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Abstract
Acceleration of Differential Evolution for Aerodynamic Design
by
Tim Rogalsky

Ph.D. in Mathematics, University of Manitoba

It has been demonstrated that Differential Evolution (DE) is a robust optimizer for
aerodynamic design of fan blade profiles, but it can require 50,000 flow calculations to
converge to a solution. This is feasible with only the simplest aecrodynamic model.
Accelerated convergence is required for the design algorithm to be more useful. This
thesis presents, as benchmarks, convergence rates for three design cases using Bezier
parameterization of airfoils and optimizing with DE. These benchmark rates are
accelerated in two ways. First, an improved solution space is provided by Bezier-
PARSEC airfoil parameterization. To compare their representation abilities, Bezier and
Bezier-PARSEC parameterizations are used to reproduce 63 airfoils. Second, DE is
modified in three different ways to provide improved convergence characteristics with
the new parameterization: 1) A new selection operator is introduced, variable birthrate,
which can bias the search toward the most promising regions of the solution space, 2) DE
is hybridized with Downhill Simplex, a local search method, and 3) DE is accelerated by
an algorithm modeling the biological immune system. The most successful strategy is
Hybridized Immune Accelerated DE (HIADE). Using the BP 3333 parameterization, it

converges within 10,000 flow calculations, four to ten times faster than the benchmarks.
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Chapter 1 Introduction

1.1 Aerodynamic Design

Aerodynamic design can be thought of as a search for an optimal shape. The
meaning of "optimal" depends on the application. Some require high lift — for example an
aircraft that must carry an extremely heavy load. Others might require low drag — for
maximum fuel efficiency. The ultimate goal of the research described here is a more
efficient fan. An efficient fan converts most of the energy required to run it into actual
airflow. In many current fans, much of the energy is used to overcome the drag on the
blades, or is converted into heat. A better design would improve energy conservation
(and decrease operational cost) without sacrificing capability.

Aerodynamic design has its roots in wind-tunnel experiments. Physical models
would be built, tested, refined, and re-tested repeatedly until satisfactory results vs;ere
obtained. In the 1930's and 1940's, systematic investigations of this type were performed
by NACA (see for example Chapter 7 in Abbot and von Doenhoff, 1959). Of course, this
process is arduous and expensive. It is desirable to streamline as much of it as possible.

One helpful insight is that the performance of an airfoil depends greatly on the
distribution of pressure (or velocity) along its surface. Stratford (1959a, 1959b), for
example, developed a pressure distribution that, theoretically, would achieve any
specified pressure rise in the shortest possible distance and with the least possible

dissipation of energy. Thus it became possible to pose what is known as an inverse design
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problem: Given a pre-specified pressure distribution, obtain the airfoil for which that
distribution is realized.

In the 1950's, Richard Eppler (1957) began to solve inverse design problems using
conformal transformations, ultimately developing a computer program to do so (Eppler,
1990). Building on Stratford's work, Liebeck and Ormsbee (1970) designed a family of
pressure distributions to provide maximum possible lift in an incompressible flow.
Liebeck (1973, 1978, 1990) later extended this work, designing airfoils for aircraft,
racing cars, and even a model pterodactyl!

Another approach to inverse design is to treat it as an optimization problem. An
objective function calculates the pressure distribution around a given blade, measures the
difference from the target distribution, and defines that to be the cost of the blade. An
optimizer is asked to find the shape that minimizes this "cost." For example,
Venkataraman (1996b) used a generalized reduced gradient method to solve several
inverse problems.

In that direction lies our earlier work (Rogalsky, 1998). The object of design is the
cross-sectional shape of the fan blade. Software was designed, implementing a new
design algorithm. Differential Evolution (DE) (Storn & Price, 1995) was demonstrated to
be an effective optimizer for the problem. Several test cases were performed, in which
DE was able to search out near-optimal solutions, even when other commonly used
optimizers failed (Rogalsky et. al., 2000).

The focus of the current thesis is to accelerate the optimization component of the

aerodynamic design method. Although DE was robust, it commonly required the
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evaluation of 50,000 shapes, a computational nightmare in fluid dynamics. If the number
of function evaluations can be reduced significantly, it should be possible to incorporate a
more sophisticated flow solver, making the end product more useful.

The DOS-based software developed earlier (Rogalsky, 1998) was made more user-
friendly by adding a windows interface. Dialog boxes are used for input of DE and
acceleration parameters. Run-time convergence information is displayed on-screen,
including the shapes of the current blade and pressure distribution. This enabled insight to
be gained into the nature of convergence, and sparked some of the acceleration ideas. The
result is FanOpt v. 3.5, and is included, with documentation, as Appendix A on the
accompanying CD.

The remainder of this introductory chapter will briefly review the FanOpt
aerodynamic design algorithm, and then introduce ideas for acceleration. There are three
components to the design method: 1) optimization with DE (section 1.2), 2) represen-
tation of the geometric shape as a real-valued vector (section 1.3), and 3) simulation of
the flowfield around the shape (section 1.4). The cost function to be minimized by DE is
described in section 1.5. Finally, in section 1.6, the specific focus of this thesis will be

introduced: acceleration of DE for aerodynamic design of fan blades.

1.2 Optimization by Differential Evolution

Many current design methods use local optimizers in the search. Designers start
with a shape already being used — but in some way inadequate — for the required

application. Minor modifications are made by the optimizer, and usually these are
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accepted only if they improve performance. After a small number of iterations, the
improved design is accepted. The result, of course, is a design with only minor
’improvements.

It is preferable to perform a more general search — with potential to find a radically
new design, unbiased by preconceived conceptions of what works best. Such a search
could be used not only to improve a design already in use, but also to design "from
scratch” a shape useful for a new application. What is required, then, is a fast algorithm
for global optimization. And that is where Differential Evolution (DE) comes in real
handy!

DE is a member of a broader class of algorithms called Evolutionary Algorithms
(EAs). The most common of these is the Genetic Algorithm (GA). GAs operate on bit-
strings, suitable for discrete or integer optimization problems. They interpret the
objective function value at a point as a measure of that point's fitness as an optimum.
Then, guided by the principle of survival of the fittest, an initial population is transformed
into a solution bit-string through repeated cycles of mutation, recombination, and
selection. Sporadic attempts to incorporate these principles in optimization have been
made since the 1960's (see a review in Chapter 4 of Goldberg, 1989). It was the work of
Holland (1975), though, that established GAs on a sound theoretical basis.

GAs have proven to be very effective at finding the global optimum in
complicated, multidimensional landscapes. Among other researchers, aerodynamic
designers are turning to GAs in steadily increasing numbers (Chan, 1998; Obayashi &

Tsukahara, 1996; Takahashi et. al., 1999; Vicini & Quagliarella, 1999, Perez et. al.,
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2000). Shapes such as two-dimensional airfoils or three-dimensional wihgs are encoded
as long bit strings using various computer graphics techniques. The GAs are then used to
find the shape that minimizes some aerodynamic fitness function, such as the drag-to-lift
ratio, or the deviation from an aerodynamic objective (a desired pressure distribution, for
example.)

Another type of EA, the Evolution Strategy (ES), uses the same principles, but
operates on real-valued vectors. ESs are thus better suited for continuous parameter
optimization problems. They were introduced in the 1960's by three students at the
Technical University of Berlin — Rechenberg, Bienert, and Schwefel. The three were
looking for a decision-making tool for an experimental aerodynamic design problem -
minimizing drag for a flexible, slender, three-dimensional body in a wind tunnel. Afier
some commonly used optimizers failed, Rechenberg (1965) proposed the idea of random
decision-making. Using a population of one, random mutations of the design variables
determined the next shape to be tested. If the new design had lower drag, it survived to
the next generation. Bienert (1967) actually constructed a robot that could perform the
decisions and actions automatically. Rechenberg (1973) later increased the population
size, and the theory was further developed by Schwefel (1975a, 1975b).

DE is an ES that grew out of Ken Price's attempts to solve the Chebychev
polynomial fitting problem that had been posed to him by Rainer Storn (Storn & Price,
1995). DE is emerging as one of the most impressive EAs. Storn and Price (1997b) have

demonstrated, using an extensive testbed of objective functions, that DE converges faster
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and with more certainty than many other acclaimed global optimization methods,
including several ESs.

The list of applications for which DE has been effective is long. It includes
optimization of bioprocesses such as the growth of penicillin (Balsa-Canto, 1998), layout
design of mass transit signaling systems (Chang and Du, 1999), allocation of processors
in a parallel architecture (Rae and Parameswaran, 1998), solution of scheduling problems
(Riittgers, 1997), redundancy optimization for MPEG (Storn, 1995), optimal control of
Differential-Algebraic Systems (Wang and Chiou, 1997), and characterizing a structure
when one can only observe the X-ray scattering pattern (Wormington et. al., 1999).
References to many others can be found in the DE bibliography maintained by Jouni
Lampinen (2001).

The crucial difference between DE and other ESs lies in mutation. Traditional ESs
(and GAs) use predetermined probability distribution functions to perturb vectors. This
leaves them unable to adapt the perturbation magnitude to the topology of the objective
function. DE, on the other hand, uses the difference of two randomly chosen vectors to
perturb another vector. The magnitude is thus automatically appropriate to the given
landscape, and the search is less random, being dictated by the shape of the given
objective function. This property of DE is known as self-organization. Ultimately, it
results in better convergence properties as the algorithm nears the global minimum.

Since DE lies at the heart of this thesis, the essential elements will be described
here. For a more detailed summary, see Price (1999). The overall structure of the DE

algorithm resembles that of most other population-based searches. Two arrays are
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maintained, each of which holds a population of N, D-dimensional, real-valued vectors.
The primary array holds the current population while the secondary array accumulates
vectors that are selected for the next generation. The population evolves toward a solution

by a process of natural selection, or survival of the fittest. (See Figure 1.1.)

Generation Trial Generation
i vectors i+1
b, b} »b,
b Mutation, bt Fittest >b
2 crossover 2 survives T2
: : :
bN bN >bN

Figure 1.1 Overall structure of Differential Evolution.

Each vector b, in the primary array is a "parent", which generates a trial vector b’,

(its "child") through mutation and recombination (described below). The fitness of any
given vector by, is determined by its cost, C(b,), where C(x) is the objective function to be
minimized. The cost of each parent is compared to that of its child, and the fittest vector
(the one with the smaller objective function value) survives to the next generation, so that

<i+1>
b,

the vector in generation i + 1 is either b, from generation i, or its child, bf, :

bt _ {ba if C(b,) < C(bf,) wn

b, ifC(b’)<C(b,)
Mutation is an operation that makes small random alterations to one or more
parameters of an existing population vector. Mutation is crucial for maintaining diversity

in a population, and is typically performed by perturbation. DE uses the population itself

as a convenient source of appropriately scaled perturbations. Each pair of vectors (b,, by)
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in the primary array (generation 7) defines a vector differential, b, —b,. When these two
vectors are chosen randomly, their weighted difference can be used to perturb another
vector in the primary array, b,:

b, =b,+F(b,-b,), (1.2)
where b, is a mutation of b,. The weight, F, is a user-supplied constant. The optimal
value of F for most functions lies in the range 0.4< F<1.0.

An effective variation of this scheme involves keeping track of the best vector so

far, b". This can be combined with b, and then perturbed, yielding
b, =b,+F(b ~b,)+F(b,~b,). (1.3)

In this scheme — known in the DE community as DE/rand-to-best/1 and used throughout
this thesis — the most successful member of a population influences all trial vectors.

Recombination, or crossover, provides an alternative and complementary means of
creating viable vectors. Designed to resemble the natural process by which a child
inherits DNA from its parents, new parameter combinations are built from the
components of existing vectors. This efficiently shuffles information about successful
parameter combinations, enabling the search for an optimum to focus on the most
promising areas of the solution space.

Each primary array vector by, is targeted for recombination with b/, (the mutated

vector in (1.2) or (1.3)) to produce a trial vector, b’,. Thus the trial vector is the child of
two parents - b, the primary array vector against which it must compete, and b/, which

is itself a random mutation of b,. DE can use two types of crossover - binary and
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exponential. When combined with the mutation operation in (1.3), the strategy is labeled
DE/rand-to-best/1/bin or DE/rand-to-best/1/exp, respectively. The amount of information
(DNA) shared in recombination is determined by the crossover constant CR, where
0<CR<I1.

In exponential crossover, a starting parameter, p, is selected at randoxﬁ. CRis
compared to a uniformly distribﬁted random number from within the interval [0,1).
Subsequent trial vector parameters are chosen from b/, until the random number generator
produces a value larger than CR (or until all D parameters have been determined). The
remaining parameters then come from the primary array vector. Thus, if 7 random

numbers were generated before one of them was greater than CR, the trial vector

parameters, (bf,) , 1< j< D, are determined by
j

(b2),, p<j<p+r

bl) = 1.4
(a)j (ba)j, otherwise (L9

for values of r smaller than D — p, and

(b;,)j, p<j<D and 1<j<p+r-D
(bs), = (15)

(b, )j , otherwise

for values of r larger than D —p.
In binary crossover, the random experiment is performed for each parameter. If the

random number is smaller than CR, the trial vector parameter is chosen from b.,

otherwise it comes from b,. Thus, for each parameter, j, in the trial vector, a random
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number 7; is chosen, where 0 < F; < 1. The trial vector parameters, (bﬁ,) L,1<j<D,are
J

then determined by

v)., ifr;
(v2), = o (1.6

- (ba)j, otherwise

In both types of crossover, exponential and binary , when CR = 1 every trial vector

parameter comes from b/, , making the trial vector b, an exact replica of the random

mutation of b,.

Once new trial solutions have been generated, selection determines which among

them will survive into the next generation. Each child b}, is pitted against its parent b, in
the primary array. Only the fitter of the two is then allowed to advance into the next
generation.

In all, just three parameters control evolution: the population size N, the weight F
applied to the differential in mutation, and the constant CR that mediates the crossover
operation. DE has not been patented in the hopes that scientists around the world will
develop it further. It has been coded in a Variéty of languages, including C, C-++, Matlab
and Java, and can be downloaded at no expense from Rainer Storn’s DE webpage

http://www.icsi.berkeley.edu/~storn/code.html.

1.3 Geometric Representation

DE operates on real-valued vectors, not on shapes. So one task of the design

algorithm is to encode the geometry of the airfoil. In Rogalsky (1998), a new method of
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airfoil representation was developed using Bezier curve parameters. A brief review of the
parameterization literature and a summary of the Bezier method follow.

Many methods have been used for geometric representation of airfoils. They
include the inverse Theodorsen transformation (Theodorsen and Garrick, 1933), linear
combination of basis shapes (Vanderplaats et. al., 1975), basis functions (Hicks and
Henne, 1977), orthogonal shape functions (Chang et. al., 1995), Legendre polynomials
(Coiro & Nioclosi, 1995), the extended Joukowski transformation (Jones, 1990), and
PARSEC parameterization (Sobieczky, 1998, 1999). Many of these have proven
unsuitable for aerodynamic optimization, being susceptible to wild oscillations, and
requiring many parameters (Burgreen et al., 1992; Venkataraman, 1995b). Others cause
slow convergence when used with EAs (Oyama, 1999). Bezier polynomials on the other
hand, are proving to be quite useful (Venkataraman, 1995a).

P. Bezier, of the French firm Regie Renault, pioneered the use of computer
modeling of surfaces in automobile design. His UNISURF system, initiated in 1962 and
used by designers since 1972, has been applied to define the outer panels of several cars
marketed by Renault (Bezier, 1972, 1974). The foundations of Bezier curves, however,
go back much further. In 1926, S. Bernstein presented a constructive proof of the
Weierstrass approximation theorem (Davis, 1963), using functions that have become
known as Bernstein polynomials. Bezier curves have a very similar form, and are
sometimes referred to as Bezier-Bernstein polynomials. An nth order Bezier curve is

defined parametrically using n+1 two-dimensional control points.
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In one of the first examples of their use in aerodynamic design, Birckelbaw (1989)
used two 44™ order Bezier curves to define an airfoil. The 180 control point variables
were used as the optimization parameters. Venkataraman (1996a) used four Bezier curves
to define an airfoil — two each for the top and bottom surfaces — reducing the number of
design variables to 19. Aerodynamic shapes other than airfoils have also been
parameterized. Burgreen et al. (1992), for example, represented the surface of an internal-
external nozzle with Bezier curves in place of grid points. This reduced the number of
design variables from 47 to six, and the CPU time by a factor of almost four.

The airfoil parameterization developed in Rogaisky (1998) is an enhancement of
Venkataraman's method. Two Bezier curves are joined end-to-end to form the camber
profile (the mean-line running down the center of the airfoil). Two are joined to form t1‘1e
half thickness profile (measured perpendicularly above and below the camber). See
Figure 1.2. The curves are scaled to represent an airfoil with unit chordlength (the
distance from the nose to the trailing edge). Camber-thickness definition of airfoils dates
back to the 1930s when it was discovered that several effective wing sections had nearly
the same thickness distribution when the mean line was straightened (Abbot and von
Doenhoff, 1959). That is, the aerodynamic properties of an airfoil are more directly

dependent on camber and thickness than on upper and lower surface shapes.
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(b3,b.4.2__"“_('b5’b4) (é6’b4)
............................. (Brbe)
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1y profile

//f 1, Thickness‘\_

profile

Figure 1.2 Bezier parameterization of an airfoil. Fifieen Bezier parameters define the
camber and half-thickness profiles. The half-thickness is measured perpendicular to the
camber, forming the airfoil shape.

1.4 Aerodynamic Calculations

The aerodynamic calculations represent by far the most computationally intensive
component of the design algorithm. In fact, it is only in the last few years that computer
power has become sufficient to solve inverse problems in reasonable time. Even now,
only multi-million dollar super parallel computers are able to solve this problem reliably.

A full flow field simulation for a single airfoil can take over an hour on a high end PC.
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The two-dimensional flow field around a given object is most accurately modeled

by the Navier-Stokes equations,

, (1.7)

where the vector field (u(x, ), v(x, y)) represents the velocity of the flow at position

(x,y), p is the viscosity of the fluid, p is the mass density of the fluid, and p is the
local static pressure. The nonlinearity in this system of partial differential equations
makes it extremely difficult to solve. Existence and Uniqueness Theorems remain an
open problem, more than 100 years after the development of the model. Even numerical
simulation is very expensive computationally. Lombardi et al (2000) solve numerically
the Navier-Stokes equations for flow around a NACA 0012 airfoil. The computational
effort require 70 — 150 minutes on a desktop PC, depending on turbulence model. At this
rate, a design problem requiring 50,000 flow simulations (such as the one discussed by
Rogalsky et. al., 2000) would take at least six years to complete.

Fortunately, there are simplified equations that can be solved in significantly less
time. Although the results are less detailed — and in some cases less reliable — they are
adequate for most common situations. More significantly, though, these simplifications
allow research to be performed using a common desktop PC. Design problems can be
solved in about twenty minutes for which the optimizer has searched over 50,000

different shapes.
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The simplification made here is to assume fully potential flow, i.e. zero viscosity.
Viscosity can be thought of as the friction force that acts between fluid particles. In a
turbulent flow field, when fluid particles are interacting with each other m many
directions, viscous effects can be quite high. However, for flow over an aerodynamic
body such as a fan blade, viscous effects are almost negligible, as long as the flow
remains "attached" to the blade. (In attached flow, the air particles move along a path —
called a streamline — that is nearly parallel to the solid body. Particles do not interact with
each other so much as with the body itself. Contrast this with the turbulence in a region of
separation — think about being passed in a snowstorm by a large truck.)

Flow solvers that assume potential flow are known as panel methods. The shape is
approximated by a set of line segments called panels, and a numerical scheme is used to
compute the flow solution. Despite the simplified model, panel methods are useful, and
are still being applied in many situations (Pfeiffer, 1990).

The origins of the panel method can be found in classical mathematics. Kellog
(1929) wrote a comprehensive book about potential theory. Since potential flow is
incompressible and inviscid, the Navier-Stokes equations (1.7) can be simplified to

Laplace's equation for the velocity potential,

VZV/:O, whereu=éz,v=—@—[/—. (1.8)
& &

Integrating an elementary solution over the body surface, Kellog developed an integral

equation that represents the flow past a body immersed in a uniform stream. Panel
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methods approximate these integrals by discretizing the curves into panels, and then
integrating numerically.

The specific inviscid potential flow model used here is Martensen's (1959) surface
vorticity panel method (described in Lewis, 1991). Assuming fully attached flow, the
boundary layer around an airfoil is approximated as an infinitesimally thin vorticity sheet.
The inviscid surface velocity can then be found in terms of the vorticity strength on the
boundary (equation (1.10) below).

Consider a small vorticity element y(s)ds , where y(s) is defined as the vorticity
strength per unit length at point s. Since the thickness of the element (normal to the
surface) is infinitesimal, the circulation around it is just (v, —v, )ds, where v, and v; are the
fluid velocities just outside and inside the sheet. This can be equated to the total amount
of vorticity enclosed by the contour. That is,

(v, v, )ds =y (s)ds . (1.9)
Since the no-slip condition on the body surface requires that v, =0, we have
v, =¥(s). (1.10)

The body surface is represented discretely by a finite number of short, straight
panels. Martensen’s boundary integral equation for two-dimensional flow (Lewis, 1991)
relates the vortex strength at any given point to the vortex strengths at all other points on
the surface. This integral is then approximated numerically. The resulting linear system

of n equations is solved for the vorticities y(s) on each of the » panels. The vorticity on

any given panel is then exactly equal to the inviscid velocity along that panel.



1.4 Aerodynamic Calculations 17

Jacob & Riegels (1963) first successfully implemented Martensen's method on a
digital computer. An analysis of an airfoil with 36 elements took fifteen minutes to
execute, a remarkable feat for that time. Wilkinson (1967) identified and resolved many
modeling and computational obstacles and extended his work to mixed-flow turbo-
machinery cascades (Wilkinson, 1969). An excellent summary of vorticity methods is

given by Sarpkaya (1989).

In a turbomachinery cascade — such
as the axial flow fan — adjacent surfaces
both influence the flow through any two \ w,
blades. The cascade is thus modeled as 4
an infinite rectilinear array of airfoils, set '

at equal pitch interval 7 parallel to the y-

axis, and with equal stagger angle A. (See 1

Figure 1.3.) The flow enters the cascade

with inlet velocity #; at inlet angle fi;
Figure 1.3 Turbomachinery cascade

and exits with outlet velocity #; at outlet geometry and flow velocities.

angle /. The blade spacing, ¢ and A, play a key role in the fan's overall performance

(Rogalsky et al, 1999). These parameters are thus included in the vector b encoding the

fan's geometry.

Of course, the ultimate goal of the current research is to incorporate a more realistic

flow solver into the design method. For example, the Keller Box module (Keller, 1975)
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assumes nonzero viscosity only in a boundary layer along the surface. Then the Navier-

Stokes equations (1.7) can be simplified to the boundary layer equation,

ué—u—+v-———————=—-———-—~, (L.11)

where p is the viscosity of the fluid, p is the mass density of the fluid, and p is the local

static pressure. A panel method is used to calculate the inviscid velocity distribution (just
outside the bounciary layer). Finite difference equations are used to solve (1.11)
numerically throughout the boundary layer. Newton’s method is used to deal with the
nonlinearity of (1.11), normally requiring ten iterations.

A boundary layer method such as this would enable approximation of drag and
location of any regions of separation, improving the confidence in any resultant designs.
However, the additional complexity could easily add several orders of magnitude to the
computational requirements. The inviscid model solves an nx n linear system of
equations, where 7 (the number of panels) is typically 60-100. Boundary layer methods
typically use a grid with » points (normal to the surface) in the boundary layer on each
panel. The finite differencing then results in an # x » nonlinear system at each panel, and

Newton's method requires the solution of ten of these each time. Thus, one nx n system

is solved in the panel method, but 10n? nxn systems are solved in the boundary layer
method. If # is 100, the result is an increase in computational requirements by a factor of
10°. If 50,000 panel method calculations take twenty minutes, then we would expect

50,000 boundary layer calculations to take fourteen days. Before incorporating such a



1.4 Aerodynamic Calculations 19

module, we need to ensure feasibility. Thus, the immediate focus of this thesis is to

reduce the number of flowfield simulations required to arrive at a solution.

1.5 Cost Function

As a fan rotates its blades through the air, the velocity of the air varies around the
surface of each blade. The variation of velocity produces a variation of air pressure near
the surface of the blade. This is usually measured in terms of the distribution of the
pressure coefficient, c,, along the blade. The performance of any fan is directly related to
this so-called pressure distribution. In inverse design, the cost (or objective) function
evaluates the proximity of a fan's performance to some target pressure distribution.

Liebeck (1973) designed the pressure distribution shown in Figure 1.4 for
maximum possible lift in an incompressible flow. A few words of explanation are in
order. A zero pressure coefficient represents the normal pressure of the air. A negative
pressure coefficient represents a point of low pressure. Low-pressure regions induce lift
on an aircraft wing and suction on a fan blade. By convention, this suction surface is
defined to be the upper surface of the blade. For that reason the direction of the y-axis is
reversed. In the Liebeck pressure distribution shown, the pressure along the upper surface
rapidly drops along the leading 25% of the blade. It then uses the Stratford (1959a)
distribution along the pressure recovery region (the trailing portion of the upper surface),
which is designed to avoid separation (thereby évoiding high drag) by a small margin. In

principle, this recovers the maximum possible pressure over that distance.
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The aerodynamic goal can
thus be quantified as a discrete tar- A
Blade, H(b) -
get pressure distribution t, together

with an outlet angle, /. For any

deviations

given encoded vector b, the decod- 4L

ed blade H and blade spacing are

passed to the flow solver. At each

x-coordinate of the target, the pres-

sure coefficient is found and stored 'o (:5 |1

o OO0 Liebeck target, t
as G. The deviations between —— Current blade, H(b), and pressure

distribution, G(b)

pressure coefficients in t and G

Figure 1.4 Sample target — a Liebeck pressure
distribution. Any member of the population, b,
represents a fan blade shape and spacing. The cost
of b is the deviation of its corresponding pressure
distribution from the Liebeck target.

(see Figure 1.4) form the first
components of the error vector.
The last component is the devia-

tion, in radians, of the actual from the target outlet angle. The cost is defined to be the

length of that error vector, i.e. the .£;-norm of those differences,

C(b) = \/Z(Gi ;)7 + (8, —ﬂ;“’“‘*“)2 : (112)

1.6 Acceleration of DE for Aerodynamic Design

The immediate goal of this dissertation is to determine whether the convergence

rate of Rogalsky's (1998) aerodynamic design algorithm can be accelerated. If the
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number of flow solver calls can be reduced significantly, we are confident that the
incorporation of a boundary layer module is feasible.

This is not the first attempt at acceleration of DE. Masters and Land (1997), for
example hybridize DE with a direct gradient descent method. Every generation, a few
vectors are selected at random, their derivatives are computed, and a single line
minimization is performed along the gradient. This "appears to tremendously speed [sic]
convergence while almost certainly having little impact on its ability to find a good
global optimum."

Chiou and Wang (1998) embed two additional operations into DE. An acceleration
operator performs a gradient descent on the population any time the cost does not
increase from one generation to the next. A migration operator restarts the algorithm in
another region any time population diversity decreases too much. Applying their
algorithm to bioprocess control, they achieve a tenfold reduction in cost function calls,
while actually finding a better solution than conventional DE.

Other new operators have been introduced for acceleration, such as a trigonometric
mutation operator (Fan and Lampinen, 2002) and a population refreshment mechanism
(Smuc, 2002). Hendtlass (2001) combines DE with a particle swarm algorithm. Liu and
Lampinen (2002) use fuzzy logic to define adaptively DE's parameters, making DE easier
to use and more efficient. Others ideas for acceleration can be found in Lampinen's
(2001) DE bibliography.

The key to significant acceleration is to exploit the uniqueness of the specific

problem. Ken Price (2001) has suggested that a speed-up by more than a factor of two is
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likely not sustainable over a wide class of functions. In fact, this is made very clear by the
No Free Lunch (NFL) Theorem for optimization (Wolpert and Macready, 1997), which
states that no a priori claim can be made about any optimization algorithm:

Theorem (No Free Lunch): For any pair of optimization algorithms a; and a;,

> Pla;

f,m,a1)= ZP(d,ﬁ]f,m,az),
S

where m is the sample size — the number of distinct points that are examined by the

algorithm, d}, is the set of m sample costs y, f'is any objective function, and
P(d%l f ,m,a) is the conditional probability of obtaining the sample cost set d}; on

the objective function /by applying the algorithm for m iterations.

That is, averaged over all possible objective functions, all optimization algorithms
perform equally. To quote Wolpert (2002): "In short, according to these theorems there is
no free lunch; without tailoring one's algorithm to the domain at hand, one has no
assurances that that algorithm will perform well on that domain."

The somewhat surprising consequence of the NFL Theorem is that it is impossible
to analyze convergence in general. In fact, EA convergence analysis has been limited to
very simple solution spaces — n-dimensional hemispheres, for example (Rudolph,
1997abc, Beyer, 1997, 2001, 2002). Rigorous convergence analysis of EAs for more
complicated spaces remains an open problem. Of course, interesting, practical problems
are not simple. In aerodynamic design, in particular, the solution space is extremely

nonlinear, even chaotic.
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While we cannot claim that any acceleration achieved will be applicable to every
optimization problem, we would like to be reasonably confident of its general
applicability for aerodynamic design of turbine blading. To ensure this, we use a
methodology common in aerodynamic design. Three very different design targets are
chosen. The design process is simulated for these targets, and the convergence rates are
compared with simulations under a modified design algorithm. Any improvement that is
applicable generally would have to be observed for all three design cases. The three
targets are described in Chapter 2.

The first attempt to incorporate problem-specific information is to modify the hard
constraints. (These force DE to consider only realistic airfoils. The flow solver does not
evaluate any constraint violations.) As seen in Chapter 2, the modification of the solution
space significantly reduces the cost of the final solution, but has only a minor impact on
convergence rate. The resulting convergence rates for the three targets are used as
benchmarks throughout the remainder of the thesis.

In Chapter 3, we present a new parameterization method for airfoils. The Bezier
parameterization used previously is inadequate for several reasons, including the loss of
second-order continuity at the juncture between leading and trailing curves. Furthermore,
many of the Bezier parameters are not directly related to the aerodynamic properties of
the shape. The incorporation of aerodynamic shape parameters, such as the leading edge
radius or the trailing wedge angle, enables DE to traverse the domain more quickly.

Several optimizer-specific modifications were made as well. In Chapter 4 a variable

birthrate is used, essentially neutering the costliest individuals in the population. In
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Chapter 5 a hybrid strategy is developed. DE is used in concert with Downhill Simplex, a
local optimizer that does not require gradient information. In Chapter 6, DE is combined
with another biological model — the immune system. A particular combination of
hybridization and immune acceleration is shown to reduce dramatically the number of
flow solutions required to converge.

A brief digression is made in Chapter 7. Often certain soft engineering constraints
must be incorporated into the design. A penalty function method for imposing such
constraints is demonstrated. Finally, Chapter 8 summarizes the main results, and makes

recommendations for future work.
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Chapter 2 Benchmarks for Acceleration

This chapter develops a new set of constraints for the design algorithm (section
2.2), and describes the three test cases that will be used throughout the thesis (section
2.3). The convergence rates using the new constraints will serve as benchmarks for
acceleration. Before discussing constraints, a few more details about Rogalsky's (1998)

Bezier parameterization are needed.

2.1 Bezier Parameterization

A parametric Bezier curve P(x) of degree  is uniquely determined by the n+1

vertices of a polygon, called the control points P,, as follows:

P(u) = Z e i)'u(l w)", 0<u<l. 2.1)

i=0

Four Bezier curves form the airfoil, as shown in Figure 1.2.

Bezier curves have many properties that are attractive for aerodynamic design. The
end points of each curve are automatically fixed at the two end vertices. At an endpoint,
the curve is tangent to the vector between that endpoint and the closest control point,
making it simple to join curves with first order continuity. The curve always lies within
the convex figure defined by the extreme points of the polygon. The curve is nth order
continuous throughout and never oscillates wildly away from its defining control points.

In the encoding of the airfoil, some of the Bezier control parameters must be fixed.

The endpoints of both profiles are fixed at (0,0) and (0,1), creating a blade with unit
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chord length. At the juncture between leading and trailing curves, 1) the last control point
on the leading curve is made equal to the first on the trailing curve, and 2) the three
central control points are made to be horizontally colinear. This enforces first order
continuity throughout. Finally, on the leading thickness curve, the second control point
has a zero x-coordinate, which enforces a rounded leading edge. Together, these
conditions allow the airfoil shape to be defined with the fifteen variables b; in Figure 1.2.
However, this encoding is not sufficient to ensure a realistic airfoil shape. It does
not prevent negative thickness, loops, or any bumps that could cause the flow to separate
(which would make the panel method extremely unreliable). The solution space must be

constrained to avoid these problems.

2.2 Hard Constraints

Hard constraints ensure that any shapes considered are in fact airfoils. In Chapter 7,
we discuss a method of imposing soft constraints — such as a user-defined minimum
thickness. A penalty function is used to impose the hard constraints. It assigns a large
random value to the objective function whenever a constraint is violated. The penalty is
enforced without performing any aerodynamic computations. Normally, they would be
meaningless anyway (for a shape with negative thickness, for example), and this
conserves computation.

Technically, a constraint violation is evaluated by the objective function, but the
computational cost is insignificant compared to that of a flow solution. Thus the number

of function evaluations (NFEs) is defined to be the number of flow calculations
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performed by the code. This best reflects the actual computational expense of the
algorithm. When comparing convergence rates, this measure is always the one used.

In the previous work (Rogalsky, 1998), constraints were imposed directly on the
Bezier control points, which is not entirely satisfactory. For example, to ensure positive
thickness, the y-values of thickness control points were constrained to be positive. This
will, of course, ensure a positive-valued thickness profile, but it also eliminates from
contention many interesting ~ and possibly useful — thickness profiles, such as the one in
Figure 2.1. The negative y-value of the sixth distinct control point produces an inflection

point without causing the curve to dip below the axis.

Figure 2.1. Negative-valued control points do not necessarily create negative-valued
profiles.

Similarly, to ensure that the profiles will not loop back upon themselves, all control
points were ordered downstream (i.e. left-to-right). While this is sufficient to produce
single-valued profiles, again it is not necessary. For example, in the camber proﬁlevshown
in Figure 2.2, the sixth distinct control point lies upstream of the fifth. Yet the profile is
not only aerodynamically valid, but in fact has a potentially valuable inflection point
caﬁsed by that ordering.

Furthermore, the constraints as proposed were not general enough to remove all

irregularities. Two examples are shown in Figure 2.3. These were removed by
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1) requiring a minimum horizontal separation between all control points, and 2) imposing
a maximum value by which any control point could exceed vertically the juncture. But

again, a consequence is that some valid shapes will not be included in the solution space.

Figure 2.2. Reverse-ordered control points do not necessarily create multi-valued
profiles.

Figure 2.3. Some irregularities that can occur if the leading or trailing curves are not
one-to-one.

An improved set of constraints is required. What we really want is to control the
curves — not the points. There is, in fact, a very simple solution: Each of the four Bezier
curves must be one-to-one functions, with the leading curves increasing monotonically,
and the trailing curves decreasing monotonically. This enforces the condition of an airfoil

without bumps, loops, or negative thickness; while allowing negative-valued, reverse-



2.2 Hard Constraints 29

ordered, or very close control points — along with any beneficial features that they may
produce.

We will see in Chapter 3 that this one-to-one constraint is entirely sufficient for the
new airfoil representation methods developed there. For the Bezier parameterization,
however, that is not quite true. One control point constraint has to be maintained. Since
curves are joined with only first-order continuity, the juncture was not always reasonably
smooth. If the coblinear points at the juncture between curves are too close to each other,
the juncture may not even appear first-order continuous (Figure 2.4). To regulate this, we
enforce a minimum horizontal separation of the juncture points. The minimum separation

is 0.05 (5% of the chord), a somewhat arbitrary value that seems nonetheless to work.

Figure 2.4 Irn addition to the one-to-one constraints, a minimum separation of juncture
points is required to approximate second-order continuity.

As will be seen in the next section, these new one-to-one constraints allow DE to

find a better solution, without detriment to the rate of convergence.

2.3 Benchmarks

Three design cases will be examined throughout this dissertation. These are diverse
enough that any consistent acceleration pattern should be applicable across a wide

spectrum of designs. In this section, the convergence rates for each design using the old
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design algorithm will be given. These will serve as benchmarks with which to compare
acceleration strategies.

For two design cases, the solutions are known. Gostelow (1964, 1984), using
conformal transformations, provided several standard cascade profiles with exact surface
pressure distributions. These have been used to verify numerical results. Two of these — a
C4/70/C50 airfoil and a highly cambered (112°) impulse cascade profile (Figure 2.5) —

were used by Lewis (1991) to demonstrate the validity of the Martensen vorticity panel

method. The pressure distributions of these two

standard blades were used as design targets in A

Rogalsky et. al. (2000). They will be used

throughout here — although in slightly modified

form — as discussed below. The third design Figure 2.5. Known solutions for two
. . o design targets: C4/70/C50 (top),
target is the Liebeck pressure distribution, 112°-cambered blade (bottom).

shown in Figure 1.4.

Design parameters for the benchmarks are as follows. For each case, the DE/rand-
to-best/1/bin variation is used, with NP=10D (D=17 for Bezier designs with variable
blade spacing), F=0.85, and CR=1.0 (no crossover). This variant of DE is advertised by
its authors as effective for a broad range of problems, and was found to be robust for
aerodynamic acceleration in Rogalsky et al (2000). One-to-one and juncture constraints
are used for all three benchmarks. An additional leading edge constraint was necessary

for the Liebeck case.



2.3 Benchmarks 31

The sections that follow describe the design targets and any modifications made,
examine the effect of the modified targets and of the different constraints on

convergence, and provide the benchmarks for acceleration.

2.3.1 C4/70/C50 Target

The C4/70/C50 blade was used for compressors in the U.K. in the 1960's. It has a
C4 base profile distributed upon a 70° circular arc camber line. C-series airfoils are still
very representative of turbine blading today. By experimentation, Gostelow was able to
reproduce this blade using a conformal transformation. Exact flow solutions were
obtained for two inlet angles, $=+ 35°, using pitch/chord ratio #//=0.900364 and stagger
angle A=0 for each. As shown by Lewis, these are in "excellent agreement" with the
surface pressure distributions obtained by Martenson's panel method.

In our previous work (Rogalsky et al, 2000), the two pressure distributions
computed by the panel method were used as design targets, with pitch/chord ratio and
stagger angle fixed. For f;=+35°, the solution was closely approximated by not only DE,
but also two other optimizers — Downhill Simplex and Simulated Annealing. However,
both of these failed badly for £;=-35°, while DE found a solution in 57,000 FEs. Since we
would like to challenge the design scheme, only the more difficult target (£=-35°) is
used here. The corresponding outlet angle is $5=-25.0384°.

The pressure distribution has Cp coefficients with extremely high magnitude near
the leading edge. (See Figure 2.6.) Relative to the other target points, the deviations at the

leading edge points will tend to be higher. Yet the proximity of the solution there is less



2.3 Benchmarks 32

important than the proximity for the rest of the distribution. That is, we are unduly
forcing the algorithm to match closely the target in a region that is both extremely
difficult to match and relatively unimportant to the blade's performance. A better design
target would allow the pressure distribution to be somewhat free for magnitudes higher
than a certain value. We have thus eliminated from the target pressure distribution all
pressure coefficients with absolute value greater than 6. Convergence to the new target is

used as the new benchmark for comparison.

=30 T T T T T T

Cp

10 ] ] ] ] ]

Figure 2.6 Original C4/70/C50 target distribution, calculated with fr=-35°,
/1=0.900364, A=0. Pressure coefficients with magnitude greater than 6 are deleted for
the remainder of the thesis.

The different convergence rates are shown in Figure 2.7. For comparison the results
of Rogalsky et al (2000), using fixed blade spacing, are included. This in fact results in
the highest converged cost. All other results use variable spacing, since it is not
reasonable in general to assume that the spacing is known in advance. Interestingly, the
addition of variable spacing alone enables DE to find a solution with lower cost. The

modified target results in a much lower cost, for obvious reasons, although the actual rate



2.3 Benchmarks

of convergence doesn't appear to change much. As expected, the new one-to-one

constraints allowed greater geometric freedom, resulting in the best solution.

Cost

0 110* 2.10*

NFE's
— - Old Target, Control Point Constraints, Fixed Blade Spacing
""" Old Target, Control Point Constraints, Variable Blade Spacing
— * New Target, Control Point Constraints, Variable Blade Spacing
— Benchmark: New Target, 1-1 Constraints, Variable Blade Spacing

Figure 2.7 Effect of target modification and constraint system on convergence to the
C4/70/C50 target.

It is also informative to compare "snapshots” of the design process. Figure 2.8
shows the blade shape and pressure distribution as it is developed by DE — after 20,000,
30,000, and 40,000 FEs. In the original case (fixed spacing), significant change occurs
after 30,000 FEs, but for the remaining three, the shape has nearly converged by then,

and subsequent modifications are only minor.

33
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Old Target, Control Point Constraints, Fixed Blade Spacing

20,000 FE's. Error = 3.842

40,000 FE's. Error = 3.467

0 0.5 I ’ 0 0.5 1 L5 0 0.5 1

Old Target, Control Point Constraints, Variable Blade Spacing

e p— e

20,000 FE's. Error = 2.526 30,000 FE's. Error =2.489 40,000 FE's. Error = 2.479

=3

i

0

15

New Target, Control Point Constraints, Variable Blade Spacing

20,000 FE's. Error = 0.565 30,000 FE's. Error = 0.469 40,000 FE's. Error = 0.462

~3 T T 3 | T -3 T T
-15 — -5 1 ~15 -
o ] [0 el h o =
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1.5 ’ 0 0.5 1 ’ 0 0.5 1

Figure 2.8 Convergence snapshots showing the effects of target modification and
constraint system on the C4/70/C50 design. The target is shown with the dotted line.
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2.3.2 112°-cambered Target

As a more extreme test, Gostelow developed a highly cambered impulse cascade
profile, based on a 112° circular arc camber line. The exact solution was given for
Si=50°, £/1=0.5899644, and A=0. Again, the pressure distribution compares well with the
panel method solution, and is used as the target in Rogalsky et al (2000) with fixed blade
spacing. The target outlet angle is $=-53.2832°.

Recall that the Bezier parameterization in the design algqrithm operates under the
assumption that each blade has leading edge at (0,0) and trailing edge at (1,0). This is not
the case for the data points reported in Lewis. The blade was thus shifted to the origin,
and then magnified to have chordlength one. Recalculating the pressure distribution
provides a target for which the algorithm is designed.

A brief digression is necessary regarding panel length. Martenson's method is most
effective if any given panel has length equal to the blade thickness at the panel's
midpoint. The design algorithm automatically accomplishes this in the representation of
the blade. However, a maximum panel length must be imposed for most airfoils. In
general, a maximum length of 0.04 is sufficient for fast, accurate results. In the case of
the 112°cambered blade, however, the thickness increases so rapidly at the leading edge
that too much data is lost, making it difficult to approximate the pressure coefficients
there. Changing the maximum thickness to 0.03 resolved the problem. Design for the
highly cambered case will use 0.03 throughout. The other two design problems will be

solved with maximum panel length 0.04.
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The developing cost is compared in Figure 2.9, and design snapshots are shown in
Figure 2.10. In all cases, there are no significant shape or pressure distribution changes
after 30,000 FEs. Modifying the target significantly decreased the deviations, especially
along the suction surface. Again, the one-to-one constraints allowed the design method to

find the lowest cost.

Cost

.- [ —
Sememoo oS . e e . e o - e e m e e e b o o
......................................

N St i — v, St s, . vy, v mamtmmins. ot o]

210* 3-10* 410
NFE's

— = Old Target, Control Point Constraints, Fixed Blade Spacing

""" Old Target, Control Point Constraints, Variable Blade Spacing

New Target, Control Point Constraints, Variable Blade Spacing

— Benchmark: New Target, 1-1 Constraints, Variable Blade Spacing

Figure 2.9 Effect of target modification and constraint system on convergence to the
112°-cambered target.
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Old Target, Control Point Constraints, Fixed Blade Spacing

1.3 0 0.5 1 15 0 0.5 i 1.5 0 0.5 1

Old Target, Control Point Constraints, Variable Blade Spacing

10,000 FE's. Error = 1.292 20,000 FE's. Error = 1.178 30,000 FE's. Error = 1.167

New Target, Control Point Constraints, Variable Blade Spacing

10,000 FE's. Error = 1.292 20,000 FE's. Error = 1.178 30,000 FE's. Error = 1,167
-1 I

1.5 0 05 1 L3 0 0.5 1 15 0 0.5 1

New Target, 1-1 Constraints, Variable Blade Spacing

10,000 FE's. Error = 0.966 20,000 FE's. Error = 0.748 30,000 FE's. Error = 0.733
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Figure 2.10 Convergence snapshots showing the effects of tafget modification and
constraint system on the 112°-cambered design.




2.3 Benchmarks 38

2.3.3 Liebeck Target

The final design target is one for which the solution is not known. Liebeck pressure
distributions have been discussed in Chapter 1. They generate excellent lift coefficients
while avoiding separation. The target chosen is shown in Figure 1.4, with inlet flow angle
Fi=30°, and target outlet flow angle £=0°.

The new constraint system, consisting of one-to-one curves and a minimum
separation of juncture control points, was insufficient for this case. The resulting design
was unrealistically thin and had a sharp leading edge, as seen in the design snapshots
(Figure 2.12). To ensure a rounded leading edge for the Liebeck design, we require a
minimum vertical separation of 0.05 for the first two thickness control points. The
resulting convergence is set as the benchmark.

Convergence is compared in Figure 2.11, and snapshots in Figure 2.12. Results are

dramatic. Under the new constraint system, the design has not only converged by 10,000

4

0 5000 1-10 M

1510 N

210" 2510
NFE's

4

3.10 ¥

3510 N

4-10

— Control Point Constraints
""" 1-1 Constraints with minimum leading edge thickness separation

Figure 2.11 Effect of constraint system on convergence to the Liebeck target.
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FEs (vs. about 30,000 FEs under the control point constraints), but has also achieved a

significantly lower error (0.566 vs. 0.785 after 40,000 FEs).

39
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Figure 2.12 Convergence snapshots showing effect of constraint system on the Liebeck

design.
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Chapter 3 Geometric Representation of Airfoils

Airfoil data is typically tabulated with 50 to 80 data points. In aerodynamic
design, however, the number of function evaluations required for convergence tends to
increase linearly with the number of parameters used to represent the geometric shape.
Thus it is preferable that airfoils be represented by a much smaller number of parameters.

There are several goals to keep in mind when developing a method to represent
airfoils geometrically. First, the number of parameters used to represent the shape should
be kept to a minimum. Second, the method should be able to represent a wide variety of
airfoils. Third, any constraints on the design should be simple to formulate and to impose.
Fourth, the parameterization should lend itself to effective and efficient optimization.

This chapter describes a new method of representing the geometry of airfoils. It is
an extension of the Bezier parameterization discussed in sections 1.3 and 2.1, using new
aerodynamic parameters. These are similar to the PARSEC parameters developed by
Sobieczky (1999). Bezier-PARSEC (BP) parameterization is summarized in section 3.1,
and two instances of it are developed sections 3.2 and 3.3. To compare the ability of the
Bezier and BP methods to represent typical airfoils, section 3.4 tests 63 different airfoils.
(Details of the parameterization of each of the 63 appear in Appendix B on the
accompanying CD.) Finally, the BP parameterization is implemented into the
aerodynamic design code. Section 3.5 discusses the effects on robustness and

convergence speed.



3.1 Bezier-PARSEC Parameterization 41

3.1 Bezier-PARSEC Parameterization

The parameters, ;, in the Bezier parameterization are actual Bezier control points.

They define the Bezier curves, which in turn define the airfoil, but they influence the
flow only indirectly. It is possible to parameterize an airfoil using quantities that more
directly control its aerodynamics - such as the leading edge radius and the trailing wedge
angle. PARSEC parameterization of airfoils (Sobieczky, 1998, 1999) uses flow
phenomena oriented parameters, and was developed specifically for aerodynamic
optimization.

PARSEC airfoils are parameterized by their upper and lower curves, each of which

is a linear combination of shape functions as follows
& i nan
z;=Yax", i=12, (3.1)

where z; is the height of the upper curve, z; is the height of the lower curve, x is the
distance along the chord, and 4’ afe undetermined coefficients. Eleven parameters
(illustrated in Figure 3.1) define an airfoil with unit chord length: #,, the radius of
curvature of the leading edge; x,,,z,,, the position of the upper crest; z,,,,, the second
derivative of (3.1) at the upper crest; x;,,2,, the position of the lower crest; z,,, the
second derivative at the lower crest; «,, , the direction of the trailing edge; f,,, the
wedge angle; z,, , the height of the trailing edge; and Az,,, the trailing edge thickness.

These quantities, together with the x-coordinate of the trailing edge, are substituted into

(3.1). The resulting system of twelve equations is solved for the twelve coefficients a,'; .
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Figure 3.1 PARSEC airfoil geometry defined by 11 basic aerodynamic parameters.

It has been shown by Oyama et al (1999) that this type of parameterization
improves both robustness and convergence speed for aerodynamic optimization, and that
it is particularly Well-suited. to optimization by GAs. He compares five parameterization
methods, both for their ability to reproduce known airfoils, and for their robustness and
convergence speed in aerodynamic design. These five are: the extended Joukowski
transformation (Jones, 1990), the inverse Theodorsen transformation (Theodorsen and
Garrick, 1933), B-spline curves (similar to Bezier curves), orthogonal shape functions
(Chang et. al., 1995), and PARSEC parameterization.

Oyama examined first the ability of each parameterization to represent two airfoils,
one a NASA supercritical airfoil, and the other a four-digit NACA airfoil. The Extended
Joukowski and orthogonal shape function methods were unable to reproduce these

airfoils.
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Four parameterizations were integrated into an aerodynamic design algorithm,
using a GA for optimization. The objective function was the maximization of the lift-to-
drag ratio. The results for PARSEC (L/D 39.40) and B-Spline (L/D 39.02) were
significantly better than those for Extended Joukowski (L/D 34.73) and Theodorsen (L/D
31.87). However, the convergence rate for the PARSEC-parameterized design was
significantly better than that for the B-Spline design, requiring roughly half the number of
function evaluations to converge.

The superior performance of the PARSEC parameterization is likely due to its
ability to minimize an optimization phenomena known as epistasis (the nonlinear manner
in which the objective function is dependent on the design parameters). Small changes in
several variables can result in large changes in the objective function. Epistatic functions
are difficult to minimize because they provide so few clues as to the location of the global
minimum. In general, a reduction of this nonlinear interaction will enable the optimizer to
converge more quickly. Because the PARSEC parameters are motivated by
aerodynamics, the nonlinearities should be of lesser magnitude. For example, a small
variation in 7, should result in a small change in the flow at the leading edge region.
After an analysis of the interactions between PARSEC parameters, Oyama found that the

relationships between z,,, z;,, and z,, were still very complicated. He was able to

achieve better results by converting the upper and lower heights into camber and

thickness heights.
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Motivated by the work of Sobieczky and Oyama, a new method of airfoil
parameterization is proposed. Bezier-PARSEC (BP) airfoils are designed to combine the
benefits of the Bezier parameterization - notably the camber-thickness formulation and
the advantages of Bezier curves, including usage by industry - with the improved
convergence characteristics provided by PARSEC variables. It is hoped that the new
method will accelerate the convergence of aerodynamic design using DE.

The BP parameterization uses a ﬁew set of optimization parameters, which are
aerodynamically oriented. These parameters are then used to determine the control points
of four Bezier curves - leading and trailing camber, leading and trailing thickness. The
airfoil is composed as in Figure 1.2, with thickness measured normal to the camber curve.
One deficiency of the Bezier parameterization is corrected for all BP shapes: Leading and
trailing curves are joined with second-order continuity.

The BP variables are as follows. Several are PARSEC variables: #,, «,,, 83,., and
z; - Others are similar to PARSEC parameters: y,,, the leading edge direction; x,, y,,
the position of the camber crest; x ., the curvature at the camber crest; x,, y,, the
position of the thickness crest; «, , the curvature at the thickness crest; and dz,, , the half
thickness at the trailing edge. Several Bezier variables are also used, and are labeled
according to the convention used in Figure 1.2: by, b,, b, b5, b7. The last two
variables are used for degree four trailing edge curves. They represent the x-value of the

fourth control point on the thickness and camber curves, respectively.
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The Bezier variables, b;, have a slightly different interpretation in BP
parameterization. Since one goal is to decrease epistasis, it is preferable that the Bezier
variables used be related to the aerodynamics of the shape. For example, b5 should most
directly influence the existence and/or nature of an inflection point on the trailing
thickness curve. However, if x, is modified, while the control point ;s remains
constant, the position and shape of the inflection point can change dramatically. This
effect is diminished if 45 represents the ratio between x, and x=1 (the trailing edge
position). Thus we let all Bezier variables in the BP parameterizations represent the ratio
between the endpoints of the curve it defines. For example, bys = (x — x)/(1-x,) , where
x is the actual x-value of the fourth control point on the trailing thickness curve.

It will be necessary to distinguish between the four Bezier curves and their control
points. Each parametric curve is composed of two functions, x(x) and y(u). A two-letter
superscript will be used to distinguish a curve. The first letter is either / or ¢, indicating
leading or trailing, respectively. The second is either ¢ or ¢, representing thickness or

camber, respectively. Control points are superscripted according to their corresponding
curve, and subscripted by number. For example, (xlc (w), ylc(u)) represents the leading
camber curve of degree », with Bezier control points (xilc,yilc) ,i=0,..,n.

Two instances of the Bezier-PARSEC parameterization are examined in this
chapter. Each begins with the initials BP, followed by four digits. The digits represent (in
order) the degree of each of the following Bezier curves used by the parameterization:

Leading thickness curve, trailing thickness curve, leading camber curve, trailing camber
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curve. Thus the BP 3333 parameterization uses exclusively degree three Bezier curves,
and BP 3434 has a degree 3 leading thickness curve, a degree 4 trailing thickness curve, a
degree 3 leading camber curve, and a degree 4 trailing camber curve. A BP 3424
parameterization was also integrated into FanOpt, but was less robust and showed no
acceleration. Details of BP 3424 are not given.

The Bezier-PARSEC parameterization is envisioned to have advantages over both
the Bezier and the PARSEC methods. It avoids the second-order discontinuity problem
inherent with the Bezier parameterization, and it uses aerodynamic parameters, which
should result in accelerated convergence for design optimization. In contrast to the
PARSEC parameterization, the camber-thickness formulation is more natural for airfoils
than PARSEC's upper-lower curve formulation. The leading edge radius can now be
measured in the direction of the camber, rather than that of the axis, and the leading edge
direction — not used by PARSEC — is now made explicit. Finally, BP parameterizations

incorporate Bezier curves, which have widespread use in industry.

3.2 BP 3333 Parameterization

The BP 3333 parameterization is defined by twelve exclusively aerodynamic
parameters. These are illustrated in Figure 3.2. Compared with the Bezier
parameterization, there are two significant improvements that are expected to accelerate
the convergence of DE in the design process. As has been mentioned in section 3.1, the
aerodynamic character of the parameters should reduce epistasis in the objective function,

making the global minimum easier to find. Additionally, however, there is a significant
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reduction in the number of parameters. In fact, if the trailing edge is fixed at (1,0) with
zero thickness - as it is for the Bezier parameterization - the number of variables used to
represent an airfoil is reduced from 15 to 10. Equations for the associated Bezier control

points are derived in sections 3.2.1 — 3.2.4.

Thickness profile (1, a\}; te ) g

(xc5¥e)

PR
————

Camber profile (1 ; ) "
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Figure 3.2 BP 3333 airfoil geometry and Bezier control points defined by twelve basic
aerodynamic parameters.

It

3.2.1 Leading Thickness Curve (Degree 3): (x”,y)

Degree three Bezier curves are given by

3

. (3.2)

x(u) = xp(1- u)3 +3x;u(1 - u)2 +3xpu? (1—u) + x5u

() = yo(1-u)’ +3pu(1-u) + 3y,u* (1-u)+ ysu
with first derivatives

x' () = —3xo(1- )" + 33 (1- du+ 30" )+ 3y (20 =307 ) + 3y
) (3.3)
y'(u)= —3y0(1—u)2 +3yl(l—4u+3uz)+3y2(2u—3112)+3y3u2

and second derivatives
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. 3.4
¥"(w) = 6yo(1—u) +6y,(=2+3u) + 6y,(1- 3u) + 6y5u S

{x”(u) = 6x(1— 1) + 67 (—2 + 3u) + 63 (1 - 3u) + 630
Since the leading edge is at (0,0), x” (0) = y" (0) = 0, which together with (3.2)
implies
x=y¥=o0. (3.5)

For the blade to have a rounded leading edge, the thickness curve must be vertical at
(0,0). That is, (x’f) (0)=0. From (3.3) and (3.5), then

xf=0. (3.6)

In general, the radius of curvature of a parametric curve at # =0 is

3

- [(x'(o))2 +(y'(0))2}5

X 0y (-3 ©Ox" )

Since (xlt ) (0) = 0 from above, the leading edge radius is given by

’ 2
[(y It) (O)} [—3 y(lf +3 yft ]2
_(xlt ) ©) T exl 125 62k

Ye =

from (3.3), (3.4). Using (3.5) and (3.6), this results in the following equation relating xét

and ylt ,

2
2105 =3y . 3.7
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The juncture between the leading and trailing curves has coordinates xlt(l) =X,

" ()= y, and is horizontal (i.e. (") (1) =0). Thus, from (3.2) and (3.3),

It
{ ¥ (3.8)
Y2 =¥V3 =)

In summary, the control points for the leading thickness curve are given by

Fx(l)t — ’y(l)t -0

| =0 =2
Xy =? =y
\xét =Xt \yét =Yt

with variables x and ypi' satisfying (3.7). These will be determined in the subsequent

section.

3.2.2 Trailing Thickness Curve (Degree 3): (x”,y")

1

The juncture between the leading and trailing curves has coordinates x"(0) = x,,

Y (0)= ¥; and is horizontal (i.e. ( y ) (0) =0). Thus, from (3.2) and (3.3),

{xé‘ i (3.9)
1 - )
Yo =1 =

In general, the curvature of a parametric curve at u =0 is

2Oy (-5 ©)x"(0)

[(x'm))z +(y'(0))2f
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7

Since ( y”) (0) =0 from above, the curvature at the juncture between curves is given by

(") © 6y —12 16

l:(xtt)' (O)T [-—3xg +3xf ]2

3

from (3.3), (3.4). Using (3.9), this results in the following equation relating x{* and ¥,

2
2(yg—y,)=31<,(xft—xt) (3.10)
The curvature at the juncture should be the same for both leading and trailing

curves. That is,

(y”)" M (y”)" (0)

ol [+ o

To satisfy this requirement, it is sufficient that ( y”) )= ( i ) (0) and

(x” ) D= (x") (0) . Consider first y" . Using (3.4) with control points (3.8), (3.9),

(") =6 -124 +6)4
= 6)’1” -6y,
and

"

(") @=6xf ~12){ +6)5

=6y5 —6y,

Equating these second derivatives implies that control points y{t and y5 must be equal:
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W=y (3.11)

Now consider x' . Using (3.3) with control points (3.8), (3.9),

(xlt)' (1) = 3% +3x¥

s

= —3x§t +3x;

and

(x” )'(0) =-3xf + 3xf’ .
= -3x, +3x]"
Equating these first derivatives results in the following relationship between x¥ and xf:
xF=2x, - xf. (3.12)
Since the trailing edge of the thickness curve is at (1,dz,,), (1) =1 and

¥* (1) = dz,,, which, from (3.2), implies

x:tf =1
" . (3.13)
Y3 =dzte

The trailing edge angle of the thickness curve is f,,, which will be taken to be positive,

so the slope at the trailing edge must equal —tan(f,,) . That is,

@

= 7 =_tan(ﬂte)’

where
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’

(»") ) =-35% +3y¥

= '"3yg +3dz,

from (3.3), (3.13), and

!

(%) (1) ==3xf +3xf

=-3x +3

from (3.3), (3.13). Solving for x§ results in

X = 1+(dz,e —~ yg)cot(ﬂ,e) :

52

(3.14)

There are five thickness variables yet to be determined (x5 , ¥, xf, x, y¥),

and five equations governing them. These equations are repeated here for the reader's

convenience.

2nexf =3ot)

2(y§t “.Vt) = 3’Ct(xltt "xt)z

=y

X =2x, —xf

xtt = 1+(dzte —yg)COt(ﬁte)

3.7)

(3.10)

(3.11)

(3.12)

(3.14)

The first four equations do not depend on x5 , so equation (3.14) will be used only after

the other four variables are found. Equation (3.11) is easily eliminated, resulting in the

following nonlinear system of equations in three unknowns, x , yft , xi'
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2k + 3(F) =0

42(y1”—yt)—-3ict(xft—xt)2 =0. (3.15)

x4 xft —=2x, =0

This can be reduced to the following fourth order polynomial equation in xZ

4 3 2
—zlxtz(xg ) —27x,%x, (xg ) + (91{} ¥y +-8—11ct2xt2 (xg )
4 2
. , (3.16)
(21, 181, — 277,25 ) + (3 V.2 +9%,x, 2y, + Tx,zx;‘) =0

which is solved numerically as discussed below.

Letting xét = by represent the root of (3.16), the remaining control point variables

are known from (3.15),

x{' =2x, ~by, 3.17)
3 2
N =5K,(x,—b9) + ;. (3.18)

It remains to solve for xé’ . The polynomial in (3.16) will normally have multiple

real roots, so we must consider any bounds on xét . For an aerodynamic shape, the leading

edge of the thickness profile must be concave down and curve from (0,0) to (x.,,), the
position of maximum thickness. Thus the leading edge radius must be negative, and, from

3.7,

xg>0.
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At the juncture between the curves, the thickness profile should be travelling left to right

to avoid a loop. That is, (x”) (1) >0, where () (1)=3(x, - x5 ) from (3.3), (3.8). Thus
It

Xy <Xg.

Since a blade's thickness must be positive, the leading edge must travel upwards. That is,

(») (>0, where () (0)=3y{" from (3.3) and (3.5). Thus y{' > 0. From (3.18), this

implies that ;—K,(xt —x¥ )2 +y, >0. Since x, <0, this is equivalent to (x, —xk )2 < _?i}: L
Since it is already required that x» < x, , it follows that
x> x, - —3?:’ )
Thus the root xé’ = by of (3.16) must satisfy
max{O,x,— _iy' }<b9 <x. (3.19)
t

Within these bounds, the solution of (3.16) proceeds as follows. Equation (3.16)
can be written as F;(x) =0, where x = xg = by, and F,(x) is a fourth-order polynomial.
The first derivative and critical values of P;(x) are computed symbolically using Maple.
The critical points and intervals of increase and decrease of P,(x) are used to determine
whether P (x) has any real roots. If there is no real root, the code is informed that the

aerodynamic parameters resulted in a non-aerodynamic shape, and the flow is not

calculated. If there are real roots, the critical points are used to partition the real line into
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intervals, within each of which exactly one root of P;(x) exists. The roots are then found
by numerical means. If more than one valid root exists, the smallest one is chosen as it
will result in the smoothest juncture between the leading and trailing curves, and thus the
most aerodynamic shape.

In summary, the control points for the leading thickness curve are given by

(I —
fx(l)t =0 Yo = 0
It r_3 2
x; =0 M =—=Kdx—~by) +y
J 1” } 1 ) t( t 9) t - (3.20)
xi =bo yét =V
(X3 =X; \yét =y,
The control points for the trailing thickness curve are given by
xg =X, ry(l)T =Yy
xi' =2, ~by =y
3 3 2 4 3 5 (3.21)
of =1, ~(S s 3 |oo8) [ = 2 o
~x§t =1 Y ét =dz,

where by is the left-most root of (3.16) that lies within the bounds (3.19).

3.2.3 Leading Camber Curve (Degree 3): (x*, )

Since the leading edge is at (0,0), x°(0) = y*°(0) = 0, which together with (3.2)
implies

xE=yk=o. (3.22)
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The angle of the camber curve at the leading edge is y, , so the slope at the

leading edge must equal tan(y,) . That is,

le ’ 0
‘_‘w:tan(}’le)’
x=0 ( 16‘) (0)

where, from (3.3) and (3.22), ( le) (0) = -3y¥ +3y¥ =3k and

2
dx

=

(xk) (0) = —3x +3xi = 3x%° . Letting y/ = b, results in

{x{C = by cot(y, ) | (3.23)

I
no=b
where a solution for b; will be given in the next section.

The juncture between the leading and trailing curves has coordinates x* D =x,,

¥*(1) =y, and is horizontal (i.e. () (1) = 0). Thus, from (3.2) and (3.3),

lc
X2 =X
{1 < . (3.24)
Y3 =¥Y3 =),

The curvature at the juncture between curves is given by

l "
(») o 6y 128 v 6y

|:( xlc)' (1)]2 [—3xéc + 3x§c ]2

K, s

from (3.3), (3.4). Substituting the control points already known from (3.23) and (3.24),

the result is a quadratic equation in the remaining unknown, X2,



3.2 BP 3333 Parameterization 57

(e 2o 222222

This has two solutions,

but only one which will result in an aerodynamic shape. Bezier curves are tangent at their
right endpoint to the line segment joining the last two control points. Consequently, if the
x-coordinate of the second last control point is greater than that of the last, the curve will
be multi-valued. That is, the camber curve would have a loop in it at the joint. Thus we

require that x° < x¥ = x,. With this restriction, we have

lc 2(b1 "'yc) (325)

Xy =X, =~ [——F.

3%,

In summary, the control points for the leading camber curve are given by

(.1
xOC = O (y(l)c - 0
/
ol =bycot(y) s
1 —Y
; 2(5 - 3. ; , (3.26)
lc [of le
Xy =X, — | —————— =
2 ¢ 3, y?c Ye
=, o

where b is given by (3.33) with bounds (3.34), calculated in the subsequent section.
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3.2.4 Trailing Camber Curve (Degree 3): (x/°,y¥)
The juncture between the leading and trailing curves has coordinates x*(0) = x,,,

¥*(0) = y, and is horizontal (i.e. ( ytc) (0)=0). Thus, from (3.2) and (3.3),

fc

Xp =X
{ ‘:c ° (3.27)
Yo = =X,

The curvature at the juncture should be the same for both leading and trailing

curves. That is,

(y’C)" m (y’C)" ©)

o] o]

To satisfy this requirement, it is sufficient that ( ylc) D= ( ym) (0) and

5 (3.28)

(xk) D)= (x‘C) (0). Consider first y" . Using (3.4) with control points (3.26), (3.27),

"

(¥°) =6y 1255 + 658
= 6b1 - 6yc

and

"

(v*) @ =6yF —125f + 63

=6y éc -6y,
Equating these second derivatives and solving for y5 results in

vy =b. (3.29)
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Now consider x'. Using (3.3) with control points (3.26), (3.27),

(xlc)' (1) = -3x% +3xk°

) _3[xC oy —yc)Jch’

3k,

and

(x°) (0) =-3xf +3xf°
=-3x, +3x{°

Equating these first derivatives and solving for x{° results in

2(b, -
X =x,+ Abi=ye) (3.30)
3k,

Since the trailing edge is at (1,2, ), x°(1) =1 and y*(1) = z,,, which from (3.2)

implies
x5 =1
y . (3.31)
Y3 = Zp

The trailing edge angle of the camber curve is «,, , where &, is taken to be positive, so

the slope at the trailing edge must equal —-tan(a le) . That is,

dy

dx

x=1 ) (xfc) (1)

where
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(V) W =-3y5 +3y5
=-3b; + 3z,

from (3.3), (3.29), (3.31), and

(xtc), (1) =-3x5 +3xf

=-3x5 +3
from (3.3), (3.31). Solving for x5° results in

x5 =1+(z, — b )cot(a,,).

60

(3.32)

Finally, it is possible to solve for 4; . When matching the curvature (3.28), it was

sufficient to match y” and x' at the juncture. Matching additionally the second

derivative of x will result in an equation for 5, while maintaining or improving the

smoothness of the juncture. Using (3.4) with control points (3.26),

n

(xlc) (1) = 6xi° —12x¥ + 6x¥

=6b, coty, +4 /GM——&C
KC

and with control points (3.27), (3.30), (3.32),

"

(x) (0)=6xf 12 +6x5

= —6b, cotar,, —4 62"
KC

Equating these second derivatives of x results in the following expression,

bl_yc

c

by(coty,, +cota,,)+8

-z, cota,—1=0,

A )e —6x, + 6z, cota,, +6
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for which b; is the only unknown. This has two solutions,

by = 1 5 [16+3Kc(cot}f,e +cotay, )(1+2, cotay,)
3K, (coty g +cota,,) . (3.33)

i4\/16 + 6k (coty j, +cotay, )1y (coty, +cotay,)+z, cot ate)]

Upper and lower bounds can be placed on solutions (3.33). For aerodynamic
reasons, the curvature at the juncture must be negative. Otherwise, the camber will have a
valley at the juncture, creating a region of separation in the middle of the blade. Thus,
since ', <0, x* (3.25) and xi° (3.30) exist only if b, < y,. Furthermore, consideration
of equations (3.23) implies that b must be positive. If it is zero, the leading edge angle is
ignored. If it is negative, the camber curve begins in the wrong direction. Thus the
following restriction must be placed on solutions (3.33),

0<b <y,. (3.34)

In practice, both solutions of (3.33) are calculated to determine which one is valid.
If the solutions are not real, or if neither falls within the bounds (3.34), the code is
informed that the aerodynamic parameters resulted in a non-aerodynamic shape, and the
flow is not calculated. If both solutions are within the interval, the value chosen is that

closest to y,, as this will result in the smoothest juncture between the curves.
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In summary, the control points for the trailing edge camber curve are given by

xéc =xC ry{)c =y
2(by - y.) :
1
<x1c=xc+ 3 < {yltczyc (3 35)
¢ , .
f yéc =b
Xy =1+ (Zte —bl)COt(ate) tc
fc - 1 \y3 =Zte
3

where b1 is given by (3.33) with bounds (3.34).

A possible limitation of the BP 3333 parameterization is the size of the design
space - that is the number of airfoils that can be reproduced. Frequently airfoils are
designed with inflection points on their trailing thickness and/or trailing camber curves.
In the BP 3333 parameterization, the inflection point positions are entirely dependent on
the other parameters. Increasing the degree of the trailing edge curves would allow more
freedom for these positions. Also, in order to match the curvature, it is necessary to
choose one of (possibly) multiple roots of equations relating the curvature to other
parameters. Airfoil shapes formed by other roots are never considered, yet they might be
better designs. The BP 3434 parameterization is an attempt to address these possible

deficiencies.

3.3 BP 3434 Parameterization

In the BP 3434 parameterization, the design space is enlarged by increasing the

trailing curve degrees from three to four. This requires two additional variables, 5,5 and
by7 (each the x-value of the fourth control point on their respective curve). The thickness

curvature is replaced by the Bezier control parameter bg (the height of the second control

erarae i
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point). The camber curvature is replaced by two Bezier parameters, b, 5, , for a total of

15 BP parameters. These are illustrated in Figure 3.3. Equations for the associated Bezier

control points are derived in sections 3.3.1 - 3.3.4.

y (xtayt)

_______

Pl
.

(xc’yc)

i H i c
A4 T A T L » X

Camber profile
bg by P b, (Lzg)

Figure 3.3 BP 3434 airfoil geometry and Bezier control points defined by ten
aerodynamic and five Bezier parameters.

3.3.1 Leading Thickness Curve (Degree 3): (xf,)¥)

The degree three Bezier curves and derivatives are given by (3.2) — (3.4). The
leading edge begins at (0,0) and is vertical. Thus

=yl =xlt=o. (3.36)

The curve ends at (x,,y,) and is horizontal there, so that

It
X7 =X,
{1 Y (3.37)
Yo =Y3 =)
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The leading edge radius is given by
;2
It 2
6O [any

e = T It e
_(xl[) (O) —6x0 +12x1 "'6JC2

which from (3.36) reduces to
It 1t\?
—21 Xy = (J’1) : (3-38)

Thus we set yf’ equal to the Bezier variable 53, which replaces the curvature
variable x, of the BP 3333 parameterization. Some restrictions must be placed on &3 to
ensure an aerodynamic shape. For the blade to have positive thickness, we must have

bg > 0. For the crest curvature to be negative (concave down), it is necessary that b3 < y,.
Finally, to avoid a loop at the crest, we must have xé’ < x; , which from (3.38) implies
that b3 < W . Thus the following restrictions are placed on by :

0 < bg < min(y,,/~27,%; /3) (3.39)

In summary, the following equations determine the Bezier control points of the

leading thickness curve,

(It

%0 =0 ¥ =
X{t = O llt - b8
2
4 i —3bg 3 ¥ (3.40)
X2 = Y2 =W
zrle lt
\xét =x, Y3 =

where by must satisfy (3.39).



3.3 BP 3434 Parameterization

3.3.2 Trailing Thickness Curve (Degree 4): (x,-" I )

From (2.1), the degree four Bezier curve is
x(u) = x(1- u)4 +4xu(1— u)3 + 6x2u2 (1- u)2 + 4x3u3(1 —u)+ x4u4 ,
with first derivative

x'(u)= (4u3 —120% +12u— 4)xo + (—16u3 +36u° ~24u+ 4)x1

+ (240 ~360” + 120, +(-160° + 120}y + 415,
and second derivative

x"(u) = (1267 - 24u-+12)xg + (480 + T2u—24)x,

(7207 = T2u+12), + (~48% + 240y +120%x,

The trailing curve begins at (x,,y,) and is horizontal there, so that

{x(t)t =X
7 I )
Yo =)t =
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(3.41)

(3.42)

(3.43)

(3.44)

The curvature at the juncture should be the same for both leading and trailing

curves. That is,

(y”)" M _ (y”)" ©)

«of [ o]

To satisfy this requirement, it is sufficient that ( y¥ ) )= ( o ) (0) and

(xk)' (D)= (x”)’ (0) . From (3.3), (3.4), and (3.40),
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( y")" (1) = 6By — 6, and (x”)' (1) =-3x% +3x,

while from (3.42) - (3.44),

"

(y“) (0) =-12y, +12y¥ and (xtt)’(0)=—4xt +4xP .

Thus, for second order continuity at the juncture, we require

+
yé’ Mt : bg
s 3.45
o Tx,—3xd (3.45)
X =——=
4

where xé’ is given in (3.40). Matching additionally the second derivative of x will reduce

by one the number of parameters, while maintaining or improving the smoothness of the

Jjuncture. From (3.4) and (3.40),

(+") @ =-12xf +6x,,
while from (3.43) and (3.44),
(x") (0)=12x, - 24xf" +12xf
which together with (3.45) imply that

X =3x, —-—;-xg. (3.46)

xi =1
. 347)
z,

The wedge angle satisfies
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where from (3.42),
(y”)'(l) =-4y¥ +4dz,, and (x”)'(l) =—4x% +4.
Thus
V5 =dz, +(1—-x§’)tan(,8te) .
Finally, let

14
x3 =bys
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(3.48)

(3.49)

be a free parameter to allow for a flexible inflection point on the trailing thickness curve.

In summary, the trailing thickness Bezier control points are given by

3.3.3 Leading Camber Curve (Degree 3): (x,5)

; Yo=Y
It 7.xt - 3x2t O !
Xy = o
4 N ==
A%y =3x,—§xg 17 =z%b§‘
xét =b15 y? =dzte +(1“b15)tan(ﬁte)
xff =1 \yff =dz,,

(3.50)

Two Bezier variables determine the x-coordinates of the second and third Bezier

control points:
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{xi =h (3.51)
=ty

The remaining leading camber control points are uniquely determined by the leading
edge position (0,0), the crest position, (x,,y,), and the leading edge angle y,,, resulting

in the following set of equations,

xO =0 ’ylc =0
le—p € = by tan

Xy =by 2 =Y

I/

x5 =x, Y =y,

3.3.4 Trailing Camber Curve (Degree 4): (x,-‘c, y,-“")

The position of the crest dictates the initial control points,

Ic
X =X
{(t)c . (3.53)
Yo =1 =Y,

To enforce a second order continuous juncture, we set (xlc) D= (x’c) 0,

(x’C)"(l)=( )(0) and (y" )(1) % )"(O).From(3.3), (3.4), and (3.52), the

leading edge derivatives at the camber crest are:

,

(xlc)'(l) = -3b, +3x,
< (xk)" (1) = 6By —12b, +6x,

(¥*) =68y tany,,) - 6.
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These must match the trailing edge values at the crest, which from (3.42), (3.43), and

(3.53) are:

( 7

(xtc) (0) = —4x, +4x{°

"

n

(»°) ©=-12y,+129F°

\

This results in the following equations

r

722

The trailing edge coordinates are

{xff =1
e _ _
Y4 = 2y

The trailing direction angle requires that

ygc =Zpe + (1 - xitic) ta‘n(ate) .

Finally, let

te _
x3 =byy

(") (0 =12x, 24 +12xf .

x{c = 7.xc “3b2
4
) xéc _ b0—5b2 +6xc ]
2
ytc - Ye +bl

(3.54)

(3.55)

(3.56)

(3.57)

be a free parameter to allow for a flexible inflection point on the trailing camber curve.
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In summary, the trailing camber Bezier control points are given by

rx(t)c =xc ) t
c _
xfc — 3xc - Ye COt(yle) Yo =Xe
2 Y=Y,
—8y. cot +13x
4 xéc = e (Zle) ¢ $ yéc = -5-J6—)9- . (3.58)
x5 =by V¥ =2z, +(1 —by7)tan(ez,, )
\yic = Zte
xf =1

3.4 Airfoil Representation

A useful parameterization method must have the ability to represent a wide range
of airfoils. This has an obvious influence on the robustness of a design algorithm. It
cannot be truly robust if the design space is so small that the optimal shape cannot be
represented.

In this section, the representation abilities of the Bezier and BP methods are
evaluated and compared. Each parameterization is used to reproduce 63 known airfoils:
20 NACA symmetric airfoils, 20 NACA asymmetric airfoils (Abbott and von Doenhoff,
1959), 15 Eppler airfoils (Eppler, 1990), and 8 low-speed airfoils (Selig et. al., 1995).
Plots for each parameterization are given in Appendix B on the CD.

In section 3.4.1, the optimization method used to reproduce the airfoils is
presented. This includes a discussion of the error threshold and of any constraints placed
on the curves. In sections 3.4.2 — 3.4.5, the results for each category of airfoil are

summarized. Success rates are given, and any failures are examined in more detail.
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3.4.1 Method of Airfoil Reproduction

The design algorithm was modified to include the option of matching a known

airfoil. The cost function is thus the deviation between the target airfoil and the current

71

parameterization. At each data point along the target, the vertical difference is measured,

using linear interpolation to estimate the height of the current shape. The total deviation

is measured using the .£;-error norm. DE is then used to minimize that cost.

Table 3.1 Bounds on the initial population used by DE to represent the airfoils.

Bezier parameterization BP parameterizations
Parameter | Lower | Upper | Parameter | Lower | Upper
bo 0.13 0.22 Ve 0.05 0.1
b 0.08 0.17 by 0.01 0.1
b, 0.28 0.37 by 0.1 0.3
bs 0.13 0.22 Xe 0.2 0.5
bs 0.43 0.52 Ve 0 0.2
bs 0.58 0.67 K. -0.2 0
bs 0.76 0.85 bz 0 0.9
by 0.03 0.12 Zge 0 0.01
bg 0.01 0.1 Qe 0.05 0.1
by 0.18 0.27 Tle -0.04 | -0.001
bio 0.06 0.15 by 0 0.7
bu 0.38 0.47 X 0.15 0.4
b1z 0.58 0.67 Vi 0.05 0.15
b1z 0.78 0.87 K -0.5 0
bia 0 0.09 bis 0 0.9
dzs 0 0.001
e 0.001 |03

The optimizer specifications were kept fairly consistent for all tests. The DE
variation rand-to-best/1/exp was used for all tests, with F=0.85, CR=1. In general, the
population size was NP=150. A maximum of 500 generations was allowed. The initial

population was chosen at random within the bounds shown in Table 3.1. If convergence
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did not occur within 500 generations, additional runs were performed with different
population sizes. In a few cases, when a different population size did not improve
convergence, the initial population was modified to more closely resemble the target.

To ensure feasibility of the study, a cost limit of 0.01 was used in most cases.
That is, optimization was halted if the deviation between the parameterization and the
target was smaller than 0.01. To ensure complete convergence, it is preferable to allow
the objective function value to become nearly constant over 10,000 to 20,000 function
evaluations. However, this is not practical in a study of this size (63 different targets,
each parameterized three different ways.) In a few cases, optimization was allowed to
progress beyond the error limit, to test the ability of the parameterizations to converge to
a smaller deviation.

The 0.01 limit is reasonable in light of the actual error that exists between a
manufactured blade and its theoretical design. For example, in a study of 34 low-speed
airfoils (Selig et. al., 1995), models with 12-inch chord length were built for wind tunnel
tests. The deviation of the model from the theoretical airfoil was measured at each data
point and averaged over the entire blade. The smallest such average deviation was 0.0017
in, the largest 0.0384 in, and thé average over all 34 models was 0.0092 in. For an airfoil
of unit chord length, these measurements correspond to the following (non-dimensional)

average deviations: minimum 1.4 x 10, maximum 3.2 x 103, and average 7.7 x 10,

Compare with the BP 3333 parameterization (converged to an .¢>-error of 0.01) of the
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following airfoils: NACA 663-218, average deviatioﬁ 1.1x 103, Low-speed FX 63137,
average deviation 7.9 x 10, These are reasonably close to the average — and well within
the upper bound — of the deviations in the low speed study.

The constraints imposed include the one-to-one constraints discussed in section
2.2, although this had to be relaxed for some Eppler airfoils, in which the trailing camber
is not one-to-one. For the Bezier parameterization, the minimum separation of juncture
control points was also imposed. For the BP parameterizations, parameters were
constrained within the bounds discussed above ((3.19), (3.34) for BP 3333, and (3.39) for
BP 3434). If any constraint is violated, the shape is not compared to the target, and is not

included in the NFEs reported.

3.4.2 NACA Symmetric Airfoils

In their classic reference book, Theory of Wing Sections, Abbot and Von
Doenhoff (1959) summarize the NACA class of airfoils. These continue to be prevalent,
not only for airplane wings, but also for high performance fans. The 20 airfoils shown in
Figure 3.4 were selected to represent a broad range of symmetric NACA shapes.

Notice that the cost limit of 0.01 does not depend on the number of data points in
the target. That is, if a target has fewer data points, the converged shape will have a larger
average deviation. Most NACA airfoils have 52 data points, and low-speed sections can
have as many as 98. However, six of the symmetric NACA airfoils contain only 34 data
points. For these six — namely 0008-34, 0010-34, 0010-64, 0012-34, 16-006, and 16-018

— the limit was reduced to 0.005.
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NACA 65,A012

NACA 65A006

NACA 67,1-015

Figure 3.4 Twenty symmetric NACA airfoils selected for representation.

For each optimization using a BP parameterization, the trailing edge height, z,,,

and thickness, dz,, , were both fixed at zero. Since symmetric curves have constant
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camber, all camber variables could have been fixed for each parameterization. However,
to test the ability of DE to find symmetric shapes, they were left variable.

Each parameterization method was able to reproduce all 20 airfoils to within the
specified limit. The final deviation and the number of function evaluations (NFEs)

required are listed in Table 3.2.

Table 3.2 NFEs required for convergence to symmetric NACA airfoils.

Airfoil | Cost | Bezier | BP 3333 | BP 3434
0008-34 |0.0057F 3268 1832 2475
0010-34 |0.005f 2196 1939 2924
0010-64 |0.005§ 2415 2471 4778
0012-34 |0.005§ 3252 1721 3248
16-006 0.005§ 2662 5520 2563
16-018 0.005¢ 3219 2767 3136
63-006 0.01 2078 4250 3007
633-018 10.01 2343 2404 3076
63A006 |0.01 1598 2074 1901
64-009 0.01 2766 1836 3274
64,-012 |0.01 2089 2620 3061
64,A012 |0.01 2496 1459 1872
64,-015 10.01 3256 2393 3334
645-018 |0.01 2635 2536 2707
64,-021 |0.01 3338 3073 3196
65-006 0.01 1605 2705 2520
65;-012 | 0.01 2020 1541 2665
65;A012 |0.01 2252 1228 2565
65A006 |0.01 1715 2074 1777
67,1-015 {0.01 3027 9510 3262

Converged:] 100% 100% 100%
Avg NFEs:] 2512 2798 2867

The NFEs required to find a reasonably close representation of the symmetric
airfoils is remarkably small. Each parameterization averaged fewer than 3000, with only

one requiring more than 6000 (the BP 3333 parameterization of NACA 67,1-015).
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Compare this with the 50,000 function evaluations required for convergence to an
aerodynamic target — using the Bezier parameterization — in the previous study. The task
of matching a geometric shape is easier than that of inverse design.

Although all parameterization methods were successful, it is informative to
examine one airfoil in detail. Consider the first one in Table 3.2, NACA 0008-34. To test
the parameterizations further, the cost limit is lowered to 0.001. The cost, NFEs, and
average deviation are listed in Table 3.3. For each parameterization, the average
deviation is actually smaller than the minimum average deviation (1.4 x 10™) for the
models built in Selig's low-speed study. (See section 3.4.1.) The actual deviations of the

different representations are compared in Figure 3.5.

Table 3.3 Convergence summary for NACA 0008-34, with error limit 0.001.

Bezier BP 3333 BP 3434

Cost 7.26x 107 9.07x 10™ 9.90x 10™
NFEs 6612 4243 6180

Avg. Deviation 1.06x 107 1.24x 107 1.26x 107

The thickness curves for NACA 4- and 5- digit airfoils have known analytic
equations (see Abbot and von Doenhoff, 1959, p 117). Thus we can compare the
aerodynamic quantities of the BP parameterizations with the actual quantities of the
target. The NACA 0008-34 has the following thickness curve, with coefficients accurate

to 107,

- 0.05938v/x +0.07729x — 0.22326x2 +011328x°, 0<x <04
y(x)= :
0.00080+ 0.12600(1 - x) - 0.09333(1— x)* - 0.01296(1—x)°, 04 <x<1
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Figure 3.5 Representation of NACA 0008-34 by the three parameterizations, including
upper and lower curve deviations.

from which the true aerodynamic quantities are calculated. These appear in Table 3.4,
along with the parameters for each BP representation. For comparison, the crest curvature
was calculated for the BP 3434 parameterization. The agreement for the crest position is

within two significant digits, but the other quantities only agree to one significant digit.

Table 3.4 BP parameterizations of NACA 0008-34
compared with known aerodynamic shape quantities.

0008-34 | BP3333 | BP 3434
Fe | -0.00174 | -0.00157 | -0.00178
bg 0.614
Xz 0.4 0.398 0.402
Vi 0.04 0.0402 0.0403
K -0.233 -0.264 -0.286
bis 0.977
B 0.125 0.160 0.103
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3.4.3 NACA Asymmetric Airfoils

All airfoils discussed above were symmetric and did not test the abilities of the
camber parameterizations. In this section, 20 asymmetric NACA airfoils are chosen for

representation (Figure 3.6). Again, these were selected to represent a broad range of

NACA 63,-212

NACA 63-206

NACA 63,-215

NACA 63;-218

: NACA 634-421

NACA 64,-112

NACA 64;A212

NACA 64-206

NACA 64;-218

NACA 64A210

NACA 65,-212

i

NACA 65,-415

NACA 65;-618

i

NACA 65,-421

e

NACA 66,-212

NACA 66-206

NACA 665-218

NACA 664-221

=

NACA 67,-215

< T

NACA 747A315

Figure 3.6 Twenty asymmetric NACA airfoils selected for representation.
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shapes. The trailing edge height, z,,, and thickness, dz,, , were both fixed at zero. The
cost limit was 0.01 for all airfoils.

A summary of convergence is given in Table 3.5. The Bezier and BP 3434
parameterizations were able to reproduce all 20 airfoils to within the cost limit. BP 3333
failed only with NACA 747A315 (cost 0.141). This failure will be examined in further
detail below.

Table 3.5 NFEs required for convergence (cost 0.01)
to asymmetric NACA airfoils.

Airfoil Bezier BP 3333 | BP 3434
63,-212 4664 1772 5394
63-206 1523 943 4161
63,-215 4355 2116 3636
633-218 3278 2185 5009
634-421 3099 4989 7441
641-112 2262 4144 5123
64,A212 4033 1585 5995
64-206 1765 3475 3772
643-218 8255 2880 5662
64A210 3347 1539 3559
651-212 4156 2236 3032
65,-415 3498 3409 6162
65:-618 2643 5519 3826
654-421 3321 4342 3908
66;-212 2275 1290 2157
66-206 1431 1259 1980
663-218 3011 2567 4239
664-221 3309 2972 5173
67;-215 2845 2411 2555
747TA315 2968 * 5705
Converged:{ 100% 95% 100%
Avg NFEs: 3302 3071 4424

* Cost 0.014 after 500 generations



3.4 Airfoil Representation 80

The NFEs required is larger than that for the symmetric airfoils, but is still quite
small. Of the 59 converged representations, only two required significantly more than
6000 function evaluations (Bezier 645-218 and BP 3434 634-421).

For the first in the list (63;-212), DE was allowed to converge completely (500
generations). Results are shown in Table 3.6. BP 3333 converges at a significantly higher
deviation. Recall that the minimum average deviation in Selig's low-speed study was
1.4x 10™, and the average was 7.7 x 10™*. (See section 3.4.1.) The BP 3333 representation

is still better than Selig's average, and the other two are close to Selig's minimum.

Table 3.6 Convergence summary for NACA 63;-212,
after 500 generations of population size 150.

Bezier BP 3333 BP 3434
Cost 1.55x 107 4.93x 107 1.99x 10™
Avg. Deviation 1.27x10™ 5.57x 10" 1.98x 10

The point-wise deviations of the different representations are compared in Figure
3.7. The BP 3333 representation closely resembles the other representations except near
the trailing edge. The trailing edge thickness curve of the target wing section is slightly
cusped, with an inflection point close to the endpoint. The BP 3333 parameterization,
which has an inflection point fixed by the other parameters, cannot match the correct
position as closely as the other two parameterizations.

As noted in Table 3.5, the BP 3333 parameterization was unable to reproduce fhe
NACA 747A315 wing section to the required minimum error. The average deviation is
1.49 x 10, which is still within the range of the deviations of the Eppler models in
Selig's study. However, an examination of the deviations and representation reveals one

of the weaknesses of the BP 3333 parameterization method.
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Figure 3.7 Representation of NACA 63;-212 by the three parameterizations, including
upper and lower curve deviations.

For comparison, the BP 3434 parameterization is allowed to converge to a cost of
0.005, which occurs after 176 generations and 17,000 FEs. The camber and thickness
profiles, resultant airfoils, and point-wise deviations are compared in Figure 3.8. The BP
3333 parameterization cannot match the camber of the NACA 747A315. The BP 3434
trailing camber uses its additional trailing camber control point to position the inflection
point correctly, while simultaneously matching the camber crest and the trailing edge
direction.

While the failure of the BP 3333 parameterization is due mostly to the lack of
sufficient freedom on the trailing camber, there is also a more minor problem in the

trailing thickness profile, where it cannot match the sharp cusp in the NACA 747A315.
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The BP 3434 parameterization is able to represent the trailing edge thickness shape

correctly, once again due to the additional control point.

82
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Figure 3.8 Representations of NACA 7474315 by BP 3333 (left) and BP 3434 (right)
after full convergence.
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3.4.4 Eppler Airfoils

In the 1950's, NACA shiﬁed its focus to high-speed aerodynamics. The laminar-flow
airfoil design scene shifted to Germany where Richard Eppler (1957) pursued the
development of more accurate theoretical methods — especially conformal
transformations. Over the years, Eppler developed an inverse method capable of
designing airfoil shapes with prescribed boundary layer characteristics. This work

culminated in a Fortran-based computer code (Eppler and Somers, 1980), and the
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<———

E 325

T

E 337

E 360

A

E 420
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E 540
: E 817

E 837

S

E 850

: E 854

E 863

Figure 3.9 Fifteen Eppler airfoils selected for representation.




3.4 Airfoil Representation 84

publication of an airfoil catalog summarizing the results (Eppler, 1990). 15 airfoils from
this catalog are chosen here for reproduction (Figure 3.9). The shapes chosen are less
conventional than the NACA wing sections, and are intended to challenge the
parameterization methods beyond the ability of the NACA shapes to do so.

Optimization was stopped when the cost dipped below 0.01. However, the Eppler
shapes are catalogued with a higher number of data points (70-80 data points, compared

to 34 or 52 for the NACA shapes). Thus the average deviation is actually smaller than

Table 3.7 NFEs required for convergence to Eppler airfoils.
Unless otherwise noted, cost at convergence is 0.01.

Airfoil Bezier | BP 3333 | BP 3434
E 61 3659 4490 3349
E 266 733902 ok 15632
E 325 Aok k% 32262
E 337 ok ok 5627
E 360 3488 26951 5417
E 417 % %39128 *
E 420 9139] 27370 10878
E 502 3646 3423 4907
E 521 3704 2343 3152
E 540 4670 3898 5997
E 817 2762 5677 5539
E 837 3138 2184 3219
E 850 2390 3472 3489
E 854 2561 3269 6540
E 863 ok 3376 7639
Acceptable: 73 % 80 % 93 %
Avg NFEs: 6641] 10,465 8117

Avg NFEs 3316 3570 4870
excluding
E266-E420]

Tacceptable, cost e (0.01, 0.0125)

*unacceptable bump

**ynacceptable second-order discontinuity
***cost > 0.0125
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that for a NACA representation with the same cost. Furthermore, several reproductions
are quite acceptable, but converged to a cost slightly higher than 0.01. These all had cost
within (0.01, 0.0125). The Eppler airfoils were indeed more challenging, and some
representations were unacceptable, even though they achieved a cost lower than 0.01.
The success of each parameterization is summarized in Table 3.7. Problematic shapes
will be discussed below, in the order in which they appear in the table.

Consider first the E 266 airfoil. The Bezier representation converged at a cost of
0.01055. The average deviation is 9.29 x 10™* — well within the range of average

deviations in Selig's study. Figure 3.10 shows that the deviations are very similar to those
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Y BP 3333
~0.005 0.5 1 — - BP 3434
000 E 266

Figure 3.10 Representations of E 266, including upper and lower curve deviations.
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of the BP 3434, which did converge to 0.01, and that the two representations are nearly
indiscernible.

The BP 3333 representation of E 266 converged with a cost of 0.01331. The
deviations (Figure 3.10) are nearly the same on the upper and lower surface, indicating it
has reproduced the thickness curve quite accurately. In fact, the BP 3333 deviations are
very similar in magnitude to the others, except in the last 15% of the chord. The trailing
portion of the BP 3333 and 3434 representations are compared in Figure 3.11. The BP
3434 trailing camber, with its additional control point, is able to match the crest curvature
with its first three control points, and uses the fourth to keep the camber high enough

throughout before dipping down to the trailing edge position. The BP 3333 does not have

0.04

0.02

x/c
""" BP 3333 representation and camber

¢ BP 3333 camber control points
— BP 3434 representation and camber
ooo BP 3434 camber control points
000 E 266

Figure 3.11 Trailing portion of BP 3434 and BP 3333 representations of E 266.
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the luxury of the extra control point, and thus cannot simultaneously match the crest and
the trailing edge shape of the camber.

Consider next the E 325 and E 337. These airfoils have a positive leading edge
direction, and negative trailing edge direction. (Figure 3.12 shows the E 325 only, but the
E 337 is similar.) The trailing camber curve dips below the axis prior to its trailing edge
position of (1,0). An airfoil with such a camber cannot be represented by the BP 3333

parameterization. To match the camber curvature at the crest, the y-values of the second

0.1 =7 T T T T

0.05—

N o
=0.05 I~
- ! ! | 1 |
01y 0.2 0.4 0.6 0.8
x/c

000 E325
—— BP3434
—o— BP 3434 camber control points
""" BP 3333

Figure 3.12 BP 3434 and BP 3333 representations of E 325.
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leading edge control point and the second-last trailing control point must be equal. (See

equations (3.26) and (3.35)). Thus, if the leading edge direction is positive (7, > 0), then
¥ > 0, which implies that y5° >0. The y-values of the remaining BP 3333 trailing
camber control points are fixed by the crest and trailing edge positions: yi = »° =y,

and y¥ =0. Recall that Bezier curves always lie within the convex hull formed by their

control points. In this case, one implication is that the BP 3333 trailing camber curve will
always be non-negative if 7, > 0. The parameterization attempts to mitigate this
restriction by setting @, very nearly zero. Not only is that insufficient to represent the
trailing edge, but it also results in an unacceptable jump near the camber crest.

Although the Bezier parameterization does match these airfoils within the
required tolerance, it does so at the expense of the crest curvature. For the Bezier
representation of E 325, the camber crest curvature is —0.0016 from the left and —0.932
from the right. For E 337, it is —0.064 from the left, and —1.72 from the right. In both
cases, the discrepancy is unacceptable. Thus, the BP 3434 parameterization is the only
one of the three that can represent this kind of airfoil correctly. The additional trailing
camber control point allows it to match simultaneously the crest curvature, trailing,
inflection point, and negative trailing edge angle.

Consider next the E 360. The BP 3333 parameterization converges to 0.01057,
higher than 0.01, but is in fact quite acceptable. The average deviation is 9.57 x 10™. The

point-wise deviations are small and comparable to the other parameterizations.
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The E 417, on the other hand, was problematic for all parameterization methods.
BP 3333 converges to a cost of 0.01216, but actually finds the best shape. (BP 3333
average deviation is 1.16 x 1072.) The E417 camber crest is far aft (at greater than 70% of
the chord). The long leading camber is difficult to match with degree three curves. The
BP 3333 method under-represents both upper and lower curves in the leading 20% of the
chord. (See Figure 3.13.) The tradeoff is that its deviations decrease significantly in
magnitude toward the trailing edge.

Notice that the BP 3333 deviation curve is the smoothest overall. The Bezier and
BP 3434 deviations have sharp spikes between 50% and 80% of the chord. The symmetry
of the deviations indicates an unacceptable bump in the camber curve (at about 56% for
Bezier and 74% for BP 3434). The camber crest is so far aft (Figure 3.14) that the search
must stray far from the initial population. By the time the Bezier and BP 3434
parameterizations have found the right position, the populations have converged around a

camber with a sharp edge. The BP 3333 camber, on the other hand, is smooth.
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Figure 3.13 Point-wise deviations for representations of E 417.
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Figure 3.14 Representations of E 417, including thickness and camber profiles and
control points.
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Notice also the erratic nature of the BP 3434 camber control points in Figure 3.14.
On the trailing camber curve, the third control point is far to the left of the second. This is
in fact the cause of the sharp edge in the camber. Because the BP 3333 parameterization
has the least freedom, its control points must be less erratic, and it is more likely to stay
away from shapes with sharp edges.

Finally, consider the E 863. This airfoil has a non-zero trailing edge thickness,
which is not admitted in Bezier parameterizations. The representations and deviations are
depicted in Figure 3.15. Notice that the Bezier parameterization reproduces the airfoil
quite well except near the trailing edge. Compared to the other parameterizations, the

only significant deviation is in the last 5% of the chord.
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Figure 3.15 Representations of E 863, including upper and lower curve deviations.
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3.4.5 Low-speed Airfoils

Selig's low-speed airfoil study has been discussed above (Section 3.4.1). Eight of
the wing sections tested in the study are chosen for reproduction here. Again, the purpose
is to challenge the parameterizations beyond their ability to reproduce NACA airfoils.

The eight airfoils chosen are shown in Figure 3.16.

C FX 63-137
MB253515
FX 74-CL5-140 MOD C S1210
GMI5 C S1223
3 15012 WASP

Figure 3.16 Eight low-speed airfoils selected for representation.

The cost limit for all representations was set to 0.01. The success of each
parameterization is summarized in Table 3.8. The Bezier and BP 3434 methods
converged to within the limit for all eight airfoils. In one case, BP 3333 converges to a
cost slightly higher than 0.01, but represents the airfoil well. In another, the target had to
be shifted for BP 3333 to match it. These two cases are discussed in more detail below.

Although the BP 3333 representation of FX 74-CL5-140 MOD cannot attain the

0.01 cost, Figure 3.17 shows that the representation is acceptable. There are no large
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deviations from the target. The average deviation is 9.7 x 10™, compared to 7.7 x 10™* for

the BP 3434 representation.

Table 3.8 NFEs required for low-speed airfoils. Cost at convergence is 0.01.

Airfoil Bezier | BP 3333 | BP 3434
FX 63-137 6,556] 10,632 22,995
FX 74-CL5-140 MOD 8,983 722,903 9,620
GMI15 4,146 5,457 6,892
J5012 2,134 1,208 3,304
MB253515 3,304 4,807 5,085
S1210 6,010 9,891 10,476
S1223 7,643] 711,999 16,259
WASP 5,086 3,807 5,318

Acceptable:;;  100% 100% 100%

Avg NFEs§  5,483] 8,838 9,99

“acceptable, cost 0.01161
“converged after leading edge was shifted to origin
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Figure 3.17 Representation of FX 74-CL5-140 MOD by BP 3434 and BP 3333, including
upper and lower curve deviations.
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The BP 3333 representations failed to reproduce the S1223 airfoil using the data
points published by Selig. The biggest reason is that the leading edge of the S1223 does
not start at the origin. The target was modified by shifting it to the origin, and expanding
it to have trailing edge at x=1. This resulted in a nonzero z,, which was therefore left
variable for optimization. BP 3333 was able to match the modified target to within the
specified limit. The Bezier and BP 3434 parameterizations are able to represent the
original data by using leading edge directions that are nearly horizontal (Figure 3.18), but
BP 3333 does not have the freedom to do so. |

Notice once again the erratic nature of the trailing camber control points for the
BP 3434 parameterization (Figure 3.18). In fact, the trailing edge angle is in the wrong
quadrant. Magnifying the trailing edge camber, one would find it to be multivalued. The

scale is so small, however, that the parameterization is not affected. This phenomenon

0.2~

z/c

01

Figure 3.18 BP 3434 representation of S1223, including thickness and camber curves and
control points.
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was not uncommon for BP 3434 designs. The additional control point freedom, while
necessary in some cases, was too much for it to handle in others. It occasionally resulted

in premature convergence, which had to be corrected by narrowing the initial bounds.

3.4.6 Summary

All three parameterizations are able to represent a high percentage of the sample
of airfoils chosen. Of 63 airfoils, the Bezier parameterization reproduced 58, BP 3333
reproduced 59, and BP 3434 reproduced 62. For the vast majority, convergence occurred
in fewer than 10,000 FEs. For shapes near the edge of design space, convergence
sometimes required 20,000 — 30,000. Overall the Bezier parameterization required the
fewest NFEs, and BP 3434 the highest, which is not surprising. The Bezier
parameterization is designed geometrically, so it should work well for this kind of
geometry-matching problem. BP 3434 has the most parameters, and thus the largest
design space.

One of the biggest limitations of the Bezier parameterization is the discontinuous
second derivative at the camber and thickness crests. The Bezier representations of E 325
and E 337, for example, showed unacceptable curvature differences fore and aft of the
crest. For the E 417, the camber juncture has a visible sharp edge, which shows up as
spike in the plot of deviations from the target airfoil. A second deficiency is that the
trailing edge thickness of the Bezier parameterization is fixed at zero, which kept it from

reproducing E 863.
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The BP 3333 parameterization has the least control point freedom of the three
methods. This can be a good thing, as in the case of E 417. The lack of freedom means it
cannot search regions with sharp edges, and it thus ends up with the best design. There
are at least two classes of shapes that BP 3333 cannot represent. The first is any airfoil
with a radical change in the trailing camber curvature (NACA 747A315, E 266). The
second is any airfoil with a camber that dips below the x-axis (E 325, E 337). BP 3333
also does not represent sharp cusps as well as the other methods, although this did not
result in any convergence failures.

The BP 3434 was the most robust. The robustness is due to the additional control
points on the trailing edge curves. In many cases, however, these are not necessary for the
design, and BP 3434 doesn't quite know what to do with them. The E 417, fof example,
has its camber crest far aft. Before BP 3434 can find the right shape, it converges to a
camber with a sharp edge. In other cases, the control point polygon is somewhat erratic,
which can result in premature convergence to shapes with sharp edges, or with wrong

trailing edge directions.

3.5 Effect of Parameterization on Design Speed

In the previous section it was demonstrated that all three parameterizations can

- represent a broad range of airfoil shapes. We are now interested in whether the particular
parameterization method chosen influences the robustness and rate of convergence for
inverse design. The focus is narrowed to compare only BP 3333 and Bezier

parameterization. The BP 3333 solution space is smaller than that of BP 3434, but with
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fewer parameters overall, and no Bezier parameters, it should have more potential for
acceleration. This was verified in a very preliminary way with a few inverse design
experiments. BP 3434 tended to converge more slowly, and sometimes to a higher cost.
The three design cases discussed in Chapter 2 are considered in this section. The
convergence benchmarks developed for the Bezier parameterization serve as the standard
for design speed. Section 3.5.1 discusses the optimization parameters used for design.
Sections 3.5.2 — 3.5.4 compare Bezier and BP 3333 convergence to the three design

targets. A summary of the results is given in section 3.5.5.

3.5.1 Optimization parameters

The same design parameters are used for each of the three design cases, with one
exception: As in Chapter 2, the maximum panel length was 0.03 for the 112°-cambered
target, and 0.04 for the other two.

The bounds on the initial BP 3333 population are given in Table 3.9. The ranges for
a few variables are slightly different that those used for airfoil representation (Table 3.1).

These new ranges were found to be more effective for the broad range of design targets

Table 3.9 Bounds on the initial BP 3333 population used by DE for the inverse design

problems.
Camber Lower | Upper | Thickness | Lower | Upper
Parameter Parameter
Ve 0.05 0.5 Ple -0.04 |-0.001
Xe 0.3 0.6 X 0.15 0.4
Ve 0.01 0.3 Vi 0.05 0.2
4 -1.0 -0.1 K -1.0 -0.1
Zie 0 0 Az, 0 0.001
e 0.05 0.5 e 0.001 |03
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used here. The initial range for the stagger angle is [-15°15°], and that for the
pitch/chord ratio is [0,1].

Geometric constraints for BP 3333 are the same as those used in the previous
section. Each Bezier curve must be one-to-one, and parameter bounds (3.19) and (3.34)
are imposed. The trailing edge position and thickness are fixed at zero, resulting in D=13
variables.

The effectiveness for the Bezier parameterization of the DE/rand-to-best/1/CR=1

variant does not necessarily imply the same for the BP 3333 parameterization. In fact, it

resulted in misconvergence for the 112°-cambered

target (Figure 3.19). Mutation alone (CR=1) is the

recommended strategy for epistatic optimization y 50,000 FE's
15

. Error = 0.741
] i

problems (Price, 1999). This is related to the fact

Cp

that mutation in DE is rotationally invariant,

while crossover is not. However, the BP 3333

1.5
parameterization should result in more

separability, which suggests the use of crossover.  Figure 3.19 Misconvergence of BP
3333 for the 112°-cambered design,
A variety of crossover strategies were using DE with NP=120 and CR=1.
attempted. Overall, binary crossover with CR=0.95 was the most effective. Exponential
crossover tended to result in slower convergence. Later experiments confirmed that
binary crossover is more amenable to acceleration. Smaller values of CR (i.e. more

crossover) also converged more slowly. Thus the DE variant used throughout for BP

3333 design is DE/rand-to-best/1/bin with NP=120, F=0.85, and CR=0.95.
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3.5.2 Convergence to C4/70/C50

The convergence of the cost for the C4/70/C50 pressure distribution is shown in
Figure 3.20. Design snapshots are given in Figure 3.21. Results are essentially
comparable. Initially, BP 3333 converges slightly more slowly than Bezier, but by 30,000

FEs, the costs are the same.

3.5.3 Convergence to 112°-cambered blade

Convergence to the 112°-cambered pressure distribution is shown in Figure 3.22.
Design snapshots are given in Figure 3.23. The misconvergence that plagued the BP 3333
design for CR=1 (Figure 3.19) is no longer a problem when crossover is used. The BP
3333 design converges sooner, to an airfoil more closely approximating the target, and to

a lower cost than the Bezier benchmark.

3.5.4 Liebeck pressure distribution

Convergence to the Liebeck pressure distribution is shown in Figure 3.24, with
snapshots in Figure 3.25. The BP 3333 design converges sooner and to a lower cost than
the benchmark. The shape it finds is thinner, and has higher curvature on the lower
surface. Note that the minimum leading edge control point constraint, used to enforce a
rounded leading edge for the Bezier design, is not necessary for the BP 3333 design. The

new ry, parameter is sufficient to steer the design away from a sharp leading edge.
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Figure 3.20 Effect of airfoil parameterization on convergence to the C4/70/C50 target.
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Figure 3.21 Convergence snapshots showing the effect of airfoil parameterization on the
development of the C4/70/C50 design.
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Figure 3.22 Effect of airfoil parameterization on convergence to the 112°-cambered
target.
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Figure 3.23 Convergence shapshots showing the effect of airfoil parameterization on the
development of the 112°-cambered design.
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Figure 3.24 Effect of airfoil parameterization on convergence to the Liebeck target.
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Figure 3.25 Convergence shapshots showing the effect of airfoil parameterization on the
development of the Liebeck design.
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3.5.5 Conclusions

The performance of the two parameterizations for the C4/70/C50 target is very
similar. They find roughly the same shape using roughly the same NFE's. For the other
two design cases, however, BP 3333 performs signiﬁcarlltly better than Bezier — with
accelerated convergence to a better design.

Overall, then, BP 3333 is a definite improvement over the Bezier parameterization
— at least for this particular aerodynamié design problem. It is more separable, is more
closely linked to the aerodynamics of the shape, and has fewer parameters, all of which
should give it more potential for acceleration. Without acceleration, convergence is at
least comparable, and in two cases significantly better. It has better continuity
characteristics, and more aesthetic appeal. It has the ability to steer the design away from
undesirable features. Constraints become much easier to envision and impose due to the
aerodynamic nature of the variables. For example, a minimum leading edge radius or
minimum crest curvature can be imposed to avoid sharp corners. Structural constraints
such as a minimum wedge angle are similarly easy to achieve.

While BP 3434 is more robust than BP 3333, it also uses more parameters, and
some of these will contribute nonlinearity to the objective function. BP 3333 thus has
more potential for acceleration. Furthermore, by avoiding sharp edges, BP 3333 has the
ability to focus the search within regions of acceptable aerodynamic shapes. It is unable
to represent a small percentage of airfoils, but this shortcoming is overcome by its other

advantages.
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Throughout the remainder of this thesis, therefore, the BP 3333 parameterization
will be used in place of the Bezier parameterization. In the subsequent chapters, it will be

demonstrated that the potential for acceleration is indeed great.
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Chapter 4 Acceleration by Variable Birthrate

In this chapter, the first of three DE-specific acceleration strategies is discussed. In
Variable Birthrate DE (VBDE), not all population vectors are allowed to generate trial
vectors for the next generation. Section 4.1 introduces the concept, and examines the
quality of the population in generations 0-100. Section 4.2 examines the effect of VBDE

on convergence for the three design case studies. Conclusions are made in section 4.3.

4.1 Selective Reproduction

Although ethically deplorable, socially unacceptable, and practically ineffectual for
a human population, one wonders how selective reproduction might influence a
simulation such as DE. An initial DE population can consist of a wide variety of potential
solutions. Some might have very low cost. Others may lie within the constraints but have
high cost. Still others may violate the constraints altogether. In DE, all have the same
opportunity to generate new offspring. It seems possible that the search could be
accelerated if some high-cost vectors are neutered.

The idea is not new to evolutionary computation. In the first GA's — developed by
Holland (1962) and his students — fitter individuals were given more opportunities to
reproduce. Later, in his PhD thesis, Hollstien (1971) adapted a variety of animal breeding
strategies for use in a GA.

A common probability of reproducing was the ratio of the individual's cost to the
total population cost (measured, for example, as the sum of costs of all individuals). For

many objective functions, however, this ratio is similar throughout the entire population —
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producing very weak selection pressure. De Jong (1975) modified the idea by calculating
individual cost relative to the highest cost in the population. This often resulted in the
opposite problem — overly strong selection pressure leading to premature convergence.

A strategy that can sometimes mediate between weak and strong selection is that of
ranked selection. Individuals are ranked by cost within thé population, and probability is
a linear function of rank. Another common technique is tournament selection (Goldberg
and Deb, 1991), in which many small sets of individuals are randomly selected, and the
best few in each set are selected to reproduce.

VBDE is an attempt to incorporate some of these ideas for DE. Using a Gaussian
probability distribution, each individual is assigned a reproductive probability, or
birthrate. Those with lowest cost will have birthrates near one. Those with highest cost

have birthrates near zero. The birthrate function 5(x) is:

b(x) = exp(~(e(%) — o) /252 4.1)

where ¢(x) is the cost of vector X, cpmi, is the lowest
cost in the population, and s, is the standard devia- o

tion of costs in the population. The distribution of 05T °

birthrate

birthrates shown in Figure 4.1 is for a population Ctan-W..

cost

of twenty with equidistant cost values.

Figure 4.1 Distribution of birthrates
Jor a population with 20 equidistant
cost values.

In general, of course, costs need not be even
approximately equidistant. For example, when
there are many constraint violations, most of the population could have cost greater than

5000, while a few could have very low cost. In a case such as this, all constraint violators
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will have birthrates near zero, and the few good solutions will have birthrates near one.
Reproduction is regulated as follows. The user selects a birthrate cutoff, BR, where

BR €[0,1]. Every vector x with birthrate 5(x) > BR is allowed to procreate as normal. For

each x with 5(x) < BR, choose r, a random value between 0 and BR. If b(x)>#, x
procreates as normal. Otherwise, an individual with birthrate greater than BR is chosen at
random to generate a child vector, c. The fitter of x and ¢ survives to the next generation.
Note that if the user selects BR=0, every vector procreates as usual, and the search is
performed by DE without modification. If BR=1, the best vector in the population is
likely to produce many children for the next generation. Any others can procreate at most
once, with the probability that they do so at all decreasing as their cost-distance from the
best increases.

To examine the birthrate spread for the aerodynamic design problem, birthrates
were recorded for each individual in populations 0-100. DE/rand-to-best/1 was used with
no crossover, the BP 3333 airfoil parameterization, and NP=120. Figures 4.2 - 4.4 show
the distribution of birthrates for several generations of the C4/70/C50 design process.
These go thiough three phases. In phase one (generations 0-40) the population contains
mostly high cost vectors, and many birthrates near zero. In phase two (generations 40-60)
the population is in transition from high cost to low cost. There are only a few high-cost
vectors, and many birthrates near one. In phase three (generations 70+), the entire
population is low-cost, and the whole range of birthrates is represented.

In phase one (Figure 4.2), there are many constraint violations. Recall that these

have cost between 5000 and 10,000, assigned randomly by the penalty function. In the



4.1 Acceleration by Variable Birthrate 108

initial population, the best cost is 4645, the worst is 46,609 (not shown), and the rest lie
between 5000 and 10,000. Since all vectors have high cost, there is a range of birthrates.
At generation 1, one vector has been found with significantly lower cost (135). It receives
a birthrate of 1, and the rest of the population has birthrates smaller than 10°. As the
search progresses, the number of constraint violations decreases. By generation 40, there

are only five.

1
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Figure 4.2 Phase 1: High cost. Distribution of birthrates in generations 0-40,
C4/70/C50 target.

The tendency in phase one is to neuter all constraint violations if the population
contains at least one reasonably good shape. The optimization parameter BR would have
to be very low for many constraint violations to produce children. In early generations (1-
10), it is likely that only constraint violators will be neutered, but as the generations

progress, it becomes more probable that some high-cost valid shapes will neutered also.
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By generation 50 (Figure 4.3, which includes generation 40 for comparison) the
population has begun the transition to low cost. There are no constraint violations, but
still a few high vectors with cost greater than 200. These have birthrate smaller than 0.02.
The one medium range cost (65.5) has birthrate 0.58. The rest have cost less than 25,
birthrates greater than 0.95. By generation 60, there is only one vector with cost (249.5)
greater than 10 and birthrate smaller than 10°. All remaining vectors have birthrate

greater than 0.9. In phase two, there is a strong likelihood of neutering only the few high-

cost vectors.
000
rw o o o o o o o 5
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Figure 4.3 Phase 2: Transition. Distribution of birthrates in generations 40-60,
C4/70/C50 target.

At generation 70 (Figure 4.4 , which includes generation 60 for comparison) the
population is beginning to converge. The highest cost is down to 6.2. At generation 100,
the highest is 1.9. The spread of birthrates is much more uniform than in the previous two

phases. Thus it becomes increasingly likely that many good shapes will not reproduce.
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Figure 4.4 Phase 3: Low cost. Distribution of birthrates in generations 60-100,
C4/70/C50 target.

It is important to note just how few valid airfoil shapes are generated in the first
generations. Figure 4.5 plots the cost and function evaluations after every 10 generations.

Only 25 valid shapes have been found after 10 generations, with 1320 vectors attempted.
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Figure 4.5 Tracking NFEs (valid airfoil shapes) by generation for the C4/70/C50 design.
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Only 224 valid airfoils are tested after 30 generations. By 50 generations, enough airfoils
(860 valid shapes) have been tested that some of the best shapes are in the general region
of the solution. Prior to generation 30, however, it is probably of limited value to

distinguish between good and bad shapes. They're all bad.

4.2 VBDE Results

Convergence to the three test cases was compared for birthrates BR =0.1, 0.2,...
1.0. Each test uses the BP 3333 parameterization with DE/rand-to-best/1/bin, CR=.95,
F=.85, NP=120. Note that BR=0 corresponds to the BP 3333 convergence in section 3.5.

Two birthrates — 0.7, 0.9 — resulted in accelerated convergence for all three cases.
These are shown in Figure 4.6, with comparison to BR=0. In each case, using BR=0.7
was the most effective. For the C4/70/C50 and Liebeck targets, all birthrates except
BR=1.0 improved the performance significantly. Best results in both cases are for 0.7,
0.8, 0.9, with roughly twofold acceleration. Note that a significant cost improvement is
observed for the Liebeck target with BR=0.7. For the 112°-cambered target, twofold
acceleration occurred with BR=0.7,0.9, but birthrates smaller than 0.5 resulted in
significant degradation, and premature convergence occurred with BR=1.0.

Given the small number of valid airfoil shapes generated in early generations, it
would seem that any use of VBDE — especially with high values of BR ~ would reduce
the population's diversity so much as to result in premature convergence. Yet that was not

the case. DE's mutation operator is able to maintain the diversity by sampling the
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differential from the whole population. In fact, even over the first 3000 FEs, VBDE with

high birthrates can show some improvement over DE (Figure 4.7).
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Figure 4.6 Effect of variable birthrate on convergence.

4.3 Conclusions

The variable birthrate method for reproductive selection has some potential for
acceleration of DE. In general, BR values between 0.7 and 0.9 are best, with BR=0.7
roughly doubling the convergence rate. That is, it seems to be more effective to neuter a
high percentage of vectors. Although most procreating vectors in a generation are then
very similar in nature, DE's mutation operation is able to maintain sufficient diversity to

energize the search in new directions.
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Figure 4.7 Effect of variable birthrate over the first 3000 FEs.

Performance degradation is possible, and was observed both for very low

birthrates and for the upper limit of 1.0. This was expected at the upper limit, when the

best vector dominates the sub-population of fertile parents, causing "genetic drift". It was

not expected, though, that the same would occur with low birthrates. Of course, as long

as BR is nonzero, constraint violations in phase one have a very small likelihood

reproducing. Thus with low birthrates, VBDE quickly eliminates constraint violations,

but the best vectors have not been given enough opportunity to procreate. So the

population quickly fills up with mediocre but valid shapes, which can increase the

number of flow solutions required to find good solutions.
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In fact, it was Qbserved that higher birthrates (especially BR > 0.4) actually
increased the number of constraint violations. That is, later generatioﬁs contained more
invalid shapes with VBDE than without. This could explain the pattern of improved
performance for higher birthrates. The search arrives at later generations sooner (i.e. with
fewer FEs). This provides greater opportunity for the most promising shapes to

reproduce, with less computational expense.
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Chapter 5 Acceleration by Hybridization

In this chapter, significant acceleration is achieved by hybridizing DE with a local
search method. The Hybridized DE (HDE) algorithm is discussed in section 5.1. The
effect on convergence is presented in section 5.2. In section 5.3, VBDE and HDE are
combined to determine whether the individual improvements might be cumulative.

Section 5.4 presents conclusions and a summary of the acceleration achieved thus far.

5.1 Hybridization of DE with Downhill Simplex

Combining different optimization techniques into a hybrid algorithm has the
potential of exploiting the advantages of each technique while masking their deficiencies.
In particular, utilizing the speed of a local search to improve EA performance has been a
popular suggestion — almost from the beginning (Brady, 1985; Goldberg, 1989; Davis,
1991; Michalewicz, 1992).

Often EAs are combined with a gradient-based local search, in which the derivative
of the objective function is calculated to determine the best direction of descent. Vicini
and Quagliarella (1999), for example, combined a gradient method with a GA to design
airfoils and wings, achieving a 30% - 70% reduction in computation time. Gradient
methods have been combined with DE in other applications (Chiou and Wang, 1998;
Masters and Land, 1997). Unfortunately the objective function discussed here is non-
differentiable due to the penalty method of rejecting infeasible shapes.

Downhill Simplex (DS) (Nelder and Mead, 1965) is a downhill search optimizer

that quickly finds local minima, without requiring any knowledge of gradients. In this
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chapter, DE is combined with DS to create a new algorithm - Hybridized DE (HDE). In a
D-dimensional optimization problem, the simplex is a D+/-sided polygon. After its
initial definition, it is modified so as to make its way downhill to a local minimum. Three
basic steps are used: reflection, expansion, and contraction of the simplex.

The main mechanism of DS is that of reflection. The highest vertex is reflected

through the opposite face of the simplex to a lower (fitter) vertex. This reflection is given

by

2 { D+l 2
X ew =B .lei “(B+1)xhigh (51)
i=

where Xx; are the vertices in the simplex. Only downhill steps are accepted. That is, if

C(Xpey) > C(Xpigy) » then x,,,,, is rejected. This has been called the rudimentary steep

descent method. Depending on the landscape of the objective function, C, the simplex is
either expanded to move downhill more quickly or contracted to move more slowly.

The search operations of DE are mutation and recombination, whereas that of DS is
reflection. HDE will use all three operations, but this hybridization requires a balance.
Reflection sends an individual quickly down local hills, while mutation and
recombination use the diversity of the population to ignore the local landscape. HDE
should improve convergence without converging prematurely to a local minimum. This
can be achieved by using DS only sparsely.

Any generation created by DE can be considered as an intermediate generation.
From this intermediate generation, D+1 vectors are chosen to form a simplex. Through

reflection, the simplex is modified until one (or several) individuals are improved.
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Improved vectors are then chosen to move on to the next generation, as shown in Figure
5.1. Diversity can be maintained in two ways. First, DS is used only after every k&

generations. Second, only a few (NVif) DS iterations are used at each step.

Generation Intermediate Generation
i Generation i+l
X Mutation, X Perform X1
X, crossover, | x, DSops | x 5
. and . on D+1
selection individuals
X10p X100 X0p

Figure 5.1 Method of hybridizing DE with DS.

Several strategies can be used for selecting individuals for the initial simplex.
Coded into FanOpt are the following possibilities (with short-hand label in brackets): (b)
the best D+1, (br) the single best plus D chosen at random, (r) D+1 chosen completely at
random. Similarly, there are several strategies for choosing which vectors those improved
by DS replace. The D+1 vectors in the new simplex can replace either: (b) the best D+1,
(w) the worst D+1, (r) a random selection. Alternatively, the single best simplex vector
can replace (1b) the single best vector in the population, (1r) a randomly chosen vector.

To compare the effectiveness of strategies, we will use the following label system.
"HDE s-r-k-Nit " refers to hybridization with selection strategy s, replacement strategy r,
performing DS every & generations for Nit iterations. For example, HDE b-b-50-100
selects the best D+1 vectors every 50 generations, performs 100 DS iterations, and

replaces the original D+1 vectors by those in the new simplex.
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5.2 HDE Results

In a first attempt at hybridizing DE (Rogalsky and Derksen, 2000), we found HDE
b-b/r/w-2-4 to be effective strategies for Bezier parameterization with no crossover. In
particular, b-r-2-4 significantly improved the convergence rate for all three targets.

Using the BP 3333 parameterization with binary crossover, no clear acceleration
pattern could be observed for the same strategies. For example, HDE b-r-2-4 produced
tremendous acceleration for the C4/70/C50 case, but bad misconvergence for the 112°-
cambered case (Figure 5.2). In fact, all three replacement strategies resulted in premature

convergence for the 112°-cambered target.

C4/70/C50 target 112°-cambered target

Cost
Cost

0 4 4 4
0 s000  140° 1510t 2.0 0 5000 110 1.5-10 2-10
NFE's
NFE's PR
— Sy . — No hybridization
No hybridization |  ____.
HDE b-b-2-4
""" HDE b-b-2-4 —_
. HDE b-r-2-4
HDE b-r-2-4 — -+ HDE b-w-2-4
— - HDE b-w-2-4

Figure 5.2 Effect of the HDE b-b/r/w-2-4 strategies on convergence.

In Chapter 4, it was shown that there are very few good BP 3333 shapes per
population in the early generations. It is understandable, then, that the early use of DS

might not be effective. It is better to let DE maneuver itself into a good region, and then
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give DS the opportunity to run downhill. Thus £ was increased. When DS is applied less
frequently, it must run longer to have any effect, so Nit is increased as well.

The following strategies were applied with a variety of selection and replacement
simplexes: 5-10, 10-20, 20-50, 50-100, 100-500, 120-500, 140-500. Applying DS every
5, 10, or 20 generations was not consistently effective — occasionally accelerating, but
often slowing convergence, and sometimes misconverging. Choice of selection and
replacement strategies made very little difference. A long DS run (500 — 1000 iterations)
after 100, 120, or 140 generations showed some potential, but had no effect if the
population diversity was insufficient, and misconverged if there was too much diversity.

The most consistent strategy was HDE b-b-50-100. In Table 5.1, convergence is
compared numerically. Two costs are given for each target. By the first, the design is
already excellent, and by the second it has converged completely. (In some cases a
further cost reduction is achieved, but the improvement is the interpolation error, not the

actual design.) A 2- to 4-fold reduction of NFEs is achieved compared to the BP 3333,

Table 5.1 Acceleration factors due to hybridization.

Cost | BP 3333, binary cr, | BP 3333, binary cr, Bezier
HDE b-b-50-100 no hybridization benchmark
NFEs NFEs Accel | NFEs| Accel
factor factor
C4/70/C50 | 0.200 6,626 28,015 4.2 1 30,441 4.6
0.150 12,849 51,383 4.0 | 45,105 3.5
112°- 0.720 4,827 10,581 2.2 | 44,263 9.2
cambered | 0.650 9,398 24,458 2.6 | N/A*
Liebeck 0.600 2,753 6,254 2.3 | 11,887 4.3
0.550 6,422 15,333 2.4 | N/A**

*cost 0.71 at 100,000 FEs
**cost 0.566 at 50,000 FEs
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binary crossover convergence, and a 3- to 5-fold reduction with respect to the Bezier

benchmarks, with a 9-fold reduction for the 112°-cambered target. Note that, for the 112°-

cambered and the Liebeck design, by 10,000 FEs the BP 3333, binary crossover, HDE b-

b-50-100 has achieved a lower cost than is ever reached by the Bezier design.

Convergence plots are compared in Figure 5.3. Notice the step-wise convergence

pattern for the b-b-50-100 hybridization. The first DS run (after 50 generations) results in

Cost

C4/70/C50 target 112°-cambered target

) | T

Cost

Cost
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NFE's

— Bezier, no crossover

""" BP 3333, binary crossover, no hybridization

— - BP 3333, binary crossover, HDE b-b-50-100

000 generations 50, 100, 150

Figure 5.3 Effect of HDE b-b-50-100 on convergence.
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a dramatic cost improvement. This is followed by a period of stagnation — up to several

thousand FEs in which no improvement is seen. By 100 generations, DE has built up

sufficient diversity for DS to realize another significant cost jump. At 150 generations,

improvements are minor, and the process has essentially converged.

Since 100 DS iterations is so effective, one might expect more to be better. For the

Liebeck target, HDE b-b-50-500 (Figure 5.4) does indeed show improvement over the

50-100 strategy. Using 100 iterations, cost is reduced from 1.68 to 0.73. The 400

additional DS iterations reduce it further to 0.58, whereas the 50-100 strategy needs an

C4/70/C50 target
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Figure 5.4 Effect of increasing the number of DS iterations and of removing the crossover

operation.
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additional 1,500 FEs to get to the same cost. In the Liebeck case, the design has very
nearly converged after the first 500 DS iterations, and there is very little work left for DE.

Although it did improve the Liebeck convergence, 50-500 was actually detrimental
for the other two cases. After 100 DS iterations, one vertex of the simplex is already at
the bottom of the local valley. Iterating any more only results in the simplex converging
around that one point. Thus the 50-500 strategy has less diversity in the population at
generation 51, and it takes longer for DE to generate sufficient energy to drive the cost
lower. Even in the Liebeck case, it doesn't take long for the 50-100 to catch up to the 50-
500. In fact, by 4000 FEs, 50-100 has the lower cost. Thus, it is clear that overall b-b-50-
100 is the most effective.

The b-b-50-100 hybridization strategy does not have the same effect when used
without crossover (Figure 5.4). It only accelerates the Liebeck convergence, which is
already much quicker than the other two. Premature convergence occurs for each of the
other targets. (For the 112°-cambered target, the cost converges at 2.2 and is not shown.)
The crossover operation helps to spread information throughout the population after a DS

run, expanding the focus away from the single valley found by DS.

5.3 Hybridized Variable Birthrate DE (HVBDE)

In Chapter 4, it was shown that VBDE with high BR values tended to accelerate
DE. Having found that HDE b-b-50-100 also improves DE's performance; we now turn

our attention to combinations of the two strategies — HVBDE.
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The most obvious combination is to use variable birthrate throughout, together with
b-b-50-100. The most successful birthrate cutoffs in Chapter 4 were BR = 0.7, 0.9. These
and 0.8 were used here in combination with HDE. None produce consistent results. For
the C4/70/C50 target, HVBDE with BR=0.9 cénverges prematurely. For the 112°-
cambered target, there is misconvergence with both BR=0.7 and BR=0.8. All three slow
down convergence to the Liebeck target. Smaller birthrate cutoffs were tested also, but
~ they consistently produced worse results than HDE alone.

Having no success with the simple combination of strategies, the following
refinement was made. We wondered whether VBDE might be more effective if used on a
population closer to convergence. (Recall that there are many constraint violations in

| generations 0-50.) FanOpt was recoded to start using variable birthrate only after the first
DS run. Again, this resulted in worse performance for the whole range of BR values.

One more refinement was attempted. Recall that VBDE caused a higher rate of
constraint violations, resulting in convergence at later generations (but fewer FEs). This
could mean that the population is not close enough to a good solution at 50 generations
for the HDE b-b-50-100 to be effective. So we tried VBDE with a b-b-75-100 strategy.
Using BR=0.9, the DS run at generation 75 occurs at under 2000 FEs, and does arrive at a
better solution at that point. But the run at generation 150 does not happen until nearly
10,000 FEs, and by then the cost is significantly higher. In an attempt at lowering the cost
before generation 150, DS was run at generations 75, 100, 125, 150, with BR=0.9

throughout. This didn't seem to provide DE with the diversity necessary to drive the cost
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down, resulting in convergence slower than HDE b-b-50-100 in some cases, and

premature convergence in others.

5.4 Conclusions

The acceleration produced by HDE b-b-50-100 in conjunction with the BP 3333
parameterization and binary crossover is tremendous. Compared to the Bezier
benchmarks, the same cost is achieved 3-5 times faster. Convergence occurs by 13,000
FEs, and in two cases the cost at convergence is significantly lower than the benchmark
cost at 50,000.

HVBDE was not effective. Variable birthrate strategies tended to degrade the
performance of HDE b-b-50-100. The hybridization of DS and DE seems to strike just
the right balance of hill-sliding and population diversity, a balance that is disrupted by
any introduction of VBDE.

A summary of the convergence results obtained thus far is given in Figure 5.5. The
steady progression toward faster convergence is clear. Although in one case (Liebeck)
VBDE finds a shape with lower cost, in all cases VBDE converges more slowly than

HDE b-b-50-100.
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Chapter 6 Immune System Acceleration

This chapter discusses one last acceleration idea, modeled after the immune system.
Section 6.1 describes the model. The effect of immune acceleration alone is given in
section 6.2. In section 6.3 it is shown to accelerate HDE b-b-50-100, the best results of
Chapter 5. Section 6.4 provides a summary of the acceleration obtained in chapters 3 — 6.
One additional test case is introduced as verification that the acceleration can be observed

for a wide variety of designs.

6.1 Immune System Modeling

The human immune system is

antigen. binding antigen binding
designed to protect the body against Slte/\ /‘ite

antigens — foreign microorganisms such
as viruses, bacteria, and parasites. One 7 Light chain
of the key components of the immune

system is the antibody. Each antibody

Heavy chain

has two amino acid polymers hooked

together — a Heavy chain and a Light

chain. They fold around each other to Figure 6.1 Schematic of an antibody produced

form an HI-pair. Two HL-pairs by a biological immune system.

connected side-by-side form the antibody molecule. The folding creates a site capable of

k)

binding to antigen (Figure 6.1).
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Binding of antibody to antigen ultimately results in the disabling of the antigen's
chemical action. Some antibodies combine with plasma to kill the bacteria directly.
Others prevent the movement of antigen through cell walls. Still others make the antigen
easier to ingest by white cells.

Each antibody can bind only to a specific molecular shape. The immune system
maintains a "library" of millions of different antibodies, each of which is produced by a
unique B-cell. The B-cell is also able to bind only to that particular shape.

Although binding is particular, it is also approximate. Each antibody is capable of
binding with a range of antigens through partial recognition. This allows them to tag
antigen that has never before been encountered by the body. It also decreases the number
of antibodies required to protect against all possible invaders. It is estimated that the
human body contains 10® different antibodies, which are able to recognize about 10
different antigens.

A consequence of partial binding is that detection and elimination of a specific
antigen can be slow, allowing it to replicate inside the body. So the immune system
adapts itself whenever a disease is encountered. When a B-cell is activated through
partial binding, it does two things. First, it begins producing antibodies, which themselves
bind to the antigen — although only partially. Second, through mutation, recombination,
and selection, it begins evolving a population of new B-cells designed specifically to
detect and bind to that particular antigen. The more affinity a new B-cell has to the
antigen, the more likely it is to replicate itself and produce new antibodies. This process —

known as affinity maturation — can be modeled by a GA to accelerate global search.
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Just as the mechanisms of biological evolution inspired the development of GA''s,
so the immune system has been modeled as a problem-solving technique. (For a survey,
see Dasgupta, 1999.) In fact the two ideas have been combined (computationally) to
evolve antibodies using GA's (Forrest and Perelson, 1991, Hightower et al, 1995) and to
accelerate local hill climbing in a GA (Bersini and Varela, 1991). Other applications of
artificial immune systems include the solution of scheduling problems (Hart et al, 1998),
and protection against computer viruses (Marmelstein et al, 1997).

These ideas have also been implemented for design optimization. Hajela and others
developed a GA-based model of the immune system, and used it to solve problems such
as optimal design of a truss system (Hajela and Lee, 1996; Hajela et al, 1997; Hajela and
Yoo, 1999). The model described in this chapter is patterned after theirs.

In Hajela's model, a GA evolves antibodies §vith affinity to certain anhtigens.
Antibodies and antigens are encoded as binary strings. An objective function measures
the degree to which an antibody matches antigens present in the system. Typically, this
would count the number of matching bits between a pair of strings. In the simplest case,
when a population of antibodies is exposed to a single antigen, maximization of the
objective function results in a population of specialist antibodies that match the antigen.
If several different antigens exist, the population can be evolved into generalist
antibodies. Each specialist antibody would closely match one of the antigens, whereas a
generalist antibody would in some sense cover all antigens.

In FanOpt, the encoding is with real-valued vectors, and DE minimizes the

objective function, so some modifications to Hajela's model are required. The following
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algorithm calculates Immune Cost, /C(x) for the population of # antibodies, given a set of
antigens with which to "bind". Vectors with least cost match the antigen pool the best.
DE is used to minimize the Immune Cost - resulting in a population of antibodies

designed to match the antigens.

Algorithm to calculate Immune Cost

1. Initialize the cost of each antibody to zero: IC(x)=0.

2. Initialize the number of times selected to zero: ns(x)= 0.

3. Repeat steps a) through d) 3» times, where # is the number of antibodies.
a) Randomly select an antigen, g.

b) Randomly select a sample of N different antibodies, x;.
c¢) The match score of each antibody selected is the .4,-distance from the antigen.

Add the match score to the immune cost:
IC(x)) = IC(x;) + d(g,x;)
d) Increment the number of times x; has been selected:
ns(x;) =ns(x;) + 1
4. The Immune Cost of each antibody is its total match score normalized by the
number of times it was selected:

IC(x) = IC(x) / ns(x)

This simulation can be used to accelerate the convergence of DE for aerodynamic

optimization by biasing the search towards vectors with lowest cost in a given generation.
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These are the antigens. The overall structure of Immune Accelerated DE (IADE) — shown
in Figure 6.2 ~ is similar to that of HDE. For a given generation of vectors representing
airfoils, the standard DE operations are performed to generate an intermediate generation
of (mostly) improved vectors. The best of these are selected as antigens. The worst are
selected as antibodies. They are conditioned to match with the antigens selected. Those
vectors whose aerodynamic cost is improved by the immune conditioning survive to the

next generation.

Generation Intermediate Generation

i Generation i+l

X . X
1 Mutation, 1 Immune X

X, crossover, X, conditioning | x 5
. and . to evolve

selection antibodies
X100 XD X0

Figure 6.2 Immune system conditioning to accelerate DE.

The following parameters control the immune conditioning. The user selects
percentages which determine the number of antigens (PGA in the dialog box — Percent
antiGen for Acceleration), antibodies (PBA — Percent antiBody for Acceleration), and the
sample size (PEA — Percent Exposure for Acceleration). The first two are percentages of
the entire population (PGA*120, PBA*120). The last is a percentage of the antibodies
chosen (sample size N = PEA*PBA*120). Actual sizes are calculated using the floor
function — rounding down to an integer. After every aerodynamic generation, antibodies
are evolved for 50 immune conditioning generations, using the DE strategy chosen for

aerodynamic optimization. Note that no aerodynamic calculations are made until the end
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of those 50 generations, so the immune conditioning adds very little relative
computational cost.

The following shorthand notation is developed to describe the strategy used for
acceleration. IADE g-b-e represents Immune Accelerated DE, with g% of the population
chosen as antigens, 5% of the population chosen as antibodies, and €% of the antibodies

chosen for exposure to a specific antigen at a time.

6.2 IADE Results

Hajela et al (1999) suggest using the top 3% of the population as antigens, the entire
population as antibodies, and a sampling size of 2% of the population. As long as the
sampling size is smaller than the number of antigens, the antibodies should evolve as
generalists. This IADE 3-100-2 strategy was tried first. Note that when PBA=100%, there
are 2NP Cost function calls every generation, so the rate of aerodynamic calculation per
generation is doubled. This strategy did not perform well. When it did converge to the
right shape, the rate was much slower than that without immune conditioning. Immune
conditioning the entire population after each generation seems to reduce the population
diversity too much. DE's search becomes less global.

Reducing the number of antibodies should provide a better balance between
diversity aﬁd acceleration. Several strategies were tested: IADE 3-50-4, 3-25-8, 3-10-20.

That is, the number of antigens was held constant at 3 (| .03*120 ), and the sampling size

was held constant at 2, but fewer population vectors were immune conditioned after each
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generation. Overall this resulted in less tendency toward slower or premature
convergence, but the rates were at best comparable to those using DE alone.

Immune conditioning after each generation results in the search being biased too
strongly toward early-generation vectors. We have already seen that DE does not find
reasonably good shapes until about generation 50. But IADE cannot provide the same
acceleration power as HDE if run every 50 generations. HDE sends a few individuals
sliding rapidly down into the local valley that they surround. IADE can only gather the

population closer to the hills surrounding that valley.

6.3 Hybridized Inmune Accelerated DE (HIADE)

Although immune conditioning could not by itself accelerate DE for this design
problem, the valley analogy suggests a possible use of IADE in conjunction with HDE.
After a DS run, there are 13 (D+1) vectors with significantly lower cost than the rest of
the population. This leaves sufficient diversity for DE to build up energy to decrease the
cost further, but it may not necessarily require so much diversity. Immune conditioning
could be effective at gathering the rest of the population closer to the valley found by DS.
This suggests performing immune conditioning immediately following each DS run.

Even when immune conditioning every 50 generations, large values for PBA
resulted in slower convergence. Furthermore, using only 3% of the population as antigens
was not at all effective. Positive results were finally obtained when, noting that DS
operates on approximately 10% of the population, PGA was increased to 10%. The best

strategy found thus far has been to use 10-10-10 immune conditioning after each DS run.
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The result, Hybridized Immune Accelerated DE (HIADE) b-b-50-100 10-10-10, is
compared with HDE b-b-50-100 in Figure 6.3. The effect on convergence for the Liebeck
design is negligible, but there is significant improvement for the other to cases. The
HIADE convergence pattern is more step-wise. The immune conditioning energizes DE

to take bigger steps, but also results in some stagnation following those steps.
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Figure 6.3 Effect on convergence of HIADE b-b-50-100 10-10-10.
6.4 Acceleration of DE: A Synopsis

This section summarizes the acceleration obtained. The NFEs required for HIADE
to converge is low enough that the addition of a more sophisticated flow solver should be
feasible. This has been accomplished without loss of robustness. To confirm that the
results are not unique to the three design cases studied, a fourth is introduced, and is

shown to follow the same pattern of acceleration.
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In chapter 2, a new set of constraints was imposed on the Bezier parameterization.
The resulting convergence benchmarks had lower c;)st than, but similar convergence rate
to, the designs obtained in previous work. In chapter 3 we saw that the BP 3333
parameterization with binary crossover had potential for doubling the benchmark
convergence rate, although this improvement was not observed for the C4/70/C50 target.
In chapter 4, VBDE was shown to have capacity for some further acceleration, but the
most significant improvement came in chapter 5 with HDE b-b-50-100. Although the
combination of VBDE and HDE was not at all effective, we have seen in the current
chapter that an immune conditioning strategy was able to accelerate HDE further yet. The
resulting HIADE b-b-50-100 10-10-10 strategy is the one recommended for aerodynamic
optimization with BP 3333 parameterization of airfoils.

The progression of cost convergence plots from the Bezier benchmark, to BP 3333,
to HDE, to HIADE is shown in Figure 6.4 A five- to ten-fold acceleration is apparent
from benchmark to HIADE. The pattern of the HIADE convergence is also significant. In
all three cases, cost decreases very rapidly until about 6,000 FEs, at which point the
design is already excellent. By 10,000 FEs, any further refinements that might be possible

have been completed. The designs at 6,000 and 10,000 FEs are compared in Figure 6.5.
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Figure 6.5 HIADE designs at 6,000 and 10,000 FEs.

As evidence that the acceleration is replicable across a broad range of aerodynamic

design problems, a fourth design case is considered. The Eppler E850 airfoil is designed

for the tip of a propeller. A pressure distribution is calculated and used as the design
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target. For the surface vorticity method to generate accurate results, one condition is that
the upper and lower surface data points lie in pairs, mirrored about the camber line.
Unfortunately, this is not true for the Eppler data. It is, however, true for any blade
generated by our design algorithm. Since the E850 has been represented by the BP 3333
parameterization in Chapter 3, we use that representation as the design target. The flow
was computed for A=0, #//=1, and $;=5°. Outlet angle was computed to be = -3.36876°.
The same acceleration pattern can be observed in Figure 6.6. By 6000 FEs, the HIADE
cost is 0.05, and it converges to 0.005 shortly after 10,000. Designs are compared in

Figure 6.7.

Cost

NFE's

— Bezier benchmark

""" BP 3333 with binary crossover

— - BP 3333 with binary crossover and HDE b-b-50-100

— - BP 3333 with binary crossover and HIADE b-b-50-100 10-10-10

Figure 6.6 Acceleration pattern replicated for a new design target:
the Eppler E850 propeller.

Convergence factors for all four cases are shown in Table 6.1. Two cost values are
chosen for each case. By the first, the design is excellent, and by the second it has very

nearly converged. Compared to the Bezier benchmark, the HIADE design convergence is
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Figure 6.7 HIADE design of theE850 airfoil at 6,000 and 10,000 FEs.

faster by a factor of 4 to 10, with an average of 5.8. This takes into account both the new
parameterization and the actual acceleration of DE. Comparing convergence for the same
parameterization, we find that HIADE is two to six times faster than DE, with an average
of 3.2. This second rate should be observable across a broader range of problems than
merely aerodynamic optimization.

Table 6.1 Acceleration factors due to HIADE for four case studies.

Cost BP 3333, BP 3333, Bezier
binary crossover, binary crossover, benchmark
HIADE DE
b-b-50-100
10-10-10
NFEs NFEs| Accel|{ NFEs| Accel
factor factor
C4/70/C50 | 0.200 5,994 28,015 4.7 | 30,441 5.1
0.150 8,791 51,383 5.8 | 45,105 5.1
112° 0.720 4,224 10,581 2.5 | 44,263 10.5
cambered | 0.650 8,792 24,458 2.8 | N/A* N/A
Liebeck 0.600 3,153 6,254 2.0 11,887 3.8
0.566 4,042 8,206 2.0 | 34,269 8.5
E850 0.050 5,271 14,796 2.8 120,449 3.9
0.005 10,385 28,972 2.8 | 38,803 3.7
Average acceleration factor: 3.2 5.8

*cost 0.71 at 100,000 FEs
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Chapter 7 Handling Soft Constraints

There are two types of constraints that can be imposed in aerodynamic design. The
first is-a hard constraint, usually imposed:-by a barrier method: in: which ner infeasibiei
solution is-considered. An example isthe set of constraints imposed in chapter 2, which
ensured-that any- shape considered is-a-valid-airfoil: Thesecond-type is-a:soft constraint:
An aerodynamic designer will often have engineering requirements limiting the final’
design: For example, a minimun thickness may be required for stiuctural reasons; ora’
minimum leading edge radius for off-design performance. There is usually a slight
tolerarice to such requirements. A-design that is slightly outside a predetermined solution”
space may be acceptable if it has other desirable characteristics: This chapter will'
demonstrate two techniques for sofi-constrained DE search. Constrained search is-an
important feature of aerodynamic design, but is not the main focus of this thesis, so this

chapter will be fairly brief.

7.1 Penalty function

The standard manner in which constraints are imposed in GA search is to use a
penalty function. In chapter 2, the penalty function simply applied a large random value
to any infeasible designs. This is a form of a barrier method. We don't bother calculating
the flow around a shape that isn't even an airfoil. The penalty applied is large in an
attempt to remove all infeasible solutions from the population relatively early in the

search.
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The barrier method is acceptable for hard constraints. (The flow solution around an
airfoil With negative thickness is simply meaningless, for example, so it doesn't make
much sense to assign a lower penalty to airfoils with less negative thickness.) However, it
is not effective for imposing soft constraints. Optimal solutions frequently lie on or near
the boundary of the solution space. Rejecting outright any vector that lies outside the
constraint boundary steers the search too far away from that boundary (Smith and Tate,
1993; Michalewicz, 1995a; Coit et al, 1996).

The most common penalty function approach to handling soft constraints is due to
Richardson et al (1989). First calculate the cost of the vector as if it did lie within the
solution space. Then, add to the vector's cost a weighted distance from the constraint
boundary. Thus the search is allowed to wander outside the solution space, but the further
from the boundary a vector lies, the less fit it becomes. This idea is similar to the
Lagrangian relaxation method for combinatorial optimization problems (Avriel, 1976;
Fisher, 1981), which temporarily relaxes the most strident constraints in early stages of
the search.

This distance-based approach is very easy to implement with the BP 3333
parameterization. Upper and lower bounds can be imposed on any BP 3333 parameter, x;.
The user provides a weight, w;, which determines how far beyond the boundary DE will

search. The penalty function is

2
P(x)=\/2[w,-(bi—xi)] , (7.1)
where parameter x; has exceeded the bound b;, and the sum is taken over all constraint

violations. The total cost of vector x is then
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Cost = C(x) + P(x), (7.2)
where C(x) is the aerodynamic cost defined in equation (1.3), p 16.

The difficulty of this approach is in determining appropriate weights. Too strong,
and DE will stay away from any solutions near the boundary. Too weak, and the search
could converge well beyond the boundary. Factors to consider include the relative scaling
of the parameters being constrained, the difﬁculty of satisfying a constraint, and the
seriousness of a constraint violation. Often some experimentation is required. Alternative
approaches include the dynamic penalty function, in which the severity of the penalty
increases as the search progresses (eg. Joines and Houck, 1994), and non-penalty-based
constraint handling (Michalewicz and Janikow, 1991; Michalewicz, 1995b), but these are
not explored here. Hajela and Yoo (1999) propose the use of an immune network (similar
to that described in chapter 6) to handle constraints. This method was coded into FanOpt,

but has not yet been tested thoroughly.

7.2 Constrained Search: An Example

To demonstrate the use of the penalty function for soft-constrained search, the
Liebeck design will be refined. Notice the large curvature on the lower surface of the BP
3333 Liebeck blades. This corresponds to a bump in pressure coefficients. (See, for
example, Figure 6.5, p 130) We will attempt to smooth the pressure .distribution imposing
a maximum (absolute) curvature on both thickness and camber profiles. Constraining

k.| in [0, 0.5] and |x,| in [0,1], both with weight 10, resulted in a design with a very

sharp leading edge. While this may in fact work best under ideal circumstances, a slight
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change in wind direction, or the presence of foreign material on the blade could result in
severe degradation. To improve off-design performance, a minimum leading edge radius
constraint was imposed as well.

Designs for the following two constraint sets are compared in Figure 7.1.

.| <05, w =10
lco|<10, wy =10 (7.3)
el 2 001, w3 =10

I | <05, w =1

o] <10, wy =1 (7.4)

e 2 001, w3 =100
Notice that the constraints themselves are the same, but the weighting is different. Both
sets result in a design with a smoother pressure distribution. The first (7.3) does not
weight the leading edge radius deviation high enough for the final design to lie within the
boundary. The result has || = 0.002, with a cost of 0.488. The second set (7.4) weights
the leading edge constraint two orders of magnitude higher than the curvature constraints.
The result is a design lying within the constraints, with |r| = 0.0106, and a cost of 0.459.
In both cases, the cost is significantly lower than that with no constraints (0.55).

Designs shown in Figure 7.1 were obtained after 10,000 FE's of the HIADE b-b-50-

100 10-10-10 acceleration strategy. Convergence rates for the constrained designs are
compared with the HIADE convergence rate for the unconstrained design in Figure 7.2.
Constrained design is slower over the first 3,000 FE's, but the 6,000 — 10,000 pattern is
still observed. That is, the design is excellent by 6,000 FE's, and has converged by

10,000.
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Figure 7.2 Unconstrained vs. constrained HIADE convergence.



144

Chapter 8 Conclusions and Recommendations

Aerodynamic design optimization for fans has as its ultimate goal the design of a
more efficient fan. This thesis has contributed toward that goal by enhancing FanOpt —
the software package developed in Rogalsky (1998) — to accelerate the design process. A
new parameterization for airfoils has been developed, and the number of function
evaluations required by Differential Evolution has been reduced significantly. This
concluding chapter will summérize the results obtained, and recommend future work, in
three areas: 1) parameterization of airfoils, 2) acceleration of DE, and 3) aerodynamic

design optimization.

8.1 Airfoil Parameterization

It has been recognized for some time that GA's require problem-specific
information to converge quickly. In the current optimization problem, airfoil
parameterization can impact both robustness and convergence rate. The Bezier-PARSEC
parameterization was designed to enhance both.

Present in the previously-used Bezier method (Rogalsky, 1998) were discontinuous
second derivatives, constraints that limited the size of the solution space, and parameters
with nonlinear interactions. All three issues are addressed by the BP 3333 and 3434
parameterizations. Curves are joined with second order continuity; control point
constraints are no longer required; and new aerodynamic parameters are incorporated.
Bezier curves are still used to create the airfoil, but the Bezier control points are now

defined by aerodynamic parameters. DE operates on the new parameters, which reduces
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epistasis in the design objective function. BP 3333 uses exclusively aerodynamic
parameters, which define four degree three Bezier curves. BP 3434 uses degree four
curves on the trailing profiles, giving it freedom to reproduce more complicated shapes,
but requiring a mixture of aerodynamic and Bezier parameters.

To compare the robustness of the Bezier and BP parameterizations, 63 airfoils were
represented, using DE to minimize the deviation between the parameterization and the
target airfoil. All three methods successfully represented a high percentage, with BP 3434
having the most success. The second-order discontinuity in the Bezier parameterization
occasionally showed up as a sharp edge in the airfoil. BP 3434 failed once when the
solution was far from the initial population, converging to a shape with a sharp edge
before it could find the correct airfoil. BP 3434 also showed a penchant fér wildly erratic
control points — producing airfoils with tiny loops, and trailing edges that, when
magnified sufficiently, begin in the wrong direction.

BP 3333 correctly reproduces 94 % of the airfoils chosen, but there are airfoils that
it cannot represent well. Because it uses degree three trailing Bezier curves, the inflection
point is not variable. Any shape with strong variation in trailing curvature presents
problems. This includes airfoils with cusps (indicating a strong inflection point near .the
end of the thickness profile), and those with camber profiles that dip below the x-axis.
The relatively small sacrifice in representation ability seems reasonable to accept in light
of the advantages over BP 3434. It has fewer nonzero parameters and fewer total
parameters, which will contribute toward acceleration of design optimization; and it

avoids sharp edges, steering the search toward true aerodynamic shapes.
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The BP 3333 parameterization was used with DE in three inverse design cases.
These three represent a broad range of pressure distributions and blade shapes. In all
three, a good solution was found, indicating the robustness of BP 3333 for design
optimization. Using DE with binary crossover, in two cases BP 3333 convergence was
about twice as fast as that for Bezier with néy crossover. In the third case, convergence
rates were about the same. Binary crossover generally is effective only for separable (or
at least non-epistatic) objective functions. It improves the convergence characteristics of
BP 3333 optimization due to the increased linearity of this parameterization.

For future work, several recommendations can be made. First, the representation
ability of the BP 3333 parameterization should be examined more thoroughly. Some of
its limitations are known, but there may be others.

Second, the initial population for optimization could be completely redefined.
Currently, it randomly selects parameters from within user-defined bounds. Instead, a
population of known airfoils could be used — for example the reproductions found in
section 3.4 — or a combination of known airfoils and random sets of barameters. This
would certainly reduce the number of constraint violations in early generations, but it is
unknown how convergence speed might be affected.

Third, design optimization convergence should be examined for the BP 3434
parameterization. This thesis concentrates on accelerating DE for use with BP 3333. BP
3434 enlarges the design space, but initial indications are that it slows convergence. It

may be possible to accelerate BP 3434 convergence enough for it to be useful as well.
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8.2 DE Acceleration

In combination with the new parameterization of airfoils, DE itself is modified to
obtain accelerated convergence. Three strategies are used. First, the rate at which
individuals "give birth" is made variable in VBDE. Only the fittest members of the
population are guaranteed to generate trial vectors through mutation and crossover.
Second, DE is hybridized with DS, a local search algorithm, in HDE. Together, the two
can quickly seareh local valleys without becoming stuck in a local minimum. The third
modification is inspired by the immune system. In each generation of IADE, the worst
vectors are conditioned to take on characteristics of the best.

VBDE shows some potential for acceleration. This is especially true for high values
of BR (when most population members have a low probability of reproducing). For lower
values, the population tended to converge prematurely. It was observed that DE only
begins to find reasonably good solutions at about generation 50, which likely explains the
lack of effect of variable birthrate. It depends on good solutions to improve the quality of
the whole population, but in the early stages, there aren't any good solutions. Use of a
variable birthrate increased the number of hard constraint violations, so that convergence
occurred at even later generations. The acceleration observed was not as significant as -
that obtained with hybridization. When the two were combined, the resulting VBHDE
tended to converge prematurely. VBDE is not the recommended strategy for aerodynamic

optimization, but it may be useful for other problems.
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Hybridization is by far the most effective accelerator, but only when DS is used
sparsely. Any strategies that performed local search in early generations were not
effective. Again, this is understandable, given the multitude of costly solutions early in
the search. The increased linearity of BP 3333 lends itself well to local optimization, but
only when the focus has narrowed on to some reasonably good solutions. The most
effective strategy was HDE b-b-50-100, which leaves DE alone for 50 generations, then
performs 100 iterations on the best D+1 vectors. By 50 generations, DE has found some
very promising shapes. The 100 iterations of DS is just sufficient for some simplex
vertices to slide deep into the nearest valley, but also few enough for the simplex to
maintain a diversity of improved solutions. DE uses this diversity to find even lower
valleys until the next DS slide 50 generations later. By the third slide (at generation 150),
the process has very nearly converged — requiring from 6,500 to 13,000 flow solutions.

IADE does not show any consistent acceleration pattern when used on its own. In
fact it makes premature convergence more likely. Immune conditioning biases the search
toward the most promising solutions in early generations, but these are not good enough
to lead the search in the right direction. However, when used sparsely together with
hybridization, immune conditioning is able to accelerate even the convergence rate of
HDE. The combined strategy — HIADE b-b-50-100 10-10-10 — results in acceleration by
a factor of four to ten when compared with the benchmark convergence rates. By 6,000
flow solutions, HIADE has found an excellent solution, and by 10,000 it has converged.

The acceleration observed is actually due to a combination of four factors: 1) BP

3333 parameterization, 2) binary crossover. 3) local search every 50 generations, and 4)
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immune conditioning after every local search. The effect of the last two alone is to
accelerate convergence by a factor of two to six, a speed up that should be observed for
other objective functions as well.

For future work, several refinements of these acceleration strategies are suggested,
some of which may improve performance yet more. The first is adaptive hybridization.
After the first hill-slide at 50 generations, the population will have very many good
solutions. Using DS more frequently after that may increase the Convergence rate of this
second stage of the search. A strategy such as br-1b-2-10 is suggested. The random
selection in the initial simplex should send DS down into new valleys, and replacing only
one vector will not decrease population diversity.

Second is a modification to VBHDE. Even though VBDE showed better
convergence characteristics than DE alone over the first 2,500 FEs, combining it with
HDE was either slower than HDE, or resulted in premature convergence. One possible
reason is that VBDE converges at later generations. A 75-100 strategy was attempted.
This showed promise initially, but the second DS slide (after 150 generations) didn't
occur until after 10,000 FEs. Between generations 75 and 150, there are significantly
fewer constraint violations, and thus higher NFEs. A better VBHDE strategy may be to
run DS after a fixed number of FEs (for example after 2000, 5000, 10,000), rather than a
fixed number of generations.

Finally, the following IADE recommendations are made. First, Inmune
conditioning was not effective when used after every generation. This biases the search

too strongly. Using it more sparsely — after every £ generations — might be more
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effective. Second, the algorithm currently introduces all conditioned antibodies into the
next generation. An alternative is to use the entire population for antibodies (PB4 =
100%), but only introduce the best few into the next generation. Third, instead of
selecting a fixed percentage of antigens and antibodies, birthrates could be imposed. For

example, vectors with birthrates higher than 0.9 could be selected as antigens.

8.3 Aerodynamic Optimization

The advantage of using DE for aerodynamic optimization is its ability to find global
solutions. This means that fans can be designed without prior bias toward existing
blading. Ultimately, this could result in an unanticipated shape with superior
performance. By improving airfoil representation and accelerating convergence,
significant steps have been made toward realizing that potential.

The new airfoil parameterization improves considerably the quality of the solution
space for optimization. BP 3333 removes many of the unnatural constraints used by
Bezier parameterization, allowing many additional potentially valuable designs to be
investigated. It also places more natural constraints on the shape, such as second-order
continuity. Thus fewer non-aerodynamic shapes are considered. The result is a smaller
solution space with a higher proportion of valuable shapes.

This new solution space is not only easier to search, it is also easier to constrain,
which is key to a useful design algorithm. A simple penalty method for imposing soft
constraints has been demonstrated. For future work, this soft constrainer should be

examined more thoroughly. The single experiment conducted suggests that convergence
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rate is not increased dramatically, but this may not be true in general. Other constrainers,
such as the immune system method, may perform better. There may be additional
categories of constraints that should be included.

It has been shown earlier (Rogalsky et al, 2000) that DE is too slow to be used with
anything but the simplest aerodynamic model — that of potential flow. By ignoring
viscosity in the search for the best design, the strength of the design algorithm is reduced
in two respects. First, it is possible that the true viscous effects for the final design are not
minimal, in which case the design may not in fact be optimal. Second, low drag will be a
key feature of any efficient fan, but without viscosity, drag cannot be calculated, and so
low drag cannot be used as a design objective.

Hence the need for acceleration. We are confident that the acceleration achieved is
applicable broadly for aerodynamic optimization. Convergence rate for the C4/70/C50
design, which is very representative of turbine blading, was increased five-fold. The
acceleration pattern was observed for a broad range of design targets. This includes a
fourth case — a propeller design — chosen after the acceleration strategies had been

developed.
| In all four cases, accelerated convergence occurred in under four minutes on a
desktop PC that is no longer state of the art (Pentium.4, 1.6GHz, 256MB RAM). Very
rough estimates suggest that a boundary layer solution could multiply computation time
by three orders of magnitude. If so, by the end of the second day of computation (6,000

FEs), the user will know whether convergence will occur. By the end of the third (10,000
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FEs), convergence will be complete. Using today's state of the art, complete convergence
would take less than a day.

Thus our final recommendation is to supplement the flow solver with a boundary
layer solution. The Keller box method, for example, could be attached seamlessly to the
vorticity panel method. The result will be a more useful aerodynamic optimization

method, capable of considering both flow separation and drag.
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Appendix A FanOpt

FanOpt is the interactive window-based software package developed to perform
aerodynamic optimization. All results reported in this thesis were obtained using FanOpt.
Two versions of the software are included on the accompanying CD. In FanOpt v 3.3,
immune acceleration occurs after every generation. In FanOpt v 3.5, immune acceleration
occurs with the same frequency as that of hybridization. The HIADE b-b-50-100 10-10-
10 results reported in Chapter 6 were obtained using v 3.5.

To use the software, most systems will require several .dll files. These are included
on the CD in the folder "Appendix A FanOpt\dll_files". They should be copied to the
"Windows\System" folder. Note that Windows Explorer sometimes does not show these
"hidden files". You may have to change the view settings to "view all files"

To install the software, copy all files from the folder "Appendix A
FanOpt\run_files" into any folder on your machine.

Documentation for FanOpt is included on the CD in the document "Appendix A

FanOpt.htm".
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Appendix B  Airfoil Représentation

In Chapter 3, two new airfoil parameterization methods were developed and
compared to Bezier parameterization. The BP 3333 and BP 3434 parameterizations use a
new set of parameters to define their component Bezier curves. 63 airfoils were chosen
for representation by the three parameterizations. Links to the representations are
provided on the accompanying CD in the document "Appendix B Airfoil

Representation.htm".



