A SPEECH RECOGNITION SYSTEM
USING A NEURAL NETWORK MODEL
- FOR VOCAL SHAPING

by

Christopher D. Love

A Thesis
presented to the University of Manitoba
in partial fulfillment of the
requirements for the degree of
Master of Science
in the

Department of Electrical and Computer Engineering

Winnipeg, Manitoba
March 1991

A SPEECH RECOGNITION SYSTEM
USING A NEURAL NETWORK MODEL
FOR VOCAL SHAPING

BY

CHRISTOPHER D. LOVE

A thesis submitted to the Faculty of Graduate Studies of

the University of Manitoba in partial fulfillment of the requirements

of the degree of

MASTER OF SCIENCE
© 1991

Permission has been granted to the LIBRARY OF THE UNIVER-
SiTY OF MANITOBA to lend or sell copies of this thesis. to

the NATIONAL LIBRARY OF CANADA to microfilm this
thesis and to lend or sell copies of the film, and UNIVERSITY
MICROFILMS to publish an abstract of this thesis.

The author reserves other publication rights, and neither the
thesis nor extensive extracts from it may be printed or other-

wise reproduced without the author’s written permission.

ABSTRACT

Computerized vocal shaping systems are of considerable value and interest. This
study is motivated by the need to improve: (i) recognition of previous vocal shaping
systems in order to reduce disagreement between computer and human evaluator, (ii) mult-
level classification using five levels that correspond to human assessment, (iii) real-time
recognition through the use of neural networks, and (iv) the human interface to achieve
efficient interaction through the Macintosh graphical interface. A system has been
developed to recognize a limited set of isolated utterances on a finite scale in a quiet
environment. A speech signal is first sampled and analyzed to obtain linear predictive
coding (LPC) filter coefficients which are then presented as templates to a backpropagation
neural network. The LPC coefficients provide a sufficient spectral feature for high
accuracy isolated speech recognition. A standard backpropagation neural network is used
to improve recognition accuracy, to reduce classification time, and to improve multi-level
grading results from the past vocal shaping system. The backpropagation neural network
uses an adaptive learning rule, which is based on the total internal network error measure
and has been shown to reduce the network training time in obtaining a global solution. The
experimental system includes a 20 MHz, 68030 based Macintosh IIsi computer with a
MC68882 floating point coprocessor. The development software is C lan guage (an object-
oriented version). The new human interface developed for vocal shaping is an
improvement from the previous model due to the configuration flexibility and ease of
operation. The multi-level grading scheme and classification accuraCy were evaluated using
a vowel and consonant set which are based on the relative locations of the first two
formants. The vowel set provided good recognition classification results (61.8%) while
the consonant data sets resulted in slightly lower classification results (48%). The multi-
level classification scheme provided good separation between utterance versions for the

vowel set.

ACKNOWLEDGEMENTS

The author would like to acknowledge the many people who who contributed to this
research. In particular, credit is given to my advisor Dr. W. Kinsner who helped guide me
through the thesis process and helped me to understand the true meaning of research.
Also, I would like to thank my fellow colleagues, Ken Ferens, Adi Indrayanto, and Armein
Langi, who, without their support and encouragement, would have made this task so much
more difficult. I also wish to thank Mr. J. Schnabl of Manitoba Telephone System for
providing the noise cancelling microphone. Partial support for this work came from the

University of Manitoba and NSERC is also acknowledged.

TABLE OF CONTENTS

ABSTRACT L o o e e e e e,

I INTRODUCTION

Purpose oL
Motivation

I BACKGROUND ON SPEECH PROCESSING
Introduction T e e e e e e e e
Human SpeechProduction
Speech Processing Techniques
Feature Technique Selection

Linear Predictive Coding
Recognition Method Selection
TemplateMatching . . . ©
NeuralNetworks

IIT REVIEW OF BACKPROPAGATION
Inroduction oL
Error Backpropagation
Background o
Training L

IV SYSTEM DESCRIPTION
Introduction

iv

SRRS

VI

ResidentSystemTools
SystemHardware
SystemFirmware ,

NewTools

SOFTWARE IMPLEMENTATION

Inroduction
Software Background e e
HumanIntefface

Initalization

SPEECH RECOGNITION EXPERIMENTS

Inroducion

Data Acquisition and Trainin g - - . oL,
Network VerificationTest,
RecogniionTests,

VowelTests

56
56
66
66
67
68
72
74
76
80
81
84
87

VII CONCLUSIONS AND RECOMMENDATIONS

“Conclusionso L 105

Recommendations 107

REFERENCES 108
APPENDICES

A: Speech Recognition System Software DialogBoxes 111

B: Speech Recognition System Hardware 118

Figure
2.1 Humanspeechapparatus v . v v ou ...
2.2 Vocal tractnatural frequencies
2.3 Speech waveform, “This is a test of the new sound on the Macintosh IIsi” .
2.4 Frequency spectrum of the sentence, “This is a test of the new sound on

the MacintoshIIsi”
2.5 Speechencodingtechniques
2.6 Analog and associated digital representation of: (a) PCM, (b) DPCM, and

©ADPCM e e e,
2.7 Parametric coding analysisforLPC
2.8 Representation of a trapezoidal waveform in the (a) Time domain and

(b) Frequencydomain
2.9 Theradix2butterfly,
2.10 Flow diagram describing theradix 2FFT forN=4
2.11 DTWtemplatematching
2.12 Dependence of the outputs of a network with recurrent links at earlier time

frames Lo oL e
3.1 Ravinein three dimensional energyspace
3.2 Energy surface topology for global solution in 3 dimensions
3.3 Three layer backpropagation architecture
3.4 Representation of an artificial neuron and its logistic activation function
3.5 Classification scheme usedinrecognition
4.1 Speech recognition system block diagram
4.2 Speech recognition system hardware configuration
5.1 Functional overview of the speech recognition systemmenus
5.2 ThinkCclasshierarchy
5.3 Flow of control in object-oriented programming environment
5.4 Structure of an object sendingamessage
5.5 Globalsoftwarestructure
5.6 Applicationobject
5.7 DoCommandmethod
588 OPENcommand e

LIST OF FIGURES

13
15

16
18

20
21
22
28

30

35
36
37
37
45

48
50

57
58
59
60
61
62
63

Figure

5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25

5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33
5.34
5.35

6.1
6.2
6.3
6.4

6.5

SAVEcommand+« ¢ v e e e e e e e e e e e e e
Updatingthemenus« . . « ¢ ¢ o000 ..
REVERTTO SAVEDcommand « « v « ¢« v v « o o
DOSAVEAScommand « ¢ v v v v v e e e e e e
Buildwindowmethod o000
NEWcommand v v ¢ v v v v v v v e e e e e
ACQUIREcommand « « v v v v v v v v v v v v v u
Calculation of the neural network total internalerror
NETWORK SETUPcommand « « « « « v v o v o o .
Updating of the neural network modal dialog box during training
TRAINcommand « ¢ ¢« ¢ v v v v v v v v v v e e e
TESTNETWORK command« « « o« v v v ..
Utteranceplayback o000 0000
Recognitionresultsdisplayo 0.
RECOGNIZEcommand ¢ « v v v v v v v v v 0 v v o
Acquisition of the speech utterances by the IBM computer
(a) Approach to resonance of the vowel i (first LPC frame) (b) Sample

of the resonant period of vowel i (second LPC frame) (c) Fall from

resonance of the vowel i (third LPCframe)
ManagementoftheILPCdata
Datarecord Structure « ¢ v« ¢ ¢ v 4 e e e e e e e e
Neuralnetwork weights« o o ..o oL
Checkboxes v v v v v e e e e e e e e e e e e
Setting the values in the SETUP NETWORK dialogbox
Radiobutton management « « ¢« ¢ 4 . 40000 ...
Loading of the utterancelibrary
Display of the utterance libraryo
Buttonoutlinedisplay o000 0oL
Datedisplay ¢ . o o000 e e e e e e

Hardware verification of the NEC DSP A/D and D/A conversion process

and filterbandwidth o000 oL
Frequency response of the NEC DSP using the spectrum analyzer
Hardware verification test of microphone distortion in the signal path . . .
Frequency response of the NEC DSP after passing through the microphone
using the spectrumanalyzer
Frequency response plot of the SM10A microphone

Figure Page

6.6
6.7
6.8
6.9

Polar pattern of cardioid (uni-directional) microphone response 94
Thevoweltrangle 97
Loci of vowels for a wide range of speakers “ ... 97

" Pattern piayback diagrams showing effect of F2 transitions perceived on

consonanttype L. e e e e e 101

LIST OF TABLES

Table Page
2.1 PhoneticAlphabet 11
2.2 FormantFrequenciesof TenVowels 12

6.1 Confusion Matrix representing Recognition Results from 11 Speakers

Evaluatedon Six VowelSounds 99
6.2 Confusion Matrix representing Recognition Results from 11 Speakers

Evaluated on Four Consonant Combination using the Vowel /a/ 102
6.3 Confusion Matrix representing Recognition Results from 11 Speakers

Evaluated on Four Consonant Combination using the Vowel fe/ 103

ADPCM

BAM
BP
CPU

DPCM
DFT
DSP

LIST OF ABBREVIATIONS AND SYMBOLS

Analog to digital converter

Adaptive differential pulse code modulation
Representation of the momentum

Auto regressive moving average
Bi-directional associative memory
Backpropagation

Central processing unit

Representation of the network error signal
Differential pulse code modulation
Discrete Fourier transform

Digital signal processor

Fast Fourier transform

Least mean square

Linear predictive coding

Representation of the learning rate

Partial correlation

Pulse code modulation

Random access memory

Sound speech blocks

CHAPTER1
INTRODUCTION

Native speech is by far one of the easiest things for humans to perform. We seem to
perform this task almost effortlessly and can deal with such problems as: (i) background
noise, (ii) coarticulation, (iii) multiple speakers, (iv) speed and variability of speech, (v)
context sensitivity, (vi) ambiguity, and (vii) temporal and phonetic variations. On the other
hand, computer-based recognizers require near ideal environments in which many of these

problems have been reduced to achieve good results.

1.1 Purpose

The goal of this research is to study, design, and implement an isolated, limited
vocabulary, automatic, speech recognition system using a backpropagation (BP) neural
network with linear predictive coding (LPC) coefficients. This system is intended to be

used as a vocal shaping tool for autistic individuals.

The objectives of this work are to improve a previous vocal shaping system,
specifically related to the problems of multi-level classification, system interface design and
functionality, and recognition time. The improvement entails: (i) using a BP neural
network with LPC coefficients, (ii) a modified multi-level utterance classification scheme
for recognition, and (iii) a custom designed human interface employing Macintosh graphics
techniques. Multi-lével means that up to five non-linear levels of quality, ranging from
unsatisfactory to excellent, are used to classify an utterance. The levels are non-linear since
they are assigned at the time of recording based on the therapists judgement. This type of

scheme is necessary for vocal shaping.

The earliest model of the vocal shaping system, developed on the Apple Ile, was
targeted as a language translation tool and was later modified to perform the necessary
functions of vocal shaping [KiPR86]. Other researchers independently developed systems
(Indiana speech training aid project (ISTRA)) to perform similar goals [KMRW87] and,
one even employed a BP neural network with LPC coefficients [DeB090]. Difficulties
with past systems were that the utterance classification was not multi-level, the grading
results did not agree with their human counterpart, the recognition was not real-time, and
the human interface was not intuitive enough. Thus, this work is concerned with

addressing and solving these problems.

Contributions of this work include: (i) a neural network approach using BP to perform
real-time isolated speech recognition for vocal shaping, (ii) an improved mult-level grading
scheme, and (iii) a custom designed, highly configurable human interface.

1.2 Motivation

Computer speech recognition has already found many uses in society. One application
is in computer-aided vocal shaping [Cair90], [Desr90]. This process requires accurate
recognition and assessment over a multi-level scale and precise use of specific training
procedures. “Administration of this process by computers may increase the precision of
assessment and progress over therapists used alone” [Desr90]. The computer provides the
therapists with a reliable, consistent, unbiased, and multi-level assessment of the
individual's performance. Multi-level assessment is necessary since the individual may not
be able to achieve the ideal target from the outset. This goal may only be achieved through
the “administration of reinforcement for closer approximations of the response and
extinction of previous approximations...until a specified target response is acquired by the
student” [Desr90]. The multi-level assessment in the past was at the discretion of the

computer based on the inherent rules it was provided. In this model, the therapist is

-2

provided the ability to decide on what is good or bad, in their opinion, and is further able to
assign this credit to the recorded utterances. This important feature bridges the gap

between the inconsistencies found in past versions of this type of recognizer.

For the intended recipients of this system, recognition of isolated, limited vocabulary,
utterances is sufficient. In order to reduce the necessary intervention by a therapist to
operate the speech recognition software, this system has been made user friendly. This

“means that the autistic individual can use it with reduced therapist supervision. It also
corresponds to the amount of program automation and the way that ideas are presented by
the speech recogriition software. The Macintosh graphical interface provides an
environment which facilitates these tasks. Another fundamental motive to do research in
this area is because the end result will be applied to help other people, and in the end, this is

what engineering is concerned with achieving,

1.3 Thesis Organization

An understanding of existing systems and the methods that they employ to currently
perform the desired tasks are first investigated. Next, an evaluation of what new
technologies will be used and how they will improve performance over the existing
technologies is described. The next step in the thesis development is to assemble, verify,
and test the system; describe the results; and provide conclusions based on the system's

performance. Finally, conclusions on the overall course of the study are presented.

Chapter I provides the thesis goals, human motivation for vocal shaping, and technical

reasons for designing and implementing an improved speech recognition system. Chapter
| II provides background on speech processing. A discussion of the human speech
production system is followed by speech analysis techniques. LPC is focussed on

amongst the other speech processing techniques. Next, a description of two features and

-3.

two methods used in speech recognition is provided. The investigated features are the fast
Fourier transform (FFT) and LPC. The two recognition methods described for use in
isolated speech recognition are template matching and neural networks. Chapter III
provides a detailed review of the BP neural network. A description of the classification
technique, or multi-level grading scheme, used for recognition follows. Four metrics are
used to determine the total internal network error. Chapter IV describes the system from a
global viewpoint. The major components are described and their relationships are
established. Also, two different methods of data acquisition are contrasted. The first
method uses a NEC DSP in an IBM computer, and the second method uses a sound chip in
a Macintosh computer. Current operation uses the first method involving the NEC DSP
and IBM computer to acquire the data while using the Macintosh computer as the host.
Chapter V describes the speech recognition system software. Software programs include:
(i) the human interface, (ii) data acquisition routines, (iii) communication routines, (iv) a
training method, (v) a testing method, and (vi) a recognition method. Chapter VI describes
the design, execution, and the experiment results. The experiments are intended to evaluate
the multi-level classification ability and classification accuracy of the BP neural network
based on vowel sounds and consonant combinations. Conclusions and recommendations

are contained in Chapter VIL

CHAPTER II
BACKGROUND ON SPEECH PROCESSING

2.1 Introduction

Human speech is the most widely used form of communication. It is therefore intuitive
to create a way for machines to understand humans in their native language, not a language
that humans must learn in order to understand their machines. Although this would be the
ideal environment, human speech is much more difficult to capsulate into a single process
or device than it is for us to understand the computers which we have created. “Humans
are able to understand speech so easily that we often fail to appreciate the difficulties that
this task poses for machines. As used by humans, speech is universally applicable, omni-
directional, absolutely speaker-independent, highly noise immune, adaptively acquired, and
apparently effortless” [LeRo90]. In order to successfully achieve speech recognition at

any level, precise steps and procedures must be followed.

From the primitive knowledge base of speech recognition three fundamental principles
have evolved. The first is concerned with intelligence. The intelligence contained in a
speech waveform is encoded in the temporal variations of the short amplitude spectrum.
The second principle is literacy. By this, speech can be completely capsulated by a finite
domain of fundamental speech units. Finally, speech is a cognitive process. Hence, it can
not be separated from the grammatical, semantic, or pragmatic structure of the language.
Based on these three fundamental principles, a discussion of the properties and
characteristics of speech processing and recognition is presented. This discussion will
result in the selection of a sufficient spectral feature and isolated speech recognizer to be

used in the isolated speech recognition system design.

2.2 Human Speech Production

As the first fundamental property of speech is intelligence, it is logical that speech
begins as some abstract form of neural signals in our brain. The signals routed to the vocal
apparatus contain information of how the vocal apparatus should be shaped and moved in
order to produce the desired sounds. The vocal apparatus, shown in Fig. 2.1, includes the

lungs, larynx, nasal tract, vocal chords, jaw, lips, tongue, and velum.

(~
NOSE TO VOCAL
APPARATUS
NASAL CAVITY
ALEVEOLAR
RIDGE FEEDBACK
INPUT
TEETH
< ORAL
LP e PHARYNX
EPIGLOTTIS
JAWBONE
HYOID BONE
LARYNGEAL
PHARYNX
THYROID CARTILAGE
CRICOID
_ CARTUGE Yy,

Fig. 2.1 Human speech apparatus (after [Pars86]).

-6 -

The production of the desired sounds and their arrangement leads into the next
fundamental property - speech literacy. This involves the ability to produce meaningful
sounds given a language. This in itself is a very complex process. However, to simplify
things, the speech production process is broken into two fundamental functions for

English. The first function deals with excitation and the second with modulation.

Excitation is achieved through phonation, whispering, frication, compression, and
vibration. If the vocal chords oscillate then the speech is considered to be phonated. The
opening, closing, and air pressure across the vocal chords, and their shape, are all
important parameters in determining the pitch. Pitch is the repetition rate of these pulses
and is controlled mainly by the tension in the vocal chords, and also by feedback from the
ears. As the vocal chords become more tense, the pitch will increase. Conversely, as the
vocal chords become relaxed, the pitch will drop. When the vocal chords are drawn
together, except for a small triangular opening in the vocal tract, air is allowed to rush
through this opening generating turbulence. The wideband noise generated by this
configuration of the vocal apparatus constitutes the excitation signal. This results in
whispering, consonants, and syllable boundaries. Frication is caused when the vocal
tract is restricted at any other point than the triangular section. The spectrum is mainly
reflected by the point of vocal tract restriction and the sounds produced are called Sricatives
or sibilants. If the vocal tract is completely cut off while pressure continues to build, a
small explosive burst will result when the vbcal tract is finally opened. When the silence is
followed by a release which is abrupt and breaks off quickly, such as [p] or [t], the sound
is known as a plosive or stop. If the release drops off slowly, such as [tch], then the
sound is known as an affricate. When air is forced through a closure other than the vocal
tract, resonance may occur about the tongue, uvula, or between the lips, such as

whistling. Sounds of this nature are known as vibrations.

-7 -

The second function following excitation is modulation. This process describes how
the adjustable vocal apparatus are modified to change from the current sound to the desired
one. The ear provides feedback to the brain of what is being Amodulated. The brain sends
neural signals to adjust the vocal parameters to correct the modulation of the excitation
signal (refer to Fig. 2.1). Modulation is sometimes referred to as articulation. This leads
into a very complex area of speech production understanding which linguists are concerned
with and is known as articulatory phonetics — the knowledge of how all the vocal
parameters are arranged to produce any sound. Physiologically, modulation is reduced to
simply moving the vocal apparatus to change the quality of the excited sound.
Acoustically, the main means of modulation can be thought of as a filtering process. The
excited waveform contains many harmonics, due mainly to the vocal tract which is
tubelike, and thus has many natural frequencies as shown in Fig. 2.2. These natural
frequencies are called formants, and are the single most important modulating technique.
Many sounds can be synthesized from knowing the values of the first three formants

[Pars86].

Excitation

< >
€ : >

2, |

A

4 4

Fig. 2.2 Vocal tract natural frequencies (after [Swan871).

-8 -

The desired sounds, once excited and correctly modulated, are carried through the air in
the form of an acoustic pressure wave (APW). The speech information contained in the
APW is encoded in the air molecule fluctuations. The APW is received and collected by the
outer ear. The collection of sound waves vibrates the cochlea which stimulates the auditory

nerve generating the neural signals that are sent to the brain and decoded into language.

A description of the vocal apparatus and a discussion of both vocal generation and
perception is contained in [Pars86]. Now that the fundamental speech generation process
has been provided, a study of the properties are presented to describe what characterizes the
speech waveform and to determine which properties are most relevant to speech
recognition. Speech waveform characteristics includes amplitude, resonant length, pitch,

formant frequencies, bandwidth, silence, and stationarity.

The first noticeable characteristic of speech is its discrete nature. By this, “we know,
but don’t always acknowledge everyday, is that the utterances we produce consist of
separate or discrete units of speech and that these units are concatenated to form words and
sentences” [FeLo89]. Further, about half of all speech contains silence [RaSc78]. What is
the cause of speech being discrete? The reason this occurs is, first, because humans have a
fixed rate of articulation and, second, because words are separated by periods of silence
due to the nature of the language. “For speech, a crude estimate of the information rate can
be obtained by noting that physical limitations on the rate of motion of the articulators
require that humans produce speech at an average rate of about 10 phonemes per second”
[RaSc78]. This physical limitation is evident from observing the waveform provided in
Fig. 2.3 which shows the silent intervals between utterances. The silent intervals are
distinguished from the utterances by noting they have near zero amplitudes and are not

boxed in by a shaded region. Each phoneme, or word segment, is boxed in by a shaded

-9 .-

[mv]
4.0

[mv]

4.0 [s]

[s]

[mV] S]
40 A
g
1
<
5.69
Time] [s]

Fig. 2.3 Speech waveform, “This is a test of the new sound on the Macintosh IIsi.”

region with an attached label describing the utterance located below the waveform segment.
The waveform given in Fig. 2.3 was acquired through a Macintosh electret microphone and
processed using MacRecorder’s SoundEdit 2.0. In the American English language, 47
phonemes have been identified [Pars86). These phonemes are shown in Table 2.1.

- 10 -

Table 2.1 Phonetic Alphabet (from [Pars86]).

IPA symbol Arpabet Examples IPA symbol Arpabet Examples
i i Iy heed v v v verve

1 1 1H hid 0 T ™ thick

¢ ¢ EY hayed (o] D DH those -
I i EH head s s S cease

iy (n AE had z z z pizzaz
a H AA hod] S SH mesh

5 ¢ AQ hawed 3 z ZH measure
0 [ow hoed h h HHI heat

U U UH hood m m M mom

1 u Uw who'd n n N noon

3 R ER heard D G NX ringing
> x AX ahead 1 1 L lulu

A A AH bud ! L EL battlet
wl Y AY hide m M EM bottomt
au W AW how'd n N EN buttont
2 (0] oYy boy f F DX barrer
1 X X roses ? Q Q §

P p p pop w w W wow

b b B bob J y Y yoyo

t t T tug r r R roar

d d D dug tf C CH church
k k K kick & J JH judge

g g G gig " H WH where

[f F fife

Some sounds from other European languages (I1PA notation): Other marks (H°A):

y I rue, G Biihine x G ich, S México ¢ indicates preceding vowel is long
Y G Hiite i F vin " precedes an sccented sylluble

o F peu, G S6hne a F vent t Vocaliclm,n ¢ Flupped t § Glottal stop
@ F boeul, G Gétter 3 ¥ vont

w R ut @ F un

Another important speech characteristic is frequency and bandwidth. A phoneme is
sufficiently characterized by the first three fundamental frequencies, or formants. For
vowels, the formant frequencies are listed in Table 2.2. Also, vowels and consonants
differ fundamentally in terms of their frequency spectrum. Vowels oscillate at quasi-
periodic rates while consonants are contained in a broad band of frequencies. A sonogram
or spectrograph of the sentence, “This is a test of the new sound on the Macintosh IIsi” is
given in Fig. 2.4. The sonogram provides a useful graphical description of the spectral
features of speech. The time-varying spectral characteristics are graphically displayed in
the sound spectrograph. The vertical axis represents the frequency, and the horizontal axis,
time. The darkness, or density of dots, is proportional to the signal energy. Dark banded

regions show up as resonant frequencies, or formants, of the vocal tract while voiced

- 11 -

Table 2.2. Formant Frequencies of Ten Vowels (from'[RaSc78]).

FORMANT FREQUENCIES FOR THE VOWELS
Typewritten 1PA Typical]
Symbol {or Symbol Word F F, 3

Vowel

1y i (beet) 270 2290 3010
I] (bit) 390 1990 2550
E € {bet) 530 1840 2480
AE o {bot) 660 {720 2410
UH A (but) 520 1190 2390
A o] (hot) 730 1090 2440
ow J { bought) 570 840 2410
U u (foot) 440 1020 2240
00 u {boot) 300 870 2240
ER 3 (bird) 490 1350 1690

regions are characterized by a striated appearance on the spectrograph. Unvoiced regions
appear more solid [RaSc78]. The frequency content of the sentence given in Fig. 2.4 is

contained in the toll quality band consisting of frequencies between 300 Hz to 3300 Hz.

The next important property of speech is the degree of stationarity. Speech changes
significantly in amplitude and frequency over long periods (greater than 30 ms) of time,
and is thus non-stationary, while over short intervals (20 to 30 ms) speech is quasi-
periodic, or locally stationary [RaSc78). An example showing these properties is given in
Fig. 2.3. In this figure, the vowels have a very periodic nature about them, but for
complete words though, this periodicity is lost. The local stationarity is attributed to the
earlier result which dealt with the construction of the language and the fixed rate of change

of the human vocal apparatus.

The next step is to apply these properties and speech characteristics to analyze the
APW. This next section deals with speech processing techniques. The two fundamental
classes in speech processing are waveform and parametric. From this description, a
method of analysis is selected. Following the analysis method descriptions and technique

selection, a discussion of speech features is given.

- 12 -

! .
8K . o . '
-~ ',‘g (g
e B -
- PN
& S X
X 3o N1y
o 6K 4 : .
()] 30 . ey ..
S ‘3. 2 M !
g AR
‘e ° SV
u. *eetyty
.. Y .
-

[Hz]

10K

.
. .
Y
ats,
Ay
PAY
. e
e
. cure * .
. 0
Phated
I
w“ 0, .
3 4
¢ - CRidd
‘e HIEE
L, o “
1
\
\:.-.. T awmg 1o, lv-:s.
. SN ¢ Y
L A, oY N
HES T Sy . ks “'
L S T ¢ tes
LN vorh oy o R l}i- .
’
.

5.69

ound on the Mac in t o sh t

Fig. 2.4 Frequency Spectrum of the sentence, “This is a test of the new sound on
the Macintosh IIsi.”

- 13 -

Time

[s]

2.3 Speech Processing Techniques

Before recognition of isolated speech by a machine can be accomplished, the speech
waveform must first be pre-processed. This involves filtering the analog waveform in the
toll quality band (300 Hz to 3300 Hz), sampling the speech waveform, and encoding the
samples using some analytical method. In speech processing, two fundamental coding
classes have evolved. The first class is known as waveform coding while the second class
is known as parametric coding. Figure 2.5 provides an overview of the two classes with

respect to quality, bit rate, and coding technique.

Waveform techniques track and record the actual amplitude fluctuations of the speech
waveform using a finite digital scale (usual]y using 8 bits or 255 levels) while sampling the
waveform at a fixed frequency (for toll quality, this would be 8 kHz). Waveform methods
require more storage since in order to track the speech waveform, it turns out that a
sampling rate of 64 kbits/s (8 bits multiplied by 8 kHz) is required to accurately capture
speech in the toll quality band. Waveform techniques require more storage but they also
provide superior sound quality when compared to parametric techniques. This increase in
quality is attributed to the waveform analysis approach as opposed to the parametric
approach, which models the observed waveform through filters which simulate the vocal
tract. Some examples of waveform coding techniques include: (i) pulse code modulation
(PCM), (ii) differential pulse code modulation (DPCM), and (iii) adaptive differential pulse
code modulation (ADPCM) [FeL089]. PCM does not employ any speech compression
technique; DPCM stores only the signed difference of consecutive samples, while ADPCM
adaptively changes its quantization step size to improve the accuracy of obtainin g the signed
difference of consecutive samples. DPCM and ADPCM only require half the storage of
PCM. DPCMs two limitations which degrade waveform tracking performance are slope

overload and quantization error (or granular noise) [FeLo89].

-14 -

|

3

W

002840d '8 0008VIW soeubis

FENEE
_ 02es L @

~<<——OHNIGHOO3H TV LIDIG—>»

[Zrveom | e9215s/20-05 xenon
¥9556-0OH SileH ooo— dS 19 || 0C9EINY »m_.ww
SHS02S MO 952-dS 19 [oseoiL] 10A
SHBISS PO 052-dS 19 i
SLINOHID A3 LVHODALNI w_me._.z>w\w_m>.._<z< ANOS
sisoyuAg — Buipod anauoyd — 3
< urewioq) sui| >
- NA— < <§I< > <« sisayAg suoydojly >
~<€E—WAV/ASAD— > A.ullon_._.l.v p <€ SISBUAS BWBUOYd I
~<€Wodav > | <oy —> ~<—yo0ad3 01 oy — 3
3 m_m>._<z< AQ SISTHINAS »+<€— J1NY A9 SISTHLNAS —>

.,u..m...c_Z—._Um._M ANV SAQOHLIN SISTHLINAS

< ONIAOD WHO43AYM > ONIJOD F0HNOS/OIHLINVHYd —>
SAQOHLIN SNIA0D
ot (YD € <— 28610 'S 0528 = 8 X 26D 952L2)
opy 'PUCOBS/SRIOM 2 JO 8l 1jo0ads BULINSSE NOHAT HAIIST E Ul PIOIS Spiom j0.60WIN oBe10lS Alowaly
oﬂ_cﬁ W .w N_m m_N_. wmm rd “,m x_ l X_N v__¢ !m
—** T _ | | | | | | | \. _
WP L M9GeC v_mN 8 pra™ pric) AY e Al clS 962 8¢ leey
=0w<
[smal 3L1vd LE viva 0
- (AHVLINIWWOD) GzozmmthAmzo_EoVA OLLIHINAS >
1svoavoug T10L -INNWWOD ALITVNOD HO33dS ¢

Fig. 2.5 Speech encoding techniques (after{fKIKi87]).
- 15 -

By using an adaptive quantizer, ADPCM effectively minimizes both limitations.
Figure 2.6 (a-c) show an example of the resulting waveforms using these three models.

The quality of ADPCM is superior to DPCM and has a SNR of 10 dB to 12 dB higher than

PCM for the same bit rate [FeLo89].

55
45
35
25
15

(" Digital Signal Coding method | Storage/sec. "\
Amplitude [mv] PCM 64kbits/sec y

Analog Signal

Analog Signal

TR e -
0 1 2 3 4 5 6 7 Time [ms]
Digital Signal Coding method Btorage/s)

Amplitude [mv] DPCM 32 kbits/sec

35
25
15
5
0 1 2 3 4 5 6 7 Time [ms]
Digital Signal Coding method | Storage/sec.)
55 Amplitude [mv] ADPCM 32bits/sec
45
Analog Signal
35
25
15
5 LLlrrry AN RN EE|
Ollll;]1l12 .3]]'51"§11lé‘]1!]].r!7>]
ime [ms
1\ J

Fig. 2.6 Analog and associated digital representation of: (a) PCM, (b) DPCM and,

(c) ADPCM.

- 16 -

The second form of encoding does not track and record the actual fluctuations of the
analog signal, but succeeds by obtaining spectrally related parameters, amongst another
few vocal parameters. Parametric coding techniques, such as LPC, “utilize an electronic
model of the human vocal»tract which is driven by signals from frequency and noise
generators to mimic the natural resonances of the vocal tract” [Klim87]. LPC parameters
include filter coefficients, amplitude, pitch, and voiced/unvoiced parameters to model short
stationary periods (20 to 30 ms) of speech. Parametric coding techniques, like LPC, are
inferior to waveform coding, but they possess the advantage of speech storage reduction
(refer to Fig. 2.5). In speech recognition systems, interest is in achieving correct
recognition - not in maintaining high speech quality. As a result, waveform techniques are
not employed. LPC is used because the speech data is contained in a very compact form
which contains the speech essence. A diagram of an analysis method used to obtain all of
the LPC parameters is shown in Fig. 2.7. The six pitch period estimates (PPEx)
generated from the Gold-Rabiner pitch detection unit (dashed box) are used to quickly
select the correct pitch based on majority logic. Upon peak detection using the signal peak
processor, three peak estimates, M1 to M3, and three valleys, M4 to M6, are generated.
These three symmetric estimates are based on amplitude. Certain threshold logic is also
included to improve upon the voiced/unvoiced parameter decision. The gain is determined
in such a manner as to, “match the short-time energy of the excitation source to that of the
residual error sequence” [Swan87]. After pre-processing, the partial correlation
(PARCOR) coefficients are obtained from the LPC filter. PARCOR coefficients are good
since they maintain filter stability when quantized, and through spectral sensitivity have

‘been observed as having high sensitivity for magnitudes close to one. For a detailed
description of LPC, refer to [Swan87]. Although there is a definite trade off between the
quality of LPC as compared to waveform techniques, the advantage remains in the reduced

storage and spectral representation.

-17 -

(Pre- p| Hamming » Auto- Normalization 10th Ordeﬁ
[lemphasis Window Correlation [] bl LPC Analysis
_________________ o
1 2 1o
| g |5
Final | %
" Pitch Period 2
Computation g
and 2
Voiced/
Unvoiced | ' '
Decisi Yy !
Scson : LPC Parameters
__________ -J

Fig. 2.7 Parametric coding analysis for LPC (after [Swan87]).

Real-time recognition requires spectral information and LPC provides this through the
LPC coefficients. The manner of obtaining LPC data and its role in recognition will
become evident in the following section. The next step in understanding speech processing
and recognition is to learn what constitutes a good speech recognition feature and, how that
feature may be employed by a recognizer to achieve correct recognition. This analysis is

based on the physiological characteristics of speech production and analytical techniques.

“The design of recognition systems is centered around two problems: feature selection
and evaluation and, the decision rule. Recognition system operation consists of two
phases: training (learning) and recognition” [Pars86]. If this is what is required for
recognition, then how should the system be designed to perform both of these functions,
and what steps are involved in arriving at the solution? In isolated speech recognition an
isolated utterance is the recognition objective. The first step towards the solution is to
evaluate features that will be good for isolated speech recognition. Following this
selection, a recognizer that is good with both isolated recognition and the chosen feature is

investigated. Instead of a binary grading scheme, a multi-level scheme is used which

- 18 -

provides a degree of membership from the unknown utterance to the trained utterances.
Commercial recognition systems can not be used in this thesis because they perform binary
recognition (match / no-match), their error distance measure is fixed and proprietary, their
' architecture is generally inflexible, and the human interface does not meet the requirements
of this thesis. The two feature extraction techniques evaluated are the FFT and LPC. The

two types of recognizer methods discussed are template matching and neural networks.

2.4 Feature Technique Selection

The careful evaluation and selection of features for isolated speech recognition will
increase correct classifications. “A feature is some measurable characteristic of the input
which has been found to be useful for recognition. Feature extraction is the process of
jettisoning as much irrelevant information as possible and representing the relevant data in a
compact and meaningful form” [Pars86]. It is understood that successful speech
recognition must contain some spectral characteristics of the speech waveform, “As should
be obvious, the first principle of speech recognition, spectral estimation, is essential. At
this time, Fourier and linear predictive techniques are most common” [LeR090]. Hence,

the two techniques focussed on to extract spectral information are LPC and the FFT.

2.4.1 The Fast Fourier Transform

The FFT is a subclass of a larger family of transforms known as discrete Fourier
transforms (DFT). The FFT has become popular in signal processing starting in 1965 due
to computational efficiency and its ability to provide the spectrum of a waveform cheaply.
Since that time, the FFT has become extremely popular and many applications in signal
processing have evolved from its use. The resulting FFT coefficients may be used as the
spectral feature in obtaining the speech templates used in the recognition procedure. A

discussion concerning this goal is now presented.

- 19 -

The FFT extracts the ﬁequency spectrum of a finite length waveform. Performing the
Jorward transform of the discrete amplitude samples from the speech waveform yield the
frequency components. The method used to calculate the frequency components is shown
in Eq. 2.1, where X(k) are the frequency components, x/n] are the discrete time samples,
N is the number of samples used in the transform, and the exponential term represents the
mapping rule from the time domain to the frequency domain. In Fi g. 2.8 (a), the discrete

-j2nnk

X(k) = E x[n]e”x (2.1

n=0

samples of a trapezoid waveform are shown. Using the forward transform given in
Eq. 2.1 over a discrete interval, the spectrum of the trapezoidal waveform is determined as

shown in Fig. 2.8 (b).

Axn) A (k)

ik L

+—e , e . - * -
(a) "] | J] k
(b)
Fig. 2.8 Representation of a trapezoidal waveform in the (a) Time domain and (b)

Frequency domain (after [Pars86]).

The spectrum of a speech waveform is analyzed similarly. First, the analog waveform
is filtered and sampled. The samples are normalized, separated into windows of a discrete
length (256, 512, or 1024 points), and passed through a FFT which determine the spectral
coefficients of the waveform segment. The set of spectral coefficients obtained from each

speech waveform window are the recognition feature. One FFT algorithm that is

- 20 -

commonly used is based on the radix 2 butterfly. An example providing the derivation and
feature extraction implementation of the radix 2 algorithm follow. The butterfly, shown in
Fig. 2.9, is the basic structure used in the radix 2 algorithm. The two frequency

components, X, and X, are calculated using Egs. 2.2 and 2.3. By using decimation in

Xo=x; WO0+xq (2.2)
X;=xp-x; WO (2.3)

time, which amounts to interleaving the time domain elements in the algorithm, the number
of steps in the decomposition is reduced from logy(N-1) to logy(N/2), where N=23 (a ¢ 1))

is the number of samples in the transform and is greater than the duration of the signal.

Xe— —®x
Frequency Time
domain domain
components X @ -1 components
1 X
Weights

Fig. 2.9 The radix 2 butterfly.

The total number of calculations involves complex multiplications plus additions/
subtractions. The number of complex multiplications, Mc, is determined using Eq. 2.4
where N/2 represents the number of multiplications per stage and log, (N/2) represents
the number of stages. The number of additions/subtractions, A, is determined using

Eq. 2.5 where N represents the number of additions/subtractions, log, (N/2) represents

M, = I%{ log, 15{ (2.4)
A. = N(og; —S’— +loga N)=N logz N 2.5)

- 21 -

the number of stages, and log; N represents the last stage (order 2 stage). The
computational savings appears in the reduced number of complex multiplications. The
entire flow diagram of a two stage FFT (for N = 4, N/2 stages) is shown in Fig. 2.10. The
time decimated samples are shown on the right with the ordered frequency components on
‘the left. The conventional abbreviation for the forward transform mapping rule is W. The
symbol W represents the mapping from the time domain to the frequency domain and is
given by Eq. 2.6. The FFT procedure begins by generating the weight matrix representing
the system given in Fig. 2.10 as described by Eq. 2.7.

-j2Mn
W=e"§ (2.6)
1
Xo I X0
X1 |_ X1
X, |~ . X3 2.7
X3 X3
L1
(" x e 8 %"
~ W
Frequency A o= ~— X Time
domain < domain
components| X o ! —® x, | components
1 0
_ X 0 W A Vo Xq)

Fig. 2.10 Flow diagram describing the radix 2 FFT for N = 4.

Next, the matrix is interleaved into two smaller matrices consisting of even and odd
indexed powers. Using standard matrix multiplication, the appropriate weight elements are
extracted, simplified, and assembled into the two smaller matrices given by Eq. 2.8, even

powers, and Eq. 2.9, odd powers. This results in similarly ordered frequency and time

- 22 -

E R

(2.9)

X 1 [1 W] [Xo'_[w2 W"J[Xl}
¥20 | ws we J1¥3
components. Since computers function best on discrete data, the FFT is very suitable for
computer speech recognition. Also, the spectrum of the FFT is a very useful feature for
speech recognition. “The FFT, a transform of the signal, reflects its clustering properties
better than a parametric code” [Koho88]. Clustering occurs when features are able to
separate classes well enough to define non-overlapping regions which permits the
recognizer to cluster or group the data into categories without supervision. “Clustering
has not been seen until recently since recognizers were not able to achieve recognition high
enough to make this feasible” [Pars86). The FFTs disadvantages include: (i) lengthy
computation time, possibly too long for real-time speech recognition unless a very fast
DSP is used (such as the TMS320C30), (ii) system complexity for sample processing and
frequency component generation, and (iii) the data representation may not be compact
enough for real-time speech recognition by a neural network. An alternative to this feature

is LPC.

2.4.2 Linear Predictive Coding
A discussion of LPC has been presented as a speech analysis technique in Sec. 2.2.2.
An extension of that discussion is now provided. Concern here is focussed on how LPC

works and why it is a good spectral feature.

The objective of LPC is to determine a set of predictor parameters directly from the
speech signal in such a way as to minimize the difference between the actual speech and the

predicted speech signal given a linear discrete-time system. These parameters include pitch

-23 .

interval settings, voicing, predictor coefficients, and amplitude. Every 20 to 30 ms a set of
these parameters is obtained. The predictor coefficients are the feature used as input to the
BP neural network for both training and testing, “the goodness of the model means that the
linear prediction is an appropriate way to encode speech and that the predictor parameters

are a valuable source of information for recognition” [Pars86].

An estimate, §(n), of the predicted output is estimated by taking a linear combination of
the past outputs, y(n), and past inputs, x(n), given by Eq. 2.10. The terms a(+) and
b(+) represent the predictor coefficients. There are many systems that can at least be

approximated by the difference equation given by Eq. 2.11. Thus, if the predictor

q P
¥(n) = 3, bG) x(n-j) - 3, a(i) y(n—i) 2.10)
j=0 i=1
P q
2 a(i) yn-i) = ., b(j) x(nj) @.11)
i=0 j=0

provides a good representation of the system, the system function can be obtained directly
from the predictor coefficients based on the Z—transform. The system transfer function,
H(z), is defined by Eq. 2.12, and after performing the Z-transform becomes Eq. 2.13.
Hence, the predictor coefficients provide the locations of all the poles and zeros of the

transfer function. The general equation given by Eq. 2.10 is called the mixed pole model

H(z) 2 Y(z)/X(z) (2.12)
q
2 b()

Hz)=1f— : (2.13)
Z a(i) z-4

- 24 -

and is associated with the statistical model called the Autoregressive moving average
(ARMA). There are two important variations of this model however, the all-pole model
and the all-zero model. The all-pole model (auto regressive (AR) model) enforces that the
numerator N(z) remain constant. If this is the case, the past input predictor coefficients,
b(j), are set to zero for j greater than zero. Thus, the predictor is based entirely on the
past output predictor coefficients a(i). In a similar fashion, the all zero model (the moving
average (MA) model), has denominator, D(z), set to unity. This removes the effect of the
past predictor outputs, a(i), from the predictor equation and leaves only the past predictor

inputs, b(j), as a means to calculate the predictor coefficients.

The all-pole model is commonly used because: (i) it is easier and faster to compute, (ii)
future values may not be known, (iii) the vocal tract is well represented by the all pole
model, and (iv) zeros can be approximated (expanded) by poles, and if they converge
quickly, only the first few terms are necessary [Pars86]. Finally, in speech applications,
the zeros of the ARMA difference equation represent nasals and some fricatives which can
be ignored for the most part with little loss of accuracy [Swan87]. In return, a simplified

equation that represents a good model of the vocal tract is achieved.

Derivation of the simplified linear prediction model is now provided. Beginning with a
zero-mean signal, and using the all-pole model of the ARMA difference equation, an
estimate, ¥(n), is calculated using Eq. 2.14. The associated errc;r signal is given by
Eq. 2.15, where a(0) equals one. In order to obtain the predictor, ¥(n), the coefficients,
a(+), are determined in a manner which minimizes the error in a mean squared sense. This

is done most efficiently by taking advantage of the orthogonality principle which states that

-25 .

P
() =- Y, a(i) y(n-i) 2.14)

i=1

p .
e(n) =y(n) - §(n) = Z a(i) y(n—i) (2.15)
i=0

if i is orthogonal to j, the vector product is zero. In the predictor case, this leads to the
requirement given by Eq. 2.16.

<yn-jem)>=0,forj=12,..p (2.16)

Substituting e(n) back into Eq. 2.16 and simplifying yields the following result given by
Eq. 2.17. Finally, by interchanging the operations of averaging and summing, and

representing <> summed over n, provides the final form given by Eq. 2.18.

p
<y(m-j) Y, a) yn-i)>=0 2.17)
i=0
P
Ea(i) z yn-i)yn-j)=0,forj=1,..p (2.18)
i=0 n

The predictor coefficients, a(i), are found be solving this set of equations using the
Levinson - Durbin iterative technique of solving a system of linear equations. A frame of
speech of finite length, say 25 ms, is input to the LPC system and the resulting floating

point predictor coefficients are then used as the spectral feature in speech recognition.

2.5 Recognition Method Selection
The second phase of operation in a recognition system following feature extraction and
training is recognition. The recognition methods under consideration are template matching

and neural networks. For template matching, recognition involves collecting a series of

- 26 -

templates and comparing an unknown template to each known template. For neural
networks, this involves finding a mapping from the templates to the desired output vector
using a single set of weights. It is the objective of this section to determine a sufficient
recognizer. Four metrics are available to measure the difference in distance between the
unknown template and the target template, whether it is to minimize the cost function or
mean squared error. The distance metrics include: (i) Hamming, (ii) Euclidean, (iii)
Minkowski, and (iv) Chebychev. Also, the Itakura-Saito distance measure may be

considered and is popular when using LPC as the spectral feature in recognition [Pars86].

2.5.1 Template Matching

Better than linear compression-expansion is the dynamic time warping (DTW)
technique which can achieve optimum non-linear time alignment [LeR090). This technique
involves a template containing the waveform feature which is time normalized and warped
onto a known set of utterance templates prepared in a similar fashion. A template consists
of a sequence of vectors arranged in a linear fashion with each vector consisting of a feature
of the waveform. The matching is performed by using a metric which compares the
unknown template to each of the known templates. The template that is closest in a metric
sense to the unknown template is considered the correct match. Although DTW is a good
technique when applied to recognition, it requires the accurate location of the utterance end
points for improved isolated utterance recognition. When considering isolated speech
recognition, the template contains the entire utterance. Locating the end points assists in
reducing the cost function result by providing an improved initial time-alignment between
the unknown template and the known template. This initial time alignment will improve the
search procedure by placing the unknown template closer in time to that of the known
template. This will result in a more accurate time normalized distance. If the end points are

not located, the template may be misclassified. “This means that time-dependent features

-27 -

may fail to match because the unknown and the reference word are out of time registration.
In such a case, the correct pattern may seem as far different from the unknown as any
incorrect pattern” [Pars86]. A resulting search path and window between the word pattern
is shown in Fig. 2.11. The smallest distance, D(G,H), results from the template that has
the fewest timing variations to the unknown template. Three possibilities exist, (-1,j),
(i-1,j-1), and (i,j-1) when determining the minimum energy extending from an arbitrary

point (i,j) as shown in Fig. 2.11.

] T T T
z| =z | Mininum Energy Path

Time [s]

| Search
Window 4

n
P p a T] ' R n]
Time [s]

Fig. 2.11 DTW template matching (after [Holm88]).

Since an exact match is unlikely, the smallest distance is chosen. A match can only be
made once all library templates have been compared. Therefore, a constant time is required
for an unknown ternplvate to be identified which is proportional to the library size. DTW is
not used because the classification time is dependent on the library size, multi-level
classification based on a pattern is not possible using the conventional approach and, for

highly accurate recognition, the location of the utterance boundaries are a necessary

- 28 -

component. Endpoint location involves additional processing, adding to the classification
time. Further to this, “In many cases the accuracy of time alignment depends on the
accuracy of identifying the end points” [Pars86]. Finally, DTW may even be used by
neural networks. In this approach, following time alignment, the resulting template would
be used as input into the neural network. This would assist in reducing timing variations of
the input pattern which may lead to higher network classification results. This approach
would increase the classification time, thus it will not be attempted. A complete description

of DTW is contained in [SaCh78], [Pars86], and [Pete88].

2.5.2 Neural Networks

The artificial neural network approach, which is also referred to as parallel distributed
processing, provides an entirely different approach to managing the templates in the
recognition process. The goal of a neural network is to determine a mapping of the input
templates to their respective output templates using a single weight matrix. The mapping
has a constant recognition time which may be small enough to permit real-time recognition.
A neural network contains many units called neurons which perform a single function.
This function is to sum weighted inputs and perform a non-linear mapping of the sum to
obtain an output value which is propagated to connected neighboring neurons. The
network architecture, activation function, and learning paradigm vary between models.
The purpose of this section is to determine a sufficient model to use for isolated speech

recognition.

In a neural network, there are usually two steps involved in recognition. The first step
involves (supervised) training which is used to adjust the network weights to obtain the
correct mapping, and this is achieved through a variety of techniques. The last step is

generalization. Generalization allows a network to be able to correctly classify patterns that

-29 .

it has not seen before [Rein90]. Neural nets are robust with noisy data which typically
accompany speech signals and thus, quickly provide a good solution to the abstract

problem of isolated speech recognition.

Recent interest has shifted to recurrent neural networks, “Since speech is a complex
time-sequential process, recurrent networks have been viewed as a natural choice for
modelling the temporal structure of speech in both production and perception” [Watr90].
Others have also developed systems that use the recurrent network approach with limited
success on isolated speech, [Watr90], and [HaWa90]. In one approach, the network
architecture is unchanged from the typical concurrent approach except for the recurrent
links found in the hidden layer and/or output layer. A recurrent link is a connection which
is established from the output of a neuron back into the input. In this manner, a form of

dependency on past inputs is accomplished. This dependency is shown using Fig. 2.12.

input Layer Hidden Layer Output Layer
Unit 1 2 s 11 12 e 20 28 30 31|Time| 1
on | @ o ® t o
O(t-1) t-11 1
O(t-2) t-21 2
O(t-3) o ® & 0 -3 3

Fig. 2.12 Dependence of the network outputs with recurrent links at earlier time
frames. The columns correspond to the 3 layer BP architecture. The rows locate

output O(t) of each unit as a function of time (after [Watr90]).

- 130 -

A pattern, using this technique, consists of a group of pattern segments. Thus, in order
to present a single utterance pattern, a set of time related input pattern segments are
presented in an ordered sequence to the network. Results of 96% to 98% recognition were
achieved on specific vowels and consonant combinations [Watr90]. The results of
concurrent networks achieve near this accuracy and the computational overhead is much
less. Therefore, in light of the fact that one of the objectives is to achieve real-time

recognition, this approach is avoided.

A limitation of supervised BP is that a priori training data is required. For very
complex tasks, a lot of data is required in order to achieve sufficient weight accuracy,
which is reflected as correct recognition. Given a network with three layers having N
weights, N2 patterns are generally required for statistically reliable weights. This
overhead requires long training periods to correctly adjust the network weights. Also, it is
not always convenient or possible to acquire a large enough data set to accurately determine
the mapping. Another deterring factor in a software developed BP neural network is the
possibility of achieving only a local solution which is not optimum. In the following
chapter, these problems are addressed as well as a detailed discussion of the classical BP

technique which is used in this thesis.

2.6 Summary
Speech is generated by the vocal apparatus based on abstract neural signals originating
in the brain. It is transmitted through air as an APW, and has characteristic features
including amplitude, pitch, frequency, and resonant length. Speech is inherently redundant
(up to 50% of the time), locally stationary over short periods, non-stationary over long
periods and, can be sub-divided into 47 fundamental units called phonemes. Speech
encoding is possible using either waveform or parametric analysis of the APW. Waveform

- 31 -

methods offer higher quality and bit rates, while parametric encoders generally have lower
quality and bit rates. For real-time recognition, an encoder which employs LPC is selected
because achievement of real-time recognition necessarily requires that the data contain the
essence of speech (frequency information), and that this essence be in the most compact
format possible. LPC is chosen over the FFT due to its abilities to provide the essential
speech information in a compact format, more so than the FFT, its real-time processing
capabilities, and ease of implementation over the FFT. The type of recognizer selected is a
concurrent BP neural network. The neural network is used in place of DTW because: (i) it
provides multi-level grading and real-time recognition, (ii) it has a constant recognition time
which is independent of library size and, (iii) it does not require additional pre-processing.
The concurrent BP neural network is chosen over a recurrent one since the recognition
results of [Watr90] were not significantly better from those found using concurrent
networks with similar architectures and vocabulaﬁcs [KMRW87], [DeBo90], and
[Burr87). A further description of the essential components is discussed beginning with a

detailed description of the concurrent BP neural network.

-32 -

CHAPTER 1II
REVIEW OF BACKPROPAGATION

3.1 Introduction

This chapter presents a review of the backpropagation (BP) neural network which
performs isolated utterance recognition. Various distance metrics, used by the neural
network to determine the total internal network error, are described. A description of the
grading scheme is included which explains how the results of the neural network are
interpreted to determine the identity and quality of the response utterance. This is the type
of feedback that is necessary in the vocal shaping process. The BP neural network used in
this thesis employs an adaptive learning rule and batch update technique to reduce the
network training time. Other parameter variations and architectural configurations are also

available to provide training flexibility.

3.2 Error Backpropagation

BP is a generalization of the least squares procedure and works with multi-layer
networks. It is only one of many techniques used to determine the synaptic efficacies and
threshold potentials for multi-layer supervised networks. BP is superior to networks
which do not contain hidden units since data sets in which class separability is complex will

provide greater difficulty in producing the correct mapping for these other network models.

3.2.1 Background

The BP leamning procedure is described by Hinton, Rumelhart, and Williams (1986).
Variations of this model were also independently discovered by Werbos (1974), LaCun
and Parker (1985). Isolated speech recognition using BP is contained in [Burr88] and

[DeBo90]. BP uses a supervised gradient descent technique to adjust the network weights.

- 33 -

Since speech is a very dynamic signal, even for the same speaker, and since it is very
complex to represent, it would be very difficult to determine Jjust how to hand-adjust the
internal weights to represent such utterances if an auromatic gradient descent learning

technique is not employed.

Layered networks, including BP, classify patterns by partitioning the multi-dimensional
input space into hyperplanes. In the three layer BP architecture, the first hyperplane,
located between the inputs and hidden neurons performs AND operations (convex
regions), while the second hyperplane, located between the hidden and output neurons
performs OR operations of the convex regions. The combination of AND and OR
operations permits BP to isolate regions or perform clustering [Burr88]. Although it does
provide the correct mapping rule, BP is not a realistic parallel to what we perceive to be
occurring in humans. This is because error signals, which are back propagated in the
algorithm to reduce the weight space error, are not seen in nature since neural signals do
not travel in the reverse direction down an axon. Also, the architecture of BP does not
agree with other physiological constructions. Specifically, brains have feedback and are
more fully interconnected than BP networks. Conventional BP networks are only
connected between layers, not interconnected within a layer, and do not permit feedback
during the forward pass. One of the plaguing problems of BP is the lengthy training
periods involved in achieving sufficient accuracy of the weight space. Much research has
gone into reducing the time required to achieve sufficient weight accuracy [VMRZ88], and
[McRu89]. Typically, this is achieved using some form of adaptive rule to vary the
learning rate and/or momentum. Also to speed convergence, adding noise to either the
patterns and/or weights is used to avoid local minima or worse yet, entrapment within a
local minima [McRu89]. The lengthy training time is due largely to ravines and localized

solution plateaus. A ravine, representing the energy surface of a problem in three

- 34 -

dimensional space is given in Fig. 3.1. Point A is given as the network starting point.
Using gradient‘ descent, the network will move to point B, which is across the ravine.
Ideally, movement down the centre of the ravine to point C is desired. “Under some
conditions, a large proportion of the training effort will be spent oscillating from side to
side of the ravine, and not in the desired direction along the bottom of the ravine”

[ChFa88].

-

. J

Fig. 3.1 Ravine in three dimensional energy space (after [ChFag88)).

Small learning rates reduce this problem, but also slow movement. Including a
momentum factor dampens the oscillations and assists in re-directing the movement
towards the ideal point C. “In many tasks in speech recognition, the solution (global
minimum) forms a plateau in weight space. As the network nears the plateau, the gradient
becomes small, resulting in a small tail off” [ChFa88] as shown in Fig. 3.2. At the
sigmoid (logistic activation function) extremes, a neuron is either completely on or
completely off. When this occurs, the gradient is small resulting in small movements on

the energy surface. To reduce the network training time, an adaptive learning rule is used.

- 35 -

When the total internal error falls by at least 1% to that of the previous total internal error
value, then the learning rate is increased by 1% of its previous value. On the other hand, if
an increase in the learning parameter yields an increase in the total internal error by more

than 1%, the learning rate is decreased by 40% to 50% of its current value fof the

_ W,

Fig 3.2 Energy surface topology for global solution in 3 dimensions (after

[ChFag8]).

forthcoming iteration. The logic behind this rule is that if the network error is consistently
being reduced then an increase in the learning can be safely applied to accelerate the training
process. If on the other hand, the error begins to oscillate, which may be due to ravine
jumping, curvature in the ravine, or narrowing of the ravine [Card90], the sensitivity of
learning is decreased quickly in order to correctly exit from this problem zone. The
oscillations in error trigger the threshold leading to a drop in the learning rate. This
procedure has been applied with success by [LoKi90] and [VMRZ88].

3.2.2 Training

In training, the predefined set of patterns are presented to the input neurons. These
neurons propagate their signals to the hidden layer through small random weighted
connections, W;;, as shown in Fig. 3.3. Each hidden neuron sums the weighted inputs

y

- 36 -

(Input Neurons Hidden Neurons Output Neurons)
o 0 ? ©o
Wio W, v -0
0 10 W2 i 01
W Y HZO Op & 02
W Y
o HO
P
1 O H =Xe)
_ M NO P)

Fig. 3.3 Three layer back propagation architecture.

and may add in a bias weight if such a connection has been made. A bias is an extra

neuron which is always on. When calculating the total weighted input to a neuron, the bias

weight may be added in before the sum is applied to the logistic activation function. The

bias weight shifts the sigmoid characteristic a distance Th. The activation function is used

in obtaining the hidden neurons output. These descriptions are illustrated in Fig. 3.4. The

activation function can be any function that has a continuous first derivative.

-

Neuron inputs

Weighted
summation

-

Artificial neuron

Bias Neuron output

0

\
Sigmoid activation function
A T

1

Threshold
function

™ »Z =Th

%

.._._—-:_-./,1

J

Fig. 3.4 Representation of an artificial neuron and its logistic activation function.

-37 -

It should be non-linear since a linear activation function gains nothing from using hidden
units [McRu89]. The non-linear activation function introduces higher order statistics which
provide important feature information of the pattern set to the network and bias weights.
This procedure is repeated again between the hidden layer and the output layer. The
output vector is subtracted from the ideal or targer vector in obtaining the error signal.
The negative gradient of the error signal is calculated and backpropagated through the
network to modify the weighted connections which reduces the total internal network €rTor.
The mathematics of this procedure are given in Egs. 3.1 to 3.8. Equation 3.1 describes the
forward propagation’ of a pattern which is presented to the input layer and is used to

calculate a hidden neurons new activation level, where HJ represents the hidden neuron,

H;= L B CRY
1+em @+ £ 10 Vo)

Hb ; represents a hidden bias weight, /,, represents the input neuron, and V(n Im y
represents a weight located between the input and hidden layer for the current pattern n.
Equation 3.2 describes the forward propagation of the hidden neuron vector to the output.

This is used to calculate the output vectors new activation levels,

Oc= 5 (3:2)
1 +e— (Oby +m§ le W(mmk)

where O, represents the output neuron, Ob, represent an output bias weight, and
W(n),,, represent a weight located between the hidden and output layer for the current

pattern n. Equation 3.3 describes the calculation of the pattern error between the target and

Ep '\/l)) (Om‘T’mp) (3.3)

- 38 -

the actual output vector (this is an application of the Euclidean metric), where E,
represents the error for a single pattern, and Tr, p Tepresents the corresponding training

output value to the output neuron for the current pattern p. Equation 3.4 describes the

8 =0k (1-Op) (Trpx - Op) (3.4)

error gradient signal, &, which is backpropagated into the network starting from the
output vector. Equations 3.5 to 3.7 describe the adjustment of the weights between the

output units and the hidden units. Equation 3.5 describes the weight change, AW(n)ik

AW(n)x =1 Ok H;+ 0 AW(n - Dix (3.5
Wn)x = W(n)x + AW (n);x | (3.6)
OutputBias(n) = OutputBias(n) + AW(n)x 3.7

which is calculated using the current error signal added to a fraction of the previous wei ght
adjustment, AW(n-1)j,‘, where 7 is the learning rate. The fraction is set arbitrarily using
the momentum factor, @, (a<1). The current weight adjustment is then added to the

current related weight, W(n)jk, given by Eq. 3.6. A similar procedure is followed for the

biases given by Eq. 3.7. Equation 3.8 describes the calculation of the error signal, 5?, at

5?=Hj (1-H;) (2 3n W(n)m) (3.8)

m=1

the hidden layer. Equations 3.9 to 3.11 describe the propagation of the error signal and
adjustment to the input and hidden layer weights. These calculations are similar to those
performed for Egs. 3.5 to 3.7 except that the inputs, /, are used in place of the hidden

units. This process is repeated until the total error falls below a set threshold.

-39 -

AV();=1 & I; + 00 AV(n - 1); (3.9)
V(n);j = V(n);; + AV(n);; (3.10)
HiddenBias(n)j = HiddenBias(n)j + AV(n); . (3.11)

The total error, Ty, is defined as the summation of the pattern error of Eq. 3.3 taken over
all patterns and is given by Eq. 3.12. The total error can be calculated on a single pattern if

desired. The form of presentation of the data set to the network may cause different
P
T2) E (3.12)
m=1

training time solutions. The two forms of pattern set presentations are sequential and
random. Here, random presentation means the pattern set is presented to the network in a
randomly permuted order, while sequential presentation involves showing the pattern set in
the same order during training. Other settings include initialization using small network _
weights having random or constant values, biases on selected network layers, an adaptive
learning rule, and various metrics to measure the total internal error. The trainin g given in
the above set of equations is referred to as single update, while the more typical form of

training is referred to as barch update.

3.2.3 Batch Update

Two variations in updating are possible using BP. The first is single update which
repeatedly follows the eight equations provided in Sec. 3.2.2 until the current total internal
error value reaches the prescribed stopping criteria. Batch update on the other hand,
performs the weight adjustments differently, implying a different application of Eqgs. 3.4 to
3.12. In the batch procedure, the weight error derivatives are accumulated over an entire

training set, or batch. This implies that the set of weights and biases, both previous values

- 40 -

and current are not changed until the end of the pattern presentation set. This is unlike the
single update where all weights and biases are changed for each and every pattern. In the
equations for calculating the weight update values, the previous iteration weight update
values, AW(n-1) and AV(n-1), are required. Ideally, a copy of the entire weight update
structure must be stored in memory for every pattern set to provide the correct previous
weight changes. This is necessary since the weight updates do not occur until the end of all
pattern presentations. Further to this though, once the accumulated weight changes have
been acquired, some form of calculation is necessary to determine the current set of old
weight changes, AW(n-1) and AV(n-1), to be used in the forthcoming series of batch
weight updates. If the previous weight changes were stored for each pattern, which would
tend to be somewhat inefficient and memory intensive, and since the whole idea behind
batch update is to decrease the convergence period of the network, a simplified approach is
taken. Here, the weight error derivatives are accumulated and the previous batch weight
change term is added into the current batch weight change calculation to generate the new
set of previous weight changes [McRu89]. The previous weight changes are applied to
every pattern, and they are used in the forthcoming batch update. Hence, each weight that
is updated uses the same previous weight changes, AWbatch(n-1) and AVbatch(n-1),
for every pattern during that update period. The approximation may not be as accurate as
using single update, but the advantage is realized when many more trials are performed
over the same period of time. This seems appropriate because when the network begins
training, the weight structure is not at all representative of the pattern set.. The global
weight update procedure dampens the effect of spurious weight shifts between patterns
since one batch update is calculated instead of many pattern updates. As the network
converges, the weight changes become smaller since the weight adjustments become
smaller. During the final stages of training, the effect of the batch weight adjustment

represented in the second term of Egs. 3.5 and 3.9 influence the network less and the first

- 41 -

term of Eqgs. 3.5 and 3.9 becomes more dominant. Equation 3.13 describes how the batch
weight updates are accumulated between the hidden and output layers. AWbatch(n)jk
represents the accumulated weight change and AWbatch(n-1)jk represents the weight
change value from the previous batch update. As in the single update process, Eq. 3.8 is
used to calculate the error signal at the hidden layer. The hidden-input batch weight
changes are accumulated over all patterns using Eq. 3.14 where AVbatch(n)ij, represents

the accumulated weight change and AVbatch(n-1),-j represents the weight change from the

AWbatch(n)y = o AWbatch(n -) + ¥ (n &, H) (3.13)
P
AVbatch(n);= a AVbatch(n - D+ Y (n 81 (3.14)
P

previous batch update. This procedure is performed for the entire training set. Once
completed, the forthcoming weight changes, AWbatch(n-1) and AVbatch(n-1), the new
weights, and the new biases, are calculated using Eqgs. 3.15 to 3.17 and Eqgs. 3.18 to 3.20,
respectively. The accumulated batch weight updates are added to the existing weight

AW(n - 1);= AWbatch(n); (3.15)
Wn+l)y = Wi(n); + AWbatch(n);; (3.16)
OutputBias(n+l)j = OutputBias(n)_,- + AWbatch(n);; , (3.17)
AV(n-1);= AVbatch(n); (3.18)
V(n+)y = V(n); + AVbatch(n)ij (3.19)
HiddenBias(n+1)j = HiddenBias(n)j + AVbatch(n)iJ- (3.20)

values, W(n+1)and V(n+1) to obtain the new network weight values. The batch weight
update values are also added to the biases, OutputBias and HiddenBias, in providing the

new bias values.

- 42 _

3.2.4 Error Measures

Flexibility in grading is also accounted for in the BP network. This scheme involves
four types of distance metrics whfch are used to determine the total internal error signal
(refer to Eq. 3.3). The metrics include: (i) Hamming, (ii) Euclidean, (iii) Minkowski, ahd
(iv) Chebychev. The Hamming metric is given by Eq. 3.21, where D, represents the

z

DHQZ'TI.PJ“_ m, (3.21)

m=1

Hamming distance, T Tp.m TEPTESENtS the training pattern output of pattern P, and output
neuron m, and O,, represents the output neuron value. The Euclidean metric is given by

Eq. 3.22, where D represents the Euclidean distance.

De2p [13 Trpm=0n) (3.22)
m=1

The Minkowski metric is given by Eq. 3.23, where D 4 Tepresents the Minkowski distance
and B represents the power. The Chebychev metric is given by Eq. 3.24, where D,
represents the Chebychev distance. In most applications, including this thesis, the
Euclidean metric is used. The flexibility in the other metric selections is available for
experimentation. Also, the Euclidean metric represents the vocal energy more closely than

do the other metrics [Cair90].

z 1
B

Dy 2 [—é— 21 (Trpm— Om)BJ (3.23)

Dc 2 m;"‘ [mz=1 (Trpm — Om)] (3.24)

- 43 -

3.3 Recognition

Speech recognition is the key objective of this thesis. Recognition in this thesis means
the identification of an unknown pattern from a known set of patterns based on a spectral
feature. The spectral feature, obtained from the LPC coefficients, is embedded in the
network weight structure. The known patterns are the pre-recorded utterances. The
unknown pattern is the utterance response, emitted and recorded, from the autistic

individual after hearing the target utterance synthesized from the host computer.

Every recognition system must contain the following functions: (i) data acquisition, (ii)
templates generation and storage, and (iii) identification. This system contains all these
functions, but the contribution enters in how each step is implemented. The data collection
involves obtaining the LPC coefficients from the sampled speech data. The inherent
information contained in the LPC data is passed into the neural network weight structure
through the BP training process. In this step though, the template features are acquired by
the network weight space. In conventional methods, representation of each template is
contained in independent memory locations. The neural network approach requires initial
overhead in the form of training prior to use, but it also introduces the reality of real-time
recognition during use. This is especially true in the case of larger libraries, since any
unknown pattern only need pass forward through the network for the identity to be
determined. In the conventional template comparison approach, each pattern has to be
compared separately and the solution is not known until the entire set is evaluated. Using a

large library, this may prevent real-time recognition.

3.3.1 Recognition and Multi-level Grading
Recognition, as used in this neural network, is commonly called classification. By
this, the identification involves the selection of only one of the output layer neurons. After

forward propagation of the unknown pattern has occurred through the trained network, the

- 44 -

identity is determined by selecting the most positive output neuron. Embedded in the
classification scheme of the neural network is a method of achieving multi-level grading.
Associated with recognition of an utterance is the identity and the quality. Each of the
trained utterances may have up to four associated allophones. Each allophone represents a
quality level of the target utterance and is assigned a single output neuron during training.
This scheme is shown in Fig. 3.5. By using this scheme, the ability of multi-level

classification is realized.

(Output neuron 1 - .)
_ ® Utterance 1 Version | Quality
Hidden neuron 1 Version:Excellent 1 Excellent
Output neuron 2 2 Good
&) Utterance 1 3 Fair
Version.Good 4 Poor
Output neuron 3 5 Unsatisfactory
Hidden neuron y & 82?;;?‘?:;[
Output neuron z
&) Utterance n
Version:Unsatisfacto
\ i Y,

Fig. 3.5 Classification scheme used in recognition.

In speech shaping [Cair90], this approach is necessary because the target utterance may
not be achievable from the outset. In the past models, 255 levels were used to grade an
utterance, but these many levels were not meaningful to human assessors. Thus, only five
levels are used here, and these non-linear levels are assigned to the desired output pattern
»by the human assessor at the time of recording. This approach reduces the problem of
interpreting the quality assessment of results and may also reduce the disagreement between

computer -human assessment.

- 45 —

3.4 Summary

This chapter describes both a review of the classical BP technique and a specific
description of the particular implementation of the technique used in this work. This
description includes a detailed explanation of the operation and use of BP as applied to
isolated speech recognition. A section describing the implementation of the adaptive
learning rule and batch network updating is included. Also, a brief déscription of the
various metrics used in calculation of the total internal error is provided. A discussion of
the muiti-levcl grading as it relates to recognition of the utterances is presented. Multi-level
grading is used since it is an essential component in the process of vocal shaping.

— 46 —

CHAPTER IV
SYSTEM DESCRIPTION

4.1 Introduction

This chapter is concerned with describing the isolated speech recognition system from
a cbnceptual viewpoint. The reason for giving a conceptual description is to provide an
overall understanding of what the system contains in it, how each component is related to
the others, and to provide a perspective for the following chapter. The system is separated
into two major segments. The first segment describes the computer hardware and software
that is required. The other segment describes the system resources as well as the custom
_ designed speech recognition software. Finally, two approaches to the recording and
playback routines are contrasted. The one used in the thesis involves the use of an IBM AT

computer together with a Macintosh IIsi computer.

4.2 The Speech Recognition System

The isolated speech recognition system includes four main components: (i) data
acquisition, (ii) feature extraction, (iii) the neural network and recognition logic, and (iv)
the human interface. Each component is written in software, although the data acquisition

also includes some special hardware. A block diagram of the system is given in Fig. 4.1.

This system is designed with the goal of computer automated vocal shaping in mind
[Desr90] and [Cair90]. The first approach involves the use of an IBM PC AT to acquire
the data and obtain the LPC coefficients. Another approach, which is under development,
involves the use of the Macintosh sound manager. In this approach, the system would be
confined to the Macintosh. The software is compiled and compressed into one package and

could be used by any Macintosh computer with a minimal RAM requirement of 2 Mb.

- 47 -

User Interface &
Background Software

Data . .
Acquisition & Feature Bﬁ:ﬁgﬁﬁiﬁ&”
Preprocessing Extraction

Utterance [l" Recognize E

Speech ce | :
Identity Hl Interface

Input 4 @ Word : Ah

i}l Version: Good §

J

Fig. 4.1 Speech recognition system block diagram.

The system currently operates with the assistance of an IBM computer and serial
communication routines to obtain the necessary LPC coefficients. The system is developed
on the Macintosh Isi, which has an additional math coprocessor. The development
software includes Think C object oriented programming language and the Macintosh
resource editor, ResEdit 2.1.3b. Speech is captured using a Shure uni-directional, noise
cancelling microphone connected into an AKAI tape deck. The AKAI tape deck filters the
signal and passes it to the NEC DSP board which further filters the analog signal down to
the toll quality band. The NEC samples the analog waveform at 8 kHz using an 8 bit A/D
converter. These samples are passed through a LPC program which selects three frames
from the data file and obtains 10 predictor coefficients per frame. These coefficients are
sent serially to the Macintosh, catenated into a sequential pattern format, and trained by the
BP neural network. The neural network later accepts an unknown pattern which is
acquired and prepared in a similar fashion to the training templates. This pattern is

identified by a recognition routine which interprets the neural networks output.

— 48 -

4.2.1 Resident System Tools

The system tools include all that hardware and- firmware that is supplied by the
computers. The ROM of the new Macintosh includes a very powerful sound manager that
is capable of managing sounds easily. Also included in the software, are special serial
drivers contained in the Macintosh toolbox and in Think Cs resource templates. This
combination of toolbox drivers and software drivers permits very convenient serial

communication between computers.

4.2.1.1 System Hardware
The speech processing system hardware consists of the Macintosh ITsi computer, the

floating point card, the IBM PC AT portable computer, the NEC processor, the
communication cables, and the Shure microphone. A minimum of 2 Mb of RAM for the
Macintosh is required to run the software and a hard disk would be useful in maintaining
the utterance library. The Macintosh uses a MC68030 processor running at 20 MHz and a
MC68882 floating point coprocessor which is used to increase the number of floating point
calculations done per second. Many such calculations are required during training of the
neural network. The APW is acquired using an uni-directional, noise cancelling
microphone which is connected into the right channel microphone input of an AKAI tape
deck. The right channel tape deck output is connected, using 1/4" stereo jacks, into the
analog input, J35, of the NEC EDSP-77230 DSP board. A C program configures the
DSP board which acquires the analog speech data at the request of the certain serial
communication messages existing between the two computers. The program extracts the
desired speech segments, obtains the LPC coefficients, and transmits them serially to the
Macintosh. Serial communication occurs through com2 to the Macintosh serjal (modem)
input port. A block diagram describing this configuration is given in Fig. 4.2. In the

alternate scheme that is currently under development, the data acquisition is performed

- 49 _

Right channel /
microphone input

—

Microp‘;aone J

Fig. 4.2 Speech recognition system hardware configuration.

using a Sony A/D and D/A converter, and the Apple sound chip (ASC) found in the
Macintosh IIsi. The speech may be acquired by using the built-in electrer omni-directiona]

playback. In the voca] shaping process, this would be a necessary requirement,

4.2.1.2 System Firmware
The second alternative to data acquisition, recording, and Playback, involves the

newly developed sound manager found in the new 512k Macintosh System ROM. The

resources. This feature is made available for recordin g and storing ALERT sounds to the
application software or Mac OS resources. ALERTS are used for warning the recipient of
a possible danger, or to notify them of a possible recourse from an incorrect system
procedure they have initiated. Thus, this approach could not be used for the above reason
and since multiple sets of library data would necessarily require separate file space. Hence,
the choice to use the SPB commands, which provide extended flexibility in the analysis,
recording, playback, saving, and loading process are chosen. Further, the sampling of the
speech input is selectable at 5 kHz, 7 kHz, 11 kHz, 22 kHz, or 44 kHz. The analysis of
the waveform is performed through Apple's proprietary technique known as Macintosh
audio compression expansion (MACE). The waveform is analyzed using 8 bit samples
and a monaural channel. Also, the sound can be analyzed and compressed in real-time by
3:1 or 6:1 factor, or sampled as PCM. Storing of the sound data requires either a resource
type header or standard file type header. The resowrce requires an ID and a predetermined
header structure. For further details concerning this structure, refer to [Appl90]. The other
format, known as Audio interchange file format (AIFF), is a standard format used to store
digital data to a file [AIFF89]. This format is used in this thesis and is supported by Apple
Comoputer in their new sound manager. It requires a header structure which is described in
[AIFF89] and [Appl90]. The header contains information about the sampling rate, size of
data, file name, compression type, and file size. Once the data has been stored using the
AIFF format, the file can be played directly from disk, loaded and then played, or played
directly from RAM following recording. In addition to this, the computer is able to
perform real-time compression and storage, and real-time expansion and playback directly
from disk if necessary. Since a custom interface is used in this thesis, the low level SPB
calls are used to facilitate the structure of the software. A standard recording framework is
proposed which includes: (i) 22 kHz sampling rate, (ii) 8 bit samples, (iii) one second
recordings, (iv) no compression and, (v) a monaural channel. The data necessarily

requires that it be uncompressed initially because of the need to obtain the LPC filter

- 51 -

coefficients. Once the values have been obtained, the data may be compressed and stored if

disk space is an issue.

Other pieces of firmware located in the system ROM include the serial driver, which
is used for serial communication between the IBM and the Macintosh computers, the dialog
manager, menu manager, control manager, quick draw manager, and text editing manager.
" These managers provide low level functions that are used in the software. For a further

description of these managers, refer to [Appl88].

4.2.2 New Tools

In order to develop the software, a language which possesses its own set of
commands, is capable of accessing the system firmware managers, and can also
communicate with the hardware via the serial communication channel is necessary. The
software development is performed using Think C (object-oriented version) oﬁ the
Macintosh computer. A set of objects, provided with the software, and various additional
libraries are used in the software. Since great detail will be used to describe these in

Chapter V, an overview is provided here.

4.2.2.1 The Human Interface

The speech recognition system software contains a very complex, yet easy-to-use,
human interface. The purpose of the interface is to provide the recipient with feedback
which will guide them easily through the software and provide the necessary information
about the operations during a session. Its other objective is to provide all of this
information, whether it be in the form of sound or text, in a concise form that will provide
the individual with a clear understanding of what actions are to be taken, or have occurred.

The speech recognition software conforms to standard Apple interface guidelines so that

-5 -

knowledge gained from using past software can be applied to the current speech
recognition software. For example, when a dialog window appears, it is placed in the
standard position on the screen and, the default button such as DONE or OK is
highlighted in the prescribed fashion to indicate the default action. If the recipient decides
to press the RETURN key, instead of clicking the button, the default action is still
initiated. Similar types of parallels have been embedded in the remainder of the software,

4.2.2.2 Data Acquisition and Feature Extraction

The software must first acquire the raw analog speech data and extract the necessary
component of the speech waveform before the recognition procedure is performed. This
procedure involves sampling the input channel at 8 kHz and 8 bit samples. The raw speech
data is stored temporarily in RAM while another procedure obtains the necessary LPC
coefficients. Once the LPC coefficients are obtained, the software would play back the
sound directly from RAM using the raw PCM samples or store them for future reference

using the Oki ADPCM speech chip analysis technique.

Since much effort has gone into the development towards the single CPU employing
the Macintosh and the resident sound manager, the development using the IBM-Oki
ADPCM sound storage and playback routines have been replaced with development
routines to support the single CPU approach. A beta version, employing the system
resources, of this playback scheme is present in the current version of the speech
recognition software. Using this alternative scheme, the storage would be done using the
AIFF file format on the Macintosh computer, possibly using 3:1 or 6:1 data compression.
Essentially, all recorded sounds would remain in separate files which the speech
recognition software would access and playback and uncompress, if necessary, in real-time

from disk file upon request of the speech recognition software.

- 53 -

4.2.2.3 Training and Recognition

Following the acquisition of the data, production of the LPC coefficients, serial
transmission to the Macintosh, conversion to the proper data type and pattern format
specifications, the software trains the network using the data and later uses it to recognize
new utterances. The neural network architecture is determined through the use of dialog
boxes and pull down menus. The configuration options are made clear during selection of
a custom network architecture, and a fall back position to a default configuration is present
if no configuration is entered. Also, if the decision to discard the changes halfway through
the configuration procedure is made, an option to remove the new information is available
which reverts to the default configuration. With the data set in place, the network is
trained. The network training dialog box displays the important parameters indicating the
network's progress. An Exit button in the dialog box is present to halt training while
maintaining the current weight structure. Also, a menu command to re-initialize the weight
structure with new random weights is available. Testing, following convergence of the
network is performed by selecting the TEST NETWORK command. Network training or
testing is not permitted prior to recording or loading of a data pattern set. An ALERT qu
indicating the problem and a plausible recourse is displayed. Since testing of the network
is optional, immediate use of the recognition routines following training is permitted.
Selecting RECOGNIZE under the RECOGNITION menu displays a dialog box for
recognition. In this box, an utterance combination from the pre-recorded library is
selected. Actions to playback the selected utterance prior to recording the test utterance are
permitted. Clicking the RECORD button begins the recording of the test sound. This
sound is prepared in the same way as the library utterances. The LPC coefficients are
obtained, transmitted to the Macintosh, and presented to the input of the trained BP neural
network. The output vector is thresholded using recognition software and the identity is

displayed in the dialog box. The identity consists of the utterance class and the version of

- 54 —

that class. This is the same combination used in selecting an utterance for playback. This
procedure encompasses the fundamental steps that constitute vocal shaping and the

operation of the speech recognition software.

4.3 Summary

This chapter describes the speech recognition system from a fundamental level. The
system includes: (i) data acquisition, (ii) feature extraction, (iii) the neural network and
recognition logic, and (iv) the human interface. Each section is described with respect to its
purpose in the system and relationships with its neighbors. A detailed description of each
of these components are presented in Chapter V. Two versions of data acquisition are
contrasted which involve the NEC-IBM and the Apple Macintosh sound chip. Current
operation of the software employs the IBM-NEC DSP for both acquisition and obtaining
the LPC predictor coefficients.

- 55 —

CHAPTER V
SOFTWARE IMPLEMENTATION

5.1 Introduction

The software is the integral heart of the system. It performs data acquisition and
management, training and testing of the neural network, and performs utterance
recognition. A description of how the software accomplishes its many tasks is achieved
through the use of structure charts. These charts provide an informative insight into how
the various operations are actually accomplished without the source code details. If
however, the source code is required, a complete and current listing is included in

Appendix C.

5.2 Software Background

Before introducing the software that is used for speech recognition, a background is
established to understand the operational structure of the object-oriented methodology.
Object-oriented approaches are available using C or Pascal language on the Macintosh
computer. The software is written in object-oriented C. A class library of predefined
objects is provided with the software, and since some of these objects are used, a formal
discussion of the ones used is necessary. A set of relationships exists between many of the
objects. To begin, the software global functions are shown using the main menu given in
Fig. 5.1. The structure of the C class objects is given in Fig. 5.2. The class hierarchy,
given in Fig. 5.2, describes the relationships between the objects provided in the software
package. All the objects originate from the root object called CObject. All class objects
begin with a capital C but for clarity the C has been dropped. Following the class
hierarchy, is the flow, or chain of commémd. The chain of command describes how data is

treated and who receives the first opportunity at processing it.

-56—

NEW 8N
OPEN 80
CLOSE 8 cC
SAVE 88S
SAVE AS...
REVERT
PAGE SETUP
PRINT 3P
QuUIT %8Q

RECOGNIZE SPECTRUM PLOT
AMPL ITUDE PLOT
TRAN | o
GRADING MEASURE } SPEECH SPLICING
TEST NETWORK _I —————
PRINT PLOT
HAMMING —] LOAD FILE WEIGHTS
EUCLIDEAN CREATE NEW WEIGHTS

MINKOWSKI (P=3)
MINKOWSKI (P=4)
MINKOWSKI (P=5)
MINKOWSKI (P=6)
MINKOWSKI (P=7)
CHEBYCHEV

Fig. 5.1 Functional overview of the speech récognition system menus.

In many cases, descendants call upon the functions of their successors for processing

knowledge. This form of behavior is known as inheritance.

Inheritance allows a

descendant object to be able to process methods that its predecessor objects are capable of

processing. This form of linking is signified by the word inherited followed by a double

colon and then the method that the descendant wishes to inherit. For example, if a

descendent of CDocument called CBackpropDoc, wishes to inherit the DoCommand

structure of CDocument then all that is necessary is to insert the following command,

given by Eq. 5.1, into its DoCommand method. Then, whenever the DoCommand

method of CBackpropDoc wishes to process a message that it does not explicitly contain,

it will be able to use the inherited structure of its predecessor to assist it.

inherited::DoCommand()

—57 -

5.1)

- Application
Document
¢ Director
Clipboard
~{ Desktop
= Window Picture
—| Bureacrat | anaorama
StaticText EditText
4 View -
]| Switch
board ICheckBox
Button
—] Chore Pane =
—{ Control Radio
Button
] Bartender Scrolibar
——4{ Sizebox
[—1 Decorator
Object }ud
—1 Scrolipane
| | Radio
Group
i Border
=] Collection =4 Cluster List
|_| Environment
—— Error
- || Data
File Flle
—4 Printer
4 Task 1 Mouse
Task

| Fig. 5.2 Think C class hierarchy (after [Syma90]).

~-58—

The flow of control begins at the object CSwitchboard picking up a message and
decoding it. The four decoding groups are: (i) menu, (ii) window, (iii) key events, and (iv)
system control. Based on these main areas, the switchboard routes the control to the
highest object of that class. If this object can not process the message, it passes the
message down the hierarchy to the next predecessor. These predecessors in turn attempt to
process the message. If the message reaches the last link in the hierarchy, and is still not
understood, a system error will occur if the last object can not correctly process the
message. Typically, the command is carried by a global variable available to all objects

known as the gGopher. The flow of control describing this structure is given in Fig. 5.3.

Bartender

System event notification

Chain of Command _ Retreshrequests Visual Hierarchy
Activate/deactivate notification commands
Mouse tracking S

Fig. 5.3 Flow of control in object-oriented programming environment (after [Syma90]).

The difference between procedural and object-oriented programming is the way data is
treated. In procedural programming, data and the functions are treated separately; first the
data structures are written and then the routines to operate on them. In object oriented
programming, action and the data are closely tied. In some cases though, it is better to use
procedural strategies to perform a task. A diagram of the structure of an object is given in

Fig. 5.4.

-59 -

(")
RELATED OBJECT

METHOD 2(DATA)

INSTANCE->MET|

ETHOD N(DATA)

Fig. 5.4 Structure of an object sending a message.

The outline of the software is based on the class hierarchy given in Fig. 5.5. This structure
depicts the specific methods used in the software. Three main objects are present in the
software. The first object, CBackpropPane, is a descendant of CPane. This object
possesses the inherent structure of CPane and is used to process any form of window
intensive feature, such as a graph, that may be developed for the UTILITIES menu in the
future. The second object is CBackpropApp. 1t is a descendant of CApplication and is
used to initialize the necessary application parameters and to create and open the
documents. The last of the three main objects is CBackpropDoc. It is a descendent of
CDocument and possesses all of the necessary file handling abilities. One other
descendant that is used periodically is CDataFile, also a descendant of CDocument. The
CDataFile object is used for reading and writing tasks.

A working knowledge of object-oriented language would be a great asset although this
is not necessary to understand the software. To facilitate the understanding of the

software, structure charts are provided. Prior to describing the central software which is

—60 —

CBackProp.c

CBackPropDoc.c

L

Quit()
19

SpectPiot()

3]

Acquire()

5|

SetUpTrain()

N

SetNetWis()

|

TrainNetwork()

|

TestNetwork()

B

Recognize()

o]

CBackPropApp.c
CreateDocument{) Exit() iBacPropDoc()
[T L [5:m
OpenDocument() SetUpMenus() UpdateMenus()
Z] [6] [30]
IBackPropApp() SetUpFileParams() BuildWindow()
[3] 7] i)
UpdateMenus() DoCommand() DoCommand()
] [F] [Z]
NewFile()
3]
|
ChackPropPane Orenfile()
7]
HitSamePart() ScrollToSelection() Close()
[&4] [[i5]
Draw() AdjustCursor() DoSave()
[&1] [&] [G6]
. DoSaveAs()
DoClick() 1BackPropPane
[® it [
|]
SetCursor() |Panorama() DoRevert)
[E] 5] [ig]

AmplPlot()

=

Fig. 5.5 Global software structure.

SpeechSplice()

8]

contained in the CbackPropDoc object, the application object is first described. To begin

operation, initialization and allocation of memory is performed by CBackpropApp which

inherits its structure from the predecessor class object, CApplication. Basic initialization

steps include: (i) loading the menu resources (SetUpMenus), (ii) updating the menus in the

window (UpdateMenus), (iii) creating a document (CreateDocument), (iv) opening the

document (OpenDocument), and (v) initializing the necessary memory and system

managers (IBackpropApp and SetUpFileParameters). A structure chart showing the key

programs, relationships, and methods of interest is provided in Fig. 5.6.

-61 -

CBackPropApp.c

SetUpFileParameters()
IBackPro l—
| pApp()rT 7
Y CApplication::
shnyOmyF r-::)) IApplication() [SetUpFileParameter‘sﬁ_31
SetUpMenus() UpdateMenus()
1 1
CApplication:: CApplication::
SetUpMenus() UpdateMenus() [Z]
Exit() DoCommand() | €—e theCommand
|
switch() —e theCommand
! [34]
CApplication:: theCom
DoCommand() rg(—' "
CreateDocument() OpenDocument()
Z
New() [CBakPrOpDOC New() < CBackPropDoc
= —> theDooument —> theDocument
| IZ] [
| | 1BackPropDoc() b we | | IBackPropDoc() |e—, v
[T} [N
NewFile() OpenFile() b MacSFropY
T3 [7]

Fig. 5.6 Application object.

As in the example provided describing inheritance, CBackpropDoc does inherit the

structural information from CDocument for commands such as NEW, PAGESETUP,

PRINT, QUIT, OPEN, CLOSE, SAVE, DOSAVEAS, and QUIT. The structure of the

command delegation is found in the DoCommand method given in Fig. 5.7. This

structure chart describes the paths to all of the relevant methods used in the software. All

—62 -

of the remaining structure charts are from the document object. The first section to be

discussed describes the interface to the software, which is referred to as the hwman

DoCommand() |¢—e theCommand
I 7]
Switch() L &—e thoCommand
121
SpectPlot() L] TrainNetwork ParamText() €—e thoMessage
[T] =
AmplPlot() - —| SetUpTraing) | StopAlert() rs:rS orlD
GradeRate() SpeechSplice(| | Refresh()
[i23] 3 [F]
Recognize() ParamText() f—e theMossage
] 3
TestNetwork() | StopAlert() I_&TS AerllD
SetNetWts() | Refresh()
=] K3
CDocument:: €—e tholo
DoCommand ()ITZB ParamText() - ssage
|| StopAlert() rgrt:»: Butand
|| Refreshy()
]

Fig. 5.7 DoCommand method.

interface. The other inherited commands are shown in the following set of structure

charts. The only other command that is inherited, but not a menu command, is

BuildWindow, which constructs a window for use by the application, and assigns

—63 —

gGopher 1o itself in order to receive commands from this window as described in Fig. 5.3.

OpenfFile() {— MacSFReply
7]
Select() ReadSome() 4.._.‘ ::erf\gtn:y
117 118p—> OSEr
N> | SetTitle() New() '_I>_> oo
14 3
isrim—) | IDataFile() SFSpecify() <——e MacSFReply
m 1 OSEmr
fsRdWrPerme—3» Open()
OSEmr —e m
Fig. 5.8 OPEN command.
DoSave()
75
| I
I i
Lo WriteSome() DoSaveFileAs() SetLength() |e¢—e nerio
OSEr e (37 o7 5]
Fig. 5.9 SAVE command.
UpdateMenus()
0]
CBartender::
cmdNamee—> | EnableCmd() - |UpdateMenus()|§5—

Fig. 5.10 Updating the menus.

DoRevert()

] | l
aPosttione——> ScroliTo() Refrash() GetHomePos() |¢——e nomeros
Redraw o—> Eme [705]
Fig. 5.11 REVERT TO SAVED command.
7]
DoSave() J |_ Refresh()
5] =
SRIWIP o e—3 Open() || SFSpecify() | €—o MacSFReply
[[T
KsFik o—) |IDataFile() Dispose()
17 [13]
ﬁrum—) CreateNew() New() —> IsFio
[173] @]
Name e SetTitle()
[373]
Fig. 5.12 DOSAVEAS command.
BuildWindow() |€—e thedaa
| RAN
faWindow €—e New() __l |~ IBackPropPane() [<—s sommutonr
theScroliPane €——e = P I"'I'(g?' ¢ SS“F”“"”'
oetng —> IWindow() €—e SetSizeRect
aFloating indow L] SetRect()]
aEncbsu;fo——) 0 |'1-0'§(_' Dimensions
—>| SetSizeRect FitToEnclFrame() [S2 forar
SizeRect (2_1_0_7_ itToEnclFra I"%Z Veren
sMainPane s— | INStallPanoramay) IViewRes() | <— .?:’x"w";:*’”
m mg(——-oaSupeMw

Fig. 5.13 Build window method.

—65—

5.3 Human Interface

A program is good if it is easily understood. Much effort has gone into the design,
content, and control of the human interface. The human interface provides the necessary
interface to the software. All input and output is routed through the various modules
contained within the interface. These include: (i) a menu bar, (ii) pull down menus, (iii)
hierarchical menus, (iv) dialog boxes, (v) alert boxes, and (vi) descriptive indicators and
sounds about the software environment. In previous systems, very poor interfaces were
present. The descriptions of various functions and results, together with the operation,

were difficult to understand and not conducive to extended session use.

5.3.1 Initialization

The first step in using the program is to double click the application icon. What appears
next is the main menu bar (see Fig. 5.1). The only enabled selections at this point are
NEW, OPEN, and QUIT which are contained in the FILE menu. Assuming nothing
exists, NEW is selected and the library entry dialog box appears. The dialog boxes used
in this thesis are modal dialog boxes. Modal dialog boxes restrict the active environment to
the dialog box until either the approval or cancellation button is selected. In the library
entry dialog box, the names of the individual and therapist and up to ten utterance labels to
be used during the session are entered. Following these entries, correct acknowledgement
is achieved by clicking the DONE button which returns control to the main menu bar.
Using Apple standard interface methods, a default button is indicated by bold highlighting
surrounding the button. This is typically the button the person would click during a normal
course of action. It is also the button that will become active if the person chooses to press
RETURN. A snapshot of the NEW dialog box is found in Appendix A. A structure
chart of the NEW method is given in Fig. 5.14.

—66 —

NewFile()

Do o—> | GetNewDialog() |
Behind @~
DislogPtr €—e =
WTkio o—> GetTitle() —
Refresh()
X
QutlineButton
3 %F
FreProc —> | ModalDialog()
tomHt +—> 5]
GetWCount()
119}
DialogPtr e—3 SetDate()
DateltemNo e——p =

BuildWindow()

Armow e~

SetCursor()

r=

XsFrame e—)

GetFrame()

0]

SetTiltle() € WTlte
[114
<—e r!
suzssToC) [Dot
Draw() €—e sFrame
[37]
Select()
777
DisposDiang()W €— DiakgPyr
GetWords) el
GetPort() - o—3 CurrentPort
SetPon() «—e CurentPort
[Z]
b
GetDitem() o—) itemTyps
[Z5 [e—> temiHandie
o—3» Box
GetlText() | «¢—e HtemHandle
m <—e theText

Fig. 5.14 NEW command.

5.3.2 Recording

The next step in the speech recognition and shaping process is to record the utterances.
Activating the record dialog box is done by selecting ACQUIRE from under the
ACQUIRE menu. In the record dialog box, the utterance and version to be recorded is
selected using radio buttons. The utterances, which were entered into the NEW dialog
box and labelled for the session, are copied into this dialog box to make the recordiﬁg

selection process logically intuitive. In addition to the ten possible utterance labels, up to

—67 -

five radio buttons may be used to indicate the recording quality. The quality selections
include: (i) Excellent, (ii) Good, (iii) Satisfactory, (iv) Fair, and (v) Poor. Thus, during
any one recording, a unique utterance and a quality version are selected. Below each
version radio button are five check boxes (which are initially empty). These check box
indicators are used to notify the person as to which utterance-version combinations have
already been recorded, and will become checked once the recording has successfully
finished. For example, if utterance one was previously selected with the Excellent version
then an active check box will appear under the Excellent version whenever utterance one is
selected, whether or not the Excellent version is selected. These check boxes change as
different utterances are selected, reflecting the history of the recordings for a particular
utterance. It is permitted to record overtop of an existing utterance but an ALERT box is
displayed to notify the person that they are about to destroy the existing recording. Closing
this ALERT box returns control to the individual to record over an existing utterance or, to
change the version or utterance selection before proceeding. To record an utterance, the
selection is made and the hardware activated. The instant that the record button is
depressed, the IBM computer, through serial communication, begins to acquire data from
the microphone and obtain the required LPC coefficients as described in Chapter II. These
parameters are then serially transmitted to the Macintosh. A structure chart showing the
flow of control and variables is given in Fig. 5.15. A snapshot of the Record dialog box is
given in Appendix A.

5.3.3 Training

After all the utterances are recorded, the network is trained. The first step is to
configure the network. This can be done by selecting SETUP NETWORK under the
TRAIN menu. The network has a default configuration so if the person does not wish to
become involved with custom configurations they can skip directly to training. The BP

neural network can be custom configured for a variety of features.

—68 —

Acquire()

21
—> - <
Deaee—> | GetNewDialog() _J || SetCheckBoxes() |<—s whwerd
Behind o—) ‘
DialogPir—a [3] B¢ —e m\::;“ °
) GetName() | || PlayBackWord() |<—e whisword
[®] =]
Refresh() SetRadioButton() | € 2o
ra;' o emHandle
pialogPr «—3| OutlineButton() SetCtiValue() e ControiHandie
WhichOnoe—>» rw_ theValue
ModalDial ; :
Fhor Og()ri)_ Duspolealog(zw_ € DiakogPr
*~—)p i
DidogP SetWords() - CauuonAIert()m_ AEN i N
FiPtAray€—s GetLPCData() GetPort() *—3» CurrentPort
=] =
theTexte—)> ParamText() SetPort() &—e cunentPort
2] [
m
gi::lg:: SetDate() GetDltem() - —> femTypo
0—-) HemHandile
100 20 —> o
mHa;vdleo——) SetlText()
ox .—)
[&2]

Fig. 5.15 ACQUIRE command.

Configuration parameters include: (i) random/sequential presentation of training patterns,
(ii) biases on the hidden and output layers, (iii) initial settings of the momentum, learning
rate and, stopping criteria, (iv) either batch or single updates for the weight space, and (v)
variable number of hidden units. The input neurons can not be configured since every

training pattern received from the IBM computer is a fixed size. Further, since the number

—69 —

of training patterns is known from the data file record, and since a classification scheme is
used with the neural network, the number of output neurons is also automatically
calculated. Contained in the TRAIN menu, is a command labelled GRADING
MEASURE. Selection of this command, yields a further hierarchical menu selection
adjacent to the selected one. The hierarchical menu consists of the following distance
metrics: (i) HAMMING, (ii) EUCLIDEAN, (iii) MINKOWSKI (with powers of 3 to 7),
and (iv) CHEBYCHEV. The metric is used to calculate the total internal error after
forward propagation through the network. A structure chart describing the grading
measure scheme is given in Fig. 5.16 and a structure chart describing the preparation of the

neural network is given in Fig. 5.17.

gﬁn:%mg CalkcTotError() ‘ggﬁumro;
m-(-—oﬂn@ade
' § L m
| |
| |
ChebyChev() Euclidean() Minkowski() Hamming()
il [7] [E] [7Z]

Fig. 5.16 Calculation of the neural network total internal error.

Following the network configuration, the TRAIN NETWORK command is selected
from the TRAIN menu. Upon selection, the network begins training using the specified
configuration. A special modal dialog box is displayed to inform the person of the
networks status and progress. The dialog box displays the Trail Number, Learning Rate,
Pattern Number, and Total Internal Error. The only interface feature is an Exit button.
Allowing the network to train until the total internal error falls below the threshold
(stopping) value will also return control to the main menu. If some parameters require

adjustment, selecting the Exir button will halt training and returns control to the main

-70-

SetUpTrain()

_| GetNewDialog() |€— Do
Refresh() etNewDialog Destorage
comnpon—e] GELPOM() || SetRadioButton | & Duledbr
] [37 | €—e remHandie
DialogPtr 3
omHit (——0 SecString
memType €| GetDltem() CToStr255 o) DestString
lab:Handot: =] [
e SetPort() SetCurrentValues(] <——s Biss, Momentum
"Pub—> m 57 e StopValue, LearnRate
2 «&—s RandomWoeights
i ial ModalDialo o
Daiogrre—y| DiSposDia og()m g(l)'gT < Fnarenc
pawgPr e—>| OutlineButton() SetiText() €—* romHandio
thhOnct—) r—g r'a' (—_. theText
mwmHangee—> | GetlText()
theText €——o =
Swithch() <€—s fomHit
123
Uplcon() J |_ SetSingleUpdate()
[i23] 129
Downicon() - L] SetleamnRate()
[154 [135
Homelcon() SetBatchUpdate()
=] 137
SetHiddenNurons() SetBiases() 'g
[125] 1
SetMomentumy() SetSequentialTrain()
127 i3
SetStopValue() SetRandomTrain()
1128 132
RandomWeights
fie

Fig. 5.17 NETWORK SETUP command.

-71-

menu bar. At this point, any parameters may be changed and training resumed via the
TRAIN NETWORK command. A structure chart describing the NETWORK UPDATE

dialog box is given in Fig. 5.18.

«—e DialogPr
|€—e TrialNum
NetworkUpdate() |€—e Pateum
II(__. I'i':::gﬁ:
ll I
DialogPtr e—> r]
hemHR -—
< GetDitem() CtoStra255() SetiText() «€—e HemHandie
xmﬁb(__. rﬁ' m- r6_4- —e theToxt
Bax < SicSung e—P
DestString——e

Fig. 5.18 Updating of the neural network modal dialog box during training.

Most of the routines used to implement the BP neural network are designed as methods
in an object. They are very generic since they appear not only in this command sequence
but also in the test and recognize command sequence. The T. RAIN NETWORK command
is implemented as a method within the document object so that any other object can easily
access it. Also, to prevent this routine from crashing as a result of a person inadvertently
selecting the TRAIN NETWORK command prior to recording data to present to the neural
network a routine checks if input data exists and, if it does not exist, the system displays an
ALERT box indicating the mistake and returns the program control to the main menu bar
without incident. A snapshot of the NETWORK SETUP and NETWORK UPDATE
dialog box is found in Appendix A. A structure chart of the neural network training

procedure is provided in Fig. 5.19.

5.3.4 Testing
Following network training, the network should be tested with the training patterns to
verify that training was indeed successful. This activity is enabled by choosing the TEST

NETWORK command found under the TRAIN menu in the main menu bar.

-T2 -

TrainNetwork()

24
DialogiD ¢—)» v
gf‘h‘i)n(:oa.__) GetNewnDialog() ‘J |_ GetNextEvent() “—.4__. EvertRecord
DialogPire—y Z] [Z3]e—> theEvent
. DrawDialog() || GetPatterns() [€— oA
DialogPlrg——» <«€——e NumPatterns
| Kerd
[«——e TPatt,Power
€-~e OutNurons
Refresh() CalcTotalEmor() |€—e Patihum
[=] (B it
<«€—e DialogPtr
Disloghe. OutlineButton() NetworkUpdate() [£ [ratm |
IE W €— LsamRate
“—» TotalEror
therrsy «—31 SetWeights() DisposDialog() |« piaioger
Randomize e—>> 3] 7]
{ -+ LPCData
TrainingPatis «—>| SetTrainingPat() CalcForwardPass()|<€— nleiuhti.s Biases
NumORurons. e—>> 4] [Ble— WhichWord
CurrentPort <€l GetPort() Setport() | —e CumentPort
2] %]
&{-—e DiaiogPtr
GetDltem() 3 o
rE_n-—) :«nmle
0—) Box

Fig. 5.19 TRAIN command.

This dialog box contains control buttons which are used to select training patterns. The
selected training patterns are propagated through the network, the outputs are obtained and
mapped to a textual equivalent of the selected output neuron. This text, which represents
the utterance and version, is displayed in the identity segment of the dialog box. If the
stopping criteria is not strict enough, it may be adjusted using the NETWORK SETUP
dialog box. Training is resumed using the TRAIN NETWORK command. A snapshot of
the TEST NETWORK dialog box is found in Appendix A. The TEST NETWORK

structure chart is given in Fig. 5.20.

-73 -

TestNetwork()

3
Daese > [GetNewDialog() l. <
DStorage DisposDialog DialogPr
s e [=] fir
FirProce—> ModalDiang?_m_ 1 SetWords() [Dakorr
. <— DialbogPr
Refresh() - DlsplayResultf%_e—a OuputArray
|&——o LPCDa
DialogPr *—> | QutlineButton() CalcForwardPass() |<— Welghtrwases
— [3] [FEIE poorsizo
-
whiaone — | SetRadioButton() SetCtiValug() [S Conolrande
lemHandie > 3] [e]
CurrentPorts—y> GetPort() SetPort() <— CurrentPort
2] [%]
' «<——e DialogPtr
€— jiorHit

GetDltem() > i,
W - Iz:i-!);?weda
+—>» Box

Fig. 5.20 TEST NETWORK command.

5.3.5 Recognition

The next major component in the software is recognition. Under the RECOGNITION
menu is the RECOGNIZE command. Three sections are present in this dialog box. The
top section is provided for utterance selection and the middle section is provided for version
selection. This combination uniquely describes one of the prerecorded utterances which is
played back to the autistic individual as input stimulus when they select the PLAYBACK
command described by Fig. 5.21. A beta version of the playback command has been
implemented on the Macintosh computer as opposed to the command routines developed

for the IBM and Oki speech chip approach described in Chapter I'V.

—74 -

PlayBackWord() fg—e whichword
75
spoa «—>»| RamsDOpen() RamsDClose() - |[€— WrichPor
OSEm (—. I_77_ r7.‘7 — m
«—>»| SerHShake SerReset ‘—'(RefNum
g“g;,, « 0["7'9' ! sl—> ;Erc:nﬁg
RefNum o—) - «— RofNum
serButPr o—)| SerSetBuf() FSWrite() l<—e t:rr:gz
os:?:ﬂ.en 2—) & [E'_(——-. gusﬁerPlr
0—> Enm
«—9 ReNum
FSRead() ‘—‘E il

Fig. 5.21 Utterance playback.

The IBM computer would receive the requested utterance playback message, decode it,
and synthesize the requested utterance for the autistic individual. This stimulus is used as
the target which the individual then tries to achieve by speaking into the microphone. This
is a key step in the vocal shaping process which involves providing an approximation
which the autistic individual can achieve. The unknown utterance is acquired by having the
person activate the RECORD button. The Macintosh would respond by sending a
message to the IBM to record the utterance, and to obtain and return the LPC coefficients.
These coefficients are placed at the inputs of the trained neural network, propagated
through, and the resulting vector is collected and decoded by a recognition routine.
Decoding involves choosing the largest output and mapping it to one of the utterance-
version combinations contained in the data set. After decoding, the identified utterance and
version is displayed in the third section of the recognize dialog box using the display results
routine provided in Fig. 5.22. The playback of the selected utterance-version combination

can be performed multiple times before the autistic individual attempts to replicate the

-75-

DisplayResultsg_)g_ (__,““ m,,,
1] I
DislogPy *—>> l I l€——e yomand
il | GetDitem() GetCTitle() SetlText) |)
) rm— rm_ Fs-d—(——o thaText
w"""'“" I <—e ControiHandlee—>
theTet o—p

Fig. 5.22 Recognition results display.

prompted utterance. The tasks of playback and record were designed independently to
allow this ability since it would seem that hearing the prompted sound a few times may give
the individual a better idea of how to pronounce the prescribed sound. The selection of
utterance-version combinations and recognition can be performed indefinitely with the
program looping and displaying the new results every time RECORD is selected.
Additional pieces of support software are also used. One piece involves the serial
communication that is used in transferring protocol commands, LPC data, and various
messages between the Macintosh and IBM computers. In this system, the IBM computer
acts as a slave to the Macintosh computer, polling the communication channel for a request
from the Macintosh computer. A snapshot of the recognize dialog box is found in

Appendix A. The RECOGNIZE structure chart is given in Fig. 5.23.

5.4 Data Acquisition and Preprocessing

Speech is emitted from the human in the form of an APW. The APW hits the
microphone face and vibrates the membrane located inside. These vibrations are converted
into a faint electrical signal. This signal is sent through an AKAI tape deck and passed into
the NEC DSP board where it is filtered using a bandpass filter with skirts about the toll
quality band (300 to 3300 Hz). The filtered signal is sampled at a rate of 8 kHz using 8 bit
samples. These samples are sent into a routine which obtain the LPC coefficients. This

process is shown in Fig. 5.24.

-76 —

Recognize()

3
—>)
ﬁﬁ‘i& —>»| GetNewDialog() SetCtiValug() [€—* Sonrokandie
Behind *—3 Iﬁ e ue
DialogPtr <€
e 3 ModalDialog()m | SetWords() WL—' Daogry
Refresh DisplayResults() [<——e Diaiogrrr
’ [3%] i IQ?(_'Q““?M'
mg’ge | OutlineButton() PlayBackWord() |¢—e wnicnwors
39] 7]
DialogPtr —)> .
whichiem e—3| S€tRadioButton() GetLPCData() |3 rpwray
emHandle g3 N =]
- - | j«C—a LPCData
DialogPr e—>> Dnspolealog(}Tr Cal cForwardPasrsz(a)_ <— Wolghis, Basos
«<—e WhichWord
CurrentPort e——3 GetPort() SetPort() l«C—e CurrentPort
e [*]
DiglogPtr g—Jp-
z:¢lytpe <— GetDltem()
l;z:Handle(_. 0]

Fig. 5.24 Acquisition of the speech utterances by the

Fig. 5.23 RECOGNIZE command.

Converte

: To
1 Macintosh
BP Neural

25 meec.

1101101¢
11100014 11100010

11011010

Network
-

-77 -

IBM computer.

Choice segments, or frames, set at 25 ms are used for recognition from the one second
utterance. Since the data for utterances is somewhat quasi periodic, not all the frames from
the utterance are taken; only three frames are chosen as shown in Fig. 5.25. The frames
are chosen this way to pass over the rise time to, and fall time from resonance, and to
include the middle of the sample which is at resonance. Thus, the first frame sample is
taken at 0.333 s, the second at 0.5 s, and the last at 0.667 s. Other frames adjacent to the
selected ones are not taken since these coefficients have very near the same value. The
reason they are approximately the same is because the vocal tract has a fixed rate of change,
the length of recording is only one second, and the utterances used are quasi-periodic ones,
such as vowels. Vowels are locally stationary for relatively long periods of time which
make them good candidates for LPC analysis and recognition. This is evident from
inspecting an amplitude plot of the vowel /i/ for instance. Every 10 ms to 15 ms a periodic
waveform is observed after resonance has been achieved in the vocal tract The careful
selection of frames eliminates redundant information that would otherwise decrease
processing time and would not add new information. This does limit the type of utterances
that the system can accurately recognize though. For utterances which are not locally
stationary within the sample period of one second may cause difficulty to the system since a
key frame may be missed. In situations like these, increasing the number of frames, and/or
selecting different frame sample times could overcome this difficulty. In this thesis though,

the utterances are select utterances which are based on vowel sounds.

The LPC coefficients, and all the other data, generated by the software are held locally
~ in RAM during operation. The data is managed in this manner since many routines access
and update various arrays and constants throughout the course of a session. Since the data
is handled this way, much of the data, arrays, flags, and constants are made global to all
the objects and their methods. In other cases, where these data are not global to an object,

a pointer or handle to the data is passed. In this way, the location where the data is held

—78 —

[mv]
4.0

Amplitude

[mv]
4.0
e}
©
2
£
E
<
Time [ms]
(b)
I‘ 25ms ’l
[mv]
4.0F
«3}
©
2 A
2 <
<}
Time [ms]

() 25 ms

Fig. 5.25 (a) Approach to resonance of the vowel i (first LPC frame). (b) Sample

of the resonant period of vowel i (second LPC frame). (c) Fall from resonance of

the vowel i (third LPC frame).

is passed to the method or function, and transferring of data within RAM is minimized.
This type of processing and handling of data is similar to context switching. In this

process, an address where the new data are located is passed to the function which then

modifies the original data, rather than a copy.

-79 —

5.5 Interfacing Software

The serial communication software is essential to the success of the speech recognition
system. Although this thesis is concerned only with recognition of isolated uneranceé, this
would not be possible without speech data being acquired from the EDSP-77230 processor
and coefficients obtained from the LPC software. Thus, in order to incorporate these
essential system components, a communication path and protocol is established. The
communication between the IBM computer and the Macintosh computer is serial. The
hardware involves mapping the Macintosh’s balanced modem port lines to the unbalanced
lines of the IBM’s RS-232 serial port as shown in Appendix B. In this thesis, the
XON/XOFF protocol is used. The next step is to choose a particular protocol format. The
format values are: (i) a baud rate of 9600, (ii) no parity, (iii) 8 data bits, and (iv) 1 stop bit.
In addition to this, some form of software hand shaking is required. The hardware hand
shaking is taken care of by the XON/XOFF characters, but the actual transmission software
communication is performed using a special protocol. This is accomplished by using two
protocol messages, OK and GO. Following initialization of both computers serial port
with the same hardware protocol, the following set of events constitutes successful data
communication. First, the IBM computer continuously sends an OK message to the
Macintosh computer until the IBM receives an OK message back from the Macintosh. The
IBM computer then sends the data header to the Macintosh terminal. The header contains
the number of bytes to be transmitted. The Macintosh computer reads the port to obtain the
data header. Using this value, it creates a sufficiently large data buffer in RAM. After
completion, the Macintosh computer sends back an OK message. The IBM computer,
upon reception of the acknowledge message, begins transmission of the data to the
Macintosh computer. The Macintosh computer reads the data port the number of times
specified in the data header, since each read constitutes a single byte, and transmits an OK

message after completion. The transmitted data is in ASCII characters which is converted

-80-—

to floating point numbers since this is the necessary format. The data, after being
converted to floating point, are held in a local array which is sent to another function. This
function places the LPC data into the appropriate segment in the pattern set array. This

process of insertion is shown in Fig. 5.26.

Serially transmitted LPC coefficients from IBM /LPC
program tp Macintosh

Macintosh label of Utterance-
Version number

Unsatisfactory -

30 floating point
plarameters per utterance

LPC Pattern Set

Fig. 5.26 Management of the LPC data.

The process of acquiring, converting, and storing, represent the set of events that occur
during the recording of an utterance. In the case where an utterance lasts less than one

second, the software buffers the remainder of the allotted space with zeros.

5.6 The BP Neural Network

The BP neural network is where the recognition occurs. In Chapter II1, a detailed
description BP and how it is used to perform utterance recognition was given. Here, some
of the details concerning the implementation of BP into software and its association and
relationships with the system are described. Basically, the creation, training, and use of the

BP program occurs externally through the human interface described in Sec. 5.2.

-81-—

As most of us already know, or have at least heard, one common complaint concerning
BP is the lengthy training periods associated with training many problems. Although this
thesis is not concerned with how long the overhead may be, it is useful to use some
knowledge about the characteristics and properties of training, if possible, to decrease this
time. In the paper [VMRZ88], research has shown that by using an adaptive learning
strategy, learning time is reduced. In one test performed, the revised algorithm which had
an adaptive learning rate converged in under 1 000 trials while the fixed learning rate did
not converge for more than 30 000 trials. A similar methodology is used in this BP neural

network.

The BP network is contained in the document object, central to all the data management
and processing. BP involves many small two-dimensional array routines which are
repeatedly employed. Since the external functions are somewhat generic, many of the two-
dimensional array routines used in the BP program call the same external function, passing
only their respective array pointers and local constants. In the BP method, the arrays are
initialized based on the file object. If the data file object instance, itsFile, is NULL then
the chain of command came from the NEW command, hence all the arrays and constants
are read from the NETWORK UPDATE method variables or default method. In the case
of itsFile being defined, the chain of command originated from the OPEN command
therefore, all the necessary data, arrays, and constants are read from the data file using the
data file instance and associated methods. The location and length of the data is known a
priori because of the standard method upon which it was saved. The structure of the data
file record is shown in Fig. 5.27. The situation for weights and biases is different. Here,
the worst case scenario is assumed and all necessary arrays are created and zeroed
according to this size. If the data is smaller than the allocated size, then the remainder of

the array remains unused. The reason for allocating the memory in this manner is because

-82-

Block 0

. System parameters:
= volume name, volume

number, directory ID,
= reference number,
. file name, block length

Block 6

parameters

SN

Block 5

LPC data of
upto 50

utterances
B Ve

Fig. 5.27 Data record structure.

it becomes too complex to allocate and deallocate the exact array sizes and keep track of

these if the person decides on changing the network structure during the session. Also,

from a memory management perspective, with reallocation occurring, heap fragmentation

may occur rendering those sections of RAM useless. The reading of the weights and

biases, or initialization is done using the SetNetWts routine found in Fig. 5.28 which is

contained in the TRAIN menu.

SetNetWeights() |e—s sowis
s
aerip «—» | CautionAlert() Refresh()
Buttonl| rgr rw
eAIra' ’4
mm " «—> | ReadSome() ParamText() €— theText
OSErr ré' o
poi o> | StopAlert() SetWeights() € tens”
ButtoniD €—¢ =] [S51€— Randomize

Fig. 5.28 Neural network weights.

83—

5.7 Utility Routines

The utility routines are an important component in the systems performance. Many

routines such as outlining of a button or activating a radio button are examples of the

sophistication of these routines. The software uses these routines very often though. The

following set of structure charts consist of the utility routines.

The check box routine provides the ability of toggling values of a check box.

DialogPtr e—>

itemHit -—

homType <€ GetDltem()
itemHandle <—e]
Box <—0e

SetCheckBoxes

<€+ DialogPy

«€—e ArayName
[l NumVers

<€—e WhichWord

SetCtiValue() j&—s contoMande

[&——s theValue
[

Fig. 5.29 Check boxes.

The SetCurrent Values function sets the current values into the NETWORK SETUP

dialog box when the dialog box is opened. This is convenient so the person need not

remember all the previous settings.

StopValus :: SetCurrentValues() (__‘E m,”“""’ "
Momentum g3 'E‘(——. RandomWeights
lI —
I !
Biases() Momentum() LearningRate() StopValue()
=]] G [&]
DialogPy &—P»
k< GetDitem() | GetDitem() | GetDitem() | GetDltem()
HemHandie €—s 0 [o] EX
Box €—o
L1 SetCtlValue(- SetiText() | SetiText() - SetlText()
z'é' [&7] [5]
ControlHandie e—) hemHandle —>> tamiHandie — kemHandie *—>
theValue —> theText &—> theText &> theText &>

Fig. 5.30 Setting the values in the SETUP NETWORK dialog box.

~84 -

The SetRadioButton function toggles the value between two radio buttons.

SetRadioButton() [€—s wheenamtande
[5T]€—= OtdtemHandio
DLalogIPlr —>
ftomHit >
<«—| GetDitem() SetCtIValue() (—-—oczmromandle
m:;zedei—‘ 50 rg""—‘ theValue
Box <—

Fig. 5.31 Radio button management.

The GetWords function reads in all the words from either a dialog box or text file

depending from where it was called. The words refer to the utterance labels entered in

when the session began, following the opening of the new library dialog box.

DialogPtr

GetWords()

[T

itemHit :j
itemType e
itemHandle €—e

GetDltem()

DialogPtr
WordLabels

[%0]

Box

GetiText()

23

Fig. 5.32 Loading of the utterance library.

itemHandle
theText

The SetWords function takes the pascal array and displays the word labels onto a

dialog box pointed at by the dialog pointer.

DialogPtr

itemHit
itemType

itemHandle €—9

GetDltem()

SetWords()

<€ DialogPrr

<€ WordLabels
[37]

[0]

Box

SetCTitle()

[125]

Fig. 5.33 Display of the utterance library.

- 85—

itemHandle
WordLabel

The outline button routine performs the default button outlining described in the Apple

standard interface guidelines given in [Appl88].

OutlineButton() [€ = DalogPr
I-—é; (""". WhichOne
DiglogPtr e—>
itemHit -— -
itemType €9 GetDltem() PenSize() <-—.m:.;,“
itemHandie €9 [5] =] <
Box €<
::lx -— InSetRect() SetPOl't() —_
¥ —> [5]] s
o wan +— | rameRoundRect()
OvalHoight e——3» =2

Fig. 5.34 Button outline display.

The SetDate function displays the current date onto the screen in a non-editable text

field.

Secso—>

GetDateTime()

6]

Secso—)
Date <€

Secs2Date()

[8]

DialogPtr &—)
S

itemHit
itemType
itemHandle

GetDltem()

SetDate() €—e DialogPtr
L {—e DateltemNo
IE_ teltern
CtoStr255() - grecsgmg
SetiText() < HemHande
W (-9 8 16X

[50]

Box

Fig. 5.35 Date display.

— 86—

5.8 Summary

The software environment involving C object-oriented language and the relationships
between objects are described. Further relations to the software are established which is
followed by a detailed discussion of the operation of the software in caﬁ‘ying out the
various functions necessary in performing isolated speech recognition. Each object is
divided into its methods, and then each method is described. The various functions used in
performing the background tasks are included for completeness. Since the procedures have

been discussed, the software written and in place, experiments and results now follow.

— 87—

CHAPTER VI
SPEECH RECOGNITION EXPERIMENTS

6.1 Introduction

Verification and experimentation of a speech recognition system involve many tests in
order to sufficiently evaluate its performance. First, verification of the source code must be
performed to prove its correctness. These tests have nothing to do with the performance of
the system, but are a necessary foundation for the recognition experiments. The next series
of software tests are created to verify the entire operation at the system level. Next,
hardware verification is performed to verify that the hardware is functioning correctly.
Finally, a set of experiments is conducted using speech data. The purpose of these
experiments is to evaluate the speech recognition systems performance based on mult-level

grading and strict classification of a difficult data set.

6.2 System Verification

System verification is designed to demonstrate correct operation of the entire system
rather than its performance. In software verification, tests are used to show correct
program logistics. This entails display agreement, mathematical agreement, and
functionality correctness. Hardware verification involves testing of the hardware in
processing and communicating the speech signal to and from system components to show

its correctness.

6.2.1 Software Verification
These tests are designed to detect logic errors and to demonstrate correct system
functionality. Calculation agreement of hand generated results are verified against

computer generated results. This may solve problems where floating point data, casted into

- 88 -

integer, resulted in a null value or when the size of a variable, such as a long data type is
required and only short has been assigned. Attempts are made to use the software in a
manner that it was not intended. This type of action is used to discover sequences which
may lead to an incorrect solution. It may be impossible to completely debug the software
for all possible combinations. Therefore, only the most commonly used routines are
extensively tested. There are no benchmarks that can be applied to the software to eradicate
all possibilities of error since software objectives are different. To reduce errors later in the
development cycle, software verification testing was performed at every stage. To further
reduce problems, objects, methods, and functions were developed in isolation. They were
verified, and then integrated with the existing software. This stage of software
development is sometimes referred to as the Alpha testing. Following Alpha testing is
Beta testing. Here, a set of experiments are conducted to evaluate the performance of the

speech recognition system.

6.2.2 Hardware Verification

In the case of speech recognition, hardware verification amounts to verifying the filter
bandwidth, frequency response of the microphone, and any noticeable distortion
throughout the signal path. In the first test, the NEC board and signal path is tested to
verify that the signal path does not introduce any frequency or amplitude distortion. In the
latter case, this reduces to verifying that the A/D and D/A work correctly. Also, the
bandwidth of the NEC DSP is verified against what is provided in the manual. The first
test involved generating white noise using the spectrum analyzer external oscillator, which
contains frequencies up to 50 kHz, and connecting it to the NEC DSP input. The spectrum
analyzer was set to 0.5 kHz/division and 10 dB log scale. The DSP ran a test routine
which performed A/D and then D/A on the waveform, and finally passed the analog signal

to the NEC output port. The output was directed into the input port of the spectrum

-89 -

analyzer. The block diagram describing the configuration is given in Fig. 6.1 and the

resulting frequency response is given in Fig. 6.2. The frequency response that was

captured on a black and white photograph off of the spectrum analyzer screen, was later

scanned using Apple Scanner, and then imported into MacDraw II.

(" SPECTRUM)
SPECTRUM OSCILLATOR
IBM/NEC DSP
INPUT /—w / OUTPUT
IBM COMPUTER
SPECTRUM
/ J&— ANALYZER
INPUT
|
IBM/NEC DSP
_ OUTPUT Y,
Fig. 6.1 Hardware verification of the NEC DSP A/D and D/A conversion process
and filter bandwidth.
(" 1d8])
0
-20
-40 \
|
-60 ‘.‘
-80 \
-90 \====ﬁ—
1k 2k 3k 4k [Hz]
.

Fig. 6.2 Frequency response of the NEC DSP using the spectrum analyzer.

(Scanned photograph using Apple Scanner and imported into MacDraw II).

-90 -

The drawing was labelled and given a grid since the grid on the spectrum analyzer was not
illuminated nor resolved by the photograph. The frequency bandwidth was determined to
be approximately 300 Hz to 3.3 kHz. Note that although the spectrum analyzer did not
resolve the lower cutoff of 300 Hz, it was checked on a oscilloscope for both scanned

frequency responses.

The second test is designed to show that significant distortion is not present in the
signal path when including the microphone. The spectrum analyzer was used to generate
frequencies less than 50 kHz. This signal was passed to the input of a speaker which was
captured by the microphone. The microphone was connected to the AKAI tape deck input.
The output of the tape deck was connected to the input of the NEC board. The NEC board
ran the same A/D and D/A routine used in the former test. The analog output was
connected to the input of the spectrum analyzer. Again, no significant distortion in the
frequency response was observed. A similar bandwidth was calculated from the resulting
waveform. The frequency response diagram was prepared in the identical manner to the
previous test. The test equipment configuration is shown in Fig. 6.3 and the resulting

frequency response is provided in Fig. 6.4.

. SPECTRUM)
IBW/NEC DSP ouTeuT
INPUT A
\ ANALYZER
RIGHT CHANNEL
7 MICROPHONE
—— OUTPUT
\ RIGHT CHANNEL
I MICROPHONE
IBM/NEC DSP .
OUTPUT SPECTRUM
ANALYZER
INPUT
MICROPHONE
\ _J

Fig. 6.3 Hardware verification test of microphone distortion in the signal path.

-91 -

401 N7 \"

0 \

80 TRAFLR,

_ 1k 2k 3k 4K [Hz] J

Fig. 6.4 Frequency response of the NEC DSP after passing through the
microphone using the spectrum analyzer. (Scanned photograph using Apple

Scanner and imported into MacDraw II).

The last issue to address concerning hardware is the real-time factor. Two computers
are involved in the speech recognition system. The IBM AT portable uses an 8 MHz clock
to run the LPC routine. The time taken to recognize an utterance is on average 4.5 s. This
time is very dependent on the IBM machine used. If for instance, an 80386 machine
running at 16 MHz was used, it would effectively halve the processing time, and adding a
floating point card to perform the multiplications would further reduce this time making the
system effectively run real-time. The Macintosh on the other hand, once having received
the data, does interpret and display the results in real-time. Since the IBM necessary
hardware is not available, the system does not run real-time in its present format but, this is

strictly a hardware issue.

-9 .

6.3 Descriptions and Results of Experiments
The purpose of the recognition experiments is to evaluate the systems multi-level
classification ability and strict recognition accuracy. Before the tests are conducted, a

description of the training sets is given.

6.3.1 Data Acquisition and Training

The acquisition process to be described is common for all speech tests performed. The
tests are conducted in a small office with many objects. Noise of people talking in the
background, construction outside the window, and noise from other people in the room
was present. A total of 11 people were randomly chosen from the faculty. The random
sample consisted of ten males and one female. All individuals were told how to use the
system and what was to be done. Each person generated a data set which was acquired
using the speech recognition software. The data set consisted of the selected utterances
using two versions, excellent and good. The sound was first generated to provide an
example sound so the operator could correctly adjust the recording level on the AKAI tape
deck input. The sound was then acquired using the ACQUIRE dialog box described in
Chapter V. The neural network was then trained using the batch update technique
following the acquisition of data. All networks achieved a global minimum of 2%. The
consonant networks used four hidden neurons and the vowel networks used five hidden
neurons. A further description of the training procedure will be presented later in this
section. One to two days later, the individual returned and was tested using the trained
neural network. A description of the specific hardware characteristics and methods used

during the testing process now follows.

The uni-directional, noise cancelling, dynamic microphone has a bandwidth of 15 kHz
(50 to 15000 Hz). The frequency response plot is shown in Fig. 6.5 and the polar pattern
is provided in Fig. 6.6. The sensitivity of the microphone is -47 dB (0 dB = 1 V/y bar,
1 kHz).

-93 .

+
—d

[}
-

Relative response [dB]
|
{

20 50 100 1k 10k 20k
Frequency [Hz]

Fig. 6.5 Frequency response plot of the SM10A microphone (after [Shur91]).
(Scanned using Apple Scanner and imported into MacDraw II).

Fig. 6.6 Polar pattern of cardioid (uni-directional) microphone response (after

[Shur91]). (Scanned using Apple Scanner and imported into MacDraw II).

A full technical description of the microphone is provided in Appendix B. The data is
acquired using a microphone which is fixed to the person’s head. This is done is because a
hand held microphone will not pick up the speech signal consistently since movement by
the speaker is unpredictable. “To keep the microphone a constant distance from the child’s
mouth for accurate computer assessment of the sound, the child wore a set of headphones

with a small microphone attached for recording the child’s response” [Cair90].

The specifics of the training procedure involve initially configuring the neural network

for a minimum of four hidden neurons. If the network does not converge using four

- 94 -

hidden neurons then the number is increased by one until it does converge. A network is
considered to have not converged if the weights exceed their value range of 96 bits, or if
the global minimum is not achieved after a few thousand trials. This second criteria is
subjective, but from convergent networks, the training length was significantly less (order
of thousands), and for some training tests in which the network was allowed to train
indefinitely, it eventually exceeded the weight space range of 96 bits. “However, when no
solution can be found, the rate of decrease slows down drastically before the network error
has reached the desired value” [Rein90]. The number of hidden neurons is not an issue in
this thesis, except from the perspective of real-time recognition. The classification time is
reduced when fewer hidden neurons are used since fewer calculation between layers are
performed. Also, if a network uses too many hidden neurons, it will memorize the data
set. This does not lead to generalization since the dimension of the weight space is greater
than what is minimally required for correct representation. Memorizing not only learns the
underlying features but also weak features which may be considered as noise. “If the
number is too large, many djfférent solutions will exist, most of which will not result in the
ability to generalize correctly for new input data, and the network will usually fail in the
operation stage” [Rein90]. “All experiments show an increasing recognition rate with the
number of hidden units up to...the critical number. Above this point, no further

improvement occurs and even a slight decrease in accuracy can be observed” [Burr88].

A momentum of 0.3 and an initial learning rate of 0.5 is also used to begin training.
The network update is set to single and the random presentation format is used to present
the patterns. Biases on the hidden and output layer are made active and random weight
initialization, using a dynamic range of + 0.5, is used to initially seed the network weights.
The weights are actually created by using the CREATE NEW WEIGHTS command which
is found under the TRAIN MENU. The network stopping criteria is set at 2% and the

-95 -

network is trained until the total internal error fell below this threshold. The adaptive
learning rule described in Chapter III is used with a learning window from 0.1 to 2.5.

Following training, the network is verified.

6.3.2 Network Verification Test

Testing of the network involved opening the TEST dialog box and selecting every
combination of the pattern set. Results of this test were that every tested pattern yielded the
correct utterance identity. To test a pattern using the trained weights and biases, a training
set pattern is presented to the inputs of the network and propagated forward using the BP
algorithm described in Chapter III. The outputs are thresholded and the largest output
neuron is chosen and mapped to an utterance-version combination which is displayed in the

TEST dialog box identity segment.

6.3.3 Recognition Tests

Following verification network testing, recognition tests are performed to evaluate the
multi-level classification accuracy and strict classification accuracy. The first set of tests
includes an special vowel set. Since vowels are locally stationary, their spectrum is easily
evaluated by LPC. The next set of tests are used to evaluate consonant combinations with
vowels. The basis of all the tests is directly or indirectly related to the spectrum obtained
from vowels. The difficulty of the data set is shown using the following two figures.
Figure 6.7 describes the vowel triangle which relates the first formant, F1, to the second
formant, F2. It will become more apparent after inspecting Fig. 6.8 that the vowels and
their loci overlap. In particular, this figure is used to select distinct groups which vary in
difficulty based on their relative locations to one another. For instance, the vowel sounds
/00/, IY/, and /A/ provide the greatest spectral separation, while the vowel sounds /1/, /E/,

and /AE/ provide less separation based on the first two formants. From the tests then, it

- 96 -

2400
2200 \\\\\\\
2000 <t
] \ E

1800
1600 AN
14 P

oo_ ER - \\\\\
1200

1000 —

F2 [HZ]

800 . \ . L ; . >

200 300 400 500 600 700 800
F1[Hz]

Fig. 6.7 The vowel triangle (after [RaSc78]).

4000F
3000

2000
15001

F2[Hz]

1000

500

0 400 800 1200
F. 1 [HZ]

Fig. 6.8 Loci of vowels for a wide range of speakers (after [Pars86]).

-97 .

would be expected that the first group will provide better results than the latter group. The
first group will be used to test the multi-level classification scheme, while the latter group
will be used to test the strict classification ability of the recognizer using a difficult data set.
Testing involves repeating each utterance ten times and recording the identity, and quality if
necessary, from the recognizer. The speaker is the same person that generated the training
set. The results are compiled and entered into a modified confusion matrix for each test

conducted.

One other issue related to the recognition process is the feasibility of vocal shaping
using this system. This system has been designed in a fashion to be used as a vocal
shaping system, and as a vocal shaping system, it necessarily requires playback of the
utterances for stimuli to the autistic individuals. Since this system is intended to be used in
this fashion, and to be contained in the future on the Macintosh, much effort has gone into
developing a operational beta version of PLAYBACK command on the Macintosh for the

various utterances as described in Chapter IV.

6.3.3.1 Vowel Tests

In this experiment, the system is trained with a limited set of vowels by an individual
with concise pronunciation. Next, the system is expected to take this data set, which it has
mapped into a neural networks weight space and recognize speech from an individual who
has difficulty in pronouncing an utterance from the trained data set. It not only must
recognize which utterance was spoken, but must also indicate how well it was spoken by
way of a quality indicator as described in Chapter III. In this test, six vowel sounds and
their two versions are trained. The data recorded in this test are the two vowel groups
described in Sec. 6.3.3 which comprise: (i) /IY/, (ii) /0O/, (iii) /A/, (iv) /I/, (v) /E/ and, (vi)
/AE/.

- 08 -

The data was collected as described in Sec 6.3.1 . Following testing, the results were
compiled into a modified confusion matrix. This confusion matrix is used to describe the
extent of recognition and confusion between utterances within the data set. Table 6.1
describes the results obtained from the vowel tests using 11 speakers. Each row indicates
the percentage of times that each utterance was identified by the speech recognition
software. The quality line indicator located at the right hand side of each row is used to
describe the average quality measured for the vowel sound sent in that row. The quality
ranges from unsatisfactory through to excellent. The bold tick indicates what the average
quality is for the target utterance of that row. The first test, used to show multi-level
classification indicates that from the confusion matrix given in Table 6.1 that the three
vowel sounds, /IY/, /A/, and /OO/, provided an average recognition accuracy of 61.8%

with an average quality classification of good.

Table 6.1 Confusion Matrix representing Recognition Results from 11 Speakers Evaluated

on Six Vowel Sounds.

Vowel Received Average Quality
Y OO0 A | E AE

N B

Iy 159109 |18 |245]| 109/ 27 R
Unsatisfactory Excellent

_ 1

00 |36 | 680]100|27 |91 | 6.4]
Unsatisfactory Excellent

S A |18 |36 58236 |191]118] T !
w Unsatisfactory Excellent

E i :) {

g | | 127 0.0 | 109 41.8| 23.6| 10.9 o o
> Unsatisfactory Excellent

E |82 |00 |45 |127|600]| 145] — ’
Unsatisfactory Excellent

AE (36 |09 |91 |109| 254|500 ’
Unsatisfactory Excellent

-99 .

The results of the second test, used to show the class separation ability were based on a
difficult data set involving the vowels sounds /I/, /E/, and /AE/. From this data set
(Fig. 6.8), the speech recognition system was able to separate the close vowel sounds with
an accuracy of 50.8%. In particular, the vowel sound /I/ was confused with the other
vowel sounds in close proximity being, /E/, and /IY/. This form of misclassification is
clearly evident with other vowel sounds within the closely related group. Also, the
misclassifications drop off as the spectral distance to neighboring vowel sounds become
further from the target. The vowel sounds /TY/ and /A/ also appeared to be a factor in
classification when considering the two vowel sounds /I/ and /AE/ respectively. Although
the vowel triangle (Fig. 6.7) shows distinct separations, Fig. 6.8 indicates that these
specific points are simply a reference point for the loci of the sound and that variance does
exist. Also, a speakers personal vocal characteristics may differ, even from this graph,
explaining stronger discrepancies between related vowel sounds. At least though, these
discrepancies support the findings provided in Fig. 6.8 [Pars86]. Thus, the first test
yielded 11% higher recognition results than the second test. This result is reasonable since

the second groups relative formant locations were closer to one another.

6.3.3.2 Consonant Tests

A second test investigating consonant-vowel combinations is performed. This test is
based on the second formant transition in the utterance. By this, the consonant-vowel
combinations are distinguished based on the consonant that precedes the vowel. The
consonants, /b/, /d/, /g/ (voiced stop), and /m/ (nasal) are used in this experiment to
evaluate the performance of strict classification of consonants. The spectrograph of each
sound is characterized mainly by the consonant than the vowel, “The formant transition for
each point of articulation was characterized by a target frequency or locus largely

independent of the vowel” as shown in Fig. 6.9 [Pars86]. The first formant trajectory, F1,

- 100 -

appears largely similar in nature while the second format trajectory, F2, is strongly affected
by the preceding consonant. In this manner, a study of consonant recognition can be done
since LPC reflects vowel spectrums well. Since each consonant disto_rts the vowel

spectrum differently, the recognition, although mainly based on the vowel, is reflected by

the preceding consonant.
f[Hz] f[Hz] f[Hz]
A /ba/ A /da/ A /ga/
F2 F2
F2 \\—
F1
- — -
t [ms] t[ms] t[ms]

Fig. 6.9 Pattern playback diagrams showing effect of F2 transitions perceived on
consonant type (after [Pars86]).

However, the vowel following the consonant is affected much more, “because of
formant transitions, more detailed articulatory information is to be found in the adjacent
vowels than in the consonants themselves” [Pars86]. Based on this information, two sets
of tests are presented to determine the classification ability with the above mentioned set of
consonants using the vowels /a/ and /e/. These vowels are used since it was determined

that they provide the highest computer-human assessment agreement [Cair90].

The results of the two consonant tests, obtained from the 11 speakers involving the
vowels /a/ and /e/, are shown using the two modified confusion matrices found in Tables
6.2 and 6.3, respectively. The consonants appear to have a lower classification accuracy
than do the results achieved from the vowel data set. The difference may be attributable to

the fact that the vowels produce easily sustainable resonant frequencies, while the

- 101 -

consonants distort the vowel formants. The vowel distortion may not be as consistently
reproducible throughout the trials, both training and testing, thus providing more
differences leading to class overlaps during the network training process. This would
result in lower generalization, or class separability. The vowels on the other hand, are
easily sustainable during resonance which may be one of the reasons that the consistency in
both training and testing led to better class separations, thus yielding both higher strict and

multi-level classification results.

Table 6.2 Confusion Matrix representing Recognition Results from 11 Speakers Evaluated

on Four Consonant Combination dsing the Vowel /a/.

Consonant Received Average Quality
BA GA MA DA
—_ 1
BA | 57.0 | 11.0 | 12.0 | 20.0 T
= Unsatisfactory Excellent
Q
2 GA|220(330|14.0|31.0 1
ccu Unsatisfactory Excellent
o
2 MA|18.0 | 17.0 | 43.0 | 22.0 P
8 Unsatisfactory Excellent
e .. 1
DA | 20.0 | 14.0 | 13.0 | 53.0 o
Unsatisfactory Excellent

An average recognition of 46.5% was achieved using the vowel /a/. /BA/ and /DA/
achieved approximately 10% higher overall classification over the other two consonants
due to their unique F2 formant trajectories. In contrast, the vowel set achieved on average

10% better recognition than did this consonant set.

Similar results were obtained from the vowel /e/. Overall though, the consonant /e/
only provided about 2% higher classification results than the vowel /a/ which implies that

for this data and system the two consonant sets resulted in very near the same overall

- 102 -

results. Also, the distribution of misclassifications appears to be fairly well spread over the
other consonants about the desired target utterance, indicating that no specific consonant

was strongly confused with one another, unlike that of the vowels.

Table 6.3 Confusion Matrix representing Recognition Results from 11 Speakers Evaluated

on Four Consonant Combination using the Vowel /e/.

Consonant Received Average Quality
BE GE ME DE

1
BE | 50.0| 23.0| 13.0| 14.0 s

;é; Unsatisfactory Excallent

2 4 : |

£ GE | 18.0| 53.0| 15.0| 14.0 —t— !
S Unsatisfactory Excellent

o o |

2 ME|21.0| 22.0| 40.0| 17.0 —]
8 Unsatisfactory Excsllent

DE | 22.0| 16.0| 16.0] 46.0 ——t
Unsatisfactory Excellent

6.4 Summary

This chapter describes the tests and results conducted on the speech recognition system.
These include software and hardware verification tests, and recognition tests. The
verification tests were performed to demonstrate the correct operation of the system upon
which the recognition testing foundation lies. The recognition tests are broken into two
sections which consist of vowel sounds and consonant combinations. The vowel tests are
designed to test both strict classification of the speech recognition system and the multi-
level classification scheme. The two consonant tests are designed to test the strict
classification ability of the recognizer. Results of the strict vowel test achieved 50.8%
recognition on the difficult data set. The multi-level classification scheme worked well on
the specific vocabulary applied by the speakers achieving an average classification rating of

good and an average recognition of 61.8%. It should be noted though, that the

- 103 -

misclassifications indicated the general tendency to choose the nearest neighbors (in a
spectral sense) to the target based on the first two formants approximately 22% of the time.
These results supports the findings of [Pars86] vowel loci diagram provided in Fig. 6.8.
The consonant tests indicate strict classification is possible 46.5% of the timé for the vowel
/a/ and 48% of the time for the vowel /e/, given the specific data set used. In general
though, classification results were lower than the vowel results obtained for strict

classification by approximately 11%.

- 104 -

CHAPTER VII
CONCLUSIONS AND RECOMMENDATIONS

The work described in this thesis was motivated by the need for an isolated, limited
vocabulary, automatic, real-time, speech recognition system employing an improved multi-
level classification scheme. This system is intended to be used as a vocal shaping tool for
autistic individuals. A study of various features and recognition methods resulted in the
selection and implementation of a recognition system employing a standard BP neural
network using LPC coefficients as the recognition feature. In addition, the BP neural
network possessed an adaptive learning rule and modified batch update procedure to reduce
the network training time. The development of the system took place on an IBM and
Macintosh computers. A NEC DSP board was used with the IBM computer to acquire the
raw analog speech data. The IBM program obtained the LPC coefficients and transmitted

these coefficients serially to the Macintosh where the recognition occurred.

The speech recognition system was designed, assembled, and tested, to evaluate both
strict classification and the improved multi-level classification scheme. Its evaluation
results are very encouraging. In particular, the testing was performed using two types of
experiments which were then applied to 11 randomly selected speakers. The first test
involved six vowel sounds which were selected to reveal two issues. The first set of three
vowel sounds possessed large formant separations between F1 and F2. This property was
used to demonstrate the multi-level classification ability. The results of this test, shown
using a modified confusion matrix, demonstrated that the system was able to successfully
differentiate the quality of an utterance 61.8% of the time if sufficient spectral separation
existed. The second group of the six vowels was also selected based on the formant
separation but was chosen such that this separation was much less. Thus, this test was

designed to evaluate strict classification given a difficult data set. The results of this

- 105 -

experiment, shown again using a modified confusion matrix, demonstrated that the
recognizer Qas able to successfully classify this difficult data set accurately (50.8%).
Considering the close spectral grouping of this data set, these results are promising. From
the vowel tests, the next closest neighbor to the target vowel sound was chosen

approximately 22% of the time.

The next set of tests were performed using consonant combinations based on the
formant transition found in the preceding vowel. The four consonants used were v/, [d/,
/g/, and /m/. Associated with the four consonants were two vowels, /a/ and /e/, which
followed the consonant. Each sound was tested ten times as in the vowel tests. Both
consonant sets achieved similar results within 2% with the vowel /a/ data set achieving
46.5% correct recognition while the vowel /e/ data set achieving approximately 48% correct
recognition. Overall though, the vowels provided approximately 11% better classification
results than did the consonants based on the strict classification criteria. This result is
explained in part by the fact that the consonant lasts a short time, that it contains a broad
band of frequencies, is not consistently reproduceable with any given accuracy and hence,
provides variations onto the vowel. Also, better results may have resulted if more frames
were taken earlier in the utterance segment since most of the transitions occurred here.
However, the vowel sounds are easily sustainable and thus, the spectral characteristics are
much more stable leading to higher consistency of reproduction. This observation is
supported by the results obtained. From the consonant tests, it appeared that the
misclassified consonants had a relatively flat distribution, i.e., the recognizer did not tend
to any specific consonant group when an incorrect recognition was made. The custom
designed human interface improved the overall ease of operation of the system as

subjectively tested through the use by the individuals.

- 106 —

As demonstrated throughout the chapters, this thesis has contributed to the general and

technical knowledge through the following ways:

(a)

(b)

©)
)]

A new system has been developed which employs BP as applied to isolated

speech recognition using LPC coefficients as the recognition feature.

Tests demonstrating the systems performance based on strict classification and
multi-level classification were presented and explained.

An improved multi-level grading scheme was introduced and tested.

An improved human interface was designed and implemented with the new

speech recognition system.

Further research is required to either improve or extend this work, including:

(a)

(b)

©

Development of the system using current technology and hardware exists which
facilitates adaptation and promotes continuation by others to further improve

this system for a larger and more difficult vocabulary.

The format for an improved system consisting of only the Macintosh computer
has already been partially developed and is in place for further improvements
including incorporation of the LPC algorithm onto the Macintosh for obtainin g
the coefficients and of the playback feature using the new sound manger as one
of the necessary requirements for vocal shaping.

The multi-level grading scheme may be improved by further reducing the

number of categories from five to four thus, forcing the individual to choose

about the halfway point.

- 107 -

[AIFF89]

[Appl88]

[Appl90]

[Burr87]

[Cair90]

[Card90]

[ChFa88]

[DeBo9%0]

[Desr90]

[FeLo89]

REFERENCES

Apple Computer, Inc., “Audio Interchange File Format: AIFE.” Technical
Report. Cupertino, CA: Apple Computer Inc., 1989, 22 pp.

Apple Computer, Inc., Inside Macintosh. Cupertino, CA: Addison-Wesley,
vol. 1-5, 1988.

Apple Computer, Inc., Inside Macintosh. Cupertino, CA: Addison-Wesley,
vol. 6, 1991.

D. Burr, “Experiments on neural net recognition of spoken and written text,”
IEEE Trans., on Acoust., Speech, and Signal Proc., vol ASSP-36, no. 7, PpP-
1162-1168, 1988.

S. Cairns, “Computer aided speech shaping,” M.A. Thesis. University of
Manitoba; Canada, April 1990, 77 pp.

H. Card, Artificial Neural Networks. Lecture Notes, University of Manitoba;
Canada, 1989.

M. Chang and F. Fallside, “Implementation of neural networks for speech
recognition on a transputer array,” Technical Report, University of Cambridge;
USA, March 1988, 13 pp.

Z. Deiri and N. Botros, “LPC-Based neural network for automatic speech
recognition,” Proc. IEEE Engineering in Medicine and Biology Soc., IEEE
Cat. no. 90 CH2936-3, pp. 1429-1430, 1990.

M. Desrochers, “Computer-based versus human assessment of vocal responses

* with developmentally handicapped individuals,” Ph. D. Thesis. University of

Manitoba; Canada, April 1990, 267 pp.
K. Ferens and C. Love, “A speech recorder and synthesizer using ADPCM,”
B. Sc. Thesis. University of Manitoba; Canada, May 1989, 114 pp.

- 108 -

[HaWa90] J. Hampshire IT and A. Waibel, “A novel objective function for improved
phoneme recognition using time delay neural networks,” IEEE INNS
International joint conference on neural networks, vol. 1, pp. 235-241, 1989.

[Holm88] J. Holmes, Speech Synthesis and Recognition. UK: Van Nostrand Reinhold,
1988, 198 pp.

[KiPR87] J. Pear, W. Kinsner, and D. Roy, “Vocal shaping of retarded and autistic
individuals using speech synthesis and recognition,” Proc. IEEE Engineering
in Medicine and Biology Soc., IEEE Cat. no. 87 CH2513-0, pp. 1787-1788,
1987.

[Klim87] G. Klimenko, “A study of ADPCM, CVSD, and phoneme speech coding
techniques,” M.Sc. Thesis. University of Manitoba; Canada, August 1987,
228 pp.

[KIKi87] G. Klimenko and W. Kinsner, “A study of CVSD, ADPCM, and PSS speech
coding techniques,” Proc. IEEE Engineering in Medicine and Biology Soc.,
IEEE Cat. no. 87 CH2513-0, pp. 1797-1798, 1987.

[KMRW87] D. Kewley-Port, D. Maki, D. Reed, and C. Watson, “Speaker-dependent
speech recognition as the basis for a speech training aid,” Proc. IEEE Neural
Nerworks, Cat. no. 87 CH2396-0, pp. 372-375, 1987.

[Koho88] T. Kohonen, “The "neural" phonetic typewriter,” Computer Magazine, pp. 11-
22, March 1988.

[LeRo90] S. Levinson and D. Roe, A perspective on speech recognition,” IEEE
Communications Magazine, pp. 28-34, Jan. 1990.

[LoFK89] C. Love, K. Ferens, and W. Kinsner, “A speech recorder and synthesizer
using ADPCM,” Proc. IEEE Engineering in Medicine and Biology Soc., IEEE
Cat. no. 89 CH2770-6, pp. 659-660, 1989.

[LoKi90] C.Love and W. Kinsner, “A phonemic recognizer for speech therapy using a
neural network model,” Proc. Canadian Medical and Biological Engineering
Soc., CMBS Cat. no. 90 CMBC-16-CCGB, pp. 93-94, 1990.

- 109 -

[McRu89] J. McClelland and D. Rumelhart, Explorations in Parallel Distributed
Processing. Cambridge, MA: MIT Press, 1989, 344 pp.

[Pars86] T. Parsons, Voice and Speech Processing. New York: McGraw Hill, 1986,
402 pp.

[PeKR87] J. Pear, W. Kinsner, and D. Roy, “Vocal shaping of retarded and autistic
individuals using speech synthesis and recognition,” Proc. IEEE Engineering

~ in Medicine and Biology Soc., IEEE Cat. no. 87 CH2513-0, pp. 1787-1788,

1987.

[Pete88] D. Peters, “A speech recognizer using LPC and DTW,” B.Sc. Thesis.
University of Manitoba; Canada, May 1988.

[RaSc78] L. Rabiner and R. Schafer, Digital Processing of Speech Signals. Englewood

- Cliffs, NJ.: Prentice Hall, 1978, 512 pp.

[Rein90] B. Miiller and J. Reinhardt, Physics of Neural Networks: Neural Network- An
Introduction. Berlin, GE.: Springer-Verlag, pp. 73-76, 1990.

[SaCh78] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization for
spoken word recognition,” IEEE Trans., on Acoust., Speech, and Signal
Proc., vol. ASSP-26, no. 1, pp. 43-49, 1978.

[Swan87] C. Swanson, “A study and implementation of real-time linear predictive coding
of speech,” M.Sc. Thesis. University of Manitoba; Canada, August 1987,
238 pp. ,

[Syma89] Symantec Corp., Think C, Cupertino, CA: Symantec Corp., 1989, 511 pp-

[VMRZ88] T. Vogl, J. Mangis, A. Rigler, W. Zink, and D.Alkon, “Accelerating the
convergence of the back-propagation method,” Biological Cybernetics,
vol. 59, pp. 257-263, 1988.

[Watr90] R. Watrous, “Phoneme discrimination using connectionist networks applied to
/b/, /d/, and /g/ discrimination,” J. Acoust. Soc. Am., vol. 87, no. 3, pp.
1301-1309, March 1990.

- 110 -

APPENDIX A

Recognition System Software Dialog Boxes

NEW LIBRARY:

The SPEECH LIBRARY INTERFACE dialog box is used to acquire the various
utterance labels to be used during the session. The speech therapists name and individuals
name are entered for future reference. The label length for an utterance is 20 characters.
Next, the number of utterances and versions are entered. If, for example, only 5 words are
to be recorded, then only 5 labels should be entered from the ten possible locations. Upon
completion, the individual either selects DONE or CANCEL to continue. DONE saves
the entered data while CANCEL reverts to the previous values.

SPEECH LIBRARY INTERFACE

Patients name: Name

‘Therapists name: [Name
Date: 199112

Enter the Number of Words: (Max. 10 words)
Enter the number of versions: (MaH. 5 versions)

Word1: || Word6:

Word2: Word?:

Word3: Word8:

Word4: Word9:

Word5: Word10:

- 111 -

NETWORK TEST INTERFACE:

The test interface involves three sections. The top segment uses radio buttons to allow
the individual to select the utterance and version they wish to use to test the BP neural
network. There can be up to 10 utterance labels with up to S versions for every utterance
implying that the neural network can accommodate up to a maximum of 50 patterns. The
second segment is used for display purposes. The classified utterance and version
resulting from propagating the selected pattern through the neural network is displayed in
the middle segment. The bottom segment is used to either initiate testing using the TEST
button or CANCEL to exit from the dialog box.

r Test Interface
UTTERANCES
@A O
Ot O
oo O
ovu O
Ol @)
@ Excellent QO Good O Fair O Poor O Unsatisfactory
UTTERANCE:
UERSION:

CANCEL)

- 112 -

FILE SELECTION INTERFACE:

The file selection interface is the default standard interface provided in the Macintosh
tool box. File filters, filter out the files that do not have a CREATOR (‘cris’) and
FILETYPE (TEXT"). The dialog interface allows the individual to load data that is to be
used for the speech recognition software.

& Data Q

D Trnd/Vowels(5)/v1.dat - e Calvin's HD
D Trnd/wrds(8)/v4.dat

D Vowels(5).dat ([tject)

D wrds(8).dat (Tve)
R

(open)

5] [_Cencel)

NETWORK SETUP :

The NETWORK SETUP dialog has three sections. The top section contains two
subsections. The sub-section on the left describes the network architecture while that on
the right describes the network training parameters. The input and output neurons are not

adjustable but depend on how many utterances are being used in the session. They are

- 113 -

automatically set by the software. The hidden neurons value is adjustable. To adjust a
parameter in the top section, first click the value of the parameter. Next, click on the
" adjustor boxes indicated by the up/down arrows icons and the home icon. The up/down
arrow icons increase and decrease the parameter value by a fixed, ﬁrcdetermincd,
increment. The home icon will change the parameter to the middle range value. The
biases and the random weights checkboxes toggle between on and off. An active check
box is indicated by an X filled in the box while an empty check box is indicated by an
empty square. To change a check box value, simply click on it once. The middle segment,
indicated by NETWORK PROCESSING, is used to select the network training methods.
The two radio buttons on the left describe the presentation method of paﬁems to the
network, which are either random or sequential. Next, the middle right sub-section
indicates the mode of updates, which are either batch or single. The last section is used to
either SAVE the selections or CANCEL and revert to what was used prior to opening the

dialog box.

BACK PROPAGATION CONFIGURATION
ARCHITECTURE PARAMETERS

input neurons : 30 Learning rate : .373
Hidden neurons: 5 iy Momentum : .300

Qutput neurons: 10 Stopping value: .020

X Biases X Randomize weights

NETWORK PROCESSING
® Sequential presentation (O Batch update

QO Random presentation @ Single pattern update

- 114 -

DATA ACQUISITION INTERFACE:

The data acquisition interface is used to assist in obtaining utterance data. To record an
utterance, select an utterance label and an utterance version. If fewer than five versions
were selected then only those versions can become active. Once a version and utterance
label have been chosen, click the RECORD to record the utterance. The recording will last
one second, and the small check box located below the utterance version will become active
upon—completion of the recording. If attempts are made to record over an existing
recording, an ALERT dialog box will be displayed indicating this action. It is possible to
re-record an utterance by closing the ALERT dialog box and recording the selection. The

PLAYBACK button allows the selected utterance to be played back.

r DATA ACQUISITION INTERFACE B

Library file: Trnd/Uowels(5)/vt. DATE: 199112

Select Word

@A O
OE O
Qo O
Qu O
Ol O

Select Version

@® Excellent O 6ood O Fair O PoorQ Unsatisfactory
X X O O O

(Efﬁnnnjl l[PLAYBACK || '1 DONE]l (canceL)
-

- 115 -

y

RECOGNITION INTERFACE:

The RECOGNIZE interface is used to identify an unknown utterance using the trained
neural network. The utterance and version are first selected in the top section and the
PLAYBACK button is depressed to hear what the desired utterance should sound like.
Next, click the RECORD to record the utterance and- speak into the microphone. One
second of speech is recorded and the unknown pattern will be identified using the BP
neural network. The result is automatically displayed in the Response Utterance Identity

section of the dialog box.

Recognize INTERFACE
Playback Utterance Selection

@A @)
OE O
Qo O
ou @)
Ol @)

Playback Uersion Selection
@ Excellent O 6ood Q Fair O Poor O Unsatisfactory

Response Utterance ldentity
Utterance ldentity:
Version ldentity:

PLAYBACK 'RECORD RESPONSEI ERIT

- 116 -

NEURAL UPDATE:

This dialog box is used to display the neural network training progress. The
parameters displayed are: (i) Trial Number, which indicates how many trials have elapsed
since beginning training (this value is always displayed as the number of complete pattern
set presentation), (ii) Pattern Number, which represents the pattern number that is
currently being presented to the neural network, (iii) learning rate describes the value of the
learning rate used for that pattern set and, (iv) Total Error which represents the total
internal error of the network over the entire pattern set, whether or not single or batch
update is used. The reason for this is to provide consistency in the meaning throughout the

various training configurations and in setting the Stop Value.

Neural Update
Trial Number:

Pattern Number:
Learning Rate:

Total Error:

- 117 -

APPENDIX B

Speech Recognition System Hardware Description

Macintosh Serial Port Pinout description:

8 7 6
Pin | Signal Signal
Number | Name Description
g @ % 1 HSKo Handshake out
2 HSKi Handshake in
3 TXD- Transmit data -
4 GND Signal ground
= e 5 RXD- Receive data -
6 TXD+ Transmit data +
7 NC No Connection
8 RXD- Receive data -
5 4 3
2 1

- 118 -

IBM RS-232 serial port pinout description:

Sec. transmit data ® 1 -~ Chassis ground
Transmit clock ® s @2 -—-Trans'mn data
Sec. receive dock —4——@ 16 @ 3 T~ Recaive data
Receiveclock ~———4———@ 17 @ 4 -1 Request to send
Unassigned —————4——® 18 ® 5 4 Clear to send
Sec. request to send ——— @ 19 @ 6 -— Data set ready
Data terminal ready —4—— @ 20 ® 7 4 Signal ground
Signal quality detect ———@ 21 @® g 4 Carier detect
Ring indicator ®22 @ 9 1 Reserved fortest
Data rate select ®23 @ 104—Reserved for test
; —_—t
Transr'mt clock 24 @ 114—Unassigned
Unassigned
@ 124 Sec. carier detect
@ 13F Sec. clear to send
Macintosh to IBM serial connection description:
1
@ 14 o
o5 92
o ©°
‘D 0 (B v o
5 4 3 @iz ©s
: @ @°6
3
o2 @ 10
@24
@ 1

- 119 -

Microphone: (Model: SM10A)

Description: This is a hands free microphone that is used for close talking vocal pickup.
It has been designed for environments including computer interactive systems. This
microphone is noise cancelling and is uni-directional. It provides strong, professional

sound quality voice response completely free of background noise and pop.

Technical specifications:
Bandwidth: 50 to 15000 Hz.
Microphone pickup: Cardioid (unidirectional)
input impedance: 150 Q
Signal strength: 4.5 mV (-47.0dB, 0 dB = 1V/100ubars)
-66.0 dB, 0 dB = 1 mW/10ubar
Microphone cabling: 1.5 m, two-conductor shielded with three-pin professional audio
connector at equipment end.

Weight: 78 grams /Height: 14 mm /Diameter: 9/16 x 5/8 in.

+
-t
(=]

1]
-d
[« 2N

Relative response (dB)
(=}

N

0 50 100 1k
Frequency (Hz)

- 120 -

SM10A microphone (courtesy of Shure Inc.)

S

SHURE® -

SM10A
(HEAD-WORN MICROPHONE)

- 121 -

R

APPENDIX C

Source Code Listing of Macintosh Speech Recognition System
Software :

Software Vers. 18.0 - 122 - C.L.April 1991.

/tt#tt"##tttt“*‘#‘“.*ttt‘*t#**‘t‘lttttt“.tt‘ttt‘#*‘ttt‘tt.ltlll"“.ttt‘.tl

This software consists of the speech recognition program. Included are the following components:
Backprop.c

MyFunctions2.c

CBackpropApp.c

CBackpropDoc.c

CBackpropPane.c

Serial Routines.c

LPCIBM.c
This software is written by Chris D. Love.
University of Manitoba
Department of Electrical and Computer Engineering
Start Date: June24, 1990
Completion Date: January 10, 1991.
#define _H_CBackpropcmd
r* HEADER FILE FOR MY APPLICATION COMMANDS */
/* My Back Propagation Menu Summary */
#define MENUacquire 4000 M Acquire data */
#define MENUtrain 4001 /* Training Menu */
#define MENUuse 4002 /* Use and Recognition Menu */
#define MENUutilities 4003 /* Utilities and stuff */
#define MENUweights 203 /* Hier MenulD for network weights */
#define MENUgrademethod 204 * Hier MenulD for grading method */
r* My Dialog ID Summary */
#define DLOGspeechlib 500 /* DLOG id for speech library */
#define DLOGrecord 501 M DLOG id for recording interface */
#define DLOGrecognize §02 /* DLOG id for recognizing interface */
#define DLOGbp 503 M DLOG id for BP setup */
#define DLOGtest 504 /M DLOG id for BP testing */
#idefine DLOGbpupdate 505 M DLOG id for BP progress */
/* WINDOW RESOURCE ID DEFINITIONS */

#define WIND_Backprop 2000L /* WIND resource ID */
/**tt“*l#*tt‘***t##‘My Back Propaganon le’nand Summaryt*ttt'tt*tt#tttlttl

[Ad Data Acquisition Commands */
#idefine cmdAcquire 2000L /* Record and Playback word s/

Software Vers. 18.0 - 123 - C.L.April 1991.

#define

#define -

#idefine
#define
#define

#define

cmdNewSound

cmdSetupTrain
cmdTestNetwork
cmdTrainNetwork
cmdNetWeights
cmdNewWeights
cmdFileWeights
emdGradeRate

cmdRecognize

cmdUtterSpect
cmdTimeAmpl
cmdSpeechSplice
cmdPrintPlot

cmdchebychev
cmdeuclidean
cmdhamming
cmdminkowski3
cmdminkowski4
cmdminkowski5
cmdminkowski6
cmdminkowski7

cmdFour
cmdFive
cmdSix
cmdSeven

Software Vers. 18.0

2001L /*Record and play new sound s/
Training Commands */
2007L /* Setup Network Training s/
2008L /* Test network(train patts) */
2009L /* Train Network */
2010L /* Set Network Weights */
2020L /* Initialize weights */
2019L /* Load weight file from disk ¢/
2014L /* Grading measure for network ~ */
Use and Recognition Commands */
2012L /* Synthesize and recognize utterance®/
Utilities */
2015L /* Word Spectrogram plot */
2016L f* Time Amplitude Plot */
2017L f* Speech Splicing (Kens) */
2018L /* Print plot */
MENUgrademethod */
3000L /* Chebychev distance measure */
3001L /* Euclidean distance measure %/
3002L /* Hamming distance measure */
3003L /* Minkowski distance measure P=3*/
3004L /* Minkowski distance measure P=4*/
3005L /* Minkowski distance measure P=5*/
3006L /* Minkowski distance measure P=6*/
3007L /* Minkowski distance measure P=7*/
HierMENUminkowski */
3036L /™ Minkowski power for metric ~ */
3037L /* Minkowski power for metric ¥/
3038L /* Minkowski power for metric s/
3039L /* Minkowski power for metric ~ */
3040L /* Minkowski power for metric ¥/

End of Back propagation command Summary

- 124 -

*/

C.L.,April 1991.

/tttttttt‘.‘lttt‘“*“t‘l‘t‘l“t“tl‘tttl‘l'lt‘tt“ltttl‘ttttttt‘t‘ttt“‘t*“tt

CBackpropDoc.h

Interface for the BackpropDoc Class

“tttt#"tt“#t‘t*t“t‘tt"t*‘l#‘lt‘ttt’t"‘tt‘t‘tt‘.“t“‘t‘tt‘ttt‘#‘t"tt“‘/

#define _H_CBackpropDoc

#include <CDocument.h> /* Interface for its superclass
#include <CDataFile.h> * Interface for its dataclass
/* Class Declaration */
struct CBackpropDoc : CDocument {

/** Instance Variables **/

Boolean Presentation, Update Type,Biases,Random Weights SetWs,*the Versions;
Boolean DoneNew,DoneRecord, DoneNetwork;
short Grade Power Recognize Version, TestType NumOfPatt, NumOfWords;
short NumInNuron, NumHidNuron NumOutNuron, NumOfVers;
float Momentum,StopValue,LearnRate UpperLeamThresh,LowerLeamThresh;
double *] PCData,*HOW(,*IHW,*HiddenBias,*OutputBias;
Str255 PatientName, TherapistName;
Sur255 Wordlabell,Wordlabel2, Wordlabel3,Wordlabel4, Wordlabel5;
Str25S Wordlabel6, Wordlabel7, Wordlabel8,Wordlabel9, Wordlabel 10;
SFReply = macSFReply,
Rect itsFrame;

/** Instance Methods {OverRide from CDocument] **/
void IBackpropDoc(CBureaucrat *itsSupervisor);
void DoCommand(long theCommand);
void UpdateMenus(void);
void NewFile(void);
void OpenFile(SFReply *macSFReply);
void BuildWindow(Handle theData);
Boolkean DoSave(void);
Boolean DoSaveAs(SFReply *macSFReply);
void DoRevert(void);
fAd MY FUNCTIONS FOR THE BACK PROPAGATION SOFTWARE
void Acquire(); /* recording & playback process
void NewSounds(); /* Mac Sound Manager
void SetupTrain(); /* BP construction
Software Vers. 18.0 - 125 -

*/
*/

*/
*/
*/
*/

C.L.,April 1991.

void TrainNetwork(); /* BP Training */

void TestNetwork(); /* BP Testing */
void SetNetWis(Boolean Weights); /* BP Set Net Weight structure */
void Recognize(); /* Recognition of word)
void Spectplot();

void Speechsplice();

void Amplplot0;

/**“t#“tt#t##t‘#“#‘##tt#t‘t#“lt*ttt*#‘#“t*ttl“t‘tttltt*#t‘t‘*t**tt*t*tt‘t

CBackpropApp.h Interface for the BackpropApp Class

###*#t‘#tt‘tt#“##*#t**t‘#*#‘*“‘t#“‘#‘t#t#t#tt‘t‘lttt*##ttttt#“‘**‘*#lt*#*‘/

#idefine _H_CBackpropApp

#iinclude <CApplication.h> /* Interface for its superclass ¥/
struct CBackpropApp : CApplication { /* Class Declaration */
/* Declare your Application's instance variables */

SFReply macSFReply; /* Standard File reply record %/
/* Instance Mcthods ¥/

void IBackpropApp(void);
void SetUpFileParameters(void);
void SetUpMenus(void);
void Exit(void);
void DoCommand(long theCommand);
void UpdateMenus(void);
void CreateDocument(void);
void OpenDocument(SFReply *macSFReply);
ki
/***#*‘tt*l**t*l*‘*t‘*t*t**t**‘#*#*##‘#‘t***t#*#*#*ttt**#*‘#t#*tt#*##‘tt*ttt‘t‘
- Backprop.c Template for a main program for an application built with the THINK
Class Library
Written by Chris D. Love / June 1990-January 3,1991

****##*‘##t“t##ttttt*i#‘*‘*t#tt‘t*#t***##t‘#‘tttt*l‘###t‘l‘*t**#‘tt#tt“t&tt*/

Software Vers. 18.0 - 126 - C.L.April 1991.

#include "CBackpropApp.h™/* XXX Application subclass header i

fg My Functions */
void OutlineButton (DialogPtr DialogName short WhichOne);
void SetRadioButton (short Whichltem, DialogPir DialogName, Handle *olditem);
void SetDate (DialogPtr DialogName, short DateltemNo);
void SetWeights (double *theArray, short Length Boolean Randomize);
short GetPatterns (Boolean *anArray, short NumPatterns);
void SetWords (DialogPtr DialogName, S1255 *Wordl, Str255 *Word2,
Str255 *Word3, Sr255 *Wordd4, Str255 *Word5, Su255 *Word6,
Str255 *Word7, Str255 *Words, Su255 *Word9, Str255*Word10);
void GetWords (DialogPu DialogName, Str255 *PatName, Str255 *TherName,
Str255 *Word1, Su255 *Word2, Str255 *Word3, Str255 *Word4,
Str255 *WordS, Str255 *Word6, Str255 *Word7,
Str255 *Word8, Su255 *Word9, Str255 *Word10);
void NetworkUpdate (DialogPtr DialogName, short TrialNum, short thePattern, float LRate,
double TError);
void PtoSu255 (char *srcString, Str255 destString);
void CioSu255 {char *srcString, Str255 destString);
void CalcTotError (double *TPatt, double *QutNurons, short PatternNum,short theGrade,
short NumONurons, short thePower, double *TError);
void SetCheckBoxes (DialogPir DialogName, short WhichWord, Boolean * ArrayName, short
NumVers);
void GetlLPCData (double *FloatptArray);
void AscToFloat (char *AscFloat, double *FloatptArray);
void DisplayResults (DialogPtr DialogName, double *theArray, short NumPatt, short NumVers);
void PlaybackWord (short WhichWord);
void SetTrainingPat (double *TPatt, short NumberONurons);
void CalcForwardPass (double *InputArray, double *HiddenArray, double *OutputArray,
double *HBias, double *OBias, double *WIH, double *WHO,
short INurons, short HNurons, short ONurons, short PatNumber);
void SetCurrentValues (DialogPtr DialogName, Boolean Bias, float Momtum, float StopVal,
float LeamRt, Boolean RandomWts);

extern CApplication *gApplication;

void main(void)

{
gApplication = new(CBackpropApp); /* XXX Create and intialize subclass of CApplication “f
((CBackpropApp*)gApplication)->IBackpropApp();

Software Vers. 18.0 - 127 - C.L..April 1991.

gApplication->Run();
gApplication->Exit0);
)

/‘l‘tt“.‘tt‘tt“*“*“"t..‘tl“t‘tt.‘l‘l‘t‘tttt'ttt‘ttttt‘l‘t“tt.t“‘t.“"‘

CBackpropApp.h Interface for the BackpropApp Class

‘#*t*‘t#t“#‘t‘t“‘l‘#tt“ltt‘ittttltt‘t*t'tt't‘lt‘t‘tt“*tt‘tttt‘t““tt“ttt/

#define _H_CBackpropApp

#include <CApplication.h> /* Interface for its superclass */
struct CBackpropApp : CApplication { /* Class Declaration */
/* Declare your Application's instance variables */

SFReply macSFReply; f* Standard File reply record */
* Instance Methods */

void IBackpropApp(void);

void SetUpFileParameters(void);

void SetUpMenus(void);

void Exit(void);

void DoCommand(long theCommand);

void UpdateMenus(void);

void CreateDocument(void);

void OpenDocument(SFReply *macSFReply),
|5

/#tt#**‘*‘ttt‘*#‘t*“*t'*tt‘t*#lttt**ttt‘*i*‘*l‘l‘*‘tt‘tttit‘*‘*tt‘*##‘*tttt*t‘

CBackpropApp.c
The BackpropApp Class SUPERCLASS = CApplication

Written by Chris D. Love / June 1990-January 3,1991

#*#*ttt**t**‘tt‘t#***##****t*‘tl*tttt*#‘t**#‘tttl*tt*t#t#*##*'t#tt**#*t#tt#tt#/

/* Remember to use angle brackets for headers that are part of the THINK Class Library */
#include <Global.h>

#include "CBackpropApp.h"

#include "CBackpropDoc.h”

extermn OSType gSignature; M Creator for Application's files */

/****ttt##*t*tt‘*#t#****t##tttt*t‘*t*#****‘###****tt‘*##*#*t*#t#*tt*#*ttl‘#t*tl

IBackpropApp Initialize a BackpropApp object

Software Vers. 18.0 - 128 - C.L..April 1991.

**/
void CBackpropApp::IBackpropApp()
{
/¥ Initialize superclass *
CApplication::JApplication(5, 20000L, 2000L);

/* Initialize global variables defined by your application and the instance variables of your */
/* Application subclass. *
}

JAcdessk ksl skokok stk ok ok ok okt sk ko stk s sk sk ok ok kol ok ok dokaok ok sok sl okl e ok sk ek sl sk ok ook

SetUpFileParameters {OVERRIDE} Set parameters used by the Standard File Package

**/
void CBackpropApp::SetUpFileParameters()
{
inherited::SetUpFileParameters(); /* Use defaults from superclass */
/* Specify file parameters for the Application */
[* Specify a four-character signature for your application */
gSignature = ‘cris’;
/* Specify the number and types of files recognized. *
sfNumTypes = 4;
sfFileTypes[0] = LIBR";
sfFileTypes{1]} = 'LOVE’;
sfFileTypes[2] = 'FSSD’;
sfFileTypes[3] = 'TEXT";

/**

DoCommand {OVERRIDE) Execute a command
It's important to pass along commands not handled by this class to the inherited
DoCommand method. These will be handled by the THINK Class Library by default.

**/

void CBackpropApp::DoCommand(long theCommand)
{
switch (theCommand)
{
/* &&& Cases for commands handled by application *
default: /* Invoke inherited method to handle other commands *
inherited::DoCommand(theCommand);
break;

Software Vers. 18.0 - 129 - C.L.,April 1991,

I‘tttt‘#tt‘ttl"*l‘tttt‘ttttttt.“t“.‘“‘t“tt‘.“t.“ttttt‘.'tttlt“‘ttttltt‘

UpdateMenus {OVERRIDE) Perform menu management tasks
tt*#“‘ttt#t“l*'tt#‘t‘ﬁ‘*ttt‘l‘ttt‘tttt‘lt‘.“t“.tt‘ttlt.“.ltt“t‘lt‘tt.ttt/
void CBackpropApp::UpdateMenus()
{
/* Enable the commands handled by your Application class; Enable standard commands ¥/
inherited::UpdateMenus();

/****#ttt‘l#*tt‘t‘t#“*tt‘ttl#‘l**tt*“tttttttttttttttttt‘tttttt‘t“t‘t‘ttt‘ttt

SetUpMenus {OVERRIDE)
Set up menus which must be created at run time, such as a Font menu. You
can eliminate this method if application does not have any such menus.
*t*tt#tttt“t‘t*t##t*#t‘t‘*“*tt##‘ltt.tl‘t‘tttttt"ttt#tt“tttttttt"tttt**lt/
void CBackpropApp::SetUpMenus()
{
inherited::SetUpMenus();
/* Superclass takes care of adding menus specified in a MBAR id=1and Code for creating run-time
menus */

}

/*ttttt**“*‘*t*t#t**#“********t‘ttttttttt##‘ttttt***tt‘*#t“tt‘t#**#t*ttt‘*t*

Exit {OVERRIDE]} Program is about to terminate. Last chance to clean up.
$$$ Here's the place to delete temporary files or to automatically save settings. However, most
applications don't need to do anything here.
*t**tl*'*t**t#“*‘ttt“***#**t#t‘**#t‘tt#*ttttt“t#t****t**#“t*t#t*l**‘#*ttt*/
void CBackpropApp::Exit)
{
/* &&& Exit code for your application */

/****#tt*t#*l*‘tt*‘*t#*t***#tt*tttt‘tttlt#*tt*t*t‘#t*******#ttttt##*ttttt##***#

Create Document {OVERRIDE)

Make a document. This message is sent when the user chooses the "New" command.
t#*#t*#t‘*‘*#‘***t#*#*#tttttttt#ttt*#t*ttt*t‘#it#ttt#*“itt#t##t‘tttlt*#**/

void CBackpropApp::CreateDocument()
(

Software Vers. 18.0 - 130 - C.L.April 1991,

CBackpropDoc *the Document;
/* Create and initialize a Document $$$ Passing "this” 1o IBackpropDoc
" mwnstha&chpplicaﬁonobjectismesupavisorofmcDocumem

theDocument = new(CBackpropDoc);

theDocument->IBackpropDoc(this);

theDocument->NewFile();

/* Tell Document to make a new file $$$ Document is responsible for do
/*whatever's necessary to set up a new file (eg.displaying a blank window)

/i#**‘t‘t*tt#t‘t“t‘*“*#t‘tt“l‘t“‘t.‘l#ttttttt‘t“ltttt‘t‘ttt

OpenDocument {OVERRIDE}

Open an existing file and create a document object for displaying informati

*/
*/

*/
*/

T3 113 333232 22,

on. This message is sent

when the user chooses the "Open..." command or when the application was launched by double-

clicking on a fil

parameter is a record which contains information about the file to open (name,

sRkERESREREEE

void CBackpmpApp::OpenDocumem(SFReply *macSFReply)

{

CBackpropDoc *the Document;

/* Create and initialize a Document $$$ Passing "this” to IBackpropDoc
/* means that the Application object is the supervisor of the Document
theDocument = new(CBackpropDoc);

theDocument->IBackpropDoc(this);

/* Tell Document to open the file. $3§ The Document is responsible for
M creating whatever windows are necessary (o display the file and

/* actually reading the contents of the file from disk

lheDocumem->OpenFile(macSFRep1y);

Software Vers. 18.0 - 131 -

¢ or selecting file(s) and choosing "Open" from the Finder. The macSFReply

volume number, etc.).

#lt‘ttt‘*tt*###‘*‘*‘#t#‘*tt*#*“‘t‘#‘ttttttt‘t*tt#t“*t#*t##tt‘t*l

/* Standard File reply record*/

*/
*/

*/
*/
*/

C.L..April 1991.

/'ttt‘ttt‘tt‘l“#‘tt‘lttl.‘#““‘llt.tt.‘tt“‘t“t"tttt“t‘t..t‘“‘t“t‘.tt.t.

CBackpropDoc.c

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

extem
exiermn
extemn
exiem
extemn

The BackpropDoc Class SUPERCLASS = CDocument

Written by Chris D. Love / June 1990-January 3,1991

ttt‘itttlttt‘ltt“‘t“tttt“ﬁ“*‘*‘t‘..l'“t‘t‘t“.‘tttlt“““ttttt"“t“lt#/

<Global.h>
<stdio.h>
<stdlib.h>
<string.h>
<math.h>
<Commands.h>
<CBartender h>
<CDesktop.h>
<CDecorator.h>
<CScrollPane.h>
<CPanorama.h>
<TBUtilities.h>
<CControl.h>

"CBackpropPane.h”
"CBackpropcmd.h"
"CBackpropDoc.h"”

OSType
CDesktop
CDecorator
CBureaucrat

gBartender, / Manages all menus */
gSignature; /* Creator for Application's files */
gDesktop; / The visible Desktop */
gDecorator; / Decorator for arranging windows */
gGopher; / The current boss in the chain of command ¥/

,*‘tt#tt*#‘#‘t‘t*t‘tt#*t#ltt‘t‘#**t‘*tt#*#t“t*ttt‘t‘tt‘t##ttt*ttt‘*‘*t*t#tt&##

IBackpropDoc Initialize a BackpropDoc object
*t‘**#**#*t#"ttt*t#‘tt#*tt###‘***t*t*tttt*‘tt‘tlttt#tt*ttt*ttt*#**t‘*tt*t*#tt/
void CBackpropDoc::IBackpropDoc(CBureaucrat *itsSupervisor)
(
CDocument::IDocument(itsSupervisor, TRUE);
/* Default Program Settings */
NumInNuron=30; NumHidNuron=5; IHWi=NULL,
LeamRate=0.1; Momentum=0.3; StopValue=0.02;
Grade=2; RandomWeights=TRUE; Recognize Version=1;
DoneRecord=FALSE; OutputBias=NULL,; the Versions=NULL,;

Software Vers. 18.0

- 132 - C.L.April 1991,

TestType=1; DoneNew=FALSE; HiddenBias=NULL;

Presentation=FALSE; UpdateType=TRUE LowerleamnThresh=0.05;
Biases=TRUE; Power=3; UpperLeamThresh=2.5;
DoneNetwork=FALSE; HOW=NULL,; LPCData=NULL;

,ﬁ"t‘*t“tttt‘ttt#lt##*t‘*t#tt‘t#tt“t"t“‘tttttttt‘ttt‘t‘tttt‘tttti#t‘ttt‘tt

DoCommand {OVERRIDE) Execute a command
It's important to pass along commands not handled by this class to the inherited
DoCommand method. These will be handled by the THINK Class Library by default.
t##“‘**‘#““lt‘lt“ti*tt‘*tt“t#‘*“tt‘ttt‘t“t"#“t‘tt“lttt"tt*t‘tttttt#/
void CBackpropDoc::DoCommand(long theCommand)
{
char theMessage[255];
switch (theCommand)
{
case cmdAcquire:
Acquire();
break;
case cmdNewSound:
NewSounds();
break;
case cmdSetpTrain:
SetupTrain();
break;
case cmdTestNetwork:
TestNetwork();
break;
case cmdTrainNetwork:
if (HWi=NULL Il LPCData[0]==0)
{
/* Set alert if no training data has been found */
strcpy(theMessage,“pNo utterances were recorded for training. Record the training data
by selecting ‘Acquire’ under the 'Acquire’ menu.”);
ParamText(theMessage,'','",')
StopAlert(128 NULL);
theCommand=cmdNull;
itsMainPane->Refresh();

Software Vers. 18.0 - 133 - C.L.April 1991.

else
TrainNetwork();
break;
case condNetWeights:
casc cmdNewWeightss /* SetWis=FALSE ¥
case cmdFileWeights: /* SetWis=TRUE */
SetWis=(Boolean(2020-theCommand);
SetNetWis(SetWits);
break;
case cmdRecognize:
if (HW0]=0)
{
/* Set alert if no network has been found */
strepy(theMessage, "pNo Network has been loaded or Trained. Train the network by
sclecting "Train Network' under the "Train' menu.”);
ParamText(theMessage, ' ", O;
StopAlert(128 NULL);
theCommand=cmdNull;
itsMainPane->Refresh();
)
else
Recognize();
break;
case cmdGradeRate:
case cmdchebychev:
case cdeuclidean:
case cmdhamming:
case cmdminkowski3:
case cmdminkowski4:
case cmdminkowski5:
case cmdminkowski6:
case cmdminkowski7:
* chebychev=1,euclidean=2 , hamming=3,minkowski=4-8 */
if (theCommand>cmdhamming)
{
Grade=4;
Power=(short)}(theCommand-3000);

else
Grade=(short){theCommand-2999);

Software Vers. 18.0 - 134 - C.L.April 1991.

break;

case cmdUtterSpect
Spectplot();
break;

case cmdTime Ampl:
Amplplot(;
break;

case cmdSpeechSplice:
Speechsplice();
break;

default: /* Invoke inherited method to handle other commands */

if ((theCommand==cmdNew Il theCommand==cmdOpen) & & itsFile!=NULL)

{ ‘
/* Set alert box message %/
strcpy(theMessage,™pYou must first close or Save the existing file first. Press ‘Cancel
then proceed.”);
ParamTexi(theMessage,'',' ',);
StopAlert(128 NULL);
theCommand=cmdNull;
itsMainPane->Refresh();

if (theCommand==cmdClose Il theCommand==cmdQuit)
{
gBartender->EnableCmd(cmdOpen);
gBartender->EnableCmd(cmdNew);
if (HWY0}!=0) /* Could have come from 'forget’ in train */
{
free(HOWL);
free(THW1);
free(LPCData);
free(the Versions);

if (Biases)

{
free(HiddenBias);
free(OutputBias);
)

Software Vers. 18.0 - 135 - C.L.April 1991.

/* Set all Array pointers to NULL indicating not in use

theVersions=NULL,; HiddenBias=NULL; OutputBias=NULL;

DoneNetwork=FALSE; LPCDawm=NULL; IHWi=NULL;
DoncRecord=FALSE; HOW=NULL,;

)

inherited:: DoCommand(theCommand);

break;

*/

/**##tt**ttttl*‘&‘tt‘t**t*“t‘#"*ttt*tt*tttt#i‘tttttt**t#t**tttttt‘#*ttttl**‘*

NewFile {OVERRIDE)

Set up a document with a new file,
usually in response to the "New” command in the File menu.

***‘*#**t**t*#ttt‘t*ttt‘*#*#**ttt#ttltttt‘tl‘*lt*tt##‘t#*tt“#ttttttt*#lttttt*/

void CBackpropDoc::NewFile()

{

Str255 thePTxt;
char theCTxt[255];

short dialogID,itemType,itemHit,wCount;/* Index number of new window

Str63 wNumber;
Sur255 wTitle;

Pu dStorage;
WindowPir behind;
GrafPr CurrentPort;
DialogPr Speechbox;
Handle item;

" Rect box;

/* Initialize space for data for the worst case
HiddenBias=calloc(15, sizeof(double));
OutputBias=calloc(50, sizeof(double));
HOWt=calloc(15*50, sizeof(double));
IHWt=calloc(30* 15, sizeof(double));
LPCData=calloc(1500,sizeof(double));
the Versions=calloc(50, sizeof(char));

/* Build an Operating Window
BuildWindow(NULL);

Software Vers. 18.0

/¥ Index number as a string
f* Window title string

- 136 -

*/
*/

*/

*/

C.L.April 1991.

itsWindow->GetTitle(wTitle); /* Append an index number 10 the */
wCount = gDecorator->GetWCount(); /* default name of the window s/
NumToString((long)wCount, wNumber);

ConcatPStrings(wTitle, (StringPtr) ™p-");

ConcatPStrings(wTitle, wNumber);

itsWindow->SetTitle(wTiltle);

/* Set Cursor to arrow */
SetCursor(&arrow);

/* Speech Library Dialog box */
behind=(WindowPur)X-1L);
dialogID=DLOGspeechlib;
dStorage=NULL;
Speechbox = GetNewDialog(dialogID,dStorage,behind);

/* Outline default buttons */
GetPort(& CurrentPort);
OutlincButton(Speechbox,1);
SetPort(CurrentPort);

/*Set Current date in dialog box */
SetDate(Speechbox,17);

itemHit=0;
while(itemHit !1=OK && itemHit !=Cancel)
{
ModalDialog(NULL, &itemHit);
GetDltem(Speechbox, itemHit, &itemType, &item, &box);

if (itemHit=0K) /* Save all relevant data to file instance variables */
{

/* Obtain Data from Dialog box and make it global to the program */
GetWords(Speechbox, &PatientName, & TherapistName, & Wordlabell,
&Wordlabel2, & Wordlabel3, & Wordlabeld, & Wordlabel5, & Wordlabel6,
&Wordlabel7, &Wordlabel8, & Wordlabel9, & Wordlabel10);

/* Obtain the number of words and versions to be used in session */
GetDltem(Speechbox,31,&itemType, &item,&box);

Software Vers. 18.0) - 137 - C.L.April 1991.

GetIText{item,thePTxt);

Str255toC(thePTxt, theCTxt);
sscanf(theCTxt,"%d" &NumOfWords);
GetDltem(Speechbox,34,& itemType, &item &box);
GetIText(item,thePTxt);

Str25510C(thePTxt, theCTxt);

sscanf(theCTxt,"%d" &NumOfVers);

NumOfPatt=NumOfWords*NumOfVers;

NumOutNuron=NumOfPatt;

dirty = TRUE; /* There is data that needs to be saved
)
DisposDialog(Speechbox); /* Dispose of Dialog Box
itsWindow->Select(); /* Make this the active window
gBartender->DisableCmd(cmdOpen);

((CBackpropPane*)itsMainPane)->GetFrame{ & itsFrame);
((CBackpropPanc*)itsMainPane)->Draw(&itsFrame);
DoneNew=TRUE;

*/

*/
*/

/****&*###‘***‘*t*‘l*‘t*‘l***t“‘tt‘t‘t#‘tt*l#tt#t*ttt##*‘tttt*tt#tttt#*t#ttttt

OpenFile {OVERRIDE] Open a file for a document

‘**‘*t‘##t‘#*#t##t#*‘tttttttttltt*ttttttttttt#t#tt*tt#tt#‘*##‘#t‘tt*“**ttttt*/

voidCBackpropDoc::OpenFile(SFReply *macSFReply)

{

Str63 theName;

OSErr theEmor;

short test;

Jong where;)

/¥ Initialize space for data for the worst case

HiddenBias=calloc(15, sizeof(double));
OutputBias=calloc(50, sizeof(double));
HOWi=calloc(15*50, sizeof(double));
IHWi=calloc(30* 185, sizeof(double));
LPCData=calloc(1500,sizeof(double));
the Versions=calloc(50, sizeof(char));

/* Create and initialize a new file object .

Software Vers. 18.0 - 138 -

*/

*/

C.L.,April 1991.

itsFile = new(CDataFile);
((CDataFike *)itsFile)->IDataFile();
itsFile->SFSpecify(macSFReply);

/* Open file with read/write access Y
theError = ((CDataFile *)itsFile)->Open(fsRdWrPerm);

/* Read in Patients Name, Therapists Name and Vocabulary s/

((CDataFile *)itsFile)->SetMark((long) 0,fsFromStart);

((CDataFile *)itsFile)->ReadSome((Pu)(&PatieniName), (long)31);
((CDataFile *)itsFile)->ReadSome((Ptr}(& TherapistName), (long)31);
((CDataFile *)itsFile)->ReadSome((PrX&Wordlabell), (long)20);
((CDataFile *)itsFile)->ReadSome((Pry(& Wordlabel2), (long)20);
((CDataFile *)itsFile)->ReadSome((Pr}(& Wordlabel3), (long)20);
((CDataFile *)itsFile)->ReadSome((PurX&Wordlabeld), (long)20);
((CDataFile *)itsFile)->ReadSome((Pr)(& Wordlabels), (long)20);
((CDataFile *)itsFile)->ReadSome((Pr)(& Wordlabel6), (long)20);
((CDataFile *)itsFile)->ReadSome((Pr)(& Wordlabel), (long)20);
((CDataFile *)itsFile)->ReadSome((PrX&Wordlabel8), (long)20);
((CDataFile *)itsFile)->ReadSome((Pir)(& Wordlabel9), (long)20);
((CDataFile *)itsFile)->ReadSome((Pu)X&Wordlabel10), (long)20);
((CDataFile *)itsFile)->ReadSome((Pr&NumOfWords), (long)10);
((CDataFile ¥)itsFile)->ReadSome((PrX&NumOf Vers), (long)10);

/* Read the recorded versions from the data file */
((CDataFile *)itsFile)->ReadSome(the Versions,(long Xsizeof(char)*50));

/* Read the recorded LPC Data from disk This is 10bytes if the regular processor is used =>
1500* 10= 15000 bytes This is 12bytes if the floating pt. co processor is used => 1500*12=
18000 bytes */
((CDataFile *)itsFile)->ReadSome((Ptr)LPCData,(long X(sizeof (double)* 1500));

/* Read the parameters, biases, and weights form the data file */
((CDataFile *)itsFile)->ReadSome((Pir)(&NumInNuron), (long)sizeof(short));
((CDatwFile *)itsFile)->ReadSome((Ptr)(&NumHidNuron), (long)sizeof(short));
((CDataFile *)itsFile)->ReadSome((Pir)(&NumOutNuron), (long)sizeof(short));
((CDataFile *)itsFile)->ReadSome((Pur&NumOfPatt), (long)sizeof(short));
((CDataFile %)itsFile)->ReadSome((PtrX&Biases), (long)sizeof(char));
((CDataFile *)itsFile}->ReadSome((PrX&UpdateType), (long)sizeof(char));

Software Vers. 18.0 - 139 - C.L.April 1991.

((CDatsFile *)itsFile)->ReadSome((PrX&Presentation), (long)sizeof(char));
((CDataFile *)itsFile)->ReadSome((Ptr)&RandomWeights), (long)sizeof(char));
((CDataFile *)itsFile)->ReadSome((PrX&LeamRate), (long)sizeof(float));
((CDatsFile *)itsFile)->ReadSome((Pu)&Momentum), (long)sizeof(float));
((CDataFile *)itsFile)->ReadSome((Pu)(& StopValue), (long)sizeof(floa);
((CDataFile *)itsFile)->ReadSome((Pu)&Grade), (ong)sizeof(short));

BuildWindow(NULL);
/* Set window title to the name of the file */
itsWindow->Se1Txﬂe(macSFRepl_y->mame);
itsWindow->Select(); /* Make this the active window */
gBartender->DisableCmd(cmdOpen);

}

/t***#**t‘#tttt‘*t*#t##t*‘##“*“‘*tt#tttt‘lt“*t‘*tttt“‘#itttttt*‘*ttt*ttt**l

DoSave {OVERRIDE} Save a file under the same name. Return TRUE if save was successful.

tt‘t“ttt#“tt‘##**‘t*t*##‘*ltt“*tttt‘#ttttt‘##*#ttttttttt*t**#t*tt***#/

Boolean CBackpropDoc::DoSave()

{
long *thePosn;
if (itsFile == NULL) /* No file created yet. Save is the same as SaveAs. */
return(DoSaveFileAsQ);
else
{ /*Write out information to itsFile */

((CDataFile *)itsFile)->SetLength((long) 65536);

((CDataFile *)itsFile)->SetMark((long) 0,fsFromStart);

((CDataFile *)itsFile)->WriteSome((Ptr}&PatientName), (long)31);
((CDataFile *)itsFile)->WriteSome((Ptr{(& TherapistName),(long)31);
((CDataFile *)itsFile)->WriteSome((PuX&Wordlabell), (long)20),
((CDataFile *)itsFile)}->WriteSome((Pr)}& Wordlabel2), (ong)20);
((CDataFile *)itsFile)->WriteSome((PurX& Wordlabel3), (long)20);
((CDataFile *)itsFile)->WriteSome((Pr{& Wordlabeld), (long)20);
((CDataFile *)itsFile)->WriteSome((Pr{(& Wordlabel5), (long)20),
((CDataFile *)itsFile)->WriteSome((Pr{& Wordlabel6), (ong)20);
((CDataFile *)itsFile)->WriteSome((Pr{& Wordlabel7), (ong)20);
((CDataFile *)itsFile)->WriteSome((PrX& Wordlabel8), (long)20);
((CDataFile *)itsFile)->WriteSome((Pr(& Wordlabel9), (long)20);

Software Vers. 18.0 - 140 - C.L.April 1991.

((CDateFile *)itsFile)->WriteSome{(Pr}& Wordlabel10), (long)20);
((CDataFile *)itsFile)->WriteSome((Pu X &NumOfWords), (long)10);
((CDataFik *)itsFile)->WriteSome((Pu & NumOfVers), (long)10);
DoneNew=FALSE;

((CDataFile *)itsFile)->WriteSome(the Versions, (long Xsizeof(Boolean)* 50));

* Write the recarded LPC Data to disk (pointer at 332) */
((CDataFile *)itsFile)->WriteSome((Pur)LPCData,(long)(sizeof(double)* 1500));
DoneRecord=FALSE;

((CDataFile *)itsFile)->WriteSome{(Pur){&NumlnNuron), (long)sizeof(short));
((CDataFile *)itsFile)->WriteSome((Ptr)}{(&NumHidNuron), (long)sizeof(short));
((CDataFile *)itsFile)->WriteSome((PtrX & NumOutNuron),(long)sizeof(short));
((CDatzFile *)itsFile)->WriteSome((Pur}&NumOfPatt), (long)sizeof(short));
((CDataFile *)itsFile)->WriteSome((PtrX & Biases), (ong)sizeof(char));
((CDataFile *)itsFile)->WriteSome((Pr)}(&UpdateType), (long)sizeof(char));
((CDatzFile *)itsFile)->WriteSome((Pur)Y(&Presentation), (long)sizeof(char));
((CDataFile *)itsFile)->WriteSome{(Prr)X & Random Weights),(long)sizeof(char));
((CDatFike #)itsFile)->WriteSome((Pr)(&LeamRate), (long)sizeof(float));
((CDataFile *)itsFile)->WriteSome((Pr)}(&Momentum), (long)sizeof(float));
((CDataFile *)itsFile)->WriteSome((Pr(& StopValue), (long)sizeof(flcat));
((CDataFilke *)itsFile)->WriteSome{(Pur & Grade), (long)sizeof(short));

/* Write the weights and biases to disk (pointer at 358+ 1500*double) */
((CDataFike #)itsFile)-> WriteSome((Pr)IHWt,(long Xsizeof(double) *NumInNuron
*NumHidNuron));
((CDataFile ®)itsFile)->WriteSome((Ptr)HOW,(long)(sizeof(double)* NumOutNuron
*NumHidNuron));
if(Biases)
{
((CDataFile *)itsFile)->WriteSome((Ptr)HiddenBias, (long X sizeof(double)* NumHidNuron));
((CDataFile *)itsFile)->WriteSome((Ptr)OutputBias,(long X(sizeof(double)*NumOutNuron));
)
dirty = FALSE;/* Save makes document clean */
reurn(TRUE); /* Save completed */

Software Vers. 18.0 - 141 - ‘ C.L.,April 1991.

,*#ttlttt‘.l“‘t"‘t.."‘l.t.O"tt"ttt“‘.‘tt“‘.."'t“ttt“"..*“‘tttt‘tllt

DoSaveAs {OVERRIDE] Save a file under another name.
Return TRUE if save was successful. Note that this message is sent by the
DoSaveFileAs() method afterthe user picks a new name and confirms the save.

*tltt*t“t*“‘l““‘#‘t"tttt‘tttll‘t‘t“t.tt‘l."“‘ttt‘t“‘tll“‘t‘lt‘t“ttt/

Boolean CBackpropDoc::DoSaveAs(SFReply *macSFReply) /* Std File Reply %/
{
/* If a file object already exists, throw it out. This will also close the file. - %
if (itsFile = NULL)
itsFile->Dispose();
/*Create and initialize a new file object. Type casting will be necessary. */
itsFile = new(CDataFile);
((CDataFile *)itsFile)->IDataFik;
itsFile->SFSpecify(macSFReply); /* Specify file parameters ¥/
itsMainPane->Refresh();
/* Create a new file on disk with desired creator and type. */
itsFile->CreateNew(gSignature, TEXT);
((CDataFile *)itsFile)->Open(fsRdWrPerm); /* Open file with read/write access */
/* Change name of window to match new file name */

itsWindow->SetTitle(macSFReply->fName);

return{ DoSave()); /* Save contents to disk */
)

/***t#‘*tt‘**‘#‘tlt‘#tttﬁt‘*ttttttt‘#tt‘#t“#t‘##"t‘l‘t*‘tt‘t#“tt#“*t*tt*t#l
BuildWindow {XXX])

Build a window for a document. BuildWindow() takes care of the common stuff:

Creating a window, and creating and arranging panes within the window.
#*****tt#**t*#‘*t‘##‘#*t*ttt“tt*“tti‘t‘lttt“tttt**‘t*ttttltt*&t*tllttt*ttt#/
void CBackpropDoc::BuildWindow(Handle theData)

CScrollPane *theScrollPane;

Rect sizeRect;

/* Create a non-floating window using a WIND resource template */
itsWindow = new(CWindow);
itsWindow->TWindow(WIND_Backprop, FALSE, gDesktop, this);

Software Vers. 18.0 - 142 - ‘ C.L.,April 1991.

/* Specify maximum and minimum dimensions of our window
SetRect(& sizeRect,0,34,512,338);
itsWindow->SetSizeRect(& sizeRect);

/* Create a ScrollPane in the window
theScrollPane = new(CScrollPane);

/* Use a resource template to set parameters of the ScroliPane
theScrollPane->IViewRes(ScPn', 1, itsWindow, this);

/* Make ScrollPane fit snuggly to the frame of the window
theScrollPane->FitToEncIFrame(TRUE, TRUE);

/* Put our BackpropPane inside the ScrollPane
itsMainPane = new(CBackpropPane);

*/

*/

*/

*/

*/

((CBackpropPane*)itsMainPane)->IBackpropPane(theScrollPane, this, 0, 0, 0, 0,sizELASTIC,

sizEL ASTIC);
itsMainPane->FitToEnclosure{TRUE, TRUE);
theScrollPane->InstallPanorama((CPanorama®)itsMainPane);

/* BackpropPane may want to be the Gopher when Document is active so it can

directly receive key and menu commands
itsGopher = itsMainPane;

*/

/*#*t‘*"ﬁ*“‘t#*t*t**"#tt*t##ttt‘t‘t#**ttt“tlttttt‘#‘*#‘*ttt*tt‘**tt##t**l*‘

DoRevert {OVERRIDE] Throw out the current contents of a document and revert to the last saved version.

t###tt#**‘l‘tt"‘**#*‘#"**‘#tt#ttt“*#t*“#tttt*tttttttl*#t#t‘*ttttttt*tt#t**/

void CBackpropDoc::DoRevert()

{

Point homePos; /* Home position of a Panorama

/* Dispose of current (in memory) contents of the document
/* and read the information back from the file on disk

/* If you use Panoramas, remember to reset them back to the home position

((CPanorama®)itsMainPane)->GetHomePosition(& homePos);
((CPanorama*)itsMainPane)->ScrollTo(homePos, FALSE);

Software Vers. 18.0 - 143 -

*/

*/
*/

*/

C.L.April 1991.

}

itsMainPane->Refresh();

/* Force update of contents
dirty = FALSE; /* Reverts 10 a clean document

*/
*/

,*““#‘tt‘“t*tt‘*l‘#l.tt'*“#'tt“‘l‘l“Olttt‘ttttttttt‘ttl*‘tt.ttt“t“t‘ltt

UpdateMenus {OVERRIDE)

* Perform menu management tasks

#**“‘#“ttt‘tttttttl‘t##tt‘lt"t‘tt‘t‘t““t“‘ttt"t*‘tt*“‘t‘ttttt*tt‘t*‘“/

void CBackpropDoc::UpdateMenus()

(

/* Enable commands handled by your Application class and std. commands

inherited::UpdateMenus();

/* Acquire MENU
gBartender->EnableCmd(cmdAcquire);
gBartender->EnableCmd(cmdNewSound);

/* Train MENU
gBarntender->EnableCmd(cmdSetupTrain);
gBartender->EnableCmd(cmdTestNetwork);
gBartender->EnableCmd(cmdGradeRate);
gBartender->EnableCmd(cmdTrainNetwork);
gBartender->EnableCmd(cmdNetWeights);
gBartender->EnableCmd(cmdNew Weights);
gBartender->EnableCmd(cmdFileWeights);

/* Recognize MENU
gBartender->EnableCmd(cmdRecognize);

/* Utilities MENU
gBartender->EnableCmd(cmdUtterSpect);
gBartender->EnableCmd(cmdTimeAmpl);
gBartender->EnableCmd(cmdSpeechSplice);
gBartender->EnableCmd(cmdPrintPlot);

/* Hierarchical MENU grademethod
gBartender->EnableCmd(cmdchebychev);
gBartender->EnableCmd(cmdeuclidean);
gBartender->EnableCmd(cmdhamming);
gBartender->EnableCmd(cmdminkowski3);

Software Vers. 18.0

- 144 -

*/

*/

*/

*/

*/

*/

C.L.April 1991.

gBartender->EnableCmd(cmdminkowskid);
gBartender->EnableCmd(cmdminkowskiS),
gBartender->EnableCmd(cmdminkowski6);
gBartender->EnableCmd(cmdminkowski7);

/**ttttt‘t‘*t“‘ttttt#“tt‘l‘ltt‘ttttltt.“‘t“tt“ttttt#‘ttt*#‘ttt*‘ttt#tttt‘t

Acquire()

This method sends a start record message to the IBM unit to begin recording
speech for 1 seconds and also sends a playback message to re-synthesize the utterance.

In turn, the IBM returns the LPC parameters in an array.

tttttttt“‘t‘##‘*t“#‘*‘tltl“t‘t*ltt‘t“t““t‘l*‘t“‘t“tt“‘ttt‘t‘*tttt*ttt&/

void CBackpropDoc:: Acquire()

{

char Message1[255),Message2{255};

short Where x t,dialogID,item Type itemHit, tempga,tempgb ,Record Vers,RecordWrd,
double *FloatArray;

Str63 filename;

Pu dStorage;

DialogPr Recordbox;

WindowPrr behind;

GrafPr CurrentPort;

Handle tempitemga,tempitemgb,item CBitem;
Rect box;

/* Set alert box message*/

strepy(Message1,™\pThis version of the utterance has already been recorded. You may record over it, but

the existing recording will be destroyed!”);

strepy(Message2,™pThis version of the utterance has not been recorded. After recording, you may then

select it to playaback.”);
ParamText(Messagel Message2,' ',);

f* Allocate space for LPCData
FloatArray =calloc(NumInNuron, sizeof(double));

behind=(WindowPu)-1L);

dialogID=DLOGrecard;

dStorage=NULL;

Recordbox = GetNewDialog(dialogID,dStorage,behind);

Software Vers. 18.0 - 145 -

*/

C.L.April 1991,

/* Set File Name of Dialog, if opened */
if (itsFile 1=NULL)
{

itsFile->GetName(filename);

GetDltem(Recordbox,3,&itemType, &item,&box);

SedText(item filename);

/* Set Date for the Record box */
SetDate(Recordbox 4);

/¢ Outline Record & Playback and Done buttons ' */
GetPort(&CurrentPort);
OutlineBution (Recordbox,1);
OutlineButton (Recordbox,25);
OutlineButton (Recordbox,33);
SetPort(CurrentPort);

/¢ Initial Setting to the first utterance ‘ /i
tempga=5;
RecardWrd=0,
SetRadioButton(tempga, Recordbox, &tempitemga);

/* Initial Setting to the Excellent version */
tempgb=15;
RecordVers=0;
SetRadioButton(tempgb, Recordbox, &tempitemgb);

/* Set Word names in the radio boxes */
SetWords(Recordbox,&Wadlabell,&WordlabelZ,&WordlabeB,&WmdlabeM,
&Wordlabels,&Word]abelG,&Wordlabel?,&Wordlabel8,&Wo:ﬂlabelQ,&Wordlabel10);

itemHit=0;
while(itemHit !=33 && itemHit 1=Cancel)
{

/* Set the appropriate check boxes indicating pre-recorded words */
SetCheckBoxes(Recordbox RecordWrd theVersions, NumOfV ers);
ModalDialog@NULL, &itemHit);

Software Vers. 18.0 - 146 - C.L.Aprl 1991.

GetDIltem(Recordbox itemHit, &itemType &item,&box);

/* Set appropriate word selection based on radio button ¢/
if (itemHit != tempga && itemHit > 4 && itemHit < (NumOfWords+5))
{

SetCtlValue((ControlHandle) tempitemga, FALSE);

tempga=itemHit; /* Set old item number */
tempitemga=item; /* Set old handle name */
/* Record word # starting at wordnumber=0 */
RecordWrd=itemHit-5;

SetCilValue((ControlHandle)item, TRUE);

/* Alert Message indicating the selection of an existing recorded version */
if (the Versions[RecordWrd*NumOfVers+RecordVers])
CautionAlert(128 NULL);
}
/* Set selected versions radio button */

if (itemHit != tempgb && itemHit > 14 && itemHit < (NumOfVers+15))

{
SetCtlValue{(ControlHandle) tempitemgb FALSE);

tempgb=itemHit; /* Set old item number *
tempitemgb=item; /* Set old handle name */
/* Record version; Excellent=0, Unsatisfactory=4 */

RecordVers=itemHit-15;
SetCilValue((ControlHandle)item, TRUE);

/* Alert Message indicating the selection of an existing recorded version */
if (the Versions[RecordWrd*NumOf Vers+RecordVers])
CautionAlert(128 NULL);

/* This playsback whichever word/version combination has been selected

if the playback button was selected and that utterance exists */

if (itemHit==25 && theVersions[RecordWrd*NumOfVers+RecordVers])
PlaybackWord(RecordWrd*NumOfVers+RecordVers);

J* Tells user selected word can't be played back because it hasn't been recorded */
if (itemHit==25 && !theVersions[RecordWrd*NumOfVers+RecordVers])
CautionAlert(129 NULL);

Software Vers. 18.0 - 147 - C.L.April 1991.

if (itemHit=1) /* Save Data since user selected Record ¢/

{

theVersions[RecordWrd*NumOfVers+RecordVers}=TRUE;

/*LPCData is a big dynamic array. FloatArray inserts the data from the acquired
utterance into the proper segment in the array LPCData as given below */
Getl PCData(FloatArray);

Where=NumInNuron*(RecordWrd*NumOfVers+RecordVers);
for (x=0; x<NumInNuron;x++)

{

LPCData[Where+x}=FloatArray{x];
FloatArray{x)=0.0;

}

if (itemHit==33) /* Done*/
DoneRecord=TRUE,

free(FloatArray),

DisposDialog(Recordbox);
itsMainPane->Refresh();

/*‘t##ttt#l“t**#“#**t‘*tt#ttt#t‘t**t#‘#l‘tilttt“##‘tt*‘tt‘t“tt*#ttt*t‘*t#*‘

NewSounds(

This is the new sound acquisition routines to record playback, and storing of the speech data
and it also generates the LPCData.

#*4‘*tttt##***‘#t&*#""t#tt*tt#“*t*t**##tttt‘#*#t“##t*tt**t*#****t*#*t*t/

void CBackpropDoc::NewSounds() /* Sound test project */

{
f*char
unsigned char
short
short
long
Fixed
OSErr
OSType

Software Vers. 18.0

AlentText[255};

*mySndPtr;
mySndid,myNumChans,mySampSize,volRefNum,myRefNum;
SndLevel MeterLevel;

NumOfBytes NumOfFrames,myHeaderLen,myBuffSize,myInRefNum;
mySampRate;

myEm;

myCreator,myFType,myCompType;

- 148 - C.L..April 1991.

SPB mySPB;

Point myComer;

Sur255 SoundName;

char theText[255];

short dialogID,itemType,itemHit PlaybackMsg RecordMsg;
Ptr dStorage;

DialogPur Soundbox;

WindowPtr behind;

GrafPr CurrentPort;

Handle item,mySndH;

Rect box;

strepy(AlertText,"pThere has been a problem with opening the sound file. Please click on a file that

exists.”);
ParamText(', AlertText,' ', ");

behind=(WindowPtrX-1L);

dialogID=600;

dStorage=NULL;

Soundbox = GetNewDialog(dialogID,dStorage,behind);

mySndld=30493; 30493 is my test sound
NumOfBytes=0L;

myCreator="cris";

myFType=TEXT;

volRefNum=(;

NumOfFrames=(0L;

myBuffSize=22000;

itemHit=0; -

PlaybackMsg=3;

RecordMsg=4;

Outline Record & Playback and Done buttons
GetPort(& CurrentPort);
OutlineButton (Soundbox,1);
OutlineButton (Soundbox,3);
OutlineButton (Soundbox 4);
SetPort(CurrentPort);

Software Vers. 18.0 - 149 -

C.L.April 1991.

ModalDialog(NULL, &itemHit);
GetDliem(Soundbox itemHit, &item Type, & item, &box);

if (itemHit==PlaybackMsg)

{
myEm=FSOpen(SoundName,volRefNum, &myRefNum);

if (myErr 1= 0)
CautionAlert(129NULL); Uses ParamText 1

else
myErmr=SndStartFilePlay (NULL, myRefNum, 0, myBuffSize, NULL, NULL, NULL,
FALSE);

FSClose(myRefNum);

)

if(itemHit=RecordMsg)

{
Create and open a file with name SoundName
myEm=Create (SoundName, volRefNum, myCreator, myFType);
myErr=FSOpen (SoundName, volRefNum, &myRefNum);

Open the curreat sound device and get its settings

myErr=SPBOpenDevice (", siReadPermission, &myInRefNum);
myErr=SPBGetDeviceInfo (myInRefNum, siNumberChannels, (Pr)&myNumChans);
myErr=SPBGetDevicelnfo (myInRefNum, siSampleRate, (Ptr)& mySampRate);
myErr=SPBGetDevicelnfo (myInRefNum, siSampleSize, (Ptr)&mySampSize);
myEmr=SPBGetDevicelnfo (myInRefNum, siCompressionType, (Pr)&myCompType),

Allocate the buffer space that I intend on storing the sound data in
mySndPtr= (unsigned char *) calloc (myBuffSize, sizeof(char)),
mySndH=NewHandle((Size) 22000);

Define the structure of the Sound Parameter Block (SPB)
mySPB.inRefNum=myInRefNum;
mySPB.count=myBuffSize;
mySPB.milliseconds=0L;
mySPB bufferl ength=myBuffSize;
mySPB.bufferPtr= (Ptr) mySndPtr;
mySPB.completionRoutine=NULL;
mySPB.interrupRoutine = NULL;

Software Vers. 18.0 - 150 - C.L.April 1991.

mySPB.userLong=0L;
mySPB.emror=noErTr;
mySPB.unused1=0L;

SetPi(&myCormer,100,100);
myErmr=SndRecord(NULL, myComer, siBestQuality, &mySndH);

Set up a file sound header and write it into the file with reference myRefNum
myEmr=SetupAIFFHeader(myRefNum, myNumChans, mySampRate, mySampSize,
myCompType, myBuffSize, NumOfFrames);

Record the sound
myErr=SPBRecord(&mySPB, FALSE);

SetPi(myComer, 100, 100);
myErr=SndRecordToFile(NULL, myCorner, siBestQuality, myRefNum);

Use SPB record to file
myErr=SPBRecordToFile(myRefNum, &mySPB, FALSE);

Write the data to the open file named SoundName since the file
position is set at the end of the header
myErmr=FS$ Write(myRefNum, &myBuffSize, (Pr)mySndPtr);

GetFPos(myRefNum, &NumOfBytes),

Close the sound device and the file
myErm=FSClose(myRefNum);
myEm=SPBCloscDevice(myInRefNum);

Release the memory allocated for the sound data
free{(mySndPr);
mySndPur=NULL;

GetDltem(Soundbox,S,&itemType, & item, & box);
GetIText(item,SoundName);
Jwhile(itemHit =1 & & itemHit 1=2);

Software Vers. 18.0 - 151 - C.L.Aprl 1991.

if (itemHit==PlaybackMsg)
{
mySndChan=NULL;
mySndHandle=GetResource('snd ', mySndId);
myEm=SndPlay(mySndChan,mySadHandle kAsync);
)
if(itemHit==RecordMsg)
{
SetPy(myCormer,50,50);
mySndH=NULL;
myErr=SndRecord(NULL, myCorner, siBestQuality, &mySndH);
mySndHandle=mySndH;
AddResource(mySndH,'snd ', mySndid+1,SoundName);

DisposDialog(Soundbox);
DisposHandie(mySndH);
itsMainPane->Refresh();*/

/****‘**#t#**‘t“#tt**#*‘t“tt#t#tt******t##t#t‘t***tt**‘t**tttttt*#t##*“t‘**t

SetupTrain() This method creates a dialog box to initialize the architecture of the

network and style of data presentation.

****tt*‘#ttt‘*t“*t‘*#ttt‘ttttt#t‘tl‘t‘ttttttt*‘t“*ttttttttltttt*t**“#t#*t***/
void CBackpropDoc::SetupTrain()
{

Boolkan BiasPresType,UpdType Randwis IsText;

char OldText[255] NewText[255);

short dialogID,itemType, itemHit,OldItemHit itemNo,tempga,tempgb, HidNurons;

short InpNurons,OutNurons;

float Stopat,Lmrate, Momntm,UpperLimit,LowerLimit,Value,inc;

Sur255 theText;

Pu dStorage;

DialogPtr Bpbox;
WindowPtr behind;
GrafPr CurrentPort;

Handle tempitemga tempitemgb,item NewlItem,OldItem;
ControlHandle macControl;
Rect box;

Software Vers. 18.0 - 152 - C.L.April 1991.

dialogID=DLOGbp;

behind=(WindowPurX-1L);

dStorage=NULL;

Bpbox = Ge(NcwDialog(dialogH),dStmagc.hehind);

/* Outline DONE button

GetPart(& CurrentPort); OutlineButton (Bpbox,1);

/* Sequential presentation setting
if (Presentation)
tempga=16;
else
tempga=15;

SetRadioButton(tempga, Bpbox, &tempitemga);

/* Baich Update setting
if (UpdateType)
tempgb=18;
else
tempgh=17;

SetRadioButton(tempgb, Bpbox, &tempitemgb);

/* Initial Setting of input ,hidden, and output neurons

sprintf (OldText, "%d", NumInNuron);
GctDIl.em(prox,S,&itemType,&itcm,&box);
Oldltem=item; /* Initialization required
CoStr255(0ldText, theText);
SetText(item,theText);

sprintf (NewText, "%d", NumHidNuron);
CioStr255(NewText, theText);
Ge(DItem(prox,9,&itemTypc,&item.&box);
SeuText(ilem,ﬂreText);

sprintf (NewText, "%d", NumOutNuron);

CioStr255(NewText, theText);
GelDItem(prox,lO,&itcmType,&item,&box);
SetText(item,theText);

Software Vers, 18.0 - 153 -

*/

*/

*/

*/

*/

C.L.,April 1991,

/* Set initial values of method
Value=0.0;
UpdType=UpdateType;
Stopat=StopValue;
Lmrate=LearnRate;
Bias=Biases;

*/
itemHit=0; IsText=FALSE;
PresType=Presentation; InpNurons=NumInNuron;
Randwts=RandomWeights; HidNurons=NumHidNuron;,
OutNurons=NumOuiNuron; Momntm=Momentum
OldltemHit=0;

SetCurrentValues(Bpbox, Bias, Momntm, Stopat, Lrnrate, Randwts);

while(itemHit !=1 && itemHit != Cancel)

{

ModalDialog(NULL, &itemHit);
GetDItem(Bpbox,itemHit, &itemType, &item,& box);
macControl=(ControlHandle) item;

switch (itemHit)

{

case 4:
case 5:
case 6:
if (IsText)
{
TextMode(notSrcCopy); /* Inverse Mode */
switch (itemHit)
{
case4: /* Up increment */
Value=Value+inc;
if (Value>UpperLimit)
Value=UpperLimit;
break;
case 5: /* Down Increment) */
Value=Value-inc;
if (Value<LowerLimit)
Value=LowerLimit;
break;
case 6: /™ Middle Value _ */
Value=UpperLimit/2.0;
break;
) f*End Case */
switch(itemNo)/* Set the chosen variable to program level */
{
Software Vers. 18.0 - 154 -

C.L.April 1991.

case9: /* Hidden Neurons */
HidNurons=(short) Value;

case 11:/* Learning Rate */
Lmrate=Value;
break;

case 12:/* Momentum %/
Momntm=Value;

: break;

case 13./* Stopping Value */
Stopat=Value;
break;

) /*End Case */

/* Do update and store as old value now */
sprintfNewText, "%f", Value);
CioStr255(NewText, theText);
SetIText(Newltem,theText);
strepy(OldText NewText);
Oldltem=NewItem;
} /*Endif */
break;
case 9:
case 11:
case 12:
case 13:
switch(itemHit)
{
case 9: [*Hidden Neurons */
UpperLimit=15.0;
LowerLimit=2.0;
inc=1.0;
Value=(float)HidNurons;
break;
case 11: /*Leaming Rate */
UpperLimit=5.0;
LowerLimit=0.0;
inc=0.1;
Value=Lmrate;
break;

Software Vers. 18.0 - 155 - C.L..April 1991.

case 12; [*Momeatum */
UpperLimit=2.0;
LowerLimit=0.0;
inc=0.1;
Value=Momntm;
break;
case 13: /*Stopping Value */
UpperLimit=1.0;
LowerLimit=0.02;
inc=0.02;
Value=Stopat;
break: .

/* Read in current value and redisplay highlighted . */
TextMode(notSrcCopy);
Newltem=item;
IsText=TRUE;
itemNo<=itemHit;
GetIText(Newltem,theText);
SetIText(Newltem,theText);
break;
case 14: /* Biases=TRUE-> on; Biases=FALSE-> OFF */
SetCuValue(macControl,(1 - GetCtlValue(macControl)));
Bias=GetCtValue{macControl);
break;
case 15:
case 16: * 15=Sequential Presentation 16=Random Presentation */
if (itemHit !=tempga)
{
SetCValue((ControlHandle) tempitemga,FALSE);
tempga=itemHit; /* Set old item number */
tempitemga=item; /* Set old handle name*/
)
SetCtlValue(macControl, TRUE);
/* Sequential Presentation=FALSE Random Presentation=TRUE */
PresType=itemHit-15;
break;

case 17:

Software Vers. 18.0 - 156 - C.L.,April 1991.

case 18: /* 17=Singl update 18=Batch update

if (itemHit !=tempgb)

{
SetCilValue((ControlHandle) tempitemgb FALSE);
tempgb=itemHit;/* Set old item number
tempitemgb=item ™ Set old handle name

) .

SetCtlValue(macControl, TRUE);

/*Single update=FALSE Batch update=TRUE

UpdType=itemHit-17;

break;

case 26:/* Random Weight selection

)

SetCuValue(macControl (1 - GetCtlValue(macControl)));
Randwts=GetCtlValue(macControl);

break;

/* EndCase

TextMode(srcCopy),/* Normal Mode
if (IsText) && (itemType!=32) & &(OldItemHit!=itemHit))

{

)

/* part 1 -> a text item is currently active
/* part 2 -> don't want to un-highlight if an icon incrementer
/* part 3 -> different item from previous time

IsText=FALSE;/* set flag false -> no more text fields
CloStr255(0OldText theText);
SetIText(OldItem,theText);* un-highlight text field

if (itemType == 8) /¥ current item is also at text field
{

strepy(OldText NewText);

Oldltem = Newltem;

IsText=TRUE;

OldltemHit=itemHit;
/* End While
SetPort((GrafPtr)CurrentPort);

if (itemHit==1)/* place dialog variables into program variables

Software Vers. 18.0 - 157 -

*/

*/
*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

C.L.April 1991.

UpdaleType=Upd’Iype, Presentation=PresType; Biases=Bias;

Momentum=Momntm; LeamRate=Lmrate; StopValue=Stopat;
NumHidNuwron=HidNuwrons; RandomWeights=Randwts; NumInNuron=InpNurons;
NumOutNuron=OutNurons; '

)

DisposDialog(Bpbox);

itsMainPane->Refresh();

/#*#tt‘**t‘**‘“‘l#t“““tt.“t‘tllttt‘ll‘tt““tt‘ttt‘i“ttttlttttt‘ittttt

Set Weights - Creates new weight values for existing network
t**“*tttttl‘*i‘*‘l’ttttttt*#t#tt**#tttt“tttttt##tt#tt*tttttttttttttttttt*/

void CBackpropDoc::SetNetWis(Boolean SetWts)

{
char Message1[{255) Message2{255};
short Number, AlertAction=2;
/* Set alert box message */

strcpy(Message1,™pThe existing weight structure will be destroyed. Please save before proceeding
and/or SaveAs under a different file name.");

strcpy(Message2,™pThere is no data file to read weight structure from. Please choose set new weights
instead or Joad an existing data file.");

ParamText(Messagel, Message2,'",');

if (SetWts && itsFile!=NULL) /* File Weights - Check to see if a file has been opened first */

{
/* Waming: Network weight data exists. This overwrites existing data => [HW1t I=NULL */

if (HW[0]'=0)
{
AlertAction=CautionAlert(130,NULL);
itsMainPane->Refresh();
)
if (AlertAction=2) /* Overwrite */
{
/* Read the weights and biases from disk (pointer at 358+ 1500*double) */

((CDataFile *)itsFile)->SetMark((long) (358+1500*sizeof(double)), fsFromStart);
((CDataFile *)itsFile)->ReadSome((Ptr)IHWt, (long)(sizeof(double)*NumInNuron

Software Vers. 18.0 - 158 - C.L.April 1991.

*NumHidNuron));

((CDawFilk *)itsFile)->ReadSome((Pr)HOWL, (long)(sizeof{double)* NumOutNuron*
NumHidNuron));

((CDataFile *)itsFile)->ReadSome{(Ptr)HiddenBias, (long)Xsizeof (double)* NumHidNuron));
((CDataFile *)itsFile)->ReadSome((Pir)OutputBias, (long)sizeof(double)* NumOutNuron));

)
)
/* itsFile==NULL -> They chose t0 read from a file that doesn't exist. */
if (SetWts & & itsFile==NULL)
(
StopAlert (129 NULL);
itsMainPane->Refresh();
}
/* New Weights or Reinitialize weights not having loaded from a file */
if (!SetWits)
{
/* Waming: Network weight structure exists.Wants to reinitialize weights but has not saved the
existing data file yet. | ¥/
HAHW0]'=0)
{
AlertAction=CautionAlert(130,NULL);
itsMainPane->Refresh();
)
if (AlertAction==2)
{
SetWeights(THWt, NumInNuwon*NumHidNuron, RandomWeights);
SetWeights(HOWt, NumHidNuron*NumQutNuron, RandomWeights);
SetWeights(HiddenBias, NumHidNuron, RandomWeights);
SetWeights(OutputBias, NumOutNuron, RandomWeights);
}
)

/***t‘***#**‘#‘l##tt‘*l#‘t“tttt‘*"‘ttltt*‘ttttl#t*****ttttt#t*#ttt‘tt#‘t‘t

TrainNetwork - Does it!

ttttt“‘ttttt#‘*t###‘#**tlt‘##*tl‘t#t#t*t*t#‘***##*tttttt‘t#‘t**#t#tt/

void CBackpropDoc:: TrainNetwork()

Software Vers. 18.0 - 159 - C.L.April 1991.

WindowPtr
GrafPu
Handle

*PaitNumArray, DoneTraining;

x,y,z,PattNum,TrislNumber, Start, Finish, Count, itemType, itemHit;
theSeed;

*[HWiChange, *HOWChange, *HiddenNurons; *OutputNurons, *TrainingPatt;
*DeltaHidden, *DeltaOutput, WeightedSum, TotalError, OldTotalError;
*BHOWChge, *BIHW1tChge;

dStorage;

Bpupdate;

behind;

CurrentPort;

item;

EventRecord Event;

Rect

box;

behind=(WindowPtr)(-1L);

dStorage=NULL;

Bpupdate = GetNewDialog(DLOGbpupdate dStorage,behind);
DrawDialog(Bpupdate);

/* Outline Exit buttons*/
GetPort(& CurrentPort);
OutlineButton (Bpupdate,1);
SetPort(CurrentPort);

DoneTraining=FALSE;
/* Armay Allocation and Initialization Arrays are created in a 1-D form but accessed in the traditional
2D format using the conversion formula Amay(row,col) = ColDim*Row+Col.*/

HiddenNurons =calloc(NumHidNuron, sizeof(doubk));
OutputNurons =calloc(NumOutNuron, sizeof(double));
TrainingPatt =calloc(NumOfPatt* NumOutNuron, sizeof(double));
~ DeltaHidden =calloc(NumHidNuron, sizeof(double));
DeltaOutput =calloc(NumOutNuron, sizeof(double));

HOWiChange =calloc(NumHidNuron*NumOutNuron, sizeof(double));
IHWtChange =callocNumInNuron*NumHidNuron, sizeof(double));

SetWeights(HWtChange, NumInNuron*NumHidNuron, RandomWeights);
SetWeights(HOWtChange, NumHidNuron*NumOutNuron, RandomWeights),

Software Vers. 18.0 - 160 - C.L.April 1991,

if (UpdaicType)
{
BHOWtChge=calloc(NumHidNuron*NumOutNuron,
BIHW1Chge=calloc(NumInNuron*NumHidNuron,
)
/* Set training patterns
SetTrainingPat(TrainingPatt, NumOutNuron);

/* Network method initialization of paramters
Stan=0;

TrialNumber=0;

itemHit=0;

OldTotalErrar=0;

TotalError=(.0;

Count=0;

/* Set the form of network UPDATING:
UpdateType=TRUE --> Batch pattern update
UpdateType=FALSE —-> Single pattern update

if (UpdaieType)

Finish=NumOfPatt;
else
Finish=1;

sizeof{double));
sizeof(double));
*/

*/

*/

/* PattNumArray tells the program which pattemns have been presented by placing a one
in the array position after presenting it. The program will continue to randomly look for

a pattern number that does not have a one in it until it has presented all patterns. *f
if (Presentation)
PattNumA rray=calloc(NumOfPatt sizeof (Boolean));
d
{
/* Set the form of network pattern PRESENTATION:
Presentation=TRUE ---> Random pattern presentation
Presentation=FALSE ---> Sequnetial pattern presentation */
if (Presentation)
{
GetDateTime{&theSeed);
srand(theSeed);
}
Software Vers. 18.0 - 161 - C.L..April 1991.

for (z=Start; 2<Finish; z++)
{
if (Presentation)
PattNum=GetPatierns(PattNumArray, NumOfPatt);
else
PattNum=z;

/* Calculates the forward pass through the neural netwark */
CalcForwardPass(L PCData, HiddenNurons, OutputNurons, HiddenBias, OutputBias,
THWt, HOWt, NumInNuron, NumHidNuron, NumOutNuron, PattNum);

f* Calulate the TotalError based on "Error measure’ selection®/
CalcTotError(TrainingPatt, OutputNurons, PattNum Grade, NumOutNuron,Power,
&TotalError);

/* Calculate Error vector for output Nurons ¥/
for (x=0; x<NumOutNuron; x++)
DeltaOutput[x}=OutputNurons[x]*(1.0-OutputNurons[x])*
(TrainingPan[NumOutNurm‘PauNum-l-x]-OutputNurons[x]);

if ({Update Type)™ Single update */
{
/*Calculate Weight changes between OuputNurons and HiddenNurons */
for(x=0; x<NumOutNuron; x++)
{
for (y=0; y<NumHidNuron; y++)
{
HOWKZMnge[NumHideon‘Hy]:I:amRate‘DeMOutput[x]‘
Hiddanurons[y]+Momenuun‘HOWtChange[NumHideon‘x+y];
HOWt[NumHidNuron‘x+y]+=HOWtChange[NumHidI\Iuron‘x+y];
if (Biases)
OutputBias[x]+=HOWtChange[NumHidNuron*x+y];

/*Calculate Error vector for HiddenNurons */
WeightedSum=0.0;

for (x=0; x<NumHidNuron; x++)

{

Software Vers. 18.0 - 162 - C.L.April 1991.

for (y=0, ycNumOutNuron; y++)
dehwdSmchmqum[y]'HOWt[NmnHidNumn‘yﬂk
Deha}ﬁddm[x}:mddanmms[x]‘(l.O—}ﬁddmNmm[xl)’dehwdSwn;
WeightedSum=0.0;
)

*Calculate Weight change between Hidden layer and Input layer */
for (x=0; x<NumHidNuron; x++)
{
for (y=0; y<NumInNuron; y++)
{
H{Wt(}tange[NumlnNmm*Hy}:meRale‘Delmmddm[x]*
LPCData[NumInN uron*PattNum+y}+Momentum*THWChange
[NumInNuron*x +yJ;
THW{[NumInNuron* x+y]+=IHWtChange[NumInNuron* x+yl;
if (Biases)
HiddenBias[x]+=THWtChange[NumInNuron*x+yJ;

)
)
else /* Batch update type calculations®/
{
/* Calculate Weight changes between OuputNurons and HiddenNurons */
for(x=0; x<NumOutNuron; x++)
{
for (y=0; y<NumHidNuron; y++)
BHOW1Chge[NumHidNuron* x+y]+=LeamRatc*DchaOutpul[x]‘HiddenN urons(y]
+Momentum*HOWChange[NumHidNuron*x+yJ;

}

*Calculate Error vector for HiddenNurons */

WeightedSum=0.0;

for (x=0; x<NumHidNuron; x++)

{
for (y=0; yc<NumOutNuron; y++)

WcighledSum+=DehaOutput[y]"HOWL{NumHidNumn*y+x];

DeltaHidden[x)=HiddenNurons[x]*(1 .0-HiddenNurons[x])*WeightedSum;
WeightedSum=0.0;

Software Vers. 18.0 - 163 - C.L.April 1991.

f*Calculate Weight change between Hidden layer and Input layer */
for (x=0; x<NumHidNuron; x++)
{
for (y=0; y<NumInNuron; y++)

BIHWtChge[NumInNuron®*x+yH<l_eamRate* DeltaHidden[x)*
LPCData[NumInNuron*PattNum+y]+Momentum* [HWtChange[NumInNuron*x+y);
}

}

Count+=1;

NetworkUpdate(Bpupdate, TrialNumbez, PattNum-+1, LeamRate, OlTotalError);
}/* Last Pattern */
/* 1f batch update, then change all the weights here */
if (UpdateType)
{

/* Change weights between Output layer and Hidden layer */

for(x=0; x<NumOutNuron; x++)
{
for (y=0; y<NumHidNuron; y++)
(
HOW(NumHidNuron*x+y]+=BHOWChge[NumHidNuron*x+y];
HOW1tChange[NumHidNuron*x+y}=BHOWChge[NumHidNuron*x+y)/

(double)NumOfPatt;
if (Biases)
OutputBias[x}+=BHOWChge[NumHidNuron*x+y];
BHOWtChge[NumHidNuron®*x+y}=0.0;
)
)
/* Change weights between Input layer and Hidden layers */

for (x=0; x<NumHidNuron; x++)
{
for (y=0; y<NumInNuron; y++)
{
IHWt[NumInNuron‘x+y]+=BIHWtChge[NumInNm'on‘x+y];
IHWtChange[NumInNuron*x+y}=BIHWtChge[NumInNuron*x+y)/(double)NumOfPatt;
if (Biases)
HiddenBias[x}+=BIHWtChge[NumInNuron*x+y};
BIHWiChge[NumInNuron®*x+y}=0.0;

Software Vers. 18.0 - 164 - C.L.April 1991.

}
)/* end if loop

f* Exiting Routine
GetNextEvent(mDownMask, &Event);
if(IsDialogEvent{&Event))
(
DialogSelect(& Event, & Bpupdate, &itemHit);
if GitemHit==1)/*Exit
{
DoneTraining=TRUE; /* Exit while loop
DoneNetwork=FALSE;/* Exited prematurely
dirty=TRUE;

/* Completed one pattern set. Check Error and adjust Parameters

if (TotalError<(double)StopValue && OldTotalError<(double) StopValue &&

Count=NumOfPatt)

{
DoneTraining=TRUE; /* Exit while loop

DoneNetwork=TRUE; /* Exit flag set to return to main menubar

if(Count=NumOfPatt)
(

if(TotalError>OldTotalError) [*Increase in Emror from previous time

{

LearnRate/=1.2;

if (LeamRate<Lowerl.earnThresh)
LeamRate=L owerLeamThresh;

)

else MDecrease in Error from previous time

{

LeamRate*=1.01;

if (LeamRate>UpperLearnThresh)
LeamRate=UpperLeamThresh;

Software Vers. 18.0 - 165 -

*/

*/

*/

*/
*/

*/

*/

*/

*/

*/

C.L.April 1991.

/* Reinitialize array used in generating random pattern numbers
OldTotalEmmor=TotalErrar;
TrialNumber+=1;
Count=0;
TotalErrar=0.0;
for (x=0; x<NumOfPatt; x++)
PattNumArray([x}=0;

if ({UpdateType)* SingleUpdate
{
Start+=1;
if(Start==NumOfPatt)
Stant=0;
Finish=Start+1;

}while(! DoneTraining);*EndDo

if(Presentation)
free(PattNumArray);

if (UpdateType)

{
free(BIHW'tChge);
free(BHOW1Chge);

/* De-allocation of Array memory
free(THWtChange);
free(HOW1tChange);
free(DeltaOutput);
free(DeltaHidden);
free(TrainingPatt);
free(OutputNurons);
free(HiddenNurons);

DisposDialog(Bpupdate),* Clear dialog box
itsMainPane->Refresh();

Software Vers. 18.0 - 166 -

*/

*/

*/

*/

*/

C.L.April 1991.

/&‘tt*t*ttt‘tt‘t‘l‘lt‘“l#‘“.‘l‘tttt‘tttttl‘."ttlltlt‘tttttttt‘.‘ttttt‘tittt.

TestNetwork() This method tests a backpropagation neural network

ttttttt‘.l‘..tt“l..“l““““'..t“t.“""‘l“‘.l““tt‘tt‘ttt‘tt‘t.““‘t.‘/

void CBackpropDoc:: TestNetwork()

{
short x dialogID,item Type,itemHit tempga tempgb, TestWrd, Test Vers;
double *HiddenNurons,*OutputNurons;
Ptr dStorage;

DialogPtr Testbox;

WindowPrr behind;

GrafPu CurrentPort;

Handle tempitemga,tempitemgb,item;
Rect box;

behind=(WindowPuX(-1L);
dialogID=DLOGlest;
dStorage=NULL,;

Testbox = GetNewDialog(dialogID,dStorage,behind);

/* Outline Record and Playback buttons */
GetPort(& CurrentPort);
OutlineButton(Testbox,1);
SetPort(CurrentPort);

/* Initial Setting of Radio Group! */
lempga=5; B
TestWrd=0;
SetRadioButton(tempga, Testbox, &tempitemga);

/* Initial Setting of Radio Group2 */
tempgb=15;
TestVers=();
SetRadioButton(tempgb, Testbox, &tempitemgb);

/* Set Word names in the radio boxes i
SetWords(Testbox, & Wordlabell, & Wordlabel2, & Wordlabel3 <& WordlabeM, & Wordlabel5,

Software Vers. 18.0 - 167 - C.L..April 1991.

SetCuValue((ControlHandle) tempitemgb, FALSE);

tempgb=itemHit; /* Set old item number */
tempitemgb=item; /* Set old handle name */
f* Test version; Excellent=0, Unsatisfactory=4 */

TestVers=itemHit-15;
SetCuValue((ControlHandle)item, TRUE);

)
DisposDialog(Testbox);
itsMainPane->Refresh();

/*****‘##*‘#t‘t“‘#**ttttt“t#ttt“‘**t‘tttttt*t.tl‘tt##‘tt#ttt‘tt#tt**tt*‘*‘#t
Recognize(
This method perfroms the recognition. It is done by first selecting the word and version.
Next, playback is selected which playsback the word. We simply call "Playback()" to
do this for us. Finally the user selects record. The utterance is redorded and the identity
is displayed in the dialog box with the associated version.

t#**‘tt*‘t“t‘tt““t“‘ttt“‘t*‘ttttt*ttt‘lt“ttttt*ttt#*t#ttttttt‘tt##*‘ttt#t/

void CBackpropDoc::Recognize()

{
short x,y.dialogID,itemType itemHit tempga tempgb Playback Wrd Playback Vers;
double *InputNurons,*HiddenNurons,*OutputNurons;
Pu dStorage;

‘DialogPr Recognizebox;

WindowPtr behind;

GrafPr CurrentPort;

Handle tempitemga,tempitemgb,item,CBitem;
- Rect box;

behind=<(WindowPtr(-1L);

dialogID=DLOGrecognize;

dStorage=NULL;

Recognizebox = GetNewDialog(dialogID, dStorage, behind);

/* Outline Record and Playback buttons */
GetPort(& CurrentPort);
OutlineButton(Recognizebox, 1);
OutlineButton(Recognizebox, 2);

Software Vers. 18.0 - 169 - C.L. April 1991,

SetPort(CurrentPort);

/* Initial Setting of Radio Groupl */
tempga=5;
PlaybackWrd=0;
SetRadioButton(tempga, Recognizebox, &tempitemga);

f* Initial Setting of Radio Group2 */
tempgb=15;
PlaybackVers=0;
SetRadioButton(tempgb, Recognizebox, &tempitemgb):

/* Set Word names in the radio boxes */
SetWords(Recognizebox, & Wordlabell, & Wordlabel2, &Wordlabel3, & Wordlabeld,
&Wordlabel5, & Wordlabel6, & Wordlabel?, &Wordlabel8, & Wordlabel9, & Wordlabel10);

/‘Allocateroomfortheamysusedloca]cula&emeoutputﬁnmthetrainedneuralnetwork s/

InputNurons =calloc(NumInNuron, sizeof(double));
HiddenNurons=calloc(NumHidNuron, sizeof(double));
OutputNurons=calloc(NumOutNuron, sizeof(double));

itemHit=0;

while(itemHit !=20) /* Exit=20 */

{
ModalDialog(NULL, &itemHit);
GetDItem(Recognizcbox,itemHiL,&itemType,&item,&box);

/* Playback button is hit */
if (itemHit=1)
PlaybackWord(Playback Wrd*NumOfV ers+PlaybackVers);

/* Record the word and identify it */
if (itemHit==2 & & THW{0]!=0)
{
GetLPCData(InputNurons);
/* Calculates the forward pass through the neural network J
CalcForwardPass(InputNurons, HiddenNurons, OutputNurons, HiddenBias,
OutputBias, IHWt, HOWt, NumInNuron, NumHidNuron, NumOutNuron, 0);

* Calculate and display recognition results in the appropriate space */

Software Vers. 18.0 - 170 - C.L.,April 1991.

}

CalcForwardPass(InputNurons, HiddenNurons, OutputNurons, HiddenBias,
OutputBias, IHWt, HOWt, NumInNuron, NumHidNuron, NumOutNuron, 0);
/* Calculate and display recognition results in the appropriate space
DisplayResults(Recognizebox, OutputNurons, NumOfPatt, NumOfVers);

}

/* Set appropriate word selection based on radio button

if (itemHit !=tempga && itemHit > 4 && itemHit < 15)

{
SetCﬂValue((ConLrolHandle)tempitemga, FALSE);
tempga=itemHit; /* Set old item number
tempitemga=item; /* Set old handle name

f* Playback word# starting at wordnumber=0
PlaybackWrd=itemHit-5;
SetCdValue((ControlHandle)item, TRUE);

}

/* Set selected versions radio button

if (itemHit !=tempgb & & itemHit >14 && itemHit < 20)

{
SelCthalue((ControlHandle)tempitem gb, FALSE);
tempgb=itemHit; /* Set old item number
tempitemgb=item; /* Set old handle name

/* Playback version; Excellent=0, Unsatisfactory=4
PlaybackVers=itemHit-15;
SetCthalue((ControlHandle)item, TRUE);

}
free(OutputNurons);

free(HiddenNurons);
free(InputNurons);
DisposDialog(Recognizebox);
itsMainPane->Refresh();

*

v

*
¥
¥

*

*
¥
*

/**

Speechsplice() This method permits the use of speech splicing on the IBM.

***/

void CBackpropDoc::Speechsplice()

{

/* Code to initiate speech splicing

Software Vers. 18.0 - 171 -

*/

C.L.,April 1991.

,‘tttt&l#t"t‘O‘.“."""‘ll"““‘."“.‘t‘tltt‘ttt‘t‘tt‘t.ll‘t..tttttttt‘.tt

Spectplot) This method plots a frquency -time spectrograph of a utterance in memory
ttttttttt*"“t‘l‘tt.t“‘ltt‘t.‘ltltttt.tt‘l‘.ttttltltt‘tt.tt“tt‘ttttttt‘tttlt/
void CBackpropDoc::Spectplot()
{

/* Nothing yet*/

,##tttttttttttttttttllttttt“ttt‘tt*t‘ttttltttittttttttttt‘ttttt“tt‘#ttttttttt
Amplplot(This plots the time-amplitude plot of the speech utterance.
ttttlt“t*t‘t‘ttt‘t‘t‘#‘tt#tttttttttttttti““tttt“tttltt“‘ttt“ttt#tttttf‘tt/
void CBackpropDoc:: Amplplot()

/* Code 1o plot a time-amplitude plot of the speech utterance */

Software Vers. 18.0 - 172 - C.L.April 1991.

/#*tt‘#O““‘tt‘l‘t.‘t"‘l“...l't‘t‘.“.'t".‘.‘.tl‘ttt“'t‘t‘..ttt‘t‘tttlttt‘

CBackpropPane.h Interface for the BackpropPane Class

‘t*tt#“ttttt.lt.‘.t"‘t'l"“"l‘lt‘l“t‘l“‘.tt‘tt‘.tt.t.“t.lt‘tttt‘.“tt‘t/

#define _H_CBackpropPane

#include <CPanorama h> /* Interface for its superclass */

struct CBackpropPane : CPanorama { /* Class Declaration */
/** Instance Variables b
/** Instance Methods b
f** Coantruction/Destruction s*/

void IBackpropPane(CView *anEnclosure, CBureaucrat *aSupervisor, short aWidth, short
aHeight,short aHEnc], short aVEncl,SizingOption aHSizing, SizingOption aVSizing);

/** Drawing e/
void Draw(Rect *area);

/** Mouse v/
void DoClick(Point hitPt, short modifierKeys, long when);

Boolean HitSamePart(Point pointA, Point pointB);

,ﬁ‘ Chusortt/

void AdjustCursor(Point where, RgnHandle mouseRgn);
/.. sClbolli_ng .‘/
void ScrollToSelection(void);

h

/*###t#“*t**###tt***“*t‘t‘####t*tt‘#t*tttttttttttt‘#tt*tt#*#ttlttt****‘tt‘*tt

CBackpropPane.c
The BackpropPane Class SUPERCLASS = CPanorama

Written by Chris D. Love / June 1990-January 3,1991

‘*****#*#‘#*‘*‘*##tt#t*t#*******t#tt##*tttttl*Ot*******‘tt*#t*i*t‘*###t#t###‘t/

#include <Global.h>
#include "CBackpropPane.h”

/*** Global Variables ***/

Software Vers. 18.0 - 173 - C.L.April 1991.

/*** Class Constants ***/

/&tttttt“t*l‘.““l“t“‘.'t“tlltttllt.“t‘t‘tttt‘tt‘tttt.tl‘t‘.t*tl““tlttt

IBackpropPane IniﬁalizcaBackpmmeeobject

tttt#*tt‘tll‘ttt““““l‘t“t.‘tt‘t‘.“‘ltt‘.‘tt"lttt‘t.ttlt‘ttt‘ttt‘tt‘tttt/

void CBackpropPane:: IBackpropPane(

CView *anEnclosure,
CBureaucrat *aSupervisor,
short aWidth,
short aHeight,
short aHEnc],
short aVEncl,
SizingOption aHSizing,
SizingOption aVSizing)

CPanorama:: IPanorama(anEnclosure, aSupervisor, aWidth, aHeight, aHEnc], aVEncl, aHSizing,
aVvSizing);

/‘**“t‘*#t#*#*t“*‘*#tl‘*‘tt##t"**‘*‘t*ttttt*#*t#t*#t*‘#‘tttttt‘t‘t*t*t*t‘**t

Draw {OVERRIDE} Draw the contents of the Pane. The area parameter, specified in
mepam'smeecoadinales,indicamthepordonofmePanewlﬁchneedslobedmwn.
ttttttttt‘*t‘t#*t*tttt#t*ttttttttltltt‘tttt#‘tt&ttlt*l**ttttt*#‘ttttt&t‘*‘t&tt/
void CBackpropPane::Draw(
Rect *ara)

MoveTo(frame.left, frame.top); /* XXX Draws an X from corner to ¥/
LineTo(frame.right, frame.bottom); * comner in the Panorama */
MoveTo(frame.right, frame.top);)

LineTo(frame.left, frame.bottom);

/&t#t“t‘t.‘it.tt*t‘*#t##t*t‘**t‘ttt‘t*ﬁ**t**t#tt#‘ttt*t#ttttt*t*t‘t‘t‘ttt#t*tt

DoClick {OVERRIDE} Respond 10 a mouse click within the view.

t*t‘t**t‘tt*t#*‘*‘#“*#“*‘*t‘&tt‘tt#ttt#tt##t!tt‘t*t#“t##‘#tt#t*t#ttt#t‘t*l‘/

void CBackpropPane::DoClick(
Point hitPt,
short modifierKeys,
long when)

Software Vers. 18.0 - 174 - C.L..April 1991,

/ﬁt*.““t#.““ttt‘t“.Ct‘“‘t"‘t‘..‘.t“‘lt.l“tO‘t“‘t‘tt‘t“#t‘t“‘ttttt‘t

HitSamePart {OVERRIDE} Check whether two points hit the same part of the view,

‘tt“"tl‘tttt‘t‘ttttt‘tttt““tt‘t‘t“t#tt“‘t‘ttt‘"tttttttltt‘ttt‘tt.tlttt*/

Boolean CBackpropPane::HitSamePart(

Point pointA,

Point pointB)
{

retum(TRUE);

/*‘##*t##‘ttt“*‘“‘ttt*tt*t#‘tl#t*t##‘t“tttttt“ttt‘#t‘t‘*“*‘t‘*“t#‘ttttt‘t

AdjustCursor {OVERRIDE) Adjust the shape of the cursor according the position of the mouse.
‘#ttttlt#tt‘**‘*ttttt#“#ttt#tt"tt“tttt‘t##tt*t##t‘*“#‘#*ttttttttt#ttttti‘l/
void CBackpropPane:: AdjustCursor(
Point where, /* Mouse location in Window coords */
RgnHandle mouscRgn) /* Region containing the mouse */

SetCursor{&arrow); /* Use the standard arrow cursor */

/‘tt““‘t*““‘*t‘#ttttt"*t*#tt‘l““‘ll*“‘t“‘*l*“t*“t‘t‘tttttttttt“t#t‘

ScrollToSelection (OVERRIDE) Scroll a Panorama so that the current selection is visible withinthe frame.

*tttt*tttttt‘t‘*tt#t*ttttttttt#t*t‘ttttt#tttttt*tt*tttt*tt#tt‘*#tttttt#*ttt‘##/
void CBackpropPane::ScrollToSelection()

Software Vers. 18.0 - 175 - C.L..April 1991.

Pttt‘t.".“t.‘t‘."..."‘.t‘t.“‘.'t‘.O.t...l‘..t“““tt‘t.t"t..l‘.tl.t‘l‘tlt./
MyFunctions2.c
FUNCTIONS USED BY VARIOUS PROGRAMS
Written by Chris D. Love / June 1990-January 3,1991 _
/‘#tttt‘tttl““t#ttttttt“l‘ttt.tttttttt‘ttt.tttttt#ttttt.tttt‘#t‘ttttttttltttttt/
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <ctype.h>
/* Function Prototypes */
void OutlineButton (DialogPtr DialogName, short WhichOne);
void SetRadioButton (short Whichliem, DialogPtr DialogName, Handle *olditem);
void SetDate (DialogPtr DialogName, short DateltemNo);
void SetWeights (double *theArray, short Length, Boolean Randomize);
short GetPatterns (Boolean *anArray, short NumPattems);
void SetWords (DialogPtr DialogName, Str255 *Word1, Str255 *Word2,5tr255 *Word3,
Str255 *Wordd4, Su255 *WordS, Str255 *Word6, Str255 *Word7,
Str25S *Word8, Str255 *Word9, Su255 *Word10);
void GetWords (DialogPtr DialogName, Str255 *PatName, Str255 *TherName,
Str255 *Word1, Sr255 *Word2, Str255 *Word3, Str255 *Word4,
Str255 *WordS, Sur255 *Word6, Str255 *Word7,
Str255 *Word8, Str255 *Word9, Str255 *Word10);
void NetworkUpdate (DialogPir DialogName, short TrialNum, short thePattern, float LRate,
double TError);
PoStr255 (char *srcString, Su255 destString);
CtoStr255 (char *srcString, Str255 destString);
CtoStr255 (char *srcString, Str255 destString);
CalcTotError (double *TPatt, double *OutNurons, short PatternNum, short theGrade,
short NumONurons, short thePower, double *TError);
void SetCheckBoxes (DialogPir DialogName, short WhichWord, Boolean * ArrayName, short
NumVers);
void AscToFloat (char *AscFloat, double *FloatptArray);
void DisplayResults (DialogPir DialogName, double *theArray, short NumPatt, short NumVers);
void SetTrainingPat (double *TPatt, short NumberONurons);
void CakForwardPass (double *InputArray, double *HiddenArray, double *OutputArray,
double *HBias, double *OBias, double *WIH, double *WHO,
short INurons, short HNurons, short ONurons, short PatNumber);
void SetCurrentValues (DialogPir DialogName,Boolean Bias, float Momtum,float StopVal,

1388

Software Vers. 18.0 - 176 - C.L.April 1991.

float LearnRt,Boolean RandomWis);

r FUNCTIONS */
/&ttt.tt‘.“‘t‘ttt#tttllt“"tt‘l‘ttt“.lt.t‘ttttttt“.t““tlt‘t‘tttttttt‘[
void OutlineButton (DialogPtr DialogName,short WhichOne)

{
short itemType;
Handle item;
Rect box;

GetDltem(DialogName, WhichOne, & item Type & item, & box);
SetPort((GrafPr)DialogName);

PenSize(3.3);

InsetRect(&box,-4,4);

FrameRoundRect(&box,16,16);

PenSize(1,1);

/**t#t##t#t*tttt&#tt#t‘*#‘**ttttttt‘ttttttt*#tttt**ttt*ttttttt#tttttttttttt/
void SetRadioButton (short Whichltem, DialogPtr DialogName, Handle *olditem)
{

short itemType;

Handle item;

Rect box;

GetDIiem(DialogName,Whichltem, & item Type, & item,&box);
SetCtlValue((ControlHandle) item, TRUE);
*olditem=item;

/#*#ttt#*t*‘*‘#t**t‘*#**‘*‘tt‘t#‘t*t*t#tt#*ttttt*t‘#t#‘****ttt‘#t‘*t“***#t/

void SetDate(DialogPtr DialogName, short DateltemNo)

{
DateTimeRec Date;
char DATE[16], month{3], day[3];
short itemType;
long secs;
Str255 theText;
Handle item;

Software Vers. 18.0 - 177 - C.L..April 1991.

Rect box;

GetDateTime (&secs),

Secs2Date(secs , &Date);

sprintf(DATE,"%d", Date.year);

sprintf(month,"%d", Date.month);

sprintf(day,"%d", Date.day);

strcat(DATE, month);

strcat(DATE, day);

CtoStr2SS5(DATE, theText);

GetDItem(DialogName, DateltemNo, &itemType, &item, &box)/* Datebox=4 */
SetIText(item the Text);

/*#**‘**‘#t*“‘*t#*“*#*‘tt“tt‘tt*t*‘tlttttt‘t"tl#tt‘t#‘tt‘ttt‘tt*“‘ttt‘/

void SetWeights(double *theArray, short Length, Boolean Randomize)

{ /* Range-1.0->+1.0 */
short x;
for(x=0;x<Length; x++)
{
if Randomize) M Random Value */
theArray[x]=((double)rand(/{double)RAND_MAX)*2.0-1.0;
else
theArray[x]=0.1; /* Fixed Value */
)
}

/*#*‘tt‘t#*t“#“#‘t***#tt#tt**t##*t*t###t#*#“*##t#&t‘**##tt*‘l‘.*#“tt*t*/

short GetPatterns(Boolean *anArray, short NumPatiems)

{
short RandPattNum;

d

{
RandPattNum=(short}(float)NumPattems*rand()/(float)RAND_MAX);
Jwhile(anArray[RandPattNum]);

anArray{RandPattNum}=TRUE;
return{RandPattNum);

Software Vers. 18.0 - 178 - C.L.April 1991.

/*.‘t"t“t#‘tt‘0"“t““‘tt‘t“““tt“"Ott‘ttt‘tttt"lttt.."'t*“‘tt“/

void SetWords (DialogPur DialogName, Str255 *Word1, Su255 *Word2, S255 *Word3,
Str255 *Word4, Str255 *Word5, Str255 *Word6, Str255 *Word7,
Str255 *Word8, Str255 *Ward9, Str255 *Word10)

{
short itemType;
Handle item;
Rect box;
GetDItem(DialogName,S &itemType, &item, &box); SetCTitle((ControlHandle)item,Word1);
GetDItem(DialogName,6,&itemType, &item,&box); SetCTitle((ControlHandle)item,Word2);
GetDltem(DialogName,7 &itemType, &item,&box); SetCTitle{(ControlHandle)item,Word3);
GetDltem(DialogName 8, &itemType, &item, &box); SetCTitle((ControlHandle)item,Word4);
GetDItem(DialogName 9, & itemType, &item,&box); SetCTitle((ControlHandle)item, WordS5);
GetDItem(DialogName, 10,&itemType, &item,&box); SetCTitle((ControlHandle)item, Word6);
GetDItem(DialogName,11,&itemType,&item,&box); SetCTitle((ControlHandle)item, Word7);
GetDItem(DialogName,12,&itemType, &item,&box); SetCTitle((ControlHandle)item,WordSg);
GetDItem(DialogName,13,&itemType, &item,&box); SetCTitle{(ControlHandle)item, Word9);
GetDItem(DialogName,14,&itemType,&item,&box); SetCTitle((ControlHandle)item,Word 10);
)

/#*tttttttt*tt‘**"t#‘ttttt‘ttt#tt‘*#‘tt‘t‘tttttttittt‘*“tt“tt.‘*t‘ttt*“/

void GetWords(DialogPtr DialogName, Str255 *PatName, Str255 *TherName, Str255 *Ward1,
Su255 *Ward2, Str255 *Word3, Str255 *Word4, Str255 *Word5, Str255 *Word6,
Su255 *Word7, Su255 *Word8, Su255 *Word9, Su255 *Word10)

{
short itemType;
Handle item;
Rect box;
f*Patients Name */
GetDItem(DialogName,15,&itemType,&item,&box); GetIText(item PatName);
/* Therapists Name */

GetDItem(DialogName,16,&itemType,&item,&box); GetText(item, TherName);

/* All the utterances */
GetDItem(DialogName 5,&itemType, &item,&box); GetIText(item,Word1);

Software Vers. 18.0 - 179 - C.L.April 1991.

/tt*tttt‘tt‘tt“t“‘t‘i“#t*“t'tl‘“"t“ttttttt“““"t‘tttttt‘t“#‘t#tt/

GetDItem(DialogName,6,& item Type, &item,&box);
GetDltem(DialogName,7 & item Type,&item,&box);
GetDltem(DialogName 8,& item Type, &item,&box);
GetDltem(DialogName 9, & item Type, &item,&box);
GetDItem(DialogName, 10,&item Type, &item,&box);
GetDItem(DialogName, 11, &itemType,&item,&box);
GetDltem(DialogName, 12, &itemType, &item,&box);
GetDltem(DialogName,13,&itemType,&item,&box);
GetDItem(DialogName, 14, &item Type, &item,&box);

GetIText(item, Word2);
GetIText(item,Ward3);
GetIText(item,Word4);
GetIText(item,Ward5);
GetIText(item,Word6);
GetIText(item,Word7);
GetlText(item,Word8);
GetIText(item,Word9);
GetIText(item,Word10);

void NetworkUpdate(DialogPtr DialogName, short TrialNum, short thePattern, float LRate, double TError)

{

char theText[255];

short itemType;

Sur255 NewText;

Handle item;

Rect box;

/* Sets trial in Dialog box

sprintf (theText, "%i", TrialNum);
CtoStr255(theText NewText);

GetDltem(DialogName,3,&item Type,&item,&box);
SetIText(item NewText);

/* Sets current pattern in Dialog box
sprintf (theText, "%i", thePattern);
CioStr255(theText NewText);

GetDltem(DialogName 4,&item Type, &item, &box);Setl Text(item NewText);

/* Sets learning rate in Dialog box

sprintf (theText, "%f", LRate);

CioStr255(theText, NewText);
GetDItem(DialogName,5,&itemType, &item,&box);
SetIText(item NewText);

/* Sets network error in Dialog box
sprintf (theText, "%f", TError);
CioStr255(theText NewText);

Software Vers. 18.0 - 180 -

*/

*/

*/

*/

C.L.April 1991.

GetDItem(DialogName,6,& item Type, &item, & box);
SetIText(item NewText);
)

,tttttttttt‘tttttttttttltttt‘tttt"tttt“‘t‘tlttttttttttttttt.ttttttttttttt/
voidPloStr255(char *srcString, Str255 destString)

{
BlockMove(srcString, destString, srcString{0] + 1L);

/tt‘tt‘t‘t*l‘t"t“"t‘*"#‘tl““*‘ttt.tt‘tlt‘#‘**t‘tt“tt“tttt‘t*‘tt*ttt/
void CloStr255(char *srcString, Str255 destString)
{

destString[0] = (char) strien(srcString);

BlockMove(srcString, &destString[1], destString[0});

/“#t#‘ttttt*#*‘#ttt‘ttttil*“**t*‘t‘tl*tt‘#t#‘tttt**‘#"*tttt*tt#t*tt*tl***ttt

Str255t0C Convert Str255 string type to C string type
‘#tttlttttt**‘##*tttt*lttt*t#tt‘t#ttttt‘t‘ttt*tt&ttttt#ttt##ttt*tt*ttttttt*t&t/
void Str255toC(Str255 srcString, char *destString)
{
BlockMove(srcString + 1, destString, sreString[0]);
destString[srcString[0]] = \0';

/*t*‘t‘tttt*t‘“*t"t‘*tt‘#l&ttt*‘**ttttt‘*tttt‘#t#tttttﬁtt*tt*ttt*#l**tt*‘/

void CalcTotError(double *TPatt, double *OutNurons, short PatternNum short theGrade,
short NumONurons, short thePower,double * TError)
(_
short x;
double PattError,theError;

f* Calculation of Total Error based on metric provided in Grade %/
PattError=0.0;
theError=0.0;

switch(theGrade)
{
case 1: /* Chebychev */

Software Vers. 18.0 - 181 - C.L.April 1991.

for (x=0; x<NumONurons; x++)

({
PatEmar=fabs(TPatt{NumONurons®* PatternNum+x}-OutNurons{x]);
if (PattError>theError) /* Choose biggest pattemn error */
theError=PattError; ‘
)
*TError+=theError;
break;
case 2: /* Euclidean */

for (x=0; x<NumONurons; x++)
PattError+=pow(fabs(TPatt[NumONurons* PattemNum+x]-OutNurons[x]),(double) 2.0);
*TEmor+=0.5*PattError;
break;
case 3: /* Hamming (*/
for (x=0; x<NumONurons; x++)
*TError+=fabs(TPatt{NumONurons*PatternNum+x]-OutNurons([x]);
break;
case 4: * Minkowski s/
for (x=0; x<NumONurons; x++)
PattError+=pow(fabs(TPatt[NumONurons*PatternNum+x]-OutNurons{x]) ,(double)thePower);
*TError+=PattError/(double)thePower;
break;
}/* End Switch */

P*#“tt‘*tt#t*#**#*‘*t*tt*tt#ttttt‘t‘*‘tttt##t#“#‘ttt#*tt*tttt‘t*‘tt*ttt#/
void SetCheckBoxes(DialogPtr DialogName, short WhichWord, Boolean * ArrayName, short NumVers)
{

short itemTypex;

Handle CBitem;

Rect box;

/* Set the appropriate check boxes based on the selected uticrance/version combination */
for (x=0;x<NumVers;x++)
{
GetDItem(DialogName,(x+20),&itemType,& CBitem,&box);
if (ArrayName[WhichWord*NumVers+x])
SetCtlValue((ControlHandle)CBitem, TRUE);
else
SetCuValue((ControlHandle)CBitem,FALSE);

Software Vers. 18.0 - 182 - C.L.April 1991.

)

/*tt‘t".ttt'tt““tttttt."“‘“.tlt“t“‘t‘t‘..l‘tt‘ttttttl.t’t‘.t“‘.‘l‘/

void AscToFloat(char *AscFloat, double *FloatptArray)
{

char aCharacter{3] theString[20];

short x,Fcount;

x=(;
Fcount=0;
while(AscFloat[x]!=N0) /* Not EOF */
{
/* Check for either a zero,negative sign, or EOF character v */
while((isdigit(AscFloat[x])==0) && (AscFloat[x]!="-") && (AscFloat[x]!="\0")
X++;

if (AscFloat[x]=="\0")/* Not EOF of Ipc data */
break;

theString[0]="0"; /* Initialize float character string to null */
while((isdigit(AscFloat[x])!=0) Il ((AscFloat{x])=="") Il (AscFlaat[x]}=="-") Il (AscHloat[x]}=="+")
{

sprintf(aCharacter,”%c" AscFloat{x]);

strcat(theString aCharacter);

X+4;

/* Convert character float data to Float number and put in FloatArray */
sscanf(theString," %" & FloatptArray[Fcount]);
Fcount+=1;

,‘t‘*tt#**#t*‘*‘*“**‘***#tt#tttttt#t##t#tt“*#*t‘tttt‘tt*‘t‘*“tt‘ttt‘*tt*/
void DisplayResults(DialogPtr DialogName, double *theArray, short NumPatt, short NumVers)
{

short itemType x Identity theWord,the Version;
double Max;
Handle item;

Software Vers. 18.0 - 183 - C.L.April 1991.

Rect box;
Str255 theText;
Max=0.0;

Identity=0;

for (x=0; x<NumPatt;x++) /* Only a max. of upto 50 classes for the output neurons */
{
if(Max<theArray[x]¥* Find the biggest one this will be the identity of the word */
{
Identity=x;
Max=theArray[x];

)

theWard = (short) ((double)ldentity / (double)Num Vers);

theVersion = Identity - NumVers*theWord:;

/* Note: We can use the item numbers of the words set in the dialog box to get a handle

to the text to display the recognized one. */

/* Display theWord name in the word identity box ¥/
GctDItem(DialogName.meWord-i-5,&itemType,&ilcm,&box);
GetCTitle((ControlHandle)item,the Text);

GetDltem(DialogName 3,& item Type, &item, & box);

SetIText(item,the Text);

/* Display the Version name in the version identity box */
Gechem(DialogName,theVersioml5,&itcmType,&itan,&box);
GetCTitle((ControlHandle)item the Text);

GetDltem(DialogName 4,& item Type, &item,&box);

SetIText(item,the Text);

/***#***ttt*‘tt*‘ttt#lr*#t*#*t*t*ttttt*‘#*t#‘ttttttttttt#tttt*tt**tt*i##t*tt/
void SetTrainingPat (double *TPatt, short NumberONurons)

{
short x,y,Count NumberPatts;
Count=0;
NumberPatts=NumberONurons;

for (x=0; x<NumberPatts; x++)

Software Vers. 18.0 - 184 - C.L.April 1991.

for (y=0;y<NumberONuroas; y++)
{
/* NumberPatts*x+y points to every neuron(over all patterns). NumberONurons®* x+x
point 1o the specific neuron in every output pattern that is set to one ¥
if (NumberPatis® x+y)=(NumberONurons*x+x))
TPat[NumberPatts*x+y}=1.0;
)

/lr#*‘#lltttt‘*ttttttttllttttt‘“"ttttttt‘t“t.ttt.tttt‘tttttlttttttt#*tt‘ttt/

void CalcForwardPass(double *InputAmay, double *HiddenArray, double *OutputAmay,
double *HBias, double *OBias, double *WIH, double *WHO,
short INurons, short HNurons, short ONurons, short PatNumber)

short x,y;
double WeightedSum=0.0;

/* Cakculation of HiddenNurons */
for(x=0;x<HNurons;x++)
{
for (y=0;y<INurons;y++)
WeightedSum+=WIH[INurons*x+y}* InputArray [[INurons*PatNumber+y};
if (HBias!=NULL)
WeightedSum+=HBias[x]);
HiddenAmay[x]}=1.0/(1.0+exp(-WeightedSum));
WeightedSum=0.0;
} -
/* Calculation of OutputNurons */
for (x=0; x<ONurons; x++)
{

for (y=0; y<HNurons; y++)

WeightedSum+=WHO[HNurons* x+y]*HiddenArmay[y];
if (OBias!=NULL)

WeightedSum+=OBias[x];
OutputArray{x}=1.0/(1.0+exp(-WeightedSum));
WeightedSum=0.0;

}

Software Vers. 18.0 - 185 - C.L.April 1991.

Ftttttttt“‘t““‘t‘tll‘lt‘.‘tt‘.“““‘ttttttttt‘t.i‘t.tttttt‘t‘tl‘lt“t‘/

void SetCurrentValues (DialogPtr DialogName Boolean Bias, float Momtum,float StopVal,

float LearnRt Boolean RandomWis)
{
char theText[255];
short itemType;
Handle itemA.itemB;
Rect box;
/* Biases */
GetDItem(DialogName, 14,&itemType,&itemA &box);
SetCu Value{(ControlHandle) iternA Bias);
/* Random Weight selection */
GetDltem(DialogName, 26,&itemType,&itemA,&box);
SetCtlValue((ControlHandle)itemA Random Wis);
/* Leaming Rate */
GetDItem(DialogName, 11,&itemType,&itemA & box);
sprintf (theText, "%f ", LearnRt);
SetIText(itemA theText);

/* Momentum */
GetDItem(DialogName, 12,&itemType, &itemA &box);
sprintf (theText, "%f ", Momtum);
SetIText(itemA theText);

/* Stopping Value */
GetDltem(DialogName, 13,&itemType,&itemA,&box);
sprintf (theText, "%f ", StopVal);
SetIText(itemA theText);

)

Software Vers. 18.0 - 186 - C.L.April 1991.

/'#t‘ttt‘t‘#‘..tt“‘.t‘t‘tt‘“‘t‘t...l‘..‘.t“"t.'l.“‘t.“‘.t.t'tt*ttt.“ltttltt/

SERIAL ROUTINES
Written by Chris D. Love / June 1990-January 3,1991
/ttttt‘tt‘tt"t*"“‘l‘t""“l.““tt“tt“ttt"t‘tt‘l.‘t“‘tttt“tl“‘tt.t‘tttt./
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <SerialDvr.h>

r* Prototypes of serial communication functions */
void AscToFloat (char *AscFloat,double *FloatptArmay);

void GetLPCData (double *FloatptArray);
void PlaybackWord (short WhichWord);

’#t‘t#ttt*tt#*‘*tt‘t#*l‘t*t#t*t*t‘l#t“‘tt*tt#ttt‘***tt***ttttttttttttttttl

void GetLPCData(double *FloatptArray)
{
char sendGO[4] receiveOK[4] BytesToSend[4],* WritcBuffer,*ReadBuffer;
int ret,ix,HeaderData InputBufSize;
long HeaderSize Datal ength;
P InputBuffer;
SerShk flag;

OSEn theError;

ix = 0

HeaderSize = 2L,

InpuiBuffer = NULL;

InputBufSize = 2048,

WriteBuffer = (char *) calloc(128, sizeof(char));

ReadBuffer = (char *) calloc(1024, sizeof(char));

/* Request to Send =GO Clear to Send =OK DataHeader=BytesToSend *
strepy(sendGO, "GO™);

strepy(receiveOK, "OK");

strepy(BytesToSend, N\0);

/* Channel Communication Parameters */
flag. fXOn = TRUE;

Software Vers. 18.0 - 187 - C.L.,April 1991.

flag.fCTS = FALSE;

flag.xOn = 0x11;

flag xOff = 0x03;

flag.errs = parityErmr + hwOverrunErr + framingErr;
flag.evts = breakEvent;

flag.fInX = TRUE;

flag fDTR = FALSE;

RAMSDOpen(sPortA); /* Open RAM Serial Driver

/* Initialize Input and Output Ports
SerReset(AinRefNum, baud9600 + data8 + stop10 + noParity);
SerReset(AoutRefNum, baud9600 + data8 + stop10 + noParity);

/* Initialize Handshaking using XON/XOFF
SerHShake(AinRefNum, & flag);
SerHShake(AoutRefNum, &flag);

/* Set input Buffer size for LPC data to 2Kbytes
SerSetBuf(AinRefNum,InputBuffer,InputBufSize),
InputBuffer = (char *) calloc(InputBufSize, sizeof(char));

/l‘t#t#‘#‘*‘#“‘#““#“‘#“‘tt‘tt*ttt‘tttlttttt#/

Vad Receive Routine

/tttttttt#tt*t*#*##lt‘tl"*****‘#‘##**‘t‘ttt‘*tttl

/* Send GO message to start operation
theError = FSWrite(AoutRefNum, &HeaderSize, (Ptr) sendGO);
do
(
/* Waiting for ReceiveOK message from other terminal
theError = FSRead(AinRefNum, &HeaderSize, (Pir) ReadBuffer);
ix++;
Jwhile(((ret=stremp(receiveOK, ReadBuffer)) 1= 0) && (ix < 2000));

if (ret = 0)

{
/* Read the LPC ASCII data & convert to float pt.
DataLength=300L;

Software Vers. 18.0 - 188 -

*/

*/

*/

*/

*/

*/

*/

*/

C.L.April 1991.

)

theError = FSRead(AinRefNum, & Datalength, (Pir) ReadBuffer),

AscToFloat(ReadBuffer FloatptArray),
) .
RAMSDClose(sPortA); /* Close the RAM Serial Port _ s/
Fid DeAllocate Memory s/
free(ReadBuffer);
free(WrileBuffer),
free(InputBuffer);

,‘#*t#‘t#‘*t*l‘#tt#ttl*‘#*ltt#“tt*‘lt“t“.‘t‘“Qtt‘t#tttt#ttttttt**t*ttt/

void Playback Word(short WhichWord)

(

char sendGOI[4] receiveOK[4], BytesToSend[4],* WriteBuffer,*ReadBuffer;
long HeaderSize, Datal ength;

SerShk flag;

OSErr theErron;

int ret.ix,HeaderData, InputBufSize OutputBufSize;

Pu InputBuffer OutputBuffer;

ix = 0;

HeaderSize = 2L,

InputBuffer = NULL;

InputBufSize = 128;

OutputBufSize = 128;

WriteBuffer (char *) calloc(128, sizeof(char));
ReadBuffer (char *) calloc(128, sizeof(char));

/* Request to Send =GO Clear to Send =OK DataHeader=BytesToSend */
strepy(sendGO, "GO");

strepy(receiveOK, "OK™);

strepy(BytesToSend, \0);

/* Channel Communication Parameters */
flag.fXOn = TRUE;

flag fCTS = FALSE;

flag.xOn =0x11;

flag.xOff = 0x03;

Software Vers. 18.0 - 189 - C.L.April 1991.

flag.errs = parityErr + hwOverrunErr + framingErr;
flag.evts = breakEvent;

flag finX = TRUE;

flag.fDTR = FALSE;

RAMSDOpen(sPortA); /* Open RAM Serial Driver

/* Initialize Input and Output Ports
SerReset(AinRefNum, baud9600 + data8 + stop10 + noParity);
SerReset(AoutRefNum, baud9600 + data8 + stopl0 + noParity);

/* Initialize Handshaking using XON/XOFF
SerHShake(AinRefNum, &flag);
SerHShake(AoutRefNum, &flag);

SerSetBuf(AinRefNum,InputBuffer InputBufSize),
InputBuffer =(char *) calloc(InputBufSize, sizeof(char)); /* 128 bytes
OutputBuffer =(char *) calloc(OutputBufSize, sizeof(char)); /* 128 bytes

/i#*tttt#t‘#‘#lt#*tl#"ttt#t#tttt#‘tl#lt*t“*‘tt‘**‘t‘l“/

"~ Transmit Routine
/*‘**t‘****“**************‘*#*#*#““t*‘.‘*t‘*****““**l

/* Send GO message to start operation
theEmor = FSWrite(AoutRefNum, &HeaderSize, (Pr) sendGO),
do
{
/* Waiting for ReceiveOK message from other erminal
theError = FSRead(AinRefNum, & HeaderSize, (Ptr) ReadBuffer);
iX++;
Jwhile(((ret=strcmp(receiveOK, ReadBuffer)) = 0) && (ix < 20));

if (ret=20)
/* Send Utierance Number
theError = FSWrite(AoutRefNum, & HeaderSize, (Pir) (& WhichWord));

RAMSDClose(sPortA); /* Close the RAM Serial Port

r DeAllocate Memory
free(ReadBuffer);

Software Vers. 18.0 - 190 -

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/
*/

C.L.April 1991,

free(WriteBuffer);
free(InputBuffer);
free (OutputBuffer);

,‘*tt‘l‘tttill*‘t"‘tittt"t‘“t“t‘tt"“t‘l‘l‘tttt.t‘.‘ltl‘t‘t““ttttttt‘t&tttt/

SERIAL ROUTINES FOR THE IBM AND LPC PROCESSING

Project : Speech Encoder/Decoder

Programmers: Armein Langi, Chris Love (After [Pars86] Appendix A)

Purpose : To test the algorithms of the VOCODER

Start : June 29, 1990%/

/*‘#‘*t‘ttl‘t“‘t‘tlt‘#*"*t‘t"lt‘t“‘.‘l“tt“t‘t‘tttt‘t‘ttlt.*tttttt‘ttt*tt“tt/

#include <stdio.h>

#include <stddef.h>

#include <math.h>

#define COUNT1 8000

#define FRAME 200

#define COM1 0

signed short int BuffDatafCOUNT1];
shortint *AddrBuffData;

char *NameFile;

float ospeech[FRAME]; /*original speech
float treelp[30); /*transmission CELP
float old_trcelp[30];

float x[FRAME]; M#working speech data for LP
float r{11); /*correlation coefficients

float sum; /*general purpose variable

int i,j,k, 1, go, count;

int auto_err; Merror flag for the autocorr..
int pre_err; Merror flag for the predictor ...
char result[350);

main()

{ char ¢;
result{0] = \O';
go=1;
set_baud();
printf("nGo Ahead ...!");
read_command();
while(go=1)

Software Vers. 18.0

- 191 -

*/
*/
*/
*/
*/

*/
*/

C.L.April 1991,

p0;
store_IpQ);
printf(\nGo Ahead ...1");
read_command();
if(go=0)
{
printf(MnFinish, Thanks for using this program ...");
)

)
p0
{
printf("\nPress any key to start acquiring data ...!");
lin2asc();
I=0;
count = 2000;
get_lp_speech(;
printf("nGot Them\n Now Analyzing Speech ... *);
IpcO; ’
1=10;
printf(M\nGot %d LPC "1);
count = 4000;
get_lp_speech();
IpcO;
1=20;
printf(MnGot %d LPC" I);
count = 6000;
get_Ip_speech(); -
IpcO;
printf("nGot all the LPC ... Now sending to Macintosh ...!");
)
store_lpQ
{
char res_buff[11];
for (i=0;i < 30;i++)
{
sprintf(res_buff,"%+f " trcelpli));
streat(result.res_buff);

Software Vers. 18.0 - 192 - C.L. April 1991.

Pprintf(" %+ *, treelpli]); */
)
send_data();
result{0] = \0';
)
get_lp_speech()
{
for (i = 0 ;i < FRAME ;i++)
{
ospeech(i] = 5 * (float) BuffData[count+i] /32768;
M printf("%d %f\n",i,0speech(il); */

AddrBuffData = & BuffData[0];
—asm(
push es
mov ¢x,COUNTI1
mov dx,08000h
mov esdx
mov di,AddrBuffData
mov dx,304h
mov al,0011b ; enable int
out dx,al
tunggu:
mov dx,306h;
aldx;
al4;
tunggu
v al,001b ; ask for the EB memory access
mov dx,304h
out dx,al
mov al,es:[1401h]
mov [di]al
inc di
mov al,es:[1402h]
mov [di],al
inc di
mov dx,304h

swes

Software Vers. 18.0 - 193 - C.L.April 1991,

)

mov al,01111b ; interrupt the EB
dx,al
a1,0011b ; release the of interrupt the EB

printf(™a LPC "),

for(i = 0; i <FRAME ; i++)
{
x[i] = ospeechli] + ospeech[i] * 0.84 * cos(6.28 * (i-120)/240);

autocorr()

{

for (i = 0; i<= 10; i++)
{
sum = 0;
for (k = 0; k<« FRAME - i; k++)
{
sum = sum + x[k] * x[k + i;
[*printf("Sum = %f x = %f ", sum, x[k]);
)
rli] = sum;
)
if (rl0] == 0)
{
auto_err = 1;
printf(™\n Correlation error ");

Software Vers. 18.0 - 104 -

*/

C.L.April 1991.

A4

el
{
Por (i = 0; i <= 10; i++)
printf(Ma%{ " x{i]);

|5
)
predict()
{

float af11); /*direct coefficients
float rc[11]; M*reflection coefficients

float pe;

float akk, ai, aj, ra;

pe =r{0};

al0]=1;

for k= 1; k <= 10; k++)

{
sum = 0;
for(i=1;i<=k; i++)
{

sum = sum - a[k - i] * r[i);
}
akk = sum/pe;
rc[k] = akk;
ak] = akk;
for(i=1;i<=kf2; i)
{

ai =afi};

aj = a[k-i);

afi] = ai + akk * aj;

afk - i] = aj + akk * ai;
}
pe=pe* (1 -akk* akk);
M printf(Mape = %f", pe);
if (pe <= 0)
{

pre_err=1;

Software Vers. 18.0

- 195 -

*/

*/
*/

*/

C.L.April 1991.

if (pre_err=1)

Software Vers. 18.0

{
printf(™a predictor error ...%);
)
else
{
/* for(i = 0, i <= 10; i++)
{
printf("\ni=%d a= %f rc = %f", i, afi], rc[i]);
)*/
for(i = 0; i <10; i++)
{
treelpli+l] = ali+1];
)
)
}
set_baud()
{
—asm(
mov ah,00
mov dx,COMI /* 0 means COM1
mov al011110011b +9600-N-1-8
int 14h
}
)
read_command()
{
—asm(
stat: mov ah,02h
mov dx,OCOM1
int 14h
ad ah,08h
jnz stat
ad ahOfh
z e
cmp al'G
jnz ostat
mov ah,02h
mov dlal
int 21h

- 196 -

*/
*/

C.L.April 1991.

stat2: mov
mov

- -

moyv
mov
int
jmp
ostatt cmp

mov
mov

TERAE

mov
mov
jmp
ok mov
mov
out
mov
mov
mov
~int
mov
mov
int
mov
mov

ah,02h
dx,00M1
14h
ah,08h
ah,Ofh
a0’
ah,02h
21h
al'o’
8h,02h
dx,00M1
14h
ah,08h
ah,0fh

al’X'

ax,0
goax

dx,03f8h [*Now the host transmits.

al,'o’

ah,01h
a,’X'
dx,0
14h
ah,02h
di,0zh
21h
ah,02h
dL,0dh

Software Vers. 18.0 - 197 -

*/

C.L..April 1991.

int 2lh

mov si,y

mov al[si]

mov dx,03f8h
dxal

lagi:

ah,01h
al,[si]
dx,COM1
14h

= ggFQ e

Software Vers. 18.0

- 198 -

C.L..April 1991.

