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Abstract

In this work, a fault detection and isolation strategy based on parameter

estimation, a widely used method in system identification, is employed for a sen"o-

positioning hydraulic system. Model selection criteria for fault detection and isolation

purposes are presented and elaborated. The batch least squares method, well known for

linear time-invariant system identif,rcation, is employed to estimate the coefficients of the

selected model. The relationship between the estimated model coefficients and the actual

physical parameters is explored empirically. Direct threshold checkìng is used as the

basic fault detection and isolation logic. The performance of this strategy is evaluated

based on fault conditions due to incorrect supply pump pressure and changes in

equivalent viscous damping coefficient. It is shown that fault detection and isolation for

faults due to a change in a single physical parameter can be achieved. However, complete

fault detection and isolation is both diffìcult and conditional for faults originating from

changes in more than one physical parameter.
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Chapter 1 lntroduction

With the development of our society. engineering systems are becoming more and

more functional and complicated. For example, in an airplane, thousands of inter-

dependent electrical and mechanical units are integrated. In such a complex system,

fàilure ofone unit may cause a loss of millions ofdolla¡s and even hundreds oflives. The

requirements for fault-tolerance, reliability and security have triggered the demand for

thorough maintenance checks and monitoring systems, so as to detect faulty components,

and make the systems more robust. Maintenance checks are usually performed on a

regular basis ofl'-line by technicians. On the other hand, monitoring systems gather

information about the units of the system and make decisions about the working

conditions of the monitored system.

1.1 Motivation

Fault detection and isolation strategy is the key component of the monitoring

system. Traditìonal fault detection and isolation systems are based on hardware

redundancv and a voting logic. With the rapid development of inexpensive, high-speed

computers and digital signal processing (DSP) technologies, functional redundancy (a

software approach) based lault detection and isolation systems are becon-Ling increasingly

popular [3]. Since the states or the parameters ofa monitored process are closer to the

process faults in terms ofsignal florv, observer based state estimation theory [1,2] and on-

Iine system parameter estimation technologies [9] are welt developed and employed in

fault detection and isolation for linear time-invariant systems. Among those technologies.

unknown input observer (UlO) [4] and least squares (LS) paranerer estimation [5]



methods can be named. The UIO method provides a robust residual generation in the

presence of unknown inputs. disturbances, modeling uncertainties, physical parameter

variation and measurement noise. The LS parameter estimation method provides a

powerful way of detecting faults by monitoring on line the estimates of the dynamic

system's physical parameters, However, for cases where explicit models cannot be

derived o¡ for nonlinea¡ dynamic systems, such as hydraulic systems, the application of

UIO and LS methods for fault detection and isolation becomes very challenging [4,5].

Hydraulic systems are widely used in machine tool applications and aircraft

control systems. Compared with other systems, using hydraulic systems has the following

advantages [1 0]:

1. Hydraulic fluid acts as a lubricant, in addition to canying arvay heat generated

in the system to a convenient heat exchanger.

2. ComparativeÌy small hydraulic actuators can develop large force or torque.

3. Hydraulic actuators have a higher speed of response with fast starts, stops, and

reversals.

4. Hydraulic âctuators can operate under continuous, intermittent, reversing and

stalled conditions without damage.

5. Availability ofboth linear and rotary actuators gives flexibility in design,

6. Because ol low leakage in hydraulic actuators. speed drop is small when load

ís applied.

There are, however, several disadvantages in the application of hydraulic systems

1. Hydraulic polver is not readily available as compared to electric power.

[1 0]



The cost of a hydraulic system may be higher than a comparable electrical

system perlorming a similar function.

Fire and erplosion hazards erist.

It is difficult to maintain a hydraulic system that is lree from leaks. Thus

the system tends to be messy.

5. Contaminated oil may cause failure in the proper functioning of a

hydraulic system.

6. Hydraulic circuits have generally poor damping characteristics. If a

hydraulic circuit is not designed properly, some unstable phenomena may

occur depending upon the operating condition.

7. The design of a hydraulic system is quite involved due to nonlinear and

other complex characteristics.

Wide application together with nonlinear and complex characteristics make the

functional redundancy based fàult detection and isolation for hydraulic systems a very

attractive field. Faults in hydraulic systems can be grouped into incorrect supply pump

pressure, increased internal and external leakage, and changes in hydraulic compliance

[13]

1.2 Objective and Scope of This Thesis

Previous work on fault detection and isolation for hvdraulic svstems has mainlv

been based on linear, bilinear and nonlinear observer Oor.O upprou.*s tlS,l6]. In tfris

lvork, a parameter estimation based fault detection and isolarion strategy is attempted for

a double-rod electroh¡'drar-rlic actuator. An autoregressive ',vith exogenous input (ARX)

model is selected according to model selection criteria and the LS parameter estimation

J.

1.



method is employed to estimate the coefficients of the selected model. Direct th¡eshold

checking is then applied as the basic fault detection and isolation logic.

In Chapter 2, a revierv of fault detection is provided. T"vo important tools for fault

detection and isolation in linear time-invaríant systems. i.e., UIO and parametric

estimation methods, are specifically discussed in this chapter. Chapter 3 outlines the

general procedure for parameter estimation based fault detection and isolation. The

nonlinear hydraulic system model is derived for simulation purposes in Chapter 4.

Simulation and experimental tests are performed in Chapters 5 and 6, and conclusions are

presented in Chapter 7.



Chapter 2 Background Study

In this chapter, the development of fault cletection and isolation is reviewed.

Traditional hardware redundancy based strategies and functional redundancy based

strategies are outlined. Unknown input observer and parametric estimation methods for

Ijnear time-invariant svstems are presented.

2.1 Hardware Redundancy Based Fault Detection and lsolation

Since sensors provide vital information for controllers within the control system,

early monitoring schemes are primarily concemed with the sensor fault detection, also

called instrument fault detection (lFD). Traditionally, this type of fault detection is

achieved through hardware redundancy. In such a scheme, more than two similar sensors

(usually three or four) are used to measure the same variable of the monitored system A

voting logic is adopted in decision making. One sensor is to be declared as laulty when

its signal is too far away from the avetage of signals from other sensors. The monitoring

system identihes the faulty sensors and the average of signals from those sensors that are

working properly is taken as the true value of the measured variable. Thus, the monitored

system can still work properly in the presence of a sensor fault condition. This approach

is quite simple. reasonably straightforward and widely used. However, there are several

shortcomings to this scheme. The major problems are:

1. Extra hardware and software costs for redundant sensors.

2. Extra physical space required for the installation of extra sensors.

3. Conditions that can cause one sensor to fail may damage redundant sensors as

r.r'e ll.



4. Fault conditions other than sensor fault cannot be detected

2.2 Functional Redundancy Based Fault Detection and lsolation

With the rapid development of inexpensive. por.verful and reliable computers'

alternative approaches have been attempted tô overcome (at least in part) the problems of

hardwa¡e redundancy based fault detection and isolation and to improve the overall

reliability ofthe monitored system. New approaches have been prompted since the 1970's

by the high cost of redundant sensors and the excessive weight and space demands

imposed on the system. These approaches are based on the idea of using several

dissimilar sensors to measure different variables of the same process. instead of using

several similar sensors to measure the same va¡iable of the process, Since the signals

from the dissimilar sensors are all driven by the same dynamic process, these approaches

are called functional redundancy (also called anal¡ical redundancy or artifìcial

redundancy). The basic idea of functional redundancy to instrument fault detection is the

observer (state estimator) theory, which was proposed by Lunenberger in the 1960's

lt,2l

Observer based instrument fault detection is very similar to the hardware

redundancy based fault detection scheme. For example, there are several sensors

measuring different variables of the same process. If observabilitl [0] is satisfied.

signal(s) from one or some of these sensors can drive an observer to estimate other

signals. The estimated signals from the observer can be used to compare with the actual

signals. which are not used to drive the observer. If the sensors rvhose signals are used to

drive the observer are laulty, all the estimated signals rrill deviate from the actual ones. If

onl.v one of the estimated signals is far away fì'om the conesponding actual one. the



sensor for that particular signal is conside¡ed faulty. Through designing different

observers which are driven by different set of signals, many sensor faults can be detected

and iso lated.

Along with observer based fault detection theory, parameter estimation, adaptive

filtering, variable threshold logic and statistical decision theory can also be implemented

'.vithin a functional redundancy based fault detection and isolation (FDI) strategy [3]

Normally. both the input signals to and the output signals from the monitored process are

required for a functional redundancy based FDI scheme. These schemes are therefore

designed ùnder assumptions that [3]:

1. Either the dynamic nature of the system being monitored is precisely knou'n

to a reasonable degree.

2. Or it is possible to determine the value of certain physical parameters by on-

line identification techniques applied to the input and output signals of the

monitored plant.

Since the states or the parameters of the monitored process are closer to the process faults

in terms of signal flo'"v, observer based state estimation theories and system paraneter

estimation technologies are well-developed and used in fault detection and isolation for

linear time-invariant (LTI) systems. Among them, unknown input observer (UIO) [4] and

least squares (LS) parameter estimation [5] are commonly used. They rvill be briefly

described here.

2.2.1 F ault Diagnosis Based on Unknown fnput Observer

One ofthe challenges in achieving a robust fault detection and isolation scheme is

to reach complete de-coupling and hence invariance betlveen diffèrent tàult effects, or



between the effects offaults and the effects of unknown inputs which are independent of

the fault mode. The unknorvn input observer approach can fulfill this task through

translorming the state equations, ',vhìch represent system dynamics, fault and possible

unknown inpurs, into a Kronecker Canonical Form (KCF) [4]. Consider the system that is

described by the following discrete-time state equations:

xo-, = A.ro + Buk + Edk + KÍk (2-l)

lt = Cxt Q-2)

lvhere

x, ( n x 1 ) represents the state vector at the sampling instant ,t .

A 1n x n) is the system matrir.

B (nx r) represents the known input clistribution matrix.

uoQ xl) represents the known input vector at the sampling instant È.

E (nx s) represents the unk¡own input distribution matrix

r1* ( s x 1 ) represents the unknown input vector at the sampling instant Æ .

K (n x w) represents the fault distribution matrix.

fo(wxl) represents the fault vector at the sampling instant ¿.

C (mx n) represents the measurement matrix.

yu(mxl) represents the measurement of s),stem output at the sampling instant ,t.

A, B , C , E and 1( are required to be perfectly known for the pr-rrpose of observer

design. An unknown input fault detection obse¡ve¡ for the system desc¡ibed by equations

(l-l) and 1l-1; has the l-ollouing structure:

zt .t = Fzt + Jur + Gyo (2-3)



ru = I.zo + L,yo Q'4)

$'here zr(/xl) denotes the state of the observer and ru(vxl) is the residual. This

obsen er exists il and onlv ifl:

L For any initial condition .v., and ¿0, if no fault happens. íe,fr=Q,111"n

Jigr =o

2. Given a(txn) transforming matrix I, if zo = Zço and fo =0,then zr =Tx,

forall k>0.

3. For zo =?ivo,if any arbitrary fo+0,thenro+0.

In [4]. the necessary and sufficient condition of the existence of this observer is given.

With the help of the algorithm presented in [6] and [7], the procedure of deriving

matrices F,J,G.I.and Z, is also described.

Atthough it leads to the most powerful model-based fault detection and isolation

approaches for disturbed and uncertain dynamic systems, the limitation of this approach

is quite obvious. The exact linear model of the system is required and the distribution of

the uncertainty and disturbance must also be understood in detail. For the cases of

nonlinea¡ dynamic systems o¡ of poorly precise models of linear systems, this method is

cumbersome and the complete isolation between the unknown inputs and the faults is

difficult to achieve.

2.2.2 F ault Diagnosis Based on Model Parameter Estimation

Generally. the behavior of a svstem process is a function of the system's initial

condition. input signal and physical parameters and is governed by physical laws. When

these physical laws are lvell understood. this iìrnction can be expressed as a set of



ordinary or partial diflerential equations. The coefficients of the resulting equations are

functions of the system's phy-sical parameters [5].

lf a system can be described by linear differential equations. the least squa¡es

method can be employed to estimate the coefficients of the equations. For example, a

discrete linear time-invariant single-input-single-output system can be expressed as in

equation (2-5 ).

y(t) + a,y(r -l) + a.y(t -2) + + a,y(t - n)

= b,u(t -l)+ b,u(t -2) + + b,,u(t - m)
(2-5)

Equation (2-5) shows that the current output of the system is a linear combination of the

past ¡x outputs and past ln inputs. It can be written in the following form:

where

and

y(t) = o' tY(t)

V' (ù = l- yU - t),- y(t - 2), ..,- y (t - n),u(t - t),, u(t - m)]

0/ =fot,a,,...,a,,b,,,b,)

(2-6)

k = 1,2.. .., N, where

(2-7)

(2-8)

(7-e)

l0

The input ar.rd output signals are measured at disc¡ete times I = Æl ,

l is the sampling period. Suppose á is the estimation of d, then

e(i) = y(t) - er VG)

The loss luncrion is delìned as

¡ =la,e=(r)
/=l

¿r = [¿(l), ¿(2). ,e(i\)]



Here þo ) is a sequence of positive numbers. In applications, most often øu is chosen

identically equal to l. Through the minimization of equation (2-8). the well-k¡own batch

(non-recursive) least squares (LS) coefficient estimation method is obtained [9].

F\' -ll,v

Q- =llg,,yr,ny' rtt I La,,yr uylt\
!n+ù-t Lr=t I ,=t

\ì+nt)t(n+ni) ( tr+,r )x I

(2- 10)

For on-line parameter estimation purposes. the batch LS method can be rewritten in a

recursive fashion, i.e,, the recursive LS method [9].

eç¡=â1¡-1¡*t(t)ly(t)-0t(t-t)t!Q)l (2-11)

L(t) =
P(t -l)v/Q) (2-12)

(2-13)

and dlro; are needed. In [9],

niethod should be given by

t,'a, + tut (t)P(t -l)ty(t)

P(t) = P(t -t) -
P(t -l)y(t)ryr (t)P(/ - l)
l, a, + yt çt)Pçt -l)ryç)

To start this recursive algorithm, the initial conditions P(ro)

it is shown that the proper initial values for the recursive LS

equations (2- 1a) and (2- I 5).

P (t o) = lla,y (k),t" &)l'
t=l

Qtr o') = Pt r ol\a,yt (kl yt k I

r=l

(2-t4)

(2-15)

in [9]. it is also shorvn that the relative importance of the initial values decays with time.

Therefore. a suggested and common choice of initial values is to take P(0) = 6. ¡ on¿

O(O) = O .lvhere C is some large constant.



After obtaining the estimation of model parameters, 0 , a mapping function / is

used to find the physical parameters, i, of the system.

þ= f'(0) (r- l 6)

Through on-line monito¡ing of the physical parameters of the system, faults can be

detected and isolated. Horvever, it has already been shown by Isermann [5] that a unique

determination of physical parameters, p , is not always possible. For example, in a first

order electrical circuit (see Fig. 2.1), the relation between the output voltage, a,,, and the

input voltage, ri, , is

pç d!!o * ,,, = u (2-17)

uo

Fig. 2.1 First order electrical circuit.

It is clear that we cânnot determine the values of either R or C separately by only

measuring the input and output voltage, r.r, and u,,. Thus, the faults peftaining either to rR

or C cannot be isolated.

Another problem with this methodology is that a linear process model that

describes the process behavior is sometimes r.rot available and there are no powerful

parameter estimation nrethods for general nonlinear models.

À

C



2.2.3 F ault Diagnosis for Systems without Explicit Model

The¡e are many dynamic systems where the physical la'"vs that govem thei¡

behavior cannot be easily erpressed by mathematical equations. Sr"rch systems can only

be modeled based on their input and output characteristics through experiments. There

exist two distinct relations between the derived model and the physical system. One is the

relationship betrveen the system's physical parameters and coefficients of the

mathematical model. The other is the relationship between states of the model and the

physical state variables of the system. In such cases, the direct implement of either the

observer based or the parametric estimation based fault detection and isolation strategy

becomes verv challenging. In this thesis, a parameter estimation based fault detection and

isolation strategy is investigated for hydraulic svstems. The general procedure for this

methodology is elaborated in the next chapter.



Chapter 3 Fault Detection and lsolation in Feature

Space

For s,vstems which can only be modeled based on their input and output

characteristics through experiments. the key to model-based fault detection and isolation

strategy is to find the relationship between the faults and the changes in the model

coefficients. Since the mapping function described by eqr-ration (2-16) cannot be easily

obtained, the on-line values of system physical parameters cannot be determined.

Therefore, the relationship between the faults and the changes in the system physical

parameters has to be investigated empirically. The general fault diagnosis procedure

based on parameter estimation is illustrated in Fig. 3.1.

Fig. 3.1 Generalized scheme of fault diagnosis.



3.1 Data Processing

ìvlost monito|ing s) stems are implemented in digital computers. When a

monitored process is running, input and output signals are sampled at a time interval, I.,

through a sampling device. Once the measured signals are collected, they may be

processed by methods using digital signal processing (DSP) technologies, such as

buffering, re-sampling. de+rending or fìltering. Therefore. only the most important

features of the signals are left for tàult detection and isolation.

Buffering collects the consecutive signal samples into a single unit, which is

called a batch or frame. By propagating these multi-sample frames instead of the

individual signal samples, one cau take the speed advantage of execution of DSP

algorithm, such as Fast Fourier T¡ansform (FFT). Re-sampling changes the sampling

frequency in software. If it turns out that the data has been sampled too fast (which may

be required for control purposes) for the monitoring system, they can be decimated. For

example. if evety È'h sample is picked up, the sampling frequency will change to {k

from the original sampling frequency, {. De-trending the data involves removing the

mean values or linear trends from the signal. For a signal such as

r(/) = ro + Asin(at +y)

The dc component s0 nray not be ofinterest. Thus, it is de-t¡ended ro

(3-l)

s'(t)= ¿3in1ru, *r, (3-2)

Filtering extracts the most interested frequency components from the sampled signals. It

is a good r,vay of rernoving high frequency noise in the data. lt is also a good altemative

to detrending by cutting out lo"v fiequencies from tire pass band.



3.2 Model Selection and Parameter Estimation

tv{odeling can pror ide a direct rvay to present the characteristics of the monitored

system. There are trvo kinds of system modeling strategies: one is the derivation of the

mathematical model from the physical la'"v that governs the behavior of the system, while

the other tries to model the system through experiment. Since the only info¡mation

available to the monitoring system is the input-output set of the monitored process, a

mathematical model should be found based on the on-line information of this process.

Then parameter estimations can be applied to the selected model structure to get the

model coefficients.

3.2.1 Model Selection

The structure of the model determines ho"v the input and output information is

formed. For linear structures, autoregressive with exogenous input (ARX). autoregressive

moving average with exogenous input (ARMAX). output-error (OE). box-jenkins (BJ)

and state-space models [9] are all good candidates. For nonlinear systems, use of an

artificial neural network (ANN) is an option.

3.2.1.1 ARX Model

For single-input and single-or-rtput systems. the ARX model is the most commonly

used model structure. It relates the current output -Ì(/) to a finite number ofpast outputs

y(1 - k), inputs ¿r(¡ -,t) and current noise e(r).

y(t) + aty(t -1) + a.y(t -2) +. + ct,,y(t - n)

= btu(t - k1+ b.u(t - k -l) + 4u(t - k -2) + -b.,,utt-k-nt+ll -ettl 
(J-J)



Fig. 3.2 Diagram of ARX model.

In Fig. 3.2, z I denotes unit time delay. After selecting the values of n,m and k, the

structure of the ARX model is determined: n is equal to the number of poles, m - 1 is the

number of zeros and k is the pure time-delay (also called dead+ime) in the system. ,t is

equal Lo I il there is no dead-time.

3.2.1.2 ARMAX Model

The difference bet\¡/een the ARMAX model and the ARX model is that in the

ARMAX model, the noise, e(t) , is also moving-averaged.

y(i) + a,y(t - 1) + a.,y(t - 2) + " + a,,y(t - n)

= bJt(t - k) + bztt(t - k - 1) + bru(t - k - 2) + + b,,u(t - k - m + r)

+ e(t) + c,e(t -l) + c.,e(t -2) +. + c,e(t - l)

(3-4)

+

Fig. 3.3 Diagram of ARMAX model.



In this model, n , m , and Æ have the same meaning as in the ARX model and / is

the number of zeros from e(t) to l(l). The structure is determined by the values of rz,

nt.k,andl.

3.2. 1. 3 Output-Error Model

Instead of treating noise, e(t), as another source of input, the OE model assumes

that the noise, e(t), is near the measurement ofoutput, y(t) (see Fig 3.4).

[y(t) - e(t)l + a,fy(t - t) - e(t - t)l +. + a,fy(t - n) - e (t - n)]

= blt(t - k) + bztt(t - k - l) + bru(t - k - 2) + "' + b,u (t - k - m + 1)
(3-5)

Fig. 3.4 Diagram of Output-Error model.

Similarly to the ARX model, the structure is determined by values of n . m and k .

3.2.1 .4 Box-Jenkins Model

The BJ model assumes that input signal, a(t), and noise signal. e(t). affect the

output, l(¡) . through separate channels. Each channel rvill be output auto-regressive and

input moving average. With reference to Fig. 3.5, output /(r) consists of two separate

components, y,(l) and y,(t).

.v,(r) +n,¡,(t -1) + a.y,(t -2)+ +ct,,,!,(t -nt)
-- b,u(t - k,)+b.u(r - k, -l)+ b¡r(t - kt-7)+ + b,,, u(t - kt -m,+l)

(j-6)

l8



+1)

Fig. 3.5 Diagram of Box Jenkins model.

The structure of the BJ model is determined by the values of n,, m,, \, n7, m,and k,

ylt) + cJ?Q - 1) + c. y.,(t - 2) + "' + c 
". 

y,(t - n.)

= d,e(t - k) + tl,e(t - k., - 1) + dje(t - k., - 2) + + d,,,.tt(t - kt - *t

)'(1) = ,ur(¡) + .r, (1)

(3-7)

(3-8)

3.2.1.5 State Space Model

For multiple-input-multiple-output (MIMO)

good choice. The basic state-space model (see Fig. 3

'E(r + l) = Ax(t) + Bu(t) + Ke(t)

i(t) = Cx(t) + Du(t) + e(t)

systems, the state space model is a

6) is written as

(3-e)

Fig. 3.6 Diagram of state space model.

The most important value lo determine in the state space modeì is the dimension

state vector. -r(r). The state space model has several derivatives. If 1f=0. anof the



Output-Error model is defìned. If D = 0 , lhere exists at least a delay of one sample from

the input to the output.

3.2.1.6 A¡fificial Neural Network Model

A neural network is a collection of interconnected neurons. Each neu¡on's

operation is quite simple, as illustrated in Fig.3.7.

Fig. 3.7 Schematic of single neuron.

Vector xr =[x, ,,r,,r,, ,;rn] is the input vector. wo=fivor,tvo,,w13,",w¿o] is the

weight vector and å is the bias, which acts as a weight except that it has a constant input

of1.

/?

so =lwrx, +b = wrx+b
t=l

/ is the activation function. The output of the neuron is a function of so .

y, = f(s,) = f(w,xu + b)

(3 - 10)

(3- l 1)

Two or more neurons may be combined in one layer and a neural netlvork might contain

one or more such layers. The layer where neurons receive inputs directly from outside of

the network is called the input layer. A layer that produces the netlvork's output is called

an output layer. All other layers are called hidden la¡'ers.

xt

¡ v¡,:\...----., -r
*¿--t"-]



Depending on the input data structure, neural network can be divided into two

types. If the ir.rput vectors are gìven rvithout considering a particular time sequence, the

netw,ork is called a static network. If the input vectors occur sequentially rvith time, the

network ìs called a dynamic netrvork. which is a better choice than a static network for

representing the dynamic behavior of the system. According to the direction of the signal

tlorv, neural networks can also be classified as feed-forlvard or feedback networks To

represent temporal behavior, intemal feedback paths may be required.

The structure of an artificial neural network is very flexible, which is determined

by the number of network layers, the number of neurons in each layer. the type of

activation function in each layer and how the layers are connected with each other. The

best architectì-lre to use depends on the type ofproblem to be represented by the network.

3.2.1 .7 Model Selection Criteria

Several model structures have been

detection and isolation, there are several

introduced above. For the purposes of fault

important criteria to be observed in model

selection:

1. Given a model structure, powerful on-line model coefficient estimation

methods should be available. From this point of view, arlificial neural

netrvorks are not a good choice since they need time to converge.

2. The estirnated model can approximate the behavior of the nonitored system

as closely as possible.

3. The variances of the estimated coeffrcients af'tect the resoltttion of the faLllt

detection. For any specihc parameter value. they should be as small as

possible.

2t



All these criteria are essential to the fault detection and isolation strategy discussed in this

lvo¡k.

3.2.2 Parameter Estimation for Fault Diagnosis

After selecting a proper model, the input and output relationship can be expressed

y(t') = f (vr(t),0)

where r¿(r) is a matrix; its elements are composed of

(3-t2)

u(t - k),u(r - k - I),...,u(t - k - m + 1), y(î - t), y(t - 2),, y(t - n)

d is the parameter vector; its elements are the coefficients to be estimated. For example.

an ARX model as described in (3-3) can be expressed as follou's:

,/' Ø=[- yQ -t),-y(t -2),'..,-y(t-n),u(t-k),,tt(t-k-m+1)] (3-13)

Qr = 1a,,a.,,...,a,,,bt,b.,,. ",b,,1 (i- l4)

y(t) = 0' tuQ) + e(t) (3-15)

With the help of parameter estimation algorithms, the model coefficients, d , can be

estimated. From the viewpoint of fault detection and isolation, two deñnitions are

presented here:

l. If a change in system physical parameter does not alter the value of d, this

change cannot be detected fo¡ the selected model strltcture.

2. If changes in more than one parameter affect the value of d in the same

manner, these two faults cannot be isolated.

To solve the problem of either case I or case 2, one way is to change lhe order of the

model. Altematively. one may use a dilferent model structure.



3.3 Fault Classification

As far as fault detection and isolation a¡e concerned. the value of d can be

divided into normal and fault.v-' ranges, Depending upon the type of fault, the faulty ranges

can be further classified as fault 1, fault 11 and so on. The task ofthe monitoring system

is to reach the decision surface among these ranges and make a classification when an

unknou n sample is presented.

If the new sample is classihed to the lault 1 group, the monitoring system

assumes that fault t has occurred. It can express thìs information in various forms, such

as ringing an alarm betl. The procedure of how to correct the fault condition is specific to

different kinds of application and r.víll not be addressed here.

3.5 Summary

In this chapter, the procedure for lault detection and isolation, based on parameter

estimation, has been outlined. The implementation of this strategy involves model

selection, paraÌneter estimation and fault classification and training. Other model-based

fault detection and isolation methods, such as unknown input observer and phvsical

parameter estimation, require explicit mathematical model from physical laws. This

strategy mainly relies on on-line information of input and output signals from the

monitored process. In the subsequer.rt chapters, this strategy will be tested on a double-rod

hydraulic actì-Ìâtor in both simulations and experiments.



Chapter 4 Model of Electrohydraulic Actuators

Hydraulic actuators may be Iinear or rotary and are usually referred to as pistons

or motors, respectively. A pump o¡ a valve can be used to control these actuators. The

pump-controlled system consists of a variable delivery pump supplying fluid to the

actuating device. The fluid florv is controlled by the stroke of the pump to vary output

speed and the generated pressure matches the load. The valve-controlled system consists

of a servovalve controlling the flow from a hydraulic power supply to the actuating

device. As compared with pump-controlled hydraulic actuators, valve-controlled

actuators have faster response capability; this makes them the preferred choice in the

majority of applications [8].

A diagram of a double-rod valve-controlled electrohydraulic actuator is shown in

Fig. 4.1. It consists of a hydraulic power supply, an electrohydraulic valve, a rod and a

cylinder, The function and dynamic characteristics of each part will be explained in the

following sections.

Fig. 4.1 Schematìc of a valve-controlled hydraLLlic actuator



4.1 Power Supply

The hydraulic por.rer supply is usually a constant pressure type. There are two

kinds of configuration: one consists of a constanl delivery pump r'vith a relief valve to

regulate pressure; the other uses a variable pump u,ith a stroke cont¡ol to regulate

pressure. The tunction of this pump unit is to provide hydraulic supply fluid with a

constant pressure, as shorvn by { in Fig.a.l.

4.2 Servovalve

Hydraulic control valves are devices that use mechanical motion to control fluid

power. The most r.videly used valve is the sliding valve employing a spool type

construction. Spool valves are classified by:

1 . The number of "ways" flow can enter and leave the valve.

2. The number of "lands".

3. The type of center when the valve spool is in the neutral position. If the width

of the land is smaller than the port in the valve sleeve, the valve is said to be

under-lapped. A critical center or zero-lapped valve has a land w-idth identical

to the port width. Overlapped valves have a land width greater than the pofi

width when the spool is at neutral.

In Fig.4.1. a three-land-four-rvay spooi valve with a critical center is shor,vn.

Since the versatility ofelectrical devices makes them ideal for feedback measurement and

signal amplifìcation and manipulation, the mechanical nrotion of the valve is controlled

by an electrical signal; such a valve is called an electlohydraulic servovah'e. It converts

low power electrical signals into valve motion. lvhich in turn controìs lhe florv to a



hydraulic actuator. Electrohydraulic servovalves can be broadly classihed as either

sìngle-stage or two-stage. A single-stage servovalve consists of a torque motor that is

directly attached to and positions a spool valve. Because torque motors have limited

power capability, this in tum limits the flor.v capacity of the single-stage servovalve and

may also lead to stability problems in some applications. A two-stage servovalve has a

hydraulic preampliher (called ñrst stage) that substantially multiplies the force or"rtput of

the torque motor to a level suffrcient to overcome the considerable florv forces, sticking

forces, and forces resulting from acceleration or vibration. The two-stage servovalve

overcomes both of the disadvantages of single-stage servovalve and this is the main

reason lor their existence.

Many design lactors and operational and environmental variables make it very

difficult to assume an explicit linear transfer function for an electrohydraulic servovalve.

However, the usefulness of linear transfer function, ,.r upp.oO.ating servovalve

responses in analytical studies is well established. The ¡elationship between the valve

spool displacement, x,,. and tl.re input voltage, I , to the valve can be expressed by the

fo.llowing differential equation [1 l]:

d-r dY
--;! + 2(a ,, -." - t't; * , = K,a;u
dt- dl

(4-t)

where a.r,, is the natural fiequency. f is the damping ratio and K, is the servovalve loop

gain.

4.3 Fluid Flow Dynamic

The valve spool displacement. .r,,, controls the orifices through ,'i,hich fluid power

enters and leaves the hydraulic cylìnder. Assuming that the valve orifìces are matched.



symmetrical and rectangular ports with an area gradient of

fluid florv dynamic in Fig. .1. I is expressed as

w for each port are used, the

(4-2)

(4-4)

[n =t.,''*'
r,-o 

J

lQ 
= c,"''

I 1=-
l1( P -P\

\l p

"11,,t,-, ,
\l p

.x" <0 (4-3)

u'here C, is the discharge coefficient and p is the mass density offluid.

For the control volume shown in Fig. 4.2, there are weight flow rates I4/,,, into and

W,,,,, oul of it, The accumulated fluid has volume Z, mass ¡n and mass density p . From

the law of conservation of mass, the rate at which mass is stored must be equal to the

incoming mass florv rates minus the outgoing mass flolv rates, i.e.:

.dt : .dpv -- r, -*ò,ò,dt dt

w;---------------+
------+

----.---.-------
------------.}

W*

Fig. 4.2 Flows entering and leaving a control volume.

Isothermal conditions are generally assumed in the lìquid flow. Thus, the fluid mass

density p can be expressed as

2'7



rvhere p0 and P are the tluid mass density and bulk modulus at zero pressure, and P is

the current flolv pressure. Noting that the rveight tìow rate can be written as

p=p"*\e
Þ

,l/,,, = SpQ,,,

,r,,,, = spQ,,,,,

Equation (4-4) can be rewritten as:

dl/ øVo" JP
spQ,,, - cN',, = gp-+ "'' "'dtpdt

Taking p = po, equation (4-8) can be expressed as

V, =V,o + Ay

For fluid trapped in the right side ofthe cylinder,

V,,=V,,a+A(L-y)

where L,o and V,,o are the initial volumes trapped

cylinder, respectively, and I is the length of the

equations can be expressed as:

dPß-dv
----1 = ' (U - A--!\
dt l',o + Ay '-' d¡'

dPß-dv
dt V.¡) - AIL -.v) dt

(4-5)

(4-6)

(.4-7)

(4-8)

(4-e)

(4- 10)

(4-l l)

on the left and right sides of the

full stroke. The pressure dynamic

(4-12)

(4- 13)

dL/ T/ dP() - () dt þdt

Referring to Fig. 4.1, for fluid trapped in the left side ofthe cylinder,



4.4 Piston Dynamic

By applying Newton's Second Larv to the forces on the piston, the piston dynamic

can be expressed as

" = j, (4- t4)

nti=P,A-P,,A-dv (4- l s)

where rll is the mass of the load, d is the equivalent viscous damping coeffìcient, y is

the displacement of the rod, v is the speed of the rod, and I is the piston area at both

sides ofthe cylinder.

4.5 Summary

In this chapter, diflerent parts of the electrohydraulic actuator shown in Fig. 4.1

were explained. By using the state vector xr = [t, , x, ,. . ., xu ]= fy,v,P,,P",x",i,l to

represent the physical states of the hydraulic actuator, the dynamic equations used to

describe the actuator can be summarized as

'lr = -ft

li, = -l(-d.y. + Ax,- Åx.,)
m

R
*. = r (-Ar, +O \" V,n+ År,'

ß
i.= r {-1.r,-O i' Il,o + Å\L- \)
j¡ = 'Te

rö = -:1cù,,r6 + a;r5 + K,a,',u

(4- 16)



(4- l 7)

(4- 18)

-
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\p''
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Chapter 5 Simulation Results

In order to illustrate the general fault detection and isolation strategy or"rtlined in

Chapter 3. simulations are performed on the dor-rble rod electrohydraulic actuator model

presented in Chapter 4 for incorrect supply pump pressure and changes in equivalent

viscous damping coefficient. The parameter of the hydraulic actuator is listed in Table

5.1.

Table 5,1 Parameters of the electrohydraulic actuator.

C, 0.60

p 8.47x10r kg/m'

tv 2.07 xl0-1 m

0.70

(0,, 6.28 x l0? radls

K 2.19 xl} t m/v

L 0.61 m

p 6.89 x 108 Pa

P 6.89 x 10ó Pa

P 0 Pa

A 6.3 i x 10-r m'

d 1000.00 N/(m/s)

tn 50,00 Kg



The

Fig

The model selection criteria, feature space formation and fault representation ale

explained in detail. In the simulation program. the continr:ous model described by

equation (a-16) is solved using a foLrrth-o¡der Runge-Kutta numerical integration It0]

The integration time interval, å, is set to 1 ms and the initial physical states ol the

hydraulic system are set as: Jr'. = 0.i05 m, v. = 0 m/sec, l,u =p =P' and r =om

conhguration of the cont¡ol system and the monitoring systenr is demonstrated in

5.1.

Fig. 5.1 System configuration

In Fig. 5.I . r is the retèrence signal. It is set as

r(t)= AstnQft)+ Yn (s-1)

where I is the amplitude ofthe reference signal set as 0.0254 m and / is the lrequency

of the reference signal r'vhose value is set to 0.5 Hz- A proportional controller is applied

in the control system. Since most functional fault detection and isolation systems are

implemented in digital computers [3], the input signals to the monitoring system have to

be sampled- The sampling lrequency for both control and monitoring purposes is 200 Hz

The relationship bet\\'een the continuous retèrence signal. r(r). and the sampled

reference signal. r(n) . is expressed in equation (5-2).

Monitored System



r(n) = r(nT.) -- Asin(2rlù+ xo (5-2)

A typical refe¡ence signal, r, control signal, u, and displacement, .¡,,, are presented in

Figs. 5.2 to 5.4.

E
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o25
30

ïime (s)

Fig. 5.2 Relerence signal

3û

Time (s)

Fig. 5.3 Control signal

5050402t10

€ o=
\

0.35

t.25
30

Time (s)

Fig. 5.1 Rod displacement.

The signals used lor monitoring purposes are the control signal, u, and the rod

displacement signal, -y .

6050402010



5.1 Model Selection

Since the offset component -y =0.305 m plays an unimportant role in describing

ho'"v the changes in the input, ¿¡. affects the output. y, it can be de¡rended out from the

output signal, y . In addition. the three main criteria in selecting the model structure, as

stated in Section 3.2.1, are considered. Firstly, there should be powerful model

coefficient estimation methods. From this point of view, a linear model is the first choice.

Among all linear models described in Section 3.2.1, the ARX model is the most widely

used one and is chosen here, It has the following structure:

y(t) + a,y(t -1) + a.y(t -2) + .. + a,y(t - n)

= bl? - k) + bzu(t - k - 1) + b.u(t - k * 2) +' + b,,,u(t - k - m + 1) + e(t)
(5-3)

With dilfèrent values of m , n and Æ, different ARX models can be constructed: these

are represented l:y APJnmk in subsequent sections. In order to select a good model for

the system. ARX models with different parameter sets are tried. The data used for model

selection purpose is the fifth period of the signals, which is shown in Fig. 5.5. The batch

LS algorithm described by equation (2-10) is implemented on this data set to estimate the

models' coefficients. In order to investigate the suitability of a specifrc model, the model

is simulated r'vith the same control signal as in Fig. 5.5 and the cost function

t =le'çn1
¡=0

(5-4)

is evaluated for this model. With reference to equalion (5-4), e(n) is the enor signal

between the system and model outputs and N is the number of samples evaluated. The

model output, y, and enor signal, e, for various ARX models are shown in Figs- 5.6 to

5.15.
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Fig. 5.15 Output and error signals of ARX44l model.

With relerence to Figs. 5.6 to 5,15, it is seen that models ARXI I l, ARX21l.

ARX31 I and ARX4I I are all good models to represent the input and output relationship

for the system. Table 5.2 shows the cost function values, E, for all the models mentioned

above.

Table 5.2 Cost function values for different models.

Model Llm- )

ARXl 3.04986 x I 0-'

ARX2 2.87777 xl0-5

ARX22 6. I 6856 x l0 -l

ARX31 2.2933'7 x10 5

ARX32 6.08998 x 10-l

ARX33l 6.65183x10-l

ARX4I 1.48 I42 x l0-j

ARX42 5.9i432 x l0-r

ARXl3 6.17225 xl0-l
ARX44 689262x10 r
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From Table 5.2. it can be seen that. for models ARXnI l. the larger the n, the less the E.

As stated in Section 3.2.1, in the feature space, the variances of the estimared coefficients

reflect the distribution of the points corresponding to system operation conditions. These

should be as small as possible. This criterion is norv examined by comparing coefhcients

of the ARX4I I model (which has the smallest value of E for the listed ARX nl 1

models) rvith those of the ARXI I I model (which has the largest value of A for the listed

ARX¿l I models). The coefficients of these two models are estimated using the batch LS

method described in equation (2-10), when the monitoring system collects all the data fo¡

each new period. When supply pump pressure is at 900 psi, 1,000 psi and 1,100 psi, the

coefhcient sets are plotted according to time in Figs. 5. l6 and 5.17.
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Fig. 5.16 Coefhcients olARXl l1 model for various supply pump pressures
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Fig. 5.17 Coefficients of ARX4 I I model for varìous supply pump pressures.

For the ARX4I I model, shorvn in Fig. 5.17. it is impossible to distinguìsh the three

operation conditions through threshold checking on ír . r¿,. c!jor t:t1; because thev are



interlacing with each other for the conditions under consideration. Although å, reflects

the change of supply pump pressure more effectively than ¿?r , {t1, ú3 or a.,, it is still

diificult to select a proper threshoÌd value to identily these th¡ee conditions without

leading to incidental false alarming and/or fault missing. For the ARXI I I model, Fig.

5.16 shows that when supply pump pressure changes by +l}yo, 4 changes by around

+ 5% . The change of a, , however, is less than t0.01%. Therefore, threshold checking

on å, for the ARXI l1 model can be selected as the fault detection and isolation logic.

Fig.5.l6 also shows that it is easy to select a proper threshold value on å, to clearly

distinguish between the considered conditions without false alarming and fault missing. It

is seen that, for fault detection and isolation purposes. a compromise has to be made

between reducing the value ofthe cost function, E, and achieving small variances ofthe

estimated model coefficients in model selection. The ARX111 model, therefore, is

selected as the best fit model for the hydraulic system under consideration.

5.2 Recursive LS Method versus Batch LS Method

In the batch LS method, the samples are buffered together, after which equation

(2-10) is used to estimate coefficients. ln the recursive LS method described by equation

(2-ll), the estimated coefficients are adjustecl with each new sample. A detailed

description of the batch LS and recursive LS algorithms is provided ìn !3]. Both

methods provide good performance for linear time-invariant (LTI) systems. For nonlinear

systems with changing operating point, however, when a linear model to represent the

system dynamic characteristics, the recursive LS method may lead to results lvith larger

variance than the batch LS method.
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To study the difference between these methods, the ARXI I I model output, error

signal (between systeni and model outputs) and estimated coefficients using the batch LS

method and the recursive LS method for supply pump pressure at 1,000 psi are shown in

Figs. 5. l8 to 5.2 I .
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Fig.5.18 ARX1 I I model output using the batch LS method.
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The cost function value and the mean, maximum offset and variance of å, resulted from

both the batch LS and the recursive LS methods a¡e listed in Table 5.3. The cost function

value resulted from the recursive LS method is 95.31% less than that resulted from the

0102030405060



batch LS method. The variance of å, resulted from the recursive LS method, however, is

about I.2269x l0' times larger than that resulted from the batch LS method

Table 5. 3 Batch LS versus Recursive LS fbr ARXI l l model in the simulations.

L =le'¡t<¡
t=t

Zb,ot-r=r maxçln, -1,11

var(b,) =

l{t,* -l)'
k=l

Batch LS 9.1157x10-l 1.96'72x10 I 4.1930 x 10-' 2.2131x10-ts

Recu¡sive LS 4.2770 xl0 5 1.96'72x l0-4 3.1607 x 10 ? 2.7153x10-ri

As stated in Section 4.1 , for fault detection and isolation purposes, the variances of the

estimated model coefficients affect the performance of the proposed FDI strategy.

However, as compared to the recursive LS method, there are several shortcomings ofthe

batch LS method:

l. Since the batch LS method has to buffer the past input and output data of the

monitored systerì, it needs more storage space than the recursive LS method.

2. On-line fault detection is delayed because the batch LS method only produces

a new set of estimated coefficients after it collects all the samples needed.

while the recursive LS method can estimate a ne'"v set of coeffrcients once a

new sample is received.

5.3 Fault Representation

For the hydraulic actuator, the exact value of the physical parameters lìsted in

Table 5.1 may not be known and sometimes, the values of these parameters may change

due to factors such as temperature and fault conditions. Ifthe change in a parameter does
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not alfect the coefficients of the selected model that represents the system, this change is

said to be undetectable- If seve¡al changes affect the coefhcients of the model that

represents the system in the same way, then they are said to be unidentifìable. The task of

fault detection and isolation is to detect the fault condition and then to identify it.

As stated in Section 2.2.2. even lor linea¡ time-invariant (LTl) systems. the

mapping lunction between the estimated model coefficients and the physical parameters.

described by equation (2-16), cannot be always obtained. For the nonlinear hydraulic

system in equation (4-16), the relationship betrveen the coefficients of the ARX models

and the physical parameters in Table 5.1 is indirect, which makes the task of fault

detection and isolation for general cases very difficult. In order to show the concept of

fault detection and isolatíon for nonlinear systems in feature space in this w-ork, only

laults originating from two specific sources, i.e., supply pump pressure, {, and

equivalent viscous damping coefhcient, d, are considered. The simulation study is.

therefore, divided into three studies. In case 1 , fault conditions originating from only the

supply pump pressure, (. In case 11 , fault conditions originating from only the

equivalent viscous damping coefficient,d. In case /11, a more complicated situation.

fault conditions may originate from either the supply pump pressure or equivalent viscous

damping coefficient.

5.3.1 FDI of lncorrect Supply Pump Pressure

Figure 5.22 shorvs coeffìcients of the ARX111 model for different supply pump

pressures. It can be seen that lbr every +10% change of supply pump pressure, the

change of å, is approximatelv + 5%. Although a, is also affected by the change in



supply pump pressure. when supply pump pressure changes by + 50%, the change of a,

is less than +0.01%. Therefore. å, can be used fo¡ fault detection and isolation of

incor¡ect suppl¡r pump pressure. To exemplify'this fault detection and isolation strategy,

the following assumptions are made:

' Normal condition is dehned as 900< { < I,100 psi.

' Fault condition -I is defrned as 1,100< { < 1,500 psi

. Fault condition 1/ is defined as 500 < P, < 900 psi
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P, = 1,20A. 1,300,. ... 1 ,500 psi

40 50 68

P,= 900, 1.000. 1,100psi

Fig.5.22 Coefficients of ARXI I I model for various supply pump pressures.

Based on the above assumptions, the fault detection and isolation logic for supply

pump pressure failures is developed as below:

. If the estimated coefficient å, is larger than 2.10x10-r, the monitoring

systen'ì assLlnes that the system is rvorking in fault condition 1 .
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. If the estimated coeffìcient å, is in the range of 1.80x10-* <å, < 2.10x10*.

the monitoring system assumes that the system is working under normaÌ

conditions.

. If the estimated coefficient å, is less than 1.80x10 r, the monitoring system

assumes that the system is working in fault condition 11.

The performance of the proposed fault detection and isolation logic is tested in the

following wav. lnitially, the system is run with the supply pump pressure, P., at 1,000

psi. After /=lssec, the supply pump pressure is increased to 1,250 psi. The supply

pump pressure is brought down to the normal value of 1,000 psi at / = 30 sec. Al t = 45

sec, the supply pump pressure is reduced to 750 psi. The control signal, u, system output,

y , and estimated coefficients for this test are plotted in Figs. 5.23 and 5 .24.
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Fig. 5.23 Control signal and system output in FDI of inconect supply pump pressure
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Figure 5.24 shows that at / = 16sec, the value of ó, begins to increase. The monitoring

system triggers the alarm for fault condition I at t = l8sec, when the value of ó, is

above the upper band. At / = 32 sec, the alarm for fault condition 1 is eliminated as the

value of ó, falls down to the normal range. At ¡ = 48 sec, the ala¡m for lault condition 11

is triggered because the value of å, is below the lower band. By comparing with the

actual working condition of the system, it is clear that the fault detection and isolation

logic developed above not only detects the incorrect supply pump pressure, but also

distinguishes between increased and decreased supply pump pressure faults. At the same

time, this experimental test sholvs the delay for the fault detection. For example, the

supply pump pressure is increased to 1,250 psi at / = 15 sec, but the monitoring system

triggers the alarm at /=18sec, This delay is due to buflering action in the batch LS

method as stated in section 5.2.



5.3.2 FDI for Changes in Equivalent Viscous Damping Coeffìcient

The coefficients of the ARXlll model according to different values of the

equivalent viscous damping coeffìcient c/ are plotted in Fig. 5.25. Simulation results

show that when d increases, the value of å' decreases. For every +10% change of

equivalent viscous damping coefficient, the value of a' changes less than X0.01%,

hor.vever, the value of ó, changes about 10.07%. Similarly to Section 53.1, the

follorving assumptions are made:

. Normal condition is defined as 900< d < 1,100 N/(n/Ð.

. Fault condition 111 isdefinedas 1,100<d<1,500N/(m/s).

. Fault condition 1/ is defined as 500< d <900 N/(m/s).
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Fig. 5.25 Coefficients of ARXI I I model for various equivalent viscous damping
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Since ó, can reflect the change in equivalent viscous coefficient, d more precisely than

a, , as in Section 5.3.1. direct threshold checking for ó, is selected as the fault detection

and isolation logic, rvhich is expressed as below:

. Il the estimated coefficient å, is less than 1.9645 x I 0-r , the monitoring system

assumes that the system is working in fault condition 111 .

. lf the estimated coeft'icient ó, is in the range of 1.9645x10'<ór <

1.9695 x 10-r , the monitoring system assumes that the system is working

under normal conditions.

. If the estimated coefficient å, is lager than 1.9695x10-0. the monitoring

system assumes that the system is working in fault condition 1trl.

The performance of this fault detection and isolation logic is tested in the

following way. At the begirLning, the system is run with d = 1,000N/(m/s). At I = 15 sec,

the value of d is increased to 1,250 N/(m/s). The value of d is brought down to 1,000

N/(nVs) after / =30 sec. At t --45 sec, the value of d is reduced to 750 N/(m/s). The

controI signal, u, system output, /, and estimated coefficients for this test are plotted in

Figs.5.26 and5.21.

Figure 5.27 shows that the monitoring system triggers the alann for fault

condition III at t = l8 sec when the value of ó, is below the lowe¡ band. The alarm is

eliminated at t =32 sec when the value of å, retums to the normal range. At ¡ =48 sec,

the alarm ibr fault condition 1trl is triggered because the value of å, is above the upper

band. This shows that the fault detection and isolation logic developed above can

successlìrlly detect the tàult condition originating from changes in the equivalent viscous



damping coefficient,d, and can also distinguish between fault conditions of increased

and decreased equivalent viscous damping coefficient. The delay ofthe fault detection is

due to the buffering action in the batch LS method as stated in Section 5.2
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5.3.3 FDI for both lncorrect Supply Pump Pressure and Changes in

Equivalent Viscous Damping Coefficient

The case where fault conditions originate either from inconect supply pump

pressure, {, or a change in the equivalent viscous damping coefnicient, d, is studied.

Since a, cannot reflect the change of the physical parameter in either case discussed in

Sections 5.3.2 and 5.3.3, threshold checking on å, is the only choice left for developing

fault detection and isolation logic in the constructed two dimensional feature space.

By comparing Fig 5.22 with Fig 5.25, it is seen that, the variation range of å,

(1.9550x10-{ <b, <1.9790x10-t ) due to the change of the equivalent viscous damping

coefficient, d , is completely cove¡ed by the variation range of bl

(1.3000x10-{ <å, < 2.5000x10 t) due to the change in the supply pump pressure, {.

Further study reveals that when the equivalent viscous damping coefficient, d , changes

from 500 to 1,500 N/(m/s), the variation of å, still falls between the lower band

(ór = 1.8000x10-t) and upper band (ó, = 21000x10-{) chosen for detecting incorect

supply pr-rmp pressure, l. This implies that, as compared with faults originating from

incorrect supply pump pressure, change of + 50%o in the equivalent viscous damping

coefficient. d, from its normal value is not detectable through direct threshold checking

of estimated model coefficients.

This reveals the shortcoming ofthe strategy developed in Chapter 3. Since there is

no direct one to one mapping from the estimated coeffìcients to the actual physical

parameters. the lollowing sjtuations may occur:



. The change of different actual physical parameters may have the same effect

on the estimated model coefficient.

. As compared to the effects of one physical parameter change, the effects of

another may become undetectable.

These situations may lead to the normal and fault regions corresponding to different

physical parameters overlapping with each other. This makes the task of fault detection

and isolation more challenging.



Chapter 6 Experimental Results

Figule 6.1 sho*'s the experinental test station. lt consists of an electroh¡'draulic

servovalve- a power supply rurit, otte main actuator. two slave actuators and a ueedle

valve. Tl.re cotrrputet systeur r:sed fot contlol and monitoring purposes is a pelsonaì

computel with a Pentiuln III CPU lr-urning rurder the Windorvs 98 operating system. The

corlnrunicalion betrvecn the computer and the test stalion is performed [r), two I/O

boards. The CIO-DAS16F board liom Omega Engineeting Inc. is used to coÌrvert digital

conlrol signals to analog contlol signals. A quadrature encodel board fì'om Keithley

neasules the displacemer.rt of the hydraulic rod,

ffi Hectr oh,,'dr ¡¡ir': val¡e @ 1",*,r, ::u¡rply rult ffi L{ain actuator

Fig. 6.1 Hydraulic actualor tesl stalion



The power supply unit can provide fluid at different pressures. The normal working

condition is defìned when the power supply unit provides fluid at 2,000 psi and the tw-o

slave actuators are discon¡ected from the main one. First. an ARX model is selected to

represent the behavior ofthe system under normal condition. Next, the fault detection a¡rd

isolation capability ofthe chosen ARX model is studied for incorrect supply pump pressure

and changes in equilvalent viscous damping coefficient-

6.1 Model selection

Under normal conditions, the actuator rod is tracking the reference position signal

r(n) = Asin(2rln') (6- 1)

under a propofiional controller around the middle stroke- In equation (6-l), I is the

amplitude of the rod displacement, / is the frequency of the reference signal, and f is

the sampling frequency. In this experimenl, A = 0.0254 m, ,f = 0.5 Hz, and f , =200 Hz.

The typical reference signal, r, control signal, er, and rod displacement, y are shovrn in

Figs. 6.2 to 6.4. Signals used for the monitoring system are the control signal, z and rod

displacement signal, y .
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Fig. 6.2 Reference signal.
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Fig. 6.3 Control signal.
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Fig. 6.4 Rod displacement.

The feature extraction is canied out by representing the input-output relationship

of the monitored system by an ARX model. As in chapter 5, the signals used for model

selection purposes are one period ofinput and output data pairs (see Fig. 6 5)
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Fig. 6.5 Input and output data pairs for rnodel selection
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Inordertodeterminethestructureie',theorderoftheARXmodel'various

structures are tried. The model coelhcients are estimated by using the batch LS method

describedbyequation(2.10).Thecorresponclingerrorsignalbetweenthesystemandthe

model outputs is shown in Figs. 6 6 to 6 10

x 10-3

W.l ilïlt
8 82 8.4 8.6 88 I 9.2 IA 9.6 98 10

Time (s)

Fig. 6.6 Error signal corresponding to ARXl 1 I model'
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Fig. 6.7 Enor signal corresponding to ARX211 model
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Fig. 6.9 Error signal corresponding to ARX4l I model.
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Fig.6.10 Error signal corresponding to ARX421 model.

Further experiments sho',ved that the ARX32l, ARX33l, ARX43 I and ARX441

models estimated by the batch LS method cannot approximate the system output. Figures

pertaining to these models are not shown. Values of the cost functìon, as described by

equation (5-4), for ARXI11, ARX21l, ARX31l, ARX4Il and ARX421 models are

presented in Table 6. l.

Table 6.1 Cost function values for different models.

Model L(m- )

AR-XIII 4.8595 x l0-'

ARX211 3.7411x10.1

ARX3I1 3.5075 x 10-'

ARX411 3.1446 x l0'1

ARX42I 17748x10)



Table 6.1 indicates that ARX4I I model has the minimum cost function value. It

also shorvs that increasing the value of n will tìrther leduce the value of the cost

function. For example, rvhen ARXSll is used, the value of the cost function is

2.59156x l0-t. However, as was stated in Chapter 5, a higher order model may not be a

good choice from the viewpoint of fault detection and isolation. Another issue to be

considerecl is the variances of the estimated model coelficients. Since variances of the

estimated model coefficients reflect the distribution ofthe points representing the system

in the feature space, a large variance is not good for fault detection and isolation. Using

the batch LS algorithm, the estimated coefficients of ARX21 I and ARX4I I and

corresponding error signals betrveen the system and model outputs are presented in Figs.

6.11 and 6.12. lt is seen that the estimated coefficients ofARX4l I have a larger variance

than those of ARX211 model. Taking both the value of cost function and variance of the

estimated model coefficients into consideration, ARX2l l is selected as the best fit model

structure.

Figure 6. l3 shor.vs the estimated ARX2l 1 coefficients using the recursive LS

method and the corresponding error signal. The cost function value and the mean,

maximum offset and variance of å, are outlined in Table 6.2.

Table 6.2 Batch LS versus Recursive LS for ARX2l l model in the experiments'

t =le'çtc¡
\-¡
/r''tt- r=r

*^1]tt, - n,]¡

var(b,) =

l{b,, -l)'
l=l

Batch LS 0.0090 6.5229 x l0-r 4.4956 x l0-ó 2.2573 xl0-12

Recursive LS 3.9927 xl}-t 6.4924x10-) 5.7642 x l0-' 2.1453 x 10 ro

6I



It is seen that the cost function value resulted from the recursive LS method was 95.560/o

less than that resultecl from the batch LS method. The variance of å, resulted from the

recu¡sive LS method was about 95 times larger than that resulted from the batch LS

method, Since large variance is not desirable for fault detection and isolation, the batch

LS method is employed in this study.
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Fig.6.ll Coeffrcients and error signat of ARX211 model using the batch LS method
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Fig. 6.f 3 Coefficients and error signal of ARX2l1 model using the recu¡sive LS method.

6.2 Fault Detection and lsolation

By selecting the ARX21 1 model to describe the behavior of the system is

presented by the parameter vectorá7 =(b,,o,,o.). The batch LS method is used for

estimating values of b,, a,, and a., . ln this section, fault diagnosis for inconect supply

pump pressure and changes in equivalent viscous damping coefficient is presented.
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6.2.1 FDI of lncorrect Supply Pump Pressure

In the follorving experiments, the system was run lvith a supply pump pressure,

P,, of 1,500 psi, 1700 psi. 2,000 psi.2.300 psi and 2,500 psi. With the batch LS method,

the estimated coefficients for the ARX2l l model are shown in Fig 6.14,

75

.r\ h 5

{'-0.15

-o.2

-08

30

Time {s)

d' -0 8s

-09 10 2A 30 40

Time (s)
---*- P,=l,J$Qpsi -+- P=1,7690r¡

- P,=2,000 psi * P =2,300psi --+-

50

P, =2,500 p si

Fig. 6.14 Coefficients ofARX211 model for various supply pump pressures'

Figure 6.14 shows that ó, changes proportionally with a change in the supply

pump pressure. For every +10% change in supply pump pressure, the value of å,

changes by about + 5% Although a, and a., are also affected, the relationshìp between

the change of supply pump pressure and the changes of a, and a, is not as obvious as in
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the case of å, . Therefore, th¡eshold checking on å, is used to detect and potentially

isolate the faults of incorrect supply pump pressure

Fault detection and isolation logic belolv is developed for the following

experimental test.

. If bt > 6.700 x l0-' , the monitoring system detects that the system is working

under the condition that the supply pump pressu¡e is increased.

. If bt < 6.400 x I O-t , the monitoring system detects that the system is working

under the condition that the supply pump pressure is decreased.

In the experimental test, the system initiatly runs under normal conditions of

¿ :2,000 psi. At / = 13 sec, the supply pump pressure is increased to 2,500 psi and, at

t:28 sec, the supply pump pressure is reduced to 1,500 psi. The estimated coefficìents

and upper and lower bands for å' are shown in Fig. 6 15 lt is seen that at / = 16 sec, the

value of å, is above the upper band and the monitoring system triggers the fault alarm for

increased supply pump pressure. At / =i0 sec, the fault alarm for dec¡eased supply pump

pressure is triggered when the value of å, is below the lower band. This shows that

tkeshold checking on å, can be employed as a fault detect and isolation strategy for

incorrect supply pump pressure. The fault detection and isolation logic developed above

can not only detect the fault conditions, P,:1.500 and 2,500 psi- but also can isolate

these two fault conditions.
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Fig. 6.15 FDI of incorrect supply pump pressure.

6.2.2 FDI for Changes in Equivalent V¡scous Damping Coefficient

In order to simulate the changes in equivalent viscous damping coefficient, two

slave actuators are connected to the main one, which changes physical parameters such as

inertia and the equivalent viscous damping coefficient. This kind of fault condition

cannot be detected by the traditional hardware redundancy based fault detection and

isolation strategy.

In Fig. 6. 16, the coefficients of the ARX2I I model for the normal condition and

the condition in which tvvo slave actuators are connected to the main one and the needle

valve is fr"rlly opened are presented.
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Fig. 6.16 Coefficients of ARX211 model with effects from two slave actuators'

Figure 6.16 clearly shows that by selecting a proper th¡eshold value, direct

th¡eshold checking of b,, a, oÍ a1 can easily separate these two conditions. Since in the

lab environment, these two conditions cannot be switched when the system is running, an

on-line fault detection experimental test, as was done for incorrect supply pump pressule,

is not pertbrmed here.

By adjusting the needle valve with two slave actuators connected, the equivalent

viscous damping coefficient, ¿/, can be further changed. The estimated coefficients of the

ARX2l1 for the fully open and 80% closed needle valve are presented in Fig 6'17'
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Fig.6.f 7 Coefhcients of ARX2I I model with effects from the needle valve'

In Fig, 6.17, it is seen that the large variances of b,, a, and a, make it impossible

to separate these two conditions by direct th¡eshold checking. This occurs because when

the two slave actuators are connected, the structure of the system is changed and the

ARX2I I model selected for normal conditions (where two slave actuators are

disconnected) is no longer a suitable model, and thus it can¡ot be employed to distinguish

any further changes in equivalent viscous damping coefficient by direct threshold

checking logic. This also shows the importance of selecting a proper model for the fault

detection and isolation strategy discussed in this work. For such a case, different models

other than ARX21 I may be tried.
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Chapter 7 Conclusions

In this thesis, a parameter estimation based fault detection and isolation strategy

was employed for fault diagnosis of the supply pump pressure and equivalent viscous

damping coefficient changes in a hydraulic servo-positioning system. A case where the

hydraulic actuator tracks a sinusoid refe¡ence signal under a proportional controller was

considered. The control signal and the resulting output position signal of the system rvere

used to arrive at an appropriate auto-regressive with exogenous input (ARX) model to

represent the relationship between the input and output signals. The ARX model structure

was selected due to the real-time requirement of the monitoring system and the

availability of powerful on-line model coefficient estimation methods, such as the least

squares (LS) method. Direct threshold checking on the estimates of the model

coefficients was then employed as the fault detection and isolation logic.

Both simulation and experimental results showed that a higher order ARX model

could approximate the system dynamics more accurately than a lower order one. But the

lower model could achieve higher resolution of fault detection. In the simulations, by

selecting an ARX1 11 model, t 10% change in the supply pump pressure was clearly

detected. Compared with the ARXll1 model, the cost function value for the ARX4I I

model was 51.43% Iess. but the + l0% change in the supply pump pressure could not be

clearly separated. Thus, the ARX I I I model was chosen in the simulations. In the

experimental tests, ARX2l l was selected since it had a23.\lVo lower cost function value

than the ARXl11 model. At the same time it showed small variances of the estimated

coelficients.
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Both simulation and experimental results showed that the models based on the

recu¡sive LS method could approximate the system output better than the ones derived by

the batch LS method. Ho'"vever, the model coeffìcients resulting from the ¡ecursive LS

method had larger variances than those obtained by the batch LS method. In the

simulations, for the ARXI I I model, the cost function value resulting from the recursive

LS method was 95.31% less than that resulting f¡om the batch LS method. The variance

of å, resulting from the recursive LS method, however, was about 1 2269 x l0r times

larger than that resulting f¡om the batch LS method. In the experiments, fo¡ the ARX2I I

model, the cost function value resulting from the recursive LS method was 95.56% less

than that resulting from the batch LS method. The variance of ó, resulting from the

recursive LS method was about 95 times larger than that resulting from the batch LS

method. Based on these observations and the fact that large variances in the model

coeffrcients would reduce the ¡esolution of the fault detection strategy, the batch LS

method was adopted in this thesis. The use of the batch LS method, however, led to a

delay of about 3 seconds in the fault detection due to its buffering action in both

simulation and experimental tests.

In the simulations, + 10% changes in the supply pump pressure a¡rd 110%

changes in the equivalent viscous damping coefficient f¡om their normal values were

detected by the proposed strategy. The proposed strategy, however, failed to achieve

complete tàult detection and isolation when the fault could originate from more than one

physical parameter. Experiments also showed that the proposed strategy could achieve

lhe detection of t l0% change of the supply pump pressure. But the change in the

viscous damping coefficient could not be detected.



ln future works, the proposed strategy can be extended in the following

directions:

' Investigation of the nature of the faults that occur in the system in real

applications and integrating t'ield experience into the monitoring system.

' Development of more powerfi-rl fault detection and isolation logic than direct

threshold checking on the estimated coefficients. Neural Networks, Sequence

Analysis and other statistical pattern recognition methods should be applied.

' More general cases than the specific one considered in this work (tracking a

specific reference signal) should be tried.

. Faulr detection and isolation abilities for other physical parameter changes should

be investigated.
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