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ABSTRACT

Decision making under uncertainty has become a key issue in the present
alternative way of thinking. There is an emerging interest in the use of new techniques to
draw definite conclusions from imprecise or vague information in order to take
competitive advantage. A critical challenge in decision-making process is not oaly to
find a suitable method to measure and quantify the uncertainty involved in the problem
under consideration but also its successful applications.

In the present thesis, we consider a graduation problem with imprecise observed
values data and imprecise combination of fit and smoothness. The problem is first
formulated, solved and analyzed as a fuzzy linear program. Next, a finite iteration
technique is developed to solve a fuzzy quadratic programming problem. Significance of
this model can be hopefully seen in the light of usage of quadratic program in the field of
Finance, Economics, Structural Engineering and Actuarial Sciences under uncertainty.
Furthermore, the graduation problem is revisited using fuzzy quadratic programming
model and solutions are obtained both under crisp and fuzzy environment. The results so
obtained are shown to be better than the results obtained by using fuzzy linear
programming, and the results obtained by Schuette using crisp linear programming. The
methods introduced in the present thesis, offer an opportunity to view a graduation

problem from a different prospective.
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Chapter 1

INTRODUCTION

Uncertainty is one of the main and most important issues that have to be
addressed by modern management systems. The main subjects of modern analysis are
characterized by a number of general features that make them particularly difficult for
existing methods. These features are: complexity, dynamics and uncertainty. In certain
cases the presence of uncertainty makes the traditional approaches insufficient {35].
When it comes time to make a sound decision on an uncertain problem, it is important for
the decision makers to consider and evaluate the uncertainty involved in it and its
surroundings. Uncertainty may result from many sources: imprecise/vague knowledge
regarding future conditions, inaccurate data, forecasting errors, subjective influences or
existence of external uncontrollable disturbances. For decision making under uncertainty,
one should, normally, develop an active approach rather than ignore it.

Classical set theory based on two-valued logic defines a set as a collection of
objects with well-defined ‘crisp’ boundaries. An element either belongs to the set or does
not belong to the set, that is, its membership is either 1 or 0. To deal with the sets with
imprecise boundaries, Lotfi A. Zadeh [49] in 1965 introduced fuzzy set theory. The
membership function in a fuzzy set, unlike that of a ‘crisp’ set is not a matter of being
either true or false, but a matter of degree of truth/belief. In general, degrees of
membership in fuzzy sets are expressed by values in [0, 1]. The extreme values 0 and 1 in

the interval [0, 1] represent total non-belongingness and total belongingness respectively.
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This makes, crisp sets, a special case of fuzzy sets, for which only two grades of

memberships are allowed. Thus we can say ‘cnsp is fuzzy’, with a membership of either
lorQ.

Probability theory is the traditional theory describing and measuring the
phenomenon of uncertainty. It is assumed that the probability theory can be used in every
situation of uncertainty [22]. Since both fuzzy set theory and probability theory deal with
uncertainty, most of the time former is confused with later. But, fuzziness is only one
aspect of uncertainty. It is the vagueness or ambiguity found in the definition of a
concept or meaning of terms. The probability generally relates to randomly occurring
events that are clearly defined and may contain the uncertainty of randomness.

Fuzzy logic is basically a multivalued logic that allows intermediate values to be
defined between conventional evaluations like yes/no, true/false, tall/very tall, etc. Fuzzy
reasoning and logic have the ability to express the amount of ambiguity in human
thinking and subjectivity in a comparatively undistorted manner. Hence, fuzzy logic
techniques find their major applications in areas such as control, pattern recognition,
quantitative analysis, inference, and in information retrieval.

Fuzzy systems are being used in various consumer products e.g. washing
machines, air conditioners, camcorders, auto-focus cameras, system of traffic light
controlling, and subways trains [34]. The NASA space agency is engaged in applying

fuzzy logic for complex docking-maneuvers.



1.1 Fuzzy Set Theory

In this section we introduce some of the basic concepts and terminology of fuzzy

set theory. Theory of fuzzy sets is basically a theory of graded concepts [51].

Fuzzy Set
Let X be a classical set of objects, called the universe, whose generic elements are
denoted by x. The membership in a crisp subset of X is viewed as characteristic function

na from X to {0, 1} such that:

0 ifxeA
1 ifxeA

Ha(x) = {
where {0, 1} is called a valuation set [23].
If the valuation set is allowed to be the real interval [0, 1], A is called a fuzzy set
proposed by Zadeh [S0]. pa(x) is the degree of membership of x in A. The closer the
value of pa(x) is to I, the more x belongs to A. Therefore, A is completely characterized
by the set of ordered pairs:

A = {(x, pa(x)) / x € X}
where pa(x) maps X to the membership space [0, 1]. Elements with zero degree of

membership are usually not listed. If Sup pa(x) =1, V x € R, then the fuzzy set A is

called a normal fuzzy set in R. A fuzzy set that is not normal is called subnormal fuzzy

set.



a - Level Set or a — Cut
One of the most important concepts of fuzzy sets is the concept of an a-cut or
a-level set. An a-cut denoted by Ag is the crisp set of elements x in R whose degree of
belongings to the fuzzy set A is at least a € [0, 1]. This means
Aa={x€ R|pa(x)2a,a e [0, 1]}
that is, the a-cut or a-level set of a fuzzy set is the crisp set Aq that contains all elements

of the universal set X € R whose membership grades in A are greater than or equal to the

specified value of a. a € [0, 1].

Support of a Fuzzy Set

The support of a fuzzy set A is a set S(A) such that x € S(A) & UA(x) > 0. If

Ha(x) is constant over S(A), then A is non-fuzzy.

Intersection of Fuzzy Sets
Intersection of two fuzzy sets A and B is a fuzzy set C denoted by C = AnB,

whose membership function is related to those of A and B by

Uc(x) = min [pa(x), ua(x)], Vxe X

1.2 Algebraic Operations on Fuzzy Sets

In addition to the set theoretic operations, we can also define a number of other
ways of forming combinations of fuzzy sets and relating them to one another. Here we

present some more important operations among those:
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Algebraic product of two fuzzy sets A and B, is A(-)B, whose membership

function is

Ha8(X) = Ha(X) ()B(X), Vxe X

The algebraic sum of A and B is A + B whose membership function is defined as
WasB)(X) = Ha(X) +) pa(x), Vxe X

provided pa(x) +) M(x)<1, Vxe X

Convexity

The notion of convexity can be extended to fuzzy sets in such a way as to

preserve many of the properties that it has in case of crisp sets. In what follows, we

assumne that the set X is the n-dimensional space R". We now have the following two

equivalent definitions of convexity of a fuzzy set.

14

A fuzzy set A is convex if and only if every set Aq = {x € X | pa(x) 2 a} foralla
€ [0, 1] is a convex set.

The second definition of convexity of a fuzzy set is as follows:

A fuzzy set A is said to be a convex set if

1 (Ax 1+ (1-A)x2) 2 min ((x1), §(x2)), x1,x2€ X, A€ [0, 1].

Fuzzy Arithmetic

The first definition of a fuzzy set allows us to extend various properties of crisp

sets and operations on crisp sets to their fuzzy counterparts.



An ordinary number ‘a’ can be characterized by using the notation of

membership function as,

1 ifx =a
0 ifx #a

Ha(X) = {
A fuzzy number A is a fuzzy set on the real line R,
that possesses the following properties:
(1) A is a normal, convex fuzzy set on R,
(2) The a-level set A, must be a closed interval for every a € [0, 1],
(3) The support of A, S(A) = {x | ua(x) > 0 }, must be bounded.
Fuzzy arithmetic is based on two properties of fuzzy numbers:
e Each fuzzy set and thus, each fuzzy number can be fully and uniquely represented
by its a-level sets.
e a-level sets of each fuzzy numbers are closed intervals of real numbers for all
ae (0, 1]
These properties enable us to define an arithmetic operation on fuzzy numbers in terms of

arithmetic operations on their a-level sets (i.e. arithmetic operations on closed intervals).

1.5 Fuzzy Arithmetic Based on Operations on Closed Intervals
A fuzzy number can be characterized by an interval of confidence at level a,
Ag= [0, 22
which has the property

a<a= Ay C Ag
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Let A =[a bl € R and B = [c, d] € R be two fuzzy numbers then we define the

arithmetic operations on them as

Addition A+B=[a+c,b+d]

Subtraction A-B=[a-d,b-c]

Multiplication AB = [min (ac, ad, bc, bd), max (ac, ad, bc, bd)}]
Inverse of A A~' = [min (1/a, 1/b), max (1/a, 1/b)]

Division A/B = [min (a/c, a/d, b/c, b/d), max (a/c, a/d, b/c, b/d)]
Minimum (A) A AB=[a Ac,bad]

Maximum (v) Av B=[avebvd]

Let A and B he two fuzzy numbers, Ag = [a,'”, 3,'”] be the a-level set of A, and B.
= [b,'Y, b2'”] be the a-level set of B.
Let * denote any of the arithmetic operations +, -, .,/, A and v on fuzzy numbers.
Then, we define a fuzzy set A * B in R, by defining its a-level sets (A * B), as
(A*B)a=A;*B, foranya € [0, 1]
Since (A * B), is a closed interval for each @ € [0, 1] and A and B are fuzzy numbers,
A * B is also a fuzzy number.
The multiplication of fuzzy number A — R by an ordinary number k € R" can also be
defined as
(k* Ag) =k (-) Aq = [ka”, ka®']

or equivalently, pa(x)=pa(x’k) V xe R



1.6 Graduation

According to Miller ([30], page 6), the problem of graduation can be described as

“the problem of graduation is a mathematical problem in which we are asked to

estimate, or secure a representation of, the series of true rates of mortality that is

assumed to have given rise to the irregular series of observed probabilities.”

In the present thesis, we consider the problem of graduation as a general case.
We obtain a sequence of observed values in which we suspect that there exists a strong
relationship among the elements of the sequence of observed values. In order to predict
future occurrence of the series, the process of graduation is applied to obtain a proper
representation of the basic pattern, which the observed values under consideration are
believed to follow.

The process of graduation is defined by Andrew and Nesbitt ([1], page 2) as

“an effort to represent a physical phenomenon by a systematic revision of some

observations of that phenomenon™.

The above definition suggests that a model-building process takes place in the
problem of graduation. It also suggests that we should have some preliminary
information about the model and a set of observed values. The definition also indicates
that the observed values can be revised to improve the model under consideration as a
representative of the underlying phenomenon.

Several methods have been developed by which the graduation of an observed
series may be accomplished and the problem of graduation can be solved. These methods

are classified by Miller [30] as follows.



The Graphic Method

In this method, the observed values are suitably plotted on graph paper and among
them a smooth, continuous curve is drawn as the basis of the graduated series. Grouping
of the data is an essential part of this method, which is followed by plotting of the
observed values together with some indication of their relative weights if this information
is available. At the end, graduated values are read from the diagram and adjusted to

improve smoothness and fit.

The Interpolation Method

In this method, the data are combined into groups and the graduated series is
obtained by interpolation between points determined as representative of the groups.
Since graduation involves the replacement of an irregular observed series by a regular
smooth series consistent with the trend of the observed values, clearly the interpolation

method of graduation includes more than interpolation alone.

The Adjusted-Average Method
In this process, each term of the graduated series is a weighted average of a fixed
number of terms of the observed series to which it is central. It involves two sets of

graduation formulas — linear compound formulas and summation formulas.

The Difference-Equation Method
In this method, the graduated series is determined by a difference equation

derived from an analytic measure of the relative emphasis to be placed upon fit and
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smoothness. Professor E. T. Whittaker (please see [30], page 34) enunciated the

principles of the difference-equation method in a paper published in 1919. Later, Robert
Henderson (please see [30], page 34) developed a practical process for employing the
method to make a numerical graduation. For these reasons, difference-equation formulas
are also referred to as Whittaker-Henderson formulas. Other difference equations
involving differences of other orders were derived by modifying the measure of
smoothness, therefore, there is a family of Type A formulas and a set of

difference-equation formulas known as Whittaker-Henderson Type B formulas.

Graduation by Mathematical Formula

Under this method graduated series is represented by a mathematical curve fitted
to data. There are a large variety of curves, which may be used in representing different
types of statistical data. They range from the simple straight to the family of frequency
curves developed by Karl Pearson (please see [30], page 42) and to the curve systems of
Gram-Charlier, Poisson and Fourier (please see {30}, page 42). The curves of commonest
use and maximum interest to the actuary in treating mortality rates are Gompertz’ [15]

and Makeham's Curves (please see [30], page 42), which were developed in the search

for a mathematical law of mortality.

1.7 Linear Programming

It is a mathematical method of allocating scarce resources to achieve an objective,
such as maximizing profit [24] or minimizing cost. Linear Programming approach is a

mathematical representation of real world decision situations that consists of a linear
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objective function and linear resource constraints. Once the problem has been

identified, the goals of management established, and the applicability of the linear
programming determined, the next step in solving an unstructured, real world problem is

the formulation of a mathematical model. This entails three major steps:

o Identification of decision variables (the quantity of the activity in question).

e The development of an objective function that is a linear relationship of the
solution variables, and

e The determination of system constraints, which are also linear relationships of the

decision variables, which reflect the limited resources of the problem.

Decision Variables
In each problem, decision variables, which denote a level of activity or quantity
produced, are defined. For a general model, n decision variables are defined as

X; = quantity of activity j, wherej=1,2, ..., n.

Objective Function
The objective function represents the sum total of the contribution of each
decision variable in the model towards an objective. It is represented as
maximize or minimize fo(Xy, X2, ..., Xn) = C1X1 + C2X2 + C3X3 +... + CjXj +....+ CnXq
where
fo(X1, X3, --., Xq) = the total value of the objective function

c; = the contribution per unit of activity j(j=1,2,...,n)
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System Constraints

The constraints of a linear programming model represent the limited availability
of resources in the problem. Let the amount of each of m resources available be defined
as b (fori =1, 2, ..., m). We also define a;; as the amount of resource i consumed per unit
of activity j (j=1, 2, ..., n ). Thus, the constraints can be written as

gi(xl. X2, ey Xn) = apXp +apXa + ...+ QX+ ...+ AipXq (&, = 2) bi , 1=1,2,...,m

Non-negativity

X, X2, ..os Xp 2 0.

Therefore a linear programming problem is
maximize or minimize fo(X[, X2, ..., Xn) = C1Xj + C2X2 + C3X3 +... + CjXj +....+ CnXq

subject to

X1y X2y o0 Xp) = 31X +@2X2+ .+ X+ . FapXe (5,2,2) by, i=1,2,...,m
g ]

x; 2 0, j=L2,...n
A general optimization problem can be written as
maximize fo(x)
subject to
gi(x) < b i=1,2,...,m

where
X = (X, X2, ..., Xa) € R", n-dimensional real space,
fo : R" — R. the set of reals, and

g:R"- R, i=1,2,...,m.
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If, fo(X) =CiX) +CaXxa +C3X3 + ...... + CnXp

and gi(x) = apux; +apXa+...... + ajnXq

then, the nonlinear programming problem is a linear programming problem.

1.8 Fuzzy Linear Programming

Most of the time, due to incomplete or forecasted information the input data for
¢'s, bi's and aj's, and/or the objective function and/or inequalities are imprecise. With
these fuzzy/imprecise data the above problem is called fuzzy linear programming
problem. Thus a fuzzy linear programming problem is not uniquely defined. The fuzzy
problem depends upon the type of fuzziness present and specified by the decision-maker.
Fuzzy linear programming problem can be broadly classified as:

Linear Programming Problem with fuzzy resources or fuzzy inequalities and crisp
objective function.

Linear Programming Problem with fuzzy resources or fuzzy inequalities and fuzzy
objective function.

Linear Programming Problem with fuzzy resources and fuzzy coefticients.

Two major fuzzy linear programming models as given in Zimmermann [51] are:

(i) Symmetric (ii) Non-symmetric.

The symmetric models are based on the definition of fuzzy decision proposed by Bellman
and Zadeh [5]. It is assumed [5] that the objective function and constraints are imprecise
and can be represented by fuzzy sets and the decision is the confluence of the fuzzy
objective function and fuzzy constraint.

The non-symmetric models [S] are based on the following two approaches:
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(1) The determination of the fuzzy set decision.

(i)  The determination of a crisp maximizing decision by aggregating the objective
function, after appropriate transformations with the constraints.

Thus, in a general format, a fuzzy linear probiem (FLPP) can be written as:

(FLPP) Maximize z = fo(x)
subject to
fix) £ d, i=12 ..,k
gix) £ b i=k+1,k+2,....m
x>0

where * <’ is called the ‘fuzzy less than or equal to’ , or ‘essentially less than or equal to’,

fo.fi and g, i=1,2, ..., m are linear functions and x € R".

1.9 Zimmerman’s Approach — Symmetric Model

In this approach, on the lines of Zimmermann [51}, the goals and the constraints
are represented by fuzzy sets and we assume that the decision maker can establish an
aspiration level z for the value of the objective function he/she wants to achieve.

Therefore, as proposed by Zimmermann [51], we consider the following format of

the symmetric fuzzy linear programming problem (SFLP)
(SFLP) Find x such that

fo(x) g Z

fi(x) < & i=1,2 ..k
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gi(x) < b; izk+1,k+2,...,m

Xj 2 0 j=L2,...,n
where f), fi,i=1,2,...,k,and g, i=1,2, ..., m are linear functions.

-~

Also, 2 is the fuzzified version of > and represents ‘essentially greater than or equal to’
and < represents ‘essentially less than equal to’.

Then the problem is interpreted as:
e Make a decision x > 0 suchthatat x

e the value of the objective function fg(x) ‘essentially greater than or equal to’ the

predetermined aspiration level z, and

e the constraints fi(x) < di, 1=1,2, ..., k are satisfied in fuzzy sense, and the

constraints gi(x) < b;, i=k+1,k+2,...,m are crisply satisfied.

Then the equation (SFLP) is equivalent to

(EFLP) Find x such that
~fo(x) < -z
fix) < d; i=12,..,k
gi(x) < b i=k+ Lk+2,....m
x>0 i=L2,....n

where each of the fuzzy constrains, —fo(x) < -2, and fi(x) < d;, i=1,2,..,k

represents a fuzzy set whose membership function is p(x), i= 0,1,2, ...k, is

interpreted as the degree to which x satisfies the fuzzy constraints — fo(x) < -z and
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fi(x) < di, i=1,2,...,k. Then, following Zimmermann [51], we write a symmetric

fuzzy programming problem as follows:

(EFLP-1)

Find an x that satisfies

fo(x) < 2o (19.1)
) € & i=1,2.. .k (1.9.2)
gi(x) <b; i=k+1,k+2,...,m {1.9.3)

xj 2 0 j=L2,..,n (1.9.4)

zy is called the aspiration level of fy (x) and is given some pre-assigned value. Let,

qo > 0, and q;

> 0,(i=1,2,...,k), besubjectively chosen constants of admissible

violations such that qo is associated with (1.9.1),and q (i=1,2,...,k) are

associated with the i-th linear constraint of (1.9.2). We assume that the membership

functions of p;(x),

i= 0,1,2,...,k, are linearly decreasing over the ‘tolerance level’ g;.

Now, on the lines of Zimmerman [51], we define the membership function corresponding

to (1.9.1) and (1.9.2), as follows.

Corresponding to

uo(x) =

fo(x) membership function po(x) for objective function is written as

1 if f,(x) < zg
f (x)-z,
- 2— if zg<f (x) < zy+ q (1.9.5)
q9 0
.0 if fo(x) <25+ qg

Correspondingto i = 1,2, ..., k, the membership function is
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1 if f.(0) < d,
f.(x)-d.
wi(x) = 1= -4 ! if d.<f.(x)<d.+gq. (1.9.6)
qi 1 1 1 1
_O if di + q; < fi(x)

Once the membership functions are known, then a solution that belongs to the
intersection of the fuzzy sets of objective function (1.9.1), constraints (1.9.2), and
satisfies the crisp constraints (1.9.3) and (1.9.4) is a solution to (EFLP-1). Suppose that
Up(x) is the membership function of the fuzzy set ‘decision’ of the model. Then,

Ho(x) = Min (Ho(x), Ri(X), H2(X), H3(X), - -y = o HK(X))
Since, we are interested in a large value of pp(x), therefore, following Zimmermann [51],

we want to obtain the maximum value of pp(x). Thus, our interest is to

maximize Pp(x) = min [Mo(X), li(X), Pa(X), H3(X), - - -, - . ., Bi(X)]

subject to the constraints of (1.9.3) and (1.9.4)

Now, along the lines of Zimmermann [51], replacing pup(x) by A , and using (1.9.5) and

(1.9.6) respectively for po(x), pi(x), i=1,2,...,k, we have the following problem;

(EFLP-2) Max A
subject to
fo(x) + QoA < Zg+qo
fix)+qA < q+d i=1,2,....k

g(x) < b; i=k+l,k+2,...,m
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Xx; 2 0 j=1L2,...n

It is observed that (ENLP-2) is a crisp optimization problem whose optimal solution, if it

exists, provides a solution to (SFLP).

Remark 1.9.1. If in (SFLP), we replace

fox) S20 by fo(x) £ 20

that is, if we replace the requirement ‘essentially less than or equal to’ denoted by ‘<",

by the requirement ‘desired to be less than or equal to’ denoted by ‘<", then, we take

the membership function py(x) corresponding to fo(x) as follows:

1 if £ (x) €2z4-qg
fo(x)—(zo ~qgp)
90
0 if 2o < f (x)

Mo(x) = 31— if z5-qp< fo(x) <z,

In this case corrosponding to (EFLP-1) we have the following (EFLP-2).

(EFLP-2) Max A
subject to
fox)+q A < 2

fix)+q A < g +di i=1,2,...,k,
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gix) < b; i=k+1,k+2,...,m
0<Acsl
x; >0 i=L2,...n

1.10 Zimmerman’s Approach — Non-Symmetric Model

On the lines of Zimmermann {51], we now consider the following non—-symmetric
fuzzy optimization problem (NSFLP) with crisp objective function and a mixture of

fuzzy and crisp constraints.

(NSFLP) Min f(x) (1.10.1)
subject to

fix) < d i=12, ...k (1.10.2)

gi(x) < b i=k+l,k+2,...,m (1.10.3)

X; 2 0 j=L2,..,n (1.104)

As suggested by Zimmermann [51], we compute the membership function corresponding
to the objective function (1.10.1) with the help of the following two crisp optimization

programs (COP-1) and (COP-2).

(COP-1) Min f(x)
subject to

fix) < d i=1,2,...,k

gi(x) < by i=k+1,k+2, ...,m



20

x; 2 0 ji=1L,2,...n
Let the minimum value of the objective function f(x) be fo.
(COP-2) Min f(x)
subject to
fi(x) < di+ qi i=1,2,...,k
gi(x) < b i=k+1,k+2,....m

x; > 0 j=L2,...,n

Let the minimum value of f(x) be f; .

Then, on the lines of Zimmermann [S1], the membership function corresponding to the

objective function of (NSFLP) is defined as follows.

1 if f(x) < f,
f(x)— f
po(x)=<l—-—(ﬁ——° if fOSf()()Sfl
fl - f0
0 if f(x) 2 f,

The equivalent crisp programming problem corresponding to (NSFLP) is as follows.

Max xp4
subject to

f(x) + (fi —fo) Xau1 < i

fi(x) + Qi Xpe1 < qi+d; i=1,2,...k,

gi(x) < b; i=k+l,k+2,...,m



Xn+l < 1
;20 j=L2,..,(n+ 1)
which is similar to (EFLP-1), and therefore, can be solved on the lines of the method

suggested for solving (EFLP-1).

1.11 Quadratic Programming Theory

Quadratic programming is a special type of nonlinear programming in which the
objective function is quadratic and the constraints are linear. The standard form of a

quadratic programming is as follows.

(QP) Min z= 3. cx;+= zk DRI PN (L1LD)
subjectto 3L jagx;<b;  i=12...m (1.11.2)
;20 j=12,...n (1.11.3)

In matrix and vector form the same problem is written as:

Min z =c'x+%x‘l—lx (1.11.4)
subject to Ax <b (1.11.5)
x>0 (1.11.6)

where x is the n-component column vector for decision variables; ¢ is the n-component
column vector of objective function coefficients for the linear terms; H is the n X n
symmetric matrix of twice the objective coefficients for the quadratic and interactive

terms; z is the objective function to be minimized; A is the m X n matrix of
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constraint-equation coefficients, and b is the m-component column vector of the right

hand side coefficients.

I[n order to obtain the global minimum of the objective function, the objective
function and the constraint set must be either convex or pseudo-convex. Since the
constraints are linear, the constraint set is a convex set. If H is a positive semi-definite
(or positive definite) matrix then z is a convex (or strictly convex) function. Several
papers (for example see, [2], [3], [29], [32], [41], [42], [43], [44], [45], and [48]) deal

with the theory and finding a solution of the above (QP).

1.12 Organization of the Thesis

In the present thesis, we model a number of problems from a variety of areas
under fuzzy environment. Also, we discuss the methods to obtain their solutions and
interpretation to the solutions.

Chapter | provides an introduction to the concepts and problems considered in
this thesis. Chapter 2 deals with the literature review of the related work done by other
researchers. In Chapter 3, a linear programming approach to the problem of graduation is
presented under both crisp and fuzzy environment. In Chapter 4, a finite iteration
technique for solving fuzzy quadratic programming problem is developed. In Chapter 5,
we use the fuzzy quadratic programming approach to address the graduation problem
under more generalized criteria. At the end of the Chapter 5, results of graduation
problem, obtained using linear programming approach and quadratic programming

approach both under crisp and fuzzy environment, are compared. Finally, the conclusion
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and the discussion on the contributions made by the thesis, along with some

recommendations for further research, are given in Chapter 6.
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Chapter 2

LITERATURE SURVEY

This chapter provides a survey of the literature dealing with Graduation Problem,
Fuzzy Quadratic Programming Problem, and other concepts considered in this thesis. The

purpose of this chapter is to review the developments, and to identify the status of

existing literature in these areas.

2.1 Review of Literature on Graduation Problem

Several methods have been developed (for example see, [8], [9], [37], [39]. and
(46]) by which the graduation of an observed series may be accomplished and the

problem of graduation can be solved.

Broffitt [8] developed a method for determining which smoothness terms to
include in the objective function assuming that the graduator has pre-specified a
polynomial model, which represents the graduated values under ideal or ultimate
smoothness. Brooks et. al. [9] demonstrated Cross-Validatory graduation method that is
applied to the choice of parameters that control the degree of smoothing in generalized
Whittaker-Henderson graduation (47]. This approach is then compared with the Bayesian
method with the help of an example. Taylor {39] presented a paper to place Whittaker-
Henderson graduation in a Bayesian context and showed that this determines in a precise
manner the extent to which goodness-of-fit should be traded off against smoothness in

the Whittaker-Henderson loss function. Verrall [46] showed that the Whittaker
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graduation is equivalent to a dynamic regression analysis, in which one of the

parameter in allowed to vary stochastically. It also suggests an automatic method of
estimating the smoothing parameter, which is, at present, chosen subjectively by the

graduator. At the end, an example is presented to support the theory.

A common method of actuarial graduation is the difference-equation method as
described in London’s monograph {26]. In this method of graduation, graduated values
v (where x = 1, 2, ..., n), are sought corresponding to a given set of observed values uy

and non-negative weights w, that minimize the quantity F + hS, where
F = 2:=u w (U, = vy )2 and S = z:; (A’vx)z. F is an expression that measures the

degree of fit (or rather, lack of fit) of the graduated values to the observed values, and S is
an expression that measures the degree of smoothness (or rather, lack of smoothness) of
the graduated values. The order of the forward differences used in measure of
smoothness is denoted by z. The values of z commonly used are z=2,z=3 and z = 4.
The choice of z implies that a polynomial of degree z — 1 is being fitted to the observed
values. The A% and hence S will be zero if the graduated values lie exactly on the curve
of a polynomial of degree z — 1. The parameter h is a non-negative constant that
indicates the emphasis assigned to the smoothness of the graduated values relative to how
well they fit the observed values. The larger the value of h, the smaller S will be and the
smoother will be the graduated values. When h approaches 0, v, approaches u,, and fit is

emphasized over smoothness.

The method is called the difference-equation method because the values vy for

which the minimum of F + hS is achieved can be shown to satisfy the difference equation
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2
wyVe + hd7 v, = wyu,

where & denotes the central difference operator [37]. This same equation can be found in
matrix-vector form in London’s monograph {26, p. 56]. Whittaker-Henderson Type B
graduation formulas have variable weights and is the more general case of

Whittaker-Henderson Type A graduation where w, =1 for all x.

[n the difference-equation method, choices must be made in the objective
function, F + hS, for the measures of fit and smoothness. Usually, the measure of fit is
the weighted sum of the squares of the deviations, uy — vy, of the observed values from
the graduated values and the measure of smoothness is the sum of the squares of the z-th

difference of the graduated values.

Schuette [37] developed a linear programming approach to graduation problem.
In this paper, the Whittaker-Henderson Type B method of graduation, in which the
weighted sum of the squares of the deviations of graduated values from observed values
plus a parameter times the sum of the squares of the z-th differences of the graduated
values is minimized using absolute values instead of squares. The end problem is then

expressed as a linear programming problem as follows:

Minimize F+hS = ¥ w (D, +E)+hY _ (R, +T,)
subject to constraints
A*(Ex - D)) + R - T, = A%, x=1,2,...,n~-2,

D 2 0,Ex 2 O,R; 2 0,and T, 2 O, for all appropriate values of x
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where

F = measure of degree of fit,

S = measure of degree of smoothness,
u, = set of observed values,
v, = set of graduated values,

w, = non-negative weights,
z = order of forward difference/degree of polynomial used as a standard of smoothness,
A%v, = z" difference of the sequence vy,
E., D\, Ry, Ty = deviational variables,
h = areal number parameter that controls the relative emphasis given to F and S.
Two examples are presented at the end to demonstrate the method and some

difficuities are expressed in regards to computational feasibility.

2.2 Review of Literature on Quadratic Programming Problem

Various methods are available in the literature (for example see, 3], (29], [32],
[36], [40], [41], [42], [43], [44], [45], and [48]) to solve a quadratic programming
problem under crisp environment. Most of the available methods of solving a quadratic
programming in crisp environment use simplex tableaus in one or the other form.
Van de Panne [43] presented a method to maximize a linear objective function subject to
a quadratic and a number of linear constraints. This method presented in [43] differs from
general convex programming methods by terminating in a finite number of iterations.
Bela Martos [29] developed a method to solve a quadratic programming with

quasiconvex objective function. This method is different from other methods, as it
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doesn’t assume the convexity of the objective function. Paper begins with the

characterization of quadratic functions that are quasiconvex in the nonnegative orthant.
Van de Panne [43)] proposed a method for finding the global optimum of a general
quadratic programming problem. He developed this method based on the formulation of
the problem as a multiparametric convex quadratic programming problem. This results
in the formulation of a number of sub problems, which are general quadratic
programming problems of a smaller size. A numerical example is worked at the end in
detail.
In the literature (for example see [3], [29], [32], [42], [43], and [48]) a classical

quadratic programming problem is stated as follows:

(P-1 Minimize z = pT X+ % x'C x 2.2.1)
subject to

Ax <b (2.2.2)

x>0 (2.2.3)

where each of p and x € R", C is a symmetric nxn matrix, A is an m X n matrix and

b e R™. We also assume that the feasible solution set of the constraints is bounded.
Further, we assume that the quadratic objective function is pseudoconvex. Several

methods for solving such a problem are available in the literature ((for example see [3],

[29], [32], [41], [42], [43], and [48]). Van de Panne [43] considered the following problem.
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(VP) Maximize c' x
subject to
pr X+ % xX'Cx < B
Ax <b
x>0

where B € R and is known in advance, c € R". Other notations in the problem (VP) are

same as in (P-1). Van de Panne [43] developed the following two-phase method to solve

(VP) in a finite number of steps.

Phase 1. In (VP), ignore the quadratic constraint and solve the following ordinary linear

programming problem (LP), assuming that (LP) has an optimal solution.

(LP) Maximize ¢’ x

subject to
Ax <b
x>0
If the optimal solution x° of (LP) satisfies the quadratic constraint, that is if
p x’+ -})— Tcx® < B
we obviously have found the optimal solution of the original problem. If however,

pTx° + %XOTCXO > B

we go to Phase 2 of the method.
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Phase 2. In this phase, we add the following linear constraint [43],

c'x >\
where A is a parameter which is given different values in the course of the computations
assuming that 2% = ¢ x% is the value of the objective function in (LP) at its optimal

solution x°. Now, we consider the following quadratic programming problem (QP).

(QP) Minimize z = p' x + 1 x"Cx

subject to

Ax <b

c x>

x>0
Van de Panne [43] solved (QP) by decreasing A parametrically from A° to lower values.

According to Van de Panne [43], Phase 2 can terminate in one of the two ways.
1. It may terminate when for a certain value of A, say A, the objective function has
become equal to B. In this case an optimal solution to (VP) has been found.

2

2. It may terminate when for a certain value of A, say A’ the constraint ¢’ x > A

ceases to be binding for the optimal solution of the problem (QP) with

p' X + % x'C x being still larger than $. This means that for no value of A a

solution exists giving a minimum value of the objective p X+ Y x"C x less

than or equal to B. In this case, in (VP), the quadratic constraint is incompatible

with the linear constraints and no feasible solution to (VP) exists.
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2.3 Summary of the Thesis

The results and methods proved in this thesis are contained in Chapter 3,

Chapter 4, Chapter 5 and Chapter 6. We summarize them as follows:

Chapter3 A Linear Programming Approach to Graduation Under Crisp and
Fuzzy Environment

The purpose of the present chapter is to extend the results proved by Schuette [37]

further by solving the graduation problem under fuzzy conditions. Advantage of using

fuzzy mathematics is that it gives decision-maker flexibility and quantifies the certain

type of uncertainty involved in the problem in question.

Chapter4 A Finite Iteration Technique for a Fuzzy Quadratic Programming
Problem

In this chapter, we develop a finite iteration technique to solve a fuzzy quadratic
programming problem with single quadratic objective function and a number of linear
constraints. The quadratic programming problem has a lots of applications in the field of
economics, finance, statistics, and structural engineering. Due to such a vast practical
importance of quadratic programming, a large number of papers have been published in
past 35 years. All the methods available to solve fuzzy quadratic programming problems
are very lengthy and require high level of knowledge in the field of mathematics.
Therefore, method proposed in this chapter, is an attempt to provide an easy tool to

address this kind of problems.
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Chapter S A Quadratic Programming Approach to Graduation Under Crisp

and Fuzzy Environment
In this chapter, we sharpen the graduation problem discussed in Chapter 3 by
developing a quadratic programming approach both under crisp and fuzzy environment.

To do so, we also use the approach developed in Chapter 4.

Chapter 6  Conclusion, Contribution and Recommendations
In this chapter, we present the contributions and conclusions, along with some

recommendations for further research on the problems considered in this dissertation.
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Chapter 3

A LINEAR PROGRAMMING APPROACH TO GRADUATION

UNDER CRISP AND FUZZY ENVIRONMENT

In the present chapter, we consider the graduation problem formulated as a linear
programming problem, both under crisp and fuzzy environment. First, we obtain the
solution of linear programming problem, as discussed by Schuette [37], under crisp
environment. Then, we formulate and solve the problem in a fuzzy environment, and

compare the results obtained both under crisp and fuzzy environment.

3.1 Introduction

Schuette [37], in his paper, considered the graduation problem using absolute
values for both F and S, which Schuette solved as a crisp linear programming problem.
The numerical example used by Schuette [37] is solved using linear programming

approach under crisp and fuzzy environment in the present chapter.

3.2 Linear Programming Formulation Under Crisp Environment

On the lines of Schuette [37], we present the linear programming formulation of

graduation problem under crisp environment.

Assumption

For this model, it is assumed that all the data are known with certainty.
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Objective

Objective in this problem is to minimize the combination of fit and smoothness to

obtain improved graduated values.

General Formulation
The key component in formulation of graduation problem is the method to deal
with absolute values. This problem can be dealt by taking advantage of the fact that any
function can be separated into its positive and negative parts [37].
As we know that for the function | f(x)|,
if we set f(x) = (Dy~-E))
where D, > 0andE, > 0
then

|f(x)| = (Dx+Ex)
Therefore, f (x) may be replaced by Dy - E; and | f(x)l by D, + E,. The only condition

is that D, and E, must be nonnegative and they must not be positive simuitaneously.

For the graduation problem [37]

vi—u, = Dy-E, 3.2.1)
with deviational variables D 2 0 and Ex 2 0 for x=1,2,...,n,and let
Alv, = R, - Tx (3.2.2)

with deviational variables R, 2 0 and T,2 0 for x=1,2,...,0-2.
Also
vy = ux+ Dy -E,, (3.2.3)

yields
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A v, = A'uy + D -E,) = R,-T, 3.24)
Thus, under crisp environment, we have to find the values of D,, E,, Ry and T,

with the help of the following crisp linear programming problem.

(CLP) Minimize (F+hS) = Y'_w, (D, +E)+hY _ (R, +T,) (32.5)
subject to constraints
A (Ex-Dy+R,-Ty = A, x=1,2,...,n-2 (3.2.6)

D« 2 0,Ex 2 0,R; 2 0, and T 2 O, for all appropriate valuesof x.  (3.2.7)

which is of the type of a standard linear programming problem. The problem involves
2n + 2(n — z) variables and (n - z) constraints and it is important to point out here that in

(CLP) at most (n — z) of the Dy and E, can be positive in the optimal solution.

3.3 Numerical Example Under Crisp Environment

We illustrate this method through the numerical example given by
Miller [30, page 39], which is explored and formulated by Schuette [37] using a crisp
linear programming approach. The data consists of nineteen observed values and
nineteen corresponding weights. The values for u, forx=1,2,..., 19, are 34,24, 31,
40, 30, 49, 48, 48, 67, 58, 67, 75, 76, 76, 102, 100, 101, 115, and 134. The values for
we=1,2,...,19 are 3,5, 8, 10, 15, 20, 23, 20, 15, 13, 11, 10,9,9, 7,5, 5, 3, and 1.

For this example, the parameter h = 10, and z = 2. Then the problem, under crisp

environment, can be formulated as follows.
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Minimizez = (F+hS) =

3(Di + Ey) + 5(D2 + E3) + 8(D; + E3) + 10(Ds + Es) + 15(Ds + Es) + 20(Dg + E¢)
+ 23(D7 + E7) + 20(Ds + Eg) + 15(Dg + Eg) + 13(Dyo + E10) + 11(Dyy + Ejy) +
10(D12 + Ei2) + 9(Di3 + Ei3) + 9(D1s + Eis) + 7(Dis + Eis5) + 5(Dis + Eye) +
S(Dir+ E17) +3(Dig +Ei3) + I(D1o + Ej9) + IO(R; + R2 + R3 + R4 + Rs + Rs + Ry
+Rg+Ro+Rpo+ Ry +Ri2+Ri3+ Ry +Ris+Rig+Ri7+ T +Ta+ T3+ Ta +
Ts+Te+T7+Tg+To+Tio+ Ty 1+ T2+ Tiz+Tia+ Tis+Tis+ Ti7)

subject to the following constraints:

E3;-2E:+E(-D3+2D:-Dy+R,-T, =17
Es-2E3+E:-Ds+2D3-D2+R:-Ta=2
~Es+2E4-E3+Ds-2Dy+D3-R3+T3=19
E¢—2Es+Es-Dg+2Ds-Ds+ Ry - Ty =29
—E742E¢-Es+D7-2Dg+Ds~Rs+ Ts =20
Eg—2E;+E¢—-Dg+2D7-Ds+ Rs - T = |

Eg—2Es +E;-Dg+2Dg-D7+R;-T7=19
~Eio+2Es-Eg+Dj9-2Dg + Dg—Rg + Tg =28

Eii-2Ej0+Eg—Dy; +2Djg—Dg+Rg-Tg = 18
—Ew2+2E;-Eig+D12-2D1; + Dio-Ryig+ Tio=1
-E3+2E2~En+Di3-2Dn+Dy-Ru+Tu=7
~Eu+2E3-E2+Dis-2Di3+Di2-Ri2+ T2 =1
Eis-2E4+E;3-Dis+2Dis-Di3 +R;3-T3=26
-Eig+2Ei5s-Eis+Dig-2Dis+Dia-Rys + T3 =28

Ei7-2Ei+Ei5s—Di7+2D1s-Dis+Ri5-Tis=3
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Eis—2E17+E;s-Dig+2D17-Dis+Ris-Tis =13

Ei9-2Eis+E;7—Dyg+2D;g-Di7+R;7-Ti7 =5
Non-negativity constraints:
D20,E.20, x=1,2,...,19.

R(20,T«20, x=1,2,..., 17.

3.4 Results

On solving the above problem, Schuette [37] obtain the following Table 3.1.

Table 3.1 Results of crisp linear program problem

Variable Value Variable Value Variable Value Variable Value

D> 1.6667 Dy 9 Eg 12 Ri; 1.5
Ds 11.6667 D9 6.5 Ei» 2 Ts 4.3333
Dy 1 E 13.6667 Eis 9.5

Do 3 E, 3.6667 Eio 11.5

D3 3 E¢ 2 R, 5

3.5 Interpretation of the Results

Results given in the above table summarize the solution of the crisp problem as
discussed by Schuette [37]. Since Dy and E, are the deviational variables for vy — uy,
value of each of these variables will imply as how close are the initial values to the
graduated ones. Following the lines of Schuette ([37], page 415), in the solution, we
should have at least z (=2) values of D, and E, that have 0 value. In the solution of crisp
linear programming problem, we have D; = E; =0, D, = E; =0, D;; = E;, =0,

D[f, = E](, =0and D|3=E[3=0.
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At the same time, we should have at most (Schuette [37], page 415) n -z (=17)

variables D, and E, that have positive values. From Table 3.1, we have 14 variables that
have positive values. These values are D> = 1.6667, Ds = 11.6667, Dg = 1, Dyg = 3,
Di3=3,D14=9,D17=6.5,E,=13.6667, E; =3.6667, Ec=2,Eo=12,E;2=2,E|5=9.5,
Eiy = 115, R; =5, R;3 = 1.5 and Ts = 4.333. R, and T, represent the deviational
variables of smoothness function. Clearly, R; = 5, Ri3 = 1.5 and Ts = 4.3333 which
indicates that only three variables require additional smoothing. The minimum value of
objective function, which represents the minimization of the sum of fit and smoothness,
is 886.8333.

On the lines of Schuette [37], Table | in Appendix 2, depicts the graduated values
and the measures of the fit and smoothness obtained by solving the graduation problem
using linear programming approach for z = 2 and different values of h. In the same
fashion, Table 3 in Appendix 2, represents the graduated values and the measures of the
fit and smoothness obtained by solving the graduation problem using linear programming
approach for z = 3 for different values of h. However, the results obtained by Schuette

as shown in Table 1 and 3 are under crisp environment.

3.6 Formulation Under Fuzzy Environment

In general, most of the time, due to incomplete or forecasted information the input
data are imprecise. Any vagueness or impreciseness in data of observed values might lead
to an inappropriate interpretation of the underlying law, which would in turn completely

defeat the purpose of graduation process. The problems of impreciseness in data of
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observed values and their revision to improve the model are handled effectively by

taking advantage of fuzzy set theory ([5], [49], [51] and [52)).

1. Imprecise objective function limit levels. The management provides an upper
bound of the estimation of the total value of combination of fit and smoothness
represented by objective function z;. Value of objective function is desired to be
below this upper bound. A tolerance that defines the dispersion of this value may

be given in the form of fraction of z,.

o

Imprecise observed values u,. Since collection of data of observed values are
rarely accurate to the exact number of units, the management can provide a
tolerance level in form of a fraction of imprecisely known observed values, that
provides a range above and below the observed values in which the actual value is
likely to occur.

We now formulate the problem under the following additional assumptions.

Additional Assumptions
(i) The total value of objective function is desired to stay below a given limit.

(i)  The observed value data is known imprecisely.

Objective
The objective of the model is the ‘desire’ that the combination of fit and
smoothness stay below or equal to the aspiration level, which is given some pre-assigned

value keeping in view the imprecise data for observed values.
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Additional Notation

Let,

zo = the aspiration level for the objective and is given some pre-assigned value,

qo = the subjectively chosen value of admissible violations corresponding to zg,

g« = tolerance level associated with imprecisely known observed values u,, for all x,

to = membership function associated with imprecisely known objective function zg,

i = membership function corresponding to lower side of the constraint associated
with imprecisely known observed values uy, for all appropriate values of x,

H«w = membership function corresponding to upper side of the constraint associated

with imprecisely known observed values uy, for all appropriate values of x.

All other variables and symbols have the same meaning as in crisp formulation.

Formulation of Graduation Problem Under Fuzzy Environments
Using Zimmerman's notation [S1], in a fuzzy environment, the crisp constraints
A" (Ex-D)+R-Ty=A%y, x = 1,2,...,n-2, (3.6.1)
can be replaced by
A*(Ex-Dy) +R(~-Ty =A%, x = 1,2,...,n-g, (3.6.2)
which are further replaced by

A*(Ex-Dy) +R,-T, 2 Aug, x = 1,2,...,n-2, (3.6.3)

A" (Ex-Dy) + Ry~ T; < A, x = 1,2,...,n-2, (3.6.4)

The notation *2 A’y (or < A’u, respectively) means that the corresponding fuzzy

constraint is ‘essentially 2 A”u,’ (or essentially < A” u,, respectively), for all x [51].



4]
We denote by g and p,y, the membership functions corresponding to (3.6.3) and

(3.6.4) respectively.
Using Zimmerman’'s approach [S1], in a fuzzy environment, the objective function,

which is the total value of combination of fit and smoothness, can be written as

Z:mw‘(Dx +E,‘)+h22: Ry +To) 2z (3.6.5)

0
with Ly as the corresponding membership function for the objective function (3.6.5),
where ‘< z,’ means that the corresponding membership function is ‘desired to be less
than or equal to zg'.

Then, under fuzzy environments, our crisp linear programming problem (CLP) becomes
the following fuzzy linear programming problem, denoted by (FLP)

(FLP) Find Dy, Ex, Ry and T for all appropriate values of x, we have

for the fuzzy objective

Y w.(D,+E)+hY (R, +T,) ¥ z (3.6.6)

0
and for the fuzzy constraints with corresponding membership functions p, and Hyy

Az (Ex - Dx) + Rx —Tx

1\

A%y, x=12,...,n-2 (3.6.7)
A*(Ex-Dy +Ri-Tx £ Ay, x=12...,n-z (3.6.8)

The non-negativity constraints are written as

D 2 0,E, 20, x=1L2,..,n (3.6.9)
and Ry 20, T, 2 0, x=12,..,n-2 (3.6.10)
The graduation problem under fuzzy environment now is equivalent to obtain a solution

satisfying the fuzzy sets given by (3.6.6), (3.6.7), (3.6.8), (3.6.9) and (3.6.10).
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Membership Functions

Following Zimmermann [51], below we define the membership functions, pyo for
the fuzzy objective (3.6.6), and py. and p,y for the fuzzy constraints (3.6.7) and (3.6.8),
respectively.
For the sake of simplicity, we denote ZL. w, (D, +E )+ hZ:: (R, +T,) by fo,
A* (E( - Dy) + Ri =Ty by f,, and Au, by d.
Then, if f, is desired to be lower than zg and qo > O be the subjectively chosen value of

admissible violation corresponding to zo, then the membership function p, for objective

function is written as

1 if fos z5—-qg
f —(zp-qy)
0 .
Ly = {1- % if z5-9p< fos z,
0 if zy < f0

Similarly, the membership functions for fuzzy constraints (3.6.7) and (3.6.8) is obtained
as below.

Let gx. > 0, and qxu > O be the subjectively chosen constants of admissible violations
associated with constraints (3.6.7) and (3.6.8) respectively. Then, following
Zimmermann [51, 52},

M« , the membership functions for the lower side of the fuzzy region of the fuzzy

constraints (3.6.7) are taken as
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1 if fo2d
(d,-f ) )
MxL=<I—T’-‘—— if dx—qxsfxsdx
_0 if dx -q > fx

and M.y, the membership functions for the upper side of the fuzzy region of the fuzzy

constraints (3.6.8) are taken as

1 if f <d
X X
(f‘—dx) .
Wy = (1= o if defodx+qx
0 if d +q <f
L X X X

Once the membership functions are obtained, we get a solution to (FLP) by finding the
intersection of the fuzzy sets given by (3.6.6), (3.6.7) and (3.6.8), to get to a decision.
Then [p the membership function of decision D satisfying (3.6.6), (3.6.7) and (3.6.8) is
Hp = min (Yo, HiL, MaL, - - - Ken-2iLs Hiu, Raus -« - Wenez)u)
Since, we are interested in large value of Hp over (3.6.9) and (3.6.10), therefore,
following Zimmermann [51], we obtain
max Wp = min (Mo, KiL, 2L, - - - Hen-als Hius H2us « « - Hea-at)
subject to the constraints (3.6.9) and (3.6.10).

Replacing pp by A, we have the following problem (LP) along the lines of Zimmermann

[51];



(LP) max A
subject to
Mo = A
e 2 A x=12,....,n-z2,
Mau 2 A x=12,...,n-2,
and

crisp constraints (3.6.9) and (3.6.10)
It is observed that (LP) is a crisp linear program whose optimal solution provides a

solution to (FLP).

In view of the membership functions o, Py, and pew, x = 1,2,...,n-2; the (LP)

can be restated as
max A
subject to
fo+Aq < 2o
fx —AQx 2 dx— g« x=112,..,n-z

fr+Ags < di+qs x=012,..,n~z

0<A<1
and D.20 E 20, x=12,...n
Re20,T, 20, x=12..,n~z

Identifying fo

e
Yo WD +E)+hY (R, +T,),
fx = A* (Ex~Dy) + R - Ty,

and ds = Aluy,
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we can rewrite (LP) as

(LP-1) max A

subject to

S _w, (D, +E)+hY "R, +T,) + Aqo < 2

A"(Ex-D)+R-Ty-Aq: 2 A"u,~qs x=1,2,...,n-2,
A" (Ex-Dy) + R =Ti+ A g € A'u i+ 4« x=12,...,n-2,
0<sA<1
and D 2 0,Ex 20, x=12,...,n
Ry 20, T, 20, x=12,..,n-2

Thus, we see that we obtain a solution to (FLP) by solving (LP-1) which is a crisp linear

programming problem.

3.7 Numerical Example Under Fuzzy Environment

Below we write a fuzzified format of (CLP). In this example we assume a
tolerance level of approximately 30% for observed values and 0.25% in total objective
function. Therefore z; is 886.8333 and qg is 2.217. For the observed value constraints, the
tolerances are q; = 5.1, 2= .6, q3=5.7, q4a=8.7, qs=6, qs =.3, q7 =5.7,qs = 84,
P=54q0=3,9u=21,42=3,q3=78,q4=84,q5=9,q6 =39,q17 = L5,
where as the rest of the data is same as in crisp problem presented by Schuette [37].

In view of (FLP) following is fuzzy version of the above problem.
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3(D1 + E)) + 5(D2 + E>) + 8Ds + E3) + 10(Ds + Eg) + 15(Ds + Es) +

20(Ds + Eg) + 23(D7 + E7) + 20(Dg + Eg) + 15(Dg + Eg) + 13(D1g + E1o) +
[1(Diy + Enp) + 10(Dy2 + Er2) + H(D13 + Ei3) + 9(Dya + E4) + 7(Dys + Ejs)
+ 5(Dyg + Ei6) + 5(Di7+ E|7) + 3(D1s + Ejg) + 1(Dy9 + Ej9) + 10(R; + R» +
R;+Rs+Rs+Rs+R7+Rg+ Ry +Rjp+R;; + R + Ri3+ Ry + Rys +
Rs+Ri7+Ti+To+T3+Ts+Ts+Te+T7+Tg+To+Tig+ Ty +Tia +
Ti3+ Ty + Tis+ Tie + Ti7) < 886.8333

Es-2E2+E -D3+2D:-Dy+R, - T, = 17
Es-2E3+E:-Dy+2D3-D>+R:-Th =2
—Es+2E4-E3+Ds-2Dy+D3-R3+ T3 =19

Ee - 2Es+Eys—Dg+2Ds-Ds+ Ry~ Ty =29
-E;+2E¢~Es+ D7 -2Dg + Ds - Rs + Ts = 20

Es - 2E; +E¢—Dg+2D;-Dg + Rg - Tg =1
Eg-2Eg+E;-Dy+2Ds-D7+R;-T =19
—Eiwo+2Ey—Eg+Dio-2Dg + Dg - Rg + Ts = 28

E”—zElo-l'-Eg—D“ +2D|0—D9+R9—Tq f 18

-En+2E3-Ejp+Di2-2Dy +Dio—-Rip+ Ty

N}
—_—

—Eu3+2E2-Ei+Di3~2Di2+ Dy R+ Ty =

|
~

—Ew+2E;3-Ei2+D1y-2Di3 + Di2 ~Ri2+ Tia = 1

Eis-2Eis+E;3-Dis+2D1s—Di3 + Ri3—Tiy = 26
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—Eis+ 2Eis—E1a + D1g - 2Dis + Dis —Ris + T1y = 28

Ei7-2Eis+Eis— D174+ 2D1s-Dis + Rys ~ Tis =

I
w

Eig—2Ei7 + Ei6 -~ Dig + 2D17 - D16 + Ris — Tis = 13

I
w

Eigy—2Eis+Ei7-Dig+2Dig-Di7 +Ry7-Tiy =

Non-negativity constraints:
Dy,20,E:20, x=1,2,...,19.

Ry20,T,20, x=1,2,...,17.

Replacing each fuzzy equality with two fuzzy inequalities, we obtain

3(D) + Ei) + 5(D2 + E3) + 8(D3 + E3) + 10(Ds + Es) + 15(Ds + Es) + 20(Dg
+ E¢) + 23(D7 + E7) + 20(Dg + Eg) + 15(Dg + Eg) + 13(D1o + E10) + L 1(Dy,
+ En) + 10(D12 + E2) + 9(Di3 + Ei3) + 9(Dis + Eia) + 7(Dys + Eis) +
5(Dis + Eig) + 5(Di7+ E17) + 3(Dys + Eig) + 1(Dyg + Ei9) + I0(R; + Rz +
R3;+Ri+Rs+R¢+R7+Rg + Ry + Rjg + Rjj + Ri2 + Ris + Ry + Rys +
Ris+Ri7+Ti+Ta+T3+Ta+Ts+Te+Tr+Tg+To+Tio+ T +Tia ¢
Ti, + Tis+ Tis + Tig + Ty7) < 886.8333

E3—2E2+E|—D3+2D1—D|+R|-—T|

1V

17

E3—2E3+51—D3+2D2—D1+R|—T1 17

tIN

E4—ZEJ+E2—D4+2D3—D2+R2—T3 % 2

E.;—ZE}+Ez—D4+2D3—D2+R2—T2 g 2



-Es+2E;-E3+Ds-2Ds + D3 ~R3+ T3 2 19
~Es+2E4-E;+Ds-2D:s +D3-R3+ T3 £ 19
E¢—2Es+Es—Dg+2Ds - Dy + Ry Ty 2 29
E¢~2Es+Es~Dg+2Ds-Ds+ Ry~ Ts £ 29

-E1+2E¢-Es+D7-2Dg+Ds-Rs+ T

v

20

—E7+2E¢-Es+D7-2Dg+ Ds—-Rs + T 20

A

E3—2E7+E(,—Dg+2D7—D6+R6—T5 % 1
E3—2E7+E6—D3+2D7—D6+R6—T6 § 1

Eg~2E3+E7—D9+2Dg—D7+R7—T7

v

19
Eo-2Eg+E7-Dy+2Ds-D7+R;-T7 £ 19
—~Eio+2Ey-Ez+Dig-2Dg + Ds - Ry + Tg 2 28
~Eio+2Ey-E3+Dio-2Dg +Dg—Rg + Tg < 28

E[|-2E|0+E9—-Dn+2D10—D9+R9—T9

tiv

18
E”—2E|0+E9—-D“+2D|0—DQ+R9—T9 g 18
—Ei2+2E;1 —Ei0+ Di2-2D11 +Dio~Rig+ Tio 2 1

—Ei2+2E;1 ~Ei0+D12-2D11 +Dio-Rio+ Tio £ 1

-Ei3+2En-En+Di3-2Di2+Du-Rpy+ Ty 2 7

-Ei3+2En-E 1 +D13-2D1ia+ D - Ry + Ty

LIA
~
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~E4+2E3-Enp+Dis-2Di3+Dia-Rpa+Tia 2 |

!

~Eu+2E3-E2+D1s-2Di3+D12-Ri2+Ti2 € 1

!

Eis-2Eis+Ei3-Dis+2D1a-Di3 +Ri3 =Tz 2 26
Eis—2Eis+Ei3~Dis+2Diy-Di3 +Ri3-Ti3 £ 26
—Eic+2E;5s—Eis+Dig-2D1s + D1y —=Rys + T4 2 28
-Eis+2E;5s—Eis+Djs-2D1s+ Dis—Ris + Tis < 28
Ei7-2Ei6+Eis-Di7+2D16-Dis +Ris-Tys 2 3

Ei7-2Eis+Eis-D17+2D1s—-Dis+Ris-Ts

A
(#8)

Eig—2E;7+Eis—Dis+2D;7-Dis +Ri6—Tis

v

13

Eig—2E7+Eis~-Dig+2D17-Dis+Ris—Tis < 13

tIN

Ei9g—-2Ei3+E;7-Di9g+2Di3- D17 +R;7-Tpy

1\
w

Ei9-2Eig+E;7-Di9+2D;s-Di7+Ri7-Ty7

A
]

Non-negativity constraints:
D,20,E20, x=1,2,...,19.

R«20,T,20, x=1,2,...,17.

Then the crisp equivalent of this probiem can be written as
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maximize A

subject to the following constraints:

3(Dy + E|) + 5(D2 + E2) + 8(D3 + E3) + 10(D4 + Es) + 15(Ds + Es) + 20(Dg
+ Es) + 23(Dy + E7) + 20(Ds + Eg) + 15(Dg + Eo) + 13(Dyo + Ejo) + 11(Dy,
+ Ep) + 10(Di2 + Ej2) + 9(Dy3 + Ei3) + 9(Dys + Eis) + 7(Dis + Eys) +
5(Dig + Ei6) + 5(D17+ Ei7) + 3(D1g + Ei3) + 1(Di9 + Eig) +10( R; + R> +
Ri+Rs+Rs+Rs+R7+Rg+Ro+Rig+ R +Riz+ Rz + Ris +Rys +
Rig+Ri7+T 1 +Ta+ T3+ Ts+Ts+Te+T7+Teg+To+Tio+ T + Tia +
Ti3+Tis+Tis+Tis+T17) +2.217A < 886.8333

E;-2E:+E ~-D3;+2D2-Dy+ R -T;-5.1A 211.9

E;-2E;+E -D3+2D>-D;+R | -T; +5.1A £22.1
Ei-2E3;+E;-Dy+2D3-Dy+R;-T2- 61214
Es~2E3+E;-Dy+2D3-D2+R:-Ta+.6A<2.6
—Es+2E4-E;+Ds-2Ds+ D3 -R3+ T3 -5.7A213.3
—Es+2E4-E;+Ds-2D;+ D3 -R3 + T3 +5.7A <24.7

E¢ - 2Es+Es— D +2Ds-D;+ Ry - T3 -8.74.220.3
E¢-2Es+E;-Dg+2Ds-Ds+ Ry - T; +8.7A <37.7
-E;+2E¢-Es+D;-2Dg+ Ds—Rs+ Ts - 6A 2 14
—E7+2E¢—Es+D7~-2Dg + Ds—Rs+ Ts + 61 <26
Egs-2E;+E¢—Dg+2D7-Dg+ Rs-Te— .34 2.7
Es-2E7+Es—Dg+2D7-Dg+Rs-Te+ .34 <13

E9-2Es+E;-Dg+2Dg-D7;+R;-T7-5.7A 2133
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E9—2EQ+E7—D9+2D8—D7+R7—T7+5.7l§24.7

—Ejo+2Eg—Eg+Dig-2Dg+Ds—Rg + Tz — 8.4A 2 19.6
—Ejo+2Ey~Eg+ Djg-2Dg+ Dg — Rg + Tg + 8.4A < 36.4
Eii-2Ej0+Es—D{; +2D1g-Dg+Rg-Tg- 541> 12.6
Eij-2Ei0+Eo—Dy; +2D1g-Dg+Ry-Tyg + 541 <23.4
-Ei2+2E;1 -Eig+D12-2Dy; + Dyo-Rio+ Ti1o- 30 2.7
-En+2E1-Ew+D12-2Dy +Dyo-Rig+Tio+.3A<1.3
—Ei3+2E-E;1+Di3-2D1a+ D) =Ry + T -2.1A 249
-Ei3+2En-En+Di3-2Dp+ D) =R+ T +2.1A<9.1
—Eus+2Ei3~E 2+ Dy -2D13+Dia-Ria+ T2 - .30 2.7
-Eu+2E3~-E2+ D1y -2Di3+ D12 =-Ri2+ Ti1a+ .30 < 1.3
Eis-2Ei4a+E;3-Dis+2D1y-Di3+Ri3-T)3-7.8A 2 18.2
Es-2Eis+E;3-Dis+2Di;-Di3+R;3-Ti3 + 780 <33.8
—Eig+2Eis—Ej4a+Dig-2D;s+Dis-Ri3+ Ty -840 2196
-Eis+2Eis-Eis+Dis-2Dis+Dis—Ris+ Tiy + 844 <364
Ei7-2E6+Eis-Di17+2Dig-Dis+Ris-Tis- 942 2.1
Ei7-2Eis+Eis—Dy7+2Dis-Dis+R;5-T)s+ 9L <3.9
Eis-2E17+Eis~Dig +2D;7-Dig+ Rig—Tis -394 29.1
Eig—2E;7+Eis~Dig+2D17-Dis+Rig-Tis + 3.9A < 16.9
Eig—-2E;3+E;7-Di9+2D)3s-Di7+R;7 =T - 1.5A23.5
Eo-2Eig+Ej7~Dig+2D;g—D7+R;7-T;7+ 1.5A <6.5

A<l
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3.9

Non-negativity constraints:

Dy20,E;20, x=1,2,...,19.

Ry20,Tx20, x=1,2,...,17.

Results

The optimal solution to (NP-3) is as described in the following table.

Table 3.2 Results of fuzzy linear program problem

Variable  Value  Variable Value Variable Value Variable  Value
D, 1.666 Dy, 9.0982 Ey 12.0501 Ri3 1.3381
Ds 11.6367 Dys 6.4864 E;» 1.9582 Ts 4.3131
Dy 1.0021 E, 13.6326 Eis 9.4802 A 9930
Dy 2.9561 E, 3.6618 Ej9 11.476
Dz 3.0689 Ee 2.0042 R, 4.906

Interpretation of the Results
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Results given in the above Table 3.2 summarizes the solution of the linear version

of the fuzzy problem. In the solution of the linear fuzzy programming problem, we have

D3=E3=0,D7=E7=O,D“=E“=0,D15=Ew=0andD‘g=E[g=0. At the same

time, we have 14 variables D, and E, that have positive value.

These values are

D, = 1.666, Ds = 11.6367, Dg = 1.0021, Dyg = 2.9561, D3 = 3.0689, Dis = 9.0982,

D7 =6.4864, E| = 13.6326, E4 = 3.6618, E¢ = 2.0042, Eg = 12.0501, E;> = 1.9582,



Table 3.3

Function Tolerance
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Value of A Corresponding to Observed Value Tolerance and Objective

Observed Value Objective  Function Tolerance
Tolerance
0.25% 0.5% 1% 2% 3% 4% 5%
10% 0.9794 0.9596 0.9224 0.8560 0.7980 0.7435 0.6954
15% 0.9862 0.9727 0.9469 0.8991 0.8550 0.8116 0.7723
20% 0.9896 0.9794 0.9596 0.9224 0.8868 0.8512 0.8183
25% 0.9917 0.9835 0.9674 0.9369 0.9071 0.8770 0.8488
30% 0.9930 0.9862 0.9727 0.9469 0.9212 0.8952 0.8705
Table 3.4 Value of Objective Function (Membership Function) Corresponding to

Observed Value Tolerance and Objective Function Tolerance

Observed Value Objective  Function Tolerance
Tolerance

0.25% 0.5% 1% 2% 3% 4% 5%

10% 884.66 882.58 878.65 871.65 865.60 860.46 856.00
(.9803) (.9592) (.9228) (.8559) (.7981) (.7435) (.6954)

15% 884.65 882.52 878.44 870.88 864.09 858.05 852.59
(.9848) (.9728) (.9465) (.8993) (.8549) (.8115) (.7723)

20% 884.64 882.49 878.32 870.47 863.24 856.64 850.55
(.9893) (.9795) (.9600) (.9224) (.8868) (.8512) (.8183)

25% 884.63 882.47 878.25 870.21 862.70 855.73 849.20
{(.9938) (.9841) (.9679) .9371) (.9071) (.8769) (.8487)

30% 884.63 882.46 878.21 870.04 862.32 855.08 848.23
(.9938) (.9863) (9724) (.9466) (9214) (.8952) (.8706)
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Es = 9.4802, E;g = 11.476, R; = 4.906, Ry3 = 1.3381 and Ts = 4.3131. R, and T,

represent the deviational variables of smoothness function. The minimum value of the
objective function, which represents the minimization of the sum of fit and smoothness to
obtain better graduated values is 884.63 and level of satisfaction A, is .9930.

Table 3.3 and 3.4 show the behavior of the value of A and the objective function
respectively, corresponding to the changes in tolerance levels qx, of 10%, 20%, 30%,

40% and 50% for imprecisely known observed values, and of 0.25%, 0.5%, 1%, 2%, 3%,

4%, and 5% tolerance levels qq for objective function.

3.10 Discussion of the Solution in View of Table 3.3 and 3.4

Table 3.3 shows different values of A for various tolerance levels for the
imprecisely known observed values u, and desired levels of objective function. Also,
Table 3.4 shows different values of objective function i.e. combination of fit and
smoothness for various tolerance levels for the imprecisely known crisp objective
function value and imprecisely known observed values u,. Note that in this formulation
the membership function A is used to express the degree of certainty of the solution with
respect to fuzzy parameters, objective function which represents the combination of fit
and smoothness, and the imprecisely known observed values for u, [51]. From Table 3.3,
it is observed that with the increase in the tolerance level for desired level of objective
function, the value of A decreases. This shows that the smaller the value of membership
grade A, the smaller is the support for the solution and hence, lower the degree of

certainty of solution. On the other hand, it is observed that with increase in tolerance
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limits for imprecisely known uy, the value of A increases. This shows that the larger

the value of membership grade A, the larger is the support for the solution. In Table 3.4,
the numbers in the brackets represent the value of the membership function
corresponding to the value of objective function at the optimal solution given in
Table 3.2. From Tables 3.3 and 3.4 we observe that the value of the membership
function is, as expected, either greater than or equal to the value of A. It can therefore be
concluded that fuzzy programming does not provide just another solution; instead it
produces a solution corresponding to the pre-specified tolerance levels of constraints with
an associated degree of one’s belief in the solution. Graphs 3.3 and 3.4 in Appendix 1
reinforce the above observation.

In the above observation, the relationship between objective function (which
represents the combination of fit and smoothness) and the range of observed values u,’s
are investigated for possible values of membership grade between O and 1. Such an
examination is useful in order to provide the decision makers with sufficient information
on the implication of the choice of a membership grade prior to the final choice
determined by them. Another advantage of fuzzy programming is that it admits imprecise
data. This feature is particularly useful for the situation when the management in an
organization is not able to specify precisely the combination of fit and smoothness limit,
but is rather able to provide lower and upper bounds, with a specified tolerance level
above or below these bounds. Thus, fuzzy programming produces most satisfactory
solution within a pre-specified interval, whereas conventional crisp set theory constraints
only permit only one solution either to belong (membership grade 1) or not to belong

(membership grade 0) to the set {0, 1}.
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Chapter 4

A FINITE ITERATION TECHNIQUE FOR A

FUZZY QUADRATIC PROGRAMMING PROBLEM

In this chapter we consider two problems, one under symmetric fuzzy environment,
and the second under non-symmetric fuzzy environment, such that each problem has a
single quadratic objective function and a number of linear constraints. Each of the two
fuzzy problems is converted into a crisp programming problem that has a linear objective
function with linear constraints, and has one quadratic constraint. To solve such a problem,
we suggest a finite step method that uses linear programming and parametric quadratic
programming. Furthermore, we present a numerical example to demonstrate the method

developed.

4.1 Introduction

Since Zadeh [49] introduced the concept of fuzzy set theory, a number of
researchers have exhibited their interest in the topic of fuzzy mathematical programming
(for example see [4], [16], [23], and [51]). However, in contrast with the vast literature
available on modeling and solution procedures for a linear program in a fuzzy
environment, the studies in quadratic programming under fuzzy environment and its
solution are rather scarce. In the present paper we consider both symmetric fuzzy and
non-symmetric fuzzy quadratic programming problems and transform each of them to a

crisp programming problem of the type presented in (VP). At the end we consider a
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numerical example to demonstrate the method for the solution of a symmetric problem.

It will be observed that the non-symmetric problem could be solved similarly with slight

modifications.

4.2 Symmetric Fuzzy Quadratic Programming
Corresponding to (P-1) as described in Chapter 2, we now consider the following
symmetric fuzzy version (P-2) on the lines of Zimmermann [51].

(P-2) Find a solution x" that satisfies:

f(x) = pTx-i-—;— x'Cx £ 2 4.2.1)
n
g5 S d i=12...k (422
j=1
n
23 % < b i=k+l,....m (423)
i=l
x=20 4.2.4)

where the fuzzy inequality ‘<’ denotes ‘essentially less than or equal to” [51], and zg,

called the aspiration level, is given some pre—assigned value. Let, qo > 0, and q; >0,
(i=1,2,...,k), be subjectively chosen constants of admissible violations such that qo
is associated with (4.2.1),and q (i=1,2,...,k) are associated with the i-th linear
constraint (4.2.2). Now, on the lines of Zimmerman [5i], we define the membership

function corresponding to (4.2.1) and (4.2.2), as follows.
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1 if f(x) € z,
fi -
Ho(x) = <1—M if z,< f(x)§20+q0, i=12,..,k,
9o
0 if f(x) 2 zy+q,. i=1,2,...k.
and
n
1 if ) ggx; < d, i=12..k
=
n
thgij j_dl n
wx) = {1-£ if d, <Y gyx, <d; +q;  i=l2..k,
q; =l
n
0 if ) g;x; 2 d; +q, i=12....k.
= '
L

4.3 The Equivalent Crisp Problem

On the lines of Zimmermann [51], the solution to the problem (P-1) is obtained

by solving the following problem (P-3).

Maximize Minimize X
P3) (%)

i20,1.2.....k

subject to (4.2.3), and (4.2.4).

Now following Schmitendorf [36], (P-3), and Zimmermann (51] a solution to (P-3) is

obtained by solving the following problem (P—4).



(P—4) Maximize Xp4

subject to

Hi(X) —Xqe1 2 0,

0 < xp41 <1

and

(4.2.3), and (4.2.4).
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From above, using the expressions for p; (x ) for i = 0, 1,2, ... k, and using (4.2.3)

and (4.2.4), we obtain (P-4) as follows.
(P-4) Maximize Xp+i

subject to

(-L)[pTHleCx} b < 1+ (22
dy 2

9o

1 & d.
(q )[Zlg'jxj] + Xpe1 < 1+ (=),
i i=

Xnel < 1
n
i=l
X, Xo+l >0

Rewriting (P—4), we obtain (P-5) as follows.

(P-5) Maximize X«

subject to

pTx +E x'Cx+ JoXnel < Qo+ 2o

i=k+1,...

4.3.1)



n
285 + Gi%et S q+di, =12 ...k 4.32)
j=I
Xpset S 1 (433)
n
28 % < by, i=k+l....m (4.34)
=1
X, Xpe1 = 0 (4.3.5)

In (P-5), objective and the constraints (4.3.2) — (4.3.5) are linear. However, the constraint

(4.3.1) is quadratic. Therefore, (P-5) is of the type of the problem (VP).

4.4 Non - Symmetric Fuzzy Quadratic Programming Problem

We now consider the following the following non—symmetric fuzzy quadratic

programming problem (NFP).

(NFP) Minimize f(x) = pTx+ % x'Cx
subject to
n
28 %5 < d i=1,2....k
j=I -
1
Zaﬁ X < b i=k+l,...,m
j=t
x>0

As suggested by Zimmermann [51], we compute the membership function corresponding

to the quadratic objective function with the help of the following two crisp quadratic

programs (CP-1) and (CP-2).
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(CP-1) Minimize f(x) = pTx +% x'C x
subject to
n
zgindei i=1,2,...,k
=t
n
ZainJS bi i=k+l,....m
j=I
x>0
Let the minimum value of the objective function f(x)be fo .
(CP-2) Minimize f(x) = p' x + -;- x'C x
subject to
n
ZgiijSdl'!-q. i=lo29---vk
i=l
n
Zaijx,-s b; i=k+1,....m
j=1
x>0

Let the minimum value of f (x) be f.

Then, on the lines of Zimmermann [51], the membership function corresponding to the

quadratic objective function of (NFP) is defined as follows.

1 if f(x) < f,

f(x) - f,
TR,
0 if f(x)2 f,

Ho (x) = 4l if f, < f(x) <f,




Now, the equivalent crisp programming problem corresponding to (NFP) is as

follows.
Maximize Xp.i

subject to

pTX +‘;— XTCX + (f| —fo)xn+l < f1

n
Zgijxj + QX1 S q+di, 1=12,...k
=

Xael S 1
Zaijxjs b, i=k+1,...,m

X, Xpet 2 0
which is similar to (P-5), and therefore, can be solved on the lines of the Two—Phase

method suggested for solving (P-5).

4.5 Numerical Example

We now solve a numerical example for the following fuzzy symmetric quadratic

programming problem (FSQP) using the method described above.

(FSQP) 2+ Lxa+ 4 x]+dx X0+ 25 S 51.88
4x,+5xa 2 20
SX|+4X2% 20

1X1+1X2§30

iV
o

X1, X2 =
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Let G =212, =2, =1, q =3.

Then, on the lines of (P--5), the crisp equivalent of this problem is

maximize X3

subject to
2 2
2+ Ixa+4x +4x1%+2x; +212x3 <54

4x;+45x2 -2 x3>18
Sxi1+4x2 -1 x32>19
Ixi+1xa+ 3 x3 <33
X3 <1
X1, X2,x3 > 0.
This problem is similar to (VP) with linear objective function, exactly one quadratic

constraint and three linear constraint. Therefore, we solve it in a finite number of steps

using the Two Phase method as outlined above for solving (VP).

In Phase 1, the linear programming problem is as follows.

Maximize xs3

subject to
4x1+5x2 -2 x3>18
S5xi+4x2 -1 x3>19
Ixi+1x2 + 3 x3 <33

X3

IA

Xi, X2,X3 > 0.



Its optimal solution is x; = 2.2222, x» = 2.2222, x3 = 1.

Since 2x; + lxa + 4x2+ 4x % + 2x5 + 212 x; = 5817 at
Xy = 2.2222, xa = 2.2222 and x3 = |, therefore the constraint 2x; + I x> + 4 "12

+4xx2 4+ 2 xg + 2.12 x3 < 54 is violated. Hence we go to Phase 2. In this phase

we solve the following quadratic programming problem parametrically.

Minimize 2%, + 1 X2 + 4x7+ 4% %2 + 2 X3 + 2.12 x5
subject to
4x;+5%x2 -2 x3 > 18
Sxi+4x>: -1 x3>19
Ix;+1x> + 3 x3 <33
x3 <1
x3 > 1
Xi, X2,X3 > 0.
From this problem, by solving a series of quadratic programs parametrically, we obtain

the final form of the quadratic programming as follows.

C .. 2
Minimize 2x; + IXa + 4x] +4x;X2 + 2X

"~
+
!\)
—
(88
<

L)

subject to
4x+5%x: -2 x3 >18
S5x;+4x2 -1 x3> 19

Ix;+1x2 +3 x3 <33
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x3 <1

v

x3 > .860633

v

X1, X2,X3 2 0.

The optimal solution to this problem is x;=.99, x»= 3.73, x;=.860633, and the
minimum value of the objective function is =54 .

Thus, the solution that solves the (FSQP) is

X1=.99, x»= 373,

and the level of satisfaction of this solution is given by x3 = .860633 .

4.6 Conclusion

In the present chapter, we consider a symmetric fuzzy quadratic programming
problem. Solution to this problem is obtained in a finite number of steps by solving an
optimization problem in which one constraint is quadratic, other constraints and the
objective function are linear. Also, it is shown that the non-symmetric fuzzy quadratic

programming problem can also ve solved in a finite number of steps by using a similar

technique.
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Chapter S

A QUADRATIC PROGRAMMING APPROACH TO

GRADUATION UNDER CRISP AND FUZZY ENVIRONMENT

The Whittaker-Henderson Type B method of graduation consists of minimizing
the weighted sum of the squares of the deviations of graduated values from observed
values plus a parameter times the sum of the squares of the z-th differences of the
graduated values. In Chapter 3, this method is modified by using absolute values instead
of squares for the weighed sum of the deviations of graduated values from observed
values. The resulting problem is expressed as a linear programming problem and is
solved both under crisp and fuzzy environment. In present Chapter, we develop
quadratic programming approach to graduation using absolute values method for fit
measure and traditional sum of the squares method to measure the smoothness. In order
to capture uncertainty factor in observed values data, fuzzy quadratic programming
technique is applied. At the end, same numerical example as used by Schuette [37], is

given to demonstrate fuzzy approach.

5.1 Introduction

A common method of actuarial graduation is the difference-equation method [26].
In this method of graduation, graduated values v, (where x = 1, 2, ..., n), are sought

corresponding to a given set of observed values u; and non-negative weights w, that

minimize the quantity F + hS, where F = z:=lwx(ux —v,‘)2 and S = Z:; (A'v).
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F is an expression that measures the degree of fit of the graduated values to the

observed values, and S is an expression that measures the degree of smoothness of the
graduated values.

As shown in Chapter 3, a method of coping with the absolute-value function is
available in linear programming. Indeed, a method for coping with both the absolute
value function and quadratic function is available in quadratic programming.

A second and undoubtedly more important reason why methods based on
minimizing sum of squares have been favored in graduation is the preeminence of the
principle of least squares in statistical theory, which in turn can be traced to the normal
distribution. The traditional squared criteria in the fit measure are appropriate whenever
the error random variable (the deviation of the observed values from the true underlying
values) is normalily distributed. If the distribution of this error random variable is not
normal, and thus generates more ‘outliers’ than would a normal distribution, the squared
criterion is too sensitive to these outliers. The method using absolute values should be
less influenced by the outliers and thus is considered to be robust estimation procedure
[26].

The problem of the outliers pertains more to the fit measure than the smoothness
measure. Hence this chapter will be devoted to the task of adapting quadratic
programming to the graduation problem so that, in the case of the fit measure, absolute
values may be employed in place of squares, and in the case of the smoothness measure,

the traditional sum of squares will be maintained.
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5.2 Quadratic Programming Formulation of A Graduation

Problem Under Crisp Environment

Following the notation used in Chapter 3 for the graduation problem, we have

vi—u, = Dy-E, (5.2.1)

therefore, |v,-u,|= Di+E,

with deviational variables D, 2 Oand E, 2 Oforx = 1,2,...,n,and let

Alvy = R(~-T, (5.2.2)
with deviational variablesR, =2 Oand T, 2 Oforx = 1,2,...,n-2.
Then

vy = uy+ D -E,, (5.2.3)
and

A'vy = Au,+ D -E;) = Ry-T; (5.24)
Also, |v, —uxl = D, + E

and (R, - T,‘)2 = Ri -2R T + Tf = Ri + sz , since at least one of R, and T, must
be equal to zero.
Thus, under crisp environment, we have to find the values of Dy, E,, Ry and T, with the

help of the following crisp quadratic programming problem.

(CQP) Minimize (F+hS) = 3 _w, (D, +E)+hY (R} +T7) (5.2.5)
subject to constraints
A*(Ex-Dy)+R-Tx = A'u,,x = 1,2,...,n-2, (5.2.6)

D, 2 0,E 20, R, 2 0,and T 2 0, for all appropriate values of x. (5.2.7)
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Constraint equations (5.2.6) are obtained by rearranging equations (5.2.4).

Since, the operator A” is linear and the variables appear linearly in all terms in equations
given by (5.2.6), therefore, the problem has linear constraints. Also, the Hessian matrix
in (5.2.5) is positive definite, therefore, (F + hS) is strictly convex. This yields that a
local minimum of strictly convex function (F + hS) over the constraint set, determined
by linear constraints given by (5.2.6), and (5.2.7), is a global minimum also.
Furthermore, the function (F + hS) being strictly convex has a unique global minimum
over the constraint set. It may also be observed that the problem involves (4n - 2z)

variables and (n - z) constraints.

5.3 Formulation of Graduation Problem As A Quadratic

Programming Problem Under Fuzzy Environment

Fuzziness or vagueness present in the observed value data can influence the
graduated values that might distort the whole underlying phenomenon. In order to deal
with this kind of problem, we can take advantage of fuzzy set theory ([5], [49], [51] and
[52]). The resultant fuzzy quadratic programming problem then can be solved by the
method as demonstrated in Chapter 4.

Using Zimmerman'’s notation [51], in a fuzzy environment, the crisp constraints

A" (Ex-D)+Ry-Tx = Aug,x = 1,2,...,n-2, (5.3.1)
can be replaced by

A" (Ex-Dy) + Ry - T = Au,x =1,2,...,n-z, (5.3.2)

which are further replaced by
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AZ(EK_Dx)'{'Rx_Tx % AZUx,x = 1,2.....[1—2. (5.3.3)

and AL (E‘ - D‘) + Rx - Tx

LA

Avu,x =1,2,...,n-2, (5.3.4)
The notation ‘g A%, (or < A™u, respectively) means that the corresponding fuzzy

constraint is ‘essentially = A”u,’(or essentially < A’u,, respectively) for all x [51]. We
denote by iy and Wy, the membership functions corresponding to (5.3.3) and (5.3.4)
respectively.

Using Zimmerman’s approach [S1], in a fuzzy environment, the objective function,

which is the total value of combination of fit and smoothness, can be written as
3w, (D +E)+hY “(RI+TH £ z, (5.3.5)
with o as the corresponding membership function for the objective function (5.3.5),

where ‘< zy’ means that the corresponding membership function is ‘desired to be less
than or equal to z'.

Then, under fuzzy environments, our crisp quadratic programming problem (CQP)
becomes the following fuzzy quadratic programming problem, denoted by (FQP).

(FQP) Find Dy, E,, R and T for all appropriate values of x, we have

for the fuzzy objective function
YW D +E)+hY TR +TH 2 2, (5.3.6)

and for the fuzzy constraints with corresponding membership functions p, and p,y

A*(Ex—-Dy) + R - Ty 2 Au,x = 1,2,...,n-2 (5.3.7)

Az(Ex—Dx)+Rx—Tx g Aﬁlx,x=l,2,.-.,n—z (5.3.8)
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The non-negativity constraints are written as

Dy 20,E 20, x=12,..,n (5.3.9)
and R, 20 T, 20, x=12,..,n-z (5.3.10)
The graduation problem under fuzzy environment now is equivalent to obtain a solution

satisfying the fuzzy sets given by (5.3.6), (5.3.7), (5.3.8), (5.3.9) and (5.3.10).

Membership Functions

Following Zimmermann [51], below we define the membership functions, g for
the fuzzy objective (5.3.6), and iy and y,y for the fuzzy constraints (5.3.7) and (5.3.8),
respectively.
For the sake of simplicity, we denote 2:=| w, (D, +E )+ hZ:: RZ+T}) by f,
A* (Ey-Dy) + R, - Ty by f,, and A’u, by d,.
Then, if fo is desired to be lower than zy and qo > 0 be the subjectively chosen value of

admissible violation corresponding to 2o, then the membership function p, for objective

function is written as

(1 if f, € 2999
f —(zy—9q¢)
0 0 0 .
Ho = {1 - —————— if zo—qosf0 <z,
9

Similarly, the membership functions for fuzzy constraints (5.3.7) and (5.3.8) is obtained

as below.
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Let g >0, and g,y >0 be the subjectively chosen constants of admissible violations

associated with constraints (5.3.7) and (5.3.8) respectively. Then, following
Zimmermann [51, 52],
L« ., the membership functions for the lower side of the fuzzy region of the fuzzy

constraints (5.3.7) are taken as

1 if f >d
X X
(d, -f )
—_ e ——— X H -
uxL—Wl if d qufodx
qx
0 if d -q 2 f

and [y, the membership functions for the upper side of the fuzzy region of the fuzzy

constraints (5.3.8) are taken as

1 if f <d
X X
(f, -d )
= i1 X ;
Hxu = Tl . if defx de +q_
LO if dx+qxsfx

Once the membership functions are obtained, we get a solution to (FQP) by finding the
intersection of the fuzzy sets given (5.3.6), (5.3.7) and (5.3.8), to get to a decision. Then

Up the membership function of decision D satisfying (5.3.6), (5.3.7) and (5.3.8) is

Up = min (Mo, HiL, HaLs - - - -zt Hius Hau, - - - Ka2)u)
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Since, we are interested in large value of pp over (5.3.9) and (5.3.10), therefore,

following Zimmermann [51], we obtain
max Hp = min (Uo, {iL, Hav, - - - Hats Hius Hau, - - - Heazyu)
subject to the constraints (5.3.9) and (5.3.10).

Replacing up by A, we have the following problem (EFQP) along the lines of

Zimmermann [S51] ;

(EFQP) max A
subject to
Mo = A
Mo 2 A x=1,2,..,n-12,
Wy 2 A x=12,...n-z2

and crisp constraints (5.3.9) and (5.3.10)
It is observed that (EFQP) is a crisp linear program whose optimal solution provides a
solution to (FQP).
In view of the membership functions Mo, P and pey. x = 1, 2,...,n -1z, the (EFQP)

can be restated as

max A

subject to
fo+Aq < z
fi-Agx 2 di—-qx x=12..,n-z
fi+Aqe < de+qx x=12...,0-2

0<A<1
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and D,

\Y
e
tm
”
Y
e
”
]
»
=2

[dentifying f5 = ZL'W‘(Dx +Ex)+hZ:: (R +T5),

m
”
[

= Az (Ex - Dx) + Rx —Tls

and dy = A,

we can rewrite (EFQP) as

(EFQP-1) max A

subject to
Y w,.(D,+E)+hY Ri+TH + hqo < 20
A*(Ex-Dy) + Ry - Tx-Aqx 2 AMuc -« x=12,...,n-z2,
A*(Ex-Dy) +R =Ty +Aqx £ AU, 4+ x=12,...,n-2,
0<sA<
and D, 2 0,E, 20, x=12...,n
R, 20, Ty 20, x=12,..,n~-2

Now the solution of the (EFQP-1) can be obtained by technique developed and

demonstrated in Chapter 4.
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5.4 Numerical Example of A Graduation Problem As A Quadratic

Programming Problem Under Crisp Environment

The data used in this example is that used by Schuette [37] in his paper in
Example I, which was taken from the monograph by Miller [30]. The data consists of
nineteen ungraduated values and nineteen corresponding weights. The values for u,,
x=1,2,...,19,are: 34, 24, 31, 40, 30, 49, 48, 48, 67, 58, 67, 75, 76, 76, 102, 100, 101,
115, and 134. The values forw,=1,2,...,19are 3,5, 8, 10, 15, 20, 23, 20, 15, 13, 11,
10,9.9,7,5,5, 3, and 1. For this example, the parameter h = 10, and z = 2. On the lines
of technique developed in Chapter 4, the problem can be formulated as follows and is

equivalent to (P-1).

(P-1) Minimizez = (F+hS) =
3(Dy + Ei) + 5(D2 + E2) + 8(D3 + E3) + 1O(Ds + Es) + 15(Ds + Es) + 20(Ds
+ E¢) + 23(D7 + E7) + 20(Dg + Eg) + 15(Dg + Eg) + 13(Dyo + Ej0) + 11(Dy;
+ En) + 10(D12 + Ei2) + 9(Di3 + Ei3) + 9(Dys + Eps) + 7(Dis + Eis) +
5(D16 + Ei6) + S(Dy7+ Ey7) + 3(D1g + Eig) + 1(D1g + Ey9) + 10(R,* + Ry* +
Ry’ + R’ + Rs* + R¢” + R7* + Rg" + Ry” + Rip” + Ry + Ri2” + Ris? + Ry
+RisT+RE+RF+ T+ T + T + T + T 4+ T + T + T + To” +
T’ + T’ + T + Tis* + Tid? + Tis” + Tie™ + Tir)
subject to the following constraints:
E;-2E:+E(-D3;+2D>-D1+R|-T ) =17
Es—2E;+E;-Dy+2D3;-D2+ Ry -T2 =2

—-Es+ZE4—E3+D5—2D4+D3—R3+T3= 19
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E(,-2ES+E4—D6+2D5—D4+R4—T4=29

~E7+2Es—Es+D7-2Dg + Ds—Rs + Ts =20
Eg—2E;+Es-Dg+2D7-Dg+Rs~Te =1
Eg-2Eg+E7-Dg+2Dg-D;+R;-T7 =19

- Eio+2Es - Eg + Dijg—2Dg + Dg — Rg + T3 = 28
Ei1-2Ej0+Es-Di1 +2D1g~ Do+ Rg—-Tg =18
~E2+2E1-Epp+Di2-2D; +Dig-Rig+ Tio= 1
~Ei3+2E:2-Ey+D;3-2D12+ D -R; + Ty =7
~Es+2E3-Ei2+Dua-2Di3+Dia-Ri2+Tia= 11
Eis—2E;3s+E;3-Dis+2Djs-Dyj3+R;3-Ti3=26
~Eis+2E;5s-Eis+Dig-2Dis+Dis-Riy+T13=28
Ei7-2Eis+Eis-Di7+ 2D -Dis+Ry;s-Ti5=3
Eig—2E(7+Eis-Dis+2Di7-Dig+Rig-Tis =13
Ei9—2Ei3+Ei7-Dig+2Dig-Di7+R;7-T17=5
Non-negativity constraints:

Dy, 20,Ex20,x=12,...,19.

R, 20, T, 20, x=1,2,...,17.

5.5 Results

Solving the above problem (P-1) under crisp environment, we obtain the

following results as described in the Table 5.1 below.
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Table 5.1 Results of crisp quadratic program problem
Variable Value Variable Value Variable Value Variable Value
E, 11.70 D 2.58 R, .05 R;2 64
E, 4.53 Ds 9.75 Rs .06 Ris .62
E, 4.91 Dg 3.98 R 07 Ry .16
E, 10.38 Do 352 R, .66 Ris 04
Enx 2.24 D3 273 Ry 25 Rie A7
Eis 9.42 Dy 9.35 R .59 Ri7 05
Eye 03 D\ 6.40 Rio 28 T; .19
Ei9 11.35 R, .15 Ry, 21 Ts 43

5.6 Interpretation of the Results

In Table 5.1, Dy and E, represent the deviation between graduated value (v,) and
observed value (uc). E, = 11.70 represent the deviation of first observed value form its
graduated value. Similarly, Es = 4.53, E¢ = 4.91, Eg = 10.38, Ej» = 2.24, E|5 = 942,
Eis = .03, Ejg = 11.35, D, = 2.58, Ds = 9.75, Dg = 3.98, Dy = 3.52, Dy3 = 2.73,
Dis =9.35 and D)7 = 6.4 represent the deviation between graduated and observed values
for 4%, 6%, 9™ 12", 15®, 16", 19*, 2%, 5", 8™ 10" 13" 14™ and 17" variable
respectively. R, = .05, Ry = .06, R¢ = .07, Ry = .66, Rg = .25, Rg = .59, Rjp = .28,
Ry =.21,R;=.64,R;3=.62, Ri3=.16, R;s =.04, Rig=.17,R;7 =.05, T; = .19, and
Ts = .43 are the deviations in the second difference of the sequence v, for 1%, 2™, 4®, 6",
70 8" 9™ 10", 11™, 12", 13", 14™, 15", 16", 17™ 3™ and 5" variable respectively.
Value of the objective function, which represents the minimization of sums of fit and

smoothness, is 880.03.
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Clearly, value of the objective function (i.e. sum of the fit and smoothness)

obtained through Table 3.1 (section 3.4) for the same graduation problem formulated as a
linear program under crisp environment has been improved from 886.8333 to 880.03.

Table 2 in Appendix 2 depicts the graduated values obtained by solving the
graduation problem using quadratic programming approach for z = 2 and different values
of h. In the same fashion, Table 4 in Appendix 2 represents the graduated value obtained
using z = 3 for different values of h.

Thus we can observe that quadratic program approach has been able to help
improve the graduated values and the measure of the fit and smoothness of the graduation

problem.

5.7 Numerical Example of A Graduation Problem As A Quadratic

Programming Problem Under Fuzzy Environment

Any vagueness or impreciseness in data of observed values might lead to an
inappropriate interpretation of the underlying law, which would in turn completely defeat
the purpose of graduation process. As described before, problems of impreciseness in
data can be handled effectively by taking advantage of fuzzy set theory ([5], [49] and
(51]).

Now we write the fuzzified format of the quadratic program problem using
(EFQP-1). In this example we assume a tolerance level of approximately 30% for
observed values and 0.25% in total objective function. Therefore z; is 880.03 and qq is
2.2. For the observed value constraints, the tolerances are q, = 5.1, g2 = .6, @3 = 5.7,

+=87,9s=6,q6 =.3, @7 =57, 98 =84,q =54, qo = .3, qu =2.1,q2 = .3,
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qi3 =7.8,qus =84, qi5 =.9, qis = 3.9, qi7 = 1.5, where as the rest of the data is same

as in the crisp problem (P-1). We have the fuzzy version of above problem as:

(VP)

3(D, + E;) + 5(D> + E>) + 8Ds + E3) + 10(Ds + Es) + 15(Ds + Es) + 20(Dsg
+ Eg) + 23(D7 + E7) + 20(Ds + Eg) + 15(Dg + Eg) + 13(Dyo + Ejo) + 11(Dy,
+ En) + 10(Di2 + Ej2) + 9(Di3 + Ej3) + 9(Dys + Ers) + 7(D1s + Eys5) +
S(Dis + Eis) + S(D17+ E(7) + 3(Dis + Eig) + 1(Dig + Ei9) + 10(R;” + Ry” +
R +R:P+Rs+ R+ R2+ R+ R* + Rio” + Ry >+ Ri2> + Ri3> + Ry
+RiS+Rie+ R+ TP+ T + T+ T+ T + T + T2 + T + To" +
T+ T’ + T’ + Tis? + Ti + Tis’ + Tys” + Ti7’) < 880.03

E3—2E2+E|—D3+2D2—D|+R|—T| = 17
E4—.?.E3+Ez—D4+2D3—D3+R2—Tz':‘2

-Es+2E4-E3+Ds-2Ds+D3-R3+ T3 =19

E¢-2Es+Es-De+2Ds-Ds+Rs-Ts =29
—E;+2E¢—-Es+D7-2Dg+ Ds-Rs5+ Ts 320
Es~2E;+ Es—Dg +2D;-Dg +Rs - T = 1
Ey-2Eg+E7;-Dg+2Dg-D7+R;-T; = 19
~Ew+2E3-Eg+Djg-2Dg + Ds —Rg + Ts 328
Ein-2Ei0+Eg—Dii +2D1g-Dg+Rg—Tg = I8

—En+2En-Ei+Di2-2D11 +Dio-Rig+ Tio = 1
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~Eu+2En-En+Di3-2D12+ Dy -Ry+ Ty =7

-Es+2E3-En+Dpy-2Di3+D-Rix+ T =1
Eis—2Eis + Ei3-Dis +2D1s - Di3 +Ri3-Ti3 = 26
—Eis+2Ei5s—Ejs+ D1 —2Dis + D1y~ Ria + T1a = 28
Ei7-2Ei6+Eis-Di7+2D1s-Dis+Ris—Tis = 3

Eig—2E17+Ei-Dig+2Dy7-Djs + R —Tis = 13

vl

|
w

Ei9-2Eig+Ei7-Dig+2D1s-Di7 +Ri7 =Tyy =

Non-negativity constraints:
D(20,E,20, x=1,2,...,19.

Ry,20,T 20, x=1,2,...,17.

Replacing each fuzzy equality with two inequalities, we obtain

3(Di +E;) + 5(D2 +E2) + 8(D; + E3) + 10(Ds + Ey) + 15(Ds + Es) + 20(Ds
+ E¢) + 23(D7 + E7) + 20(D3 + Eg) + 15(Dg + Eg) + 13(Dyo + Ejo) + 11(Dy,
+ Ej) + 10Dz + Ei2) + 9(Di3 + Ei3) + 9(Dys + Eis) + 7(Dys + Ejs) +
5(Dis + Ei6) + 5(D17+ Ei7) + 3(Dyg + Eig) + 1(Dyg + Eig) + I0(R,* + R2* +
Ri*+ R+ R+ Rs +R:> + Rg® + Re® + Rig> + Rj1® + Rip? + Rys? + Ry?
+RiS+Rie+R 7+ T+ T+ T + T+ T 4+ T + T + T + To +

Tt + T2+ T + T + Tid + Tis® + Tigs + Tird) + 2.2 A < 880.03



E3—2E3+E|—D3+2D2—D|+R[—T| %

E3-2E:+E -D3+2D-D+R;-T, §

17

17

E.;—?.E:;+E3—D4+2D3~D3+R3—T3% 2

E4—2E3+E3—D4+2D3-D2+R2—T3S 2

--E.5+2E4—E;4+D5—2D4+D3—R3+T3 %

—E5+2E4-E3+D5—2D4+D3—R3+T3 <19

56—2E5+E4—D6+2D5—D4+R4—T4 % 29

Eﬁ‘2E5+EJ—Dﬁ+2D5—D4+R4—T4 § 29

—E7+2Eg—E5+D7—2D6+D5—R5+T5 %

-E7+2E¢-Es+D7-2Dg+Ds-Rs+Ts < 20

Eg-2E7+Ec-Dg+2D7-Dg + Rs—Te 2
Es—-2E7+E¢~Dg+2Dy-Dg+Rs—Ts £
Eg-2Eg+E;-Dg+2Ds-D;+R7-T; 2
Ey-2Es+E;-Dg+2Ds-D;+R7-T7 <
-Ewo+2Ey-Eg+Dyjg-2D9g+ Dg - Rg + T
~Ew+2E9~-Eg+Dyg~2Dg+Dg~Rg + Ts
Ei1~2E;g+Eg—Dy; +2D1g-Ds+Ro—- Ty

E|[—2E|0+Eq—D1|+2D[[)—D9+R9—T9

19

19
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-En+2Ei1~Ei+Di2-2Dy1 + Dig-Rip+ Tio 2 1

-En+2En-Epo+Di2-2D11 +Dig-Ri0+ Tio

LA

—E3+2En-En+Di3-2Din+Du-Ry+Ty 27

-Ei3+2Epp-E1+D;3-2Dpa+ D =Ry +Tyy

tIN
~J

-Eis+2E3-E2+D1y-2D13+Dpp-Ri2+ T2

Hv

~Es+2E3-E2+Diu-2Di3+Dia-Ria+Tia £ 1
Eis-2Es+E;3-Dis+2D1s-Di3+Ri3-Ti3 2 26

Eis-2Eis+Ei3-Dis+2Dis-Di3+Ri3-This

LIA

26
-Eig+2Eis—Ei3+Dig~2Dis+Dis—-Ria + Tis 2 28
~Eis+2E;s-Eis+Dic—2Dis+ Dis~Ris+Tis < 28
E;7-2Eis+E(s~Dj7+ 2Dy ~Dis+Ris-Tis 2 3
Ei7-2Eic+Eis-Dyj7+2Dis-Dis+Ris-Tis £ 3
Eis-2Ei7 +Eig -~ Dig+2D17-Dig +Ri6 - Tis 2 13
Eis-2E;7+Eig—Dig+2Di7-Dis+Ri6—Tis £ 13

Eiw-2Eig+Ei7-Djg+2Dig-Dy7+Ry7-Ty7

1\
W

Eig-2Eis+Ei7-Dig+2D1s-Dy74R;7-Ti7 £ 5
Non-negativity constraints:
D:20,Ex20, x=1,2,...,19.

R,20,T,20, x=1,2,...,17.
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Now we write the crisp version of (VP) as follows.

Maximize A

subject to the following constraints:

3(Dy +E)) + S(D: + E») + 8(D3 + E3) + 10(D4 + E4) + 15(Ds + Es) + 20(Deg
+ Eg) + 23(D7 + E7) + 20(Dg + Eg) + 15(Dyg + Eg) + 13(Dyo + Eyo) + 11(Dy,
+ En) + 10(D12 + Ei2) + 9(Di3 + Ei3) + 9(Dis + Eis) + 7(Dis + Eis5) +
5(Di6 + Ei6) + 5(Dy7+ E17) + 3(Dis + Eis) + 1(D1o + Ej9) + 10(R,* + Ry +
Ry® + Ry + Rs® + Re* + Ry* + R’ + Ro” + Rig” + Ryi* + Rio® + Ris® + Ry
+RiSS+R+ R+ TP+ T+ T + T+ T + T + T2 + To* + To” +
T + Ti? + Ti” + Tis” + Tia® + Tis® + Tig” + Tis™) + 2.2 1 < 880.03
E;-2E.+E -D3;+2D:-D,+R,-T), -5.1A2 119

E;-2E,+E; -D3+2D,-D, +R;| =T +5.1A <22.1
Es-2E;+E:~Dy+2D3-D>+R:-T2-.6A2 1.4
Es-2E3+E:-Dsy+2D3-D2+Ry -T2+ .6A <2.6
~Es+2Es-E3+Ds-2Ds + D3 ~R3; + T3 -5.7A213.3
~Es+2Es~E;+Ds-2Ds+D3;-R3 + T3+ 5.7A <24.7

Ec-2Es + Es —Dg+2Ds—Ds + Ry~ T4 - 8.7A 220.3
E¢-2Es+E;-Dg+2Ds-Ds+ Ry —T; +8.7A<37.7
~E7+2Es—Es+D7-2Dg+ Ds-Rs + Ts — 6L 2 14
-E7+2E—Es+D;-2Dg+ Ds—Rs + Ts + 6L <26
Es-2E;+E¢—Dg+2D7-Dg+Rg—Tg— .30 2.7

Es-2E;+E¢-Ds+2D7-Dg+Rs-Te + .34 < 1.3
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Eg—2Es+B7—D9+2D3—D7+R7—T7—5.712 13.3

Eo-2Eg+E7;-Do+2Dg~D;+R;-T7+5. 70 <24.7
—Eio+2Es—Eg+Djg—2Dg+ Dg—Rg + Tz ~8.4A > 19.6

- Eio+2Eo - Eg + Dyg-2Dg + Dg — Rg + Tg + 8.41. < 36.4
Eii-2Ei0+Eg-D|; +2Dio-Dg + Ry —Tg- 5412 12.6
Ei1-2Ei0+Eg-Dy; +2Djg—Dg+ Ro-Tg + 5.4A <234
-En2+2E1-Eio+Di2-2D) 1 +Dig-Rig+Ti1g-.30 2.7
-En+2E -Ejp+D2-2D1 +Di1o—Rig+ Tio+.3A< 1.3
-Ei3+2E2-E+Di3-2Dj2+ Dy -R; 1 + T, -2.1A 249
—Ei3+2E2-E;+Di3-2D1a+ D) -Rp + Ty +2.1A<9.1
~Eis+2E3-E2+D13-2D)3+Dj2=Rj2+ T2 -302.7
~Ea+2Ei3-E2+D13-2D;3+ D12 -Rj2+ T2+ .30 < 1.3
Eis-2E4+E;3-Dis+2Djs-Dy3+R;3-T;3-7.8A218.2
Eis—2Eis+Ei3-Dis+2Djs-Di3+R;3-Ti3+7.8A<33.8
-Eie+2Ei5-Ely+Dig-2Dis+ Dy -Riy+T 13— 8442196
~Eig+2Eis-Ej3s+Dig-2Djs+ D1y - Ry + T4 + 840 < 36.4
Ei7-2Ei6+Eis—-Di7+2Dis-Dis+Ris=Tis- .94 2 2.1
Ei7-2Eis+Ei5s-Di7+2Dis-Dis+Rys-Tis + 9L <3.9
Eig=2E;7+Eis-Dis+2D;7-Djg+Ris-Tis~ 391 29.1
Eis—2E17+Eis-Dis+2Dj7-Dijs+Ris-Tis + 3.90<16.9
Eiw-2Eigs+Ei7-Di9+2Dig-Dy7+R;7-T17-1.5A23.5

Ei9-2Eis+E{7-Dyg + 2Dig—-Dir + Ri7=Ti7+ 1.5\ <6.5



A<l

Non-negativity constraints:
D,20,Ek20,x=1,2,...,19.
Ry 20,T:20, x=1,2,...,17.

A20
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In crisp version of problem (VP), we ignore the quadratic constraint and solve the

following ordinary linear programming problem (LP).

version of (VP) as:

(LP)

Maximize A

subject to the following constraints:

E;-2E;+E -D3+2D;-D;+R-T;-5.1A2 119
E:-2E:+E -D3+2D>,-D;+R; =T +5.1A<22.1
Es-2E3+E;-Dy+2D;-D2+R, -T2~ 6A2 1.4
Es-2E;+E;-Ds+2D3-Dr+R, -T2 +.6A<2.6
-Es+2E;-E3+Ds-2Ds+ D3 -R3+ T3 -5.7A213.3
—~Es+2E;-E3+Ds-2D; + D3 —R3 + T3 +5.7A <24.7
E¢—2Es+E;-D¢+2Ds-Ds+ Ry~ T; -~ 8742203
Es—2Es+Es—Dg+2Ds—Ds+ Ry — T4 +8.7A.<37.7
-E7+2E¢—Es+D;-2Dg+ Ds-Rs + Ts—6A 2 14

—E7+2E¢-Es+D7-2Dg+ Ds—Rs + Ts+ 6A <26

In this case we have the (LP)
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Eg—2E7+Ee-Dg+2D7—D(,+Ré—Tﬁ—.3)L2.7

Es~2E7+Es~Dg+2D7-Dg+Rs-Te +.3A<1.3
Es-2Es+ E;~Dg+2Dg-D7+R7-T7-57A2>13.3
Eg-2Eg+E;~Dg+2Dg-D7+R;-T7 +5.70.<24.7
-Ei0+2Ey-Eg+Djg—2Dg + Dg~Rg + Tg - 8.4A 2 19.6
-Ei0+2Es-Es+ Dyo—2Dg + Dg —Rg + T + 8.4A <36.4
Enn-2Eio+Eg—Dy1 +2D)g—Dg+ Ry~ Ty - 5412 12.6
Eii-2Ei0+Eg~Dy; +2D1g—-Dg+ Ry —To + 5.4L <234
-Ei2+2E;1-Ejg+Di2-2Dy1 +Dig-Ryg+ Tig~.3A 2.7
-Ei2+2E) -Ejo+D;2-2D1 +Dio~Rig+ Tio+.3A< 1.3
—~E3+2En-E+Di3-2Dp2+ D =Ry + T - 2.1 249
-Ei3+2E2~-E;1 +D;3-2Dj2+ D =R + Ty +2.1A <9.1
-Eu+2E3-E2+D13s-2Dj3+ D12 -Ri2+ T3 - 34 2.7
-Eu+2E3-Ei2+Di3-2D13+D1a-Ri2+ T2+ .30 <13
Eis-2Eis+E;3-Dis+2Dys-Dy3+R;3-T);3-7.80 2 18.2
Eis-2E4+E;3-Dis+2Dis-Di3+R;3-T3+7.8L<33.8
~Eis+2E;5s-Ejs+Dis-2Djs+ D1y —Rys + T13 - 8442 19.6
~Ei+2Ei5s—Eis+Dis—2Dis+ Dy — Ry + Ti3 + 840 <364
Ei7-2Eic+E;s-D17+2Dis-Dis+R;s-Tis-.9A>2.1
Ei7-2Eis+Eis-Dy7+2Dis~Dis+ Ris—Tis+ .94 <3.9
Eig—2E;7+Eis—-Dig+2D;7~-Dis +Ri6—Tis—3.9429.1

Eis- 2517 + E16 - DIS + 2D|7 ~-Dis+Ris—=Tis + 3.9\ <169
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Eio-2Es+E7-Dig+2Di1gs-D17+R;7-T;7-1.5A23.5

Ei9—-2Eig+E;7—-Dyg+2Dg-Di7+R;7-Ty7 + 1.5A <6.5

A<l

Non-negativity constraints:

D,20,E,20, x=1,2,...

R,20,T,20, x=1,2,..

A20

Results

, 19.

. 17,

Solving the above problem, we obtain the following Table 5.2 representing the

optimal solution of the problem (LP).

Table 5.2 Results of the problem (LP)
Variable  Value  Variable Value Variable Value Variable  Value
E, 12 Eq 12.6667 Eis 5.6667 Ry3 5.3333
E; 5 Eix 5 Eis 16.3333 Tio 3.3333
E4 12 E;s 3 Dyq 2.6667 A 1
Es 13 Eis 17.6667 R4 4
E, 6 Eis 7.3333 Rs 0.3333

Substituting the values obtained in Table 5.2 in the quadratic constraint, which

was ignored, we obtain the value of the quadratic constraint as 1648.20. We observe that

the quadratic constraint is violated. Therefore, according to the method developed in

Chapter 4, we need to go to the Phase 2 of the solution method.
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In the second Phase, we solve the quadratic programming problem (QP)

parametrically as follows.

(QP)

Minimize

3(D, + Ey) + 5(D12 + E;) + 8(D; + E3) + 10(D4 + Ey) + 15(Ds + Es) + 20(Dg
+ E¢) + 23(D7 + E7) + 20(Ds + Eg) + 15(Dg + Eg) + 13(Dyo + Eyo) + 11(Dyy
+ Ey) + 10(Di2 + Ej2) + 9(Di3 + Ei3) + 9(Dys + Es) + 7(Dys + Ejs) +
S(Di6 + Ei6) + S(Di7+ Ei7) + 3(Dis + Eis) + 1(Dis + Ei9) + 10(R) + Ry* +
Rs® +Ry® + Rs* + Rs’ + Ry + Rg” + Re> + Rio> + Ry + Ri2> + Riz> + Ry’
+RiSS+R+R7+ T+ T2+ T + T+ T + T + T2 + T + T +
Tio + T + T + Ty + T2 + Tis” + Tye” + Tir)) + 2.2 4

subject to the following constraints:
E3-2E:+E(-D3+2D:-D+R;-T; -5.1A2 119

E;-2E;+E; -D3;+2D2-D;+R =T +5.1A <22.1
Es-2E34+E2-D;s+2D;-D,+R;-T2-6A2 14
Es-2E3;+E;-Dy+2D3-D2+Ry-T2+.6L<2.6
-Es+2E4-E3+Ds-2Ds+D3-R3+ T3 -5.7A 2133
—Es+2E;-E3+Ds—-2Ds+D;-R3;+ T3 +5.7A <24.7

E¢-2Es + E; - Dg+2Ds-Ds+ Ry -Ts - 8.7 220.3

Es—2Es+ Es—Dg +2Ds—Ds + Ry - T3 + 8.7A <37.7
—~E7+2Es—Es+D;-2Dg+Ds-Rs+ Ts-6A 2> 14

—E7+2EG—E5+D7—2D5+D5—R5+T5+6l§26
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E3—2E7+56~D3+2D7—D5+R(,—Tﬁ—.3x2.7

Eg-2E;+Ec-Ds+2D7~Ds+Rg-Ts +.3A <13

Eg—2Eg +E7-Dg+2Dg~Dy+R;-T7-5.7A2 133
Eo-2E3+E7-Do+2Ds~D;+R;=T7 +5.7A <247
-Ei0+2E3-Es+Djp-2Dg+Dg-Rg+ Tg —-8.41 2 19.6
~Eio+2Eg—Eg+Djg—2Dg + Dg - Rg + Tg + 8.4A <36.4
Eiy-2Ei0+E9-Dy; +2D)g-Dg+Rg-To - 541 2 12,6
Eii-2Eig+Eo-Dy; +2Dyg-Dg+ Ry~ To + 54X <23 .4
-En+2E 1 -Ejg+D12-2D)1 +Dyo—-Rig+ T1o-.3A 2.7
-E2+2E;i-Eig+D12-2D;; +Djo-Rig+ Tio+ .30 < 1.3
-Ei3+2E2-E; 1 +D;3-2D12+ D =R+ T ~2.1A 249
—E3+2En-E+D;3-2Dp+ Dy =R+ Ty +2.1A<9.1
-Eu+2E3-En+Dis-2D3+Di2-Ri2+T12-302.7
—~Es+2E3-E24+Duu-2Di3+ D2 -Ri2+Tip+.30<1.3
Eis—2E4+Ei3-Dis+2Dis-Di3+Ri3-T;3-7.81218.2
Eis—2E4+E;3~-Dis+2Dis-Dj3+R;3 - T3+ 7.80 <33.8
-Eis+2Ei5-Eu+Djs-2Dis+ Dy ~-Ris+Tis—84A219.6
—Eie+2Eis~El4+Djg~2Dys + D1y —Ris + Tis + 8.40 <364
Ej7-2E+E;s-Dy7+2Di-Dis+R;5s-T;5- 91 2>2.1
Ei7-2Eis+Eis-D17+2Di-Dis+R;s—Tis+ .91 <39
Eig-2E;7+Ejs-Dig+2D17-Dys+ Rig =T - 3.9 29.1

Eis—-2E;7 + Eig~Dig +2Dyg - Dis+Ris—Tig+3.91L<16.9



Eiw—2Eis+E;7-Dy9 + 2Dig - Dn + R|7 —Tl‘] -15A=35

Eio—2E;s+ E;7-Di9+2D1s-Di7+R;7-Ti7 + 1.5A <6.5

A<l

A1

Non-negativity constraints:
Di20,E,20,x=12,...,19.

R, 20,T,

v

0,x=1,2....,17.
A20

5.9 Results

By solving a series of quadratic programs parametrically we obtain the following

Table 5.3 representing the solution of the problem (QP).

Table 5.3 Results of the problem (QP)

Variable Value Variable Value Variable Value Variable Value

E, 11.69 D, 2.57 R, 05 Rz .62
E, 4.51 Ds 9.75 Ry .06 Ris .61
E, 4.89 Dy 3.96 Rs 06 Ry 14
Ey 10.41 Do 3.50 Ry .65 Rys 03
Ep 224 D3 271 Rg 23 Ris .16
Eis 9.49 Dy 9.29 Rq 57 Rys .05
Eis .08 Dy7 6.37 Rio 25 T, .20
Ei 11.31 R, 15 Ri 19 Ts 44
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The value of objective function, which represents the combination of fit and

smoothness is 877.84 and the level of satisfaction, A, of this solution is .9949 .

Deviation between the graduated value v, and observed value uy is the absolute
value of the difference between deviational variables Dy and E,. Therefore, E; = 11.69
indicates the absolute difference between graduated value v; and observed value u,,
where not both v; and u; can not be positive simultaneously. Though, they can assume
value zero at the same time. Similar interpretation would stand true for any values of Dy
and E.. Hence, E; = 4.51, E¢ = 4.89, Eg = 1041, E|» = 2.24, E|5s = 949, E;s = .08,
Eig = 11.31, D2 = 2.57, Ds = 9.75, Dg = 3.96, Dyy = 3.50, Dy3 = 2.71, Dyy = 9.29, and
Dy7 = 6.37 means the absolute difference between graduated value and observed value for
4% 6™ 9", 12" 15", 16", 19", 2, 5", 8", 10™, 13", 14", and 17" term in the series
respectively. Whereas, Ry = .15, Ry = .05, Ry = .06, R = .06, R; = .65, Rg = .23,
Ro = .57, Rio = .25, Ry = .19, Rj2 = .62, Ry3 = .61, Ry = .14, Rys = .03, R = .16,
Ri7 = .05, T3 = .20 and Ts = .44 are the deviations in the second difference of the
sequence vy for 1%, 2™, 4™ 6™ 7%, 8" 9™ 10™, 1™, 12", 13™, 14*, 15", 16", 17*, 3™
and 5™ term respectively. The value of A, which stands for the level of satisfaction for
solution obtained in Table 5.3 is .9949.

The following Table 5.4 and Figure 5.5 show the behavior of the value of
A corresponding to changes in tolerance levels, of 10%, 20%, 30%, 40% and 50% for
imprecisely known observed values u,'s, and of 0.25%, 0.5%, 1%, 2%, 3%, 4%, and 5%

tolerance levels qo for objective function, which represents the combination of fit and

smoothness.
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92

Value of A Corresponding to Observed Value Tolerance and Objective

Function Tolerance

Obscrved Value Objective  Function Tolerance
Tolerance
0.25% 0.5% 1% 2% 3% 4% 5%
10% 0.9848 0.9697 093949  0.87953 0.82164  0.76847 0.7193
15% 0.98985 0.9796 0.95877 091587  0.88245 0.8304 0.79027
20% 0.99237 0.9846 0.96874 093535 (0.900067 0.8660 0.8200
5% 0.99388 0.98765 0.9748 0.9475 0.91866 0.88926  0.86067
30% 0.9949 0.98969 .97892 0.9558 09311 0.90563 0.8807
Table 5.5 Value of Objective Function (Membership Function) Corresponding to

Observed Value Tolerance and Objective Function Tolerance

Observed Value Objective  Function Tolerance
Tolerance

0.25% 0.5% 1% 2% 3% 4% 5%

10% 877.86 875.76 871.76 864.55 858.17 852.98 848.38
(.9864) (.9705) (.9398) (.8795) (.8280) (.7685) (.7193)

15% 877.85 875.72 871.59 863.91 856.99 850.80 845.26
(.9909) (.9795) (.9591) (.9159) (.8727) (.8304) (.7902)

20% 877.84 875.70 871.51 863.57 856.27 849.55 843.95
(.9955) (.9841) (.9682) (.9352) (.9000) (.8659) (.8200)

25% 877.84 875.68 871.45 863.35 855.78 848.73 842.16
(.9955) (.9886) (.9750) (.9477) (.9185) (.8892) (.8606)

30% 877.84 875.68 871.42 863.21 855.45 848.15 841.28
(.9955) (.9886) (.9784) (.9557) (.9310) (.9057) (.8806)
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5.10 Discussion of the Solution in View of Table 5.4 and Table 5.5

Table 5.4 shows different values of A for various tolerance levels for the
imprecisely known observed values and desired levels of objective function. Also,
Table 5.5 shows different values of objective function for various tolerance levels for the
imprecisely known crisp objective function value and imprecisely known observed values
uy. Note that in this formulation the membership function A is used to express the degree
of certainty of the solution with respect to fuzzy parameters, objective function which
represents the combination of fit and smoothness and imprecisely known observed values
for u, [43]. From Table 5.4, it is observed that with the increase in the tolerance level for
desired level of objective function, the value of A decreases. This shows that the smaller
the value of membership grade A, the smaller is the support for the solution and hence,
lower the degree of certainty of solution. On the other hand, it is observed that with
increase in tolerance limits for imprecisely known uy, the value of A increases. This
shows that the larger the value of membership grade A, the larger is the support for the
solution. In Table 5.5, the numbers in the brackets represent the value of the membership
function corresponding to the value of objective function at the optimal solution given in
Table 5.3. From Tables 5.4 and 5.5 we observe that the value of the membership
function is, as expected, either greater than or equal to the value of A. It can therefore be
concluded that fuzzy programming does not provide just another crisp solution; instead it
produces the optimum solution corresponding to the pre-specified tolerance levels of

constraints. The above observation is also seems to be clear from Graphs 5.4 and Graphs

5.5 in Appendix |.
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In the above examination, the relationship between objective function (which

represents the combination of fit and smoothness) and the range of observed values u,’s
are investigated for possible values of membership grade between O and 1. Such an
examination is useful in order to provide the decision makers with sufficient information
on the implication of the choice of the membership grade prior to making final decision.
Fuzzy programming is a suitable method to admit imprecise data. Especially, when the
management or the decision makers are unable to specify precisely the combination of fit
and smoothness level, but are rather able to provide lower and upper bounds, with respect
to some pre-assigned aspiration level, taken as representing imprecision in setting of such
bounds. As already stated, fuzzy set theory permits the partial belonging of an element to
a fuzzy set characterized by a membership function that takes values in the interval [0, 1].
Thus, fuzzy programming produces most satisfactory solution within a pre specified
interval, whereas a conventional crisp set theory constraint only permits an element either

to belong (membership grade 1) or not to belong (membership grade 0) to the set {0, 1}.

5.11 Comparison and Discussion of the Results In View of Graphs and

Tables in Appendix 1 and Appendix 2

On the lines of Schuette [37], we draw Table | in Appendix 2 which depicts the
graduated values and measures of fit and smoothness obtained by using linear
programming approach to graduation for z = 2 and various values of h. Similarly, Table 2
in Appendix 2 is the representation of values obtained by utilizing quadratic
programming approach to graduation for z = 2 and various values of h. By analyzing the

Graph 1 in Appendix 2, which corresponds to Table 1 and Table 2, it is observed that the
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quadratic programming improves the graduated values and measure of fit and

smoothness. Graph 2 in Appendix 2 presents a comparison of graduated values and
measures of fit and smoothness obtained in Table 1, Table 2 and by Schuette [37, page
423, Table 1]. It is clear from Graph 2 that the quadratic programming approach has not
only been able to improve the values but also the smoothness. Table 2 and Table 4 in
Appendix 2 present the graduated values and measures of fit and smoothness utilizing
linear programming approach and quadratic programming approach respectively for z = 3
and various values of h. Graph 4 in Appendix 2 presents a comparison of graduated
values and measure of fit and smoothness obtained in Table 3, Table 4 and by Schuette
{37, page 424, Table 2]. Again, the quadratic programming approach gives smoother and
more improved values.

Table 5 and Table 6 in Appendix 2 compare the values of measures of fit and
smoothness, graduated values and level of satisfaction using linear programming
approach and quadratic programming approach under fuzzy environment respectively.
This comparison is done by taking z = 2, h = 10, qx = 30% (which is the tolerance level
for all the constraints) and changing the tolerance level of objective function i.e.
measures of fit and smoothness.

As it is clear from Table 5 and Table 6 (Appendix 2) that the quadratic
programming approach help improve the level of satisfaction, graduated values and the
measures of fit and smoothness. This conclusion becomes more clear by looking at

Graph 5 and Graph 6 in Appendix 2.
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Chapter 6

CONCLUSION, CONTRIBUTION AND RECOMMENDATIONS

In the present chapter, we state the contributions and conclusions of this
dissertation. Finally, we give some recommendations for further research on the problems

considered in this dissertation.

6.1 Conclusion and Contribution

In the present dissertation, an important problem in the field of Actuarial Science,
i.e. graduation problem addressed by Schuette {37], has been revisited. We have
modeled graduation problem as linear program with deviational variables for observed
and graduated values, under fuzzy environment. Also, the problem is modeled as
quadratic program by incorporating quadratic objective function as compared to linear
objective function proposed by Schuette [37]. Three most significant contributions of this
thesis are
1. Graduation problem considered by Schuette [37] is formulated and solved under
fuzzy environment to capture the impreciseness present in the data set of observed

values in Chapter 3.

[ 8]

We propose a finite iteration technique for solving fuzzy quadratic programming
problems in Chapter 4.
3. Graduation problem is formulated and solved as a quadratic program both under

crisp and fuzzy environment in Chapter S. This improves the resuits of Chapter 3.
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The graduation problem with imprecise observed values data under both crisp

and fuzzy environments is considered in Chapter 3. Under crisp environment the
problem was formulated on the lines of formulation proposed by Schuette [37].
However, one underlying assumption in the above model, and most of the models in the
literature is that data used is deterministically known. But data set of observed values
rarely-if-ever turns out to be crisply correct. Therefore, the models based on precise
knowledge of observed values have little practical applications. We deal with such a
problem through fuzzy logic approach. Under fuzzy environment, the problem is
formulated as fuzzy linear program.

In chapter 4 we propose a new approach to solve fuzzy quadratic programming
problem. Although, there are lots of techniques available in the literature but there is
hardly one that is easy to use. This method can be helpful for the managers to take
appropriated decisions taking vagueness of the data into account.

Chapter 5 presents the graduation problem as considered by Schuette [37] as a
quadratic programming problem. It is observed that the results obtained improve the
ones obtained by applying linear programming technique in the Chapter 3, and the results
obtained by other researchers using other techniques.

It is suggested that the methods presented in this dissertation are computationally
effective and useful for determining the optimal solution to the problems discussed in

Chapter 3, 4 and 5.
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6.2 Applications and Recommendations for Future Research

The technique presented in this dissertation for fuzzy quadratic programming can
be utilized and extended in portfolio selection process, where market rate of return is
most of the time fuzzy. A typical portfolio selection problem will contain following
components:

¢ Risk factor measured by variance of the portfolio, which is a quadratic function

o Expected return measured by a linear function

¢ Total fund available, which represents the resource availability

e Upper and lower limit for investing in a particular type of security.

Further, the methods introduced in the present thesis, offer an opportunity to view a
graduation problem from a different prospective. In the present thesis, we discuss and
solve the graduation problem using linear programming and quadratic programming
approaches as a symmetric case. However, the non-symmetric problem can be solved

utilizing the same approaches with appropriate modification.
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Graphs 3.3

Depicting
Value of A Corresponding to Observed Value and Objective Function Tolerance

(as per Table 3.3)
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Graphs 3.4
Depicting
Value of Objective Function Corresponding to Constraints and Objective Function

Tolerance

(as per Table 3.4)
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Graphs 5.4

Depicting
Value of A Corresponding to Observed Value and Objective Function Tolerance

(as per Table 5.4)
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Graphs 5.5

Depicting
Value of Objective Function Corresponding to Constraints and Objective Function

Tolerance (as per Table 5.5)
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TABLE 1

LINEAR PROGRAMMING APPROACH TO GRADUATION UNDER CRISP ENVIRONMENT

GRADUATED VALUES, AND MEASURES OF FIT AND SMOOTHNESS FOR z=2

x U IWx|h=880Ih=1000|h=16601h=2440] h=3220 h=40.00 | h=4780| h=5560} h=6330| h=71.20fh =79.00

Graduated Values

Vl
P{34] 3 19.67 20.33 22.50 22.50 22.50 22.50 2250 22.50 2313 23.13 19.20
21241 S 25.33 25.67 26.75 26.75 26.75 26.75 26.75 26.75 25.78 3578 24.00
(31 8 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 30.22 30.22 28 .30
1140| 10| 36.67 36.33 35.25 35.25 35.25 35.25 35.25 35.25 34.67 34.67 33.60
5{30)15] 42.33 41.67 39.50 39.50 39.50 39.50 39.50 39.50 3ol 39.11 3840
614920 48.00 47.00 4375 43.75 43.75 43.75 43.75 43.75 43.56 43.56 13.20
714823 48.00 48.00 48.00 48.00 48.00 48.00 48.00 48.00 48.00 48.00 48.00
848120 48.00 49.00 52.25 52.25 52.25 52.25 52.25 52.25 524 5244 52.80
9167|15| S54.17 55.00 57.17 56.79 56.79 56.79 56.79 56.79 56.89 56.89 57.60
10] 581 13| 60.33 61.00 62.08 61.33 61.33 61.33 61.33 61.33 61.33 61.33 61.40
1116711 | 66.50 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.91
12175 10| 72.67 73.00 71.92 72.67 72.67 712.67 7267 72.67 72.67 72.67 73.43
13176 | 9 78.83 79.00 76.83 78.33 78.33 78.33 78.33 78.33 78.33 78.33 78.94
14|76 9 85.00 85.00 84.47 84.00 84.00 84.00 84.00 84.00 84.00 84.00 83,36
15{102( 7 92.50 92.50 92.10 89.67 89.67 89.67 89.67 89.67 89.67 89.67 89.97
161100 5 | 100.00 100.00 99.73 95.33 95.33 95.33 95.33 95.33 95.33 95.33 95.49
17]101| S 107.50 107.50 107.37 101.00 101.00 101.00 {01.00 101.00 101.00 101.00 101.00
18]115( 3 115.00 115.00 115.00 106.67 106.67 106.67 106.67 106.67 106.67 106.67 106.51
19134} 1 122.50 124.50 122.63 112.33 112.33 112.33 112.33 112.33 182.33 112.33 §12.03
Measures of Fit and Smoothness (Vaiue of Objective Function)
872.53 886.83 913.36 931.94 942.99 954.04 965.09 976.14 986.04 995.58 1001.2
TABLE 2
QUADRATIC PROGRAMMING APPROACH TO GRADUATION UNDER CRISP ENVIRONMENT
GRADUATED VALUES, AND MEASURES OF FIT AND SMOOTHNESS FOR z=2

x |{Ux |[Wx|h=880|h=1000]|h=1660|h=2440}h=32.20jh= 4000 h=47801h=5560 | h=6340[h=71.20| h=79.00

Graduated Values

Vx
17341 3 2227 2230 2241 2249 22.55 2258 22.60 22.61 2262 2262 22.63
20240 S 26.55 26.58 26.66 26.71 26.75 26,77 26.79 26.79 26.80 26.80 26.80
3131} 8 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00
J140(10] 35.51 3547 35.37 35.31 35.27 35.24 35.22 35.22 35.2) 35.21 35.20
S5{30[1t5} 39.79 39.75 39.63 39.55 319.49 39.46 39.44 3943 39.42 39.42 39.41
6|49 |20 43.15 $3.09 $3.94 43.84 43.78 43.74 3372 43.71 43.70 43.69 43.69
7({48123 | 48.00 48.00 48.00 48.00 48.00 48.00 48.00 48.00 48.00 48.00 48.00
3148120 51.93 51.98 52.13 52.24 5213 52.38 52.41 5242 §52.43 52.34 5244
9167 15! 56.59 56.62 56.73 56.85 56.97 57.03 57.08 57.09 57.09 57.10 57.10
10[ 58| 13! 61.49 61.52 61.60 61.71 61.81 61.88 61.92 61.92 61.93 61.93 61.93
111671 11| 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00
12175110 72.75 7276 72.78 7264 72.35 7234 72.26 12.27 72.27 7127 72.27
13/76 | 9 78.68 78.73 78.88 78.56 78.12 7785 77.67 77.69 77.70 7. mnn
14176 | 9 85.28 85.35 85.52 84.92 34.11 83.62 83.30 83.32 83.34 83.35 83.36
150102 7 92.55 92.58 92.66 91.66 90.40 89.63 89.13 8914 89.15 89.16 8917
16]100| 5 99.96 99.97 100.00 98.57 96.81 95.74 95.04 95.05 95.06 95.06 95.06
I70108 5 | 107.39 107.40 107.43 105.56 103.29 101.90 101.00 101.00 101.00 101.00 101.00
18]1151 3 115.00 115.00 115.00 112,65 109.83 108.13 107.01 106.99 106.98 106.97 106.97
19[1341 1 122.67 122.65 122.60 119.76 [16.41 114.36 113.03 113.00 112.97 112.96 112.94
Measures of Fit and Smoothness (Value of Objective Function)
877.38 $80.03 891 .47 901.76 907.88 911.88 914.81 917.36 91{9.83 922,35 92464
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Comparison of Measures of Fit and Smoothness

Graph 1
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TABLE 3

LINEAR PROGRAMMING APPROACH TO GRADUATION UNDER CRISP ENVIRONMENT

GRADUATED VALUES, AND MEASURES OF FIT AND SMOOTHNESS FOR z=3

x {Ug |Wx|h=691h=1000jh=1307 |h=1923|h=254|h=3156|h=3772|h=4388 | h=50.08 | h=56.20 | h=62.36
Graduated Values
Vx
1({34] 3| 2067 232 2.3 232 nn 2232 2232 23.13 2313 23.13 2313
2024 5 2599 26.68 26.68 26.68 26.68 26.68 26.68 27.01 27.01 27.01 2701
3(31] 8 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00
4130|110 35T 35.29 35.29 35.29 35.29 35.29 35.29 35.09 35.09 35.09 35.09
S{30)15] <40.11 39.56 39,56 39.56 39.56 39.56 39.56 39.29 39.29 319.29 39.29
64920 w2 43.79 43.79 43.79 13.79 4379 43.79 43.59 43.59 43.59 43.59
7148123 48.00 48.00 48.00 48.00 18.00 48.00 48.00 48.00 43.00 38.00 48.00
®|48| 20| 5218 52.18 5218 52.18 52.18 52.18 52.18 52.51 52.51 5251 52.51
916715 56.73 56.73 56.73 56.73 56.73 56.73 56.73 57.13 57.13 57.13 57.13
10/ 58 { 13| 61.68 61.68 61.68 61.68 61.68 61.68 61.68 61.85 61.85 61.85 61.85
1671 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00
12075110} 72.71 2.1 7271 72.71 7271 7271 n 72.58 72.58 72.58 72.58
13|76 | 9 | 78.80 78.80 78.80 78.80 78.80 78.80 78.80 78.58 78.58 78.58 78.58
14/76] 9 | 85.27 85.27 85.27 85.27 85.27 85.27 85.27 85.01 85.0! 85.01 85.01
151102] 7 | 92.13 92.13 92.13 92.13 92.13 92.13 92.13 91.87 91.87 91.87 91.87
16/100] 5 | 99.37 99.37 99.37 99.37 99.37 99.37 99.37 99.15 99.15 99.15 9.15
171101] § | 106.99 106.99 106.99 106.99 106.99 106.99 106.99 106.86 106.86 106.86 106.86
18]118) 3 ¢ 11500 115.00 115.00 115.00 115.00 115.00 115.00 115.00 115.00 115.00 115.00
19]134] 1 123.39 123.39 123.39 123.39 123.39 123.39 123.39 123.57 123.57 123.57 123.57
Mecasures of Fit and Smoothness (Value of Objective Function)
374.77 876.76 878.03 880.57 883.12 885.66 888.21 890.21 892.20 894.18 896.17
TABLE 4
QUADRATIC PROGRAMMING APPROACH TO GRADUATION UNDER CRISP ENVIRONMENT
GRADUATED VALUES, AND MEASURES OF FIT AND SMOOTHNESS FOR z2=3
x{Ux [Wx|h=691|h=1000]h=1307 | h=1923[h=254|h=3156|h=3772|h=4388 | h=50.04 | h=56.20 | h=62.36
Graduated Values
Vx
1{33] 3 2183 2213 22.28 2245 2253 22,58 2162 2264 22.66 22.68 22.69
2124 5 26.30 26.48 26.57 26.67 26.72 26.75 26.77 26.78 26.80 16.80 26.81
3(31] 8 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00
(40 10| 3570 35.54 35.45 35.36 35.32 35.29 35.27 35.25 35.24 35.24 35.23
S{30] 15| 40.12 39.89 39.77 39.65 39.59 39.55 39.52 39.50 1949 39.48 39.47
614920 .24 41.06 4397 43.87 43.82 43.79 43.77 43.75 3374 43.73 43.72
7148 23| 48.00 48.00 48.00 48.00 48.00 48.00 18.00 48.00 48.00 48.00 48.00
8148 20| 5195 5211 52.18 52.27 52.31 52.34 52.35 52.37 52.37 §2.38 52.39
9167|115 56.59 56.73 56.80 56.88 56.92 56.94 56.96 56.97 56.98 56.99 56.99
10[ 58 13| 61.65 61.72 61.76 61.79 61.81 61.82 61.83 61.84 61.84 61.85 6185
11167 11| 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00 67.00
12075 o 12.27 72.34 72.38 72.41 72.43 7234 7245 72.46 72.46 7247 72.47
13j76 | 9 77.59 77.84 77.97 78.11 78.18 78.22 78.25 78.27 78.29 78.30 78.31
14761 9 83.51 83.90 84.10 84.31 84.42 84,48 84.53 84.56 84.58 84.60 8462
151021 7 | 90.29 90.69 90.90 91.12 91.23 91.30 91.34 91.38 91.40 91.42 91.44
16100 5 [ 97.76 98.11 98.30 98.49 98.59 98.65 98.69 98.72 98.74 98.75 101.23
17|101] 5 | 10593  106.17 106.30 10643 10649 10653  106.56 106.58 10659  106.61 106.61
18/115) 3 | 115.00 115.00 115.00 115.00 115.00 115.00 115.00 115.00 115.00 115.00 1£5.00
190134 1 | 12502 12464 124.45 12424 12413 12406 12402 12399 12397 123.95 123.93
Measures of Fit and Smoothness (Vaiue of Objective Function)
866.06 868.96 870.52 872.21 873.15 873.78 874.25 874.63 874.95 875.23 875.49
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Comparison of Measures of Fit and Smoothness
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Comparison of Measures of Fit and Smoothness
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TABLES

LINEAR PROGRAMMING APPROACH TO GRADUATION UNDER FUZZY ENVIRONMENT
GRADUATED VALUES, AND MEASURES OF FIT AND SMOOTHNESS FOR z=2,h=10

zo = 886.8333,q,=30%
vl U (Wil go=.25% Qo= .50% @=1% | @=2% | q=3% | q=4% | q.=5%
Graduated Values
Vyx
L343 20.37 20.40 20.47 20.59 20.96 21.41 21.84
20245 25.67 25.67 25.66 25.66 25.78 25.94 26.09
3318 31.00 31.00 31.00 31.00 31.00 31.00 31.00
114010 36.34 36.34 36.35 36.37 36.27 36.13 35.99
513015 41.64 41.61 41.55 41.44 41.09 40.65 40.24
6|49 |20 47.00 46.99 46.98 46.97 46.60 46.09 45.61
7|48 |23 48.00 48.00 48.00 48.00 48.00 48.00 48.00
8| 48|20 49.00 49.00 49.01 49.02 49.38 49.88 50.35
9| 67]15 54.95 54.90 54.80 54.62 54.67 54.81 54.94
10| 58 | 13 60.96 60.91 60.83 60.67 60.62 60.62 60.62
1| 67|11 67.00 67.00 67.00 67.00 67.00 67.00 67.00
12075 |10 73.04 73.08 73.16 73.32 73.35 73.35 73.34
13| 76 | 9 79.07 79.14 79.27 79.53 79.54 79.47 79.41
14/ 76 | 9 85.10 85.20 85.38 85.75 85.76 85.63 85.52
15(102| 7 92.52 92.54 92.58 92.65 92.58 92.61 92.64
16(100] 5 100.00 100.00 100.00 100.00 100.00 100.00 100.00
17{101| 5 107.49 107.47 107.45 107.40 107.35 107.30 107.25
I8 115| 3 115.00 115.00 115.00 115.00 115.00 115.00 115.00
19134 1 122.52 122.55 122.59 122.68 122.77 122.86 122.95
Measures of Fit and Smoothness (Value of Objective Function)
884.63 L 882.46 [ 878.21 ] 870.04 ] 862.32 [ 855.08 ] 848.23
Satisfaction Level (A)
0.9930 [ 0.9862 ] 0.9727 [ 0.9469 l 0.9212 [ 0.8952 | 0.8705




QUADRATIC PROGRAMMING APPROACH TO GRADUATION UNDER CRISP ENVIRONMENT

TABLE 6

GRADUATED VALUES, AND MEASURES OF FIT AND SMOOTHNESS FOR z=2,h=10

7o = 880.03, ¢, = 0%
| U [ Wel ge=.25% 0=.50% | q@=1% | q=2% | q=3% | q=4% | qu=5%
Graduated Values
Vx
1343 22.31 22.31 22.33 22.36 22.32 22.10 21.80
202415 26.57 26.56 26.53 26.49 26.41 26.24 26.02
30318 31.00 31.00 31.00 31.00 31.00 31.00 31.00
414010 35.49 35.50 35.53 35.58 35.68 35.87 36.10
513015 39.75 39.74 39.73 39.70 39.75 39.98 40.30
6|49 |20 44.11 44.13 44.16 44.23 4434 4453 44.77
7148 |23 48.00 48.00 48.00 48.00 48.00 48.00 48.00
8|48 {20 51.96 51.93 51.88 51.76 51.59 51.39 51.14
9167115 56.59 56.55 56.48 56.31 56.06 55.79 55.45
10| 58 | 13 61.50 61.48 61.44 61.34 61.17 61.00 60.76
] 67 |11 67.00 67.00 67.00 67.00 67.00 67.00 67.00
12{ 75 | 10 72.76 72.75 72.74 72.73 72.81 72.89 73.12
13176 | 9 78.71 78.69 78.64 78.56 78.45 78.48 78.89
14 76 | 9 85.29 85.23 85.10 84.89 84.55 84.49 85.08
15(102| 7 92.51 111.56 92.29 92.05 91.66 91.65 92.62
16100 5 99.92 99.87 99.77 99.64 99.38 99.37 100.00
17101 5 107.37 107.34 107.27 107.17 106.99 106.94 107.21
18115 3 115.00 115.00 115.00 115.00 115.00 115.00 115.00
191134} 1 122.69 122.73 122.82 122.95 123.16 123.25 123.02
Measures of Fit and Smoothness (Value of Objective Function)
877.84 [ 875.68 J 871.42 [ 863.21 ] 855.45 ] 848.15 | 841.28
Satisfaction Level (1)
0.9949 [ 0.98969 [ 0.97892 | 0.9558 ] 0.9311 [ 0.90563 [ 0.8807
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Graph §

Comparison of Measures of Fit and Smoothness
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