Parameter Estimation Based Fault Detection and Isolation
in Electrohydraulic Systems

by

Ruixiang SONG

A Thesis
Submitted to the Faculty of Graduate Studies
In Partial Fulfillment of the Requirements
for the Degree of

Master of Science

Department of Mechanical and Industrial Engineering
University of Manitoba
Winnipeg, Manitoba

© May,2002



g |

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canadz Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis i microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliotheque nationale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your fla Votra référance

Qur fila Notre réfdrence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni Ia thése mi des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation,

0-612-80031-8

 hd

Canadi



THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES
FeRkRk

COPYRIGHT PERMISSION

PARAMETER ESTIMATION BASED FAULT DETECTION AND ISOLATION IN

ELECTROHYDRAULIC SYSTEMS

BY

RUIXIANG SONG

A Thesis/Practicam submitted to the Faculty of Graduate Studies of The University of
Manitoba in partial fulfillment of the requirement of the degree

of

MASTER OF SCIENCE

RUIXIANG SONG © 2002

Permission has been granted to the Library of the University of Manitoba to lend or sell copies of
this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or seli
copies of the film, and to University Microfilms Inc. to publish an abstract of this thesis/practicam.

This reproduction or copy of this thesis has been made available by authority of the copyright
owner solely for the purpose of private study and research, and may only be reproduced and
copied as permitted by copyright laws or with express written authorization from the copyright
owner.



Abstract

In this work, a fault detection and isolation strategy based on parameter
estimation, a widely used method in system identification, is employed for a servo-
positioning hydraulic system. Model selection criteria for fault detection and isolation
purposes are presented and elaborated. The batch least squares method, well known for
linear time-invariant system identification, is employed to estimate the coefficients of the
selected model. The relationship between the estimated model coefficients and the actual
physical parameters is explored empirically. Direct threshold checking is used as the
basic fault detection and isolation logic. The performance of this strategy is evaluated
based on fault conditions due to incorrect supply pump pressure and changes in
equivalent viscous damping coefficient. It is shown that fault detection and isolation for
faults due to a change in a single physical parameter can be achieved. However, complete
fault detection and isolation is both difficult and conditional for faults originating from

changes in more than one physical parameter.
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Chapter 1 Introduction

With the development of our society, engineering systems are becoming more and
more functional and complicated. For example, in an airplane, thousands of inter-
dependent electrical and mechanical units are integrated. In such a complex system,
failure of one unit may cause a loss of millions of dollars and even hundreds of lives, The
requirements for fault-tolerance, reliability and security have triggered the demand for
thorough maintenance checks and monitoring systems, so as to detect faulty components,
and make the systems more robust. Maintenance checks are usually performed on a
regular basis off-line by technicians. On the other hand, monitoring systems gather
information about the units of the system and make decisions about the working

conditions of the monitored system.

1.1 Motivation

Fault detection and isolation strategy is the key component of the monitoring
system. Traditional fault detection and isolation systems are based on hardware
redundancy and a voting logic. With the rapid development of inexpensive, high-speed
computers and digital signal processing (DSP) technologies, functional redundancy (a
software approach) based fault detection and isolation systems are becoming increasingly
popular [3]. Since the states or the parameters of a monitored process are closer to the
process faults in terms of signal flow, observer based state estimation theory [1,2] and on-
line system parameter estimation technologies [9] are well developed and employed in
fault detection and isolation for linear time-invariant systems. Among those technologies,

unknown input observer (UIO) [4] and least squares (LS) parameter estimation [35]



methods can be named. The UIO method provides a robust residual generation in the

presence of unknown inputs, disturbances, modeling uncertainties, physical parameter

variation and measurement noise. The LS parameter estimation method provides a

powerful way of detecting faults by monitoring on line the estimates of the dynamic

system’s physical parameters, However, for cases where explicit models cannot be

derived or for nonlinear dynamic systems, such as hydraulic systems, the application of

UIO and LS methods for fault detection and isolation becomes very challenging [4,5].

Hydraulic systems are widely used in machine tool applications and aircraft

control systems. Compared with other systems, using hydraulic systems has the following

advantages [10]:

L.

2

('8 )

Hydraulic fluid acts as a lubricant, in addition to carrying away heat generated
in the system to a convenient heat exchanger.

Comparatively small hydraulic actuators can develop large force or torque.
Hydraulic actuators have a higher speed of response with fast starts, stops, and
reversals.

Hydraulic actuators can operate under continuous, intermittent, reversing and
stalled conditions without damage.

Availability of both linear and rotary actuators gives flexibility in design.
Because of low leakage in hydraulic actuators, speed drop is small when load

1s applied.

There are, however, several disadvantages in the application of hydraulic systems

1. Hydraulic power is not readily available as compared to electric power.

12



2. The cost of a hydraulic system may be higher than a comparable electrical
system performing a similar function.

Fire and explosion hazards exist.

12

4. Tt is difficult to maintain a hydraulic system that is free from leaks. Thus

the system tends to be messy.

Contaminated oil may cause failure in the proper functioning of a

Ln

hydraulic system.

6. Hydraulic circuits have generally poor damping characteristics. If a
hydraulic circuit is not designed properly, some unstable phenomena may
occur depending upon the operating condition.

7. The design of a hydraulic system is quite involved due to nonlinear and
other complex characteristics.

Wide application together with nonlinear and complex characteristics make the
functional redundancy based fault detection and isolation for hydraulic systems a very
attractive field. Faults in hydraulic systems can be grouped into incorrect supply pump

pressure, increased internal and external leakage, and changes in hydraulic compliance

[13].

1.2 Objective and Scope of This Thesis

Previous work on fault detection and isolation for hydraulic systems has mainly
been based on linear, bilinear and nonlinear observer based approaches [15,16]. In this
work, a parameter estimation based fault detection and isolation strategy is attempted for
a double-rod electrohydraulic actuator. An autoregressive with exogenous input (ARX)

model is selected according to model selection criteria and the LS parameter estimation

U



method is employed to estimate the coefficients of the selected model. Direct threshold
checking is then applied as the basic fault detection and isolation logic.

In Chapter 2, a review of fault detection is provided. Two important tools for fault
detection and isolation in linear time-invariant systems, i.e., UIO and parametric
estimation methods, are specifically discussed in this chapter. Chapter 3 outlines the
general procedure for parameter estimation based fault detection and isolation. The
nonlinear hydraulic system model is derived for simulation purposes in Chapter 4.

Simulation and experimental tests are performed in Chapters 5 and 6, and conclusions are

presented in Chapter 7.



Chapter 2 Background Study

In this chapter, the development of fault detection and isolation is reviewed.
Traditional hardware redundancy based strategies and functional redundancy based
strategies are outlined. Unknown input observer and parametric gstimation methods for

linear time-invariant systems are presented.

2.1 Hardware Redundancy Based Fault Detection and Isolation

Since sensors provide vital information for controllers within the control system,
early monitoring schemes are primarily concerned with the sensor fault detection, also
called instrument fault detection (IFD). Traditionally, this type of fault detection is
achieved through hardware redundancy. In such a scheme, more than two similar sensors
(usually three or four) are used to measure the same variable of the monitored system. A
voting logic is adopted in decision making. One sensor is to be declared as faulty when
its signal is too far away from the average of signals from other sensors. The monitoring
system identifies the faulty sensors and the average of signals from those sensors that are
working properly is taken as the true value of the measured variable. Thus, the monitored
system can still work prbperly in the presence of a sensor fault condition. This approach
is quite simple, reasonably straightforward and widely used. However, there are several
shortcomings to this scheme. The major problems are:

1. Extra hardware and software costs for redundant sensors.

2. Extra physical space required for the installation of extra sensors.

(93]

Conditions that can cause one sensor to fail may damage redundant sensors as

well,

Lh



4. Fault conditions other than sensor fault cannot be detected.

2.2 Functional Redundancy Based Fault Detection and Isolation

With the rapid development of inexpensive, powerful and reliable computers,
alternative approaches have been attempted to overcome (at least in part) the problems of
hardware redundancy based fault detection and isolation and to improve the overall
reliability of the monitored system. New approaches have been prompted since the 1970's
by the high cost of redundant sensors and the excessive weight and space demands
imposed on the system. These approaches are based on the idea of using several
dissimilar sensors to measure different variables of the same process, instead of using
several similar sensors to measure the same variable of the process. Since the signals
from the dissimilar sensors are all driven by the same dynamic process, these approaches
are called functional redundancy (also called analytical redundancy or artificial
redundancy). The basic idea of functional redundancy to instrument fault detection 1s the
observer (state estimator) theory, which was proposed by Lunenberger in the 1960°s
[1,2].

Observer based instrument fault detection is very similar to the hardware
redundancy based faul{ detection scheme. For example, there are several sensors
measuring different variables of the same process. If observability [10] is satisfied,
signal(s) from one or some of these sensors can drive an observer to estimate other
signals. The estimated signals from the observer can be used to compare with the actual
signals, which are not used to drive the observer. If the sensors whose signals are used to
drive the observer are faulty, all the estimated signals will deviate from the actual ones. If

only one of the estimated signals is far away from the corresponding actual one, the



sensor for that particular signal is considered faulty. Through designing different
observers which are driven by different set of signals, many sensor faults can be detected
and isolated.

Along with observer based fault detection theory, parameter estimation, adaptive
filtering, variable threshold logic and statistical decision theory can also be implemented
within a funetional redundancy based fault detection and isolation (FDI) strategy [3].
Normally, both the input signals to and the output signals from the monitored process are
required for a functional redundancy based FDI scheme. These schemes are therefore
designed under assumptions that [3]:

1. Either the dynamic nature of the system being monitored is precisely known

to a reasonable degree.

2. Or it is possible to determine the value of certain physical parameters by on-
line identification techniques applied to the input and output signals of the
monitored plant.

Since the states or the parameters of the monitored process are closer to the process faults
in terms of signal flow, observer based state estimation theories and system parameter
estimation technologies are well-developed and used in fault detection and isolation for
linear time-invariant {L.TI) systems. Among them, unknown input observer (UIO) [4] and

least squares (LS) parameter estimation [5] are commonly used. They will be briefly

described here.

2.2.1 Fault Diagnosis Based on Unknown Input Observer

One of the challenges in achieving a robust fault detection and isolation scheme is

to reach complete de-coupling and hence invariance between different fault effects, or



between the effects of faults and the effects of unknown inputs which are independent of
the fault mode. The unknown input observer approach can fulfill this task through
transforming the state equations, which represent system dynamics, fault and possible
unknown inputs, into a Kronecker Canonical Form (KCF) [4]. Consider the system that is
described by the following discrete-time state equations:

x,,, =Ax, +Bu + Ed, + Kf, (2-1)

Y =Cx,
where

x, (nx1) represents the state vector at the sampling instant & .

A {nxn)is the system matrix.

B (nxr) represents the known input distribution matrix.

u, (r x1) represents the known input vector at the sampling instant & .

E (nxs) represents the unknown input distribution matrix.

d,(sx1) represents the unknown input vector at the sampling instant .

K (nxw) represents the fault distribution matrix.

[, (wx1) represents the fault vector at the sampling instant k.

C (mx n) represents the measurement matrix.

v, (mx1) represents the measurement of system output at the sampling instant £ .

A, B, C, E and K are required to be perfectly known for the purpose of observer
design. An unknown input fault detection observer for the system described by equations
(2-1) and (2-2) has the following structure:

2 = Fg, + Ju, + Gy, ' : (2-3)



r.=Lz +Ly, (2-4)

where z,(tx1) denotes the state of the observer and r, (vx1) is the residual. This

observer exists if and only if:

1. For any initial condition x, and gz,, if no fault happens, ie., f, =0, then

limr, =0.

k=

Given a (f x n ) transforming matrix T, if z, =Tx, and f, =0, then z, = Tx,

[

forall k=0.

For z, =Tx,, if any arbitrary f, #0,then r, # 0.

L)

In [4], the necessary and sufficient condition of the existence of this observer is given.
With the help of the algorithm presented in [6] and [7], the procedure of deriving
matrices F, J, G, L, and L, is also described.

Although it leads to the most powerful model-based fault detection and isolation
approaches for disturbed and uncertain dynamic systems, the limitation of this approach
is quite obvious. The exact linear model of the system is required and the distribution of
the uncertainty and disturbance must also be understood in detail. For the cases of
nonlinear dynamic systems or of poorly precise models of linear systems, this method is
cumbersome and the complete isolation between the unknown inputs and the faults is

difficult to achieve.

2.2.2 Fauit Diagnosis Based on Model Parameter Estimation

Generally, the behavior of a system process is a function of the system’s initial
condition, input signal and physical parameters and is governed by physical laws. When

these physical laws are well understood, this function can be expressed as a set of



ordinary or partial differential equations. The coefficients of the resulting equations are

functions of the system’s physical parameters [3].

If a system can be described by linear differential equations, the least squares
method can be employed to estimate the coefficients of the equations. For example, a
discrete linear time-invariant single-input-single-output system can be expressed as in
equation (2-3).

iy +ay(t-D+a,y(t =2+ +a,y(t —n)

(2-3)
=bu(t =)+ bu(t =2)+---+b u(t —m)

Equation (2-5) shows that the current output of the system is a linear combination of the
past n outputs and past m inputs. It can be written in the following form:

»(0)=0"y(t) (2-6)
where

(O ==y =Dy =2,y = m)ule = 1), (e = m)]
and

;
0 =[a,.a,,.a

bby ]

in? *m

The input and output signals are measured at discrete times ¢ =47, k =1,2,---, N, where
T is the sampling period. Suppose @ is the estimation of @, then

e(t) = (1)~ 6" w(H) (2-7)
The loss function is defined as

7= el (2-8)

e’ =le(1),e(2)--,e(N)] (2-9)



Here {ak} is a sequence of positive numbers. In applications, most often «, is chosen

identically equal to 1. Through the minimization of equation (2-8), the well-known batch

(non-recursive) least squares (L.S) coefficient estimation method is obtained [9].

n N -1 N
0 :[Zar'fl(l)wr(t)] D apy(t) (2-10)
(n+nyxl =] 1=}
{n+ml=(n+m) {n+mi=l

For on-line parameter estimation purposes, the batch LS method can be rewritten in a

recursive fashion, i.e., the recursive LS method [9].

0(1) = 8(t - 1)+ LO[y(t) - 67 (¢ ~Dw ()] (2-11)

L5y =— 2=y (2-12)
Ve, +w' (P -y ()

Pty = P —1) P =Dy’ ()P -1) (2-13)

Ve, +y (VPG -Dy(r)
To start this recursive algorithm, the initial conditions P(¢;) and é(to) are needed. In [9],

it is shown that the proper initial values for the recursive LS method should be given by

equations (2-14) and (2-15).

Iy

P(t) = > aplow’ (k)] (2-14)

8(t,) = P(t)S (k) (k) (2-15)

In [9], it 1s also shown that the relative importance of the initial values decays with time.

Therefore, a suggested and common choice of initial values is to take P(0)=C-I and

é(O) =0, where C is some large constant,



~

After obtaining the estimation of model parameters, €, a mapping function f is
used to find the physical parameters, p, of the system.

p=r"0) (2-16)
Through on-line monitoring of the physical parameters of the system, faults can be

detected and isolated. However, it has already been shown by Isermann [5] that a unigue

determination of physical parameters, p, is not always possible. For example, in a first
order electrical circuit (see Fig. 2.1), the relation between the output voltage, u,, and the
input voltage, u,, is

RCHe Ly =y (2-17)
dt

Fig. 2.1 First order electrical circuit.

It is clear that we cannot determine the values of either R or C separately by only

measuring the input and output voltage, u, and u, . Thus, the faults pertaining either to R

or ' cannot be isolated.
Another problem with this methodology is that a linear process model that
describes the process behavior is sometimes not available and there are no powerful

parameter estimation methods for general nonlinear models.



2.2.3 Fault Diagnosis for Systems without Explicit Model

There are many dynamic systems where the physical laws that govern their
behavior cannot be easily expressed by mathematical equations. Such systems can only
be modeled based on their input and output characteristics through experiments. There
exist two distinct relations between the derived model and the physical system. One 1s the
relationship between the system's physical parameters and coefficients of the
mathematical model. The other is the relationship between states of the model and the
physical state variables of the system. In such cases, the direct implement of either the
observer based or the parametric estimation based fault detection and isolation strategy
becomes very challenging. In this thesis, a parameter estimation based fault detection and
isolation strategy is investigated for hydraulic systems. The general procedure for this

methodology is elaborated in the next chapter.



Chapter 3 Fault Detection and Isolation in Feature

Space

For systems which can only be modeled based on their input and output

characteristics through experiments, the key to model-based fault detection and isolation

strategy is to find the relationship between the faults and the changes in the model

coefficients. Since the mapping function described by equation (2-16) cannot be easily

obtained, the on-line values of system physical parameters cannot be determined.

Therefore, the relationship between the faults and the changes in the system physical

parameters has to be investigated empirically. The general fault diagnosis procedure

based on parameter estimation is illustrated in Fig. 3.1.

1

Fig. 3.1 Generalized scheme of fault diagnosis.
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3.1 Data Processing

Most monitoring systems are implemented in digital computers. When a

monitored process is running, input and output signals are sampled at a time interval, 7,

through a sampling device. Once the measured signals are collected, they may be
processed by methods using digital signal processing (DSP) technologies, such as
buffering, re-sampling, de-trending or filtering. Therefore, only the most important
features of the signals are left for fault detection and isolation.

Buffering collects the consecutive signal samples into a single unit, which is
called a batch or frame. By propagating these multi-sample frames instead of the
individual signal samples, one can take the speed advantage of execution of DSP
algorithm, such as Fast Fourier Transform (FFT). Re-sampling changes the sampling
frequency in software. If it turns out that the data has been sampled too fast (which may

be required for control purposes) for the monitoring system, they can be decimated. For

I
k

example, if every k™ sample is picked up, the sampling frequency will change to

from the original sampling frequency, f,. De-trending the data involves removing the
mean values or linear trends from the signal. For a signal such as

5(t) =5, + Asin{et + ) (3-1)
The de component s, may not be of interest. Thus, it is de-trended to

§'(1) = Asin{ar + w) (3-2)
Filtering extracts the most interested frequency components from the sampled signals. It

is a good way of removing high frequency noise in the data. It is also a good alternative

to de-trending by cutting out low frequencies from the pass band.



3.2 Model Selection and Parameter Estimation

Modeling can provide a direct way to present the characteristics of the monitored
system. There are two kinds of system modeling strategies: one is the derivation of the
mathematical model from the physical law that governs the behavior of the system, while
the other tries to model the system through experiment. Since the only information
available to the monitoring system is the input-output set of the monitored process, a
mathematical model should be found based on the on-line information of this process.
Then parameter estimations can be applied to the selected model structure to get the

mode] coefficients.

3.2.1 Model Selection

The structure of the model determines how the input and output information is
formed. For linear structures, autoregressive with exogenous input (ARX), autoregressive
moving average with exogenous input (ARMAX), output-error (OE). box-jenkins (BJ)
and state-space models [9] are all good candidates. For nonlinear systems, use of an

artificial neural network (ANN) is an option.

3.2.1.1 ARX Model

For single-input and single-output systems, the ARX model is the most commonly
used model structure. It relates the current output y{r) to a finite number of past outputs
v(t —k), inputs u(z — k) and current noise e{¢).

Yty +ay(t -+ a,y(t =2y +--+a,y(t -
=bu(t —ky+bu(t —k -0 +bu(t —k=2)+- -+ b u{t =k —m+1)+e(t)

(3-3)
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Fig. 3.2 Diagram of ARX model.

In Fig. 3.2, z' denotes unit time delay. After selecting the values of »,m and k, the
structure of the ARX model is determined: # is equal to the number of poles, m —1 1is the
number of zeros and k& is the pure time-delay (also called dead-time) in the system. & is

equal to 1 if there 1s ne dead-time.

3.2.1.2 ARMAX Model
The difference between the ARMAX model and the ARX model is that in the

ARMAX model, the noise, e(f}, is also moving-averaged.

y) rayt-D+ayt=2)++a,y{l-n)
=bu(t —k)+bu(t ~k-1)+bu(t —k=2)+-+bu(t —k—m+1) (3-4)
+e(ty+ce(t -1y +ce(t=2)++ce(t—{)

171(4
z—k
)
Pt TR €3]
—»
+
<
e(t)
ax a.‘e—l ai
z7! le— - z7b e

Fig. 3.3 Diagram of ARMAX model.



In this model, #, m, and k have the same meaning as in the ARX model and / is

the number of zeros from e(r) to y(¢). The structure is determined by the values of #n,

m, k,and /.

3.2.1.3 Qutput-Error Model
Instead of treating noise, e(t), as another source of input, the OE model assumes

that the noise, e(f), is near the measurement of output, y{/) (see Fig. 3.4).

() —e+a [yt D) —e(t =D]+- +a,[y{t ~n)—e(t —n)]
=bu(t —k)+bu(t —~k -y +bu(t —k=2)+-+bult —k—m+1)

1{f
C z_k. Z—l

Fig. 3.4 Diagram of Output-Error model.

Similarly to the ARX model, the structure is determined by values of n, mand &.

3.2.1.4 Box-Jenkins Model

The BJ model assumes that input signal, u(7), and noise signal, e{t), affect the
output, y(¢). through separate channels. Each channel will be output auto-regressive and
input moving average. With reference to Fig. 3.5, output y(r) consists of two separate
components, y,(¢yand y,{f).

v +ayt=D+ay( ““2)'5'""1'0',“}"(1‘ -n)
=bult — k) + bt =k =D+ bt =k =2y + -+ b, u(t —ky —m +1)
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Fig. 3.5 Diagram of Box Jenkins model.

The structure of the BJ model is determined by the values of », m, k,, n,, myand k.

3.2.1.5 State Space Model
For multiple-input«multiplé-output {(MIMO) systems, the state space model is a
good choice. The basic state-space model (see Fig. 3.6) 1s written as

x(t+1) = Ax(t) + Bu(t) + Ke(r) .
y(t) = Cx(t) + Du(t) + e(t) (3-9)

» D

W, x

+x(t+ 1 (&) + (2)
——»{ B ié}—» 23 ~ c Jié 5
-E-T-‘ +-‘

A |4 e{f)

Fig. 3.6 Diagram of state space model.

(8

The most important value to determine in the state space model is the dimension

of the state vector. x(¢). The state space model has several derivatives. If K =0, an
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Output-Error model is defined. If D =0, there exists at least a delay of one sample from

the input to the output.

3.2.1.6 Artificial Neural Network Model
A neural network is a collection of interconnected neurons. Each neuron's

operation is quite simple, as illustrated in Fig. 3.7.

3|
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1

Fig. 3.7 Schematic of single neuron.

Vector x7 =[x,,X,,%,,-,x,] is the input vector. w, =[w,,, W, W, -, W] is the

weight vector and & is the bias, which acts as a weight except that it has a constant input

of 1.

R
S :Zwk,.x,+b=wkx+b (3-10)

i=1

[ is the activation function. The output of the neuron is a function of s, .

Yo =f(s)=flwx, +b) (3-11)
Two or more neurons may be combined in one layer and a neural network might contain
one or more such layers. The layer where neurons receive inputs directly from outside of
the network is called the input layer. A layer that produces the network's output is called

an output layer. All other layers are called hidden layers.



Depending on the input data structure, neural network can be divided into two
types. If the input vectors are given without considering a particular time sequence, the
network is called a static network. If the input vectors occur sequentially with time, the
network is called a dynamic network, which is a better choice than a static network for
representing the dynamic behavior of the system. According to the direction of the signal
flow, neural networks can also be classified as feed-forward or feedback networks. To
represent temporal behavior, internal feedback paths may be required.

The structure of an artificial neural network is very flexible, which is determined
by the number of network layers, the number of neurons in each layer, the type of
activation function in each layer and how the layers are connected with each other. The

best architecture to use depends on the type of problem to be represented by the network.

3.2.1.7 Model Selection Criteria
Several model structures have been introduced above. For the purposes of fault
detection and isolation, there are several important criteria to be observed in model

selection:
1. Given a model structure, powerful on-line meodel coefficient estimation
methods should be available. From this point of view, artificial neural

networks are not a good choice since they need time to converge.

[R]

The estimated model can approximate the behavior of the monitored system

as closely as possible.

The variances of the estimated coefficients affect the resolution of the fault

Ll

detection. For any specific parameter value, they should be as small as

possible.



All these criteria are essential to the fault detection and isolation strategy discussed in this

work.

3.2.2 Parameter Estimation for Fault Diagnosis

After selecting a proper model, the input and output relationship can be expressed
as

Y0y = fw).0) (3-12)
where w(7) is a matrix; its elements are composed of

u(t —kyu(t—k =1, u(t —k—m+1),y(t = 1), y(¢t =2),--, ¥yt — )
@ is the parameter vector; its elements are the coefficients to be estimated. For example,

an ARX model as described in (3-3) can be expressed as follows:

W (@)= [ YDA =Dy = )t = K)otk —m D] (3-13)
BT:[ak’al"“’an’bl!b'_’""ﬂbm] (3-14)
y(6) =8 (1) +e(t) (3-15)

With the help of parameter estimation algorithms, the model coefficients, #, can be
estimated. From the viewpoint of fault detection and isolation, two definitions are
presented here:
1. If a change in system physical parameter does not alter the value of &, this
change cannot be detected for the selected model structure.
2. If changes in more than one parameter affect the value of # in the same
manner, these two faults cannot be isolated.
To solve the problem of either case 1 or case 2, one way is to change the order of the

model. Alternatively, one may use a different model structure.



3.3 Fault Classification

As far as fault detection and isolation are concerned, the value of @ can be
divided into normal and faulty ranges. Depending upon the type of fault, the faulty ranges
can be further classified as fault /, fault /7 and so on. The task of the monitoring system
is to reach the decision surface among these ranges and make a classification when an
unknown sample is presented.

If the new sample is classified to the fault 7/ group, the monitoring system
assumes that fault / has occurred. It can express this information in various forms, such
as ringing an alarm bell. The procedure of how to correct the fault condition is specific to

different kinds of application and will not be addressed here.

3.5 Summary

In this chapter, the procedure for fault detection and isolation, based on parameter
estimation, has been outlined. The implementation of this strategy involves model
selection, parameter estimation and fault classification and training. Other model-based
fault detection and isolation methods, such as unknown input observer and physical
parameter estimation, rgquire explicit mathematical model from physical laws. This
strategy mainly relies on on-line information of input and output signals from the
monitored process. In the subsequent chapters, this strategy will be tested on a double-rod

hydraulic actuator in both simulations and experiments.

£
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Chapter 4 Model of Electrohydraulic Actuators

Hydraulic actuators may be linear or rotary and are usually referred to as pistons
or motors, respectively. A pump or a valve can be used to control these actuators. The
pump-controlled system consists of a variable delivery pump supplying fluid to the
actuating device. The fluid flow is controlled by the stroke of the pump to vary output
speed and the generated pressure matches the load. The valve-controlled system consists
of a servovalve controlling the flow from a hydraulic power supply to the actuating
device. As compared with pump-controlled hydraulic actuators, valve-controlled
actuators have faster response capability; this makes them the preferred choice in the
majority of applications [8].

A diagram of a double-rod valve-controlled electrohydraulic actuator is shown in
Fig. 4.1. It consists of a hydraulic power supply, an electrohydraulic valve, a rod and a
cylinder. The function and dynamic characteristics of each part will be explained in the

following sections.

k2w

)
|

2 B

—

Fig. 4.1 Schematic of a valve-controlled hydraulic actuator.



4.1 Power Supply

The hydraulic power supply is usually a constant pressure type. There are two
kinds of configuration: one consists of a constant delivery pump with a relief valve to
regulate pressure; the other uses a variable pump with a stroke conitrol to regulate

pressure. The function of this pump unit is to provide hydraulic supply fluid with a

constant pressure, as shown by £, in Fig.4.1.

4.2 Servovalve

Hydraulic control valves are devices that use mechanical motion to control fluid
power. The most widely used valve is the sliding valve employing a spool type
construction. Spool valves are classified by:

1. The number of "ways” flow can enter and leave the valve.

D

The number of "lands".

The type of center when the valve spool is in the neutral position. If the width

L d

of the land is smaller than the port in the valve sleeve, the valve is said to be
under-tapped. A critical center or zero-lapped valve has a land width 1dentical
to the port width. Overlapped valves have a land width greater than the port

width when the spool is at neutral.
In Fig. 4.1, a three-land-four-way spool valve with a critical center 15 shown.
Since the versatility of electrical devices makes them ideal for feedback measurement and
signal amplification and manipulation, the mechanical motion of the valve is controlled
by an electrical signal; such a valve is called an electrohydraulic servovalve. [t converts

low power electrical signals into valve motion, which in turn controls the flow to a



hydraulic actuator. Electrohydraulic servovalves can be broadly classified as either
single-stage or two-stage. A single-stage servovalve consists of a torque motor that is
directly attached to and positions a spool valve. Because torque motors have limited
power capability, this in turn limits the flow capacity of the single-stage servovalve and
may also lead to stability problems in some applications. A two-stage servovalve has a
hydraulic preamplifier (called first stage) that substantially multiplies the force output of
the torque motor to a level sufficient to overcome the considerable flow forces, sticking
forces, and forces resulting from acceleration or vibration. The two-stage servovalve
overcomes both of the disadvantages of single-stage servovalve and this is the main
reason for their existence.

Many design factors and operational and environmental variables make it very
difficult to assume an explicit linear transfer function for an electrohydraulic servovalve.
However, the usefulness of linear transfer functions in approximating servovalve
responses in analytical studies is well established. The relationship between the valve

spool displacement, x, . and the input voltage, u, to the valve can be expressed by the

following differential equation [11]:

X o B
ar dr

+olx, =K,olu (4-1)
where @, is the natural frequency, & is the damping ratio and K, is the servovalve loop

gain.

4.3 Fluid Flow Dynamic

The valve spool displacement, x,, controls the orifices through which fluid power

enters and leaves the hydraulic cylinder. Assuming that the valve orifices are matched,



symmetrical and rectangular ports with an area gradient of w for each port are used, the

fluid flow dynamic in Fig. 4.1 is expressed as

O =C,wx, —2w(P Py
2

X, ?
0, =C,wx,

Vp

( /’)
O =C, wx,

p

x, <0 (4-3)
0, =C,wx, -2—(P
Yo,

(4-2)

L

where C, is the discharge coefficient and p is the mass density of fluid.
For the contro! volume shown in Fig. 4.2, there are weight flow rates W, into and

W out of it. The accumulated fluid has volume V', mass m and mass density o . From

anut

the law of conservation of mass, the rate at which mass is stored must be equal to the

incoming mass flow rates minus the outgoing mass flow rates, 1.e.:

dm dpV
L= W 4.4
dr g dt n Oul ( )
" erre——"
Wi e EE—
T T

Fig. 4.2 Flows entering and [eaving a control volume.

Isothermal conditions are generally assumed in the liquid flow. Thus, the fluid mass

density p can be expressed as
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p=,00+%P

(4-3)

where p, and # are the fluid mass density and bulk modulus at zero pressure, and £ is

the current flow pressure. Noting that the weight flow rate can be written as
p’-/’:‘li' = gme

pV()!H = pQ‘)Hl

Equation (4-4) can be rewritten as:

av ., &¥p, db

gme - gpg_r)tml = gp df ﬁ df

Taking p = p,, equation (4-8) can be expressed as

0,-0, =L, L&
dr | B dr

Referring to Fig. 4.1, for fluid trapped in the left side of the cylinder,
Vi=V,+dy

For fluid trapped in the right side of the cylinder,

Vo=Vy+AlL-)

(4-6)

(4-7)

(4-8)

(4-9)

(4-10)

(4-11)

where ¥, and ¥, are the initial volumes trapped on the left and right sides of the

cylinder, respectively, and L is the length of the full stroke. The pressure dynamic

equations can be expressed as:

dP,

F__ L o4y

dr Vi, + Ay dr

ar,__ P 2

o (-—Qo
da V,+AL-v) dt

4-12)

4-13)



4.4 Piston Dynamic

By applying Newton's Second Law to the forces on the piston, the piston dynamic
can be expressed as

vy (4-14)

mv=PA-P A-dv (4-15)
where m is the mass of the load, & is the equivalent viscous damping coefficient, y is
the displacement of the rod, v is the speed of the rod, and A4 is the piston area at both

sides of the cylinder.

4.5 Summary

In this chapter, different parts of the electrohydraulic actuator shown in Fig. 4.1
were explained. By using the state vector x' =[x,,xz,-v-,xé]z[y,v,R,Po,xv,fcv] to
represent the physical states of the hydraulic actuator, the dynamic equations used to
describe the actuator can be summarized as

X, =X,

X, = i(—a,’x2 + Axy — Ax,)
m

X, p (—Ax, +0)

{7 Vot Ax, (4-16)
f=— b (4,-0)
I/:)G +A(L—xl) )
X5 =X,

. 2 2
Xs = =280, % + 0, x5 + K .oju

v R



0, = Cwx, |Z(P.~x))
X520 i (4-17)
2
0, =C,wx; |—(x, = F,)
i e
2
Q! = CLI‘ H')xi _(xl - Pz:)
x5 <0 s i (4-18)
2
Qo = Cc.’ 'ij ;(P; "x-l)
\ \ o



Chapter 5 Simulation Results

In order to illustrate the general fault detection and isolation strategy outlined in
Chapter 3, simulations are performed on the double rod electrohydraulic actuator model
presented in Chapter 4 for incorrect supply pump pressure and changes in equivalent
viscous damping coefficient. The parameter of the hydraulic actuator is listed in Table
5.1.

Table 5.1 Parameters of the electrohydraulic actuator.

C, 0.60
P 8.47x10° kg/m’
w 2.07x107 m

& 0.70

@, 6.28x10° rad/s
K, 2.79x107 m/v

L 0.61 m

B ' 6.89x10° Pa

P, 6.89x 10° Pa

P 0 Pa

A 33%10™ m’

d 1000.00 N/(m/s)
m 50.00 Kg
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The model selection criteria, feature space formation and fault representation are
explained in detail. In the simulation program, the continuous model described by
equation (4-16) is solved using a fourth-order Runge-Kutta numerical integration [10].

The integration time interval, /4, is set to 1 ms and the initial physical states of the

hydraulic system are set as: y, = 0.303 m, vy =0 m/sec, P, =P, =— and x,, =0 m.
2

The configuration of the control system and the monitoring system is demonstrated in

F+l_ 17 Y

— P —® Controller Monitored System >

Fig. 5.1.

S 2

3
\——b Monitoring System &

Fig. 5.1 System configuration.

In Fig. 5.1, r is the reterence signal. [t 1s set as

r{t) = Asin(2aft) + v, (5-1)
where A is the amplitude of the reference signal set as 0.0254 mand f is the frequency
of the reference signal whose value is set to 0.5 Hz. A proportional controller is applied
in the control system. Since most functional fault detection and isolation systems are
implemented in digital computers {3], the input signals to the monitoring system have to
be sampled. The sampling frequency for both control and monitoring purposes is 200 Hz.

The relationship between the continuous reference signal, r(f), and the sampled

reference signal, r(n) . is expressed in equation (3-2).

Ll
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f

r(n)y=r(nT,)= Asin(2r—n) + x,

N

(3-2)

A typical reference signal, r, control signal, 1, and displacement, y, are presented in

Figs. 5.2t05.4.

835 T T 1 T T
E g3t L - - - RERESN
e 1 1 : : ]
0.95 ; t i ; :
l 10 20 30 40 50 60
Time (s}
Fig. 5.2 Reference signal.
2 T T T T ¥
> 0 : :- i -
3 ; \ i I !
3 ? ; ; i :
0 10 20 a0 40 50 60
Time {s)
Fig. 5.3 Control signal.
0.35 T T . T T
E 53 ' ] 1 3 1 i i ! ] | 1 | 1 |
a 1 1 i 1 1
0.95 : : : : !
a 10 20 30 40 50 60

Time (s)

Fig. 5.4 Rod displacement.

The signals used for monitoring purposes are the control signal, u, and the rod

displacement signal, y.
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5.1 Model Selection

Since the offset component y =0.305 m plays an unimportant role in describing
how the changes in the input, u, affects the output, y, if can be de-trended out from the
output signal, y. In addition, the three main criteria in selecting the model structure, as
stated in Section 3.2.1, are considered. Firstly, there should be powerful model
coefficient estimation methods. From this point of view, a linear model is the first choice.
Among all linear models described in Section 3.2.1, the ARX model is the most widely

used one and is chosen here. It has the following structure:

yO +ay(t~D+a,y(t-2)+---+a,y(t —n)
=bu(t—ky+bu(t—k-1)+byu(t ~k =2y +- -+ b u(t —k—m+1)+e(t)

(5-3)
With different values of m . n and k, different ARX models can be constructed: these
are represented by ARX nmk in subsequent sections. In order to select a good model for
the system, ARX models with different parameter sets are tried. The data used for model
selection purpose is the fifth period of the signals, which is shown in Fig. 5.5. The batch
LS algorithm described by equation (2-10) is implemented on this data set to estimate the

models’ coefficients. In order to investigate the suitability of a specific model, the model

is simulated with the same control signal as in Fig. 5.5 and the cost function

E=Yet(n) (5-4)

RED]

is evaluated for this model. With reference to equation (5-4), e(n) is the error signal

between the system and model outputs and N is the number of samples evaluated. The

model output, y, and error signal, e, for various ARX models are shown in Figs. 5.6 to
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Fig. 5.5 Input and output data pairs for mode! selection.
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Fig. 5.6 Output and error signals of ARX111 model.
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Fig. 5.7 Output and error signals of ARX211 model.
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Fig. 5.8 Output and error signals of ARX221 model.
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Fig. 5.9 Output and error signals of ARX311 model.
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Fig. 5.12 Output and error signals of ARX411 model.
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Fig. 5.14 Output and error signals of ARX431 model.
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Fig. 5.15 Output and error signals of ARX441 model.

With reference to Figs. 5.6 to 5.13, it is seen that models ARX111, ARX211,
ARX311 and ARX411 are all good models to represent the input and output relationship
for the system. Table 5.2 shows the cost function values, £, for all the models mentioned

above.

Table 5.2 Cost function values for different models.

Model E(m®)
ARXI111 3.04986 x 107
ARX211 2.87777%107°
ARX221 6.16856x107
ARX311 2.20337x10°°
ARX321 6.08998 %10
ARX331 6.65183x107°
ARX411 148142x107
ARX421 5.93432x107
ARX431 6.17225% 107
ARX441 6.89262x107
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From Table 5.2, it can be seen that, for models ARX nl1, the larger the #, the less the £.
As stated in Section 3.2.1, in the feature space, the variances of the estimated coefficients
reflect the distribution of the points corresponding to system operation conditions. These
should be as small as possible. This criterion is now examined by comparing coefficients
of the ARX411 model (which has the smallest value of £ for the listed ARX#nl1
models) with those of the ARX111 model (which has the largest value of £ for the listed
ARX nl1 models). The coefficients of these two models are estimated using the batch LS
method described in equation (2-10), when the monitoring system collects all the data for
each new period. When supply pump pressure is at 900 psi, 1,000 psi and 1,100 psi, the

coefficient sets are plotted according to time in Figs. 5.16 and 5.17.

~
-1.0001 :
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-1.0003 : 5 i : :
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Time (s)

—~— B = %00psi — P =1000psi -~o P =1100psi

3

Fig. 5.16 Coefficients of ARX111 model for various supply pump pressures.
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Fig. 5.17 Coefficients of ARX411 model for various supply pump pressures.

For the ARX411 model, shown in Fig. 5.17, it is impossible to distinguish the three

operation conditions through threshold checking on @,, a,, a,0r a,. because they are



interlacing with each other for the conditions under consideration. Although b, reflects
the change of supply pump pressure more effectively than a,, a,, a; or a,, it is still
difficult to select a proper threshold value to identify these three conditions without
leading to incidental false alarming and/or fault missing. For the ARX111 model, Fig.
5.16 shows that when supply pump pressure changes by +10%, b, changes by around
+ 5% . The change of a,, however, is less than £0.01% . Therefore, threshold checking

on b, for the ARX111 model can be selected as the fault detection and isolation logic.

Fig.5.16 also shows that it is easy to select a proper threshold value on b, to clearly
distinguish between the considered conditions without false alarming and fault missing. It
is seen that, for fault detection and isolation purposes, a compromise has to be made
between reducing the value of the cost function, £, and achieving small variances of the
estimated model coefficients in model selection. The ARX111 model, therefore, is

selected as the best fit model for the hydraulic system under constderation.

5.2 Recursive LS Method versus Batch LS Method

In the batch LS method, the samples are buffered together, after which equation
(2-10) is used to estimate coefficients. In the recursive LS method described by equation
(2-11), the estimated coefficients are adjusted with each new sample. A detailed
description of the batch LS and recursive LS algorithms is provided in [13]. Both
methods provide good performance for linear time-invariant (LTI) systems. For nonlinear
systems with changing operating point, however, when a linear model to represent the
system dynamic characteristics, the recursive LS method may lead to results with larger

variance than the batch LS method.



To study the difference between these methods, the ARX111 model output, error
signal (between system and model outputs) and estimated coefficients using the batch LS
method and the recursive LS method for supply pump pressure at 1,000 psi are shown in

Figs. 5.18 to 5.21.
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Fig. 5.18 ARX111 model output using the batch LS method.
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Fig. 5.19 ARX111 model coefficients using the batch LS method.
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Fig. 5.20 ARX111 model output using the recursive LS method.
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Fig. 5.21 ARX111 model coefficients using the recursive LS method.

The cost function value and the mean, maximum offset and variance of b, resulted from

both the batch LS and the recursive LS methods are listed in Table 5.3. The cost function

value resulted from the recursive LS method is 95.31% less than that resulted from the



batch LS method. The variance of b, resulted from the recursive LS method, however, is

about 1.2269x 10" times larger than that resulted from the batch LS method

Tabie 5. 3 Batch LS versus Recursive LS for ARX111 model in the simulations.

) var(b,) =
L b 7| C h 2
rSew | g E masls-B) | S0, -5y

= P k=l

Iy =

N
BatCh LS 91157XIO_4 1.9672)(‘[074 4_1930)(10-9 2_2131)(10_}8
Recursive LS | 42770x107° | 1.9672x107* | 3.1607x1077 | 2.7153x107"

As stated in Section 4.1, for fault detection and isolation purposes, the variances of the
estimated model coefficients affect the performance of the proposed FDI strategy.
However, as compared to the recursive LS method, there are several shortcomings of the
batch LS method:
1. Since the batch LS method has to buffer the past input and output data of the
monitored systemn, it needs more storage space than the recursive LS method.
2. On-line fault detection is delayed because the batch LS method only produces
a new set of estimated coefficients after it collects all the samples needed,
while the recursive LS method can estimate a new set of coefficients once a

new sample is received.

5.3 Fault Representation

For the hydraulic actuator, the exact value of the physical parameters listed in
Table 5.1 may not be known and sometimes, the values of these parameters may change

due to factors such as temperature and fault conditions. If the change in a parameter does
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not affect the coefficients of the selected model that represents the system, this change is
said to be undetectable. If several changes affect the coefficients of the model that
represents the system in the same way, then they are said to be unidentifiable. The task of
fault detection and isolation is to detect the fault condition and then to identify it.

As stated in Section 2.2.2, even for linear time-invariant (LTI) systems, the
mapping function between the estimated model coefficients and the physical parameters,
described by equation (2-16), cannot be always obtained. For the nonlinear hydraulic
system in equation (4-16), the relationship between the coefficients of the ARX models
and the physical parameters in Table 5.1 is indirect, which makes the task of fault
detection and isolation for general cases very difficult. In order to show the concept of

fault detection and isolation for nonlinear systems in feature space in this work, only
faults originating from two specific sources, i.e., supply pump pressure, F,, and
equivalent viscous damping coefficient, d, are considered. The simulation study is.
therefore, divided into three studies. In case 7, fault conditions originating from only the
supply pump pressure, P.. In case//, fault conditions originating from only the
equivalent viscous damping coefficient,d . In case ///, a more complicated sttuation,
fault conditions may originate from either the supply pump pressure or equivalent viscous

damping coefficient.

5.3.1 FD1 of Incorrect Supply Pump Pressure

Figure 5.22 shows coefficients of the ARX111 model for different supply pump
pressures. It can be seen that for every £10% change of supply pump pressure, the

change of b, is approximately +35%. Although a, is also affected by the change in
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supply pump pressure, when supply pump pressure changes by +50%, the change of g,
is less than +£0.01%. Therefore, 6, can be used for fault detection and isolation of

incorrect supply pump pressure. To exemplify this fault detection and isolation strategy,
the following assumptions are made:

a Normal condition is defined as 900 < P, <1,100 pst.

. Fault condition / is defined as 1,100 < £, < 1,500 psi

. Fault condition /7 is defined as 500< 2 <900 psi
x 107
25 P S S ST S S
U S-S S-S -SG5 0458t i+
P — —
1 3 Lot e % — PR
0 10 20 0 40 50 &0
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B e
& 10002 [ ----- s i Rk R R
0 10 20 a0 40 50 60
Time (s}
—— £=500,600,---800psi — A= 900, 1,000, 1,100 psi

—— F = 1,200, 1,300, --, 1,500 psi
Fig. 5.22 Coefficients of ARX111 model for various supply pump pressures.

Based on the above assumptions, the fault detection and isolation logic for supply
pump pressure failures is developed as below:
» If the estimated coefficient b, is larger than 210x107", the monitoring

system assumes that the system is working in fault condition 7.
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= If the estimated coefficient &, is in the range of 180x107 <h, < 210x107*,
the monitoring system assumes that the system is working under normal
conditions.

» If the estimated coefficient b, is less than 180x 107, the monitoring system
assumes that the system is working in fault condition 7.

The performance of the proposed fault detection and isolation logic is tested in the

following way. Initially, the system is run with the supply pump pressure, £, at 1,000

psi. After ¢ =15sec, the supply pump pressure is increased to 1,250 psi. The supply
pump pressure is brought down to the normal value of 1,000 psi at + =30sec. At t =45
sec, the supply pump pressure is reduced to 750 psi. The control signal, «, system output,

v, and estimated coefficients for this test are plotted in Figs. 5.23 and 5.24.
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Fig. 5.23 Control signal and system output in FDI of incorrect supply pump pressure.
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Fig. 5.24 FDI of incorrect supply pump pressure.

Figure 5.24 shows that at 7 = 16 sec, the value of b, begins to increase. The monitoring
system triggers the alarm for fault condition [ at f=18sec, when the value of 4, is

above the upper band. At 7 =32 sec, the alarm for fault condition / is eliminated as the
value of b, falls down to the normal range. At ¢ = 48 sec, the alarm for fault condition [/
is triggered because the value of b, is below the lower band. By comparing with the
actual working condition of the system, it is clear that the fault detection and isolation
logic developed above not only detects the incorrect supply pump pressure, but also
distinguishes between increased and decreased supply pump pressure faults. At the same
time, this experimental test shows the delay for the fault detection. For example, the
supply pump pressure is increased to 1,250 psi at ¢ =15 sec, but the monitoring system
triggers the alarm at ¢ = 18sec. This delay is due to buffering action in the batch LS

method as stated in section 5.2.



5.3.2 FDI for Changes in Equivalent Viscous Damping Coefficient

The coefficients of the ARX111 model according to different values of the
equivalent viscous damping coefficient ¢ are plotted in Fig. 5.25. Simulation results
show that when d increases, the value of &, decreases. For every =10% change of
equivalent viscous damping coefficient, the value of a, changes less than +£0.01%,
however, the value of b, changes about +0.07%. Similarly to Section 5.3.1, the
following assumptions are made:

» Nommal condition is defined as 900< & 1,100 N/(m/s).

»  Fault condition [/ is defined as 1,100 < & < 1,500 N/(m/s).

s Fault condition /7" is defined as 500 < 4 <900 N/(m/s).
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—— g4 = 500, 600,---,800 N/(m/s) — & = 900, 1,000, 1,100 N/(m/s)

- d = 1,200, 1,300,---, 1,500 N/(m/s)

Fig. .25 Coefficients of ARX111 model for various equivalent viscous damping

coefficients.



Since b, can reflect the change in equivalent viscous coefficient, d more precisely than
a,, as in Section 5.3.1, direct threshold checking for 5, is selected as the fault detection
and isolation logic, which is expressed as below:
» If the estimated coefficient b, is less than19645x 107", the monitoring system
assumes that the system is working in fault condition [/ .

= If the estimated coefficient b, is in the range of 19645x107°<b, <

1.9695% 107", the monitoring system assumes that the system is working
under normal conditions.

= If the estimated coefficient b, is lager than 1.9695x107, the monitoring

system assumes that the system is working in fault condition /7.

The performance of this fault detection and isolation logic is tested in the
following way. At the beginning, the system is run with d =1,000N/(m/s). At =15 sec,
the value of ¢ is increased to 1,250 N/(m/s). The value of 4 is brought down to 1,000
N/(mV/s) after ¢ =30 sec. At ¢ =45 sec, the value of d is reduced to 750 N/(m/s). The
control signal, u, system output, y, and estimated coefficients for this test are plotted in
Figs. 5.26 and 5.27.

Figure 5.27 shows that the monitoring system triggers the alarm for fault

condition [I/ at ¢ =18 sec when the value of b, is below the lower band. The alarm is
eliminated at r =32 sec when the value of b, returns to the normal range. At ¢ =48 sec,

the alarm for fault condition [V is triggered because the value of b, is above the upper

band. This shows that the fault detection and isolation logic developed above can

successtully detect the fault condition originating from changes in the equivalent viscous



damping coefficient,d , and can also distinguish between fault conditions of increased
and decreased equivalent viscous damping coefficient. The delay of the fault detection is

due to the buffering action in the batch LS method as stated in Section 5.2.
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Fig. 5.26 Control signal and system output in FDI for changes in equivalent viscous

damping coefficient.
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Fig. 5.27 Coefficients of ARX111 model in FDI for changes in equivalent viscous

damping coefficient.
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5.3.3 FDI for both Incorrect Supply Pump Pressure and Changes in

Equivalent Viscous Damping Coefficient

The case where fault conditions originate either from incorrect supply pump
pressure, P, or a change in the equivalent viscous damping coefficient, d, is studied,
Since a, cannot reflect the change of the physical parameter in either case discussed in
Sections 5.3.2 and 5.3.3, threshold checking on &, is the only choice left for developing
fault detection and isolation logic in the constructed two dimensional feature space.

By comparing Fig 5.22 with Fig 5.25, it is seen that, the variation range of b,
(19550x10™ <b, <19790x107") due to the change of the equivalent viscous damping
coefficient, d, is completely covered by the variation range of §,
(13000x10™* < b, <2.5000x10"") due to the change in the supply pump pressure, P,.
Further study reveals that when the equivalent viscous damping coefficient, d, changes
from 500 to 1,500 N/(mv/s), the variation of b, still falls between the lower band
(b, = 1.8000x107") and upper band (b, = 2.1000x10™") chosen for detecting incorrect
supply pump pressure, P . This implies that, as compared with faults originating from

incorrect supply pump pressure, change of £50% in the equivalent viscous damping
coefficient, d, from its normal value is not detectable through direct threshold checking

of estimated model coefficients.
This reveals the shortcoming of the strategy developed in Chapter 3. Since there is

no direct one to one mapping from the estimated coefficients to the actual physical

parameters, the following situations may occur:
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« The change of different actual physical parameters may have the same effect
on the estimated model coefficient.
» As compared to the effects of one physical parameter change, the effects of
another may become undetectable.
These situations may lead to the normal and fault regions corresponding to different
physical parameters overlapping with each other. This makes the task of fault detection

and isolation more challenging.



Chapter 6 Experimental Results

Figure 6.1 shows the experimental test station. It consists of an electrohydraulic
servovalve, a power supply unit, one main actuator, two slave actuators and a needle
valve. The computer system used for control and monitoring purposes is a personal
computer with a Pentium I1I CPU running under the Windows 98 operating system. The
communication between the computer and the test station is performed by two I/O
boards. The CIO-DASI6F board from Omega Engineering Inc. is used to convert digital
conirol signals to analog control signals. A quadrature encoder board from Keithley

measures the displacement of the hydraulic rod.

Electrohydraitic valve & 4 Power supply unit ¢ bz actuator

=lave actuators

der

Fig. 6.1 Hydraulic actuator test station.



The power supply unit can provide fluid at different pressures. The normal working
condition is defined when the power supply unit provides fluid at 2,000 psi and the two
slave actuators are disconnected from the main one. First, an ARX model is selected to
represent the behavior of the system under normal condition. Next, the fault detection and
1solation capability of the chosen ARX model ié studied for incorrect supply pump pressure

and changes in equilvalent viscous damping coefficient.

6.1 Model selection

Under normal conditions, the actuator rod is tracking the reference position signal

r(n) = Asin(?_zrfi_n) (6-1}

under a proportional controller around the middle stroke. In equation (6-1), A4 is the
amplitude of the rod displacement, f is the frequency of the reference signal, and f|is
the sampling frequency. In this experiment, 4 =0.0254 m, f =0.5 Hz, and f, =200 Hz.
The typical reference signal, r, control signal, u, and rod displacement, y are shown in

Figs. 6.2 to 6.4. Signals used for the monitoring system are the control signal, # and rod

displacement signal, y.
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Fig. 6.2 Reference signal.
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Fig. 6.4 Rod displacement.

The feature extraction is carried out by representing the input-output relationship
of the monitored system by an ARX model. As in Chapter 5, the signals used for model

selection purposes are one period of input and output data pairs (see Fig. 6.5).
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Fig. 6.5 Input and output data pairs for model selection.



In order to determine the structure i.e., the order of the ARX model, various
structures are tried. The model coefficients are estimated by using the batch LS method

described by equation (2-10). The corresponding error signal between the system and the

model outputs is shown in Figs. 6.6 t0 6.10.

Error {m)

Error (m)

Error (m)

Fig. 6.8 Error signal corresponding to ARX311 model.
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Fig. 6.10 Error signal corresponding to ARX421 model.

Further experiments showed that the ARX321, ARX331, ARX431 and ARX441
models estimated by the batch LS method cannot approximate the system output. Figures
pertaining to these models are not shown. Values of the cost function, as described by
equation (5-4), for ARXI111, ARX21I, ARX311, ARX411 and ARX421 models are

presented in Table 6.1.

Table 6.1 Cost function values for different models.

Model E(m?)

ARXI11 4.8595x10™
ARX211 3.7411x107
ARX311 3.5075%10°
ARX411 3144610
ARX421 17748107
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Table 6.1 indicates that ARX411 model has the minimum cost function value. It
also shows that increasing the value of n will further reduce the value of the cost
function. For example, when ARX911 is used, the value of the cost function is
2.59156x 10~ . However, as was stated in Chapter 5, a higher order model may not be a
good choice from the viewpoint of fault detection and isolation. Another issue to be
considered is the variances of the estimated model coefficients. Since variances of the
estimated model coefficients reflect the distribution of the points representing the system
in the feature space, a large variance is not good for fault detection and isolation, Using
the batch LS algorithm, the estimated coefficients of ARX211 and ARX411 and
corresponding error signals between the system and model outputs are presented in Figs.
6.11 and 6.12. It is seen that the estimated coefficients of ARX411 have a larger variance
than those of ARX211 model. Taking both the value of cost function and variance of the
estimated model coefficients into consideration, ARX211 is selected as the best fit model
structure.

Figure 6.13 shows the estimated ARX211 coefficients using the recursive LS

method and the corresponding error signal. The cost function value and the mean,

maximum offset and variance of b, are outlined in Table 6.2.

Table 6. 2 Batch LS versus Recursive LS for ARX211 model in the experiments.

y var(b,) =

AN b — y —
J= Ze'(k) _ é 1k max(1b1 —bli) Z(blk ~b])_

&=l bl = k=i
j\] R L

N

Batch LS 0.0090 6.5220% 107 | 4.4956x107 | 2.2573x107"
Recursive LS | 39927x10™" | 6.4924x10™ | 5.7642x107 | 2.1453%107"
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It is seen that the cost function value resulted from the recursive LS method was 95.56%
less than that resulted from the batch LS method. The variance of b, resulted from the
recursive LS method was about 95 times larger than that resulted from the batch LS
method. Since large variance is not desirable for fault detection and isolation, the batch

1.S method is employed in this study.

x10°

Fig. 6.11 Coefficients and error signal of ARX211 model using the batch LS method.
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Fig. 6.12 Coefficients and error signal of ARX411 model using the batch LS method.



Fig. 6.13 Coefficients and error signal of ARX211 model using the recursive LS method.

6.2 Fault Detection and Isolation

By sclecting the ARX211 model to describe the behavior of the system is
presented by the parameter vector@’ =(b,.a,,a,). The batch LS method is used for
estimating values of b, a,, and a,. In this section, fault diagnosis for incorrect supply

pump pressure and changes in equivalent viscous damping coefficient is presented.
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6.2.1 FDI of Incorrect Supply Pump Pressure
In the following experiments, the system was run with a supply pump pressure,

P, of 1,500 psi, 1700 psi. 2,000 psi, 2,300 psi and 2,500 psi. With the batch LS method,

the estimated coefficients for the ARX211 model are shown in Fig 6.14.
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— F=2000pst —— F,=2,300ps1 —+ F,=2,500psi

Fig. 6.14 Coefficients of ARX211 model for various supply pump pressures.

Figure 6.14 shows that b, changes proportionally with a change in the supply
pump pressure. For every £10% change in supply pump pressure, the value of 5,
changes by about +5% Although g, and a, are also affected, the relationship between

the change of supply pump pressure and the changes of @, and a, is not as obvious as in



the case of b,. Therefore, threshold checking on b, is used to detect and potentially

isolate the faults of incorrect supply pump pressure.

Fault detection and isolation logic below is developed for the following

experimental test.

 If b > 6700x 107, the monitoring system detects that the system is working

under the condition that the supply pump pressure is increased.

= If b < 6400x107, the monitoring system detects that the system is working

under the condition that the supply pump pressure is decreased.

In the experimental test, the system initially runs under normal conditions of
P.=2,000 psi. At ~13 sec, the supply pump pressure is increased to 2,500 psi and, at
r =28 sec, the supply pump pressure is reduced to 1,500 psi. The estimated coefficients
and upper and lower bands for b, are shown in Fig. 6.15. It is seen that at 7 = 16 sec, the
value of b, is above the upper band and the monitoring system triggers the fault alarm for

increased supply pump pressure. At ¢ =30 sec, the fault alarm for decreased supply pump

pressure is triggered when the value of b, is below the lower band. This shows that
threshold checking on 5, can be employed as a fault detect and isolation strategy for

incorrect supply pump pressure, The fault detection and isolation logic developed above

can not only detect the fault conditions, P,=1,500 and 2,500 psi, but also can isolate

these two fault conditions.
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Fig. 6.15 FDI of incorrect supply pump pressure.

6.2.2 FDI for Changes in Equivalent Viscous Damping Coefficient
In order to simulate the changes in equivalent viscous damping coefficient, two
slave actuators are connected to the main one, which changes physical parameters such as

inertia and the equivalent viscous damping coefficient. This kind of fault condition

cannot be detected by the traditional hardware redundancy based fault detection and

isolation strategy.

In Fig. 6.16, the coefficients of the ARX211 model for the normal condition and
the condition in which two slave actuators are connected to the main one and the needle

valve is fully opened are presented.
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- Slave actuators disconnected -4 Slave actuators connected

Fig. 6.16 Coefficients of ARX211 model with effects from two slave actuators.

Figure 6.16 clearly shows that by selecting a proper threshold value, direct

threshold checking of b,, a, or a, can easily separate these two conditions. Since in the

lab environment, these two conditions cannot be switched when the system is running, an
on-line fault detection experimental test, as was done for incorrect supply pump pressure,
is not performed here.

By adjusting the needle valve with two slave actuators connected, the equivalent
viscous damping coefficient, d, can be further changed. The estimated coefficients of the

ARX211 for the fully open and 80% closed needle valve are presented in Fig. 6.17.
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Fig. 6.17 Coefficients of ARX211 model with effects from the needle valve.

In Fig. 6.17, it is seen that the large variances of b, a, and a, make it impossible

to separate these two conditions by direct threshold checking. This occurs because when
the two slave actuators are connected, the structure of the system is changed and the
ARX211 model selected for normal conditions (where two slave actuators are
disconnected) is no longer a suitable model, and thus it cannot be employed to distinguish
any further changes in equivalent viscous damping coefficient by direct threshold
checking logic. This also shows the importance of selecting a proper model for the fault
detection and isolation strategy discussed in this work. For such a case, different models

other than ARX211 may be tried.
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Chapter 7 Conclusions

In this thesis, a parameter estimation based fault detection and isolation strategy
was employed for fault diagnosis of the supply pump pressure and equivalent viscous
damping coefficient changes in a hydraulic servo-positioning system. A case where the
hydraulic actuator tracks a sinusoid reference signal under a proportional controller was
considered. The control signal and the resulting output position signal of the system were
used to arrive at an appropriate auto-regressive with exogenous input (ARX) model to
represent the relationship between the input and output signals. The ARX model structure
was selected due to the real-time requirement of the monitoring system and the
availability of powerful on-line model coefficient estimation methods, such as the least
squares (LS) method. Direct threshold checking on the estimates of the model
coefficients was then employed as the fault detection and isolation logic.

Both simulation and experimental results showed that a higher order ARX model
could approximate the system dynamics more accurately than a lower order one. But the
lower model could achieve higher resolution of fault detection. In the simulations, by
selecting an ARX111 model, £10% change in the supply pump pressure was clearly
detected. Compared wit-h the ARX111 model, the cost function value for the ARX411
model was 51.43% less, but the +10% change in the supply pump pressure could not be
clearly separated. Thus, the ARXI11 model was chosen in the simulations. In the
experimental tests, ARX211 was selected since it had a 23.01% lower cost function value

than the ARX111 model. At the same time it showed small variances of the estimated

coefficients.
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Both simulation and experimental results showed that the models based on the
recursive LS method could approximate the system output better than the ones derived by
the batch LS method. However, the model coefficients resulting from the recursive LS
method had larger variances than those obtained by the batch LS method. In the
simulations, for the ARX111 model, the cost function value resulting from the recursive
LS method was 95.31% less than that resulting from the batch LS method. The variance

of b, resulting from the recursive LS method, however, was about 1.2269x10* times

larger than that resulting from the batch LS method. In the experiments, for the ARX211
model, the cost function value resulting from the recursive LS method was 95.56% less

than that resulting from the batch LS method. The variance of b, resulting from the

recursive LS method was about 95 times larger than that resulting from the batch LS
method. Based on these observations and the fact that large variances in the model
coefficients would reduce the resolution of the fault detection strategy, the batch LS
method was adopted in this thesis. The use of the batch LS method, however, led to a
delay of about 3 seconds in the fault detection due to its buffering action in both
simulation and experimental tests.

In the simulations, # 10% changes in the supply pump pressure and *10%
changes in the equivalent viscous damping coefficient from their normal values were
detected by the proposed strategy. The proposed strategy, however, failed to achieve
complete fault detection and isolation when the fault could originate from more than one
physical parameter. Experiments also showed that the proposed strategy could achieve
the detection of +10% change of the supply pump pressure. But the change in the

viscous damping coefficient could not be detected.
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In future works, the proposed strategy can be extended in the following

directions:

Investigation of the nature of the faults that occur in the system in real
applications and integrating field experience into the monitoring system.
Development of more powerful fault detection and isolation logic than direct
threshold checking on the estimated coefficients. Neural Networks, Sequence
Analysis and other statistical pattern recognition methods should be applied.

More general cases than the specific one considered in this work (tracking a
specific reference signal) should be tried.

Fault detection and isolation abilities for other physical parameter changes should

be investigated.
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