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Abstract

Abstract

This thesis introduces new methods for using electromagnetic transient (EMT) simulators

to efficiently optimize controllers of the power electronic converters in power systems with

complicated dynamic behavior. This work is motivated by several challenges that must be

overcome during the design process, including high computational burden of simulating large

switching systems, repetitive nature of the design cycle, the large number of variables that

need to be handled, etc. These challenges are addressed in this research by combining an

EMT simulator with optimization algorithms and by developing novel approaches to reduce

the entire simulation time.

Two screening methods are introduced in this thesis that can identify non-influential

parameters so that the number of parameters to be optimized can be reduced, thus decreasing

the computational burden of the process. Moreover, multi-algorithm and parallel processing

techniques are developed to achieve additional computational benefits by making the design

process faster. In this research, new pathways are created to solve simulation-based design

problems with a large number of parameters by amalgamating all the above approaches.

Several power system examples are simulated using PSCAD/EMTDC, and the accuracy

and efficiency of the proposed methods are assessed and confirmed. The results show signif-

icant reductions in the time to design optimal systems without compromising the quality of
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the optimal performance.
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Chapter 1

Introduction

1.1 Background

With increasing demand for electricity and radical changes brought about by converter-

based systems, renewable energy resources, and energy storage, existing power systems are

becoming increasingly complex. The complexity of renewable-intensive power systems is

spurred by the presence of switching converters, sophisticated control systems, and intricate

dynamic behaviour. Converter-based generation schemes have shown rapid growth resulting

in challenges in the design and operation of the system [1]. Converter-tied resources not

only diminish the system inertia, but also release high-frequency harmonics to the system

due to the high-frequency switching of the power electronic devices included in them [1].

To ensure power quality and supply reliability, converters are equipped with sophisticated

control systems whose parameters must be selected carefully and after extensive studies [2].

However, their highly non-linear and discontinuous nature makes it prohibitively difficult to

apply analytical methods to solve such design problems [3]. Therefore, it is necessary to
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1.1 Background

have simulation-based methods and tools to model these systems in a detailed and accurate

manner so that their dynamic performance can be successfully assessed, and their parameters

be tuned before actual implementation [4, 5].

Electromagnetic transient (EMT) simulators are widely used for modeling converter-

intensive power systems. Unlike other power system simulators (e.g., transient stability and

RMS-type solvers), which ignore fast transients, EMT simulators do include high-frequency

transients and provide a detailed representation of the system performance [1]- [2]. This

makes them extremely suitable as a reliable evaluator of the system’s performance for a

given set of design parameters. A crucial task within the design process is selecting optimal

parameter values for the components and controllers. Using the trial-and-error method for

this purpose is not efficient - although it is often practiced - particularly when there are a

large number of parameters to be optimized. Alternatively, formal optimization algorithms

can be used together with EMT simulators; this approach saves significant time and effort by

generating candidate parameter sets in an intelligent and automated manner using the opti-

mization algorithm. The suitability of the generated candidate parameter sets is evaluated

by the EMT simulator [5].

Even though an EMT simulator interfaced with an optimization algorithm is a powerful

design tool, the existing methods are still computationally inefficient when tens or hundreds

of parameters need to be optimized. In addition to the high computational complexity

of EMT simulation models and the repetitive nature of the design process, inherent limi-

tations (e.g., large populations, slow convergence, sequential execution, etc.) imposed by

conventional optimization algorithms must also be overcome to improve upon the current

approaches of using optimization-enabled electromagnetic transient simulation (OE-EMTS).

In this thesis, novel methods are developed to overcome the above challenges. Two
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1.2 Problem Definition

screening methods are devised to reduce the dimension of the design problem by identi-

fying the parameters that do not require optimization. Moreover, combined optimization

algorithms and parallel processing techniques are explored to accelerate the design process.

The efficiency and accuracy of the proposed methods are validated in optimal design of

complicated controllers in power systems that represent real-world applications.

1.2 Problem Definition

When analytical methods are not sufficient to solve existing complex power system opti-

mization problems, simulation-based design is the best solution. EMT simulators are widely

used in this area since they can model power system components in a detailed and accurate

manner [4]. The mainstream solution method in EMT simulators is to create equivalent cir-

cuits for system components using an integration method and then solving the circuit using

nodal analysis based upon the admittance matrix of the network under consideration [6]. To

solve for node voltages, the network’s admittance matrix must be inverted. Due to switch-

ing actions, e.g., in power-electronic devices, the admittance matrix continually changes;

therefore, inversions must be done repetitively. In addition to that, the design cycle itself is

repetitive and causes an immense computational burden. Accordingly, the simulation-based

design process requires novel remedies to reduce its computational burden and accelerate

the process.

In regard to the optimization algorithms, genetic algorithms and nonlinear Simplex

method have been widely adopted for simulation-based design of complex power systems.

There exists previous work that has used OE-EMTS to optimize power system parame-

ters, where the candidate parameter sets are generated by the optimization algorithm in
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1.2 Problem Definition

an intelligent manner and the suitability of those parameter sets is evaluated by the EMT

simulator [5]. In [5], OE-EMTS is used to optimize the parameter values of a voltage source

converter and a dc-dc converter, while the same methodology has been used to design a

HVDC controller in [7]. In both cases, Nelder-Mead’s Simplex algorithm is used since it

performs well for optimization of a relatively small number of parameters [5,7]. Even though

the Simplex algorithm is computationally efficient, it is prone to converging into a local

optimum. Moreover, in the context of optimizing power systems with power electronic de-

vices, which tend to have a large number of parameters, the Simplex algorithm may not be

a suitable choice [8]. The authors in [9] have suggested using genetic algorithms (GAs) to

obtain optimal design for photovoltaic grid-connected systems, considering their efficiency

and cost. There is a high likelihood of GA converging into the global optimum since it con-

siders sets (populations) of solutions and includes advanced operators such as mutation and

crossover that tend to diversify the solution set [8]. However, GAs take considerable time to

complete the optimization process. For cases with a large number of parameters, it might

take prohibitively long to finish the simulation. Thus, there are several inherent limitations

of the optimization algorithms that should be overcome during the design process.

Therefore, in the context of using OE-EMT simulation to design complicated controllers

in power systems, complexities such as high computational burden, repetitive nature of the

design cycle, large number of parameters to be handled, and the inherent limitations of the

optimization algorithms cause difficulties. This thesis introduces a number of novel meth-

ods to perform screening that identifies and removes non-influential variables to lower the

dimension of the optimization problem, thus reducing its complexity and accelerating the de-

sign process using combined optimization algorithms and parallel-processing approaches. To

demonstrate the efficacy of the proposed methods, design parameters of a HVDC controller

- 4 -



1.3 Thesis Objectives

and two different type-4 wind turbine generator controllers are optimized. All cases prove

to be extremely challenging for manual parameter tuning due to the number of parameters

and the complexity of the dynamic behaviour of the networks. The results confirm that the

proposed approaches are effective in optimization of complicated power systems using EMT

simulators.

1.3 Thesis Objectives

It is clear that the existing methods of using EMT simulation are not efficient enough to

design converter-intensive power systems since they need significant computational power

and time. Thus the main objective of this thesis is to develop novel methods to overcome

these problems and to improve the efficiency of the design process.

There are several factors that must be considered to reduce the computational burden

and simulation time of OE-EMTS design problems. One of them is the dimension of the

problem at hand, i.e., the number of parameters to be optimized. In the context of converter-

intensive power systems, there are a lot of parameters to be optimized. Not all of these

parameters may affect the design objectives similarly. Therefore, as the first objective of this

thesis, screening methods are developed to identify the non-influential parameters that do not

crucially impact the design goals, and hence can be excluded without optimizing. By doing

so, the dimension of the problem can be lowered while reducing its complexity. The second

objective of this research is overcoming the inherent limitations of optimization algorithms

by combining multiple algorithms. The expectation from this novel approach is achieving

further computational benefits by integrating profitable traits of several algorithms.

The OE-EMT simulation-based design is an iterative process, which runs until the opti-
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1.4 Thesis Organization

mization algorithm finds the best parameter set that satisfies the design objectives. There-

fore, the design process can be accelerated if parallel-processing techniques are adopted,

which is another objective explored in this thesis. As the final objective, the novel ap-

proaches proposed in the thesis are applied to several case studies that represent real-world

systems to demonstrate the efficacy of the proposed methods.

1.4 Thesis Organization

The thesis is organized in a way that it gives meticulous understanding about the novel

methods found in the research and application of them to overcome the design problems.

Chapter 2 provides an overview of electromagnetic transient (EMT) simulators and

optimization-enabled electromagnetic transient simulation programs. In the later part of

the chapter, fundamental steps to build an objective function (OF) are explained along with

the methods to modify it according to the design requirements.

Chapter 3 explains the operation of optimization algorithms and their classifications.

Moreover, the principles and operations of the GA and Simplex algorithm are described in

detail in this chapter.

Following Chapter 3, Chapter 4 presents a comprehensive explanation about the novel

methods introduced in the thesis and the way they are implemented.

The application of proposed methods in the designing of power systems is discussed in

Chapter 5 by using some real-world case studies. The results relevant to every approach are

presented and compared in this chapter.

Chapter 6 concludes the thesis by presenting the conclusions and contributions of the

research and provides recommendations for the future work related to the topic.
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Chapter 2

Optimization-Enabled

Electromagnetic Transient Simulation

(OE-EMTS)

2.1 Electromagnetic Transient (EMT) Simulators

In early days of modern power systems, transient analysis was done using mathematical cal-

culations [10]. It is complicated to use analytical methods to model existing power systems,

which include a large number of switching power-electronic devices and non-linear compo-

nents [2]. Even though it is possible to develop analytical representations with average-value

models, they cannot fully mimic the exact response of a system including fast dynamics [2].

With the development of computer technology, electromagnetic transient simulation pro-

grams were introduced, which model the power system efficiently and give highly accurate

simulation results over a wide range of frequencies [6]. There are two main approaches in
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2.2 Overview of OE-EMTS

EMT simulations, namely state space-based and companion circuit-based nodal analysis ap-

proaches [6]. In the former, state equations are derived for the circuit and are solved using

numerical integration methods such as trapezoidal rule [6]. This method is not popular

since generation of state space equations for large systems consumes significant time and

effort [6]. The popular approach is the latter, which focuses on transforming circuit elements

to conductances in parallel with current sources and solving the resulting circuit using nodal

analysis [6].

Since EMT programs are capable of simulating complex power systems, wide-ranging

tasks such as controller tuning, protection coordination studies, power quality studies, and

determination of equipment stresses can be readily carried out [5] [11]. The performance of

a system can be evaluated by simulating its behavior in an EMT simulator while modifying

its parameters until the expected outcome is achieved [5]. This makes the design procedure

less complicated than the previously used analytical methods and helps the designer to form

a deep understanding about the operation of the actual system [11]. The EMT simulator

used in this thesis is PSCAD/EMTDC.

2.2 Overview of OE-EMTS

Selecting suitable values for the design parameters is a vital part of the design cycle. To find

the most fitting values for a circuit, the designer must consider a large number of possible

solutions and evaluate the system’s performance for each solution [2]. In this case, there

should be a methodology to generate trial parameter sets. The performance of the system

for a given set of parameters is measured by the EMT simulator, which requires a metric

formulated in the form of an objective function (OF), to determine the closeness between
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2.2 Overview of OE-EMTS

the actual and desired performance [5]. Low OF values typically indicate that the actual

and the expected performance of the system are close, thus indicating a high-quality design.

Monte-Carlo and multiple-run methods are widely-used approaches to generate the can-

didate points; however, due to their unstructured search pattern, they are inefficient and

have poor accuracy [5]. OE-EMTS is an advanced and efficient tool for the design of com-

plex power systems using an EMT solver in conjunction with a (nonlinear) optimization

algorithm as depicted in Fig. 2.1.

Transient simulation 

of the network

Evaluation of 

objective function 

(OF)

Converged?

Yes

No

End

Start

Select a new 

parameter set

Non-linear optimization 

EMT 

simulation

Figure 2.1: Schematic flow diagram of the OE-EMTS [12].

The role of the optimization algorithm is to generate new candidate values for the design

parameters in an intelligent manner. The EMT simulator runs repetitively with new values
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2.3 Development of Objective Functions for Simulation-Based Optimization

assigned to it in each run, and after every simulation run the evaluated OF is given to the

optimization algorithm, which uses it to judiciously generate new parameter sets that lead

to lower OF value. This process ends after obtaining a parameter set that gives a minimum

OF value that satisfies the design requirements. Due to the strategic search abilities of

a non-linear optimization algorithms, the simulation-centered optimization process takes

comparatively fewer iterations than manual trail-and-error [5].

2.3 Development of Objective Functions for Simulation-

Based Optimization

OE-EMTS requires an OF, which includes all the design objectives, to evaluate the perfor-

mance of a given system [7]. The OF is a measure of closeness between the actual output

and the desired output [12]. Therefore, the lower the OF value, the more fitting the design.

To further understand OFs, an example is presented here assuming that the functions in

(2.1) and (2.2) describe the actual and expected responses of a system, respectively. The

design objective is to make Y1(t,a) and Y2(t) closer as possible.

Y1(t, a) = 1 + ae−at sin(8at) (2.1)

Y2(t) = 1 (2.2)

The actual response of the system depends on parameter a whose value changes the perfor-

mance of the system as illustrated in Figs. 2.2 and 2.3. To achieve the goal of the design,

the error between the two functions must be minimized. Hence, an OF is defined as the

integral of the absolute difference between the two functions as in (2.3), where [0, T ] is the
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Figure 2.2: Y1(t, a) function variation when a = 0.5.
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Figure 2.3: Y1(t, a) function variation when a = 1.

time period over which the OF is calculated.

OF (a) =
∫ T

0
|Y1(t, a) − Y2(t)| dt (2.3)
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2.3 Development of Objective Functions for Simulation-Based Optimization

The goal of the optimization algorithm is to select a such that the OF is minimized.

In simulation-based optimization, the OF is evaluated by the EMT simulator. The EMT

simulator does not require an explicit expression of the system performance, which is often

hard to achieve due to the complexity of the design problem. A number of other arrange-

ments for the OF in this design problem are shown in Fig. 2.4. The designer can select a

suitable OF formulation according to the design problem and modify it to include all design

objectives. Moreover, there can be situations where the OF must include different weighting

Yref

Ysimulated
|X| ʃ

Yref

Ysimulated
X2 ʃ

Yref

Ysimulated
|X| ʃt

Yref

Ysimulated
ʃtX2

Yref

Ysimulated
ʃt2X2

(a)

(b)

(c)

(d)

(e)

OF =ʃ |Ysimulated – Yref| dt

OF =ʃ (Ysimulated – Yref )
2dt

OF =ʃ |Ysimulated – Yref|.t dt

OF =ʃ (Ysimulated – Yref )
2 .t dt

OF =ʃ (Ysimulated – Yref )
2 .t2 dt

Figure 2.4: Block diagrams of alternative OF formulations: (a) integral absolute
error (IAE), (b) integral square error (ISE), (c) integral time absolute error (ITAE),
(d) integral time square error (ITSE), (e) integral square time error (ISTE) [13].
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factors. For example, if the OF is defined as an addition of several sub-OFs as in (2.4c), the

numerical value of each sub-OF should remain in the same range [5] in order to avoid an

overly restrictive focus on one sub-OF.

of1 =
∫ T

0
|Y1 − Y1,ref| dt (2.4a)

of2 =
∫ T

0
|Y2 − Y2,ref| dt (2.4b)

OF = of1 + of2 (2.4c)

If of1 is significantly larger than of2 or vice versa, the sub-OFs should be assigned suitable

weighting factors as in (2.5) or else the optimization process will concentrate only on the

sub-OF with the larger value.

OF = K1 × of1 + K2 × of2 (2.5)

In addition to this, weightings can also be assigned to different time intervals as shown in

(2.6), if the time intervals require different levels of attention [7]. Higher weightings can be

applied to more important time periods while applying smaller weightings to insignificant

ones.

OF = C1

∫ T1

0
|Y1 − Y1,ref| dt + C2

∫ T2

T1
|Y1 − Y1,ref| dt + C3

∫ T

T2
|Y1 − Y1,ref| dt (2.6)

In this way, the designer can adjust the OF according to the design requirements. Since

the optimization algorithm determines the suitability of candidate parameter sets considering

the OF value, selecting a proper OF is an important part of the simulation-based design.
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When there are multiple objectives to be satisfied, the OF should reflect all of them so that

the optimization process gives compromised solution between the all objectives.

This chapter presented a review of EMT simulators and the basic operation of OE-

EMTS. The structure of OE-EMTS was discussed along with the advantages of it over

existing approaches. Finally, an overview of developing OFs was provided, which described

fundamental steps to build an OF. The modifications that can be done to the OF were also

discussed.

- 14 -



Chapter 3

Optimization Algorithms

3.1 Overview of Optimization Algorithms

Optimization may be defined as a process of improving an initial concept with the knowledge

gained by making amendments to it [14]. Generally, in the field of engineering, optimization

is often used to minimize the cost or to maximize the performance of a system [15]. Fig. 3.1

shows the basic engineering optimization procedure.

Design 

goals
Initial 

design

Performance 

evaluation
Good?

Final 

design

Change 

design
No

Yes

Figure 3.1: Block diagrams of the optimization process [16].

When there are several parameters to optimize, executing this process manually requires
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3.1 Overview of Optimization Algorithms

significant time and effort; therefore, optimization algorithms were introduced in order to

automate the process within the dashed box shown in Fig. 3.1 [16]. The role of the op-

timization algorithm is generating new candidate parameters and processing of the perfor-

mance evaluation function (OF) of the system [5]. Optimization algorithms run repetitively

while improving the design until they reach the allowed deviation between the actual and

expected design [16]. When compared with the brute-force optimization methods (e.g., trial-

and-error), formal optimization algorithms have methodical and logical ways of leading the

search that accelerate the design process while avoiding human error [16].

There are several ways to categorise optimization algorithms. One way is classifying

them as gradient-based and gradient-free methods. Steepest descent and Gauss-Newton

methods are gradient-based since they utilize derivative information in the algorithm [15].

Gradient-based methods require an explicit mathematical expression of the OF to calculate

derivatives; hence there is a limitation on their use in complex optimization problems whose

performance cannot be encapsulated into a mathematical function [5]. Gradient-free meth-

ods, such as Nelder-Mead’s downhill Simplex method, only use OF evaluations and are thus

more desirable than gradient-based methods in the context of simulation-based design [5,15].

Another way of classifying optimization algorithms is as deterministic or stochastic. De-

terministic algorithms always lead the search using the same order without any randomness;

hence they end up with the same final solution for the same initial point [15, 17]. The Sim-

plex algorithm is an example of deterministic algorithms. On the other hand, stochastic

algorithms, such as genetic algorithms, use randomness in their search strategy; thus they

may give different final solutions or at least undergo a different path to the same final solu-

tion [15]. In this thesis, genetic algorithms and Nelder-Mead’s Simplex algorithm are used

for optimization and they are interfaced with PSCAD/EMTDC simulator.
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3.2 Nelder-Mead’s Simplex Algorithm

3.2 Nelder-Mead’s Simplex Algorithm

Nelder-Mead’s Simplex algorithm is a non-gradient-based optimization method that only

requires function evaluations [14]. To solve an n-dimensional optimization problem, a simplex

with n + 1 vertices is used and value of the objective function is calculated at the point

corresponding to every vertex. Then the vertex with the worst objective function value

(highest value if the problem is a minimization problem or vice versa) is replaced by another

point, which is found through the algorithm operators [18].

For a better understanding of the Simplex method, minimization of an n-variable func-

tion, F (X) is described here. At the beginning of the algorithm, only one point (X1) is given

by the user. To calculate the other n points, (3.1) is used [14].

Xi+1 = X1 + s · pi+1 (3.1)

where s is a scaling factor and pi+1 is the unit vector for i = 1, 2, · · · , n. After find-

ing all the points (vertices), objective function values for all point are calculated. Let

X1, X2, · · · , Xn, Xn+1 be the (n + 1) vertices of the initial simplex after arranging them

in order from best performing to worst. Therefore, X1 and Xn+1 are the best and worst

points that give the minimum and maximum objective function values, respectively. Thus,

the order of the objective function values is as shown in (3.2).

F (X1) < F (X2) < · · · < F (Xn) < F (Xn+1) (3.2)

X̄ is the centroid of all the points except the worst point (Xn+1)(see (3.3)). The objective of

the algorithm is to replace Xn+1 with a better point, i.e., one with a better objective function
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3.2 Nelder-Mead’s Simplex Algorithm

value.

X̄ = 1
n

n∑
i=1

Xi (3.3)

The first operation used in the algorithm is reflection, which reflects the worst point through

the centroid (see (3.4)).

XR = X̄ + α(X̄ − Xn+1) (3.4)

where α is a positive constant called the reflection coefficient and is generally set to 1 [16].

If F (XR) is between F (X1) and F (Xn), then Xn+1 is replaced by XR. Then the algorithm

moves to the next iteration and starts with a new simplex [18,19].

If F (XR) is smaller than F (X1), it indicates a potentially very promising direction and a

new point in the same direction is investigated through the expansion operation as in (3.5).

XE = X̄ + β(XR − X̄) (3.5)

where β is the expansion coefficient, which is generally set to 2 [16]. If F (XE) is less than

F (XR), then Xn+1 is replaced by XE. If F (XE) is greater than F (XR), then Xn+1 is replaced

by XR and the iteration is terminated [19].

In case F (XR) is larger than or equal to F (Xn), the reflected point must not replace the

worst point. Hence a contraction operation is performed between X̄ and min(Xn+1, XR).

When F (Xn) ≤ F (XR) < F (Xn+1), outside contraction is performed as in (3.6) [19].

XC1 = X̄ + γ1(X̄ − Xn+1) (3.6)
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3.2 Nelder-Mead’s Simplex Algorithm

When F (XR) ≥ F (Xn+1), inside contraction is performed as in (3.7) [19].

XC2 = X̄ − γ2(X̄ − Xn+1) (3.7)

where γ1 and γ2 are contraction coefficients and are typically set to 0.5 [16]. If F (XC1) ≤

F (XR), Xn+1 is replaced with XC1 and the algorithm moves to the next iteration. In case

F (XC2) < F (Xn+1), Xn+1 is replaced with XC2 and the algorithm moves to the next iteration.

F (XC1) > F (XR) or F (XC2) ≥ F (Xn+1) means contraction operation has failed to find

a better point. Therefore the algorithm performs a shrink operation by moving all the points

towards the best point, i.e., (X1). Here all the vertices except X1 are changed as in (3.8).

Zi = X1 + δ(Xi − X1) (3.8)

where i = 2, 3, · · · , n, n + 1, and δ is normally set to 0.5. Then X1, Z2, · · · , Zn, Zn+1 are the

new vertices (not in order) for the next iteration. The operations in the Simplex algorithm

and its flowchart are shown in Figs. 3.2 and 3.3, respectively.

The convergence of the algorithm is checked by comparing the standard deviation of the

sample of function values to the tolerance provided by the user. The Simplex algorithm has a

number of advantages and disadvantages. The main advantages are that it is computationally

efficient [8] and does not require derivative calculations [20]. However, when the number of

variables increases, the iterations of the algorithm grow rapidly; it also tends to converge

towards a local optimum [8].
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XC2
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Figure 3.2: The Nelder-Mead’s Simplex operations for a two-dimension problem (a)
reflection, (b) expansion, (c) outside contraction, (d) inside contraction, and (e) shrink.
(X1, X2 and X3 are the vertices of the initial simplex) [19]

3.3 Real-Valued Genetic Algorithms

Genetic algorithms (GAs) are a member of evolutionary computing methods; they are de-

veloped based upon principles from biological evolution where the fittest individuals transfer

their genes to the next generation [16]. GAs start with an initial population that includes

randomly selected candidate points. The candidate points are usually called chromosomes.

After evaluating the suitability of each chromosome through evaluating its corresponding OF

value, the fittest chromosomes will survive and produce the next generation [8]. The chro-

mosomes can either be expressed as a binary string or real values; thus GAs can be used to

optimize both continuous and discrete variables including binary variables [5]. In this thesis,

only continuous variables are optimized and hence the continuous GA (real-valued GA) is
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Start

Calculate initial Xi and F(Xi)

Sort Xi from best to worst (X1,X2…….Xn+1)
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Is F(XE) <F(XR)

Replace Xn+1 by XE
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Figure 3.3: The flowchart of the Nelder-Mead’s Simplex algorithm [16,18].

used. The continuous GA algorithm, whose flowchart is shown in Fig. 3.4, is explained in

this section using a minimization problem with N variables. The further details about the

algorithm can be found in [14].

3.3.1 Initial Population

At the beginning of the process, the user assigns an upper limit (XU,k) and a lower limit

(XL,k) for each variable and selects the number of candidate parameter sets (chromosomes)
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Define objective function (OF) 

Select GA parameters

Generate initial population

Find OF value for each 

chromosome

Select mating pairs

Mating

Mutation

Converged?

Yes

No

Exit

Start

Figure 3.4: Flowchart of the continuous (real-valued) GA. [14]

in the initial (NI), surviving (NS), and mating (NM) populations (XU,k and XL,k denote the

upper limit and lower limit of kth variable respectively). When there are N variables to

optimize, one chromosome is a (1 × N) array that includes N random real values (see (3.9))

and the initial population has NI such chromosomes (see (3.10)). One row of the initial

population matrix represents one chromosome.

Chromosomej = [X ′
j,1 X ′

j,2 X ′
j,3 · · · X ′

j,N ] (3.9)
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Therefore, the initial population matrix is as follows:

Ipop =



X ′
1,1 X ′

1,2 X ′
1,3 . . . X ′

1,N

X ′
2,1 X ′

2,2 X ′
2,3 . . . X ′

2,N

. . . . . . .

X ′
NI,1 X ′

NI,2 X ′
NI,3 . . . X ′

NI,N


(3.10)

Generally, the numbers in this NI × N initial population matrix are generated using a

random number generator, which produces normalized values between 0 and 1 that must

then be mapped to within their limits using (3.11).

Xj,k = (XU,k − XL,k)X ′
j,k + XL,k (3.11)

where k = 1, 2, · · · , N and j = 1, 2, · · · , NI; XU,k and XL,k denote upper limit and lower limit

of kth variable respectively.

3.3.2 Natural Selection

Natural selection takes place in order to discard the chromosomes with large OF values,

i.e., low-performing ones in a minimization problem. Therefore, after the OF values for all

chromosome are calculated, they are ranked from the lowest OF value to the highest OF

value. Then the top NS chromosomes (chromosomes that have the lowest OF values) are

selected as the surviving population to the next generation. NS can be less than or equal to

NI and for the remainder of the process NS is kept constant.
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3.3.3 Selection

Even though the top NS chromosomes survive to the next generation, only the best NM chro-

mosomes from this pool are selected for mating. The rest of the chromosomes in surviving

population are replaced by the offspring produced by the top NM after mating. Two chro-

mosomes from the mating pool are paired to produce two offspring and the mating process

continues until (NS-NM) offspring are produced. Before moving to the mating process, the

row numbers of the parent chromosomes to be paired should be selected from the mating

pool. There are several selection methods for this purpose :

• Top-to-bottom pairing: In this method, pairing starts with the top two chromosomes

and chromosomes are sequentially paired from top to bottom of the ranked list until

(NS-NM) offspring are produced. The row numbers of the paired chromosomes are

(1, 2), (3, 4), (5, 6), etc.

• Random pairing: This approach selects the row numbers of parents randomly by gen-

erating (NS-NM) random numbers between 1 and NM. Then the chromosomes corre-

sponding to the rows indicated in the list are paired.

• Weighted random pairing: Here the chromosomes in the mating population are as-

signed probabilities that are inversely proportional to their OF values. Hence, the

chromosome that has the lowest OF value has the highest probability of mating. A

random number decides the chromosome that is to be a parent. There are two tech-

niques of implementing this approach:

Rank weighting: Since the mating pool is already ranked according to their OF values,

the probability is assigned using that rank (n) as in (3.12). The rank of the top
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chromosome is 1 and the chromosome which has the highest OF value in the mating

pool has the rank of NM.

Pn = NM − n + 1∑NM
n=1 n

(3.12)

where n = 1, 2, · · · , NM. Then the cumulative probability for each chromosome is

calculated using (3.13), which is used to select the parent chromosomes. Cumulative

probabilities always have values less than or equal 1.

CPn =
n∑

i=1
Pn (3.13)

Following this, a random number between 0 and 1 is generated and compared with

the cumulative probabilities of the list from top to bottom. The first chromosome that

has a cumulative probability higher than the random number is selected as a parent.

Random numbers are generated until (NS-NM) parents are selected and then they are

paired sequentially.

Cost weighting: This approach assigns probabilities to the chromosomes in the mating

pool according to their OF values. First, a normalized cost is calculated as in (3.14).

Cn = OFn − OFNM+1 (3.14)

where OFNM+1 is the lowest cost of the eliminated chromosomes and n is the rank of

the chromosomes. Cn always has a negative value. The individual probabilities are

assigned to the chromosomes as in (3.15).

Pn =
∣∣∣∣∣ Cn

ΣNM
i=1 Ci

∣∣∣∣∣ (3.15)
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After calculating the cumulative probability using (3.13), the same procedure as in

rank weighting is followed.

• Tournament: In this method, a small subset including two or three chromosomes is

selected from the mating pool by generating random row numbers from 1 to NM. The

chromosome that has the lowest OF value in the selected subset is chosen as a parent.

This process is continued until (NS-NM) parents are selected. Unlike previous methods,

this approach does not require a sorted population.

3.3.4 Mating

After selecting suitable pairs for mating, crossover operation is used to produce new offspring.

To explain the crossover process, two parent chromosomes are considered as in (3.16).

parent1 = [Xm,1 Xm,2 Xm,3 · · · Xm,y−1 Xm,y Xm,y+1 · · · Xm,N ] (3.16a)

parent2 = [Xf,1 Xf,2 Xf,3 · · · Xf,y−1 Xf,y Xf,y+1 · · · Xf,N ] (3.16b)

The simplest form of crossover is swapping the variable values between the parents with

respect to one or two randomly selected crossover points. Swapping variables does not in-

troduce new variables to the process. It only passes the randomly generated initial variables

to the next generation with different combinations. Therefore, blending methods are intro-

duced to generate new variables in the offspring by combining crossover point variables of

the parent chromosomes. Using multiple crossover points is also possible; however, single

point crossover is discussed here as it is simpler. Let y be the selected crossover point, which

is between 1 and N , and β be a randomly selected value between 0 and 1. Then Xm,y and
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Xf,y are combined to obtain new variables to be in the offspring as in (3.17).

Xm,new = Xm,y − β(Xm,y − Xf,y) (3.17a)

Xf,new = Xf,y + β(Xm,y − Xf,y) (3.17b)

The produced offspring after crossover are as in 3.18.

offspring1 = [Xm,1 Xm,2 Xm,3 · · · Xm,y−1 Xm,new Xf,y+1 ...... Xf,N ] (3.18a)

offspring1 = [Xf,1 Xf,2 Xf,3 · · · Xf,y−1 Xf,new Xm,y+1 ...... Xm,N ] (3.18b)

A total of (NS-NM) offspring are produced during the mating process and now the next

generation consists of NM chromosomes.

3.3.5 Mutation

To prevent premature convergence, another operator called mutation is adopted, which ran-

domly changes randomly selected parameters [14]. A mutation rate, which determines the

number of variables that are mutated, should be given by the user. If the mutation rate is

mr, the number of mutations is found as in (3.19) [14].

Number of mutations = mr × NS × N (3.19)

where NS × N gives the total number of variables in the surviving population. After finding

the total number of mutations, random numbers between 1 to NS are generated to find the

row numbers while random numbers between 1 to N are generated to find column numbers.
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The variable values that are in the selected locations are replaced by a random number. This

happens until the total number of mutations are achieved.

In case if the user wants to keep the best solutions of the generation unchanged, they

should not be affected by the mutation. For that, there is another population introduced in

the algorithm called the elite population (NE). This includes the top NE chromosomes of

the surviving population. When there is an elite population, row numbers for the mutation

are selected from NE + 1 to NS and the number of mutations are also changed as in (3.20).

Number of mutations = mr × (NS − NE) × N (3.20)

After mutation is over, OF values of the chromosomes of the new generation are evaluated.

This process repeats until the desirable result is achieved.

In this thesis, GA is used since it does not require derivative calculations, works well with

large numbers of variables, is well-suited for parallel programming, and does not depend on

a single initial point. In some cases, other optimization algorithms may find the solution

faster than a GA as GAs have low convergence efficiency. However, a GA is suitable for

solving many real-world optimization problems with a large number of variables.

This chapter provided a brief introduction to a number of derivative-free optimization

algorithms. The principles and operations used in the Simplex algorithm and GA were

described in detail together with the advantages and disadvantages of these algorithms.
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Chapter 4

Novel Approaches to Reduce

Simulation Time and Computational

Burden

This chapter presents the novel methods explored in this research to improve the existing

methods of using OE-EMTS for optimization of complex power systems. Screening methods,

which identify and remove non-influential variables, are studied to reduce the dimension of

the design problem; hybridized optimization algorithms and parallel processing techniques

are also explored to enhance the computational efficiency of the design cycle by reducing

unnecessary, time-consuming EMT simulations.

4.1 Screening Methods

When it comes to converter-intensive power systems, there are often many parameters that

need to be assigned optimally. Not all of these parameters crucially affect the design ob-
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jectives. Therefore, two screening methods are developed in this thesis to identify such

parameters and they are excluded from the optimization process. This will facilitate the

design process as reduction of optimizing parameters reduces the complexity of the design

problem and hence the computational burden of its solution.

4.1.1 Initial Screening

Initial screening is done before the main loop of optimization. In this screening method,

the initial value of each variable is changed by applying positive and negative increments

and for each increment a simulation run is conducted to evaluate whether the increment has

a significant impact on the OF value. The designer can decide the value of increment(s)

according to the design problem.

The process of perturbing the original optimization variables entails calculation of the OF

for each perturbed variable. The relative variations of the OF values are analyzed to separate

the influential and non-influential variables. Variables that do not significantly affect the OF

are excluded from the optimization process and they are assigned their original values.

As the number of variables is now reduced, smaller populations may be used if the opti-

mization is done using a population-based optimization algorithm such as GA. For algorithms

like Simplex, the number of iterations likely reduces with a smaller number of parameters.

Therefore, this screening will definitely reduce the simulation time and computational bur-

den. While this method proves successful in many cases, its effectiveness depends on the

initial values of the optimization variables. For a highly nonlinear system, if the initial

multi-dimensional point is far from the optimum, this method may discard variables that

may indeed be influential. Therefore, this method for initial screening must be used with

limited liberty. Selection of the initial values for the parameters to be optimized is also a
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crucial task. The general expectation from the initial values is to produce a response that is

stable even though it may feature poor dynamic performance. Improvement of the response

is left to the simulation-based optimization.

The initial parameter values for the cases in this thesis are selected using a few rounds

of trial-and-error while utilizing basic insight about controller gains, e.g., that higher pro-

portional gains generally tend to accelerate the response, but may lead to instability at large

enough values, and that smaller integral time-constant values may settle the response faster,

but may cause oscillations.

4.1.2 Run-Time Screening

The second screening method can only be used in population-based optimization algorithms

such as GA, which run for several successive generations. The first run of the new generation

gives the best parameter set found by the algorithm until that point. It should be noted that

since there is an elite population in the algorithm, the best solution set is not affected by the

mutation process. These parameter values may contain information about the variables that

require further optimization (influential variables). Thus in the proposed run-time screening

method, the best solution sets found in the first two or three generations are analyzed and

conclusions are drawn accordingly. If the value of a parameter does not change noticeably

in the first few generations, it can be argued that the parameter has already converged to

its optimal interval and does not need further optimization. For example, if the values of a

parameter for the first three generations are 3.21, 3.43 and 2.98, then the variation of the

maximum value from the minimum value is around 15%, which may be considered as small.

Hence there is a high possibility that they are in the optimal region. On the contrary, if

a parameter has values of 1.56, 3.41, and 0.57 in the first three generations, the maximum
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value deviates 498% from the minimum value, which does not indicate convergence. The

parameters that vary considerably must be optimized further until they converge into a small

interval.

In this approach, the number of generations that GA should be launched for screening

is changed depending on the design problem. If the case gives an acceptable solution after

8-10 generations of GA, then analysis of 2-3 generations’ data would be sufficient for run-

time screening. For the cases that give final optimal results after a significant number of

generations of GA, this screening process may require data from more generations. Thus

it should be decided according to the design problem. Alternatively, this process can be

automated by updating the GA code to check the OF value of the best parameter set after

every generation. If the OF value of the parameter set is less than a certain value selected

by the designer, then the best solution sets up to that generation can be used for run-time

screening process.

Moreover, these results may reveal further insight about the range of the parameters val-

ues. If the designer has assigned large search intervals to the variables, they can be reduced

so that smaller populations can be used, which leads to more computational benefits. Af-

ter deciding the influential parameters, the optimization process starts again with a smaller

number of parameters with new boundaries and smaller populations. The number of gen-

erations that the algorithm runs can also be reduced due to the reduced dimension of the

optimization problem. This will significantly reduce the simulation time and computational

burden.
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4.2 Inclusion of Parallel-Processing Techniques

In this thesis, a GA is used since it performs well for complex optimization problems. How-

ever, due to its slow convergence, it consumes a lot of time to find the optimal solution. GAs

can readily benefit from parallel-processing techniques [21, 22]. Due to the independence of

the iterations in the GA on one another, it is possible to adopt parallelism in the algorithm.

Several research contributions have been made in this area to improve the efficiency of

GAs. In [22] improvements are achieved by simultaneously performing genetic operations for

two populations called searching population and elite population. The best solutions found in

the searching population are given to the elite population and the worst solutions generated

in the elite population are given to the searching population. These two populations evolve

in parallel, thus convergence happens faster. [23] has used sub-population-type paralleled

GA, which evaluates several sub-populations in parallel instead of one population while

sharing information among them at prescribed time intervals. In all of these methods,

parallelism is added to the GA using separate sub-populations that run in parallel while

sharing information; this is somewhat complex and the examples used in previous work have

explicit formulations for OFs, which is different from the approach used in this thesis. In [24],

the OF is calculated through the simulation for reactive power optimization; however, the

adopted parallel GA method is almost the same as previously described ones, which use

sub-populations. In the simulation-based optimization approach discussed in this thesis,

calculation of the OF value causes the highest computational burden and far exceeds those

of basic GA operations of selection, crossover, and mutation. Therefore, this thesis adopts

a specific parallel GA implementation, which focuses on parallelizing the iterations (i.e., OF

calculations) in a single large population instead of among small sub-populations.

As described in Chapter 3, Section 3.3, the sequential GA (normal GA) starts with the
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4.2 Inclusion of Parallel-Processing Techniques

user-defined values for the parameter boundaries and the number of chromosomes in the

initial, surviving, and mating populations. The algorithm then generates random number

sets for the initial population considering parameter boundaries. In a sequential GA, the

algorithm releases only one chromosome at a time and the EMT simulator runs sequentially

with different parameter values assigned to it in each run and gives the respective OF value

back to the optimization algorithm. After evaluating the first generation, the chromosomes

that have the lowest OF values will be selected for the next generation as the surviving

population. The best solution sets from that surviving population are chosen as the mating

pool to generate new offspring. This is done by using the crossover operator where the two

parent chromosomes exchange their parameter values with respect to one or more randomly

selected crossover points. The remaining surviving population after selecting the mating pool

is replaced with the offspring. To prevent premature convergence, mutation is adopted [14],

which randomly changes randomly selected parameters. The new generation will then be

evaluated using EMT simulations. This continues for several generations until the algorithm

converges into an optimal solution. The genaral procedure followed by the proposed parallel

GA is the same as in sequential GA. The major difference between the two methods is that

the OF values of chromosomes in sequential GA are evaluated one at a time in a sequential

manner, but the parallel GA evaluates OFs of several chromosomes simultaneously; hence it

lowers the simulation time considerably.

To implement the parallel GA, PSCAD/EMTDC’s inbuilt concept of a simulation set

is used, which makes the basic pathway for parallel computing in the simulator. Within a

simulation set, there can be several simulation cases. All the simulation cases included in

the simulation set are launched in parallel using all processor cores available [11]. There-

fore, in the proposed parallel GA, parallel processing happens within the PSCAD/EMTDC
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4.2 Inclusion of Parallel-Processing Techniques

simulation set where it is externally controlled by the GA, coded in a Python script. The com-

munication between the Python script and the PSCAD cases is maintained by the PSCAD

Automation Library as shown in Fig. 4.1. All the examples of parallel processing in the the-

Start 

Generate the population 

Is evaluation 

of generation 

finished?

Converged? 

End Release 8 parameter sets 

from generated population 

PSCAD Automation Library 

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 

PSCAD Simulation Set 

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 

OF 1 OF 2 OF 3 OF 4 OF 5 OF 6 OF 7 OF 8 

Yes 

No Yes 

No 

Python 

PSCAD/EMTDC 

Figure 4.1: Schematic diagram of the parallel genetic algorithm.

sis are done using eight simulation cases within one simulation set. Those eight simulation

cases are copies of the same file; however, the parameter values in them are assigned inde-

pendently by the parallel GA. After generating the first generation, the Python script sends

eight chromosomes at a time to PSCAD through the Automation Library. Those eight chro-
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4.3 Hybrid GA-Simplex Optimization Algorithm

mosomes are assigned to the eight cases in the simulation set. Unlike in the sequential GA,

eight parameter sets are evaluated concurrently in the parallel GA. After the EMT solver

runs all eight cases in parallel, the OF values for every case are sent back to the Python

GA script. Only the evaluation of the OF value is done in PSCAD. After determining OF

values corresponding to all the chromosomes in the population, processing the OF values and

production of new generation are done in Python. Then this process happens repetitively

until the required number of generations are completed.

This novel method is more suitable for simulation-based optimization and can be easily

implemented. It speeds up the optimization process significantly. The efficiency and accuracy

of the proposed method is confirmed using several examples in the upcoming chapters.

4.3 Hybrid GA-Simplex Optimization Algorithm

The main advantage of the GA is that it is more likely to converge into global optimum,

since it does not focus on one point; rather several points scattered in the regions specified

by the designer are explored. However, because of this the algorithm is computationally

inefficient and has a low convergence rate. To overcome these issues, which become partic-

ularly pronounced in simulation-based optimization, this thesis proposes a novel method by

combining the GA with the nonlinear Simplex algorithm, which has a powerful local search

ability [20].

By using proper values for the population numbers in GA, an acceptable solution (not

the best one) can be obtained after a small number of populations (e.g., within the first one

or two), which reflects the global optimum area. Thus in the proposed hybrid algorithm,

the GA solver is run first to identify the area wherein the global optimal exists, after which
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4.3 Hybrid GA-Simplex Optimization Algorithm

the search will continue in that area with the Simplex algorithm that has much better

convergence properties.

The quality of the Simplex results depends on the initial parameter values assigned

to it, which come from the GA. The possibility of having a good initial point for Simplex

algorithm increases with the number of generations that the GA is calculated. However, if the

GA is launched for more generations, simulations consume more time; hence there should

be a compromise between the time and quality of the output, which should be decided

by the designer according to the design problem. The exemplar cases shown in the next

chapters demonstrate that hybridization leads to significant reduction in computation time

and complexity.
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Chapter 5

Application of Proposed Methods in

Design of Power Systems

This chapter presents how the proposed methods are effectively used in the optimization of

complex power systems with power electronic converters. The results obtained from each

method are compared and the efficiency of the proposed methods is confirmed at the end.

5.1 Case Study 1

5.1.1 System and Controller Configuration

The first example is a 2 MW type-4 wind turbine generator connected to the grid as shown

in Fig. 5.1. The control system for the case is shown in 5.2 and 5.3. Even though this system

does not have a complicated dynamic behavior, it is selected here as the first example in

order to explain the proposed methods of the thesis. Reactive power exchange in the wind

power plant is maintained at zero and active power is changed as in (5.1).
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Figure 5.1: Schematic diagram of the system in case study 1.

P =


0.25 pu t ≤ 15 s

0.4 pu t > 15 s
(5.1)

A three-phase-to-ground fault is applied at t = 5.5 s and cleared after 0.2 s. In this
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Figure 5.2: Block diagram of the machine-side controller (a) active power controller,
(b) reactive power controller.

example all the PI control parameters, including the inner control loops, are optimized. The

controllers and their parameters are shown in Table 5.1. The initial OF value of the system

is 0.721. The objective of the controller is to control the active and reactive power output

of the wind power plant properly. Therefore, the addition of integral square errors of active
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Figure 5.3: Block diagram of the grid-side controller (a) capacitor voltage controller,
(b) reactive power controller.

and reactive power curves is used as the OF as in (5.2).

OF =
∫ T

0
((P − Pref)2 + (Q − Qref)2) dt (5.2)

where [0, T ] is the simulation time period.

5.1.2 Screening of the Optimization Variables

In this example the initial screening method is used; thus it is explained before present-

ing the optimization results. There are 18 parameters to optimize in this example. With

the expectation of reducing the number of optimizing variables, screening method I (initial

screening) is used with ±3% and ±10% changes applied to the initial parameter values in

separate runs. After observing the obtained OF values in each run, which are shown in Fig.

5.4, parameters Kpq M, Tiq M, Tid M, Kp AC, Tiq G are identified as non-influential due to their

small impact on the OF. Parameter numbers in Fig. 5.4 correspond to those in Table 5.1. It

should be noted that this depends on the selected initial values for the parameters. Different
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5.1 Case Study 1

Table 5.1: Controller Parameters for Optimization in Case Study 1

Machine side converter Grid side converter
Controller Number Parameter Controller Number Parameter

Active power
1 Kp P M DC voltage

9 Kp Edc

2 Ti P M 10 Ti Edc

Iq current
3 Kpq M Reactive power

11 KpQ

4 Tiq M 12 TiQ

Id current
5 Kpd M AC voltage

13 Kp Vac

6 Tid M 14 Ti Vac

AC voltage
7 Kp AC

Id current
15 Kpd G

8 Ti AC 16 Tid G

Iq current
17 Kpq G

18 Tiq G

initial parameter values may lead to different influential and non-influential parameters.

5.1.3 Optimization of Parameters

Even though initial screening identified the influential parameters, to demonstrate the effi-

ciency of the other methods proposed and for comparison purposes, all 18 parameters are

optimized in the first three sub-sections of this section and optimization of the influential

parameters is shown in the last sub-section.

5.1.3.1 Optimization Using Sequential GA

The sequential GA is launched for six generations using initial and surviving populations of

240 and 160, respectively. The parameter limits used in the GA and their optimized values

are shown in the 2nd and 4th columns of Table 5.2, respectively. The insight gained during
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5.1 Case Study 1

Figure 5.4: Distribution of OF values with parameter perturbations in case study 1.

the selection of initial values using trial-and-error also informs the designer of suitable, albeit

approximate, parameter ranges. Such insight is used in selecting the ranges for the examples

in this thesis. In general, assigning larger limits does not affect the final solution since the

GA is a global optimization algorithm; however, larger limits often require larger initial and

surviving populations as the algorithm has to search a larger space. Conversely, narrow limits

may adversely impact the solution by excluding the optimal area. Active power variations

before and after optimization are shown in Fig. 5.5(a) and Fig. 5.5(b), respectively. The

design takes 25.47 h to complete, which shows the need for improved methods.
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5.1 Case Study 1

Table 5.2: Initial and Optimized Values for Case Study 1

Parameter Initial Sequential
GA

Hybrid GA-
Simplex

Parallel
GA

Parallel GA
with screening

Limits Values GA Simplex
Kp P M (0,5) 1 4.99 4.98 5.042 3.73 4.83
Ti P M (0,1) 0.01 0.073 0.25 0.0097 0.081 0.011
Kpq M (0,5) 1 4.83 4.83 4.92 3.95 1
Tiq M (0,1) 0.01 0.85 0.747 0.914 0.33 0.01
Kpd M (0,5) 1 1.836 1.836 2.01 3.66 2.15
Tid M (0,1) 0.01 0.48 0.48 0.66 0.065 0.01
Kp AC (0,5) 1 0.368 0.368 0.52 0.837 1
Ti AC (0,1) 0.01 0.0206 0.081 0.21 1.14 0.167

Kp Edc (0,5) 0.5 3.075 1.735 2.01 4.03 3.395
Ti Edc (0,1) 0.01 0.342 0.34 0.53 0.86 0.318
KpQ (0,5) 0.5 1.089 1.85 2.24 4.29 4.78
TiQ (0,1) 0.01 0.151 0.13 0.021 0.041 0.016

Kp Vac (0,5) 0.5 4.5 4.50 4.49 4.75 1.068
Ti Vac (0,1) 0.01 0.796 0.95 1.11 0.935 0.681
Kpd G (0,5) 0.5 2.227 2.23 2.54 2.502 1.285
Tid G (0,1) 0.05 0.067 0.66 0.74 0.152 0.337
Kpq G (0,5) 0.5 0.0805 0.081 0.233 0.677 3.056
Tiq G (0,1) 0.05 0.664 0.97 1.321 0.247 0.05

OF value 0.721 0.011 0.0124 0.0085 0.0091 0.0089

5.1.3.2 Optimization Using Hybrid GA-Simplex Algorithm

In this part, the sequential GA is launched for two generations and then the optimization is

continued using Simplex with the best solution given by the GA. The optimization results

after the GA and after the Simplex algorithm are shown in the 5th and 6th columns of Table

5.2 . Fig. 5.5(c) and Fig. 5.5(d) show the dynamics of the active power in the system for

optimized values obtained from intermediate GA and simplex algorithm respectively. The
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Figure 5.5: Active power output with (a) initial values, (b) sequential GA optimized
values, (c) intermediate GA values, (d) final Simplex optimized values, (e) parallel GA
optimized values (f) parallel GA optimization of 13 influential parameters.
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5.1 Case Study 1

time taken by this approach is 11.08 h, which is considerably lower than before.

5.1.3.3 Optimization Using Parallel GA

In this case, eight parameter sets are evaluated simultaneously. Optimal values obtained are

shown in the 7th column of Table 5.2 and Fig. 5.5(e) shows the dynamics of the active power

output. The simulation time is markedly reduced to 9.8 h using this method.

5.1.3.4 Optimization of Influential Parameters

In this part, only the parameters identified as influential are optimized using the parallel

GA. The parameters excluded from the optimization are assigned their initial values. Since

the dimension of the problem is reduced from 18 to 13, initial and surviving populations are

reduced to 160 and 120, respectively, and the parallel GA is launched for six generations.

Optimized results are shown in the 8th column of Table 5.2 , and the optimal active power

output is shown in Fig. 5.5 (f). This design takes merely 7.4 h, which is a significant

reduction of time.

Time and population details comparisons for this case are shown in Table 5.3 and Table

5.4 respectively. In this case, both the hybrid algorithm and parallel GA give significant

improvements. Time taken by the hybrid algorithm can be further reduced by using the

parallel GA. The results show that the time taken by sequential GA is be reduced by nearly

16 h using the methods proposed in this thesis. Furthermore, this example demonstrates that

the initial screening method is effective in reducing the simulation time without adversely

affecting the quality of the final optimal design.
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5.2 Case Study 2

Table 5.3: Time Comparisons for Case Study 1

Method Time (h)
Sequential GA 25.47 h

Hybrid GA-Simplex 11.08 h
Parallel GA 9.8 h

Parallel GA + screening 7.4 h

Table 5.4: Comparison of Population Details and Number of Simulation Runs for
Case Study 1

Sequential GA
Hybrid GA-Simplex

Parallel GA
Parallel GA

with screeningGA Simplex
Initial population 240 240 - 240 160

Surviving population 160 160 - 160 120
Generations 6 2 - 6 6

Simulation runs 1041 401 115 1048 768

5.2 Case Study 2

5.2.1 System and Controller Configuration

The second test system is a 125 MW (5 MW×25) type-4 wind power generation plant

connected to the grid as shown in Fig. 5.6. Even though the wind farm controllers of this

case are the same as in case study 1, the system is complicated and it has complex dynamic

behavior, which is hard to optimize manually since the system is weak with low short circuit

ratio (SCR). Therefore, it is selected as the second example to convey the efficacy of the

proposed methods. During normal operation, the short-circuit MVA (SCMVA) at the point

of interconnection (POI) is 165 MVA indicating a weak system. A three-phase-to-ground
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fault is applied at t = 5 s and is cleared after 0.2 s by disconnecting the faulted line, which

drops the SCMVA to 78 MVA, thus making the system even weaker and unstable for the

initial controller parameter values shown in the 2nd column of Table 5.5. Therefore, the

Wind 
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0.69 / 66 kV
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3 phase- ground 
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125 MW windfarm 

(25× 5MW )

Sync. 

generator

66 kV 132 kV 275 kV
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66 kV

22 kV

22 kV

Figure 5.6: Schematic diagram of the system for case study 2.

objective is to optimize the wind power plant controller parameters to obtain stable operation

before and after the fault.

The short circuit ratio (SCR) at point of interconnection (POI) reduces further after the

fault, thus the voltage at POI becomes more undesirable. It is determined that satisfactory

performance is obtained if the gains and time-constants of proportional-integral (PI) con-

trollers are tuned to maintain 5 MW output from the wind farm and to avoid overvoltages

that are greater than selected overvoltage value at POI even after the fault. Therefore, an

objective function is formed by adding the integral square error (ISE) of the active power

and the integral of overvoltage at the POI (see (5.3)); minimization of this objective function
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Table 5.5: Initial and Optimized Values for Case study 2

Parameter
Initial Sequential

GA

Hybrid GA-
Simplex

Parallel
GA

Parallel GA
with screening

Values Limits GA Simplex New limits Results
Kp Edc 4 (0,7) 6.39 5.434 5.749 6.505 6.935
Ti Edc 0.02 (0,2) 1.72 1.975 2.049 1.388 (0,2) 0.874
Kp Q 1 (0,7) 0.346 2.631 2.734 5.97 (0, 6.5) 1.342
Ti Q 0.2 (0,2) 1.314 0.849 0.922 0.534 (0,2) 0.559

Kp Vac 4 (0,7) 1.48 1.527 1.584 1.203 (0,2.5) 2.087
Ti Vac 0.05 (0,2) 0.977 0.0714 0.0818 1.015 1.906
Kp P 2 (0,7) 0.772 0.535 0.625 0.237 (0,2.5) 0.531
Ti P 0.05 (0,2) 0.133 0.906 0.926 0.046 (0,1) 0.081

OF value 211.654 16.407 25.58 22.49 16.87 17.023

yields optimal parameter values for the controllers.

OF = K(t)
∫ T

t0
(P − Pref)2 dt +

∫ t2

t1
|Vover − Vref | dt (5.3)

where

K(t) =


k1 t0 < t ≤ T1

k2 T1 < t ≤ T

(5.4)

In (5.3) and (5.4), [t0, T ], [t0, T1] and [t1, t2] denote the entire OF evaluation time period, the

time period when transients occur, and the time period when overvoltages occur, respectively.

It should be noted that this OF calculates the error during both transient and steady state

conditions; thus the algorithm returns parameters that give improved transient and steady

state response. In this thesis, k1 = k2 = 1 is used, which places a balanced focus on
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both transient and steady state intervals. If k1 > k2, the OF places a heavier penalty on

the deviations during the transient period; therefore, if the designer wants to place more

emphasis on the transient period of the response, a larger weighting factor may be assigned

to the time period when transients occur.

In practice the inner loop controllers are expected to act rapidly, thus leaving the most

significant dynamics to the external loop parameters. Hence in this example, the parameters

of the capacitor voltage controller (Kp Edc, Ti Edc), grid-side reactive power controller (Kp Q,

Ti Q), grid-side rms voltage controller (Kp Vac, Ti Vac), and active power controller (Kp P, Ti P)

are considered for optimization.

5.2.2 Optimization of Parameters

First, the system parameters are optimized with a sequential GA and the application of novel

methods to the optimization is described later. From the suggested screening methods, run-

time screening is used in this example. Thus it is explained in the final part of this section.

The results from each method are compared to demonstrate their efficacy.

5.2.2.1 Optimization Using a Sequential GA

Before moving to the improved methods introduced in this thesis, the case is optimized with

a sequential GA. With the initial and surviving populations of 104 and 48, respectively, the

GA solver is launched for 15 generations, with results shown in the 4th column of Table

5.5. The parameter limits used in this case are shown in the 3rd column of the same table.

Parameter limits in this example are selected in the same manner as in the previous example.

Fig. 5.7(a) and Fig. 5.7(b) show the initial and optimal rms voltage waveforms, respectively.

Even though the optimized controllers produce markedly better results, the time taken
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Figure 5.7: POI voltage for (a) initial values, (b) sequential GA optimized values, (c)
intermediate GA values, (d) final Simplex optimized values, (e) parallel GA optimized
values (f) optimized values after run-time screening.
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by the algorithm to complete the task is 43.48 h, which is significant. To reduce this time, the

proposed hybrid algorithm and parallel GA are used as described in the next sub-sections.

It should be noted that the steady state voltage at POI after the fault is higher than 66

kV due to insufficient reactive power compensation in the design, which is not included in

optimization.

5.2.2.2 Optimization Using Hybrid GA-Simplex Algorithm

Here, the same example is optimized with the new Hybrid GA-Simplex algorithm described

in Chapter 4, section 4.3. First the sequential GA is run for two generations with the same

populations and parameter boundaries as before. The best values obtained after the second

generation are used as the initial values for the Simplex algorithm. The results obtained

using this method are shown in the 5th and 6th columns of Table 5.5. The waveforms of rms

voltage at POI for intermediate GA values and Simplex optimized values are shown in Fig.

5.7(c) and Fig. 5.7(d) respectively.

Although the solution found by this method is slightly less optimal than the one found

after 15 generations of sequential GA, it is still an acceptable solution, which gives better

OF value than initial values in 21.31 h, which is almost half of the time consumed by the

sequential GA.

5.2.2.3 Optimization Using Parallel GA

In this solution, eight copies of the same case are run in parallel in a PSCAD/EMTDC

simulation set, with different parameter values assigned to them using the GA coded in

a Python script. When the example case is optimized using parallel GA with the same

population values and parameter limits, the simulation takes only 13.11 h which is almost
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3.3 times faster than the sequential GA and gives a desirable output. Optimization results

are shown in 7th column of Table 5.5 and Fig. 5.7(e) illustrates the waveforms of the rms

voltage at POI.

5.2.3 Screening of Optimization Variables

The run-time screening method is applied in this example to reduce the simulation time

further. The parallel GA solver is run for three generations with the same limits and popu-

lation values as before. The best solutions after each generation (Table 5.6) are examined,

which reveals that Ti Edc, Kp Q, Ti Q, Kp Vac, Kp P and Ti P require further optimization since

they vary considerably, while Kp Edc, Ti Vac show markedly lower variations. For Kp Edc and

Ti Vac, variation of the maximum value from the minimum value is between 25-30% and for

the other parameters that variation is significantly high.

Table 5.6: Run-Time Screening for Case Study 2

Parameter
Values after each generation

Parameter
Values after each generation

1st 2nd 3rd 1st 2nd 3rd

Kp Edc 6.045 5.516 6.935 Kp Vac 2.243 1.366 1.788
Ti Edc 0.888 1.277 1.853 Ti Vac 1.906 1.497 1.906
Kp Q 2.389 6.045 4.006 Kp P 1.826 0.269 1.826
Ti Q 1.566 0.379 0.843 Ti P 0.483 0.778 0.483

Hence, the best values obtained from the GA up to this point are assigned to Kp Edc and

Ti Vac, while the remaining parameters are optimized further. With the knowledge acquired

from screening, the search limits may also be reduced, thus smaller populations can be used.

The remaining six parameters are optimized after running the parallel GA for five additional
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generations with initial and surviving populations of 72 and 24, respectively. The new limits

and optimization results are shown in the 8th and 9th columns of Table 5.5. The rms voltage

at POI with optimized values is shown in Fig. 5.7(f). The total time taken for this process

is 9.74 h and the results are as satisfactory as before, which confirms the efficiency of the

proposed run-time screening method.

Optimization time and population details comparisons for the four methods discussed

are shown in Table 5.7 and Table 5.8, respectively. Hybrid GA-Simplex approximately con-

sumes 50% of the time consumed by the sequential GA while the parallel GA approximately

consumes 30% of it. The time taken by the hybrid GA-Simplex method can be further

reduced by using the parallel GA instead of the sequential GA for the initial part of the

method. The arallel GA together with run-time screening shows incredibly good results by

completing the simulation by spending only 22% of the time taken by the sequential GA.

Thus, the results confirm that a considerable amount of time is saved by using the enhanced

methods proposed in this thesis while obtaining high-quality optimal results.

Table 5.7: Time Comparison of Optimization Methods for Case Study 2

Method Time (h)
Sequential GA 43.48

Hybrid GA-Simplex 21.31
Parallel GA 13.11

Parallel GA + screening 9.74
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Table 5.8: Comparison of Population Details and Number of Simulation Runs for
Case Study 2

Sequential
GA

Hybrid GA-
Simplex

Parallel
GA

Parallel GA
with screening

GA Simplex
GA for

screening
GA after
screening

Initial population 104 104 - 104 104 72
Surviving population 48 48 - 48 48 24

Generations 10 2 - 10 3 5
Simulation runs 537 153 95 544 208 176

5.3 Case Study 3

5.3.1 System and Controller Configuration

This example further confirms the effectiveness of the novel methods suggested in this thesis

for optimizing sophisticated power systems with EMT simulators. The system considered

here is a 200 MW back-to-back HVDC scheme shown in Fig. 5.8, which has a strong effective

short circuit ratio (ESCR) of 4.62 at the rectifier side and a weak ESCR of 1.9 at the

inverter side. During the disturbances, there can be commutation failure and performance

of the system can be undesirable and at the same time it is hard to manually optimize the

converter’s controllers; thus it is selected as the third example.

The rated voltage of the dc system is 83.3 kV. Control strategies of the system are the

same as in [7] and are shown in Figs. 5.9, 5.10, 5.11 and 5.12. Master controller generates the

reference current by dividing the required power reference by the actual dc-voltage. That

current reference is again compared with the reference current generated by the voltage-

dependent current limit (VDCL), which is present to reduce the current order if a low
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Figure 5.8: Schematic diagram of the HVDC system in case study 3.

dc-voltage occurs and to achieve smooth fault recovery [7]. There is a rate limiter to limit

the rate of change of the current in the dc side. The minimum current selected goes through

the rate limiter and generates the current reference to the converter. There are three control

loops to process current, voltage, and extinction angle errors in the rectifier and inverter

controllers. The minimum error between the three is used for generating firing angles. To

check the system’s performance, disturbances are applied as follows for the inverter side with

lower ESCR.

(1) [4.1 s- 4.6 s] – The phase angle of the network is reduced by 15 degrees and restored;

(2) [5.1 s- 5.6 s] - AC voltage magnitude is reduced by 7% and restored;

(3) [6.1 s- 6.6 s] – Power reference is reduced by 50% and restored;

(4) [8 s- 8.05 s] – Three-phase-to-ground fault is applied at the inverter terminal.

The gain and time constant parameters of the PI controllers in the rectifier side (Gr,

Tr) and inverter side (Gi, Ti) along with the parameters of VDCLs in the rectifier (Xh r,

IRr,DRr) and inverter (Xh i, IRi, DRi) side are optimized to achieve desirable performance

in the system even when the disturbances occur. Xh is the upper break point of VDCL.
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Figure 5.12: Valve group control loops [7].
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IR and DR are the increasing rate and decreasing rate of the rate limiter respectively. DC

current (Idc) in the HVDC system is a good measurement to evaluate the performance of

the system. Therefore, the time square error (ISE) of the DC current is used as the OF in

this case as follows:

OF =
∫ T

0
(Idc − Iref)2 dt (5.5)

5.3.2 Screening of Optimization Variables

In this case, the first screening method is applied to identify the parameters that do not

require optimization at the selected point. The initial parameter values are shown in the 3rd

column of Table 5.9. According to Method I discussed in Chapter 4, section 4.1.1, the starting

parameter values are changed by ±3% and ±10% in the separate runs and the distribution

of the resulting OF values are shown in Fig. 5.13. The parameter numbers in Fig. 5.13 are

from Table 5.9. The OF value results show that it does not vary significantly even though

the values of DRi, IRr and DRr are changed by ±10%. This indicates that these parameters

can be left without optimizing. By doing so, the size of the optimization problem can be

reduced from 10 to 7. Although it is a small reduction, considerable computer efficiency can

be achieved while using GA for optimization as the population values can be reduced due to

the lower number of parameters to be optimized.

5.3.3 Optimization of Parameters

In this case all the parameters are optimized first for the comparison purposes and optimiza-

tion of influential parameters is done in the final part.
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Figure 5.13: Distribution of OF values with parameter perturbations in case study 3.

5.3.3.1 Optimization Using Sequential GA

Using the initial population of 504 and the surviving population of 400, the sequential GA

is run for 15 generations to optimize all the parameters in the system. The parameter limits

and final optimized results are in the 4th and 5th columns of Table 5.9 and the waveforms

of DC current obtained for initial and optimized parameters are shown in Fig. 5.14(a) and

Fig. 5.14(b) respectively .

According to the results, after tuning the controller parameters, the system performs

well during disturbances and faults. However, it takes 20.35 h for the simulations; thus the

- 58 -



5.3 Case Study 3

Table 5.9: Initial values and Optimized Values for Subsections 1, 2 for Case Study 3

Parameter
Number

Parameter Initial values Limits Sequential GA
Hybrid GA-Simplex
GA Simplex

1 Gr 1 (0,2) 1.364 0.961 1.157
2 Tr 0.04 (0,0.1) 0.004 0.015 0.0048
3 Gi 1.5 (0,2) 0.439 0.523 0.617
4 Ti 0.008 (0,0.1) 0.023 0.075 0.027
5 Xh i 0.94 (0.7,1) 0.783 0.81 0.813
6 IRi 2.5 (2,5) 2.586 3.44 3.15
7 DRi 100 (50,120) 63.29 55.16 54.36
8 Xh r 0.94 (0.7,1) 0.751 0.701 0.702
9 IRr 2.5 (2,5) 4.79 3.15 3.39
10 DRr 100 (50,120) 106.3 73.9 70.8

OF value 0.508 0.115 0.272 0.14

new approaches proposed in the thesis are used to improve the computational efficiency of

the solution.

5.3.3.2 Optimization Using Hybrid GA-Simplex Algorithm

In this section, sequential GA with the same population values and parameter limits is

launched only for 2 generations and the results acquired after that are used as the initial

values to the Simplex algorithm. The 6th and 7th columns of Table 5.9 illustrate the opti-

mization results and waveforms obtained with intermediate GA values and the final Simplex

optimized values are shown in Fig. 5.14(c) and Fig. 5.14(d), respectively .

Even though the solution found here is not good enough when it is compared with

the optimal solution found after 15 generations of GA, the hybrid algorithm has found
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Table 5.10: Initial values and Optimized Values for Subsections 3,4 and 5 for Case
Study 3

Parameter
Initial
values

Limits
Parallel

GA

Hybrid parallel GA-
Simplex

Parallel GA
with screening

Parallel GA Simplex
Gr 1 (0,2) 1.247 1.789 1.446 1.275
Tr 0.04 (0,0.1) 0.006 0.0097 0.0075 0.0037
Gi 1.5 (0,2) 0.56 0.384 0.517 0.655
Ti 0.008 (0,0.1) 0.026 0.026 0.02 0.040

Xh i 0.94 (0.7,1) 0.837 0.865 0.779 0.755
IRi 2.5 (2,5) 2.41 4.66 4.78 2.096
DRi 100 (50,120) 91.2 118.6 119.5 100
Xh r 0.94 (0.7,1) 0.764 0.782 0.869 0.753
IRr 2.5 (2,5) 4.74 4.86 5.05 2.5
DRr 100 (50,120) 61.1 80.5 77.9 100

OF value 0.508 0.119 0.2 0.158 0.159

an acceptable solution, which gives a better OF value than the initial values while only

consuming 3.13 h time. Nevertheless, having a good initial point always directs the Simplex

algorithm to obtain better solutions. Therefore, it depends on the parameter set generated

by the GA.

5.3.3.3 Optimization Using Parallel GA

Here, the parallel GA is used to decrease the simulation time while running the simulation

using GA for 15 generations. The optimum solution found is presented in the 4th column of

Table 5.10. The DC current waveforms are shown in Fig. 5.15(b). The results are almost

the same as the results obtained using the sequential GA and this method only takes 13.37
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Figure 5.14: Active power output with (a) initial values, (b) sequential GA optimized
values, (c) intermediate GA values, (d) final Simplex optimized values.

h to complete the simulation.

5.3.3.4 Optimization Using Hybrid Parallel GA-Simplex Algorithm

In this part, the parallel GA is used in the hybrid algorithm to achieve more computational

benefits. The procedure followed here is the same as in sub-section 5.3.3.2 and the only

difference is that the parallel GA is used to run the first 2 generations of GA which allows

- 61 -



5.3 Case Study 3

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0

1

2
C

u
rr

en
t(

p
u

)

(a)

Actual Reference

0 1 2 3 4 5 6 7 8 9 10
0

1

2

(b)

0 1 2 3 4 5 6 7 8 9 10
0

1

2

(c)

0 1 2 3 4 5 6 7 8 9 10
0

1

2

(d)

0 1 2 3 4 5 6 7 8 9 10
0

1

2

(e)

Figure 5.15: Active power output with (a) initial values, (b) parallel GA optimized
values, (c) intermediate parallel GA values, (d) final Simplex optimized values, (e)
parallel GA optimization of 7 influential parameters.

the designer to achieve better time than in sub-section 5.3.3.2. The optimization results

acquired are shown in the 5th and 6th columns of Table 5.10 and the waveforms are in

5.15(c) and 5.15(d). The time taken for optimization is reduced to 2.53 h by this method.
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Table 5.11: Time Comparison for Case Study 3

Method Time (h)
Sequential GA 20.35

Hybrid GA-Simplex 3.13
Parallel GA 13.37

Hybrid Parallel GA-simplex 2.53
Parallel GA + screening 4.98

5.3.3.5 Optimization of Influential Parameters

Using initial screening, it is found that DRi, IRr and DRr can be excluded from the op-

timization thus the dimension of the design problem is now reduced from 10 to 7. These

excluded parameters are assigned their initial values. Then the remaining 7 parameters are

optimized by running the parallel GA for 10 generations with 400 and 240 as initial and

surviving populations, respectively. The results obtained are shown in the 7th column of

Table 5.10 and the waveform is shown in Fig. 5.15(e). Simulations take 4.98 h, which proves

that the screening improves the efficiency of the optimization process.

The time taken for the 5 approaches and their population details are compared in Table

5.11 and Table 5.12, respectively. The time taken by the hybrid GA- Simplex algorithm

is 16% of the time taken by the sequential GA even though the quality of the output is

somewhat lower than the one obtained from the sequential GA. The parallel GA gives the

same good results as the sequential GA while consuming only 65% of the time consumed by

the sequential GA. Since the HVDC case only takes a few seconds to run in PSCAD/EMTC,

significant time reduction cannot be achieved by using the parallel GA as the time taken for

communication between the EMT solver and the Python script is considerable when it is
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Table 5.12: Comparison of Population Details and Number of Simulation Runs for
Case Study 3

Sequential
GA

Hybrid GA-
Simplex

Parallel
GA

Hybrid parallel
GA-Simplex

Parallel GA
with

screeningGA Simplex
Parallel

GA
Simplex

Initial population 504 504 - 504 504 - 400
Surviving population 400 400 - 400 400 - 240

Generations 15 2 - 15 2 - 10
Simulation runs 6105 905 201 6112 912 220 2568

compared with the simulation time of the case. However, the results are improved and show

the efficiency of the proposed methods.

This chapter provided example cases that were optimized using the proposed methods.

The configurations of the systems in the case studies were described including their control

systems. Application of the screening methods, hybrid GA-Simplex algorithm and parallel

GA in the optimization process were discussed in detail and finally comparison of the results

was presented to demonstrate the success of the novel methods introduced in the thesis.
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Chapter 6

Contributions, Conclusions, and

Future Directions

6.1 Thesis Contributions and Conclusions

The thesis addressed practical problems that engineers face when using EMT simulators

for optimal design of complicated controllers in power systems, e.g., controller tuning in

converters in the power systems. These problems stem from the large computational burden

of both the EMT and optimization algorithms, and the repetitive nature of the design

cycle wherein a large number of simulations need to be conducted. The thesis introduced

two screening methods, a hybrid GA-Simplex algorithm, and a parallel GA algorithm to

overcome these challenges.

The optimization results of the systems with several converters and multiple control

loops revealed that the screening methods were able to correctly identify influential param-

eters to assist in reducing the dimension of a problem, thereby lowering the burden of the
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optimization algorithm. Analysis of the simulation time of the three case studies shows that

25% - 60% of the time can be saved (depending on the cases) by using the proposed screening

methods.

Comparison of the results revealed that the proposed hybrid GA-Simplex algorithm,

which uses a GA to detect the global optimal area and Simplex to conduct local search,

performed well in decreasing the simulation time without adversely affecting the quality of

the final optimal designs. The results reflect that this approach can save 50% - 85% of the

simulation time, which demonstrates the efficacy of the method.

The proposed parallel GA achieved the same quality results as from the sequential GA,

consuming considerably lower time than the sequential GA. However, for cases whose simula-

tions (one run) complete in a few seconds, the suggested method does not exhibit significant

reduction in time since the time utilized for communication between the Python script and

the EMT solver is considerable.

6.2 Recommendations for Future Work

The GA used in this thesis uses a random number generator to produce the initial population.

Thus there is a possibility that the initial population consists of similar type of chromosomes,

which reduces the diversity of the initial population. Hence, future research can modify the

GA to include some filtering methods to eliminate similar chromosomes from the initial

population so that it consists of different candidate parameter sets distributed in the search

area.

Moreover, future development may focus on developing a single algorithm for hybrid

GA-Simplex algorithm to automate the transition from GA to Simplex by processing OF
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values so that the designer does not have to handle it manually.
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