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ABSTRACT

The ray optical method is employed to derive an asymptotic
solution for the far field scattering by an imperfectly conducting
sphere. The procedure makes use of the exact solution and is tested
for perfectly conducting spheres where considerable improvement in
Senior's solution is introduced. Apart from leading to good agreement
with the exact solution for spheres of radii as small as one wavelength,
the method provides betfer physical insight into the scattering
mechanism and considerable saving in computational effort. Two specific
ranges of impedance, one below and the other above the free space
intrinsic impedance, are identified. Numerical results are presented
for various sphere sizes and surface impedances while the behaviour of
the imperfectly conducting sphere and its departure from the perfectly
conducting sphere are demonstrated and expléined for the forward,
bistatic and monostatic cross sections.

To extend the technique to cylindrical geometries for which no
exact solutions are available, it is shown that available numerical
solutions may be used to replace the need for exact solutions provided
that they are extended to imperfectly conducting bodies using the
Leontovich impedance boundary conditions. Results based on these numeri-
cal techniques are presented for the imperfectly conducting circular and
square cylinders as well as the circular cylinder coated with a radially
inhomogeneous dielectric. Finally, results for the imperfectly conduct-
ing rectangular and spherical cavities are also presented and analyzed
on the basis of the perturbation and boundary value techniques,

respectively.
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CHAPTER I
INTRODUCTION

Though the Leontovich boundary conditions have been known for
the past few decades, solutions for problems incorporating this condition
have only been possible for a few geometries. Besides the mathematical
difficulties encountered, even in the cases when exact solutions
obtained by using‘these conditions are known (e.g. the sphere and the
circular cylinder), the effect of the impedance is not fully understood.
These condtions relate the tangential components of the electric and
magnetic fields through an impedance factor which is a function of the
properties of the surface and polarization of the incident field.
Though the surface impedance concept is not new, the idea of incorporat-
ing it into the initial formulation of the boundary value problem dates
to the early 1940's. The electromagnetic properties of the material
are specified in terms of an effective surface impedance, thereby
simplifying the formulation considerably and making solutions tractable.

An exposition of the impedance boundary conditions for a flat or
curved surface or at an interface where the properties of the medium vary
from point to point is given by Senior [1,2], who also gives the proof
of thé conditions as well as their degree of generality and restrictions.
For a curved surface, the conditions are a valid approximation to the
true conditions, if the radii of curvature are everywhere large compared
with the wavelength and the refractive index of the coating is large
compared to unity. They are also justified when the impedance varies

from point to point, provided that the variation is slow. The conditions



are appropriate for a number of problems involving imperfectly conducting
scatterers, rough surfaces and absorber and dielectric coated bodies,
and perform in one operation a perturbational solution about the perfectly
conducting case without explicitly considering the surface conditions.
Thus, the wide range of surface conditions, that are taken into account
in a single formulation incorporating the impedance boundary condition,
makes the study of such problems most interesting and important. However,
in doing so, a suitable method of solution which is conceptually simple
and at the same time gives good physical insight into the electromagnetic
wave propagation phenomena over bodies which satisfy the impedance
boundary conditions, is required.

Impedance boundary conditions have been used mainly in guided
wave propagation [3-18] with particular emphasis on the rectangular
waveguide with lossy walls [3-10]. The solutions in this case have been
restricted mainly to the case when only one wall is imperfectly conduct-
ing. This is because of the difficulty experienced in applying the
impedance boundary conditions for other cases, and the non-existence of
normal waveguide modes, thereby making the analysis considerably involved.
In scattering and diffraction theory, the condition has been applied to
- the wedge [19-25] and cone [19] with little succéss, the only tractable
results for the wedge being obtained when only one face satisfies the
impedance condition [22-25]. The main difficulty in this case is the
choice of a suitable mathematical representation for the scattered field.
With the use of Hankel functions, as in the case of the perfectly con-
ducting wedge or cone, it has not been possible to satisfy the impedance

boundary conditions. The imperfectly conducting half-plane is one of



the few cases for which solutions have been obtained [26-29] and extended
to linear and anisotropic variations of the surface impedance [30-33].

In the case of the imperfectly conducting sphere and cylinder,
"which are the principal scatterers considered here, only a limited amount
of information exists. In the case of the sphere, the exact solution
is known [34-37] and Wait and Jackson [34] have computed the solution
to investigate the écattering behaviour. However, this gives little
physical insight into the scattering mechanism. The ray optical
analyses of others [38-40] are restricted to the monostatic case and do
not lead to numerical results, due to the lack of creeping wave propaga-
tion coefficients which réquire.finding the complex roots of transcendental
equations. This restriction, together with the mathematical complexities
of contour integration and the considerable amount of labour involved in
obtaining results for the bistatic and forward regions, have restricted
the solution to the monostatic case. 1In the case of imperfectly conduct-
ing cylinders, the exact solution is available for the circular cylinder
[41-43] and an integral equation formulation for other cross sections
[44]. However, the latter method requires considerable computation time.
Furthermore, no results describing the physical effects of surface
impedance on the scattering properties of cylinders are available in the
literature.

The basic analytical approach in this thesis is based on the ray-
optical method by Keller [45-46]. The method is an extension of
geometrical optics to include a class of rays, called diffracted rays,
which account for the-shadow region fields. The total field at any

point in space is given by the sum of the fields on all rays passing



through that point, while the amplitude of the field on individual rays
is assumed to behave accordingvto the principle of conservation of energy
and the phase is directly proportional to the optical length of the ray.
The method provides excellent physical understanding of the scattering
mechanism and offers considerable computational advantage due to the
simplicity of the asymptotic expressions obtained for the fields.

The motivation for research in this area has been to obtain better
physical understaﬁding of the behaviour of imperfectly conducting bodies,
with particular emphasis on the sphere. Results for other imperfectly
conducting bodies like the circular and square cylinders, and the
interior problems of the rectangular and spherical cavities are also
obtained and analyzed, primarily to obtain numerical results for the
"ray—numerical" method proposed and secondly to support or add to the
available information on the characteristics of imperfectly conducting
bodies, derived from the sphere solution.

In Chapter II the ray optical solution for the perfectly conducting
sphere is analyzed for accuracy and the range of applicability in the
bistatic range extended. Furthermore, the solution is extended to the
scattering by multiple spheres and the results are shown to provide better
agreement with the experimental results of Mevel [47], than has been
possible by the multipole expansion method [48].

The ray optical solution for the perfectly conducting sphere is
extended to the scattering by an imperfectly conducting sphere in
Chapter III. An asymptotic solution for a sphere of large electrical
radius ka 1is derived by the application of Watson's transformation to

the exact series solution. The scattered field is reduced to the sum



contribution from rays associated with'a geometrical optics term and a
series of creeping waves. Using the method of Striefer [49], decay
coefficients which are the complex roots of a transcendental equation
are obtained in a series form and field expressions for the monostdtic,
bistatic and forward scattering are derived’ and analyzed. The results
show favourable agreement with the exact solution. Two specific ranges
are identified where the surface impedance is below or above the free
space intrinsic impedance and.it is shown that the scattering cross
section in either range, determine the complete behaviour for the
reciprocal impedance in the other. The departure from the perfectly
conducting sphere is also demonstrated for the forward, backward and
bistatic cross sections for various résistive, reactive and complex
impedance coatings. The solution is shown to lead to easier analysis
and physical insight into the scattering behaviour.

To extend the ray method to other geometries, the ray-numerical
method is proposed in Chapter IV. This defines ray diffraction and
propagation coefficients in place of mode diffraction and decay coeffi-

cients and is demonstrated for the case of the perfectly conducting

cylinder. To employ the technique for imperfectly conducting' cylindrical

bodies, the transmission matrix method and the phase shift method
previously employed for perfectly conducting cylinders are extended and
results for the circular, square and circular cylinder with an inhomo-
geneous dielectric coating are presented and analyzed. The rectangular
and spherical cavities are also investigated using the perturbation and
boundary value techﬁiques respectively.

In Chapter V some applications using the results obtained are




suggested. The discussion of the results and conclusions are finally
presented in Chapter VI.

Most of the material in this thesis has been published or

accepted for publication [50-54].



CHAPTER II

THE RAY OPTICAL SOLUTION FOR CONDUCTING SPHERES

2.1 Background of the Method

Although various methods have been employed for solving scatter-
ing problems, the ray optical method or the geometrical theory of
diffraction is perhaps the simplest conceptually and leads to satisfact-
ory results when fhe characteristic dimension (ka) of the body is
much larger than unity. Since very few problems have exact solutions,
such approximate techniques are of basic importance in applied electro-
magnetic theory. 1In addition to its mathematical simplicity, the ray
method gives a physical insight into the mechanisms responsible for
scattering or diffraction.

The geometrical theory of diffraction is an extension of the
classical geometrical optics theory. Both theories assume that energy
is propagated along ray paths obeying Fermat's principle [45], such that
the optical path length is stationary. The classical geometrical optics
theory is inadequate to deal with scattering and diffraction problems,
since it neglects phase and polarization information and fails té account
for the fields in the shadow region. The phase and polarization informa-
tion is often added artificially when the approximation becomes identical
to the first term of an asymptotic solution to Maxwell's equations as
introduced by Luneberg [55] and Kline [56,57]. In spite of this, the
diffracted field due to edges, vertices, corners and shadow boundaries
were still unaccounted for and this led to the development of the

geometrical theory of diffraction.



Keller's geometrical theory of diffraction [45,46] overcomes the
defects of the geometrical optics theory, by introducing new rays called
diffracted rays. Here diffracted energy is still assumed to propagate
along ray paths obeying Fermat's principle. The total field at an
observation point is the sum of fields on all the rays passing through
that point. The phase of the field on a ray is assumed to be propor-
tional to the optical length of the ray relative to some reference point
where the phase is known. The amplitude is assumed to behave according
to the principle of conservation of energy and is formulated as the
product of the incident field at the point.of diffraction times the
diffraction coefficient. Diffraction coefficients are determined by
comparison with the leading term in the asymptotic expansion of the exact
solution of canonical problems and have been found for various bodies,
e.g. the wedge [58], half plane [59], cone [60], and have been employed
for the scattering by muitiple [59] and smooth bodies [61,62]. Alterna-
tively, approximate values may be obtained from experimental measurements.

Although the ray technique provides excellent physical understand-
ing of scattering and diffraction processes and offers considerable
computational advantages, it, nevertheless, suffers from a number of
drawbacks. The incident and reflected fields are discontinuous across
the shadow lines and the diffracted field becomes infinite at shadow
boundaries, edges and caustics and certain corrections must be made [63,
64]. However, for an arbitrary body, no general method of correction is
available and caustic correction terms must be determined in the same
way as for diffraction coefficients [64-66]. Furthermore, the general

validity of Keller's theory has not been established.



In spite of these shortcomings, the geometrical theory of
diffraction has been applied successfully to treat a wide variety of
interior and exterior electromagnetic problems [67-70]. The range of
problems alreaay solved indicates that the method is one of the most
promising approximate methods for computational purposes. The scattering
of plane waves by a perfectly conducting sphere and multiple spheres is

developed in this chapter using this technique.

2.2 Ray Scattering by a Perfectly Conducting Sphere

The solution for the scattering of a plane wave by a perfectly
conducting sphere using the ray optical'approach was formulated by
Senior and Goodrich [71] in a form convenient for computational purposes.
The accuracy of this solution is examined in this section and certain
corrections in the results are presented.

Assuming a plane wave polarized in the x direction and incident

along the negative =z axis on a perfectly conducting sphere of radius a,

as shown in Fig. 2.1, we have for the incident electric and magnetic fields

gl = g o~3k2
and (2.1)
i - & _jkz
H v Y;i
where YO is the intrinsic admittance of free space and the It time

dependence has been suppressed. Using the standard Mie Series as given
by Stratton [72] and the spherical coordinates (r,8,¢), the exact
expressions for the far field components are

E =0 ' (2.2a)



INCIDENT PLANE WAVE

FIG. 2.1 SCATTERING GEOMETRY OF A SPHERE
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AP N VIS S I N i W
E, = j cosd = z (-1 : == P (cosB)
0 kr 4=1 L2 + 1) -Eél) (ka) 36 "R
1
P, (ka) P, (cosB)
- (%) JZ’sine (2.2b)
£,V (ka)

ST o 20 41 | by G P%(COSG)
By = = 3 sind So— 1 DY 5T |Tay sind
2=1 _ El (ka)
Y, (ka)
- —?%7————-35 Pi(cose)} (2.2¢)
Ez (ka)

where wg(ka) = ka jl(ka) and €él)(ka) = ka hél)(ka), jl(ka) and

(1)
L

1
denotes differentiation with respect to the total argument and Pg(cose)

h (ka) are spherical Bessel and Hankel functions, the prime notation

are the Legendre functions of degree-one:and order 4.

Denoting the summations in (2.2b) and (2.2c¢) by sl(e) and SZ(G),

o v, ' (ka)
£ 28 + 1 2 3
S,(0) = Z (-1) ; ~= P (cosh)
1= L 208 + 1) [Eél) ey 36 2
1

wz(ka) Pz(cose)

- ; (2.3a)
gél)(ka) sinb a

and

L 20 41 [ by ' (ka) P%(cos@)
g

S,(8) = ) (-1) ; ;
2 9=1 28 + 1) él) (ka) sin®
wz(ka) 5
= Ty %7 P, (cosH) (2.3b)
Eél)(ka) 96 "2

Further, using Watson's transformation and writing sl(e) as the sum of
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a geometric opticsterm, si(e), and a creeping wave solution, Si(G),

we obtain the following expressions for the backscattered field [71]:

o) _ 3 2ijka i 1
Sl(O) > ka e [l + Tia + O(k )] (2.4a)
a
~and
- s m/3
Si(O) - T4e—JWka+j m/6 1 5 1+ : n
-4
(1 +-————) + 0(t )
3282
—J ‘IT/6B
.. m/6 _ Q" 9 -3
X exp|-e By Tm con (1 ; 3+ 0(T 7)
2
B T PR 7 e S
— t (.
=1 [Ai( am)] 151
—J W/6 2
_J m/e o m
X exp|-e a Mt Gom +0(t~ ) (2.4b)

where T = (ka)l/B

,» & are the zeros of the Airy functions Ai(—u) and
BQ are the zeros of A;(—B)‘ as defined in [71].
Similarly ir the bistatic case the expressions for .the E plane

polarization for the range of bistatic angles & < 6 < 7 - §, where

§ = O(%;), we obtain for the geometric optics term

. . . . 2
s‘]’_(e) = ?2L Ka 2 ka cos®/2 1, \ T - 751; e/é + }
2ka cos™8/2 4(ka)“cos ©/2
(2.5a)

while the creeping wave contribution is given by



13

ka - m/12 ; 1

s$0) = - [(=2—) 1e
1 2msin® & 2
=1 BQ[Ai(—Bz)]

-j m/3
1+ &S— (178, + —2—) + 0(1"3)
6012. 9 BJLz

X

[1 + LI cote + O(T_S):I exp [(w - 08)(-jka - eI '”“szr

16T3
oJ 1T/6B 2
et -2 O(T‘B)} - 501 - Ll cote + O(T_S)}
60T 3 3
BQ 16T
e—j 1T/68 2
. . dm/6, % 9 -3
exp [Cﬂ + 0)(-jka - e” . BQT e (1 : 3)+O(T ))}
2
- 12 o)
. K jw/ 1 -2
-3 (ZNS?nG = 2 2 1+0(r )
217sin6® m=1 [A!(-a )]
it m
-j w/6_ 2
_ Capa S Tme - ° “n -3
X exp [Cﬂ 8)(-jka - e ot - T e + 0(t 7))
s 2 -
+ 3 (m + 8)(-jka - j m/6 T - f—i—iiifm— + O(T—3
j exp jka e am 50T M
(2.5b)

The corresponding expressions for S;(e) and SS(@) for the H plane

polarization are evaluated in an identical manner and given by

S;GS) _ %—ka erka cosf/2 1 4 cosg + 1 .
: 2ka cos™0/2  4(ka)

2

+ .

(6 0082)51n 0/2 + O(_lg) (2.6a)
cos 0/2 ka
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$,(0) = 3 [G—=) 1+0( ™)
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6 2
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B
n
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n
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. 17q . _

B F “/3~—‘;‘+ oct™ | x 1+—7—3—3cOt 6 + 0(1 )

60T 161

-j /6 2
. e o _

* exp {(W - 9)(-jka -~ eJ Tr/6OLmT— —'-6-0—T—m— + 0(t 3))

=5 1 =Ll cot 8 + 0(t )| exp |(m + 8)(<jka - &I ™ ¢
3 m
16T
e—j TT/60Lm2 -3
- T— + O(T )) . (2~6b)

Finally due to the fact that the forward scattering direction corresponds
to a caustic, the expressions for the geometric optics and creeping wave

terms must be evaluated independently and the results for the two
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polarizations are related by

Sz(ﬂ) = -~ Sl(ﬂ) (2.7)

The expressions for the forward field result in the following solutions

for the geometric optics term

1 2 11
-5[(ka) - 15] (2.8a)

]

o
Sl(ﬂ)
and

1

2
T

1]

si(n) T4[.082972 - § ¢ 144019 + == (.385229 + j * 667169)

lz(,069342) + O(T—6) + T4 e—j m/3 z 1 '
' 11 B, [, (-8,)]

S 9 4 % n
ot (3232 + ——5) + 0(T ) z (-1) "exp 4-2j1(m + 1)

BQJ m=0

1+

o

2 9 -3
(62 - E-? + 0(T 7)

L

. -2j m/3
-j /3 | e
ka + TBze +-——EB?———

+ T4 e-j m/3 § 1 ~ [1 .\ Sdnz o-J /3 + O(T—4)

a1 (101?150 |
= : o 20723 T/3
D™ exp 4-24m(m + l)[%a + o o3 m/3

20 60T

+ 0(1"3) (2.8b)

for the creeping wave term.
Equations (2.4b) and (2.5b) describe the dominant contribution

from the creeping waves corresponding to a travelling distance of half a
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sphere circumference. However, the improvement in the accuracy resulting
from the higher order creeping waves, e.g. m = 1,2, in (2.8b) is
numerically insignificant and therefore neglected in the computations.

To verify the solution, it is first necessary to check the
accuracy of the predicted fields. Table 2.1 compares the monostatic
phase (ps) and normalized E plane cross—-sections (Gs/ﬂaz) computed
from the exact results and from our expressions for ka of 4.19 (chosen
because of the available data in the two sphere scattering problem, to

be discussed in the next section), 5.0 and 10.0.

TABLE 2.1

EXACT AND APPROXIMATE VALUES OF MONOSTATIC CROSS-SECTIONS AND PHASES

2
Os/ﬂa Phase Pe
ka Exact Approx. Exact Approx.
4.19 0.638626 0.635060 -51.51° -51.95°
5 1.16884 1.17615 30.197° 30.35°
10 0.92523 0.93015 -114.,768° -114.797°

To check the validity of (2.5), we compare the approximate and
exact cross-sections for the above values of ka in Figs. 2.2a-2.2c.
For the case ka = 10.0, it is seen that beyond the bistatic angle of
120° the asymptotic expression fails to reproduce the correct results
since the product ka cos36 is 1.25 at 0 = 120° which is not much
larger than unity, as required for the validity of the geometric optics
term. In particular, for scattering from two spheres in the broadside

configuration, the accuracy of the approximate bistatic results at
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® = 90° are of importance and it is seen that _here too,the asymptotic
theory is not in sufficiently good agreement. For lower values of ka,
the same discrepancy is observed as is evident from Fig. 2.la. Hence
we conclude that the bistatic approximate results require considerable
improvement since besides the above constraint on the geometric optics
term, the solution is further restricted to the range of bistatic angles
§ < B <7 -6, where & = O(l/ka), which would prevent a solution fdr
arbitrary angles éf incidence and observation.

Table 2.2 compares the exact and approximate results for forward

scattering cross-section and phase for the above three values of ka.

TABLE 2.2

EXACT AND APPROXIMATE VALUES OF FORWARD SCATTERING CROSS—SECTIONS AND PHASES

2
Os/ﬂa Phase Py
ka Exact Approx. Exact Approx.
4.19 20.095 19.047 94.179° 94,3°
5 28.073 27.032 93.178° 93.3°
10 106.358 105.33 90.79° 90.8°

This indicates that the expressions for scattering in the forward direction
are reasonably accurate. It remains to show how the approximate theory
could be used if the bistatic results are improved.

In order to improve the approximate theory, we investigate the
functional nature of the geometric optics terms (on the assumption that
the creeping wave formulation is reasonably accurate), by examining the

exact results and comparing these graphically with the approximate
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geometric optics solution, as shown in Fig. 2.3 for ka = 4.,19. From

this we observe that the geometric optics term in (2.5a) is a monotonically
increasiné function, while that obtained using (2.5b) and the exact
solution has an oscillatory nature. However, the Kirchhoff-Huygens
formulation for the plane wave scattering from a sphere, as formulated

by Yerukhimovich and Pimenov [73] and later put into a suitable form for
‘computation purposes by Erukhimovich [74], leads to better results. Here
use is made of Federov's expressions for fields obtained in quadratures,

by the vector thential method, in terms of currents induced on the

surface of a perfectly conducting sphere due to an incident plane wave
[75]. Separate solutions for the bistatic range of angles 0 < 6 < elim
and elim <0 <m were obtained,.where eliﬁ is given by the

relationship

im

cos ( ; ) = 1.81 bl/Zka o l/T2 (2.9)

and bl = 2.335t. |,

This formulation leads to an alternative geometric optics term
[74] involving the zero order Bessel function of the first kind

Jo(ka sinB)

j 2ka coé 6/2
2ka cos 8/2

ka

2

HOESESKe! +m) e +
(2.10)
The first term in (2.10) is identical to the first two terms in (2.5a),
while the second term involves a Bessel function rather than the higher
order diverging terms in (2.5a). Equation (2.10) is plotted in Fig. 2.3
and is shown to be quite suitable for our purposes. Fig. 2.4 shows the

results of combining the creeping wave term in (2.5b) and the geometric
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optics term in (2.10) for ka = 4.19. The curve agrees very well with
the exact results over a much larger angular range than possible using
the optics term (2.5a). TFurther as the value of ka is increased, we
can expect better agreement and over a larger range of the bistatic
angle, since elim will increase. 1In particular, we note the agreement
for © = 90° which is important for broadside scattering by two spheres,
to be discussed in the next section. Since these results are reasonably

accurate, the combined expression for the approximate solution for the

single sphere may be extended with confidence to the two spﬁere problem.

2.3 The Scattering by Two Perfectly Conducting Spheres

The problem of electroﬁagnetic scattering of plane waves by two
spheres is a fundameﬁtal one in the theory of many body scattering.
This is especially-so, since the sphere is one of the few bodies for
which an exact solution is available. The problem has been treated by
Trinks [76] fbr broadside incidence and small identical spheres, and by
Germogenova [77] for very small spheres and arBitrary angles of incidence.
Bonkowski et al [78] ! .~ also investigated the backscattering for the
broadside configuration. Zitron and Karp [79,80] have analyzed the two
and three dimensional scattering for bodies of arbitrary shape and more
recently Twersky [81] has employed a vector dyadic formalism to study
the same problem, but the results do not lend themselves easily- to
- computation. Of considerable interest is the paper by Angelakos and
Kumagai [82] who have présented experimental results for the two and three
gphere scattering and used theoretical extensions of [78] for comparison

purposes. Liang and Lo [48] have utilized the method of multipole
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expansions, together with the translational addition theorem for vector
spherical wave functions developed by Cruzan [83] to derive the solution
for the scattering by two spheres of different sizes and for an arbitrary
angle of incidence. Results, which take into account first and second
order scattering, were presented and compared with the experimental
results of Mevel [47] for the broadside case and with those of

‘Angelakos and Kumagai for the endfire case. As observed by these authors,
the calculations are complicated and tedious and errors due to slow
convergence are likely. Furthermore, for large spheres (i.e. ka greater
than one wavelength) these expressions are not suited for numerical
calculations. Recently Bruning and Lo [84]_have used conventional
geometric optics and modified geometric theory of diffraction to obtain
~results which agree well with those computed by Liang and Lo [48] but

are still in discrepancy when compared with experimentél results.

To alleviate the above difficulties, the aim of this section is to
obtain a simple relation in a form more convenient and suited for calcu-
lation purposes, using geometrical diffraction theory. Knowing the
solution for the scattered field from a single sphere the solution for the
multiple sphere case is easily obtained. The single sphere results
have been analyzed in the last section for accurécy and will be used here
to obtain results for the two sphere case.

Furthermore, the approach is shown to be more readily adaptable
for scattering from multiple spheres than previous formulations, as
considered in the next seétion, and scattering cross-sections for
arbitrary angles of incidence and observation are easily calculated using

this method.
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The solution for the scattering of plane waves by two spheres will
be developed for an arbitrary angle of incidence and an arbitrary angle
of observation for two non-identical spheres. We assume that the spacing
of the spheres is large compared to their dimensions and to the wavelength.

Consider.a plane wave incident on two spheres whose centers are
at a distance kd apart on the =z axis as shown in Fig. 2.5. Let
'sphere 1 have a radius 'a' and sphere 2 radius 'b'. Further assume that
the angles of incidence and observation are Gi and 60 measured with
respect to the x axis, as shown. Using the ray technique, the field
at any point may be obtained as the sum of the field scattered by each
sphere individually plus fields re-scattered by one sphere due to fields
scattered by the other.

At a sufficiently large distance from the sphere, the scattered
field resembles a plane wave. This in turn is scattered by thé second
sphere perturbing its scattered field, which response in turn is-scattered
by the first sphere perturbing the scattered field of the first sphere.
This successive procéss is repeated to obtain higher order terms and the
perturbed patterns are superimposed to obtain the total solution.

If Ea(e) represents the unperturbed bistatic scattered field at
an angle © of the sphere of radius a and, similarly Eb(e) is that
of sphere of radius .b, then the total scattered electric field at any
arbitrary angle of observation 60 is given by

ET = El + E2 ‘ (2.11)

where E1 and E2 are due to the rays scattered by spheres 1 and 2

respectively. Hence
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_ _ -jkd[sinb +sin(m-06 )]
E (8- 8,) +E (8, - 8,)e i 0

=
Il

Ea(3ﬂ/2) - Si)Eb(GO - m/2) -jkd[l+sin(ﬂ~60)]

+ *d e

E,(31/2 - 8)E, (0)E_(31/2 - 8) ~2ikd
+ ) e
' kd

E (31/2 - 6,)E, (0)E_(0)E, (8 - W/Z)e-jkd[3+sin(ﬂ—eo)]

Kkd3

2 .
Ea(Bﬂ/Z - ei)Eb (O)Ea(O)Ea(3W/2 - 60) -jb4kd

+ e + ...
kd4

Eb(ﬂ/z -6.) —jkd(l+Sin9i)

1
+ T Ea(3n/2 - eo)e

Eb(ﬂ/2 - Gi)Ea(O)Eb(GO - m/2)

kd2

° exp [— jkd(2 + sin@i + sin(m - 60)]

Eb(ﬂ/Z - ei)Ea(O)Eb(O)Ea(Bﬂ/2 - 60) —jkd(3+sin61)

+ e
kd3
2 . . .
Eb(ﬂ/z - ei)Ea (O)Eb(eO - W/Z)Eb(O) -Jkd[4+31nei+31n(ﬂ—eo)]
+ 3 e + e
kd

(2.12)
Combining terms and summing over all possible interactions, we obtain

—jkd[sinei+sin(ﬂ—60)]

ET = Ea(eO - ei) + Eb(60 - Bi)e

Ea(3ﬂ/2 - 0.) —jkd[l+sin(ﬂ—60)]

i
+ A Eb(60 - 7m/2)e
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E (31/2 -6 ) .

a 0 -2jkd
+ T Eb(O)e

Eb(ﬂ/Z - ei) —jkd(l+sin6i)
+ TERY Ea(3ﬂ/2 - eo)e

Ea(O)Eb(SO - 7/2) —jkd(2+sinei+sin(ﬂ—60?

+ - e (2.13)
'where
Eav(O)Eb(O)e'—ZJkd
A=1 - a (2.14)
kd

Evaluation of ET leads to the evaluation of scattering cross-—

sections for two spheres.

2.4 Extension to the Multiple Sphere Problem

The extension of the procedure in order to deal with the
scattering by a number of spheres arbitrarily distributed, can be
demonstrated by formulating the three sphere problem. Let the spheres
A, B and C of radii a, b and ¢ respectively, lie at the corners of
a triangle with sides kdl’ kd2 and kd3 and angles 61, 62, 93 as
shown in Fig. 2.6. For plane wave incidence, we denote tﬁé angles of
incidence and observation by ei and 60 _and we let Ea(6), Eb(e) and
Ec(e) represent the unperturbed scattered fieldé, at the bistatic angle
0, due to the spheres A, B and C respectively. With the center of
sphere A as the origin of the system of coordinates, the total far
field, on basis of the previous section, is obtained as a superposition:-..
of the fields scattered by the three spheres and is given by

-jkdi[sin6i+sin(ﬂ-eo)]

ET = Ea(eo - ei) + Eb(eo - ei)e
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-jkd, [sin(37m/2-6 -6_)-sin(® +0_ -m)
M Ec(eo B Gi)e ’ °t °

Ea(3ﬂ/2 - Gi)Eb(GO - ﬁ/2)v —jkdl[l+sin(ﬂ—eo)]

e
kdl

+

Ea(3ﬁ/2 - 6i - el)EC(GO -m/2 - 61) e—jkd3[l—sin(eo+elfﬂ}]

+
kd3
Eb(W/Z - Bi)Ea(Bﬂ/Z - 80) -jkdl(l+sinei)
+ - ] - e
1
Eb(ﬂ/2 - ei + 62)Ec(ﬂ/2 + 60 - 62) [—jkdlsinei—jkd2+sin(60+61-ﬂ)]
+ e
kd
2
EC(Gi - /2 - 63)Ea(3ﬂ/2 - 61 - 60) -jkd3 -jkd3sin(ﬂ—6i—61)
+ e e
kd
3
EC(So - GZ)Eb(ez - 60 + m/2) -jkd3—jkd3sin(ﬂ~6i—91)—jkdlsin(ﬂ—eo)
+ e
kd
2
+ e ' (2.15)

Equation (2.15) contains interaction terms taking into account up to the
first order only. Similarly, the higher order interaction terms are

easily formulated. A matrix formulation for the scattering by a randomly
distributed set of spheres can be drawn up in close analogy to the
radiation by an array of antennas, as is evident from the nature of the
terms in (2.13) and (2.15). The above equations hold only when the
separation distance between any two spheres is much greater than the
wavelength and the diameters of the spheres. However, taking an asymptotic
expansion of the various terms in the Mie series solution [85] for the

scattering of a plane wave by a sphere, the scattered field due to one
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sphere can be expressed in terms of incident plane waves and their
derivatives evaluated in the neighbourhood of the adjacent sphere.
Carrying out this process of successive scéttering, we will obtain a
solution which will predict accurately the scattered field from a
random distribution of spheres.. Calculations of this nature have been
carried out by Twersky [86] for an arbitrary planar configuration of
‘parallel cylinders and, in particular, for two identical cylinders. It
is evident that for an arbitrary configuration, the computations would
be more tedious than for the two sphere case. However, using the fact
that the fields scattered by the various spheres are "consistent" with
one another simplifies the calculations. Furthe;, the problem would
perhaps be simplified if considered as a problem of caustic-caustic

interactions which will considerably reduce the computations, particularly

if the scattering matrix approach is used.

2.5 Numerical Results

Using the bistatic data compiled by Ross and Bhartia [87] from
the exact solution for various ka values, and equation (2.13), we can
generate polar plots for a particular set of spheres at various distances
of separation. Bistatic results may also be generated for two spheres.
However, to verify the expressions, we consider the endfire and broad-
side cases for which experimental data is available. Fig. 2.7 shows a
plot of normalized backscattering cross section with various sphere
separations for two identical spheres of ka = 4.19 in the broadside
set up. Curves taking into account only the first order interaction and

a single curve taking account all interactions are presented. Thus we
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see that even taking into account first order interactions and using the
exact solutions for a sinéle sphere, we obtain better agreement with the
experimental results of Mevel [47] than has been possible with previous
formulations. A cufve using the approximate theory of Section 2.2 is

also plotted and once again we find better agreement than obtained
previously. Also, though equation (2.13) is for large sphere separations,
-it, nevertheless, gives agreement with experiment even in the region where
the sphere separafion is not large compared to the sphere size. With
increasing sphere size, the approximate theory results are more accurate
and so a better agreement with experiments will be obtained.

Fig. 2.8 shows the backscattered section for spheres in the endfire
position having a ka of 7.41, Here again the above remarks about the
accuracy apply. Fig. 2.9 is a plot for the backscattered cross-—section
when two identical spheres at a fixed distance apart are rotated. 1In
this figure © = 0 corresponds to the broadside position of the spheres
and .Q = 90° to the endfire position. No comparison with experiment is

possible here due to lack of such data.
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CHAPTER III

EXTENSION TO THE IMPERFECTLY CONDUCTING SPHERE

3.1 Introduction

Chapter II has dealt with the ray optical scattering of plane
waves by imperfectly conducting spheres. However, in practice the
sphere usually has finite conductivity, surface.roughness or may be
coated with a layér of another material. Such a scatterer is of practi-
cal importance in various applications as described in Chabter V.

To consider the effect of finite conductivity, surface roughness,
or coating on the scattering properties, these must be incorporated
either directly or indirectly into the formulation of the problem. This
is achieved most conveniently by the application of the Leontovich
impedancé boundary condition, which accounts for these imperfections in
the form of an effective surface impedance as shown in this chapter.

Impedance boundary conditions have been exﬁensively used in
-scattering and diffraction problems to consider the material composition
and surface characteristics of the body. Various fundamental scatterers
have-been considered, with particular emphasis on the finitely conducting
plane, cylinder and sphere which have exact solutions. However, dispite
considerable effort, the scattering behaviour of spheres with an impedance
boundary is not fully understood and various related questions remain
unanswered. Thus the exact series solution given in Appendix A converges
very slowly when the electrical radius of the sphere ka is large com-
pared to unity, requiring lengthy computations even with present day

computers. Furthermore, the series solution does not provide a physical

37
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insight into the scattering behaviour and an alternative solution in a
simple analytical form is hence desirable.

An asymptotic solution of the problem for large ka, using the
method of Fock [88], together with creeping wave concepts in conjunction
with the geometrical theory of diffraction, presents a possibility for
overcoming both drawbacks of the exact solution. The procedure was used
effectively in the previous chapter for the scattering by a perfectly
conducting sphere.and essentially the same method is used here to derive
asymptotic expressions for the geometrical optics and creeping wave
terms for both polarizations for the monostatic and forward scattered

fields, as well as the bistatic field.

3.2 Formulation of the Problem

Consider a plane electromagnetic wave incident along the negative
z direction on a sphere of radius a as shown in Fig. 2.1. If the

electric field is parallel to the x axis, we have

Ei -2 E ejkr cosB

x © (3.1)
i _ A Eo jkr cosb
H =§y-—e

y o

where k = 27/, Ny, = 1201 and the e_Jwt time dependence has been
suppressed. The exact modal series expressions for the non-vanishing
components of the scattered electric field from Appendix A are given as

R eJkr
0

=3 —g  cosé p(©) (3.2a)

D W

and

B eJkr
s o

Ed) = -3 —‘1—{—1:"‘— sind q(0) (3.2b)
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where
1
o P (cosb)~
= ._(;Z_r.l_j___ll _3___ 1 n
p(0) = nzl n(n + 1) [Fn L) Pn(cose) + Cn sinb (3.3a)
1
o P (cosB) 1
| _ (2n + 1) n 9 .1
a(8) = nzl n(n + 1) [Bn sin8 + Cn a6 Pn(cose)‘ . (3.3b)
. j;(ka) + jnjn(ka) _ _ 3,309
n %él)'(ka) + jﬁ%él)(ka)
e + g8 o 5.30)
o %él)'(ka) + jé%él)(ka) :

.and

(3.3e)

==

Z Y
n:——’(S:-——-z
nO YO

where the prime notation denotes differentiation with respect to the
argument. N and 6 are the normalized values of the surface impedance
Z and the admittance Y with respect to the corresponding free space
values N and YO, respectively. The directions 6 = 0 and 0 = m.
correspond to the forward and backscattering directions and Pi(cose)

are the Legendre functions defined before and

<

gn(X) = X 3, () ' (3.4a)

'%él)(x) - x hél)(x) : (3.4b)

where jn(x) and hél)(x) are spherical Bessel and Hankel functions defined in the

previous chapter. In arriving at (3.2), the Leontovich impedance boundary

condition [1]

E- (E: n)n=2( x H) ‘ , (3.5)
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has been applied as in the same manner for various scattering and
propagation problems involving impedance boundaries.
To consider various surface conditions, the normalized impedance

n 1is expressed in the form

Ined® (3.6)

n

where & = - m/2 for a purely capacitive surface, m/2 for an inductive
surface, m/4 for a homogeneous conductor and generally assumes different
values for lossy or corrugated surfaces.

The normalized bistatic scattering cross sections in the E and

H planes are the main parameters of interest and are given by

O .

- @) (3.7a)
Ta (ka) '

0 .

cho_ 4 : lq©®)]?. (3.7b)
Ta (ka)

respectively. 1In particular Ob, Ocs Ty will be used to denote the
normalized back, forward and bistatic cross sections respectively.

.TQ put equation (3.3) in a form suitable for the application of
the Watson's transformation, we use the relationship

1

m Pi(cose) : (3.8)

P;l(cose) = -

therein and obtain for p(0) and q(6) the following expressions

0 P—l(cose)

p(8) =~ ) (2n + 1) B %e— P;l(cose) +C ~—Im (3.9a)
n=1
00 P;l(cose) 5 _1

q(®) = - ) (2n + 1) B ———— Cn 35 P~ (cos8) (3.9b)

n=1
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Note that it is adequate to work with one polarization, since the results
for the other polarization may be obtained directly from these. Choosing,
without loss of generality, the E plane expression, the series for

p(B) on transformation into a contour integral gives

~1
P (cosb)
3 -1 V-1 2vdv
8) = - B o 8) + C r ;
p(8) V-1 ae %(COS ) V-1 sinf 1+ ezj\)1T
c . ' ' (3.10)

where C 1is a path enclosing, in a clockwise sense, the zeros of

23vm

(1 + e ) for Vv > 0.5 as shown in Fig. 3.1.

Writing the Bessel functions in B, and C_, in terms of
V=23 V-3
Hankel functions of the first and second kind and evaluating (3.10) by
the theory of residues, we obtain two new integrals, the first of which

reduces to zero since

Zl(n + %)P;l(cose) - —-% COtC%) (3.11)

and p(B) is hence given by

otie 1
P 1(cose)l
V-2

L @__ vdv
P(e) = D 1/2 36 I/Z(COSS) + G 1/2 sind J 1+ e2j\)'n'
co-jE (3.12a)
where
~ 1 A
h(23 (ka) + jnh(23(ka)
V75 V=25

D, = 2 (3.12b)

V- %éf%'(ka) + jnﬁé}%(ka)
A(Z)'

B2 (ea) + 360 %) (ka)
G = < (3.12¢)

—ls
V- %(13 (ka) + j5h<13<ka)
V-5 v

and € -is a small positive number which is eliminated when the &
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runs just above the real axis.

A similar procedure for q(6) leads to the form

otje -1
. P (cosH)
V-4 ©9 vdv
8) = - D ———— G - s8) f ————
qa(6) V-5 sinf -1 36 ° %(CO ) 1+ o23vm
mJE (3.124)

and it remains to separate (3.12a) and (3.12d) into geometric optics
and creeping wave terms.

This is dome in the bistatic range of angles
‘ 1
b<B<m-y , ¥=06G) (3.13)
a
where the forward and backscatter directions are excluded, since they

correspond to caustics in the field.

It is convenient to express the Legendre functions in terms of the

(1) ) (6

functions introduced by Logan [89], i.e.
(-1)"2" (cos 0) = £V (v,0) + E<2)(v 8) (3.14)

where the

OHCTIR

functions are defined explicitly by

i [ )
o ’ T(v + 1) stine €

+30

1l 1. Je =~
x pF GG m, 5 -m, v+ 1, o) (3.15)

and are convergent in the range m/6 < 6 < 57/6. These functions possess
asymptotic values for large V and €1 <@ <76 or 5m/6<6<T-~ €1s
where €. > 0 and has a modulus of 2m. The asymptotic relation is

1

given by Macdonald's formula, i.e.

W,@ 1 [eo gD, (2)
E * 5 [sime B (vo) (3.16)
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where Hél)’(z)(ve) denote the Hankel functions of order m. Expressing

1
e

-1
(sinb) as ]sinel * for 0 <6 <7, and utilizing the fact that the (3.15)

hypergeometric functions are periodic in 6 with period T, we have for

integer £

S 0y = 5P v,0m + 6) (3.172)

and

D 0y < JEFATRD) (g _ o (3.17b)

Substituting (3.14) into (3.12a) and (3.12d) and splitting each

resulting integrand into two parts, we obtain

p(6) sg<e> + s§<e> (3.18a)

O, c
q(6) sq(e) + sq(e) (3.18b)

where the superscripts "o" and '"c¢" denote the geometric optics and

creeping wave terms, respectively, and

e (2)
s%@) = & b, & 5@yt B0 (3.19)
) T2 v=} 306 1 ? V=15 sinb ‘
—ootie
wfie
Cony _ L 3 (1) 1 3 _(2) 1
5,8 =3 Dv—%[ée BT 0,9) L. 23 8 1 ©,8) i e—2jvﬂ]
—otje
Do P00 ]
+ v-%| sinb 2jvr sind —ZjVﬂJ vdv
2 1+ e 1+ e
(3.20)

while SZ(@) and S:(G) are obtained from (3.19) and (3.20) by inter-

changing Dv ;, and GV p in the integrands. Note that the creeping wave
=y -

%
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terms decay exponentially as Im Vv = o,

. 9 1 .
Since the operators "G and Tiog Im (3.19) and (3.20) do not

essentially affect the behaviour of P;ll(cose) as a function of Vv
)
for !VI > 1, Im v > 0, we see from (3.16) that the asymptotic value

of Eél),(Z)(v,e) decays exponentially in Vv as er(e—ﬂ/2)6

Closing
‘the contours in the upper half plane, the contribution from the semi-
circular path vanishes and the integrals can then be evaluated by the
o REON ~ (1)
method of residues from the zeros (vn,vm) of hv 5 (ka) + Jnh (ka)
~ @) A (1) | ’
and hv L (ka) + jéhv L (ka) if the remainder of the integrands remain
-3 -3

bounded. This is possible in this case since a path between two zeros

can always be found where this condition holds. Hence we obtain

3 (l) 1
(v,0) ———
v=v [36 1 1+ eZJvﬂ

[

sS) = jm Y u_,
P & vy

9 (2)
26 l

1
v,8) 1+ e—ZjVﬂ]
Eil) v,0)

+ T )V, - i
n V3 vey_ sinf 1+ eZJvﬂ

E](.z) (v,8) 1 :I
- - ; . (3.21)
sinf 1+ e—ZJVW

where

"(2)"

v['h (ka) + JT]h< >(ka)J

vk 3 [h(l) (ka) + Jnh(l)(ka)]

\)[h\()zl) (ka) + jdﬁ(z)(ka)]

v rh(l) (ka) + Jah(l)(ka)]
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. o c .o
Hence it remains to evaluate Sp(@) and SP(G) specifically for the
monostatic, bistatic and forward scattering directions, using the above

expressions.

3.3 The Monostatic Field

The monostatic or backscattered field will be considered first
due to its importance and may be evaluated by introducing the
transforma£ion

o=m-6 ' (3.22)

and the relation

E](—l) ,(2) v,8) = “J\)W[_*_ JP (COSCX) + 'f']_' Q (COSCL)] (3.23)

V-
where Q;ll(cose) are the Legendre functions of the second kind.
=3

Substituting (3.22) and (3.23) into (3.21) leads to

c, 9 -1

S () =-m Z U, Sec v.T = P_. 7 , (coso)

P o V=15 V=Vn n Ja vn L
P (cosa.)
: 1

+ 7 Z V., Sec v T ——ELQQ—————~ (3.24)
o V7 oy m sino,
m

which is finite for o = 0. The expression for S:(G) may be obtained
in a similar manner.

Substituting (3.23) into (3.19) we obtain
cotHie

o _ 1 . 0 -1 20
Sp(a) =-3 DV_%[J 5 v (cosa) + v Qv 1(cosa5}

~cotkiE

-1 -1
P (cosa) Q (cosa) .
_ . vk 2 vk -jvm

Gv-%[J sino + T  sino } € vdv (3.25)
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and using the relations

-1 -1 :
_V_/(x) = P\)—I/Z(X) (3.26)
-1 -1 . -1
Q7 . .(x) =0Q ,&x)+mtan(vm)P_", (x) (3.27)
—v-5 V-3 vk
we see that (3.25) reduces to the form
-1
. Q (cosa) .
o _ 1 9 -1 _ V-1 =jvm
Sp(a) =- = D\)_I/2 o Qv_%(cosa) G\)_l/2 oo e <7 vdv
D
T
(cosa) )
- _1 -
+ ID\)_I/Z -g—— 11/2((20806) - G - ”Ls‘i?@—“ tan(vm)e J\m\)d\)
o-je ! (3.28)

where the contour D is similar to C but intersecting the real Vv
axis between -% and +% as shown in Fig. 3.2. Evaluating the first
integral on the right hand side of (3.28) in terms of the residues of

...l .
Q\)J/z(cosu) , we obtain

0
o,y _ 1. 2 . -2jka,l - n, _ 3 -1
Sp(a) = 5 Sec (0 e (l m n) D\)__l/2 g Pv_%(cosu)
oo—jg
P;}L(cosa) -
- G, ——Z————F tan(vr)e " vdv (3.29)
V-1 sino.

Hence for the backscattering direction (o = 0) we obtain

o __1 j _ 1 _ -jvm
Sp('lT) - T 0Fm © > [D\)—I/z G\)_l/z]tan(\)ﬂ)e vdv

oo..jg
(3.30)

and
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Sec v T -~ T Vv
n 2

Sec v (3.31)
v=y

V-1

s¢amy =2V u
P 2 -

g8 o~

v=-%
2lv=v
n m

. e . s c c
while the corresponding expre351ons.for Sq(@)!lQ:TT and Sq(8)|e=TT
are identical to (3.30) and (3.31), respectively, since p(m) = q(m).
Using the Debye asymptotic formula [90] for the Hankel functions

and evaluating the integrals in (3.30) directly, we obtain

o ~ _ : ka -2jka,l - 3
Sp(ﬂ) =-j5 e ij:fﬁ){l s+ ...} (3.32)

which rgduces to the corresponding expression for the perfectly conducting
sphere when n = 0.

In order to evaluate the expression for the creeping wave term,
it is convenient to resort to an Airy function series representation of
the Hankel functions. Retaining the pfincipal terms of the series for

large values of the order and argument of the Hankel function, we obtain

R 1/6
hé}%(ka) = - 36 W (0 (3.33)
N s 1/6
b ke = 56D WD) (3.34)

where Wl(t) is the complex Airy function

W () = /1 [Bi(e) + j Ai(t)] | (3.35a)

while t 1is related to Vv by

X 1/3 '
V=ka+ Tt , T = 659) : (3.35b)

Hence
2
oo V Sec v © nv Sec v
n n m m

sC(m) = - jm Y -
> =l (B + T 617 mel (2P + o nd) W, (@)1

(3.36)
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where am and Bm are the zeros of

0 (3.37a)

[] 2
Wy ) jntwy (%)
and

Wi(x) - jGTWl(x)

1l
o

(3.37b)

respectively. Using the method of Streifer [49,91], the expressions
for vn and vm are related to the zeros of Ai'(-x) and Ai(-x),

denoted by Y, and Qm’ respectively, by the equations

. jm/3
_ i m/3 e 3 1 6 .3, 63
v = ka + e Y, 60Ty (Yn 9) + ————“5*3'(Yn 7Yn + Z )
n 14001 Y,
T3n j n 1 int - int 3
+23 (T"2T3>'J1—o(1+_3)+ 3 /3 T [ o2mi/3 2 (1'23
Yn Yn Yn Yn Yn
1 1 ' 3 .2
+ 21rr')/3 3 G- 332 - S - an )
e3Py 2v° 161
n n
2.2 '
R e e JURMEELRSEE R
4ed Y 2y 161
n n
__§n (41Yn+ 1 _ 3 ,,_ (31 _3n_ 2.2
20T2e2'n3/3 126 5Yn lOYn el Tr/3Yn 16T4 4t
11 -5
. (_1'6 - __7__5 - 29+ 0(rT) (3.38)
2y 15y
and
2 23m/3 3
- . e Q- - 10 .
V=ka+QeJﬂ/3+m60T + R 3 —%+ %3(1-.1.:2_)
n n 14007 48°T §
j /3 .2 2m3/3
- -Ql L Qme + Jﬂme §E._ 12.(i§3 -8) - (l.+ 3
) 2 2 3.4 72 ~ 18 “, 3 S 3
§ 3178 587T 41 41
+ 0(t™) (3.39)
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where 1 = O[(ka)_z/

3], § = 0(1) while Y, and Qm have been tabulated
by Logan [89] and others.
To obtain a physical interpretation of (3.36), we use the

expansion

Sec v = ) (_1)2 ej (28+1) v,

=0

(3.40)

where the successive terms decrease exponentially and correspond to
‘creeping wave terms decaying in amplitude due to radiation as they circle
around the sphere. Because of this exponential decay, it is sufficient
for large values of ka to retain the £ = 0 term corresponding to
creeping waves travelling half the circumference only. It may be shown
that the first sum in (3.36) dominates and corresponds to E waves,

while the second sum corresponds to H waves since their magnetic vectors

are normal to the surface of the sphere.

3.4 The Bistatic Field

In order to evaluate the bistatic field in the range of the
bistatic angle Y < 8 <7 - ¢ where Y = 0(1l/ka), we use equations (3.19) "
and (3.21). A preliminary simplification can be made for Iv sinel > 1
(2)

where El

(v,0) becomes predominantly exponential in nature and may be
evaluated by the saddle point method. The saddle point in this case is at

v = ka cos(6/2) and hence

s 3jcot
(2) _ 2 -3(v8-3m/4), ) 6 -3
By T v8) = s © cosecd (L - ——= + 00V
(3.41)

9 (2) _ 2 -3 (vo-1/4 7jcothd 1
36 B1 08 = om e L -5 * 18

- (49 - 57cosec’) + O(v"3)] (3.42)
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Using (3.41) and (3.42) together with the approximate expressions
for D\)__l/2 and G\)__l/2 given in Appendix B, we proceed to evaluate (3.19)
by the saddle point method for large. |v| and |V sin6| > 1. For this
we extend the path of integration from 0.5(m + 06) - jo to =-0.5(TW - 0) + joo

and we evaluate the integrand at the saddle point Vv = ka cos(0/2). This

leads to a first approximation

s°@) = - j_ki(l - ﬂ) e—2jka sin 6/2 1- 3
P 2 L+nm 2ka sin3 6/2

2
Loos E07 ...] (3.43)
4ka"sin” 6/2
and similarly
S0(0) = - 3 52 (D) 72Hka sin e/z[i p—teost ...}
q N 2ka sin~ 6/2
(3.44)

where (3.43) and (3.44) reduce to the backscattered geometric optics
field (3.32) for 6 = .
A somewhat different procedure is used to derive the creeping

wave expression in the bistatic range of 6. For this we use the

relations
Eil)(v,e) = j ejVﬂﬁiz)(v,a) , (3.45)
B8 (v,0) = - 3 VD (1,0 (3.46)

and the desired expression hence reduces to

sS(a) = - om ) U
p n

(3.47)
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which in the limit o = 0 reduces to the backscattered creeping wave
field (3.31). Furthermore, for |v| >> 1 and a < T, the Legendre
functions can be replaced by cylindrical Bessel functions using

Macdonald's asymptotic formula
L

&y 3, (Vo) (3.48)

sino

-1 L1
Pv_%(cosa) 5

where Jl(x) represents the cylindrical Bessel function. Hence

| o_T L
c _ e L N

5,(8) = 2m g Do) L T 4 o23vaT Ging ) I m - 0]
: m

ey L 3 [v (1 - 8)]

e T - 8 1" m
- on z vv—b 23V, 'sinb ) V sinb (3.49)
m 2 v=u_ 1+ e“¥m m

Following the Airy function representation of the Hankel function as
used to derive (3.36), we reduce (3.49) to the form

v

L v J'v (1 - 8)]e
5,(0) = - jurt <21;ee>2 ] 5 3 ETOR™
P n ("t + B )W (B )17 + &™M0T)
jvmﬂv

3,Iv_(r - 8)In%e
- 5 5 5 CETOR (3.50)
m (T + 7 am)[wl(am)] sinf (L + e”3'm )

which is valid for all © < m 1like the corresponding expression derived
by Senior and Goodrich [71] for the perfectly conducting sphere.

Similarly for the H polarization

jVnW
1 -

‘n’_
(sine ) 2

c
S°(0) = - jamt -
q o (nZT AR

+ Bn)[wl(Bn)]zsinG(l + e )

5 Jv.T
VIV (- 0)Ine ™
_ ml m
21 2 2 2, 23V (3.51)
m=l (Tt + n'um)[wl(am)] (I +e )
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The first and second sums in both (3.50) and (3.51) again represent
contributions from E and H waves respectively. However, in s;(e),
the contributions of thé E waves are dominant since the rate of
attenuation of the H waves is larger and the contribution of the H
waves is normally negligible. A similar situation exists in S:(@)
except for very large values of ka when the contribution of the E
waves becomes dominant due to the behaviour of the roots vm. As ©
tends to 0 or ﬁ, the amplitudes of the E and H waves become
comparable due to the negative powers of éin@ in (3.50) and (3.51)

in the vicinity of these directions.

3.5 The Forward Scattered Field

The forward scattering direction (8 = 0) dis a true caustic of
the diffracted rays which emerge from the shadow boundary (6 = 7/2) and
travel parallel to each other to form a geometric optics wave in the far
field. In addition, there is a contribution due to the creeping waves
travelling in the E and H planes. In the vicinity of the caustic
(6 = 0), the amplitudes of the E and H type éreeping waves become
comparable unlike the monostatic and bistatic fields where the E type
waves are dominant.

Since the functions E£l>’(2)(v,6) become singular at 6 = 0,
we use the original expression for p(8) and q(8) in (3.9) and (3.10)

to obtain

p(0) = [Bv_l/z +C (3.52)
(o4

and
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q(0) = - p(0) (3.53)

Considering the residue at VvV =% we have

vdv

1
— - = (3.54)
1+ eZJVN 2

p(0) = [B\)_l/2 + Cv_%J
Dy

where D1 passes through the origin in the Vv plane as shown in Fig. 3.4.

Reflection of the lower part of path D at the origin results

1

in a new expression for p(0) whose terms can be identified as geometric

optics and creeping wave terms of the form

ka 0 cotje
-2jvm 2jvm
o 1 e e
S7(0) = | vdv - = + ————— — vdv
P 2 1+ e 2jvm 1+ eZJvﬂ
o—jg 0 (3.55)
and
ot+je
23w
c 1 e
SP(O) =-3 [D\)_l/2 + Gv—%J T, o3 vdv
~cotie
ka ©
1
+ 3 [D\)_l/2 + Gv—%J vdv + [Fv_% + Cv—%J vdv (3.56)
-0 ka

Expanding the integrands of the last two integrais in (3.55) as binomial

series and retaining the leading terms we obtain after integration

: s;<0) = %[(ka)z - %] : (3.57)

where (3.55) and (3.57) are identical with the corresponding expressions
for a perfectly conducting sphere. Furthermore, since the geometric optics

term outweighs the creeping wave contribution, the forward scattered field
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is almost independent of the surface impedance of the sphere.
The integrals in (3.56) may be evaluated by the method of Senior
and Goodrich [71] where the Bessel and Hankel functions and their

derivatives are replaced by Airy functions. The final result is given

by
sS(0) = 6141—3)14[.082972 + 3+ 144019 + L (.385229 - j - 667169)
P 1+n T2
069342 -6 Y
- SR 4 0 )} + 21t 4 ) ) 5 o
T n=1 (N"t7 + B )W, (B 11 + e no)
o 2
) u! . (3.58)

n=1 (12 + amnz)[wl(am)]z(l + o 23VnTy

where the terms in the square bracket may be interpreted as due to those
creeping waves that have not progressed any appreciable distance around

the sphere and are excited at the shadow boundary.

3.6 Numerical Results

In order to verify the accuracy of our approximate expressions,

computations were performed using (3.52) and (3.36) for O (3.43) and

b,

(3.50) for Oe, (3.57) and (3.58) for o, and the results compared with

f
those based on the exact solution. The results for o, are shown in
Fig. 3.4 to Fig. 3.7 for various values of ka and normalized impedance
corresponding to resistive, inductive and capacitive coatings as well as
for a homogeneous conductor, while the H plane results are shown in

Fig. 3.8 to Fig. 3.11. The curves indicate good agreement except near

the forward scattering direction where (3.43) is not valid since the

condition ka sin3(6/2) >> 1 is not satisfied. Outside this region, it
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is evident that our ray solution is sufficiently accurate and requires
minimum computation time compared to the exact solution which requires
lengthy numerical computations of series of Bessel and Hankel functions.
Furthermore, the ray solution shows clearly the dependence of Ob and
0. on ka which for n# 1 tend to 1 and (ka)2 as ka > o,
respectively, and oscillate for smaller values of ka due to the
creeping wave contribution.

Fig. 3.12 éhows a plot of Oy vs. T for ka = 10 based on
(3.32) and (3.36) as well as the exact solution. Here we observe that
oy decreases from its value for the perfectly conducting case (0.9292)
to almost zero when n =1 and increases beyond this point to its
initial value. This is in contrast to the forward scattering case where

O, is maximum at n = 1. Beyond this, 0. drops off for any increase

£ f

or decrease in N until the limiting cases of a perfect scatterer or a
perfect absorber (N = ®) are reached where its value is 106.3.
However, in general, no such statements can be‘made with respect to Oe
since it is a function of 6 and éolarization.

Examination of the analytical results indicates that the ray
optical method gives a physical insight into the scattering mechanisms
by an imperfectly conducting sphere. Thus Fig. 3.12 indicates that for
n=0 (i.e. a perfectly conducting sphere) the dominant contribution to
c is due to the E waves. However, as 1 increases, the E waves become

b

less dominant until 1n = 1 when the creeping wave contributions due to

the E and H waves are of the same magnitude, but opposite in phase thus

cancelling each other. Since the geometric optics terms for n =1 is

also zero from (3.32), the net result for Gb is zero. This is in
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agreement with a theorem proposed by Weston t91] for plane wave scattering
by a general absorbing body which is invariant under a 90° rotation about
any axis.

Analysis of the numerical data for Oe indicates that it is
independent of polarization for mn = 1. Furthermore, for E plane
scattering, the values of Oe in the range 0 < n < 1 correspond to
‘the H plane values in the range 1 < n < «, This shows that we have two
ranges of n of interest and they are bounded by n =0, n=1 and
N = © yhich correspand to a perfect conductor, matched scatterer and
perfect absorber, respectively. Hence, it is only necessary to derive
the E or H plane solution for each range to obtain the complete data in
botH planes for all n.

A similar result holds for reactive coatings in the bistatic case.
Thus for an'inductiQe surface, the E plane scattering cross section Oe
in the range 0 < lnl < 1 is identical to Oh in the H plane for a
capacitive coating with lnl given by the reciprocal value and hence
lying in the range 1 < !n| < o, Therefore, it is'sufficient to evaluate
O and SN in both ranges for either an inductive or a capacitive
surface to obtain results for a purely reactive coating. These results
suggest the possibility of extending Babinet's pfinciple to three
dimensions in the electromagnetic sense whereby a perfectly cdnducting
sphere is complementary to a perfectly absorbing sphere. This result
has also been Verified for the two dimensional case of an imperfectly
conducting cylinder although the numerical results have been omitted.

It should be noted, however, that a perfect absorber is not truly a

non-scatterer. This is because the total field at any point is the sum
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of the incident and scattered field and this universally accepted
definition of the scattered field entails the paradoxical consequence
that a perfect absorber must reradiate as shown by Midgley [92]. Here
reradiation provides for destructive interference with the incident field
without which absorption is not possiblé.

A study of the scattering pattern for the bistatic cross section
shows that the lobe structure is not significantly different from the
perfectly conducting case except that the maxima and minima are altered
- with variations in n, while new lobes may appear mainly in the E plane.
However, a method for controlling the lobe structure could be realized
by choosing the appropriate impedaﬁce coating which may have to be a
function of © and ¢.

Finally, it is interesting to note that the ‘average value of the
scattering cross sections in any direction or polarization for two isolated
spheres of the same ka and coated with an impedance 1N and its complex
conjugate n*, respectively, is numerically equal to that of a sphere of

the same ka and coated with a resistive impedance equal to the real

part of 1.



CHAPTER IV

NUMERICAL METHODS FOR IMPERFECTLY CONDUCTING BODIES

4.1 Introduction

The preceeding two chapters have considered the ray optical
scattering by single and multiple, perfectly and imperfectly conducting
. spheres. The approach has been based on representing the scattered
fields in terms af geometric optics and creeping wave terms through the
application of Watson's transform to the exact boundary value series
solution. The conventional ray procedure proposed by Levy and Keller

[62] is to formulate the diffracted fields using mode decay and
diffraction coefficients which are evaluated by comparison with the
asymptotic solution of the exaat solution. One inherent difficulty with
this approach is that the mode diffraction coefficient is obtained by
comparing two asymptotic representations of the same field, thus leading
to breakdown along ahadow regions. Another difficulty is due to the
postulate that a creeping wave excites an infinite nuﬁber of modes thus
introducing an extra summation and requiring the appropriate decay and
diffraction aoefficients for each mode. Needless to say, the asymptotic
expansion of the exact solution, if available, is fairly tedious and
requires Watson's transformation for large characteristic dimension and
is totally inadequate for smaller dimensions.

With the advent of fast digital computers, exact numerical
solutions can be obtained for most bodies, particularly two dimensional,
thus avoiding the need for exact analytical solutions and their asymptotic

series representation. The basic advantage of numerical methods over

70
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exact modal series solutions lies in the computational time required
particularly when the characteristic dimension of the body is large.
Thus the dependence of ray theory on mode theory would be no longer
essential, particularly for bodies of complicated geometries. Further-—
more, the computational difficulties introduced by the summation over
excited modes may be overcome by the ray—n;merical method proposed in
-this chapter. The method is established for the two dimensional case

of perfectly conducting cylinders. 1In addition, other numerical methods

are utilized to investigate the scattering by more complex structures as

polygonal and dielectric coated cylinders and cavities with lossy walls.

4.2 The Ray-Numerical Technique

As the name implies, the method employs rays which depend on
numerical solutions. In principle, the method postulates that a ray
incident on a smooth curved surface suffers initial diffraction leading
to one or several surface rays, which are trénsmission line type rays
with a single propagation coefficient for each, before finally suffering
a second diffraction at the point of emergence on finite bodies. The
ray diffraction and propagation coefficients are independent of the
conventional mode diffraction and decay coefficients. It is evident
that the ray propagation coefficient is independent of the angle of
incidence and observation.

In implementing this technique, the conventional ray formulation
is maintained and the ray diffraction and propagation coefficients are
introduced, instead of mode diffraction and decay coefficients, and are

evaluated by comparison with exact numerical data based on a numerical
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technique most appropriate for the body under consideration as illustrated

in the next section.

4.2.1 Application to the Perfectly Conducting Cylinder

Consider a circular cylinder of radius a and a line source
located at Q(p,0) and parallel to the =z axis, as shown in Fig. 4.1,
The diffracted field at an observation point P(r,$p) is due to creeping
rays emerging tangentially from the cylinder to pass through p, and is

given by [62]

2 2.-%

. pr 2 25 2 2%
Ud(p,r,¢) = (Sﬂk)—/z(‘r - a ) 2 - az')-é»{ Jk[(p a ) +(r a ) ] J 'IT/ZI-}

(p

{(-jka-at )¢} {(-jka-a& ) (2m-0)}
z D2 e m + e o
m {—2W(—jka+a£m)}
l1-e

m

{—(—jka+a£m)(cos—l(a/r)+cos—l(a/p))}
. e (4.1)

which is a rapidly convergent series since the creeping rays decay in
amplitude as they progressively encircle the cylinder. 1In this expression
Em represents the decay coefficient and Dm the diffraction coefficient,
of the mth mode excited by the incident ray. Comparing (4.1) with

the asymptotic expansion of the exact solution for large ka vyields

Dm and Em [62], i.e.

g, = -dk+jTal 4.2)
Q hiz)(ka) 2
- s 1

(2)
5;-9 hT (ka)
m

where T and ) are given in [93].
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Eliminating the mode diffraction and decay coefficients and introducing
ray diffraction and propagation coefficients, D and <, instead, the
form of (4.1) suggests that the diffracted field can be written in tHe
form

2 2k
U (p,r¢) = (=20

1
-

L L
@2 - 25 e{—jk[(pz—a2>2+(r2—a2)2]~j m/ 4}

(- (katy)o} | o1 (Fkaty) (2m-9) }
e{—ZW(jka+Y)}

- D
. 1 -

. é{(jka+y)[cos-l(a/r)+cos_l(a/p]} .4
To obtain the coefficients D and Y, a numerical procedure is followed.
The diffracted field is evaluated in the shadow region, where the
scattered field consists of only the diffracted field, using the exact
solution [ 94]1. If Ul and U2 represent Fhe fields at a pair of
shadow region points (r,¢l) and (r,¢2); respectively, the ratio of
the fields at these points is given by

Ul(p’r’q)l) i e{—(jka+Y)¢l} N e{_(jka+Y) (2ﬂ—¢l)}
Uy (p5750,) {—(jka+Y)¢2} {—(jka+Y)(2ﬂ—¢27T
e + e

(4.5)

Hence, a numerical evaluation of the complex zeros of (4.5) gives the
solution for <Y and substituticn of this into (4.4) results in the
value of D. However, (4.5), being a transcendental equation, has many
roots and for a unique value of vy, equation (4.5) is solved again for
some other combination of aspect angles in the shadow region. The root
common to both cases gives the value of Y. Alternately, the value of

Y may be obtained if the angle of observation is fixed but either p
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or t 1is varied. Hence

{(jka+Y)[cos_l(a/rl)+cos—l(a/p)]}

_e (4.6)
U078 {(sraty) Leos™ (afx))teos ™ (a/p) 1}
e

Ul(pa rl »9)

and by reciprocity

UL (py,7,0) é{ (Gkaty) [cos_l (a/r)+cos—l (a/pl)‘] }’

Uz(pz’r’¢> ) {(jka+y)[cos_l(a/r)+cos_l(a/p2)f} “-1)
e
The method described above was employed to evaluate D and Yy for the
principal polarizations for various values of - ka and the resulting
tables are given in Appendix C. The results show that ‘as the cylinder
size increases, the propagation coefficient Y and the diffraction
coefficient D dincrease and in the limit, as ka - ®, vy is infinite
and the diffrécted field vanishes. The computer program used to obtain
the complex zeros of the transcendental equations (4.5) to (4.7) was
compiled by Oczkowski [95 ] and evaluates the complex zeros and poles
of a function in a given range. The advantages of this subroutine are
that no derivatives are calculated and the order of the poles and zeros
is also found. Finally, Fig. 4.2 compares the diffracted fields
calculated by using (4.4), for both polarizations in illuminated and
shadow region, and good correspondence is obtained with that computed

using the formulation of Levy and Keller [62 ], which adequately

establishes the principle of the ray-numerical formulation.

4.3 The Transformation Matrix Approach

In the previous section, the ray-numerical technique was established
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for the perfectly conducting circular cylinder. To extend the procedure
to the imperfectly conducting circular cylinder the equations derived
above still apply. However, exact numerical results are difficult to
obtain for large ka from the exact solution and hence fast numerical
techniques are required to deal with this and other geometries, particu-
larly where exact solutions are not available.

The transformation matrix method [96-98] sis-based .on a:scattéring
métrix, analogoué to that used in transmission line theory, and is used
to formulate the problem of scattering by a cylinder of polygonal cross
section and arbitrary surface impedance, in Appendix D. Expressing
Maxwell's equations in the t{ansform space, first order coupled
differential equations satisfied by the field components are obtained
and are used to evaluate the elements of a scatfering matrix, which
relate the far field to that on the surface of the scatterer. As a
resuit, matrix equations which satisfy the Leontovich impedance boundary
condiéions in the transform space are obtained for the scattered field.

For the case of the circular cylinder of radius a, normalized
surface impedance n andlilluminated by an incident plane wave, the
metric coefficients h in Appendix D are unity. ©Neglecting terms of
the order of 1/p and l/pzd in the differential equations for Iz

and O:, obtained from (D.1) and (D.4), we have

LR
+ ik
35 - jkIz or I: =c &°P (4.8)
207
kS . n -jkp -
35 = Jkoz or Oi =ce Jxp 4.9)
where ¢ 1is a constant. Letting v = IE + 02 and U" = IE - 03, we
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obtain from (D.6)

v = clH§1)<kp> + CZH§2><kp> (4.10)
n
ﬁ=c%i%} | (4.11)

From these equations, the matrices S(p,po) and P(p,po) of (D.6) can
be obtained and the scattered field evaluated to obtain the resulting
normalized scattering widths for the E and H polarizations. These

are given by

2
o} 0 J (ka) + jn J'(ka)
e 4 n n
- - cos(nd) (4.12)
2
o o J'(ka) - in J_(ka)
h 4 n n
R Z € . cos(nd) (4.13)
T mka l,Zo @ Hff) (ka) - in Hr(lz)(ka>

as shown in Appendix E.

In the case of a regular polygon of N sides, each of length 2a,
the transformation from the =2z'(x + jy) plane to the transform ¢t(8 + jB)
plane is given by

dz' _ t
Fraie M[cos (N 2)]

2/N (4.14)

where M depends on the size of the polygon and its orientation in the

1

z' plane. For a squaren M = j a/2L, L = 0.423607, as shown by Bickley

[99]. Solving for the metric coefficients, two coupled differential

+

. . n n
equations are obtained for I, and 0., i.e.
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dIz_l _j___ 2 n2 n

+ [kp keg(s) ] [ﬁ s 2+L]L=+N + .. (4.15)

dog i .2 . 2 .

T % [kp + -3 - kpf(s)]li. + l:— ko + 3=+ 3 - kpf(s>]0;
kpg(s) n+L n+L

- [ 3 ] [E I+ + O-T- 1L=iN + ... (4.16)

as shown in Appendix F. These equations are nonlinear, but may be solved
numerically to obtain the transformation matrix and the scattered fields
evaluated by the application of the boundary conditions.
Using (4.12) and (4.13) computations were performed to study the

scattering behaviour of imperfectly conducting circular cylinders.

Fig. 4.3 and Fig. 4.4 show the scattering width vs. ¢ for ka = 5 and
E and H polarizations. The curves correspond to a normalized surface
impedance of n = 0, corresponding to the perfectly conducting case, and

n=0.1,0.1e3 ™2 .1¢73 /2 4,103 T/4

s corresponding to resistive,

inductive, capacitive and complex impedances, respectively. These
results indicate that the effect of a small real, imaginary or complex
surface impedance is not significant as far as the scattering pattern
is concerned. For the above ka value, and a wide range of n, two
definite ranges of normalized impedance for the forward (¢ = 0) and
back (¢ = m) scattering are identified, where one corresponds to
0<nm < 1 and the other to 1 <n <, as shown in Figs. 4.5 and 4.6.

Examination of these curves shows that for a purely resistive surface,
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the E polarization scattering width in the first range is identical
to the corresponding H polarization results in the second range for
the reciprocal value of 7. For a purely inductive (or capacitive)
surface, the E polarization scattering width in the first range is
identical to the corresponding result for the H polarization and a
purely capacitive (or inductive) surface in the second range. Hence a
complete plot for either an inductive or Fapacitive impedance in both
ranges and polarization gives all the results for both impedance types.
Thus in Figs. 4.5 and 4.6 only plots for either case are shown.
. Further examination of Fig. 4.5 shows that the forward scattering
width is not significantly altered from the perfectly éonducting case,
except when the surface is a reactance and 1n is close to unity. For
a resistive surface, on the other hand, the backscattering width decreases
monotonically with increasing M until n = 1 when it almost vanishes
as may be seen from the term (1 - n)/(L + 1n) in (D.12) and (D.14).
Beyond this value of n, the curve rises in a symmetrical manner and
tends towards the value for a perfectly absorbing cylinder.

The effect of variations in ka on the forward and backscattering
width for both polarizations and ln| = 0.5 1is shown in Figs. 4.7 and 4.8.
Here we observe that although the forward scattering width increases
almost monotonically with increasing ka, the backscattering width has
an oscillatory behaviour unlike the case when the surface is perfectly
conducting.

For the case of a square cylinder of ka = 1.0 and |n| = 0.1,
the E polarization scattering width is compared with that for a

perfectly conducting cylinder in Fig. 4.9. Only the results for
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resistive and capacitive surfaces are shown, since the inductive and
homogeneous conductor cases are almost identical, respectively. Here
again we note that the scattering behaviour is not significantly altered
for inductive and capacitive surfaces as long as |n| is small. Also
the reciprocal behaviour for the two ranges of normalized impedance is
again observed as shown in Figs. 4.10 and 4.11 for ka = 0.5. However,
unlike the case qf the circular cylinder, the forward scattering width

is significantly dependent on the surface impedance. The minimum back-
scattering width for a resistive surface corresponds to n = .66 instead
of n=1.0 which is lafgely due to the phase of the various interference
waves.

In the case of the square cylinder, the ray diagram for grazing
incidence is shown in Fig. 4.12. Employing the principles of Section
4.2.1, and the ray formulation of Morse [100] in terms of unknown
diffraction and propagation coefficients at the edges, equations may be
set up using the numerical results obtained above. However, in this
case, the number of unknown diffraction and propagation coefficients is
large, thus requiring the simultaneous solution of multivariable trans-
cendental equations. Varying the angles of incidence and observation,
these coefficients may be determined and plotted as a function of
aspect angle to obtain a least squares fit and hence a simple functional

representation for the coefficients.

4.4 The Scattering Phase Shift Technique

Though the transformation matrix technique is ideal for bodies

whose cross section is transformable to a circle, it is inadequate to
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treat even the circular cylinder when it is coated with an inhomogeneous
dielectric, due to the excessive computation time required for a
reasonable accuracy. This problem is of interest in the‘scattering from
space vehicles during re-entry and in the design of microwave lenses,
and hence an alternate method of solution is desirable.

The procedure used here is based on the phase-shift method of Brysk and
Buchanan [101] and Shafai [102] and involves the derivation of differential
equations for the radial functions from the wave equation and the vector
potential, as described in Appendix G. Two auxillary functions related
to the phase and amplitude of the radial function are then defined and
lead to two first order differential equations. The phase equation is
independent of the amplitude and its solution is adequate for finding
the [ields ouiside the scatterer, the initial phase values being obtained
from the boundary conditions. Since a first order differential equation
is numerically solvable to any desired degree of accuracy, the method
is highly effective for treating imperfectly conducting cylinders with
radially inhomogeneous dielectric coatings.

Consider a circular cylinder of radius a, surface impedance 0N
and coated‘with a radially inhomogeneous dielectric layer of.pérmittivity
£(p) and outer radius b. To obtain the scattered fields for both
polarizations, it is adequate to solve (G.21) and (G.23) subject to the
initial phase shifts obtained by applying the boundary conditions at the
interface p = a. For a perfectly conducting cylinder, the initial

phase shifts are given by

- tan—l[Jn(ka)/Yn(ka)] for TM modes 4.17)
§ (a) =
n - tan_l[Jg(ka)/Yé(ka)] for TE modes (4.18)
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which are real angles in this case.

For the imperfectly conducting cylinder, the initial phase shifts
may be assﬁmed complex due to the surface losses, unlike the case of
the perfectly conducting cylinder. At this surface, the Leontovich

boundary condition (D.8) must be satisfied and hence we obtain

1[I (ka) + 3n I (k)]

Gn(a) = — tan Yn(ka) T Yg(ka) for T™ modes (4.19)
s [3la) - in g (ka)]

Sn(a) = — tan Yé(ka) — Yn(ka) for TE modes (4.20)

Knowing these values for both polarizations, the phasg functions Gn
are obtained from a numerical integration of equations (G.21) and (G.23)
for any specified dielectric inhomogeniety while the scattered field
is evalﬁated using (G.10).

The differential equations for the phase functions were solved
using the fourth order Runge Kutta method [X03]. Figures 4.13 to 4.15
present results for the imperfectly conducting dielectric coated cylinder
for ka = 2.0, kb = 3.0, n = 0.5 and € varying as (kp)"l, (kp)"2 and
exp(~kp), respectively. The resulfs clearly indicate that the significant
variations in the amplitude of the main scattering lobe as well as the
number and polar positions of the side lobes may be attributed to the
diglectric coating of the imperfectly conducting cylinder. This is in
contrast to the results obtained without a dielectric coating where mno
significant deviations from the perfectly conducting cylinder were
observed.

When the thickness (b - a) of the dielectric is very small,
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the cylinder may be viewed as being imperfectly conducting with an
equivalent value of m. In this case, the ray-numerical procedure of
Section 4.2.1 is easily applied and new diffraction and propagation
coefficients determined. For larger thicknesses, it becomes necessary
to consider various types of rays, e.g. the specular, axial, glory and
stationary or rainbow rays in the dielectric together with reflection
effects at the metal cylinder, thereby making the analysis considerably

involved.

4.5 Methods for Imperfectly Conducting Cavities

Up to now we have treated the exterior travelling wave problem
in presence of imperfectly conducting scatterers. In this section, the
problem of impeffectly conducting cavities is Briefly dealt with, as such
structures are of great practical use in cavities for frequency meters,
test chambers, microwave tubes and beam accelerator designs.

For the analysis of the rectangular cavity where all the walls
are imperfectly conducting, the perturbation approach of Karbowiak [17],
as given in Appendix H, is most practical for values of N near zero.
The method leads to simple expressions for the propagation constant,

Q factor and bandwidth such that conclusions as to the behaviour of
these parameters are easily made without computations.

Appendix I presents the boundary value solution for the eigen-
values of a spherical cavity with an impedance wall. The Q factor
and bandwidth are easily evaluated using the method of Appendix H.
Figures 4.16 and 4.17 show the eigenvalues of a spherical resonator

with imperfectly conducting walls for both TM and TE modes based on
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equations (I.7) and (I.8). The results indicate that the reactive
impedance results in a frequency shift while the bandwidth depends on
the real impedance. An inductive wall is seen to decrease the resonant
frequency while a capacitive wall increases it. These properties are
exhibited by both rectangular and spherical types. For a spherical
cavity with capacitive walls, the TE mode, which is a perturbation of
the zero value of the zero frequency static mode, is seen to be the
dominant méde uniike the perfectly conducting cavity where the TM mode
is dominant.

Though the ray optical method for a spherical cavity is consider-
ably involved, the rectangular cavity can be analyzed‘using the method
of Maurer and Felsen [104]. Simplification of the method may be realized
by using the ray-numerical technique to determine the reflection

coefficients required in this case.



CHAPTER V

SUGGESTED APPLICATIONS OF THE RESULTS

5.1 Introduction

Besides the academic interest in the problem of scattering from
imperfectly conducting targets, such bodies are of importance in a
number of potential applications. Two problems which have been of
constant interest in electromagnetic scattering are the radar cross
section reduction and enhancement, which are important in tracking
aircraft, missiles, etc. in flight. Various methods have been proposed
and impleménted for the control of radar cross sectioﬁ, e.g. target
shaping, addition of reflectors to the body and application of absorbing
materials to the surface as treated in thisvthesis.

While the method of body shaping is theoretically possible, it,
nevertheless, suffers from certain practical difficulties. In the design
of an aircraft or missile, the shape is normally constrained by other
variables and factors, and the problem of radar cross section reduction
or enhangement, becomes of secondary importance. Furthermore, in the
low frequency or Rayleigh region, shaping is ineffective since the cross
section is dependent primarily on body volume rather than shape, and
hence alternative techniques of approach must be applied, e.g. the method
of impedance loading.

The method of impedance loading is based on the principle of
disturbance of the current distribution on the surface of the body using
discrete impedances at various points on the body. The cross section

at a specific aspect angle and frequency can be either increased or
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decreased by this method. However, it has been used primarily in cross
section reduction, while radar reflectors provide a more convenient
method of enhancing the cross section over a wide frequency band and
for a large rénge of aspect angles, since the impedance loading method
is highly sensitive to both frequency and aspect angle.

The results of the previous chapters show that the radar cross
section may be reduced or enhanced by coating the surface with an
absorbent material thicker than the skin depth. The reduction in cross
section in this case is achieved by a combination of absorption and
redirection of the scattered rays while the enhancement is achieved by
constructive interference of the rays. It is not surprising that the
development of these materials has occupied researchers in many
countries over the last few decades. Ideally, the best suited material
would be a paint like substance effective at all polarizations and over
a broad range of frequencies and angles of incidenge. At present, no
such ideal material exists and the practical type of absorber used in
a particular situation is dependent on the frequency, target shape and
dimensions, bandwidth requireﬁents and physical limitations such as
weight, thickness, strength, environment, etc.

Practical absorbers are also in use in the design of ""High
Performance Shielded Antennas" [105], where a high directivty pattern
is achieved through the use of a cylindrical metal shield on the rim of
the parabolic dish to attenuate side and back radiation. The shield is
lined with a long life broadband radio frequency absorbent material
which reduces stray reflection and diffraction at the edges of the shield.

A precision contour and a resonant absorbent strip along critical
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portions of the primary refléctor combine to control the aperture field.
Besides the capability of the control of scattering pattern by
imperfectly conducting spheres as shown in Chapter III, this, in
conjunction with the formulation for the scattering by multiple spheres,
is of interest in a wide variety of problems. The scalar problem is of
interest in acoustics and in the detection of voids by ultrasonic waves.
The vector problem is also of interest in studying propagation through
rain, study of sdls, air pollution, meteorology, etc. However, two
novel applications which result from this study, and are of considerable
interest in high microwave power technology, are the possibility of the
construction of (i) a high power density microwave anechoic chamber, and
(ii) a ﬁigh power density differential microwave power meter and will

be dealt with in the next two sections.

5.2 Microwave Absorbing Chamber

Since absorbent materials may be used to control the radar cross
section of scatterers, it is possible to construct low and high power
anechoic chambers using a three dimensional array of lossy bodies. Thus
Figures 3.4 to 3.11 show how the radar cross section is decreased with
absorber coatings, while Fig. 3.12 depicts in particular the reduction
in backscattering cross section with 1. The lower backscatter obtain-
able using such bodies indicates the potential superiority of the use
of arrays of such bodies over the cqnventional commercial pyramidal
absorbers commonly used.

In the proposed arrangement, the incident power is partly absorbed

at each element surface and partly redirected in other directions. The
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scattered energy is further rescattered by other spheres in the array
and consequently absorbed. The process of multiple scattering and
absorption continues till finally all the energy is absorbed and a
satisfactory quiet zone is obtained.

For low microwave power densities, the incident power is of the
order of milliwatts and hence ordinary spheres with absorber coatings
would suffice. However, for high microwave power densities, it would
be necessary to éonstruct an absorption chamber consisting of water
loads. The water would be contained in plastic spheres with facilities
for water circulation to remove heated water. Such a chamber may be
useful for testing microwave power equipment in a shielded environment
or for exposing food and other material samples to high density plane
wave fields.

A computer program utilizing the multiple sphere ray scattering
formulation of Chapter II, togethef with the monostatic, bistatic and
forward scattering results for a single impedance sphere given in
Chapter III, could be prepared to optimize the size, surface impedance
and location of each sphere in the array. Use of the ray technique will
make the computer program tractable, resulting in a considerable saving
of computer time and a sufficiently accurate evaluation of the field
distribution. For large separation between the spheres (i.e. kd > X)),
a first order interaction is sufficient and the accuracy of this
approximation increases as kd increases. Further simplifications in
the .computer program will be possible with the use of a matrix formula-
tion, as in the analysis of antenna arrays.

With the present day trend of using microwave power for
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innumerable industrial processes, a high microwave power anechoic

chamber is of considerable interest to modern industry. The conventional
absorber pyramidal structures used in the low power chambers are
inadequate to deal with the problem, due to their inability to dissipate
heat due to high incident microwave energy, and as such are a fire hazard.
Hence the proposed scheme has considerable merit, since the absorbent
material being used is water which has a greater thermal capacity, and
the constant ciréulation of water removes the possibility of any over-
heating. Finally, the cost of such a chamber would be extremely low in
comparison to the conventional chamber, since plastic bodies or infl;table
structures are easily fabricated at low cost and the absorbent material

is just plain water. On the other hand, presently used low power
absorbers in microwave anechoic chambers are not readily applicable at
high power and the development of such a material itself would entail

considerable research and expense.

5.3 Differential Microwave Power Meter

The fact that a sphere coated with an absorbent material, causes
dissipation of some of the incident microwave energy on its surface,
can be used to advantage in the construction of a high density microwave
power meter. This dissipation of energy is primarily due to the creeping
waves which attenuate when they travel over the sphere surface, as shown
previously, and as such provides a direct measure of the incident power.
Further, the sphere is also the ideal body for the construction of such
a power meter, since it is the only body which enjoys three dimensional

symmetry and is, therefore, free of polarization problems.
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The proposed schematic of the differential power meter is shown
in Fig. 5.1 and consists of two identical spheres enclosing a non-
compressible gas of low time constant and high coefficient of thermal
expansion, connected through a U column of mercury or other liquid.

One sphere is used for power density monitoring while the other is a
compensating sphere. Both spheres and stems are protected by windshields
while the stems and compensating sphere are also shielded by electro-
magnetic screens; The compensating sphere corrects for the effect of
variations in the ambient temperature, while the multiple scattering
between both spheres is accounted for in the scale calibration. The
choice of liquids in the stem is dependent on the power density to be
measured. Mercury would be useful at high power levels, while water,
alcohol or other thermometric liquids would be suitable at low power
.densities. A visual indication of the power level could be obtained by
using a liquid crystal solution or anhydrous Calcium Sulphate.

The power meter works on the simple principle of a differential
manometer. The incident energy causes creeping waves to be set up on
the sphere surface which are attenuated as they travel thus heating the
enclosed gas in the probing sphere. The expansion of the gas forces the
liquid column down and also the indicator, which registers the incident
energy density level.

Though various types of microwave power density meters are
commercially available and utilize different methods for monitoring the
power density lével, they are restricted to low power densities and, as
such, are unsuitable for present day needs due to the very high density

levels used in various industrial applications. The differential
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microwave power meter presents an effective method of monitoring high
power densities and can also be used as a safety meter for radiation
monitoring, with the indicator designed as in the maximum-minimum
thermometers, such that the maximum'level in the region probed is
indicated. Finally, the device could be positioned permanently in
industrigl equipment for indication of power level available for heating

and processing various materials.



CHAPTER VI
DISCUSSIONS AND CONCLUSIONS

6.1 Discussion

The ray optical scattering by a perfectly conducting sphere is
investigated in Chapter IT, to establish the applicability of the ray
method for spheres. The previous expressions by Senior and Goodrich
[71] were gorrecfed, for the monostatic, bistatic and forward scattered
fields and analyzed for accuracy in Tables 2.1 and 2.2 and Figures (2.2a),
(2.2b) and (2.2¢). Good agreement is obtained between these results
and those obtained from the Mie series exact solution in the backward
and forward scattering directions. 1In the bistatic range of angles, the
creeping wave term (2.5b) is not valid in the range ¥ <8 <T -9,

P = O(ka)'_l while the geometrical optics term (2.5a) is only valid
when ka cos3(6/2) >> 1., In order to extend the solution over a larger
range of bistatic angles, the geometrical optics term must be improved
and £his was found possible by using Erukhimovich's geometric optics
term (2.10), as illustrated in Figs. 2.3 and 2.4.

These limitations on the solution for the perfectly conducting
sphere prevent the direct use of the solution in the scattering by
multiple spheres except for the principal cases of the broadside and
endfire scattering. Thus for solutioms involving arbitrary angles of
incidence and observation, the exact results for the single sphere must
be used. 1In formulafing the ray optical scattering by multiple spheres,
other difficulties are also encountered. Although the scattering

phenomenon involves multiple interactions, examination of (2.13) shows
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that first order interactions are of much greater significance than the
higher order terms, as illustrated in Figs. 2.7 and 2.8. Furthermore,
the solution is inadequate for spheres being very close to each other
or touching, but this can be overcome by the Zitron-Karp formulation
[79]. This requires the expansion of the scattered field in terms of
plane waves and their derivatives, and the solution for the region from
the position where the spheres are touching to that when they are apart
by approxﬁnately‘the larger sphere diameter can be obtained using this
method. It is evident that the method becomes quite involved when
considering an arbitrary distribution of spheres, unless mode caustic-—
caustic interactions [85] in conjunction with a scattering matrix
approach are employed to reduce the computations required.

Having considered the limitations for single and multiple
conducting spheres, the ray method is applied to imperfectly conducting
spheres by imposing the Leontovich impedance boundary condition. When
the characteristic dimension ka is small, little need be done to
improve the Mie series in (3.2) from a computational point of view,
since the series can be truncated after a few terms. However, as ka
increases the series is tedious to compute. The ray optical formulation
eliminates this difficulty, resulting in simple‘expressions for compu-
tational purposes and requiring considerably less computation time,
particularly when ka is much larger than unity. The solution is
obtained as the sum of a geometric optics contribution and a series of
creeping rays which decay as they travel around the sphere, and hence
only one or at most two such rays need beé considered.

Examination of the results for Oe and Oh in Figures 3.4 to 3.11
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indicates good agreement with the exact solution for an imperfectly
conducting sphere except near the forward scattering direction, where
(3.43) is not valid since the condition ka sin3 8/2 >> 1 is violated.
Furthermore, the ray solution shows clearly the dependence of ¢, and

b

0. on ka, which for n# 1 tend to unity and (ka)2 as ka + o

£
respectively, and oscillate for smaller values of ka due to the
cfeeping wave contribution. It is shown that the forward scattering
cross section is increased, relative to the perfectly conducting sphere,
for an inductive coating in the range 0 < ]n! <1 or a capacitive
coating in the range 1 < lnl < © and decreased for all other reactive
coatings. On the other hand, the backscattering cross section is always
below that of the perfectly conducting sphere and vanishes completely
for n =1, as shown in Fig. 3.12. This behaviour of O and oy is
attributed to the phase relationship between the E and H waves in
(3.36) and (3.58) which determine the constructive or destructive inter-—
ference of the creeping waves. For purely resistive coatings, the
scattering cross section in any direction is below that of the perfectly
conducting case due to power dissipation on the sphere surface, as is
evident from (3.43) and (3.50). The behaviour is similar for a complex
impedance coating except when the real part is sufficiently small, where
the outcome is essentially determined by the reactive term.

Analysis of (3.43) and (3.50) shows that o is independent of

S
polarization for n = 1, which is the dividing point between the two
,specific ranges of impedance 0 < ]n{ <1 and 1X< In] < ®. The results

for a specific impedance in either range are found adequate to determine

completely the behaviour for the reciprocal impedance in the other.
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This is the underlying concept for the possible extension of Babinet's
principle to three dimensions and imperfectly conducting bodies while
reducing computation time for the complete range of N to one-half.
These results have been verified for the two dimensional case of the
imperfectly conducting cylinder as well, as shown in Figs. 4.5 and 4.6.

Comparison of Figures 2.2b and 3.4 shows that the lobe structure
ié not significantly altered due to surface imperfections, though new
lobes may appear.mainly in the E plane. The lobe structure could be
controlled by coating the sphere surface along specific directions. It
should be noted that the reactive nature of most coating materials
changes with frequency in the sense that they are not inductive or
capacitive at all frequencies.

It is evident that the geometric optics terms for the backscatter-
ing (3.30) and bistatic scattering (3.43) reduce to the corresponding
results for the perfectly conducting case when n = 0, except for the
geometric optics expression (3.57) which is identical to that for the
perfectly conducting sphere. Since this forms the dominant contribution
to the forward scattered field, the latter is not significantly altered
except for small capacitive or large inductive impedances, as shown in
Figs. 3.5 and 3.6.

A survey of the results obtained by ray theory indicates that the
method cannot be easily applied to other geometries without resorting to
other methods. The ray method has been based on representing the
scattered fields in terms of geometric optics and creeping wave terms
through the application of Watson's transformation and/or for asymptotic

expansions to the exact solution. A creeping wave is assumed to excite
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an infinite number of modes, thus requiring an infinite summation in
calculating the field and the evaluation of appropriate decay and
diffraction coefficients. The ray numerical method of section 4.2 is
postulated to overcome these difficulties by defining ray diffraction
and propagation constants, which are evaluated by comparison of the
numerical results for the diffracted field with the corresponding field
eﬁpression involving the unknown coefficients. Thus in the case of the
circular cylindefs the coefficients derived using equatiens (4.5), (4.6)
and (4.7) predict accurately the diffracted field, as shown in Fig. 4.2.
Though the ray-numerical procedure is demonstrated effectively
for the circular cylinder, its application to other geometries is
hindered by the lack of numerical results and two methods for cylindrical
scatterers are suggested. The first is the transformation matrix approach
which is shown to be ideal for a cylindrical scatterer whose cross section
can be mapped conformally into a circle. The technique eliminates edge
singularities and gives good accuracy for bodies for which a transforma-
tion exists. As such it is an attractive alternative to the integral
equation approach of Andreasen [44]. The technique is applied to the
imperfectly conducting circular cylinder and various interesting results
are obtained. Two definite ranges of impedance 0 < |n! <1 and
1< |n| < © already identified for the sphere are also observed from
Fig. 4.6 for the circular cylinder. The scattering cross section tends
to zero as may be seen from the term (1 - n)/(L +n) in (D.12) and
(D.14) in the same manner as for the imperfectly conducting sphere.
Furthermore, the forward scattering width is not significantly different

from the perfectly conducting case, except when the surface is reactive
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and n close to unity.

The method is also illustrated for a square cylinder as a
particular case of a polygonal structure and the results are given in
Figs. 4.9, 4.10 and 4.11. In this case we observe from Fig. 4.11 that
for m =1 there is a finite backscattering width unlike the case of
the circular cylinder. For ka = 0.5, a minimum in the backscattering
oécurs at n = 0.66, mainly due to the phase of the various interfering
waves. For the forward direction, the value of 1N for a maximum forward
field is approximately predicted by the Hansen-Woodyard condition [44].

The second method is the phase shift method which was introduced
since the transformation matrix technique requires excessive computation
time for a reasonable accuracy, as illustrated in section 4.3 for a
cylinder coated with an inhomogeneous dielectric, due to the large number
of integration steps required. In this case the phase shift method is
more suited since it involves the numerical solution of a first order
differential equation which, in principle, can be solved to any desired
degree of accuracy. The equation for the phase function (G.21) is
adequate to define completely the scattered field while the boundary
conditions form the initial conditions for this equation. The results
in Figures 4.13 to 4.15 show that the significant variations in the
amplitude of the main scattering lobe as well as the number and polar
positions of the side lobes may be attributed to the dielectric coating
of the imperfectly conducting cylinder.

In considering the interior problem of imperfectly conducting
cavities, which form essential components of various microwave devices,

the rectangular cavity with such walls may be treated by using the
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perturbation method as long as 1 is small. The conclusions from
equation (H.12) that the reactive part of the surface impedance is
responsible for the change in resonant frequency, while the bandwidth
depends on the surface resistance of the walls, are also borne out by

the results for the spherical cavity based on the boundary value approach.
It is dinteresting to note that for a spherical cavity with a capacitive
Wéll, the TEmOl mode, which is a perturbation of the zero frequency
static mode, is dominant as shown in Fig. 4.17, unlike the perfectly

conducting cavity where the TMh mode is dominant.

11
Finally, in the analysis of the imperfectly conducting sphere,

the possibility of radar cross section reduction and surface absorption

suggest certain practicai applications. Two of these are the high power

anechoic chamber and the high density microwave power meter discussed in

detail in Chapter V.

6.2 Conclusions

The ray optical solution for the scattering of plane electro-
magnetic waves from-a perfectly conducting sphere has been analyzed for
accuracy and its range of applicability extended by modifying the
geometrical optics term. In this form the solution predicts accurately
the fields for the backscattering, forward scattering and 6 = 90°
directions, which make its use possible for scattering by multiple
spheres in the endfire and broadside configuration. For the multiple
sphere problem the formula developed predicts more accurately the
scattering from two identical spheres, for any arbitrary angle of

incidence and observation, than has been possible previously. The



116

model is simpler and permits easy interpretation of the phenomena of
many body scattering. Furthermore, one finds that first order inter-
action terms are of much greater importance than the higher order terms.

The success of the ray optical formulation for the scattering
by single and multiple perfectly conducting spheres, within certain
boqnds imposed by the asymptotic approximation, gives confidence in the
eﬁtension of the method to the imperfectly conducting sphere. 1In this
case it is shown.that the ray optical formulation leads to results which
compére favourably with the exact solution in the forward and back-
scattering directions as well as the bistatic range of angles, except in
the vicinity of the forward direction. Furthermore, the method is shown
to eliminate the computational difficulties of the exact solution and
requires considerably less computation time.

Further extension of the ray optical technique to other imperfectly
conducting bodies is shown to be limited due to the paucity of diffraction
and decay coefficients for such bodies. In attempting to overcome this
difficulty, the ray-numerical procedure is proposed. The method leads
to an elimination of the summation required to consider the different
modes excited at the body surface, and considerably simplifies the
computations. The method is demonstrated for the circular cylinder and
shows considerable promise. However, extension of the method to other
geometries requires numerical results for the diffracted field, and hence
for éylindrical structures, the transformation matrix technique and the
phase shift method are developed. These methods are numerically accurate
and apply to a wide range of cylindrical scatterers.

The transformation matrix technique applied to the imperfectly
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conducting circular cylinder shows that for the cylinder, as in the case
of the imperfectly conducting sphere, two definite ranges of impedance
are identified, 0 < In| <1l and 1X In| < © , where the results for

a specific impedance in either range determine the complete behaviour
for the other range. The forward scattering for both geometries is

not significantly altered over the wvalue for the perfectly conducting
cése, except when the sphere surface impedance is inductive in the
range O < In| f 1 or capacitive in the range 1 < In| < © , and for
the cylinder when the reactance is near unity. Furthermore, the
3cattering cross section in both cases vanishes for n =1 and the
backscattering cross section is always lower than the value for the
perfectly conducting case. For the case of the square cylinder, the
forward scattering is significantly dependent on the impedance for large
ka, unlike the circular cylinder.

The phase shift method requires the numerical integration of a
first order differential equation for the solution of the fields and is
a convenient method for dielectric coated cylinde;s.

The perturbation method proposed for the rectangular cavity with
imperfectly conducting walls and the boundary value solution for the
spherical cavity lead to general conclusions about cavities with reactive
walls. An inductive wall decreases the resonant frequency while a
capacitive wall increases it. The reactive part of the surface impedance
is responsible for the change in resonant frequency, while the surface
resistance affects the bandwidth. 1In the case of the spherical cavity
with a capacitive wall, a new fundamental mode is created which is a

perturbation of the zero value of the zero frequency static mode.
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Finally, applications suggested by the results and described in
Chapter V are of considerable industrial and scientific interest and
may lead to effective solutions for high density power meters and

microwave anechoic chambers.

6.3 Suggestions for Future Research

In the course of this thesis, various interesting problems have
arisen that have been only briefly dealt with. Thus, though attempts
have been made to improve the geometric optics term for the perfectly
conducting sphere, no suitable expression, valid over the complete
bistatic range, has been obtained. Similarly, the creeping wave term
requires improvement near and at a shadow boundary. Furthermore, the
solution for the scattering by two spheresbcould be extended to the
scattering by an array of spheres, using a scattering matrix formulation
as used in the analogous problem of radiation by an antenna array.

In the solution for imperfectly conducting spheres, there is again
need for improving the geometric optics term. Furthermore, the solution
for the pulse scattering by lossy spheres may be obtained by taking the
inverse Laplace transform of the CW solution given in Chapter III. This
solution would be of interest for purposes of radar detection. Also,
the solution for an imperfectly conducting sphere in a weakly ionized
plasma is of interest in radio astronomy and space communications.

Finally, the ray-numerical method proposed in Chapter IV has been
applied only to the case of the circular cylinder and should be extended

to other geometries.



APPENDIX A
BOUNDARY VALUE SOLUTION FOR AN IMPERFECTLY CONDUCTING SPHERE

Consider a sphere of radius a of surface impedance 2, with
centre at the origin of a spherical system of coordinates (r,0,¢) as
shown in Fig. 2.1. A plane wave is incident on the sphere from the

negative z axis and is defined by
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gl = esz - _g.ejkr cosb (A-2)
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where the time factor e_Jwt has been suppressed and n, = 120m. The

total field is the sum of the TM and TE waves and the field components
can be written in terms of the electric and magnetic potentials
A and F, [94 ] respectively as
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Using the well known addition theorm
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Hence the magnetic vector potential At is given by
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Similarly the electric vector potential Fo o ois given by
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and for tr > a we have
(A-15)

where the superscript s 1is associated with the scattered field. Since
. . . . s
the scattered field must behave as an outgoing wave at infinity, A~ and
s . . . .
F~ must contain the spherical Hankel functions in place of the Bessel

functions. Thus
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where bn and c,6 are coefficients yet to be determined. Using the

Leontovich impedance boundary condition at r = a,
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where i, 1is the outward normal, we obtain
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The scattered fields for kr >> 1 are then given by
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APPENDIX B

ASYMPTOTIC EXPANSION OF Dv_

The expressions for Dv_; and Gv , defined in (3.12b) and

2 -2

(3.12¢) may be approximated by using the Debye asymptotic expansion of

the spherical Hankel functions and their derivatives for large orders

and arguments [90], i.e.

’a(l)(p) - /Cosec B eJP(sinf-BeosB)-j m/4

1
V—23

3:0 (m‘/z)! ("zj )m

psinf m

%(1>'(p) - /5B ejp(sinB—ScosB)+j m/4

V-
o A
(m - %)! m m—1
Z (—%;! (p31n8) (Bm + 2m-1)

m=0

where

A =B =1

Al = %—(1 + g-CotZB)

A, = 128 (3 + l%é Cot®g + %%E'C0t48)
By = - %‘(1 +-% COtZB)

td
il

1 238
9 273 {23 + "—3— Cot B + 0(Cot B)}

etc. where the higher order terms are generated by the recurrence

(3-1)

(B-2)

(B-3)

(B-4)

(B-5)

(B-6)

(B-7)

(8-8)

relationship given by Watson [90 ]. The corresponding expressions for

the Hankel functions of the second kind are given by the complex
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conjugates of (B-1) and (B-2). Substituting in (3.12b) and retaining
the leading terms of the binomial expansion for the denominator for

N <1 we obtain on simplification

_ _ s.~23p(sinB-BcosB) 2 .
Dy, = - Je 1+ 5eing (1 + 3B, +3jnp)
3nA nA
2 2 ) 2 1 .
- (pSinB)z‘ e + (1 + jpn + Bl) + Sing (1 + jnp + Bl)]
2 [ A én,
+—I5 3B, +=2)@ + §np + B,) + —= (1L + jnp + B.)
(psin8)3- 2 3 1 sinf 1
3n2A.A A, A, 7A. 9
. 172 2 3 . 1
sinf - l5(B3 +.§— - sinB) - @+ jne + Bl + sinB)
(1 + §np + Bl):[ + 0(psin8)—4} (3-9)

A similar procedure may be used to approximate GV_L

except that
2 .

if n<1 them ¢ > 1. GV 1 is first rewritten in the form
—2

~ @) N (2)
5 (e) = gn ' (p)

G (B-10)

vy T a(D) . D
: h\)_%(p) -3 h'\)_%(p)
before the binomial expansion is applied to the denominator. Proceeding

in the same manner used to derive (B-9), we obtain

_ ..~2jp(sinB-BcosB) j . . .2
Gyyy = I L+ S5inp|Ay T neinB(By + 1) + jnp sin'f

A

+ ———1————[3(A2 + NsinB (B, + 3}))
(psinB)

- [Al + nsinB(Bl + 1) + inp sinzB}z}



where Dv

L

-2

and Gv_
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+ -3 6[Al + nsinB(Bl + 1) + jnp siné]

(psinR)

I Ay &
A2 + n51n8(B2 + 5—0} - 15{A3 + n81n8(33 + 3—0}

-

Al + nsinB(Bl + 1) + jnp sin28]3 + O(pSinB)_4

(B-11)

reduce to the corresponding expressions for the

N

perfectly conducting sphere when n = 0.



APPENDIX C
TABLES OF D AND vy FOR A PERFECTLY CONDUCTING CYLINDER

Table C-1 D and Y for parallel polarization

ka D Y/radian
5 0.702 - j0.09é4 -1.905 - 31.100
6 | 0.723 - 30.0952 -2.024 - j1.169
7 0.742 - 70.0977 -2.,132 - 31.230
8 0.758 - 3 .0999 -2.228 - 31.286
9 0.774 - j0.1019 ~2.317 - §.1338
10 0.787 - j0.1037 ~2.400 ~ 71.386
11 0.800 -~ j0.1050 -2.478 - j1.431
12 0.812 - 50.1069 -2.551 - j1.473
13 0.823 - 50.1083 ~2.620 - j1.513
14 0.833 - j0.1097 -2.686 - jl.551
15 0.843 - j0.1109 -2.748 ~ 71.586
20 0.884 - 30.1164 =3.024 - j1.746
25 0.917 - 30.1208 -3.258 ~ j1.881
30 0.946 - j0.1245 -3.462 - 31.999
35 0.971 - 30.1278 -3.645 - j2.104
40 0.992 - §0.1307 -3.811 - 3§2.200
45 1.012 - §0.1332 -3.963 - j2.288
50 1.030 - j0.1356 -4,105 - j2.370
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Table C-2 D and 7Yy for perpendicular polarization

ka Y/radian
5 | 0.207 + §1.5765 | =-0.830 - §0.479
6 | 0.214 + 31.6251 | =0.882 - j0.509
7 | 0.219 + j1.6674 | =-0.929 - j0.536
8 | 0.224 + 31.7049 | -0.971 - j0.561
9 | 0.229 + 31.7387 | -1.009 - j0.583
10 | 0.233 + §1.7695 | -1.046 - 0.604
11 | 0.236 +31.7979 | -1.079 - j0.623
12 | 0.240 + §1.8241 | -1.111 - j0.642
13 | 0.243 + §1.8486 | =-1.114 - 50.659
14 | 0.246 + 31.8716 | -1.170 - 50.676
15 | 0.249 +31.8932 | ~1.197 - 30.691
20 | 0.2615 + j1.9862 | -1.317 - 30.761
25 | 0.2714 + j2.061 ~1.419 - j0.819
30 | 0.2798 + j2.125 ~1.509 - 30.871
35 | 0.2871 + §2.180 ~1.572 - §0.912
40 | 0.2935 + 32.229 ~1.660 - 30.958
45 | 0.2993 + §2.273 ~1.727 - 0.997
50 | 0.3046 + j2.314 ~1.789 - §1.033
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APPENDIX D

THE TRANSFORMATION MATRIX METHOD

Consider an N-sided regular polygonal cylinder whose complex
surface impedance is denoted by Z. Maxwell's equations relating the

time harmonic electric and magnetic fields may be expressed by the

relations
> > '
V x F = jkE (D-1a)
VXE= - jkf (D-1b)
where the ejwt time dependence has been suppressed, and % = noﬁ’
k = 2 n = Eg—= 120w u and ¢ are the permeability and
A o £ * Yo o

o
permittivity of free space, respectively.

For the cylindrical coordinate system (p,$,z) with the metric
coefficients hp = h(p,¢), h¢ = h(p,$) and hZ = 1, we determine
h(p,$) such that the cross section of the cylinder is mapped into a
circle of radius o, in the transform space. Expanding (D-1) in
cylindrical coofdinates and combining the transverse field components
E_ and Ft with the metric coefficient h(p,$), to ensure that they

t

are nonsingular, we obtain

E = E = ’ -

¢ h Et R . Ez (D-2a)

Ft = h Ft R Fz = Fz (D-2b)
where Et’ Ft and Ez’ Fz are the transverse and longitudinal components

of the electric and magnetic fields in the transform space, respectively.
The resulting elliptically polarized fields may be expressed in terms

of their circularly polarized components as
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m
[

(E, + jGEz) (D-3a)

¢

I+
+1
Nl

Fo= 5= (F, + j6F) (D-3b)

¢

|
Sl

where 6 = ¥ 1. Since (D.1) is valid in the transform space, for a
normally incident plane wave, the fields E+ and F+ in the transform

space, in general may be given by the modal expansions

00

L= 1 AN (D-4a)

-— ——C0 -

m
fl

Fy

it

] BR(p)edn? (D-4b)

ne—c0 -
where Ai and BE are unknown tradial functions yet to be determined,
and which include the mode coefficients. Substitution of E, and Fi
into (D~1) and using the orthogonality condition of ¢ results in two
differential equations for .AE and Bi . These may be used to obtain
the incoming (12) and outgoing (0;)— waves at large distances in the

form

I

1l

n n ) n
+ AL+ JGIBi (D-5a)

o; A} - 36 BY (D-5b)

From this, one can find a transformation matrix relating the far field
at the radial distance p to the field on the surface of the cylinder
(p = po) in the form

I, () I,(p,)

S(p,po) +
0_(p) 0_(p,)

It

(D-6a)
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I_(p) I_(p )
= |P(p,p,) (D-6b)
0, (p) 0, ()
Since the incident field corresponds to the known incoming wave Ii s
the outgoing waves 02 may be evaluated, from (D-6) and the boundary
conditions, so that the total fields E+ and F+ may be obtained.

To show this we write down the Leontovich impedance boundary condition

which must be satisfied at the surface of the cylinder, i.e.

> > A~ ~ A >
E-(E-1i)i =2Z(i_xH D-7
E - 1)f =23, x B (0-7)
where ir is the outward unit vector with respect to the surfaces. This

equations reduces to

E, = - ZH
¢ z
at p=op, (0-8)
E, = ZH ‘
In terms of IE and OE , (D-8) may be rewritten in the form
@ -mal-1) =) -0D)a+n (D-9a)

@ - (1 + 1) = - (0 + 0D +n) (D-9b)

respectively, where 1 1is the normalized surface impedance given by

n=% < |nlet? (p-10)

o

For parallel polarization (TM case), we have the additional relations

n n n n
I = I_ s O = O_ (D_ll)
s Tx

and hence
n e (1t TNy 40 -
Iy(py) = - G— 0hley) (0-12)
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while for perpendicular polarization (TE case), we have the relations

n n n n
I, =~ 1_ 0, = - 0_ (D-13)
t + ’ ha +
and hence
n _ A +n n .
1.0 = G n) 0, (o) (D-14)



APPENDIX E

~

DERIVATION OF EQUATIONS (4.12) AND (4.13)

From the equations (4.10) and (4fll) for V" and Un, the matrix

. . . n . .
for the incoming and outgoing waves, IE and Of , can be written in the

form
o] @,y L @) (), ()
L H ™" (ko) - JH 77 (kp) H " (kp) = JH_ "7 (kp)| ¢y
= (E—l)
n D) L (D) 1) .. (2)!
0; .Hn (kp) + JH_ (kp) H (kp) + JH_ 7 (k0)| |c,
‘1
= |M(p) (E-2)
b C2
Inverting the matrix equation gives an expression for the constants
n
cl -1 If
= |M(p) (E-3)
n
c, 0;
Evaluating (E~-3) at p = a and substituting into (E-2), we obtain
11 (p) l- -1 |Ip(a)
= |M(p)| [M(a) (E-4)
02 (p) 02(a) |
+ +
where in the far field
)
H (kp) 0
M(p)| = s P> (E-5)
(2)
0 Ho" (kp)
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n @)
It(p) . H "7 (kp)
= - (J) s D > > (E-6)

0Z(p) 12 (p)

T n
and the far components are hence

I (p) -1 1$<a§1
= 2 Ineoy | Jmca)

(E-7)
02 (o) : 02<a>J
+ 4 +

Using (D-12) in (E-7) and eliminating Ii(p) from (E-6) and (E-7) we

obtain the expressions

Nt ¢
™(a) = - (2)(J) (1 + nzz)' (5-8)
- ka[Hn (ka) + jn H (ka)1l
-1 (2) (1) . (!
)P (kp) [ (ka) + 0 HYY (ka) ]
032 - n . - (E-9)

- (2) (2! :
o (ka) + 3n B2 (ka)
Since the incident field is decomposed into Ii(p) and Oi(p), the
scattered component of the outgoing wave is hence given by

2() ™3, (ka) + in 3! k)18 (1)
@

n

03(p) = - - (E-10)

~H§2)<kp> +3n 5% (ka)

and the scattered electric field is obtained from (D-4a) as

© 3 (ka) + in J' (ka)
B, == I 77— Ok
=S n=-0 Hn (ka) + jn Hn (ka)

Héz)(kp)ejn¢ (E-11)

The resulting scattering width for the E polarization is given by

5 w I (ka) + §n J' (ka) 2
e 4 n n

L. 2 z £ : cos(no) (E-12)

TR a0 P P (@) + g0 1P (k)
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The corresponding result for the H polarization may be shown to be

O 4 (f J;l(ka) - jn Jn(ka) 2
L. € ; cos (n¢) (E-13)
ma. mka |Zp B Hr(lz) (ka) - jn Héz)(ka)

where



135

APPENDIX F
DERIVATION OF EQUATIONS (4.15) AND (4.16)

For the transformation

1
dz_ _ M(cos

Nt 2/N
dt

> (F-1)

from the z'(x + jy) to the t(8 + jB) plane, the metric coefficients

he and hB are given by

hg - hé - (%I)z N8/ 2[1 + 2cosMB)e VB 4 e"ZNB]l/Q (F-2)

In the (p,9,z) coordinate system, this corresponds to
Y B

h” =1h) = [% + e._ZS + 2e ° cos(N¢)] ;’s = e (F-3)

which may be expressed as a cosine series of the form

hé = h; = f(s) + g(s)cos(N¢) + h(s)cos(2N¢) + ... (F-4)
where
S—ZN S—4N s~6N
f(s) =1+ 7 + A +256 + ... (F-5)
-3N
g(s) = s N - S+ . (F-6)
SN AN _
h(s) = - A + _E— + ... (F-7)

These coefficients, together with equations (D-1) and (D-5) lead to

the coupled differential equations for Ii and 02 of the form

dI‘I‘ . n2 n n2 n
FTRT [kp—-i-(—p—-l-:] +kpf(s)]1_i_+ Ekp+k—p—3 +kpf(s)]0:r
+ |kog(s) o onth + ... (F-8)

2 L i_ + =fN
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and

ao 2 2
_F -1 n_ s _ o - n_. . n
a0 > [kp + o i kpf (s):' Oi_ + [ kp + - + 3 kpf (s)] O;
_ hg&(_sl} [ (oL 0n+L.’ N (F-9)
[ 2 g t 7 _i=tw



APPENDIX G
THE SCATTERING PHASE SHIFT METHOD

The differential equation satisifed by the scalar wave function

Y for an inhomogeneous isotropic cylindrical scatterer, is given by

@ + 1y = - (6-1)
where L is an operator dependent on polarization and the properties of
the scatterer. For a cylindrically symmetric scatter

19%u 9 2.
=_._._..__+k _ _2
L T 3p 3p [1 - ue] (G-2)

for the TM case and the operator for the TE case is obtained by inter-
changing U and €.
A solution of (G-1) is given by
[o o]
b=} €n(j) T (p)cos(nd) (G-3)
n=0 o

where Tn satisfies a Sturm-Liouville equation of the form

d 2 2 2
P55 (p gE) + [(kp) - n] T,(P) = p"LT_(p) (G-4)
and has a general solution of the form
p
- A0 n lT_li RPN’
T (P = ¢y J (ko) + C, ¥ _(kp) + 3 LT (p")p'dp
R LAY - N -
[Jn(kp Y (kp) J_ (k)Y (kp )] (G-5)

The asymptotic form of the wave function ¢ may be shown to be
_ i 2 -jkp -6
b=+ [ e (¢-6)
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where wl the incident field may be assumed to be

[o0]
ph= eI T e (1) cos ()T (ko) (6-7)
: n n
n=0
and the second part of (G.5) represents the scattered part of the wave
function. Using the phase shift concept of Morse and Feshbach [1056],

the wave function can be written in terms of a phase function Gn and

an amplitude function An in the form

R ! 2 nmr ,m
P = nzo e (3)  cos(ng) Tho A cos(kp - o=+ 7~ 8 (G-8)
fogasd)
where A.n and f(¢) are given by
An - ej Sn (G-9)
() = - %'— ed /4 ) e, cos no ej(Sn sin(Gn) ' (G-10)

n=0
Thus £(¢) is determined completely from the phase function 6n and
hence a knowledge of the phase function determines entirely the scattered
field and cross section.

An accurate solution for the phase function may be obtained from
the solution of a first order differential equation. Following Brysk

and Buchanan [I0l] we define Gn(p) by the equation

N (p)

(G-11)
Dn(p)

tan(én) =
where

p
D (p) =1- gk [}Tn(p')]Yn(kp')p'dp‘ . (G-12)
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p
— _ ﬂ 1 1 ' 1 _
N (p) =3B -5 {LTn(p )]Jn(kp Jp'dp (G-13)
and
n
y -2
n .
' 1
Using (G-11) and (G-12), the expression for Tn reduces to the
form

T () = Crlan(o)[Jn(kp) + tanén(o)Yn(kp)] (G-14)

or alternatively, since (G-13) is singular at Gn =7/2,

Tn(p) An(p) [Jn(kp)cosén(p) + Yn(kp)sin(Sn(D)] (G-15)

where

0 Dn(p)

An(p) = Cl ESEE;?ET (G~16)

Substitution of (G-15) into (G-4) results in the reduction of the second
order differential equation for Tn(p) to two first order equations for

the phase and amplitude functions respectively, of the form

(LT )T
8'(p) = - Tkp " n" n (G-17)
n 2 Az(p)
n
and
Al(p) = - lr% (Lfn) [Jn(kp)sinan(p) - Yn(kp)cos§_n<p):l (G-18)

Examination of equations (G-15) and (G-17) shows that the differential
equation for the phase function is independent of the amplitude functions
and may be solved numerically to any desired degree of accuracy and hence

using (G-10), the scattered field is readily obtained.
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For a radially inhomogeneous dielectric,
K211 - e(p)] for TM modes (G-19)

1 de(p)

K21 - e(p)] + oy 5=

%E- for TE modes (G-20)

and the differential equations for the phase and amplitude functions

reduce to

2
6;1(9) = - %ig kz[l - e(p)] [-Jn(kp)cosdn(p) + Yn(kp)sinén(p)]
(G-21)
Al (p) = - 1%9 kz[l - e(p)] [Jn(kp)cosén(p) + Yn(kp)sinén(o)]
© A () [Jn(kp)sinén(p) - Yn(kp)cosén(p)] (G-22)

for the TM case. The corresponding equations for the TE case are given

by

6;(0) = - I%§2 [ﬁ;(kp)cosén(p) + Y;(kO)Sinﬁn(p)] E%B) agép)

+ kz[l - e(p)] X [Jn(kp)cosén(p) + Yn(kp)sinén(p)]

[&n(kp)cosén(p) + Yn(kp)sinén(p)] (G-23)

Ar'l(p) = - ll‘;—pﬁn(kp)sinén(p) - Yn(ko)cosén(p)]An(p)

x [Jr'l(kp)cosdn(p) + Yr'l(kp)sinén(p)jl ﬁﬁi’-g—ép—)

+ kz[; - E(Q)]'x [&n(kp)cos6n(p) + Yn(kp)sinén(p)]

o

(G-24)



APPENDIX H
PERTURBATION SOLUTION FOR AN IMPERFECTLY CONDUCTING RECTANGULAR CAVITY

Consider a rectangular cavity of height b, width a, and length
d and let the surface impedances of the walls be Z_ , Z ., Z s Z .
xo0’ "x1 yo vyl

Zzo’ Zzl as shown in Fig. H-1. For the cavity with perfectly conducting
wélls, the free space propagation constant k0 is related to the lateral

and axial constants k and BO, respectively, in the cavity by

20

km =k, + BO (B-1)

for both TM or TE waves.
Treating the new lateral and axial field constants as pefturbation

of the values when the walls are perfectly conducting, we can write

kl = kﬂo + Akg (H~-2a)

and

]

82 BO + AB (H-2b)

Thus in presence of imperfectly conducting walls,

2 2 2
k™ = k2 + 82 (H-3)

where the new propagation constant k can be treated as a perturbation

of the old value ko and

k = ko + Ak (B-4)
Thus
klo Bo
= 20 _° H-5
Ak ko Ak,Q + ko AB ( a)

and using the relations

141 .
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k = o 'u'go (H-5b)

k=uw ne, = (wo + Aw) /uoeo (B-5¢)

we obtain

Ak

B k
Aw AR %0 L . _
T + 5 - 61 + 362 (E-6)
[} o] o] .

8.0
W k
) !

Hence if AR and Ak,

frequency from its unperturbed value w, can be readily calculated,

are evaluated, the real shift in the resonant

together with the bandwidth and the cavity Q, since the resonant

frequency, in terms of the Q is given by

1 2
w=wo[l— (56)]

where W is the resonant frequency in the absence of losses. Thus for

1 LL)O
+ 4 7(5 (u-7)

large values of Q, this reduces approximately to

W
= ¢ i Q0 -
O=u +] 2 (B-8)

and since the bandwidth is reciprocal of the Q, we have on comparison
of (H-6) and (H-8)

1 1

Q= 252 ~ Bandwidth (B-9)
Further, since
2 2 2
kg = kx + ky (H~10)
for the TEOmm mode types we can write (H-6) in the form
kA A%k B
Mo o xy, v, 048 (B-11)
w k k 2k k k
0 0 o o o o

where Akx; Aky and AR Thave been evaluated previously by Karbowiak [17]
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and hence substituting, we obtain

2
k
5 ) = 4|2 Roy2 1
Oy 30 =9lac &) G+ %) +3g @y, +2p)
(o] O o]
2 Bo 2
+ dko CE;) (Zzo + Zzl) _ (H-12)

The real part of equation (H-12) gives the shift in resonant frequency
and twice the imaginary part gives the bandwidth. From the above
equation, it is evident that the reactive part of the impedance gives
rise to the shift in resonant frequency, while the real part, the
bandwidth. Further, it can be seen that an inductive wall would result
in a decrease in resonant frequency, while a capacitive wall would

increase the resonant frequency.



APPENDIX I
EIGENVALUE SOLUTION FOR AN IMPERFECTLY CONDUCTING SPHERICAL CAVITY

Consider a spherical cavity resonator of radius a with a surface
impedance =z and enclosing a homogeneous dielectric material of
permeability 1 and permittivity €. The impedance boundary condition
té be satisfied at the inner wall is given by equation (3.5), i.e.

E- (E . fr)ir = Z(fr % H) (1-1)

where in contrast to equation (3.5), here ir represents the inward
radial unit vector. TFor TM modes, the impedance boundary condition leads

to the relation

Eq = ZH(b]r:a (1-2a)

Hg = - E¢/er=a (1-2b)
For TE modes, the corresponding relations are

Hy = - YE¢lr=-a (1-3a)

Eq = Hd)/er:a (I-3b)

where Y = 1/Z.

The electric and magnetic field components in the spherical
coordinate system (r,0,¢) are given in Appendix A, in terms of the
electric and magnetic vector potentials A and F. Due to the boundary
coﬁdition [I-1], the wave functions for these potentials must be of the

form

z Z Jn(kr)Pg(cosﬁ)eJm¢ (1I-4)
m n
where 3h(kr) are spherical Bessel functions used by Schelkunoff [107].
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For TM modes, the resulting transcendental equation for the eigenvalues
k is given by

Ny - _ [a . —
Jn(ka) JMEOZJn(ka) | (I-5)

where the prime denotes differentiation with respect to the argument.
Normalizing the impedance Z, with respect to the intrinsic impedance
of free space in the form

Z = jgn where n_ = 120m (1-6)

and writing the spherical Bessel function in terms of cylindrical
Bessel functions, we obtain

¥ - - -
an+%(u) + 0.5Jn+%(u) uan+%(u) 0 (1-7)
where u = ka. The corresponding expression for the TE case is given by
. = —
an+%(u) + E[an+%(u) + O°5Jn+%(u)] =0 (1-8)
The solutions of (I-7) and (I-8) give the eigenvalues ,-"(1r§ip:,'and‘"”_u.ﬁ.15 “for

the TM and TE.casegs, while the eigenfrequencies are evaluated from the

relations
TE “np
(f ) = 1 (1—9)
T ‘mnp
21a (ue)
and
u'
()™M ___op (1-10)
T ‘mnp 1
2ma (ue)

The cavity Q and the bandwidth may be calculated by either the
method of Appendix H or following the procedure in Harrington [94]. It
is to be noted that degenerate modes are also present as in the case of
a perfectly conducting cavity.

Typical results for the eigenvalues unp and u;p (p = 1,2,3...)
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based on (I-7) and (I-8), respectively, are shown in Figs. 4.16 and 4.17,
where 0 < & < 1 corresponds to the inductive case and -1 < £ <0
corresponds to the capacitive case while £ =0 to the perfectly
conducting case. The results indicate, in general, that an inductive
surface lowers the resonance frequencies of all modes, while a capacitive
surface impedance raises them. For the case of a complex impedance, an
attenuation in the cavity fields results from the complex eigenvalues
obtained, although no specific results are shown.

Examination of Fig. 4.17 shows that the first eigenvalue is a
perturbation to the zero value of the zero frequency static mode [94] in
a perfectly conducting cavity. As an example, ugq = .9143 for & = - .5
in the TE case. Thus, unlike the case of a perfectly conducting sphere
where the TM mode is the fundamental one, it is found that for the case
of a capacitive.impedance wall, the TE mode is the new fundamental mode.

This may also be explained from the equivalent circuit of the cavity

resonator.
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