THE CONSTRUCHION AND EVALUATION OF A PROGRAMMED UNIT OF PLANE GEOMETRY
\qquad

A Thesis
Presented to
the School of Graduate Studies and Research University of Manitoba

In Partial Fulfillment of the Requirements for the Degree Master of Education
by
Eugene Harry Kristal March 1966

THESIS ABSTRACT

The Problem. The purpose of this study was to compare the effectiveness of a short programmed unit in plane geometry with conventional teaching methods. Specifically, the study was conducted to determine whether there were any significant differences in (I) mean achievement and (2) mean time between two groups of students; one group instructed by programmed materials and the other, for control purposes, by the writer. Student attitudes to programmed instruction were also investigated.

The study took place at St. Paul's High School in the fall of 1963 and lasted for a period of three weeks. The subjects, twenty-five pairs of grade eleven students distributed at random to two classrooms, were initially matched for mental ability and grade ten achievement, subject sequence, and sex.

Both groups studied the same subject matter, "The Areas of Polygons," as found in the prescribed grade eleven, university entrance course text book, A First Course in Plane Geometry. The writer wrote the program and it was revised and developed to its present form through intensive testing with three students.

The Method. The experimental group used only the programed materials, although teacher help was available
to those students asking for it. Specific homework assignments were not given to the students of the experimental group; the students were instructed, rather, to answer approximately 140 frames per week in order to complete the program in three weeks. Three weeks is the normal time that was usually taken to teach this unit of geometry by conventional means.

Achievement was measured by a criterion test, constructed by the writer and validated by a competent authority.

Each student recorded, on prepared forms, the amount of time he devoted to geometry exercises during the experiment.

Student reaction to programmed instruction was measured by an attitudinal questionnaire.

Findings. No significant difference was found in mean achievement between the two groups. However, the programmed instruction group took significantly less time than the control group to complete the unit of work-approximately one and one-half hours per student.

Approximately two-thirds of the students preferred programmed to traditional instruction; compared to traditional instruction, programmed instruction made learning less difficult, and less homework was required.

Conclusions. The fact that the programmed instruction
students did as well as their counterparts instructed conventionally by the writer, appears to indicate that short programmed units can be used in place of regular classroom instruction, and without changing the normal classroom routines. Although statistically significant, it is doubtful whether the difference in mean time, one-half hour per week per student, is educationally significant.

The favourable student reaction to programmed materials is encouraging for further experimentation. One drawback to such experimentation appears to be the lack of programs in which the subject matter closely corresponds with that of the prescribed courses.

ACKNOWLZDGMENTS

The writer is indebted to his advisor, Professor R. Hedley, who acted as a source of inspiration and provided valuable assistance in the compilation of this thesis.

Special thanks are due also to Rev. St. Claire Monaghan, S.J., who encouraged the writer to investigate the field of programmed learning.

Apologies are extended to those writers who spell programmed with one "m." For the sake of uniformity, in this thesis it has been spelt with two $" m_{m}$.

TABLE OF CONTETIS

CHAPTER PAGE
I. THE INTRODUCTION 1
The Problem. 1
Statement of the problem 1
Importance of the study 1
Definition of Terms 2
Plan or Study. 7
Subjects 7
The program 7
The procedure 8
Hypotheses 10
Assumptions and Iimitations 10
II. REVIEW OF THE LITERATURE. 12
Methods of Programming 14
The programming model 14
Rules or problems of programing 18
Teaching Machines and Programmed Texts 22
Subject Matter 27
Role of the Teacher 29
Self Pacing. 32
Summary 35
III. CONSTRUCTION OF THE PROGRAM. 38
Subject Matter 38
CHAPTER PAGE
Objectives 41
Programming ModeI 45
Writing and ordering of the frames 46
Summary 53
IV. THE EXPERIMENT 55
Obtaining the Sample 55
The population 55
The sample 56
Obtaining control 57
Checking and extending control 61
Pbysical 62
Psychological 63
Teacher and subject matter 63
Treatments 64
Control group 64
Experimental group 66
Measuring Instruments 72
Achievement 72
Time 73
Background variables 75
Student attitudes 76
Statistical Techniques 77
V. PRESENTATION AND ATALYSIS OF DATA 81
Background variables 81

CHAPTER

PAGE
Criterion variables.............................. 83
A further analysis of achievement.............. 85
Attitudinal questionnaire......................... 88
The achievement test and the program........... 90
VI. SUMMARY AND CONCLUSIONS................................ 95

Conclusions.. 99
SELECTED BIBLIOGRAPHY................................ 102
APPENDIXES.. 106
A. The Program and an Item Analysis of the

Program.. 107
B. Criterion Achievement Tesi and Its Item Analysis.................................... 214
C. Tables IX, X, and XI........................... 220

Table IX. Raw data for the control and experimental groups...................... 221

Table X. Correlation matrix of the pre and post treatment variables for the experimental group......................... 223

Table XI. Summary of results of attitudinal questionnaire administered to the experimental group............... 224
D. The Cooperative Geometry Test............... 226

LIST OF TABLES

TABLE PAGE
I. An Index to the Development of the Objectives.. 50
II. Table of Specifications 65
III. Means and Standard Deviations of the BackgroundVariables.. 82
IV. An Analysis of the Criterion Variables 84
V. Identifying the Under Achiever 85
VI. Correlations Between Achievement and Background Variables for the Experimental and Control Groups 87
VII. A Summary of Student Attitudes to Programmed versus Traditional Instruction. 88
VIII. An Analysis of the Criterion Achievement Test.. 90
IX. Raw Data for the Control and Experimental Groups 221
X. Correlation Matrix of the Pre and Post Treat- ment Variables for the Experimental Group 223
XI. Summary of Results of Attitudinal Questionnaire Administered to the Experimental Group 224
FIGUREPAGE

1. A Linear Model 15
2. A Branching Model 15
3. Classrooms A and C used Respectively by the Experimental and Control Groups 62
4. Sample of a Time Record Sheet 74
5. Error Concentration Curve. The Percentage ofFrames Generating a Given Number of Mistakesis Plotted Against that Number.................... 93
6. The Per Cent Error Rate for Overlapping Groups of 30 Frames 93

CHAPTER I

THE INTRODUCTION

This study is concerned with the feasibility of employing a short programed sequence in place of regular classroom instruction, without disrupting the normal "lockstep" classroom procedures. Two groups of students were taught the same unit of geometry by two different methods. One group was instructed by programed instruction and the other group, for control purposes, by traditional methods.

I. THE PROBIEM

Statement of the problem. This study attempted to determine whether, in the handling of the same unit of geometry by the two groups, there were any significant differences between them in (1) mean achievement and (2) mean time.

Importance of the study. When programed materials have been used for regular classroom instruction, the results obtained and peported were both positive and negative. A recent survey by the Canadian Teacheris Federation ${ }^{1}$
${ }^{1}$ A Survey of the Use of Programmed Instruction in Canadian schools, 1962-3. Research Memo No. 12. (Ottawa: Research Division Canadian Teachers: Federation, 1963), p. 7.
implies, however, that these results contradict each other because of the different ways in which the programed materials were used. Thus, the materials may have been used exclusively or they may have been supplemented by the teacher; the students may have been allowed to take the programmed materials home or they may have worked at them in school only; the students may have had to complete the program by a predetermined date or they may have been permitted to work entirely at their own rate. In short, these and other conditions may not have been uniform; the evidence about them is incomplete.

A review of the literature indicated a dearth of detailed reports by teachers who employed programmed materials in the classroom. This study, therefore, attempted, by carefully delineating the conditions under which the program was employed, to supplement the existing knowledge on the use of programmed materials in the classroom.

II. DEFINITION OF TERMS

Achievement score refers to that score made by the student on a criterion test and reflects his mastery of the subject matter.

Mean achievement is the average of the set of achievement scores. In this study two such means were calculated: one for the programmed instruction group and the other for
the traditional instruction (control) group.

Criterion test was the examination administered to the students after instruction in order to measure their knowledge of the subject matter presented by the two methods.

Subject matter was the content presented to both the control and experimental groups. In particular it was a unit of geometry dealing with the areas of plane rectilinear figures as it is found in Chapter II of the text, A First Course in Plane Geometry. ${ }^{2}$

Time or time spent is the total number of minutes during which the student was formally engaged in attempting to master the subject matter. For the programmed instruction group it meant the time which a student took to work through the program plus any other time which he spent studying the subject matter. The sum of these two mutually exclusive measurements constituted a time or time spent observation for each student of the programmed instruction group. For each student of the control group, time or time spent, was also the sum of two mutually exclusive time measurements. One addend was the total time that each

[^0]student spent in geometry classes during the experiment. The other addend was the time that each student spent studying or doing geometry assignments outside of geonetry classes.

Mean time is the average of a set of time observations.

Programmed Instruction is a teaching method which uses systematically arranged materials in place of live instruction by a tutor. According to some authors, its distinguishing characteristics are the self-determination of pace, the presentation of small bits of information, active response by the learner, an immediate feedback for each response, and a low rate of error.

Program or programmed material is the subject matter arranged into a series of sequential steps.

Programming is the process of composing a program.
A frame is a single step in a program; it presents a small amount of information. In addition, the frame contains a statement which the student must complete or a question which he must answer. Both the statement and the question are related to the information already supplied by the frame. Thus the frame partially resembles a test item in its form but its purpose is different. It does not seek
to discriminate between students (as does a test item) but rather to eliminate error in the studentis progress through the whole program.

The stimulus is the technical name given to the information presented in the frame.

The response is the student's answer to the question posed in the frame. When he supplies the answer to the question or completes the statement, he is said to be responding to the stimulus.

Feedbaci informs the student about the correctness of his response and occurs immediately after he has responded. Feedback, or reinfor cement, as it is called, increases the probability that the student will make the correct response to the same stimulus in the future. The cycle of presentation-answer-feedback, or technically, stimulus-response-reinforcement, repeats itself throughout the program.

Self-pacing is a characteristic of programmed instruction which allows each student to proceed through a sequence of frames at his own rate. The rapid learner is not held back and the slow learner is not left behind.

External-pacing refers to the outside regulation of the rate at which the student proceeds through a programmed
sequence. This is in contradistinction to self-pacing where the student sets his own pace.

Traditional Instruction or conventional instruction implies no specific method of teaching. Where this study is concerned, traditional instruction included the use of lecture demonstration and the question-answer type methods, as well as private tutorial assistance to those students requesting it.

The University Entrance Course is a programme of studies set up by the Department of Education, and, when successfully completed by the student gives him a standing which is a prerequisite for entrance to the University of Manitoba. The geometry which was taught in order to form a basis for this study is a part of the Department's University Entrance course.

Ordinary or regular classroom practices were taken to mean those which are usually found in an average classroom. They are as follows: (1) All students proceed through the subject matter in a lockstep fashion, completing a unit of work at the same time in order that they may be examined on it at the same time; (2) the rate at which the subject matter is presented is determined by the teacher and is usually geared to the average student; (3) students who
fail to master the work may receive remedial assistance.

Significant Differences. Differences between the means of the control and experimental groups were considered significant if they fell into that range of differences which by chance could occur less than five times out of a hundred as determined by a t-test. (See Chapter IV).
III. PLAN OF STUDY

The remainder of the chapter is devoted to a brier exposition of the procedure followed in the solution of the problem, and notes some limitations which arose as a result of following this procedure.

Subjects. The students of the experimental and control groups were selected from a total of 108 grade eleven students enrolled at St. Paul's High School, September 1963. From this total twenty-five pairs were matched for subject sequence, scholastic ability, and sex. Each of these matched students was then assigned at random to one or other of two classrooms; one classwas designated as the control group, and the other as the experimental. The control group was taught by the writer and the experimental group by programed instruction. A complete description of the matching procedure is found in Chapter IV. The program. The program employed in this study was
constructed by the writer, partly because he wanted to experiment with programming, and partly because it was more economical than buying a commercial program. Other advantages came as a result of this procedure. First, it helped to equate the material presented to both groups. As the writer was both the programmer and the teacher, he was able to structure his classroom presentation to resemble the program presentation. This was relatively easy, since the program evolved from his experience in teaching the subject matter. Secondly, the teacher variable was eliminated, because the same person was responsible for the instruction of both groups. Thirdly, the writer, by choosing to construct his own program was able to exercise greater freedom in the selection of the subject matter. Lastly, by describing the construction of the program, a feature which so many commercial programs lack, the probability of this studyis making a contribution to the science of programming was increased. The construction of the program is described in Chapter III.

The procedure. Before instruction was begun, a standardized geometry test was administered to establish the previous knowledge of the subjects. Section I, Form A, of the "Cooperative Geometry Test" was employed. (See Appendix).

When instruction was begun, the subjects of the experimental group were permitted to work at programs at home, as well as during regular geometry periods. They were informed that approximately 140 frames should be done each week. At this rate the program instruction group would complete the program in three weeks--the time it would take the control group to cover the same unit of work.

Ordinary classroom practices were followed in instructing the control group.

After the completion of instruction, a criterion test, which measured achievement, was administered simultaneously to both the control and experimental groups. It was constructed by the writer and validated by a member of the Department of Education High School Examination Board.

During the day following the administration of the criterion test, an attitudinal questionnaire was administered in order to assess the student attitudes to programmed instruction. This questionnaire was administered to the students of the experimental group only.

Prior to writing the criterion test, the students submitted records of the time they had spent working on the programmed materials, or, in the case of the control group, the time they had spent doing out-of-class work on the subject matter.

Eypotheses. Using as a basis a short unit in geometry, this study attempted to determine whether, at the end of the experiment there were any significant differences between the control and experimental groups in (1) mean time and (2) mean achievement. Specifically the following null hypotheses were tested.
(I) The means of the criterion test scores for the control and experimental groups are not significantly different at the five per cent level of significance as measured by a t-test.
(2) The difference in mean time between the control and experimental groups is not significant at the five per cent level as determined by a t-test.

IV. ASSUMPTIONS AND LIMITATIONS

In following the procedure outlined above, several assumptions were made. It was assumed that:
I. each student kept a reliable record of his time; 2. in answering the attitudinal questionnaire, each student of the experimental group stated what he believed rather than what he thought he should believe;
3. the program taught those objectives that the criterion achievement test attempted to measure;
4. the students working on the program would do so in accordance with the instructions provided at the beginning of the program;
5. each student in grade eleven possessed the background knowledge of geometry demanded by the program;
6. the method used to construct the program would result in a program capable of satisfactorily teaching the intended population.

An apparent weakness in the last two assumptions suggests a possible limitation. All the students used to validate the program had a passing grade in grade ten geometry, but all the students using the program may not have had this qualification. A passing grade in mathematics is based on a combined geometry and algebra score; a student consequently could enter grade eleven having failed geometry in grade ten. A second limitation concerns the applicability of this study. Although it may be pointed out that St. Paul's follows the same academic curriculum, writes the same external examinations, and is inspected by the same set of inspectors as the public schools, St. Pauls! is, nevertheless, a private boy's school, and thus the results of this study are applicable to it only.

A third limitation is the size of the sample used in the experiment; statistically speaking, it is small.

In summary of the chapter it may be said that the problem has been identified, the terms unique to the study defined, the hypotheses proposed and some limitations noted. The following chapter will review the programmed instruction literature pertinent to this study.

REVIEW OF THE LITERATURE

Programmed instruction is an ancient art, dating back to the tine of Socrates, whose dialogues with his students took this form. ${ }^{1}$ Pressy, in the 1930s, used a form of instruction which could be classified as programmed. ${ }^{2}$ Most literature on the subject is, however, of recent origin. After the publication of Skinneris article, "The Science of Teaching and the Art of Learning," in the Harvard Educational Review (Spring 1954), there has been a small flood of articles and texts on the subject of programmed instruction. In fact, 1961 saw the publication of a journal devoted solely to that subject: "Journal of Programmed Instruction." Several source books containing research and other writings have been published. The most comprehensive of these is "Teaching Machines and Programmed Learning--a Source Book," edited by Lumsdaine and Glaser. Most of the articles in both the journal and the source books have been written by psychologists for psychologists, giving the impression that programmed
${ }^{I}$ Jerome P. Lysaught and Clarence M. Williams, A Guide to Programmed Instruction, (New York: John Wiley and Sons, 1963), p. 3.
${ }^{2}$ A. A. Lumsdaine and Robert Glaser (eds.), A Guide to Programmed Instruction, (Washington: National Education Association of the United States, 1960), p. 47.
instruction is the exclusive domain of the psychologist; few if any of the articles deal with classroom applications of this teaching technique. On the other side of the ledger, Quakenbush ${ }^{3}$ has made a small survey of the classroon applications of programed learning; so has the Canadian Teachers Pederation in Canada, and the Center for Programed Instruction in the United States. Several writers such as Lysaught and Williams, have published books aimed at instructing teachers in programing.

While the latter type of literature was of greater interest to this study, all the available literature was examined in an attempt to find answers to the following questions.

1. Does the method of programming the subject matter affect the ability of the program to teach?
2. Does the device employed to present the programned materials affect the quality of instruction?
3. Does the ease with which the materials can be programmed vary with the nature of the subject matter?
4. Does supplementing programmed instruction by conventional instruction help or hinder the student?
5. Does external pacing adversely affect student achievement?

3Jack Quakenbush, "How Effective are the New AutoInstructional Materials and Devices?" IRE Transactions on Education, No. 4, December 1961, pp. 145-151.

I. METHODS OF PROGRAMMING

No one method of programing appeared to be superior. To the best of the writer's knowledge, no study exists which attempted to compare different methods of programning. Opinions, however, do exist.

For the purpose of the ensuing discussion, programming methods were taken to include the programming model and the rules or principles of programming.

The Programing Model. The programing model refers to the skeleton or framework of the completed program. It is independent of the subject content, or the order in which the content is presented. It refers to the way in which the frames are joined to each other (frame sequence): it also refers to the way the responses are made (mode of responding)。

Student responses to the information presented in the frames can be either written-in (this is called the constructed response) or selected (this is called the multiple choice response).

The sequence of frames can be either linear or branching. In a linear program the sequence of frames is fixed and all the students work through the same sequence. In a branching program all the students do not follow the same sequence of frames: instead, each student follows a
sequence determined by his responses.
Branching programs utilize the multiple-choice mode of responding, while linear programs are usually associated with the constructed response.

Figure 1 shows a schematic model of a linear program. The circles represent frames and the arrows indicate that there is only one path for the student to follow regardiess of his response.

FIGURE I
A IINEAR MODEL

FIGURE 2
A BRANCHING MODEL

Pigure 2 illustrates a model of a typical branching
program. The student after reading the information in
frame 1 tests his understanding of the information by selecting one of several answers (three in this case). A selection of the correct answer directs him to frame 2; an incorrect response directs him to either of the remedial frames, IA of $1 B$. These are designed to help him understand the reason for his error. Suppose his initial response directed him to frame IA. After reading the remedial information presented in frame $1 A$ he would be redirected to frame I to make another selection. If he again made an incorrect response, he wauld be directed to frame 1B, and then back to Irame I. This cycle could repeat itself throughout the program.

Which model is superior? An examination of the literature revealed that opinions varied only slightly. The following statement made by Lysaught and Williams 4 is typical.
....most programers would agree that more experimentation will be necessary before anyone can speak with true authority on the merits of various paradigms |programming models|. It is sufficient to point out that each of these paradigms has been used effectively in preparing programmed units for use in particular situations. For the teacher it becomes a matter of matching selection, assumptions and objectives to a desirable model.

4
Jerome P. Lysaught and Clarence R. Williams, A Guide $\frac{\text { to }}{196} \frac{\text { Programmed }}{3.89}$ Instruction, (New York: John Wiley and Sons, 1963.) p. 89.

Although Hughes ${ }^{5}$ feels it is unwise to become com-
mitted to one model to the exclusion of the other, he offers a concrete suggestion to programers seeking a model.

The kind of program you write should be geared to the principal type of behaviour you are trying to teach-recall or recognition. If the student must later recall the material verbatim without any prompting, the Skinner approach is generally more appropriate. |The design using a linear model and constructed response is credited to Skinner.
The non-committal attitude of the programming experts to a particular model is indeed remarkable when one considers that in 1962, seventy-nine percent of the 122 commercial programs available for school use employed no branching. ${ }^{6}$ The obvious reason for the preponderance of Iinear programs is that they are easier to write. Carr ${ }^{7}$ is of the opinion that the construction of a branching program places a special burden on the author of the program, and on the teaching device used. He states, "Unfortunately no experiment has been done which compares the two methods

[^1]of programming directly." Faced with a lack of experimental evidence to the contrary, it is possible that the programmer will choose a linear model because it makes construction easier.

In a branching program, as in a linear one, each frame must contain a small amount of information which will cause the student to respond correctly. For the linear program a frame is considered adequate if it elicits the correct response most of the time. If the ratio of incorrect to total responses exceeds a certain limit, say ten percent, the frame is revised until this criterion is met. The branching program, on the other hand, assumes that errors are part of the normal learning process. Consequently, in constructing a certain frame, the programmer must envisage the most likely erroneous responses. He must then proceed to write remedial frames which explain why these responses are erroneous, and thus set the student back on the right track.

Moreover, the linear program requires a simpler device to present it than does the branching program. In a linear program all students proceed through the same sequence of steps. Therefore a device similar to the ordinary spools of a camera, where the film represents the paper on which the frames are written, is sufficient to present a linear program. It should be clear that a
branching program, with its variety of paths which a student may take, requires a somewhat more complex mechanical contrivance to present it.

In spite of the fact that it appears easier to construct programs using a linear rather than a branching model, many branching programs have been constructed. This leads to the hypothesis that the selection of a particular programming model is a function of the programmer's individual preferences.

Two other factors which may lead to the selection of one programing model in preference to the other are: (I) the type of terminal behaviour desired (recognition or recall), and (2) the type of device available to present the program.

Rules or problems of progranming. Since the programming literature contained no specific directions for selecting a programming model, it is not very surprising to find that no rules or principles for the construction of a good program exist. This is not to say that no rules exist. They do, but, they do not guarantee their user a successful program. Carr has reviewed the rules of several authors and combined them into a single set of principles. He notes, however, that "these principles of programming... simply constitute problems which the programmer faces when
he attempts to compose a program."8
The first step in writing a program is to specify precisely the terminal objectives of the program. The problems presented in the program should represent the kind of problem that the learner is expected to solve and the response in the program should approximate those that will be ultimately required of the student.

Secondly, the programmer must specify or assume the initial repertoire of the learner upon which he is to build the program. Good teaching begins with what the student knows.

Thirdly, he must decide the best order in which the individual frames are to be presented so that the student attains the desired terminal behaviours.

Fourthly, the programmer must now specify the size of step. The size or step can be defined operationally in two ways--as the number of steps in a program which takes the learner from the initial to the terminal behaviours, or, by the percentage of incorrect responses. The latter definition assumes that if the size of step is small the learner makes few errors. Evans, Glaser, and Fommes ${ }^{9}$ have verified the fact, that, within limits, decreasing

[^2]the size of step by increasing the number of frames has. resulted in a decrease of errors in the program itself: the students also scored better on a post criterion test. Fifthly, the programmer must decide on the amount of repetition necessary to guarantee adequate learning and naintenance of the behaviours already learned. 10

It should be clean that the above steps serve only to indicate the problems that a programmer faces; they offer few or no solutions. Hence Green" comments, "In all honesty no one can prescribe a set of rules for successful writing of a program in a specific area." And Gilbert ${ }^{12}$, speaking of the authors of programming principles, adds, "They may be mostly wrong. Use their principles only as a starting place.", and Mager ${ }^{13}$ elucidates, "...a good program is one that works, rather than one that conforms to some particular writing style or strategy." Even Skinner, ${ }^{14}$ the author of a set of principles admits, "...that a considerable measure
${ }^{10}$ Ibid. pp. 447-451.
11
Edward J. Green, The Learning process and Progranmed Instruction, (New York: Holt, Rinehart and Winston, 1962.) p. 139.

12 Lumsdaine and Glaser (eds) op. cit. p. 479.
13
Robert F. Mager, Programming Methods, IRE Pransactions on Education, December 1961, p. 151.

14
Lumsdaine and Glaser (eds), op. cit. p. 151.
of art is needed in composing a program."
In constructing a program, it is essential that it be tested on a student. If he attains the desired terminal objectives then the program is on its way to becoming a good one. If the student does not attain the desired objectives, the programmer has failed and must start again. Once a program adequate for one student has been developed, it is tested on a second student, and then revised, and then tested on a third student and then revised, and so on, until the program is judged adequate for the student population which it is intended to teach. Gilbert ${ }^{15}$ estimates that after fewer than ten trials and subsequent revisions a program will be produced that will teach ninetyeight percent of the students.
II. TEAGHING MACHINES AND PROGRAMITED TEXTS

A teaching machine is a device employed to present the program. A device, it should be noted, is simply a means of communicating the programmed materials to the student; it should not be confused with the technique of programmed instruction, as defined in Chapter I.

Generally speaking, there are two ways by which the program may be presented to the student. They are by teaching machine or programmed text. In this study a

$$
{ }^{15} \text { Ibid. p. } 480
$$

teaching machine is understood to be a mechanical or electrical device that controls the presentation or the frames, keeps a record of the students' answers, and provides an immediate feedback by displaying a correct answer.

Teaching machines vary greatly in complexity. They range from the mechanical devices which present the program on sheets of paper, cards or disks, to the electrically operated machines which present the program on films or tapes or a combination of both.

Programmed texts on the other hand are relatively simple。 On the surface they resemble an ordinary text or workbook. The frames are arranged in ordinal number sequence down a page. To the information presented in each frame, the student responds in a blank just below the frame or on a separate sheet of paper. The correct answer to each frame is provided, and it is placed just before the succeeding frame, or to the left or right of the succeeding frame. The student uses a shield to cover the answers. As he works each frame he moves the shield down to uncover the answer to that frame.

Variations are possible. For example, a horizontal, as opposed to the vertical arrangement just described, would have frame I on page one, frame 2 together with the answer to frame 1 on page three, frame 3 together with the answer to Irame 2 on page five, and so on. If the book has
a total of ten pages, frame 5 will fall on page nine, and frame 6 on page one just below frame 1 . When the odd numbered pages are filled, the even numbered pages could be used in the same manner.

A comparison of teaching machines and programmed texts reveals that former have two basic disadvantages. The first is their high initial cost. Machines can cost from ten to 20,000 dollars (excluding the programmed materials which they present), whereas, the initial cost of the text book involves just the paper upon which the programmed materials are presented. Secondly, machines are prone to breakdowns. Breakdowns mean repairs, which could be costly. But even more serious is the fact that breakdowns mean an interruption of student training.

On the other hand, machine manufacturers claim that machines are cheat proof-a feature not possessed by the programned text books. The program is locked inside the machine and mechanical controls ensure that only one frame is presented at a time. When the student responds to any one frame the machine proceeds to expose the next. In moving from one frame to the next, the machine covers, with a transparent plastic shield, the student's last answer. At the same time the correct answer is also exposed. The shield prevents the student from changing his answer and thus a reliable record of the studentis performance is kept.

In a programed text, however, the student is free to look at the answers before responding to the question; he can therefore copy the answers. He can erase answers and omit questions at will. The programed text has no control over these actions. Nevertheless, according to Homme and Glaser ${ }^{16}$, cheating occurs infrequently, and hence has little importance.

Proponents of machines have also stated that the machines, unlike programmed texts, maintain student interest because of their mechanical aspects. MThe toylike quality of machines may have an enhancing effect upon motivation and thus contribute to an improvement in teaching," says Stolurow. ${ }^{17}$ Several studies have compared machine teaching and programmed texts.

Studies conducted at Deer Park and South Huntington School Districts, Long Island, ${ }^{18}$ the Hanover Junior High
$16_{\text {Eugene Gallanter, }}(\mathrm{ed}$.$) , Automatic Teaching: The$ State of the Art, (New York: John Wiley and Sons, 1959), 0.105.
${ }^{17}$ Lawrence M_{i}. Stolurow, Teaching by Machine, (Washington: U.S. Government Printing Office, 1961), p. 56.
${ }^{18}$ Lassar G. Gotkin and Leo S. Goldstein, Programmed Instruction for the Young Learner: A Comparison of Two Presentation Modes in Two Environments, (New York: The Center for Programmed Instruction, 1962), pp. 1-8.

School, New Hampshire, ${ }^{19}$ the Collegiate School, New York, 20 and New York University, ${ }^{21}$ involving students from the elementary to college levels, all found that the student mastery of subject matter is independent of mode of presentation. Equally effective learning resulted regardless of whether the student was taught by machine or text.

It appears that neither the motivational nor the cheat proof aspects of the machine is significant when related to student achievement.

Moreover, it is interesting to note that students using machines complained of breakdowns, and that those using programmed texts with a horizontal format complained of "too much turning of pages," while those students using texts with a vertical format made no complaints at all. 22
${ }^{19}$ Lewis . Eigen, Robert T. Filep, Leo. S. Goldstein, and Bruce W. Angalet, A Comparison of Three Modes oi Presenting a Programmed Instruction Sequence, (New York: Center for Programed Instruction, 1962), pp. 1-40.
${ }^{20}$ Lewis D. Eigen and P.K. Komoski, Research Summary Number I, (New York: The Center for Programmed Instruction, 1960), pp. I-II.
$21_{\text {Millicent }}$ Alter and Robert E. Silverman, Response Mode, Pacing and Motivational Effects in Teaching Machines, (iNew York, Dept. of Psych., N. Y. U., 1961 cited by J. L. Hughes, Programmed Instruction for Schools and Industry), Chicago: Science Research Associates, 1962), p. 41.

$$
{ }^{22} \text { Eigen and others, op. cit. p. } 8 .
$$

III. SUBJECT MATTER

Are some subjects easier to program than others? Apparently so, if the actual number of programs in a subject area can serve as an indicator. A survey conducted by the Center for Programmed Instruction revealed that sixty-two per cent of the programs available to educators were in mathematics or science, compared to fourteen per cent in the social sciences and language arts. No prograns were available in the liberal arts area. 23

Lysaught ${ }^{24}$ agrees that the number of programs in a given subject area is an index of the ease of programming that subject area. He states, "Generally, the more logical the subject matter, the more easily it can be programmed. That is why there are several programs in algebra and so few in the social sciences."

Geometry, then, because it possesses an internal logic, should be easily programmed; the logic of the subject matter facilitates the ordering of the items. Nevertheless, only three per cent of the mathematics programs
${ }^{23}$ Center for Programmed Instruction, (comp.) Programs 162 A Guide to Programmed Instructional Materials for Educators, (Washington: Government Printing Office, Ig62), p.xxiii.
${ }^{24}$ Stuart Margulies and Lewis D. Eigen, (eds.) Applied Programmed Instruction, (New York: John Wiley and Sons, 1962), p. 39.
were in geometry as compared to twenty-two per cent in algebra. 25 The reason for this surprising wide difference seems to be nothing more profound than the personal choices made by the programmers. Nany more of them were interested in algebra rather than in geometry.

Of course it is possible, or even probable, that the individual tastes of the programmers are a reflection of their conception of geometry as a difficult subject to program. Lewis, for example, imagines that it may be impossible to construct a good Iinear program in geometry, particularly one which teaches a student to solve geometry problems, for there are many kinds of procedures which will lead to a solution of a problem. The student must develop an ability to recognize those cues embedded in the problem which will enable him to select the kinds of procedures most likely to be successful. ${ }^{26}$ The fact that a variety of different and potentially good procedures exist suggests that a branching model is better suited to teaching geometry.

On the other hand, to the best of this writer's knowledge, no geometry program utilizing the branching model has been published.

[^3]IV. ROLE OF THE TEACHER

When programmed materials are employed in place of regular classroom instruction, what is the role of the teacher? Various writers have commented on this question. While it appears that the teacher will enjoy more free time, his services are not dispensable.

Fusco ${ }^{27}$ states,
...the classroom teacher may be freed from the burdensome and time consuming tasks of presenting materials and taking precious class time to repeat material for students who didn't get it the first time.

Instead, his free time will be utilized in giving personalized tutorial assistance to each pupil. Iysaught and Williams state, ${ }^{\prime \prime} .$. .the teacher can devote a much larger part of his time to counselling, guiding, assisting and stimulating the individual learners." 28

With the increased use of programmed materials, Ramo foresees the evolution of a new brand of teacher-a a teaching engineer." Highly specialized in both his subject field and programned instruction, the teacher will make it his task to
$27_{\text {Wendell I. Smith and J. William Moore, (eds.) }}$ Programmed Learning, (Toronto: D. Van Nostrand Company, 1962),
${ }^{28}$ Jerome P. Lysaught and Clarence Mo Willians, A Guide to Programmed Instruction, (New York: John Wiley and Sons, 1963), p. 154.
supplement, modify and revise teaching devices and programs. 29
While it is obvious that the teacher will have more Pree time in which to render private assistance to individual students, is it possible that the rendering of such assistance will not result in increased learning? Is it possible that the students would learn equally well from programmed instruction alone? Several studies has investigated the effects of varying the degree of teacher interaction with programmed materials. One such study was the Roanoke experiment.

Using mathematics programs, it involved approximately 900 students. Three separate treatments were imposed. One group received conventional teaching; a second group used programed materials with no help from the teacher; the third group worked on the programed courses with help from the teacher being available at all times. Both the "help" and "no hely" groups had a lower failure rate than the "traditional" group, but no consistent differences were found between them. Although teachers reported more opportunity to work with students of the "help" group, the availability of teacher assistance appears to have had no

29A. A. Lumsdaine and Robert Glaser, (eds.) Teaching Machines and Programmed Learning--A Source Book, (Washington: National Education Association of the United States), p. 379.
effect on student achievement。 ${ }^{30}$ Availability does not imply utilization.

Klaus found that using a high school physics program to supplement regular classroom instruction resulted in higher achievenent. He states, "...auto-instructional methods can produce increments in achievement even when substantial efforis have been made to maximize learning. 31 He further reports no significant difference in achievement between groups taught by program only, and those taught in the traditional manner. On the basis of this study it appears that maximum student achievement is had when both programmed and traditional instruction are employed conjointly。

The Canadian Teachers' Federation surveyed sixteen studies which compared programed with regular instruction. Of these sixteen studies, eight reported that programmed instruction was superior to traditional instruction, and seven reported that traditional instruction was superior to programmed instruction. The survey notes, however, that all eight studies reporting on the inferiority of programmed
${ }^{30}$ Jack Quackenbush, How effective Are the New AutoInstructional Machines and Devices? IRE Transactions on Education, No. 4, December 1961, p. 1 $\frac{145}{45}$
$3 I_{\text {loc. cit. }}$
methods took place under conditions of minimal teacher assistance; and in four of the seven studies which indicated that programmed methods were superior to traditional instruction, programned sessions were interspersed with conventional instruction。 32

Assuming that the above studies are well designed, the following conclusion is suggested by the evidence which they submit. Help, in the form of normal instruction, may result in improved student achievement. In cases of minimal teacher assistance, there is a conflict in the results observed between the Roanoke experiment (superior to traditional) and the Canadian Teachers 1 Federation survey (inferior to traditional).

V. SELP-PACING

According to some writers, a chief feature oi programmed instruction is that each student is allowed to "absorb" the subject content at his own pace. The rapid learner is not held back and the slow learner is not left behind. This feature is called self-pacing. It implies that a student may take as much time as he needs to read, assimilate and answer each frame of the program. Theoretically, there is no limit to the time he may take to pro-
${ }^{32}$ Research Division, A Survey of the Use of Programmed Instruction in Canadian Schools, 1962-3, TOt tawa: Canadian Teachers ${ }^{\text {F }}$ ederation, I963), p. 24 .
ceed through a sequence of frames or answer an individual frame.

But this interpretation is hardly practical in a classroom situation, where courses must be completed within a certain time period. Nor would it be a satisfactory view if speed of periormance were an element in the skills taught. 33 It appears reasonable to exert some sort of contrel over the self pacing aspect of programmed learning.

There are two ways in which a time limit could be imposed. If the speed of performance were a factor, a limit could be set on the length of time that each frame would be exposed. During a certain time period, two minutes for example, the student would be expected to read, assimilate and respond to the material presented in a particular frame. At the end of two minutes the frame would be replaced by its successor and the cycle repeated. Or, if gross rather than atomic control were desired, a time limit, such as ten class periods, could be set for the completion of the whole program or a unit of the whole program.

Control over the rate at which the subject matter is presented is called external pacing. Unlike self pacing, external pacing sets a limit on the length of time that each

33 Eugene Gallanter, (ed.) Automatic Teaching, The State of the Art, (New York: John Wiley and $\frac{\text { Sons, I959), p. 90 }}{}$
frame or a sequence of frames is exposed to the student. Alter and Silverman 34 used an eighty-three frame program on basic electricity to compare the effects of self and external pacing. In the self paced group each student worked through the program at his own rate; in the externally paced group each frame was exposed to the students for a similar period of time. The length of time that each frame was exposed was geared to allow all students, including the slow workers, ample time in which to respond. A criterion test was administered to the students after they had completed the program. No significant differences in achievement were found although the students who worked at their own pace were generally Innished sooner than those who were externally paced.

Using the same electricity program, Alter and Silverman compared self pacing with a rate of external pacing which allowed students an excessive amount of time on each frame. There were no significant differences in achievement. 35

By an efficiency measure based on test score, test time, and training time, Follettie found self pacing to be superior to extemal pacing. The external pacing was based
$34_{\text {Millicen }}$
in Programmed Instruction and Robert Silverman, "The Response Instruction, Vol. I, pp. 55-78.

35 Ibid. p. 73.
on the average reading rate of the group and hence was somewhat fast for the slow readers. 36

On the basis of the above studies it was tenuously concluded that external pacing does not adversely affect student achievement unless the rate of presentation is too rapid. It should be noted that in the experiments described, control was exerted over single frames rather than groups of frames. The writer was not aware of any attempt to evaluate achievement under the later condition.

VI. SUMMARY

It should now be possible to answer the questions raised at the beginning of this chapter regarding the successful use of programmed materials in the classroom. The questions were: (I) Does the method of programing the subject matter affect the ability of the program to teach? (2) Does the device employed to present the programmed materials affect the quality of instruction? (3) Does the ease with which the materials can be programmed vary with the nature of the subject matter? (4) Does supplementing programmed instruction by conventional instruction help or hinder the student? (5) Does external pacing adversely affect student achievement?

[^4]Based on the evidence reviewed the Pollowing conclusions are drawn.

1. A present no functional relationship exists between programing methods and the quality of a program. The choice of a particular programing strategy is a function of the programmeris own preferences. If it produces a successful program for him, it may or may not produce a successful program for some one else. The key to writing a good program is the effective utilization of student feedback. A program is tested on a student, then revised on the basis of his responses, and then tested again. This cycle is repeated until the program is judged adequate.
2. The quality of the instruction received, as measured by achievement tests, is independent of the device used to present the programmed materials. It is the materials themselves that determine the quality of instruction.
3. Certain subjects may be easier to program than others. Geometry is probably one of the easier subjects to program because its internal logic predetermines the onder in which the frames are presented.
4. The conjoint use of programmed materials and conventional teaching techniques may result in increments in learning which would not occur if either method were used exclusively. No study has yet determined what combination of teacher and programmed instruction yields the most effective results.
5. When ample time is allowed for a student to respond to a frame, external pacing results in learning equivalent to that observed under conditions of self pacing. This chapter has reviewed some aspects, pertinent to this study, of programmed instruction as found in the literature. The following chapter will deal with the construction of the program employed in this study. In it the writer will attempt to describe how he "followed the rules" or "solved the problems" which every programmer faces in constructing a program.

CONSTRUCTION OF THE PROGRAM

The construction oi the program is described under the following headings: the selection of the subject matter, the delineation of objectives, and the selection of the programming model.

These headings are in fact the major problems faced in the construction of a program. The manner in which they are solved constitutes a particular programming strategy or method. What follows is then a description of the writeris strategy.

I. SUBJECT MATRER

A primary consideration in selecting the subject matter was the needs of the students. The possibility existed that the students would fail to learn from the programmed materials--as compared to the students receiving conventional instruction. If sucha situation developed, the program instruction students would have to be re-taught by conventional means. Re-teaching too long a unit or one that was not self contained would place too great a burden on both the teacher and student. Consequently, it was desirable that the material to be programmed be reasonably short and independent of the remainder of the course.

It was particularly important that the unit chosen for programming be independent of the remainder of the course. Then re-teaching, in the case of failure, could take place at a more leisurely pace, and the students could proceed to the next unit of work unhampered by a lack of subject matter background.

It may appear from the foregoing that, in the interests of the students, the programmed unit be as short as possible. Nevertheless, it was desirable that the programmed materials receive a fair trial; Klaus ${ }^{l}$ for example, suspects the validity of results based on programs of fewer than 100 frames. Tentatively, it was decided that a unit which took ten to twelve classes to teach traditionally was of sufficient length.

The unit selected was of this length. The Areas of Polygons ${ }^{2}$ is a unit of grade eleven geometry and forms part of the university entrance program in Manitoba. Among the courses taught by the writer, it was the only unit which was of sufficient length and yet relatively independent of the course.

Although this unit was relatively independent of the
$I_{\text {Wendell I. Smith and J. William Moore, (eds.) }}$ Programmed Learning, (Toronto: D. Van Nostrand Co., 1962), p. 94.
$2_{\text {Oliver, }}$ W. J. (et al), A Pirst Course in Plane Geometry, Regina: School Aids Publishing Co., 1954), pp. 189-
remainder of the grade eleven geometry course, it did require a prior knowledge of the subject. This prior knowledge was presumably part of the student's repertoire, and was acquired by him during the preceding year while he was in grade ten.

Since the program had to have a starting point, it was necessary to assume the specific concepts and facts that
the student knew by virtue of successfully completing the grade ten course. In particular, it was felt that the student attempting the program knew the following:

1. an operational definition of "proof"--that he could, given certain facts, arrive at a required conclusion, using a chain of sound reasoning;
2. that the general enunciation oi a theorem consists of two parts, the "if" and "then" clauses, which correspond respectively to the "given" and the "required to prove" of the particular enunciation;
3. the meaning of the word congruent, and could prove triangles congruent by "a.a.s.";
4. the properties of parallel lines and could identify corresponding and interior opposite angles;
5. the definitions of a rectangle and a parallelogram and their properties;
6. the compass and straight edge constructions for bisecting an angle, drawing an angle equal to a given angle,
drawing a line through a given point parallel to a given line, dropping a perpendicular to a given line from a given external or internal point, and drawing an angle of sixty degrees.

For the purpose of developing the program it was assumed that any person satisfactorily completing grade ten mathematics had a knowledge of the above mentioned concepts, definitions and skills. If it became evident (during the preliminary trials of the program) that students did not possess certain concepts, then these concepts would be worked in as part of the normal development of the program.
II. OBJECTIVES

The next step in constructing the program consisted in delineating the objectives of instruction. In order that the objectives be operational and reflect the emphasis suggested by the Department of Education, a survey was made of former final examinations prepared by the High School Examination Board.

This survey revealed that the student was expected to recite the orems and to perform and describe constructions. He was also expected to use these theorems and their corollaries as authorities in solving numerical and theoretical deductions. The emphasis was greatest on the students: ability to solve numerical and theoretical deductions.

On the final June examination in geometry, approximately 65 per cent of the marks were alloted to questions dealing with numerical or theoretical deductions. Twenty five per cent of the marks were alloted to questions which tested the students: ability to recite theorems, and approximately 10 per cent of the marks were assigned to questions which asked the student to solve construction problems.

If the program was to prepare the students for the final exam, it became apparent that the program must attempt to teach the required theorems and their application to numerical, theoretical and construction problems. In addition, emphasis was to be placed on the solution of problems rather than the recitation of theorems.

The next step was to list the specific objectives of the program. In effect these objectives enumerate the behaviour that a student upon the completion of the program should possess. This list would serve to guide the programmer in writing and ordering the individual frames of the program.

The specific objectives of this program are listed below.

The learner upon completion of the program should:

1. have the concept that area is the amount of surface bounded or enclosed by the sides of a polygon;
2. know, by giving examples, that a unit of area can
be arbitrarily determined;
3. know that the sizes of two polygons cen be compared by counting the number of times each contains a unit or area;
4. know that two polygons equal in area need not be congruent;
5. realize, upon assuming that the area of a rectangle is equal to the product of its base and altitude, that the area of a parallelogram, as well as the area of a triangle can be calculated from the following theorems:
a) If a parallelogram and a rectangle stand on the same base and between the same parallels, (hence or equal altitude), then they are equal in area (Theorem I);
b) If a triangle and a rectangle stand on the same base and between the same parallels, then the area of the triangle equals one-holf the area of the rectangle (Theorem III);
6. be able to recite the above two theorems;
7. in addition to the above two theorems, be able to recite and understand the proofs of the following theorems:
a) If two parallelograms stand on the same base and between the same parallels, then they are equal in area (Theorem II);
b) If two triangles stand on the same base and between the same parallels, then they are equal in area (Theorem IV);
8. be able to apply these theorems in the solution of theoretical, numerical or construction problems;
9. be able to apply the following corollaries of the
above theorems to the solution of theoretical problems;
a) Parallelograms on equal bases in the same straight line and between the same parallels are equal in area;
b) If two parallelograms stand on the same or equal bases and have equal altitudes, then they are equal in area;
c) If two parallelograms of equal area stand on the same base and on the same side of it, then they have equal altitudes and hence lie between the same parallel lines;
d) A triangle is equal to one-half a parallelogram on the same base and between the same parallels;
e) Triangles on equal bases in the same straight line and between the same parallels are equal in area;
f) The median of a triangle divides it into two triangles equal in area;
g) If triangles stand on the same base and on the same side of it, then they have equal altitudes and hence lie between the same parallel lines;
III. THE PROGRAMMTVG MODEL

Once the specific objectives were delineated, and before the construction of the frames could begin, it was necessary to choose a programing model. As described earlier, a model is the skeleton into which the individual frames are placed. Essentially two different models exist, the linear and the branching forms.

A linear model utilizing the constructed response was chosen in preference to a branching model for the following reasons:
I. The linear model was judged the easier to construct. It would not be necessary, as in a branching model, to estimate the student's response, for the linear, unlike the branching model, need not employ the selection mode of responding.
2. Although several linear programs exist, no branching program in geometry, to the writeris knowledge, has been constructed. Because he was a novice programmer, the writer felt that it would be more prudent to use the linear model.
3. The ultimate objective of the program seemed to favour the constructed mode of responding. The student upon completion of the program was expected to write out complete proofs. He would need practice atllthis skill. The constructed rather than the selected response would provide this
practice.

Writing and ordering of the frames. It was decided to let the subject matter guide the order in which the frames were written. This is a system particularly well suited to a subject matter such as geometry, whose internal logic peredicts to a great extent the order in which its content may be presented. For example, once the theorem, "rectangle and a parallelogram standing on the same base and between the same parallels are equal in area" is proven, it may be used to prove the theorem, "two parallelograms standing on the same base and between the same parallels are equal in area."

While it is true that the order in which theorems are presented is often flexible, and in fact does vary somewhat from text to text, it is equally true that, once their order has been ascertained, the general order in which the frames are to be written has also been determined. The theorems in this program were presented in the same order in which they are found in the text book ${ }^{3}$ prescribed for the course.

The following procedure was used in writing the sequences of frames dealing with the theorems. First, the key terms and concepts contained in the theorem were explanned. Secondly, the entire theorem was reviewed; the

$$
3^{30 c} \text {. cit. }
$$

student read it and then answered questions about it. Thirdly, the important steps in the theorem were summarized. Fourthly, the student was asked to write out the theorem on his own. Firthly, the student was given practice in applying the theorem to the solution of other problems. Last, the corollaries were explained and their application to problems was illustrated.

Now that the general order of the frames was decided upon, the next step consisted in writing the items. To do this the list of specific objectives was consulted. Each objective was considered in turn and expanded in ne cessary. For example, the first objective states that the student will gain a concept of area as the amount of surface bounded by the sides of a polygon. The attainment of this concept depends upon the student; understanding what is meant by the terms "polygon;" Bbounded" and "surface." Ultimately, fourteen frames were written to develop this concept. Another example of how the objectives were implemented into the actual writing of the frames is provided by the theorem, "If a rectangle and a parallelogram stand on the same base and lie between the same parallel lines, then they are equal in area." The three underlined phrases contain three concepts which were developed before the theorem was formally introduced.

Because these three concepts and others like them were
required throughout the program, they were developed in the first part of the program, frames I - 137.

Initially, the frames were written on index cards, five by seven inches. The stimulus part of the frame was written on one side of the card and the response on the other. After 100 such items had been constructed, a very good geometry student was asked to work through them. The student looked at the item, wrote his response on a separate sheet of paper, and then flipped the card over and compared his response with the one on the back of the card. He was encouraged to think aloud, edit the items, and ask questions whenever he was puzzled.

The writer sat beside the student and observed his progress. Whenever the student made an error, the writer checked the item for faulty mechanics, sentence structure or grammar. The appropriate correction was then made and the student continued. If the error were due to the information presented in the frame, the writer immediately reconstructed the frame, or constructed additional frames which he felt might clear up the studentis misunderstanding.

It should be noted that in attempting to clear up the student:s difficulty, the writer was careful not to communicate orally with the student. It was desirable that the final version of the program be as independent of a human teacher as possible. Oral communication, while effective

With the trial student, might lessen the effectiveness of the program to teach when a teacher was not present. Occasions arose, nevertheless, when the student's difficulty was not cleared up by the above method. It was then necessary for the writer to question the student. In such cases it was generally foundthat the sequence of frames leading up to the poor item had to be revised. Errors of this type occured infrequently.

In this manner the writer, with the assistance of the student, constructed what could be called the gross anatomy of the program. Now all that remained was to refine it by testing it with other students. This process continued until the program was judged adequate for a field trial with the student population for which it was intended.

The second student on which the program was tested was also a very good student gene rally, but did not have as good a grasp of geometry as the first student. He completed the program; no major revisions were made.

It should be noted that both these students were approximately half way through the grade ten geometry course when they tried the program. As a result they were handicapped by an incomplete background in geometry as defined earlier in this chapter. They were used however, because all the students who had a complete background were at that time in grade eleven and had already taken the unit The Areas of

Polygons."
It was then decided to employ a student weak in geometry as a criterion for determining the adequacy of the program. He, unlike the others, worked through the program after he had completed the grade ten geometry course. When he completed the program, and then answered correctly three criterion questions from a prior grade eleven June examination, it was felt that the program was ready for a field trial.

The students used in the individual trials were selected on the basis of the writer's observations of their day to day work. It was interesting to note, therefore, that their I.Q.'s were respectively 128, 131 and 125 . Their year end averages were respectively 86,79 and 45 per cent and their final geometry marks were respectively 96,84 and 59 per cent.

In preparation for the field trial, the items were recopied from the index cards onto standard size spirit duplicating masters. These were "run off" and the resulting materials collated and bound. The program was now in text book form. All the diagrams were reproduced in a separate book. The program and the book of diagrams can be found in Appendix.

Table I which follows was prepared for the purpose of comparing the objectives as listed earlier, with the items

TABLE I
AN INDEX TO THE DEVELOPMENT OF THE OBJECTIVES

FRAMES	OBJECTIVES
$1-14$	Area concept--surface bounded by polygon.
15-23	In order to compare the areas of two polygons we count the number of times each contains an arbitrary unit of area.
$24-29$	Instead of counting the number of times a rectangle contains a unit of area, we develop, but note that we do not prove, the formula for the area of a rectangle.
$30-30$	A review frame eliciting the definition of area.
$31-56$	The altitude of a triangle, including the case of the obtuse angled triangle. Noting that the base could be any side of the triangle.
$57-83$	Development of the concept of an altitude of a rectangle and a parallelogram, leading up to the....
$884-87$...concept that "lying between the same parallel lines" means the same as having the same altitude.
88-90	Comparing the sides of rectangles and parallelograms with their altitudes. The altitude of a rectangle is equal to one of its sides; of a parallelogram it is shorter than one of its sides.
$91-96$	Introduction of the concept: standing on the same base.
96-119	A review of the concepts established.
120-130	Introduction of dieference between equality and congruency symbols. Congruency implies equality in area, but the converse does not hold.

TABLE I (continued)

FRAMES	OBJECTIVES
131-136	An example of subtracting or taking away areas.
137-158	Theorem I and corollary.
159-170	Exercises utilizing theorem I as an authority.
171-189	A review.
190-203	Theorem II.
204-206	Corollary of theorem II.
207-210	Corollaries 2 and 3 of theorem II.
211-237	Exercises based on theorem II and corollaries.
238-245	To construct a parallelogram equal in area to a given parallelogram.
$246-256$	A second construction exercise, with reduced cues.
260-265	Preliminaries to theorem III. A diagonal bisects a parallelogram.
266-283	Theorem III and corollary.
284-295	Theorem IV and corollaries.
$346-351$	Questions on overview--a short enrichment passage on the postulational approach in geometry.
352-376	Exercises on numerical deductions involving areas of triangles, rectangles and parallelograms.
377-388	Application of theorems to novel problems.

of the final version of the progran. It shows that the first 137 frames developed the terminology and concepts required for the introduction of the theorems. Frames 138 to 302 developed the first four theorems and their corollaries; examples of how the theorems are applied to problems were also provided. The remainder of the frames were composed of problems in which the number of cues or hints were gradually decreased.

SUMMARY

In summary, the caracteristics of this program are:
l. It was written for grade eleven students enrolled in the University Entrance Course and deals with the areas of polygons.
2. It has a linear paradigm.
3. The responses are constructed and every response is confirmed.
4. The ordering of the items was determined by the logic of the subject matter. Review frames were inserted Where the trial students indicated a need for them.
5. Three preliminary trials were run with students of differing geometrical ability. The responses of these students were used as a basis for revising the program.
6. In the field trial the program was presented in text book form, using a vertical format. Diagrams were
reproduced under separate cover.
With reference to point 5 above, the writer wonders if the program would have been substantially different had he selected these students on the basis of their I.Q. rather than their class performance.

Some writers have stated that the programmer will learn a lot about the difficulties that students encounter in his subject. Consequently, programming a unit should shed some light also on how to teach it traditionally. This writer, however, was not aware of any such transfer from programmed to traditional instruction. The reason for this may be that the program as it was originally written, presented the subject matter in such a manner that the trial students were able to absorb it with little difficulty. The fact that these students made only a minimal number of errors due to a lack of understanding seems to substantiate this reasoning. However, this observation is based on the writer's experience with the trial students, and had the trial students been chosen on the basis of some criterion other than class performance, it isppossible that the progrem would have differed.

In the following chapter the design of the experiment is described. The experiment was set up to assess the effects of employing the program in a normal classroom situation.

THE EXPERIMENT

This study attempted to examine the feasibility of employing programed instruction in place of regular classroom instruction. To determine this end two null hypotheses were proposed.
I. The means of the criterion test scores for the control and experimental groups are not significantly different.
2. The mean time for the control group does not differ significantly from the mean time of the experimental group.

Differences were considered significant at the five per cent level as measured by a t-test.

The procedure used in testing the se hypotheses--the experiment--is presented under the following headings: obtaining the sample, treatments, measuring instruments, and tests of significance.

I. OBTAINING THE SAMPLE

The population. The statement of the hypotheses implies the identification of the population at which they are aimed. Once the papulation has been identified, the next step is to select a representative sample.

The population used in this study consisted of all the grade eleven students attending St. Paulis High School in September, 1963. Hence the results of the study will be generalized to these students; however, action based on the se results can be taken with only future students. Therefore, assuming no extraordinary change in the type of student enrolling, the population for this study was identified as the present and future grade eleven students at St. Paulis.

The sample was chosen from this population. Circumstances, however, did not permit a purely random selection. Consequently, the generalization of results to the population may be limited. It could be pointed out--not in defence of the practice, but as an example of the over-riding influence of circumstances-that most educational research reported in journals employ samples which are not chosen by purely random selection.

The sample. In September 1963, a total of 108 grade eleven students were enrolled at St. Paulis. From this population twenty-five pairs of students were matched on the basis of their composite scores, and distributed at random to one of two classrooms. One class was designated as control and received traditional instruction; the other class was designated as experimental and received programmed instruction. The manner in which the sample was selected is described below.

First, eighteen students were autonatically eliminated because, either they were repeating grade eleven, or, no mental ability test scores (Department of Education, Grade IX) were available for them. As a result the available population was reduced to ninety.

It was also noted that thirty-five students (including some of the eighteen mentioned above) were enrolled in an eight subject sequence compared to seven for the remainder. The extra subject was Latin. Administratively it was desirable to place these students in one classroom-classroom B. Classroom B did not participate in the experiment.

The available population was now reduced to fiftyfive students. It was from these fifty-five students that the twenty-five matched pairs were finally chosen.

Obtaining control. The experiment in this study was a comparative one. Two groups of students, "equal in all respects," were exposed to two different treatments (programmed versus traditional instruction) for the purpose of evaluating the relative effectiveness of each treatment. While it is impossible to have two identical groups, it is important that they be as similar as possible. Specifically, it was desirable that control be obtained over those background variables related to the learning that was to take place during the experiment.

These variables were identified as: I.Q., achieve-
ment (grade X average), prior knowledge of geometry, verbal ability, age, and sex.

There are several means of gaining control or equating these background variables. If the sample were large, control could be obtained simply by assigning the students at random to either the experimental or control groups. On the other hand, if the sample is small, random assignment need not generally produce "equated groups." To ensure that the mean of a specific variable is approximately the same for both groups, students are matched by pairs with respect to this variable.

Since the sample used in this study was small, the students used in the experiment were matched on the basis of a composite score reflecting both I.Q. and achievement. They were also matched for sex and subject sequence.

Matching for sex was unavoidable, since St. Paulis is a boy's school. Matching for subject sequence came as a result of an administrative decision to place all the Latin students in one classroom. However matching the other variables did present a problem.

A quick inspection revealed that matching on the basis of I.Q. as well as on the basis of achievement, while maintaining an adequate sample size, was impossible because of the variation between scores. Students who had the same I.Q. often had grade X averages which differed by as much as ten
points.
Nevertheless, it was still deemed desirable to include achievement in matching, mainly because of its potential relationship to study habits. This suspected relationship assumed considerable importance, whether it was warranted or not, in the light of the hypothesis (stated earlier) concerning mean time.

Therefore, it was decided to construct a composite score consisting of the student's I.Q. and grade X average. The ninety available I.Q.s (excluding those of the repeaters) were converted to Z-scores; the grade X averages of these ninety students were also transiormed to Z-scores. Converting to Z-scores has the same effect as changing a series of measurements with unlike units, to a series with a common unit in order that they may be summed. For example, it is incorrect to say that $3 \mathrm{yd}+24 \mathrm{in}=27$, but it is correct to say that $9 \mathrm{ft}+2 \mathrm{ft}=11 \mathrm{ft}$.

The following formula was used to calculate the Z-scores. $Z=\frac{X-\bar{x}}{s} X 10+50$, where x is an observation, \bar{x} is the mean of that set of observations of which x is an element, and s is the standard deviation of that same set. A Z score is a convenient way of expressing the number of standard deviations a given score is from the mean. As such it becomes independent of the scale used in arriving at the initial scores.

The composite score for each student was calculated by summing his two Z scores. The writer could conceive no reason why the scores should not be given equal weight. The danger, rather, lies in the summing of the two scores. Summing may tend to obscure differences which would otherwise be present.

Now that each student had a composite score, the fifty-five students eligible to participate in the experiment were matched. First, those with equal scores were matched (thirteen pairs), then those whose scores differed by one (nine pairs), and lastly, those whose scores differed by two (four pairs). No match could be found for the other three students.

The matched students were then assigned at random to two classrooms, A and C. This was done by taking the first member of each pair and flipping a coin. If heads turned up he was placed in classroom A, and the second member of the pair in classroom C; if tails turned up, the first member was placed in C and the second in A.

After assignment, it was discovered that one of the students already matched wanted to take Latin. The pair to which he belonged was dropped from the experiment. The experimental sample now stood at twenty-five pairs: twelve whose scores were identical, nine whose scores differed by one, and four whose scores differed by two.

Whe remaining students (twenty-two) were assigned to classrooms A and C. These students were treated as though they were part of the experiment, but their scores were not used in the statistical analysis.

Checking and extending control. The purpose of matching followed by randomization was to obtain two equivalent groups of students. With what degree of certainty has this been accomplished? Certainly the use of the composite variable may be questioned on the grounds that it tended to obscure any difference which may have existed in its compe onent variables. Furthermore, it was the only quantifiable variable controlled by matching. In view of the potential danger of non-equation when randomization is used exclusively, should not more variables have been matched? It was stated that verbal ability, prior knowledge of geometry, and age, as well as I.Q. and achievement were important variables related to learning。

The problem encountered in matching more than one variable has been mentioned; however, in order to settle the issue of equation, as well as to deterinine the type of statistical technique that would be ne cessary to complete the study, the means and variances of the variables were calculated, ex post facto. Table III, page 62, indicates that both groups are equivalent with respect to the background variables.

In every experiment, however, there are some variables Which can not be controlled by matching or randomization. Control over these must be obtained by some other means.

Physical. The two classrooms A and C, used in this study were mirror images--the mirror running in a north south direction. Hence, the windows of the experimental group faced west and those of the control group towards the east. Instruction was given to both groups on Mondays, Wednesdays and Fridays--to the experimental group from 9:00 A.M., and to the control group from $9: 38$ to 10:15 A. M. Possibly because it was brighter, the writer thought he favoured the room with the eastern exposure. While this could constitute an advantage to the control group(the writer enjoyed teaching in this room), it should not constitute a disadvantage to the experimental group as they were taught by program (the writer enjoyed equally as much, not having to teach in this room).

FIGURE 3
CLASSROOMS A AND C USED RESPECTIVELY BY THE
EXPERIMENTAL AND CONTROL GROUPS

Psychological. The possibility existed that the experimental group, by virtue of being the experimental group, would over achieve. To equate this factor, an attempt was made to make the control group feel that it too was playing an important part in the experiment. Thus, when the time came to designate the two classes as either control or experimental, a representative from each class was present to "call" the coin that was flipped. Moreover, each student of the control group was periodically reminded of his participation in the experiment since he kept a lecord of the time that he spent doing geometry homework.

Teacher and subject matter. A single teacher was employed in the experiment. Rigid control, therefore, was maintained over the teacher variable in so far as the same teacher appeared in both classes. However, the danger inherent in a single teacher design is that the teacher may favour one technique over the other. The writer, for example, may have favoured programed instruction and subconsciously let up on his teaching of the control group. Awareness of this danger is probably the best defence against it; although making certain that the same material is presented to both groups also reduces the potency of the danger.

Care was taken to ensure that the equation of the subject matter variable by giving the same topics, the same
examples, and the same questions to both groups. The writer, because he was both the programmer and the teacher, was in an ideal position to effect this equation.

In so far as experience is related to the calibre of instruction, it may be felt, because the writer was an experienced teacher but a novice programmer, that the instruction received by the control group was "superior" to that received by the programmed instruction group. However, experience in one area is obviously related to performance in the other. The knowledge gained from teaching helps in the construction of the program, and conversely, the knowledge gained from writing the program may manifest itself in conventional classroom presentation. Experience in both areas thus becomes a vitiating variable and as such defies equation or inequation.

II。 TREATMENTS

Control Group. The writer instructed the control group from $9: 38$ to $10: 15 \mathrm{~A} . \mathrm{M}_{\text {. }}$ on Mondays, Wednesdays and Fridays. The method he employed was a combination of lecture, demonstration, and question-answer. The only departure from standard procedure was having the students keep a record of the time they spent doing geometry homework.

The students used the authorized text, A First Course in Plane Geometry; exercises from this text were supplemented
by exercises from the program in order that subject matter be kept the same.

Based on his experience the writer knew that it would take him approximately nine class periods to complete the unit of work. Below is a Table of Specifications which indicates the approximate length of time that was allotted to each section of work. A comparison between Table I, which

TABLE II
TABLE OF SPECIFICATIONS

Topics	Number of Class Periods
Introduction	1/2
Theorem 18^{*}	$1 / 2$
Exercises on theorem 18	1
Theorem 19	1
Exercises on theorem 19	1
Theorem 20	1/2
Theorem 21	1/2
Exercises on all theorems *Theorems are numb	4
Theorems in the program a to 18,19,20, and 21. The theorems may be found on to label theorems with nu table for the sake of nea	bered $1,2,3,4$, correspo al enunciations of thes students were not tau numerals are used in

indicates the order in which the subject matter was developed in the program, and Table II, shows that the development of the subject matter follows the same pattern in both.

Experimental Group. During the first class with the experimental group the writer handed out the programmed materials and explained their use. The set of instructions with which every student was supplied may be found at the beginning of the program, appendix A. Most of these rules are standard; some however, are not, and deserve special corment.

Rule 10, "If you are desperately stuck seek the assistance of your teacher.", was included in an attempt to forestall a barrage of trivial questions. Adherence to this rule by the students would leave the teacher free to deal with more serious misunderstandings. It was felt that the inclusion of the word "desperately" would serve to accomplish this purpose.

This rule however, was not operative during the experiment. Using a concealed stop watch, the writer found that he spent less than seven minutes rendering individual assistance to the students of the experimental group. Moreover, this time was spent answering trivial questions, such as, "Is this where you want us to draw the circles?", or, "Am I doing this right? ${ }^{i n}$, et cetera. No questions indicating a
lack of understanding of the subject matter were asked. In effect then this study served to measure the merits of programmed instruction exclusively。

Rule 6 states: "If your answer was wrong, circle the frame number in the answer column.". The purpose of this rule was to facilitate the proposed item analysis of the program.

Rule 9 was included for the purpose of helping the writer revise the program. It asked students to make comments about the program. It too may have been inoperative; less than one-tenth of one per cent of the frames had comments beside them. Of course, if it were operative, the lack of comments indicates that the program was satisfactory for most students.

There may be somewhat of a contradiction between Rule 7 which instructs students to work at their own speed and the verbal instructions given to the students regaraing their rate of progress. Rule 7 suggests self pacing, whereas the instructions given suggest a form of external pacing.

After considering the length of time that it took to work through the program during preliminary testing, and at the same time noting that the control group would cover the subject matter in nine class periods spread over three weeks, it was decided that it would not be unreasonable to expect the experimental group to complete the program at the same
time (and in the same amount of time) as the control group. The reasons for this decision are obvious. First, in using a short programmed unit to replace regular instruction, it is important that regular instruction can be resumed without disruption or confusion; otherwise using the programmed sequence would hardly be worth the effort. Secondy, if students are allowed to work at their own rate entirely, a testing problem arises. Ideally the amount of time that elapses between the time that a student completes the program and writes a criterion test, should be the same for all students. If each of the students works at a different rate, twenty-five parallel forms of the same text may be required for this experiment if contamination of results is to be guarded ageinst. Control over both the forgetting and contamination factors can be obtained by having the students complete the program at the same time, and then administering the test to the whole group. This implies, of course, a form of external pacing.

The external pacing imposed on the experimental group maintainedcontrol over groups of frames rather than individual frames. Since the program was almost 400 frames long, it was estimated that an initial rate of approximately 140 frames per week would result in the completion of the program in three weeks. This approximate rate of completion was suggested to the students. As the total available class time
for geometry was limited to 114 minutes per week, it was assumed that students in order to maintain this rate would have to work on the programs at home.

To make sure that students were maintaining this rate, surveys were made of the students: progress at the end of the first, and again at the end of the second week. Slow students were warned that they were behind and told to catch up by working longer periods at home.

These "warnings" were not issued as threats, nor were there any sanctions attached to non-compliance with the rate of progress rule. A certain level of performance was set and the students were expected to adhere to it. The demands were made in a warm friendly way, and the students worked with no fear of reprisal. It may appear that making demands in a relaxed atmosphere represents two antithetical conditions, and as a result some question may be raised as to the motivation of the students. However, Reed, ${ }^{l}$ using as a criterion pupils: science interest, has concluded as a result of a recent study, that the two variables of warmeh and demand are not contradictory, and may coexist in multifarious combinations. While the reason for the use of external pacing has been noted earlier, it may be appropriate

[^5]to point out that the manner in which the students r rate-orprogress was controlled is partially compatible with self pacing as it was defined in Chapter I: "Self pacing permits a student to absorb the material at his own rate. The rapid learner is not held back, and the slow learner is not left behind." Consequently asking a student to catch up by putting in extra time is not a violation of the first part of the definition. The reason is clear; for a given rate of absorption, the amount of material absorbed is governed by the amount of time that the material is exposed. A student with a low absorption rate can cover, by spending more time, the same material a student with a high absorption rate can cover in less time.

On the other hand, the fact that a student is asked to catch up implies that he is being left behind--hence a violation of self pacing. The question arises: Will "forcing" a student to keep up by putting in additional time affect the amount that he will learn?, that is, will it affect his capacity to learn?

Undoubtedly asking a student to catch up places him under pressure. But this pressure is no greater than that to which he is exposed during regular instruction; in fact, it appears that the pressure is not as great. Por in the regular class the rate of presentation is often too rapid for his rate of absorption, while programmed instruction rate of presentation is geared to his rate of absorption. He may
have to spend long hours, but he does so confident that he will ultimately master the material.

However, as all students do not react in the same manner to external pressure, it was decided to quiz the students on this aspect of the experiment.

The programs were collected on the day of the criterion test. Everyone had completed his program. It may be noted that "completing" the program is not a difficult task if the student peeks ahead at the answers and then simply records them. Whether this sort of cheating occured to any great extent is quite impossible to determine with any degree of certainty. However, it was felt that the item analysis of the program might provide an indication. Cheating due to mounting pressure towards the end of the experiment, may be indicated by an error rate consistently above average during the first part of the program but below the average error rate for the later part of the program.

The time record cards were collected; and the criterion test administered to both groups at the same time. This guarded against contamination of results within and between groups. The scores of this test were called achievement scores.

III. MZASURING INSTRUMEMTS

The instrunents employed in this study can be separated into three classes according to the function that they served: first, to measure the criteria stated in the null bypotheses, time and achievement; secondly, to measure and hence determine whether certain background variables were equated, for their non-equation would have some bearing in the analysis of the first set of measurements; and thirdly, to measure the students: reactions to programmed instruction.

The particular instruments used are described below.

Achievement. Since the subject matter presented to the experimental and control groups formed part of the University Entrance Course prescribed by the Department of Education, it was felt that the criterion test should conform with the standards and format of the Department's annual geometry examination. This would tend to ensure that the instructional objectives being measured would tend to be the same as those set out by the High School Examination Board. The examination questions were selected from prior departmental examinations. They were chosen on the basis of the following criteria: (I) The questions should be at varying levels of difficulty; (2) They should include a cross section of numerical, theoretical, and construction problems;
(3) The authorities (reasons) used to justify the steps in a solution of a problem should be dirferent from problem to problem。

A time limit of one hour was placed on the criterion test. Since the departmental examination lasts three hours and has a total value of 100 marks, placing a one hour time limit on the criterion test implied that its total value should be approximately 33 marks--using the values that the department alloted to each question.

On the basis of the above criteria the criterion test was drafted. It was then sent to a member of the High School Examination Board for validation. (The High School Examination Board is responsible for setting departmental examinations). Her comments and suggestions were incorporated into the final version of the test. (See Appendix B for a sample of the test).

The final test contained seven questions with a total value of thirty-five marks. Eight marks were given to numerical deductions, sixteen marks were given to theoretical deductions, six marks to the recitation of a theorem, and five marks for a construction problem.

A scoring key was prepared and test was scored by the writer。

Time Each student who participated in the experiment kept a record of his time on sheets specially prepared for
this purpose. For a student of the control group it involved keeping a record of only the time that he spent doing geometry homework outside of the regular geometry periods. For a student of the experimental group it meant keeping a record of the time he spent working at the program. Special "time record sheets" were prepared to help the students in this task.

Figure 4 shows a sample of part of a time record sheet used by the programmed instruction group. Each time

Date: \qquad
Starting frame: \qquad Starting time:
Ending frame:
Ending time: \qquad

FIGURE 4
SAMPLE OF A TIME RECORD SHEET
that a student sat down to work at the program, he was to record the starting time and starting frame; after he had completed the work he set out to do, he recorded the ending frame and time. If he put in any additional time reviewing or the like, he recorded this time as such. The sum of all these sessions was a time observation for a particular student.

The students of the control group were given similar time recond sheets except theirs made no mention of frames.

Obviously the control obtained over the time observations was not rigid. However it was an intention or this study to conduct the experiment under regular classroom con-ditions--this implies homework. It was hoped that supplying the time record sheets would encourage the students to keep a record of their time. In a further attempt to ensure that these records would be kept, students were reminded occasionally of their task. They were also informed that their records would not be held against them. The writer believes that the students did keep reasonably accurate records.

Background variables. Two variables were meaaured: prior knowledge of geometry, and verbal ability. To measure a studentis prior knowledge of geometry a test from the cooperative Mathematics Test series (Geometry, Form A) was administered prior to the commencement of the experiment.

The test is divided into two parts, each consisting of forty items and each with a time limit of forty minutes. Since Part I examined on the content given to Manitoba students in grade X, it alone was used. This part was normalized over 2143 students from various areas in the United States. The mean was 26.5 , standard deviation was 5.36 and the reliability coefficient was 0.80 . A sample of this test can be found in Appendix D.

As part of the schoolst regular grade eleven fall testing program consisted of administrating the Grade XI

SCAT Tests, and since a students verbal ability may affect his ability to learn through programmed materials, the verbal ability scores as given by this test were recorded.

Student attitudes. An attitudinal questionnaire ${ }^{2}$ was prepared by the writer for the purpose of measuring the students ${ }^{\text {g }}$ general reaction to programmed instruction. The questionnaire asked students to compare programmed with traditional instruction in terms of effectiveness, appeal, boredom and pressure. The questionnaire was administered to the students of the experimental group after they had completed the program and had written the criterion achievement test. To encourage unbiased opinions, students were asked not to sign their names to the questionnaires. It should be noted that all the students of Classroom A, including tho e not in the experimental group, answered the questionnaire.

$$
2_{\text {See Table XI, }} \text { p. } 224
$$

IV. STATISTICAL TECHNIQUES

Matching with randomization was the design employed in this experiment to obtain two "identical" samples. Each sample was then exposed to a different treatment (programmed versus traditional instruction). After the treatments, the same examination was administered to both groups. If both groups were equal to begin with, then any observed differences in the criterion scores could be attributed to the method of teaching.

However, due to sampling variation inherent in randomization (that is, due to chance), the background variables may not have been equated. In that case the difference in the mean criterion scores could be attributed to unequaled background variables as well as teaching. Consequently the means of the criterion scores would have to be corrected to account for these differences. In this study, the means of several background variables were calculated, and were found to be "equal"; hence, there was no need to employ more complicated statistical techniques, which would not have been the case had the means differed substantially.

A variation of the t test was used to determine whether the mean criterion scores differed significantly.

The statistic \underline{t} can be used to determine how oiten, or with what probability, two samples with the observed mean
criterion scores could be drawn at random from a common population of criterion scores. What are the chances of drawing from a common population, two samples whose criterion means differ by a certain amount? If chances are rare, say one in twenty or one in a hundred, then there is reason to doubt--since the treatments were different--that the se samples were drawn from the same population of criterion scores. In this event it would be concluded that the differences in the means are due to the differences in the treatments--the two teaching methods employed.

While the statistic \underline{t} indicates the probability with which the difference between the mean criterion scores of the two groups will occur, it does not indicate whether this probability is signiricant; this is the responsibility of the experimenter.

Two levels of significance frequently chosen by experimenters are the five and one per cent levels. If the difference between the mean criterion scores could occur by chance five or fewer times in a bundred, then it is said that the difference is statistically significant at the .05 level, or statistically significant at the .01 level if the difference could occur one or fewer times in a hundred. The latter is generally called highly significant. The statistic t was used to calculate the significance of the difference that occured. The formula used in the calculation was:

$$
t=\frac{\bar{y}}{\sqrt{s^{2} / n}} \text {, with } n-1 \text { degrees of }
$$

freedom, and where $\overline{\mathrm{y}}=$ the mean of the differences between the paired observations, $s^{2}=$ the vaiance of these differences, and $n=$ the number of paired observations. ${ }^{\text {l }}$

The t test was used to test the following null hypotheses.

1. The achievement means of the experimental and control groups do not differ significantly at the .05 level.
2. The mean time scores of the experimental and control groups do not differ significantly at the .05 level. Another statistical test employed in this study was the Chi-Square Test for Goodness of Fit. At the beginning of this Chapter, it was postulated that the population at which the study was aimed, was the future grade eleven students at St. Paul's Figh School--assuming, of course, no major changes in the type of students enroling at St. Paulis. It was later noted that approximately one-third of the students did not participate in the experiment because they were enrolled in an eight as opposed to seven subject sequence.

Assuming that the population is normally distributed, and noting that a normally distributed sample provides an

[^6]inductive basis for making generalizations about a normally distributed population, it was decided to test the normalcy of the sample used in this experiment.

The formula employed was:

$$
X^{2}=\Sigma \frac{(f-h)^{2}}{h}
$$

where $f=$ actual frequency, and $h=$ hypothetical frequency. ${ }^{2}$ With one degree of freedom a value of 0.174 was calculated for X^{2}, which is not significant $p>.50$. That is, the sample was normally distributed.

In summary, it can be stated that: the population has been identified; a representative sample chosen; and hence the results of the study may be generalized to the population. Control over the background variables has been established, and the treatments have been delineated.

Instruments have been designed for the measurement of the criterion variables; a possible limitation concerning the measurement of time was noted.

Finally the statistical techniques used in the analysis of the data were presented. The following chapter details the data pertinent to this study, indicates the results of the tests of significance, and then attempts through a further analysis of the data to seek explanations for the observed results.

[^7]
CHAPTER V

PRESEITATION AND ANALYSIS OF DATA

To assess the reasibility of using a short programmed unit in place of regular classroom instruction, two criteria were stated as null hypotheses and an experiment was designed to test them. The results of the experiment are presented in this chapter. Presented also, are analyses of data not directly related to the null hypotheses, but important nonetheless because of their connection with the general purpose of this study. Specifically these later analyses deal with the attitudinal questionnaire, the criterion test, and the program.

The data, for each student, relating to pre and post treatment variables is displayed in tabular form by Table IX。

Background variables. The difference between the means of the control and experimental groups, as shown by Table III, for each of the six background variables is not significant. This indicates that the procedure used to equate the background variables, matching with randomization did "work." No statistical "Iong shot" occured, and matching on the basis of the composite scores did not cancel out differences in I.Q. and grade ten averages to favour one group.

TABLE III
MEANS AND STAIDARD DEVIATIONS OP THE BACKGROUND VARIABLES

The difference between the composite means of the two groups is due to the randomization process also. Some matched pairs were composed of members whose composite scores were not numerically equal, and random assignment weighted the control group.

Criterion variables. Table IV shows that the mean difference in achievement between the control and experimental groups was 0.72 in favour of the control group. Since the difference is not significant, ($p>.70$) the null hypothesis of equal mean achievement was accepted.

The mean dieference in time of 94.45 minutes in favour of the control group was significant, ($p<.01$). Hence the null hypothesis of equal mean time was rejected.

The interpretation of the statistic is that the control group worked longer than the programmed instruction group to cover the same material, that is, the "average" student of the control group spent approximately 95 minutes more than his counterpart learning geometry. Since both groups spent equal time in class, he spent this time working at home over a period of three weeks. This amounts to onehalf hour per week--certainly not a very large figure in terms of homework.

The standard deviation for the control group was eighty minutes, compared to sixty-eight minutes for the experimental group. The lower figure for the experimental group suggests that programed instruction, utilizing a linear program, caused a greater homogeneity in the time observation than traditional instruction. However the greater homogeneity may also have been due to the form of external pacing imposed on the experimental group. Lack of periinent

data precluded further analyses along this line.
Near zero correlations between time and achievement and time and errors, 0.03 and -0.06 respectively, indicates that the rate at which a student worked through the program had no bearing on the number of errors that he made, or on how well he mastered the content. This appears to be part of a trend, for no significant correlations were found between time and each of the other variables.

A further analysis of achievement. An examination of the achievement scores disclosed that three scores of the experimental group were so low (0,2 , and 3) as to indicate practically no learning. An attempt was made to identify these under achievers by exploring their baciground variable scores.

Their scores, in terms of standard deviations from the mean, are recorded in Table V. For comparative purposes the scores of the three lowest achievers (scores of 7, 8, and 11) of the control group are included in the table.

TABLE V

IDGITIFYING TEE UNDER-ACHIEVER

Group	N AchV.	I.Q.	Gr. X	Comp. Time	V.A. P,K. Age			
Exper.	3	-2.0	-.01	-.75	-.4	.07	$.3-1.5$	-.5
Control	3	-1.4	-.82	-1.0	-1.0	-.05	.7	-.25

Grouped rather than individual scores are used in order to minimize the effects of individual differences. Taking a deviation in excess of one as significant, one fact stands out: the under achievers of the programmed instruction group, unlike those of the control group, all had a poor prior knowledge of geometry. This appears to indicate a weakness in the assumption stated in Chapter III, namely, that all students entering grade eleven had a certain prerequisite knowledge of geometry.

To explore this matter further, a survey was made of the grade ten final geometry examination marks obtained by the students of both groups. It was found that the above three students as well as one student of the control group had failing grades in this examination。 ${ }^{2}$ It is quite likely then that these students did not possess the prerequisite knowledge stated in Chapter III. Hence it is not very surprising that they failed to learn from the program, since the program was not written with them specifically in mind. The reader may be interested to note that, excluding these four students along with their matched partners from the statistical analysis would cause the difference in mean

[^8]achievement to favour the experimental group by 1.3 points. This difference is almost significant at the five per cent level, ($t=2.1$).

The failure of the program to teach these students underlines the importance of accurately identifying, beforehand, the type of student that the program intends to teach. A low correlation between $I . Q$. and achievement ($r=0.26$ for the experimental group, and $r=0.42$ for the control group) precludes the use of I.Q. as a predictor of achievement. A correlation of 0.22 between verbal ability and achievement appears to indicate that those skills measured by the SCAT test of verbal ability are not a prerequisite to learning from this program. Better predictors were the composite scores, the grade ten average and the previous knowledge scores. They are summarized in Table VI below. Interestingly, the best predictor for the programmed instruction

TABLE VI

CORRPLATIONS BRTWEEN ACHIEVEMETT AND THE BACKGROUND VARIABLES FOR THE EXPERIMENTAL AND CONTROL GROUPS

Variable	Exp. Group	Control group
I.Q.	0.26^{*}	0.42
Composite	0.49	0.72
Grade X Average	0.80	0.65
Previous knowledge	0.55	0.44
$*_{r=}=.40$ is significant at the 0.05 level, $n=25$.		

group are the grade X averages. This appears to suggest that general academic performance and performance on programmed materials are controlled by a common set of behaviours.

Attitudinal Questionnaire. Part of the attitudinal questionnaire was devoted to a comparison of programmed and traditional instruction. A five point rating scale was used to measure student opinion. Table VII summarizes the results; a complete analysis of the questionnaire can be found in Appendix B. The first four items reveal that a reasonable percentage of students were undecided. Unlike the first four items, item five implies action and very few students

TABLE VII
A SUMMARY OF STUDENT ATTITUDES TO PROGRAMMED VERSUS TRADITIONAL INSTRUCTION

Programed Instruction:	Agree	Disagree Undecided	
1. is more effective	63%	26%	11%
2. has more appeal	66	26	9
3. is less difficult	77	11	12
4. involves less home-study	49	17	34
5. for future mathematics course	60	37	3
6. is boring	20	69	11
7. exerts pressure	26	57	17

remained undecided; more than one-third of the students indicated that they would not prefer programed instruction for future mathematics courses. Possible explanations for this attitude may be found in items six and seven: twenty per cent of the students found programed instruction boring, While twenty-six per cent found that it exerted pressure. The pressure was probably due to the form of external pacing which was used in this study.

The external pressure, however, appeared to affect different students to different degrees. When the writer interviewed the three low scoring students mentioned earlier, he found that the pressure of having to complete the program by a certain time was compounded many times by their frustration at being unable to learn from programmed materials.

Why then did these students not ask for extra help from the teacher? Perhaps it was part of a pattern. In answer to the statement, "While working on the program, occasions arose when I desired an additional explanation from the teacher, " only twenty-three per cent of the students answered "no;" all the remaining students answered either "Several" or "many." Yet, it has been noted that very few questions were asked, and those that were asked were of a trivial nature. On the surface the result appears contradictory. On the other hand, the student responses to the above item may simply be an indication of an emotional
attachment to a habitual mode of instruction; the students did not really need explanations, they simply wanted to be reassured. Once the student becomes accustomed to programmed instruction, and the new role of the teacher under this form of instruction, it is possible that there will be greater consistency between his wants as expressed in the above item, and his actions as observed in the classroom.

The achievement test and the program. The criterion achievement test was analyzed in an attempt to determine the outcomes which the program failed to teach. Table VIII gives the results of this analysis. It shows that the program

TABLE VIII
AN ANALYSIS OF THE CRITERION ACEIEVEMEIT TEST

Type	Question No.	Value	Sum of Exper.	$\begin{aligned} & \text { Values* } \\ & \text { Control } \end{aligned}$	$\begin{aligned} & \text { Diffe } \\ & \text { (a)que } \end{aligned}$	nce by (b) type
Numerical deduction	1	2	37	38	-1	76
	2 a	1	19	18	1	
	b	1	19	23	-4	
	c	2	39	40	-1	
	d	2	22	11	11	
Theorem	3	6	67	73	-6	-6
Theoretical deduction	4	4	80	79	1	$+2$
	5	6	74	94	-20	
	6	6	104	83	21	
Construction	7	5	51	71	-20	-20
*Out of a possible 25			times	e value	the	stion.

instruction group did a little better than the control group in answering numerical and theoretical deductions, a little poorer in reciting the theorem, and much poorer in answering the construction question.

Consequently an examination was made of the subsequence of the program dealing with construction problems, frames 238 to 256. In this eighteen frame sequence, nineteen erpors were committed. This gives an average error rate of approximately 5 per cent, which is below the average rate of 7.6 per cent for the whole program. This appears to support Jacobis contention that there is no empirical justification for considering low item difinculty per se as essential in a program. ${ }^{1}$ A low error rate does imply mastery of the content.

The low error rate and the poor achievement portrayed by the above subsequence is not in agreement with the results obtained for the program as a whole. A negative correlation ($r=-0,64$), significant at the one per cent level, was obtained between errors and achievement. Generally, students with many errors tended to do poorly on the achievement test. A rank order correlation of 0.70 , obtained between the number of errors at the end of thirty frames and the number of errors at the end of the program, suggests, moreover, that

[^9]an early identification of the poor achievers is possible.
Seven of the twenty-five program instruction students failed the criterion achievement test, that is, they scored less than fifty per cent. Of the se seven, three had error rates in excess of 10.4 per cent, two had error rates of 9.6 per cent, and two had error rates of less than 6.5 per cent. That is, seventy-one per cent of the students with error rates in excess of 9 per cent failed the criterion test.

The item analysis of the program is summarized in Figures 5 and 6. Figure 5 express as proportions the number of frames on the vertical axis and the number of errors along the horizontal axis. Twenty-eight per cent of the frames had no errors, twenty-nine per cent had one error and fifteen per cent had two errors. The remaining twenty-eight per cent of the frames had three or more errors; since the total possible errors on any given frame was twenty-five, twenty-eight per cent of the frames had an error rate in excess of ten per cent. A closer investigation of these frames seemed in order. Starting at frame 1 , the program was subdivided into thirteen, 30 frame sub-sequences. Figure 6 shows that each sub-sequence except the first had an error rate below ten per cent. The curve itself is erratic, and suggests a crude program; the revision of a few frames should result in a generally smoother curve. Significant perhaps is the decreas-

ing error rate in the last sixty frames. The later part of the program was certainly the most difficult. For in this part of the program the student had to make use of all the concepts that he learned earlier; also, the responses that he was required to make were longer and more complex. The fact that fewer errors were cominitted in this section seems to indicate that students were achieving the standard of performance that was expected from them. However, this might also indicate an absence of "trick" questions.

Appearing throughout the program were instances of two or three consecutive frames having error rates in excess of ten per cent. In some cases the frames were faulty; in others however, the frames were properly constructed, but they may have required slightly more attention from the student, that is, they may be called "trick" questions. When two "trick" frames occured consecutively, students making an error on the first, generally did not make an error on the second. It appears that making an error on one frame raised the level of the students attention, causing him to make no errors on the frames immediately following. This speculation gives rise to other interesting speculations regarding the optimum error rate of a program, the relationship of errors to boredom, and the use of "trick" questions to build in an error rate.

SUMMARY AND CONCLUSIONS

It is quite clear from available reports that students can learn by programmed methods. Most instances of negative results appear to come from classroom applications of these methods.

The purpose of this study was to determine the effects of employing a short programed sequence in place of a unit of regular classroom instruction--without disrupting or changing the regular classroom routine. Three effects were considered: achievement, time spent and student reaction.

The unit of work employed was a section of the plane geometry course at the grade eleven level. Three weeks were spent teaching this unit. The study took place at Saint Paulis High School and involved fifty students--twenty-five matched pairs distributed randomly to two classrooms. One group received instruction by program, and the other, acting as a control group, received traditional instruction.

Two null hypotheses were tested. One stated that the mean achievement of each group was equal, the other, that the mean time for each group was equal. Further investigation consisted of assessing the student attitudes by means of a questionnaire, analyzing the program and the criterion test.

The results of the study showed that:

1. Student achievement was independent of instruction. The mean achievement of the students instructed by program was statistically equivalent to the mean achievement of those students instructed conventionally by the writer. Nevertheless, the data also revealed that for weak geometry students, that is, students with a poor prior background in geometry, programmed instruction was a less effective method of instruction. On the surface, this finding appears to support Lewis 1 contention (noted earlier), that a linear program in geometry may be able to teach most of the students and that a teacher be employed to tutor the stragglers.
2. There is evidence to suggest that external pacing was a factor in minimizing the amount learned by the programmed instruction group, and had the students been allowed to pace themselves, greater increments in learning would have resulted. Self pacing, however would necessitate a change in the "normal" classroom conditions; unless the increments in learning under self pacing are substantially greater than those obtained under conditions of external pacing, there appears to be no need to change existing classroom procedures. Further research in this area will be needed if programmed materials are to be used most efficiently in the classroom.
3. The amount of time saved by the programmed instruction group, while statistically significant, was certainly
not educationally significant--one-half hour per week per student. This is not to say that saving in time was not significant from the studentis point of view. Most students of the experimental group noticed that they spent less time doing homework under programmed instruction than they did under conventional instruction.
4. The majority of students favoured programmed to traditional instruction. However the sharp cleavage between students favouring and disfavouring programmed instruction for further mathematics courses was an unexpected result-sixty per cent were and, thirty-seven per cent were not in favour, leaving only three per cent undecided. Other studies have reported a similar percentage of students in favour, and a much larger percentage of students were undecided. Whether the observed results were a function of the program itself, or a function of the conditions under which the program was employed, or a function of the student himself, is difficult to determine. As one of the students stated, "Learning fron the program is all right, but I prefer being taught by you, sir." In general it appeared that the more mature student, capable of independent study, favoured programed instruction. An interesting speculation may be: to what extent does programed instruction promote the growth of independent study habits?
5. A significant negative correlation between errors
and achievement, appears to indicate that error rate is a good predictor of achievement. This suggests that a revision of the program to reduce the error rate may result in a corresponding increase in achievement. On the other hand an interesting result occured in this study which indicates the uncertain relationship between errors and achievement. A sub-sequence of the program dealing with construction problems had a below average error rate; yet an analysis of the criterion test revealed that the construction problem was answered le ast satisfactorily. This appears to support the contention that a low error rate is not essential in order that a student learn from a program. Since students indicated that their errors were usually due to carelessness or inattentiveness, rather than a lack of understanding, a problem of the programer becomes: how to write a program that will maintain student interest.
6. Despite the fact that teacher assistance was available, very few students asked for help. A possible cause may have been that students were not encouraged to ask, but rather, were told to ask only when they were "desperately stuck;" or it is possible that the students' difficulties occured while he was working at the program at home where no teacher assistance was available. Neither of these explanations are adequate. In a subsequent trial of the same program with a different group of students few questions were asked although
the students were instructed to question the teacher at any time no matter how trivial the difficulty.

Apparently the onus of identifying the weak student who needs private tutorial assistance rests with the teacher, and the best criterion for such identification seems to be his initial error rate. For, by the end of the first thirty frames it was found that each student had established an error rate which in most cases continued throughout the program.
7. The form of external pacing employed in this study does not preclude the use of programmed materpials in place of regular instruction. It appears that control over groups of frames does, however, place pressure on certain students; whether the achievement of these students would improve substantially under conditions of self pacing remains to be established empirically.

Conclusion. Despite the fact that students wanted additional assistance and did not receive it, and despite the fact that this program was not used under conditions ideal for maximum learning, namely self-pacing, the above evidence suggests that a short programed unit can be used without disrupting the regular classroom routine and with minimal teacher assistance to achieve the same results as traditional instruction. This, coupled with the favourable student
reaction is encouraging for further experimentation with programmed materials.

There seems to be little doubt that programmed materials can teach; this is a finding corroborated by many other studies. Perhaps surprisingly, this program has taught under conditions which may be termed unfavourable. An interesting study would be to compare achievement under these unfavourable conditions and those construed as more favourable to programmed instruction.
of value too, would be a study which attempted to identify accurately, the type of student that succeeds with programmed materials. It has been suggested that intelligence and verbal ability are both poor predictors of achievement, while general scholastic performance, student maturity and study habits may be good indicators of the type of students that succeed with programmed materials.

An interesting experiment or series of experiments can be done in any study simply by making a complete analysis of the error rate. If an optimal error rate pattern can be described, it may be possible to revise a program so as to make it challenging for different levels of learners by introducing "trick" questions at different intervals, While still retaining the gross anatomy of the program.

Programmed learning is a fascinating medium of instruction. For the teacher interested in programing, it
provides an opportunity to examine the atomic aspects of his presentation and the learning process; for the teacher interested in research, it contains many promising avenues of exploration; and, for the teacher concerned with stimulating his students by using a variety of instructional techniques, it provides a complete change for students accustomed to conventional presentation modes.

BIBLIOGRAPHY

A. BOOKS

Campbell, William Giles. Form and Style in Thesis Writing. Boston: Houghton Mifflin Co.g 1954.

Coulson, John $\mathbb{E}^{(e d .)}$ (ed Programmed Learning and Computer Based Instruction. New York: John Wiley and Sons, l962.

Deterline, William A. An Introduction to Programmed Learning. Englewood Cliffs: Prentice Fall, 1962.

Galanter, Eugene (ed.). Automatic Teaching: The State of the Art. New York: John Wiley and Sons, 1959.

Goldsmith, Maurice (ed.). Mechanization in the Classroom. Toronto: Ryerson Press, 1963.

Good, Carter V., A.S. Barr, Douglas \mathbb{H}. Scates. The Methodology of Educational Research. New York: AppletonCentury crofts, 194I.

Green, Edward J. The Learning Process and Programmed Instruction. New York: Holt, Rinehart and Winston, 1962.

Hughes, J. I. Programmed Instruction for Schools and Industry. Chicago: Science Research Associates Inc., 1962.

Li, Jerome C. R. Introduction to Statistical Inference. Ann Arbor: Edwards Brothers, $1 \overline{957}$

Lumsdaine, A. A. and Robert Glaser (eds.). Teaching Machines and Programmed Learning--A Source Book. Washington: National Education Association of the United States, 1960 .

Lysaught, Jerome P. and Clarence M. Williams. A Guide to Programmed Instruction. New York: John Wiley and Sons,

Margulies, Stuart and Lewis D. Eigen (eds.). Applied Programmed Instruction. New Yoris: John Wiley and Sons,

Oliver, W. J. and others. A First Course in Plane Geometry. Regina: School Aids PubIishing Co., 1954.

Rutherford, Gladys (ed.). Programmed Learning--and Its Future in Canada. Ottawa: Canadian Teacherst Federation, 1961.

Smith, Wendell I. and J. William Moore (eds.). Programmed Learning. Toronto: D. Van Nostrand Co., 1962.

Stolurow, Lawrence M. Teaching by Machine. Washington: United States Government Printing Office, 1961.

B. OTHERS

Programme of Studies for the Schools of Manitoba. Senior High Schools 1962-63. Department of Education: The Queens Printer for Manitoba, 1962.

Programs 162 A Guide to Programmed Instructional Materials Available to educators by September 1962. The Center for Programed Instruction, New York, in cooperation with the United States Department of Health Education and Welfare. Washington: United States Government Printing Office, 1962.

A $\frac{\text { Survey }}{\text { Schools }} \frac{\text { the }}{\text { I962-63 }} \frac{\text { of }}{\text { Programmed }} \frac{\text { Instruction }}{\text { Research Memo No. I2. }} \frac{\text { in }}{\text { Ot }} \frac{\text { Canadian }}{\text { tawa }}$ Research Division, Canadian Teachers 1 Federation, 1963.

Evaluating Programmed Instruction Materials Through Action Research. Ottawa: Research Division, Canadian Teachers Federation, 1963.

Alter, Millicent and Robert Silverman, "The Response in Programmed Instruction." The Journal of Progranmed Instruction, $1,1: 55-78$, 1962.

Bigen, Lewis D., and others. "A Comparison or Three Modes of Presenting a Programed Instruction Sequence." New York: Center for Programed Instruction, 1962.

Eigen, Lewis D. and P. K. Komoski. "Research Sumnary Number 1." New York: The Center for Programed Instruction, 1960.

SELECTED BIBLIOGRAPHY (continued)

Gotkin, Lassor G. and Leo. S. Goldstein. "programmed Instruction for the Young Learner: A Comparison of Two Presentation Modes in Two Environments." New York: The Center for Programmed Instruction, 1962.
Jacobs, Paul I。 "Item Difficulty and Programmed Learning." $\frac{\text { The }}{\text { No. Journal }} \frac{\text { of }}{2, \text { Sumner }} 1963$.

Quakenbush, Jack. HHow Effective Are the New AutoInstructional Materials and Devices?" IRE Transcripts on Education, December 1961, 145-151.

Reed, Horace B. "Implications for Science Education of a Teacher Competence Research." Science Education, Vol. 46, iNo. 5, December 1962, 474-492.

APPENDIXES

APPENDIX A

THE PROGRAM AND AN ITZM ANAEYSIS
OF THE PROGRAM

The errors which each student of the experimental group made in working the program are recorded on the following pages. The students were ranied according to their achievement scores, and are listed in descending order under the heading "S." The adjacent column lists the total number of errors that each student made; for example, student "I4" ranked first in achievement and made eleven errors on the program. Errors occuring at a particular frame for a particular student are indicated by the symbol "o." The absence of this symbol indicates that the frame was answered correctly. Thus no students made an error on frame one, student "ll" made an error on frame two, and three students "25," "20," and "12" each answered frame three incorrectly.

Altogether the students made 738 out of a possible "25 x 388 " errors on the program; this results in an average error rate of 7.61 per cent.

GEOMETRY OF AREAS

A Programmed Text
by
Fugene Kristal

 mocne that the toptch mae procented an cmall sterg. Eech mumberod stap

 Sothommem mes.

 combane alt the andrexa.
 provided.

 the raene you hate furt mone.
 thes pheme wh yow guphenencasy book et.
 move rie alde coum to moover the answer.

$\%$ proced prom frampo frome at your om sped but do not waste ary

E. Breh bame you sth down bo ancucr a few fromes. peore the fame number and the pane in the approptate form provided bn the poct mape.

 gratichat abag whe the frame Vot may heve other coments oo feel fous to make them.
 Aper you gre finished thes progrem hoth fy your teacher that you are reaty to bete a begt.

\qquad

Dates \qquad 4063
atantras thames

\qquad

Stantang rimer

Gudtra frumat \qquad
Bndme thme
$2 \times$

5

Dese 1963

Stexturs Mone: \qquad Brding fremam: \qquad
\qquad
monnm them: \qquad

Astes \qquad 196

Staxayg iname: \qquad Gmathe rames \qquad
Stamtras bemas \qquad Bredra stme \qquad

Tater \qquad 196

Gservart frames \qquad Sadentarames \qquad
CRextAng thma: \qquad Hatize sume \qquad

Dates: 1963

Starturg mame of \qquad Ematny mame: \qquad
sambyez tumaz
Bracimg smay \qquad

Data* \qquad 596
stomethe hatme: \qquad FWChem teame: \qquad
Sramine etmas \qquad Badnes Gums \qquad
betes \qquad 190
 \qquad Brture Baman^{2}
$+\cdots+\cdots$
Braty 1 ase tag \qquadErasuy tames
\qquad
3n maxy atded
4o quedrakaterax
2. Wrat meane yo A theer arden cloged sigure ts cathed a \qquad 1. quade Materal

```
2. &ryancle
```

```
2. &ryancle
```

6. The smallest number of sides thet a polygon can have 3 sthroe. Henob. Whers we speak of a polyeon, we maer any figute which bes mome bldes.
7. The woted Hisure" Is somethmeg used Snsted of the word palygone Mhus wo can sayt triangle ABC, or powyson

8. Th on wotmaten of whthwhe ya ban

Whth vat mord. =

Whth ha beas 1 A derma rom the
wemet ……....

-
tha batchonde te amatma

ach 2 . Wate? hoh many ahtrudee?
.

133


```
Na,% mamen was ar. Hemonben that
```



```
com.atab the Lino dram mron the
```



```
wo hace ca base ermonder. The
weta ws ths side opposte tho ver.
Gex tron Whach the althtude te dramme
Foz a terab the etue oppostte verted
4 & 60, Whac whth the bege B0 ts
asa,metad the aletrude
```

\qquad

``` -
```

Tam ancrex wac 18 . Namomber that the
RHtumde of a twanghe was dernod
as the Ltae from rrom the persex of
w tranake perpendicular to the bege
ar base extencied. The base +8 the
star oppostee the bevtex mon whion
the atthtude as dramm wor examples
The alo oppotte the vartox B Is
Gh manded. Thus wten the base 46
we appoetate the altthare
\qquad .

SO. Gracmed
 48
 to ho, the fargt etep ta to extend
\qquad Whert: and thon drop the of The meat a a brataghe ta the erac Whm, na ambtrae to bebme dram

Whathat the althtuge of a tratambe Co
S. $4 X_{0}$ Hon watum to promb 49 and shlent the gomer smenes.
52. DS. Wa, watemm 80 rema curd selent tha aomest susumet:
93.

34
a

53.

135

 the. Wotrect ther.
99. Eef. $48.8 .16 . \mathrm{XY} /$ /My. The dxscence betreen these two HWes 46 the Longth af tha tume eemaent:
a) 4e, b) पD, (netcher of these.

48 san slob ba celled tho altitude of Wh/RA Becange a pelw of perathe\% Htwes are cherymhere equadretanco am othar althtude dram betwect Ma bet x Wond equal (leta) In Mengtho
59.41 AB
58. Gamos

 re\% b 60480
Bence bf as an aturboce
$x^{2}+6.8 .37$. ORA 900 , therefore

4.at

98, $\mathrm{ADO}=900$, We cen wey hhat po

Segment … (beks)
62. 900 - the oppactra b
are ampplomatas.
(or other surtaby

$$
69: 80
$$

alotuade aom De aknoe to te
pembanionaay to be ss mokl as ma

BO aruended as beab.
In

Hen et

 (t) bases.

Gathmar ak atatrado to bage DO.


```
Area te tay
```

\qquad bouncod by tac
stides of a polderan

Wo han bompare the areas or two palysons by endate out the mam ber of thas that gach polysom
combatme a \qquad
\qquad *
ombert of surpane

Comptrath the thres althewcos on the wriaggle balow

mito orow
ha … of a trangie
th a lan dramm from a perbex
pempendonkar to the base or the bose \qquad -

Ta the |Gmbolow It its oozrous that

the beas (BA) on (BA exbended). Jnderine
the corsect responae.

Ghumber, bumble

Conbtruet an attitude from y in the above dyagoma,

140

Whar bowacm the some bowalel 15mes vath 12x a greh \qquad .

(is arobost

 B

Sc. Wh pondure that the 1eryth on wn althenes of a rechangle is the gemy as bhet of ame of athract
\qquad ...
 es What Shartor thah phe same tamabl as An Froorest if nocestany
 heve a stede ta gommon? tapo the 8102 \qquad (Leq) as common bo both
 amya hab is a line fon the verwex (2er) perpendiculan to the Elde \qquad (2ate).

Dues th the aterbude of Ruranales the whe DBC ustbs De es bute.
86. parallaz
67. altycuaen

B9. athes

90. ghorter han
9. De
93. AC

	144
8. 34 4rataraca 180 and and have bounk , Hetbures. hat - 8 wh do so yod suo wotmon Cer wa pamblad Henes.	443 cata abatamas
gurae mare cqual alutblades tha chat mas tay	817. ab Mat. 18 at
drata Coma a \qquad at tha bramand perpendaurar bo the	
We wommy dan an b \qquad a matan *	
means enuel áa 11 reapecta ptgres dra monemenk thon \% cides and maced or one abob hse of tha athes cane	 a8ans
abs an that yogpecte.	280, eldoa, anaan
Whas wh figmes are oonemant, that Sumetrendthe \qquad axa eatans entur and breat: \qquad are otmal.	28. $+$
We maderthood pert 4 exmbera manamas	W2\% ankesp a'kan pamat

He we are sopposed to prove that
0.

Hit Recr the propt carotuntying jo 36y and han sabwor the pollowing ques
 ype one an comobe

HE The THEt najom etcy In the proop was to brore heno gquel an areag

He The nowt step was to stete that rab $A G C D=T H E$ ABCD The reason wor Wha statemont vers* a cquo as \qquad -
$2430-\operatorname{H2}$
148

$24 \Leftrightarrow A B A B C$

H7o The 2ast two 1 mes of the groof Hadhoat Qd That ve -
 $A B C D$.

480
When wo abtract $\angle A E D$ Mom figo AFGD we get,\ldots and when we

24% aubrectod
\qquad 0
4. The meason why //gm ReCD and rect. ABCD Were chual an area th the ariom of \qquad 248. lam sFG. wect. Anco
20,
34. subtraction
 mhe rasutbs syo \qquad -
 \qquad 350. פquels equat
151. a quantity oguals thacht.

Why she bermghanct

ane aramphos progesthat

 wramplas of polyeone warng the stat adeat \qquad
 cramples of polygons Iytng betwaen the seme parallelas \qquad
 Whth stages in Moneth can you drem
 \qquad .30 da
 alyprems do the parygona mot ony ctard on the same buter but 5190° ute bermsan the ame parallat Itnes
 \qquad
3n 4wa 450 \qquad
 xecto sbux. Maleg a stetcment about Theto areas and stre your reesons
\qquad
\qquad
 some? \qquad -Wy?

The same ar acual althtrace

 L/gu Aman Ite botumentous

284. a12 threas.

185.7010.

186. In Mese 4. b Sn Ere 45 bl2 theed.

What ama ecmat an spea becemec they eumat an the bame baer

Pra poud tharowh the bhoomem. Wo
4a ferba too marallabaguoms

Whth trand on the vame babe
Wace and whan tis between bur
stme Pexallets an and (tes
49.7e ate asted to prove thats

-
14, hhor wtand on the smac beee and
140 betmeen tha sema

4as conatrayet
\qquad De日s.
 vaty one \qquad angle.
193 Wrather to prove thacran e_{0} we muse
 4as conatramet
190. 400 and a00s

106
26×43

The wer Gereace buep mand the gane bese at an hemamen the Mano amat

192. pemakiekorem, paratuma


```
199. rectanele
```


210. Wh the $/$ fens stand on the sage side an the ammo baspo and are ogual in areas Ghen they have $+\infty \quad-\quad$. and hence $\overline{2}$ a betrean The sane parelital Itues.
214.

Wo may that tho figures 1te betwoen The same poralkal Ithos ow parallale 1.8 equivalant ta sating trat they akve \qquad
\qquad 0
 PROM chat $/ / \mathrm{gm}$ Grod as $/ / \mathrm{gm}$ mber.

The proof constace of One statermet and one rogstn.
\qquad
\qquad
213. Suppose we now wheh to prove thet

 mescing partes

3ty. atctituaces

210 egual alestrudes stand on aqual bases in the same stralght theo ant 119 bectued the acme /ia.

Recsones

 the same parghaleg as dow. a tutu gquals tuselt. axtom of cubtraction?
2130. Check youm proos to the above by matemtug to the answer promed alomestae this mane. Sorry itb whatide down

3 osta
nam $7=$ act $\%$
odas mis// "cyv * SE

221. Wrate out the Gomel pront Gor thts maestom by completimg the batnters

$10-1+1$ s \qquad
\qquad $=$ \qquad
222. Parallalograme wre equal wn area if they stand on the sana or \qquad \ldots (2 words) the the same stratth Ithe, gra Ito betw Foen the seme pardulat Incso
 nnd 567 nave a Common base yes/not. Do they 1 Ha betwoen the same parallet Where (yasmot.
224. Hence to prove that themes two $/ / \mathrm{mm}$ are equat in ares we must proqe m that chey stand ga an mand he between the same paranel itnes.

22G. A bese of $/ / 4 \mathrm{gm} 2242 \mathrm{~s} 4$ A bese of $/ / / \mathrm{m}$ 3678 5 s \qquad $8 .(204$
an the same bawe Do and betrect the sane parat woba AB DR
a quy. conalc tugetfo
axtom of \qquad ,
221. $/ / \mathrm{ga}$ A8OD $=/ / \operatorname{con} \mathrm{BrOD}$

$$
\triangle 0 D O \quad=\triangle O D O
$$

sig. ABOD $=\sim$ wis. GOOP
subthactzon

222. gqua beses

2220 MO
Y 5

2240 aquet bases

	/ 161
ccater	
Ma proat af Whe pablem is som 	
Weno whe 54 Eatrder to prova that cubtrant a a \qquad pagume from poth pravilelogreme.	227. Prames 224 and 22G aw cractas to bra solurboro
2294 - $/ 7 \mathrm{mH}$ ghe map:	22b. commen
Berore we cont d prove that $/ / \mathrm{gm}$ 1294 8//ym 5678" we had to prove thates \qquad	299. stane on cmard bases th the same stro Ithe and Ato betreate he wame $/$ s 162476
base by by usume che wach at	290 ther bases mone matma (a) woreds to that bermot

 We, bey wond the the gane bece

289.08

Whomah th ts the the t we conde wneme abther AB os Bd 4 th bhe
 warbar to extend $A B$. Wha the What adep in yom congtruction 1 a

De Chere and mater it wh the Ware provider ha kte: 5po

Wog a conctate of treming aeny BLa 4rom D bo meet 4 an (Wats) axtonded, at the patr8. faterk the conse: are sut in 2.
the beratha bo (10te sne
seatha is at 8 w We do thts by
motas tha combepondeng mrgutes
asacy.
Datre an a /for becenge we have ge
mothracted to. toen ase mace the

\qquad

The 2 llgas hawa gquat brach (slep D). 252. c4yt wach othen ho area, hey must para grued \qquad .
248.

Siond On WX Gonstrucy ar atottude chut to bre corvosponkthe attiture ch /has ABCD, TEBch the ench matote Ex, Vx,,

254

 tearecting $2 X$ at

Zab Tre /hen 15 now ompletero
 +2 amo two \qquad bactatasa
 Gles anc equan an

ExO Pextonm and tebomaty ata corscrmatadna

25

2520 zatumudec

2te. amed

268.

 whatu whe follontmo racte. * The ereatos a CHuba the ares of m mectama 4. Thay gtand on the ama baet. and the betweon the some paraltaks
\qquad
269. Stare we we wara not wiven a $/ /$ gat Wo nave to \qquad one.
270. $\%$ anstrueted the $/ /$ ma by drawtre parallel to (Mots)
 \qquad 272. me dsagonat on $/ / \mathrm{gm}$ ABXY 18 \qquad
873. \qquad //gn ABXI。 Way \qquad
braceptrubathon of the btops 1 m.
Watper In the pront:
We 2 st step 4as to construet a
figx Abxy by aramas
\qquad
\qquad 0

```
807. A AMP wa macto AEOD
```

268. // mm
degones
420and
269. construa

270. AS BX

271. 48
 //amo
272. The now step was to bhow that Ahth

2750 \% parellelorxam dryp

$276 . / / \mathrm{gm}$ and the wectermas

.27? getratuy \% subgeterthon.

279. $16 \mathrm{~s}^{2}$

2b0. Kas Mat
$=5.40 .5$
$\ldots 25$ go Cma

282. On tha bacts of Wh. 3. comor2, melce a statemont giving your peasom chath the dakgem in 4tho 6ho
\qquad
\qquad
 on the same \qquad (ad)
 1108

2840 Wa Mave to pove bhat: \qquad
\qquad

2Bso Te prove that \angle ABC $=$ ADBO we wha tae a thearem which stabes that a trangle is bqual to che-help the area of a rectangle scandime on the ame babe and $2 y+\mathrm{mg}$ between the sane parallaib. Looking at the dagrem wo gee that \angle RUO $=$ y yecto (2ets) , and that MDBC equap rect . (same tete).
286. homeve\% we were not grven recto LTEF Thateroxe we met constrmet tho The wisg gep in constructhag thas scete was to drem \qquad and meeting A etso
 baee De and between the same peran TeIe, De wo
289. base 0

2b40 $\angle \mathrm{ABC}=\mathrm{ADBO}$
285. BRYM
 ane meetimg \qquad
266. Bx 1 A

171

\qquad - Tay? \qquad
\qquad
900. Red. FMo 68, BK 19 aly \qquad
han whatude of a
of char tromanda \qquad
to the \qquad Breo
\$02. We somarimes caly the ppposhte siote
 craws to \qquad De
294. Lio betwoan the same paraliols 2thes
 fremand $137-$ yreatemand

295. Xed, because they boam on beses ate.

901. Yarcer
perpend toval" \square apyestre $\quad+\cdots$

$$
908 . b a c a
$$

303. The akrtude of a twangle 1 s the 1tay dama \qquad
 \qquad


```
    GHem What te tho bose?
```

\qquad

```
        194,
```

\qquad

``` (mord
```

3%

N

 Aas Le berween the sume paxatuels

Ses. Wras ADC ishogma, not gqual to 4 4 y
(141 M seep 1$)$

Trathglas MDC and Buc curamap that He, hey heve eqne murace tho come Th W Mane that surface \qquad (atc 4a stop 2)
398.

 matmaers are repectively ham $\operatorname{ard} \quad A$ (myt an stog 3$)$

Rak fife Tbo h qrageanum is a rour stab Rugure wth ona petr of atdes
\qquad -
326.
$4342=462482-\cdots$ mer. 7462 $4382=8 \pm 2182$ … cta

327. $90: 48808$
 same base 10 and 110 beswom the same $/ / \mathrm{bs}$ as E De
929. $\angle 1000=A 1100 .-$ geto camek trean

321. as above

(AcAninA) sbocman)

 stema on the soms bere Ab and Ita

3240
As ABD and ABG bave a gux rece hat commong monely3. $/$ \qquad \cdots $(1+2)$ metep 2)

Getucan the gamp pamalleleg is k Ma. EIT1 In scep 1 hencim thoy ars.

302, paratyes

- 1 -

355 To get $\angle 1=A 2$ we must subtract t the oommor trimagio Ane pron Δ s
 wespechavely

$$
\Delta H Q^{2}=\Delta W_{0}-\text { quto equas 1tacta }
$$

$$
\Delta 1=\Delta 2 \quad c k \sigma-M
$$

 two difrerent ways on the tivet (hif) we subtracter / AOB mom the. squal $A E$ mos atd hBey in the (fath) second se subtracted the comon A and Prom the equs Δs \qquad
\qquad -6
 states the ax of adatuton, thats Impltes that me must add 337. Dot To to pet equalsm Can you complate the proot.

$$
395 . \mathrm{ABD}: 4 E 0 .
$$

340 datantaram the vetcen os Ita the matwandar os ops.

S4. 456
 cato Bu (ay besty
 bectrac a med badarta a A
 bxacese ABC
cameysea
+15
 sua the amea of A AHO 2tg. 790
 te \qquad 2 \qquad $\stackrel{\circ}{\circ}$ \qquad
 an altutude? \qquad - M1y?
 an clydtudes \qquad - Way \qquad
\square
352.806
boa
30bog
35. $48 y^{2} 6 x+61280 \%$ Wote: mob 4 y .6
354. 30

10 gq. 4 no

35506x $6=1864010$

\qquad

S5B Whace am you fhat the area of $/ / 4$ En wathe andy the treamathon that
\qquad
\qquad

958. Mo. mo alth mads 40 metrom

 \qquad
\$52. Mas. M8. B6. Ho Mom that tha area on thatanth 1 ta guag to tban

```
    480-3x+4,48 %0, 2n
```

 360.48
 362. ab extended
363. 04
the the 86. The brea ow triangie wat cat be Round by ustne a daffecm mo base and attutude.

A Of AMES $\rightarrow 8$ \& bece

16t. Wh an batangle ma can bave bears and an agul number of atebo
 fand a thwes dffrarent maya. dem ymites on wheh bece we ves. Uetre Tace 1 a me nave:
$4.180=8880 \times 10$.
Hate, atye 48 we haves 44
\qquad 87. Dan in

H88. 48 6 a he 3 1 atetraces a teto threa
\qquad 965. See 818. d8 tom exemalla

182

34%, Som 4nsmer Now 98.

```
478.
\(\qquad\)
 \(A\) GOD \(+\Delta\) EBS \(=8 / / a d\) ABE
 Gas rames 177 a 978 traw onen moacomso

```

On 4n % stapm:

```




```

 W% 2to of equaltuy.
    ```
```

 W% 2to of equaltuy.
    ```

3820
883. 4848 anBuen to 950
\[
\text { A } 2=\text { AR } \quad \text { moctag bsecte tatgate }
\]
\[
\tan x=4080=0
\]
\[
4083=1000=
\]
\[
1+12 \ldots
\]
\[
\begin{aligned}
& \text { Wom asway bon 940 conk } 100 \mathrm{k} \text { hhe thow }
\end{aligned}
\]
\[
\begin{aligned}
& 1-2 \\
& \text { ax. of aq. }
\end{aligned}
\]

Wy
\(\qquad\)
\(265012+42=\) \(\qquad\) /AGA ABOR. 4ay \(\qquad\)

3860 He conaluston yom may draw trom tha suatemants in 286 and 96518 .
\(\qquad\)
Way?
 aboth 4 BDO and //EM LDOD. Qeve a meamon.
\(380^{\circ}\). Won asempt problem try. 99
389.

Wha hate now completed the fommal pogemo Wr wew of the sact bhat Wou hrve done very feg probleme an Alta chonal shect has peen prowted.
 batwaen smme \(/ \mathrm{a}\), An 90
 the mum on tres petat
386. \(A M \mathrm{Am}=42+A 2\) axo ofoca.
 same base ana bobnoen sene //8 ber and DC.




\[
\text { Pera } 96
\]


Phoor: \(\qquad\) Scesements Reasena

\[
\begin{aligned}
& \begin{aligned}
\mathrm{CD} & =\mathrm{RO} \\
\mathrm{ABO} & =\mathrm{CQR}
\end{aligned} \\
& \text { AME = ANO } \\
& \text { EBRA ABCD = ABE APOD } \\
& / / \mathrm{GH} \text { ROD }=\text { rect. RBCD }
\end{aligned}
\]
oppaste stace of \(/ /\) am. core Ls row ho/tac come \(/ \mathrm{B}\) for m//TO
a.s.8.
qumbtry couaze tosels. proven axtom of mos.
 base and hotghto
\[
-6=818037=
\]

Ls a parallalogran and a moctanale stam on the same bage and 11s
betwoen the came perabten Linos then they are equal th amea.

DNantm:
cuVER
R. Pap:

PROOF:



\[
\text { mporean }-9-18.49
\]



\section*{DTAMEAK:}
on che came bese mb ame
batwear the seme paraluata
HS ara DO


Consmuarron: Gonstmot DELAS and CB parallal to DE.
phoors
\begin{tabular}{|c|c|}
\hline Suatements & Reasone \\
\hline 1. WDOB is a rectarale & constr. \\
\hline  &  \\
\hline
\end{tabular}
 between the aame parallels are gqual the apea.
 and hove the sema alothude, then they are ecual in apoe
 bese end ch the smmo athe ah th, them they here envel altrtudee, and homoe 1 ie betraen the same paralled 140

\section*{- 10 - "88. 50}

Wh two perak haloberms stant on che geme beac and the between the came paralleks, then they are equal in area.

DWARAKA:
cuyar s

Qep:
comsmaucraon:
whour:


 383


Mroctiz Stetemente Rexects


\section*{Hege 57}


heq'd: To oonstructa second paraulelomam equal in area to//an Abot and strnding on the same bage D0. Hse compast and stratee Ond

Genstruction:
1.
2.
3.

Rroce Dxuc 4 s a//gm becase
\(/ / \mathrm{gn} \mathrm{Dxp}=/ / \mathrm{gn} \mathrm{abon}\) becanec \(\qquad\)

458 58

```

and ulth one angle equal to a gitam angles

```

HEX \({ }^{3}\)

TMnORA:

GOMSmbuctuon:
step 4.
step 2
stas 3.
step 4
step 5
 and \(\angle\) equals \(\langle\) D.

\[
\operatorname{Acon} \text { ze a } \mathbb{L} / \mathrm{m}
\]
res. 61
```

Wmon4y 5 w.ontw. 62.

```
It a bxiangle and a rectange stord on the semo base and the betwaen th mame pagathet Lines, Cherce ap equal althcudet, then the area of the cutangle is cqual to onement the area of the pectonele.

\section*{}

CTVR: Rect. ABOD and AARE पn same base AB and betwean the samo parellele, my a



\begin{tabular}{|c|c|}
\hline Statements & Reasons \\
\hline ABx \(\mathrm{Sa}^{\text {a }} \mathrm{a} / / \mathrm{gh}\) & br const. \\
\hline  & diacras brsoote //gm. \\
\hline /fgu hax \(=\) reabo ABUD & \begin{tabular}{l}
on th same beee AB wno \\

\end{tabular} \\
\hline \(\triangle X A B=\) a xect ABOD & axo of emaykty。(subet. \({ }^{\text {a }}\) \\
\hline
\end{tabular}
 A \(=\) bbe
 samo bask and between the ame parallels.
```

-46-

```
```

48.63

```

whe paratiel mance, hence of equal altatude, then the amea of the
whampte ts gqual to anghate the awas on the moctamate.
Haghate
cryme
P. T. B \(\quad\).

Gncmmomzon:


Ghens \(/ / \mathrm{ga}\) ABob with BA ceromera to Do go and mo gra fotmo

Theorem is \(=\) 188. 650
Twho tribugles stand on the same base and 1 te between the same paratien Shes, then they are equal in amea.


bese 10 g and lyme betrean
same paratiala do \& Do.





Gorollamy. Wrangles on equal bases th the same strabent mio and between the same pazallats are cqual in area.
 th. then they hate gqual althtudes and bence 14 b bstreem the same pratlet zunes.
 margag
```

4806.
```

thes bher they are coven in acogo

\section*{YHETME} CTGEK:
\[
R=P=:
\]

HSTMumaton:

200: \(\qquad\) stetements Bearong





\section*{AH OVERVTEM}





 ares problame









 of chmes that \(1 t\) gontans antis of aree. Row examples the area of the rectengle we 4812 eroa vhttso We cam tmagne a person with no knonledge of formulae contrne the area os many aectangles motio at some time or other, be reathes that each wme colum contatne 3
 area valts and there are 4 whums. gnd hence the area of the raotanate

 mane as though each matt had been commed whis of comest does met war that some cay somome why 'come acrose p rectange where the menults of combtre and wsme the fommla so mot argespond fonce thats
 base and altitude.



 Sommy for the awea of a triengle ts beaed on the spu theorem whath prover that the anea of \(4 \pm\) the area of a rectangle.





\(-25\)



Gtan: MbD \(15 \mathrm{a} / / \mathrm{gn}\).
B.TAP: \(A\) GOC \(=\triangle A D C\)
\[
\text { xtm } 9
\]
\(=27\)



\section*{APPENDIX B}

CRITERION ACHIEVEMBMT TGST
AND ITS ITEM ANALESIS




Wans \(\qquad\) 0LASE: \(\qquad\)


1. Gtyen: Guadrtatexal hoon whth
\[
\mathrm{AB} / / \mathrm{OD}, \mathrm{AE}+\mathrm{A}, \mathrm{DR} \text { \& m}
\]
\(A B=5\) nohos. \(A D=5\) mas.
\(B C=42 n, B C=8+1 m\)


Went the area on hrou. .on where aproprecte show your peasonter
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
1 -


I s to 00 han A and D meat no at \(x\) and 4 Pind: a) aren of triangle AbC
b) area of \(/ / \mathrm{gm}\) Apols
b) area of rectangle axyu
a) 2enath of ano \(^{2}\)


Sher reak teamentra

Bumes \(\qquad\)
W4se: \(\qquad\)
 same base and between the same parallete.
\(\qquad\)
\(\qquad\)
G1ABE \(\qquad\)

A AOB : A M

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

 Do and fretmersect ab D. He jotned, Frues Guad. mab wou in arodo

\(\qquad\)
6. Paraklologra doon and Parallelogram amp shand on the same base hs und Lhe botmeen Tho same pramels AD ard MP, E Is ant potint on \(3 P\).


\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\) \(\ldots\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
 construction. but omit the proor. (uge convess and stratht edre orfro)

APPENDIX C

TABLES

\section*{221}

TABLE IX
RAW DATA FOR EXPERTMENTAL AND CONTROL GROUPS
\begin{tabular}{llllllllll}
\hline \hline
\end{tabular}

TABLE IX (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
823^{5}
\] & & \[
0^{5^{+x}}
\] & & & now \(j e\) & & & + & \\
\hline 13E & 93 & 115 & 60 & 22 & 298 & 196 & 22 & 435 & 39 \\
\hline 130 & 93 & 123 & 55 & 18 & 285 & 195 & 22 & 410 & \\
\hline 14E & 95 & 105 & 71 & 25 & 300 & 196 & 35 & 425 & 11 \\
\hline 140 & 96 & 130 & 51 & 25 & 291 & 192 & 15 & 465 & \\
\hline 15E & 98 & 122 & 61 & 26 & 292 & 198 & 21 & 451 & 9 \\
\hline 150 & 98 & 124 & 59 & 26 & 292 & 193 & 19 & 465 & \\
\hline 16E & 98 & 127 & 57 & 22 & 295 & 195 & 23 & 403 & 18 \\
\hline 160 & 998 & 123 & 60 & 27 & 297 & 196 & 25 & 540 & \\
\hline 17E & 100 & 127 & 59 & 25 & 297 & 183 & 20 & 394 & 18 \\
\hline 170 & 101 & 112 & 72 & 23 & 288 & 190 & 31 & 615 & \\
\hline 18 E & 102 & 135 & 54 & 15 & 301 & 181 & 3 & 543 & 37 \\
\hline 180 & 103 & 128 & 61 & 22 & 301 & 207 & 18 & 460 & \\
\hline 193 & 104 & 119 & 69 & 29 & 292 & 194 & 24 & 485 & 25 \\
\hline 190 & 104 & 129 & 61 & 30 & 314 & 196 & 27 & * & \\
\hline 20E & 104 & 125 & 61 & 23 & 284 & 192 & 22 & 362 & 10 \\
\hline 200 & 106 & 136 & 57 & 28 & 298 & 194 & 32 & 575 & \\
\hline 21E & 107 & 122 & 70 & 25 & 300 & 194 & 33 & 448 & 27 \\
\hline 21C & 108 & 130 & 64 & 21 & 294 & 193 & 19 & 585 & \\
\hline 22E & 111 & 137 & 62 & 32 & 316 & 194 & 24 & 312 & 9 \\
\hline 220 & 111 & 128 & 69 & 29 & 293 & 192 & 31 & 490 & \\
\hline 23\% & 113 & 125 & 72 & 27 & 311 & 195 & 28 & 446 & 33 \\
\hline 230 & 113 & 131 & 68 & 25 & 304 & 201 & 23 & 545 & \\
\hline 24 E & 120 & 128 & 78 & 28 & 301 & 198 & 30 & 430 & 13 \\
\hline 240 & 118 & 128 & 76 & 30 & 302 & 200 & 31 & 427 & \\
\hline 250 & 121 & 136 & 72 & 26 & 287 & 197 & 29 & 311 & 24 \\
\hline 250 & \[
\begin{aligned}
& 122 \\
& * N o
\end{aligned}
\] & \[
\begin{aligned}
& 131 \\
& \text { recon }
\end{aligned}
\] & \begin{tabular}{l}
\[
77
\] \\
sub
\end{tabular} & \begin{tabular}{l}
\[
22
\] \\
tied
\end{tabular} & \[
304
\] & 187 & 33 & 505 & \\
\hline
\end{tabular}
TABEEX
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline VARIABLE & COMPOSITE & ACHIEVENEINT & TIME & ERRORS & VERBAL ABILITY & PREV. KNOW: \\
\hline Composite & Xx & . \(49 \%\) & -. 20 & -. \(40 \%\) & . \(46 \%\) & . 11 \\
\hline Achievement & & xx & 0.03 & -. \(64^{* *}\) & . 22 & . \(55 \%\) \\
\hline Time & & & XX & -. 06 & -. 11 & -. 32 \\
\hline Errors & & & & XX & -. 16 & -.40 \% \\
\hline Verbal Ability & & & & & Xx & . 31 \\
\hline \multicolumn{6}{|l|}{Prev. Knowledge} & XX \\
\hline \multicolumn{7}{|l|}{*significant at . 05 level} \\
\hline \multicolumn{7}{|l|}{*葹ignificant at . 01 level} \\
\hline
\end{tabular}

TABLE XI
SUMTARY OF RESULTS OP ATTITUDINAL QUESTIONNAIRE ADMINISTERED TO THE BKPERIMENTAL GROUP

Compared to regular classroom methods:
1. how well has PI taught you?
a) much less effective \(0.57 \%\)
b) somewhat less efrective 17.14
c) the same 11.43
d) some what more effective 51.42
e) much more effective 11.43
2. how do you like PI?
\begin{tabular}{lr} 
a) much less & 8.57 \\
b) somewhat less & 17.14 \\
c) the same more & 8.57 \\
d) somewhat more & 28.57 \\
e) much more & 37.15
\end{tabular}
3. how dificicult was learning under PI?
a) much more difficult 2.86
b) somewhat more difficult 8.57
c) the same 11.43
d) some what less difficult \(\quad 48.57\)
e) much less difficult 28.57
4. how much more home study under PI?
a) much more
b) somewhat more
2.86
c) the same
14.29
d) somewhat less
34.28
e) much less
25.71
(e)
5. In future Mathematics courses I would prefer PI.
a) strong objection
b) some objection
14.29
c) no preference
22.85
\(\begin{array}{ll}\text { c) no preference } \\ \text { d) some preference } & 22.85\end{array}\)
e) strong preference
37.15
6. PI is a boring method oi learning.
a) strongly agree
17.14
b) agree
c) uncertain
11.41
d) disagree
e) strongly disagree
34.28

\section*{TABLE XI (continued)}
7. PI is a good method because there is no pressure on the student.
a) strongly agree
20.00
b) agree
c) uncertain
37.14
d.) disagree
17.14
e) strongly disagree
22.86 2.86
8. While working on the program, occasions arose when I desired an additional explanation from the teacher.
a) no
b) several
22.86
c) many
68.57
8.57
9. I peeked ahead to see the answer, before writing my own response.
a) always
00.00
b) almost always
00.00
c) sometimes
14.29
d) rarely
62.85
e) never
22.86

\section*{APPENDIX D}

THE COOPERATIVE GEOMETRY TEST

\section*{FORM A} GEOMETRY

\section*{GENERAL DIRECTIONS}








    What: anl inswer: ory the sembithe andwer sheet





named fingory aiblyet heet

\section*{EXAMPLE}

\(4=43^{2}\)
3:
cen mis
35 \(3.30^{5}\)
Do not turn this page
18 until you are told to.

\section*{Geometry | 40 minutes}

\section*{PART I}

1 Which of the following are measures of a pair of supplementary angles?
A \(180^{\circ}, 180^{\circ}\)
B \(40^{\circ}, 50^{\circ}\)
C \(60^{\circ}, 60^{\circ}\)
D \(60^{\circ}, 120^{\circ}\)
E \(90^{\circ}, 270^{\circ}\)

2 The area formula \(\mathrm{A}=\mathrm{bh}\), where b is the base and \(h\) is the height, applies to which of the following figures?

triangle

parallelogram

\section*{K}

pentagon

3


In the figure above, if RS is a straight line an \(\angle \mathrm{PQS}=30^{\circ}\), then \(\angle \mathrm{PQR}=\) (?)
A \(15^{\circ}\)
B \(30^{\circ}\)
C \(60^{\circ}\)
D \(90^{\circ}\)
E \(150^{\circ}\)

4


In the figure above, lines AB and CD are crossed by line EF. \(\angle \mathrm{EGB}\) and \(\angle \mathrm{EHD}\) are known as
F vertical angles
G complementary angles
H alternate interior angles
\(J\) corresponding angles
K exterior angles

All of the following rectangles have equal areas except
A

B

24
C

D

E

;


If, in the figure above, the measure of \(\angle \mathrm{Q}\) is 3 times the measure of \(\angle P\) and if \(x=24\), then \(\mathrm{y}=(\) ? \()\)
F 8
G 12
H 24
J 36
K 72

7


In the figure above, QP and QR are tangent to a circle with center at \(O\). If \(\angle P Q R=70^{\circ}\), then \(\angle \mathrm{SQR}=(?)\)
A \(20^{\circ}\)
B \(30^{\circ}\)
C \(35^{\circ}\)
D \(45^{\circ}\)
E \(140^{\circ}\)

8


In \(\triangle \mathrm{PQR}\) above, \(\mathrm{PQ}=\mathrm{PR}\), and \(\angle \mathrm{R}=70^{\circ}\). \(\angle \mathrm{Q}=(\) ? \()\)
F \(20^{\circ}\)
G \(35^{\circ}\)
H \(40^{\circ}\)
J \(70^{\circ}\)
K \(110^{\circ}\)

9


If only the facts above are given, by what authority is \(\triangle \mathrm{PQR}\) congruent to \(\triangle \mathrm{STU}\) ?
A SAS
B ASA
C SSS
D AAA
E SSA

Go on to the next page.

10


On straight line MN above, \(\angle \mathrm{RSN}=80^{\circ}\) and \(\angle \mathrm{PQN}=74^{\circ}\). By which of the following amounts must angle PQN be increased in order that PQ will be parallel to RS?
F \(\quad 6^{\circ}\)
G \(\quad 10^{\circ}\)
H \(\quad 16^{\circ}\)
J \(80^{\circ}\)
K \(106^{\circ}\)

11 Following are the distances, in inches, of five points from the center of a circle:

Point A - 1.75
Point B - 2.01
Point C-1.01
Point D-2.00
Point E-1.50
If the radius of the circle is 2 inches, which point lies outside the circle?
A Point A
B Point B
C Point C
D Point D
E Point E

12


In \(\triangle \mathrm{PQR}\) above, \(\mathrm{PR}=\mathrm{PQ}\), angle \(\mathrm{Q}=40^{\circ}\), and RS bisects angle \(\mathrm{PRQ} . \angle \mathrm{SRQ}=(?)\)
F \(10^{\circ}\)
G \(20^{\circ}\)
H \(25^{\circ}\)
J \(40^{\circ}\)
K \(50^{\circ}\)

13 Which of the following is an isosceles ri triangle?


14


In the figure above, \(A B \| C D\), and \(E F\) and \(G H\) ar straight lines. Which of the following is true?
F \(\quad \mathrm{f}=\mathrm{q}\)
G \(\quad \mathrm{f}=\mathrm{u}\)
H \(\mathrm{f}=\mathrm{n}\)
J \(\mathrm{f}=\mathrm{x}\)
K \(\mathrm{f}=\mathrm{k}\)

15


In the figure above, \(\angle \mathrm{Q}=90^{\circ}\), QS and PT are straight lines, and \(\angle \mathrm{SRT}=40^{\circ} . \angle \mathrm{P}=\) (?)
A \(40^{\circ}\)
B \(50^{\circ}\)
C \(80^{\circ}\)
D \(90^{\circ}\)
E \(140^{\circ}\)

Go on to the next page.


Shown above are three spokes from the center of a wheel. The sum of the lengths of these spokes is how many times the length of the diameter of the wheel?
F 1
G 1.5
H 2
J 2.5
K 3

7


In the figure above, \(\mathrm{PS} \perp \mathrm{QT}, \mathrm{QR}=2, \mathrm{RS}=3\), and \(\mathrm{ST}=4\). Arrange \(\mathrm{PQ}, \mathrm{PR}\), and PT in order of size, beginning with the shortest.
A PQ, PT, PR
B PT, PQ, PR
C PR, PT, PQ
D PR, PQ, PT
E PT, PR, PQ

18 If two angles of a quadrilateral are supplementary, the other two angles are
F acute
G obtuse
H complementary
J supplementary
K equal and supplementary

19 At 4 o'clock, the size of the angle formed by the minute hand and the hour hand of a clock is

A \(30^{\circ}\)
B \(45^{\circ}\)
C \(60^{\circ}\)
D \(90^{\circ}\)
E \(120^{\circ}\)

20 The statement, "A figure is a triangle if and only if it is a closed broken line figure having three sides," is
F a definition
G a theorem
\(\mathbf{H}\) an axiom
J a conclusion
K a falsehood

21


In the circle above, chord AB is 12 inches long and 8 inches from center \(O\). What is the length, in inches, of the radius of the circle?
A \(\sqrt{80}\)
B 10
C \(\sqrt{208}\)
D 16
E 20

22 The length of the base and of the altitude is given in each of the following isosceles triangles. The vertex angles in all the triangles are equal except in


J


K


23 Which of the following statements concerning the diagonals of a square is (are) true?
I. The diagonals are equal.
II. The diagonals are perpendicular.
III. The diagonals bisect each other.

A II only
B I and II only
C I and III only
D II and III only
E I, II, and III

24


In the figure above, FGHD is a parallelogram. Which of the following statements is a condition which implies that FGHD is a rectangle?
F \(\mathrm{DF}=\mathrm{GH}\)
G \(\angle \mathrm{HDG}=\angle \mathrm{DGF}\)
H \(\angle \mathrm{HDF}=\angle \mathrm{DHG}\)
\(J \quad \angle \mathrm{HDF}\) and \(\angle \mathrm{DHG}\) are supplementary.
K HF and DG are perpendicular bisectors of each other.

25 A line is drawn from the origin through each the following points. The steepest line go through which of these points?
A \((2,7)\)
B \((4,7)\)
C \((3,3)\)
D \((6,2)\)
E \((10,1)\)

26 What is the perimeter of a rectangle if the distanc around three of its sides is 8 ?
F 6
G 8
H 9
J 12
K It cannot be determined from the informatio given.

27 For which of the following triangles can thi value of \(x\) be determined?


II


A I only
B II only
C III only
D I and II only
E I, II, and III

28 Major premise: Two lines in the same plane are parallel if and only if they have no point in common.
Minor premise: Line \(A B\) is parallel to line \(C D\).
Conclusion: ?
F AB and CD have no point in common.
G \(A B\) and \(C D\) have only one point in common.
H AB and CD have two points in common.
\(J\) If another line \(R Q\) crosses \(A B\), then \(R Q\) cannot be parallel to CD.
\(K\) There are many lines in space parallel to \(C D\).


In the figure above, ABC is a triangle and \(\mathrm{BD}=\mathrm{CE}\). Triangles BCD and CBE are
A congruent by SSS
B congruent by SAS
C congruent by ASA
D similar by SAS
E not necessarily congruent or similar

10


In the figure above, if \(\mathrm{CA}=\mathrm{CB}\) and \(\mathrm{ED}=\mathrm{EB}\), then which of the following can be concluded?
F CA must be parallel to ED
G CA cannot be parallel to ED
II \(\triangle \mathrm{ABC}\) is equilateral
\(J \triangle B D E\) is equilateral
K \(\quad \mathrm{AD}=\mathrm{CE}\)

31 Which of the following should be proved equal in order to show that two parallelograms are congruent?
A One pair of corresponding angles
B One pair of corresponding sides
C Two pairs of adjacent sides and the included angles
D A pair of diagonals
E Two pairs of diagonals

32 Which of the following statements most directly supports the assertion, "The hypotenuse of a right triangle is longer than either leg"?
F Two distinct points determine one and only one straight line.
G The distance from a point to a line is the length of the perpendicular from the point to the line.
H The shortest line segment from a point to a line is the perpendicular from the point to the line.
J The shortest distance between two points is a straight line.
\(K\) There is one and only one perpendicular from a point to a line.

33


If each division of the grid in the figure above represents one foot and if SR is parallel to the X-axis, what is the area, in square feet, of PQRTUS?
A 15
B 30
C 36
D 42
E 60

34 Two regular polygons having the same number of sides have areas whose ratio is 9 to 4 . What is the ratio of their perimeters?
F 3 to 2
G 9 to 4
H 27 to 12
J 81 to 16
K It cannot be determined from the information given.

35


In the figure above, the bisectors of angles EDF and \(F E D\) intersect at \(G\). If the number of degrees in \(\angle \mathrm{F}\) is n , then the number of degrees in \(\angle \mathrm{G}\) is
A \(\frac{\mathrm{n}}{2}\)
B \(90-\frac{n}{2}\)
C \(90+\mathrm{n}\)
D \(90+\frac{n}{2}\)
E \(180-\frac{\mathrm{n}}{2}\)

36


In the trapezoid above, the perimeter equals 37 , \(\mathrm{EF}=8\), and \(\mathrm{HG}=5\). Find the area.
F \(\frac{13}{2}\)
G 12
H 60
J 120
K 370

37


In the figure above, \(\mathrm{OA}=\mathrm{AB}=\mathrm{BC}=1\). What is the area of the shaded ring?
A \(9 \pi\)
B \(5 \pi\)
C \(4 \pi\)
D \(3 \pi\)
E \(\pi\)


In the triangle above, if \(60 \leqq y \leqq 100\), then
F \(0<\mathrm{x}<60\)
G \(40 \leqq \mathrm{x} \leqq 80\)
H \(60<x<100\)
J \(60 \leqq x \leqq 100\)
K \(80<x<120\)


In the figure above, \(\mathrm{AX}=\frac{1}{3} \mathrm{AB}\) and \(\mathrm{AY}=\frac{1}{3} \mathrm{AC}\).
Which of the following statements are true?
I. \(X Y=\frac{1}{3} B C\)
II. XY is parallel to BC
III. Area \(\triangle \mathrm{AXY}=\frac{1}{3}\) area \(\triangle \mathrm{ABC}\)
IV. Area \(\triangle \mathrm{AXY}=\frac{1}{9}\) area \(\triangle \mathrm{ABC}\)

A I and II only
B II and III only
C I and III only
D I, II, and III only
E I, II, and IV only

40 How many sides has a regular polygon if each of its interior angles has a measure of \(170^{\circ}\) ?
F \(\quad 10\)
G 34
H 36
J 144
K 170

\section*{STOP!}

If you finish before time is called, look over your work on this part. Do not go on to Part II until you are told to.

\section*{Geometry | 40 minutes}

\section*{PARTII}

1


The figure above is a circle with center at \(O\). The path once completely around the circle from \(P\) back to \(P\) is about how many times the path from P straight across through O to Q ?
A 1
B \(\frac{4}{3}\)
C \(\frac{3}{2}\)
D \(\frac{5}{2}\)
E \(\frac{22}{7}\)

2 Which of the following figures shows all of the possible common tangents to two touching circles and no other tangents?


3 If a straight line is drawn from one vertex of \(:\) hexagon (six-sided polygon) to another vertex which of the following pairs of polygons coulc be produced?
A Two quadrilaterals
B Two triangles
C Two pentagons
D A quadrilateral and a pentagon
E A triangle and a quadrilateral

4


In the figure above, circles O and C intersect at \(P\) and \(Q\). If TR and TS are tangent to circles \(O\) and \(C\) respectively, which of the following line segments has the same length as TR?
F TS
G TP
H TQ
J SC
K RO

5 If the hypotenuse of a right triangle is 10 inches long and one acute angle measures \(60^{\circ}\), then one leg must have a length, in inches, of
A \(3 \frac{1}{3}\)
B 5
C \(5 \sqrt{2}\)
1D 6
E 9


In the figure above, GJ and GL are bisectors of the supplementary adjacent angles FGK and KGH , respectively. GK is not perpendicular to FH. Which of the following statements is false?
F \(\mathrm{r}+\mathrm{q}=90\)
G \(\quad \mathrm{p}+\mathrm{r}=\mathrm{q}+\mathrm{s}\)
\(\mathbf{H} p+q=r+s\)
J \(\mathrm{r} \neq \mathrm{q}\)
\(\mathbf{K} \quad \mathrm{p}+\mathrm{s}=90\)

7 If one of the three sides of an isosceles right triangle equals the corresponding side of another isosceles right triangle, the two triangles
A are congruent
B may be congruent
C are not congruent
D are equal in area but not congruent
\(\mathbf{E}\) are equal in area and may be congruent

8


In the figure above, KR and LS are diagonals of quadrilateral KLRS. KLRS would be a square if
F \(\mathrm{KR}=\mathrm{LS}\) and \(\mathrm{KR} \perp \mathrm{LS}\)
G \(K R\) and \(L S\) bisect each other, \(K R=L S\), and \(K R \perp L S\)
H KR and LS bisect each other
J KR and LS bisect each other and KR \(=\mathrm{LS}\)
K KR and LS bisect each other and KR \(\perp \mathrm{LS}\)

9
9


The figure above is a cube; \(\mathrm{AC}, \mathrm{HF}\), and EG are diagonals of two of the faces, and HB is an internal diagonal of the cube. Which of the following is true?
A BH and CG are parallel lines.
\(\mathrm{B} \quad \mathrm{AE}\) and BF are skew lines.
C \(\triangle \mathrm{HFB}\) is an isosceles triangle.
D \(\triangle E F H\) is an equilateral triangle.
\(\mathbb{E}\) None of these

10


In the graph above, if quadrilateral ORST is a parallelogram, the coordinates of vertex \(S\) must be
F (c, d)
G \(\quad(\mathrm{a}-\mathrm{c}, \mathrm{d})\)
H \((a+c, d)\)
J (c - a, d)
\(\mathbb{K}(d, a+c)\)

15


\section*{Circle I}

\section*{Circle II}

In the figure above, \(\angle A P B\) has its vertex at the center of Circle I. If the same angle were similarly placed at the center of Circle II but with side PA crossing the 2 -mark, what number corresponds to the point at which PB would cross Circle II?
A \(4 \frac{1}{2}\)
B \(4 \frac{5}{7}\)
C 5
D \(6 \frac{1}{2}\)
E \(6 \frac{5}{7}\)

16


In \(\triangle \mathrm{ABC}\) above, \(\mathrm{AB}=\mathrm{AC}, \mathrm{FE} \perp \mathrm{BC}\), and BF is a straight line. \(\triangle \mathrm{DAF}\) is isosceles because
F \(\angle \mathrm{F}=\angle \mathrm{ADF}\), since both are complements of the equal angles \(B\) and \(C\)
\(G \quad D A=F A\), since both equal \(A C-D C\)
\(H\) its sides are parallel to the sides of \(\triangle A B C\)
\(J\) its sides are perpendicular to the sides of \(\triangle \mathrm{ABC}\)
\(K \angle F=\angle A D F\), since both equal one-half the supplement of angle \(C\)

F "if p then \(q\) and conversely"
G " \(p\) if and only if \(q\) "
H " \(p\) and \(q\) are equivalent"
J "p and q are unrelated"
\(\mathbf{K}\) "p is necessary and sufficient for \(q\) "

17 What is the converse of the statement, "If two angles are vertical, then they are equal"'?
A If two angles are vertical, then they are not equal.
B If two angles are equal, then they are vertical.
C If \(\angle x\) and \(\angle y\) are vertical angles, then \(\angle x=\angle y\).
D If two angles are not vertical, then they are not equal.
E If two angles are not equal, then they are not vertical.

18 Which of the following is true for any parallelogram \(A B C D\) which has an acute angle at \(B\) and diagonals AC and BD ?
F \(\mathrm{AB}<\mathrm{BC}\)
G \(\mathrm{AB}=\mathrm{BC}\)
H \(\mathrm{AB}>\mathrm{BC}\)
J \(\quad \mathrm{AC}<\mathrm{BD}\)
K \(\mathrm{AC}>\mathrm{BD}\)

19 Chords of the same length are drawn in two circles of unequal radii. Which of the following is true?
A The chord in the larger circle could be equal to the radius of the smaller circle.
B The chord in the smaller circle could not be a diameter.
C The distance from the center to the chord is less in the larger circle.
D The minor arc intercepted on the larger circle is longer.
E The minor arc intercepted on the larger circle contains the greater number of degrees.

20


In the figure above, equilateral triangles \(A E C\) and \(A B D\) were drawn on \(A C\) and \(A B\), as shown. We can prove triangle \(A E B\) congruent to triangle \(A C D\) by which of the following authorities?
F AAA
G SAS
H ASA
J SAA
K HL


In the figure above, ABCD and RSTU are rectangles. If the length of RS is \(1 \frac{1}{4}\) times that of \(A B\) and the length of RU is \(\frac{4}{5}\) that of \(A D\), how do the areas of the rectangles compare?
A Area \(\mathrm{ABCD}=\) area RSTU
B Area \(\mathrm{ABCD}=\frac{4}{5}\) area RSTU
C Area \(\mathrm{ABCD}=\frac{5}{4}\) area RSTU
D Area \(\mathrm{ABCD}=\frac{16}{25}\) area RSTU
E Area \(\mathrm{ABCD}=\frac{25}{16}\) area RSTU

22 Two distinct planes x and y are each perpendicular to plane \(t\). Which of the following statements is true?
F Plane \(x\) is perpendicular to plane \(y\).
\(G\) The line of intersection of \(x\) and \(t\) is parallel to the line of intersection of \(y\) and \(t\).
H The line of intersection of \(x\) and \(t\) is perpendicular to the line of intersection of \(y\) and \(t\).
\(J\) If \(x\) and \(y\) intersect, their line of intersection is perpendicular to \(t\).
K If \(x\) and \(y\) intersect, their line of intersection is parallel to \(t\).

23 If \(\triangle A B C\) is inscribed in a circle of diameter 10 and \(\angle A\) is acute, then what can be concluded about the length of BC ?
A \(\quad \mathrm{BC}<5\)
B \(\quad \mathrm{BC}=5\)
C \(\quad \mathrm{BC}<10\)
D \(\mathrm{BC}=10\)
E \(\quad \mathrm{BC}>10\)

24 If an angle of a regular polygon is greater than \(100^{\circ}\), then how many sides has the polygon?
F 4
G At most 4
H 5
J At most 5
K At least 5

25 Suppose that after measuring a dozen or more angles of various sizes that are inscribed in several different circles, as well as measuring the arcs which they intercept, you conclude that the degree measure of any angle inscribed in a circle is the same as one-half the degree measure of the intercepted arc. This is an example of
A indirect proof
B deductive proof
C inductive reasoning
D proof by exhaustion of all possible cases
E arriving at false conclusions

26 Which three of the points \(P(2,4), Q(3,6), R(4,7)\), and \(S(5,10)\) lie in a straight line?
F \(\mathrm{P}, \mathrm{Q}\), and R
\(G \quad P, Q\), and \(S\)
H \(P, R\), and \(S\)
\(J \quad Q, R\), and \(S\)
K No three of these points lie in a straight line.

27 Of the following, which must be shown equal in order to prove that two regular polygons with the same number of sides are congruent?
A Corresponding vertex angles
\(B\) Corresponding central angles
C The sums of their exterior angles
D The ratios of corresponding angles
E Their perimeters

28


In the figure above, \(O\) is the center of the circle and PQ and RS are chords which intersect at \(T\). In order to know the length of TR, it is sufficient to know the lengths of
F PQ and RS
G PQ and ST
H PQ and radius of circle O
J PT, TQ, and radius of circle \(O\)
K PT, TQ, and ST

29 The radii of two concentric circles are 5 and 13 inches. The length of a chord of the larger circle which is tangent to the smaller circle is
A 8
B 9
C 13
D 24
E 65

30 The median drawn to the hypotenuse of a right triangle forms two triangles which are
\(F\) congruent
G scalene
H right
J equilateral
K isosceles

31 The distance between points A and B is 4 inches. Point \(P\) is 5 inches from \(A\) and 2 inches from \(B\). The locus of P in space is
A a point
B a line
C a circle
D a plane
E two planes

Two similar polygons have corresponding sides whose ratio is 1 to 2 . If the area of the smaller polygon is 100 square inches, then the area in square inches of the larger one is
F 150
G 200
H 250
J 400
K 500

3


In the figure above, man \(M\) is walking toward \(B\) at a rate of 3 miles per hour. Train \(Q\) is traveling toward \(R\) at such a rate that man \(M\), train \(Q\), and pole \(P\) are always in a straight line. \(Q^{\prime}\) and \(M^{\prime}\) are the positions of the train and the man after 1 hour. If \(A B\) and RS are parallel and 160 feet apart, and if \(P\) is 10 feet from \(A B\), what is the speed of the train, in miles per hour?
A 30
B 45
C 50
D \(\frac{160}{3}\)
E 160

34


In the figure above, \(R, S\), and \(T\) are midpoints of the sides of \(\triangle A B C\). Which of the following statements is (are) true?
I. If \(\triangle A B C\) is equilateral, then BRST is a rhombus.
II. If \(\mathrm{AB}=\mathrm{BC}\), then BRST is a rhombus.
III. If BRST is a rhombus, then \(\triangle \mathrm{ABC}\) is isosceles.
F None
G II only
H III only
J I and II only
K I, II, and III

35


In the figure above, \(P, Q, R\), and \(S\) are the midpoints of the sides of square \(A B C D\). If a side of \(A B C D\) is 1 , what is the perimeter of PQRS ?
A \(\frac{1}{4}\)
B \(\frac{1}{2}\)
C \(\frac{\sqrt{2}}{2}\)
D \(\sqrt{2}\)
E \(2 \sqrt{2}\)

36 The height of a rectangle is 7 inches. The diagonal is 3 inches longer than the base. What is the length of the base in inches?
F 10
G 20
H 26
J \(6 \frac{2}{3}\)
K \(4 \sqrt{13}\)

37


If, in the figure above, \(\mathrm{AD} \perp \mathrm{DE}, \mathrm{DB} \perp \mathrm{AE}\), \(\mathrm{BC} \perp \mathrm{AD}, \mathrm{AC}=3\) and \(\mathrm{AB}=5\), then \(\mathrm{BE}=(\) ? \()\)
A \(\frac{32}{9}\)
B \(\frac{4 \sqrt{10}}{3}\)
C \(\frac{16}{3}\)
D \(\frac{20}{3}\)
E \(\frac{80}{9}\)

38 The ratio of the volumes of two similar cones is 8 to 27 . The ratio of their total surface areas is
F 2 to 3
G 4 to 9
H 8 to 27
J \(2 \sqrt{2}\) to \(3 \sqrt{3}\)
K 16 to 81

39


In the figure above, points \(R, M, W, D\), and 1 are on the circle, P and Q are outside the circle and PM, PW, and QW are straight lines. I minor arc ED has \(n\) degrees, then what is \(p-1\)
in terms of \(n\) ? in terms of n ?
A -n
B \(-\frac{\mathrm{n}}{2}\)
C 0
D \(\frac{n}{2}\)
En

40 Each exterior angle of a regular polygon can not be
F \(120^{\circ}\)
G \(90^{\circ}\)
H \(80^{\circ}\)
J \(72^{\circ}\)
K \(60^{\circ}\)

Look over your work on this part. Do not go back to Part I.```


[^0]:    ${ }^{2}$ W. J. Oliver, P.F.Winters, and F.A. Hodgkinson, A First Course in Plane Geometry, (Regina: School Aids and Text Book Publishing co. 1954), pp. 189-202.

[^1]:    ${ }^{5}$ J. I. Hughes, Programmed Instruction for School and Industry, (Chicago: Science Research Associates, $\frac{\text { I962) p. } 15 .}{}$

    GThe Center for Programed Instruction, A Guide to Programmed Instructional Materials, (Washington: Government Printing Office, l962) p. xii.
    $7_{\text {Wendell I }}$. Smith and J. William Moore, (eds) Programmed Learning, (Toronto: D. Van Nostrand Co., 1962)

[^2]:    ${ }^{8}$ A. A. Lunsdaine and Robert Glaser, (eds.), Teaching Machines and Programmed Learning--A Source Book, (Washington: National Education Association of the United States), p. 556.
    ${ }^{9}$ Ibid. pp. 447-4.51.

[^3]:    ${ }^{25}$ center for Programmed Instruction, Op. cit., approximate calculations performed by the writer. ${ }^{\text {cit. }}$, app-

    26 Maurice Goldsmith (ed.) Mechanization in the Class-
    Toronto: Ryerson Press: room, (Toronto: Ryerson Press: 1963), p. 91.

[^4]:    ${ }^{36}$ J. F. Follettie, Effects of training response mode, test form and measure on acquisition of semi-ordered factual materials. Research Memorandum 24, Fort Benning, Ga., April 1961, Cited by Millicent Alter and Robert Silverman, Ibid, p. 7 ,

[^5]:    $I_{\text {Reed, Horace B., "Implications for Science Education }}$ of a Teacher Competence' Research," Science Education, Vol. 46 , No. 5, December 1962, p. 481.

[^6]:    ${ }^{1}$ Jerome C. R. Li, Introduction to Statistical Inference, (Ann Arbor: Edwards Brothers, 1957), p. 97.

[^7]:    ${ }^{2}$ Ibid. p. 432 .

[^8]:    $2_{A}$ passing grade in mathematics, and hence promotion to grade eleven mathematics, is determined by the basis of a combined geometry and algebra score. A student could fail one and pass the other and still receive a passing grade in mathematics.

[^9]:    $I_{\text {Paul I }}$ Jacobs, "Item Difficulty and Programed Learning," The Journal of Programed Instruction, Vol. II, No. 2, Sumer 1963, p. 21.

