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SORTU SR

Abstract

We examine the properties of approximate identities for Banach algebras
and survey the known results involving bounded and unbounded approxi-
mate identities for Banach algebras, in particular, those related to the fac-

torization theory for Banach algebras.

Special attention is also paid to condition (U) for unbounded approx-
imate identities. We prove that every sequential approximate identity for a
Banach algebra satisfies condition (U), we construct an example of a com-
mutative separable normed algebra having a sequential approximate iden-
tity that does not satisfy condition (U), and we show that the closed ideal
I(E)={feI*G) :f=0on E} of L*(G) with G a commutative locally
compact group has an approximate identity satisfying condition (U), where

E is a subset of the dual group & of G.
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Chapter 1

Introduction

Approximate identity is an interesting topic in the field of functional analy-
sis. The theory about it is useful in solving many problems in the field. It
is closely related to the factorization theory for Banach algebras and their

modules.

The concept of “approximate identity” was first described by L. H.
Loomis [27] in 1953. Years later, P. J. Cohen [5] gave an explicit definition
and started to establish the connection between the existence of a bounded
approximate identity and the factorization theory. However, the study of
unbounded approximate identities was beyond the scope of the mathemati-

cians at that time.

Our goal in this thesis is to survey some known results about bounded

and unbounded approximate identities for Banach algebras.

In Chapter 2, we present some elementary properties of approximate



identities for normed algebras. We show that if S is an uncountable set then
the algebra I1(S) does not have a sequential approximate identity. Chapter 3
concerns bounded approximate identities for Banach algebra. We discuss the
concept of “weak factorization of bounded sequences” and summarize the
relations among various factorizations of sequences. In Chapter 4, we study
unbounded approximate identities for Banach algebras. The investigation is
around condition (U). We prove that every sequential approximate identity
for a Banach algebra satisfies condition (U). We then give an example of a
commutative separable normed algebra with a sequential approximate iden-
tity that does not satisfy condition (U). Finally, we show that the closed ideal
I(E)={feI*G): f=0 on E} of L*(G) for a commutative locally com-
pact group G has an approximate identity satisfying condition (U), where E
is any subset of the dual group ¥ of G. Questions for further investigation

are raised in Chapter 5.



Chapter 2

Approximate Identities in
Normed Algebras

Throughout this Chapter the symbol F will be used to denote a field that is
either the real field R or the complex field C.

2.1 Preliminaries

Here we will first recall some elementary definitions and notations which are

consistent with those in [3] and [8].

An associative algebra over F is a linear space A over I together with
a multiplication mapping (z,y) — zy of 4 x A into A that satisfies the
following axioms (for all z,y,2 € A, a € F):
(i) z(yz) = (zy)z,

(i) 2(y+2) = ay+ a2, (@ +1)2 = 32 + 2,



(iii) (az)y = alzy) = z(ay).

An algebra-norm on an algebra A is a mapping || - ||: A = R, with

which A is a normed space and the following inequality holds

lzyll < =l liyll  (z,y € A).

If A has an algebra-norm defined on it, we call it a normed algebra.

A complete normed algebra is called a Banach algebra.

A directed set is a partially ordered set A (admitting Reflexivity, An-
tisymmetry and Transitivity) such that, given A, Ao € A, there exists A € A
with A > A\, (k=1,2).

Let E be a topological space. A net in F is a mapping from a directed

set A into E. A net {x)}rea in F is said to converge to z € E, denoted by
limzy =z,

A€A

if, for every neighborhood U of z, there exists A\g € A such that z) € U for
all A > M.

2.2 Approximate identities

Definition 2.2.1. Let A be a normed algebra. A left approzimate identity

for A is a net {ex}xea in A such that for all z € A4,

1 i =
(2.1) limexz =z



Right approzimate identities are similarly defined by replacing eyz with zey
in Equation (2.1). A two-sided approzimate identity is a net that is both a

left and a right approximate identity.

An approximate identity {e)}ren is called sequential if A is identical
to positive integers with the usual order, and is said to be commutative (or

abelian) if ey, and ey, commute for all A\, Ay € A.

An approximate identity is called bounded if there exists a positive
constant k such that

leAl <k (A€ A).
In this case, we define the bound k of {e)}rea by
k =sup |exl,
A

and the norm by

Hea | = lim sup [lex]).
Remark 2.2.1. The norm of an approximate identity is always no less than 1.
In fact, forallz € A

|zl = lim flexz]| < limsup flex]| - [l2]].
So 1< limsup [l = [[{ea}.
The following proposition asserts an equivalent definition of approxi-

mate identity. The proof is straightforward and can be found in book [8] by

Doran and Wichmann.



Proposition 2.2.1. A normed algebra A has a left approzimate identity if
and only if for every finite set {z1,z9,-- , 2} of elements in A and every
€ > 0 there ezists an element e € A such that ||z; — ex;|| < € for i =

1,2,--- n.

Remark 2.2.2. One can draw the right side and the two-side versions of
the above proposition. In general, if a result holds for left approximate
identities, it will be true also for right approximate identities and two-sided

approximate identities with minor respective changes.

For bounded approximate identities we have the following Dixon’s

Theorem. See [14].

Proposition 2.2.2. A normed algebra A has a left approzimate identity
bounded by k if and only if for every x € A and every e > 0 there exists an

element e € A such that |le|| < k and ||z — ex| < e.
2.3 Properties of approximate identities

We start from the relationship between left, right and two-sided approx-
imate identity. It is clear that if a normed algebra has both a bounded
left approximate identity and a bounded right approximate identity, then
it has a bounded two-sided approximate identity. Naturally, the following

questions arise:

(i) Does the existence of a left approximate identity and a right

approximate identity imply the existence of a two-sided ap-



proximate identity?

(i) What happens when there is a bounded approximate iden-
tity on one side and an unbounded approximate identity on

the other side?

These two questions above have been answered in [9] with the following

two results.

Example 2.3.1. Let Ay be the complex associative algebra generated by
{e; : i =1,2,3,---} subject to the relations e;e; = €min {15}, Unless i is
odd and j is even. Then it can be checked that a typical element of Ag is

uniquely expressible in the form

oo
(2.2) T = Z Arér + Z )\ijeiej,
r=1 i

where all but finitely many of the scalars A\, \i; are zero, and the second
summation is taken over odd values of i and even values of j. We define a

norm for Ag by
w I3 .
(2.3) lz = IArl2m + D 1Ay 12t,
r=1 )

and form the completion A. A typical element z of A is of the form (2.2),
without the restriction that all but finitely many of the scalars Ay, Xi; should

vanish, but with ||z||, as in (2.3), being finite.

By some technical computation, one can check that {eg;+1} forms a
right approzimate identity, and {e2;} a left approzimate identity for A. But

A does not have any two-sided approzimate identity.



Proposition 2.3.2. Let A be a normed algebra. If A has a bounded left
approzimate identity and a right approzimate identity, then it has a two-

sided (unbounded, possibly) approzimate identity.

For the boundedness of sequential approximate identities, we have the

following proposition. See [9].

Proposition 2.3.3. Let A be a Banach algebra. If A has a bounded left
approzimate identity, then every sequential right approzimate identity is also

bounded (not necessarily by the same bound though).

The existence of sequential approximate identity implies some inter-
esting properties of the structure of the underlying space. First, regarding

the renorming, P. G. Dixon proved the following result in [9].

Theorem 2.3.4. Let A be a commutative normed algebra with a bounded
sequential approzimate identity {e,}. Then there is an equivalent algebra
norm on A for which there exists a sequential approzimate identity {f,} of

norm 1.

The above theorem was also generalized to non-commutative case

in [9], which extended a work by A. M. Sinclair [41].

Theorem 2.3.5. If A is a normed algebra with a bounded sequential two-
sided approzimate identity {en}, then there is an equivalent norm in which
A has a bounded sequential two-sided approzimate identity {fn} of norm 1.

Furthermore, if A is complete, then {f,} may be chosen commuting.



But we can not expect a Banach algebra having a bounded approxi-
mate identity to have a sequential approximate identity. In particular, we
have the following proposition about the sequential approximate identities

for ! algebra.

Proposition 2.3.6. If S is an uncountable set, then I*(S) does not have a

sequential approzimate identity.

Proof. Suppose not. Let {e,}%2, be a sequential approximate identity in

11(8) for an uncountable set S. Then for n =1,2,---,

llenll; = Z len(s)| < oo

seSs

For each n =1,2,--- and integer k, the set
1
is finite. Hence,

S1={s€5]|en(s) #0 for some n} = U USk,n

n=1 k=1

is countable.

So for any element s € S\S1, en(s) =0 forn=1,2,---. Then for

1, ift=s
ds(t) = .
0, ift#s

in [1(S) defined by

we have that

llends — &sll; = len(s) = 1| =1#0

which is impossible because {en}52, is a approximate identity.
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Therefore, if S is an uncountable set then ['(S) does not have a se-

quential approximate identity. O

We will discuss more properties of a sequential approximate identity

in Section 4.3.
2.4 Approximate units

Motivated by the criteria in Proposition 2.2.2 for the existence of a bounded
approximate identity in a normed algebra, we introduce the concept of ap-

proximate units. See [8].

A normed algebra A is said to have left approzimate units if for every
z € A and € > 0 there exists an element u € A (depending on z and ¢) such
that ||z — uz|| < e. The right and two-sided approximate units for a normed

algebra can be defined similarly.

If in addition, u can be chosen to be bounded by a fixed constant %,

we say that A has bounded left approzimate units.

We say that a normed algebra A has pointwise-bounded left approzi-
mate units if for each z € A there exists a constant k(z) such that for every

€ > 0 there exists an element u € A such that

llull < k(z) and |z —uz| <e.

It is obvious that every normed algebra with a left approximate iden-

tity has left approximate units. The converse is true for bounded case. In
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fact, Proposition 2.2.2 can be restated as follows. See [g].

Theorem 2.4.1. A normed algebra A has left, right or two-sided approzi-
mate units bounded by a constant k if and only if A has left, right or two-

sided approzimate identity bounded by the same constant k.

The following Proposition from [43] gives a relation between the ex-
istence of an approximate identity and the existence of pointwise-bounded

approximate units for the commutative algebras.
Proposition 2.4.2. A commutative normed algebra with pointwise-bounded

approzimate units has an approrimate identity.

Unfortunately, we can not in general assert the existence of a bounded
approximate identity under the conditions of Propositon 2.4.2. The following

example also from [43] serves as a counterexample.

Example 2.4.3. Consider the commutative normed algebra over C
A= {(/\1,)\2,~--) : XAi=0 for all but finite indices i }
with coordinatewise algebraic operations and the norm defined by
1, Az, ) = max iy |
Then A has pointwise-bounded approzimate units of the form
w=(1,---,1,0,--).

Obviously, A has no bounded approzimate identity.
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However, if the normed algebra is complete then we have a stronger

result still from [43] as follows.

Theorem 2.4.4. A commutative Banach algebra has pointwise-bounded ap-

proxzimate units if and only if it has a bounded approzimate identity.

Another characterization for the existence of left approximate units is
given in [8] by the next Proposition, from which we see that for a normed
algebra A, if there is a constant ¢ : 0 < ¢ < 1, such that each z € A with
llzll = 1 associates an element u € A such that ||z — uz|| < ¢ then the

algebra 4 has left approximate units.

Proposition 2.4.5. A normed algebra A has left approzimate units if and
only if there exists g € (0,1) with the following property: for every z € A

there exists an element u € A such that

iz —uz| < qllz].-



Chapter 3

Factorization and Bounded
Approximate Identities

Factorization is a very important and useful property of algebras and mod-
ules. For a normed algebra and its modules, this property is closely related
to whether the algebra has an approximate identity. In this chapter, we

discuss these relations.

3.1 Various factorization of sequences

Definition 3.1.1. We say that A has factorization of sequences (FS in
short) if, for every sequence {z;} C A there exist a € A and a sequence

{ys} C A such that z; = ay; for each i.

Definition 3.1.2. We say that 4 has factorization of bounded sequences
(FBS in short) if, for every bounded sequence {z;} C A there exist a € A

and bounded sequence {y;} C A such that z; = ay; for each i.

13
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Definition 3.1.3. We say that A has factorization of null sequences (FNS
in short) if, for every null sequence {z;} C A there exist a € A and a null

sequence {y;} C A such that z; = ay; for each 3.

We say A that has factorization of elements (FE in short) if, for every

element z in A, there exist ¢ and y in A such that z = ay.

"The following Proposition gives the relation among FS, FBS, FNS
and FE.

Proposition 3.1.1. For a normed algebra A, FBS implies FNS, FNS
implies F'S and FS implies FE.

Proof. FBS = FNS: This is because for every null sequence {z;}, {ﬂ%ﬂ}

is a bounded sequence.

FNS = FS: Let {z;}{2, be any sequence in .A. Then the sequence
Y = ;“%1-” is a null sequence in A. From FNS, there exist a € A and a null
sequence {z;} C Asuch that y; = az; (1 =1,2,3,...). Letting w; = i ||z 2,

we then have z; = aw; (i = 1,2,3,...). Therefore A has FS.

FS = FE : Trivial. 0

Let A be an algebra. Denote A% = {ab : a,b € A} and AP =
span(A?). Then A has FE if A = A2, We say that A has weak factor-
ization of elements (WFE in short) if A = APl See also [11], [15] and [2]
for references. Similarly, we have other weak versions of factorizations as

follows:
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Definition 3.1.4. We say that A has weak factorization of sequences (WFS
in short) if, for every sequence {z;} C A there exist an integer N, elements
al™ of A and sequences {yi(“)}zl in A, where n = 1,2,..., N, such that

T = 22/:1 a™ ;™) for each .

Definition 3.1.5. We say A has weak factorization of bounded sequences
(WFBS in short) if, for every bounded sequence {z;} C A there exist an
integer N, elements a(™ of 4 and bounded sequences {yz (n) }ZI in A, where

n=12...,N, such that z; = 2111\/:1 o™ 3,(™ for each .

Definition 3.1.6. We say that A has weak factorization of null sequences
(WFNS in short) if, for every null sequence {z;} C A there exist an integer
N, element a™ € A, n = 1,2,..., N, and null sequences {yi(")}zl in A

such that z; = >N o™ ;™ for each i.

Analogously, we have the following weakness version of Proposition 3.1.1.

Proposition 3.1.2. WFBS = WFNS = WFS = WFE

We therefore have the following implications diagram:

FBS = FNS = FS = FE

(%) 4 § Y Y
WFBS = WFNS = WFS = WFE

The converses of these implications are not true. Counterexamples
have been given by J. P. R. Christense [4], P. G. Dixon [11] [13], M. Lein-
ert [23], R. J. Loy [26], S. I. Ouzomgi [29], W. L. Paschke [32] and G. A.
Willis [44] [46] [47]. See also [45] for a summary.
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3.2 Cohen’s Factorization Theorem

First, we state the famous Cohen’s Factorization Theorem (See [5]).

Theorem 3.2.1. If A is a Banach algebra with a bounded approzimate
identity, then for each element z € A and § > 0, there exist elements y and

z in A such that

(i) z=yz;
(ii) z belongs to the closed left ideal generated by z ;

(iii) ||z — z|| < 4.

The beauty and deepness of the Cohen’s Factorization Theorem is that
its hypothesis is of topological nature while the conclusion is mainly alge-
braic. In this sense, people call it a characteristic theorem of Banach algebra.
For instant, when Palmer reviewed the book [8] by Doran and Wichmann,
he commented that “the theory of approzimate identity reached maturity

with the discovery by P. J. Cohen of his famous factorization theorem”.

Before Cohen proved his factorization theorem, W. Rudin had already
shown in [35] and [37] that every function in L!(G) is the convolution of two
other functions from L'(G) where G is the additive group of Euclidean n-
space or the n-dimensional torus. Cohen’s Factorization Theorem has been
widely used in studying the structure of Banach algebra. For example, it
was used by B. E. Johnson to answer many questions in cohomology theory

in [21]. The theorem was improved by N. Th. Varopoulous in [42] to the
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following:

Theorem 3.2.2. Every Banach algebra with a bounded approzimate identity
has FNS.

In [45], G. Willis observed the following result.

Proposition 3.2.3. If A has FNS, then there is a constant M > 0 such
that for every null sequence {z;}2, in A there are an element a and a null
sequence {y;}2, in A such that ; = ay; for each i, sup; ||y;|| < sup; ||z;|

and |la|| < M.

Hence we have the following theorem:

Theorem 3.2.4. If Banach algebra A has a bounded approzimate identity,
then there is a constant M > 0 such that for every null sequence {z;}%,
in A there are an element a and a null sequence {y;}32; in A such that

x; = ay; for each i, sup; ||y;|| < sup; ||zi]| and |ja]| < M.

We note that in all the factorization theorems cited in this section,
the existence of a bounded two-sided approximate identity is not necessary
and can be replaced by the existence of a bounded one-sided approximate

identity. Eventually, we have the following Proposition. See [8].

Proposition 3.2.5. Let A be a Banach algebra. Then the following are

equivalent:
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(i) there exists a constant K > 1 such that for every € > 0 and every

z € A there are elements a,y € A with

z=ay, |l <K, and |y-z|<e

(ii) A has a left bounded approzimate identity.

In general, factorization of elements does not imply that the algebra
has a bounded approximate identity. We will continue this discussion in

Section 4.1.

Factorization theorems for Banach algebras can naturally be general-

ized to Banach modules.

Let A be a normed algebra over F and let X be a normed linear space
over F. X is said to be a normed left A-module if X is a left A-module and

also satisfies that there exists a constant & > 0 such that
laz|| < klla|| ||| foralla € A and z € X.

A mormed left .A-module is called a Banach left A-module if it is complete
as a normed linear space. We denote .A! the unitization of A. Then every

left A-module X can be viewed as a left Al-module.

Definition 3.2.1. A (bounded) approzimate identity in A for X is a

(bounded) net {ej},., in A such that for all z € X,

limeyz ==z
AEA
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E. Hewitt and K. A. Ross [20] gave the following theorem:

Theorem 3.2.6. Let A be a Banach algebra and X be a Banach left A-
module. If A has a bounded approzimate identity for X then for z € X and

6 > 0 there exist a € A, y € X such that z=ay and ||z — y| < 6.

We point out that the proof of Theorem 3.2.2 given in [3, §11] also

works to conclude the following:

Proposition 3.2.7. Let A be a Banach algebra and X be a Banach left

A-module. If A has a bounded approzimate identity for X then for z, € X

with nlim zn =0, there ezist a € A and y, € X with lim y, = 0 such that
— 00 n—0o0

Zn=ay, (n=1,2,---).

3.3 Banach algebras having a bounded approxi-
mate identity

In this section we concern with basic results involving approximate identi-
ties for various concrete classes of Banach algebras. Among them are two
important classes: group algebras L!(G) of a locally compact group G and

amenable Banach algebras.

Let G be a locally compact (Hausdorff) topological group and u be the
left invariant Haar measure on G. The space L!(G) of all Haar integrable

functions on G is a Banach algebra under the norm defined by

£l = /G flds,  feING)
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and the convolution multiplication given by

(f+9)(2) = /G Few)e™) du(y) = /G fWey 2) duty),  fog € INE).

This algebra is called L*(G) group algebra.

If G is discrete, L1(G) = [}(G). In this case, it has an identity. If G is
not discrete, then L!(G) does not have an identity in general but it always

admits a bounded approximate identity.

Theorem 3.3.1 ([36] and [20]). The group algebra L(G) of a locally com-

pact group G has a two-sided approzimate identity bounded by 1.

In fact, if {Ua} is a neighborhood basis at eg, the unit of G, then

XUa
Ul
is the characteristic function of U, and |U,| is the Haar measure of U,.

gives a bounded approximate identity of bound equal to 1, where Xy,

More generally, we have the following Proposition [38]:

Proposition 3.3.2. Let G be a locally compact group, let i be a basis of
neighborhoods of eg and let (ey)yey be a net in L1(G) satisfying the following

properties:

(i) ey >0 for all U € 4;
(i) supp (ey)={z€U: ey(z) #0} CU for all U € 4;

(ii) llev|l, =1 for all U € L.

Then (ey)ucy s a bounded approzimate identity for L'(G).
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An approximate identity {e)} ca in a normed algebra A is called cen-
tralifexz = ey forallz € Aand A € A. Tt is not difficult to see the following

stronger version of Theorem 3.3.1 for compact groups as follows [18].

Proposition 3.3.3. The group algebra L*(G) of a compact group G has a

central approzimate identity bounded by 1.

Let G be a locally compact group. A subset of G is called invariant
if it is invariant under all the inner automorphisms. The group G is said
to have small invariant neighborhoods (denoted by G € [SIN]) if every
neighborhood of the identity contains a compact invariant neighborhood of
the identity. For example, locally compact commutative groups, compact
groups and discrete groups are all [SIN] group. See W. Palmer’s book [31]

for details and also H. Rindler’s paper [34] for a well-organized summary.

R. D. Mosak [28] has characterized this type of groups in terms of a

bounded approximate identity for its group algebra.

Theorem 3.3.4. A locally compact group G is an SIN-group if and only

if L*(G) has a central approzimate identity.

Let A be a Banach algebra and E be a Banach 4-module. A linear

map D: A — F is called a derivation if
D(ab) =a-Db+ (Da)-b  for a,b € A.

Let z € E. The mapping ad, : A — E given by adgy(a) = az — za (a € A)

is a bounded derivation, called an inner derivation.
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Denote Z!(A, E) the space of all derivations from A into E and

B'(A, E) the space of all inner derivations from A into E.

Definition 3.3.1. A Banach algebra A is called amenable if
ZY(A, E*) = BY(A, E")

or in terms of quotient

_ ZYA,E¥)

for every Banach A-bimodule E, where E* is the dual module of E.

We list here several classes of Banach algebras and their amenability.

Group Algebra L'(G): B. E. Johnson showed in [21] that the group algebra
LY(G) for a locally compact group G is amenable if and only if G is an

amenable group.

Measure Algebra M (G): Let G be a locally compact group. The measure
algebra M(G) is the unital Banach algebra of all (finite) complex regular

Borel measures on G with the convolution product defined by

ey = [ ([ ftar)ante) v, v e m@)ama s < cofc)
where Co(G) is the space of all continuous functions on G vanishing at

infinity.

H. G. Dales, F. Ghahramani and A. Ya. Helemskii proved in [7] that
a measure algebra M(G) is amenable if and only if G is a discrete and

amenable group.
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Uniform Algebra: A uniform algebra on a locally compact Hausdorff
space X is a uniformly closed subalgebra of Cy(X) which contains the con-
stants and separates the points of X. When endowed with the supremum
norm ||f|lx = sup,cx |f(z)|, the uniform algebra A becomes a Banach al-

gebra, called Banach uniform algebra.

M. V. Sheinberg proved in [40] that the uniform Banach algebra A is
amenable if and only if A is isometrically isomorphic to Co(X) for some

locally compact space X.

Fourier Algebra A(G) and Fourier—Stieltjes algebra B(G): B. E. For-
rest and V. Runde recently showed in [17] that the Fourier algebra A(G) on a
locally compact group G is amenable if and only if G has an abelian subgroup
of finite inder, and that the Fourier-Stieltjes algebra B(G) is amenable if
and only if G has a compact, abelian subgroup of finite indez. In [24], on the
other hand, H. Leptin proved that Fourier algebra A(G) has an approzimate

identity if and only if G is an amenable group.

B. E. Johnson [21] revealed the following general implication theorem:

Theorem 3.3.5. If a Banach algebra A is amenable then A has a bounded

approzimate identity.

Moreover, for ideals of an amenable Banach algebra, we need the fol-
lowing notation to characterize the existence of a bounded approximate iden-

tity as follows.
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Definition 3.3.2 (Weak Complementation). let E be a Banach space. A

closed subspace F of F is called weakly complemented in E if
Ft={¢cE: (2,0 =0forallz € F}

is complemented in E*, where E* is the dual of E.

In [6], Jr, P. C. Curtis and R. J. Loy showed the following result:

Theorem 3.3.6. Let A be an amenable Banach algebra, and let T be a

closed (two-sided) ideal of A. Then the following are equivalent:

(i) Z is amenable.
(ii) Z has a bounded approzimate identity.

(iii) Z is weakly complemented.

We mention here that a C*-algebra also belongs to the list of Banach

algebras having a bounded approximate identity. We refer to [22] for details.



Chapter 4

Unbounded Approximate
Identities

4.1 More factorization theorems

In this section we deal with two questions: (1) how to weaken the hypothesis
of boundedness on the approximate identity in the condition of Cohen’s Fac-
torization Theorem; and (2) how to construct counter—examples of a Banach

algebra with factorization but without a bounded approximate identity.

For (1), H. G. Feichtinger and M. Leinert [15] showed that for a fixed
element z in a Banach algebra A, z can be expressed as a product if the

following two assumptions hold:

(i) there exist constants K > 0 and 0 < « < 1 such that, for every e > 0,

there exists u € A with |ju]| < Ke @ and |juz — z|| < ¢;
(i) theseu = u(e) may be chosen so that u(er)-u(e2) = u(ea)-u(er) = u(er)

25
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whenever ey < ¢;.

P. G. Dixon further showed that for a commutative Banach algebra
the above condition (i) is somehow as strong as requiring the existence of a

bounded approximate identity in [11].

Theorem 4.1.1. Let A be a commutative Banach algebra. If for every
z € A, there exist constants K > 0, a € (0, %) such that, for each 0 < e < 1,
there is an element u € A with ||lul| < Ke™® and ||uz — z|| < €||z||. Then A

has a bounded approxzimate identity.

For (2), here we give a non—commutative Banach algebra which does
not have an approximate identity but does have factorization property, using

the idea of P. G. Dixon in [11].

Example 4.1.2. There is a four-dimensional Banach algebra that factor-

izes, but does not have approzimate identities.

Consider the algebra A = (C*, ||-[|;) with the product

(a1, a2, a3, a4) (b1, bz, b3, ba) = (agbi, agbe, azby, asbs)

Obviously, it is a non-commutative Banach algebra. For any (a1,02,03,a4) €

A, it can be written as
((Zl, ag,as, 0,4) = (c’ ]-7 as, a4)(a1) a9, d) 1)

where ¢, d are two arbitrary complex numbers.
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But A has neither left approximate identity nor right approximate
units. To see this, consider a = (1,0, 1,0) then for all x = (a1,a2,a3,a4) €
A

lax —all; = [[(1,0,1 — a4,0)[; > 1

and

|xa—all; =||(1 —a2,0,1,0); > 1.

So A does not have any left or right approximate units and hence does

not have left or right approximate identities.

M. Leinert gave an example in [23] of a commutative semisimple alge-
bra with factorization but without approximate units. Another example of
a commutative semisimple Banach algebra which has factorization but does

not have a bounded approximate identity was given in [30].

G. Willis constructed some examples of separable and non-separable
Banach algebras which factorize but do not have bounded approximate iden-

tities in [45]. We state some of them here.

Example 4.1.3. The following gives a commutative separable semisimple
Banach algebra A which does not have bounded approzimate identity but in

which null sequences factor.

Let Q be the set of rational numbers. For each positive integer n,

define a weight function w, on Q by

® n ift>0,
w =
" 1 ift<O.
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Define a norm ||-||,, on 1}(Q) by
£l = D1 @len(®) = D 1F @I +n D 1FE)].
t€Q <0 >0
Thus (11(Q), ||-]l,,) is a sequence of Banach algebras. Define the commutative

Banach algebra

A={ifp] fer(@ ema m a0}

with pointwise sum and product and with the norm defined by ||[{f»}32,] =

supy, || fnll,- Then A has the properties we wanted.

Example 4.1.4. The following gives a non-separable commutative Banach
algebra which does not have approzimate units but in which bounded se-

quences can be factored.

Let QT denote the additive semigroup of positive rational numbers and
let I}(Q™) be a commutative Banach algebra with the convolution product
(Frot)= D flt-s)g(s) (t€QF, f,9€QY).

O<s<t
Now let [°°(11(Q)) be the Banach algebra consisting of bounded sequences,
f = (fr), of functions in I1(Q%) with the product, (f - g)n = fn * gn
and norm given by ||f|| = sup, ||fall;- The closed subspace, co(I*(Q1)),
consisting of those sequences f such that lim, . || frll; = 0 is an ideal in
[°(I1(QT)). Then A = w will be a non—separable Banach algebra
co(11(QT))

which does not have approximate units but in which bounded sequences can

be factored.



29

4.2 More about factorization of sequences

From Theorem 3.2.2 and the diagram (%) in Section 3.1, we have the follow-

ing diagram:
existence of a bounded
approximate identity
!
() FBS = FNS = FS = FE
4 2| X8 X8
WFBS = WFEFNS = WFS = WFE

Some converses of these implications are known to be untrue. How-
ever, the relation between FBS and the existence of a bounded approximate

identity is still open.

In fact, it seems that FBS is much more restricted than FNS as

suggested in the following two results that are due to P. G. Dixon in [11].

Theorem 4.2.1. If A is a commutative, separable Banach algebra with

FBS, then A has an identity.

Theorem 4.2.2. If A is a commutative, separable Banach algebra with

FNS, then A has a (possibly unbounded) approzimate identity.

Furthermore, the approximate identity asserted in Theorem 4.2.2 can
be chosen so that its Gelfand transform is bounded by arbitrarily slowly

growing functions on the maximal ideal space. Precisely, from [1 1], we have:

Theorem 4.2.3. Let A be a commutative separable Banach algebra with

mazimal ideal space X. If A has FNS, then
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(i) for every positive real-valued function B € Co(X), there exists a € A

with [a(t)] > B(t) (¢ € X);

(i) for every positive real-valued function v € C(X) with v(t) — oo as
t — o0, A has an approzimate identity whose elements u satisfy |1 —

@) <) (t€ X);

Also, G. Willis constructed a plenty of counter—examples dealing with
the relations between the existence of bounded approximate identity and

various factorizations of sequences in [45].

4.3 Condition (U)

Condition (U) is a relatively new concept concerning unbounded approxi-

mate identities, which was first introduced by Y. Zhang. See [49] and [48].

Definition 4.3.1. Let A be a normed algebra and (ea) be a left (right)
approximate identity for A. We say that (e,) satisfies condition (U) if, for
every compact set K of A, |leaz — z|| (resp. ||z —eqx||) converges to 0

uniformly for z € K.

If (eq) is a two-sided approximate identity for A, by condition (U) we
mean that, for every compact set K of A, both [eq # — z|| and |z —eqz|

converge to 0 uniformly for z € K.

It is easy to see that a bounded left, right or two-sided approximate

identity always satisfies condition (U). All the Banach algebras discussed
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in [45] have approximate identities satisfying condition (U), but none of

them has a bounded approximate identity.

It is also known that there is a Banach algebra which has a bounded
left approximate identity and a right approximate identity satisfying condi-

tion (U) but does not have a bounded right approximate identity [9].

For sequential approximate identity, we have the following theorem.

Theorem 4.3.1. Every left sequential approzimate identity for o Banach

algebra satisfies condition (U).

Proof. Let A be a Banach algebra and (en)s2; be a left sequential approx-
imate identities for 4. Then for every x € A, there exists N > 0 such
that

llenz —z|| < 1, forn> N.

This implies that, corresponding to each z € A, there is a constant M, such
that

lens — z|| < My, for all n.
In fact, we can take M, = lglizg]cv{ﬂei:c —z||,1}.
Define T;, : A — A by
Th(z)=epz—2 (z € A).

Then for each n, T}, is a bounded linear operator on A. Moreover, for each
TE A,

1Twz]| = |lenz — z|| < M, for all n.
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From the Principle of Uniform Boundedness, T}, is uniformly bounded,

L.e. there exists a constant M such that

|Tn]| < M for all n.

Let K be any compact subset of A. Then there are {z1,29,...,2m} C

K with the following property: for any z € K there is some €{1,2,...,m}

such that
o =2l < 5=
T oM +2)
Since (en) is left approximate identity, for each z; € {x1,%2,...,2m} there

exist, correspondingly, N; such that

lenz: — 2] <€/2  forn> N, i=1,2,...,m.

Now we take Ny = max {Ny, Ny, . .., Np}. Then for all z € K and

7‘L>No,

llenz ~ 2]l < flen — enasll + llenss — 2 + ; — 2]
= 1Tn(®) + @ = Tu(z:) - @ill + llenss — zil] + s — 2
=ITn(@ = 2i) + (= — 20) | + llenss — @il| + ||z — 2|

< (IZnll + 2llz: - 2l + llenz; — 2]

€ €
=€

Therefore, the left sequential approximate identity (e, ) satisfies condition (U).

The proof is complete. O
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Similarly, we can conclude that a sequential right or two-sided ap-
proximate identity for a Banach algebra satisfy condition (U). The converse
of Theorem 4.3.1 is not true. It is easy to check that I1(S) for an infinite set
S has an approximate identity satisfying condition (U). In fact, let (V) be
the collection of all finite subsets of S with the inclusive partial order, then
(xv) is such an approximate identity, where (xy) denotes the characteristic
function of V. However, Proposition 2.3.6 tells us that 11(S) does not have

a sequential approximate identity for an uncountable set S.

The completeness of the algebra is not removable in the above theorem.

We use an algebra constructed in [14] to illustrate our assertion.

Example 4.3.2. There ezists commutative separable normed algebra with

o sequential approzimate identity that does not satisfy condition (U).

Let Ap be the commutative separable normed algebra with generators

€n,Tn (n=1,2,8, .- +) satisfying the following conditions for 3,7 € N:

€i€j = €min {i,j}
€iT; = x4, if¢ > j,

z;x5 = 0.

Then any element z € Ap is of the form
(4.1) T = Z oe; + Z,Bj(ﬂj + Z"ﬁjeixj,
i J i<y

the sum being finite.
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Define the norm of z € Ay by

=]l = Z Joui|2° + Z 1Bl + D g 2°.

i<J

Thus Ag is a commutative normed algebra that admits a sequential un-
bounded approximate identity (e,). In fact, if z is as in (4.1) and n is

greater than all the i, j occurring in the (finite) sums in (4.1), then e,z = 2.

Now consider the compact subset of A

iEj *
22

For any j > n,
z;
w57z = 5723 2 e 572 - |5
2" —1
212
Let j =n-+1,

“ Tp+1 l‘n+1H*2n—1>3

Ton—-1 " 9n-1 on—1

"This shows that this sequential approximate identity (e,) for normed

algebra Ag does not satisfy condition (U).

Y. Zhang studied in [49] the existence of an approximate identity
satisfying condition (U) for the closed ideals of group algebras on a compact

group. He proved the following:

Proposition 4.3.3. Let G be a compact group. Then every closed ideal T
of LY(G) has an approzimate identity that lies in the center of L*(G) and

satisfies condition (U).



35

Using the similar technique, we obtain the following proposition for

the closed ideal of L2(G).

Proposition 4.3.4. Let G be a locally compact commutative group, and let

¥ be its dual group. For E C X, let
I(E)={f € L*(G) : f(o) =0 foro € E},

where f is the Fourier transform of f. ThenT (E) is a closed ideal of L*(Q)

and it has an approrimate identity that satisfies condition (U).

Proof. The first assertion is clear. Denote T = Z(E). Let (U,) be a net
of compact neighborhoods of e the unit of G and denote u, = IXULQI’ where
XU, is the characteristic function of Uy, and |U,| is the Haar meas:re of U,.
From the commutativity of G, (uq) is an approximate identity for L?(G)

with L!-norm bounded.

Now let xg be the characteristic function of E C X, we have that
xz\g - LP(X) C LP(X) for p > 1. In particular, for p = 2, xs\g - Ua €
L2(X) for each o, since gy € L*(X) from the Plancherel Theorem. Using
the Plancherel Theorem again, we have that there is a p, € L?(G) such
that Do = Xg\E - Ua. For each o in E, pa(0) = xx\g(0) - Ua(c) = 0, so

Pa €T =I(FE). I fel,
Pa*f) = (F*pa) =f Pa=F xo\p Ta=F Ta=(f*us) = (ua*f)
Thus, pa* f =uqg* f for f € L.

Given a compact set K of Z, for every € > 0, there exist fi, fo,-+- , fn €

K satisfying that for every f € K, ||f — fill, < ¢/3 for somei € {1,2,--- ,n}.
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Since (u,) is an approximate identity for L?(G) with L!-norm bounded,

lua * fi = filly < €/3
fori=1,2,--- ,n and a > ap.
Let f € K with ||f — fi||l, < €/3, we have from Proposition 2.39 a, [16]
that for above € > 0
l[wa * f = o filly = llua = (f = i)l
< Hlually 1 = fills = I1f = fill
< €/3.

Hence for « > ay,

l[va* f = flly < llua * f = ta * filly + llua = fi = filla + 11.f = £l

<€/3+¢/3+¢/3=€¢ forall fe K

ie.,

lpa* f—fllo <e  forall feK.

This shows that, for every compact set K of Z, po* f — f uniformly on
K. Therefore (p,) is an approximate identity for Z that satisfies condition

V). 0

4.4 Approximate identities in algebras of compact
operators

In this section we assume that A is an operator algebra on a Banach space

X, containing finite rank operators and being contained in the algebra of
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compact operators. We collect some results about unbounded approximate

identities in A.

Let X be a Banach space and K be a subset of X. Let ¢ be a
set of operators on X. We say that the identity is approzimable on K by
operators in  if, for every € > 0, there is an S € ¢ with ||Sz—z| < ¢
(z € K). We say that X has the approzimation property (AP in short)
if, for every compact set K C X, the identity is approximable on K by
finite-rank operators; X has the compact approzimation property (CAP in
short) if, for every compact set K C X, the identity is approximable on K

by compact operators.

Suppose that B(X) is the operator algebra of continuous operators
on X. Denote by F(X), F(X) and K(X) the ideals of B(X) of respec-
tively finite-rank operators, operators that are uniformly approximable by
finite operators and compact operators on X. One can check that F(X) C

F(X) = l(F(X)) € K(X).

The question of whether the Banach algebra of all compact operators
on a Banach space always has a bounded approximate identity was first
stated as an open problem in [8] and P. G. Dixon examined both bounded

and unbounded cases in [12], showing that

Theorem 4.4.1. Let X be a Banach space. Then

(i) F(X) has a bounded left approximate identity if and only if X has
bounded AP;
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(if) K(X) has a bounded left approximate identity if and only if X has
bounded CAP.

Theorem 4.4.2. Let X be a Banach space. Then

(i) F(X) has a left approzimate identity;
(ii) if X has AP then F(X) has a left approzimate identity;

(iii) if X has CAP then K(X) has a left approzimate identity.

In [19] [39], N. Grgnbzk, G. A. Willis and C. Samuel extended the

approach of [12] to consider further right approximate identities as follows.
Theorem 4.4.3. Let X be a Banach space. Then

(i) F(X) has a bounded right approzimate identity if and only if X*, the
dual space of X, has bounded AP;

(ii) K(X) has a bounded right approzimate identity if and only if the iden-
tity operator on X* is uniformly approzimable on compact sets of X*

by a bounded net of adjoint operators of compact operators on X.

In light of condition (U), Y. Zhang finally clarified the relation between
AP/CAP of X and the existence of approximate identities for F'(X)/K(X).

He showed the following three theorems in his paper [51].

Theorem 4.4.4. Let X be a Banach space. The following are equivalent:

(i) X has AP;
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(i) F(X) has a left approzimate identity that satisfies condition (U);

(iif) F(X) has a left approzimate identity that satisfies condition (U).

Theorem 4.4.5. For a Banach space X, K(X) has a left approzimate iden-
tity that satisfies condition (U) if and only if X has CAP.

Theorem 4.4.6. Let X be a Banach space. The following are equivalent:

(i) the dual space X* has AP;
(i) F(X) has a right approzimate identity that satisfies condition (U);
(ili) F(X) has a right approzimate identity that satisfies condition (U);

(iv) each of F(X) and F(X) has a two-sided approzimate identity that

satisfies condition (U).



Chapter 5

Further Questions

From Theorem 4.2.1,Theorem 4.2.2 and (x*) in Section 4.2, FBS seems a

very strong condition on a Banach algebra.

Question 1. Is there any relation between FBS and the existence of a
bounded approximate identity for a Banach algebra? In particular, does
the existence of a bounded approximate identity imply FBS for a Banach

algebra?

Question 2. What can one say about the reverse of any implication in

diagram (#*) except for those that have known?

For condition (U),

Question 3. Under what conditions does a closed ideal of L?(G) for a general
locally compact abelian group G have an approximate identity satisfying
condition (U)? What if for a closed ideal of group algebra L!(G) for a general

locally compact abelian group G?

40
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Question 4. Does there exist a Banach algebra that has an approximate

identity but does not have an approximate identity satisfying condition (U)?
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