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Abstract

In this thesis, Cellular Automata methods are applied to model the scalar wave
equation in two dimensions. We consider cellular automata which conserve mass
and momentum at the particle level and thus fall under the more specific category
known as Lattice Gas Automata. Various HPP and FHP lattice gas models are
discussed and applied in the modelling of inhomogeneous media. The Fermi-Dirac
distribution for particles in a lattice gas which obeys semi-detailed balance, enables
an accurate prediction of the equilibrium conditions. This is used as a starting point
for most simulations. The Chapman-Enskog analysis provides us with a tool for
analysing the HPP and FHP lattice gases. Using this method we could derive the
macroscopic differential equation that results from the microscopic particle dynamics.
The transport coefficients in the Navier-Stokes equation (which results from the HPP
and FHP models) could be then obtained. Experimental results from simulations run
on a special-purpose cellular automata machine (CAM-8) are compared with theory.
A comparison between the two and results obtained using conventional numerical

techniques then enables an assessment of the feasibility of the lattice gas approach.
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Chapter 1

Introduction

1.1 Cellular Automata

A Cellular Automaton is a discrete dynamical system which consists of a lattice of
identical cells. The state of any cell in this lattice is determined by a rule which is
local in both space and time. Each cell has a small number of states and hence the

number of bits required for its representation is small as well.
To better illustrate this definition let us consider the lattice of cells in Figure 1.1.

Every cell within a large lattice of cells is connected to its four nearest neighbours
(North, South, East and West). The state of any cell within this lattice at a given

time is either 0 or 1. The following rule then governs the evolution of this lattice:

A cell’s state changes to the state of the majority of its neighbours. In case of
a tie (an equal number of 1’s and 0’s in neighbouring cells) the cell’s state remains

unchanged.

This rule, known as a Voting or Majority rule [1] is implemented in all cells simul-

taneously, and at every time step. It illustrates the aspect of parallelism which is a
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1 1 1 0 1 1
0 1 0 1 0 0
0 1 1 0 1 1
1 0 1 0 0 1
0 1 0 1 0 0

Figure 1.1: Two dimensional lattice of cells.

Figure 1.2: Example of voting rule.
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characteristic of every CA simulation. In other words, we could run this simulation
concurrently (and more naturally [2]) on a number of processors, each of which rep-
resents a cell. The locality both in space and time of the CA’s laws, small number of
states (2) for every cell are also illustrated and part of every CA simulation. Further-
more the CA’s laws are uniform. That is, the same rule applies to every cell within
the lattice. In Figure 1.2, the state of the cell in the centre changes from 1 to 0. The

states of the neighbouring cells are updated simultaneously (not shown).

The CA simulation then involves

e a process of communication between neighbouring processors whereby each pro-

cessor informs its neighbours of its state and

e a process of internal bit manipulation during which each processor determines

its new state based on this information.

Cellular Automata was the brainchild of John von Neumann and Slanislaw Ulam
who used it to formulate biological models of living organisms [3]. In the early 1980s,
Wolfram [4] used one-dimensional cellular automata to demonstrate the complexity
that emerges from simple microscopic rules. Ever since its introduction however, it
has been used in a number of different applications some of which include modelling
diffusion [5], semiconductor device modelling [6], generating random numbers [7] and

modelling Ising systems [8].

1.2 Lattice Gases

The term Lattice Gas refers to a discrete system of interacting particles. Its inclu-
sion under the broad umbrella of Cellular Automata is referred to as Lattice Gas

Automata. Lattice Gas Automata are implemented as a set of rules, just like any
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Cellular Automaton. The bits in a CA represent particles in the lattice gas. The
rules govern the manner in which particles interact with one another. In fluid models
when particles collide at a node on the lattice, the interaction conserves mass and
momentum. However, rules in which momentum is not necessarily conserved are also
used in physical modelling. One such rule which is used to model Burger’s Equation

is discussed in [9)].

In the rest of the chapter we shall discuss the HPP and FHP lattice gases in which
both mass and momentum are conserved. These models form the basis for most of

the experiments contained in this thesis.

1.2.1 The HPP Model

In the HPP lattice gas automaton (HPP stands for Hardy, Pazzis, Pomeau - the
creators of this model), particles are restricted to moving in the North, South, East
and West directions and occupy discrete positions (sites) on an orthogonal grid [10].
Each site on this grid can hold up to a maximum of four particles with no more than
one moving particle in each direction. A total of four bits are used to represent these

particles at each site.

Particles move in straight lines, unless a head-on, binary collision occurs after
which they travel at right-angles to the original direction of motion. All other particle
configurations remain unchanged and they simply pass through one another. The
interactions between particles conserve mass and momentum. The collision rules are
shown in Figure 1.3. The HPP rule is characterized by rotational symmetry. This
means that the rule remains unchanged when input particle configurations are rotated

by 90°. For the four bit model, we have a total of sixteen collision rules.

One step in the evolution of the LGA consists of two stages as shown in Figure 1.4

which are usually referred to as Collision and Advection. In the Collision stage parti-
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O -0 — O= <O

b b

Figure 1.3: Some examples of HPP lattice gas automata collision rules.
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cles at a site are rearranged according to the lattice gas rule. In the Advection stage

particles move to neighbouring sites.

1 1 ! 1 1
! ] N ]

PR . —wdem =
1 | [ 1 ! 1 )

! P ! (| 3 ! j
- OO~ i - - e Bl il ik bk el i s
! 1 1 1 1 1 | ! v 1 1
d__t__t_1 i 1 _ 4 1 ol
i i et i s miabriadek hubl shie DO S -- .--1‘“}*’1--'

1 1 1 1 1 1 1 1 1 1
sodrcdempmelscscodocdemimelos oodocdeeteo
1 1 & 1 1 1 é 1 I 1 1 1
e e e e e D et R R e e
1 ) 1 1 ] 1 I | ] 1 1 1
1 | 1 1 —_— ! 1 | | —_— ! 1 i i
Collision Advection

Figure 1.4: One step in the evolution of a lattice-gas dynamics.

As an example, consider a cell which might have only an East moving particle
present in it. The collision phase leaves the contents of the cell unchanged. During
the advection step, the particle is transferred to the next cell on its right. Hence the

varticle has moved one step in the East direction.

1.2.2 The FHP Model

The idea of a mass and momentum conserving lattice gas on a triangular grid with
hexagonal symmetry was presented by FHP (Frisch, Hasslacher and Pomeau) in [11).
In this model, as shown in Figure 1.5, a site holds a maximum of six particles.
Collisions occur when there are exactly two or three particles at a site, arranged as
shown in the example. When two particles collide head-on at a site, there are two
possible outcomes. Each outcome occurs with equal probability of 0.50. Modifications
to this model could be made by allowing for the creation of rest particles at sites in
the lattice [12]. In Figure 1.5, a double arrow without a number indicates that both
forward and reverse events occur with probabilities of 1.0. Similarly, a single arrow

without a number indicates that the event following the direction of the arrow occurs
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with a probability of 1.0. We shall adhere to this notation for the remainder of this

document.

In the HPP model there is an additional conserved quantity (momentum along
each horizontal and vertical line in the lattice is conserved). In the FHP model
however, there is no additional conserved quantity other than mass and momentum.
Also, as will be explained later, the viscosity in the HPP lga is anisotropic. This is

not the case in the FHP model.

1.3 CAM-8

Conventional, general-purpose, serial machines are very inefficient as far as CA sim-
ulations are concerned. The Information Mechanics Group at the MIT Laboratory
for Computer Science has been involved in the development of special-purpose ar-
chitectures for the efficient evaluation of cellular automata. The 8 module Cellular
Automata Machine, CAM-8, is their newest [13]. For CA rules with 16 bits per site,
simulations run at about 200 million site updates per second on spaces of up to 32

million sites.

The Cellular Automata Machine is actually a Lattice Gas Machine. Each step in
the operation of the machine consists of two stages [13]. A data-update stage during
which each cell’s contents are sent to the look-up table from which a new value is
sent back to the cell. A data-transfer stage during which each cell communicates with
its neighbours. The data-update and data-transfer stages correspond to the collision

and advection phases of a lattice gas step, respectively.

As an example let us consider the HPP implemented on CAM-8. We use a 4-bit
binary representation for each cell in the lattice. The presence of a “1” in bits 0, 1, 2,

3 represents a particle moving in North, South, East or West directions, respectively.
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Hexagonal lattice

s

O- - <0

e d

Figure 1.5: Example of possible FHP lattice gas collision rules.
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Figure 1.6: Update and Transfer stages in the CAM.
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If a cell’s state at time ¢ is 0011, then we have two particles, one moving North and
one South as shown in Figure 1.6. During the data-update step, the state of the cell
is referred to a look-up table and the result returned to the cell to become its new
state. In this case, 0011 would return a 1100, i.e., two particles, one moving East and
the other West. During the data-transfer step, the four bits are kicked to the four
neighbouring cells. Bit 2, for example, is moved over to the next cell on the right since
it represents an East moving particle. Bit 0 is moved to the cell to the North and
so on. This two-step process applies to every cell within the array of sites. Kicking
a bit, r steps, involves the transfer of that bit to the same bit in another cell, r cells
away. In the HPP lga for example, the West bit of each cell, during the data-transfer
stage, is kicked by -1 in the x direction. Thus, CAM-8 is well suited to the simulation
of lattice gas algorithms owing to the nature of its architecture. In actual practice,
CAM-8 does not physically move data during the advection or data-transfer stage

but uses a pointer-based relative data movement technique [14].

1.4 The Stochastic Element

Very often a Cellular Automaton uses a random variable [15] to select one of two or
more possible outcomes. In the FHP lattice gas (Figure 1.5) for example, a head-on
binary collision has two equally probable outcomes. In order to model a problem of
this kind on CAM-8, we use a probability bit. One of the bit planes is filled with
a certain percentage of 1’s. The percentage depends on the probability we want
to simulate. At each update stage then, within every cell, the rule checks to see
if this bit is set. This is in case we have two possible outputs for any input cell
configuration. In general, n bits are needed to implement a stochastic CA with a
maximum of 2" equally possible outcomes. In CAM-8 the random bits may be kicked

around (random distances) from one cell to another, thus further randomizing the
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lattice (without destroying any bits).

1.5 Macroscopic Quantities

Macroscopic quantities within a lattice gas such as density and flow can be determined
using a process of statistical averaging. A sampling window, as shown in Figure 1.7,
is created and particles are counted within this region at every iteration or step.
The HPP lattice gas automaton could be used to model the wave equation. For
small perturbations to an equilibrium background, a density perturbation behaves
according to the linear wave equation. Please see Appendix A for details on how the
Wave Equation is derived. The perturbation p, thus propagates as

2 1 6%,

= — . 1.1
p;D Cg 8t2 ( )

The microscopic density at a particular cell j will be defined as the density of particles

in the cell,

4
peen (24, Y5) = > Ni(25,5), (1.2)
i=1
where (z;,y;) indicates the location and N;(z;,y;) indicates presence of particles
moving in direction ¢ in cell 5. The latter is equivalent to counting the particles inside

the cell j.

The macroscopic density p at a particular spatial location (z,y) can be determined

by averaging the values of pe as
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where R describes a neighbourhood of cells centred around (z,y), (zr,yr) is the
location of a particular cell within R, and N7 is the total number of states within
R. For the TM or the TE cases in electromagnetics, the density perturbation p,

represents E, and H,, respectively.
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Figure 1.7: Counting particles within a square sampling window.

The individual bits of the lattice gas could be thought of as kinetic variables while
the density defined in Equation (1.3) is the hydrodynamic variable. One interesting
aspect of a CA simulation is that even though the microscopic dynamics are simple,

the macroscopic properties that emerge are sometimes very complex.
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1.6 Summary

Chapter 2 introduces the Lattice Gas Automata and presents a mathematical descrip-
tion of the rules which govern the evolution of such a system. The ideas of detailed
and semi-detailed balance and their effects on equilibria in a lattice are determined
both theoretically and experimentally. In addition, this chapter discusses various
rest particle models and introduces rules which can be used to model inhomogeneous

media.

In Chapter 3, the Chapman-Enskog method for lattice gases is presented in a
general framework. This is a summarized version of the analysis which was presented

by Boghosian and Taylor for the first time in [16].

In Chapter 4, we then apply this very elegant method to a lattice gas with rest
particles to determine parameters such as propagation speed and viscosity. The ex-

tension to similar models could then be deduced with relative ease.

In Chapter 5, results from different computational experiments carried out on
CAM-8 are presented. A comparison with results from the theoretical analysis is

made as well.

Experiments are carried out to determine whether different regions can exist in
equilibrium with one another in Chapter 6. Experiments to investigate electromag-
netic plane wave interaction with dielectric media in two dimensions are carried out

as well and results presented.

The thesis then concludes with some recommendations for further work and a
summary of the differences between the cellular automata approach and conventional

numerical techniques.



Chapter 2

Lattice Gas Automata

2.1 Introduction

The HPP lattice gas dynamics are confined to a Cartesian grid in two dimensions.
Each site has up to a maximum of four particles, one moving in each of North, South,
East and West directions. Head-on collisions cause particles to move away from the

lattice node at right-angles to their original direction of motion as shown below.

> O —+— O

With the inclusion of a rest particle [17], a site can hold five particles (four moving
particles and one stationary particle). The presence or absence of a particle at a site
is denoted by a 1 or 0. We shall consider here the case of one rest particle and later

generalize it to k rest particles.

14
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The bits of the dependent variable at each site are denoted by b;(x,t) where
1 = 1,.., N, x denotes a lattice site, and t denotes time. In our rest particle model

(N; = 5), we have

d = E}”ccos-g(j—l)—{—ﬁysing(j—l), ji=1,2,38,4

= 0, j=5. (2.1)

¢’ represents the velocity states in which particles at a site might exist. ¢ is the

characteristic lattice spacing and

2.2 Microscopic Dynamics

In what follows we let b;(x,t) represent the presence or absence of a particle (its
value being 1 or 0, respectively) in the ith velocity state at a particular site x at
time ¢. In order to write a mathematical description [18] of the microscopic dynamics
of this lattice gas, we must derive an equation for b;(x,t + At) in terms of b;(x,1).
At denotes the time step. In the case where the particles simply pass through one

another without interacting, the microscopic dynamics could be described by

bi(X+Ci,t+At) - bi(X, t) (23)

Here one bit from a cell is passed to an adjacent cell at the next time step as

shown in Figure 2.1. In this figure, a particle moving to the East and one to the West
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Figure 2.1: A non-interacting particle lattice gas.

16
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are moved over to the next cell on the right and left, respectively. Using Equation
(2.3), with ¢ = 5, ¢® = 0, and hence the particle does not advect. If we were now to
consider collisions between particles at each step, the dynamics could be described

by

bi(x + ¢t + At) = bi(x,t) + ci(b(x,1)). (2.4)

where, ¢;(b(x,t)) is the microscopic collision operator and b(x, t) is the vector of
all bits in cell x at time ¢t. Several possible collision rules could be described using
the above notation but we shall consider the 4m « 1r model. In this model, shown
below, four moving particles give rise to a rest particle of mass 4m if none existed
prior to their coming together. In addition, the reverse event might occur, i.e., the
creation of four moving particles if a rest state was occupied and there were no moving

particles present.

O —¢«— 0O «r

Furthermore, the only other collision event that occurs is a binary head-on collision.
In this case the colliding particles move away from the site at right angles to their
original direction of approach just as in the HPP. This happens with or without the

presence of a rest particle at the site.

The following set of equations then describe the dynamics of this model, where
we use the subscripts F, N,W, S, R for numbers j = 1,2,3,4,5 (Equation (2.1)),

respectively.
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be(z+4,y,t+At) = bp+cg = bp+bpbnbwbs—bpbnbwbs—brbnbwbsbr+bebnbwbsbr.
(2.5)

bN(m,y—l—E, t+At) = by+cy = bN+b35;bw?)—§—ggijmbg—bEbwabsE—!-bEbwabsbR.
(2.6)

bw(:l:—f, Y, t+At) = by +cw = bw+EbNWbs—bEEbW—I}E—bEbwabs—b_R——i—bEbwabsbR.
(2.7)

bS(CL‘, y—4, t+At) = bgtcg = bs-f—bEwaa—EEbNmbs—bEbwabs-Z)E-I*bEbwabsbR.
(2.8)

br(z,y,t+ At) =br+cgr = bg + bebnbwbsbr — bpbnDwbsbr. (2.9)

The collision details of an n-bit model could also be completely specified by a 2"
by 2" Boolean transition matrix, a, whose element a(s — §') is unity if and only if
the particles in state s always collide to yield particles in state s’. Since there is only

one incoming state for each outgoing state,

Y a(s— ) =1 (2.10)

s/
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2.3 The Ensemble Average

In what follows, the ensemble average of the quantity b;(x,t) is denoted by N¥(x,t).
That is,

Ni(x,t) = (bi(x, t)). (2.11)

It is important to note that the ensemble average value of bit 7 at position x and time

t is a real quantity while b;(x,t) is a binary value.

When we consider the collision operator in Equations (2.5)-(2.9), we encounter
the average of a product. According to the Boltzmann Molecular Chaos Assumption
(BMCA) [18], the streaming phase of the simulation decorrelates the bits at every site.
In other words we assume that colliding particles have never encountered one another
before. This approximation is reasonably accurate in three or more dimensions but
in two dimensions one must consider renormalization [16]. If we neglect correlations

then,

{bib) = (bs)(b;)- (2.12)

Also from Equation (2.4),

<bz(X+Cz,t+At)> = (i(X,t

And therefore,
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N'(x + ¢, t + At) = Ni(x,t) 4+ C;(N). (2.13)
This is known as the Lattice Boltzmann Equation. Also, the ensemble average of

a(s — &) is given by

A(s— &) = (a(s — §)). (2.14)

2.4 Semi-Detailed Balance

The semi-detailed balance criterion is used to derive the equilibrium particle con-
centrations in a lattice gas simulation. Simply stated, it checks to see if the sum of
probabilities of each input configuration that leads to a particular output configura-
tion of particles, is one. As stated in [16], a lattice gas is said to obey detailed balance

if its transition matrix satisfies

A(s — &)= A(s' — s). (2.15)

This means that the forward and reverse events are equally probable. It is said to

obéy semi-detailed balance if its transition matrix satisfies

Y A(s—s)=1. (2.16)

It is important to note the difference between the above and

Y A(s—§) =1, (2.17)

s/
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which is a statement of conservation of probability. The manner in which the above
conditions affect a lattice gas simulation will be shown in sections 2.9 and 2.10.
The boolean transition matrix for the 4m < 1r model is shown in Figure 2.2. In
this case both detailed as well as semi-detailed balance are adhered to. All possible
input particle configurations (s) are not shown in the matrix; only those involving
collisions. The remaining rules could be obtained by referring to the HPP rule in
which particles simply pass through one another unless a binary head-on collision
occurs. In the 4m «+ 1r model, the binary head-on collision occurs in the presence or
absence of a rest particle. This is denoted by an “x” in Figure 2.2. We shall continue
to use this notation to describe collision rules which do not depend on the presence
or absence of rest particles. It should be noted that collision rules are rotationally

symmetric (under 90° rotations).

2.5 Conserved Quantities

A characteristic feature of lattice gases is the presence of some form of conservation
[19]. When modelling the diffusion equation, for instance, the total number of par-
ticles in the lattice remains the same. In this situation, we have only one conserved
quantity, namely, particle mass. Mass is conserved in each collision, i.e., at the micro-
scopic level. As a result, mass is conserved macroscopically. In the case of lattice gas
fluids in 2 dimensions, we have 3 conserved quantities, viz., the total number of par-
ticles, the x-momentum and the y-momentum. The x and y momenta are conserved

at both the microscopic as well as macroscopic level.

From Equations (2.5)-(2.9) and (2.13), it follows that,

Ce+Cn+Cw+Cs+4Cgr =0. (2.18)
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a(s->s") ? O>X<-O O>?<O O>9<O
& 4
.- 0 0 0 0
X
G0 1 0 0 0
z x 0 1 0 0
O>?<O 0 0 1 0
O>9<-O 0 0 0 0
&
@ 0 0 0 1

Figure 2.2: Transition matrix for the 4m « 1r lattice gas.

22
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p=1 pu=2 pu=3
i=F 1 b4 0
i=N 1 0 v
1=W 1 —-X 0
1=5 1 0 -y
1=R 4 0 0

Table 2.1: Table for ¢¥
Cp—Cw=0. (2.19)

Cy —Cs=0. (2.20)

Where the first equation indicates the conservation of mass while the latter two
represent the conservation of momentum in the x and y directions, respectively. If

we denote the value of the uth conserved quantity at site x and at time ¢ by g*(x,t)

where,

Ny
*(x,t) =D glbs(x,t), pw=1...,n. (2.21)
i=1

ne = 3 in the 4m < 1r lattice gas. This gives us 3 equations and 5 unknowns. The

coefficients ¢!* satisfy

N
0=> g¢'c(b), p=1,...,n. (2.22)
=1

For example, from Equations (2.18)-(2.20) the values for ¢! are presented in Table 2.1.
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Then considering ensemble-averaged values of the conserved quantities,

Q*(x,t) = (¢"(x,1)) = Zqu‘Ni(x,t), p=1,...,n. (2.23)

i=]1

2.6 The Equilibrium Particle Distribution

In this section we derive the individual particle concentrations for each direction
(North, South, East, West and Rest) in terms of the coefficients, ¢, under equilibrium
conditions. Nj is the zero or lowest order equilibrium for the jth particle in the lattice.
The collision operator for each particle direction could be written in a more general
manner. If s; denotes the jth bit of state s (its value is either 0 or 1), and P(s), the

probability that that a state s exists at any site then,

Al -\ 8 -\ 1—55
P(s) = 1_11 (V)" (1-n) . (2.24)

As an example, P(01001) = P(RSWNE) is the probability that we have only one
South and one East bit present at the site under consideration. Using the notation

just stated, this could be written as

P(01001) = Nj(1— NZ)(1— NN - ND).

The ensemble averaged collision operator, C; could be written as

Ci=> A(s— (s, — ;) P(s). (2.25)

s,s’
To better illustrate this mathematical definition let us consider the HPP lattice gas in

which a binary head-on collision between a West-East pair gives a North-South pair
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of particles. In this situation A(0101 — 1010) = 1, s%, = 0 and sg = 1. The latter
two represent the states of the East bit after and before the collision, respectively.
Also the reverse is true, i.e., A(1010 — 0101) =1, sz = 1 and sg = 0. In all cases in

which collisions do not occur, (s} — s;) = 0. Cg could then be written as

Cp = NgNJ'Ny'N§ — N§NG' NY NG

The collision operator Cg then, is simply a collection of terms which state conditions
(particle configurations) which lead to the creation and removal of an East bit from

a site.

Now substituting Equation (2.24) in (2.25),

Ci = S A(s— &) (s,—s E[( 1) (1- )"

5,8’

= <H(1 - Ng)) Y A(s— &) (s — s5) H (1 iVivg) J : (2.26)

J s,s’

We assume that

M (3 2.27
- =exp(d_ oyg)). (2.27)
1 - NO ,),=1

This gives us 5 equations with 3 parameters in the 4m < 17 model. Then C; could

be rewritten as

s,s’

C; = (Hl—N7>ZAs——>s (s} — s; Hepoayq]
J
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- (H 1—N7)ZA (s— &) eXpZZaqué‘y

s,s’

= (H (1—N9) ) ZA (s — &) ;) exp Z%@ (2.28)

Q7(s) = X;47s; = Q(s'), and represents the vyth conserved quantity.

Thus,

C; = <H<1‘N1>{2AHS Jsiexp(2 Q7 (s)

7 s,8’

s,s’

-5 A= sl }
- (1:[1—]\7]){23 exp Za7Q7 Zszexp Z%QV(S }

= 0. (2.29)

Here we have made use of the semi-detailed balance and conservation of probability
criteria. Hence, stable and spatially uniform Boltzmann equilibria exist for any lattice
gas obeying semi-detailed balance. These equilibria are described by the Fermi-Dirac

distribution,

. 1
N{ = :
® 7 I+ exp(— I aqq])

j=1,...,5. (2.30)

The a, are n. arbitrary multipliers. An example of this distribution is illustrated in

the next section.
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2.7 Equilibria in the 4m < 1r Lattice Gas

In this section, we shall use Equation (2.30) to calculate the equilibrium particle
distributions for North, South, East, West and Rest particles in the 4m < 1r lattice
gas. Equilibrium particle concentrations are used as the starting point in setting up
most lattice gas experiments. Let us assume that bit 7 at a site represents the presence
of a particle of unit mass and momentum c¢’/At. The ensemble-averaged mass and

momentum densities could be written as

N, ]
p=> N=@Q° (2.31)
i=1
and
N ct
=Y —N'=Q", 2.32
u ; A7 Q (2.32)

respectively. To simplify the analysis, we use |c!| = At = 1. Hence in the case of our
lattice gas, we have ¢f = 1 for ¢ = 1,2,3,4 and ¢ = 4 for i = 5. Also, ¢ = e’ for
1=1,2,3,4 and ¢ = 0 for ¢ = 5. For an incompressible fluid, the conserved densities

are ordered [20] in the expansion parameter, € as follows.

p = po+ €pa. (2.33)

u = euy. (2.34)

Thus, the zero-order Fermi-Dirac equilibrium is found by considering only ¢” in Equa-

tion (2.30). Hence we get
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1
N, = = fm, =1,2,3,4
0 1+e @ f '
NO = i—_—{:—e—_—zg:fr, 7 = 5.

From the above two equations we get

fa
T A (I fa)t

fr

28

(2.35)

(2.36)

(2.37)

Hence, the density of the rest bit (mass = 4m) is related by a non-linear law

to the average density of the moving particles (mass = m).

We could then use

this to initialize moving and rest particles in the lattice in such a way that their

concentrations do not change with time, during an experiment. For example, if we

initialize each of North, South, East and West directions with a density z, then the

Rest position at each site must be initialized with a density y, where,

4

_ T
y_x4+(1~:1:)4'

2.8 Experimental Results

In this section we verify the theoretical results derived in previous sections for equi-

libria in lattice gas experiments. These experiments are run on CAM-8, which is a

special-purpose cellular automata machine.

2.8.1 Rest Particles of Mass 4m

The 4m < 1r experiment was set up on CAM-8. The simulation space was a rectan-

gular lattice (size 2048 x 512). The lattice was initialized with only moving particles.
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FEach direction was initialized with an equal probability, that is, there was no net flow.
Equilibrium was reached after a few steps. The particle densities were calculated by
summing the number of moving and rest particles within a sampling window and
then dividing by the size of the window (size 99 by 99).

Density of rest particles = (4f,) = SODRHE. i TP

Density of moving particles = (f,) = Lﬁ%‘gﬂmm&

This was done at every time step for 10000 iterations. Results of the simulation
are shown in Figure 2.3. The solid line represents the relationship between moving

and rest particles using Equation (2.37).

Equilibria for 1 rest particle

—— Theory
7 O Experiment

density of rest particles
1

-0.5 T — e ————————————
0 50 100 150 200 250 300 350 400 450 500 550
density per cell of moving particles (x10%)

Figure 2.3: Equilibria for 1 rest particle of mass 4m

This experiment was then modified by allowing for the existence of two rest par-

ticles at a site, as shown on the next page.
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| o0 oo

O —— O >

Results obtained are shown in Figure 2.4. Hence in the one rest particle case we
have good agreement between experimental and theoretical values. The experimental
results from the stack model, however, don’t match as closely with values obtained
using Equation (2.37). The reason for this error will be explained later in section

2.11.

Equilibria for stack of 2 rest particles
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Figure 2.4: Equilibria for 2 rest particles of mass 4m each
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2.8.2 Rest Particles of Mass 2m

Yet another variation to the HPP lattice gas automaton, which was discussed in
section 1.2.1, would be the creation of a rest particle, with twice the mass of a
moving particle. This occurs with a probability of 0.5 when two particles collide
head-on. This is an example of a stochastic lattice gas which was discussed earlier in
Chapter 1, section 1.4. In order to implement this rule a random bit-plane is filled
with 50% 1’s and 50% 0’s. Then a 1 occurs at any site with a probability of 0.5. This
is used to decide which of the two probabilistic events is to occur. Collision details
are shown in Figure 2.5. In another model, a rest particle of mass 2m is created using

3-particle collisions as shown in Figure 2.6.

O=-<0O

Figure 2.5: Collision details for the 2m < 1r model

The 2m < 1r lattice gas could be developed in the same manner as the 4m « 1r,

with changes in the collision rules resulting in changes in the collision operator.



CHAPTER 2. LATTICE GAS AUTOMATA 32

? O

Figure 2.6: Collision details for the 3m « 1r 4+ 1m model

ce = 0.5bgbnbwbsbr + bebnbwbsbr + 0.505bn0wbsbr — brbnbwbsbr — bebnbwbsbr

= Cw.

ey = 0.5bpbybwbsbr + bpbnbwbsbr + 0.505bnbwbsbr — bebnbwbsbr — bgbnbwbsbr

= Cg.

CrR = 0.5@1)N5—v;bs% + 0.5bE.6—1\~/‘bwbsbR — bebybwbsbr.

From the above equations and Equation (2.13), the three conservation equations could

be written as

Ce+Cn+Cw+Cs+2Cr=0. (2.38)

Cs— Cw = 0. (2.39)

Cy —Cs =0. (2.40)
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The concentrations of moving and rest particles are related as

f2
A 24

fr and fp, are the densities of the rest and moving particles respectively.

Once again, equilibria were measured for each of the above experiments using a
simulation space with the same dimensions as in the 4m « 1r lattice gas experiment.
The experimental values compare well with the curve obtained using Equation (2.41)
and are shown in Figure 2.7. In addition, an experiment in which both 2-body as
well as 3-body collisions led to the creation of rest particles was conducted. This was
done in an attempt to create rules that are maximally random with respect to events
that can occur within the lattice [21] . Furthermore, none of the rules violate either
detailed or semi-detailed balance. Figure 2.7 indicates that equilibria do not change

by any significant amount and they compare well with theory.

Equilibria for 1 rest particle
1.6 ............ [ RRE R}
{—— Theory : :
144 O Experiment:2m <=> 1r
’ X  Experiment:3m <=>1r+ 1m
H Experiment:2m <=> 1r, 3m <=> ir + 1m

-
N
]

-
1

[=]
(=21
1

density of rest particle
R

0 ——
0 100 200 300 400 500 600
density per cell of moving particles (x10°)

Figure 2.7: Equilibria for 1 rest particle of mass 2m

The idea of the stack as shown in Figure 2.8, is applied to this model as well. Once
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again, the experimental values don’t agree as well with theory (Equation (2.41)) as
shown in Figure 2.9. It is interesting to note, however, that the experimental equilibria
for each of the above experiments agree well with each other (even though they do not
match to the theoretically determined equilibria). The reason for the experimental

error will be explained later in section 2.11.

? 0.5 O_i - ((—)O 9 0.5 O_S> =<_O

5 &

6s=2 - O—:i—zQ

Figure 2.8: Collision details for the 2m « 1r stack
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Equilibria for stack of 2 rest particles
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Figure 2.9: Equilibria for 2 rest particles of mass 2m each

2.9 Violation of Semi-Detailed Balance

Consider a model which allows for the creation of a rest-particle (mass 2m, where
m is the mass of the moving particle). Two different types of collisions, 4-body and

2-body, are allowed to occur as shown in Figure 2.10.
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O=<O

Figure 2.10: Collsion details for a model that violates SDB

36
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If the final state s’ after collision is

sl = )

Adding all the initial states s that lead to s’ we have,

Y A(s— &) =15. (2.42)

Thus semi-detailed balance is violated.

The solid line in Figure 2.11 shows the theoretical relationship between rest and
moving particles using Equation (2.41). Experimental results from a simulation con-
ducted on CAM-8 are plotted as well and the error is quite obvious. This experiment
thus proves that the semi-detailed balance condition is necessary for the existence of

the Fermi-Dirac particle distribution in a lattice.

2.10 Violation of Detailed Balance

In this section we conduct an experiment which violates the condition of detailed
balance. In other words, the forward and reverse collision events occur with different
probabilities. Figure 2.12 shows the possible outcomes of two-body collision in a

model that violates detailed balance.

a and b are probabilities with which the events occur. If b = 1 — a, semi-detailed
balance is obeyed. However, since the forward and reverse events are not equally likely

(a # b), detailed balance is violated. The theoretical relationship between moving and
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Equilibria for 1 rest particle
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Figure 2.11: Equilibria in the case when SDB is violated

Figure 2.12: Collision details for a model in which DB is violated
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rest particle densities is obtained from Equation (2.41). An experiment was conducted
on CAM-8 with the same lattice size as in the previous experiments. Furthermore,
a = 0.2. Results are shown in Figure 2.13. In deriving a theoretical expression
for the Fermi-Dirac equilibria, the only necessary conditions were the conservation
of probability (Equation (2.17)) and the semi-detailed balance criterion (Equation
(2.16)). Violation of detailed balance does not have any effect on the equilibria, as

expected.

Equilibria for 1 rest particle

1.6 e
4—— Theory : : : :

544 O Experiment| SRR SO USRS SUUUUN SUUTOE DUV OO

-
N
1

density of rest particle
o o
wn w
1 1

. e T
0 50 100 150 200 250 300 350 400 450 500 550
density per cell of moving particles (x10°%)

Figure 2.13: Equilibria in the case when DB is violated

2.11 The Particle Pool

In the previous models where multiple rest particles at a site were modelled, a newly
created rest particle always occupied the first vacant rest bit, and then the second,
and so on. A model in which a rest particle is created and allowed to occupy any of

the possible rest positions may be described by the collisions shown in Figure 2.14
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(for rest particles of mass 2m) and in Figure 2.15 (for rest particles of mass 4m). This

can be visualized as a pool of particles rather than a stack.

In order to simplify the programming of such a model into the CAM, we could
implement a stack (of length 2) as shown in Figure 2.16 and Figure 2.17 for the
2m and 4m cases, respectively. The equilibrium particle concentrations from the
simulations are plotted in Figure 2.18 and Figure 2.19 where the solid line describes
the relationship between moving and rest particles in the 2m (Equation (2.41)) and
4m (Equation (2.37)) cases, respectively. The 2m « 1r case with a stack length of 3
is shown in Figure 2.20(a). Results from this simulation are plotted in the graph in

Figure 2.20(b). The solid line once again results from Equation (2.41).

Let us now to consider the stack model in the 4m < 1r lattice gas and decompose
it into the particle pool. Figure 2.21 shows the rule for the s=2 case. There are 2
possible situations with 4 moving particles and s=1. Each of these gives s=2 with
a probability of 1, thus violating semi-detailed balance. A similar argument could
be applied in the 2m < 1r lattice gas. Hence the errors in our earlier experiments.
In constructing a lattice gas rule for multiple rest particles at a site, it would then
be wise to use the particle pool model as our starting point. The probabilities with
which different collision events occur would then be constrained by the conservation

of probability and the condition of semi-detailed balance.

2.12 Implementing a Stochastic Model

In experiments where the collision phase involves a probabilistic outcome, we utilize
a random bit (discussed in section 1.4). This bit is initialized in the lattice with a
certain probability. During the course of the experiment it is kicked around (in the

advection phase) to make the occurence of the probabilistic event more random. The
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Figure 2.14: Collision details for the modified 2m < 1r stack
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Figure 2.15: Collision details for the modified 4m « 1r stack
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Figure 2.16: Stack-length = 2 in the 2m < 17 model
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Figure 2.17: Stack-length = 2 in the 4m < 1r model
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Figure 2.18: Equilibria for the 2m < 1r (s=2) model
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Figure 2.19: Equilibria for the 4m « 1r (s=2) model
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Figure 2.20: The 2m « 1r (s=3) model
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Figure 2.21: Decomposing the stack model

results in Figure 2.22 show the equilibrium in three different cases for the 2m « 1r

model:

e The kick is random.
e The bit is not kicked.

e The bit is kicked 1 lattice unit in the x direction.

The solid line describes the relationship between moving and rest particles stated
in Equation (2.41). Hence, in the experiments in which the random bit is kicked, the
experimental results agree well with the theoretical equilibrium (determined using
Equation (2.41)). The experiment in which the random bit is not kicked does not
compare well with theory. In this model, the decision as to which type of collision
is to occur at any site in the lattice is made during the lattice initialization process.
The value of the probability bit does not change with time. Thus the probability that

a stochastic event occurs at a site is not probabilistic in any way.
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Figure 2.22: Kicking the random bit in the 2m < 1r model

2.13 Summary

In conclusion, the Fermi-Dirac equilibria describes an equilibrium between moving

and rest particles in the following manner:

_ fr
fr(2) = ITETET AT (2.43)

where the masses of moving and rest particles are related in the following manner:

Mrest

mmouing
In the HPP model, if both mass and momentum are conserved in each collision, z = 2

or z = 4.

For the remainder of this thesis we shall refer to the 4m «.1r rule in which a site

can hold a maximum of 1 rest particle as 4m « 1r (s=1). In a similar manner, we
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have 2m « 1r (s=2) for the 2m « 1r rule in which a site can hold upto a maximum of
2 rest particles. In this thesis, we only deal with multiple rest particles at a site, each
of which have identical mass. Alternative FHP cases where sites can have multiple

rest particles of different mass, have been considered in [17].



Chapter 3

The Chapman-Enskog Analysis

3.1 Introduction

The following is a summarized version of an anslysis presented by Boghosian and
Taylor in [16]. The Chapman-Enskog procedure is used to obtain a perturbative
solution to the lattice Boltzmann equation for near-equilibrium distributions [18].
We have adhered to the same notation used by Boghosian and Taylor and made use

of this theory in Chapter 4 to derive lattice gas fluid equations for the 4m « 1r case.

Recall that

N, '
Q* = ¢¢N(x,t), p=1...,n, (3.1)
i=1

is the ensemble average of the n. conserved quantities in the lattice gas. Furthermore,
N§ refers to the Boltzmann equilibria for the ith particle in the lattice. This quantity
was derived for moving as well as rest particles (4m < 1r and 2m + 1r models) in
the previous chapter. As well, the lattice Boltzmann equation was discussed earlier

and is

50
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Ni(x + ¢, t 4+ At) = Ni(x, t) + Cs(N*(x, t)) (3.2)

The form f(z*) is used to denote a function of z for all possible values of the index

replaced by the asterisk.

In this analysis, the diffusion ordering [16] is used. In a diffusive process, particles
follow a random walk and the average distance a particle travels on a discrete grid is
proportional to the square root of the number of steps [22]. Hence we let ¢ — ec and
At — €At in the dynamical equations, where € is an expansion parameter. Hence,

we are taking At ~ £2 = O(e?).

It is important to note that the N* are real numbers and could be approximated as
smooth functions. Hence we could Taylor expand the same. The lattice Boltzmann

equation is then Taylor expanded up to terms of order €.

Nix,t+ At) = Ni(x,t)+e2Ata(;\tr.
Nz + Az,y+ Ay, t) = Ni(a:,t)+eAzaN +6AyaN

oz dy
82 Ni 62 A 5 (92 Ni

a2 279 0y?
2N g2 52N
—AyAz——.
+ 2 y x@y@m

e .
+5A.’IJ

2
€
€ AzA
RS e

Expanding the collision operator we get

Ci(N*(x,1)) = Ci(N")+ eCi(N*) + &CL(NY).
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Equation (3.2) could then be rewritten as

ON? ) , 2 ) . ) ,
CAtZ +ec’-VN’+%cz-é-cz=Cé(N*)+eC{(N*)+e2C’§(N*), (3.3)

. 2Nt .
where A is a tensor [A],, = ai,g;q and i =1...N.

By contracting the above N, equations using ¢/ and summing over the index 3, we

get the n. equations

oQH RN cict . € ;
. '__NZ . LN T e # K * = RN 7D .
Sy +V [(qz 7 )-i—eV (qz 2AtN>] x5 PO (N, p=1...n.. (34)

We assume that Cy and C; obey the conservation equations exactly but Cy does not
necessarily do so. This is done in order that we might consider lattice gases whose

conservation laws are only approximate. Thus only Ci(N*) remains in Equation (3.4).

Next, N* is expanded in a perturbation series in powers of € about an equilibrium

state,

N = N} + eNi+ N+ ... (3.5)

N¢ is a local thermodynamic equilibrium described by the Fermi-Dirac distribution
which we have derived in Chapter 2. It is the lowest order term in the Boltzmann
equation representing a spatially uniform distribution in the lattice. Note the n, = 3

unknown parameters, o,.

j 1
0T 1+ exp(— 272 aqq))
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3.2 The Fermi Metric

We now proceed to find the derivatives of the equilibrium state with respect to each
conserved quantity which is later used to determine the transport coefficients in the
hydrodynamic equations for the lattice gas. In order to compute the first two deriva-
tives of N with respect to the Q*, we first differentiate Equation (3.6) with respect

to oy,

ON¢
da,

=Ny (1- N gt (3.7)

Next, differentiating Equation (3.1) with respect to Q¥, we obtain, using the chain

rule,

0Q" _ 3= 0N} boc _

=3 ¢ = 6~ 3.8
oY ; 7 Qo OQY (3:8)
We now define a symmetric rank-two tensor,
g = N] (1 - Ng) qg‘qﬁ. (3.9)
Then using Equations (3.7), (3.8) and (3.9),
e Oa
w4 op
%" 50
The inverse of g is denoted by ge, so that
> g% ge, = 6. (3.11)

£=1
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Since g¢, is a symmetric second-rank tensor, it could be identified as a metric on the
space of hydrodynamic variables, V. We shall refer to it as the Fermi metric. Then,

in terms of this metric,

Bag
oY

Thus, the first derivative of N with respect to @, is found to be

= Gev- (3.12)

ON; e

The second derivative is computed using the chain rule in the following manner:

o [oNi] & [ONi oo
50" (80| ~ 80 aag 50"
39 0 i i
T 11

I = oz [Ni(1— N9

[6N a(Ng)Q} o,
= Gend; -

day, Oay, | OQ
= Qz'gqggéugnl/( 2NO)NO( Nl)

Y
I = Ng(1-Ng)g 58555

i i dg
= Ny(1- No)qz'génggné‘é%
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i i 0g°"
= Ni(1 = Ni)gigen(—gt an)
e OV (1 — N3)gtq")
90”

= Ni(1— N§)abgen(—g )

= 2Ng(1 = N§)¢i gneT, -

1 . . .
Tl = —59eugc N(1 = N)(1 - 2N8)a]afef. (3.14)

Equation (3.14) is defined as the Fermi connection which we use in the result for the

second derivative.

92Ni

30500Q" N§(1 — Ng)(1 — 2N8) gt a7 9en gy + 2NE(1 — N§)as genL™, . (3.15)

It is important to note that in the momentum conservation equations for the lattice
gases under consideration the coefficients ¢* are vector quantities. The completely
symmetric outer product of k of vectors €' is denoted by @*e’. The generalized Fermi

metric is then defined to be

g(k) = M1 - M)gief (@), (316)

and the generalized Fermi connection,

1 . . . E .
PR = —390c M- M) - 2M)gfesef (®'¢) . (317

The Fermi connection could also be written as

1 O9¢n |, 09ev  Ogu
— a0 u v _ Y5u
Il = 2g" ( 50" T 30 an) , (3.18)
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and the generalized Fermi connection is

oQY oQH oQ¢
From Equations (3.13) and (3.16) we get

p T o

I = _1.g77€ (ag(k)ﬁu 1 9g(k)ev Bg(k)uy) . (3.19)

s 9 (&99)] s

and from Equations (3.15), (3.17) and (3.20),

oo [ (®')] =2 [stwzrs, - Twp]. 5.21)

3.3  Zero-Order Conservation Equations

We could now use Equation (3.4) and accumulate terms in O(1), O(¢), O(€?). In
order to remain consistent with the notation in [16], we define ¢! = ce’. Equation

(3.4) at O(1) gives us

V. <q§‘—§zNg> =0, p=1 ..., n. (3.22)

This could be rewritten as,
ct Je ONE
0 = F—9Yy =9. v
%Ay ; agr V9

e ¢t . .
= > ——Ni1- N)g'ebge, - VQ¥
; At 0 0 13

C & Y
v=1
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3.4 The Linearized Boltzmann Equation

At O(e), by substituting Equation (3.5) in Equation (3.3),
c’ i 1 i nTd i7 AT
VM) =5 [JiN] + CH(VY)] - (3.23)

The Jacobian matrix of the lowest order collision operator at equilibrium is defined

as

i 9G4

i= a0 (3.24)

N=Ny

Also, the ¢!’s comprise the components of n. null left eigenvectors of JZ, since
i g ]

) 0 )

Bl — BYi
4 J; = AN (Qz Co) Ny (3.25)

We denote the eigenvalues of J by M.

Jigh = N'gh. (3.26)
g;J; = Xqj. (3.27)
The modes enumerated 1,...,n,, correspond to null eigenvalues of J and are called
hydrodynamic modes (denoted by H), while those modes enumerated n.+1,...,n are

kinetic modes(denoted by K). The kinetic modes enable us to determine the diffusion

coeflicients while the hydrodynamic modes give us the advection coeficients.

Postmultiplying Equation (3.27) by qf; and premultiplying Equation (3.26) by ¢, and

subtracting, we get
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0= (N = \")g/gb. (3.28)

Right and left eigenvectors corresponding to different eigenvalues are thus orthogonal.

Thus, they may be chosen so that

& =ql'q.. (3.29)

By including ®F e’ in the above equation, we could then define a generalized Kronecker

delta,
k B .
(k)% = ¢! (@ ) . (3:30)
Also, since
CiNG (x,8)) = 0 (3.31)
and
8Ni () AN
T, = Mo (1-N) e, (3.32)
we have
0= E&ZCO(NO) = Jjg&: = Ji [gf N3 (1 - Nj))]. (3.33)

From this we can say that the right hydrodynamic eigenvectors are

g = ai'N5(1 — Np). (3.34)
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3.5 First-Order Solution

Consider Equation (3.23) for the N!. Premultiplying this equation by the null left

eigenvectors, we require that

V. ( Z—t-N’) ;tqz [JiN{ + Ci(Ng)] = 0. (3.35)

for peH. It follows that V- (c!N¢) — Ci(Ng) has no components in the null space of J,
since we have assumed linear stability. Owing to the completeness and orthonormality

of the eigenvectors, this expression can be written as

V- (CiNO C’1 NO Z 77 Qw (336)

veK
where 7" = ¢¥ [V - (¢'N§) — C{(Ng)] for veK.

The above could also be derived from Equation (3.23) in the following manner:

1
. : Z 7 = .37
or
V- (gfc'NG) — gfCL(NG) = X' Ni = 0. (3.38)
Premultiplying the above equation by ¢/, we obtain
1 o . .
> e [V NG — CiVg)] = M. (3.39)

veK

The solution for N? could be written as
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Ni=) 6q+> %Qi, (3.40)

veH veK

where the 6" are arbitrary. We hence fix 8 = 0 and obtain a final result for NV?.

i 0,95 iATi i AT
N = ZK =LV (eNg) - Cig)] (3.41)
and
Ni=NiteY q;i’j [V - (€N)) = Ci(p)] + O(é). (3.42)

veK

3.6 First-Order Conservation Equations

Rewriting Equation (3.4) retaining terms to O(¢), we have

BQ# () 1 1 *
5 +V-[< EN)-{—V-( 2AtN>] N qt'CE(N™), ueH. (3.43)

Substituting in the above equation, the value for N¢, we get the following:

BQ QUq i ATE i * Cici i 1 *
V- [( At%; 2LV No)—Cl(NO)D +V- (qgﬁzvﬂ A CHN).
(3.44)

Next, rearranging terms, we get

0 G5 i/ nrs
LHS—-—GZ——}-V ( Atz AVC(N)) (3.45)
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and
1 10 AT* B qvq] i NI uCC i
- _ . - gt . 4
RHS = =¢'C3(Ng) =V [ ‘N X}j{ (V- EIN)+V gl (3.46)
Next, we use e = % to rewrite the left hand-side as
_ 6Q 1 woi z v *
LHS = =+ tv [;‘_;{ —sdde (¢zci(vg))| - (3.47)
This could be written in a more compact form, as
LHS = aéQt + V- A, (3.48)
where, A*(Q*) is given by
' v *
piory — & 5(1)5%’01(]\]0) 4
The right-hand side of the equation could be written as
1 8N] da
RHS = g'CYN3) =V - ([ g gt — —1
AHON) V- T (| et e T g
Lcict Oay ONg ¢
’2At8Q53 }-VQ). (3.50)

Using Equations (3.7), (3.12), (3.16), (3.20), (3.30) and (3.31), the above could be

rewritten as

& (1)@ g(1)
RHS = —g#Ci(N3) + YV - y i esl) 1
At EcH At veK

In a more compact form then,
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RHS =Y V- (D{-VQF) + ¥, peH, (3.52)
teH
where,
2 S(MEeg(l)y 1
pioxy — | S v £ _ Lo
D@ - |55 (2 2SR - S (353
and
1 i,
SH(Q") = 5 dCHNG). (354
Hence, we have
I
%— + V- A = Z V. (Dé‘ . VQg) + S*, ueH. (3.55)
EeHd

This is the hydrodynamic equation which results from the Chapman-Enskog anal-
ysis with the Diffusion and Source terms being given by Equations (3.53) and (3.54),
respectively. The Advection coefficients are given by Equation (3.49).

3.7 Ordering the Conserved Quantities

In lattice gas fluids the conserved quantities are ordered in the expansion parameter,
€. In an incompressible fluid, the hydrodynamic density is assumed to vary by O(€?)
from a constant background value, and the hydrodynamic velocity is assumed to be

O(e). Hence, we consider the general ordering,

Q" = Qb+ Q¥ + Q5 + ... (3.56)
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We could then expand the Fermi-Dirac equilibrium in the following manner:

; 9°N¢
Nt * — Nz + € u+€2 7 A e YaY +
(@) (@) :;H aQ# | (et +28) + ZH soracr|, (@)
= Néo"'fZNéo “Noo)nggﬁﬂQlf
EeH
+é Z Nio(1 - Ngo)nggﬁqu + ¢ Z Ngo(1 - Néo)nggsnFZuQ?Q'f
5€H £neH
+ 5 Z Nio(1 = Ngo) (1 — 2N%0)af 07 9epgm@EQY + - -, (3.57)
€neH

where the lowest-order Chapman-Enskog equilibrium is denoted as

Noo = No(Qp)-

We are then going to insert the result for N as a function of the ordered conserved
quantities into Equation (3.4). Now, multiplying Equation (3.57) with the k-fold

outer product of the e vectors and contracting with g!', we have

" (éei) N Q") = q" (@e) Ngo + Y g(k)E(eQf + €2Q3)

feH
3> [zg s, - 10| @k
EneH | (eH
(1)5 ¢
+ € Z Z - VQi.
veK £eH
This result can be inserted into Equation (3.4),
HOH
aQ +V A=Y V- (Df - VQ) + S, peH. (3.58)

teH
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The advection coefficients are

Il

ANQ) = 5 2

EecH

{gu)g (Ga+af)+>

neH

[2}:{ g(1)LTe, — P(l)‘gn} Qi@’z} :
: (3.59)

The diffusion coefficients and source terms are given by Equations (3.53) and
(3.54), respectively, and all quantities are evaluated at N§,. Furthermore, the advec-
tion operator has an O(1/¢) term and an O(1) term. The former is the dominant term
in the equation, if it does not vanish. In this situation, the hydrodynamic equation

reduces to the zero-order conservation equation,

v. -Af-i 3 g(1)fg@§} = 0. (3.60)

EeH

Furthermore, it is interesting to note that the form of the conservation laws (which
give us the hydrodynamic modes) is sufficient to predict the form of this equation
and compute the advection coefficients. The latter in turn enables a prediction of the
speed of sound waves in the lattice gas. The kinetic modes determine the viscosity.
In Chapter 4, we use the developed theory to determine the transport coefficients for

the 2-D 4m « 1r lattice gas.



Chapter 4

Lattice Gas Fluids

4.1 Analysis of the 4m < 1r (s = 1) Lattice Gas

In this chapter we use the theory developed in [16] and summarized in Chapter 3
to derive the propagation speed and viscosity for the 4m « 1r lattice gas in two
dimensions. In this model, shown below, four moving particles give rise to a rest
particle of mass 4m if none existed prior to their coming together. In addition, the
reverse event might occur, i.e., the creation of four moving particles if a rest state

was occupied and there were no moving particles present.

O —«— 0 >

Once again in the LGA paradigm, we assume that the presence of a bit 7 at a

site represents the presence of a particle of unit mass and momentum ct/At. The

65
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ensemble-averaged mass and momentum densities at a site can be determined from

the equilibrium densities N*.

=p=N'+N*4+ N®+ N* +4N°, (4.1)
1 B
QU=QUI+Qu”=u=—ZCzN1, (42)

At‘i:l

where ¢t = cet and

e = icosg—(j—l)-i—ysing(j——l), j=1,2,3,4
= 0, j=5. (4.3)

There are 3 conserved quantities in the model under consideration. Q?, Q"= and Q"
are the ensemble averages of the mass, x momentum and y momentum, respectively,
in the lattice gas. In what follows, we shall use natural lattice units (¢ = At = 1).

Since from Equation (3.1),

unNth ,LL=1, )3,
we have,
¢ = 1, 1=1,2,3,4
¢ = 4, 1 =25, (4.4)

From section 2.5:
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g = 1, i=1,...,4
= 4, i=5
qi2 = X, i=1
= —%, i =
= 0, i=2,4,5
¢ =79, i=2
= -V, 1 =4
= 0, i=1,3,5

For an incompressible fluid, the conserved densities are ordered in the expansion

parameter [20].

p = po+ €ps. (4.5)

u = €uy. (4.6)

The ordering of the conserved quantities as explained in section 3.7 for this system is

then

Q = Qo+eQ1+€Q,

)
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Thus, the zero-order Fermi-Dirac equilibrium is found by considering only ¢” in Equa-

tion (2.30). Hence we get

: 1
Ny = = fn, ,=1,2,3,4 4.8
0 11 ea J ¢ (4.8)
1
= — o Ty ) = 5 49
14 ete ! ’ (4.9)

Once again, to be consistent with the notation used in [16], we use n = N to represent
the total number of particles at any site in the lattice. If the lattice vectors are

isotropic to fourth rank, then they must satisfy the following equations, as outlined

in [23]:

n . . .
> ee'e’ = 0
=

LI nD
> “e'e'e’e’ = Q 4.
Z.=1eeee DLk (4.10)

where n is the number of particles, D, the number of dimensions in the lattice gas

and

Qs = 6556k + Oubji + 6ubjk. (4.11)

We shall make use of these results for evaluating the generalized Fermi metric and
connection. In keeping with the notation presented in [16], we shall interchange the

indices j = p and j = u with j = 1 and j = 2 respectively, for the coefficients g; of the



CHAPTER 4. LATTICE GAS FLUIDS 69

conservation equations and also for the elements of the Fermi metric. The next step
would be to construct the Fermi metric as outlined in section 3.2. For the 4m < 1r
model there are 3 conserved quantities and thus 3 hydrodynamic modes. Hence g*”

from Equation (3.9) could be written as a 3 by 3 matrix.

= N{(1 - Nj)d}lq}- (4.12)

g = Nj(1—-MN)digf
4fm(1 - fm) + 16fr(1 - f’r)
g*. (4.13)

gpu = 912

= N1 - DM)gq}

= 0
= g¥=g" (4.14)
guu = g22
= N1 —Nj)q}‘q;’
= fm(l = fn) Ze = fm(1 —fm) (4.15)

Note the 2x2 unity matrix, 1 in Equation (4.15). Using Equations (4.12)-(4.15), the

tensor g"” can then be written in matrix form as
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g;w — ( 4‘fm(1 - fm) + 16f7‘(1 - f’f‘)
0

70

nv
0 , (4.16)
4fm(1 - fm)%

where the indices p and v are used to denote the row and column of the metric,

respectively. The Fermi metric could also be written out as a 3x3 matrix in the
following manner:

4fm(1 - fm) + 16fr(1 - fr)
g =

0
0

0
4fm(l - fm)%
0

4fm(1 - fm)%

Next, we calculate the components of the generalized Fermi metric, described in
Equation (3.16),

k
g(k) = Ni(1 — N))g'e! (@ ) |

k
gl)" = fm(1-fn) X Q€
:: k+1
gl)* = full=fm) L Q¢ =gk
J; k42
B = full=fn) L Qe

The Fermi connection is defined as

Tl = —59ugucNg (1 = N§)(1 — 213)

PR INS
The generalized Fermi connection is

4;4;4; -

|37
0

0 (4.17)

(4.18)

(4.19)
(4.20)

(4.21)

(4.22)
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1 . , : b
LB, = — 500 (1L - M) - 2M)gjees (®'¢). (429

The advection coefficients are

AQ)) = >

EeH neH

{gu)g (Ca+a8)+3

> g(1)iTe, — 1“(1)‘5,,} Q?Q’l’} :
eH
‘ (4.24)

We are now going to determine the advection coeflicients for the lattice gas. This
is done twice. Once for ¢ = 1 = p and then for p = 2 = u. These could then be
inserted into Equation (3.55) and collecting terms of the same orders we could deduce
certain mathematical properties for the lattice gas. The first property which will be
demonstrated in the process is the incompressibility condition. In order to evaluate

Equation (4.24) we shall rewrite it as

A4(@Qp) = [AH(QR) + [A*(@1 (4.25)

where,

el = T {swp (Za5+a8)},

EeH

(A = ZZ{Zg(l)‘éFé,,—F(l)’gn} Q4Q7. (4.26)

EeH neH ((eH
Again we have chosen natural lattice units ¢ = At = 1.

Also from Equation (4.7), the only value of the index & for which Q§ is non-zero is

E=2=nu.
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Qi =QY =u. (4.27)

We now evaluate the components of the advection coefficients for p = p = 1.

The components of the Fermi metric,

g1); = g)gu +8(1)2gn
= 0, (4.28)

since NJ(1 — Ng)qjl.qjl- (®k=1 ej) =0 and go; = 0.

g(l); = g(1)g12 +g(1)?ga

k=1
. . . 1
1.2
= Nl - Mg (® ej) N (1 - M)aiq}
J 37

= 1. (4.29)

Next, we calculate the components of the Fermi connection defined as

1 . . ,
Th = =59.9u¢ N§ (1 = N)(1 = 2N8)q] g5 (4.30)
1 . ‘ .
I = —59e292¢Ng (1 = Ng)(1 ~ 2NY)aZq5qs
1 . . .
= *'2‘(922)2]\75(1 - N§)(1 - 2N3)gidlq:

= _%(922)2]\73(1 — N§)(1 - 2N{)g; (®k=3ej>
. (4.31)



CHAPTER 4. LATTICE GAS FLUIDS

Now moving on to the generalized Fermi connection,

1 . .
D(k)L, = — 50695 N(1 = N)(1 = 203 Jaff (®'e?)
1 1 j j N1 €, C k=1 _;
(1) = —592692cNo (1 = Ng)(1 = 2Ng)g;459; () €
1 . .
= —5(922)2]\/8(1 — N3)(1 - 2N)) gl g2’ (@ej)

_ _%(922)2N7(1 — M)A - 2N})q (@é)
= 0.

Thus,

[AP(@p))" =o.

Then, all we have left is,

AM(@5) = [A4(@Q) -

Rewriting Equation (3.55), with only the dominant term, O(1/e),

0 = V- [N
= V- [s(1)iQf].

From (4.28) and (4.29), g(1)1 =0 and g(1)} = 1.

Also, from Equation (4.27), Q§ = @} = u;. Hence, we get

73

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)
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V-u1=0.

74

(4.37)

This then verifies our original assumption; that if the conserved quantities are ordered

as in Equations (4.5) and (4.6), the fluid is incompressible (since for an incompressible

fluid, V - v = 0, where v is flow velocity).
Next we evaluate the advection coefficients for p = u = 2,
II
(A" =323 | 3 s(ETe, — T(1), | Q1QT-
teHneH {CeH

The components of the generalized Fermi metric are

g(1); = g(1)*g12 + 8(1)*%g2
= (.

Since g(1)?2 = N{(1 — Nj) (®k=3 ej) =0and g12 =0,

g(1)} = g(1)®Pga +8(1)* g

- 58]

4 1

- [f ( fm) 5 >] 4fm(1'—fm)+16f’r(1_fr)
4fm(1 = fm)
D4fm(1 — fm) + 16f.(1 — fr)]

1 . .
T = —5922922 N5 (1 = Ng)(1 - 2N3)a}q2q;

(4.38)

(4.39)

(4.40)
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1
= —5(922)2]\”(1 - N)(1 - 2N3) a2 g2 ¢
1
= -—-2—(922) Nj(l - ]\]-'7 2N‘7 q; <®k 2e]>
= —%(922) No(l — ]V‘7 1 — 2N‘7 q;‘ (®k 2e’>

1 1
- = 2fm( )( 2fm)
2 [4fm(1 = fm) 3]
_ 1 (-2fm)
EREIC S

] ' . . k=1
(1)5, = _-—2_9269241\7(37(1 - NM)(1 “QNg)qJ‘?ngjg <® ej)

1 . . k=1
= —-2-(922)2N8(1 — N{)(1 - 2N)) g2 q2q; (@e])

1 1 i1 — onival [ e

= —5&2—2)5—7\]0(1 — Ng)(1 — 2Ng)g; <® )
1 1

= -3 zfm(l—fm)(l_Qfm (
2 [4fm(1 = fm)}] )

- __1 (1 — 2fm) D Q

a 2 [4fm(1 - fm)] (D + 2) .

4

[A%eo)) = Y [g(V)iTE, — T(1)g] Q5QT

§meH
= [s(1)iT3; - T(1)%] Q33
{_1 (1 - 2fm)
2 [4fm(1 - fm) + 16fr(1 - f'r)]

1 (1=2f) D ).
)Q} 1Ug

1

o il f) (D12

= [A*(po)IE + [A%(po)];" -

u Ir _}. (1 — 2f7n)u%
A% po)ls = —3 [4fm(1 — fm) + 16£-(1 — f7)]

1.

\D(D +2)

?

75

(4.41)

(4.42)
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(1 B 2fm) D
[4fm(1 - fm)] (D + 2)
(1 B 2fm) D
[4fm(1 = fm)] (D +2)
(1 — 2fm) D
[4fm(1 - fm)] (D + 2)

(83561 + Okt + 6165x) + (u1)i(ua);

[A%(po)li" =

(w31 + (ua)g(ur) + (ua)i(us)k)

(’U;?l + 2111111).

1
2
!
2
1
2
(4.45)

eH
= g(1)2Q

)

el = 3 {ez (108 +a5)]

4fm(1 - fm)
D= fm) F 1640 = £ (4.46)

And we have

A%(po) = [A%(0o))" + [A%(00)}"

where,

1-2fn) D
[4fm(1 = fm)] (D +2)°

9(f) = (4.48)

The pressure,

4fm(1_fm) P _l (1—2fm)'u'§
D[4fm(1—fm)+l6fr(1_fr)] ? 2[4fm(1_fm)+16fr(1—fr)]
1 (1-2fx) D

P =
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The propagation speed for the 2-D 4m < 1r incompressible fluid model (derived in

Appendix A) is then given by

6 = 28
s Ops

— J 4fm(1_fm) (4.50)

D4fm(1— fm) +16f-(1 = f)]’

In general, for k rest particles of mass 4m each,

. :J 4fm(1—fm)
* TN DAfm(l = fr) + Q6K (L= )]

This could be easily deduced by writing the g*! component of the symmetric rank-two

(4.51)

tensor. Inserting this into Equation (4.46) would then give us the general form.

We now wish to evaluate the diffusion coefficients (which in turn will enable a pre-

diction of the viscosity of the 2-D 4m < 1r model) given by Equation (3.53),

D@ - | 5 (2 TSR - ea) . (452

veK

In order to evaluate Dy, we consider the following:
. . n . . .
5(1); = gjelq) =) dqle’e’.
j=1

gl)g = 8(1)™guu

-~ D
= E — s s A —
A M T Ay
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g(2u = 8(2)"guu

n D

— (1— fn)elelelel ———
ng 4fm(1 - fm)
D 4

= 10
4 D(D+2)

_ Q

- D+2

Hence, the diffusivity tensor could be written as

w\J c? D gy 1 Q
(Pi), = a3 V;{_w —§D+2}
D(D+2) ,,

c? m o] 1
= DTOA { R ebel [Z —:)\—5] — 59} . (4.53)

veK

Dy is a fourth-rank object and there is an implicit sum over m and p. Since
we have specified that the fourth-rank tensor constructed from the lattice vectors
is isotropic (Equation (4.10)), the diffusivity tensor must be isotropic as well. This

implies that it must be of the form:

(DY), = v6ubje + 0bi60 + 64y (4.54)

Hence to derive the diffusive term on the right-hand side of the hydrodynamic equa-

tion,

Vi (DE) Vi = ViubabpViu + ViodyduViuw + V8648, Vi
= I/V2 + V,-aVlul -+ VZ,BV{ZL[
= vV +V;[(a+p)V-1u]. (4.55)
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The second term on the right vanishes thanks to the incompressibility condition (V -

v = 0), and we have the following hydrodynamic equation:

% +9(f)ur - Vg = —VP + vV2u,. (4.56)

This is the form of the Navier-Stokes equation except for the factor g(f). v is the
shear viscosity. In order to get a closed expression for v, we take the following traces

of Equation (4.54):

(DZf)j = v640;;5 + abiibi; + B0
= vD?+ 3D+ aD.

Similarly,

(D4) = vD+BD*+aD

1

(D%)' = vD+BD+aD?
The above equations may be solved for v,

i

(D+1) (Diﬁ)j - (D)) - <D§Z)J' (4.57)

DD -1)(D +2)

UV =

From Equation (4.53),

w:\J c D(D +2) Mmoo P qu; 1
(o), = GFS)YA e A D Pyl il

veK ~
c DD+2) o pomonl=T'a%] 1
= (D+2)At{ 4 %% l§{~)\l’}_§ﬂ}

- {D<D4+ 2) [ZK AR q;} _ %n} ,
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where,
Q = 66w + St + budjk
= ;65 + 6565 + 013055
= 251'_7' + 6—51'53']‘
= D(D+2).
Similarly,
we) @ [DD+2) [ar(em-egr] 1
(Ps): = (D +2)At 4 VL; —\ ~ 3t
and
o & [DD+2) [ gr(em e (" e)g] 1
(Du:i)j ~ (D+2)At { 4 ,%; -\ 3"

c? D(D +2) qrgy] 1
(D +2)At { 4 [Z —)\V} B iﬂ}’

where,

Inserting the above into Equation (4.57),

& D qr(em-e’qr] 1
YT D+t (4(17—1) [Z;{ v ]‘5)

(D :22)At (4(1)1_ 1) tﬁ}:{ q_yff]) : (4.58)
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In order to write the Jacobian of the collision operator at equilibrium for the 4m « 1r

model we consider the ensemble-averaged collision operator,

Ce = NgNnNwNs— NgNyNwNs — NgNyNywNsNg + NgNyNyw NgNg
= Cw

Cy = NgNyNwNs— NgNyNwNs — NgNyNwNsNg + NgNyNw NsNg
= (Cs.

Cr = NgNyNwNsNg— NgNyNyNgNp.

The Jacobian matrix of the lowest-order collision operator at equilibrium is defined

as

i 9C%
5=

Since our lattice gas obeys semi-detailed balance, the equilibrium particle distribu-

tions are given by

N} = fu, j=N,S,E,W

= f?‘a .7=R,

where, f, can be expressed in terms of f,,.

Hence,
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iy

—u—v U—v —-U—V U—V W
U—v —U—-0 U—V —U—V W
Ji =
i=| —u—-v wu—-v -u—v uU—v W )
U—v —uU—vV U—V —U—V W
v v v v o—w

where,

u = fA(1—=fm)+ 1= fo)?Fm
vo= fR(l=f)+ (1= fn)ify
w = fﬁz"‘(l_fmyi'

The eigenvalues and eigenvectors were found using MAPLE,

A= 0

Moo= 0
ABo=0

M o= —4y

XN o= —4y—w.

We have exactly 3 zero eigenvalues and this means that the rule has exactly 3, and

no additional conserved quantities. The left eigenvectors are

611=<+1 +1 0 0 +2>
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‘12=<—1 0 +1 0 O)
Q3=<+1 0 0 +1 +2)

Q4=(—1 +1 -1 +1 0)

o=(-2 -2 -2 -2 1)
The right eigenvectors are
-1 +1 +1
0 +1 0
= +1 = 0 |Fd= 0
0 0 +1
0 +2 +2
-1 -1
+1 -1
¢=|-1|=]| -1
+1 -1
0 +1

In two dimensions (D = 2), with four moving particles per site (n = 4), the lattice

vectors are given by
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In the case of the HPP, the 4th rank tensor in Equation (4.10) constructed from
the lattice vectors is anisotropic [23]. Hence the viscosity does not obey Equation
(4.57). This equation is valid only in the situation in which the tensor is isotropic up
to 4th rank. The tensors in the HPP case are isotropic up to third rank and hence
we can use the analysis to determine the Fermi-Dirac equilibrium and the advection
coefficients (from which we can determine the propagation speed of sound waves).
However, in order that we might demonstrate the application of the above general
formulae, the viscosity can be calculated as follows:

ik
+1 0 +1 0 0

0 +1 0 +1 0
(ej.ek)2=cos2<g7%~k—)>= +1 0 41 00

0 +1 0 +1 0
0 0 0 00

Now plugging the above values into the expression for the viscosity (Equation (4.58)),

we obtain

2 [1 1 1 1
V=it o T 3@t w) Ta 2| (4:59)

4.2 Summary of Results

We shall now summarize some of the results derived using the analysis described in

Chapters 3 and 4. In the case of the HPP lattice gas automaton, the propagation
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speed of sound waves is a constant value of % and is independent of the background
density of moving particles. In the 4m « 1r lattice gas with k rest particles, the
equilibrium concentrations of moving (f) and rest particles (f,) are related in the

following manner:

fm
A= fe)Y

fr

The propagation speed, cs, of sound waves in this lattice gas with k rest particles of

mass 4m is given by the following relationship:

C. = 4f m(1 — f m)
s — .
D [4fm(1 - fm) + (16k)fr(1 - fr)]
In the 2m « 1r lattice gas with k rest particles the Fermi-Dirac equilibrium requires
that moving and rest particle concentrations, f,, and f,, are related in the following

manner:

12
T RA (= )

fr

The propagation speed ¢ in the situation where we have k rest particles could once
again be deduced from the mass conservation equation for this model and the g'!

component of the symmetric rank-two tensor (Equation (4.13)) and is as follows:

C. = J 4fm(1 — fm)
° D[4fm(1“fm)+(4k)fr(1_fr)].

It can be seen that the value for ¢, in both the equations reduces to the HPP case

when f, = 0, as expected.



Chapter 5

LGA Experiments for

Homogeneous Systems

In this chapter we compare results for experiments conducted on CAM-8 with the-
oretical results derived in Chapter 4. Results for the Fermi-Dirac equilibria were
presented in Chapter 2. We shall now measure the propagation speed of sound waves
in homogeneous systems using the HPP, 4m « 1r, 2m < 1r and the FHP - 6m « 1r
models for different stack lengths. As well, we describe a lattice gas mixture using the
4m « 1r rule which has sites in the lattice with different stack lengths (also known

as a lattice gas mixture).

5.1 Measurements for Propagation Speed

The lattice is two dimensional as shown in Figure 5.1, and has dimensions N, Az *
NyAy, where Az = Ay = A is one lattice unit. N, and N, are the number of
cells in the x and y directions, respectively. The lattice is initialized with a certain

background density, po. If the density of moving particles per direction in the lattice

86
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is fm, then the density of rest particles per site in the lattice is given by Equations
(2.37) and (2.41) for rest particles of mass 4m and 2m, respectively. A gaussian-
pulsed, x-directed, plane wave is propagated through the lattice. This is done by

superimposing particles in the lattice according to the following equation:

(z — x0)?
Pp = Pm€EXPpP 2 )

The gaussian is thus centred, i.e., has its maximum value p,, at zo. A square sampling
window counts the number of particles within it at each time step and hence we can
monitor the perturbation as it propagates across the lattice. Please see Appendix B

for details on the calculation of propagation speed.

L

X

Figure 5.1: The two dimensional lattice.

5.1.1 The HPP Model

In this section we use the HPP lattice gas rule with no rest particles. The rectangular

lattice was initialized with a uniform density of particles. A plane wave was excited
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background density | propagation speed .

0.25 0.71986
0.35 0.70963
0.55 0.69306

Table 5.1: Propagation speeds in the HPP model

by superimposing a gaussian distribution (centred at zo = 100A) of particles on top
of the existing background. The lattice size in this series of experiments was 2048 x
256. The maximum size of the initial perturbation, p, (peak of the gaussian), was
at 20% above the background. The pulse width of the gaussian was 7 = 50Az. The
square sampling window (size 49 x 49) centred at x = 575, y = 150, was used to
determine the macroscopic quantity p = pg + pp. Using Equation (4.50) with f, = 0,
D = 2, we expect the wave to propagate with a speed of ¢, = %, irrespective of the
background density of particles. The lattice had wrap-around boundaries (please see
Appendix B). That is, all particles that exit from the left end of the lattice re-enter

from the right and vice-versa.

Numerical experiments with varying background densities (0.15, 0.35, 0.55), yield
time-domain waveforms shown in Figure 5.2(a) and experimental results obtained
using the method outlined in Appendix B to calculate propagation speed, are sum-

marized in Table 5.1.

Form the above table it could be seen that ¢, decreases with an increase in background
density. This could be because of viscosity (a function of particle density) which causes
dispersion due to the higher frequency components in the wave being attenuated more

than the lower frequency components.
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5.1.2 The 4m < 1r Model

In this experiment, the moving and rest particles in the lattice were initialized using
Equation (2.37). The lattice size in this series of experiments was 2048 x 256. The
square sampling window (size 49 x 49) was centred at x = 575, y = 150. The
maximum size of the initial perturbation, p, (peak of the gaussian), was at 20%
above the background. Varying the background density, the propagation speed was

measured. The theoretical speed is

4fm(1 — fm)
\l 2[4fm(1— fm) +16£:(1 = £)] (5.1)

CS =

The time domain waveforms are shown in Figure 5.2(b), and the propagation speed

versus density per cell of moving particles is plotted in Figure 5.3(a).

For the stack of length two, explained in section 2.11 (Figure 2.17), Figure 5.3(b)
shows the experimental and theoretical values of propagation speed versus density
per cell of moving particles. The theoretical values of propagation speed are given by

the formula (k = 2 in Equation (4.51)),

_ 4fm(1 - fm)
“ = \! 2[aFm(i = ) + 82501 = )] (52)

fm and f are related as in Equation (2.37).

5.1.3 The 2m < 1r Model

This model which was described in sections 2.8.2 (stack length = 1) and 2.11 (stack
length = 2 and 3). The rules are given in Figures (2.5), (2.16) and (2.20)(a) for stack
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Figure 5.2: Time domain waveforms
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propagation speed (x10%)

0 e s s N S, . —
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
density per cell of moving particles

(a)stack = 1

propagation speed (x10°%)

T T — T ————— . —
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
density per cell of moving particles

(b)stack = 2

Figure 5.3: Propagation speeds for the 4m < 1r model
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lengths of one, two and three, respectively. A rectangular lattice of dimensions 4096
x 256 was used in the following experiments. The pulsewidth of the gaussian was 7 =
100 lattice units and it was centred at zy = 200 A. The maximum size of the initial
perturbation, p.,, was at 20% above the background. The square sampling window
(99 x 99) was centred at x = 1150, y = 150. The propagation speed is given by the

following equation:

\i 4fm(1"fm)
2[4 fm(l = fm) +4kfr(1— f)]

Cs (5.3)

k is the maximum stack length. Results for £ = 1, 2 and 3 are shown in Figure 5.4

(a), (b) and (c), respectively.

5.1.4 The FHP 6m < 1r Model

This automaton uses a triangular lattice with hexagonal symmetry as explained earlier
in section 1.2.2. A maximum of seven particles can exist at a site (6 moving + 1 rest)

with velocities:

. 2 2
e = &cos—g(j—l)—}-ysin%(j—l), j=1,2,3,4,5,6.

e/ = 0, j="T. (5.4)

Collision details for this model are shown in Figure 5.6(a).

From Figure 5.5 it could be seen that the inter-cell spacing in the y and x directions,

Ay and Az respectively, differ and

Ay VB

Az 2
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Figure 5.4: Propagation speeds for the 2m « 1r model
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Ax

Figure 5.5: The hexagonal lattice.
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Figure 5.6: The FHP 6m < 1r model.
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The speed of sound for this model is

6fm(1 - fm)

J 2[6fm(1 = fm)+36f-(1— F2)] (5.5)

Cs

fr and fp, are the densities of the rest and moving particles respectively and are

related to each other in the following manner:

fﬁ
Ly (5.6)

The above formulae could be deduced from the mass conservation equation for the
6m « 1r model and the g'! component of the symmetric rank-two tensor, Equation
(4.13). A rectangular lattice of dimensions 4096 x 256 was used in the following
experiments. The pulsewidth of the gaussian was 7 = 100 lattice units and it was
centred at zo = 200 A. The maximum size of the initial perturbation, p,,, was at
20% above the background. The square sampling window (99 x 99) was centred at x
= 1150, y = 150. The solid curve in Figure 5.6(b) shows the theoretical propagation
speed, ¢, as a function of the density per cell of moving particles. The experimental

values are plotted as well.

5.2 Lattice Gas Mixtures

In the previous experiments, lattice rules were considered where the entire lattice
consisted of sites which allowed for stack lengths of zero, one, two or three. We shall
define a lattice gas mixture as one in which sites with non-uniform stack lengths of
rest particles are uniformly distributed at random within the lattice. For instance a

lattice might have sites at which no rest particles are created as well as those at which
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a maximum of one rest particle is allowed. The properties of such a mixture would

depend on the relative proportions of these two different types of sites in the lattice.

In a 4m < 1r (s=1) and HPP lattice gas (4m «+ 1r (s=0)) mixture one might expect

a propagation speed governed by the following equation:

— 4fm(1 - fm)
“ = \] 2 fm(L = fr) + 1605, (L= 7)) 57)

p is the ratio of sites in the lattice at which a rest particle may be created. In the
situation where all sites within the lattice are allowed to hold one rest particle, p = 1.
Although a rigorous theoretical proof is not developed for this formula, this could be
deduced from the g'! component of the isotropic rank-two tensor (Equation (4.13)).
Using mixtures then, it would be possible to achieve any propagation speed between
0.707 (HPP, p = 0) and 0.316 (minimum in 4m < 1r, with p = 1 and f,, = 0.50).
The lattice size in this series of experiments was 2048 x 256. The square sampling
window (size 49 x 49) was centred at x = 575, y = 150. The maximum size of the
initial perturbation, p, (peak of the gaussian), was at 20% above the background.
The pulse width of the gaussian was 7 = 50Az. The square sampling window (size
49 x 49) was centred at x = 575, y = 150. With the moving particle density, fn,
fixed at 0.50, the results for ¢; in the 4m < 1r (s=1) and HPP lattice gas mixture

are shown in Figure 5.7(a).

The propagation speed for a 4m « 1r (s=2) and HPP lattice gas mixture could be

deduced in a similar manner and would be

4fm(1 — fm)

“ = \}2[4fm(1—fm)+32pfr(1—fr)]' (58)
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Figure 5.7: Propagation speeds for the 4m < 1r lattice gas mixture as a function of

the density of sites in the lattice which can hold rest particles
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Results from such a simulation (using the same lattice dimensions, pulse width and
window size as in the previous experiment) with the moving particle density, f,, fixed

at 0.50, are shown in Figure 5.7(b).

If we were now to create a lattice gas mixture with sites having stack lengths of

zero, one and two, we might expect the propagation speed within this mixture to be

= 4fm(1 - fm)
o J 2 [4fm(1 - fm) + 16p1f7~(1 - fr) -+ 32p2f7_(1 _ fr)] (59)

p1 and po are the ratios of sites having stack lengths of one and two, respectively.
Furthermore, p; + p2 < 1. If p; = 0.35 and p, = 0.25, the theoretical value of ¢ is
0.3371. The experimentally determined value is found to be 0.3336.

5.3 Viscosity

The viscosity of the 4m « 1r (s=1) lattice gas model derived in Chapter 4 was found

to be

2 [1 1 1 1

VS |G T rw) T T2

where,

u = 21— fu)+ A= fn)fm
v = fA1-f)+ 0= fn)f
w = fo+1-fa)t
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fm and f. are the densities of the moving and rest particles, respectively. It should
be noted that this result was derived under the assumption that for this model the
tensors constructed from the lattice vectors are isotropic upto 4th rank. This is an
incorrect assumption for any HPP based model. However, we shall plot the viscosity

as a function of the density per cell of moving particles in Figure 5.8.

viscosity

; : — T . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
density per cell of moving particles

Figure 5.8: Viscosity as a function of moving particle density.



Chapter 6

LGA Experiments for

Heterogeneous Systems

In this chapter we conduct lattice gas experiments with lattices which are divided into
regions. These regions differ in the maximum number of rest particles which the sites
within them can hold. The first step would be to determine whether such regions
can exist in some sort of particle equilibrium which prevents the initial conditions

(particle concentrations) from changing with time.

6.1 Boundaries Between Different Media

A two dimensional lattice could be divided into two regions as shown in Figure 6.1.
One region (Region II) contains sites which allow for upto one rest particle and the

other (Region I) has sites which allow no rest particles at any site.

The lattice is initialized with moving and rest particles such that the moving
particle density, fn, is the same in both parts. This is done so that the two regions

are in (moving particle) equilibriium. Then Region II is initialized with a rest particle

101
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Figure 6.1: The two dimensional lattice with two regions.

density, f., according to Equation (6.1). This is done in order that there be an
equilibrium between moving and rest particles in Region II. Thus, the entire lattice
will be in equlibrium and moving and rest particle densities should not change with

time.

-
T FE (= )t

fr (6.1)

We are interested in determining whether there would be any kind of deviation
from the initial equilibrium conditions (caused by particle flow across the bound-
ary). The following experiment was carried out: The two dimensional lattice had
dimensions N Az * N,Ay, where Az = Ay = A is one lattice unit. N, = 2048 and
Ny = 51.2 were the number of cells in the x and y directions, respectively. The number
of moving and rest particles within both regions is shown in Figure 6.2. In this case,
fm = 0.35 within both regions and f, = 0.07755 in Region II. As expected, Region
I has no rest particles and the total number of rest and moving particles within the

two regions doesn’t fluctuate significantly with time.

The test was repeated with Region I sites which could hold a maximum of one

rest particle and Region II sites which allowed for upto two rest particles at a site.
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Figure 6.2: Equilibria between Region I (s=0) and Region II (s=1).

fm = 0.25 and f, = 0.01220 are the moving and rest particle densities in both regions.

Figure 6.3 shows unchanging moving and rest particle populations as expected.

6.2 Numerical Experiments

In the last section we determined the necessary criteria for two regions to exist in
equilibrium and the propagation speed within each of these two media. The next
step would be to test the propagation of a small perturbation in a lattice, across a
boundary. The magnitudes of the reflected and transmitted wave are then functions
of the propagation speed within the two media. The modelling of two dimensional
TM or TE electromagnetic phenomena [24] could be described by the linear scalar

wave equation,

_15%

Tz’

Vig
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Figure 6.3: Equilibria between Region I (s=1) and Region II (s=2).

with the application of appropriate boundary conditions and sources. For problems
independent of the z2-direction, ¢ = E, or H, for the TM ur TE cases, respectively.
Using the analogy between acoustics and electromagnetic fields [25], for TM problems,
the macroscopic excess pressure, p, (please see Appendix A) can be equated to the
electric field E;, and the z and y components of the flow velocity, u = (u;,u,), can

be equated to the magnetic field components, Hy, and H;, respectively.

6.2.1 Wave Propagation Across an Interface Using the 4m <

1r (s =1) Lattice Gas

In this section we shall investigate wave propagation through a lattice which has
two regions of different permittivities. These regions are modelled by allowing for

4m « 1r (s=1) collisions in one and HPP (no rest) collisions in the other.

The simulation space was a two dimensional lattice as shown in Figure 6.4 with
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z and y dimensions of 4096 and 2048 lattice units, respectively. A gaussian-pulsed
plane wave of width 100 A was centred at 1200 Az. The lattice was equally divided
into two regions. As mentioned earlier, Region I did not allow for the creation of
rest particles (HPP, no rest) at any site while each site within Region II could hold
up to a maximum of one rest particle (4m < 1r (s=1)). The lattice used in this
experiment had reflecting boundaries as shown in Figure 6.5. For example, an East
moving particle incident at the right boundary turned into a West moving particle

and was thus reflected back.

I I

Figure 6.4: The two dimensional lattice with two regions.

b 7

Figure 6.5: Reflecting lattice boundaries.
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A square sampling window of dimensions 99 A x 99 A, was centred at 1700 Az,
1024 Ay. Moving particles within both regions were initialized with a probability of
0.40 (= fr). In accordance with Equation (2.37), rest particles within Region II were
then initialized with a probability of 0.1649 (= f,). The propagation speed ¢, could
be calculated using Equation (4.50).

_ 4fm(1 B fm)
e = J 2 fm(1 = fo) T 165, (1= 7] (62

In this experiment, ¢; = 0.3895. The propagation speed in Region I is % Assuming
a relative dielectric constant e; = 1 for Region I, the dielectric constant ¢;; for Region

11 is

1
2c2
= 3.2957.

€11 =

Particles were counted within the sampling window for 3000 time steps and the results

are shown in Figure 6.6(a).

A Fourier transform was applied to the time domain waveform of Figure 6.6(a) to
obtain the frequency response shown in Figure 6.6(b). The results are compared with
those obtained using the Transmission Line Matrix method [26]. The TLM method is
a general numerical technique that can be applied to obtain an approximate solution
to the time-dependent form of Maxwell’s equations. The method belongs to the
same class of numerical techniques that include the various Time-Domain Finite-
Difference [27], Finite-Volume [28], and Finite-Element [29] methods. An overview
of the TLM method can be found in [30], and the application of the method to a

variety of electromagnetic radiation and scattering problems is provided in [31]. The



CHAPTER 6. LGA EXPERIMENTS FOR HETEROGENEOUS SYSTEMS 107

# of particles in sampling window (x16%)

13 . ; . :
0 0.5

d . d . ,
1.5 2 25 3
time (x10°)

-

(a)Time Domain

(b)Frequency Response

Figure 6.6: The two region interface: HPP and 4m « 1r (s=1), fmn = 0.40.
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standard interpretation of the algorithm is that it follows the interaction of idealized
voltage pulses propagating on a transmission line grid. Although this representation is
quite different from the standard finite-difference or finite-element methods, the TLM
method still requires all the same quantities to analyze a given problem. Appropriate

boundary conditions and initial conditions are required to compute a solution.

In order to compare the TLM and LGA methods, results are normalized to their
maximum values. In the TLM program, the two dimensional lattice had dimensions
400 x 200 while in our LGA experiments, the lattice had dimensions 4096 x 2048. In
order to make a comparison, the LGA inter-nodal spacing (Az = Ay = A) was taken
to be 0.0005m, while the in TLM lattice A was 0.005m. Hence the LGA lattice was
about 100 times bigger in area than the TLM lattice. The propagation speed, ¢, in
the LGA experiments for the HPP (no rest) model was normalized to the speed of

light in vacuum, 3 * 108 m/s.

In the previous experiment, during the lattice initialization process, a random
number generator was used to initialize the lattice sites with particles. For example,
in Region I, if the random number generated was less than 0.40, the North direction of
a site was initialized to 1. In a similar manner, the Fast, West and South directions of
each site in the lattice were initialized. It could be then said that the density of moving
particles in the lattice was f,, = 0.40. The simulation program utilized an initial seed
and each successive random number was the seed for the next. In an attempt to
create a more random experiment, the simulation was executed a number of times
using different seeds. One would then expect that an ensemble of simulations would
give a better representation of the time-domain waveform. As shown in Figure 6.7(a),
the time domain waveform becomes less noisy as the number of simulations in the
ensemble increases from 10 to 100. The frequency response as shown in Figure 6.7(b),

however, does not change by very much.
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Figure 6.7: Ensemble averaging for the two region interface: HPP and 4m « 1r

(s=1), fm = 0.40.
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From transmission line theory, we would expect the magnitude of the reflection

coefficient, I', to be

Zir— 4

Zir+ 21
1
I

)
—~

+
sHak

)
™

I

1
Vv 3.2957 1

1
Vizesr T 1
= —0.2896.

Using the peak values of the incident and reflected wave, E*¢ and ET®/, respec-

tively, the experimental value of the reflection coefficient is ' = E7¢/ /Ei"¢ = —(.3258.

The moving particles were then initialized with a density of f, = 0.50 in both
regions. The propagation speed, cs, in Region II is 0.316228 and the resulting relative
permittivity is 5.00. The time domain waveform, which results from counting the par-
ticles within a sampling window of dimensions 99 x 99, centred at 1700Az, 1024Ay, is
shown in Figure 6.8(a). From transmission line theory, we would expect the reflection

coefficient, I = —0.3820. The experimental results yield a value of I' = —0.3628.

For the same problem with f, = 0.50, the square sampling window was then
centred at 2060Az, 1024Ay and particles counted for 4000 time steps in order to
measure the transmitted wave. The resulting time-domain waveform is shown in

Figure 6.9. According to theory, the tansmission coefficient (T") is given by

T = 14T
= 0.61803.
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Figure 6.8: The two region interface: HPP and 4m « 1r (s=1), f,, = 0.50.
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Using the peak incident value from Figure 6.8(a) and the peak transmitted value from

Figure 6.9, the value calculated from experiment is I' = 0.5081.
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Figure 6.9: Time domain waveform (in the dielectric region) for 4m < 1r (s=1),

fm = 0.50.
The frequency response of the reflected wave was also compared with results ob-

tained using the TLM method and is shown in Figure 6.8(b).

6.2.2 Wave Propagation Across an Interface Using the 4m «

lr (s =2) Lattice Gas

In this section, we perform experiments similar to those in the previous section with

the exception that Region II contains sites, all of which can hold upto a maximum of
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two rest particles. Sites within Region I do not hold rest particles. The simulation
space was a two dimensional lattice with x and y dimensions of 4096 and 2048 lattice
units, respectively. A gaussian-pulsed plane wave of width 100 A was centred at
1200 Ax. The maximum size of the perturbation was 20% above the background
density. The lattice was equally divided into two regions. Region I did not allow for
the creation of rest particles at any site while each site within Region II held up to
a maximum of two rest particles (of mass 4m each). In other words, the maximum
stack length in Region II was two. The lattice again had reflecting boundaries. The
square sampling window was centred at 1700 Ax, 1024 Ay and was of dimensions 99
A x 99 A. Moving particles within both regions were initialized with a probability
of f,, = 0.35. Rest particles within Region II were initialized with a probability of
fr = 0.0775, in accordance with Equation (2.37). The propagation speed ¢, could be
calculated using Equation (4.51) with k = 2,

J 4f (1= fr)
2[4fm(1 = ) +32£-(1 = £)]

Cs

In this experiment, ¢; = 0.3771. Assuming the propagation speed in Region I is %,

the dielectric constant €;; for Region II could be then calculated as,

1
2¢2
3.51585.

€11 =

The resulting time domain waveform for 3000 time steps is shown in Figure 6.10.

Comparing the theoretical and experimental reflection coefficients, I'¢peory = —0.30434

and Ty = —0.36701.
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# of particles in sampling window (x10%)

Figure 6.10: Time domain waveform for the two region test; 4m « 1r (s=2), fr, =

0.35.

We applied the Fourier transiorm to the time domain waveform to obtain the
frequency response shown in Figure 6.11. The results are again compared with those

obtained using the Transmission Line Matrix method.

In another experiment with two regions, the background moving particle density in
each was chosen to be f,, = 0.50. The corresponding rest particle density in Region
IT is f, = 0.50. The propagation speed is ¢ = 0.2357 and relative permittivity is
err = 9.00 in Region II. The dimensions of the lattice, window position, window size,
location of the source and pulse width of the gaussian are the same as in the previous

experiment.

Comparing the theoretical and experimental reflection coefficients, I'theory = —0.50

and Tegp = —0.45556.

The Fourier transformed results are shown in Figure 6.12 and compared with those

obtained using the TLM method.
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Figure 6.11: Frequency response for the reflected wave in Region I; 4m « 1r (s=2),

Fm = 0.35.

Figure 6.12: Frequency response for the reflected wave in Region I; 4m « 1r (s=2),

fm = 0.50.
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6.2.3 Wave Propagation Across an Interface Using the 4m «

1r Lattice Gas Mixture

In the previous experiments, Region II consisted of sites, all of which allowed for 1
rest particle. In this experiment, Region II has a mixture of sites which allow for
either 0 or 1 rest particle. In other words, Region II is a lattice gas mixture. The

propagation speed in this region was previously given by Equation (5.7) as

— 4fm(1 — fm)
“ = J 2 AFn (T = fo) + 1605 (1= 7)) 63

For p = 0.40, f,, = 0.50 and f. = 0.50, ¢; = 0.4385. The relative permittivity
of Regioh IT was 2.60. Region I had a relative permittivity of 1. The lattice had
dimensions 4096 x 2048 and the source and observation point locations were the
same as in the previous experiments. The problem was modelled using the TLM
method with a simulation space of dimensions 400 x 200. The Fourier transform was
applied to the time domain waveforms from each experiment and results are shown

in Figure 6.13.

Comparing the theoretical and experimental reflection coefficients from time do-

main results, I'tpeory = —0.2344 and I'ezp = —0.1778.

In another experiment, the Region II mixture consisted of a mixture of zero and
two rest particle sites. This time we used p = 0.35 with f,, = 0.50 and f; = 0.50 in

Region II. Using these values to calculate ¢; from Equation (5.8),

_ 4fm(1 — fm)
“ = J 2 A fm (L= fm) 3205, (1= 7] ©4)

we get ¢s = 0.3627. The relative permittivity of Region II is subsequently 3.80. The

dimensions of the lattice, window position, window size, location of the source and
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Figure 6.13: Frequency response for the two region experiment; 4m < 1r (s=1) and

HPP (no rest) rest mixture.

pulse width of the gaussian were the same as in the previous experiment. .’he problem
was also modelled using the TLM method with a simulation space of dimensions 400
x 200. The Fourier transform was applied to the time domain waveforms from both

simulations and the results are shown in Figure 6.14.

Comparing the theoretical and experimental reflection coefficients, I'theory = —0.3219

and ez, = —0.2830.

6.2.4 Modelling a Dielectric Strip Using the 4m < 1r Model.

In this section we model a dielectric strip using the 4m < 1r (s=1) lattice gas. The
region surrounding the strip was modelled using the HPP (no rest) model. In this
experiment, the lattice as shown in Figure 6.15, had dimensions 4096 x 2048. The
dielectric strip of 100A thickness (esrip = 3.2957) was placed at 2000 < z < 2100.

This was accomplished by using the one rest particle model in the strip region with
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Figure 6.14: Frequency response for the two region experiment; 4m <« 1r (s=2) and

HPP (no rest) rest mixture.

fm = 0.40 and f, = 0.1649. The moving particle density in the surrounding region
was [ = 0.40. A gaussian-pulsed plane wave source was located at 1200 Azx. Its
maximum amplitude was 20% above the background density and the pulsewidth

7 = 100A. A square sampling window was located at 1700 Az, 1024 Ay.

The resulting time domain waveform is shown in Figure 6.16. This waveform
is the result of an ensemble average of 100 simulation results using different initial

conditions everytime.

The theoretical value of the reflection coefficient is I'theory = —0.2896. From the
experiment however, I'ezp = —0.3169. In Figure 6.17, results from a TLM simulation
using a lattice of size 400 x 200 (all other variables such as pulse width, source location,
etc. are scaled accordingly) are compared with the lattice gas results obtained by

ensemble-averaging 1, 10 and 100 simulations.
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Figure 6.15: The two dimensional lattice with dielectric strip; €grip = 3.2957.
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Figure 6.16: Time domain waveform for dielectric strip.
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Figure 6.17: Frequency response for dielectric strip.
6.2.5 The Two-Layered Dielectric Cylinder

In this section we create an inhomogeneous dielectric cylinder, made up of two con-
centric layers as shown in Figure 6.19. The size of the lattice was 4096 x 2048. The
gaussian plane wave was generated as before by superimposing additional particles
on the lattice with a 20% fill at the maximum of the distribution. The cylinder was
centred at x = 20004\, y = 1024A. The inner radius was 80A with a relative permit-
tivity of 3.31, the outer radius being 100A with a relative permittivity of 1.96. This
was implemented by allowing a maximum of 1 rest particle in the outer region and
up to 3 rest particles in the inner region. The rules for this lattice gas are shown
in Figure 6.18. The inter-nodal spacing in the lattice was defined to be 0.001m.
The system was evolved for 3000 iterations and observations were made at a 40A
x 40A square window, centred at x = 17004, y = 1024A. The Fourier transform
was applied to the time domain waveform and compared with results from a TLM

simulation of the same problem with lattice dimensions 400 x 200. The results are
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shown in Figure 6.20.
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Figure 6.18: Collision rules for the creation of rest particles.
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It should be noted that the rule in this experiment violates semi-detailed balance

following the arguments presented in section 2.11. Hence, the analysis presented in

Chapter 4 does not apply to this model. The relative permittivities for the two regions

were calculated using a rectangular lattice, propagating a plane wave across it and

then calculating the propagation speed, c¢s, using the method described in Appendix

B (observing the peaks of the gaussian plane wave).
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Figure 6.19: Two dimensional lattice with dielectric cylinder.
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Figure 6.20: Two dimensional lattice with dielectric cylinder: results.



Chapter 7

Conclusions

In this thesis, we have demonstrated the validity of the lattice gas automata approach
for simulating the scalar wave equation in two dimensions in the presence of inhomo-
geneous media. Experiments to investigate electromagnetic plane wave interaction
with dielectric media have been performed and yield reasonable results. For the HPP
and FHP lattice gas models (with and without rest particles), theoretical as well
as experimental Boltzmann equilibria are in good agreement with each other. The
Fermi-Dirac distribution enables a prediction of the ratio of moving to rest particles

in a lattice gas simulation, provided the semi-detailed balance condition is obeyed.

7.1 CA Versus Conventional Numerical Techniques

The differences between cellular automata methods and conventional numerical tech-
niques are numerous and at times quite difficult to quantify. The cellular automata
approach to modelling physical systems is a departure from the traditional differential
equation based methods which are widely used. It is important to note the difference

between cellular automata and partial differential equations and their finite-difference
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counterparts [18]. In partial differential equations, the spatial and temporal coordi-
nates and the dependent variables are continuous quantities. In the corresponding
finite-difference approximations, space and time are discretized, while the dependent
variables are continuous. In the cellular automata environment however, space, time

and the dependent variable are all discrete.

Due to its discrete nature, an invertible CA simulation preserves all the informa-
tion and can be reversed at any time to yield the initial condition. This, however,
is not possible in finite-difference based methods owing to floating-point, round-off
errors. Furthermore, since lattice gas operations are bit oriented, they execute more

naturally on a computer [32].

While differential equation based algorithms may become unstable, lattice gas

methods are obviously quite stable since the process only involves averaging.

7.2 Simulation Time

A comparison of simulation times using different methods was not attempted in this
thesis. The reason for this being a lack of a suitable measure of performance. As
mentioned in [18] it would indeed be unfair to compare parallel implementations of
CA with serial implementations of floating-point methods. Furthermore, it remains
to be determined as to what size of simulation space (how many cells, size of sampling
window, etc.) is required to produce accurate numerical results. It should be noted
that the computational complexity involved in the binary operations of one lattice gas
cell is considerably less than the complexity of a finite-difference floating-point oper-
ation. However, in our experiments, 10 lattice gas cells represent one finite-difference
cell. In addition, the size of the sampling window used to determine the magnitude

of the macroscopic variable at one finite-difference node was 40 x 40. Again, these
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are only preliminary estimates and much work remains to be done in order that we

might predict the optimal mesh dimensions to model a particular structure.

7.3 Advantages of the CA Approach

An interesting and oft cited property of CA is the complexity that emerges from a
system which might be very simple at the microscopic level. The CA’s rules must
therefore capture the essence of the phenomenon under investigation and then the
appropriate macroscopic behaviour would hopefully emerge. In addition CA may be

used to model systems which are very difficult to describe using differential equations.

7.4 Modelling Inhomogenieties

With an increase in the number of rest particles (stack length), it is possible to model
materials having higher permittivities. The graph in Figure 7.1 illustrates the manner
in which relative permittivity varies with the maximum number of rest particles in

the 4m < 1r model.

7.5 Special-Purpose Architectures

CA simulations, when run on general-purpose, floating-point processor based serial
machines take very long. As explained earlier, CA operations are bit oriented, sim-
ple logical operations and a floating point processor would indeed be unnecessary.
Thanks to the development of special-purpose architectures like CAM-8 by the Infor-
mation Mechanics Group at MIT, large scale CA simulations are now quite feasible.

Furthermore, the machine has the ability to display generated data (bits at sites in
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relative permittivity
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Figure 7.1: €, as a function of &k

the lattice) in real time, on a monitor. This immediate visualization in turn enables a
better understanding of the proble.n under investigation. Only a small degree of par-
allelism (a factor of 8) is utilized by CAM-8. This means that the simulation space is
divided into 8 equal parts and processed simultaneously. Each part on its own is pro-
cessed serially. For models with 16 bits per site, the 8-module prototype performs 200
million site updates per second on spaces of up to 32 million sites [13]. Furthermore,
the architecture consists primarily of SRAM (look-up tables) and DRAM (cells) and
is indefinitely scalable in three spatial dimensions. CAM-8 contains effectively the
same quality and quantity of digital hardware as a typical workstation (and therefore

costs about the same).
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7.6 Future Work

The models used in this thesis are used for the scalar wave equation in two dimen-
sions and the extension to three dimensions would require modifications to the rule.

Furthermore, we would have to create new rules to model the vector wave equation.

Lattice gas automata could be used as an environment in which we could model
electromagnetic interactions with biological systems. This would require arbitrarily
shaped regions in the lattice with sites which can hold different numbers of rest

particles.

In order that an assessment of the feasibility of the lattice gas approach be made,
a detailed analysis of the accuracy of numerical results must be made. As explained
in Chapter 4, the HPP model yields an anisotropic viscous term. The viscosity is
used to predict damping in the perturbation as it propagates throught the lattice.
Hence in order that we might accurately predict this quantity, it would be necessary

to switch to hexagonal lattice based models such as the FHP.



Appendix A

Acoustic Waves in Fluids

This appendix gives details of the derivation of the wave equation which is derived
in [25] from the conservation equations. During the course of this derivation we shall

restrict the discussion to one dimension.

A.1 Conservation of Mass

We begin by considering a control volume in space between the planes at z and z+dz
as shown in Figure A.1 which has the form of a parallelepiped with the surface normal

to the x-axis having unit area.

The mass of fluid per unit time entering the volume through the surface at z at

time ? is

M(z,t) = p(z,t)U(z,1). (A.1)

This is called the mass fluz. The rate of mass which leaves the volume through the

surface at z + dz at the same time ¢ is M(z + dz,t). The net mass influx to the
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Figure A.1: Control volume

control volume is then

M(z,t) — M(z + dz,t) = — <%A%) dz (A.2)

for small dz.

p(z,t)dz is the total mass inside the control volume at time t. The time rate of change

of the mass inside the volume is equal to the influx, or

0p , OM _

This is often referred to as the continuity equation.

A.2 Conservation of Momentum

Similarly, the conservation of momentum equation can be expressed in terms of a
momentum density and a momentum flux. While the thermal motion does not con-
tribute to the mass flux, it does contribute to the momentum flux, which, by definition

is the pressure P in the fluid.
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As discussed in the previous section, the rate of mass transported through the
surface at z is M = pU. The momentum of this mass, transferred to the control volume
from the left, is MU. As well, the momentum transfer due to the thermal motion
is expressed by the pressure P(z,t), which results from the collisions between the
particles on the left with those inside the volume. Hence, the total rate of momentum

transferred to the particles in the control volume through the surface at z is

G=P+pU2=aa—At/I. (A4)

A.3 Acoustic Field Equations

We shall now discuss the equations for acoustic waves in a fluid. The following

discussion is presented in [25].

The unperturbed field variables are assumed to be time independent (denoted
by the subscript 0). Perturbations of density, velocity, mass flux and pressure are
denoted by p,u, m and p. The density perturbation is assumed to be small, so that
p < po. We obtain the corresponding pressure perturbation by expanding P(p -+ §)

in a Taylor series

dP\ . 1\ [d?P\ .
Plp+p) = Po+<d—p>,0+<-2") (d—p2>p2+... (A.5)
dP
~ B+ (?l;) p (A.6)

Fo = P(po). (A7)
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_ (7Y,
p— dp p'

The compressibility is defined as

_1ldp
" podP’

i~

Using this in Equation (A.8),

_ (L) ;
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(A.10)

The perturbation in the mass flux is m; = (po+5)(Uo+u) — pols. The unperturbed

fluid is assumed to be at rest (Us = 0). Thus, m; =~ pou, where we have assumed

that p < po. The perturbation in the total momentum flux G = pU? + P is G; ~ p,,

since, pou? is negligible compared to p if U is much smaller than wave speed. The

conservation equations then reduce to

ov _ _9p
po@t - 9z’
9 _ _OU
ot oz’

(A.11)

(A.12)

By taking the spatial derivative of the first of these equations and time derivative

of the second, we can eliminate U to obtain the wave equation,

azp 28217

_— = Y—

ot? oz?’

where v = 1/4/(pok) is the sound speed.

(A.13)



Appendix B

Propagation Speed Measurements

In order to measure the propagation speed (relative permittivity) of a lattice gas
having a certain background density of moving and rest particles, we have employed

the following method:

Let us consider the 2m < 1r (s=1) model with f,, = 0.4500, f, = 0.4010. The

lattice dimensions are 4096 x 256.

A gaussian perturbation is created in the lattice and a square sampling window is
used to monitor the wave as it propagates. The number of particles within the window
are counted at every time step. The lattice has periodic or wrap-around boundaries.
This simply means that when the wave reaches one end of the two-dimensional lattice,
it wraps around and re-enters at the opposite end. When the gaussian pulse starts
out, it splits equally into 2 pulses, one moving to the left and the other to the right
(labelled L and R, respectively in Figure B.1).

Figure B.2 shows four pulses. The first pulse is R when it propagates to the
sampling window. In the meantime L travels to the West boundary of the lattice
and re-enters at the East end. Pulse 2 is this perturbation when it propagates to the

sampling window. Pulse 3 is R after it travels to the East boundary wraps around
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Figure B.2: Time domain waveforms.
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to the West boundary and propagates to the window. Similarly pulse 4 is L. The
number of time steps between pulse 1 and 3 or 2 and 4 is the time the wave takes to

propagate across the lattice. The speed ¢, then is simply

. = 4096
s 14480 — 6424
= 0.5084.

The theoretical speed is given by the formula

4fm(1 - fm)
2[4fm(1 - fm) + 4‘fr(1 - fr)]
= 0.5037.

Cs

The propagation speed could also be determined by calculating the phase differ-
ence between pulses 2 and 4. At a frequency of 1.745 x 107 Hz this difference is found
to be 1.054. This corresponds to a lattice size of 4096 % 0.0005 in the x direction
(lattice spacing, A = 0.0005 m). The propagation speed in the HPP model is %
which corresponds to the speed of light (used when performing the discrete Fourier

transform). The propagation speed could then be calculated,

1.745 % 107 % 27 % 4096 * 0.0005 _1_
1.054 % 3.0 % 108 V2
= 0.50221.

Cs =

Since the experimental result using the phase difference method is very close to
that obtained using the peak observation method, we have used the latter in the

thesis.



Bibliography

[1] Toffoli, Tommaso, and Norman Margolus, Cellular Automata Machines - A New

Environment for Modeling, Cambridge: MIT Press, (1987).

[2] Toffoli, Tommaso, “What are nature’s ‘natural’ ways of computing?” Work-
shop on Physics of Computation - PhysComp 92, IEEE Computer Society Press
(1993), 5-9.

[3] Von Neumann, John, Theory of Self-Reproducing Automata (edited and com-
pleted by Arthur Burks), Univ. of Illinois Press, (1966).

[4] Wolfram S., Cellular Automata and Complezity - Collected Papers, Addison-
Wesley, Reading, MA, (1994).

[5] Weimar, J., J. Tyson and L. Watson. “Diffusion and wave propagation in cellular

automaton modles of excitable media,” Physica D, 55:309-327, 1992.

[6] Ancona, M. G., “Lattice-Gas Approach to Semiconductor Device Simulation,”

Solid-State Electronics, Vol. 33, No. 12, pp. 1633-1642, (1990).

[7] Chowdhury, D., P. Subbarao and P. Chaudhuri. Built-in self-test. Journal of
Electronic Testing, 5(1):67, Feb. 1994. “A class of two-dimensional cellular au-

tomata and their applications in random pattern testing.”

135



BIBLIOGRAPHY 136

8]

[9]

[10]

Creutz, Michael, “Deterministic Ising Dynamics,” Annals of Physics 167 (1986),
62-76.

Boghosian, Bruce M., and C. David Levermore. “A Cellular Automaton for Burg-

ers’ Equation.” Complez Systems 1 (1987):17-30.

Hardy, J., O. De Pazzis and Yves Pomeau, “Molecular dynamics of a classical
lattice gas: Transport properties and time correlation functions,” Phys. Rev.

A13 (1976), 1949-1960.

Frisch, Uriel, Brosl Hasslacher, and Yves Pomeau, “Lattice-Gas Automata for

the Navier-Stokes Equation,” Phys. Rev. Lett. 56 (1986), 1505-1508.

Diemer, K., K. Hunt, S. Chen, T. Shimomura and G. Doolen, “Density and Ve-
locity Dependence of Reynolds Numbers for Several Lattice Gas Models.” Lattice
Gas Methods for Partial Differential Equations. Santa Fe Institute, (1990).

Margolus, Norman, “CAM-8: a computer architecture based on cellular au-
tomata,” Pattern Formation and Lattice Gas Automata, American Mathematics

Society (Fields Institute Series), Providence, RI, (1995).

Shah, M., “An optimized CAM-8 simulator for the SPARC architecture,” M. S.
Thesis in EECS, MIT (May 1992).

Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T., Numerical
Recipes: The Art of Scientific Computing, Cambridge University Press, Cam-
bridge, (1986).

Boghosian, B. and W. Taylor, “Correlations and renormalization in lattice

gases,” MIT Report MIT-CTP-2265, March 11, (1994).



BIBLIOGRAPHY 137

[17] D’Humieres, D. and P. Lallemand, “ Numerical Simulations of hydrodynamics
with lattice gas automata in two dimensions,” Complex Systems, 1, 599-632

(1987).

[18] Boghosian, B. M., “Lattice Gases,” 1989 Lectures in Complex Systems, SFI
Studies in the Sciences of Complexity, Lect. Vol 11, Erica Jen, Ed., Addison-
Wesley, (1990).

[19] Smith, M., “Cellular Automata Methods in Mathematical Physics,” PhD thesis,
MIT (1994).

[20] Landau, L., and E. Lifschitz, Fluid Dynamics, Pergamon, New York (1959).

[21] Toffoli, Tommaso, and Norman Margolus, “Invertible Cellular Automata: A

Review,” Physica D 45 (1990), 1-3.

[22] Feynman, R. P.. R. Leighton, M. Sands, it The Feynman Lectures on Physics,
6-6, (1965).

[23] Wolfram, S., J. Stat. Phys., 45 (1986) 471.

[24] Simons, N. R. S., G. E. Bridges, B. W. Podaima and A. Sebak, “Cellular Au-
tomata as an environment for simulating electromagnetic phenomena,” [EEE

- Microwave and Guided Wave Letters, 4, 247-249 (1994).

[25] Ingard K. U., Fundamentals of Waves and Oscillations, Cambridge University
Press, Cambridge, (1970).

[26] Simons, N. R. S., “Development and Application of Differential-Equation Based
Numerical Techniques to Electromagnetic Scattering and Radiation Problems,”

PhD thesis, University of Manitoba, (1994).



BIBLIOGRAPHY 138

[27]

[29]

[30]

[31]

[32]

[33]

Taflove, A. and K. R. Umashanka, “Review of FD-TD Numerical Modelling of
Electromagnetic Wave Scattering and Radar Cross Section,” Proceedings of the

IEEE, 1989, 77, pp. 682-699.

Shankar, V., W. F. Hall and A. H. Mohammadian, “A Time-Domain Differential
Solver for Electromagnetic Scattering Problems,” Proceedings of the IEEE, 1989,
77, pp. 709-721.

Lynch, D. R. and K. D. Paulsen, “Time-Domain Integration of the Maxwell
Equations on Finite Elements,” IEEE Trans. Antennas and Propagation, 1990,
AP-38, pp. 1933-1942.

Hoefer, W. J. R., “The Transmission-Line Matrix (TLM) Method,” in, Itoh, T.
(ed), Numerical Techniques for Microwave and Millimeter Wave Passive Struc-

tures, New York: Wiley, 1989.

Simons, N. R. S., A. Sebak and A. Ittipiboon, “Analysis of Aperture-Coupled
Microstrip Antenna and Circuit Structures Using the Transmission Line Matrix
Method,” IEEE Antennas and Propagation Magazine, vol. 37, no. 4, pp. 27-37,
August 1995.

Hasslacher, Brosl, “discrete fluids,” Los Alamos Science. Special Issue (1987),

pp- 175-217.

Doolen, G., Uriel Frisch, Brosl Hasslacher, S. Orszag and S. Wolfram, Ed., Lattice
Gas Methods for Partial Differential Equations. Santa Fe Institute, (1990).



