Analysis and Design of a New Generation GFRP

Wind Turbine Tower

BY MD SOFIQ HASAN

A Thesis Submitted to the Faculty of Graduate Studies of The University of Manitoba In Partial Fulfillment of the Requirements for the Degree of

Master of Science

Department of Civil Engineering The University of Manitoba Winnipeg, Manitoba Canada

Copyright © 2013 by Md Sofiq Hasan

Abstract

The focus of the research program is to analysis and design of a new generation glass-fibre reinforced polymer (GFRP) wind turbine tower for full scale prototype testing. The study includes the finite element analyses of different tower section configurations, the parametrical study of different variables, the selection of appropriate configuration and dimensions, and the finalization of the section. The design section arrived from this study has the bottom outer diameter of 1350 mm, the top outer diameter of 800 mm, the constant inner diameter of 600 mm and uniform wall thickness of 11.25 mm. The tower is also analysed and compared with a steel tapered tower. The analysis results indicate that the tower is considered as a soft-soft tower and that, in general, the lateral deflection limitation is a governing factor in the design of GFRP wind turbine tower. The proposed section met all the design requirements and the fabrication drawings are provided for the further study of full scale test.

Acknowledgement

The research work presented in this thesis is carried at University of Manitoba funded by the NSERC Wind Energy Strategic Network (WESNet) and Graduate Enhancement of Tri-Council Stipends of the University of Manitoba.

The author wishes to express his profound gratitude and sincere appreciation to his respected supervisor Associate Professor Dr. Nipon Rattanawangcharoen for his guidance, concrete suggestions, and creative idea right from the very beginning to the end for the successful accomplishment of this research work. The author further acknowledges his candid confession that without his spontaneous assistance, the dissertation work of this thesis could not be done. A couple of lifeless sentences cannot express the measure of gratitude which is due to this master. The author is indebted to co supervisor Professor Dr. Dimos Polyzois for all his technical advices, materials, guidance and funding throughout this research. The author also wishes to thank Shanower Hossain, Structural Engineer, GL Garrad Hassan, Netherland for his help to learn ANSYS. Furthermore he also would like to thank Dr. Ravi Chitikireddy for his valuable feedback on the loading determination of the tower. The author also would like to express his sincerest thanks to his advisory committee, Dr. D. Polyzois, Dr. M. Issa, Dr. Q. Zhang and Dr. N. Rattanawangcharoen.

The author would like to dedicate this work to his loving parents Md Abdus Sabur and Sofia Begum, without their support it would not be possible for the author to study overseas. Once again, the author is tempted to show due honour and respect to Dr. Nipon Rattanawangcharoen for sparing a substantial portion of his valuable time during the research period.

Table of Contents

Abstructi
Acknowledgementii
Table of Contents
List of Tables vi
List of Figures
List of Symbolsx
Chapter 1 Introduction
1.1 Research Objectives
1.2 Scope
1.3 Outline of Thesis
Chapter 2 Background5
2.1 Wind Turbine Towers
2.1.1 Types of Wind Turbine Towers
2.2 Past Research on FRP Wind Turbine Towers
2.3 Laminate Composites
2.3.1 Material Properties 11
2.3.2 Mechanical Properties of Composite
2.4 Failure Theories of Laminated Composites
2.4.1 The Maximum Stress Criterion
2.4.2 Tsai-Wu Criterion
2.4.3 Buckling of Unidirectional Lamina19

Chapter 3 Wind Turbine Tower Design	20
3.1 Serviceability Requirements	
3.1.1 Serviceability Limit for Lateral Deflection	
3.1.2 Serviceability Limit on Natural Frequency	
3.2 Design Loads	
3.3 Basics of Wind Turbine Loading	
3.4 Loads Transferred from the Wind Turbine	
3.4.1 The German Standard: Rules and Regulations, Part 1 – Wind Energy	
3.4.2 IEC 61400-2	
3.5 Wind Turbine Technical Specification	
3.6 Wind Turbine Rotor Loads Combinations and Safety Factors	
3.7 Loads Acting on the Tower	
3.7.1 Dead loads	
3.7.2 Live Load due to Ice and Radial Ice Thickness	
3.7.3 Live load due to Wind	
3.8 Load Factors and Load combination for Wind and Ice Loads	
Chapter 4 10 kW Wind Turbine Composite Tower	42
4.1 Introduction	
4.2 Wind Turbine Design Loads	
4.2.1 Wind Turbine Rotor Loads Summary according to German Standard:	Rules and
Regulations, Part 1 – Wind Energy	
4.2.2 Wind Turbine Rotor loads determination according to IEC 61400-2	
4.2.3 Wind Turbine Load Combinations	
4.3 Design Loading on the Tower	

4.4 Design Load Combinations	46
4.5 The Construction of FEA Model	47
4.5.1 Tower Geometry	48
4.5.2 Element Selection	48
4.5.3 Stacking Sequence and Thickness	49
4.5.4 Material Property Defining and Meshing	50
4.5.5 Tower Boundary Condition	50
4.5.6 Load Application on the Tower	51
4.6 Preliminary Investigation of the 10 kW Tower Section	52
4.6.1 Eight-Cell Sections	52
4.6.2 Ten-Cell Sections	53
4.6.3 Twelve-Cell Sections	54
4.7 Design Section	56
4.7.1 FEA Model of the Proposed Design Section and the Verification of the Mo	del 58
4.7.2 Parametrical Studies of the Proposed Design Section	61
4.7.3 Tower Deflection for the Proposed Design Section	63
4.7.4 Tsai-Wu Failure Criterion	65
4.7.5 Maximum Stress Criterion	66
4.7.6 Free Vibration Analysis of the Proposed Design Tower	67
4.7.7 Buckling Analysis of the Proposed Design Section	70
4.7.8 Failure Lateral Load Prediction of the Proposed Tower	72
4.8 Comparison between a Steel and the Proposed Design Tower	72
Chapter 5 Discussion, Conclusion and Recommendation for Future Study	75
5.1 Discussion	75

5.1.1 Parametrical Studies of the Proposed Design Section	75
5.1.2 Deflection of the Proposed Design Section	76
5.1.3 Tsai-Wu Failure Index of the Proposed Design Section	76
5.1.4 Maximum Stress Index of the Proposed Design Section	76
5.1.5 Free Vibration Analysis of the Proposed Tower	77
5.1.6 Eigen Buckling Analysis of the Proposed Design Section	77
5.1.7 Failure Load Prediction of the Proposed Tower	77
5.1.8 Comparison between a Steel and the Proposed GFRP Tower	77
5.2 Conclusion	78
5.3 Recommendation for the Future Study	79
Appendix A1	89
Appendix A2	94
Appendix A3	96
Appendix A4	98
Appendix A5	100
Appendix B1	
Appendix B2	116
Appendix B3	123
Appendix B4	131
Appendix B5	138
Appendix B6	146
Appendix B7	153
Appendix C1	
Appendix C1	156
Appendix C2	156

Appendix C3	
Appendix C4	
Appendix C5	

List of Tables

Table 2.1: Properties constituents of unidirectional lamina (Burachynsky, 2006)	12
Table 2.2: GFRP composite properties for 45% fibre volume ratio	16
Table 2.3: GFRP composite properties for 40.6% fibre volume ratio based on con	upon
testing	17
Table 3.1: Design load cases specified in IEC 61400-2	32
Table 3.2: Technical data of a 10kW wind turbine	34
Table 3.3: Wind turbine rotor loads combinations	35
Table 3.4: Load factors for rotor loads for ultimate strength analysis	36
Table 4.1: Wind turbine rotor loads summary according to the German Standard	43
Table 4.2: Comparison of the load cases D and H of IEC 61400-2 and the Ger	rman
Standard	44
Table 4.3: Rotor load combinations in service	44
Table 4.4: Factored rotor load combinations	45
Table 4.5: Trial results summary for the eight-cell sections	53
Table 4.6: Trial results summary for the ten-cell sections	54
Table 4.7: Trial results summary for the twelve-cell sections	55
Table 4.8: Service wind loading in the FEA of the proposed section	64
Table 4.9: Factored wind load in the FEA of the proposed section	65
Table 4.10: The first ten natural frequencies of the tower	67
Table 4.11: The maximum factored wind loads that can be resisted by the proposed determined of the proposed determined determined determined of the proposed determined of the proposed d	esign
tower	72
Table 4.12: The comparison between the steel and the proposed GFRP tower	74

List of Figures

Figure 2.1: Common types of wind turbine tower: a) Guy-latticed wind turbine tower b)
Guyed tubular wind turbine tower c) Monopole tubular tower d) Monopole lattice tower
(Image source: www.freedigitalphotos.net, July 2013)6
Figure 2.2: Composite space frame wind turbine tower (Livingston et al. 2002)7
Figure 2.3: Prototype specimen of 50 m long tower (Gutiérrez et al., 2003)
Figure 2.4: 50-m CFRP 750 kW wind turbine tower (Ungkurapinan, 2005) 10
Figure 2.6: Sectional view and fibre orientation of the patented composite wind turbine
tower (US Patent No. US8192572)11
Figure 2.7: Elastic Modulus <i>E</i> 1 at various fibre volume ratios
Figure 2.8: Elastic Modulus <i>E</i> 2 at various fibre volume ratios
Figure 2.9: Major Poisson's ratio at various fibre volume fractions
Figure 2.10: In plane shear modulus, G12 at various fibre volume fractions
Figure 2.11: Composite density as a function of fibre volume fraction
Figure 2.12: a) Out-of-phase buckling mode b) In-phase buckling mode
Figure 3.1: Airfoil blade section of a wind turbine 23
Figure 3.2: Wind turbine coordinate system
Figure 3.3: (a) A simplified model of a tower subjected to rotor loadings at hub level (b)
The swept area and (c) The rotor loadings and their directions
Figure 3.4: Centre of gravity of different components of 10 kW wind turbine
Figure 3.5: Radial ice thickness
Figure 3.6: Ice map of Canada (CAN/CSA S37 -01)
Figure 4.1: SHELL 99 linear layered structural shells (ANSYS, 2006)

Figure 4.2: (a) Typical 8-cell tower section (b) Isometric view of 8-cell FEA model at the
top of tower
Figure 4.3: (a) Typical 10-cell tower section (b) Isometric view of 10-cell FEA model at
the top of the tower
Figure 4.4: (a) Typical 12-cell tower section (b) Isometric view of a 12-cell FEA model
section at the top of the tower
Figure 4.5: Tower self-weight and deflection
Figure 4.6: Conceptual fabrication drawing of the proposed design section
Figure 4.7: Isometric view of the proposed design section (at the top section of the tower)
Figure 4.8: Analytical model of the tower
Figure 4.9: Area moment of inertia curve along the tower
Figure 4.10: (a) The inner diameter and the deflection and (b) the inner diameter and self-
weight of the tower
Figure 4.11: (a) The stiffener thickness and the deflection (b) The stiffener thickness and
the self-weight of the tower
Figure 4.12: (a) The top diameter and the deflection (b) The top diameter and the self-
weight of the tower
Figure 4.13: (a) The bottom diameter and the deflection of the tower (b) The bottom
diameter and the self-weight of the tower
Figure 4.14: Deflected shape of the wind turbine tower for the preliminary design section
Figure 4.15: Distribution of Tsai-Wu indexes along the tower
Figure 4.16: Distribution of the maximum stress indexes along the tower

Figure 4.17: Tower 1 st mode shape at 0.966 Hz	68
Figure 4.18: Tower 2 nd mode shape at 0.967 Hz	68
Figure 4.19: Tower 3 rd mode shape at 5.38 Hz	69
Figure 4.20: Tower 4 th mode shape at 5.48 Hz	69
Figure 4.21: Tower 5 th mode shape at 10.46 Hz	70
Figure 4.22: The proposed wind turbine tower under an axial load	71
Figure 4.23: Buckling mode shape of the proposed wind turbine tower	71
Figure 4.24: The steel wind turbine tower (FEA model)	73
Figure 4.25: Deflected shape of 24.3m steel wind turbine tower	73
Figure 5.1: Conceptual fabrication drawing	80
Figure 5.2: Sections at different elevations	81
Figure 5.3: Cell unit details	82
Figure 5.4: Stiffener cell unit segments	83
Figure 5.5: Circumferential cell unit segments	84
Figure 5.6: Sleeve joint details	85

List of Symbols

E ₁	Modulus of elasticity of composite in the fibre direction
E_f	Modulus of elasticity of the fibre
E_m	Modulus of elasticity of the matrix
V_f	Fibre volume fraction
E ₂	Modulus of elasticity of composite perpendicular to the fibre direction
<i>G</i> ₁₂	The shear modulus of composite
G_f	Fibre shear modulus
G_m	Matrix shear modulus
v	The Poisson's ratio of the composite
v_f	The Poisson's ratio of the fibre
v_m	The Poisson's ratio of the matrix
ρ_2	Density of the composites
$ ho_f$	Fibre density
W_f	Fibre weight fraction
$ ho_{m}$	Matrix density
W_f	Fibre weight fraction
<i>S</i> _{1<i>T</i>}	Ultimate tensile strength in the fibre direction
S _{2T}	Ultimate tensile strength in the transverse fibre direction
S _{1C}	Ultimate compressive strength in the fibre direction
<i>S</i> _{2<i>C</i>}	Ultimate compressive strength in the transverse fibre direction,
σ_{ij}	Ultimate shear strength
σ_1	Stress in the fibre direction

Failure index for the maximum stress criterion
Failure index for the Tsai-Wu failure criterion
Coupling Coefficients
Air density
Critical buckling stress
Tower natural frequency
Rotor frequency
Blade passing frequency
Average wind velocity at hub height
Thrust force in x direction due to rotation of rotor
Force in y direction due to rotation of rotor
Thrust force in z direction due to rotation of rotor
Moment in x direction due to rotation of rotor
Moment in y direction due to rotation of rotor
Moment in z direction due to rotation of rotor
Mass eccentricity for the rotor
Rotor radius
Mean pressure on rotor swept area
Pressure coefficient
Rated wind spend
The rotor swept area

e_w	The eccentricity of wind turbulence force
W	An extreme wind gradient over the rotor swept area
P _{el}	The electrical power output of turbine
k _b	Gust factor
P _b	Mean pressure on rotor swept area
α	Exponential factor
P_s	The stagnation pressure
e _r	Rotor blade eccentricity
m	Mass of the rotor blade
ω	Angular velocity of the rotor
$F_{x \rm shaft}$	Thrust force in shaft
v_{avg}	Average wind velocity at hub height
C_T	Thrust coefficient
V_{design}	Design Wind Speed
V _{hub}	Wind Speed at hub height
V _{ref}	Wind speed at reference height
В	Number of blades
C _d	Drag coefficient
A _{proj,B}	Plan form area of blade
v_{e50}	Reference wind velocity at hug height in 50 years recurrence period
$A_{\rm proj}$	Nacelle/turbine component area projected to wind direction
C _f	Force coefficient
F _{x component}	Wind force on turbine component

Р	Design wind pressure
Ν	Reynolds's number
C _d	Drag factor for smooth pole structure
A_s	Net projected area of tower
A _i	Net projected area of tower including ice
H_x	Height above ground
C_g	Wind gust factor
C _a	Roof wind speed up factor
W	Wind load
Ι	Ice load
D	Dead load
P_f	Factored Load
P_s	Load in Service
α_D	Dead load factor
ψ	Combination factor
α_w	Wind load factor
$lpha_i$	Ice load factor
h^*	Reference height
e _m	Mass eccentricity of the rotor system

Chapter 1 Introduction

Wind is a green and renewable natural resource with numerous benefits. Wind power is the conversion of wind energy into electrical power using wind turbines. Wind power is already a major source of energy across Europe. In 2012, installed wind power capacity in the European Union totalled 105 GW which is 7% of the EU's electricity. By 2020, 230 GW of wind capacity will be installed in Europe, consisting of 190 GW onshore and 40 GW offshore. This would produce 14-17% of the EU's electricity (European Statistics, 2012). Even though, Canada has one of the world's best wind resources, it is behind other countries in utilizing wind power. At the end of 2011, wind power generating capacity was 5.2 GW, providing only 2.3% of Canada's electricity demand. The Canadian Wind Energy Association has outlined a future strategy for wind energy that would reach a capacity of 55 GW by 2025; meeting 20% of the country's energy needs (Can WEA Wind vision 2025, 2008). Hence, significant research, experiment and development are required to meet the targeted goal set by Canadian Wind Energy Association.

Steel have been commonly used as the wind turbine tower for many years. A durable and cost effective construction material with sufficient strength, low transportation and low maintenance cost has become important to replace steel in the recent years. With the advancement in the technology, Fibre Reinforced Polymer (FRP) composite material is considered to be a competitive alternative for steel in the next decades. The main advantages of using FRP as an alternative over the conventional steel for wind turbine towers are:

- Higher strength-to-weight ratio in comparison to steel;
- Fewer problems relating to heat, conductivity, and climatic conditions than steel;

- More superior corrosion resistance than steel;
- Half the price of stainless steel, yet up to 5-10 times longer lasting than stainless steel in very corrosive environments (wateronline.com, July 2013);
- Lighter weight than aluminum or steel. FRP weight is approximately 2/3 that of aluminum or 1/4 the weight of steel. This makes it cheaper to transport and erect;
- Recent resin improvements relative to heat, impact, and crack resistance are encouraging extensive use of FRP in comparison to metal;
- Good insulating material which can prevent electric short circuit compared to steel;
- Adhesive strength and elongation of resins can help absorb equipment vibration (wateronline.com, July 2013).

To ensure the FRP's proper use as a wind turbine tower material, extensive research and experimental works are required. Over the last fifteen years, the University of Manitoba in Winnipeg, Canada, has been conducting research in the development of FRP towers to be used as a wind turbine tower. To meet this goal, Ungkurapinan (2005) developed CFRP wind turbine towers, Alshurafa (2012) developed GFRP meteorological towers and the current research is a continuation of the past research to establish GFRP as a wind turbine tower material.

1.1 Research Objectives

The focus of the research study is to arrive with a design of a 80 feet (24.3 m) high new generation ice bearing 10 kW power producing wind turbine tower using Glass Fibre Reinforced Polymer (GFRP). More specifically, the main tasks of this study include:

- The evaluation of the material properties of unidirectional composite layers using conventional formulas for the finite element analysis (FEA);
- The determination of the rotor loads for the 10kW turbine at the tower's top;
- The determination of the wind and ice loads for the 24.3-m high wind turbine tower;
- The development of the FEA models for eight-, ten-, and twelve-cell towers to investigate their structural behaviour under the wind, ice, and turbine loadings;
- The selection of an appropriate-cell section based on the tower serviceability limit and the tower weight and further customization from the fabrication point of view;
- The development of the FEA model for the proposed design section;
- The optimization of the proposed design cross-section;
- The nonlinear static analysis of the proposed tower including the tower deflection, the failure analysis and the buckling analysis;
- The free vibration analysis of the proposed tower;
- The prediction of the failure lateral loads for the proposed tower;
- The comparison between a steel and the proposed GFRP towers; and
- The preparation of the fabrication drawings.

1.2 Scope

The scopes of the study are:

- The wind turbine tower height is 80 feet (24.3 m);
- Fix-based support condition is used;
- 8-, 10-, and 12-cell cross sections are considered;
- Fibre volume ratio investigated for 45%;

- The tower is designed for 10 kW production capacity;
- The wind turbine is designed to be erected in St. Jones, Newfoundland, Canada.

1.3 Outline of Thesis

This thesis contains five chapters and seventeen appendixes. The first chapter outlines of a general introduction and a list of objectives and the scopes of the study. The second chapter provides an overview of wind turbine towers, past research on multi-cell FRP wind turbine towers, the formulas required for determining the material properties of the FRP composites, the material failure criteria and the buckling of unidirectional composite. The third chapter contains the tower design requirements as well as the standards for determining the designed loads. The fourth chapter presents the design of a 10 kW wind turbine tower. The final chapter contains the discussions, conclusions of the present study and the recommendations for the future work.

Chapter 2 Background

This chapter presents an overview of wind turbine towers, a brief review of the literature relating to the FRP wind turbine towers, properties of composites, the material failure criteria and buckling of unidirectional lamina.

2.1 Wind Turbine Towers

The wind turbine tower places the wind turbine at a certain elevation where desirable wind characteristics are found. It houses many electrical components, connections and the control protection systems and provides access area to the wind turbine. Most importantly, the wind turbine tower supports the wind turbine that carries the loads generated from the turbine.

2.1.1 Types of Wind Turbine Towers

There are mainly two types of wind turbine towers commonly used for the horizontal-axis wind turbines: guyed towers and monopole towers, Figure 2.1.

A guyed tower is a tower supported by guy wires. The use of guy wires lowers the initial cost of the tower because it requires less tower material. However, the maintenance costs for the guy wires add more costs to the operation for large scale towers. Therefore, the guyed towers are popular for small wind turbines. The main disadvantages of the guyed towers are owed to the fact that they are not easily climbable for inspections or repairs and that they require more land than monopole towers. The guyed tower can either be a lattice or tubular type.

Figure 2.1: Common types of wind turbine tower: a) Guy-latticed wind turbine tower b) Guyed tubular wind turbine tower c) Monopole tubular tower d) Monopole lattice tower

(Image source: www.freedigitalphotos.net, July 2013)

A monopole wind turbine tower is also named a free standing tower. It is the most common type of wind turbine towers. The monople tower can also be latticed or tubular type. Many tubular towers are either tapered or stepped with larger diameter at base. The thickness of the wall can also varies along the height of the tower to save the material while satisfying the structural requirements.

2.2 Past Research on FRP Wind Turbine Towers

Research studies to achieve a light weight wind turbine tower with FRP are not new. Several FRP tower patents have been filed including the one by the University of Manitoba.

Livingston et al. (2002) developed and tested the components of an 80-m tower for a 1.5 MW turbine using space frame carbon fiber-reinforced polymer (CFRP) tubes (Figure 2.2). They reported the tower weight and cost less than 20 and 25 percent ,respectively, in comparison to steel tower. The program ended, however, in 2005, without a commercial product.

Figure 2.2: Composite space frame wind turbine tower (Livingston et al. 2002)

European Laboratory for Structural Assessment (Gutiérrez et al. 2003) conducted an experiment on the 1/3 scaled GFRP wind turbine (Figure 2.3). The full scale tower was 50 m high with 3.5 m uniform diameter cross section. The composite tower design met both the serviceability and the limit load design criteria; however it was reported that the production did not meet the quality assurance. The lay-up and fibre volume fraction of the skins was not sufficient to guarantee the generation of the required material properties. More importantly the shear transfer between the concrete base and the inner and outer skins of the composite tower was very poor.

Figure 2.3: Prototype specimen of 50 m long tower (Gutiérrez et al., 2003)

At the University of Manitoba, Ungkurapinan (2005) carried out experiments on multi-cell CFRP wind turbine towers. His works was patented later in 2011 (US Patent No. 7866121). In his study, he included the design and fabrication of a robotic filament winding machine that was used to fabricate a single and a multi-cell composite segment and tower specimens. Both experimental and theoretical studies were conducted to investigate the structural performance of the multi-cell composite wind turbine towers. The experimental program was carried out in three phases. In the first phase, two tests of a single cell specimen under a lateral loading were performed. The second phase contained two tests of a single cell specimen in compression. The third phase of the experimental investigation involved two tests of an eight-cell jointed CFRP towers subjected to a lateral loading. Summary of the results are as follow.

Phase I: Single cell under a lateral load

The load-deflection relationship was found to be linear behavior up to the point of local buckling. A sudden drop in the load was observed after local buckling occurred. The failure mode was local buckling on the compression side near the fixed base. There was no other sign of failure, such as cracking or crushing of the resin or fiber during the tests at any part of the specimens.

Phase II: Single cell under a compression load

Specimens failed by local buckling. It was found that the FEA results had a strong correlation with the results obtained from the experimental program. The average ratio of the experimental-to-theoretical failure load was 0.891 with a coefficient of variation of 0.48 percent.

Phase III: Multi-cell towers under a lateral load

The load-deflection relationship was found to be linear up to 84 percent of the ultimate load. At higher load levels a nonlinear behavior was observed due to the accumulation of the damage and the progressive failure on a micro scale of the tested specimens. The specimens failed by local buckling on the compression side near the base. The experimental results were validated by numerical analysis on ANSYS. It was found that Tsai –Wu failure criterion value obtained from the analysis was less than unity at the ultimate load which indicated that the failure did not occur from a material failure. An attempt to repair one of the towers and retest it was unsuccessful. The repaired tower was able to reach the ultimate capacity of the original tower but the deflections were too large.

From the validated finite element model, he conducted an FEA of a 50-m high, eight-cell 750 kW CFRP wind turbine tower (Figure 2.4) and concluded that the serviceability limit for lateral deflection was the controlling factor in the design of the FRP wind turbine towers and not the local buckling or material failure.

Figure 2.4: 50-m CFRP 750 kW wind turbine tower (Ungkurapinan, 2005)

Ching et al (2012) patented a manufacturing procedure to arrive with a composite wind turbine (Figure 2.5) that can have a tensile modulus of 20 GPa to approximately 200 GPa, while keeping the tower weight low (US Patent No. US8192572). This improved tensile modulus of the composite wind turbine tower also results in an increase in the tower frequency range, which makes the tower less prone to the excitation modes under varying turbine operational and wind loads.

Figure 2.5: Sectional view and fibre orientation of the patented composite wind turbine tower (US Patent No. US8192572)

Lim et al (2013) re-designed an existing 80-m, 2 MW wind turbine steel tower with a 100-m GFRP tower. The designed tower weighed 270 tons which was 60% less than that the existing steel tower. The manufacturing cost of the arrived composite tower was found to be 33% less than that of the steel tower.

2.3 Laminate Composites

2.3.1 Material Properties

Laminate composites are made up of two main individual constituent materials: the matrix and the reinforcement. The matrix material surrounds and supports the reinforcement materials by maintaining their relative positions. For FRP, fibre is the reinforcement and the mixture of resin and hardener is the matrix. There are several types of fibre commonly used such as glass, carbon, aramid fibres but the ones that are used in the wind turbine industry is the E-Glass fibre because it is a good electrical insulator. In this particular study, the wind turbine tower segment is made up of layers of unidirectional E-Glass fibre with the West System epoxy resin and hardener as the matrix. Table 2.1 summarizes the material properties of the unidirectional fibre and the resin and hardener (Burachynsky, 2006).

Material Properties	E-Glass Fibre	West System Epoxy 105 Resin/205 Hardener
Tensile modulus, GPa	72.4	2.81
Tensile strength, GPa	2.4	0.054
Poisson's ratio	0.27	0.3
Shear modulus, GPa	30	1.38
Density, g/mm ³	0.0025	0.0016

Table 2.1: Properties constituents of unidirectional lamina (Burachynsky, 2006)

Alshurafa (2012) tested and determined all the required properties for GFRP composite using the above fibre and matrix properties for the 40.6% fibre volume ratio. It was found that all the testes results are in consistent with the rule of mixture for finding composite's properties (Chamis, 1983). The comparisons of the test results and the plots of the material properties calculated from the formulas are shown in Figure 2.6 to Figure 2.10.

Based on the rule of mixture (Chamis, 1983), the properties of FRP layer can be determined using the fibre and the matrix properties as follow:

• The modulus of elasticity in the fibre direction, E_1 , can be calculated using the rule of mixtures

$$E_1 = E_f V_f + (1 - V_f) E_m$$
(2.1)

 E_f : Modulus of elasticity of the fibre

E_m : Modulus of elasticity of the matrix

V_f : Fibre volume fraction

Figure 2.6: Elastic Modulus E_1 at various fibre volume ratios

• The modulus of elasticity in the direction perpendicular to the fibre, E_2 , can be evaluated from following inverse rule of mixture

$$\frac{1}{E_2} = \frac{V_f}{E_f} + \frac{1 - V_f}{E_m}$$
(2.2)

Hopkins and Chamis (1988) presented a modified equation for calculating E_2 as follows,

$$E_{2} = E_{m} \left[\left(1 - V_{f} \right) + \frac{\sqrt{V_{f}}}{1 - \left(1 - \frac{E_{m}}{E_{f}} \right) \sqrt{V_{f}}} \right]$$
(2.3)

Figure 2.7: Elastic Modulus E_2 at various fibre volume ratios

• The major Poisson's ratio, can be determined from

$$v = v_f V_f + v_m V_m \tag{2.4}$$

 v_f : The Poisson's ratio of the fibre

 v_m : The Poisson's ratio of the matrix

 V_m : The voulme ratio of the matrix

Figure 2.8: Major Poisson's ratio at various fibre volume fractions

• The shear modulus, G_{12} , can be determined from following inverse rule of mixture

$$\frac{1}{c_{12}} = \frac{v_f}{c_f} + \frac{v_m}{c_m}$$
(2.5)
$$\int \frac{1}{c_{12}} = \frac{v_f}{c_f} + \frac{v_m}{c_m}$$
(2.5)

Figure 2.9: In plane shear modulus,
$$G_{12}$$
 at various fibre volume fractions G_{12} can also be obtained from the modified equation developed by Hopkins and Chamis (1988) as follows:

$$G_{12} = G_m [(1 - V_f) + \frac{\sqrt{V_f}}{1 - (1 - \frac{G_m}{G_f})\sqrt{V_f}}]$$
(2.6)

- G_f : Fibre shear modulus
- G_m : Matrix shear modulus
- The density of the composites, ρ_2 , is defined as

$$\rho_2 = \rho_f \frac{v_f}{w_f} \tag{2.7}$$

 ρ_f : Fibre density

 W_f : Fibre weight fraction

$$W_f = \frac{\rho_{fV_f}}{\rho_{fV_f} + \rho_m(1 - V_f)}$$

Figure 2.10: Composite density as a function of fibre volume fraction

In this thesis, 45% fibre volume for GFRP composite is used, the corresponding material properties are calculated using the rule of mixtures and presented in Table 2.2.

Modulus of elasticity in the fibre direction, E_1 , GPa	34.125
Modulus of elasticity in the direction perpendicular to the fibre, E_2 , GPa	6.8521
Poisson's ratio, v	0.2865
Shear modulus, G_{12} , GPa	3.330
Density of the composites, ρ_2 , g/mm ³	2.005 x 10 ⁻³

2.3.2 Mechanical Properties of Composite

To obtain the mechanical properties of the GFRP material, several standard tests are required. However, scope of the current study does not include an experimental work. Also noted that in the scope of the current study, the wind turbine tower will be designed using GFRP with fibre volume fraction of 45%. Therefore, for a conservative analysis, the mechanical properties of GFRP with fibre volume fraction of 40.6% obtained from coupon testing by Alshurafa (2012) will be used . The test results are summarized in Table 2.3.

Table 2.3: GFRP composite properties for 40.6% fibre volume ratio based on coupon testing

Ultimate tensile strength in the fibre direction, S_{1T} , MPa	587.46
Ultimate tensile strength in the transverse fibre direction, S_{2T} , MPa	21.27
Ultimate compressive strength in the fibre direction, S_{1C} , MPa	267.15
Ultimate compressive strength in the transverse fibre direction, S_{2C} , MPa	71.05
Ultimate shear strength, S_{ij} , MPa	27.20

2.4 Failure Theories of Laminated Composites

Commonly used strength-based failure theories for the analysis of laminate composites can be classified into two major categories, i.e., non-interactive failure criteria and interactive failure criteria. The maximum stress criterion is considered to be a non-interactive failure criterion while the interactive failure criterion is Tsai-Wu. In this study, the maximum stress and the Tsai-Wu criteria will be used. In the following expressions, S_{iT} and S_{iC} (i = 1, 2, 3)are the tensile and the compressive strength of the lamina along the material direction *i*, respectively. S_{ij} $(i \neq j, i, j = 1, 2, 3)$ are the shear strength of laminas in the *ij* plane. σ_i , σ_{ij} (i = 1, 2, 3) are the normal and the shear stresses in the material principal axes.

2.4.1 The Maximum Stress Criterion

Matrix cracking

$$\sigma_2 \ge S_{2T} \text{ for } \sigma_2 > 0 \text{ and } |\sigma_2| \ge S_{2C} \text{ for } \sigma_2 < 0 \tag{2.9}$$

or,
$$\sigma_3 \ge S_{3T}$$
 for $\sigma_3 > 0$ and $|\sigma_3| \ge S_{3C}$ for $\sigma_3 < 0$ (2.10)

Fibre breakage,

$$\sigma_1 \ge S_{1T} \text{ for } \sigma_1 > 0 \text{ and } |\sigma_1| \ge |S_{1C}| \text{ for } \sigma_1 < 0$$

$$(2.11)$$

 $I_{F \max stress}$ is defined as the ratio of maximum stress to the maximum strength of the material. If the failure index for the maximum stress criterion, $I_{F \max stress} \ge 1.0$, the structure is unsafe.

2.4.2 Tsai-Wu Criterion

The Tsai-Wu failure criterion is chosen because it accounts for the interaction between different stresses components. In the Tsai-Wu failure criterion, the failure surface in the stress space is described by the following equation:

$$I_{Tsai-Wu} = \left(\frac{1}{S_{1T}} - \frac{1}{S_{1C}}\right)\sigma_1 + \left(\frac{1}{S_{2T}} - \frac{1}{S_{2C}}\right)\sigma_2 + \left(\frac{1}{S_{3T}} - \frac{1}{S_{3C}}\right)\sigma_3$$
$$+ \frac{\sigma_1^2}{S_{1T}S_{1C}} + \frac{\sigma_2^2}{S_{2T}S_{2C}} + \frac{\sigma_3^2}{S_{3T}S_{3C}} - \frac{\sigma_1\sigma_2}{2\sqrt{(S_{1T}S_{1C}S_{2T}S_{2C})}}$$
$$- \frac{\sigma_2\sigma_3}{2\sqrt{(S_{2T}S_{2C}S_{3T}S_{3C})}} - \frac{\sigma_1\sigma_3}{2\sqrt{(S_{1T}S_{1C}S_{3T}S_{3C})}} + \left(\frac{\sigma_{12}}{S_{12}}\right)^2 + \left(\frac{\sigma_{23}}{S_{23}}\right)^2 + \left(\frac{\sigma_{13}}{S_{13}}\right)^2$$
(2.12)

If $I_{Tsai-Wu} \ge 1$, the structure is unsafe.

2.4.3 Buckling of Unidirectional Lamina

A micromechanical model was developed by Rosen (1965) for determining the compressive strength of a unidirectional lamina. Under the applied loads, elastic buckling occurs in two distinctive modes: the Out-of-phase and the in-phase modes. The out-of-phase mode assumes that both the fibres and the matrix exhibit anti-phase deformations, as shown in Figure 2.11(a). The in-phase mode indicates that the matrix deform together as shown in Figure 2.11(b).

Figure 2.11: (a) Out-of-phase buckling mode (b) In-phase buckling mode The critical in-phase buckling stress can be calculated from (Rosen, 1965):

$$\sigma_c = E_m / 2(1 + \nu_m) V_m \tag{2.13}$$

The critical out-of-phase buckling stress can be calculated from (Rosen, 1965):

$$\sigma_c = 2V_f \sqrt{\frac{V_f E_m E_f}{3V_m}} \tag{2.14}$$

Chapter 3 Wind Turbine Tower Design

This chapter mainly deals with the wind turbine design requirements and loads specified by the available standards. Similar to all other structures, a wind turbine tower must be designed for the strength as well as for serviceability. The serviceability requirements for a wind turbine include the maximum tower deflection and the range of the tower natural frequency which will be presented in section 3.1. For the strength requirement, the tower must be able to resist design loads detailed in sections 3.6 and 3.8.

3.1 Serviceability Requirements

3.1.1 Serviceability Limit for Lateral Deflection

According to DNV/RISO Guidelines for Design of Wind Turbine (Det Norske Veritas, 2002), a blade must not hit the tower when subjected to the extreme design load. This indicates that the serviceability limit for lateral deflection is defined as the distance between a rotor blade and the tower. In order to satisfy this serviceability limit, the maximum deflection at the tower top is set to 1.5 % of the tower height in this study.

3.1.2 Serviceability Limit on Natural Frequency

Since a wind turbine tower is subjected to both static and dynamic loadings, the dynamic behaviour of the tower is very important. This dynamic behaviour is dictated by the natural frequency of the tower and the excitation frequency of the rotor and the blades. The frequency, in Hz, of a particular turbine (f_p) is obtained by dividing the turbine angular speed in rotations per minute (rpm) by sixty. The blade passing frequency (f_{bp}) is determined by multiplying rotor frequency to the number of blades. On the basis of dynamics behavior,
the wind turbine towers are divided in 3 classes in the wind turbine industry (Joshu and Wizeliu 2011).

Stiff-stiff tower

A stiff-stiff tower is a tower with the natural frequency f_n of much higher than both the excitation frequencies of the rotor and of the blades i.e. f_p and f_{bp} , respectively. This type of tower is very efficient in reducing the vibration but they are not cost effective.

Soft-stiff tower

A soft-stiff tower is a tower with the natural frequency f_n of greater than rotor excitation frequency $(f_n > f_p)$ but lower than the blade passing frequency $(f_n < f_{bp})$.

Soft-soft tower

A soft-soft tower is a tower which both the rotor and blade passing frequencies are greater than the natural frequency of the tower, f_n .

The soft-soft tower is the most economical among all three classes. However, it must be designed for resonant which will occur upon the starting up and the shutting down process since the frequencies of excitation of these processes will pass its natural frequency. The first natural frequency of the tower f_n must not coincide with the rotor f_p and blade-passing f_{bp} frequencies to avoid resonance.

3.2 Design Loads

The CSA Guide to Canadian Wind Turbine Codes and Standards report (Canadian Standard Association, 2008) states that there are no specific regulations or codes in Canada for wind

turbine towers. However, it is suggested the professional engineers to provide approved design drawings before any tower erection. The current National Standard of Canada for wind turbines, CSA-C61400-2 (CSA, 2008) provides the details guideline to design blade and shaft for small wind turbines, but not for wind turbine towers. This CSA-C61400-2 is actually adopted from International Electrotechnical Commission Standard 61400-2 (IEC, 2006). To design a wind turbine tower, DNV/RISO Guidelines for Design of Wind Turbine (Det Norske Veritas, 2002) is also a very useful resource. German Standard: Rules and Regulations, Part 1 – Wind Energy (Germanischer Lloyd, 1993) also provides simplified equations to calculate loadings which transfer from the wind turbine to the tower.

In the design of a wind turbine tower, it is very difficult to obtain an accurate loading due to the dynamic nature of the applied load (the time-varying wind and the spinning of the rotor). There are two types of loading that considered in the design of wind turbine tower: Wind turbine loading on the top of the tower; and wind and ice loads on the tower itself. The German Standard and the 61400-2 provides the guideline for the calculation of the wind turbine loading which will be briefed in section 3.4 and the Canadian Standard CAN/CSA S37-01 (CSA, 2001) gives the guideline for the estimation of the wind and ice loading on the tower which will be summarized in section 3.7.

3.3 Basics of Wind Turbine Loading

Similar to the wings of an airplane, wind turbine blades use the airfoil shape to create lift and drag forces. The lift forces create rotation for the wind turbine. Figure 3.1 shows how a lift force is created from the difference in the wind velocities between the upside and the downside of the rotor.

Figure 3.1: Airfoil blade section of a wind turbine

In the following loading definition, the reference coordinate system as defined by the IEC 61400-2 and the German Standard is used as shown in Figure 3.2. Note that the global coordinate system in the developed FEA model is different from the following coordinate system.

Figure 3.2: Wind turbine coordinate system

Based on the coordinate system in Figure 3.2, if it is assumed that the wind blows in the x direction which is perpendicular to the swept area of the blades; then the rotation of rotor crates the forces and moments as shown in Figure 3.3 and will be summarized in the following.

Figure 3.3: (a) A simplified model of a tower subjected to rotor loadings at hub level (b) The swept area and (c) The rotor loadings and their directions

- A thrust force F_x is created from the rotation of the blade and the wind force which is equal to pressure times the swept area of blade. The direction of F_x is the same as wind direction.
- Due to change in the direction of wind and gust, F_x force component creates a force F_y in the direction perpendicular to wind direction. The amplitude of F_y is calculated from the component of the thrust force, F_x .
- The self-weight of the turbine system, F_z , which is sum of the weight of the rotor and the nacelle acts in the downward direction.
- A torque M_x is created from the rotation of the rotor and its magnitude is proportional to the power production of the turbine.

- A bending moment M_y is created from the eccentricity of the thrust, F_x . This eccentricity is created from the non-uniform pressure distribution on the swept area of the blade. The weight of the turbine system also creates a moment about the y axis.
- The F_y force creates a torsional moment M_z about the tower axis. The assumed eccentricity of the F_y is equal to the distance between the centre of gravity of the rotor system and the tower centre line while the turbine is in operation.

3.4 Loads Transferred from the Wind Turbine

In this study, the wind turbine rotor loads are calculated following the German Standard and only the governing load cases are compared with the IEC 61400-2 load cases for verification.

3.4.1 The German Standard: Rules and Regulations, Part 1 – Wind Energy

According to the German Standard, the wind turbine towers should be designed to resist not only the following load cases but also their combinations when they exist:

- Dead loads (self-weight of the wind turbine system)
- Normal operating loads
- Extreme operating loads
- Annual wind (10 minutes)
- Annual gust (5 seconds)
- 50-year wind (10 minutes)
- 50-year gust (5 seconds)
- Generator short circuit (blackout)
- Rotor eccentricity

Dead load due to rotor self-weight

Dead load is due to the mechanical system stored at the top of the tower. There are three main weight components, which should be included in the calculations: the blades, the nacelle, and the rotor. These components are shown in Figure 3.3. The total gravitational load F_z , is the result of combining the above weight components. There is also a mass eccentricity for the rotor that needs to be taken into account. This eccentricity is calculated by

$$e_m = 0.05R \tag{3.1}$$

This eccentricity causes a moment M_y at the top of the tower.

Normal operating loads

During normal operation, a mean pressure, P_n , which is dependent on the rated wind speed, v_r , is used. This means pressure can be calculated from

$$P_n = \frac{C_{fb}\rho v_r^2}{2}$$

$$C_{fb} = \frac{8}{9}$$
(3.2)

 ρ : air density, kg/m³

 v_r : rated wind spend or design wind speed , m/s

The force acting in the wind direction F_x on the top of the tower is

$$F_x = P_n A \tag{3.3}$$

A : the rotor swept area, m^2

The eccentricity of this force e_w developed during normal operation due to the turbulence,

the influence of oblique wind flow, and the tower shadow is given by

$$e_w = \frac{wR^2}{2v_r^2} \tag{3.4}$$

w : an extreme wind gradient over the rotor swept area which is the rate of increase of wind strength with unit increase in height above ground level.

This eccentricity produces an additional moment M_{y} .

During the operation of the wind turbine, the rotor rotates around its axis and causing a resisting moment about x axis. This moment is proportional to the electrical power output P_{el} and to the inverse of the rotational speed of the rotor n in rpm with the equation

$$M_x = 14 \frac{P_{el}}{n} \tag{3.5}$$

If it is necessary to stop the blades while the wind turbine is operating, a hydraulic breaking system is used. The breaking of the wind turbine creates an overturning moment at the top of the tower. This moment is assumed to be in the same direction as and to be twice the value of M_x derived in Equation 3.5.

Extreme operating loads

Loads due to the extreme operation are treated like the normal operating loads, but the wind speed is converted to the extreme condition speed (gust wind speed v_b) using the gust factor k_b of 5/3. Therefore, the gust wind speed is,

$$v_b = k_b v_r \tag{3.6}$$

The gust wind speed needs to be compared to the cut-out speed of the wind turbine. This cut out speed is specified in a rotor's specification. The lesser value between the gust wind speed and the cut-out wind speed is used to determine the wind pressure acting on the swept area of the rotor. The wind pressure can be calculated form,

$$P_b = \frac{c_{fb}\rho v_b^2}{2} \tag{3.7}$$

The horizontal force F_x acting on the top of the tower in this case can be calculated using Equation 3.3, with P_b instead of P_n . Forces from an oblique wind flow or the wind gradients must also be taken into account since the wind can change in the direction during operation. This force is characterized as a lateral wind impact and its magnitude can be calculated as

$$F_{\mathcal{Y}} = \pm \frac{P_n A}{\sqrt{2}} \tag{3.8}$$

This force acts on the rotor in the y direction and results in the torsional moment M_z about the tower axis centre due to the distance between the tower centre and position of F_y force. Similarly to the normal operating condition, the moment caused by the electrical power generating can be calculated using Equation 3.5.

Annual wind (10 minutes)

The annual wind is the mean of wind speed averaged over 10 minutes with an exceeding probability of once a year. Annual wind speed is specified as 80 percent of the corresponding 50-year wind speed. Normally, wind data are collected at a reference height, h^* (10 meters). In order to determine the wind pressure at hub height h, the 10-minutue mean wind speed has to be adjusted to hub height (shown in Figure 3.3) as follows

$$v_{hub} = v_{ref} \left(\frac{h}{h^*}\right)^{\alpha} \tag{3.9}$$

 v_{hub} : wind speed at hub height h

 v_{ref} : wind speed at reference height h^*

 h^* : reference height

 $\alpha = 0.16$ for wind and 0.11 for gust

If the annual wind speed at hub height is more than the cut-out speed of the turbine, the stagnation pressure P_s should be used. The stagnation pressure is given as

$$P_s = \frac{v_{hub}^2}{1600} \tag{3.10}$$

The horizontal force F_x applied at the top of the tower can be determined using Equation 3.3 with A being a surface area of the wind vane and P_s replaces P_n . The wind vane is a mechanical device attached to the nacelle to show wind direction.

The gust effect must be taken into account since it may deviate by an angle of up to +15 and -15 degree from the wind direction. The force acting on the rotor in the y direction also creates a torsional moments M_z about the tower axis.

Annual gust (5 seconds)

The annual gust is the maximum wind speed averaged over 5 seconds with an exceeding probability of once a year. The annual gust speed is specified as 80 percent of the corresponding 50-year gust speed. Similar to the annual wind (10 minutes) condition, the gust wind speed has to be adjusted to hub height according to the Equation 3.9. The wind pressure and the horizontal force F_x acting at the top of the tower are calculated in the same manner as in the annual wind (10 minutes) condition. The lateral load F_y caused by the oblique wind flow or wind gradients needs to be considered and is assumed to have the same magnitude as the horizontal force. This lateral force also creates a torsional moment M_z about the tower axis.

50-year wind (10 minutes)

The 50-year wind is the mean of wind averaged over 10 minutes with an exceeding probability of once in 50 years. Similar to the annual wind (10 minutes) condition, the 50-

year wind has to be adjusted to hub height using the Equation 3.9. The loads for this case are determined in the same manner as those for the annual wind (10minutes) condition.

50-year gust (5 seconds)

The 50-year gust is the maximum wind speed averaged over 5 seconds with an exceeding probability of once in 50 years. Similar to the annual gust (5 seconds) condition, the 50-year gust has to be adjusted to hub height with the Equation 3.9. The loads for this case can be calculated as those for the annual gust (5 seconds) condition.

Generator short circuit (blackout)

In the event of a short circuit in the generator or the connection cables, peaks in torque may occur. If the generator short circuit moment is unknown, eight times the moment in Equation 3.5 can be assumed.

Rotor blade eccentricity

During the installation of the blades on the rotor/nacelle, the actual tolerance is to be taken into account. If this is not known, the following eccentricity applies:

$$e_r = 0.005R$$
 (3.11)

The horizontal force acting at the top of the tower is then determined by

$$F_x = me_r \omega^2 \tag{3.12}$$

m : mass of the rotor blade,

 ω : angular velocity of the rotor

3.4.2 IEC 61400-2

IEC 61400-2 provides a method to determine loadings for small wind turbines if certain conditions are met. The method is simple and thorough, covering most of the load cases that a small wind turbine would experience for its design life. In order to use these simplified equations, the wind turbine must meet the following criteria:

- Horizontal axis wind turbine
- Two or more blades
- Cantilevered Blade
- Have rigid hub (Hub should not rotate)

The 10kW wind turbine considered in this study meets all of the above specified requirements. Therefore the simplified load equation method can be used to calculate the loadings. The load cases are shown in Table 3.1. It is found that the load cases D and H are the most severe and are considered as the governing load cases for the wind turbine design here.

Load case D: Maximum thrust

A small wind turbine can be exposed to high thrust loads on the rotor. The thrust load acts parallel to the rotor shaft and has a maximum value given by.

$$F_{x\,\text{shaft}} = 3.125 C_T \rho v_{avg}^2 \pi R^2 \tag{3.13}$$

 v_{ava} : average wind velocity at hub height

 C_T : thrust coefficient = 0.5

Design Situation		Load Cases	Wind Inflow	
	A	Normal Operation		
Power Production	В	Yawing	$v_{hub} = v_r$	
	С	Yaw Error	$v_{hub} = v_r$	
	D	Maximum Thrust	$v_{hub} = 2.5 v_{avg}$	
Power Production plus	E	Maximum Rotational Speed		
occurrence of fault	F	Short at Load Connection	$v_{hub} = v_r$	
Shutdown		Shutdown (braking)	$v_{hub} = v_r$	
Parked	Η	Parked Wind Loading	$v_{hub} = v_{e50}$	
Parked and fault condition	Ι	Parked Wind loading,	$v_{hub} = v_{ref}$	
		maximum exposure		
Transport, assembly, maintenance	J	To be stated by manufacturer		
and repair				

Table 3.1: Design load cases specified in IEC 61400-2

Load case H: Parked wind loading

In this load case, the wind turbine is parked condition. The thrust loads on the blade face is calculated according to the following formula when wind blows in the x direction.

$$F_{x \text{ shaft}} = 0.5BC_d \rho v_{e50}^2 A_{\text{proj},B}$$
(3.14)

B: number of blades

$$C_d$$
: drag coefficient = 1.5

 $A_{\text{proj},B}$: blade plan form area

 v_{e50} : reference wind velocity at hug height in 50 years recurrence period

When wind blows in the y direction, the thrust load has to be calculated based on the projected area of the nacelle/turbine components as:

$$F_{x \text{ component}} = 0.5C_f \rho v_{e50}^2 A_{\text{proj}}$$

$$C_f : \text{force coefficient} = 1.5$$
(3.15)

 A_{proj} : nacelle/turbine component area projected onto a plane perpendicular to the wind direction

3.5 Wind Turbine Technical Specification

The technical data of a 10 kW wind turbine in this study is listed in Table 3.2 and centre of gravity of the wind turbine is shown in Figure 3.4. The technical information is collected

Figure 3.4: Centre of gravity of different components of 10 kW wind turbine

from turbine manufacturing company WINPhase Energy Inc, St. Philip's, Newfoundland.

Parameters	Value	Unit
Nominal Power	10	kW
No. of rotor blades	3	Nos
Rotor diameter	9	m
Rotor swept area	63.61	m^2
Rotation speed	150	RPM
Hub height	24.39	m
Cut in wind Speed	3.5	m/s
Cut out wind Speed	25	m/s
Rated wind speed	9	m/s
Weight of 3 blades	72	kg
Total weight of the unit	650	kg
Wind van area /Nacelle cover area from side (assumed to be 7.5% of the swept area)	4.77	m ²
Centre of gravity of the turbine system from tower centre (calculated)	0.6241	m
Plan form area of each blade	2.12	m ²

Table 3.2: Technical data of a 10kW wind turbine

3.6 Wind Turbine Rotor Loads Combinations and Safety Factors

The German Standard provides the load combinations (Table 3.3) for the load cases mentioned in section 3.4.1.In Table 3.3, "x" indicates that the corresponding load case is to be considered in the load combination.

Load cases		Rotor load combinations							
	1	2	3	4	5	6			
Dead Load (DL)	X	X	X	X	X	X			
Normal Operating Load(NOL)	X								
Extreme Operating Load (EOL)		Х							
Annual Wind(10 min)			Х						
Annual Gust(5 Sec)				Х					
50 Year Wind (10 min)					Х				
50 Year Gust (5 Sec)						Х			
Black Out			X		X				
Rotor Eccentricity	X	X							

 Table 3.3: Wind turbine rotor loads combinations

As shown in the Table 3.3, there are six possible load combinations. The first load combination is referred to as a normal operating condition. It includes dead loads, normal operating load, and loads due to the eccentricity caused during the rotor installation process. The second load combination is referred to as an extreme operating condition. Under this condition, the wind turbine works under a wind speed very close to the cut-out speed. The third load combination is referred to as an operating condition under an annual wind over a

period of 10 minutes. In this case, the forces caused by a generator short circuit or blackout are included. The fourth load combination is referred to as an operating condition under an annual gust over a period of 5 seconds. The fifth load combination is referred to as an operation condition under a 50-year wind over a period of 10 minutes. Similarly to the third load combination, loads due to blackout are included. The last load combination is referred to as an operating condition under a 50-year gust over a period of 5 seconds. Similarly to the fourth load combination, other loads due to fault condition are not included.

In order to form the load combinations, the appropriate load factors specified in German standard given in Table 3.4 are to be applied to the various loads components according to the load case group.

Load Cases	Safety Factor				
Dead Load	1.1				
Normal Operating Load	1.2				
Extreme Operating Load	1.2				
Annual Wind(10 min)	1.5				
Annual Gust(5 Sec)	1.5				
50 Year Wind (10 min)	1.0				
50 Year Gust (5 Sec)	1.0				
Black Out(BO)	1.0				
Rotor Eccentricity(RE)	1.35				

Table 3.4: Load factors for rotor loads for ultimate strength analysis

3.7 Loads Acting on the Tower

The loadings acting on the tower consist of

- Dead loads (Self weight of the tower)
- Live load due to ice
- Live load due to wind

3.7.1 Dead loads

The specified dead loads consist of the weight of the tower itself, internal fixtures weight and the loads from turbine which act at the top of the tower.

3.7.2 Live Load due to Ice and Radial Ice Thickness

In this study, live load due to ice is determined according to the Canadian Standard CAN/CSA S37-01 (CSA, 2001) for poles and towers. According to the CSA S37-01, the radial ice thickness around the tower must be considered to provide an extra projected area for the wind loading calculation as shown in Figure 3.5.

The CSA S37-01 also gives the minimum ice thickness map corresponding to the each class in Figure 3.6. According to the map, St Jones, Newfoundland is located in class IV and the minimum design ice thickness is 50 mm.

Figure 3.5: Radial ice thickness

Figure 3.6: Ice map of Canada (CAN/CSA S37 -01)

3.7.3 Live load due to Wind

Based on the CSA-S37-01, a wind load W is calculated using the net projected area of the tower A_s for an un-iced tower and the net projected area of the tower including the radial ice

thickness A_i for an iced tower as given in Equation (3.16) and (3.17), respectively. The value of C_d used in this study is 0.5 based on the Reynolds's number, N > 7.2 as described in Clause 4.9.2 of the CSA-S37-01.

$$W = PA_sC_d \text{ (Un-iced tower)}$$
(3.16)

$$W = PA_iC_d \text{ (Iced tower)}$$
(3.17)

$$W : \text{ wind load (N)}$$

$$P : \text{ design wind pressure (Pa)}$$

$$C_d: \text{ drag factor for smooth pole structure}$$

$$A_s: \text{ net projected area (m2)}$$

$$A_i: \text{ net projected area including ice (m2)}$$

The design wind pressure P acting on the composite tower is calculated in accordance with

Clause 4.3.1 of the CSA-S37-01 as:

$$P = qC_eC_gC_a \tag{3.18}$$

q: the reference wind velocity pressure, given in the National Building Code of

Canada (Pa) (NBCC, 2010)

 C_e : the height factor defined as

$$C_e = \left(\frac{H_x}{10}\right)^{0.2} \tag{3.19}$$

 H_x : height above ground (m)

 C_g : gust factor = 2.5 as specified in Clause 4.6.1 in the CSA-S37-01

 C_a : Roof wind speed up factor = 1.0 according to Clause 4.7.1 in the CSA-S37-01

3.8 Load Factors and Load combination for Wind and Ice Loads

The following load combinations are considered according to clause 5.2 in the CSA-S37-01 for the dead, ice and wind loads on tower.

(a) D + W
(b) D + W + I
D : dead load (tower self-weight)
W : Wind load
I : Ice load

Factored loads for ultimate limit state is mentioned in clause 5.3 of CSA-S37-01 as follows

$$P_f = \alpha_D D + \gamma(\psi \alpha_w W + \alpha_i I) \tag{3.19}$$

 α_D : dead load factor =1.25

 ψ : combination factor =1.0 when wind and dead load act together

 ψ : combination factor =0.5 when wind, ice and dead load act together

 α_w : wind load factor =1.5

 α_i : ice load factor =1.5

According to Equation 3.19, the factored load combination for D and W is,

$$P_f = 1.25D + 1.5W$$

According to Equation 3.19, the factored load combination for D, I and W is,

$$P_f = 1.25D + 1.0(0.5 * 1.5 * W + 1.5I) = 1.25D + 0.75W + 1.5I$$

The factored load combination for the serviceability limit state, according to clause 5.4 of CSA-S37-01, is computed as follows

$$P_s = D + (\psi \tau W + I) \tag{3.20}$$

 τ : serviceability factor =1.0

 ψ : combination factor =1.0 when wind and dead load act together

 ψ : combination factor =0.5 when wind, ice and dead load act together

Based on Equation 3.20, the service load combination for D and W is,

 $P_s = D + W$

Based on Equation 3.20, the service load combination for D, I and W is,

 $P_s = D + 0.5W + I$

Chapter 4 10 kW Wind Turbine Composite Tower

4.1 Introduction

This chapter presents the design loads for a 10 kW tower, the development of finite element models for different cell configurations of the tower cross section, a proposed section based on deflection limit, tower self-weight and fabrication point of view, an optimization of the proposed section and the static and dynamic modal analyses of the proposed section.

4.2 Wind Turbine Design Loads

The wind turbine design loads are determined following the German standard and are verified with the governing of load cases of IEC 61400-2.

4.2.1 Wind Turbine Rotor Loads Summary according to German Standard: Rules and Regulations, Part 1 – Wind Energy

Using the technical data (section 3.5) and simplified equations mentioned in section 3.4.1, all the wind turbine rotor loads are derived and summarized in the following Table 4.1. The wind turbine tower considered is assumed to be located in St. Jones, Newfoundland, Canada. According to National Building Code Canada (2010), wind pressure in St. Jones is 0.78 kPa for fifty year return period and corresponding calculated wind speed is 34.62 m/s. It is also found that the maximum annual wind speed is 27.69 m/s. The details calculations of rotor loads are documented in the Appendix A1.

		Unfactored Loads							
	Load Cases	Fx	Fy	Fz	Mx	My	Mz		
		(N)	(N)	(N)	(N-m)	(N-m)	(N-m)		
1	Dead Load (DL)			-6377		-1435			
2	Normal Operating Load (NOL)	2803			1867	2102			
3	Extreme Operating Load (EOL)	7786			1867	5839	5654		
4	Annual Wind (10 min)	3042					491		
5	Annual Gust (5 Sec)	5455					3404		
6	50 Year Wind (10 min)	4754					2967		
7	50 Year Gust (5 Sec)	8523					5319		
8	Black Out (BO)				7467				
9	Rotor Eccentricity (RE)	400							

Table 4.1: Wind turbine rotor loads summary according to the German Standard

4.2.2 Wind Turbine Rotor loads determination according to IEC 61400-2

As mentioned in section 3.4.2, the governing load cases D and H of IEC 61400-2 are determined and compared with the same load cases of German Standard. The comparison is shown in Table 4.2. The detail load calculations of cases D and H are included in the Appendix A2. The difference for load case D is approximately 12% while for the case H is 2%. The load cases are compared for verification purposes, however the German standard will be followed for the structural analysis.

Load Cases	Load Case Description	IEC 61400-2	German Standard
D or 3	Thrust load or Extreme operating load	8793 N	7786 N
	Parked wind loading or 50 year		
H or 7		8680 N	8523 N
	Gust (5 sec)		

Table 4.2: Comparison of the load cases D and H of IEC 61400-2 and the German Star

4.2.3 Wind Turbine Load Combinations

Service and factored wind load combinations calculated based on the German Standard are presented in Table 4.3 and Table 4.4, respectively.

		Service loads						
	Load Combinations	Fx (N)	Fy (N)	Fz (N)	Mx (N-m)	My (N-m)	Mz (N-m)	
1	DL+NOL+RE	3203	0	-6377	1867	667	0	
2	DL+EOL+RE	8186	0	-6377	1867	4405	5654	
3	Annual Wind (10 min)+DL+BO	3042	0	-6377	7467	-1435	491	
4	Annual Gust (5 Sec)+DL	5455	0	-6377	0	-1435	3404	
5	50 Year Wind (10 min)+DL+BO	4754	0	-6377	7467	-1435	2967	
6	50 Year Gust (5 Sec)+DL	8523	0	-6377	0	-1435	5319	

		Factored Loads						
	Load Combinations	Fx (N)	Fy (N)	Fz (N)	Mx (N-m)	My (N-m)	Mz (N-m)	
1	DL+NOL+RE	3903	0	-7014	2240	944	0	
2	DL+EOL+RE	9883	0	-7014	2240	5429	6785	
3	Annual Wind (10 min)+DL+BO	4564	0	-7014	7467	-1578	737	
4	Annual Gust (5 Sec)+DL	8182	0	-7014	0	-1578	5106	
5	50 Year Wind (10 min)+DL+BO	4754	0	-7014	7467	-1578	2967	
6	50 Year Gust (5 Sec)+DL	8523	0	-7014	0	-1578	5319	

Table 4.4: Factored rotor load combinations

4.3 Design Loading on the Tower

As mentioned, there are two types of loading that need to be considered in the design and analysis of a wind turbine tower, i.e. the loading transfer from a turbine on the top of the tower and the loading on the tower itself. The loading from a turbine depends on the turbine and the location of the tower. In this study, a 10 kW turbine is used and the location is fixed in St John's, Newfoundland. The loadings and their combinations on the top of the tower are presented in section 4.2.

The loading on the tower itself is dependent on the dimensions and the configuration of the tower section as well as the location of the tower. This type of loading consists of wind and ice loads and the tower self-weight. The wind and ice loads are determined in accordance to the CAN/CSA S37-01 as discussed in sections 3.7 and 3.8. Note that the towers investigated in this study are eight, ten, and twelve-cell circular section with section diameter and difference shell thickness. Samples of the wind and ice loads will be presented in the

Appendices A3 and A4. The self-weight of the towers is determined from ANSYS models. The commands in the construction of the models will be presented in section 4.5 and the detailed codes for self-weight determination are in the Appendix A5.

4.4 Design Load Combinations

According to the technical specification (Table 3.2), the cut in and cut off wind speed of wind turbine are 3.5 m/s and 25 m/s respectively, which means the wind turbine is operational between wind speed of 3.5 m/s and 25 m/s, if wind speed exceeds 25 m/s at hub level, the turbine goes to parking condition. The rotor load combinations (section 4.2.3) 1 and 2 are related operating condition and 3 to 6 are related to parking condition of turbine. It is important to mention that the dead load for the turbine system is considered in rotor load combinations (section 4.2.3) and increased projected area for radial ice is considered in those combinations when ice load is in effect. The design load combinations of the design rotor load and the wind and ice loads considered are as follows-

Wind turbine is in operation

- 1) Rotor load combination 1 + Tower self-weight+ Wind load for 25 m/s wind speed
- Rotor load combination 1 + Tower self-weight+ Wind load for 25 m/s wind speed+ Ice load
- 3) Rotor load combination 2 + Tower self-weight+ Wind load for 25 m/s wind speed
- Rotor load combination 2 + Tower self-weight+ Wind load for 25 m/s wind speed+ Ice load

Wind turbine is in parking condition

- 5) Rotor load combinations 3 + Tower self-weight+ Wind load for maximum annual wind speed of 27.69 m/s
- 6) Rotor load combinations 3 + Tower self-weight+ Wind load for maximum annual wind speed of 27.69 m/s+ Ice load
- Rotor load combinations 4 + Tower self-weight+ Wind load for maximum annual wind speed of 27.69 m/s
- Rotor load combinations 4 + Tower self-weight+ Wind load for maximum annual wind speed of 27.69 m/s+ Ice load
- Rotor load combinations 5 + Tower self-weight+ Wind load speed of 34.62 m/s (50 year recurrence wind speed)
- 10) Rotor load combinations 5 + Tower self-weight+ Wind load speed of 34.62 m/s (50 year recurrence wind speed) + Ice load
- Rotor load combinations 6 + Tower self-weight+ Wind load speed of 34.62 m/s (50 year recurrence wind speed)
- 12) Rotor load combinations 6 + Tower self-weight+ Wind load speed of 34.62 m/s (50 year recurrence wind speed) + Ice load

The above twelve design load combinations are considered in the structural analysis.

4.5 The Construction of FEA Model

In the current study, the ANSYS software program is used. In the model, the global Y-axis lies along the towers length starting from the base of the tower. The following subsections outline the commands and the variables in the construction of the FEA models.

4.5.1 Tower Geometry

The following variables are used to define the basic geometry of the tower:

RB = radius in mm at the bottom of the tower RT = radius in mm at the top of the tower IR = radius in mm in the inner side of the tower H = tower height = 24390 mm

The coordinates of the Tower geometry are defined by key points. For example:

K, 1, 0, 0, 0 (Key point, #1, X-coordinate, Y-coordinate, Z-coordinate)

K, 2, 0, 0, H (Key point, #2, X-coordinate, Y-coordinate, Z-coordinate)

Line commands are used to connect to two key points. For example:

L, 3, 4 (Line, key point#4, key point#3)

Cylindrical surfaces are created using AROTAT command. This command also has an option to segment the cylindrical area into multiple pieces which is used to create multi-cell segments. For example:

AROTAT, 2,,,,, 1,2,360,8 (A cylindrical surface will be created by rotating line number 2 with 8 segments)

The surface areas for the stiffeners are created using AREA (A) command. For example:

A,3,4,6,5 (A surface area is created by connecting the key points 3,4,6 and 5)

4.5.2 Element Selection

An eight-node quadrilateral layered shell element SHELL99 is used to model the composite tower. SHELL 99 can be used to model up to 250 layers of laminates, as shown in Figure 4.1.

The element has six degrees of freedom at each node: Translations in the nodal x-, y-, and zdirections; and Rotations about the nodal x-, y-, and z-axes. This element is selected because of its capacity to account for large deflection and large deformation; its ability to have 250 layers of different thickness; and its node offset option. The material properties of an element are defined in terms of the principal axes of the element. The element coordinate system is as follows: the x-axis is parallel to the fibre direction; the y-axis is perpendicular to the fibre direction; and the z-axis is in the thickness direction of the element.

x_{IJ} = Element x-axis if ESYS is not supplied.
x = Element x-axis if ESYS is supplied.
LN = Layer Number
NL = Total Number of Layers

Figure 4.1: SHELL 99 linear layered structural shells (ANSYS, 2006)

4.5.3 Stacking Sequence and Thickness

In this study, the thickness (t) of each layer is 1.25 mm and the stacking sequence is $(90,0_N, 90)$ with respect to mandrel's longitudinal axis, where N+2 is the total number of layers. For example, if the thickness of the wall is 7.5 mm, the stacking sequence would be $(90, 0_6, 90)$

with respect to the longitudinal axis of the mandrel. The corresponding ANSYS commands are,

R, 1, 6, 0 RMORE, RMORE, 1, 0, t, 1, 90, t RMORE, 1, 90, t, 1, 90, t RMORE, 1, 90, t, 1, 0, t

Here, in the first line, 1 refers to the first set of real constants and 6 refers to 6 numbers of layers. In the second line, RMORE refers to additional subset of real constants. In the third lines, 0 refers to the angle between the fibre direction and the x-axis of the elemental coordinate system, t refers to the layer thickness and 90 refers to the fibre direction perpendicular to the elemental x-axis.

4.5.4 Material Property Defining and Meshing

The MP command is used to define material properties of the GFRP material. The size of each element is decided mainly by two commands: LESIZE and ESIZE. The LESIZE command defines the size of the element towards global Y-axis and the ESIZE command defines the size of the element in the global XZ-plane. Once the size of the element is decided for each area, the AMESH command is used to mesh the area.

4.5.5 Tower Boundary Condition

The tower base is designed to be fixed. The NSEL command is used to select the nodes at the base to input the boundary conditions. The D command is used to restrain all the six degrees of freedom of each node at the base of the tower as:

D,ALL,UZ,0,0,,,,UX,UY,ROTX,ROTY,ROTZ (D defines constraints, Node#, restrain translation UZ, UX, and UY and rotation ROTX,ROTY,ROTZ)

4.5.6 Load Application on the Tower

The wind loads are calculated at every 5-m interval and are uniformly distributed to all of the nodes in that 5-m segment. The sample of ANSYS command for the wind load application along the tower segment is as follows:

A1 = -6160.78 (Total wind load in Newton for 0 to 5m height range)

ASEL, S, AREA, 5 (Selecting the area no 5 which is in the direction of the wind)

ASEL, A, AREA,, 6 (Selecting of an additional area no 6 which is in the direction of the wind)

NSLA, S, 0 (Selecting of all the nodes which are in the selected areas)

NSEL, R, LOC, Y, 0, 5000 (Reselecting the nodes only within the height range between 0 and 5 m in the global Y-axis)

*GET, NCOUNT, NODE, 0, COUNT (Counting the number of nodes within the 0 to 5 m height range)

F, ALL, FZ, A1/NCOUNT (Applying the wind load A1 equally to all the nodes within the 0 to 5 m height range)

The lateral thrust force from rotor loading is applied on the key points of the top of the tower. The moments are converted to coupling forces and then applied on the key points of the top of the top of the tower. The rotor self-weight is applied to the all the nodes at the top of tower.

4.6 Preliminary Investigation of the 10 kW Tower Section

To arrive with a design section, preliminary investigation is carried out for 8-, 10-, and 12cell sections. Based on the deflection limit discussed in section 3.1.1 and self-weight of the tower, a section will be selected. This section will be refined to obtain a design section. The following sub sections present the analysis results.

4.6.1 Eight-Cell Sections

A finite element model for 8-cell tower is developed in such a way that there are options to change some basic parameters such as bottom outer diameter, top outer diameter, inner diameter, wall thickness and loading. In Figure 4.2(a), a typical eight-cell tower section is shown and an isometric view of an eight-cell tower section is shown in Figure 4.2(b). The details results of the ANSYS for all the trials of the 8-cell sections and loading are included in the Appendix B1 and the ANSYS code for trial # 5 is given in the Appendix B2. The summary of the results of the 8-cell trial sections are shown in Table 4.5.

Figure 4.2: (a) Typical 8-cell tower section (b) Isometric view of 8-cell FEA model at the top of tower

		Results sec	for 8-cell tions				
Trial No	Outer diameter at bottom c/c (mm)	Outer diameter at top c/c (mm)	Inside diameter c/c (mm)	Outer and inner shell thickness (mm)	Stiffener thickness (mm)	Weight (kg)	Max Deflection (mm)
1	1000	600	300	7.5	7.5	2001	1190
2	1500	600	300	7.5	7.5	2656	476
3	1500	800	600	7.5	7.5	2824	420
4	1500	800	600	11.25	11.25	4235	254
5	1300	800	600	11.25	11.25	3842	353
6	1300	800	600	10	10	3415	404
7	1300	800	600	8.75	8.75	2988	472
8	1300	800	600	7.5	7.5	2561	567

Table 4.5: Trial results summary for the eight-cell sections

4.6.2 Ten-Cell Sections

Similar to the 8-cell sections, different parameter are investigated in the 10-cell sections. Figure 4.3(a) and Figure 4.3 (b) show the typical 10 –cell cross section and an isometric view rom ANSYS, respectively. The summary of the results for the 10-cell sections are shown in Table 4.6.The detailed analysis results and loading are in the Appendix B3 while the ANSYS sample code for trial #4 is in the Appendix B4.

Figure 4.3: (a) Typical 10-cell tower section (b) Isometric view of 10-cell FEA model at the

top of the tower

		Results : Sec	for 10-cell ctions				
Trial No	Outer diameter at bottom c/c (mm)	Outer diameter at top c/c (mm)	Inside diameter c/c (mm)	Outer and inner shell thickness (mm)	Stiffener thickness (mm)	Weight (kg)	Max Deflection (mm)
1	1300	800	600	7.5	7.5	2726	488
2	1300	800	600	11.25	11.25	4089	290
3	1300	800	600	10	10	3635	335
4	1300	800	600	8.75	8.75	3180	397

Table 4.6: Trial results summary for the ten-cell sections

4.6.3 Twelve-Cell Sections

Similar to the 8- and 10-cell sections, different parameter are investigated in the 12-cell sections also. Figure 4.4(a) and Figure 4.4(b) show the typical 12-cell section and the isometric view of a 12-cell FEA model at the top of the tower, respectively. The analysis of

12-cell sections and loading are included in the Appendix B5 and a sample ANSYS code for trial # 4 is included in the Appendix B6. The summary of the analysis of 12-cell is shown in Table 4.7.

Figure 4.4: (a) Typical 12-cell tower section (b) Isometric view of a 12-cell FEA model

section at the top of the tower

Table 4.7: Trial results summary f	for the twelve-cell sections
------------------------------------	------------------------------

Tower Dimensions						Results for 12-cell sections	
Trial No	Outer diameter at Bottom c/c (mm)	Outer diameter at c/c (mm)	Inside diameter c/c (mm)	Outer and inner shell thickness (mm)	Stiffener thickness (mm)	Weight (kg)	Max Deflection (mm)
1	1300	800	600	7.5	7.5	2891	462
2	1300	800	600	8.75	8.75	3373	376
3	1300	800	600	10	10	3855	317
4	1300	800	600	11.25	11.25	4337	275

4.7 Design Section

From Table 4.5, Table 4.6 and Table 4.7, the trial results of 8-, 10-, and 12-cells sections are plotted in Figure 4.5. From Figure 4.5, it can be seen that the increase in the weight of the tower results in the decease of the tip deflection for all numbers of cell configurations. It is also noticed that the deflection does not significantly depend on the numbers of cell but on the weight of the tower. Therefore, an 8-cell section will be chosen as a preliminary design section because it requires less lever of labor in the fabrication in comparison to the 10- and 12- cell sections.

Figure 4.5: Tower self-weight and deflection

The 8-cell section that meets the deflection limit which is 1.5% of the tower height has the following geometric data which the trial section # 5 of the 8-cell section:

- Tower's outer diameter at bottom: 1300 mm c/c
- Tower's outer diameter at top: 800 mm c/c
- Tower's Inner diameter: 600 mm c/c
• Wall thickness: 11.25 mm

According to the tower fabrication company Dimension Composite Inc, Quebec, the following are the fabrication criteria

- Fibre volume ratio cannot be more than 45% for the hand lay-up method of composite fabrication.
- Cell unit cannot be closed for the hand lay-up method and must be closed for the filament winding process.

Considering the above fabrication criteria, a proposed design section is customized to have an average wall thickness of 11.25 mm and have similar moment of inertia as that of the 8-cell section trial # 5. The outer top c/c diameter, the outer bottom c/c diameter and the inside c/c diameter are same as those of the 8-cell trial no 5 section. The conceptual fabrication drawings based on the above information is shown in Figure 4.6, where the stiffener and the circumferential cell unit are fabricated from the hand lay-up method and the inside core cell unit is fabricated from the filament winding process. Note that the section is proven to have a constant moment of inertia regardless of the orientation of the global X- and Z-axes.

Figure 4.6: Conceptual fabrication drawing of the proposed design section

The proposed design section in Figure 4.6 is further optimized and is detailed in the following subsections.

4.7.1 FEA Model of the Proposed Design Section and the Verification of the Model

A FEA model is constructed based on the conceptual drawing in Figure 4.6 and is shown in Figure 4.7.In the verification of the developed FEA model, a lateral point load of 5000 N is applied at the top of the tower and the tip deflection is compared with the theoretical solution.

Figure 4.7: Isometric view of the proposed design section (at the top section of the tower)

Theoretical Solution

The expression of the tower's moment of inertia along its length is obtained from the trend line connecting the calculated moments of inertia at different locations using AUTOCAD based on the geometry of that location. The plot of the moment of the inertia is shown in Figure 4.9. The direct integration method is chosen to analyse a cantilevered tapered tower subjected to a transverse point load at the tip of the tower shown in Figure 4.8.

From the direct integration method, the deflection at any point of the tower is given by

$$\Delta = \int \int (Px/EI) \, dx \, dx$$

Here $I = 7.1864x^2 + 214637x + 3 * 10^9$, E = 34125 MPa. Using Maple software, the above integration is solved (the Appendix B7) and the maximum deflection at the top of the tower is calculated to be 80 mm.

Figure 4.8: Analytical model of the tower

Figure 4.9: Area moment of inertia curve along the tower

The FEA result

In order to compare the analysis result with the direct integration method, the material property of the GFRP is assumed to be isotropic. The same Modulas of Elasticity, E = 34125 MPa is used. The static nonlinear analysis gives the maximum deflection of 77 mm which is 3.8% difference.

4.7.2 Parametrical Studies of the Proposed Design Section

The following parametrical studies are investigated for the possibility to optimize the proposed section:

• To study the effects of the inner diameter, all other parameters are kept constant. The results of the analysis are shown in Figure 4.10.

Figure 4.10: (a) The inner diameter and the deflection and (b) the inner diameter and self-weight of the tower

• To study the effects of the stiffener thickness, all other parameters are kept constant. The results of the analysis are shown in Figure 4.11.

Figure 4.11: (a) The stiffener thickness and the deflection (b) The stiffener thickness and the self-weight of the tower

• To study the effects of the top diameter, all other parameters are kept constant. The results of the analysis are shown in Figure 4.12.

Figure 4.12: (a) The top diameter and the deflection (b) The top diameter and the self-weight of the tower

• To study the effects of the bottom diameter, all other parameters are kept constant and the results are shown in Figure 4.13.

Figure 4.13: (a) The bottom diameter and the deflection of the tower (b) The bottom diameter and the self-weight of the tower

The discussion of the parametrical studies is detailed in section 5.1.

4.7.3 Tower Deflection for the Proposed Design Section

To determine the deflection of the wind turbine tower for the proposed design section as outlined in section 4.7, a static nonlinear analysis is performed for the design governing load combination #11 in section 4.4, where the wind turbine loading in service condition specified in Table 4.3 and the service wind loading in Table 4.8. The wind loads are applied to parallel to the global Z-axis of the FEA model. An FRP structure can experiences large deformations, and therefore, can change in its geometric configuration that causes the structure to respond in a nonlinear fashion. Thus, the geometric nonlinearity must be taken into account in the

analysis. The large deflections result in changes to the element orientation, and, consequently, changes in the element stiffness matrix.

Height Range, m	Projected Area (m ²)	Exposure factor, (Ce)	Gust Factor (Cg)	Pressure, (P), KPa	Wind Force (F), N
0-5	6.32	1.00	2.50	1.95	6161
5-10	5.81	1.00	2.50	1.95	5661
10-15	5.29	1.08	2.50	2.11	5597
15-20	4.78	1.15	2.50	2.24	5355
20-24.39	4.30	1.20	2.50	2.33	5011

Table 4.8: Service wind loading in the FEA of the proposed section

The deflected shape of the tower is shown in Figure 4.14 and the deflection is found to be 370 mm. The corresponding ANSYS codes are included in the Appendix C1.

Figure 4.14: Deflected shape of the wind turbine tower for the preliminary design section

4.7.4 Tsai-Wu Failure Criterion

The Tsai-Wu failure criterion is checked for the proposed design section under the factored design governing load combination # 11 in section 4.4, where the factored wind loading specified in Table 4.9 and the wind turbine rotor loading specified in Table 4.4.

Height Range, m	Projected Area (m^2)	Exposure factor, (Ce)	Gust Factor (Cg)	Pressure, (P), Kpa	Wind Force (F), N	Factored Wind load without Ice, N
0-5	6.32	1.00	2.50	1.95	6161	9241
5-10	5.81	1.00	2.50	1.95	5661	8492
10-15	5.29	1.08	2.50	2.11	5597	8396
15-20	4.78	1.15	2.50	2.24	5355	8032
20-24.39	4.30	1.20	2.50	2.33	5011	7516

Table 4.9: Factored wind load in the FEA of the proposed section

Figure 4.15: Distribution of Tsai-Wu indexes along the tower

The distributions of Tsai-Wu failure indexes along the tower are shown in Figure 4.15 .The corresponding ANSYS codes are included in the Appendix C2. It is found that the maximum value of Tsai-Wu failure index is 0.36.

4.7.5 Maximum Stress Criterion

The Maximum stress criterion is checked for the proposed design section under the factored design governing load combination # 11 in section 4.4, where the wind turbine rotor loading specified in Table 4.4 and the factored wind loading specified in Table 4.9. The distributions of the maximum stress indexes along the tower are shown in Figure 4.16. The corresponding ANSYS codes are included in the Appendix C2. It is found that the maximum value of the maximum stress index is 0.43.

Figure 4.16: Distribution of the maximum stress indexes along the tower

4.7.6 Free Vibration Analysis of the Proposed Design Tower

The FEA is also used to perform free vibration analysis of the proposed tower to determine the mode shapes and their associated natural frequencies of the tower. The first ten natural frequencies of the tower are listed in Table 4.10 and the first five mode shapes are shown in Figure 4.17 to Figure 4.21. The corresponding ANSYS codes are included in the Appendix C3.

Modes	Natural frequencies of tower (Hz)
1	0.966
2	0.967
3	5.38
4	5.48
5	10.46
6	14.41
7	15.41
8	23.90
9	24.71
10	27.91

Table 4.10: The first ten natural frequencies of the tower

Figure 4.17: Tower 1st mode shape at 0.966 Hz

Figure 4.18: Tower 2nd mode shape at 0.967 Hz

Figure 4.19: Tower 3rd mode shape at 5.38 Hz

Figure 4.20: Tower 4th mode shape at 5.48 Hz

Figure 4.21: Tower 5th mode shape at 10.46 Hz

4.7.7 Buckling Analysis of the Proposed Design Section

The Eigen buckling analysis is performed to predict the theoretical overall buckling strength of the proposed design tower under compressive loads. In the analysis, an axial load is uniformly applied at the tower top. This axial load is increased until buckling is observed. Figure 4.22 shows the wind turbine tower under an axial load and Figure 4.23 shows the buckling shape of the tower under compression. The Eigen buckling load is found to be 937050 N. The ANSYS codes for the Eigen buckling analysis are included in the Appendix C4.

Figure 4.22: The proposed wind turbine tower under an axial load

Figure 4.23: Buckling mode shape of the proposed wind turbine tower

4.7.8 Failure Lateral Load Prediction of the Proposed Tower

The FEA is used to determine the maximum lateral loads that will cause failure of the proposed tower. Note that although the wind and the rotor loads are typically not proportionate, the same increment of the wind and the rotor loads are investigated here. In the analysis, a loop is established in the ANSYS input file to enable the wind and the rotor loads to be increased by small intervals until the maximum principal stresses in the tower exceed the failure index specified by any of the two failure criteria. It is found that the tower can resist 25568 N lateral factored thrust load at the top of the tower and the factored wind loads as in Table 4.11.

Table 4.11: The maximum factored wind loads that can be resisted by the proposed design tower

Height Range (m)	Wind loads (N)
0-5	18482
5-10	16983
10-15	16792
15-20	16064
20-24.39	15032

4.8 Comparison between a Steel and the Proposed Design Tower

A FEA model of a 24.3m steel tower is developed to compare with the proposed GFRP tower. The cross-section of the steel tower is circular in shape with a bottom and top outer diameter of 620 mm and 580 mm, respectively and a constant thickness of 11.25 mm, as shown in Figure 4.24. The diameter and the thickness of the steel tower are chosen so that the

deflection of the tower is the same as the proposed section. The procedure for the calculation of the wind turbine, the wind and the ice loads are the same as that used in sections 4.2 and 4.3, respectively. The ANSYS codes for the steel tower are included in the Appendix C5.

Figure 4.24: Steel wind turbine tower (FEA model)

Figure 4.25: Deflected shape of 24.3m steel wind turbine tower

The weight of steel tower is 4064 Kg and the stresses in the tower are less than the factored resistance of 315 MPa $(0.9F_y)$. The deflected shape of the steel tower under the service load condition is shown in the Figure 4.25.

In determining the cost of the GFRP towers, Alshurafa (2012) used the average cost per 1kg of epoxy (resin and hardener) is \$6 and the average cost of glass fibre is \$2 per kg for the laboratory experiment at University of Manitoba. The fibre weight fraction of the FRP tower with fibre volume fraction of 45% and a density of 0.002 gm/mm³ is calculated using the following equation:

$$V_f = W_f \frac{\text{density of composite}}{\text{density of fibre}}$$

It is found that the weight fraction of fibre is 0.56. The cost of the structural steel sheet is assumed to be \$3.5 per kg (Foshan Rongkunyang Steel Co Ltd, 2013). The cost comparison between the steel and the designed towers is shown in Table 4.12.

Table 4.12: The comparison between the steel and the proposed GFRP tower

	Maximum deflection	Weight of the	
Tower	(mm)	tower (kg)	Cost (\$)
Steel tower	367	4064	14,225.00
Proposed GFRP tower	370	3512	13205.00

Note that only the material cost is considered in the Table 4.12. The fabrication, transport and erection cost will be much lesser for the GFRP tower in comparison to the steel tower.

Chapter 5 Discussion, Conclusion and Recommendation for Future Study

5.1 Discussion

Based on the results of the numerical studies, the following conclusions are drawn:

5.1.1 Parametrical Studies of the Proposed Design Section

- From Figure 4.10(a), it can be seen that when the inner diameter of the section is increased from 200 mm to 600 mm (200% increase in the diameter), the deflection of the tower decreases by 10% and the weight increases by only 4% (Figure 4.10(b)). Therefore, the 600 mm inner diameter is more effective and preliminary chosen for a proposed section.
- From Figure 4.11(a), it is found that the increase in the stiffener thickness from 5 mm to 15 mm (200% increase) results in 6% less deflection with 21% increase in weight (Figure 4.11(b)). Hence the increase in the stiffener thickness is not a good option to reduce the deflection of the tower.
- From Figure 4.12(b), it can be seen that if the top diameter is increased from 800 mm to 1200 mm or 50% increase, the self-weight increases by 18% and the deflection decreases by 6% (Figure 4.12(a)). Hence the increase in the top diameter of the tower does not significantly reduce the deflection of the tower. Note that the inner diameter is chosen to be 600 mm; the top outer diameter must be greater than 600 mm. Here 800 mm is chosen for the top outer diameter for the proposed section.
- From Figure 4.13(a), it is found that if the bottom outer diameter of the section is increased from 1000 mm to 1500 mm which is 50% increase, the deflection is

reduced by 54% while the weight of the tower increases by 25% (Figure 4.13(b)). Therefore it can be concluded that the effects of the bottom outer diameter of the tower are more pronounced than other parameters. Here 1350 mm is chosen for the proposed section because it produces the deflection that meets the serviceability requirement.

5.1.2 Deflection of the Proposed Design Section

The maximum deflection of the proposed wind turbine tower is found to be 370 mm as shown in Figure 4.14 which meets the serviceability requirement of the design of the wind turbine tower specified in section 3.1.1 and also within the range of 1.5% of the tower height.

5.1.3 Tsai-Wu Failure Index of the Proposed Design Section

Figure 4.15 shows the profile of the Tsai-Wu failure criterion along the tower and the maximum failure index is 0.36. This value is less than unity as specified in section 2.4.2 which indicates that the tower is safe to resist the designed factored loads. Note that the composite tower can resist a greater load; the serviceability limit for lateral deflection is the controlling factor in the design here.

5.1.4 Maximum Stress Index of the Proposed Design Section

Figure 4.16 shows the distribution of the Maximum Stress criterion along the tower and the maximum failure index is 0.43 which is less than unity as specified in section 2.4.1 Therefore, the structure is safe for the design factored loads.

5.1.5 Free Vibration Analysis of the Proposed Tower

From the free vibration analysis, it is found that the first natural frequency f_n of the tower is 0.96 Hz (Table 4.10), which is considerably less that the wind turbine rotor frequency f_p of 2.5 Hz and blade passing frequency f_{bp} of 7.5 Hz. Hence, the design tower will not undergo the resonance during the operation as specified in section 3.1.2. Note that the design tower is categorized as the soft-soft tower because the rotor frequency and the blade passing frequency are higher than the tower's fundamental frequency. This indicates that the tower is economical as discussed in section 3.1.2.

5.1.6 Eigen Buckling Analysis of the Proposed Design Section

From the Eigen Buckling analysis, it is found that the tower can resist the maximum of 937 KN compressive loads as seen in Figure 4.23. Hence the tower is safe for a much larger turbine.

5.1.7 Failure Load Prediction of the Proposed Tower

From Table 4.11, it is found that that the tower can resist 3 times the lateral loads compared to the design service lateral wind turbine rotor and wind loads. This can be interpreted as the safety of factor of 3.

5.1.8 Comparison between a Steel and the Proposed GFRP Tower

From Table 4.12, it can be observed that for the same value of maximum deflection, the proposed GFRP tower is 14% lighter and 7% less cost than the tapered steel tower of a uniform thickness of 11.25 mm.

5.2 Conclusion

Based on the objectives of the study, the following conclusions are made:

- The material properties of unidirectional composite layers are determined and are presented in Table 2.2;
- Loads for the 10kW wind turbine are determined and are presented in Table 4.1;
- Wind and ice loads are determined for various sections. Samples of calculation are presented in the Appendix A3 and the Appendix A4;
- Based on the analyses of the 8-, 10-, and 12-cells tower, an 8-cell is chosen for the proposed section. The following parameters are arrived for a proposed section:
 - The bottom outer diameter is 1350 mm;
 - The top outer diameter is 800 mm;
 - The inner diameter is constant of 600 mm;
 - The wall thickness is uniform of 11.25 mm.
- The analyses of the proposed tower result in the following:
 - The lateral deflection under the service load is 370 mm;
 - \circ The maximum value of the Tsai-Wu failure index of the tower is 0.36;
 - \circ The maximum value of the Maximum stress failure index of the tower is 0.43;
 - The Eigen Buckling load of the tower is 937 KN;
 - The maximum failure load is 3 times the service load;
 - The fundamental frequency of the tower is 0.96 Hz;
 - The weight of the tower is 3512 kg;
 - The tower is considered a soft-soft tower.

- The tower is 14% lighter and 7% less cost than the steel tower considering the material only; and
- From the study, it is found that the serviceability limit for the lateral deflection is the controlling factor in the design of the GFRP wind turbine towers.
- The necessary fabrication drawings of the proposed design tower are shown in Figure 5.1 to Figure 5.6 .

5.3 Recommendation for the Future Study

The research work for the development of eight-cell 24.3m GFRP wind turbine tower at the University of Manitoba is the first of its kind since the developed design will go for fabrication and full scale prototype experiments. However, more research is still required in order to make this product economically attractive and to broaden the understanding of the behavior of multi-cell GFRP towers. Further research is recommended in the following areas:

- Evaluation of performance and strength of joints between GFRP segments
- Evaluation of the fatigue performance of the members and connections.
- Full scale prototype testing to observe the response of the GFRP tower under time varying dynamic loading
- Evaluation of the long term bonding performance of segmented GFRP section under adverse environmental condition.

Figure 5.1: Conceptual fabrication drawing

Figure 5.2: Sections at different elevations

Figure 5.3: Cell unit details

Figure 5.4: Stiffener cell unit segments

Figure 5.5: Circumferential cell unit segments

Figure 5.6: Sleeve joint details

References

ANSYS Inc., (2006), "ANSYS User's Manual Version 10", Houston, Texas, USA.

Canadian Wind Energy Association, (2008), "Wind Vision 2025: Powering Canada's Future", Ottawa, Ontario, Canada.

Livingston T. (2002), "Wind Tower Composites Space Frame Towers", California, USA.

Gutiérrez E., Primi S., Taucer F. & Caperan P., (2003), "Development of a MW scale wind turbine for high wind complex terrain sites", Ispra, Italy.

Ching S., Donald L. & Zheng D.(2012), "Composite wind turbine tower and a method for fabricating same", US Patent number 8192572, NY, USA.

CSA-S37-01,(2001), "Antennas, Towers and Antenna-Supporting Structures", Canadian Standard Association, Ontario, Mississauga, Canada.

International Electrotechnical Commission, (2006), "IEC61400-2: Design requirements for small wind turbines" Geneva, Switzerland.

Det Norske Veritas & Riso National Laboratory (2002), "Guidelines for Design of Wind Turbines", Denmark.

Ungkurapinan, N., (2005), "*The Development of Composite Wind Turbine Towers*", Ph.D. Dissertation, University of Manitoba, Winnipeg, Manitoba, Canada.

Polyzois D., Ungkurapinan, N., (2011), "Composite wind tower systems and methods of manufacture", US Patent #7866121, University of Manitoba, Canada.

Lim S., Kong C. & Park H. (2013) "A Study on Optimal Design of Filament Winding Composite Tower for 2 MW Class Horizontal Axis Wind Turbine Systems" International Journal of Composite Materials. 3(1): 15-23.

Earnest J & Wizeliu T. (2011), "Wind Power Plants & Product Development", WIT Press, Southampton, UK.

Krishan K. C. (1987), "Composite Materials, Science and Engineering", 2nd edition, Springer, New York.

Foshan Rongkunyang Steel Co Lt (2013), "202 stainless steel sheet price per kg,", http://rkysteel.en.alibaba.com/, July 2013.

The European Wind Energy Association, (2013), "Wind in power: 2012 European statistics", Brussels, Belgium.

VertMarkets, Inc, (2005), "Features and benefits of FRP versus metal", www. wateronline.com, July, 2013.

Sami A. A. (2012), "Development of Meteorological Towers Using Advanced Composite Materials", Ph.D. Dissertation, University of Manitoba, Winnipeg, Manitoba, Canada.

National Building Code of Canada, (2010), "National Research Council of Canada, Canadian Structural Design Manual, Supplement No. 4", Ottawa, Canada. Polyzois D., Ungkurapinan, N., (2011), "Composite wind tower systems and methods of manufacture", US Patent #7866121, University of Manitoba, Canada.

Polyzois, D., Raftoyiannis I. G., Ungkurapinan, N., (2009), "Static and dynamic characteristics of multi-cell jointed GFRP wind turbine towers", Journal of Composite Structure. 90(1): 34-42.

Hopkins, A., and Chamis, C., (1988), "A Unique set of Micromechanics Equations for High Temperature Metal Matrix Composite STM STP 964", American Society for Testing and Materials, Philadelphia.

Kaw, A. K., (1997), "Mechanics of Composite Materials", CRC Press, Boca Raton, New York, USA.

Burachynsky, V. I., (2006), "Filament Winding of Long Tapered Tubes", Ph.D. Dissertation, University of Manitoba, Winnipeg, Manitoba, Canada.

Appendix A1

The detail calculations of wind turbine rotor loads according to Germanischer Lloyd : Rules

and Regulations, Part 1 – Wind Energy (1993)

10kW - Wind Turbine Parameters

Defense and http://www.winghass.com/index.sha?CM_acada?-CL_1722		
Reference: http://www.winpnase.com/index.pnp?CM=goods&CI=1/22	10.00	1-337
Nominal Power =	3.00	K W
Rotor dia (D) =	9.00	m
$\frac{1}{10000000000000000000000000000000000$	62 61	m^2
Rotor swept area (A) = \mathbf{R}	05.01	m DDM
$\begin{array}{l} \text{Rotation speed (ii)} = \\ \text{Hyb beight (b)} = \end{array}$	24.20	KPM
$\begin{array}{l} \text{Hub height (II)} = \\ \text{Cut in wind Speed} = \end{array}$	24.39	m/a
Cut in which speed =	25.00	m/s
Nominal (noted) wind speed (Operational Speed)	23.00	111/5
Nominal (rated) wind speed (Operational Speed), $v_r =$	9.00	m/s
weight of 5 blades = $total weight of the unit =$	72.00	Kg ka
Maximum cover area from any side/Van area (assumed 7.5% of swent	030.00	кg
area) =	4.77	m^2
Centre of gravity of the turbine system from tower centre (Calculated)=	0.62	m
Plan form Area of each Blade(approximate)	2.12	m^2
Centre of gravity of Rotor weight=	1.03	m
(a) Dead Loads		
Total axial load, F _Z =	6376.50	Ν
Eccentricity, $e_m = 0.05R =$	0.23	m
Moment due to eccentricity, $M_Y = F_Z * e_m =$	1434.71	N-m
e_m is the assumed centre of gravity of the system defined by equation	3.1	
(b) Normal Operating Loads		
1) Force acting on the tower head		
Mean pressure, $P_n = C_{fb} * \rho * v_r^2 / 2 =$	44.06	N/m ²
Force acting on the top of the tower, $F_X = P_n * A =$	2802.91	Ν
2) Turbulence, influence of oblique wind flow		
Reference height (h*) =	10.00	m
The reference wind speed at the height of 10 m = 39.2 \sqrt{q} =	34.62	m/s
Wind speed at hub height, $v(h) = v(h/h^*)^{0.16} =$	39.93	m/s
gradient, w=(41.37-34.62)/(24.39-10) =	0.37	
Eccentricity, $e_w = wR^2/2v^2 =$	0.05	m

Minimum eccentricity for Fx according DNV	//RISO,e=R/6=	0.75	m
Momen	nt, $M_Y = F_X * e =$	2102.18	N-m

3) Moment for maximum electrical output

Rotor	resisting	moment	$M_{\rm X} =$	$14*P_{el}/n =$	933.33	N-m

Overturning momen	t due to braking	of the turbine =	= 2* M _X =	1866.67	N-m
-------------------	------------------	------------------	-----------------------	---------	-----

(c) Extreme Operating loads

	1.67	gust factor, $K_b =$
m/s	15.00	Gust wind speed, $V_b = k_b * v_r =$
m/s	15.00	Gust speed is less than 25 m/s. For designing consider Vb =
N/m ²	122.40	Wind pressure, $P_b = C_{fb} * \rho * v_b^2 / 2 =$
Ν	7785.86	Force acting on the top of the tower, $F_X = P_b * A =$
N-m	933.33	Rotor resisting moment, $M_X = 14*P_{el}/n =$
N-m	1866.67	Overturning moment due to braking of the turbine = $2* M_X =$

Loads from Oblique wind flow or wind gradient

Moment My due to Lateral force Fx with an eccentricity R/6=	5839.40	N-m
Lateral wind impact, $F_X = (1/\sqrt{2})*P_n*A =$	5505.44	Ν
Lateral wind impact, $F_Y = (1/\sqrt{2})*P_n*A =$	5505.44	Ν
Moment, $Mz = Fy^* cg of rotor weight =$	5654.08	N-m

Extreme load cases

50 year wind speed at the reference height (h*) = 39.2 \sqrt{q} =	34.62	m/s
50 year gust at the reference height , $V_e\!=1.4$ * 34.6205 =	48.47	m/s
Annual wind speed (v) = 0.8 times 50 years wind speed =	27.70	m/s
Annual gust = 0.8 times 50 year gust =	38.77	m/s

(d) Load due to annual wind speed (10 min)

reference height, $h^* = 10.00$ m

m/s	31.94	Annual wind speed at hub height, $v(h) = v(h/h^*)^{0.16} =$
		annual wind spped at hub height is more than cut-out speed
kN/m ²	0.64	Stagnation pressure, $P_s = v^2/1600 =$
Ν	3042.43	Horizontal force, $F = Ps*Av =$
		Consider wind direction at 15 degree
Ν	2938.77	$F_x = Force * cos 15 =$
Ν	787.44	F_{Y} = force * sin 15 =
N-m	491.44	Moment, $M_Z = F_Y * CG$

(e) Load due to annual gust (5 sec)

m/s	42.77	Annual gust at hub height, $v(h) = v(h/h^*)^{0.11} =$
kN/m ²	1.14	Stagnation pressure, $P_s = v^2/1600 =$
Ν	5454.51	Horizontal force, $F_X = Ps^*Av =$
Ν	5454.51	$F_{Y} =$
N-m	3404.16	Moment, $M_{ZN} = F_Y * CG$

(f) Load due to 50 year wind (10 min)

50 year wind speed at hub height, $v(h) = v(h/h^*)^{0.16} =$	39.93	m/s
Stagnation pressure, $P_s = v^2/1600 =$	1.00	kN/m ²
Horizontal force, $F = Ps*Av =$	4753.80	Ν
Consider wind direction at 15 degree		
$F_X = Force * cos 15 =$	4591.82	Ν
F_{Y} = force * sin 15 =	1230.37	Ν

Moment, $M_Z = F_Y^*CG$ 2966.85	N-m
---------------------------------	-----

(g) Load due to 50 year gust (5 sec)

50 year wind speed at hub height, $v(h) = v(h/h^*)^{0.11} =$	53.46	m/s
Stagnation pressure, $P_s = v^2/1600 =$	1.79	kN/m ²
Horizontal force, $F_X = Ps^*Av =$	8522.68	Ν
$F_{Y} =$	8522.68	Ν
--------------------------	---------	-----
Moment, $M_Z = F_Y * CG$	5319.00	N-m

(h) Generator short circuit (Black out)

Rotor resisting moment, $M_X = 14*P_{el}/n =$	933.33	N-m
Peak torque due to blackout $= M_X = 8$ *res. moment =	7466.67	N-m

(i) Load due to rotor blade eccentricity

Eccentricity, $e_r = 0.005R =$	0.02	m
Angular velocity of the rotor, $\omega =$	15.71	rad/sec
Horizontal force, $Fx = m^* e_r^* \omega^2 =$	399.72	Ν

Appendix A2

The detail calculations of rotor loads according to IEC-614200-2

Rotor load Calculation according to IEC-61400-2

Load Case D :

 $\rho = air \ density = 1.225 Kg / m^3$ $Vavg = average \ wind \ density \ at \ hub \ height = 8.5m / s$ $R = Rotor \ radius = 4.5m$ C_T is the thrust coefficient, equal to 0.5

 $Fx.shaft = 3.125C_T \rho v_{ave}^2 \Pi R^2 = 8793.23 N$

Load Case H :

$$\begin{split} B &= number \ of \ Blades = 3\\ C_d &= drag \ coeeficient, 1.5\\ \rho &= air \ density = 1.2225 Kg \ / \ m^3\\ A_{proj,B} &= blade \ plan \ form \ area = 2.12 m^2\\ R &= Radius \ of \ Rotor = 4.5m\\ V_{e50} &= reference \ wind \ velocity \ at \ hub \ height \ in \ 50 \ years \ occuence \ period\\ &= 34.94 * (24.39 \ / \ 10) \ 0.11 = 38.54 m \ / \ s(Formula \ From \ IEC61400) \end{split}$$

 $F_x - Shaft = BC_d 0.5 \rho V_{e30}^2 A_{pm/B} = 8679.16 \text{ N}$

 $C_f = force coefficient, 1.5$ $\rho = air density = 1.225 kg / m^3$

 $A_{prev} = Nacelle / Turbine$ component area projected on to a plane perpendicular to the wind direction=4.77m² $V_{eso} = reference$ wind velocity at hub height in 50 years occuence period = 38.19m/ s

 $Fx - component = C_f 0.5 \rho V_{e50}^2 A_{prg} = 6391.68 \text{ N}$

Appendix A3

Sample Wind load Calculations for the wind speed of 50 year recurrence period

		Wind load c	alculation	for 50 vea	ars recurr	ance period	as per CSA	S-37	
				j e		reise	FT ODI		
		Η	Height of the	e Tower =	24390	mm			
	Outside of	diameter of t	ne bower at	t bottom =	1315	mm	Including thi	ckness	
	Outsi	de Diameter	of the towe	r at Top =	815	mm	Including thi	ckness	
			Ice t	hickness =	50	mm	CSA S37 -	01	
	Tot	al wind ware	d force, F =	Cd*P*A			CSA S37 C	lause 4.8.2	
		Pressure	$P = qh^*C$	e*Cg* Ca			CSA S37 C	lause 4.3.1	
				qh=	qCe	q= Referece	e velocity Pre	essure	
				Ce=	(H/10)^0.2	CL 4.5.1			
				Ca=	1	CL 4.7.1			
	Wind	Pressure at a	reference he	eight, $q =$	0.78	Kpa	From NBC	C 2010	
	This Towe	er is designed	for the 50	year return	period me	an hourly wi	nd pressure		
		Ι	Drag Coeffi	cient, Cd=	0.5	CL 4.9.2	N =	32.51757	>7.2
			Gust Fa	ctor, Cg =	2.5	CSA S37 ((4.6.1) for the	e Pole Structu	ire
		ar	n important	parameter	39755.7				
		Diam	eter at towe	er's base =	1315	mm			
		Di	ameter at 5	m height =	1212.5	mm			
		Diar	meter at 10	m height =	1110	mm			
		Dia	meter at 15	m height =	1007.5	mm			
		Dia	meter at 20	m height =	904.996	mm			
		Diamet	er at 24.39	m height =	815	mm			
		WIND F	FORCES A	T 5M INT	ERVAL A	LONG TO	WER HEIGH	łT	
Height Range, m	Projected Area (m ²)	Additional Projected Area for Ice (m ²)	Exposure factor, (Ce)	Gust Factor (Cg)	Pressure, (P),Kpa	Wind Force (F), N	Factoed Wind load without Ice, N	Wind Force considering additional radial Ice area,N	Factored Wind Force considering additional radial Ice area,N
0-5	6.32	6.82	1.00	2.50	1.95	6160.78	9241.17	4986.21	7479.31
5-10	5.81	6.31	1.00	2.50	1.95	5661.09	8491.63	4611.44	6917.16
10-15	5.29	5.79	1.08	2.50	2.11	5597.39	8396.08	4594.55	6891.82
15-20	4.78	5.28	1.15	2.50	2.24	5354.89	8032.33	4436.16	6654.24
20-24.39	4.30	4.80	1.20	2.50	2.33	5010.88	7516.33	4195.16	6292.74
Note · WI	han wind lo	ad and Ica lo	ad are in a	ction togeth	or additio	nal load fact	$\frac{1}{00000000000000000000000000000000000$	d for wind los	ding for both

Note : When wind load and Ice load are in action together, additional load factor 0.5 is used for wind loading for both in service and ultimate limit state according to CSA-S37-01, Clause 5.3

Appendix A4

Sample ice load calculations

ICE LOAD CALCULATION

	Outside Bottom Diameter of the tower, Do =						1.315	m
Outside Top Diameter of the tower, Di =						0.915	m	
				F	Radial Ice	thickness=	0.05	m
Height of the tower, H=						24.39	m	
					Ice	e Density =	900	kg/cum
Total	surface	area	of	Turbine	system	including		
blade(a	assumed)=	=					12	sqm

Ice Mass due to radial ice around the tower =	4014.948	KG
Ice Weight due to radial ice around the tower =	39386.64	Ν
Ice mass due to Turbine system top of the tower=	540	KG
Ice weight due to Turbine system top of the tower=	5297.4	Ν
Factored Ice Weight due to radial ice around the tower =	59079.95	Ν
Factored Ice weight due to Turbine system top of the		
tower=	7946.1	Ν
Tower Mass (ANSYS OUTPUT) = 3.512	Ton	
Tower Self Weight = 34417.6	Ν	

Factored	Tower's Self	Weight =	41301.12	Ν

99

Appendix A5

ANSYS commands for structure's self-weight determination.

/solu

outpr,basic,all

irlf,-1

/output,mass_output,txt

psolve,elform

psolve,elprep

/output

Finish

The file will be saved as mass_output.txt file in ANSY installed directory.

Appendix B1

Analysis of 8 cell sections

<u>8-cell section trial # 1</u>: For trial # 1, the following geometric parameters are selected.

Bottom diameter: 1000 mm c/c

Top diameter: 600 mm c/c

Inner diameter: 300 mm c/c

Wall thickness: 7.5 mm

Rotor loads: Referred in Table 4.3: Rotor load combination in service for deflection determination of the tower

Wind loads: The governing wind loads for 50 year recurrence period according CSA-S37-01 corresponding to the trial section are mentioned in Table B1

Height Range, m	Projected Area (m ²)	Exposure Factor, (Ce)	Gust Factor (Cg)	Pressure,(P), Kpa	Wind Force (F),N
0-5	4.83	1.00	2.50	1.95	4712
5-10	4.42	1.00	2.50	1.95	4312
10-15	4.01	1.08	2.50	2.11	4243
15-20	3.60	1.15	2.50	2.24	4035
20-24.39	3.22	1.20	2.50	2.33	3749

 Table B1: Wind loads for 8-cell section trail # 1

For 8-cell section trail # 1, it has been found that the deflection is 1190 mm (Figure B1) and weight of the structure is 2001 Kg.

Figure B1: Deflection for 8 -cell section trail # 1

8-cell section trial # 2: For trial # 2, the following geometric parameters are selected

Bottom diameter: 1500 mm c/c

Top diameter: 600 mm c/c

Inner diameter: 300 mm c/c

Wall thickness: 7. 5mm

Rotor loads: Referred in Table 4.3: Rotor load combination in service for deflection determination of the tower

Wind loads: The governing wind loads for 50 year recurrence period according CSA-S37-01 corresponding to the trial section # 2 are mentioned in Table B2

Height Range, m	Projected Area (m ²)	Exposure factor, (Ce)	Gust Factor (Cg)	Pressure,(P), Kpa	Wind Force (F), N
0-5	7.08	1.00	2.50	1.95	6899
5-10	6.15	1.00	2.50	1.95	6000
10-15	5.23	1.08	2.50	2.11	5531
15-20	4.31	1.15	2.50	2.24	4826
20-24.39	3.44	1.20	2.50	2.33	4012

 Table B2: Wind loads for 8-cell section trial # 2

Figure B2: Deflection for 8 -cell section trial # 2

For 8-cell section trial # 2, from finite element analysis it has been found that the deflection is 476 mm (Figure B2) and weight of the structure is 2656 Kg.

<u>8-cell section trial # 3</u>: For trial # 3, the following geometric parameters have been selected.

Bottom diameter: 1500 mm c/c

Top diameter: 800 mm c/c

Inner diameter: 600 mm c/c

Wall thickness: 7.5 mm

Rotor loads: Referred in Table 4.3: Rotor load combination in service for deflection determination of the tower

Wind loads: The governing wind loads for 50 year recurrence period according CSA-S37-01 corresponding to the trial section # 3 are mentioned in Table B3

Table B3:	Wind	loads	for	8-cell	section	trail #	3
-----------	------	-------	-----	--------	---------	---------	---

Height Range, m	Projected Area (m ²)	Exposure factor, (Ce)	Gust Factor (Cg)	Pressure,(P), Kpa	Wind Force (F), N
0-5	7.18	1.00	2.50	1.95	6999
5-10	6.46	1.00	2.50	1.95	6300
10-15	5.74	1.08	2.50	2.11	6073
15-20	5.03	1.15	2.50	2.24	5629
20-24.39	4.35	1.20	2.50	2.33	5072

For 8-cell section trail # 3, from finite element analysis it is found that the deflection is 420 mm (Figure B3) and weight of the structure is 2656 Kg.

Figure B3: Deflection for 8 -cell section trial no 3

<u>8-cell section trial # 4</u>: For trial # 4, the following geometric parameters are selected.

Bottom diameter: 1500 mm c/c

Top diameter: 800 mm c/c

Inner diameter: 600 mm c/c

Wall thickness: 11.25 mm

Rotor loads: Referred in Table 4.3: Rotor load combination in service for deflection determination of the tower

Wind loads: The governing wind loads for 50 year recurrence period according CSA-S37-01 corresponding to the trial section # 4 are mentioned in Table B4

Height Range,m	Projected Area (m ²)	Exposure Factor, (Ce)	Gust Factor (Cg)	Pressure,(P), Kpa	Wind Force (F) N
0-5	7.18	1.00	2.50	1.95	6999
5-10	6.46	1.00	2.50	1.95	6300
10-15	5.74	1.08	2.50	2.11	6073
15-20	5.03	1.15	2.50	2.24	5629
20-24.39	4.35	1.20	2.50	2.33	5072

 Table B4: Wind loads for 8-cell section trial # 4

Figure B4: Deflection for 8-cell section trial no 4

For 8-cell section trial # 4, from finite element analysis it is found that the deflection is 254 (Figure B4) and weight of the structure is 2824 Kg.

<u>8-cell section trial # 5</u>: For trial # 5, the following geometric parameters are selected.

Bottom diameter: 1300 mm c/c

Top diameter: 800 mm c/c

Inner diameter: 600 mm c/c

Wall thickness: 11.25 mm

Rotor loads: Referred in Table 4.3: Rotor load combination in service for deflection determination of the tower

Wind loads: The governing wind loads for 50 year recurrence period according CSA-S37-01 corresponding to the trial section no 5 have been mentioned in Table B5.

Height Range, m	Projected Area (m ²)	Exposure factor, (Ce)	Gust Factor (Cg)	Pressure,(P), Kpa	Wind Force (F), N
0-5	6.30	1.00	2.50	1.95	6143
5-10	5.79	1.00	2.50	1.95	5643
10-15	5.27	1.08	2.50	2.11	5578
15-20	4.76	1.15	2.50	2.24	5334
20-24.39	4.28	1.20	2.50	2.33	4989

Table B5: Wind loads for 8-cell section trial # 5

For 8-cell section trial # 5, from finite element analysis it is found that the deflection is 353 mm (Figure B5) and weight of the structure is 3842 Kg.

Figure B5: Deflection for 8-cell section trial # 5

Sample ANSYS codes related to 8-cell section (trial no 5) are included in the Appendix B2.

<u>8-cell section trial # 6:</u> For trial # 6, the following geometric parameters are selected.

Bottom diameter: 1300 mm c/c

Top diameter: 800 mm c/c

Inner diameter: 600 mm c/c

Wall thickness: 10 mm

Rotor loads: Referred in Table 4.3: Rotor load combination in service for deflection determination of the tower

Wind loads: The governing wind loads for 50 year recurrence period according CSA-S37-01 corresponding to the trial section # 6 are mentioned in Table B6

Height Range m	Projected Area (m ²)	Exposure factor, (Ce)	Gust Factor (Cg)	Pressure,(P), Kpa	Wind Force (F), N
0-5	6.29	1.00	2.50	1.95	6136
5-10	5.78	1.00	2.50	1.95	5637
10-15	5.27	1.08	2.50	2.11	5571
15-20	4.76	1.15	2.50	2.24	5327
20-24.39	4.27	1.20	2.50	2.33	4982

 Table B6: Wind loads for 8-cell section trial # 6

Figure B6: Deflection for 8-cell section trial # 6

For 8-cell section trial # 6, from finite element analysis it has been found that the deflection is 404 mm (Figure B6) and weight of the structure is 3415 Kg.

<u>8-cell section trial # 7:</u> For trial # 7, the following geometric parameters have been selected.

Bottom diameter: 1300 mm c/c

Top diameter: 800 mm c/c

Inner diameter: 600 mm c/c

Wall thickness: 8.75 mm

Rotor loads: Referred in Table 4.3: Rotor load combination in service for deflection determination of the tower

Wind loads: The governing wind loads for 50 year recurrence period according CSA-S37-01 corresponding to the trial section # 7 are mentioned in Table B7

Height Range,m	Projected Area (m ²)	Exposure factor, (Ce)	Gust Factor (Cg)	Pressure,(P) Kpa	Wind Force (F), N
0-5	6.29	1.00	2.50	1.95	6130
5-10	5.77	1.00	2.50	1.95	5631
10-15	5.26	1.08	2.50	2.11	5564
15-20	4.75	1.15	2.50	2.24	5320
20-24.39	4.27	1.20	2.50	2.33	4974

Table B7: Wind loads for 8-cell section trial # 7

For 8-cell section trial # 7, from finite element analysis it is found that the deflection is 472 mm (Figure B7) and weight of the structure is 2988 Kg.

Figure B7: Deflection for 8-cell section trial # 7

<u>8-cell section trial # 8:</u> For trial # 8, the following geometric parameters are selected.

Bottom diameter: 1300 mm c/c

Top diameter: 800 mm c/c

Inner diameter: 600 mm c/c

Wall thickness: 7.5 mm

Rotor loads: Referred in Table 4.3: Rotor load combination in service for deflection determination of the tower

Wind loads: The governing wind loads for 50 year recurrence period according CSA-S37-01 corresponding to the trial section # 8 are mentioned in Table B8

Table B8: Wind loads for 8-cell section trial # 8

Height Range,m	Projected Area (m ²)	Exposure factor, (Ce)	Gust Factor (Cg)	Pressure,(P),Kpa	Wind Force (F), N
0-5	6.28	1.00	2.50	1.95	6124
5-10	5.77	1.00	2.50	1.95	5625
10-15	5.26	1.08	2.50	2.11	5558
15-20	4.74	1.15	2.50	2.24	5313
20-24.39	4.26	1.20	2.50	2.33	4967

For 8-cell section trial # 8, from finite element analysis it is found that the deflection is 567 mm (Figure B8) and weight of the structure is 2561 Kg.

Figure B8: Deflection for 8-cell section trial # 8

Appendix B2

ANSYS codes for 8-cell trial # 5

FINISH /CLEAR /TITLE, DESIGN OF 8-CELL 24.39 M GFRP WIND TURBINE TOWER /PREP7 /PBC,F,,1 /PBC,U,,1 /NERR,5,50000000 /PNUM,KP,1 /PNUM,LINE,1 /PNUM,AREA,1 /VIEW,1,3500,6000,5000

!ROTOR LOADS FYY=-6376.50!Fz N ROTOR DEAD LOAD FZZ=-8522.68 !Fx N MXX=1434.71e3 !My N.MM MYY=5319e3!Mz N.MM MZZ=0!Mx N.MM

!WIND LOAD A1=-6142.50 A2=-5642.81 A3=-5577.56 A4=-5333.89 A5=-4989.0 RB=650 RT=400 IR=300 H=24390

!GEOMETRY K,1,0,0,0 K,2,0,H,0 K,3,IR,0,0 K,4,IR,H,0 K,5,RB,0,0 K,6,RT,H,0 L,3,4 L,5,6

L,5,6 AROTAT,2,,,,,1,2,360,8 AROTAT,1,,,,,1,2,360,8

A,3,4,6,5 A,21,22,8,7 A,23,24,10,9 A,25,26,12,11 A,27,28,14,13 A,29,30,16,15 A,31,32,18,17 A,33,34,20,19 **!ELEMENT TYPE** ET,1,SHELL99,,0,0,0,1,3 **!REAL CONSTANT** t=1.25 R,1,9,0 RMORE, RMORE,1,0,t,1,90,t RMORE,1,90,t,1,90,t RMORE,1,90,t,1,90,t RMORE,1,90,t,1,90,t RMORE,1,0,t R,2,9,0 RMORE, RMORE,1,0,t,1,90,t RMORE,1,90,t,1,90,t RMORE,1,90,t,1,0,t RMORE,1,90,t,1,90,t RMORE,1,0,t **!MATERIAL PROPERTIES** MP,EX,1,34125 !N/MM^2 (MPA) MP,EY,1,6852 !N/MM^2 (MPA) MP,EZ,1,6852 MP,GXY,1,3330 !N/MM^2 (MPA) MP,GYZ,1,3330 MP,GXZ,1,3330 MP,PRXY,1,0.2865 MP,PRYZ,1,0.2865 MP,PRXZ,1,0.2865

!MATERIAL PROPERTIES

MP,DENS,1,2.005E-9 !ton/MM^3

MP,EX,2,34125 !N/MM^2 (MPA) MP,EY,2,6852 !N/MM^2 (MPA) MP,EZ,2,6852 MP,GXY,2,3330 !N/MM^2 (MPA) MP,GYZ,2,3330 MP,GXZ,2,3330 MP,PRXY,2,0.2865 MP,PRYZ,2,0.2865 MP,PRYZ,2,0.2865 MP,PRXZ,2,0.2865

MASHING CONTROL LSEL,S,LOC,Y,H/2 LESIZE,ALL,,,40,1 LSEL,ALL

ESIZE,0,2 ASEL,S,AREA,,1,8,1 !INNER AATT,1,1,1 AMESH,ALL ASEL,ALL

ESIZE,0,3 ASEL,S,AREA,,9,16,1 !OUTER AATT,1,1,1 AMESH,ALL ASEL,ALL

ESIZE,0,3 ASEL,S,AREA,,17,24,1 !STIFFENER AATT,1,2,1 AMESH,ALL ASEL,ALL SAVE

!ANALYSIS /SOLU /TITLE, DESIGN OF 8-CELL 24.39 M GFRP WIND TURBINE TOWER ANTYPE,STATIC NLGEOM,ON AUTOTS,ON SSTIF,ON NSUBST,2,500,2,ON NROPT,AUTO NEQIT,20 CNVTOL,F,,0.001,,1 CNVTOL,M,,0.001,,1 CNVTOL,U,,0.04,,0 TIME,8000 **!BOUNDARY CONDITIONS** NSEL,S,LOC,Y,0 D,ALL,UZ,0,0,,,UX,UY,ROTX,ROTY,ROTZ NSEL,ALL !======= _____ **!**Applying Gravity !===== ACEL,,9800 !====== !Applying wind load parallel to Z Direction between 0-5m !== ASEL,S,AREA,,5 ASEL, A, AREA, ,6 ASEL, A, AREA, ,7 ASEL, A, AREA, ,8 NSLA,S,0 NSEL,R,LOC,Y,0,5000 *GET,NCOUNT,NODE,0,COUNT F,ALL,FZ,A1/NCOUNT !_____ !Applying wind load parallel to Z Direction between 5-10m !======= _____ ASEL,S,AREA,,5 ASEL, A, AREA, ,6 ASEL, A, AREA, 7 ASEL, A, AREA, 8 NSLA,S,0 NSEL,R,LOC,Y,5001,10000 *GET,Ncnt,NODE,0,COUNT F,ALL,FZ,A2/Ncnt !== !Applying wind load parallel to Z Direction between 10-15m !======= ASEL,S,AREA,,5 ASEL,A,AREA,,6 ASEL,A,AREA,,7 ASEL, A, AREA, 8 NSLA,S,0 NSEL,R,LOC,Y,10001,15000

*GET,Ncnt,NODE,0,COUNT F,ALL,FZ,A3/Ncnt

Applying wind load parallel to Z Direction between 15-20m

!_____

ASEL,S,AREA,,5 ASEL,A,AREA,,6 ASEL,A,AREA,,7 ASEL,A,AREA,,8 NSLA,S,0 NSEL,R,LOC,Y,15001,20000 *GET,Ncnt,NODE,0,COUNT F,ALL,FZ,A4/Ncnt

!Applying wind load parallel to Z Direction between 20-H m

ASEL,S,AREA,,5 ASEL,A,AREA,,6 ASEL,A,AREA,,7 ASEL,A,AREA,,8 NSLA,S,0 NSEL,R,LOC,Y,20001,H *GET,Ncnt,NODE,0,COUNT F,ALL,FZ,A5/Ncnt

!Applying Rotor Load at the top of Tower

NSEL,S,LOC,Y,H *GET,Ncnt,NODE,0,COUNT FYAV=FYY/Ncnt F,ALL,FY,FYAV NSEL,ALL ! !MX IN TERM OF COUPLE MOMENT FMX=MXX/(RT*2)

!MY IN TERM OF COUPLE MOMENT FMY=MYY/(RT*4)

!MZ IN TERM OF COUPLE MOMENT FMZ=MZZ/(RT*2)

KSEL,S,,,10 FK,ALL,FX,FMY FK,ALL,FY,-FMX FK,ALL,FZ,FZZ/4 KSEL,ALL KSEL,S,,,18 FK,ALL,FX,-FMY FK,ALL,FY,FMX FK, ALL, FZ, FZZ/4 KSEL,ALL KSEL,S,,,6 FK,ALL,FZ,FMY FK,ALL,FY,-FMZ KSEL,ALL KSEL,S,,,14 FK,ALL,FZ,-FMY FK,ALL,FY,FMZ KSEL,ALL KSEL,S,,,32 FK,ALL,FZ,FZZ/4 KSEL,ALL KSEL,S,,,24 FK,ALL,FZ,FZZ/4 KSEL,ALL LSWRITE,1 LSSOLVE,1 SAVE FINISH

Appendix B3

Analysis of 10-cell sections

<u>10-cell section trial # 1</u>: For trial # 1, the following geometric parameters have been selected.

Bottom diameter: 1300 mm c/c

Top diameter: 800 mm c/c

Inner diameter: 600 mm c/c

Wall thickness: 7.5 mm

Rotor loads: Referred in Table 4.3: Rotor load combination in service for deflection determination of the tower

Wind loads: The governing wind loads for 50 year recurrence period according CSA-S37-01 corresponding to the trial section # 1 are mentioned in Table B9

Height Range, m	Projected Area (m ²)	Exposure factor, (Ce)	Gust Factor (Cg)	Pressure,(P) ,Kpa	Wind Force (F), N
0-5	6.28	1.00	2.50	1.95	6124
5-10	5.77	1.00	2.50	1.95	5625
10-15	5.26	1.08	2.50	2.11	5558
15-20	4.74	1.15	2.50	2.24	5313
20-24.39	4.26	1.20	2.50	2.33	4967

Table B9: Wind loads for 10-cell section trial # 1

For 10-cell section trial # 1, from finite element analysis it is found that the deflection is 488 mm (Figure B9) and weight of the structure is 2726 Kg.

Figure B9: Deflection for 10-cell section trial # 1

<u>10-cell section trial # 2</u>: For trial # 2, the following geometric parameters have been selected.

Bottom diameter: 1300 mm c/c

Top diameter: 800 mm c/c

Inner diameter: 600 mm c/c

Wall thickness: 11.25 mm

Rotor loads: Referred in Table 4.3: Rotor load combination in service for deflection determination of the tower

Wind loads: The governing wind loads for 50 year recurrence period according CSA-S37-01 corresponding to the trial # 2 are mentioned in Table B10

Height Range, m	Projected Area (m ²)	Exposure factor, (Ce)	Gust Factor (Cg)	Pressure,(P) ,Kpa	Wind Force (F), N
0-5	6.30	1.00	2.50	1.95	6143
5-10	5.79	1.00	2.50	1.95	5643
10-15	5.27	1.08	2.50	2.11	5576
15-20	4.76	1.15	2.50	2.24	5334
20-24.39	4.28	1.20	2.50	2.33	4989

 Table B10: Wind loads for 10-cell section trial # 2

Figure B10: Deflection for 10-cell section trial # 2

For 10-cell section trial # 2, from finite element analysis it is found that the deflection is 290 mm (Figure B10) and weight of the structure is 4089 Kg.

<u>10-cell section trial # 3</u>: For trial # 3, the following geometric parameters have been selected.

Bottom diameter: 1300 mm c/c

Top diameter: 800 mm c/c

Inner diameter: 600 mm c/c

Wall thickness: 10 mm

Rotor loads: referred in Table 4.3: Rotor load combination in service for deflection determination of the tower

Wind loads: The governing wind loads for 50 year recurrence period according CSA-S37-01 corresponding to the trial # 3 are mentioned in Table B11

Table B11:	Wind lo	ads for	10-cell	section	trial #	3
------------	---------	---------	---------	---------	---------	---

Height	Projected	Exposure	Gust Factor	Pressure,(P)	Wind Force(F),
Range, m	Area (m ²)	factor, (Ce)	(Cg)	,Кра	Ν
0-5	6.29	1.00	2.50	1.95	6136
5-10	5.78	1.00	2.50	1.95	5637
10-15	5.27	1.08	2.50	2.11	5571
15-20	4.76	1.15	2.50	2.24	5327
20-24.39	4.27	1.20	2.50	2.33	4982

For 10-cell section trial # 3, from finite element analysis it has been found that the deflection is 335 mm (Figure B11) and weight of the structure is 3635 Kg.

Figure B11: Deflection for 10 -cell section trial # 3

<u>10-cell section trail # 4:</u> For trial # 4, the following geometric parameters have been selected.

Bottom diameter: 1300 mm c/c

Top diameter: 800 mm c/c

Inner diameter: 600 mm c/c

Wall thickness: 8.75 mm

Rotor loads: referred in Table 4.3: Rotor load combination in service for deflection determination of the tower
Wind loads: The governing wind loads for 50 year recurrence period according CSA-S37-01 corresponding to the trial # 4 are mentioned in Table B12

Height Range, m	Projected Area (m ²)	Exposure factor, (Ce)	Gust Factor (Cg)	Pressure,(P) Kpa	Wind Force(F), N
0-5	6.29	1.00	2.50	1.95	6130
5-10	5.77	1.00	2.50	1.95	5631
10-15	5.26	1.08	2.50	2.11	5564
15-20	4.75	1.15	2.50	2.24	5320
20-24.39	4.27	1.20	2.50	2.33	4974

 Table B12: Wind loads for 10-cell section trial # 4

Figure B12: Deflection for 10 -cell section trial # 4

For 10-cell section trial # 4, from finite element analysis it is found that the deflection is 397 mm (Figure B12) and weight of the structure is 3635 Kg. A sample ANSYS codes related to 10-cell (trial # 4) are included in the Appendix B4.

Appendix B4

A sample ANSYS codes for 10-cell (trial # 4).

FINISH /CLEAR /TITLE, DESIGN OF 10-CELL 24.39 M GFRP WIND TURBINE TOWER /PREP7 /PBC,F,,1 /PBC,U,,1 /NERR,5,50000000 /PNUM,KP,1 /PNUM,LINE,1 /PNUM,AREA,1 /VIEW,1,3500,6000,5000

!ROTOR LOADS FYY=-6376.50!Fz N ROTOR DEAD LOAD FZZ=-8522.68 !Fx N MXX=1434.71e3 !My N.MM MYY=5319e3!Mz N.MM MZZ=0!Mx N.MM

!WIND LOAD A1= -6130.31 A2= -5630.62 A3= -5564.34 A4= -5319.89 A5= -4974.47 RB=650 RT=400 IR=300 H=24390 ! **!GEOMETRY** K,1,0,0,0 K,2,0,H,0 K,3,IR,0,0 K,4,IR,H,0 K,5,RB,0,0 K,6,RT,H,0 L,3,4 L,5,6 AROTAT,2,,,,,1,2,360,10 AROTAT,1,,,,,1,2,360,10

A,3,5,6,4 A,25,7,8,26 A,27,9,10,28 A,29,11,12,30 A,31,13,14,32 A,33,15,16,34 A,35,17,18,36 A,37,19,20,38 A,39,21,22,40 A,41,23,24,42 ! **!ELEMENT TYPE** ET,1,SHELL99,,0,0,0,1,3 **!REAL CONSTANT** t=1.25 R,1,7,0 RMORE, RMORE,1,0,t,1,90,t RMORE,1,90,t,1,90,t RMORE,1,90,t,1,90,t RMORE,1,0,t R,2,7,0 RMORE, RMORE,1,0,t,1,90,t RMORE,1,90,t,1,90,t RMORE,1,90,t,1,90,t RMORE,1,0,t **!MATERIAL PROPERTIES** MP,EX,1,34125 !N/MM^2 (MPA) MP,EY,1,6852 !N/MM^2 (MPA) MP,EZ,1,6852 MP,GXY,1,3330 !N/MM^2 (MPA) MP,GYZ,1,3330 MP,GXZ,1,3330 MP,PRXY,1,0.2865 MP,PRYZ,1,0.2865 MP,PRXZ,1,0.2865 MP,DENS,1,2.005E-9 !ton/MM^3

!MATERIAL PROPERTIES

MP,EX,2,34125 !N/MM^2 (MPA) MP,EY,2,6852 !N/MM^2 (MPA) MP,EZ,2,6852 MP,GXY,2,3330 !N/MM^2 (MPA) MP,GYZ,2,3330 MP,GXZ,2,3330 MP,PRXY,2,0.2865 MP,PRYZ,2,0.2865 MP,PRXZ,2,0.2865 MP,DENS,2,2.005E-9 !ton/MM^3 **!MASHING CONTROL** LSEL,S,LOC,Y,H/2 LESIZE, ALL, ,, 40,1 LSEL,ALL ! ESIZE,0,2 ASEL,S,AREA,,11,20,1 !INNER AATT,1,1,1 AMESH,ALL ASEL,ALL ESIZE,0,3 ASEL,S,AREA,,1,10,1 !OUTER AATT,1,1,1 AMESH,ALL ASEL,ALL ! ESIZE,0,3 ASEL,S,AREA,,21,30,1 !STIFFENER AATT,1,2,1 AMESH,ALL ASEL,ALL **!ANALYSIS** /SOLU ANTYPE, STATIC NLGEOM,ON AUTOTS,ON SSTIF,ON NSUBST,2,500,2,ON NROPT,AUTO NEQIT,20

CNVTOL,F.,0.001.,1 CNVTOL, M, , 0.001, ,1 CNVTOL,U,,0.04,,0 TIME,8000 **BOUNDARY CONDITIONS** NSEL,S,LOC,Y,0 D,ALL,UZ,0,0,,,UX,UY,ROTX,ROTY,ROTZ NSEL,ALL !_____ **!**Applying Gravity _____ ACEL,,9800 !====== !Applying wind load parallel to Z Direction between 0-5m ASEL,S,AREA,,6 ASEL, A, AREA, 7 ASEL, A, AREA, ,8 ASEL, A, AREA, 9 ASEL, A, AREA, 10 NSLA,S,0 NSEL,R,LOC,Y,0,5000 *GET,NCOUNT,NODE,0,COUNT F,ALL,FZ,A1/NCOUNT 1_____ !Applying wind load parallel to Z Direction between 5-10m ASEL,S,AREA,,6 ASEL, A, AREA, ,7 ASEL, A, AREA, 8 ASEL, A, AREA, 9 ASEL, A, AREA, 10 NSLA,S,0 NSEL,R,LOC,Y,5001,10000 *GET,Ncnt,NODE,0,COUNT F,ALL,FZ,A2/Ncnt !_____ _____ !Applying wind load parallel to Z Direction between 10-15m !______ ASEL,S,AREA,,6 ASEL, A, AREA, ,7 ASEL, A, AREA, 8

ASEL, A, AREA, 9 ASEL, A, AREA, 10 NSLA,S,0 NSEL,R,LOC,Y,10001,15000 *GET,Ncnt,NODE,0,COUNT F,ALL,FZ,A3/Ncnt

!_____

!_____

Applying wind load parallel to Z Direction between 15-20m

ASEL,S,AREA,,6 ASEL,A,AREA,,7 ASEL,A,AREA,,8 ASEL,A,AREA,,9 ASEL,A,AREA,,10 NSLA,S,0 NSEL,R,LOC,Y,15001,20000 *GET,Ncnt,NODE,0,COUNT F,ALL,FZ,A4/Ncnt

Applying wind load parallel to Z Direction between 20-H m

ASEL,S,AREA,,6 ASEL,A,AREA,,7 ASEL,A,AREA,,8 ASEL,A,AREA,,9 ASEL,A,AREA,,10 NSLA,S,0 NSEL,R,LOC,Y,20001,H *GET,Ncnt,NODE,0,COUNT F,ALL,FZ,A5/Ncnt

Applying Rotor Load at the top of Tower

NSEL,S,LOC,Y,H *GET,Ncnt,NODE,0,COUNT FYAV=FYY/Ncnt F,ALL,FY,FYAV NSEL,ALL !

!MX IN TERM OF COUPLE MOMENT FMX=MXX/(RT*2)

!MY IN TERM OF COUPLE MOMENT FMY=MYY/(RT*4)

!MZ IN TERM OF COUPLE MOMENT FMZ=MZZ/(RT*2)

KSEL,S,,,10 FK,ALL,FX,FMY FK,ALL,FY,-FMX FK,ALL,FZ,FZZ/4 KSEL,ALL KSEL,S,,,20 FK,ALL,FX,-FMY

FK,ALL,FY,FMX FK,ALL,FZ,FZZ/4 KSEL,ALL

KSEL,S,,,6 FK,ALL,FZ,FMY FK,ALL,FY,-FMZ KSEL,ALL

KSEL,S,,,16 FK,ALL,FZ,-FMY FK,ALL,FY,FMZ KSEL,ALL

KSEL,S,,,38 FK,ALL,FZ,FZZ/4 KSEL,ALL

KSEL,S,,,28 FK,ALL,FZ,FZZ/4 KSEL,ALL

LSWRITE,1 LSSOLVE,1 SAVE FINISH

Appendix B5

The analysis of 12-cell sections

<u>12-cell section trail # 1:</u> For trial # 1, the following geometric parameters are selected.

Bottom diameter: 1300 mm c/c

Top diameter: 800 mm c/c

Inner diameter: 600 mm c/c

Wall thickness: 7.5 mm

Rotor loads: Referred in Table 4.3: Rotor load combination in service for deflection determination of the tower

Wind loads: The governing wind loads for 50 year recurrence period according CSA-S37-01 corresponding to the trial # 1 are mentioned in Table B13

Height Range, m	Projected Area (m ²)	Exposure Factor, (Ce)	Gust Factor (Cg)	Pressure,(P), Kpa	Wind Force (F), N
0-5	6.28	1.00	2.50	1.95	6124
5-10	5.77	1.00	2.50	1.95	5625
10-15	5.26	1.08	2.50	2.11	5558
15-20	4.74	1.15	2.50	2.24	5313
20-24.39	4.26	1.20	2.50	2.33	4967

 Table B13: Wind loads for 12-cell section trial # 1

For 12-cell section trial # 1, from finite element analysis it is found that the deflection is 462 mm (Figure B13) and weight of the structure is 2891 Kg.

Figure B13: Deflection for 12-cell section trial # 1

<u>12-cell section trail # 2:</u> For trial no 2, the following geometric parameters are selected.

Bottom diameter: 1300 mm c/c

Top diameter: 800 mm c/c

Inner diameter: 600 mm c/c

Wall thickness: 8.75 mm

Rotor loads: Referred in Table 4.3: Rotor load combination in service for deflection determination of the tower

Wind loads: The governing wind loads for 50 year recurrence period according CSA-S37-01 corresponding to the trial # 2 are mentioned in Table B14.

Height	Projected Area	Exposure	Gust Factor	Pressure,(P)	Wind Force
Range,m	(m ²)	factor, (Ce)	(Cg)	Кра	(F), N
0-5	6.29	1.00	2.50	1.95	6130
5-10	5.77	1.00	2.50	1.95	5631
10-15	5.26	1.08	2.50	2.11	5564
15-20	4.75	1.15	2.50	2.24	5320
20-24.39	4.27	1.20	2.50	2.33	4974

 Table B14: Wind loads for 12-cell section trial # 2

Figure B14: Deflection for 12-cell section trial # 2

For 12-cell section trial # 2, from finite element analysis it is found that the deflection is 376 mm (Figure B14) and weight of the structure is 3375 Kg.

<u>12-cell section trail # 3:</u> For trial # 3, the following geometric parameters are selected.

Bottom diameter: 1300 mm c/c

Top diameter: 800 mm c/c

Inner diameter: 600 mm c/c

Wall thickness: 10 mm

Rotor loads: Referred in Table 4.3: Rotor load combination in service for deflection determination of the tower

Wind loads: The governing wind loads for 50 year recurrence period according CSA-S37-01 corresponding to the trial # 3 are mentioned in Table B15

Table B15: Wind loads for 12-cell section tria

Height Range, m	Projected Area (m ²)	Exposure factor, (Ce)	Gust Factor (Cg)	Pressure,(P), Kpa	Wind Force (F), N
0-5	6.29	1.00	2.50	1.95	6136
5-10	5.78	1.00	2.50	1.95	5637
10-15	5.27	1.08	2.50	2.11	5571
15-20	4.76	1.15	2.50	2.24	5327
20-24.39	4.27	1.20	2.50	2.33	4982

For 12-cell section trial # 3, from finite element analysis it has been found that the deflection is 317 mm (Figure B15) and weight of the structure is 3855 Kg.

Figure B15: Deflection for 12-cell section trial # 3

<u>12-cell section trail # 4:</u> For trial # 4, the following geometric parameters are selected.

Bottom diameter: 1300 mm c/c

Top diameter: 800 mm c/c

Inner diameter: 600 mm c/c

Wall thickness: 11.25 mm

Rotor loads: Referred in Table 4.3: Rotor load combination in service for deflection determination of the tower

Wind loads: The governing wind loads for 50 year recurrence period according CSA-S37-01 corresponding to the trial # 4 are mentioned in Table B16

Height	Projected	Exposure	Gust Factor	Pressure,(P),	Wind Force
Range, m	Area (m2)	factor, (Ce)	(Cg)	Kpa	(F), N
0-5	6.30	1.00	2.50	1.95	6142.50
5-10	5.79	1.00	2.50	1.95	5642.81
10-15	5.27	1.08	2.50	2.11	5577.56
15-20	4.76	1.15	2.50	2.24	5333.89
20-24.39	4.28	1.20	2.50	2.33	4989.03

 Table B16: Wind loads for 12-cell section trial # 4

Figure B16: Deflection for 12-cell section trial # 4

For 12-cell section trial # 4, from finite element analysis it is found that the deflection is 275 mm (Figure B16) and weight of the structure is 4337 Kg. Sample ANSYS codes related to trail # 4 are included in the Appendix B6.

Appendix B6

A sample ANSYS codes for 12-cell (trial # 4)

FINISH /CLEAR /TITLE, DESIGN OF 12-CELL 24.39 M GFRP WIND TURBINE TOWER /PREP7 /PBC,F,,1 /PBC,U,,1 /NERR,5,50000000 /PNUM,KP,1 /PNUM,LINE,1 /PNUM,AREA,1 /VIEW,1,3500,6000,5000

!ROTOR LOADS FYY=-6376.50!Fz N ROTOR DEAD LOAD FZZ=-8522.68 !Fx N MXX=1434.71e3 !My N.MM MYY=5319e3!Mz N.MM MZZ=0!Mx N.MM

!WIND LOAD A1= -6142.50 A2= -5642.81 A3= -5577.56 A4= -5333.89 A5= -4989.03 RB=650 RT=400 IR=300 H=24390 **!GEOMETRY** K,1,0,0,0 K,2,0,H,0 K,3,IR,0,0 K,4,IR,H,0 K,5,RB,0,0 K,6,RT,H,0 L,3,4 L,5,6 AROTAT,2,,,,,1,2,360,12

AROTAT,1,,,,,1,2,360,12 AROTAT,1,,,,1,2,360,12

A,4,6,5,3 A,30,8,7,29 A,32,10,9,31 A,34,12,11,33 A,36,14,13,35 A,38,16,15,37 A,40,18,17,39 A,42,20,19,41 A,44,22,21,43 A,46,24,23,45 A,48,26,25,47 A,50,28,27,49 ! **!ELEMENT TYPE** ET,1,SHELL99,,0,0,0,1,3 **!REAL CONSTANT** t=1.25 R,1,8,0 RMORE, RMORE,1,0,t,1,90,t RMORE,1,90,t,1,90,t RMORE,1,90,t,1,90,t RMORE,1,90,t,1,0,t R,2,8,0 RMORE, RMORE,1,0,t,1,90,t RMORE,1,90,t,1,90,t RMORE,1,90,t,1,90,t RMORE,1,90,t,1,0,t **!MATERIAL PROPERTIES** MP,EX,1,34125 !N/MM^2 (MPA) MP,EY,1,6852 !N/MM^2 (MPA) MP,EZ,1,6852 MP,GXY,1,3330 !N/MM^2 (MPA) MP,GYZ,1,3330 MP,GXZ,1,3330 MP,PRXY,1,0.2865 MP,PRYZ,1,0.2865 MP,PRXZ,1,0.2865 MP, DENS, 1, 2.005E-9 !ton/MM^3

!MATERIAL PROPERTIES MP,EX,2,34125 !N/MM^2 (MPA) MP,EY,2,6852 !N/MM^2 (MPA) MP,EZ,2,6852 MP,GXY,2,3330 !N/MM^2 (MPA) MP,GYZ,2,3330 MP,GXZ,2,3330 MP,PRXY,2,0.2865 MP,PRYZ,2,0.2865 MP,PRXZ,2,0.2865 MP, DENS, 2, 2.005E-9 !ton/MM^3 **!MASHING CONTROL** LSEL,S,LOC,Y,H/2 LESIZE, ALL, ,, 40,1 LSEL,ALL ! ESIZE,0,2 ASEL,S,AREA,,13,24,1 !INNER AATT,1,1,1 AMESH,ALL ASEL,ALL ESIZE,0,3 ASEL,S,AREA,,1,12,1 !OUTER AATT,1,1,1 AMESH,ALL ASEL,ALL ESIZE,0,3 ASEL,S,AREA,,25,36,1 !STIFFENER AATT,1,2,1 AMESH,ALL ASEL,ALL **!ANALYSIS** /SOLU ANTYPE, STATIC NLGEOM,ON AUTOTS,ON SSTIF,ON NSUBST,2,500,2,ON NROPT,AUTO NEQIT,20

CNVTOL,F,,0.001,,1 CNVTOL,M,,0.001,,1 CNVTOL,U,,0.04,,0 TIME,8000 **!BOUNDARY CONDITIONS** NSEL,S,LOC,Y,0 D,ALL,UZ,0,0,,,UX,UY,ROTX,ROTY,ROTZ NSEL,ALL !_____ **!**Applying Gravity _____ ACEL,,9800 !====== _____ !Applying wind load parallel to Z Direction between 0-5m !_____ ASEL,S,AREA,,7 ASEL, A, AREA, 8 ASEL, A, AREA, ,9 ASEL, A, AREA, ,10 ASEL, A, AREA, ,11 ASEL, A, AREA, 12 NSLA,S,0 NSEL,R,LOC,Y,0,5000 *GET,NCOUNT,NODE,0,COUNT F,ALL,FZ,A1/NCOUNT !Applying wind load parallel to Z Direction between 5-10m !_____ _____ ASEL,S,AREA,,7 ASEL, A, AREA, 8 ASEL, A, AREA, 9 ASEL, A, AREA, 10 ASEL, A, AREA, 11 ASEL, A, AREA, 12 NSLA,S,0 NSEL,R,LOC,Y,5001,10000 *GET,Ncnt,NODE,0,COUNT F,ALL,FZ,A2/Ncnt !_____ _____ Applying wind load parallel to Z Direction between 10-15m !_____

ASEL,S,AREA,,7 ASEL,A,AREA,,8 ASEL,A,AREA,,9 ASEL,A,AREA,,10 ASEL,A,AREA,,11 ASEL,A,AREA,,12 NSLA,S,0 NSEL,R,LOC,Y,10001,15000 *GET,Ncnt,NODE,0,COUNT F,ALL,FZ,A3/Ncnt

Applying wind load parallel to Z Direction between 15-20m

ASEL,S,AREA,,7 ASEL,A,AREA,,8 ASEL,A,AREA,,9 ASEL,A,AREA,,10 ASEL,A,AREA,,11 ASEL,A,AREA,,12 NSLA,S,0 NSEL,R,LOC,Y,15001,20000 *GET,Ncnt,NODE,0,COUNT F,ALL,FZ,A4/Ncnt

!_____

!-----

!Applying wind load parallel to Z Direction between 20-H m

ASEL,S,AREA,,7 ASEL,A,AREA,,8 ASEL,A,AREA,,9 ASEL,A,AREA,,10 ASEL,A,AREA,,11 ASEL,A,AREA,,12 NSLA,S,0 NSEL,R,LOC,Y,20001,H *GET,Ncnt,NODE,0,COUNT F,ALL,FZ,A5/Ncnt

!==

!Applying Rotor Load at the top of Tower

NSEL,S,LOC,Y,H *GET,Ncnt,NODE,0,COUNT FYAV=FYY/Ncnt F,ALL,FY,FYAV NSEL,ALL ! !MX IN TERM OF COUPLE MOMENT FMX=MXX/(RT*2) !MY IN TERM OF COUPLE MOMENT FMY=MYY/(RT*4)

!MZ IN TERM OF COUPLE MOMENT FMZ=MZZ/(RT*2)

KSEL,S,,,12 FK,ALL,FX,FMY FK,ALL,FY,-FMX FK,ALL,FZ,FZZ/4 KSEL,ALL

KSEL,S,,,24 FK,ALL,FX,-FMY FK,ALL,FY,FMX FK,ALL,FZ,FZZ/4 KSEL,ALL

KSEL,S,,,6 FK,ALL,FZ,FMY FK,ALL,FY,-FMZ KSEL,ALL

KSEL,S,,,18 FK,ALL,FZ,-FMY FK,ALL,FY,FMZ KSEL,ALL

KSEL,S,,,46 FK,ALL,FZ,FZZ/4 KSEL,ALL

KSEL,S,,,34 FK,ALL,FZ,FZZ/4 KSEL,ALL

LSWRITE,1 LSSOLVE,1 SAVE FINISH

Appendix B7

Maple codes for the integration of analytical solution of deflection determination for the

proposed section.

with(Student[Calculus1]):

 $Ix := 7.1864x^2 + 214637x + 3e09;$

$$7.1864x^2 + 214637x + 3.10^9$$

$$vI := \int \left(-\frac{p \cdot x}{E \cdot Ix} \right) dx;$$

$$-\frac{1}{E} \left(0.06957586552p \ln(8983.x^2 + 2.6829625010^8 x + 3.7500000010^{12}) \right) + \frac{0.1490233787p \arctan(0.00007171377514x + 1.070941609)}{E}$$

 $v2 := \int (v1 + 0.2828513450) dx;$

$$-\frac{1}{E} (0.06957586552p \ x \ln(8983.x^2 + 2.6829625010^8 \ x + 3.7500000010^{12})) + \frac{0.1391517310p \ x}{E} \\ -\frac{1}{E} (1039.015018p \ln(8983.x^2 + 2.6829625010^8 \ x + 3.7500000010^{12})) \\ +\frac{285.072232p \arctan(0.0007171377514x + 1.070941609)}{E} \\ +\frac{0.1490233787p \arctan(0.00007171377514x + 1.070941609) \ x}{E} \\ -\frac{1}{E} (1039.015018p \ln(1. + (0.00007171377514x + 1.070941609) \ x) + 1.070941609^2)) + 0.2828513450x$$

uma := v2 + 4410.095885

$$-\frac{1}{E} \left(0.06957586552p \ x \ln(8983.x^2 + 2.6829625010^8 \ x + 3.7500000010^{12}) \right) + \frac{0.1391517310p \ x}{E} \\ - \frac{1}{E} \left(1039.015018p \ln(8983.x^2 + 2.6829625010^8 \ x + 3.7500000010^{12}) \right) \\ + \frac{285.072232p \arctan(0.00007171377514x + 1.070941609)}{E} \\ + \frac{0.1490233787p \arctan(0.00007171377514x + 1.070941609) \ x}{E} \\ - \frac{1}{E} \left(1039.015018p \ln(1. + (0.00007171377514x + 4410.095885) + 1.070941609^2) \right) + 0.2828513450x + 4410.095885 \\ \end{array}$$

E := 34125;

34125

5000

0

p := 5000;

x := 0;

umax := uma;

-79.655679

Appendix C1

ANSYS codes for the deflection analysis of the proposed design section.

FINISH /CLEAR /PREP7 /PBC,F,,1 /PBC,U,,1 /NERR,5,50000000 /PNUM,KP,1 /PNUM,LINE,1 /PNUM,AREA,1 /VIEW,1,3500,6000,5000

!ROTOR LOADS FYY=-6376.50!Fz N ROTOR DEAD LOAD FZZ=-8522.68 !Fx N MXX=1434.71e3 !My N.MM MYY=5319e3!Mz N.MM MZZ=0!Mx N.MM

!WIND LOAD A1=-6160.78 !0-5M HEIGHT,N A2=-5661.09 !5-10M HEIGHT,N A3=-5597.39 !10-15M HEIGHT,N A4=-5354.89 !15-20M HEIGHT,N A5=-5010.88 !20-H M HEIGHT,N

RB=650 !MM,BOTTOM RADIUS centre to centre RT=400 !MM,TOP RADIUS centre to centre IR=300 !MM,INNER RADIUS centre to centre H=24390 !MM,HEIGHT OF THE TOWER

!GEOMETRY K,1,0,0,0 K,2,0,H,0 K,3,IR,0,0 K,4,IR,H,0 K,5,RB,0,0 K,6,RT,H,0 L.3,4

L,5,6 AROTAT,2,,,,,1,2,360,8 AROTAT,1,,,,,1,2,360,8

A,3,4,6,5 A,21,22,8,7

A,23,24,10,9 A,25,26,12,11 A,27,28,14,13 A,29,30,16,15 A,31,32,18,17 A,33,34,20,19 ! **!ELEMENT TYPE** ET,1,SHELL99,,0,0,0,1,3 KEYOPT,1,11,2 ET,2,SHELL99,,0,0,0,1,3 KEYOPT,2,11,1 ET,3,SHELL99,,0,0,0,1,3 **!REAL CONSTANT** t=1.25 R,1,12,0 RMORE, RMORE,1,0,t,1,90,t RMORE,1,90,t,1,90,t RMORE,1,90,t,1,90,t RMORE,1,90,t,1,90,t RMORE,1,90,t,1,90,t RMORE,1,90,t,1,0,t R,2,6,0 RMORE, RMORE,1,0,t,1,90,t RMORE,1,90,t,1,90,t RMORE,1,90,t,1,0,t R,3,6,0 RMORE, RMORE,1,0,t,1,90,t RMORE,1,90,t,1,90,t RMORE,1,90,t,1,0,t **!MATERIAL PROPERTIES** MP,EX,1,34125 !N/MM^2 (MPA) MP,EY,1,6852 !N/MM^2 (MPA) MP,EZ,1,6852 MP,GXY,1,3330 !N/MM^2 (MPA) MP,GYZ,1,3330 MP,GXZ,1,3330 MP,PRXY,1,0.2865

MP,PRYZ,1,0.2865

MP,PRXZ,1,0.2865 MP,DENS,1,2.005E-9 !ton/MM^3

!MATERIAL PROPERTIES MP,EX,2,34125 !N/MM^2 (MPA) MP,EY,2,6852 !N/MM^2 (MPA) MP,EZ,2,6852 MP,GXY,2,3330 !N/MM^2 (MPA) MP,GYZ,2,3330 MP,GXZ,2,3330 MP,PRXY,2,0.2865 MP,PRYZ,2,0.2865 MP,PRXZ,2,0.2865 MP,PRXZ,2,0.05E-9 !ton/MM^3

!MASHING CONTROL LSEL,S,LOC,Y,H/2 LESIZE,ALL,,,40,1 LSEL,ALL ! ESIZE,0,2 ASEL,S,AREA,,1,1,1 !INNER AATT,1,1,1 AMESH,ALL ASEL,ALL

ESIZE,0,2 ASEL,S,AREA,,3,3,1 !INNER AATT,1,1,1 AMESH,ALL ASEL,ALL

ESIZE,0,2 ASEL,S,AREA,,5,5,1 !INNER AATT,1,1,1 AMESH,ALL ASEL,ALL

ESIZE,0,2 ASEL,S,AREA,,7,7,1 !INNER AATT,1,1,1 AMESH,ALL ASEL,ALL

ESIZE,0,2 ASEL,S,AREA,,2,2,1 !INNER AATT,2,2,1

AMESH,ALL ASEL,ALL ESIZE,0,2 ASEL,S,AREA,,4,4,1 !INNER AATT,2,2,1 AMESH,ALL ASEL,ALL ESIZE,0,2 ASEL,S,AREA,,6,6,1 !INNER AATT,2,2,1 AMESH,ALL ASEL,ALL ESIZE,0,2 ASEL,S,AREA,,8,8,1 !INNER AATT,2,2,1 AMESH,ALL ASEL,ALL ESIZE,0,3 ASEL,S,AREA,,9,9,1 !OUTER AATT,2,2,2 AMESH,ALL ASEL,ALL ESIZE,0,3 ASEL,S,AREA,,11,11,1 !OUTER AATT,2,2,2 AMESH,ALL ASEL,ALL ESIZE,0,3 ASEL,S,AREA,,13,13,1 !OUTER AATT,2,2,2 AMESH,ALL ASEL,ALL ESIZE,0,3 ASEL,S,AREA,,15,15,1 !OUTER AATT.2.2.2 AMESH,ALL ASEL,ALL ESIZE,0,3

ASEL,S,AREA,,10,10,1 !OUTER AATT,1,1,2

AMESH,ALL ASEL,ALL ESIZE,0,3 ASEL,S,AREA,,12,12,1 !OUTER AATT,1,1,2 AMESH,ALL ASEL,ALL ESIZE,0,3 ASEL,S,AREA,,14,14,1 !OUTER AATT,1,1,2 AMESH,ALL ASEL,ALL ESIZE,0,3 ASEL,S,AREA,,16,16,1 !OUTER AATT.1.1.2 AMESH,ALL ASEL,ALL ! ESIZE,0,3 ASEL,S,AREA,,17,24,1 !STIFFENER AATT,2,3,3 AMESH,ALL ASEL,ALL **!ANALYSIS** /SOLU /TITLE, DESIGN OF 8-CELL 24.39 M GFRP WIND TURBINE TOWER ANTYPE, STATIC NLGEOM,ON AUTOTS,ON SSTIF,ON NSUBST,2,500,2,ON NROPT,AUTO NEQIT,20 CNVTOL,F,,0.001,,1 CNVTOL,M,,0.001,,1 CNVTOL,U,,0.04,,0 TIME,8000 **BOUNDARY CONDITIONS** NSEL,S,LOC,Y,0 D,ALL,UZ,0,0,,,UX,UY,ROTX,ROTY,ROTZ NSEL,ALL !_____ **!**Applying Gravity

 !Applying wind load parallel to Z Direction between 0-5m

ASEL,S,AREA,,5 ASEL,A,AREA,,6 ASEL,A,AREA,,7 ASEL,A,AREA,,8 NSLA,S,0 NSEL,R,LOC,Y,0,5000 *GET,NCOUNT,NODE,0,COUNT F,ALL,FZ,A1/NCOUNT

!======

!==

1_

!-----

!Applying wind load parallel to Z Direction between 5-10m

ASEL,S,AREA,,5 ASEL,A,AREA,,6 ASEL,A,AREA,,7 ASEL,A,AREA,,8 NSLA,S,0 NSEL,R,LOC,Y,5001,10000 *GET,Ncnt,NODE,0,COUNT F,ALL,FZ,A2/Ncnt

!Applying wind load parallel to Z Direction between 10-15m

ASEL,S,AREA,,5 ASEL,A,AREA,,6 ASEL,A,AREA,,7 ASEL,A,AREA,,8 NSLA,S,0 NSEL,R,LOC,Y,10001,15000 *GET,Ncnt,NODE,0,COUNT F,ALL,FZ,A3/Ncnt

!-----

Applying wind load parallel to Z Direction between 15-20m

ASEL,S,AREA,,5 ASEL,A,AREA,,6 ASEL,A,AREA,,7 ASEL,A,AREA,,8 NSLA,S,0 NSEL,R,LOC,Y,15001,20000 *GET,Ncnt,NODE,0,COUNT F,ALL,FZ,A4/Ncnt

!Applying wind load parallel to Z Direction between 20-H m

!_____

ASEL,S,AREA,,5

ASEL,A,AREA,,6 ASEL,A,AREA,,7 ASEL,A,AREA,,8 NSLA,S,0 NSEL,R,LOC,Y,20001,H *GET,Ncnt,NODE,0,COUNT F,ALL,FZ,A5/Ncnt

!Applying Rotor Load at the top of Tower

FMY=MYY/(RT*4)

!MZ IN TERM OF COUPLE MOMENT FMZ=MZZ/(RT*2) KSEL,S,,,10 FK,ALL,FX,FMY FK,ALL,FY,-FMX FK,ALL,FZ,FZZ/4 KSEL,ALL

KSEL,S,,,18 FK,ALL,FX,-FMY FK,ALL,FY,FMX FK,ALL,FZ,FZZ/4 KSEL,ALL

KSEL,S,,,6 FK,ALL,FZ,FMY FK,ALL,FY,-FMZ KSEL,ALL

KSEL,S,,,14 FK,ALL,FZ,-FMY FK,ALL,FY,FMZ KSEL,ALL

KSEL,S,,,32

FK,ALL,FZ,FZZ/4 KSEL,ALL KSEL,S,,,24 FK,ALL,FZ,FZZ/4 KSEL,ALL LSWRITE,1 LSSOLVE,1 SAVE FINISH
Appendix C2

ANSYS codes for the stress analysis of the proposed section.

FINISH /CLEAR /PREP7 /PBC,F,1 /PBC,U,1 /NERR,5,50000000 /PNUM,KP,1 /PNUM,LINE,1 /PNUM,AREA,1 /VIEW,1,3500,6000,5000

!ROTOR LOADS FYY=-7014.15!Fz N ROTOR DEAD LOAD FZZ=-8522.68 !Fx N MXX=1578.18e3 !My N.MM MYY=5319e3!Mz N.MM MZZ=0!Mx N.MM

!WIND LOAD A1=-9241.17 !0-5M HEIGHT,N A2=-8491.63 !5-10M HEIGHT,N A3=-8396.08 !10-15M HEIGHT,N A4=-8032.33 !15-20M HEIGHT,N A5=-7516.33 !20-H M HEIGHT,N

RB=650 !MM,BOTTOM RADIUS RT=400 !MM,TOP RADIUS IR=300 !MM,INNER RADIUS H=24390 !MM,HEIGHT OF THE TOWER

K,1,0,0,0 K,2,0,H,0 K,3,IR,0,0 K,4,IR,H,0 K,5,RB,0,0 K,6,RT,H,0 L,3,4 L,5,6 AROTAT,2,,,,,1,2,360,8 AROTAT,1,,,,,1,2,360,8

A,3,4,6,5 A,21,22,8,7 A,23,24,10,9

!GEOMETRY

A,25,26,12,11 A,27,28,14,13 A,29,30,16,15 A,31,32,18,17 A,33,34,20,19 ! **!ELEMENT TYPE** ET,1,SHELL99,,0,0,0,1,3 KEYOPT,1,11,2 ET,2,SHELL99,,0,0,0,1,3 KEYOPT,2,11,1 ET,3,SHELL99,,0,0,0,1,3 **!REAL CONSTANT** t=1.25 R,1,12,0 RMORE, RMORE,1,0,t,1,90,t RMORE,1,90,t,1,90,t RMORE,1,90,t,1,90,t RMORE,1,90,t,1,90,t RMORE,1,90,t,1,90,t RMORE,1,90,t,1,0,t R,2,6,0 RMORE, RMORE,1,0,t,1,90,t RMORE,1,90,t,1,90,t RMORE,1,90,t,1,0,t **!MATERIAL PROPERTIES** MP,EX,1,34125 !N/MM^2 (MPA) MP,EY,1,6852 !N/MM^2 (MPA) MP,EZ,1,6852 MP,GXY,1,3330 !N/MM^2 (MPA) MP,GYZ,1,3330 MP,GXZ,1,3330 MP,PRXY,1,0.2865 MP,PRYZ,1,0.2865 MP,PRXZ,1,0.2865 MP, DENS, 1, 2.005E-9 !ton/MM^3 **!MATERIAL PROPERTIES**

MATERIAL PROPERTIES MP,EX,2,34125 !N/MM^2 (MPA) MP,EY,2,6852 !N/MM^2 (MPA) MP,EZ,2,6852 MP,GXY,2,3330 !N/MM^2 (MPA) MP,GYZ,2,3330 MP,GXZ,2,3330 MP,PRXY,2,0.2865 MP,PRYZ,2,0.2865 MP,PRXZ,2,0.2865 MP,DENS,2,2.005E-9 !ton/MM^3

!MASHING CONTROL ESHAPE,2,0 LSEL,S,LOC,Y,H/2 LESIZE,ALL,,,40,1 LSEL,ALL ! ESIZE,0,2 ASEL,S,AREA,,1,1,1 !INNER AATT,1,1,1 AMESH,ALL ASEL,ALL

ESIZE,0,2 ASEL,S,AREA,,3,3,1 !INNER AATT,1,1,1 AMESH,ALL ASEL,ALL

ESIZE,0,2 ASEL,S,AREA,,5,5,1 !INNER AATT,1,1,1 AMESH,ALL ASEL,ALL

ESIZE,0,2 ASEL,S,AREA,,7,7,1 !INNER AATT,1,1,1 AMESH,ALL ASEL,ALL

ESIZE,0,2 ASEL,S,AREA,,2,2,1 !INNER AATT,2,2,1 AMESH,ALL ASEL,ALL

ESIZE,0,2 ASEL,S,AREA,,4,4,1 !INNER AATT,2,2,1 AMESH,ALL

ASEL,ALL ESIZE,0,2 ASEL,S,AREA,,6,6,1 !INNER AATT,2,2,1 AMESH,ALL ASEL,ALL ESIZE,0,2 ASEL,S,AREA,,8,8,1 !INNER AATT,2,2,1 AMESH,ALL ASEL,ALL ESIZE,0,3 ASEL,S,AREA,,9,9,1 !OUTER AATT,2,2,2 AMESH,ALL ASEL,ALL ESIZE,0,3 ASEL,S,AREA,,11,11,1 !OUTER AATT,2,2,2 AMESH,ALL ASEL,ALL ESIZE,0,3 ASEL,S,AREA,,13,13,1 !OUTER AATT,2,2,2 AMESH,ALL ASEL,ALL ESIZE,0,3 ASEL,S,AREA,,15,15,1 !OUTER AATT,2,2,2 AMESH,ALL ASEL,ALL ESIZE,0,3 ASEL,S,AREA,,10,10,1 !OUTER AATT,1,1,2 AMESH,ALL ASEL,ALL ESIZE,0,3 ASEL,S,AREA,,12,12,1 !OUTER AATT,1,1,2 AMESH,ALL ASEL,ALL

ESIZE,0,3 ASEL,S,AREA,,14,14,1 !OUTER AATT,1,1,2 AMESH,ALL ASEL,ALL ESIZE,0,3 ASEL,S,AREA,,16,16,1 !OUTER AATT,1,1,2 AMESH,ALL ASEL,ALL 1 ESIZE,0,3 ASEL,S,AREA,,17,24,1 !STIFFENER AATT.2.2.3 AMESH.ALL ASEL, ALL **!ANALYSIS** /SOLU /TITLE, DESIGN OF 8-CELL 24.39 M GFRP WIND TURBINE TOWER ANTYPE,STATIC NLGEOM,ON AUTOTS,ON SSTIF,ON NSUBST,2,500,2,ON NROPT,AUTO NEQIT,20 CNVTOL,F,,0.001,,1 CNVTOL,M,,0.001,,1 CNVTOL,U,,0.04,,0 TIME,8000 **!BOUNDARY CONDITIONS** NSEL,S,LOC,Y,0 D,ALL,UZ,0,0,,,UX,UY,ROTX,ROTY,ROTZ NSEL,ALL !_____ **!**Applying Gravity ACEL,,9800 !______ Applying wind load parallel to Z Direction between 0-5m !______ ASEL,S,AREA,,5 ASEL,A,AREA,,6 ASEL, A, AREA, ,7 ASEL,A,AREA,,8 NSLA,S,0

NSEL,R,LOC,Y,0,5000 *GET,NCOUNT,NODE,0,COUNT F,ALL,FZ,A1/NCOUNT

!_____

Applying wind load parallel to Z Direction between 5-10m

ASEL,S,AREA,,5 ASEL,A,AREA,,6 ASEL,A,AREA,,7 ASEL,A,AREA,,8 NSLA,S,0 NSEL,R,LOC,Y,5001,10000 *GET,Ncnt,NODE,0,COUNT F,ALL,FZ,A2/Ncnt

!Applying wind load parallel to Z Direction between 10-15m

ASEL,S,AREA,,5 ASEL,A,AREA,,6 ASEL,A,AREA,,7 ASEL,A,AREA,,8 NSLA,S,0 NSEL,R,LOC,Y,10001,15000 *GET,Ncnt,NODE,0,COUNT F,ALL,FZ,A3/Ncnt

Applying wind load parallel to Z Direction between 15-20m

!_____

ASEL,S,AREA,,5 ASEL,A,AREA,,6 ASEL,A,AREA,,7 ASEL,A,AREA,,8 NSLA,S,0 NSEL,R,LOC,Y,15001,20000 *GET,Ncnt,NODE,0,COUNT F,ALL,FZ,A4/Ncnt

!==========

Applying wind load parallel to Z Direction between 20-H m

!______

ASEL,S,AREA,,5 ASEL,A,AREA,,6 ASEL,A,AREA,,7 ASEL,A,AREA,,8 NSLA,S,0 NSEL,R,LOC,Y,20001,H *GET,Ncnt,NODE,0,COUNT F,ALL,FZ,A5/Ncnt !Applying Rotor Load at the top of Tower

!====== ------NSEL,S,LOC,Y,H *GET,Ncnt,NODE,0,COUNT FYAV=FYY/Ncnt F,ALL,FY,FYAV NSEL,ALL ! **!MX IN TERM OF COUPLE MOMENT** FMX=MXX/(RT*2) **!MY IN TERM OF COUPLE MOMENT** FMY=MYY/(RT*4) **!MZ IN TERM OF COUPLE MOMENT** FMZ=MZZ/(RT*2)KSEL,S,,,10 FK,ALL,FX,FMY FK,ALL,FY,-FMX FK, ALL, FZ, FZZ/4 KSEL,ALL KSEL,S,,,18 FK,ALL,FX,-FMY FK,ALL,FY,FMX FK, ALL, FZ, FZZ/4 KSEL,ALL KSEL,S,,,6 FK,ALL,FZ,FMY FK,ALL,FY,-FMZ KSEL,ALL KSEL,S...14 FK,ALL,FZ,-FMY FK,ALL,FY,FMZ KSEL,ALL KSEL,S,,,32 FK, ALL, FZ, FZZ/4 KSEL,ALL KSEL, S, ., 24 FK, ALL, FZ, FZZ/4 KSEL,ALL LSWRITE,1 LSSOLVE,1 **SAVE** FINISH/POST1 RSYS,SOLU FC,1,s,xten,587.46 FC,1,s,xcmp,-267.15 FC,1,s,yten,21.27

FC,1,s,ycmp,-71.05 FC,1,s,zten,1E6 FC,1,s,xy,27.20 FC,1,s,yz,1E6 FC,1,s,xz,1E6 FC,1,s,XYCP,-1 FC,1,s,YZCP,-1 FC,1,s,XZCP,-1 FC,2,s,xten,587.46 FC,2,s,xcmp,-267.15 FC,2,s,yten,21.27 FC,2,s,ycmp,-71.05 FC,2,s,zten,1E6 FC,2,s,xy,27.20 FC,2,s,yz,1E6 FC,2,s,xz,1E6 FC,2,s,XYCP,-1 FC,2,s,YZCP,-1 FC,1,s,XZCP,-1 FINISH

Appendix C3

ANSYS codes for the Free Vibration analysis of the proposed Tower

FINISH /CLEAR /PREP7 /PBC,F,,1 /PBC,U,,1 /NERR,5,50000000 /PNUM,KP,1 /PNUM,LINE,1 /PNUM,AREA,1 /VIEW,1,3500,6000,5000 RB=650 RT=400 IR=300 H=24390 **!GEOMETRY** K,1,0,0,0 K,2,0,H,0 K,3,IR,0,0 K,4,IR,H,0 K,5,RB,0,0 K,6,RT,H,0 L,3,4 L,5,6 AROTAT,2,,,,,1,2,360,8 AROTAT,1,,,,,1,2,360,8 A,3,4,6,5 A,21,22,8,7 A,23,24,10,9 A,25,26,12,11 A,27,28,14,13 A,29,30,16,15 A,31,32,18,17 A,33,34,20,19 K,10000,IR,H,1027 K,10001,-IR,H,1027 K,10002,IR,H+100,1027 K,10003,-IR,H+100,1027 A,28,4,20,16 A,10001,16,20,10000 A,10000,10001,10003,10002 **!ELEMENT TYPE**

ET,1,SHELL99,,0,0,0,1,3 KEYOPT,1,11,2 ET,2,SHELL99,,0,0,0,1,3 KEYOPT,2,11,1 ET,3,SHELL99,,0,0,0,1,3 **!REAL CONSTANT** t=1.25 R,1,12,0 RMORE, RMORE,1,0,t,1,90,t RMORE,1,90,t,1,90,t RMORE,1,90,t,1,90,t RMORE,1,90,t,1,90,t RMORE,1,90,t,1,90,t RMORE,1,90,t,1,0,t R,2,6,0 RMORE. RMORE,1,0,t,1,90,t RMORE,1,90,t,1,90,t RMORE,1,90,t,1,0,t R,3,1,0 RMORE, RMORE, 3, 90, 133.39 R,4,1,0 RMORE. RMORE,4,90,152.66 **!MATERIAL PROPERTIES** MP,EX,1,34125 !N/MM^2 (MPA) MP,EY,1,6852 !N/MM^2 (MPA) MP,EZ,1,6852 MP,GXY,1,3330 !N/MM^2 (MPA) MP,GYZ,1,3330 MP,GXZ,1,3330 MP,PRXY,1,0.2865 MP,PRYZ,1,0.2865 MP,PRXZ,1,0.2865 MP,DENS,1,2.005E-9 !ton/MM^3 **!MATERIAL PROPERTIES**

MATEKIAL PROPERTIES MP,EX,2,34125 !N/MM^2 (MPA) MP,EY,2,6852 !N/MM^2 (MPA) MP,EZ,2,6852 MP,GXY,2,3330 !N/MM^2 (MPA) MP,GYZ,2,3330 MP,GXZ,2,3330 MP,PRXY,2,0.2865 MP,PRYZ,2,0.2865 MP,PRXZ,2,0.2865 MP,DENS,2,2.005E-9 !ton/MM^3

MP,EX,3,200000 ! Young's Modulus MP,PRXY,3,0.3 ! Poisson's ratio MP,DENS,3,7.86e-9!ton/MM^3

!MASHING CONTROL ESHAPE,2,0 LSEL,S,LOC,Y,H/2 LESIZE,ALL,,,40,1 LSEL,ALL ! ESIZE,0,2 ASEL,S,AREA,,1,1,1 !INNER AATT,1,1,1 AMESH,ALL ASEL,ALL

ESIZE,0,2 ASEL,S,AREA,,3,3,1 !INNER AATT,1,1,1 AMESH,ALL ASEL,ALL

ESIZE,0,2 ASEL,S,AREA,,5,5,1 !INNER AATT,1,1,1 AMESH,ALL ASEL,ALL

ESIZE,0,2 ASEL,S,AREA,,7,7,1 !INNER AATT,1,1,1 AMESH,ALL ASEL,ALL

ESIZE,0,2 ASEL,S,AREA,,2,2,1 !INNER AATT,2,2,1 AMESH,ALL ASEL,ALL

ESIZE,0,2 ASEL,S,AREA,,4,4,1 !INNER

AATT,2,2,1 AMESH,ALL ASEL,ALL ESIZE,0,2 ASEL,S,AREA,,6,6,1 !INNER AATT,2,2,1 AMESH,ALL ASEL,ALL ESIZE,0,2 ASEL,S,AREA,,8,8,1 !INNER AATT,2,2,1 AMESH,ALL ASEL,ALL ESIZE,0,3 ASEL,S,AREA,,9,9,1 !OUTER AATT,2,2,2 AMESH,ALL ASEL,ALL ESIZE,0,3 ASEL,S,AREA,,11,11,1 !OUTER AATT,2,2,2 AMESH,ALL ASEL,ALL ESIZE,0,3 ASEL, S, AREA, 13, 13, 1 !OUTER AATT,2,2,2 AMESH,ALL ASEL,ALL ESIZE,0,3 ASEL,S,AREA,,15,15,1 !OUTER AATT,2,2,2 AMESH,ALL ASEL,ALL ESIZE,0,3 ASEL,S,AREA,,10,10,1 !OUTER AATT,1,1,2 AMESH,ALL ASEL,ALL ESIZE,0,3 ASEL,S,AREA,,12,12,1 !OUTER AATT,1,1,2

AMESH,ALL ASEL,ALL ESIZE,0,3 ASEL,S,AREA,,14,14,1 !OUTER AATT,1,1,2 AMESH,ALL ASEL,ALL ESIZE,0,3 ASEL,S,AREA,,16,16,1 !OUTER AATT,1,1,2 AMESH,ALL ASEL,ALL ! ESIZE,0,3 ASEL,S,AREA,,17,24,1 !STIFFENER AATT,2,2,3 AMESH,ALL ASEL,ALL ESIZE,0,3 ASEL,S,AREA,,25,25,1 !Nacelle Mass part 1 AATT,3,3,1 AMESH,ALL ASEL,ALL ESIZE,0,3 ASEL,S,AREA,,26,26,1 !Nacelle Mass part 2 AATT.3.3.1 AMESH,ALL ASEL,ALL ESIZE,0,1 ASEL,S,AREA,,27,27,1 !Blade Mass AATT,3,3,1 AMESH,ALL ASEL,ALL **FINISH** /SOLU /TITLE, MODAL ANALYSIS OF 8-CELL 24.39 M GFRP WIND TURBINE TOWER ANTYPE,2 ! Modal analysis

ANTYPE,2! Modal analysisMODOPT,SUBSP,10! Subspace, 10 modesEQSLV,FRONT! Frontal solverMXPAND,10! Expand 10 modes

!BOUNDARY CONDITIONS

NSEL,S,LOC,Y,0 D,ALL,UZ,0,0,,,UX,UY,ROTX,ROTY,ROTZ NSEL,ALL

SAVE SOLVE FINISH

/POST1 SET,LIST ! List solutions

SET,FIRST PLDISP

! Display first mode shape

Appendix C4

ANSYS codes for the Eigen Buckling analysis of the proposed design section.

FINISH /CLEAR /PREP7 /PBC,F,,1 /PBC,U,,1 /NERR,5,50000000 /PNUM,KP,1 /PNUM,LINE,1 /PNUM,AREA,1 /VIEW,1,3500,6000,5000 FYY=-1 RB=650 RT=400 IR=300 H=24390 **!GEOMETRY** K,1,0,0,0 K,2,0,H,0 K,3,IR,0,0 K,4,IR,H,0 K,5,RB,0,0 K,6,RT,H,0 L,3,4 L,5,6 AROTAT,2,,,,,1,2,360,8 AROTAT,1,,,,,1,2,360,8 A,3,4,6,5 A,21,22,8,7 A,23,24,10,9 A,25,26,12,11 A,27,28,14,13 A,29,30,16,15 A,31,32,18,17 A,33,34,20,19 ! **!ELEMENT TYPE** ET,1,SHELL99,,0,0,0,1,3 KEYOPT,1,11,2 ET,2,SHELL99,,0,0,0,1,3 KEYOPT,2,11,1 ET,3,SHELL99,,0,0,0,1,3 **!REAL CONSTANT** t=1.25 R,1,12,0 RMORE, RMORE,1,0,t,1,90,t RMORE,1,90,t,1,90,t RMORE,1,90,t,1,90,t RMORE,1,90,t,1,90,t RMORE,1,90,t,1,90,t RMORE,1,90,t,1,0,t R,2,6,0 RMORE, RMORE,1,0,t,1,90,t RMORE,1,90,t,1,90,t RMORE,1,90,t,1,0,t R,3,6,0 RMORE, RMORE,1,0,t,1,90,t RMORE,1,90,t,1,90,t RMORE,1,90,t,1,0,t **!MATERIAL PROPERTIES** MP,EX,1,34125 !N/MM^2 (MPA) MP,EY,1,6852 !N/MM^2 (MPA) MP,EZ,1,6852 MP,GXY,1,3330 !N/MM^2 (MPA) MP,GYZ,1,3330 MP,GXZ,1,3330 MP,PRXY,1,0.2865 MP,PRYZ,1,0.2865 MP,PRXZ,1,0.2865 MP, DENS, 1, 2.005E-9 !ton/MM^3 **!MATERIAL PROPERTIES** MP,EX,2,34125 !N/MM^2 (MPA) MP,EY,2,6852 !N/MM^2 (MPA) MP,EZ,2,6852 MP,GXY,2,3330 !N/MM^2 (MPA) MP,GYZ,2,3330 MP,GXZ,2,3330 MP,PRXY,2,0.2865 MP,PRYZ,2,0.2865 MP,PRXZ,2,0.2865 MP,DENS,2,2.005E-9 !ton/MM^3

!MASHING CONTROL

LSEL,S,LOC,Y,H/2 LESIZE,ALL,,,40,1 LSEL,ALL ! ESIZE,0,2 ASEL,S,AREA,,1,1,1 !INNER AATT,1,1,1 AMESH,ALL ASEL,ALL

ESIZE,0,2 ASEL,S,AREA,,3,3,1 !INNER AATT,1,1,1 AMESH,ALL ASEL,ALL

ESIZE,0,2 ASEL,S,AREA,,5,5,1 !INNER AATT,1,1,1 AMESH,ALL ASEL,ALL

ESIZE,0,2 ASEL,S,AREA,,7,7,1 !INNER AATT,1,1,1 AMESH,ALL ASEL,ALL

ESIZE,0,2 ASEL,S,AREA,,2,2,1 !INNER AATT,2,2,1 AMESH,ALL ASEL,ALL

ESIZE,0,2 ASEL,S,AREA,,4,4,1 !INNER AATT,2,2,1 AMESH,ALL ASEL,ALL

ESIZE,0,2 ASEL,S,AREA,,6,6,1 !INNER AATT,2,2,1 AMESH,ALL ASEL,ALL

ESIZE,0,2 ASEL,S,AREA,,8,8,1 !INNER AATT,2,2,1 AMESH,ALL ASEL,ALL ESIZE,0,3 ASEL,S,AREA,,9,9,1 !OUTER AATT,2,2,2 AMESH,ALL ASEL,ALL ESIZE,0,3 ASEL,S,AREA,,11,11,1 !OUTER AATT,2,2,2 AMESH,ALL ASEL,ALL ESIZE,0,3 ASEL,S,AREA,,13,13,1 !OUTER AATT,2,2,2 AMESH,ALL ASEL,ALL ESIZE,0,3 ASEL,S,AREA,,15,15,1 !OUTER AATT,2,2,2 AMESH,ALL ASEL, ALL ESIZE,0,3 ASEL,S,AREA,,10,10,1 !OUTER AATT,1,1,2 AMESH,ALL ASEL,ALL ESIZE,0,3 ASEL,S,AREA,,12,12,1 !OUTER AATT,1,1,2 AMESH,ALL ASEL,ALL ESIZE,0,3 ASEL,S,AREA,,14,14,1 !OUTER AATT,1,1,2 AMESH,ALL ASEL,ALL ESIZE,0,3 ASEL,S,AREA,,16,16,1 !OUTER AATT,1,1,2 AMESH,ALL ASEL,ALL ! ESIZE,0,3 ASEL,S,AREA,,17,24,1 !STIFFENER AATT,2,3,3 AMESH,ALL ASEL,ALL

FINISH /SOLU

! Enter the solution mode

/TITLE, EIGENVALUE BUCKLING ANALYSIS OF 8-CELL 24.39 M GFRP WIND **TURBINE TOWER** ANTYPE, STATIC PSTRES,ON **BOUNDARY CONDITIONS** NSEL,S,LOC,Y,0 D,ALL,UZ,0,0,,,UX,UY,ROTX,ROTY,ROTZ NSEL,ALL NSEL,S,LOC,Y,H *GET,Ncnt,NODE,0,COUNT FYAV=FYY/Ncnt F,ALL,FY,FYAV NSEL,ALL SOLVE **FINISH** /SOLU ! Enter the solution mode again to solve buckling ! Buckling analysis ANTYPE,BUCKLE ! Buckling options - subspace, one mode BUCOPT,LANB,1 SOLVE FINISH /SOLU ! Re-enter solution mode to expand info - necessary ! An expantion pass will be performed EXPASS,ON ! Specifies the number of modes to expand MXPAND,1 SOLVE FINISH /POST1 ! Enter post-processor ! List eigenvalue solution - Time/Freq listing SET,LIST ! force required for buckling (in N for this case). ! Read in data for the desired mode SET,LAST

PLDISP ! Plots the deflected shape

Appendix C5

ANSYS codes for 24.3 m steel tower.

FINISH /CLEAR /PREP7 /PBC,F,,1 /PBC,U,,1 /NERR,5,50000000 /PNUM,KP,1 /PNUM,LINE,1 /PNUM,AREA,1 /VIEW,1,3500,6000,5000

!ROTOR LOADS FYY=-6376.50!Fz N ROTOR DEAD LOAD FZZ=-8522.68 !Fx N MXX=1434.71e3 !My N.MM MYY=5319e3!Mz N.MM MZZ=0!Mx N.MM

!WIND LOAD
A1= -3057.36
A2= -3017.38
A3= -3228.91
A4= -3374.22
A5= -3465.97
RB=310 !MM,BOTTOM RADIUS centre to centre
RT=290 !MM,TOP RADIUS centre to centre
H=24390 !MM,HEIGHT OF THE TOWER
!GEOMETRY
K,1,0,0,0
K,2,0,H,0
K,2,0,H,0
K,3,RB,0,0
K,4,RT,H,0

L,3,4

AROTAT,1,,,,,,1,2,360,4 !ELEMENT TYPE ET,1,93 !REAL CONSTANT R,1,11.25,11.25,11.25,11.25 !MATERIAL PROPERTIES MP,EX,1,200000 ! Young's Modulus MP,PRXY,1,0.3 ! Poisson's ratio MP,DENS,1,7.86e-9!ton/MM^3

!MASHING CONTROL LSEL,S,LOC,Y,H/2 LESIZE, ALL, ,,40,1 LSEL,ALL ESIZE,0,3 ASEL,S,AREA,,1,1,1 !OUTER AATT,1,1,1 AMESH,ALL ASEL,ALL ESIZE,0,3 ASEL,S,AREA,,2,2,1 !OUTER AATT,1,1,1 AMESH,ALL ASEL,ALL ESIZE,0,3 ASEL,S,AREA,,3,3,1 !OUTER AATT,1,1,1 AMESH,ALL ASEL,ALL ESIZE,0,3 ASEL,S,AREA,,4,4,1 !OUTER AATT,1,1,1 AMESH,ALL ASEL,ALL **!ANALYSIS** /SOLU /TITLE, DESIGN OF 8-CELL 24.39 M STEEL WIND TURBINE TOWER ANTYPE,STATIC NLGEOM,ON AUTOTS,ON SSTIF,ON NSUBST,2,500,2,ON NROPT,AUTO NEQIT,20 CNVTOL,F,,0.001,,1 CNVTOL,M,,0.001,,1 CNVTOL,U,,0.04,,0 TIME,8000 **!BOUNDARY CONDITIONS** NSEL,S,LOC,Y,0 D,ALL,UZ,0,0,,,UX,UY,ROTX,ROTY,ROTZ NSEL,ALL

!Applying Gravity

Applying wind load parallel to Z Direction between 0-5m

!______

ASEL,S,AREA,,3 ASEL,A,AREA,,4

NSLA,S,0 NSEL,R,LOC,Y,0,5000 *GET,NCOUNT,NODE,0,COUNT F,ALL,FZ,A1/NCOUNT

Applying wind load parallel to Z Direction between 5-10m

ASEL,S,AREA,,3 ASEL,A,AREA,,4 NSLA,S,0 NSEL,R,LOC,Y,5001,10000 *GET,Ncnt,NODE,0,COUNT F,ALL,FZ,A2/Ncnt

ASEL,S,AREA,,3 ASEL,A,AREA,,4 NSLA,S,0 NSEL,R,LOC,Y,10001,15000 *GET,Ncnt,NODE,0,COUNT F,ALL,FZ,A3/Ncnt

!-----

Applying wind load parallel to Z Direction between 15-20m

ASEL,S,AREA,,3 ASEL,A,AREA,,4 NSLA,S,0 NSEL,R,LOC,Y,15001,20000 *GET,Ncnt,NODE,0,COUNT F,ALL,FZ,A4/Ncnt

!-----

!______

Applying wind load parallel to Z Direction between 20-H m

ASEL,S,AREA,,3 ASEL,A,AREA,,4 NSLA,S,0 NSEL,R,LOC,Y,20001,H *GET,Ncnt,NODE,0,COUNT F,ALL,FZ,A5/Ncnt

!Applying Rotor Load at the top of Tower

NSEL,S,LOC,Y,H *GET,Ncnt,NODE,0,COUNT FYAV=FYY/Ncnt F,ALL,FY,FYAV NSEL,ALL ! !MX IN TERM OF COUPLE MOMENT FMX=MXX/(RT*2)

!MY IN TERM OF COUPLE MOMENT FMY=MYY/(RT*4)

!MZ IN TERM OF COUPLE MOMENT FMZ=MZZ/(RT*2)

KSEL,S,,,10 FK,ALL,FX,FMY FK,ALL,FY,-FMX FK,ALL,FZ,FZZ/2 KSEL,ALL

KSEL,S,.,6 FK,ALL,FX,-FMY FK,ALL,FY,FMX FK, ALL, FZ, FZZ/2 KSEL,ALL KSEL,S,,,4 FK,ALL,FZ,FMY FK,ALL,FY,-FMZ KSEL,ALL KSEL,S,,,8 FK,ALL,FZ,-FMY FK,ALL,FY,FMZ KSEL.ALL LSWRITE,1 LSSOLVE,1 SAVE **FINISH**