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ABSTRACT

This thesis describes the realization and testing of an
all digital adaptive controller that uses the concepts of
integral pulse frequency modulation and phase-lock loops to
regulate first and second order plants. The plants, which
respond the ‘best’ at high gains, operate at a point very
near their critical gain. The adaptiveness of the controller
maintains the system near its critical point even for sudden
plant changes.

The proposed design also incorporates a scheme to pro-
vide a ‘well-behaved’ transient response by operating the
system from the outset in the open-loop mode for a short
time. This scheme is based on the observation that the feed-
back in the system causes a poor plant response during the
start-up transition period.

Examples are submitted displaying how the plant re-
sponds to the transient improvement scheme and the adaptive-
ness of the digital controller. These examples are used to

judge the performance of the proposed design.



ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to Dr.S. On-
yshko for suggesting this topic as well as for the invalua-
ble discussions and comments during the course of this work.
Appreciation is also extended to Dr.A.T.Ashley, A.Gole, and
T.Mayor for their varied and valued contributions; the Na-
tional Research Council for their finmancial support of this
work under Grant No. A 8008; and to the téchnicians of the
Electrical Engineering department at the University of Mani-

toba for their practical expertise.



CONTENTS

ABSTRACT °© L ° ° ° o ° ° ° ° ° ° o ° ° ° ° ° ° C ° ° ° ° iV

ACKNOWLEDGEMENTS © e © © o o e o o o o o o o o o o s & o V

Chapter page
I, INTRODUCTION o ¢ o o o o o 5 o o s o o o o o o o @ 1

Background « o o ¢ o s o o s s o o o o o o & o
Recent Developments =« o o o o o o s s o o o o o
Statement of Problem o o o o o o o o o o o o o =
Outline of Analysis o o o o o o © o o o o o o

L1 W N

II. EXISTING PLL-IPFM DESIGN . ¢ o o o o o o o o o o o 6

General o ¢ o o s o o o o o o & o s s o s o o« o 6
Analog Design Analysis o« « o o o o o o o o o o o 10
Control Signal Characteristics =« « o o o« o » 10
Locking Relationship =« o o o o o o o o o o o 11
Stability Relationship .« o o o o o ¢ 2 o o &« 15
Control System Example .« &« o o 2 s « o o o o 15

III. REALIZATION o o o o o o o o o s o o o o o o o o o o 19

The Digital Controller « « o o o o o o o o o o o« 19
Main Program o « o o o o o o o o o o o o o o 19
Initialization Program o« o o o o s o o o o o 21
Interrupt Routine o« o s o o o o o s o o o o o« 25

The Interface =« o 2o o o o o o o o o o s o s o o 26

Sources 0f ErXror . o o o o o o o o s o o o o o o 27

Incremental Gain Variation « o o o o o o o o o« o 28
Sensitivity Analysis o o s o s o o o o o o o 29

IVo RESULTS ° ° ° o ° ° e o ° o © ° ° o ° ° o ° 3 ° e ° 39

Preface o o o o 5 o o o o o o o o o o o o o o s 39
Digital Design ¢ o o o o o o o o s o o o o o o o 40
Open/Closed Feedback Loop Design o o o o o o o o 48
Adaptive Controller o o o o o o o o o o o s o o 54
Problems with Design - o o o o s o o o o o o o o 66

V. CONCLUSIONS AND RECOMMENDATIONS o o o o o o o s« o o 72

REFERENCES ° L] o ° o ® o ° o o ° ° ° L] ° L ° ° ° ° ° [ o 74



ix

Append

AB

BO

CG

HARDWARE © e e °® ° ° ° ° ° ° ° ° °

CONTROLLER FLOWCHART .+ ¢ o o o o o

PROGRAM LISTING FOR ADAPTIVE CONTROLLER .

LIST OF FIGURES

Control system investigated by Woo

Existing analog PLL-IPFM control system

Phase comparator steady state output

Typical transient control signal .
Control signal characteristics . .
Plant excitation signal .. . o « o

Typical relationship between gain,
pulse interval, T « o o o o o o

Effects of gain on the ripple . .

°

° ° °

Using the stability relationship only method .

Digital control system o o o o o o

G(s)=1/(s+5) response for a gain of 7.5

G(s)=1/(s+5) response for a gain of 13.0

G(s)=1/(s+5) response for a gain of 28.5

Loss-of-lock phenomenon situation

G(s)=1/(s+1) response for a gain of 3.75

e

° ©

G(s)=1/(s+1) response for a gain of 2.2

G(s)=1/(s+1) response for a gain of 3.77

open/closed routine « o o o o =

= vii -

© °

page

. 76



4,10,

4,11,

4,14,

4.15.

4,16,

4.19.

4,20,

4,21,

4.22,

4,23,

G(s)=1/(s+2) response for a gain of 6.64 using
open/closed routine o« o o o o ¢ o o o o o . .

G(s)=1/(s+2) response for a gain of 6.64 in open-
loop mode o ¢ o o o s o o o « o o o o o o o o

G(s)=1/[(s+1)(s+2)] open~loop response: gain
greater than critical o o« o o o o o o o o o &

G(s)=1/[(s+1)(s+2)] open-loop response: gain less
than critical o o o o o o o o o s o o o s o o

G(s)=1/[(s+1)(s+2)] open-1loop response: gain very
near critical o o« o o o o o o o 6 6 e o o o

G(s)=1/[(s+1)(s+2)] response for a gain greater
than critical o o o o o s s s o o o o o o o

G(s)=1/(s+2) response to the adaptive controller

G(s)=1/(s+2) gain variations corresponding to the
above TesponsSe o .« o o 5 o 6 o o o o o o o o

G(s)=1/[(s+1)(s+2)] response to the adaptive
controller o o © © 5 o e 5 6 e o o o o o e e

G(s)=1/[(s+1)(s+2)] gain variations for above
response (-] -] -] -2 L] -] o o o L3 (] -3 o o -] -] (-] e

G(s)=1/[(s+1)(s+3)] response to the adaptive
controller © o o s 5 o o o 8 © ° o o o 6 o e

G(s)=1/[(s+1)(s+3)] gain variations for above
response (-] [-] [-] -3 £ -] o o L] (-] ] o ° o e o - o

G(s)=1/[(s+1)(s+2)] response to the adaptive
controller e e s © © 5 © o o o o o o o o o e

G(s)=1/[(s+1)(s+2)] gain variations for above
response -] o o -2 -] o o L] -3 o o -] L] ° o -3 -3 (]

Adaptive controller's response when pole changes
from _2 to -1075 ° © ° © ° ° ° ° ° ° ° 3 ° °

Gain variations corresponding to the above
response © o -] o - o -] o L] o o ° ° ° -] o -3 e

°

°

°

Fixed controller's response when pole changes from

"'2 to —1975 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °

Adaptive controller's response when pole changes
from -2 to =-1.5 . . e ¢ & © © o ® © © © © © °

- viidi -

°

50

50

52

52

53

54

56

56

58

58

59

59

61

61

62

62

63

64



4.27. Fixed controller's response when pole changes from

"2 to "los ° ° Y e ° o ° ° e ° ° e o ° o o ° Y 65
4.28. G(s)=1/[(s+1)(s+1)] response to the adaptive
controller ¢ o o © © o o © o o o o o o o s o o b8

4.29. G(s)=1/[(s+1)(s+1)] gain variations for above

I'ESPOHSQ ° ° 3 o o o L ° ° e ° o ° ° © ° o ° L 68




Chapter I

INTRODUCTION

1.1 BACKGROUND

Phase-lock loops (PLL) are most commonly found in the
communications area. They are used in receivers for various
applications [2,3].

Recently, PLL have been used in control applications
[4,5] where the plant to be controlled replaces the voltage
controlled oscillator in the communications applications.
The plant’s response to a PLL controllgr shows a marked im-
provement over the responses to other types of controllers.

Another technique used in control systems is pulse fre-
quency modulation (PFM) [6,7,9,10,11,12,13]. For PFM, the
signal is a series of identical pulses, with the spacings
between the pulses (or pulse frequency) containing the in-
formation [6]. The non-idealness of the pulses, and problems
with noise corruption, caused researchers to look for an im-
proved modulating technique.

One technique proposed is integral pulse frequency mod-
vlation (IPFM) where the pulse frequency is now dependent on
the integral of the particular signal and a pre-determined
integral threshold value. IPFM has the advantages of better

noise immunity [7] and ease of analysis [8].
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C:S.W. Woo [1] combined the concepts of PLL and IPFM to
create a controller that utilizes the advantages of both
methods. He found that this system has a locking range with
respect to the gain of the system, i.e., there is a minimum
gain(#0) and a maximum gain for which the system would be in
phase~lock. For any value of gain above this range, the sys-
tem would not be in lock and it would exhibit an unstable
oscillatory behavior. If the gain was below this range, the

system would just not lock.

1.2 RECENT DEVELOPMENTS

With the advent of medium- and large-scale integration
circuitry, more devices are being designed using digital in-
stead of analog components [5,9,10]. This change in designs
is due mainly to the low cost, decreased size, and better
reliability of the digital circuits [14]. The digital de-
signs are either hardware or a combination of hardware and
software; the latter, in general, considered to be the bet-
ter of the two.

For the hardware/software combination it is generally
accepted that the best combination is to implement specific
software packages in general purpose hardware [15]. Design-
ing systems this way gives the designer mcre flexibility in
accommodating the device to a given situation. Usually it is
easier to rewrite and test software than it is to redesign

and check hardware. Professor H. A. Barker stated that,
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"..oin future, software will be the key to electronic system
design..." [15].

The relative ease in changing software, and the ability
of micro-processor systems to react to situations in a pro-
grammed way have aided engineers in the area of adaptive
control. Invariably, a controlled plant will change its
characteristics over time. These changes could be due either
to physical variations of the plant, or a change din the
plant’s environment. A fixed controller may not be able to
handle these changes satisfactorily [16]. A variable con-
troller, one that uses a micro-processor system, for exam-

ple, would be able to adapt to these changes so that the

plant operates at a satisfactory level.

1.3 STATEMENT OF PROBLEM

The PLL-IPFM controller investigated by Woo [1] is the
bases of this thesis. Fig. 1.1 is a block diagram of the
regulator control system using this analog regulator con-
troller. Because pulses are a major component of the de-
sign, this kind of controller lends itself readily to a di-
gital dimplementation. This kind of approach is very
appealing because of the advantages digital circuitry has
over analog circuits.

For this thesis, a digital controller composed of the
two modulators, the phase comparator, and the gain adjust-

ment will be realized using a Z-80 micro-processor system.



system INPUT PHASE PLANT

input IPFM COMP. G(s)

FEEDBACK

IPFM

Figure 1.1: Control system investigated by VWoo

The results of the digital design are compared with the ana-
log design, then improvements are made in the digital con-
troller.

The major improvement in the digital controller is to
make it adaptive. Results will be presented to show that,
when the system is in phase-lock, the best plant response
occurs when the gain is as high as possible, An adaptive
controller is designed to vary the gain in such a way that,
regardless of the circumstances, the system gain will always
be as high as possible, even when the plant changes.

Improvements are also made in the transient response of
the plant. It will be shown that the digital implementation
of the analog PLL-IPFM controller gives a poor transient re-
sponse. A solution is proposed where the system is operated
in the open-loop mode for a short time., This results in a

much better transient response,



1.4 OUTLINE OF ANALYSIS

The relevant background on phase-lock loops and inte-
gral pulse frequency modulation, and the recent development
and uses of digital components in control applications have
been outlined in Chapter I. This information points to the
possible advantages of a digitally implemented PLL-IPFM con-
troller.

Chapter II briefly describes the analog controller in-
vestigated by Woo. Important results are also included.

Chapter III deals with the actual digital realization
of the controller. The problems with and improvements made
to the controller are also discussed.

Results of tests performed on the controller are cov-
ered in Chapter IV. The controller’s improvements are exam-
ined as different programs are added to the initial design.

Finally, in Chapter V, the conclusions and recommenda-

tions are presented.



Chapter I1I

EXISTING PLL-IPFM DESIGN

2.1 GENERAL
The only PLL-IPFM controller known to this author 1is
the unity feedback analog design described by Woo [1]. A

block diagram of this design is shown in Fig. 2.1.

system INPUT PHASE | x(t) PLANT | y(t)
—P B GAIN
input IPFM COMP. K G(s)
FEEDBACK
IPFM

Figure 2.1: Existing analog PLL-IPFM control system

In this figure, the Integral Pulse Frequence Modula-
tors, which are identical in design, convert their respec-
tive analog input signals into a series of pulses. The in-
formation contained in the modulated analog signals is now

carried in the spacing between the pulses.
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The IPFM is designed to continuously integrate its ana-
log input signal. When the value of this integral reaches a
pre-determined threshold value, a pulse is emitted and the
value of the integrator is reset to zero. The process then
repeats itself thus creating a series of pulses.

Notice, that because the threshold value is constant,
the spacing between the pulses is dependent only on the size
of the IPFM input signal. For large input signals, the value
of the integral reaches the threshold value in a shorter
time and the pulse spacing is smaller. Conversly, for small
input signals, the amount of time it takes the integral to
reach the threshold is large which makes the spacing between
the pulses large.

For convenience, a one volt step function is used as
the system input and the integrators’ threshold value 1is
chosen to be one volt-second. Therefore, the series of
pulses coming from the input IPFM are spaced one second
apart.

Looking at Fig. 2.1, the pulse sequences emitted by the
feedback and input IPFMs are the phase comparator’s inputs.
One of the comparator’s functions is to detect the initia-
tion of these pulses. By using these pulses, the comparator
is then able to produce the plant excitation signal.

This plant excitation signal is the resultant of an in-
tegrator within the comparator. Whenever the phase compara-

tor detects an input pulse, this integrator resets its out-
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put to zero and starts generating a unit ramp signal. When a
feedback pulse is detected, the integrator is interrupted
and it maintains a constant output at a level which is the
highest integrated value attained just prior to the detec-
tion of the feedback pulse. The next detection of an input
pulse resets the integrator to zero and the cycle repeats.

The time(phase) difference between the input pulse and
the feedback pulse which immediately follows is referred to
as the inter-pulse interval(IPI), In steady state, 1if the
IPT is constant then the system is deemed to be in phase-
lock.

The ramp portion of the phase comparator output depends
on the phase difference between the detection of the input
pulse and the feedback pulse which immediately follows. If
there is a feedback pulse between successive input pulses,
the comparator output is a trapezoidal type of signal. When
the system is in phase-lock, the ocutput of the comparator is
a periodic series of identical trapezoids (see Fig. 2.2).

If there is no feedback pulse between two successive
inpqt pulses, the output of the phase comparator is a saw-
tooth wave. This ahsence of the feedback pulse is most com-
mon in the transient response of the system. Typically, un-
less the gain is very large, the control signal is of the
form shown in Fig. 2.3. The sawtooth in the first interval
is due to the fact that for this interval, the output of the

plant is still small. This causes the feedback IPFM to take



Input Pulses

Feedback Pulses

! | I
. I ! I
I ! [
I I !
I ! I
Compar. Qutput

Figure 2.2: Phase comparator steady state output

more than one interval to reach its threshold value. When
this threshold value is attained, the resultant feedback
pulse causes the creation of the small trapezoid seen in the
second interval of Fig. 2.3. As will be shown in Chapter 4,
the "sawtooth followed by a small trapezoid followed hy a
large trapezoid ..." signal emitted by the phase comparator
has a detrimental effect on the plant response.

A similar effect occurs when the system gain is very
small. In this case though, the phase comparator output in

steady state is a combination of sawtooth and trapezoidal

waveforms.
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! I ! | Input Pulses

| ] Feedback Pulses

°

°

.

Comparat. Output

Figure 2.3: Typical transient control signal

2.2 ANALOG DESIGN ANALYSIS

2.2.1 Control Signal Characteristics

Examining Fig. 2.1, the trapezoidal signal that is em-
itted by the phase comparator is gain adjusted before it
goes to the plant. Therefore each trapezoid in the plant ex-
citation signal is characterized by the gain value, X, the
inter-pulse interval, T, and the interval between two suc=-
cessive input pulses, T, as shown in Fig. 2.4. For this the-

0

sis, TO is a constant one second dinterval, but the gain and

IPI are variable.
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N

|
|
|
TxK

Figure 2.4: Control signal characteristics

2,2.2 Locking Relationship

Intuitively, as the gain increases, the plant output
also increases in magnitude. This means that the time be-
tween successive feedback pulses decreases. If the increase
in gain does not force the system out-of-lock, then obvious-
ly the IPI also decreases. In other words, for a system in
phase-lock at least, the gain and IPI values are inversely
related.

Alternatively, for a system in phase-lock if the gain
is 'decreased, the plant output also decreases, and so the
time between successive feedback pulses increases. Eventual-
ly the gain is so small that the IPI value is greater than
TO and the system is out-of-lock. Therefore, there is a min-
imum gain (#0) and a corresponding maximum IPI value for the

system to be in phase-lock.
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In order to analyze the 1locking relationship between

gain and IPI, an expression for the plant output is needed.
If one describes the linear plant by the following nE:rl order

linear differential equation,

y ()™ 4 ey w gy (D

+fny(t)=KX(t)! ouaaonaeeoaoooo(an)
|t2tp

where tp is the time the first input pulse is initiated and
the fi's are constant, an expression for the plant output
can be formulated. If the system is stable and in phase-
lock then the output of the linear plant is continuous and
periodic. Therefore the mathematical description of this
output is required for only one period. For a period begin-
ning at time t. then, without going into the derivation (see
[1]), the output of the linear plant is completely described

by:

y(t-t ) = HI At ) y (t—tr>§'lg | uCt-t )

+ B 4722 ) g - 720 | u(eme )

+ H| é-l(t—tr—T)g | u(t-t _-T)
am2eAlEm T o L 472y lu(t-t_-T)

ooaooo(2a2)

where H=[1 0 0. . . 0]



13

Q =] 0 |= gain Y = Yo |= initial
0 vector 0 conditions
° o vector
K ¢]
é = "al 1 O ° ° ° O
o] -a, 1 0 o o o 0
~-a
pumcp n-——-

where -ay is a pole location, and

--------- TS i P ceecosaa(2.3)

In Fig. 2.5, the feedback IPFM integrates the plant

output, y(t), from tS to ts+T At this time a pulse is em-

OD
itted because the value of the feedback integral equals the
threshold value, E, i.e.,
tS+TO
E= y(t) dt ooeeooooeaeeocoaooooaoooe/oaoa(2¢4)
t
s

Also, the gain, K, is an explicit parameter of y(t), there-

fore equation (2.4) can be rewritten as:
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E=K°G(T) ooooaeaoeaoeoeoeaoocaeueaoo(ZaS)
where
-tr+TO+T
G(T) = y(t) dt
t +T
Y

Hence, equation (2.5) relates the gain to the IPI for a giv-
en threshold value E. It can be shown (see [1]) that for a
first order linear plant with a pole at =-a (a>0), equation

(2.5) becomes:

- T/2) B )

Figure 2.5: Plant excitation signal
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2.2,3 Stability Relationship

If this control system is phase-locked and the gain is
increased, it is observed that the feedback pulse positions
oscillate around the "theoretical value" at a critical value
of gain. As the gain is increased further, the system comes
out-of-lock and the steady state response is observed to be
unstable. Therefore, the value of gain used in the system
must be less than this critical gain, KC, for the system to
be stable.,

The feedback pulse positions oscillating at the criti-
cal gain affect the IPI value. Therefore, there is a criti-
cal IPI value, Tc’ corresponding to the critical gain.

For a first order system, the stability relationship
between gain and IPI, without going into the derivation is

(see [1]):

—————————————— oaeoeooeo(28_7)

where -a is the pole location.

2.2.4 Control System Example

Equations (2.6) and (2.7) are the expressions for the
locking and stability relationships between gain and IPI for
a first order system. The curves shown in Fig. 2.6 are
graphical representations of these expressions for a general

first order plant. The locking curve illustrates the lock-
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ing relationship, i.e., the inter-pulse interval (IPI) cor-
responding to a given gain for the system to be in phase-
lock. The stability relationship, i.e., the maximum value
of gain and corfesponding IPI for the system to remain sta-

ble, is shown by the stability curve.

stability

locking
curve

Inter Pulse Interval (secs.)

Figure 2.6: Typical relationship between gain, K and inter-
pulse interval, T (TO=1 sec.)

The critical values of gain and IPI are found at the

point where the two curves intersect, i.e., (Kc’Tc)° For
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The minimum value of gain and the corresponding maximum
value of IPI occurs when T=TO° From Fig. 2.6 then, there is
a range over which the system will be in phase-lock, i.e.,
the gain must be in the range,

Kc> K_iK(TO)
and the corresponding value of IPI must be in the range,
TC<<T_iTO
where the values of K and T are related by equation (2.6)
(i.e. curve 1),

As an example, consider the first order linear plant
with a pole at =-5. The stability and locking relationships
result in the theoretical range on the gain

20.4>K >10.0

Simulating the system on a computer for comparison pur-
poses results in the following table. This example shows
that the predicted results agree with those from simula-
tions.

Using this analog design investigated by Woo as the
bases, the realization and testing of a digital PLL-IPFM

controller has been accomplished and is presented in the

following chapters.
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Chapter II1

REALIZATION

There are three components for the digital reslization:
the digital controller, the analog plant, and an interface
between the two. The controller (the IPFMs, the phase com-
parator, and the gain adjustments) is realizeg with a Z80
micro-processor system., The plant is simulated on an analog

computer (TR-20).

3.1 THE DIGITAL CONTROLLER

The controller is composed of three parts; the main
program, initialization, and an interrupt routine. The
adaptive nature of the controller and the closing of the
feedback loop are handled by the main program. For the most
part, the PLL-IPFM implementation is in the interrupt rou-
tine. The initialization program starts the system in the
open~loop mode. Appendices R and € contain the flowchart

and actual program listing, respectively.,

3.1.1 Main Program

The main program is composed of two parts: the adapta-
bility routine, and the feedback-loop closing routine. The
controller becomes adaptive after the feedback 1loop is

closed.
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As will be shown in the next chapter, the larger the

gain is (at least up to the critical value), the smaller the
ripple, and subsequently the better the performance. Ripple
is defined here as the size of the oscillations about the
operating point., Fig. 3.1 shows an exaggerated example of

this,

ripple

Operating Point

high low
gain gain

Figure 3.1: Effects of gain on the ripple

Having the gain as high as possible then, will be the
criterion for chosiﬁg the gain. Using this criterion in the
adaptation routine, the controller inspects the plant output
every tenth period and determines if the system is stable.
If it is stable, the gain is increased.

The system is also checked for stability every fifth
period. If the system is foénd to be unstable during these

checks, the gain 4is decreased. In this way, the plant has
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had time to adjust to the new gain value if it had just been
changed and produce a stable output. If the plant cannot ad-
just to the gain because the gain is too 1large, the five
period check will hopefully bhe a short enough time so that
the plant oscillations don’t become too great.

The other part of the main program is the feedback=-loop
closing routine. Because it is very closely related to the
initialization program, the feedback-loop closing routine

will be explained in the following section.

3.1.2 Initialization Program

Examples in the next chapter will point out the fact
that the design outlined in Chapter 2 creates a probler in
the transient response of the plant. The reason for the
poor transient response is the '‘plant’s slowness in reacting
to the sudden change in the dinput signal brought about by
the step function. This is reflected by the feedback IPFM’s
output. The effect is explained in Section 2.,1. Fig. 2.3 is
a typical example of this problem. This problem is solved by
programming the <controller to ignore the feedback pulse,
i.e., operate in the open-loop mode. Instead of a plant ex-
citation signal like that of Figo. 2.3 being emitted from the
controller, it is forced to emit a signal like that of Fig.
2.,2. Then, when the plant response is ‘near’ the desired op-
erating point, the contreoller is made to use the feedback
pulse to characterize the plant excitation signal by closing

the loop.
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To operate in the open-loop mode, the characteristics
of the signal we want to force the phase comparator to gen-
erate must be chosen. From Chapter 2 we know that any gain/
IPI(inter-pulse interval) pair on the locking curve of Fig.
2.6 such that the gain does not exceed the critical gain,
will keep the system stable, therefore the question is which
pair of values is to be used.

It was pointed out earlier that the higher the gain,
the better the system performance (see Fig. 3.1). The crit-
ical gain best satisfies this criterion. In the open-loop
mode then, the system will be forced to operate very near
its critical point.

There are two ways to find the critical point. The
first way uses the equations from Chapter 2 for the locking
and stability relationships. From these relationships, a
computer can find the critical point by trial and error, or
graphically as in Fig. 2.6,

The problem with this first method is that, as the
plant becomes more complex (i.e., third order, fourth order,
etc.), the equation for the system locking becomes extremely
complex. For this reason, another method is devised.

The second method uses the stability relationship and
the plant (or a simulation) itself. The equations for sta-
bility are relatively easy’to solve even for the more com-
plex plants. Using a computer, a list of gain/IPI pairs that

adhere to the stability relationship can be made. Using tri-
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al and error then, the plant, in open-loop mode, is cont-
rolled by a signal with these gain/IPI characteristics. The
required pair will correspond to the intersection point of
the locking and stability curves (see Fig. 3.2), i.e. the

point (Kc’Tc)'

Gain

K

-
T, Tg T, Ty Ta

Inter Pulse Interval

Figure 3.2: Using the stability relationship only method

For a step input there will be, at most, one intersec=-

tion point. For a first order system, points on the stabil-
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ity curve are calculated using equation (2.7) from Chapter
2, The location of the locking curve dis wuncertain. Fron
Chapter 2 though, one can see that the equation for locking,
equation (2.6), depends on the input to the system (a step
function in this case). (A different input would produce a
different locking curve.) Every point on the locking curve
of Fig. 3.2 causes the average plant output to be the same
as the input signal therefore this will also be true at the
point were the two curves intersect. The method for finding
the critical point 1is now explained by example and using
Fig. 3.2,

Let the system have a one volt step input, and let
point A be the test point. From the locking curve, to get a
plant response with a one volt average, the pair (KA,Ta)
should be used. Using TA instead will make the phase error
too large and so the trapezoidal signal will be too large.
This will make the plant average signal larger than one
volt.

A similar problem occurs if point B is the test point.
Now, TB is too small and so the plant output will have an
average less than one volt. Examples of this will be shown
in the next chapter.

The obvious problem with this method is that the plant,

or a simulation of it, is needed. If neither is available,

this me thod cannot be used.
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Regardless of which method is used in finding the crit-
ical point, there is the question of when to close the feed-
back loop. The criterion used is: the loop will be closed
when the average plant output is within a given range of the
input signal.
Due to quantization of the analog values for gain and
IPI, the values used by the controller may not be the exact
counterparts of the analog values, so the voltage range has
to be greater than zero. If the voltage range is too large,
the loop will be closed too early, resulting in a poor tran-
sient response., If the range is too small, and the wvalues
used are not very accurate, the loop may never close. After
experimenting with three different ranges, +1, +2, and +3
quantum levels, it was decided that a range of +2 quantum
levels should be used (one quantum level corresponds to

about 20 mv, i.e., 1/256 of 5 volts).

3.1.3 Interrupt Routine

The last part of the controller is the interrupt pro-
gram which contains the PLL-IPFM implementation. It consists
of three integration routines, i.e., the input integral, the
output integral, and the feedback dintegral. The dintegral,

I, of a signal, y(t), is approximated by the equation,

IzAt Eyi(t) oeaeaoaoeeaoaenwcoaoeeeoooe(Bol)
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where n is the number of sections over the integration
period [17], i.e., n = TO/At°

The integrators are in the interrupt routine so that
the t in equation (3.1) will be small and constant (a re-
quirement of equation (3.1)). The interrupt is controlled by
a timer (a CTC) which is programmed to interrupt the micro-
processor once every 1/256 of a second. This gives an essen-
tially constant, and small, t relative to the period.

The value produced by the output integral is analogous
to the phase comparator output signal discussed in Chapter 2
This signal, after being multiplied by the gain (using the

technique suggested in [18]), controls the plant.

3.2 THE INTERFACE

Due to the different signal requirements, interfacing
between the two computers is needed. These interfaces are
composed of A/D converters, a D/A converter, and associated
hardware.

The D/A converter translates the digital word from the
micro-processor system, into a current signal. An operation-
al amplifier is then wused to change this current into a
voltage suitable for the analog computer.

The A/D converter continuously converts the particular
signals (input and plant output) into digital words. In this
conversion mode, a slight delay is needed between the end of
a conversion cycle and the beginning of the next conversion.

Shift register circuitry is employed to accomplish this.
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Also, the maximum clock frequency the A/D converter

will operate at is less than the available system clock. A

divide-by-six circuit slows the 4 MHz system clock to 667
kHz, which is within the range of the A/D converter.

These circuits and necessary timing diagrams are shown

in Appendix A.

3.3  SOURCES OF ERROR

Most of the errors that plague other digital systems,
plague this controller. These problems are mainly in the
form of constraints placed on the system, either by the
plant or by the digital controller itself [16].

The major problem with this digital controller is due
to the fact that the micro-processor system being used is
only an 8-bit machine. Because of this, errors are created
by the quantization of the analog signals and the gain val-
ue, and by the rounding process in the multiplication sub-
routine. These errors, along with the fact that there 1is
probably noise present, will make "... perfect locking al-
ways with zero error impossible."[14].

There are other problem areas in this digital control-
ler. The error created by the integration approximation is
slight; a value of Ay(t) x At/2 [17] (Ay(t) and/or At are
very small).

A problem with digital controllers in general, is the

minimum cycle time required. Minimum cycle time refers to
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the minimum amount of time needed for the program to func-
tion correctly. For this controller, the minimum cycle time
is governed mainly by the slowest time it takes the inter-
rupt routine to execute. Time is also needed for the main
program to run but this is a small amount in comparison to
the interrupt routine time. The program is interrupted once
every 1/256 of a second, so the minimum cycle time has to be
less than 3.9 msec.. Fortunately, for this digital imple-
mentation, the minimum cycle time is about 0.6 msec., so the
minimum cycle time is not a problem.

Considering these sources of error, slight as they mavy
be, a system will be considered stable if the maximum con-
troller output voltage varies (randomly) by no more than one

gquantum value about an obvious average quantization level.

3.4 INCREMENTAL GAIN VARIATION

As was explained in Section 3.1.1, the adaptive con-
troller varies the gain to suit the situation the system is
in. In this section, an expression is developed to show how
sensitive the gain is with respect to changes in the plant
response. By using this sensitivity expression, any ‘undesi-
rable’ changes in the plant response can be counteracted by
an appropriate change in gain. This should keep the system
operating very near its critical point for all time.

Theoretically, this sensitivity analysis which is about

to be developed, works. Unfortunately, the final expression
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Theoretically, this sensitivity analysis which is about

to be developed, works. Unfortunately, the final expression
includes exponential and square root terms. Evaluating these
terms on the micro-processor system being used would create
innumerable errors and take too much computer time, i.e.,
this analysis is useful if a more powerful machine were used
but it is just not practical for use with this digital con-

troller,

3.4.1 Sensitivity Analysis

The incremental amount the controller varies the gain
by is a major determining factor on how well the system per-
forms. For cases when the plant change is very gradual (if
at all), a very small gain increment is desired; just enough
change in the gain to allow the controller to follow the
plant variations and keep the plant at the critical point.
The increment cannot be so large though, as to send the sys-
tem into dinstability. If there is the possiblity of very
abrupt changes, a larger gain increment would be better. A
large increment means a faster response by the controller
which would have the system operating at the critical point
in a shorter time.

From the previous sections, it was shown that the sys-—
tem will be operating very near its critical point when
adaptability is invoked. Therefore, any plant variations

will cause one of two things to happen to the system: either



30

If the plant variations cause the system to become more
stable, the ripple will increase in size, assuming the sys-
tem remains phase-locked. This situation creates no real
problem with the system. The system response is just not as
good as it could be.

Problems arise when the plant variation causes the sys-
tem to go to its critical point. As was explained in Section
2.2.3, these plant variations cause the feedback pulses to
oscillate about some theoretical value. These oscillations
cause the average system response to oscillate about the
system input value (this will be seen in the next chapter).

For the sensitivity analysis, the controller observes
the plant output at the start of every interval, i.e., when-
ever an input pulse 1is detected. By observing the plant
output at these points, the controller is able to decide if
the system 1is going unstable or remaining stable. (If the
points do not oscillate about some value, but instead are
equivalued, then the system is stable.)

Equation (2.2) mentioned in Chapter 2 for the plant re-
sponse 1i1s the starting point of the analysis. This equation
was derived assuming that the system was in steady-state and
so a further assumption is that, for this analysis, the sys-

tem is stable until time t=ti_ For convenience, let j=i-1

1 e
and so ti—1=tj° For simplicity, it is alsoc assumed that the

incremental gain variation is constant over a given inter-
val, TO’ and if the gain variation is changed, it is done

instantaneously at the beginning of the interval.
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incremental gain variation is constant over a given inter-
val, TO, and if the gain variation is changed, it is done
instantaneously at the beginning of the interval.

. .th | .
Symbollically then, for the i— interval extending over

the time ti to ti+T the controller will use the plant re-

0°
sponse occuring at the time ti to decide if the system is
stable. For time t>tj, the system is assumed to be on the
verge of instability. The controller senses this and in-
stantaneously changes the gain in accordance with the sensi-
tivity expression for the interval ti<t £t so that the
system is again stable.

For a first order plant then, equation (2.2) which re-

lates the plant response at a time t, i.e. y(t—tj), to the

gain K, and IPI, T, for a given period TO becomes:
3

e-a(t-tj )°

y(t—tj)=[ y. ] u(t-tj) +

t

K(t~t -T) + K(e 2(t-tj-T)_

-—— e e A —— A — ———— o - ————

where -a is the pole location
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The sensitivity of the plant response with respect to the

gain then is given by:

yy(t-t,) = e'a(t'tj)oayt ut-t.) +
—————— - j
dK ————
oK
(t—ti) + e a(t-ty)_, u(t-t,) -
a a2

(t-t .-T) + K (t-t =T) u(t-t -T) -
d | |
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where,
a(t—tj—T)=— aT eoeweaoooao.ouoooeoeeaoooe(303)
oK oK
and,
5 (e—a(t~tj—T)_l) - (e-a(t-tj))ae—aT +
)4 dK
cmalt-tg) o (eaT)
oK
= 0:e2T 4 a7ty L (3.4)

To continue this analysis, an equation relating IPI to
gain is needed. Rearranging equation (2.6) of Chapter 2,

one gets,

where E=threshold value. This becomes:

12 - 2°T*T, + 2+aE = 0

or,



34

T= TO i/ TO- 2°a°E / K eeeeaoaoosa(BuS)
For 0 < T < TO, equation (3.5) becomes:
T = TO —/ TO - 2°8°E / K onaeooeaoe(3n6)

For this thesis, TO=1 and E=1, therefore equation (3.6) be-

comes:

T =1 - d/ 1 - 2-a /K

From this one gets,

oT

oK oK

1
Q
]

1
p—

i
N

°
[\

oK
= =1 | —2ea=(-K"2) |
IRttt v L

2 1 (1~ 2¢a [/ K) I

- - a eoeeoooonooeooooe(3o7)

(1 - 20a /7 xr)/2
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Substituting equation (3.7) into equations (3.3), and (3.4)
respectively, one gets:

t-t .-T =
9 ( i ) a

oK K

Substituting these equations into equation (3.2) gives:

ay(t—tj) = e_a(t—tj)e

9K

u(t=-t . ) +
aytj j)

oK

a K(1-2a/K)1/2

emalt-ty=T) u(t—tj—T) +
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u(t-tj-T) oeuoeoaeeo(308)

Equation (3.8) is an expression for all time greater
than t=tj, that relates changes in the plant response to
changes in gain. For the sensitivity analysis, the relation-
ship between the changes in plant response and gain is want-
ed at time t=ti or tj+T o« The time t=tj has passed and so

0

the plant response at that time, i.e. y has already oc-

t; °?

]
cured. Therefore, evaluating expression (3.8) at t=tj+TO
gives:
ay(t—tj) = e73T0.0 + Ty + e"3T0_ -
dK t=t +T a a2

i 0
Toll Ll -
a K(1-2a/K)1/2
-a(To"T) 1 +
_____ 5=====
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-a(TO_T> oaoaneoaoe(3¢9)
K(1-2a/K) /2
Recombining, one gets:
3y (t,) = e738T0(1-e72Ty a1 + 72 (T0"T) ceeeneess(3.10)
3K a’ K(1-2a/K) /2
= X

By approximating the partial derivative in equation

(3.10) by the discrete amounts Ay(ti) and AK, one gets:

Ay(ti) = Xe.AK
Or, solving for AK:

AK= [ X]—1°Ay(ti) eaoaeooeooaoocooaeoooaoueaeo(3oll)

Even though the resulting equation (3.11) is for a
first order system, the expression is far too complex to be
solved by the 8-bit microprocessor being used. The exponen-
tials would have to be approximated by the first few terms
of their series expansion. Using any more than the first two
terms in the series would introduce multiplication rounding
errors. The other multiplications and divisions in the ex-
pression would introduce more rounding errors to the resul-
tant. The algorithm used to solve the square-root term will
also introduce rounding errors. With all of these errors and
approximations, the result of the expression would not be a

very good estimate for the sensitivity.
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The expression would also take a lot of computer time
to solve even if , some how, the errors and approximations
were not too much of a problem. This would probably make the
program execution time greater than the minimum cycle time
which was defined in the previous section. If this happens,
then the controller will not work properly.

With all of these problems of timing constraints, ap-
proximations, and rounding errors, using the sensitivity
analysis equation to change the incremental gain is not
practical for the micro-processor system being used. If a
more powerful machine were used, then this analysis could be
useful.

Therefore, for this thesis, the incremental gain varia-
tion will be a constant one quantum increase or decrease in
the gain. Using this smallest variation possible will insure
that the system is not suddenly operating way beyond the
critical point; the system will be operating, at most, one
gain quantum past the critical.

Unfortunately, using the smallest incremental gain var-
iation possible means that the system reacts.very slowly to
sudden plant changes. It will be seen in the mnext chapter
though, that the one quantum variation gives good results,
even for the case when the plant pole location is suddenly

changed.



Chapter 1V

RESULTS

4.1 PREFACE

This chapter deals with the actual testing of the con-
troller. The controller is first made to operate similar to
the design discussed in Chapter 2. The performance of the
digital implementation can then be compared to the results
found in Chapter 2. A problem, called the loss-of-lock phe-
nomenon [19], occurs with this design. An example showing
this phenomenon is given.

The rest of the chapter is devoted to the improvements
made on the controller, starting with the addition of the
open/closed feedback routine. A method for finding the
critical gain and inter-pulse interval(IPI) values when the
locking relationship is unknown is demonstrated. Finally,
the adaptive controller (with the open/closed feedback rou-
tine) is tested for various systems.

Fig. 4.1 shows a block diagram of the proposed digital
control system. The plants to be controlled are simulated
on the analog computer. Recordings are made of the control
signal and the plant response. The input to the system is a
one volt step function which is shown as a dashed line on

the recordings. Also, the integrators have a threshold value
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of one volt-second, which makes each interval one second in

duration.,

system Digital Kex(t) Plant y(t)
Controller
input G(s)

Figure 4.1: Digital control systemn

4.2 DIGITAL DESIGN

To compare the digital implementation to the analog de-
sign, we will test the controller on a first order plant
where G(s)=1/(s+5), It was pointed out in Chapter 2 that
theoretically the range of gains this system should be
phase-locked for is:

100 £ K < 20,8
Figs. 4.2, 4.3, 4.4, show a sampling of the test results,

In Fig. 4.2, the gain used is 7.5. The system should
be, and is, out of phase-lock because the controlling signal
is not large enough. Looking at the first interval, the con-
trol signal has a sawtooth waveform. This is the strongest

signal the controller will inject into the plant, yet it is
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These transients are caused by the sawtooth signal in
the first interval and then the very small trapezoid in the
next interval. This trapezoid is created because the feed-
back integrator, which stops the ramp signal thereby creat-
ing a trapezoid, takes more than one interval to reach the
threshold value. In other words, the trapezoid is created by
the input intepgrator reaching threshold for the second time
as the feedback integrator reaches threshold for the first

time., This effect is typical of this controller design.
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Notice too, in Fig. 4.3, the staircase effect on the
ramp portion of the trapezoids, and the apparent imperfect
locking; the maximum amplitude of the trapezoids, when the
system is 1in phase-lock, varies by one quantum level some-
times. Both of these effects are due to quantization.

Fig. 4.4 shows the loss-of-lock phenomenon. The gain
used is 28.5, well above the critical gain for this plant,

yet the system appears to be in phase-lock.
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This phenomenon can be explained by first examining

equation (2.6) in Chapter 2. Rearranging it:

K=E'a/ [t'(TO-t/.?)] ooeoeoooouoQuonaoooeaooeoosao(anl)
where, =-a= pole location (= -5)
TO = interval (= 1 sec.)

E = threshold level

Rearranging equation (4.1):
2

t” = 2¢t + 2:E*5 / K =0

or

t=1_J1—2'E‘5/K aoooonoeeoeaoaoeeaooooooao(&az)
fecause t < T, = 1 sec.

0

Substituting values for E(=1), a, and K(=28.5) into equation
(4.2) gives t=0.19 seconds. Obviously, this is not the IPI
value in Fig. 4.4 the value is approximately 0.5 seconds.

If the threshold is two volt-seconds though, equation
(4.2) gives an IPI of 0.45 seconds which agrees with Fig.,
4.4, What has happened is, there are actually two feedback
pulses for every one input pulse (see Fig. 4,5). The second
feedback pulse is ignored by the controller, so that the
controller views the plant as if it were responding to a one
volt step input, while the plant responds to an apparent two
volt step input. The plant is forced up to the two volt lev-

el and held there by the size of the gain.
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Input Pulses

L Z A ——
0 |o— — ———

Feedback Pulses

Compar. Output

Figure 4.5: Loss-of-lock phenomenon situation

Comparing the results of the digital controller to
those of the analog controller, it appears there is agree-
ment between them (see Table 1 in Chapter 2). The only disa-
greement is with the loss-of-lock phenomemon case. Woo did
not observe this result only because he simulated the entire
system on a computer and did not make allowances in the pro-
gram for the plant to lock at other than one volt.

From these comparisons then, one must conclude that the
digital implementation operates in a way similar to that of
the analog controller.

Testing the same digital controller on a different
plant, G(s)=l/(s+1), produces the results shown in Figs. 4.6

and 4.7,
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The gain used for Fig. 4.6 is 3,.75. Being this close to
critical gain causes problems for the controller. Notice
first interval sawtooth that drives the system to the
volt level. The transients, caused by this sawtooth, do
appear to be as bad as they were for the previous plant.

present system though, does not approach phase-lock for

at least twenty intervals, and even then there is an oscil-

lation on the control signal for another twenty intervals.

Then, finally the systém is locked.
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4,3 OPEN/CLOSED FEEDBACK LOOP DESIGN

The previous discussion has made the transient response
problems with the design quite clear; the transients are too
large and/or too longe. In this section one will see that
incorporating an open/closed feedback loop routine, like the
one detailed in Chapter 3, improves the transient response,

Fig. 4.8 shows the results of the same 1/(s+1) plant,
but with the open/closed-loop routine added to the control-
ler. The controller is forced, in the open-loop mode, to
emit a trapezoidal signal to the plant. These trapezoids
are characterized (see Fig. 2.4) by the critical values of
gain and IPI, i.e., Kc=3°77’ Tc=0°375 seconds. The vast im-
provement in the plant response is obvious; the system is in
phase-lock in about five intervals and there is no overshoot
or undershoot.

Fig. 4.9 shows the results of a plant characterized by
G(s)=1/(s+2) to the same controller routine. In the open-
loop mode, the critical values of gain and IPI for this
plant (Kc=6,64, TC=O.37O seconds) are again used to charac-
terize the trapezoidal signal. This plant response is almost
as good as the response of the plant G(s)=1/(s+1). The
slightly poorer response (seven intervals to lock) of the
present plant is due mainly to the error in digitizing the
analog gain and IPI critical values,

The critical values used for the plant G(s)=1/(s+2) are

derived from equations (2.6) and (2.7) of Chapter 2. The



using open/closed routine

I
I
Figure 4.8: G(s)=1/(s+1) response for a gain of 3.77 ]
I
I

open-loop response of the plant to these values of gain and
IPI is shown in Fig. 4.,10. One can see that the average of
the plant response is about one volt. As wés explained in
Chapter 3, 4if only the stability equation is available,
then, by testing different points on the stability curve and
observing the average plant response, a fairly good estimate
for the critical gain and IPI can be obtained. This trial
and error method is made use of on the second order plant,

G(s)=1/[(s+1)(s+2)].
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Figs. 4.11, 4.12, 4.13 show this second order system’s
open-loop response to different gain/IPI pair values that
satisfy the stability equation only.

Fig. 4.11 shows the resulting response when the pair is
greater ﬁhan the critical gain/IPI pair values; the average
value of the plant output is about 1.2 volts. If the pair is
smaller than the critical pair, the result is Fig. 4.12: the
average plant output for this case is about 0.9 volts.

The gain/IPI pair used in Fig. 4.13 gives the best re-
sult with the plant average about 1.04 volts. It is not nec-
essary to be completely accurate in chosing the values to be
used because the rest of the program will take care of any
minor discrepancies. Therefore, the pair used in Fig. 4.13
will be used as the critical values.

If the gain/IPI pair used in the program does not give
a very good open-loop response, the system has a great deal
of difficulty adjusting itself when the loop is closed. This
can be seen in Fig. 4.14 where the gain/IPI pair of Fig.
4.11 is used, and the open/closed~loop routine is incorpo-

rated.



Figure 4.11: G(s)=1/[(s+1)(s+2)] open-loop response
for a gain greater than critical
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Figure 4.12: G(s)=1/[(s+1)(s8+2)] open-loop response
for a gain less than critical
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Figure 4.13: G(s)=1/[(s+1)(s+2)] open-loop response:
gain very near critical

When the loop closes, the controller takes over sixty
intervals to get the system into phase-lock. Then, because
the gain used in Fig. 4.14 is greater than the critical
gain, phase-lock 1is 1lost after ten dintervals. Therefore,
even though it is not crucial that the open-loop values used
for.the critical pair1 are not the actual values, the closer
the values are to the actual critical values, the better the
plant response will be.

- —— v e - —— = @

% %
The symbols K and T will be used from now on to denote
the respective open-loop critical wvalues of gain and in-

ter-pulse interval.
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ADAPTIVE CONTROLLER

All the systems that have been discussed up to now have
fixed, i.e., the controller gain was constant and the
location(s) of the different plants did not varv. 1In

section, the adaptahility of the controller will be

tested. The ability of this controller to vary the gain to

suit

the plant is what makes this controller so much more

versatile than the previous designs.
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Before any test results are examined, a criterion for
varying the gain is needed. For this particular controller,
the gain is varied such that the plant yields 1its best re-
sponse, and the gain is as high as possible. "Best" re-
sponse means the ripple is as small as possible, and the av-
erage value of the plant response is exactly the same as the
input signal (one volt in this case).

The adaptive controller is tested under two different
conditions. The first set of tests uses a fixed plant and
the controller varies the gain to yield the best possible
response. In the second set of tests, the plant changes its
pole location and the controller varies the gain to follow
the change and give the best possible response.

The fixed first order plant, G(s)=1/(s+2), is used to
compare the fixed controller’s response (Figure 4.9) to the
adaptive controller’s response shown in Figs. 4.15 and 4.16.
Examining the control signal in Fig. 4.9 a slight periodici-
ty is noticed. There is no such periodicity in Fig. 4.15,
The control signal is more random in nature.

The periodicify of Fig. 4.9 super-imposes a three hertz
signal on the averaée value of plant output. To the adaptive
controller, this variation of the average value is taken as
an unstable system response. To prevent instability, the
gain is reduced until no oscillations in the control signal
are noticable. This is why the control signal of Fig. 4.15

appears random. After twenty-two dintervals phase-lock is
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achieved; the controller has reduced the gain from 6.61 to
6.44, a three quantum level decrease.

After reaching phase-lock, the controller constantly

tries to increase the gain to get a better response. Twelve

periods in phase-lock elapse before the gain is increased by
one quantum value. The system becomes unstable and so the
gain is decreased to 6.44 again. From Fig. 4.16, which shows
the actual gains used in Fig. 4.15, one can see that the

controller is always trying to push the gain higher,

Figs. 4.17 and 4.18, and Figs. 4.19 and 4.20 show the
system responses of the plants G(s)=1/[(s+1)(s+2)], and
G(s)=1/[(s+1)(s+3)] respectively. Fromr the gain variation
plots of the respective plants (Figures 4.18 and 4.20), one
can see that, unlike the first order plant just discussed,
the gain for these plants increases. This increase implies
that the starting values of gain and IPI were less than the
critical values. As was pointed out earlier, it is not im-

portant to start at the critical values because the control-

ler varies the gain to get the best response.

The insensitivity of the system to the_starting value
of gain can be further recognized by starting the plant
G(s)=1/[(s+1)(s+2)] at the apparent critical gain just found

;i;;. for this system (from Fig. 4.18). This gain, and corre-
sponding IPI value, gives the response shown in Fig. 4.21,
The overshoot makes the controller decrease the gain for a

short time. The gain is then increased until the same final
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Figure 4.17: G(s)=1/[(s+1)(s+2)] response to the

adaptive controller
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G(s)=1/[(s+1)(s+3)] gain variations
corresponding to the above response
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gain that was reached previously is achieved. (Compare Fig.
4.18 with Fig. 4.22). This shows how the controller is in-
sensitive to the values of gain and IPI used to start the
system, when the values used are close to the critical val-
ues.

The adaptability of the controller to plant variations
is now tested. In a real application, changes in the plant
are very possible. If plant changes occurred, a fixed con-
troller would not be able to give the best response possible
without some manual tuning. An adaptive controller though,
would be able to adjust to these changes accordingly.

Fig. 4.23 shows how the adaptive controller responds as
the plant G(s)=1/(s+2) changes its pole location from -2 to
-1.75. Comparing Figs. 4.24 and 4,18, the gain variations at
the beginning of the test are about the same, as they should
be. About thirty intervals after start-up, the plant is sud-
denly changed to the form G(s)=1/(s+1.75). The change is too
fast for the controller to make a smooth transition, but it
eventually does get the new system into a stahle phase-lock,
The gain, when stability is attained (K=6908), is only 4%
higher than the critical gain for this plant predicted by
the equations (KC=5,81+)e (Similar results are obtained when
the change is more gradual.)

The result of a similar situation occuring with the
same plant, but with a fixed controller, is shown in Fig.

4.25, The starting gain for a first order plant with its



fiif

dEEEER TR

]
| |
| Figure 4.21: G(s)=1/[(s+1)(s+2)] response to the I
| adaptive controller !
| |

K nouoaloaoolaeeelaeaeleaoeleaaoleoooloooeleooelnooolo

& - 10 20 30 40 50 60 70 80 interval
KC—Z quantums

Figure 4.22: G(s)=1/[(s+1)(s+2)] gain variations
corresponding to the above response



I

| Figure 4.23: Adaptive controller's response when pole
| changes from -2 to =-1,75
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Figure 4.24: Gain variations corresponding to the above
response
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pole at =2 1is wused throughout. When the plant suddenly
changes i1its pole 1location, the gain is greater than the
critical gain for a 1/(s+1.75) plant. Because fhe gain is
too high, the trapezoids of the plant excitation signal os-
cillate about the theoretical value which causes the average
plant response to oscillate about one volt. Recall, during
steady state the excitation signal stays within one quantum;
however, in this case it’s oscillating by at least two quan;
tum levels. This oscillation indicates that the system is

unstable.
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| Figure 4.25: Fixed controller's response when pole |
! changes from =2 to =1.75 I
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If the pole location of the plant is changed even more,

the advantage of using an adaptive controller becomes obvi-
ous. Fig. 4,26 shows the system response of avfirst order
plant with its starting pole at =2 when the adaptive con-
troller is used. Thirty intervals after start-up, the pole
location is changed to =-1.5. It takes the controller about
140 intervals but eventually the system is back 1in phase-
lock. When the system is in phase-lock the gain used
(K=5.31) is just &% higher than the theoretical c¢ritical

gain (Kc=5°09) for the plant 1/(s+1.5).

|
|
Figure 4.26: Adaptive controller's response when pole |
changes from =2 to =1,5 ]

I

o e e



65

Fig. 4.27 shows the fixed controller’s response to the

same situation., Immediately after the change in the pole
location, the system goes unstable because the gain being

used is much to large for the 1/(s+1.5) plant.

‘ u‘ 1‘ f i I‘ JM‘ M L J

ooyt |

e G

I
|
Figure 4.27: Fixed controller's response when pole ]
changes from =2 to =1.5 !
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4.5 PROBLEMS WITH DESIGN

The major cause of the problems with this digital con-
troller is the resolution of the micro-processor system be-
ing used. Because of 'the coarse resolution, some of the
methods used and qriteria chosen for this design are not op-
timal, but they are the best under the given circumstances.

The resolution problem is most evident in the adapta-
bility criteria. As was explained in Section 3.3, if the mi-
cro-processor system used had better resolution and more
computing power, the sensitivity equations developed in Sec-
tion 3.4.1 could be used to vary the gain. Using these sen-
sitivity relationships would give better results.

Instead, less than optimal criteria have to be used.
These criteria require the following decisions be made.

1. The increment by which to increase/decrease the gain
by.
2. The time between system checks to see if the gain
needs to be changed.
3. The properties to look for when the system is
checked.
For the plants previously discuséed, the\ values used for
these three criteria gave superb results. For at least one
plant though, G(s)=1/[(s+1)2]9 these criteria caused the
system to fall out-of~lock.
The response and gain variations for the

G(s)=1/[(s+1)(s+1)] plant are shown in Figs. 4.28 and 4.29,
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respectively. One can see that, after about one hundred in-
tervals, the gain is less than the minimum gain needed for
locking. There are a couple of points within these one hun-
dred intervals where it appears that the controller is able
to stabilize the gain and improve the plant response. Even-
tually though, due to the three criteria just mentioned, the
gain is too low for the controller to operate properly.

This problem occurs because the adaptive algorithm in
this controller is written with the assumption that the sys-
tem is operating at, or near the critical gain. Usually for
this plant, when the controller compares the average plant
response value to that of the input value, they are not the
same. This means that the system is unstable and the comn-
troller reduces the gain.

Eventually, the minimum locking gain is reached. Be-
cause the controller cannot distinguish between an unstable
response due to a high gain, and a response due to a gain
that is less than the minimum locking gain, subsequent gain
reductions below the minimum locking gain causes inability
of the controller to ever regain phase-lock.

If the time between checks oﬁ the system had been long-
er, the response of this plant would have probably been bet-
ter. Eighteen intervals after start—-up, the system is stable
at a high gain (K=2.30), and stays that way for another ten
intervals. The controller, trying to induce the system into

giving the best response, tries to increase the gain. This
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causes an oscillation in the system from which the control-
ler recovers, but at a lower gain.

Another attempt at increasing the gain causes another
oscillation in the system which is its demise. The control-
ler, trying to correct for the oscillation, decreases the
gain too fast until finally, the gain is less than the mini-
mum locking gain. If the controller had given the plant more
time to react between gain changes, the system might not
have failed.

One solution to the above problem would be to program
the controller such that the gain used in the system is not
less than the minimum locking gain. For a given plant it
would mean evaluating equation (2.5) at T=TO° Including this
solution into the adaptive controller algorithm would mean
the above result would never happen.

Increasing the time between "gain decreases" would also
solve the above problem, but would create another. Take, for
example, a system that is stable very near the critical
gain. The controller increases the gain trying to get é bet~-
ter response, but actually causes the system to go unstable.
The gain should be reduced immediately because the longer
the gain is held above the critical point, the harder it is
for the controller to restabilize the system. For this situ-
ation, the time between gain decreases should be small, and
not large which is what is suggested by the previous situa-

tion.
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The limited resolution also causes problems with the
critera used for closing the 1loop. This includes the +2
quantum levels discussed in Chapter 3. By changing this cri-
terion, one risks the possibility of not being able to close
the feedback loop if the quantum range is made too small, or
closing the loop too early if the range is made too wide.
Decreasing the quantum band from +2 would make the system
more sensitive to the starting values of gain and IPI used;
they would have to converge to the critical values of gain
and IPI as the band decreased in size. Alternatively, din-
creasing the band size makes the system less sensitive to
the starting wvalues, but would mean that the loop would
close too soon creating harmful transients. From the tests
performed, the +2 quantum range appears to give the best re-
sults,

From the results and problems presented in this chap-
ter, one can see that the adaptive controller, as it is now,
produces good system responses for certain plants. The good-
ness of the response depends mainly on the adaptability cri-
teria which were chosen to give a good respomnse for a range
of plant types,

In practice, the controller would be regulating one
particular plant, and not several different kinds of plants
as it is here. This would solve the problem of deciding what
to make the adaptability criteria so that the controller

could handle the range of plant types. Instead, because the
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plant characteristics would be known, the adaptability cri-

teria could be "fine tuned" to get the optimal response from
P

the plant.




Chapter V

CONCLUSIONS AND RECOMMENDATIONS

In this thesis, a digital controller is realized and
tested. The initial design is based on an analog controller
which uses Integral Pulse Frequency Modulatioﬁ and Phase~=
Lock Loop control. By comparing the digital controller and
its analog counterpart, it can be concluded that the digital
controller works about as well as the analog controller. Im-
provements are made in this controller design which include
the development of a routine that makes the controller adap-
table. Also the controller has the ability to start in the
open-loop mode and then close the feedback loop at an appro-
priate time.

In the closed-loop mode, the controller is adaptive in
nature, keeping the gain as large as possible. It is shown
that maximizing the gain, wﬁen the system is in phase-lock,
results in the best plant response. It is also shown that if
the plant changes, the adaptive controller is able to bring
the system back into phase-lock and operate the system very
near its critical gain. It is concluded that this reaction
by the adaptive controller produces a much better plant re-

sponse than does the fixed controller.
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The transient response is improved by having an open-
loop/closed-loop routine in the controller. In the open-
loop mode, the control signal is characterized by predeter-
mined constants of gain and inter-pulse interval, chosen to
be at, or near, their critical values. A new method for
finding these critical constants is explained. If this meth-
od can be used for the more complex plants, it is concluded
that this would be an easier method for finding the critical
constants as compared to the old.

There is still a lot of work that can be done on this
controller to improve its performance. A case is shown where
the adaptive controller is inept at controlling a certain
plant due to incorrectly chosen criteria in the adaptation
algorithm. Further work in this area might discover the op-
timal criterion for a given class of plants.

Another line of research that would improve the con-
troller’s performance, would investigate the possibility of
the controller "analyzing" the consecutive plant responses.
Presently, the computer makes a decision on whether to
change the gain by checking only one or two points over a
certain time interval. A decision is made and carried out
depending only on the plant response at these few points. By
having the computer examine previous responses over ten in-
tervals, say, could help the controller make a better deci-
sion as to whether to increase or decrease the gain, thereby

improving the adaptability.



10.

11,

REFERENCES

Woo, C.S.W., Phase-Locked Loop Control Systems. M.Sc.
Thesis, University of Manitoba, Winnipeg, 1977.

Lindsay, W.C., and Simon, M.K., Phase-Lock Loops and
Their Applications. IEEE Press, New York, pp.l-6,

1978.

Gupta, S.C., Phase-Locked Loops. Proc. IEEE, Vol.63,
No.2, pp.291-306, Feburary 1975.

Gupta, S.C., et al, A Fast Measuring Phase Detector for
Use in PLL Motor Control System. IEEE Trans. on
Industrial Electronics and Control Instrumentation,
Vol.IECI~-25, No.l, pp.75-76, Feburary 1978,

Moore, A.W., Phase~Locked Loops for Motor-Speed

Control. TIEEE Spectrum, Vol.10, pp.61-67, April 1973.

Onyshko, S. and Noges, E., Pulse~Frequency Modulation
and Dynamic Programming. IEEE Trans. on Automatic

Control, Vol.AC-14, No.5, pp.558-561, October 1969,

Pavlidis, T., and Jury, E.I., Analysis of a New Class
of Pulse-Frequency Modulated Feedback Systems. IEEE
Trans. on Automatic Control, Vol.AC-10, pp.35-43,

January 1965,

Meyer, A.U., Discussion of "Analysis of a New Class of

Trans. on Automatic Control, Vol.AC-10, pp. 211—212,
April 1965,

Frank, P.M., A Continuous-Time Model for a PFM
Controller. IEEE Trans. on Automatic Control,

Vol.AC-24, No.5, pp.782-784, October 1979.

Lim, Y.A., Design of a Model of Digital Control System
with Dynamic Pulse-Frequency Modulation. Automation

and Remote Control, Vol.39, No.9, Part 2, pp.l404-1407,
September 1978.

Truscott, G.R. and Onyshko, S., An Equal-Ripple Pulse
Frequency Modulator in Control Systems. IEEE Trans. on

Automatic Control, Vol.AC-23, No. 4, pp.650-653, August
1978,



12,

130

14,

15.

16.

17,

180

190

20.

21,

75

Asaubaev, K.Sh., et al, Models of Control Systems with
Dynamic Pulse-Frequency Modulation. Automation and

Remote Control, Vol.38, No.2, Part 1, pp.203-212,
Feburary 1977.

Clark, J.P.C., An Analysis of Pulse Frequency Modulated

Control Systems. Ph.D Dissertation, University of

Washington, Seattle, 1965.

Reddy, C.P. and Gupta, S.C., A Class of All Digital
Phase Locked Loops: Modeling and Analysis. IEEE Trans.

on Industrial Electronics and Control Instrumentation,
Vol.IECL-20, No.4, pp.239-251, November 1973.

Barker, H.A., The Microprocessor in Control. Proc. of
IEE, Vol.126, No.l, pp.77-80, January 1979,

Neuman, C.P. and Morris, R.L., Classical Control
Interpretation and Design of Microcomputer Adaptive

Controllers. Applications of Adaptive Control edited

by Narendra and Monopoli, Academic Press, New York,
Pp-453-490, 1980.

Bibbero, R.J, Microprocessors in Instruments and

Control. John Wiley and Sons, New York, p.98, 1977.

Duncan, F.G., Microprocessor Programming and Software
Development. Prentice-Hall International, Englewood

Cliffs, New Jersey, pp.126-128, 1979,

Klapper, J. and Frankle, J.T., Phase-Locked and
Frequency-Feedback Systems Principles and Techniques.

Academic Press, New York, p.104, 1972,

Mostek Corporatiomn, Z80 Microcomputer Data Book,
Carrollton, Texas, 1979,

280 Starter System Manual. S.D.Systems and Micro

Design Concepts, January, 1979.



Appendix A

HARDWARE

Divide-by-Six Circuit

The divide-by-six circuit shown below is used to obtain
a 667 kHz signal from the 4 MHz system clock. This 667 kHz
clock signal is used to run the A/D converter which can op-

erate at a maximum clock frequency of 800 kHz only.
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Divide-by-Six Timing Diagram
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3-Stage Shift Register

The 3-stage shift register circuit shown below is need-
ed in the continuous A/D conversion mode. According to the
A/D converter specifications, after every conversion, the
A/D converter requires at least 4 clock cycles to elapse be-
fore the start of a new conversion, and so the End Of Con-
version pin cannot be directly connected to the Start Con-
version pin. Also, according to the specifications, the
start conversion pulse must be at least one, but no more
than three and one-half, clock periods long. The timing dia-
gram below shows that these criteria are met by this shift

register circuit.
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Shift Register Timing Diagram
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Appendix B

CONTROLLER FLOWCHART

Initialization

Set All
Integrators to Zero

|

| Use Table Lookup
] to Find K ,T

| c c

] Open Feedback Loop |

Set Maximum and Minimum
Values to Improbable Values

Send 0O Volts
to Plant

Go to Main
Program




Main Program

] Start Timer ]

©

Save Current Feedback

and Input Values

Find Maximum and Minimum

Feedback Values

Is It
The Start
of a New
Period?

Use Maximum and Minimum
Feedback Values to Find
Average Plant Output

for Previous Period

Go
Bac
to
#4

k

@

Open-Loop
Mode?
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Average h
Value Equals
Input Value?

Time
to Decrease
Gain?

Time
to Increase
Gain?

Decrease Gain
By 1 Quantum

Increase Gain
By 1 Quantum

| Reset2 Counters ] | Reset Counter |

The counters are for the stability checking times referred
to in Chapters 3 and 4



Average
Value Within

+2 Quantum

Levels of
Input?

Close Loop
and
Set Counters

®

Reset Maximum and
Minimum to
Improbable Values

(:j Go Back to #4 ::)
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Interrupt

Adjust Timer3 for
1 Volt=-Sec.

Input
Integration

Input
Integrator
at
1 Volt~Sec.
Threshold?

Reset Input and Output
Integrators to Zero

| Set (+)ve Slope on Output |

The program is interrupted 256 times a second (T.=1 sec.)
or 3.906 msec.. The CTC can be programmed to interrupt ei-
ther once every 3.846 msec. or 3.974 msec.. Adjusting the
timer means alternating the interrupt between the above
two times to give an average interrupt time of 3.910 msec.
or a period of 1.001 secs..



Feedback

Integration

Feedback

Integrato
at

1l Volt=Sec

hreshold?

T
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I
I
I
!

Reset Input and Output
Integrators to Zero

] Set Zer

o} Slope4

on the Output |

o — — - ———

This
mode .

step does

not

affect the

output

in

the

open-loop



Input
Integrator
Just
Reset?

Integrator to Zero

Reset Feedback

Generate Trapazoidal

OQutput With TC
Characteristic¢

Gain Adjustment
(K, )

Send Signal to
Plant via D/A
Converter

Return to Main
Program
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Output
Slope to
be (+)ve?

Generate
Ramp Output

Gain Adjustment
(R_ )

Send Signal to
Plant via D/A
Converter

Return to Main
Program




Appendix C

PROGRAM LISTING FOR ADAPTIVE CONTROLLER

Mem=- | Mneum- ] Comments
ory | onics |
Loca=-| ]
tion | |

-------------------- INTERRUPT === mmmm oo m e

LA AN A A A Y S Y A A A B AN AN v A 4 lSECOND ADJUSTMENT LA S AN AN A AN AN AN F v A S AN BN AN AF v BN N Y v

2100 08 EX
3E AS LD A,AS
D3 84 OUT(84),A
3E 1E LD A,lE
B9 CP C
20 01 JR if NON-ZERO to SEC
3C INC A
D3 84 SEC OUT(84),A
4LF LD C,A

LA A A A A A A S AN i BN BN B O B A B B B N | INTEGRATION AR AN AR AR AN AN AN AR AN AR AR AN AN AR A AN AN Y AN B Y v B A v |

Input Integral

D9 EXX

21 80 21 LD HL,2180
2112 11 8A 21 LD DE,218A

1A LD A, (DE)

86 ADD A, (HL)

77 LD(HL), A

3E 00 LD A,00

2C INC L

8E ADC A, (HL)

77 LD(HL), A

FE 33 CP 33

FA 31 21 JP if(~)ve to FBINT
2122 D9 EXX

57 LD D,A

D9 EXX

97 SUB A

77 LD(HL), A

2D DEC L

77 LD(HL),A

2E 85 LD L,85

- 88 -~



77 LD(HL),A

2D DEC L
77 LD(HL),A
2E 87 LD L,87
4LE LD C,(HL)
Feedback Integral
2131 1C FBINT 1INC E
""""" 21 82 21 LD HL,2182
1A LD A, (DE)
86 ADD A, (BEL)
77 LD(HL), A
3E 00 LD A,00
2¢C INC L
8E ADC A, (HL)
77 LD(HL),A
FE 33 Cp 33
FA 47 21 JP if(-)ve to OINT
2142 97 SUB A
77 LD(HL), A
2D DEC L
77 LD(HL) ;A
00/4F NOP / LD C,A
Output Integral
97 OINT SUB A
B9 CP C
28 26/10 JR if ZERO to CLEAR/PLANT
3D DEC A
B9 Cp C
28 0C JR if ZERO to PLANT
0D/ 00 DEC C / NOP
2150 1D DEC E
2E 84 LD L,84
1A LD A, (DE)
86 ADD A, (HL)
77 LD(HL) A
3E 00 LD A,00
2C INC L
8E ADC A, (HL)
77 LD(HL), A
2E 85 PLANT LD L,85
5E LD E, (HL)
2C INC L
7E LD A, (HL)
2160 CD 60 23 CALL MULT
06 04 LD B,04
CB OC SHFT2 RRC H
1F RRA
10 FB DIJNZ to SHFT2
88 ADC A,B
D3 80 OUT(80),A
08 EX

D9 EXX



2171

217A

2180
2182
2184
2186
2187
2188
2189
218A
218B
218¢C

ED
2E
77
2D
77
0D
C3
00

4D
83

5B

21

CLEAR

90

RETI

LD L,83
LD(HL), A
DEC L
LD(HL),A
DEC C

JP to PLANT
NOP

Input Sum

Feedback Sum

Output Sum

K Value

T Value

Present Maximum Value
Present Minimum Value
Input Value

Plant Output

Possible Plant Output



TABLE LOOK-UP AND OPENING LOOP ROUTINE FOR GIVEN POLES

2190
2192
2194
2196
2198
219A
219¢cC

21A0

21B0

21c0

21D0

21DA

21F0

1,x CRITICAL

1,1 T AND X

1,2 CONSTANTS PAIRS

1,3 FOR ONE

1,4 POLE

1,5 AT -1

1,6

91 POLE 1 SUB C

30 02 JR if NO CARRY to AHEAD

ED 44 NEG A

3D AHEAD DEC A

07 RLCA

Cé FO ADD A,FO

18 03 JR to SWITCH

07 POLE=1 RLCA

Cé 90 ADD A,90

16 21 SWITCH LD D,21
Table look=-up for K and T.

5F LD E,A

1A LD A,(DE)

77 LD(HL) ,A

2D DEC L

7B LD A,E

3C INC A

00 NOP

5F LD E,A

1A LD A,(DE)

77 LD(HL),A

DD 21 01 20 LD IX,2001
Opening the loop routine.

2E 4F LD L,4F

36 0D LD(HL),0D

2E 46 LD L,46

36 00 LD(HL),00

2E 4A LD L,4A

36 26 LD(HL), 26

21 90 22 LD HL,22990

36 92 LD(HL),92

25 DEC H

C3 25 22 JP to MAX

91 POLE=C SUB C

3C INC A

07 RLCA

C6 FA ADD A,FA

18 D4 JR to SWITCH

00 NOP

2,3 CRITICAL

2,x T AND K

21F2

1

91



21F4

3,x CONSTANTS PAIRS
21F6  4,x FOR ONE
21F8  5,x POLE
21FA  1,J2 AT OTHER
21FC  1,J THAN
21FE  2,J AT -1



LA AR AN AN SN AN AN AF SN 5N AN A AY BN AN A AN v 4

2200

2210

2222

2230

2240

224D

ED
F3
00
11
31
D5
D5
D5
D5
D5
D5
31
FE
79
60
21
CA
78
60
FA
C3
3E
32
3E
ED
3E
D3
3E
D3
3E
D3
D3
D3
D3
D3
97
D3
D3
06
57
D9
4F
D9
76
00

5E

00
8cC

co
01

87
AB

D3
AO
7F
89
23
47
88

A5
84
FF
9E
9E
9F
oF
82

82

80
01

60

00
21

23

21
21

21
21

21

MAX

MAIN PROGRAM

INIALIZATION

IM 2

DI

NOP

LD DE,O00
LD SP,218C
PUSH DE
PUSH DE
PUSH DE
PUSH DE
PUSH DE
PUSH DE

LD SP,23CO
CP 01

LD A,C

NOP

LD HL,2187

L A A A A A A B AN AN BN A AN B AV AN BV NV NV A B AV N

JP 1f ZERO to POLE=l

LD A,B
NOP

JP if (-)VE to POLE=C

JP to POLE 1

LD A,7F
LD(2189),A
LD A,H

LD I,A

LD A,88
OUT(84),A
LD A,A5
OUT(84),A
LD A,FF
OUT(9E), A
OUT(9E), A
OUT(9F), A
OUT(9F),A
OUT(82),A
SUB A
OUT(82),A
OUT(80),A
LD B,01
LD D,A
EXX

LD C,A
EXX

HALT

NOP



94

LA A AN AN A A A A A A A A A B A Y I v ¥ 4 INPUT LOOP LA A AN AN SR AN AF A AN AN AN AF BN 2N A AV 2V RV Y NV VY]
2250 3E 33 INPUT LD A,33
32 8A 21 LD(2184A),A
3E 1F LD A,1lF
D3 84 OUT(84),A
4F LD C,A
2E 8B AGAIN LD L,8B
DB 9C IN A,(9C)
EE 7F XOR 7F
2260 32 8C 21 LD(218C),A
96 SUB A, (HL)
FE 03 CP 03
F2 5A 22 JP if (+)ve to AGAIN
FE FE CP FE
FA 5A 22 JP if (-)ve to AGAIN
FB EI
3A 8C 21 LD A,(218C)
2272 77 LD(HL), A
2E 88 LD L,88
BE CP(HL)
FA 7A 22 JP if (-)VE to MIN
77 LD(HL), A
2¢C MIN INC L
BE CP(HL)
F2 80 22 JP if (+)VE to GAIN
77 LD(HL),A
2280 97 GAIN SUB A
BA CP D
CA 5A 22 JP if ZERO to AGAIN
7E LD A, (HL)
2D DEC L
86 ADD A, (HL)
1F RRA
77 LD(HL),A
3A 8A 21 LD A,(2184)
96 SUB A, (HL)
00 NOP
C3 92/c0 22 JP to OPEN/CLSD
Open-Loop Routine
2292 FE 03 OPEN CP 03
F2 FO 22 JP if (+)ve to DUMP
FE FE CP FE
FA FO 22 JP if (=)ve to DUMP
229cC 00 NOP
2E 4F LD L,4F
22A1 36 00 LD(HL),00
2E 46 LD L,46
36 4F LD(HL), 4F
2E 4A LD L,4A
36 10 LD(HL),10
21 90 22 LD BL,2290

36 CO LD(HL),CO



22B0

22B6

22C0

22CD

2200

22E0

22F0

2301

2308

2310

2313

25
1E
Cc3
00

1D
c2
87
1E
CA
2E
35
00

10
87
Cc2
7E
2D
96
c2
2D
34
06
C3

2E
7E
DD
DD
97
57
2E
77
B8
c2
04
2C
3E
77
Cc3
00

78
3D
c2
7E
2D
77
C3
00

05
DE
00

DO
05
DO
86
00
3E

DE

DE

0A

FO

86

77

23

88

02

7F

5A
00

FO

FO

22

22

22

00

22

22

22

00

23

22

22

22

95

DEC H

LD E,O05

JP to SKIP
NOP

Closed-Loop Routine

CLSD

STBL

SKIP

DUMP

RESET

NEXT

BEFOR

DEC E

JP if NON-ZERO to STBL
ADD A

LD E,O05

JP if ZERO to STBL

LD L,86

DEC(HL)

NOP

DJNZ to BEFOR

ADD A

JP if NON-ZERO to SKIP
LD A, (HL)

DEC L

SUB A, (HL)

JP if NON-ZERO to SKIP
DEC L

INC(RL)

LD B,0A

JP to DUMP

LD L,86

LD A, (HL)
LD(IX),A
INC IX

SUB A

LD D,A

LD L,88
LD(HL), A

CP B

JP if NON-ZERO to NEXT
INC B

INC L

LD A,7F
LD(HL) , A

JP to AGAIN
NOP

LD A,B
DEC A

JP if NON-ZERO to DUMP
LD A, (HL)

DEC L

LD(HL),A

JP to DUMP

NOP



———————————————————— SUBROUTINE MULT ====m=m=—————————————e

00

08
6A

70

5A
F5

00

23

AND A
LD HL,00
LD D,H
LD B,08
MULT . ADC HL,HL
RLA
JP if NO CARRY to CHECK
CCF
ADC HL,DE
CHECK DJNZ to MULT
LD A,L
RET
NOP

INTERRUPT ROUTINE ADDRESS ~---—-oomomeme e
NOP
2100
NOP



