
Deterministic Byzantine-Resilient Robot
Gathering

by

Ullash Saha

A thesis submitted to

The Faculty of Graduate Studies of

The University of Manitoba

in partial fulfillment of the requirements

of the degree of

Master of Science

Department of Computer Science

The University of Manitoba

Winnipeg, Manitoba, Canada

August 2020

c© Copyright 2020 by Ullash Saha

Thesis advisor Author

Dr. Avery Miller Ullash Saha

Deterministic Byzantine-Resilient Robot Gathering

Abstract

Gathering is a fundamental problem in the field of mobile robot algorithms. The

goal is to gather the robots at a single point, which can be useful for sharing infor-

mation or coordinating future actions. In this thesis, we consider models in which

m robots are placed at nodes in a graph of size n, and the goal is to gather them

at a single node of the graph. Here, each robot has an identifier (ID) and runs its

own deterministic algorithm, i.e., there is no centralized coordinator. We consider a

particularly challenging scenario: there are f maliciously faulty robots in the team

that can behave arbitrarily, and even have the ability to change their IDs to any value

at any time. There is no way to distinguish these robots from non-faulty robots, other

than perhaps observing strange or unexpected behaviour. In this thesis, we seek to

design a deterministic algorithm that is run by each robot to eventually have all the

non-faulty robots located at the same node in the same round. It is known that no

algorithm can solve this task unless there at least f+1 non-faulty robots in the team.

In this thesis, we design an algorithm that runs in polynomial time with respect to

n and m that matches this bound, i.e., it works in a team that has exactly f + 1

non-faulty robots. In our model, we have equipped the robots with sensors that en-

ii

Abstract iii

able each robot to see the subgraph (including robots) within some distance H of its

current node. We also prove that the gathering task is solvable if this visibility range

H is at least the radius of the graph, and not solvable if H is any fixed constant.

Contents

Abstract . ii

Table of Contents . v

List of Figures . vi

List of Tables . vii

Acknowledgments . viii

Dedication . ix

1 Introduction 1

2 Preliminaries 5

2.1 The Model . 5

2.1.1 Mobile Robots in the plane 5

2.1.2 Robots’ Synchronism . 7

2.1.3 Mobile robots in Graphs . 8

2.2 The Gathering Problem . 11

2.3 Roadmap . 11

3 Literature Review 13

3.1 Mobile Robots in the Plane . 13

3.2 Mobile Robots in Graphs . 15

3.2.1 The Gathering Task in Graphs with Faulty Robots 17

4 The Known Algorithms 21

iv

Contents v

4.1 Algorithm Weak-Byz-Known-Size . 23

4.2 Algorithm Weak-Byz-Unknown-Size 24

4.3 Algorithm Strong-Byz-Known-Size 25

4.4 Algorithm Strong-Byz-Unknown-Size 27

4.5 The Polynomial-Time Algorithm with Strong Byzantine Robots . . . 28

5 Our Algorithm 32

5.1 Definitions and Terminology . 32

5.2 H-View-Algorithm . 34

5.2.1 High Level Description . 35

5.2.2 Algorithm Details . 38

5.3 Analysis . 42

6 Impossibility Results 56

6.1 A lower bound on the number of non-faulty robots: weakly Byzantine
faults, unknown graph size, and H = 0 57

6.2 A lower bound on the number of non-faulty robots: strongly Byzantine
faults and known graph size . 61

6.3 A lower bound on the visibility range 64

7 Conclusion 69

7.1 Contributions . 69

7.2 Future Work . 70

Bibliography 72

List of Figures

5.1 Snapshot views with visibility range H = 4 35

6.1 Two executions of algorithm A where each red ID represents a Byzan-
tine robot, and each blue ID represents a non-faulty robot in the graph:
EX2 fails to gather the non-faulty robots 63

6.2 Initial positions of the robots in two executions of the algorithm where
red nodes are inside the visibility range of α 66

vi

List of Tables

3.1 Upper and lower bounds on the number of non-faulty robots needed
to solve Gathering in the presence of f Byzantine robots (according to
the result in [23]) . 19

3.2 Results about Gathering in previous works 20

vii

Acknowledgments

First and foremost, I would like to express my sincere appreciation and gratitude

to my thesis supervisor Dr. Avery Miller, to give me the opportunity to do research

under his supervision and provide me with invaluable guidance throughout this re-

search. His helpful insights and immense knowledge on the subject improved the

quality of the results and presentation of the work. I would like to extend my deepest

gratitude to my thesis committee member, Dr. Stephane Durocher and Dr. Pari-

mala Thulasiraman, to spend valuable time reading and evaluating this thesis. I am

also grateful to the GADA lab members for their insightful suggestions, support, and

warm humor, special thanks to Yeakub Hassan Rafi for his great company for the last

two years. Thanks should also go to my friends and roommates for listening, offering

me advice, and giving me a lot of amazing memories. I cannot begin to express my

thanks to a special person, Joyasree Saha Jui, who has provided me with tremendous

moral support through this entire process and writing this thesis. Finally, I would

like to mention my parents: Ranjit Saha and Chandana Saha, my siblings: Rajib

Saha and Uday Saha, and other family members - Rodela Saha and Rajya Saha, who

are the ultimate source of my inspiration.

viii

This thesis is dedicated to my beloved father, mother, and family for

their continuous and unconditional love, prayers, and support throughout

my life.

ix

Chapter 1

Introduction

The study of algorithms for mobile robots has received significant attention in

the field of distributed systems. Tasks that were previously executed by a single

expensive robot can nowadays be completed in a distributed manner by deploying

multiple cheap robots. Mobile robots play a vital role in real-life applications such

as military surveillance, search-and-rescue, environmental monitoring, transportation,

mining, infrastructure protection, and so on. In another potential application, mobile

robots may represent autonomous vehicles that move on the streets in a city, and the

configuration of the streets can be viewed as a network. In networks, robots move

from one location to another and collectively complete a task. In order to complete

the whole task as a team, the robots could meet each other multiple times to share

their partial information or for any other purposes. In addition, robots are sometimes

required to meet at a place after they finish the entire task concurrently. Therefore,

gathering becomes a fundamental problem for mobile robots in networks.

1

2 Chapter 1: Introduction

Gathering is hard to accomplish even in a fault-free system, as the robots may

not have any planned location where to meet, nor any initial information about the

topology of the network. Moreover, in a distributed system, each robot runs its own

deterministic algorithm to make decisions; there is no centralized coordinator. We

want a deterministic algorithm that can be run by each robot, and eventually, they will

gather at a single node which is not fixed in advance. However, if we consider identical

moves by the robots running a deterministic algorithm, gathering is impossible for

some network topologies. As an example, consider a group of robots placed in a

ring network. If each robot executes the same moves to accomplish gathering, all

the robots will move clockwise or counterclockwise in each time. As a result, the

distance between the robots will remain the same all times, and they can not be

gathered. Therefore, a correct algorithm needs to break the symmetric configuration

of the network.

In this thesis, we also consider a particularly challenging scenario in which some of

the robots are Byzantine: such robots do not follow our installed algorithm and can

behave arbitrarily. We can think of these robots as malicious robots in our system,

i.e., they have been compromised by outsiders/hackers, and, knowing the algorithm

we intend to run, they can behave in ways that attempt to mislead the non-faulty

robots into making incorrect decisions. Moreover, non-faulty robots do not know

which of the robots (or even how many of the robots) are Byzantine, because all

robots look identical. We face this type of scenario in real-world applications when

attackers try to disrupt the normal behavior of systems. This is the worst possible

case that we tend to deal with, so algorithms that are resilient to such attacks are

Chapter 1: Introduction 3

very useful.

The relative number of non-faulty robots versus Byzantine robots is an essential

factor in solving this problem. If there are many Byzantine robots compared to the

number of non-faulty robots, then the behaviour of the Byzantine robots can be

very influential. As shown in previous work [23], a team that contains f Byzantine

robots cannot solve gathering if the number of non-faulty robots is less than f +

1. The challenge, and the goal of our work, is to provide an efficient gathering

algorithm that works when this bound is met, i.e., when the number of non-faulty

robots is exactly f + 1. We provide such an algorithm in a model in which each

robot is endowed with sensors that allow them to see all nodes and robots within

a fixed distance H of its current location, where H is at least the radius of the

network. We also prove an impossibility result which shows that no algorithm can

solve gathering in this model if H is any fixed constant. It’s important to note that

this impossibility result does not contradict previous results [8, 9, 23, 40] that provide

gathering algorithms with no visibility, as those algorithms make assumptions about

additional information known to the robots (such as bounds on the network size, or

on the number of Byzantine robots) or make assumptions about additional features

such as authenticated whiteboards at the nodes. Depending on the application, our

assumption that robots are equipped with sensors that gather information about their

local environment could be more realistic than assumptions involving knowledge of

the global environment, knowledge of the number of faulty robots, or the presence of

a secure communication.

The new results that appear in this thesis have been accepted to ALGOSENSORS

4 Chapter 1: Introduction

2020 (The 16th International Symposium on Algorithms and Experiments for Wireless

Sensor Networks).

Chapter 2

Preliminaries

2.1 The Model

A model is a system abstraction that specifies what can be observed, a list of

operations we are allowed to perform and their effects. Two types of model are mostly

considered in the literature for the gathering task: Mobile Robots in the Plane and

Mobile Robots in Graphs.

2.1.1 Mobile Robots in the plane

In this model, robots move in a 2D-plane. Each robot cycles through three phases:

Look, Compute and Move. In the “Look” phase, each robot makes an observation of

the system. In the most popular versions, each robot gets a snapshot of the entire

system, i.e., where all other robots are currently located. The set of positions of all

robots at a given time is called the configuration of the system at that time. In the

5

6 Chapter 2: Preliminaries

“Compute” phase, each robot picks a point/location where it will move to, based on

what it observed in the “Look” phase. It can pick its current location, meaning it

does not move. In the “Move” phase, it moves towards the location it chose in the

“Compute” phase. Depending on the model, these phases can be synchronous for all

robots or can be asynchronous as well.

Robots have very limited capabilities under the most commonly studied version

of this model. First of all, robots run the same algorithm and have no ID. This

means that if two robots see the exact same thing during a “Look” phase, then they

make the exact same decision during the “Compute” phase. Furthermore, a robot is

memoryless in a sense that it cannot remember what it saw in earlier “Look” phases,

and cannot remember decisions it made in previous “Compute” phases. It only makes

a decision depending on what it sees in the current “Look” phase. More precisely,

the decisions made by the robots in the “Compute” phase are deterministic methods

of the observed environment only, and possibly of the robots ID, if available. In

particular, no source of random information is available for making the decision. In

addition, robots do not have any sense of chirality, meaning they can not distinguish

between clockwise and counter-clockwise. They do not have any sense of ordinal

direction as well (i.e., no compass). Another restriction of the robots is that they

cannot detect multiple robots at the same point. The observed snapshot during a

“Look” phase only indicates which points are occupied; there is no way of knowing

how many robots are located at the same point. A significant amount of algorithms

research has branched off from this model by modifying the above assumptions.

In some versions of the model, there can be faulty robots in the system. Mostly

Chapter 2: Preliminaries 7

two types of robot faults have been considered in the literature - Crash faults and

Byzantine faults. A Crash fault implies that the faulty robot can stop its execution

at any time of the executions, and does not perform any further computation or

movement. On the other hand, a Byzantine fault is more dangerous : faulty robots

may behave arbitrarily and maliciously.

2.1.2 Robots’ Synchronism

The cycle of “Look”, “Compute” and “Move” phases executed by the robots

depends on the synchrony of the system. There are three types of synchrony that are

usually considered.

• Fully-synchronous Model (FSYNC): In FSYNC, time proceeds in syn-

chronized rounds where each round contains a Look-Compute-Move cycle. All

robots participate in every round.

• Semi-synchronous Model (SSYNC): In SSYNC, time proceeds in synchro-

nized rounds each containing a Look-Compute-Move cycle. However, not nec-

essarily all robots participate in every round. There is a scheduler/adversary

who decides which robots participate in which rounds.

• Asynchronous Model (ASYNC) model: In ASYNC, there are no rounds.

Each robot's Look and Move phases are scheduled by a scheduler/adversary.

However, the Compute phase is a local operation of the robot that is not con-

trolled by the scheduler. The schedule events are Look(i) and Move(i), where

i specifies a robot in the system. An adversary decides how far the robot gets

8 Chapter 2: Preliminaries

to move, but there is a guaranteed minimum distance δ. The main difficulty

could be, for example - robot i might Look, then many Moves are performed

by other robots, then i decides to move based on out-of-date information.

2.1.3 Mobile robots in Graphs

In this model, robots are placed at nodes in an undirected graph network. There

can be different versions of this model. In this thesis, we consider a version which is

similar to the model defined in [9]. We consider a team of m robots that are initially

placed at arbitrary nodes of an undirected connected graph G = (V,E). We denote

by n the number of nodes in the graph, i.e., n = |V |. The nodes have no labels. At

each node v, the incident edges are labeled with port numbers 0, . . . , deg(v)− 1 in an

arbitrary way, where deg(v) represents the degree of node v. These port numbers are

used by the robots to specify their movements within the network. The two endpoints

of an edge need not be labeled with the same port number.

For any two nodes v, w, the distance between v and w, denoted by d(v, w), is

defined as the length of a shortest path between v and w. The eccentricity of a

node v, denoted by ecc(v), is the maximum distance from v to any other node, i.e.,

ecc(v) = maxw∈V {d(v, w)}. The radius of a graph, denoted by R, is defined as the

minimum eccentricity taken over all nodes, i.e., R = minv∈V {ecc(v)}.

The team of m robots contains f Byzantine robots and m− f non-faulty robots.

Each robot α has a distinct identifier (ID) lα, and it knows its own ID. The Byzantine

and non-faulty robots look identical, i.e., there is no way to distinguish them other

Chapter 2: Preliminaries 9

than perhaps noticing strange or unexpected behaviour. All robots have unbounded

memory, i.e., they can remember all information that they have previously gained

during their algorithm’s execution. We describe the differences between the two

types of robots below.

• Properties of non-faulty robots. The non-faulty robots have no initial in-

formation about the size or topology of the graph, and they have no information

about the number of Byzantine robots. A non-negative integer parameter H

defines the visibility range of each robot, which we describe in Partial Snapshot

below. Each non-faulty robot executes a synchronous deterministic algorithm:

in each round, each robot performs one Look-Compute-Move sequence, i.e., it

performs the following three operations in the presented order.

1. The Look operation: A non-faulty robot α located at a node v at the

start of round t gains information from two types of view.

– Local View: Robot α can see the degree of node v and the port numbers

of its incident edges. It can also see any other robots located at v at

the start of round t, along with their ID numbers. Intuitively, this is

what the robot sees at its current location.

– Partial Snapshot: Robot α sees the subgraph consisting of all nodes,

edges, and port numbers that belong to paths of length at most H

that have v as one endpoint. Additionally, for each node w in this

subgraph, robot α sees the list of all IDs of the robots occupying w

at the start of round t. Intuitively, the robot obtains all information

10 Chapter 2: Preliminaries

about what’s going on within a ball of radius H around itself.

2. The Compute operation: Using the information gained during all pre-

vious Look operations, a robot α located at a node v deterministically

chooses a value from the set {null, 0, . . . , deg(v) − 1}. In particular, it

chooses null if it decides that it will stay at its current node v, and it

chooses a value p ∈ {0, . . . , deg(v)−1} if it decides that it will move to the

neighbour of node v that is the other endpoint of the incident edge labeled

with port number p.

3. The Move operation: A robot α located at a node v performs the

action that it chose during the Compute operation. In particular, it does

nothing if it chose value null, and otherwise, it moves to a neighbour w of

v along the incident edge labeled with the chosen port number p. It can

see the port number that it used to enter node w. There is no restriction

of how robots move along an edge, i.e., multiple robots may traverse an

edge simultaneously, in either direction.

All non-faulty robots wake up at the same time and perform their Look-Compute-

Move sequences synchronously in every round (FSYNC).

• Properties of the Byzantine robots. We assume that a centralized adver-

sary controls all of the Byzantine robots. This adversary has complete knowl-

edge of the algorithm being executed by the non-faulty robots, and can see the

entire network and the positions of all robots at all times. In each round, the

adversary can make each Byzantine robot move to an arbitrary neighbouring

Chapter 2: Preliminaries 11

node. Further, we assume that the faulty robots are strongly Byzantine, which

means that the adversary can change the ID of any Byzantine robot at any time

(in contrast, a weakly Byzantine robot would have a fixed ID during the entire

execution).

2.2 The Gathering Problem

In this thesis, we consider the gathering task for the mobile robots in graphs under

the fully-synchronous scheduler. Assume that m robots are initially placed at nodes

of a network, where f of the robots are strongly Byzantine. The robots synchronously

execute a deterministic distributed algorithm. Eventually, all non-faulty robots must

terminate their algorithm in the same round, and at termination, all non-faulty robots

must be located at the same node.

2.3 Roadmap

In Chapter 3, we present the literature reviews related to robot-gathering problem

in 2D spaces and graphs. In the literature, Bouchard et al. [9] provided a polynomial-

time Gathering algorithm that works in the same model that we consider in this

thesis, but in the case where the visibility radius H is equal to 0. We describe their

proposed algorithm in Chapter 4. We also include the algorithms of Dieudonné et

al. [23] that work for the model in which robots know the upper bound on the number

12 Chapter 2: Preliminaries

of Byzantine robots. In Chapter 5, we design and analyse our own algorithm that

solves Gathering in any graph with n nodes containing m robots, f of which are

strongly Byzantine, and where each non-faulty robot has visibility range H equal to

the radius of the graph (or larger). In Chapter 6, we prove our three negative results;

(i) the Gathering task is not solvable if the number of non-faulty robot is less than

f + 2 in the presence of f weakly Byzantine robots and with robot’s visibility range

H = 0, even if the robots know the exact value of m and f , (ii) the Gathering task

is not solvable if the number of non-faulty robot is less than f + 1 in the presence of

f strongly Byzantine robots, (iii) the Gathering task is not solvable if the visibility

range H is a fixed constant in the presence of f ≥ 0 strongly Byzantine robots.

Finally, we provide conclusion and outline some future directions of our thesis work

in Chapter 7.

.

Chapter 3

Literature Review

The study of algorithms for mobile robots is extensive, as evidenced by a recent

survey [30]. The Gathering problem has been investigated thoroughly under a wide

variety of model assumptions, as summarized in [7, 20, 26] for continuous models (i.e.,

mobile robots in the plane) and in [14, 37] for discrete models (i.e., mobile robots in

graphs).

3.1 Mobile Robots in the Plane

The Gathering problem has been studied primarily in continuous spaces [3, 6,

15, 16]. Cieliebak and Prencipe [16] first proposed a deterministic algorithm for

gathering oblivious mobile robots (number of robots, m = 3, 4) in a two dimensional

space. Their proposed algorithm even works in the presence of 5 or more robots (but

for a restricted set of initial configurations). In their model, the authors endowed the

13

14 Chapter 3: Literature Review

robots with multiplicity detection such that a robot can detect multiple robots on a

single point. Later, Flocchini and Santoro [15] designed an algorithm that works for

any initial configuration and under any asynchronous scheduler, but there should be

at least 3 robots in the system to make their algorithm work. Balabonski et al. [3]

introduced a new algorithm for the Gathering task under synchronous scheduler. In

their work, they considered a weaker model in a sense that robots cannot detect

multiple robots on a single point. However, none of the above mentioned algorithms

[3, 15, 16] solves Gathering correctly when there are exactly 2 robots in the system.

The Gathering task in faulty systems has also been studied in the literature

[1, 6, 17, 35]. Most of the algorithms [3, 15, 16] previously discussed in this section

do not work properly in crash faulty system, and none of the algorithms can handle

the Byzantine faults in view of [1]. Agmon and Peleg [1] first provided a determin-

istic algorithm for gathering n ≥ 3 oblivious robots in the semi-synchronous settings

where at most one robot is crash-faulty. The authors also proposed an algorithm to

solve Gathering for Byzantine-tolerant mobile robots under fully-synchronous settings

where the total number of faulty robots satisfies f < 1
3
n. Courtieu et al. [17] intro-

duced a new Byzantine-tolerant algorithm that solves the Gathering in 2D space with

a constraint that there cannot be exactly two points with same multiplicity in the

initial configuration. Their algorithm works for semi-synchronous models, and robots

are not bound to share the same chirality. Finally, Pattanayak et al. [35] proposed

a wait-free (i.e., up to n-1 robots might suffer a crash fault) gathering algorithm for

semi-synchronous models.

The Gathering task is generally named as Rendezvous when there are exactly

Chapter 3: Literature Review 15

two robots in the system. Firstly, Cieliebak and Prencipe [16] proved that this is

impossible to solve the Rendezvous problem under the model of Suzuki and Yamashita

[2]. Then, Viglietta [41] solved the rendezvous problem by providing the robots an

external memory register, called a light, that is visible by the other robot; values

of this register are called colors. Their proposed algorithm uses only two colors for

solving Rendezvous in semi-synchronous systems, but it uses three colors in non-

rigid asynchronous systems (non-rigid means that robots can be stopped on the way

to its destination during its Move phases). Later, Okumura et al. [33] solved the

Rendezvous problem optimally (i.e., using 2 colors) in the LC atomic asynchronous

setting (i.e., Look and following Compute occurs at the same time). In addition, they

proposed an algorithm that executes Rendezvous under all asynchronous settings

making an assumption that robot knows the minimum distance that it covers in

each Move phase. Finally, Heriban et al. [31] designed an algorithm that executes

the Rendezvous task using only 2 colors under all asynchronous systems without

any additional assumption. We note that the algorithms discussed earlier in this

section [3, 15, 16] solve the Gathering task properly for 3 or more robots without

using any lights or external memory.

3.2 Mobile Robots in Graphs

Different types of task have been studied in the literature under discrete models,

as examples - the Exclusive searching problem in [24], the Exploration problem in

[27–29], and the Gathering problem in [18, 22]. D’Angelo et al. [24] first introduced

16 Chapter 3: Literature Review

the Exclusive Searching problem in ring network. In this problem, robots are placed

on anonymous distinct nodes of a bidirectional ring topology, and the aim is to make

the robots clear all the edges of the ring : if an edge is traversed by any robot or two

endpoints are visited by any robot, then the edge is considered to be cleared. Exclusive

search means that no two robots will occupy the same node or edge while clearing

the edges. Robot Exploration is another fundamental task that was investigated

recently. Exploration requires that every node of the network is visited by at least

one of the robots. Robot Exploration was studied in various types of networks such as

trees [27], paths [28], rings [29] and general graphs [12]. A specific type of exploration

problem is where a single robot must visit every node of the graph. This version

was studied in [10, 38] and its solutions have been used as a core subroutine in the

literature [8, 9, 23] for solving the Gathering problem.

Tasks for robots in networks have been investigated mostly under two versions of

the model: (i) robots with strong visibility (robots can see the full graph) (ii) robots

with local view only (robot can only see its own current node). With regards to

partial visibility, the authors of [13] showed that equipping mobile robots with 1-hop

visibility strictly increases their computational power as they can solve new instances

of Graph Exploration. In [5], the authors show that Uniform Scattering is possible in

grid graphs by a team of anonymous robots that move asynchronously, have partial

visibility, have constant-sized memory, and are equipped with a compass. The authors

of [4, 32] also study the Uniform Scattering problem with partial visibility and limited

memory, but in connected subsets of grid graphs and when there is a restriction on

where the agents can enter the environment. In [25], the authors consider the task of

Chapter 3: Literature Review 17

having all robots converge to a 2x2 grid within any grid graph, where the robots are

anonymous, synchronous, have partial visibility, and have no memory.

3.2.1 The Gathering Task in Graphs with Faulty Robots

The Gathering problem has been studied in networks under various fault scenarios.

Previous work has focused on the case where robots have no visibility, i.e., they cannot

see beyond their own current location. In [11], the authors study Gathering when

faults can temporarily prevent a robot from moving in some rounds. The authors

of [34] provide self-stabilizing gathering algorithms for two synchronous mobile robots,

which means that synchronous two-robot gathering can be solved under any type of

transient fault. In [36], Gathering was solved when robots moved asynchronously and

were subject to crash faults.

Most relevant to our current work are the results about Gathering in networks

when some of the robots can be Byzantine [8, 9, 23, 40]. In [40], the authors consider

weakly Byzantine agents and add authenticated whiteboards to the model. Each

node has a whiteboard where robots can leave messages: each robot has a dedicated

space on each whiteboard that it can write to, and no other robots (even Byzantine

ones) can write or erase a space that does not dedicated to them. All spaces on a

whiteboard can be read by all robots. Additionally, each robot has the ability to write

“signed” messages that authenticate the ID of the writer and whether the message

was originally written at the current node. In this model, the authors provide an

algorithm such that all correct robots gather at a single node in O(f · |E|) rounds,

where f is the upper bound on the number of Byzantine robots and |E| is the number

18 Chapter 3: Literature Review

of edges in the network.

For the model we consider in our work (but with visibility range 0), the Gathering

problem was first considered in [23]. The authors explored the gathering problem un-

der four variants of the model: (i) known size of the graph, weakly Byzantine robots

(ii) known size of the graph, strongly Byzantine robots (iii) unknown size of the graph,

weakly Byzantine robots (iv) unknown size of the graph, strongly Byzantine robots.

In all cases, the authors assume that the upper bound f on the number of Byzan-

tine robots is known to all non-faulty robots. The authors provided a deterministic

polynomial-time algorithms for the two models with weakly Byzantine robots. In the

model when the size of the graph is known, their algorithm works for any number of

non-faulty robots in the team. When the size of the graph is unknown, their algo-

rithm works when the number of non-faulty robots in the team is f + 2. They prove

a matching lower bound for the case of unknown graph size: no algorithm can solve

Gathering if the number of non-faulty robots in the team is less than f + 2. For the

model with strongly Byzantine robots and known graph size, the authors provided a

randomized algorithm that guarantees that the agents gather in a finite number of

rounds, and with high probability terminates in ncf rounds for some constant c > 0.

They also provide a deterministic algorithm whose running time is exponential in n

and the largest ID belonging to a non-faulty agent. In both cases, the number of non-

faulty robots in the team is assumed to be at least 2f + 1. The authors also prove

a lower bound for this model: no algorithm can solve Gathering if the number of

non-faulty robots in the team is less than f + 1. Finally, for the model with strongly

Byzantine robots and unknown graph size, they provide a deterministic algorithm

Chapter 3: Literature Review 19

Robots know the size of the graph Robots do not know the size of the graph
Lower Bound Upper Bound Lower Bound Upper Bound

Weakly Byzantine 1 1 (Poly-time-Alg.) f + 2 f + 2 (Poly-time-Alg.)
Strongly Byzantine f + 1 2f + 1 (Exp-time-Alg.) f + 2 4f + 2 (Exp-time-Alg.)

Table 3.1: Upper and lower bounds on the number of non-faulty robots needed to solve Gathering in the presence of

f Byzantine robots (according to the result in [23])

that works when the number of non-faulty robots in the team is at least 4f + 2. The

running time is exponential in n and the largest ID belonging to a non-faulty agent.

They also prove a lower bound in this model: no algorithm can solve Gathering if the

number of non-faulty robots in the team is less than f+2. Table 3.1 summarizes their

results about Gathering in the presence of weakly and strongly Byzantine robots.

Subsequent work focused on the case of strongly Byzantine robots and attempted

to close the gaps between the known upper and lower bounds on the number of non-

faulty robots in the team. This was achieved in [8], as the authors provided algorithms

that work when the number of non-faulty robots in the team are f + 1 and f + 2

for the cases of known and unknown graph size, respectively. However, the running

times of these algorithms were also exponential in n and the largest ID belonging to a

non-faulty agent. In this thesis, we have investigated that the lower bound of f+2 on

the number of non-faulty robots for the model with weakly Byzantine and unknown

size of the graph holds even if the robots know the exact number of non-faulty and

faulty robots in the team. The proof is given in Section 6.

More recently, the authors of [9] considered a version of the above model that

does not assume knowledge of the graph size nor the upper bound f on the number

of strongly Byzantine agents. Instead, they consider the amount of initial knowl-

edge as a resource to be quantitatively measured as part of an algorithm’s analysis.

20 Chapter 3: Literature Review

known size of the graph Unknown size of the graph

Algorithms
Know the

upper bound f?
Byzantine Type Lower Bound Upper Bound Lower Bound Upper Bound

Dieudonné
et al. [23]

Yes Weakly Byzantine 1
1

(Poly-time-Alg.)
f + 2

f + 2
(Poly-time-Alg.)

Dieudonné
et al. [23]

Yes Strongly Byzantine f + 1
2f + 1

(Exp-time-Alg.)
f + 2

4f + 2
(Exp-time-Alg.)

Bouchard
et al. [8]

Yes Strongly Byzantine f + 1
f + 1

(Exp-time-Alg.)
f + 2

f + 2
(Exp-time-Alg.)

Bouchard
et al. [9]

No Strongly Byzantine f + 1
5f 2 + 6f + 2

(Poly-time-Alg.)
f + 2

5f 2 + 6f + 2
(Poly-time-Alg. with
O(log log log n) bits

of initial information)

Table 3.2: Results about Gathering in previous works

In this model, they designed an algorithm whose running time is polynomial in n

and the number of bits in the smallest ID belonging to a non-faulty agent, where

O(log log log n) bits of initial information is provided to all robots. The initial in-

formation they provide is the value of log log n, which the algorithm uses as a rough

estimate of the graph size. Their algorithm works if the number of non-faulty robots

in the team is at least 5f 2+6f+2. They also provide a lower bound on the amount of

initial knowledge: for any deterministic polynomial Gathering algorithm that works

when the number of non-faulty robots in the team is at least 5f 2 + 6f + 2 and whose

running time is polynomial in n and the number of bits in the smallest ID, the amount

of initial information provided to all robots must be at least Ω(log log log n) bits.

Table 3.2 summarizes the results of the algorithms from [8, 9, 23]. We note

that the upper and lower bounds on the number of non-faulty robots match with

poly-time algorithms, in weakly Byzantine case. In strongly Byzantine case, upper

bound matches in exp-time algorithm, but upper bound is 5f 2 + 6f + 2 for poly-time

algorithm. The poly-time algorithm also requires O(log log log n) bits advice in the

case of strongly Byzantine and unknown size of the graph.

Chapter 4

The Known Algorithms

In this chapter, we provide more details about the most important previous work

discussed in Chapter 3.2.1, i.e., the algorithms from [8, 9, 23] that solve Gathering

in the presence of Byzantine robots (with visibility H = 0). In [23], the authors

explored the gathering problem under four variants of the model: (i) known size of

the graph, weakly Byzantine robots (ii) known size of the graph, strongly Byzantine

robots (iii) unknown size of the graph, weakly Byzantine robots (iv) unknown size

of the graph, strongly Byzantine robots. In all cases, the authors assume that the

upper bound f on the number of Byzantine robots is known to all non-faulty robots.

In Chapters 4.1 - 4.4, we summarize the high level idea of their algorithms for each

of the variants. In [8], Bouchard provides improved bounds on the number of non-

faulty robots in the case of strongly Byzantine robots, however they use a brute-force

approach that requires exponential running time. In Chapter 4.5, we summarize the

polynomial-time algorithm from [9] in the case of strongly Byzantine robots.

21

22 Chapter 4: The Known Algorithms

Preliminaries: The algorithms use universal exploration sequences [38] as a core

subroutine which allows a non-faulty robot to visit every node of a graph, from an

arbitrary unknown node, in polynomial time. We call this procedure EXPLO(n)

that works only for the model in which the robots know the size n of the graph.

For the model with unknown size of the graph, the authors describe two different

procedures based on [10, 19], which allow a non-faulty robot to visit every node in

a graph of unknown size using a stationary or movable token (the procedure with

stationary tokens is called EST, and the procedure with movable tokens is called

EMT). The role of the tokens is played by the robots as well.

For the models with weakly Byzantine robots, the authors implement the idea of

Ta-Shma and Zwick [39] that solves Rendezvous in non-faulty systems, i.e., it gathers

two robots in a graph of known or unknown size. We denote by TZ(l) their procedure

of deterministic Rendezvous [39], where l is the ID of the executing robot. The

TZ procedure consists of two subroutines: EXPLO(n) to explore the graph (robots

run EXPLO(n) for graphs of increasing sizes in the model with unknown size of

the graph), and waiting periods whose duration depends on the ID of the executing

robot. The procedure ensures that if two non-faulty robots with distinct IDs lα and

lβ respectively runs TZ(lα) and TZ(lβ), then at some point, one of the robots stays

idle at a node (during its waiting period), and the other robot finds it by running

EXPLO(n).

Chapter 4: The Known Algorithms 23

4.1 Algorithm Weak-Byz-Known-Size

The algorithm works for the model in which every robot (including the Byzan-

tine robots) has a distinct ID, and the Byzantine robots cannot change their IDs

throughout the entire execution. In this algorithm, every non-faulty robot maintains

a blacklist to track down the Byzantine robots’ IDs. But, we first discuss the initial

ideas of the algorithm assuming that there is no Byzantine robot in the graph. The

algorithm works as follows.

At the beginning, every robot starts executing deterministic Rendezvous in terms

of its own ID (i.e., a robot starts executing TZ(l), where l is its ID). When a robot

meets another robot, they both stop executing their previous procedure of Ren-

dezvous, and start running TZ(l′), where l′ is the smaller between the two IDs. The

idea behind this procedure is to make the robots move together. The procedure goes

on: when multiple robots are on the same node, they select the smallest ID in the

group, and run Rendezvous accordingly. But this procedure does not ensure gath-

ering in the presence of Byzantine robots: a Byzantine robot can hold the smallest

ID in a group, then it can leave the group and join another group later (the ID of

the Byzantine robot may become the smallest in the new group as well), both groups

will continue running Rendezvous with respect to the same ID, and that does not

guarantee Gathering.

The next idea is to run the Rendezvous in terms of the smallest remaining ID in

the group. But a problem still remains there: a Byzantine robot with the smallest

ID in the team may join a group, leave it, then join the group again, and so on.

24 Chapter 4: The Known Algorithms

Hence, the non-faulty robots need to keep track the robots that had leave the group

once. Therefore, every non-faulty robot maintains a blacklist to track down the IDs of

the Byzantine robots. The authors define the blacklist such a way that, the blacklist

remains unique at a given time for a group of robots located on the same node. Hence,

every non-faulty robot chooses the smallest non-blacklisted ID in the group to run the

Rendezvous accordingly, that ensures the gathering in polynomial times (polynomial

in n and the largest robot ID). This algorithm matches the lower bound of 1 on the

required number of non-faulty robots.

4.2 Algorithm Weak-Byz-Unknown-Size

The algorithm’s progress can be divided into three parts. The aim of the first part

is to gather a group of robots such that there are at least f+2 non-blacklisted robots in

the group. In order to do that, each robot continues to run the procedure Rendezvous

in a similar way of Algorithm Weak-Byz-Known-Size (but for the graphs of increasing

sizes), except the fact that there is no particular deadline for the termination since the

size of the graph is unknown to the robots. More precisely, a robot continues executing

the Algorithm Weak-Byz-Known-Size for the graphs of increasing sizes until it meets

at least f + 1 other non-blacklisted robots in a group.

The second part of the algorithm gets to let the robots learn the size of the graph

by running the procedure EMT (exploration with movable token). In order to run

EMT, at least f + 1 non-blacklisted robots in each group play the role of the movable

tokens, and the other robot plays the role of the explorer. This EMT repeats for

Chapter 4: The Known Algorithms 25

multiple times: every robot in a group plays the role of the explorer in each repetition

one by one (the other robots play the role of tokens). After executing EMT for a

significant amount of times, all robots learn the size of the graph. This execution is

not possible with less than f + 2 robots in each group: if there are at most f + 1

robots in the group, then f robots will play the role of the tokens in which all the

robots can be Byzantine, and that can cause the other non-faulty robot (explorer) to

build a wrong map of the graph.

The third part is exactly same as Algorithm Weak-Byz-Known-Size since every

robot knows the size of the graph now, and it completes Gathering in polynomial

rounds with respect to n and the largest robot ID. This algorithm also matches the

lower bound of f + 2 on the required number of non-faulty robots.

4.3 Algorithm Strong-Byz-Known-Size

This algorithm is considered for the model in which Byzantine robots can change

their IDs at any round of the execution. Therefore, the authors could not able to

reuse the concept of blacklisting in this algorithm. The algorithm Strong-Byz-Known-

Size consists of two parts. The first part of the algorithm implements a brute force

approach where the non-faulty robots try to build a group of at least 2f + 1 robots

by guessing all possible initial configurations of the graph. Robots test every possible

structure of a n-node graph including its port assignments, possible labels of 2f + 1

non-faulty robots, and their initial positions in the graph one by one. For each guessed

initial configuration, robots (whose ID belongs to the current guessed configuration)

26 Chapter 4: The Known Algorithms

try to reach the target node (say the smallest robot ID’s node) in the real graph.

Eventually, the robots correctly guess the graph and configuration they are actually

in, so they reach the target node, and build a group of at least 2f + 1 robots. It

should be noted that such a group sometimes can be created even for a wrong guess

(multiple such groups can be created as well). Whenever a group of 2f + 1 robots

is formed, every robot in the group waits for a significant amount of time to let the

other robots join the group. The idea behind forming a group of 2f + 1 is to make

sure that there are at least f + 1 non-faulty robots in the group (which is important

for the second part of the algorithm).

In the second part of the algorithm, robots in each group simply run the procedure

Rendezvous with respect to the unique identifier of their group (the unique identifier

is calculated by pl11 · · · plmm where li is the ith id in the group, and pi is the ith prime

number). As we know that, after the first part of the algorithm, there can be multiple

groups of at least 2f + 1 robots, each group runs Rendezvous in terms of its group

identifier. The group size of 2f + 1 ensures that the identifier will be unique in

each group since there cannot be two groups of 2f + 1 robots with the same set of

IDs. However, a Byzantine robot can leave a group any time, but at least f + 1

robots always remains in every group. When two such groups meet, they merge and

recompute the group identifier and continues to run Rendezvous in terms of the new

identifier. The algorithm ensures Gathering in exponential time with respect to n

and largest robot ID due to potentially guessing an exponential number of different

graphs and configurations before succeeding, and the algorithm also requires at least

2f + 1 non-faulty robots to accomplish the gathering.

Chapter 4: The Known Algorithms 27

4.4 Algorithm Strong-Byz-Unknown-Size

The algorithm’s approach can be divided into three parts. The aim of the first

part is to gather a group of at least 4f + 2 robots. The procedure of creating such a

group is similar to the first part of the Algorithm Strong-Byz-Known-Size, but since

the size of the graph is unknown here, robots try every possible configuration of 4f+2

robots for the graphs of increasing sizes.

The second part of the algorithm gets to let the robots learn the size of the graph

by running the procedure EST (exploration with stationary token). In a group of at

least 4f+2 robots, 2f+1 play the role of stationary tokens and the other robots play

the role of explorers. The idea behind forming a group of 4f + 2 robots in the first

part of the algorithm was to make sure that there remains at least f + 1 non-faulty

robots in each group of tokens and explorers, otherwise robots may build a wrong

map. The EST procedure makes sure that every robot knows the size of the graph

at the end of the second part.

The third part of the algorithm gets to merge the groups that were created in

the previous parts of the algorithm. In each group, robots act as follows: (i) 2f + 1

robots stay at their current position and play the role of ‘messengers’ to notify the

other groups about their unique identifier, (ii) all other robots run EXPLO(n) to

explore the graph and find the tokens with the smallest identifier. At each node,

explorers trust the identifier that is given by at least f + 1 ‘messengers’ robots. Since

there are at least 2f+1 robots in each group of tokens, explorers always get the correct

identifier of the groups. Explorers of each group then come back to their initial node

28 Chapter 4: The Known Algorithms

on which they started the second part, and notify the other robots (stationary tokens)

about the group with the smallest identifier and its position. Every group then simply

goes to the node on which the tokens with the smallest identifier are located, and

accomplishes Gathering. The running time of this algorithm is exponential as well,

and it requires at least 4f + 2 non-faulty robots.

4.5 The Polynomial-Time Algorithm with Strong

Byzantine Robots

This algorithm works for the model in which the non-faulty robots do not even

know the upper bounds on the number of Byzantine robots. But the algorithm

requires some initial global knowledge of size O(log log log n) to let the non-faulty

robots learn the upper bounds on the size of the graph. Moreover, the algorithm

requires at least 5f 2 + 6f + 2 non-faulty robots to accomplish the Gathering (we can

represent 5f 2 + 6f + 2 as (x− 1)(f + 1) + 1, where x ≥ 4f + 2). First, we discuss two

building blocks of this algorithm: GROUP and MERGE.

Procedure GROUP: The aim of this first procedure is to gather a group of at

least x − f non-faulty robots at a single node in some round. Robots complete this

procedure in two phases, the first phase guarantees that eventually there is a round

in which x robots meet at a node (even though the robots do not realize this event

since they do not know the value of x or f). At the beginning, the non-faulty robots

are divided into two groups - followers and searchers. The role of a follower is to

stay idle at its current position, and the role of a searcher is to find the followers,

Chapter 4: The Known Algorithms 29

and marks their positions in its own map (a searcher builds a map and marks the

position of each follower as a possible node on which x robots could meet). We can

think of an ideal case: there is no Byzantine robots in the team, only one non-faulty

robot acts as follower, and the other non-faulty robots play the role of the searchers,

then the non-faulty robots (searchers) simply run EXPLO(n), necessarily find the

unique follower, and gather on that node. But in the presence of f Byzantine robots,

there can be up to f + 1 followers in the graph (we assume exactly one non-faulty

robot acts as follower). In this case, a searcher needs to run the first procedure in

multiple steps. In the first step, every searcher runs EXPLO(n) and goes to each

node: it builds a map of its own while running EXPLO(n), and marks the nodes

on which it sees a follower. From the next steps, searcher simply goes to the closest

node (on its map) on which it saw a follower with the smallest ID, and waits for a

significant amount of time (if the searcher sees that the follower leaves the node at

any time, it updates its map, and from the next step it goes to the node according

to its updated map). Robots run the first procedure for a significant amount of steps

such that there exists a step s in which no robot updates its map: in that step, there

can be at most f + 1 different nodes on which all the searchers can be located, and so

there will be a node on which x robots meet (since the number of non-faulty robots

is at least (x− 1)(f + 1) + 1)). But everything we have discussed so far works under

the assumption that there is a single non-faulty follower in the team. Now, if there

are multiple non-faulty robots that play the role of followers, then each follower acts

as follows: in each step, after waiting for a prescribed amount of time, if the follower

sees no searcher on its node, then it plays the role of a searcher (explore the graph,

30 Chapter 4: The Known Algorithms

build a map, join the closest follower with smallest ID, if something wrong happens,

update the map, and run the procedure again on the updated map). This overcomes

the issue of multiple non-faulty followers, and guarantees the gathering of x robots

on a node.

Procedure MERGE: This subroutine gets to merge the groups that were created

in the previous subroutine. The subroutine uses an election procedure to elect a

particular node on which all the groups will be gathered at the end. First, the robots

in each group split themselves into two subgroups: half of the robots play the role of

supporters and half of the robots play the role of voters. The supporters act as follows:

each supporter remains idle at its current node and promotes the list of distinct IDs of

the robots that were in its group at the beginning of this subroutine. The voters act

as follows: each voter runs EXPLO(n), visits each node, notes down the list of IDs it

gets from the supporters at each node. and elects the node vmax on which it gets the

lexicographically largest list of IDs. The list from the non-faulty supporters at node

vmax contains at least 4f +2 robots, since there exists a node on which at least 4f +2

number non-faulty robots gathered in the first subroutine. A voter assumes that, at

each node, half of the supporters gives him the correct information, and the other

half gives the wrong information. Thus at least 4f+2
2
≥ 2(f + 1) supporters stay at

vmax in the MERGE operation, and when the voters from the other groups visit the

node, they accept the information of at least 2(f+1)
2

= (f + 1) robots as the correct

information. Now, if the Byzantine robots try to fool some voters to elect a different

node w, then there should be at least f + 1 supporters at w to promote the exact list

of IDs as the f+1 non-faulty supporters did in vmax, which is not possible since there

Chapter 4: The Known Algorithms 31

can be at most f Byzantine robots at w to promote the wrong list. Hence, every

non-faulty voters can identify the unique vmax. The whole procedure will be repeated

by changing the roles of the robots: the robots that played the role of supporter

will play the role of voters now, and vice versa. Thereby, every non-faulty robot can

identify the unique vmax, and they gather at vmax.

The Algorithm: we will now describe the full algorithm that consists of the

GROUP and MERGE subroutines. The algorithm works as follows. A non-faulty

robot α first finds the size of the graph n = 2(2GK), where GK is the given global

knowledge of value log log n. Now, in order to execute the GROUP subroutine suc-

cessfully, there should be at least one follower and one searcher in the team (if all the

robots are followers or all the robots are searchers, then the GROUP subroutine does

not work properly). Hence, a non-faulty robot first transforms its label by applying

the label transformation derived in [21], and runs the GROUP and MERGE subrou-

tines for multiple times in terms of the binary representation of its transformed ID.

For each bit, α acts as follows: if the current bit is 0, α plays the role of a supporter

(runs GROUP and MERGE), and if the current bit is 1, it plays the role of a voter

(runs GROUP and MERGE). Since the transformed IDs of the robots are unique by

at least 1 bit, eventually there will be a phase in which there will be at least 1 follower,

and 1 searcher in the team, the robots will execute the GROUP and MERGE suc-

cessfully, and will accomplish gathering. The robots also use two subroutines called

LEARN and CHECK-GATHERING after executing each GROUP and MERGE op-

eration to make sure that every robot knows that whether the gathering has been

completed or not.

Chapter 5

Our Algorithm

In this section, we provide the details and analysis for our polynomial-time al-

gorithm that solves Gathering in the presence of f strongly Byzantine robots when

there are least f + 1 non-faulty robots in the team. Recall that, in our model, we

assume that each robot is equipped with sensors that give it some visibility range H,

but they have no information about the number of Byzantine robots.

5.1 Definitions and Terminology

The following graph-theoretic definitions will be used throughout the descrip-

tion and analysis of our algorithm. Recall that the eccentricity of a node v, de-

noted by ecc(v), is the maximum distance from v to any other node, i.e., ecc(v) =

maxw∈V {d(v, w)}. The radius of a graph, denoted by R, is defined as the minimum

eccentricity taken over all nodes, i.e., R = minv∈V {ecc(v)}. For any graph G, the

32

Chapter 5: Our Algorithm 33

center of graph G is the set of all nodes that have minimum eccentricity, i.e., all

nodes v ∈ V (G) such that ecc(v) = R, and the center graph of a graph G, denoted

by C(G), is defined as the subgraph induced by the center nodes.

The following terminology will be used to refer to what a non-faulty robot α can

observe in the Look operation of any round t during the execution of an algorithm.

• The local view at a node v for round t is denoted by Lview(v, t), and refers to

all of the following information: the degree of v, the port numbers of its incident

edges, and a list of the IDs of all other robots located at node v at the start of

round t.

• The snapshot at a node v for round t is denoted by Sview(v, t), and refers to

all of the following information: the subgraph consisting of all nodes, edges,

and port numbers that belong to paths of length at most H that have v as one

endpoint, and, for each node w in this subgraph, the list of IDs of all robots

occupying w at the start of round t.

• For any graph G and round t, an ID l is called a singleton ID at round t if the

total number of times that l appears as a robot ID at the nodes of G is exactly

1 at round t.

• For any two nodes u and v, a shortest path π refers to a path (a sequence of port

numbers) that minimizes the distance d(u, v). However, there can be multiple

smallest paths between two nodes in a graph; in this situation, a robot chooses

the port sequence which is lexicographically smallest.

34 Chapter 5: Our Algorithm

In Figure 5.1, we show an example of α’s snapshot view in an arbitrary graph G

at some round t. Figure 5.1a shows the current configuration of the entire graph G

at round t. We suppose that the visibility range of each robot is exactly 4 (which is

equal to radius of the graph). In Figure 5.1a, there are two robots with ID = 1 (so

at least one of the robots is Byzantine). If α (with ID = 1) is located at the specified

blue node, then it sees the snapshot view as shown in Figure 5.1c. Otherwise, if it is

located at the red node, it sees the entire graph (i.e., Figure 5.1d). There is another

robot ID (ID=2) in Figure 5.1, which will be called a singleton ID at round t, since

there is exactly 1 robot with ID=2 in G at round t. The non-faulty robot α (with

ID=2) sees the snapshot view as shown in Figure 5.1b. It should be noted that a

robot that sees its own ID several times in its snapshot view at different locations

may not know which one corresponds to itself (see Figure 5.1c). Also, a robot cannot

determine if its snapshot contains the whole graph, so even if it sees exactly one robot

with ID k, it might be a Byzantine robot, and the non-faulty robot with ID k might

be located somewhere beyond its visibility range (Figure 5.1b).

5.2 H-View-Algorithm

Let α be an arbitrary non-faulty robot with ID lα in the graph G. In what follows,

we assume that the visibility range of a non-faulty robot is at least equal to the radius

of the graph, i.e., H ≥ R. We also assume that the number of non-faulty robots is at

least f + 1.

Chapter 5: Our Algorithm 35

0

1
0 1

0

1

0

1

0

1
0

0

1

0

1

1

ID=1

ID= 2

2 0 1 0

ID=1

0 1
0

1

0

1

0

1

2 0 1 0

b. Snapshot view of α with ID=2.

ID= 1

ID=2

0

1
0 1

0

1

0

1

0

1
0

0

1

0

1

1

ID=1

ID= 2

2 0 1 0

ID=1

0

1
0 1

0

1

0

1

0

1
0

0

1

0

1

1

ID=1

ID=1

c. Snapshot view of α with ID=1 (at blue node) d. Snapshot view of α with ID=1 (at red node)

a. Graph G at some round t where red
nodes represent the centers.

Figure 5.1: Snapshot views with visibility range H = 4

5.2.1 High Level Description

The algorithm’s progress can be divided into three parts. The first part gets each

non-faulty robot to move to a node vmax such that the robot’s snapshot view from

vmax contains all the nodes of the network G. This is the purpose of our Find-Lookout

subroutine. Each robot α produces a list of potential nodes in its initial snapshot

view where it thinks it might be located, and it does this by comparing its local view

with the degree and robot list of each node in its initial snapshot. It cannot be sure

of its initial position within its snapshot view since Byzantine robots can forge α’s

ID and position themselves at other nodes that have the same degree as α’s current

node. From each guessed initial position, α computes a port sequence of a depth-

first traversal of its snapshot view and tries following it in the real network. Since

36 Chapter 5: Our Algorithm

one of the guessed initial positions must be correct, at least one of the depth-first

traversals will successfully visit all nodes contained in its initial snapshot view. Since

the visibility range is at least the radius of the network, the robot’s initial snapshot

view must contain a node in the center of the network G, so at least one step of at

least one of the traversals will visit a node in the center of G. When located at such

a node, the robot will see all nodes in the network. So, by observing how many nodes

it sees at every traversal step, and keeping track of where it saw the maximum, it

can correctly remember and eventually go back to a node vmax from which it saw all

nodes in the network.

The second part of the algorithm ensures that, eventually, there is a robot with

a singleton ID that is located in the center of the network G. This is the purpose of

our March-to-Center subroutine, which depends highly on the fact that each robot

starts this part of the algorithm at a node vmax from which it can see every node in

the network. If a robot starts March-to-Center knowing where in its snapshot view

it is located, then the robot moves directly to the center of the G: it computes the

center of its snapshot, and moves to one of the nodes in the center of this snapshot,

which is also the center of the entire network G. If all robots do this, then the center

of the network will contain a singleton ID, since there are more non-faulty robots

than Byzantine robots, and all non-faulty robots have distinct ID’s. The difficult

case is, once again, when a robot α is not sure where in its snapshot it is located

at the start of March-to-Center. This is because the Byzantine robots can forge

α’s ID and position themselves at other nodes with the same degree as α’s current

node. In this case, α will not move during March-to-Center, and simply watch to

Chapter 5: Our Algorithm 37

see if it can spot any inconsistencies between its local view and its possible starting

locations in its snapshot. The key observation, which we will prove, is that at least

one of the following must happen in each execution of March-to-Center: either a robot

successfully moves to a node in the center of the network, or, at least one robot sees

an inconsistency and narrows down its list of possible starting locations. So, after

enough repetitions of March-to-Center, we can guarantee that there will be a robot

with a singleton ID that is located in the center of the network. The location of the

robot with the smallest such singleton ID is chosen as vtarget, the place where the

robots will gather.

The third part of the algorithm gets each robot to successfully move to the target

node vtarget, which completes the gathering process. This is the purpose of our Merge

subroutine. As above, if a robot starts Merge knowing where in its snapshot view it is

located, then it can simply compute a sequence of port numbers that leads to vtarget

and follow it. The difficult case is when a robot α is not sure where in its snapshot

it is located at the start of Merge. In this case, α just tries one node from its list of

possibilities, computes a sequence of port numbers that leads to vtarget, and tries to

follow it. If it notices any inconsistencies along the way or after it arrives, it deletes

the guessed starting node from its list. After each Merge, each robot reverses the

steps it took during the Merge in order to go back to where it started so that it can

run Merge again. Each execution of Merge finishes in one of two ways: all robots have

gathered, or, at least one robot has eliminated one incorrect guess about its starting

position. So, after a carefully chosen number of repetitions, we can guarantee that

the last performed Merge gathers all robots at the same node.

38 Chapter 5: Our Algorithm

5.2.2 Algorithm Details

First, we define the subroutine Find-Lookout(), which we assume is executed

by robot α located at a node v in round 0.

• α stores the initial snapshot Sview(v, 0) in its memory as S0.

• α determines which nodes in S0 might be its starting location, i.e., α computes

the set of nodes w ∈ Sview(v, 0) where the degree of w and the list of robot

ID’s at w is the same as v’s local view in round 0.

• For each such w in turn:

– α computes a port sequence τ corresponding to a depth-first traversal of

S0 starting at w, and attempts to follow this port sequence in the actual

network.

– In every round of the attempted traversal, α takes note of the number of

nodes it sees in its snapshot view, and remembers the maximum such num-

ber nmax, a node vmax where it witnessed this maximum, the number mmax

of robots it saw in its snapshot when located at vmax, and the sequence of

ports τmax that it used to reach vmax from its starting location.

– Whether or not this attempt is successful, α returns to its starting node

by reversing the steps it took during the attempt.

• For the largest nmax seen in any of the traversal attempts, α goes to the corre-

sponding node vmax using the sequence τmax.

Chapter 5: Our Algorithm 39

Next, we define the subroutine March-to-Center(Pα), whose goal is to establish

a singleton ID in the center of the network G and select its location as the target

node vtarget at which to gather. At a high level, the parameter Pα represents a subset

of nodes in α’s snapshot view such that each element in Pα is a node that α believes

could be its current location. Suppose that a robot α starts its execution of March-

to-Center at node v in round t.

• If |Pα| = 1, then

– α uses its current snapshot Sview(v, t) to compute a shortest path π start-

ing at the node v0 ∈ Pα and ending at a node vclosest in the center graph

C(Sview(v, t)) that minimizes the distance d(v0, vclosest).

– α moves according to the port sequence in π and then waits H−|π| rounds

at vclosest.

• If |Pα| > 1, then

– α waits at its current node v for H rounds, and observes every node vj ∈ Pα

in every snapshot view during the waiting period.

– If, in any round of the waiting period, α notices that some vj does not

have any robot with ID lα, it removes vj from Pα (as it has determined

that it is not currently located at vj).

• In both cases, at the end of the waiting period, α checks if there is a singleton

ID in the center graph C(Sview(v, t+H)) of its snapshot view. If there is such

a singleton ID, α sets vtarget as the node that contains a robot with the smallest

40 Chapter 5: Our Algorithm

singleton ID in C(Sview(v, t+H)). Otherwise, vtarget is set to null.

Next, we define the subroutine Merge(Pα, vtarget, n) that will be used to attempt

to gather the robots at the chosen target node vtarget. At a high level, the parameter

Pα represents a subset of nodes in α’s snapshot view such that each element in Pα is

a node that α believes could be its current location. The parameter n represents the

number of nodes that α has calculated to be the network size.

• Using its own snapshot view, robot α determines a shortest path π starting at

the first node v0 ∈ Pα and ending at vtarget.

• Then, α attempts to move according to the port sequence in π to reach vtarget.

• If there is a round in which the next port to take along path π does not exist

in α’s local view, or, α arrived at its current node using a port that is different

than the port it should have arrived on according to path π, then:

– α deletes v0 from Pα, then waits H − tα,Move rounds at its current node,

where tα,Move is the number of rounds that α took to reach its current

node.

• Else, robot α was able to follow the port sequence in π without noticing any

inconsistency, so:

– α waits H − |π| rounds at its current node v. In each of these rounds t′,

robot α considers its current snapshot Sview(v, t′):

∗ If α sees that the number of nodes in this view is less than n, then α

removes v0 from Pα.

Chapter 5: Our Algorithm 41

∗ If α sees no robot with lα at vtarget in Sview(v, t′), then α removes v0

from Pα.

∗ If it sees that its local view does not match the local view of vtarget in

Sview(v, t′) (i.e., it sees a different degree, or a different list of robots

at time t′), then α removes v0 from Pα.

Finally, using the subroutines defined above, we describe the complete H-View-

Algorithm that is executed by each robot α to solve Gathering. Suppose that α

starts the algorithm located at a node v in round 0.

1. α executes Find-Lookout(), after which it is located at a node vmax.

2. α waits at vmax until round (mmax + 2) · n2
max, which we’ll call round x.

3. In round x, robot α creates a set Pα consisting of all nodes in Sview(vmax, x)

where α might currently be located, i.e., the nodes w ∈ Sview(vmax, x) where

the degree of w and the list of robot ID’s at w is the same as v’s local view in

round x.

4. initialize vtarget to null, initialize phase to 1.

5. repeat the following until (vtarget 6= null):

(a) α executes March-to-Center(Pα)

(b) phase← phase+ 1

6. repeat the following until phase > dmmax

2
e

(a) α executes Merge(Pα, vtarget, nmax)

42 Chapter 5: Our Algorithm

(b) α performs the steps of previous Merge in reverse order

(c) phase← phase+ 1

7. α executes Merge(Pα, vtarget, nmax)

8. terminate()

5.3 Analysis

We consider three main parts of the algorithm. Our first goal is to show that,

immediately after robot α executes Find-Lookout, it has moved to a node vmax such

that the snapshot view from vmax contains nmax = n the actual number of nodes in

the graph and mmax = mthe actual number of robots in the team.

Lemma 5.3.1. By round (m + 2) · n2, each non-faulty robot α is located at a node

vmax such that the snapshot view at vmax contains n nodes and m robots.

Proof. Consider an arbitrary robot α’s execution of the H-View-Algorithm starting

at a node v. First, α computes the set of nodes w ∈ Sview(v, 0) where the degree of w

and the list of robot ID’s at w is the same as v’s local view in round 0. In particular,

this means that each such node w contains α’s ID lα in its list of robots. Since at

most f + 1 robots can have ID lα in round 0 (i.e., α itself and at most f Byzantine

robots), we get that the number of nodes w in Sview(v, 0) that look the same as

Lview(v, 0) is at most f + 1. Consequently, this means that the number of different

depth-first traversals attempted by α is at most f + 1. Each depth-first traversal

takes at most 2|E| rounds, which is less than n2. Together with the reversal to return

Chapter 5: Our Algorithm 43

back to its starting node, we get that each attempt takes at most 2n2 rounds, so all

traversals are complete by round 2(f + 1) · n2. Since one of the computed traversal

sequences starts at α’s real initial location, it follows that at least one of the traversal

attempts visits all nodes in Sview(v, 0). By the definition of the network’s center

and the fact that H ≥ R, it follows that Sview(v, 0) must contain a node that is

in the network’s center, and we just showed that α necessarily visited all nodes in

Sview(v, 0). Since the snapshot view at any node in the center of the network contains

all of the network’s nodes (since H ≥ R), it follows that α visits at least one node

at which the snapshot view contains all n nodes (and contains all m robots). Robot

α will save such a node as vmax, it will set nmax = n and mmax = m, and it will set

τmax to be a port sequence from v to vmax. The final traversal of the path τmax to

get from v to vmax takes at most another n2 rounds, so, in total, α arrives at vmax by

round (2f + 3) · n2. Since the number of non-faulty robots is at least f + 1, we get

that m ≥ 2f + 1, so f ≤ m−1
2

. Thus, (2f + 3) · n2 ≤ (m+ 2) · n2.

The second part of the algorithm consists of the executions of March-to-Center.

Our main goal is to prove that, after at most f + 1 executions of March-to-Center,

every robot sets its vtarget variable to the same non-null value. To this end, we prove

that each execution of March-to-Center by the non-faulty robots is started at the

same time (Lemma 5.3.5), and, at the end of each execution, every robot is located

at a node such that its snapshot contains all of the network’s nodes (Lemma 5.3.2).

These facts will be used later to conclude that any particular feature seen by one

robot can be seen by all other robots at the same time.

Lemma 5.3.2. At the end of each execution of March-to-Center by any non-faulty

44 Chapter 5: Our Algorithm

robot α, the robot resides at some node v such that its snapshot view contains all the

nodes of G.

Proof. We consider the two cases in the description of March-to-Center. We note

that, at the end of each execution of March-to-Center by a non-faulty robot α, either

α is at the node vmax where it started the execution, or, it is at a node vclosest which

is defined to be in C(Sview(vmax, t)), i.e., the center graph of α’s snapshot view from

node vmax. In the first case, Lemma 5.3.1 tells us that the snapshot view from node

vmax contains all the nodes of G. In the second case, we observe that vclosest is in the

center of G since it is in the center graph of α’s snapshot view from node vmax (which

contains all nodes of G). But by the definition of center, the distance from vclosest to

any node in G is at most R ≤ H, so all nodes of G are in the snapshot view from

vclosest as well.

Lemma 5.3.3. Suppose that every non-faulty robot starts an execution of March-to-

Center in the same round t′ > 0. In round t′ + H, every non-faulty robot has the

same snapshot view.

Proof. We see from the description of March-to-Center that there can be two cases in

each execution: moving along the path π for |π| rounds followed by a waiting period

of length H−|π|, or, a waiting period of length H. In both cases, the execution takes

exactly H rounds. Now, by Lemma 5.3.2, we see that at the end of the execution,

i.e., in round t′ +H, each robot’s snapshot view is the entire graph.

Lemma 5.3.4. For any positive integers i and t′, suppose that every non-faulty robot

starts its ith execution of March-to-Center in round t′. Then, at the start of round

Chapter 5: Our Algorithm 45

t′+H, exactly one of the following is true: (i) every non-faulty robot sets vtarget equal

to a non-null value, or, (ii) every non-faulty robot has vtarget equal to null, and they

all start their (i+ 1)th execution of March-to-Center.

Proof. By Lemma 5.3.3, in round t′+H, every robot gets the same snapshot view S.

There are two cases to consider. In the first case, suppose that there is a singleton ID

in the center graph of S. Then, according to the description of March-to-Center, every

non-faulty robot sets its variable vtarget to the node that contains a robot with the

smallest singleton ID, which implies that every non-faulty robot has vtarget equal to a

non-null value. In the second case, suppose that there is no singleton ID in the center

graph of S. Then, according to the description of March-to-Center, vtarget at each

non-faulty robot remains null. According to the description of the H-View-Algorithm,

this means that all non-faulty robots will execute March-to-Center again.

We now proceed to show that each execution of March-to-Center by the non-faulty

robots is started at the same time. This is useful because it means that the robots

make decisions using the same snapshot view, which minimizes the influence of the

Byzantine robots: if a Byzantine robot imitates a non-faulty robot’s ID l in a fixed

round t, then it cannot imitate any other ID’s in the same round.

Lemma 5.3.5. For any positive integer k, suppose that all non-faulty robots start

their kth execution of March-to-Center and have vtarget = null. For every positive

integer i ≤ k, every non-faulty robot starts executing its ith execution of March-to-

Center in round (m+ 2)n2 + (i− 1)H.

Proof. We prove the statement by induction on i.

46 Chapter 5: Our Algorithm

Base case: From the description of the H-View-Algorithm, each non-faulty robot

executes March-to-Center for the first time starting in round (mmax + 2) · n2
max =

(m+ 2) · n2. Thus, the statement is true for i = 1.

Inductive step: Assume that, for some j ∈ {1, . . . , k− 1}, the statement is true

for i = j. In particular, assume that every robot started its jth execution of March-

to-Center in round (m + 2)n2 + (j − 1)H. By the description of March-to-Center,

there can be two cases in their jth execution: moving along the path π for |π| rounds

followed by a waiting period of length H − |π|, or, a waiting period of length H. In

both cases, the execution takes exactly H rounds. By Lemma 5.3.4 and the fact that

no robot has set its vtarget variable to a non-null value before the kth execution, we

get that in round (m+ 2)n2 + (j − 1)H +H = (m+ 2)n2 + j ·H, every robot starts

its (j + 1)th execution of March-to-Center.

Lemma 5.3.6. Let k > 0 be the smallest integer such that at least one non-faulty

robot sets its vtarget to a non-null value during its kth execution of March-to-Center,

and suppose that this execution of March-to-Center starts in round t′. Then, every

non-faulty robot sets vtarget to the same value at the start of round t′ +H.

Proof. By Lemma 5.3.5, for every positive integer i ≤ k, every robot starts its ith

execution of March-to-Center in the same round, so all robots start the kth execution

of March-to-Center in round t′. Lemma 5.3.4 implies that, at the start of round t′+H,

either every robot sets a non-null value of vtarget, or, variable vtarget is null for every

robot. The second case does not occur since we know that at least one non-faulty

robot sets its vtarget to a non-null value during its kth execution of March-to-Center.

Chapter 5: Our Algorithm 47

Therefore, the first case occurs: all robots set their vtarget to a non-null value at the

start of round t′+H. Moreover, by Lemma 5.3.3, every robot has the same snapshot

view S in round t′+H. Hence, by the description of March-to-Center, every robot sets

its vtarget to the same node: the node that contains a robot with smallest singleton

ID in the center graph of S.

Corollary 5.3.6.1. If there exists a positive integer k such that at least one non-faulty

robot sets its vtarget to a non-null value during its kth execution of March-to-Center,

then all non-faulty robots set vtarget to the same non-null value at the start of round

(m+ 2)n2 + kH.

We now set out to show that all robots set their vtarget variable to a non-null value

within f + 1 executions of March-to-Center. The idea behind the proof is to show

that, in each execution of March-to-Center that ends with vtarget = null, at least

one non-faulty robot makes progress towards determining its correct location within

its snapshot view. Once there are enough robots that have determined their correct

location (more than the number of Byzantine robots), we are guaranteed to have at

least one singleton ID appear in the center of the graph, and all robots will set their

vtarget as the location of the smallest such ID.

To formalize the argument, we introduce a function Φ that measures how much

progress has been made by all robots towards determining their correct location within

their snapshot view. In what follows, for each t ≥ (m + 2) · n2, we denote by Pα,t

the value of variable Pα at robot α in round t. From the description of the H-View-

Algorithm, recall that Pα is set by each robot α for the first time in round (m+2) ·n2,

and the value assigned in this round is the set of nodes in α’s snapshot view that

48 Chapter 5: Our Algorithm

match its local view, i.e., the nodes that have the same degree and the same list of

robot ID’s as α’s current location. In subsequent rounds, the only changes to Pα

involve the removal of nodes, so Pα,t+1 ⊆ Pα,t for all t > (m + 2) · n2. For any fixed

round t ≥ (m + 2) · n2, we denote by Φt the sum
∑

α |Pα,t|, which is taken over all

non-faulty robots α. We now prove some useful bounds on Φt and how its value

changes in each execution of March-To-Center.

Proposition 5.3.7. In any round t ≥ (m+ 2) · n2, we have m− f ≤ Φt ≤ m.

Proof. First, we show that Φt ≤ m. Since each Pα,t only contains nodes where the

ID lα appears in round t, it follows that |Pα,t| is bounded above by the number of

robots whose ID in round t is equal lα. As each robot has exactly one ID in round

t (including the Byzantine robots), it follows that Φt =
∑

α |Pα,t| ≤ m. Next, to

show that Φt ≥ m− f , we observe that there are m− f non-faulty robots, and each

non-faulty robot α has |Pα,t| ≥ 1 in every round t ≥ (m+2)·n2. This is because a non-

faulty robot α only removes a node v from Pα if it performs March-to-Center or Merge

under the assumption that it starts the execution from node v in its snapshot view,

but notices an inconsistency between this assumption and its observed experience.

Since α’s actual vmax node from which it starts March-to-Center or Merge would not

result in any inconsistency, this node would never be removed from Pα, which implies

that |Pα| ≥ 1 after the first round in which Pα is given a value.

Lemma 5.3.8. Consider any execution of March-to-Center by the non-faulty nodes,

and suppose that the execution starts in round t′. Then, exactly one of the following

occurs: (i) all non-faulty robots set their vtarget variable to a non-null value at the

start of round t′ +H, or, (ii) Φt′+H ≤ Φt′ − 1.

Chapter 5: Our Algorithm 49

Proof. By Lemma 5.3.4, exactly one of the following occurs at the start of round

t′ +H:

• All non-faulty robots set their vtarget variable to some non-null value, or,

• Variable vtarget is null for every robot. By Lemma 5.3.3, we know that in round

t + H ′, all non-faulty robots have the same snapshot view S, and, by Lemma

5.3.2, S contains all the nodes of G. As there are at least f+1 non-faulty robots

and exactly f Byzantine robots, there must be at least one non-faulty robot β

whose ID will be a singleton ID in S. But since vtarget is null for every non-faulty

robot, this implies that there is no singleton ID in C(S) in round t′+H, and so

β is located outside of C(S). According to the description of March-to-Center,

it must be the case that |Pβ| > 1 in round t′, because otherwise β would have

moved to a node in the center of its snapshot view in this execution of March-

to-Center. Consequently, according to March-to-Center, the robot β removes

all other nodes from Pβ except the one node that contains its ID lβ (as lβ is a

singleton ID). Thus, the value of |Pβ| decreases during some round in the range

t′, . . . , t′ +H, so it follows that Φt′+H ≤ Φt′ − 1.

Theorem 5.3.9. There exists a positive integer k ≤ f + 1 such that every non-

faulty robot sets its variable vtarget to the same non-null value at the start of round

(m+ 2)n2 + kH.

Proof. First, suppose that there is at least one non-faulty robot that sets its vtarget

to a non-null value during one of its first f executions of March-to-Center. In this

50 Chapter 5: Our Algorithm

case, the desired result follows directly from Corollary 5.3.6.1. So, in what follows,

we assume that all non-faulty robots have vtarget = null during the first f executions

of March-to-Center. Therefore, all non-faulty robots start their (f + 1)th execution of

March-to-Center with vtarget = null, and by Lemma 5.3.5, they start this execution

in round (m + 2)n2 + fH. By Lemmas 5.3.2 and 5.3.3, each non-faulty robot starts

this execution with the same snapshot view, which we’ll denote by S, that contains

all the nodes of G.

By Lemma 5.3.8, after each of the first f executions of March-to-Center, the value

of Φ decreases by at least 1. It follows that Φ(m+2)n2+fH ≤ Φ(m+2)n2 − f . However,

by Proposition 5.3.7, we know that Φ(m+2)n2 ≤ m and Φ(m+2)n2+fH ≥ m − f , so

altogether we conclude that Φ(m+2)n2+fH = m − f . But m − f is the number of

non-faulty robots, so the sum Φ(m+2)n2+fH =
∑

α |Pα,(m+2)n2+fH | has m− f non-zero

terms. This implies that each |Pα,(m+2)n2+fH | is equal to exactly 1. Therefore, by the

description of March-to-Center, all non-faulty robots move to a node in the center

graph of their snapshot view S. This means that there are at least f + 1 non-faulty

robots in the center of S in round (m+ 2)n2 + (f + 1)H, and at least one of their ID’s

is a singleton ID since there are at most f Byzantine nodes. Thus, by the description

of March-to-Center, every non-faulty robot sets its vtarget to the same node: the node

that contains a robot with smallest singleton ID in the center graph of S, which proves

the desired statement with k = f + 1.

Now we come to the third part of the algorithm which consists of the executions of

Merge. By the description of the H-View-Algorithm, non-faulty robots start executing

their Merge operation immediately after setting a non-null value of vtarget. Moreover,

Chapter 5: Our Algorithm 51

by Theorem 5.3.9, we see that every robot sets its vtarget variable to the same non-

null value in the same round, and so every non-faulty robot starts executing its first

execution of Merge at the same time as well. More specifically, we denote by k

the number of executions of March-to-Center performed by the non-faulty robots,

and conclude that all non-faulty robots start their first execution of Merge in round

(m + 2)n2 + kH. By the description of Merge, each execution of Merge consists of

exactly H rounds, and according to the H-View-Algorithm, an additional H rounds

are then used to perform the steps of Merge in reverse. These observations imply the

following fact.

Lemma 5.3.10. For any positive integer i, if an ith execution of Merge is performed,

then all non-faulty robots start this execution in round (m+ 2)n2 + (k + 2(i− 1))H.

Our final goal is to show that all non-faulty robots gather at vtarget after at most

(f+2)−k executions of Merge, where k is the number of March-to-Center operations

executed by the non-faulty robots. Before proving this in Theorem 5.3.14, we establish

the following technical results.

Lemma 5.3.11. For any t ≥ 0, suppose that v is a node such that at least m − f

robots are located at v at the start of round t. Then, the local view at v in round t is

unique. More precisely, for any node v′ 6= v, we have Lview(v′, t) 6= Lview(v, t).

Proof. For any v, v′ such that v 6= v′, if there are at least m− f robots at v in round

t, there can be at most f robots at v′ in round t. Since there are at least f + 1

non-faulty robots, it follows that m ≥ 2f +1, so m−f > f . In particular, this means

that the number of ID’s in Lview(v, t) is strictly greater than the number of ID’s in

52 Chapter 5: Our Algorithm

Lview(v′, t), so Lview(v, t) 6= Lview(v′, t).

Lemma 5.3.12. Consider any execution of Merge by the non-faulty nodes, and sup-

pose that the execution starts in round t′. Then at least one of the following holds:

(i) all non-faulty robots are gathered at vtarget in round t′+H, or, (ii) Φt′+H ≤ Φt′−1.

Proof. Assume that (i) does not hold in round t′ + H, i.e., at least one non-faulty

robot is not located at vtarget in round t′ +H. There are two possibilities:

• There are at least m − f robots at vtarget in round t′ + H. By Lemma

5.3.11, each robot β that is at a node v′ 6= vtarget in round t′+H has a local view

Lview(v′, t′ +H) that is different than Lview(vtarget, t
′ +H). Hence, according

to the description of Merge, each such robot β removes a node from its Pβ, i.e.,

the value of |Pβ| decreases in some round in the range t′, . . . , t′ +H. It follows

that Φt′+H ≤ Φt′ − 1.

• There are fewer than m − f robots at vtarget in round t′ + H. As the

number of non-faulty robots is m− f , it follows that there is at least one non-

faulty robot α whose ID lα is not seen at vtarget in α’s snapshot view in round

t′ + H. Hence, according to the description of Merge, α removes a node from

its Pα, i.e., the value of |Pα| decreases in some round in the range t′, . . . , t′+H.

It follows that Φt′+H ≤ Φt′ − 1.

Lemma 5.3.13. During the execution of the H-View-Algorithm, if k ≥ 1 executions

of March-to-Center are performed followed by f + 2− k executions of Merge, then all

Chapter 5: Our Algorithm 53

non-faulty robots are gathered at vtarget.

Proof. By the description of the H-View-Algorithm and Corollary 1, if k executions of

March-to-Center are performed, then vtarget was set for the first time by all non-faulty

robots at the end of the kth execution of March-to-Center. By Lemma 5.3.8, after

each of the first k − 1 executions of March-to-Center, the value of Φ decreases by at

least 1. It follows that Φ(m+2)n2+(k−1)H ≤ Φ(m+2)n2− (k−1). By Proposition 5.3.7, we

know that Φ(m+2)n2 ≤ m, so it follows that Φ(m+2)n2+(k−1)H ≤ m− (k − 1). Since the

value of Φ never increases (the algorithm only ever removes nodes from the Pα sets) it

follows that Φ(m+2)n2+kH ≤ m− (k− 1) as well, where round (m+ 2)n2 + kH is when

the first Merge execution begins. Now, we consider the first f + 1 − k executions of

Merge by the non-faulty robots, and we consider two cases:

• Suppose that, for some i ∈ {1, . . . , f +1−k}, all non-faulty robots are gathered

at vtarget at the end of the ith execution of Merge. Since the number of non-

faulty robots is m− f , it follows that there would be at least m− f robots at

vtarget. By Lemma 5.3.11, the local view at vtarget would be unique in G, and the

local view of each non-faulty robot would exactly match it. Hence, according

to the description of Merge, no non-faulty robot would modify its Pα set, and

so the next execution of Merge (if any) would start from the same node v0. It

follows that in all subsequent executions of Merge (in particular, the (f+2−k)th

execution) all non-faulty robots will be gathered at vtarget.

• Suppose that, for every i ∈ {1, . . . , f + 1− k}, at least one non-faulty robot is

not located at vtarget at the end of the ith execution of Merge. Then, according

54 Chapter 5: Our Algorithm

to Lemma 5.3.12, the value of Φ decreases by at least 1 in each such execution.

As the value of Φ was bounded above by m − (k − 1) at the start of the first

Merge execution, and it decreases by at least f + 1−k during the first f + 1−k

executions of Merge, it follows that, after the (f + 1− k)th execution of Merge,

the value of Φ is at most m− f . However, by Proposition 5.3.7, we know that

Φ is at least m − f , so altogether we conclude that the value of Φ after the

(f + 1 − k)th execution of Merge is exactly m − f . But m − f is the number

of non-faulty robots, so the summation represented by Φ has m − f non-zero

terms. This implies that each |Pα| is equal to exactly 1 for each non-faulty

robot α. Then, in the final execution of Merge, i.e., in execution f + 2 − k,

each non-faulty robot will compute a path to vtarget using its snapshot view,

but using its actual location as starting node v0. This means that all non-faulty

nodes will be located at vtarget at the end of execution f + 2− k of Merge.

Finally, we verify that the H-View-Algorithm ensures that Merge is executed at

least f + 2 − k times after k executions of March-to-Center. The Merge operation

is executed until the value of phase is greater than dm/2e, and from the assumption

that the number of non-faulty robots is at least f + 1, we know that m ≥ 2f + 1.

In particular, this means that the combined number of March-to-Center and Merge

executions is at least f + 1, and then one more Merge is executed after exiting the

‘repeat’ loop. This concludes the proof of correctness of the H-View-Algorithm.

Theorem 5.3.14. In any n-node graph with radius R, if the H-View-Algorithm is

Chapter 5: Our Algorithm 55

performed by any team of m robots consisting of f Byzantine robots and at least f +1

non-faulty robots with visibility H ≥ R, then Gathering is solved within (m+ 2) ·n2 +

H ·m ∈ O(mn2) rounds.

Proof. By Lemma 5.3.1, every non-faulty robot spends exactly (m + 2)n2 rounds

for the Find-Lookout operation. Then, by Theorem 5.3.9, there exists a positive

integer k ≤ f + 1 such that every non-faulty robot sets its variable vtarget at the

start of the round (m+ 2)n2 + kH. More precisely, robots spend exactly kH rounds

performing the March-to-Center executions. After that, every robot spends exactly

(dm/2e − k)2H +H rounds for its Merge executions, after which all non-faulty are

located at vtarget (by Lemma 5.3.13). In total, the number of rounds is (m+ 2) · n2 +

kH + (dm/2e − k)2H +H. For the minimum value of k = 1, we get that the robots

use at most (m + 2) · n2 + H · m rounds to accomplish the gathering. As H ≤ n

(at most full visibility), the number of rounds is in O(mn2), i.e., polynomial in the

network size and team size.

Chapter 6

Impossibility Results

In this Chapter, we provide three impossibility results. In Chapter 6.1, we strengthen

a known result for Gathering in the presence of weakly Byzantine robots. In Chapter

6.2, we re-prove a known result so that it applies to the main model considered in

this thesis, which allows us to conclude that our H-View-Algorithm uses the optimal

number of non-faulty robots. In Chapter 6.3, we prove a lower bound on the visibil-

ity range required in order to solve Gathering in the presence of strongly Byzantine

robots.

56

Chapter 6: Impossibility Results 57

6.1 A lower bound on the number of non-faulty

robots: weakly Byzantine faults, unknown graph

size, and H = 0

In [23], the authors prove that no algorithm can solve gathering if the number

of non-faulty robots is less than f + 2 with visibility H = 0. They assume that the

graph size is unknown and the faulty robots are weakly Byzantine. The authors also

assume that the upper bound f on the number of Byzantine robots is known to all

non-faulty robots. Now, we prove that this lower bound of f + 2 holds even if the

non-faulty robots know the exact number of faulty and non-faulty robots in the team.

Theorem 6.1.1. No algorithm can solve Gathering for the model with weakly Byzan-

tine faults and unknown size of the graph if the number of non-faulty robots (with

visibility 0) is less than f + 2, even if the robots know the exact values of m and f .

Proof. To prove the theorem, it is enough to show that, in some class of network

Gn,k, f +1 number of non-faulty robots can not accomplish Gathering, with visibility

range H = 0, in the presence of f Byzantine robots.

First, we recall a class of network Gn,k from Theorem 3.11 [23]. Let n ≥ 2 and

k ≥ 4 be two even integers. We construct a network Gn,k in such a way that the

set of nodes in Gn,k can be divided into k pairwise disjoint clusters, and each cluster

contains n number of nodes (there will be kn number of nodes in total in the network).

We denote by C0, C1, C2..., Ck−1 the sequence of clusters in Gn,k. The nodes in the

network are connected as follows: the nodes inside the same cluster are connected

58 Chapter 6: Impossibility Results

to each other, every node of each cluster is connected to every node of its adjacent

clusters, i.e., every nodes of cluster Ci is connected to every node of cluster Ci−1 and

Ci+1 (arithmetic on indices is modulo k). Hence, every node in the graph has degree

3n − 1. Now, at each node u, the incident edges are labeled in such a way that an

edge {u, v} has the same port number at node u and at node v, and is called the

color of the edge. Edges inside a cluster are colored with 0, 1,, n− 2 (this is always

possible since n is even and every complete graph with an even number of nodes is

1-factorable). Every node u of a cluster Ci is adjacent to every node of cluster Ci+1

and Ci−1, colored as follows. If i is even, the colors of the edges between u and nodes

in Ci+1 would be n − 1, n,, 2n − 2. And if i is odd, then the colors of the edges

between u and nodes in Ci+1 would be 2n − 1, 2n...., 3n − 2. Hence, every network

Gn,k is fully symmetric (the local view of a robot is the same regardless of its location

within the network). We denote by CG the class of networks Gn,k.

Suppose, there exists an algorithm A that accomplishes Gathering in every net-

work of class CG with f + 1 non-faulty robots in the presence of f weakly Byzantine

robots in the team. First, we consider an execution EX1 of algorithm A in a network

Gf+2,4 of class CG. The graph Gf+2,4 implies that there are 4 clusters in the network,

and each cluster contains f + 2 number of nodes. We consider that there are even

number of Byzantine robots in the network (f is even), and so each cluster’s size f+2

is even as well. The initial positions of the robots are as follows: f Byzantine robots

with ID’s f + 2, · · · 2f + 1 are placed all together at a single node v in cluster C0,

f + 1 non-faulty robots with ID’s 1, 2, .., f + 1 are placed at distinct nodes of cluster

C0 (except at node v). Now, we describe the behaviors of the Byzantine robots: the

Chapter 6: Impossibility Results 59

Byzantine robots hide themselves from the non-faulty robots throughout the execu-

tion by not meeting any non-faulty robot in the execution. If, at some round t > 0,

the Byzantine robots are required to move from one node to another node (in order

to hide themselves), they all move to the same node in cluster C0 (they always stay

inside the cluster C0). More precisely, we can define the behaviour of the Byzantine

robots during rounds t = 1, 2, · · · of execution EX1 as follows.

• Suppose, at some round t − 1 ≥ 0, the Byzantine robots are located at some

node u ∈ C0. Now, if the algorithm prescribes some non-faulty robots to move

to node u at round t, then all Byzantine robots move to some other node

w ∈ C0 in round t, such that there would not be any other robot (other than

the Byzantine robots) at w in round t. This is always possible since there are

f + 2 nodes in each cluster, and there can be at most f + 1 nodes occupied by

the non-faulty robots at a time, and so there is always a node in C0 at which

there is no non-faulty robot.

As A is assumed to be a correct algorithm, there exists some round t in which the

non-faulty robots terminate and gather at some node v′. More precisely, algorithm

A accomplishes Gathering in execution EX1 within t rounds, in the presence of f

Byzantine and f + 1 non-faulty robots in the network of Gf+2,4, where no non-faulty

robot meets any Byzantine robot throughout the entire execution.

Next, we consider the second execution EX2 of algorithm A in a network Gf+2,4t+2

of class Ck. The graph Gf+2,4t+2 implies that there are 4t+ 2 clusters in the network,

and each cluster contains f + 2 number of nodes. There are f + 1 non-faulty and

60 Chapter 6: Impossibility Results

f Byzantine robots in this execution as well, but we switch some IDs between the

robots. The robots are labeled as follows: the Byzantine robots are labeled with IDs

2, · · · , f + 1, one non-faulty robot is labeled with ID 1, and f other non-faulty robots

are labeled with IDs f + 2, · · · , 2f + 1. The initial positions of the robots are as

follows: the Byzantine robots with IDs 2, · · · , f + 1 and one non-faulty robot with

ID 1 are placed at distinct nodes of cluster C0, f other non-faulty robots with IDs

f + 2, · · · 2f + 1 are placed in cluster C2t+1. We now demonstrate that the Byzantine

robots in EX2 can behave in such a way that, for each round i = 0, 1, · · · , t, the

non-faulty robot with ID 1 cannot distinguish between executions EX1 and EX2.

We denote by α the non-faulty robot with ID 1. We can define the behaviour of the

Byzantine robots during rounds i = 1, 2, · · · , t of execution EX2 as follows.

• For each round i > 0, if a non-faulty robot β with ID lβ meets α in round i

of execution EX1, then the Byzantine robot with ID lβ meets α in round i of

execution EX2.

• For each round i > 0, if a non-faulty robot β with ID lβ does not meet α in

round i of execution EX1, then the Byzantine robot with ID lβ does not meet

α in round i of execution EX2. More precisely, it stays at some other node

which is not occupied by the robot α but located at the same cluster. This is

always possible, in view of the structure of the network, since the robots with

IDs 1, · · · , f + 1 are located at the same cluster initially.

The executions EX1 and EX2 will be identical according to α’s point of view for

the following reasons (i) all nodes in networks Gf+2,4 and Gf+2,4t+2 look identical,

Chapter 6: Impossibility Results 61

(ii) there are same number of robots (f + 1 non-faulty and f Byzantine) in both exe-

cutions, (iii) In execution EX2, the Byzantine robots mimic the actions of non-faulty

robots 2, 3, ...f + 1 of EX1, (iv) In EX2, time t is not enough for the non-faulty

robots f + 2,2f + 1 starting in cluster C2t+1 to meet α which is initially placed

in cluster C0, since the distance between C0 and C2t+1 is 2t + 1, Therefore, robot

α will terminate the algorithm in round t in execution EX2 as well. This leads to

a contradiction: since α terminates the algorithm in EX2 before meeting any other

non-faulty robots.

6.2 A lower bound on the number of non-faulty

robots: strongly Byzantine faults and known

graph size

First, we recall Theorem 4.7 from [23], which states that there is no deterministic

algorithm that solves Gathering in the presence of f strongly Byzantine robots if the

number of non-faulty agents is at most f (and these non-faulty agents know the size

of the graph). This impossibility result was proven in a model where robots have

no visibility beyond their local view (i.e., visibility H = 0). We adapt the proof to

work under the assumption that each non-faulty robot has full visibility of the entire

graph in every round, which proves that our algorithm is optimal with respect to the

number of non-faulty robots in the team.

Theorem 6.2.1. There is no deterministic algorithm that solves Gathering if the

62 Chapter 6: Impossibility Results

number of Byzantine robots in the team is f and the number of non-faulty robots is

at most f , even if the non-faulty robots have visibility H equal to the diameter of the

graph.

Proof. Suppose that there is a deterministic algorithm A such that A accomplishes

Gathering in the presence of f non-faulty and f Byzantine robots in the team. We

assume that the non-faulty robots have visibility c equal to the diameter of the graph

or less.

First, we construct an instance consisting of a cycle graph G = (V,E) with 2f

number of nodes (i.e., |V | = 2f). At each node v ∈ V , the two incident edges are

labeled with port numbers 0 and 1 such that 0 leads clockwise and 1 leads anticlock-

wise. We denote by v0 an arbitrary node in G, and v0, v1, · · · , v2f−1 the sequence of

consecutive nodes in clockwise direction. Now, we execute algorithm A under two dif-

ferent initial positions of the robots on G. In the first execution, the initial positions

of the robots are as follows: f non-faulty robots with IDs 0, 1, · · · , f − 1 are placed

respectively at nodes v0, v1, · · · , vf−1, and f Byzantine robots with IDs 0, 1, · · · , f−1

are placed respectively at node vf , vf+1, · · · , v2f−1.

We consider that in each round i = 1, 2, · · · of EX1, each Byzantine robot with ID

l ∈ 0, 1, · · · , f − 1 acts same as the non-faulty robot with ID l does in round i (i.e.,

a Byzantine robot with ID l performs the same instructions of algorithm A for ID l).

Consequently, for every ID l ∈ 0, 1, · · · , f − 1, the non-faulty robot with ID l and the

Byzantine robot with ID l stay diametrically opposite through out the execution. As

A is assumed to be a correct algorithm, there exists some round t in which the non-

Chapter 6: Impossibility Results 63

faulty robots terminate and gather at some node v. And for the symmetric executions

of the Byzantine robots, all Byzantine robots gather at diametrically opposing node

w (distance d(v, w) = f) in round t.

0

1

0 1

0

1

0

1

0

1

0

0

1

0

1

1

ID=3

ID=1

ID=0

ID=1

ID=2

ID=0

ID=2

ID=3

v0

0

1

0 1

0

1

0

1

0

1

0

0

1

0

1

1

ID=3

ID=1

ID=0

ID=1

ID=2

ID=0

ID=2

ID=3

v0

0

1

0 1

0

1

0

1

0

1

0

0

1

0

1

1

ID=0

v

ID=1

ID=2

ID=0
ID=1
ID=2
ID=3

ID=3

w

0

1

0 1

0

1

0

1

0

1

0

0

1

0

1

1

ID=0

v

ID=1

ID=2

ID=0
ID=1
ID=2
ID=3

ID=3

w

Initial positions of the

robots in EX1

Initial positions of the

robots in EX2

Final positions of the

robots in EX1

Final positions of the

robots in EX2

Figure 6.1: Two executions of algorithm A where each red ID represents a Byzantine robot, and each blue ID represents

a non-faulty robot in the graph: EX2 fails to gather the non-faulty robots

Now, for the second execution, we switch the initial positions between the robots

with IDs 0. The initial positions of the robots in EX2 are as follows: the non-

faulty robot with ID 0 is placed at node vf , and f − 1 non-faulty robots with ID

64 Chapter 6: Impossibility Results

1, · · · , f − 1 are placed respectively at nodes v1, · · · , vf−1, the Byzantine robot with

ID 0 is placed at node v0, and f − 1 Byzantine robots with ID 1, · · · , f − 1 are

placed respectively at node vf+1, · · · , v2f−1. We consider that each Byzantine robot

with ID l ∈ 0, 1, · · · , f − 1 acts same as the non-faulty robot with ID l throughout

EX2 as well. We note that visibility range of a non-faulty robot α is c in both

executions, which means that its snapshot view consists of 2c + 1 nodes in every

round of both executions. Due to symmetric configuration and symmetric executions

of the Byzantine robots, in each round t ≥ 0, α sees exactly the same local view

and same snapshot view in both executions. More precisely, no robot can distinguish

between executions EX1 and EX2. Necessarily, robots will terminate the algorithm

in round t in execution EX2 as well. But this time the non-faulty robot with ID 0

will end up at node w along with f − 1 Byzantine robots of ID 1, 2, · · · f − 1, and

there will be f − 1 non-faulty robots at node v along with one Byzantine robot of ID

0 (see Figure 6.1). Hence, algorithm A fails to gather the non-faulty robots in EX2.

This leads to a contradiction that A is not a correct algorithm.

6.3 A lower bound on the visibility range

For the main model considered in this thesis, we prove that to solve Gathering in

arbitrary graphs, the visibility H of each non-faulty robot must somehow depend on

the radius of the graph. In particular, it is not sufficient to fix some constant visibility

range. We remark that this does not contradict the existence of previously-known

algorithms that work when H = 0, as those algorithms make additional assumptions

Chapter 6: Impossibility Results 65

that are not present in our model (e.g., knowledge of the graph size, knowledge of the

number of Byzantine robots, or whiteboards at the nodes).

Theorem 6.3.1. There is no deterministic algorithm that can solve Gathering when

executed in any graph by any team of m robots consisting of f ≥ 0 Byzantine robots

and at least f + 1 non-faulty robots if the visibility range H of each non-faulty robot

is a fixed constant c.

Proof. Let c be any fixed positive integer. To obtain a contradiction, assume the

existence of a deterministic algorithm A that can solve Gathering when executed in

any graph by any team of m robots consisting of f ≥ 0 Byzantine robots and at least

f + 1 non-faulty robots if the visibility range H of each non-faulty robot is equal to

c.

First, we construct an instance consisting of a cycle graph C1 = (V1, E1) with an

even number of nodes |V1| = 2c + 2. The radius R1 of C1 is c + 1. At each node

v ∈ V1, the two incident edges are labeled with port numbers 0 and 1 such that 0

leads clockwise and 1 leads anticlockwise. The initial positions of the robots in C1

are as follows: a non-faulty robot α with ID lα is placed at some node v0, and a non-

faulty robot β with ID lβ at a node w such that the distance d(v0, w) = R1 = c + 1.

There are no Byzantine robots in C1. Consider the execution EX1 of algorithm A on

instance C1. As A is assumed to be a correct algorithm, there exists some round r1

in which robots α and β have terminated and gathered at some node vtarget ∈ V1.

Next, we construct a second instance consisting of a cycle graph C2 = (V2, E2)

with an even number of nodes |V2| = 4r1+2(c+1). The radius of R2 of C2 is 2r1+c+1.

66 Chapter 6: Impossibility Results

At each node v ∈ V2, the two incident edges are labeled with port numbers 0 and

1 such that 0 leads clockwise and 1 leads anticlockwise. The initial positions of the

robots in C2 are as follows: the non-faulty robot α with ID lα is placed at node v0 (as

in the first instance C1 above), a Byzantine robot with ID lβ is placed at a node vCW

that is distance exactly c + 1 away from v0 in the clockwise direction, and another

Byzantine robot with ID lβ is placed at a node vACW that is distance exactly c + 1

away from v0 in the anticlockwise direction. Further, we place 2 non-faulty robots

at a node w such that d(v0, w) = R2 = 2r1 + c + 1. These 2 non-faulty robots have

distinct ID’s that are not equal to lα or lβ. The number of Byzantine robots is f = 2,

and there are 3 = f + 1 non-faulty robots (one at v0 and two at w). We denote by

EX2 the execution of algorithm A on instance C2.

0

1

0 1

0

0

1

0

1

1

α

0 1 0 1

0 1

ID = lβ

ID = lβ

0

1

0 1

0

0

1

0

1

1

α

0 1 0 1

β

Graph C2 where each red ID represents a Byzan-

tine robot, and there are 4r1 nodes on the right

side of the dotted line.

Graph C1 with visbilty range c=3.

w

Figure 6.2: Initial positions of the robots in two executions of the algorithm where red nodes are inside the visibility

range of α

We now demonstrate that the Byzantine robots in C2 can behave in such a way

that, for each round t, the robot α with ID lα cannot distinguish between executions

EX1 and EX2, i.e., robot α’s local view and snapshot view in every round are the

same across both executions. This leads to a contradiction: since α terminates its

Chapter 6: Impossibility Results 67

algorithm in round r1 in execution EX1, it will also terminate its algorithm in round

r1 in execution EX2, and since the initial distance between α and the other non-faulty

robots is strictly greater than 2r1, it follows that α terminates before the non-faulty

robots can gather.

First, note that α’s visibility range is c in both executions, which means that its

snapshot view consists of 2c + 1 nodes in every round of both executions. By the

initial placement of the robots in both executions, we note that in round t = 0 of

both executions, there are no robots within distance c of α’s initial position v0. So,

α’s local view in round 0 of both executions consists of a node of degree 2 containing

the ID lα, and, α’s snapshot view in round 0 of both executions consists of a path of

length 2c+1 nodes with only ID lα located at the middle node. Further, we note that

the two other non-faulty robots in C2 are never visible to α in in the first r1 rounds

of execution EX2 execution: their initial distance to α is 2r1 + c+ 1, so in round r1,

each of their distances to α is at least c+ 1.

To define the behaviour of the Byzantine robots in C2 during rounds t = 1, . . . , r1

of execution EX2, we observe the execution EX1. In particular:

• For each round t > 0 of EX1 in which α does not see β in its snapshot view: the

Byzantine robots follow the same port in round t− 1 of EX2 as α did in round

t− 1 in EX1. Doing so ensures that both Byzantine robots remain at distance

c+ 1 from α at the start of round t in EX2, i.e., are not in α’s snapshot view.

• For each round t > 0 of EX1 in which α sees β in its snapshot view but did not

see β in its snapshot view in round t−1: the Byzantine robot on the appropriate

68 Chapter 6: Impossibility Results

side of α (clockwise or counterclockwise) moves so that it appears at the same

node in α’s snapshot view in round t of EX2 as β does in round t of EX1. The

other Byzantine robot follows the same port as α does in round t − 1 (so that

its distance from α at the start of round t is still c+ 1, i.e., it does not appear

in α’s snapshot view).

• For each round t > 0 of EX1 in which α sees β in its snapshot view and also

saw β in its snapshot view in round t− 1: the Byzantine robot that was in α’s

snapshot view in round t − 1 of EX2 follows the same port in round t − 1 of

EX2 as β did in round t − 1 of EX1. The other Byzantine robot follows the

same port as α does in round t− 1 (so that its distance from α at the start of

round t is still c+ 1, i.e., it does not appear in α’s snapshot view).

It is clear from this behaviour that α sees the same thing up to round r1 in both

executions EX1 and EX2: when α sees no other robots in round t of EX1, then both

Byzantine robots move so that they are both at distance c + 1 from α in round t of

EX2; moreover, when α sees β in round t of EX1, then one Byzantine robot (which

has ID lβ) moves so that its position relative to α in round t of EX2 is the same as

β’s relative position to α in round t of EX1, while the other Byzantine robot moves

so that it is at distance c+ 1 from α in round t of EX2.

Chapter 7

Conclusion

7.1 Contributions

Our main contribution of this thesis is to solve the Gathering problem efficiently

in the graph model, in the presence of Byzantine robots. We consider a graph-based

model in which each robot has no initial information other than its own ID and has

some visibility range H. We prove that no algorithm can solve Gathering in the

presence of Byzantine robots if H is any fixed constant (Theorem 6.3.1). We also

design an algorithm that solves Gathering in any graph with n nodes containing

m robots, f of which are strongly Byzantine, and where each non-faulty robot has

visibility range H equal to the radius of the graph (or larger). Our algorithm has the

following desirable properties:

• It is efficient: the number of rounds is polynomial with respect to n and m, in

contrast to several previous algorithms [8, 23] whose running times are expo-

69

70 Chapter 7: Conclusion

nential in n and the largest robot ID.

• It works when the number of non-faulty robots in the team is f + 1 (or larger),

which is optimal due to Theorem 6.2. This significantly improves on the best

previous polynomial-time algorithm [9], which requires at least 5f 2 + 6f + 2

non-faulty robots.

• It does not assume any initial global knowledge, in contrast to previous algo-

rithms [8, 9, 23] that assume a known bound on the graph size or on the number

of Byzantine robots, or some number of advice bits. Such assumptions might

be unrealistic in many applications.

7.2 Future Work

In this thesis, we prove that some constant visibility range c of each non-faulty

robot is not sufficient to solve the Gathering in arbitrary graphs. In particular, the

visibility H of each non-faulty robot must somehow depend on the radius R of the

graph. But, we could not establish any particular lower bound on H with respect

to R. We have tried to find a case in which no algorithm can solve the Gathering

with visibility H = R − 1. But, in order to establish such lower bound, we cannot

apply the same proof technique that we used to prove Theorem 6.3.1: when we try to

change the underlying graph and use indistinguishably to show that Gathering does

not occur in the new graph, the visibility radius of the robot is different in the bigger

graph, so we cannot conclude that the robot will behave in the same way as it did

in the old. Establishing a lower bound on H with respect to R is left as an open

Chapter 7: Conclusion 71

problem. Furthermore, we may change our defined model such as - we can provide an

external memory register (light) that can be visible by other robots, or we can work

on the semi-synchronous model, and try to answer the same questions addressed in

this thesis.

Bibliography

[1] N. Agmon and D. Peleg. Fault-tolerant gathering algorithms for autonomous

mobile robots. SIAM Journal on Computing, 36(1):56–82, 2006.

[2] H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita. Distributed memoryless point

convergence algorithm for mobile robots with limited visibility. IEEE Transac-

tions on Robotics and Automation, 15(5):818–828, 1999.

[3] T. Balabonski, A. Delga, L. Rieg, S. Tixeuil, and X. Urbain. Synchronous gath-

ering without multiplicity detection: a certified algorithm. Theory of Computing

Systems, 2018.

[4] E. M. Barrameda, N. Santoro, W. Shi, and N. Taleb. Sensor deployment by a

robot in an unknown orthogonal region: Achieving full coverage. In 20th IEEE

International Conference on Parallel and Distributed Systems, ICPADS 2014,

pages 951–960, 2014.

[5] L. Barrière, P. Flocchini, E. M. Barrameda, and N. Santoro. Uniform scattering

of autonomous mobile robots in a grid. Int. J. Found. Comput. Sci., 22(3):679–

697, 2011.

72

Bibliography 73

[6] S. Bhagat, S. G. Chaudhuri, and K. Mukhopadyaya. Gathering of opaque robots

in 3d space. In Proceedings of the 19th International Conference on Distributed

Computing and Networking, page 2. ACM, 2018.

[7] S. Bhagat, K. Mukhopadhyaya, and S. Mukhopadhyaya. Computation under re-

stricted visibility. In Distributed Computing by Mobile Entities, Current Research

in Moving and Computing, pages 134–183. Springer, 2019.

[8] S. Bouchard, Y. Dieudonné, and B. Ducourthial. Byzantine gathering in net-

works. Distributed Computing, 29(6):435–457, 2016.

[9] S. Bouchard, Y. Dieudonné, and A. Lamani. Byzantine gathering in polynomial

time. In 45th International Colloquium on Automata, Languages, and Program-

ming, ICALP 2018, pages 147:1–147:15, 2018.

[10] J. Chalopin, S. Das, and A. Kosowski. Constructing a map of an anonymous

graph: Applications of universal sequences. In International Conference On

Principles Of Distributed Systems, pages 119–134. Springer, 2010.

[11] J. Chalopin, Y. Dieudonné, A. Labourel, and A. Pelc. Rendezvous in networks

in spite of delay faults. Distributed Computing, 29(3):187–205, 2016.

[12] J. Chalopin, P. Flocchini, B. Mans, and N. Santoro. Network exploration by silent

and oblivious robots. In International Workshop on Graph-Theoretic Concepts

in Computer Science, pages 208–219. Springer, 2010.

[13] J. Chalopin, E. Godard, and A. Naudin. Anonymous graph exploration with

74 Bibliography

binoculars. In Distributed Computing - 29th International Symposium, DISC

2015, pages 107–122, 2015.

[14] S. Cicerone, G. D. Stefano, and A. Navarra. Asynchronous robots on graphs:

Gathering. In Distributed Computing by Mobile Entities, Current Research in

Moving and Computing, pages 184–217. Springer, 2019.

[15] M. Cieliebak, P. Flocchini, G. Prencipe, and N. Santoro. Solving the robots

gathering problem. In International Colloquium on Automata, Languages, and

Programming, pages 1181–1196. Springer, 2003.

[16] M. Cieliebak and G. Prencipe. Gathering autonomous mobile robots. In

SIROCCO, volume 9, pages 57–72. Citeseer, 2002.

[17] P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain. A certified universal gathering

algorithm for oblivious mobile robots. arXiv preprint arXiv:1506.01603, 2015.

[18] G. D’Angelo, G. Di Stefano, R. Klasing, and A. Navarra. Gathering of robots on

anonymous grids and trees without multiplicity detection. Theoretical Computer

Science, 610:158–168, 2016.

[19] G. De Marco, L. Gargano, E. Kranakis, D. Krizanc, A. Pelc, and U. Vac-

caro. Asynchronous deterministic rendezvous in graphs. Theor. Comput. Sci.,

355(3):315–326, 2006.

[20] X. Défago, M. Potop-Butucaru, and S. Tixeuil. Fault-tolerant mobile robots.

In Distributed Computing by Mobile Entities, Current Research in Moving and

Computing, pages 234–251. Springer, 2019.

Bibliography 75

[21] A. Dessmark, P. Fraigniaud, D. R. Kowalski, and A. Pelc. Deterministic ren-

dezvous in graphs. Algorithmica, 46(1):69–96, 2006.

[22] G. Di Stefano and A. Navarra. Optimal gathering of oblivious robots in anony-

mous graphs and its application on trees and rings. Distributed Computing,

30(2):75–86, 2017.

[23] Y. Dieudonné, A. Pelc, and D. Peleg. Gathering despite mischief. ACM Trans-

actions on Algorithms (TALG), 11(1):1, 2014.

[24] G. D’Angelo, A. Navarra, and N. Nisse. A unified approach for gathering and

exclusive searching on rings under weak assumptions. Distributed Computing,

30(1):17–48, 2017.

[25] M. Fischer, D. Jung, and F. Meyer auf der Heide. Gathering anonymous, obliv-

ious robots on a grid. In 13th International Symposium on Algorithms and Ex-

periments for Wireless Sensor Networks, ALGOSENSORS 2017, pages 168–181,

2017.

[26] P. Flocchini. Gathering. In Distributed Computing by Mobile Entities, Current

Research in Moving and Computing, pages 63–82. Springer, 2019.

[27] P. Flocchini, D. Ilcinkas, A. Pelc, and N. Santoro. Remembering without mem-

ory: Tree exploration by asynchronous oblivious robots. Theoretical Computer

Science, 411(14-15):1583–1598, 2010.

[28] P. Flocchini, D. Ilcinkas, A. Pelc, and N. Santoro. How many oblivious robots

can explore a line. Information Processing Letters, 111(20):1027–1031, 2011.

76 Bibliography

[29] P. Flocchini, D. Ilcinkas, A. Pelc, and N. Santoro. Computing without com-

municating: Ring exploration by asynchronous oblivious robots. Algorithmica,

65(3):562–583, 2013.

[30] P. Flocchini, G. Prencipe, and N. Santoro, editors. Distributed Computing by

Mobile Entities, Current Research in Moving and Computing. Springer, 2019.

[31] A. Heriban, X. Défago, and S. Tixeuil. Optimally gathering two robots. In

Proceedings of the 19th International Conference on Distributed Computing and

Networking, page 3. ACM, 2018.

[32] T. Hsiang, E. M. Arkin, M. A. Bender, S. P. Fekete, and J. S. B. Mitchell. Algo-

rithms for rapidly dispersing robot swarms in unknown environments. In Fifth In-

ternational Workshop on the Algorithmic Foundations of Robotics, WAFR 2002,

pages 77–94, 2002.

[33] T. Okumura, K. Wada, and Y. Katayama. Optimal asynchronous rendezvous

for mobile robots with lights. arXiv preprint arXiv:1707.04449, 2017.

[34] F. Ooshita, A. K. Datta, and T. Masuzawa. Self-stabilizing rendezvous of syn-

chronous mobile agents in graphs. In Stabilization, Safety, and Security of Dis-

tributed Systems - 19th International Symposium, SSS 2017, pages 18–32, 2017.

[35] D. Pattanayak, K. Mondal, H. Ramesh, and P. S. Mandal. Fault-tolerant gath-

ering of mobile robots with weak multiplicity detection. In Proceedings of the

18th International Conference on Distributed Computing and Networking, page 7.

ACM, 2017.

Bibliography 77

[36] A. Pelc. Deterministic gathering with crash faults. Networks, 72(2):182–199,

2018.

[37] A. Pelc. Deterministic rendezvous algorithms. In Distributed Computing by

Mobile Entities, Current Research in Moving and Computing, pages 423–454.

Springer, 2019.

[38] O. Reingold. Undirected connectivity in log-space. Journal of the ACM (JACM),

55(4):17, 2008.

[39] A. Ta-Shma and U. Zwick. Deterministic rendezvous, treasure hunts and strongly

universal exploration sequences. In Symposium on Discrete Algorithms: Proceed-

ings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms,

volume 7, pages 599–608, 2007.

[40] M. Tsuchida, F. Ooshita, and M. Inoue. Byzantine-tolerant gathering of mobile

agents in arbitrary networks with authenticated whiteboards. IEICE Transac-

tions, 101-D(3):602–610, 2018.

[41] G. Viglietta. Rendezvous of two robots with visible bits. In International Sym-

posium on Algorithms and Experiments for Sensor Systems, Wireless Networks

and Distributed Robotics, pages 291–306. Springer, 2013.

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Dedication
	Introduction
	Preliminaries
	The Model
	Mobile Robots in the plane
	Robots' Synchronism
	Mobile robots in Graphs

	The Gathering Problem
	Roadmap

	Literature Review
	Mobile Robots in the Plane
	Mobile Robots in Graphs
	The Gathering Task in Graphs with Faulty Robots

	The Known Algorithms
	Algorithm Weak-Byz-Known-Size
	Algorithm Weak-Byz-Unknown-Size
	Algorithm Strong-Byz-Known-Size
	Algorithm Strong-Byz-Unknown-Size
	The Polynomial-Time Algorithm with Strong Byzantine Robots

	Our Algorithm
	Definitions and Terminology
	H-View-Algorithm
	High Level Description
	Algorithm Details

	Analysis

	Impossibility Results
	A lower bound on the number of non-faulty robots: weakly Byzantine faults, unknown graph size, and H=0
	A lower bound on the number of non-faulty robots: strongly Byzantine faults and known graph size
	A lower bound on the visibility range

	Conclusion
	Contributions
	Future Work

	Bibliography

