in mind

that the signal at the array includes terminal noise of 10dB SNR.
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Because the random terminal noise vector is calculated and saved in the simulation, the
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Figure 4.16— Three cycles of time output for d(n) and y(n) given a) ISR = 10dB and b) ISR = 20dB.
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~ exact test can be re-run without the presence of interference. Thus, we can look at both

the quiescent and adapted output of the array in either a quiet environment or one with
interference, as is shown by the array output and table of variances of signals in Figure

4.17. A quiet environment is one with no interference.

_Quiet, No Interferelnce — Table 4.1 - Variance of Array Signals,
i) Ui
f‘ "5\11 wa- Output
g" Y |a i |y
uin ue to (1} yn
"lﬁ“ of:
o r s . 7 :Ii B 10 HA(n)
ISR = ZOdB

'J!M{* "%i T ISR= | 1.0009 | 1.0194 7.2703 | 1.1131
N' w’. MW 20dB

%‘Y‘l fw; Quiet | 1.0009 | 1.0153 | 1.0153 | 1.0153
: time.(ns) ' ) ’ ¢
a) b)

Figure 4.17— a) Array output of original with and without 20dB of interference. b) Table of

variances.

In Table 4.1, the output of the array due to u(n) is the weight vector applied to the
original signal with only terminal noise, according to (3.17). The output of the array due
to d(n) is the quiescent weight vector applied to the total signal received by the array,
including interference. Note that they are the same in a quiet environment. A plot of the
output of the array due to u4(n) using the adapted weight vector for 20dB ISR would be

slightly noisier than that shown in Figure 4.17(a) for the quiet environment.

Finally, the performance of the LMS method over a random selection of 5000 (AoA,Aol)
points was performed for ISR = 30dB and SNR = 10dB, as was done for the LCMV

method.
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Except for one random point where the AoA and Aol were at the same place (-39.94°,-
39.952°), the only places where the LMS performance did not exceed the quiescent
performance is where the Aol was already deep in a null over 30dB down. This is shown
in Figure 4.18(a), where as before, better performance means that the array factor gain at

the Aol is lower for the adapted weight vector than for the quiescent weight vector.

The small table of values in Table 4.2 shows that where the quiescent patterri s gain is
already 30 to 80 dB down and lower than the adapted gain, the adapted patterd s gain is
limited to 33.4 dB down. This limiting effect can be seen in Figure 4.18(b) for all points,

where the points pictured in Figure 4.18(a) appear to the upper-right of the diagonal.

Table 4.2 - Gain statistics for points where the quiescent pattern
is already in a null 30dB down and Gy > Gq.

Stats | Gain, d(n) | Gain, y(n) | Gy— Gy

max |-31.24 -31.227 47.917

min -80.005 -33.418 0.012742

This limiting effect should be studied to determine why it is occurring. Perhaps it is the
result of gradient noise, causing the LMS algorithm to oscillate around a best solution

30dB down. However, this has not been studied nor have the effects of varying p or ISR.
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Figure 4.18— Scatter plots of LMS performance. ISR = 30dB and SNR = 10dB.
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To summarize this section of LMS performance tests, it has been shown that the
algorithm works very well in a wide range of conditions. The LMS section of the
previous chapter showed the relationship that increasing the adaptive scaling factor p
increased the rate of convergence. This section has shown that increasing the interference
power has the effect of deepening the null at that Aol. In addition, sinusoidal
interference, although difficult to cancel at low power levels, can effectively be nulled if

it is above a minimum power level.

4.3 A Comparison of LCMYV and LMS Results

This section will briefly compare and discuss the performance results of the LCMV and
LMS methods. The first point to note is that in the absence of noise and interference, the
LMS method returns the results of the quiescent weights, whereas the LCMV method
requires some terminal noise to avoid a singular matrix inversion. Even with only
terminal noise, the LMS method converges to the quiescent weight vector exactly, as
shown in Figure 3.1(b) and in Table 4.2 for the quiet environment. However, Figure
3.1(a) shows that the LCMV method tends to produce a more uniform weight vector
without interference as indicated by the lowered standard deviation, but still with much

variation.

It was shown that for the (AoA,Aol) regions where the LCMYV worked well, it worked
very well. It produces an instantaneous weight vector that nulls the effects of interference
immediately, with no convergence criteria. Figure 4.5 shows that the LCMV method
provides a constant ratio of suppression right up to the test limit of 50dB ISR, based on

the MSE of the output, whereas Figure 4.11 indicates that the LMS method provides and
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increasing ratio of suppression. It shows that there is a range of constant MSE for
increasing ISR, but only up to a limit of about 33dB after which the performance

degrades entirely.

The definitive performance test, however, is seen in the results of the 5000 random
(AoA,Aol) pairs, shown in Figure 4.9 for the LCMV and Figure 4.18 for the LMS, where
better performance means that the array factor gain at the Aol is lower for the adapted

weight vector than for the quiescent weight vector.

From this test we find that the LMS algorithm performed extremely well, lowering the
gain at the Aol for all angles except a few which were already deep in a null. The curious
behavior is that the adapted null is limited to about -35dB. The LCMV method, on the
other hand, showed dramatically poor performance on average. Over half of the angles
tested returned an adapted gain at the Aol higher than that of the quiescent. Nevertheless,
where it works, there is no limit on the suppression and indeed we see that in some places
the LCMV method reduced the gain at the Aol from within a few dB of peak to over -

60dB.

For both of these anomalies, the -35dB suppression limit for the LMS and the patchwork
pattern of better/worse performance of the LCMV, no explanation is readily apparent.
However, the conclusion to be drawn is that the best algorithm for the job would be the

LMS method.

This conclusion is supported by the fact that the LMS method is widely used due to its

simplicity, ease of implementation and excellent performance given a judicious choice of

scaling factor p.
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The LCMV is a direct application of the Wiener Linear Optimal Filter, but suffers from
relying on ensemble statistical parameters being estimated by small discrete samples. In
essence, the LCMV algorithm presents the basis for the optimum instantaneous choice of
adaptive weighting for generalized sidelobe cancellation, and the LMS method iteratively

approaches that solution in a robust fashion.
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5.0 Using the LCMV and LMS Output with

NEC2/Matlab

Having developed and tested the NEC2/Matlab interface, and further developed, tested
and verified the performance of the LCMV and LMS methods, this chapter looks at the
full-wave output of NEC2 in comparison to that of the array factor for selected adapted
weight vectors. The purpose of this is to see how close the gain patterns of the adapted
output match for the array factor and the full-wave NEC output, and from that observe

the effects of mutual coupling interactions.

Given that the LCMV has some known limitations, the first example will be for a
configuration previously shown to work for both the LCMV and LMS algorithms.
Consider a 5-element array aimed at AoA = -11.537° with 20dB ISR interference coming
in at Aol = -53°, as was shown in Figure 3.6 and for which the quiescent array factor and
NEC2 patterns are shown in Figure 5.1(a). The best-case array factor directive gain
patterns for the adapted results of both the LCMV and LMS are shown in Figure 5.1(b).
Note how the LCMV method causes a shift of mainbeam while the LMS method tries to

preserve the gain at the AoA, for the* best cas€” weight vector.
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Figure 5.1— 5-element array with (AoA,Aol) = (-11.537°,-53°).
) Quiescent directivity pattern for Array Factor and NEC output.
b) Directivity pattern for Array Factor adapted output of LCMV and LMS methods using best w,,.
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In Figure 5.1(b), the* best case’ adapted weight vectors were used to generate the results.
This requires some explanation. The simulation was run for 500 iterations and at each
iteration the LCMV method comes up with an instantaneous adaptive portion of the
weight vector while the LMS method converges towards a best solution. Once this 500-
element w, vector is obtained for each of the methods, it is a simple calculation to
determine the gain at the Aol for each iteration using (3.14) and then (3.6) with the
steering vector calculated at the electrical angle of the Aol. The array factor gain at the
Aol for each iteration of the adapted weight vector is shown in Figure 5.2(a). The lowest
value is chosen as the* best case’ , as the intention is to reduce the gain at the Aol. The
array factor directive gain pattern based on the average of w,, calculated over the 500

iterations, shown in Figure 5.2(b).

With a quiescent gain of -12.1dB at the Aol, the average gain of the LCMV method is
-17.9dB and of the LMS method is -34.5dB. The best cases produce a gain of -52.45dB at
the 342™ iteration for the LCMV and -70.6 at the 456™ iteration for the LMS. Note how
the 3dB beamwidth is wider for the LCMV method. Looking at Figure 5.1(b) and Figure
5.2(b), it can be concluded that the mean w, for the LMS method produces a pattern very

similar to the best case, and so implies that the method is very consistent.
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The patterns for the LCMV method, however, show dramatic difference between average
and best performance. In particular, note how the best performance produces the null at
the desired location, but shifts the mainbeam considerably. In contrast, the average
performance does not shift the mainbeam, but also does not deliver a deep null to the
Aol. The adapted null is closer to the mainbeam. This may imply that some of the
difficulties leading to the overall poor performance of the LCMV are due to the
conflicting constraints of trying to maintain the gain at the AoA while steering a null to

the Aol.

The full-wave solution of NEC, based on the charges and currents on the modeled
radiating structure, produce results that include the interactions between these sources
and structures in the environment. The fields, based upon the electric and magnetic field
integral equations as discussed in the chapter on NEC, are computed using the current
distribution as sources. However, the modeling of the structure requires voltage sources
to be attached to a node. If the elements input impedances were constant across the
array, the relationship between current sources and voltage sources would just be the
impedance, a complex constant. However, as was seen, the element impedances vary due

to mutual coupling and are a function of source values and scan angle.

When using array factor, it doesi t matter whether one is assigning the source as a
voltage or a current, as impedance is not a consideration. Truly, the weight vector alone
can be applied as the source and the directive gain pattern will be as given by the array
factor. In a physical array, the complex weight is usually implemented using an amplifier
or attenuator and a phase shifter. The specific values of the sources dor t affect the

radiation patterns (but do affect the radiated power); it is the distribution of the magnitude
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of the sources and the ;:Jhase relationship between them that determines the radiation
pattern. Thus, the calcﬁlated weight vectors can be applied to NEC as the voltage sources,
normalized by magnitude for consistency, and the resultant full-wave solution can be
computed. However, due to the mutual coupling intrinsic in a real situation, which the
full-wave computation tries to model, applying the weight vector as a voltage source will

not necessarily yield the same output as applying the weight vector as a current source.

This idea of voltage source versus current source can be seen in Figure 5.3, the results of
which are somewhat surprising. The NEC output matches the array factor for the LCMV
distribution very well, but indicates much inferior performance from the LMS method
than expected from the array factor. The quiescent gain at the sidelobe Aol is -12.2dB,
and the results of NEC2 show it reduced to -22.4dB rather than the -70dB of the array
factor. The best case of the LCMV has reduced the gain at the Aol to -41.8dB, but this
cannot be expected as typical behavior. From Figure 5.2(b), -17.7dB is the average gain
at the Aol for the LCMV, and it must be kept in mind that the performance is very

inconsistent, at least as formulated in this work.

To understand the inconsistent behavior of the LMS method in the NEC2 simulation, as
shown in Figure 5.3(b), consider the comparison of Vi, and Z;, for the LCMV and LMS
solutions, as shown in Figure 5.4. Here it is observed that although the weight vector
(voltage source) is quite consistent between the two methods, the impedance shows more
variation, particularly at the null-side of the array, which shows the greatest difference in
phase shift. Note the increased slope of the phase of the voltage source for the LCMV

method, which relates to the shifting of the mainbeam towards the null.
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Figure 5.4— Input voltage (weight} and input impedance comparison for

(AoA,Aol) = (-11.537°,-53°).
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Interestingly, over a set of simulations at (AoA,Aol) = (-11 .537°,-53°), all of the best
case patterns were similar to that of Figure 5.3, but in some cases the magnitudes of the
voltages and impedances were identical for the two methods. Even in these cases, the

phase behavior was markedly different, leading to the patterns shown.

For the next example, consider cancellation of the opposite sidelobe, at &= 23°. Recall
that the array factors were previously studied at this Aol, showing that the LCMV

method did not perform well but that the LMS method produced good results.

Figure 5.5(a) shows that the quiescent gain is -12.1dB at the sidelobe. The mean gain of
the LCMV method is -8.7dB and of the LMS method is -34.8dB, indicating that the
LCMYV method performs worse than quiescent on average. The best cases produce a gain
of -98.6dB at the 41 iteration for the LCMV and -56.5 at the 422™ iteration for the LMS,
for this simulation. Due to the random nature of noise and interference, it changes with

each simulation.

Figure 5.5(b) shows the quiescent, LCMV adapted and NEC2 gain patterns computed
using the mean of the adaptive portion of the weight vector, w,. Here we see that the
adapted gain is higher than quiescent at the Aol, but the NEC2 pattern is slightly lower,

showing the same gain as quiescent.

The array patterns for the best case adapted weights are given in Figure 5.6, showing
good agreement between NEC2 and the array factor for both methods. The typical effect

of mutual coupling in displacing the nulls outwards can be seen.
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In Figure 5.6, notice that both algorithms are performing well with the* best casé€’ weight
vector. In particular, note that the LMS algorithm puts more emphasis on maintaining the
gain at the scan angle. The LCMV method has shifted the mainbeam almost 11° toward

the adapted null, causing a -2.8dB drop in gain at the desired AoA.

The pattern for the LMS algorithm calculated using the mean of w, over the 500
iterations appears almost identical to that in Figure 5.6(b), and so is not shown separately.
This again gives evidence to the consistent good performance, on average, of the LMS
method. In contrast, look at the differences seen between the best casé’ and mean of w,
for the LCMV method as shown in Figure 5.5(b) and F.igure 5.6(a). As stated previously,

this is evidence of the poor performance, on average, of the LCMV method.

The corresponding voltage and impedance behavior is shown in Figure 5.7, where the
leveling out of the source phase (input voltage or weight vector) indicates that the

mainbeam has been shifted considerably from -11/54° towards 0°.

The taper of the magnitude of the source voltage is typical of non-uniform amplitude
source distribution for sidelobe level suppression, such as with a cosine distribution [7].

Thus, it is not surprising to see the general effect of lowered sidelobes in Figure 5.6.

It is important to note the scale of the ordinate axes in Figure 5.7(b), as it appears that
there is quite a variation in the phase of the impedance. The scales of the axes in Figure
5.4 and Figure 5.7have been kept the same for comparison. Since it is the current
distribution that governs the radiation equations, Figure 5.8 looks at the source current

and the input impedances with a larger scale of the ordinate axis.
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Figure 5.7 Input voltage (weight) and input impedance comparison for
{AoA,Aol) = (-11.537°,23°).
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From this, we see the taper of the source current, which leads to sidelobe suppression,
and the current phase angle, which relates to the scan angle. In the impedance plot, one
notices that the phase is very consistently near zero, implying that the element
impedances are very close to being purely real and that the array is operating close to its
optimum resonant frequency. The distribution of the impedance amplitudes shows a
relatively constant value, with magnitude increasing at the scanned end of the array. This
behavior is consistent with what was observed previously during the element impedance

tests as a function of scan angle.

In summary of this chapter, it can be concluded that although the array factor can give a
good approximation to the behavior of an antenna array, the true results may be quite
different than expected due to the source and radiated field interactions in the structure.
Clearly, the output of NEC2 has not been compared with physically measured results
from an actual array in an antenna test site, so a definite comment on the* frue’ results
cannot be concluded. It is reasonable and generally accepted, though, that a full-wave
computation that considers the interactions of mutual coupling is much closer fo true

behavior than the geometric interference calculations of the array factor.

This work has combined the determined best-adapted weight vector, computed using the
LCMYV and LMS algorithms, with the input-file driven NEC2 for full-wave computations
to determine the simulated output. To automate the process, NEC2 has been controlled by
the Matlab interface. However, the LCMYV and LMS algorithms calculate the adapted
weight vector in conjunction with array factor (steering vector) closed-form analytical

expressions.
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The obvious next step is to use NEC2 in receive mode to calculate the response at the
antenna elements due to the incident plane waves of the desired and interference signals,
and subsequently add AWGN to the element s signals. Then, use these NEC2-computed

received signals to feed into the LCMYV or LMS optimization algorithms.

By doing this, the degraded results for the LMS method, seen in Figure 5.3 may be
overcome. The difficulty of this is that the NEC2 solver can only account for one incident
plane wave at a time, so the results would have to be stored and summed. Any mutual
coupling interactions induced due to the signals arriving at the array at the same time |

would not be included. This study has been left for future work.

Using the LCMYV and LMS Output with NEC2/Matlab 128



6.0 Conclusion

Summary

This thesis has presented work in three broad areas - the use of full-wave numerical
electromagnetic computations, via NEC2, in the study of antenna array interactions, the
interfacing of a compiled command-line driven program based on text file I/O with the
powerful mathematical and visualization environment of Matlab, and most importantly
the development and testing of adaptive signal processing techniques as applied to
adaptive array antennas and the application of the NEC2/Matlab interface to study this

field.

Upon introducing the NEC2 program, the interface with Matlab was developed, tested
and verified to work. Although the inerface is command-line driven from withing Matlab,
it is only a drawback in that it is not a fully integrated graphical user interface. The
Matlab environment does not have the restrictions encountered with a usual operating
systeni s command line. From the Matlab environment, all modules of the program can
quickly be linked or detached, modified and run in an unattended and evolving process.
That is, the interface automatically composes the NEC2 input files, runs the solver,
imports the output data, evaluates it (either automatically according to defined rules or
via a pause with user intervention) and then re-composes input files to continue the

optimization process.

The theory of adaptive array antenna signal processing has been introduced and studied
in relation to the generalized sidelobe canceller using the linearly constrained minimum

variance (LCMV) method and the least mean squares (LMS) method. The LCMV
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method is a direct application of Wiener linear optimum filtering as applied to the spatial
analogy of an antenna array as a finite impulse response transversal filter. Its basis lies in
the correlation processing of the signals at the taps (antenna terminals) of the array. It was
found to only work consistently well in certain situations and other than the potential
cause being that the statistics of a random ensemble are being estimated by one small
sample, a more concrete explanation has remained elusive. The LMS method is from the
class of stochastic gradient search algorithms, and has been shown to work extremely
well in a wide variety of situations. The user need only chose the best scaling factor for
rapid but accurate convergence and then the algorithm will iterate towards the Wiener
optimal solution. Once again, the statistics of the process are being estimated from the
sample and this leads to a phenomenon known as gradient noise. It has been
inconclusively speculated in this work that the gradient noise may be the reason for the

apparent nulling limit of -35dB.

When the NEC2/Matlab interface is run with the adapted weights as calculated by the
LCMYV and LMS algorithms, the typical mutual coupling effects of beam broadening,
null shifting and the rise of a coma lobe during scan are seen. In addition, although the
array factor computed weight vectors indicate deep nulling, the full-wave results may be

quite different.

Finally, in both classic and adaptive array analysis, the NEC2/Matlab interface can be
used to quickly determine the effects of element length, diameter and spacing on the
overall impedance behavior of the array during scan. It was shown how this analysis,

combined with reflection coefficient calculations, can assist the user in addressing
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phenomena such as scan blindness from feed network to antenna element impedance

mismatch.

Future Work

The developrﬁent of static beamforming using the constraint matrix gives rise to the
discussion that perhaps sub-space methods of determining Aol in conjunction with
calculating the beamform via the constraint matrix may rival the LMS and LCMV
algorithms in speed and performance. The static beamforming was shbwn to be very
effective in placing deep nulls and other main lobes in desired locations as established in
the constraint matrix. Target and interference location methods could be used in

conjunction with this constraint matrix to iteratively update the best fixed weight vector.

To examine the impedance behavior as developed in Chapter 2.4, the results were taken
from the NEC2 output files generated at different frequencies. The impedance matrix of
the array could be determined and used to generate the frequency and scan-angle
dependent behavior of the array. The results of NEC2 could be used to determine the
coefficients of the impedance matrix. The matrix could then be used to quickly determine

the impedance at any frequency or scan angle.

The NEC2/Matlab interface is applicable to a wide variety of antenna studies. It is
particularly suitable to iterative optimization strategies. Applying this interface to study
the application of genetic algorithms to antenna array optimization is a suitable course for

future work.

With respect to continuing and improving the work of this thesis, the immediate future

work involves basing the feedback of the algorithm on the output of NEC itself. Once this
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is established, and a suitable set of parameters have been established, a graphical user
interface could be developed to be more immediately usable by a new user. The ability to

operate in the Matlab workspace could always be maintained as an option.

This work has only considered the presence of one desired signal and one source of
interference. Future work should look into beamforming for multiple desired signals
while suppressing multiple sources of interference and the dependence on the number of

elements in the array.

Concluding Comments

Finally, the diverse scope of this work has been extremely challenging and rewarding to
develop. Not only have existing fields of knowledge been studied and expanded, but also
an effective tool for the analysis of antenna structures has been developed. Although
similar commercial packages are available at considerable cost to do much the same kind
of analysis, the work of this thesis has resulted in a free, readily customizable and

optimizable interface with an existing full-wave solver that still is in popular use today.

The greatest contribution of this thesis ironically was the largest stumbling block. By
applying the adaptive algorithms to a large set of (AoA,Aol) pairs, inherent inexplicable
weaknesses in the LCMV method became apparent. Furthermore, given that initial
development of the adaptive algorithms proceeded using array factor analysis, important
performance-limiting affects have clearly been shown when the full-wave analysis of
NEC2 was subsequently applied. Thus, there is greater sensitivity between the adapted
weights and the subsequent radiation pattern than was expected based on the relationship

between array factor and full-wave results as applied to conventional scanning array
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design. Thus, adaptive array antenna design should include a full-wave analysis in the

interim adaptation process for more accurate design according to specification.

I have appreciated the opportunity to explore this work and look forward to further

developing and applying this tool to other areas of enquiry.
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Runit.m - This file calls and runs NEC2 based on the parameters defined in
SysParams.m, using GenNECfile.m to generate the input file. It then parses in the NEC
output using parseoutput.m and plots the output using plotout.m.

tic:
start = toc;

if exist('c:\nec2sa\pltdat.nec','file'}
IDEL PLTDAT.NEC
end

%clear Scanlngle

SysParams

load Vs

Vexc = Vexc/max{abs (Vexc)}:

vloc{(:,[1 end]} = yiocc(:,{1 end]) * 1;

{NECfile,Nodes] =

GenNECfile{f,xloc, yloc, zloc, r, excitation, NumElmnt, ElmntList, SegsPerElmnt,
THETAs, PHIs, ScanaAngle, Vexc);

Inec2sa
stop = toc;
stop-start

parseoutput
plotout
hpbw

clear fid aa
if excitation

data = zget; %% zget is a function tc read the antenna input parameters from the
output file

Vin = data(:,3);
Iin = data(:,4):
Zin = datal(:,5);

$Yin = data{:,6);:
%Pin = data{:,7):
end
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GenNECfile.m

function {NECfile,Nodes] = GenNECfile(f,xloc,yloc,zloc,r,excitation, NumElmnt, ElmntList,

SegsPerElmnt, THETAs, PHIs, ScanAngle, Vexc)
% £ must be in MHz, 300MHz

if prod(size(Vexc)} > NumElmnt

disp{(' "}

Aisp(! ———mmmm 5}

disp('| There are more sources than elements! {')

disp(? ———=——mm—m )y
end

NumSegs = NumElmnt*SegsPerElmnt; % you'll have to figure this one out for variable

segs/element

Nodes = ceil (SegsPerElmnt/2) :SegsPerElmnt:NumSeqgs;
3ceil (NumElmnt/2) : SegsPerElmnt :NumSegs;

Tstart = THETAs(1); %

Tend = THETAs(2);%

Tnum = THETAs(3);%

Tstep = mean{diff(linspace(Tstart,Tend,Tnum)))};%
Pstart = PHIs(l);%

Pend = PHIs(2);%

Pnum = PHIs(3):%

Pstep = mean{diff (linspace(Pstart,Pend,Pnum))}:;%

NECfile=char('CE ');

%% Build Elements
for aa = 1:NumElmnt
NECfile = char(NECfile,...

{"GW, ', num2str(aa), ', ', num2str (SegsPerElmnt), ', ', numZstr (xloc(aal), ', ', num2str{yloc(l, aa)

1, ', ynumZstri{zloc(aal),...

',',num2str(xloc{aa)),’,‘,num2s;r(yloc(2,aa)),‘,‘,numZStr(zloc(aa)),',‘,numZStr(r)]);

end

KECfile = char(NECfile,['GS 0 O 1'],['GE 0'],['EX ~1"']}; % EK -1 for normal kernel, EK C

for extended thin-wire kernel

%% Set Sources
if excitation
for aa = 1:NumElmnt
NECfile = char (NECfile,...
['EX 0 ',num2str(aa),' ',num2str{ceil (SegsPerElmnt/2}},' 0 ', ...
numZstri{real (Vexc({aal)})," ',numZstr{imag(Vexc(aa})})l}:
end
else
NECfile = char(NECfile,...
["E¥ 1 1 1 0 '",num2str(Scanangle},' 0 90']);
end

NECfile = char{NECfile, ...

['FR O 2 0 0 '",num2str(f)," 1'),...

'PL 1 2, ...

XQ', ...

'PL 310 3", ...

['RP 0 ',numZstr(Tnum),’ 1 1000 '",num2str{Tstart),"' 0 ',num2str{Tstep),' 1'},...
'PL 32 0 37, ...

['RP 0 1 ',num2str(Pnum),' 1000 90 ',num2str{Pstart),' 1 ',num2str{Pstepl]l,...
'EN'),‘ .

% XNDA, 1000 See page 81 of manual

£id = fopen{'input.nec’','w'};
for aa=l:size(NECfile,l)
fprintf(fid, [deblank (NECfile{aa,i:end)), '\x\n']};
end
fciese(fid);
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parsepoutput.m

Output = load{'pltdat.nec');

I = Output{Nodes, :};

I =1I(:,1}.*(cos{I(:,2)*pi/180) + i*sin{{(I{:,2)*pi/180)));
Ts NumSegs + 1;

Te Ts + THETAs(3}-1:

Ps = Te + 1;

Pe = Ps + PHIs{(3)-1:

TGEET = Output(Ts:Te,:); % Total Gain far-field Theta varies
TGEffP = Output(Ps:Pe,:); % Total Gain far-field Phi wvaries

clear Ts Te Ps Pe
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plotout.m

¢ figure,
Ltypl = char('b.-','g.-','r.~",'c.~','m,~", 'k.-"); %, 'y.-!
Ltypz = Char(ib_!’lg_l,fr_fr|c_‘l,Im_|rlk_|); %rly__l

if ~exist('Lpick', 'var’')
if exist('LineTypePick.mat', 'file"')
load LirneTypePick
else
Lpick = 1;
end
end

Q

%Lpick = size{Ltyp,1); % to get black!

figure(l)
subplot (221) ,eval {{'plot (ElmntList,abs (I}, '' ', Ltypl(Ipick,:),""'}'1)
title('|I]"','fontsize’,12)

grid on, hold on,xlabel ('element'},setigca, 'xlim', [~ceil (NumEimnt/2}
ceil (NumElmnt/2) 1, "xtick',-7:7}

subplot (222} ,eval {['plcot (ElmntList,unwrap(angle (I} )*180/pi,''",Ltypl{Lpick,:), """} "'])
grid on, held on

title('phase I - degrees', 'fontsize', 12}

xlabel {'element'),set{gca, 'xlim', [-ceil (NumElmnt/2) ceil (NumElmnt/2)], xtick',-7:7)

subplot (223} ,eval (['plot {TGEET{:, 1}, TGEET(:,2},"' ' ", Ltyp2{Lpick, ), """} ']}
grid on, hold on

title{'Power Gain, {\theta,\phi) = (-90:90,0)', "fontsize',612)

xlabel ('\theta,. degrees"', 'fontsize',12},ylabel {'dB', 'fontsize’,12)
subplot (224) ,eval ([ 'plot (TGEEP({:,1),TGEEP(:,2), """, Ltyp2 (Lpick,:), """} ']}
grid on, hold on

title('Power Gain, (\theta,\phi) = (90,0:360}", " 'fontsize",12)

xlabel {'\phi, degrees','fontsize',12),ylabel('dB', 'fontsize',12)
set(gca, 'yiim', [-40 25])
set(gcf, 'Position', [32 20 751 485])

%orient tall

figure (2)
seval ([ "'plot (TGELT(:,1},TGELT(:,2), """, Ltyp2 (Lpick,:},'"")'])
if 0
plot (TGEL£T(:,1), TGEET (:,2), k="', 'linewidth', 2}
else
plot (TGEET(:,1), TGEET(:,2)-max (TGLET(:,2)), "k-', '1linewidth',2)
end
grid on, hold on
title('Power Gain, {\theta,\phi) = (-%0:90,0)', 'fontsize',12)

xlabel ('\theta, degrees', 'fontsize',12),ylabel('dB",'fontsize’,12)
%orient tall

if Lpick == size{Ltypl, 1}
Lpick = 1;
else
Lpick = Lpick + 1;
end

save LineTypePick Lpick
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InitParams_1J.m - This Matlab script initializes the parameters to be used by the LCMV

and LMS algorithms, set to match those of the NEC2 input file.

%% InitParams for 1 jammer
clear all
Jpower = 10.°{[20]/10};
if ~exist('£', 'var')
£ = 299.792458e6;
Fs = 3*£; %3e9;
t=0:1/Fs:300/%;
un = exp{j*2*pi*f*t)';% note: this is x{n} in the text

M= 5; %11;
AcA = [-11.537]*pi/180; % Angles of arrival or interest
g = [1]1'; %% must be a colum vector

Aol = -53*pi/180; %asin{0.2); %[-16]1*pi/180; %asin(0):%
idxIP = 1:500; %length(t); % M;
Rtype = char('none', 'coeff', 'biased', 'unbiased'};
typnum = 1;
jamX = sqrt{l/2)*{randn{size(un}) +i*randni{size(un))});
jam = sgrt (Jpower) *jamX;
%jam = sqgrit{Jpower)*{1+jam¥/2).*un*exp{j*3*pi/5);
%jam sqgrt (Jpower) *un*exp (j*3*pi/5);

end

if ~exist(’jamX', 'var')
jam¥X = sqgrt(l/2)*(randn(size{un)) +i*randn{size{un))};
end

jam = sqrt(Jpower)*jamX; %{l+jam¥/10).*un*exp(j*3*pi/5);

if ~exist('v_fxdVAR1','var')

v_fxdVAR1 = sqrt{1/2)*{randn (M, length{idzIP)) + i*randn(M,length{idxIP})); %to set
noise var = 1

v_fxd = sqrt(.l)*v_fxdvAR]l;
end

Cint = sphi (A0I,M);

C = sphi(AoA,M); %sphi assumes kd = pi
Ca = orthcomp(C};

%Ca = Ca*diagi{-1./Cail,:)); %scale Ca so that first row is -1, and first lower diagonal

is nPhi 5.134

%U = [C Ca];

wq =C * (C'*C}"~-1 * g;

%wqg = wqg/max(abs{wg)); % to test normalizing wg

%C = fiipud{C);
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LCMV.m - calculates the adapted weight vector based on the LCMV algorithm.

clear xn yn ynl ynlb yn2 yn3 ynd yndb dn px rxvec Rx waol waoZ dnn msERRaccum en VARaccum
unA Ru

en = {];

VARaccum = [0 0 0];
fast = 1;

gmulncv = .47

3wg = wg/max{abs{wqg));
for aa = 1l:length(idxIP)
vl = v_fxd(:,aa);
unAl = unf{aa) * C; % eg 5.117 where C{:,1) = phi0, for steering vector
jamA = jam{aa) * Cint;
unid{:,&a) = sum({[unAl vi Jjamhl,2};
Ru{:,aa} = xcorr(unh(:,aa),Rtypel(typnum, :}};
R = corrmat(Ru(:,aal)};

waol(:,aa) = ((Ca'*R*Ca)"-1 * Ca' * R * wqg);
dn{aa,l} = wg' * una(:,aa);
xn = Ca'*una{:,aa);
ynl{aa,1l) = dn{aa,l) - wacl(:,aa)'*xn; % Eq. 5.116
en = [en; mserror(un{aa), [dn{aa) ynl(aa)l)]; %5ynlk(aa)l)];
if ~fast
if aa > 1
VARaccum = [VARaccum; var([un{l:;aa) dn ynl))};:
end
msERRaccum({aa, :,1) = mserror(abs{un{l:aa)),abs{[un{i:aa) dn ynl}));
msERRaccum{aa, :,2) = mserror(real{un(l:aa)},real([un{l:aa) dn ynll}}:
msERRaccum{aa, :,3) = mserror(imag{un(l:aa))},imag([un{l:aa) dn ynl]}):
msERRaccumi{aa, :,4) = mserror(un(l:aal,[un(l:aa) dn ynli};:
end
end
if fast
return
end
%return

figure,plot (idxIP,VARaccum(:,1:2),'k~.", "linewidth', 1.5}, hold

on,plot (idxIP,VARaccum(:, 3}, "k-"', 'itinewidth"', 2}

hleg = legend('u{n)','d(n)','y(n)'};set(hleg, 'fontsize',14)%,set(gca, 'ylim', [0 10))
set{gcf, 'poesition’, [6 334 518 3631},

$title{["ISR = ',num2str (10*1logl0(var(jam)/var(ua)}),'dB, LCMV: Accumulated Variance of
Signals'])
title(['Aok = ',num2str(Ach*180/pi},', Aol = ', num2str(RcI*180/pi),' deg, ISR = ',...

num2str (10*1cgl0 (var (jam) /var(un})) ), 'dB, LCMV: Accum Var of
Signals'], 'fontsize’,14)
xlabel {'sample number', 'fontsize’,14),ylabel ('\sigma~2', 'fontsize’,14)

figure,plot{idxIP,msERRaccum(:,2,1}, 'k~.", 'linewidth',2),hold
on,plot{idxIP,msERRaccum(:,3,1), 'k-", 'linewidth"', 2}

hleg = legend{'d{n)','y(n)');set{hleq, 'fontsize',14)%,set{gca, 'ylim", [0 10])
set{gcf, 'pesition', {533 334 489 366]),

$title(['ISR = ', numZ2str{10*legld(var{jam)/var{un)}), 'dB, LCMV: Accumulated Mean-Square
Error of Signals'])
title(['RoR = ',num2str{AcA*180/pi}, ', RoI = ',num2str{AocI*180/pi},' deg, ISR = ',

num2str (10*1logl0(var (jam) /var{un)}}), 'dB, LCMV: Accum MSE of
Signals'], "fontsize',14)
xlabel ('sample number', 'fontsize',14),ylabel('mse', 'fontsize',14)
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LMS.m - calculates the adapted weight vector based on the LMS algorithm.

clear xn yn ynl ynlb yn2 yn3 yn4 yndb dn px rxvec Rx waol wac? dnn msERRaccum en VARaccum

fast = 1:
noisyl = [];
en = [};

VARaccum = [0 O 90}:;
waohccum = [];
if ~exist('mu','var')
mu = le-4;
end
gmu = le-4;
for aa = l:length{idxIP)
vl v_fxd(:,aa);
unaAl = un{aa) * C; % eq 5.117 where C{:,1) = phiC
jama = jamf{aa) * Cint;

[

undA = sum{{unaAl vi jamA},2);
if aa==
waocAccum = zeros(M-length({RoA},1l}; %[wacAccum waol];
end
dn{aa,l) = wg' * und;
xn = Ca'*und;
ynl(aa,l) = dn(aa,l) - wacAccum(:,aa) '*xn; % Eq. 5.116

enlms = ynl(aa,1);
w_1lms = waoBAccum(:,&a) + mu*xn*enims';
wacAccum = [waochccum wW_lms};

noisyU({aa) = (wg - Ca*waoAccum(:,aa})' * (unA);
en = [en; mserror (un(aa}, [dn{aa) ynl{aa)l})]:
if ~fast
if aa > 1
VARaccum = [VARaccum; var{[un{l:aa) dn ynljll];
end
msERRaccumi{aa, :;1) = mserror(abs{un{l:aa}),abs{[un{l:aa) dn ynl]l});

msERRaccum{aa, :,2) = mserrcr(real(un{l:aa)),real{[un{l:aa) dn ynl])};
msERRaccum{aa, !,3) = mserrcr(imag{un{l:aa}}),imag(lun{l:aa} dn ynll}}:
msERRaccumi{aa, :,4) = mserrcor(un(l:aa),{uvn(l:aa) dn ynl]);
end
end

if fast
return
end

if 0

DoAddplot

return
end
figure,plot (1gxIP, VARaccum(:,1:2}, 'k~. ', 'linewidth',1.5),hold
on,plot (id=xIP, VARaccum(:,3}, 'k-"', 'linewidth’',2)
hleg = 2egend('u(n})','d(n)*,'yi(n})');:;set{hleqg, "fontsize',14)%,set(gca, 'ylim', [0 10])
set {gcf, "position', [6 334 518 3631},
gtitle{({"ISR = ', num2str{10*logll{var(jam}/var(un))),'dB, LMS: Accumulated Variance of
Signals'))
title(['LMS: Accum Var of Signals, AcA = ',numZ2str {ROoA*180/pi,4),', RolI =

',numZstr (RoI*180/pi,4), " deg, ISR = ', ..
numZStr(18*10g18(var(3am)/var(un)} 3),'dB, \mu = ',num2str(mu}], 'fontsize",14)

xlabel {*sample number', 'fontsize’,14),ylabel ("\sigma”2', 'fontsize’,14)

figure,plot {idxIP, msERRaccum{:,2,1}, "k~.", 'linewidth', 2}, hold
on, plot (1dxIP, msERRaccum{:, 3,1}, "'k-", '1inewidth', 2)
hleg = legend(fd(n})','y(n)'):set(hleqg, 'fontsize',14)%,set(gca, "ylim"', [0 10])
set {gcf, 'position', [533 334 489 3661},
gtitle{{'ISR = ', num2str{1C*logl0{vax{jam}/var(un))), 'dB, IMS: Accumnlated Mean-Square
Error of Signals'])
title([' LMS: Accum MSE of Signals, AoA = ‘,nusttr(AoA*lBG/pi,d),', Lol =
', num2str (AoI*180/pi,4), " deg, ISR = ',
numZStr(le*loglo(var(jam)/var(un)} 3} 'dB, \mu = ',num2str(mu)], 'fontsize’,14)
xlabel ('sample number', 'fontsize',14),ylabel ('mse', 'fontsize', 14}
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NECvVAF.m - script used to generate figures comparing NEC2 output with Array Factor.

%% compares NEC with wq or w
CompKREC = 0;
doFig = 2;
%clear Vexc
if ~exist('Vexc', 'var')
Vexc = wq;i

elseif O

Vexc = wq - Ca*waol(:,451};
elseif C

Vexc = wqg - Ca*waoAccum{:,368); %0 for LMS
end

if ~exist('M', 'var')
M = NumElmnt:;
end

maxG = 0;
if ~exist ('TGEET', 'var')
ThetaRange = linspace(-pi/2,pi/2,500)';

elseif C
ThetaRange = TGEfT(:,1) *pi/180; %linspace(-pi/2,pi/2,250)"';
maxG = max{TGELT{(:,2)):

end

I

phi pi*sin(ThetaRange);

WgS = zeros{length(phi},1l); %$size(C,2)}:

for bb = 1
for cc = l:length(phi}
s = exp(-j*(0:M-1)"*phi{cc)};
WqS{cc,bb) = Vexc'*s;
end
end

WgSnorm = WgS./max {abs (WgS));

if CompNEC

figure(2),hoid on
else

figure (doFig},hold on
end

$return
plot (ThetaRange*180/pi, 20*1cgi0 (abs (WgSnorm) } +maxG, 'k: ', 'linewidth', 2}

if exist{'aoiline', 'var'}
if ishandie{aoiLine)
delete{aciline)
delete{aocalLine)}
end
end
ymax = 1l0+round(maxG/10)*10;
set(gca, 'ylim', [-50 ymax]},xlabel ('\theta,
degrees’', 'fontsize',14}),ylabel {'dB', 'fontsize',14),
title{'Directive Gain', 'fontsize',18)
aoiline=line([Aol A0I]*180/pi, [-50 ymax], 'linewidth',2, 'linestyle',':"', 'Color', 'k'};
aoaline=line ([AcA{l}) AoA(1l)]*180/pi, [-50 ymax],’'linewidth',2, 'linestyle', '~
L, 'Colox!', fkY)
% plot (TGEfT(:,1},TGEET (:,2) -max (TGEEfT (:,2)))
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