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Abstract

Low-earth orbit satellite constellations provide important services over very large

areas in a uniform way. Traditional spacecraft communication typically requires

manually-staffed ground stations with space systems experts controlling and mon-

itoring bus and payload systems during each pass. These onerous requirements limit

the ability to access valuable space assets, more so in the case of large constellations

of satellites.

This thesis presents a virtual ground station (VGS) with a real-time virtual satel-

lite model (VSM) and a fault-management system based on industrial statistical pro-

cess control (SPC) techniques and time-domain feature extraction. The VSM is in

continuous view of the VGS at all times and allows the operators to send and receive

data as required without waiting for a pass. The operators always interact with the

VSM through a graphical user interface (GUI) terminal as opposed to the spacecraft

itself such that the VSM mimics the actual satellite as much as possible. The VGS

streamlines spacecraft operations by managing every real pass, uploads stored com-

mands when a pass occurs, automatically downloads telemetry and maintains the

VSM. This eliminates trivial housekeeping activities and lets the experts focus on

complex problems. The VGS also contains a real-time orbit propagator that provides

the real-time position and velocity of the satellite and lets the operators visualize

the mission in 3D. In this thesis, the VSM uses the power subsystem as an example

and takes the form of a real-time power subsystem simulator of the spacecraft. The

fault-management system employs custom algorithms to monitor telemetry from the

spacecraft and compare it to the predicted telemetry from the VSM to perform early

fault diagnosis. The specific faults considered are the loss of a solar string(s), in-

crease in the battery’s internal resistance and excessive power consumption onboard

the spacecraft.
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A unique testbed consisting of a simulation engine with an actual satellite model

(ASM) and a serial communication protocol is presented. It is used to demonstrate the

functions of the VGS through various scenarios during a typical interaction between

the VGS and the satellite. Some of these scenarios include initiation of communication

with the spacecraft, automatic telemetry downloading, anomaly detection, real-time

data requests and storing and uploading commands to the spacecraft.
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Chapter 1

Introduction

The space industry has come a long way since the launch of “Sputnik-I” in 1957.

Ground control facilities and operations have played a significant role in this. The

space industry has experienced a shift recently from large geostationary spacecraft

to groups (or “constellations”) of smaller, low-cost spacecraft in lower orbits [1,

2]. Some recent constellations include Canada’s RADARSat Constellation Mission

(RCM) [3] currently in orbit, ESA’s Swarm Constellation Mission launched in 2013

[4] and NASA’s A-train Satellite Constellation for weather observation [5]. These

constellations have several advantages over a unitary spacecraft in terms of science

return [6]:

� Higher reliability for data return

� Lower cost for larger science data

� Repeated ground passes

� Allow simultaneous coordinated measurements promoting redundancy

1
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1.1 Motivation

There is a growing market for constellations of satellites clearly driven by the advan-

tages they provide as mentioned above. Naturally, this has led to an emerging need to

augment the accessibility to the services offered by them. Operating a ground station

for even one satellite is a costly and time-intensive undertaking. Traditional satellite

operations (Figure 1.1) require that all commands be rehearsed and tested prior to

execution, and each pass must be staffed by expert teams of highly-trained engineers,

scientists and technicians to monitor and command the spacecraft. These onerous

staffing requirements not only limit our ability to access valuable space assets but

also increases mission costs and errors and is time consuming. Operators and experts

inspect the telemetry data to determine the current satellite health using different

statistical techniques and the analysis of such a large volume of data by humans is

error prone. For large constellations, this amplifies the ground operations challenge

with each spacecraft having its own idiosyncrasies that must be managed individually,

thus, becoming virtually unmanageable. This is especially difficult when on limited

budgets, as is the case for many small satellite missions. An example is the use of

a Low Earth Orbit (LEO) constellation requiring approximately 40 to 80 spacecraft

to provide global services such as remote sensing or communications data [7]. With

each spacecraft making multiple ground station passes daily, staffing the station for

these passes, managing the data and monitoring anomalies would be infeasible with-

out a large and dedicated team. Moreover, constant human attention is required since

satellite visibility from Earth can be limited which requires fast satellite to satellite

handover especially for communication satellites. This puts a tremendous strain on

the experts or engineers and operators, potentially leading to costly mistakes and

largely influences the costs of mission operations. Also, ground operations currently

represent about 20-30% of the total mission costs which is significant [8].
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Figure 1.1: Traditional spacecraft communications [9]

The industrial partner for this research is Macdonald, Dettwiler and Associates

(MDA), a world leader in spacecraft design and operations. With the recent shift

towards constellations of small spacecraft from a single large spacecraft, MDA needs

to adopt technologies that facilitate greater efficiency when interacting with space-

based assets. Clearly, there is a need to automate most of the space/ground interface

including fault detection.

1.2 Hypotheses

The challenges identified above can be overcome by developing an automated ground

station capable of performing normal housekeeping activities, thereby, reducing the

dependency on experts and mitigating the risk of human error. Such a system would

streamline the ground station operations processes and reduce the financial and hu-

man resources burden. By reducing manual activity, an automated ground station,



CHAPTER 1. INTRODUCTION 4

hereafter called the “virtual ground station” or VGS, facilitates interaction between

the satellite, operations and science teams. The virtual ground station is made up of

two primary components. The first component comprises a mathematical model of

the spacecraft systems, along with a communications “pass” manager that handles

actual command and data transmissions with the spacecraft. It is called a mathemat-

ical model as it can be represented by a set of interdependent equations. The user

interface terminal accesses data from the spacecraft model, providing the user with

either real data from the past or predicted data for “live” data requests for which

real data has not yet been linked to the ground. The second component of the vir-

tual ground station is a Statistical Process Control (SPC) module that monitors the

real telemetry streams from the spacecraft and compare them with the model and

historical data to identify potentially anomalous operations. This research tests the

following specific hypotheses:

� Virtual Satellite Model: A virtual ground station can be developed based on a

mathematical model of the spacecraft that abstracts away spacecraft communi-

cations logistics, giving ground operators the sense of a spacecraft in continual

communication at all times. The model is based on interactions between differ-

ent components of a spacecraft and is simulated using the mathematical equa-

tions governing the concepts behind those interactions and hence, is described

as a mathematical model. I hypothesize that the advantages to such a system

are manifold as given below:

– Reduces burden on highly-trained engineers to attend and analyse every

ground station pass to ensure safe and efficient operations. Engineers can

focus on more complex and intricate problems that need their attention

– Manages every pass, uploads stored commands when available, downloads

telemetry since the last pass and maintains the virtual spacecraft model
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reducing the burden on human operators and experts

– Facilitates continuous interaction with the virtual spacecraft model which

mimics the real spacecraft and is essentially a crude model of the spacecraft.

� Statistical Process Control: Traditional analysis techniques from the field of

automated Statistical Process Control can provide near real-time health and di-

agnostic evaluations based on spacecraft telemetry trends and how they change

over time.

I hypothesize that SPC tools developed for the virtual ground station system

are beneficial in many ways.

– It will make it possible to monitor a constellation of satellites with ease.

Traditionally, trend analysis of telemetry data has been time-consuming,

repetitive and labour intensive. Extensive human involvement could be

subject to error, leading to catastrophic failures if the operators fail to

identify and detect faults in critical safety components [10]. Many failures

are subtle and could be precursors to a fatal event. For example, the elec-

tronics on a reaction wheel may slowly begin to require more current due

to a bearing starting to show premature wear (potentially due to a manu-

facturing error). Initially, this issue would present itself as merely slightly

more current than normal, but still well within the acceptable bounds pro-

vided by the reaction wheel manufacturer. If left unchecked, this issue

could lead to the reaction wheel drawing down the entire power bus as the

motor draws more and more current. Even worse, the bearing could suffer

a dramatic failure, resulting in the sudden cessation of the wheel and either

a tumbling spacecraft and/or a damaged structure. If ground operators

could be made aware of the degradation before it escalates into a failure
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using SPC, they could switch to a redundant unit or modify operations to

avoid the failure.

– With SPC, key telemetry items (such as bus voltage, current) are analysed

through automated control charts to detect issues that require attention.

Patterns, trends and out of control conditions aid in continually verifying

if the “process” (i.e., spacecraft operations) is in equilibrium.

– It also acts as a visualization tool to facilitate the assessment of various

subsystems’ performance.

– Most importantly, the use of SPC will reduce the dependence of satel-

lite monitoring on human resources to a large extent, which is especially

important when considering the growing popularity of constellations of

satellites. Since, SPC is executed in real-time, it helps identify anomalies

in the system that might otherwise not be detected by operators before

they lead to catastrophic failures. This is preferred to expert systems for

the virtual ground station since it is easier to develop and simplistic.

1.3 New Contributions

The work presented in this thesis develops the software framework for supporting a

virtual ground station that uses fundamental concepts from industrial SPC to auto-

mate spacecraft ground station operations and thereby minimize the burden on human

operators, particularly for constellations of spacecraft. In this research, the power

subsystem of the spacecraft is used as an example to demonstrate fault-detection for

subtle anomalies including a sudden loss of a solar string, abrupt excessive power

consumption and sudden increase in the battery’s resistance. It also presents a math-

ematical model of the spacecraft known as the virtual satellite model that would give
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operators a sense of continuous communication with the spacecraft. The virtual satel-

lite model is a crude model of the spacecraft that mimics the actual spacecraft as much

as possible. Simple and reliable SPC algorithms are developed for fault-detection and

diagnoses based on control charts and rules used in the industry. These are tested

extensively and can be applied to other spacecraft without many modifications. The

fault-management system using the SPC algorithms in no manner depends on the out-

put from the virtual spacecraft model as the fault-detection only occurs by analyzing

the telemetry obtained from the actual spacecraft. In this sense, the virtual space-

craft model and the fault-management are independent of each other. Though the

virtual spacecraft model is a rudimentary model of the real spacecraft, this research

does not necessarily assure or aim to establish the accuracy of the model.

This thesis also presents a user interface terminal as part of the virtual ground

station for data access and sending commands to the spacecraft. Using it, the opera-

tors can store commands in a queue at any time without waiting for a pass such that

these commands are later sent to the spacecraft automatically. This is a valuable

tool for evaluating the architecture of mission operations and is also easy to use for

amateur operators.

A testbed to verify and demonstrate the functioning of the virtual ground station

is presented. It provides a unique set of capabilities and flexibility and works as a

reliable setup. The setup consists of serial communication between the simulated

spacecraft and the virtual ground station which is a starting point for extending

scalability to large spacecraft constellations. Multiple simulated spacecraft can be

connected similar to the procedure presented for a single spacecraft for this testbed.

Demonstration of complex mission operations can be done using the testbed in a cost

effective manner.

This research has advanced management and control of spacecraft from the ground
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by empowering spacecraft ground controllers and reducing operation costs signifi-

cantly. This automated software framework is especially useful when dealing with

a constellation of satellites. With the development and application of SPC algo-

rithms to mission operations, highly-trained and qualified engineers would no longer

be required to initiate communication with the spacecraft, perform mundane house-

keeping activities and troubleshoot basic systems. The virtual ground station is the

first system to use SPC combined with a detailed spacecraft mathematical model to

streamline satellite operations. The insight from the research presented in this the-

sis will help aerospace companies such as MDA and amateur spacecraft operators to

leverage the power of streamlined ground control. This framework is a beneficial tool

for the Canadian space industry.

The conceptual model of the virtual ground station can be seen in Figure 1.2.
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Figure 1.2: Conceptual model of the virtual ground station. Note that the virtual

spacecraft model is a crude model of the spacecraft and the fault-management system

runs independent of this model.
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In summary, the salient contributions of my research are:

� A power subsystem simulator for a satellite to help with the designing of the

electrical power system and sizing the electrical components such as the batter-

ies. The power subsystem is taken as an example to demonstrate the concept of

the virtual ground station such that the power subsystem simulator takes the

form of the virtual spacecraft model for this thesis.

� A user-interface terminal built in Matlab App Designer to allow the operators

to communicate with the virtual ground station and facilitate data access and

command handling.

� A fault-management system based on statistical process control methodologies

and time-domain feature extraction to detect major anomalies in the space-

craft’s power subsystem. Fault-detection occurs on the telemetry obtained from

the actual spacecraft during passes.

� A testbed with a simulated model of the actual satellite’s power subsystem used

for demonstrating the functionalities of the virtual ground station. The testbed

uses serial communication between the virtual ground station and the actual

satellite simulator.

1.4 Thesis Outline

This thesis is separated into seven chapters. Chapter 1 introduces the idea of a virtual

ground station with fault-detection capabilities using statistical process control tech-

niques and discusses the significance of such a system. This chapter also includes a

description of the hypotheses and the components of the VGS. Chapter 2 provides an
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insight into the concept of autonomous ground stations and the challenges in their de-

velopment. It includes background research into existing autonomous ground stations,

applications of SPC and research gaps to be addressed. Chapter 3 describes a power

subsystem simulator for a low earth orbit CubeSat which is later applied to a real mis-

sion, ManitobaSat-1, in Chapter 4 in which the results from the simulator help design

the power subsystem for the mission. Chapter 5 focuses on the development of the

fault-management system of the VGS that utilizes SPC techniques and time-domain

feature extraction. The methodology behind the development of the fault-detection

algorithms is elaborated. Chapter 6 is devoted to the designing of the VGS’s interface

terminal, its features and the implementation of the fault-management system in it.

The chapter also explains the use of the power subsystem simulator as the virtual

spacecraft model. The latter part of the chapter presents a testbed used to verify

the functionalities of the VGS such as sending commands and receiving telemetry

from a simulated satellite model and details a simulated demonstration of the typical

communications between the VGS and a satellite. Finally, Chapter 7 summarises the

conclusions and the major contributions of this research and ends with the recom-

mendations for future work. This thesis may contain some content from [11] and is

used with permission from Springer Nature Journal of Aerospace Systems.



Chapter 2

Literature Review

This chapter provides a comprehensive literature review of all the fundamental con-

cepts required to understand the design, methodology of the virtual ground station

and the results of this research. There are four sections in this chapter. Section 2.1

discusses the existing autonomous ground station systems, their features and limita-

tions. This is followed by a list of challenges faced during automation of ground station

systems. Section 2.2 discusses existing power subsystem simulators for satellites and

their importance. An overview of statistical process control (SPC) applications is

provided in Section 2.3. This also covers some major existing systems using time-

domain parameters for anomaly detection. Finally, the research gap in the published

literature from the previous sections is identified in Section 2.4.

2.1 Autonomous Ground Stations

There has been considerable research done on autonomous and virtual ground sta-

tions for satellite communication in the past. One of the earliest autonomous ground

stations were the Automatic Picture Transmission stations used for National Oceanic

12
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and Atmospheric Administration satellites in the US. This was introduced when the

satellite, TIROS-8 was launched in 1963. These simple stations could support au-

tonomous data acquisition. Though useful, these did not have a lot of features and did

not support continuous ground station operations. With the introduction of “system-

atic spaceborne data collection services” from the ground segment, multiple remote

ground stations, each operationally autonomous could form a system together. Inter-

rogation, Recording and Location System was such a system employed by Nimbus-3

launched in 1969 [12]. Standardizing the format for processing and distributing satel-

lite data in 1987 has allowed information from different parts of a satellite to be put

into packets to be sent to the ground stations or as commands to the satellites. The

European Space Agency started using the Consultative Committee for Space Data

Systems for its ERS-1 mission [13]. This provides very reliable uplink with oppor-

tunities for automatic retransmission. The above systems largely focus on ground

station interfaces and remote operation of ground station hardware. This can be

laborious due to the various types of radio and antenna systems available. This can

be overcome by maximizing automation in the ground station itself, hence, reducing

the required software for remote operation [13].

NASA Goddard Space Flight Center (GSFC) operates many spacecraft with var-

ied objectives in space. NASA has made several attempts to implement automated

spacecraft operations over the years. Anderson [14] conducted research on these sys-

tems. Several existing systems are analyzed and ranked according to a scoring system.

The operations are analyzed for their automation potential using attributes such as

their ability to be inspected, predicted or repaired within the existing ground systems

architecture. A score based on these (and other) attributes helps identify which oper-

ations should be automated. One of the earliest systems reviewed is GENIE (Generic

Inferential Executor) which reduced the required labour by 50% in the case of a typ-

ical NASA command centre where two people, namely the command controller and
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spacecraft analyst, would be staffed per satellite per shift. The command controller

decides which commands to send based on input from the analyst who monitors the

spacecraft’s health and is technically the ‘expert’. While useful, GENIE has no statis-

tical monitoring capability (for detecting subtle changes that could suggest an early

stage fault) and is often too slow to be executed in real-time. Based on the research

conducted on existing systems, Anderson [14] provides a framework for developing

artificial intelligences to conduct autonomous satellite operations with a focus on

CubeSats. It is built using a rule based system developed using the Java expert sys-

tem shell. It provides error recovery and scalability but is still, largely dependent

on human operators. He suggests that this can be overcome using a Deterministic

finite automata which contain agent actions as states and satellite operations as its

transitions.

GSFC follows an incremental approach for the smaller, low-risk and low-priority

satellites. Newer automation functions are added as needed avoiding a one-time

upgrade. This allows satellites to run until their life’s end at minimal cost [15].

Similar to the standardizing efforts mentioned in [13], an automated message passing

interface called Goddard Mission Services Evolution Center Message Passing Interface

(GMSEC MPI) facilitates simple addition of system components. All modules have

the same message wrapper. The components know what the messages look like,

allowing them to read messages reliably. Though automation has been implemented

in multiple applications at GSFC, no anomaly handling is done. When an anomaly is

detected, all corrective action is taken by a human. That is when a system parameter

goes red or indicates fault, a message is sent to the engineers and the system waits for

help. This is purposefully done as no dependable anomaly handling system has been

developed yet. Another limitation is the absence of a simulator that can be applied

to many satellites with minimal changes. Each simulator at GSFC used for anomaly

detection is custom designed uniquely. “Tailored automated scripting” is required for
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each satellite [15].

NASA’s Extreme Ultraviolet Explorer (EUVE) satellite is part of the Deep Space

Network that is designed to operate with the Tracking and Data Relay satellite Sys-

tem. The EUVE Science Operations Center uses an autonomous telemetry monitoring

software that has helped reduce console work from three shifts to one. This system is

similar to the one used by NASA for Low Earth Orbit (LEO) weather satellites. Or-

bital elements are obtained from official tracking databases and passes are scheduled

and tracked autonomously. It is cost-effective since multiple ground stations share

the responsibilities [16].

The European Ground System - Common Core Initiative is proposed to have an

architecture similar to GMSEC MPI [15]. Unlike GSFC, the Navel Research Labora-

tory’s Neptune architecture implements scripts to handle basic anomalies. Examples

of corrective actions include memory flush and rebooting. They have modes where

automation can be chosen over manual operations and vice-versa. This promotes

flexibility. Also, Neptune is capable of automating contact with each satellite and

connecting with the most suitable hardware tools in real-time to do that on a case

by case basis using software-defined switches. This is one of the most advanced au-

tomated ground station systems in the world [15]. Nevertheless, this system requires

advanced resources to build and is expensive.

Holdaway [8] developed a program for autonomous ground station control of small

satellites. He theorized that mission costs could be reduced by making very small com-

promises in data return and standardizing subsystem procedures for housekeeping.

Examples of these compromises include occasionally missed passes and slower return

of non-urgent data. He concluded that the personnel cost the most out of all op-

erational elements. Around 5-50 people per shift would be required to monitor the

satellites around the clock. The proposed system includes features such as automatic
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and eventual autonomous checking of critical data during real-time passes to iden-

tify abnormal parameters, automatic reception and storage of downlink telemetry,

open-loop tracking of high-altitude satellites, prediction of tracking data for a week,

and automatic dialing to expert engineers when in need. There is also a closed-loop

feedback of error-signals into the orbit determination to autonomously update the pre-

dicted orbit parameters for the future. An advanced version of this system is in use

at the Rutherford Appleton Laboratory and Chilbolton Observatory. Nevertheless,

Holdaway’s system does not provide “continuous” communication with the satellite

as is the case with the virtual ground station that does not require the communication

to be restricted to the periods when passes occur.

Fault detection in the components of a ground station is a significant aspect of

ground station automation. A system called Fault Detection, Identification and Re-

covery (FDIR) system is described in [13]. The ground station’s control server sets

the proper configuration for all the components using the FDIR system. When an

anomaly occurs in any component’s behaviour, the FDIR system performs a fault

diagnosis using a list of possible reasons and solves the issues with predefined recov-

ery algorithms. This functions as a tree-like checking sequence where the current

state is compared to the desired configuration and known fault cases. When a fault

occurs in the form of an undesired state in a software programme, software starts

the programme for that interface to recover. In cases of complicated failures, human

operators and experts are informed. Freimann et al. [13] suggests that the autonomy

of this ground station system is obtained by looking at the ground station as a “gate-

way” and the whole system as a “black box” on route to the target satellite. More

recently, Planet Labs, a private Earth imaging company uses many open source pack-

ages for fault detection. These packages were originally designed to monitor websites

and servers but are now applied to ground stations as well. This open source network

monitoring system runs on the ground station servers and continually monitors the
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satellite’s health. The cloud-based central server is notified by the local machine when

a fault occurs. An alert is issued to an engineer when needed. In the case of minor

faults, hardware is adjusted to reboot or recover in events of power failures [17].

Bernier and Barbeau [18] describe a virtual ground station system that effectively

improves the accessibility of satcom services when connected to the internet. This

allows launching of tracking sessions from different cities. To maximize platform

adaptability, it is designed using platforms such as Java and Cobra. It is equipped

with virtual equipment such as a transceiver, an antenna and a rotor. It provides fea-

tures such as antenna steering, transceiver configuration, satellite position computing,

satellite tracking and pass prediction. An aesthetic end user application accompanies

the system. This system has been successfully tested for satellites from the Iridium

constellation.

Bentley et al. [15] opine that non-space domains provide ideal tools for overcoming

the challenges of a ground station architecture. They studied the similarities between

industrial control systems (ICS) and satellite ground stations. These include flexi-

bility, cost-efficiency, failure intolerance and lifetime efficiency. Based on this, they

suggest an architecture using the Model View Controller widely used in ICS. The con-

troller and model are connected in a closed loop making the system to be simulated

and tested with operational code. This makes integrated simulation possible.

2.1.1 Challenges in the development

Automation is clearly essential to improving operating efficiencies for satellite opera-

tions. There are several difficulties that were encountered while designing the virtual

ground station. This sub-section summarizes the main challenges faced by researchers

automating ground station operations [15]:

� Most existing ground stations have not been built with automation in considera-
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tion. Hence, adding these new software capabilities is costly and time intensive.

Adding new design features and requirements after development is difficult than

implementing them during the planning phase.

� As mentioned in Chapter 1, constellations of LEO satellites are getting popular.

Each satellite is different and this diversity creates more challenges in terms of

developing common software packages, simulators and code reuse.

� There is no universal documentation defining what automation means for a

ground station. Some systems classified as automatic only handle scripted satel-

lite passes while others are capable of performing most routine operations.

2.2 Power Subsystem Simulators

The virtual ground station consists of the virtual satellite model that mimics “contin-

uous” communication between the operator and actual satellite. The virtual satellite

model is essentially a satellite simulator with the focus being the power subsystem

simulator in this thesis as mentioned in Chapter 1. The idea of the power subsystem

simulator can be extended to the whole satellite as required. The power subsystem

simulator can be used to assess system operations, behaviour of the power source

and subsystems, and analyse the power consumption and generation cycles through-

out the mission. In this thesis, the goal of the developed simulator is to function as

closely as possible to the actual spacecraft.

With the demand for advanced efficiency and reliability, smaller size and lighter

weight, the ability to design and test sophisticated spacecraft power subsystem simu-

lators becomes relevant. Research for such simulators has been going on for decades

and a major issue faced in developing these simulators is the complex interconnectiv-

ity between the components and the numerous interactions leading to unpredictability
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of the whole system despite individual component behaviour being understood well.

Most simulators are either based on generalized system analysis models or custom-

made models for specific systems. Some of the earlier systems such as SPICE and

SCEPTRE faced problems with dynamic memory management and inflexibility for

future modifications [19]. Cho and Lee [19] hypothesize that this infeasibility is due

to defining the complete power subsystem completely in terms of circuit elements.

They suggest having local subsystems connected using global interconnection laws.

Based on these observations, the EASY5 software developed by Boeing Computer

Service is used to develop a model for small and large scale power subsystem models.

Lee et al. [20] describe an advanced version of this system for application to more

complex power systems. Another software based on modularity is the EBLOS which

uses a nodal description input. Capel et al. [21] validated this software against the

ERS-1 mission. Similarly, many other sophisticated power subsystem simulators es-

pecially in the case of CubeSats employ nodal analyses where the circuit is analysed

in a complex network using the nodes as inter-connective reference points. Voltage

and current values at each node are calculated and the entire circuit is solved using

simulatenous equations [22]. A more recent simulator based on nodal analysis devel-

oped for the TUSUR University project is given in [23]. In this simulator, modelling

time is reduced by using the method of moments and the modified method of nodal

potentials.

Melone [24] developed an electrical power subsystem simulator for preliminary de-

sign and test of the TINYSCOPE nanosatellite, a three-axis stabilized, low earth or-

biting, electro-optical imager. It had high power requirements which posed challenges

in terms of power collection, energy storage and power management and distribution.

This was overcome with an analytical-numeric approach.

Bauer [22] describes a method to perform an electrical analysis and a transient

thermal analysis of a satellite electric power subsystem. The program they developed
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runs the power subsystem through one or more complete orbits and plots curves to

investigate voltages, currents and temperature changes. But, this program does not

consider load variation for various subsystems during the mission. Kim et al. [25]

performed statistical analysis of the satellite electrical power subsystem’s on-orbit

failures and anomalies with a focus on comparison between LEO and Geostationary

Equatorial Orbit (GEO) satellites. Partial failures are classified into different classes

depending on their severity. Non-parametric estimation is used to study the failure

and degradation behaviour.

A power subsystem simulator designed for Mysat-1 at Khalifa University has a

robust algorithm that can be used to test several control algorithms over multiple

orbits. The dynamic interaction between the components is implemented using a

coordinate control with voltage regulation and battery charging and discharging sys-

tems [26]. The popularity of the Matlab/Simulink environment for simulators has

increased drastically. One such simulator developed for a nanosatellite is described in

[27]. However, the system seems complicated in implementation but the results show

little variation in the power consumption throughout the simulated time indicating

that the mission operations are assumed to be too simplistic.

Traditional programming languages such as C, C++ and FORTRAN typically

result in large code making it difficult to understand, modify and troubleshoot. This

makes Matlab/Simulink a better alternative due to increased flexibility and easier

handling. More established software such as EASY5 mentioned previously are some-

times used alongside Simulink where the controller is built in Simulink while the plant

model in EASY5 [28]. Saraf et al. [29] performed a comparison of different simulation

tools on the basis of various criteria such as real-time capabilities, design flexibility

and user-friendliness. It was concluded that Simulink was better than EASY5 for

low-budget spacecraft simulators since the former has many popular toolboxes and

wide range of aerospace add-ons. Though a good software, EASY5 is not used widely
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and has a limited availability of toolboxes.

2.3 Statistical Process Control

SPC has been used in industrial applications since the 1920s when chart patterns were

analysed and interpreted manually [30]. In the 1980s, with technological advance-

ment and the changing needs of the manufacturing industry, manual methods for

creating and analysing control charts were no longer sufficient. Quality control prac-

titioners were required to have considerable skill and experience to perform control

chart pattern recognition. This led to the idea of expert systems and other computing

technologies. This was explored by researchers such as Swift (1987) [31] and Cheng

(1989) [32]. Cheng focused his research on the application of SPC in small-batch

manufacturing using expert systems concepts. In the 1990s, with the development

of artificial neural networks for SPC chart pattern recognition, researchers overcame

drawbacks in the previous expert system approaches by improving the handling of

non-linear data, fault tolerance and adaptability. Zorriassatine and Tannock [33] pro-

vide a review of neural networks for SPC developed during the 20th century. Feature

extraction using mathematical models coupled with projection techniques is used to

apply SPC to make a better distinction between damaged and undamaged samples.

Here, damaged samples refer to the samples with defects or faults and the undamaged

samples are the samples that meet the product or design requirements reasonably.

Sohn et al. [34] performed vibration-based damage diagnosis using SPC. This is done

using data compression for feature extraction through control chart analysis which is

very suitable for automated continuous system monitoring. This is applied to specific

features to identify damage in structures. The feature extraction is done by develop-

ing an auto-regressive model with an undamaged sample. The control limits of the

X̄ control chart are selected from the coefficients of this model. Several projection
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models such as “principal component analysis (PCA) and linear and quadratic dis-

criminant operators with SPC” are used to identify gradual progression of damage in

the structure. Methods such as PCA can be applied in conjunction with multi-variate

statistics for anomaly detection. Bingqing et al. [35] constructed a PCA model to

study the correlations between variables in an undamaged data sample. They suggest

that PCA reduces the dimensionality of the data space which makes the process of

anomaly detection simpler as that eliminates overlapping information. Based on this,

an algorithm for anomaly detection for an attitude control system of a spacecraft is

devised. For detection, multivariate statistics and system states are studied. Nev-

ertheless, researchers such as Bouzenad and Ramdani [36] opine that conventional

PCA often assumes a Gaussian distribution which is not always practical in industrial

applications. They suggest combining it with non-parametric control charts to over-

come this. Numerous papers have been published with learning methods and feature

extraction for spacecraft [37, 38, 39, 40]. Though PCA is useful, it works best with

high-dimensionality data and is an unsupervised learning technique similar to clus-

tering. Univariate SPC is used more than multi-variate SPC with projection models

such as PCA when the process in question is relatively stable. Also, the identity of

the original variables is lost in PCA which means that it is difficult to identify the

variable in which a particular detected fault is in. For processes such as the spacecraft

health-monitoring which are expected to be stable most of the time, the operators

would like to know exactly where the fault is. Multi-variate SPC with PCA algo-

rithms has a greater complexity in techniques due to the inter-dependence between

different variables and often requires a complete understanding of the univariate SPC

analysis. So, it usually takes more time to understand, develop and write code for

as compared to simplistic univariate SPC algorithms. More information on PCA can

be seen in [41]. Sometimes, PCA’s principal components are biased towards features

with high variance, leading to false results when data is not standardized. More de-
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tails can be found in [42]. Simplistic algorithms for performing SPC are required

which would not require the operators to improve the process, instead methods that

would determine whether the spacecraft or process is in control are needed.

Though typical machine learning techniques are more common for anomaly de-

tection, unsupervised and supervised machine learning algorithms usually involve a

complicated model that understands the process or the system it is trying to study to

provide insight into the roots of the process. When a parameter in a process is rela-

tively in control most of the time and does not need to be gauged all the time, SPC is

cost-effective and accurate and can be implemented using a simple rule-based model

[43, 44, 45]. Such is the case for the trivial housekeeping activities of a spacecraft.

SPC techniques are frequently used for maintenance of huge industrial units such

as aircraft systems. Beabout [46] developed a SPC visualization tool for the main-

tenance management of aircraft at an Air Force base in the United States. He used

control charts for displaying mission capable rates, flying scheduling effectiveness

rates and the aircraft subsystems influencing these parameters. A detailed guide on

how to develop the algorithms for different SPC applications with control charts and

rules is given in [47]. The Jet Propulsion Laboratory (JPL) uses SPC to monitor

NASA’s Deep Space Mission Network. The data received on providing telecommu-

nications services and ground based science observations is retrieved for analysis and

interpretation by the SPC software. SPC provides a cost-effective and important tool

to evaluate data system tracking, functional availability and system configurations.

Recent applications include exploration of the mean time between failure for different

antennas. Shewhart control charts are the major tools used at JPL for this [48].

In manufacturing applications for quality control, a need for real-time SPC ca-

pabilities is often observed. Lee et al. [49] provide a software with algorithms that

conduct analysis of real-time sensor data from semiconductor manufacturing equip-
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ment. Multi-variate analysis techniques coupled with SPC are used to generate real-

time alarms indicating malfunctions. The algorithm allows automatic generation of

time-series models for the baseline process and any deviation is detected using SPC

control charts.

Though SPC has been part of the space industry in the form of manufacturing

quality control and network monitoring, it has not been used in real-time satellite

operations and maintenance. This explains the scarcity of published works in the

domain of SPC applications to real-time anomaly detection in satellite ground control

systems.

2.3.1 Time-domain Features

Data-driven systems require feature extraction to transform raw signals into infor-

mative signatures. Data descriptive statistics using time-domain features are one of

methods for this. Time-domain features that represent the characteristics of the sys-

tem are used to devise algorithms that perform classifications to effectively divide the

data and detect anomalies. These features are provided as input to the system rather

than using the raw data [50]. This is demonstrated by Park et al. [50] in developing

a long short-term memory fault detection model for an industrial robot manipulator.

There are many algorithms for characterizing time-series features to help extract

useful features from a time series, 9000 of which are analyzed in [51]. Fulcher [52]

mentions that quantify patterns in time series across the measurement time uses

global features that can simplify complicated temporal patterns from different time

intervals into low-dimensional understandable processes. Global features allow us

to apply them to various time series of different lengths easily and developing algo-

rithms for analysis much simpler. Some of the major global features include variance,

mean, kurtosis, crest factor and autocorrelation. These reasons make global features
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lucrative to use for anomaly detection in this thesis.

Nanopoulos et al. [53] uses several statistical first and second order features after

evaluating their benefits for classification. These features such as mean, standard de-

viation, skewness and kurtosis are used to identify synthetic control chart patterns in

SPC. The authors theorize that the selected features are simple to implement. While

efficiency is certainly higher with more complicated features, automated feature se-

lection methods are much easier to conceive for the selected features. It was also

observed that the accuracy of the method decreased with increasing series length.

Wang et al. [54] proposes a general framework to perform time-series clustering with

high accuracy using a small set of global features such as measures of trend, season-

ality, chaos and kurtosis. This approach introduces no additional parameters during

the feature extraction process. This method has since been applied to multivariate

time-series as well [52]. Rahimi and Saadat [55] used a time-domain feature space

to express the difference between the nominal and faulty output from reaction wheels

onboard a three-axis controlled in-orbit satellite. This helped extract unique proper-

ties between different fault scenarios. These are then utilized in a machine learning

algorithm. Similar applications of time-domain features are also given in [56, 57, 58].

It is clear from the existing literature that the choice and application of features

to different time-series is subjective and has no prescribed system. This makes it

hard to compare the accuracy of the used feature set to another researcher’s feature

set since different researchers use varying time-series from interdisciplinary literature

[51, 59]. One solution is to have a threshold on the standard deviation of the time-

series [51]. Wang and Nanda [60] suggest that the high relevance to the objective

such as anomaly detection, degradation is essential when selecting features. Also,

linear independence leading to low redundancy is desirable among the features.
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2.4 Summary of Literature Review and Research

Gaps

A brief review of the existing autonomous ground station systems, anomaly detection

schemes, SPC methodologies, time-domain feature applications and testing schemes

for an engineering system is given in this chapter. It is observed that autonomy

of ground stations can be improved by having integrated simulations and layered

architectures. This is essential to save time and cost as the same simulator can be

used for multiple satellite missions and even constellations by making relatively minor

modifications. Layered architectures aid with making changes to the design easily at

different stages and times. Though multi-variate statistical analysis, PCA, neural

and Bayesian networks have been widely studied for spacecraft components’ anomaly

detection as discussed, traditional SPC methodologies with algorithms for automated

real-time fault detection in spacecraft have not been focused on. SPC algorithms are

less complicated and easier to implement than many other techniques which becomes

important especially for small-budget student-led CubeSat missions. Many of the

models and systems developed in literature make use of complex software that might

not be accessible or understood by everyone. There is a need to use a simplistic

platform that many have available. The above inferences are kept in mind while

designing the virtual ground station.



Chapter 3

Designing a Power Subsystem

Simulator

3.1 Introduction

Chapters 1 and 2 discussed the idea of the virtual spacecraft model which is a math-

ematical model of the spacecraft that would give the ground operators the sense of a

spacecraft in continual communication at all times.

A simulated spacecraft model or the virtual spacecraft model continually predicts

the system’s output, based on the commands uploaded by the operator. When the

actual spacecraft passes over the ground station, the pass manager establishes com-

munications, uploads commands that have been issued since the last ground station

pass and downloads the latest spacecraft telemetry. Later, these commands are exe-

cuted by the spacecraft at the specified date and time. Between passes, the ground

terminal provides data from the virtual satellite model immediately upon request.

In this sense, users can obtain expected spacecraft responses to commands without

having to time their requests with physical ground station passes. Once the virtual

27
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ground station receives real data, the historical record of spacecraft operations are

automatically updated with the real data. The virtual satellite model provides the

predicted values of various parameters that provide insight into the health of the

spacecraft. The model provides a baseline of what the telemetry received from the

satellite in orbit should look like. The main parameters considered for this research

are:

� Battery current (charge and discharge)

� Total solar panel current

� Power consumption

� Battery state of charge

� Bus voltage

In this thesis, the focus is on the power subsystem of the satellite but the idea

can be abstracted to the whole satellite to form the virtual satellite model. This

chapter presents a novel power subsystem simulator of a satellite, more specifically

a low earth orbit CubeSat. The simulator contains a basic battery model, a solar

array module, a representative model of direct energy transfer battery charge control

and the power control unit (PCU). This is done in the Matlab/Simulink environment.

The simulator helps with preliminary sizing and configuration of selected electrical

components in an unregulated bus voltage scenario. The solar arrays, batteries and
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PCU are modelled using a current-voltage lookup table, a voltage-capacity lookup

table and repeating sequences respectively. Later on, the simulator takes the form

of the virtual ground station’s satellite model. This chapter describes the structure

and functionality of the power subsystem simulator. This chapter may contain some

content from [11] and is used with permission from the Springer Nature Journal of

Aerospace Systems.

3.2 Simulator Model Structure

There are several components in the simulator design, namely, the power consumption

timeline, battery charge controller, solar array module, battery module and the eclipse

flag module. Each of these is designed and connected in Simulink to develop a power

subsystem simulator (Figure 3.1).

Figure 3.1: The functional model of the power subsystem simulator. Used with

permission from the Springer Nature Journal of Aerospace Systems.

Power consumption input The total power consumption with corresponding or-

bit time throughout the lifetime of the mission or simulation time period are the
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parameters required to create a power consumption timeline. Often, the power con-

sumption timeline for missions repeats after certain number of orbits (P). The power

consumption timeline for the whole simulation period can be represented as a repeat-

ing table. Simulink offers a repeating table component in which I can provide signal

inputs. In this component, I enter two signals, the power consumption with the cor-

responding time for P orbits. These signals are generated as a repeating sequence by

the table.

Battery module From the conceptual model in Figure 3.1, an integrator models

the charge state of the battery. The corresponding bus voltage is deduced from this

charge state by using a Simulink lookup table which uses values from the voltage vs

capacity curve for the battery. The points from the lookup table are adjusted for the

battery cell configuration that I want to test. The equations for these adjustments

are provided in Equations 3.1 and 3.2 where C and V are the capacity and the voltage

respectively. The capacity is the product of the capacity per cell and the number of

strings where a string is an arrangement of cells in series (Mparallel). The voltage

is the product of the voltage per cell and the number of cells in a string (Nseries).

The interpolated table lookup component in Simulink is used to model the battery

module. The voltage values with the corresponding charge states are entered into the

lookup table.

Ceq = Ccell ∗Mparallel (3.1)

Here, Ceq is the total capacity of the battery, Ccell is the capacity of one battery

cell and Mparallel is the number of strings in the battery configuration.

Veq = Vcell ∗Nseries (3.2)
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Here, Veq is the equivalent voltage of the battery, Vcell is the voltage of one battery

cell and Nseries is the number of battery cells in each string of the battery configura-

tion.

Solar array module The solar array module is developed in a similar fashion to

the battery module by using a Simulink lookup table which uses values from the I-V

curve from the solar cells’ datasheet. Generally, datasheets provide the I-V curves in

terms of current density (D) rather than current (I). In such cases, the cell surface

area (A) is multiplied by the current density to get the current values (Equation 3.3).

Using the bus voltage, the solar array lookup table gives the solar array current. I

get the I-V curve values for the proposed solar array configuration by multiplying

the voltage by the number of cells in a string (Msolar) (Equation 3.4). The current is

multiplied by the number of strings (Nsolar) (Equation 3.3).

Ieq = Dcell ∗ A ∗Nsolar (3.3)

Here, Ieq is the total current of the solar array, Dcell is the current density of one

cell where current density of a cell is the product of its current area and Nsolar is the

number of strings in the solar array configuration.

Veq = Vcell ∗Msolar (3.4)

Here, Veq is the total voltage of the solar array, Vcell is the voltage of one solar cell

and Msolar is the number of cells in each string of the solar array configuration.

Eclipse flag With the passive solar array current, the condition of eclipse is in-

troduced. A signal is created which is zero when an eclipse occurs and one during

non-eclipse periods. This signal called eclipse flag (F) usually repeats every orbit and



CHAPTER 3. DESIGNING A POWER SUBSYSTEM SIMULATOR 32

is entered into a repeating table. So, the ideal solar array current (Iideal) is 0 when

there is an eclipse and is equal to Ieq when there is no eclipse.

Solar Insolation Angle The pointing accuracy of the Attitude Determination

and Control System (ADCS) of a satellite influences the effective solar array current

generated. Equation 3.5 defines this relation. The effective solar array current (Ieff )

is the cosine of the pointing error multiplied by the ideal solar array current (Iideal)

from the solar array module. I use the worst-case pointing error (d) here to visualize

the worst-case scenarios for verification. F is the eclipse flag.

Ieff = F ∗ Ieq ∗ cos(d) (3.5)

Battery charging controller This component controls the charging of the battery

by observing its voltage (V). The battery continues to be charged until its cut-off

voltage (C) is reached. After some time, the voltage drops again and charging restarts.

This cycle continues throughout the mission or simulation period. Battery charging

is only possible during the non-eclipse period as solar array current is available. The

battery charging condition component is implemented as a switch in Simulink. The

switch logic is depicted in Figure 3.2. The design is based on the concept of Direct

Energy Transfer (DET) systems which allow the bus voltage to fluctuate with the

state of charge of the battery as the bus voltage is maintained equal to the voltage

across the battery [61]. DET systems have been successfully implemented for several

University satellite missions [62]. In the DET solar array interface, the solar arrays

are directly connected to the battery and the voltage through the battery and solar

arrays is maintained at the same level [62]. This is in contrast to a maximum peak

power tracking (MPPT) design, where the power control unit actively adjusts the

solar array voltage to maintain peak power generation regardless of a fluctuating bus
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or battery voltage [63].

Figure 3.2: Logic for the battery charging condition switch. Ieff is the effective solar

array current or the net current generated by the solar array, E is the current going

into the battery, V stands for the battery voltage and C is the cut-off voltage of the

battery. From the figure, zero current goes into the battery if the battery voltage is

greater than or equal to the cut-off voltage. Otherwise, current equal to Ieff goes

into the battery.

Internal resistance of the battery The battery’s internal resistance calculated

from the battery’s datasheet and configuration is modelled as a modifiable variable

in Simulink.

VEMF = VBus − IBatteryR (3.6)

In Equation 3.6, R is the internal resistance of the battery. This equation is used to

calculate the electromotive force (VEMF ) [64]. VEMF is the battery’s internal driving

force used to provide energy to a load, but differs from the bus voltage due to the
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internal resistance of the battery [65]. Here, the current going into the battery is

positive and the current going out of the battery is negative. It is clear from the

above equation that while charging the electromotive force is lesser than the bus

voltage whereas while discharging the electromotive force is greater than the bus

voltage.

Battery charge integrator To regulate the battery’s charge state, the battery

current is sent into a Simulink integrator which performs continuous-time integration

of the current. The initial charge, upper and lower limits for the charge are user-

defined and can be changed easily in the integrator block.

All inputs in the simulator are given in SI units. This simulator can be applied

to any satellite that uses DET with the solar arrays and batteries by making changes

to the design parameters according to the mission being simulated. Changing the

configuration and type of battery and solar cells in their blocks and the power con-

sumption timeline based on mission operations is simple. Having basic information

about any mission makes it possible for us to simulate its power subsystem with ease

and minimal expertise using this simulator.

3.2.1 Representation As a System of Equations

The simulator’s design can be represented by a set of equations consisting of a first-

order differential equation, a few time-dependent equations and initial conditions.

Hence, the design can be seen as a mathematical model. The equations are given

below:
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IBattery(t) =
dC(t)

dt
= (Ieff (t) − IL(t))

C(0) = C0

CL ≤ C(t) ≤ CU

Ieff =

F (t) ∗ Ieq ∗ cos(d) C(t) < CU

0 Otherwise

IL(t) =
P (t)

VBus(t)

(3.7)

Here, IBattery(t) is the current through the battery as a function of time t

C(t) is the charge state of the battery as a function of time t

C0 is the user-defined initial charge state of the battery

CL and CU are the lower and upper limits of the charge state of the battery respec-

tively

Ieff (t) is the effective solar array current and IL(t)) is the current drawn by the loads

using power

F(t) is the eclipse flag as a function of time and is an input to the system and d is

the solar insolation angle

Ieq is the total solar array current without considering eclipse or the isolation angle

P(t) is the power consumption as a function of time given as an input to the system

based on the mission operations

VBus(t) is the bus voltage which is implemented using Ohm’s Law (Equation 3.6)

3.2.2 Limitations

The simulator presents a realistic model of a CubeSat’s power subsystem. Neverthe-

less, certain assumptions were made in the design. These assumptions result in the

design having a few limitations:
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� Thermal analysis is not considered. Solar arrays loose efficiency over time when

they get hot. This behaviour is not part of the simulator design.

� More sophisticated models for the internal resistance are required to exactly

show how it changes over time in reality and results in a decrease in the battery’s

efficiency.

It should be noted that these limitations are not a challenge for the simulator

when used for short and small satellite missions as the effects are minimal.

3.3 Summary

In this chapter, I presented an architectural template for a power subsystem simula-

tor of a low earth orbit CubeSat. It is implemented in Simulink which is a popular

software for control engineering and simulations. The modular design of the simu-

lator consists of a battery module, solar array module, battery charging controller,

integrator and power consumption/loads module. I also consider the effects of eclipse

and the ADCS pointing error on the effective solar array power generation. The sim-

ulator provides important parameters such as output voltages, state of charge of the

battery and solar array current.

The simulator’s design makes it a simple and easily modifiable interface to perform

complex analysis. It forms an important tool in research and satellite design. It can be

applied with basic electrical knowledge and can be modified through future research.

This simulator is a part of the virtual ground station’s spacecraft model which is

the basis of my first hypothesis which states that the virtual ground station can be

based on a mathematical model of the spacecraft that the operators can continuously

be in touch with. This will be elaborated on in later chapters. The next chapter uses
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this simulator as a tool for designing the power subsystem for ManitobaSat-1, which

forms the basis of the fault detection research that follows.



Chapter 4

Design of the ManitobaSat-1

Power Subsystem

4.1 Introduction

The previous chapter discussed a CubeSat’s power subsystem simulator design devel-

oped on Simulink and its applications. Details were provided on how the simulator

can be used and how the components interact with each other to give measures of

important parameters. The required inputs and expected outputs of the different

modules were mentioned. The simulator is adapted to simulate the power subsystem

of the ManitobaSat-1, a student CubeSat built as part of the Canadian CubeSat

Project funded by the Canadian Space Agency.

In this chapter, I provide the background on the ManitobaSat-1 mission which

forms the groundwork required to perform the design and sizing of its power subsys-

tem. ManitobaSat-1, being a CubeSat with an average lifetime of 2 years developed

by students and its power subsystem based on the DET concept, is a good candidate

for this simulator. With the power budget in place, a static power analysis is per-

38
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formed resulting in the solar cell sizing. Dynamic simulations using the simulator are

undertaken to finalize the battery cell sizing. The results of these simulations with

the static analysis help substantiate the suitability and efficacy of the design. The

simulation results and trends are also discussed.

4.2 ManitobaSat-1 Power Subsystem

ManitobaSat-1 (Figure 4.1) is a 3U CubeSat weighing approximately 3 kg with de-

ployable solar panels and aims to study space weathering effects on geological samples

by exposing them to direct solar radiation [66]. The CubeSat consists of an attitude

control and determination system (ADCS), communication subsystem including ra-

dio RX (uplink receiver) and radio TX (downlink transmitter), command and data

handling subsystem (C&DH), power subsystem and the payload science experiment.

The payload camera takes images of the samples at regular intervals. The only

source of power on the CubeSat are the solar arrays. For energy storage, Lithium

Iron Phosphate battery cells (LFP-18650HT) are connected to the bus providing an

unregulated voltage to all subsystems [67]. The concept of operations helps prepare

a power budget with power requirements of different subsystems. From the concept

of operations, it is observed that the same CubeSat operations take place after every

three orbits. Thus, the power consumption timeline repeats every three orbits. A

static power analysis is done and results in a design with two arrays, one on the front

and one on the back, of Spectrolab XTJ Prime solar cells [68]. The front array has

five strings of three cells and the back array (for redundancy and detumbling) consists

of two strings with three cells each. Only the front array is sun-facing during regular

operations.
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Figure 4.1: An image of ManitobaSat-1

4.2.1 Static Power Analysis

The estimated three-orbit average power (different from the peak power) budget for

ManitobaSat-1 is given in Table 4.1. I provide the three-orbit budget rather than one

orbit since the budget is constant for a three-orbit period. The budget considers the

worst-case three-orbit average power consumption values by each subsystem. With

static power budgeting, it is found that the three-orbit average solar array power

generation is 8.960 W (Table 4.2) and the three-orbit average power consumption is

8.025 W (Table 4.1). As the generation is greater than the consumption, the solar

array sizing is suitable.
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Three-orbit average

Component power consumption (W)

Thermal 1.000

C&DH 1.730

Radio RX 0.202

Radio TX 0.547

Power control unit and Battery controller 1.52

Payload camera 0.010

Payload controller 0.015

ADCS 3.000

Total 8.025

Table 4.1: Power budget for ManitobaSat-1
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Parameter Value Explanation

Number of sun-facing arrays Nsolar 5.00 Design

Cell width W (cm) 6.91 Solar cell datasheet

Cell height H (cm) 3.97 Solar cell datasheet

Cell area A (cm2) 27.43 W * H

Power/cell Pcell (W) 1.17 The power generated by

a cell assuming worst-case

bus voltage

Cells per string Msolar 3.00 Design

Power per array Parray (W) 3.35 Pcell * Msolar

Total power for all arrays Peq (W) 16.75 Parray * Nsolar

Worst-case pointing error d (◦) 24.00 ADCS design

Apparent width at pointing error

Wapparent (cm)

6.31 W * cos(d)

Apparent height at pointing error

Happarent (cm)

3.63 H * cos(d)

Power at pointing error Peff (W) 14.65 (Parray/A) * Wapparent *

Happarent * Nsolar

Orbit period R (s) 5560.00 ISS orbit time period ([69])

% of orbit in the sun (SP) 61.16 STK simulations (Figure

4.2)

Sun-facing time in one orbit (s) 3400.50 R * SP

Worst-case orbit average power gener-

ation Porbit (W)

8.96 Peff * SP

Worst-case three orbit average power

generation Pthree−orbit (W)

8.96 Porbit

Table 4.2: Power generation calculations [68]
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The worst-case power timeline is formulated on the basis of the power budget

and the concept of operations. Important factors influencing the power consumption

timeline are:

� The CubeSat remains in sun for a minimum of 61.15 % of the orbit time. This

is obtained from Systems Tool Kit (STK) simulations (Figure 4.2). From the

plot, the maximum eclipse period is around 38.85 % of the orbit period during

the lifetime of 2 years. Hence, there is a minimum of 61.15 % sunlight time in

any orbit. STK is used to obtain the eclipse times assuming an International

Space Station (ISS) orbit for the satellite. The parameters for the simulations

can be found in [69].

Figure 4.2: Estimation of the sunlight time available during the maximum eclipse

period for the mission lifetime (2 years)
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� No payload images are taken during eclipse.

� Each orbit is 5560 seconds. In three orbits or 16680 seconds, worst-case eclipse

occurs between 3401-5560 seconds, 8961-11120 seconds and 14521-16680 sec-

onds.

� Payload images are taken once approximately every two hours during the non-

eclipse period.

� Communication between the CubeSat and the University of Manitoba ground

station takes place six times per day on average. The longest contact duration is

400 seconds. Though, in reality not every pass is 400 seconds long, for simulation

purposes every pass duration is taken to be 400 seconds. This is because I want

to consider the worst- power consumption scenarios.

4.3 Dynamic Power Subsystem Simulations

Dynamic power system simulations verify that the batteries are sized appropriately

to ensure safe operations throughout all phases of the mission. The simulation results

discussed below only consider the normal operations, that is, the CubeSat is assumed

to have completed the commissioning process and started regular operations. From

the analysis, factors which influence the size of the battery, such as charging cycles,

discharging cycles and depth of the discharge are determined. Since, the power sub-

system should be able to support worst-case and peak power requirements at the

worst-case eclipse, the simulator uses the worst power consumption timeline. Now,

I discuss how the simulator components are adapted to the ManitobaSat-1 power

subsystem.



CHAPTER 4. DESIGN OF THE MANITOBASAT-1 POWER SUBSYSTEM 45

4.3.1 Configuring the Simulator Components

The simulator model structure formulated in Chapter 3 is configured below.

Power consumption input The values for the power consumption with corre-

sponding orbit time for the first three orbits is fed as a repeating table for the entire

simulation time (Figure 4.3). The maximum power consumption occurs between 7201

seconds (1.29 orbits) and 7320 seconds (1.32 orbits) in the timeline when the com-

munication and camera are on. Since, the camera is on approximately every two

hours, it would be on at 14521 seconds. Because eclipse occurs during that period,

imaging can’t happen during that time. Hence, I consider a slightly shorter period

than the 2 hour gap for imaging in the timeline. The second round of imaging occurs

between 14001 seconds (2.52 orbits) and 14120 seconds (2.54 orbits). I enter the

power consumption and time vectors in the repeating table in Simulink.

Figure 4.3: Output Power consumption and eclipse flag waveforms of the CubeSat

over three orbits
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Battery module To develop the interpolation lookup table for the battery module,

the V vs C curve from the battery cell datasheet is used [67]. I propose a prelimi-

nary battery cell configuration of 2S3P or three strings (parallel) with two cells each

(series). The values from the V vs C plot can be modified for the configuration by

multiplying the capacity and voltage by 3 and 2 respectively. Note that the values

for the capacity in the datasheet aren’t in SI units and are converted from mAh to

A-sec. The lookup table plot for the battery is shown in Figure 4.4.

Figure 4.4: The battery module lookup table [67]

Solar array module The solar cell configuration is three cells per string with five

strings facing the sun. To develop the interpolation lookup table for the solar array

module, the I vs V curve is obtained from the D vs V curve in the solar cell’s datasheet

by multiplying the currents by the cell area which is 27.43 cm2 [68] and in SI units by

multiplying with 0.001 to have the currents in A. The values from the I vs V plot can

be modified for the configuration by multiplying the voltage and current by 3 and 5

respectively. The lookup table plot for the solar array module is shown in Figure 4.5.
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Figure 4.5: The solar module lookup table [68]

Eclipse flag The signal stored in the repeating table for the eclipse flag is graphi-

cally shown in Figure 4.3. In the figure, the power timeline is synchronized with the

eclipse flag such that the worst-case power consumption occurs right after the eclipse

time. This is the worst-case power consumption timeline because the battery charges

during the non-eclipse period as solar array current is available and discharges during

eclipse. Therefore, the battery charge is the lowest at the end of an eclipse period.

Because the communication with the ground is the most power intensive task for

the satellite, it is synchronized with exiting an eclipse to create the worst-case power

scenario.

Solar isolation angle The worst-case pointing error of the ADCS is ± 24.00 ◦ and

the cosine of its value in radians (0.42 rad) is multiplied with the eclipse flag and the

passive solar array current to obtain the effective solar array current.

Battery charging controller The cell data sheet specifies a cut-off voltage of 3.54

V [67]. For the 2S3P arrangement of the battery, the cut-off voltage is 7.08 V (3.54
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* 2 V).

Internal resistance of the battery From the data sheet, the average internal

resistance of the cell is 20.00 mΩ [67]. Hence, for a 2S3P configuration, the equivalent

resistance is approximately 13.00 mΩ.

Initial conditions of the integrator The nominal capacity for the cell is 1500.00

mAhr which isn’t at 100% state of charge (SOC) [67]. The maximum capacity is

1550.00 mAhr and I choose a reasonable lowest state of charge of around 30 % [67].

With a configuration of 2S3P, according to the equations in Section 3.2, I need to

multiply these values by 3. The initial capacity of the battery is set at 4500.00 mAhr,

the lower saturation limit to 1450.00 mAhr and the upper saturation limit to 4650.00

mAhr. Converted to SI units, the values are 16200.00, 5220.00 and 16740.00 A-sec

respectively.

4.3.2 Simulator Results and Discussion

The simulator is run with the components configured as described above. The results

of the simulator provided here are for the time period after the system has achieved

steadiness, that is, I allow the simulation parameters to stabilize. Consequently,

Figure 4.6 demonstrates that stability has been reached by the time the simulation

has reached the 100th orbit. This also shows that the power subsystem is able to

meet the requirements of the subsystems for a substantial amount of time. From the

figure, the state of charge is stable for a long time. This is because the battery is

consistently charging upto 100% and its state of charge doesn’t drop below 82.3% for

over 100 orbits. No unexpected fluctuations in the state of charge are occurring and

steadiness is seen in the system.
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Figure 4.6: State of charge of the battery over the first 100 orbits demonstrating that

stability has been reached during this period

Only a period of three orbits is shown in all plots for better visualization. I discuss

below the trends and observations made from the results.

a) From Figure 4.7, the solar array current isn’t completely constant throughout

the sun-facing time of an orbit. This can be explained by looking at the corresponding

changes in the battery voltage and the I -V curve of the solar array (Figure 4.5) where

there is a decline in the current when the voltage reaches near the cut-off voltage.

The drop in current can be observed midway through an orbit. At the corresponding

times in Figure 4.7, the solar array current is 0 during eclipse as expected.
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Figure 4.7: Output waveforms of the solar array current and battery voltage for three

orbits

b) Figure 4.8 shows the battery voltage and the power consumption as a function

of time. As expected, the voltage keeps increasing before an eclipse and when an

eclipse occurs, the voltage gradually decreases. The voltage reaches its peak points

right before an eclipse begins. The power consumption dips slightly when an eclipse

starts.
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Figure 4.8: Output waveforms of the battery voltage and power consumption for

three orbits

c) In Figure 4.6, the initial state of charge of the battery is about 97%. The

battery is charged during non-eclipse time to a 100% SOC and discharges during

eclipse leading to a lower SOC. This is understandable as solar current is not available

during eclipse. A similar trend is seen in Figure 4.9.
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Figure 4.9: State of charge of battery for three orbits

d) Looking at Figure 4.10, the current into the battery is positive (during sun-

facing time) and the current going out of the battery is negative (during eclipse time).

This is consistent with the sign convention adopted for Equation 3.6 in Chapter 3.
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Figure 4.10: Battery current and voltage for three orbits

e) Power consumption is the highest when there is communication and the payload

camera is on. It is the lowest when eclipse takes place without communication and

with attitude logging being off. Worst-case communication occurs between 1-400

seconds, 5560-5960 seconds, 7200-7600 seconds, 9000-9400 seconds, 11641-12041 and

15402-15802 seconds. Between 9000-9400 seconds, eclipse and communication take

place simultaneously and between 7200-7320 seconds, the payload camera takes an

image and communication takes place. The camera is on again from 14001 to 14120

seconds. These help analyse worst-case power consumption scenarios.

f) In Figure 4.3, an eclipse causes a very minor decrease in power consumption as

attitude logging doesn’t take place. The eclipse flag toggles between zero and one.

Zero denotes eclipse period and one denotes no eclipse.

g) Earlier, the plot of the state of charge during the later orbits showed that the

battery is stable even after a long period of time. Also, the state of charge (Figure

4.9) drops during an eclipse.
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Other Inferences From the Results

Depth of discharge (DOD) The DOD is the maximum decrease in the state

of charge of the battery from its maximum charge. This maximum decrease occurs

during an eclipse. It can be estimated from the SOC vs time plot and is shown

in Figure 4.11. The depth of discharge during eclipse is estimated to be 17.70%

(Equation 4.1 where SOCmax and SOCmin refer to the maximum SOC possible and

the minimum SOC during eclipse respectively) which is reasonable. The DOD can

also be calculated from the power draw during an eclipse and the battery capacity.

DOD = SOCmax − SOCmin (4.1)

Figure 4.11: Estimation of DOD from the state of charge plot for the battery

Power draw during an eclipse The orbit average power consumption from Fig-

ure 4.3 is 9.04 W and the orbit eclipse period is 2160.06 seconds. Therefore, the

power draw during an eclipse (Equation 4.2 where Porbit is the orbit average power
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consumption) is 9.04 * 2160.06 / 60 = 325.44 W-min. This gives the DOD (Equa-

tion 4.3) = 325.44 / 1733.40 = 18.77 % which is slightly higher than the estimated

17.70 %. The discrepancy is most likely the result of a different power consumption

calculation in the two cases. While estimating the orbit average power consumption

in the static power budget, I assume that the camera is on for 120 seconds in every

orbit, which isn’t always the case since the camera takes an image every two hours

in the simulations. Also, communication occurs two times in an orbit sometimes but

the static power budget only takes into account the cases where there is one commu-

nication window per orbit. However, the results are very close to each other and are

reasonable.

Draweclipse =
Porbit ∗ Periodeclipse
60seconds−to−minute

(4.2)

Here, Draweclipse is the power draw during eclipse, Porbit is the orbit average power

consumption and 60seconds−to−minute is the conversion factor from seconds to minute.

DOD =
Draweclipse

Cstorage

(4.3)

Here, DOD is the depth of discharge of the battery, Draweclipse is the power draw

during eclipse and Cstorage is the storage capacity of the battery.

Maximum battery current The peak battery current is close to 1.00 A which is

less than the maximum charge current (3.00 A for a 2S3P configuration) specified for

the battery in its datasheet [67].

The results confirm that the selected battery sizing is suitable. The above con-

clusions from the simulations are logical and give confidence in the simulator design.

The static and dynamic analyses prove that the power subsystem design is suitable

and sufficient.
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4.4 Summary

This chapter describes the power subsystem of a student CubeSat, ManitobaSat-1,

funded by the Canadian Space Agency and the application of the simulator described

in Chapter 3 to this mission to assess the design of the power subsystem and to

size the batteries. I start with the primary goal of ManitobaSat-1, its operations

and how these affect the power consumption of the CubeSat. Based on the concept

of operations, a power budget and power consumption timeline are devised. STK

simulations are used to identify the worst-case eclipse periods for the mission with

a 2 year lifetime. It is observed that the timeline repeats every three orbits. With

the solar cells selected, I performed a static power analysis to conclude that the

power generation is greater than the consumption and the chosen solar array sizing

is appropriate.

In the power timeline, maximum power consumption occurs during communication

with the ground, and minimum power consumption occurs during eclipses and no

communication. To satisfy the objective of the mission, the camera takes images

every two hours but doesn’t utilize a significant amount of power. During the 120 s

of the camera and communication being on simultaneously, the consumption peaks

at 12.65 W. I identified the worst-case scenarios for consumption in the timeline such

as when communication takes place right after eclipse and when the camera and

communication are on simultaneously at the same time. This ensures that the power

subsystem is able to perform well even in the worst of situations.

The detailed procedure to configure all components of the power subsystem sim-

ulator with ManitobaSat-1’s parameters is provided. This gives other researchers a

case study when considering applying the simulator to other missions. The simula-

tions are run through several orbits and results and trends are analyzed. In addition

to studying basic parameters such as battery voltage, current, solar array current,
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SOC and power consumption at anytime, I demonstrated the estimation of other im-

portant variables such as the depth of discharge, capacity and the power draw during

eclipse. With the conclusions drawn from analyzing the simulation results, I surmise

that the proposed battery sizing (2S3P) is appropriate and the described design is

sufficient for the mission.

In this thesis, the virtual ground station’s virtual satellite model was developed

and tested for ManitobaSat-1 as one example, though it is simple to apply it to

any other satellite using DET. The power subsystem simulator for ManitobaSat-1

described in this chapter forms the virtual satellite model.



Chapter 5

The Fault-Management System

5.1 Introduction

Chapters 3 and 4 focused on the design and development of the virtual spacecraft

model which partially verifies the first hypothesis of my thesis that describes a vir-

tual ground station based on a mathematical model of the spacecraft or the virtual

spacecraft model. For the second hypothesis, traditional analysis techniques from

Statistical Process Control (SPC) to provide near real-time health and diagnostic

evaluations, hence forming a fault-management system, are deemed useful by reduc-

ing human involvement in the analysis of telemetry data. To do this, the system

monitors telemetry and compares it to the results from the virtual spacecraft model

for early fault diagnosis. This chapter details the development of this system (Figure

5.1) and demonstrates the detection of major power subsystem faults in a satellite. To

my knowledge, this is the first time that SPC is being used in satellite operations and

maintenance making it an important contribution to the field of satellite engineering.

58
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Figure 5.1: The broad structure of the fault-management system

The SPC methodologies such as control rules and charts form a key aspect of

the space systems monitoring from the ground station are briefly discussed prior to

beginning with the fault-management system’s development. This is followed by a

tailored pseudocode for each control rule irrespective of the fault. A set of fault-

detection rules (specific for each fault) is identified using observations from running

the code on parameter datasets (such as internal resistance and solar string current).

The results are discussed and inferences are drawn for each fault.

Different failures affect a process in unique ways and in some cases control charts

are not an effective tool to conduct fault detection. To detect the subtle changes in

complex waveforms such as the power consumption, time-domain features are used

to represent the system. Algorithms are devised based on how different faults in the

power consumption affect the features individually and combinatorially to perform

classification to identify any anomalies. This algorithm is also applied to a hypothet-

ical mission to signify that it works irrespective of the operational plan of a mission.
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5.2 Statistical Process Control Module

SPC is a traditional, charting, monitoring and diagnostic tool that the manufacturing

industry has been using for decades to improve and maintain product quality [70].

SPC works on the theory that a process behaves predictably to manufacture products

which conform to engineering requirements causing the least possible waste (i.e.,

scrapped product). The process should operate with little variability around the

product requirements. When a process is not behaving properly, key metrics using

SPC can be identified that can indicate early signs of a fault. In doing so, SPC

provides a number of powerful tools aimed at achieving process stability and reduction

in variability [71]. SPC plays a critical role in the virtual ground station as it is used

to automatically monitor satellite telemetry streams for early signs of anomalies.

To develop the SPC module, the virtual satellite model is modified to introduce

(simulate) different kinds of failures. SPC algorithms are developed and tested using

the virtual spacecraft model.

5.2.1 Components of SPC: Control Charts and Control Rules

Control charts developed in the 1920s by Walter A. Shewhart [72] are regarded as

the most technically sophisticated SPC tool. It is deployed using Shewhart’s theory

of variability that stipulates that a process displaying natural variability is said to be

in statistical control whereas a process showing assignable causes of variation which

are not part of chance cause pattern and natural variability are out of control. While

chance causes, also known as common causes, are embedded in the process or system,

assignable causes are the result of an external source [71]. In my thesis, I apply SPC

control charts to spacecraft health monitoring.

In SPC, control charts function as process behaviour charts or on-line process
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monitoring techniques to estimate parameters of a process to identify if the process is

in equilibrium or not [71]. A typical control chart can be seen in Figure 5.2. It has a

centre line, upper control limit (UCL) and lower control limit (LCL). These control

limits are chosen such that all of the sample points lie between these limits when the

process is in control. Using just the control limits does not allow detection of very

small shifts. The Western Electric rules also known as the SPC control rules (Table

5.1) are used alongside the control charts to detect anomalies [47][71]. In Table 5.1,

zone A refers to the region between a control limit and ±2 σ, B is the region between

±2 σ and ±1 σ and C lies between the ±1 σ and the mean where σ is the standard

deviation of the test data set. The control rules and charts enable identification of

upward and downward trends, mixtures with no points in certain zones, stratification

and over-control to indicate that the process is not in equilibrium. Each of these

conditions or patterns typically points to a specific type of defect, which are identified

by studying real and simulated data.

Figure 5.2: A typical control chart
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Rule Number Name/Pattern Rule Description

1 Beyond limits One or more points beyond the control limits

2 Zone C (small

shifts from the

mean)

Eight or more points in a row on the same

side of the mean

3 Trends (up and

down)

Seven points or more points in a row contin-

ually increasing or decreasing

4 Over-control Fourteen or more points in a row alternating

up and down

5 Zone A (large

shifts from the

mean)

Two out of three points in a row are more

than 2 σ from the mean in the same direction

(zone A or beyond)

6 Zone B (small

shifts from the

mean)

Four out of five points in a row are more

than 1 σ from the mean in the same direction

(zone B or beyond)

7 Stratification Fifteen points in a row are all within 1 σ of

the mean on either side of the mean (zone C)

8 Mixture Eight points in a row exist, but none within

1 σ of the mean, and the points are in both

directions from the mean (no points in zone

C)

Table 5.1: SPC Control Rules [73]
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There are different types of control charts based on the characteristics being tested

and their applications. One of the main types is an individual chart which is used

in this thesis. It is generally applied to detect deviations from the mean level of a

process when it is not possible to have data subgroups (data points that are collected

simultaneously when more than one machine is giving data). The spacecraft is the

only system from which I am collecting data, and I will only have one data point

at any particular time. An individual chart shows a variety of properties about the

process such as trends and center stability in the distribution. This type of chart is

typically used with a moving range chart in industrial applications. Moving range

charts are used to monitor the process variation by tracking the absolute differences

of each measurement from its predecessor. To create these charts for any process, an

initial set of observations is used to estimate the mean and the standard deviation of

the process.

But, health-monitoring of a satellite is not a regular industrial process. Typical

industrial processes involve procedures with chemical, electrical, physical and mechan-

ical steps to help in the manufacturing of an item (s), generally on a large scale. In-

dustrial processes usually follow batch processes while for satellite health-monitoring,

there are no manufacturing batches involved. Unlike an industrial process, I do not

have a large amount of sample data available for a satellite health-monitoring system.

Most of the data I have available is also based on simulators. Since, I can calculate

the standard deviation of my data that I obtained from a simulator, that is, σ is

a non-estimated or definite value, I do not require any estimation of σ. A moving

range chart is generally used when the standard deviation has to be estimated [74].

Therefore, I only use the individual chart. The common eight SPC control chart

patterns (Figure 5.3) corresponding to the SPC rules in Table 5.1 include: beyond

control limits, zones A, B, C defined above, upward and downward trends, mixtures

with no points in certain zones, stratification and over-control curbing the natural
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process variability. Each of these conditions could point to a specific type of defect,

which need to be identified during the investigation of the process [31].

Figure 5.3: Control chart patterns [71]

5.3 Developing the SPC Component of the Fault-

Management System

5.3.1 Application of the Control Rules

SPC is usually applied to industrial and machine data. Spacecraft data is not abun-

dant as most space industry missions are different and require unique interpretations

of the control rules. Hence, applying these rules to spacecraft data requires a slightly

different approach and the control rules have to be analyzed for their applicability. In
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fact, there are numerous interpretations of the control rules and multiple versions of

them being used in various sectors that are not typical industrial and manufacturing

processes. In such cases, it is common to change the number of points mentioned in

the standard Nelson and Western Electric control rules to be suitable to the data in

question.

A paper from the Agency for Healthcare Research and Quality [75] discusses

the importance of smart application of traditional SPC rules. It is necessary to

recognize the need to choose the datasets in a sophisticated manner and understand

the practical implications of the control charts. SPC is driven by “correct and smart

application” against blindly applying the rules [75]. However, extensive testing is

required to substantiate the accuracy of the rules. One should note that the violation

of a control rule does not necessarily indicate a fault and that one should be aware

of false alarms. Many SPC software tools in the market such as QI Macros [76]

provide the user with the option to edit the rules according to their needs. They also

provide a variety of standard rule sets to choose from apart from Nelson and Western

Electric rules including Westgard, AIAG, Montogomery and Healthcare [76]. Unlike

the healthcare industry, spacecraft data does not have a set of rules suggested by

experts probably due to lack of extensive SPC application in the industry.

5.3.2 Algorithms for the Control Rules

Before developing the algorithms for the rules, I write a script to differentiate the

points in the dataset (any telemetry data) on the basis of the zones they lie in, if they

lie above or below the mean and scores which are defined by the zone they belong

to. The script written for this is called zonescript and is given in Appendix D.1. Any

point lying above the UCL or below the LCL has a zone value of X meaning beyond

control limits and any point lying in zones A, B and C are given zone values of A,
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B and C respectively. Points lying above the mean and below the mean have sides

value of P and N respectively. Lastly, points in zones X, A, B and C are assigned

scores value of 8, 4, 2 and 1 respectively. The variables scores, zones and sides for

each point are used while developing the algorithms for each control rule. Condensed

pseudocode for each of the control rule algorithms denoted by crAlg N where N is

the control rule (Table 5.1) number that I developed are given in Appendix D.2.

The steps of development discussed so far are depicted in Figure 5.4. As seen in the

figure, zonescript gives out the zone of each point and computes the side of the mean

the point is on along with its score. I use these results to develop the control rule

algorithms crAlg N.

Figure 5.4: Summary of the steps in developing the algorithms for the control rules

In traditional SPC for industrial and manufacturing applications, the control lim-
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its and zones are defined by the sample’s standard deviation and mean. If the control

limits are calculated based on the data received during each pass separately, the limits

would be dynamic and would depend on the data received only during a certain time

period. This might result in incorrect limits since faults might be present in them.

For example, if the satellite has a pass at 2000 seconds and 4000 seconds since the

current time and a fault is injected only after 2100 seconds, the limits calculated for

the data points from 1 -2000 seconds and 2001 - 4000 seconds would be different.

This will increase the probability of false alarms. Therefore, I calculate the control

limits based on the ideal data collected from the initial telemetry when there are no

faults. The limits and zones remain constant. It is assumed that during the first few

orbits after achieving steady state, there are no faults in the satellite.

The crAlg N algorithms can be applied to any process. Before applying these to

detect the faults in a spacecraft’s power subsystem, the type of faults considered in

this thesis for SPC analysis are discussed. Eventually, I focus on each of the selected

faults and how these algorithms can be used to detect them in the virtual ground

station (VGS).

5.3.3 Type of Faults

Three frequently occurring anomalies in a satellite’s power subsystem chosen for im-

plementation are loss of solar cell string(s), increase in battery’s internal resistance

and excessive power consumption. These can be caused by a number of reasons, some

of which are listed in Figure 5.5. Only the first two faults are handled using SPC and

the time-domain features are used for the third fault. Each of the faults is discussed

in the next few sections.
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Figure 5.5: Examples of typical failures considered for the power subsystem’s fault-

management system. Used with permission from the Springer Nature Journal of

Aerospace Systems. [77]
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5.3.4 Loss of solar cell string(s)

Solar arrays are the primary source of power in many CubeSats. A fault in a solar

cell string can result in a total mission failure. So, it is important to detect it as soon

as possible to take corrective actions such as reducing the power consumption in a

mission.

The solar array current is a function of one orbit (repeats every orbit) and its

waveform depends on the eclipse period. In ideal conditions or no malfunctions in

the solar arrays, the current generated is expected to be relatively constant during a

non-eclipse period. During eclipse, no current is generated. As previously mentioned,

the data from the first few orbits is assumed to be ideal. This gives me the ideal

current datasets as a baseline of expected current values in the telemetry. I need

to calculate the control limits and zone boundaries for the SPC analysis. To do

this, the power subsystem simulator is run for a period of 3 orbits (after achieving

stability) and the solar array current generated (called TSAI which stands for the

total solar array current (I)) is collected. Likewise, the individual currents (called

ISAI-N which stands for the individual string of an array current (I)) from each of

the five strings is collected where N (1, 2 .. or 5) is the number of the solar string.

The individual currents from all strings are expected to be equal as they are identical

in configuration. Because parameters such as the power consumption, battery current

and voltage follow a 3 orbit cycle, I use 3 orbits instead of 1. This allows sharing of

scripts across multiple parameters in the SPC module to maintain consistency. Each

of the steps (Figure 5.6) in creating a rule-based SPC system to detect a solar string

failure is discussed below.
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Figure 5.6: Steps in the solar string failure part of the SPC module

Zone Boundaries I write two scripts for control limit and zone boundary calcu-

lations for TSAI and ISAI-N. The ideal data is the telemetry I obtain in the first

few orbits of the mission. I assume that the data from the initial orbits is fault-free.

The current generated in any three orbits after reaching steady state is taken as the

dataset for control limit calculations. Since, no current is generated during eclipse, I

do not consider those points in this analysis. Consequently, SPC is run on the solar

array currents only when no eclipse occurs. The control limits lie three deviations

away from the mean. The control limits and zone boundaries for the TSAI and ISAI -

N are calculated according to Equations in Table 5.2 which also contains their values.

The control charts for the ideal cases of the ISAI - N and TSAI are plotted (Figures

5.7 and 5.8) and the control rules are applied.
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Parameter Individual string

current

Total array current Equation

Mean 0.478 2.174 Arithmetic

mean of all

elements in the

dataset

Upper control

limit

0.495 2.259 Mean + 3 * σ

Lower control

limit

0.457 2.088 Mean - 3 * σ

+2 σ 0.488 2.231 Mean + 2 * σ

+1 σ 0.482 2.202 Mean + 1 * σ

-2 σ 0.463 2.117 Mean - 2 * σ

-1 σ 0.470 2.145 Mean - 1 * σ

+4 σ 0.501 2.288 Mean + 4 * σ

-4 σ 0.451 2.060 Mean - 4 * σ

Table 5.2: Control limits for individual string and total solar array currents. All

values are in A and σ stands for the standard deviation of the dataset. The values

+4 σ and -4 σ are shown for reference to visually understand how the points are

distributed in the plot. They are referred to as the specification limits.
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In Figures 5.7 and 5.8, the shaded regions indicate the points that violate various

rules (labels shown). Note that if a point is violating a rule in one orbit, it is violating

the same rule in all three orbits. As an example, the shaded region in the first orbit

shows points violating rules 6 and 8. The corresponding points in the upper region

of the plot, the points lying above the mean in zone B violate rules 6 and 8 in the

other two orbits as well. This has been done for visual clarity.

Figure 5.7: Control chart for the ideal individual solar string current over three orbits

used to calculate control limits
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Figure 5.8: Control chart for the ideal total solar array current over three orbits used

to calculate control limits
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As expected, ISAI - N and TSAI ideal plots (Figures 5.7 and 5.8) follow the same

trends since the currents from all 5 strings are equal. Subsequently, the observa-

tions regarding the control rules are the same for both the charts. The following

observations are made from Figures 5.7 and 5.8:

� Rule 1 is not violated, that is, no points lie beyond the control limits. Most of

the points lie within zones B and C.

� There are multiple consecutive points that lie very close to each other and

naturally on the same side of the mean. Rule 2 is clearly violated.

� Rules 3 and 4 are violated as well. Upon inspection, it is seen that there are

many consecutive points that are equal in value or have an insignificant differ-

ence between them. Hence, the tolerance for differences between the consecutive

points is taken to be 0.002. This seems appropriate since consecutive points usu-

ally seem to change with a magnitude of < 0.002 and reducing false alarms is

essential when studying the ideal current datasets. After making this change,

no violations of these rules are observed. To conclude, rule 3 is transformed as

seven or more consecutive points continuously increasing or decreasing by mag-

nitude of greater than 0.002. Rule 4 is modified as fourteen or more consecutive

points alternating up or down with a difference (magnitude) of > 0.002. The

changes are made in rules 3 and 4 as they are the only rules that are dictated

by the differences in consecutive data points and not by the zones the points lie

in. This uniqueness makes them more conducive to modifications.

� Rule 5 is not violated because no point lies in zone A or beyond.

� Rules 6, 7 and 8 are violated. The shaded regions in the figures collectively lie

in zone B and zone C on either side of the mean. As many consecutive points



CHAPTER 5. THE FAULT-MANAGEMENT SYSTEM 75

in the upper part are in zone B, there have to be many more than 8 consecutive

points none of which lie in zone C. Clearly, the three rules are failed.

From these observations, it is clear that rules 2, 6, 7 and 8 are violated by many

points forming large regions in the plots. This is understandable as the data is

periodic and these rules are very interconnected. Also, the sudden change in the

current between the orbits is due to eclipses (not shown). Only sun-facing time is

considered in the plots. I know that there are no faults in the data as of now and

thus, these are false alarms. In the next step, I observe how different faults affect

these rules.

Trend Observation In this step, I consider the different ways in which solar string

failures could occur. The changes in the ISAI - N and TSAI are monitored separately.

Let the solar strings be denoted by numbers: 1, 2, 3, 4 and 5. The observations are

provided below.

� A single solar cell string fails:

The current generated from solar cell string no. 1 is changed to 0 in the simulator

and currents from all the strings are obtained. All other strings are working

properly.

From Table 5.3, rules 1 and 5 are violated only when there is a severe fault.

All points lie below the LCL and violate rule 1. Rule 5 requires two out of 3

consecutive points to lie in zone A or beyond. Since, all points violate rule 1,

they lie beyond zone A and thereby also fail rule 5 (Figures 5.9 and 5.10).
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TSAI ISAI - 1 ISAI - 2 ISAI - 3 ISAI - 4 ISAI - 5

Rules 1, 2,

5, 6 and 8

Rules 1, 2,

5, 6 and 8

Rules 2, 6,

7 and 8

Rules 2, 6,

7 and 8

Rules 2, 6,

7 and 8

Rules 2, 6,

7 and 8

Table 5.3: List of the rules that are violated in the case of a single solar cell string

failure

Figure 5.9: Control chart for the total solar array current with one string not gener-

ating any current
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Figure 5.10: Control chart for the solar string 1 current that is generating no current

Unlike in the ideal chart, no points are in zone C or near the mean. For rule

7 to be violated, I require 15 consecutive points to lie within zone C. Hence,

rule 7 is passed in the failed solar cell string case. For the other strings that are

functioning properly, 2, 6, 7 and 8 are failed similar to the ideal charts. This is

expected as there are no faults in the strings and their charts are identical to

the ideal ISAI chart. It is interesting to see that a single string failure causes

the chart to fall below the LCL completely.

� Lower efficiency of a solar cell string:

For this anomaly, I multiply the current vector for the first string by 90% in

the simulator’s solar array module’s lookup table. All other strings are working

properly. In the TSAI control chart (Figure 5.11), a slightly lowered efficiency

of a single string does not affect it much. No points go beyond the LCL and
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rules 2, 5, 6, 7 and 8 are failed. Rule 5 is violated here unlike the ideal chart

as the lower part of the waveforms in each orbit are in zone A (Figures 5.11

and 5.12). This rule requires two out of three consecutive points in zone A or

beyond. Rules 6, 7 and 8 are failed as in the ideal chart but here, the points

that violate them are different. The results are tabulated in Table 5.4.

TSAI ISAI - 1 ISAI - 2 ISAI - 3 ISAI - 4 ISAI - 5

Rules 2, 5,

6, 7 and 8

Rules 1, 2,

5, 6 and 8

Rules 2, 6,

7 and 8

Rules 2, 6,

7 and 8

Rules 2, 6,

7 and 8

Rules 2, 6,

7 and 8

Table 5.4: List of the rules that are violated in the case of a lowered efficiency in a

single (first string) solar cell string
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Figure 5.11: Control chart for the total solar array current with string 1 generating

reduced current
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Figure 5.12: Control chart for the solar string 1 current that is generating 90% of its

ideal generated current
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� More than one solar cell string fail:

I start with having two failed strings. Let them be strings 1 and 2. The current

generated from solar cell strings 1 and 2 are changed to 0 in the simulator

and currents from all the strings are obtained. All other strings are working

properly. From Table 5.5, rules 1, 2, 5, 6 and 8 are violated for the TSAI

control chart (Figure 5.13) and both the failed strings (Figure 5.14). This is

not different from the results of a single solar string failure. Thus, I can not

distinguish a single and multiple string failure(s) with just the TSAI control

charts. So, performing SPC on the TSAI to determine if I require SPC analysis

for individual solar string currents is essential. If I determine that an individual

analysis is necessary, the SPC analysis should show me results similar to the

single solar string failure case for the failed strings. The violation of rules 1 and

5 by all points makes it possible to decide if the string is generating any power

or not.

TSAI ISAI - 1 ISAI - 2 ISAI - 3 ISAI - 4 ISAI - 5

Rules 1, 2,

5, 6 and 8

Rules 1, 2,

5, 6 and 8

Rules 1, 2,

5, 6 and 8

Rules 2, 6,

7 and 8

Rules 2, 6,

7 and 8

Rules 2, 6,

7 and 8

Table 5.5: List of the rules that are violated in the case of a multiple string failure

(string 1 and 2 in this case)
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Figure 5.13: Control chart for the total solar array current with two failed strings
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Figure 5.14: Control chart for the solar strings 1 and 2 that are generating no current
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� Sudden failure of a string:

The current from string 1 is made equal to 0 in the simulator midway through

the simulation time causing it to fail. The observations made are in Table 5.6.

Due to a sudden failure in string 1, the points after failure occurs violate rule

1 and 5 but do not violate rule 7 (Figures 5.15 and 5.16). The violation of

rule 7 in the ISAI - 1 chart is the key difference between the lower efficiency

and sudden failure cases for string 1. The number of out of control points is

also lower in a sudden failure scenario as the string is functioning normally in

the beginning time period. Again, the TSAI chart (Figure 5.15) does indicate

some anomaly in the solar strings but does not tell me the specific details of

the strings facing any issues.

TSAI ISAI - 1 ISAI - 2 ISAI - 3 ISAI - 4 ISAI - 5

Rules 1, 2,

5, 6, 7 and

8

Rules 1, 2,

5, 6, 7 and

8

Rules 2, 6,

7 and 8

Rules 2, 6,

7 and 8

Rules 2, 6,

7 and 8

Rules 2, 6,

7 and 8

Table 5.6: List of the rules that are violated in the case of a sudden failure in string

1
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Figure 5.15: Control chart for the total solar array current with a sudden failure in

string 1
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Figure 5.16: Control chart for the solar string 1 with a sudden failure
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Algorithm Development The conclusions drawn from the observations made in

the previous step are used in developing the algorithms logDetTotal for TSAI and

logDetInd for individual string currents. The control charts for all observations were

presented for a time period of three orbits. As previously discussed, the solar array

current has a period of 1 orbit or 5560 seconds. The algorithms should work for any

number of data points provided I have at least one orbit of data. This is because the

control limits stay constant for any number of points and the observations have been

made over at least one orbit period.

In Figures 5.17 and 5.18, the variable score indicates the severity of the anomaly

(in terms of losing solar strings) that is detected by the algorithms logDetTotal and

logDetInd. This score becomes important when I design the fault-management sys-

tem’s implementation in the VGS which will be discussed in later chapters. The

higher the score, the higher is the severity of the fault.
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Figure 5.17: The flowchart for the logDetTotal algorithm used to detect faults in the

total solar array current. Here, IRulenumber stands for a particular rule being violated

where IRulenumber = 1 means the rule is violated and IRulenumber = 0 indicates no

violation; C1 is the condition that the number of points violating control rule 1 are

greater than 75 % of total number of points for TSAI. C1 takes the value 1 when it

is satisfied and 0 when it is false. The symbol && refers to the AND (requires all

sub-conditions in a condition to be simultaneously true to be satisfied) operator in a

condition. As an example, the first condition would read as I5 = 1 AND I7 = 1 AND

I1 =0. Note that the oval-rectangular shapes towards the right for every condition

are not part of the algorithm. They state the type of solar string fault.
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Algorithm logDetTotal has three main conditions in which the combinations of

different control rules are used. To identify if a control rule is violated, the crAlg N

algorithms discussed earlier are used. To begin, I first run all the crAlg N algorithms

on the TSAI data. I introduce a variable called IRulenumber which is 0 when the

corresponding rule is passed and is 1 when it is failed. The IRulenumber values for all

rules are computed. A Condition C1 is defined which is an “if statement” that checks

if the number of points in the TSAI dataset violating control rule 1 are greater than

75 % of the total number of points in the TSAI dataset. C1 has a value of 1 when

satisfied and 0 when false. Each of the main conditions is defined using a (AND

logic) combination of prescribed values for C1 and IRulenumber. Based on logDetTotal

given in Figure 5.17, the newly introduced variable Score (same as score) is assigned

a value. Score gets a value of 3, 2, 1 or 0 for the three main conditions and the

last (all other cases) condition respectively. The value of score indicates the severity

of the anomaly (in terms of losing solar strings) that is detected by the algorithm

logDetTotal. This score becomes important when I design the fault-management

system’s implementation in the VGS which will be discussed in later chapters. The

higher the score, the higher is the severity of the fault.

Also, the value of f1 is stored where f1 (discussed in the next and last step)

determines if the algorithm logDetInd has to be run or not. If none of the conditions

that provide a score of > 0 in logDetTotal are true, there is no need to run logDetInd

and the solar array SPC process will end. In other words, any condition/situation not

identified by the three main conditions is sent to the last condition, that is, the all

other cases condition in which no fault is detected. logDetTotal provides two outputs,

f1 and M1,TSAI that is the number of points in TSAI violating control rule 1. Also,

once a condition is satisfied, the algorithm is exited immediately.

If there is a need to run logDetInd based on the value of f1 from logDetTotal,

SPC is run on each and every individual solar string current data. In such a situation
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for ManitobaSat-1, the SPC is run for each of the five solar strings.
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Figure 5.18: The flowchart for the logDetInd algorithm used to detect faults in each

solar string current. Here, IRulenumber stands for a particular rule being violated where

IRulenumber = 1 means the rule is violated and IRulenumber = 0 indicates no violation; C1

is the condition that the number of points violating control rule 1 for TSAI (M1,TSAI)

are greater than 75 % of total number of points and C2 has a value of 1 when the

number of points violating control rule 1 for ISAI are greater than 75 % of total

number of points. C1 and C2 take the value 1 they are true and 0 when they are false.

The symbol && refers to the AND (requires all sub-conditions in a condition to be

simultaneously true to be satisfied) operator in a condition. As an example, the first

condition would read as C1 = 1 AND I5 = 1 AND C2 = 1 AND I7 = 0. Note that

the oval-rectangular shapes towards the right for every condition are not part of the

algorithm. They state the type of solar string fault.
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There are 3 main conditions in the logDetInd algorithm. Before the algorithm is

checked for any of these conditions, I use the variable M1,TSAI given as an output from

logDetTotal as an input to logDetInd. Now, the three main conditions are checked

one by one in the order given in Figure 5.18. These conditions contain the variable

IRulenumber and the nested conditions C1 and C2. IRulenumber is a variable that takes

the value of 1 when the corresponding rule is failed and 0 otherwise. Conditions

C1 and C2 are if statements that check if the number of points in the TSAI and

ISAI-N datasets violating control rule 1 are greater than 75 % of the total number

of points in the corresponding datasets respectively. C1 and C2 have a value of 1

when satisfied and 0 when false. Each of the main conditions are defined using a

(AND logic) combination of prescribed values for C1, C2 and IRulenumber. Based on

logDetInd given in Figure 5.18, the newly introduced variable Score (same as score)

is assigned a value. Score gets a value of 3, 2, 1 or 0 for the three main conditions

and the last (all other cases) condition respectively. The value of Score indicates

the severity of the anomaly (in terms of losing the solar string) that is detected by

the algorithm logDetInd. This score becomes important when I design the fault-

management system’s implementation in the VGS which will be discussed in later

chapters. The higher the score, the higher is the severity of the fault.

Any condition/situation not identified by the first three main conditions is sent to

the last condition, that is, the all other cases condition in which no fault is detected.

Also, once a condition is satisfied, the algorithm is exited immediately. Hence, in

scenarios where the criteria for multiple cases are satisfied, the algorithm function

chooses the condition with the highest score. The corresponding scores for every

satisfied main condition are shown in Figure 5.18.

Decision for ISAI-N Execution At this point, I have the algorithms required

to detect anomalies in the currents separately for TSAI and ISAI but I am yet to
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establish the logic (Figure 5.19) behind the decision to run ISAI based on the outputs

from TSAI. When logDetTotal does not detect any issues with the array, that is if

the score is 0, it gives a value of 0 to f1. In other situations, f1 is 1 and logDetInd

has to be triggered for every string. To perform this, I write a script SS where all the

previous algorithms are assembled and the solar current SPC framework is executed.

Note that the actual fault-detection is related to the score values obtained from the

algorithms and will be discussed in later chapters.

Figure 5.19: The SPC logic for the solar array module used in the script SS

Eclipse handling : As mentioned earlier, only points corresponding to an eclipse

flag of value 1 are considered for SPC. SPC does not run if no sun-facing points exist

in the dataset.
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Limitations

� Though most possible faults are identified by the algorithms, any combination

of anomalies other than the ones described above may not be detected by the

algorithms.

� The algorithms assume that at least one orbit of data is available during anal-

ysis. False alarms might be generated when less than one orbit of data is used

at a time.

� Another assumption is that at least one of the strings generates some power

during all sun-facing time, that is, at no time do all the strings completely fail

together.

� The analysis depends on the eclipse flag for each time point in the telemetry.

Any errors in the eclipse flag from telemetry might result in incorrect conclu-

sions.

5.3.5 Increase in the battery’s internal resistance

Increase in a battery’s internal resistance tends to heat it up often leading to equip-

ment shutdown causing current to be restricted in such cases. The power subsystem

could ultimately fail due to this, creating an important need to detect it. To do this

using SPC, I first calculate the battery’s ideal internal resistance. The specific battery

cell (LFP-18650HT) for ManitobaSat-1 with the configuration 2S3P has an average

internal resistance of 0.013 Ω [67] as mentioned in Chapter 4.

As with the previous fault of solar string failure, the data from the first few orbits is

assumed to be ideal. I need to calculate the control limits and zone boundaries for the

SPC analysis. To proceed, it is necessary to formulate the estimation of the internal
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resistance (iRes) from the simulator results that will be used for SPC analysis. Once

that is decided and the limits are calculated, I start injecting anomalies and making

observations from the results of the crAlg N algorithms. Based on these observations,

an algorithm is devised to detect an increase in the internal resistance and reduce

false alarms. Each of the steps (Figure 5.20) in creating a rule-based SPC system to

detect an increase in the battery’s internal resistance is discussed below.

Figure 5.20: Steps in the internal resistance increase detection part of the SPC module

Internal Resistance Estimation This step focuses on estimating iRes from the

battery voltage and current data I get from the simulator. From Chapter 3, I have

the Equation for the electromotive force (VEMF ) of the battery. Assuming that VEMF

in Equation 5.1 stays relatively constant, I use the discrete derivative to calculate the

kth internal resistance in the sample which is given by the Equation 5.2 where VBus

is the bus voltage, IBattery is the current into the battery or the battery current and

R is its internal resistance. The assumption of VEMF being constant is reasonable

since in my calculations, the estimation of VEMF is done using the bus voltage and

battery current values at consecutive time steps where the time step is one second.

That means, I am assuming that VEMF stays relatively constant when moving from

one second to the next. As I observed that the bus voltage and the battery current do

not change significantly (differences in VBus and IBattery between two seconds are <

0.005 in magnitude) from one time step to the next, assuming that VEMF is constant

between two steps while estimating the internal resistance is reasonable.
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VEMF = VBus − IBatteryR (5.1)

Rk =
(VBus,k − VBus,k+1)

(IBattery,k+1 − IBattery,k)
(5.2)

Since, the current into the battery does not change significantly between two

consecutive time steps most of the time, I get R(t) incorrectly equal to infinity at

certain times. This indicates that the assumption of a constant VEMF does not hold

true at these points. To get a set of points where the assumption is true, conditions

are imposed on the current and voltage values and only these values are considered in

the SPC analysis. A minimum difference of 0.01 A and 0.001 V between consecutive

measurements for the battery current and voltage respectively are taken. These

conditions have been obtained by looking at the battery voltage and current values

and their appropriate differences between two time steps to provide a meaningful

resistance estimate. Clearly, it takes some time for a certain number of resistance

points to be collected for analysis. The pseudocode for the script resistanceEstimation

used in the estimation of the internal resistance is given in Algorithm 1.
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Algorithm 1: Pseudocode for resistanceEstimation

Result: iRes

counter = 1;

for every element in the battery voltage and current datasets of length l from

i = 1 to l-1 do

voldiff = (VBus(t + 1) - VBus(t));

curdiff = (IBattery(t + 1) - IBattery(t));

if (curdiff > = 0.01 A) and (voldiff > = 0.001 V) then

iRes(counter) = - voldiff/curdiff;

timearray(counter) = i;

counter = counter + 1;

end

end

if length of iRes > 0 then
iRes = iRes;

else

iRes = “N/A”;

end

SPC for the internal resistance is only run when at least 5 data points are estimated

from the telemetry at which the constant VEMF assumption holds true. 5 is the

minimum number of points required to detect a significant shift in the data according

to the control rules. This is because zone A (rule 5) and zone B (rule 6) tests require

at least 5 points for their algorithm (crAlg 5 and crAlg 6) execution. The other

tests (except rule 1) focus on smaller shifts which require more points. So, 5 is the

minimum number to run a meaningful test. The iRes values obtained during the first

100 orbits is shown in Figure 5.21.
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Figure 5.21: The estimated internal resistance of the battery over the first 100 orbits
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The resistance values in Figure 5.21 should ideally have formed a straight line

but they vary a lot and have a maximum error of approximately 19 %. The error

in the estimated values is periodic as can be seen in the figure and seems to be the

highest when a major change in the power consumption is taking place which in

turn affects the battery voltage and battery current. There are some implications of

the internal resistance estimate being potentially wrong by about 19 %. This error

increases chances of false alarms and decreases the effectiveness of the SPC techniques

for anomaly detection. One way to slightly alleviate this effect would be to consider

appropriate margins and wide ranges in the categories of faults when the detection

algorithm for the increase in the internal resistance is developed. For example, a

moderate increase in the internal resistance which is a category of the fault considered

for detection can be between 0.018 Ω and 0.027 Ω. This provides a wide enough range

such that when there is an increase to an estimated 0.023 Ω or a maximum resistance

value of 0.027 Ω accounting for error. The value 0.027 Ω is still in the range of the

same category of the fault. It might seem that 0.023 Ω is a comfortable choice for this

example instead of a number closer to the boundary of the category such as 0.019 Ω

where the minimum resistance value after accounting for the overestimation error is

0.015 Ω which moves into the previous category of a lower resistance increase. But,

this leads to the next step of alleviation I incorporate in the algorithm development,

that is, detecting even a change of 0.002 Ω from the ideal value. Doing this ensures

that the algorithm detects most cases of change. Nevertheless, this also means that

the false alarm rate will be increased. It is a trade-off between wanting to detect a

majority of faulty cases including some false positives against not being able to detect

some significant increases. Clearly, the former is the better choice. It is better to have

some false alarms than having no alarms when significant increases occur.
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Zone Boundaries Similar to the solar array current fault, the ideal control chart is

developed before formulating an algorithm for fault-detection. Since, iRes is estimated

from the battery voltage and current, its value cycles with a period of 3 orbits. This

is because the voltage and current follow a 3 orbit cycle. As all voltage and current

points would not give me a meaningful resistance and to have a large dataset for

calculating the control limits and zone boundaries, I use a sample size of 99 orbits.

Again, 99 is a multiple of 3 and the calculations should not be affected by expanding

the window. This should not be confused with the minimum number of points required

to run the SPC algorithm for this fault which is 5. To reiterate, I require only 3 orbits

of data with a minimum of 5 points in total in the sample to perform the SPC analysis.

99 orbits of data are taken only for algorithm development and are not necessary when

running the SPC analysis once the system is developed.

The ideal data is the telemetry I obtain in the first 99 orbits of the mission (after

reaching steady state) with no fault injected. The control limits lie three standard

deviations away from the mean. The control limits and zone boundaries for iRes are

computed according to Equations in Table 5.7.
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Parameter Internal resistance Equation

Mean 0.013 Arithmetic mean of all ele-

ments in the dataset

Upper control limit 0.016 Mean + 3 * σ

Lower control limit 0.010 Mean - 3 * σ

+2 σ 0.015 Mean + 2 * σ

+1 σ 0.014 Mean + 1 * σ

-2 σ 0.011 Mean - 2 * σ

-1 σ 0.012 Mean - 1 * σ

+4 σ 0.017 Mean + 4 * σ

-4 σ 0.009 Mean - 4 * σ

Table 5.7: Control limits for iRes. All values are in Ω, and σ stands for the standard

deviation of the dataset. The values +4 σ and -4 σ are shown for reference to visually

understand how the points are distributed in the plot. They are referred to as the

specification limits.
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The control chart is provided in Figure 5.22. I run all the crAlg N algorithms on

the resultant iRes (Figure 5.22). Importantly, it is observed that a few consecutive

points in iRes are equal. Similar to the case of the solar string currents, the tolerance

for differences between the consecutive points is taken to be 0.002 in rules 3 and 4.

Reducing false alarms is essential when studying the ideal dataset. Since a slight

modification of a control rule results in removing a false alarm as is the case here for

rules 3 and 4, I modify these rules to remove their violations. Recall, I modified rule

3 as seven or more consecutive points continuously increasing or decreasing by more

than 0.002. Rule 4 is modified as fourteen or more consecutive points alternating

up or down with a difference (magnitude) of > 0.002. The modifications to rules 3

and 4 are used in the both the algorithms for the solar string failure and the internal

resistance fault. The changes are made to rules 3 and 4 as they are the only rules

that are dictated by the differences in consecutive data points and not by the zones

the points lie in. This uniqueness makes them more conducive to modifications.
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Figure 5.22: Control chart for the internal resistance over 99 orbits used to calculate

the control limits and the zone boundaries
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This analysis demonstrated that none of the rules are violated by the data which

is expected since the data does not contain any faults. Unlike the case of the solar

string anomalies, there are no inherent control rule violations in the ideal control

chart. The next step is to observe how different types of anomalies in the internal

resistance affect the control rules.

Trend Observation In this step, I consider the different ways in which an increase

in internal resistance can manifest itself in the data. Each of them is injected and

crAlg N algorithms are run on them to make observations. The sample window

considered is the same size as the size used for the limits calculations.

The battery cell’s datasheet [67] mentions that the maximum expected internal

resistance is 0.045 Ω. For a 2S3P configuration for the battery, this is 0.027 Ω.

This value is kept in consideration when defining the different categories of resistance

increases that are given below.

� Very high increase in resistance:

The resistance is increased to 0.045 Ω in the simulator’s internal resistance

block, much higher than the 0.027 Ω limit on the datasheet. Though very rare

for this increase to occur, this clearly requires detection to protect the battery.

Rules 1, 2, 5, 6 and 8 are violated by groups of points in the upper portion of

the chart as indicated in Figure 5.23. Most of the points are near the 0.045 Ω

mark but a few of them lie near the ideal average of 0.013 Ω. Control rule 1 is

violated by all points (indicated by small stars in Figure 5.23) that lie near 0.045

Ω as expected. These are indicated by small stars on the points. These points

are also on the same side of the mean at several times when the resistance does

not steer back to 0.013 Ω within seven points near 0.045 Ω, also violating Rule

2. Rules 5 and 6 are always violated when more than 4 consecutive points lie
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beyond the control limits as is the case here. Also, there are many consecutive

points that lie far away from the mean violating rule 8. The points that lie

below the UCL and are closer in value to the ideal average do not violate any

rules. This is easy to detect and is highly deviant from the ideal chart.

Figure 5.23: Control chart for the internal resistance with an increase to 0.045 Ω from

0.013 Ω

� Moderate increase in resistance:

The resistance is increased to 0.020 Ω in the simulator. Rules 1, 2, 5, 6 and 8

are violated (Figure 5.24). No points go below 0.018 Ω and most lie near 0.020

Ω. Unlike the case of an extreme increase in iRes, all the points violate rule

1. This is a difference between an extreme increase in the first case and the

moderate increase to 0.020 Ω.
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Figure 5.24: Control chart for the internal resistance with an increase to 0.020 Ω from

0.013 Ω
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� A small increase in resistance:

The resistance is changed to 0.016 Ω. Again, rules 1, 2, 5, 6 and 8 are violated

(Figures 5.25 and 5.26). Note that there are two figures showing the same chart

for clarity, the first one indicates the points violating rules 2 and 5 and the

second one specifies the violations of rules 1, 6 and 8. Its difficult to differentiate

this case from the previous two cases of extreme and moderate increases since

the first two cases also showed violations of the same rules, but it is important to

observe the control chart and identify differences. In contrast with the previous

case, many more points lie near the ideal mean of 0.013 Ω. About 15 % of the

points lie above the UCL. Rule 2 is violated because all points are above the

mean. Rule 5 is violated by all points violating rule 1 and the remaining points

near the UCL. Also, in a row of any 5 consecutive points, at least 4 points lie

in zone B or beyond, thus, causing them to fail rule 6. Lastly, there are a few

points right above the mean and these do not break rule 8 since they lie in zone

C. There are many groups of 8 points in a row that lie beyond zone C. The

union (commonality) between the points violating multiple rules becomes an

important feature in identifying this type of resistance increase anomaly.
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Figure 5.25: Control chart for the internal resistance with an increase to 0.016 Ω from

0.013 Ω. The figure indicates the points violating rules 2 and 5. Also shown are the

points violating rule 1 with small stars.
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Figure 5.26: Control chart for the internal resistance with an increase to 0.016 Ω from

0.013 Ω. The figure indicates the points violating rules 1 (stars), 6 and 8.
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� Negligible increase in resistance:

The resistance is increased to 0.014 Ω which is a 0.001 Ω increase from the ideal

mean. Figure 5.27 shows that an unexpected 8% of the points lie beyond the

UCL and violate rule 1. Nonetheless, these lie below the upper specification

limit indicating their proximity with the UCL. Unlike the previous case of a

small increase, only three rules are violated here, namely, rules 1, 6 and 8. Rule

6 is failed by all points even though there are some points lying close (within 1

σ) to the mean. Even then, these points are spaced away from each other such

that there exist at least 4 points in every 5 consecutive points that lie in zone

B or beyond. Most points except the ones right below the mean break rule 8.

Figure 5.27: Control chart for the internal resistance with an increase to 0.014 Ω from

0.013 Ω

� Sample size The sample size of the data has little to no effect on the trends
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observed in the control charts for various magnitudes of increase in the internal

resistance as long as it satisfies the two conditions of a minimum sample size of

5 points and a sample time of three orbits. This is because the points repeat

over a period of time and the resistance points collected from any 3 orbits are

the same. To demonstrate that the observations made are the same for a sample

time of 99 orbits vs 6 orbits as an example, the plot for the case of a 0.014 Ω

resistance over a period of 6 orbits is shown in Figure 5.28. Again, the rules 1, 6

and 8 are breached as I observed in the negligible resistance increase case with

a sample time of 99 orbits discussed above. Out of the 26 points, 2 lie above

the UCL. This is close to 8 % which is the number I received for a period of 99

orbits. Similarly, by visually inspecting the chart and comparing it to Figure

5.27, it is easy to infer that the distribution proportions of the points over the

different zones is almost identical in these figures. Hence, it is clear that the

observations made so far do not dramatically change with the sample window.
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Figure 5.28: Control chart for the internal resistance with an increase to 0.014 Ω from

0.013 Ω over a period of 6 orbits
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To summarize, the rules failed by the points in each of the above cases in given in

Table 5.8.

Internal resistance (Ω) Rules violated

0.045 (very high increase) Rules 1, 2, 5, 6 and 8

0.020 (moderate increase) Rules 1, 2, 5, 6 and 8

0.016 (small increase) Rules 1, 2, 5, 6 and 8

0.014 (negligible) Rules 1, 6 and 8

Table 5.8: List of the rules that are violated for an internal resistance anomaly

Algorithm Development The control charts for various cases of the internal resis-

tance fault were presented in the previous step (Trend Observation). The conclusions

drawn from the observations made are used in developing the algorithm logDetRes

for iRes anomalies. A flowchart for the algorithm is depicted in Figure 5.29.



CHAPTER 5. THE FAULT-MANAGEMENT SYSTEM 114

Figure 5.29: The flowchart for the logDetRes algorithm used to detect faults in the internal resistance. Here, IRulenumber =

1 stands for the rule being violated and IRulenumber = 0 indicates no violation; NRulenumber is the number of points violating the

rule and L represents the total number of points in iRes. 0.95 stands for 95 % which is used as a parameter to compare the number of

points breaking corresponding rules. The symbol && refers to the AND (requires all sub-conditions in a condition to be simultaneously

true to be satisfied) operator in a condition. As an example, the first condition would read as I1 = 1 AND I6 = 1 AND I8 = 1 AND

I2 = 0 AND I5 = 0. Note that the oval-rectangular shapes towards the right for every condition are not part of the algorithm. They

state the category of the internal resistance fault.
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In logDetRes, iRes is given as the input. Here, there are 4 major conditions where

combinations of control rules are used to detect the degree of severity of the faults in

the internal resistance if at all one exists. To identify if a control rule is violated, the

crAlg N algorithms discussed earlier are used. To begin, I need the information of

whether the rules are violated and also the number of points violating each rule. The

crAlg N algorithms are run on iRes. I introduce the variables IRuleNumber, NRuleNumber

and L. IRuleNumber defines if a rule is passed or failed and takes the value 1 when a rule

is failed and 0 when it is passed. NRuleNumber denotes the number of points violating

the corresponding rule and L is the total number of points in the iRes dataset. Each of

the main conditions is defined using a (AND logic) combination of prescribed values

for IRulenumber, NRulenumber and L. Based on logDetRes given in Figure 5.29, the newly

introduced variable Score (same as score) is assigned a value. Score gets a value of

1, 2, 2, 3 or 0 for the four main conditions and the last (all other cases) condition

respectively. The value of score indicates the severity of the anomaly (in terms of

battery degradation due to an increase in its internal resistance) that is detected by

the algorithm logDetRes. This score becomes important when I design the fault-

management system’s implementation in the VGS which will be discussed in later

chapters. The higher the score, the higher is the severity of the fault.

Limitations

� As with solar array current, though most possible cases of faults are identified

by the algorithms, any combination of anomalies other than the ones described

above may not be detected by the algorithms.

� A minimum of 5 resistance points and a sample time of three orbits is required

for SPC analysis. The collection of the adequate number of points may take

time, therefore, SPC on the internal resistance is not always possible.
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� The 20 % error in estimating the internal resistance may cause false alarms or

no detection of faults in some cases as I discussed previously.

5.4 Development of the Time-Domain Features Ex-

traction Component of the Fault-Management

System

5.4.1 Excessive Power Consumption

The faults discussed so far consists of solar array current and battery internal resis-

tance parameters both of which are expected to be relatively constant scalars. Unlike

these, the power consumption is defined by the power consumption timeline which

has varying values based on the mission operations. Different failures affect a process

in unique ways and using control charts might not be applicable to every failure.

Subtle changes in complex waveforms such as the power consumption are difficult

to interpret for early signs of faults using traditional SPC. As described in chapter

2, time-domain features can be used to represent the characteristics of the system,

whereby a customized algorithm can perform classification to identify anomalies.

To select the appropriate time-domain features, the relative influence and trends

in the different features (with and without faults) are studied over a period of 99

(multiple of 3) orbits since the power consumption timeline (Figure 5.30) repeats

after every three orbits for ManitobaSat-1. Note that the analysis for fault-detection

requires only a minimum data of 3 orbits. I am using the data from 99 orbits only for

clarity and algorithm development. The overall process is depicted in Figure 5.31.



CHAPTER 5. THE FAULT-MANAGEMENT SYSTEM 117

Figure 5.30: Power consumption timeline for ManitobaSat-1 over three orbits

Figure 5.31: Steps in detecting excessive power consumption

Candidate Features I list time-domain features that are candidates in the se-

lection process in Figure 5.32 and provide mathematical descriptions for them in

Equations 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10, 5.11 and 5.12 [50]. In these equations,

xi refers to the ith value in the dataset and n is the number of points in the dataset.
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Figure 5.32: List of candidate time-domain features for observation [55] [78]

Mean(x̄) =

∑n
i=1 xi
n

(5.3)

Peak(xp) = max(xi) (5.4)

Root Mean Square(xrms) =

√∑n
i=1 x

2
i

n
(5.5)

Standard Deviation(xstd) =

√∑n
i=1(xi − x̄)2

n− 1
(5.6)

Skewness(xskew) =

∑n
i=1(xi − x̄)3

(n− 1)x3std
(5.7)
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Kurtosis(xkur) =

∑n
i=1(xi − x̄)4

(n− 1)x4std
(5.8)

Crest Factor(CF ) =
xp
xrms

(5.9)

Shape Factor(SF ) =
xrms

x̄
(5.10)

Impulse Factor(IF ) =
xp
x̄

(5.11)

Margin Factor(CIF ) =
xp

(
∑n

i=1

√
xi

n
)2

(5.12)

Each of the features is investigated for ideal and faulty scenarios in the later steps.

The features are briefly described below as described in [78] and [79]:

� Central tendency: This measure attempts to provide the location of a central

value for an entire dataset. It defines how close the dataset is to its central or

typical value.

– Mean: This is the most common measure of central tendency. Median

and mode are also measures of central tendency. They are not considered

for this application as when random variables assume values from a vector

space as for the power consumption, these measures are not as effective as

the mean.

– Peak or maximum: The largest value in a dataset, this occurs when

communication with the ground and payload imaging are taking place

simultaneously. On the other hand, the minimum value in our dataset is
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not a very useful feature for our application since I am trying to detect

the increase in the power consumption. Nevertheless, the other selected

features are likely to detect major decreases in consumption if they occur.

– Root mean square (RMS): This metric gives an idea of size of the

dataset regardless of positive and negative values. Since, all our values are

positive, it is expected that the root mean square is close to the mean. It

is essentially the square root of the arithmetic mean of the squares in a

dataset.

� Degree of variation: This provides the statistical measure of the distribution

of the data points around the center values. A greater degree of variation

indicates that many measured values deviate from the mean in a dataset.

– Standard deviation: Variance is a statistical property of how far each

point in a dataset is from the mean also indicating the relative distances

between the points in the dataset. Mathematically, the average of the

squared differences between the mean and every data point gives the vari-

ance. The standard deviation is the arithmetic square root of the variance.

� Distribution shape: It is important to understand how the shape of a dataset

changes when faults occur. Together with the central values and variations, it

defines the basic characteristics of a dataset.

– Kurtosis: This is a measure of flats and spikes in the data.

– Skewness: Provides a measure of the distortion or asymmetry in the

distribution based on the notion of moments of the distribution [80]. Faults

cause increases in skewness in a distribution.

� Waveform parameters: Crest factor, impulse factor, shape factor and margin

factor are key properties for a waveform. Shape factor provides insight into
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the shape of the distribution irrespective of the signal dimensions. The crest,

impulse and margin factors are categorized as impulsive metrics and relate to

the distribution peaks. The crest factor serves an early warning sign for faults

in many cases as the manifestation of faults often begins with changes in the

peakiness of a signal (with respect to the root mean square) which might not be

directly detectable from the peak alone. Margin factor is also called clearance

factor and has a high value for ideal (no fault) systems [81].

Ideal Features Calculation As the value of these features are the same for any

three orbit period, the features are computed for three orbits as a baseline of ideal

values (Table 5.9). The equations (Equations 5.3 to 5.12) given for each feature are

used for the calculations.

Feature Ideal value

(units)

Mean 9.034 W

Root mean square 9.107 W

Peak 12.650 W

Standard deviation 1.152 W

Kurtosis 5.231

Skewness 2.046

Shape factor 1.008

Crest factor 1.389

Impulse factor 1.400

Margin factor 9.001

Table 5.9: Time-domain features over three orbits with no faults
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Data Observation To introduce different faults in the simulator and investigate

the features, each of the three unique orbits in the power consumption timeline are

labelled as A, B and C as shown in Figure 5.33. A and C have similar characteristics

while B shows the peak with the camera being on for two minutes. It is assumed that

faults can take place in different forms: only in one of the orbits, in any two of the

orbits and all three orbits. Different cases of faults are considered such as low power

increase over a long duration, high power increase over a short duration, etc.

Figure 5.33: The power consumption timeline showing the labels for the three orbits

More than 50 fault test cases are introduced into the data for testing and compar-

ing the trends in the features between the faulty and ideal cases. All computations are

made for groups of 3 orbits for ManitobaSat-1. Since the fault-management system

should be applicable to any CubeSat and not restricted to ManitobaSat-1, I took mea-

sures to ensure that these specific power consumption timeline characteristics do not

influence the system I am trying to develop. Therefore, the script (TDFeaturesCom-

pute) written to complete the computations should not always be performed in groups

of 3 orbits. This number should be editable based on the period of the power con-
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sumption timeline for the specific mission. This idea will be clearer when I discuss

the application of the time-domain features part of the fault-management system to

a hypothetical mission in a later section (Section 5.4.3).

One early observation found that the peak as a basic statistical parameter might

indicate changes to the waveform but does not guarantee a fault. Peaks can remain

the same for the ideal and faulty case as the increase in power consumption/fault could

occur at points other than the peak of the ideal waveforms and not high enough to

cause the peak to change. For example, the maximum power consumption occurs be-

tween 7201 and 7320 seconds and is 12.65 W. If there is a spike/fault with an increase

in the power consumption during a period other than from 7201 to 7320 seconds and

the magnitude of the increase is lesser than the sum of the ideal power consumption

and the spike (increase), the peak will remain unchanged. To demonstrate, if the

increase is 2 W between 6500 to 7000 seconds where the ideal consumption is 8.57

W, with the fault it changes to 10.57 W which is still lesser than 12.65, the peak of

the waveform remains at 12.65 W and does not change from an ideal case despite

having a fault in it. Change in peaks can be used to identify huge increases but low

and moderate increases can not be conclusively dependent on the peaks.

A script dTDpercent is written to calculate the percentage change in the features

in a faulty case from the ideal values. Percent changes in the features for some

major fault test cases from ideal cases is given in Figure 5.34. The fault duration

and increase in consumption are given in seconds and W respectively and the orbits

(labels) where the corresponding faults are injected are indicated.
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Figure 5.34: Percent changes in time-domain features for major test cases in power

consumption
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The following observations are made from Figure 5.34:

� There are six categories of power consumption increases considered in the figure,

namely, low increase long duration (LL) (cases 1 and 2), low increase short

duration (LS) (case 3), moderate increase long duration (ML) (cases 4, 5, 7

and 8), moderate increase short duration (MS) (cases 6), high increase short

duration (HS) (case 9) and high increase long duration (HL) (case 10). For the

short duration test cases, the increase is applied in any one of orbits without

preference unlike for the long duration cases where the increase in A and C

are studied separately from an increase in B. This is because the increases

applied over a small time period do not really affect the overall consumption

significantly irrespective of the orbit in which the increase occurs. However,

features are heavily impacted if the increases occur over 2000 seconds.

� LS and LL: For the cases 1 and 3, the peak does not change as expected. Orbit

B still contains the peak where the camera and communication are on together.

Increase of 0.5 W is not big enough to change the ideal peak. The percent

changes in the mean and RMS are approximately the same irrespective of the

orbit in which the fault occurs. The standard deviation changes more when the

fault is in orbit B. This is true for most other features as well. The features

hardly change for case 3 which might make it harder to detect.

� MS and ML: Unlike the previous cases, much larger changes are observed in the

standard deviation, skewness and kurtosis. The relative signs of the skewness

and kurtosis changes and crest and impulse factors changes provide distinctions

between the categories of cases. The changes in the crest and impulse factors

are close in magnitude. As the magnitude of the increase (fault) is growing,

the change in the margin factor (CIF) is drifting away from the changes in the

mean and RMS. The CIF seems to be independent of the orbit in which the



CHAPTER 5. THE FAULT-MANAGEMENT SYSTEM 126

fault is occurring. This is important since I am designing a system that is not

just applicable to a single mission and should not be specifically designed for

particular timelines. While the skewness decreases in both cases 4 and 5, the

kurtosis increases only in case 5.

� HS and HL: There is a dramatic increase in the standard deviations when the

increase in high and the duration is long. Most of the features increase except

for the skewness which decreases in cases 7, 8 and 10. This makes it challenging

to find a pattern/trend in the way the features are reshaping with changing

faults. Though signs of the changes are useful, it is the combination of the

magnitudes and the relative signs that will have to be used for detection.

Algorithm Development With the observations from the previous step (Data

Observation), the algorithm logDetPower is developed and boundaries for differen-

tiating between various cases of faults is determined based on the changes in the

selected features. For each category of fault, I use the features that are affected the

most for detection. The various conditions in logDetPower are described in Table

5.10 where avg, rms, peak, std, skew, kur, cf, if, sf and cif stand for the percentage

changes from an ideal to faulty case in the mean, root mean square, peak, standard

deviation, skewness coefficient, kurtosis coefficient, crest, impulse and shape factors

and the margin factor respectively.
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Condition Description Score Type of Fault Identified

AD magnitudes of rms and avg > 0.01 N/A N/A

IA avg > 7, rms > 9, cif > 6.5, peak > 7 and the maximum/peak

has increased by at least 2 and sf > 1

5 High increase long dura-

tion

IB avg > 1, rms > 1.2, cif > 1, std > 15, peak > 8 and the

maximum/peak has increased by at least 2

3 High increase short dura-

tion

IIA avg, rms and cif are between 4 and 20, std > 10 and skew and

kur are of the same sign

3 Moderate increase long du-

ration

IIB (avg > 1.2, std > 2, magnitude of kur > 15, cf and if <0) or

(avg > 1.2, std > 2, magnitude of kur < 15, cf and if >0)

2 Moderate increase short

duration

IIIA avg, rms and cif are between 2 and 6.5 and the magnitude of

skew > 2 and kur > 2

2 Low increase long duration

IIIB (avg, rms and cif are between 0.3 and 3 and skew and kur are

negative) or (avg, rms and cif are between 0.3 and 3, skew and

kur are positive and sf > 0.05) or (avg, rms and cif are between

0.3 and 3 and skew and kur are of opposite signs)

2 Moderate or low increase

IIIC avg > 0.5, rms > 0.5, cif > 0.5, std > 4, kur > 2, cf > 3, if >

3 and sf > 0

2 Uncategorised consump-

tion abnormality

IIID avg < 0.05, rms < 0.05, cif < 0.05, std < 0.2 and peak > 15 1 Low increase short dura-

tion

IVA avg < 1.5, rms < 1.5, cif < 1.5, skew and kur are negative, the

magnitudes of if and cf are within ± 0.1

1 Low increase short dura-

tion

IVB avg < 1.5, rms < 1.5, cif < 1.5 1 Low increase short dura-

tion

All other cases N/A 0 No issues

Table 5.10: Conditions for the Algorithm logDetPower in Figure 5.35



CHAPTER 5. THE FAULT-MANAGEMENT SYSTEM 128

logDetPower is summarized in Figure 5.35. logDetPower is not just based on the

major test cases presented. Instead, the conditions in Table 5.10 are the result of

extensive testing to estimate the boundaries between the cases and how the features

interact with each other. Once a condition is satisfied, the algorithm is exited imme-

diately. More test cases used to characterize the algorithm are discussed in the next

subsection while assessing the accuracy of logDetPower.

In Table 5.10, the variable score stands for the severity of the anomaly (in terms

of the power consumption compared to the ideal timeline) that is detected by the

algorithm logDetPower. Each value of score corresponds to specific categories of

faults (LS, LL, MS, ML, HS and HL). logDetPower checks the conditions and finds

out the score. The score corresponds to the VGS’s fault-management system lamps

such that when the score is 5, the lamp denoting the highest risk is lit and when the

score is 2, the lamp for lowest risk is lit and so on and so forth. Hence, the higher

the score, the higher is the severity of the fault. I will discuss this more in the next

chapter. To summarise, the algorithm only provides results in terms of scores and

the assigning of specific categories of faults is only part of the background work of

the fault-detection process.
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Figure 5.35: The flowchart for the logDetPower algorithm used to detect faults in the

power consumption. The conditions used are described in detail in Table 5.10. The

faults are detected in terms of the score values as each score corresponds to specific

categories of faults as provided in Table 5.10. This figure also shows the preliminary

condition AD required to be satisfied to run the algorithm.
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Figure 5.35 also indicates that logDetPower is not always run. There is a prelim-

inary condition named AD (Table 5.10) that is based on the sensitivity of detection.

It determines if there is any detectable change in the basic features such as the mean

and the root mean square. This is done so that the algorithm is not run unnecessarily

every time. This reduces execution time.

The algorithm logDetPower can directly be applied to an orbit size of three. I

assume that telemetry for power consumption is sent in multiples of 3 orbits. This

will be discussed further in Chapter 6. When I have more than one set of three orbit

groups to analyse, the scores of each of the groups of 3 are calculated by running

logDetPower on every 3 orbit datasets and the maximum score for all the groups is

chosen as the final score since higher the score, the more severe the fault is. The

logic (script PL) behind this is given in Figure 5.36. Again, the script only deals with

scores and has nothing to do with the categories of faults directly. The categories

of faults have already been ‘converted’ to be represented in the form of scores by

logDetPower.
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Figure 5.36: The logic for the power consumption fault detection used in script PL
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In Figure 5.36, I first compute the number of times (Iterations) the score has to be

calculated. This depends on the total number of points in the dataset N, the number

of orbits after which the power consumption timeline repeats itself T, which is 3 for

ManitobaSat-1 and the orbit time which is 5560 seconds for the mission. I have all the

outputs from TDFeaturesCompute and dTDpercent for each Iteration. A for loop is

the next step wherein the condition AD is checked and the algorithm logDetPower is

executed if necessary. This gives me a score for every group of 3 orbits in the dataset

stored in an array mScore with a total number of rows equal to Iterations. Once I am

done with all these computations, the maximum of all the elements in mScore is the

final output for the whole detection process. This final output is the resultant score

for the whole fault-detection process and corresponds to fault-detection lamps in the

VGS’s fault-management system. I will discuss this further in the next chapter.

As an example, let me consider that the fault-detection logic is being run on 9

orbits of data and a high increase long duration fault exists sometime in the first 3

orbits and a high increase short duration fault exists sometime in the last 3 orbits.

The number of iterations is 3 (9/3 = 3). So, logDetPower will be run thrice on the

three sets of 3 orbits each, that is, orbits 1 to 3, 3 to 6 and 6 to 9. According to

logDetPower (Figure 5.35), the score for orbits 1 to 3 is 5, for orbits 3 to 6 it is 0 and

for orbits 6 to 9 it is 3. With the logic used in script PL (Figure 5.36), the resultant

score is the maximum of 5, 0 and 3 which is 5. A fault with a score of 5 is considered

very severe and will correspond to the high risk lamp in the VGS’s fault-management

system.
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5.4.2 Analysing the Accuracy and Applicability of the Algo-

rithm logDetPower

There are two parts in analysing the accuracy and applicability of the algorithm.

Firstly, I assess the accuracy of the algorithm and prove that it meets the requirements

with respect to the fault-detection system. The (self-imposed) requirement would be

to achieve an accuracy (in terms of detecting different categories) of atleast 80 %

and a detection rate of atleast 90 %. Secondly, the designed system is applied to a

hypothetical mission to establish that it can in fact be used for any similar CubeSat

mission and is not exclusive to ManitobaSat-1.

Accuracy of the algorithm To estimate the accuracy of the algorithm, 60

random test cases are generated (Algorithm 2) and the expected scores and the actual

scores from the algorithm are compared. The expected scores are the score values for

each test case that I would expect the algorithm to give. For instance, when a test

case with a high increase and long duration fault is considered, the algorithm should

give a score value of 5 according to the conditions in Table 5.10 and logDetPower. So,

5 is the expected score. The actual score is the real score that the algorithm provides

when this test case is tested. If the algorithm fails to give a score of 5 and instead

gives a score of 3, the actual score will be 3 and the expected score will be 5 for the

test case.
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Algorithm 2: Pseudocode for generating the test cases. The test cases are

given in Appendix A

Result: Test cases

T: Number of required test cases a: The minimum increase in consumption

the user would like to test

b: The maximum increase in consumption the user would like to test

for i = 1 : T do

inc(i) = randomgenerator(a, b, 1) ;

% inc is the magnitude of the increase of the fault; The function

randomgenerator is described after the algorithm.

dur(i) = randi([t1, t2]);

% dur is the duration of the fault and randi is a function in Matlab that

generates a random integer between the numbers t1 and t2

startpt(i) = randi([s1, s2]) ;

% startpt is the time at which the user wants to start the occurrence of

the fault and s1 and s2 are the time limits for startpt set by the user

endpt(i) = startpt(i) + dur(i) ;

% endpt is the time at which the fault ends

Test case parameters are generated and script PL can be tested

on these

end

function [r] = randomgenerator(a, b, number)

% This function generates a random number between a and b and number

stands for the number of points I would like to generate. For this research,

it is 1

r = (b - a) * rand(number, 1) + a ;

% rand is a matlab function that produces uniformly distributed random

numbers

end
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The power consumption increase is randomized between 0.2 to 8 W with 20 cases

in each group between 0.2 and 2, 2 and 5 and 5 and 8. The number of orbits is

set to 3. 30 of the cases occur over 2000 to 5000 seconds while the rest occur for a

shorter duration (120 - 1000 seconds). The time at which the fault is introduced is

randomized as well. This setup gives a fairly good estimate as it covers a large subset

of possible faults. The test case parameters are provided in Appendix A.

From the results in Figure 5.37, it is observed that all cases required the algorithm

to be run.

Figure 5.37: Summary of results obtained from the test cases for the power consump-

tion fault for ManitobaSat-1

In plot A of the figure, I observe that the expected and actual scores closely

match for most cases except for a few shorter duration cases. This corroborates the
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results shown in plot C where the detection rate is 100%. 92% of the cases had the

actual score values match their expected scores while the rest slightly underestimate

or overestimate the level of urgency/score by 1. Since all the test cases have faults,

I expect them all to have a score of greater than 0. Rightly, the scores for all the

cases are > 0 and the number of detected cases is equal to the total number of test

cases in plot C. In plot B, the various categories chosen for the test cases with the

distribution of accurate detections among them is given. Recall, LS, MS, HS, LL,

ML and HL stand for low power short duration, moderate power short duration, high

power short duration, low power long duration, moderate power long duration and

high power long duration respectively. Though detected, low power short duration

cases have a higher incidence of overestimation in their scores. This might be due to

adjustments made to detect the most minute changes leading to over-sensitivity. The

tendency for overestimation can be addressed in future research by improving the

algorithm’s accuracy and flexibility to work for all cases of power increases. Overall,

the accuracy (92%) and detection (100%) rates of the system are good. To conclude,

they meet the minimum accuracy and detection rate requirements of 80 % and 90 %

respectively.

5.4.3 Application to a hypothetical mission

The fault-detection algorithm for power consumption can be applied to any mission

by providing the power consumption telemetry from the satellite. To demonstrate

this, a mission loosely based on the 3U CubeSat launched in 2003 called QuakeSat

is taken as an example. I assume that its power consumption timeline repeats after

every two orbits. Arnold et al. [82] provides the peak power budget for QuakeSat. 3.6

W was continually required to support the C&DH, uplink and board operations with

a downlink power consumption of 1.4 W. The peak power consumption was 12.6 W
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when all components were operating and consumed 5.7 W during eclipses. Assuming

an orbital period of 6000 seconds and sun-facing time of 3000 seconds per orbit, a

timeline is formulated. Communication takes place every two orbits between 2000

and 2500 seconds and 5000 and 5500 seconds. The timeline is shown in Figure 5.38.

Figure 5.38: Power consumption of the hypothetical mission over every two orbits

I choose ten random test cases from each category as described in the previous

section that used Algorithm 2. These cases are tabulated in Appendix A. While the

detection rate is 100%, the accuracy rate is 85% which is slightly lower (Figure 5.39)

than for ManitobaSat-1 (92%). That means that though all the cases rightly have

actual scores > 0, only 85% of them have their actual scores matching their expected

scores. Overestimation and underestimation both are seen for the hypothetical mis-

sion. The variation in results might also be because the test cases are randomly

generated.



CHAPTER 5. THE FAULT-MANAGEMENT SYSTEM 138

Figure 5.39: Summary of results obtained from the test cases for the power consump-

tion fault for the hypothetical mission
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It is interesting to observe the differences in Plot B of Figures 5.37 and 5.39.

Though the number of LL cases with incorrect scores is the same for both the mis-

sions, the number of HS cases is higher for the hypothetical mission. Also, there

are 2 ML cases for the hypothetical mission but zero ML cases that have incor-

rect actual scores for ManitobaSat-1. The main probable reason for these results is

the difference in the power consumption timelines between the missions. The range

of the power consumption values for the hypothetical mission is higher than that

for ManitobaSat-1. This is primarily due to the vast difference between the power

consumption reduction during an eclipse compared to the consumption during the

sun-facing time for the hypothetical mission. On the other hand, for ManitobaSat-1

there is a very small decrease in power consumption during an eclipse making the dif-

ference between the peak and the minimum power consumptions narrower compared

to that for the hypothetical mission. Keeping the definitions of the categories (LS,

LL, MS, ML, HS and HL) of the faults the same for both the missions and with a

broader range for the hypothetical mission blurs the boundaries between the different

categories during detection resulting in inaccurate scores. This is resultantly observed

more near the extremes of increases that is the low and high increase cases and fur-

ther having a shorter duration fault only makes it harder to accurately assess the

score. Moreover, the algorithm logDetPower was developed using the observations

made with ManitobaSat-1 which makes it obvious for ManitobaSat-1 to have higher

accuracy values compared to other missions.

Overall, the results and trends observed are satisfactory and let me conclude that

the algorithm developed can be applied to any satellite mission with minimal changes

according to the mission operations. The system still meets the minimum accuracy

and detection rate requirements mentioned earlier.
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5.4.4 Limitations

� Though most possible cases of faults are identified by the system by calculating

scores, any combination of anomalies other than the ones described above may

not be detected by the algorithms as is observed in the results.

� Detection of low power increase over a few minutes sometimes leads to false

alarms.

� Overestimation in the case of moderate and underestimation for high power

increases over shorter periods is possible. This can cause a misjudgement of the

seriousness of the anomaly in certain cases.

5.5 Summary

In this chapter, I discussed the development of the fault-management system for the

virtual ground station. The system has two parts, namely, the SPC module for the

detection of solar string failure and an increase in the battery’s internal resistance,

and the time-domain features module for detecting excessive power consumption.

I believe this is one of the most important contributions from this research. The

significance of each of the faults and their common causes are detailed. This allows

me to understand how the components of the power subsystem interact to cause these

faults.

To start with the SPC module development, I discuss the conceptual background

of traditional SPC techniques including control rules and charts. The pseudocode for

all eight control rules are provided which gives a better understanding of these rules.

As I mentioned in this chapter, SPC control rules have to be applied in a smart way
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and not mechanically as hard and fast rules. Thus, it is very important to analyze

the logic behind these rules, how and why they are applied.

The first fault is the detection of a solar string failure. The steps in the develop-

ment are broken down systematically into calculation of the control limits and zone

boundaries, injecting the faults and synthesizing the algorithms. This provides the

user with a road map to thoroughly understand the system. During the first step of

understanding the ideal control charts, it was observed that two of the control rules

(rules 3 and 4) required minor modifications to accommodate the unique nature of

the data I am trying to analyze as opposed to typical industrial data. This was done

to reduce false alarms. A comprehensive number of possible anomalies are consid-

ered while developing the algorithms. Unlike the other two faults, detecting a solar

string failure requires SPC analysis of the array current and then, the analysis of the

individual string currents to identify where the fault is exactly. While the SPC on

the array current is always run when there are sun-facing current points available,

the individual string currents are analyzed only when required and as indicated from

the SPC on the total array current. To make this process clear, results in terms of

control rule violations and logic flowcharts at every step are laid out. The results

are complemented by control charts for every type of considered anomaly. The rela-

tive severity of the types of anomalies considered for detection are discussed and are

accommodated in the algorithms.

The next fault is an abrupt increase in the battery’s internal resistance. Like for

the previous fault, the steps in the development are clearly demarcated. Before the

calculation of the control limits, the internal resistance is calculated from the battery

voltage and current obtained from the simulator. The algorithm for this computation

was given. Several categories of faults were considered based on the magnitude of

the increase in the resistance. The results for each of them were discussed and it was

concluded that the sample size of the datasets did not matter for the SPC analysis.
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The control limits are static and as long as there are at least 5 data points and 3

orbits of data, the analysis is independent of the data size. This is in agreement with

the conclusion for the solar string failure which is also independent of the dataset

size. The main disadvantage of the detection algorithm lies in the estimation of the

resistance from the battery voltage and current. This is a time consuming process as

I can only consider data points where my assumption of a constant EMF stands true.

The algorithm is capable of detecting minute (0.002 Ω) changes as well.

For the detection of excessive power consumption, traditional SPC techniques are

not sufficient. These waveforms require unique methods for interpretation and control

charts do not satisfy these requirements. Time-domain feature extraction was studied

and chosen as the appropriate technique. Similar to the SPC methodologies, the con-

ceptual background for these features was provided and a theoretical understanding

of the candidate features was given. The steps for this process were detailed. The

power timeline for the ManitobaSat-1 (used as an example) was analyzed to introduce

different faults and the different trends in the features for each case. The equations for

each of the features used in the calculations were given. The parameters for the fault

cases were tabulated and described. These were utilized to develop the algorithms

for detection based on the interaction between the features and the relative influence

of the different fault cases on the features. Since, extensive characterization was in-

volved in determining the limits in the algorithm’s conditions, the accuracy of the

algorithm was tested with randomly generated test cases. Bar charts presenting the

results and the distribution of the test cases across the fault categories are included. It

was observed that the detection rate was 100 % while the accuracy rate was 92 % for

ManitobaSat-1. To establish that the algorithm can be conveniently applied to any

mission with a few changes in the mission properties, the algorithm was tested with

a hypothetical mission. This yielded the same detection rate as for ManitobaSat-1

but the accuracy rate was slightly lower at 85 %. Nevertheless, applications to both
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missions satisfied minimum rate requirements.

The conclusions drawn throughout the chapter indicate that this fault-management

system is simple and accurate and it is highly beneficial for the VGS. The algorithms

were designed by consistently reducing the incidence of false alarms as much as pos-

sible. This system is applicable to other missions and the detailed steps described

should allow other researchers to implement a similar system for other faults.

The second hypothesis of this research states that the use of traditional SPC in

the VGS will help in anomaly detection and reduce the burden on human operators.

At this stage, I am able to evaluate this hypothesis to be partially true. The imple-

mentation of the developed system in the VGS for real-time management is discussed

in the coming chapters. This will allow the complete evaluation of hypothesis two.



Chapter 6

The Virtual Ground Station

Interface

6.1 Introduction

The first hypothesis of this thesis states that a virtual ground station can be built

based on a mathematical model of the spacecraft that would give ground operators

the sense of continual communication with the spacecraft. This system should be

capable of managing passes and uploading stored commands, should have a real-time

virtual spacecraft model (VSM) and a fault-management system that was developed

in Chapter 5. In this chapter, I discuss the development of the virtual ground station

(VGS) to accomplish these tasks to minimize the burden on the human operators.

Each component of the conceptual model of the VGS in Chapter 1 is described and

their significance in the system is established. Recall, the main components of the

VGS are:

� Interface terminal through which the operator communicates with the VGS

144
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� Pass manager

� Fault-management system

� Command and telemetry store

� Virtual spacecraft model

The interface terminal is designed in the Matlab App Designer which provides a

convenient platform to integrate the visual user interface and an editor to program

their behaviour.

This chapter starts with briefly discussing the important features of the graphical

user interface (GUI) such as the TLE (Two Line Element) access and latest orbital

parameters information and the layout of the GUI alongside the functions of the

different tabs. The chapter then goes into the development of the real-time orbit

propagator, the pass manager and the command manager. Then, I focus on the

embedding of the fault-management system from Chapter 5 into the VGS. Later, I

discuss the most important aspect of this thesis, the VSM in the VGS.

Towards the end of the chapter I describe a testbed, designed as part of this

research, used to simulate the operations of the ground station with a satellite as

realistically as possible. The testbed provides an environment wherein a pass between

the ground station and the satellite can be easily executed in real time over real

communication links such that the impact of the simulation on the assessment of the

VGS performance is minimized. I present results from the VGS with illustrations in

the form of a demonstration over a series of events that are expected to take place

when the VGS communicates with a satellite.
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6.2 Outline of the GUI

The interface terminal’s GUI is a software application running on a standard PC

with Matlab. The components of the GUI’s layout are shown in Figure 6.1. Only the

major components are discussed in this chapter. Details regarding the development of

the components and different functions written can be found in Appendices B and C.

Figure 6.2 shows the GUI with the main screen which hosts the fault alarm lamps and

the TLE file finder. The tabs are shown on the right and can be navigated through

as required. Each of the subsections that follow are based on the different tabs of the

GUI.

Figure 6.1: GUI outline
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Figure 6.2: The VGS interface terminal (screenshot from Matlab’s App Designer)

6.2.1 TLE Files

On the TLE files tab, operators can access the TLE files for the satellite using the

button, Open old TLE, which opens the folder with the TLE files with the latest

file at the top of the list. To obtain the latest Orbital elements, the Process TLE

button extracts the six orbital elements from the selected TLE file. The code for this

extraction is adapted from Mathworks website [83] and is provided in Appendix C.1.

TLE files are automatically downloaded at regular intervals using the Space Track

TLE Retriever software (Figure B.1) [84]. Appendix sections B.1.2 and B.1.3 have

more details.
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Figure 6.3: Celestrak’s Space Track TLE Retriever [84]

6.2.2 Pass Manager with an Orbit Propagator

The VGS should be capable of predicting the passes for any satellite over the physical

ground stations I would like to use so that it can initiate contact with the satellite

when it approaches the stations. I assume that a satellite has its receiver always

on except when transmitting, that is, the satellite is always listening. When a pass

occurs, the VGS sends a message to the satellite to initiate communication, which

requires prediction of the contact times which, in turn, requires a real-time orbit

propagator to indicate the satellite’s position at all times. Systems Tool Kit (STK)

offers a number of propagators (analytic, semi-analytic, numerical and external) that

allow analysing and visualizing a mission. Since the GUI is in Matlab’s App Designer,

an external real-time propagator is the appropriate choice for my application. Using

this type of propagator permits me to integrate STK’s propagator with Matlab. More

details are in Appendices B.3.1 and C.2.
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The real-time propagator lets me import TLE files and generate look ahead

ephemeris automatically [85]. I choose a two body propagator in this thesis. The

choice of the propagator can easily be changed in the script. The script (STKpropa-

gator) is in Appendix C.2. The pass intervals are predicted by the propagator for a

period of 24 hours at a time and are saved in a mat file accessible from the Matlab

path. The TLE file is updated every 12 hours when it becomes available from the

Space Track Retriever application and the pass intervals are predicted again for the

next day. The ground station locations used in the propagator can be found in the

script in Appendix C.2. The mission can be visualized in 3D and 2D in the STK

window that appears as a separate window when the VGS is running. The views are

shown in Figures 6.4 and 6.5. The real-time position and velocity are seen in the

STK window.
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Figure 6.4: The 3D visual from the STK window of the GUI containing the real-time

orbit propagator. In the 3D view, observe the satellite ‘mySat’ and the locations of

the various ground stations.
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Figure 6.5: The 2D view from the STK window of the GUI containing the real-

time orbit propagator. The 2D view shows the path of the satellite and the range

or coverage area of each ground station with thick lines forming net like structures.

Observe the location of the satellite near the two ground stations, GS14 and GS15

and highlighted by a square around it. The squares around the satellite and GS15’s

icon appearing simultaneously indicate that the satellite is inside the coverage area

of GS15 and a pass is occurring.
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The pass manager tab in the GUI displays the access times predicted by the prop-

agator for the next 24 hours. The implementation of the pass manager is discussed

in Appendices B.3.1, B.4.1 and C.2.1.

Countdown Timer

To let the operators know that a pass is about to occur, there is a countdown timer

(Figure 6.6) of 60 seconds which appears in a separate UI figure prior to every pass.

The implementation of the timer is discussed in Appendix B.4.1.

Figure 6.6: The countdown timer is shown in A and it appears 60 seconds before

a pass and in B is the message displayed when the pass begins (screenshot from

Matlab’s App Designer).

Events During a Pass

When a pass begins, the VGS initiates contact with the satellite by sending a pre-

defined ‘handshake’ message, for example: “Hello ManitobaSat!”. In this thesis, I
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ignore the technicalities of encrypting messages, packeting, software etc. The satel-

lite is assumed to be always listening for signals from Earth and when it receives

the ‘handshake’ message, it responds with a message saying “Hello Earth!”. Once

the VGS receives this message, the communication between the VGS and the satel-

lite is opened up. The satellite sends the telemetry, the VGS receives it and saves

it in the telemetry store with a timestamp. The cumulative telemetry store which

contains all the telemetry data received till date is also updated. All telemetry files

are accessible in the Matlab path. The VGS limits the pass duration based on cal-

culations by the orbit propagator using a custom stopwatch in the system. After

these events, the fault-management system performs anomaly detection based on the

updated cumulative telemetry.

6.2.3 Fault-Management System

The fault-management system for the VGS was developed in Chapter 5 to detect a loss

of a solar string(s), increase in the battery’s internal resistance and excessive power

consumption. The VGS’s fault-management system executes the fault-detection al-

gorithm for each of three faults and computes the scores for the telemetry data. The

scores (discussed in Chapter 5) value indicates if a failure exists and the level of risk

associated with the fault. Scores range from 0 to 3 for the faults detected using sta-

tistical process control (SPC) and 0 to 5 for the excessive power consumption fault

detected by time-domain extraction. Any score above zero indicates a fault. The val-

ues of scores from the four algorithms (logDetTotal (Figure 5.17), logDetInd (Figure

5.18) (if it is run based on the output from logDetTotal), logDetRes (Figure 5.29) and

script PL with logDetPower (Figure 5.36)) correspond to the fault-detection alarm

lamps (Figure 6.7) on the main screen of the GUI. The labels of the lamps define

the severity of the fault, for instance, a high lamp denotes a severe fault. Naturally,
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this indicates that the higher the score, the more severe the fault is. Table 6.1 shows

the corresponding alarm lamps that light up and their colours based on the score

values for the faults in the solar strings and the internal resistance. Likewise, Table

6.2 shows the information for the excessive power consumption fault.

Score Lamp label Lamp

colour

0 No lamp is lit N/A

1 Low Black

2 Medium Black

3 High Black

Table 6.1: Fault-detection lamps in the GUI for the faults in the solar string(s)

and internal resistance, connected to different score values in the fault-management

system
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Score Lamp label Lamp

colour

0 No lamp is lit N/A

1 Low Yellow

2 Low Black

3 Medium Black

5 High Black

Table 6.2: Fault-detection lamps in the GUI for the faults in the power consumption,

connected to different score values in the fault-management system

In Figure 6.7, as an example, a high risk defect corresponding to a score of 3 is

shown in solar string 1. The high label lamp for solar string 1 is lit and is black

in colour. Subsequently, the high label lamp for the solar array is lit and black.

Whenever there is a defect in one or more solar strings, one of the solar array lamps

are turned on. On the right, in the fault-detection messages tab, the corresponding

message for the solar array is shown. This message disappears once the operator

clicks on the ‘issue has been acknowledged and understood’ button following which

the respective lamps are turned off. The last alarm lamp in the Figure 6.7 labelled

‘issues in downloading complete telemetry’ corresponds to the fault in connecting

with the satellite. When the VGS is unable to communicate with the satellite or has

not received the entire telemetry, this lamp lights up (turns black). This is done by

checking the number of bytes available to read when telemetry is expected.
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Figure 6.7: The fault-detection lamps on the main screen of the GUI with the fault-

detection messages on the right tab (screenshot from Matlab’s App Designer)

6.2.4 Command Manager

The command manager that allows operators to send and process commands is split

into two tabs (Figures 6.8 and 6.9) depending on the type of command.

� Real-time commands

There are ‘real-time’ commands which can be executed immediately by the

VGS and the request data is displayed on the tab as shown in Figure 6.8. Real-

time commands range from requesting for any data from the previous pass of

the satellite to analysing how the satellite would be performing currently in

real-time. These also allow comparisons between the obtained telemetry and

the data predicted by VSM. The operator can send real-time commands at

any time and can get the data within a few seconds. The implementation is

discussed in Appendix B.4.2.
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Figure 6.8: Requesting data at any time from the real-time command manager

through the GUI of the VGS. There are two examples shown: on the left, the battery

state of charge is requested while on the right, the pass times for the next 24 hours

are provided by the command manager (screenshot of Matlab’s App Designer).
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� Send type commands

There are also ‘send’ type commands that the operator sends to the satellite

to perform specific actions. The send type commands need to be scheduled

for execution on the satellite by providing the VGS with the date and time at

which the satellite should take action as seen in Figure 6.9. The datepicker and

time spinners are Matlab components that let the operator select the date and

time of execution for a command they wish to create. These components do not

allow any past and impossible dates and durations to be selected. No command

can be created such that no pass occurs before the requested execution time

(code in Appendix C.3.4). Again, the operator can store these commands any

time through the Send Commands tab where they stay in a queue, also known

as the command store, which is sent to the satellite when a pass occurs. Once

the commands are received by the satellite, they are executed at the specified

date and time. If an operator sends a command during a pass, it goes to

the command store and from there it is uploaded to the satellite within the

pass duration. Details on how to create a command and send it are explained

in Appendix B.2. During a pass, commands are uploaded from the queue in

the store right after the received telemetry is saved. Implementation of the

command manager is given in Appendix B.4.1.
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Figure 6.9: Uploading commands from the VGS to the satellite and updating the

command queue list in the send commands tab of the GUI (screenshot of Matlab’s

App Designer).

The command manager consists of a set of pre-defined real-time and send type

commands that the operator can choose from. These commands are given in Appendix

B.2.

6.2.5 Display Window

The display window shows all the messages displayed on the command window of the

main Matlab window or the log file of the VGS sessions. This makes troubleshooting

easier and lets the operator get a feel of behind the scene operations. The refresh

button when clicked updates DisplayScreen. The transcript from each session dis-

played on this tab is available to the operators in a text file named ‘sessionfile.txt’ in

the working folder. This is further discussed in Appendix B.1.5.
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6.3 Virtual Satellite Model

The power subsystem simulator developed in Chapters 3 and 4 acts as the virtual

satellite model (VSM). All the necessary input to configure the Simulink blocks as

described in Chapter 4 are automated in the GUI.

The VSM is required to run in real-time so that the VGS can provide real-time

data to the operator and behave as closely as possible to the actual satellite. This is

done using a real-time pacer embedded in the model. More details on the development

of the model are given in Appendix B.4.1.

6.3.1 Obtaining Data and Maintaining the VSM

I obtain real-time data from the VSM every two seconds using listeners and event

handles in Matlab and save the data in a file so that it can be accessed by the operator

using the real-time command manager or directly by importing the file. Recall, the

VGS should be able to provide the operators with any requested data immediately

even when a pass is not occurring. This data is the predicted telemetry. The data is

saved with timestamps so that the VGS can find the VSM data corresponding to the

real telemetry data when the satellite sends it. More details are in Appendix B.4.1

and the script for the relevant functions is in Appendix C.3.2.

6.4 Virtual Ground Station Testbed

The development and implementation of the VGS system involves interaction between

a multitude of components and requires a suitable testing environment for verification.

The Virtual Ground Station Testbed (VGST) consists of a communication model

based on generic interfaces that allow transfer of data and commands between the
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VGS and the simulated satellite model. Serial communication is used to interface

between the VGS and simulated satellite model. Serial communication is the most

common low-level protocol for communication between devices. Many researchers

have used the RS232 serial protocol in testing spacecraft communications and systems

as they are a reasonable and affordable representation of spacecraft communication

modems [86][87][88].

This testbed (Figure 6.10) provides a suitable environment to evaluate the overall

architecture of the VGS. More details regarding the VGST are in Appendix B.5.

Figure 6.10: Physical architecture of the testbed. ASM stands for the actual satellite

model. Image Credits: [89] [90]

The VGST has the four defining features that are the use of Matlab for devel-

opment, serial communication, the simulation engine and the actual satellite model

(ASM). The first three features are explained in Appendix B.5.
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6.4.1 Actual Satellite Model (ASM)

The ASM (Figure 6.11) is a Simulink model run on the simulation engine of the

VGST. This model represents the actual spacecraft in the testbed. The ASM is

executed in soft real-time and sends telemetry generated from it to the VGS during

simulated passes. When a command is received at the ASM, the ASM executes it at

the specified date and time by applying necessary changes to the parameters of the

simulation model. These implementations can be verified from the future telemetry

the ASM sends.

Figure 6.11: The functional model of the ASM

Since the VSM is supposed to be a crude model of the ASM, one would expect

them to be implemented in a similar fashion. The same simulator (VSM) is used as

the ASM with a difference of noises in the battery / bus voltage and battery current.

This is because the ASM represents the actual satellite in space and should be as close

as possible to a real satellite. There is always certain amount of noise in the data

received from a real spacecraft unlike the data from simulators. Sensor and actuator

noise onboard the real spacecraft is the cause of this noise in the data.
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In this thesis, I model the noise as a random signal with a normal distribution and

mean of zero. This noise can be classified as white noise. Then the noise is added to

the previously noiseless voltage and current to produce the total voltage and current

respectively. The standard deviations in the battery voltage and current are 1 mV

and 2 mA respectively [91] [92].

The simulation engine containing a script facilitates the communication between

the ASM and the VGS. When the ASM receives a command from the VGS, it is

required to execute the command at the specified execution date and time. Before

command handling, I discuss configuring the ASM.

Since the ASM acts as the actual satellite in the testbed, it would require to run

in real time. Similar to the VSM, the real-time pacer is used for the ASM. Similar

to the VSM, real-time data from the ASM is logged every two seconds using listeners

and event handles in Simulink. The ASM is always listening for a message from the

VGS and requires the VGS to initiate communication. When the ASM receives the

‘handshake’ message, it sends the telemetry generated since the previous pass to the

VGS. The detailed implementation of the ASM is described in Appendix B.5.3.

Though other parameters do not have specifications on the exact number of obser-

vations to send in telemetry, the power consumption requires to be sent in multiples

of 3 (period for the power consumption timeline for ManitobaSat-1, this number can

be changed). The simulation engine operations are modified to accommodate this

by sending the power consumption values in sets of three orbits. For example, when

there is data from six orbits, two sets of data each with three orbits data are sent. In

cases where lesser than three orbits of data is available, a string of zeros is sent. When

there are more than three orbits of data available but the number of observations is

not a multiple of three, the observations that are possible to be sent in sets of 3 orbits

data are sent in the current pass and the remaining are sent during the next pass.
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Once the ASM sends the telemetry, it waits for any commands that might be

sent by the VGS. The next section provides a detailed discussion on the command

handling by the ASM.

Command Handling by the ASM

‘Send’ type commands in the command queue of the VGS are sent to the ASM during

passes. These commands can be placed in queue on the VGS at any time including

during a pass. The VGS sends the following information regarding the commands

in order: the number of commands from the command store and the commands

themselves. This is done right after telemetry is received. Each command contains

the date and time of required execution, the command ID (S-01, S-02 and S-03), the

command description and the string ‘End’.

On the ASM, after receiving the number of commands from the VGS, the ASM

starts reading all the commands one by one. Relevant information required to cor-

rectly execute the commands is extracted. The command master list is updated every

time a command is received.

On the simulation engine, I want to check for commands to execute every second

and not only during passes. This is done by comparing the current time with the

execution dates and times for the commands. The command ID is used to execute the

commands appropriately. Depending on the command ID, the power consumption

of the component is increased or decreased based on what the command requires the

ASM to do. For example, the VGS sends a command to switch on the camera at

the specified data and time. when the camera is switched on, the power consumption

increases by 0.85 W. For the commands, I assume that the radio and camera are off

when they are required to be on and the radio is on when it is to be switched off.

The code used in the command handling on the ASM is given in Appendix C.3.3. For
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sophisticated detection by the ASM to check if a component is already on when it is

commanded to switch on or it is already off and has been commanded to switch off,

flags with embedded logic and listeners can be used in the Simulink model as part of

future work.

On the VSM in the VGS, the commands are executed at the same time as on the

ASM since the VSM is expected to function similar to the actual spacecraft. This

requires the power consumption on the VSM to change accordingly. Note that the

‘send’ type commands considered for this thesis require the satellite to either turn

on or turn off a component. Hence, the VGS does what the ASM does in terms of

comparing the execution dates and times of the commands every second with the

current time. Accordingly, the VGS implements necessary changes in the ASM’s

power consumption appropriately.

Faults into the ASM

Faults are injected into the ASM through the script on the simulation engine that

controls the ASM. Faults can be injected for specific periods in the ASM by using con-

ditional switches in the model. To inject a failure in the solar string(s), the current to

the respective string(s) is set to 0 through the script. Similarly, the internal resistance

is changed directly through the script. To introduce a fault in the power consump-

tion, the magnitude of the fault/increase is added to the ideal power consumption in

the ASM. A detailed description is in Appendix B.5.3.

With the testbed developed and the VGS all set, the next section presents a

number of possible scenarios to demonstrate the functionalities of the VGS.
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6.5 Demonstration of VGS Functionalities using

the VGST

To illustrate the functioning of the VGS and its features and to demonstrate its

communication with a satellite, I use the testbed. A number of possible scenarios

before, during and after a typical pass are described below with screenshots of the

VGS and the simulation engine to establish that the VGS can detect faults in the

spacecraft using its fault-management system and that the VGS behaves as if it

is in constant communication with the satellite at all times using the VSM. All the

scenarios considered start at a point where the VGS application is already running and

the satellite is in orbit. The ASM on the simulation engine is also run simultaneously.

It is important to execute VSM and the ASM at the same time since the models need

to run in real-time and sync with each other. A timeline of the events is shown in

Figure 6.12. I assume that the events take place in the same order as shown. As such,

the events such as obtaining the latest orbital elements, accessing the log file of the

session and requesting data from the real-time command manager can take place at

any time. The corresponding times (Central Standard Time UTC-6, 24 hour format)

of occurrence for these events is indicated in the figure. Note that I change the period

of the power consumption to 2 and the orbit duration is taken as 60 seconds. For this

demonstration, this means that the power consumption telemetry will be sent from

the satellite in multiples of 120 points since fault-detection has to be performed. This

change in the period and orbit time are made as, for ManitobaSat-1, the period is 3

and the orbit time is 5560 seconds. This would require a very long duration to run

and it would be difficult to present results.
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Figure 6.12: A summary of all the events discussed in this section to demonstrate the

functioning of the VGS

6.5.1 Event 1: Obtaining Access Times

The session begins at 14:04:27 (Figure 6.13). The VGS loads an updated TLE file

(Figure 6.14) downloaded by the Space Track TLE Retreiver and the STK Propagator

is run to compute the upcoming access times as seen in Figures 6.15 and 6.16. These

figures shows the 2D and 3D views to help visualize the mission. The time shown in

the propagator is the Coordinated Universal Time (UTCG).



CHAPTER 6. THE VIRTUAL GROUND STATION INTERFACE 168

Figure 6.13: The VGS GUI at the beginning of the session. The time indicated is

14:04:27. Screenshot from Matlab’s App Designer.

Figure 6.14: The TLE file given as an input to the real-time orbit propagator. Note

that this is a dummy TLE file for a CubeSat and does not necessarily correspond to

ManitobaSat-1. This is only used for testing.
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Figure 6.15: The real-time orbit propagator in STK which is a part of the pass

manager that computes access times. Screenshot of STK.
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Figure 6.16: A 3D view of the real-time orbit propagator in STK which is part of the

pass manager that computes access times. Observe how the propagator indicates the

current time (Coordinated Universal Time (UTCG)), current position and velocity

vector components of the satellite.
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Once the access times are computed, the times are stored in a mat file at 14:07

or 2:07 PM (Figure 6.17 B). At 14:07:53, I use the pass manager to obtain the access

time details as shown in Figure 6.17 A. So, there are passes occurring at 14:13 and

14:26. I focus on the pass at 14:26 so that I have enough time to discuss other features

in the GUI before a pass occurs.

Figure 6.17: A: The mat file with the computed access times, B: The access times

viewed using the pass manager in the VGS GUI. Screenshot of Matlab’s App Designer.

The display window tab allows me to look at the command window or the log file

of the session as shown in Figure 6.18.



CHAPTER 6. THE VIRTUAL GROUND STATION INTERFACE 172

Figure 6.18: Viewing the real-time log file of the session inside the VGS GUI. Screen-

shot of Matlab’s App Designer.

6.5.2 Event 2: Viewing TLE Files and Obtaining Orbital

Elements

At 14:09:47, to view the files that were downloaded during a specified date range, I

use the TLE Files tab. This is shown in Figure 6.19. A folder appears with all the

files when I click on the open old TLE button. TLE files can also be opened on the

main screen of the GUI in a similar fashion.
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Figure 6.19: Viewing TLE files within a specified date range. Screenshot of Matlab’s

App Designer.
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Now, I select the file called ‘tle-new.txt’ as an example and click on the process

old TLE button to obtain the corresponding orbital elements as seen in Figure 6.20.

Figure 6.20: Processing TLE files to obtain orbital elements. Screenshot of Matlab’s

App Designer.

6.5.3 Event 3: Creating a ‘Send’ Command to Store

At 14:19:27, I use the Send Commands tab to create a command to send to the satellite

when the next pass occurs. As can be seen in Figure 6.21, I create a command to turn

on the radio on 27th Nov 2020 at 14:32:33. I am able to store the created command

in the command queue as a pass is going to occur before the execution time, that is,

at 14:26. The command will be sent to the satellite (model) automatically when a

pass occurs and will be executed by the simulation engine in the ASM at the specified

date and time. Once the command is sent from the VGS to the satellite model, the

command queue should be empty and the last uploaded commands will contain the
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commands in the queue previously. This will be demonstrated in the coming events.

Figure 6.21: Storing a ‘send’ type command in the queue to send to the satellite

during the next pass. Screenshot of Matlab’s App Designer.

6.5.4 Event 4: Countdown Timer

A pass is scheduled/predicted at 14:26:42. The countdown timer appears at 14:25:42

(Figure 6.22) since it is 60 seconds before the next pass. When the timer reaches 0

at 14:26:42, it enlarges and displays a message mentioning that the pass is occurring

right now.



CHAPTER 6. THE VIRTUAL GROUND STATION INTERFACE 176

Figure 6.22: The countdown timer in the VGS GUI at 14:25:42 and stops at 14:26:42

when the pass occurs. Screenshot of Matlab’s App Designer

6.5.5 Event 5, 6 and 7: Events During a Pass

At 14:26, the VGS initiates the pass and sends a handshake message to the satellite

model. The satellite model responds by sending a handshake message as shown in

Figure 6.23. After this, the simulation engine sends the telemetry data to the VGS.

This communication is shown in Figure 6.23 where A shows a screenshot of the VGS

while B shows the simulation engine screen. Note that there is minute difference of

less than 45 seconds in the system times of the VGS and the simulation engine. This

is not a cause for concern as it is a very small difference and does not affect the test

in anyway.
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Figure 6.23: A typical handshake between the VGS and the satellite after which

telemetry is sent to the VGS from the satellite. Screenshot of Matlab’s command

window
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The VGS reads all the telemetry and converts it to the appropriate format and

saves it in a mat file and a text document. Predicted telemetry from the VSM in the

VGS is saved as well. These files are saved immediately after receiving the actual

telemetry as seen in Figure 6.24. The VGS is now ready to perform fault detection

on the telemetry.

Figure 6.24: The mat files containing the actual telemetry and the predicted telemetry

data saved on the VGS computer at 14:26

6.5.6 Event 8: Fault-detection on the Received Telemetry

From the Satellite

The VGS performs fault-detection based on the fault-management algorithms devel-

oped in Chapter 5 that are run on the solar string currents, the battery’s internal

resistance and the power consumption (on the VGS). If any faults are detected, the

lamps on the Main Screen of the GUI light up. In this case, the low level power

consumption lamp lights up at 14:28:52 as shown in Figure 6.25 A. The correspond-

ing alarm messages show up in the fault-detection messages tab (Figure 6.25 A). At

14:29:12, when I click on the message to acknowledge it, the message disappears and

the lamp switches off as expected (Figure 6.25 B).
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Figure 6.25: The alarm lamps in the VGS GUI light up if required after the fault-

detection algorithms are run by the VGS. In Figure A, the indicated low power

consumption lamp is turned yellow and a message appears on the fault-detection

messages tab. In Figure B, the message disappears and the lamp is turned off when

the message is acknowledged. Screenshots of Matlab’s App Designer
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6.5.7 Event 9: Sending Commands Stored in the Queue to

the Satellite From the VGS

I stored a command in the queue in Event 3. The VGS sends this command to the

satellite model following the completion of the fault-detection process. This occurs at

14:26:58. Once the commands are sent by the VGS, the commands that were in the

queue are deleted and they move to the last uploaded commands as seen in Figure

6.26 B. This confirms that the commands have been sent. There is also a confirmation

message on the command window (stored in the log file) as shown in Figure 6.26 A.

Compared with Figure 6.21 in Event 3, the commands in queue textbox is empty in

Figure 6.26 B.

Figure 6.26: Figure A shows the confirmation message on the VGS that verifies that

the commands in the queue have been sent to the satellite model (screenshot of

Matlab’s command window) and Figure B shows the VGS GUI’s command manager

where there are no commands in the queue after sending the command created in

Event 3 to the satellite model (screenshot of Matlab’s App Designer).
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6.5.8 Event 10: Receiving and Executing Commands in the

ASM

On the simulation engine, the commands are read and saved to the master command

list. This is confirmed from the log file of the simulation engine session (Figure 6.27).

Figure 6.27: Receiving the command sent by the VGS on the ASM. Here, informa-

tion is extracted from the command and the date and time of execution are noted.

Screenshot of Matlab’s command window.

At the specified execution date and time, 27th Nov 2020 14:32:33, the simulation

engine increases the power consumption by 2.77 W. This is because the command to

be executed is ‘Turn on the radio’ which requires an increase of 2.77 W in the power

consumption (Figure 6.28). A confirmation message, ‘comm 1’ which means that the

command with ID 1 has been executed is seen on the screen as shown in Figure 6.29.

Similarly, the VGS implements the increase in the power consumption in the VSM.
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Figure 6.28: Figure A shows receiving the command from the VGS on the simulation

engine and Figure B depicts the execution of the command at 14:32:33 by switching

on the radio in the ASM and the VSM (Screenshots from Matlab).

Figure 6.29: Confirmation message on the simulation engine for the execution of

command with ID 1, that is, turning on the radio (screenshot from Matlab’s command

window).
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6.5.9 Event 11: Data Logging and Real-Time Commands

Predicted telemetry from the VSM is logged regularly so that real-time data can be

obtained from the command manager. It is saved in a mat file that is over-written

every two seconds. The VSM and ASM continue to run in real time and the VGS

keeps updating the required mat files until the next pass. Now, I request the real-

time command manager to provide me with the average power consumption and the

average state of charge during the last pass. The results are shown in Figure 6.30.

Figure 6.30: Using the real-time command manager in the VGS GUI to obtain data

at any time from the VGS. Figures A and B show two examples where the average

power consumption and state of charge are obtained (screenshots from Matlab’s App

Designer).
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6.5.10 Event 12: Log Files of the Session

The log files for the session on the VGS and the simulation engine are obtained using

the diary function in Matlab.

6.6 Summary

In this chapter, I gave an overview of the VGS’s GUI layout and discussed its vari-

ous features including TLE file retrieval, pass manager, embedded fault-management

system, command store and the VSM. As part of the pass manager, the interface be-

tween STK and Matlab is utilized to develop a real-time look ahead orbit propagator

to predict access times for the satellite from relevant ground stations. The command

manager is split into two, namely, the real-time command manager and the ‘send’

commands. While the former lets the operator request and receive data at any time,

the latter provides flexibility to the operator to create and store commands that are

to be sent to the satellite at any time without having to wait for a pass. The VSM

functions very similar to the actual satellite and gives operators an illusion of con-

tinuous communication with the satellite. This is made possible by using a real-time

pacer, run-time objects with event listeners and other tools in Matlab.

The fault-management algorithms devised in Chapter 5 are implemented in the

GUI to provide real-time health and diagnostic evaluations based on telemetry data

and trends. The fault-detection alarm lamps make it easier for the operators to track

any faults along with the fault-detection messages that allow the operator to let the

VGS know that they have acknowledged a certain fault.

I also presented a unique testbed for testing the VGS interface with the VSM and

demonstrating the communication between the VGS and a satellite (ManitobaSat-

1). A simulation engine containing the ASM is used to emulate the satellite and the
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communication is carried out using a serial data protocol. Through this testbed, the

typical pass architecture is detailed with relevant screenshots from the interface.

6.6.1 Hypothesis One Evaluation

With the results from the testbed, the two hypotheses of this research are verified.

The development of a VGS based on the VSM that mimics an actual satellite that

gives the ground station operators the sense of a spacecraft in continual communi-

cation at all times is the first hypothesis. To prove this, I showed how the VGS

can be used by the operators to obtain satellite data in real-time as though they

were communicating with the actual satellite (Figure 6.30). The VGS also manages

passes, uploads commands in queue when a pass occurs and downloads telemetry.

I illustrated the autonomous operations of the VGS which reduces the burden on

the operators and allows engineers to focus on more complex issues than mundane

housekeeping.

6.6.2 Hypothesis Two Evaluation

I also hypothesized that SPC and fault-management tools for the VGS are beneficial.

I demonstrated how the fault-management system implemented in the VGS was able

to detect anomalies and indicates the findings to the operators in an easy manner

by switching on the alarm lamps in the GUI and providing status messages to allow

operators to keep track of the faults. Clearly, these tools have reduced the dependence

of satellite monitoring on human resources. Together, the hypotheses in this thesis

have been validated.



Chapter 7

Conclusions

With the recent shift from large geostationary spacecraft to constellations of smaller

satellites, the need for increasingly efficient ground control facilities and operations

is becoming evident. Reducing cost and time to operate ground stations require a

shift from traditional satellite operations to autonomy. This thesis has described the

development of a virtual ground station (VGS) with a real-time spacecraft model that

mimics the actual satellite such that operators have a sense of continual communica-

tion with the satellite when in touch with this model. The virtual ground station also

has a one of a kind fault-management system that uses Statistical Process Control to

detect subtle faults.

7.1 Contributions

The primary contributions of this thesis are summarized below:

186
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7.1.1 Power Subsystem Simulator

The power subsystem simulator I designed for a low earth orbit CubeSat using di-

rect energy transfer provides a tool to student design teams and others to perform

sizing of their battery, verify the sizing of other electrical components and the overall

electrical design with minimal knowledge. The simulator estimates important param-

eters including the output voltages, state of charge of the battery and the solar array

current.

Applying the simulator to a real satellite mission, ManitobaSat-1, provided con-

fidence in the simulator framework as well as helped perform power analysis for the

student CubeSat mission. This example illustrating how to use the simulator for a

satellite was also discussed so that future researchers or designers could apply this

simulator to other missions. A concious effort was made to keep the simulator design

modular and less code oriented so that it would be easy to modify components as

required and not involve extensive coding increasing complexity.

Results from the simulator for ManitobaSat-1 were discussed. The trends observed

were analysed logically and discussed. This simulator forms the virtual ground sta-

tion’s spacecraft model and is also used later in the research project to mimic a

spacecraft during testing and validation of the VGS.

7.1.2 Fault-Management System

One of the most important contributions of this research is the use of industrial

Statistical Process Control (SPC) tools to develop fault-detection algorithms to reduce

extensive human involvement in the trend analysis of telemetry data when compared

to traditional satellite communications. The developed SPC techniques ease the time-

consuming and labour intensive satellite housekeeping tasks for the operators. On
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a large scale, these fault-detection algorithms are beneficial in monitoring satellite

constellations. To my knowledge, this is the first fault-management system using

SPC techniques for spacecraft health-monitoring.

Two types of faults, namely, the loss of solar string(s) and an increase in the

battery’s internal resistance are identified using the developed algorithms based on

SPC. The process of development involved the custom application of control charts

and identifying patterns in the control rule violations by the data. The steps in

the development of the algorithms were laid out using logic flowcharts to facilitate

understanding. Along with detection, the algorithms inform the operator of the

severity of the fault and allow them to track the fault through status messages in the

graphical user interface (GUI) of the VGS.

It was observed that not all types of faults can be detected using SPC techniques.

Time domain feature extraction was identified as the appropriate method for notic-

ing excessive power consumption. Several candidate features were chosen and the

interaction amongst them in the presence of different faults was studied to devise an

algorithm to find out when excessive power consumption is taking place. I undertook

extensive testing with random test cases which provided a 100% detection rate and

92% accuracy for ManitobaSat-1 and a 100% detection rate and 85% accuracy for a

hypothetical mission.

Together, positive results from all three algorithms indicate that the fault-management

system is accurate.

7.1.3 Virtual Spacecraft Model (VSM)

One of the major features of the VGS is its mathematically based real-time spacecraft

model or the VSM that allows the operators have a sense of continual communication

with the actual spacecraft. The operators are able to request data from the VSM at
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any time irrespective of a pass occurrence. The VSM provides predicted telemetry

to the operators and can look at real-time predicted parameters of the satellite. The

power subsystem simulator I developed acts as the VSM in the VGS. It runs in

real-time using a real-time pacer and data from the VSM is updated regularly and

compared to the actual telemetry when it is received.

7.1.4 VGS Graphical User Interface

I developed a graphical user interface (GUI) terminal for the VGS through which

an operator communicates with the VGS to send commands to the satellite, access

telemetry data, obtain results of the fault-management system and request real-time

satellite data. Apart from these primary utilities of the GUI, it also enables automatic

Two Line Element (TLE) file retrieval and has a real-time look ahead orbit propagator

created in Systems Tool Kit that lets the users visualize the location of the mission

in 2D and 3D. The propagator automatically updates the TLE files every few hours

when new TLE files become available through CelesTrak’s Space Track TLE Retriever

application to maintain the accuracy of the propagation. With real-time propagation,

access or pass times are obtained and enable the VGS to initiate contact with a

satellite when a pass occurs.

The users can access automatically downloaded telemetry from the actual satellite

on the VGS and predicted telemetry from the virtual satellite model (VSM) at any

time. The GUI also has a command manager that is split into two, with the first

providing real-time data to the operators irrespective of a pass occurring and the

second one facilitating sending commands to the satellite. The commands to be sent

to the satellite can be created at any time by the operator and stored in a queue

which are automatically sent by the VGS when a pass occurs. The operator need not

be present during regular operations and housekeeping activities are autonomous in
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the VGS.

The fault-management systems analyses the received telemetry to identify any

faults and indicates the results using coloured lamps in the GUI. To support the

tracking of the detected faults and to reduce the burden on the operators, status

messages are displayed letting the operator know of any faults in case they missed

the lamps.

7.1.5 Virtual Ground Station Testbed (VGST)

A unique testbed was designed to demonstrate (simulate) the communication between

the VGS and a satellite. A slightly modified power simulator model known as the

actual satellite model (ASM) acts as the actual satellite. The VGS and the simulation

engine with the ASM interact through serial communication which is a good repre-

sentation of the actual interaction between a CubeSat’s radio and a ground station.

Results from the testbed were presented in the form of a demonstration of possible

scenarios with images from the VGS and the simulation engine throughout the in-

teraction. Pre-pass scenarios included calculating the access times using the orbit

propagator and activation of the countdown timer. The VGS initiated communica-

tion with the ASM, downloaded telemetry and VSM data followed by fault-detection.

Commands in the queue were sent to the simulation engine and were executed on

the ASM at the specified date and time. Post-pass scenarios on the VGS included

requesting data through real-time commands and TLE file retrieval.

7.2 Future Work

There are a number of improvements that could be made in the design of the VGS

and its components that could further its applicability and accuracy. While most
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of them focus on furthering the sophistication and abilities of the design, a few are

directed towards the verification and validation of the VGS.

7.2.1 Power Subsystem Simulator

Though the power subsystem simulator is a realistic representation of an actual satel-

lite’s electrical design, there are a few modifications that could improve its accuracy.

The solar array model in the simulator could include the ageing effects on its effi-

ciency due to thermal reasons. Also, the declining trend of a battery’s capacity due

to use over time could improve the simulator and allow researchers to assess the per-

formance of their battery better over a long period of time. The end of the life battery

capacity could be estimated more accurately with such changes. Also, the internal

resistance could be represented with a more complex model that would show how it

would typically increase over time when factors such as temperature and chemical

properties are considered.

Another area of interest could be having switches in the Simulink model for every

subsystem and major components to represent their on/off state. Dedicated switches

would simplify the model and allow the users to monitor and visualize the power

consumption timeline better. Since the power simulator acts as the VSM in the

VGS, having dedicated switches for different components would let the operator know

when a major component or subsystem is on or off. The operator would be able to

make informed decisions about the type of commands to send to the satellite in such

situations unlike currently where the operator might send a command to turn off

a certain component which is already off as there is no easy way of identifying the

on/off states.

Additionally, the idea of this simulator could be extended to other subsystems

such as the Attitude Determination and Control Subsystem (ADCS) to increase the
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utility of the VGS. Currently, the simulator is restricted to the power subsystem but

to simulate the operations of the whole satellite, it is important to include other

subsystems and having them interact to accurately model the system.

7.2.2 Fault-Management System

An area of interest could be the application of the SPC algorithms developed for fault-

detection to more varieties of faults without increasing the incidences of false alarms.

The speed of the algorithms is another aspect that could be explored. Efficiency could

be increased by using more sophisticated statistical methods such as process stability

metrics and Bayesian probability theories to implement SPC.

Another research topic yet to be explored is the interplay of the different simul-

taneous faults in the system. Currently, the faults are assumed to be independent

of each other and no interaction between them is considered. Studying coexistence

and the effects of one or more faults on each other would be an interesting and useful

research project for the future.

Integrating learning methods with the already existing statistical methods for

fault-management could make the VGS an intelligent system. Fault handling could

be more efficient and the accuracy could improve as SPC and learning could both

contribute to anomaly detection. Alongside, learning could also introduce the scope

for corrective action when faults occur.

7.2.3 Virtual Ground Station Interface Terminal

With learning incorporated and corrective actions defined, an automatic emailing

system for the VGS that would send emails to the operators when faults that are

beyond the scope of any corrective action taken by the VGS could help improve the
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utility of the system. An in-built login system that only allows specific users to

operate the system could provide enhanced security and reliability.

Having an embedded weather station in the VGS GUI that would track real-

time weather conditions near the physical ground station to restrict operations when

pre-defined extreme weather conditions such as thunderstorms and earthquakes exist

could improve safety to infrastructure and the operators.

7.2.4 Verification and Validation of the System

The VGST helped simulate and test the communication between the VGS and a

satellite model successfully. However, the research I conducted did not assess the

usability of the VGS application by the operators. The comfort level of the operators,

their suggestions and how they compare the performance of the VSM to the actual

satellite would improve the utility of the VGS.

Finally, the primary goal of the development of the VGS was to reduce the burden

on the ground station operators especially when there are satellite constellations in-

volved. As such, expanding the testing environment to handle satellite constellations

and not just individual satellites could extend the utility of the system.
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P. E. H. Olsen, J. Park, G. Plank, C. Püthe, J. Rauberg, P. Ritter, M. Rother,

T. J. Sabaka, R. Schachtschneider, O. Sirol, C. Stolle, E. Thébault, A. W. Thom-
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Appendix A

Datasets for Power Consumption

Fault Detection

This appendix contains the datasets or the test case parameters for estimating the

accuracy of the power consumption increase detection applied to ManitobaSat-1 and

the hypothetical mission. This data is relevant to Sections 5.4.2 and 5.4.3 of Chapter

5.
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A.1 Datasets for ManitobaSat-1

Figure A.1: Test cases for ManitobaSat-1 to estimate the accuracy of the power

consumption fault detection algorithm

A.2 Datasets for the Hypothetical Mission
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Figure A.2: Test cases for the hypothetical mission to estimate the accuracy of the

power consumption fault detection algorithm



Appendix B

Graphical Interface and Testbed

This appendix discusses the different components of the Virtual Ground Station

(VGS) Graphical User Interface (GUI) and the VGS testbed (VGST).

B.1 GUI Layout

B.1.1 Main Screen

The main screen is the part of the application that always appears when using the

GUI. It contains the session control which allows the user to start and quit a session.

Starting a session initiates the orbit propagator window to show up. Realistically, a

session will always be ongoing since I want to use the GUI for real time communica-

tions. Quitting the session causes the application to reset all the settings and can be

used to restart the GUI. A clock displays the time in the time zone (currently Cen-

tral Daylight Time, GMT-5) where the GUI application is being used. This clock is

implemented in the startupFcn of the GUI using a timer that runs at a fixed rate and

uses a custom function to display the time every second. The startupFcn (Appendix

210
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C.3.1) executes as soon as the application is started.

The main screen also hosts the alarm lamps for various faults mentioned in Chap-

ter 6. These are connected to the fault-detection messages tab which are also discussed

in chapter 6.

B.1.2 TLE and Orbital Elements

CelesTrak allows users with a Space Track account to download TLEs using its Space

Track TLE Retriever software (Figure B.1) [84]. The settings on this software are

configured to automatically download and archive the TLE files in a specified folder.

The button, Open TLE file, opens up the folder with the TLE files with the latest

file at the top of the list for the user to choose. To obtain the latest Orbital elements,

the Process TLE button extracts the six orbital elements from the selected TLE file.

The code for this extraction is adapted from Mathworks website [83] and is provided

in Appendix C.1.
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Figure B.1: Celestrak’s Space Track TLE Retriever [84]

B.1.3 TLE Files

This tab lets the user access downloaded TLE files and process them to obtain the

orbital elements. In Figure B.2, one can choose the from and the to dates such that all

TLE files obtained during this time period are displayed in the Filenames text area.

This function narrow down the number of files one needs to look into for various

purposes. Again, as for the orbital elements on the Main Screen, pushing the Process

old TLE gives the corresponding orbital elements. The function (processtles) for this

extraction is adapted from Mathworks website [83] and is provided in Appendix C.1.
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Figure B.2: Opening and processing TLE files in the GUI to obtain orbital elements

(Screenshots from Matlab’s App Designer)

B.1.4 Fault-detection Messages

This tab displays the alarm messages triggered by the fault alarm lamps on the main

screen. Each message pertaining to a fault detected by the fault-management system

from Chapter 5 appears as soon a lamp switches on. It describes where the fault

is and gives an option to close the warning. Once the operator has addressed the

messages, they disappear.

B.1.5 Display Window

This tab (Figure B.3) contains a text area called DisplayScreen that shows all the

messages displayed on the command window of the main Matlab window. This is

done using the diary command in Matlab.
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Figure B.3: The Display Window tab (screenshot from Matlab’s App Designer)

B.1.6 Countdown Timer

The countdown function that appears 60 seconds before each pass is written by Brett

Shoelson and can be found in [93]. When the time is 60 seconds away from a pass,

the countdown function is triggered using an if statement. For this, I take the current

time and compare it to the accessTimes from the STKOrbitProp (Appendix C.2)

script results and when there is a 60 second gap, the timer appears.

B.2 Creating Send Type Commands in the Com-

mand Manager

The command manager is split into two tabs depending on the type of command, that

is, the real-time commands (Figure B.4) and the send type commands. To create a

send type command, the operator needs to select the command, the date and the

time (using spinners) at which the command needs to be executed and then click on

the Done button. The created command should show up on the Created command
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text area (Figure B.5). The commands that are waiting to be uploaded can be seen

in the Commands in queue text area (Figure B.5) and once they are uploaded, they

appear in the Last uploaded commands text area (Figure B.5).

Figure B.4: The Real-time Commands tab (screenshot from Matlab’s App Designer)
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Figure B.5: The Send Commands tab (screenshot from Matlab’s App Designer)
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The VGS’s command store is basically a database that stores any send type com-

mands given during a non-pass duration and uploads them when a pass occurs. The

operator can use the real-time type commands at any time to obtain information and

data based on downloaded telemetry or historic data and predicted telemetry. So, the

operator would not have to delay getting information in real time from the ‘satellite’.

The command manager consists of a set of pre-defined real-time and send type com-

mands that the operator can choose from. This list can be expanded when needed.

For this thesis, the list of the pre-defined commands is given in Tables B.1 and B.2.

Telemetry can be used as a verification for the send type commands wherein if a

command has been uploaded and appropriate action has been taken by the satellite,

the command manager is working as required.
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Command

ID

Command description Expected response

type

C-10 Average battery state of charge during

the previous pass

Number

C-20 Battery depth of discharge during the

previous pass

Number

C-30 Average power consumption during the

previous pass in W

Number

C-40 Number of passes today Number

C-50 Pass intervals for today Date and time

C-60 Plot of the battery voltage vs the state

of charge in the previous pass

Graph

C-70 Average internal resistance of the bat-

tery during the previous pass in Ω

Number

C-80 Average solar array current generated

so far in A

Number

C-90 Minimum SOC so far in real time Number

C-100 Maximum battery’s internal resistance

in Ω so far in real time

Number

C-110 Telemetry vs predicted plots for power

consumption

Graph

C-120 Telemetry vs predicted plots for the

battery’s internal resistance

Graph

C-130 Telemetry vs predicted plots for the so-

lar array current

Graph

Table B.1: List of pre-defined real-time commands in the VGS’s command manager.

Note: commands requiring data during the previous pass include the data obtained

from the latest pass’s telemetry



APPENDIX B. GRAPHICAL INTERFACE AND TESTBED 219

Command

ID

Command description

S-01 Turn on the radio at the given time

S-02 Turn on the camera at the given time

S-03 Turn off the radio at the given time if its on

Table B.2: List of pre-defined send type commands in the VGS’s command manager

B.3 Miscellaneous Images

This section contains descriptions and images of different GUI’s components.

B.3.1 Orbit Propagator and The Pass Manager Tab

The Systems Tool Kit (STK) orbit propagator GUI window (Figure B.6) provides 3D

and 2D views of the satellite’s position and shows the current position and velocity

in real time. The pass manager is shown in Figure B.7 where the passes for a 24 hour

period are displayed in the Passes text area when the refresh button is pressed.
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Figure B.6: The STK GUI window showing the real time position and velocity of the

satellite

Figure B.7: The pass manager tab (screenshot from Matlab’s App Designer)
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B.4 Implementation of the GUI

There are many steps in the implementation of the GUI with its several functions and

features to perform necessary actions and trigger events. I discuss the steps below.

B.4.1 Master Script of the GUI

The Start Session button on the Main Screen of the GUI triggers the Master Script

written outside of the App Designer. This includes the main framework of the VGS

system and the implementation of the VSM, the STK propagator, the telemetry store,

parts of the command manager and the fault-management system.

Preliminary Steps

Before the implementation of the VSM, two preliminary steps are carried out in the

Master Script: creating two text files for the telemetry to be downloaded and the

sessionfile used in the Display Window tab (Figure B.3) of the GUI. Then, I create

null matrices (for initialization) for each of the telemetry parameters (the solar string

currents, the total solar array current, the eclipse flag, the power consumption, the

battery current and voltage and the timestamp).

Virtual Satellite Model

The power subsystem simulator developed in Chapters 3 and 4 acts as the virtual

satellite model (VSM). All the necessary input to configure the Simulink blocks as

described in Chapter 4 are provided through the Master Script to the VSM.

� Real-time Pacer: The VSM is required to run in real-time so that the VGS

can provide real-time data to the operator and behave as closely as possible
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to the actual satellite. The simulation speed has to be paced in real-time and

the stop time is changed to infinity. This is done using a real-time pacer that

slows down a simulation according to the speed set by the user. When given a

speed of 1, the simulation time becomes approximately equal to the real time.

The pacer was created by Gautam Vallabha using Matlab S functions which

are user-defined Simulink functions and can be found as a block in Simulink’s

library browser ([94]). The source code can be obtained from Matlab Central

File Exchange.[95]. Once all the files from the downloaded link are saved in

the same folder as the VSM Simulink model, the real-time pacer appears in the

Simulink library browser. There are two blocks available: Elapsed Real Time

and the Real-Time Pacer Speedup. These are added to the Simulink model and

configured as shown in Figure B.8. The real-time pacer lies alongside the power

simulator model in the same Simulink model and together they form the VSM.

These two are not connected to each other in the model.

Figure B.8: The real-time pacer used in the VSM [95]
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� Run Time Objects: Run the VSM programmatically by using the set param

function that starts the simulation model and within an infinite loop, log all

data in real-time for every two seconds. Generally, logged data from a simulation

is available only after the simulation time is over but this simulation requires

to run in real-time and the simulation period is infinity. To help with real-time

logging, I need an interface to access block run-time data from the simulator.

I use listeners for specified events in the Simulink model to do this. When

a listener is registered, it keeps listening for the event and specifies the block

runtime object that it needs to listen to. Only handle classes can define events

and listeners. A StartFcn callback (Appendix C.3.2) is added to the model to

register the listeners for the different Simulink blocks.

To access these parameters inside the VSM master script, I need to return the

name or value of the specified parameter for the run time object blocks. From

the values, I can link the signals to a destination outside the Simulink model

and extract them. A snippet to do this for the state of charge is shown below.

The same code can be modified for other parameters by simply changing the

name of the run time blocks.

while(i < inf) % i starts from 1

r = get param('virtualsatellitemodel/soc', 'RuntimeObject'); %state of charge

m(1, i) = r.OutputPort(1).Data;

.... %other code

end

STK Orbit Propagator

I use the STK orbit propagator script (STKOrbitProp) (in Appendix C.2) to compute

the access times with the satellite. The values are saved to a mat file that is editable.
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Since I do not want the propagator script to update its TLEs every second and

start the propagation again, I set a timer such that the updates and refreshing of

the propagator happens every 12 hours. This number can be changed. After the

propagator script is executed, a very small pause in the script is introduced to log all

data. The pause function temporarily stops the execution of the Simulink models.

stk timer = 12*3600; % 12 hours in seconds

if(rem(i,stk timer) ==0) %rem(a,b) function gives the remainder

%when a is divided by b

[accessStartTimes,accessStopTimes,accessDurationTimes] = STKOrbitProp();

end

pause(0.05) %seconds

Countdown Timer

To let the operators know that a pass is about to occur, I implement a countdown

timer of 60 seconds which will appear in a separate UI figure prior to every pass. The

countdown function is written by Brett Shoelson and can be found in [93]. When

the time is 60 seconds away from a pass, the countdown function is triggered using

an if statement. For this, I take the current time and compare it to the accessTimes

from the STKOrbitProp script results and when there is a 60 second gap, the timer

appears.

Virtual Satellite Model Data Logging

Before I check for a pass, I save the data from the VSM generated since the last pass

occurred in a mat file by using indices for the data to be saved being changed only

when a pass occurs. By doing this, the system knows that a pass has occurred and
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that data has to be overwritten in the mat file again until the next pass takes places.

This saved data is required for the real-time commands. The VGS should be able to

provide the operators with any requested data immediately even when a pass is not

occurring.

Passes

The current time during each iteration or second in the simulation is compared to the

access times from the STKOrbitProp results. When equal, the ‘pass loop’ in the code

is entered. The script is given in Appendix C.2.1. For the purposes of this research, I

assume that the VGS receives the telemetry data through serial communication. To

facilitate serial communication, I create a serialport object in Matlab.

� Serial Communication Callback: For the operations during a pass during

serial communication, I write a callback function called nestedcallback. The

first step in the callback is to initiate contact with the satellite by sending a

‘handshake’ message, for example: “Hello ManitobaSat!”. In this thesis, I ignore

the technicalities of encrypting messages, packeting, software etc. This is only

for demonstration purposes. Using the function writeline and the serialport

object created earlier, this is sent to the satellite.

A timer object (t) is used to appropriately limit the duration of the pass and to

schedule the downloading of telemetry. The execution mode is set to singleShot

and there are infinite tasks that the timer has to be perform since the operations

are taking place in real time and there is no real end. Before starting the timer,

the timer callback function called setup timer is declared.

In setup timer, I use the tic toc function to measure the elapsed time during

a pass. A while loop restricts the pass duration such that the tic outside the
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while loop starts the stopwatch and the condition for the while loop requires the

toc to be lesser than the pass duration. The NumBytesAvailable function helps

know when there is data to read from the serialport. A ‘handshake’ message

from the satellite is expected and will be read at this point from the serialport

by using the readline function.

After a minuscule pause, all the parameters are read one by one from the seri-

alport. To make sure that there has been contact made with the satellite and

that all data has been properly downloaded, the number of elements in the first

parameter (state of charge) is compared with the number of elements in the

last parameter (timestamps). If not equal, the fault alarm lamp on the Main

Screen of the GUI with the label ‘issues in downloading complete telemetry’

is illuminated indicating an anomaly in the telemetry download. All the data

read from the serialport is appended to any existing data from previous passes

to form arrays containing parameters from all passes so far. This cumulative

data is saved in a mat file. The latest pass data is also separately saved into a

latest telemetry mat file. A break is added to the while loop so that the script

does not try reading the serialport for telemetry again if the pass duration has

not been exhausted. At this point, all operations related to obtaining telemetry

are completed and the fault-management algorithms come into play.

� Fault Management Algorithms The solar string currents and the total solar

array current are sorted with respect to their eclipse flags and the data collected

during sun-facing time is extracted to begin statistical process control (SPC)

on the currents. Script SS (Figure 5.19) from Chapter 5 is used here. Based on

the results from the SPC algorithm, the fault alarm lamps on the Main Screen

of the GUI are activated. The variable score described in the SPC algorithms

(logDetTotal and logDetInd) from Chapter 5 that have a value between 1 and
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3 correspond to the Low, Med and High lamps respectively. Similarly, The

algorithm logDetRes is run on the battery internal resistance and triggers the

corresponding lamps in the GUI.

Lastly, if there is atleast 3 (power consumption timeline repeats every three

orbits for ManitobaSat-1, this variable is adjustable) orbits worth of data avail-

able, the time domain feature extraction algorithm (logDetPower) from Chapter

5 for excessive power consumption detection is executed. Again, the appropriate

lamps on the GUI are activated based on the results.

� Upload Commands: The system uploads all commands in the queue to the

satellite through the serialport object. Once uploaded, the Commands in queue

text area is empty and these commands are visible in the Last uploaded com-

mands text area of the Send Commands tab of the GUI. All commands created

during the pass go to the satellite as well and can be seen in the Last uploaded

commands text area. The setup timer function is exited.

� End Timer: The timer t is stopped and then deleted. nestedcallback is exited

to return to the end of the ‘pass loop’ in the virtual master script.

Final Steps

All data from the serialport object is flushed out. Cumulative data from the VSM

is saved in a separate mat file. The diary function that triggers the Display Window

text area (displays all messages from the command window) in the GUI is turned

off. The infinite loop is exited and the set param function is used again to stop the

virtual satellite Simulink model.
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B.4.2 Real-Time Commands

When an operator selects a real-time command, the VGS has to provide the requested

data immediately. To do this, I write a function called realcommands. In realcom-

mands, all the mat files with the latest and cumulative telemetry, STKOrbitProp

results and VSM data are loaded. Each time a command is selected from the com-

mand drop down list, the latest versions of these files are loaded giving access to

all their data. With switch case statements, the responses for every command are

returned and displayed in the response text area of the Real-time Commands tab of

the GUI.

B.4.3 Accessing Predicted and Actual Telemetry

Predicted and actual telemetry mat files are accessible in a folder on the VGS com-

puter chosen by the user. The files’ names include the date and time they are created

at and their data can be imported as variables into Matlab for analysis at any time.

This data is used to execute the real-time commands of the command manager. When

a real-time command is selected, the VGS retrieves information from the relevant mat

files to provide a suitable response.

B.5 Features of the VGST

The Virtual Ground Station Testbed (VGST) consists of a communication model

based on generic interfaces that allow transfer of data and commands between the

VGS and the actual satellite model (ASM). This testbed provides a suitable environ-

ment to evaluate the overall architecture of the VGS. Three of the features of the

VGST are discussed below.
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B.5.1 Programming Language for the Testbed: Matlab

I discussed the advantages of using Matlab to develop the VGS over traditional lan-

guages such as C and Fortran in Chapter 2. The simplicity and ease of modification

of the code in Matlab makes it a good choice for the testbed as well. Moreover, con-

necting the components becomes easier when they all use Matlab. This is because

Matlab provides numerous toolboxes and functions for communication between de-

vices. This does not require detailed knowledge of how the protocols work. Since real

time Simulink models are used in the VGS and the testbed, these toolboxes also sig-

nificantly reduce the amount of code to be written and promote rapid development of

the testbed. Also, Matlab provides the troubleshooting serial port interface options

and the online support forum for external guidance. Clearly, Matlab is a prudent

choice for communication between two or more devices, one of which already has the

application running on Matlab App Designer and a real-time Simulink model.

B.5.2 Serial Communication

The virtual master script was developed based on the assumption that communication

between the VGS and the satellite would follow the serial communication protocol.

This retains as much realism as possible. Serial communication is the most common

low-level protocol for communication between devices. Many researchers have used

the RS232 serial protocol in testing spacecraft communications and systems as they

are a reasonable and affordable representation of spacecraft communication modems

[86][87][88]. Matlab provides various options for configuring serial port objects and

properties such as the output format, baud rate and terminators.
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B.5.3 Simulation Engine

A separate computer acts as the satellite and is used to send telemetry during each

pass by running the ‘actual’ satellite model (ASM) in real time. Having a computer

different from the VGS computer with GUI application makes the testbed environ-

ment more realistic as the satellite and the VGS would not share a host as in real

life cases. This also allows me to use the RS232 protocols to depict spacecraft com-

munications. Also, this removes any confusion that might be caused by having the

VSM and the ASM on one computer and the complexity of multiple instances of

Matlab. Overall, it is easier to visualize and understand the system symbolically as

well. Debugging is also made simpler. This computer is expected to implement the

commands received from the VGS on the ASM.

On the simulation engine, there is the ASM and a master script called satellitecom

written to communicate with the VGS. Each of them is discussed below. Also, the

changes required in the VGS to facilitate communication with the ASM are described.

Configuring the ASM

The ASM acts as the actual satellite in the testbed and so, would require to run

in real time. Similar to the VSM, the real-time pacer (Figure B.8) in Simulink is

used for the ASM. The ASM sends data to the Matlab instance that executes the

satellitecom script. Additionally, there are two scripts that dictate the parameters for

different blocks in the ASM. Having these scripts minimizes hard coding and makes

modifications easier. These scripts are automatically executed when satellitecom is

run. The first script, allvariables, has the parameters for all the blocks other than

the battery and solar cell lookup tables. The second one, lookuptables, consists of

the lookup tables (C - V and I - V). These scripts enable me to inject faults into the

ASM for demonstration and testing purposes.
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Introducing Faults into the ASM As before, there are three faults that are

injected into the ASM, namely, solar string(s) failure, increase in the battery’s inter-

nal resistance and excessive power consumption. There are three separate Simulink

models created for testing for clarity. Each model corresponds to a separate type of

fault.

For the solar string(s) failure, the model is called ASMSolar. There are different

variables created in lookuptables for the solar string currents depending on what

kind of fault I would like to test. The parameter values for the corresponding solar

string currents are changed by configuring the solar string blocks and entering the

appropriate variable name.

The internal resistance is set by a variable in the allvariables script. This is

changed according to the fault to be tested using the ASMRes Simulink model.

The allvariables script also has a variable to adjust the power consumption values.

The value of this variable is added to the ideal power consumption timeline and it is

0 when there is no anomaly in the power consumption. The Simulink model in this

case is named ASMPower.

If faults are to be injected for specific time periods, switches (Simulink library

browser) in the Simulink models with time constraints can be set up. The switches’

input would be the simulation time clock.

Master Script: satellitecom

satellitecom has four parts, each part corresponding to one fault with its respective

model and the ideal case with no fault and the ASM. The user can switch between

each part of the script attached to the specific model (ASM, ASMSolar, ASMRes

or ASMPower) with or without a fault by providing an input, that is, the parts
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correspond to inputs 0, 1, 2 and 3. The code is essentially the same for each part

except for the Simulink model used.

satellitecom starts with executing the allvariables and lookuptables scripts fol-

lowed by loading other relevant parameters such as the power consumption timeline

for three orbits (in the case of ManitobaSat-1) and the eclispe flag. At this point,

the corresponding Simulink model is started by using the set param function just as

it was done for the VSM. Since the simulation runs in real time and has no defined

simulation stop time, an infinite loop is started inside which I access the values of the

several parameters through their Simulink blocks making them run time objects. This

was previously discussed while developing the VSM. Similarly, listeners and handles

are configured in the Startup Fcn of the Simulink models, the code for which is in

Appendix C.3.2.

A serial port object is created and the script checks for any readable data by using

the function NumBytesAvailable. If there is something waiting to be read such as the

‘handshake’ message from the VGS, the ASM starts reading the data. If the message

received and read matches the pre-defined ‘handshake’ message “Hello ManitobaSat!”,

the ASM starts communicating. This means that the satellite is always listening and

the VGS is responsible for initiating contact. Using appropriate indices inside the

loop, all parameters are written to the serial port object one by one using the function

writeline. Only data that has not been sent yet is written, that is, cumulative data

for the parameters is not sent and no data is repeated to reduce unnecessary load on

the serial communication. This is also realistic as satellites generally only send data

generated since the last pass. Though other parameters do not have specifications

on the exact number of observations to send in telemetry, the power consumption

requires to be sent in multiples of 3 (period for the power consumption timeline for

ManitobaSat-1, this number can be changed in the script). The script is modified to

accommodate this by sending the power consumption values in sets of three orbits.
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For example, when there is data from six orbits, two sets of data each with three

orbits data are sent. In cases where lesser than three orbits of data is available, a

string of zeros is sent. When there are more than three orbits of data available but the

number of observations is not a multiple of three, the observations that are possible

to be sent in sets of 3 orbits data are sent in the current pass and the remaining are

sent during the next pass.

Once the data is written to the serial port, the indices in the loop are updated

and communication loop that started with verifying the ‘handshake message’ is closed.

Still inside the infinite loop, the serial port object is flushed to prepare the ASM for

the next pass. The infinite loop ends here. The last step is to stop the Simulink

model using the set param function once the testing is completed.

The above described code is repeated four times with the only difference of the

Simulink models in the set param function arguments. Depending on the input (0,

1, 2 or 3) given to satellitecom, the corresponding part of the script will run. It is

worthwhile to note that before closing the communication loop, certain tasks with

respect to the commands sent from the VGS have to be undertaken. The next section

provides a detailed discussion on the command handling by the ASM.

Command Handling

Commands are sent from the VGS to the ASM during passes though the commands

can be created on the VGS by the user at any time. On the VGS, the data related to

the commands that is sent include the number of commands in queue from the GUI’s

command manager and the commands themselves. This is done right after telemetry

is received. Each command contains the date and time of required execution, the

command ID (S-01, S-02 and S-03), the command description and the string ‘End’.

On the ASM, after receiving the number of commands, a for loop in satellitecom
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allows reading all the commands one by one. The components of the commands are

extracted, that is, year, month, day, hour, minute, seconds, command ID and the

description. These are stored in separate arrays. I create a command master array

which contains all commands received so far and not just the commands received from

the latest pass. The data from the latest pass’ commands are added to this master

array. All this takes place inside the pass loop.

Since I want to check for commands to execute every second and not only during

passes, the execution of the commands and changes to the ASM are made outside the

pass loop but inside the infinite while loop responsible for real-time execution. During

each second, I compare the date and times given for the execution of the commands

with the current time. If they are equal, the command is executed. The set param

function is again used to change the power consumption of the satellite in the ASM.

The command ID of each command triggers the correct set param statement during

its execution. One such statement is shown here where A is the amount of change

in the power consumption depending on the command sent. For example, when the

camera is switched on, the power consumption increases by 0.85 W and A is 0.85.

The code used in the command handling on the ASM are given in Appendix C.3.3.

set param('actualsatellitemodel/PowerChange','Value', A)

On the master script of the VSM for the VGS, the commands are expected to be

executed at the same time as on the ASM. This requires the power consumption on

the VSM to change accordingly. Again, the set param function is used and the VSM

is updated.



Appendix C

Chapter 6 Scripts

This appendix includes the Matlab scripts used in various components of the graphical

user interface (GUI) for the virtual ground station and in the development of the

testbed and the actual satellite model (ASM). These correspond to Chapter 6.

C.1 Extracting Orbital Elements From a TLE File

function [OE] = processtles(fname)

%OE are the orbital elements and fname is the name of the TLE file

%MAKE SURE THAT THE CELESTRAK FOLDER IS IN THE MATLAB PATH

mu = 398600; % Standard gravitational parameter for the earth

%% Open the TLE file and read TLE elements

fid = fopen(fname, 'rb');

L1 = fscanf(fid,'%24c%*s',1);

L2 = fscanf(fid,'%d%6d%*c%5d%*3c%*2f%f%f%5d%*c%*d%5d%*c%*d%d%5d',[1,9]);

235
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L3 = fscanf(fid,'%d%6d%f%f%f%f%f%f%f',[1,8]);

fclose(fid);

%% Extract the orbital elements

epoch = L2(1,4)*24*3600; % Epoch Date and Julian Date Fraction

Db = L2(1,5); % Ballistic Coefficient

inc = L3(1,3); % Inclination [deg]

RAAN = L3(1,4); % Right Ascension of the Ascending Node [deg]

e = L3(1,5)/1e7; % Eccentricity

w = L3(1,6); % Argument of periapsis [deg]

M = L3(1,7); % Mean anomaly [deg]

n = L3(1,8); % Mean motion [Revs per day]

a = (mu/(n*2*pi/(24*3600))ˆ2)ˆ(1/3); % Semi-major axis [km]

% Calculate the eccentric anomaly using Mean anomaly

error = 1e-10; %Error

E0 = M; t = 1;

iteration = 0;

while(t)

E = M + e*sind(E0);

if ( abs(E - E0) < error)

t = 0;

end

E0 = E;

iteration = iteration+1;

end

%% Six orbital elements

OE = [a e inc RAAN w E];

end
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C.2 Developing a Real-Time Orbit Propagator in

STK from Matlab

A STK orbit propagator is developed from within Matlab with the STK Integra-

tion Plugin which accesses STK’s COM interface [96]. By having the script for the

propagator in Matlab, a user making changes to the GUI can easily modify any set-

tings in STK as well. Apart from automating the analysis, post processing of the

acquired data is possible in Matlab. Finally, visualizing the mission in real-time helps

to understand and communicate the data well.

Figure C.1 summarizes the steps in integrating Matlab and STK and creating the

propagator.

Figure C.1: Major steps in creating a real-time propagator in STK from Matlab

The ground stations used in the orbit propagator are in the STKOrbitProp script.

The script STKOrbitProp.m:

function[accessTimes, accessDurations] = STKOrbitProp()

%% Open STK from Matlab

try

uiapp = actxGetRunningServer('STK11.application'); % ActiveX controls

catch

uiapp = actxserver('STK11.application');

end
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root = uiapp.Personality2;

uiapp.visible = 1; % show STK GUI

%% Create a scenario

try

root.CloseScenario();

root.NewScenario('Thesis STKRealProp');

catch

root.NewScenario('Thesis STKRealProp');

end

scenObj = root.CurrentScenario

root.UnitPreferences.Item('DateFormat').SetCurrentUnit('LCLG');

% all dates in Local Gregorian

root.UnitPreferences.Item('Distance').SetCurrentUnit('m');

% all distances in meters

%% Assign scenario's start and stop times

tomorrow date = datestr((now+1), 'dd mmm yyyy HH:MM:SS.FFF')

current date = datestr((now), 'dd mmm yyyy HH:MM:SS.FFF')

scenObj.Epoch = current date

scenObj.StopTime = tomorrow date

scenObj.StartTime = current date

%% Make the scenario run in real time

scAnimation = scenObj.Animation
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scAnimation.AnimStepType = 'eScRealTime'

% Set animation to run in real time

root.Rewind

root.PlayForward

%% Creating the satellite and ground stations

satellite = scenObj.Children.New('eSatellite', 'mySat');

gs = scenObj.Children.New('eFacility', 'myGroundStation');

gs.Position.AssignGeodetic(49.808,-97.134,0); %location of the ground station

gs.HeightAboveGround = 0.237; % in km

gs2 = scenObj.Children.New('eFacility', 'myGroundStation brazil');

gs2.Position.AssignGeodetic(-10.7524,-53.0812,0);

gs2.HeightAboveGround = 0; % in km

gs3 = scenObj.Children.New('eFacility', 'myGroundStation capetown');

gs3.Position.AssignGeodetic(-33.9271,18.4201,0);

gs3.HeightAboveGround = 0; % in km

gs4 = scenObj.Children.New('eFacility', 'myGroundStation capeverde');

gs4.Position.AssignGeodetic(15.0835,-23.6244,0);

gs4.HeightAboveGround = 0; % in km

gs5 = scenObj.Children.New('eFacility', 'myGroundStation greatbritain');

gs5.Position.AssignGeodetic(54.0006,-2.59319,0);

gs5.HeightAboveGround = 0; % in km

gs6 = scenObj.Children.New('eFacility', 'myGroundStation indonesia');

gs6.Position.AssignGeodetic(-0.199667,114.01, 0);

gs6.HeightAboveGround = 0; % in km
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gs7 = scenObj.Children.New('eFacility', 'myGroundStation madagascar');

gs7.Position.AssignGeodetic(-19.3789,46.6947,0);

gs7.HeightAboveGround = 0; % in km

gs8 = scenObj.Children.New('eFacility', 'myGroundStation madras');

gs8.Position.AssignGeodetic(12.9481,80.1397,0);

gs8.HeightAboveGround = 0; % in km

gs9 = scenObj.Children.New('eFacility', 'myGroundStation newzealand');

gs9.Position.AssignGeodetic(-43.9858,170.481,0);

gs9.HeightAboveGround = 0; % in km

gs10 = scenObj.Children.New('eFacility', 'myGroundStation nigeria');

gs10.Position.AssignGeodetic(9.58265,8.09464,0);

gs10.HeightAboveGround = 0; % in km

gs11 = scenObj.Children.New('eFacility', 'myGroundStation seoul');

gs11.Position.AssignGeodetic(37.5527,126.996,0);

gs11.HeightAboveGround = 0; % in km

gs12 = scenObj.Children.New('eFacility', 'myGroundStation tashkent');

gs12.Position.AssignGeodetic(56.312,55.4075,0);

gs12.HeightAboveGround = 0; % in km

gs13 = scenObj.Children.New('eFacility', 'myGroundStation melbourne');

gs13.Position.AssignGeodetic(-37.7992,144.964,0);

gs13.HeightAboveGround = 0; % in km

gs14 = scenObj.Children.New('eFacility', 'myGroundStation uzbekistan');

gs14.Position.AssignGeodetic(38.9427,66.8506,0);

gs14.HeightAboveGround = 0; % in km

gs15 = scenObj.Children.New('eFacility', 'myGroundStation YorkU');



APPENDIX C. CHAPTER 6 SCRIPTS 241

gs15.Position.AssignGeodetic(43.7737,-79.5033,0);

gs15.HeightAboveGround = 0; % in km

%% Select a look ahead propagator

satellite.SetPropagatorType('ePropagatorRealtime');

satellite.Propagator.LookAheadPropagator = 'eLookAheadTwoBody';

satellite.Propagator.Duration.LookAhead = 7200.00;

satellite.Propagator.Duration.LookBehind = 7200.00;

satellite.Propagator.TimeStep = 60.0;

satellite.Propagator.Propagate;

%% Access the real time position and velocity displays

for k = 0:satellite.VO.DataDisplay.Count-1

if (strcmp(satellite.VO.DataDisplay.Item(k).Name, 'J2000 Position Velocity'))

posDD = satellite.VO.DataDisplay.Item(k);

posDD.IsVisible = 1;

posDD.FontColor = '000255000';

end

end

primID = 1;

fname = 'tletest.txt'; % the TLE file to feed into the propogator

% Make sure that the latest TLE file to be downloaded each time is named

% 'tletest.txt' to facilitate automatic updating of TLE in the propogator

%% Read position and velocity information from the TLE file

while 1

[epoch,p,e,i,O,o,nu,truLon,argLat,lonPer,mu] = readTLEtogetpv(fname);

[epoch,r,v] = orb2rv(epoch,p,e,i,O,o,nu,truLon,argLat,lonPer,mu);

[epoch, x pos, y pos, z pos, x vel, y vel, z vel] = get posvel datafromTLE(r,...

v,epoch);
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%use the current system clock time as the timestamp for the data to be

%passed into STK

curTime = datestr((now), 'dd mmm yyyy HH:MM:SS.FFF');

satellite.Propagator.PointBuilder.ECI.Add(curTime,...

(x pos), (y pos), (z pos),...

(x vel), (y vel), (z vel));

%% Add constraints to the ground station(s)

access = satellite.GetAccessToObject(gs);

access.ComputeAccess

accessConstraintsF = gs.AccessConstraints;

accessConstraintsF.RemoveConstraint('eCstrElevationAngle');

minmax = accessConstraintsF.AddConstraint('eCstrElevationAngle');

minmax.EnableMin = true;

minmax.Min = 20; % Minimum elevation angle in degrees

RangeMax = 995.94*1000; % Maximum range in m

accessConstraintsF.RemoveConstraint('eCstrRange');

range = accessConstraintsF.AddConstraint('eCstrRange');

range.EnableMax = true;

range.Max = RangeMax;

%% Compute access times

%% GROUND STATION 1

accessDP1 = access1.DataProviders.Item('Access Data').Exec(scenObj.StartTime,...

scenObj.StopTime);

if(accessDP1.DataSets.Count > 0)

accessStartTimes1 = (accessDP1.DataSets.GetDataSetByName('Start Time').GetValues);

accessStopTimes1 = (accessDP1.DataSets.GetDataSetByName('Stop Time').GetValues);

accessDurationTimes1 = (accessDP1.DataSets.GetDataSetByName('Duration').GetValues);



APPENDIX C. CHAPTER 6 SCRIPTS 243

end

%% GROUND STATION 2

access2 = satellite.GetAccessToObject(gs2);

access2.ComputeAccess

accessDP2 = access1.DataProviders.Item('Access Data').Exec(scenObj.StartTime,...

scenObj.StopTime);

if(accessDP2.DataSets.Count > 0)

accessStartTimes2 = (accessDP2.DataSets.GetDataSetByName('Start Time').GetValues);

accessStopTimes2 = (accessDP2.DataSets.GetDataSetByName('Stop Time').GetValues);

accessDurationTimes2 = (accessDP2.DataSets.GetDataSetByName('Duration').GetValues);

end

%% GROUND STATION 3

access3 = satellite.GetAccessToObject(gs3);

access3.ComputeAccess

accessDP3 = access3.DataProviders.Item('Access Data').Exec(scenObj.StartTime,...

scenObj.StopTime);

if(accessDP3.DataSets.Count > 0)

accessStartTimes3 = (accessDP3.DataSets.GetDataSetByName('Start Time').GetValues);

accessStopTimes3 = (accessDP3.DataSets.GetDataSetByName('Stop Time').GetValues);

accessDurationTimes3 = (accessDP3.DataSets.GetDataSetByName('Duration').GetValues);

end

%% GROUND STATION 4

access4 = satellite.GetAccessToObject(gs4);

access4.ComputeAccess
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accessDP4 = access4.DataProviders.Item('Access Data').Exec(scenObj.StartTime,...

scenObj.StopTime);

if(accessDP4.DataSets.Count > 0)

accessStartTimes4 = (accessDP4.DataSets.GetDataSetByName('Start Time').GetValues);

accessStopTimes4 = (accessDP4.DataSets.GetDataSetByName('Stop Time').GetValues);

accessDurationTimes4 = (accessDP4.DataSets.GetDataSetByName('Duration').GetValues);

end

%% GROUND STATION 5

access5 = satellite.GetAccessToObject(gs5);

access5.ComputeAccess

accessDP5 = access5.DataProviders.Item('Access Data').Exec(scenObj.StartTime,...

scenObj.StopTime);

if(accessDP5.DataSets.Count > 0)

accessStartTimes5 = (accessDP5.DataSets.GetDataSetByName('Start Time').GetValues);

accessStopTimes5 = (accessDP5.DataSets.GetDataSetByName('Stop Time').GetValues);

accessDurationTimes5 = (accessDP5.DataSets.GetDataSetByName('Duration').GetValues);

end

%% GROUND STATION 6

access6 = satellite.GetAccessToObject(gs6);

access6.ComputeAccess

accessDP6 = access6.DataProviders.Item('Access Data').Exec(scenObj.StartTime,...

scenObj.StopTime);

if(accessDP6.DataSets.Count > 0)
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accessStartTimes6 = (accessDP6.DataSets.GetDataSetByName('Start Time').GetValues);

accessStopTimes6 = (accessDP6.DataSets.GetDataSetByName('Stop Time').GetValues);

accessDurationTimes6 = (accessDP6.DataSets.GetDataSetByName('Duration').GetValues);

end

%% GROUND STATION 7

access7 = satellite.GetAccessToObject(gs7);

access7.ComputeAccess

accessDP7 = access7.DataProviders.Item('Access Data').Exec(scenObj.StartTime,...

scenObj.StopTime);

if(accessDP7.DataSets.Count > 0)

accessStartTimes7 = (accessDP7.DataSets.GetDataSetByName('Start Time').GetValues);

accessStopTimes7 = (accessDP7.DataSets.GetDataSetByName('Stop Time').GetValues);

accessDurationTimes7 = (accessDP7.DataSets.GetDataSetByName('Duration').GetValues);

end

%% GROUND STATION 8

access8 = satellite.GetAccessToObject(gs8);

access8.ComputeAccess

accessDP8 = access8.DataProviders.Item('Access Data').Exec(scenObj.StartTime,...

scenObj.StopTime);

if(accessDP8.DataSets.Count > 0)

accessStartTimes8 = (accessDP8.DataSets.GetDataSetByName('Start Time').GetValues);

accessStopTimes8 = (accessDP8.DataSets.GetDataSetByName('Stop Time').GetValues);

accessDurationTimes8 = (accessDP8.DataSets.GetDataSetByName('Duration').GetValues);

end
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%% GROUND STATION 9

access9 = satellite.GetAccessToObject(gs9);

access9.ComputeAccess

accessDP9 = access9.DataProviders.Item('Access Data').Exec(scenObj.StartTime,...

scenObj.StopTime);

if(accessDP9.DataSets.Count > 0)

accessStartTimes9 = (accessDP9.DataSets.GetDataSetByName('Start Time').GetValues);

accessStopTimes9 = (accessDP9.DataSets.GetDataSetByName('Stop Time').GetValues);

accessDurationTimes9 = (accessDP9.DataSets.GetDataSetByName('Duration').GetValues);

end

%% GROUND STATION 10

access10 = satellite.GetAccessToObject(gs10);

access10.ComputeAccess

accessDP10 = access10.DataProviders.Item('Access Data').Exec(scenObj.StartTime,...

scenObj.StopTime);

if(accessDP10.DataSets.Count > 0)

accessStartTimes10 = (accessDP10.DataSets.GetDataSetByName('Start Time').GetValues);

accessStopTimes10 =(accessDP10.DataSets.GetDataSetByName('Stop Time').GetValues);

accessDurationTimes10 = (accessDP10.DataSets.GetDataSetByName('Duration').GetValues);

end

%% GROUND STATION 11

access11 = satellite.GetAccessToObject(gs11);

access11.ComputeAccess
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accessDP11 = access11.DataProviders.Item('Access Data').Exec(scenObj.StartTime,...

scenObj.StopTime);

if(accessDP11.DataSets.Count > 0)

accessStartTimes11 = (accessDP11.DataSets.GetDataSetByName('Start Time').GetValues);

accessStopTimes11 = (accessDP11.DataSets.GetDataSetByName('Stop Time').GetValues);

accessDurationTimes11 = (accessDP11.DataSets.GetDataSetByName('Duration').GetValues);

end

%% GROUND STATION 12

access12 = satellite.GetAccessToObject(gs12);

access12.ComputeAccess

accessDP12 = access12.DataProviders.Item('Access Data').Exec(scenObj.StartTime,...

scenObj.StopTime);

if(accessDP12.DataSets.Count > 0)

accessStartTimes12 = (accessDP12.DataSets.GetDataSetByName('Start Time').GetValues);

accessStopTimes12 = (accessDP12.DataSets.GetDataSetByName('Stop Time').GetValues);

accessDurationTimes12 = (accessDP12.DataSets.GetDataSetByName('Duration').GetValues);

end

%% GROUND STATION 13

access13 = satellite.GetAccessToObject(gs13);

access13.ComputeAccess

accessDP13 = access13.DataProviders.Item('Access Data').Exec(scenObj.StartTime,...

scenObj.StopTime);

if(accessDP13.DataSets.Count > 0)

accessStartTimes13 =(accessDP13.DataSets.GetDataSetByName('Start Time').GetValues);
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accessStopTimes13 = (accessDP13.DataSets.GetDataSetByName('Stop Time').GetValues);

accessDurationTimes13 = (accessDP13.DataSets.GetDataSetByName('Duration').GetValues);

end

%% GROUND STATION 14

access14 = satellite.GetAccessToObject(gs14);

access14.ComputeAccess

%root.UnitPreferences.Item('DateFormat').SetCurrentUnit('EpSec');

accessDP14 = access14.DataProviders.Item('Access Data').Exec(scenObj.StartTime,scenObj.StopTime);

if(accessDP14.DataSets.Count > 0)

accessStartTimes14 = (accessDP14.DataSets.GetDataSetByName('Start Time').GetValues);

accessStopTimes14 = (accessDP14.DataSets.GetDataSetByName('Stop Time').GetValues);

accessDurationTimes14 = (accessDP14.DataSets.GetDataSetByName('Duration').GetValues);

end

%% GROUND STATION 15

access15 = satellite.GetAccessToObject(gs15);

access15.ComputeAccess

accessDP15 = access15.DataProviders.Item('Access Data').Exec(scenObj.StartTime,...

scenObj.StopTime);

if(accessDP15.DataSets.Count > 0)

accessStartTimes15 = (accessDP15.DataSets.GetDataSetByName('Start Time').GetValues);

accessStopTimes15 =(accessDP15.DataSets.GetDataSetByName('Stop Time').GetValues);

accessDurationTimes15 = (accessDP15.DataSets.GetDataSetByName('Duration').GetValues);

end
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%% COMBINE THE ARRAYS

accessStartTimes = [accessStartTimes1 ;accessStartTimes2 ;...

accessStartTimes3 ;accessStartTimes4 ;accessStartTimes5 ;...

accessStartTimes6; accessStartTimes7; accessStartTimes8 ;...

accessStartTimes9; accessStartTimes10; accessStartTimes11; ...

accessStartTimes12 ;accessStartTimes13; accessStartTimes14 ;accessStartTimes15];

accessStopTimes = [accessStopTimes1 ;accessStopTimes2; ...

accessStopTimes3 ;accessStopTimes4 ;accessStopTimes5 ;...

accessStopTimes6 ;accessStopTimes7 ;accessStopTimes8; ...

accessStopTimes9 ;accessStopTimes10 ;accessStopTimes11; ...

accessStopTimes12 ;accessStopTimes13; accessStopTimes14; accessStopTimes15];

accessStartTimes = string(accessStartTimes);

accessStopTimes = string(accessStopTimes);

accessStartTimes = datetime(accessStartTimes, 'TimeZone', 'America/Chicago',...

'InputFormat', 'dd MMM yyyy HH:mm:ss.SS');

accessStopTimes = datetime(accessStopTimes, 'TimeZone', 'America/Chicago',...

'InputFormat', 'dd MMM yyyy HH:mm:ss.SS');

%% sort the access dates and times

accessTimes = [accessStartTimes accessStopTimes];

no rows = size(accessTimes,1);

%Find union

accessTimes = sort(accessTimes,2);

[accessTimes, ind] = sort(accessTimes(:));

startstopArray = [ones(1,no rows) -ones(1,no rows)]';

startstopArray = startstopArray(ind);

startstopsum = cumsum(startstopArray);

%find ends of intervals
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interval ends = find(startstopsum == 0);

%find start of intervals

interval starts = [1; interval ends + 1];

%start no new interval at the end

len interval starts = length(interval starts);

interval starts(len interval starts) = [];

accessTimes = [accessTimes(interval starts) accessTimes(interval ends)];

accessIntervals = accessTimes(:,2) - accessTimes(:, 1);

[Y, M, D, H, MN, S] = datevec(accessIntervals);

accessDurations = H * 3600 + MN * 60 + S; % seconds

end

end

In the above code, I use ManitobaSat-1 as the satellite (depends on the TLE file) and

the University of Manitoba’s ground station as the primary contact facility. There

are secondary ground stations added all around the world to increase accessibility. I

get the access times for all the ground stations and sort them to find out the intervals

during which the satellite would be contact with one of the ground stations.

The function readTLEtogetpv is based on the script test-sgp4 written by Meysam

Mahooti on Matlab Central File Exchange [97]. This function obtains orbital elements

from a TLE file. These orbital elements are given as an input to the function orb2rv

that converts it to position and velocity vectors. orb2rv has been written by Darin

Koblick on Matlab Central File Exchange [98]. The code is slightly modified for both

the functions to suit this research. The position and velocity vectors from orb2rv are
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split into their components by the function get-posvel-datafromTLE.

function [ epoch,p,e,i,O,o,nu,truLon,argLat,lonPer,mu] = readTLEtogetpv(fname)

%fname is the TLE file

%% Open the TLE file

fid = fopen(fname, 'r');

mu = 398600.4418 * 10ˆ9; % gravitational constant

%% Read the TLE file

while (1)

% Read first line

tline = fgetl(fid);

if ~ischar(tline)

break

end

Cnum = tline(3:7); % Catalog Number (NORAD)

SC = tline(8); % Security Classification

ID = tline(10:17); % Identification Number

year = str2double(tline(19:20)); % Year

doy = str2double(tline(21:32)); % Day of year

epoch = str2double(tline(19:32)) ; % Epoch

TD1 = str2double(tline(34:43)); % first time derivative

TD2 = str2double(tline(45:50)); % 2nd Time Derivative

ExTD2 = tline(51:52); % Exponent of 2nd Time Derivative

BStar = str2double(tline(54:59)); % Bstar/drag Term

ExBStar = str2double(tline(60:61)); % Exponent of Bstar/drag Term

BStar = BStar*1e-5*10ˆExBStar;

Etype = tline(63); % Ephemeris Type

Enum = str2double(tline(65:end)); % Element Number



APPENDIX C. CHAPTER 6 SCRIPTS 252

% Read second line

tline = fgetl(fid);

if ~ischar(tline)

break

end

i = str2double(tline(9:16)) ; % Orbit Inclination (degrees)

raan = str2double(tline(18:25)) ; % Right Ascension of

% Ascending Node (degrees)

e = str2double(strcat('0.',tline(27:33))); % Eccentricity

omega = str2double(tline(35:42)) ; % Argument of Perigee (degrees)

M = str2double(tline(44:51)); % Mean Anomaly (degrees)

no = str2double(tline(53:63)); % Mean Motion

a = ( mu/(no*2*pi/86400)ˆ2 )ˆ(1/3) ; % Semi major axis (m)

rNo = str2double(tline(64:68)); % Revolution Number at Epoch

end

fclose(fid);

%% Orbital elements

p = a ; % Semi-major axis in m

e = e; % Eccentricity unitless

i = deg2rad(i); % Inclination in rad

O = deg2rad(raan); % Right Ascension of Ascending Node rad

o = deg2rad(omega); % Argument of Perigee rad

nu = deg2rad(M); % Mean Anomaly (rad)

truLon = nu + O + o;% True longitude in rad

argLat = nu + o; % Argument of lattitude in rad

lonPer = O + o; % Longitude of periapsis rad

end

function [epsec,r,v] = orb2rv(epoch,p,e,i,O,o,nu,truLon,argLat,lonPer,mu)
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epsec = epoch;

if ~exist('mu','var'); mu = 398600.4418 *10ˆ9; end

p = p(:); e = e(:); i = i(:); O = O(:); o = o(:); nu = nu(:);

if exist('truLon','var')

truLon = truLon(:); argLat = argLat(:); lonPer = lonPer(:);

end

ietol = 1e-8;

idx = e < ietol & mod(i,pi) < ietol;

if any(idx); o(idx) = 0; O(idx) = 0; nu(idx) = truLon(idx); end

idx = e < ietol & mod(i,pi) > ietol;

if any(idx); o(idx) = 0; nu(idx) = argLat(idx); end

idx = e > ietol & mod(i,pi) < ietol;

if any(idx); O(idx) = 0; o(idx) = lonPer(idx); end

rPQW = cat(2,p.*cos(nu)./(1 +e.*cos(nu)),p.*sin(nu)./(1+e.*cos(nu)),...

zeros(size(nu)));

vPQW = cat(2,-sqrt(mu./p).*sin(nu),sqrt(mu./p).*(e+cos(nu)),...

zeros(size(nu)));

%Create Transformation Matrix

PQW2IJK = NaN(3,3,size(p,1));

cO = cos(O); sO = sin(O); co = cos(o); so = sin(o); ci = cos(i); si = sin(i);

PQW2IJK(1,1,:) = cO.*co-sO.*so.*ci;

PQW2IJK(1,2,:) = -cO.*so-sO.*co.*ci;

PQW2IJK(1,3,:) = sO.*si;

PQW2IJK(2,1,:) = sO.*co+cO.*so.*ci;

PQW2IJK(2,2,:) = -sO.*so+cO.*co.*ci;

PQW2IJK(2,3,:) = -cO.*si;

PQW2IJK(3,1,:) = so.*si;

PQW2IJK(3,2,:) = co.*si;

PQW2IJK(3,3,:) = ci;

%Transform rPQW and vPQW to rECI and vECI

r = multiDimMatrixMultiply(PQW2IJK,rPQW)';

v = multiDimMatrixMultiply(PQW2IJK,vPQW)';

end
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function c = multiDimMatrixMultiply(a,b)

c = NaN(size(b));clc

c(:,1) = sum(bsxfun(@times,a(1,:,:),permute(b,[3 2 1])),2);

c(:,2) = sum(bsxfun(@times,a(2,:,:),permute(b,[3 2 1])),2);

c(:,3) = sum(bsxfun(@times,a(3,:,:),permute(b,[3 2 1])),2);

end

function [epsec,x pos, y pos, z pos, x vel, y vel, z vel] = ...

get posvel datafromTLE(r, v,epsec)

%r is the position vector and v is the velocity vector

x pos = r(1);

y pos = r(2);

z pos = r(3);

x vel = v(1);

y vel = v(2);

z vel = v(3);

end

C.2.1 Initiating a Pass Based on Access Times From the STK

Propagator

This script is part of the Virtual satellite model (VSM) master script and uses the

results from the STKOrbitProp script to detect when passes are occurring. The
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corresponding pass durations are also identified.

[accessTimes,accessDurations]= STKOrbitProp() ;

accessStartTimes = accessTimes(:,1);

accessStopTimes = accessTimes(:,2);

currenttime = datetime('now', 'TimeZone', 'America/Chicago');

currenttime str = datestr(currenttime);

% compare the current time with all start times in the accessTimes array

% column 1 has start times

accessStartTimes str = datestr(accessStartTimes);

if((ismember(currenttime str,accessStartTimes str,'rows'))==1)

[~,dur index] = ismember(accessStartTimes str,currenttime ab str,'rows');

pass duration = accessDurations(dur index == 1) ;

%CODE CONTINUES .....

end

C.3 Miscellaneous scripts

C.3.1 Timer Function for the Clock on the Main Screen of

the GUI

function startupFcn(app)
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t = timer;

t.TimerFcn = @app.refreshtime;

t.Period = 0.02;

t.BusyMode = 'drop';

t.ExecutionMode = 'fixedRate';

start(t)

app.time the timer = t;

end

function app = refreshtime(app,~,~)

app.CurrentTimeEditField.Value = datestr(now);

end

% Make sure to delete the timer (in the code) before closing the app

C.3.2 Listeners for the Virtual Satellite Simulink Model

set(0, 'showHiddenHandles', 'on');

% These are the block run time objects

blk = 'virtualsatellitemodel/soc'; % State of charge

blka = 'virtualsatellitemodel v2/batteryvoltage';

blkb = 'virtualsatellitemodel/total solar current';

blkc = 'virtualsatellitemodel/batterycurrent';

blkd = 'virtualsatellitemodel/powerconsumption';

sc1 = 'virtualsatellitemodel/solar current1';

sc2 = 'virtualsatellitemodel/solar current2';

sc3 = 'virtualsatellitemodel/solar current3';

sc4 = 'virtualsatellitemodel/solar current4';

sc5 = 'virtualsatellitemodel/solar current5';
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ef lis = 'virtualsatellitemodel/eclipseFlag';

event = 'PostOutputs';

listener = @virtualmasterscript;

% Register the listeners

h = add exec event listener(blk, event, listener);

ha = add exec event listener(blka, event, listener);

hb = add exec event listener(blkb, event, listener);

hc = add exec event listener(blkc, event, listener);

hd = add exec event listener(blkd, event, listener);

hsc1 = add exec event listener(sc1, event, listener);

hsc2 = add exec event listener(sc2, event, listener);

hsc3 = add exec event listener(sc3, event, listener);

hsc4 = add exec event listener(sc4, event, listener);

hsc5 = add exec event listener(sc5, event, listener);

C.3.3 Command Handling on the Testbed with the ASM

The following code is written as part of the script satellitecom which is the master

script for the ASM as part of the testbed.

%% Read the commands from the serial port

nocommandsreceived = readline(dObj) %read number of commands

nocommandsreceived = str2double(nocommandsreceived);

counter = counter + 1; % number of passes during which commands have been received

if(counter < 2)

for z = 1:nocommandsreceived
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commandsreceived(z) = readline(dObj)

% extract date

year commands(z) = extractBetween(commandsreceived(z),2,5)

month commands(z) = extractBetween(commandsreceived(z),7,8)

day commands(z) = extractBetween(commandsreceived(z),10,11)

hour commands(z) = extractBetween(commandsreceived(z),16,17)

min commands(z) = extractBetween(commandsreceived(z),22,23)

sec commands(z) = extractBetween(commandsreceived(z),29,30)

% detect which command it is

find commands(z) = extractBetween(commandsreceived(z),38,38)

end

elseif(counter > 2)

commandsreceived(1) = readline(dObj)

% extract date

year commands(1) = extractBetween(commandsreceived(1),3,6)

month commands(1) = extractBetween(commandsreceived(1),8,9)

day commands(1) = extractBetween(commandsreceived(1),11,12)

hour commands(1) = extractBetween(commandsreceived(1),16,17)

min commands(1) = extractBetween(commandsreceived(1),23,24)

sec commands(1) = extractBetween(commandsreceived(1),29,30)

% detect which command it is

find commands(1) = extractBetween(commandsreceived(1),39,39)

%if(nocommandsreceived > 1)

for z = 2:nocommandsreceived

commandsreceived(z) = readline(dObj)

% extract date

year commands(z) = extractBetween(commandsreceived(z),2,5)

month commands(z) = extractBetween(commandsreceived(z),7,8)

day commands(z) = extractBetween(commandsreceived(z),10,11)

hour commands(z) = extractBetween(commandsreceived(z),16,17)

min commands(z) = extractBetween(commandsreceived(z),22,23)
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sec commands(z) = extractBetween(commandsreceived(z),29,30)

% detect which command it is

find commands(z) = extractBetween(commandsreceived(z),38,38) % Command ID

% 1: turn on the radio

% 2: turn on the camera

% 3: turn off the radio

end

end

%% Add commands to the master command arrays

collective commands = ([collective commands commandsreceived]);

collective year = str2double([collective year year commands])

collective month = str2double([collective month month commands])

collective day = str2double([collective day day commands])

collective hour = str2double([collective hour hour commands])

collective min = str2double([collective min min commands])

collective sec = str2double([collective sec sec commands])

collective id = str2double([collective id find commands])

%create date time objects

t = datetime([collective year' collective month' collective day' ...

collective hour' collective min' collective sec']);

total commands = length(t);

% The code till here executes during a pass

%% Command Execution: outside the pass, executes every second

currenttime = datetime('now','TimeZone','local','Format','d-MMM-y HH:mm:ss');

currenttime str = datestr(currenttime);

t str = datestr(t);
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for y = 1: total commands

if((ismember(currenttime str,t str(y,:),'rows')) == 1)

%execute the command

designated id = collective id(y); %command ID

if(designated id == 1)

% 1: turn on the radio

set param('aalto1commserialactual v2/PowerChange','Value','2.77')

elseif(designated id == 2)

% 2: turn on the camera

set param('aalto1commserialactual v2/PowerChange','Value','0.85')

elseif(designated id == 3)

% 3: turn off the radio

set param('aalto1commserialactual v2/PowerChange','Value','-2.77')

end

end

end

C.3.4 Limiting the Date and Time for Command Execution

in the Send Commands Tab of the GUI

This script is implemented a callback for the Done button in the Send Commands tab

of the GUI used for creating commands with their execution dates and times. The

date and time selection inputs do not allow the operator to enter values of past date

and time and execution time before the next pass as a command cannot be executed

by satellite unless it is sent to it and this is possible only when a pass occurs.
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function DoneButtonPushed(app, event)

sendcommand = app.sendcommandslist.Value;

% Selected values in the date picker and the time spinners

sendcommand s = char(sendcommand);

sendcommand date = app.commanddate.Value;

sendcommand date s = char(sendcommand date);

sendcommand hour = app.Hour.Value;

sendcommand hour s = num2str(sendcommand hour);

sendcommand min = app.Min.Value;

sendcommand min s = num2str(sendcommand min);

sendcommand sec = app.Sec.Value;

sendcommand sec s = num2str(sendcommand sec);

zero char = '0';

if(sendcommand hour < 10)

sendcommand hour s = strcat(zero char, sendcommand hour s) ;

end

if(sendcommand min < 10)

sendcommand min s = strcat(zero char, sendcommand min s) ;

end

if(sendcommand sec < 10)

sendcommand sec s = strcat(zero char, sendcommand sec s) ;

end

%% done button wont work if selected date and time are before the next pass occurence

load('accesstimes.mat', 'accessTimes','accessStartTimes',...

'accessStopTimes','accessDurations');
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d1 = datestr(sendcommand date);

space = " ";

timeString = strcat(d1, space, sendcommand hour s,":", ...

sendcommand min s, ":", sendcommand sec s);

timeString ab = datetime(timeString,'Format',...

'yyyy-MM-dd HH:mm:ss','TimeZone', 'America/Chicago');

timeString ab = datenum(timeString ab);

accessStartTimes check = datenum(accessStartTimes);

currenttime check = datenum(datetime('now'));

check id = accessStartTimes check > currenttime check;

accessStartTimes check2 = accessStartTimes check(check id);

log1 = any(accessStartTimes check2 <= timeString ab);

if(log1 == 1)

app.Createdcommand.Value = strcat(sendcommand date s, space ,...

"at",space,sendcommand hour s,"hrs",space,sendcommand min s,...

"mins",space, sendcommand sec s, "sec", space, ...

sendcommand s);

app.Commandsinqueue.Value = strcat(app.Commandsinqueue.Value,...

" ",app.Createdcommand.Value) ;

else

app.Createdcommand.Value =

"Please try again, time of execution might be before the next pass" ;

end

end

% Value changed function: commanddate

function commanddateValueChanged(app, event) %value of ...

%the date picker



APPENDIX C. CHAPTER 6 SCRIPTS 263

%

app.commanddate.Limits = [datetime('today')...

datetime(9999,12,31)];

end



Appendix D

Fault-Management and Control

Rule Algorithms

This appendix contains the scripts and algorithms pertaining to the implementation

of the control rules for fault detection in the statistical process control (SPC) module

of the virtual ground station’s (VGS) fault-management system.

D.1 Script to Identify the Zone of a Point in a

Control Chart

The script zonescript (Algorithm 3) categorizes the points in a dataset based on the

zones, the side of the mean they lie on and their score in a control chart as discussed

in Chapter 5. Here, zones refers to the zones A, B, C or beyond limits (X) for every

point and sides stands for the side of the mean on which a point lies on which can be

above the mean or P and below the mean or N. A score of 8 refers to a point beyond

limits and scores of 4, 2 and 1 stand for the points in zones A, B and C respectively.

264
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Algorithm 3: Pseudocode for zonescript

Result: zones, sides, scores

for every data point x do

if x < LCL then

scores = 8; zones = “X”; sides = “N”;

else if x > UCL then

scores = 8; zones = “X”; sides = “P”;

else if x > = LCL & x < -2sd then

scores = 4; zones = “A”; sides = “N”;

else if x > = -2sd & x < -1sd then

scores = 2; zones = “B”; sides = “N”;

else if x > = -1sd & x < mean then

scores = 1; zones = “C”; sides = “N”;

else if x > = mean & x < 1sd then

scores = 1; zones = “C”; sides = “P”;

else if x > = 1sd & x < 2sd then

scores = 2; zones = “B”; sides = “P”;

else if x > = 2sd & x < UCL then

scores = 4; zones = “A”; sides = “P”;

end

end

D.2 Algorithms for the SPC Control Rules

The control rule algorithms denoted by crAlg N where N is the control rule number

are given below.
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Summary of crAlg 1 Control rule 1 is the most important of all the rules. It

requires one or more points to be beyond the control limits, that is, greater than

UCL or lesser than LCL to be violated.

Algorithm 4: Pseudocode for crAlg 1

Result: pass / fail

for every element x with index i in the dataset do

if x > UCL or x < LCL then

Control rule 1 has been failed;

return;

end

end

Control rule 1 has been passed;

Summary of crAlg 2 Control rule 2 requires seven or more points in a row on

the same side of the mean [73]. In zonescript, the variable sides indicates which side

of the mean is a point on. Two strings called patternn and patternp are initialized

representing eight consecutive points below and above the mean respectively. In the

algorithm, I create a string by concatenating the sides value for the next seven points

to give a string with the sides values for 8 consecutive points. If it matches either

patternn or patternp, rule 2 has been violated.
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Algorithm 5: Pseudocode for crAlg 2

Result: pass / fail

patternn = “NNNNNNNN”; patternp = “PPPPPPPP”;

for every possible data point index i do
stringtest: combine sides for points from index i to i + 7 or the next 7

points;

if stringtest matches either patternn or patternp then

Control rule 2 has been failed;

else

Control rule 2 has been passed;

end

end

Summary of crAlg 3 Control rule 3 is violated when seven or more points con-

tinuously trend up or down [73]. Let the current point’s value in the loop be x0, then

the next six points’ values are x1, x2, x3, x4, x5 and x6. The differences between each

point and the consecutive point is calculated, for example: x1 - x0 .... x6 - x5. Note

that the differences of the values of the points is taken and not their indices. If all

the above differences are positive, that is, if the consecutive points are continuously

increasing and every point is lesser than the next point, rule 3 is failed. Likewise, If all

the above differences are negative, that is, if the consecutive points are continuously

decreasing and every point is greater than the next point, rule 3 is failed.
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Algorithm 6: Pseudocode for crAlg 3

Result: pass / fail

for every possible data point x0 with index i do
calculate differences between two consecutive points from x0 to x6, i.e. x1

- x0 .... x6 - x5 where the indices of x1, x2, x3, x4, x5 and x6 are i + 1, i

+ 2, i + 3, i + 4, i + 5 and i + 6 respectively

if all differences > 0 or all differences < 0 then

Control rule 3 has been failed;

else

Control rule 3 has been passed;

end

end

Summary of crAlg 4 Control rule 4 is violated when 14 or more consecutive

points alternate up and down [73]. Let the current point’s value in the loop be x0,

then the next 14 points’ values are x1, x2, x3, x4, x5 and x6.... x13. The differences

between each point and the consecutive point is calculated, for example: x1 - x0 ....

x13 - x12. Note that the differences of the values of the points is taken and not their

indices. If the difference is > 0, that is, if the value of the points has increased, then

the variable logicid takes the value 1 whereas if the difference is < 0, that is, if the

value of the points has decreased, then logicid is 1. If the difference is 0, logicid is 0

indicating no violation of the rule. pattern1 and pattern2 are vectors of 14 alternating

1’s and -1’s with the former starting with a 1 and the other starting with -1. The

vectors containing the values of all logicid known as the logicid array is compared

with pattern1 and pattern2. If pattern1 or pattern2 are subsets of the logicid array,

rule 4 is violated.
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Algorithm 7: Pseudocode for crAlg 4

Result: pass / fail

pattern1 = [1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1];

pattern2 = -1 * pattern1;

for every possible data point x0 with index i do

if difference between data points (x0 and x1) with index i and i + 1 < 0

then

logicid = -1;

else if difference between data points (x0 and x1) with index i and i + 1

> 0 then

logicid = 1;

end

logicid = 0;

end

for all points in logicid array do

if any consecutive 14 points match pattern1 or pattern2 then

Control rule 4 has been failed;

else

Control rule 4 has been passed;

end

end

Summary of crAlg 5 Control rule 5 is the zone A test where failing this rule

requires two out of three consecutive points lie in zone A or beyond on the same side

of the mean [73]. There are two parts to crAlg 5. First, to identify if any two out

of three consecutive points lie in zone A or beyond. Second, to check if they are on

the same side of the mean. For the first for loop, the sides are not considered. I
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use zonescript (Algorithm 3) to get the zones of all the data points and assign the

zones value L to any point previously having a value of A or X, that is, zone A or

beyond. The condition of two out of three consecutive points in Zone A or beyond

can now be seen as two out of three consecutive points in Zone L. The strings of the

three concatenated points’ zone values need to have at least two characters in L and

match one of the patterns: BLL, LBL, LLB, CLL, LCL, LLC and LLL. Their array

is called selpatterns. Similar to the previous algorithms, I compare the concatenated

strings with zone values for points for x0, x1 and x2 where x0 is the current point in

the loop and their indices are i, i + 1 and i + 2 respectively. If one or more of the

strings match any element in selpatterns, crAlg 5 is partially failed. The next step is

to check their sides from zonescript. Any identified sets of three consecutive points

that have failed the first condition of zones has the zones within each set compared.

If the sides values match for all elements in at least one of the sets, rule 5 is failed.
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Algorithm 8: Pseudocode for crAlg 5

Result: pass / fail

for every element in the zones array of the dataset do

if zones is A or X then
zones = “L”;

end

end

selpatterns = [BLL, LBL, LLB, CLL, LCL, LLC, LLL] ;

for every data point x0 at index i do
if zones z0, z1 and z2 of points at indices i, i + 1 and i + 2 combined in

order match any of the patterns in the array selpatterns then
if two or more of the three consecutive points with zones = “L” lie on

the same side of the mean then

Control rule 5 has been failed;

else

Control rule 5 has been passed;

end

else

Control rule 5 has been passed;

end

end

Summary of crAlg 6 Control rule 6 is the zone B test which states that failing

this rule requires four out of five consecutive points lie in zone B or beyond on the

same side of the mean [73]. There are two parts to crAlg 6. First, to identify if any

four out of five consecutive points lie in zone B or beyond. Second, to check if they

are on the same side of the mean. For the first for loop, I have two if statements. I



APPENDIX D. FAULT-MANAGEMENTAND CONTROL RULE ALGORITHMS272

use zonescript (Algorithm 3) to get the zones of all the data points and assign the

zones value L to any point previously having a value of A, X or B. Also, their scores

value from zonescript is given a value of 10. For determining the side of the mean

the points lie on, a variable sidescorearray is set to 1 if the sides from zonescript for

a particular point is P and -1 if the sides value is N. For the second for loop, the sum

of the scores and sidescorearray values is taken for the points from x0 to x4 where x0

is the current point in the loop and their indices are i, i + 1, i + 2, i + 3 and i + 4

respectively. The sum of the scores has to be between 40 (at least 4 have scores 10

each) and 50 (all 5 can have scores 10) and the sum of the sidescorearray should be

either -3 (4 out of the 5 points are below the mean), 3 (4 out of 5 points are above

the mean), -5 (all 5 points are below the mean) or 5 (all 5 points are above the mean)

to violate rule 6.
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Algorithm 9: Pseudocode for crAlg 6

Result: pass / fail

for every element in the zones and sides array of the dataset do

if zones is A, X or B then
zones = “L”; scores = 10;

end

if sides is P then
sidescorearray = 1;

else
sidescorearray = -1;

end

end

for every data point x0 at index i do
if sum of scores of points x0, x1, x2, x3 and x4 with indices i, i + 1, i +

2, i + 3 and i + 4 respectively is between 40 (inclusive) and 50 then
if sum of sidescorearray values of points x0, x1, x2, x3 and x4 with

indices i, i + 1, i + 2, i + 3 and i + 4 respectively is 3, -3, -5 or 5

then

Control rule 6 has been failed;

else

Control rule 6 has been passed;

end

else

Control rule 6 has been passed;

end

end



APPENDIX D. FAULT-MANAGEMENTAND CONTROL RULE ALGORITHMS274

Summary of crAlg 7 Control rule 7 is failed when there are 15 consecutive points

all lying in zone C [73]. As in the previous algorithms, let x0 (index i) be the current

point in the for loop over all elements in the dataset. The next 14 points will be x1,

x2..... x14 with indices i + 1, i + 2 ..... i + 14. The zones value for each of them is

obtained using zonescript (Algorithm 3) and combined into a string zonematch. A

string called patternall contains 15 consecutive C’s which denotes that the 15 consec-

utive points’ zone values when all lie in zone C. I compare zonematch to patternall

and if it matches, rule 7 is violated.

Algorithm 10: Pseudocode for crAlg 7

Result: pass / fail

patternall = “CCCCCCCCCCCCCCC”;

for all elements in the zones array of the dataset do

if zones value for a data point and the next 14 points combined (called

zonematch) match patternall then

Control rule 7 has been failed;

else

Control rule 7 has been passed;

end

end

Summary of crAlg 8 Control rule 8 is failed when there are 8 consecutive points

with none of them in zone C [73]. For every element in the dataset, the zones value

from zonescript is revised to be L if it was previously A, B or X. As in the previous

algorithms, let x0 (index i) be the current point in the for loop over all elements in

the dataset. The next 7 points will be x1, x2..... x7 with indices i + 1, i + 2 .....

i + 7. The zones value for each of them is obtained using zonescript and combined

into a string zonematch. A string called patternall contains 8 consecutive L’s which
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denotes that the 8 consecutive points’ zone values when none lie in zone C. I compare

zonematch to patternall and if it matches, rule 8 is violated.

Algorithm 11: Pseudocode for crAlg 8

Result: pass / fail

for every element in the zones and sides array of the dataset do

if zones is A, X or B then
zones = “L”;

end

end

patternall = “LLLLLLLL”;

for all elements in the zones array of the dataset do

if zones value for a data point and the next 7 points combined (called

zonematch) match patternall then

Control rule 8 has been failed;

else

Control rule 8 has been passed;

end

end


