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Abstract

A cooperative dispatching approach is proposed for scheduling a flexible man-
ufacturing cell (FMC) that is modeled as a m-machine flowshop. Many of the
current flowshop scheduling heuristics and algorithms are either inflexible or based
on assumptions that are overly restrictive for the highly automated ['MCs. Priority
dispatching rules. on the other hand, are more flexible but their reliance on local
data can frequently result in mediocre schedules. particularly in the case of flow-
shops. Cooperative dispatching combines heuristic qualities and the flexibility of
dispatching rules in a distributed scheduling procedure that employs more global
and real-time data to support dispatching decisions at the machines. A dispatching
selection at any machine is reached collectively after consultation. through agents
operating over a local area network, with the other machines in the cell. The con-
sultation is initiated every time a machine needs to make a loading decision. and
it takes the form of a poll that seeks a consensus regarding which of the candidate
jobs should be selected, taking into consideration the performance criterion. Neu-
ral networks are available to assist the machines in formulating their replies when
polled. The cooperative dispatching approach was tested in computer simulations
and compared to traditional dispatching rules. for cases of both static and dynamic
job arrivals. It performed consistently better than leading dispatching rules for three
different criteria and in three routing configurations. Cooperative dispatching was
also observed to be less sensitive than other dispatching rules to the amount of part
overtaking permitted in the intermediate buffers, an issue that is relevant to FMCs
which may have particular in-process buffer selection constraints stemming from

automation hardware restrictions.
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Chapter 1

Introduction

1.1 Background

Modern manufacturing operates in highly competitive environments that de-
mand reduced costs and low lead times. Approximately 60 to 80% of the manufac-
turing of discrete parts involves mid-variety. mid-quantity products. The emergence
of group technology (GT). coupled with advances in reducing set-up times. has al-
lowed lower lead time and reduced levels of in-process inventory for this production
category. GT emphasizes the production of like products in dedicated manufactur-
ing cells. Flexible manufacturing cells (FMCs) implement this GT concept in an
environment that is characterized by high automation. A FMC is a collection of
machines that are capable of producing families of parts bearing similar production
characteristics. Very short set-up times are made possible for the products by the
high level of automation and tool-change capability. Part movements in the cell are
performed by using automated material handling, such as an Automated Guided
Vehicle (AGV) or robots. A Flexible Manufacturing System (FMS) is a collection

of FMCs supported by an inter-cellular handling system.

Due to its fast product changeover, a FMC allows the simultaneous processing
of different parts in small lot sizes. This simultaneous processing has the advantage

of decreasing the work-in-process (WIP) compared to when the parts are processed



in larger lots. In addition to the reduced WIP, simultaneous processing accounts
for increased machine utilization, a lower flowtime, and reduced storage capacity
requirements (Duffie and Piper [1]). The disadvantage of simultaneous processing

is the greater complexity of scheduling.

A FMC is controlled by one or more computers that normally operate under
hierarchical control. In fully centralized control, a computer acts as the cell’s su-
pervisor to communicate directly with each of the cell’s components, as illustrated
in Figure 1.1(a). These components are the machines. the material handling sys-
tem. sensors and other control devices. The supervisor obtains information from
the units, and sends appropriate commands to the individual devices in order to
control the activities in the cell. The supervisor is also responsible for tracking and
controlling all the part movements in the cell, dispatching part programs to the
machines. and responding to faults that may occur in the cell's operations. The
tasks and responsibilities for the supervisor in a centralized control system increase

in complexity as the size of the cell and the number of parts it processes grows.

Centralized control systems favor fixed schedules that are stored in the system
and implemented directly by the hardware. When a schedule needs to be modified
or updated, the supervisor must collect all the pertinent information from the cell
and generate a new and efficient schedule in a very short period {usually a matter of
seconds). In such situations, hierarchical systems are at a disadvantage because of
the great amount of information that needs to be collected, analyzed and processed
quickly. De-centralized control enables faster rescheduling and better flexibility to

accommodate variable scheduling demands.

N
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Figure 1.1: Control architectures in manufacturing [1].

At the opposite end of the spectrum to hierarchical control is the non-hierarchical
system. Duffie and Piper (1] refer to the latter as a heterarchical system. In the
heterarchical system, control is distributed completely and there are no supervi-
sor/subordinate relationships. The control of part processing is achieved by com-
munication and cooperation between the machines and devices in the cell without a
central supervisor, as illustrated in Figure 1.1{c). Between the two extremes of fully
centralized and fully distributed control lie hybrids of the two systems, an example
of which is seen in Figure 1.1(b). In a hybrid system, control is distributed to the
entities in varyving degrees of de-centralization, as shown by the scale used in Figure
1.2. Existing manufacturing systems currently have control architectures that are
closer to the centralized system [1]. The reason that this architecture is preferred is

due mostly to the ease of its hardware implementation.

Hierarchical control, nevertheless, has numerous disadvantages resulting from
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Figure 1.2: Category scale for control architectures [1].

the non-modularity of its architecture. A lack of modularity means that changes.
or even minor modifications in the cell. require significant effort to modify the cell’s
control system. In addition. the software to run hierarchical systems is extensive.
complex and costly to develop and maintain. Therefore. @ manufacturing cell that
is controlled hierarchically is not a very flexible one in changing environments. As
an example. if the machine configuration in a cell is to be modified. then large
amounts of software may have to be rewritten to incorporate the modification. On
the other hand. in a non-hierarchical system, the localized nature of the control
requires software that is less complex. In addition, the software is duplicated in the
modules, making it more convenient to perform any updates or modifications. As
far as scheduling in a FMC is concerned, the localization of information provided by
modularization leads to reduced problem complexity. This. in turn. permits more

efficient dynamic scheduling in the cell.



1.1.1 Scheduling Flexibility

Scheduling flexibility describes the ability to implement the best schedule pos-
sible for the current jobs and hardware setup (in the FMC) without the need for
selecting, modifying or re-writing software to accommodate particular configurations
and job routings. There are several issues that contribute to scheduling flexibility.
Two have particular interest. The first concerns the adaptability to changing ob-
jectives and priorities. Scheduling and job prioritization are controlled by software
in a FMC. If the scheduling’s objectives are changed. then the software should be
capable of meeting the new objectives without having to be modified. Also. disrup-
tion in cell operations. such as rush orders. reworks. machine failure etc.. mean that.
in reality, the cell operations are dvnamic in nature. Schedules have to be updated

frequently. or reworked completely to remain valid under dynamic conditions.

The second matter of interest is that raised by the high levels of automation
found in FMCs. This automation may impose constraints on a cell’s activities that
would not be found in a non-automated system. or in one with low automation.
The main constraint of interest here is the type of buffers that hold the WIP for
each of the machines in the cell. Specifically. the use of robotic handling requires
that parts be located at fixed locations and orientations. This means that the buffer
must not only hold the parts but it has the task of delivering them to the robot’s
gripper at the desired pick-up point and in the correct orientation. The least costly
and simplest buffers employ gravity-feed. Such buffers, however. normally restrict
the order in which the parts can be processed on the machine to a first-in, first-out
(FIFO) order. On the other hand, if an arbitrary selection from the parts waiting

in the buffer is to be allowed, then a more complex buffer, such as a carousel, needs



to be used. In addition to being costlier, these latter buffers also require more space
and software. Nevertheless, buffers that allow part selection are more desirable from
the viewpoint of scheduling because they improve machine utilization and lower the
WIP. It is conceivable that economic and technical constraints may result in a FMC
having some buffers constrained to FIFO queues. along with others that permit a
selection from the queue. Therefore, a flexible scheduling system should be etfective
for FMCs ranging from those that have strictly FIFO buffers to those that have all
their buffers permitting a selection. To use terminology from scheduling theory, the
sensitivity of the scheduling system to the amount of permissible ‘part overtaking’

should be minimal.

1.1.2 Jobshops and Flowshops

A FMC is actually a highly automated jobshop. In a jobshop. each part vis-
its the machines according to a job ‘route’ that defines the sequence of operations
necessary to complete the part. Workpieces may start and end their routes at any
one of the machines. There are no restrictions on which machine a job can visit
next after completing an operation on one of the other machines in the shop. On
the other hand, a flowshop is a jobshop having a uni-directional flow restriction.
A job may enter the flowshop at any machine, but the machines it can visit next
are limited to only those downstream of the direction of the part flow. Specifically,
if there are m machines that are numbered from 1 to m, then a job cannot move
from one machine to another machine which has a lower number. Figure 1.3 de-
picts the general flowshop. When it is required that each part visits every one of the

m machines in a (m-machine) flowshop, then that flowshop is called a pure flowshop.
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Figure 1.3: A general. m-machine flowshop.

The flow of parts in jobshops and flowshops is based on the job routings. A job
enters the shop and waits in a queue at the buffer for the machine needed to process
its first operation. When that operation is completed. the workpiece is transferred
to wait in the queue at the buffer for the machine needed for its second opera-
tion. and so on. At anv point in time, a jobshop or flowshop is likely to have jobs
waiting in queues at the buffers for the machines. Obviously, instances will occur
where a machine is idle because there are no waiting jobs. or because the part just
completed cannot be moved to the next buffer which is filled to capacity. The for-

mer case is called ‘'machine starvation’. while the latter is termed 'machine blockage'.

1.1.3 Dispatching Rules

Scheduling for jobshops and flowshops is a complex activity in view of the very
large number of possible schedules. Finding an optimal schedule may involve the
evaluation (whether directly or indirectly) of all the possible schedules in order to

find the most efficient one. For a jobshop which processes n jobs on m machines,



the number of schedules that can be constructed is theoretically as high as (n!)™. In
practice, the number of feasible schedules is lower but it is still a significant propor-
tion of (n!)™. Even in the most restrictive case, namely a pure flowshop with no part
overtaking, a total of n! different schedules is possible. Mathematical techniques
are available that implicitly enumerate all the possible schedules to find the optimal
one. However, they are computationaily expensive when n is more than i3 to 20

jobs (given current computer technoiogy).

The combinatorial nature of the scheduling problem makes dispatching rules a
favored approach for a jobshop and many types of flowshop. A dispatching rule
specifies which job, from those available in a queue. has the highest priority to be
selected as the next one on a machine that has just become available. The job hav-
ing the highest priority is the one that is dispatched for processing on the machine.
Thus. a schedule is constructed on an ‘as-needed’ basis, and not a priori. Conse-

quently. dispatching rules are well-suited for dynamic scheduling.

1.1.4 Scheduling Criteria

The scheduling problem is that of arranging the sequences for the processing
of jobs in the shop in a manner that allows desired objectives to be met, as much
as possible. Each job passing through the shop has several operations and each
operation requires a certain 'processing time’ on one of the machines in the shop.
In addition, the job is to be completed by a predefined time, called the due date.
In the event that the due date is not met, the job is said to be tardy and a penalty

is incurred that is usually a function of the tardiness.



The most commonly occurring scheduling objectives attempt to optimize one or

more of the following criteria.

- Minimum makespan, where it is required to complete all the available jobs in
the winimum possible time span. This criterion is relevant to static shaps.
where the number of jobs to be scheduled is known at the start of production

and no new job arrival is allowed in the meantime.

- Minimum mean tardiness. where the emphasis is to reduce the total amount

of tardiness.

- Minimum mean flowtime. which seeks to minimize the average time spent by

a job in the system. This criterion helps to reduce the WIP levels.

- Minimum number of tardy jobs. where the goal is a schedule that minimizes

the total number of jobs that are completed beyond their due dates.

In addition to the above criteria, many less commonly occurring ones exist. and

others may also be formulated that are application specific.

More often than not, scheduling criteria are conflicting ones. For example. a
schedule that minimizes the mean flowtime can be poor with respect to minimizing
the mean tardiness, and vice-versa. In modern manufacturing, 2 WIP reduction and
on-time delivery are normally co-objectives. Thus, the scheduling objective is. in re-
ality. a combination of several criteria. There are two major approaches to deal with
multiple performance criteria. The first approach is to rank the criteria in terms of

importance as primary, secondary, tertiary, etc. A schedule satisfying the primary
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criterion is devised. Then this schedule is adjusted as much as possible to meet the
secondary criterion, without diminishing the degree of satisfaction obtained for the
primary objective, and so on. The second approach is a cost-based one. A unified
equivalent cost is selected to quantify the performance with respect to the different
criteria. Then a single cost-based criterion is developed to represent the multiple

criteria.

1.2 Research Motivation

The primary motivation for this research is based on implementing an automated
scheduling system for a FMC located in the Computer Integrated Manufacturing
Laboratory at the Faculty of Engineering, University of Manitoba. Although this
FMC serves educational purposes. it represents real-world systems in the high degree
of automation it employs. Furthermore. as a collection of autonomous sub-systems.
it provides the opportunity to implement a non-hierarchical control system. The
tvpe of products made in this cell belong to a family of parts which have primary.
secondary and tertiary operations that are applied sequentially. The first two ma-
chines in the cell are for the primary operations. the third machine performs the
secondary operations. while the tertiary operations are performed on the last ma-
chine. The sequential manufacturing stages involved with these products give this

FMC the characteristics of a flowshop.

A direct implementation of theoretical models to a highly automated cell that

operates in a continuously changing environment is not simple. The difficulties are
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best described by Dudek, Panwalker and Smith [2]| for the case of the flowshop.
Thev contend that there are very few real-world situations that have the charac-
teristics of the classical flowshop assumed theoretically. The main reasons cited in
(2] for the lack of industrial application of previous flowshop research are 1) overly
restrictive assumptions; 2) inflexibility of the algorithms: and 3) failure to focus on
the fact that real Howshops are more often dynamic (rather than static) and subject
to multiple performance criteria. Although these observations relate to the pure
flowshop. they are also true, to a significant degree. of other types of flow and job

shops.

The second source motivating this research is automation. A FMC is not as
highly automated with respect to scheduling control in comparison to the hard-
ware. When there is a deviation from the schedule. off-line human intervention is
normallvy needed to revise or update the schedule. One source of deviation to a
current schedule is a change in the scheduling objectives. The scheduling flexibility
in FMCs may be enhanced, through automation, to allow the system to quickly pro-
vide good schedules for changed objectives, multiple scheduling criteria or criteria
that are unique to particular situations. The 'inflexibility’ of many of the theoret-
ical scheduling algorithms poses an obstacle to achieving a high flexibility for the
scheduling component in a FMC. The flexibility that is desired for the FMCs has

the following characteristics:

1. It permits adaptation to hardware reconfiguration without the need for major

modifications to the scheduling software.

2. On-line adaptation is allowed whenever the scheduling criteria change.
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3. A consistent performance level is provided, regardless of the types and sizes

of the in-process buffers, or the predominant part routings.

4. It efficiently meets the scheduling criteria regardless of the number of different

part types that are produced simultaneously in the cell.

1.3 Problem Statement

The type of FMC under consideration is illustrated in Figure 1.4. The cell
contains several machines, as well as a material handling system consisting of an
"ASEA’ robotic arm. The robot loads and unloads the machines. and it transports
the workpieces between the machines. The activities of the robotic arm and its
interaction with the machines is coordinated by means of a system of sensors. pro-
grammable logic controllers (PLCs). and the robot’s controller. The PLCs monitor
the signals from the sensors on the machines as well as the buffers. They send
appropriate outputs to the robot’s controller. which then initiates the programs cor-
responding to the robot’s desired actions. Requests for service from the robot arm
are received and dispatched by the robot’s controller in an order that is generally
unpredictable. The controller monitors incoming requests by means of a looping
program. When a request is detected and acknowledged, the monitoring program
is interrupted and the routines (programs) for servicing the acknowledged request
are executed by the robot. When the requests have been serviced, the monitoring
program resumes from the point at which it was interrupted. New requests arriving
during the interruption may be serviced ahead or after previously waiting requests.
depending where the interruption occurred in the monitoring program. Scheduling

for the robot’s movements is performed by an outside agent (the robot’s controller)
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Figure 1.4: Schematic of FMC at University of Manitoba's CIM Lab.

and not by the FMC's scheduling system. The material handling system. therefore.

is not controlled by a centralized supervisor (i.e. it is non-hierarchical).

The number of machines within a FMC is a function of the work envelope of
the material handling device. In most FMCs that are served by a single robot, the
maximum number of machines that can be accommodated realistically in the cell
is between four and six. In addition, the FMC is modeled as a general flowshop.
This is not overly restrictive, given that a well-designed cell that processes part
families (which involve similar operation sequences) tends towards a uni-directional

flow pattern. Thus, the research problem can be stated as follows.
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Given a FMC similar to the one depicted in Figure 1.4 (which has the charac-
teristics of a general flowshop), it is required to sequence the flow of jobs through
the machines {or stations) in the cell such that a cost function. Z. is minimized.
The cost function of interest, Z = f(h;,t;), depends upon the holding costs (h;)
and the tardiness costs (t;) for each one, i, of the jobs. A detailed statement of the

scheduling problem and the assumptions used is given in Chapter 3.

The objective of this research is to develop a scheduling control system for this

FMC that is :

1) Hexible with respect to performance for different scheduling criteria:

2) consistently efficient for different routing configurations. and for different ar-
rangements of FIFO-constrained and non-constrained intermediate buffers:

and

3) implementable in an automated fashion and in a dynamic environment.

1.4 Solution Approach

The approach adopted is one that emphasizes a high degree of heterarchy in the
scheduling control. This approach is facilitated by the use of a networked control
system. Each station, comprising a machine and its buffer. is treated as an inde-
pendent entity. The entities communicate over the network with each other and
‘cooperate’ in making decisions dealing with dispatching priorities for the current

jobs. This anti-hierarchical approach, which promotes individuality and local deci-
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sion making, makes single-machine scheduling theory an attractive tool. When all
jobs have equal release times (i.e. they are all available at a given instant in time
and ready to be scheduled), then single machine scheduling is basically a sequencing
problem that is generally simpler to solve than multiple machine scheduling prob-
lems. The approach taken here is called 'Cooperative Dispatching’. Cooperative
Dispatching uses single machine scheduling theory. with the simpiifving assumption
of equal release times, as the basis of the interaction between the individual enti-
ties in the cell. The results of these interactions is a series of on-line dispatching
decisions that ultimately produce a final schedule. To expand the applicability to
uncommon or unique scheduling criteria. a neural network is proposed for solving

the single machine sequencing problems that are used in Cooperative Dispatching.

1.5 Overview

This thesis is organized as follows. Chapter 2 reviews the literature relevant to
heterarchical systems and dispatching rules, with emphasis on state-dependent dis-
patching rules, as well as scheduling in Rowshops and single machines. Cooperative
Dispatching is presented next in Chapter 3. and results are given for its performance
in static problems. These results are compared with those from other methods that
may be used for the test problems. In Chapter 4, a novel approach is presented
for sequencing jobs on a single machine by using artificial neural networks. The
use of neural networks promotes flexibility by allowing performance criteria that
are new or unique, and for which no algorithms are readily available. The perfor-
mance of Cooperative Dispatching in dynamic flowshops is evaluated. in Chapter 3,

by comparison to the more traditional dispatching rules used in similar cases. The
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application of Cooperative Dispatching in the FMC at the University of Manitoba is
described in Chapter 6. and results from a number of experimental trials are given.
Finally, Chapter 7 provides the conclusions, and some recommendations for the di-

rection of future research.
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Chapter 2

Literature Review

2.1 Introduction

A Flexible Manufacturing System (FMS) normally has manufacturing cells linked
together by material handling and information systems. Research in the area of FMS
scheduling may be classified according to the level of the scheduling. This can be
at the svstem level (the FMS as a whole). or at the cell level (individual FMCs).
The scheduling problem at the system level includes tool allocation and the loading
problem. which is basically the assignment of the jobs to each of the available cells
(task assignment). At the cell level, the scheduling problem is confined to organiz-
ing the sequence of activities in the cell to optimally meet the desired performance
criteria. In this respect, the problem at the cell level often resembles scheduling

problems for jobshops and flowshops.

The focus of this survey is on the literature for scheduling at the cell level.
However, under hierarchical control systems, the problem at the cell level is often
influenced by decisions taken at higher levels. The literature on hierarchical schedul-
ing in FMS is too large to be covered adequately in this survey. Only two examples
are selected to illustrate approaches that attempt to address the performance of
the individual cells under hierarchically controlled scheduling. The advantages of

heterarchical, as opposed to hierarchical, systems is then discussed. With the modu-
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larization provided by heterarchical control, the focus shifts to scheduling at the cell
level. The two major approaches considered are dispatching rules and heuristics. For
dispatching rules, the review concentrates on research dealing with state-dependent,
dispatch rule selection. The heuristics that are discussed are those that treat the
FMC as a flowshop. Finally, research on the sequencing of jobs or tasks on a single
machine is reviewed briefly. This relates to the single machine sequencing optimiza-

tion that is required for the algorithmic approach proposed in this thesis.

2.2 Hierarchical and Heterarchical Control

Scheduling in FMS has traditionally been part of an integrated hierarchical ap-
proach for managing a system. Problems are usually defined at an aggregated level
of detail. and the information flows downward with increasingly detailed decisions
taken at the lower levels. An example of such an approach is found in Stecke (3],
who focuses on higher planning levels. The FMIS is modeled as a closed queuing
network that gives average performance levels for the aggregate input data. This in-
formation is passed to the next planning levels. where the machine groups (or pools)
are identified. and jobs are assigned (loaded) for each grouping by using mixed in-
teger programming models. The logic behind this procedure is that decisions taken
at these stages enhance efficiency at the lower levels of decision. where on-line and
dynamic control can be applied. The disadvantage of this approach. which is com-
mon to many hierarchically controlled systems. is that the need to finalize certain

decisions before start-up limits performance under dynamic conditions.
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A system for real-time operational control of a FMS under a hierarchical struc-
ture was proposed by Maimon [4]. Again, the detail of the decisions increases at
each level down the hierarchy. However, there is also a feedback flow of information
from the lower levels to the higher levels. This feedback enables modification of
information and decision taken at the higher levels to reflect the real-time operation
of the system. The highest ieveis generate off-line. aggregate production levels for
the different part types. This is done with the aid of global databases which cover
relevant information such as process plans, part routings. and machine failure rates.
Scheduling control operates off-line, and it has three levels. The first level is the dy-
namic schedule which determines the instantaneous production rates for each part
tvpe demanded. considering the available capacities and performance criteria. The
next level is the process sequencer. It is responsible for coordinating the movements
in the system to enable the production rates defined in the previous level to be
met. The third and last level of control is a communication level with the hardware.
This level controls and monitors a machine and collects information. statistical and
otherwise. for feedback to the higher levels. Results from simulations using this
system show that it is capable of responding to perturbances and executing cor-
rective decisions. However. the response is not instantaneous. The system appears
suitable when many units of each part are demanded in the production mix. Its
lagging response characteristic. on the other hand, makes it less effective when the

mix involves a large variety and small unit demands, as is likely to be case in a FMS.

The advent of networking technology in the 1980’s provided researchers with
opportunities to explore non-hierarchical control in manufacturing svstems. Non-

hierarchical control is desirable to the degree that it makes a FMS system more dis-
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tributed and dynamic, resulting in less complexity and more modularity. as well as
lower development, operation and maintenance costs. Piper and Duffie [1] used the
term ‘heterarchical’ synonymously with "non-hierarchical’ to describe a distributed
control system. They identified several of the critical questions that need to be
addressed in non-hierarchical systems. Furthermore, they outlined a plan of how a
distributed controi system wouid operate without centraiized supervision. Piper and
Duffie’s concept called for each part entering the machining cell to initiate a pro-
gram under a multitasked operating system. The part then communicates. through
its program. with the machines it needs to visit and the material handling system
in order to negotiate its way through the cell to its completion stage. The technique
is highly dvnamic, resulting in on-line machine assignment and self-configuration.
These characteristics also allow an on-line re-configuration in the event of machine
failure. A more detailed description of this cooperative scheduling approach is given

in Duffie and Prabhu [3).

Shaw (6] described a method. based on the concept of cooperative problem solv-
ing, for dvnamic scheduling in a non-hierarchical Computer Integrated Manufac-
turing (CIM) environment. The CIM had cells that cooperated by means of a
network-wide, bidding scheme to schedule the jobs. The scheduling method is a two
level method. In the first level. jobs are assigned to the cells. At the second level
(the cell level), the jobs are scheduled within the cell. The first level scheduling
is finalized through the bidding scheme and network communication. When a job
has completed its current operation in a cell, that cell announces the availability
of the job for its next operation. The cells in the system, including the one that

makes the announcement, make bids for the job. The value of a cell’s bid is the
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earliest finishing time it can provide for the job for which it is bidding. In order
to calculate the earliest finishing time, a cell has to reschedule its in-process jobs
which include the job being bid. The cell making the most attractive bid wins the
job. The scheduling of the jobs within a cell, on the other hand, is implemented by
a knowledge-based planning system [7]. The performance of the bidding scheme’s
dvnamic scheduiing is compared, by using simulations, with a myopic shortest pro-
cessing time (SPT) dispatching rule that is implemented through centralized control.
The results reported by Shaw [6] reveal that the bidding scheme produces a signif-
icant improvement in performance. However. the effectiveness of Shaw’s approach
depends on the inter-cellular travel of parts because the bidding for the parts is
between competing cells. In well-designed systems based on Group Technology. the
inter-cellular travel is minimal. Consequently. cell level scheduling assumes greater
importance when the movement of parts between cells is infrequent. That is not to

say. however. that the concepts of [6] cannot be also adopted at the cell level.

2.2.1 State Dependent Dispatching Rules

A FMC has characteristics that resemble jobshops and. in many cases, general
flowshops. Optimal scheduling decisions in these shops are difficult because the
problem’s complexity grows exponentially with the size of the problem {8]. Typi-
cally, there are n! ways of sequencing n jobs waiting in queue at each machine or
resource. Therefore. heuristics are often resorted to in scheduling for these shops.
A popular approach employs dispatching rules. A dispatching rule uses a priority
indexing scheme to determine which of the waiting jobs is processed next when a

resource becomes available. Different dispatching rules use different methods for
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determining the priorities. Most of the research in the performance of dispatching
rules has been done for jobshops (see Conway et. al. [9]). Surveys of dispatching
rules in jobshop operations may also be found in Blackstone et. al. [10] and Haupt
[11]. The behavior of different dispatching rules has also been investigated in FMSs
by Sabuncuoglu and Hommertzheim [12], [13], Garetti et al. {14]. Ro and Kim [13]
and Montazeri and Van Wassenhove [16{. The general conclusion drawn from this
research is that the relative performance of different dispatching rules depends on
the particularities of a system and the characteristics of the jobs. i.e. no one rule is
superior for all performance criteria. An active area of research. consequently. is to

determine the circumstances under which to use a given rule.

A logical approach in attempting to identify relationships between a state of the
svstem and the effectiveness of different dispatching rules is to study how humans
would make decisions under the circumstances. The behavior of humans when mak-
ing scheduling decisions was compared with that of general dispatching rules by
Nakamura and Salvendy [17]. Experiments were undertaken using a real-time. in-
teractive human-FMS simulation model. Human subjects were given the task of
scheduling a FMS modeled on a computer. The FMS had unlimited buffer capaci-
ties, and it represented a case of static scheduling because all the jobs were assumed
ready at the start of the simulation. At each scheduling point (instants in time when
a dispatching decision is required) the human scheduler was provided with pertinent
information regarding the jobs available for dispatch. Experiments were done for
three different scheduling criteria: minimizing the maximum tardiness. maximizing
the machine utilization. and minimizing the number of look aheads. A "look ahead’

is a capability given to the human scheduler to see the consequences of decisions on
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the final schedule prior to making those decisions. It aids the scheduler in dispatch-
ing. The 'look ahead’ capability was included in the experiments in order to help
determine its effect on performance. The results showed that, in all the test prob-
lems, the best human schedulers achieved results better than or equal to the best
of eight typical dispatching rules. The effect of the 'look ahead’ capability was seen

to have an impact if used sparingly and oniy at the initial stages of the scheduling.

The results from Nakamura and Salvendy [17] underlined the ability of humans
to weigh current system attributes in reaching dispatching decisions. This ability is
lacking when a single dispatching rule is applied automatically at scheduling points.
A number of researchers approached this issue with methods that sought to allow
the selection of different dispatching rules dynamically. i.e. as situations evolved in

the manufacturing system.

There are two elements involved in the dvnamic selection of an appropriate dis-
patching rule. First. the state of the system must be represented in some fashion
through identifiable attributes. Second. for any given state. knowledge must be
available as to what is the most favorable dispatching rule. This problem has at-
tracted the interest of Artificial Intelligence researchers. particularly in the areas of

knowledge-based systems and neural networks.

Intelligent scheduling methods which employ knowledge-based systems generally
utilize If-Then rules to reach decisions. Knowledge for the rule base is commonly
gained from discrete event simulations of different states of the system. Wu and

Wysk [18], Kusiak and Chen [19], and Kathawala and Allen [20], for example, con-
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sidered expert systems that used rule-based inference for making scheduling deci-

sions.

The problem of knowledge acquisition to guide the selection of a state-dependent
dispatching rule is addressed by Nakasuka and Yoshida [21] with the aid of machine
learning. The characteristics of an instantaneous status of a production line are cap-
tured by a set of user-defined attributes. Simulations of the production line provide
examples of its instantaneous status at the points when dispatching decisions are
needed. At each of these scheduling points. the current status serves as the initial
condition. and the line is simulated by using one of several dispatching rules until
the completion of production. The rule leading to the best final result is paired
with the attributes defining the initial condition. Then this pairing is used by an
inductive learning algorithm to establish a binary decision tree. The decision tree.
which is basically an If-Then rule structure. can be used subsequently to establish
the best dispatching rule for actual situations. The results of the method were veri-
fied by computer simulation. The amount of time needed to build the decision tree.

however. was a significant disadvantage.

Shaw. Park and Raman [22] employed a similar approach to generate a decision
tree. They incorporated machine learning in a rule-based environment to create a
system having adaptive characteristics in the application of scheduling rules. The
state of the system was described by eight attributes. Stochastic simulation was
used to generate 130 training examples in order to cover a wide range for the eight
attributes, together with the preferred scheduling rule for each set of attributes.

Four dispatching rules, which were directed towards minimizing the mean tardiness,
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were used in the learning. Experimentation showed that the scheduling directed by
the decision tree performs better, as expected, than the use of a single dispatching

rule.

Chiu and Yih [23] also employed induced knowledge, in this case to aid the se-
lection of a dispatching rule at each machine every time it becomes available. They
selected eight vital attributes. including the number of jobs in the system and the
number of remaining operations, to describe the state of the system. A discrete
event simulator was used to generate training examples in the form of pairings be-
tween different dynamic states and the corresponding preferred dispatching rule for
each state. A total of four rules was considered and a multi-criterion performance
measure was emploved to encompass the makespan. number of tardy jobs and the
maximum lateness. Chiu and Yih noted that a schedule could be described in
terms of a series of dispatching decisions made at the scheduling points. A genetic
algorithm was used to find good schedules from strings representing the training
examples. This method reduced the time required to find solutions for the problems
that provided the training examples. An incremental learning algorithm. similar to
that used by Nakasuka and Yoshida [21], was then emploved to extract knowledge
from the solutions in the form of a binary decision tree. This tree was used to
determine the dispatching rules most appropriate for the dynamic states identified
during actual scheduling operations. The system also employed a performance eval-
uator. If the performance was deemed unsatisfactory. then the learning algorithm
could modify the decision tree accordingly. Results showed that the method per-
formed better than a static scheduling procedure based upon a single dispatching

rule. The system appeared better suited to problems that have stable product mixes.



An alternative method for learning relationships between instantaneous system
states and the corresponding dispatching rules makes use of neural networks. The
concept is simple. Neural networks are trained to respond to an input stimulus by
producing a corresponding output. When the input stimuli represent system states
and the outputs correspond to dispatching rules, a trained neural network should
be able to retrieve an appropriate dispatching rule when presented with an input

pattern representing the system’s current state.

A neural network is often used in conjunction with other techniques as part of
a scheduling system. For example, Cho and Wysk [24] utilized a neural network to
generate several part dispatching strategies which are subsequently evaluated in a
multi-pass simulation {25]. The neural network accepted an input pattern of seven
elements which defined the status of the workstation: viz. the routing complexity.
performance criterion, ratio of material handling time to processing time. system
congestion. machine utilization, job lateness factor and a queue status factor. The
output pattern had nine elements (units), each one representing a particular dis-
patching strategy (or rule). The training data was accumulated from the results
of computer simulations of the production system. When presented with an input
pattern, the neural network responds with an output pattern that indicates the acti-
vation in each of the nine units. Each output level reflects how well the dispatching
strategy is suited for the workstation status represented in the corresponding input
pattern. The two most favorable dispatching strategies are selected based on the
output pattern. They are then processed by a multi-pass simulator over a user-

defined window of time. The strategy that better satisfies the performance criterion
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is selected. Finally, the duration of the time window is important because it con-
trols the interval between calls to the neural network. The longer is the window,
the fewer are the opportunities to switch dispatching strategies. The authors found
that the simulation window’s ideal duration depended on the performance criterion

under consideration.

A similar implementation of neural networks is described by Rabelo et al. [26].
who organized the networks in a modular system. Neural networks are trained,
one for each of seven performance measures, by using backpropagation to select dis-
patching rules for an input pattern representing the state of the system. The output
of each one of these seven ‘expert’ networks is a ranking in order of the effectiveness
of thirteen different dispatching rules. The rankings from the expert networks are
directed, together with the system’s state and the desired performance measure. to
a gating network. The gating network releases a set of suggested dispatching rules
(selected from the thirteen rules available). The gating network. which is trained
by using the cascade correlation paradigm [27], gives a higher weight to the expert
networks that are better able to meet the performance criteria. The authors re-
portedly achieved quick training and good generalization abilities in their modular

neural networks system.

The methods that adopt state-dependent policies for selecting dispatching rules
are subject to system ‘mervousness’. Nervousness is characterized by the changing
of a dispatch rule before it can have its desired effect on the system’s performance.
Frequent switching between different rules arises in response to vigorously changing

attributes in the state of the system. Shaw et al. [22] incorporated a smooth-



ing constant which ensured adequate time for a new dispatching rule to have its
desired scheduling effect. Other researchers, however. adopted more sophisticated

approaches.

Ishii and Talavage [28], for example, proposed that the duration a dispatching
rule is maintained should extend from the start of a transient state in the system
to the beginning of the next transient state. This approach implies that a method
of detecting transient states is needed. The authors proposed a function. called
INDEX. for measuring a system's state at time ¢{. The value of INDEX at time (¢) is
a function of the number of parts in the system. part processing times. the waiting
and transportation times, and the due dates. The scheduling interval is determined
by simulating the current system using FIFO over a future interval. INDEX is cal-
culated at points within this interval. A transient state is detected by analyzing the
time series data from INDEX. The scheduling interval is defined from the current
instant to the instant when the value of INDEX increases (which is taken to indicate
a transience). Once the scheduling interval is determined. four different dispatching
rules are simulated over this interval and the rule that performs best is adopted.
The scheduling algorithm was tested by using a simulation model of a FMS hav-
ing four work centers. two loading and unloading stations. and three AGVs. Tests
compared the performance of the transient-based scheduling interval and a multi-
pass simulation method that used a constant scheduling interval against a method
that employed a single dispatching rule throughout the entire manufacturing period
(i.e. a single-pass algorithm). An average 5% improvement of the transient-based
resuits were reported over the data from the single-pass algorithm which, in turn,

performed better on average than the multi-pass method. Moreover, the muiti-pass
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method with constant scheduling intervals was less stable and it produced a more
widely varying performance between problems than the transient-based scheduling
interval method. It is noteworthy that, contrary to other results published in the
literature for the multi-pass simulation method [25], Ishii and Talavage found this
method to be somewhat inferior to algorithms based on a single dispatching rule.
[his difference may indicate a sensitivity of multi-pass methods to particular prob-

lem data and facility configurations.

Jeong and Kim [29] also favored simulation in a FMS as a tool for determining
which dispatching rule to select and the duration it should be used. They pro-
posed a real-time scheduling mechanism composed of three modules: a controller. a
simulator. and a scheduler. The controller monitors the system'’s performance and
updates the databases of the system'’s status. The controller sends a signal to the
scheduler when it senses that a significant discrepancy exists between the actual and
estimated performances or when a disturbance. such as a machine breakdown or a
rush order. is detected. The scheduler’s function is to decide which dispatching rule
is to be used and when it should be used. It makes this decision after consulting
with the simulator. The simulator runs each of sixteen different dispatching rules
from the current time to the end of the planning horizon. and it returns the results
to the scheduler. Based on the results of the simulations, the scheduler selects the
best dispatching rule and relays this information to the controller for the rule’s im-
plementation. Experimentation with this scheduling system led to the conclusions,
which are basically similar to those reached by earlier researchers. that a system’s
performance is improved by the dynamic switching of dispatching rules. Moreover,

the performance is also sensitive to the method for deciding when rule switches
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should be considered.

Min et al. [30] considered a competitive neural network that suggested decision
rules in a multi-objective FMS. At pre-defined production intervals (for example,
each day), the neural network is presented with an input vector containing the de-
sired changes in the performance criteria for the following interval. The magnitude
of the desired changes are determined by the operator in order to meet the multiple
performance criteria. The input vector. therefore, contains relative data between
the current values for the performance measures and the values targeted for the fol-
lowing production interval. The output of the neural network is a class in which the
aggregate input vector is most similar to the one presented at the input. The F)MS
considered employs four scheduling variables. These are 1) a part’s selection of a
machine to move to: 2) a part’s selection of a storage rack: 3) the selection of a part
by a free machine: and 1) the selection of a part by the material handling system (a
crane in this instance). Each decision variable uses one of between three and four
different operational policies. For example. one of the policies used by the crane is
to serve the closest part first, and so on. A long duration simulation is performed to
generate training data for the neural network. The simulation is divided into many
intervals and, in each interval, a random selection of policies for the decision vari-
ables is applied. The system’s states and the performance measures are recorded for
each interval. The two sets of decision rules and the differences that they produce in
the performance measures between every two consecutive intervals are collected as
input vectors for the neural network. The neural network is trained by the Kohonen
[31] learning rule. Then, the trained network is used on-line to identify the class for

the input vector representing the current states at the end of the period. A search
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algorithm is used to find the closest match from the vectors in that class. Once
the match is completed. the policies for the four decision variables are selected for
the succeeding interval. The method was tested against a policy where the decision
variables are selected randomly in each period. The results showed that the neural
network is better able to respond to the operator’s desired data for performance
criteria related to different objectives. However, the method was not compared with
static policies for the decision variables. Furthermore. it is not clear how sensitive is
the approach to the stringency of the operator’s demands for desired values of the

performance criteria from one period to the next.

The need to control the frequency of rule switches is a negative aspect in ap-
plving state-dependent dispatching methods. A low switching frequency means less
svstem nervousness. but it also produces a more sluggish response to a system’s
changes that ultimately marginalize any gains over dispatching with a single rule.
An approach to deal with this problem is to use composite rules that are an amal-
gamation of contributions from several different dispatching rules. As a system’s
state changes. the relative contributions from the different rules change accordingly.
Thus. the character of the rule alters gradually and not in the discrete manner that

occurs in rule switching. An example of such an approach follows next.

Sim et al. [32] proposed a hybrid neural network - expert system that can be
applied dynamically to make dispatching decisions. An expert system evaluates the
prevailing shop conditions and determines which one of sixteen sub-networks is most
appropriate for making the required dispatching decision. Each of the sub-networks

is a neural network that is trained by backpropagation to make the dispatching de-
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cisions under specific shop floor conditions which are defined by a job arrival rate
and a scheduling criterion. The specialized neural networks are trained with data
acquired from the results of simulations for ten different dispatching rules run un-
der defined shop floor conditions. Each job that is a candidate for dispatching is
represented by an input array of fourteen, 0 - 1 nodes. These nodes indicate the
presence or absence of particuiar attributes. Furthermore, they encode the current
shop conditions and scheduling criteria. The output of the neural network is a value,
which lies between 0 and 1. that measures the level of priority determined by the
neural network for the job represented at the input layer. After processing all jobs.
the one determined by the neural network to have the highest priority is selected
for dispatching. In this fashion. the dispatching rule is a composite rule defined by
the relative contributions from the ten rules considered in the training stages. In
comparison to techniques that switch between dispatching rules. the method of Sim
et al. [32] effectively "invents’ a rule for the particular combination of job attributes
and shop conditions at hand. The authors also presented results showing the su-
periority of the composite rule method over dispatching with any one single rule.
Whether composite rules are more effective than a dynamic selection between the

individual dispatching rules remains unanswered.

Although a very significant part of the research in jobshop scheduling has been
devoted to dispatching rules, most real world manufacturing consists of a prod-
uct mix containing a demand of individual parts in multiple numbers. Identical
parts will generally possess identical attributes, resulting in a tendency for most
dispatching rules to batch the production. This batching conflicts with the concepts

advocated in flexible manufacturing, namely simultaneous production and a batch
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size ideally equal to one unit. The need to produce in very low batch sizes assumes
greater importance in flexible assembly systems, where different parts are needed
simultaneously at the point of assembly. In such cases, the use of a dispatching
rule like SPT gives equal priority to all the demanded quantities of a single part
because all these quantities will have the same value for the selection attribute,
namely the processing time. The result is that a batched production is observed
in many instances when the traditional dispatching rules are employed. Analytical
and heuristic methods are alternative approaches in such cases. They are usually
developed for the specific type of problem at hand. Consequently. their application

is usually less general than dispatching rules.

2.3 The Flowshop

The review of heuristics for scheduling in FMCs that follows covers flowshops
only. This is because the FMC is modeled as a general flowshop in this thesis.
Assuming that a FMC should preferably produce parts belonging to a family in ac-
cordance with Group Technology concepts, it is not unreasonable to use a flowshop
model. This is because parts from a family are likely to have similar manufacturing
operation sequences and, therefore, similar part routings. Thus, an FMC'’s layout

can frequently resemble that of a general flowshop.

The most widely studied flowshop problem is a pure flowshop in which the ob-
jective is to minimize the makespan. Johnson [33] provided an algorithm that finds

the optimal solution for the corresponding two-machine problem, as well as for the
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three-machine problem but under specific conditions. Subsequent research has in-
vestigated methods for solving Johnson’s problem when the shop has more than
two machines. The number of schedules that are possible in a pure flowshop hav-
ing m machines and processing n jobs is m(n!). A frequently used assumption is
that machines process jobs as they arrive in a first-come first-served order. This
assumption reduces the scheduling problem to that of tinding the best schedule
from (n!) possibilities. This type of problem is called a permutation schedule. In a
non-permutation schedule. conversely, jobs are permitted to overtake other jobs and
machines are allowed to remain idle until a specific job arrives. even though other

jobs may be ready and available.

Researchers in the m-machine. n-job flowshop scheduling problem have predom-
inantly considered the makespan criterion. Of the numerous heuristics and algo-
rithms suggested, a simple but highly effective construction heuristic was proposed
by Nawaz et al. [34]. A construction heuristic begins with a partial schedule and
proceeds to expand it to a final schedule by adding jobs one at a time. Nawaz et
al. first determined the sum of processing times for each job, and then listed the
jobs in a non-increasing order of this value. An initial partial schedule was created
next by removing the first two jobs on this list, and sequencing the two in the order
that gives a minimum makespan. The next job residing at the top of the list is then
removed from the list and inserted in the partial schedule. The position where it
is inserted is found by considering all the possible positions it can occupy, without
altering the relative positions of the jobs assigned previously to the partial schedule.
The longer is the partial schedule, the greater is the number of possible insertion

points that need to be examired. The job is inserted ultimately in the position
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that gives the minimum makespan for the partial schedule. The jobs in the list are
scheduled in a like fashion until a final schedule is obtained. A study by Park [33]
concluded that the heuristic suggested by Nawaz et al. (which is commonly labeled
the NEH algorithm) was the ‘least biased and most effective’ of sixteen heuristics
tested in problems combining 15 to 30 jobs and 4 to 20 machines. The NEH al-
gorithm’s runtime is siightly longer than comparable heuristics in large {100 jubs
and more) problems. However. modifications due to Taillard [36] have significantly

improved the computational time.

The NEH algorithm was designed for permutation schedules. Recently. Koula-
mas [37] developed a construction heuristic (called HFC) that aims to minimize
the makespan through repeated use of Johnson's two-machine algorithm [33] for
determining a priority index for each job. Numerical experiments showed that HFC
outperformed the NEH algorithm in problems where the optimal solution was a
non-permutation schedule. In problems where permutation schedules are optimal.

the HFC and NEH algorithms were reportedly comparable.

Initially, the main direction of flowshop research was aimed at minimizing the
makespan. This was probably a consequence of the interest stirred by Johnson's
work [33]. Later researchers, however, began to investigate other performance cri-
teria in flowshops. Gupta [38], for example, described three algorithms for finding
permutation schedules that minimize the mean flowtime in the n-job, m-machine
flowshop. One algorithm, called MINIT, was reported to be the more effective of
the three algorithms in terms of near optimality. The MINIT algorithm is based

on a sequence-dominance check and an approximation based on minimizing the idle
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time on individual machines.

Other work devoted to minimizing the mean flowtime with permutation sched-
ules in flowshops include that of Miyazaki et al. [39] who utilized adjacent pairwise
interchanges. as well as Rajendran and Chaudhari’s three quick algorithms [40]. The
latter are based on heuristic preference relations for deciding which job is appended
next to a partial schedule. Computational results from Rajendran and Chaudhari
[40] showed that their algorithms performed better than other methods. including
the algorithms of Gupta (i.e. MINIT) [38] and Miyazaki [39]. In 1995 Ho [41]
introduced a near-optimal heuristic based on sorting methods. Although this last
approach was effective in finding near optimal solutions with a high level of consis-
tency. it suffered from a significant growth in computational time as the problem
size increased bevond 10 jobs. More recently, Woo and Yim [42] presented a job
insertion method to minimize the mean flowtime. Their method considers all the
remaining jobs when selecting one to insert in a partial schedule. Simulation experi-
ments revealed the superiority of their algorithm over previous heuristics. However.
like Ho's method [41]. this superiority is achieved at the cost of CPU time which

increases sharply with the total number of jobs.

The other criterion investigated for the pure flowshop is the minimization of
the mean tardiness. Like the mean flowtime criterion, the mean tardiness flowshop
problem is NP-hard [43]. Approaches using branch and bound techniques have been
suggested by Sen et al. [44] and Kim [45] for the two-machine flowshop. The branch
and bound approach is subject to a large space search and, even with the improved

bounds suggested by various researchers, the method remains largely unsuitable for
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problems in which the number of jobs is greater than about 15 to 20 jobs. Therefore,
like other NP-hard situations, research has actively pursued heuristic solutions. Sen
et al. also proposed in [44] three heuristics based on sorting techniques. Initial
solutions were derived by sorting the jobs in the increasing order of their processing
times (SPT), due dates (EDD) and their slack. The slack is the difference between
the due date and the sum of the processing times for a job. LEach of the heuristics
starts with one of the three initial solutions. Then. local optimality conditions are

applied to improve the initial solutions.

Kim [46] modified several heuristics developed originally for the makespan cri-
terion in order to minimize the mean tardiness in flowshops having permutation
schedules. Noting that solutions for permutation schedules may be improved easily
by position exchanges. Kim considered a tabu search and a neighborhood search al-
gorithm. as well as an adjacent pairwise interchange to improve solutions obtained
by other heuristics. Kim's experiments showed that the best results came from the
tabu search of Widmer et. al. [50], and an extensive neighborhood search (ENS)
method. These two. however, required relatively high computational times. On the
other hand. Kim’'s modified NEH algorithm. in which an EDD sequence is used to
initially sort the jobs, gave better results than ENS in much less computational time
when the resulting NEH sequence was further processed by an adjacent pairwise in-

terchange procedure.

The minimization of a cost function that combines the mean flowtime and mean
tardiness in flowshops was considered by Gelders and Sambandam [47]. They pro-

posed four heuristics to obtain solutions to flowshop problems where the objective is
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to minimize the sum of the weighted tardiness and weighted flowtime. The heuristics
are construction heuristics based on a job dispatching index that calculates priorities
for the jobs to be scheduled. The dispatching index identifies which of the jobs is
the most expensive to hold and schedules it next in the sequence. This procedure
entails obtaining the estimated unii penalty costs for each job. The authors provide
a complex set of calculations for the measurement of the unit penalty cost. These
calculations require the computation of lower bounds on the makespan of all the
jobs in a given partial sequence, as well as the total idle time accumulated by each
job on all the machines. The dispatching rule that emerges contains a factor that
represents a relative measure of the lateness as well as a weighting factor for the
holding costs. This dispatching rule is sensitive to these factors. and the four heuris-
tics are different only in the method by which the dispatching index is determined.
It was concluded that two of the heuristics consistently outperformed the others on
the basis of the due-date’s tightness and the performance criterion. One of the two
heuristics appears to perform well for the mean flowtime criterion alone: the other

for the mean tardiness criterion.

The permutation flowshop has also been researched by using search-based meth-
ods such as simulated annealing (Osman and Potts [48], Ogbu and Smith [49}) and
tabu search (Widmer and Hertz [50]). The results are generally good but computa-

tionally expensive in comparison to the heuristics cited previously in this review.

Although the vast majority of research for flowshops is in permutation sched-
ules. some research has been directed at non-permutation schedules. Examination

of non-permutation schedules for flowshops has dwelt on dispatching rules. Kim
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[46] investigated the performance of seven priority rules for dispatching, under the
criterion of minimizing the mean tardiness. The rules were tested by using 1000
randomly generated problems, each having from 15 to 30 jobs, and between 5 and
25 machines in the flowshop. The due dates assigned to each job were determined
by an adaptation of the method of Potts and Van Wassenhove (51] for a flowshop.
The test probiems covered a reasonably wide range of due date tightnesses. Kim
concluded that the best performance was given by the Modified Due Date (MDD)
rule. followed closely by the Apparent Tardiness Cost (ATC) and the Modified Op-

eration Due-date (MOD) rules.

A comparative study of dispatching rules in flowshops and jobshops was under-
taken by Rajendran and Holthaus [32]. The objective was to evaluate the relative
performance of thirteen dispatching rules for the two shop types and dynamic job
arrivals. Three of these rules were developed earlier by the same authors [33]. The
study involved a number of performance criteria. including the mean flowtime. max-
imum flowtime. mean tardiness and the proportion of jobs that are tardy. among
others. Extensive simulation experiments were conducted for a variety of machine
utilization levels and due-date tightness factors. Job arrivals in the simulations were
generated by using an exponential distribution for the inter-arrival times. Values of
the performance measures were tabulated for each of the dispatching rules tested.
The main conclusion is that the performance of dispatching rules is influenced by
the job routings and shop floor configurations. Furthermore, dispatching rules that
contain additional information, such as the total work content of the jobs queuing
for the next operation, are more apt to simultaneously minimize multiple perfor-

mance measures. The study did find, however, that the COVERT (cost over time)
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dispatching rule performed better in flowshops than in jobshops. This conclusion
contradicts earlier results [46] regarding the performance of COVERT in flowshops.
The discrepancy may be attributed to how each of the investigators applied the
COVERT rule, because the rule requires user defined parameters to estimate the
lead times. Also, a noticeable omission from the dispatching rules tested by Rajen-
dran and Hoithaus is the MDD rule, a ruie that has been frequently cited as being

a powerful one for minimizing tardiness based criteria in flowshops.

Chan and Bedworth {34] considered the minimization of the mean flowtime in
flowshops. They derived formulae for computing temporary flowtimes between pairs
of jobs. Their algorithm was tested on specific configurations (where jobs can have
one of several fixed routes) in what they called a modified flowshop. The tests indi-
cated that the heuristic was preferable to using the least work remaining (LWKR)
dispatching rule. In addition. the authors outlined the applicability of their heuris-
tic to dynamic flowshops. where job arrivals at the shop are not simultaneous (i.e.
unequal release times). Although the experimental results were satisfactory. theyv
were done for static flowshops only, and included problems having only ten or fewer

jobs.

2.4 Single Machine Sequencing Problems

The static scheduling for a single machine is a permutation problem. The op-
timal solution is one of n! possible job sequences. For some performance criteria,

the optimal sequence can be obtained by sorting the jobs in a particular order (for
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example, SPT in the case of minimizing the mean flowtime). For other perfor-
mance criteria, such as minimizing the mean tardiness, the problem is NP-hard [53].
When the scheduling criteria involve performance objectives that are NP-hard, many
heuristics attempt to capitalize on special dominance properties in order to curtail
the solution space. For example, Russell and Holsenback [36] used the dominance
properties described by Emmons {37] in their heuristic for minimizing the mean tar-
diness. Other notable heuristics for mean tardiness minimization were presented by
Panwalker et al. {58], Wilkerson and Irwin [39] as well as Potts and Van Wassenhove
[51]. Scheduling objectives involving two (bicriterion) and multiple criteria have also
been investigated. Then the main approach was to build particular heuristics for

the specific combinations of the performance objectives. Examrples of such instances

may be found in Van Wassenhove and Gelders [60]. Lin [61] and Chen and Bulfin {62].

Approaches that are more generally applicable (i.e. that are valid for any perfor-
mance criteria) revolve around search-based techniques such as simulated annealing
(Potts and Van Wassenhove [31]), tabu search (Armentano and Roncini [63]) and
genetic algorithms (Lee and Choi [64]). Scheduling flexibility requires the ability to
develop good schedules for any given performance criterion. Search based methods
are flexible due to their generalized abilities. and the quality of their solutions im-
proves with more computational time. This computational demand severely limits

the effectiveness of these methods for on-line scheduling applications.

The scheduling approach proposed in this thesis is distributive in nature. It is
characterized by the development of local schedules at each machine. These localized

schedules, which are based on single machine sequencing, provide the framework for
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the dispatching decisions that are made in order to determine which job is loaded on
the next available machine. The effectiveness of the approach. therefore. rests upon
the ability to find guick solutions of the single machine sequencing problem. Fast
search-based methods are needed if the system is to be applicable to cases involving
new, uncommon or multi-factor performance criteria. Chapter 4 in this thesis is
devoted to describing a neural network that can learn and generalize relationships
between jobs and the position each job should occupy in a sequence that satisfies
the given performance objectives optimally. A system of such networks may then

be used to quickly find near optimal sequences.

2.5 Conclusions

Two conclusious may be drawn from the preceding review of the literature on
scheduling and distributed scheduling in FMSs. First. dispatching rules have a
natural appeal due to their low requirements for global data. and their suitability
to on-line scheduling. Secondly, a state-dependent selection of dispatching rules
improves performance over the use of a single dispatching rule throughout the pro-

duction period.

The concept of switching dispatching rules in response to changes in a system’s
attributes poses a considerable operational difficulty. That difficulty is the decision
of when to switch from an existing rule, and for how long the new rule is allowed to
operate before it too is reconsidered. The approach taken in this thesis employs a

dispatching rule that is based on a complex cost-based evaluation of the current state
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of the system as a whole. The proposed dispatching method is, effectively, the result
of a cooperative decision between all the machines in a system. The rule dynami-
cally alters priority levels for the jobs and implicitly achieves rule switching without
the problem of deciding when to switch. Furthermore, no knowledge relating system
states with particular dispatching rules needs to be acquired. Finally. the proposed
cooperative dispatching approach avoids the ‘batching’ that is common to most dis-

patching rules when jobs having identical processing and due-date data are involved.
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Chapter 3

Cooperative Dispatching

Distributed control in a FMS utilizes data that is locally available to the enti-
ties in the system. The effectiveness of the scheduling system as a whole towards
meeting the performance objectives depends on the quality of the local data. The
availability of a computerized network linking the individual entities enhances the
local information by allowing the entities to exchange datia. without the need for

central supervision.

This chapter is devoted to describing and illustrating a methodology that is de-
signed to achieve consistently good scheduling in a FMS under a distributed control
environment. The methodology. called Cooperative Dispatching (CD). has been in-
troduced cursorily in the previous two chapters. CD behaves similar to dispatching.
but it focuses on boosting the quality of local data in a manner that enables overall

performance objectives to be met better.

3.1 Introduction

The principle of CD and an algorithm for its implementation are presented in this
chapter. A dispatching decision involves determining the priorities of the jobs wait-

ing in queue for a machine. This prioritization is based normally on the scheduling
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objective. Traditional dispatching rules, such as SPT, EDD, MDD. etc. are quick
and simple methods that are commonly used to decide dispatching priorities. It has
been shown [8] that, for given objectives and congestion levels, certain dispatching
rules outperform others. Most research dealing with dispatching rules has been per-
formed for jobshop environments, where the SPT rule was found empirically to be
better than a host of other rules in minimizing the mean flowtime {8]. For mini-
mizing the mean tardiness, however, a number of due-date based dispatching rules
were found to be equally competent but rather sensitive to shop congestion and
due-date tightness {9]. Although flowshops are specific cases of jobshops. there are
indications that the conclusions with regard to dispatching rules in jobshops cannot
be generalized to Howshops. For example, Kim [46] reported that the COVERT
dispatching rule [8]. generally acknowledged as a good one for jobshops. does not

perform satisfactorily in pure flowshops. Furthermore. a rule’s performance can de-

pend on routing configurations, in addition to the congestion and due-date tightness.

Cooperative Dispatching is designed to overcome the preceding limitations by
providing a new dispatching procedure that is less sensitive to the previously men-
tioned factors. and more flexible for different performance measures. Cooperative
Dispatching is similar to traditional dispatching rules in that its purpose is to se-
lect. from a number of candidates, a job to be processed next. It does differ from
traditional dispatching rules in that the dispatching decision is taken collectively.
after the other machines in the cell are consulted in a unique manner. This ‘con-
sultation’ involves polling the other machines for their input regarding which of the
candidates available for dispatching is selected by the machine waiting to be loaded.

A procedure for resolving the competing claims of the candidate jobs is employed to



find the successful candidate, which is selected and then dispatched. The processes
of ‘consultation’ and conflict resolution which characterize this approach lead to the

name 'Cooperative’ Dispatching.

This chapter provides the details of Cooperative Dispatching and the algorithm
proposed for its implementation. The performance of the algorithm is evaluated by
using the three different routing configurations shown in Figure 3.1, with three differ-
ent performance measures; viz 1) minimizing the mean flowtime. 2} minimizing the
mean tardiness, and 3) minimizing the number of tardy jobs. The configurations in
Figure 3.1 are selected because they represent the more interesting routing patterns.
The Type [ configuration represents the pure flowshop. and Tvpe [I considers the
case where a machine can receive jobs from alternate machines (convergent routes).
Type III is a configuration that allows more than one possible destination for jobs

leaving a machine (divergent routes).

Given a flexible manufacturing system having m machines and processing n jobs.
it is required to sequence the flow of jobs through the machines (or stations) in the

cell such that some cost function Z is minimized.

Let

h; = holding cost for job i per unit time.
t; = tardiness cost for job ¢ per unit time.
d; = due date for job i.

n = total number of jobs available and ready for scheduling.
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C; = time of completion of all processes for job i.
Bi=max[C;-d;; 0]
Z = f(hity).

The function Z that is of main interest is

1=\

The following assumptions are made.

o

=~

. Jobs do not have alternate routings.

Set-up times are sequence independent. This means that set-up times can be

included in the processing time for a job on a given machine.

Pre-emption is not permitted. Once a job is started on a machine. it cannot

be interrupted in favor of another job. and then resumed afterwards.

Inserted idle time is not allowed. A machine will not remain idle in order to
wait for a particular job to arrive if there are other jobs already available and

waiting to be processed.

. Buffers have unlimited capacities.

Some or all of the buffers may be constrained to FIFO processing of the local

job queues.

. Parts are arriving continuously to the cell, and thev immediately enter the

system (i.e. the jobs have unequal release times, and the flowshop is dynamic).
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Figure 3.1: Three different job routing configurations.
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A static flowshop may be realized by setting the release times equal for all the

jobs. thereby ensuring their simultaneous arrivals.

8. The holding cost for a job is uniform for all machines in the system.

3.2 Mathematical Model

3.2.1 Background

This section discusses the concepts behind the CD approach for sequencing the
flow of jobs through a m-machine cell that may be modeled as a pure or as a modified
flowshop. The approach is best described as a heterarchical [1] one in which each
of the machines in the cell acts independently in attempting to optimize the perfor-
mance measure. In this environment. each machine specifies the sequence that will
enable it to minimize locally the performance measure under certain constraints and
assumptions. The constraints relate to the carliest possible starting times (ready
times) for specific jobs on the machines. The assumptions allow each individual

machine to behave as though it were operating as a single machine.

The consequences of this heterarchical approach. where each machine seeks to
optimize the performance measure locally and not globally, is usually a set of con-
flicting demands regarding the setting of the dispatching priorities. These conflicts
are resolved through a cost-based methodology which aims to reconcile the local
optima in a manner that will promote the 'global’ solution by selecting a candidate
job that is most acceptable to all the parties (machines) involved. It should be noted
that not all the machines have equal footing in determining the dispatched job. In

fact, each machine’s ’say’ in the decision is weighted by a factor that is commensu-
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rate with its ‘importance’ at the global level. In this manner, the satisfaction of the
performance criterion locally is manipulated in the direction of satisfying the per-
formance criterion for the cell as a whole (i.e. globally). This relationship between
the local and global satisfaction of the performance criteria is explored further in

section 3.3.

The dispatching decision in the CD model is centered around a matrix of real
numbers that is used as the basis for determining the priorities for the jobs ready
for dispatching on the next available machine (machine s). This matrix, called the
sequence cost (SC) matrix. has dimensions of m x nr,. The m is the number of
machines in the cell whilst nr, represents the number of jobs that are immediately
available for loading (i.e. the contents of the buffer at machine s). The element
SCy, represents what is called the sequence cost to machine & in the event that the

¥ job in the buffer is selected for dispatch.

The sequence cost to a machine is defined as the value of the performance
measure for a particular scheduling of the jobs on that machine. Let, for simplic-
itv. the variable r represent the y** job in the buffer at machine s (i.e. r = I['¥).
Then. the schedule used in determining the sequence cost for machine & is that
which optimizes the performance measure on machine k, given that job z is the
first in sequence. The remaining jobs that are to visit machine £ are assumed to
be ready and available by the time the processing of job x is completed on machine
k. This assumption of equal release times is adopted solely for reducing the cal-
culation burden. Although this simplifying assumption may seem unrealistic, it is

not overly unreasonable considering that it still allows a comparison of the sequence
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costs for all of the machines to be made on the basis of lower bound estimates of
the performance measure. The optimal sequence of the set of jobs {2, on machine k&,
excluding job r, is determined by treating this situation as a sub-problem involving
the solution of a single machine sequencing problem. Each entry in matrix SC,

therefore, entails solving a separate single machine sequencing problem.

Whenever the occasion calls for a dispatching decision at machine s. CD requires
that all the machines in the flowshop are polled to determine which job each machine
favors. A machine is allowed to nominate two candidates. the second candidate be-
ing essentially an alternate to mitigate the negative impact in the event that its first
choice is not selected. Each machine, therefore. selects its two most favored jobs,
namely those two that give the least sequence costs in the SC matrix for the respec-
tive machines. Once the complete set of dispatching candidates is compiled, conflict

resolution is performed with the aid of the SC matrix to determine the ‘winning’ job.

The main steps in the CD approach are summarized next.

1. CD dispatching is invoked whenever a machine s is available and more than

one job is ready and waiting to be processed on it.

nN

Sequence costs are calculated at each machine and the corresponding SC ma-

trix is constructed.

3. By using the SC matrix, the candidate jobs for dispatching are identified. (See

section 3.2.3.)

4. With the aid of the SC matrix again, one of the candidate jobs is selected for

dispatching.



The above cycle constitutes what is called a 'stage’ in the CD procedure. A

stage is concluded after a job is selected and dispatched.

3.2.2 Constructing the SC Matrix

The cornerstone of the CD approach is the SC matrix. To explain the crucial
parameters involved in constructing this matrix, the following illustrative example

is introduced.

Example 3-1

An example of a pure flowshop problem with five jobs on four machines is pre-
sented in Table 3.1. All the in-process buffers for this problem are serviced according
to the FIFO rule. Hence the schedule of the jobs on the machines is a permutation

schedule. and dispatching occurs only at the initial machine (machine number 1).

For the purpose of explanation. it is assumed that the first three jobs (i.e. jobs 1.
2, and 3) have been dispatched already in the order of the job numbers. The result-
ing partial schedule is shown after the first three stages in Figure 3.2(a) in the form
of a Gantt chart. A 'stage’ in the construction of the schedule represents the series
of calculations culminating in a dispatching decision. The partial schedule shown
in Figure 3.2(a) indicates that 55 time units after the dispatch of job 1, machine 1
is available again. At this instant, the remaining possibilities are to dispatch either
job 4 or job 5. The partial schedule can be updated to reflect the current status by

setting the current time to zero and accordingly updating all the times. (Thus the
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Table 3.1: Processing times for Example 3-1.

MACHINE (m/c)

JoB|1 2 3 4 d h; &
1 15 2 2¢r 27 |192 0 1
2 9 15 27 19 {139 0 1
3 31 10 14 34 (124 0 I
4 133 18 21 6 9 0 1
3 15 3 3 | 3 0 1

time is advanced by the 33 units elapsed in the first three stages.) The current-time
status is shown in Figure 3.2(b). where a decision is now to be made (at time zero)
on machine 1. This decision involves the updated time data (i.e. the modified due
dates) for the two jobs waiting to be loaded at machine 1. as shown in Table 3.2.
Note that as machine 1 is the only machine in Example 3-1 where dispatching takes

place, the variable s equals one.

Table 3.2: Updated data for Example 3-1.

MACHINE
JOBl1 2 3 41di h ¢
4 133 18 21 6(40 0 1
5 |18 3 3 1|18 0 1

Example 3-1 illustrated a typical setting in which CD is invoked. Namely,

a machine is available for dispatching at an instant in time, and sequence costs for
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Figure 3.2: Gantt charts showing partial schedules.
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all the machines have to be calculated considering the instantaneous status of each

machine. The sequence cost, SCy,, for machine & (k > s), given that the y*® job in

['; is selected for dispatching, is determined from three time-related components.

They are :

(a)

Machine & Ready Lime (Hx)

This variable represents the earliest time, measured from the present. at
which machine & is able to start processing job r. Ry is calculated for each
machine by assuming that all of the in-process jobs are processed on a first-
come first-served (FIFQ) basis. This is equivalent to simulating the current
state of the system to completion by using FIFO dispatching, while withhold-
ing unstarted jobs from the cell. The completion time of the last job at each
machine. as determined from this simulation. corresponds to that machine's
ready time. Ri. Hence. Ry is effectively the time required for machine & to
process. in order of arrival. all of its in-process workload. This workload in-
cludes all the current jobs in the cell that still have to pass through machine
k. The ready times for stage 4 in Example 3-1 are shown in Figure 3.2(b).
Clearly, given that the order of processing is defined in the buffers. the ready

times at any of the machines can be calculated straightforwardly.

Earliest finishing time for the dispatched job £ on machine k (A;x.)

Once job z is dispatched on machine s. it will reach machine £ (k > s) on
its route at a future instant. A, represents the earliest time that job r can
be completed on machine %, assuming that the servicing of all the in-process

jobs on the machines between s and k is done in the order of FIFO. Determin-

(1]
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ing \;; requires prior knowledge of R;. Therefore, the determination of R
is prerequisite for calculating A, ;. Figure 3.2(b) illustrates how R appears
after the third stage in Example 3-1. Figure 3.3 (a) displays A4 if x is job
1 and Figure 3.3 (b) shows the situation in the event that job 5 is the one

chosen for dispatching on machine 1.

Minimum cost for processing the remaining jobs on machine k.

If job r is selected for dispatching, the earliest time that the set of remain-
ing jobs (excluding job r) can start on machine k is at A, x. (See Figures 3.3
(a) and (b).) The remaining jobs can be sequenced in a manner which opti-
mizes the performance measure (i.e. cost minimization) strictly on machine &
alone. Thus the cost calculated is a lower bound because all the jobs in €
(with the exception of job r) are assumed to be available immediately (i.e.
their ready times are ignored). This component of SC, is a single machine
sequencing problem. The objective is to optimally sequence the jobs in €.
given that job r is first in the sequence. The core sequence for machine & is a

term that defines a sequence of jobs in €, starting at A\, x and excluding job r.

3.2.2.1 Calculation of machine ready time (R;)

The machine ready time, Ry, at a given instant for each machine k in the cell

is calculated by using Algorithm S-1 and the known current status of all the cell

machines and buffers. This algorithm is a subroutine that is called by the main

algorithm whenever information concerning the future availability of the machines
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Figure 3.3: Computing A;x for (a) £ =4 and (b) £ = 5 from Example 3-1.
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is required. Algorithm S-1 merely simulates the evolution of the in-process flow in
the cell up to a point that allows the determination of when, at the earliest, each
machine will be able to accommodate a newly dispatched part. This simulation
merely tracks the event instances leading to this point. An event occurs whenever
a machine completes its current job and becomes available for the next. Algorithm

S-1 is described next.

Algorithm S-1

Let
t = time.
s = machine where dispatching is required.
k= machine number k =1.2+++,m.
U, = set of jobs lined up at the buffer for machine k.
a, = job currently in-process at machine k.
up = time taken to complete current operation on machine £.
n = most recently dispatched job in the cell.
¢ = triplet (a.,b.c) that describes an event. where

a = time of the event’s occurrence.
b = job involved in the event.
¢ = machine where the event occurs.

E = set of the active triplets having the form o¢.



Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Initialization.
E =40.
R.=0VEk.

For all k. if ax # 0. then ¢ = (u,, . ek, k) is appended to E.

Identification of Event.

If E = 0. then continue to Step 6.

Otherwise determine ¢ € E which has the earliest event occurrence
amongst the triplets current in £. Let o* be the time of this occur-

rence. m* be the machine concerned. and j* be the job for this event.

Job Transfer to Next Machine.
If m* is not the last machine in the route for job j*. remove j* from

am- and add it to ¥, where & is the next machine in the route of j*.

If ax = 0. then a; = j* and ¥, = 0.

Loading Current Machine.
Remove ¢ = (¢*.j*.m") from E.

If m* = n, then R,,- = t.

Updating Event List.

If ¥pm- #0, then

a,- = next job waiting in line at the buffer for machine m*; and
Uq, . = processing time for job a,,- on machine m".

Add ¢ = (6" + u,,,...am-,m") to E.

Return to Step 2.



Step 6. Termination.

Return values calculated for Rx, £ = 1.2..--,m to the calling Algo-

rithm.

Stop.

Algorithm S-1 is iterative. An iteration starts with the completion of a job on
one of the machines (step 2), and covers the transfer of this job to its next destina-
tion (step 3). the loading of the now vacant machine with the next part in its buffer

(step 4). and ends with the updating of the cell's status (step 3).

Example 3-2

To demonstrate the application of Algorithm S-1. the machine ready times (Ry)
are calculated at the beginning of stage 4 for Example 3-1. The instantaneous sit-
uation. with machine 1 waiting to be loaded. is illustrated in the Gantt chart of
Figure 3.2 (b). Step 1 initializes the variables to reflect the current status of the cell
at instant £{=0. At the start of stage 4. jobs 3. 2 and 1 are in-process on machines 2.
3 and 4 respectively, and machine 1 is available for loading. Thus. a; = 0: a; = 3:
az = 2; and a4 =1. The times remaining to complete the current jobs on machines
2, 3 and 4 are 10, 16 and 16 units, respectively, so that u, = 0, us = 10. u3 = 16
and uy = 16. R, through R, are initialized to zero, and ¥, to ¥, are empty because
there are no jobs waiting in the intermediate buffers. The events list, E. at time
t=0 is {(10,3.2),(16,2,3),(16,1.4)}. The job dispatched in the previous stage, 7, is
job 3 (i.e. n = 3).

60



Iteration 1

Job 3 is completed on machine 2 at time t=10. Then it is unloaded and moved to
the buffer for machine 3. As job 3 is the job identified by n, its completion signals
that the machine ready time for machine 2 is equal to t . Therefore R, = 10. E' is

now updated and appears as {(16,2,3).(16,1.4)}.

Iteration 2

E shows that job 2 on machine 3 and job 1 on machine 4 are completed simulta-
neously. This tie is settled arbitrarily, and job 2 is unloaded from machine 3 and
moved to the buffer for machine 4. Job 3. waiting in the buffer. is loaded next on

machine 3. £ now becomes {(16.1.4).(30.3.3)}.

Iteration 3

Job 1 is completed at time t=16 and it is unloaded from machine 4. Job 2 is loaded

next on machine 4. and E is now {(30.3.3).(35.2.4)}.

Iteration 4

Job 3 is completed on machine 3 at time ¢=30. It is unloaded and moved to the
buffer for machine 4. Rj3 equals 30 because the job just unloaded was the job n. E
is now {(35.2.4)}.

Iteration 5

Job 2 is completed and unloaded from machine 4 at time ¢ =35. Job 3, waiting in

the buffer for machine 4, is then loaded. E is {(69,3.4)}.
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Iteration 6

Job 3 is completed and unloaded from machine 4 at time t=69. Therefore. R, is

equal to 69 (n = 3). E = 0 now, and the Algorithm S-1 terminates at this point.

Algorithm S-1 returns the following machine ready times for Example 3-1.

R, =0: Ry=10: R; =30;: and Ry = 69.

These results can be verified with reference to Fig. 3.2(b).

3.2.2.2 Calculation of \;,

The earliest time that the dispatch candidate (job r) can be completed on ma-
chine k. A; ., depends on whether or not machine k belongs to the set of remaining
machines that will be visited by job xr (3;). If machine k is visited by job r (k € 3;).
then A is influenced directly by the earliest finishing times for job r on the preced-
ing machines on the route of job z. If job z does not visit machine k£ (k ¢ 3;). then
Az, does not theoretically exist. Nevertheless, the processing of job r on machines
preceding k in the flowshop indirectly influences the earliest completion times for
other jobs that share some machines with job x and that do visit machine k. Con-
sequently. an artificial job is created for use in determining a value for A;x in the

case where machine & is not visited by job .



Case I : job r visits machine & ( k£ € 3;)

An example of such a situation would occur in the Type III configuration de-
picted in Figure 3.1. Supposing that job r’s route is 3; = {1,2,4}, then \;x would
be calculated when & is 1. 2, or 4 under this case. Here. job r can start on machine &
if and only if this machine is available, and the operation for job r on the preceding

machine in job r’s route is completed, as illustrated in Figure 3.4.

With the exception of the pure flowshop (Tvpe I) configuration, a job need not
always go next to the machine having the immediately following index number.
Therefore. the index p; identifies the index number of machine & in the set 3;.

Thus machine & will be the pf* machine in the remainder of the route for job ..

He = afglgjsn_,r (‘ji‘ = k) (32)

To illustrate. if 3, = {1.2.4}, then Equation (3.2) gives u;=1: u»=2: and py=3:

3 does not exist (because 3 ¢ J3.).

Referring to Figure 3.4, it is seen that A;x is equal to the maximum of the
earliest starting time on machine k& (Rx) and the earliest finishing time for job z on
the machine preceding & on the route of job z (3#¢~!), plus the processing time for

job r on machine k. Thus, A;x can be calculated by :

/\::,i: = rna.x{Rk, /\I’ﬂ:k—l} + Dz.k: ke (3.3)

0 __
Az, 8; = 0.
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Figure 3.4: Az« when k£ € 3;.

Case II : job r does not visit machine k ( k£ € 3;)

Consider the same example as that used in Case [. Here A, when k£ = 3. would
fall under a Case II situation because job r’'s route does not include machine 3.
Application of Equation (3.3) in this instance would leave A equal to Rg. In
reality, however. the selection of job r at machine s when k& € 3; implies that other
dispatching candidates that do pass through machine & will be delayed in reaching
k. the more so as they share preceding machines with job r. Consequently, allowing
Azx = Ry here would result in a substantial underestimation of the sequence cost
in machine &. This would cause machine & to gain an unwarranted weight in the
dispatching decisions. To find a closer estimate of A; . an ‘artificial’ job is created
and used as a 'dummy’ for job z. The processing time on machine & for this artificial

job is taken simply as the average of the processing times of all the jobs in € that
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also visit machine s. As job z precedes the artificial job in all machines in 3, between
machine s and machine j, a set of A_ 3L for s < j < k would exist, as shown in Figure

3.5. The machine having the maximum A_ 4 is identified by :

l(z) = arg Srgjazi(Ar,Si)‘ (3.4)

When {(z) is found, then A;; may be estimated by adding the duration of the

artificial job on machine {(z) to A; i) as follows:

1 .
’\z.k = ma‘x{Rka /\z.l(r)} + ';— Z Dil(z)- k ¢ 31: (30)

D EQ,

pl-B.' (;p“')/ Mo, |

Rs A'-\'-Bl

DO [ Pew [ (FPe)/ 7,

Rﬂﬁ }‘-.r.n,

R !

Figure 3.5: A;x when k ¢ 3;.

Equation (3.5) is similar to Equation (3.3) except that machine {(z) and the artificial

job’s processing time are considered rather than machine 3#*~! and the processing
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time of job r respectively. Equations (3.3) and (3.3) can be combined into one

general equation to determine A, as :

\ max{Rg, A jwe-v} + Prk if ke 3, 6)
I‘k = o - .
max{ Ry, Azyz)} + # Yie, Pidz) k&3
k
Jg ;\I.g = U

Equation (3.6) allows the computation of A;x, in general, for all the configurations

considered in Figure 3.1.

Example 3-3

The following example illustrates how A, is found from Equation (3.6) in stage
4 of the problem described in Example 3-1. Equation (3.6) indicates that Az,
is calculated recursively. This means that. to find \y.. values of Ay;. and Ayp
must be available beforehand. Note that the ready times for the four machines
(Ry=0.R,=10.R3=30.R4=69) have been calculated already in Example 3-2, and
that the route for job r =4 is 3, = {1.2,3.4}. Hence. by applying Equation (3.3).

we have \yg = 0.

To find Ay, Equation (3.2) is used to find g, :

By = aTngjg(.B{ =1)=>m=L

Applying Equation (3.6), and noting that 39=0;

A1 = max{Ry, Ao} + pa1 = 33.
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To find A2, from Equation (3.2)

pr = argicica(3 =2) > p=2.

From Equation (3.6), and noting that 3}{=

\.,; = ma.\:{Rg, .'\.,;‘;} = 51.

- nDen
20

This result may be verified by using the Gantt chart presented in Figure 3.3 (a).

3.2.2.3 Determining the Core Sequence for Machine &

Once A, is known. the jobs remaining in machine k's workload (£2) can be

sequenced as a single machine problem starting at time Ay x . Thus A; is the instant

in time after which the assumption of single machine sequencing holds. The order

in which the jobs in Q are sequenced influences the performance measure when it is

applied to machine k alone. A sequence’s effectiveness in meeting the performance

measure may be expressed as a cost function in the form of :

fey(S) =min Y [(Azx + CilS
1€80,
1#T
R if f>0
where 6(f) =
if f<0
and k=1,2,---,m; y=1,2,.--

)hi + (5(/\1_;; + C,(S) — A,‘_k)t,‘] (3?)

yr, -

s



There is a sequence (S*) of jobs ¢ in Q; that will minimize fi,(S) in Equation
(3.7). This sequence is the desired one because it will reflect, by minimizing fi ,(S),

machine k£’s best ability to satisfy the performance measure. Thus,

frg(S) = min f,(S). (3.8)

The last component of SCy, is derived, therefore. after finding an optimal solu-
tion for the core sequence (i.e fx,(S") ). The difficulty of solving this single machine
problem depends on the performance measure that is in force. When minimizing
the mean flowtime, for instance, SPT sequencing of the jobs in the core will produce
the optimal solution (and. hence. the lowest cost for SC%,). The optimal solution
for other performance measures cannot always be obtained by simple sorting. and
implicit enumeration (i.e. mathematical programming) may be required. An ex-
ample of such a case is minimizing the mean tardiness. The core sequence may be

optimized for this particular objective by using dynamic programming.

Finding a core sequence that minimizes the mean tardiness on machine & requires
due dates for job completions on machine k. If a job’s final due date, d;, is used,
there will exist an increased possibility of machine indifference in the core sequence
on account of too much slack in the due dates. This is because d; is based on the
job passing through multiple machines in the cell, and not just one. A remedy is
to apply operation-based due dates. The operation due date is the time by which
the processing of job ¢ on machine £ must be completed. There are several methods

for assigning operation due dates. The one adopted here uses the iatest time that
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the processing of job i can be completed on machine k£ without contributing to the

tardiness in completing job j. The operation due dates are calculated as :

A — Di.(k+ k=12---.m
Az,k={ Lk+1) — Pi(k+1) (3.9)

di k=m.

3.2.2.4 Dynamic Programming Formulation

The performance measure described by Equation (3.7) is a function of the com-
pletion times of the jobs. A sequence that minimizes function (3.7) may be found
by using dynamic programming (DP). The DP method used here is based on [63].

and it is described next.

Let Q; = A;x + C;. Then function (3.7) can be rewritten as :

min Z = igi(Q,-) (3.10)

=1

where

9:(Qi) = ti(Qi - Aix) + hiQ, if Qi > Ay
= hiQ; if @ < Ay
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Suppose

K = set of all jobs to be scheduled.
J = set of all the unscheduled jobs in K.

G(J) = minimum cost for the jobs in J given that (A" — J) jobs have been scheduled.

The recursive equation used in this dynamic programming formulation is :
G(J) = min {g:(Q:) + G(J - j)] (3.11)

where G(0)=0. jelJ.

The solution from the dynamic program results in a set of jobs that is ordered

in the sequence that minimizes the mean tardiness.

Having examined the three components of the sequencing cost and the details of
their calculations, it is now possible to describe the equation that is used in calcu-

lating the sequence costs.

3.2.2.5 Calculating SCy,

SCy, the cost of an optimal sequence on machine k. is calculated under the
condition that a specific job, z € T,, is the first in that sequence. This cost is
weighted to reflect the global importance of the machine in the cell. The weighted
values of SCy, are computed by multiplying the sequence costs for each machine

k by a factor, Wy. There are several ways to quantify the ‘importance’ (W}) of
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machine k. The one used here is based on the instantaneously remaining workload
at each machine. The higher is the remaining work on one machine, when compared
to that for another machine, the greater is its influence in the dispatching decision.

The following equation describes how the weights are defined for each machine:

We = Le+ Y pik+ D pik (3.12)
i€l €,

where L; is the process time of the job currently occupying machine k.

Letting

Woee = max{Wi} k=1,2.---.m. (3.13)

Then the SC matrix is constructed by using :

W . . ‘
— X [heyAr g + 6\ = Apo)tes + fiy (ST (3.14)

Winaz

SCi,

Example 3-4

Reconsider the problem given in Table 3.1 for Example 3-1. SCy; will be calcu-
lated next for stage < in the solution to that problem. Here I'y = {4.5} and Q4=
is {4,53}. (See Figure 3.3 (a).) SC, refers to the sequence cost on machine 2 if
the first job (y=1) in the buffer for machine s is dispatched next. Hence [¥ = T’}
= 4. The set of remaining jobs available for the core sequence is S = {5}. The

optimal solution for the core sequence is trivial because there is only one job in S.
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Hence, S*={5}. Had there been more than one job in S, then §* would have been

a sequence of those jobs that minimizes the mean tardiness.
Noting that '} = 4 and using Equation (3.14) gives:
SCn = =fhydip + (M2 = A2ty + fu ({3})] -
From Equations (3.12) and (3.13):
W7 =33 + 15 = 48;
Wo =10+ 18 + 3 = 31:

W3 =27+ 14+ 21 + 3 = 65:

Wy=2T+19+ 3 +6+1=387.

Wner = max {48.31.65.87}.

From Equation (3.9), the operational due date for job 5 on machine 2 is:

35‘2 =18- (1 + 3) = 14.

A value for f3;(S5*) is needed in calculating SCy,. It is found by using Equations

(3.7) and (3.8) as follows :

fa({3}) = [Ar12 + Cs({8})] x hs + 6(Ar12 + C5({5}) — As52) x ts.
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Since I'} = 4;

fg[({5}) = [1\4;_) + C5({5})] X h.5 + (5(/\4'2 4+ C5({5}) - .”_\5'2) X ts.

Recalling from Example 3-2 that Ay, = 31 for this situation:

fa({3}) = [31 + 3] x 0 + 6(51 + 3 — 14) x 1.0. = 40.

Thus. by using Equation (3.14) to compute SCy;:

SCy = Blhadin +0( X2 — Ai2)ts + fa({3))] -

From Equation (3.9):

Ay =40- (21 + 6) = 13

so that,

SCa =0.36 x [0+ (51 — 13) +40] = 27.79 .

Similar calculations produce f;; = 37: fi» =33: faa = 23; f31 = 38; f32 = 20:

fu1 = 61: and fy, = 36.
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The use of Equation (3.14) results in the following SC matrix for stage 4 of Ex-

ample 3-1:

31.45 |
9.62
26.90
$8.00 |

K
=
(%]
oo

(8]
)
~]
[{e]

SC =

)
=l
[AV]

©
o =
=]
e}

3.2.3 Selection of Job for Dispatching

Once the SC matrix is complete, it becomes possible to evaluate the conse-
quences of various dispatching decisions. In particular. the negative impact on the
machines whose candidate jobs are not selected can be assessed by measuring the
resulting increments in the sequence costs. These increments can be viewed as
penalties. For example. if machine k's candidate is job r. but job &’ is the one that
is dispatched, then the penalty suffered by machine & will be SCyy — SCyy, where

y and y' are the positions in the queue of the jobs numbered r and r’ respectively.

The ‘cooperative’ nature of the above job selection technique results from the
fact that penalties are assigned from the perspective of the machine rather than the
job. In other methods where job dispatching is based on minimum penalty schemes.
such as Gelders and Sambandam [47] or Das et. al. [66], an index is computed in
order to rank each job’s augmentation to a partial schedule. This index is based

on the job's contribution to the performance criterion for the system as a whole.
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In cooperative dispatching, conversely, the main entities are the machines, not the
jobs, and the penalties are a measure of the deviation from the optimal satisfaction
of the performance criterion locally, with respect to each machine. The final job
dispatching decision reflects a resolution of these, usually conflicting, requirements
for local optimization. The conflicts are resolved through a process that involves
nominations of preferred jobs from each of the machines, {ollowed by the sclection

of a winning candidate.

3.2.3.1 Identifying Candidates

The next step is to determine which of the jobs in [y are preferred by each
of the machines involved in the dispatching decision. Every machine. as explained

previously. makes a first and a second choice. D}, and D}/ respectively. as follows:

DL:argmyinSCky k=1.2.---.m. (3.13)
% = arg min SCy, k=12.---.m (3.16)
vED;
and
D, =D, U DY k=1,2,---,m. (3.17)
The set of jobs nominated for dispatch, labeled set G. is
G=DUD,U---Dy k=1,2---,m. (318)



The candidate jobs in set G are referenced by their locations in the buffer for
machine s. If G = {2,4,5}. for example, then the three candidates are the second,

fourth and fifth jobs waiting in line at the buffer for machine s.

3.2.3.2 Determining the Winning Job.

The members of set G owe their priorities to different machines that have con-
flicting interests. The dispatching selection revolves around the need to compromise
between those conflicting nominations. This compromise is done by calculating a
cumulative penalty cost. py. that is incurred when job y € G is selected. This

penalty is calculated from:

m

Py = Z(SCLy -u) Yyed. (3.19)
k=1

where v, the minimum sequence cost for machine %. is

v = myin SCyy k=1.2.---.m (3.20)

The job winning the dispatching competition, designated job y*. is the one producing

the minimum p,. Therefore.

y = arggggpy. (3.21)



The job to be dispatched next is, therefore, the job occupying the y*** position
in queue at the buffer for machine s. This job is identified by ['¥". An example is
employed next to illustrate the procedure of deciding, by means of the SC matrix,

which job, from a set of available jobs, is dispatched next.

Example 3-5

Suppose that. at a certain stage. job numbers 6. 3. 1. 4 and 8 are queued in that
order in the buffer for machine s. Assume the corresponding sequence cost matrix

is:

251.00 307.00 299.00 245.00 251.00 |
82.02 143.07 125.83 8135 81.35
97243 442.14 384.97 337.63 306.37
235.66 45527 149.36 388.54 379.25 |

SC =

The set of available jobs being considered for dispatching is [, = {6.3.1.4.8}.

From Equation (3.20)

vy = 245.00; vy = 81.55; vy = 272.43; and vy = 235.66.



The candidate jobs are identified by using Equations (3.15) through (3.18) :

Dy

I
He
R

h =4 D; =1, and D} = 1.

D{ =1 Dj =1: Dy = 5: and DY = 3.

D, = {4.1}: D, = {41} D; = {1.5}: and D, = {1.53}.
and

G = {145}

Consequently. the candidate jobs for dispatching are the first, fourth and fifth jobs

in the buffer (i.e. job numbers 6. 4 and 8).

Equation (3.19) is employed now to determine the winning candidate. Then.

pr = (SCu — 1) + (SCau — v3) + (SC31 — v3) + (SCyy — vy)
= (251.00 - 245.00) + (82.02 - 81.533) + (272.43 - 272.43) + (235.66 - 235.66)
= 6.47

ps = (245.00 - 245.00) + (81.55 - 81.55) + (337.63 - 272.43) + (388.54 - 235.66)
= 218.08

and

ps = (251.00 - 245.00) + (81.35 - 81.53) + (306.37 - 272.43) + (379.25 - 235.66)
= 183.33 .
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A comparison of p,, py and ps shows that p;, has the least numerical value. Hence
the winning job is the first one in the buffer, which corresponds to job number 6
(because ['! = 6). Therefore, CD dispatching results in job 6 being dispatched next

on machine s.

3.2.4 Cooperative Dispatching Algorithm

Steps in a construction algorithm to implement the cooperative dispatching

model are outlined next.

Step 1.  Initialization.

1.1 2. = 1 if there is a job route from machine & to machine c.

Otherwise, z;. =0fork=1.2.---.mande=1.2.---.m.

1.2 Determine the operation due dates. \. from Equation (3.9) for

all jobs.

1.3 Set CF; = 0 if machine k is constrained to FIFO dispatching
only. Otherwise CF; = 1.

14 E=0. Ry =0fork=1.2.---.m.
1.5 If ['} exists, then append (0.0.k) to £ V k.

1.6 Set t =0.



Step 2.

Event Response.

2.1 If £ is empty, proceed to Step 6.

[SV)
o

Find the ¢ € £ which has the earliest event time. Let s and o
be the machine and job for this event and ¢* be the time of its

occurrence.
2.3 If a =0, put z*= 0 and proceed to Step 3.

2.4 Set t = t*. Subtract ¢t* from all \;; and from all time elements.

o.in €.

The next machine on job a's route is 3#+7!. where py, =

!v
ut

AIg) < <n, (35 = k). Let k' = 34! If &' does not exist. then

Te = t™ and proceed to Step 3.

2.6 If machine k&’ exists and it is free. then job « is loaded on this
machine and the corresponding event’s triplet (o) is added to the
event list. Otherwise. job « is added at the end of the buffer for
machine &'. Mathematically. if (", = 0. then Uy = o and the
event triplet (p,x).a.k’ is appended to §&. Otherwise. « is put at

the end of the set [y .

2.7 If CF, # l.set r* = I'! and proceed to Step 3.
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Step 3. Construction of SC Matrix.

3.1 If ['? does not exist, set r* = '} and proceed to Step 5.

32 8C, =-100for k=1.2,---.m:y=1,2,---,nr,.
ky

3

Determine ®, and set £ = 1.

3.3 If T'Y does not exist, proceed to Step 5.

Determine 3,.
3.4 Calculate Ry V k& € ®, by using sub-algorithm S-1.
3.5 Determine Qi V £k € &,.
3.6 Calculate SCy, V k € ®, by using Equation (3.14).

3.7 Increment r by I and return to step 3.3.
Step 4.  Cooperative Dispatching Decision.
4.1 Derive set G according to Equations (3.17) and (3.18).
4.2 Find p, Vy € G.
4.3 Let z* be the job having the minimum p,.
4.4 Select job ['*" for dispatching.
Step 5.  Updates.

5.1 Load job z* on machine s and remove this job from [.
5.2 Add the event triplet (p;- 4. £*. s) to &.

5.3 Return to Step 2.
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Step 6. Termination

6.1 Calculate the performance measures by using the job completion

times in the set 7.

6.2 Stop.

3.3 Numerical Example
The CD algorithm is used now to find a solution for a problem exemplifying a

Tvpe III configuration. The Type III configuration is selected simply to illustrate

the CD algorithm for a flowshop configuration other than the pure flowshop case.

Example 3-6

Table 3.3 presents the processing times and performance costs for a four-job.
four-machine sequencing problem. The performance criterion is the minimization of
the mean flowtime. A zero processing time for a job on a given machine indicates
that the job’s route does not include that particular machine. Dispatching occurs
for this problem only at machine 1, where the jobs are loaded into the cell. It is
also given that the jobs in the intermediate buffers for machines 2, 3, and 4 are
processed on a first-come, first-served (FIFO) basis. Thus, all the machines except

machine 1 are constrained to a FIFO policy for servicing queues.

The solution found by CD for the problem of Table 3.3 is described next in a

stage by stage fashion. The number of stages is three because only three dispatching
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Table 3.3: Processing times for Example 3-6.

MACHINE
JOB|1 2 3 4 |h &
1 (27 0 9 3131 O
2 116 18 0 71 O
3 (14 0 4 8|1 0
4 133 32 0 28|11 O

decisions are required at machine 1 in this problem. After the third stage only one

job remains to be scheduled, and no selection decision is needed for that.

Initialization
The initialization step for this problem first defines the configuration. For the

Type III configuration, z5, = ;3 = 213 = 24 = 231 = 1. As machines 2. 3 and 4

(R

are constrained to FIFO processing, then CF, = CF; = CFy = 0. and CF,=1. Op-
erational due dates are not initialized because the due dates play no role when the
performance criterion is the minimization of the mean flowtime. The starting status
in the cell is that jobs 1, 2, 3 and 4 are waiting, in a random order, for processing
on machine 1. The randomized order used here gives I, = {2,1,4,3}. The buffers
for the other machines are empty so that [y = '3 = Iy = 0. The initial event list

is € = {(0,0.1)} and the current time is ¢ = 0.
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Table 3.4: Stage 1 calculations for Example 3-6.

s (R,R:yRy,R) y k T, 3, Q% oz Ak Wi SCh
1 (0,0,0,0) 1 1 {2143} {124} {2143} 2 16 1.00 193.00
2 {24} 2 34 056 55.36
3 {13} 2 36 015 1286
1 (2413} 2 41 082 226.11
1 (0.0,0.0) 2 1 {2143} {134} {2143} 1 27 1.00 215.00
2 {24} 1 51 036 94.45
3 {13} 1 36 015 10.98
1 {2413} 1 67 082 273.80
1 (0.0.0.0) 3 1 {2143} {124} {2143} + 33 1.00 233.00
2 {24} 4 65 036 8222
3 {13} 4 33 015 17.77
1 {2413} 4 93 082 361.78
1 (0.0.0.0) 41 {2143} {134} {2143} 3 14 1.00 191.00
2 {24} 3 38 036 80.00
3 {13} 3 18 015 653
1 {24.1,3} 3 26 082 17413

Stage 1

Machine 1 is available and a job from [, = {2.1,4,3} is to be selected at time

t* = 0. The set of machines visited by the jobs in ') is ®; = {1,2,3,4}. Table 3.4

summarizes the current status of the variables that are used in Equation (3.14) to

calculate the SC matrix shown in Table 3.5 for stage 1.

From the SC matrix at stage 1, G is found from step 4.1 to be {4,1,2}. Step 4.2
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Table 3.5: SC matrix at stage 1.

k 2 1 4 3
1]193.00 215.00 233.00 191.00

2] 53.56 94.45 8222  80.0
3| 12.86 1098 17.77 6.5
41226.11 273.80 361.78 174.13

gives p, = { 24.44, 60.16. 166.86 }. and r* = 4 is determined in step 4.3. Thus, the
fourth job waiting in the buffer for machine 1 (['}) is selected. This is job number
3. Stage | ends. therefore. with the dispatch of job number 3 on machine 1. After

that. [[; becomes {1.2.4} and the triplet (14.3.1) is added to §. £ is now {(14.3.1)}.

Stage 2

Job 3 is finished on machine 1 at time £* = 14. triggering stage 2. The triplet
(14.3.1) is now removed from &, and ¢ is reset to zero. All due dates and time data in
€ are reduced by 14 time units. The next machine on the route for job 3 is machine
3. Machine 3 is currently free, so job 3 is unloaded from machine 1 and loaded
directly on machine 3. Triplet (4,3,3), which corresponds to the event marking the
scheduled completion of job 3 on machine 3. is added to €. Machine 1 is to be
loaded next by a job from Iy = {1,2,4}. Table 3.6 shows the status at stage 2 for
the variables that are used in finding the SC matrix, bearing in mind that ®; is the

set {1,2,3.4}. The SC matrix for stage 2 is presented in Table 3.7.



Table 3.6: Stage 2 calculations for Example 3-6.

s (Ri,Rs,Re.R) y k T, 3, % T Ak Wi SCh
1 (00412) 1 1 {214} {124} {214} 2 16 100 135.00
2 (24} 2 34 066 65.79
3 {1} 2 43 017 8.89
4 {241} 2 41 097 204.48
1 (0.0412) 2 1 {214} {134} {214} 1 27 100 146.00
2 {24} 1 51 066 111.84
3 {tt 1 36 017 6.16
1 {241} 1 67 097 2366
1 (0.0.412) 3 1 {214} {124} {214} 4 33 1.00 138.00
2 {24} 4 65 066 97.37
3 {11 4 60 0.7 1180
4 (2.1} 4 93 097 31547

171.22}. The smallest element in py is the first one, mearing that the first element
in G is selected. This selection gives y*=1. and the selected job is consequently
['t=2. Hence, job number 2 is dispatched to machine 1 during stage 2 of the CD

algorithm. [, is now {1,4}, and the triplet (16.2,1) is added to §. & is consequentiy

{(4.3.3),(16,2,1)}.

removed from £ and all the remaining triplets in £ are updated by subtracting t* =4

time units from the event occurrence times. Thus, £ at this point is {(12,2,1)}. The
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G is found from the SC matrix at stage 2 to be {1.2.3}. and p, is {2.74. 89.18.

At time t* = 4, job number 3 is finished on machine 3. The triplet (4.3,3) is



Table 3.7: SC matrix at stage 2.

I

k 2 1 4
1]135.00 146.00 158.00
63.79 111.84 97.37
8.89 6.16 11.80

204.48 236.60 315.47

[{V]

O V]

next machine on the route of job 3 is machine 1. Job 3 is unloaded off machine
3 and loaded directly on machine 4 (which is currently free). The triplet (8.3.4).
which represents the completion time for job 3 on machine 4. is appended to &, so

that £ is now {(8.3.4).(12.2.1)}.

At time ¢* = 8. job 3 is completed on machine 4 and unloaded out of the cell.
The triplet for the job just completed is removed from &£, and the remaining triplets

are updated by subtracting ¢* = 8 units so that £ is now {(4.2.1)}.

Stage 3

At time ¢* = 4, job number 2 is finished on machine 1. It is taken then from
machine 1 and loaded directly on machine 2, which is the next machine on the route
of job 2. The corresponding triplet (18,2.2) is put in £ and it replaces the expired
triplet (4,2,1). Machine 1 is now available, and this event marks the start of stage
3, where a job from the two remaining jobs ('} = {1,4}) is selected. Current values
for the variables used in the computation of the SC matrix for stage 3 are given in

Table 3.8, knowing that @, is {1,2,3,4}. The SC matrix is shown in Table 3.9.
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Table 3.8: Stage 3 calculations for Example 3-6.

s (R, Ry, Ra,Ry) y kK T, 3z U A Wi SCh
1 (018,025 1 1 {L4} {134} {14} 1 27 091 79.09
2 {44 1 60 076 69.70
3 {1} 1t 36 014 491
1 {41} 1 67 L00 162.00
1 (0.18,025) 2 1 {14} {124} {14} 4 33 091 8435
2 {44 1 65 076 19.24
3 {1} 1 60 014 9.4l
1 {41} 4 93 100 217.00

The SC matrix of Table 3.9 is resolved in step 4 of the CD algorithm to give
G= {1.2} and p, = {0.44. 1.41}. The selected job is the one indicated by the first
element in p, (because it is numerically the least) and y* = 1. From step 4.4. job

[l =1 is selected. Thus. job number 1 is dispatched to machine 1. The triplet

(27.1,1) is put in € so that £ is {(18.2.2).(27.1,1)} at the end of stage 3.

Table 3.9: SC matrix stage 3.

I
k 1 4

1} 79.09 84.55
2| 69.70 49.24
3| 491 9.41
4 | 162.00 217.60
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Figure 3.6: Gantt chart showing final schedule for the example problem.

CD dispatching has no further role to play in the solution because no more
decisions are required. The algorithm continues by cveling between step 2 and step 3
as the remaining jobs are processed in FIFO order throughout the cell. The program
terminates when all the jobs have exited the cell. The final solution provided by the
CD algorithm in this example is to dispatch jobs at machine 1 in the sequence of
jobs 3. 2. 1 and 4. The Gantt chart for this solution. which gives a mean flowtime

of 82 units. is given in Figure 3.6.
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3.4 Performance Evaluation

The performance of the CD algorithm is evaluated in this section in comparison
with other procedures taken from the literature. The problems tested are strictly
static sequencing problems. A static problem implies that the initial conditions
correspond to. 1) no parts in-process in the cell: and 2) all the jobs are availabie
and ready at the start of the scheduling period. Static cases provide the advan-
tage of enabling scheduling to be performed off-line. Off-line scheduling allows a
variety of methods to be used. including simulation. in order to search numerous
sequences and to choose the best one. With on-line scheduling however. once a
part is dispatched there is no chance to reverse that decision. The CD approach
is a dispatching mechanism that is basically on-line oriented. [t can also be used.

nevertheless. as a single-pass procedure for the off-line. static sequencing of jobs.

3.4.1 Test Problems

The CD approach is evaluated by using sets of randomly generated test prob-
lems. The test problems are generated by using the same method as that described
in Kim {46]. Each set contains 110 problems. all having a common number of jobs.
A program written in the C computer language [75] and designed to simulate the
activities in a FMC under the control of different dispatching rules is used in this
comparative evaluation of CD. The simulation program processes an input data set
according to the selected dispatching rule, and it calculates values for the corre-
sponding performance measures. The abilities of CD and other dispatching rules to

satisfy the given performance criteria are compared by using this program.
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The computer simulations that are run in the evaluation of CD’s performance
cover cases involving the three routing configurations of Figure 3.1 and three different
performance criteria. The evaluation is performed by comparing CD’s performance
with that of the dispatching rules that have been demonstrated in previous publi-
cations to be the most effective for the performance criterion under consideration.
The results arc expressed, whenever conveniently possible. in terms of the deviation
from the optimal solutions. The optimal solution to each problem is found from an

exhaustive enumeration of all the possible solutions.

Calculation of the optimal solutions, however. becomes prohibitive in problems
with a large number of jobs due to the combinatorial explosion arising from complete
enumeration. [t is more convenient. then. to evaluate the CD algorithm relative to
other dispatching procedures. The comparison is performed by taking as a reference
a dispatching rule that is known to give acceptable results for the performance cri-
terion under consideration, and then measuring CD’s results against this reference.
The measure that is adopted is called the performance ratio (PR). and it is defined

by:

PR=m./m, (3.22)
where m, and m, are the results for the method under evaluation (i.e. CD) and
the reference method respectively. A larger PR value above 1.0 indicates that the

method being evaluated performs increasingly better than the reference method. A

PR value near 1.0 signifies near-equivalent performance.

The tests are conducted for all three configurations shown in Figure 3.1. The

Type I configuration is limited to three machines only. This is to provide a uni-
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formity in total workload with the other two configurations. where the part routes
pass strictly through three of the four machines that are available in each of those

configurations.

3.4.2 Minimizing the Mean Flowtime

The performance of CD in minimizing the mean flowtime is evaluated by compar-
ing its results with those obtained from using the Least Work Remaining (LWKR)
dispatching rule. The LWKR rule is chosen for this purpose because it has been
shown to be the better of several dispatching rules considered for flowshop configu-

rations [46].

Figure 3.7 compares CD and LWKR in terms of percentage deviation from the
optima. The test data includes six sets of problems. each set covering a problem
size from 5 and upto 10 jobs. Figure 3.7 shows that the CD algorithm’s results
are within 5% of the optima. Furthermore. CD’s performance appears to be quite
consistent in all three configurations as the number of jobs grows to ten. On the
other hand. the LWKR rule gives results generally deviating upwards of 5% from
the optimal. Also. the quality of the results from the LWKR shows a pronounced

deterioration with more jobs.

The performance of CD for problems having upto 50 jobs is presented in Figure
3.8. Figure 3.8 uses a performance ratio (PR) with LWKR as the reference method.
The results indicate that, as the number of jobs grows beyond 15, the CD algorithm

outperforms the LWKR dispatching rule by about 5 to 10%. The CD improves
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Figure 3.7: Minimizing the mean flowtime with CD and LWKR.

steadily with an increasing number of jobs upto about 25. but levels off with a
coansistent difference from the LWKR data as the number of jobs increases further.
This observation holds for all three configurations. although the CD dispatching still
appears at its best for Type [ configurations. The results presented in Figures 3.7

and 3.8 generally demonstrate the superiority of CD dispatching.

Another indication of how well a particular method outperforms other methods
can be found in the number of times the given method produces the best result in
identical test situations. This information is presented in Table 3.10 using, as an
example, the case of a pure flowshop (Type I configuration). The CD algorithm is
compared in this table with the LWKR rule and a slightly modified NEH algorithm

[34]. The NEH algorithm was developed originally to minimize the makespan in
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Figure 3.8: Minimizing the mean flowtime in large problems.

pure Howshops. Consequently it can be used only for a Type I configuration. It has
been selected here because of the good results reported for it in [35] and [46]. The
original algorithm is modified in order that it may serve to minimize the mean flow-
time. The change is to simply use initial sequences of jobs that are sorted in SPT
order. rather than the EDD order. The remaining comparisons that are presented
in Table 3.10 for the Type II and III configurations are between CD and LWKR dis-
patching only. Of course, the modified NEH-based method does not apply to these
two configurations. The CD approach is seen from Table 3.10 to be comfortably

better than the LWKR and SPT dispatching rules for all three configurations.
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Table 3.10: Number of times best solution found.

CONFIGURATION
Type I Type I1 Type III

# Jobs || CD LWKR NEH | CD LWKR || CD LWKR SPT
5 64 32 100 || 85 79 73 34 16
8 31 3 78 82 3l T 12 24
10 38 1 79 9 34 82 9 20
12 36 0 T 83 30 95 0 16
15 34 0 T 91 20 93 3 14
20 16 0 66 || 104 6 102 4 4
25 28 0 82 | 107 3 105 2 3
30 39 0 1 | 108 2 100 ! 6
35 35 0 ™ | 109 1 103 6 1
40 34 0 6 | 109 l 107 2 l
45 24 0 86 || 109 1 104 6 0
30 26 0 84 109 1 102 8 0

3.4.3 Minimizing the Mean Tardiness

Figure 3.9 presents the results when the CD algorithm is used to minimize the
mean tardiness. In this instance, the Modified Due Date dispatching rule (MDD)
is used for comparison because its effectiveness has been demonstrated in flowshop
situations [46]. The comparison that is given in Figure 3.9 generally shows the same
trends as those exhibited in Figure 3.7. except at a higher 6 to 8 % deviation from
optimal. Nevertheless, the superiority of the CD approach to MDD dispatching is

clearly visible.
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Figure 3.9: Minimizing the mean tardiness with CD and MDD.

When minimizing the mean tardiness. CD uses dynamic programming to opti-
mize the core sequences. This is acceptable when the number of jobs is not more
than about 15 to 20. If a greater number is involved. then the computational re-
quirements of finding optimal core sequences become overwhelming. Obviously.
near-optimal solutions that can be generated quickly for large problems can be sub-
stituted for optimized core sequences. The effect of non-optimization in the core
sequence is discussed later in this chapter. The performance of CD in minimizing
the mean tardiness in flowshops involving a large (up to 50) number of jobs will
be addressed in the next chapter. after a new method for finding near-optimal core

sequences is presented.
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3.4.4 Minimizing the Number of Tardy Jobs

In order to further test CD’s flexibility of application for different criteria, its
performance in minimizing the number of tardy jobs in flowshops is evaluated. This
time, CD finds the optimal core sequences by employing Hodgson's form (see Baker
[8]) of the algorithm developed by Moore [67] to minimize the number of tardy jobs
in a single machine. The behavior of the more common dispatching rules in mini-
mizing the number of tardy jobs in flowshops and jobshops is not well documented.
Consequently, a series of tests was undertaken to compare the EDD. SPT. MDD
and LWKR rules when applied to flowshops having any of three configurations con-
sidered in this thesis. The tests revealed a slight advantage in favor of using the
SPT rule when the number of jobs is less than about twenty. When the number of
jobs is greater than that. the MDD rule becomes attractive. Therefore. it is decided
to evaluate CD in comparison to the SPT rule when comparing problems with small

job sizes. and to the MDD rule for large sized problems.

Figure 3.10 shows the results obtained from using CD for minimizing the number
of tardy jobs. expressed as percentage deviation from the optima. The results that
are obtained by using the SPT rule are also included in Figure 3.10 for comparison.
The indications from Figure 3.10 are that, even though CD’s performance is signifi-
cantly sub-optimal. it is nonetheless appears somewhat better than that of the SPT

rule.

CD dispatching becomes substantially superior as the number of jobs increases.
This is evident from Figure 3.11, where CD’s performance is compared with the

MDD rule in terms of PR. MDD is the reference method. It may be concluded,
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Figure 3.10: Minimizing the number of tardy jobs.
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Figure 3.11: Minimizing the number of tardy jobs in large problems.

therefore. that CD is more powerful than traditional dispatching rules for minimiz-

ing the number of tardy jobs in flowshops.

3.4.5 Non-FIFO Buffers

Thus far. the evaluation of the CD algorithm has concentrated on the aspect of
loading the FMC. The ability to select from the jobs waiting in a queue was assumed
to take place ouly at the buffers holding jobs not yet started. The CD approach
can also be applied, like other traditional dispatching rules. to any machine in the
cell where a selection of parts from a buffer, including in-process parts. is possible.
The types of buffers in the FMC can be classified into two distinct types: FIFO

and non-FIFO (or unconstrained) buffers. In FIFO buffers, the parts are prioritized
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Figure 3.12: CD performance for mean flowtime and non-FIFO bulffers.

on a first-come. first-served basis only. In non-FIFO buffers. on the other hand.
there is a possibility to select any one of the parts currently residing in the buffer
for immediate processing. The CD algorithm is tested next in cases where all the
buffers in the cell are unconstrained. The comparisons are performed. as previously.

against the LWKR and MDD dispatching rules.

Figure 3.12 displays the results of minimizing the mean flowtime when all the
buffers are non-FIFO. They are consistent with those found in Figure 3.8. albeit
with lower PR values. The results of Figures 3.8 and 3.12 demonstrate the flexibil-
ity of CD by showing that it performs consistently, regardless of the part selection

constraints in the intermediate buffers.
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Figure 3.13: CD performance for number of tardy johs and non-FIFO buffers.

Similar results are obtained when minimizing the number of tardy jobs in flow-
shops having unconstrained intermediate buffers throughout. Figure 3.13 shows
that CD maintains a significant. although slightly decreased. superiority over the
MDD rule when all the buffers in the three configurations tested are not restricted

to FIFO policies.

3.4.6 Effect of Routing

The results obtained thus far appear to confirm that the traditional dispatching
rules become generally less effective as the routings in the flowshop assume charac-
teristics closer to the pure flowshop. This observation is reflected in the results for

the Type I configuration, which is a pure flowshop. In the Type I configuration. CD
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outperforms the other dispatching rules by a margin that is greater than in the other
two configurations, which allow two different job routes. The fact that CD’s relative
performance is better in the pure flowshop is an indication of its ability to respond
to routing limitations in the shop. This feature is an important one because the
status of a cell is changing constantly during processing and. at any instant. certain
routings may predominate. For example, consider the Type I confliguration in the
event when an inordinate number of the jobs have merely one of the two possible
routes (say route M1 - M3 - Md4). This situation resembles the pure flowshop closely.
even though the physical configuration is strictly not a pure flowshop. An effective
scheduling system should be able to adjust to the new conditions. even though they
mav be temporary. Based on the results shown in Figures 3.7 through 3.11. CD
dispatching indeed appears to possess the adaptability needed for accommodating

such dynamic situations as thev may arise.

3.5 Optimization in the Core Sequence

The basic premise used in constructing the SC matrix is that each machine at-
tempts to have its candidates selected for dispatching by minimizing its sequence
costs (SCky). This minimization is achieved through optimally sequencing the jobs
in the core. To investigate the effect of non-optimal sequences in the cores. an ex-
periment is performed that involves CD for minimizing the mean flowtime. This
criterion is selected because the optima can be calculated simply for large sized
problems. In this experiment, LPT and randomized sequencing are used in Equa-
tion (3.7) rather than the (optimal) SPT. LPT is used because it works to maximize

rather than minimize the mean flowtime. This will show the effect when all machines
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jointly perform sub-optimally. The resulting performance of the CD algorithm is
evaluated by using 1100 test problems generated randomly. again using the method
of [51]. Figure 3.14 displays the results, which are expressed as a percentage devi-
ation from the results achieved with optimized core sequencing. The results show
that, with randomized sequencing in the core, the CD performs at about 8 to 10%
worse than with the optimized cores. Interestingly. when LDPT is employved in the
cores. the performance of CD is within only 1% of the results from CD with opti-
mized cores. Figure 3.14 show that the impact of a non-optimized core is lessened
if the sub-optimal method is applied uniformly to all the core sequences. In other
words, with a ‘level playing field’ in which all the machines are subject to the same
rule, the CD algorithm appears to be not very sensitive to the rule used in the core.
Nevertheless. Figure 3.14 demonstrates that optimized core sequencing provides a
solution that is generally better than the non-optimized one. Although the differ-
ence is small. approximately two out of three test problems in the data sets had a

better solution when the core sequence was optimized.

A similar experiment to determine the impact of optimization in the core se-
quences is done by testing CD. with different core sequence generation methods. to
minimize the number of tardy jobs. The test data that is used is the same data that
gave the results shown in Figure 3.11. The configuration that is used is Type . and

it is selected arbitrarily.

The experiment involves running the CD algorithm for the test data three times.
each time using one of the EDD, SPT and MDD priority rules in place of Hodgson's

algorithm to determine the core sequences. The resulting performance of CD in each
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Figure 3.14: Performance of CD with non-optimal core sequencing

instance is shown in Figure 3.15. The results from CD with Hodgson’s algnrithm

are also shown in Figure 3.15 for comparison.

Figure 3.15 clearly demonstrates that using other than the optimal sequence in
the core can significantly degrade CD’s performance. Of the three priority rules
used in the experiment. the MDD rule was the better one. yet it resulted in about a
17% increase in the total number of tardy jobs. for the same data set, as compared
to when Hodgson's rule is employed. Hence, it may be concluded that optimal se-
quencing in the core can be expected to have a positive impact on CD’s performance.

The significance of that impact may vary. depending on the performance criterion.
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Figure 3.15: Effect of different core sequences on CD's performance.

3.6 Conclusions

Cooperative Dispatching, CD. was introduced in this chapter as a new schedul-
ing procedure that is suitable for FMCs. It is designed to have a high flexibility in
its applications, and computer simulations were performed for the purpose of evalu-
ating this flexibility. The simulations involved a comparison of CD with a number of
other traditional dispatching rules. The comparisons covered three flowshop configu-
rations, and three different performance criteria: 1) minimizing the mean flowtime:
2) minimizing the mean tardiness; and 3) minimizing the number of tardy jobs.
The computer simulations, which involved randomly generated test problems, led

to three main conclusions regarding the performance of CD.
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First, CD exhibited a performance that was consistently better than the alterna-
tive dispatching rules it was compared with in all the three flowshop configurations.
The results indicated a low sensitivity of CD to the differences between the three
configurations. This result reinforces CD’s claims of flexible application in flowshops

having different layvout configurations {or job routings).

Secondly, CD was able to accommodate quite well flowshops where intermediate
buffers were not restricted to a FIFO policy in servicing the waiting jobs. This
was in contrast to the other dispatching rules. whose performance stood to bene-
fit in proportion to the number of intermediate buffers that were not restricted to
FIFO queueing policies. This fact again demonstrates CD’s flexibility under differ-

ent hardware constraints.

Thirdly. CD showed a good ability to meet a number of different performance
criteria. simply by using the appropriate single machine sequencing problem to help
the individual machines collectively reach dispatching decisions. In all the com-
puter simulations. and for all of the performance criteria that were considered. CD
emerged stronger than the best of the other dispatching rules to which it was com-
pared. Together, these three conclusions are a strong indication of CD’s overall
scheduling flexibility. This Hexibility means minimal disruption. particularly the
need for re-writing of software. in the event of reconfiguration or other managerial

changes in the system.

The third conclusion implies that CD is likely to perform well for a given per-

formance criterion, provided that a fast method is available for determining optimal
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solutions in a single machine setting for that criterion. It was already pointed out
that, for some criteria such as minimizing the mean tardiness. optimal solutions may
be difficult to obtain because of the extreme computational requirements when the
number of jobs is large. In order to address such complications. a new method for
sequencing n jobs on a single machine is introduced in the following chapter. This
new method employs artificial neural networks. It is designed to provide fast and
near optimal solutions for generalized performance criteria. The neural networks
work to support the calculations for generating the SC matrix when the perfor-

marnce criteria are NP-hard. like the minimization of the mean tardiness.



Chapter 4

Single Machine Sequencing with Neural Networks

4.1 Introduction

chapter is a single machine sequencing problem. As noted in Chapter 3. this problem
is NP-hard for some performance criteria. and most of the good search heuristics
or optimization algorithms in those cases consume excessive computational time.
The heuristics that are fast are generally designed for specific criteria and theyv are
not usually portable to other performance criteria. In this chapter. an alternative
approach that is based on artificial neural networks is presented. The chotce of
neural networks is motivated by two factors: speed and flexibility. Computational
speed facilitates the development of algorithms for other tyvpes of problems where
a large number of sub-problems having the form of a single machine sequencing
problem need to be solved quickly. The CD approach described in the preceding
chapter is one such example. The second factor is flexibility with respect to the
performance criteria. In reality, the performance criterion may not be a standard
one but. rather. a complex cost function for which no quick and accurate heuristics
are known. In such situations, either a customized algorithm has to be developed
or ‘quick and dirty’ sorting procedures may be employed (Potts and Van Wassen-
hove [51]). Sorting in the order of non-decreasing due dates (the EDD rule) or

non-decreasing processing times (SPT rule) are examples of the latter. Hence. there
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is a need for an approach that quickly produces good sequences when the perfor-
mance criteria are uncommon. but without having to develop a unique algorithm or

heuristic for every individual situation.

The method for solving single machine job sequencing problems that is presented
here is based on artificial neural networks (ANN). It is conceptually simple. An ANN
is used to learn a functional relationship between a set of example. single machine
problems and the corresponding sequences that optimize the given performance cri-
terion. This ‘trained’ neural network is then able to apply the learnt relationship to

new problems through its generalization property.

4.2 Artificial Neural Networks

An artificial neural network is a collection of highly interconnected processing
units that has the ability to learn and store patterns. as well as to generalize when
presented with new patterns. The ‘learnt’ information is stored in the form of nu-
merical values, called weights, that are assigned to the connections between the
processing units of the network. The type of neural network that is used here is
called a ‘feedforward’ network. [t organizes the processing units into multiple layers.
one of which serves as an input layer, and another as the output layer. The rest
of the layers are called 'hidden’ layers. They exist between the input and output
layers. Figure 4.1 illustrates a three-layer feedforward neural network. The units
in the input layer serve as a terminal for receiving the input patterns. These units

are clamped to the values contained in the patterns introduced at the input layer.
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Figure 4.1: A three-layered. feedforward neural network (BPN).

The units in the output layer hold the values resulting from the feedforward com-
putations that are triggered after the network is stimulated by the introduction of
a pattern at the input layer. A neural network is said to ‘recall’ a pattern when it

responds with an output to an input stimulus.

The network shown in Figure 4.1 is trained by using a supervised learning mode.
During supervised learning. the weights of the inter-laver connections between the
units are modified incrementally until the network is deemed to have ‘learnt’ the
relationship between the set of input patterns and the corresponding outputs. The
most commonly used method for modifying these weights is the backpropagation
algorithm of Rumelhart and McClelland [68]. In this algorithm. a pattern is ap-
plied at the input layer, and the stimulus is propagated forward until final outputs
are calculated at the output laver. These outputs are compared with the desired
result for the pattern considered, and the errors are computed. The errors are then

propagated backwards through the network as a feedback to the preceding layvers
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to determine the changes in the connection weights that will minimize these errors.
A series of such input-output training examples is presented repeatedly to the net-
work during the backpropagation algorithm until the total sum of the squares of the
errors is reduced to an acceptable level. At this point, the network is considered
“trained’. Data presented at the input layer of a trained network will result in values
from the output layer that arce consistent with the relationship learnt by the network
from the training examples. A feedforward neural network that is trained by using
the backpropagation algorithm, is often termed a Backpropagation Network (BPN).
The backpropagation algorithm is implemented with the use of a simulation pro-
gram written in the DESIRE/NEUNET matrix language [69]. The design. training
and testing of all the neural networks described in this chapter is done with the use

of this software package.

4.3 A Neural Network for Single Machine Sequencing

The neural network that is proposed for the single machine sequencing problem
has the same architecture as that shown in Figure 4.1. It consists of an input layer of
eleven units. one hidden layer, and an output layer having a single unit. The number
of units in the input and output layers is dictated by the specific representation
adopted for the sequencing problem. In the proposed representation, each of the n
jobs in the problem are described by an 11-tuple vector of continuous values. Each
vector, or pattern, holds information particular to the job it represents as well as to
its relation to the other jobs in the problem. Therefore. the input layver has eleven
input units to accommodate each one of the elements of the input vectors. This

particular choice for representing the problem, whereby the jobs are processed by
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the neural network one job at a time, is dictated to a large degree by the necessity of
avoiding a dependency between the trained network and the number of jobs in the
sequencing problem. Individual presentation of the jobs at the input laver allows
the trained neural network to process sequencing problems without restriction to
the same problem size as that used in the training examples. Each element of the

input vector holds a specific picce of information, detailed as follows:

unit 1 = pi/M, 1.1(a)
unit 2 = d;/My 4.1(b)
unit 3 = SL,/ M, 4.1(c)
unit 4 = h;/10.0 4.1(d)
unit 3 = ¢;/10.0 1.1(e)
unit 6 = p/\M, 1.1(f)
unit 7 = d/My +.1(g)
unit 8 = SL/My 1.1(h)
wnit9 = /2t L1(3)
unit 10 = \/Z%'d-:_dl 1.1(j)

. _ (SL.-SL)* .
unit 11 = 7 1.1(k)

where
pi = processing time for job :.

d; = due date for job ..

SL;= (di — pi)-

M, = longest processing time among the n jobs = max [t,], i€ n.
My = latest due date among the n jobs = max [d;], (€ n.

Mg = largest slack among the n jobs = max [SL;], {€n.
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The input vectors have literal interpretations. Consider, for example. the input
vector given in Table 4.1. This vector represents one of the jobs in a given prob-
lem. Unit 1 shows that the vector in Table 4.1 describes a job that has the longest
processing iime of the jobs to be sequenced. Units 2 and 7, together. indicate 2
much tighter than average due date. That no slack is available for this job can be
gathered from the value of unit 3. On the other hand. unit 9 indicates that the job
will be competing in an environment characterized by a significant variability in the
processing times of the jobs. The holding and tardiness costs are in the ratio of 3:4
for the job represented by the above vector. tardiness being the costlier. During
training. the neural network is taught where a job having these characteristics is

best located in the final sequence for the performance objective that is used.

Table 4.1: Example of an input vector for a job.

unit|1234567891011
value| 100 027 0.00 030 040 045 0.60 032 071 034 0.35

The output unit in the proposed neural network assumes values that are in the
range of 0.1 to 0.9, the magnitude being an indication of where the job represented
at the input layer should lie in the sequence. Low values suggest lead positions in
the sequence; higher values indicate less priority and. hence, positions towards the
end of the sequence. The number of units in the hidden layer is selected by trial
and error during the training phase. Hidden units have the role of identifying the

presence or absence of features in the input data that are relevant to the solution
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of a problem. Those hidden units that consistently assume near zero values, when
recalling patterns, are probably redundant. Therefore, they may be pruned with
little or no loss in the network’s overall performance. The numbers of units in the
input. hidden and output layers respectively are often used to describe a network’s
structure. For example, a network having eleven input units, 10 hidden units and

one output unit is referred to as a 11-10-1 network.

4.3.1 Training Methodology

The neural network is trained by presenting it with a pre-selected set of input-
target patterns. The input training patterns are the 11-tuple vectors. extracted from
a population of n-job. example problems. The target associated with each training
pattern is a value that indicates the position occupied in the optimal sequence by the
job represented by the input pattern. The target value. G,(S). for the job holding

the i** position in the optimal sequence is determined as:

1t
—
-~

Gi(S) =0.1+038 (i i ) , (4.2)

n-1

Equation (4.2) ensures that the n target values are distributed uniformly between
0.1 and 0.9. It is needed to accommodate the form of the sigmoidal activation
function that is employed in the backpropagation learning algorithm [68] and whose
outputs are, in the limit. between 0 and 1. The range 0.1 to 0.9 is used instead so

that the target values assigned near the function'’s limits are theoretically attainable.
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The number of jobs, n, in the example (training) problems has a bearing on
the target value that is ascribed to each input pattern. As the output space ranges
from 0.1 to 0.9, the n target values needed by the n jobs in the problem are spaced
equally in increments of (0.9 — 0.1)/n within that range. Consequently, as n grows,
the target values for jobs in the sequence tend to migrate closer together. This
means that the targets are more accurate in specifying the desired position in the
sequence. The tighter tolerances may make training more difficult but. on the other
hand. the trained network is able to assign the job positions with better precision
in a sequence. Therefore, training patterns should preferably come from example
problems having n as large as possible. This is not always easy to accomplish be-
cause finding optimal solutions for NP-hard example problems is increasingly more
demanding, in terms of computational storage and time requirernents. as n increases.
Hence. a trade-off needs to be made between the size of n for the example problems
and the time and resources that can be afforded for the training phase. Where
optimal solutions are obtained by means of complete enumeration. 8-job problems
are chosen here as the source for the training patterns. This is because complete
enumeration for problems involving more than 8 jobs requires significantly more
computer time due to the number of individual problems that need to be solved to
generate the training set. In instances where optimal solutions can be found by dy-
namic programming (Held and Karp [63]). a procedure which is more efficient than
complete enumeration. the training patterns are extracted from 12-job rather than
8-job example problems. Although dynamic programming could have been used
to extract the patterns from problems having n as high as 20, the decision to use
12-job problems is influenced by expediency, computer resources and development

time limitations, as well as the ease of making comparisons.
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The steps for training and employing the neural network for the single machine

sequencing problem are given below.

(a) Generate a random set of example problems.

(b) Find the optimal solutions for the example problems.

(c) Select the input-output training patterns from the solved problems.
(d) Train the neural network by using backpropagation.

(e) Use the trained neural network to solve new problems.

The n-job example problems are generated randomly by using Potts and Van
Wassenhove's method [31]. The processing time for the i® job. p;. is generated from
the uniform distribution {1.100]. The total of the processing times of the n jobs.
P =%" p. is computed. The due date for each job (d;) is then selected randomly
from the uniform distribution [P(1-TF-RDD/2).P(1-TF+RDD/2)] where RDD is a
parameter representing the range of due dates and TF is a tardiness factor. RDD
and TF assume combinations of values between 0.1 and 1.0 for the problem domain
considered. Only a quarter of the n jobs in any example problem are selected. at
random. to serve as training patterns. This restriction is artificial but it enables
the neural network to be exposed to the characteristics of more problems whilst re-
maining within the software’s storage capacity. Hence. the total number of example
problems required to generate Y training patterns is 4Y /n. The overruling guideline
for determining Y is to employ the maximum number of training patterns possible.
This number depends. again, on factors related to the software and the available
computing resources. What is important, however, is that a sufficient number of

training patterns are used. One way of determining the minimum number of inde-
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pendent training patterns that are needed is to start with a limited number, and
then increase this number gradually in separate training trials. When it is observed
that the addition of further patterns does not significantly reduce the generalization
error, then it may be accepted that the lower bound for the required number of
patterns has been surpassed. This approach is implemented in the training of the
necural networks described in this Chapter. [n all instances, the number of patterns
used in training a neural network is well above the lower bound. as determined by

trial and error, for the case under consideration.

Test problems that are generated randomly in a manner similar to the training
set. but with a different seed. are used during the training phase to evaluate the
‘learning’ of the neural network. This evaluation is based on monitoring the average

‘positioning error’. The positioning error. e, . for pattern ¢ is measured as :

“TT038

(4.3)

where
0, = output response when pattern ¢ is presented at the input layer: and

G, = target response for test pattern gq.

Equation (4.3) indicates how closely the neural network is able to position the
job represented by pattern ¢ to the position that the job should occupy in the op-
timal sequence. An e, that is larger than unity shows that the error is greater than
one full position in the sequence. Conversely, an average error for the test data
patterns that is less than unity suggests that the neural network is able, on average.

to place the jobs in their correct sequential positions.
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During the training stage, training is interrupted intermittently and the network
is tested by using the set of test patterns. The average positioning error is compiled
and examined at each interruption. This process is ended when the error just be-
gins to increase with further training. This is because the network then starts to

‘memorize’ the training set which leads to a loss in its generalization abilities.

4.3.2 Evaluation of Learning Capability

The effectiveness of the proposed neural network methodology for job sequenc-
ing is evaluated next by testing with a performance criterion for which a simple
solution is known to exist. This criterion is the minimization of the maximum job
lateness. It is optimized by merely sorting the jobs in the order of non-decreasing
due-dates [8]. Hence. the target values, Gi(S). are computed for a sequence S sorted
in EDD fashion. The objective in this evaluation is to determine how effective the
neural network is in deducing, based solely on its exposure to the training problems

and their solutions. that the EDD sorting rule optimizes the criterion.

The 4320 training patterns are derived from 1600, 12-job example problems gen-
erated randomly for combinations of TF and RDD that range. in increments of 0.1,
between 0.2 and 1.0 for TF. and between 0.1 and 1.0 for RDD. 12-job problems are
used to find how a neural network, which is trained more conveniently from exam-
ple problems having a relatively small n (i.e. n = 12), performs when dealing with
realistic problems having a much higher value of n. This is not an issue for the per-

formance criterion currently under consideration because optimal solutions to large
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sized problems can be obtained very conveniently. However, there are other criteria
for which finding the optimal solutions for the training data does pose difficulty as
the problem size increases. For those cases, the use of training problems having a
12-job size may provide a satisfactory balance between size and computational time

requiremnents.

Initially. a 11-3-1 network is used. To determine how closely the sequences gener-
ated by the neural network for the test set match the correct sequences, a ‘distance’
measure. TD. is used in addition to the average positioning error. ¢,. TD simply
sums the job displacements. A displacement for a job is the number of positions by
which it is out of sequence. For example, if a job is out of its optimal location by two
positions. then its displacement is two units. The lower is the total displacement.

the closer are the jobs to their optimal positions in the sequence.

Figure 4.2 shows the behaviour exhibited during the training of the 11-3-1 net-
work. As the training progresses. TSS (the total sum of the squares of the errors)
decreases as the network learns the set of the training patterns. After every 1000
cycles. training is interrupted and the test patterns are processed through the net-
work to calculate e, and TD. The test data contains 300 patterns representing 25.
12-job problems that are generated in a random manner identical to that used for

the training set, but with a different seed.

Figure 4.2 shows that the training of the 11-3-1 network can be terminated after
11,000 cycles, when e, is seen to be minimal. At that point TD is observed to be

zero, meaning that the network has sequenced all of the jobs optimally.
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Figure 4.2: Training of 11-3-1 BPN.

The entire training process just described for the 11-53-1 network is repeated sep-
arately for networks having seven, nine and twelve units in the hidden layer. Figure
4.3 compares the learning abilities of each of these networks. In the configurations
with fewer hidden units. the TSS is observed to converge to higher values. This
indicates that the networks with more units in the hidden layer are better able to
learn the training data. Generally, the final number of units required in the hidden
layer is that number bevond which the addition of a further unit results in only
negligible improvement in the network’s ability to learn the training data. This
trial and error method is the technique that is chosen in this thesis for selecting the

number of hidden layer units in the neural networks.
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Figure 4.3: TSS during training with different hidden layer sizes.
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Figure 4.4: Behaviour of e, with training.
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The manner in which this behaviour translates to a generalization capability is
illustrated in Figures 4.4 and 1.5. Figure 1.4 compares the average e, in the four
network configurations. It is seen that e, is less in the 11-9-1 network in comparison
with the 11-3-1 and 11-7-1 networks. Moreover, there is no clear advantage in the
11-12-1 network, where e, is at a level comparable to that in the 11-9-1 network.
Figure 4.5 compares the four networks with respect o TD. The 11-3-1 and the 11-
7-1 networks are seen to lower the TD in the test data better than the other two
networks that have more units in the hidden layers. This means that, although
the 11-3-1 and 11-7-1 networks have higher positioning errors as seen in Figure 4.4.
they are able to generalize their learning and find correct sequences in new problems
better than the other networks that are trained to a lower positioning error. This
anomaly is explained by the fact that as a network learns "better’ by means of min-
imizing the positioning errors. it begins to also learn ‘additional” data in its efforts
to find more accurate relationships between the input and output data. In the case
of minimizing the maximum lateness. this additional data is most probably the job
processing times. which is irrelevant in finding optimal solutions. Consequently. an
emphasis on minimizing positioning error can lead to overtraining and memoriza-
tion of the training data at the expense of the desired generalization capabilities.
The periodic testing to determine TD during training helps to determine when the

network can be accepted as satisfactorily trained.

Although Figure 4.5 shows the 11-3-1 and 11-7-1 networks to be almost equiv-
alent in minimizing TD. the 11-53-1 network is selected after 15,000 training cycles.
This selection is based on the fewer number of hidden units. as well as on the fact

that the 11-3-1 network actually demonstrates a zero TD. Fewer number of units
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Figure 4.5: Total Displacement (TD) during network training.

in the hidden laver is generally preferable because it results in quicker processing
(feedforward propagation) across the network. This 11-3-1 neural network. trained
for minimizing the maximum job lateness. is designated MLATENET. All trained
networks that assign jobs a position in a sequence. such as MLATENET. will be
called neural sequencers. The details of the training of NILATENET and its final

weights are given in section A.1 of Appendix A.

4.3.3 [Illustrative Problem

An example is presented now to demonstrate how a neural sequencer generates
sequences to satisfy the performance criterion. Table 4.2 shows a 7-job problem

that serves as an example. This problem is generated randomly for an arbitrarily
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selected TF =0.6 and RDD = 0.1. The objective is to sequence the jobs in Table

4.2 to minimize the maximum job lateness.

Table 4.2: Seven-job sequencing problem.

Job | p

poodi h ok
1 |38 206 0 1
2 132 196 0 !
3196 137 0 1
4 127 116 0 1
9 |24 18 0 1
6 |8 179 0 1
T193 228 0 1

The neural sequencer MMLATENET will be used here because it is trained already
for the performance criterion used in this example. The seven jobs in the problem
are converted first into their vector representations by using the set of equations
4.1(a) to 4.1(k). The result of this pre-processing stage is presented in Table 4.3
where the vectors V1 through V7 represent job numbers 1 through 7. respectively.
To solve the sequencing problem, each vector is presented individually at the in-
put layer of MLATENET. A feed forward procedure of calculations [68] generates
a value between 0.1 and 0.9 that appears at the output unit for each of the seven
input vectors. This procedure is like the one employed by Sim et al. [32] in that
jobs are processed individually by the network. The objective in [32] is to find the
job having the least activation value at the output layer. In the new approach,

however, the output value for each job is significant because this output ultimately
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determines the job’s sequential position in relation to the other jobs of the problem
set. A complete sequence is constructed only after each one of the n jobs makes a
pass through the network. The output computed by the neural network for each of

the input vectors is given in the rightmost column of Table 4.3.

Table 4.3: Problem representation for the example in Table 4.2.

INPUT UNITS
Jopfr 2 3 4 5 6 ¢ 8 9 10 11 |OUTPLT
V, {0.40 0.90 1.00 0.00 1.00 0.59 0.78 0.73 0.55 0.20 0.37| 0.6937
V, |0.33 0.86 0.98 0.00 1.00 0.59 0.78 0.73 0.55 0.20 0.37| 0.6083
V; |1.00 0.60 0.24 0.00 1.00 0.39 0.78 0.73 0.55 0.20 0.3v| 0.2120
V, 10.28 0.51 0.53 0.00 1.00 0.39 0.78 0.73 0.55 0.20 0.37| 0.0980
Vs 10.25 0.82 0.98 0.00 1.00 0.59 0.78 0.73 0.55 0.20 0.37] 0.5506
Vs 10.91 0.79 0.55 0.00 1.00 0.39 0.78 0.73 0.55 0.20 0.37} 0.4849
V; {0.97 1.00 0.80 0.00 1.00 0.59 0.78 0.73 0.55 0.20 0.37] 0.9043

Sequencing the jobs in the order of the increasing output values results in the

job sequence { 4-3-6-5-2-1-7 }. which is an optimal solution.

4.4 Performance for Different Criteria

MLATENET was taught to minimize the maximum job lateness by training with
information and solutions based upon 12-job problems. It is important to determine
whether MLATENET can generalize the learnt relationship to problems involving

different, and especially larger, sizes. In addition, the neural network approach is
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evaluated for other commonly used performance criteria to better understand its

scope of application.

4.4.1 Minimizing the Maximum Job Lateness

MLATENET is tested by using problems involving upto 100 jobs. Each test
consists of 200 replications for each value of n. The test problems are generated ran-
domly by using Potts and Van Wassenhove's method with RF={0.2.0.4.0.6.0.8.1.0}
and TF={0.2.0.4.0.6.0.8.1.0}. All h; are zero and all ¢; are equal to 1.0 in the test
problems. The results are shown in column 1 of Table +.4. They are expressed in
terms of the percentage deviation from the optimal solution. [t is seen from the
tests that MLATENET has learnt quite well to sequence the jobs in an order that

enables minimization of the maximum lateness.

4.4.2 Minimizing Flowtime Criteria

The neural network approach is evaluated next for minimizing either the mean
flowtime or a variant. the weighted mean flowtime. These two objectives are satisfied
optimally by sorting the jobs in the order of non-decreasing processing time divided
by the weight for each of the jobs (i.e. the WSPT rule)[8]. Optimal solutions. there-
fore, are easily found for any job size. n. Moreover. one neural network. which is
trained to minimize the weighted flowtime, suffices because the mean flowtime is a

special case of the weighted flowtime in which all the weights are equal.
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Table 4.4: Percentage deviation from optimal for three criteria.

Maximum Mean Mean  CPU
n Job Flowtime Weighted Time
Lateness Flowtime (ms)
3 0.000 0.009 0.136 0.77
10 0.000 0.016 0.136 1.58
12 0.004 0.018 0.100 1.95
15 0.000 0.016 0.098 2.52
20 0.001 0.016 0.102 347
25 0.004 0.017 0.097 141
30 0.010 0.016 0.097 3.57
50 0.022 0.016 0.098 10.77
7 0.032 0.016 0.100 18.21
100 0.056 0.015 0.100  28.35

The neural network for minimizing the mean weighted flowtime. MFLONET. is
trained in a manner similar to that described for MLATENET. During the gener-
ation of the training patterns, however. all the ¢t; are set to zero. The values for &;
are selected randomly from the uniform distribution [1.10]. Details of the training

and testing of FLONET are given in section A.2 of Appendix A.

The trained neural network is assessed initially with respect to the minimization
of the mean flowtime. Test data for different job sizes are generated in the same
random fashion as the training data except that all h; invariably equal one. Next,

minimization of the mean weighted flowtime is evaluated by using test data gener-
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ated identically but with the h; randomly taking values between 1 and 10. The test
data consists of 10 sets. Each set contains 200 problems having size n. The values
for n that are tested are identical to those selected for the testing of MLATENET

in the previous section.

The results from FLONET are also presented in Table {.4. The third and fourth
columns demonstrate that FLONET has learnt, quite well. the reiationship that
leads to a minimization of either the mean flowtime or the mean weighted flowtime.
This relationship is embodied in sorting the jobs in the order of non-decreasing

weighted processing times.

Table 4.4 suggests that. if there is a well structured rule that leads to the optimal
job sequence. such as WSPT or EDD sorting, then the neural networks are able to
deduce it. Furthermore. even though the training is performed on information from
only 12-job problems. the neural networks are still able to apply the learned rela-
tionship to problems having n much higher than twelve. Table 4.4 also shows that
the CPU time is only milliseconds per problem. when using an [BM compatible.

Pentium 150 MHz microcomputer having 16 MB of RAM.

4.4.3 Minimizing the Mean Tardiness

A performance criterion that is studied widely is the minimization of the mean
job tardiness (or total tardiness), a problem which is NP-hard [55]. Job due dates
are the main influence on the mean tardiness of a given job sequence. The capability

of neural networks in sequencing jobs to minimize the mean tardiness is investigated
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by training a network using the same training data as that employed for minimizing
the maximum job lateness. In this instance, however. the target values for each
job are based on sequences that minimize the mean tardiness. These sequences are
found by dynamic programming. The details of the training of this network, des-
ignated MTARNET, is found in section A.3 of Appendix A. Table 4.5 presents the
results frour the trained neural network for problems in which n varies between o
and 12. Each of the test sets contains 200 problems of a size equal to the selected

value of n. Also given. for comparison, are the corresponding results from the sort-

ing rules EDD and SPT.

Table 1.5: Percentage deviation from optimal when minimizing the mean tardiness.

n 3 6 T 8 9 10 11 12
MTARNET | 6.62 1093 8.54 867 814 798 6.21 6.37
EDD 2496 29.46 29.07 3288 36.71 36.07 38.03 38.58
SPT 6.63 10.14 11.06 11.32 1254 13.92 1330 1292

The neural network's solutions are noticeably more accurate than those obtained
from applving the SPT and EDD rules. This observation suggests that the neural
network has learned some form of rule, most likely a rudimentary combination of
different rules. Nevertheless, there still remains a difference of about 6% to 11%
from the optima. This rather significant discrepancy may be traced to the fact that
there is no well-defined relationship between a problem’s input and the output se-
quence which the neural network can learn and extend to all the problems in the
domain. In fact, there may well be conflicting relationships that impede the learn-

ing, causing the network to capture what amounts to an "average’ relationship. The
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solution to this bottleneck is to break the problem domain into ‘categories’, each
category containing problems having similar defining characteristics. Such a scheme
is described in the next section. Neural solutions can also be improved based upon
the implications of Equation (4.3), which relays the positioning error in the trained
network. The average positioning error in the network trained to minimize the mean
tardiness. for example, is found to be around 1.4. This particular valuc indicates
that any job’s current position in the sequence is. on average. nearly one and a half
positions away from the preferred position in the optimal sequence. Therefore. the
job sequences produced by the neural network appear well groomed. as a result of
minimizing the positioning error, for further improvement by means of a simple.

adjacent pairwise interchange strategy.

4.5 Neural Job Classification and Sequencing Network

The breakdown of the problem domain into individual categories aims primarily
to group elements having similarities. This categorization (or classitication) can be
performed ideally by competitive neural networks. Competitive networks consist of
two layers: an input layer and an output laver. A pattern presented at the input
layer stimulates the activation of one and only one output unit. By having as many
output units as the number of categories desired, such networks can be trained to

classify input patterns into groupings based on similar characteristics.

Baker [8] indicates that the tightness and range for due dates are attributes that

determine how ‘difficult’ or 'easy’ it is to generate job sequences to minimize the
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mean tardiness. The ‘easy’ cases represent instances where near optimal results can
be achieved by simply sequencing according to either the EDD or the SPT rule. For
tardiness-based criteria, a reasonable categorization scheme would be based. there-
fore. around the average ‘tightness’ of the job due dates. Such a scheme. centered
around a hybrid categorization-sequencing strategy. is developed next. It is illus-
trated by using the minimization of the mean tardiness as an example. The problem
domain is identified first. In this instance. the domain is taken to include all the
problems that can be generated for values of TF from 0.4 to 1.0 and RDD values
between 0.1 and 1.0. Problems arising from TF that are less than 0.4 are excluded
from the domain only because the ‘looseness’ of the due dates results in compara-
tively small tardiness values. The selected domain is classified into a pre-specified
number of categories. Any new problem would need to be classified initially into one
of these existing categories. This procedure is performed by a competitive neural
network. called here a Classifier Network. which is specialized in problem catego-

rization.

Figure 4.6 shows how the sequencing hierarchy operates. Data from a given
problem is posed to the Classifier Network. which proceeds to categorize the prob-
lem into one of the existing categories. After classification. the problem data is
transmitted to a neural sequencer that is trained specifically for problems of that
particular category. The system depicted in Figure 4.6 is called a Neural Job Clas-

sification and Sequencing System, NJCASS.

The Classifier Network is trained by using an unsupervised learning mode. This

is accomplished by means of a competitive learning algorithm [70] that modifies
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the weights so that only one of the output units responds to the input. Whenever
a pattern is presented at the input layer, the output unit whose weight vector is
closest to the pattern 'wins’ the competition. The weight connections leading to
the winning unit are updated to reinforce the relation between the input pattern
and that unit at the expense of the other units. Inhibitory connections exist be-
tween the units in the output iayer to ensure that only the ‘winning unit activates.
The result is that the input data is organized automatically into a number of clus-
ters. each cluster corresponding to similar inputs and represented by one of the
output units. The Classifier Network for minimizing the mean tardiness is called
MTCLASS. It is trained by using 10,000 problems. with sizes selected in the range
from n=7 to n=65. These problems are generated randomly (again by using Potts
and Van Wassenhove's method [51]) to produce a uniform sample of patterns across
the problem domain. The patterns are to be classified such that ten categories are
described. The number ten is chosen arbitrarily. The greater is this number. the
more specialized are the sequencing networks which. intuitively. may lead to a better
overall performance. The tradeoff, of course. is that more training time is needed
and a larger system has to be managed. MTCLASS has a {4-unit input layer that
accepts continuous-valued input data vectors. Each vector for a n-job problem is

described by :

P1 = minimum due date:
P2 = average due date;
P3 = maximum due date; and

P4 = 100.00 (a reference value).
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Figure 4.7: A 10-category classifier.

The first three variables are selected because they are considered the ‘defining’
characteristics of a problem in the domain under consideration. P4. the reference
value, is used as a reference that effectively normalizes the data within the domain.
The trained MTCLASS network is able to classify unknown problems by taking a
vector (P1. P2. P3, P4) at its input layer and. after performing what amounts to
a least-squares error calculation, selecting the output unit that represents the cat-
egory that the input vector best fits. Training the Classifier Network is performed
by using the DESIRE/NEUNET software again. Figure 4.7 shows the structure of
a competitive network for classifying the vectors into ten categories. Details of the

training and testing of MTCLASS are available in section A.4 of Appendix A.

The neural sequencers in the NJCASS are trained separately, one network for

each of the ten categories, by using data generated only from problems falling under
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the same category. In order to satisfactorily train each one of these networks, con-
siderable training and experimentation is involved with different numbers of units
in the hidden layer. The effort and time for training can be significantly reduced
by training the neural sequencer networks only up to a point at which the average
positioning error. €4, is about 1.5. This value implies that the jobs in the resulting
sequences may be expected to deviate from their correct locations in the optimal
sequence by one or two positions. Such sequences may be improved further by a

post-processing stage involving the interchange of positions between adjacent jobs.

4.5.1 Post-processing

All sequences produced by the neural sequencers are subjected to post-processing
that uses an adjacent pairwise interchange strategy. The interchange strategy moves
from left to right across a sequence and evaluates. at each position. the effect of an
interchange between the job currently occupying that position and the job in the
immediately following position. An interchange is preserved when it leads to an
improvement in the value of the objective function. Otherwise. the interchange is
nullified. When the last position in the sequence is reached. the procedure is re-
peated, starting from the first position, until no further interchanges can be made
in one complete pass through the sequence. This interchange strategy is effectively
a descent mechanism that forces the current solution to a local minimum. Due to
the unidirectional movement of the interchanges. there always exists the possibility
that jobs already located in optimal locations may be pulled out of position. The
implication is that an initial sequence in which many jobs are already located in

their desired optimal positions is likely to be perturbed quickly into a local mini-
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mum that is very close to the initial sequence. Therefore. the initial sequence in
this instance needs to have the maximum number of jobs located in their optimal
positions. On the other hand, a starting solution where more jobs are near their
desired positions (i.e. out of place by only one or two positions) appeals more to
the particular interchange strategy used in the post processing stage. With a larger
number of jobs tolerated out of position in the starting sequence. the need to train
the networks to a very low error. e,. is reduced substantially. This reduction trans-

lates into less training time for these networks.

4.5.2 NJCASS for Minimizing the Mean Tardiness

Ten neural sequencers are trained for the NJCASS to minimize the mean tar-
diness. The training procedure for each category is similar to that employed for the
previous networks, but with differences regarding when to accept the network as
satisfactorily trained. The training sets are derived from 12-job example problems
that are solved by dynamic programming. For the neural sequencers specialized
for this NJCASS. the training is stopped after every 100 cycles and the network is
tested by employing a test data set. During this testing, the sequence generated
by the neural networks is post-processed by the interchange strategy. The training
is stopped when the test results appear to have 'bottomed out’. This occurs at
between 300 and 5000 training cycles. depending on the category. In three of the
ten categories, it is observed that the post processing interchange strategy resuits
in near optimal solutions when applied to initial sequences sorted in the order of
their non-decreasing due dates (EDD). It is decided, therefore, to train the neural

sequencers for these three particular categories to sequence the jobs in the order of
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Figure 1.8: Minimizing the mean tardiness for 12-job problems with N.JCASS.

the earliest due dates. rather than the optimal sequences. Section A.5 of Appendix

A contains details for the training of each of these sequencers.

The trained and completed NJCASS is tested for different 12-job problem sets.
The test data contains 20 sets of 200 problems. each set generated with specific TF
and RDD values covering the problem domain. The results. plotted in Figure 4.8.
show an average deviation from the optimal of less than 1% for TF values of 0.7 and
above. The deviation is slightly higher for problems generated with a TF of less than
0.6 (i.e. problems with looser due dates). The critical question is: how well does
this NJCASS, which is trained on the basis of information from 12-job examples.
perform when faced with larger sized problems? To examine this issue, a compari-

son is undertaken by using the adjacent pairwise interchange (API) heuristic of Fry
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Figure 4.9: NJCASS Performance with increasing job size, n.

et al. [71] with the modification proposed by Koulamas [72]. This heuristic applies
three different interchange strategies to initial sequences generated by using three
different sorting rules. The best outcome from the nine possible combinations of
initial sequence and interchange strategy is selected. The heuristic’s main drawback
is that long execution times are required, but the results are reported by Koulamas

[72] to be good for problems having up to 100 jobs.

The performance of the NJCASS. plotted in terms of the percentage deviation
from the results of the API heuristic. is displaved in Figure 4.9. Each test set con-
tains 200 problems that are generated randomly across the domain. It can be seen
from the figure that the NJCASS performs better than API in the cases involving

problem sizes between 10 and 50 jobs. For more than 50 jobs, the deviation in
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performance between the two approaches is in favour of the API. The reason for the
gradual deterioration observed in the performance of NJCASS, starting from about
n=23, is because it is trained based on target values which are derived from merely
12-job problems. This approach is apparently not sufficiently accurate for more than
30 jobs. The loss in accuracy, as n grows, is a result of the current positioning error
becotning relatively weaker. [u olhier words, a positivuing error encollipasses tore
positions as n grows because increasingly more jobs have to fit within the interval
between G; and G;,;. The result is that a job may be off-target. on average. by
several positions rather than one or two for a given positioning error of. say 1.5.
that is based on 12-job training problems. Then simple adjacent interchanges have
greater difficulty in bringing an off-target job to the desirable sequential position.
The remedy is to improve the target accuracy by basing the training on data from
problems in which n is greater than twelve. where possible. The conclusion from
Figure 4.9. on the other hand. is that the NJCASS can compete. for up to 50-job

problems, with the API heuristic.

The API heuristic based on Fry et al. [71] and modified by Koulamas [72] is
chosen in this comparison for two reasons. First, its solution is competitive with
the better heuristics for minimizing the mean tardiness. as reported in Table 1 of
ref. {72]. Second. the API is a general purpose interchange heuristic. the applica-
tion of which need not be limited to one specific performance criterion. Figure 4.9
demonstrates that the result of an initial sequence produced by the neural network
and modified by a simple adjacent pairwise interchange is comparable, if not slightly
better, than that generated by the nine different combinations of initial sequence

and interchange strategies encompassed in the API heuristic.
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As a further evaluation of the solution quality of the NJCASS, a comparison is
made with one of the several leading heuristics that are specific to the mean tar-
diness criterion. For example, Russell and Holsenback [73] demonstrated that the
PSK heuristic of Panwalker, Smith and Koulamas [58] and the Net Benefit of Relo-
cation (NBR) heuristic of Holsenback and Russell [36] are more or less comparable.
The NBR is stronger in certain cases, while the PSK is better in other cases. For
convenience. the NJCASS is compared next with one of these heuristics. namely
the NBR algorithm taken from ref. [36]. The latter uses a dominance rule. based
on Emmons’ conditions of optimality [57]. together with calculations to determine
the net benefit of job relocations in the sequences. The comparison is performed
by using a procedure identical to that employed in ref. [36]. Twenty sets of test
data are used: each set contains ten problems of n jobs where n is 12. 25 or 30.
Individual sets are generated by utilizing the Potts and Van Wassenhove method
[51] for specific TF and RDD values. The 12-job problems are tested because that
is the problem size used in the training of the neural sequencer networks. The tests
for the 25 and 30 job problems are done to evaluate how relativelv well the NJCASS
performs for larger problems. Table 4.6 presents the results. The integers under the
columns headed ‘Best’ indicate the numbers of times NJCASS achieved a solution

better than or equal to NBR in each set.

Table 1.6 shows that NJCASS produces solutions which are generally compara-
ble to those given by NBR. The NJCASS is better in 26 out of the 60 sets tested.
NBR is better in 24 sets, and the two methods give equal total tardiness in the

remaining sets. On the other hand, NBR is slightly superior based on the total
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Table 1.6: Total tardiness for test sets solved by NJCASS and NBR.

n=12 n=2325 n = 30

TF RDD|NJCASS NBR DBest*|NJCASS NBR Dest|NJCASS NBR Dest
02 02| 733 724 8 | 2213 2057 4 | 7131 6377 1
02 04| 137 123 7 | 451 322 5 | 397 309 2
02 06| 15 15 10 0 0 10| o 0 10
02 08| 37 37 10 0 0 10 0 0 10
02 10| 89 89 10 0 0 10 0 0 10
04 02| 3460 3406 T | 12610 12632 5 | 47802 47962 4
04 04 2460 2433 6 | 8361 8377 5 | 31647 31793 4
04 061 1721 1725 9 | 4773 4590 7T | 13810 16050 4
0.4 0.8 | 1092 1113 10 | 2017 2017 10| 4649 5206 10
04 10| 1174 1133 9 | 1584 1575 8 | 2340 2424 10
0.6 02| 8275 8296 5 | 32322 31885 3 | 125873 124524 |
0.6 04| 7403 7433 6 | 20075 28270 O | 113553 111365 2
0.6 0.6 | 6958 6905 T | 25717 25135 3 | 98213 98332 5
0.6 0.8 | 6610 6642 8 | 23833 23840 6 | 93621 94140 5
06 1.0 | 7075 7102 9 | 24550 25004 9 | 100676 102501 8
0.8 0.2 | 153421 15400 6 | 61503 61332 4 | 242122 241396 2
0.8 0.4 | 15245 15232 8 | 60151 59979 4 | 239450 238481 I
0.8 0.6 | 15637 15638 10 | 61398 61195 3 | 216925 247438 8
0.8 0.8 | 16232 16257 9 | 63487 63653 1 | 259486 260069 7
0.8 1.0 | 16850 16857 10 | 66042 66296 9 | 273479 274453 9
Total 126664 126560 180087 478159 1903374 1903220

* Number of times NJCASS solution is better than or equal to the NBR solution.
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tardiness values summed over the 20 data sets for each problem size n. This result
is due mainly to a particular weakness of NJCASS in those data sets having low
RDD. [t is not surprising because the optimal sequences in such cases exhibit no
strong patterns or rules that help the neural networks to learn the relationships
between the input data and the desired sequence. Nevertheless, NJCASS can be
enhanced then by increasing the number of categories covering this region of the
problem. The improvement to be expected is reflected in the behaviour illustrated
in Figure 4.9. This figure shows what happens when merely a single neural network
is trained to cover the entire problem domain rather than the 10 currently used by
NJCASS. The overall trend from the single neural sequencer is similar to that from
the NJCASS. except that it is about 2% less accurate. This deterioration reduces
the accuracy to a level that renders the single network’s performance marginal in

comparison to that of heuristics such as those mentioned in ref. [72].

4.5.3 A Limited Exponential Cost Function

A hypothetical situation involving penalty costs that exhibit a limited exponen-
tial behaviour is described now. The example is used to illustrate how the NJCASS
can be implemented in situations where no heuristic is known beforehand for op-
timizing the given criterion. The mean tardiness measure applies a penalty that
increases in linear proportion to the tardiness. In extreme cases. it is possible that
the penalty may actually exceed the value of the job. The cost function considered
next differs in that a substantial proportion of a total penalty is assessed at the
instant of tardiness. As the tardiness increases, the penalty follows an exponentially

decreasing rate up to 2 maximum value. This limited exponential cost function is
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expressed in the following form:

i 100 x ti

Z = T TR nET QoY ‘L‘l
; 1 + e-0.05T,(S) (+4)

Two variants of this function are analyzed and tested with a NJCASS set up for the

purpose.

Case (i)
The first scenario has n jobs due at different times. The tardiness penalty per time
unit is uniform for all jobs (i.e. £, = 1 ¥ i). [t is applied in the limited exponentially

increasing fashion of Equation (-1.4).

Case (ii)
The tardiness penalty is not uniform but differs from job to job. The training and

test data for the NJCASS has ¢; selected randomly from the uniform distribution

[1.10].

The NJCASS for minimizing cost function (4.4) also has ten categories. the num-
ber of categories are selected arbitrarily again for illustration purposes. It is trained
and constructed in a manner identical to that discussed previously for minimizing
the mean tardiness. Presuming that no quick method is available for minimizing
cost function (4.4) in large sized problems. complete enumeration is used to deter-
mine the solutions needed for the training problems. Thus, the sequencer networks

are trained for each category by using 8-job example problems.
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Table 4.7: Generation parameters for randomly selected problems.

Set A SetB
TF 0.7 0.8
RDD! 0.3 0.8

The hypothetical cost function of equation (4.4) is tested for cases (i) and (ii) by
using the NJCASS. Two randomly found data sets. each containing 200 problems.
are generated from the combinations of TF and RDD given in Table 4.7. These
combinations are selected as representative of cases involving a moderate tightness
and range of due dates. Finding a good heuristic for minimizing Equation (4.4)
may range from using ‘quick and dirty’ methods to more involved techniques. The
API heuristic is chosen for comparison because. not only does it combine several
of the prominent "quick and dirty’ rules. but it further enhances their results by
using three different interchange strategies. The API results. when taken in the
context that they come from an approach that is based on a rule-of-thumb. can be
considered reasonably good. even for a function like that used in Equation (4.4).
The comparison between the API and NJCASS approaches is displayed in Figure

4.10.

The results in Figure 4.10 are presented in terms of the percentage deviation of
the NJCASS results from those of the API heuristic. A negative deviation means
that the API heuristic is worse. Therefore, the general superiority of the NJCASS
over the API approach is demonstrated clearly in Figure 4.10 for the case (i) and

case(ii) scenarios.
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Figure 4.10: Performance of NJCASS for limited exponential function.

4.6 Conclusions

Based on the tests performed for a limited number of performance criteria. the
NJCASS appears to be a highly competitive procedure for sequencing jobs on a
single machine. Its performance may be improved even further by increasing the
number of categories or by experimenting with other categorization schemes. One
possibility is to train a neural network for problems that represent the desired do-
main and then isolate those problems that can be solved optimally by the network.
Then, the remaining problems are used as a source for training another network, and

so on until all the training problems are covered by individual. specialized networks.



The neural network approach highlighted by the NJCASS provides several ad-
vantages, but chiefly the flexibility of application for different performance criteria.
Special purpose heuristics, developed for a specific criterion, may be unsuitable when
a different criterion is considered. Furthermore, a heuristic may perform well, on
average, but still remain consistently weak for a certain class of problems. The NJ-
CASS aud its classification scheme allow what are effectively customized heuristics’
for problem classes having similar characteristics within a domain. The user needs to
identify only key characteristics and the desired number of categories. The unsuper-
vised learning algorithm results in a Classifier Network that is capable of suggesting
a suitable categorization based on information from the vector data with which it
is trained. Thus, the procedure can be conceivably automated with the categories
self-generated through unsupervised learning. Randomly generated problems can
be produced to represent these categories and the problems can also be used subse-

quently to train the specialized sequencer networks.

Any neural network approach possesses the disadvantages of neural networks
in general. namely the time to train and test the networks as well as the experi-
ence required to achieve good results. Although the NJCASS's performance is quite
competitive. it is unlikely to be noticeably better than a good heuristic developed
painstakingly for the purpose. Yet. in the event that no such heuristic is available.
the NJCASS appears to be a better alternative to makeshift measures based on
intuition or modification of existing rules or heuristic procedures. Moreover. the
development time for NJCASS is much shorter than that needed to evolve a full-
blown heuristic procedure. It should be noted, however, that neural sequencing

appears best suited to performance measures that are regular. A regular perfor-
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mance measure is one where the value of the function can grow only if at least one
of the completion times in the schedule increases [8]. Initial results using neural
sequencing for a criterion involving an irregular performance measure, namely min-
imizing the completion time variance (Merten and Muller {74]), suggest that it is
not much more effective than simple sorting heuristics. However, further research is

still needed.
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Chapter 5

Dynamic Scheduling with Cooperative Dispatching

5.1 Introduction

Scheduling in manufacturing cells is frequently dynamic in nature. The dy-
namism arises primarily under two circumstances. The first is when jobs arrive
continuously at a cell and join other jobs which are already waiting in queue. This
differs from the static case, where a fixed number of jobs is available at the start of
the scheduling and the initial schedule remains valid until ail the jobs are completed.
The second circumstance arises when unexpected or unpredictable events. such as

a machine failure or a defective product. invalidate the current schedule.

Scheduling under dynamic conditions implies the need to continually update
the schedule. The terms ‘on-line scheduling’. ‘real-time scheduling’ and ‘dynamic
scheduling” are often used interchangeably to describe situations requiring a con-
tinuous schedule modification. In fact. there is a fine distinction between real-time
and on-line scheduling. Real-time scheduling may be performed either on-line or
off-line. If it is performed off-line, then a "snapshot™ of the cell’s current status and
activities is captured and a new schedule is devised almost instantaneously. The
need to efficiently finalize this ‘re-scheduling’ in a matter of seconds poses computa-
tional difficulties, particularly if there are many jobs waiting. If on-line scheduling

is employed, on the other hand, the scheduling is reduced to making dispatching
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decisions whenever a resource becomes available. This reduction in the scope of
the scheduling problem to a series of "as-needed’ decisions makes on-line scheduling

attractive for real-time scheduling demands.

The CD approach described in Chapter 3 can be performed on-line, like other
dispatching rules. Unlike most simple dispatching rules, however. CD is more com-
plex and requires real-time information regarding the current states of the jobs and
machines in a cell. Current computer networking and cell control technology, how-
ever. allow this information to be collected automatically so that the CD approach
is implementable for an FMC. The remainder of this chapter describes the perfor-
mance of CD in dvnamic scheduling. The evaluation of CD is undertaken by using

a simulation approach for dynamic job arrivals.

5.2 CD Scheduling with Dynamic Job Arrivals

FMCs often have to process orders that arrive randomly. The unpredictability
of the time of arrival poses obvious problems because existing schedules. if any, be-
come obsolete immediately. On-line scheduling treats a new arrival simply as an
additional job joining a queue. The next time that a machine needs to be loaded,
the new arrivals are considered immediately, together with the previous jobs waiting
to be dispatched. Therefore. with on-line scheduling based on dispatching rules. no

major scheduling disruption is experienced as a consequence of the new arrivals.
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5.3 Simulation

The performance of CD is evaluated experimentally for dynamic job arrivals.
The experiments are performed by means of a computer program written in the C
language [75]. They are designed to simulate activities related to the movement of
parts through a F'MC. The program monitors each job’s starting and finishing times
on the machines, from which the desired performance data is collected. The pro-
gram allows simulations having a selected number of dispatching rules, in addition

to CD.

The objective of the simulations is to study the comparative effectiveness of CD
for different job arrival rates. The jobs are assumed to be arriving at the cell accord-
ing to a Poisson process. In this process. the expected number of arrivals occurring
in an interval of time. ¢. has a Poisson distribution with a parameter A\t in which
Aq is the expected number of arrivals per unit time. Assuming that the number
of arrivals in each non-overlapping interval are independent of one another. then
the time between successive arrivals is distributed exponentially with parameter J\,.
The higher is A4, the greater is the frequency of arrivals and the more severe is the
likely congestion. The evaluation of CD takes the form of a comparison with the
traditional dispatching rules that are expected to be the most effective for the given
scheduling criterion. The individual criteria that are considered and tested, under
different job arrival rates, are the minimum mean flowtime and the minimum mean

tardiness.
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5.3.1 Generation of Test Data

The data for each simulated test problem relates to 500 jobs. Initially, two
jobs are assumed to be already in the system and awaiting their first operations.
The arrival times for these two jobs correspond to time zero. Each new subsequent
job arrives at an instant that is generated randomly. Arrivals occur at intervals
that are distributed exponentially. The length of the interval between arrivals. t,.

is determined randomly from:
In(p)

(5.1)

r p—tg
Ag
where p is a real-valued random number from the uniform distribution T[0.1]. The
arrival time of each new job is determined by incrementing the previous job’s arrival
time by ¢.. This procedure is repeated until 500 job arrivals have been generated.
Each test set contains 20 different problems that are created randomly in this fash-

ion for a specific arrival rate. A,. and a given performance criterion.

In order to study CD’s performance in minimizing the mean tardiness, the
method of Potts and Van Wassenhove [31|. which was emploved in the previous
chapter. is adapted for generating problems having dynamic arrivals to multiple-
machine cells. The main modification is in computing a value for P. which is the
main influence on the value of the generated due date (see section 4.3.1). In the
static case. P is simply the sum of the processing times for all the jobs in the prob-
lem set. Now P is an estimate based on the expected flowtime that a job would
have assuming FIFO processing, plus the sum of the processing times on the indi-
vidual machines for that job. The value of P that is computed for the i** job is then

used in Potts and Van Wassenhove’s method [51] to generate a due date for that job.
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5.3.2 Minimizing the Mean Flowtime

Experiments are performed to minimize the mean flowtime for the three con-
figurations shown previously in Figure 3.1. Processing times for each job on each
of the four machines are taken as random integers from the uniform distribution
U[1.35]. Separate tests are performed by using arrival rates. Aq. of 0.030. 0.033.
0.040. 0.045 and 0.050. Arrival rates lower than 0.030 are not considered because
the traffic generated is too sparse to be meaningful. In these situations. every dis-
patching policy produces nearly identical results which approach those of FIFO. On
the other hand, arrival rates higher than 0.050 are near the situation when the rate
of arrival is greater than the cell’s processing capacity (i.e. the service rate). Then.
the queue of waiting jobs increases perpetually. Hence. the arrival rates of interest
for the range of processing times and configurations under consideration are those
between 0.030 and 0.050. Each data set is replicated by utilizing the SPT. LWKR
and FIFO dispatching rules. in addition to CD. The former rules are selected for

the same reason they were used in the static problems of Chapter 3.

The results of the simulations are presented in Figures 5.1 and 5.2. In Figure
5.1, all the intermediate buffers of each of the three configurations are constrained
to a FIFO selection from the waiting jobs. This FIFO constraint is relaxed in Figure
3.2. The results given in Figures 5.1 and 5.2 are expressed. like those presented in
Chapter 3. in terms of the mean performance ratio (PR) evaluated over each set of
20 problems. This ratio uses the mean flowtimes produced by the FIFO dispatching

rule as the reference. The PR for another method, say method A, is obtained by
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dividing the mean result from the reference method by that from method A. A PR
value that is greater than 1.0 is a measure of the percentage superiority of method

A’s results over those obtained by the reference method.

[t can be observed from Figure 5.1 that CD outperforms the SPT and LWKR
rules by as much as 5% in the Type I and Type Il configurations. but only by about
1% in the Type I configuration. The general trend apparent in Figure 5.1 is that
CD performs increasingly better than these two rules as the arrival rate grows. This
behavior indicates that CD is more effective in minimizing the mean fowtime under
conditions of high cell congestion. The trends witnessed in Figure 5.1 appear to
hold also for the cases shown in Figure 5.2, i.e. for non-FIFO intermediate buffers.
Again, CD increasingly outperforms the other two dispatching rules as the arrival

rate grows. albeit at a magnitude not exceeding 2%.

The closeness in performance to FIFO that is observed in Figure 3.1 for all the
dispatching rules in the Type II configuration is because the job arrivals are shared
initially between two machines rather than only one machine. With an arrival rate
of 0.05. the average queue lengths for the first two machines rarely exceed 2 or 3 jobs
in the Type II configuration. The average queue at the third machine. which receives
jobs from both the first two machines. is significantly higher. When the queue at the
buffer for the third machine, which is a strong bottleneck. is constrained to FIFO
processing, all the other dispatching rules are not significantly more effective than
FIFO. This is evidenced in Figure 5.1. On the other hand, if the bottleneck is not
constrained to a FIFO selection, then the dispatching rules show improved results

in comparison to FIFO. See Figure 5.2.
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A measure of the effectiveness of each dispatching rule used is the number of
times this dispatching rule provides the best solution in the test data sets. This
statistic is presented in Table 5.1 for the four dispatching rules employed in the
mean flowtime minimization experiments with FIFO intermediate buffers. The val-
ues given in Table 5.1 combine the simulation results from the different arrivai rates
considered for each of the three configurations. The tabie indicates that CD gives
the best result in all the test problems for the Type [ configuration. in about 83%
of the problems involving the Type II configuration. and around 93% of the prob-
lems for the Tvpe III configuration. The significance of these percentages is that.
although CD appears from Figure 5.1 to be only marginally better than the other

dispatching rules. it is actually the policy that is better most frequently.

Table 5.1: Best solution frequency (in percentage) for mean flowtime and FIFO

intermediate buffers.

Configuration | CD SPT LWKR FIFO

Tvpe I 100.00 0.00 0.00 0.0
Type II 83.00 7.00 9.00  1.00
Type III | 93.00 7.00 0.00 0.0

A similar analysis is presented in Table 5.2 for the simulations involving non-
FIFO buffers because Figure 5.2 shows that CD and the other dispatching rules
perform closely, when measured in terms of average results over the test problems.
However. Table 5.2 indicates that CD outperforms these dispatching rules in about
86%. 84%. and 86% of the problems tested for the Type I. Type II and Type III

configurations, respectively.
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Table 5.2: Best solution frequency (in percentage) for mean flowtime and Non-FIFO

intermediate buffers.

Configuration | CD SPT LWKR FIFO

Tvpe | 18600 1400 0.00  0.00
Type Il |84.00 7.00 9.00  0.00
Tvpe [II | 86.00 1400 0.00  0.00

The CD dispatching rule is tested next for minimizing the mean fowtime in
a pure How shop having six machines. The same simulations are conducted for
this Tvpe I configuration in order to evaluate the consistency of CD’s performance
for cells having more than the previously considered number of machines. namely
three. The results are displayed in Figure 3.3 for both cases where the buffers are
constrained or unconstrained to a FIFO selection. They indicate that. when the
intermediate buffers are constrained to the FIFO selection. CD is consistently su-
perior to the SPT and LWKR rules and. again. increasingly so as the arrival rate
grows. However, when all the intermediate buffers are not constrained. CD’s per-
formance is comparable to those of the other two dispatching rules for arrival rates
of 0.040 and less. At higher rates of arrival. SPT starts to perform better. reaching

approximately 2% superiority over CD for an arrival rate of 0.030.

It is apparent, at least in the pure Howshop, that as more machines are added to
a cell, the more critical becomes the influence of FIFO versus non-FIFO processing
in the intermediate buffers. CD outperforms the other dispatching rules by a wider

margin as the number of buffers that are constrained to FIFO processing increases.
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158



On the other hand, the other dispatching rules are at their best when the number
of constrained buffers, particularly in bottleneck machines, is minimum. A compar-
ison of the results presented in Figure 5.3 with those shown in Figures 5.1 and 3.2
indicates that CD’s power tends to diminish as the number of machines grows in a
cell. Despite this trend, CD remains competitive in problems for which the other dis-

patching rules excel, such as cases involving non-FiFO buffers and high arrival rates.

5.3.3 Minimizing the Mean Tardiness

The evaluation of CD for minimizing the mean tardiness is conducted next by

employing simulation experiments on data sets organized as follows.

1. Each data set contains 20 randomly generated problems: each problem covers

500 job arrivals.
2. Data sets are generated for the arrival rates of 0.030. 0.040 and 0.050.

3. The due date for each job is specified by using the modified Potts and Van
Wassenhove method with TF and RDD equal to 0.4 or 0.8. respectively.
Thus. there are four possible combinations of these TF and RDD values:

TF=RDD=0.4: TF=0.4 & RDD=0.8;: TF=0.8 & RDD=0.4: and TF=RDD=0.8.

The simulations are undertaken in a manner similar to that used for the mean flow-
time criterion. However. in this instance, the dispatching rules to which CD is com-
pared are : 1) SPT: 2) EDD; 3) MDD: 4) minimum remaining slack (MSLK): and
5) FIFO. With the exception of FIFO and SPT, these dispatching rules are selected

because they are due date based rules. Due date based rules are a logical choice for
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satisfying due date based criteria of which the minimum mean tardiness is one. SPT

is included because of its effectiveness when many of the jobs are inevitably tardy (8].

5.3.3.1 Cells with FIFO Intermediate Buffers

Simulations are performed for the three configurations shown in Figure 3.1.
They are done first for FIFO-constrained intermediate buffers and subsequently for
non-FIFO buffers. Figures 5.4 through 5.6 show the results for the former case. The
results for a pure flowshop having three machines (i.e. a Tvpe I configuration) are
presented in Figure 5.4. They are expressed again in terms of the mean performance
ratio but. this time, the references are the mean tardiness results obtained with the
FIFO dispatching rule. Each of the curves shown in Figure 5.4 corresponds to one
of the three different arrival rates and one of the four combinations of TF and
RDD values considered. Results for similar data for the Tvpe II and Type III
configurations are given in Figures 5.5 and 5.6. Figures 5.4 through 3.6 reveal a
consistent superiority of CD over the better of the other dispatching rules. The

following general observations can be made.

1. The overall trends are similar for all three configurations.

2. The difference in the performance superiority of CD. relative to the best of

the other dispatching rules, widens yet again with increasing Aq.

3. CD’s superiority over the next best dispatching rule is greatest (by approxi-
mately 25%) for the data sets generated with a high \; and low TF and RDD

values.
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1. The use of non-FIFO buffers for severe bottleneck machines, as seen in the

Tvpe II configuration. greatly improves the performance in the cell.

Table 5.3 compares the frequency. expressed as a percentage of the total number
of problems tested, with which each dispatching rule provides the best solution in
the test problems. The results are sorted according to the configuration and the due
date tardiness factor. TF. Table 5.3 indicates that CD dominates in the Type [ and
Tvpe III configurations. It is also the better in more than two out of every three

problems for the Tvpe II configuration.

Figures 5.4 through 3.6 generally show a steady decline in the performance ratio
as TF increases. This trend is attributable to the increasing total tardiness accom-
panying high TFs. When the total tardiness numbers are low. small differences
are magnified if the numbers are expressed as a percentage of one of the tardiness
values. The converse is true for large tardiness numbers. Hence. a further analysis
of the results is undertaken by identifving the number of times that each dispatch-
ing rule gives the best solution. It is performed by using the Relative Deviation
Index (RDI) proposed by Kim [46]. The RDI measures the deviation from the best
and worst results obtained by the methods being compared. The RDI is defined as
(T, — Tp)/(Ty — Tp). T, is the result given by the method under evaluation. T, and

T, are the results given by the best and worst solutions, respectively.

Table 5.4 combines the results for all tardiness factors in each configuration.
They are expressed in terms of the mean RDI and the corresponding standard de-
viation. A mean RDI that is nearer zero indicates a greater consistency in giving

the best solution. A mean RDI around 1.0 implies that a particular method tends
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Table 3.3: Best solution frequency (in percentage) for mean tardiness.

Configuration | TF | CD SPT EDD MDD MSLK FIFO

Type [ 0.4 [99.17 000 0.00 000 083 0.00
089750 250 0.00 000 000 0.0
TvpeII |04 (7167 917 917 230 167 583
0.8 |73.33 11.67 230 10.83 0.00 167
Type III | 0.4]97.50 083 000 167 000 0.00
0.8 |94.17 583 0.00 000 000 0.0

to give the worst solutions. The results of Table 3.4 show that CD invariably has a
mean RDI close to zero. Thus. on this last basis. CD is significantly superior to the

other dispatching rules employed in the comparisons.

Table 5.4: Relative Deviation Index for FIFO intermediate buffers.

Configuration RDI CD SPT EDD MDD MSLK FIFO
Type I mean | 0.000 0.536 0.649 0350 0.818 0.897
std. dev. [ 0.004 0.271 0.245 0.206 0.235 0.126

Type I1 mean 0.0v3 0.557 0476 0.349 0.694 0.745
std. dev.” | 0.191 0.345 0.327 0.316 0.328 0.297

Type III mean | 0.003 0.443 0.630 0273 0.795 0.896
std. dev. | 0.019 0.294 0.269 0.166 0.257 0.127

* standard deviation



5.3.3.2 Cells with non-FIFO Intermediate Buffers

Test data is replicated in simulations where the intermediate buffers are not
constrained to any selection rule. The corresponding results are presented in Figures
3.7 through 3.9 for the three configurations. They show that, although the margin
of superiority of CD is reduced over the other dispatching rules. the differences are
still significant in two ways. First. the MDD rule appears to he more dominant
across the range of test problems. SPT, on the other hand. is poor for problems
having a low TF but stronger than MDD when TF is high. In comparison. CD is
consistently superior, by varving margins. to both MDD and SPT. The implication
is that. by employing CD. the need to determine which dispatching rule is best for

a particular problem is eliminated.

Table 5.5: Best solution frequency (in percentage) for Non-FIFO intermediate

buffers.

Configuration | TF | CD SPT EDD MDD MSLK FIFO

Type I 0.4|89.17 0.00 0.00 1083 0.00 0.00
0.8 | 81.67 18.33 0.00 0.00 0.00 0.00
Type 11 0.4]67.50 0.00 0.00 3250 0.00 0.00
087833 1750 0.00 417 0.00 0.00
Tvpe III 0.4 8250 0.00 000 17.30 0.00 0.00
0.8 | 8417 15.83 0.00 0.00 0.00 0.00
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Secondly, a comparison of the dispatching rules with respect to the number of
times each rule finds the best solution (see Table 5.3) reveals that CD outperforms
the other rules by a margin largely in excess of 2 to 1. Hence, even in situations
where the traditional dispatching rules are at their best, namely non-FIFO inter-
mediate buffers throughout, CD still remains significantly superior. These results
are confirmed in Table 5.6 which presents coniparisons in terms of the mean and

standard deviation of the RDI.

Table 3.6: Relative Deviation Index for non-FIFO intermediate buffers.

Configuration RDI CD SPT EDD MDD MSLK FIFO
Type [ mean | 0.003 0.360 0.638 0.141 0.808 0.909
std. dev. | 0.013 0.328 0.246 0.080 0.223 0.116

Tyvpe 1 mean | 0.005 0.354 0.649 0.092 0.806 0914
std. dev. | 0.013 0.327 0.261 0.068 0.244 0.110

Type III mean | 0.004 0.352 0.807 0.136 0.797 0915
std. dev. | 0.013 0.323 0.127 0.090 0.256 0.113
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5.4 Conclusion

The evaluation of CD under conditions of dynamic job arrivals has demonstrated

that CD has flexibility with respect to the following factors.

Satisfaction of different performance criteria.
CD performs better than the most obvious "quick and dirty’ rules that can be used

for the performance criteria tested.

Adaptability to different configurations.
In all three configurations. CD is generally superior for the different criteria inves-
tigated. The overall performance of CD is also observed to be less sensitive to the

configuration than the other dispatching rules tested.

Buffer Constraints.

The two extremes of a cell having either all FIFO or all non-FIFO intermediate
buffers are investigated. CD excels in both extremes. It is therefore highly proba-
ble that CD is also superior in configurations where only a selected number of the
intermediate buffers are constrained to FIFO selections. This makes CD attractive
in cells whose hardware constraints necessitate the combining of buffers that allow

part overtaking with those that do not.

Finally, it may be concluded that the advantages of CD that were identified when
it was tested with static problems are also appasrent in the dynamic shop scenarios.

Thus, CD provides a combination of the algorithmic power of static heuristics with
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the high flexibility that is observed in on-line dispatching rules.



Chapter 6

Implementation of CD in an Existing FMC

6.1 Introduction

A scheduling and control system that is based on CD. and its implementation
on a real FMC. is presented in this chapter. Chapter 1 described a FMC that is
located in the Automation Laboratory at the University of Manitoba. This FMC is
the subject of a physical implementation of CD. The main purpose of this actual.
real-world application of CD is to demonstrate its feasibility and to identify prob-
lems. hardware or otherwise, that can be a major impediment in its use in industrial

settings.

6.2 A CD-based Scheduling and Control System

CD’s requirement for real-time machine status information is met through the
employment of ‘agents’. These agents are independent programs that have specific
functions. They can communicate with each other as well as with the main con-
trol program residing in one of the personal computers. Agents may be classified
as ‘intelligent’ or ‘informative’. The agents utilized in the implementation of CD
are strictly informative, serving to facilitate a heterarchical relationship between

machines. Their primary tasks are to monitor specific activities, and to respond

173



with the appropriate information when interrogated by the main program that is

controlling the CD process.

6.2.1 Informative Agents.

Informative agents are created at the start-up of the FMC control program (i.e.

the main program). Each machine is provided with the following three agents.

1. Downloading agent.

(S

. Monitoring agent.

3. Buffer agent.

The functions of each agent are described next.

e The Downloading Agent.
This agent receives jobs as they arrive at a machine and it retrieves the corre-
sponding CNC part programs. [t supervises the successful downloading of the
part program, and informs the Monitoring agent once the machine is ready to
start operations. Upon completion of the operations. the Downloading agent
consults the Buffer agent of the machine to which the completed part is to
be unloaded. Depending on the response. the Downloading agent authorizes
the unloading or it waits until a clearance is received from the next machine’s

Buffer agent.
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e The Monitoring Agent.
The Monitoring agent’s main task is to monitor the processing operations on
a job. It responds to queries regarding the anticipated time remaining until
completion of the current operation on the machine, and it notifies the down-
loading agent upon successful completion of the current job. The Monitoring
agent also compares the actual and expected processing times for a job. If
minor deviations are observed, the agent updates its database to reflect the
actual processing time for that particular job. Thus. this agent is able to detect
trends in a machine’s capabilities. Although not considered in this research.

such information may be used. say. in a tool wear analysis.

e The Buffer Agent.
The Buffer agent’s function is purely organizational. It tracks the jobs in the
buffer. blocks the reception of new jobs if the buffer is filled to capacity. and

it collects data for the calculation of instantaneous and overall WIP levels.

6.2.2 The Main Program

The main program runs the CD algorithm and dispatches jobs. It communi-
cates with all the different agents of the machines. The main program is normally
in a ‘wait’ mode, awaiting requests. When a machine is free, its downloading agent
sends a message to the main program. requesting to be loaded with a new job. Upon
receiving this message. the main program identifies all the jobs that are available
for selection and it initiates the CD algorithm. All the Monitoring agents are con-
tacted with requests for the remaining times of the jobs currently being processed.
The main program also obtains the number and types of jobs waiting at each buffer

from the corresponding Buffer agent. All this information is used subsequently to
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determine the machines’ ready times, which is needed by the CD algorithm. When
a job is selected by the CD, the main program replies to the machine that sent the

initial request, giving the identity of the job that will be processed next.

Figure 6.1 illustrates the lines of communication between the different agents and
machines. as well as between the programmable logic controller (PLC) and material
handling system for the FMC. The operating system that is used is QNX 4.0 [76}.
The QNX 4.0 operating system provides an environment that is highly suitable for
multi-tasking and networked communications between programs running on differ-

ent computers and controlling different equipment in the FMC.

6.3 Experimental Trials

The availability of an actual FMC allows the testing of CD under ‘real-world’
conditions. The robotic handling system found in this FMC is a shared resource so
that jobs often have to wait for service. Consequently. a job’s waiting time as well
as the travel times between the different machines are factors affecting the sched-
ule. The aim of the experiments is to investigate how well CD performs in this
kind of situation, considering that the previous computer simulations had assumed
these travel times to be negligible. Actual travel time includes travel-empty and
travel-loaded times, as well as the pick-up and drop-off times. In the FMC under
consideration, the total travel time expended in servicing a part transfer averages
between 10 and 12 seconds., depending on the distance between the origin and des-

tination of the travel.
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Figure 6.1: Schematic of the control system for the FMC.



6.3.1 Procedure

The FMC contains four machines. The first machine is a TERCO., two and one-
half axis mill. The second is also a mill, an EMCO two and one-half axis machine.
Part programs are downloaded to these machines from a PC. The downloading time
depends on the complexity of the operations on the part. but usually ranges between
25 and 30% of the part’s processing time. This relatively high downloading time is
due to the old technology used in these aged (1980's) but available machines. The
remaining two machines are locally constructed gadgets that arc designed to simu-
late a paint booth and an inspection machine. They go through the motions of the
simulated activities. but no processing actually occurs. The FMC has part buffers
to load the TERCO and the EMCO mills. The absence of intermediate buffers to
hold the WIP means that machine blockage and starvation is a major factor in the

performance of this FMC.

Nine parts are manufactured in the experiments. All the parts have the same
route, namely Machine 1 (TERCO) to Machine 3 and then to Machine 4. The
inclusion of all four machines in the experiments was not possible due to limitations
on the available input-output cards used in the PCs. The nine parts are listed
in Table 6.1 together with the processing times (in seconds). A given processing
time includes only the duration that a machine is physically processing a part.

Downloading times are independent of the processing times.



Table 6.1: Processing times (in seconds) for parts manufactured in the FMC.

Part | TERCO EMCO PAINT INSPECT
(ML) (M2)  (M3) (M)
A 23 0 39 31
B 54 0 61 90
C 55 0 57 55
D 35 0 80 83
E 55 0 61 85
F 23 0 57 3
G 69 0 3 56
H 23 0 62 3
I 35 0 11 31

6.3.2 Experimental Data

Each test set involves jobs that are selected randomly from the nine parts listed
in Table 6.1. Five different sets are created and processed in the FMC. Test set
#1 contains one of each part for a total of nine jobs. In each of the remaining four
sets, four of the parts shown in Table 6.1, are selected randomly. Three of these
parts. which are also picked randomly, have a demand of three units each. and the
remaining part has a demand of two units to give a total of eleven jobs in each set.
The part types and demanded quantities in each of the last four test sets are given

in section 1 of Appendix B.

The performance criterion selected in these experiments is the minimum mean

flowtime. The test sets are fed to the FMC in the form of bills-of-materials (B.O.M.)
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which list each part demanded and the corresponding due date. In the experiments,
a B.O.M. is processed in the cell three times, each time by using one of either the
SPT, LWKR or CD rules. The results are compared in Table 6.2. They clearly in-
dicate that CD performs better than the other two dispatching rules. The margins
of superiority are similar to those obtained in the simulation experiments discussed
carlier in Chapter 3. It is noteworthy that the simulations assume intermediate
buffers with unlimited capacity. However, there are no intermediate buffers in the
actual FMC. Thus. the results. albeit from a small number of problems. serve to
demonstrate CD’s ability to accommodate capacity limitations in the intermediate

buffers.

Table 6.2: Mean flowtime (in seconds) for the test sets.

Set SPT LWKR CD
1 703 04 658

132 2 T11

"~

3 819 813 796
4 773 818 742
3 725 718 722

The mean flowtime criterion is selected in the experiments because it better il-
lustrates the essential differences between CD and the traditional dispatching rules.
The SPT and LWKR rules, for example, are static because the part selections are
always based on part processing times, which are constants. The result is that the
order in which the parts flow in the cell is fixed and independent of the time or

instantaneous conditions. Furthermore, when considering job batches, the jobs in a
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batch normally have identical processing times and due dates. In such cases. rules
like SPT and EDD maintain the integrity of the batches. CD. on the other hand. is
not averse to breaking up batches into individual units and working effectively with
batch sizes of one unit. Table 6.3 illustrates this difference with a comparison of the
processing sequences obtained for test data set #4. It is obvious that CD. with its
ability o sequentially select individual units from a batched order. utitizes a larger

search space that increases the likelihood of finding a better solution.

Table 6.3: Processing sequences for test set #4.

RULE Processing Sequence

SPT A-A-A-F-F-F-B-B-B-G-G
LWKR F-F-F-A-A-A-G-G-B-B-B
CD A-A-A-F-G-F-G-G-B-B-B

The physical experiments suggest that the CD’s theoretical performance holds
for real-world situations. In addition. the experience gained from these experiments
points to the difficulties that would be faced in building simulation models for these
cells. The quantity of messages and signals that are exchanged. together with the
possibilities of their nearly simultaneous occurrence. make collecting data for an
accurate model very difficuit. Finally, one of the main benefits of FMCs is their
flexibility that allows production in batch sizes as low as one unit. Traditional
dispatching rules tend to promote bigger batching, which defeats one of the main
purposes of a FMC (i.e the flexibility to produce efficiently in low unit quantities).
CD has the advantages of the dispatching rules but does not compromise the ad-

vantages associated with low batch sizes and simultaneous production.
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6.4 Conclusions

The implementation of CD in a real FMC is realized by means of a computer-
ized network over which individual programs can communicate with each other and

share information in order to collectively meet the scheduling objectives.

A number of experiments designed to test CD’s performance in real-world situ-
ations were done. In these experiments, CD’s calculations were based on real-time
job completion and in-process time data. The travel times between the machines.
though real. were nonetheless assumed negligible in CD’s calculations. Unlike the
simulations, however. the effect of these travel times is conveved to the CD algorithm
indirectly through the actual completion times. A more accurate implementation
would use an estimate of the anticipated travel time in CD’s calculation of the ma-
chine ready times (R). This modification is likely to boost the CD’s performance.
The travel time estimates between different destinations can be obtained straight-
forwardly by maintaining a record of actual travel times during the operations of

the FMC.

A major advantage of the modular scheduling control architecture described in
this chapter is the ease with which system reconfiguration can be adopted. New
machines may be integrated into the scheduler simply by creating new agents and
opening the lines of communication between these and the existing agents. Like-

wise, a machine may be taken out of the system merely by disengaging its agents.
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Finally, the ease with which historical data can be collected, processed and then
used to modify scheduling procedures gives the CD-based scheduling and control
svstem described in this chapter potential for further flexibility and adaptability in

real-world applications.
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Chapter 7

Conclusions and Recommendations

One impediment to realizing efficient and automated scheduling in FMCs is the
inflexibility of scheduling algorithms {2|. Scheduling systems are usually selected
bearing in mind the characteristics of the FMC under consideration. A modifi-
cation or update of the initial schedules normally requires manual intervention.
On-line scheduling utilizing dispatching rules permits greater Hexibility from modu-
larization. but there still remains the problem of deciding which rule to use at each

machine.

CD is a hybrid algorithm-dispatching rule that is designed to permit a more
generic approach to scheduling in FMCs. Its algorithmic nature allows the quick
computation of ‘good’ solutions by reducing the complexity of a problem to a se-
ries of single machine problems. When performance criteria are unique so that no
method is known to be ‘best’ for the single machine problem. a neural network can
be trained to learn a relationship to determine the job sequences. The dispatching
component, on the other hand. imparts flexibility to the algorithm through modu-
larization and localization of the scheduling decisions. Therefore, CD is designed to
be generally effective for different scheduling criteria. as well as for different hard-
ware setups or configurations, and for operations under highly dynamic conditions

involving the need to constantly update schedules.
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The CD approach was introduced in this thesis and its formulation was pre-
sented. Its performance was evaluated by means of a series of simulations and tests
using randomly generated data. These tests covered three different performance
criteria: the minimum mean flowtime, the minimum mean tardiness, and the min-
imum number of tardy jobs. The performance of CD was also investigated under
conditions allowing for part overtaking (i.e. non-FIFO processing in the interie-
diate buffers). The evaluation of CD was made through comparisons with existing
dispatching rules that are identified in the literature to be the most appropriate for

each of the scheduling criteria and configurations examined.

Several important conclusions were reached from the particular test evaluations
and from observations about CD’s general performance. CD is a scheduling system
that can be implemented in a non-hierarchically controlled cell. As such. it improves
the possibility for greater scheduling flexibility. Although the same can be said for
traditional dispatching rules, CD possesses the following advantages over these rules.

based on the results from the problems tested.

First. CD generally performs better than traditional dispatching rules in satis-
fving the given performance criterion. Second, CD eliminates the need to decide
which dispatching rule to use and when it is to be used. CD is a self-contained
rule that adapts to the existing scheduling criteria and instantaneous conditions.
Third. CD is the least sensitive of the scheduling methods and rules examined for
the different types of configurations considered. Fourth, CD is able to adjust well
to cells that have one or more intermediate buffers restricted to a FIFO policy for

processing the jobs waiting in a queue. In comparison, traditional dispatching rules
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are sensitive to the ability of intermediate buffers to select from the queue. More-
over, their performance deteriorates rapidly as more of these buffers are restricted
to FIFO. Consequently, CD represents a step in the direction of a more ‘generic’
dispatching rule, one that is less sensitive to hardware configurations and machine
setup or layout details. In addition, CD is observed to perform equally well in dy-

namic as well as static situations.

In conclusion, CD adequately addresses the issue of the inflexibility of algorithms
raised in [2] by combining the power of algorithmic solutions with the utility and
Hexibility of the dispatching rule approach. The result is a scheduling system that
meets the challenge of operating in a highly automated environment that is subject
to variations and uncertainties in the scheduling demands placed on it. Furthermore.
CD is well-suited to application in a non-hierarchical framework. the resulting ben-
efits of which are self-configuration, good adaptability to operational variations and

hardware constraints. as well as simplified control software.

7.1 Recommendations

Experiences from the present work allow several recommendations and sugges-
tions to be made concerning possible directions of future research. The recommenda-
tions are categorized into those that involve artificial neural networks in scheduling

and those that pertain to CD and its concepts.
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7.1.1 Artificial Neural Networks

The artificial neural network was used for single machine problems. There are

two areas where further research could be useful.

The first recommendation is an application-oriented one. In many industrial and
service applications. sequencing decisions are made by human operators on a rule-
of-thumb basis. The decision process is vague and not defined clearly. The neural
networks proposed in Chapter 4 may be used to learn the decision making function.
Theyv can be trained on-line by collecting data and documenting the operator’s de-
cisions. Once trained. it would be interesting to see how well a neural network can

actually replace che operator.

The second recommendation involves using a neural network as a preprocessor to
derive starting solutions for further processing by means of simulated annealing. An
initial solution generated by a neural network is subjected to simulated annealing,.
the purpose of which is to arrive at a sequence of jobs that better satisfies the given
performance criterion. The research’s objective would be to determine how much
faster simulated annealing is able to find a solution within a given percentage of the
optimal when its starting sequence (the seed) is supplied by a neural network simi-

lar to that described in Chapter 4. rather than by other commonly employed means.

7.1.2 Cooperative Dispatching

The results from CD are encouraging but further work is needed in its application

in real-world situations. The following recommendations are suggested with this
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objective in mind.

1. The assumption of unlimited buffer sizes was maintained throughout this re-
search. This assumption is often unrealistic because FMCs usually have a
finite buffer that has a very limited size. CD needs no modification to enable
it to proeess cases involving finite buffer <izes. In practice, if a buffer is full.
the preceding station would be ‘machine-blocked’ and it would not be calling
the dispatching algorithm. There is no reason to expect that CD would be
any less effective in cells having buffers of finite size. Therefore. it is sug-
gested to further test and evaluate. by means of simulation experiments. the

performance of CD for finite buffer sizes.

2. The assumption that a machine does not wait for any job that is not already
in its buffer eliminates many scheduling alternatives. CD can be modified to
run without this 'no inserted idle time’ constraint. This relaxation is one that

should be considered for further research.

3. The number of routing possibilities (configurations) considered is small. Fur-
ther research with CD is needed in flowshops having a greater number of
routing patterns. A possibility is the investigation of CD in a FMS that is

composed of individual cells of the three types shown in Figure 3.1.

4. The extension of CD to job shops is worth considering. A drawback is the
fact that traditional dispatching rules excel as a shop’s routing configurations
approach that of a job shop. Nevertheless. CD may yet exhibit strength in
this area, particularly if there are restrictions on the sequence of processing

job queues at the intermediate buffers.
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5. Finally, there is still room to improve the quality of the CD solutions beyond
that achieved in this research. Specifically, studies may lead to improved meth-
ods for estimating the sequence costs, SCy,, discussed in Chapter 3. Also, the
assignment of the weight, W, to each machine, k, in the cooperative selection
routine can be investigated further with a view to using neural networks to

learn what weight to assign to each machine under certain conditions.
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A.1 MLATENET

Neural Network : MLATENET.
Purpose : To minimize the maximum job lateness.
Configuration : 11-3-1
Training Data : TF € {0.2. 0.3, 0.4, 0.5. 0.6, 0.7. 0.8. 0.9, 1.0}
RDD € {0.1. 0.2, 0.3. 0.4. 0.5. 0.6. 0.7. 0.8. 0.9. 1.0}
Training Problems : 1440  (Seed = 2166)
Training Patterns : 1320

Testing Data : TF € {0.2. 0.4, 0.6. 0.8. 1.0}. RDD € {0.1. 0.3. 0.5. 0.7. 0.9}

Test Problems : 25 (Seed = 2966)
Test Patterns : 300

Learning Rate : 0.1
Training Epochs : 15.000

TSS :13.43
eq : 0.635
TD :0

Weight Matrices

Input - Hidden Layer weights:

-3.066990e-001
-3.231424e+000
1.820114e-001

-9.059555e+000
1.025432e-001
-1.502021e+001

-1.523147e+000
1.359400e+001
4.853420e-001

.903076e-002
.304463e+000

1.022312e-001  7.544243e+000 4.336131e-001 7.073975e-002
4.668078e+000 5.442970e-001 -1.770292e+001 -1.299319e+000
9.468389e-002 -7.374052e+000 -2.486156e-001
-2.240847e-001 8.917808e+000 6.972447e+000 -1.976929e-001
-3.857825e-001  1.362066e+000 3.793844e+000 2.133730e+000
-1.216855e-001 -5.046008e-001 -8.792189e-001

1.833205e-001 -1.413963e+001 5.096458e-001 6.538086e-001
6.547380e+000 7.121986e-001  3.452943e+000 -2.662191e+000
5.391429e-001 5.463501e+000 -9.809249e-001
-8.217373e-002 1.547697e+001 -6.119469e-001 -9.438477e-001
-6.336817e+000 -1.214851e+000 4.092513e-001 2.042065e+000

~2.103815e-001

1.618479%e+001

9.410969e-001
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Hidden Layer biases:

-4.347391e+000 3.766100e+000 -4.355261e-001
-6.855554e+000

Hidden - Cutput Layer weights:

-1.106960e+001  2.131350e+000 5.059003e+000
1.526738e+000

Output Layer bias:

1.526738e+000

6.533647e+000

-1.000726e+001



A.2 FLONET

Neural Network : FLONET.
Purpose : To minimize the mean weighted flowtime
Configuration : 11-9-1
Training Data : TF € {0.2. 0.3. 0.4, 0.3. 0.6, 0.7. 0.8. 0.9. 1.0}
RDD € {0.1.0.2, 0.3, 0.4, 0.5. 0.6. 0.7, 0.8. 0.9. 1.0}
Training Problems : 1440 (Seed = 2166)
Training Patterns : 4320

Testing Data : TF € {0.2. 0.4. 0.6, 0.8, 1.0}, RDD € {0.1. 0.3. 0.5. 0.7. 0.9}

Test Problems : 25 (Seed = 2966)
Test Patterns : 300
Learning Rate : 0.1
Training Epochs : 12.000

TSS :26.29
: .839
:26

€q
TD

Weight Matrices

Input - Hidden Layer weights:

~3.958291e+000
8.952026e-001
3.455886e+000

-1.306666e+001
5.313110e-001
-1.16078%e+000

-3.213868e+000
2.135010e-001
1.589236e+000

-7.004067e+000
-1.682129e-001
-4.805099e+000

1.594817e+000
~3.625488e-001
-2.903833e+000

7.972166e-002
-5.515576e+000
9.992399%e-001

-1.226466e+000
-2.280666e+000
3.441786e-001

-6.769790e-002
1.731758e+000
-4.729265e-001

9.713864e-001
~3.526396e+000
~1.973866e~001

-4.759546e-001
3.906402e+000
-7.512914e-002

4.278783e-001
2.316587e-001
-8.083598e-002

7.467416e-001
-6.085520e-001
1.107513e-002

2.033150e-001
5.910141e-001
1.444752e+000

-4,368251e-001
-8.551941e-001
-2.274358e-002

-1.66G939e-002

-1.036894e+000
-3.045168e-001
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3.456864e+000
-6.146061e-001

~-3.337891e+000
8.554002e-001

8.921369e+000
2.701317e-001

2.357204e+000
-4.736033e-001

1.073345e+000
1.988397e+000



.145441e+000
1.395264e-001
.826951e-001

.112363e+000
4.467773e-002
.698213e+000

.194024e+000
3.022461e-001
1.252505e+000

6.829798e+000
.824951e-001
.241645e+000

.646354e-001
.619814e-001
.874070e-001

.872262e+000
.030772e+000
.851303e-001

.495775e-001
.107189e+000
.339409e+000

.207234e-001
.236802e+000
.289043e+000

Hidden Layer biases:

-5.633033e-001
-4.036040e+000
6.289301e+000

1.
1.

203681e+000
302697e+000

5.671426e-001
-4.141731e-001
-8.104638e-001

-1.019777e+000
6.415933e-001
-2.4888402+000

7.478958e-001
-2.517221e-001
-1.982472e-001

-2.237389e-001
-1.641974e+000
-5.668483e-001

-2.543739e+000
-7.802731e-001

Hidden - Output Layer weights:

1.074030e+000
-1.058986e+000
1.753356e+000

-9.
6.

927220e+000
088645e+000

Output Layer bias:

8.209095e-001

-1.632421e+000
-2.622602e+000
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-

-2

.628493e+000
.169328e+000

.497613e+000
.140972e+000

. 185082e+000
.451938e-002

.898614e+000
.021426e+000

.656348e+000
.906613e-001

.487260e+000
.869069e-001



A3 MTARNET

Neural Network : MTARNET.
Purpose : To minimize the mean tardiness.
Configuration : 11-3-1
Training Data : TF € {0.2, 0.3, 0.4, 0.5. 0.6. 0.7. 0.8. 0.9. 1.0}
RDD € {0.1, 0.2, 0.3. 0.4, 0.3, 0.6. 0.7. 0.8. 0.9. 1.0}
Training Problems : 1440 (Seed = 2166)
Training Patterns : 1320

Testing Data : TF € {0.2. 0.4. 0.6. 0.8. 1.0}. RDD € {0.1. 0.3. 0.5. 0.7. 0.9}

Test Problems : 25 (Seed = 2966)
Test Patterns : 300
Learning Rate : 0.1
Training Epochs : 50.000

TSS :54.35
eq : 1.575
TD : 1434

Weight Matrices

Input - Hidden Layer weights:

3.422941e+000
1.307954e+000
-5.188765e-001

2.245911e+000
5.131679e+000
6.157806e-001

-6.208619e+000

-3.290435e+001
-3.379533e+000
-3.643243e+000

-1.239345e+001
~7.868436e+000
4.420018e+000

-4.668241e+000

1.949022e+001
2.319486e+001
-2.834768e+000

1.460653e+001
5.915402e+000
.040275e+001

1.485286e+000

.903076e-002
.067577e+001

.073975e~-002
.663502e+000

.976929e-001

4.796005e+000 -5.135983e+000 -6.881566e+000 2.405949e+000
5.511001e+000 -9.238803e+000 3.392075e+000
-2.747124e+000 -4.570393e+000 7.441916e+000 6.538086e-001

1.988243e+000 4.793335e-001  1.282762e-002 -9.444334e-001
2.562881e+000 3.001840e+000 -6.650412e+000
-1.345196e-001 1.536452e+001 -8.757015e+000 -9.438477e-001
2.834704e-001 8.904617e-001 -1.975560e+001  1.299788e+001

-6.304913e-001

9.771422e-001

-4.245096e+000
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Hidden Layer biases:

1.919859e-001  4.229702e+000 4.746261e+000
-2.352674e-001

Hidden - Output Layer weights:

-1.653063e+000 4.881444e+000 5.629674e-001
3.285158e+000

Output Layer bias:

8.815259e-001

(3]
o
(]

1

-7

.974510e+000

.084196e+000



A.4 MTCLASS

Neural Network : MTCLASS.
Purpose : To categorize a single machine scheduling problem into ore of 10 cate-
gories.
Configuration : 4-10
Training Data : TF € {0.4, 0.5, 0.6, 0.7. 0.8. 0.9. 1.0}
RDD € {0.1. 0.2, 0.3. 0.4. 0.5, 0.6, 0.7. 0.8. 0.9. 1.0}
Training Problems : 10,000 (Seed = 2166)
Training Patterns : 10.000

Weight Matrices

0.151939 0.389633 0.627479 0.651928 -0.178366
0.0533543 0.280919 0.935939 0.245317 0.350467
0.453377 0.776992 0.0357607 0.311846 0.590159
0.73834 0.36513 0.439994 0.515783 0.633482
0.106373 0.226577 0.345476 0.897986 -0.103328
0.19769 0.503506 0.828295 -0.30919 0.0390222
0.391582 0.859676 0.246891 0.441876 0.632249
0.58268 -0.0485028 0.0473426 0.142823 0.982013
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A.5 Neural Sequencers for Minimizing the Mean Tardiness

Neural Sequencer : MTCAT-1.

Purpose : To minimize the mean tardiness in Category 1 problems.

Configuration : 11-9-1

Input - Hidden Layer weights:

4.677412e-001
-1.840099e+000
4.516523e+000

1.436085e-002
-2.480069e-001
-4.345551e-001

-6.181824e-001
3.940505e+000
-1.80675%e+000

-2.442908e-001
2.264986e+000
-2.583182e-002

-2.504283e-002
-1.108663e+000
1.416437e+000

-1.431515e-001
1.173246e+000
-4.249310e-001

~5.980269e-001
2.462074e+000
2.348430e+000

-9.011472e-002
-9.779583e-001
4.660978e-001

-1.901171e-001
-6.100599e-001
1.018702e+000

-1.137428e+001
-1.651093e+000

~1.552465e+001
2.438742e+001

-1.453786e+001
-2.392672e+000

.064676e+001
1.114669e+001

1.294635e+001
.733944e-001

9.610055e+000
.516498e+000

.884919e+000
9.369264e+000

6.173291e+000
.671314e-001

3.647763e+001
.557581e-001

Hidden Layer biases:

-1.007449e+000
~2.589707e+000
Hidden - Output

-3.866877e+000
1.576229e+001

-3.934651e+000
-5.248339e+000
Layer weights:

-1.624008e+000
-1.496721e+001

Qutput Layer bjas:

~7.252007e-001

-8
-1

.409519e+000
.478670e+000

.501302e-001
.829194e+000

.028842e+000
.026365e+000

.428081e+000
.017054e+000

.863931e-001
.417016e+000

.845273e-001
.193705e+000

.006337e+000
.615512e+000

.212944e-001
.789083e-001

.340271e-001
.345549e+000

.297521e+000
.530486e-001

.052518e-001
.910170e+000
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6.903076e-002
4.215058e-001

7.073975e-002
.815327e-002

.976929e¢-001
2.477845e+000

.538086e-001
.570783e+000

-

-9
-3

.438477e-001
.893542e-001

.623291e-001
4.433985e-001

.788330e-001
8.992622e-001

.266968e-001
.486903e-001

6.187134e-001
.301678e-~001

-2.894308e+000
-1.943773e+001

-1.371583e+000
1.278571e+001

1.085173e-001
. 775828e+000

.032672e+000
1.326606e+001

7.347265e+000
.128601e+001

.880575e+000
3.381440e+000

.641526e+000
1.099728e+001

.304063e+000
3.082200e+001

.663624e+000
3.523309e+001

-1.385191e+000
~1.413402e+000

-1.970940e+001
~2.228032e-001

-5.160263e+000

3.071353e+000



Neural Sequencer : MTCAT-2.

Purpose : To minimize the mean tardiness in Category 2 problems.

Configuration : 11-9-1

Input - Hidden Layer weights:

-4.435973e-002
-7.337094e-001
-9.202659e-001

-2.178343e-001
1.253633e-001
4.784720e-001

.073246e~001
5.375314e-001
5.015628e-001

4.030195e-002
5.041401e-002
8.298451e~-001
5
6
3

.283258e-001
.112131e-001
. 179390e-001

1.245621e-001
.930649e-001
8.584650e-001

.420816e-001
4.681961e-001
.239070e-001

.568580e-001
.419962e-001
€.758633e-001

3.119033e-001
-4.752694e-001
-1.004289e+000

-5.784576e-001
3.008425e-001

-1.078615e+000
1.141004e+000

7.000551e-001
8.723893e-001

.750970e-001
1.772565e+000

4.432214e-001
.004084e-001

2.000430e+000
.267479e+000

.843656e+000
.716483e-002

.491446e-001
4.890501e-001

5.030415e-001
.561725e+000

Hidden Layer biases:

-3.680516e-001
9.212825e-002
Hidden - Qutput

6.896010e-002
3.322996e+000

-6.800822e-001
-1.962540e-001

Layer weights:

-1.322755e+000
-2.4503568e+000

Output Layer bias:

2.718521e~001

-2.839601e-001
-6.317413e-001

2.511777e-001
8.820732e-001

-9.063693e-002
7.308593e-001

-6.756124e-001
-1.976067e-00t

7.529383e-001
7.256837e-002

9.023049e-001
-2.018901e+000

-2.336052e+000
1.855688e-001

5.213666e-001
5.350408e-001

9.382060e-001
1.266403e-001

1.007177e-001
8.059094e-001

-2.181983e-001
-5.770903e-001

208

6.903076e-002
.312991e~-002

7.073975e-002
3.446732e-001

.976929e-001
6.879960e-001

6.538086e-001
.382635e-001

.438477e-001
.648428e-001

.623291e-001
1.514538e-001

.788330e-001
7.079044e-001

.266968e-001
7.284036e-001

6.187134e-001
6.223078e-001

-5.
-4,

653970e-002
562845e-001

-1.477793e+000
1.648837e+000

8.804739e-001
-8.062992e-001

5.003695e-001
-6.369765e-001

2.071970e-00
3.160734e-001

-1.566723e-001
1.153668e+000

-3.445832e-001
9.625859e-001

1.633510e~-001
2.900419e-001

7.915624e-002
~-1.177272e+000

2.893983e-001
~-5.523191e-001

-6.870408e-001
-8.889450e-001

-7.016308e-001

3.935031e-001



Neural Sequencer : MTCAT-3.

Purpose : To minimize the mean tardiness in Category 3 problems.

Configuration : 11-9-1

Input - Hidden Layer weights:

1.543269e-001

-9.703837e-001
-1.002623e+000
-1.763976e+000

.608932e+000
.363317e+000

Nw

7.237460e-001
9.131327e-002
3.178265e-001

.448941e+000
.234526e-002
.856832e-001

)

3

5
-5.728604e-002

7.643632e-001
-4.176374e-001

2.894936e+000
-1.962564e+000

4.693301e-001

3

i
-1
-1

.444274e+000
.881158e+000
.201869e+000

.018096e+000
2.309221e-001
8.871562e-001

8.928878e+000
-3.530689e+000
1.875646e+000

-7.519130e-001
1.E95E82e-002

.245186e+000
2.203693e+000

2.103439e-001
3.589182e-001

.842941e-001
1.120033e+000

2.451279e-001
.243997e+000

5.799472e+000
.569283e+000

.214453e+000
8.678598e-002

-1.650474e+000
1.851543e-001

3.747381e+000
1.977056e+000

Hidden Layer biases:

-4.670905e-001
2.854981e-002
Hidden - Qutput

6.743297e-001
2.741187e+000

3.527330e-001
-1.346661e+000

Layer weights:

-2.517326e+000
-2.911354e+000

Output Layer bias:

1.890782e-001

-3

-6.
-1.

-3

-1.

-3
-5

.234916e-001

<.

s

.267637e-001
.665613e-001

.511442e-001
-2.

718264e-002

458926e-001
371981e+000

.948855e-001
.368322e-001

.793998e-001
.583745e-001

.013252e+000
.917318e~001

.981400e-001
.269705e-001

.730163e+000

611765e+000

.948178e-001
.988101e-001

.307031e-001
.022856e-001
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6.903076e-002
-1.2689358e-002

7.073975e-002
7.036184e-003

~1.976929e-001
2.340274e-001

6.538086e~001
-7.999855e-001

-9.438477e-001
-1.234190e+000

-7.623291e-001
5.356339e-001

-6.788330e-001
~4.804392e-001

-9.266968e-001
4.197438e~001

6.187134e-001
-4.746137e+000

-6.626567e-001
-1.624185e+000

-9.847968e-001
6.054347e+000

-7

-4.
-2.

-1

.488763e-001
.943520e-001

b= o A

.254711e+000
.462670e+000

.450741e-001
.640507e~002

.489238e~001
.357507e-001

.167507e-001
.183098e+000

.141943e-001
.690001e+000

.619447e-001
-1.

164534e+000

333310e-001
787046e-001

.895853e+000
-2.

441410e+000

.354885e-001

.096591e+000



Neural Sequencer : MTCAT-4.

Purpose : To minimize the mean tardiness in Category 4 problems.

Configuration : 11-9-1

Input - Hidden Layer weights:

4.
1.84009%e+000
4.

1.
.480069%e-001

-1

-2

-4.

-6.
3.
-1.

.442908e-001
.264986e+000

-2
2

-2.

-2.
-1.
1.

.431515e-001
1.
-4.

-1

-5.
2.
2.

-9.
-9.
4.

-1.
-6.
.018702e+000

1

677412e-001
516523e+000
436085e-002
345551e-001
181824e-001

940505e+000
806759e+000

583182e-002

504283e-002
108663e+000
416437e+000

173246e+000
249310e-001

980269e-001
462074e+000
348430e+000

011472e-002
779583e-001
660978e~-001

901171e-001
100599e-001

-1.

-1

137428e+001

£51093e+000

-1.552465e+001
2.438742e+001

.453786e+001
392672e+000

-1
-2.

.064676e+001
1.114669e+001

1.294635e+001
.733944e-001

9.610055e+000
.516498e+000

.884919e+000
9.369264e+000

6.173291e+000
.671314e-001

3.647763e+001
.557581e-001

Hidden Layer biases:

-1.007449e+000
-2.589707e+000

Hidden - Output

~3.866877e+000
1.576229e+001

-3.934651e+000
-5.248339%e+000
Layer weights:

-1.624008e+000
-1.496721e+001

OQutput Layer bias:

-7.252007e-001

-8.409519e+000
-1.478670e+000

3.501302e-001
-1.829134e+000

-3.028842e+000
2.026365e+000

-1.428081e+000
5.017054e+000

-1.863931e-001
1.417016e+000

-6.845273e~001
1.193705e+000

-3.006337e+000
5.615512e+000

-6.212944e-001
5.783083e-001

-6.340271e-001
2.345549e+000

7.297521e+000
-7.530496e-001

9.052518e-001
-1.910170e+000
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.903076e-002
.215058e-001

=X, ]

7.073975e-002
.815327e-002

.976929e-001
2.477845e+000

6.538086e-001
1.570783e+000

-9.438477e-001
-3.893542e-001

.623291e-001
4.433985e-001

.788330e-001
8.992622e-001

.266968e-001
.486903e-001

6.187134e-001
.301678e-001

-2.894308e+000
-1.943773e+001

-1.371583e+000

1.278571e+001

-1
-1

-1

.085173e-001
.77882%e+000

.032672e+000
.326606e+001

.347265e+000
.128601e+001

.880575e+000
.381440e+000

.641526e+000
.099728e+001

.304063e+000
.082200e+001

.663624e+000
.523309e+001

.385191e+000
.413402e+000

.970940e+001
-2.

228032e-001

~5.160263e+000

3.071353e+000



Neural Sequencer : MTCAT-5.

Purpose : To minimize the mean tardiness in Category 5 problems.

Configuration : 11-9-1

Input - Hidden Layer weights:

~-3.615809e-001
-3.5883€6€e-001

~1.285914e+000

-5.288227e+000
-2.197056e+000
-9.541688e-001

~7.395977e-001
.794291e-001
.285477e-001

.176646e-001
.143750e-001
.046731e-002

.989601e+000
.922846e+000
.611810e+000

N W

1

2

1

3.665344e+000
~2.542975e+000

3.517250e-001

5

2

.551236e-001
.571602e+000
-3.128461e+000

-8.70505%e-001
-4.182576e-001
2.945211e-001

1.514818e+000
-3.391398e+000
-2.021120e+000

-1.310852e+000
1.305026e+000

[SAVAS)

5.406647e-001
6.199761e+000

-6.612605e-002
3.141012e-001

-8.7095%3e-001
2.003421e+000

6.692524e-001
-5.410731e+000

5.966870e+000
-2.625420e+000

-6.191207e+000
3.648507e+000

-1.707396e+000
5.929551e-001

5.890106e+000
-2.143056e+000

Hidden Layer biases:

-6.999658e-001
~4.822417e-001
Hidden - Output

-8.573953e-001
4.901695e+000

-9.677491e-001
-2.046861e+000

Layer weights:

-5.211130e+000
-4.488684e+000

Qutput Layer bias:

1.802884e-~001

-4.059140e-001
-2.309809e-001

-1.141506e+000
~-1.331330e+000

-7.658251e-001
3.205694e-002

-6.162238e~001
~1.927774e-001

5.296493e+000
8.559944e-001

-1.742053e+000
-3.453919e+000

-2.010188e+000
4.931724e+000

-1.875214e-001
1.703389e-001

1.777104e+000
-5.737065e-001

-8.186832e-001
5.312232e-002

-2.869361e-001
-4.851822e-001

6.903076e-002
-7.916819e-001

7.073975e-002
-2.532996e+000

-1.976929e-001
1.711026e-002

6.538086e-001
-1.423689e+000

-9.438477e-001
-1.344307e+000

~7.623291e-001
-2.346335e+000

-6.788330e-001
1.445998e-001

-9.266968e-001
2,923881e-002

6.187134e-001
3.338360e-001

-6.066894e-001
-2.368863e+000

-9.251966e-001
4.041551e+000

4.160010e-001
=1.102245e+000

-6.577158e-002
-4.753310e+000

-7.689396e-001
2.244368e~-001

-5.929565e-001
6.846126e~001

-1.356290e+000
1.091675e+000

-1.965971e-001
-4.006563e+000

-1.462144e+000
-2.488296e+000

-5.790188e-001
-9.113238e-001

~-2.640531e+000
~4.933375e+000

~-1.875028e+000

3.346888e+000



Neural Sequencer : MTCAT-6.

Purpose : To minimize the mean tardiness in Category 6 problems.

Configuration : 11-9-1

Input - Hidden Layer weights:

3.169615e-001
-2.803287e-001
-8.604938e-001

-4.408445e+000
3.387958e+000
1.113712e+000

-4.613308e-001
5.309547e-001
4.618978e-001

-1.402026e-001
2.266824e-001
965448e-001

3.
2.212413e-001
4.273477e-001
-4,295774e-001
6.505902e-001
-1.
1.

999248e+000
395318e+000

-1.388960e-001
1.496915e+000
-2.949699¢-001

-1.709127e+000
5.813569e-001
7.567417e-001

1.990729e-001
-2.080002e+000
-8.974127e-001

-5.275680e-001
2.562620e-001

-7.890277e-001
8.403111e-001

7.564538e-001
8.179238e-001

-4.567626e-001
1.029328e+000

2.776002e-001
-5.915722e-001

2.410887e+000
-1.144304e+000

-6.837067e-001
-4.815821e-002

-4.192469e-001
4.305713e-001

1.082375e+000
-1.441753e+000

Hidden Layer biases:

-2.576805e-001
4.514601e-001
Hidden - Output

6.152979e-001
3.562857e+000

-4.367163e-001
-4.158819e-001
Layer weights:

-4.847762e+000
-1.500498e+000

Output Layer bias:

1.016191e+000

-4.298917e-001
-68.0517668e-001

2.822636e+000
.466516e-003

9.647558e-003
7.088443e-001

-6.
-7.

897633e-001
788115e-001

7.4656743e-001
1.388340e-001

1.405557e+000
.694630e-001

-146175e+000
1.619376e-001

1.533017e+000
3.165576e-001

1.007138e+000
6.483853e-001

1.040085e-001
7.699033e-001

1.517214e-001
-1.150454e+000

212

]

-9

-7.
-1.

-3.
-1.

.903076e-002
.508381e-002

.073975e-002
.792683e+000

.976929e-001
.719116e-001

.538086e-001
.191585e-001

.438477e-001
-9.

874265e-001

623291e-001
278094e-001

.788330e-001
.431228e-001

.266968e-001
.921371e-001

.187134e-001
.733782e-001

304845e-001
155913e-001

.305103e-001
.657597e+000

[ararery

2.

.915110e-001
.721656e-001

.247061e-001
.158598e-001

.075261e-001
.274169e-001

.830668e-001
.143670e-001

.676277e-001
.138482e-001

.992842e-001
.535338e+000

.709345e-002
.052811e+000

.857977e-001
.867591e-001

.529715e-001
.086597e-001

.320758e-001

455840e-001



Neural Sequencer : MTCAT-7.

Purpose : To minimize the mean tardiness in Category 7 problems.

Configuration : 11-9-1

Input - Hidden Layer weights:

4.677412e-001
-1.840099%e+0CC
4.516523e+000

1.436085e-002
-2.480069e-001
-4.345551e-001

-6.181824e-001
3.940505e+000
-1.806759e+000

-2.442908e-001
2.264986e+000
-2.583182e-002

-2.504283e-002
-1.108663e+000
1.416437e+000

-1.431515e-001
1.1732462+000
-4.249310e-001

-5.980269e-001
2.462074e+000
2.348430e+000

-9.011472e-002
-9.779583e-001
4.660978e-001

-1.901171e-001
-6.100599e-001
1.018702e+000

-1.137428e+001
.§51093e+C0CC

-1
i

~1.562465e+001
2.438742e+001

-1.453786e+001
-2.392672e+000

.064676e+001
1.114669e+001

1.294635e+001
.733944e~001

9.610055e+000
.516498¢+000

.884919e+000
9.369264e+000

6.173291e+000
.671314e-001

3.647763e+001
.567581e-001

Hidden Layer biases:

-1.007449e+000
-2.589707e+000
Hidden -~ Output

~-3.866877e+000
1.576229e+001

-3.934651e+000
-5.248339e+000
Layer weights:

-1.624008e+000
-1.496721e+001

OQutput Layer bias:

-7.252007e-001

-8.40951%e¢+000
~-1.478€70e+0C0C

3.501302e¢-001
~1.829194e+000

-3.028842¢+000
2.026365¢+000

~1.428081e+000
5.017054e+000

-1.863931e-001
1.417016e+000

-6.845273e~001
1.193705e+000

-3.006337e+000
5.615512e+000

-6.212944e-001
5.789083e-001

~6.340271e-001
2.345549e+000

7.297521e+000
~7.530496e~001

9.0526518e-001
~1.910170e+000

213

6.903076e-002
4.215058e-00C1

7.073975e¢-002
.815327e-002

.976929e-001
2.477845e+000

.538086e-001
.570783e+000

- o

-9
-3

.438477e-001
.893542e~001

.623291e-001
4,433985e-001

.788330e-001
8.992622e-001

.266968e-001
.486903e-001

6.187134e-001
.301678e~001

-2.894308e+000
-1.943773e+001

-1.371583e+000
1.278571e+001

1.085173e-001
.775829e+000

.032672e+000
1.326606e+001

7.347265e+000
.128601e+001

.880575e+000
3.381440e+000

.641526e+000
1.099728e+001

.304063e+000
3.082200e+001

.663624e+000
3.523309e+001

-1
-1

.385191e+000
.413402e+000

-1.970940e+001
-2.228032e-001

-5.160263e+000

3.071353e+000



Neural Sequencer : MTCAT-8.

Purpose : To minimize the mean tardiness in Category 8 problems.

Configuration : 11-9-1

Input - Hidden Layer weights:

-9.802405e-001
-2.484€56e+000
-8.876889¢-001

-6.828735e+000
7.814742e+000
-1.964419e-001

-1.634461e+000
2.490574e-002
-8.910426e-002

-3.123145e-001
-2.420058e-001
2.570358e-001

-5.953310e+000
2.592664e+000
-1.298854e+000

1.729662e+000
-1.423515e+000
-7.653250e-001

7.100394e+000
1.839805e+000
-7.934936e-002

-1.628586e+000
-4.804588e~002
8.215570e~-001

4.592445e+000
-1.915030e-001
-2.847407e+000

-1.928381e+000
-2.887442e+000C

-1.358049e+000
7.793112e-001

2.348872e-001
6.445853e-002

.236168e-001
8.475640e-001

3.448057e+000
.693193e-001

4.081439e+000
.778745e+000

.368046e-001
.197629e-001

(6,

.585644e-001
3.401137e-001

2.803810e+000
-5.377738e+000

Hidden Layer biases:

1.860829e+000
-1.632984e-002
Hidden - Output

1.816501e+000
1.490720e+000

~1.391814e+000
-2.319427e+000
Layer weights:

-4.370256e+000
-2.493593e+000

OQutput Layer bias:

6.611063e-001

-2.373066e+000
-1_7210506e+000

- s S IURTUS

1.647144e+000
-1.147791e+000

-8.343361e-001
5.783598e-001

-7.717883e-001
-9.693241e-001

1.624738e+000
1.387335e+000

1.635250e+000
1.612993e~001

-7.087750e-001
-1.451415e+000

1.083534e+000
-4.324463e-002

-2.415856e+000
2.593820e+000

-5.929097e-001
5.640954e-001

2.831418e-001
-1.130141e+000

214

6.903076e~002
8.348310e-001

7.073975e-002
5.025221e+000

-1.976929e-001
3.015364e-001

6.538086e-001
-7.899785e-001

~-9.438477e~001
-6.438985e-001

-7.623291e-001
-2.380257e+000

-6.788330e-001
-2.560757e-001

-9.266968e-001
1.354764e+000

6.187134e~-001
2.942798e+000

-6.169658e-001
-5.300326e-001

-1.575207e-001
3.862264e+000

-1
-1

-6
-7

.976796e+000
.232949e-001

.898361e-001
.388776e+000

.431660e-001
.017782e-002

.032329e-001
.365144e-001

.896040e+000
.640195e+000

.693147e-001
.964108e-001

.734710e+000
.461686e+000

.804573e-002
.247322e-001

.017001e-001
.883987e+000

.414778e+000

.752506e+000



Neural Sequencer : MTCAT-9.

Purpose : To minimize the mean tardiness in Category 9 problems.

Configuration : 11-9-1

Input - Hidden Layer weights:

-3.765355e-001
-8.439211-001
~-1.024766e+000

-1.737088e-001
-2.274423e-001
-3.500135e-001

-3.523689e-001
3.470795e-001
3.225124e-001

-4.998782e-002
-1.164026e-001
2.632394e-001

-1.816188e-001
4.847368e-001
-5.503579e-001

1.515913e-001
~7.858254e-001
2.748755e+000

-1.441919e-002
1.697719e-001
7.359818e-001

~1.496150e-001
-4.623313e-001
4.266347e-001

6.133577e-001
-6.054930e-001
-2.553817e+000

~9.278341e-001
6.211548e-001

-4.656877e-001
1.698282e+000

4.641480e-001
7.059066e-001

.027287e-001
2.375144e+000

3.510887e-001
.427347e+000

4.008674e+000
.076621e+000

.913348e+000
2.605315e+000

.515130e~-001
5.107639%e-001

3.741748e+000
.450943e+000

Hidden Layer biases:

-5.009275e-001
-8.028476e-001
Hidden - Output

-5.576227e-001
4.522039e+000

-1.470994e+000
-4.206330e-001

Layer weights:

-1.744920e+000
-3.077816e+000

Qutput Layer bias:

3.093489e-001

-5.

-5

-

- W

-3

303825e-001

.088182e-001

.381375e+000
.044472e+000

.573582e-001
.072762e-001

.306529e-002
.195874e-001

.799499e-001
.466904e-001

.940300e+000
.916463e-001

.679044e+000
.644082e+000

.892457e-001
.472873e-001

.028686e+000
.527224e+000

.172564e-001
.021906e-001

.966599e-001
-4,

264953e-001

6.903076e-002
.777682e-001

7.073975e-002
.602542e-001

.976929e-001
3.941671e-001

6.538086e-001
.792536e-001

-9
-7

.438477e~001
.754613e-001

-7.
-3.

623291e-001
677728e~001

.788330e-001
4.145026e-001

.266968e-001
3.483792e-001

6.187134e~001
3.406091e-001

-3.768092e-001
-1.051972e+000

-1.365604e+000
4.490139e+000

6.150393e-001
-9.558653e-001

-5.690168e-001
-9.187117e-001

-2.675127e-001
2.131961e-001

-3.630763e-001
9.872506e-001

-3.732517e-001
5.883910e-001

-5.172030e-001
2.904786e+000

1.640838e-001
1.477061e+000

-3.299505e-001
-6.283815e-001

-1.323640e+000
-3.749784e+000

-8.919895e-001

7.628268e-001



Neural Sequencer : MTCAT-10.

Purpose : To minimize the mean tardiness in Category 10 problems.

Configuration : 11-9-1

Input - Hidden Layer weights:

9.138037e-001
-1.526897e+009
-9.861993e-001

-2.307568e+000
2.692153e+000
3.087276e-001

-4,229246e-001
5.651955e-001
4.569260e-001

1.793196e-001
~2.837144e-001
3.352573e-001

=2.000272e-001
1.037912e+000
-3.428977e-001

1.906802e+000
-2.161566e+000
9.117205e-001

-2.955782e-001
1.173524e+000
~2.059868e-001

~-1.074425e+000
3.957972e-001
6.575273e-001

1.170494e+000
-2.006431e+000
-5.168353e~-001

-3.734618e-001
1.,768942e-001

.835626e-002
.932154e-001

-

7.710511e-001
8.134502e-001

.212966e-001
8.280534e-001

.812539e-001
.248384e-001

2.169696e+000
.709780e-001

.276509e-001
.773624e-001

.237821e-001
3.978442e-001

1.115086e+000
~1.307211e+000

Hidden Layer biases:

-3.012568e-001
-2.242817e-001
Hidden - Qutput

1.185505e+000
3.005931e+000

~1.051737e+000
~3.198827e-001

Layer weights:

-3.516281e+000
-1.281559e+000

OQutput Layer bias:

4.345924e-001

-5.
-3.

-8

-3

-1
-1

- 0

- 0

-2.
-1.

651459e-001
543155e-001

.047872e+000
.113264e-001

.117959e-002
.871363e-001

7.016776e-001

871493e-001

.851012e-001
.782169e-002

.429744e-001
-3.

674838e~-001

.087544e+000
.635716e-001

.682619e-001
.9611739e-001

.728573e-001
.004562e+000

.210384e-002
.840943e-001

995844e-001
150462e+000

216

-~

-3.
-2.

.903076e-002
.374543e-001

.073975e-002
.804906e+000

.976929e-001
.051865e-001

.538086e-001
.145079e-001

.438477e-001
.264715e+000

.623291e-001
.001698e+000

.788330e-001
.783071e-001

.266968e-001
.142288e+000

.187134e-001
.926166e-001

535406e-001
263915e-001

.460121e-002
.374844e+000

-4.
-1.

.147100e-001
.8660768e-001

.497593e-001
.163421e-001

.218475e-001
.164861e-001

.398076e-001
.727824e-001

.856572e-001
.548330e-001

.136283e-002
.859245e-001

.648341e-001
.621962e-001

.519531e-001
.876676e-001

980590e-001
405179e-001

.043950e-001

.149121e-001



Appendix B

Test data for FMC experimental trials



Problem data for the experimental tests of CD on the FMC at the University of

Manitoba:

Table B.1: Data set 2.

Part | Quantity
A 3
I 3
H 3
B 2

Table B.2: Data set 3.

Part | Quantity
3
3
3

o m Mmoo

[ SV]

218



Table B.3: Data set 4.

Part | Quantity

A 3
F 3
C 3
G 2

Table B.4: Data set 5.

Part | Quantity
A 3
[ 3
C 2
D 3

219





