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Decision making under uncertainty has become a key issue in the present 

alternative way of thinking. There is an emerging interest in the use of new techniques ro 

draw definite conclusions from imprecise or vague information in order to take 

compe ti tive advantage. A critical challenge in decision-making process is not on1 y to 

find a suitable method to measure and quantiv the uncertainty involved in the problem 

under consideration but aiso its successful applications. 

In the present thesis. we consider a graduation problem with imprecise observed 

values data and imprecise combination of fit and smoothness. The problem is fint 

formulated, solved and analyzed as a fuzzy linear program. Next. a finite iteration 

technique is developed to solve a fuzzy quadratic programming problem. Significance of 

this model can be hopefully seen in the light of usage of quadratic program in the field of' 

Finance, Economics, Structural Engineering and Actuarial Sciences under uncertainty. 

Furthemore, the graduation problem is revisited using fuzzy quadratic prognmming 

model and solutions are obtained both under crisp and fuuy environment. The results so 

obtained are shown to be better than the results obtained by using fuzzy linear 

programrning. and the results obtained by Schuette using crisp linear programming. The 

rncthods introduced in the present thesis, offer an opponunity to view a graduation 

problem from a different prospective. 
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Chapter 1 

INTRODUCTION 

Uncertainty is one of the main and most important issues that have to be 

addressed by modem management systems. The main subjects of modem analysis are 

characterized by a number of general features that make them particularly difficult for 

existing methods. These features Xe: complexity, dynamics and unceriainty. In certain 

cases the presence of uncertainty makes the traditional approaches insufficient [35]. 

When i t  cornes tirne to rnake a sound decision on an uncenain problem. it is important for 

the decision makers to consider and evaluate the uncertainty invoived in it and its 

surroundings. Uncertainty may result from many sources: imprecise/vague knowledge 

regarding future conditions. inaccurate data. forecasting erron. subjective influences or 

existence of extemal uncontrollable disturbances. For decision making under uncertainty, 

one should, normally, develop an active approach rather than ignore it. 

Classical set theory based on two-valued logic defines a set as a collection of 

objects with well-defined 'cnsp* boundaries. An element either belongs to the set or dws 

not belong to the set, that is, its membenhip is either 1 or O. To deai with the sets with 

imprecise boundaries. Lotfi A. Zadeh [49] in 1965 introduced fuuy set theory. The 

membership function in a fuzzy set, unlike that of a 'cnsp' set is not a matter of king 

either tme or false, but a matter of degree of truihmelief. In general, degrees of 

membership in fuzzy sets are expressed by values in [O, 1). The extreme values O and 1 in 

the interval [O, 11 represent total non-belongingness and total belongingness respectively. 
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This makes, crisp sets, a special case of hzzy sets, for which only two grades of 

memberships are allowed. Thus we can say 'crisp is fuuy*, with a membership of either 

1 or O. 

Probability theory is the traditional theory describing and measunng the 

phenomenon of uncertainty. It is assumed that the probability theory can be used in every 

situation of uncertainty [22]. Since both fuvy set theory and probability theory deal with 

uncertainty. most of the time former is conhsed with later. But, fuzziness is only one 

aspect of uncertainty. It is the vagueness or ambiguity found in the definition of a 

concept or meaning of terms. The probability generally relates to randomly occumng 

events that are clearly defined and may contain the uncertainty of randomness. 

Fuzzy logic is basically a multivalued logic that allows intermediate values to be 

drfined between conventional evaluaiions like yesho, true/false, talVvery tall, etc. Fuzzy 

reasoning and logic have the ability to express the arnount of ambiguity in hurnan 

thinking and subjectivity in a comparatively undistorted manner. Hence. fuzzy logic 

techniques find their major applications in areas such as conuol. pattern recognition. 

quantitative analysis. inference, and in information retrieval. 

Fuzzy systems are king used in various consumer products e.g. washing 

machines, air conditionen, carncorden, auto-focus carneras, system of tnffic light 

controlling. and subways trains [34]. The NASA space agency is engaged in applying 

fuzzy logic for cornplex docking-maneuven. 
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1.1 Fuzzy Set Theory 

in this section we introduce some of the basic concepts and terminology of fuzzy 

set t heory. Theory of fuzzy sets is basically a theory of graded concepts [5  11. 

Fuzzy Set 

Let X be a classical set of objects, called the universe. whose generic elements are 

denoted by x. The rnembenhip in a crisp subset of X is viewed as characteristic function 

p~ from X to {O. 1 } such that: 

where {O, 1 } is cdled a valuation set [23]. 

If the valuation set is allowed to be the real interval [O, 11, A is called a fuuy set 

proposed by Zadeh [50]. pA(x) is the degree of membership of x in A. The closer the 

value of pA(x) is to 1, the more x belongs to A. Therefore, A is completely characterized 

by the set of ordered pairs: 

A = ((x. ~ A ( x ) )  I x E X ]  

where pA(x) maps X to the membenhip space [O, 1). Elements with zero degree of 

rnembership are usually not listed. If Sup pA(x) = 1, V x E R. then the fuzzy set A is 

called a normal fuzzy set in R. A fuzzy set that is not normal is called subnormal fuuy 

set. 
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a - Lcvel Set or a - Cut 

One of the most important concepts of fuzzy sets is the concept of an a-cut or 

a-level set. An a-cut denoted by A, is the crisp set of elements x in R whose degree of 

belongings to the fuzzy set A is at least a E [O, 11. This means 

Aa= ( X E  R I p A ( x ) 2 a , a €  [O, I I )  

that is. the a-cut or a-level set of a f u u y  set is the crisp set Aa that contains al1 elements 

of the universal set X E R whose rnembership grades in A are greater than or equal to the 

specified value of a. a E [O, 11. 

Support of a Fuzzy Set 

The support of a fuzzy set A is a set S(A) such that x E S(A) o pA(x) > O. if 

pA(x) is constant over S(A), then A is non-fuzzy. 

Intersection of Fuuy Sets 

Intersection of two fuzzy sets A and B is a fuuy set C denoted by C = A n  B. 

whose rnembership function is related to those of A and B by 

k ( x )  = min [PA(x), PB(x)], v X E X 

1.2 Algebraic Operations on Fuzy  Sets 

In addition to the set theoretic operations, we cm dso define a number of other 

ways of forming combinations of hzzy sets and relating them to one another. Here we 

presen t some more important operations among those: 
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Algebraic product of two fuvy sets A and B, is A(-)B, whose membenhip 

function is 

The algebraic sum of A and B is A + B whose membenhip function is defined as 

provided pA(x) (+) pB(x) < 1, V x E X 

Convexity 

The notion of convexity cm be extended to fuuy sets in such a way as to 

preserve many of the properties that it has in case of crisp sets. in what follows. we 

assume that the set X is the n-dimensional space Rn. We now have the following two 

equivalent definitions of convexity of a fuzzy set. 

A fuzzy set A is convex if and only if every set A, = (x E X 1 pA(x) i O }  for al1 a 

E [O, 11 is a convex set. 

The second definition of convexity of a fuzzy set is as follows: 

A fuzzy set A is said to be a convex set if 

CI ( h +  ( 1 - h )  2 min ( j h ) ,  ~ ( x r ) ) ,  xi , x2 E X. E [O, 11. 

1.4 Fuzzy Arithmetic 

The first definition of a fbzzy set allows us to extend various properties of crisp 

sets and operations on crisp sets to their fuuy  counterparts. 
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An ordinary number 'a' can be characterized by using the notation of 

membership function as. 

A fuzzy number A is a fuzzy set on the real line R, 

thai possesses the following properties: 

( 1 ) A is a normal, convex fuzzy set on R. 

(2) The a-level set A, must bc a closed intervai for every a E [O. 11. 

(3) The support of A. S(A) = { x  ( pA(x) > O ), must be bounded. 

Fuzzy arithmetic is based on two properties of fuuy numben: 

Each fuzzy set and thus. each fuvy number can be fully and uniquely represented 

by its u-level sets. 

a-level sets of each fuzzy numbers are closed intervals of real numbers for al1 

a E [O, 11. 

These properties enable us to define an arithmetic operation on fuzzy numben in terms of 

arithmetic operations on their a-level sets (Le. arithmetic operations on closed intervals). 

1.5 Fuzzy Arithmetic Based on Operations on Closed Intervals 

A fwzy number can be characterized by an interval of confidence ai level a, 

Aa = [ai(", a?''] 

which has the property 
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Let A = [a, b] E R and B = [c, d] E R be two fuzzy numben then we define the 

anthmetic operations on them as 

Addition A + B = [ a + c , b + d ]  

Subtraction A-B=[a-d ,b-c l  

Multiplication AB = (min (ac, ad, bc, bd), rnax (ac, ad, bc, bd)] 

Inverse of A A-' = [min ( Va, lh). max ( lla. 1 h)] 

Division AB = [min (afc, dd, b/c, b/d). max (alc. afd, b/c. bld)] 

Minimum ( A ) A A B  = [a AC, bnd]  

Maximum ( v ) A v B = [ a v c , b v d ]  

Let A and B he two fuzzy numbers, A, = [ai"'. a:"'] be the a-level set of A, and 8, 

= [blta'. bis'] be the a-level set of B. 

Let * denote any of the arithmetic operations +, -, ., 1, A and v on fuzzy numben. 

Then, we define a fuzzy set A * B in R. by defininp its a-level sets (A * B), as 

(A * B)a = A, * Ba for any a E [O, l] 

Since (A * B). is a closed interval for each a E [O, 11 and A and B are fuzzy numben. 

A * B is also a fuzzy number. 

The multiplication of fuzzy number A c R by an ordinary number k E R' can also be 

defined as 

(k* A,) = k ( 0 )  & = [kal"', kaiu'] 

or equivalently, pI.*(x) = pA(Xk) V XE R 
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1.6 Graduation 

According to Miller ([30], page 6) .  the problem of graduation can be described as 

"the problem of graduation is a mathematical problem in which we are asked to 

estimate. or secure a representation of; the series of true rates of mortaliîy that is 

nssitnied to have given rise to the irregufrr series of observed probubilities." 

In the present thesis, we consider the problern of graduation as a general case. 

We obtain a sequence of observed values in which we suspect that there exists a strong 

relationship among the elements of the sequence of observed values. In order to predict 

future occurrence of the series, the process of graduation is applied to obtain a proper 

representation of the basic pattern, which the observed values under considention are 

believed to follow, 

The process of graduation is defined by Andrew and Nesbitt ([Il, page 2) as 

"an effort to represent a physical phenomenon &y a systematic revision of some 

observations of fhat phenomenon". 

The above definition suggests that a model-building process takes place in the 

problem of graduation. It also suggests that we should have some prelirninary 

information about the model and a set of observed values. The definition aiso indicates 

that the observed values can be revised to improve the model under consideration as a 

representative of the underlying phenomenon. 

Several methods have been developed by which the graduation of an observed 

series may be accomplished and the problem of graduation can be solved. These methods 

are classified by Miller [30] as follows. 
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The Graphic Method 

In this method, the observed values are suitably plotted on graph paper and among 

them a smooth, continuous curve is drawn as the basis of the graduated senes. Grouping 

of the data is an essential part of this method, which is followed by plotting of the 

observed values together with some indication of their relative weights if this information 

is available. At the end, graduated values are read from the diagram and adjusted to 

improve smoothness and fit. 

The Interpolation Method 

In this method, the data are combined into groups and the graduated senes is 

obtained by interpolation between points deterrnined as representative of the groups. 

Since graduation involves the replacement of an irregular observed senes by a regular 

smooth series consistent with the mnd of the observed values, clearly the interpolation 

method of graduation includes more than interpolation alone. 

The Adjusted-Average Method 

in this process, each term of the graduated series is a weighted average of a fixed 

number of terms of the observed series to which it is centrai. It involves two sets of 

graduation formulas - linear compound fomulas and summation formulas. 

The Difference-Equation Method 

In this method, the graduated series is determined by a difference equation 

derived frorn an analytic measure of the relative emphasis to be placed upon fit and 
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smoothness. Professor E. T. Whittaker (please see [30], page 34) enunciated the 

principles of the difference-equation method in a paper published in 1919. Later. Robert 

Henderson (please see [30], page 34) developed a practical process for employing the 

method to make a numerical graduation. For these reasons. difference-equation formulas 

are also referred to as Whittaker-Hendenon formulas. Other difference equations 

involving differences of other orders were derived by modifying the measure of 

srnoothness, therefore, there is a family of Type A formulas and a set of 

difference-equation formulas known as Whittaker-Hendenon Type B formulas. 

Graduation by Mathematical Formula 

Under this method graduated series is represented by a mathematical curve fitted 

to data. There are a large vaiety of curves. which may be used in representing different 

types of statistical data. They range from the simple straight to the family of frequency 

curves developed by Karl Pearson (please see [30]. page 42) and to the curve systems of 

Gram-Charlier, Poisson and Fourier (please see [30], page 42). The curves of comrnonest 

use and maximum interest to the actuary in treating mortality rates are Gompertz' 1151 

and Makeharn's Curves (please see [30], page 42), which were developed in the search 

for a mathematical law of mortality. 

1.7 Linear Programming 

It is a mathematical method of allocating scarce resources to achieve an objective, 

such as maximizing profit [24] or minirnizing cost. Linear P r o g r d n g  approach is a 

mathematical representation of real world decision situations that consists of a linear 
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objective function and linear resource constraints. Once the problem has been 

identi fied, the goals of management establis hed, and the applicability of the linear 

programming determined, the next step in solving an unstructured, real world problem is 

the formulation of a mathematical model. This entails three major steps: 

Identification of decision variables (the quantity of the activity in question). 

The development of an objective function that is a linear relationship of the 

solution variables, and 

The determination of systern constraints, which are also linear relationships of the 

decision variables, which refleci the limited resources of the problem. 

Decision Variables 

In each problem, decision variables, which denote a level of activity or quantity 

produced, are defined. For a general model, n decision variables are defined as 

xj = quantity of activity j, where j = 1,2, ..., n. 

Objective Function 

The objective function represents the sum total of the contribution of each 

decision variable in the model towards an objective. It is represented as 

maxirnize or minimize fo(xi, XZ, . . . , x.) = ~ 1 x 1  + ~ 2 x 2  + C ~ X J  +. . . + CjXj +. . . .+ C.X. 

where 

fo(xi, xl, . . . , x.) = the total value of the objective function 

cj = the contribution per unit of activity j ( j = 1, 2, . . ., n ) 



System Constraints 

The constraints of a linear programming mode1 represent the limited availability 

of resources in the problem. Let the amount of each of m resources available be defined 

as bi (for i = 1 .  2, . . . , m). We ais0 define ûij as the mount of resource i consurned per unit 

of activity j ( j = 1.2, . . .. n ). Thus. the constraints can be written as 

gi(x X?, . . . , x,) = x 1 + ilizX2 + . . .+ aijXj + . . .+ ûinxn (S ,  =, 2) bi , i = 1, 2. . . . . m 

Therefore a linear programrning problem is 

maximize or minimize fo(xi, x?, . . . , x,) = C I  XI + ~ 2 x 2  + ~3x3 +. . . + CjXj +. . . .+ CnXn 

subject to 

gi(xI, x?, . . ., XJ = ai 1x1 + aizxz + . . .+ ûijxj + . . .+ ûinxn ( S ,  =, 2)  bi , i =  1 ,  2. ..., m 

A general optimization problem can be wntten as 

maxi mize fo(x) 

subject to 

gi(x) bi 

where 

x = (xi, x?, . . ., xn) E Rn, n-dimensional real space, 

fo : R"+ R. the set of reals, and 

g i :Rn+R.  i = l . 2  ,..., m. 



If, fO(x) = C I X I  + c ? x ~  + ~ 3 ~ 3  + ...... +cnxn 

and gi(x) = ailx1 + ûilx? + ......+ ainxn 

t hen, the nonlinear p r o g r d n g  problem is a linear prograrnming problem. 

1.8 Fuzzy Linear Programming 

Most of the time, due to incomplete or forecasted information the input data for 

cj's, hi's and üij's, ancilor the objective function andor inequalities are imprecise. With 

these fuzzyfimprecise data the above problem is called fuzzy linear prograrnming 

problem. Thus a fuzzy linear programrning problem is not uniquely defined. The fuzzy 

problem depends upon the type of fuzziness present and specified by the decision-maker. 

Fuzzy linear programming problem cm be broadly classified as: 

Linear Programming Problem with fuzzy resources or fuuy inequalities and crisp 

objective function. 

Linear Prograrnming Problem with hizzy resources or fuzzy inequdities and fuuy 

objective function. 

Linear Programming Problem with fuzzy resources and fuzzy coefficients. 

Two major fuzzy linear prograrnrning models as given in Zimmermann [5 11 are: 

( i)  S ymme tnc (ii) Non-symmetric. 

The symmetrk rnodels are based on the definition of fuzzy decision proposed by Bellman 

and Zadeh [SI. It is assumed [5]  that the objective hinction and constraints are imprecise 

and c m  be represented by f u u y  sets and the decision is the confluence of the f u u y  

objective func tion and fuzzy constraint. 

The non-symmetric models [5] are based on the following two approaches: 
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( i )  The determination of the fuuy set decision. 

(ii) The determination of a crisp maximizing decision by aggregating the objective 

function. after appropriate transformations with the constraints. 

Thus. in a general format. a fuuy linear problem (FLPP) can be written as: 

(fipp) Maxirnize z = fo(x) 

subject to 

where ' < ' is called the ' fuzzy less than or equal to' . or 'essentially less than or equal to', 
5 

fo . fi and gi, i = 1.2. .... m are linear functions and x E Rn. 

1.9 Zirnrnerman's Approach - Symmetric Model 

in this approach, on the lines of Zimmermann [5 1). the goals and the constraints 

are represented by fuzzy sets and we assume that the decision maker cm establish an 

aspiration level z for the value of the objective lunction he/she wants to achieve. 

Therefore, as proposed by Zimmermann [5 11, we consider the following format of 

the syrnmetric fuzzy linear prograrnming problem (SFLP) 

Find x such that 

f*(x) 2 z 
LI 

fi(x) S di - 



X, Z O J = 1, 2, ..., n 

where fil, fi, i = 1, 2, .... k. and gi, i = 1, 2, ..., m are linear functions. 

Also. > - is the fuzzified version of 2 and represents 'essentially greater than or equal to' 

and 5 CI represents 'essentially less than equal to'. 

Then the problem is interpreted as: 

Make a decision x >, O such that at x 

the value of the objective function fo(x) 'essentially greater than or equal to' the 

predetennined aspiration level z, and 

the constraints fi(x) I di , i = 1, 2, . . ., k are satisfied in fuzzy sense, and the - 
constraints gi(x) I bi , i = k + 1, k + 2, .. ., m are crisply satisfied. 

Then the equation (SFLP) is equivalent to 

(EmP> Find x such that 

- fo(x) - 2 

S(X) 5 di 
'1 

i = 1, 2, ..., k 

gdx) 5 bi i = k + 1, k + 2, ..., m 

Xj > 0 j = l ,2 ,  ..., n 

where each of the ~ U Z Z Y  constrains, - fo(x) 6 - 2, and fi(x) I di , i = 1,2, . . -, k - CI 

represents a fuzzy set whose membeahip function is pi(x), i = 0, 1, 2, ..., k. is 

interpreted as the degree to which x satisfies the fuzzy constraints - fo(x) I - - 2, and 
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fi(x) 5 - di , i = 1, 2, . . ., k. Then, following Zimmermann [5 11, we wnte a syrnrnetric 

fuzzy programming problem as follows: 

(EFLP- 1 ) Find an x that satisfies 

fo(x) 5 - a (1.9.1) 

fi(x) 5 di i = 1, 2. ... k - ( 1.9.2) 

gi(x) 5 bi i = k+l, k+2, ..., m ( 1.9.3) 

Xj 2 O j = 1, 2, .... n ( 1.9.4) 

zo is called the aspiration level of fo (x) and is given some pre-assigned value. Lei, 

q,) > 0, and qi > O, ( i  = 1. 2. . . . , k). be subjectively chosen constants of admissible 

violations such that qo is associated with (1.9. l), and qi (i = 1, 2. . . . , k) are 

associated with the i-th linear constraint of (1.9.2). We assume that the membenhip 

functions of vi(x). i = 0, 1.2, ..., k. are linearly decreasing over the 'tolerance level' qi. 

Now, on the lines of Zimmerman [5 11, we define the membership function corresponding 

to ( 1.9. l ) and ( 1.9.2), as follows. 

Corresponding to 6(x) membeahip function M x )  for objective function is written as 

if zo I f O (x) l zo + q0 

Corresponding to i = 1.2, . . .. k, the membership function is 



if f. (x) I d. 
1 1 

Once the membership functions are known. then a solution that belongs to the 

intersection of the fuzzy sets of objective function (1 -9.1). constraints ( 1.9.2). and 

satisfies the crisp constraints (1.9.3) and ( 1.9.4) is a solution to (ERP- 1). Suppose that 

pD(x) is the membenhip function of the fuzzy set 'decision' of the model. Then, 

~ D ( x )  = Min (b(x),  I~.I (x)~ Pdx)~ P ~ ( X ) T  - - 9  . - 9  pk(~)) 

Since, we are interested in a large value of pD(x). therefore, following Zimmermann [5 1 j. 

we want to obtain the maximum value of pD(x). Thus, our interest is to 

maxirnize pdx) = min [pdx), pdx), pdx), pdx). . . .. . . .. ~k(x)] 

subject to the constraints of ( 1.9.3) and ( 1.9.4) 

Now, dong the lines of Zimmermann [51], replacing po(x) by h , and using (1.9.5) and 

( 1.9.6) respectively for ~ ( x ) ,  pi(x)? i = 1'2, . . . , k, we have the following problem; 

(EFLP-2) M a  h 

subject to 

fa(x) + q0 5 zo + 90 

fi(x) + qi h 5 qi + di 

gi(x) 5 bi 



It is observed that (ENLP-2) is a crisp optimization problem whose optimal solution. if it 

exists. provides a solution to (SFLP). 

Remark 1.9.1. If in (SFLP), we replace 

M x )  zo by fo(x) 3 20 

that is, if we replace the requirement 'essentially less than or equd to' denoted by ' 5 - ' , 
- 

by the requirement 'desired to be iess than or equd to* denoted by ' 5 ' . then. we take 

the membership function p.&) corresponding to fo(x) as follows: 

In this case corrosponding to (ERP-1) we have the following (ERP-2). 

(EFLP-2) Max h 

subject to 

fo(x) + qo L al 

fi(x) + qi )C i qi + di i = l J  ,.... k. 



1.10 Zimmerman's Approach - Non-Symmetric Mode1 

On the lines of Zimmermann [5 11, we now consider the following non-syrnmetric 

fuzzy optimization problem (NSFLP) with crisp objective function and a mixture of 

fuzzy and crisp constraints. 

(NSFLP) Min f(x) 

subject to 

fi(x) I di i=1 ,2 ,  ..., k 
I, 

g i ( x ) i b i  i = k + l , k + 2 .  ...,m 

Xj 1 O J = 1,2, ...* n 

As suggested by Zimmermann [5 11, we compute the membership function corresponding 

to the objective function ( 1 .  IO. 1)  with the help of the following two crisp optimization 

programs (COP- 1 ) and (COP-2). 

(COP- 1 ) Min f(x) 

subject to 

fi(x) I di 

gi(x) 5 bi 



Let the minimum value of the objective function f (x) be fo . 

(COP-2) Min f(x) 

subject to 

fi(x) L di + qi i = 1,2, ... , k 

gdx) 5 bi i = k+l, k+2, ..., m 

Xj 2 O j = 1, 2, ..., n 

Let the minimum value of f (x) be fl . 

Then, on the lines of Zimmermann [5 11. the membership function corresponding to the 

objective fiinciion of (NSFLP) is defined as follows. 

The equivalent crisp programming problem corresponding to (NSFLP) is as follows. 



X"+l 5 1 

Xj ? O j = l ,2, ..., (n+ 1) 

which is sirnilar to (EFLP-1), and therefore, can be solved on the lines of the method 

suggested for solving (EFLP- 1). 

1.1 1 Quadratic Programming Theory 

Quadratic programrning is a special type of nonlinear programrning in which the 

objective function is quadntic and the constraints are linear. The standard fom of a 

quadratic prognmming is as follows. 

n I 
Min 2 = C j = i ~ j ~ j + T ~ : = i C ~ i ~ j h j k x k  

subject to xy=laij x < bi i = 1.2, ..., m (1.1 1.2) 

X j > O  j = I J  ,..., n. (1.1 1.3) 

In matrix and vector fom the same problem is wntten as: 

1 
Min z = c 'x  + - X ' H X  

2 

subject to A x 5 b (1.1 1.5) 

x L 0  (1.1 1.6) 

wtiere x is the n-component column vector for decision variables; c is the ntornponent 

colurnn vector of objective function coefficients for the linear terms; H is the n x n 

symmetric rnatrix of twice the objective coefficients for the quadniic and interactive 

terms; z is the objective function to be rninirnized; A is the m x n matrîx of 
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constraint-equation coefficients, and b is the m-component column vector of the right 

hand side coefficients. 

in order to obtain the global minimum of the objective function. the objective 

function and the constra.int set must be either convex or pseudo-convex. Since the 

constraints are linear, the constraint set is a convex set. if H is a positive semi-definite 

(or positive definite) matrix then z is a convex (or strictly convex) function. Several 

papers (for example see. 121. [3], [29], [32]. [4 11, [42]. [43]. [44), [45]. and (481) deal 

with the theory and finding a solution of the above (QP). 

1.12 Organization of the Thesis 

In the present thesis. we mode1 a number of problems from a variety of areas 

under fuzzy environment. Also, we discuss the methods to obtain their solutions and 

interpretation to the solutions. 

Chapter 1 provides an introduction to the concepts and problems considered in 

this thesis. Chapter 2 deals with the literature review of the related work done by other 

researchen. In Chapter 3. a linear programming approach to the problem of graduation is 

presented under both crisp and fuuy environment. In Chapter 4, a finite itention 

technique for solving fuzzy quadratic programming problem is developed. h Chapter 5 ,  

we use the fuzzy quadratic prognmming approach to address the graduation problem 

under more generalized cntena. At the end of the Chapter 5, results of graduation 

proble rn, obtained using linear prograrnming approach and quadntic programming 

approach both under cnsp and fuuy environment, are cornpared. Finally, the conclusion 
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and the discussion on the contributions made by the thesis. dong with some 

recommendations for funher research, are given in Chapter 6. 



Chapter 2 

LITERATURE SURVEY 

This chapter provides a survey of the literature dealing with Graduation Problem, 

Fuzzy Quadratic Progrmming Problem, and other concepts considered in this thesis. The 

purpose of this chapter is to review the developments. and to identify the status of 

existing literature in these areas. 

2.1 Review of Literature on Graduation Problem 

Several methods have k e n  developed (for example see, [SI, [9], [37], 1391, and 

[36])  by which the graduation of an observed series may be accomplished and the 

problem of graduation c m  be solved. 

Broffitt (81 developed a method for determining which smwthness terms to 

include in the objective function assurning that the graduator has pre-specified a 

polynomial model, which represents the graduated values under ideal or ultirnate 

smoothness. Brooks et. al. [9] demonstrated Cross-Validatory graduation methoci that is 

applied to the choice of parameters that control the degree of smoothing in generalized 

Whittaker-Henderson graduation [47]. This approach is then compared with the Bayesian 

method with the help of an example. Taylor (391 presented a paper to place Whittaker- 

Hendenon graduation in a Bayesian context and showed that this determines in a precise 

manner the extent to which goodness-of-fit should be traded off against smoothness in 

the Whittaker-Henderson Loss function. Verra11 [46] showed that the Whittaker 
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graduation is equivalent to a dynamic regression analysis, in which one of the 

parameter in allowed to vary stochastically. It also suggests an automatic method of 

estimating the smooihing parameter. which is, at present, chosen subjectively by the 

graduator. At the end. an example is presented to support the theory. 

A common method of actuarial graduation is the difference-equation method as 

described in London's monograph [26]. in this method of graduation, graduated values 

v, (where x = 1, 2, . . ., n). are sought corresponding to a given set of observed values u, 

and non-negative weights w, that minimize the quantity F + hS, where 

F = Ci=, w , (U , - v )' and S = C:;: ( A , ) .  F is an expression that rneasures the 

degree of fit (or rather, lack of fit) of the graduated values to the observed values, and S is 

an expression that measures the degree of smoothness (or rather, lack of srnoothness) of 

the graduated values. The order of the forward differences used in measure of 

smoothness is denoted by z. The values of z comrnonly used are z = 2, z = 3 and z = 4. 

The choice of z implies that a polynomial of degree z - 1 is being fitted to the observed 

values. The A ~ ,  and hence S will be zero if the graduated values lie exactly on the curve 

of a polynomial of degree z - 1. The panmeter h is a non-negative constant that 

indicates the emphasis assigned to the smoothness of the graduated values relative to how 

well they fit the observed values. The larger the value of h, the smailer S will be and the 

smoother will be the graduated values. When h approaches O, v, approaches u,, and fit is 

emphasized over smoothness. 

The method is called the difference-equation method because the values v, for 

which the minimum of F + hS is achieved can be shown to satisfy the difference equation 



where 6 denotes the central difference operator [37]. This same equation can be found in 

matrix-vector form in London's monognph (26. p. 561. Whittaker-Henderson Type B 

graduation formulas have variable weights and is the more general case of 

Whittaker-Hendenon Type A graduation where w, = 1 for al1 x. 

In the difference-equation method, choices must be made in the objective 

function, F + hS, for the measures of fit and smoothness. Usually. the mesure of fi t  is 

the weighted sum of the squares of the deviations. us - v,, of the observed values from 

the graduated values and the nieasure of smoothness is the sum of the squares of the z-th 

difference of the graduated values. 

Schuette [37] developed a linear prograrnming approach to graduation problem. 

In this paper, the Whittaker-Henderson Type B method of graduation. in which the 

weighted sum of the squares of the deviations of graduated vaiues from observed values 

plus a parameter times the sum of the squares of the z-th differences of the graduated 

values is minirnized using absolute values instead of squares. The end problem is then 

expressed as a linear programming problem as follows: 

MinirnizeF+hS = ~ ~ = , W , ( D , + E , ) + ~ ~ ~ - ~ ( R ,  X=I +TI) 

subject to constraints 

A' (Ex - DI) + Rx - Tx = A%,, X =  1,2  ,..., n-z, 

D, 2 0, Ex 2 O, R, 2 0, and Tx 2 0, for d l  appropriate values of x 



where 

F = measure of degree of fit, 

S = measure of degree of smwthness, 

us = set of observed values, 

v, = set of graduated values. 

w, = non-negative weights, 

z = order of fonvard differenceldegree of polynomid used as a standard of smoothness, 

ALv, = zth difference of the sequence v,. 

Ex, Ds, R,, T, = deviational variables, 

h = a reai number parameter that controls the relative emphasis given to F and S. 

Two examples are presented at the end to demonstrate the method and some 

difficulties are expressed in regards to computational feasibility. 

2.2 Review of Literature on Quadratic Programming Problem 

Various methods are available in the literature (for example see, [3], [29], [32], 

[36], [40], [4 11, [42], 1431, [44], [45], and [48]) to solve a quadratic programming 

problem under crisp environment. Most of the available methods of solving a quadratic 

programming in cnsp environment use simplex tableaus in one or the other fom. 

Van de Panne [43] presented a method to maximize a linear objective function subject to 

a quadratic and a number of linear constraints. This method presented in [43] diffen from 

general convex prograrnming methods by terminating in a finite number of iterations. 

Bela Martos [29] developed a method to soive a quadratic programrning with 

quasiconvex objective function. This method is different from other methods, as it 
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dwsn't assume the convexity of the objective function. Papr  begins with the 

characterization of quadratic hnctions that are quasiconvex in the nonnegative orthant. 

Van de Panne [43] proposed a method for finding the global optimum of a general 

quadratic programming problem. He developed this method based on the formulation of 

the problrm as a multiparametric convex quadratic progrmming problem. This results 

in the formulation of a number of sub pmblems, which are general quadratic 

programming problems of a smdler size. A numerical example is worked at the end in 

detail. 

In the literature (for example see [3], [29], [32], 1421, (431, and [48j) a classical 

quadratic programming problem is stated as follows: 

(P-1) 
T l  Minimize z = p x + - xTc x 

2 

subject to 

A x I b  

x z o  

where each of p and x E Rn, C is a symrneuic nxn matrix, A is an m x n matrîx and 

b E Rm . We also assume that the feasible solution set of the constraints is bounded. 

Further, we assume that the quadratic objective function is pseudoconvex. Several 

methods for solving such a problem are available in the literature ((for example see [3], 

[29], [32], [41], [42], [43], and [48)). Van de Panne [43] considered the following problem. 



(vp) Maxirnize cT x 

subject to 

A x i b  

X L O  

where p E R and is known in advance. c E Rn . Other notations in the problem (VP) are 

same as in (P-1). Van de Panne [43] developed the following two-phase method to solve 

(VP) in a finite number of steps. 

Phase 1. In (VP). ignore the quadratic constraint and solve the following ordinary linear 

progrmming problern (LP), assuming that (LP) has an optimal solution. 

(Lp) Maximize cT x 

subject to 

A x 5 b  

x 1 0  

If the optimal solution xo of (LP) satisfies the quadratic constraint, that is if 

we obviously have found the optimal solution of the original problem. ff however, 

we go to Phase 2 of the method. 



Phase 2. in this phase, we add the following linear constraint [43], 

cTx > 71 

where ?. is a parameter which is given different values in the course of the computations 

T O assuming that ho = c x is the value of the objective function in (LP) at its optimal 

solution xo. Now, we consider the following quadratic programrning problem (QP). 

r 1  Minimize z = p x + - xTc x 
2 

subject to 

A x l b  

T c x > k  

x 1 O 

Van de Panne [43] solved (QP) by decreasing IL parametrically from ko to lower values. 

According to Van de Panne [43), Phase 2 can tenninate in one of the two ways. 

1. It may tenninate when for a certain value of k, say ka . the objective function has 

become equal to P. In this case an optimal solution to (VP) has been found. 

2. It may tenninate when for a certain value of A,, say )c*. the constraint cT x > 71 

ceases to be binding for the optimal solution of the problem (QP) with 

T 1 p x + - X'C Y king still larger than P. This means that for no value of 71 a 
2 

1 
solution exists giving a minimum value of the objective x  + - xTc x less 

2 

than or equal to P. In this case, in (VP), the quadratic constnint is incompatible 

with the linear constraints and no feasible solution to (VP) exists. 
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2.3 Summary of the Thesis 

The results and methods proved in this thesis are contained in Chapter 3, 

Chapter 4, Chapter 5 and Chapter 6. We sumrnarize them as follows: 

Chapter 3 A Linear Programming Appmach to Graduation Under Crisp a d  

Fuzzy Environment 

The purpose of the present chapter is to extend the results proved by Schuette [37] 

further by solving the graduation problem under fuzzy conditions. Advantage of using 

fuzzy mathematics is that it gives decision-maker flexibility and quantifies the certain 

type of uncenainty involved in the problem in question. 

Chapter 4 A Finite Iteration Technique for a Fuzzy Quadratic Programming 

Problem 

In this chapter, we develop a finite itention technique to solve a hiuy quadratic 

programming problem with single quadratic objective function and a number of linear 

constraints. The quadratic programming problem has a lots of applications in the field of 

econornics. finance, statistics, and structural engineering. Due to such a vast pnctical 

importance of quadratic programming, a large number of papers have k e n  published in 

past 35 years. Ail the methods available to solve fuzzy quadratic programming problems 

are very lengthy and require high level of knowledge in the field of mathematics. 

Therefore, method proposed in this chapter, is an attempt to provide an easy tool to 

address this kind of problems. 
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Chapter 5 A Quadratic Programming Approach to Graduation Under Crisp 

and Fumy Environment 

In this chapter, we sharpen the graduation problem discussed in Chapter 3 by 

developing a quadntic programming approach both under crisp and fuzzy environment. 

To do so. we also use the approach developed in Chapter 4. 

Chapter 6 Conclusion, Contribution and Recommendations 

In this chapier, we present the contributions and conclusions. dong with some 

recommendations for funher research on the problems considered in this dissertation. 



Chapter 3 

A LINEAR PROGRAMMING APPROACH TO GRADUATION 

UNDER CRlSP AND FUZZY ENVIRONMENT 

In the present chapter, we consider the graduation problem formulated as a linear 

programming problem, both under crisp and fuzzy environment. First. we obtain the 

solution of linear programming problem, as discussed by Schueite [37], under crisp 

environment. Then, we formulate and solve the problem in a fuzzy environment, and 

compare the results obtained both under crisp and fuzzy environment. 

3.1 Introduction 

Schuette [37], in his paper, considered the graduation problem using absolute 

values for both F and S, which Schuette solved as a crisp linear programming problem. 

The nurnencal example used by Schuette [37] is solved using linear programming 

approach under crisp and fuzzy environment in the present chapter. 

3.2 Linear Programming Formulation Under Crisp Environment 

On the lines of Schuette [37], we present the linear programming formulation of 

graduation problem under crisp environment. 

Assumption 

For this model, it is assumed that al1 the data are known with certainty. 
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Objective 

Objective in this problem is to rninimize the combination of fit and smoothness to 

obtain improved graduated values. 

General Formulation 

The key component in formulation of graduation problem is the method to deal 

with absolute values. This problem cm be dealt by taking advantage of the fact that any 

fuoction c m  be separated into its positive and negative parts [37]. 

As we know that for the function ( f(x) 1, 

Therefore. f (x) may be replaced by D, - Ex and 1 f(x) 1 by Dx + Ex. The only condition 

is that D, and E, must be nonnegative and they must not be positive simultaneously. 

For the graduation problem [37) 

vx-ux = &-Ex (3.2.1) 

with deviational variables DI 2 O and Ex 2 O for x = 1,2, . . . . n, and let 

AZvx = Rx - T, (3.2.2) 

with deviational variables RI 2 O and Tx 2 O for x = 1.2, . . . , n - z. 

Also 

V, = ux + Dx - Ex, 

yields 



A?, = AZ(ux + DI - Ex) = Rx - T, (3.2.4) 

Thur, under crisp environment, we have to find the values of Dx, Ex, R, and Tx 

wi th the hclp of the following cnsp linear programming problem. 

(CLP) Minimize (F + hS) = w, (D, + E, ) + hz::: (R, + T, 

subject to constraints 

Az(E,-D,)+R,-Tx = Azu,, x =  1.2 ,..., n - z ,  (3.2.6) 

D, 2 O, E, 2 O, Rx 2 0, and T, 2 0, for d l  appropriate values of x. (3.2.7) 

which is of the type of a standard linear programming problem. The problem involves 

Zn + Z(n - z) variables and (n - z) consuaints and it is important to point out here that in 

(CLP) at rnost (n - z) of the Dx and E, can be positive in the optimal solution. 

3.3 Numerical Example Under Crisp Environment 

We illustrate this method t h g h  the numencal example given by 

Miller [30, page 391, which is explored and formulated by Schuette [37] using a crisp 

linear programming approach. The data consists of nineteen observed values and 

nineteen corresponding weights. The values for u, for x = 1, 2, . . . , 19, are 34,24, 3 1, 

40, 30, 49, 48, 48, 67, 58, 67, 75, 76, 76, 102, 100, 101, 115, and 134. The values for 

w,=  1,2,. . ., 19 are 3 3 8 .  10, 15,20,23,20, 15, 13, 11, 10,9,9,7,5,5,3,and 1. 

For this example, the parameter h = 10, and z = 2. Then the problem, under cnsp 

environment, can be formulated as follows. 
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Minimize z = (F + hS) = 

3(DI + El) + 5(D2 + El) + 8(D3 + E3) + 1qD4 + E4) + 15(Ds + Es) + 20(D6 + Eg) 

+ 23(D7 + E7) + 20(Ds + E8) + 15(D9 + Es) + 13(D10 + Eio) + lI(Dii + Ell) + 

lO(Dl2 + El?) + + El31 + + El41 +  DIS + El51 + 5(D16 + El61 + 

5(Di7+ E17) + 3(D18 + Ela) + l(D1g + E19) + LO(Rl + RI + R3 + R3 + Rg + Rg + R7 

+ R8 + R 9 + R l o + R I I  + R I 2 + R l 3  + R I j  + RI5+ RI6+ R17+TI  + T Z + T 3  + T J +  

T 5 + T b + T 7 + T S + T 9 + T I o + T I I  +T12+T13+T14+T~S+T16+T17)  

subject to the following constraints: 

E3-2Er+Et  -D3+2Dr-Dt  + R I - T l  = 17 

E 4 - 2 E 3 + E r - D 4 + 2 D 3 - D r + R t - T z = 2  

- E 5 + 2 E 4 - E 3 + D 5 - 2 D j + D 3 - R 3 + T 3 =  19 

E h - 2 E s + E 4 - D 6 + 2 D S - D 4 + R J - T J = 2 9  

- E7 + 2E6 - Es + & - 2D6 + D5 - Rj + Tg = 20 

E a - 2 E 7 + E g - D g + 2 b - D 6 + % - T b =  1 

E g - 2 E 8 + E 7 - D 9 + 2 D 8 - & + R 7 - T 7 =  19 

-Elo+2Eg-E8+Dlo-2D9+D8-R8+T8=28  

Ell  - 2 E l o + E q - D l l + 2 D l o - D 9 + R 9 - T g =  18 

- E t S + 2 E l l  -Eio+D12-2Di1 +Dia-Rio+Tro= 1 

-E13+2Ei2-Ei l  +D13-2Di . r+Dil  - R i r  + T H  = 7  

- E14 + 2E13 - El7 + Dl4 - 2DL3 + DII - RIZ + Tll = 1 

E15 - 2Ei4 + El3 - Dis + 2D14 - D13 + R13 - T13 = 26 

- Elb + SEl5 - E14 + DI6 - 2D15 + DI4 - RLJ + T14 = 28 

El, - 2EIb + E15 - D17 + 2D16 - D15 + R15 -Tl5 = 3 



El8 - 2E17 + EI6 - Dl8 + 2DI7 - Dl6 + R16 - TI6 = 13 

El9 - 2Eis + E17 - D19 + 2D18 - Dl7 + RL7 - Tl7 = 5 

Non-negativity constraints: 

D , 2 0 , E X 1 0 ,  x = l , 2  ,..., 19. 

R , 2 0 , T X 1 0 ,  x = 1 , 2  ,..., 17. 

3.4 Results 

On solving the above problem. Schuette (371 obtain the following Table 3.1. 

Table 3.1 Results of crisp linear prograrn problem 

Variable Value Variable Value Variable Value Variable Value 

3.5 Interpretation of the Results 

Results given in the above table summarize the solution of the crisp problem as 

discussed by Schuette [37]. Since D, and Ex are the deviationd variables for v, - 

value of each of these variables will imply as how close are the initial values to 

graduated ones. Following the lines of Schuette ([37], page 4151, in the solution. 

ux, 

the 

we 

should have at least z (=2) values of D, and Ex that have O value. In the solution of cnsp 

linear prognmming problem. we have D3 = E3 = O. D, = El = O. Dll = Eii  = 0, 

Di6 = E16 = O and Dis = Ei8 =o. 
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At the same time, we should have at most (Schuette [37]. page 415) n - z (=17) 

variables D, and Ex that have positive values. From Table 3.1. we have 14 variables that 

have positive values. These values are D2 = 1.6667, Ds = 11.6667, Dg = 1, DIO = 3, 

Dl3 = 3, D14 = 9, DI7 = 6.5, El = 13.6667, E4 = 3.6667, Eg = 2, Eg = 12, El- = 2, EIS = 9.5, 

Elp = 1 1.5, R7 = 5,  R I 3  = 1.5 and T5 = 4.333. Rx and Tx represent the deviational 

variables of smoothness function. Clearly. R7 = 5, Rlj = 1.5 and Ts = 4.3333 which 

indicates that only three variables require additional smoothing. The minimum value of 

objective iunction. which represents the minimitation of the sum of fit and smoothness, 

is 886.8333. 

On the lines of Schueite [37]. Table 1 in Appendix 2, depicts the graduated values 

and the measures of the fit and smoothness obtained by solving the graduation problem 

using linear programming approach for z = 2 and different values of h. in the sarne 

fashion, Table 3 in Appendix 2, represents the graduated values and the measures of the 

fit and smoothness obtained by solving the graduation problem using linear programming 

approach for z = 3 for different values of h. However, the results obtained by Schuette 

as shown in Table 1 and 3 are under crisp environment. 

3.6 Formulation Under Fuzzy Environment 

in general, most of the time. due to incomplete or forecasted information the input 

data are imprecise. Any vagueness or impreciseness in data of observed values might lead 

to an inappropriate interpretation of the underlying law, which would in tum completely 

defeat the purpose of graduation process. The problems of impreciseness in data of 
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observed values and their revision to irnprove the model are handled effectively by 

taking advantage of fuzzy set theory ([SI. [49]. [5 1 ] and [52] ) .  

1.  Imprecise objective function limit bels .  The management provides an upper 

bound of the estimation of the total value of combination of fit and smoothness 

represented by objective function 20. Value of objective function is desired to be 

below this upper bound. A tolerance that defines the dispersion of this value may 

be given in the forrn of fraction of zo. 

2. Imprecise observed values u,. Since collection of data of observed values are 

rarely accurate to the exact number of units, the management can provide a 

tolerance level in fonn of a fraction of imprecisely known observed values, that 

provides a range above and below the observed values in which the actual value is 

likely to occur. 

We now formulate the problem under the following additional assumptions. 

Additional Assumptions 

(i) The total value of objective function is desired to stay below a given limit. 

(ii) The observed value data is known imprecisely. 

Objective 

The objective of the model is the 'desire' that the combination of fit and 

smoothness stay below or equal to the aspiration level, which is given some pre-assigned 

value keeping in view the imprecise data for observed values. 



Additional Notation 

Let, 

za = the aspiration level for the objective and is given some pre-assigned value, 

qo = the subjectively chosen value of admissible violations corresponding to a , 

q, = tolerance level associated with imprecisely known observed values u,. for ail x, 

pi = membership function associated with imprecisely known objective function zo. 

p K ~  = rnembership function corresponding to lower side of the constraint associated 

with imprecisely known observed values u,, for al1 appropriate values of x, 

pKu = rnembership function corresponding to upper side of the constraint associated 

with imprecisely known observed values u,, for ail appropriate values of x. 

Al1 other variables and symbols have the s m e  meaning as in crisp formulation. 

Formulation of Graduation Problem Under Fuzzy Envimnrnents 

Using Zimrnerman's notation [5 11, in a fuzzy environment. the crisp constraints 

A~(E,-D,)+R,-T,=A~, ,  x = 1.2.. . . ,n-z.  (3.6.1) 

can be replaced by 

A ~ ( E ~ - D ~ ) + R , - T ~  =A%,, x = 1.2 ,..., n-z, 
ii. 

(3.6.2) 

which are further replaced by 

Az(E,-D,)+R,-T, 2 A%,, x = 1,2 ,..., n-z,  - (3.6.3) 

A~(E, -D, )+R~-T,  I - A t , ,  x = 1,2 ,..., n-z,  (3.6.4) 

The notation '2 A t , '  (or S -.. A%, respectively) means that the corresponding fuuy 

constraint is 'essentially è A' u,' (or essentially 5 A' u,, respectively), for al1 x [5 11. 
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We denote by p x ~  and pxu, the membership functions corresponding to (3.6.3) and 

(3 A.4) respectiveiy. 

Using Zirnrnerman's approach [5 11, in a fuzzy environment, the objective function. 

which is the total vaiue of combination of fit and smwthness, can be written as 

w ith as the corresponding membership function for the objective function (3.6.5), 

where '?  a' rneans that the corresponding membenhip function is 'desired to be less 

than or equal to zO'. 

Then, under fuzzy environments, our cnsp linear prograrnming problem (CLP) becornes 

the fol lowing fuzzy linear programming problem, denoted by (FLP) 

(FLP) Find Dx, Ex, Rx and T, for ail appropriate values of x. we have 

for the fuzzy objective 

and for the fuzzy constraints with comsponding membership functions p , ~  and Pru 

A' (Ex - D f )  + R, - Tx 2 A$,, - x = 1.2, . . J I - z  (3.6.7) 

A' (Ex - D,) + R, - T, 5 A%,, - x = 1,2, ..., n-z (3.6.8) 

The non-negativity constraints are wrîtten as 

D, 2 O, Ex 2 0, x = 1,2. . . ,n  (3.6.9) 

and Rx 2 0, Tx 2 0, x = 1,2 , . . ,n -z  (3.6.10) 

The graduation problem under fuuy environment now is equivalent to obtain a solution 

satisfying the fuzzy sets given by (3.6.6), (3.6.7). (3.6.8). (3.6.9) and (3.6.10). 



42 
Membership Functions 

Following Zimmermann [5 11. below we define the membership functions. for 

the fuzzy objective (3.6.6). and p , ~  and p , ~  for the fuuy constraints (3.6.7) and (3.6.8). 

respectively. 

For the sake of sirnplicity. we denote x:-, - w , (D, + Ex ) + h x n I z  X-I (R , + T, by fo, 

A ~ E ,  - Dx) + R, - Ts by f,, and A%, by d.. 

Then. if fo is desired to be lower than 20 and qo > O be the subjectively chosen value of 

admissible violation corresponding to 20, then the membership function for objective 

function is written as 

Similarly. the membership functions for fuzzy consuaints (3.6.7) and (3.6.8) is obtained 

as below. 

Let q , ~  > 0, and q,u > O be the subjectively chosen constants of admissible violations 

associated with constraints (3.6.7) and (3.6.8) respectively. Then, following 

Zimmermann [5  1.521, 

p x ~  , the membership functions for the lower side of the fuzzy region of the fuzzy 

constraints (3.6.7) are taken as 



and pK", the membership functions for the uppr side of the fuzzy region of the fuzzy 

constraints (3.6.8) are taken as 

1 if f I d  
X X  

( f , - d  1 
X 1 - if d If I d  + q  

' lx 
X x X  X 

O if d +q I f  
X X X  

Once the membership functions are obtained, we get a solution to (FLP) by finding the 

intersection of the fuzzy sets given by (3.6.6). (3.6.7) and (3.6.8), to get to a decision. 

Then the membenhip function of decision D satisfying (3.6.6), (3.6.7) and (3.6.8) is 

PD = min ()41, P ~ L ,  PL -. k n - z ) ~ >  PIU, PIU~ - *  k n - L ) U )  

Since, we are interested in large value of PD over (3.6.9) and (3.6. IO), therefore, 

following Zimmermann [5 11, we obtain 

mm PD = min (llo. VIL, jh~,  - 9  kn-z)~, P I U ~  P2~9 - 9  k n - Z I U )  

subject to the constmints (3.6.9) and (3.6.10). 

Replacing p~ by )i , we have the following problem (LP) dong the lines of Zimmermann 

WI ; 



max h 

subject to 

2 A- 

PKL 5 h X = 1.2.. . . , I l -2 ,  

plu 2 2. x = 1,2,.  . . , n - z ,  

and cnsp constraints (3.6.9) and (3.6.10) 

It is observed that (LP) is a crisp linear program whose optimal solution provides a 

solution to (FLP). 

In view of the membenhip functions b, p x ~  and pxv . x = 1. 2, . . ., n - 2; the (LP) 

c m  be restated as 

max h 

subject to 

fo + h qo 5 20 

fx-hqx 2 4 - q x  

fx + 1 q, <- dx + q, 

O l X l l  

D , 2 O . E X 2 O ,  x =  1.2 ,... n 

R, 50.T, t O. x = 1 , 2 , . . , n - z  

Identifying fo = zX=, w (D, + Ex ) + hx::: (R, + T, 1, 

fx = A' (Ex - D,) + R, - Tx, 

and dx = A t x ,  

and 



we can rewrite (LP) as 

(LP- 1 ) max k 

subject to 

and 

Az(E,-D,) +Rx-Tx-)lqx 2 A t X - q x  x = 1,2 ,.,., n-z, 

A ' ( E , - D , ) + R ~ - T ~ + ~ ~ ~  5 A%,+qx x = 1,2 ,..., n-z, 

O s k l l  

Dx 2 0, Ex 1 0, x = 1,2, ..., n 

R, 1 0, T, 1 0, x = l ,2, .  . . , I I - Z .  

Thus. we see that we obtain a solution to (FLP) by solving (LP- 1) which is a crisp linear 

programming problem. 

3.7 Numerical Example Under Fuzzy Environment 

Below we write a fuzzified format of (CLP). in this example we assume a 

tolerance level of approximately 30% for observed values and 0.25% in total objective 

function. Therefore 20 is 886.8333 and qo is 2.217. For the observed value constraints, the 

iolerances are q l  = 5.1, q l =  .6, q 3 =  5.7, q 4 =  8.7, q ~ =  6, q 6  = .3, q~ = 5.7, q* = 8.4, 

99 = 5.4, 910 = .3, = 2.1, 412 = .3, q i 3  = 7.8, q l ~  = 8.4, qis = -9, q l 6  = 3.9, q1.r = 1.5, 

where as the rest of the data is sarne as in cnsp problem presented by Schuette [37]. 

in view of (FLP) following is fuzzy version of the above problem. 
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(NP- 1 ) 3(Dl + El) + S(D2 + E?) + 8(D3 + E3) + 10(D4 + Eq) + 15(Ds + Es) + 



Replacing each fuzzy equality with two fuzzy inequalities. we obtain 





Non-negativity consuaints: 

D,2O,EX2O, x=1,2 ,,.., 19. 

R ,20 ,TX20,  x = l , 2  ,..., 17. 

Then the crisp equivdent of this problem c m  be wntten as 



(NP-3) rnaximize h 

subject to the following constraints: 

3(DI + E l )  + 5(Dz + Ez) + 8(D3 + E3) + lO(Dd+ Ea) + 15(D5 + Es) +20(D6 

+ Eg) + 2 3 ( b  + E7) + 20(D8 + Ea) + 15(Ds +Eg) + L3(Dio +Ela)  + 1 l (Dli  

+ hi) + lO(Di2 + Eir) + 9(D13 + Ei3) + ~ ( D I J  + EIJ) +  DIS + EH) + 

5(D16 + E16) + 5(D17+ E17) + 3(D18 + Ela) + l(D19 + El91 +Io( Rl + Ri_ + 

Rj + + Rs + % +  R7+R8 + R g  + Rio + R i *  +Riz+R13+ Ri4 + R i s +  

R I 6 + R l 7 + T I  + T 2 + T 3 + T 4 + T 5 + T 6 + T 7 + T 8 + T 9 + T l o + T l l  + T i ? +  

Ti3 + T14 + T15 + Tlb + Tl7) + 2.2 l7h < 886.8333 

E 3 - 2 E t + E i - D 3 + 2 D 2 - D i + R l - T i - 5 . l h  2 11.9 

E 3 - 2 E 2 + E l - D 3 + 2 D 1 - D I  + R I - T I + 5 . 1 k 1 2 2 . 1  

E j - 2 E 3 + E 2 - D 4 + 2 D 3 - D 2 + R 2 - T 2 - . 6 k Z  1.4 

Es-2E3+E2-D4+2D3-D2+RrT2+.6k<2.6  

-E5+2E4-E3+D5-2D4+D3-R3+T3-5 .7hb  13.3 

- E s + 2 E j - E 3 + D s - 2 D 4 + D 3 - R 3 + T 3 + 5 . 7 h i 2 4 . 7  

E6-2Es+E4-D6+2D5-Da+&-T4-8.7h220.3 

E6-2Es+Eq-D6+2DS-Da+&-Tj+8.7h537.7 

- E 7 + 2 & - E 5 + D 7 - 2 D 6 + D 5 - R s + T 5 - 6 h 2  14 

- E 7 + 2 b - E 5 + Q - 2 D 6 + D 5 - R s + T 5 + 6 h 5 2 6  

Es -2E7+Eg-DS+2b-Dg+&-T6- .3hz .7  

E s - 2 E 7 + b - D 8 + 2 b - D g + % - T 6 + . 3 h 9  1.3 

Es-2E8+E7-D9+2D8-b+R7-T7-5 .7h2  13.3 





Non-negativity constraints: 

D x 1 0 , E , 2 0 ,  x = l , 2  ,..., 19. 

R x 2 0 , T , 2 0 ,  x =  l , 2  ,..., 17. 

k20 

3.8 Results 

The optimal solution to (NP-3) is as described in the following table. 

Table 3.2 Results of fuzzy linear program problem 

Variable Value Variable Value Variable Value Variable Value 

D2 1.666 Di4 9.0982 61 12.050 1 Ri3 1.338 1 

D5 11.6367 Di7 6.4864 El? 1.9582 T5 4.3131 

Ds 1.0021 EI 13.6326 E1s 9.4802 A .9930 

Dlo 2.9561 h 3.6618 El9 1 1.476 

DI3 3.0689 & 2.0042 Rt 4.906 

3.9 Interpretation of the Results 

Results given in the above Table 3.2 summarizes the solution of the linear version 

of the fuzzy problem. In the solution of the linear fuuy programming problem, we have 

D3 = E3 =O, Di = E7 =O,  DII =El,  =O,  D16=Ei6=Oand Dlg = Ets =O.  At the same 

tirne, we have 14 variables D, and Ex that have positive value. These values are 

DI= 1.666, Ds = 11.6367, De = 1.0021, Dio = 2.9561, D 1 3 =  3.0689, Di4 =9.0982, 

D17 = 6.4864, Ei = 13.6326, Eq = 3.6618, Eg = 2.0042, = 12.0501, E12 = 1.9582, 
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Table 3.3 Value of h Corresponding to Observed Value Tolerance and Objective 

Function Tolerance 

Obscrved Value Objective Function Tolerance 

Tolcrancc 

0.25% 0.5% 1% 2% 3% 4% 5% 

10% 0.9794 0.9596 0.9224 0.8560 0.7980 0.7435 0.6954 

15% 0.9862 0.9727 0.9469 0.899 1 0.8550 0.8 1 16 0.7723 

20% 0.9896 0.9794 0.9596 0.9224 0.8868 0.85 12 0.8 1 83 

25 % 0.9917 0.9835 0.9674 0.9369 0.907 1 0.8770 0.8488 

30% 0.9930 0.9862 0.9727 0.9469 0.92 12 0.8952 0.8705 

Table 3.4 Value of Objective Function (Membership Function) Corresponding to 

Observed Value Tolerance and Objective Function Tolerance 

Obscrvcd Value Objective Function Tolerancc 

Tolcrrince 

0.25% 0.5 5% 1% 2% 3% 4% 

10% 883.66 882.58 878.65 871.65 865.60 860.46 

(.9803) (.9592) (-9228) (.8559) (.7981) (-7335) 

15% 883.65 882.52 878.44 870.88 8M.W 858.05 

(.9848) (-9728) (-9465) (-8993) (.8549) (.8 1 15) 

20% 884.64 882.49 878.32 870.47 863.24 856.64 

(.9893) (-9795) (.9600) (.9224) (.8868) (.85 12) 

25% 884.63 882.47 878.25 870.21 862.70 855.73 

(.9938) (.984 1 ) (-9679) i.937 1) (-907 1) (-8769) 

30% 884.63 882-46 878.21 870.04 862.32 855.08 

(-9938) (.9863) (-9724) (.9466) (-9214) (-8952) 
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Els  = 9.4802, EI9 = 11.476, Ri = 4.906, R i 3  = 1.3381 and T5 = 4.3131. Rx and T, 

represent the deviationd variables of smoothness function. The minimum value of the 

objective function, which represents the minimization of the sum of fit and smoothness to 

obtain better graduated values is 884.63 and level of satisfaction h, is -9930. 

Table 3.3 and 3.4 show the behavior of the value of k and the objective function 

rcspectively, corresponding to the changes in tolerance levels q,, of 101, 20%. 30%. 

10% and 508 for imprecisely known observed values. and of 0.251,0.52, 1%. 2%. 3%. 

3%. and 5% tolerance levels qo for objective fùnction. 

3.10 Discussion of the Solution in View of Table 3.3 and 3.4 

Table 3.3 shows different values of h for various tolermce levels for the 

imprecisely known observed values u, and desired levels of objective function. Also. 

Table 3.4 shows different values of objective function Le. combination of fit and 

srnoothness for various tolerance levels for the imprecisely known cnsp objective 

function value and imprecisely known observed values u,. Note that in this formulation 

the membership function h is used to express the degree of certainty of the solution with 

respect to fuzzy parameters. objective function which represents the combination of fit 

and smoothness, and the imprecisely known observed values for LI, [5 11. From Table 3.3, 

i t is observed that with the increase in the tolerance level for desired level of objective 

function, the value of )c decreases. This shows that the smaller the value of membeahip 

grade )c, the smaller is the support for the solution and hence, lower the degree of 

certainty of solution. On the other hand, it is observed that with increase in tolerance 
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limits for imprecisely known u,, the value of )c increases. This shows that the larger 

the value of membenhip grade h, the larger is the support for the solution. In Table 3.4, 

the numbers in the brackets represent the value of the rnembership function 

corresponding to the value of objective function at the optimal solution given in 

Table 3.2. From Tables 3.3 and 3.4 we observe that the vaiue of the rnembenhip 

tùnction is, as expected, either greater than or equal to the value of A. It cm therefore be 

concluded that fuzzy programrning does not provide just another solution; instead it 

produces a solution corresponding to the pre-specified tolerance levels of consiraints with 

an associated degree of one's belief in the solution. Gnphs 3.3 and 3.4 in Appendix 1 

rein force the above observation. 

In the above observation, the relationship between objective function (which 

represents the combination of fit and smwthness) and the range of observed values u,'s 

are investigated for possible values of membenhip grade between O and 1. Such an 

examination is useful in order to provide the decision rnakea with sufficient information 

on the implication of the choice of a membenhip grade pnor to the final choice 

determined by them. Another advantage of f u u y  programrning is that it admits irnprecise 

data. This feature is particularly useful for the situation when the management in an 

organization is not able to specify precisely the combination of fit and smoothness limit, 

but is rather able to provide lower and upper bounds, with a specified tolennce level 

above or below these bounds. Thus, fuzzy programming produces most satisfactory 

solution within a pre-specified interval, whereas conventional crisp set theory constraints 

only permit only one solution either to belong (membership grade 1) or not to belong 

(mernbership grade O) to the set {O, 1 }. 



Chapter 4 

A FINITE ITERATION TECHNIQUE FOR A 

FUZZY QUADRATIC PROGRAMMING PROBLEM 

In this chapter we consider two problems, one under symmetric fuzzy environment, 

and the second under non-symmetric fuuy environment. such that each problem has a 

single quadratic objective function and a number of linear constraints. Each of the two 

fuzzy problems is converted into a crisp programming problem that has a linear objective 

funciion w ith linear constraints, and has one quadratic constraint. To solve such a problem, 

we suggest a finite step method that uses linear programming and parametnc quadratic 

programming. Furthemore, we present a numencal example to demonstrate the method 

developed. 

4.1 Introduction 

Since Zûdeh [49] in~oduced the concept of fuuy set theory, a number of 

researc hers have exhibited their interest in the topic of fuuy mathematical programming 

(for example see [4], [Ki], [23], and [51]). However. in contrat wiih the vast literature 

available on modeling and solution procedures for a linear program in a hzzy 

environment, the studies in quadratic programming under f u v y  environment and its 

solution are rather scarce. In the present paper we consider both symmetric hzzy and 

non-symmetnc fuzzy quadratic programming problems and transform each of them to a 

cnsp programming problem of the type presented in (VP). At the end we consider a 



57 
numerical example to demonstrate the method for the solution of a symmetric problem. 

It will be observed that the non-syrnmetric problem could be solved sirnilarly with slight 

modifications. 

4.2 Symmetric Fuzzy Quadratic Prograrnming 

Corresponding to (P-1) as described in Chapter 2, we now consider the following 

symmetric fuzzy version (P-2) on the lines of Zimmermann [5  11. 

(P-2) Find a solution x' that satisfies: 

x > O (4.2.4) 

where the fuzzy inequality ' 5 - ' denotes 'essentially less than or equal to' [51], and zo , 

called the aspiration level, is given some pre-assigned value. Let, qo > 0, and qi > 0, 

( i  = 1, 2,  . . . , k), be subjectively chosen constants of admissible violations such that qo 

is associated with (4.2.1)' and qi (i = 1 ,  2, . . . , k) are associated with the i-th linear 

constraint (4.2.2). Now, on the lines of Zimrnennan [51], we define the membeahip 

function corresponding to (4.2.1) and (4.22). as follows. 



and 

4.3 The Equivalent Crisp Problem 

On the lines of Zimmermann [SI], the solution to the problem (P-1) is obtained 

by solving the following problem (P-3). 

Maximize Minimize p. (x) 
I 

i20.1.2 ,.... k 

subject to (4.2.3), and (4.2.4). 

Now following Schmitendorf [36], (P-3). and Zimmermann [51] a solution to (P-3) is 

ob tained b y solving the following problem (P-4). 
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Maximize xn+l 

subject to 

Pi (x 1 -xn+i 2 0 i = 0 , 1 , 2 ,  ..., k 

0 5 Xn+t 51 

and (4.2.3), and (4.2.4). 

From above, using the expressions for pi (x ) for i = 0, 1 ,  2, . . ., k, and using (4.2.3) 

and (42.4). we obtain (P-4) as follows. 

(p-3) Maximize xn+l 

subject to 

X, xn+i >- 0 

Rewriting ( P 4 ) .  we obtain (P-5) as follows. 



In (P-5). objective and the constraints (4.3.2) - (4.3.5) are linear. However. the cons&i.int 

(4.3.1) is quadratic. Therefore, (P-5) is of the type of the problem (VP). 

4.4 Non - Symmetric F u z y  Quadratic Programming Problem 

We now consider the following the following non-syrnmetnc fuzzy quadratic 

programming problern (NFP). 

x > O 

As suggested by Zimmermann [5 11, we cornpute the membership function corresponding 

to the quadratic objective function with the help of the following two crisp quadratic 

programs (CP- 1 ) and (CP-2). 



(CP- 1 ) T 1 Minimize f(x) = p x + - xTc x 
2 

subject to 

Let the minimum value of the objective function f (x) be fo . 

(CP-2) T I  Minimize f(x) = p x + - xTc x 
2 

subject to 

Let the minimum value of f (x) be fi .  

Then. on the lines of Zimmermann [5 11, the membership function corresponding to the 

qudratic objective function of  (NFP) is defined as follows. 
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Now, the equivalent crisp programming problem corresponding to (NFP) is as 

follows. 

X, xn+i 2 O 

which is similar to (P-5), and therefore, can be solved on the lines of the Two-Phase 

method suggested for solving (P-5). 

4.5 Numerical Example 

We now solve a numerical exarnple for the following fuuy syrnmetnc quadratic 

programming problem (FSQP) using the method described above. 



Let q o = 2 . 1 2 .  q 1 = 2 ,  q 2 = 1 .  q 3 = 3 .  

Then, on the lines of (P-5). the crisp equivalent of this problem is 

4 x l + 5 x 2  - 2 XJ 2 18 

5 x l + 4 x 2  - 1 x-j 1 19 

lX,+lXz + 3 x3 5 33 

x3 5 1 

X I  * X2,X3 3 o .  

This problem is similar to (VP) with linear objective function, exactly one quadratic 

constraint and three linear constraint. Therefore. we solve it in a finite number of steps 

using the Two Phase method as ouilined above for solving (VP). 

In Phase 1, the linear programming problem is as follows. 

Maximize x3 

subject to 

4x1+5x2 - 2 ~3 2 18 

5 x l + 4 x 2 -  1 x 3 2  19 

lX l+ lX?  + 3 X3 1 3 3  

x3 5 1 

X l r  X 2 , X 3  L O .  
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Its optimal solution i s  xl = 2.2222. x2 = 2.2222, x3 = 1. 

2 Since 2 xl + 1 X? + 4 X,  + 4 XI X? + 2 X: + 2.12 x3 = 58.17 at 

xl = 2.2222. x2 = 2.2222 and x3 = 1 ,  therefore the constraint 2 xi + 1 xr + 4 x: 

7 + 4 x i  x? + 2 x; - + 2.12 x3 5 54 is violated. Hence we go to Phase 2. in this phase 

we solve the following quadratic prograrnming problem pararnetrically. 

7 
Minimize 2 x 1  + 1x2 + 4 x f  + 4 ~ 1 x 2  + 2 ~ ;  + 2.12 x3 

subject to 

4 x 1 + 5 x 2  - 2 X3 2 18 

5 x l + 4 x 2  - 1 x3 2 19 

l X l + l X ~  + 3 X3 5 33 

x3 5 1 

x3 > 1 

X I ,  x2,x3 1 o .  

From this problem. by solving a series of quadratic programs panmetncdly, we obtain 

the final form of the quadratic programming as follows. 

9 7 
Minimize 2 x l  + 1x2 + 4 x ; +  4 ~ ~ x 2  + 2 x  + 2.12 x~ 



x3 5 1 

XJ 1 ,860633 

X I *  X 2 * X 3  1 0 .  

The optimal solution to this problem is xi = . 99 , xz = 3.73 . x3 = . 860633. and the 

minimum value of the objective funciion is = 54 . 

Thus, the solution that solves the (FSQP) is 

x, = .99, xz= 3.73, 

and the level of satisfaction of this solution is given by x3 = .MO633 . 

4.6 Conclusion 

In the present chapter, we consider a symrnetric fuzzy quadratic programrning 

problem. Solution to this problern is obtained in a finite number of steps by solving an 

optirnization problem in which one conslraint is quadratic, other constraints and the 

objective function are linear. Also, it is shown that the non-symrnetric fuuy quadratic 

programming problem cm also ùe solved in a finite number of steps by using a similar 

technique. 



Chapter 5 

A QUADRATIC PROGRAMMING APPROACH TO 

GRADUATION UNDER CRISP AND FUZZY ENVIRONMENT 

The Whittaker-Henderson Type B method of graduation consists of minirnizing 

the weighted surn of the squares of the deviations of graduated values from observed 

values plus a parameter times the sum of the squares of the z-th differences of the 

graduated values. In Chapter 3. this method is modified by using absolute values instead 

of squares for the weighed sum of the deviations of gaduated values from observed 

values. The resulting problem is expressed as a linear prograrnming problem and is 

solvrd both under crisp and fuzzy environment. In present Chapter. we develop 

quadratic programming approach to graduation using absolute values method for fit 

measure and traditional sum of the squares method to measure the smoothness. Ln order 

to capture uncertainty factor in observed values data. fuuy quadratic p r o g m i n g  

technique is applied. At the end. same numerical example as used by Schuette [37], is 

given to demonstrate fuuy approach. 

5.1 Introduction 

A common method of actuarial graduation is the ciifference-equation method [XI .  

In this rnethod of graduation, graduated values v, (where x = 1, 2, .... n), are sought 

corresponding to a given set of observed values u, and non-negative weights w, that 

7 
minimize the quantity F + hS, where F = xi=, w , (u , - v, )- and S = Zn -' (A'V~)'. 

X=l 
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F is an expression that measures the degree of fit of the graduated values to the 

observed values, and S is an expression that measures the degree of smoothness of the 

graduated values. 

As shown in Chapter 3, a method of coping with the absolute-value function is 

available in linear programming. indeed, a method for coping with both the absolute 

value function and quadratic function is available in quadratic programming. 

A second and undoubtedly more important reason why methods based on 

minirnizing sum of squares have been favored in graduation is the preeminence of the 

principle of least squares in statistical theory, which in turn cm be traced to the normal 

distribution. The traditional squared criteria in the fit measure are appropriate whenever 

the error random variable (the deviation of the observed values from the tme underlying 

values) is normdly disuibuted. If the distribution of this error random variable is not 

normal, and thus generates more 'outliers' than would a normal distribution, the squared 

criterion is too sensitive to these outiiers. The method using absolute values should be 

less influenced by the outliers and thus is considered to be robust estimation procedure 

[26]. 

The problem of the outlien pertains more to the fit measure than the smoothness 

measure. Hence this chapter will be devoted to the task of adapting quadratic 

programrning to the graduation problem so that, in the case of the fit measure, absolute 

values may be employed in place of squares, and in the case of the smoothness measure, 

the traditional sum of squares will be maintained. 
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5.2 Quadratic Programrning Formulation of A Graduation 

Problem Under Crisp Environment 

Following the notation used in Chapter 3 for the graduation problem, we have 

vx-ux = D x - E x  (5.2.1 ) 

therefore, I V , - U ,  1 = D1+Ex 

with deviational variables Dx 2 O and Ex 2 O for x = 1,2, . . . , n, and let 

A%, = Rx -Tx (5.2.2) 

with deviational variables R, 2 O and Tx 2 O for x = 1, 2, . . . , n - z. 

Then 

vx = ux + Dx - Ex, 

and 

A'V, = dZ(ux + D, - Ex) = Rx - Tx 

Also, I V ,  -u,I = D x + E x  

m d  (R, - T,)' = R: - 2 RxTx + TI = R: + T: , since at least one of Rx and Tx must 

be equal to zero. 

Thus, under crisp environment, we have to find the values of Dx, Ex, Rx and T, with the 

help of  the following crisp quadratic prognmming problem. 

(CQP) Minirnize (F + hs)  = LX=, w, (D, + E, ) + hz:: (R +T: 

subject to constraints 

Az(Ex-D,)+Rx-Tx = Azux,x = 1,2,. . . ,n -z ,  (5.2.6) 

Ds 2 O, Ex 2 O, Rx 2 0, and Tx 2 0, for al1 appropriate values of x. (5.2.7) 
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Constraint equations (5.2.6) are obtained by rearranging equations (5.2.4). 

Since, the operator A' is linear and the variables appear linearly in al1 terms in equations 

given by (5.2.6), therefore. the problem has linear constraints. Also. the Hessian matrix 

in (5.2.5) is positive definite, therefore. (F + hS) is strictly convex. This yields that a 

local minimum of strictly convex function (F + hS) over the constraint set, detennined 

by linear constnints given by (5.2.6), and (5.2.7). is a global minimum also. 

Furthemore, the function (F + hS) king stnctly convex has a unique global minimum 

over the consiraint set. It may also be observed that the problem involves (4n - 22) 

variables and (n - 2) constraints. 

5.3 Formulation of Graduation Problem As A Quadratic 

Programming Problem Under Fuzzy Environment 

Fuzziness or vagueness present in the observed value data cm influence the 

graduated values that might distort the whole underlying phenornenon. in order to deal 

wiih this kind of problem, we can take advantage of fuzzy set theory ( [ 5 ] ,  [49], [51] and 

[ 5 2 ] ) .  The resuliant fuuy quadratic programming problem then cm be solved by the 

method as dernonstrated in Chapter 4. 

Using Zimmerman's notation [5 11, in a fuuy environment, the crisp constraints 

Az(Ex-Dx)+R,-Tx = A%,,x = 1,2, . .  . J I - z ,  (5.3.1) 

cm be replaced by 

A2(E,-D,)+R,-T, = A&,x = 1,Z ,..., n-z ,  - (5.3 -2) 

which are further replaced by 
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A~(E,-D,)+R,-T, 2 Azux,x = 1.2 ,..., n - z .  

C1 (5.3.3) 

and Az(Ex-D,)+Rx-T, 5 - A&,x = 1.2,. . . , I I -z ,  (5.3.4) 

The notation '2 A t x '  (or I A%, respectively) means that the corresponding fuzzy - c. 

constraint is 'essentially 2 A' ux9(or ssentially 5 A'u,, respectively) for al1 x [5 11. We 

denoie by p x ~  and pxu. the membership functions corresponding to (5.3.3) and (5.3.4) 

respectively. 

Using Zimmemm's approach [SI], in a fuzzy environment, the objective function, 

which is the total value of combination of fit and smoothness, cm be written as 

with as the corresponding membership function for the objective function (5.3.5). 

where ' 2 a' means that the corresponding membenhip function is 'desired to be less 

than or equai to 20'. 

Then, under fuzzy environrnents, our cnsp quadratic prograrnming problem (CQP) 

becomes the following hzzy quadratic programming problem. denoied by (FQP). 

(FQP) Find Dx, Ex, Rx and T, for al1 appropriate values of x, we have 

for the fuzzy objective function 

and for the fuzzy constraints with corresponding membenhip functions Pr' and pxu 

Az(Ex-Dx)+Rx-Tx 2 - Ak,,x = 1,2,. .. ,n-z (5.3.7) 

A ~ ( E ~ - D , ) + R ~ - T ,  5 .II A%,,x = 1 , 2  ,..., n-z  (5.3.8) 
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The non-negativity constraints are written as 

Dx 1 0, Ex 2 0, x = 1 ,2 , . . , n  (5.3.9) 

and R, 2 O, Tx 2 0, x = 1 , 2 , . . , n - z  (5.3. i 0) 

The graduation problem under fuzzy environment now is equivalent to obtain a solution 

satisfying the fuzzy sets given by (5.3.6), (5.3.7). (5.3.8). (5.3.9) and (5.3.10). 

Membership Functions 

Following Zimmermann [Sl]. below we define the membenhip hinctions, for 

the fuzzy objective (5.3.6), and p , ~  and p," for the fuuy constraints (5.3.7) and (5.3.8). 

respectively. 

For the sake of simplicity. we denote ç:-, - w , (D, + E, ) + hz::: (RX +TI 1 by fo. 

A~ (Ex - D,) + R, - T, by f,, and A%, by d,. 

Then, if fo is desired to be lower than zo and qo > O be the subjectively chosen value of 

admissible violation corresponding to a. then the membenhip function for objective 

function is written as 

Similarly. the membership functions for fuzzy constraints (5.3.7) and (5.3.8) is obtained 

as below. 
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Let q , ~  > 0, and q,u > O be the subjectively chosen constants of admissible violations 

associated with constraints (5.3.7) and (5.3.8) respectively. Then. following 

Zimmermann [5 1,521, 

p x ~  , the membership functions for the lowet side of the fuzzy region of the fuuy 

constraints (5.3.7) are taken as 

and Fru, the rnembership functions for the upper side of the fuzzy region of the fuzzy 

constraints (5.3.8) are taken as 

1 if f S d  
X  x 

( F ,  - d  
X 1 - if d S f  I d  +q 

'lx X  X X  X  

if d + q  < f  
X X X  

Once the membership functions are obtained, we get a solution to (FQP) by finding the 

intersection of the fuzzy sets given (5.3.6). (5.3.7) and (5.3.8). to get to a decision. Then 

the membership function of decision D satisfying (5.3.6), (5.3.7) and (5.3.8) is 
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Since, we are interested in large value of  PD over (5.3.9) and (5.3.10), therefore, 

following Zimmermann [5 11, we obtain 

max PD = min (b,  IL, PZL, . -. ~ D - Z I L ,  PIU,  P?u, - 9  kn-=lu) 

subject to the constnints (5.3.9) and (5.3.10). 

Replacing p~ by h ,  we have the following problem (EFQP) dong the lines of 

Zimmermann [51] ; 

W Q P )  max 

subject to 

m z h  

~ia >- x = 1 ,2 , .  . . , n - z ,  

plu 2 x = L,2,. . .,n-z, 

and crisp consrraints (5.3.9) and (5.3.10) 

It is observed that (EFQP) is a crisp linear program whose optimal solution provides a 

solution to (FQP). 

In view of the membership functions b. pxl and p , ~ .  x = 1,2,. . ., n - z. the (EFQP) 

can be restated as 

max A 

subject to 

fo + A qo zo 

fx - h q x  2 d, - q x  

fx + q x  d, + q x  

O s k s i  



and Dx 1 0, Ex 2 0, x = 1 , 2 , . . , n  

Rx Z O , T , L O ,  x = 1,2 ,.., n-z 

and 

we can rewrite (EFQP) as 

(EFQP-1) max h 

subject to 

and 

A ' ( E ~ - D ~ ) + R , - T ~ - ~ ~ ~  2 Azux-qx x = 1 ,2  ,..., n-z,  

A " ( E ~ - D , ) + R ~ - T ~ + ~ ~ ~  I ~ ' u , + q ,  x = 1,2 ,..., n-z,  

o s h l 1  

Dx 1 0, E, 2 0, x = l ,S,  ..., n 

R, 2 0, Tx 2 0, x = 1,2 ,..., n-z .  

Now the solution of the (EFQP-1) cm be obtained by technique developed and 

demonstrated in Chapter 4. 
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5.4 Numerical Example of A Graduation Problem As A Quadratic 

Programming Problem Under Crisp Environment 

The data used in this example is that used by Schuette [37] in his paper in 

Example 1, which was taken from the monograph by Miller [30]. The data consists of 

nineteen ungraduated values and nineteen corresponding weights. The values for u., 

x = l , 2 , .  . . , 19, are: 34, 24, 31,40,30,49,48,48,67,58,67, 75,76,76, 102, 100, 101, 

115, and 134. The values for w, = 1.2.. . . , 19 are 3,5, 8, 10, 15,20, 23,20, 15, 13, 11, 

10, 9.9.7, 5, 5.3, and 1. For this example, the parameter h = 10, and z = 2. On the lines 

of technique developed in Chapter 4, the problem cm be formulated as follows and is 

equivdent to (P- 1). 

(p-1) Minimize z = (F + hS) = 

3(DI + El) + 5(Dz + Ez) + 8(D3 + E3) + 10(D4 + Eq) + 15(Ds + Es) + 20(D6 

+ Eg) +23(&+E7) +20(Ds +Es) + 15(Dg+E&)+ 13(Dio+ Elo) + 1l(Di1 

+ Ell) + lO(D12 + E17) + + El31 + %Dl4 + E14) +  DIS + Eis) + 

5(Di6 + El6) + 5(D17+ E17) + 3(D18 + El#) + 1(DI9 + EI9) + LO(R~' + R?? + 

R ~ '  + h2 + R~' + k Z +  ~7~ + Ra2 + ~ g ' +  RIO2 + RI12 + ~ 1 ~ '  + ~ ~ 3 %  ~ 1 ~ '  

+ + R~~~ + ~ 1 7 '  + Ti' + T~~ + T ~ '  + TJ' + T~' + T~' + ~7~ + T~~ + ~9~ + 

TI()' + T I  1' + T~?'  + T~~~ + TI: + ~ 1 ~ '  + Tlo2 + ~ 1 7 ~ )  

subject to the following constraints: 

E 3 - 2 E 2 + E i - D 3 + 2 D 2 - D i + R t - T I =  17 

Eo-2E3+E2-Dq+2D3-D2+R2-T2=2  



Eh-2Es+Eq-Dg+2D5-D4+&-T4=29  

- E 7 + 2 & - E 5 + D 7 - 2 D 6 + D S - R S + T S = 2 0  

E 8 - 2 E 7 + & - D 8 + 2 D 7 - D g + & - T g =  1 

Eg-2Es+E7-D9+2D8-D7+R7-T7=  19 

-Elo+2&-Es+Dto-2D9+Ds-Rs+Ta=28 

E l l  - 2 E l o + b - D ~ ~  +2Dlo-Ds+Rq-T9= 18 

- El? + 2E11 - E1o + DI? - 2Dll + Dlo - Rio + Tio = 1 

-EI3+2Ei l -Ei i  + D 1 3 - 2 D 1 1 + D ~ 1 - R I I  + T I [  = 7  

- Ei4 + 2Els - EI2 + Dl* - 2D13 + Dl2 - RIZ + T l ?  = 1 

Els - 2Ei4 + Ei3 - Dls + 2Dlr - Dis + Ri3 - T13 = 26 

- EI6 4- 2E15 - El4 't Di6 - 2D15 + Dl4 - R14 + T14 = 28 

EI7 - 2E16 + El5 - Dl7 + 2D16 - Dl5 + R15 - T15 = 3 

Ei8 - 2Ei7 + E l 6  - Dra + 2D17 - Dis + R16 - TI6 = 13 

Eig - 2Ei8 + El7 - Dl9 + 2Dt8 - Dl7 + R17 - TI7 = 5 

Non-negativity constraints: 

D, 2 0 , E , 1 0 ,  x = l , 2  ,..., 19. 

R, 2 0 , T ,  2 0, x = l , 2  ,..., 17. 

5.5 Results 

Solving the above problem (P-1) under crisp environment. we obtain the 

following results as described in the Table 5.1 below. 
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Table 5.1 Results of crisp quadratic program problem 

- - 

Variable Value Variable Value Variable Value Variable Value 

EI 1 1.70 Di 2.58 Rz .O5 RI?  .6S 

EJ 1.53 DS 9.75 f4 .O6  RI^ -62 

Eb 4.9 1 Ds 3.98 R6 .O7 R H  .16 

10.38 DIO 3.52 R i  -66 RIS .O4 

EII 2.34 DIJ 2.73 Ra 2.5 R16 -17 

EI s 9.42 DIJ 9.35 R9 -59  RI^ .O5 

E I ~  .O3 DIT 6.40 h o  .28 T3 .19 

El9 1 1.35 Ri .15 RI i .2 1 T5 .43 

5.6 Interpretation of the Results 

In Table 5.1, D, and E, represent the deviation between graduated value (v,) and 

observed value (u,). Ei = 11.70 represent the deviation of fiat observed value form its 

gradwted value. Similady. = 4.53, = 4.91, = 10.38. Eiz  = 2.24, Els = 9.42, 

Di4 = 9.35 and D17 = 6.4 represent the deviation between graduated and observed values 

for 4'h, 61h1 9ih1 12'h. 15'. 16', 191h, 5'. 8'. 10'~. 13'~, 14' and 17Ih variable 

respectively. R2 = .05, = .06, % = .07, R7 = .66, Rs = 2 5 ,  R9 = 39, Rio = -28, 

Ts = .43 are the deviations in the second difference of the sequence v, for ln, znd, 4'h, 6'. 

7'h, 8'h, gih, loth. 1 lth, 12". 1 3 ~ .  14". 15', 16', 17'. 3d and 5~ variable respectively. 

Value of the objective function. which represents the minimization of sums of fit and 

smoothness, is 880.03. 
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Clearly, value of the objective function (Le. sum of the fit and smoothness) 

ob tained through Table 3.1 (section 3.4) for the same graduation problem formulated as a 

linear program under crisp environmeni has been improved from 886.8333 to 880.03. 

Table 2 in Appendix 2 depicts the graduated values obtained by solving the 

graduation problem using quadratic prograrnming approach for z = 2 and different values 

of h. In the same fashion, Table 4 in Appendix 2 represents the graduated value obtained 

using z = 3 for different values of h. 

Thus we c m  observe that quadratic program approach has been able to help 

improve the graduated values and the measure of the fit and smwthness of the graduation 

problem. 

5.7 Numerical Example of A Graduation Problem As A Quadratic 

Programming Problem Under Fuzzy Environment 

Any vagueness or impreciseness in data of observed values might lead to an 

inappropriate interpretation of the underlying law, which would in tum completely defeat 

the purpose of graduation process. As described before, problems of impreciseness in 

data can be handled effectively by taking advantage of fuzzy set theory ( [ 5 ] .  [19] and 

I5 11). 

Now we write the fuzzified format of the quaciratic program problem using 

(EFQP-1). In this exarnple we assume a tolerance level of approximately 30% for 

observed values and 0.25% in total objective function. Therefore zo is 880.03 and qo is 

2.2. For the obsewed value constraints, the tolerances are ql = 5.1, q- = .6. q 3  = 5.7, 

q 4 = 8 . 7 ,  qs=6, q b  = .3, q, =5.7, qg =8.4,qg =5.4,qio =.3,qii  =2.1,qiz = .3, 
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q 1 3  = 7.8, q14 = 8.4, 915 = 9, q i 6  = 3.9,917 = 1.5, where as the rest of the data is sarne 

as in the crisp problem (P- 1). We have the fuzzy version of above problem as: 



Non-negativity constraints: 

Replacing each fuuy equdity with two inequalities, we obtain 







Now we write the crisp version of (VP) as follows. 

Maximize h 

subject to the following constraints: 

3(D1 + El) + 5(D2 + E,) + 8(D3 + E3) + + Eq) + lS(D5 + Es) + 20(D6 

+ E6) + 23(D7 + E7) + 20(D8 + Es) + IS(D9 + Es) + 13(Dlo +Elo) + 1 l(Dil 

+ EI I )  + lO(Dt2 + Eid + %Di3 + Ei3) + %DIJ + E14) + 7@15 + EIS) + 

5(D16 + El6) + 5(D17+ El,) + 3(Dlg + El#) + l(D19 + Els) + IO(R~' + R?' + 

R,' + h2 + Rs2 + k2 + R~~ + Rg2 + Rg2 + R~~~ + R~~~ + RIZ2 + R13' + R14' 

+ ~ 1 ~ '  + RI6= + ~ 1 7 '  +Tl2  +T'? +TJ2 + ~4~ +TSZ +T6' + T ~ '  +Ta' + T~' + 

~ 1 ~ '  + TI *' + TI'' +  TI^' + Ti4' + T~S' + ~ 1 ~ '  + TI7') + 2.2 h < 880.03 

E3-2E2+Ei  -D3+2D2-Dl  + R i - T i - 5 . l h L  11.9 

E j -2E7+El -D3+2Dr-Di  +Ri -T i+5 .1h i22 .1  

E4-2E3+E2-D4+2D3-D2+R2-T2- .6X> 1.4 

E4-2E3+E2-D4+2D3-D2+Rz-T2+.6hsS .6  

- E s + 2 E 4 - E 3 + D 5 - 2 D 4 + D 3 - R 3 + T 3 - 5 . 7 1 2  13.3 

- E s + 2 & - E 3 + D s - 2 D j + D 3 - R 3 + T 3 + 5 . 7 A s 2 4 . 7  

E6-2E5+Eq-Dd+2Ds-Dq+&-T4-8.7h220.3 

E 6 - 2 E 5 + E - D 6 + ? D 5 - D 4 + % - T J + 8 . 7 h 5 3 7 . 7  

- E 7 + 2 & - E s + D 7 - 2 D 6 + D s - R s + T s - 6 x 5  14 

- E 7 + 2 & - E 5 + D 7 - 2 D 6 + D s - R 5 + T s + 6 h i 2 6  

Es -ZE7+&-D8+2&-D6+R6-T6- .3h5 .7  

E s - 2 E 7 + E g - D 8 + 2 b - D 6 + % - T 6 + . 3 h 5  1.3 





h l 1  

Non-negativity constraints: 

Ds 1 0 , E K  2 0 ,  X =  1.2, ..., 19. 

R, 2 O , T , 2 0 ,  x = 1 , 2  ,..., 17. 

h ' 0  

In crisp version of problem (VP). we ignore the quadratic constraint and solve the 

following ordinary linear prograrnming problem (LP). in this case we have the (LP) 

version of (VP) as: 

(Lp) Maximize A 

subject to the following constraints: 

E 3 - 2 E 2 + E l - D 3 + 2 D 2 - D i + R i - T i - 5 . l A 2  11.9 

E 3 - 2 E 2 + E i  - D 3 + 2 D 2 - D l  +RI -Tt  +5.l)cS22.1 

E 4 - 2 E 3 + E r - D 4 + 2 D 3 - D 2 + R Z - T Z - A h 2  1.4 

Ej-2E3+E2-D4+2D3-D2+R2-T2+.6hs2 .6  

- E s + 2 E 4 - E 3 + D s - 2 D j + D 3 - R 3 + T 3 - 5 . 7 h >  13.3 

-E5+2E4-E3+D5-2D4+D3-R3+T3+5 .7h524 .7  

&-2Es+b-D6+2D5-Da+&-Tj-8 .7A220 .3  

E 6 - 2 E s + b - D 6 + 2 D s - D 4 + h - T 4 + 8 . 7 A < 3 7 . 7  

-Et+2&-Es+&-2Ds+Ds-Rs+Ts-6Â.2 14 

- E 7 + 2 & - E 5 + q - 2 D 6 + D s - R s + T s + 6 h i 2 6  





El9 - 2Eis + E l 7  - Dl9 + 2D1s - DIT + R17 - TI7 - 1.5h L 3.5 

El9 - 2Eis + E l 7  - D19 + 2Dis - Dl7 + RI, - Ti7 + 1.5h 5 6.5 

h l 1  

Non-negativity constraints: 

D S 1 0 , E , 2 0 ,  x = l , 2  , . . . ,  19. 

R,20 ,T , IO,  x = l , 2  ,..., 17. 

h'0 

5.8 Results 

Solving the above problem, we obtain the following Table 5.2 representing the 

optimal solution of the problem (LP). 

Table 5.2 Results of the problem (LP) 

Variable Value Vririable Value Variable Value Variable Value 

EI 12 Es 12.6667 EIB 5 A667 Ri3 5.3333 

E3 5 El2 5 El9 16.3333 '&O 3.3333 

E.8 12 El3 3 Dto 2.6667 k 1 

Eh 13 h s  1 7 -6667 R.4 3 

E7 6 El6 7.3333 R7 0.3333 

Substituting the values obtained in Table 5.2 in the quadratic constraint, which 

was ignored, we obtain the value of the quadratic constraini as 1648.20. We observe that 

the quadratic constraint is violated. Therefore. according to the method developed in 

Chapter 4, we need to go to the Phase 2 of the solution method. 
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In the second Phase, we solve the quadntic programming problem (QP) 

parametrically as follows. 

subject to the following constraints: 

E 3 - 2 E - + E l - D 3 + 2 D 2 - D 1 + R I - T l - 5 . l h L  il.9 

E3-2E?+Ei-D3+2D2-DI + R I - T I  +5.Ih122.1 

Eq-2E3+E2-D4+2D3-D2+R2-Tt - .6L2  1.4 

Eq-2E3+E2-D4+2D3-D2+R2-T7+.6Â,s2 .6  





h < l  

h 2  1 

Non-negativity constraints: 

D, 10,E, 1 0 ,  x = 1 , 2  ,..., 19. 

R, 2 O,T, 1 O, x = l , 2  ...., 17. 

h > O  

5.9 ResuIts 

By solving a series of quadratic programs pararnetrically we obtain the following 

Table 5.3 representing the solution of the problem (QP). 

Table 5.3 Results of the problem (QP) 

VariabIr: Value Variable VaIue Variable Value Variable Value 

E i 1 1.69 Dz 2.57 Rz .O5 R12 -62 

E4 4.5 f DS 9.75 k .O6  RI^ .6 1 

f% 4.89 Da 3.96 R6 -06 RIJ .14 

LI 10.4 1 Dto 3 .50 R7 -65 RIS .O3 

El: 2.24 Di3 2.7 1 RS -23 Rtb -16 

El5 9.49 Dl4 9.29 R9 -57 R17 .os 

E 16 .O8 Dt7 6.37 Rio .3C T3 20 

El9 11.31 RI -15 RI I .19 Ts -53 

1 -9949 
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The value of objective function, which represents the combination of fit and 

smoothness is 877.84 and the level of satisfaction, h, of this solution is .9949 . 

Deviation between the graduated value v, and observed value ux is the absolute 

value of the di fference between deviational variables D, and Ex. Therefore, EI = 1 1.69 

indicates the absolute difference between graduated value vi and observed value ui, 

where not both vl  and ul cm not be positive simultaneously. Though, they can assume 

value zero at the sarne time. Sirnilar interpretation would stand tme for any values of D, 

and Ex. Hence, EJ = 4.51, Eg = 4.89, Es = 10.41, Elt = 2.24, EI5 = 9.49, E16 = .OS, 

EI9 = 11.31, D2 = 3.57, Ds = 9.75, D8 = 3.96, Dto = 3.50, Di3 = 2.71, Di4 = 9.29, and 

DI7 = 6.37 means the absolute difference between graduated value and observed value for 

I '~. 6Ih. 91h, lzth. 15Ih . Mth, 19'. ?", 5". 81h, loth, 13'. 14'h, and 171h term in the senes 

respectively. Whereas, Ri = .15, Rz = .05. = .06, % = .06. R7 = .65, Rs = -23, 

US, = .57, Rici = 25, R i i  = .19, RIZ = -62, R13 = 5 1 ,  Ris = .14, RI5 = .03, R16 = .16, 

RI7  = .05, T3 = 20 and Ts = .44 are the deviations in the second difference of the 

sequence v, for 1 ", znd, 4', 6", 7', 8", 9". 10'. 1 1'. 12', 1 3". 14', 15", 16'~. 17'" 3d 

and 5'h tenn respectively. The value of A, which stands for the level of satisfaction for 

solution obtained in Table 5.3 is .9949. 

The following Table 5.4 and Figure 5.5 show the behavior of the value of 

h corresponding to changes in tolerance levels, of 10%, 20%, 30%, 40% and 50% for 

imprecisely known observed values u,*s, and of 0.25%, OS%, 1%, 2%, 3 1 . 4 8 ,  and 5% 

tolerance levels qo for objective function, which represents the combination of fit and 

smoothness. 
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Table 5.4 Value of h Corresponding to Obsewed Value Tolerance and Objective 

Function Tolerance 

Obsc med Value Objective Function Tolerance 

Tolcrancc 

0.25% 0.5% 1% 2% 3% 4% 5% 

10% 0.9848 0.9697 0.93949 0.87953 0.82 164 0.76847 0.7 : 93 

15% 0.98985 0,9796 0.95877 0.9 1587 0,88245 0.8304 0.79027 

20% 0.99237 0.9846 0.96874 0.93535 0.900067 0.8660 0.8200 

25% 0.99388 0.98765 0.9748 0.9475 0.9 1 866 0.88926 0.86067 

30% 0.9949 0.98969 -97892 0.9558 0.93 1 1 0.90563 0.8807 

Table 5.5 Value of Objective Function (Membenhip Function) Corresponding to 

Observed Value Tolermce and Objective Function Tolerance 

Obwrvcd Valuc Objective Function Tolerance 

Tolcrancc 

0.25% 0.5% 1% 2% 3% 4% 5% 

10% 877.86 875.76 87 1.76 864.55 858. 17 852.98 848.38 

(.9864) (.9705) (.9398) (.8795) (3280) (.7685) (.7193) 

15% 877.85 875.72 87 1.59 863.9 1 856.99 850.80 845.26 

(.9909) (.9795) (-959 1 ) (.9 159) (3727) (3305) (-7902) 

20% 877.84 875.70 87 1.5 1 863.57 856.27 849.55 843.95 

(.9955) (.9841) (.9682) (-9352) (.9000) (.8659) (-8200) 

25 ri'c 877.81 875.68 87 1.45 863.35 855.78 848.73 842.16 

(.99SS) (.9886) (-9750) (-9477) (-9 185) (.8892) (.8606) 

30% 877.84 875.68 87 1.42 863.2 1 855.45 848.15 83 1-28 

(.9955) (.9886) (.9784) (-9557) (.9310) (.9057) (.8806) 
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5.10 Discussionof theSolutioninView of Table5.4andTable5.5 

Table 5.4 shows different values of h for var-ious tolerance levels for the 

imprecisely known observed values and desired levels of objective function. Also. 

Table 5.5 shows different values of objective function for various tolerance levels for the 

imprecisely known crisp objective function value and imprecisely known observed values 

u,. Note that in this formulation the rnembenhip function h is used to express the degree 

of certainty of the solution with respect to fuzzy parametea. objective function which 

represents the combination of fit and smoothness and imprecisely known observed values 

for u, [43]. From Table 5.4, it is observed that with the increase in the tolerance level for 

desired level of objective function, the value of h decreases. This shows chat the smdler 

the value of membership grade A, the smaller is the support for the solution and hence. 

lower the degree of certainty of solution. On the other hand, it is observed that with 

increase in tolerance lirnits for imprecisely known u,, the value of )c increases. This 

shows that the larger the value of membeahip grade A, the iarger is the support for the 

solution. in Table 5.5, the numbers in the brackets represent the value of the membenhip 

function corresponding to the value of objective function at the optimal solution given in 

Table 5.3. From Tables 5.4 and 5.5 we observe that the value of the membenhip 

function is, as expected, either greater than or equal to the value of 71. It can therefore be 

concluded that fuzzy programming does not provide just another crisp solution; instead ii 

produces the optimum solution corresponding to the pre-specified tolerance ievels of 

constraints. The above observation is also seems to be clear from Graphs 5.4 and Gnphs 

5.5 in Appendix 1. 
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In the above examination, the relationship between objective function (which 

represents the combination of fit and smoothness) and the range of observed values u,'s 

are investigated for possible values of membenhip grade between O and 1. Such an 

exmination is useful in order to provide the decision rnakers with sufficient information 

on the implication of the choice of the membenhip grade prior to making final decision. 

Fuzzy programming is a suitable method to admit imprecise data. Especially, when the 

management or the decision m a k e ~  are unable to specify precisely the combination of fit 

and smoothness level, but are rather able to provide lower and upper bounds. with respect 

to some pre-assigned aspiration level, taken as representing imprecision in setting of such 

bounds. As already stated, fuzzy set theory permits the partial belonging of an element to 

a fuzzy set characterized by a membenhip function that takes values in the interval [O, 11. 

Thus. fuzzy programrning produces most satisfactory solution within a pre specified 

interval, whereas a conventional crisp set theory constraint only permits an element either 

to belong (membenhip grade 1) or not to belong (membership grade O) to the set {O, 1 1. 

5.11 Cornparison and Discussion of the Results In View of Graphs and 

Tables in Appendix 1 and Appendix 2 

On the lines of Schuette [37], we draw Table 1 in Appendix 2 which depicts the 

graduated values and measures of fit and smwthness obtained by using linear 

programming approach to graduation for t = 2 and various values of h. Similady, Table 2 

in Appendix 2 is the representation of values obtained by utilizing quadratic 

programming approach to graduation for z = 2 and various values of h. By analyzing the 

Graph I in Appendix 2, which corresponds to Table 1 and Table 2, it is observed that the 
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quadratic prograrnming improves the graduated values and rneasure of fit and 

smoothness. Graph 2 in Appendix 2 presents a cornparison of graduated values and 

measures of fit and smwthness obtained in Table 1, Table 2 and by Schuette [37, page 

423, Table 11. It is clear from Graph 2 that the quadratic prograrnrning approach has not 

only been able to improve the values but also the smoothness. Table 2 and Table 4 in 

Appendix 2 present the graduated values and measures of fit and smoothness utilizing 

linear programming approach and quadratic programming approach respectively for z = 3 

and various values of h. Graph 4 in Appendix 2 presents a comparison of graduated 

values and rneasure of fit and smoothness obtained in Table 3. Table 4 and by Schuette 

[37, page 424, Table 21. Again. the quadratic programming approach gives smwther and 

more improved values. 

Table 5 and Table 6 in Appendix 2 compare the values of measures of fit and 

smoothness, graduated values and level of satisfaction using linear programming 

approach and quadratic prograrnming approach under fuuy environment respectively. 

This comparison is done by taking z = 2, h = 10, q, = 30% (which is the tolerance level 

for al1 the constnints) and changing the tolerance level of objective function Le. 

measures of fit and smoothness. 

As it is clear from Table 5 and Table 6 (Appendix 2) that the quadratic 

programming approach help improve the level of satisfaction, graduated values and the 

measures of fi t  and smoothness. This conclusion becomes more clear by lwking at 

Gnph 5 and Graph 6 in Appendix 2. 



Chapter 6 

CONCLUSION, CONTRIBUTION AND RECOMMENDATIONS 

in the present chapter, we state the contributions and conclusions of this 

dissertation. Finally, we give some recomrnendations for funher research on the problems 

considered in this dissertation. 

6.1 Conclusion and Contribution 

In the present dissertation, an important problem in the field of Actuarial Science, 

i.e. graduation problem addressed by Schuette [37], has been revisited. We have 

modeled graduation problem as linear program with deviational variables for observed 

and graduated values, under fuuy environment. Also, the problem is modeled as 

quadratic program by incorporating quadratic objective function as cornpared to linear 

objective function proposed by Schuette [37]. Three most significmt contributions of this 

thesis are 

1. Graduation problem considered by Schuette [37] is formulated and solved under 

fuzzy environment to capture the irnpreciseness present in the data set of observed 

values in Chapter 3. 

2. We propose a finite iteration technique for solving fuvy quadratic prograrnming 

problems in Chapter 4. 

3. Graduation problem is formulated and solved as a quadratic program both under 

cnsp and fuuy environment in Chapter 5. This improves the results of Chapter 3. 
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The graduation problem with imprecise observed values data under both crisp 

and fuzzy environments is considered in Chapter 3. Under cnsp environment the 

problem was formulated on the lines of formulation proposed by Schuette [37]. 

However, one underlying assumption in the above model, and most of the models in the 

literature is that data used is deterministically known. But data set of observed values 

rarely-if-ever turns out to be crisply correct. Therefore. the models based on precise 

knowledge of observed values have little pnctical applications. We deal with such a 

problem t hrough fuuy logic approach. Under fuzzy environment. the problem is 

formulated as fuzzy linex program. 

In chapter 4 we propose a new approach to solve fuzzy quadratic programrning 

problem. Although, there are lots of techniques available in the literature but there is 

hardly one that is easy to use. This method can be helpful for the managea to take 

appropriated decisions taking vagueness of the data into account. 

Chapter 5 presents the graduation problem as considered by Schuette [37] as a 

quadratic programming problem. It is observed that the results obtained improve the 

ones obtained by applying linear programrning technique in the Chapter 3. and the results 

obtained by other researchers using other techniques. 

It is suggested that the methods presented in this dissertation are computationally 

effective and useful for deterrnining the optimal solution to the problems discussed in 

Chapter 3,4 and 5. 



6.2 Applications and Recommendations for Future Research 

The technique presented in this dissertation for fuzzy quadratic programming can 

be utilized and extended in portfolio selection process, where market rate of retum is 

most of the time fuzzy. A typicai portfolio selection problem will contain following 

components: 

Risk factor measured by variance of the portfolio. which is a quadratic function 

Expected retum measured by a linear function 

Total fund available, which represents the resource availability 

Upper and lower limit for investing in a particular type of security. 

Further, the methods introduced in the present thesis, offer an opportunity to view a 

graduation problern from a different prospective. in the present thesis, we discuss and 

solve the graduation problem using linear programming and quadratic programming 

approaches as a symrnetric case. However, the non-symmetric problem cm be solved 

utilizing the same approaches with appropriate modification. 
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Graphs 3.3 

Depicting 

Value of h Corresponding to Observeci Value and Objective Function Tolerance 

(as per Table 3.3) 
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Graphs 3.4 

Depicting 

Value of Objective Function Corresponding to Constraints and Objective Function 

Tolerance 

(as per Table 3.4) 
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Graphs 5.4 

Depicting 

Value of h Corresponding to Observed Value and Objective Function Tolerance 

(as per Table 5.4) 
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Graphs 5.5 

DepictUig 

Value of Objective Function Corresponding to Constraints and Objective Function 

Toletance (as per Table 5.5) 
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TABLE 1 

LlNEAR PROCRAMhIING APPROACH TO GRADUATlON UM)ER CRlSP ENVIRONhlENT 
CCUDUATED VALUES. AM) h W U R E S  OF FIT AND SMOOTHiïiS FOR 2 = 2 

h = 8.80 - h = 10.00 h = 16.60 h = 24.40 h = 32.20 h = 40.00 h = 47.80 h = 55.60 h = 63 40 h = 71 .?O h = 79.()0 

Graduated Values 
v. 

hlcasures of Fit and Smoothnm (Value of Objccîive Function) I 

873.53 886.83 913.36 931.94 942.99 953.04 965.09 976.14 986.0) 995.58 1001.2 

TABLE 2 
QUADRITIC PROGRAMWNG APPROACH TO CRADUAnON W E R  CRlSP ENVIRONMEhT 

GRADUATED VALUES. AM> MEASORES OF FIT AND SMOOTHNESS FOR z = 2 

h = 8.80 h = 10.00 h = 16.60 h = 24.N h = 32.20 h = 4û.00 h = 47.80 h = 55.60 h=63.40 h=71.20 h=79.00 

Graduated Values 

85.28 85.35 85.52 84.92 84.1 l 83.62 83.30 83.32 83.34 83.35 83.36 

92.55 92.58 92.66 91.66 90.40 89.63 89-13 89.14 89.15 89.16 89.17 

99.96 99.97 100.00 98.57 96-81 95.74 95.M 95.05 95.06 95.06 95.06 

107.39 107.a 107.33 105.56 103.29 101.90 101.00 I01.00 101.00 101.00 101.00 

115.00 115.00 115.00 112.65 109.84 108.13 107.01 106.99 106.98 106.97 106.97 

122.67 112.65 122.60 119.76 116.41 114.36 113.03 113.00 112.97 112% 112.94 

Mcasures of Fit and Smwthnas (Value of Objective Function) 
877.38 880.03 891.47 9û1.76 907.88 91 1.88 914.81 917.36 919.83 922.25 924.64 



Comparison of Measures of Fit and Smoothness 

Graph 1 

8.8 10 16.6 24.4 32.2 40 47.8 55.6 63.4 71.2 79 

Valws d b 

Comparison of Measures of Fit and Srnoothness 

Graph 2 

+ Li near 

+ Quadraiic 

-a- Schuetre 

8.8 10 16.6 24.4 32.2 40 47.8 55.6 63.4 712 79 

Valws of h 



TABLE 3 

LINEAR PROGRAhilCiINC APPROACH TO GRADUATION UNDER CRlSP ENVIRONMEKT 
GRADUATED VALUES. AND MEASURFS OF FIT AND SMOOTHNESS FOR z = 3 

i = 6.91 h = 10.00 h = 13.07 h = 19.23 h = 3.4 h = 31.56 h = 37.72 h = 43.88 h = 50.04 h = 56.10 h = 62.36 

Graduated Values 

75.99 26.68 16.68 26.68 26.68 26.68 26.68 27.01 27.01 27.01 27 01 
31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 
35.71 35.29 35.19 35.29 35.29 35.29 35.19 35.09 35.09 35.09 35.W 
JO. 1 1  39.56 39.56 39.56 39.56 39.56 39.56 39.29 39.29 39.29 39.29 
44.31 43.79 43.79 43.79 43.79 43.79 43.79 43.59 43.59 43.59 43.59 

106.99 106.99 106.99 106.99 106.99 106.99 106.99 106.86 106.86 106.86 106.86 
115.M) 115.00 115.00 115.00 115.00 115.00 115.00 115.00 115.00 115.00 115.00 
123.39 123.39 123.39 123.39 123.39 173.39 13.39 123.57 173.57 123.57 123.57 

Mcasurrs of Fit and Smooibnm (Value of Objective Function) 
874.77 876.76 878.03 880.57 883.12 885.66 888.21 890.21 892.20 894.18 8%.17 

TABLE 4 
QUADRITlC PROCRAMMING APPROACH TO CRADUATlON UNOER CRISP ENVIRONMENT 

GRADUATED VALUES. AND MEMURES OF FIT AND SMOOTHNESS FOR z = 3 
1 

i =6.91 h =  10.00 h =  13.07 h =  19.23 h r 25.4 h = 3 1 .56 h = 37.72 h = 43.88 h = 50.W h = 56.20 h = 62.36 

Gnduated Values 

97.76 98.11 98.30 98.49 98.59 98.65 98.69 98.72 98.74 98.75 101.23 
105.94 106.17 106.30 106.43 106.49 106.53 106.56 106.58 106.59 106.61 106.61 
115.00 115.00 115.00 115.00 115.00 115.00 115.00 t 15.00 115.00 115.00 115.00 
13.02 124.64 124.45 124.24 124.13 124.06 124.02 13-99 123.97 123.95 123.93 

Measures of Fit and Smoo(hnrs (Value of Objective Function) 
866.06 868.96 870.52 87121 873.15 873.78 874.25 874.63 874.95 875.23 875.49 



Comparison of Measures of Fit and Smoothness 

Graph 3 

+ Linau 
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TABLE 5 

LINEAR PROGRAMMING APPROACH TO GRADUATION UNDER FUZZY ENVIRONMENT 
GRADUATED VALUES, AND MEASURES OF FIT AND SMOOTHNESS FOR z = 2, h = 10 

= 886.8333, q, = 30 8 

q, = 255% 

Maures  of Fit and Sinoothness (Value of Objective Function) 
884.63 882.36 

Gnduated Values 

vx 

qo= .50% qo= 1% 

878.2 1 

qo = 2% 1 q0=3% 

Satisfaction kve l  (A) 
870.04 

0.9930 

qa = 4% qO= 5% 

0.9862 

848.23 862.32 855 .O8 

0.9727 0.9469 0.92 12 0.8952 0.8705 



TABLE 6 

QUADRATIC PROGRAMMiNG APPROACH T O  GRADUATION UNDER CRiSP ENVIRONMENT 
GRADUATED VALUES, AND MEASURES OF FIT AND SMOOTHNESS FOR z = 2, h = 10 

~0 = 880.03, q, = 30% 

q,= .25% qo = -50% q o =  1% qo = 2% qo= 3% qo= 4% qa= 5% 
Graduaied Values 

Measures of Fit and Smoothness (Value of Objective Function) 
877.81 875.68 1 871.42 1 863.21 1 855.45 848.15 84 1.28 

Sarisfaction LeveI (il) 
0.9949 0.98969 1 0.97892 1 0.9558 ( 0.931 1 1 0.90563 1 0.8807 



Graph 5 
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