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Abstract

In this thesis, Cellular Automata methods are applied to model the scalar wave

equation in two dimensions. We consider cellular automata which conserve mass

and momentum at the particle level and thus fall under the more specific category

known as Lattice Gas Automata. Various HPP and FHP lattice gas models are

discussed and applied in the modelling of inhomogeneous media. The Fermi-Dirac

distribution for particles in a lattice gas which obeys semi-detailed balance, enables

an accurate prediction of the equilibrium conditions. This is used as a starting point

for most simulations. The Chapman-Enskog analysis provides us with a tool for

analysing the HPP and FHP lattice gases. Using this method we could derive the

macroscopic differential equation that results from the microscopic particle dynamics.

The transport coefficients in the Navier-Stokes equation (which results from the HPP

and FHP models) could be then obtained. Experimental results from simulations run

on a special-purpose cellular automata machine (CAM-8) are compared with theory.

A comparison between the two and results obtained using conventional numerical

techniques then enables an assessment of the feasibility of the lattice gas approach.
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Chapter 1

Introduction

1.1 Cellular Automata

A Cellular Automaton is a discrete dynamical system which consists of a lattice of

identical cells. The state of any cell in this lattice is determined by a rule which is

Iocal in both space and time. Each cell has a small number of states and hence the

number of bits required for its representation is small as well.

To better illustrate this definition let us consider the lattice of cells in Figure 1.1.

Every cell within a large lattice of cells is connected to its four nearest neighbours

(North, South, East and West). The state of any cell within this lattice at a given

time is either 0 or 1. The following rule then governs the evolution of this lattice:

A cell's state changes to the state of the majori,tg of i.ts ne'ighbours. In case of

a t'ie (an equal number of l's and 0's 'in nei,ghbouring cells) the cell's state remains

unchanged.

This rule, known as a Voti,ng or Majorit3¡ rule [1] is implemented in all cells simul-

taneously, and at every time step. It illustrates the aspect of. parallel¿sm which is a
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Figure 1.1: Two dimensional lattice of cells.
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characteristic of every CA simulation. In other words, we could run this simulation

concurrently (and more naturally l2l) on a number of processors, each of which rep-

resents a cell. The locality both in space and time of the CA's laws, small number of

states (2) for every cell are also illustrated and part of every CA simulation. Further-

more the CA's laws are uniforr¿. That is, the same rule applies to every cell within

the lattice. In Figure 1.2, the state of the cell in the centre changes from 1 to 0. The

states of the neighbouring cells are updated simultaneously (not shown).

The CA simulation then involves

a process of communication between neighbouring processors whereby each pro-

cessor informs its neighbours of its state and

. a process of internal bit manipulation during which each processor determines

its new state based on this information.

Cellular Automata was the brainchild of John von Neumann and Slanislaw Ulam

who used it to formulate biological models of living organisms [3]. In the early 1980s,

Wolfram [4] used one-dimensional cellular automata to demonstrate the complexity

that emerges from simple microscopic rules. Ever since its introduction however, it

has been used in a number of different applications some of which include modelling

diffusion [5], semiconductor device modelling [6], generating random numbers [7] and

modelling Ising systems [8].

L.2 Lattice Gases

The term Lattice Gas refers to a discrete system of interacting particles. Its inclu-

sion under the broad umbrella of Cellular Automata is referred to as Lattice Gas

Automata. Lattice Gas Automata are implemented as a set of rules, just like any
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Cellular Automaton. The bits in a CA represent particles in the lattice gas. The

rules govern the manner in which particles interact with one another. In fluid models

when particles collide at a node on the lattice, the interaction conserves mass and

momentum. However, rules in which momentum is not necessarily conserved are also

used in physical modelling. One such rule which is used to model Burger's Equation

is discussed in [9].

In the rest of the chapter we shall discuss the HPP and FHP lattice gases in which

both mass and momentum are conserved. These models form the basis for most of

the experiments contained in this thesis.

L.z.L The HPP Model

In the HPP lattice gas automaton (HPP stands for Hardy, Pazzis, Pomeau - the

creators of this model), particles are restricted to moving in the North, South, East

and West directions and occupy discrete positions (sites) on an orthogonal grid [10].

Each site on this grid can hold up to a maximum of four particles with no more than

one moving particle in each direction. A total of four bits are used to represent these

particles at each site.

Particles move in straight lines, unless a head-on, binary collision occurs after

which they travel at right-angles to the original direction of motion. AII other particle

configurations remain unchanged and they simply pass through one another. The

interactions between particles conserve mass and momentum. The collision rules are

shown in Figure 1.3. The HPP rule is characterized by rotational symmetry. This

means that the rule remains unchanged when input particle configurations are rotated

by 90'. For the four bit model, we have a total of sixteen collision rules.

One step in the evolution of the LGA consists of two stages as shown in Figure 1.4

which are usually referred to as Colli,s'ion and Aduecti,on. In the Collision stage parti-
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Figure 1.3: Some examples of HPP lattice gas automata collision rules.
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cles at a site are rearranged according to the lattice gas rule. In the Advection stage

particles move to neighbouring sites.

iiL-i _ii_Li__ i_iLi_
--.1*i-L-j--- --l f L-.j ---l--$ i- J -.iii-j--' j+|-j-- jTt-:

rttttttt
--ì--t.>t<{r--- ---.1--*o>k¡-|--- --ì--+-..q---,,ti iiti ,,,,--i--l--i--l--- --i--i--i--t-- j--l--i--t---

r I I I 
-> 

r I I I --> r I r r

Collision Advection

Figure 1.4: One step in the evolution of a lattice-gas dynamics.

As an example, consider a cell which might have only an East moving particle

present in it. The collision phase leaves the contents of the cell unchanged. During

the advection step, the particle is transferred to the next cell on its right. Hence the

;;article has moved one step in the East direction.

I.2.2 The FHP Model

The idea of a mass and momentum conserving lattice gas on a triangular grid with

hexagonal symmetry v/as presented by FHP (Flisch, Hasslacher and Pomeau) in [11].

In this model, as shown in Figure 1.5, a site holds a maximum of six particles.

Collisions occur when there are exactly two or three particles at a site, arranged as

shown in the example. When two particles collide head-on at a site, there are two

possible outcomes. Each outcome occurs with equal probability of 0.50. Modifications

to this model could be made by allowing for the creation of rest parti,cles at sites in

the lattice [tZ]. In Figure 1.5, a double arrow without a number indicates that both

forward and reverse events occur with probabilities of 1.0. Similarly, a single arrow

without a number indicates that the event following the direction of the arrow occurs
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with a probability of 1.0. We shall adhere to this notation for the remainder of this

document.

In the HPP model there is an additional conserved quantity (momentum along

each horizontal and vertical line in the lattice is conserved). In the FHP model

however, there is no additional conserved quantity other than mass and momentum.

Also, as will be explained later, the viscosity in the HPP lga is anisotropic. This is

not the case in the FHP model.

1.3 CAM-g

Conventional, general-purpose, serial machines are very inefficient as far as CA sim-

ulations are concerned. The Information Mechanics Group at the MIT Laboratory

for Computer Science has been involved in the development of special-purpose ar-

chitectures for the efficient evaluation of cellular automata. The 8 module Cellular

Automata Machine, CAM-8, is their newest [tS]. Eor CA rules with 16 bits per site,

simulations run at about 200 million site updates per second on spaces of up to 32

million sites.

The Cellular Automata Machine is actually a Lattice Gas Machine. Each step in

the operation of the machine consists of two stages [13]. A data-update stage during

which each cell's contents are sent to the look-up table from which a ne\M value is

sent back to the cell. A data-transfer stage during which each cell communicates with

its neighbours. The data-update and data-transfer stages correspond to the collision

and advection phases of a lattice gas step, respectively.

As an example let us consider the HPP implemented on CAM-8. We use a 4bit
binary representation for each cell in the lattice. The presence of a "1" in bits 0, 1, 2,

3 represents a particle moving in North, South, East or 'West 
directions, respectively.
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Figure 1.5: Example of possible FHP lattice gas collision rules.
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If a cell's state at time ú is 0011, then we have two particles, one moving North and

one South as shown in Figure 1.6. During the data-update step, the state of the cell

is referred to a look-up table and the result returned to the cell to become its new

state. In this case, 0011 would return a 1100, i.e., two particles, one moving East and

the other West. During lhe data-transfer step, the four bits are ki,cked to the four

neighbouring cells. Bit 2, for example, is moved over to the next cell on the right since

it represents an East moving particle. Bit 0 is moved to the cell to the North and

so on. This two-step process applies to every cell within the array of sites. Kicking

a bit, r steps, involves the transfer of that bit to the same bit in another cell, r cells

awây. In the HPP lga for example, the West bit of each cell, during the data-transfer

stage, is kicked by -1 in the x direction. Thus, CAM-8 is well suited to the simulation

of lattice gas algorithms owing to the nature of its architecture. In actual practice,

CAM-8 does not physically move data during the advection or data-transfer stage

but uses a pointer-based relative data movement technique [14].

L.4 The Stochastic Element

Very often a Cellular Automaton uses a random uari,able [15] to select one of two or

more possible outcomes. In the FHP lattice gas (Figure 1.5) for example, a head-on

binary collision has two equally probable outcomes. In order to model a problem of

this kind on CAM-8, we use a probabili,ty bi,t. One of the bit planes is filled with

a certain percentage of 1's. The percentage depends on the probability we want

to simulate. At each update stage then, within every cell, the rule checks to see

if this bit is set. This is in case we have two possible outputs for any input cell

configuration. In general, n bits a¡e needed to implement a stochastic CA with a

maximum of 2' equally possible outcomes. In CAM-8 the random bits may be kicked

around (random distances) from one cell to another, thus further randomizing the

10
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lattice (without destroying any bits).

1.5 Macroscopic Quantities

Macroscopic quantities within a lattice gas such as density and flow can be determined

using aprocess of statistical averaging. A sampling window, as shown in FigureL.T,

is created and particles are counted within this region at every iteration or step.

The HPP lattice gas automaton could be used to model the wave equation. For

small perturbations to an equilibrium background, a density perturbation behaves

according to the linear wave equation. Please see Appendix A for details on how the

Wave Equation is derived. The perturbation po thus propagates as

V2pp:
I ô2pp

(1 i)
c2, 0t2

The microscopic density at a particular cell T will be defined as the density of particles

in the cell,

11

4

Pa¿(rj,a) :ÐNu(*¡,a),
i:7

(12)

where (r¡,A¡) indicates the location and N¿(r¡,gr¡) indicates presence of particles

moving in direction i in cell7. The latter is equivalent to counting the particles inside

the cell j.

The macroscopic density p at a particular spatial location (r,g) can be determined

by averaging the values of. p*y as

";ç(å*,"",r,)) 
,p(r,a) : (1.3)
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where -R describes a neighbourhood of cells centred around (r,A), @n,An) is the

location of a particular cell within .R, and N7 is the total number of states within

R. For the TM or the TE cases in electromagnetics, the density perturbation p,

represents E" and f/r, respectively.

rttttt
lttltt
ltrttt
ï--l<ra1---t---r--F-frr?ttr?rfrtr
-<Ea- ---ç'<Þ--lôtttr

12

lôltrl
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frtr

-.tt J <-l- - -l- - -l- -AIAIÒtÒltttt
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Figure 1.7: Counting particles within a square sampling window.

The individual bits of the lattice gas could be thought of as ki,net¿c va¡iables while

the density defined in Equation (1.3) is the hydrodynami,cvariable. One interesting

aspect of a CA simulation is that even though the microscopic dynamics are simple,

the macroscopic properties that emerge are sometimes very complex.
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1.6 Summary

Chapter 2 introduces the Lattice Gas Automata and presents a mathematical descrip-

tion of the rules which govern the evolution of such a system. The ideas of detailed

and semi-detailed balance and their effects on equilibria in a lattice are determined

both theoretically and experimentally. In addition, this chapter discusses various

rest particle models and introduces rules which can be used to model inhomogeneous

media.

In Chapter 3, the Chapman-Enskog method for lattice gases is presented in a

general framework. This is a summarized version of the analysis which was presented

by Boghosian and Taylor for the first time in [16].

In Chapter 4, we then apply this very elegant method to a lattice gas with rest

particles to determine parameters such as propagation speed and viscosity. The ex-

tension to similar models could then be deduced with relative eâse.

In Chapter 5, results from different computational experiments carried out on

CAM-8 are presented. A comparison with results from the theoretical analysis is

made as well.

Experiments are carried out to determine whether different regions can exist in

equilibrium with one another in Chapter 6. Experiments to investigate electromag-

netic plane wave interaction with dielectric media in two dimensions are carried out

as well and results presented.

The thesis then concludes with some recommendations for further work and a

summary of the differences between the cellular automata approach and conventional

numerical techniques.

13



Chapter 2

Lattice Gas Automata

2.L fntroduction

The HPP lattice gas dynamics are confined to a Cartesian grid in two dimensions.

Each site has up to a maximum of four particles, one moving in each of North, South,

East and West directions. Head-on collisions cause particles to move away from the

lattice node at right-angles to their original direction of motion as shown below.

e o ---+<- o

With the inclusion of a rest particle [17], a site can hold five particles (four moving

particles and one stationary particle). The presence or absence of a particle at a site

is denoted by a 1 or 0. We shall consider here the case of one rest particle and later

generalize it to k rest particles.

1

T4
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The bits of the dependent variable at each site are

'i:1,..,N¿,x denotes a lattice site, and t denotes time.

(14 :5), we have

15

denoted by ð¿(x,ú) where

In our rest particle model

ci : /*cos ift - L) + ¿v "i"f,(i - r), i : 1,2,J,4

:0, j:5. (2.1)

cr represents the velocity states in which particles at a site might exist. / is the

characteristic lattice spacing and

le': c'. (2.2)

2.2 Microscopic Dynamics

In what follows we let b¿(x,t) represent the presence or absence of a particle (its

value being 1 or 0, respectively) in the zth velocity state at a particular site x at

time ú. In order to write a mathematical description [18] of the microscopic dynamics

of this lattice gas, we must derive an equation for b¿(x,t + A¿) in terms of b¿(x,ú).

Aú denotes the time step. In the case where the particles simply pass through one

another without interacting, the microscopic dynamics could be described by

ö¿(xf c",t* At) : b¿(x,t). (2 3)

Here one bit from a cell is passed to an adjacent cell at the next time step as

shown in Figure 2.I. In this figure, a particle moving to the East and one to the West
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2

t

Figure 2.1:

t + Ât

A non-interacting particle lattice gas.
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are moved over to the next cell on the right and left, respectively. Using Equation

(2.3), with z : 5, c5 : 0, and hence the particle does not advect. If we were now to

consider collisions between particles at each step, the dynamics could be described

by

b¿(x * c',t + Aú) : b¿(x,t) + q(b(x, ú)). (2.4)

where, c¿(b(x,t)) is the mi,croscopi.c colli,s'ion operator and b(x, t) is the vector of

all bits in cell x at time ú. Several possible collision rules could be described using

the above notation but we shall consider the 4m <-+ 1r model. In this model, shown

below, four moving particles give rise to a rest particle of mass 4m if none existed

prior to their coming together. In addition, the reverse event might occur, i.e., the

creation of four moving particles if a rest state was occupied and there were no moving

particles present.

17

o

Jtr
o ---+<- o

1

o

Furthermore, the only other collision event that occurs is a binary head-on collision.

In this case the colliding particles move away from the site at right angles to their

original direction of approach just as in the HPP. This happens with or without the

presence of a rest particle at the site.

The foilowing set of equations then describe the dynamics of this model, where

we use the subscripts .Ð, N,W,,S,-R for numbers j : L,2,3,4,5 (Equation (2.1)),

respectively.
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b B (r -f l, A, t + Lt) : b n * c ø : b ø *b nb w6w b s - b e|ibw6 - b Bb Nb wb sb n+U uUi U*GU 
^.

(2.5)

b N (r, A + (., t + Lt) : b¡r * c¡u : b ¡t lb øÑ bw6 -6 øb n6*b s - b ub ¡vb wb s6 a+6fü6 *GU r.
(2.6)

b s (r - (,, g, t -f Lt) : b w I cw : b w +b eb *6* b t - b rÑ UwG - U nb wbw b sb n+Tfiffi* U tU r.
(2.7)

b5(r,g_(.,Ú+A¿):bs*cs:bsIbnÑb.G_Tnb*6*bs-bub¡vbwbs6a+-uøa¡uawusun.

(2 8)

bn(t,A,t + A¿) : bn* cn: bn* bnbwbwbsñ -6Ãi6-GUr. (2 9)

The collision details of an n-bit model could also be completely specified by a 2"

by 2" Boolean transition matrix, a, whose element ø(s -- s') is unity if and only if
the particles in state s always collide to yield particles in state s'. Since there is only

one incoming state for each outgoing state,

Ðo("+s') :1.
s'

18

(2.10)
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2.3 The Ensemble Average

In what follows, the ensemble average of the quantity b¿(x,t) is denoted by l/i(x,ú).

That is,

N'(*,t): (ô¿(x,ú)). (2.tr)

It is important to note that the ensemble average value of bit z at position x and time

ú is a real quantity while b¿(x,t) is a binary value.

When we consider the collision operator in Equations (2.5)-(2.9), we encounter

the average of a product. According to the Boltzmann Molecular Chaos Assumption

(BMCA) [18], the streaming phase of the simulation decorrelates the bits at every site.

In other words rù/e assume that colliding particles have never encountered one another

before. This approximation is reasonably accurate in three or more dimensions but

in two dimensions one must consider renormalization [16]. If we neglect correlations

then,

(bibj) : (b")(b¡). (2.12)

Also from Equation (2.4),

19

(b¿(x+ci,ú+Aú)) :
:

(ó,(*, t) + ø(b(x, t)))

(bo(*, t)) + (q(b(*, ¿)))

(bo(*, t)) + ø((b(*, ¿)))

Nu(*, t) + C,(tl(x, ú)).

And therefore,



CHAPTER 2. LATTICE GAS AUTOMATA

Nt(x * cì,t + A¿) : Nu(*, t) + C,(N). (2.i3)

This is known as the Latt'ice Boltzmann Equati,on. Also, the ensemble average of

ø(s --- s') is given by

A(s -- s') : (a(s -- r')). (2.r4)

2.4 Semi-Detailed Balance

The semi-detailed balance criterion is used to derive the equilibrium particle con-

centrations in a lattice gas simulation. Simply stated, it checks to see if the sum of

probabilities of each input configuration that leads to a particular output configura-

tion of particles, is one. Hs stated in [16], a lattice gas is said to obey detailed balance

if its transition matrix satisfies

A(s -* s') : A(s'-* t). (2.15)

This means that the forward and reverse events are equally probable. It is said to

obey semi-detailed balance if its transition matrix satisfies

Ðrt" - s') :1.

It is important to note the difference between the above and

(2.16)

Ð¿(r*s') :1,
s'

20

(2.17)
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which is a statement of conservation of probability. The manner in which the above

conditions affect a lattice gas simulation will be shown in sections 2.9 and 2.10.

The boolean transition matrix for the 4m t- 1r model is shown in Figure 2.2. In
this case both detailed as well as semi-detailed balance are adhered to. All possible

input particle configurations (s) are not shown in the matrix; only those involving

collisions. The remaining rules could be obtained by referring to the HPP rule in

which particles simply pass through one another unless a binary head-on collision

occurs. In the 4m <-+ 1r model, the binary head-on collision occurs in the presence or

absence of a rest particle. This is denoted by an "x" in Figure 2.2. We shall continue

to use this notation to describe collision rules which do not depend on the presence

or absence of rest particles. It should be noted that collision rules are rotationally

symmetric (under 90' rotations).

2.5 Conserved Quantiùies

A characteristic feature of lattice gases is the presence of some form of conservation

[19]. When modelling the diffusion equation, for instance, the total number of par-

ticles in the lattice remains the same. In this situation, we have only one conserved

quantity, namely, particle mass. Mass is conserved in each collision, i.e., at the micro.

scopic level. As a result, mass is conserved macroscopically. In the case of lattice gas

fluids in 2 dimensions, we have 3 conserved quantities, viz., the total number of par-

ticles, the x-momentum and the y-momentum. The x and y momenta are conserved

at both the microscopic as well as macroscopic level.

From Equations (2.5)-(2.9) and (2.i3), it follows that,

27

Ca*C¡,t*Cw*Cs*4Cn:0. (2.18)
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Figure 2.2: Transition matrix for the 4m +-r 1r lattice gas.
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þ:2 þ:3

Table 2.1: Table for qf

Cp-Cw:0. (2.1s)

Cw - Cs :0. (2.20)

Where the first equation indicates the conservation of mass while the latter two

represent the conservation of momentum in the x and y directions, respectively. If
we denote the value of the pth conserved quantity at site x and at time t by qv(x,t)

where,

N¿

q*(x,t):tqlb¿(x,t), þ:L,...,nc. (2.21,)
zl:1

tuc: 3 in the 4m *-+ 1r lattice gas. This gives us 3 equations and 5 unknowns. The

coefficients qf satisfy

23

1*0
1ov
1-*0
1o-v
400

,i: E
'i: N
,i:W
,i: S

,i: R

N¿

o : I qlq(b), þ: L,... ,frc. (2.22)
i:L

For example, from Equations (2.18)-(2.20) the values for ql are presented in Table 2.1.
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Then considering ensemble-averaged values of the conserved quantities,

N¿

Qr(*,t) : (qr(*,ú)) : Ðql¡vo(*,t), þ : I,...,frc.
i:\

(2.23)

2.6 The Equilibrium Particle Distribution

In this section we derive the individual particle concentrations for each direction

(North, South, East, West and Rest) in terms of the coefficients, qf,, under equilibrium

conditions. ,n( is the zero or lowest order equilibrium for the jth particle in the lattice.

The collision operator for each particle direction could be written in a more general

manner. If s¡ denotes the ithbit of state s (its value is either 0 or 1), and P(s), the

probability that that a state s exists at any site then,

24

P(s) :fi ("¿)"'(, - rj)'-" (2.24)

only one

notation

As an example, P(01001) : P(RSWÑn)

South and one East bit present at the site

just stated, this could be written as

is the probability that we have

under consideration. Using the

p(01001) : ¡rJ(r - Nor)(r - N8)¡rá(i - Nå)

The ensemble averaged collision operator, C¿ could be written as

C¿:Ð.4(s -+ t')(s'o- s¿)P(s). (2.25)
S,Sl

To better illustrate this mathematical definition let us consider the HPP lattice gas in

which a binary head-on collision between a West-East pair gives a North-South pair
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of particles. In this situation ,4(0101 --+ 1010) : 1, s'E: 0 and sE : L. The latter

two represent the states of the East bit after and before the collision, respectively.

Also the reverse is true, i.e., A(1010 ---' 0101) :7, s'E: 1 and s¿ :0. In all cases in

which collisions do not occur, (rj - "u) 
:0. Cp could then be written as

CB : Lros.ryfl.nrflffi - ffi¡¿fff¡¿ot

The collision operator C¿ then, is simply a collection of terms which state conditions

(particle configurations) which lead to the creation and removal of an East bit from

a site.

Now substituting Equation (2.24) in (2.25),

25

C¿: Ð¿("-.- s,)(sl - r,) fr (M)",
s,s/ j:t

/\
I IIf r - Nd) I I ¿(' .- s')(si
\¡ / ",''

(,I.I,'- ¡,s)) 
Fr,,-- 

s')(si

(t - "d)'-"

-",)rr(&)"' (2.26)

¡rd n'ç

t - tl - '"0(E o'ú)'

This gives us 5 equations with 3 parameters in the Arn <->

be rewritten as

We assume that

(2.27)

1r model. Then G could

- rn)fI e"p(Ð orú)"
;a
JI

C¿:
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: ({I,t - rr,) ä 
r,, ...-, s')(si - s¿)exp(! a,e,(s)). (2.28)

Q'G) : Ð¡ ú tt : Q'(s'), and represents the 7th conserved quantity.

Thus,

c¿ : (n,t - ¡rs)) 
{pr," 

-- s')s'¿"*o(T o.,e,(,))
\¡

- I ¿(, --- s')s¿ e*p(I orQ'(r))Ì
s,s/ I )

: (n,t - rs)) 
{?",.*o(? 

o,e,(s))- 
Ð,,.*o(Ðo.,o'(,))}\"'

: 0. (2.29)

Here IMe have made use of the semi-detailed balance and conservation of probability

: criteria. Hence, stable and spatially uniform Boltzmann equilibria exist for any lattice

I Sas obeying semi-detailed balance. These equilibria are described by the Fermi-Dirac

I aistribution,

^rJ- 
1/vö-@' j:1'"''5' (2'30)

r The a.y are nc arbitrary multipliers. An example of this distribution is illustrated in

¡ the next section.
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2.7 Equilibria in the 4m +--+ Ir Lattice Gas

In this section, we shall use Equation (2.30) to calculate the equilibrium particle

distributions for North, South, East, West and Rest particles in the 4m *- 1r lattice

gas. Equilibrium particle concentrations are used as the starting point in setting up

most lattice gas experiments. Let us assume that bit 'i al a site represents the presence

of a particle of unit mass and momentum c¿ l\t. The ensemble-averaged mass and

momentum densities could be written as

(2.3i)

and

27

N¿

P:ÐN¿ : QP
i:I

Nr ni
¡:fj-N¿:OuL At' - 

Y t

i:l Åu
(2.32)

respectively. To simplify the analysis, we use lc¿l : Aú : 1. Hence in the case of our

lattice gas, \rye have ql : 1 fori : \,2,3,4 and ql : 4 f.oyi : 5. AIso, q¿' : ei for

'i : 1,2,3,4 and qot : 0 foli : 5. For an incompressible fluid, the conserved densities

are ordered [20] in the expansion parameter, e as follows.

p:po*r'pr. (2.33)

1l : €111. (2.34)

Thus, the zero-order Fermi-Dirac equilibrium is found by considering only qp in Equa-

tion (2.30). Hence we get
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I*e-" -1
- 

.l Ì7¿)

28

Né

Né

'i:1,2,3,4.

,i:5.

(2.35)

(2.36)

From the above two equations we get

t,: rk+ Q - Í*)a
(2.37)

Hence, the density of the rest bit (mass : 4m) is related by a non-linear law

to the average density of the moving particles (mass - m). We could then use

this to initialize moving and rest particles in the lattice in such a way that their

concentrations do not change with time, during an experiment. For example, if we

initialize each of North, South, East and West directions with a density z, then the

Rest position at each site must be initialized with a density gr, where,

a- ra+(r-r)4'

2.8 Experimental Results

In this section we verify the theoretical results derived in previous sections for equi-

libria in lattice gas experiments. These experiments are run on CAM-8, which is a

special-purpose cellula¡ automata machine.

2.8.L Rest Particles of Mass 4m

The 4m <-+ 1r experiment was set up on CAM-8. The simulation space \Mas a rectan-

gular lattice (size 2048 x 512). The lattice was initialized with only moving particles.

rk
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Each direction was initialized with an equal probability, that is, there was no net flow.

Equilibrium was reached afber a few steps. The particle densities were calculated by

summing the number of moving and rest particles within a sampling window and

then dividing by the size of the window (size 99 by 99).

Density of rest particles : (4fr) - 
4*L'rbr¡o"'rp's.

Density of moving particles : (Í*) : Ð"äiÉËöio''.

This was done at every time step for 10000 iterations. Results of the simulation

are shown in Figure 2.3. The solid line represents the relationship between moving

and rest particles using Equation (2.37).

100 150 200 250 300 350 400 450
density per cell ol moving particles (x103)

Figure 2.3: Equilibria for 1 rest particle of mass 4m

This experiment was then modified by allowing for the existence of two rest par-

ticles at a site, as shown on the next page.
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J.l
o -+<- o

1

Results obtained are shown in Figure 2.4. Hence in the one rest particle case we

have good agreement between experimental and theoretical values. The experimental

results from the stack model, however, don't match as closely with values obtained

using Equation (2.37). The reason for this error will be explained later in section

2.77.

100 150 200 250 300 350 400 450
density per cell of moving particles (x103)

Figure 2.4: Equilibria for 2 rest particles of mass 4m each
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2.8.2 Rest Particles of Mass 2m

Yet another variation to the HPP lattice gas automaton, which was discussed in

section 1.2.I, would be the creation of a rest particle, with twice the mass of a

moving particle. This occurs with a probability of 0.5 when two particles collide

head-on. This is an example of a stochastic lattice gas which was discussed earlier in

Chapter 1, section 1.4. In order to implement this rule a random bit-plane is filled

with 50% 1's and 50% 0's. Then a 1 occurs at any site with a probability of 0.5. This

is used to decide which of the two probabilistic events is to occur. Collision details

are shown in Figure 2.5. In another model, a rest particle of mass 2m is created using

3-particle collisions as shown in Figure 2.6.

0.5

€-Þ

31

?
å

n
--O

t\ /0,

o
lw
0

e @

--O

Figure 2.5: Collision details for the 2rn <-+ 1r model

The 2rn <--+ Ir lattice gas could be developed in the same manner as the 4m *¡ lr,
with changes in the collision rules resulting in changes in the collision operator.
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r-3 tr ---
Figure 2.6: Collision details for the 3rn *- Ir * \m model

cB : 0.s6 BU uuwb s6 n + u ut *U*U sU n + 0.5611ffiGb, - u 

"ñu*6ll * - U uñu*EU,
: c1,y.

cN : 0.5b8Ñbw6tT^ + beÑbw-bsba + 0.1bÃwbwbsba -6lb¡u6*utl" - ulu,vuwusuo

: c5.

cp : o.s6uu*ñus6ã + o.suuñb*6;Fn - ulñl*utu*.

From the above equations and Equation (2.13), the three conservation equations could :

be written as

'J¿

Cø * Cw * Cw * Cs * 2Cn:0.

CB - Cw :0.

(2.38)

(2.3e)

C¡¡ - Cs :0' (2.40)
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The concentrations of moving and rest particles are related as

TJr: (2.4r)

1.6

1.4

o 1.2
.9Ë6¡or
óI o.e
o
.ào.o
Ø

€ o.¿

o.2

0
100 200 300 400

dens¡ty ær cell of moving particles (x103)

Figure 2.7: Equilibria for 1 rest particle of mass 2m

The idea of the stack as shown in Figure 2.8, is applied to this model as weil. Once

DOùù

r2
Jm

ÍA+0- f*)2'

/" and f* are the densities of the rest and moving particles respectively.

Once again, equilibria were measured for each of the above experiments using a

simulation spâce with the same dimensions as in the 4m <--+ 1r lattice gas experiment.

The experimental values compare well with the curve obtained using Equation (2.41)

and are shown in Figure 2.7. In addition, an experiment in which both 2-body as

well as 3-body collisions led to the creation of rest particles was conducted. This was

done in an attempt to create rules that are maximally random with respect to events

that can occur within the lattice [21] . Furthermore, none of the rules violate either

detailed or semi-detailed balance. Figure 2.7 indicates that equilibria do not change

by any significant amount and they compare well with theory.

Equilibria for 1 rest particle

o
X
H

Theory
Experimenl : 2m <=> 1r
Experiment:3m <=> 1r+ 1m
Experiment : 2m <=> 1r, 3m <=> 1r +
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again, the experimental values don't agree as well with theory (Equation (2.41)) as

shown in Figure 2.9. It is interesting to note, however, that the experimental equilibria

for each of the above experiments agree well with each other (even though they do not

match to the theoretically determined equilibria). The reason for the experimental

error will be explained later in section 2.11.

1s=o 
<; ot=-o 1r=, .- o--o

öö ,\ y',, '\ ø'
s=1 s=2

s=1

??í> 
ô.=- 

-:- 
ô.=,

s=2
o'- oi¿ o'- o:å

ot s=2
i! o =: €Ð \--- nj
ö

Figure 2.8: Collision details for the 2m <-+ 1r stack
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50 100 150 200 250 300 350 400 450
density ær cell of moving particles (x103)

Figure 2.9: Equilibria for 2 rest particles of mass 2m each

2.9 Violation of Semi-Detailed Balance

Consider a model which allows for the creation of a rest-particle (mass 2m, where

m is the mass of the moving particle). Two different types of collisions, 4body and

2-body, are allowed to occur as shown in Figure 2.10.

DÉ,
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Figure 2.10: Collsion details for a model that violates SDB
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If the final state s' after collision is

sl:

Adding all the initial states s that lead to s' we have,

I¿(r -* r') : 1.5. (2.42)
s

Thus semi-detailed balance is violated.

The solid line in Figure 2.11 shows the theoretical relationship between rest and

moving particles using Equation (2.41). Experimental results from a simulation con-

ducted on CAM-8 are plotted as well and the error is quite obvious. This experiment

thus proves that the semldetailed balance condition is necessary for the existence of

the Fermi-Dirac particle distribution in a lattice.

z.LO Violation of Detailed Balance

In this section we conduct an experiment which violates the condition of detailed

balance. In other words, the forward and reverse collision events occur v¡ith different

probabilities. Figure 2.12 shows the possible outcomes of two-body collision in a

model that violates detailed balance.

a and b are probabilities with which the events occur. If å : I - a, semi-detailed

balance is obeyed. However, since the forward and reverse events are not equally likely

@ I b), detailed balance is violated. The theoretical relationship between moving and

tnJI

1

o
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100 150 200 250 300 350 400 450
density per cell of moving part¡cles (x103)

Figure 2.11: Equilibria in the case when SDB is violated
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Figure 2.12: Collision details for a model in which DB is violated
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rest particle densities is obtained from Equation (2.41). An experiment was conducted

on CAM-8 with the same lattice size as in the previous experiments. Furthermore)

a : 0.2. Results are shown in Figure 2.13. In deriving a theoretical expression

for the Fermi-Dirac equilibria, the only necessary conditions were the conservation

of probability (Equation (2.17)) and the semidetailed balance criterion (Equation

(2.16)). Violation of detailed balance does not have anv effect on the equilibria, as

expected.

100 150 200 250 300 3s0 400 450
density per cell of moving particles (x103)

Figure 2.13: Equilibria in the case when DB is violated

2.LL The Particle Pool

In the previous models where multiple rest particles at a site were modelled, a newly

created rest particle always occupied the first vacant rest bit, and then the second,

and so on. A model in which a rest particle is created and allowed to occupy any of

the possible rest positions may be described by the collisions shown in Figure 2.14

39
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(for rest particles of mass 2m) and in Figure 2.15 (for rest particles of mass 4m). This

can be visualized as a pool of particles rather than a stack.

In order to simplify the programming of such a model into the CAM, we could

implement a stack (of length 2) as shown in Figure 2.16 and Figure 2.I7 for the

2m and 4m cases, respectively. The equilibrium particle concentrations from the

simulations are plotted in Figure 2.18 and Figure 2.19 where the solid line describes

the relationship between moving and rest particles in the 2m (Equation (2.41)) and

4m (Equation (2.37)) cases, respectively. The 2m <- 1r case with a stack length of 3

is shown in Figure 2.20(a). Results from this simulation are plotted in the graph in

Figure 2.20(b). The solid line once again results from Equation (2.41).

Let us now to consider the stack model in the 4m *- 1r lattice gas and decompose

it into the particle pool. Figure 2.21 shows the rule for the s:2 case. There are 2

possible situations with 4 moving particles and s:1. Each of these gives s:2 with

a probability of 1, thus violating semi-detailed balance. A similar argument could

be applied in the 2m <--+ 1r lattice gas. Hence the errors in our earlier experiments.

In constructing a lattice gas rule for multiple rest particles at a site, it would then

be wise to use the particle pool model as our starting point. The probabilities with

which different collision events occur would then be constrained by the conservation

of probability and the condition of semi-detailed balance.

2.L2 Implementing a Stochastic Model

In experiments where the collision phase involves a probabilistic outcome, v/e utilize

a random bit (discussed in section 1.4). This bit is initialized in the lattice with a

certain probability. During the course of the experiment it is kicked around (in the

advection phase) to make the occurence of the probabilistic event more random. The

40
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Figure 2.16: Stack-length : 2 in the 2m *-+ 1r model
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100 150 200 250 300 350 400 450
density p€r cell ot moving particles (x103)

Figure 2.18: Equilibria for the 2m *-.1r (s:2) model

100 1s0 200 250 300 350 400 450
density per cell of moving part¡cles (x103)

45

2.5

q2
o
.oË
3r.s
Ø
E
o.à''6
co

u

2m<=>1r:stack=2

- 
Theory

O Exæriment

4m <=> 1r: stack = 2
6

5

øo
E
(ú

-o3q
o
õz
'6
Cr
!

0

- 
Theory

O Experiment
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Figure 2.21: Decomposing the stack model

results in Figure 2.22 show the equilibrium in three different cases for the 2m <-+ Lr

model:

r The kick is random.

o The bit is not kicked.

o The bit is kicked 1 lattice unit in the x direction.

The solid line describes the relationship between moving and rest particles stated

in Equation Q. I). Hence, in the experiments in which the random bit is kicked, the

experimental results agree well with the theoretical equilibrium (determined using

Equation (2.41)). The experiment in which the random bit is not kicked does not

compare well with theory. In this model, the decision as to which type of collision

is to occur at any site in the lattice is made during the lattice initialization process.

The value of the probability bit does not change with time. Thus the probability that

a stochastic event occurs at a site is not probabilistic in any way.
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100 200 300 400 500 600
density per cell of moving particles (x103)

Figure 2.22: Kicking the random bit in the 2m <-+ Ir model

2.L3 Summary

In conclusion, the Fermi-Dirac equilibria describes an equilibrium between moving

and rest particles in the following manner:

48
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where the masses of moving and rest particles are related in the following manner:

TTLrest : z.
TfLT¡¿su¿ng

In the HPP model, if both mass and momentum are conserved in each collision, z :2
of Z:4.

For the remainder of this thesis we shall refer to the 4m ++.1r rule in which a site

can hold a maximum of 1 rest particle as 4m <--+ 1r (s:1). In a similar manner, we
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have2m <-+ Ir (s:2) for the 2m *- 1r rule in which a site can hold upto a maximum of

2 rest particles. In this thesis, we only deal with multiple rest particles at a site, each

of which have identical mass. Alternative FHP cases where sites can have multiple

rest particles of different mass, have been considered in [17].



Chapter 3

The Chapman-Enskog Analysis

3.1 Introduction

The following is a summarized version of an ana,lysis presented by Boghosian and

Taylor in [16]. The Chapman-Enskog procedure is used to obtain a perturbative

solution to the lattice Boltzmann equation for near-equilibrium distributions [tA].

We have adhered to the same notation used by Boghosian and Taylor and made use

of this theory in Chapter 4 to derive lattice gas fluid equations for the 4m *-+ 1r case.

Recall that

N¿

er:lqlNi(x,t), lJ:Ir-..rTLc (3.1)
i:r

is the ensemble average of the nc conserved quantities in the lattice gas. Furthermore,

Nj refers to the Boltzmann equilibria for the zth particle in the lattice. This quantity

was derived for moving as well as rest particles (4m <--+ Ir and 2m ++ 1r models) in

the previous chapter. As well, the lattice Boltzmann equation was discussed earlier

and is

50
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N¿(x * c¿,t + Aú) : No(*, t) + C¿(N. (*, ¿)) (3.2)

The form f @-) is used to denote a function of z for all possible values of the index

replaced by the asterisk.

In this analysis, the di,ffusi,on orderi,ng [16] is used. In a diffusive process, particles

follow a random walk and the average distance a particle travels on a discrete grid is

proportional to the square root of the number of steps [22]. Hence we let c --* ec and

At ---+ e2 Lt in the dynamical equations, where e is an expansion parameter. Hence,

we are taking Lt - {2 : O(e2).

It is important to note that the Ni are real numbers and could be approximated as

smooth functions. Hence we could Taylor expand the same. The lattice Boltzmann

equation is then Taylor expanded up to terms of order e2.

51

No(*, t+/it) : No(*, t)+r'Xt9ll\ r, 
¿)t

Ni(r + Lr,U * Ly,t) : l,lo(", t) + evr# + enuff
e2 "a2 N¿ e2 ^a2 Ni

+ ,Ar" 6rz + tLA" au,

+f,muffi+Çnun,#"
Expanding the collision operator we get

c¿(,n/.(x, ú)) : cé(N.) + eci(.n/.) + e2c;(N").
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Equation (3.2) could then be rewritten as

ANi €,2e¿Lt:fi * ec'.VN¿+ ï"' .¿.ci : Cé(¡'l.) + eCi(¡/.) + e2CiçN.¡, (3 3)

where Ais a tensor [A]on: #h and ¿ : 1. . . N¿.

By contracting the above N¿ equations using ql and summing over the index ,i, we

get the n" equations

,Y+v l(r,**,) *.o (r,#*')] : fiøici@*),t,:t n" (34)

We assume that Co and G obey the conservation equations exactly but Cz does not

necessarily do so. This is done in order that we might consider lattice gases whose

conservation laws are only approximate. Thus only Ci(N*) remains in Equation (3.4).

Next, ly'¿ is expanded in a perturbation series in powers of e about an equilibrium

state,

-ðy'i :,n/j + eNi + e2N|+ ...

52

Nfr is a local thermodynamic equilibrium described by the Fermi-Dirac distribution

which we have derived in Chapter 2. It is the lowest order term in the Boltzmann

equation representing a spatially uniform distribution in the lattice. Note the flc:3
unknown parameters, 0?.

(3.5)

(3.6)r/3 :
1 * exp(- Ð\':ra*l)
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3.2 The Fermi Metric

We now proceed to find the derivatives of the equilibrium state with respect to each

conserved quantity which is later used to determine the transport coefficients in the

hydrodynamic equations for the lattice gas. In order to compute the first two deriva-

tives of Nfr with respect to the Qp,we first differentiate Equation (3.6) with respect

to d,,

*^/ó : ¡,r¿ (1 - Nå) qi (3 7)
ôa,

Next, differentiating Equation (3.1) with respect to Q', we obtain, using the chain

rule,

53

AQP :S,ryôNd 0o, : 
^rôQ" - ?o't 0o, ôQ" - "''

We now define a symmetric rank-two tensor,

(3.8)

sÉ = ¡,,3 (1 - u") qiqf (3 e)

Then using Equations (3.7), (3.8) and (3.9),

¡,o*%-:ay. (3.10)
€:t' ðQ"

The inverse of gut is denoted by ge, so that

fL¿

ÐgÉse, - 61. (8.11)
€:1
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Since ge, is a symmetric second-rank tensor, it could be identified as a metric on the

space of hydrodynamic variables, Q" . We shall refer to it as the Ferm'i metric. Then,

in terms of this metric,

ða,
ffi: nr'' (3'12)

Thus, the first derivative of ,n/j with respectto Qr is found to be

W:i*¿(r-r¿) ets,t".

0 la¡¿¿l a [arr6 aar l
ãø l@l - ãa" lã%dõ,1

: Né(l - Nå)qfW * n,rfirlr¿tt - ¡¿¿)qf]

(3.13)

The second derivative is computed using the chain rule in the following manner:

-'-

I
+

II

r r : nrrS-uA,lr¿tt - ¡¿é)qf]

: n*cl# w)_*"
: qf qlgergr,(i - 2¡ló)Né(1 - ¡/é)

I - Nó(l -Nå)q:%-, ôQ,

: Nó(r - Nå)qf gerserW
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¡/é(1 - Nå,)qfg€r(-n -W,

Né(1 - ¡v,)qf g€r(-nero(N|Q - ¡¿d)qcq'),
;;- )ôQ"

2Nå(1- Nj)qf grer\",.

rl, : -|scrs,<wl(i - Nd)(l - zË)djqf qf . (3.14)

Equation (3.14) is defined as the Ferm'i connection which we use in the result for the

second derivative.

j}/w: ¡,lé(1 - ¡,lé) (r - zNå)qf q?scpen, + 2Nå(r - wÐqf serr,l",. (3.1b)
0Qt"ðQ"

It is important to note that in the momentum conservation equations for the lattice

gases under consideration the coefficients qP are vector quantities. The completely

symmetric outer product of k of vectors e¿ is denoted by @oeo. The generali,zed Fermi,

metri,c is then defined to be

s(k) = ¡ró(1 - w|)qiqf (8*",) , (3.16)

and the general'ized Fermi, connection,

r&)7",: -|r,r,s,c¡/d(l - N3)(1 - zl,)djqint (8-"r) (3.17)

The Fermi connection could also be written as

rt.:*n'(W.W-W), (3.18)
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and the generali,zed Fermi, connect'ion is
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rt.:tr'(ffi.W-W) (3 1e)

From Equations (3.13) and (3.16) we get

ful**t(ø-",)] : s&)7" (3 20)

and from Equations (3.15), (3.17) and (3.20),

#le*a(ø-",)] :z[s(r)fre,.- r(k)i",] (321)

3.3 Zero-Order Conservation Equations

We could now use Equation (3.a) and accumulate terms in O(1), O(e), O(e2). In

order to remain consistent with the notation in [16], we define ci : cei. Equation

(3.4) at O(1) gives us

/ ,.ci .\v'(qf Ar*t):o, tL:L,...,frc.

This could be rewritten as,

(3.22)

Q : ,r*p^W ve.

: 
å fit,, t - Ní)qfqfsq,.Ye'

: *Ð-s(L)i'vQ' :0, p: 1,.-- ,tuc.
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3.4 The Linearized Boltzmann Equation

At O(e), by substituting Equation (3.5) in Equation (3.3),

57

(3.23)

The Jacobian matrix of the lowest order collision operator at equilibrium is defined

as

v (firc) : * lt;*t+ cí(¡/ð)l

r;=#,1":".

Also, the qf,'s comprise the components of n" null left eigenvectors of Jj, since

qrr;: ftørra)l l̂N:No

We denote the eigenvalues of J by Àp.

(3.24)

(3.25)

JjdB: 
^'dp.

(3.26)

q?Ji^:Ànq!.
J 'J

(3.27)

The modes enumerated 1, . . . ,frc, correspond to null eigenvalues of J and are called

hgdrodynami,c modes (denoted by I/), while those modes enumerate d ,"+ 1, . . . , n are

ki.neti.c modes(denoted by K). The kinetic modes enable us to determine the diffusion

coefficients while the hydrodynamic modes give us the advection coeffficients.

Postmultiplying Equation (3.27) by qlp and, premultiplying Equation (3.26) by q!, and,

subtracting, we get
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o: (Àp - 
^r)úq,o.

(3.28)

Right and left eigenvectors corresponding to different eigenvalues are thus orthogonal.

Thus, they may be chosen so that

6l : qlqi. (3.2e)

By including 8k ei in the above equation, we could then define a generalzzed, Kronecker

delta,
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6(k)y ="(ó "')ø; (3.30)

(3.31)

(3.32)

(3.33)

Also, since

and

C[(,n/,](x, ¿)) : O

ANå

ôa,
: Né (1 - Nå,) qï,

we have

o: 
&"t(Nö) 

: t;W: filøiwå(1 - Nd)]

From this we can say that the right hydrodynamic eigenvectors are

ø'r: øf N3(1 - ¡/é). (3.34)
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3.5 First-Order Solution

Consider Equation (3.23) for the ,À(. Premultiplying this equation by the null left

eigenvectors, we require that

o ('r*té) : *nrlt;*t+ci(Nð)l :0. (33b)

f.or ¡.teH. It follows that V. ("'¡fé) - Ci(Nð) has no components in the null space of J,

since we have assumed linear stability. Owing to the completeness and orthonormality

of the eigenvectors, this expression can be written as

v . (c¿.nfi) _ cí(¡'lð) : ln"ø,,, (3.36)
ueK

where q" = qi [V.(c¿/rl¿) - Cí(¡/ð)] for ueK.

The above could also be derived from Equation (3.23) in the follov'ing manner:
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" (rr*té) - fiøiciuvö): frøitilvl:0, (3 32)

or

v ' (ølcoNå,) - uicï(wö): ÀpqlNl:0. (3.38)

Premultiplying the above equation by qr,, we obtain

Ðirm [v."o.nr6 - cí(¡/ð)] : Nl. (3.3e)

The solution for Nf could be written as
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and
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Ni: Drl'q-+Ð#nt, (3.40)

where the 0" are arbitrary. We hence frx 0' : 0 and obtain a final result for l(.

¡/i: I W-f".("u¡,l6) -cí(Nð)] (3.41)' "** 
^u 

L-

r/i : r/é + ,ÐY f". ("n¡¿ó) - ci(¡6)] + oþ2). (2.42)

3.6 First-Order Conservation Equations

Rewriting Equation (3.4) retaining terms to O(e), we have

Y." [("#"') * " (r,#r')] : fiøic;(w*),þ€H (348)

Substituting in the above equation, the value for l(, we get the following:

Y*ol@*P-Y[v 1.',n,6¡ -cí(¡/ð)]) *" (r,#*')] : *r,"år,:^r,

Next, rearranging terms, we get

LHS:ry+v (r,*,ÐKt,(¡/ð)) (34b)
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and

RHS: fiøicâ(N;) - ,lrr*Ð#s .r¡ré) +v. ,rffiwtl (846)

Next, \¡/e use 
"o = T to rewrite the left hand-side as

LHS:Y *;, lnluiøi",(øícr{ru;))] G4T)

This could be written in a more compact form, as

LHS:Y+y.Au,

where, A,(Q") is given by

At"(e.): k\949ù. (B4e)

The right-hand side of the equation could be written as

RHS : fiøictuð) -v ,Ð([,],; øiøiøi].'tWW

-,r##Wl "n,) (3bo)

Using Equations (3.7), (3.12), (3.i6), (3.20), (3.30) and (8.31), rhe above could be

rewritten as

RHS : fiøict(¡/ð) +_D*" 
læ Þ 

ggrygË 
- ;-rrrr)] (3 b1)

In a more compact form then,

(3.48)
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\¡/here,

and

Hence, we have

RHS : t, . (ri. vOr) * sp, ¡-teH,
€eH

Dt @) : l* (Ð ry#g- j-r,rr) 
]

s,(8.) : fiøici(¡/ö).

Y.v .At": 
ä 

o .(oi. vOr) *sþ,¡teH.

(3.52)

(3.53)

(3.54)

(3.55)

This is the hydrodynamic equation which results from the Chapman-Enskog anal-

ysis with the Diffusion and Source terms being given by Equations (3.53) and (3.54),

respectively. The Advection coefficients are given by Equation (3.49).

3.7 Ordering the Conserved Quantities

In lattice gas fluids the conserved quantities are ordered in the expansion parameter,

e. In an incompressible fluid, the hydrodynamic density is assumed to vary by O(e2)

from a constant background value, and the hydrodynamic velocity is assumed to be

O(e). Hence, we consider the general ordering,

Q*:Q8+eQl+rrQl+.... (3.56)
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We could then expand the FermiDirac equilibrium in the following manner:

No(e) : Né(að) *näl,G* +,,ei) *T 
rÐ*,#ffil,gqrqr) 

+

xri -.I¡/éo(1 - NåòqfserQI¡ roo I 
€eH

+ r'L¡/éo(i - Ntòqf gerQT + r', Ð Néo(l - Nto)qf ge,[l"QIQi
€eH l,rteH

-2c*; 
rÐr¡\/éo(1 

- Néo)(1 - 2Nåòqfq7ge,g,,QlQi+ ..., (3.57)

where the lowest-order Chapman-Enskog equilibrium is denoted as

Néo = Né(Að)

We are then going to insert the result for l/i as a function of the ordered conserved

quantities into Equation (3.4). Now, multiplying Equation (3.57) with the k-fold

outer product of the e¿ vectors and contracting with qf,, we have

rt (ó"0) ro(n.) : rt (ó"') r,,*,t* e@i(,al+,'eE)

+,' Ð lI *,*,ärfn - r(k)änl qfql
Ç,qeH l(eH I

*e2cÐÐg*tcË.vaf
veK feH

This result can be inserted into Equation (3.4),

Y.v .At': 
*Ð 

, (oi. vO') *sp,¡.teH. (3.58)
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The advection coefficients are
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A,(eö) = hI {srrrä 
(iof +aâ) *Ð þ *,,,i.f, - 

r(1)1,] øol)
(3.5e)

The diffusion coefficients and source terms are given by Equations (3.53) and

(3.54), respectively, and all quantities are evaluated at l/fr.. Furthermore, the advec-

tion operator has an O(lle) term and an O(1) term. The former is the dominant term

in the equation, if it does not vanish. In this situation, the hydrodynamic equation

reduces to the zero-order conservation equation,

' f*r Ðel)iat] : o (3.60)

Furthermore, it is interesting to note that the form of the conservation laws (which

give us the hydrodynamic modes) is sufficient to predict the form of this equation

and compute the advection coefficients. The latter in turn enables a prediction of the

speed of sound waves in the lattice gas. The kinetic modes determine the viscosity.

In Chapter 4, we use the developed theory to determine the transport coefficients for

the 2-D 4m <-+ 1r lattice gas.



Chapter 4

Lattice Gas Fluids

4.L Analysis of the 4m ++ 1r (s - 1) Lattice Gas

In this chapter v¡e use the theory developed in [16] and summarized in Chapter 3

to derive the propagation speed and viscosity for the 4m ç+ 1r Iattice gas in two

dimensions. In this model, shown below, four moving particles give rise to a rest

particle of mass 4m if none existed prior to their coming together. In addition, the

reverse event might occur, i.e., the creation of four moving particles if a rest state

was occupied and there v/ere no moving particles present.

o

l¡
o ---++- o

I
I

o

Once again in the LGA paradigm, v/e assume that the presence of a bit i at a

site represents the presence of a particle of unit mass and momentum c¿ f Lt. The
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ensemble-averaged mass and momentum densities at a site can be determined from

the equilibrium densities N*.

where c? : cez and

ql:1,
ql:4,

'i: Ir2r3r4

'i :5.

e1 :

Qo : p : Nr + N2+ ¡/3 + N4 +4N5.

15
Qu : Q". + Quu :,r : -å I"oNo,

^L i:l

*rcos[(i - 1) +5'sinf (r - 1), i:r,z,J,4
0, i :5.

(4.1)

(4-2)

(4 3)

There are 3 conserved quantities in the model under consideration. Qp,Ç" and Q'o

are the ensemble averages of the mass, x momentum and y momentum, respectively,

in the lattice gas. In what follows, we shall use natural lattice units (c : Lt - 1).

Since from Equation (3.i),

5

8P : ÐqlN¿(x,t), u:1,'..,3,
i:r

we have,

(4.4)

From section 2.5:
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q| : 1, 'i:1, - -. ,4

/l ;-É..t, t-¿

t^qí : Î, i:I
: _i, ,i:3

: 0, 'i :2r4r5
e^qi : i, 'i:2

: -9' i:4
: 0, i:1,3,5.

For an incompressible fluid, the conserved densities are ordered in the expansion

parameter [20].

p: poi-r'pr. (4 5)

67

u: €u1 . (46)

The ordering of the conserved quantities as explained in section 3.7 for this system is

then

A : Qo -f eQ, * ,'Q,

: (: 
): 

(î 
)..(; )*.'(î ) 

ØT,
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Thus, the zero-order Fermi-Dirac equilibrium is found by considering only qp in Equa-

tion (2.30). Hence we get

L+e-"
1

n

\-ei :L
i:1

n
\-1L"'"' :
á:L

n

f e¿e¿e¿ :
i:r

n

I e¿e¿eie¿ :
i.=I

where n is the number of particles, D, the

and

Qojm : 6¿¡6m * 6¿¡'6y * 6¿¿6¡n.

,Dn
D ¡ 

'tz' 
(4'10)

number of dimensions in the lattice gas

_1

- 
Jtm)

_1

- 
J T,I

¡/ó 'i: Lr2r3,4

i:5.

(4 8)

(4.e)
I + e-4"

Once again, to be consistent with the notation used in [16], we use n : Nt to represent

the total number of particles at any site in the lattice. If the lattice vectors are

isotropic to fourth rank, then they must satisfy the following equations, aq outlined

in [23]:

0

n
DL

0

(4.11)

We shall make use of these results for evaluating the generalized Fermi metric and

connection. In keepingwith the notation presented in [16], we shall interchange the

indices j : pand j : u with j : Iand 7 : 2 respectively, for the coefficients q¡ of the
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conservation equations and also for the elements of the Fermi metric. The next step

would be to construct the Fermi metric as outlined in section 3.2. For the 4m <- Ir
model there are 3 conserved quantities and thus 3 hydrodynamic modes. Hence gP"

from Equation (3.9) could be written as a 3 by 3 matrix.

eP',:Nil(1 -wÐqiqi (4.12)

sPP : N3(1 - Ntòqíqî

: 4Í*(7 - f^) + 16Í,(7 - Í,)
: g". (4.13)

g,u : gt'

: ¡/á(1 - wÐqíqi

n
U

: gu? = g2L. (4.14)

gtt = g"

: N¿(1 - l{|)qiqi
4¡: Í*(L - Í*)r,eiei : f^Q - fòfit (4.15)

i=l

Note the 2x2 unity matrix, L in Equation (4.15). Using Equations (4.12)-(4.15), the

tensor gP' can then be written in matrix form as
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s(k)r" = Nd(1 -

70

eþ,:(n'*,'-Í'')+r6r'G-r') l'", (4.16)

\ o  r*G-ràÈ)
where the indices ¡r and u aÍe used to denote the row and column of the metric,

respectively. The Fermi metric could also be written out as a 3x3 matrix in the

following manner:

l- (4rT)

)

described in

/
[ +Í^(t - rà + 16/"(1 - /")

9þ': I O

Io\

Next, we calculate the components of

Equation (3.16),

0

4r*0 - ràÈ
0

the generalized

0

0

4r*0 - ràÈ

Fermi metric,

w,)qiqi (ó",) (4.18)

s(k)"

s(k)t2

s(k)'"

4k
r*Q- ròL8"'

J:1
4 ,t+1

Í*(1- /-)I8"':s(tù21
j:t
4 k+2

l^G- Í*)Ð8"'.j:r

(4.1e)

(4.20)

(4.21)

The Fermi connection is defined as

tf,, = -|se,o,<wl(l - Nú)(1 - z||)di qiqf

The generalized Fermi connection is

(4.22)
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(4.23)

The advection coefficients are

aþ|
(4.24)

We are now going to determine the advection coefficients for the lattice gas. This

is done twice. Once for þ : I : p and then for þ : 2 = u. These could then be

inserted into Equation (3.55) and collecting terms of the same orders we could deduce

certain mathematical properties for the lattice gas. The first property which will be

demonstrated in the process is the incompressibility condition. In order to evaluate

Equation (4.24) we shall rewrite it as

A*(Qå) = [A'(Qå)]' + lA'(Qð)1" , (4.25)

where,

r(k)|",: -|oe,o,(/ú3(1 - ¡/d) Q - zN|)q'jøføf (8-"')

[.4"(po)]' : D {strlä (}oi + at)} ,

€eH

LAr(eö)1" : t Ð lt *,r,ä.f, - r(r)än] q¡ql
qeH neÛ lÇeB _j

Again we have chosen natural lattice units c: Aú : 1.

Also from Equation (4.7), the only value of the index { for which 8f is non-zero is

€:2 = u'

Ar(eå) :- hI {srilä 
(!,o¡ + at)* à ll *,,,trf, - "(,)i,]

(4.26)
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Q|: ÇT : ur. (4.27)

We now evaluate the components of the advection coefficients for p, - p: L

The components of the Fe¡mi metric,

s(i)i : e(l)"g" l-e(r)"g^

: 0, (4.28)

since l/j(r - ¡vÐqlqj (6*:t ei ) :0 and ezr:0.

s(1)å : e(1)"gt, -t e(r)"g,

(4.2e)

Next, we calculate the components of the Fermi connection defined as

rL, : -|or*o,rll(1 - N3)(1 - ztv,)djqiqf (4.30)

13, : -|sersrçw¿(1 - ¡rd) G - zN])q?qtqf

: -!Ør,)'N3(1 - Nó) çt - zw[)fiø]øi
2\¿22'

: -|Ø,,)'*3(1 - ¡/ú)(1 - z¡v|)q] (8':'"')
: 0. (4.31)

72
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Now moving on to the generalized Fermi connection,

Thus,

Then, all we have left is,

A*(QÐ = lA'(QÐl' .

Rewriting Equation (3.55), with only the dominant term, O(lle),

0 - v .lA,(QÐl'

: v þrrliof]

From (4.28) and (4.29), s(1)l :0 and s(1)å : 1.

Also, from Equation (4.27), 8l: Qi: ul. Hence, we get

-ÐlL)

f (r)å, : -.Tnrrnrr*'o(i - ¡/3)(1 - z¡v])qlqint (8-:'t)
1r^ t2nrirt nrir/r /k:l \: - ,lsrù'N1(1 - Nl)Í - zw}qlnl.qi 

lØ",)
I,^ t2ttritt nrir¡" /È:3 \: - r@rr)'N|(1 - Nd)Q - zvo)q} (8"r)

:0.

r(k)I,: -|ocro,(N6(l - ¡/d)(1 - zwro)djqint (8-",) . Ø.r2)

(4.33)

lAo(Qô)1" :0. (4.34)

(4.35)

(4.36)
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V'ut - o. (4.37)

This then verifies our original assumption; that if the conserved quantities are ordered

as in Equations (4.5) and (4.6), the fluid is incompressible (since for an incompressible

fluid, V .v : 0, where v is flow velocity).

Next we evaluate the advection coefficients for þ: rr:2,

[/"(oð)]" : t f lf s(l)ärf, - r(1)ä"1 aiai (4 38)
feH neH lÇeF. I

The components of the generalized Fermi metric are

eoï 
: 

s 

.(\)" 

gn t s(L)" gn

(4.3e)

Since sQ)": N3(1 - ¡/3) (60:t e/) : 0 and etz:0,

s(1)? :

)+ to¿1t - ¿;

74

9tt
l- -t

8"'

)l æ
Í*)

e(r)2'grt + s(1)2t

fr-,, -r*)f(
L ¡:tt

[r-r' - r; (]t
4r*0 -

lrt_
I,"

m (L- Ím,

.1 (4.40)D[4r*G- Í*) +16/"(1 - Í,)]-'

rL, : -|srrorrNi(1 - N3)(1 - zwl)qlq?q?
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: -|ø-l'*3(1 - ¡/ú)(1 - z¡v")q?q?q?

- z¡vÐq] (8*:'",)

G-r*)O-z¡*)l

(4.4r)

lA"(po)1"

: -|{n-)'*3(1 - ¡/d)(1 - zx,)q} (8-:'"')
: -!r{n-)'N^(1 - ¡/d)(1

11
---r

'lnr*e - Í*)l)"*
: _L (r - 2f,")

214Í,.(7 - ¡,.)]"

r(t)|, : -|n,rn,r*[(l - N3)(1 - zl|)qiq\øf (8-:'"')
: -|Øù'N3(1 - ¡/3)(1 - z¡v'o)qiq1r; (õ"')
: -;#.t(1 -Nt) o-zwg)q](õ"')

il /¿\: -;Pn;¡r*G - r*)(1 - 2Í^) l¡ø;an)
1 (1 -2f*)_, D ,g. (4.42): -tW-jÃ(D¡4oo'

: D ls(t)ifån - r(1)ä,] qiql
€,neH

: fs(i)ïrå, - r(l)ir] A?A?

f t (r-zÍ^):\-¡ 
'

.im&"\:,,1,,1
: lA(pùl!"t + [.Á"(po)]lt. Ø.43)
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lA"(po)]!u':;ffiffi,,,6rl*6u,6¡¿+6a6¡n):(u1)¿(u1),
1 (1 - 2Í,.) D: iøçe -n çn ¡ 2¡@?r 

+ (ur)t(")' + (.'')¿("')")

1 (1 -2Í*) D: ;ffipPt"ft+zu1u1)'
(4.45)

And we have

where,

The pressure,

(4.48)

D  f*G-f^) ^ 1 (I-2f*)ult - uz- 
',1 G-zr,ò D .2*iffiçffiçn ¡2¡u'"' (4'4e)

[.A"(po)]' : [ {srrii (1ø . at) }

A"(po) : ["4"(po)]t +lA(po)]"
: PL + g("f)rtr.. (4.47)

,¡\ (I-zf*) D
r\r '' l4f*(t - Í*)l (D + 2)'
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The propagation speed for the 2-D 4m <--+ 7r incompressible fluid model (derived in

Appendix A) is then given by

taP
ILs 

Y ôp,

ffi: 
\ 

' (4'50)

In general, for k rest particles of mass 4rn each,

ffic":,f . (4.51)

This could be easily deduced by writing the gii component of the symmetric rank-two

tensor. Inserting this into Equation (4.46) would then give us the general form.

We now wish to evaluate the diffusion coefficients (which in turn will enable a pre-

diction of the viscosity of the 2-D 4m <-- Ir model) given by Equation (3.53),

Dt@\:l*(;a#-]-t,rr)] (452)

In order to evaluat" Dl, we consider the following:

n
ó(1)y: qiuiqi: t qt"iui.

j:t

s(1)i : B(1)""e,,,,

: f,¡*e- Í^)aieiet*#_ñj:r

: +iøieiei'
= j=l



CHAPTER 4. LATTICE GAS FLUIDS 78

D +2'

Hence, the diffusivity tensor could be written as

(o",;)'r:*f:"r"r,.ffiT:_^:t\
(D + z)Lt \ !#eieieeoe! ln#)- åt) (4 53)

2$ is a fourth-rank object and there is an implicit sum over ?7¿ and p. Since

we have specified that the fourth-rank tensor constructed from the lattice vectors

is isotropic (Equation (4.10)), the diffusivity tensor must be isotropic as wetl. This

implies that it must be of the form:

(rl)'r: u6¿¿6¡t, * a6¿¡6¿¡ * B6¿¡,6¿i. Ø.54)

Hence to derive the diffusive term on the right-hand side of the hydrodynamic equa-

tion,

v' (oi;)'ov nu'l 

: 
:i':':;lí!:*#:r"' 

* Y ¡ B 6¿¡6'l¡Y pu¿ 

(4 5b)
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The second term on the right vanishes thanks to the incompressibility condition (V.
v:0), and we have the following hydrodynamic equation:

ôur 
--r ^t +\,,,

æ | y\J )*1 .Vu1 : -VP * uY2u1. (4.b6)

This is the form of the Navier-Stokes equation except for the facfor g(f). z is the

shear viscosity. In order to get a closed expression for u, we take the followingtraces

of Equation (4.54):

(rf,:)t, : u6¿¿6¡¡ * a6¿i6¿¡ + p6ij6¿j

: uD2+0D+aD.

Similarly,

(rl)',: uD*0D2+aD

(ot:)',: uD*0D+aDz.

The above equations may be solved f.or u,

(4.57)

From Equation (4.53),
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where,

80

f) : 6¿i6n*6¿¡6¡¡*6¡6¡n

: 6¿¡6¡e i 6¿¡6¡¿ * 6¿¿6¡¡

: 26¿¡ * 6¿¿6i¡

: D(D +2).

Similarly,

-ltl2)
qi,1-l")''e

ñ
mqT@

(or":)', : rf* {n+t Eryl - ;'}
: ,:*{n+tlnY#)-ån} '

where,

and

o : D(D+z).

Inserting the above into Equation (4.57),

tr : c2 ( D ly qT @* .e")2 qí] _ l\u : (DTÐñ \4(D:T lk -N )-t)
-rf*(oø=lnY#)) (458)
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In order to write the Jacobian of the collision operator at equilibrium for the 4m +--+ 7r

model we consider the ensemble-averaged collision operator,

CB : E.¡rr7ñr,¡v" - NEIFNWIE- NBN¡¡N1¡¡l/sffn-+EÃñM&'¡¿,

:cw
cw : ¡/EM¡/w¡6- M¡¿¡¿MNs - N¿t/¡¿r/wlls//n-+7GlWIÇ&'¡¿"

: Cs.

C a : .ð/¿.ð/¡¿l/¡az¡/s¡/n- - M'MM&'¡¿..

The Jacobian matrix of the lowest-order collision operator at equilibrium is defined

as

81

ri: ôC|l
"¡ 
: 

arv¡l-.llV:.lYO

Since our lattice gas obeys semi-detailed balance, the equilibrium particle distribu-

tions are given by

Nd : f*, j:N,S,E,W
: Í" j:R'

where, f, can be expressed in terms of. frn.

Hence,
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TZ
r j:

-u-u u-u -u-u u-u w

u-u -u-u u-u -u-u w

-u-u u-u -u-u u-u w

u-u -u-u u-u -u-a 11)

uuuu-w

where,

u: fh\-fà+0-fà'Í*
u: Íh0_Í,)+(r_f^)tf,
w: f1"+G-fàn.

The eigenvalues and eigenvectors were found using MAPLE,

¡t:0

^2:0
)3:0

¡a : -4u

¡s : -4u-w.

We have exactly 3 zero eigenvalues and this means that the rule has exactly 3, and

no additional conserved quantities. The left eigenvectors are

82

ø,:(+r +1 o o *r)
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The right eigenvectors are

83

ør:(t o +1 o o)

ør:(+r o o +1 *r)

øn:(t +1 -1 +1 o)

nu: ( -i, -". -i -i *t )

qr:

-1
0

+1

0

0

Aq--

In two dimensions (D : 2), with

vectors are given by

q2:

-1
+1

-1
+1

0

+1

+1

0

0

,2u
' 7It

q5:

q3:

-1
-1
-1
-1
+1

+1

0

0

+1
,2u
I tl

four moving particles per site (n : 4), the lattice
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ej : 
"o" 

(A\ 9, - /2r j\ ^

\4/ t-sin(ïJi, i:r...4
: 0, j:5.

In the case of the HPP, the 4th rank tensor in Equation (4.10) constructed from

the lattice vectors is anisotropic [23]. Hence the viscosity does not obey Equation

(4.57). This equation is valid only in the situation in which the tensor is isotropic up

to 4th rank. The tensors in the HPP case are isotropic up to third rank and hence

we can use the analysis to determine the FermiDirac equilibrium and the advection

coefficients (from which we can determine the propagation speed of sound waves).

However, in order that we might demonstrate the application of the above general

formulae, the viscosity can be calculated as follows:

+1 0+1 00
0+1 0+10

+1 0+1 00
0+1 0+10
0 0 0 00

84

Now plugging the above values into the expression for the viscosity (Equation (4.58)),

we obtain

(ei.eÈ)2:cos2 (rtP):

c2 [i 1 1 1l
aN l4w 

' 2(4u + u) u 2l'

4.2 Summary of Results

(4.5e)

We shall no\¡/ summarize some of the results derived using the analysis described in

Chapters 3 and 4. In the case of the HPP lattice gas automaton, the propagation
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speed of sound waves is a constant value of $ and is independent of the background

density of moving particles. In the 4m t- 1r lattice gas with k rest particles, the

equilibrium concentrations of moving (/-) and rest particles (/") are related in the

following manner:

IJr: Íh+ Q - Í*)n
The propagation speed, c", of sound waves in this lattice gas with k rest particles of

mass 4m is given by the following relationship:

| 4f,.Q - f*),"-\

In the 2m *-. 1r lattice gas with k rest particles the Fermi-Dirac equilibrium requires

that moving and rest particle concentrations, f* and fr, are related in the following

manner:

I
.l r: rh+ G - rà''

The propagation speed c" in the situation where we have k rest particles could once

again be deduced from the mass conservation equation for this model and the g11

component of the symmetric rank-two tensor (Equation (4.13)) and is as follows:

85

r4
J^

rA

Í*(r - f*).":\

It can be seen that the value for c, in both the equations reduces to the HPP case

when Í, :0, as expected.



Chapter 5

tGA Experiments for

Homogeneous Systems

In this chapter we compare results for experiments conducted on CAM-8 with the-

oretical results derived in Chapter 4. Results for the Fermi-Dirac equilibria v/ere

presented in Chapter 2. We shall now measure the propagation speed of sound v/aves

in homogeneous systems using the HPP, 4m <-+ Ir,2m.+ 1r and the FHP - 6m +- 7r

models for different stack lengths. As well, we describe a lattice gas mixture using the

4m *-. 1r rule which has sites in the lattice with different stack lengths (also known

as a lattice gas mixture).

5.1 Measurements for Propagation Speed

The lattice is two dimensional as shown in Figure 5.1, and has dimensions N"Aø x

N'LA, where A,x : LA : A is one lattice unit. ÀL and /\/, are the number of

cells in the x and y directions, respectively. The lattice is initialized with a certain

background density, po. If the density of moving particles per direction in the lattice
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is f*, then the density of rest particles per site in the lattice is given by Equations

(2.37) and (2.4I) for rest particles of mass 4m and 2m, respectively. A gaussian-

pulsed, x-directed, plane wave is propagated through the lattice. This is done by

superimposing particles in the lattice according to the following equation:

pp: pmexp(ry)

The gaussian is thus centred, i.e., has its maximum value pm at ro. A square sampling

window counts the number of particles within it at each time step and hence we can

monitor the perturbation as it propagates across the lattice. Please see Appendix B

for details on the calculation of propagation speed.

Figure 5.1: The two dimensional lattice.

5.1.1- The HPP Model

In this section v/e use the HPP lattice gas rule with no rest particles. The rectangular

lattice was initialized with a uniform density of particles. A plane wave was excited

tr
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background density propagation speed

88

0.25

0.35

0.55

0.7i986

0.70963

0.69306

Table 5.1: Propagation speeds in the HPP model

by superimposing a gaussian distribution (centred 3,t r,6 :1004) of particles on top

of the existing background. The lattice size in this series of experiments was 2048 x

256. The maximum size of the initial perturbatioD, p* (peak of the gaussian), was

at 20% above the background. The pulse width of the gaussian v/as 7 : 504r. The

square sampling window (size 49 x 49) centred at x : 575, y - 150, was used to

determine the macroscopic quantity p: po * po. Using Equation (4.50) with f," : g,

D : 2, we expect the wave to propagate with a speed of c, : ;!, itrespective of the

background density of particles. The lattice had wrap-around boundaries (please see

Appendix B). That is, all particles that exit from the left end of the lattice re-enter

from the right and vice-versa.

Numerical experiments with varying background densities (0.15, 0.35, 0.55), yield

time-domain waveforms shown in Figure 5.2(a) and experimental results obtained

using the method outlined in Appendix B to calculate propagation speed, are sum-

marized in Table 5.1.

Form the above table it could be seen that c" decreases with an increase in background

density. This could be because of viscosity (a function of particle density) which causes

dispersion due to the higher frequency components in the wave being attenuated more

than the lower frequency components.
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5.L.2 The 4m *-+ 1r Model

In this experiment, the moving and rest particles in the lattice were initialized using

Equation (2.37). The lattice size in this series of experiments was 2048 x 256. The

square sampling window (size 49 x 49) was centred at x : 575, y : 150. The

maximum size of the initial perturbatioî, p* (peak of the gaussian), was at 20Vo

above the background. Varying the background density, the propagation speed was

measured. The theoretical speed is

(5.1)

The time domain waveforms are shown in Figure 5.2(b), and the propagation speed

versus density per cell of moving particles is plotted in Figure b.3(a).

For the stack of length two, explained in section 2.11 (Figure 2.77), Figure 5.3(b)

shows the experimental and theoretical values of propagation speed versus density

per cell of moving particles. The theoretical values of propagation speed are given by

the formula (k:2 in Equation (4.51)),

Lg\

\ 2 [4/-(1 - Í*) + B2Í,(r - f,)]'

f,n and f, are related as in Equation (2.37).

(5 2)

5.1.3 The 2m <-+ 1r Model

This model which was described in sections 2.8.2 (stack length : 1) and 2.11 (stack

length : 2 and 3). The rules are given in Figures (2.5), (2.16) and (2.20)(a) for stack
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Figure 5.2: Time domain waveforms
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Figure 5.3: Propagation speeds for the 4m <-+ Ir model
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lengths of one, two and three, respectively. A rectangular lattice of dimensions 4096

x 256 was used in the following experiments. The pulsewidth of the gaussian was r :

100 lattice units and it was centred àt rs :200 A. The maximum size of the initial

perturbatiol, p*, was at 20To above the background. The square sampling window

(99 x 99) was centred at x : 1150, y : 150. The propagation speed is given by the

following equation:

| +r^e - Í*)cs: 
\ 

. (53)

k is the maximum stack length. Results for k :1, 2 and 3 are shown in Figure 5.4

(u), (b) and (c), respectively.

5.L.4 The FHP 6m *- 1r Model

This automaton uses a triangular lattice with hexagonal symmetry as explained earlier

in section 7.2.2. A maximum of seven particles can exist at a site (6 moving * 1 rest)

with velocities:

eJ:

ei:

^ 2r,. 2¡r,.
*cos 

u 
(r - 1) +isin 

U 
(r - 1), i:I,2,3,4,5,6.

j:7' (5.4)

Collision details for this model are shown in Figure 5.6(a).

From Figure 5.5 it could be seen that the inter-cell spacing in the y and x directions,

AE and Aø respectively, differ and

LE 
^/3A,r 2
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Âx

Figure 5.5: The hexagonal lattice.
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The speed of sound for this model is

96

/,. and f* are the densities of the rest and moving particles respectively

related to each other in the following manner:

(5 5)

and are

IJr:
fP"+ Q - f*)u'

(5 6)

The above formulae could be deduced from the mass conservation equation for the

6m *+ 1r model and the g11 component of the symmetric rank-two tensor, Equation

(4.13). A rectangular lattice of dimensions 4096 x 256 was used in the following

experiments. The pulsewidth of the gaussian \¡/as r : 100 lattice units and it was

centred at rs : 200 A. The maximum size of the initial perturbatioî, p*, was at

20To above the background. The square sampling window (99 x 99) was centred at x

: 1150, y : 150. The solid curve in Figure 5.6(b) shows the theoretical propagation

speed, cs, ffi a function of the density per cell of moving particles. The experimental

values are plotted as well.

5.2 Lattice Gas Mixtures

In the previous experiments, lattice rules were considered where the entire lattice

consisted of sites which allowed for stack lengths of. zero, one, two or three. We shall

define a lattice gas mixture as one in which sites with non-uniform stack lengths of

rest particles are uniformly distributed at random within the lattice. For instance a

lattice might have sites at which no rest particles are created as well as those at which

ri
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a maximum of one rest particle is allowed. The properties of such a mixture would

depend on the relative proportions of these two different types of sites in the lattice.

In a 4m *- 7r (s:1) and HPP lattice gas (4m ++ Lr (r:0)) mixture one might expect

a propagation speed governed by the following equation:

97

(5.7)

p is the ratio of sites in the lattice at which a rest particle may be created. In the

situation where all sites within the lattice are allowed to hold one rest particle, p : L.

Although a rigorous theoretical proof is not developed for this formula, this could be

deduced from the 911 component of the isotropic rank-two tensor (Equation (4.13)).

Using mixtures then, it would be possible to achieve any propagation speed between

0.707 (HPP, p : 0) and 0.316 (minimum in 4m *-¿ Lr, with p : 1 and f^ :0.50).

The lattice size in this series of experiments was 2048 x 256. The square sampling

window (size 49 x 49) was centred at x - 575, y : 150. The maximum size of the

initial perturbatiofl, p* (peak of the gaussian), was at 20To above the background.

The pulse width of the gaussian was r : 504ir. The square sampling window (size

49 x 49) was centred at x - 575, y : 150. With the moving particle density, /-,
fixed at 0.50, the results for c, in the 4rn *- 1r (s:1) and HPP lattice gas mixture

are shown in Figure 5.7(a).

The propagation speed f.or a 4m <-+ 1r (s:2) and HPP lattice gas mixture could be

deduced in a similar manner and would be

cs: 
\

(5 8)
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(a)stack:7

(b)stack:2

Figure 5.7: Propagation speeds for the 4m ++ 1r lattice gas mixture as a function of

the density of sites in the lattice which can hold rest particles
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Results from such a simulation (using the same lattice dimensions, pulse width and

window size as in the previous experiment) with the moving particle density, f *, frxed

at 0.50, are shown in Figure 5.7(b). 
:

If we were now to create a lattice gas mixture with sites having stack lengths of

zero, one and two, we might expect the propagation speed within this mixture to be

cs: ^l-,, , , Ir-\t'-f*-), (5g)
\ z [¿/- Q - rà * r6p1f,(7 - l,) + 32p2f,(r - Í,)]'

p1 and p2 are the ratios of sites having stack lengths of one and two, respectively.

Furthermore, pt I pz < l. If p1 : 0.35 and p2 : 0.25, the theoretical value of c, is

0.3371. The experimentally determined value is found to be 0.3336.

5.3 Viscosity

The viscosity of the 4m <-+ 1r (s:1) Iattice gas model derived in Chapter 4 was found

to be

c2 lt 1 1 1l- a\t law ' 2(4u + w) u 2)'

where,

u: fh\_f*)+(t_Íàrr^
u: fL1-Í,)+(t-Íò'f,
w: fl"+(t_Í*)n.
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f* and f , are the densities of the moving and rest particles, respectively. It should

be noted that this result was derived under the assumption that for this model the

tensors constructed from the lattice vectors are isotropic upto 4th rank. This is an

incorrect assumption for any HPP based model. However, we shall plot the viscosity

as a function of the density per cell of moving particles in Figure 5.8.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
density per cell of moving particles

Figure 5.8: Viscosity as a function of moving particle density.
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=Øoo
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Chapter 6

LGA Experiments for

Heterogeneous Systems

In this chapter we conduct lattice gas experiments with lattices which are divided into

regions. These regions differ in the maximum number of rest particles which the sites

within them can hold. The first step would be to determine whether such regions

can exist in some sort of particle equilibrium which prevents the initial conditions

(particle concentrations) from changing with time.

6.1 Boundaries Between Different Media

A two dimensional lattice could be divided into two regions as shown in Figure 6.1.

One region (Region II) contains sites which allow for upto one rest particle and the

other (Region I) has sites which allow no rest particles at any site.

The lattice is initialized with moving and rest particles such that the moving

particle density, "f-, is the same in both parts. This is done so that the two regions

are in (moving particle) equilibriium. Then Region II is initialized with a rest particle

101
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Figure 6.1: The two dimensional lattice with two regions.

density, /", according to Equation (6.1). This is done in order that there be an

equilibrium between moving and rest particles in Region II. Thus, the entire lattice

will be in equlibrium and moving and rest particle densities should not change with

time.

Í,: rk+ G - f^)n
(6 1)

We are interested in determining whether there would be any kind of deviation

from the initial equilibrium conditions (caused by particle flow across the bound-

ary). The following experiment was carried out: The two dimensional lattice had

dimensions N,Ar * NoL,g, where Lr: LA: A is one lattice unit. .At:2048 and

¡¿s : 512 were the number of cells in the x and y directions, respectively. The number

of moving and rest particles within both regions is shown in Figure 6.2. In this case,

f* :0.35 within both regions and /," : 0.07755 in Region II. As expected, Region

I has no rest particles and the total number of rest and moving particles within the

two regions doesn't fluctuate significantly with time.

The test was repeated with Region I sites which could hold a maximum of one

rest particle and Region II sites which allowed for upto two rest particles at a site.

t4
Jm.

I
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'100

--r{- Region I : moving particles
-&- Region ll : moving particles
-'€- Region I : rest part¡cles
- Ð - Region ll : rest particles

Figure 6.2: Equilibria between Region I (s:0) and Region II (s:1).

f,o:0.25 and Í, :0.0L220 are the moving and rest particle densities in both regions.

Figure 6.3 shows unchanging moving and rest particle populations as expected.

6.2 Numerical Experiments

In the last section we determined the necessary criteria for two regions to exist in

equilibrium and the propagation speed within each of these two media. The next

step would be to test the propagation of a small perturbation in a lattice, across a

boundary. The magnitudes of the reflected and transmitted wave are then functions

of the propagation speed within the two media. The modelling of two dimensional

TM or TE electromagnetic phenomena lzal could be described by the linea¡ scalar

wave equation,

-,. 7a2óY-Q: 
", Atr

q

tsao
q
-9o860(lê
o
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Figure 6.3: Equilibria between Region I (s:1) and Region II (s:2).

with the application of appropriate boundary conditions and sources. For problems

independent of the z-direction, ó : E" or H, f.or the TM ,-.,r TE cases, respectively.

Using the analogy between acoustics and electromagnetic fields [25], for TM problems,

the macroscopic excess pressure, p, (please see Appendix A) can be equated to the

electric fr,eld 8", and the z and g/ components of the flow velocity, !: (ur,uo), can

be equated to the magnetic field components, Ho and fI", respectively.

6.2.L W-ave Propagation Across an Interface Using thle 4m <-+

Ir (s : 1) Lattice Gas

In this section we shall investigate wave propagation through a lattice which has

two regions of different permittivities. These regions are modelled by allowing for

4m *-* 1r (s:1) collisions in one and HPP (no rest) collisions in the other.

The simulation space was a two dimensional lattice as shown in Figure 6.4 with

70
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u and g dimensions of 4096 and 2048 lattice units, respectively. A gaussian-pulsed

plane wave of width 100 A was centred at 1200 Az. The lattice was equally divided

into two regions. As mentioned earlier, Region I did not allow for the creation of

rest particles (HPP, no rest) at any site while each site within Region II could hold

up to a maximum of one rest particle (4m *- 7r (r:1)). The lattice used in this

experiment had reflecting boundaries as shown in Figure 6.5. For example, an East

moving particle incident at the right boundary turned into a West moving particle

and was thus reflected back.

x

Figure 6.4: The two dimensional lattice with two regions.
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Figure 6.5: Reflecting lattice boundaries.



CHAPTER 6. LGA EXPERIMENTS FOR HETEROGENEOUS SYSTEMS 106

A square sampling window of dimensions g9 A x g9 A, was centred at 1700 Ar,
1024 Lg. Moving particles within both regions were initialized with a probability of

0.40 (: Í,.). In accordance with Equation (2.37), rest particles within Region II were

then initialized with a probability of 0.1649 (: /"). The propagation speed c, could

be calculated using Equation (4.50).

(6.2)

In this experiment, c":0.3895. The propagation speed in Region I is fi. Assuming

a relative dielectric constant €t : I for Region I, the dielectric constant e¡¡ for Region

II is

I
elt : ,.2-"s

: 3.2957.

Particles were counted within the sampling window for 3000 time steps and the results

are shown in Figure 6.6(a).

A Fourier transform was applied to the time domain waveform of Figure 6.6(a) to

obtain the frequency response shown in Figure 6.6(b). The results are compared with

those obtained using the lÌansmission Line Matrix method [26]. The TLM method is

a general numerical technique that can be applied to obtain an approximate solution

to the time-dependent form of Maxwell's equations. The method belongs to the

same class of numerical techniques that include the various Time-Domain Finite-

Difference [27], Finite-Volume [28], and Finite-Element 129] methods. An overview

of the TLM method can be found in [30], and the application of the method to a

variety of electromagnetic radiation and scattering problems is provided in [31]. The
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Figure 6.6: The two region interface:
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standard interpretation of the algorithm is that it follows the interaction of idealized

voltage pulses propagating on a transmission line grid. Although this representation is

quite different from the standard finite-difference or finite-element methods, the TLM

method still requires all the same quantities to analyze a given problem. Appropriate

boundary conditions and initial conditions are required to compute a solution.

In order to compare the TLM and LGA methods, results are normalized to their

maximum values. In the TLM program, the two dimensional lattice had dimensions

400 x 200 while in our LGA experiments, the lattice had dimensions 4096 x 2048. In

order to make a comparison, the LGA inter-nodal spacing (Aø : LA : A) was taken

to be 0.0005m, while the in TLM lattice A was 0.005m. Hence the LGA lattice was

about 100 times bigger in area than the TLM lattice. The propagation speed, c", in

the LGA experiments for the HPP (no rest) model was normalized to the speed of

light in vacuum) 3 x 108 m/s.

In the previous experiment, during the lattice initialization process, a random

number generator was used to initialize the lattice sites with particles. For example,

in Region I, if the random number generated was less than 0.40, the North direction of

a site was initialized to 1. In a similar manner, the East, West and South directions of

each site in the lattice were initialized. It could be then said that the density of moving

particles in the lattice wæ .f- : 0.40. The simulation program utilized an initial seed

and each successive random number was the seed for the next. In an attempt to

create a more random experiment, the simulation was executed a number of times

using different seeds. One would then expect that an ensemble of simulations would

give a better representation of the time-domain waveform. As shown in Figure 6.7(a),

the time domain waveform becomes less noisy as the number of simulations in the

ensemble increases from 10 to 100. The frequency response as shown in Figure 6.7(b),

however, does not change by very much.
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Figure 6.7: Ensemble averaging for the two region interface: HPP and 4m <-+ 1r
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From transmission line theory, we would expect the magnitude of the reflection

coefficient, l, to be

f:

:

Zu-Zt
Zn+ZI
@-G
-i- , --î--:+:
,/et t ' ,./et

-1_ lß.29sr -
- 1 r1,.Eñfr ' ': -0.2896.

Using the peak values of the incident and reflected wave, E'!" and E['r , respec-

tively, the experimental value of the reflection coefficient is I : E:er lEx:c : -0.3258.

The moving particles were then initialized with a density of f,": 0.50 in both

regions. The propagation speed, c", in Region II is 0.316228 and the resulting relative

permittivity is 5.00. The time domain waveform, which results from counting the par-

ticles within a sampling window of dimensions 99 x 99, centred at 1700 L,r, 10244,9, is

shown in Figure 6.8(a). Flom transmission line theory, we would expect the reflection

coefficient, f : -0.3820. The experimental results yield a value of f : -0.3628.

For the same problem with Í* : 0.50, the square sampling window was then

centred at 2060L,r, I024Lg and particles counted for 4000 time steps in order to

measure the transmitted wave. The resulting time-domain waveform is shown in

Figure 6.9. According to theory, the tansmission coefficient (7) is given by

T : 1+f
: 0.61803.

1



CHAPTER 6. LGA EXPERIMENTS FOR HETEROGENEOUS SYSTEMS 111
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Figure 6.8: The two region interface: HPP and 4m <-+
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Using the peak incident value from Figure 6.8(a) and the peak transmitted value from

Figure 6.9, the value calculated from experiment is I : 0.5081.

Figure 6.9: Time domain waveform (in the dielectric region) f.or 4m <- Ir (s:1),

,f-:0'50.

The frequency response of the reflected wave was also compared with results ob-

tained using the TLM method and is shown in Figure 6.8(b).

6.2.2 Wave Propagation Across an Interface Using tL:.e 4m *-+

Ir (s - 2) Lattice Gas

In this section, we perform experiments similar to those in the previous section with

the exception that Region II contains sites, all of which can hold upto a maximum of
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two rest particles. Sites within Region I do not hold rest particles. The simulation

space v/âs a two dimensional lattice with x and y dimensions of 4096 and 2048 lattice

units, respectively. A gaussian-pulsed plane wave of width 100 A was centred at

1200 Ax. The maximum size of the perturbation was 20To above the background

density. The lattice was equally divided into two regions. Region I did not allow for

the creation of rest particles at any site while each site within Region II held up to

a maximum of two rest particles (of mass 4m each). In other words, the maximum

stack length in Region II was two. The lattice again had reflecting boundaries. The

square sampling window was centred at 1700 Lx,,1024 Ay and was of dimensions 99

A x 99 A. Moving particles within both regions were initialized with a probability

of f*: 0.35. Rest particles within Region II were initialized with a probability of

Í,:0.0775, in accordance with Equation (2.37). The propagation speed c, could be

calculated using Equation (4.51) with fr:2,

n - I ^r-o-r^)çs 
\ z¡a7-1r - Í^)+szf,e- f,)l

In this experiment, cs : 0.377I. Assuming the propagation speed in Region I is fi,
the dielectric constant e¡¡ for Region II could be then calculated as,

1
eII : ,\^2

LUs

: 3.5i55.

The resulting time domain waveform for 3000 time steps is shown in Figure 6.10.

Comparing the theoretical and experimental reflection coefficient s, l ¡¡"ory : -0.30434

and f",o : -0.36701.
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Figure 6.10: Time domain waveform for the two region test; 4m ç+ Ir (s:2), Í,n:
0.35.

We applied the Fourier transi.orm to the time domain waveform to obtain the

frequency response shown in Figure 6.11. The results are again compared with those

obtained using the tansmission Line Matrix method.

In another experiment with two regions, the background moving particle density in

each was chosen to be f* :0.50. The corresponding rest particle density in Region

II is /" : 0.50. The propagation speed is c, : 0.2357 and relative permittivity is

€rr :9.00 in Region II. The dimensions of the lattice, window position, window size,

location of the source and pulse width of the gaussian are the same as in the previous

experiment.

Comparing the theoretical and experimental reflection coefficients,l¿¡¿*n : -0.50
and l",o: -0.45556.

The Fourier transformed results are shown in Figure 6.12 and compared with those

obtained using the TLM method.
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Figure 6.11: Frequency response
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for the reflected wave in Region I; 4m <-+ Ir (s:2),
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6.2.3 'Wave Propagation Across an Interface Using tl:.e 4m <-+

1r Lattice Gas Mixture

In the previous experiments, Region II consisted of sites, all of which allowed for 1

rest particle. In this experiment, Region II has a mixture of sites which allow for

either 0 or 1 rest particle. In other words, Region II is a lattice gas mixture. The

propagation speed in this region was previously given by Equation (5.7) as

(6.3)

For p : 0.40, f^ :0.50 and ,f" : 0.50, cs : 0.4385. The relative permittivity

of Region II was 2.60. Region I had a relative permittivity of 1. The lattice had

dimensions 4096 x 2048 and the source and observation point locations were the

same as in the previous experiments. The problem was modelled using the TLM

method with a simulation space of dimensions 400 x 200. The Fourier transform was

applied to the time domain waveforms from each experiment and results are shown

in Figure 6.13.

Comparing the theoretical and experimental reflection coefficients from time do-

main results,l¿¡.orn : -0.23M and f"ro : -0.1778.

In another experiment, the Region II mixture consisted of a mixture of zero and

two rest particle sites. This time we used p : 0.35 with /- : 0.50 and f,: 0.50 in

Region II. Using these values to calculate c" from Equation (5.8),

(6.4)

we get cs :0.3627. The relative permittivity of Region II is subsequently 3.80. The

dimensions of the lattice, window position, window size, location of the source and
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Figure 6.13: Frequency response for the two region experimenL;4m <-+ 1r (s:1) and

HPP (no rest) rest mixture.

pulse width of the gaussian were the same as in the previous experiment. i'he problem

was also modelled using the TLM method with a simulation space of dimensions 400

x 200. The Fourier transform was applied to the time domain waveforms from both

simulations and the results are shown in Figure 6.14.

Comparing the theoretical and experimental reflection coefficients,I¿¡.oro: -0.3219

and loo: -0.2830.

6.2.4 Modelling a Dielectric Strip Using th.e 4m <+ tr Model.

In this section we model a dielectric strip using the 4m <-+ 1r (s:1) lattice gas. The

region surrounding the strip was modelled using the HPP (no rest) model. In this

experiment, the lattice as shown in Figure 6.15, had dimensions 4096 x 2048. The

dielectric strip of 1004 thickness (err,uo: 3.2957) was placed at 2000 < r < 2L00.

This was accomplished by using the one rest particle model in the strip region with



CHAPTER 6. LGA EXPERIMENTS FOR HETEROGENEOUS SYSTEMS 118

1.1

1

0.9

0.8
N

LrJ

o.7

0.6

0.5

0.4
0.6 0.8 1

frequency (Hz) (x1d)

Figure 6.14: Frequency response for the two region experiment;4m *- Ir (s:2) and

HPP (no rest) rest mixture.

f* :0.40 and f, : 0.1649. The moving particle density in the surrounding region

wæ f,n: 0.40. A gaussian-pulsed plane wave source r¡/as located at 1200 Aø. Its

maximum amplitude was 20To above the background density and the pulsewidth

r : 1004. A square sampling window was located at 1700 A,r, L024 A,g.

The resulting time domain waveform is shown in Figure 6.16. This waveform

is the result of an ensemble average of 100 simulation results using different initial

conditions everytime.

The theoretical value of the reflection coefficient ís l¿¡"-o: -0.2896. From the

experiment however, Terp: -0.3169. In Figure 6.17, results from a TLM simulation

using a lattice of size 400 x 200 (all other variables such as pulse width, source location,

etc. are scaled accordingly) are compared with the lattice gas results obtained by

ensembie-averaging 1, 10 and 100 simulations.
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X

Figure 6.15: The two dimensional lattice with dielectric strip; €strip:3.2957.
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Figure 6.16: Time domain waveform for dielectric strip.
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6.2.5 The Two-Layered Dielectric Cylinder

In this section we create an inhomogeneous dielectric cylinder, made up of two con-

centric layers as shown in Figure 6.19. The size of the lattice was 4096 x 2048. The

gaussian plane wave was generated as before by superimposing additional particles

on the lattice with a 20% frll at the maximum of the distribution. The cylinder was

centred at x : 20004, y : 7024L. The inner radius was 804 with a relative permit-

tivity of 3.31, the outer radius being 1004 with a relative permittivity of 1.96. This

was implemented by allowing a maximum of 1 rest particle in the outer region and

up to 3 rest particles in the inner region. The rules for this lattice gas are shown

in Figure 6.18. The inter-nodal spacing in the lattice was defined to be 0.001m.

The system was evolved for 3000 iterations and observations were made at a 404

x 40A square window, centred at x : 17004, y : 1024L. The Fourier transform

was applied to the time domain waveform and compa.red with results from a TLM

simulation of the same problem with lattice dimensions 400 x 200. The results are

0 0.2 0.4 0.6 0.8 1 1.2 1.4
frequency (Hz) (x1d)



CHAPTER 6. LGA EXPERIMENTS FOR HETEROGENEOUS SYSTEMS 121

shown in Figure 6.20.
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Figure 6.18: Collision rules for the creation of rest particles.

It should be noted that the rule in this experiment violates semi-detailed balance

following the arguments presented in section 2.11. Hence, the analysis presented in

Chapter 4 does not apply to this model. The relative permittivities for the two regions

were calculated using a rectangular lattice, propagating a plane v/ave across it and

then calculating the propagation speed, c", using the method described in Appendix

B (observing the peaks of the gaussian plane wave).
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l^
Figure 6.19: Two dimensional lattice vrith dielectric cylinder.
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Figure 6.20: Two dimensional lattice v¡ith dielectric cylinder: results.



Chapter 7

Conclusions

In this thesis, we have demonstrated the validity of the lattice gas automata approach

for simulating the scalar wave equation in two dimensions in the presence of inhomo-

geneous media. Experiments to investigate electromagnetic plane wave interaction

with dielectric media have been performed and yield reasonable results. For the HPP

and FHP lattice gas models (with and without rest particles), theoretical as well

as experimental Boltzmann equilibria are in good agreement with each other. The

Fermi-Dirac distribution enables a prediction of the ratio of moving to rest particles

in a lattice gas simulation, provided the semi-detailed balance condition is obeyed.

7.L CA Versus Conventional Numerical Techniques

The differences between cellular automata methods and conventional numerical tech-

niques are numerous and at times quite difficult to quantify. The cellular automata

approach to modelling physical systems is a departure from the traditional differential

equation based methods which are widely used. It is important to note the difference

between cellular automata and partial differential equations and their finite-difference

r23
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counterparts [18]. In partial differential equations, the spatial and temporal coordi-

nates and the dependent variables are continuous quantities. In the corresponding

finite-difference approximations, space and time are discretized, while the dependent

variables are continuous. In the cellular automata environment however, space, time

and the dependent variable are all discrete.

Due to its discrete nature, an invertible CA simulation preserves all the informa-

tion and can be reversed at any time to yield the initial condition. This, however,

is not possible in finite-difference based methods owing to floating-point, round-off

errors. Furthermore, since lattice gas operations are bit oriented, they execute more

naturally on a computer [32].

While differential equation based algorithms may become unstable, lattice gas

methods are obviously quite stable since the process only involves averaging.

7.2 Simulation Time

A comparison of simulation times using different methods was not attempted in this

thesis. The reason for this being a lack of a suitable measure of performance. As

mentioned in [18] it would indeed be unfair to compare parallel implementations of

CA with serial implementations of floating-point methods. F\rrthermore, it remains

to be determined as to what size of simulation space (how many cells, size of sampling

window, etc.) is required to produce accurate numerical results. It should be noted

that the computational complexity involved in the binary operations of one lattice gas

cell is considerably less than the complexity of a finite-difference floating-point oper-

ation. However, in our experiments, 10 lattice gas cells represent one finite-difference

cell. In addition, the size of the sampling window used to determine the magnitude

of the macroscopic variable at one finite-difference node was 40 x 40. Again, these
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are only preliminary estimates and much work remains to be done in order that

might predict the optimal mesh dimensions to model a particular structure.

7.3 Advantages of the CA Approach

An interesting and oft cited property of CA is the complexity that emerges from a

system which might be very simple at the microscopic level. The CA's rules must

therefore capture the essence of the phenomenon under investigation and then the

appropriate macroscopic behaviour would hopefully emerge. In addition CA may be

used to model systems which are very difficult to describe using differential equations.

7.4 Modelling Inhomogenieties

With an increase in the number of rest particles (stack length), it is possible to model

materials having higher permittivities. The graph in Figure 7.1 illustrates the manner

in which relative permittivity varies with the maximum number of rest particles in

the 4m <- Ir model.

7.5 Special-Purpose Architectures

CA simulations, when run on general-purpose, floating-point processor based serial

machines take very long. As explained earlier, CA operations are bit oriented, sim-

ple logical operations and a floating point processor would indeed be unnecessary.

Thanks to the development of special-purpose architectures like CAM-8 by the Infor-

mation Mechanics Group at MIT, Iarge scale CA simulations are now quite feasible.

Furthermore, the machine has the ability to display generated data (bits at sites in

725
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Figure 7.1: e, as a function of fr

the lattice) in real time, on a monitor. This immediate visualization in turn enables a

better understanding of the proble-n under investigation. Only a small degree of par-

allelism (a factor of 8) is utilized by CAM-8. This means that the simulation space is

divided into 8 equal parts and processed simultaneously. Each part on its own is pro-

cessed serially. For models with 16 bits per site, the 8-module prototype performs 200

millionsite updates per second on spaces of up to 32 millionsites [13]. Furthermore,

the architecture consists primarily of SRAM (look-up tables) and DRAM (cells) and

is indefinitely scalable in three spatial dimensions. CAM-8 contains effectively the

same quality and quantity of digital hardware as a typical workstation (and therefore

costs about the same).
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7.6 F\rture Work

The models used in this thesis are used for the scalar wave equation in two dimen-

sions and the extension to three dimensions would require modifications to the rule.

Furthermore, we would have to create new rules to model the vector wave equation.

Lattice gas automata could be used as an environment in which we could model

electromagnetic interactions with biological systems. This would require arbitrarily

shaped regions in the lattice with sites which can hold different numbers of rest

particles.

In order that an assessment of the feasibility of the lattice gas approach be made,

a detailed analysis of the accuracy of numerical results must be made. As explained

in Chapter 4, the HPP model yields an anisotropic viscous term. The viscosity is

used to predict damping in the perturbation as it propagates throught the lattice.

Hence in order that we might accurately predir:t this quantity, it would be necessary

to switch to hexagonal lattice based models such as the FHP.



Appendix A

Acoustic'Waves in Fluids

This appendix gives details of the derivation of the wave equation which is derived

in [25] from the conservation equations. During the course of this derivation we shall

restrict the discussion to one dimension.

,A..1 Conservation of Mass

We begin by considering a control uolume in space between the planes at ø and r I dr

as shown in Figure 4.1 which has the form of a parallelepiped with the surface normal

to the x-axis having unit area.

The mass of fluid per unit time entering the volume through the surface at r at

time ú is

M(r,t) : p(r,t)U(r,t). (A 1)

This is called the mass fl,ur. The rate of mass which leaves the volume through the

surface at r * dr at the same time ú is M(r * dx,t). The net mass influx to the

L28
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Mass p Áx
(x, t)

-..>

(x+Âx,t)

(A.2)

The time rate of change

(A.3)

729

Â x Unit area€

Figure 4.1: Control volume

control volume is then

M(r,t) - M(r * dr,t) :

for small dz.

p(r,t)dr is the total mass inside the control volume at time ú.

of the mass inside the volume is equal to the influx, or

9e +y :0.æðr
This is often referred to as the continuity equation.

-(#)*

^.2 
Conservation of Momentum

Similarly, the conservation of momentum equation can be expressed in terms of a

momentum density and a momentum flux. While the thermal motion does not con-

tribute to the mass flux, it does contribute to the momentum flux, which, by definition

is the pressure P in the fluid.
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As discussed in the previous section, the rate of mass transported through the

surface at z is M : pU. The momentum of this mass, transferred to the control volume

from the left, is MU. As well, the momentum transfer due to the thermal motion

is expressed by the pressure P(r,t), which results from the collisions between the

particles on the left with those inside the volume. Hence, the total rate of momentum

transferred to the particles in the control volume through the surface at ø is

G:Ptp[J2: (A 4)

4.3 Acoustic Field Equations

We shall now discuss the equations for acoustic waves in a fluid. The following

discussion is presented in [25].

The unperturbed field variables are assumed to be time independent (denoted

by the subscript 0). Perturbations of density, velocity, mass flux and pressure are

denoted by þ,u,tn and p. The density perturbation is assumed to be small, so that

þ K po.\4/e obtain the corresponding pressure perturbation by expanding P(p + þ)

in a Taylor series

130

AM
E

P(p+ þ) È 
". (#) u. (;) (#) þ, +

æ 
".(#)u

(A.5)

(A 6)

Ps: P(po). (A.7)
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p: (#),
The compressibility is defined as

13i

(A.8)

(A.e)

(A.10)

(A.13)

, 7dp
'" - po d,P'

Using this in Equation (4.8),

,:(h)u
The perturbation in the mass flux is m1 : (po+þ)(Uo+u)- poUo. The unperturbed

fluid is assumed to be at rest (Uo : 0). Thus, rr4 a pou, where we have assumed

that þ K po. The perturbation in the total momentum flux G: p(J2 *P is Gt=p,,
since, psu2 is negligible compared to p if [/ is much smaller than wave speed. The

conservation equations then reduce to

(A.11)

(A.12)

By taking the spatial derivative of the first of these equations and time derivative

of the second, we can eliminate U to obtain the wave equation,

0p
0r'
ÔU

ôr'

AU
Po at

,-ðP
^r'=-dt

o'p ,ô'p
AP - u arr'

where u : rl1[@k) is the sound speed.
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Propagation Speed Measurements

In order to measure the propagation speed (relative permittivity) of a lattice gas

having a certain background density of moving and rest particles, we have employed

the following method:

Let us consider the 2m +--+ Lr (s:1) model with /- : 0.4500, å : 0.4010. The

lattice dimensions are 4096 x 256.

A gaussian perturbation is created in the lattice and a square sampling window is

used to monitor the wave as it propagates. The number of particles within the window

are counted at every time step. The lattice has peri,odi,c or wrap-around boundaries.

This simply means that when the wave reaches one end of the two-dimensional lattice,

it wraps around and re-enters at the opposite end. When the gaussian pulse starts

out, it splits equally into 2 pulses, one moving to the left and the other to the right

(labelled L and R, respectively in Figure 8.1 ).

Figure 8.2 shows four pulses. The first pulse is R when it propagates to the

sampling window. In the meantime L travels to the West boundary of the lattice

and re-enters at the East end. Pulse 2 is this perturbation when it propagates to the

sampling window. Pulse 3 is R after it travels to the East boundary wraps around
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to the West boundary and propagates to

number of time steps between pulse 1 and

propagate across the lattice. The speed c,

the window. Similarly pulse 4 is L. The

3 or 2 and 4 is the time the wave takes to

then is simply

t-g

:

4096

7M80 - 6424

0.5084.

The theoretical speed is given by the formula

? - I 4Í^(1-Í^)us 
\ z¡+¡-1r - Í^)+ f,(r- f,)l

: 0.5037.

The propagation speed could also be determined by calculating the phase differ-

ence between pulses 2 and 4. At a frequency of 1.745 x t07 Hz this difference is found

to be 1.054. This corresponds to a lattice size of 4096 x 0.0005 in the x direction

(lattice spacing, A : 0.0005 *). The propagation speed in the HPP model is rt
which corresponds to the speed of light (used when performing the discrete Fourier

transform). The propagation speed could then be calculated,

1.745 * I07 * 2r x 4096 x 0.0005 1
cs:

1.054*3.0x108 ,n
: 0.50221'

Since the experimental result using the phase difference method is very close to

that obtained using the peak observation method, we have used the latter in the

thesis.
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