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ABSTRACT

In this thesis the problem of the circular paraboloidal wa\"eguide is analyzed. It
is shown how the Coulomb wave functions, commonly used in the description of a
Coulomb field surrounding a nucleus, can be used in the description of electromag-
netic fields which are symmetric with respect to the azimuthal coordinate inside the
waveguide. The Abraham potentials Q and U,which are useful in describing fields
with rotational symmetry, are used to simplify the problem. It is shown that these
potentials must satisfy a partial differential equation which when separated yields the
Coulomb wave equation of order L=0. Electromagnetic fields due to simple source
distributions inside the paraboloid are expanded in terms of these functions .
Specifically, solutions for current loop sources located in the focal plane of the para-
boloid are obtained. The case where the wall of the paraboloidal waveguide is
assumed to be perfectly conducting is treated as well as the cas(;, where the wall has
finite impedance. The finite paraboloid is also considered and the far field is formu-
lated using Huygen’s principle. It is found that for the finite suiface impedance case
the far field pattern due to a current loop operating at 100 MHz-—in the focal plane is
different than for the perfectly conducting case. Numerical results are presented for

relevant aspects of the problem.
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CHAPTER I

INTRODUCTION

Paraboloidal reflector antennas are perhaps the most usefﬁl and widely used
antennas for communication purposes. The majority of satellite communication links
use paraboloidal reflector antennas. The most common type of reflector is the circu-
lar parabolic type which has a surface generated by revolving a finite parabolic curve
about its axis. The reflector is then usually illuminated by an eléctromagnetic source
positioned at or near the focal point. The reason for using the circular pafaboloidal
reflector is that from the théory of geometricg optics or ray optics the circular para-
boloidal shape has the property that all rays originating from the focus are reflected
from the surface parallel to the axis. Most electromagnetic solutions of the para-
boloidal reflector use the geometrical optics approximation. This is in general a high

frequency method and thus it is not an exact solution.

The two main techniques which are widely used in the analysis of the para-

boloidal reflector consist of

1. using ray optics to find the field on the aperture plane, which is the circular
aperture just in front of the paraboloid, and then Huygen’s principle is used to

determine the far field of the antenna,
or

2. determining the surface currents on the paraboloidal surface due to the original
source and then finding the radiated field from these using for example the aux-

iliary magnetic and electric vector potentials.

These two techniques may be found in many current textbooks of antenna theory or
electromagnetics and will not be discussed in this thesis (see for example Balanis

[1982], or Stutzman and Thiele [1981]).
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One of the classic methods of determining exact solutions in electromagnetic
problems is to solve Maxwell’s equations directly for the geometry, material and
sources under consideration. Solving Maxwell’s equations can.usually be reduced to
finding the solutions of the vector wave equation or, for time harmonic problems,
the vector Helmholtz equation. It would probably be safe to say that most elec-
tromagnetic solutions are directly or indirectly related to the solution of the vector

wave equation.

One very powerful method for solving scalar partial differential equations is the
method of separation of variables. Thus if the vector wave equation can be broken
up into scalar equations then the method of separation of variables could be used to

solve each of these scalar equations.

In terms of the orthogonal coordinate systems in which solutions can be
obtained, the scalar Helmholtz equation can be solved using th_.e method of separa-
tion of variables in eleven orthogonal coordinate systems. The fotation-paraboloidal
coordinate system is one of the eleven orthogonal coordinate systems in which the
scalar Helmholtz equation separates (see Eisenhart [1934], Strattg'm [1941], Morse and
Feshbach [1953]). The situation is quite different with the vector wave equation or
the vector Helmholtz equation (see Moon and Spencer [1971]). The complications
arise because the field is a vector field and the vector equation can not be separated
into individual ordinary differential equations in which each scaiar component exists
decoupled from the remaining components. Also, even if thi§ were possible, the

fitting of the boundary conditions becomes almost impossible.

In this introduction we will review the general curvilinear coordinate systems in
preparation for our work with the rotation-paraboloidal coordinate system. We will
also try to summarize the electromagnetic and acoustic scattering studies which have
been done in the past in the rotation-paraboloidal system (for an excellent summary
see Bowman et.al. [1969]). The methods used previously are not given in any detail

here since the form of the analysis presented in this thesis is independent of those



methods. Only a general survey of those methods is presented in order that an

overall picture of what has been done can be obtained.
1.1 General Curvilinear Coordinates

In general curvilinear coordinates (§1, £,, £3) the vector operations such as curl
and divergence are expressed in terms of metric coefficients or scale factors
(h1, k3, h3) which are determined by the expressions governing the transformation
from the coordinates of interest to the rectangular coordinates (x, y, z). The scale

factors can be determined by applying

2
(7;)? = [ ] [ag, l"é] i =123. @.1)

The rotation-paraboloidal coordinate system (£, m, &), see Fig. 1.1, is related to
the rectangular coordinate system (x, y, z), the circular cylindrical coordinate system

(p,d,z ), and the spherical coordinate system (r ,0,¢ ) by the transformations

x = Emncosd =pcosd = rsin6cosd , (12)

y = Ensind = psind = r sin@sind , (13)
=1 2_ 2 -

z—-i-(ﬁ -m°)=z =rcosh . (14)

Thus the scale factors are obtained by applying Eq. (1.1) to the above equations with

the result that

hy=hy;=VEl+q? =2r , (15)
and

hy3=En=p , '." (16)

where, of course, p2 =x2+ y2 and r2 = x2 + y2 +z2, '



f\\ 0 T\‘—'.A Const.

Il
-

Ay

g = Const.

XL\>¢

FI1G. 110 ROTATION-PARABOLOIDAL
COORDINATES
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The scalar Helmholtz equation is given by :
Viy +K2y =0, (1.7)

where  is the actual scalar field or potential. This equation can be written for a

general curvilinear coordinate system for the field ¢ (£;,£5,£3) as

3 %
R T F AL P AR 18
8 AT D ¥ (1.8)
where
\/g- =h1h2h3 . (19)

Now in the analysis of electromagnetic fields we encounter frequently the vector

Helmholtz equation which is of the form
V xV xF —K2?2F =0 (1.10)

and is derived from the vector wave equation by assuming a harmonic time depen-
dence given by e % where w is the harmonic frequency. Now for a rectangular,
Cartesian system of coordinates (x, y, z) it is clear that Eq. (1.10) reduces to the
scalar Helmholtz equation for each component in that system, but for other orthogo-
nal coordinate systems this is not the case. In fact, there is generally great difficulty
in separating the vector Helmholtz equation if one is not working in Cartesian coor-

dinates.

It was shown by Hansen (see Hansen [1953]),that the vector wave equation can
be separated by defining three new vector fields related to the actual vector fields of
interest. These three vector fields M R N , L (known as the Hansen wave vectors),
can be obtained by a single scalar field {, which satisfies the scalar wave equation in
the coordinate system of interest. Separation of the vector wave equation has some-

times been defined as the successful deduction of the Hansen wave vectors (Morse
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and Feshbach [1953], pp. 1767). It has been shown that the Hans;en wave vectors can
be obtained for only six of the eleven orthogonal coordinate systéms. These six coor-
dinate systems are shown below in Table 1. Unfortunately the fotation paraboloidal
coordinate system is not one of six given in Table 1, and thus cémplications arise in

the solution of electromagnetic fields in this coordinate system. .

Table 1.1

Coordinate Systems in which Vector Wave Equation Separates

1. rectangular coordinates

2. circular cylindrical coordinates
3. elliptic cylindrical coordinates
4. parabolic cylindrical coordinates
5. spherical coordinates

6. conical coordinates

1.2 The Rotation-Paraboloidal Coordinate System

The first theoretical investigation of electromagnetic fields in rotation-
paraboloidal coordinates was undertaken by Abraham [1900]. The paraboloidal coor-
dinates were used to model a semi-infinite wire. The theoretical results did not
agree with the experimental results of the time and the problem was dropped. The
electromagnetic reflection by a parabolic mirror was briefly mentioned by Lamb
[1906] where integral expressions were obtained. The problem was not reconsidered

until the parabolic reflector was used for radar applications in the 1940’s.

For the acoustic case Buchholtz analyzed many aspects of the problem. He
obtained results in integral and series form for the scattering of acoustic waves from

an infinite paraboloid (Buchholtz [1947]). The external (convex side) diffraction
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problem has been analyzed by Horton [1950, 1953]. Horton used the series represen-
tations developed by Pinney [1946] for the solution of the scalar Helmholtz equation
in rotation-paraboloidal coordinates. Pinney developed his series representation in
terms of Laguerre functions whereas Buchhciltz used the confluent hypergeometric

functions which are a more general form.

Analysis of the electromagnetic case was made based on the results from the
acoustic case. The cases of an electric dipole at the focus of the paraboloid and
'c;r'nented parallel to the axis of symmetry, perpendicular to the axis of symmetry, and
perpendicuiér to the axis backed by a dummy reflector were solved by Pinney [1947].
- The solutions to these three cases were based on the series solutions he obtained in
his earlier paper for the scalar Helmholtz equation in rotation;paraboloidal coordi-
nates. The exact electromagnetic field produced by an electric dipole located on the
axis of»symmetry of a perfectly conducting concave paraboloid _ﬁas also been solved
by Buchholtz [1948]. Fock [1965] has performed an in depth sfudy of the problem,
expressing the exact solution for an electric dipole at the focus and perpendicular to
the axis of symmetry, both as an integral and as an infinite serie%s, as well as deriving
high frequency expansions.

In his investigations, Fock introduces a series of new potentials in order to solve
the problem. He first expresses Maxwell’s equations in terms of jthe covariant spheri-
cal field components and the Debye potentials (see Wilcox [1957]). From these he
applies the transformation to obtain the rotation-paraboloidal field components. He
then introduces two " parabolic potentials P and Q ” which are connected with the
separate Fourier components of the field with respect to the angle ¢, and not the
total field. To simplify the field expressions, four interrelateq auxiliary .functions,_
connected with the parabolic potentials P and Q are introduced. Although the intro-
duction of the parabolic potentials permits formulation of the boundary conditions
without recourse to finite difference equations the expressions are very complicated

even for simple source illuminations.
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The problem under consideration in Horton and Karal’s work was the elec-
tromagnetic scattering of a plane wave from a paraboloid made of any material in
general (Horton and Karal [1951]). The Hansen wave vectors were obtained for the
rotation-paraboloidal coordinate system based on the series solution obtained by Pin-
ney [1946] for the scalar Helmholtz equation. This was done even though the
transverse wave vectors M and N did not appear to have the necessary orthogonality
properties to enable one to expand an arbitrary vector function in terms of them
directly. Considerable manipulations were then performed in orfjer to use the ortho-
gonality properties of one of Pinney’s paraboloidal functions S} (S ¥ is related to
the Laguerre functions). The final field expregsions using this uiethod are very com-
plicated. Solutions for a plane wave incident upon a perfectly conducting paraboloid
are formulated but no numerical results are presented because o;f a " lack of numeri-

cal values for the paraboloidal functions *.

Approximate methods have been used by Donaldson et.al. [1960] to solve for the
aperture distribution due to axially oriented dipoles at the focal point. An approxi-
mate method is used to obtain the coupling between two ﬂigned paraboloidal
reflectors. These approximate methods are based on Fourier transforms of the aper-

ture }ﬁeld.

The high frequency methods of geometrical optics and ray tracing will not be

discussed since they represent a totally different approach to the.problem.

In this thesis the paraboloid of revolution is treated as a waveguide and fields
which are rotationally symmetric but arbitrary (ie. the field coméonents are indepen-
dent of ¢) are found in terms of the Abraham potentials (see Stratton [1941] or
Koshlyakov et.al. [1964]). Eigenfunctions are olbtained for the pzjuaboloid in terms of
the Coulomb wave functions. This technique of treating the paraboloid as a
waveguide allows one to to apply an impedance boundary condition on the walls of
the paraboloid. This is a technique which can be used for simulating mathematically

the finite conductivity of the walls or can even be used when deliberate thin coatings
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of dielectric are applied to the walls. This problem is difficult to solve if geometrical
optics is used but means only the determination of the new eigenvalues in the
present technique. Thus for each new boundary condition .we wish to solve (ie.
different wall impedance) all that need be done is to calculate the new eigenvalues.

This is one of the main advantages of this method.



CHAPTER 2

GENERAL FORMULATION WITH ABRAHAM POTENTIALS

Given the coordinate transformations of Eq. (1.2) - (1.6), Maxwell’s equations
are obtained for the rotation-paraboloidal coordinate system. The Abraham poten-
tials Q and U are then used to simplify the solution of these equations when rota-
tional symmetry of the fields is evident. The partial differential equations for these
potentials are then separated, yielding one Sturm-Liouville system and one ordinary
differential equation. It is shown that solutions to both of these can be represented

most conveniently as Coulomb wave functions.
2.1 Maxwell’s Equations in Retation-Paraboloidal Coordinates

If a harmonic time dependence of e *®’ is assumed then Maxwell’s equations

can be written as
V XE =iwpH, (2.1)

V XH =(-iwe +0)E ,

V XH = ~iweE (lossless medium ), 22)
V- H=0, _ (23)
N
V-E=-%. :
E == . (2.4)

Where p, is the charge density in the medium, € is the permitivity of the medium,
is the permeability of the medium and o is the harmonic frequency of the excitation.
These must now be expressed in terms of the rotation-paraboloidal coordinate system

but first these expressions will be determined for any rotationally symmetric
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coordinate system.

Any system of coordinates (£, n, ¢ ) which are rotationally symmetric can be

defined by

ds?=h,dE? + h,dn? + p%d $?,

where p is the perpendicular distance from the axis of rotation (ie. the same as in
cylindrical coordinate systems). Maxwell’s equations, Eq. (2.1) and (2.2), for an iso-

tropic lossless medium can be written in these coordinate systems as

( A ( \.

1 3 Hg F ] Hn] . |eEg
—|—1p - — |k tiw =0 2.5a
hap [0 ["Es) a3 (2Ey, pHe) 7 (@32)

1 [a [ H EA (¢E,)

a 4 d é . € n
—|— |h - — i =0, (2.5b)

hlp ad’ \ lEel ag upEéJ ] ‘P'H'q‘,

r 4 \ ¢

—lhy o |~ — |k x i =0, 2.5¢

where for the case of rotational-paraboloidal coordinates k, and k, are equal and
are defined by Eq. (1.5). For the case where the field ( E and H-) itself has the same
symmetry as the coordinate system, its components are independent of ¢. Thus the

six expressions of Eq. (2.5) break up into the two independent groups

S - Y_ 9 | )
hl 5 ag l an} lh H&} +l(.l)€E¢-O (263)
_I___Q_( \_.- = .
1 4 ,
T——E‘{ }+lwp.H.q=0, (2.6¢c)

and



[y
oo

L {2 (g )2 e )| - _

hlhz[GElth"} aq MEgy| TiorH, 0,: (2.7a)
L3 (n Y rives, =0,
ok, aq\PHe) tiweE =0, (2.7b)
1 9 _
T’—e{ }"”"GEn‘—‘O-_ (27¢)

For the specific case of the rotation-paraboloidal coordinates Eq. (2.6) and (2.7) .

become

§2+n [ {\/my )"—"(mffe) +iweEy, =0, (2.8a)
p\/§_21+_.,,5 aag {pEd,} +iopH, =0. (2.8¢)

and,

L |2 (Vs }-f_{\/ TuiE) |~ tonH, =0, @5

g2 + 9’

(pHd,} tiweE, =0, (2.9b)

1 3
pVeZ+qt dml

p VE;+1\2 366 {pH"}—i“"En:O: (2.9¢)

where p = £ 7. Substituting Eq. (2.8b) and (2.8¢c) into Eq. (2.8a), and defining the
Abraham potential U (£ ,m) as
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it is found that

e —lwe 3U(E,n)
E(gr'ﬂ) Kz\/é?;—;l— an

’ (2.11)

iwme U (€,m)

Ho(§,m) = —F 77— . 2.12
2 (€M) KVitim ok 5 (2.12)
where U (& ,7) satisfies
3 |1avU a |1aU 2.2y _
3E [p T an{p an (é +1\)U 0. (2.13)

Similarly if the same procedure is applied to Eq.(2.9) the second Abraham potential
QO (&,7n) can be defined as :

Hy(E,m) = —pl-Q(é,n), (2.14)
with
E , = iwp" ig_(ﬁ_ﬂl , 15
€(§ T\) pKz\/gz-!-—'qz an . (2 )
E,(§,m)= — Lok 90(E:n) (2.16)

pKIVER+q?  3E
where Q (£ ,n) satisfies

9 _I_L’_Q_]+_§_[1_Q- [§2+n2}Q=0. (2.17)

9 |p € p oM

It can be easily seen from the above expressions that the potential U (& ,m)
represents an electromagnetic wave which is transverse electric to the z direction
(T.E. to z) and the second potential Q (£ ,m) represents an electromagnetic wave

which is transverse magnetic to the z direction (T.M. to z). It should also be
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observed that both U and Q satisfy the same partial differentialj‘ equation, Eq. (2.13)
and Eq. (2.17). This suggests that the form of the solutions to the potentials U and
Q should be similar but not exactly the same since the boundary conditions on the
walls of the paraboloid will not necessarily be the same for bofh potentials. It can
also be noted at this point that there is the possibility of a singularity in the field
along the axis of the parabaloid due to the forms of thevexpressi;ms of Eq. (2.10) and
(2.14) since p =0 along this axis. It will turn out that the solutions to the potentials
will be chosen such that they are equal to zero at p =0 and in t'he limit as p goes to

zero the field expressions will not be singular but finite.

All of the above observations and comments will be detailed in following

chapters.
2.2 Boundary Conditions for the Potentlals
2.2.1 Perfectly Conducting Paraboloid

If the surface of the paraboloid ( m = m, ) is perfectly conducting then the

mathematical expression which conveys this is
E - (E-8)i =0, (2.18)

where 71 is the unit normal to the surface directed from the body into the surround-
ing medium. Physically Eq. (2.18) states that the tangential component of the total
electric field at any regular point of the conducting surface must be equal to zero.

For the case of the paraboloid

Thus Eq. (2.18) becomes
E —(E-a,)a,=0. (220

The field E (£ ,7m) can be represented as



1.5
E(E,m)=Ega; +E 4, +E d, . (221)
Substituting Eq. (2.21) into Eq. (2.20) results in what was originally expected, i.e.
E¢(E,m)=0, (222)

and

Ey(€,m)=0. : (223)
From Eq. (2.22) and (2.15) a Neumann condition for the potential (&,m) arises;

M oo wn=n,, 224)

and from Eq. (2.23) and (2.10) a Dirichlet condition for therpotential U(t,m)

arises;

U(g,m,)=o0. . (2:25)

Thus for the perfectly conducting paraboloidal waveguide, deséribed by the coordi-
nate surface m = m,, the Abraham potentials U (£,m) and Q (£,n) must satisfy
partial differential equations given by Eq. (2.13) and Eq. (2.17) respectively, with
boundary conditions at = m, described by Eq. (225) and Eq. (224) respectively.
2.2.2 Non-Perfectly Conducting Parabolold |

For the case of the walls of the paraboloidal waveguide bei[ig non-perfectly con-
ducting, an Impedance or Leontovich boundary condition is imposed on the surface

M = mM,. The Leontovich boundary ¢ondition can be expressed mathematically as

F-(E-a)h =8 \/2 (axT), (226

where Nis the relative surface impedance of the walls of the paraboloid (N=0 for .

the perfectly conducting case). As can be seen from the notation used, the relative
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surface impedance is represented as as dyadic function. A nonzero surface..
impedance has been used for the finite conductivity of waveguides before (see
Mohsen and Hamid [1970]). It has also been used to account for the finite conduc-
tivity of scatterers (see Senior [1960a]), for the roughness of its surface (Senior

[1960b]), and for the presence of highly absorbing coating layers (Weston [1963]).

It should be noted here, that if N had been assigned a scalar value, this would
imply that the impedance is the same in any direction, but this is not the general
case. In the more general case considered here, the surface impedance N is
represented by a two dimensional dyadic transforming the tangential components of
H into the tangential components of £ on the boundary (see Morse and Feshbach

[1953] pp. 1814).

Now substituting Eq. (2.19) and (2.21) into Eq. (2.26) it is found that the Leon-

tovich condition manifests itself in the two equations

E v_-
ch £ € at m No» ( - )

and

—2 =N E. t m=m,. 228
Hg é € at m To ( )

Substitution of Eq. (2.10) and (2.11) and Eq. (2.14) and (2.15) into Eq. (2.28) and Eq.

(2.27) respectively leads to boundary conditions in terms of the potentials given by

U _iKVE +n?, _

a n=m,,

and
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which , after performing the differentiation, become

R /% I
U - .‘____§_'*_'_"L U=4¢0 at n=n7n,,
1N,
and
e mT=
Q - - E°+7n°Q =0 at =1, .
If we assume, for the sake of mathematical simplicity, that

i _
Ny=--VE+nl,
o

and

in,

Ve +nZ

then the boundary conditions on the potentials simplify to

Ne""‘

U'+U =0 at n=mn,,
and

Q' +Q =0 at n=nm,.

(229)

(230)

(231)

(232) -

(233)

(234)

These can be recognized as Dirichlet-Neumann or Robin boundary conditions and

can be handled fairly easily by partial differential equation theory.

The physical interpertation of Eq. (231) and Eq. (234) is that the boundary

impedance should vary on the walls of the paraboloid as a function of £. The

impedance is also reactive since the expressions are totally imaginary. The practical

implications and the physical realizability of these boundary conditions will not be

considered in any detail.



23 Separation of the Partial Differential Equation

Solutions to the partial differential equation given by Eq. (2.13) or Eq. (2.17)
must now be found. Since these equations are the same for both potentials
U (&,n) and Q (£&,7) it is sufficient to solve only one of these equations. Thus in
the following discussions the U potential will be solved for although the solutions are

equally valid for the Q potential. For convenience the equation is rewritten here;

3 [iaU +’iz {§2+1‘2}U—0 @13)

df [p OF

a_ |1aU
dn{p dm

The method of separation of variables is now undertaken to solve the above

equation. Following the general procedure, we assume a solution of the form

U(E,n)=U1(§)Us(m). ' (235)

If a separation constant C is chosen, then separation of the equation produces the

two ordinary differential equations

dgz vie) -t v+ ke -cluer -0, e
and
d? 1 d

Sva -+ + k22 +c)uamy=0. e

These equations are identical except for the sign of the parameter C, but since the
only restriction on the parameter is that it be a real number, only one of the equa-
tions needs be solved. We choose Eq. (2.37), the equation for the variable 7, since
this equation will provide us with the eigenfunctions in the later chapters. The brute
force method could be taken at this point, in that Eq. (237) could be solved using
the general method of Frobenius This elegant method will not be used at the present

time but for the sake of completeness and comparison it has been included as
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Appendix A at the end of this thesis.

Instead, independent variable transformations will be performed in order to
reduce Eq. (2.37) into a form for which a solution is well kx:lown. As will soon
become apparent, there are a few independent variable transformations which could
be used on this differential equation. Three reduced forms wil_.l be presented. The
third form is the one which will be used and advantages of thiis form will become

apparent when compared to the others.

As a first independent variable transformation we let
y(x) =y (Kn?) =Us(n), (238)
where
x=iKn?. : (2.39)

From these transformations the differentials with respect to x can be expressed as

d

._.___—_2K v

dn  '7 Vax

d? d? d
— = —4K?y— +2iK —
dn? K dx? thx

and these when substituted into Eq. (2.37) transform that equation into

d? -1 iC
dxzy(x) [4

Yl b (x)=0. (2.40)

This equation can be recognized as Whittaker’s standard differential equation (see

Erdelyi et.al. [1953], Abramowitz and Stegun [1965]) which takes the form

dx?

.éiw<x)+[;;.+§+l/“7§*ﬁ]w(x)éo; @241)
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where for our case

wix)=y(x), p= andk=-‘—%‘.

4

N |-

The Whittaker equation can be derived from the more gene}al confluent hyper-

geometric equation
x-é-f—v(x)+(b—x)—d-v(x)-av(x)t=0 (2.42)
dx? dx :

by the transformation

v(x)=x"t1e2y (x), a=-%——k +p, b=j1+2p.,

where for our case

y(x)=xe*?v(x), a =1—% and b;_=2.

Solutions to Eq. (2.42) are denoted as (see Abramowitz and Stegun [1965]),
M (a,b,x) and U (a,b,x),

and are called Kummer’s functions.

Solutions to the potentials could be arrived at through the solution of either
Eq. (2.41) or Eq. (2.42). Both of these forms were derived from the original
differential equation and are perfectly valid but are awkward to use because of the

complex transformation which was required to obtain them. Not only is the variable

a complex transformation of the original but the new parameter would also be a
complex number. This parameter would ultimately become our eigenvalue and .
would thus be prefered to be real. Given these problems, alternate forms of Eq.

(2.37) are sought.
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2.3.1 Alternate Transformation ; Coulomb Wave Equation

If instead of the transformation defined by Eq. (2.38) we use the transformation
1
=;Kn.y(2)-Uz( Ka?), | (243)

then the differentials with respect to z become

d d
.—.—_=K —
d 7 .qdz

and
d? 2 2 d? d
— =K — +K —,
dn? k dz? dz

Therefore substitution of these into Eq. (2.37) reduces that equation into

—-d—z- (z) + 1+-—C—- (z)=0 (2.44a)
dzzy sz y ’ M
or
Ay 1+ 2, () =0 (2.44b)
dzzy z y ’ .
where
- C
)‘—4K'

This can be recognized as the Coulomb wave equation of order L=0

d? 1_22 L(L+1) y(z) =0 (2.45)

ZgY(Z)*‘

where for the present case



B=-\=—-=. (2.46)

The Coulomb wave equation has a regular singularity at the point z=0 and an irregu-

lar singularity at z= . The general solution of Eq. (2.45) is
y(z2)=C(F;(B,z) +C3G,(B,z), (2.47)

where C4 and C, are constants. For the specific case of Eq. (2.44) the solution can

be written as
y(z)=C1F0(ﬁ:z)+CZGO(B)z)’ (2.48)

where B is given by Eq. (2.46). The reason for introducing the negative sign in front
of \ is that when we define Eq. (2.44) as a Sturm-Liouville system it will prove to be

more convenient, since A will be defined as thé eigenvalue.

It should be noted at this time that the Coulomb wave equation can be derived

from the confluent hypergeometric equation by the transformation
Fp(B,z)=e "z %C (B)M (L +1-iB,2L +2,2iz), (2.49)
where

8 Ir(L +1-ip)]
ra +2) -

CL(B)=2"e (2.50)

Of the three forms of Eq. (2.37), the Coulomb wave equation [Eq. (2.45)] will be
used in the following chapters as the form to be solved. Thus in the next chapter the
mathematical properties of the solutions to this equation will ‘be investigated. As
well the numerical algorithms for the computation of these functions will be exam-

ined.



CHAPTER 3

THE COULOMB WAVE FUNCTIONS

In this chapter the mathematical properties of the Coulomb wave equation and
its solution, the Coulomb wave functions, will be investigated. These functions will
be investigated in the form of a Sturm-Liouville system since the ultimate goal for
their use is as eigenfunctions for the solution of rotationally symmetric electromag-
netic fields inside the rotation-paraboloidal waveguide. Numerical results will also be
presented at the end of this chapter. These will include numerical tabulations and
graphs of the wave functions as well as graphs of the eigenfunctions for the Diri-

chlet, Neumann and Impedance boundary condition cases.
3.1 Sturm-Liouville Systems

The notation which will be used in the following discussion for a regular

Sturm-Liouville system follows that of Trim [1986], and is shown below :

{r (z)y‘()u,z )}+ {)ap(z)—q(z)}y()\,z) =0,. a<z<b ,(31a)
—liy (N ,a) +hiy(X,a)=0, (3.1b)
1, (N,b) + hyy (A,b) =0. ) ? (.1c)

The constants hkq, k4, {1, and /5 in the Robin boundary conditions are real and
independent of the parameter . The functions p (z), ¢ (z),r :,(z ), and 7 (z) are
real and continuous over thé specified interval. Also, it is assﬁmed that p (z)>0
and r (2 )> 0 for a < z < b. The parameter A takes on a denumerably infinite set
of values A, ( n = 1,2, ..) for which the corresponding non-trivial solution of Eq.

(3.1) is denoted
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Ya(2)=y(A,2)

The y, (z ) are called the eigenfunctions of the Sturm-Liouvill;a system and X\, are
the eigenvalues.
3.12 The Coulomb Wave Functions as a Sturm-Liouville System

For the case of the Coulomb wave functions and the rotation-paraboloidal coor-

dinates the specific values of the functions in the system of Eq. (3.1) are provided

from Eq. (2.44b) where

2
z

r(z)=10, p(z)==, and¢q(z) =-10,

where the range of the variable zis 0 < z < z,. It is noted that r, p, and q satisfy
all of the necessary requirements quoted above. For the case of the paraboloidal
waveguide there will be no boundary condition at z = 0, but only at z = z, (ie. the

walls of the paraboloidal waveguide). Thus the singular Sturm-Liouville system
- 2
Yo (z) + 1+)s,,—z- v.(z)=0, 0<z<g,, (32a)

lzyn ’(zo) + hz)’u (zo ) =0, (3.2b)

arises, where at least one of /5 and &, is not equal to zero. If [, = 0 we have a Diri-
chlet condition at z = z,. If h; = 0 we have a Neumann condition at z = z,. If
both I, and k; exist then we have a Robin condition at z = z,, which will be neces-
sary for the impedance boundary condition case as explained in Sec. 2.2.2. Thus it

will be necessary to obtain numerical results for all three cases.

The above system of Eq. (32) is a singular Sturm-Liouville system since only
one boundary condition exists. Thus the general properties of a regular Sturm-
Liouville system cannot be used without proof. One of the most useful of these pro-

perties which will be required in later discussions is the orthogonality of the
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eigenfunctions with respect to the weighting function p (z ).

Consider the eigenvalue-eigenfunction pairs {y s A ‘Aand (y s\ \. The
( m m) l n n)

differential equation satisfied by each of these eigenvalue-eigenfunction pairs is given .

by Eq. (3.2a)
: =
Yo (2) + [ 142, |5y (2) =0, 0<z<g,, (33a)
h \ AJ .
12\
ym )Y+ [1+20, =] |y (z)=0, O0<:z<:z,. (33b)
Z
L \ /7 ]

The following manipulations are now performed :

)
o).

Im yn”_yn ym” =YaVm {xm — N, }% = {ym yn'}'— {}’,, ym’}' .

J’m{yn”(z) + [1 +A,

y,.{ym"(Z) + [1 + A

Integrating with respect to z over the interval, we get

Ym (0) ¥m (0)
¥ (0) y (I

Ym (o) Im (25)
yﬂ(zo) yn’(zo)

- 2
{)‘m—kn} J;Ym)’n [_]dz =

¥4

Now for orthogonality of the eigenfunctions with respect to the weighting func-

tion p(z), the right side of the above equation must be equal to zero. The first deter-
minant is equal to zero because of the existence of the boundary condition at
z = z,. That is, if one thinks of the boundary equations at z = z, for y,, and y, as
simultaneouse equations in /, and k,, then since these equations have nontrivial

solutions (ie. at least one of [, and h, must exist) the determinant must go to zero.
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The second determinant will not collapse to zero as easily as the first because there is__

no boundary condition at z=0. We will find that if we examine the properties of the
solutions of the of the Coulomb wave equation we will see that one of the solutions
is identically zero at z=0. Thus this solution will be orthogonal. As will be seen in
later discussions, the second solution will not be appropriate and thus will not be
used in the eigenfunction solution because it produces a singularity in the field at

z=0. Therefore the orthogonality of the second solution is not required.

Now that we have established orthogonality it is convenient to normalize the

eigenfunctions. Thus a normalization constant N, can be defined by

dz . (3.4)

z‘
2
Ni={[y.y, [—
0 F4

The eigenfunctions will be divided by N in order to make them orthonormal.
3.2 Properties of the Coulomb Wave Functions

In this section the properties of the Coulomb wave functions will be investi-
gated. These properties are results obtained from many authors over a number of
years (see National Bureau of Standards [1952], Fréberg [1955]), Luk’Yanov et.al.
[1965]). The notation which will be used here is that of Abr:amowitz and Stegun
[1972], which was a compilation of the properties known about the functions up until
the year 1965. The results which will be shown here will be modified to the case
where L=0 so that they can be directly applied to the problem at hand.

The solution of the Coulomb wave equation [Eq. (2.45)],‘consists of the two
solutions given in Eq. (247). In the following discussions the parameter B will be
used, where B is related to A by Eq. (2.46). The solution Fy(B iz ) is called the reg-
ular Coulomb wave function while G(B,z ) is called the irregular or logarithmic

Coulomb wave function.
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3.2.1 The Regular Wave Function

The regular Coulomb wave function can be expressed in terms of the confluent

hypergeometric equation, as mentioned in the previous chapter, as
Fo(B,z)=Co(B)ze ™™ M (1-iB,2,2iz),

where

1
Co(B) = [(—;—::%]2 . 69

A more appropriate form for numerical computations is

Fo(B,2) = Co(B)z OB o2), (36)
where
Bo(B,z) = élAn(B)z"‘* : 37
and
Ay=1, Ay=B, n(n-1)A, =28A, 1~ A, (n>2). (38)

The asymptotic theory of linear difference equations shows that this equation is
stable (i.e. a small change in the parameter B will cause only a small change in the A,

for large n). For an analysis of this point the reader is referred to appendix B.
The derivative with respect to z of the regular wave function can be computed

by the relation

Fo=LFo=CoB)®5(B2), - (39)

where
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oo

S nA,(B)z"T. _ (3.10)

n=1

Dy

The above series relations were used to compute the regular wave function for
0<z <35, and for the parameter B ranging from +5 to -10. The results were
checked with published results such as those of the National Bureau of Standards
[1952] and Luk’Yanov et.al. {1965]. The only source found for ﬁegative values of B
was the National Bureau of Standards [1952]. The reason for the scarcity of results
in this region is probably due to the fact that negative values of § have no physical
significance in the use of these functions to express the Cmixlomb field about a

nucleus.

Unfortunately the series representations given above cannot be used for all
values of z and B. For different regions in the z —f plane differént methods of com-
putation must be used (see Fréberg [1955]). One important region in this plane is
called the transition region or the turning points where z = 2B; Asymptotic expan-

sions for z = 2B > 0 are given by

Fo(2B) = 7063326373 1/6 x

04959570165 00888888889 _ 002455199181
1- y - - N (3.11)
e/ B? plor
and
Fo (2B) = 4086957323 71/6 x
1+ .1728%60369 , 0003174603174 003581214850 , 3.12)
B2/ B2 R

For values of z where the series solution was inacurate the values of the func-
tion and its derivative at the turning points was used as initial values and the

differential equation was integrated using the Runge-Kutta-Verner fifth and sixth
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order method. The algorithm which was used was from the International Mathemat-
ical and Statistical Library [1982]. Calculations were performed for values of z down
from the turning points and up from the turning points with a relative accuracy of
1075, Plots of the regular Coulomb wave function and its derivative are shown in

Fig. 3.1 and Fig. 3.2 respectively.

As can be seen from the graphs, at the point z=0 the regular coulomb wave

function takes on the value
Fo(B,0)=0, (3.13)
while, not so obviousely, its derivative takes on the value
Fo'(B,0) =C,(B). (3.14)

3.2.2 The Irregular Wave Function

The irregular or logarithmic Coulomb wave function can be expressed in terms

of the regular wave function as

Go(B,2) = —ZLFo(s,z)[ln(_zz) + "°(B)] £8(B,2), (315)

c$ (B) po(B)
where
q,O(B’Z)
6(B,z)=——+—, 3.16
O(Bz) Co(ﬂ) ( )
and

Wo(B,z) =3 a,(B)z",

n=0
ag=1, a;=0, n(n-1)a, =2Ba,_y —a, , — 2n-1)2B4, , (3.17)

where A, is the same coefficient as that used in the series expansion of the regular
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wave function given in Eq. (3.8) and Cy(B ) is given by Eq. (35). Also we have

2:(8) _ _, +Real{r'(1+ig)}+27

Po(B) r{1+ip)
=14y +prS — (3.18)

R ’
n=t N (n2+BZ)

where v is Euler’s number , y = 577215665.

Unlike the series representation for the regular Coulomb wave function, the
above representation is very difficult to compute by. Thus the differential equation
was integrated using the same Runge-Kutta method as for the regular wave function.
The initial values used were also the values of the function and its derivative at the

turning points, which are given by

G, (28) = 1223404016 1/6 x

| 4 04059570165 _ 00888888889 | 002455199181 _ | (319)
B4 B pior
and
Go'(28) = —.7078817734p~1/6 x
| 728260360 0003174603174 _ 003581214850 , (320)
Bz/;; BZ BS/3

The irregular wave functions were calculated for the same ranges as for the regular

wave functions and the plots are shown in Fig. 3.3 and Fig. 3.4.

At the point z=0 the irregular wave function can be determined from

Go(B,0) = (321)

1
Co(B)’
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IRREGULAR COULOMB WARVE
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and its derivative from

GO'(B ,0) = —o | (322)

3.2.3 Wave Functions of the Third Kind

The two solutions F 3 (B ,z ) and Gy(B,z ) can be combined to form two alter-
nate solutions which we shall call Coulomb wave functions of the third kind. These

new functions are defined as

H}(B,z)=Go(B,z) +iFo(B,z), (323)
and

H§ (B,z)=Go(B,z) —iFo(B,z). (324)

These functions are useful in terms of their asymptotic representations for large z,

for as z gets large

H}(B,z)~ &', f (325)
and
HZ(B,z)~ e '™, (3.26)
where
6=z —Bln(22)+arg[l‘(1+i8)].. (327)

These functions and the method of defining them are analogous to the exponential
expansions of the Hankel functions which are defined in a similar way but should

not be confused with the above functions.
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3.3 Solutions for the Potentials

Now that we have solutions to the basic differential equation, the solutions for
the Abraham potentials U (£,m) and Q@ (§,m) can be constructed using these solu-
tions. The eigenfunctions will be represented by the regular Coulomb wave func-
tions Fo(—X, ,1/zK'q2) with the eigenvalues X, appropriately chosen in order that
the boundary conditions at = m, will be satisfied. These boundary conditions can
be either Dirichlet, Neumann, or Robin boundary conditi§ns, whichever are
required, as explained in the previous chapter. The irregular Coulomb wave func-
tions are not used as eigenfunctions because, not only are theyz not orthogonal, but
from Eq. (2.10) and Eq. (2.14) they would produce a singularity iin the field atq =0
(i.e. the axis of the paraboloid). The regular wave functions do not produce such
singularity since they produce a zero over zero term and L’Hopit.al’s rule can be used
to take the limit as m goes to 0. This limit turns out to be finite and thus there is no
singularity.

In the £ coordinate the functions which will be used aré Fo(\, %K £?) for
regions including the £ = 0 axis and H d(n, %K £2) for regions not including the
£ = 0 axis. The reason that H (} is chosen is clear from Eq. (3.25) and the e iot

time dependence since these functions would best describe outward travelling waves.

Thus the potentials can be constructed as

{

EA,, Folx,,%xe" Fo[—x,,-;—xnzl 0<m<m, ,& =0region ,
" (328)
ZB,, H(} [x,.-;—xez Fo[-)...%xsﬁ] 0<m<mn,,E&=large region ,

n

t

U (E,m) =1

and



waveguide.

The transcendental equation which arises from applying the Dirichlet condition

to U is obtained by applying Eq. (2.25) to Eq. (3.28) and can be simply written as

Lga2) =o0. (330)

FO(_XII 4 2

Thus all values of A, which satisfy this equation are the eigenvalues. The regular
Coulomb wave function has been plotted as a function of the parameter A, (shown
as N in the plot) and is shown in Fig. 35. The three frequencies 100, 250 and 500
MHz were chosen with a constant coordinate m, of the paraboloid corresponding to
a focal length of 1 meter. The zero crossings, which are the eigenvalues, were then
obtained by a numerical technique and the first few eigenvalues are shown in Table

3.1 for the respective frequencies.
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EA,, Fo[x_.—;-xezj Fo[—x_.%xnzl 0<m<m,,& =0region
" (329)

Q (§,n) = .
' EB,, H(} [x_.-;-xez FO[—x,.Ex-qz] 0<m<mn,,t=large region .
n

.

The summation over n in the above equations represents a summation over the
ordered eigenvalues where the eigenvalues A\, =C,, /4K are obtained from the tran-
scendental equation produced by applying the boundary conditions on the walls of
the waveguide. Eigenvalues for all three types of boundary conditions will be given

in the next section.
34 Eigenvalues

As discussed in Sec. 2.2 the application of specific boundary conditions to the
field at n = m, will result in specific boundary conditions for the potential U and Q.
These boundary conditions will determine the appropriate eigenvalues for the prob-
lem under consideration. From Sturm-Lioville system theory we know that there is a
denumerably infinite number of eigenvalues which can be ordered according to
ascending value (see Mackie [1965] or Trim [1986]). It is also known, and is quite
obvious from the preceding statement, that all the eigenvalues are positive in value
except for a finite amount of them (i.e. not an infinite amount). The three cases of
Sec. 2.2 will now be considered. The first few eigenvalues will be calculated for all
three cases along with the normalization constants N. Of course N will be different

for each eigenvalue.
3.4.1 Perfectly Conducting Case

If the paraboloidal waveguide is perfectly conducting, .or can at least be
assumed to be perfectly conducting, then the Dirichlet condition arises for the
potential U (£ ,m) and the Neumann conditjon arises for the:_potential o (t&,n).
Recall that the potential U represents circularly symmetric T.E. modes and the

potential Q represents circularly symmetric TM. modes inside the paraboloidal
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TABLE 3.1

Eigenvalues and Normalization Constant for the Dirichlet Case

Focal Length = 1 meter

Freq. 100MHz 250MHz 500MHz

n A, N A, N A\, | N
1 0.5083 | 1.4072 | -0.7868 | 15105 | -2.8482 | 12835

25904 | 10893 | 03574 | 16910 | -13326 | 16026
ss261 | 09063 | 16424 | 14426 | 02952 | 18698
10240 | 07925 | 33919 | 12568 | 0.5911 | 1.8304
56191 | 11289 | 16480 | 1.6289
83209 | 10340 | 29597 | 1.4781
4.5213 | 13657
63269 | 12770

o NN L AW

83735 | 1.2043

For the Neumann condition the transcendental equation which arises can be

obtained by applying Eq. (2.24) to Eq. (3.29) and can be written as

. 1 '
Fo(-\,,5Kn})=0. (331)

2

This function has also been plotted as a function of the parametér A, (also shown as

N in the plot) and is shown in Fig. 3.6. The same frequencies and size of the para-
boloid were chosen as for the Dirichlet case. The eigenvalues with the respective

normalization constants are shown in Table 3.2.
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TABLE 32

Eigenvalues and Normalization Constant for the Neumann Case

Focal Length = 1 meter

Freq. 100MHz 250MHz 500MHz

n A, N A, N W N

1 | -02853 | 12951 | -1.7051 | 1.1140 | -4.1067 | 0.9635
2 14408 | 12257 | -0.1828 | 1.6856 | -2.0163 | 1.4433
3 4.1050 | 09839 | 09510 | 15658 | -0.7743 | 1.7475
4 79360 | 08433 | 2.4663 | 13383 | 0.426 | 1.8993
5 4.4589 | 1.1868 | 10895 | 1.7245
6 6.9264 | 1.0779 | 22746 | 1.5466
7 9.8667 | 09945 | 37134 | 1.4177
8 53987 | 1.3186
9 73261 | 12387
10 94931 | 1.1722

3.4.2 Non-perfectly Conducting Case

For the case where the walls are non-perfectly conducting or absorbing, the |
Robin condition arises for both potentials if we assume the wall impedances to be
given by Eq. (2.31) and Eq. (232). The transcendental equation is derived by apply-
ing Eq. (233) or (2.34) to Eq. (3.28) or (3.29). This transcendental equation can be

written as

. 1 1
FO(_)‘n 73K“3)+F0(_Rn’—2-Knoz)=O' (3'32)
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This function, here called the Robin function, is plotted as a function of the parame-
ter A, (shown as N in the plot) and is shown in Fig. 3.7. - The zero crossings
represent the eigenvalues, and these were found along with the normalization con-
stants for the same frequencies and size of paraboloid as for thé previous two cases.
The eigenvalues and normalization constants for the range of the parameter shown

in Fig. 3.7 are tabulated in Table 3.3.

TABLE 33

Eigenvalues and Normalization Constant for the Robin Case

Focal Length = 1 meter

Freq. 100MHz 250MHz S00MHz

2 \, N A, N \, | N

1 | 01161 | 14991 | 11043 | 14409 | -32193 | 12402
2 | 18132 | 12051 | 00852 | 17392 | -1.6168 | 15560
3 | 45313 | 09782 | 12410 | 15208 | -05186 | 18323
4 | 83900 | 08414 | 28113 | 13210 | 03580 | 1.8864
5 48424 | 11784 | 13408 | 1.6894
6 73367 | 10734 | 2.5666 | 15256
7 102960 | 09920 | 4.0379 | 14048
8 57492 | 13102
9 7.6977 | 12330
10 9.8820 | 1.1682
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3.5 Eigenfunctions and Fields

The eigenfunctions for the potentials U (£,m) and Q (& ,7m) are given by the
regular Coulomb wave functions with the parameter equal to the negative of the
eigenvalue, —\,. These eigenfunctions are then normalized l;y the normalization
constant N. Eigenfunctions for the case of the frequency being equal to 100 MHz
are plotted in Figs. 3.8, 3.9, and 3.10 for all three boundary coﬁdition cases as indi-
cated. As can be seen from these plots the eigenfunctions all gb tozeroatn =0,
This was the condition which allowed these functions to be ortlimgonal. Not all the
components of the actual fields will necessarily go to zero at = 0 or £ = 0, but
care must be exercised in the evaluation of the fields at these points. Thus, in this
section, the fields derived from the potential U (£ ,7m) will be expressed analytically
at these critical points. The fields derived from the potential @ (£ ,7) will not be

explicitly shown here but can be derived by a similar procedure.

Expressions for the T.E. mode fields can be obtained by substituting Eq. (3.28)
into Egs. (2.10) - (2.13) . Thus |

257\ Fo[x,.—;-xez]Fo[—x_,-;-an] 0<n<m,,& =0region ,
Eg=1" ‘
é

B (333)
E-E—:‘— H(} [x,,%xe’] Fo[-k.--;-xnzl 0<n<m,,&>0region ,
n .

.

—ifwe

= X
EX VEZ 497

,

Hy

EA,, Fo[x,.-;-xez] Fo'[—x,.-;-xnz] 0<7n<m,,£=0 region ,
i ) (334)
3B, H{ [x,,,%xe" Fyq [—x,.-;-hﬁ) 0<m<m, &> 0 region ;

n

\

iwe

= X
T oKk Viliy?

H
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,

ZA,, FO'{A_,%KEZJ FO[—x,.—;-an] 0<n<m,,§&=0region ,
{ " ) (335)
28,, H& [x,.-;—xez] Fol—x,.%xqﬁl 0<n<m,,E>0region .
n

\

In order to evaluate these expressions on either the £ = 0 axis or the ; = 0 axis, the
limit will be taken and L’Hopital’s rule will be used throughout. As m ~ 0 the

fields become

Ey=0 =m=0, (336)
) SA, Fo[x..—;-xezl co{—x,,} n=0, & =0region ,
. TlweE ”n

(337)
K €2 EB,, H} [x,,—;—xezj Cyp {—)\n} n=0, £>0region ,

H =0 n=0. (338)

As can be seen at 1 = 0 only the H; component survives. This is consistent with

expectations since the field must be symmetric in ¢.

As £t ~ 0 the fields become

H,=0 ¢£=0, (3.40)
H_ = i“"zA cofa 1 F [—x ] 0<m< j £=0 (341)
n K'r\zu n Oan 0 LA n n T‘o, . B

This time only the m component of the magnetic field survives, as expected.



CHAPTER 4

CURRENT LOOP EXCITATION

Thus far, eigenfunctions and eigenvalues have been obtained for the representa-
tion of rotationally symmetric fields inside the paraboloid. In thjis chapter the eigen-
functions are used to represent the fields due to geometrically simple electric sources.
Specifically, the fields due to an electric current loop centered about the axis of the
paraboloid are determined. The procedure follows closely that of determining the
fields inside a conical waveguide due to a similar type excitaﬁon (see Harrington
[1961], Hadidi [1985]). Although only electric current sources will be considered .

herein, magnetic current sources can be handled in an identical manner.
4.1 Formulation of the Problem

Consider the case of an electric current sheet which is symmetric about the z
axis interior to an infinite paraboloid . The current sheet may be expressed by the

following equation :

T(E,m)=Jg(M)d(E—E")ay,. (4.1)

In Eq. (4.1) 8( & — £ ) represents, as usual, the impulse function and Jyp(m)
represents the magnitude of the current sheet. The dependence on m of the magni-
tude J4 (m) is not shown explicitly since it is arbitrary. In order to simulate a

current ring the i dependence will be set equal to the impulse function as well.

It is obvious that this specific excitation of Eq. (4.1) will produce fields which
are independent of the coordinate ¢. Thus the Abraham potentials are appropriate
and in fact it will become apparent that only the potential U will be necessary since

the fields will be transverse electric (T.E.) to the z axis.
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The potential U can be represented in terms of an infinite summation of eigen-
functions as shown below in Eq. (42). Note that the Coulomb wave function of the
third kind is used in region II (ie. in the region where £ > £° ),. The reason for this
is that outward travelling waves are desired in region II zand these are best

represented by wave functions of the third kind.

,

34, FO[%.%xeleO[—;%,-;—xnz] 0<E<t® ,0<m<m,,
n

U (&,m)=] . (42)

B, H{ [%,%xezl F0[4K ,—;—an' E>¢", 0<q<n,.
n

The summation over n in Eq. (4.2) represents a summation over the ordered eigen-
values where the eigenvalues A, = C, /4K are obtained from the transcendental -
equation produced by applying the boundary conditions on the walls of the
waveguide. The following discussion will proceed independent of the boundary con-
ditions on the walls of the waveguide. All that will be assumed is that a transcen-
dental equation can be found and solved, producing the eigenvalues necessary in the

following equations.

The field expressions can now be obtained from the potential U. Note that
since the field will be T.E. to the z direction, this implies that E.=E,=Hyz=0.

Hence,

E¢(§,n)=%U(§,n) (43)

H ) = —iwe aU (&,m) a4
E(g M) pKz\/g—Z:-Tz- a1 (4.4)

H s = iwe aU(&?“) 4
-q(§ M) pKz\/§2+_nz 3t (45)

The continuity of E 4 at £ =¢" must now be imposed on Eq. (43) and from this
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1° ‘1
—i nK VE* +xq? Hy Fo—Fg Hy
LT gy (1) =5 B,

C' -
we n FO[“.%xe’]

, (4.10)

where the argument of the wave functions in the numerator are the same as that of
the denominator. Now recalling the wronskian relation for the Coulomb wave func-

tions
FyGy—FyGy =1,
and recalling that
Hl =G, +iF,
it is seen that
H}'Fy—-Fy H} = {Go’ + iFo’]FO - FO'[GO + iFO] =Gy Fo—GoFy = -1.

Thus Eq. (4.10) becomes

, \/EJ B
8 we = 2"¢(T‘) = 2 C— "1 FO[-—C‘-' K’ (4.11)
n Folz—;—,EKf.zl

Now Eq. (4.11) can be recognized as the generalized Four:ier transform of the
function on the left with Fourier coefficient being enclosed in the brackets. There-
fore using the orthogonality property of the regular Coulomb wave functions, which
was derived in chapter 3, the coefficients B,, can be obtained. Multiplying Eq. (4.11)

by 2/z F0(4ix",z ), where z =%k n? and integrating over the range 0< z < z,,

where z, =%k n2, we arrive at




condition the following is obtained :

Cll . CI -
A FolG tee] =B, md (G dee]
and thus,
1€ 1, .2
7 (5 3ee]
A, =B, (4.6)

Also, the appropriate boundary condition at a current source must be applied.

This can be expressed in vector form as
A ( rr rr T
Aax{(HO M) =T (&,m) . (4.7)

where 7 is the unit normal into region (I) and j; is the current sheet at the interface

between region (I) and region (II). For the specific case under consideration here,
fi. = —d; and f; = J of Eq. (4.1). Thus applying the boundary condition of Eq.

(4.7) to the problem at hand at £ = £" we get
H (" ,m) —HD (87 ,m) =T4(n)8(E" —€ )ag =J4(n)dy . (48)
Substituting the expression of Eq. (4.5) into Eq. (4.8) one obtains

iwe

J = X
LY

‘ Cll . ‘ Cl - Cn
san i (& e -aro (G drerol G e

n

, (4.9)

where the prime represents differentiation with respect to the argument z = %X £2.
Applying Eq. (4.6) to the result of Eq. (4.9) and performing some algebraic manipu-

lations we arrive at
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(.oeN,,2 4K’ 4K

ZO
B =K po[c" —;-xe‘zjfn VE® +n2[—3-]1¢(n)Fo[—c' ,szz,
0

or

Mo
Bn = i 4K Fo[cn '%’Kf.z]f ‘g‘ +T|ZJ¢(T‘)FO[:4%’%K'QZJ d'ﬂ ’ (4'12)
0

meN,,z x

where N, represents the normalization constant for each eigenvalue.

If it is assumed that the current sheet becomes a current ring then J o{(m) can

be expressed as
T (M) =Jioep 8(m—7") with " =m,, (4.13)

where J loop Tepresents the magnitude of the current flowing in the loop. Substitu-
tion of this into Eq. (4.12) yields
4K J 100 Vg"+q" ]

= [40
weN?

<, 1. . Cu . .
ax ’7’”2'1:0(“’%‘“ 2] ’ (414)

n

and from Eq. (4.6)

i 4K Jjp0 Vg"+n" . [_C
0

weN?

n

1. ,,"JH(} [ C '_,%xgﬂ] ) (4.15)

As can be seen from Eq. (4.14) and Eq. (4.15) the series coefficients A, and B, are
only functions of the eigenvalue, as the notation used (n subscript) would imply. If

J loop is set to

€

= | (4.16)

Ji
CPrEv s

then the equations for the coefficients simplify to
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B, = ——Z-FO( =3k ‘2]F0[7;—.%Ke‘2 , (4.17)
Nn
and
i _Cll - Cl -
A, = =7 Folo2 ,%an]H(} [u,%xe ) (4.18)

n

These equations were used to calculate the first few coefficients for a para-
boloid with focal length equal to 1 meter and source frequencies of 100 MHz., 250
MHz., and 500 MHz. These frequencies were used because the eigenvalues were cal-
culated for these frequencies in the previous chapter. Calculati§ns were made for a

current ring of radius % meter located in the plane of the focal point. This current

ring can be represented by letting £ = L and " = \—}2— Note that both these

V2

coordinates have the same value since the ring is located in the focal plane. As a

check, the radius of the ring r is given by

r = §‘ 'q' = -%-meter , : (4.19)

which is what we required. The coefficients for the Dirichlet. boundary condition
are shown in Table 4.1 for all three frequencies. The Neumann and the Robin boun-

dary condition cases are also shown in Tables 4.2 and 4.3, respect'ively.

As can be seen from viewing the tables, the coefficients become smaller and
smaller as the mode number n increases. This is what would be expected to happen
since similar results appear in conical waveguides and other wa.veguides. Thus only
the first few modes actually propagate down the waveguide with the higher order

modes being highly attenuated.
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TABLE 4.1

Eigenvalues and Series Coefficients for the Dirichlet Case

Focal Length = 1 meter

100 MHz 250 MHz 500 MHz

X\, B, /i A, B, /i A, B, /i

0.5083 | 0.8315x101 -0.7868 | 09134x10™1 | -2.8482 | 03022x107!
2.5904 | 03975%1073 0.3574 | 02402 -1.3326 | -0.1819

58261 | -0.1634x1076 1.6424 | -02067x107! | -0.2952 | -0.3992x107!
10.2400 | -03671 x10712 | 33919 | -0.7448x1073 | 0.5911 | -0.2203

56191 | 03648x107° | 1.6480 | -0.5856x107!
8.3209 | 03667x107% | 2.9597 | 0.1915x107!
4.5213 | -0.1423x10™*
63269 | -0.2087x107
8.3735 | 0.5161x1077
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TABLE 4.2

Eigenvalues and Series Coefficients for the Neumann Case

Focal Length = 1 meter

100 MHz 250 MHz 500 MHz

A, B, /i A, B, /i \, B, /i
-02853 | 0.1300 -1.7051 | -3375%107! -4.1067 | 0.1927x10~2
1.4408 | 0.1313x1071 | .0.1828 | 03030 -2.0163 | 0.1485x10~1

4.1050 | -.6222x10™5 | 09510 | 03765x10! | -0.7743 | -2924

79360 | -0.5142x107% | 24663 | -07351x1072 | 0.1426 | 0.4041x10~1
4.4589 | -0.1253x107° | 1.0895 | -02495

6.9264 | 0.1963x1076 2.2746 | 0.2932x1071
9.8667 | -0.1071x1071% | 37134 | 03661x1072
53987 | -0.1221x1073
7.3261 | -0.1208 %105
9.4931 | 0.1260x1077
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TABLE 4.3

Eigenvalues and Series Coefficients for the Robin- Case

Focal Length = 1 meter

100 MHz 250 MHz 500 MHz
A, B, /i An B, /i A, B, /i
0.1161 | 0.1088 .1.1043 | 0.1087x107! | -32193.] 0.1642x1071
1.8132 | 0.4580x10™2 | 0.0852 | 0.3032 -16168 | -0.7445x107!

45313 | -0.2984x1075 | 12410 | -0.6194x1072 | -0.5186 | -0.1847

83900 | -0.1319x107% | 28113 | -03394x1072 | 03580 | -0.7900x107!
48424 | 0.8564x1075 | 13408:| -0.1604

73367 | 0.6537x1077 2.5666 | 0.2932x1071
102960 | -0.1019x107 | 4.0379 | 0.1215x1072
57492 | -0.6892x10~*
76977 | -0.2510x1078
9.8820.| 0.5416x1078




CHAPTER 5

THE FINITE PARABOLOID

Up to now the fields inside an infinite paraboloid have been determined. The
logical step now is to consider the finite paraboloid and to detefmine the fields exte-
rior to it. Obviously this is the much more practical situation, since this problem
could be used to represent the fields of a paraboloidal reﬂector.. In this chapter the
paraboloidal reflector is treated as an aperture antenna and the field equivalence prin-
ciple or Huygens’ Principle is used to determine the far field from the antenna. The
far field is represented in spherical coordinates (r ,8,¢ ,) and is plotted as a func- |
tion of @ at the end of this chapter. Of course, the assumption of symmetry of the
fields with respect to ¢ is still made so that the field expressions of the previous

chapters can be used. Thus the far field patterns will also be symmetric in ¢.
5.1 Field Equivalence Principle: Huygens’ Principle

The field equivalence principle is a stricter form of Huygens’ principle which
allows one to replace actual sources with equivalent sources. Huygens’ principle can

be summarized by the following excerpt from Kraus and Carver [1973]

each point on a primary wavefront can be considered to be a new source of a
secondary spherical wave and that a secondary wavefront can be constructed as

the envelope of the secondary spherical waves.

The equivalence principle combines this with the Uniqueness theorem which can be

summarized by the following excerpt from Harrington [1961}:
A field in a lossy region is uniquely specified by the sources within the region
plus the tangential components of the electric field over the boundary, or the

tangential components of the magnetic field over the boundary, or the former
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over part of the boundary and the latter over the rest of the boundary.

The problem of the finite paraboloid with current loop sources about the axis of
symmetry can be transformed into an equivalent problem by considering the closed
surface S shown in Fig. 5.1a. This surface S is made up of the finite paraboloid itséif
plus the paraboloidal aperture surface described by £ =£, for < qn<m, . The
outward normal oﬁ the aperture surface is given by # =d; . The fields outside the
surface S are denoted by E 1 and H 1 while the fields inside will be denoted by E and
H . The equivalent problem of Fig. 5.1a is shown in Fig. 5.1b. The original current
loop source which was interior to the closed surface S was removed with equivalent
sources J, (£, ,m) and M, (&, ,m) placed on the surface £ =&, . These equivalent

sources are given by

j =ﬁx{z’1‘1—ﬁ] , (5.1)

and

X
il

-R x{El—E} i . (52)

The current on the outside walls of the finite paraboloid is assumed to be equal to

Zero.

Now, by the equivalence principle, it is assumed that the e_;luivalent sources on
the surface § =, produce the original ﬁeld-(E— 1 JH 1) only outside the surface S.
The fields produced inside S by the equivalent sources will n;>t in general be the
same as in the original problem and in fact they can be set equﬂ to any convenient
value. A form of the equivalence principle, known as Love’s Equivalence Principle
(see Love [1901]) is now used, which sets the field inside the surface S equal to zero.

This reduces Eq. (5.1) and Eq. (5.2) to

J,-":ﬁ XEI'-:éexEl, (5.3)
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and

M

s

=i XE;=-a, XE, . , (54)

For Ey and H 1 at the surface £ =§, we use the field which wouid have existed if the
paraboloid was infinite. This is the standard procedure in the aﬁalysis of the conical
horn and it will be used here because of the close resemblance between that problem
and the present problem. Thus the fields over the aperture,‘: for a current loop
described by Eq. (4.16), are given by Eq. (333) - Eq. (335) at £ =&, with the B, s
given by Eq. (4.17). The B, s were calculated and tabulated 'in the last chapter.
Thus for the problem of the current loop of chapter 4 the field will be T .E. to the z-

axis and therefore Eq. (5.3) and Eq. (5.4) become

Jo =H_(§,,m)dy =J4(&,,m)dy, 0<n<n,, (55)

and

M, =E¢(§o’“)&q=Mq(§o !“)én’ 0<n<m,. (5.6)

The far field can now be obtained from the equivalent sources by using the aux-

iliary potentials A and F where in general

X=-Z’J’;ffffe;mdv', (5.7)
4
and
FefffH a0 (558)
v |

The integration volume V is the volume containing the sources and the distance R is

the distance from the source point to the observation point.
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If we define, as usual, 7 as the distance from the origin to the observation point

and 7 as the distance from the origin to the source point then we have
R = [? - i-"] - (59)
For far field calculations we make the usual approximation (see Balanis [1982])
R = r —r cosy ,for phase term, (5.10)
and
R = r ,for amplitude term. (5.11)

where { is the angle between the vectors 7 and 7 ", If these approximations are sub-
stituted into Eq. (5.7) and Eq. (5.8) and the equivalent surface current expressions

are used then the far field auxiliary potentials can be expressed as

A= -ﬁ-{'f J, e_:R ds’ = 1”4—";:—‘:—'-174 : (5.12)
where
Ny = [T, etreosbas’, : (5.13)
< .
and
F = ——e_‘-; { | &, ‘—:R ;s € ::f_' e (5.14)
where

Lp = [ [ i, e*reovvas”. . (5.15)
g .
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The vectors N, and Ly are sometimes called the radiation vectors. -

It should be noted at this point that the relations given by Eq. (5.7) and Eq.
(5.8) are only valid for the rectangular components of the auxiliary potentials. Thus
the required equivalent sources for use in these equations and equations derived

from these must be expressed in terms of the rectangular components such as

J=Ja +Ja +J a, . (5.16)

Since the fields we have determined in previous chapters are expressed in terms of

rotation-paraboloidal components, such as
J=Jeag +J 4, +Jgdy . (5.17)

it will be useful to write the rectangular current components for the above equations
in terms of rotation-paraboloidal coordinates. To accomplish this we turn to the law
of transformation of vectors (see Morse and Feshbach [1953]). This law states that if
we transform the components of a vector F from one curvilinear coordinate system
(£y,E2,E3) with scale factors (hy,h,k3) to another coordinate system
(g'l , §'2 ,§'3) with scale factors (h'l Jh ‘2 ,h'3) , then the components in the new sys-

tem must be related to the components in the old system by the relations

Fo=3YmFn » : (5.18)
m .

where

o] 1 e o [

The rectangular coordinates are related to the rotation-paraboloidal coordinates

by the relations
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‘T sin , (520)

with scale factors given by

h1= '§2+ﬂ2 ’
hy = VE2+q? (521)

hy=§&mn .

Thus with the help of Eq. (5.18), the transformation from rotation-paraboloidal com-

ponents to rectangular components can be written as

J, = —3%15 + —j#:—s%Jn ~ sing'J, , (5.22a)
VE % +q VE 2 +q
‘sind’ ‘sind’ .
J, = = —=J, + = =J_ +cosbJ, , (5.22b)
T Vet Vg2 T *
J, = —L—JE - e, . , (5.22¢)

§‘2+T]’2

Similar results are also obtained for the components of the magﬁetic current density
required in Eq. (5.15).

Since the radiated fields are usually determined in spherical components, the
rectangular unit vectors of Eq. (5.16) can be fransformed into s:pherical unit vectors
using the transformation from rectangular components to spherical components given

by

a, = da,sinfcosd + dgcosbcosd — 4 oSind
4, = 4, sinfsind + dgcossing + dycosd , . (523)
d, =4, cos8 — dgsind . '

The variables in these expressions are not primed as they weré in Eq. (5.22) since




there they represented coordinates at the source points and in this transformation

they represent coordinates at the observation points.

Theoretically, the auxiliary potentials could now be calcuiated by substituting
Eq. (5.23) and Eq. (5.22) into Egs. (5.12) and (5.14). Our problem will be greatly
simplified because not all the components of the current densities exist. It will be
more convenient to hold off the calculations until expressions for the actual far fields

-

are obtained.
5.2 The Far Field Expressions

Once the auxiliary potentials have been found, the fields can be obtained from

the relations

= _ 1 —
F=-iwi e : (524)
and
H=L1VxZ-ioF—i V(Y F) . (525)
I WpE '_

It can be shown (see Balanis [1982], p.455) that the far field can be approximated by
the set of relations

7

E.(8,0)=0,

[ Eot8.0) = T8 cmixr {pr\/—lvde] , (526)
E¢(ey¢)~ 1157 -‘Kr{ V-NAtb] ’

and
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H . (8,$)= 0,
~ K - € : ’
Ho(8,0)= 4 —e ikr [NA¢—\/ELF9] . (527)

—iK _; €
Hy(0,4)= i&r IN +\/:L :
tb( $) 4,“,,8 [ A0 " F¢]

where the Nyg, Ny g, Ly, and Lp g are obtained from Eq. (5.13) and Eq. (5.15) and

L

are functions of 6 and ¢. Thus to obtain the far field , all that is required is that we
solve Eq. (5.26) and Eq. (527). This, in turn, entails solving for Nyo»Nags Lro, and
Lp 4. After all the coordinate transformations have been applieﬁ to the electric and
magnetic current densities of Eq. (5.5) and Eq. (5:6) and after extensive

simplifications, the required radiation vectors can be expressed as

2w Mo

Nyo=§&, cosefj; sin{d: —¢')J,,,(§,, 0 )eEOn VEZ + 4 2dndd,  (528)
0

21 Mo

Nyo=E,ff cos{¢—¢‘}1¢,(go 0 )e®On VEZ +n'2dn'£_1'¢' , (529)
00 .

2w Mo .
Lee =&, [ [ Lo cosecos{d;—d)'} + n‘sine}Mn(go 0 )e¥®n'dn'dd ,(530)
00 .

211’“0
Lry =82[ S sinw‘—d»}M,.(e., o )e®Oqndndd, . (531)
00 .

where

e = [go 7 sin® cos[¢ - ¢'] + -;— [g} - n’z]cése] . (532)

From Egs. (5.5) and (5.6) and from chapter 4, the equivalent current densities can be

expressed as



68
J¢(§o 911’) =H'q(§o :“‘)

i o1 1. .
= 2 S B, HY (M, 5K EDFo(—2 5K ), (533)

'q'K V§Z+ni n 2

and

M-q(go v"\') =Ey4 (& :T\’)

1 1 1., -
= —= 3B H§ (A, 5KEFo(Ay, K0 %) (534)

goﬂ n

These expressions can now be substituted into Eqs. (528) - (5.32). Since the summa-

tion is over n, the summation sign can be brought outside the integral. Thus we can

express the radiation vector components, for each mode n, as

 we . 1
Nyo =—-—‘I"; B, £, cosOH} (x,,,-z-xgg)x

Z'Rﬂc
] . 1. o9y .. -
J [ sin(=8YFo(-N,, 5K 2)e%dmde, (535)
00 .
iwe . 1
NA(b. = 'T(;—Bn §0H(} ()‘n "i'Kgoz)x
2w e 1 .
J [ cos(é=¢)Fo(Xg, 5K ?)e"0dnde, (5:36)
00 .
1
LFO. = B, H(} ()‘n ,-2-K§3)><
211'110[ ] 1 .
) | Eo cos6 cos(& -¢) +n'sineJF0(—x,, ,-i-K'q'z)é"Kedn'd $ , (537
00 ‘

and
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1
Lro, = Babo HE (A, 3K ED) X

271 Me
[ sin(8'=8)F oy, 2K0D)e®Odn'd s’ (538)
00 :

The radiation vectors can be obtained from the above expressions by applying a sum-
mation over n. This should turn out to be neccessary for the first few terms only
because the series coefficients B, , shown in the tables of chapter 4, converge rapidly.m
In principle this is fine, but when one actually tries these computations problems
arise. The problem with the determination of these radiation vector components is
in the calculation of the Coulomb wave function of the third kind which is present
in all four expressions of Eq. (5.35) - (5.38). Calculation of these functions entails
calculation of the logarithmic Coulomb wave functions which are in general very
difficult to compute. The problem arises because of the need for values of the loga-
rithmic function for negative parameter. That is, when the eigenvalue A, is nega-
tive, which is the case for the first few modes, the parameter for which the loga-
rithmic wave function must be calculated is also negative as can be seen in the
expressions. Now this is not a problem for the regular wave functions because we
have a series representation which converges fairly well, but for the logarithmic
functions the series representation does not yield to simple computations. The alter-
native would naturally be to integrate the equation, with the negative parameter,
using a method such as the Runge-Kutta method, but this is useless without some
initial values for the function and its derivative. The function values at the turning
points, which were used in chapter 3, are of no use because these are defined for a
positive parameter only. The function value at z =0 is defined by Eq. (3.21) but its
derivative, which would also be required in the Runge-Kutta tf:chnique, is undefined
as can be seen from Eq. (322). There are no other published results which would
give us starting values when the parameter is negative. This is primarily due to the

fact that in the field of nuclear physics, where these functions are normally
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encountered, a negative parameter has no physical significance.” Thus the computa-
tion of the exact radiated field would have to be left until a useful computation tech-
nique is found for calculating the logarithmic Coulomb wave function when the
parameter is negative. Results can be obtained for the 100 MHz Dirichlet and Robin

case since all the eigenvalues are positive for those cases.

For now the way we will get around this barrier is by calculating the radiation

field for only one mode in the series expansion except for the 100 MHz Dirichlet and

Robin cases as mentioned above. It will turn out that the far field plots for the first
mode will not enthral us with a lot of information about the total far field due to a
current ring but they are presented just the same for completeness. This will allow
us to set the wave function of the third kind to 1 in the radiation vector components
of Eq. (5.35) - (5:38).

Once the far field has been calculated from Egs. (526) and (5.27) it is a simple
matter to calculate the radiation intensity U (8 ,¢ ). The radiation intensity can be

formulated from the far-zone electric and magnetic field components as

U(6,4)
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where the asterisk superscript denotes the complex conjugate of the expression in the

e+ | s

brackets.

Substituting Eq. (5.26) into Eq. (5.39) and normalizing the result, we obtain the

relative radiation intensity F (0 ,¢ ) as

Lpy + V%'-NAO

where N, is the required normalization constant.

2

+

2
F(0,4) = L) - , (540)

Lpo — \/%-NM
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5.3 Nomerical Results

The integrals of Eqs. (536) - (538) are not easy to perform analytically. Thus
they were performed numerically using a 20 X 20 point Gauss-Legendre Quadrature
algorithm. The problem which was solved was for the dominan:t mode of a current
loop with a ¥ meter radius located in the plane of the focal poigt of the paraboloid.
Calculations were performed for all three types of boundary conditions and for all
three previous frequencies of 100 MHz, 250 MHz. and 500 MHz. jThe- exact result for
the 100 MHz Dirichlet case and the 100 MHz Robin case were obtained and the rela-
tive radiation intensities are shown in Fig. 52. The size of the pz:u'aboloid was chosen
to be of 1 meter focal length as in previouse calculations. It was also assumed that
the walls of the paraboloid extended up to, but not beyond, the focal plane. Thus

the aperture surface is described by the coordinate surface
E=f,=m, , 0<a<wm, , (541)

where m, corresponds to a focal length of 1 meter and is related. to the focal length f

by
N, = 2f . (5.42)

The relative radiation intensity F (0,¢ ) was plotted as a function of @ for theta
ranging from 0 to 90 degrees at three degree intervals. Of course, because the fields
are symmetric in ¢, the relative radiation intensity function will be independent of ¢
and thus to simplify the equations ¢ was set equal to zero degrées. The three plots
corresponding to the three boundary conditions for the dominant mode only are

shown in Figs. 53 - 55.

As can be seen from Fig. 52, the impedance boundary condition has an effect
on the far field radiation pattern. This is what we would expect since the field distri-
bution inside the paraboloid is changed. The radiation pattern due to the impedance

boundary condition case seems to give a more omnidirectional pattern than the
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perfectly conducting case. Thus it seems that the Coulomb wave functions give accu-

rate results for the far field of a current loop inside the paraboloid.

The far field plots due to the first single xhode do not seem to tell us too much
about the total field. If single modes could be excited inside the paraboloid then
these plots could be useful. Efficient calculating methods are dejsperately required in
order that the total field such as the one plotted in Fig. 52 may be obtained for the

general case and thus firmly establish the method.
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CHAPTER 6

CONCLUSIONS

A method has been presented for the evaluation of electromagnetic fields which .
are independent of ¢ inside a paraboloidal waveguide. The method makes use of the
Coulomb wave functions as eigenfunctions for the problem. Although there is little
available information on the Coulomb wave functions, their calculation has been
achieved with little effort. The procedure is not restricted to the high frequency
case as has been shown and thus this is its main advantage. There are no approxima-
tions made in the analysis and, except for the assumption that the fields must be
independent of ¢, the analysis is exact. For the case of the finite paraboloid the Kir-
chhoff approximation was used in the application of Huygen’s principle (ie. the

incident field for the infinite paraboloid case was used as the Huygen source).

We have found that a finite impedance on the walls of the paraboloid tends to
change the far field pattern. specifically the far field pattern seems to be more omni-
directional for the impedance case than for the perfectly conducting case. Whether

or not this is a general result will have to wait until further calculations can be made.

Further study is required into the calculation of the irregular Coulomb wave
functions for a negative parameter. Once this is done and an efficient computing
technique is devised, this method of solving the paraboloidal problem should yield

many interesting characteristics. Some of the more important characteristics which

are required are the input impedance of the source at the focal point and the

difference in radiation pattern due to sources which may be shifted up or down

along the axis away from the focal plane.
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It is recommended that deep paraboloidal horns are constructed and that exper-
imental radiation pattern results be obtained. Also, since the pai'aboloid is asymptot-

ically equal to the cone, it is suggested that the possible use of the Coulomb wave

functions for the conical horn problem be investigated.




APPENDIX A

THE GENERAL METHOD OF FROBEN:IUS

In this appendix the general method of Frobenius is used to obtain solutions to
Eq. (2.37), which is the original differential equation obtained afjter separation of the
partial differential equation. For convenience the differential equation under study
is rewritten here with y as the dependent variable, x as the indei)endent variable and

\ as the parameter. Thus the equation becomes

,
dly _1dy  (p2.2.,)_
) xdx+le +A) 0, x=0, K=0. (A1)

This equation was transformed into a more familiar form in chapter 4 by the

transformation
1. 2 '
z = —2"K x : (A2)
to obtain the equation
dly w1+ 22 =0 : (A3)
dz? 2Kz2 y=u .

From Eq. (A3) we can immediately see that when A = 0 we obtain the complete

solution of Eq. (A.1) given by
y(z) =Acos (—;—sz) + B sin (-%sz) . (A4)

Thus from this point on we will assume that A # 0.

We now concentrate on solving Eq. (A.1) in the neighborhood of the regular

singularity x = 0. In applying the method of Frobenius to Eq. (A.1) a solution is -
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chosen of the form

y(x)=x" i cux™ , (co#0) . (AS5)

m=0

-

where the exponent r may be any (real or complex) number and is chosen so that

co # 0 (see Kreyszig [1983], pp. 161).

The assumption that ¢y # 0 leads us to an important quadratic equation called
the indicial equation. The roots of the indicial equation corresponding to Eq. (A.1)
are 0 and 2. Thus there is a series solution starting with xz, that is, we assume a

solution of the form

N e’

y1=x2{co+c1x +eqx? 4+ -

but on substituting this into Eq. (A.1) we soon find that all the odd powers of x van-

ish. Therefore the series can be written as

y1=x2{c0+czx2+c4x4+ +cz,x2’+'_---} . (A6)
If we take ¢ = 1 after substituting Eq. (A.6) into Eq. (A.1) then we obtain
A 1 | a2 2
Crp=—— , ca=——|——-K A7
27 8 AP Y! [ 8 (A7)
and the three term recurrence relation
r(r+2)cy =-Acpp~K?cpq (r=2). (A8)

The convergence of the coefficients can be checked from Perron theory of

difference equations. Thus we find that

Cor
Cor—2

=0(r 1)~ 0asr -~




81

Thus the series given by Eq. (A.6) converges for all finite values of x. This is what
we would expect since Eq. (A.1) has no finite singularity other than x = 0, so that
the power series about x = 0 converges for all x with | x | < o, Hence we have a
solution given by Eq. (A.6) with coefficients given by Eq. (A.7) and Eq. (A.8). This
solution is comparable to the regular Coulomb wave function obtained in chapter 3

and in fact we see that y, = 0 at x = 0 which was our condition for orthogonality.

The second solution must now be found (ie. the solution corresponding to the
root 0). Since the two roots of the indicial equation differ by an integer we expect
difficulty in finding the solution which starts with the exponent 0. If we try a solu-

tion of the form
y2=ao+a1x +02I2+ AR

we find that all we get is the solution y(x ) back again. Thus we look for a loga-
rithmic solution (note that this would be implied from our previouse knowledge) of

the form

y2=yiln(x) +v(x) . : (A9)

On substituting this into Eq. (A.1) we find the equation for v (x)tobe

. . 2 291
y -1y +{K2x2+x}v =—)%——y—l— . (A.10)
X x X

We try solving this by a power series, thus

v =by+ bax? +byxt+ - (A.11)
and we get
-2 .
by = ~ b, = arbitrary (A.12)

with the recurrence relation
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4r (r + 1)b2,+2 + sz, +K2b2,_2 = ‘_2(2" —I)Cz’. . (A.13)

We can take b, = 0 and get

11K2 , 3\
= —}— 4+ —
I I 8] :
. 2 . (A.14)
be=— |K*— 1
L 67 144 8 ]

with the rest of the coefficients given by Eq. (A.13). Thus we have obtained the log-
arithmic solution as given by Eq. (A.9) with coefficients given by Eq. (A.13) and
(A.14).

It is interesting to see what happens to this second solution as x - 0. Taking

the limit as x - 0 of y, we find that
-2

We see from Eq. (3.21) that at x = 0 the irregular or logarithmic Coulomb wave

function is also a function of \.

Solving the differential equation by the method of Frobenius has thus yielded
the same properties that were found for the solution in terms of the Coulomb wave

functions.




APPENDIX B

INVESTIGATION OF THE RECURRENCE RELATION

The recurrence relation given in chapter 3 by Eq. (3.8) is rewritten here as
A, —YA, tr(n—-1)A, =0 . (A1)

where y = 2. We can convert this equation into a non-linear first order difference

equation by setting A, /A,_; = V,. This produces the equation-
1= yVyog +0(n =1)VuyV, =0 . - (A2)
If we assume an asymptotic solution, for large n, of the form
Vo~ V=Bnrn™, (A3)
and substitute this into Eq. (A.2) the we arrive at
1-yBn*+n(n—-1)B2n 2 =0 .
For large n this becomes
1-yBn™®+Bp¥ 22 =0 , ] (A4)

To eliminate the highest powers of n in Eq. (A4), we must have 2 — 2 = 0 which
implies that @ = 1. Thus Eq. (A.4) givesus 1 + B? = 0 which implies that B = = |,
Hence Eq. (A.2) has two asymptotic solutions of order O (n'lj so that the general
solution of Eq. (A.1) is recessive and the recurrence relation given by Eq. (A.1) is

stable,
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