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ABSTRACT

The ray opEical method is employed to derive an asympËotic

solution for the far field scaËtering by an ímperfectly conductíng

sphere. The procedure makes use of the exact solution and is tested

for perfectly conductíng spheres r¿here considerable improvement in

Seniorfs solution is inËroduced. Apart from leadíng to good agreement

wíth Ëhe exact soluËion for spheres of radii as small as one wavelength,

the method provides better physical insight into Ëhe scattering

mechanÍsm and considerable saving in computational efforË. Two specific

ranges of ímpedance, one below and t.he oËher above the free space

intrj"nsic impedance, are identified. Numerical results are presented

for various sphere sizes and surface ímpedances r,rhile the behaviour of

the imperfectly conductíng sphere and its deparËure from t,he perfectly

conductíng sphere are demonstrated and explained for Ëhe forward,

bistatic and monostatic cross sections.

To extend the technique to cylindrical geometries for which no

exacË soluËions are avaílable, it ís shoqm Ëhat available numerical

solutíons may be used to replace the need for exact solutions provided

that they are extended to Ímperfectly conductíng bodies using the

Leontovích irnpedance boundary conditíons. Results based on t.hese numeri-

cal Èechniques are presented for t,he imperfectly conductíng circular and

square cylinders as well as the circular cylinder coated v¡ith a radially

inhomogeneous dielectric. Fínally, results for the imperfectly conduct-

ing recËangular and spherícal cavíties are also presented and analyzed

on the basis of the perturbation and boundary value techniques,

respectively.
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CHAPTER I

INTRODUCTION

Though the Leontovích boundary conditions have been lcnown for

the past few decades, solutíons for problems incorporating this condition

have only been possible for a few geometries. Besides the mat.hematíca1

difficulties encountered, even in the cases when exact solutions

obtained by using these condiËíons are known (e.g. the sphere and. the

circular cylínder), the effect of the impedance is not fu1ly understood..

These condtíons relat.e the tangential components of the electric and

magneËic fields through an impedance facËor which is a function of the

properties of the surface and polarízation of the íncident fie1d.

Though the surface impedance concepË ís not ne\^r, the idea of incorporat-

ing it into the initial formulation of the boundary value problem dates

to the early 1940rs. The electromagnet,ic properËies of the material

are specifíed in terms of an effect.ive surface impedance, thereby

simplifyíng the formulatíon considerably and makíng solutíons tractable.

An exposition of lhe írnpedance boundary conditions for a flat or

curved surface or at an interface where the properties of the med.ium vary

from point to point is gíven by senior [Lrz), who also gives the proof

of the conditions as rn'ell as their degree of generality and restrictions.

For a curved surface, the conditions are a valid approximation to the

true condítions, if the radíi of curvature are everywhere large compared

with the wavelength and the refractive index of the coating is large

compared to unity. They are also justified when the impedance varies

from point to point, provided Ëhat the variation is s1ow. The condÍtions



are appropriate for a number of problems involvíng imperfectly conducting

scatterers, rough surfaces and absorber and dielectric coated bodies,

and perform in one operation a perturbatíonal solution about the perfect.ly

conducting case without explicítly considering the surface conditions.

Thus, the wide range of surface condítions , that are taken into account

in a single formulation incorporatíng the impedance boundary condition,

makes the st.udy of such problems mosL interesting and importanL" However,

in doing so ' a suitable method of solutíon which is conceptually simple

and at the same tírne gives good physical insight inËo the electromagnetic

\47ave propagation phenomena over bodies which satisfy the impedance

boundary condítíons, is requíred.

Impedance boundary conditíons have been used maínly in guided

vlave propagation [3-18] with partícular emphasis on the rectangular

waveguide wÍth lossy wa11s 13-10]. The solutions in this case have been

restrícted maínly to the case rvhen only one wal1 is imperfectly conduct-

íng. This is because of the difficulty experienced in applyíng the

Í.mpedance boundary conditÍons for other cases, and the non-existence of

normal waveguide modes, thereby rnaking t.he analysís considerably involved"

fn scatËering and diffraction theory, the condíÈíon has been applied to

the wedge [L9-251 and cone [19] vrith little succèss, the only tractable

results for the wedge being obtaíned when only one face satisfies the

Í-mpedance condition 122-251. The nain difficulty in thi-s case is rhe

choíce of a suitable mathematícal representation for the scattered fíeld.

I,tríth the use of Hankel funct.ions, as ín the case of the perf ectly con*

ducting wedge or cone, it has not been possible to satisfy the ímpedance

boundary conditions. The ÍmperfecLly conducting half-plane is one of



the few cases for which solutions have been obtained t26-291 and ext,ended

to linear and anisotropic varíations of the surface impedance t30-33].

ïn the case of the ímperfectly conductíng sphere and cylinder,

v¡hich are Èhe princípal scaËterers considered here, only a limiËed amount

of infornatj.on exisLs. In the case of the sphere, the exact solution

ís knov¡n 134-37 ] and t{ait and Jackson [34] have computed Ëhe sol-ution

to investigate t.he scatteríng behavíour. However, this gives 1íttle

physical insíght into the scattering mechanism. The ray optical

analyses of others [38-40] are restricted to the monostatic case and do

not lead to numerícal result,s, due to the lack of creeping viave propaga-

tion coeffícients which require finding the complex roots of transcend.ental

equations. This restricËion, togeÈher wíth the mathematical complexitíes

of contour integration and the considerable amount of labour involved in

obtaining results for the bístatic and forward regions, have restricted

the solution to the monostatíc case. In the case of ímperfectly conduct-

ing cylinders, the exact solution is available for the circular cylinder

t4L-43J and an integral equatíon formulation for oËher cross sectÍons

l44l- Horvever, the latter method requires considerable computaËion tíme.

Furthermore, no resulËs descríbíng the physíca1 effects of surface

impedanee on the scattering properties of cylínders are available ín the

literature.

The basic analytical approach in this thesís is based on the ray-

optical method by Keller 145-461. The method is an extension of

geometrícal optics to include a class of rays, called diffracted rays,

whích account for the shad.ow region fíelds. The total field at any

point in space is given by the sum of the fields on all rays passing



through thaË point, rvhile the arnplitude of the field on individual rays

ís assumed to behave according to Ëhe principle of conservation of energy

and the phase is directly proporËional to the optical length of the ray.

The method provídes excellent physical understanding of the scatt.ering

mechanism and offers considerable computational advanËage due to the

símplícíty of the asymptotic expressions obtained for the fields.

The motivation for research in thís area has been to obtaín better

physical undersËanding of the behavíour of imperfectly conducting bodies,

witll particular emphasis on the sphere. Results for other imperfectly

conducting bodies like the circular and square cylinders, and Ëhe

ínterior problems of the rectangular and spherical cavíËies are also

obtaíned and analyzed, primarily to obtaÍn numerical results for the

"ray-numerical" method proposed and secondly to support or add to the

available ínformation on the characteristics of imperfectly conducËing

bodies, derived from the sphere solution.

In Chapter II the ray optical solutíon for the perfecËly conductíng

sphere ís anaLyzed for accuracy and the range of applicability in the

bistatíc range extended. Furthermore, the solution ís extended to the

scatËering by multiple spheres and Ëhe resulËs are shown to provide betËer

agreement vrith the experímental results of Mevel 1,471, than has been

possible by the multipole expansion merhod [48].

The ray opt.ical solution for the perfectly conducting sphere is

exËended to the scatÈering by an imperfectly conducting sphere in

Chapter III. An asymptotic solution for a sphere of large electrical

radius ka is derived by the apolícation of üIatsonrs transformation to

the exacË seríes solution. The scattered field is reduced to Ëhe sum
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contribution from rays assocíated wíth a geometrical optics Ëerm and a

serles of creeping v/aves. using the method of striefer [4g], decay
coefficients which are the complex roots of a transcendental equation
are obËained in a series form and fÍe1d expressíons for the monost.atic,
bisÈatic and forvrard scattering are iierivedl and analyzed.. The results
show favourable agreement with the exact solutíon. Two specific ranges
are identified where the surface impedance is belor,r or above the free
space intrinsic impedance and it is shorvn that Ehe scatËering cross
sectíon in either range, d.eËermine Èhe complete behavÍour for the
reciprocal ímpedance in the other. The departure from the perfectly
conducting sphere is also demonstraËed for the forward, backward and

bistatic cross sectíons for varíous resístive, reactÍve and compÌex
impedance coatíngs. The solutíon is shown to lead to easier analysis
and physical insíght into the scattering behaviour.

To extend the ray method to oËher geometries, the ray-numerical
method ís proposed in chapter rv. This defines ray díffraction and

propagation coeffícients in place of mode díffraction and d.eoay coeffi_
cients and is demonstrated for Èhe case of Ëhe perfectly conducting
cylinder' To employ the technique for imperfectly conductinÐ cyrindrical
bodíes, the transmission matrix method and the phase shÍft method

prevíously employed for perfectly conducti.ng cylinders are extended and

results for the circular' square and circular cylinder r¿ith an inhomo-
geneous dielectric coating are presented and analyzed. The rectangular
and spherÍcal cavities are also j-nvestigated using the perturbation and

boundary value techniques respectively.

rn Chapter v some applicatÍons using the results obËained. are
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suggested. The discussíon of Ëhe results and conclusions are finally
presented. in Chapter VI.

Most of the material in this thesis has been published or

accepted for publicaËion [50-54].



CHAPTER II

THE RAY OPTICAL SOLUTION FOR CONDUCTING SPHERES

2.I Background of the Method

Although various methods have been employed for solving scatter-

ing problems, Ëhe ray optical method or the geometrical theory of

diffractíon Ís perhaps the simplest conceptually and leads to satisfact-

ory results when the characteristic dimension (ka) of the body is

much larger than unity. Since very few problems have exact solutions,

such approximate techniques are of basic importance ín applíed electro-

magnetic theory. rn additíon to its mathematical simplicity, the ray

method gives a physical insíght into the mechanisms responsible for

scattering or diffractíon.

The geometrical theory of diffraction is an extension of the

classical geometrical optics theory. Both theories assume that energy

is propagated a10ng ray paths obeying Fermatrs príncíple [45], such that
the opËical path length is stationary. The classical geometrícal opËi-cs

theory is inadequate to deal with scattering and diffraction problems,

since it neglects phase and polarizaËion information and fails to account

for the fields in the shadow region. The phase and polarizaxion informa-

tion ís often added artí ficially when the approximatíon becomes identical

to the first term of an as)tnptotic solution to Maxwellts equations as

introduced by Luneberg [55] and Kline [56,57]. rn spire of this, rhe

diffracted field due to edges, vertices, corners and shadow boundaries

were stil1 unaccounted for and this led to the development of the

geometrical theory of díffraction.



Kellerrs geometrical theory of diffraction l4Srt,61 overcomes the

defects of the geometrical optics theory, by introducing ner^r rays called

díffracted rays. Here diffracted energy is sti1l assumed to propagate

along ray paths obeying Fermatrs principle. The total field at an

observation point is the sum of fields on all the rays passíng through

that point. The phase of the field on a ray is assurned to be propor-

tional to the optical length of the ray relative to some refererice poínt

where the phase is knovm. The amplitude is assumed to behave according

to the prínciple of conservation of energy and is formulated as the

product of the íncident field aË the poinË of diffraction times the

diffractíon coeffícient. Diffraction coefficients are d.etermined by

comparison with the leading term in the asymptotic expansion of the exact

solution of canonical problems and have been found for various bodies,

e.g. the wedge. [58], half plane [59], cone [60], and have been employed

forthe scarrering by multíple t59] and smoorh bodies LOt,øZl. AlËerna-

tively, approximate values may be obtaíned from experimental measurements.

Although the ray techníque provÍdes excellent physical und.erstand-

ing of scatteríng and diffraction processes and offers considerable

computational advantages, it, nevertheless, suffers from a number of

drawbacks. The íncident and reflected fields are discontínuous across

the shador¿ línes and the diffracted field becomes infiniËe at shadow

boundariesredges and caustícs and certain corrections must be made [6:,
641. However, for an arbitrary body, no general method of correctíon is

avaílable and caustic correction terms must be determined in the same

I'ì7ay as for diffraction coefficients 164.-66]. Furthermore, the general

validity of Kellerrs theory has not been esËablíshed.



In spite of these shortcomings, the geometrical theory of

diffractíon has been applied successfully to treat a wide varÍety of

interior and exterior electromagnetic problems [67-70]. The range of

problems already solved indicates that the method is one of the most

promising approximate methods for compuËational purposes. The scattering

of plane \"Iaves by a perfectly conductÍng sphere and multiple spheres is

developed in Ëhís chapter using this techníque.

2.2 Rav Scattering bv a Perfectly Conducting Sphere

The solution for the scatteríng of a plane r¡rave by a perfectly

conductíng sphere using the ray optíca1 approach was formulated by

Senior and Goodrích [71] in a form convenient for computaEional purposes.

The accuracy of this solution is examined in this section and certaín

corrections ín the results are presented.

Assuming a plane wave polarízed in the x direction and incídent

along the negative z axís on a perfectly conductíng sphere of radius a,

as shown in Fíg.2.I, we have for the incident electric and magnetic fields

oÍ _ ^ ^-jkz.ü=xe

and (2.1)

Hi = î Ys-jkz'o

where Yo is the intrinsic admittance of free space and the 
"jt'lt time

dependence has been suppressed. Using the standard Mie Series as given

by stratton L72l and the spherical coordínates (rr0,0), the exact

expressíons for the far field components are

E =0r (2 "2a)
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Ftc. 2.t

INCIDENT PLANE WAVE

SCATTERING GEOMETRY OF A SPHERE
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Eo=j . -.t" 21"+rt- I I\ ¿'l [(f, + 1)
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kr
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(2 "2b)

(2 .3a)

(2.3b)

as the sum of

I r-rl ¿

[=1

(2.2c)

where rfn(t<a¡ = ka jg(ka) and ef1) cr."l = r.r r,fl) (ka), ig(ka) and

,,f1) <r..i are spherical Bessel and Hankel functíons, the príme notation

denotes differentiation with respect to the total argument and rf(cosO)

are the Legendre functions of degree.:one.,.arid.lor.de,r 9".

Denoting the summarions ín (2.2b) and (2.2c) by sr(e) and s2(0)

[ ún'{r."¡

L€Tr,-Ð h ti(coso)

Úu (tca¡ rf (coso ll
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s2 (o) (-1) r 29"+L
7@-+T

æ_r
l,=L

I Uu' {r.') r} (coso )

t{tr,- "i"o

ún (tca¡

ef1) ct"l

FurËher , using trniatson I s

fur;("""0)]

transformation and writing Sl(0)



T2

a geometric opticsterm, Si(0), and

we obËain ti:.e follorving expressíons

si(o) =*u^"Zjkalt.*.
and

sl(o) = -4^-jnka+1 n/6
-t-e

2-ì + o(t
323,

a creeping \,Iave solution, ST(0),

for the backscattered field [71]:

rlo(-+) I (2'4a)
ka' J

"-j 
n/:r'

. (1 +

1..

f-
tr
lt=r

-r, 1-)l

e-j

,]Ì

func

ßø[o, (-sù)2 L512

(2.4b)

tions A. (-o) and
a

f or .Ëhe E plane

< T - ô, where

. 
"*n 

[. 
"' '/u B u'n

n ¡øøîn

60'r

"-in/tq*ocr-ol"ll5t- J

(i-+)*0,.-rr]

-I
m=1 ¡e;{-o,) I 

2
['.

eJ"[_.L

,,

of

ín

the

aín

ka

e

iì

Xex

= ,Yrt'
the zeros

irnilarl-y

tioi: for

), we cbt

icer = j

S

polariza

ô=o(h

S

"-l 
n /6o

-3
2

1I
mr/6' cx lTT

m
+0(t

60'r

where T

ßL are

c are the zeros of the Aíry
m

Ai(-ß) as defined ín [71].

the bistatíc case the expressíons

range of bistatic angles ô < 0

for the geom.etric optics Ëerm

"2j 
ka coso/2 [,, * ____j- _- L- ' zka cos3g /2

lsrn2o /z
4G:f".":ù2- '" I.J

while the creeping rvave contribution is gíven by

(2.5a)
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rd scattering direction corresponds

geometríc optics and creeping rvave

and the results for the trvo

-1 r/6 te" cx-
m + 0(r

Finally due Ëo the fact that the

Ëo a caustíc, the expressions for

.kat-ìt 2nsinO'

terms must be evaluated independently
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polarízations are related by

sr(n) = - sr(n)

The expressions for the fonvard

for the geometric optics term

(2 "7)

the following solutionsfield result in
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'ol'0""'-
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(2.8a)
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60t
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for the creeping \,üave term.

Equations (2.4b) and (2.5b) describe the dominant contribution

from the creepÍng v,/aves corresponding to a travellíng distance of half a
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sphere círcumference. However, the ímprovement in the accuracy resultíng

from the hígher order creeping \Áraves, ê.g. m = Lr2, ín (2.8b) is

numerically insignificant and therefore neglected in the computations.

To verify the solution, íË is fírst necessary to check the

accuracy of the predicted fields. Table 2.1 compares the monostatic

phase (0") and normaLLzed E plane cross-sections {o"/r^2) computed

from the exact results and from our expressions for ka of 4.79 (chosen

because of the available daÈa ín the Ëwo sphere scattering problem, to

be discussed in the next secËion), 5.0 and 10.0.

TABLE 2.1

EXACT AND APPROXIMATE VALUES OF MONOSTATIC CROSS-SECTIONS AND PHASES

Phase o'S

Exact Approx.

4.r9
5

10

-51. 510

30.Lg7"

-r74.768'

-51.95'
30.35"

-LL4.797"

To check the validity of (2.5), \¡/e compare the approximate and

exact cross-sections for the above values of ka in Ïigs . 2.2a-2.2c"

For the case ka = 10.0, it is seen that beyond the bistatic angle of

LzO" the asymptotic expressíon fails to reproduce the corïect results

since the product k" 
"o"30 ís 1.25 at 0 = 120o whích ís not much

Larget than unityr as required for the validiËy of the geometríc optics

teïm. In particular, for scattering from two spheres in the broadside

configuration, the accuracy of the approximate bístatic results at

o /na2s

Exact Approx.

0.638626 0.635060

1.16884 L.r76L5

0.92923 0.9301s
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0 = 90o are of ímportance and it is seen thatrhere too, the asymptotic

Èheory ís noË in suffíciently good agreemenË. For lower values of ka,

the same discrepancy is observed as is evídent from Fig. 2.Ia. Hence

r¿e conclude that the bístatic approximate results require considerable

ímprovemenÈ since besides the above constraint on the geometric optics

term' the solutíon is further restricted to the range of bisËatic angles

ô < 0 < î - ô, where ô = O(I/ka), which would prevenË a solution for

arbítiary angles of incídence and observaËion.

Table 2.2 compares the exact and approximate results for forward

scattering cross-section and phase for the above three values of ka.

TÃBLE 2.2

EXACT AND APPROXIMATE VALUES OF FORI^IARD SCATTERTNG CROSS-SECT]ONS AND PHASES

Phase p"

Exact Approxka

4.r9
5

10

g4.L7g"

93. 17Bo

90.79"

94.3"

93.3"

90. B'

This indicates that the expressions for scatËering ín the forward direction

are reasonably accurate. It remains to show how the approximate Ëheory

could be used if the bistatic results are improved.

In order to ímprove the approxÍmate Ëheory, we investigate the

functional nature of the geometríc optícs Ëerms (on the assumption that

the creeping wave formulation is reasonably accurate), by examíning the

exact results and comparÍ-ng these graphíca1ly with the approximate

o /ra2
S

Exact Approx.

20 "095 L9.047

28.073 27.032

106. 3sB 105.33
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geometric optics Solution, as shoT¡/n in Fig. 2.3 for ka = 4.L9. From

Èhís we observe that the geometríc optics term in (2.5a) is a monoËonically

increasing function, while that obtained usíng (2.5b) and the exact

soiution has an oscillatory nature. However, the Kirchhoff-Huygens

formulation for Ëhe plane wave scãttering from a sphere, as fqrmulated

by Yerukhiinovich and Pimenov tZg] and later puË ínto a suitable form for

computation purposes by Erukhimovích llt*), leads to better results' Here

use ís made of Federovrs expressions for fields obtained in quadratures'

by Èhe vector potential method, in terms of currents induced on the

surface of a perfectly conducting sphere due to an incidenË plane wave

[ZS]. Separate solutions for the bisËatíc range of angles 0 Í 0 Í ofi*

and 0-. < 0 < n were obtaíned, where 0',- is given by the'lím - rl-m

relationshíp

""" þ, = l. 81 br/Zua = L/.t2 (2.e)

and bL= 2.335t.

This formulatíon leads to an alternative geometric optics Ëerm

174l involving Ëhe zero order Bessel funcËion of the fírst kind

^ ,^ .i (ka sin0)
si(o) = i Y cr * *;;þq7l "i 

2ka cos e/2 + # "", drz

(2. 10)

The first term in (2.10) is identical to the fírst two Ëerms in (2.5a),

while the second term involves a Bessel function rather than the higher

order divergíng terms in (2.5a). Equation (2.10) is plotted in Fig' 2'3

and is shown to be quite suitable for our purposes. Ftg.2.4 shows the

results of combíning the creeping r¡rave term in (2.5b) and the geometric
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optícs term in (2.10) for ka = 4.L9. The curve agrees very well with

the exact results over a much larger angular range than possible usíng

the optics term (2.5a). Further as the value of ka is increased, we

can expect better agreement and over a Larger range of the bistatic

angle, since 0-,, will increase. rn particular, vle note the agreementrl_m

for 0 = 90o whích is important for broadside scatteríng by two spheres,

to be díscussed in the nexË section. Since these resulËs are reasonably

accurate, the combined expression for the approximate solution for the

single sphere may be exËended with confidence to the two spÉere problem.

2.3 The Scatteríng by Two Perfectly Conducting Spheres

The problem of electromagnetic scaËteríng of plane \¡raves by two

spheres is a fundamental one in the theory of many body scattering.

Thís ís especially-so, since the sphere is one of the fer"¡ bodíes for

which an exact solution is available. The problem has been treated by

Trinks 176l for broadside incidence and small idenËícal spheres, and by

Germogenova Ílll for very smal1 spheres and arbiËrary angles of incídence.

Bonkowski et al [ZS] also investigated the backscattering for the

broadside confíguration. zítron and Karp [79,80] have analyzed Ëhe two

and three dimensíonal scattering for bodies of arbitrary shape and more

recently Twersky [81] has ernployed a vector dyadic formalism to stud.y

the same problem, but the results do not lend Ëhemselves easíly.to

computation. 0f considerable interest ís the paper by Angelakos and

Kumagai [82] who have presented experímental results for the two and three

sphere scattering and used theoretical extensions of t7B] for comparison

purposes. Líang and Lo [48] have utilized the method of multipole
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expansions 
' together vrith the translational additíon theorem for vector

spherical wave functions developed by Cruzan t83] to derive the solutíon
for the scattering by Ëwo spheres of differenË sizes and for an arbitrary
angle of incidence. Results, which take into account first and second

order scatËering' \,rere presented and compared with the experímental

results of Mevel [47] for the broadsíde case and with those of

Angelakos and Kumagai for the endfire case: As observed by these authors,

the calculations are complicated and tedious and errors due to sl_or¡r

convergence are líkely. Furthermore, for large spheres (i.e. ka greater

than one ruavelength) these expressions are not suited for numeri-cal

calculations. Recently Bruníng and Lo t84] have used conventional

geometric optics ancl modified geometric theory of díffraction to obtain
results which agree well with Ëhose computed by Líang and Lo [4g] but

are still ín discrepancy when compared wíth experimental results.

To allevíate the above dífficultíes, the aim of this section is to

obtain a simple relatíon ín a form more conveníent and suited for calcu-

lation purposes, using geometrical díffraction theory. Knowing the

solution for the scattered field from a single sphere the solution for the

multipl-e.sphere- ðase is easily obtaj.ned. The single sphere results

have been analyzed in the last section for accuracy and wíll be use<l here

to obtain results for the Ëwo sphere case.

Furthermore, the approach is shown Ëo be more readily adaptable

for scattering from multiple spheres than previous formulations, as

considered in the next section, and scattering cross-sections for
arbitrary angles of incidence and observation are easily calculated usíng

this method.
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The solution for the scattering of plane vraves by two spheres will

be developed for an arbitrary angle of incídence and an arbitrary angle

of observation for two non-identical spheres. I{e assume that the spacing

of Ëhe spheres ís large compared to theír dimensions and to the wavelength.

Consider a plane wave incident on two spheres whose cenËers are

at a distance kd apart on the z axis as shown ín Fig. 2.5. Let

sphere t have a radius tat and sphere 2 radius tbt. Further assume that

Ëhe angles of incidence and observation are 0r- and 0o measured with

respect to the x axís, as shov¡n. using the ray Ëechnique, the fíeld

af any point may be obtaj.ned as the sum of the field scattered by each

sphere índívidually plus fields re-scattered by one sphere due to fields

scattered by the other.

At a sufficiently large distance from the sphere, the scattered

field resembles a plane T¡Iave. This in turn ís scattered by the second.

sphere perturbing its scattered field, which response in turn Ís.:,scatte.red

by the fírst sphere perturbing the scatÈered field of the firsË sphere.

Thís successive pto"""" is repeated to obtain hÍgher order terms and the

perturbed patterns are superimposed to obtaín Ëhe total solution.

If E^(0) represents the unperturbed bistatic scatËered field ata

an angle 0 of the sphere of radíus a and, similarly Eb(O) is that

of sphere of radius b, then the total scattered electric field at any

arbítrary angle of observation 0o is given by

Er=Er*E, (2.1r)

to the rays scattered by spheres 1 and 2where El and EZ are due

respectively. Hence



27

Incident Plone
Wove

Sphere No. I

Incident Plone
Wove

Sphere No. 2

The two sphe¡e scottering confiEurotion
Fle, 2,5



2B

Er= u"(oo-0r)+ro(0o

EaßT/2) - 0r)u¡(oo

y\srlz - or)no(o)n^(3r/2 - oo)

E^(3n /2

o . ¡ u-jka [sin0 .+sin(n-0o) J

n /2) -jkd [l+sin(n-oo)J
+

kd

-2jkd

'*dZ

E"(3rl2 - 0r)Eo(0)8"(0)Eo(0o - n/2)

"-jka 
[3+sín(r-oo) ]

kd3

- s. )uo'(o)Ea(o)E

no3r/2 - 0r)

L
kd'

E^(3n/2 - 0o)e
-jkd (1+sín0 . )

l_

kd

Eo3r /2 - 0i)ur(0)% (0o - n/2)

kd2

jkd(2*sino,*sín(r-0
l-

- 0i)n"(0)Eb (0)E^(3r /2 -

^(3rlz 
- 0o) -j 4kd

e*+

+

+

exp

E, (r
D

")]
0)

o

t-

lz

kd3

L
kd'

-jkd[sinO_*sin(n-0 )I
ET = Er(Oo 0.) + u¡(Oo - 0.)e - r-

_jlcd [1+sin(n_0o) J

u¡ (0o - Tt /2) e

-jkd (3+sín0 . )L
e

-jkd [4+sino . *sin (n-oo) Ie+

+

(2 "r2)
Combining terms and summing over all possible interactions, we obtain

E (3tr/2 - 0.)a l-'
kd.A
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E(3r/z-0)
. Ë# ao(o)e-2jkd

Er(rlz - 0*) -jkd(1+sin0,)
-Lttr', kd.A -^(3n/z - 0o)e a

, Ea(0)u¡(0o - r/2) -jkd(2+sín0.*sin(r-0o)
*f e (2"i3'¡

where

Ea (o) Eb (o) e-2j kd

-",
kd'

(2.L4)

Evaluation of Ef leads to the evaluation of scaËterÍng cross-

sections for two spheres.

2.4 Extensíon to the Multiple Sphere problem

The extension of the procedure in order to deal wíth the

scatteríng by a number of spheres arbítraríly distribuËed, can be

demonsËrated by formulatíng the three sphere problem. Let the spheres

A, B and c of radií a, b and c respecËively, 1ie at the corners of

a triangle with sídes kdl, kd2 and kdg and angle" 01, A2, 0: as

shown in Fíg. 2.6. For plane wave incidence, we denote the angles of

incidence and observation by 0, and 0o 
."ru 

we let Ea(O), Eb(0) and

Ec(0) rePresent the unperturbed scattered fields, at the bÍstatic angle

0, due to the spheres A, B and c respectívely. I^Iíth the center of

sphere A as the origin of the system of coordínates, the total far

field, on basis of the previous section, ís obtained as a superposítion,:,.

of the fields scattered by Ëhe three spheres and is given by

-jkd, Isino.*sin(r-0 ) ]
ET = E"(Oo 0.) + u¡(Oo - Or)e t r' o
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-j kd: I sin (3til 2-0o-0,) -sin (0o+0r-n)
+ Ec(0o - 0.)e

E^(3r/2 - 0.,)EO(Ao - r/2) 
^-jkdr[1+sín(ri'-0o)]kdl '

E"(3ril2 - 0. - 0r)E.(0o - r/2 - 0r) 
^-jkd¡ 

[1-sín(0o+01-.r) ]
l"Ca "

EbOr/2 - Eí)Ea(3Tt/2 - e) 
^-jkdr(1+sin0.)"

+

+

+

+

EbOt/2 - 0.-+ A)Ecç1/2 + 0o - 02)

kdz

E"(0, - r/2 * 0r)E"(3rl2 - 0, - 0o)

kdg

[-jkdrsinOr-j kdr+sin (0o+0r-r) ]
.e

-jkd: -jkdrsin(n-0 .-0r)
ee

, u"(0o - AZ)uU(02 - 0o + r/2) -jkd3-jkdrsin(ri-O.-01)-jkdrsin(n-Oo)
ae

.L (2.Ls)

Equation (2.15) contains interaction terms taking into account up to the

first order on1y. Símilarly, the higher order interaction terms are

easily formulated. A matrix formulation for the scattering by a randomly

distríbuted set of spheres can be drawn up Ín close analogy to the

radíatíon by an array of antennas, as is evídent from the nature of Ëhe

terms ín (2.13) and (2.15). The above equations hold only v¡hen rhe

separatíon distance between any t\,/o spheres is much greater than the

wavelength and the diameters of the spheres. However, taking an asymptotíc

expansion of the various terms in the l4ie series solution tB5] for the

scattering of a plane wave by a sphere, the scatËered field due to one
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sphere can be expressed ín terms of incident plane vraves and their

derivatives evaluated in the neighbourhood of the adjacent sphere.

Carryíng out this process of successive scáttering, we will obtain a

solution which rvil-l predict accuraËely the scattered fleld from a

random distribution of spheres. Calculations of this nature have been

carried out by Tr*rersky [86] for an arbitraty planar configuraËion of

parallel cylinders and, in particular, for two identícal cylinders. It

is evident that for an arbítrary confíguration, the computations r,¡ould

be more tedious than for the two sphere case. Ho¡vever, using the fact

that the fíelds scattered by the various spheres are "consistentil with

one another sirnplifies the calculat.ions. ¡urther, the problem would

perhaps be simplified if considered as a problem of caustic-caustic

inËeractions which wíll considerably reduce the computations, particularly

if Ëhe scatteríng matrix approach is used.

2.5 Numerícal Results

Using the bistaËic data compíled by Ross and Bhartía tB7] from

the exacË solution for various ka values, and equation (2.L3), v¡e can

generate polar plots for a particular set of spheres at varíous dístances

of separation. Bistatic results may also be generated for two spheres.

However, to verify the expressions, we consider the endfire and broad-

side cases for which experimenËal data ís available. Fig. 2.7 shows a

plot of normalized backscattering cross secËion rvith varíous sphere

separations for two identical spheres of ka = 4.19 in the broadside

set up. Curves taking into account only the first order interaction and

a single curve Ëalcing account all ínteractíons are presented. Thus we
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see that even taking into account first order inËeractions and using the

exact solutions f.or a single sphere, we obtain better agreement with the

experimental results of Mevel l47l than has been possible rvith previous

formulations. A curve using the approximate theory of Sect.ion 2.2 ís

also plotted and once again we fínd better agreement Lhan obtaíned

previously. Also, though equation (2.L3) is for large sphere separations,

it, nevertheless, gives agreement with experj-ment even in the region where

the sphere separation is not large compared to Ëhe sphere size. I^Iith

increasing sphere síze, the approximate theory results are more accuraËe

and so a better agreement wíth experiments r,¡ill be obtaíned.

Fig" 2.8 shows the backscattered section for spheres in the endfire

position having a ka of. 7.4I. Here again the above remarks about the

accuracy app1y. Fig. 2.9 ís a plot for Ehe backscattered cross-section

when two identical spheres at a fíxed disËance apart are rotated. In

this fígure 0 = 0 corresponds to the broadsíde position of the spheres

and 9 = 90" to the endfire position. No comparison with experÍmenË is

possíble here due to lack of such data.
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CT]APT]]R ITI

EXTENSION TO Ti.lE IMPERFECTLY CONDUCTING SPHEP.N

3.1 InËroduction

Chapter II has dealt with the ray ootícal scattering of plane

rnraves by irrperf ectly conducting spheres. llovrever, ín practice the

sphere usually has finiËe conductivíty, surface roughness or may be

coated wíth a layer of another material. Such a scatterer is of practi-

ca1 importance ín various applications as described in chapter v.

To consider the effect of finite conductivíty, surface roughness,

or coating on the scattering properties, these must be incorporated

either directly or indirectly into the formulaËion of the problem. This

is achieved most conveniently by the application of the Leontovich

impedance boundary condítion, which accounts for these ímperfectíons in

the forrn of an effecËive surface impedance as shown in this chapter.

Impedance boundary conditions have been extensively used in

scattering and diffractíon problems to consider the material compositÍon

and surface characterístics of the body. Various fundamental scatterers

have-been considered, with partícular emphasís on the fínitely conducting

p1ane, cylinder and sphere whích have exact solutions. However, dispite

considerable effort, the scattering behaviour of spheres with an impedance

boundary is not ful1y rtnderstood and varíous related questions remaín

unans¡¿ered. Thus the exact series solution gíven in Appendix A converges

very slorvly when the electrical radius of the sphere lca is large com-

pared to unity, requiring lengfhy computations even with present day

computers. Furthermore, the series soluLion does not provide a physíca1

37
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ínsíght into the scatteríng behaviour and an alternative solution in a

simple analytÍcal form is hence desirable.

An asymptotic solutíon of the problem for large ka, usíng the

method of Fock [88], togeËher r^¡ith creepi-ng vrave concepts ín conjunction

with the geometrical theory of diffractíon, presents a possibí1ity for

overcoming both drarvbacks of the exact solutÍon. The procedure was used

effectívely in the previous chapter for the scattering by a perfectly

concluct.ing sphere and essenËially the same method ís used here to derj-ve

asymptotic expressions for Èhe geometrícal opËics and creeping wave

terms for both polarízaLions for the monostatíc and forrvard scattered

fíe1ds, as well as the bistatic field

3.2 Formulatíon of the Problem

Consider a

z direction on a

electric field is

E1x

Hi
v

xt1
o

E
¡O"n

o

plane electromagnetic \,Jave incj-denL along Ëhe

sphere of radius a as shown in Fíg " 2.L. If

paral1e1 to the x axis, we have

ikr cosOe"

ikr cosO

negative

the

(3.2a)

(s. r)

where k = 2r/À,, fìo = 120n and the 
"-jtltt tirne dependence has been

supÞressed. The exact modal series expressíons for the non-vanishing

comPonents of the scattered electric fielcl frorn Appendix A are given as

- ikrEe"
-s.oE^ = i -_--;- cosô p(0)U"kr

n .jkt
-s.oEõ=-j L, sinQq(0)

and

(3. zu¡
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\shere

and

Pl(cos0) +p(o) = j, *ä++

æ
/^\ r (2n+1)

n(ú) = ) -r-=-\:\v/ L. n(n + 1)n=r

q(1), ,u"¡n

î;cu'l *

* :fi|1) cr."l

.i 6icrra)

(3.3a)

(3.3b)

(3.3c)

(3.3d)

(3.4a)

(3.4b)

defined ln the

boundary

pl ("o"0)r
c t', 

In srnu Iþ"k

['
Ln

+c
1

P- (cos0)
n

"f"0 " ft 
r1,.""u,]

î;ru'l + 3¡i1r."l

q(t) ,qr<a) + i oî(r) (t ')-n

(3.3e)

where the prime notation denotes differentiation wíth respect Èo the

argument. n and ô are the normaLízed values of the surface Ímpedance

Z and the ;rdmittance Y wíth respect to the corresponding free space

values n^ and Y,respectively. ThedirecË.íons 0=0 and 0=tf'o o' 
l

corresponcl to Ehe forwarcl and backscatËering directions and P*(cosO)

are the Legendre funcËions defined before and

z^Yn=ñ-,ô=T-
oo

^rjrr(x) = x jrr(*)

i (1) (*) = * n 
(1) (*)

rvhere irr(x) ".,¿ 
n(f) (*) are spherical- Bessel anc! I'lankel functions

previous chapter. In arrivíng at (3.2), the Leontovich impedance

condirion [1]

E - (E . ;)Ã. = z(ã x fr)

I
n

(3.5)
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has been applied as in the same manner for various scatterí-ng and

propagation problems ínvolving impedance boundaries.

To consider various surface conditions, the normalized impedance

is expressed ín the form

The normaLized bistatic scattering cross sections in the

H planes are the main parameters of int,eresË and are given by

n = lnl"jE

where E = - tt/2 for a purely capacitive

surface, Tr/4 for a homogeneous conductor

values for lossy or corrugated surfaces.

(:. o)

surface , r /2 for an inductive

and generally assumes different

and

(3. B)

o
e

2
'tf a

oh

2
'tT a

ivel

zed

Top

son t

-1P -(
n

and

ect

a1i

tr^lat

=-+ lp(o)12
(ka)'

=-+ lq(e)12
(ka)'

(3.7 a)

(3.7b)

ob, of, oO wí11 be used to denote the

bistatic cross sections respectívely.

in a form suitable for the application of

, rre use the relationshíp

resp

norm

the

y. rn p

back, fo

ut equat

s transf

cos0) = -

thereín ob tain

p(o)=- f {2"+r¡
n=1

æ

q(o)=- J(2n+1)
n=1

Pl (coso )n

and O (0¡ the

x -1
,, ãõ- rr,'(cosO)

_'t
P,., - (cosO )

-¿

n sine I

B

following expressions

-1 1
P '(cosO) 

I

-Lî n I+ur, 
"i'g [ (3'9a)

J

1

t" *L- P-l1"o"0)f (3.eb)

J

.D
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s adeq

polarí

f gene

format

lJ"
Jf
c

uate to

zation

rality,

ion int

Note that it Í

for Ëhe other

without loss o

p(0) on trans

hence given by

oo+Í e

i ,[,*rfu
L,,L

¡¿ork with one polarízaLíon, since the results

may be obtaíned directly frorn these. Choosing,

the E plane expression, the series for

o a conËour int.egral gives

1 + e2jvr
(3. 10)

where C is a paËh enclosing, in a clockrvise sense, the zeros of

(t + 
"2jvri, for v > 0.5 as shown in Fig. 3.1.

I^lrÍting the Bessel functions in Br_% and Cr_% in terms of

Hankel funcËions of the first and second kind and evaluating (3.10) by

the theory of residues, we obtain two nev/ integrals, the fírst of which

reduces to zero since

i,"
n=1

and p(0) is

where

P(0) =

P(0) =

D,=v-4

x -1
u-Z æ Pu]2(cosO)

*å>t"t(coso) = -f c"tf$>

î {z¡' (ka)

2vdv

(3 " r1)

VdV

1 + e2jvr
(3.L2a)

(3. 12b )

rulr(.o"0) + Gv-L+#l

ì(1)'l-rz

Ì (z)'
nv-!,

(ka) jnhì:i

(ka) + :oîj]|cr.">
v-1< - 1J:¿' (ka) + 5ot(]|cr.'l

ís a small positive number which is

jn;j:¿(k,)

and e eliminated r¿hen

(3. rzc¡
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runs just above the real axis.

A simílar proceclure for q(e)

T+je.- -1I I p..-,-(cosO)
q(e)=-l 1ou-z-frF--r. L

Gic
Je

leads to the form

* .u-Z ft- t 1 + 
"2jvTI

;1%("""uü

where the forward and backscatter directions are excluded, sínce they

correspond to caustj-cs in the field

It is conveníent to express the Legendre frinctío4s in terms of the

4t''(')Cu,r) functions inrroduced by Logan [89], i.e.

and ít remains to separate (3.12a) and (3.12d) into geometric

and creeping wave terms.

This is done in the bístatic range of angles

U<0<r-rl.r ,p = o(å)

(-r)*zru'r(coso) = {t'(v,o) * {" (v,o)

where the ujt)'(') (u,O) funcrions are defined expticirly by
m

{t''t",u,o) =frËi¿ rj(vo -i-y)
e

'ti0v+1,;ffi-l

(3.12d)

optics

(3.13)

(3.14)

* 2EL(å '",
I1-^' (3. 1s )

poss es s

T - Ê" t
,L

is

and are convergenË in the range r/6 < 0 < 5r/6, These functions

asymptotic values for large v and 11.0 < T/6 or 51T/6 < 0 <

where tl , 0 and has a modulus of 2tr. The asymptoËic relatíon

given by Macdonaldts formula, i.e,

2

E(r),Q) = 
1 EH(1)'(2)ruelm 
um .¡lsin0 

- 
m

(3. 16)



44

the Hankel functions of order

0 < 0 ( rT, and utílizing the

periodic in 0 with períod

m. Expressing

facË that the (3.15)

'lT , Ì,re have f or

vdv (3.19)

tjt)'(2) lve) denorewhere

(sinO )
-4

AS

(3. 17a)

1,r - 0) (3.17b)

and (3.12'd) and splitting each

ob taín

(3. rea)

(3.18b)

denote the geometric optics and

hypergeometric

integer 9"

and

ejv¿Tr{l) (v,o¡ =

I sir,o l-% f or

functiôns are

and s"(0)
q

and G\-4

{t',u,tn * o)

"jV'oti¡z¡ 
(v,o) = .j (m+%)n{tr,u,

Substituting (3.14) inro (3.L2a)

resultíng Íntegrand into tvro parts, r^re

p(o)=so(o)+sc(o)-pp

q(o)=so(o)+sc(o)-qq

where the superscripts trorr and rrctr

creeping wave terms, respectively, and

îj'r
s;(o) = å 

l.,f,-r 
fo uÍ" (v,o)

îj"
sc(o) = + I þ"_r[,%,Í" 

(v,o)

--+j e

fujl) (v,o)*Gu-rl=#a;*rc

uf') cu,o>l-"*-J+Gr-4

uf2)cu,u>;|¡;]d

æ
1

1 + e2jv'rT

l "."
uf2) {u,ol

sin0 , * 
"-2jvn

(3. 2o)

are obtaíned from (¡.fg) and (3.20) by inter-

ín the integrands. Note that the creeping wave

white So (0)

changing Dr-r¿
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terms decay exponentially as Im V + @.

Since the operators fu and ;ft6- in (3.19) and (3.20) do not

essentially affecË the behaviour of f]lr-(cos0) as a functíon of v
v_-2

for lul t¡ 1r Tm v > 0, we see from (3.16) that the asymptotic value

of ujt)'(') (u,o) decays exponenËíally in v as ejv(0-rl2). closing

the contours in Ëhe upper half plane, the contríbut.íon from Ehe semi-

circular path vanishes and the integrals can then be evaluated by the

merhod or residues from rhe zeros (vrr,vo.) or iJl¿'(ka) + :nîj1|Cr.">

and ìj1¿'(ka) + :oìj]|cr.'> if rhe remâinder of rhe inregrands remain

bounded. This is possible in Ëhis case sínce a path between t\^ro zeros

can always be found where this condiËion holds. Hence we obtain

s:(o) = jr I uu-zl lh rÍt'(v,o) - +ì*P - ; v--2 
lv=vrrLou - l * e-J'"

d

a0
n{2) {u,o)

11
;¡l""J

+JTT
m

uu-,-lu=u,
,uÍ1) (v,o)
IIt-

I sinO I + 
"2jvT

u{2) <v,e) 1læl (3. 21)sin0 , * 
"-2jvn

where

" ú.{')' (ka) + :nì.i2)-cr.">-l
_ - v-/2 v--' -"v-rz 

hltijll'(ka) + :nîj1|<r."rl

V,ir-4
"ttìj:¿' 

(ka) + jdJ3¿(r."¡l

futd:¿' (ka) + jôâj:¿tr.")l
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Hence it remains to

monostatic, bistatic

expressions.

which is fin

in a similar

Subst

So lcr¡ =p

evaluare S" (0 ) and S-c (0) specíf ically'pp-
and forward scattering directions, usÍ-ng

the

above

(3 " 22)

(3. 23)

for

the

3.3 The Monostatic Field

The monostatic or backscattered field will be considered first

due to íts ímportance and may be evaluated by introducing the

transformation

9=n-o
and the relation

uÍt,,,',,u,0) = etjvïl* rr"_tr,coscr)

s"(a) = -p

t-1 1+; av:%(coso)l

-1where Q-.', (cosO) are the Legendre functions of the second kind.,r_4.

Substitutíng (3.22) and (3.23) ínto (3.2L) leads to

nl
n

uu-iul sec vrrr h tut-occoscr,)
-lV=V n'n

t;t , (coso,)

nIv.. 'l secvr-5l- ß.24)L \)-'41 m sinclm -lV=V
'm

or G = 0. The expression for Sc(O) may be obtained

er"

ng (3.23) into (¡.fg) we obtain
*l-i ef 'r -

+ I t " rf, fo ';1rt"oscr) 
. + k ou-lrt"""o>]

--+j e

-'ìl- P.,-r_ (coso)

'u-zl: -äa- *

ite f

mann

iruri

ï.

-'t
I Qr,_L (coso)l
= -:_-¿-tTt sincl -l

-jvrvdv (3.2s)
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-1 -1 , -1a_i_¿(x) = Qu_'2(x) + r tan(vn)Pu-r(x)

we see that (3.25) reduces to the form

and using the relatíons

_1 _1
r_i_r(x) = Pui2(x)

D

j

D

n

h

í

v-%
d

âcr

_1
Qui4 (coscr¡

-'l

^ ar]Z(coscr)
- ov-'< 

"i"c!
-ivrie' .vdv

_1
Puir(coscx)

(3.26)

ß.27)

(3.2e)

so(o) = - 1

p'fi

0

.f
)

where the contour

axis between -4 a

integral on the rig
-1Qui2(cosa), we obta

{'

f P]1, ("o"4)l

iou-, fo t"lr,"os*) - .u-z lffi|f .',,qvn¡e-ivrvdv
LJe ' (3' 28)

is símílar to C but intersecting the real V

d +t4 as shown in Fig. 3.2. Evaluatíng the f irst

t hand side of (3.28) in terms of the resídues of

n

so (o)
p

1,,ü" 
-,"k

1=--
2

0

!l tzl l"l'
c-ic

I=--
2

s."21cr¡ "-2ika(+;+)

(1 - n) -2il<a
(1 +¡¡ -

we obtain

- c., r- | tar, (vn) 
"-iunrd,

_1 .l
_ (a P-u--r(cos*) 

l, .rr(vr).-jvrv¿v- cv-4 
"tt 

o 
J 

La'\ vrr '' e r

Hence for the backscatteríng direcËion (o = 0)

so (?T)
p

and

v-r¿

(3. 30)
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sc 1n1 =
p

,t

2

il

z Iu.l secvr-u \)-'41 nn -lV=V
'n

rl3

Iv.l secvru \)-,41 mm -lV=V
(3. 3r)

(3. 33)

(3. 34)

(3.35a)

(3"3sb)

n2v sec v nmm
(r2 + onrì2) [r,r1(crm) ] 

2

(3.36)

while the corresponding expressíons.for tl(U) l,U=n and 5"çO) lg=rï

are identical to (3.30) and (:.:f), respectívely, sínce p(n) = q(n).

Using the Debye asymptotic formula [90] for the Hankel functions

and evaluating the integrals in (3.30) dírectly, we obtain

s;(r) = - iY "-2ikaffirlt - *. ....[ (3.32)

which reduces to Ëhe corresponding expressíon for the perfectly conducting

sphere when rì = 0.

In order to evaluate the expression for the creep,ing wave term,

iË is convenient to resort Eo an Airy function series representation of

the Hankel functions. Retaining the princípal terms of the series for

large values of the order and argument of the Hankel functíon, r^re obtain

î (1)'n,\-4

where Wr(t)

I^r1(È)

.11|,u'¡ - - i,f,t'u"r,.,
. L/6

(ka) = jff) wi(t)

is Ëhe complex Airy function

= ,Æ [ni(t) + j Ai(r)]

while is related to v by

v=ka*'rt t-ka.
2

Hence

f-il
[- n=l (ß+

n

æ

T

m=1

Sec V tfnnsc(n) = - irrp
n2r2) tr,rt (ßn) I2
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vrhere cl and ß are the zeros ofmm
wi(x)-jrrwr(x)=o

and

wi(x) - jôtl^lr(x) = 0 (3.37b)

respectively. Using Ëhe meËhod of Streifer l4O,Ot1, the expressions

for v- and v are related t,o the zeros of Air (-x) and Aí(-x),nm
denoted by yn and f)*, respectívely, by the equations

v =ka* ir/3 ejTl/3 Ôn _ eJ "" 1Yn ffi cri _ e) +;#1¡ crÍ _ ry3 * ?)
'n

(3 "37 a)

.+cn-l.l-jh(r+5)* jrì., - l,r.,,c- 3

2y', 2rr yn 
.;;îttr 

-frrrq" 
(1 - -:r)

*, r é _ _L_l ( 3j= _ -3!T. _ in2r4¡
u2njl3y3 

t3 
2y2"L6r2 4

+ 1,, , ,Z-Jr)(n3r5 - jn2r2 -Ð+-l--l
4"in/3"r4 '3 ,r=''' J'' -Br-,uro'

'n n

and

(3.38).,J-- 7 -fr1 +o(t-5)'216 tsv3'n 'n

-q+ 0(r -) (3.3e)
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_t la
I^/here I = O[(ka) '''f , ô = 0(1) while Yn and 0, have been tabulated

by Logan [89] and orhers.

To obtain a physical interpreËation of (3.36), we use Ëhe
(

expansion

sec v .ÍÍ = 2 I t-rl9 .j(2[+l)nvrtn rlo'

where the successive terms decrease exponentially and correspond to

creeping vrave terms decaying in amplitude due to radiation as Ëhey circle

around the sphere. Because of Ëhis exponential decay, Ít is sufficient

for large values of ka to reËain the .C = 0 term corresponding to

creeping \,raves travelling half the circumference only. ft may be shown

thal the first sum ín (3.36) dominates and corresponds Lo E waves,

while the second sum corresponds to H \raves since theír magnetíc vecLors

are normal to the surface of the sphere.

3.4 The Bístatíc Field

fn order to evaluate Ëhe bistatic field in the range of the

bistaticangle ü< 0 <n-rf where rf =O(L/ka), $reuseequations (3.19)

and (3.21). A prelimínary simplifícation can be made for lv "in0l 
, f

where r{2) {urO) becomes predomÍ.nantl-y exponential ín nature and may be

evaluated by the saddle point method. The saddle point ín Èhis case ís aË

v = ka cos(0/2) and hence

(3.40)

uÍ" <u,o) = "-j 
(v0-3n/4)"o"""0(, -'j":tu + o(v-3))

8v' (3.41)

Zri,-89-
8v

-, )]

t'
0(v

õ

âe
nf2) ru,o) = "-j 

(v0-tt/4 1
f-' r28

2

TVSTNO

2

lTVs i"0

(4g - 57cosec2o) + (3 .42)
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Usíng (3.41) and (3.42) together with the approximate expressíons

for Dr_% and Gu_% gíven in Appendix B, \,,/e proceed ro eval-uate (3.19)

by Ëhe saddle point method for large- lvl and lv sinOl t f. For Ëhís

rn¡e extend the path of integratíon from 0.5(¡'+ 0) - j- ro -0.5(n - 0) + ¡-
and we evaluate the integrand at the saddle point V = ka cos(0/2). This

leads to a first approximation

so(o) = - i Fc|;+) "-2jka 
síno/Zi: 

*;
7 "otZ o/2 . I

T ¡¡¡ ¡

|ka¿ sino o /2 J
(3. 43)

and similarly

solo¡ = - , ka ,1 - rì.' --Zjka sín A/2[, * -i .o"O * ...1-q'-. ' J î- (r + n) " L. "ræ u/, 
+ -..J

(3 .44)

where (3.43) and (3.44) reduce to the backscattered geometric optics

field (3"32) for 0 = t.

A somewhat different procedure is used to derive the creeping

vlave expression in the bistatic range of 0. For this ¡¿e use Ëhe

relations

uÍt) <u,o) = 5 "junef2) 
(u,o)

uf2)tu,o) = - j e-jvnn{l)iv,o)

and the desired expression hence reduces to

(3"4s)

(3.46)

-1iv'rT P*..(coscr)." m V -rzem+zrIvI uu-ul
m -lV=V.u-%lu=u_ 1 + e2jvml sincv

(3.47)
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which Ín the limit cr = 0 reduces to the

field (3.31). FurËhermore, for lrl >> I

functions can be replaced by cylindricaL

Macdonaldts asymptotic formula

P-1ui¿(coso) - - " 
(Ë*) lr(vcr)L,A

where .lr(x) represents the cylindrícal

ivn"n

backscattered creeping wave

and cr < rr, the Legendre

Bessel functions using

(3. 4B)

sc(o) =p

sc(e) = -p

uu-z 
I

-- lV=V,m

uu-% 

| u=u,

2jvrrn

1T
m

Bessel

rft#rznl
n

-zrL
m

l*e

jv

function. Hence

,4

.ii[vr,(n - o)]

lz ¡rlv*(n - 0)l
v sinO

m

(3 .4e)
1 + e2jvnr

Following the Airy function representation of the Hankel functíon

used to derive (3.36), r,re reduce (3.49) ro the form

tr-A¿j4r'c (;;:)
û

j v_n
vrrJllvrr(n - 0)]" "

(n2r2 + ßrr) tt^l1 (ßn) I 
2 (r + .2j unn)

-I
m

, ju*n
J1[vm(r - 0)]n'e

whích is

by Senior

Sími1arly

(r2 +

valid for all 0

and Goodrích 17

for the H po1

h^1. (cl
IM

like

r the

tion

r
1l
L' tn

)

o

a

>2

2
NCT

m

<TT

1l f

ariz

) I 
2sino (t + e2jvmn¡

(3. s0)

the corresponding expression derived

perf ectly conducting sphere.

,t[ur,(ri - 0)]e

ßrr) I 
2sino (t + .2j vt'n,

ìvn"n
sc (o) =q - j4n-r,ä#, 22r +þn) [r^il(

2 jv*fl
e

I
m=1

urJi[rr(r - 0)]n

(r2 +,:l2or) [t^lt(crm) ]2 (t + 
"2iu*n)

(3. s1)
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The fírst and second sums in both (3.50) and (3.51) again represent

contribuËions from E and H vraves respecËive1y. However, in Sl(e),p'
the contríbutíons of the E waves are dominant since the rate of

attenuation of the H \daves is larger and the contribution of the H

r.raves is normally negligible. A similar síLuation exists in SltOl
q

except for very large values of ka when Ëhe contríbution of the E

vlaves becomes dominant due to the behaviour of Ëhe roots Vm. As 0

Ëends Ëo 0 or 'tï, the ampliËudes of the E and H r,raves become

comparable due to the negative powers of sínO ín (3.50) and (3.51)

ín the vicínity of these directions.

3.5 The Forward Scattered Field

The for¡¿ard scattering dírection (0 = 0) ís a true caustíc of

the diffracted rays which emerge from the shadow boundary (0 = r/2) and

travel paralle1 to each other Ëo form a geometric opÈics wave ín the far

field. In addition, Ëhere ís a conËríbution due to the creeping waves

Ëravelling in the E and H planes. In Ëhe vícinity of the caustic

(0 = 0), Èhe ampl-itudes of the E and H type creepíng waves become

comparable unlíke the monostatic and bistatic fíe1ds where the E Ëype

\¡Iaves are dominant.

üie

to

since rhe funcrions tÍt)'(t) (u,g)

use Ëhe original expression for p(0)

obtain

become singular at 0 = 0,

and q(0) ín (3.9) and (3.10)

=f
c

and

p (0) Þ"-r*'u-r] ;#- (3 . s2>
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q(0) =

Considering th

P(o) =

where Dt pas

Reflect

in a ner"r expre

optics ãnd cre

so 10¡ =

= Lz we have

vdv L

1 + e2jvr 2

origin in the V

part of path Dt

whose terrns can

of the form

plane as shown

at the origin

be ídentifíed as

(3. s3)

(3.s4)

in Fig. 3.4.
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ka co

- l,. c l.
. + I þ"-, *'"-'J vdv + I þ"-r + cu-l vav (3's6)

J- - J

-æ ka

Expanding the integrands of the last two integrals in (3.55) as binomial

series and retaining the leading Ëerms we obtain after Í-ntegration

so(o)-lf. .2 rllp z'l(kr) - nJ (3. s7)

where (3.55) and (3.57) are identical with the correspondíng expressions

for a perfectly conducËing sphere. Furthermore, since the geornetric optics

term outweighs the creeping rvave contribution, the fonvard scattered field
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is almost independent of the surface irnpedance of the sphere.

The integrals in (3.56) may be evaluaLed by the method of Senior

and Goodrich [7t] wtrere the Bessel and Hankel functions and theÍr

derivatives are replaced by Airy funcËions. The final result is given

by

sl(o) = t*#l ,ol.orrnr2+ j r44ors*f t.3tsz2s - j 667L6s)p' -.r + n' L - 
,2 

J

(1+e-

(3.s8)

to t.hos

around

3. 6 Numerical R.esults

In order Ëo verífy the accuracy of our approximate expressíons,

computations were performed using (3.52) and (3.36) for ob, (3.43) and

(3.50) for oo, ß.57) and (3.58) r.or of and rhe resulrs compared. wirh

those based on the exacL solution. The results for o are shown in

Fig. 3.4 to fig. 3.7 for various values of ka and normalized impedance

corresponding to resistive, inductive and capacítive coati.ngs as r¡e11 as

for a homogeneous conductor, while the H plane results are shorvn in

Fig. 3.8 to fig. 3.11. The curves índicate good agreement except near

the forward scatLeríng direction rvhere (3.43) ís not valid since the

conditíon ka sín3 G/2) >> 1 ís not satisf ied. Outsíde this region, it
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is evident that. our ray solution is sufficíently accurate and

mínimum computatíon time compared to the exact solution whích

lengthy numerícal- computatÍons of series of Bessel and l{ankel

Furthermore, the ray soluËion shows clearly the dependence of

of on ka which for n # I Ëend to 1 and (k")2 as ka -+

requires

requíres

functíons 
"

o- and
b

æ ,

therespectively, and oscillate for smaller values of

creepíng vrave conËribution.

ka due to

Fig. 3.12 shows a plot of ob vs. n for ka = 10 based on

(3.12) and (3.36) as well as the exact soluti.on. Here rve observe thaË

ob decreases from its value for the perfectly conductíng case (0.9292)

t.o al-rnost zero when rì = I and increases beyond this p'oint to its

inítíal val-ue. This is in contrast Èo Èhe forward scatteríng case where

of. is maxímum at rì = 1. Beyond thís, o, drops off for any increase

or decrease ín n untíl the límitíng caåes of a perfect scatterer or a

perfect absorber (n = -) are reached where its value is 106.3.

However, in general, no such statements can be made with respect Ëo oO

since it is a functíon of 0 and polarizaËion.

ExaminaËion of the analytical results indícates that the ray

optical rnethod gives a physical- insight int,o the scatteríng mechanismd

by an irnperfectly conducting sphere. Thus Fig. 3.L2 indicates that for

| = 0 (i. e. a perfectly conducting sphere) the domínant contïibution to

ob is due to the E r¿aves. However, as I increases, Ëhe E \^raves become

less dominanË untí1 n = 1 when the creeping wave contributions due to

the E and H r"raves are of the same r"rnirrrdu, but opposite ín phase thus

cancellíng each other. since the geometric optics terms for rì = 1 is

also zero from (3.32), the net result for ob is zero. This is in
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agreemenË with a theorem proposed

by a general absorbing body whích

any axis.

I^leston [9t] for plane wave scattering

invariant under a 90" rolatíon about

by

ís

Analysis of the numerícal data for o0 indícates that it is

independenË of polarízation for I = 1. Furthennore, for E plane

scatteríng, the values of oO in the range 0 < n < 1 correspond to

the H plane values ín Èhe range 1 : n 5 -. Thís shows thaË rve have Ër,zo

ranges of n of interest and they are bounded by r| = 0, rl = 1 and

l'ì = æ which correspond to a perfect conductor, matched scatterer and

perfect absorber, respectively. Hence, it is on1-y necessary to derÍve

the E or H plane solut,ion for each range to obtain the complete daËa in

boËh planes for all n.

A similar result holds for reactive coatings ín the bisËatíc case.

Thus for an ind.uctive surface, the E plane scatteríng cross section o.

in the range 0 < lnl < 1 is ídenrical to oh in Ëhe H plane for a

capacitíve coatíng with lnl given by the reciprocal value and hence

lying in the range 1 < lnl < æ. Therefore, iË is sufficient to evaluate

o. and oh in boËh ranges for eiËher an inductive or a capacitive

surface to obtain results for a purely reactive coatíng. These results

suggest the possibil-íty of exËending Babínetfs prínciple to three

dimensions in the electromagnetic sense whereby a perfectly conducting

sphere is cqmplèmentary Ëo a perfectly absorbing sphere. This result

has also been verified for the two dimensíonal case of an imperfectly

conducting cylinder although Ëhe numerical results have been omit.ted.

It should be noted, horvever, that a perfect absorber is not truly a

non-scaËterer. This is because the total fíeld at any poínt is the sum
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of the incident and scattered field and this uníversally accepted

definition of the scattered field entails t.he paradoxical consequence

that a perf ecË absorber must reradiate as shown by l4idgley 1,921 . Ilere

reradiation provídes for destructive interference wíth the incident field

\,üithouÈ ¡¿hích absorpËion is not possíble.

A sËudy of the scatËeríng pattern for the bístatic cross section

shor¿s Ëhat the lobe strucËure is not signifícantly different from the

perfectly conductíng case except that the maxima and minima ate altered

with variations in rl, while new lobes may appear rnainly in the E plane.

However, a method for controlling the lobe structure could be realized

by choosíng the appropriaÈe impedance coating which may have to be a

funcËíon of 0 and ö.

Finally, it is Ínteresting to note that the'average value of Ëhe

scattering cross sectíons in any direction or polarization for two ísolated

spheres of the same ka and coated wíth an Ímpedance I and its complex

conjugate ¡*, respectively, is numerically equal to that of a sphere of

the same ka and coated with a resistive ímpedance eqlral Ëo the real

parL of n.



CHAPTER IV

NIIMERICAL },IETHODS FOR IMPERFECTLY CONDUCTING BODIES

4.L Introduction

The preceeding two chapters have considered the ray optical

scattering by single and multiple, perfectly and ímperfectly conducting

spheres. The approach has been based on representíng the scatt,ered

fíelds in Èerms of geometric optics and creepíng \nrave terms through the

application of Watsonrs transform to Ëhe exact boundary value series

solution. The conventional ray procedure proposed by Le¡øy and Keller

lø21 is Ëo formulate Ëhe diffracted fíelds using mode decay and

diffraction coefficients whích are evaluated by comparison with the

asymptotic solutíon of Ëhe exqct solutíon. One inherent difficulty wíth

Ëhis approach is that the mode díffraction coefficient is obtained by

iomparing tr,ro asyrnptotíc representations of the same field, thus leadíng

to breakdown along shador,¡ regions. Another difficulty is due to the

postulate that a creeping wave excíËes an infínite number of modes thus

Íntroducíng an exLra summation and requiring the approprí-ate decay and

diffraction coefficíents for each mode. Needless to say, the asympËoËíc

expansíon of the exact solutíon, if available, i-s fairly tedíous and

requíres LÏatsonr s transformatíon for large characteristic dimension and

ís totally ínadequate for smaller dimensions.

I^lith the advent of fast digital computers, exact numerical

soluËions can be obËained for most bodies, particularly trn'o djmensi-onal ,

thus avoiding the need for exact analytical solutíons and their asymptotÍc

series representation. The basic advantage of numerícal methods over

70
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exact nodal seríes solutions 1íes in the computatj-onal tÍme required

particularly when the characËeristic dimension of the body is large.

Thus the dependence of ray theory on mode theory would be no longer

essential, partícularly for bodies of complicated geomet,ries. FurËher-

more' the computational dífficutties introduced by the summation over

excited modes may be overcome by the r"r-r,ir*.ríca1 method proposed ín

this chapter. The method ís esÈablished for the two dimensíonal case

of perfectl-y conducËing cylinders. In additíon, other numerical methods

are uËilized to investigate the scattering by more complex structures as

polygonal and díelectric coated cyl-inders and cavítíes r¿iËh lossy wa1ls.

4.2 The Ray-Numerical Techníque

As the name implies, the method employs rays which depend on

numerical solut,ions. rn prÍnciple, the method posËulates that a ray

íncídent on a smooth curved surface suffers initial diffraction leading

Ëo one or several surface rays, rnhich are transmission line type rays

with a single propagation coefficíent for each, before finally suffering

a second diffraction at the point of onergence on fínite bodies" The

ray diffraction and propagatíon coefficíenËs are ÍndependenË of the

convenLional mode diffraction and decay coefficienËs. It is evident

that the ray propagation coefficÍenÈ is independent of the angle of

incídence and observation.

In írnplernentíng this technique, the conventÍonal ray formulatíon

ís maíntained and the ray diffracËion and propagation coeffícient.s are

introduced, instead of mode diffracËion and decay coeffícients, and are

evaluated by comparison with exact numerical daËa based on a numerícal
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technique most. appropriate for the body under consideration as illustrated

in Ëhe next sectíon.

4.2.L Application to the Perfectly Conducring Cylinder

Consider a circular cylinder of radíus a and a line source

located at Q(prO) and parallel to the z axís, as shown ín Fig, 4,L,

The diffracted field aË an observation poinË P(rr0) ís due to creepíng

rays emerging tangenËía1-ly from Ëhe cylinder to pass Ëhrough p, and is

given by 1,021

uu(g,r,ó) = (erk)-%(r2 - a2)-4@2 - ^z¡l6t-:t,lØ2-^2)%+(r2-^2>41-i 
r/4\

.{ 
(-ji.a-aE*)O} 

* 
"{ 

(-jt 
"-aE*) 

(zr-ö) }

1-e

{- (-3 r<a+a6*) ("o"-1 (a/r)*cos-1 {rl o) I }l.e I (4.r¡
Jwhich is a rapidly convergent series since the creeping rays decay in

amplítude as they progressively encircle the cylinder. In this expression

E- represents the decay coefficient and D the díffraction coefficient,-m " m

of the mth mode excited by the incident ray. Comparing (4.1) r¿íth

the asymptoËic expansion of the exact solution for large ka yíelds

D- and E- lOZl , i. e.m-m
_1

ã =-ik+iTa'-mm

n = e- lrjl8 
#r, r,{2) rr.'>

m

l e3l .

D2
mh

(4 "z¡

n n(2) (t 
")m

,

d

,AT

I
j

where ancl CI are given in

(4. :)
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Elírninating the mode diffraction and decay coefficients and inËroducÍng

ray diffraction and propagation coefficients, D and y, ínstead, the

form of (4.1) suggests that the diffracted field can be writËen ín Ëhe

form

,2 2,-'4 ^ .-, -.2 2r- ', ',t.
Ud(p'r,Ô)=#".(p2-^,j.""{-jl.[(p.-^.)."+(r-_^.).,1_ir/4}

. { (jka+y) [.o"-1(a/r)+cos-L ç^/ o) (4. t+)

To obtaín Ëhe coefficients D ""9 y, a numerical procedure is followed.

The diffracted fíeld is evaluated in the shadow region, where the

scattered field consists of only the diffracted fie1d, using the exact

soluËíon 194). rf ut and uz represenr rhe fíe1ds at a paír of

shadorv region points (r,ôt) and (r,óZ), respectively, the ratío of

Ëhe fields at these poínts is given by

Hence, a numerÍcal evaluation of the complex zet.os of (4.5) gives the

solution for y and substituticn of this ínto (4,4) results in the

value of D. However, (4.5), being a Èranscendental equation, has many

rgots and for a unique value of y, equatíon (4.5) is solved again for

some other combinaËion of aspect angles in the shadow region. The root

conm'on to both cases gíves Ëhe value of y. Alternately, the value of

Y may be obtained if the angle of observatÍon is fÍxed but either p

þ

']

ur(p,r,ôr) 
_

Ur(0, r,þ2) (4. s)
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or r is varied. Hence

u, (p, r,,ö)
qG ,F

and by recíprocity

{ (jta+y) ["o"-1(a/rr)+co"-1("/p) ] ]

{ (jt<a+y) ¡"o"-1 (a/ rr)+co"-l ("/ p) I ]

1 -1t (jka+y) [cos -(a/r)+cos -(a/Or) I ]
e

(4 .6)

(4.7)
ur (g' r,ó)

%q*rr = 1 -1t (jka+y) [cos - (a/ r)+cos - (a/ O)1]
e

The method described above was employed to evaluate D and y for the

princípal poLarizaËions for varíous values of k¿ and the resulting

tables are gi-ven in Appendix C. The results show that as the cylinder

síze íncreases, the propagation coefficient y and the dÍffraction

coefficient D increase and in the 1ímit, as ka + -, y is infinite

and the diffracted fíeld vanishes. The computer program used to obtain

the complex zeros of the transcendental- equatíons (4.5) to (4.7) was

compÍled by Oczlcowskí [ 95 ] and evaluates the complex zeros and poles

of a function in a given range. The advantages of this subroutíne are

that no derivatives are calculated and the order of the poles and zeros

is also found. Fina11y, Fig. 4.2 compares the díffracËed fields

calcul-ated by using (4.4), for both poLaxizations ín illurninated and

shadow regíon, and good correspondence is obtained v¡ith that computed

usíng Ëhe formulation of Levy and Keller 162 ], which adequaËely

establishes the principle of the ray-numerical formulation.

4.3 The Transformation I'latrix Approach

In the prevíous section, the ray-numerical techníque was established
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for the perfectly conducting circular cylinder. To exËend Ëhe procedure

Ëo Èhe imperfectly conducting circular cylinder the equatíons derived

above stíll apply. However, exacL numerical results are dífficulË Eo

obtain for large ka from the exact soluËion and hence fast numerical

techniques are requíred to deal wiËh this and other geometries, parËicu-

LatLy where exact solutions are noË available.

. The transformation maËrix rnethod I9.6"*98].;iÈ'baSed ..orL a:scattéri.ng

matrix, analogous to that used ín transmission line theory, and is used

to formulate the problem of scattering by a cylinder of polygonal cross

sectíon and arbitrary surface impedance, in Appendix D. Expressíng

Maxwellfs equations in Ëhe Èransform space, fírsË order coupled

differential equations satisfied by the field components are obtained

and are used Eo evaluate the elements of a scattering matrix, rvhich

relate Ëhe far field to thaË on the surface of the scatterer. As a

result, matrix equations which saËísfy Èhe Leontovich ímpedance boundary

condiiions in the transform space are obËaíned. for the scattered fíeld.

For Ëhe case of ühe circular cylinder of radius a, normalized

and ílluminaËed by an incident plane $rave, the

ín Appendj-x D are unity. Neglecting terms of
.rnl/ p' . in the dÍfferential equations for IÏ

(D.1) and (D.4) , we have

surface Ímpedance n

metric coeffícienËs h

the order of L/ p and

and 0f, ottained from

âr1+n
=- = ikl. or
dp

Ð0Ï

Uo =-jkOÏ or

rvhere c is a constant.

oT = " ;jko

Letting Vn = f| +

tT = " "juo
(4.8)

(4.e)

of, '"rÏ-oÏ and UD =
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obtain fronr (1.6)

vt : "rH(t) 
(uo) + 

"ru(2) çt p¡

--n I Avtu = c jk ðp

From these equations, the maËrices S(p,go) and

be obtained and the scaËtered fieLd evaluaËed Ëo

normalized scatt,ering widths for Ëhe E and H

are given by

Jrr(ka) + jn J;(ka)

nj2) Cr.'> * :n u,l2)'(u')

(4 
" 
1o)

(4 .11)

P(p,go) of (¡.6) can

obtain the resulting

poLarizaEions. These

cos (nó) (4.L2)

cos(n0) (4.13)

sÍdes, each of lengLh 2a,

to the transform t (0 + j ß)

Õ
e

-=lla

oh

lla

l-4 | \'^ffi 
1,,10 

"'

4
Tkâ lJ,'"

Jr(ka) - jn Jrr(ka)

H(2)'(kå) _ 3¡ n(2) 1t ")
r
li n = 0

^-dè-ln i^LZ n>0
as shown in Appendix E.

In the case of a

Èhe Ëransformation from

plane is given by

regular polygon of N

Ëhe z'(x + jy) plane

å# = M[coscll ]lt2lN (4.L4)

where M depends on the si-ze of the polygon and íts orienËaËion in the

zt plane. For a Êquaren M = j a/2L, L = 0.423607, as shown by Bickley

[ 0S 1. Solving for Ëhe metric coeffícíents, two coupled differential

equations are obtaíned for IT and 0Ï, í.e.
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as shovm in Appendix F. These equatíons are nonlinear, buË may be solved

numerically to obtain the transformaËion matrix and Ëhe scattered fiel-ds

evaluated by the applicaËíon of the boundary conditíons.

Using (4.12) and (4.13) compuÈatÍons vTere perforrned to study Ëhe

scattering behaviour of ÍmperfecLly conductÍng circular cylinders.

Fig. 4.3 and Fig. 4.4 show the scatËering widrh vs. þ for ka = 5 and

E and H poLarizaËions. The curves correspond to a normalized surface

impedance of rì = 0, correspondíng Ëo the perfectly conductíng case, and

n = 0. L,o.reJ 11/2, 0.re-j '/2,a.çi r/4 corïesponding Ëo resÍsrive,

inductive, capacitíve and complex impedances, respectively. These

results indicate thaË Ëhe effect of a small real, imagínary or complex

surface impedance is not signifícanË as far as the scattering paËËern

is concerned. For the above ka value, and a r¡ide range of l, two

defínite ranges of normalized impedance for the forward (ô = 0) and

back (Ô = t) scaËtering are idenËified, where one corresponds to

0 < n < 1 and Ëhe other to 1: n Í -, as shown in Figs. 4.5 and,4.6.

Examination of these curves shor¿s that for a purely resistive surface,

l$"r] [¿ 
,i.' * o]*t,=,- . ...]
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the E poJ.arization scaËtering widËh in the first range is identical

to Ëhe corresponding H poLarízation results in the second range for

Èhe reciprocal value of n. For a purely inductÍve (or capacítíve)

surface, Èhe E poLarízation scaËteríng width in Ëhe first range is

identical Ëo Ëhe corresponding result for the H polarizatíon and a

purely capaciÈíve (or inducËive) surface in the second range. Hence a

compleËe plot for either an inductive or capaciËive impedance ín both

ranges and polarizaLíon gives all ¿he results for both impedance types.

Thus in Figs. 4.5 and 4.6 only plots for either case are shown.

. Frrther examÍnation of Fig. 4.5 shor,¡s Ëhat the forward scattering

widËh is noË significantly altered from the perfectly conducting case,

except rvhen the surface ís a reacËance and n is close Lo unity. For

a resistive surface, on Ëhe ot,her hand, Ëhe backscattering wídth decreases

monoËonically wÍth increasing n untíl rì = I when iË almosE vanishes

as may be seen from the term (1 - n)/(1 + n) ín (D.12) and (D.14).

Beyond Ëhis value of ¡, the curve rises ín a symmetrical manner and

t,ends Éowards Ëhe value for a perfecËly absorbing cylinder.

The effect of variat.ions in ka on the forward and backscattering

widËh for both polarizations and lnl = 0.5 is shorvn ín Figs. 4.7 and 4.8.

Here we observe thaË alËhough the forward scattering width increases

almost monotonically with increasing ka, the backscaËtering wídth has

an oscillatory behaviour unlilce t.he case when the surface is perfectly

conducting.

For the case of a square cy1-inder of ka = 1.0 and lnl = 0.1,

Ëhe E polarízatíon scatteríng rvidth is compared with that for a

perfectly conducting cylinder in Fig, 4.9. 0n1y the results for
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resistive and capacítive surfaces are shov,¡n, sínce t.he inductive and

homogeneous conductor cases are almosË identical, respectívely. Here

again we note that the scatteríng behaviour is not signíficantly altered

for inductive and capaciËíve surfaces as long as lnl is small. Also

the reciprocal behaviour for the tvro ranges of normaLized Ímpedance is

again observed as shov,¡n in Figs. 4,10 and 4.11 for ka = 0.5. However,

unlike the case of Ëhe circular cylinder, the forward scatËering width

is significantly dependent on the surface impedance. The minjmum back-

scatËering wídth for a resístive surface corresponds to I = .66 insËead

of I = 1.0 which is largely due to Ëhe phase of the varíous interference

I^7AVeS.

rn the case of the square cylínder, the ray díagram Íor grazing

incídence is shown ín Fig. 4.L2. Employing the principles of section

4.2.L, and the ray formulaLion of }lorse [100] in terms of unknown

diffraction and propagat,ion coefficients at the edges, equations may be

set up usíng the numerical resulËs obtaíned above. However, in this

case' the number of unknovm diffraction and. propagation coefficients is

1arge, Ëhus requiring the simultaneous solution of multivaríable trans-

cendental equations. Varying the angles of incidence and observation,

these coefficients may be determined and plotted as a function of

aspect angle to obtain a least squares fit and hence a símple functional

representation for the coeffícienËs.

4.4 The Scattering Phase Shift Technigue

Though Ëhe transformatíon matrix technique is ideal for bodies

whose cross secËion is transformable to a circle, it is ínadequate to
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treat even the circular cylincler tvhen ít ís coated t+i

dielectr.-ic, due to the excessive computation time req

reasonable accllracy. This problem ls of interest in

space vehícles during re-entry and in the desígn of rn

and hence an alternate method of soltrt.ion is desirabl

The procedure used here is based on the phase-

Buchanan [101] ancl Shafai [102] and involves the deri

equations for Ëhe radial functions frour the rvave equa

potentíal, as described ín Appendix G. Tr,ro auxillary

to the phase and amplitude of the radial function are

lead to two first order differential equations. The

independent of the amplitude and its solution is adeq

ar -1 1 | 1 - t,1 - ,.1- - . ?'-! -1 - Itire i iûj.tis Ûi-ri-sj-de Li'¡e scaccêïer , Liìe rrritl-¿i pilase v

from the boundary condiËions. Sínce a fÍrst order di

is numerically solvable to any desired degree of accu

is highly effectj-ve for treating imperfectly conducti

radially inhomogeneous dielecËric coat.ings.

Consíder a circular cylinder of radius a, sur

and coated with a radíally inhomogeneous dielectric I

e(p) and outer raclíus b. To obtain the scattered f

polarizaEions, it is adequate to solve (G.21) and (G.

initial phase shifts obËained by applying the boundar

fnterface p = a, For a perfectly conducËing cylinde

phase shifts are given by

r-1
| - tan - [Jr, (ka) /Yr, (ka) ] f or Tl'l mocles

6 (a) ={ -- n
n'' I -1' 

L. tan ''[¡'(t<a)/vi(t<a)] Éor Tli modes
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which are real angles in Ëhis case"

For Ëhe Ímperfectly conducting cylínder, the initial phase shifts

may be assumed complex due Ëo Ëhe surface losses, unlike Ëhe case of

t.he perfectly conducting cylinder. At this surface, the Leontovich

boundary condition (D.B) must be satisfied and hence we obtain

ô,,(a) = - Ëan-1 iffi ror rM modes

f-r;Cr."l - jn .r- jn lr,(rca)l

-.qro;rl
-1ôrr(a)=-tan- for TE modes

(4.l-e)

(4.20)

Knowíng these values for both polarizations, Ëhe phase functions ôr,

are obtained from a numerical inËegratíon of equatíons (G.21) and (G.23)

for any specified dielecÊric ínhomogeniety while the scaËLered field

is evaluated using (G.1-0) .

The differential equations for Ëhe phase functions ¡¡ere solved

usíng the fourth order Runge Kutta method [103]. Figures 4.13 to 4.15

present resulËs for the imperfectly conducting dielectric coaËed cylinder

for ka = 2.0, kb = 3.0, lî = 0.5 and e varying as (f.p)-l, (t p)-2 ancl

exp(-kp), respectively. The results clearly indicate that the significant

variations in the amplitude of the main scaËteríng lobe as well as the

number and polar posiËíons of Ehe side lobes may be atLributed to the

dielectric coatíng of Ëhe ímperfectly conducting cylinder. This is in

contrast to the results obËaíned vríthout a dielectric coating where no

significant deviations from the perfectly conducting cylinder were

observed.

When the thickness (b - a) of the dielectric is very small,
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the cylincler may be viewed as being ímperfectly conducting with an

equivalent value of n. rn Ëhis case, the ray-numerical procedure of

section 4.2.L is easily applied and new diffraction and propagation

coefficients determíned. For larger thicknesses, it becomes necessaïy

to consider various types of rays, e.B. Ëhe specular, axíal, glory and

sËaËionary or rainbow rays in the dielectric together rvith reflection

effecËs at Èhe metal- cylínder, Èhereby making the analysís consi.derably

involved "

4.5 Methods for ImperfeeËly Conductíng Cavities

Up to nor^r vre have treated uhe exterior travellíng r¡rave problem

in presence of imperfecËly conducti-ng scatterers. fn this secËion, the

problem of ímperfectly conducting cavíties is briefly dealt wíth, as such

structures are of greaË pracËical use in cavities for frequency meters,

Ëest chambers, microruave tubes and bea.m accelerator designs.

For the analysis of the rectangular cavity where all the wa1ls

are imperfectly conducËing, the perturbaÈÍon approach of Karbowiak [17],

as given in Appendix H, is most practical for values of rì near zeto.

The meËhod leads to simple expressions for the propagation consËanË,

a facËor and bandwidth such Ëhat conclusions as to the behaviour of

these parameËers are easily made ¡^¡ithout compuËations.

Appendix r presenËs the boundary value soluÈion for Ëhe eigen-

values of a spherical cavity with an impedance rvall. The Q facËor

and bandrvidth are easily evaluated using the method of Appendix H.

Figures 4"16 and 4.17 show the eígenvalues of a spherical resonaËor

with imperfectly conducting walls for both TM and TE modes based on
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equations (r.7) and (r.B)" The results indicate that the reactive

impedance results ín a frequency shÍft while the bandvridth depends on

Ëhe real ímpedance. An inductive wall is seen to decrease the resonant

frequency while a capacitive wall increases it. These properties are

exhibited by both rectangular and spheríca1 types. For a spherical

cavíty wíth capacítive walls, the TE mode, which is a perturbatÍon of

the zero value of the zeto ttequency statÍc mode, is seen to be the

dominanË mode unlike the perfectl-y conducting cavity where the TM mode

is dominant.

Though the ray optical rnethod for a spherical cavity is consíder-

ably involved, the rectangular cavity can be analyzed. using t,he method

of Maurer and Felsen [104]. Sirnplification of the method may be reaLized,

by using the ray-numerical technique to determine the reflectíon

coeffícÍents required in Ëhís case.



CHAPTER V

SUGGESTED APPLICATIONS OF THE RESULTS

5.1 IntroducËion

Besides the academic interest in the problem of scattering from

ímperfectly conducting targets, such bodies are of importance in a

number of potentíal applications. Two problems which have been of

constant ínterest ín electromagnetic scatteríng are Ëhe radar cross

section reduction and enhancement, which are important in tracking

aircraft, míssiles, etc" in flíght. varíous methods have been proposed

and irnplemented for the control of radar cross section, ê.8. target

shaping, addition of reflectors to the body and application of absorbing

materíals to the surface as treated in this thesís.

While the method of body shaping is rheorerically possíble, ít,

nevertheless, suffers from certain practical difficulties. In the design

of an aircraft or missíle, Ëhe shape is normally constrained by other

variables and factors, and the problem of radar cross section reduction

or enhancement, becomes of secondary importance. Furthermore, ín the

1ow frequency or Rayleigh regíon, shaping ís ineffectíve since the cross

section is dependent primarily on body volume rather than shape, and

hence alternatíve techníques of approach must be appliedr e.g. the method

of impedance loadíng.

The method of ímpedance loading ís based on the principle of

disturbance of the current distribution on the surface of the body using

discrete impedances at various poínts on the body. The cross sectíon

at a specific aspect angle and frequency can be either increased or

101
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decreased by this meÈhod. However, it has been used primarily in cross

sectíon reduction, while radar reflectors provide a more convenient

method of enhancing Ëhe cross section over a wide frequency band and

for a large range of aspect angles, since the irnpedance loading method

is hígh1y sensítive Ëo both frequency and aspect angle.

The results of Èhe previous chapters show that the radar cross

section may be reduced or enhanced by coating the surface with an

absorbent material thicker than the skín depth. The reduction in cross

section in this case is achieved by a combination of absorptíon and

redírectíon of the scattered rays while the enhancement.is achieved by

constructive interference of the rays. rt is not surprisíng Ëhat the

development of these materials has occupied researchers in many

countríes over the last few decades. Ideally, the best suiËed materíal

would be a paint 1íke substance effective at all polarizations and. over

a broad range of frequencies and angles of incidence. At present, no

such ideal material exists and the practical type of absorber used ín

a particular sÍtuation is dependent on the frequency, target shape and

dÍmensions, bandwidth requít"*.r,t" and physical limitations such as

weight, thickness, strength, environmerit, etc.

Practíca1 absorbers are also in use in the design of "High

Performance shielded Antennast' [105], where a high directivty pattern

ís achieved through the use of a cylindrical metal shíeld on the rim of

the parabolic dish to attenuate síde and back radiation. The shield is

lined with a long life broadband radío frequency absorbent material

which reduces sËray reflection and diffraction at the edges of the shield.

A precision contour and a resonant absorbent strip along crítica1
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port,ions of the primary reflector combíne to control the aperture fie1d.

Besides the capabílity of the control of scattering pattern by

imperfectly conducting spheres as shown in Chapter III, this, in

conjunction wíth the formulation for the scattering by multiple spheres,

is of ínterest in a wide vari-ety of problems. The scalar problem is of

interest ín acousËics and in the detecËion of voíds by ultrasoníc r^raves.

The vector problem is also of interesÈ in studying propagatíon through

rai.n, study of sols , aíx pollutíon, meteoroTogy, etc. Howevere tÌ^/o

novel applications whích result frorn this study, and are of considerable

ínterest ín hígh microwave povrer technology, are the possibility of the

construction of (i) a high power density mícrowave anechoic chamber, and

(íí) a high power density differentÍal micro\.,rave por{ier meter and rvi1l

be dealt rvith ín the next two sectíons.

5"2 Microwave Absorbíng Chamber

Since absorbent materials may be used to cont,rol the radar cross

secËíon of scatterers, it ís possible to construct low and high po\^rer

anechoic chambers usíng a three dimensionaL array of lossy bodies. Thus

Figures 3.4 to 3.11 show how the radar cross section ís decreased with

absorber coatings, ruhíle Fig. 3.12 depícts in particular the reduction

in backscatt.ering cross sectíon wíËh n. The lower backscatËer obtain-

able using such bodies índicates the potential superiority of the use

of arrays of such bodies over the conventional commercíal pyramidal

absorbers commonly used.

In the proposed arrangement, the incident power is partly absorbed

at each element. surface and partly redirected in other directíons. The
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scattered energy is further rescatt.ered by other spheres in the ar:ray

and consequenËly absorbed. The process of multiple scattering and

absorptíon contínues ti1l finally all the energy is absorbed and a

satisfactory quíet zone ís obtained.

For 1ow mícrowave pov/er densities, the incident povrer ís of the

order of rnilliwatts and hence ordinary spheres vrith absorber coaEings

would suffice. However, for hígh microhTave pouTer densiËies, it would

be necessary to consËruct an absorptíon chamber consísting of Tirater

loads. The \^rater woul-d be conËained in plastic spheres with facílíties

for waËer círculation to remove heated waËer" Such a chamber may be

useful for testing mÍcrowave pov/er equipment in a shièlded environment

or for exposing food and other material samples to high density plane

wave fíe1ds.

A computer program utÍlizíng the multiple sphere ray scattering

formulation of Chapter II, together with the monostatic, bistatic and

forward scatËeríng results for a single ímpedance sphere given in

Chapter III, could be prepare.l to opËimíze the size, surface impedance

and location of each sphere in the array. Use of the ray technique will

make the computer program ËracËable, resulËing ín a considerable saving

of computer time and a sufficiently accurate evaluatíon of the field

distribution. For large separation between the spheres (i.e. kd > À),

a first order inËeraction is sufficient and Ëhe accuracy of this

approxímation increases as kd increases. Further simplífications in

Ëhe computer program will be possible with the use of a matrix formula-

tion, as in the analysis of antenna arrays.

l,lith the present day trend of using microwave power for
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innumerable índustrial processes, a high mj-cror,rave po\Árer anechoic

chamber ís of considerable interesÈ to modern industry. The conventional

absorber pyramidal structures used ín ¿he 1ow power chambers are

inadequate to deal with the problem, due to their inability to dissipat,e

heat due to hígh incid.ent mícrowave energy, and as such are a fire hazard.

Hence the proposed scheme has considerable merit, sínce the absorbent

material being used ís rüater which has a greaËer thermal capacity, and

the constant circulation of v¡ater removes the possíbility of any over-

heating. Finally, the cosË of such a chamber would be extremely 1ow ín

comparison to the convenËional chamber, since plastíc bodies or inflatable

structures are easily fabricated at low cosË and the àbsorbenL material

is just plain vrater. on the other hand, presently used low po\^rer

absorbers in mícrowave anechoic chambers are not readily applicable at

high porver and Èhe development of such a maËerial itself rvould entaí1

considerable research and expense.

5.3 Differentíal Microrvave Power Meter

The fact that a sphere coat.ed r¡íth an absorbent materíal, causes

dissipation of some of the incident micro\,/ave energy on íts surface,

can be used to advantage in the construction of a high density microv¡ave

pov¡er meter. This dissipation of energy is primarily due Ëo the creepíng

\{aves which attenuate rvhen they travel over Èhe sphere surface, as shown

previously, and as such provides a direct measure of the incident po\^rer.

Further, the sphere ís also the ídeal body for Ëhe construction of such

a po!¡er meter, since it is the only body whích enjoys three dimensional

syrnmetry and is, therefore, free of poLarizatíon problems.
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The proposed schematic of the differentíal povrer meter ís shov¡n

in Fig. 5.1 and consists of two identical spheres enclosing a non-

cornpressible gas of low time constant and high coefficient of thermal

expansion, connected through a U column of mercury or other liquíd.

One sphere ís used for power densíty monitoring while the other is a

compensating sphere" Both spheres and stems are protected by windshields

while the stems and compensating sphere are also shielded by elecËro-

magnetic screens. The compensating sphere corrects for the effect of

varíations ín the ambíent temperature, while Ëhe nultiple scattering

betv¡een both spheres is accounted for ín the scale calibration. The

choice of líquíds ín Ëhe stem is dependent on the po\,rer densit.y to be

measured. Mercury would be useful aË high po\,/er levels, whi-le vrater,

alcohol or other thermometric liquids would be suitable at lorv poruer

densities. A visual indication of the power level could be obtained by

using a liquid crystal solution or anhydrous Calcium Sulphate.

The power meter works on the simple prínciple of a differential

manometer. The íncident energy causes creepíng hraves to be set up on

the sphere surface rvhich are aËtenuated as they travel thus heating the

enclosed gas i-n the probing sphere. The expansion of the gas forces the

liquid column dov¡n and also the indícator, which registers the incident

energy densiËy leve1.

Though various types of microrvave por¡/er density meters are

commerci.ally available and uti,l-íze different methods for monítoring the

por¡rer density level , they are restricËed to low por{er densities and, as

such, are unsuitable for presenË day needs due to the very high densíty

levels used ín various industrj.al applicatíons. The differential
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micro\üave povrer meter presents an effectíve method of moniËoring high

po\,Ier densities and can also be used as a safety meter for radiatíon

monítoring, rvith the indicator designed as in the maximum-minimum

thermometers, such that the maximum.level in the region probed ís

índicated. Fínally, the device could be positioned permanently in

industrj-al equíprnent for indication of pol,'er 1eve1 available for heating

and processing varíous materials.



CH,A,PTER VI

DISCUSSIONS AND CONCLUSIONS

6"I Díscussion

The ray optical scattering by a perfectly conductíng sphere is

investigated in chapter rr, to establish the applicabÍlíty of the ray

method for spheres. The prevíous expressions by Senior and Goodrich

[71] rvere c.orrected, for the monostat.íc, bistaËic and forr¿ard scattered

fields and analyzed for accuracy in Tables 2.L and 2.2 anð. Figures (2.2a)

(2.2b) anð' (2.2c). Good agreement is obtaíned between these results

and those obËained from t,he Mie series exact soluËíon in the backrvard

and forward scattering dírections. In the bistaËic range of angles, the

creeping r^/ave term (2.5b) is not valid in rhe range ,lr 5 0: î - tJj,

_-l
r! = O(ka) - while the geomerrical oprícs rerm (2"5a) is only valid

a
when ka cos'(0/2) >> 1. rn order to extend the solutíon over a larger

range of bistatíc angles, the geometrical optics term musË be Ímproved

and this was found possible by usíng Erukhímovichrs geometric optics

term (2.10), as illustrated in Figs. 2.3 and, 2.4.

These límítations on the solutíon for Èhe perfectly conductíng

sphere prevent Ëhe direct use of t.he solution in the scatteríng by

rnultiple spheres except for the princípal cases of the broadside and

endfíre scattering. Thus for solutions involving arbitrary angles of

íncidence and observaLion, the exact results for the single sphere must

be used. In formulating the ray optical scattering by multíple spheres,

other difficulties are also encountered. Although the scattering

phenomenon ínvolves multiple ínteractions, examinaËion of (2.13) shows

109
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that first order inËeracÈj.ons are of much greater sígnificance than the

hígher order terms, as ÍllusËrated in Fígs. 2.7 and 2.8. FurLhermore,

the solution ís ínadequate for spheres beíng very close Ëo each other

or touching, but. this can be overcome by tt'.e Zitton-Karp formulaËion

1"79l" Thís requires t,he expansion of the scattered f ield in terms of

plane vraves and their derivatives, and the solution for the region from

the posítion where the spheres are Ëouchíng to Ëhat rrhen Èhey are apart

by approxímately Ëhe larger sphere diameter can be obtained using thís

method. It ís evident that the method becomes quíte involved when

considerÍng an arbitrary dístribution of spheres, unless mode caustic-

caustic interactions I B5 ] ín conjunction with a scatËering matrix

approach are employed to reduce the computations reouired.

Having considered the limitaËions for síngle and rnultiple

conducting spheres, the ray met.hod is applíed to Ímperfectly conducting

spheres by imposing the Leontovich impedance boundary condiËion. I^Ihen

Ëhe characteristic dímension ka ís small, lítt1e need be done Ëo

Ímprove the Mie series in (3.2¡ from a computatíonal poínt of víew,

since the series cari be truncated after a fev¡ terms. However, âs ka

increases the seríes ís tedious to compute. The ray optical formulatíon

eliminates this dífficulty, resulting in simple expressions for compu-

ÈaËíonal purposes and requiring considerably less computation Ëime,

partícularly when ka is much larger than unity. The solution is

obtained as the sum of a geometric optÍcs contribuËion and a seríes of

creeping rays whích decay as they travel around the sphere, and hence

only one or at most tv/o such rays need bé considered.

Examination of the results for O. and oh ín Figures 3"4 to 3.11
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indícaÈes good agreement with Lhe exact solut.ion for an írnperfectly

conducting sphere except near the forward scattering díreetion, where

(3.43) is noË valíd since the condítíon ka sin3 e/2 >> 1 is violared.

Furthermore, the ray solution shows clearly the dependence of ob and

of on ka, rvhich for n # l- Ëend to unity and (k")2 as ka + -¡
respectively, and oscillate for smaller values of ka due Ëo the

creeping vlave contribution. It is shorun Ëhat the forward scattering

cross secËion ís increased, relative to the perfectly conducËing sphere,

for an indpctive coaÈing ín the range 0 < lnl < 1 or a capacítíve

coating in the range 1 < lnl < co and decreased for all other reactive

coaËings" On the other hand, the backscatËeríng cross section is always

below that of the perfectly conducËing sphere and vaníshes compleËely

for Íì = 1, as shown Ín Fíg. 3.L2. This behaviour of of and ob is

. attributed to the phase relatíonship between the E and H waves in

(3'36) and (3.58) whích determine the construcËive or destructive ínter-
ference of the creeping V/aves. For purely resistive coatíngs, the

scat.t.ering cross section in any direcËíon is belor¿ that of Ëhe perfectly

conducting case due t.o por¡rer díssipation on the sphere surface, as is

' evident from (3.43) and (3.50). The behavíour is similar for a complex

impedance coating except ¡¿hen the real part is suffíciently sma11, where

the outcome is essential-ly determÍned by the reactíve Ëerm.

Analysis of (3.43) and (3.50) shov¡s thaË oe is independent of

polarizaLion for rì = 1, which is the divíding point between the trvo

,specificrangesof impeclance 0<lnl <1and 1<lnl :-. Theresulrs

for a specific impedance in either range are found adequaËe to determíne

compleËe1y the behaviour for the reciprocal impedance ín the other.
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This is the underlying concept for the possíble extension of Babinetts

prínciple to three dimensions and Ímperfectly conducting bodies while

reducing computation time for the complete range of rl to one-half.

These results have been verífíed for the two dimensíonal case of the

ímperf ectly conductíng cylínder as we11, as shorvn in Fígs, 4.5 and 4.6"

Comparison of Figures 2"2b and 3.4 shows that the lobe structure

is noË signifícantly alËered due to surface jmperfections, though new

lobes may appear mainly in the E plane. The lobe structure could be

controlled by coating the sphere surface along specific directíons. It

should be noted that the react.ive nature of most coating materials

changes lvith frequency ín the sense t.hat they are not inducËíve or

capacitive at. all frequencies"

It is evident that the geometric optics terms for the backscatter-

ing (3.30) and bistatíc scattering (3.43) reduce ro rhe corresponding

results for the perfectly conducting case when rl = 0, except for the

geometric optics expressÍon (3.57) which ís identical to that for the

perfecËly conducting sphere. Sínce this forms the domínant contribution

to the forward scattered field, the latter is not signíficantly altered

except for small capacitíve or large ínductive impedances, as shor¡n in

Figs. 3.5 and 3.6.

A survey of the resulLs obtained by ray theory indicates that the

method cannot be easily applied to other geometries without resorting t,o

other methods. The ray method has been based on representing the

scaËtered fíelds ín Ëerms of geomet.ríc optics and creeping wave t,erms

through the application of WaËsonrs transformation and/or for asymptotic

expansions to the exact solution. A creeping r¡iave is assumecl to excíte
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an infinite number of modes, thus requíring an infiníte summaËion ín

calculatíng the field and the evaluation of appropriate decay and

diffracËion coefficíents. The ray numerical method of section 4.2 is

postulated to overcome these difficulties by definirrg ray díffraction

and propagatÍ.on constants, which are evaluated by comparison of the

numerícaI results for the diffracted field rvíth Ëhe corresponding fíeld

expression involving the unknovm coefficíents. Thus in the case of Ëhe

circular cylinder, the coefficíents derived using equations (4.5) , (4.6)

and (4.7) predict accurately Ëhe diffracËed fie1d, as shown in Fig. 4.2"

Though the ray-numerical procedure is demonstrated effectively

for Ëhe circular cylínder, its applicatíon to other geomeËries ís

híndered by Ëhe lack of numerical results and two methods for cylindrical

scaËterers are suggested. The first is the transformation matrix approach

which is shovm to be ideal for a cylindrícal scat.terer whose cross section

can be rnapped conformally into a circle. The technique eliminates edge

singularities and gives good accuracy for bodies for which a transforma*

tion exists. As such ít is an atËractíve alÈernative to Ëhe integral

equaËion approach of Andreasen [44]. The technique is applied to the

Ímperfectly conducting circular cylinder and various interesting results

are obtained. Two definíte ranges of imped.ance 0 < lnl < 1 and

1 < lnl : - already ídentified for the sphere are also observed from

Fig. 4.6 for the círcular cylinder. The scatteríng cross section tends

to zero as may be seen from the term (1 - n)/(1 + n) in (D.12) and

(D.f4) ín the same manner as for the imperfectly conducting sphere.

Furthermore, the forlard scattering rvidth ís not signifícantly different

from the perfectly conducting case, except when the surface ís reactive
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and n close to unitr¡.

The method is also íllustratecl for a square cylinder as a

particular case of a polygonal structure and the results are gíven in

Figs. 4,9r 4.10 and 4.LL, Tn Lhis case vre observe from Fig. 4.11 that

for rì = 1 there is a finite backscattering width unlike Ëhe case of

the circular cyl,inder. For ka = 0.5, a minÍmum in the backscatËeríng

occurs aÈ rì = 0.66, mainly due to the phase of the varíous interfering

r¡/aves. For the forr¿ard direction, Ëhe value of I for a maximum forward

field is approxímately predicËed by the Hansen-I^loodyard condítion l44l "

The second method is the phase shift method which was introduced

since Ëhe transformatíon maËríx technique requíres excessive computaËion

time for a reasonable accuracy, as illustrated in section 4,3 for a

cylinder coated wíth an inhomogeneous díelectric, due to the large number

of integration steps required. In this case the phase shift method ís

more suíted since it ínvolves the numerical solutíon of a first order

different.íal equation whích, in princíple, can be solved to any desired

degree of accuracy. The equation for the phase function (G.21) is

adequaËe to define compleLely the scatLered field while the boundary

condÍtions form the initial conditions for this equatíon. The results

ín Figures 4.13 to 4.15 shor.r that the sígnificant varíatíons in the

amplitude of the main scattering lobe as well as t.he number and polar

posiËíons of Ëhe side lobes may be atËributed to the dielectric coating

of the imperfectly conductíng cylinder.

In considering the interior problem of imperfectly conducting

cavities' which form essential components of varíous microrvave devices,

Èhe rectangular cavity wíth such wal1s may be treated by using the
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perturbation method as long as I is sma1l. The conclusíons from

equatíon (H.12) that the reactive part of the surface impedance is

responsible for the change in resonant frequency, while the bandr,ridth

depends on the surface resistance of t,he vralls, are also borne out by

the results for the spherical cavíty based on the boundary value approach.

It is inËeresting to note that for a spherical cavíty wíth a capacitive

wall, th" TE*01 mode, whích is a perturbatíon of rhe zero frequency

sËatic mode, is dominant as shown in Fig. 4.I7, unlike the perfectly

conducting cavity where the TMr' mode ís dominant.

Finally, in the analysis of the imperfectly conducting sphere,

the possÍ-bí1ity of radar cross section reducËion and surface absorption

suggest certain practical applicaËions " Two of these are the high power

anechoic chamber and the high density micro\^rave pov;er meter díscussed in

deËail in Chapter V"

6.2 Conclusions

The ray optical solution for the scatteríng of plane electro-

magnetíc \^7aves from a perfectly conducËíng sphere has been analyzed Íor

accuracy and its range of applicability extended by modifying the

geometrical optics term. In this form the solution predicts accurately

the fields for the backscatteríng, forward scattering and 0 = 90o

directíons, which malce íts use possible for scatteríng by multíp1e

spheres in the endfire and broadside configuratíon. For the rnultiple

sphere problem the formula developed predicËs more accurately the

scattering from two identícal spheres, for any arbitrary angle of

incidence and observation, than has been possible previously. The
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model is simpler and permits easy interpretation of the phenomena of

many body scattering. FurEhermore, one fínds that first order inter-

action terms are of much greaÈer importance Ëhan the higher order terms.

The success of the ray optical- formulation for the scattering

by single and multiple perfecË1y conducting spheres, within certain

bounds imposed by the asympËotic approximaËíon, gives confidence in the

extension of the method to the imperfectly conducting sphere. rn this

case it is shown that the ray optical formulation leads to results which

compare favourably wíth the exact solution ín the fonvard and back-

scattering dírections as well as the bistaËíc range of angles, except ín

the vicinity of the forrvard direcËion. Furthermore, the meËhod is shown

to elimínaËe the eompuËational difficultj-es of the exact solutj-on and

requires considerably less compuÈatíon time.

Further exËension of the ray optical technique to other Ímperfectly

conducting bodíes is shown to be límited due to the pauciËy of diffractíon

and decay coefficients for such bodj-es. In attempting to overcome this

difficulty, the ray-numerical procedure is proposed. The method leads

to an elimination of the summation requÍred to consider the different

modes excited at the body surface, and considerably símplifies the

computations. The rnethod is demonstrat.ed for Ëhe circular cy1 J-nder and

shor,¡s considerable promise. However, extension of Ëhe method to other

geometries requires numerical results for the diffracted field, and hence

for cylÍndrical sËructures, Lhe transformation matrix technique and the

phase shift method are developed. These methods are numerically accurate

and apply to a wide range of cylindríca1 scatterers.

The transformation maËrix technique applied to Ëhe imperfectly
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conducting circular cylinder sho\^rs that for the cylinder, as in the case

of the imperfectly conductíng sphere, trvo defÍnite ranges of impedance

areidenËifíed, 0S lnl <1 and 1< lnl Í-,whererheresulrsfor
a specific impedance in either range deËermine Ëhe complete behaviour

for Ëhe other range. The forv¡ard scattering for both geometries is

not significantly altered over the value for the perfectly conducting

case' excepË when the sphere surface impedance is inductive in the

range 0< lnl <1 orcapacitiveinrherange l< lnl Í-, andfor

Èhe cylinder when the reactance is near unity. Furthermore, the

scatterj.ng cross secËion in boËh cases vanishes for I = 1 and the

backscattering cross section is always lower than the value for the

perfectly conducting case. For the case of the square cylinder, the

forward scattering ís significantly dependent on the impedance for large

ka, unlilce the circular cylinder.

The phase shíft meËhod requires the numerical integration of a

first order differential equatíon for the solution of Ëhe fields and is

a convenient method for dielectríc coated cylinders.

The perËurbation method proposed for Ëhe rectangular cavity with

imperfectly conclucËing wal1s and the boundary value solution for the

spherícal cavity lead to general conclusions abouË cavities v¡iËh reactive

walls. An inductíve rvall decreases the resonant frequency rvhile a

capacitive wall increases it. The reactive part of the surface lmpedance

is responsíb1e for Lhe change in resonant frequency, while the surface

resistance affecËs the bandwidth. In the case of the spherical cavity

r¿íth a capacl-tive wa1l , a ne\r fundamental mode is created which is a

perturbation of the zero value of the zero frequency static mode.
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Finally, applicati.ons suggested by

Chapter V are of consíderable índustríal

rnay lead to effective solutions for hígh

mÍcrowave anechoic chambers.

the results and descríbed in

and scientífic interest and

density power meters and

6.3 SuggesËions for Future Research

In the course of this thesís, various interesting problems have

arisen that have been only briefly dealt with. Thus, though attempts

have been made to improve Ëhe geometric optics term for the perfectly

conducting sphere, no suitable expression, valíd over the complete

bisËat.ic range, has been obtained. Similarly, the creeping \.rave term

requires lmprovement near and at a shadow boundary. Furthermore, the

solution for the scattering by two spheres could be extended to the

scatteríng by an array of spheres, using a scattering matrix formulation

as used in the analogous problem of radiatíon by an antenna array.

In the solution for imperfectly conducting spheres, there is again

need for improving the geometric optics Lerm. Furthermore, the solution

for the pulse scattering by lossy spheres may be obtaíned by Ëaking the

inverse Laplace transform of the Chr solution given in Chapter III" ThÍs

solution woulcl be of interest for purposes of radar detection. A1so,

the solution for an ímperfect.ly conducting sphere in a weakly ionized

plasma is of interest in radío astronomy and space communications.

Finally, the ray-numerical meËhod proposed- in Chapter IV has been

applied only to the case of the circular cylinder and should be extended

to other geometries.
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BOUNDARY VALUE SOLUTION FoR AN IMPERFECTI,v cbTuoucTING SPHERE

Consíder a sphere of radius

centre at the origin of a spherÍcal

shown in Fig. 2.L. A plane wave is

negatíve z axís and is defíned by

a of. surface Ímpedance Z, wítln

sysËem of coordinaËes (r,0,ó) as

incídent on the sphere from the
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Using Ëhe well known addítion theorm
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where the Legendre function is defined by

1A
P-(cos0) = - ã¡- Prr(cos0) (A-12)

Hence Lhe magnetic vector pot.ential Ai is gíven by
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Sírnilarly the electríc vector potenËíal Fi is gíven by
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andfor r)a wehave
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where the superscrípt s ís associated with the scattered field" Sínce

Ëhe scattered field must behave as an outgoíng rüave at infinity, As and

Fs must contaín the spherical Hankel functions i-n place of the Bessel

functíons. Thus
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-n n(n+1) tâ(z>'(ur)+jôâ(2)(ka))

where k=uñ-¿ ,n=? and ô=yl'o o lo -'o

L-d

The scattered fields for kr >> I are then gíven by

E gjkr
-s.oEõ = j -* cosþ p(0) (A-22)

E ejkr
-s.oEõ = - j k, sin$ q(0) (a-zg)



r,/here

and

I22

(A-26)

(A-27 )

- ii(tca) + jnjrr(ka)""=@
ji(ta) + jôj,,(kå)

C-n i-(2) ' (ka) + ,i û(2) (r.")hì-' (ka) + j6h



APPENDIX B

ASYMPTOTIC EXPANSION OF Dv_L AM Gv_1,

The expressions for Dr_r< and Gr_, defined ír (3.12b) and

(3.12c) may be approxímated by using Ëhe Debye asymptotic expansion of

the spheriial Hankel functions and their derivatíves for large orders

and arguments [90], i.e.

ij1|tol = ,Æãsã ß "jo(sinß-ßcosß)-j 
n/4

i (m - %) I r_-Z3-rm 
^,n10 ç'òl \Psín$/ ^m

iJl¿' (p) =,Æ'in6 
"jo(sínß-ßcos$)+¡

(B-1)

(B-2 )I
m=0

(m - %)!
(-%):

-t4 m(*ih) (B,n

r/4

A. m-r.+ ,^a)

where

by the recurrence

ponding expressions

en by the complex

9=ka=vSecß

A =g =1oo

1\'Ar = Ë (r +; cot-ß)

o, = # {: + S cor2ß . #cot4ß)

o =-Z 
1 ''-L , (r+icor'ß)

Bz = - hþt. + cor2:+ occ"t4o>|

etc. where the higher order t.erms are generated

relationship given by Watson [ 90 ]. The corres

the Hankel functions of the second kind are giv

L23

(B-3 )

(B-4 )

(n-s ¡

(B-6)

(B-7 )

(B-B )

for
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conjugates of (B-1) and (B-2). Substituting in

the leaciíng terms of the binomial expansion for

n < 1 we obtain on simplification

(3.12b) and retaíning

the denominator for

, ^-2j0 (sinß-ßcosß)
u ter-4 +2i^(Lpsr-nÞ + 81 + jnp)i

A.?
r ---:'5

^r3nA^^nA.ï
*",fu.f #+ (r + ipn + rr)¿ +ãfu (r + inp + Bl)J

*-+3ircu,.þr(1 + j¡p + Br) .* (r + jnp + B1)
(osing¡'t L ) r Þ'Lr¡t''

3¡2A., A"
+ ____# _ 15(B^sl-nÞ J

lA. 7 4., z

;;fr) - (1 + inp + 81 +;1fu)

(B_e ) 
-

roximate Gr_r¿ except that.

tten in the form

Ëhe binomial expansíon is applíed Lo Ëhe denominator. Proceeding

same manner used to derive (B-9), we obtain

Gr)-L,= i"-23p(sínß-ßc'"u' 
t 

. ofu[^, * nsinß(Br * r) + jnp sin2ß]

* -J-¡[, ,o, * ¡sinß cn, + ]> ¡
(Psinß)z L ¿

f- 
Lo, 

* nsinß(Br * 1) + jno "t"'ß]'']

"Ur-1

to app

r er,¡ri

" (t + jnp + nrl] + o(psi

A similar proceclure may be used

if n < 1 then ô > l. Gvr¿ is first

(: _ 
ìfìco> - :n ì' j3ìco>

"v-% 
î.1tJco> -: â'.Ít)corl-'4 " v-/z

(B-r0)

before

in the



L25

, f r l*;-j .: {ulo, + nsinß(Br * 1) + j¡p sinßl
(psínS)" L L -

I Ar -l I Ar]
Lo, 

* nsinß(tz * f)-.| - rsfa, * nsinß(u, * fl

r ,ll 1

lo, 
* nsinß(Br * 1) + j¡p 

"ir,2OJ'f 
* o(psi."O)-af

.J G,

(B-11)

where Dv_r¿ and Gr_r< reduce Lo Ëhe corresponding expressions for the

perfectly conducting sphere when Tì = 0.



TASLES OF

Table C-l and for parallel polarizaEion

APPENDIX C

FOR A PERFECTLY CONDUCTING CYLINDER

y /radian

-1. 90s

-2.024

-2,L32

-2,228

-2.3L7

-2.400

-2.478

-2.55r

-2.620

-2 "686

-2.7 48

-3.024

-3.258

-3.462

-3.645

-3. 811

-3.963

-4 .105

j 1. 100

j 1. 169

jL.230

jL.286

j .1338

j 1. 386

jL.43r

jL.47 3

j1.s13

j 1. ssl

j1.sB6

3r.7 46

j 1. BBr

jL " 999

j2.L04

j2.200

i2.2BB

j2.37 0

5

6

7

B

9

10

11

L2

13

T4

15

20

25

30

35

40

45

50

0.7 02

0.7 23

0.7 42

0.758

0.77 4

0.7 87

0.800

0. Br2

0. 823

0.833

0. 843

O. BB4

0.9r7

0.946

0.97 r

0.992

1. 012

l. 030

j0 "0924

j0"09s2

j0 .097 7

j .0999

j 0. 1019

j 0.1037

j 0. 10s0

j 0.1069

j 0.1083

j 0. 1097

j 0.1109

j 0. 1164

j 0.1208

j0.L24s

j0.L27 B

j 0. 1307

j 0. 1332

j 0.13s6

L26
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Table C-2 and

ka

5

6

7

B

9

10

11

I2

13

L4

15

20

25

30

35

40

45

50

for perpendicular polarization

'¡ f radi-an

-0.830

-0.882

-0 "929

-0.97 L

-1. 009

-L.046

-L.07 9

-1. l-11

-L.LL4

-1. 170

-L"L97

-L.3r7

-L.4L9

-1. s09

-L" 57 2

-1.660

-L"727

-1.789

j0.47 9

j 0. s09

j 0. s36

j 0. s61

j 0. sB3

j 0. 604

j0.623

j0.642

j 0.6s9

j0.67 6

j 0. 691

j0.761

j 0. 819

j 0.871

j0.9L2

j0"9sB

j0.9s7

j 1. 033

0.207 +

0.2L4 +

0.2]-9 +

0,224 +

0,229 +

0.233 +

0.236 +

0.240 +

O.243 +

0.246 +

0.249 +

0.2615 +

0,27L4 +

0.2798 +

0.287L +

0.2935 +

o.2993 +

0.3046 +

jL" 57 6s

jL.62sL

jL"6674

jL.7 049

3L.7 387

:L.7 69s

jL"7979

jr "824L

j1.B4B6

j1.8716

jr.8932

jL.9862

j2"06t

j2.L25

j 2. rB0

j2 "229

32.27 3

j2.3r4



APPENDIX D

THE TRANSFORMATION

Consider an N-sided regular

surface ímpedance is denoted by Z.

tíme harmonic electríc and magnetic

relations

MATRIX METHOD

polygonal- cyJ-inder whose complex

I{aravellrs equatíons relatíng the

fields may be expressed by the

-+ ->VxF=jkE (D-la)
-+ ->vxE=-jkF (D_lb)

where the "J'tri*e dependence has been suppressed, and I = noÈ,

-2rI|k -;j' n = ,+ = l-20n , U_ and e^ are the permeability andÀ ' ¡ro 
J to ' *o ' o

permiËtivíty of free space, respectívely.

For the cylindrical coordinate system (prþ,2) with the metric

coefficients h, = h(pr$), h^ = h(prô) and h_ = 1, we determinep ''''" o "'' z

h(prô) such that the cross section of the cylinder is mapped into a

circle of radius p in the transform space. Expanding (D-1) in'o

cylindrícal coordínates and combining the transverse field components

E and F with the metric coefficient h(prô), Lo ensure that theyËt
are nonsingular, we obtain

Ea=hu, , Er=8,

F =hFËt F =Fzz

(D-2a)

(D-2b)

where Et, Ft and Er, F, are Ëhe transverse and longitudinal components

of the electric and magnetic fÍelds in the transform space, respectively.

The resulting elliptÍcally polarized fields may be expressed ín terms

of their cj-rcularly poLarízed components as

I2B



tr_
1

_1
f-

/2

-1+=
/z

(uó * 5ôur)

(ró * ¡ôn")

L29

(D-3a)

(D-3b)

(D-4b)

be determíned,

of tj and F+

results in two

used Ëo obtain

dístances in the

F_+

v¡here ô = 1 1. Since (D.1) is valid ín the Ëransform space, for a

normally íncident plane \¡ravee the fiel-d" t+ and F* in the transform

space, in general may be given by the rnodal exprrr=iol"

E+= i {(p)"j"ô (D-4a)
- rì.=- co

F+ = ¡ nlto).i"o
Il=-æ

vrhere Ai and Bi are unknown tadial functions yet to

and which include the mode coefficients. Substitution

into (D-1) and using the orthogonality condit,ion of 0

differentÍal equations for AÏ and Bi " These may be

the incoming (iÏ) and outgoing (0Ï) vraves at large

form

[r*to.ll
Lo- ,0",.l

rT=oI+jôBT

o1=a}-jôBi-rï

From thís, one can find a

at the radial distance p

(0 = 0o) in the form

[r, colJ f 1

lr_,r,.J 
= 

f 
to'0"'j

(D-5a)

(D-sb)

transformaLion matrix relatíng the far field

to the field on the surface of the cylínder

(D-6a)



at p=0o

(D-B) may be

(oÎ - on) (r +-r

- (oÎ + on) (1
-f

with respect to

rewríËten in the form

n)

+n)
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(D-6b)

(D-7)

the surfaces. Thís

(D-B)

(D-9a)

(D-eb)

by

(D-10)

to the knor^¡n íncomíng wave Il q"l
ted, from (D-6) and the boundary

E- and F- may be obtained.-l-t

.rrilr, i*p"¿"rr"u boundary condition

e of the cylinder, í.e.

(o.l
I

(oo )l

sponds

evalua

fíelds

Leonto

surfac

->
H)

vector

o*

re

be

I

he

he

X

ír

fu

L,

tr

b

al

Èh

rh

1

ní

\t

ta

È

t

l_r

un

-l

)l
'J
dco

may

tot

O\^In

at

z(i

rdu

po

1d

e

do

d

at

ne

d

ed

9JA

r
lr (0,
L

t fie

soT-t-

"t tt,

ríte

isf ie

r) ît

outv¡f,u

Èo

dent

aves

Ëha

e v7'r

sati

â
'l- r

the

ces

ZH

)l

)l

cíde

\.{av

soË

nci-de

g \,vav

soË

S 1^7e

be sa

-+(r

is th

educe

(p)

(p)

inc

ng

,S

is

be

-+(r

is

red1

eË

out

iri

how

hm

e

tío

0
J

e

oi

NS

rh

ST

r
s

0

z

o

Ir

t,

the

tgo

ion

vrt

musmus

->
E

I
l_t

ons

.tl

"ó

E
z

MSrm

inc

he

te

Ene

cond

Tos

whic

wher

equa

Sin

the

con

To

wnr_

whe

equ

In and Ol ,

= ZH,
a

frl -1

the normalized surface irnpedance gíven

additional relations

(D-11)

(r - n)(r: - tI) =

(1 - n)(ri + r:) =

respecÈívely, where ¡ is

¡=1= lnl.tÚ'n
'o

For parallel polari.zation (tM case), we have the

rl=11 , o|=ol:++

and hence

rf(oo) =- c|ï) of(oo) (D-r2)
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while for perpendicular

-n -n
l+

and hence

rf(oo) = till

polarization

ol=-otl+

(tE case), we have Ëhe relations

(D-13)

(o-ra)o](oo)



APPENDIX E

DERTVATTON 0F EQUATTONS (4.12) AND (4.13)

From Ëhe

for Ëhe incoming

form

where

equatíons (4.10) and

and out.going waves,

11) for Vn

and 0l ,

Ut, the matrjx

r¡rrítten ín the

(E-1)

(E-2)

(E-3 )

obtain

(E-4)

and

can be

_ .H(2)'
"n

* jrj')

(4.

ri

for the constants

(kp)l l"J

(-,)il",l
f'îl ['Ít'(kp) 

- jnÍt)'(uo) n(2) (t p)

lrîl ["Ít'(kp) 
+ jrÍt '(uo) ,(r) (r.p)

[,. .l l",l= 

r.''J [,j
ing the maËrix equation gives an expression

þ,1 I l-' f'f,

|; r.''l L;]
ting (E-3) at p = a and substituting into

þr,',1 f 
l[",",1-'f':,",1

l.i,,,l 
= 

f.''j r'"'l þ.,.,1
in Ëhe far field

t I ['Í",uo, ' I

f.'l 
= L. ""',uol 

' o+-

fnvert

Evalua (n-2), vre

(E-s )

L32



and Èhe far

Using (D-12) in (E-7) and elíminaring rlCpl

obtain the expressions

p->-

field ís obtained from

Jrr(ka) + jn .li(ta)

Jrr(ka) + jn .r'(ka)

133

(¡-ø)

(E-7 )

from (E-6) and (E-7 ) we

(E-8 )

(E-e)

oÏ(p), Ëhe

by

(E-l0)

["i" 
(ke)l 

,

L-jt' 
(uo)l

i'icorlt-t_

lq,'rl
componenËs are hence

:l ryF"'] 
F'"1 

'Ll,"¡f'ï,

l.i,

- cj)-t

r|{") = -

o1(") = -
+

Since the incident

scaËtered component

o|{o) = -

and the scaÈtered electríc

o

E+o=- I c:l-"
ll=-co

The resulting scattering

(i )-"(r * n)

ka¡¡1(2)(ka) + jn n(z)'(u")l

t: >-""Í2) rr.pl ttÍt) tt"> * ¡n "jr)'rr."> I

H(2) (ka) + jn n(2)' (*)

field is decomposed inro flfOl and

of the outgoíng wave i-s hence given

(D-4a) as

"j2) 
{r.ol "j"ó (E-11)

width for the E polarization ís gíven by

o"4
-=-'fia rka

o
\'L̂.¿

n=0

lz
cos(nö) 

|

, n(2) (r") * :n tÍ')'(u')
(E-12)



The corresponding result for the H poLarízation may be s

134

hown to be

2

(E-13)
oh 4 I î J'cka) - jn'r-cka)
n" = nkr I l^ to 

-costnç/

In=o "Í"'(ur) - jn u- -rka)

where

ft,r,=o
e ={n 

lz, ,, t o



135

(F-1)

coeffícients

(r-z)

(F-3)

(F-4 )

(F-s)

(F-6 )

(r-z ¡

APPENDIX F

DERTVATTON 0F EQUATTONS (4.15) AND (4.16)

ansformaËíon

. Ilr2lN"2'

jv) Ëo the t(0 + jß) plane, the merric

gíven by

t)' "Nß/21-, 
* ,"o"(¡o¡"-Nß + e-2NßJ%rZL, " f ' ¿cos\I\u,re + e 

J

coordinate system, Ëhis corresponds to

f -)e -ê lr-l1+ e-" + 2e-s 
"o"(n4)l% ; " = 

"ßL '')
essed as a cosine seríes of the fonn

f(s) + g(s)cos(N0) + h(s)cos(2Nô) + ...

-3N-Ns__-I g'

-2N -4Ns.s-
4L6

nts, together wiÈh equations

ferential equations for IÏ

f-2
1[-r-;., +kprc"r]r[+
L-

(l-S) lead Ëo

of Èhe form

- i + r.or{")Jol

(D-1) and

and 0i

r2

[-r'o 
+ fi6

't

..-t
J

oÏl'=s *

For the tr
,1 -l

fü = M(co

from the z I (x *

hO and nß are

))hã=hã=

In the (p,þ ,z)

-2 -2h = h. =PQ

which may be expr

-2 -2h = h. =PQ

where

-2N -4N -6Nr(s)=r*?*i¿*äu *

g(s) = s

h(s) = -

These coefficíe

the coupled dif

dIÏ
I'l

-=L

dp 2p

+ F#"] [¿ 'î'-' (F-B )

13s
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(F-e )

2

* ä * j - kprc"llolr.or c">]oi
¿ol f, z

uot=h1luo*fr
L'

- j - * 
luo

F+"] þ,T.'. rî.f,=-*. ..J



APPENDIX G

THE SCATTERING PHASE SHIFT MET}IOD

The differenËíal equation satisifed by the scalar

ü for an inhomogeneous isotropic cylindrical scatt,erer,
.ra

(V'+k')rlr=i-ü (c-r)

where L is an operator dependent on polarizatíon and t.he properties of

the scatterer. For a cylindríca11y symmetric scaËter

- lâuâ ?L=i":;+k-[1-ue] (e-z)u dp dp

for Èhe TM case and the operator for the TE case is obtained by inter-

changing U and a.

A solution of (C-f¡ is gíven by

(c-3 )

qrhere

rll = I^ rr,(j )-" rrr(o)cos (nþ)
n=u

Jo 
,r" (p, ) p,dp,

wave function

is given by

(c-4)

(c-s)

T satisfies a Sturm-Liouví11en

i + co fur + 
fcr.o>' 

- "']l ,"

a general solution of the form

Jr, (kO)Yrr,oO' ,]

f unction 4J ma

equation of the form

)(p) = p-lr,r(O)

and has

rn(p) = .Ï rrr(kp) + cf vrr(rto)

r
LJn(kp')yn(kp) 

-

The asyrnptotic form of the wave

nka-'2

2Ü=rlri+ r (Ö) e-j kP

L37

y be sholn to be

(c-6)



\,¡here ,lrt the incident field may be assumed to be

,i -ikx i
ú'. = e-J^^ - f err(j )-t co" (nþ)Jrr(kp)

n=0

tl,=

where A
n

å
n

,. NTTcos (K0 - 7-
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CG-7 )

the wave

[106] ,

ô andn

and the second part of (G.5) represents the scattered part of

function" usíng Ëhe phase shíft concept of }forse and Teshbach

the wave function can be written in terms of a phase functíon

an amplítude functíon A' in the form

"t 
r"(j)-'cos(nQ) l#,

g+æ

and f (0) are gíven by

Íôn

- ôrr) (G-B)

(c-e)

(c-10)

function may be obtained from

equatÍon. Following Brysk

equation

(c-11)

+[

A=n

f (ô) = - * - "j 
r/4 

"io 
t" cos nþ "j6' "ir'{ôrr)

Thus f (0) is determined

hence a knowledge of Ëhe

fíe1d and cross sectíon.

the

and

r¿here

completely from the phase function ôr, and

phase function determines entírely the scattered

An accurate solutíon for the phase

solution of a fírst order differential

Buchanan ftOtr] we defíne ôn(p) by rhe

N- (p)
tan(ô,r) = 

ryÐ-

orr(o) =L-y
îOl' r "l

I ltt" (o' ) lv,,
J-J

(kp' ) p'dp' (c.-t-z)



N(o)=Bn''' n

and

^n,2
ñ--lf_n^n

L-I

form

rrr(o) = cþ

or alternaËively,

,, 
(ko' ) p'dp'
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(c-13 )

(c-r¿)

(c-1s)

(c-16)

of the second

equatíons for

(G-17 )

Y l' þ'"co'>l'

Using (G-11) and (e-fZ), the expression for reduces to the

ke)]

at 6n = r/2,

) sinô,, (o)]

r
,,to) fr,(kp) 

+

since (c-13)

p> [.] (ko) cosô
Ln

tan6r, (O)vo (

is singular

(p) + y (konnT(p)=A(n n-

¡n¡here

a,,(o) =.î*9,
Substíturion of (G-15) inro (G-4) resulrs í.n the reducrion

order dífferential equat,ion for trr(O) to two first order

the phase and amplitude functíons respectíve1y, of the form

ôi(o)=-ryi*

and

d1-^ f
ai(o) = - ";u (lrrr) 

l.l"Cro>sinôrr(p) 
- vr.(k0)cosôo(0

Examination of equations (c-15) and (G-17) shows that rhe

equation for the phase funcËion ís independent of the amp

and may be solved numerically to any desired degree of ac

using (c-10), the scattered field is readily obtained.

1
) I (c-18)
J

díffer ential

litude functíons

curacy and hence
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(c-1e)

(c-zo)

(c-22)

E case are gíven

(c-23)

e functions

For a radially ínhomogeneous díelectríc,

fu'l - e(p)l ror rM modes

L =J
l. z-- r âe(o) a -
Lu-tt - e(p)l + ãfut ïr'= ã, for rE modes

and Ëhe dífferentíal equations for the phase and amplitud

reduce to

oi(o) = - ry u'[t - .,orl 
þ",uorcosôr,(o) 

+ yn(kp)sinôn(e)] 2

(c-zr)

ai(o) = -ry*'[t - r,or] 
þ",uor"'sô,.(o) 

+v,,(ko)"i.,ô,,(o)]

ar, (o) 
[r",uo, 

sinôr, (p) - vr, (ko) 
"o"or, 

(ol

for the TM case. The corresponding equations for the T

by

* u'[:- - ,,or] . 
[r"(kp)cosô,,(p) 

+ v,,(ko)"r"o"to>]]

' 
þ",uorcosô.r(g) 

+ vrr(ko)sir,6rr(o)]

ai(o) = - ry[r",norsinô,.,(0) - vr,(ko)cosô,.,rol].t"col

l.. 
t[t*(kp)cos6,,(p) 

+ y'(kp)sin6,,,rr] *rt iP

* u'[t - ,Col] . 
[r"(kp)cos6,r(p) 

+ vr,(ko)sin6,r,rr]]
"J

(c-24)



APPENDIX H

PERTURBATION SOLUTION FOR AN IMPERFECTLY CONDUCTING RECTANGULAR CAVITY

consíder a rectangular cavity of heighÈ b, wídth a, and rength

d and 1et the surface Ímpedances of the wal1s be z*o, z*L, zyo, zrr,

Zro' ZrL as shorvn ín Fig. lI-1. For the cavity with perf ectly conductíng

walls, the free space propagation const.ant ko is related to the lateral

and axial consÈants ko^ and $-, respectively, in the cavity byy-o o'

-2 -2 _?k-=kl +ß-o)úoo

for both Tll or TE waves.

Treating the new lateral and axial field constants

of the values when Ëhe walls are perfectly conducting, we

k.Q,=k.Q,o+^kl

ancl

(H-r)

as perturbatíon

can write

(H-2a)

(H-2b)

(H_3)

perturbation

ßu=ßo+aß

Thus in presence of imperf ecË1y conductíng rn'alls,

') ') a2k'=ki+"L

where Ëhe new propagation constant

of the o1d value Lo and

k=k +Ak
o

k can be Ëreated as a

Thus

k-
Au = ;!s ^kr 

+
o

B

=g ¡gK
o

(H-¿r)

and using the relations

I4I

(H-5a)
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(H-sb )

(II-5c)

we obt,ain

Ar¡

-=ÜJ
o

ßo Àß
kkoo

- 
uuo

,k
o

=6r+jô,
ak¿

k
o

real- shift ín

can be readily

Q, since the

(H-6 )

the resonant

calculatecl ,

resonant

Hence if 
^ß

frequency from

together v¡ith

frequency, in

and Âkø are evaluated, the

its unperËurbed value ,o

the bandr¡idth and the cavity

terms of the Q is given by

Bandwidth

f I 21tz t¡'
û)=ûr lf - ra-r-l-+i o*-*of tZQ'J 'J2Q

v¡here üJ_ is the resonant frequency in the absence
o

large values of Q, this reduces approximately to

üJ

(l)=ur + o
O Jæ

and since Ëhe bandwidth is reciprocal of the Q, we

of (H-6) and (H-B)

,'r- 1 -Y-2ô^-
z

Further, since

-2 -2k^=k+X,x

(Ir_ 7 )

of losses. Thus for

(H_B )

have on comparíson

(H-9)

(H-10 )k2\t

for the TE^ mode types vre can write (H-6) in the form
Llmm

¡2t
* rkJ*

o

Aß have

Ar=
(t

o

ak*'

k^ Akl,o , x.
k(k)oo

Àlc and
v

O AIJ

kkoo

been evaluated

(n-u)

ilarborviak t 17 lwhere previ-ously by
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and hence substituting, we obtaín

f ',.2

(6r * j6z) = åL"t ,#,2 (z*o + z*t). # (zro + zrt)

" ß^, 1
+ ft tu9)' (r,o * ,"ìl (H-12)

ooJ

The real part of eguation (H-12) gives the shíft in resonant frequency

and twíce the imaginary part gives the bandwídËh. From the above

eguation, it ís evident that the reactj-ve part of the impedance gíves

ríse Ëo Lhe shift in resonanË frequency, while the real part, Ëhe

bandwídth. Further, iË can be seen t,hat an inductÍve wall would result

in a decrease ín resonant frequency, while a capacitíve wall would

increase the resonant frequency.



EIGENVAIUE SOLUIION FOR AN

APPENDIX I

IMPERFECTLY CONDUCTING SPI{ERICAI CAVITY

Consider a spherical

ímpedance z and enclosín¡¡

perrneabilíty U and permitt

to be satísfied aÈ the ínner

E-(E.îlî =z(1 "fi1' t'r -r '

where in eontrast to equation (3.5)

radial uniË vector. For Tlf modes,

to Ëhe relation

Eo = zHqlr="

cavity resonator of radius a wiËh a surface

a homogeneous dielectric material of

ívity ¿. The ímpedance boundary condition

wal1 ís given by equatíon (3.5), i"e.

Ho = - n,/zlu Q' lr=a

For TE modes, the corresponding relatíons are

H^ = - YE.lU Qlr=a

Eo = H6/Ylr=,

r¿here Y = I/2.

The elecËric and magnetic field components in the

coordÍnate system (r,0,ô) are given in Appendíx 4., ín

electric and magneËic vector potentials A and F. Due

condition []-f], the vrave functions for these potentials

form

, here 1, represents

the ímpedance boundary

(r-1)

the inward

conditíon leads

(1-2a)

(r-2b)

(r-3a)

(r-3b)

spherical

terms of the

to the boundary

must be of Ëhe

I
m

T

f 3r,{tr)e}("o=o¡ "j'Ö (r-4)
n

,r(kr) are spherical Bessel functions used by Schelkunoff t1O7l.where

t4s
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For TM modes, the resulËing transcendental equation for the eigenvalues

k is given by

where the prime

Normalizing the

of free space in

z = jlno

(f )TE =. ¡.mnp

and

denotes differentiation with

impedance Z, wíEh respect to

the form

where îo = 120n

(r_s)

respect to the argument.

the intrinsic impedance

( r-6)

cylindricaland wrítíng Ëhe spherícal Bessel funct.ion j-n terms of

Bessel functions, we obtain

"t lr+u(u) + 0. 5J.+o (u) - tEJrr+.á (u) = o

where u = ka. The correspondíng expressíon for Ëhe TE case is

uJf..+z(u) + 6[u.l'*r(u) + c.5.lrr*r(u)] = 0

The solutions of (r-7) and (r-B) give the ei-genvalu€s ,ul- r'and': u... -fior
np np

ttre TM and- TE- casèso while the eigenfrequencies are evaluated from Ëhe

relaËions

(r-7 )

gíven by

(r-B )

(r-e )

(r-ro)(f-)]Ìf = 
tån

'-¡'mDP ztra(ve)h

The cavíty Q and the bandwidth may be calculated by either the

method of y'^ppendix H or following the procedure ín Harringron [94] " rr

is to be noËed that degenerate modes are also present as in the case of

a perfectly conductíng cavity.

Typical results for the eigenvalues rrrp and 
"r1O 

(p = 1,2,3...)



747

based on (I-7) and (I-B), respectívelye are shown in Fígs. 4.L6 and 4.L7,

where 0< E < 1 corresponds to the inductive caseand -1< E < 0

corresponds to the capacitive case while E = 0 to the perfecË1y

conducting case. The result.s Índícate, in general, that an inductíve

surface lowers the resonance frequencíes of all modes, whíle a capacitive

surface impedance raises them. For the case of a complex impedance, an

attenuatíon in the cavity fields. results from Ëhe complex eígenvalues

obtained, although no specifíc results are shown.

ExamÍnation of Fíg. 4"17 shows thaË the first eígenvalue ís a

perturbation Ëo the zero value of the zero frequency sËaËic mode l94l ín

a perfecËly conductíng cavity. As an example, ull = .9743 for E = -.S

in the TE case. Thus, unlike the case of a perfectly conducting sphere

where the TM mode ís the fundamental one, it ís found that for the case

of a capacitive, impedance r,¡a11, the TE mode is the new fundamental mode.

This may also be explained from the equívalent circuit of Ëhe cavity

resonaËor.
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