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ABSTRACT

The study of nonlinear systems whose characteristic equation (after
linearization) has a zero root or a pair of purely imaginary roots, i.e.,
systems whosge répresentative points lie on the stability boundary, has
recently been the object of much attention, Two of the later theories
(those of N, N, Bautin and K, Magnus) concerning the character of the
stability boundary (dangerous or nondahgeroué) are investigated Qith
respect to their application to second order nonlinear systems, The
theories are applied to the general second order nonlinear system, results
are compared and conclusions are derived. An attempt to verify these
conclusions is made by means of an analog computer study of three selected
systems. It is found that some systems, in which certain coefficients ave
present, may or may not yield to satisfactory analysis by Bautin®s method
but.definitely do not yield satisfactory results by Magnus® method, On the
other hand, both methods yield satisfactory results in those systems in
which certain coefficients are absent, The use of the theories is
exemplified in the design of an electronic system which produces bursts of

csciliatbions,




ACKNCWLEDGEMENT

The author wishes to acknowledge the assistance of J. D, Wiebe in

translating some of Bautin's work., Acknowledgement is also made to the

National Research Council for support under research grant A58l




TABLE OF CONTENTS

CHAPTER | PAGE

I II\ETE(}DUCTIOIK‘@'uyoaaaaooa»Gimwwaﬂvar&a.ﬂasaaaaou&w60&»-‘&8ibue&o@vcaesano#al

IT TWO THEORIRS CONCERNED WITH STABILITY BOUNDARIES:sccecsccossoswsocal

!—.J

Lo % oue 3,
I:,}.- B&u’tlh‘.ﬁi Tﬂeof“yac'-som.eeeoauobs.aomsaansoocneavwoa-avceebwome?.

M&gﬂ'{ISs T}’lecxyaooowoatebauenctdau«e.cane&nea;aowos&oaaeai\NOQOB

P‘DLIG‘[\)“"- Iq TO SECOI\T-{) ORDER SYST@ISGD?@&“QQ&GG&BOOI!Bl@c@(‘bt'@ﬁeﬁlh

-
=
o

b~

1I.1 Application of the TheOrieSi.eceoscerscsacoscssasasoscsscoldl

TIT,Tol Banbtin!s theorVeucsscevecerccovocsavocacsonsocace
TIT.1,2 Magnus'! theorY.cecsossercocnsscscacscasocconccnsodd
T7T.1.3 CompariSOnsssscsvrercvosssvssancosnconsanvososessssool
TIT.2 ConcluSionS. crcesovcervsnsreiansconcssosonsnscsorsvosscseadl
IV ANALOG COMPUIER STUDY e :csuroncrsonssrssscorsccesaoncucsocsaooscosld
I7.1 Study of Three SyslenS.v.sccatosssosnsvaasonscscerancooesssld
TVelol System (3.300ccsavrsonvscossnsrssocnccesosesnsisncsed
(

-~ o,
j@}u?)vcwvvl4#9\!"i--?.oovﬁ&s#d-w#b@ﬁ“@ﬁ!’&@-b@@ﬂﬂjl

I¥.1.2 System

‘-—!

:{{uu ug bYStPWi < 5) xz¢z¢snnewav«amczaqaaazaa@c&&@asawmwcao-wogb

7 ? ST S . -
1]’"} - (J\)ﬂb&ublonwasﬁafa&c&:z4:\04:!¢za“lﬁewac@oeu@qﬂdwaw&a-wdwau@&@&@uj

ﬁl??l)ZCA.TION@@@Q@!&nas«t+uuﬁs«taaooeoiwz»enswononuunc100?:37

”J‘I C’QLI{“T{ng()“‘yumvw:v@a»»rxac«asa%&v&

':n«-'&*‘&rsﬁtewea&av‘Js—ivu-rcﬁgaotsz-atnbeu/é

"

AP 8
gy
Ak J'\'j hJLJaasw@crav:a#av&ntxwoq.\-wsamoa¢ﬁé8—$&'ewweeﬁvouavwacxooesa«s@auoncg

el \J.:J,Iu.l..n.wezwnaau:—snwea«a&wa FE R EFIRI BRI P RABDCL P VR EE LTS CPEILRRE AP OB IO H O

s}



CHAPTER T

PO Mt AR T

INTRODUCTION

Consider a second order system of the form

dx = F{x, y)
(1.1)
é:.f, = Gz, y)
where F and G’are,iu general nonlinear functions of the variables x and y;
¥ is time, A plob of y wversus x defines the state plane, The state of the
system in the sbtate plane &t 2 given instant is debermined by a point, called «
Yrepresentative point®, TFor succeeding instants of time the representative
point dascribes a'lmcusa calle&/égfajééﬁory“a_ The points (x, y) which
make F(x, y) = O and G(x, y) = 0 slmultansously are called "eritical
polats™. If the gsystem is linear, x=y=0 is the only such point; in the
wonlinear case, there are usually several., To examine a particular
critical point, the origin is brought tc it by a translation of coovdinates.
Tn the new sysbtem of coordinates, the varisbles x and y have been replaced
by, say, X‘amd Y, respactively. System (1,1) becomes system (lmejg

(1,2)
ay = ¢ (X, )

where ¥=¥=0 is the crivical point under consideration,

table in Lizpouncff!s sense if, for a

-

given positive number £, a positive number % can be found such that, for

JERC8) TP S, JER(6) + Y2(6) <& ab sny bime © > by 2 O,

0
Otherwise, the system is unstable, The system is asympiotically stable if
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[}’2(1,) (n) —s 0 as b — 00

Expanding system (1.2) in power sériss about X=Y=0 yields equations

(1.3)

X + Y + QX T)

(o))
< 1o
1]

where P and @ include all the nonlineay terms of the series; a, b; ¢ and,d
are parameters, 4 system may be represented by a point in a space whose
coordinates ave the parameters (parsmeter space), One then speaks of the
represent atiVP pamnﬁ in the parameter space. Usually some of the parameters

3 2

are [ixed and_are not the object of attention. Moreover, it is
COﬂ“CHlélt iﬁﬂgﬁgchicey to deal with‘é space of no more than two or three
dimé glong. Thqéé parameters which are considered in a given analysis are
called ﬁwnbcM°~ting parameters’,

Liapcuncff@s go=called "first-degree approximation® consists in

nsglscting the terms P and Q and considering the linearized system, (1.h)s

(L.b)
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ion of the linearized system is
ST+ RB+ r=2Q (1.5}

where R = -(g+d) and v = ad - be, Lpplying the Huruitz stability criterion

g Ll

{75 p1093" to equation {1.53 shows that the linearized system is

* The mumbers in parenbheses, obther than equation mumbers, refer to the

. J

appropriate item in the list of references,



(1) asymptobtically stable provided both R and r are positive
provided the roois of equation (1.5) all have negative real parbts);
(ii) unstable if R and/or r are negative (i.e., if at least one

,

root of equé?iogﬁ( »5) has a positive real parbt),

Liapéuﬁqff {3) shows that the stability of the critical point
X=Y=0 in system (ie3§ corresponds to that of system (Ll.L) provided both R
and ¥ are not zero (i.8., provided 5he rOOuS of equation {1,5) have non-
zero raal parts);' R=0 corregponds to 8 palr of purely imaginary roots of
aquation {1.5) whereas r=0 correspends'to a gero voot, In these cases
(R=0 andjor r= 0) rnothing can be gaid of hhe stability or instability of the
ecritical point ¥=¥=0 of system {1.3) from a study of system {I.l).

B=0 and r=0 can be represented as hyper-surfaces {describing the
stability loun- ries of the system) in!the space of the:interesting

- B derived ) )

parambers, Liaponnoff invesbsd expressions (since called Liapounoff
coefficients), which msy invelve terms up to the fifth order of P and Q,
to study the stability of nonlineay systems on their stabllity beundariesa

It Shauid be noted, nowever, that Liapounoffis thecorems give no
imfcrmaiiaﬁ‘abduﬁ-th@ region in which (igegg how far from the critical
point) gta ‘M¢MLV can be deduced from the first-degree approxima%idng
rathar, Lhﬁv cmn i only stability ‘1n tne =ma11"\ievm, in which initial
conditiona'are‘a@proximat@ly YO, |

What hapbgns if the aﬁability bqundaries are exceeded slightliy,
iéeOﬂ if the representative point enters the uastable region in the
parameter space? This question was studied recently by N. Bautin (5)
and ¥. Magnus (6) and led to the concept of dangerous and nondangerous
boundaries (described in chapter II). Baubtints work restricts itself to
behaviour in the small wﬁeie ag Magrus? work is concerned with oehav1our

"in the large™ (i,e., in which initial conditions may be large) as well,



. »

The purposze of this work is to investigate the theories of Bautlin
particularly as applied to second order nonlinear systems whose
representative points lie in the vicinity of their stability boundaries,

The mathematical development of the two theories in question, as
presented by their authors, is assumed o be accurate. It is the
application of these theories to second order nonlinear systems which is
investigated. The investigation encompasses, in application,

(i) the range of thes theories, as determined from their mathematical

relationship with the general second order nonlinear system and from the

study of three selected systems on the anzlog computer,
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uracy, 28 determined from the same analog computer

(113} their usefulness, as determined from (1) and (ii), the
limitations of the theories themselves,and as exemplified irn the design of
an elecbronic system which preduces burste of oscillations.

Bautin, in 1949, was the firsbt to study the behaviour of the
general sec nd

third and fourth order nonlinesr systems whose representative

points lie near their stability boundaries, taking into account nonlinear

.

terms up to and including the third order. He accomplished this by making

use of the work of Yiapounoff of 1892 {3}, Until Beutin published his

o

work, the study of zystems whose representative poinis lie near the
stability boundary was done mainly by the method of small oscillations
{(Iiapounoffts first-degree approximation which neglects all nonlinear
terms and spplies the convenient tools of linear mathematics to the
linearized system) or, by analyzing individual systems using the phase
plane technique of Poincaré (12, 17) or the harmonic balance technique (8)

» by studying the energy transfer (13, 1L, 15). The method of small



oscillations {d1 scussed previously) although general and simple, becomes
less and less reliable as the represenﬁative point of the system
approaches the stebility boundary since behaviour in the vicinity of the
boundary is essentially a nonlinear problemg.AThe other methods are also
unsatisfactory dus to their lack of generality or their mathematical
complexitye‘

Rautinis theory, although it considers higher order terms in the
series expansion of nonlinear systems (by,making use of the Liapounoff

ccefficienﬁé) regtricts itself to behaviour of the system in the small

o
o}

d for the representative point, in the space of the interesting parameters,‘
lying “sufficiently cloge" ?é:fm which is, at best, ill-defined in practice)
to the stability boundaries.

Magms! theory, published in 1955, employs the first harmonic
appxbﬁimatién;intrwﬁuced by Kryloff end Bogoliuboff in 1937 (8), to obtain
& substi@ﬁ§e Liné§T gystem for the mqnliﬁear system, It then applies the

Hurﬁitz”driteridn;to the substitute system to determine the stability

!—"

bouﬂ‘&?} thc>5 pace of the interes tinw substitute parameters, . An
A=curve (curve Wluh an amplitude aea'e)fig then drawn which determines the
behaviour af nhe‘szteﬁ both in the QmalT &nd 1n the large.

Chapter IT sutlines the theoﬁiés in qUestiong reserving the more

' and IT . ‘

Gumbefoom@ ma thematical developments for appendlces I bo-ITF;

Chgptér TIT investigates the claims of Bautin and Magnus
%hﬁdﬁgh a theoretical analysis of the agﬁlicatioa of their theories to
sacond order honlinear systems.

In dhapter IV an attempt to verify‘the results of the analysis of

Chapter III by studying three selected sysitems on the analog computer 1s

reportsd,



Chapter V exzemplifies the use of the theories in the analysis of an
elecﬁronic,Qscillazor and in the design of an electronic system which

produces bursts of oscillations.

Chapter VI presents the conclusions of this work with regard to the

theorigs of RBautin and Magnus,




CHAPTER T

AR R COLITHETIA (AT R Hin)

TWO THEORIES CONCERNED WITH STABILITY

BOUNDARTES

This chapter presents the theories of N, Bautin (5) and X, Magnus
(6) to the extent that is required for the development of the succeeding
chaphters.

iT.1 Baptints Theory.

Bautin®s work is concerned with the determination of dangerous and

nondangerous parts of sbtability boundariez in nonlinear systems in the

small, The most significent limitat

-y

on in Bautin®s work is that it considers

e

§

behaviour iﬁ the-§ma11 only.

| The "dangerousness® of 2 boundaxy is determiged by the behaviour of
& sysﬁem when 1ts parameiers afe varied in such a way that the representative
point in ! V_wpaﬁe of the interesting psrameters crosses the boundary from
the stable szde to the unstable side and back to the stable side agein. If,
in this last step, the representztive point in the phase spaae‘does not
return to the critical point when 'héqf'p sentative point in t ne space of
the int festlng parameters is réturnga to the stable side of the houndary,

g

then the bOundafy is sald Lo have been crossed at its "dangerous partV,

In his analysis, Bautin considers all the parameters of the system
to be fixed, except one, which he denctes by A. The value of Afor which the
?epresenﬁaﬁivezﬁaint lies on the stability boundary is }Do Hence the

stability boundaries, using the notation of chapter I, are R(}O) and T(}O)p

The first Liapounoff coefficients corresponding to these boundaries are

L(ﬁb) and ﬁ(ﬁb}g respectively, (33 pp.301-375), Bautin uses these



coefficients o determine the dangerousness of boundarics, The,function

L( Ag) includes terms up to the third order only and {( ) terms up to
0O P i ‘1}.‘3 ap A

.

the second order only. The caleulation of IL( }0) and @ k } is difficult
{q.v. Apvendix 1), Ty is all the more true for the calculation of the
second Liapoumoff coefficients 1 } and k ( %0)9 which 1ncWLae fifth

s

ordw tefmﬁ.émd whick would be required 1n uhe dm%crmlnaﬁ1on of stabil ty if

Ll o} 0 or G( AO% = 0. Hence Bautin rist&i‘ himself o systems not
exceeding the fourth order in which both { %0} and Q(,AO) are different

from zero.
By means of thres theorems, he shows that

{1} the boundary R(féo) is nondangerous wherever L(Aq5) < O and

{d}z) £ 0,
{41 the boundars }?'} Y ose 3 rET harevy }
{ii) tne boundary H{ \o/ 18 Ngerous wnerever % ) s an

/aRY < ¢, and

{i11} the boundary z{ Aa‘ is aluays dangerous.

31,2 Magoos' Theory,

Magnug? work

ig far more comprehensive then Bautints, It angly”ﬂ
the behaviour of nonlinear systems in the large ss well as in the swmall,
providing conplehe knowledge of the existence, amplitdue, frequency and
ey »" Y 4 ens

stablility of limlt cycles and whether the stability boundary is dangerous

or not. Magnus states that the W&oqam 13 "exact for small escillations®

The accuracy of this statement is investigated in chapters III and IV,
An nith order nonlinear system can be writbten in the npatvt? form
; 0
dx -
4 o3y P . e (2}
“Ti 1> &ifxv t 1(3;3 Xgﬂ oses ® )y (1= 1, 2, s00m) (2:.1)




where x_ avs variebles; a._ and u.
Ty iv i

functions; t is time,

Three sssumptions are made

1. Tt is a dynamic system capable
choice of v, and a, ¢
i iv
2. The characteristic squation of
system {2.1) with u, fi 0, does
imaginary roobs:
3. The functions

s .

Lent linsar system of

are nonlinear

with regard to the system in questions

of oscillating, at least for a proper

the fundamental linear system, that is,

not have more than one pair of purely

2

fi can be expanded in Fourier series in which no

the form

&_, < L =1 2 vee B 2 22
iv v 2 27 (2. );
Fhﬁ'ﬁ@“?iycienbs ar  and gky of equation (2.2) are chosen such that
iv iv TR :

with*thé

Huzcn a golution of the i

expacted,.
x = A gin &f = KX 8in & ,
¥ 9 Ty v v
v - i e I/'_, N A . .
where K = K (w) = ®v, & being a standa
. v kY] - .-ZV,A;.
assumzd and substituled into equations CZ&

ratios K  can be caelculated from

K1

v

enquat

tion (2,2) afier the aferement

Theeerr {he subgti

shows that

{2.2)/ 211 component

amplitudes &, and phases @va Also,

frequency w of a periodie

on of (2:.2) for every ampliiuéé

e
the ch
ione

tubion of

solution of (2,1} agrees

A
A

of the oscillations to bhe

'i"YT

(2.3)

‘G anplitide, and Qv Wt o+ ¢§5 is

1? £45 {(2.2), The n amplitude

arac cheristic determinant of

ed mibstitution is made,

equation {2.3) into equations (2,1) am

oscillations have the same frequency w but different

fi will be periodic functions of period

(Appendix II.)



(]

fud

2¥W. Bearing in mind assumption 3 and limiting the Fourier series of fi to
u
the terms involving the fundamental frequency only yields

f.=al' cos @ +« bt gin b 2.1
i ii 1 il 1 (2.1)
where the Fourier coefficients are given by
2T
o= ] f (4K sin @ , ...4K sin @ 0,49
aii z : {! ) sin X o Sin n) cos 0, 1
‘«.;0 2e
o1 (2.5)
bt = 1 £ (AKX, sin €, ...AK sin € ) sin 0 do
j_l 1‘:\: i A iR n n 1 1
0

Substituting equations (2,3) and (2.4) into equations (2.1) yields

n
ax . B ! .
i o= 2, AKX sin @ + u (a' cos 8 + b* sin 8 ),
GRS vooidd oo 1
=l
Substituting equation (2,3) into equation (2, 52} yields
o ,

i=5% 3 AKwocos O + 3, AKX sin © , Equabin g these two results and
g £ iv v v iv v v
v=l
comparing coefficients of cos Qv and sin ylelds
v
a =3 forvs i )
iv iv
= a‘l + %™ v forve i
eOIK, il (2.6)
o i
ot 4
g =0 for vy i
iy
u, ;
= i .8l for v =1
T

where a'_ and b,
i1l il

in equation {(2.1).

re given in equations(2.5) and 3, &re the coefficients
7

o ; X [ it
Hence, for emall oscillations, ;a 1 TR and | a ? S
Livy A—Q iv} A0

for all v. Therefore, in this limiting case, equation (202) becomes
identical Yo equation (2.1) with fi = 0, This corresponds to the method of
small oscillations which is accurate "in the small® provided the

representative point does not lie onm the stability boundary itself (Lis p.L88),

An important special case exists in which



A\
/- . \
£ { X g abe, X)) = f £, (s
'*2 \Xls .:{2;, RE S -mn) ) J.i,g(.ﬂzv)g
vl

In this case the coefficients of the substitute system become

2T
d =a + 9N f,v(m{V 5in & ) sin & 4@
v iv iR, i v vy
A
=3t .. W = #av s - an
ai = g i \AKV sin @v) cos Qv 3e
G e iv v
‘TrwAK ] /)
v ovH
ory
g, =a, +uk JE )

v Tiv o 1s iy (2.7}

sin & } sin g dz

¥ y )
{ (2.8)
/

sin ©@ ) ens & 4@
7 v ov

Magmiz suggests thatb Ks and Ka be calied "Kryloff ~ Bogoliuboff
vransformations™ because of the work done by these two men in the first
harmonic spproximation. (B.)

The stability boundary of the substitute system is obtained as a

4

~ ®

result of the application of the Hurwitz criterion to the characheristic

equaticn of the system, {(2.2). The characteristic equation of system (2.2}

G EN a5 M e Yo Weo (2.9)

Y 0 Va7

where & is the Kronecker symbol {See sppendix 1T, equation 3). The

conditions of stability <, > 0 angd f P > O, where H Y is the {n<1l)th
: 1 Tlew

;;J



Hurwitz determinant, are the most severe. (9,) The stability boundary
cn = 0 corresponds %o a zero root and cannot be studied by Magnus®! method
because of the harmonic approximation approach. However, as shoun by
Bautin, this boundary is always dangerous. The boundary H - = 0O

: neL
correspoends to a palr of purely imaginary woots. There are 2n° parameters

3

3

important in pracbice., Hence

o

in equation (2.9) g1l of which sre no

o]

R=H 1 = 0 is used to denote the stability boundary hyper-surface in the
Yie-

space of the interesting parameters only.

On the R - boundary the natural fre equency W is given by

2 o 2 s
w* = ©2 for n= 2 and w° = Onf n'ne3
¢ H
0 N2

forn & 3 end H = 1, Hence; the R - hyper-surface may be provided with a

family of curves each curve of wuhich corresponds to a given frequency of

The a2 and 8" parameters of system (2,2) are functions of the
amplitude &, Hence, for inersasing values of &, the representabtive point

the interesting purameters will move, describing, in the

an A& - curve which can be provided with an A - scale, The range
stability can thuz be determined from the relative position of the

A - curve and R - surface, remembering that the system is stable when the

vepresentative point is in the region where B > O,

.

For the sake of illustration, consider figuve 2, which represents a

=m
3

and 2 The
1 2*

an h - curve, Six possibilitiss for 4 - curves

]

H'|

system in which there are two parsmeters of iab rest, say

R « hypsr-surface becoms

(lI

have been drawn which would result in the following behaviours of the

system in the phase space:

2o Curve IT: Small snd lavgs scale instabi ility,



3, CGurve IIT: Stable limit cycle at A%,

. Curve IV: Unstable limit cycle at Af,

P
ey

5. Curve V: Unstable limit cvele at AY and stable 1imit cvcle at A
(5 9

6, Curve VI: Stable limit cycle &t A' and unstable limit cycle at A%,

&,
i
- £
S W
T g fad s v A
Mii‘“:% . 1';.»*/
Sy,
{3/ B Ft,‘,mw
A Y
N
f o
Tl A o
4
N N
e 4 ,._f&’ VY
e AY =
» -~ 3 § el
i 'a’, ;. w:a Al oy -
/ ., Nj%,—""'
!
L y23 “%)
Va o RL 0
R0 egoe,
'
R0
a
2
Figure 2% Six possibilities of A - curves.

The boundawy R = 0 is dangervous in the small, according to Baubin'sg

vsage, i¥, oa it, or within e sufficiently small neighbourhood of it,

{dﬁ < 0, that is, the A - curve, beginning with A& = O near the R
ga &
el

boundary, runs out of ths stability space, Otherwise, for /aR) >
\di
A=0
W
boundary is nondsngerous in bthe small, Futhermore, Baubin's concept

dangerous and nondangerous boundaries may be extended %o large-scale

T onpr B o o - g o -+
behaviour, Hence, in

t

he largs

¥

the boundary ls dangerous whers /dR
dA

IS
b4

and it is nondangerous where /ﬁn; > 0
y’iA

o

0, the
of

< O
A=bing



CHAPTER IYT

AP M A B RTIRAE

APPLICATION TO SECCND ORDER SYSTREMS

This chapter studies the application of Bautin’s theory and Magnus®

theory to the semi--general second order nonlinear system:

4
i
e

55
1% e ﬁ
dy = cx + dy =+ bgorzc‘? + b}mlxy * ’OOZY”‘ + }‘3033’3 +

>

"he conclusionz derived from this study are then extended %o the general

dw = a I v K 3 -
Foy T TE0 11 02 o3

B
S
or
<
“*
£
>
L

N "“"’“’}‘” + & *ﬂr? + 3 \{3 Lo
Celn 12 = “3644. &' @
{
dy = ox £y + b 22 bo.XY + b v +b \*;3 - &»a.‘?—)
7 G 20" 11 oY 5y

8% &

s secblon the theorles ﬁf Baubin and Magnus are applied to the

sygtem represented by bqumim‘ ‘( 3:1), Comparisen of the

te certain conclusions pertaining to the reliability and range

© appl Ac\uicn of .the theories.

The Zirst Lispounoff coefficient I( "}‘O) for a general second arder

* *

systen described by equations (3.2) ie given by equatio n (10} of appendix I,

= Ay 2 2 g’ Fa . . 3 * LI ]
L{ /}‘0) szi«wg?;w‘? g (o34 }.1}' 02 < DE}. B 3\,50_-\3) o Dllbzo ! (,}o ,))
fo = - P

L{oe)

fod
i



I

System (3.1) can be anelyzed by Bautinis method provided L{ >o)#0 in
equation (3.3). Hence system (3.1) can be analyzed by Bautin's method
provided not all of b11b025 b215 b035 and blleO are zero, It is assumed
that ¢ is negative because a positive ¢ amounts to crossing the boundary
r( ﬂb) which 1s dlwayw dangerous., Assuming that all coefficients in system
(3.1) are zero except, possibly, those contained in equation (3:3), there
are four thﬂngs which may be taken cne, two, three or four at a time to make
L( AO)¥O¢ Hence, under the above assumption, there ave 15 possible systems
of this type which can be anzlyzed by Pauptinfs method. Without the asbove
assumpt10n¢~§here'is an infinite number.
As §é$ Shbwn in chapter T the stability boundaries of thg‘general

system {3.2) are

For the ng,w,".ial system {3,1), r==c=0 and R ®.d = 0, The

boundery r = O’corrasponding %o a zero root is slways dangerous and, thereby,

3 3

OeSS?VBS ag”fuftbe consideration, On the other hand, the boundary R = O
GOy ”CSPORd& o”a pﬁ“" of purely _ﬂaﬁLna“y roots and bears investigation,
: ThQ ﬁafameteﬁ d does not ap;uor in the expression

- a
Hence, if ncne of the pargmetasrs in I % );&?& function of d, the system

O

n for L(éao)@

can be represented by figure 3,1 in which L!  is plovbed against -4, the
_ a=0
7,

Le axwis belng the gtability boundary R = 0 and the right hand half-plans

corrvesponding to & stable system, that is R » 0. The conditions

{dR = .3 L0 and L » O indicste that the positive Le axis is the
L dta) =0
d=0
dangercus part of the R = O boundary. The conditions /dR = 1 and
d(a)
L§¥ £, 0 indicate thalt the pegative L~ axis is the nond ous pa)t of the
d=0
§

E = Q bBoundary., The branch point is L = O,
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-
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£ s NoOndangerous
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R<4O R20
=0

Figure 3.1t Plot of 1 versus {(=g).

I17.1.2 Magnust Theory.

Tn the application of Magnus! theory o the semi~general system (3.1)

o
=

the substitute system corresponding to equation (2.2) is

ax = ¥
o N y (3.1)
dy = (¢ + PP1ys « (d + 25Dy
d-t A FiAs
where o
27
N
311 = 1 / fgiﬁ gin 8, Aw cos 9) cos & d 8
Lo R
TN o o
m i \ (309}
b}} = 1 fgiﬁ sin 8, Aw cos 8) sin € d @
L ¢Tr \‘O j

nd v = dx = Aw cos @, where
dt
Jincludes 2ll the nonlinsar

in which 2 solution of the form x = A sin @

fsid

5 L . .
& = wt + £, has bsen assumed, The function £

2
terms of system (3,1),

The characteristic equation of system (3.L) (in equation (2.9)

notation) is

2 ‘ bz "
Moo (@ BN - e+ P21 = 0 (3.6)
A A F



Applying the Hurwitz criterion to equatio

n (3.6) leads to the stability
boundaries:
, b!
- (o4 21) =0 (3.7)
A.
a?
and R 2w (3 + 21) =0, (3.8)

e
Aw

The first of these cannot be studied by Magnus?! theory and it is aluways

. . ; . . b} :

dangerous according to Bautin, Hence it is assumed that v = - (¢ + _21) > 0,
A i

Therefore interest is focussed on the B-boundary for those values of A and

w which satisfy r > 0.

Depending on whether aél and/or béi are zerc or not the four
following cases are possible:

Cage 1y &l = 0 0. The system reduces to Liapounoffis first-degree

bl =
21 )
approximation. The A-curve reduces to a point in the ¢ versus d plane
anc nothing can be said of the dangercusness of ‘the R-bo ndary,
Figure 3.2 depicts the stability boundaries and the representative

point may lie anywhere in the plane. The system is stable in the third

quadrant only.

G

PR RS

: Dangerous
<0 y # Boundary

LR AR

by

W

(o
ALt NS aa S

Iy

N

o

HE=0

Flgure 3.2: Case inwhich g = 0 and b = 0,
21 21



Case 2:

Flgure 3.3¢

=t :

7 0, b}

aél‘ 5 = 0, Assuming that r = ~¢ >0 the system is stable if
k £y ’ -l 5t o,
R= o (d+a_ )z h " = %23, In the a* lane th
{ mgl) > 0, whers 3, 2 n the a’  versus d plane the

Aw
A-curve originates on the d-axis and moves vertically upwards or

downwards depending on the bp. coefficients involved. Thus the
behaviour of the system in the large and in the small is obtained,
Figure 3.3 illustrates an example in which d € 0 and the i-curve
moves upwards, According to equations (3.5), the amplitude 4 is
involved in &él with a power greater than unity. Hencg the initizl

position of the A-curve always lies on the d-axis,

) -t
.’)\ N (=5 2 1
N
It
o
“\"\
e
N
T
3“.
"'\._\ﬂ:‘
\.’J“ 2 Yy J Py .
=0 Y d
g
.
Tu,
B
“‘:"‘“
%g%h R4 0
Mb\
B >0 ."‘m\
=0
Cese in which at, ¥ 0 and bi, = 0, Illustrative example.

21 21

$ a?j = 0, b;{ ¥ 0. The system is stable If R = =d > O provided
- RS .
r s:a¢3s£ - {&+ 721} % 0. Assuming ~d » O, say, the A-curve moves
5 et
¥ A
vartically upwards or downwards in the left hsnd half of the 351

versus ¢ plane. The sense in which il ‘travels depends on the

particolar b coefficients involved. The stable region lies in the

third guadrant. A example in which the A-curve originates in the

third cuadrant and moves upwards is shown in figure 3.l



l.m
~O

.

Whenever the A-curve originates inm the lower half plane and moves
upwards it intersects Lhe dangerous r-boundary at an amplitude of
motion equal %o fggé in the phase plane. The positive part of the R~

C
boundary is not considersd since r < O always in this region. The
negative part of the R-boundary is nondangerous in the small.

However, it is dangerous in the large, provided the A-curve moves

upwards; otherwise, it is nondangerous in the large alsc,

3,
2%
| A 3
- . ‘bﬁ
L Are 21 :
Z‘::Q/;. —F s t:x,vr/r e LS gv’o’f e e e e a-.r C s anl
. APy e Eer e e o~ o < - -
=G |
b
L g
R>»0 4 R< O
2
F=0
at = 0 and b! # 0. Illustrative example.
21 )
Case Li: &' ¢ 0, bi. ¥ 0, The systen is stable for fzawag > 0 and
s s - :
o s ‘ bE y al in &
B w (4 + agj) = 0, where g =ct 21 and 2. = “21 as' in the
omeran il .
- 21 )y <L Ew
other ceses, As shown in figure Sbgﬁ whare a?l is plotted against

e»)é.

Gy ;i@ L-curve always begins at & valus equal to ¢ on the 5&1 axis,
The A«curve takes .on various shapes depending on which of the bp
coeffieienﬁs are present. The dangerousness of the boundary depends
on the shape of the A-curve, In the example of figure 3.5, AT
corresponds Lo an unstable limit cyele and A" corresponds to a stable
one, Hence, if d is small enough, the R-boundary is dangerous in the

small and nondangercus in the large in Magnus® sense, In Beutints

sense, the R-boundsry is dangercus because

“o

if the sign of d is changed,



1 increas

of ¢ is

Latier limit cycle without returning to
& E:‘

phase plane,

and will decrease bhack

changed again, but the

o

o

te its original value, when

)

trajectory will follow this

the critical point in the

2 :
21 4
V
by
<0 y
mmee £Y .sa
R o A e i A At S LAl S A a i c S R mr{r} Can's £ TP, o
: £
4 21
r>0 e 0 4
\4'.} '--m-m...‘“%&; A?
3%
i ]
B
ww’m“,.w"‘ _‘} A‘Sﬁ
_—u""’"ﬁ?’f v’»ﬂ;vw 3‘%
“ 4 n<Z
BR>0 :'% RL©C
R=0
Figure 3.5: Lase in which By ¥ 0 and bl 7 0. Tllustrative exsmple.

£ s -
wompar

ison,

B T

Any second order nonlinear systenm

3

ry cgn be analyzmed fov
our in the small.
gct comparison mey the

geneyalized Tan der Pol egquation (11; p.1%
B ?

a%x - (3 + SIS Ydx ¢ x =0

y =Tt

dt

cribed in section T1T.1.2.

n be made with

¢h is a specizl case

ie analyzed by Magnus® method will

In cases 2,

rasults obtaine

for example, the



dx = y
dy = «x + dy + b }:Zy
; 21

Applying Bautin’s method, the R-boundary is R = «d = 0 and the first

Liapounoff coefficient, obtained from equation {3.3), is L = ﬁ“bZla
1

d=0

Hence, the Reboundary is dangerous for b21 > 0, as shown in figure 3.5,
one obtainsg
dpplying Magnus! mebthod,f the substitute system ie~s

4

Oy b
2L ¢
;
;e Danicerons Boundary
e Branch Point

t

G’d

e oG ANGEIOUS
Beoundary

R>Q

-
It
[

T S T TR T ~\x*ﬂ§i} iy

it
i)

Figure 3,%: Stability boundary., Baubin's mebhod

«

generalized Van der Pol equabion.

on =y
dt
by (3,10)
d,V = eIl {d 4 Zl :/"
g e e

The representative point lies on the stable side of the dangerous r-

boundary since r = 1 > 0. Hence the R-boundsgry is R = - (d + a;.) where
©y i
. Topen & " : .
Gy _2l” . This system is an czample of case 2, Figure 3.7 shows the
Tonm wlin }; :

voehaviouy of the evstem i e mir o gy {3y 2 3 171y

DENEVAOUY 0L Uhe cystem in bthe &l versus (~d) plane for some arbitrary
zt (

value of d. For d< O and b,, < 0, the systemis intrinsically
L L



B

stable. For d<0 and b,, > 0, the system is stable inside the unstable

21
limit cycle of amplitude Jég: . Tor d>»0 and b2 < 0, there is a stable
| by

=% R=0
21 RO
A inc. 4 A:ff
b >0 =
(cv’ ) P R>0
e
H /.‘z,’:‘"c
.1;"‘&
£
P €
e
a
-
/56 mO
- o s & 7 vl - e .
5{) 5 Afs.m v::;d
e
5
o
&
e
Ny
el
e
- A inc,
Y (b,.<0)
~ W)
2%
Figure 3.7: Stability boundsry. Hagnus! method applied to the generalized
Van der Pol equation.
bt oeycle of amplitude /ihd . TFor d>0 and bﬁ1> 0, the system is
b L
i 21

intrinsically unstable, Moreover, if a small positive value of (-d) is

.
v .

. “uw

H

censidered, with gero inital conditions on the system, and, if its sign is
suddenly reversed, the trajectory will grow indefinitely with time if b >0

whereas 1t will grow into a stable limit cyele if b, < O, Then, if (.4
R p 71, b

is mads posibive again, the trajectory will collapse into the rlbical point
if and anly if b21< 0, Hencs, Baubin!s result of figure 3.6 is obitained
directly from Magnus® result of figuve 3.7.

In the foregoing example the results obtained in
the small by both methoeds agres perfectly. However, can suech agre wement b
expected in generel? The following considerations will answer this question

in the negative,



23
27
5 M oA s Nngapsf . .
o.since fcos © @ sin U 2 d @4 O if and only if both m and n

are even (103 pp.300~-30L} it follows from equation (3.5) that aby # 0 if
and only if one or more of the coefficients bpq’ where p is even and q is
cdd, in system (3.1} is different from zero; likewise, b;l § 0 if and
&
onty if one or more of the coefficients b , where p is odd and g is even,
is different from zero. In other words, the nonlinear terms involving
coefficients b, where p + g is even, are completely ignored by the
: D
&

substitute system (3.L). On the other hand, some of these same coefficients,

namely b ﬂbhg and b_ ., ave not ignored in the expression (3,3) for L(,ko)a
- L xS ~ : : K )

dx = 1

&t , 5 5 (3,21)

gy = ~x =4y + blrzy + b v + b _x v

3t SR T Pep 21" 7

3t ‘

as anzlyzed by Baubin's method, yields the boundary R=® <4 = 0 and the

first Liapounoff coefficient L e {b,,b +b J. Hence the R-boundary
d=0 ¢ 1l o2 21 ,

is dangercus in the small for boy > and is nondangerous for

= b,.b

11 02
b, <= byabys, as shown in figure 3.8, So the addition of terms by, and
o . ho the generelized Ven der Pol equation results in a shifting of the

However, the application of

brarch poipt from b, = 0 0 byy = « b b
DA fiL‘ ‘D Iom d?i [ via] 21 )..L.?_ 020
bi‘ﬂ 3
Lk
e Dangerous Boundary
¢ =b b {Branch Point)
11 02
A =d
- [londangerous
3 Boundary
R<O ‘ R>0
1
R=0

Figure 3.8: Stability boundary, Bautinis method applied to system (3,11).



Magnust' method to system (3,11) leads to the same results as for the
generalized Van der Pol equation. Hence, upon neglecting "even coefficients”
(where p + q is even in bpq), Magnus® method neglects the shifting of the
branch point for small-scale behaviocur.

As another example, consider system (3,12):

dx =y
cy = wX + 0y ¥ DyXT + DXy + by
3% 20 1T 03

one obtaias

Applying Bautin's method,/R = «d = 0 and T = 7 (3b *b__b_34 Hence
ld =0 4 93 11 20

ot
the Reboundary is dangerous where bn, > =1 b..b fnondanaerous where
03 11720° .
3 obtains
b33,< ~1 b, 1b \ (Figure 3.9y). Applying Magnus® meuho@/bhe substitute
3 iR

b..E
03t
= -Dangerous Boundary
Eelb. b, {(Branch Point}
75711720
3
.Ezd
i Jiond angerous
1 Boundaxy
R<0 1 R>0
B=0

Figure 3.9: Stability Boundary, Bautin®s method applied to system (3.12).

system &2 2

gz =y

i 2 (3.13)
dy = =3+ (4w P 3 \OQH A) vy .

dt i >°

Whence, ¥ = L and R= «» (d + 3 b03w£A2}u Therefore the representative point

of the system lies on the stable side of the r<boundary. The



i
Sl

: sy : . .
characteristic squabion of system (3.13) is }? - (@ + é'b03w Ai)}% +1=0

4L

from which, referring to the form of ecuation (2,9), w* = €2 = 1. Hence,
o0

. . . . s st 5 i z .
the Re Yy 1 FBae-(d+a = 0, where &,.. = b . A%, As in the
he R-boundsry is R ( 21) s 21 = 3 Doz

previcus example, this system belonge to case 2. Figure (3.10) shous the

oy

Reboundary and f-curve in the Egi versus (=d) plane for («d)>» 0. Figure
3,11 shows the stability boundary, in Bautin®s sense, as derived directly

from figore 3.10 by considering small values of (=d) and zevo initial

=it
2oyl R=0
A inCo 2y R<O ,«ﬁ“’h‘d
(g5 >0) e
3 o R> 0
jﬁw—Am/hdg
< Ty
fgﬁ ¢ BbOB
il o420
““‘t‘f}:f’m‘ ~d
f{/z£
ol i A inecreasing
- \ 1 |
{bo3 £0)

Figure 3.10: 8
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s Stability boundary. in Baubin!s sense.derived from figure 3.

T mqnmmm
Plgurs 3,11

1

tability boundary. Magnug? method applied to system (3.12)

0,



conditions@ ﬂone Magmis*® method obta«ns the branch point bOB 0
whareas Bauhxn?s method obtains the bfanch point b03 w mé blleO° T'oy
blleO D, both methods agree. Hence, as in the previous example, the

presence of Meven coefficients" is neglected‘by Magnust method,
The comparison of the range of applieability of both

methods reveals the definite superiority of Magnus® method where sysiems

which include higher order nonlinear terms are concerned. As an illustration
of this fact, consider the well-known Duffing®s equation with damping:
.2 e 2 )
mdx+bdx e KEx(l+B)=0 (3.1L)
pd ds
i
4 £)

where i, b and the nonlinear combinatiocn of ¥ and B might represent the mass,

damping and restoring force, respectively, of a spring-mass system. Let
g = wa o= fEoand T wad
B= b 5 ¥y={Eand T Wab .

Em'wo ¥om

Then equetion (3.14) may be expressed in the form:

'}T
. 5 {(3.15)
o (L o+ Bz » 2zy
System (3,15}, although a very common form,cannot be analyzed
by Bautio's method, sven insofar as Baubin has extended it, because the term

b, of system {3.1) does not enter into expression (3.,3) for L()x Yo

Applying Megnus® method Lo gysten (3QL } vieids the

v

. Los o . - s Y . v ; 2y
substitute asystem {(3.16), in which (1 + 3 BA®) = Hence, this
2

-
C&Q.- o

[

] (3.16)
dy = «{L + 3 BA%)x - Zzy
a8 i
sysbem belongs to case 3. Figure 3,12 describes the system in the §é
A

versus ¢ plane for an arbitrary positive value of 2. The stability

ﬂﬁaﬁﬁ ies aye v = 8 = ODand R=22 = 0,
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Figure 3912:’ Stebility boundaries and A.curve, Magnus® method applied to

system (3,15).

11T.2 Conclusions.

| The application of b&th methods to the two particular
systems (39ll)vamd (3,12) verifies the prediction (in the case of the semi-
general system) that Magnus® method neglects Meven coefficient” terms
whereas Bautin‘s,method may not n@gléct them. Since the resulits cobtained
in the small by Vagnus! method diffex from those of Bsubtin's method when
fgyven coefficient? terms are present, both methods cannot be correct bub,
if one is correct, it is expected %o be Bautin's because Bautints theory
involves no approximations whereas Magnus’ theory involves a first harmonic
approximation.

If, in fact, Bautin's method can be shown experimentally
to be correct, then the resulis of Magnus’ method can also be seriously
doubted £6r the lerge-amplitude bshaviocur in view of Magnus' statement
that his method is Pexact for small oscillations® whereas it "gives only
spproximations for the large-amplitude behaviour®.

The limitatiocn of Basutin's method to systems in which

. \ . . ) : . P
L{ ».) ¥ 0 is a serious one since it prevented the application of his



method tc such & common System as that represented by Duffing’s equation,
Applying the methods to the general system (3.2}, as was
done for the semi-general system (3.1), yields parallel results, - For a
dmenahble to analysis

given system to be sepable—of-heing-analyzed by Bautin's method, the

coefficients must be such as to make expression (10) of appendix I, For
f PO s

L( }O)ﬁ different from zero, Also, even coefficients apq and bpq
{(i.e., where p + ¢ is even) are neglected by Magnus' method leading to

predictions which differ in the small from those obtained by Bautints method.

Hence the conclusions which weyre obtained with regard to the semi-general

gystem apply alsoc to the general system, with allowance for more terms in

o the

[

the expressions for L{ %O) and for more A-curve cases possible due

increased number of parameters.




_CHAPTER IV

oy

ANAL.OG COMPUTER STUDY

In order to give practical engineering significance to the

o

conclusions of chapter III, the author attempts to verify them, in this

a7

chapter, by means of an analog computer” study of the three systems {3.11),
(3,12) and (3.15).

IV.1 Study of Three Systems,

Bach system is studied by means of a set of phase plane
A

graphical recordings{appendix ITI) corresponding to a selected set of

cefficient wvalues,
TW,1.1 System {3.11).

The analog computer coefficients and resulis for this sysitem

n table L.l and graphs 1 to 8 of appendix ITI,

53
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Q
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o3
oy
[
el
@
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[
b

Graph 1 shows the presence of a 1imit cycle which crosses
the x-axis abt 2,2 and «2.5, Hence the amplitude of the limit cycle

approximately 2.2 + 2,5 = 2,35, This is of the order of 2, predicted by

{\J

HMagnus? method, Changing the sign of «d from -,1 %o +.1, that ig,

O

3

ndary te the stable side, causes the stable limit eyecle to

collapse to the critical point x = O, dx = 0, making the system stable., Thus
Qu

the peint of the R-boundary, -4 = =, L iies on the

]

o
o

fx
<
2
=
[
e
=
&

nendanpgerous part of it, as predicted by both methods. The eifect of the

nonlinearities initroduced by the "even coefficients® bll and b., is to
&

Qr‘*
distort the shape of the trajectory slong the dx -axis, the disbortion
gt
3% .

The computer used was: PACE TR-10, Electronic Associates, Tnc.,

Tong Branch, New Jersey.

29



being negligible for small amplitudes and more pronounced as the amplitude

increases. This fact tends to support Liapounoffts first-degree approximation
as well as Bautin's theory.
iraph 10 wd b, /ig{m byq by “blleZ
J P21
1 0100 =100 | 2,000 .8 es05 Nl
2 - ».100 -,100 | 2,000 0 «.05 0
3 100 | =500 | 2,000 5 1 =08 Lol
RS ,4;160 «s100 | 2,000 b ws 05 .02
Sel =090 =500 | 3,000 o5 =08 <Ol
5.2 oL ~0h0 | Le000 o5 | =08 -0l
&. 5010 - OL0 1,000 5 =008 <Ol
7 ~005 | =080 | .500 .5 | =.08 Lol
81 <5009 L010 | 1,898 o5 | =08 Ok
Bl 009 J015 | 1,550 25 =008 goh'
8.1 -,009 2020 | 1,342 o5 -2 08 20k
8L #5009 2030 | 1.065 o5 N 50l
Swz <, 009 036 e o5 s 08 ;oh
8wz 4809 -03% » 960 o5 ~, 08 Kol
B3 = 009 2 OLiO 2 9L% <5 =908 o0l

Table L.¥y Cosfficient seblings in anslog computer study of system {(3.11),

except ﬁha&;blg =

amplitude is I

varied, indicate

behaviour in the large.

Graph 2 ig the trajectory for the same system as for graph 1

Here the steble 1imit cycle is not distorted and its

.8, which is again close to the predicted walue of 2,

Oraphs 3 and L, in which the coefficients b

Magnug® method predicis stable 1imit cycles of amplitudes

and b are

02

further that the Yeven coefficients" influence the

o]

[




3 and L} for graphs 5«1 and 5«2, resPeCtively, whereas, in practice, they are
2.3 and 3.1, respectively. Hence, as the amplitude increases, the accuracy
of prediction of Magnus?! method decreases.

In graph 6, the representative point is brought eloser to
the R-boundary by making =d = .01, With zero initial conditions, the
trajectory grows very slowly to s stable limit cycle of amplitude 1.1,
which is ¢lose to the predicted value @f 1o

In graph 7 the representative point is even closer to‘the

Reboundary, that is, «d = «-.005. The trajectory grows extremely siowly,

always from zerc initial conditions, to the steble limit cycle of

litude .95, which is &lmost double the predicted amplitude of .5. Hence,
close to the R-boundary, Magnus! method loses its accuracy.

Graphs 8=l and 8.2 show the stable 1limit cycles cbtained ag

%21 approaches the branch point value ”bii 5o = = 0L, Noting that the
comments made sboub graph 1, with respect o the changing of the sign of «d,
apply ﬁlﬁgjﬁebﬁll the other graphs up to snd ineluding 8-2, it 5ecomes
ant that Beulinis mebhod prevaile in the small. Morecver, graph 8-3,

in which b,, reaches the branch point .0l predicted by Bautin, shows the

gysuem to be irveversibly umstuble, which proves that this is indeed the
ranch polnt and nob bey = O, as predicted by Magaus® method. Tt should ba
wated hers that the disagreement beiwesn the thsories is dus to the factor

ta, b since the branch poinb can be shown to be byy = 0 when by, = O,

]

The analog computer coefficients and results for this system
ave contained in teble h.2 and grephs 9 to 26 of sppendix ITI. A4 common
orocedure was followad for all these graphs. The initial conditions were

made equal Lo zeve for -d < 0, with the particular vaive given in the

table L.2, and the system was pub into operation, with the recorder pen off



the paper, until the trajectory ran its course to & stable 1limit cycle or
to #infinity®. In this latter case, the trajectory seemed to go to
#infinity® aperiodically, except in graph 26, and the break from per3 odic

to aperiodic behaviour occurred far before any saturation in the amplifiers

aof the computer. In order to avoid blurring the graphs, only the 1limit

cycle, or that part of the itrajectory where a breagk in periodicity

7

(o]

ceurred, was drawn. In those graphs where two stable limit cycles ave

Py

oresent, the cuter one was always obtained with -d < 0, that is, with the
representative point on the unstable side of the boundarys the inner stable
limit cycle was obtained by changing the sign of «4 from negative o
positive, affter the trajectory had exceeded the amplitude of the unstable

limit cycle, which always existed in these cases. I the sipgn of -»d was

shanged from negative to positive bef ore the trajectory reached the unstable

fiss

-

1imit cycle, the veprzsentative peint in the phase plane returned to the

critical point xey=0,

Obgerving the above description of how the graphs were
cbtainaed and bearing in mind figures 2.10 and 3,11, in conjunction

| ne reaches
aramater variations of tzb le 4.2, Jthe following conclusions aze

B s te
1. Graphs 9 and 10 are in agrrement with hoth theories, with
the amplitude of the limit cycle being more accurately predicted by Magnus®

2. The unstable limit cycles can be interpreted as
specifying ﬂhaé ~nejghbourhood, (rzferred to by Bautin in his theorem which
proves that the ﬁwooupdavv is daugEfaub wharever L{ k Y >0 and { &R\ < 0)

R . . : g
outside of whlch the trajectory behaves irreversit 13 Hence, for
&ll the graphs which contain an unsteble limit cycle, a dangerous part of

the boundary mwas crossed in Bavtints sense. Therefore vaphs 11 to 16
P 3 H 2
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Coefficient sebitings in

and 26 indiczte nondangsrous boundaries if the

prediction, by Baunitinis method, of abranch point at b

03

=

1
b..b .
= 11720 is to be

>

analog computer study of system (3.12).
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correct. So there is no consistency in Bautints method when bll and b20
are different from zero.

3. 1In all the graphs containing two stable limit cycles, the
outer one for md~£0 and the inner one for -d »0, Magnus?® method is inaccurate.
In these cases, the trajectories should go to "infinity". However, Magnus
states that his method is inaccurate in the large; so, one might say that
his method has infinite error, in these cases, or zero accuracy in the large,
However, the trajectory does not return to the critical point upon switching
=0 back to its positive value, and this much is expected from Magnus?
thaeory. The unstable 1limit cycles are predicted by Magnus? method when

b03;>0 but not when b, <0, as in graphs 16, 19 and 22 to 2L. Moreover, the

03
amplitude of the unstable limit cycles is found to be roughly the same, 6.5,
in all cases, urﬂﬂb might agree with Bautin's theory but not with Magnust

theqryﬂ

o Both methods disagree with the results of graphé 16, 19,

!

and 22 to 2L, . .

Both mebhods agreereminsntly well in graphs 25 and 26,
'whefe'bjaéb' #Og,mith ragard to the bféndh poiﬁt heing at bOBnGé Moreover,
Magnus® prédictiéh of the amplltude Jf the stable and unstable 11mit cycles

is guite accurate and the system does tend no "infinity" when the trajectory

excéeds ﬁhé'ﬁné‘ﬂ' 1imit cycles in grapn 26, for =4 = <01, 1nvgraph 25,
ths svut@r is "tao e for «~d = ,0L and the stable 1imit cycle shown exists
for_md = waoiﬁ In graph 26, the system is unstable for -d = «,0%L,

o l'é; Overall, it can be ‘stated that both methods vield
unséti»i<c 6vv prealctﬂons for the ph 1ase plane behavicur of system (3@12)
when the "even coefficients" are presents; bult their predictions are

entirely satisfactory when the ¥even coefficients® ave absent.

S IV.1.2 System (3.15).

The analog computer coefficients and results for this system



Graph no. 3 B /‘l;a
, . 3B

2 w2 | ool 3,65
| 0.2 | 3.65
0,2 3,65

’ 0.2 3,65

Table bggg_gggé ficient settings in anglog computer study of system (3.15).

are confalned 1n table Lo3 and graphs 27 to 30 of appendix TIT.

-In graphs 27 and 29, the sw1tching points indicate that the

value of z was switched from 0,2 to O;Qﬁ The trajectories are self-explanatory
and they agree very well with the results expected from figure 3,12

Graph 29 shows thet the system is irreversibly unstable

versus % plane crosses the re

2

when the representative point in the z

boundary and graph 30 shows that the r-boundary is crossed at an amplitude

of % cg with the predicted amplitude of 3.65 to within 10%.

.T
£
S
o

o5
it
@
o

:E‘,, WNLe
The graphe agree with figure 3.12, also, in that the R-
boundary is dangerous for B<O0 and nondangerous for B> 0.

V.2 Con iH&IOQSc

When the “even coevaclcns in systems (3,11) and (3.12)

were made equal o zero both methods were accurate. When they were different
from zevo Baubin's method was aécurate in system (3,11} only whereas Magnus?
method was inaccurate in both, especially in the dangerous boundery region.
However, in the region of the boundary which was definitely nondangerous,

Magnue? method remained quite accurate in the prediction of the amplitude
0

bty

of stable 1imit cycles,

Tt is difficult, in practice, to determine exactly how close
to the boundary the representative point must be in erder that it may be
Psufficiently close" for Baubtin's theory to be applicable. It is suggested

that, perheps, herein lies the resson why Bautin's theory did not yield



e

satisfactory results for system (342"a Tt wovwld have been impractical,
however, to bring the representative point closer to the boundary due to the
limitations in the range of potentiometer settings on the computer.

The predictions of Magnus' method were accurate in system
(3,15) whereas Bautinis method was not applicable,

Hence, on the basis of these examples, it can be stated
that

1, if the system contains no "even coefficients', hoth
methods are accurate, within the bounds of thé’cheories3 and

2, if the system contains Yeven coefficients", Bautints
method stands a 507 chance of being sccurate whereas Magnus! method is
inaccurate in the dangerous boundary reglon and accurate in the prediction

of the amplituds of stable limit cyeles in the regicm of the boundary

QL

f2s

Since the theoretical results obtained frowm the applicat
of both methods to the general second order system are exactly parsllel to
shose obbained from their application 4o the semi~genaral syatem, there is

no reason to expect that the practical results would be different,
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PRACTICAL APPLICATION

As a result of the study of the stability boundary in nonlinear
systems it is seen that bursts of oscillstions may be obtained from a
system if one of its parameters is varied so as to cause the representative

point of the system, in the space of the interesting parameters 3, bo Jump

back and forth across the nondangerous part of the stability brandary .

P
%
i
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Agsuming that the capacitance, the rssistence and the inductances

arae lineer, the only nonlinearities ere contained in the tube characterissics,
[n this psrticular spplication a 6J5 tube was used., Ttes i versus v_ and

& g
ge of 100 volts

o

th a coustant plate voltag

i
o
P
G
0
=
j=2e

versus v _ characteristics,
g g
-

¥

were plotted (graphs 5.

[N

The tube is damaged, ab a

fud
&
3
Q.
1
o
"y
-
i3
@
pd
o
‘»_!
e
o
©
St
@

do o grid vollage of approximately 50 volts, before it setuvates. With the
proper phase and amplitude conditions the cireui’ in gquestion will
obyiously oscillate, It is assumed that such oscillations will not cause

¥ %0 a2xceed 50 wolls,
;‘:]’
g .

The charzcieristics of the 6J5 must now be exprassed nalytically,




The analysis of the stability boundary by Bautin®s method requires only that
the empirical eguations for the tube characteristics represent the actual
characteristics for small values of vgg However, this does not hold if
Magnus? method is to be applied, Hence the empirical equations should

encompass as much as possible of the actual characteristics, For

simplicity, an empirical squation of the cubic form is attempted (1; p.L2),
namely,

a
¥y = a+ bx + cxl + dxo, (5.1)

The coefficients a, b, ¢ and d are determined by choosing four points, well

¥

distributed along the actual characteristic, setting up four corresponding
equations and solving them simultanecusly for a, b, ¢ and d.

For the i, versus vg characteristic the points chosen are those of
[+

table 5.1,
vg (volts) i& (zmperes)
«30 0
=10 0
0 11,5 x 107
0 131 x 1073

Table 5.1: Foints cn the actual iq versus vg characteristic,

o
Solving the four simvltaneous squations for z, by, ¢ and d yields
8= 11,5 x 1077
b= 1,705 x 1077

e = 6,00 x 107

ot

7
{

[»3
i

5.1 x 107

The empiricsl squation for the ia Versus v characteristic 4is then

. ; 2 3

i o= + + +

i_o=1i Slvg ngg SBVg : (5.2)
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Eliminating 11 from squations (5.L) to (5.7) yields

L dig + 92) . R(ig + 12) rv M35 =0

cepronme

at dt g

Substituting (5.2), (5.3) and (5.7) into (5.8) yields

2 . | 2 3
C Vg aog OVg 4 ,\vg = ij;% + ¥ + 1’“’2
gt dt dt
dﬁz
vhere «&= R = Ej_lil_.‘ + PN
L I ¢ ‘
p= 9 . Pp
T T
Yo o §§§'+ D3
¢ - ¢

A= _1(1 + Rp )

omw !

n= TP

il
LG S
et v = x and dx = v,
g at
)

Since d{x"} = 2udx = 2xy

dt dt
and d(xB} = 3:::2933;; = 32‘1237’

at dt

Mmay

aquation {5.9) ser be written in the form:

gx =y
dt

at

The point (x=0, y=0} is a critical point since it makes dx and dy

identically zerc., Hence Bautin's met!

2 o2 3
Gy = «dx Xy = nx* ¢ 2By = 387y - mx

d can be applied directly to

)

(5.8)

(5.9)

{5.10)

(5,11)



/

The stability boundary is givén by -ols 0, that is ,

R -5 . P12, (5.12)
L ILC ¢

The value of R which satisfies (5,12) is

RO = %ﬂMslmipl) (5.13)

Substituting the coefficients of (5.11) into the expression for the
Lizpounoff coefficient L(RO) given by Baulin (appendix T) yields

L(R

o) ( 3va~ 2Bn ) (5.11)

" T
In practice, g Meissner RF transformer type 1L-6592 was used in the
circuit of figure 5.1. Measurements indicated that M = 77 /MH and L = 1L0 ﬁHO
The resistance of ﬁhe‘coil in the zrid circuit was 6.95 ohms; that of the
coll in the plate cireuit was 5.2 ohms. 4 variable capzcitor was used in

its minimum capacitance position, ?5}}%& (as measured), Hence C = 75 ik

4

in figure 5.1,
Substituting the practical values into equation (5.13) yields

R, = 1415 ohms, For R » RO2 equabtion (5.12)yields «% > 0, Hence the

w

system is stable, For R £ RQ,«0<‘¢ 0 and the system is unstable, Is the
boundary -== O dangerous or nondangerous, that is, is L(RO) positive eor

neggative, respectively? Substituting the practical values, with R = R
& by * O.’

£

e sxpression for ¥, 4 , B and n in {$,10) yields:

et
H

3

L3l

freer

O

U

“

[

O
el
=

= :{.ql;

3

Substituting these values into (5.1L) yields L(RO) = =,0539, Hence, for
R = RO§ the practical system lies on the nondangerous part of the stability

boundary,



tzj

or R= Q; «»d= =1,012 x 1070 For R =@ , adk=c0, Thus,
varying R from zero to infinity causes the representative point of the
system, in the g~c<, L(Ro)} plane to trace the straight line locus
L(R,) = 0539 from the point (=1.012 x 107, =,0539) to (+@w, =,0539) as

shoun in figure 5.2, crossing the =0 axis at R—R = 1415 ohms,

L(RO)EStaole

Unstable
Dangerous Boundary

.

P
\ . h Point
~1.012 x 107 \}!’/
O e & .
S X A
b Progmmene NONdBDEE Y OUS
ok N Boundary
+ N '
4o N .
Al £ =:0539
= - 3 -
el | f,ﬁ 3 7§iZ§;
R=1415 N
X o
Figure 523 R-locus in the ?; 4, T (Rg)é f‘pllane.f, |

In practice, RO {the criticel resi ance value for the pfoduCUﬁor af
oseillations) was measured to be 1&000hms; Th;s is in excellent agressment

with *“e ea;cuiswud value of 1415 ohn ‘when the experimental errors

involved_in’meaSu?ing the parameters M, I, and C of the system are considered.

However, not uOGuMCh errcr would bz expscted from the approximations
involved in'the empirical equations for the tube characteristics since the
axpregsion for @éﬁconsiders only the apprqximation for small vg; since it
includes only S and P o

Hence, for R & little smsller than Bog a stable 1imit cycle is seb
up which disappears when R is made greater than Rbo Bautin stipulates in
his theory that thetéepresentative point must be "sufficiently close! to

the boundary, on the unstable side; for the system to behave reversibly in



e
\ e
VY

the phase plane when the represeuntative point in the space of the
interesting psrameters is caused to return te the stable side of the
nondangerous part of the boundary,

Magnus! method may now be applied to obtazin a rough picture of the
behavicur of the system in the large., The picture will be "rough" as far as
accuracy in ampl JLLJes ¢f 1imit cycles is concerned because the ia versus
v _empirical equation does not reproduce the actual curve for large values
of v o« In fack, the graph of the empirical equation saturates at 40O volts
whereas the actual ia versus v_ curve saturates at approximately 50 volts.

[+
Hence the amplitudes of limit gyeles obtained from the application of
Hagnust methed are expected to be wmuch larger than in practics, However
the general shape of the A-curve and the stability boundary should be
Tairly reasonable gince the empiricsl equation for the ia versus vg curve
covers the defingd portion of the actual curve fairly accurately and the
element of saturation is also accounted for. (Graph 5,3}

Th2 actual i  versus v _ curve shows no sign of saturation, Hence
o

g g
the empirical equation for ig versus v is satisfactory,
. , 2
Lpplying Magmis® method to (5.11) yields the linsarized form
dg = y
&t
- R (5,15
Gy = By v (% + B2 ) y
- -
whers 551 = oo (W3 &2)
i I (5.16)
S
and 351 w,»B*fﬁe .
B {(5.17)

The Hurwitz eriterion implies the condition for stabilitys

~{at+ B Y 30, or

E 21 (5318)
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A-curves may now be plotted in the §§i

values of R. In graph S.l, this is done for R = 0, 100, 260 ohms. The.

versus 5%1 plane for various

A-curves always start on the negative Eél coordinate and move to the left

in the third quadrant. On the other hand, the stability boundary E;i T e

moves from its position at Egi = 10,12 x 106 for R = O towards the right
until it coincides with the §él coordinate for R = 1415, For R » 1415

the stability boundary moves to the right in the fourth quadrant, Hence
the A-curve intersects the stability boundary when and only when R < 1415,
Since the gystem is stable on the léft of the boundary and unstable on the
right such intersections give rise to stable limit cycles the amplitudes of

which are determined by the value of 4 on the &-curve at the point of

Intersection, UCraph 5.5 was obtained from the caleulated data in the
; P

table So 39

Table §a3:_?Dat§‘for Awcurves of graph 5,k

B (ohms) w@a(xlﬁé) 4 (voits) Eél Cxlolgj E:l (xloé)
0 20,12 0 ~9:53 0
0 - ~10,12 10 =953 =00,2325
0 210,12 66 -9.53 -10,12
0 ~10,1.2 100 w9.53 ©23,25
100 - ~9:1106 0 =9, 20 0
100_;.*?'”“' ~9.1406 10 9,21 -0,2325 |
00 o }‘9?&06 63,6 ‘as9g,695' =9, 106
105 | #9106 100 mid;ué w23,25
260 | =826k 0 9,960 0
256 8,260 10 3,992 -0.2325
260 __gaﬁeéh 59,6 ~511fQ87 =8, 26l
260 ‘ 258926h 100 | «13,13C =23.25
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As discussed previously in conjunction with the empirical
equatlions for the tube characteristics, the amplitudes of limit cycles
predicted by the application of Magnus® theory should be considerably
larger than in the actualycase but the general shape of the A-curve should

be accurazlbte., In practice, for R = 0, the amplitude of the grid voltage

oscillations was 3l volts as compared to 66 volts cobtained from the
theoretical caleulations,

From {5.15) it is seen that the characteristic equation of the

system is ¥ =+ E?i)}% - 3%1 = 0, Referring to the form of equation
{2.9), the frequency of oscillations is given by Wl = 33 = Qzéla For

Ll - c
R = 0, w = 9,53 x 1045, Therefore, f = w = 1,55 me, OThis theoretical

- ZR®
value is one third greater than the actual frequency of 1.05 mc. This

disvdepaney might bs explained in part by the presence of significand
stray capacitance zid inductance st these frequencies,
From the foregoing analysis iﬁ is easily concluded that the gystem
will oscillate for any value of R ﬁaQG than 1435 ohms (1400 ohms in practice)
and will be stable for any value of R exceeding 1115 oklms. Also,
consideration of graph 5.l shows that switching betueen two such values of

R will creats bursts of oscillations, which is equivalent to stating that

e

the boundary is nondangercus in the large as well as in the small,

A f@l&? fres electronic circuit was designed to produce bursts of

escilletions by varying R in the manner dsscribed sbove, Consider the
cireult of Figure 5.3 in which both transistors are type 2M2L7. Table 5.l

930@5 the properties cf one such circuit. The metsr readings corresponding
t@fVi = (3 volt did not change for Vl > .3 volt, Vl was not made to exceed
3 volts for the safety of the transistors, In those cases where

¥ =1 = 0, R, was measured with an chm%te?o In cases where I, =0, K

z 2 2 e
was also measured with an ohmater,
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Figure 5,

cirveult shown.

L
)

Bxperimental set~up to measure the properties of the transistor

The resistance R2 was obbained from the ratio of the open

circult voltage to the closed circuit current at terminals 1 and 2, This

mathod assumes linesrity in the transistors for the range of the applied

henceforth neglected,



vy (volts) I (mA) Rl (ohms) Vs (volts) I, (mA) R2 (ohms)
~100 0 1200 0 0 70,000
0 0 1200 0 0 70,000
0.1 0,05 2000 0 0 70,000
02 | 0.3 65 0,005 0,06 83,4
0.3 | 0.2 326 | 0,010 0,10 100

Table 5.li: Experimental results of figure 5.3
Tf,:in place of R in figure‘S%lﬁ tefﬁinals 1 and 2 of figure 5.3

are connectadg'ﬁibecomes Rzo A rectaégulég QQV@ with proper amplitudes,
positive and‘gggative; applied to tef%ihals 3 and L will then cause Rg
to switch betgeén 70,000 ohms and 1OQ;ths at a frequency determined by the
psriod of the rectangular wave, When?ﬂg Sﬁitches from 70,000 ohms to 100
ohms the grid‘vsltage should burst inﬁe oscillati@nsq

A multivib?ator generates a rectangular wave between the plates of
the two tubes. (23 p.292,) In this éase9 the biased multivibrator of
figure 5.k was ussd with the resuliing waveform shown. The purpose of thé

13 to stabi

A

bias lize the output waveform. The ocutput waveform is

i

A

obviously toe large %o apply %o terminals 3 and L of the transistors and
must be reduced in amplitude to within 3 volts, A step~down transformer
and potenticmeter are out of the question since they would lsad the
multivibrator and destroy the desired wavefomm,

On the other hand, a cathode follower with high input impedance and
low output impedance distorts the plate%tdmplate voltage of the
multivibrator very little (Figure 5?5)3 An Rk = 220 ohms was chosen,

Since Rk ig so small, the load line for the cathode follower is very flat,
This, coupled with a small B+ of 100 volts, causes the 6J5 to cut-off for

grid voltages less than =15 volis and greater than 5 volts, Hence, the

output waveform shown in figure 5.5 is obtained, The 3 volt bias is used
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Figure S.h: Bissed mulitivibrator. Scale of oseillograms ordinate = 50
volts/division; abscissa = 0.5 millisecond/division,

Lo decrsase the negative amplitude of the wave in order to avoid damaging

tive amplitude of L volits is large enough to

ar

zigstors,  The pos

Pl
sy
4]
[aa
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‘t' 3

make the transistors conduct, When they do conduct; the effective bias of

Rk is that of 220 ohms and 326 ohms in parallel, nemely 131 ohms, The
affect of this is to ineline the load line even further snd cause the 6J5

o cuteoff for grid voltages greater than about 2 volis instead of 5 volts,

uith the negative cut-off value remaining at -15 volts, Hence, when

termingls 3 and L of the itransistor set.up are connected to the output of



Plates of .
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P multivibrator

m!fé.. »
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Pigure 5.5: Multivibrator followed bﬁ a cathode follower, Oscillpgraﬁ (13}
| ‘scaley ordinate = 50 volts/diviSion; agbscissa = 0,5
milliseccnd/divisiemo Oscillogram (2) scales crdiﬁate = 2
_vélﬁ#/divisicn; abscissa = 095’millisecond/divisioﬁQ
the cathode féiidﬁers the positive pesk of the rectangular wave .should be
less than'2 inté with the negative péak remaining the same as beﬁorey
w2ﬁ8‘voltsghis,ia found to be the case, as seen in the final circﬁit

diegram. (Figure 5.6,) The 2.5 microfarad capacitance connected across
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terminals 3 and L of the transistor set-up presents a ,606 ohm impedance

at 1.05 me. freguencies and virtually shorts out any signal transferred

from the oscillator,

The circuit of figure 5.6 is a practical example of the production

of bursts of oscillations by moving back and forth across 4 nondangerous

stability boundarys
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Bautin®s method is z good method to determine the
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dangerousnees of stability boundaries in the small, especially for systems
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in practice, to determine how far acrcss the nondangercus part of the

small? interval., Morsover, the am
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of the snalytical expressions for the tube nonlinearitites in the small,
Magnust method predicted the resistance value with egual accuracy but did
not yield good gquantitive results for the 1imit cycles because of the
analytical expressions for the tube nonlinearities in the large; however,
the gualitative results were good, in spite of the Yeven cocefficients®
present in the system, because the boundary was definitely nondangerous.

The mathematical manipulation in the development of Bautinis
theory is far more complicated and far less general than in the development
of Magmus? theory, Hence Bautin's method is further limited in its scope.

As fer as second crder systems are concerned, both methods
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CALCULATION OF L{ ) FOR A SECOND ORDER
W

NONLINEAR SYSTEM

Consider the system (5:; Ch.2)

(1)

Bypanding P and @ in power series in x and y yields:

sy = P (o, yY e Po(x, y) 4 see, and |
z ] 3
Gle, ¥ = Qz{':»f; ¥y ot Qu(x, ¥Y ot oaee,

S V- o [ - . 3 .
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vhere g = ad ~ be >0 (i.e., on the stzble side of the r-boundary) and

&+ d= 0 {l.8., on the R-boundary), sysiem (1) is brought to the so-called

Yo a o B )
d ~ i+ Pz, n)

(3)

3 it

dn = Fz + s, n)
LR
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coefficlents of system (3) sre relsted to those of system (1) by the

following relationships:
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Changing to polar coordinates p and § by the relations z = pcos §f and

n= psin # and eliminating © from system (3) yields equation (4):

ap=@fF s0s 0+ G sin ) | ()

whera P and § are now functions of pcos ¢ and psin .

Assuming g = ad « be > 0 equation (L) can be rewritien as

w( zos ¢+ Q sin ¢) 1-F sing = Q cos ¢ .
: [ f§~/ﬁ 4

which can be sypanded in series to give

ia,

ap=1 (¥ cos o+ T sin Qf:} gl + P egintl « Qcos g +
”’{'@; ""E:\ < - :
2 -y
o s s AN
[P eing - Qeos gV + ... (5)
{ —

After inserting the expressions for P and G, multiplying

vion (5) yields an expression of the form

(6)

fogolubion of {6) of the form

[:)..: w.) X.J (953 / :“\J ("9> iDgUB(@I) * e <7)

O£ @£ 2T and sufficiently small initisl condition

Inserting equation (7) into equaticn (6) and comparing
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coefficients of equal powers of /?D vields

D "-Q

a*ifw 1— 2

SU.U.R. + USR

—— b ~¢

T
i

&
e

To satisfy the initial conditien P= /2 for #=0, it is seen from equation

0.,{8) = 1, Hznce the above may be rewritten as:

(8)

rating equaticns (8) with resnsct to ¥ and applying the initial conditions

In wiew of the subsbitutions of equations (2), the values

of 2, for = 2kF (k=0, 1, 2 so.), correspond to points of the trajectory

e i e & n e . \
(trajectory in the {x, y) pia

ne) on the x-axis whersas they do not
sorracpond Lo peinte of the trajectory for any other angle. However, if the

to or diverges frq;s@he critical point on the x.axis,

§'?“" )

averywhere olse in the (x, y) plane,
" Hence a sow-called "function of succession® is devised

whereby the guccessive valuss of » on the x-axis can be found, starting

-3
ju g
i
5]

/3, for g=0. is done by substituting

K, o= U (2T}, vhers §= 1, 2, 3u.., into equatlon (7), namely,
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Expressing the Aijls and Bij*s in terms of the coefficients in equation (1)

yields:
L(,&D) = -~ {[%c(ail + allh02 + a “bjl) -
ﬂga‘la l . gz 1

+ ab(b2 + oz b, + a,.b.) + 02(a 8nn + 22,0 ) w
R X 20711 11720 11502 02 02’

2
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0 02
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Thus the charscteristic equation can be written in short form as

Ksiv - 5?\ - =0 (@)

where Sﬁv is the KronecHer delia, that is, &,

=1 fori=vand &. =0
i iv iv

»

s \ 3 N . s
for i # vo A is an algebraic variable. In general, the characteristic

egquation can be written as

‘AN el ~ .
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Xy = LK sin o into equation (1),
- k)
the n amplitude ratios K‘v can beg calculated from the characterisbic

After substitubtion, there resulisf for one particular value
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if the coefflicient matrix B is of rank n-l and if ¥ is any (n=1, n)
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v+l
v = -1

AK  sin 8 gug;wry=152,“@,m (5)
where ¢ is an arbitrary scalar constant and ‘My) is the determinant of the
matrix My’obtained from M by deleting the \Wth column (163 p.3L). The

various K 's can thus be obbtained from equations (5).



APPENDIX TTT

GRAPHS OF PHASE PLANE TRAJECTORIES

This appendix contains thirty graphs of phase plane
discussa

trajectories obtained from the analog compubter studyfin chapter IV, of the
three different second order systems analyzed in chapter ITI. Graphs 1 to

B correspond to system (3.11) and table L.1l. Graphs 9 to 26 correspond to

system (3,12) and table 4,2, GCraphs 27 to 30 correspond %o system (3.15)

and table b, 3.

The phase plane plots dx versus x. All trajectories move
dt
clockwise, as expected (123 Ch.h).
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