Colossal Magnetoresistance and the Giant
Magnetocaloric Effect in Transition Metal
Compounds

Wei Li

A Thesis Submitted to the F aculty of Graduate Studies in Partia]
Fulfillment of the Requirements for the degree of

DOCTOR OF PHILOSOPHY

Department of Physics
University of Manitoba
Winnipeg, Manitoba



THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES

-----

COPYRIGHT PERMISSION

Colossal Magnetoresistance and the Giant Magnetocaloric Effect in Transition Metal Compounds

BY

Wei Li

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University of
Manitoba in partial fulfillment of the requirement of the degree
0)

Doctor of Philosophy

Wei Li © 2005

Permission has been granted to the Library of the University of Manitoba to lend or sell copies of
this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell
copies of the film, and to University Microfilms Inc. to publish an abstract of this thesis/practicum.

This reproduction or copy of this thesis has been made available by authority of the copyright
owner solely for the purpose of private study and research, and may only be reproduced and copied
as permitted by copyright laws or with express written authorization from the copyright owner.



Abstract

The magnetic properties of several doped manganites displaying colossal
magnetoresistance (CMR) and of Ni-Mn-Ga alloys exhibiting a giant magnetocaloric
effect (GME) have been investigated.

An analysis of the magnetic critical behaviour of a single crystal
Lao‘73Bao,27MnO3, based on the use of modified Arrott plots, reveals that the 3D
Heisenberg model best describes the critical behaviour of both exponent and critical
amplitude values. Around 200 K, some 45 K below T, a structural phase transition
from a high moment/temperature  rhombohedral (R) phase to a lower
moment/temperature orthorhombic (O) phase is observed in both the ac susceptibility
and zero field cooled/field cooled (ZFC/FC) data. Similar studies on single crystal
Lag73Cag;Mn0; reveal for the first time a phase transition with simultaneous
characteristics of both first-order and second-order phase change. These two features
are coincident in the field and temperature plane, a previously unreported feature of
the magnetic behaviour of manganites.

Detailed studies on a series of polycrystalline (La1xNdy).67Pbg 33Mn0O5 0=<x<1)
samples reveal that this system displays a phase transition from a ferromagnetic metal
to a paramagnetic insulator for all X, characteristics typical of double exchange
Systems. Substitution of Nd>* on the rare-earth site significantly changes the
corresponding average A site radius and its variance. The disorder arising from ion
size mismatch and site distribution plays a key role. 3D Heisenberg exponents have
been extracted in highly doped samples (x = 1, 0.8). Variable range hopping
processes has been found predominately in the high-temperature regime, especially at
mntermediate doping levels, a result which is consistent with a distribution of allowed
electronic energy levels arising from both spin and site disorder.

Studies of the magnetocaloric effect were carried out on the ferromagnetic shape
memory alloys system — Ni-Mn-Ga. This system typically possesses two types of
phase transitions: a first-order structural and magnetic (order-order) phase transition
and a higher temperature second-order ferromagnetic to paramagnetic (order-disorder)
phase transition. The temperatures of both phase transitions are very sensitive to
composition. By a careful compositional tuning, a maximum magnetic entropy
change of-20.4 J kg‘lK'I has been produced in a field of 50 kOe in Niss 2Mnig 6Gagg .
This enhanced magnetic entropy change has been traced to the coincidence of first-
order/metamagnetic structural transition with a second-order phase transition. The
larger magnetocaloric effect and case of preparation make this System a promising
candidate for magnetic refrigeration.
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Chapter 1

Introduction

The presence of magnetism in substances gives rise to many interesting effects,
| inﬂuencing many physical properties (transport, optical, thermal, elasti¢, etc).
Fundamentally, these effects arise from the coupling between the different physical
properties. Clearly, then such properties will also reflect the presence of a magnetic
phase transition — first-order, second-order or both, and indeed will show some
dramatic changes in the vicinity of the critical temperature (T., Ty). This thesis
focuses on two such important effects, viz. (i) coupling between the magnetic and the
transport behaviour, namely, the magnetoresistance and (if) magnetic-thermal
coupling, specifically, the magnetocaloric effect.

The magnetoresistance is the relative change in the electrical resistance of a
material on the application of an applied field; the magnetoresistance is quite small
(£ 5%) in conventional metals [1]. However, the discovery of a very large
magnetoresistance - termed colossal magnetoresistance (CMR) - has renewed interest
in this topic, which is discussed in detail by Ramirez [2]. The CMR effect stimulated
intense research into the properties of the manganese perovskites. From an

applications perspective, this could lead to the development of a new generation of



electronic devices based on electron spin rather than charge, namely, a new
generation of “spintronic” devices, which could be smaller, more versatile and more
robust than those based currently on silicon chips and circuit -elements [3]. In
addition, an understanding of the CMR effect may also provide insight into the
behaviour of the superconducting cuprates as well as the manganites — both display
similar structural features and exhibit semiconducting behaviour at high temperature,
but the low temperature superconducting phase of the cuprates is often replaced by
magnetic order in doped manganites. From a fundamenta] point of view, CMR in
doped manganite systems provides a natural platform to investigate strong coupling
between spin, charge and lattice degrees of freedom, especially to explore the
currently poorly understood coupling between electronic and phononic (lattice
vibrations) degrees of freedom [4].

CMR effects are predominately found in manganese based perovskite oxides;
these oxides have a general formula A1 ,B,MnO; where A is typically a trivalent rare
carth ion and B a divalent alkaline ion. Divalent cation substitution at the A sites
introduces Mn* ions in order to maintain charge neutrality. In these doped
manganites, the so-called double exchange mechanism was originally believed to be
the dominant interaction, requiring a hopping of charge carriers from a Mn®" to a
Mn** jon through an intermediate OXygen ion. This mechanism was first proposed by
Zener [5], and then developed by Anderson and Hasegawa [6]. These authors treated

the core spin of each Mn ion classically, but the mobile electron quantum



mechanically and found that the Zener level splitting induced by this mechanism is
proportional to co0s(6/2); this contrasts with the cos(8) angular dependence of both
direct and superexchange interactions, where 0 is the classical angle between the core
spins. The double exchange mechanism can explain qualitatively the concurrence of
metallic and ferromagnetic behaviour; however, it fails to explain quantitatively the
complex detailed behaviour of the doped manganites. This is especially true of the
high temperature transport behaviour and the situation around the transition
temperature. In order to get a more comprehensive understanding of the doped
manganites, the electron-lattice interaction must be taken into account. This includes
the effect of the static crystal structure on electron hopping as well as dynamical
electron-phdnon coupling [4]. The former arises from the ionic size mismatch which
can be measured by the so called tolerance factor [7]; the latter is linked to the
instantaneous deviation of atoms from their ideal crystallographic positions. The
electron-lattice coupling can be tuned by a small change in the chemical composition;
for example, a change in the ratio between trivalent and divalent ions at the A site, i.e.
changing the average ionic radius of the ions on the A site. Basically, this will
modify the Mn-O-Mn bond angle, (which is 180° in the idea] perovskite structure)
between 150° and 180° for different compositions and substitutions [8, 9]. The bond
angle, as well as the bond length, is closely related to the magnetic and transport
properties of the doped manganites. For instance, the Curie temperature, T, increases

with a decrease in the bond angle and the residual resistivity increases by an order of



magnitude when the bond angle decreases [2]. This thesis focuses on investigations
of the effects of substitution at the rare earth site at fixed divalent cation doping; in
other words, the ratio of Mn**/Mn*" is held constant Whiie changes are made to the
average A site radius. It is known [10] that such substitution induces disorder arising
from ionic size mismatch between the various ions at this same crystallorgraphic site;
it also affects the lattice parameters and bond angle, thus the band structure and
bandwidth. In these types of systems, the correlation  between  the
baramagnetic/ferromagnetic phase transition and the insulator/metal transition are
investigated, focusing on the detailed critical analysis of data acquired near the
magnetic critical temperature.

Single crystal specimens, having many fewer grain boundaries and defects than
their polycrystalline counterparts, provide an ideal platform to investigate the nature
of these phase transitions. Comparisons of transport studies [11] on polycrystalline
and single crystal samples suggest that the scattering from grain boundaries also
plays a significant role, especially at low temperature. In this thesis, two single
crystal specimens - Lay73Cag;Mn0O; and Lag 73Bag,7MnO; - were subjected to
detailed critical analysis. Ca doped manganites have a smaller average A site cation
radius than their Ba doped counterparts, and they exhibit complex physical behaviour
due to both orbital and charge ordering phenomena [12]. Among the optimally

doped manganites LaAMnOs (A=Ca, Sr, Ba), Ba doping produces the largest mean A



site radius vwith lattice parameters close to those éf the ideal cubic structure, and the
associated Mn-O-Mn bond angle is closest to 180° [8, 13].

The second section of this thesis concentrates on magnetic - thermal coupling, i.e.
the magnetocaloric effect. The magnetocaloric effect reflects the thermal response of
materials to the application or removal of an external magnetic field. In the presence
of a magnetic field, the spin aligns and the magnetic entropy decreases. Under
adiabatic conditions (for which the total entropy remains constant), the materia] heats
up; with removal of the field, the magnetic entropy increases and the material cools.
This effect was first discovered by Warburg in 1881 in pure iron [14] and it is an
intrinsic property of all magnetic materials. [ts most famous early application was in
adiabatic demagnetization refrigeration [ I5] to achieve low/extremely low
temperature in a small volume. Research interest in this area was enhanced
significantly with the discovery of a giant magnetocaloric effect (GMCE) in the Gd-
based Gds(SixGey) system [16] and the transition-metal-based (MnFe)(PAs) system
[17], where the enhanced magnetic entropy change is due to a concomitant first-order
magnetic and crystallographic structural phase transition. The discovery of GMCE
makes magnetic refrigeration a practical possibility. In 1997, the Astronautics
Corporation of America and the Ames Laboratory jointly demonstrated that
magnetic refrigeration is a viable technology for applications near room temperature,
including large scale building air conditioning [18]. This thesis focuses on the Ni-

Mn-Ga system, which was originally studied because it displayed shape memory



effects and superelasticity [19]. This system usually possesses two well-separated
phase transitions: a low temperature structural martensitic to austenitic first-order
phase transition and a higher temperature ferromagnetic-paramagnetic second-order
phase transition. It is, therefore, an excellent choice to investigate the relationship
between the MCE and the order of the phase transitions. Motivation for the above
investigation arose as a result of studying single crystal Lag73Cap2:MnOs, where a
simultaneously occurrence of first-order and second-order phase transitions was first
observed. The coincidence of a first-order magnetic transition and its attendant
structural phase transition with a second-order magnetic transition leads to an
enhanced GMCE in Niss ;Mng 6Gagg .

As mentioned above, both CMR and GMCE relate closely to the underlying
phase transitions. The identification of the order of the phase transition is a principal
task of the present study, and (modified) Arrott plot techniques were utilized in an
attempt to do so. For well-defined second order phase transitions, critical exponents
describing the behaviour of various physical quantities near the critical point are
deduced, and these, in turn, are related to the nature of the underlying interactions.
The scaling approach provides an effective and simple way to establish functional
relationships between critical exponents and relevant physical quantltles via power
laws. This approach is based On one assumption, namely, near the critical point the
correlation length is the only characteristic length scale in terms of which all other

quantities with the appropriate dimensions are to be measured.



In terms of organisation, this thesis is divided into two major sections based on
the two topics that are emphasized — CMR and GMCE. Prior to a detailed discussion
of these two effects, phase transitions, as well as their classification, are introduced
on the basis of the Landau theory in chapter 2, and then critical exponents and
universality are discussed. Two approaches for extracting critical exponents are
utilised, one is based on field and temperature dependent ac susceptibility data and
the second uses the magnetization isotherms around the critical region (the so-called
(modified) Arrott Plot).

A brief description of the experimental apparatus and measurement techniques is
presented in chapter 3. This begins with the Quantum Design PPMS 6000 system
which was ﬁsed to carry out magnetic properties measurements, emphasizing the role
of its principal component - the ACMS probe. Then the AC/DC
magnetization/susceptibility measurement principles, as well as the demagnetization
factor corrections, are reviewed.

The CMR effect, a basic property of the doped manganites, together with
electronic and transport mechanisms in the doped manganites are introduced in
chapter 4. Subsequently, magnetic data from a single crystal Lag 73Bag 2;MnO4
specimen are analyzed in terms of its structural and magnetic phase transitions.
Following this, magnetic data on a single crystal Lag73Cag,7MnO; sample are

analysed to reveal a novel type of phase transition around the critical temperature, T,



~ 232 K. Finally, a Summary of an investigation of both the magnetic and transport
properties of a series polycrystalline (La;-dex)o,57Pbo.33Mn03 samples is provided.

In chapter 5, the MCE and its thermodynamic basis are introduced, and then
magnetic refrigeration is reviewed with particular reference to materials with GMCE
near room temperature. The study of a series of composition related Ni-Mn-Ga

samples is reported and discussed, based on the relationship between the GMCE and

summarized in chapter 6,



Chapter 2

Phase Transitions and Critical Exponents

2.1 Phase Transitions and their Classifications

A phase transition is the transformation of a thermodynamic system from one
phase to another. The phase transition is often accompanied by an abrupt change in
one or more physical properties, such as the volume, specific heat, magnetization,
susceptibility, etc. Phase transitions can occur in many systems; some typical
examples include: the phase transition between liquid, solid and gas phases, the
emergence of superconductivity in certain metals when cooled below a critica]
temperature, quantum condensation of bosonic fluids (such as Bose-Einstein
condensation and the superfluid transition in liquid helium) amongst others. In
particular, in magnetic systems, due to the diversity of phases possible -
ferromagnetic, paramagnetic, antiferromagnetic, ferrimagnetic, superparamagnetic -
the phase diagram can be extremely complicated. Generally speaking, a phase

transition can occur when the Gibbs free energy in a system is non-analytic (the



variable cannot be expressed as a convergent power series) for some specially
selected variables.

The earliest classification of phase transitions was on the basis of the level to
which a system is non-analytic, the so called Ehrenfest classification scheme.
Following this scheme, a first-order phase transition is defined as one in which the
first derivative of the Gibbs free energy with respect to a thermodynamic variable
exhibits a discontinuity. For example, the martensitic structural transition in Ni-Mn-
Ga shape memory alloys around the critical temperature is characterized as a first-
order phase transition. For a second-order phase transition, the second derivative of
the Gibbs free energy shows a discontinuity, which, in a magnetic system, is
reflected in the susceptibility, the second derivative of the free energy with respect to
the magnetic field. In essence the Ehrenfest classification scheme is based on a mean
field approach which is flawed in the vicinity of the phase transition since it neglects
the role of thermodynamic fluctuations. Thus the Ehrenfest classification scheme is
not a sophisticated theory and it was soon replaced by a more modern classification,
based on the role of the latent heat. This leads to two classes of phase transitions:
discontinuous and continuous transitions. Discontinuous phase transitions are those
involving a change of latent heat. During such a transition a System either absorbs or
releases a fixed (and typically large) amount of energy. Because energy cannot be
instantaneously transferred between the system and its environment, discontinuous

or first-order) transitions are associated with "mixed-phase regimes" in which some
g
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parts of the system have completed the transition while others have not. Mixed-phase
systems are difficult to study, because their dynamics are difficult to control. A
continuous phase transition or a second-order phase transition usually does not
involve a latent heat. Besides these two basic types of phase transitions, there are
several special transitions known as infinite order phase transitions. They are
continuous, but break no symmetries. The most famous example is the Berezinsky-
Kosterlitz-Thouless transition In the two-dimensional XY model [20]. Many
quantum phase transitions in two-dimensional electron gases also belong to this class.
However, this kind of phase transition is beyond the scope of the discussion relevant

to this thesis.

2.2 Landau Theory of Magnetic Phase Transitions

Landau theory Iepresents an early attempt to find a general theory for second-
order/continuous phase transitions. Landau provided a different approach to
thermodynamic potentials [21] based on two assumptions. One is that the free energy
in any system is analytical; the second is that the free energy follows the Symmetry of
the Hamiltonian. Using these two criteria, an order parameter for the system was
introduced and the free energy was expanded as a power series in terms of this order
parameter. Generally, the order parameter is a function of temperature and is defined

to be zero in the high symmetry phase and nonzero in the lower Ssymmetry ordered
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phase. This treatment of phase transitions affected the physics profoundly, even after
the development of more complicated and newer methods such as those that examine
the so called critical exponents based on the renormalization group theory.

For a magnetic system, the order parameter is the magnetization. From general
Landau and related thermodynamic theory, it is known, firstly, that the free energy
F(T,m) is an analytical function of the magnetization M, and can be expanded in a
power series:

F(T,m) =F,(T) + o, (T)m + o, (T)m* + 0, (T)m* + o, (T)m* + ... 2.0
where m is the reduced magnetization

m = M(T)/M;(0) 2.2)
M;(0) is the spontaneous magnetization at T=0K ; so m will be much less than
one when the temperature approaches the critical temperature, T,. Thus with m small,
higher order terms can be neglected in the critical region. If the system possesses
inversion symmetry, only even terms in the power series need be kept. In other words,
reversing the direction of the magnetization and thus changing the sign ofm should

not affect the value of the free energy; thus the free energy in equation (2.1) can be

rewritten as
F(T,m) = F,(T) + o, (T)m? +o,(T)m* +... (2.3)
Notice that the F,(T) term can also be ignored in practice since the €Nnergy zero is

generally arbitrary. Around the critical region, where m is small, only the first several

12



terms in the expansion need be retained; thus, the free energy can be further
simplified as:

F(T,m) = a,(T)m? + o, (T)m* (2.4)
The equilibrium state can be found by minimizing the free energy F(T,m) with

respect to the order parameter m, yielding

OF(T, m)

o = 20, (Dm + 4o, (Tm? = 0 Q. 5)

Furthermore, Equation (2.5) should yield a minimum rather than maximum, so there
is a stability condition

2
9% >0 2.6)
Both equations (2.5) and (2.6) require that the coefficient o 4+(T) be a positive
number; this also ensures that F (T,m) increases with in relatively far away from the
minima.

The solutions for equation (2.5) are:

m =0 2.7)

m=+ |~ 9, (T) 2. 8)
20, (T)

Since a,(T) > 0, the nature of above solutions strongly depend on the sign of the

li

expansion coefficient o, , (D).
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Figure 2.1 The Gibbs free energy F(T,m)as a function of the reduced

magnetization m for (a) a second-order phase transition and (b) first-
order phase transition.

Figure 2.1 shows the shape of the isothermal free energy curves F(T,m) for these

two solutions. Obviously, whenT — T, if o, (t) is positive, there is only a trivial

solution, m =0; for a negative o, (t), there are two real non-trivial solutions for the
free energy. In essence, this reflects the nature of the first- and second-order phase
transitions. Namely, when the temperature approaches the critical temperature, the
free energy in a continuous/second-order phase transition only has a single minimum
at T=T, (Figure 2.1a). However, for first-order transitions, the free energy minima

correspond to three m wvalues; m=0 and m=x*m, (Figure 2.1 b). The

corresponding relations can be further clarified in the form of magnetization
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m : m

0 T 0 T

~ Figure 2.2 Reduced magnetization m as a function of temperature for a
second-order phase transition (a) and a first-order phase transition (b).

curves as a function of temperature, as shown in Figure 2.2. For a first-order phase
transition at the critical temperature (see Figure 2.2 (b)), two phases coexist; one has

a zero magnetization, the other has a finite magnetizationm, . This is the origin of the

discontinuity in the magnetization for a first-order transition.
2.3 Critical Exponents and Universality

A second-order/continuous phase transition is much easier to investigate than a
first-order/discontinuous phase transition, due to the absence of a latent heat; much
interesting work has been done on second-order/continuous phase transitions.
Second-order/continuous phase transitions can be characterized by so-called critical
exponents which describe the behaviour of various physical quantities near critical

points [22]. For a magnetic system, it has been shown that a number of physical

15



properties such as the specific heat(C), magnetization (M), susceptibility (x) and the
correlation length (£) exhibit a power law dependence on external variables in the
vicinity of the critical region. Some typical asymptotic power laws are listed below in

terms of the reduced temperature t, which is defined ast = (T-T,)/T..

1. Coclf™ (2.9)
where C is heat capacity (the second derivative of the free energy with respect to
temperature) and o is the heat capacity critical exponent.

2. malff (2.10)
where m is the reduced magnetization and B is the order parameter critical exponent.
3. o[l (2.11)
where y is the initial susceptibility (the second derivative of the free energy with
respect to the field) and vy is the susceptibility critical exponent.

4. mah® (t=0,h-0) (2.12)

where & is the equation of state critical exponent.
Some of these exponents are related via the Widom equality
Y=PB(-1) (2.13)
(An inequality in general, which ensures thermodynamic stability, and becomes an

equality under the so-called scaling hypothesis)
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ode onents a ) 4 )
Mean field theory 1.75 0.5 1 3
3D Heisenberg - 0. 369 1. 396 4. 783
3D Ising 0.11 1. 237 0. 326 4. 789
3D XY model - 1. 318 0. 349 4. 780
Experimental Data | 0.0-0.2 | 0. 30-0. 36 1.2-1.4 4.2-4.8

Table 2.1 the critical exponents from several model simulations and
experimental data.

A careful study of critical €xponents in certain kinds of phase transitions exhibits
a striking feature — different Systems seem to possess the same set of critical
exponents, despite their structural differences. This phenomenon is known as
universality, and systems displaying the same exponents are said to belong to the
same universality class. However, Landau theory overestimates the concept of a
universality class, in that all systems belong to the same class. In reality, different
Systems can belong to totally different universality classes; these include those for

the Heisenberg model [23], mean field model [22], 3D Ising model [24], 3D XY
model [25], superfluides [26], etc. i.e., the universality class (exponents) shows a

model dependence. Landau theory gives exactly the same exponents as mean field
theory model calculations, as will be shown in the following chapters.
The critical exponents predicted by various models, as well as those deduced from

a selection experimental data, are summarized in Table 2.1. Given the various power
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law relations, equation (2.9)-(2.12), critical exponents are often determined
experimentally from the slope of log-log plots of relevant data. Besides some basic
exponents and relations mentioned above, there are a large number of relationships
between the various critical exponents which result from fundamental
thermodynamic and statistical mechanical considerations (examples include those
due to Fisher, Rushbrooke and Josephson). The treatment of critical behaviour can
thus be complicated and difficult, and a number of different approaches have been

employed in an attempt to do so.

2.4 A Treatment of the Critical Behaviour— Scaling Theory

Following earlier works by Widom [27], Domb and Hunter [28] and Patashinskii
and Pokrovskii [29], Kadanoff [30] proposed the scaling approach to understand
critical phenomena. It was intended as an alternative to the direct approach of solving
standard models because of the technical difficulties presented by the latter. Using
scaling theory it is possible to derive the following general expression for the
magnetic equation of state [22]

m(t,h) = t°F, (h/t"*P) (2.14)
where t is the reduced temperature and h ~ H/ T, ( H is the internal field). Based on

Landau theory, the function (2.14) appearing here is a universal function for all

18



Systems, and is called the equation of state. It is not difficult to show that this relation
can be reduced from three variables (h,t,m)to two (m/ ,tlﬁ , h/ lt’”ﬁ). This reduction
of the total number of variables was considered the first important contribution of
scaling theory. While the general behaviour of the scaling function F,, a

homogenous function of its arguments, remains unspecified, its asymptotic behaviour
for small and large values of its argument will give asymptotic power laws, which

will be derived below.
In zero-field, H=0 —=h= 0; then F(h/t"") F(0) = Const.. Equation (2.14)
changes to

m(0,t) oc Bt i.e. the Spontaneous magnetization is given by

B
M, (0,T) = M (0)tP = M, (0)(1 —-TZ) with T < T, (2.15)

where M (0) is the Spontaneous magnetization at T = () .
From equation (2.14), the susceptibility, which is the first derivative of the

magnetization, m, with respect to field h, is

X :%?—: PP YR (h/ 178 . (2.16)

where F is the derivative of F with respect to its argument h/ t™® | For
h = 0= F(0) = const.

and the initial susceptibility becomes (0, t) oc CtPt~ 0 = o , 1.€.
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-Y
x(0,T) =y, t™7 :XO[Tl_l) with T> T, (2.17)

At the Curie temperature, T = T, = t=0; hence t* — 0and 1/t . In order to
make m(h,0) measurable (a finite value), the variable t in equation (2.14) must be

cancelled. Thus, equation (2.14) must have the form

B/v+B B
m(h,0) o t"(t%) =h* (2.18)

Using the Widom relationship B6 =y + B, at the Curie temperature T,, the
magnetization as a function of field should follow the power law
m(h,0) = Dh" (2.19)
From the above discussion, it can be seen that the static scaling law or
homogeneous function approach does not directly produce specific numerical values
for any critical point exponents, rather the scaling hypothesis predicts functional
relationships between the critical point exponents. In addition, once the general form
of the thermodynamic equation of state (2.14) is deduced, which takes the form of a
homogeneous function of field and temperature, an alternative way to extract the
power law relations, hence the critical exponents can be evaluated.
The susceptibility, equation (2.16), can be rewritten as

yx = h1/rB) (h/t7+B)v/(7+B) F(h/ t7+B) — h—V/(V+B)H(h/tY+B) (2.20)

Where H(x) = x /P (x)
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From equation (2.20) any function of the susceptibility measured in a fixed field
(h=constant), such as a maximum, is predicted to exhibit the following dependence

on a reduced temperature, t _;

(%) S0 e HEA)—o (2.21)

The above equation is satisfied when the argument of the function H is a constant,
thus
t oc hVrb (2.22)
and using the Widom equality (2.13), the susceptibility at this peak temperature
becomes
x(h,t_) oc hU-9¥8 (2.23)
In equation (2.22), (y+[3) is called the cross-over exponent and the equation itself
demonstrates that the peak in the ac susceptibility occurs at a reduced temperature, t,,
which shifts upwards in temperature with increasing magnetic field. Equation (2.23)
indicates that the amplitude of the susceptibility peak decreases with increasing field
(provided §>1) along the cross-over line in the (b,t) plane. The measurement of
d along the cross-over line is clearly independent of the choice of T, a particular
advantage over the original scaling approach in which not only is T, required to be
well defined, but also the measuring temperature must have sufficient stability.

The physical origin of these susceptibility peaks can be understood as follows;

the cross-over line Separates two regimes, one is a temperature dominated region
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where (8y/0t), <0 and the other is field dominated in which (Ox/ot), >0.

According to the fluctuation-dissipation theorem [22], the susceptibility obeys the

expression

2 (H,T) ~ %(<S§> ~(5,)") (2.24)
In the high temperature regime, y(H, T), measured in any fixed field H, Yaries as T
since (s;) —>S(S+1)/3and (S,) — 0, thus y ~ S(S+1)/3T and (0x/0 1), <0 ; here

thermal fluctuations are dominant. On the other hand, when the temperature
approaches the critical temperature, T, from above, any non-zero field drives the
magnetization towards saturation, causing a decrease in magnetic fluctuations. This

process becomes more marked with increasing field; thus based on the fact that

<S§>—<SZ>2 is a direct measure of such fluctuation, x(H,T) decreases as T

approaches T, from above and (0x/0 1), >0. A maximum must therefore result from

these two opposite temperature dependence. The above behaviour of the
susceptibility as a function of temperature and field has been confirmed
experimentally in many systems including metallic alloys [31, 32], the pyrochlore
T1,Mn,07 [33], and the single crystal Ba doped perovskite among others. Theoretical
model calculations of the temperature dependence of the susceptibility in a
Sherrington-Kirkpatrick (SK) like model [34] qualitatively agree with the behaviour

predicted by the above equations deduced from the scaling approach, however, such
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a model, as expected, displays mean field exponents. Other model approaches
investigated recently also confirm this behaviour for so-called Heisenberg system

[23].

2.5 (Modified) Arrott Plots and the Banerjee Criterion

For ferromagnetic materials, there is a significant spontaneous magnetization
when the temperature is below the Curie temperature. In the vicinity of the Curie
temperature, the reduced magnetization, m, is small. Including the contribution to

the free energy in the presence of a field, H , the Landay expansion becomes:

F(T,m) = o, (T)m* + o, (T)m* ~ Hm (2.25)
where o, (T) and o 4+(T) are coefficients which in general depend on temperature.
From the previous discussion, the critical point corresponds to the temperature T,
where a,(T) changes sign, thus a,(T) can be expanded in powers of (T-T.). To
leading order, equation (2.25) becomes

F(T,m) = a,,(T-T,)m* + o, (T)m* — Hm (2.26)
Minimizing the free energy F(T, M) with respect to its parameterm and rearranging

the terms, then

H_ 20,(T~T,) + 4a, (T)m?> (2.27)
m
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This is the basis of the so called Arrott Plot. It was first suggested by Arrott [35] at a
conference with no published proceedings, and then discussed (together with other
methods used at the time) in an unpublished internal report of the General Electric
Co. Arrott plots are widely used for the experimental determination of the Curie
temperature. Here, we present a simple derivation from the Landau expansion. A
more sophisticated derivation based on the molecular field theory and the Brillouin
function can be found in severa] books on magnetism [36].

Based on the previous discussion, equilibrium and stability conditions require

a,(T)>0 fora second-order/continuous phase transition. Thus the initia] slope of a
H/M) vs M2 plot, which yields the coefficient a,4(T), was used to decide the order
of a phase transition. This criterion is sometimes known as the Banerjee Criterion,
since it was first proposed by Banerjee [37]. However, in some circumstances, such
as for Lao,73Ca0_27MnO3, although the initial slopes of Arrott/Banerjee plots are
positive, negative slopes appear at a larger value of m. This cannot be. simply
interpreted as the sign of the coefficient o, +(T); however, it can be fully understoqd
by extending the Banerjee criterion, namely, by including an addition term
s (T)m®in the Landau expansion of equation (2.26). Applying the equilibrium and
stability conditions will yield a modified slope for a second-order/continuous phase
transition, viz.

o, (T) +3m’0, (T) > 0 | (2.28)
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Itis immediately evident from equation (2.28) that in order to ensure a second-order

phase transition, the higher-order coefficient o, s(T) should also be positive. Failure

to satisfy this equation — a negative slope in higher fields, not simply the initial slope

— indicates the appearance of a first-order/discontinuous phase transition. Obviously
this criterion can be further extended by including an g (T)m® term, and so on,

leading to the conclusion that for a second-order/continuous phase transition, all the
coefficients in the Landay expansion should be positive. Any negative coefficients
will lead to a first-order/discontinuous phase transition. This modified criterion has
been successfully applied to the Ni-Mn-Ga system (discussed in detail in chapter 5),
which generally possesses two sequential transitions as a function of temperature.
Once a second-order/continuous phase transition is identified, a set of critical
eXponents can be extracted based on equations (2.15)-(2.19). The Arrott plot
mentioned above provides a effective way to estimate the Spontaneous magnetization,
M(T) and the initial susceptibility, .(T) . In bractice, as a result of technical
contributions and complications arising from crystalline anisotropy, Arrott plots do
not always form perfect straight lines, for data taken in low to moderate applied field,
extrapolation from technical saturation, where such contribution are constant /
saturated, are employed. A modified form of equation (2.28), known as the Arrott-
Noakes equation of state [38], is used in these cases where mean field exponents are

not appropriate.
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1

! 2
(ﬁ) = TT;TJ{M%]’* (2.29)
here M, is a material specific constant, and y and B are general susceptibility and
order parameter critical exponents. Equation (2.28) is clearly a special case of the
Arrott-Noakes equation with the mean field theory exponents (B=0.5,y=1,8=3).
In the several cases, values for Y and B (which show a model dependence) are then

chosen so that (2.29) yields a set of straight lines. ForT > T,, in the paramagnetic

state, the intercept on the horizontal axis gives the inverse of the

susceptibility 1/y.(T); forT < T,, in the ferromagnetic state, the intercept with the

vertical axis gives the spontaneous magnetization, M,. The straight line isotherm
which passes through the origin corresponds to the magnetization curve measured at
the Curie temperature (in practice, this usually involves an interpolation between the
temperatures of two or so curves having the smallest positive and negative intercepts).
Thus the Arrott-Noakes approach provides an alternative way to estimate the

ordering temperature, T., the spontaneous magnetization, M, and the initial

susceptibility, x.(T) , of bulk magnetic materials experimentally. With these

preliminary exponent estimates, the power-law relations, equation (2.15) - (2.19), can
be (re)tested until a truly self-consistent exponent set is achieved. Namely, the
modified Arrott plot and the power-laws yield the same exponents values. However,

in using the (modified) Arrott Piot, the following points should be remembered: (a)
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the critical exponents Y and B can vary substantially without a significant change

being evident in the modified Arrott plot; many exponent choices can yield a set of
straight lines. (b) There is no way to eliminate the inconsistency of the very low field
data, which represents averaging over domains magnetized in different directions
[38]. The best recourse is to discard the low magnetization data in the fits. (c)
Obviously, curvature can be observed far beyond the critical region, when, for
example, the magnetization along the critical isotherm shows saturation effects in
high fields (i.e. & increases). Thus this method can only be applied with materials
showing weak ferromagnetism at any temperature, with strong magnets in their

paramagnetic phase, or in their ferromagnetic phase very close to the critical region.
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Chapter 3

Experimental Apparatus — the Quantum Design PPMS

Model 6000 System

3.1 Description of the Equipment

Basically, all the susceptibility and magnetization Imeasurements were carried out
in a commercial measurement system ~ a Physical Property Measurement System
(PPMS) produced by Quantum Design [39]. A block diagram of the system is shown
in figure 3.1. From this diagram it can be seen that the system contains several major
components: the CPU board (processor), the motherboard (system integration), the
system bridge board (temperature readings), gas valves and gas lines (temperature
control), the front panel (user interface) and rear panel (connections), the
heasurement probe and a helium dewar. In this System a temperature range from 1.8
K to 400 K can be accessed and magnetic field up to 9 Tesla can be produced by a

superconducting solenoid.

3.2 The PPMS Measurement Probe [40]
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The probe is the key part of the PPMS system and it is located within the liquid
helium bath and inside the dewar. Its intricate design incorporates all of the elemental
temperature control hardware, the superconducting magnet, the helium leve] meter, a
variety of electrical connections, gas lines and sample puck connectors.

As figure 3.2 shows, there are two concentric tubes - outer and inner vacuum
tubes - with a sealed, evacuated region between them. This prevents heat exchange
between the sample tube and helium bath from increasing the system’s helium
consumption. Another vacuum space between the outer and inner vacuum tubes
contains reflective super insulation in order to minimize radiative power loss from
the helium bath. Inside inner vacuum tube, there is a sample tube which contains two
thermometers, and a heater below the connector at the bottom of the sample tube.
The sample temperature is monitored by these two thermometers. One is a platinum
resistance thermometer and the other is a negative temperature coefficient (NTC)
thermometer. The NTC thermometer operates below 100K, while the platinum
resistance thermometer works above 80K. In the range 80-100K, a weighted average
of the readings from the two thermometers is used. Between the sample tube and the
inner vacuum tube, there is a special region called the cooling annulus. Helium
exchange gas will flow in and out of this space through the impedance assembly in
order to change the temperature of the sample space. The impedance assembly

contains a very narrow tube, a heater to warm this tube and a thermometer. In
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Figure 3.2 The PPMS system block diagram [40].
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addition to these major components, there is a superconducting magnet, baffle rods, a
helium level meter, a protective cap and the probe head.

One of the most important functions of the PPMS probe is to control the
temperature. The cooling annulus is the active region to control the temperature. For
temperature above and below 4.2 K, there are two operational modes for the PPMS
probe for temperature control. Above 4.2K, upon cooling, the helium vapour is
drawn into the cooling annulus through the impedance tube by the vacuum pump to
cool the outside of the sample tube. When warming, a block heater, which is
mounted on the base of the sample tube, heats the sample to the desired temperature.
The heater warms the vapour in the cooling annulus simultaneously; thus the entire
sample tube is warmed more uniformly. Temperatures below 4.2 K are achieved by
filling the cooling annulus with a controlled amount of liquid helium and
manipulating the helium’s boiling point. In other words, temperature control below
4.2 K is obtained through a flow control valve connected to the vacuum pump. For
cooling, the valve is opened to decrease the pressure above the liquid helium,
subsequently decreasing the helium’s boiling point. Temperatures down to 1.8 K can
be achieved this way. Warming is achieved by closing the valve slightly, allowing

the pressure in the cooling annulus to increase, thus raising the helium’s boiling point.

3.3 The AC Measurement System (ACMS) of the PPMS
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Figure 3.3 The diagram of the ACMS insert and coil set [40].

The ACMS system provides a capability to perform both AC susceptibility and
(extraction) DC magnetization measurement without changing the hardware
configuration. Sensitivity is quoted as 10 emu for AC susceptibility and 2.5 x 107

emu for DC magnetization. AC driving field amplitudes available range between 2
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mOe and100e rms and AC frequencies range between 10 Hz and 10 KHz. Figure 3.2
shows the core elements of the ACMS system - the ACMS insert and an enlarged
view of the coil section.

The ACMS insert houses the System’s drive and pickup coils, the compensation
coil, the “user” thermometer and associated electrical connections. Specifically, the
AC drive coil provides an alternating driving field and the pickup coils detect the
response from both sample moment and excitation field. A compensation coil is
located outside the AC drive coil. The drive coil and compensation coj] are
counterwound and connected in series so that they receive the same excitation signals.
A special feature of the Quantum Design PPMS 6000 system is that the pickup coil
contains a low-inductance calibration coil which increases the accuracy of the phase
and amplitude measurement. In addition to the alternating fields supplied by the
ACMS drive coil, the host PPMS superconducting magnet can generate DC magnetic
fields up to 90 kOe (9 T) during both DC and AC measurement processes. The
following subsections describe, in detail, the principles of the DC magnetization and

AC susceptibility measurement in the PPMS model 6000 system.

3.4 DC Magnetization Measurements
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Magnetic materials show the same characteristics as the magnetic moment
associated with a current loop. Letting dm be the magnetic moment associated with
volume dV in a bulk sample, the magnetization per unit volume can be defined as

M:% 3.1)

In practice, in addition to the volume magnetization, the mass magnetization and the
molar magnetization has been used under different circumstances. DC magnetic
measurements determine the equilibrium value of the magnetization in a sample. The
sample is magnetized by an applied magnetic field and the induced magnetic moment

1s measured, producing a magnetization curve M(H). In the PPMS model 6000

system, during a DC measurement, a static field is applied to the measurement region
and the sample is moved quickly between two sets of detection coils inducing a
signal following Faraday’s law [41],

o0,
ot

E =

(3.2)

where ¢ is induced voltage and @, is magnetic flux. This type of measurement is

referred to as the extraction method. The signal in the detection coil depends on both
the extraction speed and the sample’s magnetic moment. The DC servo motor in the
PPMS 6000 system can provide an extraction speed up to approximately 100 cm/sec,
which dramatically increases the signal and decreases the contribution due to the

time-dependent errors. The high extraction speed makes many scans possible in a
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short period of time, and the averaging of these scans for each measurement point
can reduce the random error; usually, 5 scans for each measurement was typically

employed in the present work.

3.5 AC Magnetization Measurements

Since the magnetic moment characterizing the bulk materials can often be time
dependent, AC measurements are quite important. AC measurements can provide
some information about magnetic dynamics in ways which are not possible with a
DC measurement (for example, frequency effect). In AC magnetic measurements, a
small AC driving magnetic field is superimposed on the DC field, causing a time
dependent moment to induce a current in the pickup coils, thus allowing
measurements without sample motion. The detection circuitry is configured to detect
in only a narrow frequency band, normally at the fundamental driving frequency.

For low frequency measurements, AC magnetometry is quite similar to a DC

measurement. The magnetic moment of the sample follows the M(H) curves that are

measured in the DC measurement. The susceptibility is the slope of

such M(H) curves.
dM
=— 33
x dH 3:3)
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Susceptibility measurements play an important role in the current work. As different
parts of the magnetization curves have different slope, a series of susceptibility
values can be obtained. One of the advantages of the AC measurement is that it is
very sensitive to the small changes of the moment. Since the AC measurement is

sensitive to the slope of the M(H) curve and not the absolute value of the moment,

small magnetic moment changes can be detected even when the absolute moment is
large. This is favorable for the present study where the temperature dependence of
the susceptibility is measured in different static biasing fields.

In a high frequency measurement, because of dynamic effects, the AC moment of
the sample does not follow the curves of the DC measured M(H). The chénge of the
magnetization frequently lags the driving field. Typically, an AC measurement gives
us two components: the magnitude of the susceptibility,y , and the phase shift, ¢.

Alternatively, one can think of the susceptibility as having an in phase component, y’

and out of phase part (imaginary part), ¥" . These quantities are related by the

following:

e o 12 n2
X mweose) g and X=ALT (3.5)
X = xsin(e) ¢ = arctan(y" /)

The imaginary component, %", usually indicates that dissipative processes are present

in the sample. In conductive samples, the dissipation can be produced by eddy

currents. Relaxation and irreversibility are most prevalent in spin glasses and give
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rise to a non-zero imaginary susceptibility y” . In ferromagnets, a nonzero x" can
indicate irreversible domain wall movement or absorption due to a permanent
moment. In particular, both the real and imaginary parts of the susceptibility are very
sensitive to the presence of a thermodynamic phase transition; such measurements
are thus a basic tool for this research. Additionally, in the quantum design PPMS
6000 system, numerous useful parameters can be recorded in a single measurement.
Besides the real x' and imaginary part ¥" of the susceptibility and the phase
angle ¢ , other important quantities are recorded including averaging time,
temperature, DC magnetic field, frequency, amplitude of the driving field etc,

enabling a comprehensive analysis to be performed.

3.6 Demagnetization Corrections

The demagnetization correction is important for a sample with a finite dimension.
If a magnetic body is magnetized, free magnetic poles are induced at the both ends of
the sample. These need to be taken into account as they introduce a demagnetizing
field H,, which is proportional to the magnetization M » often opposing it. The
internal magnetic field is given by

H,=H, -NM (3.6)
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where H, is applied field and N is demagnetizing factor. If the measured
susceptibility is defined as Xm =dM/dH, , the true susceptibility is given by

X« =dM/dH; and these two quantities are related by:

X
= Xm 3.7
X TNy G.7)

The measured susceptibility is thus not an intrinsic property of sample itself, but
reflects the sample geometry. The demagnetizing correction is especially necessary
in low field measurement.

In principle, the demagnetizing factor can only be calculated for ellipsoidally
shaped samples in which the demagnetizing field is uniform. For any other non-
ellipsoid body, the calculation is only an approximation and gives an average internal
field over the whole sample volume. Practically, in order to eliminate the
demagnetizing field and appraise the intrinsic properties of magnetic materials, the
demagnetizing factor is often measured experimentally, as follows:

From equation (3.7), the measured (external) susceptibility can be expressed as:

1
Am = (3.8
—+N
Xt

Thus, if the sample have an infinite true susceptibility ¥, (as is predicted to occur in

zero field at a ferromagnetic phase transition), the measured susceptibility is equal

tol/N, i.e. the reciprocal of'the demagnetizing factor. Experimentally, magnetization
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curves were measured in low fields around the transition temperature, T, , and from

the limiting slope of these curves, the so called shearing curve, the demagnetizing

factor N can be estimated.
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Chapter 4

Magnetic Phase Transitions in Several Systems Displaying

CMR Effects

4.1 The Colossal Magnetoresistance (CMR) Effects - A brief

Introduction

Magnetoresistance is the resistance change (positive or negative) when a material
is subjected to an external magnetic field. This effect was first discovered in 1857 by

William Thomson. In normal metals, the magnetoresistance (MR) defined as

MR:-p(HZO)_p(Hio)xlOO% @.1)
p(H=0)

never exceeds 5% and therefore has few applications. In 1969, a very large
magnetoresistance was reported in doped manganese oxide perovskites and this
effect was named colossal magnetoresistance (CMR) after its rediscovery, analogous
to the GMR effect found later in magnetic superlattices [42]. The magnetoresistance
in CMR systems can be as large as 99.999...9%. Figure 4.1 is a schematic sketch of
the CMR effect. With an applied field, the peak resistivity decreases tremendously in

amplitude and moves towards higher temperature. Thus, the magnetoresistance in
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Figure 4.1 Schematic sketches of resistivity vs. temperature and the
corresponding magnetization vs. lemperature curve for a CMR material,
With an applied field, the peak resistivity decreases in amplitude and
moves toward higher temperature.

CMR systems is negative (instead of positive as in normal metals where it arises
from the Lorentz force). Below the transition temperature, the temperature
dependence of the resistivity has a metallic character, i.e. a positive resistivity
temperature  coefficient (RTC), dp/dT >0 . However, above the transition
temperature it shows semiconductor-like behaviour with anegative RTC, dp/dT <0.

Accompanying this resistive transition from metallic to semiconductor character,
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there is a magnetic phase transition from a ferromagnetic to a paramagnetic state,
characterized by a Curie temperature, T,

There are many systems showing CMR effects; these include doped manganites,
manganese oxide pyrochlores [43], europium hexaborides [44] and double
perovskites [45]. Among these, the mixed-valence manganites have been the focus of
the majority of studies because they present some unusual physical properties, which
dramatically differ from other systems. For example, the manganites cover a wider
range of transition temperatures typically 100 — 400 K; the carrier density in
manganites is higher that in other systems; the ferromagnetic ordering in manganites
is controlled by the carriers through a double exchange process whereas in other
systems superexchange between localized ions dominates.

To summarize, since the (re)discovery of the CMR effect in manganites, it has
been a subject of intense experimental and theoretical studies [2]. Experimentally, it
has great potential for use in magnetic sensors or in magnetic recording heads,
although the manganites usually possess a large residual resistivity which is not
favorable for the latter. In terms of fundamental physics, understanding the behaviour
of CMR systems has been identified as one of the most significant challenges facing
the materials science community. These systems are regarded as important examples
of strongly correlated electronic systems, offering a unique combination of coupling

between charge, spin, orbital and phononic degrees of freedom.
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Figure 4.2 A schematic sketch of the perovskite manganite structure.
LaMnO3 consists of a large Lanthanum ion at the center surrounded by
manganese and oxygen ions. A manganese and six neighboring oxygen
ions form a series of regular octahedra.

4.2 A basic description of doped manganites

Doped LaMnOs, termed “manganites”, has been studied for more than 40 years.
These compounds have a general formula A1BMnO;, where A is a trivalent cation
(e.g. La**, Pr'*) and B is a divalent cation (typically an alkaline-earth Ca*, Sr** or
Baz’). The parent compound LaMnO; was a major subject of early studies, X-ray
diffraction work by Yakel [46] showed that LaMnOs has an orthorhombic structure
with space group Prma. Later, the ground state of LaMnOs was labeled as an A type

antiferromagnet by Wollan et al. [47]. A sketch of this structure is shown in the



Figure 4.2. It consists of a (larger) lanthanum ion situated in the center of a cubic
structure, surrounded by manganese and oxygen ions. At each corner, there is an
OXygen octahedron with a Mn ion at jts center. The magnetic moments in the a-c
plane are ferromagnetically coupled and between two successive planes along the b
axis, the magnetic moments are antiferromagnetically coupled. Here the magnetic
moments interact via the superexchange interaction and the Mn-O-Mn bond angle is
close to 180° [48], but the slight variation in the lattice constants result in
superexchange interaction of differing sign. Jonker and Van Santen [7] showed that
the only possible valence for oxXygen in this system is 0%, regardless of the
composition, x, or the states of the other elements. Thus, the parent compound,
LaMnO;, contains only Mn*" cations. However, any other composition, x, falling
between 0 and 1, must introduce Mn*" cations into System in order to maintain

charge neutrality. Thus, with divalent doping, where a number of La>* are substituted

by divalent ions, the resulting compound has a formula A} B> Mn* Mn 0% and

the ratio of Mn* /Mn* s equal to the ratio of A** /B* . Because of the co.
existence of both Mn** and Mn*, such Systems are also known as mixed-valence
manganites. The co-existence of two valence states strongly influences the electrical
and magnetic properties of these systems. In terms of the structure, the doped
lanthanum manganites possess a so-called perovskite structure which will be
discussed in the next subsection; thus this system is also known as doped perovskite

manganites.
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In the mixed-valence manganites, the actual crystal structure is still basically
cubic, as in the parent compound, but slightly distorted. The distortion arises from
several sources. First, the mismatch of the ionic size on sites A and B. The size of the
cations at site A and B can be very different and this causes the 0xygen octahedra to
both tilt and twist. This distortion can be measured by the so-called tolerance factor
[7]

t= (rB +r0) (42)

V2(r, +1,)
where 1, , 1, and 1, are the radii of the ions at the A site, the B site and of the

oxygen ions, respectively. In the ideal cubic structure, the tolerance factor is unity.
Detailed studies on several A site (La, Pr, Nd) and B site ( Ca, Sr, Ba, Pb)
substituted manganites showed that a stable perovskite structure can be retained for
0.85<t<0.91[2]. Another source of distortion is the size difference between Mn>* and
Mn** jons. According to the jonic radii provided by Shannon [49], the radius of Mp>*
(0.645 A) is 18% larger than Mn** (0.530 A), which leads to a distribution of larger
and smaller octahedra. Moreover, the Jahn-Teller effect will deform the oxygen
octahedra further and this results in a removal of the degenerate Cg states as detailed
in the following subsection. As a result of the distortion, the Mn-O-Mn bond angle,
which is 180° in the ideal perovskite structure, can vary between 150°%180° for
different compositions. The bond angle, 6, together with bandwidth, are closely

related to the magnetic and transport properties of the manganites; the Curie
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Figure 4.3 In the presence of a crystal field, the five Mn 3d orbitals in
the free space will split into doubly degenerate eg Sstates and triply
degenerate 1,4 orbital states. The Jahn-T. eller effect will further split the
&g state and will lift the e, state by 0.25 eV.

temperature T. increase with a decrease of the bond angle and the residual resistivity
decreases by an order of magnitude when the bond angle decreases over the range

mentioned earlier.

4.3 Electronic Properties of Manganites and Double Exchange

In the mixed-valence manganites, the oxygen atoms are believed to have a full
outer shell (2p), being in an O* state, and the Mn ions have an incomplete d shell.
The ground state electronic configuration for the Mo and Mn*" is 3d* and 3¢

respectively. According to Hund’s rules, in order to maximize the total spin
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(minimize the energy), all unpaired electrons in the d-shell must have their spins
parallel to one another, as figure 4.3 shows (only the majority spin states are shown,
the minority spin states are much higher in energy). The five d orbitals, which are
five-fold degenerate in an isolated atom, will be split into a three-fold degenerate tp,
level and a two-fold degenerate ¢, level by the presence of a cubic crystal field. The
tog level has a lower energy than the e level, by about 1.5 ey [50]; equivalently, the
tzg electrons can be considered as localized carriers with the total spin of the tyg level
(5=3/2) usually referred to as the core spin. Specifically, for Mn* ions with 3
electrons in a d shell, according to Hund’s rules, these electrons will occupy the
lower energy trg level and leave the &g level empty. Mn>* possesses an extra electron,
which will occupy the eg level, giving a total spin of S=2. Theoretically, the
saturation magnetization at zero temperature can be evaluated, based on a spin-only

assumption, as
M, :(l—x)an3+(S=2)+xan4+(S=—§-)=4(l—x)uB +3xpy =(4-x)u,

where 4, is the Bohr magneton. This offers an effective way to estimate the
sample’s composition experimentally. Another effect that has to be taken into
account is the Jahn-Teller distortion. The Jahn-Teller Theorem, published in 1937,
states [51]: "any non-linear molecular systém in a degenerate electronic state will be
unstable and will undergo distortion to form a system of lower Symmetry and lower

energy thereby removing the degeneracy". The Mn®" ion is known to be an ion with a
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Figure 4.4 According to Hund’s rule, the spin (S=1/2) of the e, electron
should be parallel to the “core spin” ( §=3/2) of the three e electrons in
order to maximize the total spin. The ey electron on a Mn* site hops to a 2p
electronic state on O site: Simultaneously, a 2p electron on the O site
hops to an empty eg state on the Mn*" site

strong Jahn-Teller effect when it occupies an octahedral site, as in the manganites.
Thus, the e, level in the Mn®* ions will be further split as figure 4.3 shows. The

energy between the two e, levels is about 0,25 eV

After Jonker and Van Santen [7] identified the strong relationship between
ferromagnetism and metallic conductivity in mixed-valence manganites, Zener
proposed the so-called double exchange model to explain this behaviour [5]. He
introduced two configurations: Mn**-0*-Mn*" and Mn*"-0*"-Mn** and suggested
that the exchange interaction between Mn>* and Mn*" jons occurs via an oxygen ion;
specifically, the transfer of an electron from the Mn** to the oxygen and

simultaneously from the oxygen to the neighboring Mn*" ion (see Figure 4.4). This
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process is fundamentally different from the conventional superexchange interaction,
which dominates the antiferromagnetic parent compound. Because of the strong
Hund’s rule coupling, the core spins of neighbouring Mn ions must align
ferromagnetically if hopping is to occur in the metallic state, Thus, double exchange
is always ferromagnetic. If the Mn core spins are not parallel to one another, the
electron mobility decreases and transfer becomes more difficult. Further studies of
double exchange by Anderson and Hasegawa [6] found that the transfer integral for

double exchange is proportional to cos(8/2) instead of cos(6) as in the

superexchange case, where 0 is the angle between two adjacent core spins. Clearly,
electrons hopping maximises when the corresponding core spins are parallel ©=0)
and vanish when they are antiparallel (0 = 1800). The application of an applied
magnetic field depresses the spin disorder and aligns core spins, leading to a lower
resistivity. The double exchange model successfully explains qualitatively the co-
occurrence of ferromagnetic and metallic states in the mixed-valence manganites;
however, it fails to explain the high and low temperature transport and magnetic

behaviour quantitatively.

4. 4 Magnetic Polarons and Transport Behaviour in Manganites

As far as the transport properties are concerned, there are essentially two kinds in

the mixed-valence manganites: those which undergo a transition from metallic to
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Figure 4.5 An ordered ferromagnetic cluster acts as a magnetic potential
well where the carriers can get trapped.

semiconductor-like behaviour and those which retain their metallic / semiconductor
characters regardless of the composition and magnetic state (i.e. the Lal.beanog'
system [52] and Lag sMgp,MnO; [53]). The high temperature transport behaviour in
the manganites can be understood quantitatively in terms of polaron formation,
Magnetic polarons are formed from a localized carrier coupled to a lattice
deformation. Two types of magnetic polarons have been introduced: the free and
bound polarons. The free magnetic polaron is a ferromagnetic cluster embedded in a
paramagnetic background, namely, a region of order in a disordered matrix of

localized core spins. This local order will act as a potential well and trap the carrier
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as shown in Figure 4.5. In the case of a bound magnetic polaron, the force which
traps the carrier is the Coulomb interaction between the carrier and the surrounding
impurity ions. Polarons in manganites have been widely reported, especially in the
high-temperature regime, where the magnetic correlations become negligible
compared with charge/lattice and charge/charge interactions. The polaronic transport

in manganites can be simply expressed as:

P(T)=p,T" exp(E, /K, T) (43)
Here E, is the activation energy which is, namely, the energy required for an
electron to delocalize from the potential well. There are two physical limits for this
hopping process which depend on the magnitude of the associated phonon frequency.
If lattice distortions are slow comﬁared to the charge carrier hopping frequencies, the
hopping is adiabatic; otherwise it is non-adiabatic. In the adiabatic limit,n =1, and
the resistivity is:

P(T)=p,Texp(E, /K, T) @4
Some doped manganites in the high temperature regime obey this relation very well

[54, 55]. In the non-adiabatic limit,» =3/2, and corresponding resistivity is

%
P(T)=p,T7* exp(E, /K, T) 4.5)
Transport in the non-adiabatic limit is accomplished by electron transfer between

polarons rather than by the field-induced movement of the polaronic entities

themselves. The transport behaviour in La;Mg,MnO; (x<0.4) is consistent with the
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predictions for carrier transport by small polarons” hopping in both the paramagnetic
and ferromagnetic phases [56]. Lay 67Cap 33Mn0Os thin films also show a non-adiabatic
small polaron behaviour in zero field [57]. Besides these two kinds of hopping
processes, thin films or polycrystalline samples with small grains exhibit a variable-

range-hopping (VRH) behaviour, which is described by

1 -
P(T)=p, exp(T, /T)s (4.6)
Here p, is a prefactor and T,is a characteristic temperature. The high temperature

transport in (Lal_dex)o,67Pbo.33Mn03 samples shows a VRH behaviour in a wide
composition range (0.2 <x < 1.0) (details will be given in chapter 4); similar results
can be found in the work of Coey et al [50].

The low temperature transport properties of manganites have been studied in
detail only recently; it turns out to be much more complicated than that of normal
metals. In non-magnetic metals, the electrical resistivity is often assumed to follow

Matthiessen’s rule
p(T) = p,y +p,T? (4.7)
where the first term, Py, is the residual resistivity arising from scattering by

impurities and defects and the second term is the intrinsic contribution from lattice

(phonon) scattering of charge carriers, which usually has a dependence with p=5 in

normal metals. In low temperature manganites, spin waves are also expected to play

" If the carrier, together with its associated crystalline distortion, is comparable in size to the cell
parameter, the object is called a small polaron.

53



an important role, so the contribution of magnons must be taken into account. Studies
[12] in La;,Ca,MnO; (x=0.2, 0.33, 0.45) samples have suggested that the low

temperature resistance data can be fitted to equation (4.7) with p=2.5. If an

additional T? term, for electron-electron scattering, is added, the data can be fitted to

equation (4.7) with p=4.5 which is the prediction for electron-magnon scattering in

a double-exchange system [58]. A T’ dependence will arise if electron-phonon
scattering dominates. Akimotot et al. [59] also claim that the low temperature
resistivity behaviour is closely related to the conduction electron bandwidth of the
sample. Some comparisons [11] between polycrystalline and single crystal samples
suggest that the scattering from grain boundaries also plays a significant role in the
low temperature transport behaviour. Although good fits to various powers of the

temperature, T, (T°,T*’....) have been found, the underlying transport mechanism is

still elusive.

In summary, both the low and high temperature properties (magnetic and
transport) in manganites have been studied intensely. This thesis will focus mainly on
the rarely studied temperature regime — the critical region. In the following sections
of this chapter, critical analysis of single crystal Lag73Bag»7MnO; and
Lag 73Cag27MnO; samples will be presented. Subsequently, the critical behaviour ofa

series of polycrystalline (La1xNdx)o.s7Pbo33Mn0;3 (0.2 < x < 1.0 ) samples will be
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analyzed together with high temperature transport behaviour, the latter showing a

variable range type hopping dependence.
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4.5 Critical Analysis of Single Crystal Lay;Bay ,7,MnO,

4.5.1 General Review
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Figure 4.6(a) The zero-field ac susceptibility curve for Lay 73Bag 2,MnO;s

measured on warming; (b) the coercive Jield H, measured from the
complete hysteresis loops as a function of temperature.

Figure 4.6(a) presents the zero-field susceptibility ¥(0,T) as a function of
temperature between liquid Helium temperature (4.2 K) and 300 K measured on
warming following zero field cooling at 300 Hz in a 0.1 Qe rms driving field. The

shape of this curve shows a complex structure; obviously, the marked susceptibility
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drop above 250 K suggests a transition from a ferromagnetic state to a paramagnetic
state. By finding the temperature corresponding to the minimum slope dy/dT, a
preliminary ordering / Curie temperature T¢ ~ 248 K can be estimated. The relatively
flat plateau between 212 K and 240 K corresponds to a measured susceptibility of y
= 0.089 emu/g Oe, which, if identified with a (lower) demagnetization limit N7,
yields a demagnetization factor N = 1/%, = 11.2(4) g Oe /emu. This result is confirmed
by theoretical calculation [60]; treating this specimen as an ellipsoid and evaluating
the corresponding elliptic integral, a demagnetization factor N = 9.94 g Oe /emu is
obtained (based on a theoretical density of 6.76 g /cm’). The susceptibility drop
around 200 K in figure 4.6(a) has been attributed to a structural change from a higher
temperature, higher moment rhombohedral (R) R3¢ phase to a lower temperature
Orthorhombic (0) Pbum/Imma counterpart. The decrease below 100 K in figure
4.6(a), often linked to an increasing coercive field, likely arises from a different
source here, as discussed below. Features emerging below 50 K in figure 4.6(a) will
also be discussed in the next subsection. However, the focus of the present subsection
is to investigate the nature of the phase transition around the magnetic ordering
temperature, i.e. the secondary peak structure appearing around 250 K in figure
4.6(a).

Figure 4.7(a) shows a selection of magnetization isotherms measured in the

vicinity of the ordering temperature, T.. The magnetization isotherms around T,
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Figure 4.7 (a) Magnetization isotherms between 240 K(top) and 251 K
(bottom) in 1 K step. (b) The same data in (a) replotted in H/M versus M’

format
display no “S” shaped characteristics in fields up to 50 kOe. As discussed previously,
the “S” shaped behaviour of magnetization isotherms is usually related to a first-
order phase transition, where the metamagnetic field, Hy;, derived from such curves
delineates the boundary separating a ferromagnetic state from a paramagnetic state.
Thus, the magnetization isotherms reproduced here suggest the transition around 250
K is a second-order/continuous one; this assertion is confirmed in figure 4.7(b) by
replotting the corresponding magnetization isotherms in a M? versus H/M format

(Arrott plots). Arrott plots for this specimen show no indication whatsoever of a
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negative slope, neither initially (corresponding to the coefficient 04(T) in the Landau
expansion) nor at higher magnetization. The clear curvature apparent in figure 4.7(b)
also indicates that the conventional Arrott plot cannot apply to this sample, namely,
mean field critical exponents (y=1,B=05,8 = 3) cannot describe the critical
behaviour of the present sample. A carefully examination of the very low field
magnetization isotherms in figure 4.7(a) also reveal the technical/magnetic soft
character of this specimen, the rapid increasing of magnetization near H,=0 likely
arises from the motion of domain walls. The soft characteristics are also suggested by
the appearance of the flat plateau in the zero-field susceptibility curve, i.e. low ac
driving fields (0.10e here) drive soft magnetic materials to the demagnetization limit.
The temperature dependence of the coercive field also confirms such soft features, as
figure 4.6(b) shows. These coercive fields do not exceed 5 Oe at any temperature
between 5 K and 250 K; above 250 K, the sample is paramagnetic. From the low
field isotherms measured around the ordering temperature, where they approach a
shearing curve limited behaviour, a demagnetization factor N = 10.62 g Oe/ emu can
be deduced by using data over an applied field range -50 Oe < H, < 50 Oe. The three
demagnetization factors deduced above agree with each other within 5%. In the
following discussion, an average demagnetization factor of N= 10.9(3) g Oe/emu
from the two experimental values will be used. Indeed, due to the non-uniform

sample shape, data involving demagnetizing fields (NM) above 50% of the applied
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field H, - essentially for H, < 350 - 400 Oe - will be excluded in the following

analysis, as indeed was done previously for single crystal Lag 75S19.2sMnO; [61].

4.5.2 Critical behaviour in low and medium fields

Previous studies in doped manganites suggest the magnitude of the
magnetoresistance around T, is inversely proportional to the ordering temperature T,
and is also closely linked to the order of the ferromagnetic to paramagnetic phase
transition [2]. For example, La;.,Sr,MnO; (0.2< x < 0.5) possess some of highest T,
values and a weak magnetoresistance accompanying a second-order phase transition;
by contrast, Pr;xCa,MnO; (0.1< x < 0.3) exhibits an enhanced magnetoresistance at a
significantly lower T, accompanying a first-order phase transition [62]. In the Ba
doped system, available transport data [63, 64] shows a moderate magnetoresistance
(40-50%) with a relatively higher T, (for example, 245 K in the present sample).
Following the trend mentioned above, a continuous/ second-order phase transition is
expected in the present sample.  The following discussion, based on the
magnetization isotherms, will reveal a continuous phase transition with 3D
Heisenberg exponents.

As discussed in Chapter 2, from the equation of state (2.14), the asymptotic
behaviour of the scaling function for the larger and smaller values of its argument

will lead to the power-law relationships, namely, equation (2.15) — (2.19). From these
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relationships, critical exponents, which are model-dependent, can be extracted in a
self-consistent way from these power-law relationships. Obviously, all these power-
laws should be evaluated based on the contribution arising from magnetic critical
fluctuations alone; however, the measured magnetization isotherms contain
contributions from both the singular magnetic response as well as technical
components. In order to reveal the nature of the critical phase transitions, such
technical contributions, as well as complication arising from the crystalline
anisotropy, must be eliminated. This can be accomplished by using the Arrott-
Noakes equation of state (equation 2.29) [38]. The spontaneous magnetization, Mg,
and initial susceptibility, Xi» can be obtained by extrapolating from the “high” field
regime, viz, the technically saturated regime. Arrott plots in figure 4.7(b) are nothing
but a special case of the above equation with mean field exponents (y =1, 3 = 0.5, &
= 3); thus equation (2.29) is usually referred to as a Modified Arrott plot.

Figure 4.8 presents the modified Arrott plots for the present specimen. Exponents
Y and B in this figure are chosen by trying different values between mean field theory
(r=1,B=0.5,5=3)and 3D Heisenberg exponents (y = 1.387, B = 0.365, 6 = 4.8)
[23]; the former corresponds to long-range interactions and the latter to a system with
short-range interactions. For the appropriate set of exponents, the isotherms shown in
figure 4.7(b) are transformed into a series of parallel straights lines, as shown in
figure 4.8. From such plots, the temperature dependence of the spontaneous

magnetization, Ms(T), and initial susceptibility, xi(T), can be obtained from the
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intercepts of these straight lines on the horizontal and vertical axes, respectively. The
straight line extrapolating through the origin gives the critical temperature; in
practice, this procedure usually involves the extrapolation of several curves near the
ordering temperature to find the minimum absolute intercept and then interpolating.
Using this technique, an improved estimate, T, = 245 + (.5 K, was found, as shown
in figure 4.8. A detailed examination of the exponents used in figure 4.8 reveals
values very close to the predictions of the 3D Heisenberg model. However, as
discussed previously, the critical exponents y and 8 can vary substantially without a
significant change in the modified Arrott plots. Thus, the power-law relationships
mentioned above should be tested for self-consistency using the spontaneous
magnetization, Mg, and initial susceptibility, y;, obtained from modified Arrott plot
intercepts. True self-consistency is achieved when the modified Arrott plots and the
power-laws yield the same set of critical exponents. This is summarized in figures
4.9 to 4.11. Figure 4.9 shows the temperature dependence of the spontaneous
magnetization (from the horizontal intercepts in figure 4.8); while the inset of this
figure represents the same data plotted against the reduced temperature on a double
logarithmic scale. A test of the power law prediction of equation (2.15) is provided
by the least-square fit in the inset of figure 4.9, which yields an order parameter
critical exponent

B=0364+0.003, for 2x 10° <[t <2 x 107
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Figure 4.8 M*? versus (H/M)™ (Modified Arrort plots) using Heisenberg

model exponents (B = (.365, Y = 1.387) for a selection of magnetization

isotherms at temperatures 0f 242 (top), 243, 244, 244.5, 245, 245.5, 246,
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Figure 4.9 The Spontaneous magnetization, M, plotted against
femperature. The inset shows Ms versus reduced lemperature plot on a
double-logarithmic scale as a test of equation (2.15).
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Figure 4.11 The critical isotherm
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Figure 4.12 4 scaling plot with the exponents and T, ¢ value obtained
Jrom the previous three Jigures. The different symbols stand for different
lemperatures. While the linear plot in the main body of this figure shows
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collapse of magnetization isotherms in the critical regime onto the two
branches of the scaling function. The solid lines drawn in this inset
represent the asymptotic forms of the scaling function discussed in the
text.

Similarly, figure 4.10 shows the reciprocal of the initial susceptibility 1/y; , found by

extrapolating the straight line to the vertical axis in figure 4.8, as a function of
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temperature. The linear fit drawn in the inset of this plot yields the susceptibility
exponent,y, from equation (2.17) of

Y=1.392+0.005, for 2x 103 <t<3 x 102

Figure 4.11 shows the magnetization along the critical isotherm as a function of field;
the inset in figure 4.11 reproduces these data replotted on a log-log scale, and the
slope of this line yields the critical exponent

5=4.83+0.04, 200 Oe< H; <50 000 Oe

Overall, the critical exponents obtained from the above power-law relations agree
very well with those predicted by the 3D Heisenberg model, as indeed do the
exponents used to construct the modified Arrott plots in figure 4.8, as the self-
consistency condition ensures. This can be further tested by the scaling plot - figure

4.12 Rearranging the state of equation (equation 2.14), the scaling function can be
. v+B B . . .
written as F, (h/ I )=m(h,t)/ [tf" ; thus, with the current value for the ordering

temperature, T., and the critical exponents 8 and v, all the magnetization isotherms
around the critical region should collapse onto the two branches of the scaling
function ( Fs, t>0; F. t<0) when replotted in an M/t® versus H/t Y format. Figure
4.12 demonstrates complete scaling of all such magnetization data acquired in the
temperature interval 242.0 < T <2475K and the field range 200 < H < 50,000 Oe .
Clearly, in light of the sign of the reduced temperature, t, all data fall onto two

branches of the scaling function, (especially in high fields where demagnetization
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effects become less important); the inset in this plot, being double logarithmic-scale
in nature, emphasizes the differences in low field. While the functional form of the

scaling functions F, is not known in general, the asymptotic behaviour at large and

small values of the argument (H/t'(”ﬁ)) can be deduced as follow:

F_(0)=M;(0) (H—0,T<T,) (4.8)
h h
F, (W) ~ oy (H-0,T > T) (4.9)
1 h 1/8
F, (c0) ~ (BWBJ (t=0,H>0) (4.10)

The solid lines drawn in the inset of figure 4.12 represent the asymptotic forms of the

scaling function F, for the present specimen.

4.5.3 Critical amplitude analysis

In addition to checking the critical exponents (v,B,5) associated with a phase
transition, another effective way to test the universality class of the transition is by
estimating the critical amplitudes, the coefficients in equations (2.15), (2.17) and
(2.19). The critical amplitudes Ms(0), v and D for the present specimen were
determined by fitting the corresponding power laws in the insets of figures 4.9-4.11;
the values are summarized in upper panel of table 4.1. Both critical exponents and

critical amplitudes show model dependence, more importantly, critical amplitudes
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Critical
Amplitude Ms(0) Xo D
Value 120.8 = 1.6 6.8+0.2 1.8 +0.4x 10
Rec‘lgced Mean ~Field fcc Heisenberg fce Ising )
Critical S=1/2: S=1/2:S=co | S=1/2:5=3/ Experimental
Amplitude S=1.87 I TR
M 1.73:1.53 1.69: 1.22-1.44 1.49:1.31 1.40 £0.01
M. (0) : 40+ 0.
K Hy
P 1.73:2.99 1.58 1.52 0.4920.011Legr
kBTc
DM..(0)8 +0.26
O 1.0 1.55:1.23-2.07 1.88 12
H, -0.04

Table 4.1 Upper panel: critical amplitudes obtained by fitting corresponding
power law relations; lower panel: reduced critical amplitudes in various
models for a range of spin values, and the corresponding experimental

values.

also depend on spin values. Usually, reduced critical amplitudes M;s(0)/Ms.(0),

WHo/ksTc, DMS(O)5/H0 are used rather than the critical amplitudes themselves. In
mean field theory, the spin dependence of the reduced critical amplitudes is well

established [65]:

1/2
10(S +1)*
3(2S* +2S+1)

M, ©) :{ (4.11)
Msat (0)
M;.(0) being the zero temperature saturation magnetisation

3052 172
(28° +2s+1)}

e Ho :{ 4.12)

kpTe

where ¥oHo = Ms(0) and L is the associated fluctuating moment, while
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Figure 4.13 The illustration showing the relationship between the
rhombohedral unit cell (the three vectors in black) and the “pseudo”
cubic unit cell (the cubes in light gray).

DM, (0)° _,
H,

(4.13)

Table 4.1 summarizes the reduced critical amplitudes in various models for a range
of spins values, along with the critical amplitudes estimated from the experimental
data. The (reduced) critical amplitudes show not only a spin and model dependence,
but also a structural dependence. In table 4.1, the theoretical critical amplitudes were
quoted for an fee lattice, mainly because results are available for a wider range of
spin values on such a lattice [66-68]. As far as lattice structure is concerned, La;.
«BaxMnOs near the optimal doping level (x ~ 0.3) is usually described by a

rthombohedral unit cell with R3c space group. The relationship between this

thombohedral unit cell and the “pseudo” cubic primitive cell is illustrated in figure
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Figure 4.14 The main body of this plot represents the magnetization
isotherm measured at 2 K up to 80 kOe; the inset shows the magnetic
moment versus 1/H plot, where the vertical intercept from a linear fit to

several high field points yields an estimate of the saturation
magnetization.

4.13. Typically, from room temperature lattice parameter data (Moutis et al [69]),
“pseudo” cubic dimensions a=b=3.9120 10%, ¢=3.9001 A can be deduced; data from
Beznosov et al. [13] indicates the same type of unit cell with marginally larger
dimensions a=b=3.9165 A, c=3.9061 A.

The zero-temperature saturation magnetization Mg, (0)=86.25emu/ g, estimated from
the 2 K magnetization isotherm using an M vs H,™ plot for data between 60 — 80 kOe,

is shown in figure 4.14. Based on the spin only assumption, the Ba composition is
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estimated to be x=0.27(0) * 0.003; the average spin value W is 1.87. The
experimentally deduced critical amplitude MS(O)/I\/ISA&(O) is about 1.40, which agrees
with the theoretical prediction of the Heisenberg model with S>1/2. From xoHo =
Ms(0), a field Hy, as high as 1780 kOe, can be estimated. By assuming a reduced
critical amplitude, peHo/ksTc, which follows the Heisenberg picture (1.58), the
effective moment is deduced to be Kest = 3.22 up; comparing with the low
temperature spin-only estimation, e = 3.73 g, there is about 14% difference, which
suggests that the spin-only assumption may overestimate the effective moments,
possible due to spin canting. The reduced critical amplitude DM;(0)*/H, is estimated
using the  value obtained from the critical analysis (8 = 4.83) and yields a value of
1.15; obviously, the D value is marginally higher than the prediction of mean field
theory. Moreover, it is also Higher than the lowest limit of the fcc Heisenberg
prediction in classic limit (S — oo ). However, taking into account the uncertainty in
D by comparing isotherms within the quoted error of + 0.5 K of Te, the upper limit
for D will fall into the range of the Heisenberg model prediction for the classical
limit.
4.5.4 Critical analysis at higher fields from ac susceptibility data

In addition to the critical analysis mentioned above using magnetization
isotherms, critical analysis based on the temperature-dependent ac susceptibility data

has been performed between fields of 20 and 85 kOe. Figure 4.15 presents ac
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susceptibility as a function of temperature in various static biasing fields. As
discussed in Chapter 2, such plots provide an alternate way to extract the critical
exponents. Specifically, equations (2.17), (2.21) - (2.23) relate the peak susceptibility,
Xm, the (reduced) peak temperature, t,,, (and Tp) to the internal field, H;, in various
ways. The principal features of this figure are the peaks near 250 K, which shift
toward higher temperature, with an associated amplitude (y,) decrease, with
increasing static field. These maxima delineate the crossover line (the dotted line in
figure 4.15); above this line the magnetic response is temperature dominated, while
below this line the magnetic response is field dominated. Figure 4.16(a) plots the
peak temperatures T, against HY (r+6) (the 3D Heisenberg values Y+B=1.75 was
used here) from which Tc=240.2 K was obtained on extrapolating data points to zero
internal field. Comparing with the Curie temperature estimated from the modified
Arrott plots (figure 4.8), the ordering temperature estimated here is about 2% smaller;
this may be due to the different measurement processes”. Figure 4.16(b) replots the
reduced temperature t,, versus internal field H; on a double logarithmic scale as a test
of equation (2.22); the slope of these data points yields y+8 = 1.74 + 0.02, which
shows excellent self-consistency. The susceptibility exponent y = 1.38 + 0.01 is

obtained by fitting the temperature dependence of the peak susceptibility, y,p,, namely,

" Magnetization isotherms are measured at a fixed set of temperatures by sweeping the field,
while the ac susceptibility data presented in figure 4.15 are collected by scanning temperature in a
fixed field. Small differences can thus result due to the use of finite sweep rates in both cases.
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Figure 4.15 Selected temperature dependent ac susceptibility curves
measured at static biasing fields of 32 kOe (top), then 35 kOe 10 85 kOe
(bottom) in 5 kOe steps; the dotted line indicates the crossover line.

XmVS t.', which is consistent with the value obtained from low field (< 35 kOe)
magnetization isotherms. Figure 4.16(d) reproduces a test of equation (2.23), namely,
x(h,t,,) c hOD® A Jeast-square fit yields the equation of state exponent 5= 4.84 +
0.09, again in excellent agreement with the value from the critical isotherm (figure
4.11). Most importantly, the § value found here is independent of the choice of the
ordering temperature, T,, while the value obtained from critical isotherm shows a

strong dependence on the choice of T.. From the above discussion, the 3D

Heisenberg-like critical behaviour of the present specimen can be extended to an
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Figure 4.16 The plots showing the susceptibility data fits to Jind critical
exponents.

applied field as high as 85 kOe, without any indication of a crossover phenomenon

(frequently to mean field values).

In recent studies of the critical behaviour of single crystal La;«SrxMnQs, Kim et

al [61] reported cxponents values (y = 1.27 + 0.06, B =0.40 + 0.02,5=4.12 + 0.33

and o = 0.05 + 0.07 for x = 0.25) which fall between mean-field and 3D Ising model
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predictions (y =1.237, § = 0.326, 8 =4.789, o = 0.11) [24]; studies in a single crystal
Lag7Sto3MnOs specimen [70] also show similar critical exponents (y = 1.22 + 0.03,
B=037+0.04, 5 =425+ 0.2) intermediate between the two models mentioned
above. In an attempt to evaluate the applicability of the 3D Ising model to the present
system, the following analysis also was carried out. Arrott plots based on Ising
critical exponents yield plots of comparable quality plot as figures 4.8 (not reproduce
here), which supports the earlier assertion — critical exponents can vary over a certain
range without a significant change in the modified Arrott plot. However, the
corresponding power-law plots using Ms(T) and yi(T) deduced from such modified
Arrott-plots are not self-consistent. They iterate towards higher (i.e. Heisenberg-
model) exponent values. This indirectly supports Heisenberg - like behaviour in the

present Ba substituted sample.
4.5.5 Discussions and conclusions

In a double exchange system with a second-order phase transition, a Monte Carlo
simulation [71] indicated that such a transition should belong to the universality class
of the isotropic short range 3D Heisenberg model, as confirmed experimentally in
this sample from a careful critical analysis. Critical analysis of a single crystal
Lag 7Pbg3sMnO; specimen reported a field-induced crossover from the mean-field

model to the Heisenberg model at a field of 10 kOe [72]. Obviously, the critical
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analysis reported here, based on magnetization isotherms in fields up to 30 kOe, do
not support this scenario and the ac susceptibility data extends the range of validity
of 3D Heisenberg exponents to a higher field of 85 kOe .

The deviations from Heisenberg exponents in two single crystal Sr specimens [61,
70] mentioned above have been interpreted using a shape induced uniaxial anisotropy
(Kim et al.[61]). From the relationship between the anisotropy energy, K&, and the
thermal energy, kgT,, Kim et al. proposed ‘a criterion to decide the crossover
temperature from the 3D Heisenberg to the 3D XY and then to 3D Ising model
exponents. If the hard-axis anisotropy energy, Ku&’, is on the order of the thermal
energy, kgTe, a crossover from the 3D Heisenberg to 3D XY model exponents should
occur near a reduced temperature of t ~ 0.02; at a lower temperature, t ~ 4 x 107 ,a
crossover from 3D XY to 3D Ising model behaviour should be expected. (This
Crossover temperature is obtained by comparing the easy-axis anisotropy energy and
the thermal energy, i.e. Kg&® ~ kgTc). Critical analysis, from both magnetization
isotherms and temperature-dependent ac susceptibility data, in the present sample, do
not show any crossover effects. This behaviour would require the product Ku&® to be
at least an order of magnitude smaller than in the corresponding Sr doped system. As
far as the critical analysis is concerned, Ba doped manganites have not been studied
as extensively as the Sr substituted system. Available data on a polycrystalline
Lay ¢7Bag 33MnO; specimen [69] showed some exponents (y = 1.29 and f = 0.464)

intermediate between mean-field and Heisenberg €Xponents, while critical analysis
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on an epitaxial film (Lao7Bag3Mn0O;) [73] yielded mean-field exponents (y = 1.04 +
0.04, 3=0.54+0.02, 5=3.08 + 0.04) over a comparable reduced temperature range
to that covered in the present studies. These latter exponent values might possibly
arise as a result of a change from Heisenberg to Ising behaviour induced by a
tetragonal distortion in the film, accompanied by an enhanced dipole-dipole
interaction [74, 75] (emanating from large spin moments). It is also possible that the
correlation length exceeded the film thickness of 150 nm close to T, causing
complications due to reduced dimensionality; a detailed check, however, on this
possibility has yet to be made.

In summary, the analysis of detailed magnetization measurements in low and
intermediate fields, supplemented by high static biasing field ac susceptibility data,
on single crystal Lag73Bag27Mn0O;  reveal the occurrence of 2 second-
order/continuous ferromagnetic to paramagnetic phase transition. The nature of this
transition can be described by the isotropic 3D Heisenberg model. Such a result is
consistent with a model simulation for a double-exchange system, where anisotropy

does not play a significant role.
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4.6 Behaviour of Single Crystal Lag73Bag,;MnO; in  the

Ferromagnetic Regime
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Figure 4.17 (a) ac susceptibility measured on warming in static applied
Jields of 200 Oe (fop) 400 — 1000 Oe (in 100 Oe steps), 1200 Oe and
1400 Oe (bottom); (b) the lemperature dependence of the field — cooled
(FC) and zero-field-cooled (ZFC) magnetization measured in nominal
applied fields of 30 Oe (bottom) , 40 Oe, 60 Oe, 80 Oe and 100 Oe (top).

As shown in figure 4.6(a), the zero-field ac susceptibility curve of
Lag 73Bag 27MnO; is complex, as can be seen in more detail in figure 4.17(a). Here the
temperature dependent ac susceptibility in different static basing fields is reproduced.

The secondary peak near 250 K in figure 4.17(a) has been analyzed from a
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conventional critical behaviour point of view, from which Heisenberg-like critical
eXponents have been extracted. The point that needs to be addressed here is the
susceptibility drop/moment reduction near 200 K.

Previous studies suggest that structural changes can result in a moment reduction
in La;.,Ba,MnO; at a certain doping level. Laukhin et al. [76] found a structural
phase transition from a high temperature thombohedral (R) to a low temperature
orthorhombic (O) phase near 175 K in a single crystal Lag sBag ,MnO; specimen;
accompanying this structural phase transition, there is a reduction in the
magnetization and some incremented change in the resistance. The temperature
dependent X-ray data from the same sample provided direct evidence of the

existence of a structural phase transition from an O phase (R3¢) to an R phase

(Pbmn); moreover, the Phmn and R3¢ phases coexist, at least within the temperature

interval 185 < T <196 K. Similar moment reductions associated with a first-order

R3¢ < Imma structural phase transition has also been observed in a Ba-substitution
single crystal sample with optimal doping (x~0.33) [77]. The composition of the
present sample (x=0.27) falls in the composition range defined by the two specimens
mentioned above. The moment reduction around 200 K evident in figure 4.6(a) and
4.17(a) unquestionably is linked to a phase transition from a high
moment/temperature R phase to a lower moment / temperature O phase. A careful
examination of figure 4.17(a) reveals that features characterizing such a structural

change are suppressed by increasing fields; it eventually vanishes above a static field
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of 500 Oe. These characteristics are confirmed in figure 4.17 (b), where the field
cooled (FC) and zero field cooled (ZFC) curves in several different fields are
reproduced. Both the FC and ZFC branches display a very clear
moment/magnetization drop around 200 K; below T, irreversibility between FC and
ZFC branches is observed. | ’

The low temperature structure évident in Fig 4.6(a) and 4.17(a) in the interval
50 - 100K - particularly the fall in ¥,.(0,T) — mirrors the moment reduction
established near 200 K. As a result, a careful analysis of the magnetic properties
below 100 K of this system was undertaken. While the full details of this
investigation are presented elsewhere [78, 79], a summary is presented here for
completeness.

Figure 4.18(a) and (c) reproduce a set of low temperature (T< T.) isotherms that
confirm the anomalous behaviour first revealed by ac susceptibility below 100 K.
Figure 4.18 (b) presents the magnetization isotherms replotted in M? versus H/M
format, i.e. Arrott plots for this specimen. A set of linearized lines outside the critical
region indicate that the mean field exponents are appropriate to describe the
behaviour, although the critical region shows 3D Heisenberg-like critical behaviour.
However, the principle focus here is to present a summary of the thermal variation of
low temperature spontaneous magnetization determined earlier. As discussed earlier,

the spontaneous magnetization was estimated from the high field extrapolation in

order to eliminate the technical contribution in low fields and
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Figure 4.18 (a) Selected magnetization isotherms measured at 50 K
(top), 5K, 25 K, 100 K, 150 K, 180 K, 200-230 K (bottom) in 5 K steps;
Sigure (b) the same datq of (a) replotted in M versus H/M format; (c) the
selected low field curves of (@) indicate the crossover at 25K (@), 204
K(A) and 210K ().

the temperature dependence of spontaneous magnetization estimated from intercept
in figure 4.18(b) is reproduced in the main body of figure 4.19.
The spontaneous magnetization below 150 K so estimated can be fitted using a

conventional approach based on low-lying acoustic mode spin-wave excitations, viz:
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ho,, =A+Dq’ (4.14)
Where A is the gap, a constant offset to account for small anisotropies or the
application of an external magnetic field; D is the stiffness constant and q is wave

vector. It is known that such a dispersion relation should result in the “Bloch T¥?

law”, namely, a spontaneous magnetization having a temperature dependence of [80]

IR (s e 01
Ms(0) ~ NSl{4nD 2"k, T '

where M(0)=Nguz$ is the spontaneous magnetization at zero-temperature; £(3/2) is

Riemann-zeta function, defined as

g@;fa_g/ i 4.16)

a=]

A least-square fit to the data between 60 and 140 K in the main body of figure 4.19
yields a gap A = 0.4530.02 meV and a stiffness constant D = 65.742.5 meV A% low-
temperature (below 0.1T;) field-dependent magnetization studies on a Lag7SrysMnQs
sample showed a much larger stiffness constant (D = 154+5 meV A?%) [81); neutron
scattering data [82] on single crystal LagsBagsMnOs yielded a smaller gap (A=
0.20£0.04 meV) and a larger stiffness constant D (D =152+3 meV A?%. Such
compositional ‘Variations are consistent with those reported in the La; xCa,MnOs
system [83, 84] (D = 46 meV A’ atx = 0.2, rising to 170 meV A2 at x = 0.33).

From figure 4.19, below 50 K, there is a clear magnetization drop from its

“expected” value, which is emphasized in this figure by only plotting data below 30
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Figure 4.19 Plots of the reduced spontaneous magnetization
(My(T)/M(0)) against temperature. Main figure: the solid line represents
a fit to equation (4.15) between 60 and 140 K using D=65.7 meV A? and
A = 045 meV; the dashed line extends this fit beyond the temperature
interval specified. Inset shows data below 30 K; the dashed lines uses the
parameters corresponding to the main figure scaled to My(T)/M,(0) =
0.9575; the solid line uses the same D and scaling factor but with A
increased to 2.35 meV.

K. Obviously, the fit using high temperature parameters (dotted line) cannot describe
the low temperature behaviour here, it will yield a much stronger temperature
dependent in M(T) than is observed. A modified fit based on equation (4.15) was
thus employed by using the higher temperature D (D = 65.7+2.5 meV A% and a

revised spontaneous magnetization Ms,=0.9575(NgpsS) = 81.73 emu/g. A least-square
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fit, the solid line in the inset of figure 4.19, yields a gap A = 2.35 meV, which is
significantly larger than the value obtained from the higher temperature fit (A = 0.45
meV); this gap is however close to the value (A=2.51+ 0.46 meV) reported in a
single crystal Lag7Pbo3MnO; sample [85]. Irrespective of the specific approach used
or the parameters characterizing it, the 4% decline in the spontaneous magnetization
as expressed in the modified M;(0) appearing in the fit to equation (4.15)
unequivocally reflects an effective moment reduction; however, the mechanism
leading to such reduction is very difficult to identify from such macroscopic
measurements.

Nevertheless the origin of this fall is clearly revealed by the magnetization
isotherms in figure 4.18 (a) and (c); magnetization isotherms measured below 60 K
lie below those measured above 60 K. Such an inversion leads to a moment reduction
in My(T) below 60 K. The crossover of these isotherms near 700 Oe can be clearly
seen in figure 4.18(c). It should be emphasized that this process is a gradual one
without any signatures of metamagnetic transitions. The exact origin of moment
reductions in present specimen is still unclear; however, spin canting - a long
expected result in double exchange system [86] - is one possibility. As discussed in
the review of CMR effects, the interaction energy in double exchange system scales
with cos(6/2), and competes with the superexchange interaction, which is
proportional to cos(8). Due to the presence of the cos(6/2) term, the pure

antiferromagnetic spin alignment is unstable with respect to the spin canting [87].
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Spin canting can account for the scenario describe here, although likely not in the
form originally proposed by de Gennes [86]; it would yield a (uniform) canting
angle close to 17°(9 = cos'1(0.9575)). However, these data are also consistent with a
helimagnetic/spiral magnetic structure forming with an axis parallel to the field
direction — the long axis of this single crystal — with a similar disinclination angle.
Other possibilities for this effect, particularly the fall in Xac below 100 K, need to be
considered. The inhomogeneous ordering of the type reported in the La;«Ca,MnO,
System [88] for x < 0.2 might initially appear to provide a potential explanation of a
moment reduction in this specimen; however, as the insulating character prevalent at
these doping levels plays an important role in establishing such order, this
explanation seems unlikely in the low temperature metallic phase of the present
system. In addition, technical sources do not appear to underlie the fall in Xac below
100 K as this effect does not correlate with the variation in the coercive field Hy(T),
figure 4.6(b), nor Xac frequency dependent in this regime. The exact origin of this
drop is still unclear; it is very unlikely to result from a further structural change as
none have been reported in this temperature range by previous studies. A decline in
X2c(0,T) below 100 K has been noted previously [77], but it was not investigated
further.

In summary, the temperature dependent Spontaneous magnetization M(T) in
single crystal Lag73Bag2;MnOs can be fitted by a gapped spin wave dispersion

relation, which yields a gap A = 0.45(+0.02) meV and D = 65.7(£2.5) meVA?
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between 60 and 140 K (~T¢/2); the spontaneous magnetization below 30 K can be fit
using same equation with a larger A = 235 meV. Different magnitudes of
spontaneous magnetization drops have been observed below 60 K, especially, 4%
moment reduction in zero-temperature, which is consistent with a spin canting — a
long predicted effect in doped double exchange manganites.

Lag73Bag27MnOs is one of the few manganese perovskites exhibiting Heisenberg
exponent values. Further investigations, therefore, appear necessary to confirm the
presence of 3D Heisenberg exponents in other system with small anisotropy (Ba
doping, for example) and to investigate more fully crossover effects in systems with
anisotropy (i. e. Sr doping). The moment reduction reported above in the Ba-doped
single crystal also suggests that the microscopic spin structure needs to be
investigated using, for example, neutron scattering. Indeed, neutron scattering
measurements [82] on this system indicates that the acoustic spin-wave stiffness D

does not approach zero temperature monotonically.
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4.7 The Nature of the Phase Transitions in Single Crystal

La0,73Cao_27MnO3

4.7.1 Overview of the phase transitions in La; ,Ca,MnO;
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Figure 4.20 The phase diagram for the archetypal system La;xCayMnO; [12].

Figure 4.20 is a simplified phase diagram for the archetypal manganite system
La; .,Ca,MnO; [12]. Most of recent studies have been focused on the optimum
doping level x ~ 0.33 where there is a strong ferromagnetic coupling and a large
magnetoresistance; it is believed that the double exchange mechanism is dominant in

this region. At a higher doping level (x > 0.5), the system changes from a
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paramagnetic insulator to an antiferromagnetic state with decreasing temperature and
an intermediate charge ordered state can also appear for doping level 0.50<x<0.85.
Around a narrow range of doping levels near x ~ 0.5, both ferromagnetic and
antiferromagnetic states can occur; upon cooling, the system first changes from a
paramagnetic insulator to a ferromagnetic metal (~220 K), then to an
antiferromagnetic state (~150 K). This behaviour is usually attributed to the
competition between double exchange and superexchange coupling. Regarding the
nature of the phase transition around the optimum doping level, specific heat and
thermal expansion studies of polycrystalline samples of Lag65Cap3sMnO; showed
that the ferromagnetic ordering arises from a thermodynamic first-order transition
[89]; magnetization and specific heat data for an x = .33 sample have also been
interpreted as indicating the occurrence of a first-order/discontinuous magnetic phase
transition near optimal doping [90], although recently the interpretation of such data
has been questioned [91]. Small angle neutron scattering reveals a discontinuous
change in the scattering at T, for wave vectors below ~0.065A™ on a single crystal
Lag7Cap3sMnO; sample [83], which suggests that a first-order phase transition
persists at this composition; analysis based on Banerjee Plots also showed the
existence of a first-order phase transition in Lay;3CaysMnOs sample near the optimal
doping [92]. However, such first-order transitions (in the T, versus x plane)
terminate at a tricritical point near x = 0.4; this composition was considered to be a

boundary separating first- (x<0.4) from second-order (x>0.4) phase transitions. At
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the tricritical point, x=0.4, the modified Arrott plot analysis based on magnetization
data suggests a continuous transition with a set of exponents close to those predicted
for such a tricritical point (0=0.48, B=0.25, ¥=1.03, §=5.0) [90]. Below optimal
composition, a volume contraction (AV=0.13%) occurring in the vicinity of a
paramagnetic to a ferromagnetic transition at x = 0.25 suggests that this transition
retains first-order characteristics [9]; at the lower composition of x = 0.2,
magnetization studies on single crystals using Banerjee plots show the ferromagnetic
to paramagnetic transition is second-order in nature and can be characterized by
Heisenberg exponents [93]. The present studies focus on the compositional region
between the lower composition, x=0.2, mentioned above and the optimum doping
level x=0.33; its purpose was to mvestigate the nature of the phase transition close to
the localized to itinerant transport transition (a ferromagnetic insulator to
ferromagnetic metal transition), i.e. x=0.27.

The sample used was a 0.12 g single crystal (provided by Y. Mukovskii and D.
Shulyatev of Moscow State Steel and Alloys Institute) with approximate dimensions
(10 x 14 x 1.4 mm®) grown using the floating-zone technique [94], displaying a
mosaicity of less than 1°. Measurements of the dc magnetization and the ac
susceptibility were carried out simultaneously in a Quantum Design Model 6000
PPMS magnetometer/susceptometer using the measurement procedure described in

Chapter 3.
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4.7.2 Evidence suggesting a first-order phase transition

Figure 421(a) presents the temperature dependence of the zero-field ac
susceptibility, ¥(0,T), measured on both warming and cooling at 2.4 kHz in a 30 mOe
driving field. It can be seen directly from figure 4.21(a) that there is no discernible
hysteresis (even measured at a very slow temperature sweep rate of 0.1K/s), which is
usually a signature of a first-order phase transition. From this figure, an ordering
temperature T, ~ 232K was estimated by finding the temperature corresponding to
the minimum slope of this plot, i.e. dy/dT)y. Figure 4.21(b) shows the tempefature
dependence of the coercive field, H., between 5 K and 250 K estimated from
complete field-dependent magnetization curves. No coercive field can be
distinguished above T. and nowhere does the coercive field exceed 10 Oe; this
confirms the high quality éf this sample. A high quality single crystal sample without
grain boundaries provides an ideal platform to Investigate the order of phase
transitions. Figure 4.22(a) shows magnetization isotherms measured in the increasing
field mode in the vicinity of the ordering temperature. The first feature that should be
noticed is the “S” shape of curves for temperature above 237 K, which differ
dramatically from the conventional isotherms associated with a pure second-order
phase transition. Magnetization isotherms with such features are usually associated
with a metamagnetic phase transition. Similar results have been reported in different

systems, including polycrystalline x = 0.33 perovskite manganites specimens [90],
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Figure 4.21 (a) The zero-field susceptibility measured on warming and
cooling processes. (b) The temperature dependence of the coercive field,
H.

intermetallic compounds (such as Gd,In [95]and doped CeFe, [96]) and the
ferromagnetic shape memory alloy Ni-Mn-Ga system (will be discussed in chapter 5
in detail)". The low field structure (<1.5 kOe) evident in this figure originates from
technical contributions, such as domain wall motion, domain reorientation/rotation,
which lead to the small coercive field, H,, in figure 4.21(b). Figure 4.22(b) replots the
magnetization isotherms in a M/H versus M? format; the slope of such plots — the

Banerjee criterion — have been widely used to establish the order of such transitions.

" In Gd,In and doped CeFe; as well as the Ni-Mn-Ga system, the relevant phase transitions are
field-induced order-order phase transitions; by contrast, perovskite manganites display an order to
disorder phase transition.
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Figure 4.22 (a) Magnetization isotherms measured in an field-increasing
mode for temperatures increasing from 234 K(top) to 25 OK, then 255 K
and 260 K (bottom). (b) Magnetization isotherms replotted as H/M
versus M’ based on the data in (a).

A positive initial slope, reflecting a positive coefficient o4(T) in the Landau
expansion, suggests a second-order/continuous phase transition, while a negative
slope suggests a first-order/discontinuous phase transition. Although the initial slopes
in figure 4.22(b) are positive, clear negative slopes can be found at higher
magnetization for temperature above 246 K; this indicates the existence of first-order
characteristic in this transition. The thermodynamic basis of this modified criterion
can be understood by including an additional term in the expansion of the free energy,

as discussed in chapter 2.
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Figure 4.23 shows a selection of magnetic isotherms measured in the vicinity of

ordering temperature, T.,, in both field increasing and decreasing modes.

Accompanying the “S” shaped curves mentioned earlier is a limited amount of

hysteresis. Similar to that reported at x =033 [90], the actual hysteresis

<40
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0 . ‘ ' 4 . I . 8 12
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Figure 4.23 A selection of magnetization isotherms measured on both
Jield increasing and field decreasing at temperature from 234 K (top) to

245 K (bottom) in 1 K step.

accompanying this metamagnetic transition is confined to a narrow region of the (H-
T) plane, as figure 4.23 confirms. From the data in figure 4.23, the metamagnetic
field, Hy, which characterizes the transition field from the ferromagnetic state to a
paramagnetic state, can be estimated for different temperatures in a similar manner to

that used for the intermetallic compounds mentioned above, namely, the maximum in
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Figure 4.24 The metamagnetic field, Hy, as a function of temperature.
The data were taken from figure 4.23 in both increasing fields and
decreasing  fields. The meltamagnetic  boundary separates  the
Jerromagnetic region from paramagnetic region in the (H-T) plane.

dM/dH. Metamagnetic fields, Hy, (corrected for demagnetization effects) estimated
from both field increasing and field decreasing magnetization isotherms as a function
of temperature are presented in figure 4.24. A least square fit to these data yields a
slope dT/dHy ~ 8x10™* K Oe¢™; this value is smaller than the value dT/dHy ~
1.9x107 K Oe™! estimated for x = 0.33 sample [90]. This difference may be due to the
use of a different criterion for identifying the metamagnetic field Hyy. Kim et al. [90]
estimated Hy by finding the positive curvature d*M/dH?, indicative of reentrant

ferromagnetism, in the magnetization isotherms. By contrast, the specific heat based
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Figure 4.25 (a) The ac susceptibility y, measured in applied static fields
Ha increasing from 600 Oe (top) to 8

00 Oe in 50 Oe steps, in 100 Oe
steps to 1200 Oe, in 200 Oe st

eps to 1600 Oe, and finally in 2000 Oe
(bottom); the crossover-line is shown by the dashed line; double

logarithmic plots of (b) the susceptibility maxima y, from (a) against
internal field H, as a test of equation (2.23); (c) the reduced
lemperature t,, against internal field H; as a test of equation (2.22) (d)
the susceptibility maxima y,, against reduced peak temperature t,, as a

test of y(hty) oct,” . The solid lines drawn using Heisenberg exponents
are for comparison.

estimates [97] yields a larger slope. Such field-induced shifts confirm the first-order

character of this transition. In essence, the fitted line in figure 4.24 depicts the field-

dependent phase boundary, which separates the paramagnetic state from the
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ferromagnetic state in the field (H) - temperature (T) plane. The “S” shaped
isotherms and associated hysteresis, as well as field-induced shifts in the (H-T) plane,

are characteristics indicative of a first-order phase transition.

4.7.3 Evidence suggesting a second-order phase transition

The arguments supporting the simultaneous second-order nature of this transition
are established by measuring a series of susceptibility versus temperature curves at
various static biasing fields, figure 4.25(a). This series of curves exhibit a set of
maxima that move upward in temperature while decreasing in amplitude as the
superimposed static biasing field increases (these maxima could only be resolved for
applied fields 400 Oe < H,< 4000 Oe )- As described in chapter 2, maxima that
behave in this way are a characteristic signature of a second-order/continuous phase
transition. These maxima delineate the position of the crossover line in the H-T)
plane, above which the response is thermally dominated and below this line the
response is field dominated; this crossover line ends at H = 0 in an end line point -
the Curie/critical temperature T.. The corresponding zero field susceptibility curve is
reported in figure 4.21(a).

As discussed previously, with a pure second-order/continuous phase transition,
the critical peaks in figure 4.25(a) are predicted to obey a series of asymptotic power-

laws, and a set of exponents can be extracted from these power-laws. Specifically,
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the peak susceptibility, ym, and the reduced peak temperature, ty, should exhibit
power law relationships with the internal field, Hj,, as summarized in equations
(2.17), (2.21) - (2.23). Figure 4.25(b) plots the reduced peak temperature, t,,, against
internal field, H;, on a double-logarithmic scale, as a test of equation (2.22). Clearly,
for the “crossover exponents” (y + B) > 0, with increases in the internal field, H;, the
reduced temperature, ty,, increases; hence, the peak temperature, Ty, also increases,
as confirmed in figure 4.25(a). Although data points here follow this trend, a straight
line fit is clearly inappropriate. Figure 4.25(d) shows the reduced temperature, tp,
versus peak susceptibility, ym, curves on a log-log scale, namely, y(h,tm) o tn ",
which describes the singular behaviour of the susceptibility. Obviously, no power-
law relationship can be found here either. Figure 4.25(c) is plotted as a test of
equation (2.23), from which the equation of state exponent & can be determined. An
obvious curvature can be seen from figure 4.25(c); fitting between fields of 300 Oe-
2000 Oe yields a very large 8 value, whereas at higher internal fields (> 2000 Oe),
the effective value of 8 will be reduced. This peculiar behaviour is a reflection of the
“S” shaped magnetization isotherms observed near the ordering temperature in figure
4.22(a) and figure 4.23. Qualitatively, the magnetization, M, along isotherms near the
critical temperature should also show a power-law form, MocH;" ® and their S-shaped
behaviour through the metamagnetic transition will lead to large (effective) values
for 6 (on the flattened section of the isotherm), which would subsequently decrease

as the field increases. On the basis of the above discussion, none of these power-laws
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are satisfied and no critical exponents can be deduced. First, this reflects the
continued presence of the metamagnetic transition as H—»0, although the
metamagnetic field, Hy, is difficult to access from magnetization isotherms in low
field. Second, the magnetization exponent 3 and susceptibility exponent Y are usually
obtained from the thermal variation of the spontaneous magnetization, Mg, and initial
susceptibility, y;, which are normally derived from extrapolations to both axes in
figure 4.22(b) (the Arrott Plot). The unconventional Arrott Plot in figure 4.22(b)
makes such extrapolations difficult, especially in intermediate fields. Unphysical
exponents have been extracted from such extrapolations, which confirm the

conclusions made for the critical analysis based on susceptibility data.

4.7.4 The coincidence of first- and second-order phase transitions

A striking feature is shown in figure 4.26, where the crossover line from figure
4.25(a) and the metamagnetic boundary from figure 4.24 are plotted in the internal
field, H;, - temperature, T, plane. Carefully examination of this plot reveals that the
two sets of data are coincident within experimental uncertainty; namely, close to the
localized limit (i.e. x = 0.27), the transition simultaneously displays both first-order
and second-order characteristics, and these characteristics are coincident. As is
evident from figure 4.26, the metamagnetic boundary can be tracked to much higher

field (13 kOe in figure 4.23) than the crossover line, since the susceptibility maxima
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Figure 4.26 The metamagnetic boundary (@) from figure 4.24 and the

crossover line (A) from figure 4.25 (a) are plotted as a function of
temperature.

are suppressed in amplitude and broadened in temperature with increasing field. In
contrast, in the low-field limit (below 1.5 kOe), due to technical contributions,
estimates of the metamagnetic field, Hy, become extremely difficult. However,
following the trend of the data in figure 4.26, it is suggested that there is a continued
presence of the metamagnetic boundary as the field approaches to zero, with the lack
of power-law relations mentioned above indirectly supporting this assertion.

In summary, from the above data analysis it is concluded that at the composition

x =0.27, Lag27Ca073MnO; shows features characteristic of both continuous and
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discontinuous transitions, and, within the experimental uncertainty, these two
features are essentially coincident in (H;~T) plane. This behaviour is fundamentally
different from crossover effects for sequential second-order to first-order transition as
T— T., where the system approaches the ordering temperature, T, from below as a
second-order phase transition, but this is interrupted by a weakly first-order transition
to the paramagnetic state. In this situation the power-laws discussed above would be
expected to occur as the transition is approached from higher reduced temperatures.
Here these transitions are essentially coincident, as the Jack of power-laws confirm.
These results were the first to identify such simultaneous characteristics, although a
recent report by Rivadulla et al. [98] shows some similarities. The latter studies show
that the magnetic phase transition is suppressed close to the localized limit (i.e. x~0.2
or X ~ 0.5), and no critical exponents can be extracted near these compositions.
According to Rivadulla et al. the phase transition close to these compositions is not a
true magnetic phase transition, but only a change in the relative volume fraction of
the fluctuations that compete to develop below a certain temperature Tr (a crossover
temperature, Tr, has been defined instead of T. for these compositions). The
proximity to the doping-induced metal-insulator transition which breaks up the
electronic/magnetic homogeneity of the system can partially explain their results.
The dual characteristics reported in the present studies may also attribute to this

behaviour.
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Obviously, the complex behaviour of this System near optimal doping is still
unclear. The unusual dual characteristics seen in the magnetic critical response at x =
0.27 may extend to other compositions. Indeed, work on a single crystal with x = 0.2
is planned for the immediate future. The dual first and second order features first
seen at x = 0.27 led to suggestion that this system might display an enhanced entropy
change near T,. This, however, was difficult to prove conclusively, but it did lead to
the observations of the expected enhancement in the Ni-Mn-Ga system, discussed

later in this thesis.
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4.8 The Magnetic Properties of (La, N dy)o.67Pbg33:MnO;

4.8.1 Sample preparation

Samples of (La;xNdy)0.67Pbo 33MnO;, with nominal composition, x = 0, 0.2, 0.4,
0.6, 0.8, 1.0, were prepared using standard solid state reaction techniques from high
quality starting materials La,Os;, Nd,Os, PbO and MnO,. The procedure followed
was: the samples were first preheated in air at 850 °C for 24 hours, then the products
were ground, granulated and pressed into disks. These were subsequently sintered at
1100 °C for 48 hours in flowing air and then finally annealed at 950 °C for 48 hours
and at 650 °C for 24 hours in flowing air. Room temperature x - ray diffraction data
using Cu Ko radiation confirm that all samples are single phase. Specifically,
Lag¢7Pbo33Mn0O3, one of the end members of this series of samples (x = 0),
possesses a near cubic structure exhibiting a slight rhombohedral distortion with a =
3.8927A and o = 90.30°, while the structure changes to an orthorhombic symmetry
with a space group Prma near x = 1, in agreement with literature reports [99-101].
The corresponding tolerance factor, t, evaluated using equation (4.2), decreases from
0.9915 to 0.9688 with increasing composition, x. Field dependent magnetization

curves at various temperatures, M(H,T), and ac susceptibility measurements, y(H,T),

at 2.4 kHz and 30 mOe rms driving field, in both zero field and various static fields

up to 80 kOe were carried out in a Quantum Design PPMS Model 6000
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magnetometer on samples of approximate dimensions (7.0 X 1.5 X 0.5) mm>. All

fields are applied parallel to the longest specimen dimension.

4.8.2 General features

i) The zero — field susceptibility
Figure 4.27 shows the temperature dependent zero-field susceptibility, x(O,T),

(measured on warming following zero-field cooling) for all 6 samples. All of these
curves display similar features, specifically, a magnetic phase transition from a high
temperature paramagnetic state to a lower temperature ferromagnetic state. From the
zero-field susceptibility curves, preliminary estimates for the magnetic ordering

temperature, T,, can be obtained by finding the minimum slope of such curves, i.e.

dy(0,T)/ dT,Min . Generally speaking, these temperatures show good overall

agreement with previous ordering temperature estimates for this system [52, 100-
102], including single crystal samples [101, 102]; this indicates the high quality of
the present samples. With increasing Nd doping level, the ordering temperature
moves towards lower temperature; in particular, for the 6 samples here, the La-rich
end member- Lag67Pbg33Mn0O; — possesses the highest ordering temperature, T, =
340.5 K, while Ndp.67Pbg33MnOs (x=1) has the lowest, T, = 158.8 K. The magnetic

response of these two end members will be first discussed in detail below. Compared
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Figure 4.27 The zero-field ac susceptibility curves Jor all six samples
measured on warming.

with numerous previous studies of the magnetic and magnetoresistive behaviour,
those in [101] included only investigations on Lag4Ndo3PbgsMnOs; and
Lag3Ndg4Pbo3MnO;. By contrast, the present studies were performed on more

comprehensive Nd substitutions.

if) Low temperature magnetic moments
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Magnetization isotherms at 4.2 K for all samples are shown in figure 4.28; a
careful check of the high-field slope of such curves reveal similar features to those
reported in [101] , n:amely, only Lagg7Pbg33sMnOs (x = 0) achieves saturation just
above a field of 20 kOe. The lack of saturation of all other samples can be followed
up to 80 kOe. From these low temperature magnetization isotherms, the spontaneous
magnetization M;(H=0,T=4.2K) and the saturation magnetization,

M., (H —> 00, T :4.2K), can be estimated. The former are found by extrapolating

the high-field data (fields between 60 kOe and 80 kOe) to zero field (H=0); the latter
are obtained by plotting the magnetization M versus 1/H. The magnetic moment, 1,
per formula unit can be calculated using

L=MW/N, 4.17)

with either the spontaneous magnetization or the saturation magnetization substituted
for M; W is the molecular weight and N, is Avogadro’s number. Table 4.2
summarizes the spontaneous magnetization, Ms, the saturation magnetization, Mgy,
and the value deduced for the magnetic moment per formula unit from M; and Mg,
These experimental moments will be compared with the theoretical moments based
on a full alignment spin-only assumption. It should be mentioned that two values of

the Nd moment — 1.2 u; [103] and 1.5 Ly [101]- have been used in various

calculations. With increasing Nd substitution, the magnetic moment per formula unit

also increases and all such moments for 0.2<x <1 are significantly higher than a
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Figure 4.28 Magnetization isotherms at 4.2 K for all six samples.

spin-only value arising from collinear arrangement of Mn spins (= 0.67 wy ). This
suggests that the Nd moment also contributes to the total moment of the system.
However, the moments calculated from the spontaneous magnetization, Ms, are
considerably lower than the spin-only value from a collinear arrangements of the Nd
and Mn spins, as reported previously [101, 102]. This indicates that the Nd moment

is not fully (ferromagnetically) aligned in the absence of a magnetic field. By
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contrast, the saturation magnetic moment yields values much closer to the prediction

of the total spin-only (Nd+Mn) moments.

Composition (x) |0 0.2 0.4 0.6 0.8 1.0
M; (eum/g) 72.45 75.54 | 73.87 80.71 79.66 83.30
M (us) 3.43 3.58 3.51 3.86 3.82 4.00
Msa: (emu/g) 74.23 83.57 86.15 92.56 | 94.09 97.26
Msa (Up) 3.52 3.97 4.10

Mn (spin only) 3.67 3.67 3.67 3.67 3.67 3.67
Mn+Nd (~1.5up) | 3.67 3.87 4.07 4.27 4.47 4.67
Mn+Nd (~1.2pg) | 3.67 3.83 3.99 4.15 4.29 4.47

Table 4.2 The upper panel: The values of the experimental spontaneous
magnetization (M) and the deduced moment per formula unit, the experimental
saturated magnetization (Msa:) and the corresponding deduced moment; The
lower panel: the maximum spin-only moments of Mn ions alone and for
parallel alignment of Mn and Nd spins for all six samples. Note that the
(Mn+Nd) moments are evaluated based on two different values of the moments
of Nd.

4.8.3 The critical behaviour of (LayxNdy)o.67Pbg 33Mn0;

i) x=0andx =1

Figure 4.29 reproduces the ac susceptibility as a function of temperature,x(H,T),

at different static biasing fields for Ndo.67Pbo33MnOs (x = 1). The effects of static

biasing field from 1100 Oe to 3000 Qe superimposed on the ac driving field (0.03 Oe
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Figure 4.29 The temperature dependent ac susceptibility data at different
static biasing fields of 1100 Oe (top) to 1900 Oe in 200 Oe steps and
2200 Oe to 3000 Oe (bottom) in 2000 Oe steps for Ndp.67Pbg 33MnOs (x =
1) sample.

at 2400 Hz) can be seen from this plot. Specifically, a large static biasing field
suppresses the principle maximum, evident in the zero-field susceptibility curves
(figure 4.27), and critical (secondary) maxima emerge; the latter decrease in
amplitude and move upward in temperature with the increasing static field. As
discussed in chapter 2, such secondary maxima are an important characteristic of a
continuous /second-order phase transition. The locus of a secondary maximum
delineates the crossover line, as discussed earlier. From these critical peaks a set of
critical exponents (which are generally model-dependence) can be extracted based on

various power-law relations (2.17), (2.21) — (2.23). A careful examination of figure
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Figure 4.30 The field- and temperature-dependent ac susceptibility for
Pd-1 at% Mn plotted against temperature, with values of the
corresponding static biasing fields marked against the appropriate curve

4.29 indicates that in lower static fields (<1400 Oe), these critical peaks are obscured
by the technical/ non-critical components in the response, (i.e. components not
saturated in low fields). Such technical contributions, if not effectively eliminated,
will complicate the analysis of the true asymptotic behaviour (leeh—>0andt—0
[104]), thus raising uncertainties about the associated universality class.

In the present study, a new technique has been used in an attempt to eliminate
such non-critical contributions in low static fields. This involves fitting the
temperature dependent ac susceptibility curves, specifically in lower static fields, to a

peak-finding non-linear function, such as a Gaussian or a Lorentzian function. In
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Figure 4.31 Dotted line: the temperature dependent ac susceptibility

data at a static biasing field of 1100 Oe,; Solid line: Lorentizan fit to the
high temperature part in order to find the peak temperature.

practice, the low fields ac susceptibility data in this system have been fitted to
hundred of peak-finding functions; Lorentzian fitting consistently yields the best
result. Numerical simulation [105] indicates that the ac susceptibility should continue
decreasing with decreasing temperature below the peak. Thus the upturn, evident in
the low-temperature regime in figure 4.29, represents non-critical/ regular
contributions. In fact, such monotonically decreasing features are displayed in
several alloy systems, PdMn and PdFe for example. Figure 4.30 shows the field and

temperature-dependent ac susceptibility for Pd-1 at.% Mn plotted against
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temperature; values of the corresponding static biasing fields are marked against the
appropriate curve [31]. In this system, the critical maxima were first resolved at
fields as low as 4 Oe — more than two orders of magnitude lower than in the present
sample — Ndg ¢7Pbg 33Mn0Os. Indeed, in Pd-1.4% Fe [106] critical peaks emerge in
applied fields below 1 Oe. The results of a peak locating procedure using a
Lorentizian function on the present sample is shown in figure 4.31 for a static field of
1100 Oe, the data taken from figure 4.29. Since technical contributions become
increasingly important at or below T,, fits are initiated from the high temperature side
of the peak, and the number of points fitted is increased until y* is minimized”. The
peak temperature, Tp,, and the corresponding amplitude, y,,, are then taken directly
from this final fit.

The resulting critical peak temperatures, T, are plotted in figure 4.32(a) as a
function of H;%’ ( Hi is the internal field); this plot serves as a test of equation (2.21),
using 3D Heisenberg exponents values of (y + B)"l =0.57. From this figure a more
accurate estimate of the Curie temperature is obtained by fitting the data points and
extrapolating to the zero internal field, yielding T, = 157.9 + 0.5 K. Figure 4.32(b)
plots the reduced temperature, t,, = (T-Tc)/T., against the internal field, Hj, on a
double logarithmic scale, thus testing equation (2.22); a least square fit yields critical

exponents y+f = 1.75 £ 0.10. Excellent self-consistency is found by comparing this

" is the sum of the squares of the deviations of the theoretical curve(s) from the experimental
points for a range of independent variables
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Figure 4.32 (a) The peak temperatures, T, plotted against H’' the
extrapolation of the low fields points to the zero internal field yield the Curie
temperature; (b) the reduced temperature t,, against internal field H; as a test
of equation (2.23); (c) the susceptibility, y., against reduced peak temperature,
tm, as a test of equation (2.17); (d) the susceptibility maxima, ., plotted
against internal field H; as a test of equation (2.23).

value with the exponents used in figure 4.32(a). Figure 4.32(c) shows the peak

susceptibility, y , , plotted against the reduced peak temperature, t,, on a log-log scale,
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testing the power-law relationship, y(h,t, ) <t~ (equation 2.17), describing the

singular susceptibility. A least-square fit to the data in figure 4.32(c) yields a

susceptibility exponent y =1.37+0.10 for t, < 0.08. The equation of state exponent

6 is estimated from a double-logarithmic plot of the peak susceptibility, Y » agaInNst

the internal field, H;, i.e. a test of the power law y(h,t_)oc h'™>" . Fitting the low

field points (H; < 1800 Oe) yields 8= 4.54 + 0.30, a value close to the predicted &
value from the 3D Heisenberg model (8 = 4.83). For internal fields larger than 2 kOe,
the & value deviates towards the mean field value, 8 = 3. A similar crossover effect
from 3D Heisenberg to mean field values of the exponent & has been observed
previously in the x = 0 member of this series; there it was attributed to the presence
of “disorder”. In the present context, this arises from a distribution of exchange
coupling strengths (Mn>" - Mn** double exchange, Mn®* - Mn®* superexchange, etc.),
with model calculations conﬁrmjng this trend [52]. In this same sample —

Lag67Pbp 33MnO; — a set of exponents values- y=1.39+0.06, B=041£0.02, 6=

4.20 £ 0.15 — have been extracted [52], using the same approach described above.
These values are not consistent with the exponent values predicted by the 3D
Heisenberg model; however, because of the presence of disorder, asymptotic 3D
Heisenberg exponents cannot be excluded; the universality class for this system thus
cannot be definitively identified. By contrast, critical analysis based on the

temperature dependent ac susceptibility data on Ndg7Pbg 33MnOs yields a set of low
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field critical exponents - y =1.37+0.10, B = 0.380 + 0.10, 8= 4.54 + 0.30. These
results are consistent with the critical exponents (y =1.329+0.003, B=0374 +

0.006, 5= 4.54 = 0.10) reported by Sahana et al. [107] in a single crystal of slightly
lower composition using a more conventional analysis based on magnetization data.
Both sets of results thus suggest that the 3D Heisenberg universality class governs

the phase transition in Ndg ¢7Pbg 33Mn0Os.

ii) x =0.2, 0.4, 0.6 and 0.8

At intermediate compositions, disorder plays an increasingly important role. In
addition to the disorder in the two end members mentioned above, at intermediate
doping there is additional site disorder. At lower Nd substitution levels, x = 0.2 in
particular, the influence of disorder is marked, and it significantly complicates the
extraction of critical exponents from ac susceptibility data. Under these
circumstances, the implementation of a Lorentz profile fitting procedure is
particularly necessary to access low field data, i.e. data most relevant for assessing
the asymptotic behaviour (h — 0,t— 0). In the following discussion, Lorentzian
profile fitting has been widely implemented.

Figure 4.33(a) presents ac susceptibility data at different biasing fields for the x =
0.8 sample, along with critical analysis (figure 4.33(b)-(d)) based on equations (4.17),

(4.21)-(4.23), yielding the Curie temperature, T, = 203.1 + 0.3 K, and critical
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Figure 4.33 (a) Temperature variation of ac susceptibility at different
static biasing fields of 1200 Oe to 2000 Oe in 100 Oe steps for x = 0.8

sample; (b) the internal field (H;) versus peak susceptibility (right
vertical axis); the reduced temperature (i tw) versus the internal field (H;)

(left vertical axis); (c) the reduced peak temperature plotted against
H7, (d) the peak susceptibility versus the reduced peak temperature

exponents,y=1.37£0.05, B = 0.38 £ 0.06, 5= 4.78 + 0.33. These values are again

very close to those for the universality class of the 3D Heisenberg ferromagnet with
short-range interactions. A similar critical analysis for the x = 0.4 sample is

summarized in figure 4.34, from which T, = 295.8 + 0.3 K, y=1.14£0.05, B =0.58

+ 0.08, 6= 3.03 + 0.19 have been obtained. Clearly, the order parameter critical
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Figure 4.34 (a) The temperature dependent ac susceptibility in static
Jields of 600 Oe to 1000 Oe in 100 Oe steps, 1200 Oe to 2000 Oe in 200

Oe steps for the x = 0.4 sample; (b)-(e): plots extracting critical
exponents for this sample.
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Exponents v+ p ) Y Memo
Theoretical | 1.75 4.8 1.386 3D Heisenberg
Theoretical | 1.50 3.0 1.0 MFT
0.0 1.80+0.06 4.20+0.15 |1.39+0.06 |3D Heisenberg?
0.2 1.46+0.03 2.86£0.08 |0.95+0.05 |MFT
0.4 1.72£0.08 3.03 £0.19 | 1.14+0.05 | Intermediate
0.6 1.79+0.05 12.5£4.69 |1.59+0.18 | Intermediate
0.8 1.75+0.06 4.78+0.33 |11.37+0.05 |3D Heisenberg
1.0 1.75£0.10 4.54+0.30 |1.37+0.10 |3D Heisenberg

Table 4.3 Summary of critical exponents and critical exponent values;
model prediction and measured values Jor all samples.

exponent, B, is much larger than any model prediction. The § value, obtained in a
manner which is independent of the choice for Te, is close to the mean field theory
prediction for this equation of state exponent. The susceptibility exponent, v, falls
between the predicted value from 3D Heisenberg and mean field theory. At very low
Nd substitution levels (x = 0.2), similar critical analysis, based initially on 3D
Heisenberg exponents, iterates towards a set of exponents which are much closer to
the mean field exponent values. In order to carry out a self-consistent analysis, mean
field exponent values were, therefore, used throughout for this sample. The major
difference between these two fitting schemes is shown in figures 4.35(b) and (c),
where the peak temperatures found from the temperature dependent ac susceptibility

data (figure 4.35(a)) are plotted against the H®® (H,""* with y = 1, B = 0.5) instead
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of H;*7 (H;'""P with y = 1.387, B = 0.365). The plot with mean field exponents
yields a slightly higher Curie temperature, T, = 325.2 + 0.1 K. Obviously, the value
of the Curie temperature will affect reduced temperature values, and correspondingly
the values of y and B. Based on this estimate for the Curie temperature, critical

analysis in figure 4.35(d)-(f) yields y = 0.95+0.05 »B=0.51+0.03, 5=2.86 + 0.08.

Apart from the value for §, which is marginally lower than the prediction of mean
field exponents, the values of Y and P are consistent with the mean field prediction.
Table 4.3 summarizes all the critical exponents for this series of samples and the two
model predictions mentioned throughout the above discussion. Overall, the 3D
Heisenberg critical exponent values found in the end member, Ndy 67Pbg 33MnOj x=
1), appear to extend to the lower composition x = 0.8 sample as well. Unfortunately,
the critical peaks for the x = 0.6 sample are very difficult to resolve, even fitting to a
Lorentizian peak-finding function. Available peak temperature, T, and peak
susceptibility, x,, obtained from the high biasing fields yield some unrealistic
exponents, as table 4.3 shown. The mean field exponents found for the x = (0.2
sample may not necessarily indicate that the intrinsic spin interactions are long range
since the disorder plays a very significant role in such samples; 3D Heisenberg
exponents cannot be excluded since the true asymptotic behaviour is difficult to
access.

As stated previously, disorder in this system plays a significant role in controlling

the magnetic and transport properties and it is enhanced at intermediate doping level
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Figure 4.36 The average A site radius (<ra>) versus T, (left vertical
axis); the solid line is a least-square fit to the data; the variance (o°)
versus T¢ (rvight vertical axis); the dotted line is a guide to the eyes.

by the further introduction of site disorder. Disorder is often described by the average

A site radius <rp> and its variance 02, which is the variance of the ionic radii 1; about
- . 2 2 2

<rp>; 1t 18 defined [108] as o :Zyiri —(rA> , where y; represents for the

fractional occupancies of the two or more constituents at the A site (Z:yi =1).

Values for both <r,> and o2 quoted in the following discussion are calculated based

on the ionic radii provided by Shannon [49] for 12-fold coordination for the A sites
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and 6-fold coordination for the B sites ( i.e. taking r (La’") = 1.364, r(Nd*)=1.27 A,
i(Pb™ )= 1.49 A, r(Mn*) = 0.645 A, (Mn*) = 0.53 A and r(0%) = 1.40 A).
Previous studies on single crystal Lag 7yNd,Pby3MnOs; samples show that the
average cation radius (<ra,>) and cation size disorder (6®) have a marked influence
on the magnetic properties due to the presence of significantly different cations (La
and Nd) at the rare-earth site [102]. In figure 4.36, the Curie temperature (T,),
obtained from the critical analysis is plotted as a function of <ra> and o” for this
series of samples. With increasing <ra>, the Curie temperature (T;) increases almost
linearly from 157.9 K (for x = 0) to 340.5 K (for x=1). Previous studies [52, 102] on
the La-based manganites suggest that Pb-substituted samples exhibit one of the
higher T¢’s near optimal doping. In the present work, T, = 340. 5 K was obtained in
the x = 1 sample, close to that (Te = 346 K) quoted more recently for a single crystal

sample [102]. A least-square fit to the data in figure 4.36 yields

dT, /d(r, ) =3254+257K/A. Clearly, since Nd possesses a smaller radius than La,
c A

the introduction of Nd in this system dramatically changes the average A site radius,
<ra>, and lowers the Curie temperature, T.. Decreasing <rs> values causing
decreases in T, has been reported in Lag7.xYxCagsMnO; and Lag.7.yPryCap3MnOs3
which have fixed carrier concentration [109]. As far as the variance, o, is concerned,
T, is inversely proportional to the variance, 6°, as shown in figure 4.36 (right vertical
axis). The variance (¢°) influences both the magnetic and transport behaviour. Larger

o values imply a higher degree of disorder, which significantly increases the
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resistivity at lower temperature where site disorder enhances the localization of

charge carriers. These latter studies will be detailed in the next subsection.
4.8.4 Conclusions

Detailed studies of the magnetic properties of (La1xNdy)o.67Pbo 33Mn0O; samples
indicate that these samples are ferromagnets across the entire doping range. Critical
analysis based on temperature dependent ac suscei)tibility data suggests that 3D
Heisenberg cxponents govern the phase transition in Ndy.67Pbg 33Mn0; (x=1) and the
high Nd doping level samples (x = 0.8). The existence of disorder in the system
complicates the extraction of critical €Xponents, particular at x = 0.6. In the x = 0.2
sample, a set of exponents close to the mean field prediction have been obtained.
Preliminary studies reveal that the variation of the average cation radius <r,> and the
variance, o°, of these radii have significant impact on the magnetic properties of this

series of samples.
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4.9 Transport Behaviour in (La; N dy)o.67Pbo33MnO;

4.9.1 General behaviour

0.1k

p(Q2.cm)

0.01F

2 ]
400

L 1 1
150 200 250 300 350
T(K)

1 1 1
50 100
Figure 4.37 The temperature dependent resistivity data Jor all samples.

Figure 4.37 shows the resistivity as a function of temperature for this series of
samples plotted on a semi-logarithmic scale. All samples exhibit a systematic

transition from a metallic-like behaviour to a semiconductor-like behaviour with
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Figure 4.38 dp/dT found from the data in Jigure 4.37 plotted against
lemperature for all 6 samples. The numerical valyes indicate the metal-
insulator transition temperatures.
increasing temperature; this is quite similar to the transport measurement results
reported in reference 109] for Lao,7_xPera0‘3MnO3 samples. Although the carrier
concentration (Mn3+Mn45 is fixed, the magnitude of the peak resistivity
monotonically increases with Nd content, which suggests that the magnetic Nd*" jons
provide an additional contribution to resistivity, likely due to enhanced magnetic

scattering. From figure 4.37, the metal-insulator transition temperature, Ty, can be

obtained by finding the maxima of dp/dT; figure 4.38 displays estimates for dp/dT
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found from the data in figure 4.37, while the metal-insulator transition temperature,

Twmi, obtained from figure 4.38, are tabulated in table 4.4,
The magnetoresistance - an important parameter in the characterization of the

CMR materials — is evaluated by comparing the temperature dependent resistivity

data between zero-field and a specific applied magnetic field. Figure 4.39 shows
typical resistivity curves for the x = 1 sample at zero field, 8 kOe and 16 kOe,

respectively. Obviously, the application of a magnetic field strongly depresses the

peak resistivity, and it also drives the peak resistivity towards a slightly higher
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Figure 4.39 The resistivi

Iy as a function of temperature Jor

Nd) 6;Pbg.33Mn05 at zero field (top), 8 kOe and 16 kOe .
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Figure 4.40 The thermal variation of magnetoresistance for samples with
different doping levels.

temperature, which are the defining features described in the review chapter on CMR

effects. Quantitatively, the magnetoresistance can be characterized using the equation

MR = PH=0)—p(H = 1.6T)

x100% (4.18)
p(H =0)

The magnetoresistance, estimated using this equation, is shown as a function of
temperature for all samples in figure 4.40. The magnitude of the magnetoresistance

decreases monotonically with both decreases in the Nd doping level and increasing
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values of T, (Tuy); the latter confirms a previous assertion about the doped
manganites, i.e., the magnetoresistance near Tc is inversely proportional to T itself
[110]. In particular, one of the end members of this series (x=0), Lag 7Pbg3MnOs,

has the highest T, and lowest magnetoresistance; by contrast, Lag7Nd33MnOs

X 0.0 0.2 0.4 0.6 0.8 1.0

T (K) | 340.5£0.3 | 325.2+0.1 295.8+0.3 | 235+5 | 203.1+0.3 157.9+0.5

Tw(K) | 351.0£0.2 | 323.7+0.1 293.3+0.1 | 244.3£0.3 | 207.6+0.3 164.3+0.3

Ty(K) | 355.0+0.2 | 328.0+0.3 298.5+0.1 | 253.0£0.4 | 212.0+0.2 163.5+0.1

CA | NA 7.687 3.326 2405 | 1.859 1.833

(a) | 14029 | 139084 | 137878 | 136670 1.35466 | 1.3426

c? 0.00347 0.00556 0.00737 0.00888 0.0101 0.01103

Table 4.4 4 summary of the values of the Nd doping level (x), the
corresponding Curie temperature Jrom the critical analysis (T,), the
metal-insulator  transition lemperature (Tyg), the temperature
corresponding to the maximum magnetoresistance (T,), the correlating

length ({), the average A site radius (<r4>) and the variance (c?).

possesses the lowest T, and the highest magnetoresistance. The peak temperature, T,
corresponding to the maximum magnetoresistance is found from figure 4.40 and
recorded in table 4.4 for comparative purposes. Clearly from this table, the Curie
temperatures, T., which are obtained from the critical analysis, are generally close to

the metal — insulator transition temperatures, Tyy; such metal-insulator transitions
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which essentially coincide with the ferromagnetic transition have been reported in
manganites thin films, while the transport studies in such films show distinctive
effects of small polaron transport [111]. Nevertheless, the concurrence of the
magnetic phase transition and metal-insulator transition in this system suggests that
the nature of the metal-insulator transition is magnetically driven. By contrast, the
maxima in the magnetoresistance occur at a slightly higher temperature, Ty, as in

most other systems.

4.9.2 Transport behaviour in the high temperature regime

i) x=0 and x=1

The transport mechanisms in doped manganites have been intensely studied,
especially in high temperature regime of systems which undergo a metal-insulator
phase transition. As reviewed previously, the high temperature transport behaviour
can be described by either a pure temperature-activated (Arrhenius law) behaviour, a
polaron model or a variable range hopping (VRH) model. [1 12] A brief introduction

to these models will be given before the associated fitting processes are introduced.

1. Pure temperature-activated model (Arrhenius law)

The Arrhenius law has an exponential format, viz.
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= £ (4.19)
=p_ex .
b= Pa &XP 2kT

and is most often used to describe the activated behaviour in semiconductors arising
from a band gap or a mobility edge. Obviously, the Arthenius law is a
phenomenological law containing two temperature-independent parameters - the
activation energy, E,, and the pre-exponential factor, p_ . In fact, this law is only

valid in those limited cases where the mobility or the carrier density has weak

temperature dependence.

2. Polaronic model

Nearest-neighbour hopping of small polarons leads to a mobility with a thermally
activated form. Depending on the speed of the charge-carrier and the frequency of the.
lattice vibrations, there are two limiting cases of the polaronic model. In the adiabatic
regime the charge-carriers move faster than the lattice vibrations, and this leads to a

resistivity of the form [111]

AT exp( E,/2 —t)j

3ne’a’wm, k,T

(4.20)

where E,, is the polaron formation energy, n is the carrier density, t is the electronic
transfer integral [113], wy is an associated optical-phonon frequency, a is the hopping

distance and e is the electron charge. In the non-adiabatic regime, the charge-carriers
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move slowly compared to the lattice vibration, and the resistivity in this case can be

expressed as: [111]

% % E
= 27 (2K 120 e B (421)
3nea*t*\ =« 2k, T

3. Variable range hopping model (VRH)
VRH was originally proposed by Mott [114] and describes the hopping transport in a

system where the carriers are localized by random potential fluctuations and the
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Figure 441 A VRH model fit for the high temperature regime of
Ndp.67Pby 33MnO;; the inset: the high temperature resistivity replotted as
In(p) versus T
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preferred hopping is between sites lying within a certain range of energies. VRH

leads to the following expression for the resistivity
14
P=p, eXPG?) (4.22)

where p,, is a prefactor, which depends on the phonon density for this phonon-

assisted conductivity, while Ty is related to the localization length, &, and the density
of states, N(E), via [115]

18

kBTO = 3
N(E)§

(4.23)

One of the end members of this series of samples, Ndo.67Pbo33Mn0Os, was first
investigated here by fitting the temperature dependent resistivity data with the
various model expressions mentioned above. The main body of figure 4.41 shows a
fit to the VRH model for this sample. It should be mentioned that all plots, based on
the four models mentioned, yield fits of roughly comparable quality over the same
temperature range (see figure 4.42 for the detailed plots); however, a careful
examination of the standard deviations (SD) indicates that the VRH model gives the
best fit overall. However, the VRH model cannot be used throughout the entire high
temperature regime; it deviates from the data below 183 K, about 15 K above the
metal — insulator transition temperature. The inset in figure 4.41 replots these data in
a In(p) versus T format, this being a more “practical” way to test the applicability

of the VRH model without losing accuracy [116]. From this fit, the prefactor, p_,
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Figure 4.42 The high-temperature fit of resistivity data using (a) VRH
model, (b) non-adiabatic polaronic model, (c) pure temperature-
activated model and (d) adiabatic polaronic model Jor x = 1 sample.
The corresponding standard deviations (SD) are (a) 0.01982, (b)
0.05699, (c) 0.06385, (d) 0.05108.

and the parameter, Ty, can also be calculated; furthermore the localization length, &,

can be deduced based on equation (4.23). Prior to this, however, the electronic

density of states (DOS), N(E), must be obtained. As discussed by various authors [50

>

112], the value of N(E) is a crucial factor in order to get a realistic localization
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length, &. For the present work, a reduced effective DOS derived by Viret et al. [1 12],
N(E) = 9x10% m>eV!, was adopted. Using this estimate, equation (4.23) yields a
localization length & =1.84 A for the sample Ndg ¢7Pbg 33Mn0O; (x = 1). This value
falls between the corresponding correlated length derived using the same method and
N(E) for (Lag7Sr3)MnO5 and (Pro.7Pbo3)MnOs respectively [1 17]. For the other end
member, Lage;Pbg3sMnOs, as the metal-insulator transition temperature is much
higher, there is not sufficient high-temperature data available to perform a reliable fit.

As discussed previously, the VRH model was originally developed to deal with
transport phenomena in doped semiconductors where the thermal energy is not
sufficient to allow direct electron hopping to nearest neighbours. The most likely
scenario in this case is that the electrons hop further to a location which has a smaller
potential difference. Thus VRH is usually found in disordered systems, where
conduction proceeds by hopping between randomly located sites with a distribution
of allowed electronic energy levels. As far as the doped manganites are concerned,
VRH conductivity behaviour is found predominately in bulk ceramics, La;.
xCa,MnO; (0<x<0.15) [116], optimally doped Ca manganites, Lag 7Cag 3MnO; [50,
117], and polycrystalline LCMO and LBMO film samples; however, in film samples
this behaviour was attributed to extrinsic sources arising from nonstoichiometric
regions or tunnelling processes across grain boundaries [11 1]. For Ndo_67Pbo'33Mn03,
in particular, the spin-spin disorder that has been observed contributes significantly

to the VRH type hopping process found there. Nevertheless, the VRH model is only
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Figure 4.43 The high-temperature Jit of resistivity data using (a) VRH
model, (b) non-adiabatic polaronic model, (c) pure temperature-
activated model and (d) adiabatic polaronic model.

applicable in a limited temperature range; hence the existence of other transport
mechanisms cannot be excluded. In particular, when the temperature approaches the
metal-insulator transition temperature, there is an obvious deviation from the VRH
model predictions, which may arise from nearest-neighbour hopping contributions.
At the intermediate doping level, the disorder in this system is enhanced by the

appearance of site disorder, in addition to the spin disorder dominant in the end
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members. From this point of view, a better VRH fit is expected in the intermediate

doping samples than in the end members.

ii) x=0.2,0.4, 0.6 and 0.8
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Figure 4.44 Resistivity data Jor samples x=0.8, 0.6, 0.4, 0.2 to test the
VRH model.

Figure 4.43 shows fits using the four different models mentioned above for
(Lao,szo_g)o,67Pbo,33Mn03 (x=0.8). An inspection of these fits, especially in the
region immediately above the metal-insulator transition temperature, shows that this

sample can be fitted remarkably well by the VRH model in comparison with other
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models. Compared with fits for the end member (x=1.0) in figure 4.41, the
temperature range fitted for this sample extended over a much wider temperature
range, from 350 K down to the metal-insulator transition temperature, Tyy. The slope
of the linear fit in figure 4.43(a) yields a localization length & = 1.86 A. The same
fitting procedure has been applied to all other samples with intermediate doping
levels (x =0.6, 0.4, 0.2) and the VRH model consistently gives a better description of
the high temperature transport behaviour; these graphs are not reproduced here, as
they resemble figures 4.43(a)-(d) closely. Figure 4.44 summarizes the VRH model
fits in a In(p) versus T** format for samples with x = 0.2, 0.4, 0.6, 0.8. The
localization length, ¢, deduced from such fits, is summarized in table 4.4 for all
samples. Generally speaking, with increasing Nd doping level in this system, the
localization length, {, decreases. The close adherence to VRH behaviour in these
intermediate doping level samples suggests that the high disorder present in them,
namely, the contributions of spin and site disorder, provides a near-random

distribution in electronic on-site energies [118].

4.9.3 The role of disorder in (La;xNdy)p.67Pbp33MnO;

As discussed previously, with the introduction of Nd mto Lage7Pbg33Mn0Os, the

disorder arising from size mismatch in this system plays a significant role in

controlling the magnetic and transport properties. The size mismatch is characterized
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Figure 4.45 The average A4 site radius plotted against the metal- insulator
transition temperature, Tyq (left vertical axis) and peak resistivity (semi-
log scale, right vertical axis).

typically by the average A site radius, <r,> and its variance, 6. Table 4.4 lists the
average A site radius, <r,>, and variance, o, evaluated using the above ionic radii
for all specimens. Clearly, the average A site radius, <rp>, decreases monotonically
with increasing Nd substitution, mainly because Nd** ions possess a smaller radius
than La** lons; by contrast, the variance o increases with increased Nd substitution.

The metal-insulator transition temperature, Ty, found from figure 4.38 as well as
the peak resistivity, ppea, is replotted as a function of A-site average radius <rp> in

figure 4.45. As is clearly evident from this figure, both the metal-insulator transition
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Figure 4.47 The maximum magnetoresistance versus variance Jor
all samples. The solid line is a guide for the eye.
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temperature, Twy, and the peak resistivity, Ppeak, are very sensitive to the average A-
site radius, <ry>. Specifically, the metal-insulator transition temperature, Ty,
increases with increasing <ra>, which is consistent with that from other rare-earth
element substitutions [10]. This suggests that the principal effect of increasing <r,>
is to increase the Mn-O-Mn band angle, thereby enhancing the matrix element, b,
which describes electron hopping between Mn sites [109]. By contrast, the increase
of <rx> strongly depresses the peak 1esistivity ppeax. In particular, the relationship

between Ty and <ra> is linear and a least-squares fit of the data points in figure 4.45

ylelds a slope of dT,,/d(r,)=3152+140K/A. By contrast, the peak resistivity

decreases exponentially with increasing <ra>.

The relationship between the maximum magnetoresistance (AR/R)y.y (found from
figure 4.40) and <rx> has also been explored. The maximum magnetoresistance
(AR/R)max is inversely proportional to the average A site radius, <r,>, which is
presented in figure 4.46. The focus here, however, is to investigate the relationship
between the A site variance,?, and the maximum magnetoresistance, (AR/R)yax,
specifically, to reveal the impact of disorder on the magnetoresistance. This is
accomplished in figure 4.47, where the maximum magnetoresistance is plotted
against the variance, 6. Clearly, a larger variance, 5, that is, more disorder, favours
the appearance of a larger magnetoresistance. Previous studies on various different
A-site combinations suggested that the disorder at the A-sites does not favour the

appearance of higher magnetoresistance. For example, Pry7Cag3MnO;, where both
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A-site ions have the same radius <1p>, s0 6° =0, has a higher MR than
Lao6Y01Cag3MnO; where the variance is about 0.0022. The measurement presented

here provides an interesting counter example.

494 A preliminary study of the low temperature behaviour of N do.67Pbg 33MnO;
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Figure 4.48 A fit to test the applicability of a T’ dependence for
Ndp.67Pb0 33MnOs; the inset examines the low temperature regime.

The low temperature behaviour of the doped manganites usually follows the so-

called Matthiessen’s rule, i.e.
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p(T)—p, =p,T? (4.24)
where p, is the residual resistivity arising from scattering from impurities and
defects; obviously, the inherent cation disorder in this system will lead to a larger Po-

The parameter p, describing the intrinsic scattering mechanism in the system, can be
obtained by fitting the low temperature resistivity data. Previous studies in various
systems suggest the parameter p in equation (4.24) can vary from 2 to 5 [2], which
reflects different dominant scattering mechanisms, i.e. electron-electron, electron-
magnon, electron-phonon. The low temperature resistivity data of the sample
Ndp 67Pbg.33MnO3 (x = 1) have been fitted using different p values. The best fit is
shown in figure 4.48; a T° dependence in the inset of figure 4.48 suggests that the
contribution from lattice scattering of charge carries, namely, the electron-phonon
interaction, governs the transport behaviour in the low temperature regime for this
sample. Similar studies have been applied to all other samples; however, none of
them can be simply fitted to equation (4.24) by varying the p value. A more
complicated fitting scheme with additional terms in equation (4.24) might be tried in
order to reveal the scattering mechanism in the low temperature transport data,

although this is a more complex procedure.

4.9.5 Conclusions
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The specific feature accompanying Nd doping was an enhanced
magnetoresistance accompanying an increased A-site variance. It would be
interesting to investigate whether this relationship would be correlateci with particular
properties of the rare-earth element used in the substitution since the behaviour
reported here appears to be an exception, rather than the rule.

In summary, studies of the transport behaviour of a series of (Laj.
xNdx)o.67Pbg 33MnO; samples show a systematically behaviour in the metal-insulator
transition; the transition temperatures keep decreasing with increases of the Nd
doping level (x). Further analysis suggests a form of variable range hopping
conduction predominates in the high temperature regime; in particular, the VRH
model describes the intermediate doping level samples remarkably well. This may
result from the disorder arising from both spin and site contributions in this doping

regime, which produces the necessary distribution of allowed electronic energy levels.
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Chapter 5

The Magnetocaloric Effect (MCE) in the Shape Memory Alloy

Ni-Mn-Ga System

3.1 An Introduction to the Magnetocaloric Effect (MCE)

The Magnetocaloric Effect (MCE) is the entropy / adiabatic temperature change
accompanying the application of an external magnetic field to magnetic materials. It
was first discovered by Warburg [14] in 1881 and is an intrinsic property of all
magnetic materials. When subjected to an external magnetic field, due to the
coupling between the magnetic lattice and the field, the spins order and the magnetic
entropy is lowered; with removal of the field, the spins become randomly orientated
and the entropy increases, and this is accompanied by an adiabatic temperature
decrease. The magnitude of the MCE is usually characterized by either the adiabatic

temperature change, AT,,, or the maximum magnetic entropy change, AS_ . The

magnitude of the MCE strongly depends on the magnetic state of a sample. A
disordered system (a paramagnetic system for example) usually displays a small

entropy change. The entropy change can however be large for a material which
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undergoes an order-disorder or an order-order phase transition. A very large entropy
change, the so called Giant Magnetocaloric Effect (GMCE), was first found in the
series Gds(SixGei,)s (0<x <0.5) 1 19], which show a entropy change at least twice
large as that of pure Gd near room temperature, and 2-10 times larger than the best
magnetocaloric materials with a conventional MCE. The discovery the GMCE
became a strong driving force for room temperature refrigeration research. The
following subsections begin with a review of the applications of the MCE in
disordered systems (paramagnets) to achieve ultra-low temperature, then a summary
of the GMCE materials studied in near room temperature is given and finally a

simple description of a room temperature magnetic refrigerator is provided.

5.2 The Thermodynamic Theory of the MCE

The Gibbs free energy/thermodynamic potential, F, is defined as

F=E-TS (5.1)
where the enthalpy E in a magnetic system is given by

E=U-HM (5.2)
S is the total entropy. For a strongly correlated magnetic system, for instance
manganites or the ferromagnetic shape memory alloy Ni-Mn-Ga system, this total
entropy S can be separated into three components, viz.

S(T,H,p) =S,(T,H,p) + S, (T,H,p) + S, (T,H,p) (5.3)
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where S, (T,H,p) is the entropy from lattice vibrations or distortions, S, (T,H,p)is

the entropy from electrons, and S_(T,H,p) is the entropy from magnetic moments
themselves. All three components depend on temperature, T, magnetic field, H, and
pressure, p, however the magnetic entropy S_(T,H,p) shows a much strong field
dependence than the other two.

From equations (5.1) and (5.2), the free energy F can be rewritten as
F=U-TS-HM (5.3)
Combining withdU = TdS + HdM, yields

dF = -MdH - SdT (5.4)
Equation (5.4) enables some important relationships to be deduced. First, the

magnetization is

’ oF
M), °
And (QM) =(—a—§j (5.6)
oT Jy \0H);
Equation (5.5) together with
oT oH
a, (%), °7
74
OH /g 0S Jy
oH oS
), {3, 59
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are known as the Maxwell relations.
From eqn (5.6), the isothermal magnetic enfropy change resulting from a field

change can be evaluated from the integral

AS, (T,H) =S, (T,H)~S_(T,0) = f(%%) dH (5.10)

H
It is immediately evident that a larger rate of change of the magnetization with
respect to the temperature, T, at a constant field, H, results in a larger isothermal
magnetic entropy change. Using this relation, the isothermal magnetic entropy
change can be evaluated directly from the experimentally measured magnetization

1sothermes.

The entropy S is also a function of temperature T and field H, so

TdS=T(—a§) dT+T(a—S) dH (5.11)
aT ), H ).

Considering the specific heat at constant field

Cy =(—a§) =T(§j (5.12)
or)y  \oT),

and the Maxwell relation (5.7), then

TdSzCHdT+T(a—M) dH (5.13)
oT )y

For an adiabatic process with a zero entropy change

dT:—l(a—M-J dH (5.13)
Cu\ 0T Jy
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and for a finite process,

AT = ——T—[a—M-) AH = ——L_ AS(T, AH) (5.15)
Cy \ 8T ), Cy

This is the theoretical basis for adiabatic demagnetization. For paramagnetic material,
(dM/dT)y is usually negative, so decreasing the field will cool the materials. An
important application of this relation is in the production of the extremely low
temperature, as described later.

The integral form of equation (5.14) provides the adiabatic temperature change:

. T (M
AT, = E E-H—(E)Hdﬂ (5.16)

Obviously, the adiabatic temperature change is also proportional to the rate of change
of magnetization with respect to temperature, and is inversely proportional to the
specific heat at constant field. In practice, both the isothermal magnetic entropy

change (5.10) and the adiabatic temperature change (5.16) are used to characterize

the behaviour of the MCE.
5.3 MCE in Paramagnets

Since the discovery of the MCE in 1881, much effort has been made to apply the

effect. The most important application is magnetic refrigeration. Generally speaking,
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magnetic refrigeration studies focus on two temperature ranges - ultralow
temperature and (near) room temperature

The first successful application of MCE was adiabatic demagnetization, which
used MCE to achieve extremely low temperature. Following Debye and Gianque’s
proposal in 1926, Giauque and Mardougall [15] made use of the low-temperature
magnetocaloric properties of paramagnetic Gd2(SO4)3.8H,0 to achieve a temperature
below 1K; specifically, they reached 0.53 K, 0.34 K and 0.25 K starting at 3.4 K,
2.0K and 1.5 K respectively. Following this pioneering work, other paramagnetic
salts were used [120, 121]. Because of the low thermal conductivity and high lattice
heat capacity of these salts as refrigerants, more recently, alloys such as PrNis were
studied and utilized in nuclear magnetic demagnetization experiments [122]. The
thermodynamic background for adiabatic demagnetization will be introduced in a
subsequent section.

To achieve extremely low temperatures using adiabatic demagnetization
represents the principle use of the MCE in paramagnets. Other MCE studies, from
low to room temperature, often involve the study of phase transitions - 1** order or 2™

order or both, since phase transitions around a critical temperature usually lead to a

large |(M/0T),| which contributes to a large entropy change. However, unlike the

use of the MCE at extremely low temperatures (which can provide a platform for
studies near absolute zero) or the (near) room temperature range (which has potential

application in magnetic refrigeration), low (10-80K) and intermediate temperature
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(80-250K) range MCE studies have drawn less attention over the past several
decades. Most recent research activities have been focused on the (near) room

temperature MCE, especially for GMCE.

54 Room Temperature GMCE Materials and Magnetic

Refrigeration

5.4.1 GMCE studies near room temperature

From the theoretical discussion of the MCE, a large |(6M/ or )HI is a key factor in

achieving a larger entropy change. An ideal first-order phase transition, as discussed

in chapter 2, should have an infinite [(GM/ )Hl, which in turn should lead to an

extremely large entropy change. This identifies a direction for seeking new materials
with a larger MCE. The first such attempt was in the FeRh system [123] which
undergoes a first-order phase transition from an antiferromagnetic to a ferromagnetic
state, showing a giant MCE with an adiabatic temperature change of about 13K
under a 2 T field. Unfortunately, the MCE in the FeRh system is irreversible and
appears only once, rendering it impractical for application in continuous magnetic
refrigeration. A breakthrough in MCE studies near room temperature was provided

with the discovery a Giant MCE in the Gds(SixGei.x)s system [16, 119]. In this
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system, withO < x < 0.5, the MCE is twice as large as the entropy change in pure Gd.
Moreover, the temperature corresponding to the largest entropy change can be tuned
between 20 and 336 K by varying the Si to Ge ratio in this compound; unlike the
FeRh system, the GMCE in Gds(SixGer.x)s is reversible. Further studies on
GdsGe:Si; showed that the hysteretic loss (which makes magnetic refrigeration less
efficient) can be reduced (more than 90%) by the addition of a small amount of iron.
At the same time, the magnetic entropy peak moves from 275K to 305K and the
width increases [124]. All these properties make Gds(SixGer.x)s a promising
candidate for magnetic refrigeration. The mechanism underlying the different
magnetic behaviour in these two systems is still unclear; however Gschneidner et al.
[125] stated that the difference probably arises from the different nature of the first-
order phase transition. In the FeRh system, it is an order-order phase transition; in the
Gds(SixGe1.x)s System, it’s an order-disorder transition coincident with a structural
phase change.

Subsequently, considerable effort has been devoted to investigate other systems
which undergo a first-order phase transition, and among the dozen or so such systems,
three draw particular attention. They are MnAs;.,Sb,, MnFeP; As, and Ni-Mn-Ga,
which will be reviewed separately.

Polycrystalline samples of MnFeP;  As, with 0.25 < x < 0.65 were first studied
by Tegus et al [17]. This system exhibits a field-induced phase transition; at low field,

there is a sharp phase transition from ferromagnet to paramagnet accompanied by a
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large entropy change. An entropy change of about 20 J/kg.K near x = 0.45 for a field
change of 2 T and a change of 33 J/kg K for x = 0.35 under 50 kOe were found. It is
worth mentioning that this system shows a larger refrigerant capacity (the refrigerant
capacity measures how much heat can be transferred between the hot and cold
reservoirs in one single ideal refrigeration cycle) than Gd-Ge-Si or pure Gd. This
favours its use as a refrigerant. The origin of the GMCE is also unclear, as in the Gd-
Ge-Si system. A preliminary study showed that the MnF eP1.xAsx system is an
itinerant-electron system with a strong electron correlation. By contrast, Gd-Ge-Si is
a localized-moment system with an indirect RKKY exchange interaction.
Additionally, MnAs;Sby [126], was studied with the intent to reduce thermal
hysteresis of the MnAs system, which also showed a giant MCE [127]. Calculations
based on the magnetization isotherms in this system with 0 <x <0.4 indicated a
large entropy change of 25-30 J/kg K in a 50 kOe field. The largest entropy change
appears at the Curie temperature with a field-induced paramagnetic to ferromagnetic
phase change. Importantly, this peak temperature can be tuned between 230K and
315K without significant reduction of the MCE, and no hysteresis was observed for
compositions above 0.05. Although the large MCE in this system originates from a
field induced metamagnetic phase transition, just as the MnFeP;4As, system, the
magnetic behaviour is quite different from that of an itinerant-electron metamagnetic

system. The mechanism underlying the MCE is also different. A large
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magnetovolume coupling in this system is a possible origin of the abnormal

magnetization curves, and consequently, the giant MCE [128].

30 [ Mnfs
AH: 0-5T S
25F -
20 : Ni; Mn, anzsz :
- MnFeP § -
< [ Gd,Si,Ge, PP, A ]
I3 X N ]
S 150 R ]
& N ]
/4] |
< L
© 10 Gd .
5F h

O [ 1 L ) h N A L L L . ]
270 280 290 300 310 320 330
T(K)

Figure 5.1 Summary of the maximum magnetic entropy change
observed in several systems showing a GMCE with the corresponding
neak onerational temnerature.

In 2001, Hu et al. [129] reported a large entropy change in the Heusler alloy Ni-
Mn-Ga system. The entropy calculation for a single crystal alloy Nisy My Gagg
sample gave a large change of 18 J/kgK at 50 kOe near the martensitic structural
transition temperature of 300 K. The parent Heusler alloy, Ni,MnGa, has a first-order
magnetic transition accompanying a cubic to tetragonal structural phase change at

lower temperature Ty, = 200 K, and a second — order paramagnetic to ferromagnetic
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phase transition at T.=376 K; it thus provides a natural platform to study the
relationship between the MCE and the order of the phase transition. Detailed studies
presented below on this system show that the entropy change can be further enhanced
by the coincidence of the first-order transition with the second-order phase transition
through compositional tuning. An entropy change as large as 20.4 J/kg K at 317K in
a field of 50 kOe was reported in this system by Zhou et al. [130]. The relationship
between the maximum entropy change and the peak operational temperature for the

different systems mentioned above is summarized in figure 5.1.

5.4.2 Applications of GMCE- Magnetic Refrigeration

Magnetic refrigeration is a method of refrigeration based on the MCE. F igure 5.2
is schematic diagram for a magnetic refrigeration cycle. Similar to the Carnot cycle,
it has four steps, namely magnetizing, heat absorption by the MCE material,
demagnetizing and finally heat flow from a hotter to a colder sink. As early as 1976,
Brown [131] proposed a prototype for a room temperature magnetic refrigerator.
However, after the discovery of the giant MCE in many systems, magnetic
refrigeration studies were giving a significant boost. In 1997, a joint report from two
groups (Ames Laboratory and the Astronautics Corporation of American)

demonstrated that magnetic refrigeration is a viable technology for (near) room
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Figure 5.2 Schematic representation of a magnetic-refrigeration cycle in
which heat is transported from the heat load to its surroundings. Initially
randomly distributed magnetic moments are aligned by a magnetic field,
resulting in heating of the material. This heat is removed from the
material to its surroundings by a heat — transfer medium. On removing
the field, the magnetic moments randomize, which leads to cooling of the
magnetic material to below the ambient temperature [124].

temperature applications, including large scale building air conditioning, refrigerator
and supermarket chillers. In 1997, Zimm et al. [132] successfully designed a proof-
of-principle AMR (active magnetic regenerator). Figure 5.3 is schematic drawing of
this proof-of-principle magnetic refrigerator. The system uses two beds containing a
spherically shaped powder of Gadolinium which is quickly moved in and out of a
magnet by a pneumatic drive. The beds are heated quickly when they are magnetized
and cooled quickly when they are demagnetized. The heat transfer fluid (water here)
is alternatively heated and cooled as it passes the beds. The transfer fluid then flows

through the exchanger to complete the cycle. With a 50 kOe field (provided by a

154



- Enammatic
i

leguid
halisem
clawisay

superconducting
TR EreL

n O R e
rafrimarant

Figure 5.3 A schematic sketch of the proof-of-principle magnetic
refrigerator [132]

superconductor magnet), this system gives a cooling power of 600 watts and a

temperature span of 38K, a coefficient of performance (COP)” near 15 and an

" Coefficient of performance of a refrigerator is defined as the ratio of heat extracted from the
cold environment to the work done on the system, in the case here by the magnetic field.
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efficiency of approximately 60% of the Carnot efficiency. However, the use of a
superconducting magnet limits its applicability. In 2001, the Astronautics
Corporation of America fabricated the first room temperature refrigerator which used
permanent magnets instead of superconducting magnets, making it feasible for use
on a commercial scale.

Obviously, the major difference between magnetic and conventional refrigerators
is the lack of a compressor. In thé conventional gas compression refrigerator, the
compressor is the most expensive and inefficient part, which is replaced by two beds
of MCE material in the magnetic refrigerator. In addition, the transfer fluid is water
or a water based mix, instead of a traditional refrigerant. The driving motor which
moves the beds in and out of the magnetic field and the pump which circulates the
transfer fluid are low-cost commercial products. Compared with conventional gas
compression refrigerators, magnetic refrigerators have a higher efficiency and would
conserve emergy. With the use of water as a transfer fluid, it’s also an
environmentally friendly technique, eliminating ozone depleting chemical, green
house gases (Hydrochlorofluorocarbon and Hydrofluorocarbons) and hazardous

chemicals (NH;).

3.5 The Measurement of the Magnetocaloric Effect

5.5.1 Direct measurement
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There are two principle ways to evaluate the MCE in bulk magnetic materials.
The MCE can be measured directly or calculated indirectly based on magnetization
1sotherms or the specific heat data.

Direct measurement techniques basically involve the measurement of the
sample’s temperature. In order to ensure adiabatic conditions, a rapid movement of
the sample in and out of a magnet is required; alternatively, this can be realized by
rapidly charging and discharging the magnet with a stationary sample. Since
conventional electromagnets can only provide a field between 0-20 kOe, for a high
field measurement, a superconducting magnet is usually employed. Direct MCE
measurements up to 40 T have been reported. In this technique, the adiabatic
temperature is given by:

AT, =T, -T, (5.17)
where Ty is the sample’s temperature in a field and T, is the temperature in zero

field. AT,, is the adiabatic temperature change in a given field. Many factors limit the

accuracy of this technique; these include contact between the sample and temperature
sensors, the thermometry, the isolation between the sample and the ambient
atmosphere and the ability of the compensation circuitry to eliminate the effect of the
changing magnetic field on the temperature sensors. In particular, the thermal

isolation of the sample plays a significant role in the large entropy change samples.
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Considering all these factors, direct measurement can result in an error between 5-

10% as noted in recent reviews [133].
3.5.2 Indirect measurement from magnetization isotherms

The indirect approach usually involves the measurement of either the
magnetization or specific heat. From equation (5.10), we can evaluate the entropy

change becomes

AS,(T,H) =S, (T,H)-S, (T,0) = f(%MJ dH (5.18)

H

In actual calculations, the exact differentials dM, dT,dH are replaced by finite but
small changes AM,AT,AH ; this treatment will, of course, introduce an error. The

accuracy of this method also depends on the accuracy of the magnetization and the
temperature measurements, as well as the field stability. There are a series of steps
then can be adopted to aid in the latter; these include warming above the ordering
temperature prior to measurement, a slow sweep rate during the measurement, etc.
Nevertheless, typical errors range from 3-10% when using magnetization isotherms
to evaluate the entropy change [133]. This approach was questioned by Giguere et al.
[134], because in some cases (for example, an ideal first-order phase transition) the
entropy change around the transition temperature is not a continuous (differentiable)

function; thus the Maxwell relations are not valid and calculations based on them are
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no longer reliable. Instead, the direct adiabatic temperature measurement should be
used or approaches based on the Clausius-Clapeyron equation which relates the
magnetization jump at the transition and the shift of the critical point with magnetic
field. Although arguments about this method remain, it is still a popular and
straightforward way to estimate the magnetic isothermal entropy change in many

cases.
5.5.3 Indirect measurement from specific heat data

From equation (5.12),
(T
ds = ——(%dT (5.19)

Here C(T) is the specific heat at constant pressure and fixed magnetic field. S is the

entropy as a function of temperature. Suppose a measurement of the specific heat is

made between temperatures T, and T, (T, > T,) and with two fixed fields H, and
H, whereH, > H,; from the above equation, for any temperature falling between T,

and T,, the entropy change at temperature T between the two different fields is:

C c
AS,(T,H) =S_ (T,H)-S, (T,0) = LO%dT— T,_>0 12 4T (5.20)

In practice, it is usual to choose T; as close to zero temperature (0 K) as possible and

usually the lower field is set to zero, so the above equation can be simplified to:
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AS,(T,H)=S,_(T,H)-S_(T,0) =

J;TCH(HqsO)—CH(H:O)dT (5.21)

T
Clearly the entropy change depends strongly on the difference of the specific heat at
two fixed fields. This equation is derived on the assumption that the specific heat is a
continuous function of the temperature; namely, the system must undergo a
continuous phase transition and all changes in the magnetic system are assumed to be
equilibrium or quasistatic processes. However, some authors [135] assume that the
validity of this equation can be extended to systems which undergo a first — order /
discontinuous phase transition, because, in systems with a discontinuous entropy
change, the magnitude of the magnetocaloric effect is mainly influenced by the
difference in the entropies of the low and high magnetic field phases. The accuracy
of this method depends on the accuracy of the temperature dependence of the specific
heat data. If it is assumed that the accuracy of the specific heat is field independent,
the relative error in the magnetic entropy change will be reduced when the field

interval AH is increased.

5.6 Properties of the Heusler Alloy Ni;MnGa
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Ferromagnetic shape memory alloys (FSMA) are a class of new materials which
combine properties of ferromagnetism and a thermoelastic martensitic transformation
in the ferromagnetic state. Various FSMA systems, e.g. Fe-Pd [136], Fe-Pt, Co-Ni-Al
[137], Co-Ni-Ga [138], and Ni-Mn-Ga, are amongst those that have been
investigated to date. The latter, the Ni-Mn-Ga system, has attracted considerable
attention due to the large field induced strains occurring at low field [139]. Ni;MnGa,
the parent compound of this system, possesses a high temperature cubic phase with a
Heusler structure, which changes to a lower symmetry tetragonal structure with c/a ~
0.95 around T,~200K. In practice, the martensitic transformation temperature, Ty,
can be controlled by changing the chemical composition of the alloy. Besides the
possible application of this “smart” material as an actuation device [140], this system
also provides an excellent platform to investigate various aspects of phase transitions
and microstructural formation because both magnetic and structural phase transitions
can be realized in a single system. However, the present studies will focus on the
magnetic properties of the Ni-Mn-Ga system, in particular, the giant magnetocaloric
effect (GMCE).

As reviewed in the previous chapter, several systems which display a first-order
phase transition also exhibit a giant magnetocaloric effect (GMCE); such systems
include the Gd-based compound GdsSi,Gey, MnFeP;4As, and MnAs;,Sby,. The
origin of the large entropy change in these systems can be traced to the substantially

different contributions to the entropy in the magnetically ordered and disordered
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Figure 5.4 A simple sketch of the crystal structure of the Jferromagnetic shape
memory alloy Ni;MnGa.

regimes which are separated by this first-order phase transition. There also exist a
number of systems which display sequential phase transitions on cooling; the Ni-Mn-
Ga system is one of them.

Figure 5.4 shows the structure of the ferromagnetic shape memory alloy
Ni;MnGa. The parent compound Ni,MnGa is a ferromagnetic Heusler alloy with L2,
structure” in the ground state [140]. Ni ions reside on the corner sites of the body-
centered-cubic structure, while Mn and Ga ions alternately occupy body-center sites.
Figure 5.5 is a schematic sketch of the zero field susceptibility versus temperature on
warming and cooling for Ni;MnGa. On warming, this Heusler alloy undergoes a

first-order phase transition from a tetragonal martensite to cubic austenite structure at

i L2, is Strukturbericht Designation for Heusler structure. L type specifies the structure of alloys
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Figure 5.5 A schematic sketch of the zero field susceptibility measured
on warming and cooling. Actual data can be found in the following
sections.

Tm ~ 200 K;; this structural transition is fundamentally different from the transition in
other shape memory alloy systems, because the transition is accompanied by a
simultaneously magnetic phase transition and an abrupt change in the magnetization.
At the transition temperature, Tr, a large entropy change is anticipated, since the
structural and magnetic phase transitions occur simultaneously. At higher
temperature, as figure 5.5 shows, the system undergoes a second-order ferromagnetic
to paramagnetic phase transition, which is characterized by a Curie temperature, Tk.

Obviously, this system possesses two kinds of magnetic phase transitions: a first-
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order ferromagnetic to ferromagnetic (order-order) tramsition and a second-order
ferromagnetic to paramagnetic (order-disorder) transition, with a structural phase
transition accompanying the first-order magnetic phase transition. It provides an ideal
system to investigate the relationship between magnetic phase transitions and the
magnetic entropy change. In additioﬁ, by varying the compositions of the system, it
is possible to engineer the simultaneous occurrence of the first-order structural
martensitic transformation and the continuous magnetic transition [141]. While
previous experience suggests that the dominant entropy change accompanies the
first-order phase change, it appeared possible that if these transitions could be
merged — or at least brought into close proximity — an enhancement of the separate
entropy changes — and hence the MCE — could be accomplished. Thus, the Ni-Mn-Ga
system appears to be an ideal system to search for promising new magnetic

refrigerants.

5.7 Sample Preparation and Measurement Techniques

A series of samples were prepared by arc melting in an argon arc furnace;
99.95% pure Ni, 99.99% pure Ga and spectroscopic grade Mn were used as starting
materials. Each specimen was inverted and remelted several times to ensure better
homogeneity. In order to further improve the stoichiometric homogeneity, a heat

treatment for 220 hours at 850°C in an argon atmosphere was performed. Finally, the
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samples were quenched into iced water. Quenching is an important step to obtain the
highest degree of chemical order but increases the brittleness of samples. The actual
composition of each sample was determined by electron microprobe analysis
(Cameca SX 100). As expected, the Mn content was usually 1-2% lower than the
nominal composition, which was compensated for by a slight adjustment to the
starting materials. Powder X-ray diffraction using Cu Ko radiation was employed to
determine the room temperature (RT) crystal structures, which are summarized in
Table 5.1. The related magnetic measurements, carried out on samples cut from the
original quenched ingots, used the Quantum Design PPMS 6000 magnetometer
described in Chapter 3. These measurements included a number of magnetization (M)
versus applied field (H,) isotherms at a range of fixed temperatures and some
temperature dependent ac susceptibility (x(H,T)) measurements (at 2.4 kHz in an ac
driving field of 30 mOe rms applied along the longest axis of typically (6x1x1) mm®
samples) in fixed dc biasing fields (applied parallel to the ac field). For
magnetization isotherm measurements, the sample was usually heated above T, to
achieve a demagnetized state prior to zero-field cooling to a set temperature; a half an
hour waiting time was then used in order to reach better thermal equilibrium before
the start of the measurement. During the measurement, a sufficiently slow field
sweep rate and 5 scan averaging were employed to enhance accuracy at every
measurement point. A similar measurement procedure was applied to the temperature

dependent ac susceptibility measurement.

165



5.8 The Relationship Between Sequential Magnetic Phase

Transitions and MCE in the Ni-Mn-Ga System

5.8.1 General overview

Table 5.1 summarizes the physical data from all samples with different values of
T and T.. Basically, Ty, covers a temperature range between 272 K and 338 K while
Te covers a temperature range between 308 K and 368 K. As far as structure is
concerned, for sample 2 (NisooMn47Gagss), T is below room temperature and it
displays the expected cubic structure at room temperature (300 K). By contrast, all
other samples, (sample 1 (Nis72Mns59Gayr), sample 3 (Nis;.6Mny4.7Gags g), sample 4
(Nisp.sMny; 4Gasa.7), sample 5 (Nisz7Mng3 9Gass 4) and sample 6 (Niss 2Mnis 6Gaze) )
are tetragonal at room temperature. In particular, for sample 6 (the focus of the
discussion in this section), X-ray diffraction confirmed that it was a single phase
tetragonal structure with room temperature unit cell dimensions a = b = 5.980 A and
¢=15.835 A, in general agreement with previous reports at similar composition [142].

The general magnetic behaviour of all samples is summarised in figure 5.6,
which shows the temperature dependence of the zero-field ac susceptibility
(measured at 2.4 kHz in an ac driving field of 30 mOe rms). This figure illustrates

that progressing from samples 2 to 5, there are two distinct phase transitions and the
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Figure 5.6 Zero-field ac susceptibility for all samples; the numerical -
values inside figures refer to the order in Table 5.1
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Sample Composition | RT Structure | Lattice Param.(4) TMEK) | TeK) | ATK) | ASu( kg K e/a
a=b=5.944
1 Nis7oMnis9Gazrg Tetragonal - 308 - -2.0 (at 310 K) 7.64
c=5.842
2 NisooMngs7Gagg 4 Cubic a=b=¢=5.831 272 365 93 -3.5 (at 274K) 7.55
a=b=5.838
3 Ni51.5MIl24,7G8.23_8 Tetragonal 296 368 72 -7.0 ( at290K) 7.60
¢=5.800
a=b=6.011
4 Ni52.9M1’12244G8,24‘7 Tetragonal 305 340 35 -8.6 (at 304 K) 7.60
¢=5.808
a=b=5.988
5 Ni52_7M1’123,9G323_4 Tetragonal 338 354 16 -15.6 (at 337 K) 7.65
¢=5.849
a=b=5.980
6 Niss2Mnig¢Gazs, | Tetragonal 315 315 0 -20.4 (at 317 K) 7.61
¢=5.835

Table 5.1 Summaries of compositions, room temperature structure, lattice parameters, fist-order transitions
temperatures, Curie temperatures, temperature differences, maximum entropy changes and the average number of
valence electrons per atom for all samples.




first-order transition temperature (Ty,) increases while the second-order transition
temperature (Tc) decreases. By contrast, sample 1 shows a pure second-order phase
transition without any hysteresis within experimental uncertainty (this point will be
confirmed later through the test of various power laws). However, sample 6 also
displays but a single transition at Ty, (Tc) = 320 K.  Here note the presence of a
thermal hysteresis of some 7 K on subsequently cooling this sample, as shown in
figure 5.6. Such hysteresis ié a signature that the first-order nature of the transition
persists.

In the following paragraphs, three samples — sample 1, sample 4 and sample 6 —
will be analyzed in detail in order to identify the characteristics that are important to
this discussion. Through magnetization isotherms, temperature dependent ac
susceptibility measurements and the associated critical analysis, it will be confirmed
that sample 1 (Nis7;oMnjs9Gagro) displays a pure second-order phase transition;
sample 4 (Nis72Mn;s9Gayz) displays the sequential phase transitions mentioned
above, i.e. a continuous paramagnetic to ferromagnetic phase change at T, and a first-
order/discontinuous magnetic transition accompanying a martensitic transformation
at a lower temperature Tp; sample 6 (Niss,Mny56Gazs2) displays a magnetic phase
transition with both first- and second-order characters. The present discussion,
however, will focus on investigating, in detail, the nature of the magnetic phase
transitions that occur in these specimens (i.e. at Ty, and/or T.) and correlate the

characteristics of such transitions with the associated magnetocaloric effect (MCE).
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Figure 5.7 Magnetisation isotherms: (a) sample 4 at 298 K (top), 302 K,
304 K, 306 K, 310 K, 320K and 325 K (bottom); (b) complete isotherms
(field increasing and decreasing) for sample 4 at temperatures of 302K
(top), 304 K, 306 K and 308 K (bottom); (c) M versus H/M plot (Arrott
plots) for sample 4 at temperatures of 290 K (top), 294, 298, 300, 302,
304 and 306 K (bottom).

5.8.2 Analysis for Nis;oMny;4Gazqs (sample 4) with sequential magnetic phase

transitions

Clear hysteresis centered near Ty, ® 305 K is observed for sample 4 as shown in

figure 5.6 and this feature provides direct evidence for the presence of a first-order
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phase transition. Another feature which is generally associated with a first-order
transition is an “S” shaped magnetization isotherm, i.e. a discontinuous jump in the
ideal case, which is broadened in real systems, due likely to disorder resulting
principally from departures from stoichiometry [90]. A carefully examination of the
field dependent magnetization data for sample 4 confirms this, as demonstrated in
figure 5.7. Figure 5.7 (a) presents isotherms in the field-increasing mode only for
sample 4. Here an “S”-shaped feature characteristic of a first-order (field-induced)
metamagnetic transition can clearly be identified near T, ~ 305 K. Such a criterion
has been successfully applied in Chapter 4 to identify the first-order nature of the
transition in a single crystal Lag73Cag2;MnOs sample, as well as other systems
displaying magnetocaloric characteristics (i.e. Gds(Si,Gey) [119], Gds(SixGeix)4[143,
144] and DyMn,Ge; [145] amongst others). From figure 5.7(a), the metamagnetic
field, Hy, which is the transition field from a paramagnetic to a ferromagnetic state,
can be estimated by finding the maximum in dM/dH; this method has been widely
used to identify the metamagnetic field in the doped manganites and other
intermetallic compounds, as described in previous chapter. Figure 5.7(b) presents
complete magnetization isotherms in both field-increasing and field-decreasing
modes; once again, obvious field dependent hysteresis can be found around Ty =
305 K. An Arrott plot for sample 4 is shown in figure 5.7(c), where magnetization
isotherms are replotted in an M? versus H/M format; a careful examination of this

plot reveals negative slopes at intermediate magnetic fields, although the initial

171




0.03 - ° % =

0.02 | ;P*\\\\\“\\\ . i

0.01

x(emu/g-Oe)

0.00

300 320 340
T(K)

Figure 5.8 Ac susceptibility data for sample 4 measured on warming
(following zero-field cooling) in static fields of 400 Oe (top), 500 Oe,
600 Oe, 800 Oe, 1000 Oe, 1200 Oe, 3000 Oe and 5000 Oe (bottom,).

slopes  are positive. The negative slopes here, indicating the existence of a first-order
phase transition, can be understood on the basis of the Landau expansion, as
discussed in chapter 2. Zero-field susceptibility and magnetization isotherm data in
figure 5.7, for sample 4, suggest the transition around T, = 305 K is a first-
order/discontinuous phase transition. This point is further confirmed in figure 5.8,
where temperature dependent ac susceptibility curves (plots of %(H,,T) vs T for fixed

static biasing fields, H,) are plotted for temperatures between 285 K and 350 K in
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static superimposed fields between 4000Oe and 5 kOe. A clear anomaly
corresponding to T, #305 K can be seen in this figure. Near this temperature the
susceptibility displays an abrupt change, Ay, which shows a strong field dependence.
With increasing static biasing field, the temperature dependence of the susceptibility
changes from positive (dy/dT>0) to negative (dy /dT<0). In the intermediate field
range between 900 Oe to 1000 Oe, no steep step is seen. It should be noticed that all
these changes happen in a narrow temperature range of 304-308 K. The relationship
between this lower martensitic transition and the magnetocaloric effect will be
examined by establishing the metamagnetic boundary (the first-order phase boundary
delineated in an Hy(T) vs T plot) later.

The feature which should however to be emphasized in figure 5.8 is not the lower
transition around Ty, =305 K, but the series of peaks near 340 K. These peaks move
upward in temperature and decrease in amplitude as the static superimposed biasing
field H, is increased. Maxima that behave in this way are an unequivocal signature
of a second-order/continuous magnetic phase transition, as discussed earlier. While
the generic field and temperature dependent behaviour of this peak structure can be
understood using arguments of a general nature [146] based on the
fluctuation/dissipation theorem — the maxima (near T, ~ 340 K in figure 5.8)
delineate the locus of a crossover line in the (H-T) plane separating a lower
temperature region of field-dominated response from a higher temperature, thermally

dominated regime — the detailed behaviour of this crossover line is model dependent.
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Figure 5.9 (a) Estimate of T. from the critical peak temperatures in
various internal fields in the form of a tw vs H>" (b) Cross-over
(exponent) plot of the reduced peak temperatures vs internal fields. (c)
The peak susceptibility plotted against the reduced temperature t,,. (d)

The peak susceptibility plotted against the internal field. (b), (c) and (d)
are all on a double logarithmic scale.

This can be demonstrated by examining various power-law relationships predicted to
occur in the vicinity of a conventional second-order transition by the static scaling
law, as described in Chapter 2. From equation (2.21), the plot of the peak

temperature Ty, against H;""P should be linear, and its intercept gives the Curie

temperature, T.. By choosing 3D Heisenberg model values of vy+B=1.75,
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T=339.4£0.1 is obtained as shown in figure 5.9(a). Figure 5.9(b) confirms again
both these exponents and T, estimates; the reduced peak temperatures, ty, are plotted
against the internal field, Hj, on a double logarithmic scale with Heisenberg model
exponents and the straight line from the least-square fit confirms the power law
prediction. The exponent y can be found by plotting the amplitude of the
susceptibility maxima ¥ against the reduced peak temperatures t, on a double
logarithmic scale, as figure 5.9(c) shows; these data yield y = 1.2140.03. The
exponent § is found from a least-square fit of the data in figure 5.9(d), where the
amplitudes of the peak susceptibility, ym, are plotted against the internal field, H;;
here & = 3.29+0.05, which is close to the mean field theory prediction of & = 3.
Overall, these critical exponents estimated from figure 5.9 lie in between mean field
(v=1, B=0.5, 8=3) and 3D Heisenberg model values (y=1.387, B=0.365, 6=4.8). The
crossover line, Figure 5.9(a) and (b), yields values close to the Heisenberg prediction
(v+B=1.75), the susceptibility exponent y = 1.21 is intermediate between these two
models, while the equation of state exponent, & = 3, is closer to the mean field model
than the Heisenberg model result. While the presence of disorder induced by
(deliberate) departures from stoichiometry complicates the ecritical analysis —
particularly as far as the emergence of critical peaks at low field are concerned, the
deviation from the 3D Heisenberg model values is likely due to magnetic anisotropy

present in the sample [61]. The magnetic anisotropy plays an important role in the
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Figure 5.10 Upper panel: the metamagnetic boundary (Hy(T) vs T,

squares) and the crossover line (Tp vs H, circles); Lower panel: the

magnetic entropy change ASy plotted against temperature at fields of
1000 Oe (bottom), 3000 Oe, 5000 Oe, 10000 Oe to 50000 Oe (top) in
10000 Oe steps.

Ni-Mn-Ga system. In essence, the magnetic shape memory effect in the system is
driven by the magnetic anisotropy energy, which differentiates this system from the
temperature-driven conventional shape memory alloys. The magnetic anisotropy
energy in the parent compound Ni,MnGa has been investigated both experimentally

and theoretically [147].
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The behaviour of Hy(T) as a function of temperature near Tp, is presented in the
upper panel of figure 5.10. As might be anticipated from figures 5.7(a) and (b), the
metamagnetic boundary is a very steep function of temperature in this sample; the
data points shown were deduced from field increasing sweeps (due to the hysteresis
noted previously, HM(T) estimates from field decreasing sweeps will be lower, but
nevertheless extrapolate to the same Ty,). The lower panel of figure 5.10 reproduces
the entropy change, ASy;, associated with both the first- and second- order phase
transitions as estimated from the Maxwell relations using equation (5.18)

oM
ASu(T,H) = S(T,H) — Su(T,0) = j(ﬁ) dH
0 H

Figure 5.10 demonstrates conclusively the close correspondence between the
entropy change ASy(T,H) associated with the magnetocaloric effect and the
corresponding phase “boundaries” as represented quantitatively by the metamagnetic
boundary (Hy(T) vs T) and the crossover line (H vs Tp) characterizing the first- and
second-order transitions respectively. This figure also illustrates that the dominant
entropy change occurs in the vicinity of the first-order transition (a combined
magnetic and structural transition resulting in a significant increase in moment, as
can be seen from figure 5.7(a) and (b)). Moreover, the magnetic entropy change
corresponding to the second-order phase transition possesses a much wider peak than
that appearing around the first-order phase transition; this suggests an effective

characteristic of the first-order phase transition is to confine the MCE in a narrow
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Figure 5.11 Magnetization as a function of temperature for sample 4 at

fields of 50 kOe (top) to 10 kOe in 10 kOe steps, then 8 kOe to 1 kOe
(bottom) in I kQe steps.

temperature range. A careful examination of the lower panel of figure 5.10 reveals
that the magnetic entropy change maxima, centered near 305 K and 340 K
respectively, strongly depend on field; with increasing of field, the magnetic entropy
change ASy increases monotonically for both. In lower fields (H < 5000 Oe), the
maximum entropy change corresponding to the first-order phase transition becomes
positive, while the magnetic entropy change, ASy, appearing near the second-order

phase transition remains negative over the whole field range. This difference in the
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behaviour can be understood on the basis of the magnetization temperature
coefficient, namely, dM/dT. Figure 5.11 reproduces temperature dependent
magnetization curves for sample 4 at fields between 1 kOe and 50 kOe. The
magnetization has a much steeper temperature dependence near the first-order phase
transition than around the emerging second-order phase transition. Most importantly,
dM/dT around the first-order phase transition has a crossover from negative to
positive at a field of 3000 Oe, which leads to the entropy change crossover appearing
in the lower panel of figure 5.10. By contrast, dM/dT remains negative around the

second-order phase transition, but with a lower magnitude.

5.8.3 Analysis for Niss;Mnis6Gaz, (Sample 6) with merged first- and second-

order phase transitions

Figure 5.12(a) reproduces magnetization isotherms for increasing field at various
(fixed) temperatures for sample 6 (NisssMnigeGaz2) in the vicinity of its
ferromagnetic ordering temperature. The data in figure 5.12(a) confirm that the
sample is ferromagnetic and easy to saturate below T, (Tw); in particular the “S”-
shape of magnetisation curves in the temperature interval 317-324 K is clear, a
feature generally characterizing a metamagnetic first order transition. F igure 5.12(b)
shows complete isotherms (field increasing and decreasing) for sample 6 at various

fixed temperatures. A clear field dependent hysteresis is observed, which is also a
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Figure 5.12 (a) The magnetization dependence of sample 6 on applied
magnetic field measured at various temperatures: from top to bottom
300, 305, 310, and 312 K, then 314 to 320 K in steps of 1 K; (b)
complete isotherms (field increasing and decreasing) for sample 6 at
various temperatures: from top to bottom 312 to 326 K in steps of 2 K.

characteristic of a field-induced metamagnetic transition.

Figure 5.13 reproduces the susceptibility as a function of temperature at static
biasing fields from 8 kOe up to 35 kOe for sample 6. Isokaps of the ac susceptibility
reveal a series of peaks, the amplitude of which decrease while the temperature of the
peaks increase with increasing applied field. From the theoretical discussion in

chapter 2, such features are linked to the presence of a second-order/continuous
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Figure 5.13 The temperature dependence of the ac susceptibility in fixed
fields of 0.8, 1.0, 1.5, 2.0, 2.5, 3.0 and 3.5 T (from top to bottom) for
sample 6. The behaviour of the peak structure with increasing field is a
characteristic of a second-order magnetic phase transition.

magnetic phase transition. As mentioned earlier, the maxima in figure 5.13 delineate
the locus of a crossover line in the field (H) and temperature (T) plane, which
separates the field-dominated region from the thermally- dominated region. The
critical peak behaviour follows a series of power-laws, as discussed in Chapter 2.
From these, a set of critical exponents, which usually show model dependence, can
be extracted. A comprehensive critical analysis for sample 6 is presented in figure
5.14. Using 3D Heisenberg exponents, T;~314.5+0.5 K was obtained by

extrapolating the high field peak temperatures to zero field as shown in

181



340}
Jo.08
T,=314.5£05K y+B=1.57+ 0.02
—~ tm
s _
< 330 < @)
0.04
H 0457(080.57)
320 L o ! : N .
200 300 400 500 40000
0.08
$=1.16 + 0.05 11284
% 006 . v=1.07+0.07
o T )
o O
E: (c) {8E-5 F
2 5
£ 0.04f Y
v=1.41% 0.04 =
tm
8E-5 1.2E-4 40000

Figure 5.14 The plots show the data fit to find critical exponents values
Jor sample 6.

figure 5.14(a). Figure 5.14(c) shows the peak susceptibility plotted versus the

reduced peak temperature. The fit to the low field data points yields y =1.07+0.07,
which is close to mean field theory predictions, while the high field points yield y =
1.41+0.04. The peak susceptibility versus internal field is plotted in figure 5.14(d).
Obviously, a clear curvature is apparent and no linear fit can be made to fields in the

range between 9 kOe- 55 kOe; fits to low and high field points yield 6 =1.16 and § =
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Figure 5.15 Upper panel: the metamagnetic boundary (Hy(T) vs T,
squares) and the crossover line (T,, vs H, circles); the dashed portion is
an extrapolation of this fit to H = 0. Lower panel: Magnetic entropy
change of Niss  Mn;s.6Gaze; (sample 6) at fields of 5000 Oe (bottom) to
20000 Oe in 5000 steps, then 30000 to 50000 Oe in 10000 Oe (top) steps.

2.52, respectively. Actually, the curvature in the figure 5.14(d) is likely a
consequence of the “S” shaped magnetization isotherms which appear near the Curie

temperature (magnetization isotherms near the critical temperature usually assume
the power law formM oc HY® and the “S” shaped characteristics are consistent with

such variations in the estimates for §). Clearly, sample 6 possesses some
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characteristics of a second-order/continuous phase transition; however, the critical
exponents deduced from figure 5.14 are not consistent with any existing single model
predictions. Likely, the near coincidence of a first-order and a second-order phase
transition makes the asymptotic exponents difficult to access, as in single crystal
Lay73Ca27MnOs. However, a test of universality claés 1s not the principal focus here
and more comprehensive measurements coupled with careful sample preparation —
possibly involving the use of single crystal — are needed to establish the universality
class definitively. Rather, the focus is to demonstrate that, while the dominant
entropy change does occur at the first-order magnetic transition (accompanied here
by a structural phase change in this system, from tetragonal to cubic on warming),
this entropy change can be further enhanced through the (essential) coincidence of a
second-order magnetic transition. This assertion can be demonstrated conclusively by
the establishment of the metamagnetic boundary from magnetization isotherms and
the crossover line mentioned above.

Figure 5.15 reproduces both the metamagnetic boundary (Hy(T) vs T) and the

crossover line (H vs Tp) for sample 6; the latter extrapolates to T, = 315 K from a Tp

vs HOB plot with y+B=1.75 as shown in figure 5.14(a), and this temperature
coincides with the origin of the metamagnetic boundary at Ty~ 315 K within
experimental uncertainty. A carefully examination the slope of the metamagnetic
boundary dHw/dT give a value ~12 kOe/K, which is less steep than the value found

when the two transitions are separated, as in sample 4. This figure demonstrates that,
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as a result of compositional tuning, features consistent with both a first-order and a
second- order (magnetic) transition appear essentially coincidentally in this sample.
The magnetic entropy change associated with these merged magnetic phase
transitions is evaluated based on magnetization isotherms in figure 5.12(a) and the
resulting AS;, for fields between 5 kOe and 50 kOe is presented in the lower panel of
figure 5.15. Specifically, the magnetic entropy changes, ASy;, evaluated at 15 kOe
and 50 kOe are reproduced in figure 5.16, where the corresponding values for pure
Gd are included for comparison. It indicates that the corresponding entropy change
ASy in a field of 50 kOe reaches a peak value of -20.4 J kg K near 317 (in a 50
kOe field) just below T; (Ty); in a lower field of 15 kOe, the peak entropy change is -
9.2 T kg™ K. Both of these values are substantially larger than those of Gd, as shown
in figure 5.16. In particular, the value ASy=-20.4J kg K near 317 in a 50 kOe
field exceeds the sum of the individual maximum changes occurring with separate
first- and second- order transitions. Moreover, it also exceeds the value from an
isolated first-order transition in samples displaying sequential first- and second-order
transitions. This value is among the largest entropy change obtained in this system,
including a single crystal sample. The entropy change, ASy, evaluated in a similar
way for all samples is listed in Table 5.1. Immediately evident from this table is the
fact that there is a clear correspondence between the magnitude of entropy change,

ASy;, and the temperature difference, AT, between the first-order and second-order

phase transitions (AT = T, — Tp,). With a decrease of the temperature difference AT,
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Figure 5.16 Magnetic entropy change of Niss Mn;s6Gazs; (sample 6)
and Gd with temperatures at fields of 15 kOe (triangles) and 50 kQOe
(circles), calculated from the magnetization data. The solid squares and

triangles are for Niss MnjssGazsz and the open squares and triangles
are for Gd.

the peak value of the magnetic entropy change keeps increasing. When Ty, and T,
merge (i.e. AT =T, — T, — 0), as in sample 6, the entropy change, ASy, reaches the
maximum value for the group of samples studied. However, the dominant entropy
change still arises from the first-order/ metamagnetic structural transition, as is
evident from table 5.1; this entropy change can be further enhanced by a coincidence
with a second-order/ continuous phase transition achieved through careful
compositional tuning. T, — T (AT — 0) provides a clear criterion for enhancing the

magnetocaloric effect in the Ni-Mn-Ga system.
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Evidence supporting this assertion is provided by an analysis of the behaviour of

sample 1 given below, which possesses a pure second-order phase transition.

5.8.4 Analysis for Nis72Mn;59Gayro (sample 1) with a pure second-order phase

transition

The zero field susceptibility, measured at 2.4 kHz in an ac driving field of 30
mOe rms, is presented in figure 5.3; obviously, there is no evidence of the existence
of a first-order phase transition. Figure 5.17(a) presents magnetization isotherms for
sample 1 measured between liquid helium temperature and 350 K; these isotherms
possess conventional shapes without any indication of an “S” shape. An Arrott plot
for this specimen is shown in figure 5.17(b) by replotting the magnetization
isotherms in M? versus H/M format; no negative slopes are observed in such plots
over the entire field range measured, which also suggests that the nature of this phase
transition is pure second-order.  This point can be further confirmed in the insert of
the upper panel of figure 5.18, which shows ac susceptibility isokaps for this
specimen measured in fields between 1800 Oe and 14 kOe. These critical peaks also
indicate a second-order phase transition near 310 K, as discussed earlier. Detailed

critical analyses, figure 5.19, yield a set of exponents, y+B=1.78+0.03, y=1.38+0.03,

8=4.1320.04, which are close to the predictions of the 3D Heisenberg model
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Figure 5. 17 (a) Magnetization isotherms for sample 1 from 300 K (top)
to 324 K (bottom) in 4 K steps; (b) Magnetization data in figure 5.14 (a)
replotted in M versus H/M format.
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Figure 5.18 Upper panel: crossover line (Tp vs H, circles); Lower panel:
ASy (estimated in a field of 50 kOe) plotted against temperature for
sample 1. Here there is no metamagnetic boundary as this sample has no
first order tramsition. The upper panel insert shows ac susceptibility
isokaps in static applied fields of 1800 Oe (top), 2000 Oe, 2500 Oe,
3000 Oe, 3500 Oe, 5000 Oe, 6000 Oe, 8000 Oe, 10,0000e and
14,000 Oe (bottomy).

188



0.12
340}
T,=307.7 0.3 K i ¥+ =1.78 £0.03 0.08
330} t
g m
= . (@) 0.04
320}
310 o Hi0457(oeo‘57) HI(OG)
100 200 30 10000
_ y=1.38+0.03 5=4.13 £ 0.04
S 1E-3
2 1E-3} —
2 3
) 2
5 £
[¢5]
=
=

0.04 0.08 0.12 10000
; H(Oe)

Figure 5.19 The plots show the data fit to find critical exponents values
Jor the sample 1.

(B=0.365, v=1.387, 06=4.8), although, for the studies earlier, a definitive
identification of the universality class requires further studies. The combined plots
(no metamagnetic boundary exists in this sample, the magnetization isotherms are

conventional) of figure 5.18 show that the peak magnetic entropy change AS,, = -2.0

J kg K in a field of 50 kOe appears around the ordering temperature T, =308 K,
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Le., effectively unenhanced. More importantly, in the absence of a first-order
transition, the temperature dependent magnetic entropy change has a much wider
peak, reaffirming the effective function of first-order transitions in this system in
confining the occurrence of the magnetocaloric effect to a narrow temperature range,

thus enhancing the peak value.

5.8.5 Discussion and conclusions

The merging of first- and second-order phase transitions in the Ni-Mn-Ga system
leads to an enhanced magnetic entropy change; this has also been reported by other
authors. In practice, this coincidence does not happen at some precise stoichiometric
composition but rather it is observed over a composition range [148]. By choosing an
excess of Ni, Vasil’ev et al. [19] found merged phase transitions take place in the
range of 0.18< x <2.0 in the series Niy+Mn;..Ga,. Using this criterion, a magnetic
entropy change ASm = -20.0 J kg™ K™ in a field of 16 kOe has been reported in a
Nij9Mngg1Ga sample with merged transitions [141]. Direct measurements of the
temperature change accompanying the application of a field have also been made in
polycrystalline sample of the same composition [149]. The present work, however,
extends such studies by also varying the Ga content. In essence, the nature of the
entropy change in Ni-Mn-Ga, although enhanced, is similar to that in other GMCE

materials such as GdsSi;Gey, MnFePg45As0ss and MnAs;4Sby , which were reviewed
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Figure 5.20 The temperature difference, AT, versus the maximum entropy
change (open square) and AT versus the average number of valence
electrons per atom e/a (solid square). The number inside the square
- shows samples index. Sample 1 is excluded in this plot since it has a
second-order phase transition alone, hence no AT can be defined.

in the previous chapter; it originates here from a magnetostructural transition.
However, the specific physical mechanism governing the magnetocaloric effect in
Ni-Mn-Ga system shows some peculiarities. Recent work by Marcos et al. [150, 151]
revealed that two kind of coupling mainly contribute to the MCE in this system;
namely, the magnetostructural coupling between the magnetic moments and the
martensitic variants (dominant in sequential transitions) and the spin-phonon
coupling (dominant in merging phase transitions). Furthermore, these contributions

could be suitably represented by the average number of electrons per atom, e/a, a
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structurally influenced parameter; the entropy change is enhanced in this model as e/a
increases and T-Tr, approaches zero. The present data partially satisfy this criterion
with the exception of the two extreme compositional specimens, as figure 5.20 shows.
However, the present work focuses mainly on a quantitative appraisal of the
magnetic transitions, rather than interactions on the macroscopic or microscopic scale.

In summary, by the establishment of the metamagnetic boundary at the first-order
magnetic/martensitic structural transition and the crossover line at the second-order
(continuous) magnetic transition, the discussion here provides a simple way to
distinguish the dual character exhibited by this system. The entropy enhancement as
Tm and T, merge results from a magnetic transition displaying characteristics of both
first- and second- order transitions simultaneously, rather than a co-occurrence which
converts the ordering transition from second-order to first-order as claimed by [148].
The origin of the giant magnetocaloric effect (GMCE) in this system is clearly traced
to the essential coincidence of these two transitions achieved by compositional tuning

at Niss oMn g 6Gaze .

5.8.6 Advantages of the Ni-Mn-Ga system as a promising refrigerant

Excellent physical properties make the Ni-Mn-Ga system a promising candidate
for magnetic refrigeration. In Niss,Mng¢Gageo, a magnetic entropy change ASy = -

20.4 T kg™ K near 317 K in a field of 50 kOe has been obtained; more importantly,
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the entropy change in a relatively lower field of 15 kOe reaches ASpm=-92Tkg! K
at 317 K, which raises the possibility of operating in a field provided by a permanent
magnet instead of a superconducting one. Since both the transition temperatures, T,
and T, are very sensitive to composition, it can be easily tuned to yield a working
temperature at or above room temperature. It is also worth mentioning that the
observed magnetocaloric effect in this system is reversible, which makes continuous
magnetic refrigeration possible. Besides that, compared with other GMCE materials,
this system does not contain the expensive rare-earth element Gd (as in the GdSiGe
family) and the components of this system are abundant in nature; it also does not
contain any toxic constituent such as As (present in the MnFePAs and MnAsSh
systems), which makes the Ni-Mn-Ga environmentally friendly.

Although the maximum entropy change ASy = -20.4 J kg’ K near 317K in a
field of 50 kOe (5 T) is amongst the largest value obtained in this system, including
single crystal samples, in comparison with the maximum entropy change in other
systems, such as ASy ~ - 30.0 J kg™ K™ in the MnAs system (refer figure 5.1), there
is still room for improvement. At same time, it is also important to consider the
effects of magnetic hysteresis when assessing the usefulness of a material as a
magnetic refrigerant. The magnetic hysteresis present in the Ni-Mn-Ga system is not
favorable for continuous magnetic refrigeration. Large hysteretic losses will make the
refrigeration less efficient. Preliminary studies show that hysteretic loss reduction can

be realized by alloying the compound with a small amount of iron, but reducing
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hysteretic losses on a larger scale is still a problem in this system. Possible
mechanical instability arising from the structural transition also is an important

concern for practical application. Work on these problems is ongoing.
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Chapter 6

Concluding Summary

This thesis focused on two magnetic effects of some importance - the
magnetoresistance and the magnetocaloric effects and their relationships to the
associated magnetic phase transitions. The former involved detailed studies on two
single crystal specimens - Lag73Bag27MnO; and Lag73Cap27MnO; - and a series of
polycrystalline (La;.xNdy)o.67Pbo33Mn0;3 (0<x<1) samples; the magnetocaloric studies
concentrated on a series of composition related ferromagnetic shape memory alloys
in the Ni-Mn-Ga system.

Critical behaviour studies on single crystal Lag73Bag 27MnOj; reveal the occurrence
of a second-order/continuous ferromagnetic to paramagnetic phase transition near
240 K. In low and intermediate fields, a conventional critical analysis based on
modified Arrott plots yields a set of exponents consistent with the 3D Heisenberg
model. Estimates of the associated critical amplitudes confirm this result. Critical
analysis based on an independent analysis of temperature-dependent ac susceptibility
data has been performed between fields of 20 and 85 kOe and it is consistent with the
above conclusions. The nature of this second-order/continuous phase transition can

thus be described by the isotropic near neighbour 3D Heisenberg model, indicating
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that short range interactions dominate. Such a result is consistent with model
simulations for double-exchange systems, in which anisotropy does not play a
significant role. A susceptibility/moment reduction near 200 K, about 45 K below the
Curie temperature, is also observed in the temperature dependent ac susceptibility/
field cooled (FC) and zero field cooled (ZFC) curves in this system. This is attributed
to a structural phase transition from a high moment/temperature thombohedral (R3c)
phase to a lower moment/temperature orthorhombic phase (Pbmn). Detailed
measurements of the spontaneous magnetization of this sample show a marked
reduction in this property below 60 K, which is consistent with a clearly discernible
moment reduction, one of the few definitive conclusions about such effects provided
by bulk measurements.

Detailed critical analysis of single crystal Lag,;Cag7sMnOs; shows features
characteristic of both second-order/continuous and first-order/discontinuous
transitions. The latter is reflected in S-shaped magnetization isotherms, associated
field-induced hysteresis and negative slopes appearing in the conventional Arrott
plots; the former is associated with field modulated maxima in the ac susceptibility
data. More importantly, within the experimental uncertainty, these two features are
essentially coincident in the field and temperature (H; -T) plane, a result which has
never been reportéd previously for doped manganites. This behaviour is
fundamentally different from crossover effects associated with sequential second-

- order to first-order transitions as T— T., where the system approaches the ordering
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temperaturé, Te, from below as a second-order phase transition, but this is interrupted
by a weakly first-order transition to the paramagnetic state. In this situation the
power-laws discussed in chapter 2 of this thesis would be expected to occur as the
transition is approached from higher (reduced) temperatures. Here these two kinds of
phase transitions are essentially coincident, as the lack of power-laws confirm.

A series of polycrystalline (La;xNdy)o7Pbg.33MnOs (0 <x < 1) samples have been
investigated in detail in terms of both magnetic and transport behaviour. As far as the
magnetic properties are concerned, the samples are ferromagnetic across the entire
doping range. Critical analyses based on field and temperature dependent ac
susceptibility data have been performed on all samples and revealed that the 3D
Heisenberg exponents govern the paramagnetic to ferromagnetic phase transitions in
samples with high Nd substitution (x = 1.0, 0.8). In the x = 0.2 sample, a set of
exponents consistent with mean field predictions are obtained. Critical exponents for
x = 0.4, extracted in the same manner, lie between 3D Heisenberg exponents and
mean field model predictions. Studies of the transport behaviour reveal metal-
insulator phase transitions in these samples, the temperature of which coincide with
the ordering temperature. This suggests that the metal-insulator transitions are
magnetically driven. Detailed analysis suggests that at high temperature, the
resistivity data are best described by a variable range hopping conduction mechanism;
in particular, variable range hopping appears to account for the behaviour at

intermediate doping remarkably well. This may result from disorder with both spin
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and site contributions in this doping regime, which in conjunction produce the
necessary distribution of electronic energy levels. The substitution at the rare earth
sites with fixed divalent cation doping significantly changes the average A site radius,
<ra>, and the A site variance, o% the disorder arising from the size mismatch and
random site occupation plays a key role in controlling the magnetic and transport
properties. In particular, the Curie temperature, T, increases linearly with increases
of the average A site radius, <ra> and with decreases in the A site variance, c°. With
increasing <rs>, the metal-insulator transition temperature, Thg, increases linearly
and the corresponding maximum resistivity decreases exponentially. The relationship
between the variance and maximum magnetoresistance suggests that higher disorder
favours the appearance of a larger magnetoresistance in this system, contrary to what
is observed in numerous other systems.

Ni-Mn-Ga ferromagnetic shape memory alloys of various compositions have been
fabricated and analyzed. Results on structure, magnetism and magnetocaloric
properties have been reported. Zero-field susceptibility data reveal that this system
generally displays two sequential phase transitions, as in the case of the parent
compound - NipMnGa. On heating, these samples undergo a first-order structural
transition from tetragonal martensite to cubic austenitic, causing an abrupt change in
magnetization; on further heating, there is a second-order phase transition from a
ferromagnetic to a paramagnetic state. However, both the type and the order of the

phase transitions in this system can be tuned by varying the composition. As a result
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of careful compositional tuning, a specimen, Niss 2Mnyg6Gazeo, shows a giant
magnetocaloric effect with a maximum magnetic entropy change in a field of 50 kOe
which is -20.4 J kg'I K near 317 K; in a relatively low field of 15 kOe, the
maximum entropy change is -9.2 J kg K. Both of these values are substantially
larger than those of Gd. Further investigation, concentrating specifically on the
relationship between the magnetic phase transitions and magnetic entropy change,
particularly the establishment of the metamagnetic boundary and the crossover lines
linked to the ac susceptibility peaks, show the enhanced magnetic entropy change in
NissoMng6Gags s can be traced to the coincidence of a first-order/metamagnetic
structural transition with a second-order / ferromagnetic continuous phase transition.
For samples not at this optimal composition, which display isolated, sequential phase
transitions, detailed studies suggest that the dominant entropy change occurs in the
vicinity of the first-order phase transition (a combined magnetic and structural
transition), just as in Gd-based Gds(SixGe,) and transition-metals-based (MnFe)PAs
magnetocaloric systems. The magnetic entropy change corresponding to the second-
order phase transition possesses a much lower and wider peak than that appearing
near the first-order phase transitions; this suggests that the function of the first-order
phase transition is to confine the entropy change to a narrow temperature range.
Excellent physical properties make the Ni-Mn-Ga system a promising candidate as a
magnetic refrigerant. Since both transitions in this system are very sensitive to

composition, they can be easily tuned to yield a working temperature close to or at
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room temperature. In addition to the large giant magnetocaloric effect exhibited by
this system, compared with other candidate magnetic refrigerants, it does not contain
the expensive rare-earth element Gd (as in the GdSiGe system) nor any toxic

components such as As (as in the MnFePAs and MnAsSb systems).
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