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Abstract

we examine the properties of approximate identities for Banach algebras

and survey the known results involving bounded and unbounded approxi-

mate identities for Banach algebras, in particular, those related to the fac-

torization theory for Banach algebras.

special attention is also paid to condition (u) for unbounded approx-

imate identities. We prove that every sequential approximate identity for a
Banach algebra satisfies condition (u), we construct an example of a com-

mutative separable normed algebra having a sequential approximate iden-

tity that does not satisfy condition (U), and we show that the closed ideal

r(E): {f e L2(G),Î:0 on.Ð} of L'(G) with G a commurarive locauy

compact group has an approximate identity satisfying condition (u), where

E is a subset of the dual group X of G.

Iu



Acknowledgements

I would like to express my sincere gratitude to my advisor, Dr. yong zhang,
whose expertise, persistence, understanding, direction, kindness and pa-

tience added considerably to my graduate experience. I appreciate his help-
ful comments, suggestions and constructive criticism throughout this entire
project.

I would like to thank Dr. Fereidoun Ghahramani for his great help

during my course work and the crucial feedback to my thesis. I would also

like to thank Dr. xikui wang for taking time out from his busy schedule to
serve as my external examiner.

I would like to acknowledge the Department of Mathematics at the
University of Manitoba for their generous financial support.

I am grateful to all my friends in winnipeg and rianjin for our venting
of frustration during these two years.

Finally, I am forever indebted to my parents for thejr loue.

Xuan Li

Winnipeg, Manitoba

August 26,2005

lv



Chapter 1

fntroduction

Approximate identity is an interesting topic in the field of functional analy-

sis. The theory about it is useful in solving many problems in the fietd. It

is closely related to the factorization theory for Banach algebras and their

modules.

The concept of "approximate identity" was first described by L. H.

Loomis l27l in 1953. Years later, P. J. Cohen [5] gave an explicit definition

and sta¡ted to establish the connection between the existence of a bounded

approximate identity and the factorization theory. However, the study of

unbounded approximate identities was beyond the scope of the mathemati-

cians at that time.

Our goal in this thesis is to survey some known results about bounded

and unbounded approximate identities for Banach algebras.

In Chapter 2, we present some elementary properties of approximate
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identities for normed algebras. We show that if 
^9 

is an uncountable set then

the algebra 11(,9) does not have a sequential approximate identity. Chapter 3

concerns bounded approximate identities for Banach algebra. We discuss the

concept of "weak factorization of bounded sequences" and summarize the

relations among various factorizations of sequences. In Chapter 4, we study

unbounded approximate identities for Banach algebras. The investigation is

around condition (U). We prove that every sequential approximate identity

for a Banach algebra satisfies condition (U). We then give an example of a

commutative separable normed algebra with a sequential approximate iden-

tity thai does not satisfy condition (U). Finally, we show that the closed ideal

T(E) : {f € L2G): 1: 0 on E} of L2(G) for a commutative locally com-

pact group G has an approximate identity satisfying condition (U), where .E

is any subset of the dual group E of. G. Questions for further investigation

are raised in Chapter 5.



Chapter 2

Approximate ldentities in
h[ormed Algebras

Throughout this Chapter the symbol F'will be used to d.enote a field that is

either the real field lR or the complex field C.

2.L Preliminaries

Here we will first recall some elementa.ry defrnitions and notations which are

consistent with those in [3] and [S].

An associative algebra over IF is a linear space,4 over rF together with

a multiplication mapping (s, A) * rA of A x,4 into A that satisfies the

following axioms (for all t,U, z e ,4, a e F'):

(i) r(sz) : (ra)",

(ii) z(g I z) : rg -t rz, (x + y)z : rz + Az)



(äi) (ar)s : a(xa) : r(aa).

An algebra-norrn on an algebra Ais a mapping ll .ll' "a ¡-+ lR, with

which Ais a normed space and the following inequality holds

ll*all < ll"ll llyll @,s e A).

If "4 has an algebra-norm defined on it, we call it a normed algebra.

A complete normed algebra is called a Banach algebra.

A di,rected set is a partialty ordered set Â (admitting Reflexivit¡ An-

tisymmetry and Tlansitivity) such that, given À1, À2 € À, there exists À e À

with À > À¡ (k: I,2).

Let E be a topological space. Ã net in E is a mapping from a directed

set Â into E. A net {r¡}.1.¡ in -Ð is said to conuerge to r € ,8, denoted by

lt5"'^ 
: 

"'

if, for every neighborhood I/ of r, there exists À¡ € r\ such that z¡ e. U for

all À > À0.

2.2 Approximate identities

Definition 2.2.L. Let A be a normed algebra. Ã Ieft approrimate identi,ty

for "4 is a net {e¡}¡6¡ in 
"4, 

such that for all r € A,

(2.1) lim e¡z : r
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Ri.ght appror,'imate i,denti,ties are similarly defined by replacing e^r, with, re^

in Equation (2.1). A two-si.ded approrimate identity is a net that is both a

left and a right approximate identity.

An approximate identity {er}len is called sequential if .r\ is identical

to positive integers with the usual order, and is said to be commutati,ue (or

abeli,an) if e¡, and e)2 commute for all À1, À2 € Â.

An approximate identity is called bounded if there exists a positive

constant k such that

ll'.rll <k (ÀeÂ).

In this case, v/e define the bound,k of {e¡}¡ç¡ by

k : sup lle¡ll,

and the normby

ll{"r}ll : timszp lle.rll.

Remark 2.2 .1 . Tlne norm of an approximate identity is always no less than 1 .

In fact, for all fr e A

ll"ll : tip llerzll ( limsup ll"rll . ll"ll.

So 1 < li¡rsur ll"rll : ll{"r}ll.

The following proposition asserts an equivalent definition of approxi-

mate identity. The proof is straightforward and can be found in book [8] by

Doran and Wichmann.
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Proposition 2.2.L. A normed algebra A has a Ieft approrimate i.d,enti,ty i.f

and only i,f for euery fini,te set {"r,r2,... ,rr} of elements ,in A and, euerg

e > 0 there etists an elernent e €. A such that llr¿- errll 1 e for,í :
I,2,' ' ' ,n.

Remark 2.2.2. one can draw the right side and the two-side versions of

the above proposition. In general, if a result holds for left approximate

identities, it will be true also for right approximate identities and two-sided

approximate identities with minor respective changes.

For bounded approximate identities we have the following Dixon's

Theorem. See [14].

Proposition 2.2,2. A norrned algebra A has a left approx,imate id,entity

bounded by k i'f and only i,f for euery r € A and euery e ) 0 there erists an

element e € A such that |l"ll S f and llr - erll < e.

2.3 Properties of approximate identities

we start from the relationship between lefi, right and two-sided approx-

imate identity. It is clear that if a normed algebra has both a bounded

left approximate identity and a bounded right approximate identity, then

it has a bounded two-sided approximate identity. Naturally, the following

questions arise:

(i) Does the existence of a left approximate identity and a right

approximate identity imply the existence of a two-sided ap-



proximate identity?

(ii) What happens when there is a bounded approximate iden-

tity on one side and an unbounded approximate identity on

the other side?

These two questions above have been answered in [9] with the following

two results.

Example 2.3.L. Let Ao be the compler assoc,iatiue algebra generated bg

{e¿ : i, : I,2,3,'..} subject to the relat'ions eiej : emin{i,j}; unless i 'is

odd and j 'is euen. Then i,t can be checked that a typi.cal elernent of As i,s

uniquely erpressi.ble in the form

(2.2) ,: Ë À,e, *l À¿¡ere¡,
r:1 i,i

where all but fini,tely many of the scalars Àr, À¿j are zero, and, the second

summat'ion i,s taken ouer odd ualues of i, and euen ualues of j. We define a

norm for Ao by

(2.3) ll"ll : Ë l^,1r" +llÀr¡12à+i,
r:7 i,i

and fomn the completi,on A. A tgpical element r of A i,s of the form (2.2),

witÌtout the restri.cti.on that all but fini,tely many of the scalars À,, À¿j should

uan'ish, but with llrll, as i,n (2.3), being finite.

By some techni.cal computation, one can check that {"2¿*t} forms a

right approri,mate i,dentitg, and, {"2¿} o left approxi.mate i,d,entity for A. But

A does not haue any two-si.ded approrimate i,denti,ty.



8

Proposition 2.3.2. Let A be a normed algebra. If A has a bounded left

approlimate i.denti,tg and a ri,ght approri,rnate i.denti,ty, then i.t has a two-

si,ded (unbounded, possibly) approrimate i,denti,ty.

For the boundedness of sequential approximate identities, we have the

following proposition. See [9].

Proposition 2.3.3. Let A be a Banach algebra. If A has a bounded left

approximate i,denti,tg, then euery sequenti,al ri,ght approrimate i,denti,ty i,s also

bounded (not necessarily by the same bound though).

The existence of sequential approximate identity implies some inter-

esting properties of the structure of the underlying space. First, regarding

the renorming, P. G. Dixon proved the following result in [9].

Theorem 2.3.4. Let A be a commutat'iue normed algebra wi,th a bounded

sequenti.al approrimate i,denti.ty {e"}. Then there ,is an equ'iualent algebra

norrn on A for which there etists a sequenti,al approri.mate identi,ty {f"} of

norm 1.

The above theorem was also generalized to non-commutative case

in [9], which extended a work by A. M. Sinctair [4i].

Theorem 2.3.5. If A i.s a normed algebra wi,th a bounded sequentiøI two-

si,ded appror'i,mate identitg {en}, then there i,s an equ'iualent norm i,n whi,ch

A has a bounded sequenti,al two-si,ded approri,mate i.denti,ty {f "} of norm 1.

Furtherrnore, i,f A i,s cornplete, then {f"} may be chosen comrnuting.
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But we can not expect a Banach algebra having a bounded approxi-

mate identity to have a sequential approximate identity. In particular, we

have the following proposition about the sequential approximate identities

for 11 algebra.

Proposition 2.3.6. If S i,s an uncountable set, thenll(S) does not haue a

s equenti,al approrimate i,denti,ty.

Proof. Suppose not. Let {""}Ër be a sequential approximate identity in

l1(S) for an uncountable set ^9. Then for n: 1,2,... ,

lle"l[:f1""(")l <*
s€,9

For each n:1,2,..' and integer k, the set

Sk,n:{seSltøfrlt >}}

is finite. Hence,

^91 
:{se Sle"(s) lo forsomen}: Ü Üt0,"

n:1. Ic:I

is countable.

So for any element s € ,9\,S1, en(s) :0 for n : 1,2,. . . . Then for ô,

in 11(,9) defined by

we have that

llu"6" - ô'llr : 1""(t) - 1l :110

which is impossible because {er};ar is a approximate identity.

(t ifú:sa'tt):[0, iftls
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Therefore, if ,9 is an uncountable set then l1(,5) does not have a se-

quential approximate identity. n

'We will discuss more properties of a sequential approximate identity

in Section 4.3.

2.4 Approximate units

Motivated by the criteria in Propositi on 2.2.2 for the existence of a bounded

approximate identity in a normed algebra, we introduce the concept of ap-

proximate units. See [8].

A normed algebra "4 is said to have Ieft approri,mate un'its if for every

r € A and e ) 0 there exists an element u e A (depending on z and e) such

that llz - urll ( e. The right and two-sided approximate units for a normed

algebra can be defined similarly.

If in addition, u can be chosen to be bounded by a fixed constant k,

we say th,at Ahas bounded left approri,mate un'its.

We say that a normed algebra "4 has poi,ntwi,se-bounded left approri,-

mate un'its if for each r e A there exists a constant k(r) such that for every

e ) 0 there exists an element u € A such that

llzll ( r(z) and llr - urll < e.

It is obvious that every normed algebra with a left approximate iden-

tity has lefb approximate units. The converse is true for bounded case. In
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fact, Proposition2.2.2 can be restated as follows. See [B].

Theorem 2.4.L. A normed algebra A has left, ri,ght or two-si,ded approri.-

rnate un'its bounded by a constant k i,f and only i,f A has teft, right or two-

si,ded approtirnate i,denti.ty bounded by the same constant lc.

The following Proposition from [43] gives a relation between the ex-

istence of an approximate identity and the existence of pointwise-bounded

approximate units for the commutative algebras.

Proposition 2.4.2. A commutat'iue normed algebra wi.th pointwi,se-bounded

approrimate units has an approtimate i,denti,ty.

unfortunatel¡ we can not in general assert the existence of a bounded

approximate identity under the conditions of Propositon2.4.2. The following

example also from [43] serves as a counterexample.

Example 2.4.3. Consi,der the commutati,ue norrned algebra ouer C

"4: {(Àr,À2,...) , À¿:0 for aUbut fini,te i.nd,ices i}

wi.th coordi,natew'ise algebrai,c operations and the norm defined by

ll(Àr, À2, ' ' ')ll : max I zÀ¿ l.

Then A has pointwi,se-bounded approrimate units of the forrn

u¿:(1,...,1,0,...).

Obui.ously, A has no bounded approtirnate identity.
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However, if the normed algebra is complete then we have a stronger

result still from [43] as follows.

Theorem 2.4.4. A commutati,ae Banach algebra has pointwi,se-bound,ed, ap-

prori,mate uni,ts if and only i,f it has a bounded approx'imate identi,ty.

Another characterization for the existence of left approximate units is

given in [8] by the next Proposition, from which v/e see that for a normed

algebra,4, if there is a constant q: 0 < g 1I, such that each r €,4 with

ll"ll : 1 associates an element u € A such that llr - urll ( q then the

algebra Ahas left approximate units.

Proposition 2.4.5. A normed algebra A has left approri,mate uni,ts i,f and,

onlg i,f there erists S e (0, I) wi.th the followi,ng property: for euery æ € A

there erists an element u e A such that

llr-urll<qllrll.



Chapter 3

Facto úzation and Bounded
Approximate ldentities

Factorization is a very important and useful property of algebras and mod-

ules. For a normed algebra and its modules, this property is closely related

to whether the algebra has an approximate identity. In this chapter, we

discuss these relations.

3.1 Various factoúzation of sequences

Definition 3.1.L. We say that "4 has factori,zati,on of sequences (FS in

short) if, for every sequence {r¿} c ,4 there exist a e ,4 and a sequence

{A¿} c "4 such that r¿: aAi for each z.

Definition 3.L.2. We say that "4. has factori,zati,on of bounded sequences

(FBS in short) if, for every bounded sequence {*r} c.4 there exist ¿ €,4

and bounded sequence {A¿) C "4 such that r¿ : aU¿ for each e.

13
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Definition 3.1-.3. We say that Ahas factorizati,on of null sequences (FNS

in short) if, for every null sequence {r¿} C ,4 there exist ¿ € '4 and a null

sequence {A¿} c "4 such that r¿: o,Ai for each z.

We say A that has factori,zati,on of elements (FE in short) if, for every

element r in A, there exist a andy in "4 such that r: ay.

The following Proposition gives the relation among FS, FBS, FNS

and FE.

Proposition 3.1.1. For a normed algebra A, FBS impli,es.FÀ/S, -FÀ[,S

i.mpli,es FS and FS i,mpli.es FE.

Proof . FBS =+ FNS: This is because for every null sequenc e {ri), {rA }
is a bounded sequence.

FNS + FS: Let {z¿}p, be any sequence in "4. Then the sequence

Ut: ffi is a null sequence in ,4. F}om FNS, there exist a e A and a null

sequence {r¿} C "4such thatg¿: o,z¿(i:7,2,3,...). Letting ui:|lltrllro,
we then have r¿ - cl,rri. (i,: I,2,3,... ). Therefore ,4, has FS.

FS+FE: Tïivial.

Let A be an algebra. Denote A2 : {ab : a,b e A} un¿ ¡12) :
span(A2). Then "4 has FE if A: A2. We say that,4 has weak factor-

ization of elements (WFE in short) if A: "4[21. See also [11], [15] and [2]

for references. Similarly, we have other weak versions of factorizations as

follows:

n
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Definition 3.1.4. we say that Ahas weale factorizat'íon of sequences (wFs

in short) if, for every sequence {ru]' c.4 there exist an integer ly', elements

a(") of A and. sequences {al"l¡7, in,4, where n: I,2,...,N, such that

r¿ : DI:to(n) , (n) for each e.

Definition 3.1.5. we say A has weak factori,zati.on of bounded sequences

(WFBS in short) if, for every bounded sequence {r} c,4 there exist an

integer ly', elements a@) of Aand bounded sequences {Ud"l¡* ,in,4, where

n:1,2,...,ly', such that r¿: Dåv:r ¿(") ro@) for each z.

Definition 3.L.6. we say that Ahas wealt, factori.zati,on of null sequences

(\MFNS in short) if, for every null sequence {ri} c ,4 there exist an integer

N, element s@) ç A, n: I,2,...,-fy', and null sequences {3r¿(")}*, in.4

such that r¿ : DI:t a(") yo(") for each e.

Analogously, we have the following weakness version of Proposition 3.1.1.

Proposition 3.L.2. WFBS + WFNS + WFS + WFE

We therefore have the following implications diagram:

FBS+FNS+FS+FE
(*) l, .tl, {l {t.WFBS + WFNS + .WFS 

=+ WFE

The converses of these implications are not true. counterexampres

have been given by J. P. R. Ch¡istense [4], P. G. Dixon [11] [18], M. Lein-

ert [23], R. J. Loy [26], S. I. Ouzomgi [29], W. L. Paschke [32] and G. A.

Willis 144) 146l [47]. See also [45] for a summary.
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3.2 Cohen's Factorization Theorem

First, we state the famous Cohen's Factorization Theorem (See [5]).

Theorem 3.2.L. If A i.s a Banach algebra wi,th a bounded approrimate

i.denti,ty, then for each element r €. A and 6 > 0, there erist elements y and

z i,n A such that

(i) r:yz;

(ä) z belongs to the closed left ideat generated by r ;

(iii) llr - zll < 6.

The beauty and deepness of the Cohen's Factorization Theorem is that

its hypothesis is of topological nature while the conclusion is mainly alge-

braic. In this sense, people call it a characteristic theorem of Banach algebra.

For instant, when Palmer reviewed the book [8] by Doran and Wichmann,

he commented that "the theory of approrimate i,denti.ty reached maturi,ty

wi.th the d'iscouery by P. J. Cohen of his farnous factori,zati,on theorem,, .

Before Cohen proved his factorization theorem, W. Rudin had already

shown in [35] and [37] that every function in ¿1(G) is the convolution of two

other functions from L|(q where G is the additive group of Euclidean n-

space or the n-dimensional torus. Cohen's Factorization Theorem has been

widely used in studying the structure of Banach algebra. For example, it

was used by B. E. Johnson to answer many questions in cohomology theory

in [21]. The theorem was improved by N. Th. Varopoulous in [42] to the
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following:

Theorem 3.2.2. Euery Banach algebra wi,th a bounded approrirnate i,denti.ty

h,as FNS.

In [4S], G. Willis observed the following result.

Proposition 3.2.3. If A has.FÀf,S, then there 'is a constant M > 0 such

that for euery null sequence {n¿}?t i,n A there are 0,n element a and a null

sequence {a¿}?t i,n A such that r¿: 0,A.¿ for each i,, sup, llgill < sup¿ llr¿ll

and llall < M.

Hence we have the following theorem:

Theorem 3.2.4. If Banach algebra A has a bounded approrimate i,denti,ty,

then there 'i,s a constant M > 0 such that for euery null sequence {r¿}Pt

in A there are 0,n element a and a null sequence {U¿}Et i,n A such that

ï¿ : aAi for each i, sup¿ llg¿ ll < sup¿ llz¿ ll and llall < M .

We note that in ali the factorization theorems cited in this section,

the existence of a bounded two-sided approximate identity is not necessary

and can be replaced by the existence of a bounded one-sided approximate

identity. Eventuall¡ we have the following Proposition. See [8].

Proposition 3.2.5. Let A be a Banach algebra. Then the following are

equ'iualent:
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(i) there erists a constant K > 1 such that for euery e ) 0 and, euery

r e. A there are elements a,g e A wi,th

t: aU, lloll S X, and llA - "ll <,

(ii) 
"4 has a left bounded approrimate i.denti.ty.

In general, factorization of elements does not imply that the argebra

has a bounded approximate identity. we will continue this discussion in

Section 4.1.

Factorization theorems for Banach algebras can naturally be general-

ized to Banach modules.

Let A be a normed algebra over IF and let x be a normed linear space

over IF. x is said to be a normed Ieft A-module if x is a lefi ,4-module and

also satisfies that there exists a constant k ) 0 such that

llo"ll Sklløll llull forall ae AardreX.

A mormed left " -module is called a Banach teft A-modute ff it is complete

as a normed linear space. we denote 
"4.d 

the unitization of ,4. Then every

lefi "4.-module X can be viewed as a left , fl-module.

Definition 3.2.1. Ã (bounded) approri,mate i,denti.ty in ,4 for X is a

(bounded) net {e¡}^.n in,4 such that for all r e X,

Iimetr:n
À€^ "
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E. Hewitt and K. A. Ross [20] gave the following theorem:

Theorem 3.2.6. Let A be a Banach algebra and X be a Banach teft A-

module. If A has a bounded approrimate i.denti,ty for X then for z €. X and

6 > 0 there erist a e A, U € X such that z: aA and ll" - All < õ.

We point out that the proof of Theorem 3.2.2 given in [3, $11] also

works to conclude the following:

Proposition 3.2.7. Let A be a Banach algebra and X be a Banøch left

A-rnodule. If A has a bounded approrimate i,denti.ty for X then for z, € X

wl,tn ]yyzn:0, there exist a e A and y, € X wi.th 
^l.{g;-A,.:0 

such that

zn : dAn (n : I,2,. . .),

3.3 Banach algebras having a bounded approxi-
mate identity

In this section we concern with basic results involving approximate identi-

ties for various concrete classes of Banach algebras. Among them are two

important classes: group algebras Lt(G) of a locally compact group G and

amenable Banach algebras.

Let G be a locally compact (Hausdorff) topological group and p, be the

Ieft invariant Haar measure on G. The space Lt (G) of all Haar integrable

functions on G is a Banach algebra under the norm defined by

ll/llr: l"lflor, r eLl(G)
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and the convolution multiplication given by

u*s)@): [^r{rùsfu-\ap@): l.1o)nta-r*)dp(a), f ,s e rr(c).
JG

This algebra is called LI(G) group algebra.

If G is discrete, Lt(G) : Il(G). In this case, it has an identity. If G is

not discrete, then L'(G) does not have an identity in general but it always

admits a bounded approximate identity.

Theorem 3.3.1 ([36] and [20]). The group algebraLI(G) of alocally com-

pact group G has a two-si,ded approrimate i,denti,ty bounded by 1.

In fact, if {¿/"} is a neighborhood basis at e6r, the unit of G, then

ffi *rr"s a bounded approximate identity of bound equal to I, where yso
lual
is the characteristic function of Uo and lUrl is the Haar measure of Uo.

More generally, we have the following Proposition [88]:

Proposition 3.3.2. Let G be a locallg compact group, Iet lJ be a basi,s of

nei,ghborhoods of e6 and let (eu)ueu be a net, in L|(G) sati,sfying the foUowi,ng

propert'ies:

(r) 
"u 

> 0 for allU ell;

(ä) supp ("u): {x eU : ey(r) +0} cU for aUU ett;

(iii) lleyll, :7 for allU ett.

Then (eu)uçs'is a bounded approri.rnate identi,ty for Lt(G).
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An approximate identity {e.x}.le,r in a normed algebra Ais called cen-

tralif esr - re^ for all n € Aand À e Â. It is not difficult to see the following

stronger version of Theorem 3.3.1 for compact groups as follows [18].

Proposition 3.3.3. The group algebra L,(G) of a cornpact group G has a

central approri,mate i,denti,ty bounded by 1.

Let G be a locally compact group. A subset of G is called 'inuariant

if it is invariant under all the inner automorphisms. The group G is said

to have srnall i.nuariant nei,ghborhoods (denoted by G e [^91¡/]) if every

neighborhood of the identity contains a compact invariant neighborhood of

the identity. For example, locally compact commutative groups, compact

groups and discrete groups are all [S/¡/] group. See W. Palmer's book [31]

for details and also H. Rindler's paper [34] for a well-organized summary.

R. D. Mosak [28] has characterized this type of groups in terms of a

bounded approximate identity for its group algebra.

Theorem 3.3.4. A locally compact group G i,s an SIN-group i.f and only

i,f Lr(G) has a central approri,mate id,enti.ty.

Let A be a Banach algebra and -E be a Banach , -module. A linear

map D; A---+ E is called a deri,uati,onif

D(ab) : a' Db + (Da) 'b for a,b e A'

Let r e E. The mapping ad*: A --+ E given by ad*(a): ar - ra (a e A)

is a bounded derivation, called an'inner deriuat'ion.
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Denote Zr (A,E) the space of all derivations from .4 into E and.

ßt(A,E) the space of all inner derivations from A into .8.

Definition 3.3.1-. A Banach algebra "4 is called arnenable if

zL (A, E*) : 81(A, E.)

or in terms of quotient

'tl'(A,E*)::#Ë: {o}

for every Banach " -bimodule -Ð, where E* is the dual module of E.

we list here several classes of Banach algebras and their amenability.

Group Algebra Lr(G\ B. E. Johnson showed in [21] that the group algebra

L'(G) for a locally compact group G ,is amenable i,f and, onlg i,f G i,s an

amenable group.

Measure Algebra M(G): Let G be a locally compact group. The measure

algebra M(G) is the unital Banach algebra of all (finite) complex regurar

Borel measu¡es on G with the convolution product defined by

U,t"*,),: I.(l¡ønlou(s))a,fn¡, u,u e M(G)and/ € co(G)

where co(G) is the space of all continuous functions on G vanishing at

infinity.

H. G. Dales, F. Ghahramani and A. Ya. Helemskii proved in [Z] that

a n'Leasure algebra M(G) 'is arnenable i.f and only i.f G i,s a di.screte and

amenable group.



23

uniform Algebra: A' uni,form algebra on a locally compact Hausdorff

space x is a uniformly closed subalgebra of C6(x) which contains the con-

stants and separates the points of x. when endowed with the supremum

norm ll/ll¡ : süpø€X V@)1, the uniform algebra ,4 becomes a Banach al-

gebra, called Banach uni,form algebra.

M. V. Sheinberg proved in [40] that the uni.form Banach algebra A i,s

amenable i.f and only i,f A is i,sometrically i.somorphic to C6(X) for some

Iocally compact space X.

Fourier Algebra ,4(G) and Fourier-Stieltjes algebra B(G): B. E. For-

rest and v. Runde recently showed in [17] that the Fourier algebra A(G) on a

Iocallg cornpact group G i,s amenable if and only i,f G has an abeli,an subgroup

of fini,te 'inder, and that the Fouri,er-Sti,eltjes algebra B(G) is amenable i,f

and only i,f G has a compact, abeli,an subgroup of finite i,nder. In [24], on the

other hand, H. Leptin proved that Fouri,er algebra A(G) has an approx'imate

i,denti,ty if and only i.f G i,s an amenable group.

B. E. Johnson [21] revealed the following general implication theorem:

Theorem 3.3.5. If a Banach algebra A'is amenable then A has a bounded,

appr o tim at e i, denti,ty.

Moreover, for ideals of an amenable Banach algebra, we need the foi-

lowing notation to characterizetheexistence of a bounded approximate iden-

tity as follows.
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DefinitÍon 3.3.2 (weak complementation). Iei E be a Banach space. A

closed subspace F of E is called wealely complemented in E if

FL : {ó € E* : (n,ó) :0 for all r e F}

is complemented in -E*, where .Ð* is the dual of E.

In [6], Jr, P. C. Curtis and R. J. Loy showed. the following result:

Theorem 3.3.6. Let A be an amenable Banach algebra, and, let I be a

closed (two-si,ded) i,deal of A. Then the followi,ng are equiualent:

(l f i.s amenable.

(ä) T has a bounded approrimate i,denti,ty.

(äi) I i,s weakly complemented.

we mention here that a c*-algebra also belongs to the list of Banach

algebras having a bounded approximate identity. We refer to l22l for details.



Chapt er 4

ï.Jnbounded Approximate
Identities

4.L More factorization theorems

In this section we deal with two questions: (1) how to weaken the hypothesis

of boundedness on the approximate identity in the condition of Cohen's Fac-

torization Theorem; and (2) how to construct counter-æxamples of a Banach

algebra with factorization but without a bounded approximate identity.

For (1), H. G. Feichtinger and M. Leinert [15] showed that for a fixed

element x in a Banach algebra A, r can be expressed as a product if the

following two assumptions hold:

(i) thereexist constants K > 0 and0 < c < 1 suchthat, forevery e ) 0,

there exists u e A with llzll I Ku-" and llzz - rll < e;

(ii) these u : u(e) may be chosen so that u(e).u(e2) : u(ez),u(e) : lulur\

25
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whenever e2 1€.1.

P. G. Dixon further showed that for a commutative Banach algebra

the above condition (i) is somehow as strong as requiring the existence of a

bounded approximate identity in [11].

Theorem 4.L.1, Let A be a commutatiue Banach algebra. If for euery

n €A,there eri,stconstants K >0, a € (0, |) suchthat, for eachT {€1I,
there i,s an element u € A with llull I Kr-o and llur - "ll < ellrll. Then A

has a bounded approri,mate identity.

For (2)' here we give a non--commutative Banach algebra which does

not have an approximate identity but does have factorizationproperty, using

the idea of P. G. Dixon in [11].

Example 4.L.2. There is a four-di,rnens'ional Banach algebra that factor-

'izes, but does not haue approri,mate i,denti,ti,es.

Consider the algebra A: (Ca,ll.ll1) with the product

(ot, oz, a3, aa)(fu,b2,bs,ba) : (azbt, a2b2, asba, a4b4)

Obviously, it is a non-commutative Banach algebra. For any (ot, az, ag, aa) e

"4, it can be written as

(ot, oz, az, a¿) : (c, I, as, aa)(a1, a2, d", I)

where c, d ate two a¡bitrary complex numbers.
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But "4 has neither left approximate identity nor right approximate

units. To see this, consider a: (1,0,1,0) then for all x: (or,or,a3,a4) €

A,

llo - allr : ll(1,0, 7 - a4,0)llr 2 1

and

ll*" - allr : ll! - or,0, 1,0)llt 2 1.

So,4. does not have any left or right approximate units and hence does

not have left or right approximate identities.

M. Leinert gave an example in [23] of a commutative semisimple alge-

bra with factorization but without approximate units. Another example of

a commutative semisimple Banach algebra which has factorization but does

not have a bounded approximate identity was given in [30].

G. Wiltis constructed some examples of separable and non-separable

Banach algebras which factorize but do not have bounded approximate iden-

tities in [45]. We state some of them here.

Example 4.L.3. The following gives a commutati,ue separable semi,si.mple

Banach algebra A whi,ch does not høue bounded approri.mate i,denti.ty but i.n

whi,ch null sequences factor.

Let Q be the set of rational numbers. For each positive integer n,

define a weight function c.r,, on Q by
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Define a norm ll.ll" o" ¿t(Q) by

ll/ll, : Ðlf Q)1,"(¿) : I l/(¿)l+,¿t l/(ú)l
¿€Q ¿<0 ¿>0

Thus (11(Q), ll.ll") is a sequence of Banach algebras. Define the commutative

Banach algebra

(r ìA: 1{f"}î=tl f".11(Q) ana hm ll/"11. :6 |tl r¿+Ø)

with pointwise sum and product and with the norm defined bV ll{/"}f:r ll :

sup" ll"f'll' Then "4 has the properties we wanted.

Example 4.L.4. The following gives 0, non-sep0,ro,ble commutat'iue Banach

algebra whi,ch does not haue approtimate uni,ts but i,n whi,ch bounded se-

quences can be factored.

Let Q+ denote the additive semigroup of positive rational numbers and

tet ¿1(Q+) be a commutative Banach algebra with the convolution product

U*ò(t): Ð /(t-s)e(s) (¿e e+, f,setl(e+)).
0<s<f

Now let l*(11(q+¡¡ be the Banach algebra consisting of bounded sequences,

f : (f").":1, of functions in ¿t(Q+) with the product, (f . g)" : fn * gn

and norm given by llf ll : sup,ll/"lli. The closed subspace, Ø(¿1(Q+)),

consisting of those sequences f such that limrr-"o ll/"llr : 0 is an ideal in

læ(11(q+¡¡. Then,4: #ffifi wiil be a non-separable Banach algebra

which does not have approximate units but in which bounded sequences can

be factored.
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4.2 More about factoúzation of sequences

Flom Theorem3.2.2 and the diagram (*) in section 8.1, we have the follow-

ing diagram:

existence of a bounded
approximate identity

lxx) {'\/ FBS =+ FNS + FS + FE]}+.u{r
WFBS + WFNS =+ 

.WFS + WFE

Some converses of these implications are known to be untrue. How-

ever, the relation between FBS and the existence of a bounded approximate

identity is still open.

In fact, it seems that FBS is much more restricted than FNS as

suggested in the following two results that are due to P. G. Dixon in [11].

Theorem 4.2.1. If A is a commutat'iue, separable Banach algebra with

FBS, then A has an identi,ty.

Theorem 4.2.2. If A i,s a commutat'iue, separable Banach algebra wi,th

.F/Vg then A ñ,as ø (possibly unbounded) approri.mate identity.

F\rrthermore, the approximate identity asserted in Theorem 4.2.2 can

be chosen so that its Gelfand transform is bounded by arbitrarily slowly

growing functions on the maximal ideal space. Precisely, from [11], we have:

Theorem 4.2.3. Let A be a commutat'iue separable Banach algebra wi.th

max'irnal i,deal space X. If A has FNS, then
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(1) for euery posi,ti'ue real-ualued functi,on B e cs(x), there e,ists a € A
wtth lã(t)l > p(t) (t e x);

(ä) for euery positi,ue real-ualued, function 1 e c(x) with ilt) -+ oo ¿s

t ---+ Øt A has an approrimate i,denti,tg whose elements u sati,sfg lI _

î'(t)l <.'t(t) (t € x);

Also, G. willis constructed a plenty of counter--examples dealing with

the relations between the existence of bounded approximate identity and

various factorizations of sequences in [4b].

4.3 Condition (U)

condition (u) is a relatively new concept concerning unbounded approxi-

mate identities, which was first introduced by y. Zhang. see [ag] and [ag].

Definition 4.3.L. Let A be a normed algebra and (eo) be a left (right)

approximate identity for "4. we say that (eo) satisfies cond.i,ti,on (u) if, for

every compact set K of ,A, ll""*-zll (resp. Ilr_"..rll) converges to 0
uniformly for r € K.

If (e") is a two-sided approximate identity for A, by condition (u) we

mean that, for every compact set K of ,4, both lluo*- zll and llr_ errll
converge to 0 uniformly for n e K.

It is easy to see that a bounded left, right or two-sided approximate

identity always satisfies condition (u). All the Banach algebras discussed
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in [a5] have approximate identities satisfying condition (u), but none of

them has a bounded approximate identity.

It is also known that there is a Banach algebra which has a bounded

lefb approximate identity and a right approximate identity satisfying condi-

tion (u) but does not have a bounded right approximate identity [g].

For sequential approximate identity, we have the folrowing theorem.

Theorem 4.3.L- Euery reft sequentiar approrimate i,d,enti,ty for a Banach

algebra sati.sfies condi,ti.on (IJ).

Proof' Let A be a Banach argebra and (err)p, be a reft sequential approx-

imate ideniities for A. Then for every ¿ € A , there exists r/ > 0 such

that

ll""r-rll <1, forn>ly'.

This implies that, correspond.ing to each x e A,there is a constant Mr, such

that

11"", - rll S M,, for all n.

In fact, we can take Mr: ,äq1{ ll"¿, _ 
"ll , 1}.

Define Tn: A -- Aby

T"(r):enr-r (reA).

Then for each n, Tn is a bounded linear operator on ,4.. Moreover. for each

r€4,

llT"rll: llenx _ rll S M,, for alt n.
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trÌom the Principle of uniform Boundedness, fl" is uniformry bounded,

i.e. there exists a constant M such that

Ilr"ll < M for all n.

Let K be anv compact subset of ,4. Then there are {rr,rz,...,r*} C

K withthe followingproperty: for any r € K thereis some i e {I,2,...,rn}
such that

ll"-*,11.fu*Ð
since (err) is left approximate identity, for each r¿ e {q,r2t...,x*} there

exist, correspondingly, I/¿ such that

ll"n*o - r¿ll < e/2 for n ) N¿, ,i: I,2,. . . ,n-1.

Now we take l/s: max{^å,N2, ...,N^}.Then for all n e K and

n) Ns,

ll""* - rll < lle"x - enr¿ll r llenx¿ - *oll + llr¿ - rll
: llT"(r) r r _ Tn(r¿) _ *oll + llunro _ r¿ll + llr¿ _ rll
: llT.(r - *o) * (" _ x¿)ll_t llenr¿ _ r,ll + llr¿ _ rll

s (ll7"ll +2)llr¿ - rll + llenr¿ - r¿ll

< (M *r) Ei;ù*i
-c

Therefore, the lefi sequential approximate identity (err) satisfies condition (u).
The proof is complete. tr
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similarl¡ we can concrude that a sequentiar right or two--sided ap-
proximate identity for a Banach algebra satisfy condition (u). The converse

of Theorem 4.3.1 is not true. It is easy to check that /1(.g) for an infinite set

's has an approximate identity satisfying condition (u). rn fact, let (Iz) be
the collection of ail finite subsets of 

^g with the incrusive partiar order, then
(xv) ¡" such an approximate identity, where (¡y) denotes the cha¡acteristic
function of I,. However, proposition 2.8.6 teils us that 11(,s) does not have
a sequential approximate identity for an uncountable set ,g.

The compreteness of ihe algebra is not removabre in the above theorem.
'we 

use an argebra constructed in [1a] to illustrate our assertion.

Example 4.3.2. There ex,ists a commutatiue separabre normed, argebra with
a sequent"iar approrimate i,dentity that d,oes not sati,sfy cond,iti,on (TJ).

Let Ao be the commutative separabre normed argebra with generators

€n,tn (n : 7,2,3,''. ) satisfying the following conditions for e, j € ry':

ê¿ê¡ : emin {e,¡} r

e¿rj:rj, ifi,>j,

I¿r¡ : Q.

Then any element r € '4o is of the form

(4.1) 
":)_- d¿e¿*Ðprrr_tl.rr¡err¡,

xii<j

the sum being finite.
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Define the norm of r e -h bV

ll"ll : \.l"nlzo + \] lBjl +l,hoilzo.
zji<j

Thus "40 is a commutative normed algebra that admits a sequential un-

bounded approximate identity (er,). In fact, if z is as in (4.1) and n is

greater than all the i, j occurring in the (frnite) sums in (4.1), then enr : r.

Now consider the compact subset of ,4.6

I ,¡ ì*\FI,:,
Forany j>n,

ll"" ot+ -;5ll = ll"" ;5ll-W5ll
2"-7
2j-2

Let i:n*I,

ll""W-Wt.ffi,'
This shows that this sequential approximate identity (e,r) for normed

algebra,4¡ does not satisfy condition (U).

Y. Zhang studied in [ag] the existence of an approximate identity

satisfying condition (U) for the closed ideals of group algebras on a compact

group. He proved the following:

Proposition 4.3.3. Let G be a compact group. Then euery closed, i,d,eal I
of Ll G) has an appro,imate i,d,enti,ty that ti,es i.n the center o.f Ll(G) and

satisfies condi,ti.on (U).



35

Using the similar technique, we obtain the following proposition for

the closed ideal of L2 G).

Proposition 4.3.4. Let G be a locally compact commutatiue group, and let

E be its dual group. For E CE, Iet

I(E) : {f Ç L2G)' ilo¡ : 0 for o e E},

where i isthe Fouri,ertransforrn of f . ThenI(E) i,s a closed,l,d,eat of L2(G)

and i,t has an approrimate identi,ty that sati,sfies conditi,on (TJ).

Proof. The first assertion is clear. Denote T : I(E). Let (U") be a net

of compact neighborhoods of e the unit of G and denote uo: Y1, where
lU"l'

Xuo is the characteristic function of.Uo ar:d lll"1 is the Haar measrue of (Jo.

Flom the commutativity of G, (u.) is an approximate identity for L,(G)

with.Ll-norm bounded.

Now let Xø be the cha¡acteristic function of E c X, we have that

X>\¿' I'o(E) C Lp(Ð) for p ) 1. In particular, for p:2, XD\p.îà e

L2(Ð) for each a, since îà € L2(Ð) from the Plancherel Theorem. Using

the Plancherel Theorem again, we have that there is a po e Z2(G) such

that f;) : XD\E .îà. For each o in E, íà(o) : Xrt¿,(o) 'ià(") : 0, so

po€l:T(E).If f e I,

(p"* Í)^ : (.f * po)^ : i .îà : i . xr¡".í; : i .tà : (f *u*)^ : (uo* f)^

Thus,po+f :uo*/for f eI.

Givenacompact setK ofT,foreverye > 0, thereexist fi, f2,... ,fn €

1l satisfying that for every / e I{, llf - f¿llz < ef\ forsome i e {I,2,. . .,n}.
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Since (zo) is an approximate identity for L2(G) with.Ll-norm bounded,

llu'*f¿-f,llz<€13

for i : I,2,...,n and a > ao.

Let / e K with llf - ftll.. < e/3, we have from Proposition 2.39 a, [16]

that for above e > 0

llu.* f -ua* Í¿llz:llu"*(f - fùllz

< Il""ll' llf - f,llr: llr - f¿llz

< el3.

HenceforaÞa¡,

llu"* Í - fllz<llu.* f -1ta* f¿llz+llu"* Í¿- filz+lf¿- fllz
<el3-tef\+ef\:e forall I eK

i.e.,

Ilp"*f - fllz< e for attf eK.

This shows that, for every compact set K of T, po* I 3 / uniformly on

K. Therefore (pCI) is an approximate identity for Z that satisfies condition

(u). n

4.4 Approximate identities in algebras of compact
operators

In this section we assume that A is an operator algebra on a Banach space

X, containing finite rank operators and being contained in the algebra of



37

compact operatorc. We collect some results about unbounded approximate

identities in "4.

Let X be a Banach space and 1{ be a subset of X. Let g be a

set of operators on X. We say that the i.denti.tg 'is approtimable on K by

operators i.n g if, for every € ) 0, there is an ,9 € cp with llS" - rll < ,
(n e K). We say that X has the approri,mati,on property (AP in short)

if, for every compact set K ç X, the identity is approximable on K by

finite-ranl< operators; X has the compact approrimat'ion property (CAP in

short) if, for every compact set K Ç X, the identity is approximable on 1{

by compact operators.

Suppose that A(X) is the operator algebra of continuous operators

on X. Denote by tr.(X), F(X) and K(X) the ideals of 8(X) of respec-

tively finite-rank operators, operators that are uniformly approximable by

finite operators and compact operators on X. One can check that F(X) c

F(x): d(r(x)) c rc(x).

The question of whether the Banach algebra of all compact operators

on a Banach space always has a bounded approximate identity was first

stated as an open problem in [8] and P. G. Dixon examined both bounded

and unbounded cases in [12], showing that

Theorem 4.4.1,. Let X be a Banach space. Then

(Ð F(X) has a bounded left approximate identity if and only if X has

bounded AP;
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(ii) rc(X) has a bounded left approximate identity if and only if X has

bounded CAP.

Theorem 4.4.2. Let X be a Banach space. Then

(i) .F(X) has a Ieft approtimate i.denti,ty;

GÐ i.f X has ,þtP then F(X) has a Ieft approrirnate i,denti.ty;

(iiÐ ¿/ X has CAP then K(X) has a left approrimate i,denti.ty.

In [19] [39], N. Grønbæk, G. A. Willis and C. Samuel extended the

approach of [12] to consider further right approximate identities as follows.

Theorem 4.4.3. Let X be a Banach space. Then

(1) F(X) has a bounded ri,ght approrirnate i,denti,tg i,f and only i,f X*, the

dual space oJ X, has bounded AP;

(ii) lC(X) has a bound,ed ri.ght approrimate i.denti.ty i,f and onlg i,f the i,den-

ti,ty operator on X* i,s uni,formly approrimable on compact sets of X*

by a bounded net of adjoi.nt operators of compact operators on X.

In light of condition (U), Y. Zhang finally clarified the relation between

AP/CAP of X and the existence of approximate identities for F (X) I rc@) .

He showed the following three theorems in his paper [51].

Theorem 4.4.4. Let X be a Banach space. The followi,ng are equ'iualent:

(i) X has AP;
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(ii) .F'(X) has a left approx'imate identi.ty that sati,sfi,es condi.ti,on

(iii) .F(X) has a Ieft approrimate i,denti,ty that sati,sfies condi,ti,on

Theorem 4.4.5. For a Banach space X, K(X) has a left approri,mate i,den-

ti,ty that sati,sfi.es condi.ti.on (U) ,f and only i,f X has CAP.

Theorem 4.4.6. Let X be a Banach space. The following are equ,iualent:

(i) the dual space X* has AP;

(ii) ,F (X) has a ri,ght øpprorimate identi.ty that sati.sfi,es condi.ti.on (rJ);

(iii) ,F(X) has a right approrirnate i.denti.ty that sati.sfi,es condi.ti.on (rJ);

(iv) each of F(X) and F(X) has a two-sided approri.rnate i,denti.ty that

sati.sfies condi.ti,on (U).

(u);

(u)



Chapter 5

Further Questions

Fþom Theorcm 4.2.7,Theorem 4.2.2 and (x+) in Section 4.2, FBS seems a

very strong condition on a Banach algebra.

Question 1. Is there any relation between FBS and the existence of a

bounded approximate identity for a Banach algebra? In particular, does

the existence of a bounded approximate identity imply FBS for a Banach

algebra?

Questi,on 2. What can one say about the reverse of any implication in

diagram (**) except for those that have known?

For condition (U),

Questi'on 3. under what conditions does a closed ideal of tr2 (G) for a general

locally compact abelian group G have an approximate identity satisfying

condition (u)? what if for a closed ideal of group algebra Lt (G) for a general

locally compact abelian group G?

40



47

Questi,on l. Does there exist a Banach algebra that has an approximate

identity but does not have an approximate identity satisfying condition (U)?
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