
Archive Planning for a Distributed PACS

by

Peng Zhou

A Thesis submitted to the Faculty of Graduate Studies of

The University of Manitoba

in partial fulfilment of the requirements of the degree of

MASTER OF SCIENCE

Department of Computer Science

The University of Manitoba

Winnipeg, Manitoba

April2008

Copyright O 2008 by Peng Zhou

THE UNIVERSITY OF MANITOBA

FACULTY OF GRADUATE STUDIES
*J<**ìT

COPYRIGHT PERMISSION

Archive Planning for a Distributed PACS

BY

Peng Zhou

A ThesisÆracticum submitted to the Faculty of Graduate Studies of The University of

Manitoba in partial fulfillment of the requirement of the degree

MASTER OF SCIENCE

Peng Zhou O 2008

Permission has been granted to the University of Manitoba Libraries to lend a copy of this
thesis/practicum, to Library and Archives Canada (LAC) to lend a copy of this thesis/practicum,
and to LAC's agent (UMVProQuest) to microfilm, sell copies and to publish an.abstract of this

thesis/practicum.

This reproduction or copy of this thesis has been made available by authority of the copyright
owner solely for the purpose of private study and research, and may only be reproduced and copied

as permiffed by copyright laws or with express wriffen authorization from the copyright owner.

Thesis advisors

Yanni Ellen Liu, Michel Toulouse

Author

Peng Zhou

Abstr
^ct

In the health industry, digital imaging data are stored and processed by a system called

Picture Archive and Communication System (PACS). There are two types of

architectures that can be chosen to implement a PACS: centralized and distributed. The

centralized architecture has only one archive for storing and processing the digital

imaging data. While the centralized architecture is currently the most common

architecture, it does not provide the required scalability, reliability, and perfornance

when the amount of digital medical images grows and the mobility of the image users

increases. A distributed architecture of PACS's has more than one archive to share the

load of storing and processing the digital medical image data. The database is separated

physically but integrated logically []. The distributed architecture can overcome the

limitations of centralized architecture and has advantages of reduced bottleneck, higher

reliability and availability, higher modularity and thus higher scalability []. To design a

distributed PACS, we need to determine the number, the location, and the capacity of the

PACS archives. We also need to determine where to store each image file so that we can

maximize the archive accessing performance within a certain budget. This thesis provides

a methodology that helps PACS administrators to design a distributed PACS. This

methodology can also be helpful to analyze the performance of an existing distributed

PACS.

Table of Contents

Abstract.... ii

Table of Contents iii

List of Figures............. v

List of Tab1es............. vi

Acknowledgments....... vii

Chapter I Inhoduction............ I

Chapter 2 Background and Related Work......... 8

2.1 Organization of a PACS........ 8

2.2 Distributed PACS........lz

2.3 Modelling of PACS's. 15

2.4 Network Simulation 16

Chapter 3 A Mathematical Programming Model for Designing Distributed PACS's.. 19

3.1 Problem Environment............... t9

3.2 Def,rning the Objective Function.23

3.2.1 Data Access Model24

3.2.2 Average Network Delay Model26

3.3 Other Decision Variables and Constraints............29

3.4 The Mathematical Programming Model rr

3.5 Solving the Model.. 35

3.5.1 Solver Characteristics............35

3.6 Solver Parameters Tuning....... 39

lll

3.6.1 Selected Problem Instances....40

3.6.2 Preliminary Experiments 45

3.6.3 Factorial Experiment48

3.6.4 Solver Tuning Results and Conclusions..........49

Chapter 4 Model Validation With Simulation.......... 58

4.1 Simulation Model Description 58

4.1.1 Network Model59

4.1.2 Traffic Model60

4.1.3 Performance Metrics 62

4.1.4 Simulation Development63

4.2 Experiments and Resu1ts............... 65

4.2.1 Overview of Experiments........... 65

4.2.2 Input Parameters..........67

4.2.3 Comparison of Optimization and Simulation Results 69

4.2.4 The Effect of the Budget.......73

4.2.5 The Effect of 8andwidth...............76

Chapter 5 Conclusions...........79

5.1 Contributions...............80

5.2 Future Work......... 8l

Appendix A Results of Simulation Verification by Utilization 83

References. 86

IV

List of Figures

Figure 2.1 A PACS9

Figure 2.2 Distributed PACS 13

Figure 3.1 PACS Data Access................ 20

Figure 3.2 9-Site Instance Network Topology...41

Figure 3.3 l5-Site Instance Network Topology...44

Figure 4.1 Archive Position in Data Transfers 60

Figure 4.2 Comparison of the Performance Metric for the 9-Site Instance...................... 71

Figure 4.3 Comparison of the Performance Metric for the l5-Site Instance.................... 71

Figure 4.4Effect of Budget on the 9-Site Instance.....75

Figure 4.5 Effect of Budget on the 1S-Site Instance..... 75

Figure 4.6 Effect of Bandwidth on the 9-Site Instance..... 78

List of Tables

Table 3.1 Parameters of the Mathematical Programming Model22

Table 3.2 Decision Variables of the Mathematical Programming Model32

Table 3.3 Supplemental Decision Variables...............32

Table 3.4 Description of Important KNITRO Solver Parameters37

Table 3.5 Preliminary Experiments for Different Algorithms46

Table 3.6 Impact of ms_maxsolves47

Table 3.7 Top Results for the 9-Site Instance..... 50

Table 3.8 Bottom Results for the 9-Site Instance 5l

Table 3.9 Top Results for the l5-Site Instance.....52

Table 3.10 Bottom Results for the 1S-Site Instance 54

Table 3.1 I Comparison of InteriorlDirect, Interior/CG Algorithms 57

Table 4.1 Factors and Levels for the g-Sit; Instance..... 68

Table 4.2 Factors and Levels for the 15-Site Instance..... 68

Table 4.3 Parameter Setting Index......... 70

Table 4.1 Comparison of Two Types of Utilization................ 83

vl

Acknowledgments

I would like to begin by thanking my advisors, Dr. Yanni Ellen Liu and Dr. Michel

Toulouse, for their guidance and support.

I am very grateful for Dr. Jeff Diamond's creative ideas on solving some critical issues in

my thesis project.

As always, I am thankful to my parents who have supported me along the way.

Finally, I would like to acknowledge TRLabs, Winnipeg for providing partial financial

support and research facilities to help me pursue my master's degree.

vii

Chapter I : Introduction

Chapter 1 Introduction

In the health industry, medical image acquisition equipments called modalities, e.g.,

computed tomography (CT), magnetic resonance imaging (MRI), ultrasound (US),

nuclear medicine (NM), and computed radiography (CR), are used in the radiology

department to do diagnostic imaging. Modern technologies have enhanced those imaging

devices with capabilities to produce digital images. Both the number and the size of the

digital images produced by those devices are very large. For example, currently a single

Cardiology study using digital modalities produces 5-10 of Gigabytes of data [2] .

Typically, a moderate size hospital can produce around 10 Terabytes of images per

year [3]. Management information, radiologists' dictation, specialists' consultation and

other additional information related to those diagnostic images add more data. To manage

this large amouni of data, a special system called Picture Archive and Communication

System (PACS) was introduced in mid-1980s [4] for use in the radiology department.

PACS collects the image data from modalities, stores the image data and related

information created in the radiology work flow in archives, processes the data according

to various requirements from clinicians and radiologists, and distributes the data to the

proper users.

There are two types of architectures that can be chosen to build a PACS: centralized and

distributed [5]. The centralized architecture has only one archive for storing and

processing the digital medical data. The centralized architecture is easy to design,

implement and manage but the malfunction of the central archive will bring down the

entire PACS. Moreover, expanding the capacity of the single archive is limited by storage

Chapter l: Introduction

hardware, network bandwidth, network coverage, and other factors. In the distributed

architecture, on the other hand, there is more than one archive to share the load of storing

and processing the digital medical data. Distribution oflhe data increases the reliability of

the system. It can also be easier to add additional archives to improve the system

performance when there are more users and medical imaging devices.

Currently most PACS's are implemented based on the centralized architecture. Also, in a

health region, most PACS's are isolated in the sense that a PACS only manage the

internal data. As a result, PACS's are at a small scale and important data is not shared

between hospitals. However, as more and different types of advanced modalities are

being used, the image data produced by radiology modalities increases rapidly. Larger

PACS's will have to be installed to handle this data surge. As the cost to build a large

PACS is prohibitively high, it may not be realistic to equip each hospital with a full-

fledged PACS. Also, the digital imaging data needs to be shared by clinicians and

radiologists across a health region. This is because, first, radiologists and clinicians in

different hospitals may need to consult each other. Second, patients may change hospitals.

Third, hospitals usually do not have all types of modalities. Fourth, hospitals are not

staffed with enough personnel with all specialties. This demands that new PACS's can

integrate and manage image data produced within a health region that includes multiple

hospitals. For these new PACS's, more often than not the centralized architecture can not

provide the required geographical coverage, patient mobility, system scalability,

reliability, and especially performance. Therefore, the distributed architecture is the more

preferable choice for the PACS administrators.

Chapter I : Introduction

However, designing and implementing distributed architecture of PACS present many

challenges. First, building a PACS archive is very costly and thus multiple archives can

easily strain the budget. Hence, the first challenge is to minimize the number of archives

in the architecture while still meeting all the predefined targets such as cost and

performance. Second, the data processing capacity of an archive is proportional to the

cost of the archive. This entails the challenge of determining the capacity of an archive so

that the archive is neither over provisioned nor incapable of servicing the users that

access this archive. Third, transferring the imaging data over a network can cause long

delays as a result of bottlenecks due to either congested bottleneck links or overwhelmed

archives, especially when the distributed archives are not wisely placed. The delays will

offset the performance gained by investment in archive capacity. The delays may often be

unacceptable because of the size and time sensitivity of the imaging data (e.g., in the

emergency cases, the response time to retrieve image data of a patient is critical). Thus,

where to place the multiple archives in a distributed PACS architecture to best utilize the

capacity of the archives and reduce the transferring delay poses another pivotal challenge.

Finally, when an image file is produced by a diagnostic device, we also need to choose an

archive to accommodate the file so that this file is close to most users and is within the

capacity of that archive. The decision of choosing which archive or archives (very large

files may be split into parts for storing in multiple archives) to store each single file can

be complicated. A file can be stored in a hospital external to the hospital where the file

was created and also be accessed by multiple radiologists and clinicians from multiple

hospitals.

Chapter l: Introduction

In summary, to design a distributed PACS architecture, the PACS administrators need to

decide the number, the location, and the capacity of the PACS archives and choose which

PACS archive(s) to store each study (radiology image and other related data for each

diagnostic case) so that they can maximize the performance within a certain budget, or

conversely to minimize the cost under a certain performance constraint, e.E., average file

transfer time in seconds.

This thesis tackles this problem by making use of a formulation based on mathematical

programming. An existing mathematical programming model is first introduced, then

modified and solved. The objective is to frnd the most efficient PACS design that

achieves the best performance under a certain budget. The methodology developed can

be used to build a software tool that helps PACS system administrators to design a

distributed PACS. The methodology can also be helpful to analyze the performance of an

existing distributed PACS system that has multiple archives.

The mathematical model includes a performance metric for distributed PACS's.

Performance bounds on average file transfer time established by Bonald and Proutière [6]

are used to form the objective function. An existing solve¡ for solving optimization

problems is used to solve the formulated mathematical programming model.

Like in any model, simplifuing assumptions are made when we model the PACS design

problem. This may limit the ability to represent an environment as complex as a

distributed PACS. Results obtained from solving the mathematical programming model

need to be validated. Simulations can be used to validate optimization results [7].

Simulation modelling is able to represent a complex PACS environment that consists of

Chapter I : Introduction

all archives, network routers, software applications, and network protocols in a more

accurate way than mathematical programming modelling. In this research, a discrete-

event simulation model is developed to validate the mathematical programming model.

The simulation is at the packet-level. Components such as the network protocols at

end systems, packet-queuing schemes and scheduling in routers, etc., which are left

by abstraction in analytical optimization modelling, are implemented.

When designing the experiments, I selected parameter values for the mathematical

programming model and simulation in such a way that the results from the simulation and

those from the optimization are comparable. For each set of comparable parameter values,

I analyze the two sets of results from optimization and simulation to check if they match.

To illustrate and prove my methodology, I selected two problem instances. One is to

design a distributed PACS for the Health Region Authority of a metropolitan city. Traffic

data collected from the hospitals in the health region is used. The other problem instance

has no counterpart in reality but is created according to the characteristics of the first

problem instance. Its scale in terms of number of nodes and network links, however, is

twice as large as that of the first problem instance. It is anticipated that these two problem

instances encompass a large number of distributed PACS design scenarios.

Simulation results show that the optimal placement produced by solving the optimization

model yields good performance. The performance collected from the simulation is close

to the objective function value that is obtained from the optimization model solution. The

difference between the two is due to a number of realistic components that are missing

from the optimization model but are implemented in the simulation model.

the

out

Chapter I : Introduction

To increase the confidence in the proposed approach, experiments were performed with

varying budget and network bandwidth, for both the mathematical programming model

and the simulation. Results show that (a) with increased budget, more archives may be

employed which leads to improved performance, (b) with increased network bandwidth,

the performance is also increased. Both are consistent with intuition and are as expected.

Because the mathematical programming model used in this research is nonlinear and

integer, the solver only produces local optima. There are multiple algorithms employed

by the solver to solve integer nonlinear models. These algorithms have algorithm

parameters, which are set to default values at beginning. To search for the parameter

settings that produce better results than the default one, I perform experiments with

different combinations of parameter values. The experiments show that there is large

difference among the objective values produced by different parameter settings. They

also show the same pattern for both problem instances with regard to which parameter

settings improve the results and which ones degrade them. Moreover, I perform

simulation for each solution produced by the solver with different parameter settings. The

difference in objective values as a result of different solver parameter settings coincide

with the difference in performance obtained from simulation- This further supports the

merit of the developed approach. The solver parameter tuning also provides valuable

insight into solver parameter settings for solving similar PACS design problems.

In summary, these experiments demonstrate that the mathematical programming model

can be used by PACS designers to find a good design for a distributed PACS. In addition,

the simulation model developed can be utilized to produce more accurate estimate of the

system performance than with the optimization model alone.

Chapter I : Introduction

This thesis is organized as follows. In Chapter 2, organization of PACS is introduced;

previous work that is related to this research is examined.

In Chapter 3 the existing mathematical programming model and its modification are

presented. This includes model assumptions, objective function, model parameters, and

decision variables. After that, the process to solve the model and to tune the solver

parameters is described. Finally, the results of the mathematical programming model are

reported and analyzed.

In Chapter 4, results from optimization are validated by simulation. The simulation model

as well as experiments and results are presented. Simulation results are analyzed and

compared to the results from solving the mathematical programming model.

Finally, Chapter 5 contains the conclusions, a list of thesis contributions, and suggestions

for future research.

Chapter 2: Background and Related Work

Chapter 2 Background and Related Work

In this chapter, I first provide a more detailed description of the organization of a PACS,

including its components and workflow. Then I introduce some literature related to my

research. The literature review focuses on three areas: performance modelling of PACS's,

the design of distributed PACS's, and network simulations for performance evaluation.

2.1 Organization of a PACS

PACS is sometimes referred as image management and communication system (IMAC)

also. The main purpose of PACS's is to replace hard-copy (e.g. film) based medical

image management with digitalized image managing computer systems. Compared with

alegacy film system, PACS has a great multitude of advantages, e.g., easier distribution

of images at enterprise level, much shorter image transmission time, simpler archival

management with less storage space and personnel, more flexible image manipulation,

and easier image copying and backup

A PACS consists of a number of components interccinnected by a broadband nefwork

(See Figure 2.1).

In the figure, imaging devices are where the digital diagnostic images are produced.

These include all the diagnostic radiology devices, i.e., modalities found in a modern

hospital. Modern radiology equipments can produce images in digital form and can be

stored in a PACS directly. On the other hand, traditional film producing radiology

equipment needs a file digitizer to convert films to digital images. Because of the high

Chapter 2: Background and Related V/ork

expenses of the modalities, the common practice is that a hospital in a health region

only equipped with certain types of modalities. Modalities are shared among hospitals

a health region.

Figure 2.1 A PACS

-.H17- flI
EPRiEMR

&
Viewing Worstation

is

in

ffi*H HL7----

üv
HIS/RIS

.............. -- *--- Þ
rmagrng L,evrces

PACS system (Archives) store high volume of digital medical data. They include both

short-term storage and long-term storage. Short-term storage acts like a local cache, while

long-term storage is for priors (historical data). Along with image data the comments and

diagnosis from radiologists are also stored in the archives.

Viewing workstations are used by radiologists and clinicians to view the images. It

usually has large screen and advanced image processing capabilities. Clinicians mainly

retrieve data from PACS while radiologists can make changes to images and write their

comments and diagnoses on the images. Clinicians' activities produce read-only traffic.

Chapter 2: Background and Related Work

Radiologists' activities produce writing traffic to data archives in addition to reading

traffic.

As an integral part of a healthcare enterprise, PACS interacts with other forms of

information systems in the healthcare environment, such as Hospital Information System

(HIS), Radiology Information System (RIS) and electronic medical or patient record

(EMR or EPR).

Device interfaces (DICOM) shown in Figure 2.1 are the components that integrate

imaging devices, modalities, film scanners, from different vendors. The imaging devices

are most likely from different manufacturers and not able to communicate with each

other. The interfaces make PACS independent of various PACS equipment vendors.

Device interfaces implement Digital Imaging and Communications in Medicine

(DICOM). DICOM is the de facto standard that defines the data structures and services

that are used to store, print and transmit information in medical imaging systems. Two

main components of DICOM are image fìle format definition and network

communication protocol [8]. The image frle format definition makes possible exchanging

files between various devices from different vendors who comply with the standard. The

network communication protocol defines an upper level protocol (ULP) over TCP/IP t9].

All systems or equipments that want to be a part of an initiative of Integrating the

Healthcare Enterprise (IHE) [0] need to implement the network communication protocol

of DICOM Il]. Before DICOM, PACS users were dependent on one vendor because

images acquired from a device from one vendor are in proprietary format and can not be

understood by devices from another vendor. Nowadays, DICOM has been widely

10

Chapter 2: Background and Related Work

adopted by hospitals, PACS users, radiology equipment vendors, and gradually by

smaller applications like dentists' offices.

HL7 in Figure 2.1 stands for Health Level 7. It provides a standard textual data format to

exchange health care information between HIS, RIS and PACS [4]. Usually HIS, RIS and

PACS are built upon different computer platforms and they need to convert their internal

representation to a standard format or inter-communication. While DICOM facilitates

communication between imaging devices and PACS, HL7 is the counterpart between RIS,

HIS, EMR and PACS. The difference is thai HL7 does not contain communication

protocols.

The two standards, DICOM andHLT, have matured since their inception in 1980s. They

have made it feasible to integrate heterogeneous health care systems. Both are useful to

build a distributed PACS.

Inl12l, Bandon et al. describe three types of different architectures that could be used to

design a PACS. The three types are:

¡ A centralized system that manages all medical images.

A hierarchical model with a master PACS connecting multiple mini-PACS's.

Each mini-PACS has its specialty, e.g., cardiology, haematology, etc. The master

PACS serves as the long-term archive.

Multiple PACS's. Each PACS is stand-alone, but with different targeted users.

There is a search engine for users to query all the data stored in the multiple

PACS's.

11

Chapter 2: Background and Related Work

Bandon et al. ll2) point out that the third architecture or a hybrid of the second and the

third architectures are the future approaches to designing a distributed PACS.

2.2 Distributed PACS

In a distributed PACS within a health region, usually there are multiple archives. These

archives often co-locate with hospitals in the region. However, not every hospital is

equipped with one due to the high cost of a PACS archive. Archives are equipped for the

entire health region and they are interconnected and interdependent. Each of them serves

as an integral part to meet the radiology imaging service needs of all the hospitals in the

health region. With a distributed PACS, hospitals can share modalities, and expert

resources, e.g., radiologists and clinicians. Those hospitals that do not have an on-site

PACS archive but have modalities are able to store the image data produced by

modalities in a PACS archive located outside the hospital.

Because of the large data volume being transferred in a large area, the components of a

distributed PACS are connected by a metropolitan network with broadband links. In

some cases, dedicated network links or special nefwork protocols are used to facilitate

data transfer and guarantee the response time of data access. The response time or data

access performance is the lapse of time from when a data access request is made to when

the data access is satisf,red. Figure 2.2 shows a distributed PACS with four sites. They are

t2

Chapter 2: Background and Related Work

Figure 2.2 Distributed PACS

Radiologist Workstation Cl¡nlcian Workstâtion

fr$i'oo'u'&
Radiologist

Site 3

Site 2

Site 4

connected by a Metropolitan Area Network (MAN). Internal components of each site are

connected by a Local Area Network (LAN). The four sites are equipped differently. Site

2 does not have radiologists. Site 3 does not have any modalities. Site 4 does not have

archives. Only site I is fully equipped.

Sheng and Garcia [1] describe a number of advantages of distributed PACS systems over

centralized systems and also presented the issues of designing a distributed PACS system.

They identiô, the issue of database fragment allocation which is the same as deciding

archive location and capacity. However, in their research work, they do not propose a

solution.

In [13], Huang first describes the "overall view of the current status of enterprise PACS

and image distribution". He then reviews three large-scale enterprise PACS's with

13

Chapter 2: Background and Related Work

multiple archive centres implemented in United States, Korea and Hong Kong. Huang

also discusses the advantages and related issues of distributed PACS's. However, Huang

does not introduce any optimization methodology when discussing the design of

distributed PACS's.

Tsiknakis et al. [l4] introduce the architecture of a distributed PACS called TelePACS.

The first version of TeIePACS has been implemented and installed at the radiology clinic

of the University of Athens, various imaging clinics of the University Hospital and the

Venizelion Regional Hospital. However, TeIePACS distributes the system Ioad by

functions. It uses different servers for different functions. For example, it has acquisition

servers responsible for the acquisition of medical image data from medical imaging

modalities, and archive servers responsible for managing medical image storage.

TeIePACS does not optimize the location and capacity of the archives so that resources

can be best utilized when the number of archives to be built is limited by budget

constraints.

The mathematical model of this thesis is based on the one formulated in [15]. The

performance metric used by the model in [5] is refined in this thesis by removing the

uncertain weight in the objective function [l5]. In this thesis, a more complicated

problem instance is introduced to show the applicability of the model. Moreover, the

parameters of the solver used to solve the model have been tuned to improve the results.

t4

Chapter 2:Background and Related Work

2.3 Modelling of PACS's

The research of Lawrence et al. [l6] is one of the early works to introduce the advantages

of PACS's over traditional film-based radiological image management. In their research,

besides illustrating the concept of a PACS, they also introduce a queuing model approach

to analyzing PACS performance. However, their approach deals with a PACS at its early

stage when it was in simpler form and at a smaller scale. It does not anticipate the current

digital imaging technology and the growing demand to share radiological data.

Chiotis et al. llTl study the performance of a PACS by using a mathematical

programming model and the simulation of an M/D/l queuing system. They present a

method to predict the performance of a PACS under various resource requirements. They

concluded that simple queuing and simulation models can be efficient methods to obtain

PACS performance results. However, their study is on a single seryer scenario and no

PACS distribution and placement is studied.

Huang et al. [8] introduced a testbed for researching the performance of several

federated PACS's. In the paper, they describe the challenge of managing large-scale

medical image archives. They implement a testbed with each PACS in two clinical sites

and one research site. Besides backup procedures and disaster recovery, they discuss the

benefits of multiple federated PACS's, e.g., fault-tolerance, performance improvement

etc. However, the optimization of the placement of the PACS is not their focus.

In her thesis, Mogatala [7] addresses

Regional Internet Service Providers

web cache location and provisioning issue for

building, solving mathematical programming

the

by

15

Chapter 2: Background and Related Work

models and executing discrete event simulations. In the research, Mogatala intends to

find the best placement and capacities of web caches that can provide best performance

under certain budget. To tackle this problem, Mogatala uses an approach similar to the

one I have used. Mogatala first models the issue as a Mixed Integer Programming

problem and then solves the mathematical model. After that, Network Simulator 2 [NS2)

[19] is used to implement a simulation model to validate the optimization results. The

author states that performance improvement can be achieved under certain budget or best

investment can be found using the methods above mentioned. However, the problem

addressed by Mogatala [7] is linear and the traffic model of the web caching is simpler in

that traffic is in one direction directing from web servers to web users. Thus, the

optimization and simulation methodologies used by Mogatala are quite different from the

ones that I used in this research.

2.4 Nefwork Simulation

Designers of networks want to know the performance of their design of networks before

the networks are fully implemented and in production. Experimentation with the physical

network is often either infeasible or too costly because of the complexity of the

nefwork [20]. This is especially true for building a distributed PACS considering the

complexity and cost of building a distributed PACS.

Anal¡ical queuing models have been a common replacement for physical networks to

study network performance issues [21]. However, anal¡ical queuing models have

drawbacks when the target system to be modelled becomes complex t20]. A detailed list

of drawbacks is given by Law and McComas [20]. Some of the drawbacks apply to the

l6

Chapter 2: Background and Related Work

analytical model that is used in this research. They are the potential inaccuracy and

uncertainty caused by the assumptions made during modelling abstraction. This makes it

necessary to validate the mathematical programming model. Network simulation has

been widely used to validate analytical models by researchers who study network

performance.

There are fwo main types of network simulation, packet-level simulation and flow

(fluid)-level simulation. The former simulates discrete events of each packet in the

network. The latter simulates in a more abstract way in the sense that it only simulates the

transfer rate changes of the traffic flows in the network. Packet-level simulation is more

accurate but requires many more events be simulated. Thus it has scalability issues when

network activities become busier, e.g., when network is large and bandwidth is high [22].

The abstraction from packets to flows can result in large performance gain for flow-level

simulation [23]. The performance gain is obtained at the cost of losing information about

individual packets and thus accuracy is the cost of flow-level simulation compared to

packet-level simulation. Cameron et al. l23l propose an hybrid approach to exploit the

accvracy of packet-level simulation and the performance advantage of flow-level

simulation by combining packet- and flow- level simulation in a single simulator.

However, it brings the challenge of accurately simulating the interaction between flows

and packets in the network. Thanks to its accuracy, discrete-event packet-level simulation

is used as benchmark to validate other simulation methodologies. Yung et al. [24] use

detailed packet-level simulation to validate a simulator they created that integrates a fluid

flow model with packet-level simulation. These two types of simulation may be of great

help to the designers of distributed systems as they can choose one of the two types of

t7

Chapter 2: Background and Related Work

simulations according to the scale of their system and their preference to accuracy or

speed of simulation. For my thesis, I chose packet level simulation for more accuracy

after I did preliminary experiments on both packet level and flow level simulation. I

implemented flow level.simulation using Matlab for one of two problem instances for

which I implemented packet level simulation. Results showed that flow-level simulation

is indeed faster. But the running time of the packet level simulation is also acceptable for

the problem instances I selected. Hence, I chose accuracy over speed in my thesis.

As an example of using simulation to validate analytical models, Monirul et al [25] build

a packet-level simulation model to validate their analytical model. The anal¡ical model

is to model and analyze virus propagation on Internet. They show that the agreement

between the packet-level simulation model and the anal¡ical model give them increased

confidence in both models.

t8

Chapter 3: A Mathematical Programming Model for Designing Distributed PACS's

Chapter 3 AMathematical Programming

Model for Designing Distributed PACS's

In this chapter, the problem environment for which we need to design a distributed PACS

is first described. Next, a key issue, measuring the performance of the distributed PACS,

is addressed in regard to the definition of a mathematical programming model of

distributed PACS's. Then, an existing anal¡ical model [5] is described and then

modified, which includes an objective function, the decision variables and the constraints.

I proceed to solve the analytical model. To illustrate this, I use two health system

problem instances. During the process of solving the model, I perform solver parameter

tuning experiments to improve the solutions produced by the solver.

3.1 Problem Environment

The distributed PACS system is developed for a health region which includes a set of

siles such as hospitals, clinics, doctor offices, etc. We consider a health region that has

Z sites, where each site is a potential location for a PACS archive. Sites are connected by

a communication nefwork. In this work, we represent the communication network by the

set of sites and a set of Lchannels. A channel Iris a unidirectional nefwork Iink that

connects sites I to j. Each channel is associated with a capacity ,8,; which is the bandwidth

in Mega bits per second (Mbps) of channel /u. Routing information of the network is also

assumed to be known and fixed which is defined by Ãu", :

19

Chapter 3: A Mathematical Programming Model for Designing Distributed PACS's

^ ft, ifroutey goes through channel s/rl :{ - i,jeV,sÍeL,Irst
10, otherwise

(1)

where route f' denotes a path from site i to sitej that consists of a sequence of channels.

Each site may have certain types of modalities that produc e radiological studies which

need to be saved in archives (studies are also, in some cases, referred to as files or

documents, or generally as trffic data) . Studies are saved in some archives for short-term

storage and may be moved to some other archives for long-term storage. The studies in

long-term archives are called priors. Priors are retrieved when the medical history of

patients is requested. Two types of hospital personnel may request the studies and priors.

They are clinicians and radiologists.

Figure 3.1 PACS Data Access

In a distributed PACS, the journey of a study usually starts when a modality produces the

study and stores it into an archive (step I in Figure 3.1). Next, it is read by a radiologist

or a clinician (step 2 in Figure 3.1). The radiologist and clinician may edit the study

before he/she writes the study back into the archive which causes writing traffic to the

to Arch¡ve (Network Delay occurs)

Step 2: Read¡ng from archive (Network Delay oæuß)

Radiologists, Cl¡niciâns

20

Chapter 3: A Mathematical Programming Model for Designing Distributed PACS's

archive (step 3 in Figure 3.1). Consultation between radiologists and clinicians may

happen afterwards and cause further reading and writing traffic of the study. During

consultation, radiologists and clinicians do not exchange the study directly. The study is

always stored into the archive first and then is read by the person whose opinion of the

study is requested.

For this problem environment, we assume that we know the following:

. The average rate of studies in Mega bytes per second generated by each modality

. How the clinicians and radiologists access the studies. The information about data

access includes the percentage of the studies accessed by the clinicians and

radiologists in the same hospital where the studies are produced. It also includes

the percentage of the studies accessed across hospitals and consultation among the

same group of radiologists that are in different hospitals.

Studies can be classified according to their source and destination [26]. Where a study is

produced and where the two types of users, clinicians and radiologists, of a study are

located decide the class of study. A study is of c/ass (¡,j,lr) if it is produced at site i,

requested by a clinician at siteT and a radiologist at site k.i, j, or k can be the same.

This notion of class is introduced based on traffic estimations that are collected at

hospitals and made available to this study. Based on the two assumptions above, we can

calculate, for each class, the rate at which the studies of class (¡, j,lr) are produced in

b¡es per second. This rate is denoted as D¡r. We assume that Pr*the rate ofprior data

2l

Chapter 3: A Mathematical Programming Model for Designing Distributed PACS's

of class (f , ¡,k)that is retrieved to site n , is also known. The detailed explanati on of Di¡r

and P,,rn will be given in Section 3.6.1.

We also assume that the cost of maintaining an archive is linearly proportional to the

capacity of the archive. No fixed cost is considered as apart of the total cost of building

an archive. Without loss of generality, we assume the cost of one unit of the data

processing capacity (I Mbps) is 1 . As a result, the total capacity is equal to the budget if a

full budget is used.

Table 3.1 summarizes the parameters of a hospital region which we use to define a

problem instance in our model. These parameters include the set of sites V , the

parameters that define the communication network (which include the set of channels Z ,

the corresponding bandwidth of each channel B , and the routing of the communication

network ,R), the traffic of the network (which include the producing rate of each class of

new studies D and the rate ofeach class ofprior studies retrieved to each site P), and the

total capacity available to all archives C.

Table 3.1 Parameters of the Mathematical Programming Model

Parameter Description

V Set of network sites

L Set of channels in the network

Bs¡ Bandwidth (in Mbps) of channel st , st e L

A,*, :1 If traffic from site i to j is routed such that it traverses the channel

22

Parameter Description

st,i,jeV;steL

= 0 otherwise

D,
u^

Rate (in Mbps) of production of class (¡, j,t) studies, i eV; j,k eV'

P,
Uffi

Retrieval rate of the prior studies of class (¡, j,tt) to site n (in Mbps)

i,n eV; j,k eV'

C Total capacity (in Mbps) available for archives, also called budget

Chapter 3: A Mathematical Programming Model for Designing Distributed PACS's

Since not every study interests all clinicians or radiologists, a study may not be requested

by any clinicians or by any radiologists. We denote by ,o the null site where no

clinicians or radiologists requests a sfudy. For example, studies of class (t,ro ,tt) are not

requested by any clinicians, studies of class (r,j,ro) are not requested by any

radiologists, and studies of class (i,ro,uo) are requested neitherby any clinicians norby

any radiologists. In Table 3.1, v' is defined as the union set of v and, vo , i.e.,

V' =V u {ro} .

3.2 Defining the Objective Function

We want a distributed PACS minimizing the delay that users (clinicians, radiologists, etc)

experience when accessing studies. Measuring the delay as accurate as possible is critical

to the usefulness of the model. Two types of delay that are commonly used in network

perfiormance studies are average delay and worst case delay- The average delay is the

23

Chapter 3: A Mathematical Programming Model for Designing Distributed PACS's

mean value of all delays of the files being transferred. Worst case delay is the longest

delay among all delays of the files being transferred 1271. They both have significance to

PACS users and are of research values. There are works that focus on studying worst-

case delays (for example [28]). Since a constructive way (described later) has been

discovered to measure aveÍage delay [15], I am going to use average delay, more

specifically, the mean time a clinician or radiologist takes to retrieve a unit of data as the

performance measure.

The main purpose of this section is to introduce a model of the average delay for

distributed PACS's. This model will be used as the objective for the mathematical

programming description of distributed PAC S's.

3.2.1Data Access Model

In a distributed PACS, a data access is the transfer of a study from a source site to a

destination site. There are two types of data access: data reading and data writing. In a

reading access, data is transferred from an archive (source site) to a radiologist or a

clinician (destination site). In writing, data is transferred from a modality, a radiologist or

a clinician (source site) to an archive (destination site). There is no transfer of data

between archives or between users (radiologists or clinicians). There is only one archive

involved in each data access. In this thesis, we refer to an ongoing data access as aflow.

A completed data access is a data transfer.

A data transfer consists of two phases. One phase is data being processed at an archive,

which can be either a reading or a writing. The other phase is data being transferred in the

nefwork. The order of the two phases is dependent on the type of data access. For a data

24

Chapter 3: A Mathematical Programming Model for Designing Distributed PACS's

reading, the archive processing phase is ahead of the hansferring phase. For a data

writing, it is in the opposite order. Similarly, the total delay of a data access is the sum of

two delays. One delay is the time that the archive needs to process the data. This delay is

referred to as an archive delay. The other delay is the time needed to transfer data on the

nefwork. This delay is referred to as a networkdelay or atransfer detay. To measure the

performance of a dishibuted PACS, delays on the two phases of a data access are

considered.

When calculating the two delays, we consider only transmission delay and queuing delay

for both the mathematical model and the simulation model (introduced in Chapter 4).

Transmission delay defines the amount of time required to load the data to be transferred

into the network links [29]. Queuing delay is the time when the data is waiting in a

buffer before being processed by an archive or transferred by network channels. In this

thesis, the archive delay is calculated in the same way as the network delay. This is

because

. Both network channels and archives have queuing delays.

¡ The transmission delay of network channels is similar to the service time of

archives.

r Both an archive and a channel can be modelled as a processor-sharing queue.

A process sharing queue defines a system where a server provides an equal fraction of

service time to its customers [30]. "Processor-sharing (PS) queues have been widely used

in the networking literature to model multiple file transmissions dynamically sharing a

fixed amount of bandwidth." [31]

25

Chapter 3: A Mathematical Programming Model for Designing Distributed PACS's

3.2.2 Average Network Delay Model

Measuring the network delay can be very complicated. Network delay of a flow is

decided by the bandwidth allocated to the flow. Traffîc characteristics or the properties of

flows in the network, such as flow size distributions þrobabilities of flows being in

different possible sizes [32]) and the stochastic process of the new arrival flows (arrival

process in short), are complex [33]. The scheme to allocate bandwidth to competing

flows in a network is a function of haffic characteristics. As a result, the bandwidth

allocation scheme is even more complex [34].

Extensive research has been carried out to simplifu the performance measurement task,

i.e. measuring network delays 16, 34-431. The main objective has been to identify a

method to measure performance that has the insensitivity characteristic, i.e., a

performance measurement approach that avoids dealing with most of the complex traffic

characteristics.

While trying to address this issue, Bonald and Proutière [37] found that the Whittle

queuing network has the insensitivity property. They defrne the Whittle queuing network

as a class of nefworks whose bandwidth allocation scheme satisfies the following balance

properry [36]:

"For all pairs of flows/ g, the relative change in the capacity allocated to/when

g is removed is the same as the relative change in the capacity allocated to g when

/is removed."

26

Chapter 3: A Mathematical Programming Model for Designing Distributed PACS's

However, although the insensitivity properry of Whittle queuing networks eliminates the

complexity of dealing with detailed traffîc characteristics, two major obstacles still exist

for one to make use of the insensitivity results in order to measure the performance of a

PACS network. If one tries to measure the performance of a Whittle queuing network, it

would still produce a complex function of the capacity of all channels and the load of all

routes [6]. Besides this fact, a PACS network is not necessarily a Whittle queuing

network.

A solution to address the first obstacle has been provided by Bonald and Proutière [6].

Assume that a Whittle queuing network is of "balanced fairness" if for any state

(number of flows in the network), a route traverses at least one saturated (fully utilized)

link [6]. Bonald and Proutière prove that, in a Whittle queuing network of balanced

fairness, the mean transfer time (network delay) of a flow is within a range that only

depends on per-channel information. This range is given by the following formula:

(2)

where T,(r7) is the mean network delay of a flow of a study of size ry on route r on

which the flow travels. / is any channel on r, and B,,lttdenote the bandwidth and

demand of / respectively. The term on the left side is the lower bound of T,(r) which is

the ry divided by the smallest bandwidth slack of all the channels on the route. The term

on the right side is the upper bound of T,(r¡) which is the summation of 17 divided by the

bandwidth slack of each channel on the route. Equation (2) clearly shows that the

performance (the mean network delay) depends only on the demand and the capacity of

^u^
Q <T (n\a Y ry

ter B,- ¡t,
r'r

E B, - p,

27

Chapter 3: A Mathematical Programming Model for Designing Distributed PACS's

the network channels and is insensitive to specific traffic details such as flow size

distributions, the arrival process of flows, etc.

In [39], Timonen shows that the above mentioned results of performance bounds are not

restricted only to networks of balanced fairness. He showed, through experimentations,

that the fairness scheme of a network has little impact on the performance. The fairness

schemes that he studied and simulated include common fairness schemes such as max-

minl44), proportional [41] and a-fairness [a5]. The prevalent TCP protocol used by

PACS networks most likely uses one of these faimess schemes to allocate bandwidth

between flows [29]. Based on this discussion, it is therefore safe to use the two bounds

given by Bonald and Proutière [6] for measuring the performance of a PACS network.

We could use the lower bound or the upper bound given in Equation (2) as the objective

function. Since the objective is to minimize fhe mean fîle access time of distributed

PACS's, it is more important to know the upper bound. Hence, we use the upper bound

for the objective function. Moreover, after knowing one bound, we can calculate the other

bound according to the formula of the two bounds shown in Equation (2) using the

bandwidth and load of each channel. The load of each channel is part of the solution of

the mathematical programming model.

Adding the archive and the network delay, the upper bound of the mean delay of a flow

of size ry on route r is:

T7*rl
? B,-F, z--r-

28

(3)

Chapter 3: A Mathematical Programming Model for Designing Distributed PACS's

where ¡z is the archive onrovte r, z, is the capacity of archive mconnected to route r

in Mbps and v- is the load on archive z in Mbps. In the formula, the first term is the

mean network delay, the second the archive delay.

Considering we want to minimize the mean data access delay of all routes in a distributed

PACS, this objective can be expressed by summing up the delay of a flow of size ry on

every toute in the network:

/\If > =1-l*¡--z-ã\^;í., Bt- ttt) #, z.-v,

in which,^/ is all the routes in the network.

(4)

The objective function is based on this formula (refer to Section 3.4 for the objective

function). The objective function is nonlinear because in the denomination ¡z is a variable.

3.3 Other Decision Variables and Constraints

From Equation (4), we can see the objective function value is decided by the bandwidth

slack of each channel, i.e., the difference between the bandwidth B, and the load, ¡t, of

the channel, and the capacity slack of each archive, i.e., the difference be¡ø¡een the

capacity z^ and the load v, of the archive. The bandwidth slack of any channel s/ is

decided by the load on st , þ"t, because the bandwidth of each channel is known. The

load on a channel is the summation of the rate of the data that goes through the channel,

including the reading and the writing data rate. Equation (5) shows how ¡-1., is calculated.

29

Chapter 3: A Mathematical Programming Model for Designing Distributed PACS's

þ,,=ZRu,,(ru+wr)
i,iev

VsteL (5)

where 4, is the rate of the data reading from site i (where the archive is located) to j in

Mbps, wu is the rate of the data writing to site j (where the archive is located) from i in

Mbps and R¡r,is as def,ined in Table 3.1.

4; is the total data rate of all the new studies that are stored at the archive at site i and are

retrieved to site 7 plus the total data rate of all the priors that are stored at the archive at

site i and are retrieved to site j . According to the definition of the study class, study

classes (k,l,j) and (k,j,l) are retrieved by either radiologists or clinicians at sitej,

k eV ,l eV' . Assume variable xo- decides the percentage of the studies of class (i, j,k)

that are stored at the archive at site rz where meV. Then I (Dru**,¡,+Do¡,xo¡r,) i. tfr"
keV;leV'

total data rate of all the new studies that are stored at the archive at site i and are

retrieved to site /. I Pon¡xu,, is total the data rate of all the priors that are stored at
kev;l ,meY'

the archive at site I and are retrieved to site j . Equation (6) shows that how 4, is

calculated.

rü = I P*,,¡xa,,+ I (Dr¡*o¡, + Dr¡,xu¡,,) vt, ¡ ev (6)
keVt,neV' keV:leV'

Similarly, wu is the total data rate of the new studies that are stored to the archive at site

j from site i. wu does not involve priors. Equation (7) shows that how w.. is calculated.

30

Chapter 3: A Mathematical Programming Model for Designing Distributed PACS's

,u:Z(D,rr,r¡) vi,iev
k,leV'

The load of a charurel can not exceed the bandwidth of the channel. Equation (8) defines

this constraint.

þ,, 1Br, VsteL (8)

As for the archive capacity slack in Equation (4), the load of an archive, v-, is the total

datarate reading from the archive and the total data rate writing to the archive. Equation

(9) shows how u- is calculated.

v, =l(w,. + r.,) Ym ev
jev

The load of an archive can not exceed the capacity of the archive. Equation (10) defines

this constraint.

v <z VmeVmm (10)

The summation of the percentage of a class of studies stored in each archive is equal to

|}}%.Equation (l l) defines this constraint.

lxrn =l Yi eV, j,k eV'
leV

Also, the summation of the capacity of all archives can not exceed the total capacity

(budget). Equation (12) defines this constraint.

(7)

(e)

(11)

C>Iz.L¿ m
meV

3l

(12)

Chapter 3: A Mathematical Programming Model for Designing Distributed PACS's

Table 3.2 lists the decision variables.

Table 3.2 Decision Variables of the Mathematical Programming Model

Variable Description

Z Capacity of archive m eV

x... Percentage of studies of class (¡,j,t) that are stored in the archive at

site m, 0 (x 1l , i,m eV; j,k eV'

Table 3.3 lists the supplemental decision variables of the model. The supplemental

decision variables are dependent on or constrained by the decision variables. In other

words, once the values of the decision variables in Table 3.2 are determined, the values of

the supplemental decision variables are determined.

Table 3.3 Supplemental Decision Variables

Variable Description

r..tl The rate of studies reading from archive i to j in Mbps, i, j eV

w.
U

The rate of studies writing to archive j from i in Mbps, i, j eV

u Load on the channel st in Mbps, st e L

v Total load on the archive at site z in Mbps, m eV

32

Chapter 3: A Mathematical Programming Model for Designing Distributed PACS's

3.4 The Mathematical Programming Model

From Equation (4), we can see the objective function value is also decided by the size of

all studies transferred. Assume we want to minimize the average transfer time of one unit

data which is defined as the amount of data transferred in one second in the target

distributed PACS. The size of one unit data can be calculated using:

(13)

The size of one unit of data is different for different transfer routes. If a route starts with

an archive, U¡ : rü. If a route ends with an archive, 4,j : w,j .

With the previously described information, the mathematical programming model can be

described as follows:

lrrxl if i is the archive, ij e V
4t =

l* *l ifj is the archive, ij e V

Plugging in the variables and parameters into Equation (4), the first term

vl v ry ìis equar ,o
,Ð ({,,.-).Ð u-!ï) tn" second term

->,*;7*\^1í., Bt- /1,) ,.¡.vy

r\
is equal to >l:n-'.

w'i
I. eaoing these two terms together, we have this

i,iev \z¡ - V
'¡ -'¡)

objective function shown in Equation (14).

o bi ec t iv e = ^"{,à(*. h + (', +',
)

"Ð uk)} (14)

Subject to:

JJ

Chapter 3: A Mathematical Programming Model for Designing Distributed PACS's

r,j = I Pr,,¡xa^,+ I (Do,¡**,,,+ Do¡,xo¡,,) vt,¡ .v
keV;l,meV' keV;leV'

u = L (D,r,or)
k,leV'

Yi, j eV

u,, = Z Rr,,(r, +wr) vil e L
i,jeY

ur, 1Br, Ysr e L

,-:I(w.,+r.\ VmeVm L¿' Jm mJ'
jev

r_ 1Z_ Ym eV

f > \i "--L-n

(ls)

(16)

(17)

(18)

(le)

Ix..,, = I
leV

(20)

(21)

(22)

(23)

Yi eV, j,k eV'

x¡kt rr¡ rw¡ ru ¡ rv ¡, z.¡ 2 0 Yi, j,k,l ev

Equations (15) and (16) define reading and writing traffic respectively by congregating

classes of studies that go through route t. Equation (17) defines the load on channel

slwhich is the summation of all flows on the routes that pass channels/. Equation (18)

specifies that load on each channel should be less than the channel bandwidth. Equation

(19) defines the load on an archive as the summation of all reading traffic leaving that

archive and writing traffic arriving at that archive. Equation (20) specifies load on an

archive should not exceed its capacity. Equation (21) makes sure the summation of the

capacity of all archives is under the total capacity.

34

Chapter 3: A Mathematical Programming Model for Designing Distributed PACS's

3.5 Solving the Model

To solve the above mathematical programming problem, I use an existing solver, a

software package called KNITRO [46]. KNITRO is commercially available but also free

under some restrictions. I use the free version of KNITRO provided by the optimization

server NEOS (Network Enabled Optimization System) [47]. NEOS is maintained by the

Optimization Technology Center, a joint venture of Argonne National Laboratory and

Northwestern University in USA. The solvers supported by NEOS are kept state-of-the-

artl48l.

To submit an optimization problem to a solver, we need to describe the mathematical

model in a language that the solver understands. There are several languages available

such as GAMS, MGG, LINGO, MPL, AIMMS, and AMPL [49]. AMPL is the most

widely accepted language among the optimization solvers. It has a natural syntax and

general set and indexing expressions [50] which provide eff,rciency to implement a

mathematical programming model. Also, AMPL is supported by KNITRO and NEOS.

Therefore, I use AMPL to submit my optimization problem to the solver KNITRO.

3.5.1 Solver Characteristics

The KNITRO solver is mainly designed for solving large-scale general nonlinear

optimization problems [51]. Nonlinear optimization problems are hard to be solved

exactly in a reasonable time; solutions provided by algorithms for these problems only

approximate the optimal solution. Furthermore, performance of algorithms for solving

these problems varies substantially from one problem to another, even from one problem

35

Chapter 3: A Mathematical Programming Model for Designing Distributed PACS's

instance to another. To obtain more confidence in the solution process, one often tries

different algorithms for a same problem. Finally, each algorithm usually has several input

parameters which adapt the algorithm to some known specific characteristics of a

particular nonlinear optimization problem.

The KNITRO solver systematizes in a single software the above ad hoc solving process.

KNITRO contains three algorithms for solving nonlinear optimization problems: one

Active Set algorithm and two interior-point algorithms, InteriorlDirect and Interior/CG

[51]. KNITRO also includes several parameters for adapting the algorithms to different

problems and problem instances. In this section, we only describe a subset of KNITRO

parameters. Those are the parameters we have used for solving the model in Section 3.4.

These parameters are listed below together with a brief description of their functionality

and default values.

The first and most important input parameTer (alg) is the one that specifies which

algorithm is used for solving the optimization problem. The default value of this

parameter, 0, will cause the solver to choose the algorithm for the user based on the

characteristics of the input problem.

Parameter "bar_murule" controls the strategy that the solver uses to modifo the barrier

value for barrier algorithms (the two Interior Point algorithms). This parameter does not

apply to Active Set algorithm. The default value of this parameter, 0, will cause the

solver to choose the barrier modifuing strategy automatically.

Parameter "hessopt" specifies how the "Hessían of the Langrangian" l5lf þage 57) is

computed. When "hessopl?' is set to 6, it works with another parameter "lmsize" to let the

36

Chapter 3: A Mathematical Programming Model for Designing Distributed PACS's

solver compute the size of the memory used by the quasi-Newton BFGS Hessian [51]

which are used by all three algorithms.

Parameter "maxit" specifies that the maximal number of iterations (an iteration is an

attempt to search the next solution from the current point according to a certain algorithm)

that the solver attempts to find the best solution before the solver exits [51]. It defaults to

10,000.

Parameter "multistart" controls if the solver uses multiple start points. Its default value is

0, which means that a single start point will be used. When it is set to 1, which means that

the solver will use multiple start points, another parameter "ms_maxsoly¿s" controls how

many start points the solver tries. When "ms_mexsolves" is set to 0, the solver will

choose the number of start points to be min(200, I0N) where N is the number of variables

in the problem.

The parameters of my focus and their meaning are listed in Table 3.4 [5 I].

Table 3.4 Description of Important KNITRO Solver Parameters

Parameter Description Default Value

alg Indicates which algorithm to use to solve the problem

0 (auto): Let KNITRO automatically choose an
algorithm, based on the problem characteristics.

1 (direct): Use the Interior/Direct algorithm.

2 (cg): Use the Interior/CG algorithm.

3: Active algorithm

Default: 0

37

Chapter 3: A Mathematical Programming Model for Designing Distributed PACS's

Parameter Description Default Value

bar_murule barrier parameter update rule:

0: automatic barrier rule chosen

l: monotone decrease rule

2: adaptive rule

3: probing rule

4: safeguarded Mehrotra predictor-corrector type rule

5: Mehrotra predictor-corrector type rule

6: rule based on minimizing a quality function

Default: 0

hessopt Specifies how to compute the (approximate) Hessian
of the Lagrangian.

1: compute exact Hessian (User provides a routine for
computing the exact Hessian).

2: compute (dense) quasi-Newton BFGS Hessian

3: compute (dense) quasi-Newton SRI Hessian

4: compute Hessian-vector products using finite
differencing

5: exact Hessian-vector products

6: use limited-memory BFGS Hessian approximation

6 (lbfgs): KNITRO computes a limited-memory quasi-
Newton BFGS Hessian (its size is determined by the
option "lmsize").

Default

lmsize Specifies the number of limited memory pairs stored
when approximating the Hessian using the limited-
memory quasi-Newton BFGS option. The value must
be between I and 100 and is only used when
"hessopF6". Larger values may give a more accurate,
but more expensive, Hessian approximation. Smaller
values may give a less accurate, but faster, Hessian
approximation.

Default: 10

38

Chapter 3: A Mathematical Programming Model for Designing Distributed PACS's

3.6 Solver Parameters Tuning

The parameters tuning aims at frnding which parameter setting combinations produce the

best solutions. Since the problem is modelled as nonlinear, the solver KNITRO only

retums a local optimum [48], different parameter settings may return different local

optima. For example, choosing different initial points will cause the solver to explore

different regions of the solution space and to return different local optima. Moreover, as

explained above, it is difficult to determine which algorithm in KNITRO will yield the

best results for a particular problem. In addition, for most parameters it is difÏicult to

determine which value produces best results [51]. Hence, parameter tuning for the solver

is necessary to obtain better solutions than those obtained with the default parameter

settings. The parameter settings (of the solver) that yield better solutions in a reasonable

Parameter Description Default Value

maxit Specifies the maximum number of major iterations
before termination.

Default: 10000

ms maxsolves Specifies how many start points to try in multi-start. 0:
Let KNITRO automatically choose a value based on
the problem size. The value is min(200, l0N), where N
is the number of variables in the problem.

Default: 0,

multistart Indicates whether KNITRO will solve from multiple
start points to find a better local minimum.

0 (no): KNITRO solves from a single initial point.

I (yes): KNITRO solves using multiple start points.
ms_maxsolves option has no effect unless "multistart
:1".

Default:0

39

Chapter 3: A Mathematical Programming Model for Designing Distributed PACS's

time will be used when the mathematical programming model is being solved for

different scenarios such as different problem instances or different input parameters.

One way to obtain the best possible solutions for any problem instance will be to run the

solver for the problem instance with all the possible combinations of the parameter values.

This is of course very inefficient, if possible at all.

Rather, one seeks to find the best possible parameter setting for a small subset of the

problem instances which best represent the whole domain of the problem. Borrowing the

methodology used by Steven et al. 152],I first select two problem instances that best

represent the problem of archive planning for distributed PACS's. Second, I perform

some preliminary experiments to single out the parameter settings that impact the

optimization results the most. Third, I perform factorial experiments for the chosen

parameter settings.

3.6.1 Selected Problem Instances

When choosing the problem instances and constructing the instance environment, we try

to choose the problem instances that well represent the distributed PACS designing

challenges in terms of scale (number of sites) and data access pattern. Multiple problem

instances increase our confidence in our methodology, but this also increases the number

of experiments to carry out and the amount of data to analyze- For tuning the parameters,

I have chosen to use two problem instances, one has 9 sites, and the other has 15 sites.

The two problem instances cover the scale of major real problem instances of distributed

PACS design [4].

40

Chapter 3: A Mathematical Programming Model for Designing Distributed PACS's

3.6.1.1 9-Site Problem Instance

This problem instance is based on a health region in a metropolitan city in Canada. The

network topology shown in Figure 3.2 is in the network design proposed for the health

region in [53]. A node in the network corresponds to a hospital site.

Figure 3.2 9-Site Instance Network Topology

Network topology of 9-Node lnstance
Bandwidth of all links is the same

"17.ia:|r'j

::,
:',:L/,tt

¡ -\ -=\ Þ---\- 4
*

-,,,0'

:atl
:iliät

.a::iì
;.,1:.lt

: t:¡t:

^r' I :: , ', I Hospìtat 7/"H
Æ

,-ttt / Hosp¡tal I-'o--1#-:
L__j

Hospital 4

Hosp¡tal 3

I

/
\al--

..,,,r'¡ij
:.:i:.*Ti

. ::::l::r:,irirl

. , :'riì.ì:ì,:lT

Hospital 2

There are 9 sites and 12links (24 channels) in this network.

Scale between hospitals are quite different [5a]. As you can see from the Figure 3.2, sites

1,2 and 3 are the hubs, i.e. they have more hospitals connected to them. They are the

largest in scale in terms of equipments, patient beds and staff etc. Studies produced by

modalities located at smaller hospitals will likely be reviewed by the specialists in larger

hospitals. On the other hand, modalities in larger hospitals will most likely be referred by

41

Chapter 3: A Mathematical Programming Model for Designing Distributed PACS's

the clinicians or physicians in smaller hospitals. These two types of activities cause cross-

hospital data transfer. However, compared to the amount of data accessed locally, cross-

hospital data transfer due to modality share or cross consultation between radiologists is

less [54].

I gathered data for the parameters in Table 3.1 from a few sources. Information about

how the clinicians and radiologists access data has been obtained from Camorlinga and

Schofield [26]. The information includes the percentage of the studies accessed by the

clinicians and radiologists in the same hospital and the percentage of the studies accessed

across hospitals. This source also provided the information about the ratio of the amount

of prior studies accessed daily to the amount of new studies generated daily. An

estimation about the amount of studies that is produced at each site daily has been

obtained from Otukile [53]. In summary, the following information is given:

o l,[: The amount of studies in Megabytes produced per day at site i

. P;: The fraction of studies that are produced in site I and are requested by

radiologists at site j

. Pf: The fraction of studies that are produced in site I and are requested by

clinicians at site 7

. Rn: The fraction of new studies that are produced at site i and are sent as priors

to site n.

42

Chapter 3: A Mathematical Programming Model for Designing Distributed PACS's

Using the above information, Drn (See Table 3.1 for the meaning) in the unit of Mbps can

be calculated using Equation (24):

D.., : M''8
P!P.9ux 36oox8 t tK

3 600 x 8 is the number of seconds in the working hours of a day.

(24)

Po¡, (See Table 3.1 for the meaning) in the unit of Mbps can be calculated using

Equation (25):

P... =D.., xR.uKn uË tn (2s)

We categorize traffic of a distributed PACS as source destination pairs. Each different

class ofstudies has either a different source or a different destination site. Since there are

nine sites in the network, there are 93 =721possible different classes of studies. Since

there are no routes between some sites or no studies transferred between some of the

hospitals, the actual number of study classes is less than72l. That means there are D,,,.
ur

values that are 0. The arrival process of each class of studies is assumed to be Poisson.

3.6.1.2 1S-Site Instance

To explore the impact of the solver parameters on the optimization results and

applicability of the optimization and simulation model to other problem instances, I

create another problem instance.

43

Chapter 3: A Mathematical Programming Model for Designing Dishibuted PACS's

Figure 3.3 1S-Site Instance Network Topology

Samplel 5-Node Network Topology
Bandwidth of all links is the same

June 1 0/2007

\

rr----G
Hosp¡tal 10

,\

Ìì

',G-"-Ç
Hosp¡tE

Figure 3.3 shows the network topology. In this network, there are 15 sites,22 links, and

44 channels.

Unlike the 9-Site instance, I use a different approach to generate Drrfor this l5-Site

instance. I generate Do* using an exponential distribution function with a mean rate. The

mean rate is chosen to make sure there is enough traffic to show the effectiveness of the

optimization and not too much traffic that will overwhelm the system. The percentage of

Hosp¡tal 14

44

Chapter 3: A Mathematical Programming Model for Designing Distributed PACS's

Dun values that are zero is set to the same as that of 9-site instance. When generating Dr¡ ,

I set some D,u to zero according to a uniformly distributed random variable.

To calculate P¡u,I use the same .R, and the same formula, Equation(25), as I used for

9-site instance.

The remaining parameters for this problem instance are set the same way as the previous

instance only different in scale.

For all the experiments performed for solver parameter tuning, the parameters for the

mathematical model are frxed. For 9-site instance, C:5OMbps and B:lMbps. For l5-site

instance, C:l 500Mbps and B:1 O0Mbps.

3.6.2 Preliminary Experiments

Preliminary experiments are to weed out parameter settings that do not improve the

optimization results so that the number of experiments in later factorial design is reduced.

For each parameter of the solver, if it accepts a continuous range, I experiment with 2 end

values. If it accepts discrete values, I experiment all of them. The largest number of

discrete parameter values is 7. If it accepts open end values, I experiment the smallest and

largest value that does not cause the experiment timeout and produces a feasible solution.

After having performed the above preliminary experiments, I have the following results

and conclusions:

r The results in Table 3.5 show that when applied to the 9-site instance and l5-site

instance, algorithm 3 (Active Set) produces much worse objective value and also

45

Chapter 3: A Mathematical Programming Model for Designing Distributed PACS's

takes much longer time (10 times as much) than does the Interior/Direct algorithm.

This corroborates the statement in the manual that Active Set algorithm is not so

efficient for large problem instances as the other 2 algorithms unless there is some

prescient knowledge about a good start solution [51] þage 52). Therefore, I select

the first 2 algorithms for the factorial experiment design.

Table 3.5 Preliminary Experiments for Different Algorithms

9-Site Instance 1S-Site Instance

Algorithm Objective
Value

Solve Time
(seconds)

Algorithm Objective
Value

Solve Time
(seconds)

alg:l r.97 4.t2 alg:l 0.1782 24.96

alg:2 l.s3 t2.92 alg:2 0.0977 449.21

alg:3 tts6t.67 1s6.35 alg:3 35214s.rs s012.98

Note: The solve time is the time from when the experiment is started to when the

experiment is terminated.

. Avoid using hessopF2 or 3, they use up memory and produce "Not enough

Memory error", the solver manual advices use these 2 values for small problems

(the number of variables is less than 1000). Hence, these two values are removed

from the later factorial experiment design.

. When Imsize is set to default value or larger than 10, most of the time the solver

times out before the solution converges. For the factorial experiment design, I

choose 5 for lmsize .

46

Chapter 3: A Mathematical Programming Model for Designing Distributed PACS's

In Table 3.6, I present results of testing the impact of parameter ms_moxsolves.

The experiments are performed on both instances for 3 different bar murule

values. Varying bar _murule value is to show the impact of parameter

ms rnaxsolves under different circumstances. From the results, we can see that

multiple start points improve the optimization results although a small increase

from 0 to l0 does not. Another fact one can observe from the results in the table is

that increasing the start points also multiples the solve time. Note:

whenms_maxsolves:0, the actual number of initial points is min(200, l0¡/).

Since N is in order of 103 and ITa respectively for the 9-site and the l5-site

instance, the solver will always choose 200. For the factorial experiment design, I

choose 0, l, and l0 for the ms maxsolves parameter.

Table 3.6 Impact of ms_maxsolves

Other parameters: alg:1, hessopt= 1, multistart:1

bar murule maxsolves

9-Site Instance 15-Site Instance

Objective
Value

Solve Time
(Seconds)

Objective
Value

Solve Time
(Seconds)

I

0 l. I 83209 730.550 0.061 7202.760

I t.979603 6.644 0.16s 2s.470

l0 t.979603 33.882 0.1 6s 247.291

J 0 I .170 760.984 0.056 65s4.022

47

Chapter 3: A Mathematical Programming Model for Designing Distributed PACS's

o In most experiments the solution searching terminates within 50 iterations. The

largest number of iterations in all the experiments that I have done for both

problem instances is 450. The default value of parameter maxit is 10000. The

experiment results show that increasing the maxit up from 10000 indeed does not

change the result. Hence, I use the default value and remove maxit from the later

factorial experiment design.

3.6.3 Factorial Experiment

Factorial experiments are those experiments to test the factorial combinations of the

solver parameters settings selected before. According to results from preliminary

experiments, I choose the following parameters and their values for factorial experiments:

bar murule ms maxsolves

9-Site Instance l5-Site Instance

Objective
Value

Solve Time
(Seconds)

Objective
Value

Solve Time
(Seconds)

I 1.2s5 s.376 0.112 45.427

l0 1.25s 35.r94 0.112 320.028

4

0 I t7t r 865.200 0.0s6 l00t 1.520

I t.252 16.810 0.1 l9 47.199

l0 1.2s2 64.770 0.119 544.730

48

Chapter 3: A Mathematical Programming Model for Designing Distributed PACS's

alg : {1,2}

b orrul e = {7, 2,3, 4, 5, 6}

hessopt = {1,4,5,6\ and lmsize = 5

multistarl = 0;multistart = I and ms maxsolr"" = 10,1,10)

(26)

The number of full factorial combinations with the above parameter settings is 80,

excluding some parameter values that conflict with each other. barrule 3, 4, 5, 6 are

available only to the InteriorlDirect Algorithm [51] þage 35). hessopt 4, 5 are not

available to the Interior/Direct Algorithm [51] (page 38).

3.6.4 Solver Tuning Results and Conclusions

Table 3.7 to Table 3.10 show the results of solver parameter tuning. Results in Table 3.7

and Table 3.8 are from the experiments performed for 9-site instance, Table 3.9 and

Table 3.10 for l5-site instance. In these tables, the first column is the parameter setting

index. The same parameter setting of each experiment has the same index number for

both instances. The same index number provides convenience for comparing the impact

of a parameter setting on both problem instances. Because two problem instances have

different order for the results of the same parameter settings, the index column are not in

order.

The objective value from each experiment is converted to the average time to transfer one

Mega bits (Mb) data so that later it is easier to compare the results with the simulation

results. To get the average time to transfer one Mb of data, the objective value is divided

by the total size of the data transferred. The total size is the total data rate times I second

(refer to the definition of the objective function in Section 3.2), which is equal to the

49

Chapter 3: A Mathematical Programming Model for Designing Distributed PACS's

summation of the reading and writing data rates. The lower bound column in the tables is

calculated using the formula of lower bound shown in Equation (2) and the solution of

solving the model.

To show which parameter settings result in the best performance and which parameter

settings result in the worst performance, the top and bottom results for the 2 problem

instances are shown. Results in the tables are ordered by the objective values listed in the

upper bound column in the tables as the upper bound values are our main concern. Table

3.7 shows the top results among all the experiments performed for the 9-site instance,

Table 3.8 the bottom results. Table 3.9 shows the top results among all the experiments

performed for the I 5-site instance, Table 3. I 0 the bottom results.

Table 3.7 Top Results for the 9-Site Instance

No. Solver Parameters Lower
Bound

Upper
Bound

Solve
Iime(s)

+2 alg:l, bar_murule:6, hessopFl,
multistarF I, ms_maxsolves:O

1.0226 l. l 691 1045.17

l0 alg: l, bar_murule:2, hessopt: l,
multistarF 1, ms_maxsolves:O

1.0228 t.t699 774.32

l8 llg:l, bar_murule:3, hessopFl,
multistarel, ms maxsolves:0

1.0228 t.1699 760.98

34 llg=l, bar_murule:5, hessopt: l,
multistarFl, ms_maxsolves:O

1.0236 1.t709 r008.33

26 llg:l, bar_murule:4, hessopt: l,
multistarF 1, ms_maxsolves:O

t.0236 1.1710 865.20

50

tlo. Solver Parameters Lower
Bound

Upper
Bound

Solve
fime(s)

70 alg=2, bar_murule:2, hessopt:4,
multistarFl, ms_maxsolves:0

1.0237 1.171I)777.22

46 llg=l, bar_murule:6, hessopt:6, lmsize:5,
nultistart: I, ms_maxsolves:O

1.0262 t.l7 54 10230.73

2 alg:l, bar_murule:I, hessopFl,
multistart:1, ms_maxsolves:O

1.0331 1.1832 730.55

54 alg:Z, bar_murule: l, hessopF4,
multistarFl, ms_maxsolves:O

1.0353 t. I 860 zss3.04

58 alg:Z, bar_murul e: 1, hessopt:S,
multistarFl, ms maxsolves:0

1.0353 1.1 860 3437.35

50 alg:2, bar_murule: 1, hessopF I

multistart: l, ms_maxsolves:O
1.0488 r.2037 2907.81

25 alg: l, bar_murule:4, hessopt: I,
multistarF0

1.0864 t.2519 14.03

Chapter 3: A Mathematical Programming Model for Designing Distributed PACS's

Table 3.8 Bottom Results for the 9-Site Instance

No. Solver Parameters Lower
Bound

Upper
Bound

Solve
Time(s)

6t alg:Z, bar_murule: 1, hessopt:6,
lmsize:5, multistarF0

r.6981 2.0069 326r.t6

53 alg:2, bar_murule: l, hessopF6,
lmsize:S, multistarFl, ms maxsolves:l

1.6981 2.0069 3072.84

51

\o. Solver Parameters Lower
Bound

Upper
Bound

Solve
Time(s)

54 alg:Z, bar_murule: l, hessopF6,
lmsize:5, multistart: I, ms_maxsolves: I C

1.6981 2.0069 5739.67

45 alg: l, bar_murule:6, hessopt:6,
lmsize:5, multistarF0

1.8090 2.1474 299.30

47 al5 l, bar_murule:6, hessopt=6,
lmsize:5, multistarFl, ms_maxsolves:l

1.8090 2.1474 10s.09

48 alg:|, bar_murule:6, hessopt:6,
lmsize:5, multistart:1, ms maxsolves:10

1.8090 2.1474 593.s0

62 alg:2, bar_murule: l, hessopF6,
lmsize:5, multistart=1, ms_maxsolves:O

8.073 r).3137 5752.42

77 tlg:2, bar_murule:2, hessopF6,
[msize:5, multistart:O

115.s4s1 43s.8329 5076.42

78 tlg:2, bar_murule:2, hessopt:6,
.msize:5, multistarF l, ms_maxsolves:O

115.5451 43s.8329 10188.88

79 alg=2, bar_murule:2, hessopF6,
lmsize:5, multistarF 1, ms_maxsolves: I

+15.5451 43s.8329 5110.12

30 alg:2, bar_murule:2, hessopt:6,
lmsize:5, multistarFl, ms maxsolves:10

415.5451 43s.8329 10102.67

Chapter 3: A Mathematical Programming Model for Designing Distributed PACS's

Table 3.9 Top Results for the IS-Site Instance

No. Solver Parameters Lower
Bound

Upper
Bound

Total Solve Time(s)

52

Chapter 3: A Mathematical Programming Model for Designing Distributed PACS's

No. Solver Parameters Lower
Bound

Upper
Bound

Total Solve Time(s)

l0 alg: l, bar_murule:2, hessopFl,
multistart: 1, ms_maxsolves:0

0.0293 0.0s60 3668.06

18 a151, bar_murule:3, hessopt:1,
multistart: 1, ms_maxsolves:0

0.0293 0.0560 6554.02

42 alg:l, bar_murule:6, hessopt:1,
multistarF I, ms_maxsolves:O

0.0307 0.0s62 9976.39

34 alg: l, bar_murule:S, hessopt:1,
multistarF 1, ms_maxsolves:O

0.0308 0.05ø 8020.44

26 alg:1, bar_murule:4, hessopF l,
multistart: 1, ms_maxsolves:O

0.0308 0.0s64 l00l 1.52

54 alg:2, bar_murule: l, hessopt:4,
multistarF I, ms_maxsolves:0

0.034r 0.0610 t0260.70

s8 alg:2, bar_murule: l, hessopt:5,
multistart: 1, ms_maxsolves:O

0.0341 0.0610 10050.28

2 alg:1, bar_murule:1, hessopt:1,
multistarF l, ms_maxsolves:O

0.0341 0.06r0 7202.76

73 alg:2, bar_murule:2, hessopt:5,
multistarF0

0.0610 0.1026 8574.27

74 alg:2, bar_murule:2, hessopF5,
multistarFl, ms maxsolves:O

0.0610 0.t026 13397.67

69 alg=2, bar_murule:2, hessopt:4,
multistarF0

0.0626 0.1072 8574.99

70 alg:Z, bar_murule:2, hessopF4,
multistarF l, ms_maxsolves:O

0.0626 0.1072 10429.s0

53

Chapter 3: A Mathematical Programming Model for Designing Distributed PACS's

Table 3.10 Bottom Results for the 1S-Site fnstance

No. Solver Parameters Lower
Bound

Upper
Bound

Total Solve
Time(s)

24 alg: l, bar_murule:3, hessopF6,
lmsize:5, multistarF l,
ms_maxsolves:I0

0.3604 0.5978 10060.52

62 alg:2, bar_murule: l, hessopF6,
lmsize:5, multistart: 1,

ms maxsolves:O

0.5890 0.8168 10060.09

64 alg:2, bar_murule: 1, hessopF6,
lmsize:5, multistarF 1,

ms maxsolves:l0

0.s890 0.8168 t00tt.77

77 alg:2, bar_murule:2, hessopt:6,
lmsize:5, multistarFO

t2.6809 14.4208 8901.47

78 alg:2, bar_murule:2, hessopF6,
lmsize:5, multistarF l,
ms_maxsolves:0

t2.6809 14.4208 18627.2s

79 alg:Z, bar_murule:2, hessopF6,
lmsize:5, multistarF l,
ms maxsolves:l

12.6809 14.4208 6088.25

2l alg: l, bar_murule:3, hessopF6,
lmsize:5, multistarFO

2979.60 3040.78 9685.55

22 alg: l, bar_murule:3, hessopF6,
lmsize:S, multistarFl,
ms_maxsolves:0

2979.60 3040.78 16608.36

54

No. Solver Parameters Lower
Bound

Upper
Bound

Total Solve
Time(s)

23 alg:I, bar_murule:3, hessopF6,
lmsize:5, multistarF l,
ms maxsolves:l

2979.60 3040.78 9653.17

6l alg:2, bar_murule: 1, hessopF6,
lmsize:5, multistareO

7782.s8 8046.52 6808.94

63 alg:2, bar_murule: l, hessopt:6,
lmsize:5, multistarF l,
ms maxsolves:l

7782.s8 8046.s2 9698.45

Chapter 3: A Mathematical Programming Model for Designing Distributed PACS's

From the results of the factorial experiments shown in the tables, one can have the

following observations :

. Top results are achieved from experiments with parameter setting:

multistart:land ms maxsolves=O . First, all the top results for the 9-site

instance shown in Table 3.7 and all the top results forthe l5-site instance shown

in Table 3.9 have this parameter setting. Second, the average objective value with

this parameter setting for the 9-site instance is 9.32, whereas it is 36.24 witholt

this parameter setting.

o hessopt:6 and Imsize =5 produce undesirable results. All the bottom results

for the 9-site instance shown in Table 3.8 and all the bottom results for the lS-site

instance shown in Table 3.10 have this parameter setting. They also cause long

solve time and sometimes cause time-out or an error of 'Not Enough Memory".

There are 3 timeout experiments for the 9-site instance- The parameter settings are:

55

Chapter 3: A Mathematical Programming Model for Designing Distributed PACS's

murule: 1, hessopt:6, lmsize:5, multistarF 1, ms_maxsolves:O

murule:3, hessopt:6, lmsize:5, multistarF l, ms_maxsolves:O

murule:4, hessopt:6, lmsize:5, multistart:O

They all have this parameter setting "hessopt:6 and lmsize=5". For 15-

site instance, the parameter setting "alg:2, bar_murule:2, hessopt:6,

Imsize:S, multistart:], ms_maxsolves:10" that causes the enor-c'Not

enough memory" also has " hessopt = 6 and lmsize = 5 ". Hence,

considering the conclusion drawn from preliminary experiment that larger

lmsize value causes solver timeout more often, we should avoiding specifying

hessopt and lmsize values other than the default ones when solving the

mathematical model.

Generally, better results have higher cost (longer solve time). For example, for the

1S-site instance, the average objective value of the experiments whose solve time

ranks I to 20 is 0.1408 as opposed to 0.l2ll for those experiments whose solve

time rank from 2l to 40.

V/hen other parameters are set the same, Algorithm Interior/CG performs better

than Interior/Direct for both problem instances but it takes longer. For example,

considering all the experiments performed for 9-site instance, the results shown in

Table 3.ll (only experiments with same parameters are compared) attests that

observation.

[als:1. bar

ltr:t, o"i
falg:1, bar-

s6

Chapter 3: A Mathematical Programming Model for Designing Distributed PACS's

Table 3.11 Comparison of Interior/Direct, Interior/CG Atgorithms

Algorithm Average Objective Value Average Solve Time

1. Interior/Direct t.632327 14.708918s8

2.Interior/CG 1.s9296 25.42268

Small multiple start points like l0 elongate solve time but do not improve results.

For example, experiment 3 and 4 for the 9-site instance, have the same parameter

setting "alg:1, bar_murule: I , hessopt: I , mullistart:1", except for

ms -maxsolves In experiment 3, ms
-maxsolves:1

. In experiment 4,

ms
-m(asolves = l0 . For these two experiments, the objective value is the same

(1.6718), but experiment 4 takes 10 times longer time than experiment 3,25.47

versus 247.29. This is not an individual case. The same is true for other

experiments.

Although the two problem instances have a large difference in size, traffic rate

and other model parameters, the solver parameters have the similar impact on the

results. Besides the fact that the previous conclusions apply to both instances,

most parameter settings that produce top results shown in Table 3.7 (for the 9-site

instance) and Table 3.9 (for the lS-site instance) are the same, although the exact

order is different. The bottom results shown Table 3.8 and Table 3.10 show the

same trend. The difference of exact order can be explained by the randomness of

the traffic.

57

Chapter 4: Model Validation With Simulation

Chaptey 4 Model Validation With Simulation

In this chapter, the mathematical programming model developed in the last chapter is

validated using discrete-event simulation. The validation is to justifu the assumptions that

are made when the mathematical programming model is being built. Also, it is to increase

one's confidence when the optimization results are applied to the design of real-world

distributed PACS's.

The simulation model is first described. This includes the network model, traffrc model,

performance metrics, and the development of the simulator. Next, the experiments and

results are presented. Results from optimization and simulation are compared.

4.1 Simulation Model Description

The major difference between the simulation model developed in this chapter and the

mathematical programming model presented in the last chapter is the inclusion of a

number of important components in the simulation model that are essential to real-world

implementation of distributed PACS's. These components are application-layer,

transport-layer, and network-layer protocols within end systems, network-layer protocol

inside network routers, as well as buffer management and channel scheduling within

network routers. They are left out from the mathematical programming model to simplifo

the modelling abstraction.

58

Chapter 4: Model Validation With Simulation

4,1.1l{etwork Model

The network model used consists of nodes and links. Each link connects two nodes, and

consists of two channels, same as in Chapter 3. The topology and channel capacity are

assumed to be given and fixed. Each network node relays traffic if it is an en route router.

In addition, each node may generate traffic to be sent and terminate traffic to be received.

To model the archive delay, an archive node and a link are added for each node in the

network as shown in Figure 4.1. An archive node is referred as an archive. The added

link connects the added archive node to the network node where the archive is located.

Such links are viewed as virtual network channels, thus the archive delay is modelled as

the delay on a virtual network channel. It can be used as an approximation of real-world

archive delays. This implementation is also consistent with that in the mathematical

programming model (refer to Section 3.4).

In Figure 4.1, the solid line shows the direction of the traffic caused by one reading from

Archive i to Node i. The "Reading" arrow between Archive i and Node i is a virtual

network channel that is used to model archive delay within Archive l. The "Reading"

arrow between Nodes i and j is a network channel which models the network delay. The

dashed lines show two writing processes. A writing process is similar to a reading

process, except in opposite direction. The detailed reading and writing processes are

described in Section 3.2.1.

59

Chapter 4: Model Validation

Figure 4.1 Archive Position in Data Transfers

With Simulation

The bandwidth of the virtual channel between a node and its archive is set to the capacity

of the archive. The capacity of archives is part of the optimization result (variablez in the

mathematical model). For simplicity, we assume that each channel other than the

channels connecting archives has the same bandwidth. Note that if real circumstances

wartant, setting different network channel bandwidth does not increase the complexity of

the model.

Each network chamel and each archive have a finite buffer. The buffer is to

accommodate the packets waiting to be serviced by the network channels or archives.

'When creating channels,I use Droptail [9] queue management, which is commonly used

on the Intemet. Packets arriving at a full queue will be dropped. As for the channel

scheduling algorithm, I used First Come First Serve (FCFS). This is also commonly used

on the current Internet. Among network nodes, fixed shortest-path routing is used.

4.1.2 Traffic Model

The simulation simulates the transfers of individual studies or files from a source to a

destination in a distributed PACS. Although PACS's do not use the FTP protocol to

transfer data, but use DICOM instead, the transfer of the PACS data is very similar to

FTP in that a large amount of data is transferred once a virtual connection is confirmed.

60

Chapter 4: Model Validation With Simulation

Moreover, like FTP, DICOM also uses TCP to communicate between systems [4].

Hence, the data transfers are simulated as FTP data transfers.

Each run of simulation takes in a traffic data file as an input. The traffic data file contains

information about studies that are to travel through the distributed PACS being simulated.

For each study, the information consists of its source node, destination node, size, and

arrival time. Because the reading and writing data arrival processes have different source

and destination, they are generated separately. As shown in Figure 4.1, an archive node is

placed before the source node or after the destination node according to whether a data

transfer is reading or writing traffic. For reading traffic, the archive node is placed before

the source node to simulate the archive delay because the data is read from an archive

first. For writing traffic, the data is written to the destination node and thus the archive

node is placed after the destination node to simulate the archive writing delay.

In the simulation, arriving traffic of each route is generated according to a Poisson

Process. Assume archives are identified separately from network nodes. The mean inter-

arnvaltime tron route y is calculated by Equations (27) and (28):

i, j eV warchives

is the archive, j eV w archives

is the archive, i eV w archíves

(27)

(28)

î,

A
U

_rl
),,j

l', iri
=l lw.. if iIt

where 17 is the mean file size in Mb, andl, is the data rate in

per second on route y.

Mbps on that route. ! i,
lu

Equation (28) means 2u isthe mean number of studies arrived

6t

Chapter 4: Model Validation With Simulation

either the reading traffic (with rate r,,) or the writing traffic(with rate w,,) depending on

where the archive is. i and j can not be both archives at the same time (refer to Section

3. 1). For example, if there is reading traffic on route ,j (r¡ > 0), i must be an archive and

i is a node. if there is writing traffic on route ij (w¡>0), i must be a node andj must be an

archive.

The size of each study to be transferred in the simulation is generated according to an

exponential distribution.

4.1.3 Performance ùIetrics

The mean time to transfer one Mbit of data is used as the performance metric for each

simulation run. It is obtained from simulation as follows.

Simulation output contains the following information for each the transfer of a study (a

flow): the study size, the arrival time, the departure time, the source node, and the

destination node. With these quantities, we can calculate the transfer time of each study

by:

t, =(-(eg)

where /, is the transfer time of study i , t! and ti are the arrival time and departure time

of study i respectively.

The performance metric of each simulation run is calculated by:

62

L,,'-tt
ie.¡r'

Chapter 4: Model Validation With Simulation

(30)

where ¡ is the mean time to transfer one Mbit of data. s, is the size of Study I (in Mbits).

y'/ is the set of studies being transferred in each simulation run.

4.1.4 Simulation Development

The simulation performed in this research is packerlevel simulation using NS2 [9]. The

packet-level simulation simulates the lifecycle of network communication packets

generated by the PACS, e.g., packets sending, queuing, routing, and receiving, etc.

There are plenty of software packages we can use to do packet-level network simulation.

I choose NS2 because of its popularity, availability and, simplicity. NS2 is a discrete

event simulator and has built-in support for the TCP/IP protocol stack such as FTP, TCP,

UDP, and IP, which are used by real-world networks. TCP Sender/Receiver agents of

NS2 are used to simulate source destination nodes. FTP components of NS2 are used for

simulating transfer of studies.

As simulation plays an important role in this research, correctness of the simulation

model is of concern. Hence, before I use the results of simulation to validate the

optimization results, I verifu the simulation model. Simulation model verification

involves "ensuring that the computer program of the computerized model and its

implementation are correct" [55]. Channel utilization is used to verifo the simulation

model. I compare the queuing theoretical utilization with the utilization calculated using

the data collected from simulation. The theoretical utilization is equal to the traffic rate in

63

Chapter 4: Model Validation With Simulation

Mbps on each channel divided by the channel bandwidth in Mbps. The traffic rate on

each channel is equal to the summation of the traffic rate of the flows that go through the

channel. Equation (31) shows the formula:

In ¿L¿ Ìlst U

uÍil -
i'jev

"B
-t¡

VsteL (3 1)

where util", is the theoretical utilization on channel s/ . Refer to Chapter 3 for the

meaning of the other notations.

The other utilization is calculated by using the statistics gathered during the simulation

running process. NS2 provides an object called queue-monitor that collects statistics

about the queue on each channel [56]. The throughput is one of the statistics. The

utilization of a channel is the throughput of that channel divided by the channel

bandwidth.

Table A.l in Appendix A shows one set of results for a 9-node network. Results from

simulation and from queuing theory fundamental results match well. Further experiments

with different parameters and other problem instance show the same trend.

As this project needs many types of data manipulation to generate the data input for the

solver and the simulation programs, I use Python and MATLAB to do the input data

formatting.

To deal with the variation in simulation results and to improve the confidence in results,

multiple replications are performed for each experiment. Considering that the simulation

is time-consuming, the number of replications is not too large, 12 to be exact. Sample

64

Chapter 4: Model Validation With Simulation

means of the replication results are collected and used for the analysis of the results. 95%

confidence interval is computed in order to see the variations of the results.

4.2 Experiments and Results

This section describes the experiments performed for solving the mathematical

programming model for different input parameters, the corresponding simulation

experiments, and their results.

4.2.1 Overvie\ry of Experiments

Besides the solver parameter tuning experiments of solving the mathematical model I

described in Chapter 3, I did other three sets of experiments with regard to simulation.

They are:

Experiments of simulation for different solver parameter settings for which I have

solved the mathematical programming model during solver parameter tuning.

This set of experiments is to see how the results of solving the mathematical

model compare with the simulation results under different solver parameter

settings. When choosing parameter settings for which I have done solver

parameter tuning to do simulation, I choose those that produce the best, average,

worst performance metric. I then observe the simulation results to see if there is

the same type of difference in the performance metric.

o Experiments with different budget.

¡ Experiments with different network bandwidth.

65

Chapter 4: Model Validation With Simulation

The main purpose of the last two sets of experiments is to fînd out how the two main

system factors impact the performance metrics. When designing a distributed PACS, the

two main factors that concern the designers are:

. Bandwidth in Mbps of the channels in the network (,8 in Table 3.1).

r Budger o¡ Total Capacity (C in Table 3.1).

They correspond to parameters .Band C in Table 3.1 respectively. When I vary the two

system factors described above, I fix the values of the solver parameter settings. On the

other hand, when I perform simulation for different solver parameter settings, the values

of the main factors are fixed.

Another pu{pose of all the experiments is to find out if the results from simulation

experiments validate the results from solving the mathematical programming model.

Hence, the experiments of solving the mathematical programming model and the

simulation experiments are performed in tandem. For each set of parameters for which I

solve the mathematical programming model, I also run a simulation. To make the two

sets of results comparable, simulations use the same parameters as the mathematical

programming model. The same parameters are the bandwidth, number of sites, network

topology and routing. The results from solving the mathematical programming model, the

placement of studies and the capacities of archives, will also be used as part of the

parameters for simulations.

The results of solving the mathematical programming model with different factors and

different solver parameters settings will be compared with the results from the

66

Chapter 4: Model Validation With Simulation

corresponding simulation experiments. The results to be compared include the

performance metrics and how the change of the factors affects the performance metrics.

We expect to see the factors affect the results of the two types of experiments the same

way. When one factor changes, the two sets of values of the performance metric from the

two types of experiments should both increase and decrease in the same direction and in

similar amount. They also should change according to common sense. For example,

when the budget or the bandwidth increases/decreases, we expect the objective value or

the performance metrics decrease/increase. We also expect to see that for different

performance as a result of different solver parameter settings, simulation results show the

same difference in performance metrics.

4.2,2Input Parameters

The simulation uses the same two problem instances as does the mathematical

programming model. The network parameters of the two problem instances are described

in Section 3.6.1.

The reading and writing traffic rate on each route from the solution to the mathematical

programming model are plugged in Equations (27) and (28) to calculate the mean inter-

arrival time of the files to be transferred in the simulation.

Values of the two main system factors are chosen in a way that the change of the value is

effective on the performance metric. When the network is more congested, it is more

effective to change the factors. Hence, I choose the values of parameters that make the

highest network channel utilization close to 90%. To get the experiment levels that make

67

Chapter 4: Model Validation With Simulation

the network channel utilization high, I start experimenting with small levels that produce

infeasible solutions. For example, when C is set 30, and B 0.5, the Solver reports that it

can not find feasible solutions. I then relax the levels of the two factors until feasible

solutions are found.

Because the parameters values that achieve the same level of network congestion are

different for the two problem instances, the selected levels of the factors are different.

They are listed in Table 4. t and Table 4.2 respectively.

. 9-Site Instance

Table 4.1 Factors and Levels for the 9-Site Instance

There are 5 levels for each factor.

25 on solving the mathematical

experiment has l2 replications)

o l5-Site Instance

With these levels, there are

programming model and

a total of 50 experiments,

25 on simulation (each

Table 4.2 Factors and Levels for the 1S-Site Instance

Factors Levels

Budget 1500, 1750, 2000, 2250,
2500

Factors Levels

Budget 40, 50, 60, 70, g0

Bandwidth (Mbps) l, 1.5,2,2.5,3

68

Chapter 4: Model Validation With Simulation

Bandwidth(Mbps) 100

There are 5 levels for budget and one level for bandwidth. With these levels, there are a

total of 10 experiments, 5 on solving the mathematical model and 5 on simulation (each

experiment has 12 replications). I only choose one level for bandwidth in o¡der to save

time on experimenting. Also, the budget is more important to PACS designers.

When performing the above experiments, I select the following parameters for the

KNITRO solver because experiments performed for tuning KNITRO solver parameters

show that it produces good objective value in a relatively short time:

alg =1; bar _murule = 4; hessopt : l; multistart = 0

The mean file size is set to 25M8, which is given in [53] by Otukile, fo¡ both problem

instances. The arrival rate of studies on route ij (au) is calculated by Equation (32).

Equation (32) is the result of combining Equations (27) and (28).

i, j eVwarchives (32)

Because the unit of),, is Mbps (refer to Section 3.3), the size is converted to bits. The

number of studies to be transferred in each run of the simulation is 1000.

4.2.3 Comparison of Optimization and Simulation Results

After each set of mathematical model solving experiment and simulation experiment with

the same parameters, I compare the performance bounds from solving the mathematical

model and performance metric calculated from simulation results.

25MB*g
IL.

--U
A..

U

69

Chapter 4: Model Validation With Simulation

Figure 4.2 and Figure 4.3 show the results of experiments performed for different solver

parameter settings for the 9-site instance and the l5-site instance respectively. Three

parameter settings are experimented. They produce one of the best, average, and one of

the worst objective fr¡nction values respectively during optimization. These settings are

shown as index number on the X-axis in the two figures. Their corresponding parameter

values are described in Table 4.3. Each figure has three lines showing the 2 bounds

(lower and upper bound) of the performance metric from solving the mathematical model

and the performance metric from the corresponding simulation. In the two figures, we

can see the simulation performance changes accordingly as the performance from the

anal¡ical model changes.

Table 4.3 Parameter Setting Index

Index 9-Site Instance 1S-Site Instance

alg:l, bar_murule:6, hessopt:l
multistarF I, ms_maxsolves:O

alg:1, bar_murule:2, hessopFl,
multistart: 1, ms_maxsolves:O

2 alg:2, bar_murule:I, hessopt:1,
multistarF0

alg:2, bar_murule:2, hessopt:4,
multistart:0

3 alg=2, - bar_murule:I, hessopt:4,
multistarFO

alg:1, bar_murule:1, hessopcl
multistarF I, ms_maxsolves: I

70

Chapter 4: Model Validation With Simulation

Performance Metric for the 9-Site Instance

Ð¿
oô
E
F

Ì-
cøo

Figure 4.2 Comparison of the

Peflormence for O¡fier€nt SolveÍ Psrsmeter Sen¡ngs. C=50. B=tMbDs

Upper Boundfrom optjmizåtion I

Lo,ver Bound from oplirúzst¡on i

Mean Tmnsfcr Time from Simubtionj

2
x (Pârâmeler Setlíno No.)

Figure 4.3 Comparison of the Performance Metric for the lS-Site Instance

Perfomance for Ditferent Sofuer Pa€meter Seiltngs, C=1500. B=lOOMbps

upf.iéluno .pìi;;"t,;;'""'''
Lower Bound from opl¡mizat¡on Ì

Mean TransÍer Tlme from Simulatlonì

2
x (Paromeler Senlng No.)

¡
oo
E
F'

õ
t-

o

* '"^l
I

.,t'
..." I

I

¡l
I

I

J

I

"l
I

I.','l
-l

T
I

I-l

I

I

0_18,-
:t
it

O.lO,]

i

0.14 !-

i

0.1? I

i
0.1 i-

i

008¡
1

0.06,i.

;

0.04i
I.i

o.02i
I
I

IoL

7l

Chapter 4: Model Validation With Simulation

Also, in experiments performed for other solver parameter tuning experiments, the

comparison of the t\¡/o sets of performance metrics from optimization results and

simulation results exhibit the same characteristics.

Furthermore, for the experiments performed for different factor levels for the two

problem instances, the previous observation of the performance metrics still holds true.

No matter which factor is changed, (either the budget or the channel bandwidth), both

performance metrics increase or decrease in the same direction and in similar amount.

The change of the bandwidth and the budget affects the simulation results the same ¡vay

as it does the optimization results. Ensuing Subsections 4.2.4 and4.2.5 will show this in

detail.

Therefore, the simulation model behaves the same way as does the mathematical

programming model for all experiments performed for different factor levels and solver

parameter settings. This increases the users' confidence in the mathematical

programming model.

All experiments including those shown here consistently show that if the solution of the

mathematical programming model produces a placement of archives whose performance

metric is better than that of another placement, the simulation results corroborate.

We also notice that the average transfer time from simulation is smaller than the lower

bound of the mean transfer time from the optimization results. There are a number of

possible reasons for this phenomenon:

First, the assumptions of the mathematical programming model are different than those of

the simulation in the following aspects:

72

Chapter 4: Model Validation With Simulation

"Mathematical programming modelling assumes a fluid model; the flow is

transferred through the network as a continuous stream; no storing of data in links

or queues. When a flow starts, it is immediately received at the destination at the

same rate as it is being sent." Page a in [39]

Second, the mathematical programming model and simulation assume a different fairness

scheme. The mathematical programming model assumes the balanced fairness scheme

whereas the simulation uses TCP.

Third, as is mentioned in the beginning of Section 4.1, the simulation model models in

much more detail the PACS than does the mathematical programming model.

We conclude that the performance metric from the mathematical programming model can

be a conservative estimate of the actual performance.

4.2.4 The Effect of the Budget

Understandably, designers of distributed PACS usually are concemed with the trade-off

between the budget and the performance. Hence, experiments are performed to explore

the effect of the budget on performance.

The experiment objective is to see how the varying of the budget changes the results and

to see if varying the budget affects the results of the mathematical programming model as

those of the simulation. Also, to see if better placements produced by the mathematical

programming model as a result of increasing budget indeed have better performance

shown in simulation results.

73

Chapter 4: Model Validation With Simulation

For the experiments, I fix the bandwidth value and change the budget value. The detailed

factors and levels are described in Section 4.2.2.

Figure 4.4 shows one set of results of changing the budget for the 9-site instance when

the bandwidth of all channels is set to lMbps. Figure 4.5 shows another set of results of

changing the budget for the 15-site instance when the bandwidth of all channels is set to

100Mbps. It is clearly shown in the two figures that the trend of the change of the

performance metric from the simulation results matches very well with that from the

anal¡ical results. Also, for both problem instances, increasing budget improves the

results of the mathematical programming model and simulation results. The results meet

our expectation. Another useful observation is to find the point where the decrease of the

mean transfer time levels off. This point is where the investment in the bandwidth or the

increase in the budget starts to become less effective. For example, in Figure 4.4, the

increase of the budget when it is greater than 60 becomes less advantageous in terms of

improving system performance.

74

D
z.
oq

E
F

c
I
F
t
F
Ê

Chapter 4: Model Validation With Simulation

Figure 4.4Effect of Budget on the 9-Site Instance

60
x (Budget ¡n Mbps (lunlt cost=col ot lMbps)

Figure 4.5 Effect of Budget on the 1S-Site Instance

Budgel Vs- Performance, gard1ilidth=100Mbps

i -^*,--' Upput gound from opl¡mlzation i
; . " LonverBoundfromopt¡mlzat¡or¡

¡i ¡- - M.an Transfer Time from Sirm.ùationi

1750 2000 ?250
x (Budget in Mbps (lwit cost=cost of lMbps)

¡
è
E
tr

cõ
t--
c
@

o.12:F

I

1

I
I

I
0.1 j

I

1

1

oosi-
I

II
¡

ooal,
1

T
I

O.Olt7
I
I
I

I
1

o.oz l.

Budg€t Vs. Performonce, Banô,vidh=1 Mbps

'.t - Upper Bond lrom of,ln{zalírn
' - - Low€r Bound frorn optim¡zati€ni Mean Tr¿nsler Time from Simlation

0 ¡.._

1500

75

Chapter 4: Model Validation With Simulation

4.2.5 The Effect of Bandwidth

When a network like a PACS spans across a health region, provisioning network

channels are also an important designing decision. This is because the unit cost for the

bandwidth of network connections over long distance is usually high. The designers

would like to have the knowledge of the effect of different network bandwidth on the

performance metric before they make the decision. Moreover, to further explore how the

simulation results compare to the results from solving the mathematical programming

model under a different scenario, I perform more experiments with varying channel

bandwidth of the network.

The experiment objective is to see how the varying of the bandwidth changes the results

and to see if the changing of the bandwidth affects the results of the mathematical

programming model as those of the simulation. Also, to see if better placements produced

by the mathematical programming model as a result of increasing bandwidth indeed have

better performance shown in the simulation results.

For the experiments, I fix the budget value and change the bandwidth value. The detailed

factors and levels are described in Section 4.2.2.

Figure 4.6 shows one set of the results of changing the bandwidth for the 9-site instance

when the budget is fixed to 40. It is shown in the figure that increasing the bandwidth

improves the performance metric of the mathematical programming model and the

simulation. These results meet our expectation too. The point where the bandwidth is

2Mbps can be regarded as the level-offpoint.

76

Chapter 4: Model Validation With Simulation

The experiments shown in the figures in this section are only a small part of experiments

I have performed when exploring how the two sets of performance metric compare and

how to best use the simulation model to validate the mathematical programming model.

However, these experiments provide a bird's eye view of how the simulation results

validate the results from solving the mathematical programming model. The other

omitted experiments do not conflict the experiments presented here.

Based on all the experiments performed, I conclude that (i) the mathematical

programming model produces good placements. The quality of these placements is

verified by the simulation. The average transfer time from the optimization is slightly

higher than from the simulation due to more realistic conditions modeled in the

simulation, thus the results from optimization can be considered conservative estimates

on the actual performance. (ii) The change of budget and bandwidth results in the desired

effect and is consistent with their effect on results from solving the mathematical

programming model. Therefore, the optimization model and the framework developed in

this work can be considered an attractive alternative to designers of distributed PACS's.

77

Chapter 4: Model Validation With Simulation

Figure 4.6 Effect of Bandwidth on the 9-Site Instance

Bandwidth Vs. Pedormance, Budget=4t

2

x (Bandwidth Mbps)

Although hitheno all the experiments have been designed for distributed PACS's,

believe the methodology can be used to other problems with similar characteristics.

t.o

1.6

1.4

1.2

1

0.8

0.6

0.4

CI.2

0

ü,

=Ð
Ð
fu
tt)

_o

t¡)
a-
(l}

.E
F
(¡J

aJ)
c
ct

t--
E,
(E
o)

251.5

78

Chapter 5: Conclusions

Chapter 5 Conclusions

Technology advances in the radiology department in the health industry increase the

amount of digital medical images produced and thus the demand to share the image data

due to the mobility of patients, modality sharing and consultation between physicians.

This trend demands an architectural shift from the current centralized mode. However,

designing a distributed PACS is a complicated decision which requires one to decide the

best locations, number, and capacity of digital image archives under a certain budget. I

have not found research work that has been done to solve this emerging problem.

In this project, I have tackled this problem through two major steps. First, an existing

mathematical programming model is introduced for the problem, then modified and

solved using an existing solver. While the model is being presented, performance bounds

are introduced to measure the performance of a distributed PACS. While solving the

model using an existing solver, I have explored the parameter settings of the solver to

produce significantly better results than using the default parameters settings. Second, I

have carried out packet-level simulations whose results give evidence of the validity of

the anal¡ical model. Before utilizing the'simulation model, I verified it by comparing the

utilization based on data collected from simulation with the utilization based on queuing

theory. The experiment results show that the anal¡ical model is valid and that the

methodology developed can help designers to choose the location, number and capacity

of archives to get the best performance under a certain budgel In addition, it can help to

find the best amount of investment that could bring the most performance improvement

79

Chapter 5: Conclusions

when designing a distributed PACS. The detailed contributions of this thesis project are

listed in next section.

5.1 Contributions

The contributions of this thesis project are as follows:

. Utilizing a model to design a distributed PACS or other systems with similar

characteristics. The model aims to find the best location, capacity of PACS

archives for a distributed PACS to optimize the performance under a certain

budget. Two problem instances are constructed and solved to illustrate the

usefulness of the model.

o Providing the tool that decision makers can use to find out:

a. Given a specific budget for a PACS network model, what is the best

performance that could be achieved.

where to place the archives and how to provision them to achieve best

performance for a given budget.

If the current best performance from a certain budget is unsatisfactory,

how performance will improve as a result of increasing the budget and

where the level-off point (where the investrnent increase becomes less

rewarding) is to be found. By solving the problem instances of different

budget constraints, decision makers can find out when performance can be

b.

c.

80

Chapter 5: Conclusions

d. where the bottlenecks are, be it archives or network channels, the tool can

locate them and show their utilization. From this information, they can

pinpoint the performance problem and prioritize the investment.

Designing, implementing, and verifying a simulation model to evaluate and verifu

the optimization results. Simulations verify if the assumptions made during

creating the mathematical programming model are appropriate. Simulation will

give more confidence to decision-makers when they make use of the optimization

results to design a distributed PACS archive system. Simulate the mathematical

programming model at packet level using NS2.

Tuning the parameters of the KNITRO solver, presenting the results showing the

impact of different combinations of important solver parameters, and providing

insight of how to use the solver parameters.

Providing methods to analyze the performance of an existing distributed PACS

network-

5.2 Future Work

Possible future work to improve or expand this research includes:

r Finding a new approach to deriving a more accurate network file transfer

performance metric than the bound on average delay that is used in this research.

81

Chapter 5: Conclusions

Venturing further research on other types of simulations besides packet-level

simulation and find out their advantages and disadvantages compared to the

simulation that I have done. Flow-level simulation is one possible direction.

Implementing a more accurate computer system performance model to simulate

an archive in a distributed PACS system.

82

Appendix A Results of Simulation Verification by Utilization

Table 4.1 Comparison of Two Types of Utilization

Bandwidth is set to 2Mbps, budget 50

Channel
Start

Channel
End

fheoretical
Utilization Utilization From Simulatio¡ Difference

70.00% 1.59% 2.26%

i0.r7% i9.86%).52%

) 3s.19% 3s.0s%).39%

I +2.37% +t.98%).93%

1 74.r7% 73.81%).48%

53.1s% 53.t6%).01%

+9.25% t0.57o/" 2.69%

z 32.02% 1.79%).71%

26.66% ¿7.40% 7..78%

) 56.8s% 56.s4%).47%

i3.00% 14.06% ¿.00%

z t2.72% i3.88% 2.20%

f i0.39% +8.9s% 2.86%

83

Channel
Start

Channel
End

Iheoretical
Utilization Utilization From Simulatior Difference

) ¿9.43% 28.s7%)-.92Yo

t059% s0.s8%).02%

\3.92% t4.t9%).80%

3 4.3s% +.26% t.98%

30.23% ¿9.14% t.62%

5 +s.96% +5.76%).43%

5 ¿2.13% 1.80% t.5t%

5 5 1s.10% +3.84% 2.80%

l I ,4.46% ,3.48%)-.84Yr

l) t.47% +.s9% 2.69%

) 5 t5s% i2.22% .12%

J7.37% 37.36% J.03%

) ¿4.34% 24.04% 1.23%

7 +s.s4% +s.23%).68%

I 1550% ¿5.07% 1.67%

3 ¿.03% 198% 2.26%

3 I 1.68% 1.55%).41%

84

Channel
Jtart

Channel
End

fheoretical
Utilization Utilization From Simulatio¡ Difference

) 28.69%)_8.45yo).8s%

) D ¿.66% ¿.71% 1.70%

)) J2.88% \2.42% 1.40%

85

References

lll O. R. L. Sheng and H.-M. C. Garcia. The design of medical image databases: A

disfributed approach, ln Proceedings of Ninth Annual International Phoenix

Conference on Compulers and Communications , pages 2808-2895, March 2l-

23 1990.

l2l Cisco wide area application services version 4.0 optimizations for PACS and

digital image storage, Cisco Systems Inc.,

http://www.cisco.com/enlUS/products/ps6870/products whiteJaperO900aecd805

1d5d8.shtml ,March 2007 .

t3] J. Bellavance. When PACS Pushes the Limit - Image Storage: The Basics,

http ://www.healthimagin g. com/contenlvi ew/64 I 5/6 8/Mav l, 2007 .

l4l H. K. Huang. PACS and imaging informatics: basic principles and applications,

2nd ed., Wiley-Liss, 2004.

l5l J. H. T. Keith J. Dreyer, David S. Hirschom and Amit Mehta. PACS, 2nd ed.,

Springer New York, 2006.

t6] T. Bonald and A. Proutière. On performance bounds for balanced fairness,

Pedormance Evaluation, vo1.55, no. l-2, pages 25-50,January 2004.

86

17l

t8l

tel

S. R. Mogatala. Web cache location and provisioning for a regional internet

service provider, Master's Thesis of Engineering, in Department of Electrical and

Comput er Engineeríng Winnipeg, Manitoba: University of Manitob a, 2005.

Wikipedia. Digital Imaging and Communications in Medicine,

http://en.wikipedia.ors/wiki/Dieital_Imaeing and_Communications in_Medicine

DICOM strategic document, 7.2 ed: National Electrical Manufacturers

Association ,2007 .

[10] H. Vagelis, J. C. Peter, P. Nagarajan, D. Yi, A. W. Jeffrey, and P. B. Redmond. A

flexible approach for electronic medical records exchange, in Proceedings of the

international worl<shop on Healthcare informalion and knowledge managemenl

Arlington, Virginia, USA: ACM, 2006.

[1] E. Marco, A. Thomas, J, R.rg, D. Asuman, and B. L. Gokce. A survey and

analysis of Electronic Healthcare Record standards, ACM Comput. Surv., vol. 37 ,

no. 4, pages 277 -375, 2005.

l12l D. Bandon, C. Lovis, A. Geissbhler, and J.-P. Valle. Enterprise-wide PACS:

Beyond radiology, an architecture to manage all medical images, Academic

Radiologt, vol.12, no. 8, pages 1000-1009, 2005.

87

[3] H. K. Huang. Enterprise PACS and image distribution, Computerized Medical

Imaging and Graphics, vol. 27 , no. 2-3 , pages 241-253, 2003 .

[4] M. Tsiknakis, D. G. Katehakis, and S. C. Orphanoudakis. Intelligent image

management in a distributed PACS and telemedicine environment,

Communications Magazine, IEEE, vol.34, no.7, pages 36-45, July 1996 July

t996

[15] J. Diamond , P . Zhou, S. Camorlinga, M. Toulouse, and E. Liu. Archive planning

for a metropolitan PACS network, In Proceedings of The 22nd Meeting of the

Society for Computer Applications in Radiologt Conference (SCAR 2005), June

2005.

[6] G. R. Lawrence, G. A. Marin, and S. E. Naron. Simulation of a hospital picture

archiving and control system (PACS), in Proceedings of the 17th conference on

IVinter simulation San Francisco, California, United States: ACM, 1985.

llTl T. Chiotis, T. Karounos, and B. Maglaris. Performance evaluation and network

management of picture archiving and communication systems-PACS, In

Proceedings of the 4th International Conference on Advances in Communication

and Control, page2l3, 1993.

[8] H. K. Huang, Z. Ãifeng, L. Brent, Z. Zheng, D. Jorge, K. Nelson, and L. W.

Chan. Data gdd for large-scale medical image archive and analysis,

C.

in

88

Proceedings of the |3th annual ACM international conference on Multimedia

Hilton, Singapore: ACM, 2005.

[19] Network Simulator, http://www.isi.edu/nsnam/ns/

[20] M. L. Averill and G. M. Michael. Simulation of communications networks, In

Proceedings of the 28th Conference on llinter simulation, IEEE Computer

Society, 1996.

l2ll L. Kleinrock. Queueing systems, Wiley, 1975.

l22l B. Liu, D. R. Figueiredo, Y. Guo, J. F. Kurose, and D. F. Towsley. A Study of

Networks Simulation Efficiency: Fluid Simulation vs- Packet-level Simulation, In

Proceedings of IEEE, INFOCOM, pages 1244-1253,2001.

123) K. cameron, s. Rob, w. carey, and u. Brian. Hybrid packelfluid flow network

simulation, In Proceedings of The Sevenleenth ï4rorl<shop on Parallel and

Distributed Simulation, pages 143-152,IEEE Computer Society, 2003.

l24l T. Yung, J. Martin, M. Takai, and R. Bagrodia. Integration of fluid-based

analytical model with packet-level simulation for analysis of computer networks,

200t.

89

l27l

l25l I. S. Monirul, F. R. George, and L. Wenke. Comparative Study between

Anal¡ical Models and Packet-Level Worm Simulations, in Proceedings of the

I9th L\¡orkshop on Principles of Advanced and Distríbuted Simulation: IEEE

Computer Society, 2005.

126l S. Camorlinga and B. Schofield. Impact of a workflow engaged network on

radiology image transfers across a metro network, St. Boniface General Hospital

Research Centre, Winnipeg, Manitoba, Submitted to IEEE Transactions on IT in

Biomedicine 2005-

W. Tu, C. J. Sreenan, and W. Ji. Worst-Case Delay Control in Multigroup

Overlay Networks, Parallel and Distributed Systems, IEEE Transactions on, vo\.

18, no. 10, pages 1407 - l4l9,Oct.2007.

[28] V/. M. Moh, Y.-J. C. Zhang, and T. I. Moh. Delay performance evaluation of high

speed protocols for multimedia communications, In Proceedings of Compuîer

Communicalions and Networks, Fourth International Conference on, pages 352

- 355, lgg5.

l29l J. F. Kurose and K. W. Ross. Computer networking: a top-down approach

featuring the Internet, 2nd ed., Addison-Wesley, 200I-

90

[30] H. C. Gromoll, A. L. Puha, and R. J. Williams. The fluid limit of a heavily loaded

processor sharing queue, Annuals of Applied Probability, vol. 12, no. 3, pages

797-859,2002

[31] N. Chen; and S. Jordan. Throughput in processor-sharing queues, Automatic

Control,IEEE Transactions orz, vol. 52,no.2, pages 299 - 305, Feb. 2007.

l32l A. M. Law and W. D. Kelton. Simulation modeling and analysis, 2nd ed.,

McGraw-Hill, 1991.

[33] K. Park and W. Willinger. Self-similar network traffic and performance

evaluation, Wiley, 2000.

l34l T. Bonald and A. Proutière. Insensitive bandwidth sharing, In Proceedings of

IEEE GLOBECOM'02, pages 2659-2663,2002.

[35] S. B. Fred, T. Bonald, A. Proutiere, R. G, gni, and J. W. Roberts. Statistical

bandwidth sharing: a study of congestion at flow level, In Proceedings of the

2001 Conference on Applications, technologies, architeclures, and protocols for

computer communications, ACM Press, 200 I .

[36] T. Bonald and A. Proutière. Insensitive bandwidth sharing in data networks,

Queueing Systems: Theory and Applications Archive, vol.44, no. l, pages 69 -

100, May 2003.

91

l37l T. Bonald and A. Proutière. Insensitivity in pro,cessor-sharing networks,

Pedormance Evaluat ion, v ol. 49, no. pages 193 -209, 2002.

[38] T. Bonald, A. Proutière, G. Régnié, and J. W. Roberts. Insensitivity results in

statistical bandwidth sharing, ln Proceedings of ITC I7 Conference,200l.

[39] V. Timonen. Simulation studies on performance of balanced fairness, Master's

Thesis of Engineering, in Departmenl of Engineering Physics and Mathematics.

vol. Master of Science: Helsinki University of Technology,2003.

[40] L. Massouliè and J. Roberts. Bandwidth sharing: Ob.iectives and algorithms, ln

Proceedings of IEEE INFOCOM, pages 1395-1403, Nlarch 2l-25 1999.

[41] F. Kelly. Charging and rate control for elastic traffic, ln Proceedings of European

Transactions on Telecommunications, pages 33-37, January 1997.

[42] L. Massouliè and J. W. Roberts. Bandwidth sharing and admission control for

elastic traffic, Telecommunication Systems, vol. 15, no- l-2, pages 185-201,2000.

l43l B. Thomas and M. Laurent. Impact of fairness on Internet performance, In

Proceedings of the 2001 ACM SIGMETNCS international conference on

Measurement and modeling of computer systems, ACM Press, 2001.

92

l44l L. Massoulie and J. Roberts. Bandwidth sharing: Objectives and algorithms, In

Proceedings of Proceedings of the INFOCOM, pages 1395-1403,1999.

[45] J. Mo and J. Walrand. Fair end-to-end window-based congestion control,

IEEE/ACM Transactions on Networking, vol. 8, no. 5, pages 556-567 ,2000.

146l KNITRO@ --nonlinear optimization problems (NLP) solver: Ziena Optimization

http ://www.ziena.comlknitro.htm.

l47l M. M. J. Czyzyk, and J. Mor. The NEOS Server, IEEE Journal on Computational

Science and Engineering, vol. 5, no. pages 68-75,1998.

[48] R. H. Byrd, J. Nocedal, and R. A. Waltz. KNITRO: an integrated package for

nonlinear optimization,In Proceedings of Large-Scale Nonlinear Optimization,

pages 35-59,2006.

L49l D. Steiger and R. Sharda. LP modeling languages for personal computers: A

comparison., Annals of Operations Research, vol.43, no. 3, pages 195-216,

March, 19931993.

[50] R. Fourer, D. M. Gay, and B. W. Kemighan. AMPL a modeling language for

mathematical programming,2nd ed., Duxbury Press, 2004.

93

[51] R. A. Waltz and T.

Inc., Northwestern

D. Plantenga. KNITRO 5.1

University, March 2007 .

l52l P. C. Steven, L. G. Bruce, C. R. George, and A. W. Edward. Using experimental

design to find effective parameter settings for heuristics, vol. 7, no. l, pages 77-97,

2001.

[53] M. Otukile. Simulation and modeling of a 10 GB/s metropolitan area network for

radiology, Master's Thesis of Engineering, in Department of Electrical and

Computer Engineering Winnipeg, Manitoba: University of Manitob a, 2004.

[54] S. Camorlinga and B. Schofield. Modeling of workflow-engaged networks on

radiology transfers across a metro network, IEEE Transactions on Information

Technology in Biomedicine, vol. 10, no. 2, pages 27 5-281, April 2006.

[55] G. S. Robert. Verification and validation of simulation models, In Proceedings of

the 37th conference on Winter simulation, Winter Simulation Conference,2005.

[56] K. Fall and K. Varadhan. The NS manual: UC Berkeley, LBL, USC/ISI, and

Xerox PARC, 2007.

94

