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Abstract

It is known that at high doses ionizing radiation can cause cancer or leukemia. The
functional relationship between cancer (leukemia) induction and received dose of ionizing
radiation is still unknown, particuiarly in a low dose region.

In this thesis atomic bomb survivors data are used to test two models, a linear
threshold model for solid cancers and leukemia data and a liner-quadratic model for
Ieukemia data only.

Atomic bomb survivors data used in this thesis include data for stomach, lung, all
solid cancers (all cancers excluding leukemia), and leukemia. Cancer and leukemia
mortality rates and excess mortality rates are investigated as function of received dose
using the standard Chi-square and a non-standard Monte Carlo simulation method.

Using empirical data points one thousand simulated data sets were generated. Each
simulated data set was fitted with a straight line, and intercept to dose axis, threshold, was
calculated. This procedure gives one thousand threshold values. Statistical analysis of
threshold values is used as a test of linear no-threshold and threshold models. In addition
to a linear fit, a linear-quadratic fit was performed for leukemia data. In order to test a
hormesis hypothesis Zero equivalent points (ZEP) have been calculated.

Upper threshold limits obtained by Monte Carlo simulation are 0.037 Sv and
0.061 Sv for all solid cancers, and 0.154 and 0.193 Sv for leukemia data sets. Investigation
of mortality rates shows that the threshold and quadratic models do not fit data
significantly better than the linear model.
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Introduction

Ionizing radiation is one of the most common phenomena in nature. Ionizing
radiation is produced in transformation of radionuclides residing in environment as well as
in biological systems. In addition to radiation produced by radio-nuclides various particles
and photons from cosmic rays are also present. Specifically, neutrons, charged particles,
gamma and x, rays have been coming continuously from the outer space. The whole
evolution of living organisms had occurred in an environment filled by radiation. At
present, a variety of human-made sources of radiation are present, besides natural
radiation.

Depending on the amount of energy imparted to biological tissue it is common to
divide received doses of ionizing radiation into low, intermediate, and high dose range.
Low doses are usually defined as the region below 0.2 év [Brill 82, UNSCEAR 94, Schi
95], intermediate as between 0.2 Sv and 2.5 Sv, and high dose range is above 2.5 Sv
[Brill 82].

Ionizing radiation acts on genetic material of all living organisms. In doing so
radiation might have had an important role in the evolution of species. A knowledge of
effects of low doses of ionizing radiation is very important, because live organisms are
exposed mainly to low doses delivered at low rates. The effects of these low doses on live
organisms are still insufficiently understood.

Most of our knowledge of radiation effects on human health are derived from data
from explosions of atomic bombs over Hiroshima and Nagasaki, accidents in nuclear

industry, follow up of uranium miners and follow up of children and adults who have



received high doses for therapeutic purposes [Shap 90].

Additional knowledge about the low dose influence on human health has been
obtained through studies of influence of radon concentration in air on death excess due to
lung cancers, investigation of mortality in regions with high levels of natural exposure and
studies of professionally exposed persons in the nuclear industry.

Two main biological effects of ionizing radiation are genetic mutations and
induction of cancers. A linear no-threshold hypothesis is generally assumed for induction
of all solid cancers in the low dose region. This means, that even the smallest exposures
received by someone causes risk of cancer developing.

The linear no-threshold model has implication for regulation of ionizing radiation
protection. Over the past few decades protective measures have been getting stricter and
stricter. As a result, levels of released radiation in the environment have been repeatedly
lowered [Ncrp 93]. The use of strict protective measures required building expensive
protective barriers surrounding sources of radiation, applying sophisticated procedures in
using, processing, transporting, storing and disposing of radioactive substances, all costing
significant amounts of money.

Validity of the linear no-threshold model in the low dose region has been
contradicted by some relatively recent environmental and biological studies. Some
experimental evidence showed that relatively low doses of ionizing radiation can produce
adaptive response that stimulates repair mechanisms of cells {Okam 92, UNSCEAR 94].
Studies of populations that live in regions with high levels of natural radiation did not find

an increase in carcinoma mortality, when compared with regions with low levels



[UNSCEAR 94]. Also, studies of incidence and mortality due to radon-induced lung
cancers did not find any significant difference between areas with high and low
concentration of radon [UNSCEAR 94, Losal 95]. Some authors have found a negative
correlation between lung cancer mortality and concentration of radon in dwellings [Cohe
97]. These recent findings indicate that low levels of ionizing radiation may, in fact, be
beneficial. This beneficial effect is called hormesis [Lucke 91, Lucke 92, Kondo 93).
Clearly, the hormesis model is incompatible with the linear no-threshold model in the low
level region of ionizing radiation.

The investigation of cancer induction includes epidemiological, and biological
studies. An epidemiological study investigates connection between some variable of
interest and cancer incidence observed in a group of people. Variable of interest can be a
chemical or physical agent, heredity, social status of observed people, or some other
parameters. The study of atomic bomb survivors is an example of epidemiological study.
Epidemiological methodology of assessing carcinoma risk is reviwed in { Bres 80, Bres 87,
Este 94]. A biological study investigates direct biological effects of ionizing radiation on
cell (or tissue) [Kondo 93, Heid 97].

This thesis studies a possible existence of a threshold in the linear model for cancer
and leukemia induction, and possible existence of hormesis effect for leukemia. It is done
by applying a standard least-squares fit (Chi-square analysis) and performing a Monte
Carlo simulation on the data of the atomic bomb survivors. Statistically sigﬁiﬁcant results
of ionizing radiation effects in the low dose region are very difficult to obtain because that

effect is very small and conclusive research would require large number of subjects to



observe. Because of high relative uncertainties, standard formulae for calculation of
estimator uncertainties can not be used. In this work, we used a Monte Carlo simulation
that started from the empirical data sets and have generated, using appropriate computer
programs, many artificial data sets. Each generated data set represents one artificial
experiment. Statistical analysis of many (in our case one thousand) artificial experiments
gives opportunity to obtain values for estimators and their uncertainties in 2 more reliable
manner than using standard formulae.

In this thesis, in agreement with common statistical terminology [Shesk 97, p.6,
Neter 90, chapter 1], Greek letters correspond to parameters of a model which describes
parent population. When a specific sample is described, values that correspond to
parameters are called estimators. Specific estimator values are estimates. Estimators and
estimates are labeled with Latin letters. For example, if we assume that a relationship
between variables y and x in a parent population is linear, we write it in the form
Elyl=a+B-x. Values @ and g are parameters of model. When a specific sample is

described, the linear model has a form y = a+ b-x . Values a and b are estimators of the

sample. The j (hat) refers to a y value on the fitted line, y refers to a data point.



Chapter I

Induction of cancers by ionizing radiation

1.1 Cancer mortality rates

Cancer induction due to ionizing radiation is investigated through two kinds of
relationships. One is the relationship between cancer incidence and received dose of
ionizing radiation, and the other is the relationship between cancer mortality and the dose.
The investigation of the incidence has, in the case of cancers that have higher sufvival
rates (skin cancer excluding melanoma, thyroid cancers etc.), advantages in comparison to
the investigation of cancer mortality. The investigation of mortality for cancers that have
higher survival rates, can lead to the wrong conclusion that the impact of ionizing
radiation to develop cancer is smaller than it actually is. This is not a problem for cancers
with lower survival rates (lung, liver carcinoma) because the incidence and mortality data
are very close.

Let us look at a group of persons exposed to a certain dose of ionizing radiation. A
control group is a group of unexposed persons. Denote the observed number of deaths in
the exposed group with O, the number of persons in the exposed group with N, the
observed number of deaths in the control group with O, , and the number of persons in the
control group with No [Losal 95 p. 99].

The cancer mortality rate MR, for the observed group is defined by

o
MR = N (L.1)



and for the control group is

o,
MR, = > 12
N, (1.2)
The excess mortality rate is defined as
O O
Y=—-=2
N ) (1.3)

1.2 Model forms

A proposed relationship between the effect of ionizing radiation on human health
(Y(d)) and received dose (d) is defined as expected value of Y(d);

ElY@)]=a+B-d+y-d*
(L4)

in low and medium dose ranges [Brill 82].

In this thesis the effect of ionizing radiation is the excess cancer mortality rate Y.
This proposed functional form includes a linear term ¢ + 8- d , and quadratic term
y-d*.

A linear function can describe two models. One is the linear no-threshold model
(@ = 0). The other is the linear threshold model (a # C).

The linear no-threshold model has the form:

EW¥(d))=f-d (L5

6



In this model even the smallest dose received increases risk of developing cancer. Most
authors have commonly used the linear no-threshold model for cancer induction [Beir V
90, UNSCEAR 94, Epa 94] in low and medium dose ranges.

Some authors have assumed that the dose response function for a low dose region
can have different forms than the form obtained by the linear no-threshold model. One of
those forms assumes the existence of a threshold dose below which radiation has no effect
on human health [Heid 97, Hoel 98]. Another assumes the existence of hormesis, namely
that radiation has beneficial effect on human health below some dose. Other possible
forms of dose response functions below 0.2 Sv are qualitatively represented in figure 1.1

The threshold model has the form:

dsT } (1.6)

0
E[Y(d)]z{a+ﬂ-d, B>0, d>T

where T is the threshold dose.
The hormesis effect in its simplest form can be described by a linear-quadratic

function of the form:

E[Y(d)]= f-d+y-d* (1.7

with parameter # negative, and ¥ positive. The constant term @ in equation 1.7 is
omitted because at zero dose there is no effect due to ionizing radiation. If £ 0, the

linear-quadratic function 1.7 has another intercept with the dose axis.
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If this intercept is on the positive side of dose axis it is called the zero equivalent point
(ZEP). At this point ionizing radiation has no effect on human health. Below the ZEP
value the effect is beneficial (hormesis), above it radiation is harmful. This beneficial
effect might be related to the organism’s adaptive response caused by ionizing ;'adiaﬁon
[Kondo 93, Cohe 97].

Depending on signs of parameters £ and y , the linear-quadratic function can
describe other models presented on table 1.1. Graphical presentations of these models is

shown in Figure 1.2

Table 1.1 Special cases of the linear-quadratic model. Three combinations of £

and y values are of no physical interest and are labeled “Not of interest”.

Parameter £ Parameter y Model

1 £>0 y >0 Linear-quadratic,
(no-threshold)

2 £=0 ¥ >0 Pure qudratic

3 £<0 y>0 Hormesis -

4 £>0 ¥ <0 Not of interest

5 p=0 y <0 Not of interest

6 £<0 y <0 Not of interest




01

Cancer Induction

| S . e ke

Dose (Sv)

Figure 1.2 Forms of dependence of excess mortality rates versus received dose
which can be described by a linear quadratic function. Meaning of numbers attached
to curves is explained in Table 1.1.



According to present published evidence, there is no clear answer as to which
model of dose response function is most appropriate for a description in the low dose
region. This uncertainty in the shape of dose response function is due to weak impact of

ionizing radiation on the excess carcinoma or leukemia.
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Chapter I

Data sets used in analysis

The analysis in this thesis was done using data from two studies of mortality of
atomic bomb survivors (ABS). The first study is:

D. Perce, Y. Shimizu, D. Preston, M. Vaeth, and K. Mabuchi;

“Studies of the Mortality of Atomic Bomb Survivors. Report 12, Part [ Cancer:1950-1990",
Radiation Research 146, 1-27 (1996).
This study ([Pier 96]) was chosen because it has the most recent set of data for solid
cancers, and leukemia. It covers the period between1950 and 1990. The solid cancer data
set was taken from Table II on page 5, which we designate here “[Pier 96] solid cancers”
(reproduced in Table 2.1), the leukemia data set was taken from Table V on page 7 and
was designated “[Pier 96] leukemia” (reproduced in Table 2.2).

The other study is: Y. Shimizu, H. Kato, W. Schull, K. Mabuchi;
“Dose-response analysis among atomic-bomb survivors exposed to low-level radiation”,
published in “ Low dose irradiation and biological defense mechanisms” Elsevier Science
Publishers B.V., 1992. This study ([Shim 92]) is interesting because it has more data points
in a the dose region below 0.5 Sv. This set of data reports on cancer rates for the period
between 1950 and 1985. Data sets were taken from the original tabie on page 72 of the
original paper. This paper includes data for the stomach (named “[Shim 92] stomach™),
the lung (named “[Shim 92] lung™), all solid cancers ( “[Shim 92] all solid™), and leukemia
(*“{Shim 92} leukemia™). The [Shim 92] stomach, lung, all solid cancer data sets are
reproduced in Table 2.3 in this thesis, the [Shim 92] leukemia data set is in Table 2.4.

12



The words “dose received” in this thesis refer to the dose equivalent in Siverts (Sv).

The first column in tables 2.1-2.4 “Observed group ;” labels seven different
groups of the ABS data. All individuals in a group are assumed to have received the same
mean dose for that group.

The group in the lowest dose region was taken as the control group. For [Pier 96]
the control group (i.e. background cancer mortality rates) is a group with received doses
below 0.005 Sv. For [Shim 92] the control group is a group that received doses in interval
0.010-0.019 Sv. The control groups are labeled ;j = 0. The highest observed groups labeled

J = 6 and are not considered in this thesis because of uncertainties in finding mean dose.

In all four tables column “Dose range (Sv)” lists dose ranges received by observed
groups of survivors. Column “Number of subjects N, 4, ” contains the number of people in
each dose range group and column “Number of observed deaths 041 ” contains the
number of observed deaths due to a particular cancer category in each dose group.

The values in column “Mean dose, d ; (Sv)” were taken as mid-points of dose
ranges in column “Dose range (Sv)” . Dose uncertainties were assumed to be standard
deviations equal to 25% of the width of the corresponding dose range. This value may be
an overestimate but it was so chosen to put an upper limit on the effect of dose
uncertainties (see chapter 6).

“Excess Cancer Mortality rate }': “ is computed using equations 1.1-1.3.

Specifically, for a group ;

13



O,

7

N,

7

Odo
N, @.1)

Y, = -
where

Of‘/ is the number of observed deaths due to cancer in ;j -dose group,

N 4, is the number of persons in j - dose group,
O,, is the number of observed deaths in the control group, and
N, is the number of persons in the control group.

It is important to note that the subtraction in 2.1 introduces correlation among the
excess mortality rates because the same value (the control mortality rate) is subtracted
from each one. This subtraction of background rate is quite common practice in nuclear
physics experiments because correlation introduced this way has usually negligible effect
on final result.

Following the practice of [Heid 97], [Losal 95 p. 107], [Winkl 75 p. 227]

uncertainties in the observed number of deaths are assumed to be Poisson distributed, thus

the standard deviation in mortality rate is equal to

_ s (2.2)

14



and the standard deviation in excess mortality rates is equal to

s, = % $ 2.3)
LINNTN

To illustrate the procedure used we shall look at an example in Table 2.2 [Pier 96]
leukemia data. The dose group labeled ; = / has a range of received doses between 0.005
Sv and 0.1 Sv. The mean received dose is: d, = (0.005+0.1¥2=0.05 Sv. In order to
illustrate effect of dose uncertainties, the standard deviation of the mean dose was taken as
0.25 x (0.1-0.005) = 0.024 Sv. The number of subjects in this group was N, =32915
persons and the number of observed deaths due to leukemia was O, =59 deaths. The
control group has N, =35458 persons and 04, = 73 observed deaths. The excess
leukemia mortality rate according to equation 2.1 is ¥, = -027-10" deaths/ person (column
six, Table 2.2). Uncertainty for the excess leukemia mortality rate according to equation

2.3 is 5, = 0.33-107 deaths/ person (column six, Table 2.2).

15



Table 2.1 Number of observed deaths for solid cancers, and the excess in cancer

mortality rate. Columns 2,4 and 5 were taken from [Pier 96, Table II, page 5] and columns

3 and 6 were calculated as explained in the text.

1 2 3 4 5 6
Obs. Dose Mean Dose Num. of Num. of Excess Cancer
group range d,- Subjects Obs. Deaths | Mortality Rate
! & (V) N > ((1?-3)%)
person
0 0 0.0025 36459 3013 0
(<0.005)
1 0.005-0.1 | 0.05+ 0.02 32849 2795 2.44 +2.20
2 0.1-0.2 | 015+ 0.02 5467 504 9.55 + 437
3 0.2-0.5 | 035+t 0.07 6308 632 178 £ 43
4 0.5-1.0 0.7+ 0.12 3202 336 223 + 59
5 1.0-2.0 1.5+ 0.25 1608 215 51.1 £ 9.2
6 >2.0 679 83 39.6 + 13.5
Total 86572 7578
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Table 2.2 Number of observed deaths for leukemia, and the excess in leukemia

mortality rate. Columns 2,4 and 5 were taken from [Pier 96, Table V, page 7] and columns

3 and 6 were calculated as explained in the text.

1 2 3 4 5 6
Obs. Dose Mean Dose Num. of Num. of Excess Leukemia
group | range (Sv) Subjects Obs. Deaths | Mortality Rate
i | ®v d, N, o, (Y)
’ _y deaths
(107 —)
person
0 0 0.0025 35458 73 0
(<0.005)
1 0.005-0.1{ 0.05+ 0.02 32915 59 -0.27 £ 0.33
2 0.1-0.2 | 0.15+ 0.02 5613 11 -0.10t 0.64
3 0.2-0.5 | 035+ 0.07 6342 27 2.20+ 0.88
4 0.5-1.0 | 0,75+ 0.12 3425 23 4.66+ 1.42
5 1.0-2.0 1.5+ 0.25 1914 26 11.5+ 2.7
6 >2.0 905 30 31.1% 6.1
Total 86572 249
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Table 2.3 The number of observed deaths for stomach, lung and all solid cancers, and corresponding excess mortality rates
( Yj ). Columns 2,4 and 5 were taken from [Shim 92, page 72] and columns 3 and 6 were calculated as explained in the text.

81

1 2 3 4 5 6
_y deaths

Dose | Mean Dose | Num. of | Numb. of observed deaths (O, )due Y, a0t ———)

j | range (Sv) Subjects o ! pe
(Sv) d, N d '

Stomach | Lung All Stomach Lung Total solid
cancer cancer cancers

0 }0 45148 1153 338 3246 0 0 0

1 {0.010- | 0.01410.002 | 7430 175 55 498 -1,98t193 | -0.0811.08 | -4.8713.26
0.019

2 10.020- { 0.03410.007 | 9235 254 87 "7 196t 1.88 1931 1.09 5.741 3,16
0.049

3 |0.050- | 007410012 | 6439 168 56 516 055 2.15 1.21+1.23 8.24%3.75
0.099

4 10.100- | 0.150= 0,025 | 35316 147 44 400 2111240 0.7911.31 | 3351397
0.199

5 10.200- | 0.35010.075 | 6271 187 65 533 4.281 2,31 2.881 1,35 131139
0.499

6 |>0.50 6681 194 82 573 3.50% 2.22 4791 141 139138
0
Total 86520 2278 727 6501




Table 2.4 Number of observed deaths for leukemia, and corresponding excess
leukemia rates. Columns 2,4 and 5 were taken from [Shim 92, page 72] and columns 3 and

6 were calculated as explained in the text.

1 2 3 4 ] 6
Obs. Dose range Mean Dose Num. of |Num. of Excess Leukemia
group (Sv) (Sv) Subjects |Obs. Deaths | Mortality Rate (I‘: )

j d, N, 0, | (rEEE)

0 0 45148 81 0

1 0.010-0.019 0.014 % 0.002 7430 11 -0.31%£0.49

2 0.020-0.049 0.034t 0.007 9235 14 -0.28% 0.48

3 0.050-0.099 0.074% 0.012 6439 8 -0.55+ 0.48

4 | 0.100-0.199 | 0.150% 0.02% 5316 11 0.27 + 0.65

5 0.200-0.499 0350+ 0.075 6271 21 1.88+0.76

6 >0.500 6681 75 9.43%1.31

Total 86520 211
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Chapter III

Statistical methods used in data analysis

In this study two models were used; linear, and linear-quadratic. The method of the
least-squares was applied to both models. The estimators for both models and their
uncertainties were computed. Then the confidence intervals were computed for the fitted
estimators by analyzing Chi-square curves. Next the statistical analysis of the results

obtained by the Monte Carlo simulation was performed. In this chapter dose uncertainties

are not taken in account.

3.1 Least-Squares fit
3.1.1 Fit by a linear function
Set (d;,Y;) of the data points can be fitted with a straight line by making

standard weighted least-squares fit [Bevi 92, p. 103]:

I7(d)=a+b-d . (31)

The Chi-square function for the linear fit is defined as

(3-2)

2
x;.-a-b-dj)

where
Y, are data points (excess mortality rates) to fit,
d ; are dose values,

20



a, b are estimators of linear fit,

s, are uncertainties in Y,

n is number of data points to be fitted.

Estimators of the fit, intercept a and slope b, are obtained by using formulas from [Bevi

92, p. 104, eqn. 6.12]. These equations in our notation are:

and

where

3.1.2 Fit by a linear-quadratic function

As discussed in section 1.2, the linear-quadratic model has the form

Y(d)=b-d+c-d* .

21
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(34)

(3.5)

(3.6)



The Chi-square function for linear-quadratic fit is

2\ 2
2 _f[L-bd-cd))” a7
Jj=I S J
Estimators 5 and ¢ were obtained by minimizing the Chi-square function 3.7. Equations
3.8-3.10 were derived using formulas for least-squares fit to a polynomial which is given

in chapter 7 of [Bevi 92, p115]. These estimators when applied to eq. 3.6 are

1 &4 &dY, &d &dY i3
=" ° - ¢ > ‘)
WO T R T (
1 ed &dlY, ad &4y
cn QF LT Ly ETa). ®9

where
ndlz nd; ndJ3 ndj
=Ny VI Y L (3.10)
LRI R

3.1.3 Estimation of errors

Uncertainties of estimators can be determined by calculating error matrices

[Bevi 92, p. 123]. The error matrix for a linear fit is

22



_ , ]
" da n ,0a Jb
%) 5%
B oa ob o, (o8) GD
204 00 2 | 20
-E‘Sj %, o, E'Sj (ﬂ;) .
and for a linear-quadratic fit is
[ 2 9
f o [9b) g db Oc
E 2y \5’?] AT
g adb de o (é_J 612
=7 A=A §
L J J J J

Diagonal elements of error matrix £ are variances of estimators a and b ( g: and s,f ,
the linear fit),orband ¢ ( 57 and 5’ , the linear-quadratic fit). Off-diagonal elements
represent covariance of estimators (s, for the linear fit and s, for the linear-quadratic
fit). Covariance terms are written without squares according to the [Neter 90, p.5].
Numerical values of error matrices 3.11-3.12 were computed using Maple programs (see
Appendices B-1 and B-2).

In order to determine the goodness of fit, ¢ values were computed using the values
of the estimators a, 5, ¢ and their standard deviations S, S8 S, - The ¢ values for

estimators a, b, and ¢ were computed in the following manner:

(3.13)
Using the ¢ values, and tables of ¢ -student distribution, the goodness of fit can be estimated.

The discussion of the goodness of fit tests is given in Appendices A-1 and A-2.
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3.2 Chi-square analysis

The Chi-square function can be used to compute confidence regions of fitted
parameters. Denote with » the number of points to be fitted. Denote with m the number of
parameters. The Chi-square defined with eq. 3.2 (linear fit) and eq. 3.7 (linear-quadratic
fit) can be rewritten in a general form as

2
-3 (- L 4,
J=1

.19

where
d, is received dose in a dose group labeled ;

);. is excesses mortality rate in a dose group labeled ;

X? is the chi-square function calculated for a given set of data (d 1),

&, are parameters of fit. For a linear fit £,are @, and A. For linear-quadratic

fitg, are fB,and ¥ .
E[Y(&,,d,)] is a function of fit. For a linear fit it has the form: o + p-d,
i ic fiti . 2
For a linear-quadratic fit it has the form: 4. dj +¥- dj :
(The regression parameter £ is often called the linear effect coefficient, while

is called the quadratic effect coefficient [Neter 90 p.316]).
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Minimum of Chi-square X2 is obtained by minimizing equation 3.14. It is

2
(Y - E[Y(e,,.d
X§=Z(1 [g* j)]) (3.15)

=1 f;

where
€, « are specific values of estimators obtained by minimizing X 2 _For linear fit

€, are a,, and b, . For a linear-quadratic fit ¢, , are b,, and ¢, .
E[Y(e,,d;)] is function of the “best” fit which is obtained by minimizing Chi-
square function 3.14.

The new function “delta Chi-square™( A X2 ) is defined as [Pres 92, p. 692]:

AX*=Xx*-Xx}. (3.16)

Function A X2 is distributed as the Chi-square distribution with m degrees of freedom
[Press 96, page 690]. For the linear, and the linear-quadratic function used in this work m
is equal to two (two parameters). A Y2 can be used to obtain the confidence regions for
the parameters of fit £, [Press 92, p.687].

Equation 3.14 describes the functional dependence of the Chi-square function
versus parameters g, . This dependence has a paraboloid form (see Figure 4.7).
Intersections of that paraboloid with constant Chi-square planes (values are given in
Table 3.1) give curves that define confidence regions for the parameters. The projection of

these curves onto the parameter’s axes give confidence intervals for each parameter of fit.
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Table 3.1 Confidence levels as function of chi-square. The table is reproduced

from [Press 92, p.692]
A X2 as s a function of :
Confidence degrees of freedom
level 1 2 3 4 6

68.3% 1.00 2.30 3.53 4.72 5.89 7.04
90% 27 461 6.25 7.78 9.24 10.6
95.4% 4.00 6.17 8.02 9.70 11.3 12.8
99% 6.63 921 11.3 133 15.1 16.8
99.73% 9.00 11.8 14.2 16.3 182 20.1
99.99% 15.1 184 21.1 235 25.7 27.8

26




3.3 Monte Carlo simulation

Assume that a set of data Do (d, Y, ) is obtained by a measurement, (index ;
denotes /-th measured value) where f stands for dose and Y for excess in cancer
(leukemia) mortality rate. The set Do is our information about the true set of data D,
that is only “known” to nature. Denote by ¢,(d,,Y,) the set of estimators which are
obtained by minimizing the Chi-square function (in equation 3.14). Experimental
uncertainties for measured values are oy, [Pres 92 p. 684]. Do is not the only possible
realization of D, . Repeated measurements would give other sets of data p (o X))
with estimators ¢; (d,,Y;) (index i denotes i-th experiment). In order to investigate other
possible experimental outcomes one can simulate new events )’ d;,x) using a
computer. This can be done using experimental set of data Do(d . Y;, ), and generating
values of the dependent variable ¥, for each independent variable point &, .

The generation of simulated points has to be done with experimental values of the
uncertainties, g, because the true uncertainties, Oy, , »are unknown. Thus, we assume
Sy,, = O, - A diagram of this procedure named Monte Carlo, is shown in Figure 3.1.
Then, each generated event has to be fitted by minimizing the Chi-square using eq. 3.14.
This procedure, gives new sets of estimators e/d;.Y,) which are subject of the statistical
analysis.

For the simulation of new “measurements” in this thesis empirical values of the
cancer and leukemia mortality rates were used from tables 2.1-2.4. The Gaussian
distribution of excess mortality rates was assumed. The Gaussian distribution had a mean
value equal to the experimented excess mortality rate and the standard deviation was taken
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to be equal to the uncertainty of corresponding cancer (leukemia) mortality rate
(Tables 2.1-2.4, column 6).

In order to illustrate above, we consider the data from table 2.1 ([Pier 96] solid
cancer data). Table columns "Mean Dose d ; 7, and “Excess cancer mortality rate Y; ” are
of interest for simulation. Excess cancer mortality rates ¥; were simulated. The point with
the mean dose 0.05 Sv (/ = I) was first. For this data point one thousand new values of
excess mortality rates were generated as the Gaussian distributed values with mean value
2.44, and with a standard deviation which is equal to 2.20.This was done using the Minitab
statistical program. This procedure was repeated using the corresponding values of the
excess mortality rates and their uncertainties for the dose groups labeled j = 2,3,4.5.

In this way one thousand generated events were obtained for the excess cancer
mortality rates. This one thousand generated events make simulated data set. Each
simulated event has five values of cancer mortality rates. In the process of fit the mean
dose values were kept the same as in the original data set. For each simulated event a
least-squares fit was done and the values of the estimators a and 5 for linear, or b and ¢ for
linear-quadratic, model were computed.

3.3.1 Fitting by a linear function

Assuming that the linear dependence between excess of deaths due to solid cancers
(or leukemia) and received dose exists, each simulated set of data was fitted by a straight
line. The least-squares fit was used to find estimators for each set of simulated points
(section 3.1.1).

Specifically, for each simulated set of points(d,Y ;) (i denotes the simulation
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number, and ; denote a specific dose point in the i-th simulation) the slope and the
segment of the straight line was calculated using equations 3.3-3.4. Repeating this for one
thousand new simulated events generates one thousand values of an intercept a and slope
b.For this task a Maple program was written.

One thousand values for an intercept a and slope 5 determine one thousand straight
lines. For each line intercept to the dose axis was calculated using

T=-al/b
. G.17)

Solutions of 3.17 are called threshold. These solutions can be separated into two
groups. One group of the solutions are the threshold values that are positive in sign, and
the other group includes solutions with a negative sign. The group of solutions (with
positive T) are values permissible under the linear-threshold model. The group solutions
with negative 7 describe non-threshold models. For these one thousand thresholds the
mean value, the trimmed mean value, the standard deviation, the standard error of the
mean, the first and third quartiles are calculated using program Minitab. The formulae for
these calculations are given in Appendix A-3.

3.3.2 Fitting by a linear-quadratic function

Besides a linear fit, a linear-quadratic function was also used in fitting leukemia
data. The procedure is basically the same as the linear fit described in section 3.3.1. The
linear-quadratic function was used in the form given in equation 3.6 (section 3.1).
Equations 3.8-3.9 were used to calculate estimators 5 and c for each set of simulated data.
One thousand simulations determined one thousand parabolas forced through the
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coordinate origin (equation 3.6).The models described with these parabolas were discussed
in section 1.2.
The intersection of a parabola to the dose axis is called the zero equivalent point

(ZEP) (see section 1.2). The values of ZEP were calculated by solving the equation

dyep (B + €+ dyp) = 0, (3.18)

dyep = ZEP = -b, / c,- (3.19)

The statistical analysis of ZEP values was done in the same manner as the
statistical analysis of the threshold values for the linear fit.

3.4 Uncertainties in the independent variable

Sections 3.1-3.2 described the fitting procedure with the uncertainties only in the
dependent variable (¥). This method is valid only if the uncertainties in the independent
variable (d) were much smaller than the uncertainties in the dependent variable. If this
were not the case, or if someone wanted to study influence of uncertainties in the
independent variable on the results, those uncertainties can be taken in account by
combining 4 and Y uncertainties as described in [Bevi 92, page 100].

Let s, be the uncertainty in the independent variable and s, in the dependent
variable. Let y(¢, &) be the fitted value at dose dand ¢, be the estimators of the fit (a
and & for linear fit, 5 and c for linear-quadratic fit, see section 3.2). The total uncertainty
in the dependent variable Y, which is labeled s, ., can be calculated by adding the
uncertainties for the only independent s, and the only dependent s, variables in the
following manner:
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od
The total uncertainty in the dependent variable can be used for minimizing

~ 2
Y(e,,
s’%'r = S; + (_a__(e"_d_).) °Sj ] (3.20)

the Chi-square function (equation 3.14, section 3.1). By using equation 3.20, equation 3.14

becomes

. (Y,-a-b-d,)
ks E s, 621

XZ

for the linear fit. For the linear-quadratic fit, chi-square function (3.14) becomes

2 2
X2 = i (’;-b'di-c'df)
sy +(b+2-cd) s - (3.22)

In order to find the values of estimators a and 5 for linear model, and b and c for

linear-quadratic model the Chj-sq-uare function in equations 3.21 and 3.22 has to be
minimized, and estimators corresponding to Chi-square minimum be numerically found.

Minimizing the Chi-square in equations 3.21 or 3.22 was done by finding
derivatives by parameters of fit e, :

2X?
=0
e, . (3.23)

After partial derivatives were found, the system of equations 3.23 was solved for
estimators e, . System 3.23 was computed and solved numerically for estimators of fit e, ,
by writing a Maple program. Comparison of the results with and without dose
uncertainties is included in chapter 6.
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Chapter IV

Results for the linear fit

This chapter presents results of the standard statistical analysis and of the Monte
Carlo simulation of data. Method used was summarized in chapter 3. Dose uncertainties are
not included in this analysis.

4.1 Least-squares fit

The excess cancer and leukemia mortality rates with their errors are all taken from
column six of Tables 2.1, 2.2, 2.3 and 2 4. The graphical representation of the excess
cancer (leukemia) mortality rates as a function of received dose (column 3 in all tables) are
presented in Figures 4.1-4.6. The error bars are equal to the uncertainties of the excess
mortality rates. Each set of these empirical data is fitted by a linear function using equations
3.3-3.4. The result is represented by the heavy line in Figures 4.1-4.6.

Table 4.1 contains results for best line fits shown in figures 4.1-4.6. The specific
values of estimators (estimates) a and b are in columns 3 and 4. Threshold values are in
column 5. Standard deviations of estimators s, and s, are in columns 6 and 7. Standard
deviations are equal to square root of variances s> and s, . The variances s2and s, and
covariance S, , of aand b were calculated using error matrix 3.11. The ¢ values were
calculated using 3.13. The p probabilities are obtained using the table of the ¢ distribution
[Neter 90, p.1128]. More details are provided in Appendix A-1.

In this section, errors for threshold values were not calculated because the

commonly used formula for combining uncertainties [Bevi 92 p. 50]
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Excess in cancer rate [107(-3) c-d./p.]

25

............................................................................................

0.1 015 02 025 03 035 04
Dose (Sv)

Figure 4.4 Excess in cancer rates for [Shim 92] all solid cancers as a function of
received dose. The heavy line is the best fit line, light lines are plotted using
parameters fromTable 4.2. Labeling is according to Table 4.2.

(c-d./p. refers to cancer deaths per person.)
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Table 4.1 The values for estimators of fit and their corresponding uncertainties obtained by the least-squares method.

Corresponding threshold values (7= -a / b ) are included, for explanations of errors and goodness of fit see text.

Figure | Data set Intc;::):ept Slope (3)| 7'(Sv) s, S, Sab t A Pra) Py

4.1 |[Pier96]
solid 1.99 326 -0.061 2.04 5.38 -6.25 097 6.06 0.60 0.01
cancers

42 |[Shim 92#
Stomach | -0.33 13.9 0.024 1.28 8.04 -6.94 0.26 1.73 0.80 0.20
cancer

43 |[Shim 92}
Lung 0.64 5.88 0,108 0.73 4.66 -2.29 0.88 1.26 0.80 0.30
cancer

44 |[Shim 92}
Allsolid | 0.56 36.6 <0.015 2.16 13.6 -199 0.26 2.70 0.80 0.10
cancers

45 |[Pier96] | -0.76 7.70 0.099 0.33 1.32 -0.24 2,29 5.84 0.20 0.02
leukemia

46 |[Shim92] -0.59 5.68 0.104 0.32 246 0.52 1.87 2.31 0.20 0.20
leukemia




s ¢ s,
aT=2. [, 3o Jub
b Ya® b a-b 4.1
is not valid because relative errors A @/a and A b/ bare not much smaller than one.

For example, ratio A g/ a for [Pier 96] solid cancer is 2.04 / 1.99 >1 (see Table 4.1)

4.2 Chi-square analysis

In addition to the values of the estimators a and 5 and their standard deviations for
the best fit, confidence regions for these parameters were calculated. Confidence regions
are represented with areas enclosed by delta Chi-square ellipses. Regions were calculated
using the confidence levels of A Y2 .The chosen confidence levels are 68.3%, 95.4%, and
99% (Table 3.1). Appropriate tail values of the delta Chi-square statistic as a function of
the confidence levels, and degrees of freedom are given in Table 3.1. From that table, for
two degrees of freedom the delta Chi-square values which correspond to 68.3%, 95.4%,
and 99% of the confidence are 2.30, 6.17, and 9.21 for parameters & , and £ jointly
[Pres 92, p. 688].

Figure 4.7 represents the delta Chi-square paraboloid for the [Pier 96] solid cancer
data set. Horizontal planes cut the paraboloid at A Y2 equal to 2.30, 6.17, and 9.21. The
intersections have a form of ellipses which are shown in Figure 4.8. The projections of the
ellipses onto coordinate axes give the joint confidence intervals for parameters oz and .
In Figure 4.8 projections labeled 3, and 5 correspond to 68.3% confidence, projections
labeled 2, and 6 correspond to 95.4% confidence, and projections labeled 1, and 7
correspond to 99% confidence. The point labeled ; = 4 corresponds to the values of
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Figure 4.7 The delta Chi-square paraboloid (equation 3.16) for [Pier 96]
solid cancer data (Table 2.1). The data set is fit by a linear function with intercept & and
slope 4. The intersections of the horizontal planes and the paraboloid correspond to
68.3%, 95%, and 99% joint confidence regions for the parameters @ and 8. These

intersections have the form of ellipses (Figure 4.8).
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Intercept -

Figure 4.8 The delta Chi-square ellipses for [Pier 96] solid cancer data,
Table 2.1 plotted as function of intercept a, and slope b. The ellipses are obtained by
projecting the intersections of the delta Chi-square paraboloid (Figure 4.7) and the
constant delta Chi-square planes equal to the 2.30, 6.17, and 9.21. The areas enclosed by
ellipses are 68.3%, 95%, and 99% confidence regions for parameters @ and A jointly.

Values of projections labelled 1,..,7 are given in Table 4.2.
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parameters for the “best” fit (A X? = 0).

Table 4.2 lists end points for the confidence limits of estimators g and 5. The
relevant ellipses are shown in Figure 4.8 for [Pier 96 ] solid cancer data. This table also
includes the confidence limits for all other data sets computed in the same manner as [Pier
96] solid cancer data set. These numerical values of the projections of the delta Chi-square
ellipses onto coordinate axes were obtained using a program written in Maple. In addition
to the confidence levels for estimators, the threshold values, the Chi-square value, and the
reduced Chi-square value (_x?2 /3 ) are listed. The threshold values were computed using
equation 3.17 for each line in Figures 4.1-4.6. The threshold values (labeled ; = 4)
correspond to the intercepts of the “best™ fit lines and the dose axis. The other threshold
values given (j=1,2,3,5,6,7) correspond to the («, /) pairs obtained from projections of
the appropriate delta Chi-square ellipses onto axes (see Figure 4.8). The dose intercept of
the appropriate line is the threshold.

The value of Chi-square was calculated using equation 3.2. To obtain the point
estimates, reduced Chi-square was calculated for three degrees of freedom. Chi-square
defined in equation 3.2 has v=n-m= 5-2=3 degrees of freedom. Labeling is done
according to figure 4.8. The straight lines using estimators from Table 4.2 are presented in
Figures 4.1-4.6. The lines labeled with 4 are “best” fit lines. The lines which are labeled
with 1,2,3,5,6,7 have the values of ¢, and £ as shown in Table 4.2, and are labeled with

the same indices ;.



Table 4.2 The estimates of intercept @ and slope b are obtained by projecting the
Chi-square ellipses onto the corresponding axes. The threshold, the Chi-square, and the
reduced Chi-square values are also in the table below.

Data Set | Proj. Inter: Slo Threshold

(fj) (ace)pt (bp: a Sl RS

! ’ (-3 (V)
bl

1 8.19 16.3 -0.503 1.3

2 7.07 193 0367 823

3 5.09 24.5 0.208 436
[Pier 96]

4 1.99 32.6 -0.061 2.06 0.69
solid 5 L1l 408 0.027 436
cancers 6 -3.09 46.0 0.067 8.23

7 421 489 0.086 11.3

1 3.54 -10.5 0.338 i1

2 2.84 -6.04 0.471 8.06

_ 3 1.60 1.74 0921 4.19

[Shim 92]

4 033 13.9 0.024 1.89 0.63
stomach | ¢ 227 26.1 0.087 4.19
cancer 6 -3.50 339 0.103 8.06

7 421 383 0.110 L1

1 2.84 -8.26 0.344 11.1
(Shim 92] |2 2.44 -5.69 0.429 8.06

3 1.74 -1.18 1.47 4.19
lung

4 0.64 5.88 -0.108 1.89 0.63
cancer 5 0.46 129 0.036 4.19

6 -1.17 17.4 0.067 8.06

7 -1.57 20.0 0.078 11.1
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Table 4.2 continued.

Data Set | Proj. Intercept Slope Threshold x 2 X 2
? Ored
(/) a, b, a '
@ G
b]
1 712 4.63 1.54 16.3
(Shim 92] |2 5.93 2.85 2.08 13.3
. 3 3.84 16.0 -0.240 9.40
all solid
4 0.56 36.6 -0.015 7.10 237
cancers 5 2.72 572 0.047 9.40
6 4.81 703 0.068 13.3
7 -6.00 77.8 0.077 163
1 0.23 3.70 -0.063 10.1
2 0.05 443 0.012 7.10
3 026 5.70 0.046 323
[Pier 96]
4 -0.76 7.7 0.099 0.93 0.31
leukemia | -1.25 9.71 0.129 3.23
6 -1.57 11.0 0.143 7.10
7 -1.74 11.7 0.149 10.1
1 0.38 -1.77 0.215 10.1
2 0.20 0.42 0.490 7.10
_ 3 0.10 1.96 0.053 3.20
[Shim 92]
4 -0.59 5.68 0.104 0.90 0.30
leukemia | o -1.07 9.40 0.114 3.20
6 -1.38 11.8 0.117 7.10
7 -1.55 13.1 0.118 10.1
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Table 4.2 includes some parameters of £ which are negative in sign(a negative
slope). There is no evidence of negative correlation between cancer mortality and the
received dose in whole low, and medium dose ranges, however they are in the limits of
required confidence.

Intersections of lines with negative slope do not have meaning of threshold. This is
why negative slopes are recognized as not of interest. Figure 4.2 (stomach cancer), 4.3
(lung cancer), and 4.6 ([Shim 92] leukemia) all have negative slope lines. It can be seen
from Table 4.2 that the best fit line has the positive threshold for [Shim 92] stomach
cancer and both leukemia data sets. The other three sets of solid cancer data have negative
threshold values. Negative threshold values are consistent with supra-linear model (see
Figure 1.1).

4.3 Discussion of the goodness of fit

In order to estimate the goodness of the “best” fit lines, values of ¢ ratio (equation
3.13) and their corresponding p values, the Chi-square values (equation 3.2 for linear fit),
and the reduced Chi-square were calculated. The numerical values of these calculations for
the linear fit are presented in Tables 4.1 and 4.2. Table 4.1 contains ¢ and, p values. Table
4.2 contains the Chi-square, and the reduced Chi square values. Index j = 4 labels “best”
fit lines in these two tables.

The two sided ¢ test was used to test whether or not a linear relationship exists
between the excess mortality rates and the received dose (is slope b different from zero).
The description of this test is included in Appendix A-1.

The ¢ values ¢, , and the probability values Py which were obtained using table
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of the ¢ distribution are presented in two of the last three columns of Table 4.1. The p,,
value (i.e. probability of observing this or a larger value of Itbl if the true slope is zero -
less evidence of a significant slope) for [Pier 96] solid cancer data set is 0.01 for a linear
relationship between the excess mortality rate and the received dose. The p,, value

for [Pier 96] leukemia data is 0.02. The p,,, values for the [Shim 92] sets are higher than
for the [Pier 96] data sets (stomach and leukemia 0.20, and all solid cancers 0.10). The
highest p,,, value is for the lung cancer data (0.30).

The reduced Chi-square values for a good fit should be close to one [Bevi 92
p-195]. The values greater than one are due to high values of squares of deviations between
the points and the fit line. The values which are very small suggest unusually high
uncertainties in variables. The reduced Chi-square values for the best fit lines (j =4) are
0.69, 0.63, 0.63, 0.31, 0.30 for [Pier 96] solid cancer set, [Shim 92] stomach, [Shim 92]
lung cancer sets, [Pier 96] leukemia, {Shim 92] leukemia data sets, respectively. The fact
that all of these reduced Chi-square values are quite a bit smaller than one suggests that the
assumed errors are too large. The linear fit of the [Shim 92] all solid cancers set of data
has the poorer Chi-square value of 2.37. The best fit lines which are labeled 4 in figures
4.1,4.5. and 4.6 appear to fit the “data” well, the lines in Figures 4.2 and 4.3 fit somewhat
less well. The best line in Figure 4.4 ([Shim 92] all solid cancers), fits least well of all six
best lines. Figure 4.4 shows that the best line goes outside of error bars that are
determined by the values of excess mortality rates and their uncertainties. Specifically, the
best line goes only through two out of five intervals determinated with error bars. This
high dispersion around the best fit line gives higher value for the Chi-square.
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High Chi-square values, and low p,,, values for this fit suggest a poor fit.

Both [Pier 96] sets of data (solid cancers and leukemia) have good linear fits.
The [Shim 92] data sets have worse fits than [Pier 96]. The [Shim 92} stomach, lung,
leukemia fits have low Chi-squares, but higher p,,, values. This suggest a weaker linear

correlation.
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4.4 Using Monte Carlo simulation to determine threshold errors

In order to get an estimate of threshold confidence intervals, a Monte Carlo
simulation was done as described in section 3.3. For each of six sets of excess mortality
rates (Tables 2.1 to 2.4), one thousand simulated events were generated and fitted with
straight lines as described in section 3.3.1. This procedure gives one thousand lines. The
intersections of these lines to the dose axis determine one thousand threshold values.

Figures 4.9 and 4.10 present the distributions of the estimators (intercept a and
slope b) obtained by the simulation for the [Pier 96] solid cancer set of data. The area
under Gaussian distribution curves is normalized to one.

Figures 4.11-4.16 are histograms of the simulated threshold values for each cancer
category. Distributions from Figures 4.11-4.16 are asymmetrical and are skewed on the left
side. In order to present (almost) all simulated points the frequency axes in Figures 4.12-
4.14, and 4.16 are logarithmic. A certain number of threshold values in Figures 4.13, 4.14,
and 4.16 are omitted. In order to show threshold distribution produced by lines with
positive slope only, the histograms 4.12a-4.14a, and 4.16a were plotted. In order to better
present the form of the distribution, a certain number of points from the left side is also
omitted in these histograms. All threshold values for [Pier 96] solid cancer, and leukemia
data are produced by lines with positive slopes (see Figures 4.11 and 4.15, and Table 4.4).

Some threshold values are extremely high (an example, omitted point 452 Sv,
Figure 4.13). In this case the simulation has produced a fit line with a small negative slope.

This line intercepts the dose axis on the far right side.
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Figure 4.9 The distribution of the simulated intercepts a and corresponding
Gaussian fit. The mean value and standard deviation of Gaussian curve are given in
Table 4.3. The areas under the Gaussian curve and the histogram are normalized to one.

([Pier 96] solid cancer data).
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Figure 4.10 The distribution of the simulated slopes # and corresponding
Gaussian fit. The mean value and standard deviation of Gaussian curve are given in
Table 4.3. The areas under the Gaussian curve and the histogram are normalized to one.

([Pier 96] solid cancer data).
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Figure 4.12 Histogram of threshoid values for stomach cancers, ([Shim 92],
Table 2.3 and Figure 4.2). Threshold value at -13.3 is omitted.
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Figure 4.12a Threshold histogram produced by lines with positive siope b.
Total 962 thresholds produced by lines with b>0, see Table 4.4).

The smaliiest 6 threshold values are omitted. (stomach cancer data).
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Figure 4.13a Threshold histogram produced by lines with positive siope b.
Total 907 thresholds produced by lines with b>0, see Table 4.4).

The smallest 26 threshoid values are omitted. (lung cancer data).
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Figure 4.14 Histogram of threshoid values for total solid cancers,
([Shim 92], Table 2.3 and Figure 4.4). Threshoid values: -9.48 and 3.95

are omitted. The frequency axis is logarithmic.
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Figure 4.14a Thresholds produced by lines with positive sltope b.
Total 999 threshoids produced by lines with b>0, see Table 4.4).
The smallest 5 threshold values are omitted, ([Shim 92) all solid cancers).
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Figure 4.16 Histogram of threshoid values for linear fit of leukemia data,
({Shim 92] leukemia data, Table 2.4 and Figure 4.6). Threshold values
-39.9, -7.90, and 3.88 are excluded. The frequency axis is logarithmic.
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Figure 4.16a Threshoids produced by lines with positive siope b.
Total 986 threshoids produced by lines with b>0, ses Table 4.4).
The smallest six points and the point at 3.88 are omitted, ([Shim 92] leukemia).
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Table 4.3 represents the statistical analysis of estimators (intercept a, and slope b),
and the analysis of threshold values (7" ) obtained using simulated data points. Formulae
A-9 to A-13 from Appendix A-3 were used for these calculations. The third column
contains the mean values, the next columns contain the median, trim mean values, their
standard deviations, and their standard mean deviations (see Appendix A-3). The minimal
simulated values and maximal simulated values of the estimators are in columns 9, and 10.
The next two columns contain the first and third quartiles for the simulated estimators.
The last column of table 4.3 contains 95% confidence intervals for median values of
estimators a, b, and T for the simulated data sets (explained in Appendix A-3). Values as
standard deviation of mean, minimal and maximal simulated values are not of particular
physical interest, but they are included in Table 4.3 in order to get better description of
simulated distributions.

Simulated data set for stomach cancer has a positive median threshold value of

0.026 Sv. The 95% confidence interval for the threshold median is in positive limits
between 0.02 Sv and 0.03 Sv. Both leukemia data sets have a positive median threshold
values which are equal to 0.099 Sv, and 0.102 Sv for [Pier 96} and [Shim 92] leukemia
data sets, respectively. The 95% confidence intervals for the threshold median also are in
positive limits between 0.096 Sv and 0.101 Sv for [Pier 96] leukemia, and between 0.099
Sv and 0.105 Sv for [Shim 92] leukemia.

The simulated data sets (lung cancer, and all solid cancers) have negative median

threshold values, and negative limits of their 95 % confidence intervals.
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Table 4.4 lists number of simulations with positive slope & for each simulated data
set (see Figures 4.11-4.16). Column three contains maximum threshold values obtained by
lines with positive slope. Column four lists limits obtained by subtracting fifty threshold
values produced by lines with positive slope (column three) for each simulated data set.
All threshold values in columns three and four are positive. Threshold values in column
four (Upper 95) define the upper limit signifying that 95% of simulated data have
threshold smaller than that value or negative slope (that violates the model). For [Pier 96]
solid cancer and leukemia data sets values in column four give the 95% upper limits of

threshold for the next simulation. This column lists upper limits of threshold uncertainties.
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Table 4.3 Statistical analysis of a and b estimators of simulation, and threshold values (7') for the linear fit (solid cancer and

leukemia data). The threshold values are expressed in Sv. Number (¥ ) of simulations is one thousand.

Column # 1 2 3 4 5 6 7 8 9 10 11
Data Trim, 0 95%-Sign.
Set |Estimator] Mean | Median | Mean Ky Smean | Min. | Max, o, 3 |conf. Inter|
forT
a 192 1.92 1.94 2.05 006 | -644 | 790 0.62 327
[Pier 96}
Solid b 32.5 32.4 32.5 5.43 0.17 16.1 52.3 29.0 36.1
cancer T 0067 | 0059 | 0064 | 0074 | 0002 | -0380 | 0144 | -0.112 | -0.017 | -0.066-
-0.053
a 030 | -027 | -030 1.24 004 | 469 | 353 | -1.12 | 053
l[g"‘(:":azil b 138 | 139 | 138 | 774 | o024 | -105 | 398 | 8712 | 191
cancer T 0017 | 002 | 0011 | 0560 | 0018 | -133 | 3.18 | -0.040 | 0.075 | 0.021-
0.032
a 0.64 0.64 0.64 0.73 002 | -165 | 318 0.15 115
‘[STTnzzl b 585 | 593 | s85 | 437 | o014 | 931 | 193 | 286 | 879
cancer 0355 | 0074 | 0110 | 148 | 0467 | -479 452 | -0225 | 0.012 |-0.08¢
-0.062
a 0.53 0.42 0.52 2.17 007 | 578 | 872 | 091 2.04
[Shim 92]F
Allsolid| P 36.9 36.7 36.8 12.8 040 | -140 | 808 283 454
cancers T 0046 | 0011 | 0025 | 0349 | 0011 | 948 | 395 | -0.068 | 0.021 |-0.016-
0,007
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Table 4.4 Number of simulations with positive slope . Column three contains
maximum threshold values obtained by lines with positive slope. Column four (Upper
95%) lists limits obtained by subtracting fifty threshold values produced by lines with
positive slope (column three) for each simulated data set. Total number simulations is one
thousand (The difference between one thousand and number of simulations with positive

slope is number of simulations with negative slope).

Simulated data set | Number Maximum threshoild Upper 95%
simulations with | value for simulations (Sv)
5>0 with 5>0 (Sv)
[Pier 96] solid 1000 0.144 0.037
{Shim 92] stomach 962 0.898 0.128
[Shim 92] lung 907 0.190 0.054
[Shim 92] all solid 999 0.103 0.061
[Pier 96] leukemia 1000 0.216 0.154
(Shim 92] leukemia 986 3.88 0.193
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Chapter V

Linear-quadratic fit of leukemia data

Besides the linear fit, the leukemia data were fitted with the linear-quadratic
function. This section includes the results of the standard statistical analysis and of the
Monte Carlo simulation for the linear-quadratic fit as explained in sections 3.3. Dose
uncertainties are not included in analysis in this section.

5.1 Results of the Least-square and Chi-square analysis

Figures 5.1, and 5.2 show the same measured values for the excess in the leukemia
mortality rates as a function of received dose as in Figures 4.5 and 4.6. The leukemia data
fitted with a linear model in section 4, are used in this section to fit with a linear-quadratic
model. Estimates b and ¢ were calculated by performing the weighted least squares fit.
These estimates were calculated using equations 3.8 and 3.9. The variance, and
covariance of the estimators were calculated as elements of error matrix 3.12. The ¢ values
were calculated using 3.13. The p values were computed using the table of ¢ distribution in
the same manner as in section 4.1. The results of these calculations are shown in Table 5.1.

The numerical values of the estimates represented in Table 5.2 were obtained by
projecting the delta Chi-square ellipses onto corresponding axes in the same manner as for
linear fit (section 4). Like for the linear fit in section 4.1, the projections refer to the joint
confidence intervals, this time for parameters £ and y . This table includes zero
equivalent points (ZEP) values obtained using equation 3.26. Table 5.2 also contains

values of the Chi-square (equation 3.7), and of the reduced Chi-square.
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Excess in leukemia death rate

Excess in leukemia d. rate (107(-3) I-d./p.]

[10%(3) c-d./p)

2t : . '
o 005 01 015 02 025 03 035 04 048

Dose (Sv)

Figure 5.2 Excess in leukemia mortality rates plotted as a function of receiced doss,
linear-qudratic fit. ([Shim 92] leukemia data, Table 2.4.)
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Figure 5.2a Comparison of the best fit lines (labeled 4) represented

in Figures 5.1 and 5.2. It is clear that best fit parabola of [Shim 92)]
leukemia data set (Figure 5.2) does not fit whole range of [Pier 96}
leukemia data set (Figure 5.1). Data points and their error bars are from
[Pier 96] leukemia data set.
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Figures 5.3 and 5.4 represent the delta Chi-square paraboloid and the
corresponding joint confidence ellipses obtained as intersections of the delta Chi-square
paraboloid to the constant values of the delta Chi-square planes. Values of these constant
planes are same as for linear fit in section 4.2. Both figures were plotted using [Shim 92]
leukemia data.

For the [Pier 96] leukemia data the best fit estimates b and c are positive. A linear-
quadratic function with positive 4, and ¢ corresponds to the no-threshold model according
to table 1.1. For the [Shim 92] leukemia data the best fit, the estimate 5 is negative, while
the estimate c is positive.This case corresponds to the hormesis effect, according to table
1.1. Dose range of [Pier 96] leukemia data set is wider (up to 1.5 Sv) than dose range of
[Shim 92] leukemia data set (up to 0.35 Sv). Figure 5.2a shows that best fit parabola of
[Shim 92] leukemia data set does not fit last two points (at 0.75 Sv and 1.5 Sv) of [Pier

96] leukemia data set.

5.2 Discussion of goodness of fit

Let us consider goodness of fit for the linear-quadratic fits. The analyses of
goodness of fit for this fit was done in similar manner as for the linear fit, values of ¢ ratio
(equation 3.13) and their corresponding p values, the Chi-square values (equation 3.7 for
linear quadratic fit), and the reduced Chi-square for the “best” fit lines were calculated.
The numerical values of these calculations for the linear fit are presented in Tables 5.1 and
5.2. Table 5.1 contains ¢ and, p values. Table 5.2 contains the Chi-square, and the reduced
Chi square values. Index j =4 labels “best™ fit lines in these two tables.
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The two sided ¢ test was used to test whether or not a quadratic coefficient (c) is
equal to zero (the test of existence of quadratic relationship). The description of this test is
included in Appendix A-2.

The reduced Chi-square values (table 5.2 j=4) are 1.19 for the [Pier 96] leukemia
data set, and 0.39 for the [Shim 92] leukemia data set which were fitted by linear-
quadratic functions. These values are slightly closer to one than the linear fit values.
However the fact that the p_ values for the quadratic term in both fits ([Pier 96] leukemia
and [Shim 92] leukemia) are 0.2 together with an inspection of Figures 5.1 and 5.2 suggest

that in both cases a linear model should be fit.
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Figure 5.3 The delta Chi-square paraboloid for [Shim 92] leukemia data
(Table 2.4). The data set is fit by a linear-quadratic function in the linear coefficient £,
and quadratic coefficient ¥ . The intersections of the horizontal planes and the paraboloid
correspond to 68.3%, 95%, and 99% joint confidence regions for parameters P and ¥ .
These intersections have the form of ellipses (Figure 5.4).
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Figure 5.4 The delta Chi-square ellipses plotted as function of linear
coefficient b and quadratic coefficient c. The ellipses are obtained by projecting the
intersections of the delta Chi-square paraboloid (Figure 5.3) and the constant delta
Chi-square planes that are equal to the 2.30, 6.17, and 9.21. The areas that are enclosed
by ellipses are 68.3%, 95%, and 99% confidence regions for parameters £ and y jointly.
([Shim 92] leukemia data, Table 2.4, a linear-quadratic fit.)
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Table S.2 The estimates 5 and ¢ obtained by projecting Chi-square ellipses onto

corresponding axes, ZEP, Chi-square, and reduced Chi-square for the leukemia data sets

fitted by a linear-quadratic dose response function.

Data Set Proje Linear IC b 2 2
(Leukemia) ctiojn coefficient mnt ZEP (- é ) o Korea
s (b;) (¢;) (V)
(/)
1 9.51 2296 321 12.8
2 8.30 -1.78 4.66 9.73
3 6.17 0.312 204 5.86
4 2.83 3.56 -0.795 3.5 | 119
[Pier 96] 5 051 6.83 0.074 5.86
Table 2.2 6 2.63 891 0.296 9.73
7 -3.85 10.1 0.381 12.8
1 9.93 219 0.453 10.4
2 7.03 -12.4 0.568 7.34
3 1.95 4.36 -0.447 3.47
4 -6.02 30.6 0.197 117 | 039
[Shim$2] -14.0 56.8 0.246 347
Table 2.4 6 -19.1 73.5 0.259 7.34
7 22,0 83.1 0.265 10.4
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5.3 ZEP analysis of Monte Carlo simulated leukemia data
The common formulae for combing uncertainties can not be used for the same

reason as for the linear fit (large estimator relative uncertainties, see Table 5.1). In order to
estimate confidence intervals of ZEP, a Monte Carlo simulation was done as described in
section 3.3. The simulation was repeated one thousand times, and the simulated points
were fitted with linear-quadratic functions as shown in section 3.3.3. This procedure
produces one thousand parabolas which are forced through the coordinate origin. For each
of the parabolas intersection with the dose axis (ZEP value) was calculated using equation
3.19. Estimators, the linear coefficient 5 and the quadratic coefficient c, for the linear-
quadratic model were calculated using equations 3.8 and 3.9. Table 5.3 contains results for
estimators b, ¢ and ZEP values. The fourth column contains the mean values, next columns
contain median, trimed mean values for the simulated estimators, their standard
deviations, and their standard deviations of the mean. The minimum simulated values and
the maximum simulated values of the estimators are in columns 9, and 10. The next two
columns contain the first and third quartiles for the simulated estimators. The last column
of Table 5.3 contains 95% confidence intervals for the median values of linear coefficient
b, quadratic coefficient ¢, and ZEP values. Appendix A-3 explains how these values were
obtained. The standard deviation of mean minimal and maximal simulated values are not
of particular physical interest, but they are listed in order to characterize simulated
distributions.

The median values of ZEP are -0.675 Sv for [Pier 96] leukemia simulated data, and
0.203 Sv for [Shim 92] leukemia simulated data. The confidence interval of simulated data

73



%20
~L61°0 P70 9%1°0 p's9 £9'y- 890°0 14 )4 .10 €0T'0 6vT’0 d3Z v
. ' . . . . : . . qe,
A4 181 9 £ % LS'0 Ll 0 667 0t o
96 6 6 00¢ 0 liz6 wiys]
6CC 9¢'6- bsi Let Lo 349 ¢8°¢- 96'S- L8°S- q
$9°0-
“ISL0- | 610~ | PS'I- 9L 611- I8L°0 [ /4 PO’l- | SL90- | 9€6°0- ddzZ Tt
. . . . : : : ) . J|qe],
86V X A4 il e L00 | 8¢t 9¢¢ 85t o
ac [96 121]
% 4 XA 56 Le- L00 81C 6LCT 18°C 8LT q
ddz 10}
195 ejep
sjeAd)u] 3 l ‘XBWN UIN uvaui s uedN S
IS-%s6 0 0 § I e A T L
I 0l 6 8 L 9 S L4 £ 4 | # uwnjo)

‘puesnoy) suo st ( ) suoleNWIS 0 JIqUIN {810, ‘|opow dnjeipenb

-1B3UI] Y|, (AS Ul ) San[eA (437 pue (2 'g) s1orewnsd paie[nwils jo siskjeue [eonslels ;uonBInuIS BIWMNNI] 'S AqEL

74



for median value (95%) of ZEP is between - 0.752 Sv and - 0.624 Sv for [Pier 96]
simulated data set, and between 0.197 Sv and 0.206 Sv for [Shim 92] simulated data set.
These different results can be explained by the influence of the dose points at 0.75 Sv, and
1.5 Sv on fit for [Pier 96] leukemia data set (Figure 5.1).

Table 5.4 contains the number of simulations in each “sign” group for each
simulated data set. The “sign” refers to sign of estimators b and c, as shown in column 2.
The distribution of simulations for [Pier 96] simulated data set is different from [Shim 92]
simulated data set: 85.6% of simulations correspond to the no-threshold model, 9.9% of
simulations correspond to the hormesis model, and 4.5% of simulations are with b > 0 and
¢ < 0. The greatest number of simulations for the [Shim 92] data corresponds to the
hormesis model (85.6% simulation). The 9.8% of simulations correspond to the no-

threshold model, 4.5% of simulations has b>0 and ¢<0.

Table 5.4 Number of simulations classified according to signs of estimators b, and

c. For each simulated data set the total number of simulations is one thousand.

Model Sign of Number of simulations in each sign group
estimators [Pier 96] leukemia [Shim 92] leukemia
No-threshold b>0; c>0 856 98
Hormesis b<0; c>0 99 856
Not of interest b>0; c<0 45 45
Not of interest b<0; c<0 0 1
Total simulations 1000 1000
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Figure 5.5 The distribution of the simulated linear coefficients & (for the
linear-quadratic fit) and corresponding Gaussian fit. The mean value and the standard
deviation of Gaussian function are listed in Table 5.3. The areas under Gaussian curve and
histogram are normalized to one, ([Shim 92] leukemia data).
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Figure 5.6 The distribution of the simulated quadratic coefficients c (for the
linear-quadratic fit) and corresponding Gaussian fit. The mean value and the standard
deviation of Gaussian function are listed in Table 5.3. The areas under Gaussian curve and
histogram are normalized to one, ([Shim 92] leukemia data).
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Figures 5.5 and 5.6 present distributions for estimators 5, and c fitted by Gaussian
functions with mean values, and standard deviations taken from Table 5.3. The area under
Gaussian function is normalized to one. The [Shim 92] simulated data set was used for
these two graphs. Histograms on Figures 5.7 and 5.8 represent distributions of ZEP values
obtained by simulation. The frequency axis on both histograms is logarithmic. The
histograms 5.7a were plotted in order to get a better resolution of central part of
histograms 5.7. In this histogram the lowest twenty five points and highest fifty points are
omitted. The histogram S.8a includes ZEP values produced by parabolas with b<0 and c>0
only (hormesis, total 856 simulations). For the [Pier 96] leukemia data this kind of
histogram was not plotted because total number simulations with b<0 and c>0 is only 99
(9.9% of total number of simulations , Table 5.4).

Maximum ZEP value produced by parabolas with b<0 and c>0 for [Shim 92]

leukemia data set is 1.27 Sv, and 95% of simulations with b<0 and ¢c>0 is up to 0.293 Sv.
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Figure 5.7 Histogram of ZEP values for the linear-quadratic fit of
the [Pier 96) leukemia data, (Table 2.2). ZEP value 726 is omited.
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Figure 5.8 Histogram ZEP values for the linear-quadratic fit of the
[Shim 92] lsukemia data, (Table 2.4). ZEP values 9.05, 9.67, and 65.4 are
omited. The frequency axis is logarithmic.
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Figure 5.8a Histogram of ZEP values produced by parabolas with
b<0 and c>0 (hormesis, see Table 5.4) for [Shim 92] leukemia data set.
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Chapter VI

Results for the case when dose uncertzinties are included

In this section dose uncertainties are included in calculations using equation 3.20.
For a linear fit the Chi-square function has a form given by equation 3.21, and for a linear-
quadratic fit a form is given by equation 3.22. Minimizing Chi-square in equations 3.21,
and 3.22 was done by numerically solving system of equations 3.23 using a Maple program
written for this purpose. Dose uncertainties, as discussed in section 2, were assumed to be
25% of the width of each dose interval. In order to distinguish estimators of fit obtained in
this section from corresponding estimators obtained in sections 4 and 5, estimators of fit in
this sections are labeled with index 1. To clarify, intercept and slope are labeled withg,
and p, . Linear and quadratic coefficients for the linear-quadratic fit are labeled with b,
and c -

The above dose uncertainties are only for illustration purposes. Wider discussion of
dosimetry for the atomic bomb survivors can be found in [Beir V 90, p. 190, Pier 90, Spos
91].

6.1 The linear fit

Values of intercept g, , and slope b1 for the linear fit were obtained by
minimizing the Chi-square and are presented in Table 6.1. The threshold values in this
table were calculated using equation 3.17. The last two columns of this table present the
Chi-square, and its reduced Chi-square values.

By comparing the values of estimators a and g, , and b and b, in tables 4.1 and
6.1, it can be easily observed that dose uncertainties cause a small changes of intercept a
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and slope b, (see Table 6.1 columns A g, A 5 ). Changes in thresholds A T are also
small.

Table 6.1 Intercept g, , slope b, , threshold 7}, corresponding Chi-square
values for the linear fit taking into account errors in doses. Table also includes differences
(Aa=a,-a,Ab=b-b,AT=T,-T,and A X2 = X3, - Xx?) from
corresponding values in Table 4.2. Dose errors were assumed to be equal to 25% of the

dose interval width.

Set of data a, Aa b, Ab | Ti(sw| AT Xz, ax?

[Pier 96] solid 1.85 | -0.14 | 334 0.8 -0.1 0 1.67 -0.39
cancer
Stomach| -0.35 0 14.1 0.2 0.03 0 1.88 0
[Shi Lung | 0.64 0 5.86 0 <0.11 0 1.89 0
m 92] | All solid| 0.49 0.1 376 1 0 0 7.03 -0.1
[Pier 96] -0.77 0 7.67 0 0.1 0 0.8 -0.13
leukemia

[Shim 92] -0.58 | 0.01 | 5.59 0.1 0.104 0 0.88 0

leukemia

Figures 6.1-6.6 present the excess in mortality rates plotted as a function of the
received dose with included dose uncertainties. In these figures best fit lines from Figures
4.1-4.6 are also plotted (thin lines) in order to compare the differences when dose

uncertainties are included (heavy lines).
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Figure 6.1 Solid cancer death excess is plotted as a function of received dose with dose
uncertainties equal to +/- 25 % of the dose interval width (heavy line).

The light line is the best fit line when dose errors are not taken in account.

([Pier 96) solid cancer data, Table 2.1, Figure 4.1)
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Excess in cancer mortality rate [10”(-3) c-d./p.]
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Figure 6.4 The excess in cancer mortality rate is plotted as a function of received dose with
dose uncertainties equal to +/- 25 % of the dose interval width (heavy line).
The light line is the best fit line when dose errors are not taken in account.

([Shim 92] all solid cancer data, Table 2.3, Figure 4.4)



6.2 The linear quadratic fit for leukemia data

Results of the linear-quadratic fit with dose uncertainties taken into account are
presented in Table 6.2. The dose uncertainties are the same as the ones presented in
section 6.1. The ZEP, values were calculated using equation 3.19.

By comparing the values of estimators b and 5, , and c and q in Tables 5.2 and
6.2 it can be easily observed that dose uncertainties cause an increase of values for
estimator ¢, and decrease of estimator . These changes are greater than for linear fit. This
can be seen in Figures 6.5 and 6.6.

Table 6.2 Estimators b, and ¢, , ZEP,, corresponding Chi-square values for the
linear-quadratic fit taking into account errors in doses. Table includes and differences
(Ab=b-b,Ac=c -c,sZEP=ZEP, - ZEP,and A X? = X2, - X?) from
corresponding values in Table 5.2. Dose errors were assumed to be equal to 25% of the

dose interval width.

Leukemia | b, Ab G Ac | ZEP, | AZEP | X/ A X;

data set (Sv)
[Pier 96] 2.15 | -0.68 | 467 1.11 -0.46 0.335 3.18 -0.38
[Shim92] | -6.6 | -0.23 | 346 4 0.19 0 1.13 -0.04

Figures 6.5-6.6 present the excess in leukemia mortality rates plotted as a function
of received dose (heavy lines) with the dose uncertainties for both leukemia data sets. The
linear and the linear-quadratic fits are presented. In these figures corresponding best fits
obtained in section § (dose uncertainties not included) are also shown (light lines).
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Chapter VII

Analysis of cancer and leukemia mortality rates

As we have stated in Chapter II, subtraction of cancer (leukemia) mortality rates of
control group in expression for excess mortality rates (equation 2.1) introduces correlation
among excess mortality rates. This correlation problem can be avoided by fitting mortality
rates instead of excess mortality rates. In this chapter, mortality rates as a function of
received dose are fitted with linear, “threshold” and quadratic form of dose response
function. Comparison of “threshold” and quadratic fits with the linear fit was performed
using F test.

7.1 Models for cancer (leukemia) mortality rates

Mortality rates and their uncertainties were calculated using equations 1.1 and 2.2
respectively. Mortality rates (AMR) as a function of received dose (d) were first fitted with

linear function in the standard manner, i.e.

MR=p +p,-d (7.1)

Second, the following functional form was used to describe threshold effect

MR=p+ 2-(d-d))+ £2|a-a)| 72)
The parameter d,, has a meaning of threshold. For the d, equal to zero, equation 7.2
becomes ordinary linear fit 7.1. For dose values greater than threshold value d, function
7.2 is a straight line with slope equal to p, and y-intercept equal to p, - p, -d,. For dose

values smaller than threshold value d; , the second and third terms in equation 7.2
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are cancelled and the dose response function 7.2 is a constant equal to p, .
The third functional form is ordinary quadratic fit in the form
M=P1+Pz'd+p3‘d2_ 73)
The threshold and the quadratic fits were compered to linear fit using F test of additional
term.
Test of additional term
The ratio of two independent reduced Chi-square distribution Xfl and sz is

distributed according F distribution [Bevi 92, p. 205].

2

P.(fiv,v)= X;l

V2

(7.4)

The F distribution can be used to measure an improvement of fit with m parameters caused
by fit with additional parameter (m+ /) [Bevi 92, p. 209]. Let us illustrate this using the
linear and threshold models. The threshold model has one additional parameter ( do ) more
than the linear model. The test of additional term, tests whether or not that additional
parameter (term) (d, ) significantly improves fit. This test is define using F, ratio.
For the linear and threshold fits £, ratio is
X ,fn - X ,i, 1 X}

_ - —. lin
Fe=5m6-2-10"3 Gz V- (7:5)
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The decision rule for p = 0.05 is:

If F, < F ., the threshold model is not a statistically significant
improvment over the linear model.

If F, > F ., the threshold model fits significantly better
than the linear model, where critical value

Fo=F(v,=1v,=3)=10.1, [Bevi 92, Table CS5, p. 262].
This form of statistical test is also valid for comparison the linear and quadratic models
because quadratic fit (7.3) has one additional parameter more than linear model.

7.2 Results of analysis

Mortality rates were fitted in the forms 7.1-7.3 using the “Origin” computer
program from Microcal. Results of fit are presented in Figures 7.1-7.6. Figures 7.1, 7.3, 4.4
contain linear (equation 7.1) and quadratic (equation 7.3) fits. For data sets (the [Pier 96]
solid cancer, [Shim 92] lung cancer and [Shim 92] all solid cancers) presented in these
figures threshold fit (equation 7.2) is identical to the linear fit (i.e. parameter d,, =0).

The [Shim92] stomach cancer and both leukemia data sets have threshold parameter
d, different from zero (Figures 7.2, 7.5 and 7.6).

During minimization, the global minimum of Chi-square function has to be
determined and other local minima must be avoided. For a poor choice of initial estimates
of p,,p,, d,, the non-linear fitting algorithm may find a local minimum that is not the
global minimum. For example for the [Shim 92] leukemia data, the non-linear fitting
algorithm converged to the local minimum at p, = 0.00167, p, = 0.00923, d, = 016831

(shown in Figure 7.7), which differs from the global minimum shown in Figure 7.6.
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Figure 7.1 Lincar and quadratic fits for [Pier 96] solid cancer mortality rates.
Threshold fit is identical to linear fit ( d, =0, see Tables 7.1 and 7.2).
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Figure 7.4 Linear and quadratic fits for [Shim 92]all solid cancer mortality rates.
Threshold fit is identical to linear fit (d, =0, see Tables 7.1 and 7.2),
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All fits were examined graphically and fits that did not look reasonable (as in Figure 7.7)
were rejected on the assumption that fitting parameters were a local minima, but not the
global could be minimum. Another indication of a minimum that was not a global minimum
unrealistic parameter uncertainties. For example uncertainties for the parameters in

Figure 7.7 were Ap, = 0.00013, Ap, = 277403, Ad, = 5460617 .

Figures 7.8 shows the Chi-square for [Shim92] leukemia data set as a function of
parameter d, . For each value of &, p, and p, were optimized before calculating .Y 2,
For values of parameter d,, above 0.15 the Chi-square function has a constant value
because p, can be chosen such that the fit goes through the data point for dose 0.35 Sv
for any value of d,, greater than 0.15. If we started minimization with d, greater than 0.15
the program can not find the global minimum. The problem of minimization is described in
more details in chapter 10 of [Pres 92].

Tables 7.1 and 7.2 summarize results of all fits (linear, threshold, quadratic).

Table 7.1 shows parameters of fit and their uncertainties. Stomach cancer [Pier 96] and
[Shim 92] leukemia data sets have threshold parameter d, different from zero (0.014 Sv,
0.127 Sv and 0.084 Sv respectively). Three other data sets ([Pier 96] solid cancer,

{Shim 92] lung and all solid cancers) data have threshold parameter d,, practically equal
to zero (threshold fit is equivalent to the linear). Threshold fits of these three data sets have
threshold uncertainties equal to 0.025 Sv, 0.056 Sv and 0.107 Sv respectively.

Table 7.2 Contains Chi-square and reduced Chi-square values for each fit. The Chi-
values were used to compute F values in columns six and ten. Columns six and ten
contain £, values for threshold and quadratic fits respectively. All these values are smaller
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Table 7.1 Table presents parameters of fit for cancer and leukemia mortality rates. The threshold values for [Pier 96] solid
cancer data, [Shim 92] lung and all solid cancer data sets are zero (the threshold fit corresponds to the linear fit).

Fit Linear fit (10™) Threshold fit (10*) Quadratic fit (107)

Dataset | p | p, |Api|Ap | o | P2 | dy | AP | APy | 84| p | p, | py | Ap | AP | APy

[Pier96] | 83 | 35 09541 ] 8 | 35 |000) 1.1 | 56] 25 ]| 83 | 43 |20} 1.1 ] 11 ] 86
solid c.

[Shim92) | 25 | 13 1040} 47 } 25 | 13 | 14 | 62 72]100] 25 ] 17 |-12]60] 17 | 58
stomach c,

(40

[Shim92) | 7.7 | 79 1030} 3.1 | 75 | 59 |000]046] 45| 56 | 76 | 12 | -14 | 036] 12 | 36
lung ¢,

[Shim92} | 72 | 38 } 1.5 | 15 ] 72 | 37 {000 21 | 21 | 107 ]| 72 | 62 | -73 | 1.9 | 62 | 180
all solid c.

[Pier 96} 17167 10201 13 |19 1851112710101 1.0 | 41 18138]29]021] 26| 24
leukemia

[Shim92] | 16 { 36 |016 | 19} 1.7 | 64 | 84 |01 35 ]|101 | 1715229 (012] 37 1t
leukemia




Table 7.2 Table includes Chi-square and reduced Chi-square values for linear, threshold and quadratic fits. Column
six contain / test values for the threshold fit (see text). Column ten contain F test values for the quadratic fit. All test
F values are smaller than required critical values, what indicates that threshold and quadratic fits do not significantly
fit data better than the linear fit.

Data Set Linear fit(v=4) Threshold fit (v = 3) Quadratic fit (v = 3)
‘\,rzed X? X rzcd x? E\' X r2¢d X? F X
(Pier 96] 0.758 3.03 1.01 3.03 0.00 0.801 240 0.09
solid c.
[Shim92) | 0573 229 0.750 225 0.01 0,753 2.26 0,004
stomach c.

€01

[Shim92] | 0.715 2.86 0.954 2.86 0.00 0.907 2.72 0.02
lung .

[Shim 92] 2.08 832 2.80 8.40 0.00 2,63 7.89 0.02
all solid c.

[Pies 96) 1.31 5.22 0.372 1.12 1.22 1.16 348 0.17
leukemia

{Shim 92] 0.957 3.830 0.545 1.63 0.45 0412 1.24 0.70

leukemia




than the corresponding critical value (10.1) of F distribution. This implies that
adding one additional parameter in threshold and quadratic fits do not significantly improve
these fits in a comparison to the linear fit. Thus, these data do not provide significant

evidence for the threshold or quadratic models.
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8. Conclusion

In this thesis reanalysis of the excess cancer and leukemia mortality rates for the
atomic bomb survivors was carried out on a transformed version of the raw data; methods
used included the standard Chi-square analysis and a Monte Carlo simulation. The
simulation was used to obtain estimates of the threshold for a linear model, the ZEP for a
linear-quadratic model and upper limits of their uncertainties. The linear model was
applied to solid cancer and leukemia data, the linear-quadratic model to leukemia data
only. First the standard Chi-square method was applied to the excess cancer (leukemia)
mortality rates. The Cancer and leukemia data were fitted with a linear function in the
form described in Chapter 1. That form is capable of describing the threshold effect. The
linear no-threshold model uses a straight line which is forced to go through the coordinate
origin (the intercept to the dose axis is equal to zero). Depending on the signs of estimators
b, and ¢, a linear-quadratic function can describe several models, as shown in section two.
The linear-quadratic model has the ability to describe the hormesis effect which is of
particular interest.

When statistical dose uncertainties (arbitrarily estimated as 25% of dose interval
width) are included in the calculation, estimators of the fit are not too different from the
case when these uncertainties were not included for the linear fit (see Figure 6.1-6.4, and
Table 6.1). For the linear-quadratic fit the effect of including dose uncertainties is more
apparent (see Figure 6.5 and 6.6, Table 6.2).

Table 8.1 summarizes results of the analysis of all data sets. Columns three to
seven contain results obtain by least-squares fit. Columns four and five contain p values
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for estimates b and c. The p values higher than 0.1 are usually taken as statistical
non-significant. Columns eight to eleven contain results of Monte Carlo simulation for
threshold. The column eight contains median threshold and ZEP values obtained by
simulation. The nine eight contains upper limit of 95% thresholds produced by straight -
lines with positive slope b for linear fit ( negative slopes are excluded, see sections 4.3),
the column ten contains upper limit of 95% ZEP values produced by parabolas with b<0
and ¢c>0, hormesis model for linear-quadratic fit, (see section 5.3). The last column eleven
contains 95% confidence interval for median threshold value for the linear fit, or 95%
confidence interval for median ZEP value for the linear-quadratic fit as obtained from
thousand simulated experiments.

Stomach cancer data set and both leukemia data sets (linear fit) suggest possibility
of existence of threshold namely, median threshold values (obtained by the least-squares
fit and by simulation) are positive, 95% confidence intervals for threshold median are in
positive limits, and of course the upper limits of 95% thresholds produced by lines with
b>0 are positive. Upper limits of 95% thresholds produced by lines with b>0 are positive
for all data sets. Only [Pier 96] leukemia data set has significant p, value equal to 0.02.

For both leukemia data sets fitted with linear-quadratic function the p_ values are
0.20 (it is high value that suggests non-significant result for quadratic coefficient c). Onl;'
9.9% of simulations for the [Pier 96] leukemia data set correspond to hormesis model
(b<0, c>0). The [Shim 92] leukemia data set has 85.6% simulations that correspond to
honnesis model. The median ZEP , 95% confidence interval for ZEP median and the
upper limits of 95% ZEP values produced by parabolas with b<0 and c>0 are positive.
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This suggests weak possibility of hormesis existence for the [Shim 92] leukemia data. This
result should be interpreted with reserve because of high p_ value (0.20).

Analysis of cancer and leukemia mortality rates (Chapter VII) does not introduce
correlation among dependent variables. Threshold parameter g, is different from zero for
[Shim 92] stomach cancer data and both leukemia data sets. According to the F-test none of

the six data sets provide significant evidence for threshold and quadratic models.
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Appendices

A-1. The two sided ¢ test concerning slope b

This test tests whether or not there is a linear relationship between fitted variable Y
and variable d, using a linear regression model [Neter 90, p. 69]. The test is in the form of

alternatives:

(A-1)

The first alternative is a null hypothesis /, . The null hypothesis assumes that slope 5 is
equal to zero. If the null hypothesis is true, then there is no linear relationship between

variables. In order to test the null hypothesis the ¢ value (ratio) is calculated:

_|&
s, (A-2)
The ¢ value is used to establish the decision rule:
IFr<t(-Z;n-2), H, is valid
> 2 3 ’ o (A-3)
Ft>t(-Z.n-2), H, isvalid
2’ e (A4)

where « is a level of significance.
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For example consider the [Pier 96] solid cancer data . In table 4.1 the value of slope
b is 32.6, and the value of variance s} is 28.9. The standard deviation s, is 5.36 . The ¢
value is 6.06. In this example the number of degrees of freedom is 3. In the table of ¢
distribution the value of 6.06 is between ¢ (0.995, 3) = 5.841 and ¢ (0.9975, 3) = 7.453 for
three degrees of freedom [Neter 90 p.1128]. According to A-4 we can conclude that slope
b is different from zero with confidence

a/2=1-0995=0005 or a=001. (A-5)
The value of p smaller than 0.01, because ¢ = 6.06 > 5.841. Thus, it can be

concluded that slope b is different from zero with 99% of confidence.

A-2. The two sided ¢ test concerning quadratic effect coefficient ¢
This test tests whether or not quadratic term c could be omitted from the model
[Neter 90 p 326]. The test is in the form of alternatives:

Hy: ¢c=0
H,:cz0. (A-6)

a

If H, is valid quadratic term c can be dropped from the model. The t value is calculated

as

r= (A-7)

S

<

The decision rule is established by A-3 and A-4 as for previous test.

110



For example consider the [Pier 96] leukemia data. In the table 5.1 value of
quadratic term ¢ is 3.56, and value of variance s? is 4.63. The standard deviation s, is
2.15 . The ¢t value is 1.65. In the table of ¢ distribution the value 1.65 is between ¢ (0.90, 3)
= 1.638 and ¢(0.95, 3) = 2.353 for 3 degrees of freedom. According to A-4 we can
conclude that quadratic coefficient ¢ is different from zero with confidence

@/2=1-090=010 or a=020- (A-8)
The value of p is smaller than 0.20, because ¢ = 1.65 >1.638. It means that quadratic term
c is different from zero (can not be dropped from the model) with 80% of confidence.
Usually required level of confidence to accept assumed hypothesis is 95% or more, or

p<00s5.
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A-3 Determination of threshold and its statistics

As was described in section 3.31 each simulation with a linear fit, gives one
thousand estimators for 7" (equation 3.17). A statistical analysis of those estimators was
performed, then a histogram (frequency of T versus the dose) was plotted, the mean value,
the trimmed mean value, the standard deviation, the standard error of the mean, the first
and third quartiles, 95% confidence interval for the median value was calculated. The
distribution of the estimated thresholds versus received dose is asymmetric. Because of
that non-parametric, sign confidence interval for the median is used to obtain a confidence
interval of the threshold. This part of the analysis is represented in section 4. Calculations
were done using the statistical program Minitab. Minitab calculates those values as
follows [Ryan 85]:
Denote 7" the i -th estimated threshold value (/= 1..1000 (V).

Mean value is

1
Tm=7v7

M=

. Z . (A-9)

[}
—

Median value shows a central point of data (50% are below and 50% above that
point). The data are ordered in ascending order. If NV is odd, median is the middle value.
In case of N = 1000 (even) the median is calculated as the average value of two central

points (500-th and 501-st).
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Trimmed mean (e.g. 5% trimmed mean), is calculated by sorting the data in
ascending order, then the smallest 5% and the largest 5% of the values are deleted, and the
rest (90%) of the values are averaged in the standard manner that is using equation A -9.

Standard deviation is calculated in the standard maner

N
Z (I: - Tawal )2 (A-IO)
- i=l
Sr = N-1 .
Standard error of the mean is
S
S mean = ‘[Tﬁ . (A-11)

First and third quartile’s divide the data in groups that contain the first 25% of
data and the last 25% of data sorted in ascending order.

Sign test for median confidence interval does not assume a form of distribution.
This test is used because simulated threshold distribution is asymmetric. This test uses the
Binomial distribution to compute the required confidence level.

Binomial distribution can be used to compute that x values out of the total N
observations are or are not in one of the two possible categories. For purposes of the
calculation confidence interval x-th value can be in or out of required interval of

confidence.
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Binomial distribution has the form:

P(x) = ( N) -t (1= )2 (A-12)
x .

In order to calculate the confidence level equal to p, first all data points have to be
ordered. The position of each data point has a binomial probability according to equation
A-12 ( x is number of data points less than the median, NV is the total number of data
points, 77 =0.5). For p =95% (95% of confidence) the cumulative probability of all points
in the interval has to be 0.95. This means that the cumulative probability of all points out
of the interval is 0.05. The cumulative binomial probability for x smallest values in the

row is

(N
P(0..x) = Z( J 057 - 05" (A-13)
r=0

Because for £ = 0.5, the binomial distribution is symmzctrical, the cumulative probability
for the largest x values in the row is equal to the cumulative probability for the smallest x
values in the row. In order to get 95% confidence interval, all of the smallest x values
(cumulative probability 0.025), and all of the largest x values (the same cumulative
probability 0.025) have to be left out of the interval. The endpoints of the smallest
interval containing the rest of the points is 95% confidence interval.

For example if ¥ =1000, the binomial cumulative probability for the smallest and
largest 469 points (together) is 0.0463. The binomial cumulative probability for the
smallest and largest 470 points (together) is 0.0537.
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The interval whose endpoints are the 470-th and 531-st gives 95.37% confidence interval.
The interval whose endpoints are the 471-th and 530-st gives 94.63% confidence
interval. The exact 95% confidence interval for 1000 events can only be interpolated

between 94.63% and 95.37% confidence.
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Apendix B-1
Miple program for computation of estimates a, b, Chi-quare, reduced Chi-square values and Error matrix for
linear fit (see Chapters III and IV).

> restart;

> N:=Integer_1:

> M:=array(1..N, 1..3,{[d1,Y1,sY1],[d2,Y2,sY2],..... . [dN, YN,sYN]]),
> x[k]:=M[k,1]:

> y(kl=M[k.2]:

> s[k]:=M[k,3]:

> Al:=sum(y(kVs(k]*2,k=1..N):

> A2=sum(x(k}/s(k]"2,k=1..N):

> A3=sum((x[k]*y{k]¥/s[k]"2,k=1..N):
> Ad:=sum(x[k]"Y/s[k}*2 k=1..N):

> Bl:=sum(1/s{x}*2,k=1..N):

> C:=B1*A4-A2"2:

> a=(A1*A4-A2*A3)VC:
>b:=(B1*A3-A1*A2)/C:

> evalf(a);

> al:=%:

> evalf{b);

>bl:=%:

> Sa:=sqrt((A4/C)):

>evalf{Sa);

> Sal:=%:

> Sb:=sqrt((B1/C)):

> evalf{Sb);
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> Sbl:=%:

> flk]-=a+b*x{k];

> K1=sum((y[k]-Tk]"2/(s{k])"2.k=1..N);

> K:=evalf{K1/3);

> Sa2:=sum((s{k]"2/C"2)* ((A4/s[k] "2)-(A2*x{kV/s[k]"2)) *(A4/s{k]"2)-(A2*x[k}/s{k}"2)).k=1..5):

> %).

> sqrt(%);

> Sab2:=sum((s{k]"2/C"2)*((B1 *x{kV/s[k]"2)-(A2/s(k}"2))*((A4/s{k] 2)H(A2°*x[kVs[k]"2)).k=1..5):evalf(%);
> Sb2:=sum((s(k]}"2/C"2)*((B1 *x{k¥/s{k]"2)(A2/s[k]"2))*(B1 *x[kV/s{k]"2)-(A2/s{k]"2)),k=1..5);

> sqrt(%);

> Error_Matrix:=array(1..2,1..2,([Sa2,Sab2],[Sab2,Sb2]]);
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Apendix B-2

Maple program for computation estimates b, ¢, and Error matrix for a ineer-quadratic fit (see Chapters III
and V).

>restart,

> N:=Integer_1:

> M:=array(1..N.1..3,[[d1,Y1,sY1],[d2,Y2,5Y2],......[dN,YN,sYNI]):
> x[k}:=M[k,1]:

> ylk]=M[k,2}:

> s{k]:=M[k,3]:

> A21:=sum((x[k]*y(k]}s(k]"2,k=1..N):

> A23:=sum((x[k]"3/s{k]}"2),k=1..N):

> Al3:=sum(x[k]"2/s[k]"2.k=1..N):

> A3l=sum((y[k]*x[k]"2¥s[k]"2,k=1..N):

> A33:=sum(x(k]*4/s[k]"2,k=1..N):

> D1 :=sum(x[k}/s{k]*2,k=1..N):

> Cl:=array(1..2,1..2,{{A13,A23],[A23,A33]]):

> c:=linalg{det}(C1):

> A2:=array(1..2,1..2,[[A21,A23],[A31,A33]]):

> a:=linalg{det](A2):

> a2:=evalf{a/c);

> A3:=aray(1..2,1..2,[[A13,A21],[A23,A31]]):

> b:=linalg[det]}(A3):

> a3:=evalf{b/c);

> Yi=a2*x+a3*x"2;

> Sb2:=sum((s[k]"2/c"2)*((A33 *x[k}/s[k}*2)(A23*x{k}"2/s[k]"2))*((A33 *x[kV/s[k]"2)-
(A23°x[k]"2/s[k]"2)).k=1..5);sqre(%);
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> She2:=sum((s[k]"2/c"2)*((A33*x{kV/s(k]"2)-(A23*x[K]"2/s[k}"2))*((A13*x{k}"2/s[k}"2)-
(AB*x[ksk}F'2)k=1..5);

> Sc2:=sum((s[k]"2/c"2)* (A13*x{k}2/s[k}2)-(A23*x[KV/s[K]"2) (A13*x(k]"2/s[k}"2)-
(A23*x[kVs(K}"2)).k=1..5);sqre(%);

> Ervor_Matrix:=array(1..2, 1. 2,{[Sb2,5bc2].{Sbc2,Sc2]]);
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APENDIX B-3

Maple program for computing the "Delta-Chi-Square® paraboloid for linear
fit (see Chapters III and IV).

> restart;

> dl:=valu_l:.....dn:=value_n:

> M:=array(l..N,1..3,[[d},Y1,sYl], (d2,Y2,s5Y2],..... . [dN, YN, sYN]]):
> abest:=a0:

> bbest:=b0:

> planel:=2.30:

> plane2:=6.17:

> plane3:=9.21:

> pogled:=0..11:

> orent:=[40,83]:

> N:=Integer_ 1l:

> xli=valu x1l: x2:=value_x2:

> yl:=value_yl: y2:=value_y2:

> x[kl:=M[k,1]:

> ylk}:=M([k,2]:

> s[k}:=M[k,3]:

> Ko:=sum{{y(k]-abest-bbest*x{k])~2/(s[k])"~2,k=1..N}:
> £{k]:=a+b*x(k]:

> Kir=sum((y[k]-£f{k])"~2/(s[k]l)"*2,k=1..N):

> K:=Ki-Ko:

> a:=y:b:=x:

> z:=K:
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> colorplot3d:=proc(f::algebraic, xrange::'=", yrange:: =") /* colr3d
command ([Kofler 97 p.485]*/

> local varx, vary, x, x0, x1, y, y0, vyl, i, j, opts, gridopt,

> datafl, dataf2, datacl, datac2, c:

> Digits:=6:

> #
> # analyse parameters
> #

> varx:=op (1l,xrange) : vary:=op(l, yrange):
> x0:=evalf (op(1l, op(2,xrange})): xl:=evalf(op(2, op(2,xrange})):

> y0:=evalf(op(l, op(2,yrange))): yl:=evalf(op(2, op(2,yrange))):

> #

> # analyse options

> #

> gridopt:={20, 20]: # defaults

> opts:=[args([4..nargs]]:
> i:=1:

> while i<=nops{opts) do:

> if type(opts{i], identical({ grid )=list) then

> gridopt:=rhs(opts(i}):

> opts:=subsop (1=NULL, opts): # remove from options list
> elif type(opts(i], identical( color )=function) or

> type(opts([i], identical('COLOR’j=function) then

> c:=[ op(2..4, rhs(opts(il}) 1:

> opts:=subsop (1=NULL, opts}): # remove from options list
> else

> i:=eval(i)+1l:

> fi:

> od:
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> if c='c' then # no color option
> ERROR(“wrong or missing color function, use

color=COLOR(RGB, r,g,b) ") :

> fi:

> # loop to calculate graphic- and colordata
>

> #

> datafl:=[]: datacl:=[]:

> for i from 1 to gridopt{l] do:

> x:=evalf (x0+(x1-x0)/ (gridopt [1]~-1)*(i-1)}):

> dataf2:=[]: datac2:=[]:

> for j from 1 to gridopt(2] do:

> y:=evalf (y0+(yl-y0)/ (gridopt[2]-1) *®(j-1}):

> dataf2:=[ op(dataf2), evalf{ subs(varx=x, vary=y, f)) 1:
> datac2:=[ op(datac2), op(evalf( subs(varx=x, vary=y, c))} ]:
> od:

> datafl:={ op(datafl), dataf2]:

> datacl:={ op(datacl), op(datac2}]:

> od:

> # show plot, use remaining options

> #

> plots{display} ( PLOT3D( GRID(x0..x1l, y0..yl, datafl,

> COLOR(RGB, op(datacl)}) ), op(opts) )7

> end:

>
> greyscale:=(x)->COLOR(RGB,0.85,0.9,0.95):
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> with(plots) :g0:=colorplot3d(z, x=x1l..x2, y=yl..y2,
color=greyscale(z*0.01+0.1),

> grid=([40,40], view=pogled,
orientation=orent, axes=boxed, numpoints=10000, labels=[~ *,~ *," "1,

scaling=unconstrained, style=patch}:

\"

with (plottools) :with{plots):

> gl:=plot3d(planel, x=x1..x2, y=yl..y2,axes=none,labels=[~ -,  ~,° "1):

> g2:=plot3d(plane2, x=xl..x2, y=vl..y2,axes=none,labels=(" °," °,  “]):

> g3:=plot3d(plane3, x=xl..x2,y=yl..y2,axes=none,labels=(" *,~ ~," "1}:

> plotsetup (jpeq,

plotoutput="FileName.jpg ,plotoptions="portrait,width=600, height=700,nobor
der’);

display((g0,qgl,g92,g3],axes=boxed, ambientlight=(0.7,0.9,0.8], font=[TIMES, BO

LD, 15],axesfont={TIMES,BOLD,15]);
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APENDIX B-4:

Maple program for linear-quadratic fit of simulated set of data (see
Chapters III and V).

/*N is number of simulations; n number of points in each simulation.*/
> restart;

> readdata( FileNAme.txt", float,n):

> MO:=matrix(%):

> close( FileNAme.txt");

> pl:=value_l:

> p2:=value_2:

> pn:=value n:

> N:=Integer 1:

> bbest:=value_b best: cbest:=value c_ best:

> for z from 1 by 1 to N do

Mz:=array(l..n,1..3, [{dl1,M0O(z,1],Pl},-ccu... .., {dn,M0(z,5],p5]11):
x{k]:=Mz(k,1]:

y{k]:=Mz[k,2]:

slk]}:=Mz{k,3]:

A21:=sum( (x[kl*y{k])/s([k]*2,k=1..N):

A23:=sum{ (x[k]"~3/s[k]"~2),k=1..N}:

Al3:=sum(x[k]"~2/s[k]*2,k=1..N):
A3l:=sum((y{k]*x(k]j~2)/s[k]~2,k=1..N):
A33:=sum(x[k]~4/s[k]"2,k=1..N}:

Cl:=array(l..2,1..2,[{A13,A23], (A23,A33]1]):

c:=linalg([det] (Cl):

B2:=array(l..2,1..2, [[A21,A23], [(A31,A33]1]):

:=linalg(det] (A2):
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a2:=evalf(asc):
A3:=array(1..2,1..2,[(A13,A21], [A23,A31]]):
b:=linalg(det] (A3):

a3:=evalf(b/c):;
sln:=solve(a2*x+a3*x~2=0);

v:=sln(l]:

T:=sln[2]:

f(k] :=bbest*x (k] +cbest* (x[k])"2:
Ki:=sum((y{k]-£{kl}*2/(s{k]}"*2,k=1..N}:
appendto(“FileName Res.txt’):
array((z,a2,a3,T,K1,2]):;

writeto (terminal):

> od;
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Glossary

Absorbed dose (D)- the energy imparted to matter by ionizing radiation per unit mass. SI

unit of absorbed dose is gray (Gy).

Background radiation - radiation that is part of natural environment (not caused by a
human action). It is caused by natural radio-isotopes in
environment and cosmic radiation.

Cancer (leukemia) incidence rate - number of cancer (leukemia) cases per person in

observed population.

Cancer (leukemia) mortality rate - number of deaths due to cancer (leukemia) per person

in observed population.

[c-d./p.] - means cancer (leukemia) deaths per person.

Cumulative dose - is a total dose received if someone was repetitiously exposed to

radiation.

Dose equivalent (DE)- is a product of the absorbed dose and quality factor (see Quality

factor) DE=Q*D. Si unit for dose equivalent is Sievert (Sv).

Dose ranges - Arbitrary ranges of received dose. Low dose is below 0.2 Sv, intermediate

dose is between 0.2 and 2.5 Sv, high dose is above 2.5 Sv. [Brill 82].

Gray (Gy) - Si unit for absorbed dose. One Gray is 1 Joule of energy imparted to 1 kg of

matter by ionizing radiation, (1Gy = 1J/kg).

Hormesis - beneficiary influence of some agent on health. For case of ionizing radiation it

is hypothetical.
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Ionizing radiation - any radiation that produces ionization in primary or secondary
processes (X and gamma ray photons, charged and uncharged

particles).

Linear no-threshold model - a model that assumes linear dependence between number of
cancers and received dose of ionizing radiation. It assumes
that straight line passes through the coordinate origin.

Linear threshold model - a model that assumes existence of a threshold dose below which

ionizing radiation has no effect on health. Above the threshold
linear dependence between number of cancer and received dose
is assumed.

Maple - a computer algebra program, developed by Waterloo Maple, Inc.

Minitab - a computer statistical program developed by Minitab Inc.

Origin - a computer program for data analysis and technical graphics developed by

Microcal Software, Inc.

Quality factor (Q) - is a multiplicative factor that express effectiveness of ionizing
radiation on biological tissue. This factor is equal to one for x rays,
gamma rays, and beta particles. Quality factor is equal to 20 for fast
neutrons, alpha particles, and heavy particles. For fast neutrons some
authors use quality factor equal to ten.

Sievert (Sv) -~ Si unit for dose equivalent. For ionizing radiation with quality factor one (x

rays, gamma rays beta particles) 1Sv = 1Gy.
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Threshold (7)- an assumed dose below which the effect of ionizing radiation on health
does not exist.
ZEP - refers to Zero Equivalent Point. In the hormesis model this is the dose below which
radiation has beneficial effect on a biological systems, and above it has harmful

effect. At that point the effect of ionizing radiation is equal to zero (no effect).
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