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ABSTRACT

In this thesis the problem of the circula¡ paraboloidal waveguide is analyzed. It
is shown how the Coulomb wave functions, commonly used in the description of a

Coulomb field surrounding a nucleus, can be used in the description of electromag-

netic Êelds which are s)mmetric with respect to the azimuthal coordinate inside the

waveguide. The Abraham potentials I *d U,which are useful in describing fields

with rotational symmetry, are used to simplify the problem. It is shown that these

potentials must satisfy a partial differential equation which when separated yields the

Coulomb r+'ave eguation of order L=0. Electromagnetic fields due to simple source

distributions inside the paraboloid a¡e expanded in terms of these functions

Specifically, solutions for current loop sources located in the focal plane of the para-

boloid a¡e obtained. Tbe case where the wall of the paraboloidal waveguide ís

assumed to be perfectly conducting is treated as well as the case where the wall has

finite impedance. The Ênite paraboloid is also considered and the fa¡ field is formu-

lated using Huygen's principle. It is found tbat for the ûnite suiface impedance case

the far ñeld pattern due to a current loop operating at 100 Uffzlin the focal plane is

different than for the perfectly conducting case. Numerical resqlts are presented for

relevant aspects of the problem.
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CHAPTER I

INTRODUCTION

Paraboloidal reflector antennas are perhaps the most useful and widely used

antennas for communication purposes. The majority of satellite communication links

use paraboloidal reûector antennas. Thc most common type of ieflector is the circu-

lar parabolic type which has a surface generated by revolving a ûnite parabolic curvè

about its axís. The reflector is then uçually illuminated by an electromagretic source

positioned at or near the focal poist. The reason for using the circula¡ paraboloidal

reflector is that from the theory of geometrical optics or ray optics the circular para-

boloidal shape has the property that all rap origínating from th'e focus are reflected

from the surface parallel to the axis. Most electromagnetic solutions of the para-

boloidal reflector use the geometrical opt¡cs approximation. Thii is in general a high

frequency method and thus it is not atr exact solution.

The two main techniques which are widely used in the analysis of thc para-

boloidal reflector consist of

1. using ray optics to ûnd the ûeld on the ap€fture plane, which is the circular

aperture just in front of the paraboloid, and then Huygen's principle is used to

determine the far ûeld of the antenna,

or

2. determining the surface curretrts on the paraboloidal surfaó due to the original

source and then ûnding the radiatçd ñeld from these using for example the aux-

iliary magnetic and electric vçctor potentials.

These two techniques may be found in many current textbooks àf *t"oo" theory or

electromagnetícs and will not be discussed in this thesis (see for example Balanis

U9821, or Stutzman and Thiele [1981]).
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One of the classic methods of determining exact solutions in electromagnetic

problems is to solve Ma:rwell's equations directly for the geometry, material and

sources under consideration. Solving Ma:rwell's equations catr. usually be reduced to

finding the solutions of the vector wave equation or, for time harmonic problems,

the vector Helmholtz equation. It would probably be safe to say that most elec-

tromagnetic rclutions are directly or indirectly related to the solution of the vector

wave equation.

One very powerful method for solving scalar partial differential equations is the

method of separation of variables. Thus if the vector wave equation can be broken

up ínto scalar equations then the method of separation of variables could be used to

solve each of these scalar equations.

In terms of the orthogonal coordinate systems ín whích rclutions can be

obtained, the scalar Helmholtz equation can be solved using the method of separa-

tion of va¡iables in eleven orthogonal coordinate systems. The rotation-paraboloidal

coordinate system is one of the eleven orthogonal coordinate çystems in which the

scalar Hetmholtz equation separates (see Eisenhart [1934], Stratton [1941], Morse and

Feshbach [19530. The situation is quite diffeient with the vector E,aye eguation or

the vector Helmholtz equation (see Moon and Spencer [1971]). The complications

arise because the field is a vector field and the yector equation can not be separated

into individual ordinary differential equations in which each scala¡ component exists

decoupled from the remaining components. Also, even if this were possible, the

ûtting of the boundary conditions becomes almost impossible.

In this introduction we will review the general curvilinear coordinate systems in

preparation for our work with the rotation-paraboloidal coordinate system. \ile will

also try to summÍuize the electromagoetic and acoustic scattering studies which have

been done in the past in the rotaçíon-paraboloidal system (for an excellent summ:uy

see Bowman et.al. [1969]). The methods used previously are not given in any detail

here since the form of the analysis presented in this thesis is iirdependent of those
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methods. Only a general suryey of those methods is presented in order that an

overall picture of what has been done can be obtained.

1.7 Generrl Curvlllne¡r Coordlnatec

In general curvilinear coordinates (Ët, 82, Ës) the vector operations such as curl

and divergence are expressed in tcrms of metric cocfficients or scale factors

(h¡h2, å3) whích are determined by the expressions governing the transformatíon

from the coordinates of interest to thc rectangular coordinates (x, y, z). The scale

factors can be determined by applying

í = 123. (1.1)

The rotation-paraboloidal coordinate system (€, r,0), see Fig. 1.1, is related to

the rectangular coordinate s)¡stem (*, y, z), the circular cylindrical coordinate system

(p ,0,2 ), and the spherical coordinate system (r ,0,0) by the transformations

(h¡)2 = f*J',. fftîl'. [rJ'

= Ër¡cos$ = pcos$ = r singcosÔ,

= Ë rt sin$ = p sin$ = r síng sin6 ,

(12)

(13)

(1.4)

(15)

Thus the scale factors are obtained by applying Eq.(1.1) to the above equations with

the result that

ht: hz = \Fqz :2r ,

and

år=Ë"¡:P ,

where, of course, p2 = x2 * y2 and r2 = x2 + yz + 22.

(1.6)
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The scalar Helmholtz equation is given by :

V 2,1, + K'ú :0 , (1.7)

where { is the actual scala¡ field or potential. This equation can be written for

general curvilinear coordinate system for the ñetd rþ ( €r , Ez , Ë¡) "t

*K2r¡ =6 (1.8)

where

\6 = hLhzh3 (1.e)

Now in the analysís of electromagnetic ûelds we encounter frequently the vector

Helmholtz equation which is of the form

V-xV-xF'-KzF=a

8-nÉ *l##l

(1.10)

and is derived from the vector E'ave equation by assuming a harmonic time depen-

dence given by ¿-í't where o is the harmonic frequency. Now for a nectangular,

Cartesian s),stem of coordinates (x, y, z) it is clea¡ that Eq. (1.10) reduces to the

scala¡ Helmholtz equation for each component in that s)¡stem, but for other orthogo-

nal coordinate systems this is not the case. In fact, there is generally great difficulty

ín separating the vector Helmholtz equation if one is not working in Cartesian coor-

dinates.

It was shown by Hansen (seæ Hansen [1953]),that the vector E'ave equation can

be separated by deûning three new vector ûelds related to the actual yector ûelds of

interest. These three vector fields Fi , F ,i lkoo*o as the Hansen wave vectors),

can be obtained by a single scalar ûeld r|l, which satisfies the scalar wave equation in

the coordinate s)¡stem of interest. Separation of the vector rvave equation has some-

times been defined as the succesqful deduction of the Hansen tvave vectors (Morse



and Feshbach [1953], pp.1767). It has been shown that the Hansen wave vectors can

be obtained for only six of the eleven orthogonal coordinate systems. These six coor-

dinate systems a¡e shown below in Table 1. Unfortunately the rotation paraboloidal

coordinate Eystem is not one of six given in Table 1, and thus càmplications arise in
:

the solution of electromagnetic ûelds in this coordinate system.

T¡blc 1.1

Coordinate Systems in which Vector Wave Equation Separates

1. rectangr¡lar coordinates

2. circular cylindrical coordinates

3. elliptic cylindrical coordinates

4. parabolic cylindrical coordinates

5. spherical coordinates

6. conical coordinates

1.2 The Rotatlon-Parabolotdal Coordlnate System

The ûrst theoretical investigation of electromagnetic ûelds in rotation-

paraboloidal coordinates u'as undertaken by Abraham [1900]. The paraboloidal coor-

dinates were used to model a semi-infinite wire. The theoretical results did not

^gree 
with the experimental results of the time and the problem was dropped. The

electromagnetic reflection by a parabolic mirror was brieûy mentioned by Lamb

[1906] where integral expressions were obtained. The problem was not reconsidered

until the parabolic reflector was used for rada¡ applications in the 1940's.

For the acoustic case Buchholtz analyzed many írspects of the problem. He

obtained results in integral and series form for the scattering of acoustic waves from

an inûnite paraboloid (Buchholtz fl947}. The external (convex side) diffraction
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problem has been anal¡zed by Hortoo [1950, 1953]. Horton used. the series represen-

tations developed by Pinney [1946] for the solution of the scalar'Helmholtz equation

in rotation-paraboloidal coordinates. Pinney developed his ¡eries representation in

terms of Laguerre functions whereas Buchholtz used the confluent h¡pergeometric

functions which are a more general form.

Anal¡ais of the electromagnetic case was made based on the results from the

aco¡¡stic case. The cases of a¡ electrÍc dipole at the focus of.the paraboloid and

oriented parallel to the axis of qrmmetry, perpendicular to the axis of symmetry, and

perpendícular to the axis backed by a dummy reflector were solv.ed by Pinney fl9a71.

The solutíons to these three cases were based on the series rclutions he obtained in

bis earlier paper for the scalar Hclmholtz equation in rotation-paraboloidal coordi-

nates. The exact electromagnetic ûeld produced by an electríc dipole lqcatçd on the

axis of symmetry of a perfectly conductíng concave paraboloíd has also been solved

by Buchholtz [1948]. Fock [1965] has performed an in depth study of the problem,

expressing the exact solution for an electric dipole at the focus and perpendicular to

the axis of symmetry, both as an intçgral and as an infinite series, as well as deriving

higb frequency expansions.

In his investigations, Fock introduces a series of new potentials in order to solve

the problem. He first expresses Mærwell's equations in terms of the covariant spheri-

cal ûeld components and the Debye potentials (see Wilcox [1957]). From these he

applies the transformatioo to obtain the rotation-paraboloidal field components. He

then introduces two 'parabolíc potentials P and Q " which are connected with the

seParate Fourier components of the ûeld with respect to the angle $, and not the

total ñeld. To simplify the Êeld expressions, four interrelated auxiliary functions .

connected with the parabolic potentials P and Q are introduced. Although the intro-

duction of the parabolíc potentials permits formulation of the boundary conditions

without recourse to ûnite differencp equations the expres$ions are very complicated

even for simple source illuminations.
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The problem under consideration in Horton and Karal's wort was the elec-

tromagnetic scattering of a plane wave from a paraboloid made of any material in

general (Horton and Karal [1951]). The Hansen E'ave vectors were obtained for the

rotation-paraboloidal coordinate system based on the series solution obtained by Pin-

ney [1946] for the scalar Helmholtz equation. This was done even though the

transverse waye yectors iZ and F ¿ia not appear to have the necessa¡y orthogonality

properties to enable one to expand an arbitrary vector functicin in terms of them

directly. Considerable manipulations were then performed in order to use the ortho-

gonality properties of one of Pinney's parabo-loidal functions .S f (S,l it related to

the Laguerre functions). The 6nat 6eld expressions using this method Íue very com-

plicated. Solutions for a plane wave incident upon a perfectly conducting paraboloid

are formulated but no numerical results are presented because of a " lack of numeri-

cal values for the paraboloidal functíons'.

Approximate methds have been used by Donaldson et.al. [1960] to solve for the

aperture distribution due to axially oriented dipoles at the focal point. An approxí-

mate method ís used to obtain the coupling between two aligned paraboloidal

reflectors. These approximate methods are based on Fourier transforms of the aper-

ture field.

The high frequency methods of geometrical optics and ray tracing will not be

discussed since they represent a totally different approach to the.problem.

In this thesis the paraboloid of revolution is treated as a waveguide and ûelds

which are rotationally symmetríc but arbitrary (ie. the Êeld components are indepen-

dent of 0) are found ín terms of the Abraham potentials (see Stratton [1941] or

Koshlyakov et.al. [1964D. Eigenfunctions a¡e obtained for the paraboloid in terms of

the Coulomb wave functions. This tecbnique of treating the paraboloíd as a

waveguide allows one to to apply an impedance boundary condition on the walls of

the paraboloid. This is a technique which can be used for simulating mathematically

the ñnite conductivity of the walls or can even be used when deliberate thin coatings
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of dielectric are applied to the walls. This problem is difficult to solve if geometrical

oPtics is used but means only the determination of the new eigenvalues in the

present technique. Thus for each new boundary condition .we wish to solve (ie.

different wall impedance) all that need be done is to calculate the new eigenvalues.

Thís is one of the main advantages of this method.



CHAPTER 2

GENERAL FORMULATION WITH ABRAHAM POTENTIALS

Given the coordinate transformations of Eq. (12) - (1.6), Maxwell's equatíons

are obtained for the rotation-paraboloidal coordinate syætem. The Abraham poten-

tials Q and U are then used to simplify the solution of these equations when rota-

tional symmetry of the Êelds is evident. The partial differential equations for these

potentials are then separated, yielding one Sturm-Liouville system and one ordinary

differential equation. It is shown that solutions to both of these can be represented

most conveniently as Coulomb wave functions.

2.1 M¡rwell's Equatlonc ln Rot¡tlou.Pargbololdal Coordl¡ates

If a harmoníc time dependenc" o1 
"-Íorr 

is assumed then Maxwell's equations

can be written as

V xE = íup.H , (2.1)

V xF=(-ire*o)F,

V x I/- = -í øeE (fossfess medíum), (22>

(23)V 'Fi :0,

pcV.B= (2.4)..

Where p" is the charge density in the medium, e is the permitivity of the medium, p

is the permeability of the medium and o is the harmonic frequency of the excitation.

These must now be expressed in terms of the rotation-paraboloidal coordinate sysrem

but ûrst these expressions will be determined for any rotationally symmetric
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coordinate system.

Any s¡atem of coordinates ( Ë , r¡ S ) which are rotationally symmetric can be

defined by

ds2 = hi E2 + hzdn2 + pzd ö2,

where p is the pcrpendicular distance from tbe a,xis of rotatioú (ie. the same as in

cylindrical coordinate s¡ætems). Maxwell's equations, Eq. (2.1) and (22), for an iso-

tropic lossless medium can be written in these coordinate systems as

where for the case of rotational-paraboloidal coordinates å1 and h2 are equal and

are defined by Eq. (1.5). For the case wbere the ûeld ( E- and ã-'¡ itr.tt has the same

symmetry as the coordinate s¡ætem, its components are independent of $. Thus the

six expressions of Eq. (25) break up into the two independent groups

*[* þ;d - å þ,;;ìl .'." [;;d =0,

*[* [";:l - f,- þidl =,. [;;l) = o,

[+ 
rþ',)- * þ,",)] * ''eE6 

= o,

i;*[e ro] -''*Hß:0,

#*-[o"n) +i",päq=0,

#l*þ,r;) -*þ,;:)l= ',fid=0, (25c,

(2sa)

(25b)

(2.6a)

(2.6b)

and

(2.6c)
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t . , \ ^ . \ì
h? þ"'J - å ["'uil -' 't"H6: o' 

,

i;*[0"*] *tøeE€=o'

I ð/ \
phtrgtouni-ioreEn=Q'

For the speciûc case of the rotation-paraboloidal coordinates Eq. (2.6)

become

Í

#[* t"o"") - * t\ffi",)l * í o¡e'6 = o,

1 L(ru.) -íorpng=o,or,ffi a"¡ t

(2:ta)

(2.7b)

(2Jc)

and (2.7) 
.

(2.8a)

(2.8b)

(2.8c)

and,

+[+lnæ""]
Ez+12 [aE t'

L( ru.) * í or pftn = 0.or,ffi aç t

- *[t4æ".]l-ro¡PHô =0, (z-ea)

¡ft7*[t".] - ioreEo :0, (zsc)

where p = Ë "t. Substituting Eq. (2.8b) and (28c) into Eq. (2.8a), and defioing the

Abraham potential U (Ë ,l ) at

Eó(Ë,rr) = lu ,E,q) ,

L(,r"r) * íøcE€:0, (zsb)
orvffi art t

(2.10)
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it is found that

¡rE (Ë,q) = -l ole

oxztffi
i rr¡e¡/'r(ç,r) =

oxzt@4

ðU (E ,rr )
ðr¡ '

aU (Ê,n)
ðE '

(2.11)

(2.r2)

where U (E ,r¡ ) satísfies

+[+.19ì ++[+*ì + K:-[s,* ,,j;u =Q. (213,)aËtp aE) aqtp a"¡J p

Similarly if the same procedure is applied to Eq.(2.9) the second Abraham potential

Q (E ,r¡ ) can be defined as

äo(Ë,q) = ln rË,"r),

with

EE(Ë,q) = -+- ðO (Ë 'rrloxz\ffi ðr¡ 
"

Eq(E,r¡)=ffi%?t,
where Q (E ,r¡ ) satísfies

(2.14)

(2.1s)

(2.16)

^ (. \ l \ .,a lLr=?l **|l+sl *4fr'*r,)o=Q. (2.17)aËtp aEJ 'aqtp a"tJ' p (s

It can be easily seen from the above expressions that the potential U (Ë,"f )

represents an electromagnetic wave which is transverse electric to the z direction

(T.E. to z) and the second potential Q (E ,q ) represents aû electromagnetic wave

which is transverse magnetic to the z direction (TM. to z). It should also be
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obcerved that both U and Q satisfy the same partial differential.equation, Eq. (2.13)

and Eq. (2.17). This suggests that the form of the solutions to the potentíals U and

Q should be simílar but not exactly the same since the boundary conditions on the

walls of the paraboloid will not necessarily be the same for both potentials. It can

also be noted at this point that there is the possibility of a singularity in the freld

along the axis of the parabaloid due to the forms of the expressions of Eq. (2.10) and

(2.14) since p = 0 along this axis. It will turn out that the solutions to the potentials

will be chosen such that they are equal to zeto at p = 0 and in the limit as p go€s to

zero the field expressions will not be singular but ûníte. 
:

All of the above observations and comments will be detailed in following

chapters.

22 Boundary Condltlonc for the Pofentlslc :

2 2.7 P ertætly Conductlng Parabolold

If the surface of the paraboloid ( r¡ = r¡o ) is perfectly conducting then the

mathematical expression which conveys this is

E - (E -ñ)ñ:0, (2.18)

where É is the unit normal to the surface directed from the Uoay into the surround-

ing medium. Physically Eq. (2.18) states that the tangential component of the total

electric field at any regular point of the conducting surface must be equal to zeto,

For the case of the paraboloid

ñ = _ârt. (2.1e)

Thus Eq. (2.18) becomes

E - (E 'ân)ân = 0.

The ûeldF(Ë,q) can be represented as

(220)
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F(Ë,q) = Eeâe*En â, * Eoâo . (22r)

Substítuting Eq. (2.21) into Eq. (220) results in what was originally expecred, i.e.

Et(Ë,r)=0, (222)

and

Eo(E,rt) = 0. (223)

From E,q. (222) and (2.15) a Neumann condition for the potential e (E ,q ) arises;

ð O (Ë,"tì
ðr¡ =Q dt Tl=no, (224)

and from E,q. (223) and (2.10) a Dirichlet condition for

arises;

the potential U (Ë,t¡)

U(Ê,qo)=o. (22s)

Thus for the perfectly conducting paraboloidal waveguide, described by the coordi-

nate surface r¡ = rìo, the Abraham potentials U (E ,rl ) and e (E ,r¡ ) must satisfy

partial differential equations given by Eq. (2.L3) and Eq. (2.17) respecrively, with

boundary conditions ar r = r¡o described by Eq. (zzs) and Eq. izz+>respectively.

22.2 Non-Perfectly Conductlng Parabototd

For the case of the walls of the paraboloídal waveguide being non-perfectly con-

ducting, an Impedance or Leontovich boundary condition is imposed on the surface

t| : 1ìo. The Leontovich boundary conditíon can be expressed mathematically as

E-@-ñ)ft=ñ\Æ(,ÊxE¡, (226)

where if is the relatíve surface impedance of the walls of the paraboloid (N:0 for

the perfectly conducting case). As can be seen from the notation used, the relative
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surface impedance ic represcnted as as dyadic function. ô nonzero surface

impedance has been used for tbe ûnite conductivity of waveguides before (see

Mohsen and Hamid [19700. It has also been used to account for the ûnite conduc-

tivity of scatterers (see Senior [1960a]), for the roughness of its surface (Senior

[1960b]), and for the presence of highly absorbing coating layers (Weston [1963]).

It should be noted here, that it ¡V la¿ been assigned a rcalar value, this would

imply that the impedance is the seme in any direction, but this is not the general

case. In the more general case considered here, the surface impedance Ñ is

represented by a two dímensional dyadic transforming the tangential components of

¡l- into the tangential components of Ë- on the boundary (see Morse and Feshbach

[1es3] pp. 181a).

Now substituting Eq. (2.19) and (2.21) into Eq. (226) it is found that the Leon-

tovich condition manifests itself in the two equations

+=-"0\Æ at îì=rìo,

æ=*'*

(227)

at î :1o. (228)

Substitution of Eq. (2.10) and (2.11) and Eq. (2.14) and (2.15) into Eq. (2.28) and Eq.

(227, respectively leads to bounda¡y conditions in terms of the potentials given by

and

ð(r _íK\ñu=o
ôr¡ ÀI0

at T|=rìo,

and

+ -iKNrffie:o at îr =1ìo rðq



L,ll,

which , after performing the differentiation, become

u._ í\tñ (J _o at T|-tìorqlVo

and

o'-r*\ñe=orl

(22e)

(230)

(23r)

at ll=1o.

If we assume, for the sate of mathematical simplicity, tbat

Hô=- t
- lìa

and

/v€
i rlo:- (2s2)

then the boundary conditíons on the potentials simplify to

U *U =0 at T|=Tlo, (2s3)

and

O *Q=0 at I=T|o. (234)

These can be recognízed as Dirichlet-Neumann or Robin boundary conditions and

can be handled fairly easily by partiar differential equation theory.

The physical interpertation of Eq. (231) and Eq. (234) is that the boundary

impedance should yary on the walls of the paraboloid as a function of f . The

impedance is also reactive since the expressions a¡e totally imaginary. The practical

implications and the ph¡rsícal realizability of these boundary conditions will not be

considered in any detail.

\EÑ'

\m,
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23 Separatlon of thc Parttlt Differentlsl Equatlon

Solutions to the partial differential equation given by Eg. (2.13) or Eq. (2.17)

must now be found. Sínce these equations are the same 'for both potentials

U (E,"t) aod O (Ë,"t) it is sufficient to solve only oneof these equations. Thus in

the following discussions the U potential will be solved for altbough the solutions are

equally valid for the Q potential. For convenience the equation is rewritten here;

(2.r3)

The method of separation of va¡iables is now undertaken to solve the above

equation. Following the general procedure, we assume a solution of the form

U (E ,rr) = U JE)U z("t ) . (2ss)

If a separation constant C is chosen, then separation of the equation produces the

two ordina¡y differential equations

å[i#) . åt**l . +[r, *o,]u -o

#rr(Ë)- tfrurl)*lx,*
ì-cjur(E):o' (2s6)

and

(2s7)

These equations are identical except for the sígn of the parameter C, but since the

only restriction on the paremeter is that it be a real number, only one of the equa-

tions needs be solved. We choose F:q. (237), the equation for the variable r¡, since

this equation will provide us with tbe eigenfunctions in the later chapters. The brute

force method could be taken at this point, in that E,q. (237) could be solved using

the general method of Frobení¡¡s This elegant method will not be used at the present

time but for the sake of completeness and comparison it has been included as

^*,u,("r)- 
+huz(n) *l*'n,*r) uzþû:o.



1-9

Appendix A at the end of this thesis.

Instead, independent variable transformations will be performed in order to

reduce Eq. (237) into a form for which a solution is well known. As will soon

become apparent, there a¡e a few índependent varíable transformations which could

be used on this differential equation. Three reduced forms wilt be presented. The

third form is the one which will be used and advantages of tbis form will become

apparent when compared to the others.

Asañrstindependentvariabletransformationwelet

y (¡ ) = y ( ¡xnz) = (J z("1), (238)

where

¡=iKn2. (2se)

From these transformations the differentials with respect to x can be expressed as

*:zíKn*

# -- -4K2+# +zíK *
and these when substituted into Eq. (237) transform that equation into

¿2 [-1 ícl*y (') + l* + # ly (') = o. (2.40)dx- [ 4 * 4rtl"'

This equation can be recognized as Whittaker's standa¡d differential equation (see

Erdelyi et.at. [1953], Abramowitz and Stegun [1965]) which takes the form

#"(¡)+[+. :.ry],,,)¿0 , (2.47)
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where for our case

,(¡):/(¡), t"=+ and O=#t.
:

The Whittater equation can be derived from the more general confluent hyper-

geometric equation

,*v(¡) +(b -r)L*v(¡) -(tv(r):=0 (2.42)
dx-

by the transformation

v(¡) =x-bf.e'Þw(r), t = + - k + tL, b =;, *r*,

where for our case

y(¡) --xe-xtTv(t), a=l-# and å =/.

Solutions to Eq. (2.42) are denoted as (see Abramowiu atd Stegun [1965]),

M (a ,b ,x) and Il (o ,b ,x), .

and are called Kummer's functions.
:

Solutions to the potentials could be arrived at through the solution of either

Eq. (2.a1) or Eq. (2.42). Both of tbese forms were derived from the original

differential equation and are perfectly valid but are awkward to use because of the

complex transformation which was required to obtain them. Not only is the variable

a complex transformation of the original but the new parameter would also be a

complex number. This parameter would ultimately become our eigenvalue and .

would thus be prefered to be real. Given these problems, alternate forms of Eq.

(237) are sought.
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23.1AIternateTransformat[on;CoulombTÍaveEqoatIon

If instead of the transformation deûned by Eq. (2.3S) rve use the transformation

l-r, =;K rf i y (z) = (Jz(;* 
"¡2), (2.4s)

then the differentials with respect to z become

'! :x' d
d 1 tl7;

and

d'==Kzn24*K d
dn? '' d"2 ' 

¡r dz'

Therefore substitution of these into Eq. (237) reduces that equation into

¿2 | .l
fzt G) + 

lt 
* ùlr r, ) = o , (2.44a)

or

¿2 [ t'l
*y (" ) + lt * }lyþ):0, (2.44b)dz' L z 

J

where

r=*.
This can be recognized as the coulomb wave equation of order L:0

#r(,) + lt-+ ]r,')=o , (2.4s)

where for the present case
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F =-)r, :-*.

The Coulomb wave equation has a regular singularity at the point z:0 and an irregu'

lar síngularity at z:Ø . The general solutíon of Eq. (2.afl is

y (z) = CrF.t(F,r) + CzG, (B ,z), (2.47)

where C1 and

be written as

C 2 úe constants. For the speci6c case of E;q. Q.Aa) the solution can

y (z) = CrFo (F,r) + Czco(F ,z) , '.

where B is given by Eq. (2.46). The reason for introducing the negative sigu in front

of )r is that when we define Flq. Q.aq as a Sturm-Líouville system it wíll Prove to be

more convenient, since )r' will be defined as thë eigenvalue. :

It should be noted at this time that the Coulomb wave equation can be derived

from the confluent hypergeometric equAtion by the transformation

F¿ (F ,z): "-íz 
rL*tcr(P)M (L +1-íP,2L +2,2i2), (2'49)

where

(2.46)

(2.48)

(250)
-rrÊ

c¿(F)=2Le z lr(¿ +t-ie)J
r (2L +2)

Of the three forms of Eq. (2.37), the Coulomb wave equation [Eq. (2.aÐ] will be

used in the foltowing chapters as tbe form to be solved. Thus in the next chapter the

mathematical properties of the solutiqns to this equation will .be investigated. As

well the numerical algorithms for the computatíon of these functions will be €xÍrtr'

ined.



CHAPTER 3

THE COULOMB WAVE FUNCTIONS

In this chapter the mathematícal properties of the Coulomb \Yave equation and

its solution, the Coulomb wave functions, will be investigated. These functions will

be investigated in the form of a Sturm-Liouville system since the ultimate goal for

their use is as eigenfunctions for the solution of rotationally symmetric electromag'

netic fields insíde the rotation-paraboloidal waveguide. Numerical results will also be

presented at the end of this chapter. These will include numerical tabulations and

graphs of the wave functions as well as graphs of the eigenfunctions for the Diri'

chlet, Neumann and Impedance boundary condition cases.

3.1 Sturm-Llouvllle Systems

The notation which will be used in the following discussion for a regular

Sturm-Líouville system follows that of Trim [1986], aod is shown below :

.a<z1b,(3.1a)
[" t" )y'(r.,,)l'* [^o Q)-q (z)]r tr,z) = 0,

-lty'().,o') + hù (Ì.,o ) = 0 ,

Izy' (I,å ) * hzy(r,å ) = 0.

(3.1b)

(3.1c)

The constants å 1, h2, f 1, and 12 in the Robin boundary conditions are real and

independent of the parâmeter )t. The functions p (, ), q (z ), r .(z ),and r' (z ) arc

real and continuous over the specifred interval. Also, it is assumed that p (, )> 0

and r (r )> 0 for ¿ 1z 1å. The parâmeter I takes on a denumerably infinite set

of values Io ( n = 12, ...) for wbich the corresponding non-trivial solution of Eq.

(3.1) is denoted
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yn(r)=y().o,2).

The yo (z ) are called the eigenfunctions of the Sturm-Liouville system and Àn are

the eígenvalues.

3.72The Coolomb VÍsvc Fonctlons ¡¡ a Storu-Llouvllle Systeul

For the case of the Coulomb wave functions and the rotation-paraboloidal coor-

dinates the speciûc values of the functions in the system of Eq. (3.1) are provided

from Eq. (z.4y'.b) whcre

r(z) =1.0, p(z)= andq(r)=-1.0,

where the range of the variable z is 0 1 z 1 zo. It is noted that r, p, and q satisfy

all of the necessary re4uirements quoted above. For the case of the paraboloídal

waveguide there will be no bounda¡y condition 
^t 

z :0, but only at z = zo (ie. the

walls of the paraboloidal waveguide). Thus the singular Sturm-Liouville system

2
t

z

y;(z).[r+r,,
Fl lv.(z)=0,

012 1ro , (32a)

(3.2b)lz!o'(zo) + hzyo(ro ) = 0,

arises, where at least one of 12 and Ir2 is not equal to zero. If. 12:0 we have a Diri-

chlet condition at z = Zo. I1 h2 = 0 we have a Neumann condition at z -- zo. If
both lz and å2 exist then we have a Robin condition at z = zo, which will be neces-

sary for the impedance boundary condition case as explaíned in Sec. Z2.2. Thus it

will be necessary to obtain numerical results for all three cases.

The above system of Eq. (32) is a singular Sturm-Liouville system since only

one boundary condition exists. Thus the generat properties of a regular Sturm-

Liouville system cannot be used without proof. One of the mdst useful of these pro-

Pert¡es which will be required in later discussions is the orthogonality of the
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eigenfunctions with respect to the weigbting functíon p (z ).

Consider the eigenvalue-eigenfunction pairs [r, ,r, ] ana [t, ,^" ). The

differential equation satisfied by each of these eigenvalue-eigenfunction pairs is given

by Eq. (32a)

t
to'(z ) + | I + I,,

t

t
t^"(z)+|I*r,,

t

1r",")=0, 
o( z1zo,

l*,")=0, o( zlzo

F]

FI

['."[?J l*'"']=o'
' : !nr, [^, - r" ] 1 = 

'rr^r^')'- [r" ,,']'

lv", (o)- 
lv" (o)l+1" = l';t;l

(33a)

(33b)

The following manipulations are now performed :

(

r,[r""(,) +

(

r"{r,-(" ) +

lnln -lnln

zo

l*'-^"ì ! hh\/0

[' . ^" [iJ J,",",] -

Integrating witb respect to z over the interval, we get

Y^'(ro)
Y^ (r')

v,,'(o)
v" (o)

Now for orthogonality of the eigenfunctions with respect to the weighting func-

tion p(z), the right side of the above equation must be equal to zeto. The first deter-

minant is equal to zero because of the existence of the boundary condition at

z = zo. That is, if one thinks of tbe boundary equations at z = zo for )n, md )o as

simultaneouse equations in 12 and å2, then since these equations have nontrivial

solutions (ie. at least one of 12 and å2 must cxist) the determinant must go to zero.
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The second determinant will not collapse to zero aseasily as the first because there is_
no boundary conditíon at z:0. We will find that íf we examine the properties of the

solutíons of the of the Coulomb war'c eguation we will see that one of the solutions

is identically zerc ¡t z:0. Thus this solution will be orthogonal. As will be seen in

later discussions, the second solution will not be appropriate and thus will not be

used in the eigenfunçtion solution because it produces a singularity in the field at

z:0. Therefore the orthogonality of the second rclution is not required.

Now that we have established orthogonality it is convenient to normalize the

eigenfunctions. Thus a normalization constant N, can be defined by

N2 ='ir^r,[i)t, (3.4)

The eigenfunctions will be divided by N in order to make them orthonormal.

3.2 Propertles of the Coulomb lVave Functlons 
.

In this section the properties of the Coulomb wave functions witl be investi-

gated. These properties a¡e results obtained from many authors over a number of

yeÍìrs (see National Bureau of Standards [1952], Fröberg [1955], Luk'Yanov et.al.

t19650. The notation which wilt be used he¡e is that qf Abramowitz and Stegun

Fnzl, whicb was a compilation of the properties known about the functíons up until

the year 1965. The results which will be shown here will be modified to the case

where L:0 so that they can be directly applied to the problem at hand.

The solution of the Coulomb wave equation [Eq. (2.a5)], consists of the two

solutions gíven ín Eq. (2A7). In the following discussions the þarameter B will be

used, where B is related to I by Eq. Q.aq. The solution Fs(F,r ) ís called the reg-

ula¡ Coulomb wave function while Co(F,z ) is called the irregular or logarithmic

Coulomb wave function.
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3.2.lThc Regct¡r Wavc Functlon

The regular Coulomb wavc function can be expressed in terms of the confluent

hlpergeometric equation, as mentioned ín the previous chapter, as

ro(F,z ) = co(F ), "-t' M 0- íF,2,2íz ),

where

,.,1co(F):[ffi]'. (3s)

A more appropriate form for numerical computatíons is

Fo(F ,z) = Co(F)" Õo(F," ) , (3.6)

where

oo(F,z)= io"(p)"n-l , (3.7)
n:l

and

¡{t = l, Az= F, n(n -1)Áo :ZþA.-L- An-z þ>2). (3.8)

The asymptotic theory of linea¡ difference equations shows that this equation is

stable (i.e. a small change in the píúameter p will cause only a small change in the ^4n

for large n). For an anal¡æis of this point the reader is referred to appendix B.

The derivative with respect to z of the regular wave function can be computed

by the relation

d ^ t^rrt,¿^Fo=too=co(q)o;(g,r), . (3.e)

where
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Qð = 2 nAo(p)""-1 .

¿=1
(3.10)

(3.11)

The above series relations were used to compute the regular wave functíon for

01 z ( 5, and for the parâmeter p ranging from *5 to -10. The results tr,ere

checked with published results such as those of the National Bureau of Standards

UgLzland Luk'Yanov et.al. t1965]. Thc only source found for negative values of p

was the National Bureau of Standards [1952]. The reason for the scarcity of results

in this region is probably due to the fact that negative values of p have no physical

sigoiûcance ín the use of these functions to express the Coulomb ûeld about a

nucleus.

Unfortunately the seríes representations given above cannot be used for all

values of z and p. For different regions ín the z -B plane different methods of com-

putation must be used (see Fröberg [1955]). One important region in this plane is

called the transition region or the turning points where z = 2F. Asymptotic expan-

sions for z :29 ) 0 are given by

F oQF) = .7063326373F1/6 x

['-
.04959570165 .00888888889

F2

.002455199181

91oP94n I,
and

F o' (2þ) = .408ó9573239-1/6 x

(3.12)

For values of z where the series solution was inacurate the values of the func-

tion and its derivative at the turning points was used as ínitial values and the

differential equation was integrated uring the Runge-Kutta-Verner ûfth and sixth

[, , .t7zrzffi36g ß003174603174 , .003s81214850 I

[t- * - Pt - 
ïr/t
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order method. The algorithm whích was used was from the International Mathemat-

ical and Statistical Library Í19821. Calculations were performed for values of z down

from the turning pointe and up from tbe turning points wíth a relative accuracy of
10-5. Plots of the regular Coulomb wave function and its derivative are shown in

Fig.3.1 and Fig.3.2 respectively.

As can be seen from the grapbs, at the point z:0 the regular coulomb wave

function tates on the value

fo(F,0)=0, (3.13)

while, not so obviousely, íts derivative takes on the value

Fo'(F,0):c,(p). e.t4)

3.2.2 The lrrtjutar Vltrve Fu nctlon

The irregular or logarithmic Coulomb wave function can be expressed in terms

of the regular wave function as

co(F ,z) = ffiro(F,'l [,' 
ez) +#ËÌJ * 

", 
(þ,,) , (3.1s)

where 
.

eo(F,z)= Ûo(F") ', = ãpt, (3.16)

üo(F ,z) = i o,(Þ)"n ,
a{)

ao= l, dr= 0 , n (n-1) ao =ZFdn_r- dn_z- en-l)2gAn, (3.12)

where .áo is the same coefficient as that used in the series expansion of the regular

.
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r¡'ave function given in Eq. (3S) and Co( Þ ) is given by Eq. (35). Also we have

l. \ i
I

po(g)'''¡ee' Ir(t+iP),

=-t *î *pt,Ë ffi, (3.18)

where 1 is Euler's number ,I = 57721ffi5.

UnliLe the series representatioo for the regular Coulomb wave function, the

above representation ís very difficult to compute by. Thus the differential equation

was integrated using the seme Runge-Kutta method as for the regular wave function.

The initial values used were also the values of the function and its derivative at the

turning Points, which are given bY

G o (2F) : 1223q4016 Ptle ¡

[r* .o¿sssszores - .0088888888e + .0024sl-1ge1g1 - l, (3.1e)

t^ g4tt p2 glor¡ J 
'

and

,:',:,:,,,:t,':::', Go'(29) = -:1018817734F-1/6 x

"..--.:':ì.
' : ' l. .17287ffi369 . .0003174603174 .003581214850 , I

li-+ -r...1. \J:;/
l g,2/3 82 ßL P' P P- J

The irregula¡ wave functions were calculated for the same ranges as for the regular

,:,,,.'ì,.lt.r,,,,,,, wave functions and the plots are shown in Fig. 33 and Fig.3.4.

At the point z:0 the irregular wave function can be determined from

1? rR nì =.. (j.Zl)u0\Ptv)- Cr(Ð

' ''' :
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and its derivative from

Co'(F,0) = -co . (322)

3.2.3Wave Functlon¡ of thc Thlrd Ktnd

The two solutions F.o(Ê,2 ) and Go(9,2 ) can be combined to form two alter-

nate solutions which we shall call Coulomb wave functions of the third kind. These

new functioûs are de6ned as

äð (F,t) = Go(F,t ) + tFo(F,z), (323)

and

H& (Þ,2 ) = Go(F,r ) - íFo(F,r ). (324)

These functions are useful in terms of their asymptotic representations for large z,

for as z gets large :

äð(9,2)- "'uo, 
' (325)

and 
.

H& (F,r)* -;-ioo , : (326)

where .

tì
00 = z - Fln(22) + ørg lI(1+íP) l. Q27)t,

These functions and the method of defining them are analogous to the exPonentíal

expansions of the Hankel functions which are deûned in a similar $,ay but should

not be confused with the above functions. 
.

'
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3.3 Solutlon¡ for thc Potentlsls

Now that we have solutions to the basic differential eguation, the solutions for

the Abraham potentials U (Ë rtl) *d O (Ë,"¡) can be constructed using these solu-

tions. The eigenfunctions wilt be represented by the regular Coulomb wave func'

tions Fs(-Io ,LhKn2) with the eigenvalues I,, appropriately chosen in order that

the boundary conditions at î = r¡o will be satis6ed. These boundary conditions can

be either Dirichlet, Neumann, or Robin boundary conditions, whichever Íue

requíred, as erplained in the previous chapter. The irregular Coulomb wave func'

tíons are not used as eigenfunctions because, not only are they'not orthogonal, but

from Eq. (2.10) and Eq. (2.14> they would produce a singularity in the ûeld at q = 0

(í.e. the axis of the paraboloid). The regular waye functions do not produce such

singularity since they produce d zeto oyer zero term and L'Hopíial's rule can be used

to tate the limit as q goes to 0. This limit turns out to be ûnite and thus there is no

singularity

In the ! coordinate the functions which wilt be used are F.o(I ,rhK|z) fot

regions including the € :0 a:ris and I/sl (À,+1Kç2) tor regions not including the

Ë = 0 axis. The reason that llgr is chosen is clear from Eq. (325) and the 
"-íott

time dependence since these functions would best describe out*ard travelling waves.

Thus the potentials can be constructed i$

t-
0<r¡( t1o,E =0regíon,

u (E,q) = a - (328)

X¡, ttð f*..*",ì"0[-^.,1*"J 0< r¡( ro ,l=Iørse resíon ,
;.' r ' ,

Fs,1.lr
[^.

An Fo
"'l^. 

,å.

and
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\ilaveguide.

The transcendental equation which arises from applying the Dirichlet condition

to U is obtained by applying Eq. (2%) to Eq. (3.28) and can be simply written as

(330)

Thus alt values of Io which satisfy this equation ÍIre the eigenvalues. The regular

Coulomb wave function has been plotted as a function of the Parâmeter Io (shown

as N in the plot) and is shown ín Fig. 35. The three frequencies 100, 250 and 5()0

MHz were chosen with a constant coordinate rìo of the paraboloid corresponding to

a focal length of 1 meter. The zero crossings, which are the eigenvalues, were then

obtained by a numerical technique and the first few eigenvalues are shown ín Table

3.1 for the respective frequencies.

Fo(-ro ,**r:) : o.



2õuÕ

O G'q) = (32e)

E¡' 0< r¡( r1o, l=Iarge regíon .

The summation over n in the above equations represents a summation over the

ordered eigenvalues where the eigenvalues I,, =Co /4K a¡e obtained from the tran-

scendental equation produced by applying the boundary conditions on the walls of

the waveguide. Eigenvalues for all threc types of boundary conditions will be given

in the next section.

3.4 Ëigenvaluec

As discussed in Sec, 22 the application of speciûc boundary conditions to the

ûeld at î : rìo will result in speciûc boundary conditions for ihe potentíal U and Q.

These boundary conditíons will determine the appropriate eigenvalues for the prob-

lem under consideration. From Sturm-Lioville system theory we know that there is a

denumerably infinite number of eigenvalues which can be ordered according to

ascending value (see Mackie [1%5] or Trim [1986]). It is also known, and is quite

obvious from the preceding statement, tbat all the eigenvalues are positive in value

except for a finite ¡mount of them (i.e. not an infinite amount). The three cases of

Sec.2.2 will now be considered. The ûrst few eigenvalues will be calculated for all

three cases along with the normalization constants N. Of course N will be dífferent

for each eigenvalue

3.4.1 Perfectly Conducttng Case

If the paraboloidal waveguide is perfectly conducting, or can at least be

assumed to be perfectly conducting, then the Dirichlet condition a¡ises for the

potential U (Ê,q) and the Neumann conditjon arises for thelpotential O (Ë,tl).

Recall that the potential U represents circularly symmetric T.E. modes and the

potential Q represents circularly symmetric TM. modes insiile the paraboloidal

ìn" "o[-.,å",'l "o[-t,å*"'J 
0< 1( rto, € = 0 regíon

tto' þ.,å','l "o [-^. 
.å. 

"J
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TABLE 3.1

Eigenvalues and Normalization Constant for the Dirichlet Case

FocalLength:lmeter

Freq. 1fl)MHz ?fiMlfz 500MHz

n r,r N Itt N r,r N

I

2

3

4

5

6

7

I
9

0.5083

2.590l.

5.8261

10.240

t.4072

1.08e3

0.9063

0:7925

-0.7868

03574

1,.6424

3.3919

5.6191

8.32W

15105

1.6910

1.4426

12s68

1.1289

1.0340

-2.fyf82

-t.3326.

-0.2952

0.5911

1.648q

2.95n

4.5213

6.3269.

8.n35

t2835

t.ffi26

18698

1.8304

1.6289

1.4781

ts57

12770

t2043

For the Neumann condition the transcendental equation .which arises can be

obtained by applying Eq. (2.24) to Eq. (32g) and can be written as

Fo'(-trn ,**ú) :0. (331)

This function has also been plotted as a function of the parameter )\o (also shown as

N in the plot) and is shown in Fig. 3.6. The same frequencies and size of the Para-

boloid were chosen as for the Dirichlet case. The eigenvalues with the respective

normalization constants are shown in Table 32.
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TABLE ù

Eigenvalues and Normalization Constant for the Neumann Case

Focallength:lmeter

Freq. 100MHz ZfilolHz 5ü)MHz

n rrl N I¡r N r,, N

I

2

3

4

5

6

7

I
9

10

-028s3

1.4408

4.1050

7.9%O

12951

12257

0.9839

08433

-1.7051

-0.1828

0.9510

2.4ffi3

4.4589

6.926/-

9.8667

1.1140

1.6856

15658

13383

1.1868

1.U179

0.9945

1.tcr7

-2.0t63.

-0:7743

0.1426.

1.0895

22746

3:ny.

53987

7 3261

9.4931

0.9635

1.4433

1.74t5

1.8993

1.7245

t.gffi

1.4177

1.3186

1.2387

1.1722

3.4.2 Non-perfectly Condocting Case

For the case where the walls are non-perfectly conducting or absorbing, tbe

Robín condition arises for botb potentials if we assume the wall impedances to be

given by Eq. (231') and Eq. (232). The transcendental equation is deríved by apply-

ing Eq. (233) or (2.?1) to Eq. (3.28) or (3.29). This transcendental equation can be

written as

Fo'( -r,, ,i* r3) + Fo ( -)., ,** r:) = o. (332>
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This function, here called the Robin function, is plotted as a function of the parame-

ter Io (shown as N in the plot) and is shown in Fig. 3.2. . tne zero crossings

represent the eígenvalues, and these were found along with the normalization con-

stants for the same frequencies and sþe of paraboloid as for the previous trrro cases.

The eigenvalues and normalization constaot$ for the range of the parameter shown

in Fig. 3.7 are tabulated in Table 3.3.

TABLE 33

Eigenvalues and Normalization Constant for the Robin Case

FocalLength=lmeter

Freq. 100MHz ?jOMHZ 500MHz

n r,r N I¡r N r,r N

I

2

3

4

5

6

7

I
9

10

0.1161

1.8132

45313

83900

t.4991

1.2051

0.n82

0.8414

.1.1043

0.08s2

12410

2.8tt3

4.8424

7 3%7

7029ffi

t.4409

1.73v2

75298

13210

1.178l-

t.vtv

0.9920

-3.2193

-1.6168

-0.5186

0.3580

1.3408

2.ffi
4.0379

5.7492

7.6W

9.8820

124v2

15560

1.8323

1.8864

1.6894

152ffi

1.4048

73702

l23n

1.1682
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3.5 Elgenfunctlons and Fietds

The eigenfunctions for the potentials U (E ,q ) and O ( € ,.n ) are given by the

regular Coulomb wave functions with the parameter equal to the negative of the

eigenvalue, - Io. These eígenfunctions a¡e then normalized by the normalization

constant N. Eigenfunctions for the case of tåe frequency being equal to 100 MHz

are plotted in Figs. 38, 3.9, and 3.10 for all three boundary condition cases as indi-

cated. As can be seen from these plots the eigenfunctions all go to zero at rl : 0 .

This was the condition which allowed these functions to be orthogonal. Not all the

components of the actual ûelds will necessarily go to zero at r¡ : 0 or | : 0, but

care must be exercised in the evaluation of the fields at these ¡ioints. Thus, in this

section, the fields derived from the potential U (Ë,"t) will be expressed analytically

at these critical points. The ûelds derived from the potential g (E ,r¡ ) will not be

explicitly shown here but can be derived by a similar procedure. '

Expressions for the T.E. mode ûelds can be obtained by substituting Eq. (328)

into Eqs. (2.10) - (2.13). Thus

"a:{

:

Ì* "o[^.,*'r'J "o[-^.,å.*l 
0< r¡ ( ro , E = 0¡ r"s¡o,

Ìå ¡r01 [^.,+'r,l "o[-*.,+'"1 
0< q( rìo , ç> q resíon

-¡ ú)€HE: X

(333)

(3i4)

Er(\æ

lo" 
.o[^,,+"rj 

";[-t,å'"J 
0< r¡( îìo ,Ê :0 resíon ,

ìr" "ot þ.,+'.J ro'[-^.,å.*l 0< r¡( îo ,Ë > 0 regíon ,

¡ ú)€
XH,,:

nK1.ffi
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In order to evaluate these expressions on either the t : 0 axis or the rl : 0 axis, the

limit witl be talen and L'Hopital's rule will be used throughout. As r¡ - 0 the

fields become

Eo=0 r¡=0, (336)

I¿"
n

ta,
n

-i o¡etl¡=--, KE'

49

Ho=0 r|=o

0< r¡( îo , E = 0 regíon

0<r¡(r¡o,Ë>0regíon
"o'þ. 

,+".J 
"o [-^.,å"',1

"ð'[^. 
.å.,1 

"o [-^..å. "1

[^.,;. o') to [-^" ) rl

[^..å','l to [-^") rl

(33s)

(337)
IÁo ro
,,

ì"" 
tot

=0, Ë=0regíon

:0, Ë>0regíon

(338)

As can be seen at r¡ = 0 only the I/g component surviyes. This is consistent with

expectations since the field must be symmetric in $. 
.

AsÇ * 0theûeldsbecome

Eô=0 €=0,

H€:o €:0,

H,, = ;æ1" to [^" ] oo 
[-^.,å" *)

.

0< r¡( r¡o , € :0.

(33e)

(3.40)

(3.41)

This time only the q component of the magnetic field survives, as expected.



CHAPTER 4

.

CU RRENT LOOP EXCITAT ION

Thus far, eigenfunctions and eigenvalues have been obtained for the representa-

tion of rotationally symmetric fields inside the paraboloid. In this chapter the eigen-

functions a¡e used to represent the fields due to geometricalty simple electric sources.

Speciûcally, the fields due to an electric current loop centered about the axis of the

paraboloid are determined. The procedure follows closely that of determining the

ûelds inside a conical waveguide due to a similar type excitation (see Harrington

[1961], Hadidi t1985]). Although only electric current sources wilt be considered

herein, magnetic current sources can be handled in an identical m"nn"r.

4.1 Formulatlon of the Problem

Consider the case of an electric current sheet which is symmetric about the z

axis interior to an infinite paraboloid . The current sheet may be expressed by the

following equation :

¡ (E,q ) :Jo(rt) ô(€ - Ë')â0. (4.1)

In Eq. (4.1) ô( Ë - Ë' ) represents, as usual, the impulse function and /6(r¡)
represents the magnitude of the current sheet. The dependence on 4 of the magni-

tude J6 ("f ) it not shown explicitty since it is arbitrary. In order to simulate a

current ring the r¡ dependence will be set equal to the impulse function as well.

It is obvious that this specific excitation of Eq. (a.1) will produce frelds which

are independent of the coordinate $. Thus the Abraham potentials are appropriate

and in fact it will become apparent that only the potential U will be necessary since

the ûelds will be transverse electric (T.E.) to the z axis.
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The potential U can be represented in terms of an infiníte summation of eigen-

functions as shown below in Eq. (42). Note that the Coulomb wave function of the

third kind is used in region II (ie. in the region where Ë > €' ). fne reason for this

is that outwa¡d travelling waves are desired in region II and these Írre best

represented by wave functions of the third kind.

u (t,rr) =

¡/Ê (Ë ,q) =

¡1"(€,q)=

oxztffi
iole

,0<rl(r¡o,
(42)

9."t(r¡o

(4s)

(4.4)

(45)

Eq. (a3) and from this

*o"

4'

r'[*,+*r'lr'[*,+."l o< Ë< Ê'

, H ô [*,+..1 "o [*,å'"'l Ë ) €' ,

The summation over n in Eq. (4.2) rcpresents a summation over the ordered eigen-

values where the eigenvalues Io : C n f 4K are obtained froq the transcendental

equation produced by applying the boundary conditions on the walls of the

waveguide. The following discussion will proceed independent of the boundÍrry con-

ditions on the walls of the waveguide. All that will be assumed is that a transcen-

dental equation can be found and solved, producing the eigenvalues necessary in the

following equations.

The field expressions can now be obtained from the potential U. Note that

since the ñeld will be T.E. to the z direction, this implies that E€ = En = ãó :0.

Hence,

Eo(Ë,î)= lurË,q)
-t (l)€ ðu (Ë,ll

dr¡

aU (Ë,tì)
ðËpx2@

The continuity of E6 at Ë =Ë' must now be imposed on
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Hô'Fo -Fo'r/ol-¡.,tX\/Ñ
û)€ 16(rr)

it is seen that

H å'Fo - Fo'H ê = [oo' + iFo']Fo - no'[co +
l.' Ool : G0 Fo-GoF 0 : -1.

:4 u" , (4.10)
r'[*,å',"1

where the argument of the wave functions in the numerator are the same as that of

the denominator. Now recalling the wronskian relation for the Coulomb wave func-

tions

Fo Go-FsGs : 1,

and recalling that

Hè = co+iFo

Thus Eq. (4.10) becomes

-Fro(q) o[*'+.,
(-c' . ìra | -¡ '_- at (4.11)'' o[ 4K.'r^'t-J'

Now Eq. (4.11) can be recognized as the generalized Fourier transform of the

function on the left with Fourier coefficient being enclosed in the brackets. There-

fore using the orthogonality property of the regular Coulomb wâve functions, which

was derived in chapter 3, the coefficients Bn can be obtained. Multiplnng Eq. (4.11)

by 2/zf o(*,2), where z:1h,Kr¡2, and integrating over the range 0121z¿,

where zo =4K r¡o2, we a¡rive at

Bn:SZt
n

*rot*,i*,,



ç. ?,

condition the following is obtained :

Áo Fo í+,+-*'J 
: B, H ê

; *frør -¡1@)) = .4 (Ë,"r) (4.7)

where ¡ô is the unit norntal into region (I) and J" is the current sheet at the interface

between region (I) and region (II). For the specific case under consideration here,

ñ = -âE and J-" =,/- of Eq. (a.1). Thus applying the boundary condition of Eq.

(4.7)to the problem at hand at | = (' we get

H {rr'¡ (Ë' ,tr) - HÍ') (t' ,rt) : J6(n)õ (Ë' -€') âg =.16(n)âo . (4.8)

Substituting the expression of Eq. (a.fl into Eq. (4.8) one obtains

[*'+.,.'J ,

¡ (¡)€r6(n) = \K\ER X

(4.e)

where the prime represerts differentiation with respect to the argument z :LhK 82.

Applying Eq. (a.6) to the result of Eq. (a.9) and performing some algebraic manipu-

lations we arrive at

+{", ê'l*,å',"1 - An F o'l* +.,.'1}", [*,å*,,'1,

"; [få'å*,"1

and thus,

An=8, (4.6)

Also, the appropriate boundary conditiqn at a current source must be applied.

This can be expressed in vector form as
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zo

Bn = *",[*,**,.,1i "ngrt [1]'r(q)ro[* ,,)0, ,o€/v; \-- - '-O lz)

or

rlo

Bo=#,"'[*'å",.'J[ffi'o(q)lo.'[*,i*,,Jo,,(4.|2)
(lÛeN r' \ -^

where lfn represents the normalization constant for each eigenvalue.

If it is assumed that the current sheet becomes a current ring then Jo(q) "*
be expressed as

f6("r):Jt*põ(tt-n') wíth q*="1o, (4.13)

where J ¡*o teptesents the magnitude of the current flowing in the loop. Substitu-

tion of this into Eq. (a.2) yields

Bn : wr,[*,+.','1r,[*,+-tJ, (4.14)

and from Eq. (a.6)

i4KJbop{ËT
An =f"'[*,å*n'Jao' [* +.,'J . (4.rs)

As can be seen from Eq. (4.14) and Eq. (4.15) the series coeffiiients .áo and Bo are

only functions of the eigenvalue, as the notation used (n subscript) would imply. If
J ¡*o is set to

Jbop=ffi (4.16)

thentheequationsforthecoefficientssimplifyto



Bn = 
or "r[*

,å*"'1"rf*,å*.'1 ,

,å.'1"ð [*,+.,'I .

(4.17)

(4.18)

(4.1e)

and

An : 
^r, 

"r [*

These equations were used to calculate the first few coefficients for a para-

boloid with focal length equal to 1 meter and source frequencies of 100 VlLirz.,zs}

MHz,, and 500 MHz. These frequencies were used because the éigenvalues were cal-

culated for these frequencies in the previous chapter. Calculations \\,ere made for a

current ring of radius 1å meter located in the plane of the focal point. This current

ring can be represented by letting Ë' = å and q' : +. Ñote that both these\f¿ vz

coordinates have the sâme value since the ring is located in the focal plane. As a

check, the radius of the ring r is given by

r = €'rt' : l^"r", ,

which is what we required. The coefficients for the Dirichlet.boundary condition

are shown in Table 4.1 for all three frequencies. The Neumann and the Robin boun-

dary condition cases a¡e also shown ín Tables 42 and 43, respectively.

As can be seen from viewing the tables, the coefficients .become smaller and

smaller as the mode number n increases. This is what would be expected to happen

since similar results appeÍrr in conical waveguides and other waveguides. Thus only

the first few modes actually propagate down the waveguide with the higher order

modes being highly attenuated.
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TABLE 4.1

Eigenvalues and Series Coefficients for the Dirichlet Case

FocalLength:lmeter

100 MIIZ zfi ttÁl{z 500 MI{z

I,, Bn /í r,' B, /í r,r B, /í

0.s083

2.590l.

5.826r

rc.24m

0.8315x10-l

03975x10-3

-0.1634x10-6

-oi67t x10-12

.0.7868

osn4

1.u24

3.3919

5.61e1

8.3209

0.9134x10-1

02402

-02067x10-1

-0.7448x10-3

03648x10-5

03ó67x10-8

-2.8/.82

-1.3326

-0.2952

0.5911

1.6480

2.95n

4.5213

6.3269

8.3735

03022x10-1

-0.1819

-0.3992x10-1

-0.2203

-0.5856x10-1

0.1915x10-1

-0.7423x1o-4

-0.2087 x10-4

05161x10-7
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Eigenvalues and series coefficients for the Neumann case

FocalLength:lmeter

-02853

1.4408

4.1050

7.e3ffi

0.1300

0.1313x10-1

-.622?,xl}-s

-0.5142x10-e

-1.7051

-0.1828

0.9510

2.4fÉ'3

4.4589

6.926l.

9.ffi7

-3375x10-t

03)30

03765x10-1

-0.7351x10-2

-0.1253x10-5

0.1963x10-6

-0.1û71x10-10

-4.tM7

-2.0163

-0.n43

0.1426

1.08e5

2.2746

3.7L34

5.3987

7.3261

9.4931

o.7y¿7x10-z

0.1485x10-1

-2924

0.4041x10-1

-02495

0.2932x10-r

03661 x10-2
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Eigenvalues and Series Coefficients for the Robin Case
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t24to
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t0.29ffi
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0.n32
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0.8564x10-5
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-0.1019x10-10

-32193
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-05186

03580'
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2.fi6
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5:I4v¿

7.6977

98820

0.1642x10-1

-0.7445x10-1

-0.1u7

-0.?900x10-1

-0.1604

o.2g32xl0-r

0.1215x10-2

-0.6892x10-4

-0.2510 x10-6

0.5416x10-8



CHAPTER 5

THE FINITE PARABOLOID

Up to now the fields inside an infinite paraboloid have beên determined. The

logical step now is to consider the ûnite paraboloid and to determine the fields exte-

rior to it. Obviously this is the much more practical situation, since this problem

could be used to represent the fields of a paraboloidal ,"fl""tor. In this chapter the

paraboloidal reflector is treated as an aperture antenna and the fíeld equívalence prín-

cíple ot Huygens' Príncìple is used to determine the far field from the antenna. The

fa¡ fietd is represented in spherical coordinates ( r ,0 , ô ,) and is plotted as a func-

tion of 0 at the end of this chapter. Of course, the assumption of symmetry of the

ûelds with respect to $ is still made so that the field expressions of the previous

chapters can be used. Thus the far field patterns will also be symmetric in $.

5.1 Fletd Eqotvalence Prlnclple: Huygens' Prlnclple

The field equivalence principle ís a stricter form of Huygens' principle which

allows one to replace actual sources with equivalent sources. Huygens'principle can

be summarized by the following excerpt from K¡aus and Carver pnil

each poirt on a prímary wavefront csn be consídered to be a nev, source of a

secondary spherical wave and that a secondary wavefront can be constructed as

thc envelope of the secondary spherícal wøves.

The equivalence principle combines this with the Uníquencss theorem which can be

summarized by the following excerpt from Harrington [1961]:

A field ín a íossy region ís uníquely specified by the sources withín the regíon

plus the tangentíal components of thc electríc fteld over the boundary, or the

tøngentíal componcnts of the magnetíc fíeld over the boundar!, or the former
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over pørt of the boundøry and thc latter ovcr ,he rest ol the boundøry.

The problem of the finite paraboloid with current loop sources about the axis of

symmetry can be transformed into an equivalent problem by consídering the closed

surface S shown in Fig. 5.1a. This surface S is made up of the ûnite paraboloid itself

plus the paraboloidal aperture surface described by Ë = Ëo for 0 < q ( r¡o The

outward normal on the aperture surface is given by ñ, =âg . Tbe ûelds outside the

surface S are denoted by Er and F1 while the fields ínside wilt be denoted by F and

A- . lne equivalent problem of Fig. 5.1a is shown in Fig. 5.1b. The original current

loop rcurce which was interior to the closed surface S was removed with equivalent

sources l, (Eo,r¡) and Fi, (E"rr¡) placed on the surface Ë : €o . These equivalent

sources are gíven by

(s.1)

and

(s2)

The current on the outside walls of the ûnite paraboloid is assumed to be equal to

zefo.

Now, by the equivalence principle, it is assumed that the equivalent sources on

the surface Ë:!o produce the original ûeld-(F1 ,Ft) only outside the surface S.

The fields produced ínside S by the equivalent sources will not in general be the

sâme as in the original problem and in fact they can be set equi to any convenient

value. A form of the equivalence principle, known as Love's Equívalence Prìncíple

(see Love [1901]) is now used, which sets the ûeld inside the surface S equal to zero.

This reduces Eq. (5.1) and Eq. (5.2) to

l, =ñ xFt=â¿xF1 , (s3)
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and

fr,= -É xFr= -.âExEr

For Et and H 1at the surface € =Ëo we use thc field which would have existed if the

paraboloid was infinite. Thís is the standa¡d procedure in the anal¡rsis of the conical

horn and it will be used here because of the close resemblance bbtween that problem

and the Present problem. Thus the fields over the aperture, for a current loop

described by Eq. (4.16), are given by Eq. (333) - Eq. (335) at € = !o with the Bo i
given by Eq. (4.17). The 8n s *erc calculated and tabulated'in the last chapter.

Thus for the problem of the current loop of chapter 4 the field will be T-E. to the z-

axis and therefore Eq. (53) and Eq. (5.4) become

(s.4)

(s5)Js = Hn(Eo,î)âo =Jó(Ê,,q)á0, 0. q. qo ,

E, = E6(8",q)âq = Mr(Êo,e )â,t, 0< r¡( ro

The fa¡ ûeld can now be obtained from the equivalent sources by using the aux-

itiary potentials Ã and ^F- where ín general

and

and

(s.6)

(s.7)

(s.8)

Ã=fiîdf t"-T au',

F'= *- f {f n "î a,'

The integration volume V is the volume containing the sources and the distance R is

the distance from the source point to the observation point.
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If we deûne, as usual, F as tbe distance from the origin to the observation point

and F as the distance from the orígio to the Eoufce poínt then we have

R=[,--r'J . (s.e)

For far ñeld calculations we mate the usual approximation (see Balanis [1982])

R = r - r'cosr[ ,1or phase term , (s.10)

and

R = r ,î.ot amplítude tcrm. (5.11)

vberer[istheanglebetweenthevcctorsiand7..I1theseapproximationsaresub-

stituted into Eq. (5.7) and Eq. (5S) and the equivalent surface current expressions

are used then the far ûeld auxiliary potentials can be expressed as

where

and

Ã ={îf,| ''# ds'= ffoo ' g'tz)

& : I I f,ríkr'cr**¿r', .

s
(5.13) :,,

F'=* f,[n,+ds'=ffr,,
'

Er = [ [ frrríkr'co"i,¿r' . 
:

s

(s.14)

where

(s.1s)
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The vectors lV-¿ and Ep ar. sometimes called the radiation veÆtors

It should be noted at this point that the relations given by Eq. (5.7) and Eq.

(5.8) are only valid for the rectangular components of the auxiliary potentials. Thus

the required equivalent sources for use in these equations and equations derived

from these must be expressed in terms of the rectangular comPonents such as

J =frâx +IrAy +Jtâz (s.16)

Since the fields we have determiqed in previous chapters are exPressed in terms of

rotation-paraboloidal components, such as

I =JEAE+J,tâo * JOâO (s.17)

it will be useful to write the rectangular current components for the above equations

ín terms of rotation-paraboloidal coordinates. To accomplish this we turn to the larv

of transformatíon of vectors (see Morse and Feshbach [1953]). This law states that if

we transform the components of a vector F- from one curvilinear coordinate system

( Ë r , Ëz , Ës ) with scale factors (\,h2,h3) to another 
. 
coordinate system

(€;,g;,g r) witn scale factors (ål ,h'2,h 3) , then the components in the new sys-

tem must be related to the components in the old system by the relations

F'o :21,, F^ ,
,tl

(s.18)

where

(s.1e)

The rectangular coordinates are relafed to the rotation-paraboloidal coordinates

by the relations

!,,m:t#l t#ì =[*l t*l .
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í, =fr¡cosg ,
I y: tr¡sing ,.

l'=*tr'-n'J '[ ¿'

witb scale factors given by

t_

f ¿t = !E'+,t' ,l"=W '
[ å¡: €"t

(s20)

(521)

(s.22a)

(s.22b)

(s22c)

Thus with the help of Eq. (5.18), the transformation from rotation-paraboloidal com-

ponents to rectangular components can bc written as

r, _ ¡'cosö' Je + _!$LJq _ sing.J6 ,lffi-e lÇ'2"

, - q'sinÖ' ,-* E'sinô' ) .tt=ftffirt +ffiro *cos$r6 
'

J,=Lt"-é't- z {{t¡ç- r

Similar results are also obtained for the components of the magnetíc current density

required in Eq. (5.15).

Since the radiated ûelds are usually determined in spherÍcal components, the

rectangular unit vectors of Eq. (5.16) can be fransformed into sþherical unit yectors

using the transformation from rectangular components to spherical components given

bv

(

lâ, = á, sinOcos$ * âscosOcosg - râ6sing ,

| â, : á, sin0sing * áscos0 sing + ô6cosg , (523)

[ ,U, = á, cosO ô6sin0

The va¡iables in these expressions are not primed as they were in Eq. (522) since
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there they represented coordinates at tbe source points and in this transformation

they represent coordinates at the obscrvation points.

Theoretically, the auxiliary potentials could now be calcuiated by substituting

Eq. (5.æ) and Eq. (5.22) into Eqs. (5.12) and (5.14). Our problem will be greatly

simpliûed because not all the components of the current densíties exist. It witl be

more convenient to hold off the calculations until expressions for the actual fa¡ ûelds

are obtained.

5.2 The F¡r Fleld Erpreslonr

Once the auxiliary potentials have been found, the ûelds cân be obtained from
.

the relatíons

1v
€

x^F- , (s24)

(525)

and

It can be shown (see Balanis [1982], p.455) that the far ûeld can. be approximated by

the set of relations

(s26)

E,(0,Ô)= 0 ,

Ee(0,0) = ffir-'r' [r", * \Æ"^r) , ]

Eô(0,ô) = ffre-x'[r", - \Æ"^*) ,

and
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(s27)

where the/V¿e,ff,ró,2¡6, and Lp6úe obtained from Eq. (5.13) and Eq- (5.15) and

are functions of 0 and 0. Thus to obtain the fa¡ ûeld , all that is required is that we

solve Eq. (5.26) and Eq. (527>. This, in turn, entails solving for À/40, ff.{ô, L¡e, and

L¡6. After alt the coordinate transformations have been applied to the electric and

maguetic current densities of Eq. (5.Ð and Eq. (5.6) and after extensive

simplifications, the required radiation Yectors can be expressed as

2¡!' I \
Nle=|ocos0Jj'.[o-o,JJ0(€',"|),'Koí\Ñdn.dþ.,(5,s)

00

H,(8,Ô) = 0 ,

rre(o,o) = ffi"-rc'["^n - fÆ",),
¡rô(0,ö) = #,-rr' [aree 

. tÆt-),

2rlr{." / \
rv¿ö = E"-l ¡"or[ô-ô'jJ6(8,,"r')r*o í\E+-îudn'dþ' ,

00

LFo = *"7"i [u" "oru "or[o - o')

(s2e)

, (s3o)

(531)

00

2¡rlo (
Lr6:83 I ! sin[ö'

00

where

I
* r¡'sino jto (Ëo,r') tirØ r{ d rt' d ö'

-o)t"(Ë",q') "irØrl dr; d þ',

(s32)

From Eqs. (55) and (5.6) and from chapter 4, the equivalent current densities can be

expressed as

" = 
[r, 

r¡'sino"o,[o - ö') . *(r: - í2J".,r1 .
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r o(Êo ,q') = An(Ëo,n')

fo¡e !

q'r(

r

[Ë, "oto 
cos($ - $ 't* '''¡ 'ir 

Ø dr'd o

I ure ¡.r\ffi'í B, H t'( ro , Ix âF o ( -ro ,*,* ,'') (s33)

(s34)

(s35)

(s36)

, (s37)

These expressíons can now be substituted into Eqs. (528) - (5.32). Since the summa'

tion is over n, the summation sign can be brought outside the integral. Thus we can-

express the radiation Yector components, for each mode n, as '

and

M n(Eo,rt') = E6 (Eo ,n')

= * Zn^¡rð ( *,,**ti)ro(-rn ,**n'\ -

N,{0, = ff arlo cosorrð'( *, ,**83) x

2¡tlo

JJ sin(0 -0')Fo(-).,, ,i,*o'')r'1u dn'dö' ,
00

iloó. = + Bn Eo H t'(*, ,**€o2) x

2¡1lo .

J J cos(0 - ö')Fo( -ro,t*r'')tíKØ ¿ \' d ö',
00

LFs, = Bo H ê (*, ,**Ëo2) x

2rr.rlo

rr
00

') + r¡'sino l"o ( -^"

and
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LF6. = Bn Eo¡rð ( *^ ,**Eo2) x

(s38)

The radiation vectors can be obtained from the above expressions by applying a sum-

mation over n. This should turn out to be neccessary for the ûrst few terms only

because the series coefficients Bo, shown in the tables of chaptei 4, converge rapidly.

In prínciple this is fine, but when one actually tries these computations problems

arise. The problem with the determination of these radiation vector comPonents is

in the calculation of the Coulomb wave function of the third kind which is present

in atl four expressions of Eq. (53Ð - (5.3S). Calculation of these functions entails

calculation of the logarithmic Coulomb wave functions which are in general very

difficult to compute. The problem arises because of the need for values of the loga-

rithmic function for negative parâmeter. That is, when the eigenvalue Io is nega-

tive, which is the case for the frrst few modes, the parameter for which the loga-

rithmic wave function must be calculated is also negative as can be seen in the

expressions. Now this is not a problem for the regular wave functions becaus€ $'e

have a seríes representation which converges fairly well, but for the logarithmíc

functions the series fepreseûtation does not yield to simple computations. The alter'

native would naturally be to integrate the equation, with the negative parameter,

using a method such as the Runge-Kutta method, but this is useless without some

initial values for the function and its derivative. The function values at the turning

points, which were used in chapter 3, are of no use because these are defined for a

positive parameter only. The function value at z :0 is deñned by Eq. (321) but its

derivative, which would also be required in the Runge-Kutta technique, ís undefined

as can be seen from Eq. (322). Thcre ate no other published results which would

give us starting values when the parameter is negative. This is primarily due to the

fact that in the field of nuclear physics, where these functions are normally

2t!.n

I { r"t0'- 0 )ro ( -rn, ** r''¡ etK Ø drt'd 0' .
00
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encountered, a negatíve parameter has no physical significance.' Thus the computa-

tion of the exact radiated field would have to be left until a useful computation tech-

nique is found for calculating the logarithmic Coulomb wave function when the

par'âmeter ís negative. Results can be obtained for the 100 MIIZ Dirichlet and Robin

case since all the eigenvalues are positive for those cases.

For now the way we will get around this barrier is by calculating the radiation

ûeld for only one mode in the series expansion except for the lfr) MHz Dirichlet and

Robin cÍu¡es as mentioned above. It will turn out that the far ûeld plots for the first

mode will not enthral us with a lot of information about the total fa¡ field due to a

current ring but they are presented just the same for completeness. This will allow

us to s€t the wave function of tbe third tínd to 1 in the radiation yector components

of Eq. (s35) - (538).

Once the fa¡ ûeld has been calculated from Eqs. (526) and (5.27) it is a simple

matter to calculate the radiation intensity U (0 ,$ ). The radiation intensity can be

formulated from the far-zone electric and magnetic ûeld components as

u (s,0) = |n""t (uut u[[u,"0 * âor*] * + âö¡lo)' l

"u I'

relative radiation intensity F (0,0 ) as

lrlz
F(o,o)=rya =ltrn.Vï"^, 

1 
+

:+\Æl * l'. l') , (53e)

where the asterisk superscript denotes tbe complex conjugate of the expression in the

brackets.

Substituting Eq. (526) into Eq. (5.39) and normalizing the result, we obtain the

where iV, is the required normalization constant.

, (s.40)
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5.3 Numcrlcal Results

The integrals of Eqs. (536) - (53S) are not easy to perforT anal¡ically. Thus

they were performed numerically using a20x20 point Gauss-r:e8endre Quadrature

algorithm. The problem which was dved was for the dominarit mode of a current

loop with a *l meter radius located in the plane of the focal point of the paraboloid.

Calculations were performed for all three t¡'pes of boundary cónditions and for all

three previous frequencies of 100 lvffÍ2,zfi MItz. and 500 MtIz. lTh" 
"*^., 

result for

the lfi) MHz Dirichlet case and the 100 MHz Robin case were obtained and the rela-

tive radiation intensities are shown in Fig.52. The size of the paraboloid was chosen

to be of I meter focal length as in previouse calculations. It was also assumed that

the walls of the paraboloid extended up to, but not beyond, th.e focal plane- Thus

the aperture surface is described by tbe coordinate surface

€ =Ëo =rlo , 0(r|(r|o , (s.41)

where 1¡o corresponds to a focal length of 1 meter and is related. to the focal length f

by

(s.42)

The relative radiation intensity F (0 r$) was plotted as a functíon of 0 for theta

ranging from 0 to 90 degrees at three degree intervals. Of course, because the Êelds

are symmetríc in 0, the relative radiation intensity function will be independent of $

and thus to simplify the equations $ ryas set equal to zelo degrees. The three plots

corresponding to the three boundary conditions for the dominant mode only are

shown in Figs. 53 - 55.

As can be seen from Fig. 52, the impedance boundary condition has an effect

on the far ûeld radiation pattern. This is what we would expect since the ûeld distri-

bution inside the paraboloid is changed. The radiation pattern due to the impedance

boundary condition case seems to give a mgre omnidirectional pattern than the



72

perfectly conducting case. Thus it seems that the Coulomb wave. functions give accu'

rate results for the far field of a current loop inside the paraboloid.

The far field plots due to the first singleioae do not seem to tell us too much

about the total field. If single modes could be excited inside.the paraboloid then

these plots could be useful. Efficient calculating methods are desperately required in

order that the total field such as the one plotted in Fig. 52 may be obtained for the

general case and thus firmly establish the method
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CHAPTER 6

CONCLUSION.'

A method has been presented for the evaluation of electroúa$retic frelds which

are independent of $ inside a paraboloidal waveguide. The method makes use of the

Coulomb wave functions as eigenfunctions for the problem. Although there is little

available information on the Coulomb wave functions, their calculation has been

achieved with little effort. The procedure is not reshicted to the high frequency

case as has been shown and thus this is its main advantage. There are no approxima-

tions made in the analysis and, except for the assumption that the fields must be

independent of $, the analysis is exact. For the case of the Ênite paraboloid the Kir-

chhoff approximation was used in the application of Huygen's principle (ie. the

incident ñeld for the infinite parabotoid case was used as the Huygen source).

We have found that a finite impedance on the walls of the paraboloid tends to

change the far field pattern. specifically the far ûeld pattern seems to be more omni-

directional for the impedance cÍrse than for the perfectly conducting case. \ilhether

or not this is a general result witl have to wait until further calculations can be made-

Further study is required into the calculation of the irregular Coulomb wave

functions for a negative parâmeter. Once this is done and an efficient computing

technique is devised, this method of solving the paraboloidal problem should yield

many interesting characteristics. Some of the more important characteristics which

are required a¡e the input impedance of the source at the focal point and the

difference in radiation pattern due to sources which may be shifted uP or down

along the axis away from the focal plane.
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It is recommended that deep paraboloidal horns are constfucted and that exper'

imental radiation pattern results be obtained. Also, since the paraboloid is asymptot-

ically equal to the cone, it is suggested that the possible use of the Coulomb wave

functions for the conical horn problem be investigated. 
.



APPENDIX A

THE GENERAL METHOD OF FROBENIUS

In this appendix the general method of Frobení¡¡s is used to obtain solutions to

5;q. (2.37),which is the originat differential equation obtained after s"p"ration of the

partíal differential equation. For convenience the differential equation under study

is rewritten here with y as the dependent variable, x as the independent va¡iable and

I as the parâmeter. Thus the equation becomes :

(A2)

43 -+# +(xzrz+r)=s, ¡>0, Kào (A.1)
dx2 xdx w

This equation was transformed into a more familia¡ form in chapter 4 by the

transformation

, = LK t'

to obtain the equation

-./.ì:4+lr**lr=o (Ai)
dzz | ZKr" J-

From Eq. (43) H,e can immediately see that when )r = 0 we obtain the complete

solution of Eq. (4.1) given bY

(A.4)

Thus from this point on we will assume that I t 0.

'We now concentrate on solving Eq. (4.1) in the neighborhood of the regular

singularity ¡ = 0. In applying the method of Frobenius to Eq. (4.1) a solution is '
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chosen of the form

@y(r)=¡'Xc^x^, ("0*o). 1es¡
0-.

where the exponent r may be any (real or complex) number and is chosen so that ,.r:..:.

cs * 0 (see Kre¡'szig [1983], pp. 161). 
.

The assumption that cg * 0leads us to an important quadratic equation called

tbeíndicialcqua1íon.TherootsoftheindicialequationcorrespondingtoEq.(A.1)

are 0 and 2. Thus there is a series solution starting with x2, that is, rve assume a

solution of the form

.(
!r=xot"o*c1-r * c2x2* ), .

but on substituting this ínto Eq. (4.1) we soon find that all the odd po\ners of x van-

ish. Therefore the series can be written as

!r:x2["0*c2x2*c4x4+ *cz,xb+: ) (4.6)

If we take cs : I after substituting Eq. (4.6) into Eq. (4.1) tben we obtain

;....:. :.:.r -._L[ ^r_*rì 
, ,o.r, :,]

cz= -E , c4= 
T4 [T - ^ J (ra'/,

.'

and the three term recurrence relation

r (r * 2)"2, = -)¡ czr-z- K'"zr-o G > 2) ' (A'8)

The convergence of the coefficients can be checkea fro. Perron theory of

difference equations. Thus we find that
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Thus the seríes given by Eq. (4.6) converges for all frnite values of x. This is what

we would expeÆt since Eq. (4.1) has no finite singularity other than ¡ : 0, so that

the power series about x = 0 converges for atl x with | ¡ I ( æ. Hence we have a

solution given by Eq. (4.6) with coefficients given by Eq.(4.7) and Eq. (A'8)' This

solution is comparable to the regular Coulomb wave function obtained in chapter 3

andinfactweseÆthatyt=0at.r:0whichwasourconditionfororthogonality.

The second solution must now be found (ie. the solution corresponding to the

foot 0). Since the two roots of the indicial equation differ by an integer we expect

difficulty in ûnding the solution which stafts with the exPonent 0. If we try a solu'

tion of the form

!z= ao* a1x * a2x2 * :

we Ênd that all we get is the solution yr(¡ ) back again. Thus. we look for a loga-

rithmic solution (note that this would be implied from our previouse knowledge) of

the form

Jz = !tln(r) i, (t ) . '

On substituting this into Eq. (4.1) we Ênd the equation for v(x ) to Ue

.. 1y - -y -r
x

\We try solving this by a po\r'er series, thus

v=bo+b2x2*boxa+

Zyt Zyt
=-*2x

'

l*'*'+ l ) v

(A.e)

(A.10)

(A.11)

and we get

-,bo=t' , bz:arbítrsrY
^

with the recurrence relation

(A.12)



ei
4r (r + l)bb+2 + I bz, * K2bz,-z= -2(2r

We can take b2 = 0 and get

øo=i[*.+)
ou=#[*'-#)

(A.13)

(A.14)

with the rest of the coefficients given by Eq. (4.13). Thus we hàve obtained the log'

arithmic solutíon as given by Eq. (4.9) with coefficients given by Eq. (A-13) and

(A.14).

It is interesting to see what happens to this second solutioir as ¡ - 0. Taking

the timit Íts ¡ - 0 oL y2 we ûnd that

-7yz(o) : i= (A.ls)

We see from Eq. (3.21) that at ¡ = 0 the irregular or logarithmic Coulomb u'ave

function is also a function of )r'.

Solving the differential equation by the method of Frobenius has thus yietded

the same properties that were found for the solution in terms of the Coulomb lvave

functions.



APPENDIX B

INVESTIGATION OF THE RECURRENCE RELATION

The recurrence relation given in chapter 3 by Eq. (3.8) is rewritten here as

An-z- IA¡-1 * n (n -1).4o : g

where .! = 2F. We can convert this equation into a non-linear ñrst order difference

equation by setting Ao / An-t : V n. This produces the equation'

:

1- 1Vn-t*n(n -I)%-rV, =0 (42)

If we assume ao asymptotic solution, for large n, of the form 
:

Vn- V:Bn-o , 
" 

(43)

and substitute this into Eq. (4.2) the we a¡rive at

1 - "y B n-d + n ( n -l)B2r-2o :0

For large n this becomes

1-1Bn-o132n2-2o=9. (4.4)

To eliminate the highest po\ilers of n in Eq. (4.4), we must have 2 - 2a : 0 which

implies that c : 1. Thus Eq. (A.a) gives us | + Bz : 0 wbich implies that I : I í.

Hence Eq. (4.2) has two asymptotic solutions of order O (n-t) so that the general

solution of Eq. (4.1) is recessive and the recurrence relation given by Eq. (4.1) is

stable.
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