DESIGN, IMPLEMENTATION AND PERFORMANCE
ANALYSIS OF THE ANT COLONY OPTIMIZATION
ALGORITHM FOR ROUTING IN AD HOC NETWORK

Mohammad Towhidul Islam

A dissertation submitted in partial fulfillment of the
requirements for the degree of

Master of Science

Department of Computer Science

Faculty of Graduate Studies
University of Manitoba,

Copyright © 2004 by Mohammad Towhidul Islam

THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES

*kkksk

COPYRIGHT PERMISSION

DESIGN, IMPLEMENTATION AND PERFORMANCE
ANALYSIS OF THE ANT COLONY OPTIMIZATION
ALGORITHM FOR ROUTING IN AD HOC NETWORK

BY

Mohammad Towhidul Islam

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University of
Manitoba in partial fulfillment of the requirement of the degree
of

MASTER OF SCIENCE

Mohammad Towhidul Islam © 2004

Permission has been granted to the Library of the University of Manitoba to lend or sell copies of
this thesis/practicum, to the National Library of Canada to microfilm this thesis and to Iend or sell
copies of the film, and to University Microfilms Inc. to publish an abstract of this thesis/practicum.

This reproduction or copy of this thesis has been made available by authority of the copyright
owner solely for the purpose of private study and research, and may only be reproduced and copied
as permitted by copyright laws or with express written authorization from the copyright owner.

Abstract

A large class of application where the pattern of data distributions is non-uniform
and sparse, is generally classified as drregular problems. From the parallel computing
perspective, routing in ad hoc network is an irregular problem because, during run-
time, the network changes dynamically and exhibits both chaotic load balancing and
unpredictable communication behavior among the nodes. The algorithms for these
applications are usually asynchronous. One solution technique to respond to these
challenges is a swarm based approach called ant colony optimization (ACO), a meta-
heuristic which is an inherently parallelizable search technique. One of the many
interesting features of ACO is the ability to solve problems that are not static but are
spatially distributed and changing over time. In this thesis, a parallel algorithm for
routing in ad hoc network is designed and developed. The algorithm is implemented
on a distributed memory multicomputer using MPI and on a shared memory multi-
processor using OpenMP. The parallel implementation of the proposed algorithm on
the distributed environment obtained relative speedup of little more than 7 using 10
processors. In shared memory multiprocessors, extensive experiments are carried out
on the several load balancing techniques available in OpenMP. The results gained in
OpenMP outperformed the results obtained for the proposed ACO algorithm in MPI

regarding the total execution time.

i

Acknowledgements

I would like to express my profound gratitude to ALLAH, the most merciful, com-
passionate, who has created me and made me complete this work successfully.

I would like to pay heartily thanks to my supervisor Dr. Parimala Thulasiraman,
without whom this thesis would not have been possible. She gave me the opportunity
and encouraged me to work in a new research area and at the same time, continued her
enthusiastic support throughout the research. In addition, I would like to remember
the critical comments and useful suggestion of Dr. Ruppa Thulasiram on my work
and thesis which helped me to furnish my thesis. I am thankful to Dr. Peter Graham
for his useful comments on my thesis proposal. Special thanks to Dr. Michel Toulouse
and Dr. Robert D. McLeod for being in my thesis committee.

I am also thankful to the members of our parallel processing group whose weekly
discussion in various aspects stimulates my work.

I never repay the debt of my parents whose endless support, encouragement, and
patience make me complete the thesis. Thanks to my brothers and sister-in-laws.
And to my nieces, Afifa and Maryum, whose remembering just makes me know what
I want to do.

I would like to acknowledge the financial support form Graduate Studies, Faculty
of Science, Department of Computer Science and as well as the University of Manitoba
Student Union for the University of the Manitoba Graduate Fellowship, the Science
Graduate Student Scholarship, the Computer Science Graduate Fellowship and the

Academic Excellence Scholarship respectively.

i1

Contents

1 Introduction

2 Parallel Computing Environments

2.1 Flynn’s Taxonomy
2.1.1 Single Instruction Multiple Data
2.1.2 Multiple Instruction Multiple Data,

2.2 Distributed Memory Multicomputers

2.3 Shared Memory Multiprocessor

2.4 Multithreading
241 Tera
242 Java
243 EARTH
244 Cilk
245 PThreads
246 OpenMP

2.5 Summary

3 Ad Hoc Networks

3.1 Routing Protocols

v

IS TS

10
12
14
15
15
16
16
16
17
19

20

3.1.1 Proactive Routing Protocols 22

3.1.2 Reactive Routing Protocols 22
3.2 Summary 24
Overview of the Ant Colony Optimization 25
4.1 Foraging behaviorofants. 26
42 Ant Colony System 27
4.3 Applications of ACO 30
43.1 ACO and Communication Networks 32
4.3.2 Routing in ad hoc networks 33
4.4 Parallel aspect of ACO 34
4.5 Summaryo 36
Algorithm 37
5.1 Methodology 37
5.1.1 Assumption 37
5.1.2 Routingtable 38
5.1.3 Routediscovery 38
514 Cycle Detection 39
5.1.5 Source update of RT by FANT 40
5.1.6 Route establishment 40
5.1.7 Benefit of source update L. 41
5.2 Algorithm 42
5.3 Demonstration of Algorithm using an Example 45
5.4 Summary 48

Experimental Result
6.1 MPI Results . . .
6.2 OpenMP Results

6.3 Summary

Conclusion

Contributions

Future Work

vi

49
49
o4
57

59

61

63

List of Tables

5.1
5.2
5.3
5.4
5.5

6.1

Dummy routing table for explanation. 45
Routing table of node 4 before source update. 46
Routing table of node 4 after source update. 47
Routing table of node 5 before source update. 47
Routing table of node 5 after source and destination update update. . 48
Comparison of OpenMP and MPI. 58

vil

List of Figures

2.1
2.2
2.3
2.4
2.5

3.1
3.2
3.3

4.1

5.1

6.1
6.2
6.3
6.4
6.5

6.6

Logical view of a SIMD Machine [21]
Logical view of a MIMD Machine [21]
Logical view of a distributed memory multicomputer
Logical view of a shared memory multiprocessor

Example of parallel block execution by an OpenMP code

An example of Ad Hoc Networks

An ad hoc network with threenodes.

An example with real ants. Adapted from [19]..
An Example of ad hoc network

Performance results with and without source update

Scalability results with varying number of processors and nodes

‘Number of processors versus percentage of communication time

Number of processors versus percentage of computation time
Number of ants versus Execution time with fixed number of processors

and nodes oL,

11
12
18

20
21

21

26

46

50
51
o1

6.7 Scalability results for varying number of ants 55
6.8 Scheduling policy results 56
6.9 Performance Result with Varying chunk sizes for 8 ants and 400 nodes 56
6.10 Performance results of the scheduling policies when chuck size is un-

specified 57

ible

Chapter 1

Introduction

Inspired by observing the behavior of insects, nature inspired algorithms (or swarm
intelligence) are becoming popular in many areas of research [6, 49]. Though the
insects live in a dynamic, chaotic environment, they cooperate to survive and learn
about their surroundings. Experiments and observations have shown that insects
such as ants work together as a family by coordinating their activities, and thereby,
performing tasks such as finding food more easily and efficiently.

The first ant colony optimization (ACO) meta-heuristic algorithm using swarm
based approach was introduced by Colorni et al. [15] and Dorigo et al. [19] who called
their algorithm the ant system. The ant system was inspired by theoretical biological
studies [5]. For example, when ants leave their nests to search for food, they randomly
choose a path and deposit a fragrant chemical substance called a pheromone, which
helps other ants follow the trail. When more ants traverse a path, the pheromone
deposited on that path intensifies, thereby attracting more ants to that path. The
scent of pheromone on these paths evaporates after certain period of time. It is
obvious that the longest path from a source (nest) to a destination (food source)

would have lost its scent much faster than the shorter path. Thus, more ants would

1

CHAPTER 1. INTRODUCTION 2

be attracted to the shortest path with the intense scent to find food. These ants
indirectly use stigmergic communication to find the best path.

Many applications have been studied in the literature using the ACO technique
and are discussed in chapter 4. One of the interesting features of swarm-based ap-
proaches is their ability to solve problems that are not static in nature but are spatially
distributed and changing over time. ACO has been applied to many combinatorial
optimization problems [9, 34]. One area where ACO emerges as a solution technique
is in wireless networks [1, 30].

From mobile telephones to home security, wireless technology has become a way
of life in the 21st century and has become possible through research activities related
to ad hoc networks. Used by military, for example, ad hoc networks are applied where
the geographical nature of the system cannot be determined and therefore requires a
distributed network topology. A mobile ad hoc network (MANET) consists of mobile
wireless nodes that communicate in a distributed fashion without any centralized
administration. Due to the node’s mobility, it is difficult to determine a network
topology that the nodes can utilize at any given time to route the data. The nodes
form a network on the fly instantaneously and dynamically when they are needed.
Therefore, ad hoc networks are also called “infrastructureless” networks. Ad hoc
networks are autonomously formed with heterogeneous devices or nodes from sensors,
PDAs or laptops. These nodes range in stability, power capability and processing
power. The nodes together co-operate to perform a task such as routing packets.
Nodes in a MANET may enter or leave a group as needed.

The ACO technique is quite amenable to ad hoc networks due to similarities in
their characteristics. Since the communication links may change dynamically, a node
routes packets depending on the link conditions. Similarly, an ant can also exploit the

link conditions by altering the amount of pheromone it deposits on a trail. Therefore,

CHAPTER 1. INTRODUCTION 3

ACO is deemed as an appropriate solution technique for MANETS.

An ad hoc network can be represented as a graph, where vertices represent a set
of ad hoc nodes and edges represent the set of communication links connecting the
nodes in the graph. From parallel computing perspective, routing in ad hoc network
applications is an irregular problem [13] since the network changes dynamically dur-
ing runtime, exhibits chaotic load balancing among the processors and communicates
unpredictably among the nodes during runtime. In recent years, parallel comput-
ing has moved towards distributed computing, grid computing, cluster computing,
etc. The idea behind this new technology is to utilize spare idle cpu cycles that are
available to solve computationally intensive applications efficiently and fast. In this
thesis, I hope to answer the question of whether I can extend this idea of utilizing the
computing power of mobile devices implemented in an ad hoc network that follows a
dynamic topology, by introducing parallel processing techniques for problems such as
routing. This idea, I foresee as a definite possibility considering how the technology
is advancing (even workstations have two processors). Most mobile devices have Java
and advanced features of Java (such as multithreading) installed on them. I therefore
see the future of mobile devices moving towards parallel processing (see for example
27)).

The asynchronocity posed by ad hoc networks adds to greater challenges in effec-
tive parallel solution because of the need for dynamic creation of nodes and dynamic
load balancing. The data dependencies between the nodes in an ad hoc network is
sparse. Sparsity of a network is characterized as having only very few edges con-
nected to a node. In other words, if this network is represented as an adjacency
matrix, there would be more 0’s than 1’s where a 1 represents a link between two
nodes. This sparsity creates additional difficulties in partitioning and distributing

data among the processors. The performance of a parallel algorithm is expected to

CHAPTER 1. INTRODUCTION 4

be affected significantly by the way the data is distributed among the processors.

In one of the earlier works, conducted by Islam et al. [26] and in its extension [47],
the proposed ACO algorithm is parallelized and implemented on a Beowulf cluster
running MPI. In this work, it is assumed that the number of ants is equal to the
number of processors. Given N, the number of nodes in the network, and P the
number of processors, % data is distributed to each processor. The results indicate
that the sparsity of the data and the asynchronocity posed by the problem due to
remote communications affects the performance of the algorithm. About 90% of the
execution time is shown to be spent in communication.

In the standard von Neumann model of programming, such as MPI, long latency
operations causes the processor to continuously check the buffer for the arrival of the
data, or interleave appropriate instructions in the gap of these latencies, that are not
dependent on the arrival of the data. However, the processor does have to spend time
probing the network or checking the buffer intermittently and the latency problems
are not addressed efficiently. One solution to hide latency is multithreading, where a
processor switches between threads (a sequential program) during long latency oper-
ations. The processors are therefore, always busy as long as there are enough threads
in the system. The multithreaded paradigm is very different from the von Neumann
model used by MPI. Therefore, traditional parallel algorithms cannot be directly im-
plemented on a multithreaded architecture. The issues (such as thread granularity,
thread partitioning etc.) that need to be addressed in designing a multithreaded
algorithm are quite challenging.

To determine the effectiveness of multithreading, in [25] (conducted by Islam et
al.), the parallel ACO algorithm has been implemented on a shared memory machine
using OpenMP [14]. The OpenMP is chosen as the target parallel programming

tool for implementation because: (i) in the recent years, it has established itself as

CHAPTER 1. INTRODUCTION 5

the standard parallel programming tool for shared memory machines; (ii) it provides
multithreading; (iii) it allows experimentation with both coarse-grained and fine-
grained parallelism (routing in an ad hoc network is a fine-grained application; that
is, the number of instructions for the computation is very few.) and (iv) it provides
load balancing facilities for experimentation. OpenMP provides three different load
balancing strategies: static, dynamic and guided. Each one of these strategies has
unique feature that suits best for a given application. Various experiments have
been conducted with these load balancing strategies. The experiments indicate that
the multithreaded algorithm produces better performance results than the parallel
algorithm.

The focus of this research, is to design and develop a parallel ACO algorithm for
routing in ad hoc network applications, and implement it on a distributed memory
architecture using MPI and on a shared memory multiprocessor using OpenMP. In
the literature, parallelization has been considered for many static applications us-
ing ACO [10, 17, 35, 40, 44]. However, to my knowledge this is the first work in
parallelizing ACO for MANETS, a dynamic application.

The rest of the thesis is organized as follows. In the next chapter, the parallel
computing environments in general terms is discussed. The background of ad hoc
networks and ACO are briefly described in chapters 3 and 4. In chapter 5, the pro-
posed ACO algorithm is presented. The implementation details and experimentation
are described in chapter 6. Chapter 7 concludes. Chapter 8 presents the resulting
contributions from the thesis. Finally, in chapter 9, the possibility of extension of

this work in the future is briefly discussed.

Chapter 2

Parallel Computing Environments

Parallel computing or parallel processing is a technique trying to provide the solution
of a single problem using more than one processing element (processor or CPU).
Given a large task that is very computationally intensive for a sequential computer,
the idea in parallel processing is to solve the problem fast and achieving maximum

speedup by utilizing multiple computers efficiently.

A problem can be solved by either performing a domain decomposition or func-
tional decomposition. In domain decomposition, the data is partitioned and dis-
tributed to the processors; while in functional decomposition, the task is subdivided
and the individual subtasks are given to the processors. In both these decomposi-
tions, the type of parallel architectures, parallel algorithm design, parallel compilers

and parallel languages influence the speedup of an application.

In this chapter we will briefly discuss the taxonomy of computer architectures [21]

and the standard parallel languages.

CHAPTER 2. PARALLEL COMPUTING ENVIRONMENTS 7

2.1 Flynn’s Taxonomy

Many large commercial parallel machines are based on Flynn’s taxonomy of computer
architecture [21]. Flynn classified the parallel computer into four main categories
according to the number of instructions and data streams per cycle: Single Instruction
Single Data (SISD), Single Instruction Multiple Data (SIMD), Multiple Instruction
Multiple Data (MISD) and Multiple Instruction Multiple Data (MIMD).

SISD is the classical von Neumann machine or the sequential computer. This se-
rial machine shows the least concurrency among the aforementioned computer mod-
els. Pipelining technology helps to achieve parallelism for SISD through concurrent
execution of different processing phases.

MISD is logically a pipeline of functional units that operates on a single piece of
data. However, it is very difficult to find applications for MISD machines [20].

SIMD and MIMD models have gained popularity since many applications fall into

these architectures. These models are elaborated below.

2.1.1 Single Instruction Multiple Data

Many early parallel computers use a topology where a single instruction operates on
different sets of data. This topology is known as Single Instruction Multiple Data
(SIMD) model. An SIMD machine is comprised of an array of processing elements
(PE) which are controlled by a single hardware unit (Figure 2.1). The controlling
unit distributes one instruction at a time to each of the PEs thereby maintaining
synchronicity among them. That is, each PE performs the same computation on
different data sets. Such models are called as synchronous programming models. The

connection machine [32] and Massively Parallel Processor [4] are SIMD architectures.

CHAPTER 2. PARALLEL COMPUTING ENVIRONMENTS 8

Global
Control:Unit

Interconnection Network

Figure 2.1: Logical view of a SIMD Machine [21]

This type of architecture is useful for vector data manipulation. The optimal
performance can be achieved from these machines when the vector size is a multiple
of the number of processors. For example, if the vector size is 512 and there are 8
processors then 512/8 = 64 chunk of data is distributed among the processors. In
this case all the PEs are busy executing the computations on their local data set.
However, if the vector size is 513, then the first PE has one data more than the
other seven processors. The seven processors will be idle while the first PE is busy
executing the instruction on its additional data. Since usually in a SIMD architecture
such as MPP, the number of processors is large, it is detrimental to obtain maximum

effciency from these machines.

CHAPTER 2. PARALLEL COMPUTING ENVIRONMENTS 9

2.1.2 Multiple Instruction Multiple Data

In MIMD architecture, autonomous processors execute different programs simulta-
neously. The processors communicate via an interconnection network. Communi-
cation becomes a crucial issue in such machines. These are known as asynchronous
programming models since they do not require a global clock synchronization as in

SIMD machines. Figure 2.2 shows the typical architecture of a MIMD model.

PE

1
+Control

unit

PE,2
+Control
unit

Interconnection Network

PE,
+Control

unit

Figure 2.2: Logical view of a MIMD Machine [21]

MIMD machines are also called as Single Program Multiple Data (SPMD) models
because it is very common to have the same program execute on every processor [29].
The advantage of SPMD over SIMD model is that it can use maximum instruction
level parallelism. Moreover, SPMD machines can be built using general purpose
processors while SIMD machines require special processors. However, SPMD models

mostly suffer from communication overhead among the processors.

CHAPTER 2. PARALLEL COMPUTING ENVIRONMENTS 10

The MIMD machines are broadly divided into two categories according to their
memory organizations: distributed memory multicomputers and shared memory mul-

tiprocessors.

2.2 Distributed Memory Multicomputers

This architecture consists of several processing nodes (computers) where each node
has its own private local memory (Figure 2.3) that is accessible by the local processor
only. Since there is no centralized memory, the PEs communicate with each other
through an interconnection network using message passing. The topology of the
network is very important to the overall evaluation of the performance of the algorithm
since the time of the arrival of the messages greatly depends on the interconnection
network. The topology of the interconnection network also affects the scalability of
the distributed machines. Therefore, many interconnection network topologies exist
such as the hypercube, bus, tree and torus [50].

Note that the arrival of messages between nodes is asynchronous adding greater
difficulty in designing and implementing parallel algorithms on such an architecture.
The sending and receiving of messages therefore has additional overhead in the per-

formance of the algorithm.

Cosmic Cube [43], nCUBE 2 [16], iPSC [2] are the examples of MIMD machines.

Message Passing

Message passing paradigm is an alternative to shared memory programming. The
message passing libraries could provide either blocking or non-blocking communica-
tion. In blocking message passing communication, the sender cannot proceed with

any other instructions until the data is completely received at the receiving end. In

CHAPTER 2. PARALLEL COMPUTING ENVIRONMENTS 11

CPU Memory CPU Memory CPU Memory

Interconnection Network

Figure 2.3: Logical view of a distributed memory multicomputer

contrast, in non-blocking communication, the sender places the data to be trans-
ferred in a buffer and continues with its other instructions. The sender does not
worry about when the message is transferred. The sender can check if the message
has been received by the receiver using primitives provided in the message passing li-
braries. Therefore non-blocking communication provides overlapping of computation

with communication.

Message Passing Interface (MPI) and Parallel Virtual Machine (PVM) are two
message passing libraries for distributed memory machines. PVM has been designed
to form a single parallel computer by connecting several heterogeneous computers
together. It is very feasible for heterogeneous machines. PVM provides distributed
operating system through its virtual machine by running a deaemon on all the com-

puters.

MPT on the other hand, is now a standard for writing parallel programs using
message passing interface. It does not provide a virtual machine like PVM. An
object in MPI uses interfaces to communicate with other objects or other resource
management system. Portability, modularity and free availability make it possible to

use in a wide variety of systems.

In this thesis, we have chosen MPI since it is considered as a standard [22]. More-

CHAPTER 2. PARALLEL COMPUTING ENVIRONMENTS 12

over, the experiments are conducted on homogeneous machines such as Beowulf clus-

ter where MPI is more efficient.

2.3 Shared Memory Multiprocessor

In shared memory multiprocessors, the processors have access to the common global
memory [21]. Figure 2.4 shows the logical view of this architecture. IBM SP2 and
Cray are examples of such machines. There are three models of shared memory
multiprocessors and they differ in the organization of the memory and peripheral
devices as either shared or distributed. They are Uniform Memory Access (UMA),
Non-Uniform Memory Access (NUMA) and Cache Only Memory Access (COMA)

models.

CPU CPU - - oo CPU

Shared Memory

Figure 2.4: Logical view of a shared memory multiprocessor

In UMA model, all the processors have equal access to the physical memories.
The physical memories is uniformly shared by all the processors. These machines are

also called as Symmetric Multiprocessors (SMP). Programming in this model is easy

CHAPTER 2. PARALLEL COMPUTING ENVIRONMENTS 13

but the drawback is that it does not scale well to many processors. Locality is of less

concern in these SMPs.

NUMA machines are also called as distributed shared memory machines. In this
model, though each processor has its own local memory, the processors can access
every other processors memory. Since some processors memories are closer to others
and depending on the location of the processors, the access time varies. The shared
address space together forms a global address space shared by all processors. SGI

Origin 2000 and Sun Ultra HPC Server are examples of NUMA machines.

COMA machines are a variant of NUMA machines. In this model, the distributed
shared memory are the caches. All the caches of the processors together form a global

address space.

One of the drawbacks of shared memory machines to distributed memory ma-
chines is that since there is one global memory, the resources are shared by the
processors. Locks and semaphore constructs are necessary to properly synchronize
and co-ordinate the tasks between the processors. When many processors access a
particular memory location, memory contention arises. Programming, though is con-
ceptually easier in this model, the performance of the algorithm may be limited due

to the sharing of the resources.

Each processor has a cache memory which is faster to access than the shared
memory. It is possible that a shared data may exist in the cache memories of different
processors at a given time. The datum, therefore, in the shared memory and the
local caches is invalidated. Cache coherency protocols must be maintained. Cache
coherence mechanisms ensure that all processors work with consistent data and can be
implemented either in hardware or can be handled by software. For example, snoopy

protocol is used in bus based shared memory machines for cache coherency [38].

CHAPTER 2. PARALLEL COMPUTING ENVIRONMENTS 14

2.4 Multithreading

In masswely parallel processors, there are two types of latencies that asynchronicity
triggers: communication and synchronization latencies [3]. Communication latency
arises when a processor requires a particular data from another processor and has to
remotely access this data via message passing. The processor idles until the data is
received. To determine if the data is ready at the receiving end, the processors have
to synchronize. In such situations, busy waiting may result. In both these cases, the

processor idles.

There are many ways to overcome these latencies: hide, tolerate or reduce. The
general technique is multithreading which tries to hide the latencies such as the non-
blocking communication protocol in MPI. In multithreading, the main idea is to
overlap computations with communications. The processors context switches between

threads, where a thread is a sequence of instructions.

In non-blocking communication in MPI [22], a processor (sender) may send a mes-
sage to another processor (receiver) requesting for information. During this process,
the sender, in order not to stay idle, executes the next set of instructions following the
send operation, if there is any. In this case, the program must have instructions that
it can overlap during the communication phase. Simultaneously, the sender checks
the buffer periodically using the primitives provided in the message passing library
to determine if the message it has requested has arrived in its buffer. Though there
is some possibility of computation and communication overlapping, the periodical
checking for the message takes a significant amount of time. This is an additional
overhead incurred in MPI programming which is not visible to the user but degrades

the performance of the algorithm.

In the general sense of multithreading, the algorithm is divided into many threads,

CHAPTER 2. PARALLEL COMPUTING ENVIRONMENTS 15

where each thread is a sequence of instructions. A thread could be fine-grained
or coarse-grained. Fine-grained threads contain very few instructions, maybe ten
instructions per thread. Coarse-grained threads are larger threads. The program
running in the SPMD model can be categorized as coarse-grained threads.
Determining the thread granularity (fine or coarse) is very difficult in a multi-
threading environment. Many issues (such as thread boundary, thread size, number
of threads) need to be considered while designing algorithms for much paradigms.
Tera MTA multithreaded architecture [8], Cilk [45], Solaris threads and Pthreads [36],
Java [37] and OpenMP [14] are all multithreaded machines, libraries or languages that

exist in the literature.

2.4.1 Tera

Tera is a multithreaded architecture [8] that provides super pipelining in its processor-
network-memory operation for high performance computing. Tera can handle 128
contexts per processor and it performs a context switch per clock cycle with numerous
threads or context. Tera supports latency tolerance rather than latency reduction.
Tera is used in research labs such as the San Diego supercomputing center where the

machine is installed and in Nasa Ames [33].

2.4.2 Java

Java is an interpreter based language which supports both single processor and mul-
tiple processors. Portability of Java code is a major advantage. However, Java is not
a good choice for fine-grained parallelism as context switching between processors

require significant amount of time [37].

CHAPTER 2. PARALLEL COMPUTING ENVIRONMENTS 16
2.4.3 EARTH

Efficient Architecture for Running THreads (EARTH) [24] is a multithreaded dataflow
architecture that does not follow the traditional von Neumann model of computing
in traditional parallel computers or the Tera multithreaded architecture. EARTH
threads are very versatile and support both fine-grained and coarse-grained comput-
ing. However, the language used by this architecture called Threaded-C is not a
user-friendly language. In EARTH, threads are scheduled depending on control and
data dependencies, which circumvent synchronization and communication latencies
quite significantly. Though there is a simulator version of the EARTH and is possible

to access it remotely, remote access is always very difficult.

2.44 Cilk

Cilk is a multithreaded language based on a ANSI-C programming language. Cilk
is suitable for dynamic and highly asynchronous applications which follow a recur-
sive programming model. Cilk employs a runtime scheduler to accurately estimate
and monitor the performance of a program. The load balancing and communication

protocols are also managed by Cilk runtime system [45].

2.4.5 PThreads

POSIX Threads (Pthreads) are operating system threads that are primarily de-
veloped for Linux and Unix environment to write programs that require concur-
rency. PThreads is a library based multithreaded approach for coarse-grained paral-
lelism [36]. Pthreads are preemptive threads and the context switching time between

threads is significant.

CHAPTER 2. PARALLEL COMPUTING ENVIRONMENTS 17

2.4.6 OpenMP

OpenMP is an application programming interface (API) for parallel programming
which comprises of a set of directives and libraries. OpenMP is designed for shared
and distributed shared memory multiprocessors. OpenMP can convert a existing
sequential code into parallel code using three of its features: directives, library rou-
tines, and environment variables. It is easy to include OpenMP API in conventional

C/C++ or Fortran language [14].

The directive approach of OpenMP makes it portable API in the multithreaded
paradigm. It is easy to write and compile a parallel code using directives. The
directives are treated at compile time. Therefore, the code written in OpenMP can
be optimized at compile time. On a non-OpenMP environment, the directives are
considered as comments and discarded. The directives, therefore, facilitate porting
the OpenMP code on a nonOpenMP environment. Hence, it is only necessary to

recompile the whole code for porting into a new system.

OpenMP exploits parallelism using control structures. OpenMP uses fork/join
model for multiple threads. When a parallel directive encloses a block, the block
could be executed by multiple threads concurrently. There are two types of parallel
constructs: loop level parallelism and sections. In loop level parallelism threads could
be divided as fine-grained threads. In this method, a loop (equivalent for) may
be parallelized by allowing each iteration of the loop to be executed by a thread.
Note that each thread executes the same code on different data sets following a
SPMD model. This allows efficient work sharing among the threads. The scheduler
distributes the workload dynamically among the processors. On the other hand,
threads could execute different pieces of code concurrently. OpenMP uses section

construct for work sharing. Each section contains a block of code and each thread

CHAPTER 2. PARALLEL COMPUTING ENVIRONMENTS 18

Master
Thread

Master thread encounters a
N <«— parallel block and creates
slave threads

All threads have done their
NN NS N« execution in parallel block.
Slave threads disappear

<«—— Master Thread continues its
execution for the serial portion

N

Figure 2.5: Example of parallel block execution by an OpenMP code

executes a block enclosed in a section; this is more coarse-grained.

The OpenMP program starts with a single thread. This thread is known as a
master thread. When a master thread encounters a parallel block, it creates slave
threads according to the request of the block. Thus, the master thread together with
the slave threads execute the parallel block. When a thread completes its work, it
waits for other threads to finish. At the end of the block execution when all threads
have finished their computations, the slave threads disappear. The master thread
continues its execution as a serial program. Figure 2.5 shows the execution of the

parallel block in an OpenMP environment [14].

CHAPTER 2. PARALLEL COMPUTING ENVIRONMENTS 19
2.5 Summary

This chapter summarizes the parallel computing environments. In this thesis, MPI
and OpenMP are employed for efficient parallel implementation of the proposed pai-
allel ACO algorithm. MPI runs on a network of workstations and 10 node Beowulf
cluster at University of Manitoba, Computer Science department. OpenMP runs on

an 8 node shared memory machine also available in the Computer Science department.

Chapter 3

Ad Hoc Networks

An ad hoc network is a collection of mobile nodes that routes packets without any cen-
tral administration or standard support services that are available on wired networks.
Laptop computers and personal digital assistants that have independent communi-
cation capability are examples of nodes in an ad hoc network. Figure 3.1 shows a

simple ad hoc network comprised of three devices.

Figure 3.1: An example of Ad Hoc Networks

The mobile nodes in an ad hoc network are operated by low powered batteries
which limit their transmission range to the nodes that are closest to them. For
example, consider Figure 3.2 with three wireless mobile hosts. The circles around the

nodes indicate the transmission range of these nodes. Nodes 1 and 2 are reachable

20

CHAPTER 3. AD Hoc NETWORKS 21

R B

<N\
\ §

.._\\ - "‘fﬁ%i—'

,'f/ / ,ff/ \ \\ 1"‘,/ ,J'/
= l’f 2 | 3

l'!

T I
)],)

I)
\ \ f / \ ;
NS 0 N AW
\"'-»..ﬁ__‘_ S e \h""u‘_. o

Figure 3.2: An ad hoc network with Figure 3.3: An ad hoc network with one

W ——,

! 1
4

three nodes. additional node.

from one another, as are nodes 2 and 3. However, node 3 in this case is not in
the transmission range of node 1. If node 1 and 3 wish to communicate (route
packets), they need to get the aid of the intermediate node, node 2, which is within
the transmission range of both node 1 and node 3. A node, therefore, acts as both
a host and a router transmitting data to other mobile nodes that may not be within
transmission range of each other. Suppose another node is added to the above network
(see Figure 3.3). The situation changes considerably, since there are now multiple
paths between nodes 1 and 3. Packets can be routed along paths 1-2-3 or 1-4-3 or 1-
2-4-3. The situation becomes more complicated when more nodes are involved in the
network. An ad hoc routing protocol must, therefore, determine the “best” path to
route the packets between the nodes. The ad hoc network is therefore characterized
as a dynamic topology since the mobile nodes move frequently. This characteristic in

an ad hoc network demands routing protocols that dynamically discover routes [31].

CHAPTER 3. AD Hoc NETWORKS 22
3.1 Routing Protocols

The ad hoc routing protocols may be classified as proactive routing protocols or
reactive routing protocols. In proactive protocols, all nodes keep one or more tables
of up-to-date information about all other nodes in the network. When a node joins
or leaves the network, update messages are relayed to all the nodes. Reactive routing
protocols create routing tables when they are required. Not all updates are preserved

at every node. In the following sections, a brief explanation of the protocols is given.

3.1.1 Proactive Routing Protocols

In this approach, each node in the network tries to keep an updated copy of infor-
mation about all the nodes in the network. Routing protocols differ in the way they
maintain the routing information and methods by which they build the routing table.
Several routing protocols have been developed following the proactive methods. Des-
tination Sequence Distance Vector (DSDV) [39] is one such protocol. This protocol
is based on the Bellman-Ford [48] routing algorithm, where each node V' contains
information about all the nodes in the network and their distances from V in terms
of the number of hops. To make the network consistent, each node sends its status to
every other node, which generates a lot of control packets as well as creating inefficient

traffic in the network.

3.1.2 Reactive Routing Protocols

When a node (the source) wishes to send data to a particular node (the destination),
the source finds a route to the destination by initiating a route discovery phase.
Once the route is established, only the nodes in the route participate in the route

maintenance phase. There are two main protocols: Ad Hoc On-Demand Distance

CHAPTER 3. AD Hoc NETWORKS 23

Vector Routing (AODV) [41] and Dynamic Source Routing (DSR) [28] that apply
reactive routing approach. AODV is an improved version of DSDV. The source node
broadcasts a route request (RREQ) packet to its neighbors and the RREQ packet is
sent to the destination through intermediate nodes. When the RREQ packet reaches
the destination or an intermediate node, which has the latest information about the
destination, a route reply (RREP) packet is sent back to the source. The RREP
packet follows the reverse path of the RREQ packet and sets up the routing tables of
the nodes along the path to forward data from the source to the destination. Since
the RREP packet follows the same route as the RREQ packet, the links in AODV
networks must be bidirectional. If a node along the path is moved or a link is removed,
the neighboring nodes of the recently removed node send the broken link information
to the source. The source then re-initiates the path. For this purpose, every node
keeps track of its neighbors along a particular route [41].

In DSR, each mobile node contains a route cache to keep the routing information
about other nodes in the network. When one node V tries to send data to another
node U, V first looks at its route cache. Node V sends data directly to the destination
if routing information is found in its route cache. Otherwise, node V sends a route
request packet towards the destination. This packet also contains the route record
and keeps information about the nodes along the path.

A route reply packet is sent by an intermediate node or by the destination node.
If any intermediate node has information about a route to the destination, it appends
this information into the route record and sends it back to the source. If there is no
such intermediate node on the path to provide routing information, the route request
packet reaches the destination. The destination extracts the route record information
from the route request packet and appends this information to the route reply packet.

Then the destination sends this route reply packet to the source node and the path

CHAPTER 3. Ap Hoc NETWORKS 24

is established.

The route is maintained using route error packets. When one node experiences
a transmission error through a link, it yields a route error packet and notifies all
other nodes using this link. The nodes in the network update their route caches

accordingly [28].

3.2 Summary

In this chapter, the DSDV protocol is primarily discussed since it closely resembles
the traditional protocol for wired networks. However, DSDV does not show good
performance in highly mobile environment. Therefore, the originators of DSDV pro-
posed a reactive version of DSDV called AODV. The multicasting capability of DSDV
enhance the performance of DSDV when one node communicates with several nodes.
The route discovery phase of DSDV resembles the route discovery phase of DSR. Both
use a route request packet from source to destination [31]. In the proposed parallel
ACO algorithm discussed in the next chapter, the source node sends active agents
(alias ant) to the destination node and the destination node returns another agent
to source for route establishment which is similar to the route reply packet in DSDV

and DSR.

Chapter 4

Overview of the Ant Colony

Optimization

Swarm intelligence [6] is a research area inspired by observing the behavior of insects.
Scientists have been looking at the collective behavior of insects such as ants, hon-
eybees, wasp, etc. for solving several NP-Hard optimization problems. By observing
the behavior of ants, a new metaheuristic has been developed called the Ant Colony
Optimization (ACO). A metaheuristic can be defined as a high-level algorithmic ap-
proach that can guide many heuristic problems. The first ACO (a subset of swarm
intelligence) was introduced by Dorigo [19]. The ACO algorithm is based on the tech-
niques used by ants that collectively participate and collaborate in activities such as
finding food or building a nest. Ants are very intelligent and self-organized insects.

This observation has led to solving many static and dynamic problems.

In this chapter, the basic idea behind ACO is discussed in section 4.1. Section 4.2
gives a high level description of the ACO algorithm. In section 4.3, the applications

of ACO is described. The parallel aspects of ACO is explain in section 4.4.

25

CHAPTER 4. OVERVIEW OF THE ANT COLONY OPTIMIZATION 26

P S, SR et S S S
o

Songy e =2

Figure 4.1: An example with real ants. Adapted from [19].
4.1 Foraging behavior of ants

The basic idea of ACO comes from the foraging behavior observed by the colony of
ants. When ants leave their nest in search of food, they deposit a chemical substance
called pheromone on their path. The scent of pheromone lures more ants to follow
the same path. When more ants traverse a link, the amount of pheromone deposited
on that link gets intense, thereby attracting more ants to that trail to travel from
the nest to the destination and vice versa. The scent of the pheromone on these
links evaporates after certain amount of time. The longest paths from source to
destination lose their scent much faster than the shorter paths. Thus, more ants
choose the shortest path to find food. This indirect communication among ants is
known as stigmergy.

We can explain the aforementioned phenomena using Figure 4.1. Assume the nest
is located at A and the food source is at E. The ants travel back-and-forth between A
and E. Assume, suddenly an obstacle is placed on their path. At position B, an ant
has to decide which way to traverse. An ant could either take BHD or BCD. The

same scenario will occur at position D for the ants coming from E. An ant at position

CHAPTER 4. OVERVIEW OF THE ANT COLONY OPTIMIZATION 27

B has equal probability to turn left (taking BH D) or turn right (taking BC'D). Let
us assume that half of the ants at point B take left turn while the other half of the ants
take right turn. The ants taking BC'D reach D quicker than the other ants traversing
BHD since the path is shorter. Also, note that the pheromone concentration level
evaporates in course of time. Since the BHD path is longer than the BCD path,
the chances of losing the scent in this path is much faster than that of path BCD.
Hence the ants at point D returning from E take DCB. This phenomena eventually
increases the pheromone concentration on the shortest path thereby establishing a

route between A and F via BCD.

4.2 Ant Colony System

Dorigo, Maniezzo and Colorni [18] first applied the foraging behavior of ants to the so-
lution of the the path optimization problem, the travelling salesperson problem (TSP).
They chose TSP because it is an NP-hard problem and the ant system metaphor can
be easily adapted to this problem [6]. The idea is to distribute a set of ants is dis-
tributed on several cities. Each ant starts traversing from its current city, visits each
city exactly once, and returns to its original city completing a tour. On their jour-
ney, the ants deposit the pheromone along the edges connecting the cities. After one
complete tour, the pheromone concentration is adjusted along the edges and the ants
start their tour again. In this process, the edges that are not part of the solution will
have less pheromone and eventually evaporate.

Dorigo et al. [19] first developed Ant System (AS) for TSP. However, the result
for TSP from AS was not optimistic. Since AS performed well for small networks, the
authors later proposed a modification of AS called Ant Colony System (ACS) [18] or

ant colony optimization (ACO) algorithm.

CHAPTER 4. OVERVIEW OF THE ANT COLONY OPTIMIZATION 28

The ACO algorithm works as follows. Given m ants and 4, iterations, the

algorithm alternates between two basic phases [6]:

o Construction Phase: Each of the m ants develop and construct m solutions to

the problem under consideration. The ants perform this construction in parallel.

e Pheromone Update Phase: The pheromone concentration level on the edges is

modified.

The ACS provides three rules: transition rule, global update rule and local update

rule.

Transition rule: The construction phase is probabilistic. Each edge (r, s) connect-
ing vertices r and s is associated with a length d(r, s). The visibility n(r,v) is defined
by 1/d(r,s). Visibility can be regarded as heuristic desirability, that is, choosing
vertex s from vertex r. This selection strictly depends on local information and is
used to allow an ant to select the next node on its journey to the destination. 7(r, s)
is the pheromone concentration on the edge between two vertices r and s. 7 is not
static since it is updated during the problem solution. It reflects the past history of
the edge and the ants desirability to choose that edge. More than one ant may have
traversed an edge and that is reflected in 7.

The probability of adding a new element to the solution space constructed by an
ant is a function of the element’s heuristic desirability 7 and the pheromone trail 7.

An ant k at vertex r chooses to move to a vertex s using the following transition

rule:

arg maZues ([T (r,w)] - [n(r,w)]? if ¢ < g
5= (4.1)

S if g > qo

CHAPTER 4. OVERVIEW OF THE ANT CoOLONY OPTIMIZATION 29

Here ¢ is a random variable uniformly distributed over [0,1]. ¢qo is a tunable
parameter where 0 < gy < 1. Ji(r,s) is the set of unvisited nodes by this ant. A3
is a user defined parameter that is adjustable. It controls the relative weight of 7.
S is selected randomly from the set of unvisited nodes, Ji(r), using the following

probability:
. [T(Ta S)] i [7’}(7‘, 3)]ﬁ
R SN s By s 4.2)

When ¢ < ¢o, the transition rule follows the exploitation method. It uses the

knowledge of the distances and the pheromone trail to exploit an edge. For, q > qq,
the transition rule follows the exploration method of trying to choose an edge that is

unvisited.

Global pheromone updating rule: The ACS gives emphasis on the probable
best solution. After completing the tours by all ants, the edges that belong to the
best tour are rewarded. The pheromone level of this best tour is increased by the

following rule:

1
7(r,s) = (1—p)-7(r,s) + p- A7(r,s), where At(r,s) = best four lengh (4.3)

This update encourages the ants to follow the optimistic path to find the optimal

solution. Local updates are also performed to find other solutions.

Local pheromone updating rule: When an ant k at vertex r selects the next ver-
tex s € Ji(r), the pheromone concentration of edge (r, s) is updated by the following
equation:

T(r,8) =(1—p)-7(r,8) +p- 70 (4.4)

7o is the initial pheromone level and p is the decay parameter. The local updating rule

actually decreases the pheromone concentration level on an edge. This is because,

CHAPTER 4. OVERVIEW OF THE ANT COLONY OPTIMIZATION 30

it was found experimentally by Dorigo et. al. [18] that by allowing visited edges to
be less attractive, the ants may choose other paths and eventually find an optimal
solution. The argument behind this is that, when an ant eventually finds a path it
may not necessarily be the shortest path.

A high level description of the ACO algorithm is given below [6]:
e Initialization: for all edges (4, 7) set 7(%,5) = 7o.
e Given m ants, place an ant on each of the randomly chosen vertices.
o Lor 4,,,, iterations perform the following:
— Each of the m ants construct a solution to the problem by using the tran-
sition rule.

— BEach ant k£ computes the cost of the solution obtained above.

— If an improved solution is found then update best solution found by using

the global update rule.

— For all edges (¢, j) use the local update rule.

e Print the best solution.

4.3 Applications of ACO

ACO was initially applied to various well-known combinatorial optimization problems.
They found that the ACO algorithm for these static problems gave better results than
the other existing solutions for the problems under study. This encouraged others to
study various communication network problems that are more dynamic.
Bullnheimer et al. [9] proposed an application of the ant system to vehicle routing

problem (VRP). Given n vertices, one vertex is the depot and the rest of the vertices

CHAPTER 4. OVERVIEW OF THE ANT CoLONY OPTIMIZATION 31

are customer locations. Each edge is associated with a parameter, d;; which repre-
sents the distance between two locations. Each vertex, besides the depot vertex, is
associated with a demand and service time. There are m vehicles and each vehicle can
hold a certain load capacity. The vehicles are allowed to visit each location exactly
once without exceeding its total demand capacity and not exceeding its maximum
travel distance. Every vehicle must start and end at the depot. The objective of the
VRP is therefore, to minimize the cost of delivery by vehicles to customers from the
depot subject to the constraints mentioned above. As can be noted, VRP is nothing
but the TSP with some limitations. The same technique used in the TSP is applied
to this problem to find the solution. The results obtained for VRP using ant system
indicate that it performs better than simulated annealing [46].

Maniezzo and Colorni [34] use ACO to solve the quadratic assignment problem
(QAP), an NP-Hard problem. In QAP, given n facilities and n locations, each of the
facility has to be assigned to a location. The problem can be represented as a graph,
where each node in the graph is a location. Each edge connecting locations ¢ and j
is associated with a distance parameter d;;, which can be represented as a matrix.
We are also given another facility matrix, where a flow, fy;, is associated between two
facilities h and k. There are n! possible assignments. The cost of each assignment can
be computed by multiplying the flow between each pair of facilities by the distance
between their locations and summing over all the pairs. The solution to the QAP
using ACO is very similar to that used in the TSP. The results outperformed genetic
algorithm but not simulated annealing [46].

Another NP-hard problem is the job scheduling problem (JSP) [6]. Given M
machines and J jobs, each job j contains an ordered sequence of operations. Each
of the operations of a job has to be executed on a machine m during consecutive

time periods. The goal is to minimize the total time for the completion of all jobs

CHAPTER 4. OVERVIEW OF THE ANT COLONY OPTIMIZATION 32

in the given time intervals while maintaining the constraint that no two jobs will be
processed on the same machine at the same time. Colorni et al. [6] represents the JSP
as a directed weighted graph. Each vertex in the graph represents an operation O;
of machine m; (¢ = 1,2, ..., M)and job ji, (k = 1,2,..,J). Using the ACO algorithm,
each ant starts adding nodes to its solution space. If a node is already selected, it
will not be visited again. A new node is selected as the next node in the solution
space, if this node corresponds to the next operation of the same job of the previously
selected node. Colorni and Dorigo obtain reasonable performance using ACO for 10

jobs using 15 machines [6].

4.3.1 ACO and Communication Networks

In this section, a brief overview on the related work conducted on some of the problems
in communication networks using ACO is described.

Schoonderwoerd et al. [42] proposed the idea of using an adaptive routing al-
gorithm in telephone networks called ant based control (ABC) algorithm. In this
algorithm, ants are placed at various locations in the network. The goal of the ants
is to maximize performance of the network by adjusting the routing tables located
at each of the nodes to adapt to the load changes in the network. The ants route
traffic along paths that are less congested thereby achieving better throughput from
incoming calls. The algorithm adjusts the parameters according to the demand of the
network. Schoonderwoerd et al. noticed that ABC resulted fewer call failures than
the other existing algorithms.

Inspired by ABC, Di Caro and Dorigo [12] later proposed another novel algorithm
called AntNet for different types of routing protocols such as packet switching or

circuit switching in data networks. AntNet uses two homogeneous ant like mobile

CHAPTER 4. OVERVIEW OF THE ANT COLONY OPTIMIZATION 33

agents, forward ant and backward ant, for exploring the paths from a source to a
destination. The source node sends a forward ant towards destination node. When
the ant reaches the destination node, it transfers its experiences (pheromone trail,
heuristic desirability) to the backward ant about the network. The backward ant, as
it is travels back to the source node, updates the routing table at each node. The
entry in the routing table contains information about the probability of choosing a
path. The update ensures that the best path to the destination achieves the highest
probability. The advantage of AntNet is that it keeps additional information such as
reliability of a path in the form of estimated trip time (the time required to traverse a
path). However, in AntNet, the forward ant does not participate in the modification

of the routing table of the visited nodes.

4.3.2 Routing in ad hoc networks

The ACO technique is quite amenable to ad hoc networks due to their similar char-
acteristics. An ant creates a path dynamically just like the routing protocols in
MANET. The communication between ants is very minimal, as in MANET. Since
the communication links may change dynamically, a node routes packets depending
on the link conditions. Similarly, an ant can also exploit the link conditions in the
amount of pheromone it deposits on a trail.

The successful implementation of ABC and AntNet lead to the use of artificial ants
in a mobile ad hoc network. There already exists two protocols in this area. Camara
and Loureiro [11] describe a novel routing protocol GPSAL (GPS/Ant-Like Routing
Algorithm) for MANET. They use mobile software agents modeled as ants to update
network information. The ants collect information about the location of the nodes in

the network and disseminate this location information to the mobile hosts. However,

CHAPTER 4. OVERVIEW OF THE ANT COLONY OPTIMIZATION 34

their approach ignores the notion of stigmergy and concentration of pheromone on
the trail. Giines et al. [23] extend the idea and consider the stigmergy effect of the
pheromone deposited by the ants. This pheromone is used as a medium of indirect
communication both in the route discovery and route maintenance phases. However,
their system is not scalable for wide area networks and cycle formation between mobile
hosts, a common phenomenon in MANET, is not detected. Recently, Arabshahi et

al. [1] have considered an energy-conserving routing algorithm for MANET.

4.4 Parallel aspect of ACO

The ACO technique is inherently parallel, but little research has been done in this
aspect. The efficiency of parallelization of ACO algorithm depends on the application.
The experimental platform is also important to produce efficient results. Simulation
modeling, distributed multicomputers or shared memory multiprocessors have been
used in the literature, for parallelization of the ACO algorithm.

Bullnheimer et al. [10] first investigated the parallelization of the ant system on
the TSP. The problem is studied from a synchronous and a partially asynchronous
perspective. In the synchronous algorithm, a processor acts as a master and each
slave processor sends a completed tour and the length of the tour to the master
processor. Therefore, the frequency and volume of communication is high in the
synchronous approach. This synchronization and communication overhead reduces
the performance of the algorithm. To circumvent the problem, they consider a partial
asynchronous approach [10]. Bullnheimer et al. analytically showed the performance
gain of their algorithm. They simulated their algorithm on a discrete event simulator
to evaluate the performance gain and speed up of their parallel ACO algorithm on

TSP.

CHAPTER 4. OVERVIEW OF THE ANT COLONY OPTIMIZATION 35

Stiitzle [44] modified the Ant System for parallelization and called it Maz-Min sys-
tem for parallelization. In Max-Min system, only one ant can modify the pheromone
concentration on the trails after completing an iteration. The level of pheromone
should be within a maximum and minimum bound. Thus the algorithm offers more
opportunities to explore paths [44]. Stiitzle experimented the algorithm on a dis-
tributed architecture to show the efficiency and speedup of his algorithm. The algo-
rithm was implemented using parallel independent run [44] which is the simplest way
to parallelize a program. That is, each processor or each working ant independently
finds the solution to the problem. The advantage of this method is that there is
no communication overhead among the processors. Stiitzle showed that the parallel
algorithm gets speedup upto P where P is the number of processors.

Randall and Lewis [40] explained various parallel decomposition strategies and
specifically applied them to the TSP. They evaluated Parallel Ants scheme as a par-
allelization technique based on ACO. However, the parallel ants are not independent
as described by Stiitzle. They used master/slave approach. The master processor
generates the input graph, distributes the ants to different nodes in the network and
also updates the pheromone trails. The slave processors perform their operations on
their own data. After completing their iteration, they send the pheromone matrix
for the trails to the master processor and get the updated pheromone matrix from
the master processor. Randall et al. implemented the aforementioned method on the
IBM SP2 architecture. They used MPI for communication between the master and
slave processors. They showed that a significant amount of speedup can be obtained
for larger problem sizes by parallelization of ACO technique. The algorithm, however,
is more centralized.

Delisle et al. [17] described another ACO parallelization technique for the in-

dustrial scheduling problem and implemented the algorithm on a shared memory

CHAPTER 4. OVERVIEW OF THE ANT CoLONY OPTIMIZATION 36

multiprocessor using OpenMP. They used a shared memory machine to eliminate the
large communication overhead experienced by their algorithm on a distributed mem-
ory machine. They showed that for their application, the ACO technique can achieve
good performance gain. Moreover, they experimented their algorithm by increasing
and decreasing the number of ants to allow proper sharing of load. This could be
easily accomplished on a shared memory machine compared to a distributed memory

machine.

4.5 Summary

In this chapter, an overview of the ACO algorithm, sequential and parallel work that
has been conducted in this area was discussed. To our knowledge, ACO has not
been parallelized for ad hoc networks. The next chapter describes the proposed ACO

algorithm for routing in ad hoc networks.

Chapter 5

Algorithm

In this chapter, the proposed algorithm for finding route in ad hoc network is de-
scribed. A demonstration of the algorithm using an example is given at the end of

the algorithm description.

5.1 Methodology

In this algorithm, two homogeneous ants (act like agents), forward ant (FANT) and
backward ant (BANT), are used. The FANT discovers the route from a source to a

destination while the BANT establishes the final route.

5.1.1 Assumption

The network can be represented as a graph G = (V, E) where V is the number of
vertices (nodes) and E is the number of edges (links). We apply the ACO meta-
heuristic search algorithm to find the shortest or best path from a given source to the
destination. Each link e = (v;, v;) is associated with two variables: ¢(v;,v;) represents

the pheromone value on each link and w(v;, v;) represents the time (the time required

37

CHAPTER 5. ALGORITHM 38

by a packet to traverse the link). The pheromone value gets updated by the ants as
they traverse the links. The ants change the concentration of the pheromone value

on their journey to the destination and on their way back to the source.

5.1.2 Routing table

Each node contains a routing table (RT). The size of RT is the degree of the node
times all the nodes in the network. That is, if we assume the number of nodes in
the network is N and degree of node v; is d;, then the size of the table is Nd;,. The
rows indicate the neighbors of node v; and the column represents all the nodes in the
network. Since the number of nodes in an ad hoc network is small, this routing table
is feasible. There are two entries in the routing table for a particular (row, column)
pair: a number indicating whether the node has been visited by other ants and the

pheromone content.

5.1.3 Route discovery

When a source node S wishes to send data to a destination node D, node S tries
to establishe a route to node D by sending a FANT towards the destination node.
When a FANT arrives at a node v; from a source S to travel to a destination D, it
considers node v;’s RT to select its path or the next hop neighbor. It considers node
v;’s neighbors, v;, by looking at each row in the routing table and column D. The
FANT first selects a node that has not yet been visited by other ants. The purpose
of selecting an unvisited node is as follows: assume a FANT randomly chooses a node
v; from v; to traverse and adjusts the pheromone concentration. Let us assume that
another FANT also reaches the same node heading to the same destination node D.

Since the pheromone value on the trail considered is higher (due to its recent traversal)

CHAPTER 5. ALGORITHM 39

than the other neighboring trails, the FANT may select this node again. However,
the FANT does not know if this path leads to the best path. Ants may be following
a trail that may lead to a longer path. To avoid this situation, the algorithm ezplores
all nodes not yet considered (visited) before relying on the pheromone value. This
algorithm can be considered as an ezploration technique rather than an exploitation

mechanism.

If there does not exist an unvisited node, the FANT searches for the next hop
node by considering the pheromone concentration. In the RT, the FANT looks at
the rows of column D for greater pheromone value. The value of the pheromone
that is the largest is regarded as the next hop neighbor. The greater the pheromone
concentration for a particular neighbor v;, the greater is the probability that this

node will lead to the best path.

5.1.4 Cycle Detection

Before selecting a node as a next hop, the FANT determines if it has already visited
the node before. This is to ensure that the FANT does not travel in a cycle. Each
FANT, therefore, holds a list (called VisitedHop) of all the nodes that have been
visited by the FANT on its current journey to D. The FANT also keeps a stack
data structure, which contains all the nodes that may give a promising path to D.
The maximum size of the stack is |V|. If due to obstruction in the environment, it
returns to the same node that has already been visited, indicating a cycle, the FANT
immediately backtracks to the previous node from where it came from by using the
stack data structure. Also, note that there maybe a situation where there is no path

from the current node (a dead end). In this case, the ant uses the stack to backtrack.

CHAPTER 5. ALGORITHM 40

5.1.5 Source update of RT by FANT

An ant keeps in its memory the total time (T") it has travelled thus far. If a node v,
is selected as the next hop of node v;, the FANT moves to the next node v; and the

pheromone update is as follows for entry (v;,5) in v;’s RT:

€
T (vs, v;) + w(vs, vy)

(,D(Ui, ’Us) - go(’vi, ’US) + (51)

where ¢ is a runtime parameter provided by the user and T'(vg,v;) is the time to
travel from the source to v;. On all other nodes in column S the pheromone value is

decremented by

o(v,vs) = (1 — E)p(v,vs),V 1 #4 (5.2)

where E is the evaporation rate of the pheromone. E is a variable parameter also
provided by the user. Since we are updating the source column in the RT we call this
as source update technique. Each FANT also records the total time of the path just

traversed as T'(vg,v;) + w(v;, vj).

5.1.6 Route establishment

When the FANT reaches the destination node D, it transfers its memory to a BANT
and dies. The BANT follows the same trail as FANT to reach the source node S from
the destination node D. It uses the stack to backtrack to the source. On its way back
to the source, the BANT again updates the pheromone concentration. However, it
updates the destination column of RT. For example, the BANT at node v, travelling
backwards from node v, looks at the rows of v;’s neighboring nodes and column D.

The pheromone concentration update for entry (vs, vp) in v’s RT is :

CHAPTER 5. ALGORITHM 41

€
©(vs, vp) = ¢(ve, vp) + T (5.3)

where T" is T'(vs,vp) — T'(vg, vi,). This emphasizes more pheromone concentration on
the path that is closest to the destination. All other neighboring node’s pheromone

concentration in column D are decremented as above (equation 5.2).

When the BANT reaches the source node S, the route is established from the

source node S to the destination node D.

5.1.7 Benefit of source update

In the described methodology, the FANT performs the source update helping another
FANT which considers the source as the destination to find the path easily. That
is, if node v; is the source for a FANT travelling to destination v, then the FANT
updates the pheromone content of the source column in the RT of node (vy) that it
has just visited and selects the next hop by considering the entries in the destination
column for the neighboring nodes of v;. By doing so, the FANT selects the next
node based on the best path that one of its neighboring nodes can provide. Also,
updating the source column indicates the best available path that is reachable from
the source v; to vy. When another FANT considers v; as its destination and reaches
node vy, it always considers the destination column (v;) in the RT of vy to find the
best path. The pheromone concentration in the entries on v; column of RT indicates
the best path to v; through its current node’s neighbors. Therefore, the source update

technique improves the overall performance of the algorithm for finding a route.

CHAPTER 5. ALGORITHM 42
5.2 Algorithm
Here is the algorithm for forward and backward ant.

Glossary:

Stack: Keeps the visited nodes of the probable route.

Totaltime: Keeps the total time elapsed after the forward ant left the
source node.

Visitedhop: Keeps the list of hops that are visited by the particular
forward ant.

Current: The node where the forward ant currently resides.

Nexthop: The node that will be selected as the next hop for the
forward ant.

Prehop: The last node that was visited by the forward ant.

Procedure ANT(S,D) begin

Stack < empty stack

TotalTime « O

Stack <« (8, TotalTime)

VisitedHop [S] « 1

Current « S

while (Current # D) /*Launch Forward Ant */

begin
NextHop « 0
/% Look at all the unvisited neighboring nodes of
CurrentHop using the routing table. That is look at

column D and determine the next node of Current

CHAPTER 5. ALGORITHM 43

that produces the best path */
if (Unvisited Node C Niyrrent)
NextHop < Select an unvisited node
else /*If all nodes have been visited then look at
the pheromone concentration (PH) in column
D for all neighbors. Select the node with
largest pheromone concentration. The greater
pheromone value is considered as the next hop
node only if the next hop node (NextHop)
1S not wvisited by the ant already. This
information can be obtained from the ant’s
VisitedHop table. (Detects cycles).*/
begin
Find j where maTy, ¢ Nuyren (PH(vj, D))
and v; is not visited by this ant
if (v; exists) NextHop « w;

end

if (NextHop # 0)
begin
PreHop « Current
Current « NextHop
TotalTime <« TotalTime + W(PreHop,Current)
[Source Update: Update the routing table for
NextHop using the PreHop and source information.

Increase the pheromone wvalue in entry (PreHop,S)

CHAPTER 5. ALGORITHM

by equation 5.1 and decrease pheromone wvalue on all

other entries in column S by equation 5.2 .
This is a separate function]
Stack < (Current, TotalTime)
VisitedHop [Current] « 1
end
else /* There is mo path from current node to the
destination node */
begin
Pop Stack
/#Pop stack again to retrieve the last
information*/
(Current, TotalTime) < Stack
if (Current = S) exit loop
end

end While

(Current, TotalTime) <« Stack

While (Current # S) /*Launch Backward Ant */
begin

PreHop « Current

(Current, TotalTime) <« Stack

T’ = T(vs,vp) - TotalTime

[Update routing table of Current node for

destination node S using PreHop and T’ using

44

CHAPTER 5. ALGORITHM 45

All Nodes

in the Network

Neighbor | PH Visit

Nodes

Table 5.1: Dummy routing table for explanation.

equation 5.3]
Stack < (Current, TotalTime)

VisitedHop [Current] « 1

end While

end

5.3 Demonstration of Algorithm using an Exam-
ple

Here is an illustration of the aforementioned algorithm with an example. Figure 5.1
shows a network of an eight node graph. Each link is associated with a time parameter.
The explanation of the routing table used in the algorithm is given through table 5.1.
In table 5.1, PH denotes the pheromone concentration and Visit denotes the total
number of times the ants have visited the neighboring nodes through this node.

Let us assume a FANT is moving from the source S (node 3) to destination, D
(node 6). Also assume that the FANT has selected node 4 as its next hop (NextHop
= 4) link. Therefore, the current node is 4. At this point, the FANT performs the

source update on node 4. The RT for node 4 before this update is shown in the

CHAPTER 5. ALGORITHM 46

Network 0 1 2 3 4 S 6
Node
2 111976 |8|111.7|5| 387 (50|00 (1|0]| 2]|0]|1
3 42171 1 |1 117 |4|328 {4|0|0| O |O] O |1 |0/|1
5 010 0 |1 0 0 0 1/0;0140 10|67 | 10|64 10

Table 5.2: Routing table of node 4 before source update.

table 5.2. The FANT has memory of the source and the previous hop (PreHop =
3) node. It performs the source update by increasing the pheromone value on (3,3)
from 32.8 to 57.8 and the Visit entry from 4 to 5. For all other entries ((2,3),(5,3))
it decrements the pheromone value. The RT after the update is also shown for node

4 in table 5.3.

At node 4, the FANT selects the next hop node to traverse. The FANT needs to
reach destination 6. So, it looks at the destination column 6, of the RT at node 4
(table 5.3). From the of the node 4’s RT it is found that all the neighboring nodes have
been visited through this current node 4 to reach the destination node 6. Therefore,

the FANT has to decide about the next hop using the pheromone concentration on

CHAPTER 5. ALGORITHM 47
Network 0 1 2 3 5 6
Node
2 1111976 1117 1 5| 27.1 O (101|201
3 4217 1 11.7 | 4| 57.8 O 10|10]1]]0]|1
5 0]0] O 0 0 0 140 | 10 | 67 | 11 | 64 | 10
Table 5.3: Routing table of node 4 after source update.
Network 0 1 2 6 7
Node
4 24 | 6| 45 55 | 7145 | 6 | 84 0 1 0 1
6 0120 0|10 J1]0 166.4 | 11| 6 3
7 010 0|10 (110 0.2 1182910

Table 5.4: Routing table of node 5 before source update.

the links from node 4. The pheromone value in column 6, indicates the best path to

choose. The pheromone value for the link from 4 to 5 is the greatest (67) among the

links from node 4 to all neighboring nodes. Thus, it is assumed that node 5 may lead

to a better solution. The FANT should take this node as a next hop neighbor.

When the FANT reaches node 5, it also performs source update as usual (ta-

ble 5.5). The next task of the FANT is to choose the next neighbor to move to node

6. Now, it is obvious from the RT (table 5.4) of node 5 that the FANT will select

node 6 as its next node towards destination node as the link between node 5 and 6

contains greatest pheromone value. When the ant moves to node 6, it realizes it has

reached the destination. This will end the route discovery phase by the FANT.

The destination node 6 launches a BANT to the source node 3. The BANT will

CHAPTER 5. ALGORITHM 48

Network 0 1 2 3 4 5 6 7
Node

4 24 1645|755 |7 |54 |7|816(0{0| 0 |1} 0 |1

6 0(2{02|0]1{0 |1]|0|1]0|0]1824]12| 6 | 3

7 | 0}(14071,0|10|1]0[0J0]0] 02 |1 |8.9]10

Table 5.5: Routing table of node 5 after source and destination update update.

update the RT of each node on its path. When the BANT reaches node 5 from node
6, it performs update on the RT of node 5 that will facilitate the path to node 6.
The pheromone concentration of the link is 166.4 as shown in the table 5.4. The
BANT changes the pheromone concentration of that link to 182.4 according to the
equation 5.3. The present status of the RT at node 5 is shown in table 5.5. The
BANT does this similar update along its path and finally establishes the best path

from source node to the destination node.

5.4 Summary

In this chapter, the description of the proposed algorithm based on the ACO technique
for a dynamic application, routing in ad hoc network is given. The applicability of
the algorithm is also shown by an illustrative example. In the next chapter, the

implementation results of the proposed algorithm is presented.

Chapter 6

Experimental Result

In the last chapter, the proposed algorithm for routing in ad hoc network was de-
scribed. The algorithm has been implemented on two different parallel computing
platforms: distributed memory machine using MPI and shared memory machine using
OpenMP. The performance of the algorithm on both these architectures is described

in this chapter.

6.1 MPI Results

In this section, the performance results of the parallel ACO routing algorithm on a
ten node network of workstations running MPI will be discussed. The input graphs
were generated using a random graph generator. Given N, the number of nodes, and
P, the number of processors, —1}3’— amount of data is distributed over the processors.
For example, with 500 nodes and 10 processors, each processor is allocated 50 nodes
per processor. Fach ant, residing within a processor, determines the best route for

each of the nodes in its subgraph to every other nodes. It computes the all-pairs best

route for each of its nodes in the subgraph.

49

CHAPTER 6. EXPERIMENTAL RESULT 50

Time For Source Update Vs Without
Source Update

2000 -m— With Source
Update

1500 \‘_/\

1000 —a— Without Source
: \-% Update

500

Number Of Processor

Time in Seconds

Figure 6.1: Performance results with and without source update

Figure 6.1 shows the scalability results with varying number of processors for
both source update and without source update. From the figure it is clear that the

algorithm converges faster to a solution using source update technique.

Figure 6.2 illustrates the scalability results with varying number of processors
and nodes. As the figure indicates, the execution time decreases as the number of
processors increases. It is assumed that the number of ants is equal to the number of

processors, with one ant per processor.

The percentage of communication time versus the number of processors is shown
in Figure 6.3. It is notable that there is faster convergence for larger nodes, thereby
decreasing the percentage of communication with the increase of nodes in the network.
Also, note that with the increase in data size, the amount of data per processor
also increases, thereby increasing the computation overhead. However, the amount
of computation per node is very fine-grained. That is, there is very minimal task

per node. Therefore, the amount of computation is substantially lower than the

CHAPTER 6. EXPERIMENTAL RESULT

Time Vs Number of Processor

1600

1400 |°

1200 o
3 -=-50 Node
£ 1000 5
S —a— 100 Node
& 800 —»—200 Node
=
= 600 —=— 300 Node
£ —— 500 Node
= . 400

200 4

0

Number of Processor

Figure 6.2: Scalability results with varying number of processors and nodes

Percentage of Communication Time
in Execution Vs. Number of
Processor

98

£ 97
: B cnim|
E 9% - W
o g —=— 100 Node
= 0 95 X
-] —a— 200 Node
£8 o 500 Nod
E u><.| —K ode
E g
[$]
k] 92
3
91 T T T
2 4 6 8 10

Number of Processors

Figure 6.3: Number of processors versus percentage of communication time

51

CHAPTER 6. EXPERIMENTAL RESULT 52

Percentage of Computation Time in
Execution Vs. Number of Processor

8
{=~
-; 7
E &
-
s 5 ~m—100 Node
g3 5% A—200 Node
2 X M
& & 4 = —%—500 Node
2 %
8 3 \l———"\l\
5
®

2 T T T

2 4 6 8 10

Number of Processors

Figure 6.4: Number of processors versus percentage of computation time

communication overhead.

As can be seen from Figure 6.4 for 500 nodes, the percentage of computation is
only 3.5% on 10 processors. For ad hoc networks, the communication time is the
bottleneck. However, the results obtained from the implementation indicate that the
algorithm converges faster with increasing number of ants with varying number of

processors.

In Figure 6.5 the number of processors is fixed to ten while the number of ants
is varied for 200 and 300 nodes network. The figure clearly illustrates a decreasing
execution time demonstrating the scalability of the parallel algorithm. The best result
is obtained when one ant is associated with each processor. This obviously distributes
the workload among the ants obtaining a good load balance. With just one ant, the

ant is overloaded with work in finding the routes for all pairs of nodes in the network.

The relative speedup of the algorithm is little over 7 for 10 ants (10 processors)

Ezecution time of 1 ant .
Ezxecution time of 10 ants’ This

as shown in Figure 6.6. Relative speedup is calculated as

CHAPTER 6. EXPERIMENTAL RESULT 53

Execution Time Vs Number of Ants

1600

1400
= 1000
[« \ -=—200 Node
S 800
= \\ —+—300 Node
° 600
g N,
w400 \.\ \

200 ‘__\‘\'
0 T T T T
1 2 4 6 8 10
Number of Ants

Figure 6.5: Number of ants versus Execution time with fixed number of processors

and nodes

Relative Speed Up

—=— 300 Node

'
e —+— 200 Node
s

Speed Up
O =2 "N W h W O ~N ®

T T T T

1 2 4 6 8 10
Number of Ants

Figure 6.6: Speedup Results

CHAPTER 6. EXPERIMENTAL RESULT 54

speedup again illustrates the scalability of the algorithm.

6.2 OpenMP Results

In this section, the result that is obtained by running the algorithm on a shared mem-
ory machine is discussed. The shared memory machine contains eight multiprocessors
and supports OpenMP for parallel computation. As the machine is not a distributed
shared memory machine, the graph need not be partitioned and distributed to each
Processor.

The program uses parallel construct in OpenMP which creates a user specified
number of parallel threads and divides the work among these threads (note that the
ants represent the threads and are used interchangeably). There are three types of
scheduling techniques that OpenMP provides: static, dynamic and guided scheduling
[14]. We have experimented with each of these policies by varying the chunk sizes.
Here, a chunk refers to the partition of data allocated to each ant. Each ant performs
the necessary computations to find the route from a node to every other node. When
one ant completes its task, it looks for another chunk of data.

In static scheduling, chunks are statically assigned to each thread. As the name
implies, in the dynamic scheduling policy chunks are assigned to threads dynam-
ically at run time in a round robin fashion. This distribution balances the load

among the threads. In the guided policy, the first chunk size is maximum chunk size

(Number of Iteration

Numbor of Threads) and each of the other chunk sizes decreases exponentially.

Figure 6.7 shows the scalability results for various number of ants in terms of
execution time for various number of nodes in the network. Here, static scheduling
technique is used. Therefore, the amount of workload is predefined. Each thread

has equal amount of work load. The execution time decreases with the increase in

CHAPTER 6. EXPERIMENTAL RESULT 55

o 40000
2
§ 30000 \\\ —a— 100 Nodes
)
= 20000 _ 200 Nodes
E 10000 ‘\.\\N\ — s 300 Nodes
[N K/ — o400 Nodes
E 0 A——4 Bt

1 5 3 4 5 |—— 500 Nodes

Number of ANTS

Figure 6.7: Scalability results for varying number of ants

number of ants. This implies that the ants cooperatively work together in solving the

task of finding the best path from source to the destination in minimum time.

Figure 6.8 shows the scalability results for the three scheduling policies with 400
nodes. The maximum chunk size is allocated to each ant, which depends on the
number of nodes and the number of ants (chunksize = %—%—%‘%) In static and

dynamic policies, each ant is given an equal amount of work initially. Therefore, these

two scheduling policies do not show much difference.

Figure 6.9 shows the graph with varying chunk sizes for 8 ants and 400 nodes
with the different scheduling policies. The dynamic scheduling gives the best results.
This can be explained as follows. The scheduler dynamically assigns chunks to each
ant as they complete execution of the current chunk and balances the load among
these ants. In static scheduling, the user allocates the chunk sizes to the ants. The
best results is obtained when the chunk size is 25 or 50. In static scheduling, since

the user intervenes, the load is not properly balanced. That is, though all ants have

CHAPTER 6. EXPERIMENTAL RESULT

56

6000

Time in Milliseconds

Chunk Size
=400/ # of ANTS
o 20000
£ 18000 N \\
S 16000 X = Static
2 14000 -
= 12000 N —a— Dyﬁamlc
i 10000 \ —x— Guided
‘s 8000 AN
£ 6000 . Ay
1 2 4 8 16
Number of ANTS
Figure 6.8: Scheduling policy results
10000
9000 // __m_ Static
8000 X

— A& Dynamic
g N

5

10 20 25

Number of Chunk

50

Figure 6.9: Performance Result with Varying chunk sizes for 8 ants and 400 nodes

CHAPTER 6. EXPERIMENTAL RESULT 57

Comparison Between Different
Scheduling when the Chunk Size is 1

21500
195001\
17500 \\ -
15500
0 ’\\ —= Static

13500 \\ —a— Dynamic]
11500 \\ —x— Guided
9500 \\:\\
7500

N{
5500 T ¥ T

8 1

1 2 4 6
of ANTS

Time

Figure 6.10: Performance results of the scheduling policies when chuck size is unspec-

ified

the same amount of work load, some ants may have less or more computations and
communications than others. This is also true for the guided scheduling policy.

In Figure 6.10 the chunk size is 1. Here the guided policy gives the best perfor-
mance result. In the dynamic scheduler, each ant gets a chunk size of 1 whenever it
runs out of work. However, in the guided schedule, the amount of load an ant receives
depends entirely on the scheduler and it is not assigned in any order such as round

robin as it is done in the dynamic scheduler.

6.3 Summary

In summary, the static scheduling policy gives the best result when the user properly
load balances by defining the maximum chunk size. Dynamic scheduling policy is
better for smaller chunk sizes than the maximum chunk size. The guided is best

when the compiler schedules the load depending on the status of the ants, idle or

CHAPTER 6. EXPERIMENTAL RESULT 58

Number | Time in seconds

of Ants | OpenMP | MPI
1 10.48 1384.47
2 6.18 719.03
4 4.52 426.03
6 3.91 344.25
8 3.37 254.59

Table 6.1: Comparison of OpenMP and MPL

otherwise.

Table 6.1 compares the performance results of MPI [26] and OpenMP implemen-
tations. The algorithm runs extremely fast on a shared memory architecture than on
a distributed memory architecture. In the distributed implementation, the number
of ants is equal to the number of processors and an equal amount of data is allocated
per processor. The obvious bottleneck in the distributed algorithm is the amount
of communication. The amount of computation compared to communication is very
minimal as shown in [26]. This communication problem in avoided in the shared

memory architecture.

Chapter 7

Conclusion

This thesis presented a parallel routing algorithm for MANETS using the Ant Colony
Optimization (ACO) metaheuristic search technique. The algorithm was implemented
on a network of workstations running MPI and on a shared memory multiprocessor
running OpenMP. The parallel algorithm based on source update scales well for vary-
ing node and machine sizes. We also developed a technique to detect cycles.

In the distributed memory machine, the number of processors and nodes was fixed
while varying the number of ants in the algorithm. This produced a gradual decrease
in execution time and the best result was obtained when the number of ants was
equal to the number of processors. This resulted in a good load balance due to the
even distribution of work among the ants. The relative speedup of the algorithm was
little more than 7 for 10 ants (10 processors). We also noticed that the percentage of
communication among the ants is much higher than the percentage of computation
by an ant. MANETSs are communication intensive applications. However, this does
not degrade the performance of our algorithm indicating a fast convergence rate in
finding the best paths.

In the shared memory environment, the algorithm was experimented with var-

59

CHAPTER 7. CONCLUSION 60

ious chunk sizes for three different scheduling policies (static, dynamic, guided) in
OpenMP. Each scheduler behaved differently depending on the chunk sizes. The
static scheduler performed well when the user defines the maximum chunk size and
allocated it to each of the ants. The dynamic scheduling policy was good when the
chunk size was small. This was achieved by distributing work depending on the com-
putation and communication ratio of each chunk. In the guided case the performance
was best when the user does not predefine the chunk size and leaves it up to the
compiler and scheduler to properly determine the load to be balanced among the
ants.

When comparing the execution times of both implementations, it was found that
the OpenMP implementation outperforms the MPI implementation for this problem.
This is mainly due to the multithreading and shared memory environment, which
removes the communication overhead present in the algorithm by overlapping com-

putation with communication.

Chapter 8

Contributions

The contributions resulting from the this thesis are:

Journal

Book chapter

Mohammad Towhidul Islam, Parimala Thulasiraman and Ruppa K.
Thulasiram, "Implementation Of Ant Colony Optimization Algo-
rithm For Mobile Ad Hoc Network Applications: OpenMP Expe-
riences”, Journal of Parallel and Distributed Computing Practices,
Special Issue on OpenMP: Experiences, Implementations and Ap-

plications,(Ed. Ami Marowka), Nove Science Publishers, 2003 (to

appear).

Parimala Thulasiraman, Ruppa K. Thulasiram and Mohammad
Towhidul Islam, ”An Ant Colony Optimization Based Routing Al-
gorithm in Mobile Ad hoc Networks and its Parallel Implementa-
tion”, in High Performance Scientific and Engineering Computing-
Hardware/Software Support, (Eds. Laurence Yang, Yi Pan), pp
267-284, Kluwer, (to appear).

61

CHAPTER 8. CONTRIBUTIONS 62

Conference

Mohammad Towhidul Islam, Parimala Thulasiraman and Ruppa K.
Thulasiram, ”A Parallel Ant Colony Optimization Algorithm for
All-Pair Routing in MANETSs”, IEEE Computer Society Proceed-
ings of the Fourth International IPDPS Workshop on Parallel and
Distributed Scientific and Engineering Computing with Applications
(PDSECA 2003), April 2003, Nice, France.

Chapter 9

Future Work

Routing in an ad hoc networks is a new research area with many challenging unsolved
problems. In this section, we highlight only some of the important work that can come

out of this thesis.

e Parallel Processing: The algorithm has been implemented on a very small homo-
geneous machine. It would be interesting to extend this work to heterogenous
computing since the nodes in an ad hoc network are heterogenous devices. This

would seem to be a more realistic approach.

e Simulation: At this moment it is difficult to compare the parallel routing algo-
rithm with other existing algorithms since there exist no other work on routing
in ad hoc networks that has been parallelized. However, it would be possible
to simulate the sequential version of the proposed ACO algorithm and compare
to other existing routing algorithms. This is already underway. The simula-
tion platform that is chosen for this is NS-2 [7] since all other existing routing

algorithms have implemented on this platform.

e Energy Aware Routing: Another important area of research in ad hoc networks

63

CHAPTER 9. FUTURE WORK 64

that is gaining popularity is in energy aware routing protocols. The proposed
ACO algorithm can be extended to include power aware routing. To implement
this, the ACO equations have to be redesigned. The algorithm then has to
incorporate these equations. This is definitely for future work since the work is

quite involved.

Bibliography

[1]

P. Arabshahi, A. Gray, I. Kassabalidis, A. Das, S. Narayanan, M.A. El-Sharkawi,
and R.J. Marks II. Adaptive routing in wireless communication networks using
swarm intelligence. In Proceedings of the AIAA International Communications

Satellite Systems Conference, pages 17-20, Toulouse, France, April 2001.

R. Arlauskas. ipsc/2 system: a second generation hypercube. In Proceedings of
the third conference on Hypercube concurrent computers and applications, pages

38-42. ACM Press, 1988.

Arvind and Robert A. Lannucci. Two fundamental issues in multiprocessing. In
4th International DFVLR Seminar on Foundations of Engineering Sciences on
Parallel Computing in Science and Engineering, pages 61-88. Springer-Verlag
New York, Inc., 1988.

Kenneth E. Batcher. Design of a massively parallel processor. IEEE Transactions

on Computers, 29(9):836-840, September 1980.

R. Beckers, J.L. Deneubourg, and S. Goss. Trails and U-turns in the selection
of the shortest path by the ant Lasius niger. Journal of Theoretical Biology,
159:397-415, 1992.

65

BIBLIOGRAPHY 66

[6]

[11]

[12]

E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From natural

to artificial systems. Oxford University Press, Oxford, 1999.

Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, John Heidemann, Ahmed
Helmy, Polly Huang, Steven McCanne, Kannan Varadhan, Ya Xu, and Haobo

Yu. Advances in network simulation. Computer, 33(5):59-67, 2000.

S. M. Brunett, J. Thornley, and M. Ellenbecker. An initial evaluation of the
Tera multithreaded architecture and programming system using the C3I parallel

benchmark suite. In Supercomputing ’98, pages 1-19, Orlando, Florida, Novem-

ber 1998.

Bernd Bullnheimer, Richard F. Hartl, and Christine Strau8. An improved ant
system algorithm for the vehicle routing problem. Annals of Operations Research,

89:319-328, 1999.

Bernd Bullnheimer, Gabriele Kotsis, and Christine Straufl. Parallelization strate-
gies for the ant systems. In Renato De Leone, Almerico Murli, Panos M. Parda-
los, and Gerardo Toraldo, editors, High Performance Algorithms and Software
in Nonlinear Optimization, volume 24 of Applied Optimization, pages 87-100.
Kluwer Academic Publishers, Dordrecht, Netherland, November 1998.

Daniel Camara and Antonio Alfredo F. Loureiro. A novel routing algorithm for
hoc networks. Baltzer Journal of Telecommunications Systems, 18(1-3):85-100,

2001.

Gianni Di Caro and Marco Dorigo. Antnet: Distributed stigmergetic control for
communications networks. Journal of Artificial Intelligence Research, 9:317-365,

1998.

S

BIBLIOGRAPHY 67

[13]

[16]

[17]

Soumen Chakrabarti and Katherine Yelick. Implementing an irregular applica-
tion on a distributed memory multiprocessor. In Proceedings of the fourth ACM
SIGPLAN symposium on Principles and practice of parallel programming, pages
169-178. ACM Press, 1993.

Rohit Chandra, Leonardo Dagum, Dave Kohr, Dror Maydan, Jeff McDonald,
and Ramesh Menon. Parallel Programming in OpenMP. Morgan Kaufmann,

2001.

A. Colorni, M. Dorigo, and V. Maniezzo. Distributed optimization by ant-
colonies. In Proceedings of the European conference on artificial life, (Ed. F.

Verla and P. Bourgine), pages 134-142, Cambridge, Mass., 1991. MIT Press.

NCUBE Corporation. Ncube users handbook, 1987.

P. Delisle, M. Krakecki, M. Gravel, and C. Gagné. Parallel implementation
of an ant colony optimization metaheuristic with OpenMP. In International
Conference of Parallel Architectures and Complication Techniques, Proceedings
of the Third European Workshop on OpenMP, pages 8-12, Barcelona, Spain,
September 2001.

Marco Dorigo and Luca Maria Gambardella. Ant colony system: A cooperative
learning approach to the traveling salesman problem. I[EEE Transactions on

Evolutionary Computation, 1(1):53-66, April 1997.

Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. The ant system: Op-
timization by a colony of cooperating agents. IEEE Transactions on Systems,

Man, and Cybernetics-Part B, 26(1):1-13, 1996.

BIBLIOGRAPHY 68

[20]

[21]

22]

[26]

Michael J. Flynn and Kevin W. Rudd. Parallel architectures. ACM Computing
Surveys, 28(1):67-70, March 1996.

Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar. Introduction

to Parallel Computing. Addison Wesley, second edition, 2003.

William Gropp and Ewing Lusk. Why are PVM and MPI so different? In
Jack Dongarra Marian Bubak and Jerzy Wasniewski, editors, Parallel Virtual
Machine and Message Passing Interface, volume 1332 of Lecture Notes in Com-

puter Science, pages 3—-10, Crakow, Poland, November 1997. Springer.

M. Giines, U. Sorges, and I. Bouazzi. ARA: The ant colony based routing algo-
rithm for MANETSs. In Proceedings of the International Conference on Parallel

Processing Workshops, pages 79-85, Vancouver, B.C., August 2002.

Herbert H. J. Hum, Kevin B. Theobald, and Guang R. Gao. Building multi-
threaded architectures with off-the-shelf microprocessors. In Proceedings of the

8th International Parallel Processing Symposium, pages 288-294, 1994.

Mohammad Towhidul Islam, Parimala Thulasiraman, and Ruppa K. Thulasiram.
Implementation of ant colony optimization algorithm for mobile ad hoc network
applications: OpenMP experiences. Parallel and Distributed Computing Prac-

tices (to appear), 2003.

Mohammad Towhidul Islam, Parimala Thulasiraman, and Ruppa K. Thulasiram.
A parallel ant colony optimization algorithm for all-pair routing in MANETS. In
IEEE Computer Society Proceedings of the Fourth International IPDPS Work-
shop on Parallel and Distributed Scientific and Engineering Computing with Ap-
plications (PDSECA 2003), Nice, France, April 2003.

BIBLIOGRAPHY 69

[27]

[32]

[33]

Micheal J Jipping and Gary Lewandowski. Parallel processing over mobile ad
hoc networks of handheld machines. In MobiHoc, pages 267-270, Long Beach,
CA, USA, 2001.

David B Johnson and David A Maltz. Dynamic source routing in ad hoc wireless
networks. In Tomasz Imielinski and Hank Korth, editors, Mobile Computing,
volume 353, chapter 5, pages 153-181. Kluwer Academic Publishers, Boston,
1996.

Alan H. Karp. Programming for parallelism. IEEE Transactions on Computer,

20(5):43-57, 1987.

I. Kassabalidis, M.A. El-Sharkawi, R.J. Marks II, P. Arabshahi, and A. Gray.
Adaptive-SDR: adaptive swarm-based distributed routing. In Proceedings of the
IEEE World Congress on Computational Intelligence, Honolulu, Hawaii, May
2002.

Tony Larsson and Nicklas Hedman. Routing protocols in wireless ad hoc networks
- a simulation study. Master’s thesis, Lulea University of Technology, Stockholm,

1998.

Charles E. Leiserson, Zahi S. Abuhamdeh, David C. Douglas, Carl R. Feynman,
Mahesh N. Ganmukhi, Jeffrey V. Hill, W. Daniel Hillis, Bradley C. Kuszmaul,
Margaret A. St Pierre, David S. Wells, Monica C. Wong-Chan, Shaw-Wen Yang,
and Robert Zak. The network architecture of the Connection Machine CM-5.

Journal of Parallel and Distributed Computing, 33(2):145-158, 1996.

Leonid Oliker and Rupak Biswas. Parallelization of a dynamic unstructured
application using three leading paradigms. IEEFE Transactions on Parallel and

Distributed Computing, 11(9):931-940, September 2000.

BIBLIOGRAPHY 70

[34]

[35]

[39]

[40]

[41]

Vittorio Maniezzo and Alberto Colorni. The ant system applied to the quadratic

assignment problem. Knowledge and Data Engineering, 11(5):769-778, 1999.

R. Michel and M. Middendorf. An island based ant system with lookahead for the
shortest common subsequence problem. In Proceedings of the Fifth International
Conference on Parallel Problem Sloving From Nature, volume 1498, pages 692

708, Berlin, 1998.

Bradford Nichols, Dick Buttlar, and Jacqueline Proulx Farrell. Pthreads Pro-
gramming: A POSIX Standard for Better Multiprocessing. O’Reilly, 1996.

Scott Oaks and Henry Wong. Java Threads. O’Reilly, 1999.

Peter S. Pacheco. Parallel Programming with MPI. Morgan Kaufmann, San
Francisco, 1997.

Charles E. Perkins and Pravin Bhagwat. Highly dynamic destination-sequenced
distance-vector routing (DSDV) for mobile computers. In Proceedings of the

conference on communications, architectures, protocols and applications, pages

234-244, London, United Kingdom, August 1994. ACM Press.

Marcus Randall and Andrew Lewis. A parallel implementation of ant colony
optimization. Parallel and Distributed Computing, 62(9):1421-1432, September
2002.

E.M. Royer and C.E. Perkins. Multicast operations of the ad hoc on-demand
distance vector routing protocol. In Fifth Annual ACM/IEEE International
Conference on Mobile Computing and Networking (MOBICOM), pages 207-218,
Seattle, Washington, August 1999.

BIBLIOGRAPHY 71

[42]

[45]

[46]

[47]

[48]

[49]

Ruud Schoonderwoerd, Owen E. Holland, Janet L. Bruten, and Leon J.M.
Rothkrantz. Ant-based load balancing in telecommunications networks. Adaptive

Behavior, 5(2):169-207, 1996.

Charles L. Seitz. The cosmic cube. Communications of the ACM, 28(1):22-33,
1985.

Thomas Stiitzle. Parallelization strategies for ant colony optimization. In A.E.
Eiben, T. Béck, M. Schoenauer, and H.-P. Schwefel, editors, Parallel Problem
Solving from Nature, volume 1498 of Lecture Notes in Computer Science, pages

722-731, Amsterdam, 1998.

Supercomputing Technologies Group, MIT Laboratory for Com-
puter Science. Cilk 5.3.2 Reference Manual, November 2001. url:

http://supertech.les.mit.edu/cilk/manual-5.3.2.pdf.

Peter Tarasewich and Patrick R. McMullen. Swarm intelligence: Power in num-

bers. Communications of the ACM, 45(8):62 — 67, 2002.

Parimala Thulasiraman, Ruppa K. Thulasiram, and Mohammad Towhidul Islam.
High Performance Scientific and Engineering ComputingHardware/Software
Support, chapter An Ant Colony Optimization Based Routing Algorithm in Mo-
bile Ad hoc Networks and its Parallel Implementation, pages 267-287. Kluwer,
2004.

C. K. Toh. Ad Hoc Mobile Wireless Networks: Protocols and Systems. Prentice
Hall, December 2001.

T. White. Swarm intelligence and problem solving in telecommunications. Cana-

dian Artificial Intelligence Magazine, 1997.

BIBLIOGRAPHY 72

[50] A.Y. Zomaya. Parallel Computing: Paradigms and Applications. International
Thompson Publishing, Boston, MA, 1996.

