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Abstract

Acceleration of Differential Evolution for Aerodynamic Design

by

Tim Rogalsþ

Ph.D. in Mathematics, University of Manitoba

It has been demonstrated that Differential Evolution (DE) is a robust optimizer for

aerodynamic desþ of fan blade profiles, but it can require 50,000 flow calculations to

converge to a solution. This is feasible with only the simplest aerodynamic model.

Accelerated convergence is required for the design algorithm to be more useful. This

thesis presents, as benchmarks, convergence rates for three design cases using Bezier

parameterization of airfoils and optimizing with DE. These benchmark rates are

accelerated in two ways. First, an improved solution space is provided by Bezier-

PARSEC airfoil parameterization. To compare their representation abilities, Bezier and

Bezier-PARSEC parameterizations are used to reproduce 63 airfoils. Second, DE is

modified in three different ways to provide improved convergence characteristics with

the new parameterization: 1) A new selection operator is introduced, variable birthrate,

which can bias the search toward the most promising regions of the solution space, 2)DE

is hybridized with Downhill Simplex, a local search method, and 3) DE is accelerated by

an algorithm modeling the biological immune system. The most successful strategy is

Hybridized Immune Accelerated DE (HIADE). Using the BP 3333 parameterization, it

converges within 10,000 flow calculations, four to ten times faster than the benchmarks.
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Ghapter I lntroduction

1.1 Aerodynamic Design

Aerodynamic desþ can be thought of as a search for an optimal shape. The

meaning of "optimal" depends on the application. Some require high lift - for example an

atrcraft. that must carry an extremely heavy load. Others might require low drag - for

maximum fuel efflrciency. The ultimate goal of the research described here is a more

efficient fan. An efficient fan converts most of the energy required to run it into actual

airflow. In many current fans, much of the energy is used to overcome the drag on the

blades, or is converted into heat. A better desþ would improve energy conservation

(and decrease operational cost) without sacrificing capability.

Aerodynamic design has its roots in wind-tururel experiments. Physical models

would be built, tested, ref,tned, and re-tested repeatedly until satisfactory result, *"r"

obtained. In the 1930's and 1940's, systematic investigations of this type were performed

by NACA (see for example Chapter 7 in Abbot and von Doenhofl 1959). Of course, this

process is arduous and expensive. It is desirable to streamline as much of it as possible.

One helpful insight is that the performance of an airfoil depends greatly on the

distribution of pressure (or velocity) along its surface. Stratford (1959a, 1959b), for

example, developed a pressure disfribution that, theoretically, would achieve any

specified pressure rise in the shortest possible distance and with the least possible

dissipation of energy. Thus it became possible to pose what is known as an inverse design
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problem: Given a pre-specified pressure distribution, obtain the airfoil for which that

distribution is realized.

In the 1950's, Richard Eppler (1957) began to solve inverse design problems using

conformal transformations, ultimately developing a computer program to do so (Eppler,

1990). Building on Stratford's work, Liebeck and Ormsbee (1970) designed a family of

pressure distributions to provide maximum possible lift in an incompressible flow.

Liebeck (1973,1978,1990) later extended this work, designing airfoils for aircraft,

racing cars, and even a model pterodactyl!

Another approach to inverse design is to treat it as an optimization problem. An

objective function calculates the pressure distribution around a given blade, measures the

difference from the target distribution, and defines that to be the cost of the blade. An

optimizer is asked to find the shape that minimizes this "cost." For example,

Venkataraman (1996b) used a generalized reduced gradient method to solve several

inverse problems.

In that direction lies our earlier work (Rogalsþ, 1998). The object of design is the

cross-sectional shape of the fan blade. Software was desþed, implementing a new

design algorithm. Differential Evolution (DE) (Storn & Price, 1995) was demonstrated to

be an effective optimizer for the problem. Several test cases were performed, in which

DE was able to search out near-optimal solutions, even when other commonly used

optimizers failed (Rogalsþ et. al., 2000).

The focus of the current thesis is to accelerate the optimization component of the

aerodynamic design method. Although DE was robust, it commonly required the
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evaluation of 50,000 shapes, a computational nightmare in fluid dynamics. If the number

of function evaluations can be reduced sþificantly, it should be possible to incorporate a

more sophisticated flow solver, making the end product more useful.

The DOS-based software developed earlier (Rogalsþ, 1998) was made more user-

friendly by adding a windows interface. Dialog boxes are used for input of DE and

acceleration parameters. Run-time convergence information is displayed on-screen,

including the shapes of the current blade and pressure distribution. This enabled insight to

be gained into the nature of convergence, and sparked some of the acceleration ideas. The

result is Fanopt v. 3.5, and is included, with documentation, as Appendix A on the

accompanying CD.

The remainder of this introductory chapter will briefly review the FanOpt

aerodynamic design algorithm, and then introduce ideas for acceleration. There are three

components to the design method: 1) optimization with DE (sectionl.2),2) represen-

tation of the geometric shape as a real-valued vector (section 1.3), and 3) simulation of

the flowfield around the shape (section 1.4). The cost function to be minimized by DE is

described in section 1.5. Finally, in section 1.6, the specific focus of this thesis witl be

introduced: acceleration of DE for aerodynamic design of fan blades.

1.2 Optimization by Differential Evolution

Many current design methods use local optimizers in the search. Designers start

with a shape already being used - but in some way inadequate - for the required

application. Minor modifications are made by the optimizer, and usually these are
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accepted only if they improve perfonnance. After a small number of iterations, the

improved desþ is accepted. The result, of course, is a design with only minor

improvements.

It is preferable to perform a more general search - with potential to find a radically

new design, unbiased by preconceived conceptions of what works best. Such a search

could be used not only to improve a desþ already in use, but also to design "from

scratch" a shape useful for a new application. What is required, then, is a fast algorithm

for global optimization. And that is where Differential Evolution (DE) comes in real

handy!

DE is a member of a broader class of algorithms called Evolutionary Algorithms

(EAs). The most contmon of these is the Genetic Algorithm (GA). GAs operate on bit-

strings, suitable for discrete or integer optimization problems. They interpret the

objective function value at a point as a measure of that point's fitness as an optimum.

Then, guided by the principle of survival of the fittest, an initial population is transformed

into a solution bit-string through repeated cycles of mutation, recombination, and

selection. Sporadic attempts to incorporate these principles in optimization have been

made since the 1960's (see a review in Chapter 4 of Goldberg, 1989). It was the work of

Holland (1975), though, that established GAs on a sound theoretical basis.

GAs have proven to be very effective at finding the global optimum in

complicated, multidimensional landscapes. Among other researchers, aerodynamic

designers are tuming to GAs in steadily increasing numbers (Chan, 1998; Obayashi &

Tsukahara, 1996; Takahashi et. al., 1999; vicini & Quagliarella,lggg,Perezet. al.,
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2000). Shapes such as two-dimensional airfoils or three-dimensional wings are encoded

as long bit strings using various computer graphics techniques. The GAs are then used to

find the shape that minimizes some aerodynarnic fitness function, such as the drag-toJift

ratio, or the deviation from an aerodynamic objective (a desired pressure distribution, for

example.)

Another type of EA, the Evolution strategy @s), uses the same principles, but

operates on real-valued vectors. ESs are thus beffer suited for continuous parameter

optimization problems. They were introduced in the 1960's by three students at the

Technical University of Berlin - Rechenberg, Bienert, and Schwefel. The three were

looking for a decision-making tool for an e4perimental aerodynamic design problem -

minimizing drag for a flexible, slender, three-dimensional body in a wind tunnel. After

some commonly used optimizers failed, Rechenberg (1965) proposed the idea of random

decision-making. Using a population of one, random mutations of the design variables

determined the next shape to be tested. Ifthe new design had lower drag, it survived to

the next generation. Bienert (1967) actually constructed a robot that could perform the

decisions and actions automatically. Rechenberg (1973) later increased the population

size, and the theory was further developed by Schwefel(1975a,1975b).

DE is an ES that grew out of Ken Price's attempts to solve the Chebychev

poþomial frtting problem that had been posed to him by Rainer Storn (Storn & Price,

1995). DE is emerging as one of the most impressive EAs. Storn and Price (1997b) have

demonstrated, using an extensive testbed of objective functions, that DE converges faster
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and with more certainty than many other acclaimed global optimization methods,

including several ESs.

The list of applications for which DE has been effective is long. It includes

optimization of bioprocesses such as the growth ofpenicillin (Balsa-Canto, 1998), layout

design of mass transit signaling systems (Chang and Du, Lggg),allocation of processors

in a parallel architecture @ae and Parameswaran, 1998), solution of scheduling problems

(Rüttgers, 1997), redundancy optimization for MPEG (Stom, 1995), optimal contol of

Differential-Algebraic Systems (Wang and Chiou, I997),and characterurnga structure

when one can only observe the X-ray scattering paffern (Wormington et. al., lggg).

References to many others can be found in the DE bibliography maintained by Jouni

Lampinen (2001).

The crucial difference between DE and other ESs lies in mutation. Traditional ESs

(and GAs) use predetermined probability distribution functions to perturb vectors. This

leaves them unable to adapt the perturbation magnitude to the topology of the objective

function. DE, on the other hand, uses the difference of two randomly chosen vectors to

perturb another vector. The magnitude is thus automatically appropriate to the given

landscape, and the search is less random, being dictated by the shape of the given

objective function. This property of DE is known as selÊorganization. Ultimately, it

results in better convergence properties as the algorithm nears the global minimum.

Since DE lies at the heart of this thesis, the essential elements will be described

here. For a more detailed summary, see Price (1999). The overall structure of the DE

algorithm resembles that of most other population-based searches. Two arrays are
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maintained, each of which holds a population of¡¿, D-dimensional, real-valued vectors.

The primary array holds the current population while the secondary array accumulates

vectors that are selected for the next generation. The population evolves toward a solution

by a process of natural selection, or survival of the fittest. (see Figure I . I .)

Generation Trial Generation
i vectors i+l

bl

b2

b¡r

>bl-
,br-

,b;_

>bl

,b,

tb"

Mutation, Fittest
crossover survlves

Figure l.l Overall structure of Dffirentíal Evolutíon.

Each vector bo in the primary array is a "parent", which generates a trial vector b!

(its "child") through mutation and recombination (described below). The fiüress of any

given vector bo is determined by its cost, C(bò,where C(x) is the objective function to be

minimized. The cost of each parent is compared to that of its child, and the fittest vector

(the one with the smaller objective function value) survives to the next generation, so that

the vector bo<i+Þ in generation i * I is either bo from generation i, or its child, bf :

(1 .1)

Mutation is an operation that makes small random alterations to one or more

parameters of an existing population vector. Mutation is crucial for maintaining diversity

in a population, and is typically perfiormed by perturbation. DE uses the population itself

as a convenient source of appropriately scaled perturbations. Each pair of vectors (b", b¿)

b<i+r> ={o: if c(bd) < c(br).
- Lbi irc(br) < c(bo)
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in the primary array (generation l) defines a vector differential, b" -bo. When these two

vectors are chosen randomly, their yeighted difference can be used to perturb another

vector in the primary array,bo:

b', =b,+ r'(n" - br), (r.2)

where bi is a mutation of br. The weight, F, is a user-supplied constant. The optimal

value ofF for most functions lies in the range 0.4 < F' < 1.0.

An effective variation of this scheme involves keeping track of the best vector so

far, b*. This can be combined with bo and then perturbed, yielding

b', =b "+ 
r(n' - b") * r'(n" - ur) . (1.3)

In this scheme - known in the DE community as DE/rand-to-besll and used throughout

this thesis - the most successful member of a population influences all trial vectors.

Recombination, or crossover, provides an alternative and complementary means of

creating viable vectors. Designed to resemble the natural process by which a child

inherits DNA from its parents, new parameter combinations are built from the

components of existing vectors. This efficiently shuffles information about successfirl

parameter combinations, enabling the search for an optimum to focus on the most

promising areas of the solution space.

Each primary array vector bo is targeted for recombination with bi (the mutated

vector in (1.2) or (1.3)) to produce a trial vector, n!. thus the hial vector is the child of

two parents - bo, the primary array vector against which it must compete, and bi , which

is itself a random mutation of bo. DE can use two types of crossover - binary and
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exponential. When combined with the mutation operation in (1.3), the strategy is labeled

DE/rand-to-besll/bin or DE/rand-to-best/1/exp, respectively. The amount of information

(DNA) shared in recombination is determined by the crossover constant CR, where

0<cÀ<1.

In exponential crossover, a starting parameter, p, is selected at random. Cfi is

compared to a uniformly distributed random number from within the interval [0,]).

Subsequent trial vector parameters are chosen from b! until the random number generator

produces a value larger than CR (or until all D parumeters have been determined). The

remaining parameters then come from the primary array vector. Thus, if r random

numbers were generated before one of them was greater than CR, the trial vector

parameters, (O'") 
r, 

t < i < D, aredetermined by

(oå),={ll"ì;, "i;í.." (1.4)

for values of r smaller than D - p, and

, ¡\ [(t;),, p<i<D and 1<j< p+r-D
(bä)' = 

{to,i' otherwise (1's)

for values of r larger than D - p.

In binary crossover, the random experiment is performed for each parameter. If the

random number is smaller than CÃ, the ftial vector parameter is chosen from b! ,

otherwise it comes from bo. Thus, for each parameter,T, in the trial vector, a random
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number ry is chosen, where 0 3r¡ < 1 . The trial vector parameters,

then determined by

10

(oå)r,t<i<D,are

lul\ _[(a;),, rrr¡ <cR

\ 't i L(b,)r, otherwise
(1.6)

In both types of crossover, exponential and binary, when CR: I every trial vector

parameter comes from bi , making the trial vector bt, anexact replica of the random

mutation of bo.

Once new trial solutions have been generated, selection determines which among

them will survive into the next generation. Each child b! is piued against its parent bo in

the primary anay. Only the fitter of the two is then allowed to advance into the next

generation.

In all, just three parameters control evolution: the population size 1/, the weight F

applied to the differential in mutation, and the constant CRthatmediates the crossover

operation. DE has not been patented in the hopes that scientists around the world will

develop it further. It has been coded in a variety of languages, including C, C++, Matlab

and Java, and can be downloaded at no expense from Rainer Storn's DE webpage

htþ ://www.icsi.berkeley.edu/-storn/code.htnl.

1 .3 Geometric Represe ntation

DE operates on real-valued vectors, not on shapes. So one task of the design

algorithm is to encode the geometry of the airfoil. In Rogalsky (1998), a ne\¡/ method of
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airfoil representation was developed using Bezier curve parameters. A brief review of the

parameterization literature and a sunmary of the Bezier method follow.

Many methods have been used for geo'metric representation of airfoils. They

include the inverse Theodorsen transformation (Theodorsen and Garrick, 1933), linear

combination of basis shapes (Vanderplaats et. a1.,1975), basis functions (Hicks and

Henne, 1977), orthogonal shape functions (Chang et. al., 1995), Legendre polynomials

(Coiro & Nioclosi, 1995), the extended Joukowski transforrnation (Jones, 1990), and

PARSEC parameterization (Sobieczky, 1998, 1999). Many of these have proven

unsuitable for aerodynamic optimrzation, being susceptible to wild oscillations, and

requiring many parameters (Burgreen et a1., 1992; Venkataraman, 1995b). Others cause

slow convergence when used with EAs (Oyama,1999). Bezierpolynomials on the other

hand, are proving to be quite useful (Venkataraman, 1995a).

P. Bezier, of the French frm Regie Renault, pioneered the use of computer

modeling of surfaces in automobile design. His LINISURF system, initiated in 1962 and

used by designers snce 1972, has been applied to define the outer panels of several cars

marketed by Renault @ezier, 1972,1974). The foundations of Bezier cuwes, however,

go back much further. In 1926, S. Bernstein presented a constructive proof of the

Weierstrass approximation theorem (Davis, 1963), using functions that have become

known as Bernstein polynomials. Bezier curyes have a very similar form, and are

sometimes referred to as Bezier-Bemstein polynomials. An zth order Bezier curve is

defined parametrically using n+l two-dimensional control points.

t1
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In one of the first examples of their use in aerodynamic design, Birckelbaw (1989)

used two 44ú order Bezier curves to define an airfoil. The 180 control point variables

were used as the optimization par¡meters. Venkataraman (1996a) used four Bezier curves

to define an airfoil - two each for the top and bottom surfaces - reducing the number of

design variables to 19. Aerodynamic shapes other than airfoils have also been

parameterized. Burgreen et al. (1992), for example, represented the surface of an internal-

external noz-zle with Bezier curves in place of grid points. This reduced the number of

desþ variables from 47 to six, and the CPU time by a factor of almost four.

The airfoil parameterization developed in Rogalsþ (1998) is an enhancement of

Venkataraman's method. Two Bezier curves are joined end-to-end to form the camber

profile (the mean-line running down the center of the airfoil). Two are joined to form the

half thickness profile (measured perpendicularly above and below the camber). See

Figure l.2.The curves are scaled to represent an airfoil with unit chordlength (the

distance from the nose to the trailing edge). Camber-thickness definition of airfoils dates

back to the 1930s when it was discovered that several effective wing sections had nearly

the same thickness distribution when the mean line was straightened (Abbot and von

Doenhoff, 1959). That is, the aerodynamic properties of an airfoil are more directly

dependent on camber and thickness than on upper and lower surface shapes.

12



1.3 Geomekic Representation

(0,0)

(o'ós)

(1,0)

(brc,bn)

(0,0) (1,0)

Camber

Figure 1.2 Bezíer parametertzatíon of an airþil. Fifteen Bezier parameters define the
camber and half-thicløtess profiles. The half-thiclcness is measured perpendicular to the

camber, þrming the airþíl shape.

1.4 Aerodynamic Calculations

The aerodynamic calculations represent by far the most compuüationally intensive

component of the design algorithm. In fact, it is only in the last few years that computer

power has become suffrcientto solve inverse problems in reasonable time. Even now,

only multi-million dollar super parallel computers are able to solve this problem reliably.

A full flow field simulation for a single airfoil can take over an hour on a high end PC.

l3
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The two-dimensional flow field around a given object is most accurately modeled

by the Navier-Stokes equations,

(r.7)

where the vector field (u(x,y),u(*,y)) represents the velocity of the flow at position

(x,y), p is the viscosity of the fluid, p is the mass density of the fluid, andp is the

local static pressure. The nonlinearity in this system of partial differential equations

makes it extremely diffrcult to solve. Existence and Uniqueness Theorems remain an

open problem, more than 100 years after the development of the model. Even numerical

simulation is very expensive computationally. Lombardi et al (2000) solve numerically

the Navier-Stokes equations for flow around aNACA 0012 airfoil. The computational

effiort require 70 - 150 minutes on a desktop PC, depending on turbulence model. At this

rate, a design problem requiring 50,000 flow simulations (such as the one discussed by

Rogalsþ et. al., 2000) would take at least six years to complete.

Fortunately, there are simplified equations that can be solved in significantly less

time. Although the results are less detailed - and in some cases less reliable - they are

adequate for most common situations. More significantly, though, these simplifications

allow research to be performed using a coÍrmon desktop PC. Design problems can be

solved in about twenty minutes for which the optimizer has searched over 50,000

different shapes.

( at fu lfu rr-clu-+v-= -- ' +' Y'u
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The simplification made here is to assume fully potential flow, i.e. zero viscosity.

Viscosity can be thought of as the friction force that acts between fluid particles. In a

turbulent flow field, when fluid particles are interacting with each other in many

directions, viscous effects can be quite high. However, for flow over an aerodynamic

body such as a fan blade, viscous effects are almost negligible, as long as the flow

remains "attached" to the blade. (In attached flow, the air particles move along a path -
called a streamline - that is nearly parallel to the solid body. Particles do not interact with

each other so much as with the body itself. Contrast this with the turbulence in a region of

separation - think about being passed in a snowstorm by alarge truck.)

Flow solvers that assume potential flow are known as panel methods. The shape is

approximated by a set of line segments called panels, and a numerical scheme is used to

compute the flow solution. Despite the simplified model, panel methods are useful, and

are still being applied in many situations (Pfeiffer, 1990).

The origins of the panel method can be found in classical mathematics. Kellog

(1929) wrote a comprehensive book about potential theory. Since potential flow is

incompressible and inviscid, the Navier-Stokes equations (1.7) can be simplified to

Laplace's equation for the velocity potential,

l5

Y'v =0, where , = 4,q
âw

rt - ---i-
h (1.8)

Integrating an elementary solution over the body surface, Kellog developed an integral

equation that represents the flow past a body immersed in a uniform stream. Panel
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methods approximate these integrals by discretizing the curves into panels, and then

integrating numerically.

The specific inviscid potential flow model used here is Martensen's (1959) surface

vorticity panel method (described in Lewis, 1991). Assuming fully attached flow, the

boundary layer around an airfoil is approximated as an infinitesimally thin vorticity sheet.

The inviscid surface velocity can then be found in terms of the vorticity strength on the

boundary (equation (1.10) below).

Consider a small vorticity element y(s)ds, where 7(s) is defined as the vorticity

strength per unit length at point s. Since the thickness of the element (normal to the

surface) is infinitesimal, the circulation around it is just (u" - v,)ds, where v" and v; are the

fluid velocities just outside and inside the sheet. This can be equated to the total amount

of vorticity enclosed by the contour. That is,

t6

(u" -r,Þ =y@)ds.

Since the no-slip condition on the body surface requires that v, = 0, we have

(1.e)

v, = l(s) . (1.10)

The body surface is represented discretely by a finite number of short, straight

panels. Martensen's boundary integral equation for two-dimensional flow (Lewis, 1991)

relates the vortex strength at arry given point to the vortex strengths at all other points on

the surface. This integral is then approximated numerically. The resulting linear system

of n equations is solved for the vorticities 1(s) on each of the n panels. The vorticity on

any given panel is then exactly equal to the inviscid velocity along that panel.
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Jacob & Riegels (1963) first successfully implemented Martensen's method on a

digital computer. An analysis of an airfoil with 36 elements took fifteen minutes to

execute, a remarkable feat for that time. Wilkinson (1967) identified and resolved many

modeling and computational obstacles and extended his work to mixed-flow turbo-

machinery cascades (Wilkinson,1969). An excellent summary of vorticity methods is

given by Sarpkaya (1989).

In a turbomachinery cascade - such

as the axial flow fan - adjacent surfaces

both influence the flow through any two

blades. The cascade is thus modeled as

an influrite rectilinear array of airfoils, set

at equal pitch interval r parallel to they-

axis, and with equal stagger angle å (See

Figure 1.3.) The flow enters the cascade

with inlet velocity Wt at tnlet angle p1;

and exits with outlet velocity W2 at outlet
Figure 1.3 Turbomachinery cascade

geometry and flow velo cíties.

angle þ.The blade spacing, t and ),,play akey role in the fan's overall performance

@ogalsþ et al, 1999). These parameters are thus included in the vector b encoding the

fan's geometry.

Of course, the ultimate goal of the current research is to incorporate a more realistic

flow solver into the design method. For example, the Keller Box module (Keller, 1975)
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assumes nonzero viscosity only in a boundary layer along the surface. Then the Navier-

Stokes equations (1.7) can be simplified to the boundary layer equation,

(1.1 l)

where p is the viscosity of the fluid, p is the mass density of the fluid, andp is the local

static pressure. A panel method is used to calculate the inviscid velocity distribution (iust

outside the boundary layer). Finite difference equations are used to solve (1.11)

numerically throughout the boundary layer. Newton's method is used to deal with the

nonlinearity of (1.11), normally requiring ten iterations.

A boundary layer method such as this would enable approximation of drag and

location of any regions of separation, improving the confidence in any resultant designs.

However, the additional complexity could easily add several orders of magnitude to the

computational requirements. The inviscid model solves aî n x n ltnear system of

equations, where n (the number of panels) is typically 60-100. Boundary layer methods

typically use a grid withn points (normal to the surface) in the boundary layer on each

panel. The finite differencing then results in an n x n nonlinear system at each panel, and

Newton's method requires the solution of ten of these each time. Thus, oîe n x n system

is solved in the panel method, but l0n2 nx n systems are solved in the boundary layer

method. If n is 100, the result is an increase in computational requirements by a factor of

103. If 50,000 panel method calculations take twenty minutes, then we would expect

50,000 boundary layer calculations to take fourteen days. Before incorporating such a

ãr. ât pdu ldp
1t-+ u--.!-- - --å'e d) pd} pdx'
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module, we need to ensure feasibility. Thus, the immediate focus of this thesis is to

reduce the number of flowf,reld simulations required to arrive at a solution.

1.5 Cost Function

As a fan rotates its blades through the air, the velocity of the air varies around the

surface of each blade. The variation of velocþ produces a variation of air pressure near

the surface of the blade. This is usually measured in terms of the distribution of the

pressure coefficient, co, along the blade. The performance of any fan is directly related to

this so-called pressure distribution. In inverse design, the cost (or objective) function

evaluates the proximity of a fan's performance to some target pressure distribution.

Liebeck (1973) designed the pressure dishibution shown in Figure 1.4 for

maximum possible tift in an incompressible flow. A few words of explanation are in

order. Azero pressure coeffrcient represents the normal pressure of the air. A negative

pressure coefficient represents a point of low pressure. Low-pressure regions induce lift

on an aircraft wing and suction on a fan blade. By convention, this suction surface is

defined to be the upper surface of the blade. For that reason the direction of the y-axis is

reversed. In the Liebeck pressure dishibution shown, the pressure along the upper surface

rapidly drops along the leading 25Vo of the blade. It then uses the Stratford (1959a)

distribution along the pressure recovery region (the trailing portion of the upper surface),

which is designed to avoid separation (thereby avoiding high drag) by a small margin. In

principle, this recovers the maximum possible pressure over that distance.



The aerodynamic goal can

thus be quantified as a discrete tar-

get pressure distribution t, together

with an outlet angle, þ.For any

given encoded vector b, the decod-

ed blade H and blade spacing are

passed to the flow solver. At each

x-coordinate of the target, the pres-

sure coefficient is found and stored

as G. The deviations between

pressure coefftcients in t and G

(see Figure 1.4) form the first

components of the error vector.

The last component is the devia-

1.5 Cost Function

Figure 1.4 Sample target - a Liebeck pressure
distribution. Any member of the population, b,

represents afon blade shape and spacing. The cost
ofb ß the devíation of its corresponding pressure

dístribution from the Líebeck target.

(r.t2)
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tion, in radians, ofttre actual from the target outlet angle. The cost is defined to be the

length of that error vector, i.e. the .Ø2-norrn of those differences,

L
c(n¡: J>,* -t¡)2 +(Br*t", - þru*r)', .

1.6 Acceleration of DE for Aerodynamic Design

The immediate goal of this dissertation is to determine whether the convergence

rate of Rogalsþ's (1998) aerodynamic desþ algorithm can be accelerated. If the

-l

0
ooo

0.5 1

Liebeck target, t
Current blade, H(b), and pressure
distribution, G(b)
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number of flow solver calls can be reduced significantly, we are confrdent that the

incorporation of a boundary layer module is feasible.

This is not the first attempt at acceleration of DE. Masters and Land (1997), for

example hybridize DE with a direct gradient descent method. Every generation, a few

vectors are selected at random, their derivatives are computed, and a single line

minimization is performed along the gradient. This "appears to tremendously speed [sic]

convergence while almost certainly having liule impact on its ability to find a good

global optimum."

Chiou and Wang (1998) embed trvo additional operations into DE. An acceleration

operator performs a gradient descent on the population any time the cost does not

increase from one generation to the next. A migration operator restarts the algorithm in

another region any time population diversity decreases too much. Applying their

algorithm to bioprocess control, they achieve a tenfold reduction in cost function calls,

while actually frnding a better solution than conventional DE.

Other new operators have been introduced for acceleration, such as a trigonometric

mutation operator (Fan and Lampinen, 2002) and a population refreshment mechanism

(Smuc, 2002). Hendtlass (2001) combines DE with a particle swarm algorithm. Liu and

Lampinen (2002) use fuzzy logic to define adaptively DE's parameters, making DE easier

to use and more effrcient. Others ideas for acceleration can be found in Lampinen's

(2001) DE bibliography.

The key to significant acceleration is to exploit the uniqueness of the specific

problem. Ken Price (2001) has suggested that a speed-up by more than a factor oftwo is

2t
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likely not sustainable over a wide class of functions. In fact, this is made very clear by the

No Free Lunch (¡mL) Theorem for optimization (Wolpert and Macready, 1997), which

states that no a priori claim can be made about any optimization algorithm:

Theorem (No Free Lunch): For any pair of opttmizatìon algorithms a1 aftd ã2,

Z P(d,^lf , *, o,) = Z p(d 1lf , m, a,),
f.f

where ru is the sample size - the number of distinct points that are examined by the

algorithm, dfl isthe set of ln sample costsy,;fis any objective function, and

f(a¿l¡,*,ø) is the conditional probabitþ of obtaining the sample cost set dfl on

the objective function/by applying the algorithm for ¡z iterations.

That is, averaged over all possible objective functions, all optimization algorithms

perform equally. To quote Wolpert (2002): "In short, according to these theorems there is

no free lunch; without tailoring one's algorithm to the domain at hand, one has no

assurances that that algorithm will perform well on that domain."

The somewhat surprising consequence of the NFL Theorem is that it is impossible

to analyze convergence in general. In fact, EA convergence analysis has been limited to

very simple solution spaces - n-dimensional hemispheres, for example (Rudolph,

I997abc, Beyer, 1997,2001,2002). Rigorous convergence analysis of EAs for more

complicated spaces remains an open problem. Of course, interesting, practical problems

are not simple. In aerodynamic design, in particular, the solution space is extremely

nonlinear, even chaotic.

22
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While we cannot claim that any acceleration achieved will be applicable to every

optimization problem, we would like to be reasonably confident of its general

applicabilþ for aerodynamic design of turbine blading. To ensure this, we use a

methodology common in aerodynamic design. Three very different design targets are

chosen. The design process is simulated for these targets, and the convergence rates are

compared with simulations under a modified design algorithm. Any improvement that is

applicable generally would have to be observed for all three design cases. The three

targets are described in Chapter 2.

The flnst attempt to incorporate problem-specific information is to modiff the hard

constraints. (These force DE to consider only realistic airfoils. The flow solver does not

evaluate any constraint violations.) As seen in Chapter 2,the modification of the solution

space significantly reduces the cost of the final solution, but has only a minor impact on

convergence rate. The resulting convergence rates for the three targets are used as

benchmarks throughout the remainder of the thesis.

In Chapter 3, we present a new parumetenzation method for airfoils. The Bezier

parameterization used previously is inadequate for several reasons, including the loss of

second-order continuity at the juncture between leading and trailing curves. Furthermore,

many of the Bezier parameters are not directly related to the aerodynamic properties of

the shape. The incorporation of aerodynamic shape parameters, such as the leading edge

radius or the trailing wedge angle, enables DE to taverse the domain more quickly.

Several optimizer-specific modif,rcations \ryere made as well. In Chapter 4 a variable

birthrate is used, essentially neutering the costliest individuals in the population. In

23
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Chapter 5 a hybrid strategy is developed. DE is used in concert with Downhill Simplex, a

local optimtzer that does not require gradient information. In Chapter 6, DE is combined

with another biological model - the immune system. A particular combination of

hybridization and immune acceleration is shown to reduce dramatically the number of

flow solutions required to converge.

A brief digression is made in Chapter 7. Often certain soft engineering constraints

must be incorporated into the design. A penaþ function method for imposing such

constraints is demonstrated. Finally, Chapter 8 summarizes the main results, and makes

recommendations for future work.

24
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Ghapter 2 Benchmarks for Acceleration

This chapter develops a ne\ry set of constraints for the design algorithm (section

2.2), and describes the three test cases that will be used throughout the thesis (section

2.3). The convergence rates using the new constraints will serve as benchmarks for

acceleration. Before discussing constraints, a few more details about Rogalsþ's (1998)

Bezier parameterization are needed.

2.1 BezierParameterization

A parametric Bezier curve P(z) of degree z is uniquely determined by the n + I

vertices of a polygon, called the control points P,, as follows:

p(u) =Z- #u' çt-u¡'-', 0 < u <1. (2.r)

Four Bezier curves form the airfoil, as shown in Figure 1.2.

Bezier curves have many properties that are athactive for aerodynamic design. The

end points of each curve are automatically fixed at the two end vertices. At an endpoint,

the curve is tangent to the vector between that endpoint and the closest control point,

making it simple to join curves with first order continuity. The curve always lies within

the convex figure defined by the extreme points of the polygon. The curve is nth order

continuous throughout and never oscillates wildly away from its defining control points.

In the encoding of the airfoil, some of the Bezier control parameters must be fxed.

The endpoints of both prof,rles are fxed at (0,0) and (0,1), creating a blade with unit
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chord length. At the juncture between leading and trailing curves, 1) the last control point

on the leading curve is made equal to the first on the trailing curve, and2) the three

central control points are made to be horizontally colinear. This enforces first order

continuity throughout. Finally, on the leading thickness curve, the second control point

has a zero x-coordinate, which enforces a rounded leading edge. Together, these

conditions allow the airfoil shape to be def,ined with the fifteen variables å¡ in Figure 1.2.

However, this encoding is not sufficient to ensure a realistic airfoil shape. It does

not prevent negative thickness, loops, or any bumps that could cause the flow to separate

(which would make the panel method extremely unreliable). The solution space must be

constrained to avoid these problems.

2.2 Hard Constraints

Hard conshaints ensure that any shapes considered are in fact airfoils. In Chapter 7,

we discuss a method of imposing soft constraints - such as a user-defured minimum

thickness. A penalty function is used to impose the hard constraints. It assþs a large

random value to the objective function whenever a constraint is violated. The penaþ is

enforced without performing any aerodynamic computations. Normally, they would be

meaningless anyway (for a shape with negative thickness, for example), and this

conserves computation.

Technically, a constraint violation is evaluated by the objective fi.mction, but the

computational cost is insignificant compared to that of a flow solution. Thus the number

of function evaluations (NFEs) is defmed to be the number of flow calculations

26
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performed by the code. This best reflects the actual computational expense of the

algorithm. When comparing convergence rates, this measure is always the one used.

In the previous work (Rogalsþ, 1998), constraints were imposed directly on the

Bezier control points, which is not entirely satisfactory. For example, to ensure positive

thickness, they-values of thickness control points were constrained to be positive. This

will, of course, ensure a positive-valued thickness profile, but it also eliminates from

contention many interesting - and possibly useful - thickness profiles, such as the one in

Figure 2.1. The negative y-value of the sixth distinct control point produces an inflection

point without causing the curve to dip below the axis.

27

Figure 2.T. Negative-valued control points do not necessarìly create negative-valued
profiles.

Similarly, to ensure that the profiles will not loop back upon themselves, all conhol

points were ordered downstream (i.e. left-to-right). While this is suffrcient to produce

single-valued profiles , againit is not necessary. For example, in the camber profile shown

in Figure 2.2,the sixth distinct control point lies upstream of the fifth. Yet the profile is

not only aerodynamically valid, but in fact has a potentially valuable inflection point

caused by that ordering.

Furthermore, the constraints as proposed were not general enough to remove all

inegularities. Two examples are shown in Figure 2.3. These \¡/ere removed by
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1) requiring a minimum horizontal separation between all control points, and2) imposing

a maximum value by which any control point could exceed vertically the juncture. But

again, a consequence is that some valid shapes will not be included in the solution space.

28

Figure 2.2. Reverse-ordered control points do not necessarily create multí-valued
profiles.

Figure 2.3. Some irregularitíes that can occur if the leading or traìling cutyes are not
one-to-one.

An improved set of constraints is required. What we really want is to control the

curves - not the points. There is, in fact, a very simple solution: Each of the four Bezier

curves must be one-to-one functions, with the leading curves increasing monotonically,

and the trailing clrryes decreasing monotonically. This enforces the condition of an airfoil

without bumps, loops, or negative thickness; while allowing negative-valued, reverse-
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ordered, or very close control points - along with any beneficial features that they may

produce.

We will see in Chapter 3 that this one-to-one constraint is entirely sufficient for the

new airfoil representation methods deveþed there. For the Bezier parameterization,

however, that is not quite true. One control point constraint has to be maintained. Since

curves are joined with only first-order continuþ, the juncture was not always reasonably

smooth. If the colinear points at the juncture between curves are too close to each other,

the juncture may not even appear f,irst-order continuous (Figure 2.4).To regulate this, we

enforce a minimum horizontal separation of the juncture points. The minimum separation

is 0.05 (5% of the chord), a somewhat arbitrary value that seems nonetheless to work.

29

Figure 2.4 In addition to the one-to-one constraints, a mínímum separation ofjuncture
poínts ís requíred to approximate second-order continuity.

As will be seen in the next section, these new one-to-one constraints allow DE to

find a better solution, without detriment to the rate of convergence.

2.3 Benchmarks

Three design cases will be examined throughout this dissertation. These are diverse

enough that arry consistent acceleration pattern should be applicable across a wide

spectrum of designs. In this section, the convergence rates for each design using the old
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design algorithm will be given. These will serve as benchmarks with which to compare

acceleration strategies.

For two design cases, the solutions are known. Gostelow (1964,1984), using

conformal transformations, provided several standard cascade profiles with exact surface

pressure distributions. These have been used to verifr numerical results. Two of these - a

C4l70lC50 airfoil and a highly cambered (112") impulse cascade profile @igure 2.5) -
were used by Lewis (1991) to demonstrate the validity of the Martensen vorticity panel

30

method. The pressure distributions of these two

stand¿rd blades were used as design targets in

Rogalsþ et. al. (2000). They will be used

throughout here - although in slightly modified

form - as discussed below. The third design

target is the Liebeck pressure distribution,

Figure 2.5. Known solutionsfor two
design targets: C4/70/C50 (top),
I l2o-cambered blade þottom).

shown in Figure 1.4.

Design parameters for the benchmarks are as follows. For each case, tfre DE/rand-

to-best/l/bin variation is used, with i/Fl0D (D:17 for Bezier designs with variable

blade spacing), F=0.85, and CR:1.0 (no crossover). This variant of DE is advertised by

its authors as effective for a broad range of problems, and was found to be robust for

aerodynamic acceleration in Rogalsþ et al (2000). One-to-one and juncture constraints

are used for all three benchmarks. An additional leading edge constraint was necessary

for the Liebeck case.
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The sections that follow describe the design targets and any modifications made,

examine the effect of the modified targets and of the different constraints on

convergence, and provide the benchmarks for acceleration.

2.3.1 C4l7OlC50 Target

The C4l70lC50 blade was used for compressors in the U.K. in the 1960's. It has a

C4 base profile distributed upon a 70o circular arc camber line. C-series airfoils are still

very representative of turbine blading today. By experimentation, Gostelow was able to

reproduce this blade using a conformal transformation. Exact flow solutions were

obtained for two inlet angles, þFt35o, using pitch/chord ratio tll:O.900364 and stagger

angle l:0 fot each. As shown by Lewis, these are in "excellent agreement" with the

surface pressure distributions obt¿ined by Martenson's panel method.

In our previous work (Rogalsþ et al, 2000), the two pressure distributions

computed by the panel method were used as design targets, with pitch/chord ratio and

stagger angle fixed. For pt=¡35o, the solution was closely approximated by not only DE,

but also two other optimizers - Downhill Simplex and Simulated Annealing. However,

both of these failed badly for pt:-35o, while DE found a solution in 57,000 FEs. Since we

would like to challenge the design scheme, only the more diffrcult target (Á:-35) is

used here. The corresponding outlet angle is p:-25.OtfOo.

The pressure distribution has Cþ coefficients with extremely high magnitude near

the leading edge. (See Figure 2.6.) Relative to the other target points, the deviations at the

leading edge points will tend to be higher. Yet the proximþ of the solution there is less
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important than the proximity for the rest of the distribution. That is, we are unduly

forcing the algorithm to match closely the target in a region that is both extremely

difficult to match and relatively unimportant to the blade's performance. A better design

target would allow the pressure distribution to be somewhat free for magnitudes higher

than a certain value. We have thus eliminated from the target pressure distribution all

pressure coefficients with absolute value greater than 6. Convergence to the new target is

used as the new benchma¡k for comparison.
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Figure 2.6 Original C4/70/C50 target distribution, calculatedwith B1:-35o,
t/l:0.900364, Å.:0. Pressure cofficients with magnítude greater than 6 are deletedþr

the remainder of the thesis.

The different convergence rates are shown in Figure 2.7.For comparison the results

of Rogalsky et al (2000), using fxed blade spacing, are included. This in fact results in

the highest converged cost. All other results use variable spacing, since it is not

reasonable in general to assume that the spacing is known in advance. Interestingly, the

addition of variable spacing alone enables DE to find a solution with lower cost. The

modified target results in a much lower cost, for obvious reasons, although the acfual rate
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of convergence doesn't appear to change much. As expected, the new one-to-one

constraints allowed greater geometric freedom, resulting in the best solution.

()

AAl.l0' 2.14' 3.104 4.104
NFEs

Old Target, Conhol Point Constaints, Fixed Blade Spacing
Old Target Contol Point Constraints, Variable Blade Spacing
New Targel Conhol Point Conshaints, Variable Blade Spacing
Benchmark: New Target, l-1 Conshaints, Variable Blade Spacing

Figure 2-7 Effect of target modification and constraint system on convergence to the
C4/70/C50 target.

It is also informative to compare "snapshots" of the design process. Figure 2.8

shows the blade shape and pressure distribution as it is developed by DE - after 20,000,

30,000, and 40,000 FEs. In the original case (frxed spacing), significant change occurs

after 30,000 FEs, but for the remaining three, the shape has nearly converged by then,

and subsequent modifications are only minor.
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Old Target, Control Point Constraìnts, Fíxed Blade Spacing

20,000 FE's. Error : 3.842 30,000 FE s. Enor : 3.581 40,000 FE s. Enor = 3.467
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Old Target, Control Point Constraints, Variable Blade Spacing
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New Target, Control Poínt Constraints, Variable Blade Spacing

20,000 FE s. Error : 0.565 30,000 FE s. Error = 0.2169 40,000 FEs. F;r'or:0.462

New Target, I-l Constraints, Variable Blade Spacíng

20,000 FE's. Error : 0.208 30,000 FE s. Error = 0.204 40,000 FEs. Enor:0.162

2.3 Benchmarks

Figure 2.8 Convergence snapshots showíng the effects of target modífication and
constraint system on the C4/70/C50 design. The target is shownwith the dotted line.
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2.3.2 1 12o -cambered Target

As a more extreme test, Gostelow developed a highly cambered impulse cascade

profile, based on a l12o circular arc camber line. The exact solution was given for

BF50o, t/l:0.5899644, and k--0. Agan, the pressure distribution compares well with the

panel method solution, and is used as the target in Rogalsþ et al (2000) with fixed blade

spacing. The target outlet angle is P=-53.rftro.

Recall that the Bezier parameterization in the design algorithm operates under the

assumption that each blade has leading edge at (0,0) and trailing edge at (1,0). This is not

the case for the data points reported in Lewis. The blade was thus shifted to the origin,

and then magnified to have chordlength one. Recalculating the pressure distribution

provides atarget for which the algorithm is designed.

A brief digression is necessary regarding panel length. Martenson's method is most

effective if any given panel has length equal to the blade thickness at the panel's

midpoint. The desþ algorithm automatically accomplishes this in the representation of

the blade. However, a maximum panel length must be imposed for most airfoils. In

general, a maximum length of 0.04 is suffrcient for fast, accurate results. In the case of

the 1l2o-cambered blade, however, the thickness increases so rapidly at the leading edge

that too much data is lost, making it difficult to approximate the pressure coefficients

there. Changing the maximum thickness to 0.03 resolved the problem. Design for the

highly cambered case will use 0.03 throughout. The other two desþ problems will be

solved with maximum panel length 0.04.
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The developing cost is compared in Figure 2.9, anddesign snapshots are shown in

Figure 2.10. In all cases, there are no significant shape or pressure distribution changes

after 30,000 FEs. Modifring the target significantly decreased the deviations, especially

along the suction surface. Again, the one-to-one constraints allowed the design method to

find the lowest cost.

2.5

1.5

0.5

o I .to4 2.rc4 3.104 4.rc4 5.104
NFEs

- - ' Old Target, Conhol Point Constraints, Fixed Blade Spacing
- - - -' Old Target, Control Point Constraints, Variable Blade Spacing

- 
' New Target, Contol Point Constraints, Variable Blade Spacing

- 
Benchmark: New Target 1-l Constraints, Va¡iable Blade Spacing

Figure 2.9 Effect of target modification and constraint system on convergence to the
I I2o-cambered target.
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Figure 2.10 Convergence snapshots showing the fficts of target modification and
constraint system on the I I2o-cambered design.
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- 1.5

0

1.5

New Target, l-l Constraints, Varíable Blade Spacìng
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2.3.3 Liebeck Target

The final design target is one for which the solution is not known. Liebeck pressure

distributions have been discussed in Chapter l. They generate excellent lift coefficients

while avoiding separation. The target chosen is shown in Figure 1.4, with inlet flow angle

BF30o, and target outlet flow angle h:}o.

The new constraint system, consisting of one-to-one curves and a minimum

separation ofjuncfure control points, was insufücient for this case. The resulting design

was unrealistically thin and had a sharp leading edge, as seen in the design snapshots

(Figure 2.L2). To ensure a rounded leading edge for the Liebeck design, we require a

minimum vertical separation of 0.05 for the first two thickness control points. The

resulting convergence is set as the benchmark.

Convergence is compared in Figure 2.11, and. snapshots in Figure 2.12. Results are

dramatic. Under the new conshaint system, the design has not only converged by 10,000

E2

0 5000 I .104 1.5'104 2.rc4 2su4 3.104 3.5.104 4.rc4
NFE'S

- 
Control Point Conshaints
l-1 Constraints with minimum leading edge thickness separation

Figure 2.Il Effect of constraint system on convergence to the Liebeck target.
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FEs (vs. about 30,000 FEs under the control point constraints), but has also achieved a

sþificantly lower error (0.566 vs. 0.785 after 40,000 FEs).

Figure 2.12 Convergence snapshots showing ffict of constraint system on the Liebeck
lesign.
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Ghapter 3 Geometric Representation of Airfoils

Airfoil data is typically tabulated with 50 to 80 data points. In aerodynamic

design, however, the number of function evaluations required for convergence tends to

increase linearly with the number of parameters used to represent the geometric shape.

Thus it is preferable that airfoils be represented by a much smaller number of parameters.

There are several goals to keep in mind when developing a method to represent

airfoils geometrically. First, the number ofparameters used to represent the shape should

be kept to a minimum. Second, the method should be able to represent a wide variety of

airfoils. Third, any constraints on the design should be simple to formulate and to impose.

Fourth, the parameterization should lend itself to effective and efficient optimization.

This chapter describes a new method of representing the geometry of airfoils. It is

an extension of the Bezier parameterization discussed in sections 1.3 and 2.1, using new

aerodynamic parameters. These are similar to the PARSEC parameters developed by

Sobieczþ (1999). Bezier-PARSEC (BP) parameterization is summarized in section 3.1,

and two instances of it are developed sections 3.2 and 3.3. To compare the ability of the

Bezier and BP methods to represent typical airfoils, section 3.4 tests 63 different airfoils.

@etails of the parameterization of each of the 63 appear in Appendix B on the

accompanying CD.) Finally, the BP parameterization is implemented into the

aerodynamic design code. Section 3.5 discusses the effects on robustness and

convergence speed.



3. I Bezier-PARSEC Parameterization

3.1 Bezier-PARSEC Parameterization

The parameters, å¡, in the Bezier parameterization are acfual Bezier control points.

They define the Bezier curves, which in turn defure the airfoil, but they influence the

flow only indirectly. It is possible to parametertze an airfoil using quantities that more

directly control its aerodynamics - such as the.leading edge radius and the trailing wedge

angle. PARSEC parameterizationof airfoils (Sobieczlcy, 1998, 1999) uses flow

phenomena oriented parameters, and was developed specifically for aerodynamic

optimization.

PARSEC airfoils are parameterized by their upper and lower curves, each of which

is a linear combination of shape functions as follows

6

",=\airxn-112, í=1r2, (3.1)
f=,'

where zr is the height of the upper curve, z2isthe height of the lower curve, x is the

distance along the chord, and, a', are undetermined coefÏicients. Eleven parameters

(illustrated in Figure 3.1) define an airfoil with unit chord length: r¡r,the radius of

curvature of the leading edge; xup,zup, the position of the upper crest; zoup,the second

derivative of (3.1) atthe upper crest; x¡o,z¡o, the position of the lower uest; zo¡o,the

second derivative at the lower crest, ø,", the direction of the trailing edge; Br",the

wedge angle; z,r,the height of the trailing edge; and Lzr* the trailing edge thickness.

These quantities, together with the x-coordinate of the trailing edge, are substituted into

(3.1). The resulting system of twelve equations is solved for the twelve coeflicients ø1.
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r¡,

Zoup

te
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H
LIo

z¡o

zxxlo

Figure 3.1 PARSEC airþil geometry defined by I I basic aerodynømic parameters.

It has been shown by Oyama et al (1999) that this type ofparameterization

improves both robushress and convergence speed for aerodynamic optimization, and that

it is particularly well-suited to optimization by GAs. He compares five parameterization

methods, both for their abilþ to reproduce known airfoils, and for their robustness and

convergence speed in aerodynamic design. These flrve are: the extended Joukowski

tansformation (Jones, 1990), the inverse Theodorsen transfonnation (Theodorsen and

Garrick, 1933), B-spline curves (similar to Bezier curves), orthogonal shape functions

(Chang et. al., 1995), and PARSEC parameteraation.

Oyama examined first the ability of each parameterizationto represent two airfoils,

one aNASA supercritical airfoil, and the other a four-digitNACA airfoil. The Extended

Joukowski and orthogonal shape function methods were unable to reproduce these

airfoils.



3. I Bezier-PARSEC Parameterization

Four parameterizations were integrated into an aerodynamic design algorithm,

using a GA for optimization. The objective function was the maximuationof the lift-to-

drag ratio. The results for PARSEC (L/D 39.40) and B-Spline (LlD 39.02) were

significantly better than those for Extended Joukowski (L/D 34.73) and Theodorsen (L/D

31.87). However, the convergence rate for the PARSEC-parameterized design was

significantly better than that for the B-Spline design, requiring roughly half the number of

function evaluations to converge.

The superiorperformance of the PARSEC parameterization is likely due to its

ability to minimize an optimization phenomena known as epistasis (the nonlinear manner

in which the objective function is dependent on the design parameters). Small changes in

several variables can result in large changes in the objective function. Epistatic functions

are difficult to minimize because they provide so few clues as to the location of the global

minimum. In general, a reduction of this nonlinear interaction will enable the optimizer to

converge more quickly. Because the PARSEC parameters ¿re motivated by

aerodynamics, the nonlinearities should be of lesser magnitude. For example, a small

variation in r¡" should result in a small change in the flow at the leading edge region.

After an analysis of the interactions between PARSEC parameters, Oyama found that the

relationships between zup, zto, aÍtd 2," were still very complicated. He was able to

achieve better results by converting the upper and lower heights into camber and

thickness heights.

43



3.1 Bezier-PARSEC Parameterization

Motivated by the work of Sobieczlcy and Oyama, a new method of airfoil

parameterization is proposed. Bezier-PARSEC @P) airfoils are designed to combine the

benefits of the Bezier pararneterization - not¿bly the camber-thickness formulation and

the advantages of Bezier curves, including usage by industry - with the improved

convergence characteristics provided by PARSEC variables. It is hoped that the new

method will accelerate the convergence of aerodynamic design using DE.

The BP parameterization uses a new set of optimization parameters, which are

aerodynamically oriented. These parameters are then used to determine the control points

of four Bezier curves - leading and trailing camber, leading and trailing thickness. The

airfoil is composed as in Figure 1.2, with thickness measured normal to the camber curve.

One deficiency of the Bezier parameterization is corrected for all BP shapes: Leading and

trailing curves are joined with second-order continuity.

The BP variables are as follows. Several are PARSEC variables I r¡, e d ¡¿ , þ te, and,

zr, . Others are similar to PARSEC parameterst T b, the leading edge direction; x", lc,

thepositionofthecambercrest; r",thecurvatureatthecamber crest; xr, !¡,the

position of the thickness crest; r' the curvature at the thickness crest; and dzr*thehalf

thickness at the trailing edge. Several Bezier variables are also used, and are labeled

according to the convention used in Figure 1.2: bç, b2., 4 , bts , \7 . The last two

variables are used for degree four trailing edge curves. They represent the x-value of the

fourth confol point on the thickness and camber curves, respectively.
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3. I Bezier-PARSEC Parar¡reterization

The Bezier variables, b¡,have a slightly different interpretation in Bp

parameterization. Since one goal is to decrease epistasis, it is preferable that the Bezier

variables used be related to the aerodynamics of the shape. For example, 4. should most

directly influence the existence and/or nature of an inflection point on the trailing

thickness curve. However, if x, is modified, while the control point å,, remains

constant the position and shape of the inflection point can change dramatically. This

effect is diminished if b¡5 represents the ratio between x, and 11 (the trailing edge

position). Thus we let all Bezier variables in the BP parameterizations represent the ratio

between the endpoints of the curve it defines. For example, 4s = (x - x,)le- xt) ,where

x is the actual x-value of the fourth control point on the trailing thickness curve.

It will be necessary to distinguish between the four Bezier curves and their control

points. Each parametric curve is composed of two functions, x(u) and y(u).4 two-letter

superscript will be used to distinguish a curve. The first letter is either / or /, indicating

leading or trailing, respectively. The second is either t or c,representing thickness or

camber, respectively. Control points are superscripted according to their corresponding

curve, and subscripted by number. For example, (xt" çu¡,yt" @)) represents the leading

camber cnrve of degree n, with Bezier control points (*!" ,r!") , i = 0,...,n .

Two instances of the Bezier-PARSEC parameteraationare examined in this

chapter. Each begins with the initials BP, followed by four digits. The digits represent (in

order) the degree of each of the following Bezier curves used by the parameterization:

Leading thickness curve, trailing thickness curve, leading camber curve, trailing camber
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3. 1 Bezier-PARSEC Parameterization

curve. Thus the BP 3333 par¿rmeterization uses exclusively degree three Bezier curves,

and BP 3434has a degree 3 leading thickness curve, a degree 4 trailing thickness curve, a

degree 3 leading camber curve, and a degree 4 trailing camber curve. ABP 3424

parameterizationwas also integrated into FanOpt, but was less robust and showed no

acceleration. Details of BP 3424 are not given.

The Bezier-PARSEC parameterization is envisioned to have advantages over both

the Bezier and the PARSEC methods. It avoids the second-order discontinuity problem

inherent with the Bezier parameterization, and it uses aerodynamic parameters, which

should result in accelerated convergence for design optimization. In contrast to the

PARSEC parameterization, the camberthickness formulation is more natwal for airfoils

than PARSEC's upper-lower curve formulation. The leading edge radius can now be

measured in the direction of the camber, rather than that of the axis, and the leading edge

direction - not used by PARSEC - is now made explicit. Finally, BP parameterizations

incorporate Bezier curves, which have widespread use in industry.

3.2 BP 3333 Parameterization

The BP 3333 parameterization is defured by twelve exclusively aerodynamic

parameters. These are illustrated in Figure 3.2. Compared with the Bezier

parameterization, there are two significant improvements that are expected to accelerate

the convergence of DE in the design process. As has been mentioned in section 3.1, the

aerodynamic character of the parameters should reduce epistasis in the objective function,

making the global minimum easier to find. Additionally, however, there is a significant
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3.2 BP 3333 Pa¡ameterization

reduction in the number of parameters. In fact, if the trailing edge is fixed at (1,0) with

zero thickness - as it is for the Bezier parameterization - the number of variables used to

represent an airfoil is reduced from 15 to 10. Equations for the associated Bezier control

points are derived in sections 3.2.1-3.2.4.

(*, , yr)
---------€.

Thickness profile (t,ã2,")

(r",y")

Figure 3.2 BP 3333 airfoil geometry and Bezier control points defined by twelve basíc
aero dynamtc par ameters.

3.2.1 Leading Thickness Curue (Degree 3): qxti,y!¡

Degree three Bezier curves are given by

[r@) =xo(l- u)3 +3xp(t-u)' +3xruz(t-u)+ 4u3

tyrø=yo(t -u)' *3y1u(t-u)' *3yru2(t-u)+yt 3' (3'2)

with fnst derivatives

fr' @)= -3x0 (1 - u)' *rx, (r - 4u ßu2) + z rr(zu - tr') + 3 4u2
i '' '' n' ) "' ^' (3'3)

lt' @) = -3yo (1 - r)' * z y r(t - +u + zr2) + z yr(zu - u2) + 3 y rrt'

and second derivatives
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3.2 BP 3333 Pa¡ameterization

I 
*" (u) = 610(l - u) + 6xr(-2 + 3u) + 6xr(1 - 3u) + 64u

ly " (u) : 6 y 0(r - u) + 6 y t(-z + 3u) + 6 y 2(r - 3u) + 6 yu'

x( =o'

In general, the radius of curvature of a parametric curve at z = 0 is

-t

48

Since the teading edge is at (0,0), *t'(0) = yt' (0) = 0, which together with (3.2)

implies

x{:vt{ =9. (3.5)

For the blade to have a rounded leading edge, the thickness curve must be vertical at

(0,0). That ir, (r/t) {o) = 0. From (3.3) and (3.5), then

(3.4)

(3.6)

[('',t;' 
*(r'ror)']u

*' (0)y" (0) - y' (0)x" (0)

Since (r/t) tOl = 0 from above, the leading edge radius is given by

ftn'¡'roll'_ _L I _rle - -----------i- -
_(,/') tol

l-tr'; *tr'if'
-6x{ +tzx{ -axtj'

from (3.3), (3.a). Using (3.5) and (3.6), this results in the following equation relating xN

^dy{,

-Zr¡"x!i =z(t'i)' (3.7)
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The juncture between the leading and trailing curves has coordinates x/t(1) = xr,

yt'0) - y, andis horizontar 1i.". (r/t)'(r) = 0). Thus, from (3.2) and (3.3),

l*,1 = r,

Iri = v{ = v,' (3'8)

In summary, the control points for the leading thickness curve are given by

with variables xl *td y( satisfuing (3.7). These will be determined in the subsequent

section.

3.2.2 Trailing Thickness Curve (Degree 3): qx{ ,y{¡

The juncture between the leading and trailing curves has coordinates xtr(0) = xr,

yn (0) - y, andis horizontaf 1i.e. (.v") (0) = 0 ). Thus, from (3.2) and (3.3),

(3.e)

In general, the curvature of a parametric curve at ø = 0 is

x{ =o lÅ =o

xtl =o )yf =t
*l =? )r'J = r,'
*{ = x, lytl = y,

*-x (0)y (0)-y (0)x" (9)
J

[('',r)'*(r'ror)']u
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Since ("rtt) tOl = 0 from above, the curvature at the juncture between curves is given by

(tn)" {o) _eyl -t2y{ +6y1,' 
['")ltl- F.iú.{T'

from (3.3), (3.a). Using (3.9), this results in the following equation relating xtl and yl ,

z(tî - *) = 3rc ,(xl - ,,)' (3. l o)

The curvature at the juncture should be the same for both leading and trailing

curves. That is,

(y/')"(r) _ (y")'(o)

in*{ tr*{
To satisff this requirement, it is sufficient that (r"r" (f) : (ytt) (0) and

(r/t) {rl = ("o) {o) . consider frst y". using (3.4) with conrrol points (3.8), (3.9),

(//,)"(Ð 

=lJrrr :: 
*ey'j 

,

and

, .tt

(.v") tol =eyl -tzyf +6yT,

= 6yl -6y,

Equating these second derivatives implies that control points y{ *d yl mustbe equal:
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y{ = yT. (3.r 1)

Now consider x' . Using (3.3) with control points (3.8), (3.9),

('/') trl =4*t +3xt!

= 4*l +3x,

and

(x//) (o) - 4*l +3x{

- -3xt +3x{

Equating these first derivatives results in the following relationship between xtj and xtl :

xt =Zxt-*l' . e.tz)

Since the trailing edge of the thickness curve is at (l,dz,r), 
"n 

(1) = I and

yo (l) = ùt", which, from (3.2), implies

l*!j =t

IÅ =*,"'
(3. r 3)

The trailing edge angle of the thickness curve is p¡", which will be taken to be positive,

so the slope at the trailing edge must equal -tan(P,"). That is,

dvl

¿*l,o
- 

(v")'trl 
=_tun(þ*),

(," ) rtl

where
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I

(r") ttl =-zyl +3yl

= -EYl +3d2,,

from (3.3), (3.13), and

('") trl = 4xl +3x{

= 4xl +3

from (3.3), (3.13). Solving for xl results in

xT, = | + (a",, - É) cot(p,,¡ .

-2r¡"x!i =t(t'i)'

z(tî -*)=3rc,(xf -*,)'

y{ =yl

*l =2*r-*(

xI =t+(tu*- ri)"ot(þ,")
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(3.14)

There are five thickness variables yet to be determin ed (xtj , yt' , *{ , *!j, , yI ),

and five equations governing them. These equations are repeated here for the reader's

convenience.

(3.7)

(3.10)

(3.1 1)

(3.12)

(3.14)

The first four equations do not depend on x!j, so equation (3.1a) will be used only after

the other four variables are found. Equation (3.11) is easily eliminated, resulting in the

following nonlinear system of equations in three unknowns, *1. , ytl , *l' ,



3.2 BP 3333 Parameterization

2r¡"xti +l(ttr')z =o

z(t{ -n)-z*,(*{ -*,)' =0.

xtj +r'f -2x, =g
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This can be reduced to the following fourth order polynomial equation ^ *1, ,

ï " : (.t)o - z't *,' *,(.,i)' *(n *,r, *! *,, *,,)t.n'

* (rr" - tBrc,x,y, - 27 rc,2 x,3i{'f 
) 
. (t,2 + e rc,x,z y, *ï *,,',0 

) 
= o' 

(3' 1 6)

which is solved numerically as discussed below.

Letting *1. = bg represent the root of (3.16), the remaining control point variables

are known from (3.15),

t{ =2x, -bg,

/i =]",(x, -be)z + y,.

It remains to solve for x!. The polynomial in (3.16) will normally have multiple

real roots, so we must consider any bounds on *!. For an aerodynamic shape, the leading

edge of the thickness profile must be concave down and curve from (0,0) to (x¡y), the

position of maximum thickness. Thus the leading edge radius must be negative, and, from

(3.7),

(3.15)

(3.r7)

(3.18)

,tr >0.
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At the juncture between the curves, the thickness profile should be travelling left to right

to avoid a loop. That is, (r/') frl > 0, where (r/') trl :r(*, - rÐ from (3.3), (3.8). Thus

,!.j . *, .

Since a blade's thickness must be positive, the leading edge must travel upwards. That is,

(r")'{o) > 0, where (r")'{o) =3yf from (3.3) and (3.s). Thus y{r > 0. From (3.18), rhis

implies *at 
|rc,(*, - 

*t)' i lt >0. Since K¿ ( 0, this is equivalent to (x, - *!)' .+

Since it is already required that x{ < x, ,itfollows that

*tjrr, 
æ

Thus the rcot xtj = ås of (3.16) must satisfy

æ\<bg<x'l
(3.1e)

V/ithin these bounds, the solution of (3.16) proceeds as follows. Equation (3.16)

canbewrittenas Pa(x)=0,where x=xl =bs,and P+(*) isafourth-orderpolynomial.

The first derivative and critical values of Pa(x) are computed symbolically using Maple.

The critical points and intervals of increase and decrease of Pa (x) are used to determine

whether P+(*) has any real roots. If there is no real root, the code is informed that the

aerodynamic parameters resulted in a non-aerodynamic shape, and the flow is not

calculated. If there are real roots, the critical points are used to partition the real line into
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intervals, \¡/ithin each of which exactly one root of Pa@) exists. The roots are then found

by numerical means. If more than one valid root exists, the smallest one is chosen as it

will result in the smoothest juncture between the leading and trailing curves, and thus the

most aerodynamic shape.

In summary, the control points for the leading thickness curve are given by

br)'*y,. 
(3.20)

3.2.3 Leading Camber Curve (Degree 3): 1x!",y!"¡

Since the leading edge is at (0,0), r/"(0) = yt" (0)= 0, which rogether with (3.2)

implies

,f = yt; = g. (3.22)

l*{ =o lrt =o

J,f = o )rl' =1*,@, -
l*!=un fr,j=r,
l*'i = *, l'r,l = ,,

The control points for the trailing thickness curve are given by

f*l = *, lyl = y,

l''i =2x'-bs lr( =r,

f.t =, *l** -(1",þ, - b,)'.r, 
)].*tB ¿ 1rt 

=**,@, - bn), * y, (3'2t)

L'í =t L 
yl =dz*

where åe is the left-most root of (3.16) that lies within the bounds (3.19).
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The angle of the camber curve at the leading edge is I b, so the slope at the

leading edge must equal tn(y à. That is,

dvl (v'")'(o)
+l =4=hn(ru),ütx=o (r") tol

where, from (3.3) and(3.22), (r'")' (0) = -3yf +zytf =3ytf and

(r'")'{o) =-3*tl +3xf =3*'f. Lening ytf =btresulrs in

l*1" =\cot(y¡")

lr'/¡ =r, ' (3'23)

where a solution for ór will be given in the next section.

The juncture between the leading and trailing curves has coordinates x/"11¡ = x" ,

yt" $) = y, andis horizonrar 1i.". (r/")'(r):0). Thus, from (3.2) and (3.3),

l*'f = *"
7 ",. ",n Q'24)
lytf =ytf =y"

The curvature at the juncture between curves is given by

(yt")" G) _eytf -tzyf +6ytf

f--{- þ'Y;.trT'

from (3.3), (3.4). Substituting the control points already known from (3.23) and(3.24),

the result is a quadratic equation in the remaining unknown, rf ,
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(.f)' z z(4- !") - n
3*"

This has two solutions,

xf =x"!

but only one which will result in an aerodynamic shape. Bezier curves are tangent at their

right endpoint to the line segment joining the last two control points. Consequently, if the

x-coordinate of the second last control point is greater than that of the last, the curve will

be multi-valued. That is, the camber curve would have a loop in it at the joint. Thus we

require that xf . *!f = x" . With this restriction, we have

*f =*"- (3.2s)

In summary, the control points for the leading camber curve are given by

xt =o

,f --4cot(y¡")
(3.26)

*tf : *.

where å1 is given by (3.33) with bounds (3.34), calculated in the subsequent section.

-z*"(xf)+ *"

ytf =o
lcl

lt =Dl
lc'

!2 =lc
ytf = y"

z(4-v")

,f = *"-,1'(4^-'"
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3.2.4 Trailing Camber Curve (Degree 3): qx!",y!"¡

The juncture between the leading and trailing curves has coordinates xt" (0) = x",

y'"(0) = y" andis horizontaf 1i.e. (lt")'(o) = 0). Thus, from (3.2) and (3.3),

x'f = *"

yti=y'f-lc

The curvature at the juncture should be the same for both leading and trailing

curves. That is,

(y'") trl _ (y'") tol

58

(3.27)

(3.28)

[{'")',u]' [{,")',r]

To satisff this requiremen! it is suffrcient that (1"r" (f) : (yt") (0) and

(r/") trl = ("t") (0). Consider tust y". Using (3.4) with conrrol points (3.26), (3.27),

("r'") trl =øytf -tzyf +6yti" 
,

= 6bt-61"

(r'") tor 

:::, :;"t 
+ 6Y'r

Equating these second derivatives and solving for ytf results in

yf =bt. Q.29)
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Now consider x' . Using (3.3) with control points (3.26), (3.27),

('b) trl = -3xf #x!f
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(3.30)

Since the hailing edge is at (1,2,"), rt" (l) = I and y'" (l) : zte , which from (3 .2)

implies

I*f ='
Iv'f =,,,'

(3.31)

+l - 
(Y'") trl 

= -En(a,,),d*la 
(r,") {r)

(x") tol = -3*'l +3xf

- -3*" +3xtf

Equating these fnst derivatives and solving for xf" results in

tf :x".W

The ftailing edge angle of the camber curve is ar", where a," is taken to be positive, so

the slope at the trailing edge must equal -tan(o,"). That is,

where
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I

(r'") {tl =4yf +3y'f

- -34 +32,"

ûom (3.3), (3.29), (3.31), and

('") trl =-3r'f +3xti

:4xf +3

from (3.3), (3.31). Solving for xf results in

xf =I+("*-h)cot(a,").
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(3.32)

Finally, it is possible to solve for å1 . When matching the curvature (3.28), it was

sufficient to match y" and x' at the juncture. Matching additionally the second

derivative ofx will result in an equation for { , while maintaining or improving the

smoothness of the juncture. Using (3.a) with control points (3.26),

(*") e)=6ttf -tzxtf +6xtf

/-î 
-= 6b1 cot y ¡" + 4 

^16!L--Ie- - 
6x"

\K,

and with conhol points (3.27), (3.30), (3.32),

t,

lrt") (o) =6*'l -tzxtf +6x!f\/

- -6bt cot a," - 
^ P - 6x" + 62," cot a," + 6

Equating these second derivatives ofx results in the following expression,

bt(coty ¡" + cot ør,) + 8 -zr"cota,r"-l=0,
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for which år is the only unknown. This has two solutions,

[t O + fr"(c oty ¡" r cot a,")(l+ 2,, cot a,")
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br=
3rc 

"(cot 
y ¡, + cot a ,r)z (3.33)

reasons, the curvature at the juncture must be negative. Otherwise, the camber will have a

valley at the juncture, creating a region of separation in the middle of the blade. Thus,

since r" .0, *!f Q.25) and xf (3.30) exist only if ål < ¿. Furthermore, consideration

of equations (3.23) implies that \ must be positive. If it is zero,the leading edge angle is

ignored. If it is negative, the camber curve begins in the wrong direction. Thus the

following restriction must be placed on solutions (3.33),

o<4<Y". (3.34)

In practice, both solutions of (3.33) are calculated to determine which one is valid.

If the solutions are not real, or if neither falls within the bounds (3.34), the code is

informed that the aerodynamic parameters resulted in a non-aerodynamic shape, and the

flow is not calculated. If both solutions are within the interval, the value chosen is that

closest to !", as this will result in the smoothest juncture between the curves.

14 
l

Upper and lower bounds can be placed on solutions (3.33). For aerodynamic



3.2 BP 3333 Pararneterization

In summary, the control points for the trailing edge camber curve are given by

1cxo =x"

xtf =x"+

xf =l+(z*-b)cot(a,,)

:1t
JL

=lc
t:b\

= zte

(3.35)

x'{ =1

where ä1 is given by (3.33) with bounds (3.3a).

A possible limitation of the BP 3333 parameterization is the size of the design

space - that is the number of airfoils that can be reproduced. Frequently airfoils are

designed with inflection points on their trailing thickness and/or hailing camber curves.

In the BP 3333 parameterization, the inflection point positions are entirely dependent on

the other parameters. Increasing the degree of the trailing edge curves would allow more

freedom for these positions. Also, in order to match the curvature, it is necessary to

choose one of þossibly) multiple roots of equations relating the curvature to other

parameters. Airfoil shapes formed by other roots are never considered, yet they might be

better designs. The BP 3434 parameterization is an attempt to address these possible

deficiencies.

3.3 BP 3434 Parameterization

In the BP 3434 parameterization, the design space is enlarged by increasing the

trailing curve degrees from three to four. This requires two additional variables, å15 and

{7 (each the ¡-value of the fourth control point on their respective curve). The thickness

curvature is replaced by the Bezier control parameter fu (the height of the second control
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point). The camber curvature is replaced by two Bezier parameters, b0,4., for atotal of

15 BP parameters. These are illustrated in Figure 3.3. Equations for the associated Bezier

control points are derived in sections 3.3.1 - 3.3.4.

(*,,yr)

cx
bo b2

Camber profile bn (r,r,")

(*",y")

Figure 3.3 BP 3434 airþil geometry and Bezíer control points defined by ten
aerodynamic and five Bezíer parameters.

3.3.1 Leading Thickness Curue (Degree S¡. (.'i,/i)

The degree three Bezier curves and derivatives are given by (3.2) - (3.4). The

leading edge begins at (0,0) and is vertical. Thus

*( = y{ = x{ =0. (3.36)

The curve ends at (*,,yr) and is horizontal there, so that

f *,1 = *,

IÅ = v{ = v,' (3'37)
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The leading edge radius is given by

which from (3.36) reduces to

-Zr¡,x!i =z(t()' . (3.38)

Thus we set ylrt equal to the Bezier variable fo, which replaces the curvature

variable r, ofthe BP 3333 parameterization. Some restrictions must be placed on fu to

ensure an aerodynamic shape. For the blade to have positive thickness, we must have

4 > 0. For the crest curvature to be negative (concave down), it is necessary that 4 < yr.

Finally, to avoid a loop at the crest, we must have *!j . *r, which from (3.38) implies

that fo < J-zrtr*, ß. Thus the following restrictions are placed on fo :

o<åa .^n(t,,ffi¿Jz) (3.3e)

In summary, the following equations determine the Bezier control points of the

leading thickness curve,
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tf =o

*lr' = o

nr2
_h _ -r(4,La --' 2rr"

Itx3 =xt

f;í

Irr

-0
=bE

t

=lt
=lt

(3.40)

where ås must satisff (3.39).
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3.3.2 Trailing Thickness Curue (Degree +¡: (x{,y{)

From (2.1), the degree four Bezier curve is

x(u) =xo(l- u)a + 4xp(t- u)t + 6xru2 (t-u)z + 44ut (t-u) + xaua, (3.41)

with first derivative

x'(u) =(o"t -t2uz +t2u-+)x6 + (-te"t +36u2 -24u+a)x1

+(z+r3 -36u2 +ou)x2*(-rcu' +r2u2)x3+4t3xa' Q'42)

and second derivative

x" (u) = (tzuz - z4u + n)xs * (-+uz + 7Zu - 24)x1

+(lzr2 -72u+n)x2+(-+u' +24u)x3, +tzr'ro' 
(3'43)

The hailing curve begins at (x,,y,) and is horizontal there, so that
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ttxo =xf
ilftlo=h=lt

The curvature at the juncture should be the same for both leading and trailing

curves. That is,

(yu) rrl _ (y")" (o)

f t lT-f , 12'

l(") t'r1 
l('") 

torl

To satisfy this requirement, it is sufficien tmut (lt')'(r) = (.uo)"{O) *A

('/') trl = ('") (0) . From (3.3), (3.4), and (3.40),

(3.44)



3.3 BP 3434 P anmeterization 66

(.u") frl =6bl-6y, and (r/') (r) =-3rï +3x¡,

while from (3.42) - (3.44),

(r") (0)=-t2yt+t2yf and ('") (0)=-4x,+4xf .

Thus, for second order continuity at the juncture, \rye require

lri=+b
1,n =7*i-t*l'|.' 4

(3.4s)

where xf is given in (3.40). Matching additionally the second derivative of x will reduce

by one the number of parameters, while maintaining or improving the smoothness of the

juncture. From (3.4) and (3.40),

(*u)" e):-tzx{. +6x¡,

while from (3.43) and(3.44),

(r")" (o) = t2xt -zaxf + t2xli

which togetherwith (3.a5) imply that

xl, :3xt -1.1; . e.46)'21

The trailing edge coordinates are

[*l =t

lÅ = *,"' (3'47)

The wedge angle satisfies
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(v" l (1)
= _tarr(þu) ,

(," ) (1)

I

("u") trl =-AyT +4d2,, and ('") G)=- xl +q.

yl = dr,"+ (r -'f ) 
u" (p,")

67

where from (3.42),

Thus

(3.48)

Finally,let

*l =4s (3.4e)

be a free parameter to allow for a flexible inflection point on the trailing thickness curve.

In summary, the trailing thickness Bezier control points are given by

ttxo =xt

-,, -7r, -3*l
.Ll 

--,4
tt^5hX'¡ = 5Xt --X't

2

'T =bs

xT :l

yl:y,
y'l = y,

..u - lt +4,r- 
2

yT = d",,+ (t - arr) tan(p,,)

ytí = dzt"

(3.s0)

3.3.3 Leading Camber Curve (Degree S¡ (.'f ,t'f)

Two Bezier variables determine the x-coordinates of the second and third Bezier

control points:
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l*!f = ro

l*tf = ur'

68

The remaining leading camber control points are uniquely determined by the leading

edge position (0,0), the crest position, (*r,y"), and the leading edge angle y k, resulting

in the following set of equations,

xF =o ly'i =o

xtf = bo lr'f = bstan(y ¡,)
(3.s2)

(3.51)

(3.s3)

xtf = bz

*lf = *"

lclz =!c
ytf = y"

3.3.4 Trailing Camber Curve (Degree 4): (*!",y!")

The position of the crest dictates the initial control points,

*'f = *"

yf=yf=lc

To enforce a second order continuous juncture, we set (r") tfl = (rt") {o),

(*")'(r) = (r'") (0) , and (r'") 0 =(y") (0) . From (3.3), (3.4), and (3.52), rhe

leading edge derivatives at the camber crest are:

[(")',u =-3h+3x"
t,,
I 
þ"),,,u = 6bo -12b2 + 6x"

f(r") 
0) = 6boøn(v ¡")-6v"
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These must match the trailing edge values at the crest, which from (3.42), (3.43), atd

(3.53) are:

('") (o) - -4*"+4xtf
lt

()ct") (o) -12xc-2axt;'+lLxtf .

(r'") Q)---12v"+r2vtf

This results in the following equations

_n _'7x, -3b2
¿l,1'4
-n _bo-5b2+6x,
'2

-.t" -!"*btva -- 2

The trailing edge coordinates are

lr'^" =l{'
lvf; ="*

The trailing direction angle requires that

y'f = z** (l - xtf)t*r(a,,) .

(3.s4)

(3.ss)

(3.56)

(3.57)

Finally,let

x'f =bn

be a free parameter to allow for a flexible inflection point on the trailing camber curve.
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In summary, the ftailing camber Bezier control points are given by
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x'f

xt;"

x'f

x'f

=xc

_3x" - y, cot(y u)
2

_ -8y, cot(y u) +13x"
6

-L- u17

y'f : y"

yf=y"
-.r, - 5!"
ya -- o

y'f = zrc+(t-rtt)t^(a*)
-.tc _ -.)/4 - Lte

(3.s8)

xtf =l

3.4 Ai¡foil Representation

A useful parameterization method must have the ability to represent a wide range

of airfoils. This has an obvious influence on the robustness of a design algorithm. It

cannot be truly robust if the design space is so small that the optimal shape cannot be

represented.

In this section, the representation abilities of the Bezier and BP methods are

evaluated and compared. Each parameterization is used to reproduce 63 known airfoils:

20 NACA symmetric airfoils, 20 NACA asymmetric airfoils (Abbott and von Doenhoff,

1959), 15 Eppler airfoils @ppler, 1990), and 8 low-speed airfoils (Selig et. al., 1995).

Plots for each parameterization are given in Appendix B on the CD.

In section 3.4.I, the optimization method used to reproduce the airfoils is

presented. This includes a discussion of the error threshold and of any constraints placed

on the curves.In sections 3.4.2-3.4.5, the results foreach category of airfoil are

summarized. Success rates are given, and any failures are examined in more detail.
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3.4.1 Method of Airfoil Reproduction

The desþ algorithm was modified to include the option of matching a known

airfoil. The cost function is thus the deviation between the target airfoil and the current

parameteruation. At each data point along the target, the vertical difference is measured,

using linear interpolation to estimate the height of the current shape. The total deviation

is measured using the .2.2-error noÍn. DE is then used to minimize that cost.

Table 3.1 Bounds on the initial population used by DE to represent the airþíls.

B ezier parameterization BP oarameterizations
Parameter Lower Upper Parameter Lower Uooer

bo 0.13 0.22 ?1" 0.05 0.1

bt 0.08 0.17 bo 0.01 0.1

bz 0.28 0.37 bz 0.1 0.3
bt 0.13 0.22 Xç 0.2 0.5
bt 0.43 0.52 V" 0 0.2
bs 0.58 0.67 rç -0.2 0

be 0.76 0.85 b,, 0 0.9
bz 0.03 0.r2 Zrc 0 0.01
bs 0.01 0.1 d¡¿ 0.05 0.1

bg 0.18 0.27 rb -0.04 -0.001
bn 0.06 0.15 bs 0 0.7
bn 0.38 0.47 X¡ 0.15 0.4
bn 0.58 0.67 It 0.05 0.15
bn 0.78 0.87 Kt -0.5 0

bt¿ 0 0.09 brc 0 0.9
dz,, 0 0.001

ß," 0.00r 0.3

The optimizer specifications were kept fairly consistent for all tests. The DE

variation rand-to-bestlllexp \ilas used for all tests, with F:0.85, CR:I. In general, the

population size was NP:150. A maximum of 500 generations was allowed. The initial

population was chosen at random within the bounds shown in Table 3.1. If convergence
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did not occur \¡/ithin 500 generations, additional runs were performed with different

population sizes. In a few cases, when a different population size did not improve

convergence, the initial population was modiflred to more closely resemble the target.

To ensure feasibilþ of the study, a cost limit of 0.01 was used in most cases.

That is, optimization \ry¿ìs halted if the deviation between the parameterization and the

target was smaller than 0.01. To ensure complete convergence, it is preferable to allow

the objective function value to become nearly constant over 10,000 to 20,000 function

evaluations. However, this is not practical in a study of this size (63 different targets,

each parameterized three different ways.) In a few cases, optimization was allowed to

progress beyond the error limit, to test the ability of the parameterizations to converge to

a smaller deviation.

The 0.01 limit is reasonable in light of the actual error that exists between a

manufactured blade and its theoretical design. For example, in a study of 34 low-speed

airfoils (Selig et. a1., 1995), models with 12-inch chord length were built for wind tunnel

tests. The deviation of the model from the theoretical airfoil \ilas measured at each data

point and averaged over the entire blade. The smallest such average deviation was 0.0017

in, the largest 0.0384 in, and the average over all34 models was 0.0092 in. For an airfoil

of unit chord length, these measurements correspond to the following (non-dimensional)

average deviations: minimum 1.4 x l0a, maximum 3.2 x I0-3,and averag e 7.7 x l}a.

Compare with the BP 3333 parumetenzation (converged to an Lz-enor of 0.01) of the
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following airfoils: NACA 66t-2l8,average deviation 1.1x 10-3; Low-speed FIt63137,

average deviation 7.9 x l}a. These are reasonably close to the average - and well within

the upper bound - of the deviations in the low speed study.

The constraints imposed include the one-to-one constraints discussed in section

2.2, although this had to be relaxed for some Eppler airfoils, in which the trailing camber

is not one-to-one. For the Bezier parameterization, the minimum separation ofjuncture

control points was also imposed. For the BP parameterizations, parameters were

constrained within the bounds discussed above (3.19), (3.34) for BP 3333, and (3.39) for

BP 3434).If any constraint is violated, the shape is not compared to the target, and is not

included in the NFEs reported.

3.4.2 NACA Symmetric Airfoils

In their classic reference book, Theory of Wing Sections, Abbot and Von

Doenhoff(l959) summarize the NACA class of airfoils. These continue to be prevalent,

not only for aþlane wings, but also for high performance fans. The 20 airfoils shown in

Figure 3.4 were selected to represent a broad range of symmetric NACA shapes.

Notice that the cost limit of 0.01 does not depend on the number of data points in

the target. That is, if a target has fewer data points, the converged shape will have a larger

average deviation. Most NACA airfoils have 52 data points, and low-speed sections can

have as many as 98. However, six of the symmetric NACA airfoils contain only 34 data

points. For these six - namely 0008-34, 0010-34, 0010-64, 0012-34,16-006, and 16-018

- the limit was reduced to 0.005.
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For each optimization using a BP parameterization, the trailing edgeheigþt, z,r,

and thickness, dztu, were both fixed at zeto. Since symmetric curves have constant
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NACA 0008-34

NACA 0010-34

NACA 0010-64

NACA 0012-34

NACA 16.006

(

-

NACA 16-Oi8

NACA 63-006

r 

-='\----

--------___----.--
NACA 633-018

NACA 63A006

NACA 64.009

-

NACA 65-006

NACA 6sÃ0t2

NACA 65A006

NACA 67,1-0r5

NACA 644-021

Figure 3.4 Twenty symmetric NACA airþìls selectedfor representation.
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camber, all camber variables could have been fixed for each parameteraation However,

to test the ability of DE to find symmetric shapes, they were left variable.

Each parameterization method was able to reproduce aIL20 airfoils to within the

specified limit. The final deviation and the number of function evaluations (NFEs)

required are listed in Table 3.2.

Table 3.2 NFEs requtredþr convergence to symmetric NACA airþíls.

Airfoil Cost Bezier BP 3333 BP 3434

0008-34 0.005 3268 t832 2475
0010-34 0.005 2196 1939 2924
0010-64 0.005 24t5 2471 4778
0012-34 0.005 3252 t72t 3248
16-006 0.005 2662 5520 2563
16-018 0.005 32t9 2767 3136
63-006 0.01 2078 4250 3007
63.-018 0.01 2343 2404 3076
634006 0.01 1598 2074 1901

64-009 0.01 2t66 1836 3274
641012 0.01 2089 2620 3061
64Ä012 0.01 2496 1459 r872
64,-0L5 0.0r 3256 2393 3334
64r-018 0.01 2635 2536 2707
644-02r 0.01 3338 3073 3196
65-006 0.01 1605 2705 2520
651012 0.01 2020 154t 266s
65,A012 0.01 2252 1228 2565
65A006 0.01 t7t5 2074 r777
67,1-015 0.01 3027 95 10 3262

Converged t00% l00o/o 100%

Avs NFEs 2512 2798 2867

The NFEs required to find a reasonably close representation of the symmetric

airfoils is remarkably small. Each parameterization averaged fewer than 3000, with only

one requiring more than 6000 (the BP 3333 parameterization ofNACA 67,1-015).
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3.4 Airfoil Representation

Compare this with the 50,000 function evaluations required for convergence to an

aerodynamic target - using the Bezier parameterization - in the previous study. The task

of matching a geometric shape is easier than that of inverse design.

Although all parameterization methods were successful, it is informative to

examine one airfoil in detail. Consider the first one in Table 3.2, NACA 0008-34. To test

the parameterizations further, the cost limit is lowered to 0.001. The cost, NFEs, and

average deviation are listed in Table 3.3. For each parameterization, the average

deviation is actually smaller than the minimum average deviation (1.4 x 104) for the

models built in Selig's low-speed study. (See section 3.4.1.) The actual deviations of the

different representations are compared in Figure 3.5.

Table 3.3 Convergence summaryþr NACA 0008-34, with error límit 0.001.

Bezier BP 3333 BP 3434
Cost 7.26x l0 9.07 x l0* 9.90 x 10

NFEs 6612 4243 6180
Ave. Deviation 1.06 x 10 I.24x l0* 1.26x l0*

The thickness curves for NACA 4- and 5- digit airfoils have known analytic

equations (see Abbot and von Doenhoff, 1959,p ll7). Thus we can compare the

aerodynamic quantities of the BP parameterizations with the actual quantities of the

target. The NACA 0008-34 has the following thickness curve, with coefficients accurate

to 10'5,

, . . fo.osl:sJi +0.07729x -0.22326x2 + 0.1 t328x3 ,0 < x < 0.4
v'(x)=1¿ \--' 

[o.oooao*0.12600(r-x)-0.09333(r - *)' -0.012s6(r-r)', 0.4 < x <t
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3.4 Airfoil Representation

upper and lower curve devíatíons.

from which the true aerodynamic quantities are calculated. These appear in Table 3.4,

along with the parameters for each BP representation. For comparison, the crest curvature

was calculated for the BP 3434 parumeterization. The agreement for the crest position is

within two significant digits, but the other quantities only agree to one significant digit.

Table 3.4 BP parameterizations of NACA 0008-34
compared w íth lcnown aerodynamíc s hape quantities.

0008-34 BP 3333 BP 3434

rle -0.00174 -0.00157 -0.00178
be 0.614
X1 0.4 0.398 0.402
Vt 0.04 0.0402 0.0403

K¡ -0.233 -0.264 -0.286

bs 0.977

ßt" 0.125 0.160 0.103
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3.4 Airfoil Representation

3.4.3 NACA Asymmetric Airfoils

All airfoils discussed above were symmetric and did not test the abilities of the

camber parameterizations. In this section, 20 asymmetric NACA airfoils are chosen for

representation (Figure 3.6). Again, these were selected to represent a broad range of
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-
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Figure 3.6 Twenty asymmetric NACA airþils selectedþr representation.



3.4 Airfoil Representation

shapes. The trailing edge height , z¡¿ , úrd thickness, dz," , were both fxed at zero. The

cost limit was 0.01 for all airfoils.

A summary of convergence is given in Table 3.5. The Bezier and BP 3434

parameterizations were able to reproduce all20 airfoils to within the cost limit. BP 3333

failed only with NACA 747A3I5 (cost 0.141). This failure will be examined in further

detail below.

Table 3.5 NFEs requtredþr convergence (cost 0.01)
to asymmetríc NACA airfoils.

Atufoil Bezier BP 3333 BP 3434
63r2I2 4664 1772 5394
63-206 1523 943 4t6r
632-21.5 4355 2116 3636
63c-218 3278 2185 5009
63o-421 3099 4989 7441
64,-112 2262 4t44 5123
6$4212 4033 1585 5995
64-206 1765 3475 3772
64t-218 8255 2880 5662
64/^210 3347 1s39 3559
65'-212 4156 2236 3032
652-475 3498 3409 6162
65s-618 2643 5519 3826
65+-421 3321 4342 3908

66'-212 2275 t290 2157
66-206 l43r t259 1980

66t-218 301 1 2567 4239
664-221 3309 2972 5173
67,-215 2845 2471 2555
747A315 2968 * s705

Converged: 100% 95o/o rc00Á

AveNFEs: 3302 3071 4424
* Cost 0.014 after 500 generations
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3.4 Airfoil Representation

The NFEs required is larger than that for the symmetric airfoils, but is still quite

small. Of the 59 converged representations, only two required significantly more than

6000 function evaluations (Bezier 64-218 and BP 3434 634-421).

For the first in the list (631212), DE was allowed to converge completely (500

generations). Results are shown in Table 3.6. BP 3333 converges at a significantly higher

deviation. Recall that the minimum average deviation in Selig's low-speed study was

1.4x 10a, and the average was'7.7 x 104. (See section 3.4.1.) The BP 3333 representation

is still better than Selig's average, and the other two are close to Selig's minimum.

Table 3.6 Convergence summaryfor NACA 631212,
afier 500 generatíons of population size 150.

Bezier BP 3333 BP 3434
Cost 1.55 x 10-' 4.93 x l0-' 1.99 x l0-'

Avs. Deviation L.27 x I0-. 5.57 x 10* 1.98 x 10*

The point-wise deviations of the different representations are compared in Figure

3.7. The BP 3333 representation closely resembles the other representations except near

the trailing edge. The hailing edge thickness curve of the target wing section is slightly

cusped, with an inflection point close to the endpoint. The BP 3333 parameterization,

which has an inflection point fixed by the other parameters, cannot match the correct

position as closely as the other two parameterizations.

As noted in Table 3.5, the BP 3333 parameterization was unable to reproduce the

NACA 747A315 wing section to the required minimum error. The average deviation is

1.49x 10-3, which is still within the range of the deviations of the Eppler models in

Selig's study. However, an examination of the deviations and represent¿tion reveals one

of the weaknesses of the BP 3333 parameterizationmethod.
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3.4 Airfoil Representation

upper and lower curve devíations.

For comparison, the BP 3434 parameterization is allowed to converge to a cost of

0.005, which occurs after 176 generations and 17,000 FEs. The camber and thickness

profiles, resultant airfoils, and point-wise deviations are compared in Figure 3.8. The BP

3333 parameterization cannot match the camber of the NACA 747A315. The BP 3434

trailing camber uses its additional trailing camber control point to position the inflection

point correctly, while simultaneously matching the camber crest and the trailing edge

direction.

While the failure of the BP 3333 parameterization is due mostly to the lack of

sufficient freedom on the trailing camber, there is also a more minor problem in the

trailing thickness profile, where it cannot match the sharp cusp in the NACA 747A315.
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3.4 Airfoil Representation

The BP 3434 paratrreterization is able to represent the trailing edge thickness shape

correctly, once again due to the additional control point.

Figure 3.8 Representatíons of NACA 747A315 by BP 3333 (left) and BP 3a34 (righ)
afterfull convergence.
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3.4 Aidoil Representation

3.4.4 Eppler Aidoils

In the 1950's, NACA shifted its focus to high-speed aerodynamics. The laminar-flow

airfoil design scene shifted to Germany where Richard Eppler (1957) pursued the

development of more accurate theoretical methods - especially conformal

transformations. Over the years, Eppler developed an inverse method capable of

designing airfoil shapes with prescribed boundary layer characteristics. This work

culminated in a Forfan-based computer code (Eppler and Somers, 1980), and the
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---- E854
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Figure 3.9 Fifteen Eppler airþìls selectedþr representation.
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publication of an airfoil catalog summarizing the results (Eppler, 1990). 15 airfoils from

this catalog are chosen here for reproduction (Figure 3.9). The shapes ohosen are less

conventional than the NACA wing sections, and are intended to challenge the

parameterization methods beyond the abilþ of the NACA shapes to do so.

Optimization was stopped when the cost dipped below 0.01. However, tåe Eppler

shapes are catalogued with a higher number of data points (70-80 data points, compared

to 34 or 52 for the NACA shapes). Thus the average deviation is actually smaller than

Table 3.7 NFEs requíredþr convergence to Eppler aírþils.
Unless otherwíse noted, cost at convergence is 0.01.

Airfoil Bezier BP 3333 BP 3434

E61 3659 4490 3349
8266 33902 t( t< ¡k 15632

8325 {<* 4( *( {< 32262
8337 *¡k *,F{< 5627

E 360 3488 -26951 5417

E 417 t 39128 {<

E 420 9139 27370 10878

E 502 3646 3423 4901

E 52T 3704 2343 3152
E 540 4670 3898 5991

E 817 2762 5677 5539

E 837 3138 2184 3219

E 850 2390 3472 3489

E 854 2561 3269 6s4C

E 863 *t* 3376 7639

Acceptable: 73 o/c 80 o/c 93%

AveNFEs: 6641 10.465 8117

Avg NFEs
excluding

8266-8424

3316 3574 4870

*acceptable, cost e (0.01, 0.0125)
xunacceptable bump

x *unacceptable second-order discontinuity
***cost > 0.0125

84



3.4 Airfoil Representation

that for a NACA represent¿tion with the same cost. FurtherÍrore, several reproductions

are quite acceptable, but converged to a cost slightly higher than 0.01. These all had cost

within (0.01, 0.0125). The Eppler airfoils were indeed more challenging, and some

representations were unacceptable, even though they achieved a cost lower than 0.01.

The success of each parameterization is summarized in Table 3.7. Problematic shapes

will be discussed below, in the order in which they appear in the table.

Consider first the E 266 airfoil. The Bezier representation converged at a cost of

0.01055. The average deviation ts9.29x 10-a-wellwithinthe range of average

deviations in Selig's study. Figure 3.10 shows that the deviations are very similar to those
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3.4 Airfoil Representation 86

of the BP 3434, which did converge to 0.01, and that the two representations are nearly

indiscernible.

The BP 3333 representation ofE266 converged with a cost of 0.01331. The

deviations (Figure 3.10) are nearly the same on the upper and lower surface, indicating it

has reproduced the thickness curve quite accurately. In fact, the BP 3333 deviations are

very similar in magnitude to the others, except in the last I5o/o of the chord. The trailing

portion of the BP 3333 arñ3434 representations are compared in Figure 3.11, The BP

3434 trailng camber, with its additional control point, is able to match the crest curvature

with its fust three control points, and uses the fourth to keep the camber high enough

throughout before dþping down to the trailing edge position. The BP 3333 does not have

xlc
BP 3333 representation and camber

o BP 3333 camber control points
BP 3434 representation and camber

B cr tr BP 3434 canber control points
ooo 8266

Figure 3.ll Trailing portion of BP 3434 and BP 3333 representatìons of E 266.



3.4 Airfoil Representation

the luxury of the extra control point, and thus cannot simultaneously match the crest and

the trailing edge shape of the camber.

Consider next the E 325 and E 337. These airfoils have a positive leading edge

direction, and negative hailing edge direction. (Figure3.l2 shows the E 325 only, but the

8337 is similar.) The trailing camber curve dips below the axis prior to its trailing edge

position of (1,0). An airfoil with such a camber cannot be represented by the BP 3333

parameterization. To match the camber curvature at the crest, they-values of the second

xlc
ooo 8325

8P3434
--o- BP 3434 camber control points

BP 3333

Figure 3.12 BP 3434 and BP 3333 representations of E j25.
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leading edge control point and the second-last trailing control point must be equal' (See

equations (3.26) and (3.35)). Thus, if the leading edge direction is positive (y u > 0), then

yf ,0, which implies that yf > 0. They-values of the remaining BP 3333 trailing

camber control points are fixed by the crest and trailing edge positions: yf; = yf = !"

and ytf :0. Recall that Bezier curves always lie within the convex hull formed by their

control points. In this case, one implication is that the BP 3333 trailing camber curve will

always be non-negative if T b> 0. The parameterization attempts to mitigate this

restriction by setting dtu yery nearly zero. Not only is that insufficient to represent the

trailing edge, but it also results in an unacceptable jump near the camber crest.

Although the Bezier parameterization does match these airfoils within the

required tolerance, it does so at the expense of the crest curvature. For the Bezier

representation of E 325,the camber crest curvature is -0.0016 from the left and4.932

from the right. For F.337, it is -0.064 from the left, and -1.72 from the right. In both

cases, the discrepancy is unacceptable. Thus, the BP 3434 parameterization is the only

one of the three that can represent this kind of airfoil correctly. The additional hailing

camber control point allows it to match simultaneously the crest curvature, hailing

inflection point, and negative trailing edge angle.

Consider next the E 360. The BP 3333 parameterization converges to 0.01057,

higher than 0.01, but is in fact quite acceptable. The average deviation is 9.57 x 104. The

point-wise deviations are small and comparable to the other parameterizations.

88



3.4 Airfoil Representation

The E 4t'1, onthe other hand, was problematic for all parameterization methods.

BP 3333 converges to a cost of 0.01216, but actually frnds the best shape. (BP 3333

average deviation is 1.16 x 10-3.) TheE4lT camber crest is far aft (at greater thanT0o/o of

the chord). The long leading camber is diffrcult to match with degree three curves. The

BP 3333 method under-represents both upper and lower curves in the leading 20Yo of the

chord. (See Figure 3.13.) The tradeoffis that its deviations decrease significantly in

magnitude toward the ftailing edge.

Notice that the BP 3333 deviation curve is the smoothest overall. The Bezier and

BP 3434 deviations have sharp spikes between 50Yo and 80% of the chord. The symmetry

of the deviations indicates an unacceptable bump in the camber curve (at about 56%o for

Bezier andT|To for BP 3434). The camber crest is so far aft @igure 3.14) that the search

must stray far from the initial population. By the time the Bezier and BP 3434

parameterizations have found the right position, the populations have converged around a

camber with a sharp edge. The BP 3333 camber, on the other hand, is smooth.
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Notice also the erratic nature of the BP 3434 camber control points in Figure 3.14.

On the trailing camber curve, the third control point is far to the left of the second. This is

in fact the cause of the sharp edge in the camber. Because the BP 3333 parameterization

has the least freedom, its conhol points must be less erratic, and it is more likely to stay

away from shapes with sharp edges.

Finally, consider the E 863. This airfoil has a non-zero trailing edge thickness,

which is not admitted in Bezier parameterizations. The representations and deviations are

depicted in Figure 3.15. Notice that the Bezier parameterization reproduces the airfoil

quite well except near the trailing edge. Compared to the other parameterizations, the

only significant deviation is in the last 5%ó of the chord.
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3.4.5 Low-speed Airfoils

Selig's low-speed airfoil study has been discussed above (Section 3.4.1). Eight of

the wing sections tested in the study are chosen for reproduction here. Again, the purpose

is to challenge the parameteúzations beyond their abilþ to reproduce NACA airfoils.

The eight airfoils chosen are shown in Figure 3.16.

FX 63-137
M8253515

GMl5

FX 74-CL5.I4O MOD

Figure 3.16 Eight low-speed airþíls selectedþr representation.

The cost limit for all representations was set to 0.01. The success of each

parameterization is summarized in Table 3.8. The Bezier and BP 3434 methods

converged to within the limit for all eight airfoils. In one case, BP 3333 converges to a

cost slightly higher than 0.01, but represents the airfoil well. In another, the target had to

be shifted for BP 3333 to match it. These two cases are discussed in more detail below.

Although the BP 3333 representation of FX 74-CL5-140 MOD cannot attain the

0.01 cost, Figure 3.17 shows that the representation is acceptable. There are no large
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3.4 Airfoil Representation

deviations from the target. The average deviation is 9.7 x 10a, compared to 7.7 x 10-a for

the BP 3434 rcpresentation.

Table 3.8 NFEs requíredþr low-speed aírfoils. Cost at convergence is 0.01.

Airfoil Bezier BP 3333 BP 3434

FX 63-137 6,556 10,632 22.99s
FX74-CL'-140 MOD 8.983 -22.903 9.620
GMl5 4.146 5,45i 6,892
150t2 2.134 1.20t 3,304

M8253515 3.304 4.80? 5.085

s1210 6,010 9.891 t0.476
st223 7,643 tt.999 r6-2s9
WASP s.086 3.80i 5,318

Acceptable l00o/c t00% 100o/a

AveNFEs 5.483 8.838 9,994
acceptable, cost 0.01 161

*converged after leading edge was shifted to origin

Figure 3.17 Representation of FX 74-CL5-140 MOD by BP 3434 and BP 3333, includíng
upper and lower curve deviations.
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3.4 Airfoil Representation

The BP 3333 representations failed to reproduce the 51223 airfoil using the data

points published by Selig. The biggest reason is that the leading edge of the S1223 does

not start at the origin. The target was modified by shifting it to the origin, and expanding

it to have trailing edge at x:l. This resulted in a nonzero z¡", which was therefore left

variable for optimization. BP 3333 was able to match the modified target to within the

specified limit. The Bezier and BP 3434 parameterizations are able to represent the

original databy using leading edge directions that are nearly horizontal (Figure 3.18), but

BP 3333 does not have the freedom to do so.

Notice once again the erratic nature of the trailing camber control points for the

BP 3434 parameterization (Figure 3.18). In fact, the trailing edge angle is in the \ryrong

quadrant. Magniffing the trailing edge camber, one would find it to be multivalued. The

scale is so small, however, that the parameterization is not affected. This phenomenon
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was not uncoÍtmon for BP 3434 designs. The additional confrol point freedom, while

necessary in some cases, was too much for it to handle in others. It occasionally resulted

in premature convergence, which had to be corrected by narrowing the initial bounds.

3.4.6 Summary

All three parameterizations are able to represent a high percentage of the sample

of airfoils chosen. Of 63 airfoils, the Bezier parameterizationreproduced 58, BP 3333

reproduced 59, and BP 3434 reproduced 62.For the vast majority, convergence occurred

in fewer than 10,000 FEs. For shapes near the edge of design space, convergence

sometimes required 20,000 - 30,000. Overall the Bezier parameterization required the

fewest NFEs, and BP 3434 the highest, which is not surprising. The Bezier

parameterization is designed geometrically, so it should work well for this kind of

geometry-matching problem. BP 3434 has the most parameters, and thus the largest

design space.

One of the biggest limit¿tions of the Bezier parameterization is the discontinuous

second derivative at the camber and thickness crests. The Bezier representations of E 325

and E 337, for example, showed unacceptable curvature differences fore and aft of the

crest. For t}LeE 417, the camberjuncture has a visible sharp edge, which shows up as

spike in the plot of deviations from the target airfoil. A second deficiency is that the

trailing edge thickness of the Bezier parameteri zationis fxed atzero,which kept it from

reproducing E 863.
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3.4 Airfoil Representation

The BP 3333 parameterization has the least control point freedom of the three

methods. This can be a good thing, as in the case of E 417. The lack of freedom means it

cannot search regions with sharp edges, and it thus ends up with the best design. There

are atleast two classes of shapes that BP 3333 cannot represent. The first is any airfoil

with a radical change in the tailing camber curvature (NACA 747A315, E 266). The

second is any airfoil with a camber that dips below the x-axis F,325,8 337). BP 3333

also does not represent sharp cusps as well as the other methods, although this did not

result in any convergence failures.

The BP 3434 was the most robust. The robusûress is due to the additional control

points on the trailing edge curves. In many cases, however, these are not necessary for the

design, and BP 3434 doesn't quite know what to do with them. The E 4l7,for example,

has its camber crest far aft. Before BP 3434 can find the right shape, it converges to a

camber with a sharp edge. In other cases, the control point polygon is somewhat erratic,

which can result in premature convergence to shapes with sharp edges, or with wrong

trailing edge directions.

3.5 Effect of Parameterization on Design Speed

In the previous section it was demonstrated that all three parameterizations can

represent a broad range of airfoil shapes. Vy'e are now interested in whether the particular

parameterization method chosen influences the robustness and rate of convergence for

inverse design. The focus is narrowed to compare only BP 3333 and Bezier

parameterization. The BP 3333 solution space is smaller than that of BP 3434, but with
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3.5 Effect of Parameterization on Design Speed

fewer parameters overall, and no Bezier parameters, it should have more potential for

acceleration. This was verified in a very preliminary way with a few inverse design

experiments .BP 3434 tended to converge more slowly, and sometimes to a higher cost.

The three design cases discussed in Chapter 2 are considered in this section. The

convergence benchmarks developed for the Bezier parameterization serve as the standard

for design speed. Section 3.5.1 discusses the optimization parameters used for design.

Sections 3.5.2- 3.5.4 compare Bezier and BP 3333 convergence to the three design

targets. A summary of the results is given in section 3.5.5.

3.5. 1 Optimization parameters

The same design parameters are used for each of the three design cases, with one

exception: As in Chapter 2,the maximum panel length was 0.03 for the I l2o-cambered

target, and 0.04 for the other two.

The bounds on the initial BP 3333 population are given in Table 3.9. The ranges for

a few variables are slightly difïerent that those used for airfoil representation (Table 3.1).

These new ranges were found to be more effective for the broad range of design targets

Table 3.9 Bounds on the ìnìtÌal BP j333 populatíon used by DEþr the ìnverse design
problems.

Camber
Parameter

Lower Upper Thickness
Parameter

Lower Upper

TI" 0.05 0.5 fb -0.04 -0.001

xc 0.3 0.6 Xt 0.15 0.4

lc 0.01 0.3 It 0.05 0.2

K. -1.0 -0.1 Kt -1.0 -0.1

Zrc 0 0 dz," 0 0.001

drc 0.05 0.5 &" 0.001 0.3
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3.5 Effect of Pararneterization on Design Speed

used here. The initial range for the stagger angle is [-15o,15o], *d that for the

pitch/chord ratio is [0,1].

Geometric constraints for BP 3333 are the same as those used in the previous

section. Each Bezier curve must be one-to-one, and parameter bounds (3.19) and (3.3a)

are imposed. The trailing edge position and thickness are fixed at zeto, resulting in .Þ13

variables.

The effectiveness for the Bezier parameterization of the DE/rand-to-best/1/CR:1

variant does not necessarily imply the same for the BP 3333 parameterization. In fact, it

50,000 FE s. Error : 0.741

À()

0.5

xJl

separability, which suggests the use of crossover. Figure 3.19 Misconvergence of BP
j333 þr the I l2o-cambered desígn,

A variety of crossover strategies were using DE wíth NP:120 and CR: I -

attempted. Overall, binary crossover with CR:0.95 was the most effective. Exponential

crossover tended to result in slower convergence. Later experiments confirmed that

binary crossover is more amenable to acceleration. Smaller values of CR (i.e. more

crossover) also converged more slowly. Thus the DE variant used throughout for BP

3333 design is DE/rand-to-besll/bin with NP:120,.FL0.85, and CrR:0.95.
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resulted in misconvergence for the 1l2o-cambered

target (Figure 3.19). Mutation alone (CR:l) is the

recommended strategy for epistatic optimization

problems (Price, 1999). This is related to the fact

that mutation in DE is rotationally invariant,

while crossover is not. However, the BP 3333

parameterization should result in more
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3.5.2 Convergence to C4l7OlC50

The convergence of the cost for the C4170/C50 pressure distribution is shown in

Figure 3.20. Design snapshots are given in Figure 3.21. Results are essentially

comparable. Initially, BP 3333 converges slightly more slowly than Bezier, but by 30,000

FEs, the costs are the same.

3.5.3 Convergence to 112o-cambered blade

Convergence to the 1l2o-cambered pressure distribution is shown in Figure 3.22.

Design snapshots are given in Figure 3.23.The misconvergence that plagued the BP 3333

design for CÀ:l (Figure 3.19) is no longer a problem when crossover is used. The BP

3333 design converges sooner, to an airfoil more closely approximating the target, and to

a lower cost than the Bezier benchmark.

3.5.4 Liebeck pressure distribution

Convergence to the Liebeck pressure distribution is shown in Figure 3.24,with

snapshots in Figure 3.25. The BP 3333 design converges sooner and to a lower cost than

the benchmark. The shape it finds is thinner, and has higher curvature on the lower

surface. Note that the minimum leading edge control point constraint, used to enforce a

rounded leading edge for the Bezier design, is not necessary for the BP 3333 design. The

frêy,t r'¡¿parameter is sufücient to steer the design away from a sharp leading edge.
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6l

0 5000 1.104 1.5.104 z-rc4 2.s.rc4 3.104
NFE'S

nezrer oencnmarK
----' BP 3333

Figwe 3.20 Efect of airfoil parameterization on convergence to the C4/70/C50 target.

Benchmark: Bezíer parameterization
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Figure 3.27 Convergence snapshots showing the effect of airþíl parameterization on the
development of the C4/70/C50 design.
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3l

AAAA¿-0 5000 l.r0' 1.s.10' 2.10' 2.s.t0' 3.10'
NFE's

- 
Bezier benchma¡k

----' BP 3333

Figure 3.22 Effect of airþil parameterization on convergence to the I I2o-cambered
target.

Figure 3.23 Convergence shapshots showing the ffict of airþil parameterization on the
development of the I l2o-cambered desígn.
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Figure 3.24 Effect of airþil parameterízatíon on convergence to the Líebeck target.

Benchmark: Bezier P arameterization
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Figrne 3.25 Convergence shapshots showíng the effect of airþtl parameterìzation on the
development of the Liebeck desìgn.



3.5 Effect of Pararneterization on Design Speed

3.5.5 Conclusions

The performance of the two parameterizations for the C4/70/C50 target is very

similar. They find roughly the same shape using roughly the same NFE's. For the other

two design cases, however, BP 3333 performs significantly better than Bezier - with

accelerated convergence to a better design.

Overall, then, BP 3333 is a defurite improvement over the Bezier parameterization

- at least for this particular aerodynamic design problem. It is more separable, is more

closely linked to the aerodynamics of the shape, and has fewer parameters, all of which

should give it more potential for acceleration. Without acceleration, convergence is at

least comparable, and in two cases significantly better. It has better continuity

characteristics, and more aesthetic appeal. It has the abilþ to steer the design away from

undesirable features. Conshaints become much easier to envision and impose due to the

aerodynamic nature of the variables. For example, a minimum leading edge radius or

minimum crest curvature can be imposed to avoid sharp corners. Structural constraints

such as a minimum wedge angle are similarly easy to achieve.

While BP 3434 is more robust than BP 3333, it also uses more parameters, and

some of these will contribute nonlinearity to the objective function. BP 3333 thus has

more potential for acceleration. Furthermore, by avoiding sharp edges, BP 3333 has the

ability to focus the search within regions of acceptable aerodynamic shapes. It is unable

to represent a small percentage of airfoils, but this shortcoming is overcome by its other

advantages.
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3.5 Effect of Parameterization on Design Speed

Throughout the remainder of this thesis, therefore, the BP 3333 parameterization

will be used in place of the Bezier parumeterization. In the subsequent chapters, it will be

demonstrated that the potential for acceleration is indeed great.
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Ghapter 4 Acceleration by Variable Birthrate

In this chapter, the fnst of three DE-specific acceleration strategies is discussed. In

Variable Birthrate DE (VBDE), not all population vectors are allowed to generate trial

vectors for the next generation. Section 4.1 introduces the concept, and examines the

quality of the population in generations 0-100. Section 4.2 exanines the effect of VBDE

on convergence for the three design case studies. Conclusions are made in section 4.3.

4.1 Selecfive Reproduction

Although ethically deplorable, socially unacceptable, and practically ineffectual for

a human population, one wonders how selective reproduction might influence a

simulation such as DE. An initial DE population can consist of a wide variety of potential

solutions. Some might have very low cost. Others may lie within the constraints but have

high cost. Still others may violate the constraints altogether. In DE, all have the same

opportunity to generate new ofßpring. It seems possible that the search could be

accelerated if some high-cost vectors are neutered.

The idea is not new to evolutionary computation. In the fustGA's - developed by

Holland (1962) and his students - fitter individuals were given more opportunities to

reproduce. Later, in his PhD thesis, Hollstien (1971) adapted a variety of animal breeding

strategies for use in a GA.

A common probability of reproducing was the ratio of the individual's cost to the

total population cost (measured, for example, as the sum of costs of all individuals). For

many objective functions, however, this ratio is similar throughout the entire population -
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producing very weak selection pressure. De Jong (1975) modified the idea by calculating

individual cost relative to the highest cost in the population. This often resulted in the

opposite problem - overly strong selection pressure leading to premature convergence.

A strategy that can sometimes mediate between weak and strong selection is that of

ranked selection. Individuals are ranked by cost within the population, and probability is

a linear function of rank. Another common technique is tournament selection (Goldberg

and Deb, 1991), in which many small sets of individuals are randomly selected, and the

best few in each set are selected to reproduce.

VBDE is an attempt to incorporate some of these ideas for DE. Using a Gaussian

probability dishibution, each individual is assþed a reproductive probabilþ, or

birthrate. Those with lowest cost will have birthrates near one. Those with highest cost

have birthrates near zero. The birthrate function å(x) is:

106

(4.1)

there are many constraint violations, most of the population could have cost greater than

5000, while a few could have very low cost. In a case such as this, all constraint violators

å(x) = 
"*p(-1"1*¡ - 

c^^)2 tzÊ),

where c(x) is the cost of vector x, cmin is the lowest

cost in the population, and s" is the standard devia-

tion of costs in the population. The distribution of

birthrates shown in Figure 4.1 is for a population

of twenty with equidistant cost values.

In general, ofcourse, costs need not be even

approximately equidistant. For example, when

Figure 4.1 Distribution of birthrates
þr a populatíonwíth 20 equídistant

cost values-

o

3o



4.1 Acceleration by Variable Bidh¡ate

will have birthrates neaÍ zero, and the few good solutions will have birthrates near one.

Reproduction is regulated as follows. The user selects a birthrate cutoff, BR, where

BrR e [0,1] . Every vector x with birthrate å(x) > BR is allowed to procreate as normal. For

each x with ó(x) < BR, choose r, a random value between 0 and,BR. If å(x)>r, x

procreates as normal. Otherwise, an individual with birthrate greater than BÀ is chosen at

random to generate a child vector, c. The fitter of x and c survives to the next generation.

Note that if the user selects.BIR=O, every vector procreates as usual, and the search is

performed by DE without modification. If,B,tR:l, the best vector in the population is

likely to produce many children for the next generation. Any others can procreate at most

once, with the probability that they do so at all decreasing as their cost-distance from the

best increases.

To examine the birthrate spread for the aerodynamic desþ problem, birthrates

were recorded for each individual in populations 0-100. DE/rand-to-besl1 was used with

no crossover, the BP 3333 airfoil parameterization, and NP:120. Figures 4.2 - 4.4 show

the distribution of birthrates for several generations of the C4l70lC50 design process.

These go through three phases. In phase one (generations 0-40) the population contains

mostly high cost vectors, and many birthrates near zero. In phase two (generations 40-60)

the population is in transition from high cost to low cost. There are only a few high-cost

vectors, and many birthrates near one. In phase three (generations 70+), the entire

population is low-cost, and the whole range of birthrates is represented.

In phase one (Figure 4.2),there are many constraint violations. Recall that these

have cost between 5000 and 10,000, assigned randomly by the penahy function. In the
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Only 224 valid airfoils are tested after 30 generations. By 50 generations, enough airfoils

(860 valid shapes) have been tested that some of the best shapes are in the general region

of the solution. Prior to generation 30, however, it is probably of limited value to

distinguish between good and bad shapes. They're all bad.

4.2 VBDE Resulfs

Convergence to the three test cases was compared for birthrates BR:0.1, 0.2,...

1.0. Each test uses the BP 3333 parameterization with DE/rand-to-besll/bin, CÃ:.95,

.F-=.85, NP:120. Note thatBR:0 corresponds to the BP 3333 convergence in section 3.5.

Two birthrates - 0.1,0.9 - resulted in accelerated convergence for all three cases.

These are shown in Figure 4.6, with comparison to,B.lt:O. In each case, using BR:O.7

was the most effective. For the C4l70lC50 and Liebeck targets, all birthrates except

,BrR:l.0 improved the performance significantly. Best results in both cases are for 0.'7,

0.8, 0.9, with roughly twofold acceleration. Note that a significant cost improvement is

observed for the Liebeck target with BR:0.7. For the ll2o-cambered target, twofold

acceleration occurred with BR:0.7,0.9, but birthrates smaller than 0.5 resulted in

sþificant degradation, and premature convergence occuffed with 8rR:1.0.

Given the small number of valid airfoil shapes generated in early generations, it

would seem that any use of VBDE - especially with high values of BA - would reduce

the population's diversity so much as to result in premature convergence. Yet that was not

the case. DE's mutation operator is able to maintain the diversity by sampling the
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4.2 VBDE Results

differential from the whole population.In fact, even over the fust 3000 FEs, VBDE with

high birthrates can show some improvement over DE (Figure 4.7).

4.3 Conclusions

The variable birthrate method for reproductive selection has some potential for

acceleration of DE. In general, Bl? values between 0.7 and 0.9 are best, with BR:O.7

roughly doubling the convergence rate. That is, it seems to be more effective to neuter a

high percentage of vectors. Although most procreating vectors in a generation are then

very similar in nature, DE's mutation operation is able to maintain sufficient diversity to

energize the search in new directions.
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Figure 4.6 Effect of varíable bírthrate on convergence.
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4.2 VBDE Results

Performance degradation is possible, and was observed both for very low

birthrates and for the upper limit of 1.0. This w¿ìs expected at the upper limit, when the

best vector dominates the sub-population of fertile parents, causing "genetic drift". It was

not expected, though, that the same would occur with low birthrates. Of course, as long

as BR is nonzero, constraint violations in phase one have a very small likelihood

reproducing. Thus with low birthrates, VBDE quickly eliminates constraint violations,

but the best vectors have not been given enough opportunþ to procreate. So the

population quickly fills up with mediocre but valid shapes, which can increase the

number of flow solutions required to find good solutions.
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4.3 Conclusions

In fact, it was observed that higher birthrates (especially BR > 0.4) actually

increased the number of constraint violations. That is, later generations contained more

invalid shapes with VBDE than without. This could explain the pattern of improved

performance for higher birthrates. The search arrives at later generations sooner (i.e. with

fewer FEs). This provides greater opportunity for the most promising shapes to

reproduce, with less computational expense.
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Chapter 5 Acceleration by Hybridization

In this chapter, significant acceleration is achieved by hybridizing DE with a local

search method. The Hybridized DE (fDE) algorithm is discussed in section 5.1. The

effect on convergence is presented in section 5.2.In section 5.3, VBDE and HDE are

combined to determine whether the individual improvements might be cumulative.

Section 5.4 presents conclusions and a sünmary of the acceleration achieved thus far.

5.1 Hybridization of DE with Downhill Simplex

Combining different optimization techniques into a hybrid algorithm has the

potential of exploiting the advantages of each technique while masking their deficiencies.

In particular, utilizing the speed of a local search to improve EA perfiormance has been a

popular suggestion - almost from the beginning (Brady, 1985; Goldberg, 1989; Davis,

l99l; Michalewi cz, 1992).

Often EAs are combined with a gradient-based local search, in which the derivative

of the objective fi¡nction is calculated to determine the best direction of descent. Vicini

and Quagliarella (1999), for example, combined a gradient method with a GA to design

airfoils and wings, achieving a30Yo - 70% reduction in computation time. Gradient

methods have been combined with DE in other applications (Chiou and Wang, 1998;

Masters and Land, 1997). Unfortunately the objective function discussed here is non-

differentiable due to the penalty method of rejecting infeasible shapes.

Downhill Simplex (DS) (Nelder and Mead, 1965) is a downhill search optimizer

that quickly finds local minima, without requiring any knowledge of gradients. In this
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chapter, DE is combined with DS to create a ne\¡/ algorithm - Hybridized DE (HDE). In a

D-dimensional optimization problem, the simplex is a D+1-sided poþon. After its

initial definition, it is modified so as to make its way downhill to a local minimwn. Three

basic steps are used: reflection, expansion, and contraction of the simplex.

The main mechanism of DS is that of reflection. The highest vertex is reflected

through the opposite face of the simplex to a lower (fitted vertex. This reflection is given

by

x ne* =; 
[ 
"Ëi' 

) 
- (*. t)* o,,o (5.1)

where X¡ âro the vertices in the simplex. Only downhill steps are accepted. That is, if

C(xr"*), C(*n¡sÐ, then xn* is rejected. This has been called the rudimentary steep

descentmethod. Depending on the landscape of the objective function, C the simplex is

either expanded to move downhill more quickly or contracted to move more slowly.

The search operations of DE are mutation and recombination, whereas that of DS is

reflection. HDE will use all three operations, but this hybridizationrequires a balance.

Reflection sends an individual quickly down local hills, while mutation and

recombination use the diversity of the population to ignore the local landscape. HDE

should improve convergence without converging prematurely to a local minimum. This

can be achieved by using DS only sparsely.

Any generation created by DE can be considered as an intermediate generation.

From this intermediate generation, Dl-l vectors are chosen to form a simplex. Through

reflection, the simplex is modified until one (or several) individuals are improved.
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5.1 Hybridization of DE with Downhill Simplex

Improved vectors are then chosen to move on to the next generation, as shown in Figure

5.1. Diversity can be maintained in two ways. First, DS is used only after every È

generations. Second, only a few (ffzr) DS iterations are used at each step.

Generation Intermediate Generation
t Generation i+l

Figure 5.1 Method of hybridízing DEwith DS.

Several strategies can be used for selecting individuals for the initial simplex.

Coded into FanOpt are the following possibilities (with short-hand label in brackets): (b)

the best Drl, (br) the single best plus D chosen at random, (r),Dtl chosen completely at

random. Similarly, there are several strategies for choosing which vectors those improved

by DS replace. The,Þ1 vectors in the new simplex can replace either: (b) the best Dr1,

(w) the worst,Drl, (r) a random selection. Alternatively, the single best simplex vector

can replace (1b) the single best vector in the population, (1r) a randomly chosen vector.

To compare the effectiveness of strategies, we will use the following label system.

"HDE s-r-k-Nit " refers to hybridization with selection strategy s, replacement strategy r,

performing DS every k generations for i/¿7 iterations. For exarnple, HDE b-b-50-100

selects the best Df l vectors every 50 generations, performs 100 DS iterations, and

replaces the original D+l vectors by those in the new simplex.
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5.2 HDE Results

5.2 HDE Resulfs

In a first attempt at hybridizing DE (Rogalsþ and Derksen, 2000), we found HDE

b-bhlw-Z-  to be effective shategies for Bezier parameterization with no crossover. In

particular, b-r-2-4 significantly improved the convergence rate for all three targets.

Using the BP 3333 parameterization with binary crossover, no clear acceleration

pattern could be observed for the same strategies. For example, HDE b-r-2-4 produced

tremendous acceleration for the C4l70lC50 case, but bad misconvergence for the 1l2o-

cambered case (Figure 5.2).In fact, all three replacement strategies resulted in premature

convergence for the 1I2o-cambered target.

In Chapter 4, it was shown that there are very few good BP 3333 shapes per

population in the early generations. It is understandable, then, that the early use of DS

might not be effective. It is better to let DE maneuver itself into a good region, and then
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give DS the opportunity to run downhill. Thus k was increased. When DS is applied less

frequently, it must run longer to have any effect, so l/if is increased as well.

The following strategies were applied with a variety of selection and replacement

simplexes: 5-10, 10-20,20-50,50-100, 100-500, 120-500, 140-500. Applying DS every

5, 10, or 20 generations was not consistently effective - occasionally accelerating, but

often slowing convergence, and sometimes misconverging. Choice of selection and

replacement strategies made very little difference. A long DS run (500 - 1000 iterations)

after 100, 120, or 140 generations showed some potential, but had no effect if the

population diversity was insufficient, and misconverged if there was too much diversity.

The most consistent strategy was HDE b-b-50-100. In Table 5.1, convergence is

compared numerically. Two costs are given for each target. By the frst, the design is

already excellent, and by the second it has converged completely. (In some cases a

further cost reduction is achieved, but the improvement is the interpolation enor, not the

actual design.) A2- to 4-fold reduction of NFEs is achieved compared to the BP 3333,

Table 5.1 Accelerationfactors due to hybrídízatíon.

Cost BP 3333, binary cr,
HDE b-b-50-100

BP 3333, binary cr,
no hybridization

Bezier
benchmark

NFEs NFEs Accel
factor

NFEs Accel
factor

c4/701c50 0.200 6.626 28.015 4.2 30.441 4.6
0.150 t2.849 51.383 4.0 45.105 3.5

rl20-
cambered

0.720 4.827 10.581 2.2 44-263 9.2
0.650 9.398 24.4s8 2.6 N/A*

Liebeck 0.600 2.753 6.254 2.3 11.887 4.3
0.5s0 6.422 15.333 2.4 N/A**

*cost 0.71 at 100,000 FEs
**cost 0.566 at 50,000 FEs
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5-2 HDE Results

binary crossover convergence, and a 3- to s-fold reduction with respect to the Bezier

benchmarks, with a 9-fold reduction for the 1l2o-cambered target. Note that, for the 112o-

cambered and the Liebeck design, by 10,000 FEs the BP 3333, binary crossover, HDE b-

b-50-100 has achieved a lower cost than is ever reached by the Bezier design.

Convergence plots are compared in Figure 5.3. Notice the step-wise convergence

pattern for the b-b-50-100 hybridization. The first DS run (after 50 generations) results in
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a dramatic cost improvement. This is followed by a period of stagnation - up to several

thousand FEs in which no improvement is seen. By 100 generations, DE has built up

sufficient diversity for DS to realize another significant cost jump. At 150 generations,

improvements are minor, and the process has essentially converged.

Since 100 DS iterations is so effective, one might expect more to be better. For the

Liebeck target, HDE b-b-50-500 (Figure 5.4) does indeed show improvement over the

50-100 shategy. Using 100 iterations, cost is reduced from 1.68 to 0.73. The 400

additional DS iterations reduce it further to 0.58, whereas the 50-100 strategy needs an
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5.2 HDE Results

additional 1,500 FEs to get to the same cost. In the Liebeck case, the design has very

nearly converged after the first 500 DS iterations, and there is very little work left for DE.

Although il dld improve the Liebeck convergence, 50-500 was actually detrimental

for the other two cases. After 100 DS iterations, one vertex of the simplex is already at

the bottom of the local valley. Iterating any more only results in the simplex converging

around that one point. Thus the 50-500 strategy has less diversity in the population at

generation 51, and it t¿kes longer for DE to generate sufficient energy to drive the cost

lower. Even in the Liebeck case, it doesn't take long for the 50-100 to catch up to the 50-

500. In fact,by 4000 FEs, 50-100 has the lower cost. Thus, it is clear that overall b-b-50-

100 is the most effective.

The b-b-50-100 hybridization strategy does not have the same effect when used

without crossover (Figure 5.4). It only accelerates the Liebeck convergence, which is

already much quicker than the other two. Premature convergence occurs for each of the

other targets. (For the 1l2o-cambered target, the cost converges at2.2 and is not shown.)

The crossover operation helps to spread information throughout the population after a DS

run, expanding the focus away from the single valley found by DS.

5.3 Hybridized Variable Bi¡thrate DE (HVBDE)

In Chapter 4, it was shown that VBDE with highBÀ values tended to accelerate

DE. Having found that HDE b-b-50-100 also improves DE's performance; \¡/e now turn

our attention to combinations of the two strategies - HVBDE.
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5.3 Hybridized Variable Birth¡ate DE (IIVBDE)

The most obvious combination is to use variable birthrate throughout, together with

b-b-50-100. The most successful birthrate cutoffs in Chapter 4 were BR:0.7,0.9. These

and 0.8 were used here in combination with HDE None produce consistent results. For

theC4l70lC50 target, HVBDE with,BR:0.9 converges prematurely. For the 112o-

cambered target, there is misconvergence with both BR:0.7 and.BrR:0.8. All three slow

down convergence to the Liebeck target. Smaller birthrate cutofß were tested also, but

they consistently produced worse results than HDE alone.

Having no success with the simple combination of strategies, the following

reflrnement was made. Vy'e wondered whether VBDE might be more effective if used on a

population closer to convergence. S-ecall that there are many constraint violations in

generations 0-50.) FanOpt was recoded to start using variable birthrate only after the first

DS run. Again, this resulted in worse performance for the whole range ofBR values.

One more refinement was affempted. Recall that VBDE caused a higher rate of

constraint violations, resulting in convergence at later generations (but fewer FEs). This

could mean that the population is not close enough to a good solution at 50 generations

for the HDE b-b-50-100 to be effective. So we tried VBDE with a b-b-75-100 strategy.

Using BR:0.9, the DS run at generation 75 occurs at under 2000 FEs, and does anive ata

better solution at that point. But the run at generation 150 does not happen until nearly

10,000 FEs, and by then the cost is significantly higher. In an attempt at lowering the cost

before generation 150, DS was run at generations 75, 100,125,150, with BrR:0.9

throughout. This didn't seem to provide DE with the diversity necessary to drive the cost
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5.3 Hybridized Variable Birthrate DE (É[VBDE)

down, resulting in convergence slower than HDE b-b-50-100 in some cases, and

premature convergence in others.

5.4 Conclusions

The acceleration produced by HDE b-b-50-100 in conjunction with the BP 3333

parameterization and binary crossover is tremendous. Compared to the Bezier

benchmarks, the same cost is achieved 3-5 times faster. Convergence occurs by 13,000

FEs, and in ¡wo cases the cost at convergence is significantly lower than the benchmark

cost at 50,000.

HVBDE was not effective. Variable birthrate strategies tended to degrade the

performance of HDE b-b-50-100. The hybridization of DS and DE seems to strike just

the right balance of hill-sliding and population diversity, a balance that is disrupted by

any inhoduction of VBDE.

A summary of the convergence results obtained thus far is given in Figure 5.5. The

steady progression toward faster convergence is clear. Although in one case (Liebeck)

VBDE finds a shape with lower cost, in all cases VBDE converges more slowly than

HDE b-b-50-100.

124



5.4 Conclusions 125

0.5

0.4

0.3ão()
o.2

0.1

0

I

0.9

c)
0.8

o.7

0.6

0.9

0.8

0.7

0.6

0.5

0-4

l.l

C4/70/C50 target

ì\

\_\\-

0 5000 r .104 r.s .104 2.rc4 2.s 4f 3 .r04

NFEs

1l2o-cambered target

0 5000 I .104 1.5 .I04 2404 2.s.rc4 3 .t04

NFEs

Líebeck target

li.
\i\ \''-.\ \'.

0 5000 l .r04 1.5 .r04 2.rc4 2.s.rc4 3 .r04

NFEs

- 
Bezier benchmark

----' BP 3333, binary crossover

- 
' BP 3333, bin cr, BR:0.7

- - ' BP 3333, bin cr, HDE b-b-50-100

Figure 5.5 Summary of acceleration due to parameterizatíon, varíable bírth rate, and
hybridization.



126

Chapter 6 lmmune System Acceleration

This chapter discusses one last acceleration idea, modeled after the immune system.

Section 6.1 describes the model. The effect of immune acceleration alone is given in

section 6.2.In section 6.3 it is shown to accelerate HDE b-b-50-100, the best results of

Chapter 5. Section 6.4 provides a summary of the acceleration obtained in chapters 3 - 6.

One additional test case is introduced as verification that the acceleration can be observed

for a wide variety of designs.

6.1 Immune Sysúem Modeling

The human immune system is

designed to protect the body against

antigens - foreign microorganisms such

as viruses, bacteria, and parasites. One

of the key components of the immune

system is the antibody. Each antibody

has two amino acid polymers hooked

together - a Heavy chain and a Light

chain. They fold around each other to

form an Hl-pair. Two Hl--pairs

antigen binding antigen binding

Light chain

Figure 6.1 Schematic of an antíbody produced
by a biological immune system.

connected side-by-side form the antibody molecule. The folding creates a site capable of

binding to antigen (Figure 6.1).



6.1 Immune System Modeling

Binding of antibody to antigen ultimately results in the disabling of the antigen's

chemical action. Some antibodies combine with plasma to t<itt the bacteria directly.

Others prevent the movement of antigen through cell walls. Still others make the antigen

easier to ingest by white cells.

Each antibody can bind only to a specific molecular shape. The immune system

maintains a "Iibrary" of millions of different antibodies, each of which is produced by a

unique B-cell. The B-cell is also able to bind only to that particular shape.

Although binding is particular, it is also approximate. Each antibody is capable of

binding with a range of antigens through partial recognition. This allows them to tag

antigen that has never before been encountered by the body. It also decreases the number

of antibodies required to protect against all possible invaders. It is estimated that the

human body contains 108 diflerent antibodies, which are able to recognize about 1016

different antigens.

A consequence of partial binding is that detection and elimination of a specific

antigen can be slow, allowing it to replicate inside the body. So the immune system

adapts itself whenever a disease is encountered. 'When 
a B-cell is activated through

partial binding, it does two things. First, it begins producing antibodies, which themselves

bind to the antigen - although only partially. Second, through mutation, recombination,

and selection, it begins evolving a population of new B-cells designed specifically to

detect and bind to that particular antigen. The more affrnity a ne\¡/ B-cell has to the

antigen, the more likely it is to replicate itself and produce new antibodies. This process -
known as affrnþ maturation - can be modeled by a GA to accelerate global search.
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6.1 knmune System Modeling

Just as the mechanisms of biological evolution inspired the development of GA's,

so the immune system has been modeled as a problem-solving technique. (For a survey,

see Dasgupta,1999.) In fact the two ideas have been combined (computationally) to

evolve antibodies using GA's @orrest and Perelson, 1991, Hightower et al, 1995) and to

accelerate local hill climbing in a GA (Bersini and Varela, 1991). Other applications of

artificial immune systems include the solution of scheduling problems (Hart et al, 1998),

and protection against computer viruses (Marmelstein et al, 1997).

These ideas have also been implemented for design optimization. Hajela and others

developed a GA-based model ofthe immune system, and used it to solve problems such

as optimal design of a truss system (Hajela and Lee, 1996; Hajela et al,1997; Hajela and

Yoo, 1999). The model described in this chapter is patterned after theirs.

In Hajela's model, a GA evolves antibodies with affinity to certain antigens.

Antibodies and antigens are encoded as binary strings. An objective function measures

the degree to which an antibody matches antigens present in the system. Typically, this

would count the number of matching bits between apat of strings. In the simplest case,

when a population of antibodies is exposed to a single antigen, maximization of the

objective function results in a population of specialist antibodies that match the antigen.

If several different antigens exist, the population can be evolved into generalist

antibodies. Each specialist antibody woùld closely match one of the antigens, whereas a

generalist antibody would in some sense cover all antigens.

In FanOpt, the encoding is with real-valued vectors, and DE minimizes the

objective function, so some modifications to Hajela's model are required. The following
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6.1 knmune System Modeling

algorithm calculates Immune Cost, IC(x) for the population of ¡¿ antibodies, given a set of

antigens with which to "bind". Vectors with least cost match the antigen pool the best.

DE is used to minimize the Immune Cost - resulting in a population of antibodies

designed to match the antigens.

Algorithm to calculate Immune Cost

1. Initialize the cost of each antibody to zero:1C(x)= 0.

2.Inittahze the number of times selected to zero: ns(x): 0.

3. Repeat steps a) through d) 3z times, where z is the number of antibodies.

a) Randomly select an antigen, g.

b) Randomly select a sample of .^/different antibodies, x¡.

c) The match score of each antibody selected is the 4-distance ûom the antigen.

Add the match score to the immune cost:

/C(x):/C(x)+ d(g,x¡)

d) Increment the number of times x¡ has been selected:

ns(x): ns(x) + |

4. The Immune Cost of each antibody is its total match score nonnalizedby the

number of times it was selected:

lCG):IC(x) I ns(x)

This simulation can be used to accelerate the convergence of DE for aerodynamic

optimization by biasing the search towards vectors with lowest cost in a given generation.
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6.1 Immune System Modeling

These are the antigens. The overall structure of Immune Accelerated DE (IADE) - shown

in Figure 6.2 - is similar to that of HDE. For a given generation of vectors representing

airfoils, the standard DE operations are performed to generate an intermediate generation

of (mostly) improved vectors. The best of these are selected as antigens. The worst are

selected as antibodies. They are conditioned to match with the antigens selected. Those

vectors whose aerodynamic cost is improved by the immune conditioning survive to the

next generation.

Generation Intermediate
t Generation

Generation
i+1

Figure 6.2Immune system condítioning to accelerate DE.

The following parameters conhol the immune conditioning. The user selects

percentages which determine the number of antigens (PGA in the dialog box - Percent

antiGen for Acceleration), antibodies (PBA - Percent antiBody for Acceleration), and the

sample size (PEA - Percent Exposure for Acceleration). The first two are percentages of

the entire population (PGA*120, PBA*120). The last is apercentage of the antibodies

chosen (sample size iy': PEA*PBA*120). Actual sizes are calculated using the floor

function - rounding down to an integer. After every aerodynamic generation, antibodies

are evolved for 50 immune conditioning generations, using the DE strategy chosen for

aerodynamic optimization. Note that no aerodynamic calculations are made until the end
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6.1 knmune System Modeling

of those 50 generations, so the immune conditioning adds very little relative

computational cost.

The following shorthand notation is developed to describe the strategy used for

acceleration. IADE g-b-e represents Immune Accelerated DE, with g,o/o of the population

chosen as antigens, b%o of the population chosen as antibodies, and e%o of the antibodies

chosen for exposure to a specific antigen at a time.

6.2 IADE Resulfs

Hajela et al (1999) suggest using the top 3Yo of the population as antigens, the entire

population as antibodies, and a sampling sløe of 2Yo of the population. As long as the

sampling size is smaller than the number of antigens, the antibodies should evolve as

generalists. This IADE 3-100-2 strategy was tried first. Note that when PBA:100%, there

arcZNP Cost function calls every generation, so the rate of aerodynamic calculation per

generation is doubled. This strategy did not perform well. When it did converge to the

right shape, the rate was much slower than that without immune conditioning. Immune

conditioning the entire population after each generation seems to reduce the population

diversify too much. DE's search becomes less global.

Reducing the number of antibodies should provide a better balance between

diversþ and acceleration. Several strategies were tested: IADE 3-50-4,3-25-8,3-10-20.

That is, the number of antigens was held constant at 3 (1.03 * l20l ), and the sampling size

was held constant atZ,but fewer population vectors were immune conditioned after each
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6.2 IADE Results 132

generation. Overall this resulted in less tendency toward slower or premature

convergence, but the rates were at best comparable to those using DE alone.

Immune conditioning after each generation results in the search being biased too

shongly toward early-generation vectors. We have already seen that DE does not find

reasonably good shapes until about generation 50. But IADE cannot provide the same

acceleration power as HDE if run every 50 generations. HDE sends a few individuals

sliding rapidly down into the local valley that they surround. IADE can only gather the

population closer to the hills surrounding that valley.

6,3 Hybrídized Immune Accelerated DE (HIADE)

Although immune conditioning could not by itself accelerate DE for this design

problem, the valley analogy suggests a possible use of IADE in conjunction with HDE.

After a DS run, there are 13 (Dl-l) vectors with significantly lower cost than the rest of

the population. This leaves sufficient diversity for DE to build up energy to decrease the

cost further, but it may not necessarily require so much diversity. Immune conditioning

could be effective at gathering the rest of the population closer to the valley found by DS.

This suggests performing immune conditioning immediately following each DS run.

Even when immune conditioning every 50 generations, large values for PBA

resulted in slower convergence. Furthermore, using only 3%o of the population as antigens

was not at all effective. Positive results were finally obtained when, noting that DS

operates on approximately lÙYo of the population, PGA was increased to l0%. The best

strategy found thus far has been to use l0-10-10 immune conditioning after each DS run.



6.3 Hybridized Immune Accelerated DE (HIADE

The result, Hybridized Immune Accelerated DE (HIADE) b-b-50-100 10-10-10, is

compared with HDE b-b-50-100 in Figure 6.3. The effect on convergence for the Liebeck

design is negligible, but there is sþificant improvement for the other to cases. The

HIADE convergence pattern is more step-wise. The immune conditioning energizes DE

to take bigger steps, but also results in some stagnation following those steps.

6.4 Acceleration of DE: A Synopsis

This section summarizes the acceleration obt¿ined. The NFEs required for HIADE

to converge is low enough that the addition of a more sophisticated flow solver should be

feasible. This has been accomplished without loss of robustness. To confirm that the

results are not unique to the three design cases studied, a fourth is introduced, and is

shown to follow the same pattern of acceleration.
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6.4 Acceleration of DE: A Synopsis

In chapter 2, anew set of constraints \¡ras imposed on the Bezier parameterization.

The resulting convergence benchmarks had lower càst than, but similar convergence rate

to, the designs obtained in previous work. In chapter 3 we saw that the BP 3333

paraneterøation with binary crossover hadpotential for doubling the benchmark

convergence rate, although this improvement was not observed for the C4/701C50 target.

In chapter 4, VBDE was shown to have capacity for some further acceleration, but the

most significant improvement came in chapter 5 with HDE b-b-50-100. Although the

combination of VBDE and HDE was not at all effective, we have seen in the current

chapter that an immune conditioning strategy was able to accelerate HDE further yet. The

resulting HIADE b-b-50-100 10-10-10 strategy is the one recommended for aerodynamic

optimization with BP 3333 parameterization of airfoils.

The progression of cost convergence plots from the Bezier benchmark, to BP 3333,

to HDE, to HIADE is shown in Figure 6.4 A five- to ten-fold acceleration is apparent

from benchmark to HIADE. The pattern of the HIADE convergence is also significant. ln

all three c¿ìses, cost decreases very rapidly until about 6,000 FEs, at which point the

desþ is already excellent. By 10,000 FEs, any further refmements that might be possible

have been completed. The designs at 6,000 and 10,000 FEs are compared in Figure 6.5.
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6.4 Acceleration of DE: A Synopsis

As evidencethat the acceleration is replicable across a broad range of aerodynamic

design problems, a fourth design case is considered. The Eppler E850 airfoil is designed

for the tip of apropeller. A pressure distribution is calculated and used as the design
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target. For the surface vorticity method to generate accurate results, one condition is that

the upper and lower surface data points lie in pairs, minored about the camber line.

Unfortunately, this is not true for the Eppler data.It is, however, true for any blade

generated by our design algorithm. Since the E850 has been represented by the BP 3333

parameterization in Chapter 3, we use that representation as the design target. The flow

was computedfor l:0, t/l:|, and þF5o. Outlet angle was computed to be þz: -3.36876o.

The same acceleration pattern can be observed in Figure 6.6. By 6000 FEs, the HIADE

cost is 0.05, and it converges to 0.005 shortly after 10,000. Designs are compared in

Figure 6.7.
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Figure 6.6 Acceleratíon pattern replicatedfor a nØil design target:
the Eppler 8850 propeller.

Convergence factors for all four cases are shown in Table 6.1. Two cost values are

chosen for each case. By the frst, the design is excellent, and by the second it has very

nearly converged. Compared to the Bezier benchmark, the HIADE design convergence is
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faster by a factor of 4 to 10, with an average of 5.8. This takes into account both the new

parameterization and the actual acceleration of DE. Comparing convergence for the same

parameteruation, we find that HIADE is two to six times faster than DE, with an average

of 3.2. This second rate should be observable across a broader range of problems than

merely aerodynamic optimization.

Table 6.1 Accelerationfactors due to HIADEfoTþur case studies.

Cost BP 3333,
binary crossover,

HIADE
b-b-50-100

10-10-10

BP 3333,
binary crossover,

DE

Bezier
benchmark

NFEs NFEs Accel
factor

NFEs Accel
factor

c4t70lcsÙ 0.200 5,994 28.015 4.7 30,441 5.1

0.150 8,791 51.383 5.8 45,105 5.1

1120-
cambered

0.720 4,224 10.581 2.5 44,263 10.5

0.650 8,792 24.458 2.8 N/A* N/A
Liebeck 0.600 3.153 6.254 2.0 11.887 3.8

0.s66 4.042 8.206 2.0 34,269 8.5

E850 0.050 5-271 t4.796 2.8 20.449 3.9

0.00s 10"38s 28.972 2.8 38.803 3.7

Average acceleration factor: 3.2 5.8
tcost 0.71 at 100,000 FEs
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Ghapter 7 Handling Soft Gonstraints

There are two types of constraints that can be imposed in aerodynamic design. The

first is a hardconstrainf, usually imposed by a barrier method in whish' no' inf,easible.

scilution'is-cénsideredl An.exarÍÍple is-the set df cdnsffiints"imposed in ckitípter 2, which

ensured,that,any'shape,eonsidered:is.a:valid:airfoil: T'he,second,type is.a,soft,cönstüliÍt,

An aerodynamic designerwill often.have engineeringrequirements'limitingthe final

design: Fõr,example, a,miriiniuin thiclnress may be required'for'strueftiralîeasûns, of:a'

minimum leading edge radius for ofÈdesign performance. There is usually a slight.

tolerance to sueh requirements.'A'design,thaíis slightly'outside aþredeteriÍiiled solution

space may be acceptable if it has otherdesirable characteristics: This chapterwill

demonstrate two'teohniques for soft-constrained,DE search. Constrained,search is.an,

important feature of aerodynamic design, but is not the main focus of this thesis, so this

chapter will be fairly brief.

7.1 Penalty funetion

The standard manner in which constraints are imposed in GA search is to use a

penalty function. In chapter 2,the penaþ function simply applied a large random value

to any infeasible designs. This is a form of a barrier method. We don't bother calculating

the flow around a shape that isn't even an airfoil. The penaþ applied is large in an

attempt to remove all infeasible solutions from the population relatively early in the

search.



7.1 Penalty function

The barier method is acceptable for hard constraints. (The flow solution around an

airfoil with negative thickness is simply meaningless, for example, so it doesn't make

mrrch sense to assþ a lower penalty to airfoils with less negative thickness.) However, it

is not efflective for imposing soft constraints. Optimal solutions frequently lie on or near

the boundary of the solution space. Rejecting outright any vector that lies outside the

constraint boundary steers the search too far away from that boundary (Smith and Tate,

1993; Michalewicz,l995a; Coit et al,1996).

The most cofirmon penaþ function approach to handling soft constraints is due to

Richardson et al (1989). First calculate the cost of the vector as if it did lie within the

solution space. Then, add to the vector's cost a weighted distance from the constraint

boundary. Thus the search is allowed to wander outside the solution space, but the further

from the boundary a vector lies, the less fit it becomes. This idea is similar to the

Lagrangian relaxation method for combinatorial optimization problems (Avriel, 1976;

Fisher, 1981), which temporarily relaxes the most strident constraints in early stages of

the search.

This distance-based approach is very easy to implement with the BP 3333

parameterization. Upper and lower bounds can be imposed on any BP 3333 parameter, x¡.

The user provides a weight, w¡, which determines how far beyond the boundary DE will

search. The penalty function is

P(x) = (7.r)

where parameter x¡ has exceeded the bound b¡, afid the sum is taken over all constraint

violations. The total cost of vector x is then
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7.1 Penalty function

Cost: C(x) + P(x),

l4t

(7.2)

where C(x) is the aerodynamic cost defined in equation (1.3), p 16.

The difficuþ ofthis approach is in determining appropriate weights. Too strong,

and DE will stay away from any solutions ne¿Ìr the boundary. Too weak, and the search

could converge well beyond the boundary. Factors to consider include the relative scaling

of the parameters being constrained, the difFrculty of satisfying a constraint, and the

seriousness of a constaint violation. Often some experimentation is required. Alternative

approaches include the dynamic penaþ function, in which the severity of the penaþ

increases as the search progresses (eg. Joines and Houck,1994), and non-penalty-based

constraint handling (Michalewicz and Janikow, l99l; Michalewicz, 1995b), but these are

not explored here. Hajela and Yoo (1999) propose the use of an immune network (similar

to that described in chapter 6) to handle constraints. This method w¿s coded into FanOpt,

but has not yet been tested thoroughly.

7,2 Constrained Search: An Example

To demonstrate the use of the penalty function for soft-constrained search, tlre

Liebeck design will be refined. Notice the large curvature on the lower surface of the BP

3333 Liebeck blades- This corresponds to a bump in pressure coefficients. (See, for

example, Figure 6.5, p 130) We will attempt to smooth the pressure distribution imposing

a maximum (absolute) curvature on both thickness and camber profiles. Constaining

l""l in [0, 0.5] and lrrl in [0,1], both with weight 10, resulted in a design with avery

sharp leading edge. While this may in fact work best under ideal circumstances, a slight
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change in wind direction, or the presence of foreign material on the blade could result in

severe degradation. To improve ofÊdesign performance, a minimum leading edge radius

constraint was imposed as well.

Desigus for the following two constraint sets are compared in Figure 7.I.
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|.1""1.05, w, = 1g
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Lh"l= o3l, w3 : too

(7.3)

(7.4)

Notice that the constraints themselves are the same, but the weighting is different. Both

sets result in a design with a smoother pressure distribution. The flrst (7.3) does not

weight the leading edge radius deviation high enough for the final design to lie within the

boundary. The result has [r¡,1 
: 0.002, with a cost of 0.488. The second set (7.4) weights

the leading edge constraint two orders of magnitude higher than the curvafure constraints.

The result is a design tying within the constraints, with lr¿l : 0.0106, and a cost of 0.459.

In both cases, the cost is significantly lower than that with no constraints (0.55).

Designs shown in Fþre 7.1 were obtained after 10,000 FE's of the HIADE b-b-50-

I00 10-10-10 acceleration strategy. Convergence rates forthe constrained designs are

compared with the HIADE convergence rate for the unconstrained design in Figure 7.2.

Constrained design is slower over the first 3,000 FE's, but the 6,000 - 10,000 pattern is

still observed. That is, the desþ is excellent by 6,000 FE's, and has converged by

10,000.
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Ghapter I Conclusions and Recommendations

Aerodynamic design optimization for fans has as its ultimate goal the design of a

more efficient fan. This thesis has contributed toward that goal by enhancing FanOpt -

the software package developed in Rogalsky (1998) - to accelerate the desþ process. A

new parameterization for airfoils has been developed, and the number of function

evaluations required by Differential Evolution has been reduced significantly. This

concluding chapter will summarize the results obtained, and recommend future work, in

three areas: 1) parameterization of airfoils, 2) acceleration of DE, and 3) aerodynamic

design optimization.

8,1 Airtoil Parameterization

It has been recognized for some time that GA's require problem-speciflrc

information to converge quickly. In the current optimization problem, airfoil

parameterization can impact both robushress and convergence rate. The Bezier-PARSEC

parumeterrzation was desígned to enhance both.

Present in the previously-used Bezier method (Rogalsþ, 1998) were discontinuous

second derivatives, constraints that limited the size of the solution space, and parameters

with nonlinear interactions. All three issues are addressed by the BP 3333 and3434

parcmetetøations. Curves are joined with second order continuity; control point

constraints are no longer required; and new aerodynamic parameters are incorporated.

Bezter curves are still used to create the airfoil, but the Bezier control points are now

defmed by aerodynamic parameters. DE operates on the new parameters, which reduces
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epistasis in the design objective firnction. BP 3333 uses exclusively aerodynamic

parameters, which def,rne four degree three Bezier curves. BP 3434 uses degree four

curves on the trailing profiles, giving it freedom to reproduce more complicated shapes,

but requiring a mixture of aerodynamic and B,ezierparameters.

To compare the robustress of the Bezier and BP parameterizations, 63 airfoils were

represented, using DE to minimize the deviation between the parametenzation and the

target airfoil. All three methods successfirlly represented a high percentage, with BP 3434

having the most success. The second-order discontinuity in the Bezierparameterization

occasionally showed up as a sharp edge in the airfuil- BP 3434 failed once when the

solution was far from the initial population, converging to a shape with a sharp edge

before it could find the correct airfoil. BP 3434also showed a penchant for wildly erratic

control points - producing airfoils with tiny loops, and trailing edges that, when

magnified suffrcientþ, begin in the wrong direction.

BP 3333 correctly reproduces 94 %o of the airfoils ohosen, but there are airfoils that

it cannot represent well. Because it uses degree three trailing Bezier curves, the inflection

point is not variable. Any shape with strong variation in trailing curvature presents

problems. This includes airfoils with cusps (indicating a strong inflection point neal the

end of the thickness profile), and those with camber profiles that dip below the x-axis.

The relatively small sacrifice in representation ability seems reasonable to accept in light

of the advantages over BP 3434.It has fewer nonzero parameters and fewer total

parameters, which will contribute toward acceleration of design optimization; and it

avoids sharp edges, steering the search toward true aerodynamic shapes.
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The BP 3333 parameterization was used with DE in three inverse design cases.

These three represent a broad mnge ofpressure distributions and blade shapes. In all

tlree, a good solution was found, indicating the robustress of BP 3333 for design

optimization. Using DE with binary crossover, in two cases BP 3333 convergence was

about twiee as fast as that for Bezier with no crossover- In the third. case, convergence

rates were about the same. Binary crossover generally is effective only for separable (or

at least non-epistatic) objective frmctions,It improves the convergence characteristics of

BP 3333 optimization due to the increased linearity of this parameterization.

For future work, several recommendations can be made. First, the representation

ability of the BP 3333 parameterizatton should be examined more thoroughly. Some of

its limitations are known, but there may be others.

Second, the initial population for optimization could be completely redefined.

Currently, it randomly selects parameters from within user-defined bounds. Instead, a

population of known airfoils could be used - for example the reproductions found in

section 3.4 - ora combination of known airfoils and random sets of parameters. This

would certaínly reduce the number of constraint violations in early generations, but it is

unknown how convergence speed might be affected.

Third, design optimization convergence should be examined for the BP 3434

parameterization. This thesis concentrates on accelerating DE for use with BP 3333. BP

3434 enlaryes the design space, but initial indications arcthat it slows convergence. It

may be possible to accelerate BP 3434 convergencs enough for it to be useful as well.
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8.2 DE Acceleration

In combination with the new parameterir.atian of airfoils, DE itself is modified to

obtain accelerated convergence. Three strategies are used. First, the rate atwhich

individuals "give birth" is made variable in VBDE. Only the fïttest members of the

population arc guaranteed to generate trial vectors through mutation and crossover.

Second, DE is hybridized with DS, a local search algorithm, in HDE. Together, the two

can quickly search local valleys without becoming stuck in a local minimum. The third

modification is inspired by the immune system. In each generation of IADE, the worst

vectors are conditioned to take on characteristics of the best.

VBDE shows some potential for acceleration. This is especially true for high values

ofBR (when most population members have a low probability of reproducing). For lower

values, the population tended to converge premafurely. It was observed that DE only

begins to fmd reasonably good solutions at about generation 50, which likely explains the

lack of effect of variable birthrate. It depends on good solutions to improve the quality of

the whole population, but in the early stages, there aren't any good solutions. Use of a

variable birthrate increased the number ofhard constraint violations, so that convergence

occu¡red at even later generations. The acceleration observed was not as significant as

that obtained with hybndizution. \Vhen the two were combined, the resulting VBHDE

tended to converge prematurely. VBDE is not the recommended strategy for aerodynamic

optimization, but rtmay be useful for otherproblems.
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Hybridization is by far the most effective accelerator, but only when DS is used

sparsely. Any strategies that performed local search in early generations were not

effective. Again, this is understandable, given the multitude of costly solutions early in

the search. The increased linearity of BP 3333 lends itself well to local optimization, but

only when the focus has narrowed on to some reasonably good solutions. The most

effective strategy was HDE b-b-50-100, which leaves ÐE alone for 50 generations, then

performs 100 iterations on the best ^Drl vectors. By 50 generations, DE has found some

very promising shapes. The 100 iterations of DS is just suffrcient for some simplex

vertices to slide deep into the nearest valley, but also few enough for the simplex to

maintain a diversity of improved solutions. DE uses this diversity to find even lower

valleys until the next DS slide 50 generations later. By the third slide (at generation 150),

the process has very nearly converged - requiring from 6,500 to 13,000 flow solutions.

IADE does not show any consistent acceleration pattern when used on its own. In

fact it makes premature convergence more likely. Immune conditioning biases the search

toward the mostpromising solutions in early generations, butthese are not good enough

to lead the search in the right direction. However, when used sparsely together with

hybridization, immune conditioning is able to accelerate even the convergence rate of

HDE. The combined strategy - HIADE b-b-50-100 10-10-10 -results in acceleration by

a factor of four to ten when compared with the benchmark convergence rates. By 6,000

flow solutions, HIADE has found an excellent solution, and by 10,000 it has converged.

The acceleration observed is actually due to a combination of four factors: 1) BP

3333 parumetenzation,2)bnary crossover. 3) local search every 50 generations, and 4)
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immune conditioning after every local search. The effect of the last two alone is to

accelerate convergence by a factor oftwo to six, a speed up that should be observed for

other objective functions as well-

For future \ryorh several refinements of these acceleration strategies are suggested,

some of which may improve performance yet more- The first is adaptive hybridization.

Afterthe first hill-slide at 50 generations, the population will have very many good

solutions. Using DS more frequently after tlrat may increase the convergence rate of this

second stage ofthe search. A strategy such as br-1b-2-10 is suggested. The random

selection in the initial simplex should send DS down into new valleys, and replacing only

one vector will not decrease population diversify.

Second is a modification to VBHDE. Even though VBDE showed better

convorgence characteristics than DE alone over the first 2,500 FEs, combining it with

HDE was either slower than HDE, or resulted in premature convergence. One possible

reason is that VBDE converges atlater generations. A 75-100 strategy was attempted.

This showed promise initially, but the second DS slide (after 150 generations) didn't

occur until after 10,000 FEs. Between generations 75 and 150, there are signiflicantly

fewer constraint violations, and thus higher NFEs. A better VBFIDE sftategy may be to

run DS after a fxed number of FEs (for example after 2000, 5000, 10,000), rather than a

fixed number of generations.

Finally, the following IADE recommendations are made. First,Immune

conditioning was not effective when used after every generation. This biases the search

too strongly. Using it more sparsely - after every Æ generations - might be more
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effective. Second, the algorithm currently introduces all conditioned antibodies into the

next generation. An alternative is to use the entire population for antibodies (PBA:

I\Io/o),but only introduce the best few into the next generation- Thfud, instead of

selecting a fixed percentage of antigens and antibodies, birthrates could be imposed. For

example, vectors with birthrates higher than 0.9 could be selected as antigens.

8.3 Aerodynamíc Optimization

The advantage of usíng DE for aerodynamic optimization is its ability to fmd global

solutions. This means that fans can be designed without prior bias toward existing

blading. Ultimately, this could result in an unanticipated shape with superior

performance. By improving airfoil representation and accelerating convergence,

significant steps have been made toward realungthat potential.

The new airfoil parameteraation improves considerably the quality of the solution

space for optimization. BP 3333 removes many of the unnatural constraints used by

Bezier parameterization, allowing many additional potentially valuable designs to be

investigated. It also places more natural constraints on the shape, such as second-order

continuity. Thus fewer non-aerodynamic shapes are considered. The result is a smaller

solution space with a higher proportion of valuable shapes.

This new solution space is not only easier to search, it is also easier to constrain,

which is key to a useful design algorithm. A simple penaþ method for imposing soft

constraints has been demonstrated. For future work, this soft constrainer should be

examined more thoroughly. The single experiment conducted suggests that convergence
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rate is not increased dramatically, but this may not be true in general. Other constrainers,

such as the immune system method, may perform better. There may be additional

categories of constraints that should be included.

It has been shown earlier (Rogalsþ et al, 2000) that DE is too slow to be used with

anything but the simplest aerodynamic model - that of potential flow. By ignoring

viscosity in the search for the best design, the strength of the design algorithm is reduced

in two respects. First, it is possible that the true viscous effects for the frnal design are not

minimal, in which case ttre design may not in fact be optimal. Second, low drag will be a

key feature of any efficient fan, butwithout viscosity, drag cannot be calculated, and so

low drag cannot be used as a design objective.

Hence the need for acceleration. We are confident that the acceleration achieved is

applicable broadly for aerodynamic optimization. Convergence rate for the C4l70lC50

design, which is very representative of turbine blading, was increased hve-fold. The

acceleration pattern was observed for a broad range of design targets. This includes a

fourth case - a propeller design - chosen after the acceleration strategies had been

developed.

In all four c¿ìses, accelerated convergence occurred in under four minutes on a

desktop PC that is no longer state of the art (Pentium 4,l.6GHz,256MB RAM). Very

rough estimates suggest thata boundary layer solution could multiply computation time

by three orders of magnitude. If so, by the end of the second day of computation (6,000

FEs), the user will know whether convergence will occur. By the end of the thfud (10,000
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FEs), convergence will be complete. Using today's state of the art, complete convergence

would take less than a day.

Thus our final recommendation is to supplement the flow solver with a boundary

layer solution. The Keller box method, for example, could be attached seamlessly to the

vorticity panel method. The result will be a more useful aerodynamic optimization

method, capable of considering both flow separation and drag.
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Appendix A FanOpt

FanOpt is the interactive window-based software package developed to perform

aerodynamic optimization. All results reported in this thesis were obtained using FanOpt.

Two versions of the software are included on the accompanying CD. In FanOpt v 3.3,

immune acceleration occurs after every generation. In FanOpt v 3.5, immune acceleration

occurs with the same frequency as that of hybridization. The HIADE b-b-50-100 10-10-

10 results reported in Chapter 6 were obtained using v 3.5.

To use the software, most systems will require several .dll files. These are included

on the CD in the folder "Appendix A FanOpt\dll files". They should be copied to the

"Windows\System" folder. Note that Windows Explorer sometimes does not show these

"hidden files". You may have to change the view settings to "view all files"

To install the software, copy all files from the folder "Appendix A

FanOptVun_fltles" into any folder on your machine.

Document¿tion for FanOpt is included on the CD in the document "Appendix A

FanOpt.htm".
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Appendix B Airfoil Representation

In Chapter 3, two new airfoil parameterization methods were developed and

compared to Bezier paraneterization. The BP 3333 and BP 3434 parameterizations use a

new set of parameters to define their component Bezier curves. 63 airfoils were chosen

for representation by the three parameterizations. Links to the representations are

provided on the accompanying CD in the document "Appendix B Airfoil

Representation.htm".


