Design and Implementation of a

Multiagent Planning Simulation System

By

Thomas Kwan

A Thesis
Submitted to the Faculty of Graduate Studies
in Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Department of Computer Science
University of Manitoba
Winnipeg, Manitoba
October, 1993

© Thomas Kwan

National Library
of Canada

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

ISBN 0-315-85926-1

395, rue Wellington
Ottawa (Ontario)

Your file Votre référence

Our file Notre référence

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a Ila Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des

personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
these. Nila thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

Name _

Dissertation Abstracts Infernational is arranged by broad, general sub
nearly describes the content of your dissertation. Enter the correspondi

ject categories. Please select the one subject which most
ng four-digit code in the spaces provided.

Yy, I e} T G 5’ T P Es ,f" 3
COMPITEL <Ol CE 017 |£1%
SUBJECT TERM SUBJECT CODE
Subject Categories
THE HUMANITIES AND SOCIAL SCIE €ES
CORMPMUNICATIONS AND THE ARTS Psychology w..o...vvviocreeen 0525 PHILOSOPHY, RELIGION AND
Architectureoccovvcerr..... 0729 Reading0535 THEOLOGY
Art History 0377 Religious . -0527 Philosophy ... 0422
Soea. "0 ot (055 Religion 0a1s
Fine Arts0357 Social Sciences ..0534 Biblical Stodies e 0321
5nformotion Science. ggg? gociok’:gy of 8?:218 Clergy 0319 Canadiano.cooveeeeer 334
ournalism ecial........... - S Sl European0335
Library Science ... (0399 Teacher Traiming 70530 Hlisory of .. ~9320 Lafin American . 10336
Mass Communications . ..0708 Technology 0710 Theolo Py " 0489 Middle Eastern0333
Music oo s ..0413 Tests gndgk:\eosurements .0288 R United States0337
_? :;cehr Communication . gjgg Vocationalooooooooeeeei 0747 SOCIAL SCIENCES l—g\s:/ory of Science . gggg
' LANGUAGE, LITERATURE AND Ao SIS T S—
EDUCA]"ION LINGUISTICS Archaeslogy oo 0324 General ... 0615
Ejnqrq s 82}‘51 Language Cuitural .~ : Inferrofxonal Law and
"i;n'szcc'ont:"".“" 0316 eneralo.ooviin, 0679 Physicalovvooeee 0327 E?.cflons:‘._ """" SEIUETT 0616
A U c?n |°” inuing T0817 Ancient ..0289 Business Administration Public Administration0617
Agncu furalc.... 0273 Linguist ..0290 Generalccooovooen 0310 Rec'.'e’m'on oo 0814
Biingual and Mulfcuural 7058y | Modem . 0291 Accounfing 22 Nl 0452
) - iterature anking077
e e B T
munity College e 10294 Markeling ... 10338 riminology and Penclogy ...
urriculum and Instruction .0727 Canadian Studies 0385 Demographyoc.... 0938
E'arly C'hrldhoo 82;3 0297 Economics e ngpi%cnfi Rycécicl Sgludies 0631
Elementary 0524) Generaloo. 0501 ndividual and Family
G|ng:dnce g Cl ..05]9 ; Agricultural0503 | dtu {67 dLb
H:{;Ifance and Counseling ~0519 0591 gommerce-Business.. 8283 anéng';gn(:n abor
ealth ..o . N inance ... - lations ... e
Higher .. - 0745 Canadian (English 10352 History ... 0509 Public and Social Welfare
History of - 9520 Canadian {French) . 0355 Labor... -0510 Social Structure and
| 3!’1‘18T L clonomics 052] Eng [R ..0593 Theo 0511 ThDeve opénent hd
Ln usirtal ... e T390 Germanic0311 Folklore0358 TransaaY an Methods .
N“m ucgetlcn fierature 0280 Latin America ..0312 Geography0366 r%”5p°”§"°": """ Bl
MQ NEMANCS oo . Middle Eastern . Geronfology ... 0351 Urban and Regional Planning 0999
usic0522 History Women's Studies 0453
Ph'y';ﬁhy of 9258 General ..o 0578
THE SCIENCES A
BIOLOGICAL SCIENCES Geodesyccooovvunrurrrron, 0370 Speech Pathology 0460 Engineerin
Agriculture Geology0372 Toxicology0383 Generdlooooovon 0537
Generdl ... Geophysics . ..0373 Home Economics 0386 Aerospace . .0538
gronomy drology0388 Agricultural . 0539
Animal Culture and Nei,nerclogy.. ..0411 PHYSICAL SCIENCES Automotive . ..0540
- e e b
Food Science ugé Pa eontologg){:..: .0418 Chemistry Civ‘?lmlcCJ N0523
. Tecthnolo i 8293 gc eoz?ology‘.. 833; Esgi;‘ﬂt;a' """""""""""""" ﬁecfromcsTﬁndElgcmccl 0544
orestry and Wildlife . atynology ; - : at ics ...0348
Plant Culture 0479 Ph)?;icu(l)geography... .0368 pnalpical ... Hydradhc .o romes -~ 0348
g{cnt gﬁrhollogy .. 83?9 Physical Oceanography ... 0415 | nlg: gm(’:s"y Industrial0546
ant PhysiclogyQ817 7070 TS IR e HRIS G anic L Marine0547
Range AXancggemenf . 0777 HEALTH AND ENVIRONMENTAL Nuclear ... Materials Science ..0794
. Wood Technology0746 SCIEMCES %rgrqn?clxieuhccl Mechanicdl0548
B'°l%9y | 0306 Environmental Sciences 0768 sical ... : Metallurgy ... 0743
Andtomy 1 0287 ~ Health Sciences polymer Nieied, 822
BiOSTGﬁS{iC.S 0308 eNeral ..o ..0566 Radiation P Uieur O 5
Bot - 0309 Audiology 0300 Mathematics ... Pac (llgmg ~0o4
Cc;”ony Perid Chemof erapy 0992 ysics sefrg eum Ty ..O§65
Eeolons” 0329 Dentistry 0567 General ... Syttom sona Municipal 0554
[9%' 0353 Education 0350 Acoustics ..o, G ysLem] CIENCE e, :
Gn 0"2.0 ogy 0380 Hospital Management 0769 Astronomy and Oeofec_ noo i
; enellcs 0793 Human Development . 0758 Astrophysics................. Ipe{chonshRes[ecrc :
A;\rpnobo_gr o 0410 Immunology 0982 Afmospieric Science. P cs!ics Teﬁ n<'> ogy .- -
Mlclro |Io ogy -9439 Medicine and 0564 Alomig .o Textile Technology "
Ngu?'gtslc(i]; oy "0317 Menfal Health7.. 0347 Electronics and Elecfricig/ 0607 PSYCHOLOGY
Oceanography 0416 HU; S’lfl:lg """ 8298 ?—{me}?'gry Porticles an 0798 enera
c . . wlrifion N igh Energy oo 7 Al e
Physiclogy 0433 Obstetrics and Gynecology . 0380 Fluidand Plosrma o7se Behovioral
Vat 1ation o 0778 Occupational Health cmd9 Molecular0609 mlcla """" ’
Ze elrmcry Ci ox emf 0354 Nuclear . 70610 EDeve gpmenfa .
Bio hoc;iggy Ophtha mology 0381 Opics ... 0752 IX e;lr_nclentc
e 0786 Pathology ... 0571 Radiation 0756 pever -
Modioal 0760 Pharmacology .. 0419 Solid State . ..0611 Physial, 'fy",'
EOICA o Phar_moc{ 0572 Sfafistics 0d63 pysopgica ...
EARTH S(lEHCES Ph SICGI hercpy 0382 I- . Sychonio ogy .
f ! Public Health . 0573 Applied Sciences Psychomerics ..
Biogeochemistry ... Radiology ... 0574 Applied Mechanics 0346 Social ...
Geochemistry 0996 Recreation ... 0575 Computer Science 0984

Nom

Dissertation Abstracts Infernational est organisé en catégories de sujets. Veuillez s.v.p. choisir le sujet qui décrit le mieux voire
thése et inscrivez le code numérique approprié dans 'espace réservé ci-dessous.

LLLL] UMI

Catégories par sujets

SUJET

HUMANITES ET SCIENCES SOCIALES

COMMUNICATIONS ET LES .ARTSD

Architecture .

Beaux-orts ...

Bibliothéconomie . (399
Cindmaocoevene L0900
Communication verbale .. .0459
Communications 0708
Dansecc.o..... .0378

Histoire de 'art .
Journalisme ..
Musique ...
Sciences
Thédtre ..o

EDUCATION
Géngralités ..o 515
Administration ..

Colléges communautaires .
Commerceoocovvnennnn.0488
Economie domestique ..
Education permanente .
Educalion préscclaire ..
Educalion senitaire ...
Enseignement agricole0517
Enseignement bilingue et

muficulturel ...
Enseignement indusriel
Enseignement primaire.
Enseignement professionne!
Enseignement religieux
Enseignement secondaire
Enseignement spécial
Enseignement supérieur ..
Evaluation
Finances
Formation des enseigna
Histoire de |'éducation .
Langues et litérature ...

SCIENCES

SCIENCES BIOLOGIQUES

Agriculture
Générahités ... 0473
Agronomie. ..., 0285
Alimentation et technologie

alimentaire ... 359

Colture ...
Elevage et alimentotion0475

Exploitation des péturages ...0777
Pathologie animale ...0
Pathologie végélcle ...
Physiologie vé?étale .
SyKrEcuhwe et fauneo......
Technologie du bois..............

Biclogie
Généralités ..
Analomie.....
Biologie (Stalisliques) .

Biclogie moléculaire .. L0307
Botanigue 0309
Cellule0379
Ecologie0329
Entomologie . ..0353
Génétique ... 0369
Limnclogie ... 0793
Microbiologie 0410
Neurologie .. L0317
Océanograph 0414
Physiologie0433
Rediation0821
Science véférinaire . ..0778
- %}oo!og'[e..........,....,..........A..0472
tophysigue
png(icfilés 0784
Medicale ..o 0760
SCIENCES DE LA TERRE
Biogéochimieco.ccooeoo.. 0425
Géochimie... ...09%96
Gécdésie0370
Géographie physique............... 0368

ET INGENIERI

lecfure .vovvvvveieiveciiiie ... 0535
Mathématiques .
Musique ...
Crientation et consultation .

Philosophie de 'éducation 0998
Physiqueovov oo 0523
Programmes d’études el

enseignement _..................... 0727
Psycholegie 0525

Sciences sociales .
Sociologie de I'ed
Technologie

LANGUE, {ITTERATURE ET
LINGUISTIQUE
langues
énéralitéso...........067%
Anciennes ..
Linguistique
M g emgs
Liérature
Généralités (401
Anciennes L0294
Comparée .. 0295
Mediévole ... 0297
Moderne . .0298
Africaine03ié
Américaine . L0591
Anglaise ... 0593
Asictique0305

Canadienne [Anglaise)
Canadienne (Frangaise)
Germaaique
Latino-oméricaine ..
Moyen-orientale .
Romaone

Slave et est-européenne0314
Géclogie ... e 0372
Géophysique . .0373
,Izizdrologie .0388
Oinéralogie : . 83} ;

céanographie physique .
?o!éobg?onf{;ue p 7 .0345
Paléoscologie0426
Pajéontologie0418
Paléozoologie 0985
Palynologieccovurvrennnn... 0427
SCIENCES DE LA SANTE ET DE
L’ENVIRONNEMENT
Economie domeslique 0386
Sciences de I'envircnnement0768
Sciences de lo sonlé

Geénéralités ..o 0566

Administration des hipitaux .. 07469

Alimentation et nutrition 0570

Audiologie0300

Chimiothérapie

Dentisterie

Deéveloppement humain

Enseignement

Immunclogie ...

Loisirs ...

Médecine du travail et

HhErapie ..o 0354

Médecine et chirurgie0564

Obstétrique ef gynécologie ... 0380

Cphtalmelogie5......038]

Orthephonie0460

Pathologie .. 0571

Pharmecie0572

Phormacologie . 0419

Physiothérapie .0382

Radiolegie ... 0574

Santé mentcle . 0347

Santé publique 0573

Soins mfirmiers
Toxicologie —...vovirierieeenane.

PHILOSOPHIE, RELIGION €T
THEOLOGIE

Philosophie ..o
Religion
enéralités ..o,

er
Etudes bibliques ...
Histoire des religions
Philosophie de fa religion

Théologie ..o oroeorreoerro

SCIENCES SOCIALES

Anthropolegie
Archéologie ..., 0324
Culturelle™... .

Physique . .
Droit e
Economie

Générdlités

Commerce-Affaires

Economie agricole ...

Economie du travail ..

Finances0508
Histoire ... L0509
Théorie ... L0511

Etudes américaines .
Etudes conadiennes .
Etudes feministes ..

Folklore0358
Géographie .. 10366
Geérontologie ...

Gestion des alfaires

Générolités0310
Administration 0454
Bongues .. .0770
Comptahilité .. 0272
Markeling0338
Hisloire
Histoire générale0578
SCIENCES PHYSIQUES
Sciences Pures
imie
Genérolités ...
Biochimie

Chimie agricole ..
Chimie onalyligue .
Chimie mingrale .
Chimie nucléaire ...
Chimie organique ...
Chimie phormaoceutig
Physique ...
PelymCres ..
Radiation ...
Mathématiques ...
Physique
Genéralifésc.cocorcnnnnn.
Acoustique ...
Astronomie et
astrophysique ...
Elecironique et éleciricité
Fluides et plasma ...

Météorologie . .- 0608
Optlique e 0752
Porticules (Physique

nucléaire)0798

Physique atomique ...
Physique de ['état solide
Physique meléculaire .

Physique nucléaire0610
Radiation 0756
SIatishiqUescouerirreeincns 0463
Sciences Appliqués Et
Technologie
Informalique ..o 0984
Ingénierie
Genéralités ...o...ccooveee.... 0537
Agricole053%
Avtomabilec....c.c........ 0540

CODE DE SUJET

ANCIBNNE ..o
tedigvole .
Moderne
Histoire des noirs ..
Atricaine ...
Caonadienne ..
Etals-Unis ..
Européenne ..
Moyen-orientole ...
Latino-américaine ...
Asie, Australie et Océani
Histoire des sciences..........
LOISIrs cvvvviericre e
Pianification urbaine et
régionale ...
Science politique
Généralites0615
Administration publique0617
Droit et relations

infernationales 0616
Sociclogie
Généralités0626

Adde el bien-dtre sociol 0630
Criminologie ef

élablissements

énitenliﬁires 0627

Démographie ...
Etudesgdeﬁ’ individu et

delafamille ... 0628
Etudes des relations

interethniques ef

des relations racicles0631
Structure et développement
social oo 0700
Théorie ef méthodes. 0344
Travail et relations
industrielles 0629
Transports 0709

0452

Travail social

Biomédicale ..o
Chaleur et ther
modynamique
Condilionnement
{Emballage) ...
Geénie agrospatial ..
Génie chimique ..
Génie civil ..o
Génie électronique et
éleclrigue ...,
Génie industriel ..
Génie méconique ..
Génie nucléaire
Ingénierie des systimes .
Mécanique navale ...
Métallurgie
Science des motériaux ..
Technigue du péirole
Technique miniére ...
Technigges sanitaires
municipales......................
Technologie hydraulique0545
Mécanique appliquée
Géotechnologiec.cococone
Maliéres plastiques

{Technologie) 0795
Recherche opérationnelle 0796
Texlies et fissus (Technologie)0794
PSYCHOLOGIE
Généralités ...

Personnalilé
Psychobiclogie ...
Psychelogie clinique
Psychologie du comportement .. (384
Psychologie du développement ..0620
Psychologie expérimentale0623
Psychologie industrielle
Psychologie physiologique ..
Psychologie sociale
Psychomélrieccoo.cccnnnn... 0632

DESIGN AND IMPLEMENTATION OF A

MULTIAGENT PLANNING SIMULATION SYSTEM

BY

THOMAS KWAN

A Thesis submitted to the Faculty of Graduate Studies of the University of Manitoba in partial
fulfillment of the requirements for the degree of

MASTER OF SCIENCE

© 1993

Permission has been granted to the LIBRARY OF THE UNIVERSITY OF MANITOBA to lend or
sell copies of this thesis, to the NATIONAL LIBRARY OF CANADA to micofilm this thesis and
to lend or sell copies of the flm, and UNTVERSITY MICROFILMS to publish an abstract of this
thesis. - '

The author reserves other publications rights, and neither the thesis nor extensive exiacts from it

may be printed or otherwisa reproduced without the author’s permission.

-

Abstract

Multiagent planning systems coordinate a number of agents to solve problems. Each agent
contributes its expertise in a certain area so that a complicated problem can be solved by
the group of agents cooperatively. This thesis discusses the design and implementation of
a multiagent planning system. An examination of single and multiagent planning
techniques is presented as is a survey of various systems developed to date. The
components of our system, how they are implemented, and how they are used are also
examined. Samples of the application of the system to an actual problem are then
presented.

Acknowledgments

I thank God for his blessing in the past years of my study. To God be the glory.

I would especially like to thank my wife Ivy Au in giving me full support of my study. Her
support behind my work gives me tremendous strength in completing it.

I would like to thank my supervisor, Dr. Mark Evans, for his leadership, guidance, and
abundance of ideas. Without him, this thesis would not have been possible.

I would also like to thank Dr. David Scuse and Dr. Dean Kriellaars for sitting on my
committee.

Lastly, I would like to thank my parents for all the support and guidance they have given
me over the years of my life.

il

1.1
1.2
1.3
1.4

2.1

22

221
222
223
224
225
226
2.3

2.3.1
232
233
234
235
2.3.6
2.3.7
2.4

24.1
242
2.5

3.1

32

3.2.1
322
3.23
324
325
3.3

331
332

TABLE OF CONTENTS

ABSITACE ...ooos oo i 1
Acknowledgments...... 0 i
Introduction. I
History of Planning Research " 1
Classical Planning....... " 2
Multiagent Planning U 4
Simulation of Multiagent Planning System.... e e 5
Single Agent Planning 8
Introduction to Single Agent Planning........ 8
STRIPS oo i et e T 8
HISIOTY oo s e oo 8
Assumptions made oo s 9
Problem Space.......... ... i 9
Operations i 10
Example.... oo 12
Summary e e e e e 16
NONLIN - i i e o 17
Introduction.. ... 17
Assumptions madeo 18
Backtracking Scheme. " 18
Task Schema.. 19
Plan Critics 20
Question Answer Facility o 23
Summary e et e e 25
Other Single Agent Planners.. 25
ABSTRIPS ... oo it st o oo 25
NOAH o i e e 26
SUmmaryo 26
Distributed Artificial Intelligence...~ 28
Introduction... 28
Considerations in DAT .._....... ..o o 29
Description, Decomposition, and Allocation of Tasks.. 29
Interaction, Language, and Communication.. 30
Coherence and Coordination.o . 31
Modeling Other Agents and Organized Activity 31
Disparity and Conflict7 32
Blackboard Systems... 32
Introduction... ... 32
Framework 33

il

3.4
34.1
342
343
344
3.5

4.1
42
4.2.1
422
423
42.4
425
43
4.3.1
432
433
4.4
44.1
442
4.5

5.1

5.1.1
512
5.13
514
5.1.5
5.1.6
5.1.7
52

5.2.1
522
523
5.2.4
53

6.1
6.2
6.2.1
6.2.2

Contract Networks..... ... oot oo o 35

Introduction...o 35
Contract-Net Protocol 35
Example Application 36
Contract-Net Summaryo 39
SUMMATY ... i oo e e 40
Multiagent Planning~ e 41
Introduction... oo i e e, 41
Knowledge-based Model of an Agent 42
Basic Components oo 42
Constraints. oo oo e 43
Communication Structures.... 44
Knowledge Sourceso oo o 45
Activity Blackboard 46
Constraint-directed Planning e e e e 47
Planning Control Strategy oo oo oo 47
Plan Evaluation..........o 48
Constraint Relaxation. e ——_ 48
Basic Functions. oo oo 49
Task Decomposition o 50
Interaction and Communication......... 51
SUMMATY ... et et ceetees oo oo o e e 52
Implementation........ 53
Data Structures.......... ..ocoooes oot oo e 53
Plan Structure e e s e e, 54
Task SruCtUrec.. oo oot oo o 55
Agent Class Structure oo 56
Agent StruCture ... oo oo 56
Request Structureo oo s e 58
Notification StrUCtUIe oo oo 60
ACHVILY SEIUCTUTE. ... oot oo oo e 61
Program Structure oo 64
Basic Algorithm oo 64
Process ReQUESEScooco oot oo oo 66
Process Activity NOA€S oo 67
Process Notifications.. 73
SUIMMALY ..o it et e s e 74
Sample System Runs 75
Agent Knowledgeo 75
Sample RUNS.. ... i o e e 76
Dataset A....... ... oo o e e e 76
Dataset BI..... ..ot oo oo e 85

iv

6.2.3 Dataset B2..... ... e
6.2.4 Dataset Cl..... ... oo oo e e
6.2.5 Dataset D1... ... oo oo e
6.2.6 Dataset D2..... ... cooooiis oo e e
6.3 SUMIMATY ..o i it i e oo

7. Conclusions

Appendix B : Data Structures and Program Routines...........

Appendix C : Testing Data and Sample Runs

Chapter One : Introduction

1.1 Historv of Planning Research

Reasoning about actions is a fundamental characteristic of intelligent behavior.
Most every action we take in our daily life has some kind of reasoning behind it. For
example, when one wants to buy a drink, it may be because he or his wife is thirsty. After
we have decided to achieve a goal, quite often there are many different ways to
accomplish the goal. Each possibility usually includes a set of actions (a plan) instead of
one action. For instance, one may need to get some money and drive a few miles before he
can buy a drink. Decades of research in Artificial Intelligence (AI) and related disciplines
have shown that such human capability is extremely difficult to formalize but it is an
essential component of intelligent behavior. In an automated planning system, the set of
actions derived to attain a goal is often passed to a robot or a manufacturing system,
which can follow the plan and produce the desired result. The design of such planners has
been one of the major research topics since AI research's earliest days, and many
techniques have been introduced. Like most Al research, planning problems have been
attacked in two major ways [Wiikins, 1988]. The first approach is try to understand and
solve the general problem without the use of domain-specific knowledge. The second
approach incorporates large amounts of domain-specific knowledge. These approaches are
often called domain independent and domain dependent respectively. Domain dependent
refers to those systems that use domain-specific heuristics (knowledge) to control the
planner's operations. Domain independent refers to those systems in which the planner's
knowledge representation and planning algorithms are expected to work for a reasonably
large variety of application domains. Domain dependent planners are generally found in
applied approaches in Al where the design principles might not map well from one
application domain to another. However, work in domain independent planning system has

formed a large area in Al research.

A problem being solved by a planner is characterized by an initial state and a goal
state description. The initial state describes the way the world is before planning begins.
The goal state describes the way we want the world to look when a plan has been
designed and executed. The world refers to the application domain where the planning
takes place. The planner tries to find a plan (a set of actions) such that by executing the
plan from the initial state of the problem, the goal state will be generated. Planning is
essentially a search problem. The planner must traverse a potentially large search space
and find a plan that is applicable in the initial state and produces the goal state when
carried out. The complexity of the planning system grows when more than one applicable
plan is found. In these cases, the most applicable plan must be chosen from among all the

possible plans.

1.2 Classical Planning

The classical definition of the planning problem assumes a state-based
representation of the world [Wilkins, 1988]. The world is represented by taking a
"‘snapshot" of it at one time and describing the world as it appears in this snapshot. The
planner assumes that the initial state of the world does not change while the planner is
executing. Thus, the planner constructs a plan based on the initial state of the world
without reacting to the changing state of the world dﬁring the planning probess. This is an
important limitation in classical planners. This also leads to the distinction between plan
time and execution time. None of the classical planners can react to changes in the world
while the system is generating a plan. Examples of such classical planners are STRIPS and
NONLIN [Morgenstern, 1988].

Figure 1 shows a classical planning model [Wilkins, 1988]. It describes the
production of a sequence of operators that alter the environment in such a way as to
accomplish a goal. The representation of the model performs a mapping from the real

world to the planner.

State of Actions

environment one might take Problem
Sentences,
Axioms, D
Constraints
=
Operators D Planner
vz
Goals -

Sequence
of Actions o\

Figure 1: Classical Planning Model

Incoming Task

House Building
Agent (

Planning

Knowledge

Knowledge
of
House Building

o /

Figure 2: Single Agent Planning System

In classical planning, one agent does all the planning work. The agent must have all
the required knowledge specified in the application domain to construct applicable plans.
Figure 2 illustrates that an agent must have all the required knowledge of building a house
to complete a task of building a house from a given set of specifications (initial state and
goal state). This is often not true in real world problems. In an organization, a group of
people can accomplish things that individuals cannot. In this situation, different agents
must cooperate with one another and contribute their expertise to solve a problem. This
leads to a research area in AI known as Distributed Artificial Intelligence which

concentrates on the development of multiagent planning systems.

1.3 Multiagent Planning

Multiagent planning research studies how a loosely coupled network of problem
solvers (or agents) can work together to solve problems that are beyond their individual
capabilities [Durfee, Lesser and Corkill, 1989]. Each agent in the network is capable of
solving sophisticated problems using its own expertise and can work independently. Many
problems faced by the agents, however, cannot be completed without their cooperation.
Cooperation is necessary because no single agent has enough expertise, resources, and
information to solve a particular problem. Agents must rely on each othér to solve the
problem. For example, if the problem is to build a house, one agent might have expertise
on designing the appearance of the house; one agent might have expertise on laying the
foundation of the house; another agent on plumbing; and so on. Figure 3 shows how an
agent can divide an incoming house building task into sub-tasks and send some subtasks to
other agents. This agent only has the knowledge of building a house frame. The other
required work such as laying the foundation, plumbing and decoration are sent to other
agents. The planning component of the agent provides the knowledge of dividing the

incoming house building task into sub-tasks.

Incoming Task

House Building
Agent
(Planning

Knowledge Sub-task send to other agent

Lay Foundation

Knowledge
of Sub-task send to other agent
Build House Frame Plumbing

\ Y,

Sub-task send to other agent

Decoration

Figure 3: Single Agent in Multi-agent Planning System

In multiagent planning systems, agents solve a problem cooperatively by using
their local expertise, resources and information to solve a set of sub-problems individually,

and then integrate these sub-problem solutions into a complete solution.

1.4 Simulation of Multiagent Planning Systems

The objective of this thesis is to create a test bed for a general purpose multiagent
planning system. Agents in the system contain all the required basic components. Figure 4
shows the major components of a basic agent [Evans and Anderson, 1989].

The planning component contains the knowledge necessary to divide incoming
tasks into sub-tasks, coordinate the activities and integrate the results into a final solution.

The problem solving component contains the knowledge representing the agent's own

(v 1

capability. Instead of physically creating the agents, they are simulated as independent

processes in a computer system. All the activities of an agent including planning, problem

solving and communications between the agents are also simulated. The result is a

simulation tool that can be used to test and evaluate various methods for creating

multiagent planning systems.

f

Planning Componerm\

Coordination

Knowledge Base Bflzf:tll:l;igr d
N y,
Problem-Solving Componenﬂ
Control Knowledge
Strategy + Base

N

_/

Figure 4: A Basic Agent

House building is the example problem that has been used to illustrate the

application of the system for this thesis. The sub-problems generated by the agents do not

completely describe the actual processes involved in building a house. Only certain major

processes are chosen and built into the knowledge bases of the agents. The system can be

expanded to include other processes as well. The knowledge component of the system is

separated from the planning engine making the system easy to modify for other problems.

The system was developed and tested in Macintosh Common LISP. The simulated
environment provides instant access to the components of the agents before, during, and
after planning. This enables the developer to trace and examine the operation of each
agent as it contributes to the planning process. Various options are also available to
control the operation of the system (see Chapter 6). The system runs on a Macintosh

computer. Other platforms with compatible LISP environments can be used as well.

Chapter Two : Single Agent Planning

2.1 Introduction to Single Agent Planning

Classical planners are single agent planning systems. Problems that can be solved
by the planner are limited by the agent's domain knowledge. The agent must have a
complete, correct description of the world and it is the only entity that can affect the
environment [Barr, Cohen and Feigenbaum, 1989]. By examining the initial state of the
world, the agent constructs a plan based on its domain knowledge. After applying the plan
to the initial state, the goal state is achieved. The agent itself must be capable of
performing all the required actions to achieve the goal. If there is one action that the agent
fails to complete and there is no alternative plan for it, then the ultimate goal will not be
completed. The entire job must be aborted.

A computer processor has a limited processing capacity. A processor can execute
only a limited number of instructions per second. This limits the amount of information a
processor may process and the amount of control it may exercise within a given time
period. Hence, programmed systems, whether centralized or distributed, may exhibit
symptoms similar to the bounded rationality exhibited by humans when capacities are
exceeded!. The metaphor appears viable [Fox, 1988]. In this case, a single agent planing
system can only solve relatively simple problem. Several assumptions are m;ade by classical
planners. The planner always has a complete, correct description of the world. The planner
is the only entity that can affect the environment - nothing happens spuriously and no
other agents can affect the world. The planner can spend as much time planning as needed.

The plans will always execute correctly. In this chapter we examine some significant

1Bounded rationality means that the capacity of the human mind for formulating and solving complex
problems is very small compared with the size of the problems whose solution is required for objectively
rational behavior in the real world - or even for a reasonable approximation to such objective rationality
[Fox, 1988].

classical planning systems. Further information on classical planning is found in [Wilkins,

1988].

2.2 STRIPS
2.2.1 History

STRIPS (STanford Research Institute Problem Solver) is a single agent planning
system developed by Richard Fikes and Nils Nilsson (1971) at SRI International [Fikes
and Nilsson, 1971]. Each problem for STRIPS is a goal to be achieved by a robot. The
world in which the STRIPS robot works consists of several rooms connected by doors,
along with some boxes and other objects that the robot can manipulate. Operators are the
basic elements from which a solution is built. For robot problems, each operator
corresponds to an action performed by the robot. Typical operators include going to a
specific location and pushing an object to a location. The locations are given as

parameters.

2.2.2 Assumptions made
The initial world model defined in STRIPS is created by making a snapshot of the

current world. Once the snapshot is made, STRIPS assumes that it will not be changed.
No other object can possibly affect the world model while STRIPS creates the plan.
STRIPS also assumes that the operators in the system will be performed properly. For
example, when a robot arm picks up a box, it must pick it up without error. If it slips, the

world model will be changed unpredictably and the entire plan may not work properly.

2.2.3 Problem Space

The problem space for STRIPS is defined by the initial world model, the set of
available operators and their effects on world models, and the goal to be achieved.

STRIPS represents a world model by a set of well-formed formulas (wits) [Fikes and

Nilsson, 1971]. For example, to describe a world model in which the robot is at location a

and boxes B and C are at location 4 and ¢, we would include the following wifs?:

ATR(a)
AT(B,b)
AT(C,c)

The operators are grouped into families called schemata. Consider the operator goto for
moving the robot from one point to another. It is a distinct operator for each different pair
of points, but it is convenient to group all of these into a family goto (m,n) parameterized
by the initial position 7 and the final position 7. Goto (m,n) is an operator schema whose
members are obtained by substituting specific constants for the parameters 7 and ». Each
operator consists of two main parts: a description of the effects of the operators, and the
preconditions to its applicability [Fikes and Nilsson, 1971]. The effects of an operator are
simply defined by a list of wifs that must be added to the world model when the operator
is applied, and a list of wffs that are no longer true and therefore must be deleted. It is
convenient to state the precondition for an operator schema as a wif schema. To
determine whether there is an instance of an operator schema applicable to a world model,
we must be able to prove that there is an instance of the corresponding wif schema that
logically follows from the model.

A typical operator is push (%, m,n), which denotes the robot pushes object & from m

to n. Such operator might be described as follows:

push(k,m,n)
Precondition: ATR(m) A AT(k,m)

Delete List: ATR(m)
AT(k,m)

Add List: ATR(n)
AT(k,n)

2ATR(x) represents the fact that the robot is at location x.
ATR(Y.z) represents the object Y is at location z.

10

The precondition statement requires that the robot and the object & must be at location .
After applying operator push (km,n), the robot and the object & will no longer be at
location m. That is why wifs ATR(m) and AT(k,m) are included in the delete list. On the
other hand, the new location of the robot and the object & will be at . That is why wifs

ATR(n) and AT(%,n) are included in the add list.

2.2.4 Operations
STRIPS operates by searching a space of world models to find one in which the

given goal is achieved. It uses a state-space representation in which each state is a pair
consisting of a world model and a list of goals to be achieved [Fikes and Nilsson, 1971].
The initial state is (Mo, (Gp)), where M is the initial world model and Gy is the given
goal. STRIPS begins by employing a theorem prover to attempt to prove that the goal wif
G follows from the set M of wifs describing the initial world model. If G does follow
from M, the task is trivially solved in the initial model. Otherwise, the theorem prover
will fail to find a proof. In this case, the uncompleted proof is taken to be the difference
between M(y and G. Next, operators that might be relevant to reducing this difference are
sought. These are the operators whose effects on world models would enable the proof to
be continued. In determining relevance, the parameters of the operators may be partially or
fully instantiated. The corresponding instantiated precondition wif schemata are then taken
to be new sub-goals.

STRIPS works on a sub-goal using the same technique. Suppose the precondition
wif schema G is selected as the first sub-goal to be worked on. STRIPS again uses a
theorem prover in an attempt to find instances of G| that follow from the initial world
model M(). Here again, there are two possibilities. If no proof can be found, STRIPS uses
the incomplete proof as a difference, and sets up sub-sub-goals corresponding to their
precondition wifs. If STRIPS does find an instance of G that follows from A, then the

corresponding operator instance is used to transform () into a new world model Af 1-

11

The hierarchy of goal, sub-goals and models generated by the search process is
represented by a search free. Each node of the search tree has the form (<world model>,
<goal list>), and represents the problem of trying to achieve the sub-goals on the goal list
from the indicated world model. STRIPS uses the GPS3 strategy of attempting to apply
those operators that are relevant to reducing a difference between a world model and a

goal or sub-goal. Theorem prover is the key part of this mechanism.

2.2.5 Example
To explore how STRIPS works, consider the following problem. Figure 5 a) and b) shows

the initial state and goal state respectively.

Initial State Goal State
ON(B,A) A ON(A,B) A
ONTABLE(A) A ONTABLE(B) A
CLEAR(B) A CLEAR(A) A
ARMEMPTY ‘ ARMEMPTY

B A

A B

Figure 5 a): Initial State Figure 5 b): Goal State

Assume the planner is given the following operators:

STACK(x,y):
Precondition: CLEAR(y) A HOLDING(x)
Delete List: CLEAR(y) A HOLDING(x)
Add List: ARMEMPTY A ON(x,y) A CLEAR(x)

3GPS General purpose Problem Solver developed by Simon and Newell [Ernst and Newell, 1969].

12

UNSTACK(x,y):
Precondition: ON(x,y) A CLEAR(x) A ARMEMPTY
Delete List: ON(x,y) A ARMEMPTY A CLEAR(x)
Add List: HOLDING(x) A CLEAR(y)

PICKUP(x):
Precondition: CLEAR(x) A ONTABLE(x) A ARMEMPTY
Delete List: ONTABLE(x) A ARMEMPTY A CLEAR(x)
Add List: HOLDING(x)

PUTDOWN(x):
Precondition: HOLDING(x)
Delete List: HOLDING(x)
Add List: ONTABLE(x) A ARMEMPTY A CLEAR(x)

Initially, the goal stack* contains:
ONTABLE(B) A ON(A,B)
The planner separates the problem into two subproblems. This leaves two possible goal

stacks (depending on how we order the subgoals):

ONTABLE(B) ON(A,B)
ON(A,B) ONTABLE(B)
ONTABLE(B) A ON(A,B) ONTABLE(B) A ON(A,B)

The planner must choose one of the goal stacks to process first. Let us assume that the left
goal stack is used. The planner operates by pursuing the top goal on the stack. When a
sequence of operators that solve it is found (zero or more), that sequence is applied to the
current state to create a new state. The goal is then popped from the stack and the next
goal is pursued starting from the new state. This process continues until the goal stack is
empty.

The first thing the planner must do is to check whether ONTABLE(B) is true in
the current state. It is not, therefore the planner checks for operators that can cause it to

become true. Of our four operators, only PUTDOWN(B) can be used since its Add List

4The goal stack is used to enable the planner to keep track of the goals and subgoals it should pursue in
order to solve a given problem.

13

contains ONTABLE(x). The planner then replaces ONTABLE(B) on the goal stack with
PUTDOWN(B) producing:

PUTDOWN(B)
ON(A,B)
ONTABLE(B) A ON(A,B)

However, to apply PUTDOWN(B), the planner must ensure that its preconditions are
satisfied. This is done by adding the preconditions as sub-goals on the goal stack:

HOLDING(B)
PUTDOWN(B)

ON(A,B)

ONTABLE(B) A ON(A,B)

The planner must check to see if HOLDING(B) is true. It finds that this goal is not true
and therefore looks for operators that can make it true. UNSTACK(B,A) and PICKUP(B)
are two possible operators. Lets say the planner chooses UNSTACK(B,A). The goal stack

becomes:

ON(B,A)
CLEAR(B)

ARMEMPTY
UNSTACK(B,A)
PUTDOWN(B)

ON(A,B)

ONTABLE(B) A ON(A,B)

The planner finds that the top three conditions of the goal stack are true, so they are
removed from the goal stack. The action UNSTACK(B,A) is then performed as shown in

Figure 6 (this modifies the world model).

14

Figure 6: After UNSTACK(B,A)

After that, the next action in the goal stack, PUTDOWN(B), is also performed as

shown in Figure 7.

L

A B

Figure 7: After PUTDOWN(B)

This leaves the goal stack as follows:

ON(A,B)
ONTABLE(B) A ON(A,B)

The planner checks the first condition in the goal stack, ON(A,B), and finds that it is not

true. ON(A,B) is replaced by the operator STACK(A,B). The goal stack becomes:

HOLDING(A)
CLEAR(B)

STACK(A,B)
ONTABLE(B) A ON(A,B)

The planner finds that HOLDING(A) is not true. HOLDING(A) is replaced by operator
PICKUP(A). The goal stack becomes:

CLEAR(A)
ONTABLE(A)
ARMEMPTY
PICKUP(A)

CLEAR(B)

STACK(A,B)
ONTABLE(B) A ON(A,B)

Since the top three conditions in the goal stack are true, the planner performs the

PICKUP(A) action as shown in Figure 8.

Figure 8: After PICKUP(A)

After that, since CLEAR(B) is also true, the planner performs the STACK(A,B) action as

shown in Figure 9.

L

Figure 9: After STACK(A,B)

16

Finally, the planner checks the last condition in the goal stack and finds that it is true.

Problem solved!

2.2.6 Summary

STRIPS constructs a problem-solving tree whose nodes represent sub-problems.
In a problem-solving process of this sort, there must be a mechanism to decide which node
to work on next. STRIPS uses an evaluation function that incorporates such factors as the
number and the estimated difficulty of the remaining sub-goals; the cost of the operators
applied so far; and the complexity of the current difference. Other evaluation functions and

other ordering techniques can be introduced to the system.

2.3 NONLIN
2.3.1 Introduction

NONLIN is a classical single agent planning system. It generates a plan given a
goal in a particular domain. Since the goals and sub-goals often interact with one another,
it needs to drop the linearity assumption’. In allowing plans to be partially ordered, we
need nonlinear plans. "NONLIN" stands for its nonlinear characteristics. A plan is
nonlinear if it contains actions that are unordered regarding each other, i.e., the order has
not yet been determined or actions may be executed in parallel [Tate, 1977]. Nonlinear
planning avoids searching for all possible orderings of actions. Orderings are only inserted
when information justifying them becomes available. Consequently, ordering of actions
becomes an explicit activity of the planner. NONLIN must reason about interactions
among planned actions (e.g., resource contention, undoing effects) and determine how to

correct them through orderings or insertion of additional actions.

3Linearity assumption means whenever the planner is faced with the problem of achieving a pair of
conjuctive subgoals, it assumes that they can be achieved independently.[Cohen and F eigenbaum, 1989]

17

NONLIN's approach varies dramatically from the state-spaced approach to
planning employed by STRIPS. Nodes in the search space are partially ordered plans at
some level of abstraction rather than world states. NONLIN changed the search problem
in planning to a space of partial plans. For any non-primitive action in the network,
NONLIN can consider any known method of reducing this action to a set of other actions
or primitives. Planning consists of choosing appropriate reductions from the sets of
possibilities and ordering actions to eliminate harmful interactions. Each state in the
problem space represents a set of possible plans. The more abstract the state, the more

possible plans that can be generated.

2.3.2 Assumptions made
Like STRIPS, the initial world model defined in NONLIN is created by making a

snapshot of the current world. Once the snapshot is made, NONLIN assumes that it will
not be changed. No other object can possibly affect the world model while NONLIN

creates the plan. NONLIN also assumes that the operators in the system will be performed

properly.

2.3.3 Backtracking Scheme

NONLIN includes provision for backtracking when choices made are proved to be
wrong. To backtrack, the planning system simply saves the state (partial plan) of the
solution at some choice point and the set of alternative choices. The system picks a choice
from this set and the search continues. If failure occurs, the saved state at the most recent
choice point is restored and the next alternative is taken. If there are no alternatives,
backtracking continues to the next most recent choice point. Backtracking of this sort can
be implemented using stack-based techniques [Tate, 1977]. The amount of information
saved for a state is typically small in comparison to saving complete world states, although

for large plans a fair amount of information may be involved. Since backtracking is based

18

on the chronological order in which decisions were made, it is a Chronological
backtracking strategy. NONLIN used a variant of depth-first search. At each choice point,
it ranks the alternatives, selects the highest ranked alternative and follows it. If the planner
is forced to backtrack, it picks the next highest ranked alternative and follows it. This
process can be applied continually until no further alternatives are available (at which point

the planner must backtrack to another choice point).

2.3.4_Task Schema

Another major enhancement in NONLIN was the development of a declarative
Task Formalism that enabled actions in the domain to be described in a hierarchical
manner [Tate, 1977]. The knowledge-base of a NONLIN planner consists of a set of these
Task Schemas, each of which describes a task at some level of abstraction. A fask schema
typically contains information of when to introduce an action in a plan, the effects of the
action, the conditions that must hold before the action can be performed and the way to
expand the action to lower level actions without having to specify all the details of the
lower level actions. The structured syntax and clarity of the representation make it easier
to specify planning knowledge. Task descriptions can be created as modular units that are
referenced by other units when necessary. For example, a task schema may look like the

following:

ACTSCHEMA SERVICE
PATTERN <<Install Services>>

EXPANSION

ACTION <<Install Drains>>

ACTION <<Lay Storm Drains>>
ACTION <<Install Rough Plumbing>>
ACTION <<Install Finished Plumbing>>
ACTION <<Install Rough Wiring>>
ACTION <<Finish Electrical Work>>
ACTION <<Install Kitchen Equipment>>
ACTION <<Install Air Conditioning>>

00 ~1 OV v BN e

19

ORDERINGS 1 -->3 3->4 5.6 3->7 5.7

CONDITIONS
SUPERVISED
SUPERVISED
SUPERVISED

<<Drains Installed>>
<<Rough Plumbing Installed>>
<<Rough Wiring Installed>>

UNSUPERVISED <<Foundations Laid>>
UNSUPERVISED <<Flooring Finished>>

Figure 10 shows the dependencies between the actions specified in the task

schema. The condition statements also reflect the proper order of the actions to be

executed.

NONLIN supports the inclusion of three basic types of conditions in a task
schema. SUPERVISED conditions correspond to preconditions for the actions specified in
the expansion of the task. These directly influence orderings among the actions in the
eexpansion list. UNSUPERVISED conditions must be true for the action to be carried out,
but the task schema does not contain actions in the expansion list to satisfy these
conditions. USE-WHEN or HOLDS conditions must hold before the action can be used.
They determine the relevancy of the action in conjunction with the PATTERN associated

with the action. Only SUPERVISED conditions can be expanded. The other conditions

AT 3 FROM 1
AT 4 FROM 3
AT 6 FROM 5
AT 1
AT 4

must be satisfied by other actions through linking the nodes appropriately.

2
3 4
/
7
5 6
8

Figure 10: Dependencies of Actions

20

2.3.5 Plan Critics

NONLIN employs plan critics to check for interferences among the actions that
are in a given plan at some level of abstraction [Tate, 1977]. Some of these critics are
domain-independent while others may be domain-specific. These critics use a structure
called the Table of Multiple Effects (TOMEF,) [Tate, 1977]. This table is built for each level
in the network and contains entries for expressions that were asserted or denied by more
than one node in the current plan. The Resolve-Conflict critic examines portions of plan
that are to be achieved in parallel. It uses the TOME to recognize when an expression that
is asserted at some node is denied at a node that is not the asserting node's sub-goal.

Besides the TOME, NONLIN uses a GOAL STRUCTURE (GOST) [Tate, 1977].
A GOST is associated with each partial plan state and stores conditions on each node in
the plan together with a list of contributors. Contributors are nodes that can make the
condition hold. A GOST entry has the following structure:

[<condtype> <pattern> <value> <nodenum>] <list of contributors>

[SUPERVISED <<PLUMBING INSTALLED>> TRUE 6] with value [4]

In this example, the condition had to be true at node 6 and was made true at node 4 that is
a contributor. The GOST allows the planner to determine the purposes of any particular
effect at any node. The GOST entries specify a set of ranges for which patferns must have
a certain value. The planner must try to protect these conditions for the required ranges.
This allows interactions to be detected and allows corrections to be sensitive to the
important effects of nodes.

A node in a plan is expanded to get more detail about how a task can be performed
or a goal can be achieved. There are certain types of nodes that cannot be expanded. They
are simply used to define the network of nodes and to define conditions that must hold but
cannot be expanded. There are three types of nodes that are considered expandable. They

are Goal Node, Phantom Node and Action Node. A goal node is present to state that the

21

pattern of the node should be true at the node. Phantom nodes represent goals that should
already be true by the time they are met. An action node is present as a command to do
something.

Figure 11 shows a conflict in a partial plan. The action 'Clear B' noted by a '+' sign
conflicts with the action Put A on B'.

The Resolve-Contflict critic examines portions of the plan in Figure 11. It uses the
TOME to recognize a conflict when an expression that is asserted at some node is denied
at a node that is not the asserting node's sub-goal. The plan is modified (by enforcing an

ordering on the nodes) to eliminate the conflict as shown in Figure 12.

Clear A B
S 1J PutAonB
S J
C=D;
S “] PutB on C
S Split Goal Node

J Join @ Phantom Node

Figure 11: Partial Plan Before Criticism

22

PutAonB

PutBonC

Goal Node

S | Split

[]
J Join CD Phantom Node

Figure 12: Partial Plan After Criticism by Resolve Conflicts

2.3.6 Question Answer Facili

NONLIN contains a question answering facility (QA) which is used by the planner
to determine the value of a given statement in a given partially ordered plan [Tate, 1977].
The planner often needs to know what value a statement P will have at some node N in
the plan. This is required to determine if a condition holds or if a goal is already satisfied.
QA can respond to two types of queries.

a) Does statement P have a value V at node N in a plan?

b) What links would have to be added to the current plan to make P have a
certain value at N?

Both queries involve creating a list of critical nodes regarding P and N. A P-node is a node
that gives statement P a value. A PV-node is a node that gives statement P a value V. A
P~V-node is a node that gives statement P a value other than V. A critical node for (P,N)
is a node that gives a value to statement P that can be maintained up to node N. Critical
nodes are the last P-node on each incoming branch to N and all P-nodes that are in parallel
with N. QA(P,V,N) finds the list of critical nodes by marking the other nodes of the

network with their position with respect to N and looking for TOME entries for P. P

23

definitely has a value V at N if there is at least one critical PV-node before N and there are
no critical P~V-nodes. P definitely does not have value V at node N if there is at least one
critical P~V-node and there are no critical PV-nodes. If neither of these conditions holds,
then it may be possible to make P have a value V at N by adjusting the links among the
nodes. The planner must ensure that at least one critical PV-node is linked in before N and
that all critical P~V-nodes are linked out after N. This includes nodes that are in parallel
with N. This task can be very difficult because the planner must ensure that the new
linkings do not adversely affect other protected condition ranges in the GOST.

NONLIN can consider inserting new orderings into a plan by introducing or

modifying links in two cases.

a) To detect and remove interactions: where one action interferes with an
important effect of another and must be moved outside the effect's range.

b) To make a statement have a particular value at some node by linking another
node which produces the required effect before the target node and ensuring
the desired effect's range is protected accordingly.

NONLIN's strategy uses the GOST to determine the ranges of statements. Recall that the
range of a GOST entry denotes the time between when a statement is given a particular
value and the point at which it is required to maintain this value to satisfy the condition of
some node. NONLIN ensures that there is no errlap between any ranges for which a
statement P must have a value V and any ranges for which a P must havé a value other

than V. Two rules are used to maintain this consistency.

a) When there are multiple contributors to a condition on any node, the planner
need only maintain at least one of them.

b) If'the condition is only present to make a GOAL node a PHANTOM node then
the planner can remove all the contributors. This will change the node to a
GOAL node and force the planner to consider other ways to achieve the goal.

24

2.3.7 Summary

NONLIN still suffers from some major problems. The backtracking mechanism is
inefficient. The macro-like nature of the task schemas is an example of shallow planning
knowledge. The planner is limited in how it can reason about the underlying domain
theory. For example, if an action contains a specific UNSUPERVISED condition that is
not included in some higher-level action then the lower-level action cannot be applied

because the planner cannot expand these types of conditions.

2.4 Other Single Agent Planners

2.4.1 ABSTRIPS
Sacerdoti developed ABSTRIPS (Abstraction-Based STRIPS) which modified the

STRIPS search strategy to employ a hierarchical state-space search [Sacerdoti, 1974].
ABSTRIPS plans in a hierarchy of abstraction spaces in which successive levels of detail
are introduced. It introduced the concept of criticality which was used to assign the
preconditions of the domain operators to a specific abstraction level. The preconditions
with the highest criticality value were deemed to be the most difficult to solve. ABSTRIPS
used the goal stack planning strategy of STRIPS, but did so in hierarchical fashion. It
would first try to solve the problem completely, considering only preconditions whose
criticality value was the highest possible (i.e., preconditions with a lower én’ticality value
were not placed on the goal stack). Once a complete solution was generated at this level
of abstraction, it would use the constructed plan as an outline of the complete plan and
consider preconditions at the next-lowest criticality level.

The technique employed by ABSTRIPS can greatly reduce the amount of search
and backtracking that a planner must do. This is accomplished by focusing on important
plan elements first and dealing with details only when a good plan outline has been
produced. This allows the planner to eliminate alternatives very early and prune large

subsets of the search in the process. Sacerdoti's research showed that ABSTRIPS spent

25

much less time than STRIPS in searching for solutions and visited far fewer nodes that

were not on the correct path to a valid plan [Sacerdoti, 1974].

2.4.2 NOAH

NOAH (Nets of Action Hierarchies) was developed for use in assembly tasks. It
introduced the concept of procedural nets [Sacerdoti, 1975]. A plan was represented in a
procedural net at various levels of abstractions. For example, NOAH could instruct a
trained engineer to bolt the mounting bracket to the frame which is a high level
instruction. We could also tell a novice how to accomplish this task in detail if necessary.

NOAH changed the search problem in planning to a space of partial plans instead
of a space of world states [Sacerdoti, 1975]. For any non-primitive action in the network,
the planner can consider any known method of reducing this action to a set of other
actions or primitives. Planning in NOAH consists of choosing appropriate reductions from
the sets of possibilities and ordering actions to eliminate harmful interactions. Each state in
the problem space represents a set of possible plans. The more abstract the state, the more
possible plans that could be generated. NOAH used a Hill Climbing search strategy to
traverse the search space. When faced with a set of choices for reductions or orderings,
NOAH uses local heuristics to pick one and discard the rest, never to consider them again.

This means that some problems cannot be solved by NOAH.

2.5 Summary

Classical planners established the initial research in planning. Problems that can be
solved by a single agent planner are limited by the agent's domain knowledge. Typically, a
single agent can only solve relatively simple problems. In real world environments,

problems are usually very complex. A complete, correct description of the world may not

®Procedural nets are also used as the basis for the planner's search space in NONLIN,

26

always be provided to the agent. Quite often the environment changes during plan
execution or during planning. This results in great limitations in classical planners.

We need a planning system that involves different agents' expertise. Such a
planning system should provide an environment to allow agents to contribute their domain
specific knowledge to solve a complex problem. Sub-goals should be distributed among
the agents and integrated together to form the final solution. Agents should also react to
the environment when it changes instead of relying on the initial state of the world. When
one agent fails to accomplish a task, the task should be sent to another agent with similar

capability. Planning systems that address these objectives are discussed in the next chapter.

27

Chapter Three : Distributed Artificial Intelligence

3.1 Introduction

Most artificial intelligence (AI) research investigates how a single agent can exhibit
intelligent behavior such as solving problems using heuristic or knowledge-based methods,
planning, understanding and generating natural language, perception and learning
[Hendler, Tate and Drummond, 1990]. Recent attempts to develop complex systems have
revealed the shortcomings and problems of centralized, single-agent systems and have
acted as a springboard for research in distributed artificial intelligence (DAI) [Durfee,
Lesser and Corkill, 1989]. Several recent developments have together provoked interest in
concurrency and distribution in Al: the development of powerful concurrent computers,
the proliferation of multinode computer networks, and the recognition that much human
problem solving and activity involve groups of people.

DAI can be divided into two primary arenas. Research in Distributed Problem
Solving (DPS) considers how the work of solving a particular problem can be divided
among a number of modules or nodes that cooperate at the level of dividing and sharing
knowledge about the problem and about the developing solution [Bond and Gasser,
1988]. In a second arena, which we shall call Multiagent (MA) planning systems, research
is concerned with coordinating intelligent behavior among a collection of (possibly pre-
existing) autonomous intelligent agents, how they can coordinate their knowledge, goals,
skills, and plans jointly to take action or to solve problems [Bond and Gasser, 1988]. To
coordinate their actions, intelligent agents need to represent and reason about the
knowledge, actions, and plans of other agents. DAI research can help us to improve our
techniques for representing and using knowledge about beliefs, action, plans, goals, and so
on. From a methodological perspective, virtually all research in DAI has focused on how a

collection of agents can interact to solve a single common global problem.

28

3.2 Considerations in DAI
The basic questions that DAI must address are the following [Bond and Gasser,

1988]:

- How to formulate, describe, decompose, and allocate problems and synthesize
results among a group of intelligent agents

- How to enable agents to communicate and interact: what communication
languages or protocols to use, what and when to communicate, etc.

- How to ensure that agents act coherently in making decisions or taking action,
accommodating the global effects of local decisions and avoiding harmful
interactions

- How to enable individual agents to represent and reason about the actions,
plans, and knowledge of other agents in order to coordinate with them; how to
reason about the state of the coordinated process

- How to recognize and reconcile disparate viewpoints and conflicting intentions

among a collection of agents trying to coordinate their actions; how to
synthesize views and results

3.2.1 Description, Decomposition, and Allocation of Tasks

Decomposition choices are critically dependent on how a problem is described,
because it is the collection of attributes and descriptive categories for stating the problem
that provides a language for expressing interproblem and interagent dependencies [Adler
and Simoudis, 1990]. Formulation of problems requires some representation for the
problem, as well as decisions on the boundaries of the problem and on what is known and
unknown. Although there is little existing research in this area in DAL, some relevant
research has occurred in knowledge-acquisition systems [Bond and Gasser, 1988].

The problem of task decomposition can be seen from several perspectives. In
typical decomposition processes, a single supertask is decomposed into smaller subtasks,
each of which requires less knowledge or fewer resources. The decomposition problem for

multiple agents is more complex because of the need to match resources and capabilities

29

of different agents with appropriate tasks [Shaw, 1990]. Decomposition techniques need
to account for the capabilities and resources of agents, and must make decisions about
alternative types and granularity of decompositions. Intelligent approaches to task
decomposition need to consider the representation of tasks, several dimensions of
decomposition, available operators that can be applied to perform subtasks, available
resources, and dependencies among tasks.

The problem of allocating particular tasks to particular agents is the problem of
assigning responsibility for a particular activity. There are several choices of what aspects
of a problem or task to provide in order to allocate responsibility for accomplishing that
task to a particular agent. A task to be done can be completely or partially constructed by
the agent itself, it can be assimilated via interaction with a controlling agent, or it can be
given by a designer and embedded in the structure of the agent [Shaw, 1990]. Dynamic
task allocation of any type requires reliable communication, coordination overhead, or

redundancy.

3.2.2 Interaction, Language. and Communication

Interaction is important as a basic concept in DAI because it is the processes of
interaction that make it possible for several intelligent agents to combine their efforts.
Several dimensions of multiagent interaction are important for Vievs}ing organized
aggregates. These include among whom the interaction takes place; when the interaction
occurs; what is the content of the interaction or communication; how the interaction is
accomplished, why the action occurs; and what the basis of commonality is [Huhns,
Bridgeland and Arni, 1990].

When we work with distributed agents, we need to design and understand the
language used for interaction, communication, and organization. This means that we need
to know what knowledge to represent for communicating, and how to represent it in an

interaction language. Communicating agents in general will have disparate knowledge, so

30

the language system may have to allow for differences in knowledge. Typical DAI systems
have employed inflexible, predesigned communication languages [Huhns, Bridgeland and
Ami, 1990]. For more adaptive DAI systems, we need more flexible approaches based on

linguistic knowledge.

3.2.3 Coherence and Coordination

Coherence refers to how well the system behaves as a unit, along some dimension
of evaluation [Durfee and Montgomery, 1990]. It includes the system's ability to reach
satisfactory solutions, and the quality of the solutions it produces. The system's overall
efficiency in achieving some end and the conceptual clarity of the system's actions are also
included in examining the system's behavior.

Coordination, on the other hand, is a property of interaction among some set of
agents performing some collective activity. Effective coordination implies some degree of
mutual predictability and lack of conflict. The more unexpected conflict, the less well

coordinated are the agents.

3.2.4 Modeling Other Agents and Organized Activity

Meaningful interaction between two agents requires that they have at least implicit
knowledge of each other, such as the knowledge encoded in a communication protocol or
language. Meaningful communication through language is impossible without some
agreement on the intended effects of an utterance. One agent must know what reaction to
expect on receipt of a message it sends, to plan communication intelligently. Coordination,
which is important for avoiding harmful interactions and because local decisions have
global effects, is possible only when some agent has some expectation about the character

of the interaction. This expectation may be implicit, but it also may require reasoning.

31

3.2.5 Disparity and Conflict

Negotiation is a fundamental part of human cooperation, allowing people to
resolve conflicts that could interfere with cooperative behavior [Bond and Gasser, 1988].
It is the process of improving agreement on common viewpoints or plans through the
structured exchange of relevant information [Durfee, Lesser and Corkill, 1989].
Negotiation often is proposed in DAI research as a conflict-resolution and information-
exchange scheme. Typically, negotiation involves some context, some sets of goals, some
information or knowledge, and some procedure or protocol [Conry, Meyer and Lesser,
1986]. Negotiation has three important components: (a) there is a two-way exchange of
information, (b) each party to the negotiation evaluates the information from its own
perspective, and (c) final agreement is achieved by mutual selection [Davis and Smith,
1988]. Conflicting constraints can be bargained in the negotiation process. Agents may try
to relax those constraints, or by reformulating a problem to eliminate them [Evans and

Anderson, 1990].

3.3 Blackboard Systems
3.3.1 Introduction

In the mid 70's, the blackboard problem-solving model was developed [Engelmore
and Morgan, 1988]. It formed the basis for early work in distributed artiﬁéial intelligence.
The blackboard model consists of two basic components. The knowledge sources
represent the knowledge needed to solve a problem. The knowledge is partitioned and
kept separately and independently. The blackboard data structure represents a global
database, the blackboard. Knowledge sources produce changes to the blackboard that lead
incrementally to a solution to the problem. Communication and interaction among the
knowledge sources take place solely through the blackboard. The objective of each
knowledge source is to contribute information that will lead to a solution to the problem.

Knowledge sources respond to the blackboard opportunistically. The blackboard uses a

32

centralized, agenda-based controller. The controller repeatedly polls the knowledge
sources to see if they can contribute to the solution to the problem. The blackboard model
is analogous to a group of experts trying to solve a complicated problem. Each has its own
expert knowledge. A blackboard is placed in front of the group. A problem is described on
the blackboard. All the experts monitor the blackboard continually. When they find areas
that they can contribute to, they write their partial solutions to the blackboard to let other

experts examine them. This process continues until a complete solution is found.

3.3.2 Framework

The general blackboard framework is shown in Figure 13 [Engelmore and Morgan,
1988]. The data on the blackboard are organized hierarchically. The knowledge sources
are logically independent. Only the knowledge sources are allowed to make changes to the
blackboard. On the basis of the latest changes to the information on the blackboard, a
control module selects and executes the next knowledge source. Each knowledge source
is responsible for knowing the conditions under which it can contribute to a solution. The
knowledge sources respond opportunistically to changes on the blackboard. The control
module monitors the changes on the blackboard and the contributions that the knowledge
sources can make to decide what actions to take next. Various kinds of information are
made globally available to the control module. The information can be on the blackboard
or kept separately. The control information is used by the control module to determine the
focus of attention at various times during the problem solving process.

Knowledge sources produce changes to the blackboard that lead incrementally to a
solution, or a set of acceptable solutions, to the problem. The purpose of the blackboard is
to hold computational and solution-state data needed by and produced by the knowledge
sources. The knowledge sources use the blackboard data to interact with each other

indirectly.

33

KS

KS

KS

vV ¥

e control flow | |
Cg;gd . Control
_______ data flow

Figure 13: A Blackboard Framework

A Blackboard system is similar to a centralized multiagent planning system in that
different knowledge sources contribute their expert knowledge to solve a problem. The
knowledge sources in a Blackboard system, however, are not considered to be agents
because they are typically not capable of functioning independently of the Blackboard
system. An agent in a multiagent planning system usually can solve problems
independently and in cooperation with other agents. Knowledge sources are similar to
subroutines in conventional programming systems while agents are similar to complete
programs in a multitasking environment.

The Blackboard model has been applied in DAI research to create individual
agents that cooperate to solve problems [Hayes-Roth, 1988]. Each agent employs a local
blackboard model which contains information about its local actions and those of some

other agents in the system. We will introduce a multiagent planning model in Chapter 4

34

which utilizes the Blackboard model to implement a communication interface for

individual agents.

3.4 Contract Networks

3.4.1 Introduction

A Contract network is a general purpose, task sharing model [Smith and Davis,
1988]. Nodes (or agents) coordinate their activities using a contracting protocol. By using
negotiation based on task announcements, bids and awarded contracts, tasks are allocated
to different agents. Manager nodes examine allocated tasks, decompose them, and
broadcast task requests to other nodes. Interested nodes respond by making contract bids
and become potential contractors. Interest is based on relevant expertise, resources, etc.,
of the node. Manager nodes review bids and select suitable contractors. This process may
involve negotiation of bids to optimize the usage of resources. Contractors can become
managers by decomposing their contracts into subcontracts. The Contract network model
uses a mutual selection process rather than a manager-centered approach. It provides
common message formats and negotiation protocols for interaction based on contracts,
contract announcements, bid specifications, availability announcements and contract

awarding [Davis and Smith, 1988].

3.4.2 Contract-Net Protocol

The nodes in a Contract-Net use a common communication protocol to form
contracts concerning how they should allocate tasks in the network. Contracting involves
an exchange of information between interested parties, an evaluation of the information by
each member from its own perspective, and a final agreement by mutual selection. It
differs from voting in that dissident members are free to exit the process rather than being

bound by the decision of the majority.

(%)
wn

In the Contract-Net protocol, nodes coordinate their activities through contracts to
accomplish specific goals. Contracts are elaborated in a top-down manner. At each stage,
a manager node decomposes its contracts into subcontracts to be accomplished by other
contractor nodes. This process involves a bidding protocol based on a two-way transfer of
information to establish the nature of the subcontracts and to determine which nodes will
perform a particular subcontract [Smith, 1988]. The elaboration procedure continues until
a node can complete a contract without assistance. The result of the contract elaboration
process is a network of control relationships, in the form of manager and contractor
relationships, distributed throughout the network [Smith, 1988].

Nodes allocate tasks in the following stages [Barr, Cohen and Feigenbaum, 1989]:

1. A manager forms a task to be allocated.

N

The manager announces the existence of the task.

Available nodes evaluate task announcement.

(98]

4. Suitable nodes submit bids for task.
5. The manager evaluates bids.
6. The manager awards contracts to the most appropriate node(s).

7. The manager and contractor communicate privately during contract execution.

3.4.3 Example Application

A Contract-Net framework developed by Smith and Davis uses the model in a
distributed interpretation application [Barr, Cohen and Feigenbaum, 1989]. The network
tracks vehicles over a large geographical area. The spatially distributed network is
composed of two types of nodes: sensor nodes that can extract signal features from the
data they sense, and manager nodes that can process the signal features from several
sensor nodes to construct a map of vehicle movements. A manager node wants to form
contracts with sensor nodes that are adequately distributed around an area and that have a

complement of sensory capabilities. On the other hand, a sensor node wants to interact

with nearby managers to minimize communication. The Contract-Net protocol allows
manager and sensor nodes to each have input into the contracts that are formed.

This application illustrates the use of message structures in the Contract-Net
protocol, depicted in Figure 14 [Barr, Cohen and Feigenbaum, 1989]. Every message
includes information about its source, destination, type, and contract identifier. A task
announcement message includes abstract information about the task, expected capabilities
of potential contractors, the information that a bid should contain, and a deadline for when
bids should be received. In the vehicle monitoring application, the task abstraction
specifies the task type and the manager's location; the expected capabilities indicate that a
contractor must have certain sensory abilities and be in a particular area; and the
information a bid should contain includes the sensor's location and sensory abilities as

shown in Figure 14 a).

Task Announcement

el To: indicates a broadcast message.
D From: 25
st N42 Type: TASK ANNOUNCEMENT
~a Contract: 22-3-1

Task Abstraction:

TASK TYPE SIGNAL

POSITION LAT 47N LONG 17E
Eligibility Specification:

MUST-HAVE SENSOR

MUST-HAVE POSITION AREA A
Bid Specification:

POSITION LAT LONG

EVERY SENSOR NAME TYPE
Expiration Time: 28 1730Z FEB 1979
Signal task announcement

Figure 14 a): Task Announcement

37

Task Bid

To: 25

From: 42

Type: BID

Contract:22-3-1

Node Abstraction:
POSITION LAT 62N LONG 9W
SENSOR NAME S 1 TYPE S
SENSOR NAME S 2 TYPE S
SENSORNAME T1TYPE T

Signal task bid

Figure 14 b): Task Bid

Task Award

> To: 42
st N42 From: 25
Type: AWARD
Contract: 22-3-1
Task Specification:
SENSOR NAME S 1
SENSOR NAME S 2
Signal task award

Figure 14 c): Task Award

Upon receipt of a task announcement, a node may send a task bid to the manager
that announced the task. Besides the source, destination, type, and contract identifier, a
task bid message includes the information requested in the task announcement's bid
specification. In the vehicle monitoring application, the bid indicates the position and
sensory capabilities of the sensor node as shown in Figure 14 b).

Finally, following the expiration of the task announcement, the manager evaluates
the bids and builds a task award message for each node that is awarded the task. In the
vehicle monitoring application, the task award message indicates which of a sensor node's

sensory capabilities are requested by the manager as shown in Figure 14 c).

3.4.4 Contract-Net Summary

N2 N3

missing link

Figure 15: Contract-Net Missing Link -

Since the contract network model relies heavily on interaction between nodes
based on contract availability, bidding and awarding, it is susceptible to communication
bottlenecks. In addition, contract networks provide no provisions for lateral
communications between sub-tasks. As shown in Figure 15, node N1 sends task T1 to N2
and task T2 to N3. N1 forms a communication link with N2 and N3. There is no
communication link created between N2 and N3. They may only communicate indirectly
through N1.

The Contract network model concentrates on allocating tasks to increase
parallelism and to make effective use of network resources. It assumes that the allocated
tasks are independent, that is, that managers will decompose tasks to minimize subproblem
interactions; and it assumes that the manager will implicitly know how to integrate the
results of its contractors. In short, the contract net framework is geared toward top-down

decomposition of large tasks and allocation of the subtasks. It is thus best suited for DAI

39

applications with well-defined task hierarchies, with tasks that are initially presented to a
few nodes in the network and that can be decomposed into essentially independent

subtasks.

3.5 Summary

There are many approaches for coordinating nodes in DAL including contracting,
negotiation, organizational structuring, multiagent planning, and sophisticated local
control [Bond and G;isser, 1988]. From these very different approaches, we can infer that
effective coordination requires three things. First, it requires structure because without
structure the DAT nodes cannot interact in predictable ways. Structure is embodied in
shared information such as organization and communication protocols. Second, effective
coordination requires flexibility because DAI nodes typically exist in dynamically changing
environments where each node might have incomplete, inaccurate, or obsolete
information. Flexibility allows a contracting node to decide how to bid in its current
situation, it allows a node in an organization to locally decide what partial solution to form
given its current data, and it allows a node in a planning system to change its plan in
response to changing circumstances. The third requirement for effective coordination is
the knowledge and reasoning capabilities to intelligently use the structure and flexibility.
Nodes must form and reason about what they are doing - their goals, plaﬁs, and beliefs -
and how this fits into what they know about others. They must rely on structure to guide
their activities to changing circumstances. In short, nodes need enough local sophistication

to steer and appropriate course between regimentation and anarchy.

40

Chapter Four : Multiagent Planning

4.1 Introduction

Multiagent planning systems coordinate a number of agents to solve problems.
Each agent contributes its expertise in a certain area so that a complicated problem can be
solved by the group of agents. Usually such problems cannot be solved by an individual
agent. Each agent in the system typically only needs a high level understanding of other
agents. Such an approach naturally matches the way we do things in our daily lives.

In centralized multiagent planning, each agent forms its own local plan and
distributes it to a central agent [Bond and Gasser, 1988]. The central agent reviews the
plans submitted by other agents and analyzes them to identify critical regions. The plans
may be modified and synchronization information may be inserted by the central agent
when necessary. The central agent must have a complete picture of the entire goal to be
achieved. This requires a significant amount of computation and communication
resources.

In distributed multiagent planning, no single agent has a complete global view of
the organization's activity. Agents plan together on a level-by-level basis and exchange
partial plans based on models of other agents and their relevance [Bond and Gasser,
1988]. Agents examine other agents' partial plans and make adjustments in fheir own plans
or make suggestions to other agents to change their plans.

We are going to describe the model developed originally by [Evans, 1988] and
later extended by Evans and Anderson [Evans and Anderson 1989, Evans and Anderson
1990]. The description contained in this chapter are based largely on these references. This
is a general purpose model and hence it is fairly complex. A prototype implementation of

the model is presented in the next chapter.

41

4.2 Knowledge-based Model of an Agent

4.2.1 Basic Components

The basic components of an agent in our multiagent planning model are shown in
Figure 16 [Evans and Anderson 1990]. Each agent is divided into two components: a
problem-solving component that embodies the agent's problem-solving knowledge and
skills; and a planning component that maintains and manipulates a knowledge-based model
of the agent's own abilities and those of other agents in the environment to plan and
coordinate cooperative problem-solving activities. The planning component acts as an
intelligent coordination interface for the agent that determines when the agent should
perform problem-solving functions for other agents and when the agent should have other
agents perform problem-solving functions for it. The problem-solving component carries
out those tasks that the planning component decides should be done by the agent itself. An
agent's problem solving componeht is analogous to a single agent planning system. The
agent's planning component enables the agent to plan and cooperate actions with other

agents to solve problems that require the expertise and resources of several agents.

£))

Communications Link

Planning Component

Control Strategy
///(Coordination

i

(Introspection) (Interrogation)

Plan
Knowledge

Task
Knowledge

Agent
Knowledge

Knowledge Base

(Plan Execution

(Integration)

)\ Coordination

Knowledge

Negotiation

Problems

Agent Activity

Plans

General

Activity
Blackboard

Problem-Solving Component

Control
Strategy

Knowledge
Base

Figure 16: A Basic Agent

4.2.2 Constraints

Fox has done considerable work in analyzing the types of constraints that can be

used in job-shop scheduling problems [Evans and Anderson, 1989]. Evans and Anderson

have adapted this work to identify the types of constraints useful in planning and

coordinating cooperative problem-solving activities [Evans and Anderson 1990]:

- Organizational Goals: maintaining an effective use of available resources by
constraining their use. For example, preventing scarce resources (e.g. highly skilled
agents) from being used on low priority tasks, preventing bottlenecks during
cooperative work (deadlocks), and balancing the use of idie resources effectively.

- Physical Restrictions: identifying physical limitations of resources such as the
processing time involved in performing particular tasks and the information that
agents require to perform these tasks.

- Temporal Restrictions: identifying temporal orderings among the individual
requests an agent receives and among the tasks required to carry out the requests.

- Availability Restrictions: identifying resource availability and the implications of
unavailable resources (e.g. task X cannot be performed unless agent A is
available).

- Preferences: identifying preferences for problem-solving methods and agents that
can apply these methods.

Fox's work on the ISIS system led to the development of a constraint
representation language capable of encoding a variety of knowledge about individual
constraints including: expressions denoting the context in which a constraint is applicable;
relaxation methods indicating how the constraint can be relaxed when conflicts arise;
interactions among constraints that indicate interdependencies (i.e. satisfying one
constraint may have a positive or negative effect on the ability to satisfy another);
constraint generators that can introduce and propagate additional constraints dynamically
when expectations are met or broken [Evans and Anderson, 1989]. In addition, constraints
are assigned importance measures indicating the relative influence exerted by each
constraint; some constraints must be satisfied, while others can be safely ignored or
relaxed. Relaxation methods also are assigned measures indicating the relative utility and

cost of each (i.e., preferences among available relaxation methods) [Evans and Anderson,

1990].

4.2.3 Communication Structures

Agents coordinate cooperative problem solving through the exchange of
information with one another. We divide this information into two categories: problem-

solving requests and notifications [Evans and Anderson 1990].

44

Problem-solving requests are structures that describe an operation (or set of
operations) to be performed, an object (or set of objects) to which the operation is to be
applied, and possibly an agent (or class of agents) that is to carry out the operation. A
request is represented as a frame consisting of several slots. Each slot describes particular
characteristics of the request. Each slot can have a variety of information associated with
it, including: values, procedures, and constraints.

Notifications are more general structures that can be used to convey other types of
required information between agents. These types of information include logistical
information such as agent work load reports or notification of non-functioning agents.
Besides the housekeeping information, notifications can convey control information such
as global plan synopsis reports, descriptions of the current and future focus of attention,
and most importantly constraint violation reports and relaxation notifications [Evans and

Anderson, 1990].

4.2.4 Knowledge Sources

To coordinate cooperative problem-solving activities, a planning component
requires extensive knowledge describing the types of requests the agent can process, the
methods it can use, and the agents that can carry out the problem-solving specified by the
various methods [Evans and Anderson 1990]. We divide the knowledge Base into three
distinct categories as illustrated in Figure 16. Each of these categories is represented as a
collection of knowledge sources (KS) consisting of two components: a precondition
component and an action component. The precondition is a request structure defining the
form and content of the requests that the KS action can manipulate. Action components
describe problem-solving methods, including information about the agents that can apply
the methods and any additional constraints associated with the application of these

methods.

45

The first category of knowledge, plan knowledge, specifies methods that can be
used to process various composite requests an agent may receive. These are requests that
can be transformed into a set of simpler requests that can be solved individually and then
integrated to produce a final solution. Plan knowledge therefore represents divide-and-
conquer methods.

The second category of knowledge, fask knowledge, deals with what we refer to as
primitive requests: that is, requests that can be distributed directly to an appropriate agent.
The recipient of such requests may execute them immediately (i.e. pass the requests to its
problem solving component) or the recipient may view the request as a composite request
and transform it, distribute a set of simpler requests, and integrate the results [Evans,
1988].

The third category of knowledge, agent knowledge, describes specific agents and
classes of agents residing in the environment, including communication protocols réquired
to interact with agents and agent-specific preconditions that are imposed on various tasks
the agents can perform.

In conjunction with the above mentioned categories of KSs, a planning component
maintains a coordination knowledge base which is used by the control strategy to
determine the amount of effort that is to be expended in processing requests and to focus
attention towards the highest priority requests and the KSs best suited té each request.
Much of this knowledge is represented as constraints which ensure that the agent expends

its resources effectively and efficiently.

4.2.5 Activity Blackboard

The activity blackboard is a multi-partition working memory structure used to
store information describing problem-solving requests being processed, plans designed to
fulfill these requests, activities scheduled to carry out the plans, and general information

about the current processing loads of the agent [Evans and Anderson 1990]. The most

46

important area of the blackboard is the plan partition, consisting of one or more plan trees
which represent information about the problem-solving methods (KSs) applicable to each
request currently being processed.

Plan tree nodes may be divided into two categories: AND nodes, representing
required plan components (e.g. tasks specified in a plan KS); and OR nodes, representing
one or more alternative plans, tasks, or agents. Each plan tree node is represented as a
frame structure with several special slots specifying control information indicating how to
interpret the information contained in a node, and a constraint list consisting of constraints
associated with the node and any of its subordinates. The model employs a distributed
multiagent planning approach so each agent's activity blackboard represents its view of the
overall problem solving process (which may be inaccurate or in conflict with that of other

agents).

4.3 Constraint-directed Planning

4.3.1 Planning Control Strategy

When requests are received, they are stored as entries in the problems partition of

the activity blackboard (see Figure 16). Each request is assigned a priority based on
coordination knowledge, and the highest ranked request is then selected and used to
create a root node of a plan tree in the plan partition. There may be sevefal plan trees in
the plan partition, each corresponding to a request being processed. Only one plan tree
will, however, be active at any given time; agents can perform only one task at a time,
regardless of how much work is pending.

The control strategy begins to expand the current plan tree by selecting plan KSs
kthat are applicable to the root node (request) [Evans and Anderson 1990]. Constraints are
propagated from nodes at higher levels in the plan tree to ensure consistency is

maintained. Each node in the plan tree is ranked and the control strategy will focus its

47

attention towards the highest ranked options whenever possible. Alternatives are explored
when necessary.

A plan is considered executable when a complete path from the root node to a set
of leaf nodes representing primitive tasks is generated. Once an executable plan is
generated, the control strategy determines the task and agent KSs that can be used to

distribute the primitive tasks to appropriate agents.

4.3.2 Plan Evaluation

To limit the number of applicable KSs, each applicable KS is assigned a utility
measure indicating the relative utility of the method (i.e. ranking the ability to carry out the
required actions); and a compatibility measure indicating the degree of compatibility
between the activity demanded by the request and a KS precondition, ranging from 0
(completely incompatible) to 1 (completely compatible). Utility measures may be derived
as a function of request characteristics, or may be predefined. An unsatisfied constraint
reduces the compatibility measure by a domain-specific factor of the constraint's
importance, while the successful relaxation of a constraint increases the compatibility

measure [Evans and Anderson 1990].

4.3.3 Constraint Relaxation

Interactions among agents will often contain incompatibilities in the form of
conflicting constraints. In many cases, however, incompatibilities can be overcome if the
agents can negotiate with one anther to reformulate parts of a request or its corresponding
plan tree when incompatibilities arise. Negotiation can be viewed as the process of
relaxing constraints to propose alternative problem configurations that are satisfying and
feasible to all those involved [Evans and Anderson 1990].

When negotiation is employed, the selection of applicable KSs becomes much

more complicated - partially compatible KSs can potentially be used if relaxation methods

48

can be applied successfully to resolve incompatibilities. As a result, control requires a form
of hypothesize-and-test search: when a KS is only partially compatible with a particular
request, the control strategy must hypothesize reformulations based on the relaxation
methods specified in the KS or in the request, and then test these hypotheses to ensure
they are valid [Evans, 1988]. Validating reformulations involves propagating relaxations
to ensure that other constraints imposed by the agents involved are not adversely effected.
The negotiation process is susceptible to a combinatorial explosion of relaxations
that can potentially be applied to resolve conflicts. However, the negotiation process
becomes much more selective when the utility and cost of available constraint relaxation
methods are considered. In much the same manner as utility and compatibility measures
are used to rate applicable KSs, utility measures and cost measures are associated with
constraint relaxation methods to rate potential means of negotiation. For éxample, if
another equally useful but less expensive relaxation method was found in a negotiation, it
would be selected over the other relaxation methods. Each request is assigned two sets of
thresholds: applicability thresholds and negotiation thresholds. Applicability thresholds are
used to set minimum bounds for the utility and compatibility of plan alternatives, while
negotiation thresholds set minimum bounds for the utility and maximum bounds for the

cost of applicable constraint relaxation methods [Evans and Anderson, 1992].

4.4 Basic Functions

To plan interactions with other agents, there are some basic functions that an agent
must be able to perform. The agent must be able to retrieve relevant plans and
organizational knowledge [Evans and Anderson 1990]. The planning knowledge and
organizational knowledge can be stored locally inside the agent itself as in distributed
multiagent planning or stored in a global area as in centralized multiagent planning. Once
the agent retrieves the plan, it must be able to interpret the plan and coordinate plan

refinement. In case the agent needs more information, it can ask other agents to supply the

49

required information. While the plan executes, an agent must monitor the plan execution
and react accordingly. When the environment changes, it should be able to replan the
execution based on the new environment (possibly requiring interaction with other
agents). This is very different from the state space approach that assumes the initial
environment never changes. During the planning process, the agent must be able to
coordinate the reformulation of plans to resolve conflicts between the plans created by
other agents and its own plan. This may require negotiation with other agents to find the
best solution. After the plans execute, agents in the system must be able to integrate the

results of the plan steps together to form the complete goal.

4.4.1 Task Decomposition

In multiagent planning systems, agents need to decompose high-level tasks, assign
sub-tasks among themselves, and combine the results of these sub-tasks. Task
decomposition requires the agent to decide which agent does what task and when to do it
[Evans and Anderson 1990]. In distributing the tasks among the agents, the tasks must be
formulated and described appropriately. Tasks must be allocated to particular agents that
will perform them or decompose them further and coordinate the execution and
integration of the resulting tasks. The languages used for task description can greatly
influence task decomposition, particularly the ability to perform aﬁtomated task
decomposition. Task description can influence how tasks can be decomposed and how
they must be allocated. It is not unusual to have more than one way to decompose a task.
The choices of decomposition can affect how tasks can be allocated because the skills of
the agents allocated the tasks must eventually match the task requirements [Evans and
Anderson, 1992]. Task decomposition is affected by dependencies among tasks that must
be described at some level of the task descriptions. The dependencies may be physical,
logical or temporal. Dependencies may also be statically or dynamically created. Task

decomposition can be viewed as plan construction in multiagent planning that uses skeletal

50

plans of some form describing tasks and task dependencies. Task decomposition can be
viewed as an AND-OR graph evolving from a single super-task. Alternative tasks and sub-
tasks are decomposed to form OR-branches. Selection of decomposition is influenced by
knowledge of available operators and agents capable of applying these operators. The
selection must also consider temporal dependencies among tasks, resource conflicts and
availability, and complimentary or mutually exclusive tasks. Problem descriptions and
problem decompositions are distributed among agents and are represented at various
levels of abstraction. No single agent needs to have a complete problem description or
problem decomposition except in centralized multiagent planning or systems that share

one common organizational representation among agents [Evans, 1988].

4.4.2. Interaction and Communication

Different agents in a multiagent planning system share their expertise by means of
interaction and communication. Interaction occurs when one agent takes an action that has
been influenced by the presence or knowledge of one or more other agents. Interaction
can occur with or without explicit communication. Agents may communicate to establish
terms and conditions of interactions or they may react based on models of each other.
Models of other agents drive the initial construction of interactions and then agents
communicate to confirm or reformulate interactions as necessary. By uéing models of
other agents, the amount of communication that is necessary to coordinate interactions
can be reduced. There are two types of interactions. By means of routine interactions,
agents react to the influence of other agents without explicit confirmation of terms. On the
other hand, non-routine interactions require agents to evolve the actual terms and details
of interactions. Among large numbers of agents in a multiagent planning system, agents
need to decide when to communicate and with whom. Agents can improve focus of
communication by storing knowledge of relevant or potentially interested agents [Bond

and Gasser, 1988].

To interact, agents must share a common language. Dialog among agents must be
built from a common dictionary of terms that are used to construct and interpret messages.
Agents must also be able to maintain common interpretations of message meanings even in
the face of potentially disparate knowledge among agents. Agents may need to
communicate their mutual beliefs, their knowledge of one another, their current goals and
differences of opinions. For example, in contract nets, a common internode language was
developed. It consisted of message types such as task announcements, bit messages and
award messages. It used frame-like structures for each type of message. It also provided a

context for building and interpreting messages.

4.5 Summary

We have described a knowledge-based model for employing constraint-directed
reasoning in planning and coordinating cooperation among groups of problem solvers in a
multiagent plahning system. Cooperation is viewed as a multiagent constraint-satisfaction
task in which agents interact to communicate constraints and work together to selectively
relax constraints when conflicts occur. The model relies heavily on the assumption that the
agents share common organizational goals and are willing to cooperate with one another
to achieve those goals. The model is designed to be used in the creation of distributed
expert systems to enable several knowledge-based agents to solve problemé cooperatively.
In the next chapter, we will examine how agents can cooperate with each other in a
simulated environment that implements a simplified version of the model presented in this

chapter.

Chapter Five : Implementation

The major focus of this thesis involves the design of control regimes and knowledge
representations that allow agents to reason about local activities and cooperatively
coordinate global activities with other agents. This chapter presents a detailed description
of the implementation of a prototype of the multiagent model introduced in Chapter 4.
The system is implemented using Macintosh Common LISP and runs on a single processor
machine. The system can potentially be expanded to a multi-processor machine but this is
beyond the scope of this thesis.

This chapter is divided into two parts. The first part describes the data structures used
in the system. It presents detailed descriptions of each data structure defined in the model.
The second part describes the program structure of the system. It presents the algorithms

used in implementing the model.

5.1 Data Structures

To coordinate cooperative problem-solving activities, a planning component requires
extensive knowledge describing the types of requests the agent can process, the methods it
can use, and the agents that can carry out the problem-solving specified by the various
methods [Evans and Anderson 1990]. The first four data structures (plan.structure, task
structure, agent class structure and agent structure) are used to represent individual
instances of these knowledge sources. Data structures are also needed to encode requests
and notifications distributed among agents during interagent communications. These data
structures are presented in this section along with samples from the house building
application.

Data structures in the system are represented as frames. Each frame structure acts as a
template which can be instantiated with specific values. Default values can also be

associated with various components of a frame.

53

5.1.1 Plan Structure

Plan knowledge specifies methods that can be used to process various composite
requests an agent may receive. These are requests that can be transformed into 2 set of
simpler requests that can be solved individually and then integrated to produce a final
solution.

A plan is made up of:

plan-name that uniquely identifies the plan;

task-name that indicates when the plan is applicable (i.e., when it matches incoming
tasks);

task-list that contains a list of tasks comprising the plan;

task-constraints that stores the constraints that the task may carry (note that
constraints are not used in the current implementation of the model).

(defstruct PLAN
plan-name
task~-name
task-list
task-constraints)$

An instance of a plan defined in an agent of the house building application can be

created as follows:

(MAKE~PLAN :plan-name 'Plan-Mark-House-Building
:task-name 'House-Building
itask-list '(Build-Exterior Build-Interior)

)

The name of the plan is Plan-Mark-House-Building. The name of the incoming task
that it can handle is House-Building. Tasks result from transforming House-Building into
simpler tasks : Build-Exterior and Build-Interior. In this case, task-constraints is not

instantiated with any value. The default value for fask-constraints is nil.

Sdefstruct creates a data structure template and returns its name. Any number of components with default
values can be used. As a side effect, a constructor function to be referenced as make-<structname> is
created that can be used with se#/'to define specific objects that have this structure {1

54

5.1.2 Task Structure

Task knowledge deals with what we refer to as primitive requests: that is, requests
that can be distributed directly to an appropriate agent. The recipient of such requests may
execute them immediately (i.e. pass the requests to its problem solving component) or the
recipient may view the request as a composite request and transform it, distribute a set of
simpler requests, and integrate the results.

A task is made up of:

task-name that uniquely identifies a task;

agent-class-list that contains a list of classes of agents that are known to be capable of
performing the task;

task-constraints that contains a list of constraints included to constrain the form of a
task that the list of agent classes can solve.

(defstruct TASK
task-name
agent—-class-list
task-constraints)

An instance of a task defined in an agent of the house building application can be

created as follows:

(MAKE-TASK :task-name 'Build-Exterior .
ragent-class-list ' (Mark-Class~Build-Exterior)
)

The name of the task is Build-Exterior. The agent classes listed are used to find
specific agent instances that can potentially perform the task. The agent-class-list contains
only one agent class which is Mark-Class-Build-Exterior. In this example, fask-

constraints 1s not instantiated with any value. The default value for task-constraints is nil.

S.1.3 Agent Class Structure

Agent class knowledge specifies individual agents known to belong to a specific agent
class. It is used in conjunction with the task knowledge to select one or more agents to
whom a given task can be sent for processing.

An agent class is made up of’

class-name that uniquely identifies an agent class;

agent-list that contains a list of agents belonging to the class. Note that the agent list
may differ for each agent representing varying views of the group.

(defstruct AGENT-CLASS
class—-name
agent-list)

An instance of an agent class defined in an agent of the house building application can

be created as follows:

(MAKE-AGENT~CLASS :class-name 'Mark-Class-Build-~Exterior
tagent-list ' (John-House-Building)

)

In this example, the agent class name is Mark-Class-Build-Exterior. There is only one

known agent that belongs to this class - John-House-Building.

S.1.4 Agent Structure

Agent knowledge describes specific agents and classes of agents fesiding in the
environment, including communication and activity structures. The simulator has
predefined information about each agent - this information is represented as instances of
the agent structure. The information forms the knowledge base of the individual agents.
The simulator uses this information to simulate each agent's actions in response to

requests and notifications that are distributed among the agents.

An agent is made up of:

agent-name that uniquely identifies the agent;

plan-list that contains a list of plans (plan structures) that the agent can carry out to
solve tasks;

task-list that contains a list tasks (task structures) that can be carried out directly by
the agent without being broken down using a plan;

agent-class-list that contains a list of agent classes (agent class structures) known to
the agent;

constraint-list that contains a list of constraints applicable to the agent's actions;

incoming-request-list that contains a list of requests the agent has received from
others;

outgoing-request-list that contains a list of requests the agent has sent to others;

incoming-notification-list that contains a list of notifications received from other
agents;

outgoing-notification-list that contains a list of notifications sent to other agents;
activity-blackboard that describes the agent's current and planned activities:

processing-constraints that defines the constraints imposed on the agent for
processing requests and notifications on each simulation cycle”.

(defstruct AGENT
agent-name
plan~list
task-list
agent-class-list
constraint-list
incoming-request-list
outgoing-request-list
incoming-notification-list
outgoing-notification-list
activity-blackboard
processing-constraints)

"These constraints enable the user to examine the effects of changing the workload capabilities of
individual agents.

An instance of an agent defined in the house building application can be created as

follows:

(setq agent-1 (MAKE-AGENT :agent-name 'Mark-House~Building
tplan~list (LIST
(MAKE-PLAN :plan-name ’Plan—Mark—House—Building
:task-name 'House-Building
stask-list '(Build-Exterior Build-Interior))
)
rtask-list (LIST
(MAKE-TASK :task-name 'Build-Exterior
ragent-class-list ' (Mark-Class-Build-Exterior))
(MAKE-TASK :task-name 'Build-Interior
ragent-class-list '{Mark-Class-Build-Interior})
)
tagent-class-list
(LIST
(MAKE-AGENT-CLASS :class-name 'Mark-Class-Build-Exterior
tagent-list ' {(John-House-Building))
(MAKE-AGENT~-CLASS :class-name 'Mark-Class~Build-Interior
ragent-list ' (John~House-Building)))

In this example, the name of the agent is Mark-House-Building. Since the incoming-
request-list, ouigoing-request-list, incoming-notification-list, outgoing-notification-list
and activity-blackboard are initially empty, they are defaulted to have the value ni/. When
a simulation is executing, these fields are dynamically modified by the system based on the

activities the agent becomes involved in.

5.1.5 Request Structure

Problem-solving requests are structures that describe an operation (or set of
operations) to be performed, an object (or set of objects) to which the operation is to be
applied, and possibly an agent (or class of agents) that is to carry out the operation. A
request is represented as a frame structure consisting of several slots. Each slot describes
particular characteristics of the request. Each slot can have a variety of information

associated with it, including: values, procedures, and constraints.

A request is made up of’

request-id that uniquely identifies the request;

from-agent that identifies the agent which sent the request;

to-agent that identifies the agent that is to receive the request;
request-status that indicates the current status of the request;
request-type that identifies the type of request;

task-name that identifies the name of the task if the request-type is a task;

activity-node-id that identifies the node which is created for the request in the activity
blackboard of the recipient of the request;

request-args that identifies the arguments associated with the request.

(defstruct REQUEST
(request-id (gensym3))
from-agent
to-agent
request-status
request-type
task-name
activity-node-id
request-args)

Requests are linked to entries on an agent's activity blackboard. An incoming request
is linked to a plan that can be used to satisfy it or a primitive task when a plan is not
needed. Outgoing requests are linked to tasks from one or more plans. These requests are
sent to other agents to carry out part of the processing needed to satisfy some previously

received tasks.

8Gensym is a builtin Common Lisp function that generates a unique symbol.

59

An example of a request used in the house building application can be created as

follows:

(MAKE-REQUEST :from-agent 'Mark-House~Building
:to~agent 'John-House-Building
trequest-type 'task
:task-name 'House-Building

8.1.6 Notification Structure

Notifications are general structures that can be used to convey other types of
required information between agents. These types of information include logistical
information such as agent work load reports or notification of non-functioning agents.
Besides this housekeeping information, notifications can convey control information such
as global plan synopsis reports, descriptions of the current and future focus of attention,
and constraint violation reports and relaxation notifications’.

A notification is made up of’

notif-id that uniquely identifies a notification;

| from-agent that identifies the agent which sends out the notification;
fo-agent that identifies the agent which receives the noﬁﬁcation;
notif-status that indicates the current status of the notification;
notif-type that identifies the type of notification;

request-id that identifies the request if the notification is sent as a result of processing
associated with a specific request;

notif-info that contains the actual details of the notification.

9This feature has not been implemented in the prototype.

60

(defstruct NOTIFICATION
{(notif-id (gensym))
from-agent
to-agent
notif-status
notif-type
request-id
notif-info)

Notifications are usually linked to one or more requests that were sent out previously.
They can provide results for requested tasks, constraint violation reports, negotiation
information, or general information about an agent's status. The receipt of a notification is
used to drive further processing of an agent's activity blackboard.

In the following example, a notification is sent from one agent to another agent
indicating that a task is completed without any problem. After the agent receives the
notification, it sets the activity status of the node in the activity blackboard with the
matching request id to the value contained in the notif-info field. For more details, see

section 5.2.4.

(MAKE-NOTIFICATION :from-agent 'John-House~Building
:to-agent 'Mark-House-Building
inotif-type ‘'task
trequest-id 'E1234
inotif-info 'No-Problem

5.1.7 Activity Structure

The activity blackboard is a multi-partition working memory structure used to
store information describing problem-solving requests being processed, plans designed to
fulfill these requests, activities scheduled to carry out the plans, and general information
about the current processing loads of the agent [Evans and Anderson 1990]. The most
important area of the blackboard is the plan partition, consisting of one or more plan trees
which represent information about the problem-solving methods (KSs) applicable to each

request currently being processed. An activity frame represents a node in a plan tree.

61

An activity frame is made up of’

acrivity-id that uniquely identifies an activity;

task that represents the task associated with the activity node;

task-args that contains the arguments that comes with the task;

status that indicates the current status of the processing associated with the task;
cycle that indicates the current cycle that the agent is working on the task;
activity-type that identifies the type of activity node;

parent-task-id that contains the id of the parent task;

parent-request-id that contains the id of the request from which the task evolved,;

applicable-agent-classes that contains the agent classes that a task can be distributed
to;

current-agent-class that contains the current agent class selected to process the task;
applicable-agents that contains a list of agents that could be sent the task;
current-agent that contains the current agent selected to receive the task;

applicable-plans-and-tasks that contains a list of plans that can be used to solve the
task associated with the activity;

current-plan-or-task that contains the current plan or task selected;

curreni-task-list that contains the details of the current plan.

62

{defstruct ACTIVITY
(activity~id (gensym))
task
task-args
status
cycle
activity-type
parent-task-id
parent-request-id
applicable-agent-classes
current-agent-class
applicable~agents
current-agent
applicable-plans-and-tasks
current-plan-or-task
current-task-list)

Plan tree nodes may be divided into two categories: AND nodes, representing required
plan components (e.g. tasks specified in a plan KS); and OR nodes, representing one or
more alternative plans, tasks, agent classes or agents. Each plan tree node is represented
as a frame structure with several special slots specifying control information indicating
how to interpret the information contained in a node, and a constraint list consisting of
constraints associated with the node and any of its subordinates. The activity frames
represent the current activity associated with each request received by an agent.
Processing associated with a global problem is distributed across several activity frames in
one or more agents.

There are four types of nodes in a plan tree. Plan nodes represent all plans that can be
used in fulfilling a request. Task nodes represent all tasks specified in a plan. Agent class
nodes represent all agent classes of a task. Agent nodes represent all agents of an agent
class.

Applicable-plans-and-tasks represents the plan nodes that can be used to solve the
task associated with the activity. C urrent-plan-or-task represents a plan node that contains
the current plan or task. 7ask represents a task node that represents the task associated
with the activity node. Applicable-agent-classes represents the agent class nodes that a

task can be distributed to. Current-agent-class represents an agent class node that

63

contains the current agent class selected to process the task. Applicable-agents represents
the agent nodes that could be sent the task. Current-agent represent an agent node that

contains the current agent selected to receive the task.

5.2 Program Structure

The prototype system presented in this chapter implements a general purpose
simulator which manipulates the agent structures encoded in the system to simulate
multiagent processing of requests and notifications. The basic algorithms used are
described in detail in this section. Sample applications of the system are presented in the
next chapter.

The structure chart shown in Figure 17 a) and b) describes the hierarchical

structure of the system. The program code in the system can be found in Appendix B.

3.2.1 Basic Algorithm

Based on the structure chart shown in Figure 17 a) and b), the simulator examines
every agent in the system on a round robin basis. A simulator cycle consists of applying

the following processing to each agent as shown in Figure 18:

Process-Agents:
o Setup a list of agents to be processed by the system.

o Select an agent by calling the Find-Agent routine.

e Process the selected agent by calling the Process-An-Agent routine.
Process-An-Agent:

e Invoke the Process-Requests routine to process 0 or more requests

pending processing in the incoming request queue.

o Invoke the Process-Activity-Nodes routine to process O or more activity
nodes in the activity blackboard.

64

Process

Agents
I]
Find Process
Agent An Agent
! I]
Process Process Process
Requests Activity Notifications
l : Nodes T
|
Find Process Process !
Target Individual Individual (continue on Figure 17 b)
Requests Request Activity Node
| | l l
Clean-up Create Find Check Find
Accoptable Activity Node Activity Node Applicable Children Suitable
q For Request For Request Plans Activity Status Agent
Delete Send Expand Increment Report To
Activity Sub- Activity Activity Parent
Task Nodes Request Node Cycle Node
I
l l
Send Process Find Expand
Clean-up Activity Request Activity
Request Nodes Given Id Node
Send Delete
Notification Su{)\-ctggli?:l ode

Figure 17 a); Program Structure Chart (a)

(continue from Figure 17 a)
1

|
i
1
I
I
i

Process
Notifications
l i
Process Process
Incoming Outgoing
Notification Notification
l l I l
Find Send Find Find Send
Activity By Clean-up Root Request P

Req Id Request Activity Node Given Id Notification

Figure 17 b): Program Structure Chart (b)

e Invoke the Process-Notifications routine to process O or more incoming

notifications pending in the incoming notification queue.

Simulator

O

Agent 1

()

plans
tasks
agent classes

O

Agent 2

TN

plans
tasks
agent classes

O

Agent 3

plans

tasks
agent classes

requests
notifications

activity nodea

requests
notifications

activity nodea

requests
notifications

activity nodea

Figure 18: Simulator examines agents

5.2.2 Process Requests

Process
Requests
! |
Find Process
Target Individual
Requests Request
l 1
Clean-up Create
Aﬁgeﬂ t;lzle Activity Node Activity Node
q For Request For Request
Delete
Activity Sub-
Task Nodes
Send
Clean-up
Request

Figure 19: Structure Chart of Process Requests

The simulator performs the steps in Figure 19 to process requests for a specific
agent. Process-Requests invokes Find-T: arget-Requests to build a list of request ids from
the agent's incoming request queue. The Acceptable-Request routine is invoked from
Find-Target-Requests to filter out unacceptable requests based on request criteria.

Process-Requests then invokes Process-Individual-Request to process each of the

remaining requests.

66

In Process-Individual-Request, if the incoming request is a clean-up request,
Clean-Up-Activity-Node-For-Request will be invoked. Clean-Up-Activity-Node-For-
Request invokes Delete-Activity-Sub-Task-Nodes to update the agent's activity blackboard
by deleting any task nodes that have the given activity node as its parent. If the sub-tasks
of the activity node have been sent to other agents, Send-Request will be invoked to send
clean-up requests to those agents. On the other hand, if the incoming request is a request
for new task, the routine will create a new activity node (root node) for the request by

invoking Create-Activity-Node-For-Request.

S.2.3 Process Activity Nodes

Process-activity-nodes examines the activity nodes in the activity blackboard of a
given agent. Process-individual-activity-node is executed for each activity node. If the
activity node requires a new plan, Jind-applicable-plans will be executed to find plans that
apply to the node. Figure 20 shows the structure chart of Process-activity-nodes. If a new
plan is found for the node, the node will be expanded by expand-activity-node.

Subordinate nodes will be created with the parent node id set to the current node id.

67

Process
Activity
Nodes
Process
Individual
Activity Node
| l
Find Check Find
Applicable Children Suitable
Plans Activity Status Agent
Send Expand Increment Report To
Activity Activity Parent
Request Node Cycle Node
l
I [
Process Find Expand
Activity Request Activity
Nodes Given Id Node
Send Delete
. . Activity
Notification Sub-task Node
Figure 20: Structure Chart of Process Activity Nodes

The status of the subordinate activity nodes are checked by check-children-
activity-status. If all the subordinate nodes have been completed successfully, the current
node's status will be set to done. This in effect simulates the process of integrating the
results of distributed tasks. If the status of the activity node is set to done, a notification
will be sent to the requesting agent by executing report-to-parent-node. 1t finds the
original incoming request (find-request-given-id) and sends the notification by calling

send-notification.

68

If the agent must send a task to another agent, suitable agents will be found using
the find-suitable-agent routine and a request will be sent to one of these agents by
executing send-request.

If, after the agent tries all the possible agent classes and agents of a task in a plan
and no agent can complete the task, the status of the task's associated activity node will be
set to problem. In this case, the agent will delete the node's subordinate nodes by
executing delete-activity-sub-task-node and will then try to find an alternative plan. If an
alternative plan is available, it will expand the node using the new plan by executing
expand-activity-node. -

If the task is a primitive task (i.e., the task can be done by the agent itself), then
after the activity node is processed once, the activity cycle parameter is incremented by
one. The activity cycle is then compared with the task cycle constraint set in the task-
constraints of the task. If they are equal, the activity status of the current node will be set
to be done. The activity cycle gives the user the flexibility to vary the time required for a
task to be completed. While one agent is performing one task in a plan, another agent may
already be finished processing another task in the same plan.

All the activity nodes are created in the activity blackboard of the agent. Figure 21
a) and b) shows a blackboard containing more than one activity node. Each root node
represents an incoming request and the subordinate nodes of the root node represent the
subtasks after being broken down using a plan.

When there are two new incoming requests, two new root nodes are created in the
activity blackboard as shown in Figure 21 a). Suppose a plan was found for the first node.
This root node is then expanded to create sub-ordinate nodes based on the plan as shown
in Figure 21 b). Suppose the task associated with the second root node can be done by the

agent itself (i.e,, it is a primitive task). The second root node will not be expanded.

69

Activity Blackboard

)

S8l = root node

7] = subordinate node

Figure 21 a): Activity Blackboard

Activity Blackboard

(

~

Z
7

J

= root node

777 - subordinate node

Figure 21 b): Activity Blackboard

chosen agent.

Figure 22 a), b),

with each task in the chosen plan. Finally,

When a currentl!

currently chosen agent for each task.

70

¢) and d) show the internal planning structure of an activity node.
Figure 22 a) shows a set of applicable plans and tasks, and the currently chosen plan. It
also shows all the applicable agent classes and the currently chosen agent class associated

it shows all the applicable agents and the

y chosen agent fails, an alternative agent can be chosen as shown

in Figure 22 b). The newly chosen agent belongs to the same agent class as the previously

When all the agents of the same agent class fail, an alternative agent class can be
chosen as shown in Figure 22 c). A new agent will be chosen from the new agent class.
The newly chosen agent class is associated with the same task as the previously chosen
agent class.

When all the agent classes associated with a task in a plan fail'®, an alternative plan
can be chosen as shown in Figure 22 d). When this plan is expanded, a new set of tasks

and agent classes results.

Activity Node

......... = sub-task
= agent class
-) [1 =agent

Figure 22 a): Activity Node a)

10Constraints can be associated with requests to limit the type and number of alternatives that should be
explored when difficulties arise.

71

Activity Node

\
4 = sub-task
7 = agent class
S [=agent
Figure 22 b): Activity Node b)
Activity Node
(N
T & = plan
//////%% | = = sub-task
7] = agent class
- /[= agent

Figure 22 c): Activity Node c)

Activity Node

vaYY,
/é’

. o

[f% i V7] = agent class

\ J 1= agent

Figure 22 d): Activity Node d)

5.2.4 Process Notifications

Process-notifications can be divided into two main modules: process-incoming-
notification and process-outgoing-notification (see Figure 23).

Process-incoming-notification processes all the new incoming notifications. The
corresponding activity node of a notification is found by executing find-activity-by-req-id.
Unique ids are used to link activity nodes with the requests and notifications. By providing
a request id, the corresponding activity node can be found and vice versa. If the incoming
notification indicates that the agent has no problem in completing a task, then status of the
activity node associated with the notification will be set to no-problem. On the other hand,
if’ the incoming notification indicates that the agent cannot complete the task, the
corresponding activity node's status will be set to problem and a clean-up request will be
sent to the original requesting agent.

Process-outgoing-notification generates the required notifications to other agents.
It finds all the root activity nodes by executing find-root-activity-node. If the status of the

root activity node is no-problem, then it will send a notification to the original requesting

73

agent by executing find-request-given-

to send out the notification.

id to find the original request and Send-notification

Process
Notifications
[1
Process Process
Incoming Outgoing
Notification Notification
[[l 1
Find Send Find Find Send
Activity By Clean-up Root Request e
ReqId Request Activity Node Given Id Notification
Figure 23: Structure Chart of Process Notifications
3.3 Summary

The system described in this chapter is not a complete implementation of the
multiagent planning model discussed in Chapter 4. By using proper knowledge
representations and methods, we are able to simulate different ways for agents to reason
about their local activities and cooperatively coordinate global activities with other agents.
The activities of the system are divided into cycles. By stepping through éach cycle, we
are able to query the system about the current status of each agent. A cycle constraint
mechanism is also implemented in the agents' task constraint list to require a specific
number of cycles for an agent to complete a particular task. This allows the user to
examine the effects of varying the time it takes some agents to perform tasks.

In the next chapter, we will examine a variety of sample runs of the system using

the house building application. Different cases will be discussed to illustrate the flexibility

of the prototype system.

74

Chapter Six : Sample System Runs

In this chapter, we examine several simulations of the house building application to
illustrate the operation of the prototype system. Since it is difficult (if not impossible) to
illustrate every component of the system, only significant features of the system are
presented. The simulations were run in Macintosh Common Lisp. Seven agents were
created including the highest level agent USER which is used to initiate the test requests.
The other six agents represent different experts required to build major components of a

hypothetical house.

6.1 Agent Knowledge

The knowledge base of each agent is setup using several sub-routines. An agent
may be defined in more than one sub-routine because under different situations we may
want the agent to behave differently. This is accomplished by varying its plan, task, or
agent knowledge. Appendix B shows all the sub-routines used in this chapter. Note that a
sub-routine like define-dataset-a is used to setup a complete set of agents, while a sub-
routine like setup-agentl-a is used to setup the knowiedge of an individual agent (Mark-

House-Building):

(defun setup-agenti-a ()
(setq agent-1 (MAKE-AGENT :agent-name 'Mark-House-Building
:plan~-list (LIST
(MAKE~PLAN :plan-name 'Plan—Mark—House—Building
‘task-name 'House-Building
itask-list '({Build-Exterior Build-Interior)
)
ttask-list (LIST
(MAKE-TASK :task-name 'Build-Exterior
sagent-class-list ' (Mark-Class-Build-Exterior))
(MAKE-TASK :task-name 'Build-Interior
ragent-class-list '{Mark-Class-Build~Interjor)
)
ragent-class-list
{LIST
(MAKE~AGENT-CLASS :class-name 'Mark-Class-Build-Exterior
ragent-list '(John-House-Building))
(MAKE-AGENT-CLASS :class-name 'Mark-Class-Build-Interior
ragent-list ' (John-House-Building))}

75

In this example, the name of the agent is Mark-House-Building. There is only one
plan in the agent's plan-list - Plan-Mark-House-Building. The associated task name is
House-Building. This plan specifies that the House-Building task can be broken down into
two sub-tasks: Build-Exterior and Build-Interior. Only one class of agents can be
considered to work on the Build-Exterior task - Mark-Class-Build-Exterior. Similarly,
only one class of agents is known to be able to work on the Build-Interior task - Mark-
Class-Build-Interior. These two agent classes are defined in the agent-class-list.
According to the agent knowledge in this agent, only one agent is known to belong to
Mark-Class-Build-FExterior - John-House-Building. Similarly, only one agent is included
in the class Mark-Class-Build-Interior and it is also John-House-Building.

The knowledge associated with other agents are defined in the same way but with

different built-in plan, task, and agent knowledge.

6.2 Sample Runs

Sample runs of the system were performed to test different situations that may
arise while the agents attempt to solve the House Building problem cooperatively. All the
runs are initiated with the same request (House-Building) sent from the User agent to the
Mark-House-Building agent. By varying the knowledge in one or more agents, different
situations will occur and we can examine how the system responds. The actﬁal print out of

each sample run is found in Appendix C.

6.2.1 Dataset A
Dataset A represents a smooth run of the system. Once the plans, tasks, agent
classes and agents are chosen, all the agents have no problems performing the required

tasks.
After User sends the request to Mark-House-Building, the system starts

processing one agent at a time in a series of cycles.

76

System Cycle 1:

Processing agent: Mark-House-Building ...

Processing request (G464} of agent (Mark-House-~Building): Task = House-Building
Set task: House-Building status to AWAITING SUBTASK DISTRIBUTION
Set task: Build-Exterior status to AWAITING DISTRIBUTION
Set task: Build-Interior status to AWAITING DISTRIBUTION

The above statements represent the processing associated with the Mark-House-
Building agent on the first cycle. Mark-House-Building responds to the incoming House-
Building request by building task nodes in its activity blackboard and setting the status of
the task nodes House-Building, Build-Exterior and Build-Interior to Awaiting Subtask
Distribution, Awaiting Distribution and Awaiting Distribution respectively!!.

On the next cycle, Mark-House-Building starts sending the sub-tasks Build-
Exterior and Build-Interior to the John-House-Building agent. After Mark-House-
Building puts the requests in John-House-Building's incoming request queue, John-
House-Building starts processing the requests by creating task nodes in its activity
blackboard and setting the status of the task nodes appropriately. Note that the sub-task
Decoration can be done by John-House-Building itself and it requires 24 simulation
cycles. John-House-Building sets the Decoration cycle count to 1 at this point. Jokn-
House-Building also sends sub-task Lay-Foundation to T om-House-Building and Build-
House-Frame to Paul-House-Building. The execution statements of Mark-House-

Building and John-House-Building are shown below.

1A node with the status Awaiting Subtask Distribution corresponds a composite task, while a node with
the status Awaiting Distribution corresponds to a primitive task.

77

System Cycle 2:

Processing agent: Mark-House-Building ...
Request sent from Mark-House~Building to John-House-Building: Task (Build-Exterior)
Request sent from Mark-House-Building to John~House-Building: Task (Build~Interior)

Processing agent: John—House—Building e
Processing request (G466) of agent (John-House-Building): Task = Build-Exterior
Processing request (G467) of agent (John-House-Building): Task = Build-Interior

Set task: Build-Exterior status to AWAITING SUBTASK DISTRIBUTION

Set task: Build-Interior status to AWAITING SUBTASK DISTRIBUTION

Set task: Lay-Foundation status to AWAITING DISTRIBUTION

Set task: Build-House-Frame status to AWAITING DISTRIBUTION

Set task: Plumbing status to AWAITING DISTRIBUTION

Set task: Electricity status to AWAITING DISTRIBUTION

Set task: Decoration cycle to 1 (Max = 24)
Request sent from John-House~Building to Tom-House-Building: Task (Lay-Foundation)
Request sent from John-House-Building to Paul-House~Building: Task (Build-House-Frame)

On the same cycle, Tom-House-Building and Paul-House-Building also process
their incoming requests by creating task nodes in the activity blackboard and setting the
proper status!2.

On the next cycle, John-House-Building sends another two requests, Plumbing
and Electricity, to Tom-House-Building. T om-House-Building processes the requests in

the same way as described before. The execution statements are shown below.

System Cycle 3:

Processing agent: Tom-House-Building ...
Processing request (G474) of agent (Tom-House-Building): Task Plumbing
Processing request (G475} of agent (Tom-House-Building): Task Electricity
Request sent from Tom-House-Building to Doug-House-Building: Task (Init-Lay~Foundation)
Request sent from Tom-House-Building to Doug~House-Building: Task (Final-Lay-Foundation)
Set task: Plumbing status to AWAITING SUBTASK DISTRIBUTION
Set task: Electricity status to AWAITING SUBTASK DISTRIBUTION
Set task: Interior-Plumbing status to AWAITING DISTRIBUTION
Set task: Interior-Electricity status to AWAITING DISTRIBUTION
Request sent from Tom-House-Building to Rick-House~Building: Task (Interior-Plumbing)

In addition, Tom-House-Building sends requests to perform the /nit-Lay-
Foundation tasks and Final-Lay-Foundation to Doug-House-Building. 1t also sends a

Interior-Plumbing request to Rick-House-Building. Paul-House-Building sends requests

12This occurs on the same cycle because these agents are polled after John-House-Building.

78

to perform the Build-Roof and Build-Wall tasks to Rick-House-Building. Doug-House-
Building and Rick-House-Building process their incoming requests in the same way as
other agents. They also start processing the /nit-Lay-Foundation, Final-Lay-Foundation,
Interior-Plumbing, Build-Roof and Build-Wall tasks by initializing the cycle count to 1 for
these tasks.

On the next cycle, Tt om-House-Building sends a request to perform the Interior-
Electricity task to Rick-House-Building. Rick-House-Building starts processing the
incoming request Interior-Electricity by setting the node's cycle count to 1 as shown in the

execution statements below.

System Cycle 4:

Processing agent: Rick-House~Building ...
Processing request (G492) of agent (Rick-House-Building): Task = Interior-Electricity

Set task: Interior-Plumbing cycle to 2 (Max = 25)
Set task: Build-Roof cycle to 2 (Max = 25)
Set task: Build-Wall cycle to 2 (Max = 25)

Set task: Interior-Electricity cycle to 1 {Max = 25)

The next 19 cycles represent the time required by some of the agents to work on
the tasks they received. After these 19 cycles, Doug-House-Building finishes the Init-Lay-
Foundation and Final-Lay-Foundation tasks without any problems. It then sends a
notification to the agent (7t om-House-Building) that requested these taské be performed
indicating that the tasks were completed successfully. The execution statements are shown

below.

System Cycle 24:

Processing agent: Doug-House-Building ...

Set task: Init-Lay-Foundation status to NO PROBLEM

Set task: Final-Lay-Foundation status to NO PROBLEM
Notification sent from Doug-House-Building to Tom-House-Building: Init-Lay-Foundation
{No-Problem)
Notification sent from Doug-House-Building to Tom-House-Building: Final-Lay-Foundation
(No-Problem)

79

On the next cycle, John-House-Building finishes the Decoration task successfully.
Tom-House-Building also sets the status of the Init-Lay-Foundation and Final-Lay-
Foundation task nodes to NO PROBLEM after receiving the notifications from Doug-

House-Building. The execution statements are shown below.

System Cycle 25:

Processing agent: John-House-Building ...
Set task: Decoration status to NO PROBLEM

Processing agent: Tom-House-Building ...
Set task: Init~Lay-Foundation status to NO PROBLEM
Set task: Final-Lay-Foundation status to NO PROBLEM

On the next cycle, T om-House-Building sets the Lay-Foundation task node's
status to NO PROBLEM since both of its sub-tasks, Init-Lay-Foundation and Final-Lay-
Foundation, were completed successfully. A notification is sent to John-House-Building
which originally requested that the Lay-Foundation task be performed to indicate that the

Lay-Foundation task was completed successfully

System Cycle 26:

Processing agent: Tom~House-Building ...

Set task: Lay-Foundation status to NO PROBLEM
Notification sent from Tom-House~Building to John~House-Building: Lay-Foundation
(No=-Problem)

On the next cycle, Rick-House-Building finishes the Interior-Plumbing, Build-
Roof and Build-Wall tasks without incidence. It sends notifications to Zom-House-

Building and Paul-House-Building as shown below.

80

System Cycle 27:

Processing agent: Rick—House-Building e

Set task: Interior-Plumbing status to NO PROBLEM

Set task: Build-Roof status to NO PROBLEM

Set task: Build-Wall status to NO PROBLEM

Set task: Interior-Electricity cycle to 25 (Max = 295)
Notification sent from Rick—House—Building to Tom—House—Building: Interior—Plumbing (No-
Problem)
Notification sent from Rick~House~Building to Paul-House~Building: Build-Roof (No-Problem)
Notification sent from Rick-House—Building to Paul~House—Building: Build~Wall (No-Problem)

Tom-House-Building then sets the status of its Interior-Plumbing status to NO
PROBLEM after receives the notification from Rick-House-Building. Similarly, Paul-
House-Building sets the status of its Build-Roof and Build-Wall task nodes to NO
PROBLEM after receiving the notifications from Rick-House-Building. Rick-House-
Building also completes the Interior-Electricity task during this cycle. It sends a
notification back to Tom-House-Building indicating that the task was completed

successfully. The execution statements are shown below.

System Cycle 28:

Processing agent: Tom-House-Building ...
Set task: Interior-Plumbing status to NO PROBLEM

Processing agent: Paul-House-Building ...
Set task: Build-Roof status to NO PROBLEM
Set task: Build-Wall status to NO PROBLEM

Processing agent: Doug-House~Building ...

Processing agent: Rick-House-Building ...

Set task: Interior-Electricity status to NO PROBLEM
Notification sent from Rick-House-Building to Tom-House-Building: Interior-Electricity
{No-Problem)

Tom-House-Building then sets the status of the Plumbing and Interior-Electricity
task nodes to NO PROBLEM. It also sends a notification back to John-House-Building
indicating that this task has been completed. During the same cycle, Paul-House-Building

sets the status of the Build-House-Frame task node to NO PROBLEM. It also sends a

81

notification back to John-House-Building indicating that task has been completed. The

execution statements are shown below.

System Cycle 29:

Processing agent: Tom-House-Building ...
Set task: Plumbing status to NO PROBLEM
Set task: Interior-Electricity status to NO PROBLEM
Notification sent from Tom-House-Building to John-House~Building: Plumbing (No-Problem)

Processing agent: Paul-House-Building ...

Set task: Build-House-Frame status to NO PROBLEM
Notification sent from Paul-House~Building to John-House-Building: Build-House-Frame
(No-Problem)

John-House-Building then sets the status of its Plumbing and Build-House-Frame
task nodes to NO PROBLEM. T om-House-Building sets the status of its Elecrricity task
node to NO PROBLEM. It also sends a notification to John-House-Building indicating

that this task has been finished. The execution statements are shown below.

System Cycle 30:

Processing agent: John-House-Building ...
Set task: Plumbing status to NO PROBLEM
Set task: Build-House-Frame status to NO PROBLEM

Processing agent: Tom-House-Building ...

Set task: Electricity status to NO PROBLEM
Notification sent from Tom-House-Building to John-House-Building: Electricity
(No-Problem)

As a result, John-House-Building sets the status of its Build-Exterior and
Electricity task nodes to NO PROBLEM. It also sends a notification to Mark-House-
Building indicating that the Build-Exterior task has been completed. The execution

statements are shown below.

82

System Cycle 31:

Processing agent: John—House-Building .

Set task: Build-Exterior status to NO PROBLEM

Set task: Electricity status to NO PROBLEM
Notification sent from John-House~Building to Mark-House-Building: Build-Exterior
(No~-Problem)

Mark-House-Building then sets the status of its Build-Exterior task node to NO
PROBLEM. John-House-Building sets the Build-Interior task node's status to NO
PROBLEM. 1t also sends a notification to Mark-House-Building indicating that the task

has been completed. The execution statements are shown below.

System Cycle 32:

Processing agent: Mark-House-Building ...
Set task: Build-Exterior status to NO PROBLEM

Processing agent: John-House-Building ...

Set task: Build-Interior status to NO PROBLEM
Notification sent from John-House-Building to Mark-House-Building: Build-Interior
(No-Problem)

On the next cycle, Mark-House-Building sets the Build-Interior task node's status

to NO PROBLEM as shown below.

System Cycle 33:

Processing agent: Mark-House-Building ...
Set task: Build-Interior status to NO PROBLEM

Finally, Mark-House-Building sets the status of the House-Building task to NO
PROBLEM. It also sends a notification to the originator of the House-Building task
request (User) indicating that the task has been completed successfully. At this point, the

House-Building problem has been solved. The execution statements are shown below.

83

System Cycle 34:

Processing agent: Mark-House-Building ...
Set task: House-Building status to NO PROBLEM
Notification sent from Mark-House-Building to User: House-Building (No-Problem)

In order to analyze the system's functionality, the user can examine the internal

data structures of each agent at the end of any simulator cycle as shown below.

? AGENT: Mark-House-Building

Plan:
Task: House-Building
Sub-Tasks:
Build-Exterior
Build-Interior
Task:
Task: Build-Exterior
Agent Classes: (Mark-Class-Build-Exterior)
Task: Build-Interior
Agent Classes: (Mark-Class-Build~-Interior)

Agent Class:
Class Name: Mark-Class-Build-Exterior

Agents: (John-House-Building)
Class Name: Mark-Class-Build-Interior
Agents: (John-House-Building)

Constraints:

Incoming Requests:
User: Task {House-Building)
Outgoing Requests:
John-House-Building: Task (Build-Exterior)
John-House-Building: Task (Build-Interior)
Incoming Notification:
John-House-Building: Build-Exterior {No-Problem)
John-House-Building: Build-Interior (No-Problem}
Outgoing Notification:
User: House-Building {(No-Problem)
Activity Blackboard:
Task: House~Building Status: No-Problem-Replied Current Agent: Nil
Task: Build-Exterior Status: No-Problem Current Agent: John~House~Building
Task: Build-Interior Status: No-Problem Current Agent: John-House-Building

In this example, we have displayed information associated with the Mark-House-
Building agent. It shows the planning knowledge, task knowledge and agent knowledge as
described in the previous chapter. The incoming requests list, outgoing requests list,
incoming notifications list, outgoing notifications list and the activity blackboard show the

activities the agent has performed.

84

6.2.2 Dataset Bl

Dataset B1 represents a simulation in which one agent fails to perform a task,
forcing the originator of the task request to send the same task to another agent. The
second agent performs the task successfully. The main purpose of this example is to
demonstrate the ability of the system to enable an agent to send a task to an alternative
agent when one agent fails to solve it.

The first 2 cycles of the system are identical to those shown in section 6.2.1. In
cycle 3, Tom-House-Building indicates that it has problem performing the Electricity task
by setting the task status to NO APPLICABLE PLANS. It then sends a notification back
to the agent that initiated the task request, John-House-Building, indicating that the task

cannot be solved. The execution statements are shown below.

System Cycle 3:

Processing agent: Tom-House-Building ...
Processing request (G163) of agent (Tom-House-Building): Task Plumbing
Processing request (G164) of agent (Tom-House-Building): Task Electricity
Request sent from Tom-House-Building to Doug-House-Building: Task (Init-Lay-Foundation)
Request sent from Tom-House-Building to Doug-House-Building: Task (Final~Lay~-Foundation)
Set task: Plumbing status to AWAITING SUBTASK DISTRIBUTION
Set task: Electricity status to NO APPLICABLE PLANS
Set task: Interior-Plumbing status to AWAITING DISTRIBUTION
Notification sent from Tom-House-Building to John-House-Building: Electricity
(Task-Problem)

o

On the next cycle, John-House-Building sends a request to Tom-House-Building
asking it to clean-up the Electricity task. T om-House-Building responds by deleting the

node on its activity blackboard. The execution statements are shown below.

System Cycle 4:

Processing agent: John-House-Building ...
Set task: Decoration cycle to 3 (Max = 24)
Set task: Electricity status to TASK PROBLEM
Request sent from John-House-Building to Tom-House~Building: Clean-Up (Electricity)

Processing agent: Tom-House-Building ...
Processing request (Gl64) of agent (Tom-House-Building): Clean-Up = Electricity
Request sent from Tom-House~Building to Rick-House-Building: Task (Interior-Plumbing)

John-House-Building then examines alternative agents in its agent knowledge and
sends the Electricity task to Paul-House-Building. Paul-House-Building receives the task

and starts working on it as shown below.

System Cycle 5:

Processing agent: John-House-Building ...
Request sent from John-House-Building to Paul-House~-Building: Task (Electricity)
Set task: Decoration cycle to 4 (Max = 24)

Processing agent: Tom-House-Building ...
Processing agent: Paul-House-Building ...

Processing request (G164) of agent (Paul-House-Building): Task = Electricity
Set task: Electricity cycle to 1 (Max = 23)

The rest of the simulation is completed without incidence as described in section

6.2.1.

6.2.3 Dataset B2

Dataset B2 represents a simulation in which one agent fails to perform a task and
the task is sent to another agent in the same agent class. This example is similar to the
previous one; however, this time the second agent also has problem in performing the
task. There are no other alternative agents in the same agent class and no alternative agent
classes that the agent can use. Consequently, the entire House-Building problem cannot be

solved.

86

The first 4 cycles are the same as those in section 6.2.2. During the fifth cycle,
John-House-Building sends the Electricity task, that could not be completed by Tom-
House-Building, to Paul-House-Building. This time Paul-House-Building also has

problems in performing the task as shown below.

System Cycle 5:

Processing agent: Tom-House-Building .

Processing agent: Paul-House-Building ...
Processing request (G216) of agent (Paul-House~Building): Task = Electricity
Set task: Electricity status to NO APPLICABLE PLANS

On the next cycle, Paul-House-Building sends a notification back to John-House-

Building indicating that it cannot perform the Electricity task as shown below.

System Cycle 6:

Processing agent: Paul-House-Building ...
Notification sent from Paul-House-Building to John-House~Building: Electricity
(Task-Problem)

John-House-Building responds by sending a clean-up request to Paul-House-
Building for the Electricity task. Paul-House-Building performs the clean-up job as

shown below.

System Cycle 7:

Processing agent: John~House~Building ...
Set task: Decoration cycle to 6 (Max = 24)
Set task: Electricity status to TASK PRCBLEM
Request sent from John~House-Building to Paul-House~Building: Clean-Up (Electricity)

Processing agent: Tom-House-Building ...

Processing agent: Paul-House~Building ...
Processing request (G216) of agent (Paul-House-Building): Clean-Up = Electricity

87

On the next cycle, John-House-Building determines that it has no alternate method
of solving the Electricity task. As a result, it sets the status of the Electricity task to NO

APPLICABLE PLANS as shown below.

System Cycle 8:

Processing agent: John-House-Building ...
Set task: Electricity status to NO APPLICABLE PLANS
Set task: Decoration cycle to 7 (Max = 24)

John-House-Building then realizes that it has a problem in solving the Build-

Interior task due to the failure of Electricity task.

System Cycle 9:

Processing agent: John-~House-Building ...
Set task: Build-Interior status to TASK PROBLEM
Set task: Decoration cycle to 8 (Max = 24)

John-House-Building then determines that it has no alternate method for solving

the Build-Interior task as shown below.

System Cycle 10:

Processing agent: John-House-Building ...
Set task: Build-Interior status to NO APPLICABLE PLANS
Set task: Decoration cycle to 9 (Max = 24)

On the next cycle, John-House-Building sends a notification back to the
requesting agent (Mark-House-Building) indicating that it has a problem in performing the

Build-Interior task as shown below.

88

System Cycle 11:

Processing agent: John-House-Building ...
Notification sent from John-House-Building to Mark-House~Building: Build~Interior
(Task=-Problem)

Set task: Decoration cycle to 10 (Max = 24)

Mark-House-Building responds by sending a clean-up request to John-House-
Building to abort the Build-Interior task. This leads to a chain reaction of clean-up jobs.
John-House-Building sends a clean-up request to Jom-House-Building to clean-up the
Plumbing task even though Tt om-House-Building does not report any problem in
performing the Plumbing task. This is required because Plumbing is a sub-task of Build-
Interior. When the Build-Interior task is aborted, all of its children tasks must be

canceled. The execution statements are shown below.

System Cycle 12:

Processing agent: Mark-House-Building ...
Set task: Build-Interior status to TASK PRCBLEM
Request sent from Mark-House-Building to John—House—Building: Clean-Up (Build-Interior)

Processing agent: John-House-Building ...
Processing request (G208} of agent (John-House-Building): Clean-Up = Build-Interior
Request sent from John-House-Building to Tom-House-Building: Clean-Up (Plumbing)

Subsequent clean-up requests are processed until the entire House-Building task

has been aborted and the User agent has been notified.

6.2.4 Dataset C1

Dataset C1 represents a simulation in which one agent fails to perform a task
causing the requesting agent to send the same task to another agent in a different agent
class. A different agent class is chosen because there is no alternative agent available in the
original agent class and an alternative agent class for the same task is available. The agent

from the new agent class has no problem in performing the task. The main purpose of this

89

example is to demonstrate the ability of the system to choose an alternative agent class for
a task when the agents from the initial agent class selected to perform the task encounter
difficulties.

The first 2 cycles are identical to those shown in section 6.2.1. In cycle 3, Tom-
House-Building indicates that it has a problem in performing the Electricity task. As a

result, it sends a notification back to John-House-Building as shown below.

System Cycle 3:

Processing agent: Tom-House-Building ...
Processing request (G270) of agent (Tom-House~Building): Task = Plumbing
Processing request (G271) of agent (Tom-House~Building): Task = Electricity
Request sent from Tom-House-Building to Doug-House-Building: Task (Init-Lay-Foundation)
Request sent from Tom-House~Building to Doug-House~Building: Task (Final-Lay-Foundation)
Set task: Plumbing status to AWAITING SUBTASK DISTRIBUTION
Set task: Electricity status to NO APPLICABLE PLANS
Set task: Interior-Plumbing status to AWAITING DISTRIBUTION
Notification sent from Tom-House-Building to John-House=-Building: Electricity
(Task=-Problem)

On the next cycle, John-House-Building sends a clean-up request to Tom-House-

Building which processes the clean-up request as shown below.

System Cycle 4:

Processing agent: John-House-Building ...
Set task: Decoration cycle to 3 (Max = 24)
Set task: Electricity status to TASK PROBLEM
Request sent from John-House-Building to Tom-House-Building: Clean-Up (Electricity)

Processing agent: Tom-House-Building ...
Processing request (G271) of agent (Tom-House-Building): Clean~Up = Electricity
Request sent from Tom-House-Building to Rick-House-Building: Task (Interior-Plumbing)

John-House-Building then sends the Electricity task that T om-House-Building
failed to solve to Paul-House-Building, using an alternative agent class from its agent
class knowledge associated with the Electricity task. The execution statements are shown

below.

90

System Cycle 5:

Processing agent: John-House~Building ...
Request sent from John-House-Building to Paul-House~Building: Task (Electricity)
Set task: Decoration cycle to 4 (Max = 24)

The remainder of the simulation is completed successfully as in section 6.2.1.

6.2.5 Dataset D1

Dataset D1 represents a simulation in which an agent fails to perform a task and
the requesting agent is forced to abort the initial plan and apply an alternative plan. A
different plan is chosen because there is no alternative agent available in the original class
and there are no alternative agent classes available in the original plan. The new plan
decomposes the original problem into a different set of tasks which are performed
successfully.

The first 2 cycles are similar to those in section 6.2.1. In cycle 3, Tom-House-

Building indicates that it has problem in performing Plumbing as shown below.

System Cycle 3:

Processing agent: Tom-House-Building ...

Processing request (G377) of agent (Tom-House~Building): Task = Plumbing

Request sent from Tom-House~Building to Doug~House~Building: Task (Init-Lay-Foundation)

Request sent from Tom-House~Building to Doug~House-Building: Task (Final~Lay~-Foundation)
Set task: Plumbing status to NO APPLICABLE PLANS

On the next cycle, Tom-House-Building sends a notification back to John-House-

Building indicating that it cannot perform the Plumbing task as shown below.

System Cycle 4:

Processing agent: Tom-House-Building ...
Notification sent from Tom-House-Building to John-House-Building: Plumbing {Task-Problem)

91

John-House-Building responds by sending a clean-up request to Tom-House-
Building to abort its Plumbing task. T. om-House-Building processes the clean-up of the

Plumbing task as shown below.

System Cycle 5:

Processing agent: John-House-Building ...
Set task: Plumbing status to TASK PROBLEM
Request sent from John-House-Building to Tom-House-Building: Clean-Up (Plumbing)

Processing agent: Tom-House-Building ...
Processing request (G377) of agent (Tom-House-Building): Clean-Up = Plumbing

John-House-Building then indicates that it has no alternative plans for the

Plumbing task as shown below.

System Cycle 6:

Processing agent: John-House-Building ...
Set task: Plumbing status to NO APPLICABLE PLANS

On the next cycle, John-House-Building indicates that it has problem in
performing Build-Interior task as a result of the inability to complete its subtask -

Plumbing.

System Cycle 7:

Processing agent: John~House~Building ...
Set task: Build-Interior status to TASK PROBLEM

92

On the next cycle, John-House-Building temporarily sets the status of Build-
Interior task node to NO APPLICABLE PLAN S indicating that the current plan has been

aborted.

System Cycle 8:

Processing agent: John-House-Building ...
Set task: Build-Interior status to NO APPLICABLE PLANS

At this point, John-House-Building checks to see if the current plan is the last
available plan in the plan knowledge. If it is not the last plan, then John-House-Building
selects an alternative plan for the Build-Interior task. Instead of using the Plan-John-
Build-Interior-A plan which includes Plumbing, it uses the Plan-John-Build-Interior-B
plan which includes FElectricity and Decoration. John-House-Building can do the
Decoration task by itself. But the Electricity task must be sent to another agent as shown

below.

System Cycle 9:

Processing agent: John-House~Building .
Set task: Electricity status to AWAITING DISTRIBUTION
Set task: Decoration cycle to 1 (Max = 24)

On the next cycle, John-House-Building sends the Electricity task to Tom-House-

Building and T om-House-Building processes the incoming task as shown below.

System Cycle 10:

Processing agent: John-House-Building ...
Request sent from John-House-Building to Tom-House-Building: Task (Electricity)
Set task: Decoration cycle to 2 (Max = 24)

Processing agent: Tom-House~-Building ...
Processing request (G398) of agent (Tom-House~Building): Task = Electricity
Set task: Electricity status to AWAITING SUBTASK DISTRIBUTION
Set task: Interior-Electricity status to AWAITING DISTRIBUTION

93

The remainder of simulation is completed without incidence similar to the

processing in section 6.2.1.

6.2.6 Dataset D2

The final example, Dataset D2, represents a simulation in which an agent fails to
perform a task and the requesting agent is forced to abort the initial plan and apply an
alternative plan. A different plan is chosen because there is no alternative agent available in
the original agent class and there is no alternative agent class available in the original plan.
This situation is the same as in the previous section, but this time the alternative plan also
fails to perform the task. In this case, the entire House-Building problem fails because
there are no other alternative plans for the House-Building task.

The first nine cycles are the same as those in section 6.2.6. On the tenth cycle,
John-House-Building sends the Electricity task to Paul-House-Building based on an
alternative plan. Paul-House-Building indicates that it has problem in performing the

FElectricity task as shown below.

System Cycle 10:

Processing agent: John-House-Building ...
Request sent from John-House-Building to Paul-House-Building: Task (Electricity)
Set task: Decoration cycle to 2 (Max = 24)

Processing agent: Tom~House-Building ..
Processing agent: Paul-House~Building ...

Processing request (G447) of agent (Paul-House-Building}: Task = Electricity
Set task: Electricity status to NO APPLICABLE PLANS

On the next cycle, Paul-House-Building sends a notification back to John-House-

Building indicating that it cannot perform the Electricity task as shown below.

94

System Cycle 11:

Processing agent: Paul -House~Building ...
Notification sent from Paul~House-Building to John-House-Building: Electricity
(Task-Problem)

John-House-Building responds by sending a clean-up request to Paul-House-
Building to abort the Electricity task. Paul-House-Building processes the clean-up

request as shown below.

System Cycle 12:

Processing agent: John-House-Building ...
Set task: Decoration cycle to 4 (Max = 24)
Set task: Electricity status to TASK PROBLEM
Request sent from John-House-Building to Paul-~House-Building: Clean-Up (Electricity)

Processing agent: Tom-House-Building ...

Processing agent: Paul-House-Building .
Processing request (G447) of agent (Paul-House-Building): Clean-Up = Electricity

On the next cycle, John-House-Building indicates that there are no alternative

plans for the Electricity task as shown below.

System Cycle 13:

Processing agent: John~House~Building ...
Set task: Electricity status to NO APPLICABLE PLANS
Set task: Decoration cycle to 5 (Max = 24)

As a result, a series of clean-up requests are distributed which eventually results in

the initial House-Building task being aborted.

6.3 Summary

The example simulations in this chapter do not cover all the possible situations that
the system may face. They do, however, illustrate situations where an agent needs to send
a task to another agent from the same agent class, from a different agent class, or using a
different plan. The user can examine the internal data structures, including the entire agent
structure and the agent's activity blackboard, of each agent at the end of any simulator
cycle. The data structure information can be displayed by choosing options from the
menus in the system.

The system can be easily modified to include additional agents and more complete
plan, task and agent knowledge for each agent. Additional applications can also be

simulated using different agent knowledge.

96

Chapter Seven : Conclusions

In the classical single agent planning model, problems are posed to a planner as an
initial state and a goal state description. The initial state describes the way the world is at
the initial point in time. The goal state describes the way we want the world to look when
the plan has been executed. The world refers to the application domain where the planning
takes place. The planner tries to find a plan (or a set of actions) such that by executing the
plan from the initial state of the problem, the goal state will be generated. Planning is
essentially a search problem. The planner must traverse a potentially large search space
and find a plan that is applicable in the initial state and produces the goal state when
executed. The complexity of the planning system grows when several potentially
applicable plans can be used. In many real world problems this results in a combinatorial
explosion of alternatives that overwhelms most single agent planning systems.

The classical definition of the planning problem typically employs a state-based
representation of the world. The world is represented by taking a "snapshot" of it at one
time and describing the world as it appears in this snapshot. The planner assumes that the
initial state of the world does not change while the plan is executing. Thus, the planner
constructs a plan based on the initial state of the world without reacting to any changes
that might occur during the planning process. This is an important hrmtatlon in classical
planners. This also leads to the distinction between plan time and execution time. Classical
planners also cannot react to the changes that occur while the system is executing a plan.

Multiagent planning research studies how a loosely coupled network of problem
solvers (or agents) can work together to solve problems that are beyond their individual
capabilities. Each agent in the network is capable of solving sophisticated problems using
its own expertise and can work independently. Many of the problems faced by the group

of agents cannot be completed without cooperation among the agents. Cooperation is

97

necessary because no single agent has enough expertise, resources, and information to
solve a particular problem. Agents must rely on each other to solve the problem,

We have described an architecture that supports the basic multiagent planning
actions of task decomposition, task distribution, and result integration through the use of
activity and agent modeling. Control among agents may be centralized, partially
centralized, or completely distributed depending on the characteristics of the application.
The architecture also provides adaptive planning when incompatibilities arise.

A simulation system based on our model of multiagent planning was built using
Macintosh Common Lisp. The simulator provides a test bed for exploring various
multiagent planning techniques and issues. The test bed allows us to simulate various ways
that agents can reason about their local activities and cooperatively coordinate global
activities with other agents.

The constraint directed components of the multiagent planning model have not
been completely implemented. Data structure extensions and algorithms for processing
constraints should be added in the future to provide general constraint functions.
Constraints can be used to assist agents in selecting plans, agent classes, and agents.
Constraints can be added to the plan knowledge. This can assist the agent in choosing a
suitable plan. The program model that is responsible in selecting a plan can use these
constraints. The ways that constraints are distributed among agents must be considered.
The initial implementation was built with the addition of constraint processing in mind.
Qualitative constraints (e.g., the material quality must be grade A) can be distributed to
the agents without modification. For quantitative constraints (e.g., the time required to
finish the entire project must be less than 100 days) a method of dividing the constraints
among the agents must be introduced. This decomposition information could be added to
the plan knowledge of an agent.

The system presented in Chapter 6 addresses a specific application - House

Building. By modifying the knowledge base of the agents, the system can be used in other

98

applications. Such separation of data and code is a fundamenta] principle of Al research
and provides ease of modification of the system. A more complete object-oriented
approach may also be used to implement the system such that data and methods are bound
together in an agent!*. An agent can be represented as an object. Different agent classes
can be represented by different object classes. New agents could then be easily created
with basic properties inherited from an agent class.

As real world problems get more and more complicated, more sophisticated
planning systems are required. Single agent planning systems are not capable of solving
many real world problems. A multiagent planning system provides a more dynamic way to
solve complicated problems that involve the coordinated integration of different agents'

expertise.

14The defstruct construct used in the prototype does not provide the sophisticated object-oriented facilities
found in the Common Lisp Object System (CLOS).

99

Appendix A : References

[Adler and Simoudis, 1990] Adler, Mark R. and Simoudis, Evangelos, Integrating
Distributed Expertise, 10th AAAI International Workshop on Distributed Artificial
Intelligence, Oct 1990.

[Barr, Cohen and Feigenbaum, 1989] Barr, A, Paul R. Cohen, and Edward A.
Feigenbaum, The Handbook of Artificial Intelligence, Volume IV, in Addison-
Wesley Publishing Company, Inc., 1989.

[Bond and Gasser, 1988] Bond, Alan H., and Les Gasser, Readings in Distributed
[cading
Artificial Intelligence, in Morgan Kaufmann Publishers, Inc., 1988.

[Cohen and Feigenbaum, 1989] Cohen, Paul R., and Feigenbaum, Edward A., The
Handbook of Artificial Intelligence, Volume III in Addison-Wesley Publishing
Company, Inc., 1989.

[Conry, Meyer and Lesser, 1986] Conry, Susan E., Meyer, Robert A., and Lesser, Victor
R., Multistage Negotiation in Distributed Planning, COINS Technical Report
1986-1987, Dec 1986.

[Corkill, 1979] Corkill, Daniel D., Hierarchical Planning in a Distributed Environment, in
the 6th ITCAI, 1979.

[Davis and Smith, 1988] Davis, Randall, and Smith, Reid G., Negotiation as a Metaphor
for Distributed Problem Solving, Readings in Distributed Artificial Intelligence,
Morgan Kaufmann Publishers, Inc, 1988.

[Durfee, Lesser and Corkill, 1989] Durfee, Edmund H., Victor R. Lesser, and Daniel D.
Corkill, Trends in Cooperative Distributed Problem Solving, in IEEE Transactions
on Knowledge and Data Enginerring, Vol. 1, No. 1, March 1989.

[Durfee and Montgomery, 1990] Durfee, Edmund H., and Montgomery, Thomas A., A
Hierarchical Protocol for Coordinating Multiagent Behaviors, 10th AAAI
International Workshop on Distributed Artificial Intelligence, Oct 1990.

[Engelmore and Morgan, 1988] Engelmore, R., and Tony Morgan, Blackboard Systems,
in Addison-Wesley Publishing Company, 1988.

[Ernst and Newell, 1969] Ernst, G. and Newell, A., A Case Study in Generality and
Problem Solving, ACM Monograph Series, Academic Press, New York, 1969.

[Evans, 1988] Evans, M., A Knowledge-Based Model of Distributed Problem Solving,
Ph.D. Dissertation, Computer Science, University of Manitoba.

100

[Evans and Anderson, 1989] Evans, M., and J. Anderson, A _Constraint-Directed
Architecture for Multi-Agent Planning, in Proceedings of the Ninth AAAI
Distributed Artificial Intelligence Workshop, Seattle, WA, 1989.

[Evans and Anderson, 1990] Evans, M., and J. Anderson, An Analysis of Constraints for
Multi-Agent Problem Solving, Technical Report, Department of Computer
Science, University of Manitoba, February, 1990.

[Evans, Anderson and Crysdale, 1992] Evans, M., J. Anderson, and G. Crysdale,
Achieving Flexible Autonomy in Multi-Agent Systems using Constraints, in
Applied Artificial Intellegence, Spring 1992,

[Fikes and Nilsson, 1971] Fikes, Richard E., and Nils J. Nilsson, STRIPS: A New
Approach to the Application of Theorem Proving to Problem Solving, in Artificial
Intelligence 2, 1971.

[Fox, 1988] Fox, Mark S., An Oreanizational View of Distributed Systems, Readings in
Distributed Artificial Intelligence, in Morgan Kaufmann Publishers, Inc., 1988.

[Hayes-Roth, 1988] Hayes-Roth, Barbara, A Blackboard Architecture for Control,
Readings in Distributed Artificial Intelligence, Morgan Kaufmann Publishers, Inc,
1988.

[Hendler, Tate and Drummond, 1990] Hendler, J., Austin Tate, and Mark Drummond, Al
Planning: Systems and Techniques, in AAAI, 1990.

[Huhns, Bridgeland and Arni, 1990] Huhns, Michael N., Bridgeland, David Murray, and
Arni, Natraj Vidur, A DAI Communication Aide, 10th AAAI International
Workshop on Distributed Artificial Intelligence, Oct 1990.

[Morgenstern, 1988] Morgenstern, Leora, Knowledge Preconditions for Actions and
Plans, Readings in Distributed Artificial Intelligence, Morgan Kaufmann
Publishers, Inc, 1988.

[Noyes, 1992] Noyes, James L., Artificial Intelligence with Common Lisp, D. C. Heath
and Company, 1992.

[Sacerdoti, 1974] Sacerdoti, Earl D., Planning in a Hierarchy of Abstraction Spaces, in
Artificial Intelligence 5, 1974,

[Sacerdoti, 1975] Sacerdoti, Earl D., The Nonlinear Nature of Plans, in the 4th IJCAIL
1975.

101

[Shaw, 1990] Shaw, Michael J., Mechanisms for Cooperative Problem Solving and Multi-
Agent Learning in Distributed Artificial Intellicence Systems, 10th AAAI
International Workshop on Distributed Artificial Intelligence, Oct 1990.

[Smith, 1988] Smith, Reid G., The Contract Net Protocol: High-Level Communication
and Control in a Distributed Problem Solver. Readings in Distributed Artificial
Intelligence, Morgan Kaufmann Publishers, Inc, 1988.

[Smith and Davis, 1988] Smith, Reid G., and Davis, Randall, Frameworks for Cooperation
in_Distributed Problem Solving, Readings in Distributed Artificial Intelligence,
Morgan Kaufimann Publishers, Inc, 1988.

[Tate, 1977] Tate, A., Generating Project Networks, in the 5th IJCAL, 1977.

[Wilkins, 1988] Wilkins, David E., Practical Planning: Extending the Classical AI Planning
Paradigm, in Morgan Kaufmann Publishers, Inc., 1988.

102

Appendix B : Data Structures and Program Routines

Data Structures:

>

; Global list of agent-names and agent-ptrs

2
(defvar *SYSTEM~AGENT-LIST*)

kd

; plan structure

3

(defstruct PLAN
plan-name
task-name
task-constraints
task-list)

>

; task structure

2

(defstruct TASK
task-name
task-constraints
agent-class-list)

>
; agent class structure

2

(defstruct AGENT-CLASS
class-name
agent-list)

b

, agent structure

2
(defstruct AGENT

agent—-name

plan-list

task-list

agent-class-list

constraint-list

incoming-request-list

outgoing-request-list

incoming-notification-list

outgoing-notification~list

activity-blackboard

(processing-~constraints (MAKE-PROCESSING—CONSTRAINTS)))

103

2

, request structure

(defstruct REQUEST
from-agent
to-agent
(request-id (gensym))
(request-status '‘initiated)
(request-type 'task)
task-name
activity-node-id
request-args)

b

; notification structure

2
{defstruct NOTIFICATION
from-agent
to-agent
(notif-id (gensym))
(notif-status 'Jjust-received)
(notif-type 'result)
request-id ; optional
notif-info)

, activity structure

b

(defstruct ACTIVITY
task
task~args
(Activity-id (gensym))
(status 'holding)
(cycle 0)
(activity-type 'plan)
applicable-agent-classes
current-agent-~class
applicable-agents
current-agent
parent-task-id
parent-request-id
applicable~plans-and-tasks
current-plan-or-task
current-task-list)

104

Program Routines:

"The following routine returns the agent structure associated with a given agent name.
It returns NIL if the given agent name does not exist. The global agent list
stored in *SYSTEM-AGENT-LIST* is searched."

(defun FIND-AGENT {agent-name)
(eval (second {assoc agent-name *SYSTEM-AGENT-LIST+)))
)

"The following routine accepts an agent structure and a request structure.
It adds the request structure to the list of incoming requests for the agent."

(defun ADD-INCOMING-REQUEST {agent request)
(setf (AGENT-incoming-request-list agent)
(append (AGENT-incoming-request-list agent) (list request)))

"The following routine accepts an agent structure and a request structure.
It adds the request structure to the list of outgoing requests for the agent."

{defun ADD-OUTGOING-REQUEST (agent request)
(setf (AGENT-outgoing-request-list agent}
{append (AGENT-outgoing-request-list agent) (list request)}))

"The following routine accepts an agent structure and a notification structure.
It adds the notification structure to the list of incoming notifications
for the agent."

(defun ADD~INCOMING~NOTIFICATION (agent notif)
(setf (AGENT-incoming-notification-list agent)
(append (AGENT-incoming-notification-list agent) (list notif)))

"The following routine accepts an agent structure and a notification structure.
It adds the notification structure to the list of outgoing notifications
for the agent."

(defun ADD-OUTGOING-NOTIFICATION {agent notif)
(setf {AGENT-outgoing-notification-list agent)
{append (AGENT-outgoing-notification~list agent)} {list notif)))

105

"The following routine performs the sending of a request from one agent to another.
It accepts two agent structures (from and to) and keyword arguments.

The incoming and outgoing request lists of the corresponding agents are updated

to reflect the communication."

{(defun SEND-REQUEST (from~agent-name to-agent-name
request-type task-name fequest~args activity-node-id)
(let* ((to-agent {FIND~AGENT to~agent-name))
(from-agent (FIND~AGENT from-agent-name))
(new-request (MAKE-REQUEST)))

(setf (REQUEST-from—agent new~request) from—agent—name)

(setf (REQUEST-to-agent hew-request) to=-agent~name}
(setf (REQUEST-request-type new-request) request-type)
(setf (REQUEST~task-name new-request) task-name)

(setf (REQUEST-request~args new-request) request-args)

(if (not (equal activity-node-id nil))
{setf (REQUEST-request-id new-request) activity~node-id)
)

{PRINT-REQUEST new-request)

(if {or {(null to-agent)
(null from-agent))

(progn ; 1f to or from agent is not found then error has occured
(princ "*** Error: destination or source agent not found")
{terpri)

(terpriy))
(progn ; else update request lists in the agents and send notification of
receipt
(ADD-OUTGOING-REQUEST from-agent new-reguest)
(ADD-INCOMING-REQUEST to-agent new-request)
)

"The following routine sends a notification from one agent to another. It
accepts a request-id and a notification-type to be assigned to the notification.
The incoming and outgoing notification lists of the corresponding agents are
updated to reflect the communication."

(defun SEND-NOTIFICATION {from-agent-name to-agent-~name
request~id notif-type notif-info)
{let {(new-notif (MAKE-NOTIFICATION))
{to~agent {FIND~AGENT to-agent-name))
(from-agent (FIND-AGENT from-agent-name)))

(setf (NOTIFICATION-from-agent new-notif) from-agent-name)
(setf (NOTIFICATION-to-agent new-notif) to-agent-name)
(setf (NOTIFICATION-notif-info new-notif) notif-info)
{setf (NOTIFICATION—notif—type new-notif) notif-type)
(setf (NOTIFICATION-request-id new-notif) request-id)

(PRINT-NOTIFICATION new-notif)

(if {or (null to-agent}
(null from-agent))

{progn ; if to or from agent is not found then error has occured
(princ "*** Error: destination or source agent not found")
(terpri)

{terpri))

{progn ; else update notification lists in the agents
(ADD-OQUTGOING~NOTIFICATION from-agent new-notif)
(ADD-INCOMING-NOTIFICATION to-agent new-notif))

106

"The following routine prints the contents of a given request sent within the system.
The information printed includes: the sender, recepient and request-info."

(defun PRINT-REQUEST (r)
(format t "Request sent from ~A to ~A: ~A (~A)"
(REQUEST~from-agent r)

(REQUEST-to~agent r)

(REQUEST-request-type r)

{(REQUEST~-task-name r}}
(terpri))

"The following routine prints the contents of a given notification sent within the system.
The information printed includes: the sender, recepient, and notification-info."

(defun PRINT-NOTIFICATION (n)

(format t "Notification sent from ~A to ~A:r ~A (~A)M
(NOTIFICATION-from-agent n)
(NOTIFICATION-to-agent n)
(NOTIFICATION—notif—type n)
(NOTIFICATION-notif~info n))

(terpri))

"The following routine coordinates the processing cycles for the agents in the system.
The routine optionally accepts a processing-constraints structure that can

be used to override the constraints associated with the individual agents for

the current cycle." '

(defun PROCESS-AGENTS (&key (constraints nil)}
(let ((agent nil))
(dolist (a *SYSTEM-AGENT-LIST*)
(setf agent (FIND-AGENT (first a)))
(terpri)
(format t "Processing agent: ~A ...
(first a))
(terpri)
(PROCESS~AN~AGENT agent
iprocessing-constraints constraints)

)

“The following routine coordinates the processing for a given agent for the current
processing cycle. The routine optionally accepts a processing-constraint structure

that, if present, overrides the agent's internal processing constraints. The routine

first invokes PROCESS-REQUESTS to process 0 or more requests received in the
incoming request queue on the last or previous cycles and then it invokes PROCESS-
ACTIVITY-NODES to process 0 or more activity nodes in the activity blackboard, and
finally it invokes PROCESS-NOTIFICATIONS to process O or more incoming
notifications received in the incoming notification queue on the last or previous cycles.

107

The processing constraints govern what type and how many requests and notifications can
be processed."

(defun PROCESS~AN-AGENT {agent skey (processing~-constraints nily))
{PROCESS—~REQUESTS agent
processing-constraints)
{(PROCESS~ACTIVITY~NODES agent
processing-constraints)
(PROCESS~NOTIFICATIONS agent
processing-constraints)

"The following routine processes the newly received requests in the incoming request
queue. The special-processing-constraints parameter can be used to override the
processing constraints associated with the given agent (maximum number of
requests that can be processed on this cycle and the type(s) of tasks that

can be processed)."

(defun PROCESS-REQUESTS (agent special-processing-constraints)
(let* ((process-constraints
(CR special~processing-constraints
(RGENT-processing~constraints agent)})
{request-constraints
(PROCESSING—CONSTRAINTS—request—constraints process-constraints))
(target-requests (FIND~TARGET-REQUESTS agent request-constraints))
)
(dolist (r target-requests)
(PROCESS-INDIVIDUAL-REQUEST agent r)
)
)

"The following routine attempts to build a list of request ids from the given agent's
incoming request list and the given request constraints. It ensures that the
maximum number of requests set for this cycle is enforced (0 or more) and that
each request selected meets the prescribed criteria (type of task for now)."

{(defun FIND-TARGET-REQUESTS {agent request-constraints)
(let* ((max-requests
(REQUEST—CONSTRAINTS—max—requests request-constraints))
(request-criteria
(REQUEST-CONSTRAINTS-criteria request-~constraintsy})
(target-requests nil)
(request-cnt 0))

(dolist (r (AGENT-incoming-request-list agent))
(if (= request-cnt max-requests)
(return))

(1f (ACCEPTABLE~REQUEST r request-~criteria)
(progn
(setf target-requests (append target-requests
(list r)))
(setf request-cnt {1+ request-cnt)}
)
)
)
target-requests)

108

"The following routine determines whether a given request meets the required criteria
for processing. For now the request-criteria is either an empty list indicating

any task can be processed or a list of specific tasks that are allowed. In either

case the request must be in INITIATED status and must be a TASK or CLEAN-UP

request.”

(defun ACCEPTABLE-REQUEST (request request-criteria)
(if (and

{or (equal (REQUEST—request—type request) 'task)
{equal (REQUEST—request-type request) 'clean-up))

{equal (REQUEST-request-status request) 'Initiated)

(or {(null request-criteria)
(member (REQUEST-task-name request) request-criteria)))

t)

"The following routine processes a given request for a given agent based on a given
request id. If the request is clean-up request, it invokes the clean-up routine.

If the request is a task request, it creates a new activity node for it by invoking
CREATE-ACTIVITY-NODE-FOR-REQUEST routine."

{defun PROCESS—INDIVIDUAL-REQUEST (agent request)

(format t "Processing request (~A) of agent (~A): ~A = ~A"
(REQUEST-request-id request)
(AGENT~-agent-name agent)
(REQUEST-request-type request)
{REQUEST-task-name request))
{terpri)

(if (equal (REQUEST-request-type request) 'CLEAN-UP}
(CLEAN-UP-ACTIVITY-NODE~FOR-REQUEST agent request)
(i1f (not (equal (REQUEST-request-type request) 'CLEANED))
(CREATE~ACTIVITY~NODE-FOR~REQUEST agent request)
)

"If the request status is INITIATED, the following routine invokes DELETE-ACTIVITY-
SUB-TASK-NODES to delete the activity node with the request id equal to the one
specified in the request parameter. It also deletes all of its children nodes."

(defun CLEAN-UP—ACTIVITY—NODE-FOR—REQUEST (agent request)
(if (egual (REQUEST~request~status request) "INITIATED)
(progn
(dolist (node (AGENT-activity-blackboard agent))
(1f (and (equal (ACTIVITY~parent-request-id node) (REQUEST-request-id
request))
(equal (ACTIVITY-parent-task-id node) nil})
(DELETE—ACTIVITY—SUB~TASK~NODES agent node)
)

)
(setf (REQUEST-request-status request) 'CLEANED)

109

"The following routine searches a given agent's incoming request list for the request
structure with the given request id. If found it returns the entire request
structure else it returns NIL."

(defun FIND-REQUEST-GIVEN-ID (agent request-id)
(dolist (r (AGENT-incoming-request-list agent))
(if (equal (REQUEST-request-id r} request-id)
{(return r))
)

"The following routine creates an activity node for the given request on the given
agent's activity blackboard. The new activity node will have the status of
READY"

{defun CREATE-ACTIVITY-NODE~-FOR-REQUEST (agent request)
(let (new-task-activity)

(setf new~task-activity (MAKE-ACTIVITY))

{(setf (ACTIVITY-task new-task-activity)
(REQUEST-task-name request))

(setf (ACTIVITY—task—args new-task-activity)
(REQUEST~request~arqs request}))

(setf (ACTIVITY~-parent-task-id new-task-activity) nil)

(setf (ACTIVITY-parent—request—id new-task-activity)
(REQUEST-request~id request))

(setf (ACTIVITY-status new-task-activity) 'READY)

{setf (REQUEST-request-status request)"BEING—PROCESSED)

; add new node to activity blackboard

(setf (AGENT-activity-blackboard agent)
(append (AGENT-activity-blackboard agent)
(list new-task-activity)))

"The following routine processes the activity nodes in an agent's activity blackboard"

(defun PROCESS-ACTIVITY~NODES (agent special-processing-constraints)
{let* ((request-constraints special—processing—constraints)
{activity-nodes (AGENT-activity-blackboard agent})
)
(dolist (a-node activity-nodes)
(PROCESS-INDIVIDUAL-ACTIVITY~-NODE agent a-node reqguest-constraints)
)
)
)

"The following routine will process a given activity-node that has one or more
subtasks as part of its plan (current-task-list). It creates one new activity

node for each task in the list and then elaborates the task recursively.

Each new activity node is linked to the original activity node and to the
originating request."

(defun EXPAND~ACTIVITY-NODE {agent activity-node request-constraints)
(let (sub-task-activity)

110

(dolist (task (ACTIVITY-current-task-list activity-node))
(setf sub~task-activity (MAKE~ACTIVITY))}

(setf (ACTIVITY-task sub-task-activity) task)
(setf (ACTIVITY-status sub-task-activity) 'READY)
(setf (ACTIVITY-task-args sub-task-activity)

(ACTIVITY~task-args activity-node})
(setf (ACTIVITY-parent-task-id sub-task-activity)
(ACTIVITY-actiVity—id activity-node))
{setf (ACTIVITY—parent—request—id sub-task-activity)
(ACTIVITY—parent—request-id activity~node))
(setf (AGENT-activity-blackboard agent)
(append (AGENT~activity-blackboard agent)
(list sub-task-activity)))
)
; Now attempt to elaborate the nodes

(PROCESS~-ACTIVITY~NODES agent request-constraints)
)

"The following routine processes a single activity node exist in an agent's activity
blackboard."

{(defun PROCESS—INDIVIDUAL-ACTIVITY—NODE (agent activity-node request-~constraints)
(let* (applicable-plans

target-agent

current-plan

task~list

task-name

task-parm

)

(if (equal (ACTIVITY-status activity-node) 'WORKING)

; If the agent itself is working on it, increment the cycle counter.
(INCREMENT-ACTIVITY~CYCLE agent activity-node)

(if {or {equal (ACTIVITY-status activity-node) 'NO-APPLICABLE-PLANS)
(equal (ACTIVITY-status activity-node) 'NO—APPLICABLE—PLANS—REPLIED))

; If there is no applicable plans for the task, report to the parent node.
(

REPORT—TO—PARENT—NODE'agent activity-node request-constraints)

’
;7 If this is the first time in, it tries to find applicable plans for the
; task.
(if (and (equal (ACTIVITY-current-plan-or-task activity-node) nil})
(equal (ACTIVITY~-current-agent-class activity-node) nil)

{equal (ACTIVITY—current—agent activity-node) nil))
(setf applicable-plans (FIND-APPLICABLE-PLANS
agent

(ACTIVITY-task activity-node)
(ACTIVITY-task-args activity-node)))
)
(if (equal applicable~plans nil)

If applicable-plans is empty, its either no applicable plans for the
task or the task has been sent to other agent to be worked on or the
agent is working on the task

(if (equal (ACTIVITY-status activity-node)
’AWAITING-SUBTASK—DISTRIBUTION)
;
; The task has been sent to other agents. Here invokes
CHECK-CHILDREN ACTIVITY-STATUS to see if the task is done or if

111

; there is any problem.

{CHECK~CHILDREN-ACTIVITY-STATUS agent activity-node)

{progn
; He
; ch
{set

(set
(1f

)
)
(progn

’

re tries to find suitable agent to work on the task and
ecks to see if the task has any problem.

f target-agent (FIND~SUITABLE~AGENT agent activity-node
request~constraints))
f task-name (ACTIVITY-task activity-node))
(and (equal target-agent nil}
(not (equal (ACTIVITY-status activity~node)
'REQUEST-SENT))
(not (equal (ACTIVITY-status activity-node)
'NO-PROBLEM))
(not {equal (ACTIVITY-status activity-node)
'NO-PROBLEM-REPLIED))
(not (equal (ACTIVITY-status activity-node)
"WORKING)))
{progn
{(format t " Set task: ~A status to
NO APPLICABLE PLANS"
(ACTIVITY-task activity-node))
(terpri)
(setf (ACTIVITY-status activity-node)
'NO~APPLICABLE~PLANS)
)
(if (not (equal target~agent nil))
{progn
7 After a suitable agent is found, sends off the
; task to such agent.

(setf (ACTIVITY-status activity-node)
'REQUEST-SENT)
{SEND-REQUEST (AGENT~agent-name agent)
target-agent
"task
task-name
task~parm
(ACTIVITY~activity-id activity-node))

; The applicable plans list is not empty.

(if (equal ¢
{progn

; If

it

RIS

’

ACTIVITY-status activity-node) 'READY)

the activity node is newly created, i.e. status is READY,
chooses the first plan from the applicable plans to start

work on the task. Constraints can be implemented here to
assist better selection in choosing a plan.

{setf current-plan (FIRST applicable~plans))
(setf applicable-plans ({(REST applicable-plans))
(setf task-list

(setf
(setf

(setf

(AND current-plan
¢ nil task-list if TASK structure instead of PLAN
(not (TASK-p current-plan))
(PLAN-task-list current-plan)))

(ACTIVITY~applicable—plans—and—tasks activity-node)
applicable-plans)

(ACTIVITY-current-plan-or-task activity-node)
current-plan)

(ACTIVITY-current-task-list activity-node)
task-list)

112

(if (null task-list)

(if (equal (TASK-agent-class-list current-plan} nil)
;7 If the task's agent-class-list is nil, it implies
; that the task can be done by the agent itself
; without distributing to other agents. Here it
; increments the cycle counter from default value of
; 0 to 1l
{progn
(setf (ACTIVITY-status activity-node) "WORKING)
(INCREMENT-ACTIVITY~CYCLE agent activity-node)

)

{progn
(format t " Set task: ~A status to

AWAITING DISTRIBUTION"
(ACTIVITY-task activity-node))
{terpri)
(setf (ACTIVITY-status activity-node)
'AWAITING-DISTRIBUTION)
)
)

{progn
(if (equal (ACTIVITY-parent-task-id activity-node) nil)
{(progn
(format t » Set task: ~A status to
AWAITING SUBTASK DISTRIBUTION"
(ACTIVITY~task activity-node))
(terpri)

(setf (ACTIVITY-status activity~-node)
'AWAITING~SUBTASK—DISTRIBUTION)

plan.
EXPAND~ACTIVITY~NODE agent activity-~node
request-constraints)

)
; Here expands the activity node based on the chosen
(

"The following routine increments the cycle counter of an activity node by one. If the
cycle counter reaches the value set in the task constraints list, the status will be set to NO-
PROBLEM."

(defun INCREMENT-ACTIVITY-CYCLE (agent activity-node)
{let ((task~constraints nil)
(task-cycle nil))
{progn
(dolist (a-task (AGENT-task-list agent))
(1f {equal (TASK-task-name a-task) (ACTIVITY-task activity-node))
(setf task-constraints (TASK~task-constraints a~task))
)
)
(setf task-cycle (cadr (assoc 'CYCLE task-constraints)))
{if (equal (ACTIVITY-cycle activity-node) task-cycle)

(progn
(format t " Set task: ~A status to NO PROBLEM"
(ACTIVITY-task activity-node))
(terpri)

(setf (ACTIVITY-status activity-node) 'NO-PROBLEM)

113

)
{progn
{setf (ACTIVITY-cycle activity-node)
(+ (ACTIVITY-cycle activity~-node) 1})
{(format t * Set task: ~A cycle to ~A {Max = ~A)"
(ACTIVITY-task activity-node}
(ACTIVITY-cycle activity-node)
task-cycle)
(terpri)

“The following routine checks all the children activity nodes (if there exist any) of a given
activity node of an agent. If all the children activity nodes' statuses are NO-PROBLEM,
then the status of the given activity node will be set to NO-PROBLEM too. "

(defun CHECK~CHILDREN-ACTIVITY-STATUS {agent activity-node)
(let ((activity-id (ACTIVITY~activity-id activity-node))
(no~-problem 'T))

{(dolist {a-node (AGENT—activity—blackboard agent))
(1f (and (equal (ACTIVITY-parent-task-id a-node) activity-id)
(not (equal (ACTIVITY-status a-node) 'NO-PROBLEM))
(not (equal (ACTIVITY-status a-node] 'NO~PROBLEM-REPLIED)))
(setf no~problem nil)
)

)
(if (equal no-problem 'T)

{progn
(format t " Set task: ~A status to NO PROBLEM™"

(ACTIVITY~-task activity~-node))

(terpri)
(setf (ACTIVITY-status activity-node) 'NO-PROBLEM)

)

"The following routine will either send a task to a suitable agent or
return nil to indicate no suitable agent can be found. Here we just choose
the first agent to be the suitable agent. Constraints can be implemented
later to assist in finding suitable agent."

(defun FIND~SUITABLE-AGENT (agent activity-node request-constraints)
{let* {(task-name (ACTIVITY-task activity-node))
(target-agent-classes nil)
(target-agent-class nil)
(target-agents nil)
{target-agent nit}
)

(if (and (equal (ACTIVITY-current-agent-class activity-node) nil)

{equal (ACTIVITY~-current-agent activity-node) nil)
(not (equal (ACTIVITY-status activity-node)
'NO-APPLICABLE-PLANS))
(not (equal (ACTIVITY-status activity-node)
‘NO~APPLICABLE—PLANS—REPLIED))
{(not (equal (ACTIVITY-status activity-node) 'TASK-PROBLEM)))
{progn
(setf target-agent-~classes (FIND-AGENT-CLASS-LIST-FOR-TASK agent task-name))
(setf target-agent-class (first target-agent-classes))

114

(setf target-agent-classes ({rest target-agent-~classes))
(setf (ACTIVITY—applicable—agent-classes activity-node) target-agent-classes)
{setf (ACTIVITY—current—agent—class activity-node) target-agent-~class)
(setf target-agents (FIND-AGENT-LIST—FOR—AGENT-CLASS agent target-agent-class))
(setf target~-agent (first target-agents))
(setf target-agents (rest target~agents))
(setf (ACTIVITY-applicable—agents activity-node) target-agents)
(setf (ACTIVITY—current-agent activity-node) target-agent)
)
(progn .
(if {or (and (equal (ACTIVITY-current-agent activity-node) nil)
(not (equal (ACTIVITY-status activity-node)
'NO-APPLICABLE—PLANS))
(not {equal (ACTIVITY-status activity-node)
’NO—APPLICABLE—PLANS—REPLIED)))
{and (equal (ACTIVITY—applicable—agents activity-node) nil)
(equal (ACTIVITY-status activity-node) 'TASK-PROBLEM)))
(progn
(setf target-agent-classes (ACTIVITY—applicable-agent—classes
activity-node))
(setf target-agent-class (first target-agent-classes))
(setf target-agent-classes (rest target-agent-classes))
{setf (ACTIVITY—applicable—agent—classes activity-node)
target-agent-classes)
(setf (ACTIVITY~current—agent—class activity~node)
target-agent-class)
(setf target-agents (FIND-AGENT-LIST~-FOR-AGENT-CLASS agent
target-agent-class))
(setf target-agent (first target-agents))
(setf target-agents {rest target-agents))
(setf (ACTIVITY—applicable—agents activity~node) target~agents)
(setf (ACTIVITY—current-agent activity-node) target-agent)
)
(progn
(if (or (equal (ACTIVITY-status activity-node) 'READY)
(equal (ACTIVITY-status activity-node) 'AWAITING-DISTRIBUTION)
(equal (ACTIVITY-status activity-node) 'TASK-PROBLEM))
(progn i
(setf target-agents (ACTIVITY—applicable—agents activity-node))
(setf target-agent (first target-agents))
(setf target-agents (rest target-agents}))
(setf (ACTIVITY-applicable~agents activity-node) target-agents)
(setf (ACTIVITY~current—agent activity-node) target-agent)

)
)
)
target~agent
)

"The following routine will either set the parent node of the input activity to have
status of TASK-PROBLEM or if the activity is requested from another agent,
a notification will be sent back to the request agent with TASK-PROBLEM message."

(defun REPORT-TO-PARENT-NODE (agent activity request-constraints)
(let ((req nil)
{current-plan nil)
(applicable-plans nil)
(task-list nil))

(if (not (equal (ACTIVITY-status activity) 'NO-APPLICABLE-PLANS-REPLIED))
(if ({equal (ACTIVITY-parent~task-id activity) nil)
(progn

; If the parent task id of the activity node is nil, it implies that

i the task is requested from another agent.

’

115

{if (equal (ACTIVITY—applicable—plans—and—tasks activity) nil)
(progn
; If there is no other applicable plans available, it sends a
; notif back to the request agent indicating there is a
; problem.
(setf req (FIND~REQUEST-GIVEN-ID agent
(ACTIVITY—parent—request—id activity)))
(1f (not (equal (REQUEST~-from-agent req) nil))
(progn
{SEND-NOTIFICATION (REQUEST-to—agent req)
(REQUEST—from—agent req)
(REQUEST-request-id req}
(REQUEST-task~name req)
'TASK-PROBLEM)
(setf (ACTIVITY-status activity)
'NO-APPLICABLE~PLANS-REPLIED)

)
)
{progn
i If alternative plan is available, it will try to use it.
(setf (ACTIVITY-status activity)
'AWAITING—SUBTASK—DISTRIBUTION)
(setf applicable-plans
(ACTIVITY—applicable—plans—and—tasks activity))

(setf current-plan (first applicable-plans))
(setf applicable-plans (rest applicable-plans))
(setf (ACTIVITY-current-plan-~or-task activity)

current-plan)
{setf (ACTIVITY—applicable—plans—and—tasks activity)
applicable-plans)
(setf task-list
(AND current-plan
; nil task-list if TASK structure instead of PLAN
(not (TASK-p current-plan))
(PLAN-task-list current-plan)})
(setf (ACTIVITY-current-task-list activity) task-list)
(EXPAND-ACTIVITY~NODE agent activity request-constraints)

)

; Here it deletes all the nodes created for the previous plan which has
; been failed.

;
(

dolist (a-node (AGENT-~activity-blackboard agent))
(if {equal (ACTIVITY-activity-id a-node)
(ACTIVITY-parent-task-id activity))

(progn
(format t » Set task: ~A status to TASK PROBLEM"
(ACTIVITY-task a-node))
(terpri)
(setf (ACTIVITY-status a-node) ' TASK~PROBLEM)

(setf (ACTIVITY-status activity) 'NO—APPLICABLE~PLANS-REPLIED)
(DELETE~-ACTIVITY-SUB~TASK-NODES agent activity)

116

"The following routine will recreate the agent's activity blackboard by deleting any
tasks that have the given activity node as its parent."

{defun DELETE-ACTIVITY-SUB-TASK-NODES (agent activity)
{let {{new-bb nil)
{activity~id (ACTIVITY~activity—id activity)))

(dolist (node (AGENT-activity-blackboard agent))
(if (equal (ACTIVITY-parent-task-id node) activity-id)
{progn
(1f (not {equal (ACTIVITY—current—agent node) nil))
(SEND~REQUEST (AGENT-agent-name agent)
(ACTIVITY—current—agent node)
'CLEAN-UP
(ACTIVITY-task node)
nil
(ACTIVITY~activity~id node))
)
)
(setf new-bb (append new-bb (list node))}
)

)
{setf (AGENT-activity~blackboard agent) new-~bb)

; Delete the activity node itself
(setf new-bb nil)
{dolist (node (AGENT-activity-blackboard agent}))
(if (not (equal (ACTIVITY-activity-id node) activity-id))
(setf new-bb (append new-bb (list node)))
)

)
{setf (AGENT-activity-blackboard agent) new-bb)

"This routine will search an agent's plan list to find zero or more plans

that can be applied to a given request. For now we select all the plans on the
agent's plan list that match the task associated with the request (no other
details such as task arguments are considered at present)."

(defun FIND-APPLICABLE-PLANS (agent task-name task-arguments)
(let ((applicable-plans nil)}
; first find all possible task knowledge sources that match the task
; These represent alternatives that can be used to directly distribute
; the task :
(dolist (tk (AGENT~-task-list agent))
(if (equal (TASK-task-name” tk) task-name)
(setf applicable~plans
(append applicable~plans
(list tk))})
)

(dolist (p (AGENT-plan-list agent))
(if (equal (PLAN-task-name p) task-name)
(setf applicable-plans
{append applicable~plans (list PN
)
applicable-plans)

117

"The following routine will return a list of the ACTIVITY-id(s) associated with a
given task in a given agent.

(defun FIND-ACTVITY-ID (agent-name task-name}
(let {(agent (FIND-AGENT agent-name))
{task-ids nil))

(dolist (a-node (AGENT-activity—blackboard agent))
(if (equal (ACTIVITY-task a-node) task-name)
(setf task-ids
(append task-ids (list (ACTIVITY-activity-id a=-node)))}
)
)
task-ids)

"The following routine will search a given agent's task knowledge to find and return
a list of agent classes (possibly nil) that are known by the agent to be able
to process the given task-name,

(defun FIND-AGENT-CLASS-LIST~FOR-TASK (agent task-name)
(let* ((task-list (AGENT~task-list agent}))
(class-lists nil)) .

(dolist (x task-list)
(1f (equal (TASK-task-name X) task-name)
{setf class-lists
(append class~lists (TASK~agent-class-list X)
)
)
class-lists
)
)

"The following routine finds a list of actual agents that belong to the given class of agents.
Search is based on the information local to the given agent."

(defun FIND-AGENT-LIST-FOR-AGENT-CLASS (agent agent-class)
(let* ((agent-lists nil))
(dolist (a-class (AGENT-agent-class~list agent))
(if (equal (AGENT-CLASS-class-name a-class) agent-class)
(setf agent-lists
(append agent-lists (AGENT-CLASS~agent-list a-class)))
)
)
agent-lists
)
)

"The following routine processes the incoming and outgoing notification queue of an
agent."

(defun PROCESS-NOTIFICATIONS (agent special-processing-constraints)
(let* ((process-constraints
(OR special-processing~constraints
(AGENT~processing-constraints agent}})
(request~constraints
(PROCESSING—CONSTRAINTS—request-constraints process~constraints))
)

118

(progn
(PROCESS—INCOMING—NOTIFICATIONS agent request-constraints)
{ PROCESS~OUTGOING~NOTIFICATIONS agent)

)

"The following routine processes all the incoming notifications in the incoming notification
queue. If the incoming notification is a new one and the notification info states that it has
no problem in working on the request, then the corresponding activity id status

will be set to NO-PROBLEM. If the incoming notification indicates there is a task
problem, the corresponding activity id status will be set to TASK-PROBLEM and a clean-
up request will be sent to the failing agent to clean-up the activity nodes. "

(defun PROCESS~INCOMING-NOTIFICATIONS (agent request-constraints)
(let* ((activity-node nil)
(temp-request nil))
(dolist (i-notif (AGENT—incoming—notification-list agent))
(if (and (equal (NOTIFICATION~-notif-status i-notif) 'JUST-RECEIVED)
(equal (NOTIFICATION-notif-info i-notif) 'NO-PROBLEM))
{(progn '
(setf (NOTIFICATION-notif-status i-notif) 'PROCESSED)
(setf activity-node (FIND—ACTIVITY~BY—REQ—ID agent
(NOTIFICATION-request-id i-notif)))
(if (not (equal activity-node nil))

{progn
{setf {ACTIVITY-status activity~node) 'NO~PROBLEM)
(format t v Set task: ~A status to NO PROBLEM"
(ACTIVITY-task activity-node))
{terpri)

)

)
(if (and (equal (NOTIFICATION-notif~status i-notif) 'JUST-RECEIVED)

(equal (NOTIFICATION-notif-info i-notif) 'TASK-PROBLEM))
(progn
{(setf (NOTIFICATION-~notif-status i-notif} !'PROCESSED)
(setf activity-node (FIND—ACTIVITY—BY-REQ—ID agent
(NOTIFICATION-request-id i-notif)))
(if (not (equal activity-node nil))
{progn

{(setf (ACTIVITY-status activity=-node) 'TASK~PROBLEM)

{(format t " Set task: ~A status to TASK PROBLEM™"
{ACTIVITY-task activity-node})

(terpri)

(SEND~REQUEST (AGENT-agent-name agent)
(ACTIVITY-current-agent activity-node)
'CLEAN-UP
(ACTIVITY-task activity~node}
nil
(ACTIVITY-activity-id activity-node))
)
)
(1f (equal (AGENT-agent-name agent) 'USER)
{progn
(setf temp-~request (first (AGENT-outgoing-request-list agent)))
(SEND-REQUEST (AGENT-agent-name agent)
'Mark-House-Building
'CLEAN-UP
'House~-Building
nil
(REQUEST~request-id temp-request))

119

"The following routine will return the activity node associated with a
given notification id in a given agent. The notification id should be equal to
one of the activity id in the activity blackboard."

(defun FIND-ACTIVITY-BY-REQ-ID (agent reg-id)
(let ((activity-node nil))

(dolist (a-node (AGENT~-activity-blackboard agent))

(if (equal (ACTIVITY-activity-id a-node) req-id)
(setf activity-node a=-node)

)

)

activity-node

)
)

"The following routine generates notification messages to request agents when the status
of the request shows NO-PROBLEM."

(defun PROCESS-OUTGOING-NOTIFICATIONS {agent)
(let* ((root-nodes (FIND-ROOT~ACTIVITY~-NODES agent))
{req nil))

(dolist (a=-node root-nodes) :
(if (equal (ACTIVITY-status a-node) 'NO-PROBLEM)
(progn
(setf (ACTIVITY-status a-node) 'NO-PROBLEM~REPLIED)
(setf req {FIND-REQUEST~GIVEN=-ID agent
(ACTIVITY—parent—request—id a-node) })
(if (not {equal (REQUEST-from-agent req) nil))
(SEND-NOTIFICATION (REQUEST-to-agent req) (REQUEST~from-agent req)
(REQUEST-request~id req) (REQUEST-task-name req)
'NO-PROBLEM)

"The following routine finds all the root activity nodes of an agent. A root activity node
is an activity node created as a result of an incoming request from another agent."

(defun FIND-ROOT-ACTIVITY-NODES (agent)
(let* {({root-nodes nil})

(dolist (a-node (AGENT-activity~blackboard agent))
(if (equal (ACTIVITY-parent-task—id a-node) nil)
{setf root-nodes (append root-nodes (list a-node}))
)
)

root-nodes

120

"The following routine will print out all of the information related to a given agent."

(defun PRINT-AGENT~INFO {agent-name)
(let ((agent (FIND-AGENT agent-name)))

(format t "AGENT: ~A" (AGENT-agent-name agent))

(terpri}

(format t " Plan:")

(terpri)

(PRINT~PLAN-LIST agent)
(terpri)

(format t Task:")

(terpri)

(PRINT~TASK~LIST agent)
{terpri)

(format t " Agent Class:")
(terpri)

(PRINT~AGENT-CLASS-LIST agent)
(terpri)

(PRINT~CONSTRAINT-LIST agent)
(PRINT-INCOMING-REQUESTS agent)
(PRINT—OUTGOING—REQUESTS agent)

(PRINT-INCOMING-NOTIFICATIONS agent)
(PRINT~OUTGOING-NOTIFICATIONS agent)
(PRINT-ACTIVITY-BLACKBOARD agent)
)

"The following routine will print out all the plan information known to a given agent."

(defun PRINT-PLAN-LIST (agent)
(dolist (p (AGENT-plan-list agent))
(format t " Task: ~A"
(PLAN-task-name p))

(terpri)

{princ " Sub-Tasks: ")

(terpri)

(dolist (task (PLAN-task-list joB I
(princ " ")
{(princ task)

(terpri)
)
(terpri)

)

"The following routine will print out all of the task information known to a given agent."

(defun PRINT-TASK-LIST {agent)
(dolist (task (AGENT-task-list agent))
(format ¢t " Task: ~A"
(TASK-task-name task))

(terpri)

(format t " Agent Classes: ~A"
(TASK-agent-class-list task})

(terpri)

)

121

“The following routine will print a list of agents for each agent class known to a given
agent."

(defun PRINT-AGENT-CLASS-LIST (agent)
{dolist (agent~class (AGENT-agent-~class~list agent))
{(format t " Class Name: ~A"
(AGENT-CLASS-class-name agent-class))

(terpri)

(format t " Agents: ~A"
(AGENT-CLASS-agent-list agent-class})

(terpri)

)

"The following routine will print the constraints associated with a given agent."

(defun PRINT-CONSTRAINT~LIST (agent)

(format t * Constraints:")

(terpri)

(dolist {r (AGENT-constraint~list agent)}
(format ¢t " ~A" r)
{terpri)

)

({terpri)

)

"The following routine will print the requests that have been received by the given agent."

{(defun PRINT-INCOMING-REQUESTS (agent)

(format t " Incoming Requests:")

(terpri)

{dolist (r (AGENT—incoming—request~list agent))
{format t " ~A: ~A (~A)"

(REQUEST-from-agent r)
(REQUEST—request—type r)
(REQUEST-task-name r))
(terpri)
)
)

"The following routine will print the requests that have been sent out by the given agent."

{defun PRINT-OUTGOING~REQUESTS (agent)

{format t " Outgoing Requests:")

(terpri)

(dolist (r (AGENT-outgoing~request-list agent))
(format £ ~A: ~A (~A)"

(REQUEST-to-agent r)
(REQUEST—request-type r)
(REQUEST-task~name r))
(terpri)
)
)

122

"The following routine will print the notifications that have been received by
the given agent."

(defun PRINT-INCOMING-NOTIFICATIONS (agent)

(format t " Incoming Notification:")

(terpri)

{dolist (n (AGENT-incoming-notification-list agent))
(format t " ~A: ~A (~A)"

(NOTIFICATION—from—agent n)
(NOTIFICATION-notif—type n)
(NOTIFICATION-notif-info nj}
(terpri)
)
)

"The following routine will print the notifications that have been sent out by
the given agent."

(defun PRINT-OUTGOING-NOTIFICATIONS (agent)

(format ¢ " Outgoing Notification:")
(terpri)
{dolist (n (AGENT-outgoing-notification-list agent))
(format t " ~A: ~A (~A)"
(NOTIFICATION-to-agent n)

(NOTIFICATION-notif-type)
(NOTIFICATION-notif-info nj)
(terpri}
)
)

"The following routine will print the activity node information of the activity blackboard."

(defun PRINT-ACTIVITY-BLACKBOARD (agent)

(format t " Activity Blackboard:")
(terpri)
(dolist (node (AGENT-activity~blackboard agent))
{(format t " Task: ~A Status: ~A Current Agent: ~A"
(ACTIVITY~task node)
(ACTIVITY-status node)}

(ACTIVITY-current-agent node})
(terpri)
)

"The following routine initiates the first request.”

(defun initiate-request ()
(send-request 'user 'Mark-House~Building 'task '"House~Building nil nil)
)

"The following routines define the menu bar and dialog boxes."

(defvar commands-menu)

(defun start-up-routine ()
{progn
(if (not (find-menu "Commands™))
{progn

123

(setq commands-menu
{Make~Instance 'Menu
:Menu-Title "Commands"
:Menu-Items
{List
(Make-Instance 'Menu-Item
:Menu-Item-Title
"Choose A Dataset...... "
:Command-Key
#\C
:Menu-Item~Action
#' (Lambda Nil {Create-Dataset-Dialog)))
(Make-Instance 'Menu-Item
:Menu-Ttem-Title
"Initiate Request™"
:Command-Key
#\R
:Menu~Item~Action
#'(Lambda Nil (Initiate-Request)))
{Make-Instance 'Menu-Ttem
:Menu~Item-Title
"Process Agents"
:Command~-Key
#\P
:Menu-Item-Action
#'(Lambda Nil (Process-Agents)))
(Make-Instance 'Menu-Item
:Menu~-Item~Title
"Print Agent Info..... "
:Command-Key
#\I
:Menu~Item-Action
#'(Lambda Nil (Create~Print-Dialog)))
(Make~Instance 'Menu-Item
:Menu-Item-Title
"Help"
:Command-Key
#\H
:Menu-Item-Action
#'(Lambda Nil (Help)))
M)
)

(menu-install commands-menu)

(defun Create-dataset-dialog ()

(Make-Instance 'Dialog
:Window-Type
: Document
:Window-~Title
"Choose A Dataset"
:View-Position
':Centered
:View-Size
#@(300 150)
:View-Font
'{"Chicago"™ 12 :Srcor :Plain)
iView~Subviews
(List
(Make-Dialog-Item
'Button~Dialog~Item
#@(10 13)
#@(78 16)
"Dataset A"
#'(Lambda (Item) Item (Define-Dataset-A))
:Default-Button
Nil)
{Make~Dialog-Item
'Button-Dialog-Item
#@ (100 13)

124

#Q(78 16)
"Dataset B1"

#' (Lambda (Item) Item (Define~Dataset-B-1)}

:Default~Button

Nil}
(Make-Dialog-Item

'Button-Dialog-Item

#@(100 32)

#@(78 16)

"Dataset B2"

#'{Lambda (Item) Item (Define-Dataset-B~2})

:Default-Button
Nil)
(Make-Dialog-Item
‘Button-Dialog-Item
#@(190 13)
#@(78 16)
"Dataset C1"
#'(Lambda (Item)
:Default~Button
Nil)
(Make-Dialog-Ttem
'Button-Dialog-Item
#@(190 32)
$@(78 186)
"Dataset C2"
#' (Lambda {Item)
:Default-~Button
Nil)
(Make~-Dialog~Item
'Button~Dialog-Item
#@(10 57)
#@(78 16)
"Dataset D1"
#'(Lambda (Item)
:Default-Button
Nil)
(Make-Dialog~Item
'Button-Dialog~Item
#@(10 77)
#Q(78 16}
"Dataset D2"
#' (Lambda (Item)
:Default-Button
Nil)

Item

Item

Item

Item

(defun Create—Print—Dialog @]

{Make-Instance

'Dialog

:Window-Type
:Document
:Window~Title
"Print Agent Info"
:View~Position
':Centered
:View-Size

#8 (300 150)
:View-Font

' ("Chicago" 12 :Srcor :Plain)
:View-Subviews

{List

(Make-Dialog-~Item
'Button-Dialog~Item
#8(10 13)

#€{78 16)
"Agent 1"

#' (Lambda (Item) Item (Print-Agent-Info

:Default~Button
Nil)

(Make-Dialog-Item
'Button-Dialog-Item
#@(100 13)

(Define-Dataset-C~1}))

(Define-Dataset-C~2})

(Define~Dataset-D-1))

(Define-Dataset-D~2})

125

'Mark-House-Building))

#@(78 16)
"Agent 2"
#'{Lambda (Item) Item (Print-Agent-Info 'John—House-Building))
:Default-Button
Nil)
(Make-Dialog-Item
'Button-Dialog-Item
#@(190 13)
#@(78 16)
"Agent 3"
#'{Lambda (Item) Item (Print-Agent-Info 'Tom—House—Building))
:Default-Button
Nil)
{Make-Dialog-Item
'Button-Dialog-Item
#8(10 32)
#@(78 16)
"Agent 4"
#'(Lambda (Item) Item (Print-Agent-Info 'Paul—House—Building))
:Default-Button
Nil)
(Make-Dialog-Item
'Button-Dialog-Item
#@(100 32)
#@(78 16)
"Agent 5"
#'(Lambda (Item) Item (Print-Agent-Info 'Doug—House—Building))
:Default-Button
Nil)
(Make-Dialog-Item
'Button-Dialog~Item
#@(190 32)
#@(78 16)
"Agent &"
#'{Lambda (Item) Item (Print-Agent-Info 'Rick—House—Building))
:Default-Button
Nil)

(defun help ()
(terpri)
(format t " ")
(terpri)
(format t "Basic steps to run the application:")
{terpri)
{terpri)
(format t "~ Choose A Dataset")
(terpri)
(format t "- Initiate Request")
(terpri)
(format t "~ Process Agents")
(terpri)
(terpri)
(format t "Dataset A represents a smooth run; i.e. no change in agent, class or plan.™)
(terpri)
(terpri)
(format t "Dataset B1 Lepresents a change in agent when one fails.™)
(terpri)
(format t " Tom~House~Building fails to perform Electricity for
John-House-Building, John—House—Building then send the same task to
Paul-House-Building")

(terpri)

(format t " based on the same agent class. Paul-House-Building has no problem
in doing the task.")

(terpri)

(format t "Dataset B2 similar to b-1 except that Paul-House~Building fails to
perform the task.")

(terpri)

{terpri)

(format t "Dataset C1 represents a change in agent class when one fails.™)
(terpri)

(format t " Tom-House-Building fails to perform Electricity for

John—House—Building, John—House—Building then send the same task to

126

{terpri)
(format t

(terpri)
(format t

(terpri)
{terpri)
{(format t
(terpri)
{format t

(terpri)
(format t

(terpri)
{(format t

(terpri)
(terpri)
(format t
(terpri)
(format t

(terpri)

(terpri)

(format t
)

Paul-House-Building")

" based on different agent class. Paul-House-Building has no problem
in doing the task.")

"Dataset C2 similar to c-1 except that Paul—House—Building fails to
perform the task.")
"Dataset Dl represents a change in agent plan when one fails.")

" Tom-House-Building fails to perform Plumbing for John-House-Building,
John-House-Building then uses another plan to")

" send Electricity to Tom-House~Building. Tom-House-Building has
no problem in doing the task.")

"Dataset D2 similar to d-1 except that Tom-House-Building still has problem
in doing the task.")

"Note that some responses may take more than one cycle of (process-agents).")
"When you see no response in one cycle, some internal function might be

going on.")

"Choose Help at anytime to show the above notes.")

(start-up-routine)

{help)

127

Appendix C : Test Data and Sample Runs

Test Data:

(defvar user)

(defvar agent~1)
(defvar agent-2)
(defvar agent-3)
(defvar agent-4)
(defvar agent-5)
(defvar agent-6)

(defun setup~-user ()
(setq user (MAKE-AGENT ragent-name 'USER))
)

(defun setup-agentl-a ()
(setq agent-1 (MAKE-AGENT ragent-name ’Mark—House—Building
:plan-list (LIST
(MAKE-PLAN :plan-name 'Plan—Mark—House—Building
:task-name 'House-Building
ttask-list '{Build-Exterior Build-Interior))
)
ttask~list (LIST
(MAKE~TASK :task-name 'Build-Exterior
ragent-class-~list
'(Mark-Class~Build—Exterior))
(MAKE~TASK :task-name ‘Build-Interior
ragent-class-~list
'(Mark—Class—Build—Interior))
)
ragent-class-list
(LIST
(MAKE~AGENT-CLASS :class-name 'Mark-Class-Build-Exterior
ragent-list ' (John~House~Building))
(MAKE-AGENT-CLASS :class-name '"Mark-Class-Build-Interior
tagent-list ' (John-House-Building)))

(defun setup-agent2-a ()
(setqg agent-2 (MAKE-AGENT agent-name ' John~House-Building
:plan-list (LIST
(MAKE-PLAN :plan-name 'PLAN—John—House—Building—A
:task-name 'Build-Exterior
ttask~-list
' (Lay-Foundation Build-House-Frame))
(MAKE-PLAN :plan-name 'Plan-John-Build-Interior
:task-name 'Build-Interior
itask-list ' (Plumbing Electricity Decoration))
)
stask~-list {LIST
(MAKE-TASK :task-name 'Lay~Foundation
ragent-class-list
'(John—Class-Lay—Foundation))
(MAKE-TASK :task-name 'Build~House-Frame
agent-class~list
'(John—Class—Build-House-Frame))
(MAKE-TASK :task-~name 'Plumbing
ragent-class-~list ' (John-Class~-Plumbing))
(MAKE-TASK :task-name 'Electricity
ragent-class-list '(John—Class—Electricity))
(MAKE-TASK :task-name 'Decoration
:task-constraints '{(CYCLE 24))
ragent-class-list nil)
)
tagent-class-list

128

(LIST
(MAKE-AGENT-CLASS :class-name
'John-Class-Lay-Foundation
tagent~list
’(Tom—House—Building Paul—House—Building))
(MAKE-AGENT-CLASS :class-name
'John-Class-Build-House-Frame
ragent-list '(Paul—House—Building))
(MAKE~AGENT~CLASS :class-name
'John—Class—Plumbing
tagent-list
’(Tom—House—Building Paul-House-Building))
(MAKE~AGENT~CLASS tclass-~name
'John-Class-Electricity
tagent-list
'(Tom—House—Buildinq Paul-House-Building))
(MAKE~AGENT~CLASS :class-name
'John~Class~Decoration
ragent-list
'(Tom—House—Building Paul-House-Building)))

(defun setup-agent2-b ()
(setq agent-2 (MAKE-AGENT ragent-name 'John—House—Building
:tplan-list {(LIST
(MAKE-PLAN :plan-name 'Plan-John-Build-Exterior
:task-name 'Build-Exterior
stask~list
' ({Lay-Foundation Build-House~Frame))
(MAKE-PLAN :plan-name 'Plan-John-Build-Interior
‘task-name ‘Build-Interior
‘task-list '{Plumbing Electricity Decoration))
)
ttask~-list (LIST
(MAKE~-TASK :task~name 'Lay-Foundation
tagent-class-list
'(John—Class~Lay—Foundation))
(MAKE~TASK :task-name 'Build-House-Frame
ragent-class-list
’(John—Class—Build-House—Frame))
(MAKE-TASK :task-name 'Plumbing
ragent-class-list ' (John-Class-Plumbing))
(MAKE~TASK :task-name 'Electricity
cagent-class-list
'(John—Class—Electricity—A John-Class—Electricity—B))
(MAKE-TASK :task-name 'Decoration
itask-constraints '((CYCLE 24))
ragent-class-list nil)
)
ragent-class-list
(LIST
(MAKE-AGENT-CLASS :class-name 'John-Class-Lay-Foundation
ragent-list
' (Tom-House-Building Paul-House~Building))
(MAKE-AGENT-CLASS :class-name
'John~Class-Build~House-Frame
tagent-list ' (Paul-House-Building))
(MAKE~AGENT-CLASS :class-name 'John-Class-Plumbing
ragent-list
' {Tom-House-Building Paul-House-Building))
(MAKE~AGENT-CLASS :class-name 'John-Class—Electricity-A
tagent-list ' (Tom-House~Building})
(MAKE-AGENT-CLASS :class-~name 'John-Class~Electricity-B
tagent-list ' (Paul-House-Building))
(MAKE-AGENT~CLASS :class-name 'John~Class-~Decoration
ragent-list
’(Tom—House—Building Paul-House-Building)))

129

(defun setup-agent2-c ()
(setq agent-2 (MAKE-AGENT
iplan-list

tagent-name
(LIST
{MAKE~PLAN

(MAKE-PLAN

(MAKE-PLAN

)
(LIST
(MAKE-TASK

itask~list

(MAKE-TASK

(MAKE-TASK
(MAKE~TASK
(MAKE~TASK
)

ragent-class-list
(LIST

(MAKE~AGENT-CLASS
(MAKE~AGENT~CLASS

(MAKE-AGENT-CLASS

(MAKE-AGENT-CLASS

(MAKE-AGENT~CLASS

(defun setup-agent2-d ()

:task-name
ragent~class~list

itask~name
ragent-class-list

'John—House—Building

:plan~name 'Plan-John-Build-Exterior
ttask-name
ttask-list

'Build-Exterior

' {Lay~Foundation Build-House-Frame))

:plan-name 'Plan-John-Build-Interior-A
ttask-name
ttask-list
:plan-name
ttask-name
ttask~list

'Build~Interior
'(Plumbing})
'Plan~John-Build-Interior-B
'Build-Interior
"(Electricity Decoration))

'Lay~-Foundation

'(John—Class—Lay—Foundation))
'Build-House-Frame

’(John—Class—Build—House—Frame))

:task~name 'Plumbing
ragent-class-list '(John—Class-Plumbing))
‘task-name 'Electricity

ragent-class-list '(John-Class—Electricity))
:task~-name
:task-constraints
ragent~class-list nil)

'Decoration
"((CYCLE 24))

:class-name 'John~-Class-Lay-Foundation
ragent-list '

' (Tom-House~Building Paul-House-Building))
:class-name
'John~Class-Build~House-Frame

ragent-list ' (Paul-House-Building))
:class-name ’John—Class—Plumbing

tagent-list ' {Tom-House-Building))
:class-name 'John—Class—Electricity
tagent-list

'(Tom—House—Building Paul~House—Building))
:class-name 'John-Class-Decoration
tagent-list

'(Tom—House—Building Paul-House-Building)))

(setq agent-2 (MAKE-AGENT ragent-name 'John-House-Building

:plan~-list (LIST

(MAKE-PLAN

(MAKE-PLAN

(MAKE-PLAN

)
(LIST
(MAKE-TASK

:task~list

(MAKE-TASK

(MAKE-TASK

(MAKE-TASK

:task-name
ragent-class-list

:task-name
ragent-class-list

:plan-name 'Plan-John-Build~Exterior
ttask~-name
ttask-list

'Build~Exterior

'({Lay-Foundation Build~House~Frame))

:plan~-name 'Plan-John-Build-Interior-A
ttask-name
ttask~list
:plan-name
ttask-name
ttask~-list

'Build-Interior
'{Plumbing))
'Plan-John~Build-Interiocr-B
'Build~-Interior
'"{Electricity Decoration))

'Lay~Foundation

'(John—Class—Lay—Eoundation))
'Build~House-Frame

'(John—Class-Build-House—Frame))

itask-name 'Plumbing
ragent-class-list '(John—Class—Plumbing))
:task-name 'Electricity

ragent-class-list '(John—Class—Electricity))

130

(MAKE~TASK :task~name 'Decoration
‘task-constraints '((CYCLE 24))
tagent-class-list nil)

)

ragent-class-list
(LIST
(MAKE~AGENT-CLASS :class-name 'John—Class~Lay-Foundation
ragent-list
'(Tom~House-Building Paul—House—Building))
(MAKE~AGENT-CLASS :class~name
'John—Class-Build—House-Frame
ragent-list '(Paul—House—Building))
(MAKE-AGENT-CLASS :class—-name 'John-Class-Plumbing
ragent-list '(Tom-House—Building))
(MAKE-AGENT-CLASS :class-name ‘John—Class—Electricity
tagent-list '(Paul—House—Building))
(MAKE-AGENT~CLASS :class-name 'John~Class-Decoration
ragent-list
'(Tom~House—Building Paul-~House~Building)))

(defun setup-agent3-a ())
(setq agent~3 (MAKE-AGENT tagent-name 'Tom-House-Building
:plan-list (LIST
(MAKE~-PLAN :plan-name 'Plan-Tom-Lay-Foundation
:task~name ‘'Lay-Foundation
ttask-list
'"{Init-Lay-Foundation Final-Lay~Foundation))
(MAKE-PLAN :plan-name 'Plan-Tom-Plumbing
:task-pame 'Plumbing
ttask-list '(Interior-Plumbing))
(MAKE-PLAN :plan-name 'Plan—Tom-Electricity
:task-name 'Electricity
:task-list ’(Interior—Electricity))
(MAKE-PLAN :plan-name 'Plan-Tom-Decoration
:task-name 'Decoration
ttask-list '(Interior—Decoration))
}
ttask-list {LIST
(MAKE-TASK :task~name 'Init-Lay-Foundation
ragent-class-list '(Tom—Class—Lay—Foundation))
(MAKE-TASK :task-~name 'Final~Lay-Foundation
ragent-class-list ’(Tom~Class—Lay—Foundation))
(MAKE-TASK :task-name 'Interior-Plumbing
ragent-class-list '(Tom—Class~Build—Interior))
(MAKE-TASK :task-name 'Interior—Electricity
ragent-class-list '(Tom-Class—Build—Interior))
(MAKE-TASK :task-name 'Interior-Decoration
ragent-class-1list '(Tom—Class—Build~Interior))
)
tagent-class-list
(LIST
(MAKE~AGENT~CLASS :class-name 'Tom-Class-Lay-Foundation
ragent-list ' (Doug~House-Building))
(MAKE~AGENT-CLASS :class-name 'Tom-Class-Build-Interior
tagent~list '(Rick~House—Building)))

(defun setup-agent3-b ()
(setg agent~3 (MAKE-AGENT ragent-name 'Tom-House-Building
:plan-iist (LIST

(MAKE-PLAN :plan-name 'Plan-Tom-Lay-Foundation
rtask-name 'Lay~Foundation
ttask~list

'"{Init~Lay-Foundation Final-Lay-Foundation})

(MAKE-PLAN :plan-name 'Plan-Tom-Plumbing

‘task-name 'Plumbing
ttask-list "{Interior-Plumbing)}

131

(MAKE-PLAN :plan-name 'Plan-Tom-Decoration
:task-name 'Decoration
ttask~list '(Interior~Decoration))
)
stask-list (LIST
(MAKE-TASK :task-name 'Init-Lay-Foundation
ragent-class-list '(Tom-Class—Lay-Foundation))
(MAKE-TASK :task-name 'Final-Lay-Foundation
tagent-class-list ’(Tom—Class-Lay—Foundation))
(MAKE-TASK :task-name ‘Interior—Plumbing
agent-class-list '(Tom-Class—Build—Interior))
(MAKE~TASK :task-name 'Interior—Electricity
tagent-class-list '(Tom-Class—Build—Interior))
(MAKE-TASK :task-name ‘Interior-Decoration
tagent-class-list '(Tom~Class—Build~Interior))
)
ragent-class-list
(LIST
(MAKE~-AGENT-CLASS :class-name 'Tom~Class-Lay~Foundation
ragent-list ' {Doug-House~Building})
(MAKE-AGENT-CLASS :class-~name 'Tom-Class-Build-Interior
ragent-list ‘(Rick—House—Building)))

(defun setup-agent3-c ()
(setq agent-3 (MAKE-AGENT ‘agent-name 'Tom-House-Building
:plan-list (LIST
(MAKE-PLAN :plan-~name 'Plan-Tom-Lay-Foundation
‘task-name 'Lay-Foundation
ttask-list
'({Init-Lay-Foundation Final-Lay~Foundation))
(MAKE-PLAN :plan-name 'Plan-Tom-Electricity
:task-name 'Electricity
ttask-list '(Interior—Electricity))
(MAKE~-PLAN :plan-name 'Plan~Tom-Decoration
:task-name 'Decoration
:task-list '(Interior-Decoration))
)
ttask-list {LIST
(MAKE~TASK :task-name 'Init-Lay-Foundation
ragent-class-list ' (Tom-Class-Lay-Foundation))
(MAKE-TASK :task-name 'Final-Lay-Foundation
ragent-class-list ' {Tom-Class-Lay-Foundation})
(MAKE~TASK :task-name '"Interior-Plumbing
tagent-class-list '(Tom~Class~Build~Interior))
(MAKE~TASK :task-name ’Interior-Electricity
tagent-class-list *{Tom-Class~-Build-Interior})
(MAKE-TASK :task-name 'Interior~Decoration:
ragent~class-list ' (Tom-Class~Build-Interior))
)
ragent-class-list
(LIST
(MAKE~AGENT-CLASS :class-name 'Tom-Class-Lay-Foundation
ragent-list ' (Doug-House-Building))
(MAKE~AGENT-CLASS :class-name 'Tom-Class-Build-Interior
ragent-list ' (Rick-House~Building)))

(defun setup-agentd-a ()
(setq agent-4 (MAKE-AGENT ragent-name 'Paul-House~Building
splan-list (LIST
(MAKE-PLAN :plan-name 'Plan-Paul~Build-House-Frame
itask-name 'Build-House-Frame
ttask-list '{Build-Roof Build-wall))
)
ttask-list {LIST
(MAKE-TASK :task-name 'Build-Roof
ragent-class-list ' (Paul-Class~-Build-Roof))
(MAKE-TASK :task-name 'Build-Wall

132

lagent-class-list '{Paul-Class-Build-Wall))
)
tagent-class-list
(LIST
(MAKE-AGENT-CLASS :class-name 'Paul~Class~Build~Roof
ragent-list '(Rick—House—Buildinq))
(MAKE-AGENT-CLASS iclass-name 'Paul-Class-Build-Wall
ragent-list '(Rick-House—Building)))

(defun setup-agentd-b ()
(setqg agent-4 (MAKE-AGENT tagent-name ’Paul—House-Building
tplan~list (LIST
(MAKE-PLAN :plan-name 'Plan-Paul~-Build-House-Frame
‘task-name 'Build-House-Frame
itask-list ' (Build-Roof Build~Wall))
)
sttask-list (LIST
(MAKE-TASK :task-name 'Electricity
itask-constraints '({CYCLE 23))
‘agent-class-list nil)
(MAKE-TASK :task-name 'Build-Roof
ragent-class-list ' (Paul-Class~Build=-Roof))
(MAKE~-TASK :task-name 'Build-Wall
tagent-class-list '(Paul—Class-Build—Wall))
)
tagent-class~list
(LIST
(MAKE-AGENT-CLASS :class-name ’Paul—Class—Build—Roof_
tagent-list '(Rick—House—Building))
(MAKE~AGENT-CLASS :class-name 'Paul-Class-Build-wWall
tagent-list ' (Rick-House-Building)))

(defun setup-agent5-a ()
(setg agent-5 (MAKE-AGENT :agent-name ' Doug-House-Building
:plan-list nil
ttask~1list (LIST
(MAKE-TASK :task-name 'Init-Lay-Foundation
‘task-constraints '((CYCLE 22))
ragent-class~list nil)
(MAKE-TASK :task-name 'Final-Lay-Foundation
:task-constraints '((CYCLE 22))
ragent-class~list nil)
)
ragent-class~list nil

)

(defun setup-agenté-a ()
(setg agent-6 (MAKE-AGENT :agent-name 'Rick-House~Building
:plan=-list nil
ttask-list (LIST
(MAKE~TASK :task-name 'Interior-Plumbing
itask-constraints '({{CYCLE 25))
ragent-class-list nil)
(MAKE-TASK :task-name 'Interior-Electricity
ttask-constraints '((CYCLE 25))
ragent-class~list nil)
(MAKE-TASK :task-name 'Interior-Decoration
‘task-constraints !'((CYCLE 25))
ragent-class-list nil)
(MAKE~-TASK :task-name 'Build-Roof
ttask-constraints '((CYCLE 25})
ragent-class=-list nil)
(MAKE-TASK :task-name 'Build-Wall
‘task-constraints '{(CYCLE 25))

133

ragent-class-list nil)
)
tagent-class-list nil
)

(defun setup-system-agent-list ()
(setq *SYSTEM-AGENT-LIST* '{(user user)
(Mark~House-Building agent-1)
(John-House-Building agent-2)
{Tom-House~Building agent-3)
(Paul-House-Building agent-4)
(Doug—House—Building agent-5)
(Rick-House~Building agent-6})

(defun define-dataset-a ()
(format t "Dataset A is used.")
(terpri)

(setup-user)
{setup~agentl-a)
{setup-agent2~a)
(setup-agent3-a)
(setup-agent4-a)
(setup-agent5-a)
(setup-agent6=-a)
(setup-system-agent~list)

(defun define-dataset-b-1 ()
(format t "Dataset Bl is used.")
(terpri)

(setup-user)
(setup-agentl~a)
(setup-agent2-a)
{setup-agent3-b)
(setup-agentdq-b)
(setup-agent5-a)
(setup-agent6-a)
(setup-system-agent~list)

(defun define-dataset-b-2 ()
(format t "Dataset B2 is used.")
(terpri)

(setup~user)
(setup-agentl-a)
(setup-agent2-a)
(setup-agent3-b)
(setup~agent4-a)
(setup-agent5-a)
{setup-agenté-a)
(setup-system-agent~list)

{(defun define-dataset-c-1 ()
(format t "Dataset Cl is used.")
(terpri)

(setup-user)
(setup-agentl-a)
(setup~-agent2-b)
(setup-agent3-b)
(setup-agent4~b)
(setup-agent5-a)
(setup-agenté6-a)
(setup-system-agent-list)

134

(defun define~dataset-c-2 {)
(format t "Dataset C2 is used. ")
(terpri)

{setup-~user}
{setup-agentl-a)
(setup-agent2-b)
{setup-agent3-b)
(setup-agentd-a)
(setup~agent5-a)
(setup-agenté-a)
(setup-system-agent-list)

(defun define~dataset-d-1 ()
(format t "Dataset Dl is used.")
(terpri)

{setup~user)
(setup-agentl-a)
(setup-agent2-c)
(setup-agent3-c)
(setup-agent4-a)
(setup-agent5-a)
(setup-agent6-a)
(setup-system-agent-list)

(defun define-dataset-d-2 ()
(format t "Dataset D2 is used.")
{terpri)

(setup~user)
{setup-agentl-a}
(setup~agent2-d)
(setup-agent3-c)
(setup-agentd-a)
{setup-agent5-a)
(setup-agent6-a)
(setup-system-agent-list)

135

Sample Run with Dataset A:

? Dataset A is used.

? Request sent from User to Mark—House-Building: Task (House—Building)
5

Processing agent: User

Processing agent: Mark-House-Building

Processing request (G464) of agent (Mark—House-Building): Task = House-Building
Set task: House-~Building status to AWAITING SUBTASK DISTRIBUTION
Set task: Build-Exterior status to AWAITING DISTRIBUTION
Set task: Build-Interior status to AWAITING DISTRIBUTION

Processing agent: John—House-Building
Processing agent: Tom-House—Building
Processing agent: Paul-House~Building ...
Processing agent: Doug*House—Building e
Processing agent: Rick-House-Building

>

érocessing agent: User

Processing agent: Mark~House-Building ...
Request sent from Mark-House-Building to John-House-Building: Task (Build-Exterior)
Request sent from Mark-House-Building to John-House-Building: Task (Build~-Interior)

Processing agent: John-House-Building ...
Processing request (G466) of agent (John—House—Building): Task = Build-Exterior
Processing request (G467) of agent (John-House-Building): Task = Build~Interior

Set task: Build-Exterior status to AWAITING SUBTASK DISTRIBUTION

Set task: Build-Interior status to AWAITING SUBTASK DISTRIBUTION

Set task: Lay~Foundation status to AWAITING DISTRIBUTION

Set task: Build-House-Frame status to AWAITING DISTRIBUTION

Set task: Plumbing status to AWAITING DISTRIBUTION

Set task: Electricity status to AWAITING DISTRIBUTION

Set task: Decoration cycle to 1 {Max = 24)
Request sent from John-House~Building to Tom-House-Building: Task (Lay-Foundation)
Request sent from John-House-Building to Paul-House-Building: Task (Build~House-Frame)

Processing agent: Tom-House~Building

Processing request (G472) of agent (Tom-House-Building): Task = Lay-Foundation
Set task: Lay-Foundation status to AWAITING SUBTASK DISTRIBUTION
Set task: Init-Lay-Foundation status to AWAITING DISTRIBUTION
Set task: Final~Lay-Foundation status to AWAITING DISTRIBUTION

Processing agent: Paul-House-Building
Processing request (G473) of agent (Paul-House-Building): Task = Build-House-Frame
Set task: Build-House~Frame status to AWAITING SUBTASK DISTRIBUTION
Set task: Build-Roof status to AWAITING DISTRIBUTION
Set task: Build-Wall status to AWAITING DISTRIBUTION

Processing agent: Doug-House-Building
Processing agent: Rick—House—Building
ed

Processing agent: User

Processing agent: Mark-House-Building

Processing agent: John-House-Building

Request sent from John-House-Building to Tom~House-Building: Task (Plumbing}

Request sent from John-House~Building to Tom-House-Building: Task (Electricity)
Set task: Decoration cycle to 2 (Max = 24)

Processing agent: Tom~House~Building

Processing request (G474) of agent (Tom-House-Building): Task = Plumbing

Processing request (G475) of agent (Tom-House-Building): Task = Electricity

Request sent from Tom-House-Building to Doug-House-Building: Task (Init-Lay-Foundation)

Request sent from Tom-House-Building to Doug-House-Building: Task (Final-Lay-Foundation)
Set task: Plumbing status to AWAITING SUBTASK DISTRIBUTION

136

Set task: Electricity status to AWAITING SUBTASK DISTRIBUTION
Set task: Interior-Plumbing status to AWAITING DISTRIBUTION
Set task: Interior—Electricity status to AWAITING DISTRIBUTION
Request sent from Tom-House-Building to Rick—House—Building: Task (Interior-Plumbing)

Processing agent: Paul-House-Building
Request sent from Paul-House-Building to Rick-House-Building: Task (Build-Roof)
Request sent from Paul-House-Building to Rick—House—Building: Task (Build-Wall)

Processing agent: Doug-~House-Building
Processing request (G480} of agent (Doug—House—Building): Task = Init-Lay~Foundation
Processing request (G481) of agent (Doug—House-Building): Task = Final-Lay-Foundation
Set task: Init-Lay-Foundation cycle to 1 (Max = 22)
Set task: Final-Lay-Foundation cycle to 1 (Max = 22)

Processing agent: Rick-House-Building
Processing request (G491) of agent (Rick—House—Building): Task = Interior-Plumbing
Processing request (G483) of agent (Rick-~House-Building): Task Build-Roof
Processing request (G484) of agent (Rick-House-Building): Task = Build-Wall

Set task: Interior-Plumbing cycle to 1 (Max = 25)

Set task: Build-Roof cycle to 1 (Max = 25)

Set task: Build-Wall cycle to 1 (Max = 25)

I

2

Processing agent: User
Processing agent: Mark-House~Building

Processing agent: John-House~-Building
Set task: Decoration cycle to 3 (Max = 24)

Processing agent: Tom-House~-Building ...
Request sent from Tom~House~Building to Rick-House-Building: Task (Interior-Electricity)

Processing agent: Paul-House-Building

Processing agent: Doug-House~-Building
Set task: Init-Lay-Foundation cycle to 2 (Max = 22)
Set task: Final~Lay-Foundation cycle to 2 (Max = 22)

Processing agent: Rick-House~Building
Processing request (G492) of agent (Rick—House—Building): Task = Interior~Electricity
Set task: Interior-Plumbing cycle to 2 (Max = 25)
Set task: Build-Roof cycle to 2 (Max = 25)
Set task: Build~-Wall cycle to 2 (Max = 25)
Set task: Interior-Electricity cycle to 1 {(Max = 25)
?
Processing agent: User

Processing agent: Mark-House-Building

Processing agent: John-House-Building
Set task: Decoration cycle to 4 {Max = 24)

Processing agent: Tom~House~Building
Processing agent: Paul-House-Building

Processing agent: Doug-House-Building
Set task: Init-Lay~Foundation cycle to 3 (Max = 22)
Set task: Final-Lay-Foundation cycle to 3 (Max = 22)

Processing agent: Rick~House~-Building ...
Set task: Interior-Plumbing cycle to 3 (Max = 25)
Set task: Build-Roof cycle to 3 (Max = 25)
Set task: Build-Wall cycle to 3 (Max = 25)
Set task: Interior-Electricity cycle to 2 (Max = 25)
>

Processing agent: User
Processing agent: Mark-House-Building

Processing agent: John-House~-Building
Set task: Decoration cycle to 5 (Max = 24)

Processing agent: Tom~House-Building

137

Processing agent: Paul-House-Building

Processing agent: Doug—House—Building

Set task: Init-Lay-Foundation cycle to 4 (Max = 22)
Set task: Final-Lay-Foundation cycle to 4 (Max = 22)

Processing agent: Rick—House—Building

Set task: Interior-Plumbing cycle to 4 {Max = 25)

Set task: Build-Roof cycle to 4 (Max
Set task: Build-Walil cycle to 4 (Max
Set task: Interior-Electricity cycle

5
Processing agent: User
Processing agent: Mark-House~Building

Processing agent: John-House-Building
Set task: Decoration cycle to 6 (Max

Processing agent: Tom-House-Building
Processing agent: Paul~House~Building

Processing agent: Doug-House-Building

= 25)
= 25)
to 3 {Max = 25)

= 24}

Set task: Init-Lay-Foundation cycle to 5 (Max = 22)
Set task: Final-Lay~Foundation cycle to 5 (Max = 22)

Processing agent: Rick-House~Building
Set task: Interior—?lumbing cycle to
Set task: Build-Roof cycle to 5 (Max
Set task: Build-Wall cycle to 5 (Max
Set task: Interior-Electricity cycle
?

Processing agent: User
Processing agent: Mark-House-Building

Processing agent: John-House-Building
Set task: Decoration cycle to 7 (Max

Processing agent: Tom-House-Building
Processing agent: Paul-House-Building

Processing agent: Doug-House-Building

5 (Max = 25)

= 25)

= 25)

to 4 (Max = 25)

= 24)

Set task: Init-Lay-Foundation cycle to 6 (Max = 22)
Set task: Final-Lay-Foundation cycle to 6 (Max = 22)

Processing agent: Rick-House-Building
Set task: Interior-Plumbing cycle to
Set task: Build-Roof cycle to 6 (Max
Set task: Build-Wall cycle to 6 (Max
Set task: Interior-Electricity cycle
2

Processing agent: User
Processing agent: Mark-House~Building

Processing agent: John-House-Building
Set task: Decoration cycle to 8 (Max

Processing agent: Tom~House-Building
Processing agent: Paul-House-Building

Processing agent: Doug-House-Building

6 (Max = 25)

= 25)

= 25)

to 5 (Max = 25)

Set task: Init-Lay-Foundation cycle to 7 (Max = 22)
Set task: Final-Lay~Foundation cycle to 7 (Max = 22)

Processing agent: Rick-House-Building
Set task: Interior=-Plumbing cycle to
Set task: Build-Roof cycle to 7 (Max
Set task: Build-Wall cycle to 7 (Max
Set task: Interior-Electricity cycle

7 (Max = 25)

= 25)

= 25)

tc 6 (Max = 25)

138

5
Processing agent: User

Processing agent: Mark-House~-Building

Processing agent: John~House~Building
Set task: Decoration cycle to 9 (Max = 24)

Processing agent: Tom-House-Building
Processing agent: Paul-House—Building

Processing agent: Doug~House-Building
Set task: Init-Lay-Foundation cycle to 8 (Max = 22)
Set task: Final-Lay-Foundation cycle to 8 (Max = 22)

Processing agent: Rick-House-Building
Set task: Interior-Plumbing cycle to 8 (Max = 25)
Set task: Build-Roof cycle to 8 (Max = 25)
Set task: Build-Wall cycle to 8 (Max = 25)
Set task: Interior-Electricity cycle to 7 (Max = 25)
?
Processing agent: User

Processing agent: Mark-House-Building

Processing agent: John-House-Building
Set task: Decoration cycle to 10 {Max = 24)

Processing agent: Tom~House~Building
Processing agent: Paul-House-Building ...

Processing agent: Doug-House-Building ...
Set task: Init-Lay-Foundation cycle to 9 (Max = 22)
Set task: Final-Lay-Foundation cycle to 9 (Max = 22)

Processing agent: Rick~House-Building
Set task: Interior-Plumbing cycle to 9 (Max = 25)
Set task: Build-Roof cycle to 9 (Max = 25)
Set task: Build-Wall cycle to 9 {(Max = 25)
Set task: Interior-Electricity cycle to 8 {Max = 25)
?
Processing agent: User

Processing agent: Mark-House~Building

Processing agent: John—House—Building
Set task: Decoration cycle to 11 (Max = 24)

Processing agent: Tom-House-Building ...
Processing agent: Paul-House-Building
Processing agent: Doug-House~Building
Set task: Init-Lay-Foundation cycle to 10 (Max = 22)
Set task: Final-Lay-Foundation cycle to 10 (Max = 22)
Processing agent: Rick-House-Building
Set task: Interior-Plumbing cycle to 10 (Max = 25)
Set task: Build-Roof cycle to 10 (Max = 25)
Set task: Build~Wall cycle to 10 {Max = 25)
Set task: Interior-Electricity cycle to 9 (Max = 25)
?
Processing agent: User
Processing agent: Mark-House-Building

Processing agent: John-House~-Building
Set task: Decoration cycle to 12 (Max = 24)

Processing agent: Tom-House-Building ...

Processing agent: Paul-House~-Building

139

Processing agent: Doug~House—Building
Set task: Init-Lay-Foundation cycle to 11 (Max = 22
Set task: Final-Lay-Foundation cycle to 11 (Max = 2

Processing agent: Rick-House~Building
Set task: Interior-Plumbing cycle to 11 (Max = 25)
Set task: Build-Roof cycle to 11 (Max = 25)
Set task: Build-Wall cycle to 11 (Max = 25)
Set task: Interior—Electricity cycle to 10 (Max = 25§)
?
Processing agent: User

Processing agent: Mark—House—Building

Processing agent: John-House-Building .
Set task: Decoration cycle to 13 (Max = 24)

Processing agent: Tom~House-Building
Processing agent: Paul-House-Building

Processing agent: Doug~House-Building
Set task: Init-Lay-Foundation cycle to 12 (Max = 22)
Set task: Final-Lay-Foundation cycle to 12 (Max = 22)

Processing agent: Rick-House~Building
Set task: Interior~Plumbing cycle to 12 (Max = 25)
Set task: Build-Roof cycle to 12 (Max = 25)
Set task: Build-Wall cycle to 12 (Max = 25)

Set task: Interior—Electricity cycle to 11 (Max = 25)
rd

Processing agent: User
Processing agent: Mark-House~Building

Processing agent: John-House-Building
Set task: Decoration cycle to 14 {Max = 24)

Processing agent: Tom-House~Building
Processing agent: Paul-House~Building

Processing agent: Doug-House-Building
Set task: Init-Lay-Foundation cycle to 13 (Max = 22)
Set task: Final-Lay-Foundation cycle to 13 (Max = 22)

Processing agent: Rick-House-Building
Set task: Interior-Plumbing cycle to 13 (Max = 25)
Set task: Build-Roof cycle to 13 {(Max = 25)
Set task: Build-Wall cycle to 13 (Max = 25)
Set task: Interior-Electricity cycle to 12 (Max = 25)
rd
Processing agent: User

Processing agent: Mark-House-Building

Processing agent: John-House-Building
Set task: Decoration cycle to 15 (Max = 24)

Processing agent: Tom-House~Building
Processing agent: Paul-House-Building

Processing agent: Doug-House-Building
Set task: Init-Lay-Foundation cycle to 14 (Max = 22)
Set task: Final-Lay-Foundation cycle to 14 (Max = 22)

Processing agent: Rick-House~Building
Set task: Interior-Plumbing cycle to 14 (Max = 25)
Set task: Build-Roof cycle to 14 (Max = 25)
Set task: Build-Wall cycle to 14 (Max = 25)
Set task: Interior-Electricity cycle to 13 (Max = 25}
?
Processing agent: User

140

Processing agent: Mark-House-Building

Processing agent: John-House-Building
Set task: Decoration cycle to 16 (Max = 24)

Processing agent: Tom—House—Building
Processing agent: Paul-~House-Building

Processing agent: Doug-House-Building
Set task: Init-Lay~Foundation cycle to 15 (Max = 22)
Set task: Final-Lay-Foundation cycle to 15 (Max = 22)

Processing agent: Rick-House-Building
Set task: Interior-Plumbing cycle to 15 (Max = 25)
Set task: Build-Roof cycle to 15 {Max = 25)
Set task: Build-Wall cycle to 15 (Max = 25)
Set task: Interior-Electricity cycle to 14 (Max = 25)
ird

Processing agent: User
Processing agent: Mark-House-Building

Processing agent: John-House-Building
Set task: Decoration cycle to 17 {Max = 24)

Processing agent: Tom=~House~Building
Processing agent: Paul-House-Building

Processing agent: Doug-House-Building
Set task: Init-Lay-Foundation cycle to 16 (Max = 22)
Set task: Final-Lay-Foundation cycle to 16 (Max = 22)

Processing agent: Rick~House~Building
Set task: Interior-Plumbing cycle to 16 (Max = 25)
Set task: Build-Roof cycle to 16 (Max = 25)
Set task: Build-Wall cycle to 16 (Max = 25)
Set task: Interior-Electricity cycle to 15 {Max = 25)
?

Processing agent: User
Processing agent: Mark-House-Building

Processing agent: John~-House~Building
Set task: Decoration cycle to 18 (Max = 24)

Processing agent: Tom-House-Building
Processing agent: Paul-House-Building

Processing agent: Doug-House~Building
Set task: Init-Lay-Foundation cycle to 17 (Max = 22)
Set task: Final~Lay-Foundation cycle to 17 (Max = 22)

Processing agent: Rick-House-Building
Set task: Interior-Plumbing cycle to 17 (Max = 25)
Set task: Build-Roof cycle to 17 (Max = 25)
Set task: Build-Wall cycle to 17 (Max = 25)
Set task: Interior-Electricity cycle to 16 (Max = 25)
?

Processing agent: User
Processing agent: Mark~House-Building

Processing agent: John-House~Building
Set task: Decoration cycle to 19 (Max = 24)

Processing agent: Tom-House-Building
Processing agent: Paul-House-Building
Processing agent: Doug-House~Building

Set task: Init-Lay-Foundation cycle to 18 (Max = 22)
Set task: Final-Lay-Foundation cycle to 18 (Max = 22)

141

Processing agent: Rick—House—Building
Set task: Interior-Plumbing cycle to 18 (Max = 25)
Set task: Build-Roof cycle to 18 (Max = 25)
Set task: Build-Wall cycle to 18 (Max = 25)

Set task: Interior-Electricity cycle to 17 (Max = 25)
?

Processing agent: User
Processing agent: Mark-House-Building

Processing agent: John~House-Building
Set task: Decoration cycle to 20 (Max = 24)

Processing agent: Tom-House-Building
Processing agent: Paul~House-Building

Processing agent: Doug-House-Building
Set task: Init-Lay-~Foundation cycle to 19 (Max = 22)
Set task: Final-Lay-Foundation cycle to 19 (Max = 22)

Processing agent: Rick-House~Building
Set task: Interior—Plumbing cycle to 19 (Max = 25)
Set task: Build-Roof cycle to 19 (Max = 25)
Set task: Build-Wall cycle to 19 (Max = 25)
Set task: Interior-Electricity cycle to 18 (Max = 25)
rd

Processing agent: User
Processing agent: Mark—House—Buiiding

Processing agent: John-House-Building
Set task: Decoration cycle to 21 (Max = 24)

Processing agent: Tom~House-Building
Processing agent: Paul-House-Building

Processing agent: Doug-House~Building ...
Set task: Init-Lay~-Foundation cycle to 20 (Max = 22)
Set task: Final-Lay-Foundation cycle to 20 (Max = 22}

Processing agent: Rick-House-Building ...
Set task: Interior-Plumbing cycle to 20 {(Max = 25)
Set task: Build-Roof cycle to 20 (Max = 25)
Set task: Build-Wall cycle to 20 (Max = 25)
Set task: Interior-Electricity cycle to 19 (Max = 25)
ird

Processing agent: User
Processing agent: Mark-House-Building

Processing agent: John-House-Building
Set task: Decoration cycle to 22 (Max = 24)

Processing agent: Tom-House-Building
Processing agent: Paul-~House-Building

Processing agent: Doug-House-Building
Set task: Init-Lay~Foundation cycle to 21 (Max = 22)
Set task: Final-Lay-Foundation cycle to 21 (Max = 22)

Processing agent: Rick-House-Building
Set task: Interior-Plumbing cycle to 21 (Max = 25)
Set task: Build-Roof cycle to 21 {(Max = 25)
Set task: Build-Wall cycle to 21 (Max = 25)
Set task: Interior-Electricity cycle to 20 (Max = 25)
2

Processing agent: User
Processing agent: Mark-House-Building

Processing agent: John-House~Building ...

142

Set task: Decoration cycle to 23 (Max = 24)
Processing agent: Tom~House-Building
Processing agent: Paul-House-Building

Processing agent: Doug—House-Building
Set task: Init-Lay=-Foundation cycle to 22 (Max = 22)
Set task: Final-Lay~Foundation cycle to 22 (Max = 22)

Processing agent: Rick~House—Building . e
Set task: Interior~-Plumbing cycle to 22 {(Max = 25)
Set task: Build-Roof cycle to 22 (Max = 25)
Set task: Build-Wall cycle to 22 (Max = 25)
Set task: Interior-Electricity cycle to 21 (Max = 25)

2

Processing agent: User
Processing agent: Mark-House-Building

Processing agent: John-House-Building
Set task: Decoration cycle to 24 {Max = 24)

Processing agent: Tom-House-Building
Processing agent: Paul-House-Building

Processing agent: Doug~House-Building

Set task: Init-Lay-Foundation status to NO PROBLEM

Set task: Final-Lay-Foundation status to NO PROBLEM
Notification sent from Doug~House-Building to Tom-House-Building: Init-Lay-Foundation (No-
Problem)
Notification sent from Doug-House-Building to Tom-House~Building: Final-Lay-Foundation
{(No~-Problem)

Processing agent: Rick-House-Building
Set task: Interior-Plumbing cycle to 23 (Max = 25)
Set task: Build-Roof cycle to 23 {(Max = 25)
Set task: Build-Wall cycle to 23 (Max = 25)
Set task: Interior-Electricity cycle to 22 (Max = 25)
il
Processing agent: User

Processing agent: Mark-~House~Building

Processing agent: John-House~Building
Set task: Decoration status to NO PROBLEM

Processing agent: Tom-House-Building
Set task: Init-Lay-Foundation status to NO PROBLEM
Set task: Final-Lay-Foundation status to NO PROBLEM

Processing agent: Paul-House-Building
Processing agent: Doug-~House-Building

Processing agent: Rick-House~Building ...
Set task: Interior-Plumbing cycle to 24 (Max = 25)
Set task: Build-Roof cycle to 24 {(Max = 25)
Set task: Build-Wall cycle to 24 (Max = 25)
Set task: Interior-Electricity cycle to 23 (Max = 25)
?
Processing agent: User
Processing agent: Mark-House-Building
Processing agent: John-House-Building
Processing agent: Tom~House~Building
Set task: Lay-Foundation status to NO PROBLEM
Notification sent from Tom~-House-Building to John-House-Building: Lay-Foundation (No-

Problem)

Processing agent: Paul-House-Building

143

Processing agent: Doug-House~Building

Processing agent: Rick-House-Building
Set task: Interior-Plumbing cycle to 25 (Max = 25)
Set task: Build-Roof cycle to 25 (Max = 25)
Set task: Build-Wall cycle to 25 (Max = 25)
Set task: Interior—Electricity cycle to 24 (Max = 25)
5

Processing agent: User
Processing agent: Mark-House-Building

Processing agent: John~House-Building
Set task: Lay-Foundation status to NO PROBLEM

Processing agent: Tom-House-Building
Processing agent: Paul-House~Building
Processing agent: Doug-House-Building

Processing agent: Rick-House~Building ...

Set task: Interior-Plumbing status to NO PROBLEM

Set task: Build-Roof status to NO PROBLEM

Set task: Build-Wall status to NO PROBLEM

Set task: Interior-Electricity cycle to 25 (Max = 25)
Notification sent from Rick-House-Building to Tom-House-Building: Interior-Plumbing (No-
Problem)
Notification sent from Rick-House~Building to Paul-House-Building: Build-Roof {No~Problem)
Notification sent from Rick-House-Building to Paul-House-Building: Build-Wall {(No-Problem)
2

Processing agent: User
Processing agent: Mark-House-Building
Processing agent: John~House-Building

Processing agent: Tom-House-Building
Set task: Interior-Plumbing status to NO PROBLEM

Processing agent: Paul-~House-Building
Set task: Build-Roof status to NO PROBLEM
Set task: Build-Wall status to NO PROBLEM

Processing agent: Doug-House-Building

Processing agent: Rick-House~Building
Set task: Interior-Electricity status to NO PROBLEM
Notification sent from Rick-House~Building to Tom-House-Building: Interior-Electricity

(No-Problem)
b

Processing agent: User ...
Processing agent: Mark-House~Building
Processing agent: John-House~Building
Processing agent: Tom-House~-Building
Set task: Plumbing status to NO PROBLEM
Set task: Interior-Electricity status to NO PROBLEM
Notification sent from Tom-House-Building to John-House-Building: Plumbing (No~Problem)
Processing agent: Paul-House-~Building
Set task: Build-House-Frame status to NO PROBLEM
Notification sent from Paul-House-Building to John-House-Building: Build-House-Frame (No-
Problem)
Processing agent: Doug-House-Building
Processing agent: Rick-House-Building
o

Processing agent: User

Processing agent: Mark-House-Building

144

Processing agent: John-House-Building .
Set task: Plumbing status to NO PROBLEM
Set task: Build-House-Frame status to NO PROBLEM

Processing agent: Tom-House-Building
Set task: Electricity status to NO PROBLEM

Notification sent from Tom~House—Building to John—House~Building: Electricity {(No-Problem)

Processing agent: Paul—House*Building .
Processing agent: Doug—House—Building

Processing agent: Rick-House~-Building
5

Processing agent: User
Processing agent: Mark-House-Building
Processing agent: John-House-Building
Set task: Build-Exterior status to NO PROBLEM
Set task: Electricity status to NO PROBLEM
Notification sent from John-House-Building to Mark-House-Building: Build-Exterior (No-
Problem)
Processing agent: Tom-House-Building
Processing agent: Paul~House~Building
Processing agent: Doug~House~Building
Processing agent: Rick-House~Building
?

Processing agent: User

Processing agent: Mark-House-Building
Set task: Build-Exterior status to NO PROBLEM

Processing agent: John-House~Building
Set task: Build-Interior status to NO PROBLEM
Notification sent from John-House-Building to Mark-House-Building: Build-Interior (No-
Problem)
Processing agent: Tom~House~Building
Processing agent: Paul-House~Building

Processing agent: Doug-House-Building

Processing agent: Rick-House~Building ...
?

Processing agent: User

Processing agent: Mark~House-Building
Set task: Build-Interior status to NO PROBLEM

Processing agent: John~House~Building
Processing agent: Tom-House-Building
Processing agent: Paul-House-Building
Processing agent: Doug-House-Building
Processing agent: Rick~House-Building
>
érocessing agent: User
Processing agent: Mark-House-Building
Set task: House-Building status to NO PROBLEM
Notification sent from Mark-House-Building to User: House-Building (No~Problem)

Processing agent: John~House=-Building

Processing agent: Tom~House~Building

145

Processing agent: Paul—House—Building
Processing agent: Doug-House-Building
Processing agent: Rick—House—Building
?

érocessing agent: User

Processing agent: Mark-House—Building
Processing agent: John-House-Building
Processing agent: Tom—House—Building
Processing agent: Paul-House~Building

Processing agent: Doug-House~Building

Processing agent: Rick-House~Building
? AGENT: Mark-House-Building

Plan:
Task: House-Building
Sub~Tasks:
Build-Exterior
Build-Interior
Task:
Task: Build-Exterior
Agent Classes: (Mark—Class—Build—therior)
Task: Build-Interior
Agent Classes: (Mark—Class—Build—Interior)

Agent Class:
Class Name: Mark-Class-Build-Exterior

Agents: (John-House-Building)
Class Name: Mark-Class-Build-Interior
Agents: (John~House-Building)

Constraints:

Incoming Requests:
User: Task (House—Building)
Outgoing Requests:
John-House-Building: Task (Build-Exterior)
John-House~Building: Task (Build-Interior)
Incoming Notification:
John-House~Building: Build-Exterior (No-Problem)
John-House-Building: Build~Interior (No~-Problem)
Outgoing Notification:
User: House-Building (No~Problem)
Activity Blackboard:
Task: House-Building Status: No-Problem-Replied Current Agent: Nil
Task: Build-Exterior Status: No~Problem Current Agent: John~House-Building
Task: Build-Interior Status: No-Problem Current Agent: John-House-Building
? AGENT: John-House-Building
Plan:
Task: Build-Exterior
Sub-Tasks:
Lay-Foundation
Build-House-Frame

Task: Build-Interior

Sub-Tasks:
Plumbing
Electricity
Decoration
Task:
Task: Lay~Foundation
Agent Classes: (John-Class-Lay-Foundation)
Task: Build-House-Frame
Agent Classes: (John-Class~Build~House-Frame)

Task: Plumbing

146

Agent Classes: (John—Class-Plumbing)
Task: Electricity

Agent Classes: (John—Class—Electricity)
Task: Decoration

Agent Classes: Nil

Agent Class:
Class Name: John—class—uay—Foundation

Agents: (Tom—House—Building Paul-House—Building)
Class Name: John-Class~Build-House~Frame

Agents: (Paul-House-Building)
Class Name: John~Class-Plumbing

Agents: (Tom—House—Building Paul-House-Building)
Class Name: John—Class—Electricity

Agents: (Tom-House-Building Paul~House-Building)
Class Name: John-Class~Decoration

Agents: {Tom-House-Building Paul-House-Building)

Constraints:

Incoming Requests:
Mark-House-Building: Task (Build-Exterior)
Mark-House-Building: Task (Build-Interior)
Outgoing Requests:
Tom-House-Building: Task (Lay-Foundation)
Paul-House~Building: Task (Build~House-Frame)
Tom-House-Building: Task (Plumbing)
Tom-House-Building: Task (Electricity)
Incoming Notification:
Tom~House-Building: Lay-Foundation (No~-Problem)
Tom-House-Building: Plumbing (No-Problem)
Paul-House-Building: Build-House-Frame {(No-Problem)
Tom-House-Building: Electricity (No-Problem)
Outgoing Notification:
Mark-House-Building: Build-Exterior (No-Problem)
Mark~House-Building: Build-Interior {No-Problem)
Activity Blackboard:
Task: Build-Exterior Status: No-Problem-Replied Current Agent: Nil
Task: Build-Interior Status: No-Problem-Replied Current Agent: Nil
Task: Lay-Foundation Status: No-Problem Current Agent: Tom-House~Building
Task: Build-House-Frame Status: No-Problem Current Agent: Paul-House-Building
Task: Plumbing Status: No-Problem Current Agent: Tom-House-Building
Task: Electricity Status: No-Problem Current Agent: Tom-House-Building
Task: Decoration Status: No-Problem Current Agent: Nil
? AGENT: Tom~House-Building
Plan:
Task: Lay-Foundation
Sub-Tasks:
Init-Lay-Foundation
Final-Lay-Foundation

Task: Plumbing
Sub-Tasks:
Interior-Plumbing

Task: Electricity
Sub-Tasks:
Interior-Electricity

Task: Decoration
Sub-Tasks:
Interior-Decoration

Task:

Task: Init-Lay-Foundation

Agent Classes: {Tom-Class-Lay-Foundation)
Task: Final-Lay-Foundation

Agent Classes: (Tom-Class~Lay-Foundation)
Task: Interior-Plumbing

Agent Classes: (Tom-Class~-Build-Interior)
Task: Interior-Electricity

Agent Classes: (Tom~Class-Build-Interior)
Task: Interior-Decoration

Agent Classes: (Tom-Class~Build-Interior)

147

Agent Class:
Class Name: Tom-Class-Lay-Foundation
Agents: {Doug-House-Building)

Class Name: Tom~Class-Build-Interior

Agents:
Constraints:

Incoming Requests:
John-House-Building:
John-House~-Building:
John-House-Building:

Outgoing Requests:
Doug~House-Building:
Doug~House~Building:
Rick-House~Building:
Rick-House-Building:

Incoming Notification:
Doug~House-Building:
Doug-House-Building:
Rick-House~Building:
Rick-House-Building:

Outgoing Notification:
John-House-Building:
John-House-Building:
John-House-Building:

Activity Blackboard:

Task: Lay-Foundation
Task:
Task:
Task:
Task:
Task:
Task:
? AGENT: Paul-House-Building

Plan:

Task: Build-House-Frame
Sub-Tasks:

Build=-Roof

Build-Wall

Plumbing Status:

Interior-Plumbing

Task:
Task: Build-Roof
Agent Classes:
Task: Build-wWall
Agent Classes:

Agent Class:
Class Name:
Agents:
Class Name:
Agents:

Constraints:

Incoming Requests:
John-House~Building:
Outgoing Requests:
Rick-House-Building:
Rick-House-Building:
Incoming Notification:
Rick-House-Building:
Rick-House-Building:
Outgoing Notification:
John-House-Building:
Activity Blackboard:
Task: Build~-House-Frame
Task: Build-Roof Status:
Task: Build-Wall Status:
? AGENT: Doug-House~Building
Plan:

Task:

Status:
Init-Lay-Foundation
Final-Lay-Foundation
No-Problem-Replied Current Agent: Nil
Electricity Status: No-Problem-

Interior-Electricity Status:

Paul-Class-
(Rick-House-Building)
Paul~Class~-
(Rick-House—Building)

(Rick-House~Building)

Task (Lay-Foundation)

Task (Plumbing)

Task (Electricity)

Task (Init—Lay—Foundation)
Task (Final-Lay-Foundation)
Task (Interior-Plumbing)
Task (Interior-Electricity)

Init~Lay-Foundation (No-Problem)
Final-Lay-Foundation (No-Problem)
Interior-Plumbing (No-Problem)

Interior-Electricity (No-Problem)

Lay-Foundation (No-Problem)
Plumbing (No-Problem)
Electricity (No~Problem)

No~Problem-Replied Current Agent: Nil
Status: No-Problem Current Agent: Doug-House-Building
Status: No-Problem Current Agent: Doug-House-Building

Replied Current Agent: Nil
No-Problem Current Agent: Rick-House-Building
No-Problem Current Agent: Rick-House-Building

Status:

(Paul-Class~Build-Roof)

(Paul-Class~Build-Wall)

Build-Roof

Build~-Wall

Task (Build-House-Frame)

Task
Task

(Build=-Roof)
(Build-Wall)

Build-Roof
Build-Wall

(No~Problem)
(No-Problem)

Build-House-Frame (No-Problem)
Status: No-Problem-Replied Current Agent: Nil

No-Problem Current Agent: Rick-House~Building
No-Problem Current Agent: Rick-House-Building

148

Task: Init-Lay-Foundation

Agent Classes: Nil

Task: Final-Lay-Foundation

Agent Classes: Nil
Agent Class:
Constraints:

Incoming Requests:
Tom—House~Building:
Tom-House-Building:

Outgoing Reguests:

Incoming Notification:

Outgoing Notification:
Tom-House~Building:
Tom-House-Building:

Activity Blackboard:

Task (Init-Lay-Foundation)
Task (Final-Lay-Foundation)

Init-Lay~Foundation {No-Problem)
Final-Lay~-Foundation {No~Problem)

Task: Init-Lay-Foundation Status: No-Problem-Replied Current Agent: Nil
Task: Final-Lay-Foundation Status: No-Problem~Replied Current Agent: Nil

? AGENT: Rick-House-Building
Plan:

Task:

Task: Interior-Plumbing

Agent Classes: Nil

Task: Interior~Electricity

Agent Classes: Nil

Task: Interior-Decoration

Agent Classes: Nil
Task: Build-Roof

Agent Classes: Nil
Task: Build-Wall

Agent Classes: Nil

Agent Class:
Constraints:

Incoming Requests:
Tom-House-Building:
Paul-House-Building:
Paul-House-Building:
Tom~House-Building:

Outgoing Requests:

Incoming Notification:

Outgoing Notification:
Tom-House-Building:
Paul-House~Building:
Paul-House-Building:
Tom-House-Building:

Activity Blackboard:

Task: Interior-Plumbing

Task (Interior-Plumbing)
Task (Build-Roof)

Task (Build-Wall)

Task (Interior-Electricity)

Interior-Plumbing (No-Problem)
Build-Roof (No-Problem)
Build-Wall (No-Problem)

Interior-Electricity (No-Problem)

Status: No-Problem-Replied Current Agent: Nil

Task: Build-Roof Status: No-Problem-Replied Current Agent: Nil
Task: Build-Wall Status: No-Problem~Replied Current Agent: Nil
Task: Interior-Electricity Status: No-Problem-Replied Current Agent: Nil

w

149

Sample Run with Dataset B1:

? Dataset Bl is used.

? Request sent from User to Mark-House-Building: Task (House-Building)
?

Processing agent: User

Processing agent: Mark—House—Building

Processing request (Gl53) of agent (Mark-House-Building): Task = House~-Building
Set task: House~Building status to AWAITING SUBTASK DISTRIBUTION
Set task: Build-Exterior status to AWAITING DISTRIBUTION
Set task: Build-~Interior status to AWAITING DISTRIBUTION

Processing agent: John-House-Building
Processing agent: Tom-House-Building
Processing agent: Paul-House-Building
Processing agent: Doug-House~Building
Processing agent: Rick-House~Building
2

érocessing agent: User

Processing agent: Mark~House-Building ...
Request sent from Mark-House-Building to John-House-Building: Task (Build-Exterior)
Request sent from Mark-House-Building to John-House-Building: Task (Build~Interior)

Processing agent: John—House—Building e
Processing request (G155) of agent (John-House-Building): Task = Build-Exterior
Processing request (G156) of agent (John-House~Building): Task = Build-Interior
Set task: Build-Exterior status to AWAITING SUBTASK DISTRIBUTION
Set task: Build-Interior status to AWAITING SUBTASK DISTRIBUTION
Set task: Lay-Foundation status to AWAITING DISTRIBUTION
Set task: Build-House-Frame status to AWAITING DISTRIBUTION
Set task: Plumbing status to AWAITING DISTRIBUTION
Set task: Electricity status to AWAITING DISTRIBUTION
Set task: Decoration cycle to 1 (Max = 24)
Request sent from John-House-Building to Tom-House-Building: Task (Lay-Foundation)
Request sent from John-House~Building to Paul~House-Building: Task (Build-House~Frame)

Processing agent: Tom-House-Building ...

Processing request (G161} of agent (Tom-House-Building): Task = Lay-Foundation
Set task: Lay-Foundation status to AWAITING SUBTASK DISTRIBUTION
Set task: Init-Lay-Foundation status to AWAITING DISTRIBUTION
Set task: Final-Lay-Foundation status to AWAITING DISTRIBUTION

Processing agent: Paul-House-Building

Processing request (G162) of agent (Paul-House-Building): Task = Build-House~-Frame
Set task: Build-House-Frame status to AWAITING SUBTASK DISTRIBUTION
Set task: Build-Roof status to AWAITING DISTRIBUTION
Set task: Build-Wall status to AWAITING DISTRIBUTION

Processing agent: Doug-House-Building

Processing agent: Rick-House-Building ...
2

Processing agent: User ...
Processing agent: Mark-House-Building

Processing agent: John-House-Building ...

Request sent from John-House~Building to Tom-House~Building: Task (Plumbing)

Request sent from John~House-Building to Tom~House~Building: Task (Electricity)
Set task: Decoration cycle to 2 (Max = 24)

Processing agent: Tom-House-Building

Processing request (Gl63) of agent (Tom-House-Building): Task = Plumbing

Processing request (G164) of agent (Tom-House~Building): Task Electricity

Request sent from Tom-House-Building to Doug-House~Building: Task (Init-Lay-Foundation)

Request sent from Tom-House-Building to Doug-House-Building: Task {(Final-Lay-Foundation)
Set task: Plumbing status to AWAITING SUBTASK DISTRIBUTION

Set task: Electricity status to NO APPLICABLE PLANS

Set task: Interior-Plumbing status to AWAITING DISTRIBUTION
Notification sent from Tom—House—Building to John-House-Building: Electricity (Task-
Problem}

Processing agent: Paul~House-Building
Request sent from Paul—House—Building to Rick~House~Building: Task (Build-Roof)
Request sent from Paul—House-Building to Rick-House-Building: Task (Build-Wall)

Processing agent: Doug-House~Building
Processing request (G169) of agent (Doug-House-Building): Task = Init-Lay-Foundation
Processing request (G170) of agent (Doug—House—Building): Task = Final-Lay-Foundation
Set task: Init-Lay-Foundation cycle to 1 (Max = 22)
Set task: Final-Lay-Foundation cycle to 1 (Max = 22)

Processing agent: Rick—House-Building
Processing request (Gl172) of agent (Rick—House*Building): Task = Build-Roof
Processing request (Gl173) of agent (Rick-House~Building): Task = Build-Wall
Set task: Build-Roof cycle to 1 (Max = 25)
Set task: Build-Wall cycle to 1 (Max = 25)

?
Processing agent: User

Processing agent: Mark~House~Building ...

Processing agent: John-House-Building
Set task: Decoration cycle to 3 (Max = 24)
Set task: Electricity status to TASK PROBLEM
Request sent from John-House~-Building to Tom-House~Building: Clean-Up (Electricity)

Processing agent: Tom~House~Building
Processing request (G164) of agent (Tom-House-~Building): Clean-Up = Electricity
Request sent from Tom-House-Building to Rick-House-Building: Task (Interior-Plumbing)

Processing agent: Paul -House-Building

Processing agent: Doug-House-Building
Set task: Init-Lay-Foundation cycle to 2 (Max = 22)
Set task: Final-Lay-Foundation cycle to 2 (Max = 22)

Processing agent: Rick-House~-Building

Processing request (G180} of agent (Rick-House-Building): Task = Interior-Plumbing
Set task: Build-Roof cycle to 2 (Max = 25)
Set task: Build-Wall cycle to 2 {Max = 25)
Set task: Interior-~Plumbing cycle to 1 (Max = 25)

2

Processing agent: User
Processing agent: Mark-~House-Building

Processing agent: John-House-Building
Request sent from John-House~Building to Paul-House-Building: Task (Electricity)
Set task: Decoration cycle to 4 {(Max = 24)

Processing agent: Tom~House~Building ...

Processing agent: Paul-House-Building
Processing request (Gl64) of agent (Paul-House-Building): Task = Electricity
Set task: Electricity cycle to 1 (Max = 23)

Processing agent: Doug-House-Building
Set task: Init-Lay-Foundation cycle to 3 (Max = 22)
Set task: Final-Lay-Foundation cycle to 3 (Max = 22)

Processing agent: Rick-House-Building

Set task: Build-Roof cycle to 3 (Max = 25)

Set task: Build-Wall cycle to 3 (Max = 25)

Set task: Interior-Plumbing cycle to 2 (Max = 25)
?
Processing agent: User ...

Processing agent: Mark~House~Building

Processing agent: John-House-Building
Set task: Decoration cycle to 5 {Max = 24)

151

Processing agent: Tom~House-Building

Processing agent: Paul-House-Building
Set task: Electricity cycle to 2 (Max = 23)

Processing agent: Doug~House-Building
Set task: Init-Lay-Foundation cycle to 4 (Max = 22)
Set task: Final-Lay-Foundation cycle to 4 (Max = 22)
Processing agent: Rick-House~Building
Set task: Build-Roof cycle to 4 (Max = 25)
Set task: Build-Wall cycle to 4 (Max = 25)
Set task: Interior-Plumbing cycle to 3 (Max = 25)
?
Processing agent: User

Processing agent: Mark-House-Building

Processing agent: John-House~Building
Set task: Decoration cycle to 6 (Max = 24)

Processing agent: Tom-House-Building ...

Processing agent: Paul ~House-Building
Set task: Electricity cycle to 3 (Max = 23)

Processing agent: Doug-House~Building
Set task: Init~Lay-Foundation cycle to 5 (Max = 22)
Set task: Final-Lay-Foundation cycle to 5 (Max = 22)

Processing agent: Rick-House-Building ...

Set task: Build-Roof cycle to § (Max = 25)

Set task: Build-Wall cycle to 5 (Max = 25)

Set task: Interior-Plumbing cycle to 4 (Max = 25)
?
Processing agent: User

Processing agent: Mark-House~Building

Processing agent: John—House—Building ..
Set task: Decoration cycle to 7 (Max = 24)

Processing agent: Tom-House-Building

Processing agent: Paul-House-Building
Set task: Electricity cycle to 4 (Max = 23)

Processing agent: Doug-House-Building
Set task: Init-Lay-Foundation cycle to 6 (Max = 22)
Set task: Final-Lay-Foundation cycle to 6 (Max = 22)

Processing agent: Rick~House~Building

Set task: Build-Roof cycle to 6 (Max = 25)

Set task: Build-Wall cycle to 6 (Max = 25)

Set task: Interior-Plumbing cycle to 5 (Max = 25)
?
Processing agent: User

Processing agent: Mark-House-~Building

Processing agent: John-House-Building
Set task: Decoration cycle to 8 (Max = 24)

Processing agent: Tom-House-Building

Processing agent: Paul-House~Building
Set task: Electricity cycle to 5 (Max = 23)

Processing agent: Doug-House-Building
Set task: Init-Lay-Foundation cycle to 7 {Max = 22)
Set task: Final-Lay-Foundation cycle to 7 (Max = 22)

Processing agent: Rick-House-Building
Set task: Build-Roof cycle to 7 (Max = 25)

152

Set task: Build-Wall cycle to 7 (Max 25)
Set task: Interior-Plumbing cycle to 6 (Max = 25}

2

Processing agent: User ...
Processing agent: Mark—House-Building

Processing agent: John~House-Building
Set task: Decoration cycle to 9 (Max = 24)

Processing agent: Tom—House—Building

Processing agent: Paul—House—Building
Set task: Electricity cycle to 6§ (Max = 23)

Processing agent: Doug—House—Building
Set task: Init-Lay~Foundation cycle to 8 (Max = 22}
Set task: Final-Lay-Foundation cycle to 8 (Max = 22)

Processing agent: Rick—House—Building

Set task: Build-Roof cycle to 8 (Max = 25)

Set task: Build-Wall cycle to 8 (Max = 25)

Set task: Interior-Plumbing cycle to 7 (Max = 25)
]
Processing agent: User

Processing agent: Mark~House-Building

Processing agent: John-House-Building ...
Set task: Decoration cycle to 10 (Max

1

24)
Processing agent: Tom-House-Building

Processing agent: Paul—House—Building
Set task: Electricity cycle to 7 (Max = 23)

Processing agent: Doug—House—Building :
Set task: Init-Lay-Foundation cycle to 9 (Max = 22)
Set task: Final~Lay-Foundation cycle to 9 (Max = 22)

Processing agent: Rick—House—Building

Set task: Build~Roof cycle to 9 (Max = 25)

Set task: Build-Wall cycle to 9 (Max = 25)

Set task: Interior~Plumbing cycle to 8 {Max = 25)
?

Processing agent: User
Processing agent: Mark-House-Building

Processing agent: John—House—Building
Set task: Decoration cycle to 11 (Max = 24)

Processing agent: Tom—House—Building

Processing agent: Paul—House—Building
Set task: Electricity cycle to 8 (Max = 23)

Processing agent: Doug—House—Buildinq
Set task: Init-Lay-Foundation cycle to 10 (Max = 22)
Set task: Final~Lay~Foundation cycle to 10 {Max = 22)

Processing agent: Rick-House-Building

Set task: Build-Roof cycle to 10 {Max = 25)

Set task: Build-Wall cycle to 10 {Max = 25)

Set task: Interior-Plumbing cycle to 9 (Max = 25)
?

Processing agent: User
Processing agent: Mark—House—Building

Processing agent: John—House—Building
Set task: Decoration cycle to 12 (Max = 24)

Processing agent: Tom-House-Building

Processing agent: Paul-House-Building
Set task: Electricity cycle to 9 (Max = 23)

Processing agent: Doug-House-Building
Set task: Init-Lay-Foundation cycle to 11 {(Max = 22)
Set task: Final-Lay-Foundation cycle to 11 (Max = 22)

Processing agent: Rick—House—Building “en

Set task: Build-Roof cycle to 11 (Max = 25)

Set task: Build~Wall cycle to 11 (Max = 25)

Set task: Interior~Plumbing cycle to 10 (Max = 25)
?
Processing agent: User

Processing agent: Mark-House-Building

Processing agent: John—House—Building
Set task: Decoration cycle to 13 (Max = 24)

Processing agent: Tom~House-Building

Processing agent: Paul~House-Building
Set task: Electricity cycle to 10 {(Max = 23)

Processing agent: Doug-House-Building
Set task: Init-Lay-Foundation cycle to 12 (Max = 22)
Set task: Final-Lay-Foundation cycle to 12 (Max = 22)

Processing agent: Rick-House~-Building
Set task: Build-Roof cycle to 12 (Max 25)
Set task: Build-Wall cycle to 12 (Max 25)
Set task: Interior~Plumbing cycle to 11 {Max = 25)

.3

?
Processing agent: User

Processing agent: Mark-House-Building

Processing agent: John-House-Building
Set task: Decoration cycle to 14 (Max = 24)

Processing agent: Tom~House~-Building

Processing agent: Paul-House-Building
Set task: Electricity cycle to 11 (Max = 23)

Processing agent: Doug—House-Building
Set task: Init-~Lay-Foundation cycle to 13 (Max = 22)
Set task: Final-Lay-Foundation cycle to 13 (Max = 22)

Processing agent: Rick-House-Building
Set task: Build-Roof cycle to 13 (Max = 25)
Set task: Build-Wall cycle to 13 (Max = 25)

Set task: Interior-Plumbing cycle to 12 (Max = 25)
?

Processing agent: User ...
Processing agent: Mark~House-Building

Processing agent: John-House-Building
Set task: Decoration cycle to 15 (Max = 24)

Processing agent: Tom-House-Building

Processing agent: Paul-House-Building
Set task: Electricity cycle to 12 (Max = 23)

Processing agent: Doug-House—Building e
Set task: Init-Lay-~Foundation cycle to 14 (Max = 22)
Set task: Final-Lay-Foundation cycle to 14 (Max = 22)

Processing agent: Rick~House-Building
Set task: Build-Roof cycle to 14 (Max = 25)
Set task: Build-Wall cycle to 14 (Max = 25)
Set task: Interior-Plumbing cycle to 13 (Max = 25)

3

154

Processing agent: User
Processing agent: Mark-House-Building

Processing agent: John-House-Building
Set task: Decoration cycle to 16 (Max = 24)

Processing agent: Tom-House-Building

Processing agent: Paul-House—Building
Set task: Electricity cycle to 13 (Max = 23)

Processing agent: Doug-House-Building
Set task: Init-Lay-Foundation cycle to 15 (Max = 22)
Set task: Final-Lay-Foundation cycle to 15 (Max = 22)

Processing agent: Rick-House-Building

Set task: Build~Roof cycle to 15 (Max = 25)

Set task: Build-Wall cycle to 15 (Max = 25)

Set task: Interior-Plumbing cycle to 14 (Max = 25)
?

Processing agent: User
Processing agent: Mark-House—Building

Processing agent: John~House~Building ...
Set task: Decoration cycle to 17 (Max = 24)

Processing agent: Tom-House-Building ...

Processing agent: Paul-House-Building
Set task: Electricity cycle to 14 (Max = 23)

Processing agent: Doug-House-Building
Set task: Init-Lay-Foundation cycle to 16 (Max = 22)
Set task: Final-Lay-Foundation cycle to 16 (Max = 22)

Processing agent: Rick-House~Building

Set task: Build-Roof cycle to 16 (Max = 25)

Set task: Build-Wall cycle to 16 (Max = 25)

Set task: Interior-Plumbing cycle to 15 (Max = 25)
5
Processing agent: User

Processing agent: Mark-House-Building

Processing agent: John~House~Building
Set task: Decoration cycle to 18 (Max = 24)

Processing agent: Tom-House-Building

Processing agent: Paul-House-Building
Set task: Electricity cycle to 15 (Max = 23)

Processing agent: Doug-House~-Building
Set task: Init-Lay-Foundation cycle to 17 {Max = 22)
Set task: Final-Lay-Foundation cycle to 17 (Max = 22)

Processing agent: Rick-House-Building

Set task: Build-Roof cycle to 17 (Max = 25)

Set task: Build-Wall cycle to 17 (Max = 25)

Set task: Interior—Plumbing cycle to 16 (Max = 25)
5

Processing agent: User
Processing agent: Mark-House-Building

Processing agent: John~House~Building
Set task: Decoration cycle to 19 (Max = 24)

Processing agent: Tom-House-Building

Processing agent: Paul-House~Building
Set task: Electricity cycle to 16 (Max = 23)

155

Processing agent: Doug—House—Building
Set task: Init-Lay-Foundation cycle to 18 (Max = 22
Set task: Final-Lay-~Foundation cycle to 18 (Max = 2

Processing agent: Rick-House-Building

Set task: Build-Roof cycle to 18 (Max = 25)

Set task: Build-Wall cycle to 18 (Max = 25)

Set task: Interior~Plumbing cycle to 17 (Max = 25)
?
Processing agent: User

Processing agent: Mark-House-Building

Processing agent: John-House-Building
Set task: Decoration cycle to 20 (Max = 24)

Processing agent: Tom-House-Building

Processing agent: Paul-House-Building
Set task: Electricity cycle to 17 (Max = 23)

Processing agent: Doug-House-Building
Set task: Init-Lay-Foundation cycle to 19 (Max = 22)
Set task: Final-Lay=-Foundation cycle to 19 (Max = 22)

Processing agent: Rick-House-Building

Set task: Build-Roof cycle to 19 (Max = 25)

Set task: Build-Wall cycle to 19 (Max = 25)

Set task: Interior-Plumbing cycle to 18 (Max = 25)
?
Processing agent: User

Processing agent: Mark~House~Building

Processing agent: John-House-Building
Set task: Decoration cycle to 21 (Max = 24)

Processing agent: Tom-House~Building

Processing agent: Paul-House~Building
Set task: Electricity cycle to 18 (Max = 23)

Processing agent: Doug-House-Building
Set task: Init-Lay-Foundation cycle to 20 {Max = 22)
Set task: Final-Lay-Foundation cycle to 20 (Max = 22)

Processing agent: Rick-House-Building ..

Set task: Build-Roof cycle to 20 (Max = 25)

Set task: Build-Wall cycle to 20 (Max = 25)

Set task: Interior-Plumbing cycle to 19 (Max = 25}
5
Processing agent: User

Processing agent: Mark-House-Building

Processing agent: John-House-Building
Set task: Decoration cycle to 22 (Max = 24)

Processing agent: Tom~House-Building

Processing agent: Paul-House~Building
Set task: Electricity cycle to 19 (Max = 23)

Processing agent: Doug-House-Building
Set task: Init-Lay-Foundation cycle to 21 (Max = 22)
Set task: Final-Lay-Foundation cycle to 21 (Max = 22)

Processing agent: Rick-House-Building
Set task: Build-Roof cycle to 21 (Max = 25)
Set task: Build-Wall cycle to 21 (Max = 25)

Set task: Interior-Plumbing cycle to 20 (Max = 25)
5

Processing agent: User

Processing agent: Mark~House~Building

156

Processing agent: John-House-Building
Set task: Decoration cycle to 23 (Max = 24)

Processing agent: Tom-House-Building

Processing agent: Paul—House—Building
Set task: Electricity cycle to 20 (Max = 23)

Processing agent: Doug-House~Building
Set task: Init-Lay-Foundation cycle to 22 (Max = 22)
Set task: Final-Lay-Foundation cycle to 22 (Max = 22)

Processing agent: Rick-House~-Building

Set task: Build-Roof cycle to 22 (Max = 25)

Set task: Build-Wall cycle to 22 (Max = 25)

Set task: Interior-Plumbing cycle to 21 (Max = 25)
2

Processing agent: User
Processing agent: Mark-House-Building

Processing agent: John-House~Building
Set task: Decoration cycle to 24 (Max = 24)

Processing agent: Tom-House~Building ...

Processing agent: Paul-~House-Building
Set task: Electricity cycle to 21 (Max = 23)

Processing agent: Doug-~House-Building
Set task: Init-Lay-Foundation status to NO PROBLEM
Set task: Final-Lay-Foundation status to NO PROBLEM

Notification sent from Doug~House-Building to Tom~House~Building:

Problem)

Notification sent from Doug-House-Building to Tom-House-Building:

(No-Problem)

Processing agent: Rick-House~Building

Set task: Build-Roof cycle to 23 (Max = 25)

Set task: Build-Wall cycle to 23 (Max = 25)

Set task: Interior-Plumbing cycle to 22 (Max = 25)
5
Processing agent: User ...

Processing agent: Mark-House-Building

Processing agent: John-House-Building
Set task: Decoration status to NO PROBLEM

Processing agent: Tom-House-Building
Set task: Init-Lay-Foundation status to NO PROBLEM
Set task: Final-Lay-Foundation status to NO PROBLEM

Processing agent: Paul—House—Building
Set task: Electricity cycle to 22 (Max = 23)

Processing agent: Doug-House-Building

Processing agent: Rick-House-Building ..

Set task: Build-Roof cycle to 24 (Max = 25)

Set task: Build-Wall cycle to 24 (Max = 25)

Set task: Interior-Plumbing cycle to 23 (Max = 25)
?

Processing agent: User ...
Processing agent: Mark-House-Building
Processing agent: John-House~Building

Processing agent: Tom-House~Building ...
Set task: Lay-Foundation status to NO PROBLEM

Notification sent from Tom-House-Building to John-House~Building:

Problem)

157

Init-Lay-Foundation (No-

Final-Lay-Foundation

Lay-Foundation (No-

Processing agent: Paul«House—Building PR
Set task: Electricity cycle to 23 {Max = 23)

Processing agent: Doug-House-Building

Processing agent: Rick—House—Buildinq .

Set task: Build-Roof cycle to 25 (Max = 25)

Set task: Build-wWall cycle to 25 (Max = 25)

Set task: Interior-Plumbing cycle to 24 (Max = 25)
?
Processing agent: User

Processing agent: Mark—House—Building

Processing agent: John-House-Building
Set task: Lay-Foundation status to NO PROBLEM

Processing agent: Tom—House~Building

Processing agent: Paul-House-Building

Set task: Electricity status to NO PROBLEM
Notification sent from Paul-House-Building to John-House-Building: Electricity {No-
Problem)

Processing agent: Doug-House-Building ...

Processing agent: Rick—House—Building -

Set task: Build-Roof status to NO PROBLEM

Set task: Build-Wall status to NO PROBLEM

Set task: Interior~Plumbing cycle to 25 (Max = 25)
Notification sent from Rick—House—Building to Paul-House-Building: Build-Roof (No-Problem)
Notification sent from Rick-House-Building to Paul-House-Building: Build-Wall (No-Problem)
?

Processing agent: User ...
Processing agent: Mark-House-Building

Processing agent: John-House-Building
Set task: Electricity status to NO PROBLEM

Processing agent: Tom-House-Building

Processing agent: Paul-~House-Building
Set task: Build-Roof status to NO PROBLEM
Set task: Build-Wall status to NO PROBLEM

Processing agent: Doug~House-Building

Processing agent: Rick—House—Building
Set task: Interior-Plumbing status to NO PROBLEM
Notification sent from Rick-House-Building to Tom-House-Building: Interior-Plumbing (No-
Problem) .
-

Processing agent: User
Processing agent: Mark—House—Building SN
Processing agent: John-House-Building

Processing agent: Tom-House-Building ...
Set task: Interior-Plumbing status to NO PROBLEM

Processing agent: Paul-House-Building
Set task: Build-House-Frame status to NO PROBLEM
Notification sent from Paul-House-Building to John-House-Building: Build-House-Frame {No-
Problem)
Processing agent: Doug~House-Building
Processing agent: Rick-House-Building
2

Processing agent: User

Processing agent: Mark-House-Building

158

Processing agent: John—House—Building
Set task: Build-House~Frame status to NO PROBLEM

Processing agent: Tom~House—Building

Set task: Plumbing status to NO PROBLEM
Notification sent from Tom-House—Building to John-House-Building: Plumbing (No-Problem)
Processing agent: Paul—House—Building

Processing agent: Doug—House—Building

Processing agent: Rick—House—Building
?

Processing agent: User
Processing agent: Mark~House~Building
Processing agent: John—House-Building
Set task: Build-Exterior status to NO PROBLEM
Set task: Plumbing status to NO PROBLEM
Notification sent from John-House-Building to Mark—House—Building: Build-Exterior {No~-
Problem)
Processing agent: Tom—House—Building -
Processing agent: Paul—House—Building e
Processing agent: Doug-House-Building
Processing agent: Rick—House—Building
?

Processing agent: User

Processing agent: Mark~House—Building
Set task: Build-Exterior status to NO PROBLEM

Processing agent: John—House—Building
Set task: Build-Interior status to NO PROBLEM
Notification sent from John*House—Building to Mark—House—Building: Build~Interior (No~
Problem)
Processing agent: Tom-House~Building
Processing agent: Paul-House-Building
Processing agent: Doug—House—Building
Processing agent: Rick—House—Building
?

Processing agent: User

Processing agent: Mark—chse—Building
Set task: Build-Interior status to NO PROBLEM

Processing agent: John-House-Building
Processing agent: Tom-House-Building ...
Processing agent: Paul-House-Building
Processing agent: Doug«House-Building
Processing agent: Rick~House—Building
?
érocessing agent: User
Processing agent: Mark—House—Building
Set task: House-Building status to NO PROBLEM
Notification sent from Mark-House-Building to User: House-Building (No-Problem)
Processing agent: John-House-Building

Processing agent: Tom~House-Building

Processing agent: Paul-House—Building e

159

Doug—House—Building

Processing agent:
Processing agent: Rick-House—Building
?

érocessing agent: User

Processing agent: Mark—House—Building
Processing agent: John—House-Building
Processing agent: Tom-House-Building
Processing agent: Paul—House—Building
Processing agent: Doug-House-Building
Processing agent: Rick~House—Building

? AGENT: Mark-House-Building
Plan:
Task: House-Building
Sub-Tasks:
Build-Exterior
Build-Interior

Task:
Task: Build-Exterior
Agent Classes:
Task: Build-Interior

Agent Classes:

Agent Class:
Class Name:
Agents:
Class Name:
Agents:

Constraints:

Incoming Requests:
User: Task
Outgoing Requests:
John-House-Building:
John-House—Building:
Incoming Notification:
John—House—Building:
John-House-Building:
Outgoing Notification:
User: House-Building
Activity Blackboard:

Task: House-Building ~Status:
Task: Build-Exterior Status:
Status:

Task: Build-Interior
? AGENT: John-House-Building
Plan:
Task: Build-Exterior
Sub-Tasks:
Lay-Foundation

Build~House-Frame

Task: Build-Interior

Sub-Tasks:
Plumbing
Electricity
Decoration
Task:
Task: Lay-Foundation

Agent Classes:

Task: Build-House-Frame
Agent Classes:
Task: Plumbing

Agent Classes:

Task
Task

Build-Exterior
Build-Interior

(Mark~Class—Build—Exterior)
(Mark-Class—Build—Interior)
Mark-Class-Build-Exterior
(John-House-Building)

Mark-Class-Build-Interior
(John-House-Building)

(House-Building)

(Build-Exterior)
(Build-Interior)

(No-Problem)
(No-Problem)

(No~Problem)

No-Problem-Replied Current Agent: Nil
No-Problem Current Agent: John-House~Building
No-Problem Current Agent: John~House-Building

(John—Class—Lay—Foundation)
(John—Class-Build—House-Frame)

(John-Class-Plumbing)

160

Task: Electricity
Agent Classes:

Task: Decoration
Agent Classes: Nil

(John-Class«Electricity)

Agent Class:
Class Name: John-Class-Lay-Foundation
Agents:
John-Class~Build-House-Frame
Agents: (Paul-House-Building)
John~Class—Plumbing
Agents:
John—Class—Electricity
Agents:
John-Class-Decoration

Class Name:

Class Name:

Class Name:

Class Name:

(Tom~House-Building Paul-House-Building)

(Tom—House—Building Paul—House—Building)

(Tom~House—Building Paul—House—Building)

Agents:
Constraints:

Incoming Requests:

Mark-House~Building:
Mark-House-Building:

Outgoing Requests:
Tom-House~Building:

Paul-House-Building:

Tom-House~Building:
Tom-House-Building:
Tom-House-Building:

Paul-House-Building:

Incoming Notification:
Tom-House-Building:
Tom-House-Building:

Paul-House-Building:
Paul-House-Building:

Tom-House-Building:
Outgoing Notification:

Mark-~House-Building:
Mark-House-Building:

Activity Blackboard:
Task: Build~-Exterior
Task: Build-Interior
Task: Lay-Foundation
Task: Build-House-Fram
Task: Plumbing Status
Task: Electricity Sta
Task: Decoration Stat

? AGENT: Tom-House-Building

(Tom~House-Building Paul-House-Building)

Task (Build-Exterior)
Task (Build-Interior)
Task (Lay-Foundation)

Task (Build~House~Frame)
Task (Plumbing)
Task (Electricity)
Clean-Up (Electricity)
Task (Electricity)
Electricity (Task-Problem)
Lay-Foundation (No~Problem)
Electricity (No-Problem)

Build-House-Frame (No-Problem)
Plumbing (No-Problem)

(No-Problem)
(No-Problem)

Build-Exterior
Build-Interior

Status: No-Problem-Replied Current Agent: Nil
Status: No-Problem-Replied Current Agent: Nil

Status: No-Problem Current Agent: Tom-House-Building
Paul-House~Building

e Status: No-Problem Current Agent:
: No-Problem Current Agent: Tom~House~Building

tus: No-Problem Current Agent: Paul-House-Building

us: No-Problem Current Agent: Nil

Plan:
Task: Lay-Foundation
Sub-Tasks:
Init-Lay~-Foundation
Final-Lay-~Foundation

Task: Plumbing
Sub-Tasks:
Interior-Plumbing

Task: Decoration
Sub-Tasks:
Interior~Decoration

Task:

Task: Init-Lay-Foundation

Agent Classes: (Tom-Class~Lay-Foundation)
Task: Final-Lay-Foundation

Agent Classes: (Tom-Class-Lay-Foundation)
Task: Interior-Plumbing

Agent Classes: (Tom~Class-Build-Interior)
Task: Interior-Electricity

Agent Classes: (Tom-Class-Build-Interior)
Task: Interior-Decoration

Agent Classes: (Tom~-Class-Build-Interior)

Agent Class:

161

Class Name: Tom-Class~Lay-Foundation

Agents: (Doug—House-Building)
Class Name: Tom-Class-Build-Interior
Agents: (Rick—House—Building)

Constraints:

Incoming Requests:
John-House~Building: Task (Lay~Foundation)
John~House-Building: Task (Plumbing)
John-House~Building: Task (Electricity)
John—House—Building: Clean~Up (Electricity)

Outgoing Requests:

Doug-House-Building: Task (Init-Lay~Foundation)
Doug-House-Building: Task (Final—Lay—Foundation)
Rick~House-Building: Task (Interior-Plumbing)

Incoming Notification:

Doug-House~Building: Init-Lay-Foundation (No-Problem)
Doug-House-Building: Final-Lay-Foundation {No-Problem)
Rick~House-Building: Interior-Plumbing {No-Problem)

Outgoing Notification:

John-House-Building: Electricity (Task-Problem)
John-House~Building: Lay-Foundation (No-Problem)
John~House~Building: Plumbing (No-Problem)

Activity Blackboard:

Task: Lay-Foundation Status: No-Problem-Replied Current Agent: Nil

Task: Init-Lay-Foundation Status: No-Problem Current Agent: Doug-House-Building
Task: Final-Lay-Foundation Status: No-Problem Current Agent: Doug-House-Building

Task: Plumbing Status: No~Problem-Replied Current Agent: Nil

Task: Interior-Plumbing Status: No-Problem Current Agent: Rick-House~Building

? AGENT: Paul-House-Building

Plan:
Task: Build-House~Frame
Sub~Tasks:
Build-Roof
Build-Wall
Task:

Task: Electricity
Agent Classes: Nil
Task: Build-Roof

Agent Classes: (Paul-Class-Build-Roof)
Task: Build-Wall
Agent Classes: (Paul-Class-Build-Wall)

Agent Class:
Class Name: Paul-Class-Build-Roof

Agents: (Rick-House-Building)
Class Name: Paul-Class-Build-Wall
Agents: (Rick-House-Building)

Constraints:

Incoming Requests:
John-House~Building: Task (Build-House-Frame)
John-House-Building: Task (Electricity)
Outgoing Requests:
Rick—House—Building: Task {Build-Roof)
Rick-House-Building: Task (Build-wall)
Incoming Notification:
Rick—House—Buildinq: Build-Roof (No-Problem)
Rick-House-Building: Build-Wall (No-Problem)
Outgoing Notification:
John-House-Building: Electricity (No-Problem)
John—House—Building: Build=-House-Frame {(No-Problem}
Activity Blackboard:
Task: Build-House-Frame Status: No~Problem-Replied Current Agent: Nil
Task: Build-Roof Status: No-Problem Current Agent: Rick-House-Building
Task: Build-Wall Status: No-Problem Current Agent: Rick-House-Building
Task: Electricity Status: No-Problem~Replied Current Agent: Nil
? AGENT: Doug-House-Building
Plan:

Task:

162

Task: Init-Lay-Foundation
Agent Classes: Nil

Task: Final-Lay~Foundation
Agent Classes: Nil

Agent Class:
Constraints:

Incoming Requests:
Tom-House-Building: Task (Init-Lay-Foundation)
Tom-House—Building: Task (Final-Lay-Foundation)
Outgoing Requests:
Incoming Notification:
Outgoing Notification:
Tom-House—Building: Init~Lay-Foundation (No~Problem)
Tom-House-~Building: Final-Lay-Foundation (No-Problem)
Activity Blackboard:
Task: Init-Lay-Foundation Status: No-Problem-Replied Current Agent: Nil
Task: Final-Lay-Foundation Status: No-Problem-Replied Current Agent: Nil
? AGENT: Rick-House~Building
Plan:

Task:
Task: Interior-Plumbing
Agent Classes: Nil
Task: Interior-Electricity
Agent Classes: Nil
Task: Interior-Decoration
Agent Classes: Nil
Task: Build-Roof
Agent Classes: Nil
Task: Build-Wall
Agent Classes: Nil

Agent Class:
Constraints:

Incoming Requests:
Paul-House-Building: Task {Build-Roof)
Paul-House~Building: Task (Build~-Wall)
Tom-House~Building: Task (Interior-Plumbing)
Outgoing Requests:
Incoming Notification:
Outgoing Notification:
Paul-House-Building: Build-Roof (No-Problem)
Paul-House~Building: Build-Wall (No-Problem)
Tom-House~Building: Interior-Plumbing (No-Problem)
Activity Blackboard:
Task: Build-Roof Status: No-Problem-Replied Current Agent: Nil
Task: Build-Wall Status: No-Problem-Replied Current Agent: Nil -
Task: Interior-Plumbing Status: No~Problem-Replied Current Agent: Nil

163

Sample Run with Dataset B2:

? Dataset B2 is used.

? Request sent from User to Mark-House~Building: Task (House-Building)
5

Processing agent: User

Processing agent: Mark—House-Building

Processing request (G205) of agent (Mark—House—Building): Task = House-Building
Set task: House-Building status to AWAITING SUBTASK DISTRIBUTION
Set task: Build-Exterior status to AWAITING DISTRIBUTION
Set task: Build-Interior status to AWAITING DISTRIBUTION

Processing agent: John-House-Building
Processing agent: Tom-House~Building
Processing agent: Paul-~House-Building
Processing agent: Doug-House-Building

Processing agent: Rick—House—Building
?

Processing agent: User

Processing agent: Mark-House-Building ...
Request sent from Mark-House—Building to John—House-Building: Task {Build-Exterior)
Request sent from Mark~-House-Building to John-House-Building: Task (Build-Interior)

Processing agent: John~House-Building ...
Processing request (G207) of agent (John—House—Building): Task = Build-Exterior
Processing request (G208) of agent (John-House-Building): Task = Build~-Interior

Set task: Build-Exterior status to AWAITING SUBTASK DISTRIBUTION

Set task: Build-Interior status to AWAITING SUBTASK DISTRIBUTION

Set task: Lay-Foundation status to AWAITING DISTRIBUTION

Set task: Build-House-Frame status to AWAITING DISTRIBUTION

Set task: Plumbing status to AWAITING DISTRIBUTION

Set task: Electricity status to AWAITING DISTRIBUTION

Set task: Decoration cycle to 1 (Max = 24)
Request sent from John—House—Building to Tom—House—Building: Task (Lay-Foundation}
Request sent from John-House-Building to Paul-House-Building: Task (Build-House~Frame)

Processing agent: Tom-House-Building

Processing request (G213) of agent (Tom-House-Building): Task = Lay-Foundation
Set task: Lay-Foundation status to AWAITING SUBTASK DISTRIBUTION
Set task: Init-Lay-Foundation status to AWAITING DISTRIBUTION
Set task: Final-Lay-Foundation status to AWAITING DISTRIBUTION

Processing agent: Paul-House-Building

Processing request (G214) of agent (Paul—House—Building): Task = Build-House~Frame
Set task: Build-House-Frame status to AWAITING SUBTASK DISTRIBUTION .
Set task: Build-Roof status to AWAITING DISTRIBUTION
Set task: Build-Wall status to AWAITING DISTRIBUTION

Processing agent: Doug-House-Building

Processing agent: Rick-House~Building
?

Processing agent: User
Processing agent: Mark-House-Building

Processing agent: John-House~Building ...

Request sent from John-House-Building to Tom-House-Building: Task (Plumbing)

Request sent from John-House-Building to Tom-House-Building: Task (Electricity)
Set task: Decoration cycle to 2 (Max = 24}

Processing agent: Tom~House~Building

Processing request (G215) of agent (Tom-House-Building): Task = Plumbing

Processing request (G216) of agent (Tom-House-Building): Task = Electricity

Request sent from Tom-House-Building to Doug-House-Building: Task (Init-Lay-Foundation)

Request sent from Tom-House-Building to Doug-House~Building: Task (Final-Lay-Foundation)
Set task: Plumbing status to AWAITING SUBTASK DISTRIBUTION

164

Set task: Electricity status to NO APPLICABLE PLANS

Set task: Interior-Plumbing status to AWAITING DISTRIBUTION
Notification sent from Tom—House—Building to John—House—Building: Electricity (Task-
Problem)

Processing agent: Paul-House-Building
Reguest sent from Paul-House-Building to Rick—House—Building: Task (Build-Roof)
Request sent from Paul-House—Building to Rick—House—Building: Task (Build-wWall)

Processing agent: Doug-House~Building
Processing request (G221) of agent (Doug—House—Building): Task Init-Lay~Foundation
Processing request (G222) of agent (Doug—House—Building): Task = Final-Lay-Foundation
Set task: Init-Lay-Foundation cycle to 1 (Max = 22)
Set task: Final-Lay-Foundation cycle to 1 (Max = 22)

Processing agent: Rick—House-Building
Processing request (G224) of agent (Rick-House-Building): Task Build-Roof
Processing request (G225) of agent (Rick-House~Building): Task = Build-Wall
Set task: Build-Roof cycle to 1 (Max = 25)
Set task: Build-Wall cycle to 1 (Max = 25)

]

?

Processing agent: User
Processing agent: Mark-House-Building

Processing agent: John~-House-Building
Set task: Decoration cycle to 3 {(Max = 24)
Set task: Electricity status to TASK PROBLEM
Request sent from John—House—Building to Tom—House—Building: Clean~Up (Electricity)

Processing agent: Tom-House-Building
Processing request (G216) of agent (Tom-House-Building): Clean-Up = Electricity
Request sent from Tom-House-Building to Rick—House-Building: Task {Interior-Plumbing)

Processing agent: Paul-~House-Building

Processing agent: Doug-House-Building
Set task: Init-Lay-Foundation cycle to 2 (Max = 22)
Set task: Final-Lay~Foundation cycle to 2 (Max = 22)

Processing agent: Rick~House-Building

Processing request (G232) of agent (Rick-House-Building): Task = Interior-Plumbing
Set task: Build-Roof cycle to 2 (Max = 25)
Set task: Build-Wall cycle to 2 (Max = 25)
Set task: Interior-Plumbing cycle to 1 (Max = 25}

5

Processing agent: User ...
Processing agent: Mark~House—Building

Processing agent: John-House~Building
Request sent from John-House-Building to Paul-House-Building: Task (Electricity)
Set task: Decoration cycle to 4 (Max = 24)

Processing agent: Tom-House-Building

Processing agent: Paul—House-Building
Processing request (G216) of agent (Paul-House-Building): Task = Electricity
Set task: Electricity status to NO APPLICABLE PLANS

Processing agent: Doug-House~Building
Set task: Init-Lay-Foundation cycle to 3 (Max = 22)
Set task: Final-Lay-Foundation cycle to 3 (Max = 22)

Processing agent: Rick-House-Building
Set task: Build-Roof cycle to 3 (Max = 25)
Set task: Build-Wall cycle to 3 (Max = 25)

Set task: Interior-Plumbing cycle to 2 (Max = 25)
ird

Processing agent: User
Processing agent: Mark-House-Building

Processing agent: John-House~Building
Set task: Decoration cycle to 5 (Max = 24)

Processing agent: Tom-House~Building

Processing agent: Paul-House~Building
Notification sent from Paul~House-Building to John-House-Building: BElectricity ({Task-
Problem)

Processing agent: Doug—House—Building
Set task: Init-Lay-Foundation cycle to 4 (Max = 22)
Set task: Final-Lay~Foundation cycle to 4 (Max = 22)

Processing agent: Rick-House-Building

Set task: Build-Roof cycle to 4 (Max = 25)

Set task: Build-wWall cycle to 4 (Max = 25)

Set task: Interior-Plumbing cycle to 3 (Max = 25)
el

Processing agent: User
Processing agent: Mark-House-Building

Processing agent: John~House-Building
Set task: Decoration cycle to 6 (Max = 24)
Set task: Electricity status to TASK PROBLEM
Request sent from John-House-Building to Paul-House-Building: Clean-Up (Electricity)

Processing agent: Tom-House-Building

Processing agent: Paul-House~Building
Processing request (G216) of agent (Paul-House-Building): Clean-Up = Electricity

Processing agent: Doug-House~Building
Set task: Init-Lay-Foundation cycle to 5 (Max = 22)
Set task: Final-Lay-Foundation cycle to 5 (Max = 22)

Processing agent: Rick-House-Building

Set task: Build~Roof cycle to 5 (Max = 25)

Set task: Build-Wall cycle to 5 (Max = 25)

Set task: Interior-Plumbing cycle to 4 {Max = 25)
?

Processing agent: User
Processing agent: Mark-House~Building

Processing agent: John-House~Building
Set task: Electricity status to NO APPLICABLE PLANS
Set task: Decoration cycle to 7 (Max = 24)

Processing agent: Tom-House~Building
Processing agent: PaulJHouse-Building

Processing agent: Doug-House~Building
Set task: Init-Lay-Foundation cycle to 6 (Max = 22)
Set task: Final-Lay-Foundation cycle to 6 (Max = 22)

Processing agent: Rick~House-Building

Set task: Build-Roof cycle to 6 (Max = 25)

Set task: Build-Wall cycle to 6 (Max = 25)

Set task: Interior-Plumbing cycle to 5 (Max = 25)
?
Processing agent: User

Processing agent: Mark-House-Building
Processing agent: John-House-Building
Set task: Build-Interior status to TASK PROBLEM
Set task: Decoration cycle to 8 (Max = 24)
Processing agent: Tom-House-Building
Processing agent: Paul-House-Building
Processing agent: Doug~House~Building

Set task: Init-Lay~Foundation cycle to 7 (Max = 22)
Set task: Final-Lay~Foundation cycle to 7 (Max = 22)

166

Processing agent: Rick-House-Building ...

Set task: Build~Roof cycle to 7 (Max = 25)

Set task: Build-Wall cycle to 7 (Max = 25)

Set task: Interior-Plumbing cycle to 6 (Max = 25)
rd

Processing agent: User
Processing agent: Mark—House—Building .

Processing agent: John-House-Building
Set task: Build-Interior status to NO APPLICABLE PLANS
Set task: Decoration cycle to 9 (Max = 24)

Processing agent: Tom-House~Building
Processing agent: Paul-House-Building

Processing agent: Doug-House-Building
Set task: Init-Lay-Foundation cycle to 8 (Max = 22)
Set task: Final-Lay-Foundation cycle to 8 (Max = 22)

Processing agent: Rick-House-Building ...

Set task: Build-Roof cycle to 8 (Max = 25)

Set task: Build-Wall cycle to 8 (Max = 25)

Set task: Interior-Plumbing cycle to 7 (Max = 25)
5

Processing agent: User
Processing agent: Mark-House-Building

Processing agent: John-House-Building
Notification sent from John-House-Building to Mark-House-Building: Build-Interior (Task-
Problem)

Set task: Decoration cycle to 10 (Max = 24)

Processing agent: Tom-House~Building
Processing agent: Paul-House-Building ...

Processing agent: Doug-House-Building
Set task: Init-Lay-Foundation cycle to 9 (Max = 22)
Set task: Final-Lay-Foundation cycle to 9 (Max = 22)

Processing agent: Rick-House-Building

Set task: Build-Roof cycle to 9 (Max = 25)

Set task: Build-Wall cycle to 9 (Max = 25)

Set task: Interior-Plumbing cycle to 8 (Max = 25)
rl
Processing agent: User

Processing agent: Mark-House~Building
Set task: Build-Interior status to TASK PROBLEM
Request sent from Mark-House-Building to John~-House-Building: Clean-Up (Build-Interior)

Processing agent: John-~House-Building
Processing request (G208) of agent (John-House-Building): Clean-Up = Build-Interior
Request sent from John~House-Building to Tom-House-Building: Clean-Up (Plumbing)

Processing agent: Tom-House-Building
Processing request (G215) of agent (Tom~House~Building): Clean-Up = Plumbing
Request sent from Tom-House-Building to Rick-House~Building: Clean-Up (Interior-Plumbing)

Processing agent: Paul-House-Building

Processing agent: Doug-House-Building
Set task: Init-Lay-Foundation cycle to 10 (Max = 22)
Set task: Final-Lay-Foundation cycle to 10 (Max = 22)

Processing agent: Rick-House~Building

Processing request (G232) of agent (Rick-House-Building): Clean-Up = Interior-Plumbing
Set task: Build-Roof cycle to 10 (Max = 25)
Set task: Build-Wall cycle to 10 (Max = 25)

2

Processing agent: User

167

Processing agent: Mark-House~Building
Set task: Build-Interior status to NO APPLICABLE PLANS

Processing agent: John-House~Building
Processing agent: Tom-House-Building
Processing agent: Paul-House~Building
Processing agent: Doug—House—Building
Set task: Init-Lay-Foundation cycle to 11 {Max = 22}
Set task: Final-Lay-Foundation cycle to 11 (Max = 22)
Processing agent: Rick-House-Building

Set task: Build-Roof cycle to 11 (Max
Set task: Build-Wall cycle to 11 {Max

25)
25)

5
Processing agent: User

Processing agent: Mark~House~Building
Set task: House-Building status to TASK PROBLEM

Processing agent: John-House~Building
Processing agent: Tom-House-Building
Processing agent: Paul-House-Building
Processing agent: Doug-House-Building
Set task: Init-Lay-Foundation cycle to 12 {Max = 22}
Set task: Final-Lay-Foundation cycle to 12 (Max = 22)
Processing agent: Rick-House-Building

Set task: Build-Roof cycle to 12 (Max
Set task: Build-Wall cycle to 12 (Max

25)
25)

2
Processing agent: User

Processing agent: Mark-House-Building ...
Set task: House-Building status to NO APPLICABLE PLANS

Processing agent: John-House-Building
Processing agent: Tom-House~Building
Processing agent: Paul-House~Building
Processing agent: Doug-House-Building
Set task: Init-Lay-Foundation cycle to 13 (Max = 22)
Set task: Final-Lay-Foundation cycle to 13 (Max = 22)
Processing agent: Rick-House~Building

Set task: Build-Roof cycle to 13 (Max
Set task: Build-Wall cycle to 13 (Max

I

25)
25)

-

Processing agent: User

Processing agent: Mark-House~Building
Notification sent from Mark-House-Building to User: House-Building ({Task-Problem)

Processing agent: John-House-Building
Processing agent: Tom-House-Building ...
Processing agent: Paul-House-Building
Processing agent: Doug-House~Building ...
Set task: Init-Lay-Foundation cycle to 14 (Max = 22)
Set task: Final-Lay-Foundation cycle to 14 (Max = 22)
Processing agent: Rick-House~Building

Set task: Build~Roof cycle to 14 (Max = 25}
Set task: Build-Wall cycle to 14 (Max = 25)

)

168

Processing agent: User
Request sent from User to Mark-House-Building: Clean-Up (House-Building)

Processing agent: Mark-House~Building
Processing request (G205) of agent (Mark—House—Building): Clean-Up = House-Building
Request sent from Mark—House—Building to John—House—Building: Clean-Up (Build~Exterior)

Processing agent: John~House-Building

Processing request (G207) of agent (John—House—Building): Clean-Up = Build-Exterior
Request sent from John-House-Building to Tom—House—Building: Clean-Up (Lay-Foundation)
Request sent from John—House—Building to Paul—House-Building: Clean-Up (Build-House-Frame)

Processing agent: Tom-House~Building
Processing request (G213) of agent (Tom—House—Building): Clean-Up = Lay-Foundation
Request sent from Tom-House-Building to Doug-House-Building: Clean-Up (Init-Lay-
Foundation)

Request sent from Tom~House-Building to Doug—House—Building: Clean~Up (Final~Lay-
Foundation)

Processing agent: Paul-House-Building

Processing request (G214) of agent (Paul—House*Building): Clean-Up = Build~House-Frame
Request sent from Paul-House~Building to Rick-House-Building: Clean-Up (Build-Roof)
Request sent from Paul-House~Building to Rick-House-Building: Clean-Up (Build-Wall)

Processing agent: Doug-~House~-Building

Processing request (G221) of agent (Doug-House-Building): Clean-Up = Init-Lay-Foundation
Processing request (G222) of agent (Doug—House—Building): Clean-Up = Final-Lay-Foundation
Processing agent: Rick-House-Building

Processing request (G224) of agent (Rick-House~Building): Clean-Up = Build-Roof
Processing request (G225) of agent (Rick-House-Building): Clean-Up = Build~Wall
2

érocessing agent: User ...

Processing agent: Mark-House~Building
Processing agent: John-House-Building
Processing agent: Tom-House-Building
Processing agent: Paul-House-Building

Processing agent: Doug-House-Building

Processing agent: Rick~House~Building
? AGENT: Mark-House-Building

Plan:
Task: House-Building
Sub-Tasks:
Build-Exterior
Build-Interior
Task:
Task: Build-Exterior
Agent Classes: (Mark-Class~Build-Exterior)
Task: Build-Interior
Agent Classes: (Mark-Class~Build-Interior)

Agent Class:
Class Name: Mark-Class-Build-Exterior

Agents: (John~House-Building)
Class Name: Mark-Class-Build-Interior
Agents: (John-House-Building)

Constraints:

Incoming Requests:
User: Task (House~Building)
User: Clean-Up (House-Building)

Outgoing Requests:
John-House-Building: Task (Build-Exterior)
John—House-Building: Task (Build-Interior)
John-House-Building: Clean-Up (Build-Interior)
John-House-Building: Clean-Up (Build-Exterior)

169

Incoming Notification:

John-House-Building: Build-Interior (Task-Problem)

Outgoing Notification:

User: House~Building (Task~Problem)

Activity Blackboard:
? AGENT: John-House-Building
Plan:
Task: Build-Exterior
Sub-Tasks:
Lay-Foundation
Build-House-Frame

Task: Build-Interior
Sub~Tasks:
Plumbing
Electricity
Decoration

Task:
Task: Lay-Foundation

Agent Classes: (John-Class~Lay-Foundation)

Task: Build-~House-~Frame

Agent Classes: {John-Class-Build-House~Frame)

Task: Plumbing

Agent Classes: (John-~Class-Plumbing)

Task: Electricity

Agent Classes: (John-Class-Electricity)

Task: Decoration
Agent Classes: Nil

Agent Class:

Class Name: John-Class-Lay-Foundation

Agents: (Tom-House-Building Paul-House~Building)
Class Name: John-Class-Build-House-Frame
Agents: (Paul-House-Building)

Class Name: John-Class~Plumbing

Agents: (Tom~House~Building Paul-House-Building)

Class Name: John-Class-Electricity

Agents: (Tom-House-Building Paul-House-Building)

Class Name: John-Class-Decoration

Agents: (Tom-House-Building Paul-House~Building)

Constraints:

Incoming Requests:

Mark-House-Building: Task (Build-Exterior)
Mark-House-Building: Task (Build~Interior)

Mark-House-Building: Clean-Up
Mark-House-Building: Clean-Up
Outgoing Requests:

(Build~-Interior)
(Build-Exterior)

Tom-House~Building: Task (Lay-Foundation)
Paul-House-Building: Task (Build-House-Frame)
Tom-House-Building: Task {Plumbing)
Tom-House~Building: Task (Electricity)
Tom-House-Building: Clean-Up (Electricity)
Paul-House-Building: Task (Electricity)

Paul-House-Building: Clean-Up

(Electricity)

Tom-House-Building: Clean-Up (Plumbing)
Tom-House-Building: Clean-Up (Lay-Foundation)

Paul-House-Building: Clean-Up
Incoming Notification:

Tom-House-Building: Electricity
Paul-House-Building: Electricity

Outgoing Notification:

(Build-House-Frame)

(Task-Problem)
{Task-Problem)

Mark-House-Building: Build-Interior {Task-Problem)

Activity Blackboard:
? AGENT: Tom-House-Building
Plan:
Task: Lay-Foundation
Sub-Tasks:
Init-Lay-Foundation
Final-Lay-Foundation

Task: Plumbing

170

Sub-Tasks:

Interior-Plumbing

Task: Decoration
Sub~Tasks:

Interior-Decoration

Task:
Task:
Agent Classes:
Task:
Agent Classes:
Task:
Agent Classes:
Task:
Agent Classes:
Task:
Agent Classes:

Agent Class:
Class Name:
Agents:
Class Name:
Agents:

Constraints:

Incoming Requests:
John-House-Building:
John-House-Building:
John-House-Building:
John-House-Building:
John-House-Building:
John-House-Building:

Outgoing Requests:
Doug-House-Building:
Doug-House-Building:
Rick-House~Building:
Rick-House-Building:
Doug-House~-Building:
Doug-House-Building:

Incoming Notification:

Outgoing Notification:
John-House-Building:

Activity Blackboard:

? AGENT:

Plan:
Task: Bulld-House-Frame
Sub-Tasks:
Build=~Roof
Build-Wall
Task:
Task: Build-Roof
Agent Classes:
Task: Build-Wall

Agent Classes:

Agent Class:
Class Name:
Agents:
Class Name:
Agents:

Constraints:

Incoming Requests:
John-House-Building:
John~House-Building:
John-House-Building:
John-House~Building:

Outgoing Regquests:
Rick-House-Building:

Paul-House-Building

Init-Lay-Foundation
(Tom-Class~Lay-Foundation}
Final-Lay~Foundation
(Tom~Class~Lay-Foundation)
Interior-Plumbing
(Tom-Class-Build-Interior)
Interior~Electricity
(Tom-Class-Build-Interior)
Interior-Decoration
{Tom~Class-Build-Interior)

Tom-Class~Lay-Foundation
(Doug-House-Building)
Tom-Class-Build-Interior
(Rick-House-Building)

Task
Task
Task
Clean-Up
Clean-Up
Clean-Up

(Lay-Foundation)
(Plumbing)
{Electricity)
(Electricity)
(Plumbing)
(Lay-Foundation)

Task
Task
Task
Clean-Up
Clean-Up
Clean-Up

(Init~Lay-Foundation)
(Final-Lay-~Foundation)
(Interior-Plumbing)
(Interior-Plumbing)
(Init-Lay-Foundation)
(Final-Lay-Foundation)

Electricity (Task~Problem)

(Paul-Class~Build-Roof)

(Paul-Class-Build-Wall)

Paul-Class~Build-Roof
(Rick-House-Building)
Paul~Class-Build-Wall
(Rick-House-Building}

Task
Task
Clean-Up
Clean-Up

(Build-House-Frame)
(Electricity)
(Electricity)
(Build-House-Frame)

Task ({Build-Roof)

171

?

?

“J

Rick-~House~Building: Task {Build-Wall)
Rick—House—Building: Clean-Up {(Build-Roof)
Rick-House-Building: Clean-Up (Build-Wall)
Incoming Notification:
Outgoing Notification:
John—House—Building: Electricity (Task-Problem)

Activity Blackboard:
AGENT: Doug-House-Building
Plan:

Task:
Task: Init-Lay-Foundation
Agent Classes: Nil
Task: Final-Lay-Foundation

Agent Classes: Nil
Agent Class:
Constraints:

Incoming Requests:

Tom-House-Building: Task (Init-Lay-Foundation)
Tom-House-Building: Task (Final-Lay-Foundation)
Tom~House~Building: Clean-Up (Init~Lay-Foundation)
Tom~House~Building: Clean-uUp (Final-Lay-Foundation)

Qutgoing Requests:
Incoming Notification:
Outgoing Notification:
Activity Blackboard:
AGENT: Rick-House-Building
Plan:

Task:
Task: Interior-Plumbing
Agent Classes: Nil
Task: Interior-Electricity
Agent Classes: Nil
Task: Interior-Decoration
Agent Classes: Nil
Task: Build-Roof
Agent Classes: Nil
Task: Build-Wall
Agent Classes: Nil

Agent Class:
Constraints:

Incoming Requests:

Paul-House-Building: Task (Build-Roof)
Paul-House-Building: Task (Build-Wall)
Tom-House-Building: Task (Interior-Plumbing)
Tom~House~Buildings: Clean-Up (Interior-Plumbing)
Paul-House-Building: Clean-Up (Build=-Roof)
Paul-House-Building: Clean-Up (Build-Wall)

Outgoing Requests:
Incoming Notification:
Outgoing Notification:
Activity Blackboard:

172

Sample Run with Dataset C1:

? Dataset Cl is used.

? Request sent from User to Mark-House~-Building: Task (House~-Building)
?

Processing agent: User

Processing agent: Mark—House-Building

Processing request (G260) of agent (Mark-House-Building): Task = House~-Building
Set task: House-Building status to AWAITING SUBTASK DISTRIBUTION
Set task: Build-Exterior status to AWAITING DISTRIBUTION
Set task: Build-Interior status to AWAITING DISTRIBUTION

Processing agent: John-House-Building
Processing agent: Tom-House-Building

Processing agent: Paul-House-Building
Processing agent: Doug-House~Building
Processing agent: Rick-House~Building
2

Processing agent: User

Processing agent: Mark-House-Building ...
Request sent from Mark-~House-Building to John-House-Building: Task (Build-Exterior)
Request sent from Mark-House~Building to John-House-Building: Task (Build-Interior)

Processing agent: John-House~Building ...
Processing request (G262) of agent (John-House-Building): Task = Build~Exterior
Processing request (G263) of agent ({(John-House-Building): Task = Build-Interior
Set task: Build-Exterior status to AWAITING SUBTASK DISTRIBUTION
Set task: Build-Interior status to AWAITING SUBTASK DISTRIBUTION
Set task: Lay~Foundation status to AWAITING DISTRIBUTION
Set task: Build-House-Frame status to AWAITING DISTRIBUTION
Set task: Plumbing status to AWAITING DISTRIBUTION
Set task: Electricity status to AWAITING DISTRIBUTION
Set task: Decoration cycle to 1 (Max = 24)
Request sent from John-House-Building to Tom~House~Building: Task (Lay-Foundation)
Request sent from John-House-Building to Paul-~House-Building: Task (Build~House~Frame)

Processing agent: Tom~House-Building

Processing request (G268) of agent (Tom-House~Building): Task = Lay~Foundation
Set task: Lay-Foundation status to AWAITING SUBTASK DISTRIBUTION
Set task: Init-Lay-Foundation status to AWAITING DISTRIBUTION
Set task: Final-Lay-Foundation status to AWAITING DISTRIBUTION

Processing agent: Paul-House~Building

Processing request (G269} of agent (Paul-House-Building): Task = Build-House~Frame
Set task: Build-House-Frame status to AWAITING SUBTASK DISTRIBUTION ’
Set task: Build-Roof status to AWAITING DISTRIBUTION
Set task: Build-Wall status to AWAITING DISTRIBUTION

Processing agent: Doug~House~Building

Processing agent: Rick-House-Building
?

Processing agent: User
Processing agent: Mark-~House-Building

Processing agent: John-House-Building ...

Request sent from John-House-Building to Tom-House-Building: Task {Plumbing)

Request sent from John-House-Building to Tom-House~Building: Task (Electricity)
Set task: Decoration cycle to 2 (Max = 24)

Processing agent: Tom-House~Building

Processing request (G270) of agent (Tom-House-Building): Task = Plumbing

Processing request (G271) of agent (Tom-House-Building): Task = Electricity

Request sent from Tom-House-Building to Doug-House-Building: Task (Init-Lay-Foundation)

Request sent from Tom~House~Building to Doug~House~Building: Task (Final-Lay-Foundation)
Set task: Plumbing status to AWAITING SUBTASK DISTRIBUTION

Set task: Electricity status to NO APPLICABLE PLANS

Set task: Interior-Plumbing status to AWAITING DISTRIBUTION
Notification sent from Tom-House=~Building to John-House-Building: Electricity (Task-
Problem)

Processing agent: Paul-House-Building
Request sent from Paul-House-Building to Rick—House-Building: Task (Build=-Roof)
Request sent from Paul—House—Building to Rick—House—Building: Task (Build-Wall)

Processing agent: Doug-House-Building
Processing request (G276) of agent (Doug—House-Building): Task = Init-~Lay~Foundation
Processing request (G277) of agent (Doug*House—Building): Task = Final-Lay-Foundation
Set task: Init-Lay-Foundation cycle to 1 (Max = 22)
Set task: Final-Lay~Foundation cycle to 1 (Max = 22)

Processing agent: Rick-House~-Building
Processing request (G279) of agent (Rick-House-Building): Task Build-Roof
Processing request (G280) of agent (Rick-House-Building): Task = Build-wall
Set task: Build~Roof cycle to 1 (Max = 25)
Set task: Build-Wall cycle to 1 (Max = 25)

2
Processing agent: User

Processing agent: Mark-House-Building

Processing agent: John-House~Building
Set task: Decoration cycle to 3 (Max = 24)
Set task: Electricity status to TASK PROBLEM
Request sent from John~House~Building to Tom-House-Building: Clean-Up (Electricity)

Processing agent: Tom-House-Building
Processing request (G271) of agent ({Tom-House-Building): Clean-Up = Electricity
Request sent from Tom-House~Building to Rick—House—Building: Task (Interior—Plumbing)

Processing agent: Paul-House~Building

Processing agent: Doug~House-Building
Set task: Init-Lay-Foundation cycle to 2 {Max = 22)
Set task: Final-Lay~-Foundation cycle to 2 {Max = 22)

Processing agent: Rick-House-Building

Processing request (G287) of agent (Rick-House-Building): Task = Interior-Plumbing
Set task: Build-Roof cycle to 2 (Max = 25)
Set task: Build-Wall cycle to 2 (Max = 25)
Set task: Interior-Plumbing cycle to 1 (Max = 25)

5

Processing agent: User

Processing agent: Mark-House-Building

Processing agent: John-House-Building
Request sent from John-House~Building to Paul-House-Building: Task (Electricity)
Set task: Decoration cycle to 4 (Max = 24)

Processing agent: Tom-House-Building ...

Processing agent: Paul-House-Building
Processing request (G271) of agent (Paul-House-Building): Task = Electricity
Set task: Electricity cycle to 1 {(Max = 23)

Processing agent: Doug-~House~-Building
Set task: Init-Lay-Foundation cycle to 3 (Max = 22)
Set task: Final-Lay-Foundation cycle to 3 (Max = 22)

Processing agent: Rick-House-Building

Set task: Build-Roof cycle to 3 (Max = 25)

Set task: Build-Wall cycle to 3 {Max = 25)

Set task: Interior-Plumbing cycle to 2 (Max = 25)
5

Processing agent: User
Processing agent: Mark-House-Building

Processing agent: John-House-Building
Set task: Decoration cycle to 5 {(Max = 24)

174

Processing agent: Tom—House—Building

Processing agent: Paul-House~-Building
Set task: Electricity cycle to 2 {Max = 23)

Processing agent: Doug-House-Building
Set task: Init-Lay-Foundation cycle to 4 {Max = 22)
Set task: Final-Lay~-Foundation cycle to 4 (Max = 22)

Processing agent: Rick-House-Building
Set task: Build-Roof cycle to 4 (Max = 25)
Set task: Build-Wall cycle to 4 (Max = 25)

Set task: Interior-Plumbing cycle to 3 (Max = 25)
5

Processing agent: User ...
Processing agent: Mark-House-Building

Processing agent: John—House—Building
Set task: Decoration cycle to 6 (Max = 24)

Processing agent: Tom~House-Building ...

Processing agent: Paul-House~Building
Set task: Electricity cycle to 3 (Max = 23)

Processing agent: Doug-House-Building
Set task: Init-Lay-Foundation cycle to 5 (Max = 22)
Set task: Final-Lay-Foundation cycle to 5 (Max = 22)

Processing agent: Rick-House-Building

Set task: Build-Roof cycle to 5 (Max = 25)

Set task: Build-Wall cycle to 5 (Max = 25)

Set task: Interior-Plumbing cycle to 4 (Max = 25)
5

Processing agent: User
Processing agent: Mark—House—Building

Processing agent: John-House-Building
Set task: Decoration cycle to 7 (Max = 24)

Processing agent: Tom~House-Building

Processing agent: Paul-House—Building
Set task: Electricity cycle to 4 (Max = 23)

Processing agent: Doug-House~Building
Set task: Init-Lay-Foundation cycle to 6 (Max = 22)
Set task: Final-Lay-Foundation cycle to 6 (Max = 22)

Processing agent: Rick-House-Building

Set task: Build-Roof cycle to 6 (Max = 25)

Set task: Build-Wall cycle to 6 (Max = 25)

Set task: Interior-Plumbing cycle to 5 (Max = 25)
?
Processing agent: User

Processing agent: Mark-~House-Building

Processing agent: John-House-Building
Set task: Decoration cycle to 8 (Max = 24)

Processing agent: Tom-House-Building

Processing agent: Paul-House-Building
Set task: Electricity cycle to 5 (Max = 23)

Processing agent: Doug-House~Building
Set task: Init-Lay-Foundation cycle to 7 (Max = 22)
Set task: Final-Lay-Foundation cycle to 7 (Max = 22)

Processing agent: Rick-House—Building
Set task: Build-Roof cycle to 7 (Max = 25)

175

Set task: Build-Wall cycle to 7 (Max = 25)

Set task: Interior-Plumbing cycle to 6 (Max = 25)
?
Processing agent: User

Processing agent: Mark-House-Building

Processing agent: John-House~Building
Set task: Decoration cycle to 9 (Max = 24)

Processing agent: Tom~House-Building ...

Processing agent: Paul-House-Building
Set task: Electricity cycle to 6 (Max = 23)

Processing agent: Doug-House~Building
Set task: Init-Lay-Foundation cycle to 8 (Max = 22)
Set task: Final-Lay-Foundation cycle to 8 (Max = 22)

Processing agent: Rick~House-Building

Set task: Build-Roof cycle to 8 (Max = 25)

Set task: Build-Wall cycle to 8 (Max = 25)

Set task: Interior-Plumbing cycle to 7 (Max = 25)
5

Processing agent: User
Processing agent: Mark—House—Building

Processing agent: John-House~Building ...
Set task: Decoration cycle to 10 {Max

]

24)
Processing agent: Tom-House-Building

Processing agent: Paul-House~Building
Set task: Electricity cycle to 7 (Max = 23)

Processing agent: Doug~House~Building
Set task: Init-Lay-Foundation cycle to 9 (Max = 22)
Set task: Final-Lay-Foundation cycle to 9 (Max = 22)

Processing agent: Rick-House-Building
Set task: Build~Roof cycle to 9 {Max = 25)
Set task: Build-Wall cycle to 9 {Max = 25)

Set task: Interior-Plumbing cycle to 8 (Max = 25)
-

Processing agent: User
Processing agent: Mark-House~Building

Processing agent: John-House~Building
Set task: Decoration cycle to 11 (Max = 24}

Processing agent: Tom-House-Building ...

Processing agent: Paul-House-Building
Set task: Electricity cycle to 8 (Max = 23)

Processing agent: Doug-House~Building
Set task: Init-Lay-Foundation cycle to 10 (Max = 22)
Set task: Final-Lay-Foundation cycle to 10 (Max = 22)

Processing agent: Rick-House-Building
Set task: Build-Roof cycle to 10 {(Max 25)
Set task: Build-Wall cycle to 10 (Max = 25)
Set task: Interior-Plumbing cycle to 9 (Max = 25)

?

Processing agent: User
Processing agent: Mark-~House~Building

Processing agent: John-House-Building
Set task: Decoration cycle to 12 (Max = 24)

Processing agent: Tom~House-Building ...

176

Processing agent: Paul-House~Building
Set task: Electricity cycle to 9 (Max = 23)

Processing agent: Doug—House—Building
Set task: Init-Lay-Foundation cycle to 11 (Max = 22)
Set task: Final-Lay-Foundation cycle to 11 (Max = 22)

Processing agent: Rick~-House-Building

Set task: Build-Roof cycle to 11 (Max = 25)

Set task: Build-Wall cycle to 11 (Max = 25)

Set task: Interior-Plumbing cycle to 10 {(Max = 25)
?
Processing agent: User

Processing agent: Mark-House-Building

Processing agent: John-House-Building
Set task: Decoration cycle to 13 (Max = 24)

Processing agent: Tom-House-Building ...

Processing agent: Paul-House-Building
Set task: Electricity cycle to 10 (Max = 23)

Processing agent: Doug~House-Building
Set task: Init-Lay~Foundation cycle to 12 {Max = 22)
Set task: Final-Lay-Foundation cycle to 12 (Max = 22)

Processing agent: Rick-House-Building

Set task: Build-Roof cycle to 12 (Max = 25)

Set task: Build-Wall cycle to 12 (Max = 25)

Set task: Interior-Plumbing cycle to 11 (Max = 25}
el

Processing agent: User
Processing agent: Mark-House-Building ...

Processing agent: John—House—Building
Set task: Decoration cycle to 14 (Max = 24)

Processing agent: Tom-House-Building

Processing agent: Paul-House-Building
Set task: Electricity cycle to 11 (Max = 23)

Processing agent: Doug-House~Building
Set task: Init-Lay-Foundation cycle to 13 (Max = 22)
Set task: Final-Lay-Foundation cycle to 13 {Max = 22)

Processing agent: Rick-House-Building
Set task: Build-Roof cycle to 13 (Max = 25)
Set task: Build-Wall cycle to 13 (Max = 25)
Set task: Interior-Plumbing cycle to 12 (Max = 25)

?

Processing agent: User
Processing agent: Mark-House-Building

Processing agent: John-House-Building
Set task: Decoration cycle to 15 (Max = 24)

Processing agent: Tom-House-Building

Processing agent: Paul-House-Building
Set task: Electricity cycle to 12 (Max = 23)

Processing agent: Doug-House~Building
Set task: Init-Lay=-Foundation cycle to 14 (Max = 22)
Set task: Final-Lay-Foundation cycle to 14 (Max = 22)

Processing agent: Rick-House~Building .
Set task: Build-Roof cycle to 14 (Max = 25)
Set task: Build-Wall cycle to 14 (Max = 25)
Set task: Interior-Plumbing cycle to 13 (Max = 25)

177

Processing agent: User
Processing agent: Mark-House-Building

Processing agent: John-House-Building
Set task: Decoration cycle to 16 (Max = 24)

Processing agent: Tom-House-Building

Processing agent: Paul-House~Building
Set task: Electricity cycle to 13 (Max = 23)

Processing agent: Doug~House~Building
Set task: Init-Lay-Foundation cycle to 15 (Max = 22)
Set task: Final-Lay-Foundation cycle to 15 (Max = 22)

Processing agent: Rick-House~Building

Set task: Build-Roof cycle to 15 (Max = 25)

Set task: Build-Wall cycle to 15 (Max = 25)

Set task: Interior-Plumbing cycle to 14 (Max = 25)
?
Processing agent: User

Processing agent: Mark-House~Building

Processing agent: John~-House~Building
Set task: Decoration cycle to 17 {(Max = 24)

Processing agent: Tom-House-Building

Processing agent: Paul-House-Building
Set task: Electricity cycle to 14 (Max = 23)

Processing agent: Doug-House-Building
Set task: Init-Lay-Foundation cycle to 16 (Max = 22)
Set task: Final-Lay-Foundation cycle to 16 (Max = 22)

Processing agent: Rick-House-Building

Set task: Build-Roof cycle to 16 (Max = 25)

Set task: Build-Wall cycle to 16 (Max = 25)

Set task: Interior-Plumbing cycle to 15 (Max = 25)
?
Processing agent: User

Processing agent: Mark-House-Building

Processing agent: John-House-Building
Set task: Decoration cycle to 18 (Max = 24)

Processing agent: Tom-House-Building ...

Processing agent: Paul-House~Building
Set task: Electricity cycle to 15 (Max = 23)

Processing agent: Doug-House~Building
Set task: Init-Lay-Foundation cycle to 17 {(Max = 22)
Set task: Final-Lay-Foundation cycle to 17 (Max = 22)

Processing agent: Rick-House-Building

Set task: Build-Roof cycle to 17 (Max = 25)

Set task: Build-Wall cycle to 17 (Max = 25)

Set task: Interior-Plumbing cycle to 16 (Max = 25)
?

Processing agent: User
Processing agent: Mark-House-Building

Processing agent: John-House-Building ...
Set task: Decoration cycle to 19 (Max = 24)

Processing agent: Tom-House~Building

Processing agent: Paul-House-Building
Set task: Electricity cycle to 16 (Max = 23)

178

Processing agent: Doug~House-Building
Set task: Init-Lay~-Foundation cycle to 18 (Max = 22)
Set task: Final-Lay-Foundation cycle to 18 (Max = 22)
Processing agent: Rick—House—Building
Set task: Build-Roof cycle to 18 (Max = 25)
Set task: Build-Wall cycle to 18 (Max = 25)
Set task: Interior-Plumbing cycle to 17 (Max = 25)
5

Processing agent: User
Processing agent: Mark-House~Building

Processing agent: John—House—Building
Set task: Decoration cycle to 20 (Max = 24)

Processing agent: Tom-House-Building

Processing agent: Paul~House-Building
Set task: Electricity cycle to 17 (Max = 23)

Processing agent: Doug~House-Building
Set task: Init-Lay-Foundation cycle to 19 (Max = 22)
Set task: Final-Lay-Foundation cycle to 19 (Max = 22)

Processing agent: Rick-House-Building

Set task: Build-~Roof cycle to 19 (Max = 25)

Set task: Build-Wall cycle to 19 (Max = 25)

Set task: Interior-Plumbing cycle to 18 (Max = 25)
?

Processing agent: User
Processing agent: Mark-House-Building

Processing agent: John-House~Building
Set task: Decoration cycle to 21 (Max = 24)

Processing agent: Tom—House—Building

Processing agent: Paul-House-Building
Set task: Electricity cycle to 18 (Max = 23)

Processing agent: Doug-House-Building
Set task: Init-Lay-Foundation cycle to 20 (Max = 22)
Set task: Final-Lay-Foundation cycle to 20 (Max = 22)

Processing agent: Rick-House-Building

Set task: Build-Roof cycle to 20 (Max = 25)

Set task: Build-wWall cycle to 20 (Max = 25)

Set task: Interior-Plumbing cycle to 19 {(Max = 25)
el
Processing agent: User

Processing agent: Mark-House~-Building

Processing agent: John-House~Building
Set task: Decoration cycle to 22 (Max = 24)

Processing agent: Tom~House-Building

Processing agent: Paul-House-Building
Set task: Electricity cycle to 19 (Max = 23)

Processing agent: Doug—House—Building
Set task: Init-Lay-Foundation cycle to 21 (Max = 22)
Set task: Final-Lay-Foundation cycle to 21 (Max = 22)

Processing agent: Rick-House-Building

Set task: Build-Roof cycle to 21 (Max = 25)

Set task: Build-Wall cycle to 21 (Max = 25)

Set task: Interior-Plumbing cycle to 20 (Max = 25)
2

Processing agent: User

Processing agent: Mark-House-Building

179

Processing agent: John-House~-Building
Set task: Decoration cycle to 23 (Max = 24)

Processing agent: Tom-House~Building

Processing agent: Paul -House~Building
Set task: Electricity cycle to 20 (Max = 23)

Processing agent: Doug-House~Building
Set task: Init-Lay-Foundation cycle to 22 (Max = 22)
Set task: Final-Lay-Foundation cycle to 22 (Max = 22)

Processing agent: Rick—House~Building
Set task: Build-Roof cycle to 22 (Max = 25)
Set task: Build-Wall cycle to 22 (Max = 25)

Set task: Interior-Plumbing cycle to 21 (Max = 25)
?

Processing agent: User ... -
Processing agent: Mark-House-Building

Processing agent: John-House-Building
Set task: Decoration cycle to 24 (Max = 24)

Processing agent: Tom-House-Building

Processing agent: Paul -House-Building
Set task: Electricity cycle to 21 (Max = 23)

Processing agent: Doug~House-Building
Set task: Init-Lay-Foundation status to NO PROBLEM
Set task: Final-Lay-Foundation status to NO PROBLEM

Notification sent from Doug~House-Building to Tom-House-Building:

Problem)

Notification sent from Doug-House~Building to Tom-House-Building:

{No-Problem)

Processing agent: Rick-House-Building

Set task: Build~Roof cycle to 23 (Max = 25)

Set task: Build-Wall cycle to 23 (Max = 25)

Set task: Interior-Plumbing cycle to 22 (Max = 25)
5
Processing agent: User

Processing agent: Mark-House~Building

Processing agent: John-House~-Building
Set task: Decoration status to NO PROBLEM

Processing agent: Tom-House-Building
Set task: Init-Lay-Foundation status to NO PROBLEM
Set task: Final-Lay-Foundation status to NO PROBLEM

Processing agent: Paul-House-Building
Set task: Electricity cycle to 22 (Max = 23)

Processing agent: Doug~House-Building

Processing agent: Rick-House-Building

Set task: Build-Roof cycle to 24 {(Max = 25)

Set task: Build-Wall cycle to 24 {Max = 25)

Set task: Interior-Plumbing cycle to 23 (Max = 25)
2
Processing agent: User

Processing agent: Mark~House-Building
Processing agent: John—House-Buildinq

Processing agent: Tom~House-Building ...
Set task: Lay-Foundation status to NO PROBLEM

Init-Lay-Foundation (No-

Final-Lay~Foundation

Notification sent from Tom-House-Building to John-House-Building: Lay-Foundation {No-

Problem)

180

Processing agent: Paul~House-Building
Set task: Electricity cycle to 23 (Max = 23)

Processing agent: Doug—House-Building

Processing agent: Rick—House—Building

Set task: Build=-Roof cycle to 25 (Max = 25)

Set task: Build-Wall cycle to 25 (Max = 25)

Set task: Interior-Plumbing cycle to 24 (Max = 25)
?

Processing agent: User
Processing agent: Mark—House—Building

Processing agent: John—House—Building
Set task: Lay-Foundation status to NO PROBLEM

Processing agent: Tom—House~Building

Processing agent: Paul—House—Building

Set task: Electricity status t6 NO PROBLEM
Notification sent from Paul-House-Building to John-House~Building: Electricity (No-
Problem)

Processing agent: Doug—House—Building e

Processing agent: Rick-House~Building ...

Set task: Build-Roof status to NO PROBLEM

Set task: Build-Wall status to NO PROBLEM

Set task: Interior-Plumbing cycle to 25 (Max = 25)
Notification sent from Rick-House-Building to Paul-House-Building: Build-Roof (No-Problem)
Notification sent from Rick—House—Building to Paul—House—Building: Build-Wall (No-Problem)
2

Processing agent: User ...
Processing agent: Mark-House~Building

Processing agent: John-House-Building
Set task: Electricity status to NO PROBLEM

Processing agent: Tom-House~Building
Processing agent: Paul-House~Building
Set task: Build-Roof status to NO PROBLEM
Set task: Build-Wall status to NO PROBLEM
Processing agent: Doug-House=-Building
Processing agent: Rick-House-Building
Set task: Interior-Plumbing status to NO PROBLEM
Notification sent from Rick-House-Building to Tom-House-Building: Interior-Plumbing (No-
Problem)
?
Processing agent: User
Processing agent: Mark-House-Building

Processing agent: John-House~Building

Processing agent: Tom-House~Building
Set task: Interior-Plumbing status to NO PROBLEM

Processing agent: Paul-House-Building
Set task: Build-House~Frame status to NO PROBLEM
Notification sent from Paul—House—Building to John—House—Building: Build~House-Frame (No-
Problem)
Processing agent: Doug-House-Building
Processing agent: Rick-House-Building
?

Processing agent: User

Processing agent: Mark-House-Building

181

Processing agent: John~House~Building
Set task: Build-House~Frame status to NO PROBLEM

Processing agent: Tom—House-Building

Set task: Plumbing status to NC PROBLEM
Notification sent from Tom-House—Building to John—House-Building: Plumbing (No-Problem)
Processing agent: Paul-House~Building

Processing agent: Doug—House—Building

Processing agent: Rick—House-Building
5

Processing agent: User
Processing agent: Mark—House—Building
Processing agent: John-House-Building
Set task: Build-Exterior status to NO PROBLEM
Set task: Plumbing status to NO PROBLEM
Notification sent from John-House-Building to Mark-House-Building: Build-Exterior (No-
Problem)
Processing agent: Tom-House~Building
Processing agent: Paul-~House-Building
Processing agent: Doug-House~Building
Processing agent: Rick—House—Building
5

Processing agent: User

Processing agent: Mark—House~Building N
Set task: Build-Exterior status to NO PROBLEM

Processing agent: John-House-Building
Set task: Build~Interior status to NO PROBLEM
Notification sent from John-House-Building to Mark-House~-Building: Build-Interior (No-
Problem)
Processing agent: Tom-House-Building
Processing agent: Paul-House-Building

Processing agent: Doug-House-Building

Processing agent: Rick—House—Building
5

Processing agent: User

Processing agent: Mark-House~Building
Set task: Build-Interior status to NO PROBLEM

Processing agent: John—House-Building
Processing agent: Tom-House-Building
Processing agent: Paul-House~Building
Processing agent: Doug-House-Building
Processing agent: Rick-House-Building
2
érocessing agent: User
Processing agent: Mark-House-Building
Set task: House-Building status to NO PROBLEM
Notification sent from Mark-House-Building to User: House-Building (No-Problem)
Processing agent: John-House~Building

Processing agent: Tom~House-Building

Processing agent: Paul-House-Building

182

Processing agent: Doug-House~Building
Processing agent: Rick-House-Building
?

érocessing agent: User

Processing agent: Mark-House-Building
Processing agent: John-House~Building
Processing agent: Tom-House-Building
Processing agent: Paul~House~Building
Processing agent: Doug~House-Building
Processing agent: Rick-House-Building

? AGENT: Mark-House-Building
Plan:
Task: House-Building
Sub-Tasks:
Build-Exterior
Build-Interior

Task:
Task: Build-Exterior
Agent Classes:
Task: Build-Interior

Agent Classes:

Agent Class:
Class Name:
Agents:
Class Name:
Agents:

Constraints:

Incoming Requests:
User: Task
Outgoing Requests:
John-House-Building:
John-House-Building:
Incoming Notification:
John-House~Building:
John-House-Building:
Outgoing Notification:
User: House-Building
Activity Blackboard:

Task: House~Building Status:
Status:
Status:

Task: Build-Exterior
Task: Build-Interior
? AGENT: John-House-Building
Plan:
Task: Build-Exterior
Sub~Tasks:
Lay~-Foundation

Task
Task

Build-Exterior
Build~-Interior

(Mark-Class~Build-Exterior)
(Mark-Class-Build-Interior)
Mark-Class~Build-Exterior
(John-House-Building)

Mark-Class-Build-Interior
(John~House-Building)

(House-Building)

(Build-Exterior)
(Build-Interior)

(No-Problem]
(No-Problem)

(No-Problem)

No~Problem~Replied Current Agent: Nil
No-Problem Current Agent: John-House-Building
No-Problem Current Agent: John-House-Building

Build-House-Frame

Task: Build-Interior

Sub-Tasks:
Plumbing
Electricity
Decoration
Task:
Task: Lay-Foundation
Agent Classes:
Task: Build-House-Frame
Agent Classes:
Task: Plumbing

Agent Classes:

(John-Class-Lay-Foundation)
(John-Class—Build—House-Frame)

(John~Class~-Plumbing)

183

Task: Electricity

Agent Classes: (John-Class~Electricity—A John-Class—Electricity-B)
Task: Decoration

Agent Classes: Nil

Agent Class:
Class Name: John-Class-Lay~Foundation

Agents: (Tom-House~-Building Paul-House-Building)
Class Name: John~Class~Build~House-Frame

Agents: (Paul-House~Building)
Class Name: John-Class~Plumbing

Agents: (Tom-House~Building Paul~House—Building)
Class Name: John—Class—Electricity—A

Agents: (Tom—House—Building)
Class Name: John—Class—Electricity—B

Agents: (Paul-~House~Building)
Class Name: John-Class-Decoration

Agents: (Tom-House-Building Paul-House~Building)

Constraints:

Incoming Requests:
Mark-House-Building: Task {(Build-Exterior)
Mark-House-Building: Task (Build~Interior)
Outgoing Requests:
Tom-House-Building: Task (Lay~-Foundation)
Paul—House—Building: Task (Build-House-Frame)
Tom-House-Building: Task (Plumbing)
Tom~House-Building: Task (Electricity)
Tom=-House-Buildings: Clean-Up (Electricity)
Paul-House-Building: Task (Electricity)
Incoming Notification:
Tom-House-Building: Electricity (Task-Problem)
Tom-House-Building: Lay-Foundation (No-Problem)
Paul-House-Building: Electricity (No-Problem)
Paul-House~Building: Build-House-Frame (No-Problem)
Tom~House-Building: Plumbing (No-Problem)
Cutgoing Notification:
Mark—House—Building: Build-Exterior (No-Problem)
Mark—House—Building: Build-Interior (No~Problem)
Activity Blackboard:
Task: Build-Exterior Status: No~Problem-Replied Current Agent: Nil
Task: Build-Interior Status: No-Problem-Replied Current Agent: Nil
Task: Lay-Foundation Status: No-Problem Current Agent: Tom-House-Building
Task: Build-House~Frame Status: No-Problem Current Agent: Paul-House-Building
Task: Plumbing Status: No-Problem Current Agent: Tom-House-Building
Task: Electricity Status: No-Problem Current Agent: Paul-House-Building
Task: Decoration Status: No-Problem Current Agent: Nil
? AGENT: Tom-House-Building
Plan:
Task: Lay-Foundation
Sub-Tasks:
Init-Lay-Foundation
Final-Lay-Foundation

Task: Plumbing
Sub-Tasks:
Interior-Plumbing

Task: Decoration
Sub-Tasks:
Interior-Decoration

Task:

Task: Init-Lay~Foundation

Agent Classes: (Tom-Class-Lay-Foundation)
Task: Final-Lay-Foundation

Agent Classes: (Tom-Class~Lay-Foundation)
Task: Interior-Plumbing

Agent Classes: (Tom-Class-Build-Interior)
Task: Interior-Electricity

Agent Classes: (Tom-Class-Build-Interior)
Task: Interior~Decoration

Agent Classes: (Tom—Class—Build—Interior)

184

Agent Class:
Class Name:
Agents:
Class Name:
Agents:

Constraints:

Incoming Requests:
John-House-Building:
John-House~Building:
John-House-Building:
John~House-Building:

Outgoing Requests:
Doug-House-Building:
Doug—House—Building:
Rick-House-Building:

Incoming Notification:
Doug~House-Building:
Doug-House-Building:
Rick-House-Building:

Outgoing Notification:
John-House—Building:
John~House-Building:
John-House-Building:

Activity Blackboard:

Task: Lay-Foundation

Task: Init-Lay-Foundation
Task: Final-Lay-Foundation
Task: Plumbing Status:
Task: Interior-Plumbing

? AGENT: Paul-House-Building
Plan:
Task: Build-House-Frame

Sub-Tasks:
Build-Roof
Build-Wall
Task:
Task: Electricity
Agent Classes: Nil
Task: Build-Roof
Agent Classes:
Task: Build-Wall

Agent Classes:

Agent Class:

Status:

No-Problem-Re

Tom-Class-Lay-Foundation
(Doug—House—Building)
Tom~Class-Build-Interior
(Rick—House—Building)

Task (Lay-Foundation)

Task ({Plumbing)

Task (Electricity)

Clean-Up (Electricity)

Task (Init—Lay—Foundation)
Task (Final-Lay-Foundation)
Task (Interior—Plumbing)

Init-Lay-Foundation (No-Problem)
Final~Lay-Foundation (No~Problem)
Interior-Plumbing (No-Problem)

Electricity (Task-Problem)
Lay-~Foundation (No-Problem)
Plumbing (No-Problem)

No-Problem-Replied Current Agent: Nil
Doug~House-Building
Doug-House-Building

Status: No-Problem Current Agent:
Status: No-Problem Current Agent:
plied Current Agent: Nil

Status: No-Problem Current Agent: Rick—House-Building

(Paul-Class-Build-Roof)

(Paul-Class~Build-Wall)

Class Name: Paul-Class~Build-Roof

Agents: (Rick-House-Building)
Class Name: Paul-Class-Build-Wall

Agents: (Rick-House~Building)

Constraints:

Incoming Requests:
John-House-Building:
John-House-Building:

Outgoing Requests:
Rick-House~Building:
Rick-House-Building:

Incoming Notification:
Rick-House-Building:
Rick-House-Building:

Outgoing Notification:
John-House-Building:
John-House-Building:

Activity Blackboard:

Task: Build-House-Franme
Task: Build-Roof Status:
Task: Build-Wall Status:

Task: Electricity Status:

? AGENT: Doug-House-Building

Plan:

Task (Build~House-Frame)
Task (Electricity)
Task (Build-Roof)
Task (Build-Wall)
Build-Roof (No-Problem)
Build-Wall (No-Problem)
Electricity (No-Problem)

Build-House-Frame (No-Problem)

Status: No-Problem-Replied Current Agent: Nil

No-Problem Current Agent: Rick-House-Building
No-Problem Current Agent: Rick-House-Building
No-Problem~Replied Current Agent: Nil

185

Task:

Task: Init-Lay-Foundation
Agent Classes: Nil
Task: Final-Lay~Foundation

Agent Classes: Nil

Agent Class:
Constraints:

Incoming Requests:
Tom~House~-Building:
Tom~House-Building:

Outgoing Requests:

Incoming Notification:

Outgoing Notification:
Tom~-House-Building:
Tom~House-Building:

Activity Blackboard:

Task: Init-Lay-Foundation

Task
Task

Init~Lay-Foundation
Final-Lay~Foundation

(Init-Lay~Foundation)
(Final-Lay-Foundation)

(No-Problem)
(No~Problem)

Task: Final-Lay-Foundation
? AGENT: Rick~House-Building
Plan:
Task:
Task: Interior~Plumbing
Agent Classes: Nil
Task: Interior-Electricity
Agent Classes: Nil
Task: Interior-Decoration
Agent Classes: Nil
Task: Build-Roof
Agent Classes: Nil
Task: Build-Wall
Agent Classes: Nil

Agent Class:
Constraints:

Incoming Requests:

Paul-House-Building: Task {Build-Roof)
Paul-House~Building: Task (Build-wWall)
Tom-House~Building: Task (Interior-Plumbing)
Outgoing Requests:
Incoming Notification:
Outgoing Notification:
Paul—House—Building: Build-Roof (No-Problem)
Paul~House-Building: Build-Wall {No-Problem)

Tom-House-Building:
Activity Blackboard:
Task: Build-Roof Status:
Task: Build-Wall Status:
Task: Interior-Plumbing

[N

Interior-Plumbing

(No-Problem)
No-Problem-Replied Current Agent: Nil

No-Problem-Replied Current Agent: Nil
Status:

186

No~Problem-Replied Current Agent:

Status: No-Problem-Replied Current Agent: Nil
Status: No-Problem-Replied Current Agent: Nil

Nil

Sample Run with Dataset C2:

? Dataset C2 is used.
Request sent from User to Mark—House-Building: Task (House-Building})

(VRN)

Processing agent: User

Processing agent: Mark-House—Building
Processing request (G312} of agent (Mark~House—Building): Task = House-Building
Set task: House-Building status to AWAITING SUBTASK DISTRIBUTION
Set task: Build-Exterior status to AWAITING DISTRIBUTION
Set task: Build-Interior status to AWAITING DISTRIBUTION

Processing agent: John-House~Building
Processing agent: Tom~House-Building
Processing agent: Paul—House—Building
Processing agent: Doug—House—Building

Processing agent: Rick-House-Building
?

Processing agent: User

Processing agent: Mark~House-Building ...
Request sent from Mark-House-Building to John-House-Building: Task (Build-Exterior)
Request sent from Mark-House-Building to John-House-Building: Task (Build-Interior)

Processing agent: John—House~Building e
Processing request (G314) of agent (John-House-Building): Task = Build-Exterior
Processing request (G315) of agent (John—House—Building): Task = Build-Interior

Set task: Build-Exterior status to AWAITING SUBTASK DISTRIBUTION

Set task: Build-Interior status to AWAITING SUBTASK DISTRIBUTION

Set task: Lay-Foundation status to AWAITING DISTRIBUTION

Set task: Build-House-Frame status to AWAITING DISTRIBUTION

Set task: Plumbing status to AWAITING DISTRIBUTICON

Set task: Electricity status to AWAITING DISTRIBUTION

Set task: Decoration cycle to 1 ({Max = 24)
Request sent from John-House-Building to Tom-House-Building: Task {(Lay-Foundation)
Request sent from John-House-Building to Paul-House-Building: Task (Build~House-Frame)

Processing agent: Tom~House—Building
Processing request (G320) of agent (Tom-House-Building): Task = Lay-Foundation
Set task: Lay-Foundation status to AWAITING SUBTASK DISTRIBUTION ’

Set task: Init-Lay-Foundation status to AWAITING DISTRIBUTION
Set task: Final-Lay-Foundation status to AWAITING DISTRIBUTION

Processing agent: Paul-House-Building

Processing request (G321) of agent (Paul—House-Building): Task = Build-House-Frame
Set task: Build-House~Frame status to AWAITING SUBTASK DISTRIBUTION
Set task: Build-Roof status to AWAITING DISTRIBUTION
Set task: Build-Wall status to AWAITING DISTRIBUTION

Processing agent: Doug-House~Building
Processing agent: Rick-House-Building
?

érocessing agent: User

Processing agent: Mark~House~Building

Processing agent: John-House-Building

Request sent from John-House~Building to Tom-House-Building: Task (Plumbing)

Request sent from John-House-Building to Tom-House~Building: Task (Electricity)
Set task: Decoration cycle to 2 (Max = 24)

Processing agent: Tom-House-Building

Processing request (G322) of agent (Tom—House—Building): Task = Plumbing

Processing request (G323} of agent (Tom~House-Building): Task = Electricity

Request sent from Tom~House-Building to Doug-House-Building: Task (Init-Lay-Foundation)

Reguest sent from Tom-House-Building to Doug-House-Building: Task (Final-Lay-Foundation)
Set task: Plumbing status to AWAITING SUBTASK DISTRIBUTION

187

Set task: Electricity status to NO APPLICABLE PLANS

Set task: Interior~Plumbing status to AWAITING DISTRIBUTION
Notification sent from Tom-House-Building to John—House—Building: Electricity (Task-
Problem)

Processing agent: Paul—House-Building
Request sent from Paul~House-Building to Rick~House-Building: Task {Build-Roof)
Request sent from Paul-House—Building to Rick—House—Building: Task (Build-Wall)

Processing agent: Doug—House—Building
Processing request (G328) of agent (Doug—House—Building): Task = Init-Lay-Foundation
Processing request (G329) of agent (Doug—House—Building): Task = Final-Lay-Foundation
Set task: Init-Lay~Foundation cycle to 1 (Max = 22)
Set task: Final-Lay-Foundation cycle to 1 (Max = 22)

Processing agent: Rick-House-Building
Processing request (G331) of agent (Rick—House—Building): Task = Build-Roof
Processing request (G332) of agent (Rick-House-Building): Task Build-wall
Set task: Build-Roof cycle to 1 (Max = 25)
Set task: Build-Wall cycle to 1 (Max = 25)

ed

Processing agent: User
Processing agent: Mark-House-Building

Processing agent: John-House-Building ...
Set task: Decoration cycle to 3 (Max = 24)
Set task: Electricity status to TASK PROBLEM
Request sent from John~House~Building to Tom~House-Building: Clean-Up (Electricity)

Processing agent: Tom-House-Building
Processing request (G323) of agent (Tom-House-Building): Clean-Up = Electricity
Request sent from Tom~House-Building to Rick-House-Building: Task {Interior-Plumbing)

Processing agent: Paul-House-Building

Processing agent: Doug-House~-Building
Set task: Init-Lay-Foundation cycle to 2 (Max = 22)
Set task: Final-Lay-Foundation cycle to 2 {(Max = 22)

Processing agent: Rick-House~Building

Processing request (G339) of agent (Rick—House—Building): Task = Interior-Plumbing
Set task: Build-Roof cycle to 2 {Max = 25)
Set task: Build-Wall cycle to 2 (Max = 25)
Set task: Interior-Plumbing cycle to 1 (Max = 25)

rd

Processing agent: User

Processing agent: Mark-House-Building

Processing agent: John-House-Building .
Request sent from John-House-Building to Paul-House-Building: Task (Electricity)
Set task: Decoration cycle to 4 (Max = 24)

Processing agent: Tom-House-Building

Processing agent: Paul~House-Building
Processing request (G323) of agent (Paul-House-Building): Task = Electricity
Set task: Electricity status to NO APPLICABLE PLANS

Processing agent: Doug—House—Building
Set task: Init-~Lay-Foundation cycle to 3 (Max = 22)
Set task: Final-Lay-Foundation cycle to 3 (Max = 22)

Processing agent: Rick-House-Building

Set task: Build-Roof cycle to 3 (Max = 25)

Set task: Build-Wall cycle to 3 (Max = 25)

Set task: Interior~-Plumbing cycle to 2 (Max = 25)
?
Processing agent: User

Processing agent: Mark-House-Building

Processing agent: John-House-Building
Set task: Decoration cycle to 5 (Max = 24)

188

Processing agent: Tom~House-Building ...

Processing agent: Paul—House—Building
Notification sent from Paul-House-Building to John—House—Building: Electricity (Task-
Problem}

Processing agent: Doug-House-Building
Set task: Init-Lay-Foundation cycle to 4 (Max = 22)
Set task: Final-Lay-Foundation cycle to 4 (Max = 22)

Processing agent: Rick-~House-Building

Set task: Build-Roof cycle to 4 (Max = 25)

Set task: Build-Wall cycle to 4 (Max = 25)

Set task: Interior-Plumbing cycle to 3 (Max = 25)
2
Processing agent: User

Processing agent: Mark~House-Building e

Processing agent: John-House-Building
Set task: Decoration cycle to 6 (Max = 24)
Set task: Electricity status to TASK PROBLEM
Request sent from John-House~Building to Paul-House~Building: Clean-Up (Electricity)

Processing agent: Tom-House~-Building

Processing agent: Paul-House~Building
Processing request (G323} of agent (Paul—House—Building): Clean-~Up = Electricity

Processing agent: Doug~House-Building
Set task: Init-Lay-Foundation cycle to 5 (Max = 22)
Set task: Final-Lay-Foundation cycle to 5 (Max = 22)

Processing agent: Rick-House~Building
Set task: Build-Roof cycle to 5 (Max 25)
Set task: Build-Wall cycle to 5 (Max = 25)
Set task: Interior~Plumbing cycle to 4 (Max = 25)

it

rd

Processing agent: User
Processing agent: Mark-House~Building

Processing agent: John-House~Building
Set task: Electricity status to NO APPLICABLE PLANS
Set task: Decoration cycle to 7 (Max = 24)

Processing agent: Tom-House-Building
Processing agent: Paul-House~Building

Processing agent: Doug-House~Building
Set task: Init-Lay-Foundation cycle to 6 (Max = 22)
Set task: Final-Lay-Foundation cycle to 6 (Max = 22)

Processing agent: Rick-House-Building ...

Set task: Build-Roof cycle to 6 (Max = 25)

Set task: Build-wWall cycle to 6 (Max = 25)

Set task: Interior-Plumbing cycle to § (Max = 25)
2
Processing agent: User

Processing agent: Mark-House-Building
Processing agent: John-House-Building
Set task: Build-Interior status to TASK PROBLEM
Set task: Decoration cycle to 8 (Max = 24)
Processing agent: Tom—House—Building
Processing agent: Paul-House-Building
Processing agent: Doug-House~Building ...

Set task: Init-Lay-Foundation cycle to 7 (Max = 22
Set task: Final-Lay-Foundation cycle to 7 (Max = 2

189

Processing agent: Rick~House~Building

Set task: Build~Roof cycle to 7 (Max = 25)

Set task: Build-Wall cycle to 7 (Max = 28)

Set task: Interior-Plumbing cycle to 6 (Max = 25)
?

Processing agent: User
Processing agent: Mark-House-Building

Processing agent: John—House—Building “a
Set task: Build-Interior status to NO APPLICABLE PLANS
Set task: Decoration cycle to 9 (Max = 24)

Processing agent: Tom-House~Building
Processing agent: Paul-House—Building

Processing agent: Doug-House-Building
Set task: Init-Lay-Foundation cycle to 8 (Max = 22)
Set task: Final-~Lay-Foundation cycle to 8 {Max = 22)

Processing agent: Rick-House-Building

Set task: Build-Roof cycle to 8 (Max = 25)

Set task: Build-Wall cycle to 8 (Max = 25)

Set task: Interior-Plumbing cycle to 7 (Max = 25)
2
Processing agent: User

Processing agent: Mark-~House~Building

Processing agent: John-House~Building
Notification sent from John—House-Building to Mark-House-Building: Build-Interior (Task-
Problem)

Set task: Decoration cycle to 10 (Max = 24)

Processing agent: Tom—House—Building
Processing agent: Paul-House-Building

Processing agent: Doug-House-Building
Set task: Init-Lay-Foundation cycle to 9 {Max = 22)
Set task: Final-Lay-Foundation cycle to 9 (Max = 22)

Processing agent: Rick-House-Building

Set task: Build-Roof cycle to 9 (Max = 25)

Set task: Build-Wall cycle to 9 {Max = 25)

Set task: Interior-Plumbing cycle to 8 (Max = 25)
?
Processing agent: User

Processing agent: Mark-House-Building
Set task: Build-Interior status to TASK PROBLEM
Request sent from Mark-House—Building to John—House—Building: Clean-Up (Build-Interior}

Processing agent: John—House—Building
Processing request (G315) of agent (John-House-Building): Clean-Up = Build-Interior
Request sent from John-House-Building to Tom-House~Building: Clean-Up (Plumbing)

Processing agent: Tom-House-Building
Processing request (G322) of agent (Tom-House-Building): Clean-Up = Plumbing
Request sent from Tom-House-Building to Rick~House-Building: Clean~Up (Interior-Plumbing)

Processing agent: Paul—House~Building

Processing agent: Doug-House—Building
Set task: Init-Lay-Foundation cycle to 10 (Max = 22)
Set task: Final-Lay-Foundation cycle to 10 (Max = 22}

Processing agent: Rick-House-Building

Processing request (G339) of agent (Rick—House—Building): Clean-Up = Interior-Plumbing
Set task: Build-Roof cycle to 10 {Max = 25)
Set task: Build-Wall cycle to 10 {(Max = 25)

?

Processing agent: User ...

190

Processing agent: Mark~House~Building
Set task: Build-~Interior status to NO APPLICABLE PLANS

Processing agent: John-House-Building
Processing agent: Tom-House-Building
Processing agent: Paul-House-Building

Processing agent: Doug-House~Building
Set task: Init~Lay-Foundation cycle to 11 (Max = 22)
Set task: Final-Lay-Foundation cycle to 11 (Max = 22)

Processing agent: Rick-House~Building
Set task: Build-Roof cycle to 11 (Max = 25)
Set task: Build-Wall cycle to 11 (Max = 25)
2
Processing agent: User

Processing agent: Mark~House~Building
Set task: House-Building status to TASK PROBLEM

Processing agent: John-House~Building
Processing agent: Tom-House-Building
Processing agent: Paul—House—Building

Processing agent: Doug-House~Building
Set task: Init-Lay-Foundation cycle to 12 (Max = 22)
Set task: Final-Lay-Foundation cycle to 12 (Max = 22)

Processing agent: Rick-House-Building
Set task: Build-Roof cycle to 12 (Max = 25)

Set task: Build-Wall cycle to 12 (Max = 25)
?

Processing agent: User

Processing agent: Mark-House-Building
Set task: House-Building status to NO APPLICABLE PLANS

Processing agent: John-House-Building ...
Processing agent: Tom-~House-Building
Processing agent: Paul-House-Building
Processing agent: Doug-House-Building ...
Set task: Init-Lay-Foundation cycle to 13 (Max = 22)
Set task: Final-Lay-Foundation cycle to 13 (Max = 22)
Processing agent: Rick—House—Building .
Set task: Build-Roof cycle to 13 (Max = 25)

Set task: Build-Wall cycle to 13 (Max = 25)
?

Processing agent: User

Processing agent: Mark—House—Building
Notification sent from Mark~House-Building to User: House-Building (Task-Problem)

Processing agent: John-House~Building
Processing agent: Tom-House-Building
Processing agent: Paul~House-Building
Processing agent: Doug—House—Building
Set task: Init-Lay-Foundation cycle to 14 (Max = 22)
Set task: Final-Lay-Foundation cycle to 14 (Max = 22)
Processing agent: Rick-House-Building

Set task: Build-Roof cycle to 14 (Max = 25)
Set task: Build-Wall cycle to 14 (Max = 25)

191

Processing agent: User
Request sent from User to Mark-House-Building: Clean-uUp (House-Building)

Processing agent: Mark-House~Building
Processing request (G312) of agent (Mark-House~Building): Clean-Up = House-Building
Request sent from Mark—House—Building to John—House-Building: Clean-Up (Build-Exterior)

Processing agent: John~House-Building

Processing request (G314) of agent (John-House—Building): Clean-Up = Build-Exterior
Request sent from John~House-Building to Tom—House—Building: Clean-Up (Lay-Foundation)
Request sent from John—House‘Building to Paul—House—Building: Clean-Up (Build-House~Frame)

Processing agent: Tom-House-Building

Processing request (G320) of agent (Tom—House—Building): Clean~Up = Lay~Foundation
Request sent from Tom-House~Building to Doug-House-Building: Clean-Up (Init-Lay-
Foundation)

Request sent from Tom-House-Building to Doug—House—Building: Clean-Up (Final-Lay-
Foundation)

Processing agent: Paul-House—Building

Processing request (G321) of agent (Paul~House-Building): Clean-Up = Build-House-Frame
Request sent from Paul-House~Building to Rick—House—Building: Clean-Up (Build-Roof)
Request sent from Paul-~House~Building to Rick-House-Building: Clean~-Up (Build-Wall)

Processing agent: Doug—House—Building
Processing request (G328) of agent (Doug—House—Building): Clean-Up Init-Lay-Foundation
Processing request (G329) of agent (Doug—House—Building): Clean-Up = Final~Lay-Foundation

i

Processing agent: Rick-House-Building
Processing request (G331) of agent (Rick-House~Building): Clean-Up = Build-Roof
Processing request (G332) of agent (Rick—House-Building): Clean-Up = Build-Wall
5

Processing agent: User ...

Processing agent: Mark-House~Building
Processing agent: John~House-Building
Processing agent: Tom-House-Building
Processing agent: Paul-House~Building
Processing agent: Doug-House-Building

Processing agent: Rick—House—Building
? AGENT: Mark-House~Building

Plan:
Task: House-Building
Sub-Tasks:
Build-Exterior
Build-Interior
Task:
Task: Build-Exterior
Agent Classes: (Mark-Class—Build—Exterior)
Task: Build~Interior
Agent Classes: (Mark-Class—Build-Interior)

Agent Class:
Class Name: Mark-Class-Build-Exterior

Agents: (John-House-Building)
Class Name: Mark~Class-~Build-Interior
Agents: (John~House-Building})

Constraints:

Incoming Requests:
User: Task (House-Building)
User: Clean-Up (House-Building)

Outgoing Requests:
John-House-Building: Task (Build-Exterior)
John-House-Building: Task (Build-Interior)
John-House-Building: Clean-Up (Build-Interior)
John-House~Building: Clean-Up (Build-Exterior)

192

Incoming Notification:
John-House—Building: Build-Interior (Task-Problem)
Outgoing Notification:
User: House-Building (Task~-Problem)
Activity Blackboard:
? AGENT: John~House-Building
Plan:
Task: Build-Exterior
Sub~Tasks:
Lay-Foundation
Build~House-Frame

Task: Build-Interior

Sub-Tasks:
Plumbing
Electricity
Decoration
Task:
Task: Lay-Foundation
Agent Classes: (John—Class-Lay—Foundation)
Task: Build-House~Frame
Agent Classes: (John—Class—Build-House—Frame)
Task: Plumbing
Agent Classes: (John—Class—Plumbing)
Task: Electricity
Agent Classes: (John—Class-Electricity—A John—Class—Electricity—B)

Task: Decoration
Agent Classes: Nil

Agent Class:
Class Name: John-Class-Lay-Foundation

Agents: (Tom—House—Building Paul-House-Building)
Class Name: John~Class-Build-House—Frame

Agents: (Paul—House—Building)
Class Name: John-Class~-Plumbing

Agents: (Tom-House-Building Paul-House-Building)
Class Name: John—Class—Electricity—A

Agents: (Tom-House~Building)
Class Name: John~Class-Electricity-B

Agents: (Paul—House—Building)
Class Name: John-Class-Decoration

Agents: (Tom-House-Building Paul-House-Building)

Constraints:

Incoming Requests:
Mark-House-Building: Task (Build-Exterior)
Mark-House-Building: Task (Build~Interior)
Mark-House-Building: Clean-uUp (Build-Interior)
Mark—House—Building: Clean-Up (Build-Exterior)

Outgoing Requests:

Tom-House-Building: Task (Lay-Foundation)
Paul-House-Building: Task (Build-House~-Frame)
Tom-House-Building: Task (Plumbing)
Tom—House—Building: Task (Electricity)
Tom-House~Building: Clean-Up (Electricity)
Paul-House~-Building: Task (Electricity)
Paul-House-Building: Clean-Up (Electricity)
Tom-House-~Building: Clean-Up {Plumbing)
Tom-House~Building: Clean-Up (Lay-Foundation)
Paul-House-Building: Clean-Up (Build-House-Frame)

Incoming Notification:

Tom-House-Building: Electricity (Task=-Problem)
Paul-House-Building: Electricity (Task-Problem)

Outgoing Notification:

Mark~House~Building: Build-Interior (Task-Problem)

Activity Blackboard:

? AGENT: Tom-House-Building
Plan:
Task: Lay-Foundation
Sub-Tasks:
Init-Lay-Foundation
Final-Lay-Foundation

193

Task:
Sub~Tasks:

Plumbing

Interior-Plumbing

Task: Decoration

Sub~Tasks:

Interior-Decoration

(Tom-Class—Lay—Foundation)
(Tom—Class-Lay—Foundation)
(Tom—Class—Build—Interior)

(Tom-Class~Build-Interior)

Task:

Task: Init-Lay-Foundation
Agent Classes:

Task: Final-Lay-Foundation
Agent Classes:

Task: Interior-Plumbing
Agent Classes:

Task: Interior-Electricity
Agent Classes:

Task: Interior-Decoration

Agent Classes:

Agent Class:
Class Name:

Class Name:

(Tom—Class—Build—Interior)

Tom-Class~-Lay-Foundation
Agents: (Doug-House-Building)
Tom-Class-Build-Interior

Agents:
Constraints:

Incoming Requests:
John-House-Building:
John—House—Building:
John-House-Building:
John-House-Building:
John—House—Building:
John-House~-Building:

Outgoing Requests:
Doug-House-Building:
Doug-House-Building:
Rick-House-Building:
Rick—House-Building:
Doug-House-Building:
Doug-House~Building:

Incoming Notification:

Outgoing Notification:
John~House-Building:

Activity Blackboard:

? AGENT: Paul—House—Building

Plan:

Task: Build-House-Frame
Sub~Tasks:

Build-Roof

Build-Wall

Task:
Task: Build-Roof
Agent Classes:
Task: Build-Wall

(Rick-House-Building)

Task
Task
Task
Clean-Up
Clean-Up
Clean-Up

{Lay-Foundation)
(Plumbing)
(Electricity)
(Electricity)
{(Plumbing)
(Lay~Foundation)

Task
Task
Task
Clean-Up
Clean-Up
Clean~Up

(Init—Lay—Foundation)
(Final~Lay-Foundation)
(Interior-Plumbing)
(Interior-Plumbing)
{Init-Lay-Foundation)
(Final-Lay=-Foundation)

Electricity (Task-Problem)

(Paul-Class-Build-Roof)

Agent Classes:

Agent Class:
Class Name:

Class Name:

Constraints:

(Paul-Class~-Build-Wall)

Paul~Class-Build-Roof
Agents: (Rick~House-Building)
Paul-Class~Build-Wall
Agents: (Rick-House-Building)

Incoming Requests:

John-House-Building:
John-House-
Jdohn-House-
John-House~Building:

Task (Build-House-Frame)
Building: Task (Electricity)
Building: Clean-Up {(Electricity)
Clean-Up {Build-House-Frame)

194

Outgoing Reguests:
Rick-House-Building:
Rick-House-Building:
Rick—House—Building:
Rick-House-Building:

Incoming Notification:

Outgoing Notification:
John-House~Building:

Activity Blackboard:

? AGENT: Doug~House-Building

Plan:

Task
Task
Clean-Up
Clean~Up

{Build-Roof)
(Build-Wall)
(Build-Roof}
(Build-Wall)

Electricity (Task-Problem)

Task:
Task: Init-Lay-Foundation
Agent Classes: Nil
Task: Final-Lay-Foundation

Agent Classes: Nil

Agent Class:
Constraints:

Incoming Requests:
Tom~House-Building:
Tom-House-Building:
Tom-House-Building:
Tom-House-Building:

Outgoing Requests:

Incoming Notification:

Outgoing Notification:

Activity Blackboard:

? AGENT: Rick-House-Building

Task
Task
Clean-Up
Clean~Up

(Init-Lay-Foundation)
(Final-Lay~Foundation)
(Init-Lay-Foundation)
(Final-Lay-Foundation)

Plan:
Task:
Task: Interior—Plumbing
Agent Classes: Nil
Task: Interior-Electricity
Agent Classes: Nil
Task: Interior-~Decoration
Agent Classes: Nil
Task: Build-Roof
Agent Classes: Nil
Task: Build-Wall
Agent Classes: Nil

Agent Class:
Constraints:

Incoming Requests:
Paul—House—Building:
Paul-House-Building:
Tom-House-Building:
Tom~House-Building:
Paul-House~Building:
Paul -House-Building:

Outgoing Requests:

Incoming Notification:

Outgoing Notification:

Activity Blackboard:

Task (Build-Roof)

Task (Build-Wall)

Task (Interior-Plumbing)
Clean-Up {Interior~Plumbing)
Clean-Up {Build-Roof)
Clean-Up ({Build-Wall)

Sample Run with Dataset D1:

? Dataset Dl is used.

? Request sent from User to Mark-House—Building: Task (House-Building)
2

Processing agent: User

Processing agent: Mark-House-Building

Processing request (G367} of agent (Mark-House*Building): Task = House-Building
Set task: House-Building status to AWAITING SUBTASK DISTRIBUTION
Set task: Build-~Exterior status to AWAITING DISTRIBUTION
Set task: Build-Interior status to AWAITING DISTRIBUTION

Processing agent: John-House-Building
Processing agent: Tom—House-Building
Processing agent: Paul-House-Building
Processing agent: Doug-House-Building

Processing agent: Rick-House-Building
5
Processing agent: User

Processing agent: Mark-House-Building ...
Request sent from Mark-House-Building to John-House-Building: Task (Build-Exterior)
Request sent from Mark-House~Building to John-House~Building: Task (Build-Interior)

Processing agent: John—House—Building ..
Processing request (G369) of agent (John-House-Building): Task = Build-Exterior
Processing request (G370) of agent (John—House-Building): Task = Build-Interior

Set task: Build-~Exterior status to AWAITING SUBTASK DISTRIBUTION

Set task: Build-Interior status to AWAITING SUBTASK DISTRIBUTION

Set task: Lay-Foundation status to AWAITING DISTRIBUTION

Set task: Build-House-Frame status to AWAITING DISTRIBUTION

Set task: Plumbing status to AWAITING DISTRIBUTION
Request sent from John-House-Building to Tom-House-Building: Task (Lay~-Foundation)
Request sent from John~House~Building to Paul-House-Building: Task (Build-House~Frame)

Processing agent: Tom-House-Building

Processing request (G375) of agent (Tom—House»Buildinq): Task = Lay-Foundation
Set task: Lay-Foundation status to AWAITING SUBTASK DISTRIBUTION
Set task: Init-Lay-Foundation status to AWAITING DISTRIBUTION
Set task: Final-Lay-Foundation status to AWAITING DISTRIBUTION

Processing agent: Paul-House-Building

Processing request (G376) of agent (Paul—House—Building): Task = Build-House-Frame
Set task: Build~House-Frame status to AWAITING SUBTASK DISTRIBUTION
Set task: Build-Roof status to AWAITING DISTRIBUTION
Set task: Build-Wall status to AWAITING DISTRIBUTION

Processing agent: Doug—House—Building

Processing agent: Rick~House-Building
?

Processing agent: User
Processing agent: Mark~House-Building

Processing agent: John~House~Building ...
Request sent from John-House~Building to Tom-House-Building: Task (Plumbing)

Processing agent: Tom-House-Building

Processing request (G377) of agent (Tom-House-Building): Task = Plumbing

Request sent from Tom~House-Building to Doug-House-Building: Task (Init-Lay-Foundation}

Request sent from Tom-House-Building to Doug-House-Building: Task (Firnal-Lay-Foundation)
Set task: Plumbing status to NO APPLICABLE PLANS

Processing agent: Paul~House~Building

Request sent from Paul-House-Building to Rick-House-Building: Task (Build-Roof)
Request sent from Paul-House-Building to Rick-House-Building: Task (Build-wWall)

196

Processing agent: Doug-House—Building
Processing request (G381) of agent (Doug—House-Building): Task = Init-Lay-Foundation
Processing request (G382) of agent (Doug—House—Building): Task = Final-Lay-Foundation
Set task: Init-Lay-Foundation cycle to 1 (Max = 22)
Set task: Final-Lay-Foundation cycle to 1 (Max = 22

Processing agent: Rick—House—Building
Processing request (G384) of agent (Rick—House—Building): Task = Build-Roof
Processing request (G385) of agent (Rick—House—Building): Task = Build-Wall
Set task: Build-Roof cycle to 1 (Max = 25)
Set task: Build-Wall cycle to 1 (Max = 25)
ird
Processing agent: User

Processing agent: Mark—House—Building
Processing agent: John—House—Building

Processing agent: Tom-House-Building
Notification sent from Tom-House-Building to John—House—Building: Plumbing (Task-Problem)

Processing agent: Paul—House—Building

Processing agent: Doug—House—Building
Set task: Init-Lay~Foundation cycle to 2 (Max = 22)
Set task: Final-Lay-Foundation cycle to 2 (Max = 22)

Processing agent: Rick-House-Building
Set task: Build-Roof cycle to 2 (Max = 25)
Set task: Build-Wall cycle to 2 (Max = 25)

2

Processing agent: User
Processing agent: Mark-House-Building

Processing agent: John-House-Building ...
Set task: Plumbing status to TASK PROBLEM
Request sent from John-House-Building to Tom-House-Building: Clean-Up (Plumbing)

Processing agent: Tom-House-Building
Processing request (G377) of agent (Tom-House-Building): Clean-Up = Plumbing

Processing agent: Paul-House-Building

Processing agent: Doug-House-Building
Set task: Init-Lay-Foundation cycle to 3 (Max = 22)
Set task: Final-Lay-Foundation cycle to 3 (Max = 22)

Processing agent: Rick-House-Building ...
Set task: Build-Roof cycle to 3 (Max = 25)
Set task: Build-Wall cycle to 3 (Max = 25)
?

Processing agent: User
Processing agent: Mark-~House-Building

Processing agent: John-House-Building .
Set task: Plumbing status to NO APPLICABLE PLANS

Processing agent: Tom-House=-Building
Processing agent: Paul-House-Building

Processing agent: Doug~House-Building ...
Set task: Init-Lay-Foundation cycle to 4 (Max = 22)
Set task: Final-Lay-Foundation cycle to 4 (Max = 22)

Processing agent: Rick—House—Building
Set task: Build~Roof cycle to 4 (Max = 25)

Set task: Build-Wall cycle to 4 (Max = 25)
ird

Processing agent: User

Processing agent: Mark-House-Building

197

Processing agent: John~House—Building
Set task: Build-Interior status to TASK PROBLEM

Processing agent: Tom—House-Building
Processing agent: Paul-House-Building

Processing agent: Doug—House—Building
Set task: Init-Lay-Foundation cycle to 5 (Max = 22)
Set task: Final~Lay-Foundation cycle to 5 (Max = 22)

Processing agent: Rick—House-Building .
Set task: Build-Roof cycle to 5 (Max = 25)
Set task: Build-Wall cycle to 5 {(Max = 25)
el
Processing agent: User

Processing agent: Mark-House-Building

Processing agent: John-House~Building
Set task: Build-Interior status to NO APPLICABLE PLANS

Processing agent: Tom-House~Building
Processing agent: Paul-House-Building

Processing agent: Doug-House~Building
Set task: Init-Lay-Foundation cycle to 6 (Max = 22)
Set task: Final-Lay-Foundation cycle to 6 (Max = 22)

Processing agent: Rick-House~Building
Set task: Build-Roof cycle to 6 (Max = 25)
Set task: Build-Wall cycle to 6 (Max = 25)
5
Processing agent: User

Processing agent: Mark-House-Building

Processing agent: John-House-Building ...
Set task: Electricity status to AWAITING DISTRIBUTION
Set task: Decoration cycle to 1 (Max = 24)

Processing agent: Tom-House~Building
Processing agent: Paul-House-Building

Processing agent: Doug~House-Building
Set task: Init-Lay-Foundation cycle to 7 (Max = 22)
Set task: Final-Lay-Foundation cycle to 7 (Max = 22)

Processing agent: Rick-House-Building
Set task: Build~Roof cycle to 7 (Max = 25)
Set task: Build-Wall cycle to 7 (Max = 25)
el

Processing agent: User
Processing agent: Mark-House~-Building

Processing agent: John-House-Building
Request sent from John~House-Building to Tom-House-Building: Task (Electricity)
Set task: Decoration cycle to 2 [Max = 24)

Processing agent: Tom-House~Building
Processing request (G398) of agent (Tom-House-Building): Task = Electricity
Set task: Electricity status to AWAITING SUBTASK DISTRIBUTION
Set task: Interior-Electricity status to AWAITING DISTRIBUTION

Processing agent: Paul-House-Building

Processing agent: Doug-House~Building
Set task: Init-Lay-Foundation cycle to 8 {(Max = 22)
Set task: Final-Lay-Foundation cycle to 8 (Max = 22)

Processing agent: Rick-House-Building
Set task: Build=-Roof cycle to 8 (Max = 25)

198

Set task: Build-Wall cycle to 8 (Max = 25)
?

Processing agent: User
Processing agent: Mark—House—Building

Processing agent: John-House—Building
Set task: Decoration cycle to 3 (Max = 24)

Processing agent: Tom—House—Building
Request sent from Tom-House~Building to Rick—House—Building: Task (Interior—Electricity)

Processing agent: Paul~House-Building

Processing agent: Doug—House—Building
Set task: Init-Lay-Foundation cycle to 9 (Max = 22)
Set task: Final-Lay~Foundation cycle to 9 (Max = 22)

Processing agent: Rick—House—Building
Processing request (G402} of agent (Rick—House—Building): Task = Interior—Electricity
Set task: Build-Roof cycle to 9 (Max = 25)
Set task: Build-Wall cycle to 9 (Max = 25)
Set task: Interior—Electricity cycle to 1 (Max = 25)
rd

Processing agent: User
Processing agent: Mark—House—Building

Processing agent: John—House—Building
Set task: Decoration cycle to 4 (Max = 24)

Processing agent: Tom—House—Building
Processing agent: Paul—House—Building

Processing agent: Doug—House~Building
Set task: Init-Lay-Foundation cycle to 10 (Max = 22)
Set task: Final-Lay-Foundation cycle to 10 (Max = 22)

Processing agent: Rick—House—Building

Set task: Build-Roof cycle to 10 (Max = 25)

Set task: Build-Wall cycle to 10 (Max = 25)

Set task: Interior—Electricity cycle to 2 (Max = 25)
?
Processing agent: User

Processing agent: Mark—House—Building

Processing agent: John—House-Building
Set task: Decoration cycle to 5 (Max = 24)

Processing agent: Tom—House—Building
Processing agent: Paul—House-Building
Processing agent: Doug—House—Building
Set task: Init-Lay-Foundation cycle to 11 (Max = 22)
Set task: Final-Lay-Foundation cycle to 11 (Max = 22)
Processing agent: Rick—House—Building
Set task: Build-Roof cycle to 11 (Max = 25)
Set task: Build-Wall cycle to 11 (Max = 25)
Set task: Interior-Electricity cycle to 3 (Max = 25)
2
Processing agent: User
Processing agent: Mark—House—Building

Processing agent: John-~House-Building
Set task: Decoration cycle to 6 (Max = 24)

Processing agent: Tom—House-Building

Processing agent: Paul—House—Building

199

Processing agent: Doug-House-Building
Set task: Init-Lay-Foundation cycle to 12 (Max = 22)
Set task: Final-Lay-Foundation cycle to 12 (Max = 22)

Processing agent: Rick-House-Building ...
Set task: Build-Roof cycle to 12 (Max = 25)
Set task: Build-Wall cycle to 12 (Max = 25)

Set task: Interior-Electricity cycle to 4 (Max = 25)
?

Processing agent: User ...
Processing agent: Mark-House-Building

Processing agent: John-House-Building ...
Set task: Decoration cycle to 7 (Max = 24)

Processing agent: Tom-House-Building ...
Processing agent: Paul-House-Building

Processing agent: Doug-House-Building ...
Set task: Init-Lay-Foundation cycle to 13 (Max = 22)
Set task: Final-Lay-Foundation cycle to 13 (Max = 22)

Processing agent: Rick-House-Building
Set task: Build-Roof cycle to 13 (Max 25)
Set task: Build-Wall cycle to 13 (Max 25)
Set task: Interior-Electricity cycle to 5 (Max = 25)

[

?
Processing agent: User

Processing agent: Mark-House-Building ...

Processing agent: John-House-Building
Set task: Decoration cycle to 8 (Max = 24)

Processing agent: Tom-House-Building ...
Processing agent: Paul-House-Building ...
Processing agent: Doug-House-Building ...

Set task: Init-Lay-Foundation cycle to 14 (Max = 22)
Set task: Final-Lay-Foundation cycle to 14 (Max = 22)

Processing agent: Rick-House-Building

Set task: Build-Roof cycle to 14 (Max = 25)

Set task: Build-Wall cycle to 14 (Max = 25}

Set task: Interior-Electricity cycle to 6 (Max = 25)
?

Processing agent: User
Processing agent: Mark-House-Building

Processing agent: John-House-Building ...
Set task: Decoration cycle to 9 (Max = 24)

Processing agent: Tom-House-Building
Processing agent: Paul-House-Building ...

Processing agent: Doug—-House-~Building ...
Set task: Init-Lay-Foundation cycle to 15 (Max = 22)
Set task: Final-Lay-Foundation cycle to 15 (Max = 22)

Processing agent: Rick-House-Building ...

Set task: Build-Roof cycle to 15 (Max = 25)

Set task: Build-Wall cycle to 15 {Max = 25)

Set task: Interior-Electricity cycle to 7 (Max = 25)
2
Processing agent: User

Processing agent: Mark-House-Building ...

Processing agent: John-House-Building ...
Set task: Decoration cycle to 10 (Max = 24)

200

Processing agent: Tom-House-Building
Processing agent: Paul—House—Building

Processing agent: Doug-House—Building
Set task: Init-Lay-Foundation cycle to 16 (Max = 22)
Set task: Final-Lay-Foundation cycle to 16 (Max = 22)

Processing agent: Rick—House-Building

Set task: Build-Roof cycle to 16 (Max = 25)

Set task: Build-Wall cycle to 16 (Max = 25)

Set task: Interior—Electricity cycle to 8 (Max = 25)
5

Processing agent: User
Processing agent: Mark-House~Building

Processing agent: John~House-Building
Set task: Decoration cycle to 11 (Max = 24)

Processing agent: Tom-House-Building
Processing agent: Paul-House-Building

Processing agent: Doug-House-Building
Set task: Init-Lay-Foundation cycle to 17 (Max = 22)
Set task: Final~Lay-Foundation cycle to 17 (Max = 22)

Processing agent: Rick-House-Building

Set task: Build-Roof cycle to 17 (Max = 25)

Set task: Build-Wall cycle to 17 (Max = 25)

Set task: Interior—Electricity cycle to 9 (Max = 25)
?
Processing agent: User

Processing agent: Mark-House-Building

Processing agent: John-House-Building
Set task: Decoration cycle to 12 (Max = 24)

Processing agent: Tom-House-Building
Processing agent: Paul~House-Building

Processing agent: Doug-House-Building
Set task: Init-Lay-Foundation cycle to 18 (Max = 22)
Set task: Final-Lay-Foundation cycle to 18 (Max = 22)

Processing agent: Rick-House-Building

Set task: Build-Roof cycle to 18 (Max = 25)

Set task: Build-Wall cycle to 18 (Max = 25)

Set task: Interior~Electricity cycle to 10 (Max = 25)
?
Processing agent: User

Processing agent: Mark-House~Building

Processing agent: John-House-Building
Set task: Decoration cycle to 13 (Max = 24)

Processing agent: Tom*House-Building
Processing agent: Paul-House-~Building

Processing agent: Doug—House—Building
Set task: Init-Lay-Foundation cycle to 19 (Max = 22)
Set task: Final-Lay-Foundation cycle to 19 (Max = 22)

Processing agent: Rick-House-Building

Set task: Build-Roof cycle to 19 (Max = 25)

Set task: Build-Wall cycle to 19 (Max = 25)

Set task: Interior—Electricity cycle to 11 (Max = 25)
?

Processing agent: User

201

Processing agent: Mark-House-Building

Processing agent: John—House—Building
Set task: Decoration cycle to 14 (Max = 24)

Processing agent: Tom—House—Buiiding
Processing agent: Paul—House—Building

Processing agent: Doug-House—Building
Set task: Init-Lay-Foundation cycle to 20 (Max = 22)
Set task: Final-Lay-Foundation cycle to 20 (Max = 22)

Processing agent: Rick~House~Building

Set task: Build-Roof cycle to 20 (Max = 25)

Set task: Build-Wall cycle to 20 (Max = 25)

Set task: Interior—Electricity cycle to 12 (Max = 25)
rd

Processing agent: User
Processing agent: Mark-House-Building

Processing agent: John—House—Building
Set task: Decoration cycle to 15 (Max = 24)

Processing agent: Tom~House-Building
Processing agent: Paul-House-Building ...

Processing agent: Doug-House-Building
Set task: Init-Lay-Foundation cycle to 21 (Max = 22)
Set task: Final-Lay-Foundation cycle to 21 (Max = 22)

Processing agent: Rick—House—Building
Set task: Build-Roof cycle to 21 (Max 25)
Set task: Build-Walil cycle to 21 (Max = 25)
Set task: Interior~Electricity cycle to 13 (Max

I

25)
2

Processing agent: User
Processing agent: Mark-~House-Building

Processing agent: John—House—Building
Set task: Decoration cycle to 16 (Max = 24)

Processing agent: Tom-House~Building
Processing agent: Paul—House*Building

Processing agent: Doug-House-Building
Set task: Init-Lay-Foundation cycle to 22 (Max = 22)
Set task: Final-Lay-Foundation cycle to 22 (Max = 22)

Processing agent: Rick-House~Building .

Set task: Build-Roof cycle to 22 (Max = 25)

Set task: Build-Wall cycle to 22 (Max = 25)

Set task: Interior-Electricity cycle to 14 (Max = 25)
2
Processing agent: User ...

Processing agent: Mark-House~Building

Processing agent: John-House-Building
Set task: Decoration cycle to 17 (Max = 24)

Processing agent: Tom-House~Building
Processing agent: Paul-House~Building
Processing agent: Doug-House-Building

Set task: Init-Lay-Foundation status to NO PROBLEM
Set task: Final-Lay-Foundation status to NO PROBLEM

Notification sent from Doug-House—Building to Tom—House—Building:

Problem)

202

Init-Lay-Foundation

(No~-

Notification sent from Doug~House-Building to Tom—House—Building: Final~-Lay-Foundation

(No~Problem)

Processing agent: Rick-House-Building
Set task: Build-Roof cycle to 23 ¢
Set task: Build-Wall cycle to 23 ¢

Max = 25)
Max = 25)

Set task: Interior—Electricity cycle to 15 (Max = 25)

-
Processing agent: User

Processing agent: Mark-House—Building

Processing agent: John—House—Building
Set task: Decoration cycle to 18 ¢

Processing agent: Tom~House-Building

Max = 24)

Set task: Init-Lay-Foundation status to NO PROBLEM
Set task: Final-~Lay-Foundation status to NO PROBLEM

Processing agent: Paul~House-Building
Processing agent: Doug-House-Building
Processing agent: Rick-House-Building

Set task: Build-Roof cycle to 24 (
Set task: Build-Wall cycle to 24

Max = 25)
Max = 25)

Set task: Interior—Electricity cycle to 16 (Max = 25)

-

Processing agent: User ...
Processing agent: Mark-House-Building

Processing agent: John—House—Building
Set task: Decoration cycle to 19 (

Processing agent: Tom-House=-Building

Max = 24)

Set task: Lay-~Foundation status to NO PROBLEM
Notification sent from Tom~House-Building to John-House~Building: Lay~Foundation (No-

Problem)

Processing agent: Paul-House~-Building
Processing agent: Doug-House-Building
Processing agent: Rick-House-Building

Set task: Build-Roof cycle to 25 ¢
Set task: Build-Wall cycle to 25 (

Max = 25)
Max = 25)

Set task: Interior—Electricity cycle to 17 (Max = 25)

2

Processing agent: User
Processing agent: Mark-House-Building

Processing agent: John-House-Building
Set task: Decoration cycle to 20 (

Max = 24)

Set task: Lay-Foundation status to NO PROBLEM

Processing agent: Tom-House-Building

Processing agent: Paul-~House-Building
Processing agent: Doug-House-Building
Processing agent: Rick-House-Building

Set task: Build-Roof status to NO
Set task: Build-Wall status to NO

PROBLEM
PROBLEM

Set task: Interior-Electricity cycle to 18 (Max = 25)

Notification sent from Rick-House-Buil
Notification sent from Rick-House-Buil
2

Processing agent: User
Processing agent: Mark-House-Building

Processing agent: John-House-Building

ding to Paul-House-Building: Build-Roof {No-Problem)
ding to Paul-House~Building: Build-Wall {No~Problem)

203

Set task: Decoration cycle to 21 (Max = 24)
Processing agent: Tom-House-Building

Processing agent: Paul—House—Building
Set task: Build-Roof status to NO PROBLEM
Set task: Build-Wall status to NO PROBLEM

Processing agent: Doug—House—Building

Processing agent: Rick-House—Building

Set task: Interior-Electricity cycle to 19 (Max = 25)
?
Processing agent: User

Processing agent: Mark~House-Building

Processing agent: John-House-Building
Set task: Decoration cycle to 22 (Max = 24)

Processing agent: Tom~House-Building

Processing agent: Paul-~House-Building

Set task: Build~House-Frame status to NO PROBLEM
Notification sent from Paul-House-Building to John-House-Building: Build-House-Frame (No-
Problem)

Processing agent: Doug~House-Building

Processing agent: Rick-House-Building
Set task: Interior-Electricity cycle to 20 (Max = 25)
5

Processing agent: User
Processing agent: Mark-House~Building
Processing agent: John-House-Building
Set task: Decoration cycle to 23 (Max = 24)
Set task: Build-House-Frame status to NO PROBLEM
Processing agent: Tom-House~-Building
Processing agent: Paul-House-Building
Processing agent: Doug~House-Building
Processing agent: Rick-House-Building

Set task: Interior—Electricity cycle to 21 (Max = 25)
?

Processing agent: User
Processing agent: Mark-House-Building ...
Processing agent: John-House~Building
Set task: Build-Exterior status to NO PROBLEM
Set task: Decoration cycle to 24 (Max = 24)
Notification sent from John-House-Building to Mark-House-Building: Build-Exterior {No-
Problem)
Processing agent: Tom-House-Building
Processing agent: Paul-House-Building
Processing agent: Doug-House-Building
Processing agent: Rick-House-Building ...
Set task: Interior-Electricity cycle to 22 (Max = 25)
5

Processing agent: User

Processing agent: Mark-House-Building ...
Set task: Build-Exterior status to NO PROBLEM

Processing agent: John-House-Building
Set task: Decoration status to NO PROBLEM

204

Processing agent: Tom-House-Building
Processing agent: Paul-House-Building
Processing agent: Doug—House—Building
Processing agent: Rick~House~Building

Set task: Interior-Electricity cycle to 23 ({Max = 25)
5
érocessing agent: User
Processing agent: Mark-House-Building
Processing agent: John~House-Building
Processing agent: Tom—House—Building
Processing agent: Paul-House~-Building

Processing agent: Doug-House-Building

Processing agent: Rick~House-Building
Set task: Interior-Electricity cycle to 24 (Max = 25)
s

Processing agent: User
Processing agent: Mark-House-Building ...
Processing agent: John-House-Building
Processing agent: Tom-House-Building
Processing agent: Paul-House~Building
Processing agent: Doug-House-Building

Processing agent: Rick-House—Building
Set task: Interior-Electricity cycle to 25 (Max = 25)
rd
érocessing agent: User
Processing agent: Mark-House-Building
Processing agent: John-House~Building
Processing agent: Tom~House-Building
Processing agent: Paul—House—Building
Processing agent: Doug—House—Building
Processing agent: Rick-House~Building
Set task: Interior~Electricity status to NO PROBLEM

Notification sent from Rick-House-Building to Tom-House~Building: Interior-Electricity

(No-Problem)
?

Processing agent: User
Processing agent: Mark-House~Building
Processing agent: John-House-Building

Processing agent: Tom-House-Building
Set task: Interior-Electricity status to NO PROBLEM

Processing agent: Paul~House-Building
Processing agent: Doug—House—Building
Processing agent: Rick-House-Building
?

érocessing agent: User

Processing agent: Mark—House-Building N

Processing agent: John—House-Building
Processing agent: Tom-House-Building
Set task: Electricity status to NO PROBLEM
Notification sent from Tom~-House-Building to John—House—Building: Electricity (No~Problem)
Processing agent: Paul-House-Building
Processing agent: Doug—House-Building
Processing agent: Rick—House—Building
5
Processing agent: User ...

Processing agent: Mark-House-Building

Processing agent: John-House-Building
Set task: Electricity status to NO PROBLEM

Processing agent: Tom-House-Building
Processing agent: Paul-House~Building
Processing agent: Doug-House-Building
Processing agent: Rick-~House-Building
5
Processing agent: User
Processing agent: Mark-House-Building ...
Processing agent: John-House-Building
Set task: Build-Interior status to NO PROBLEM
Notification sent from John-House-Building to Mark-House-Building: Build-Interior (No~
Problem)
Processing agent: Tom—House—Building'...
Processing agent: Paul~House-Building

Processing agent: Doug-House-Building

Processing agent: Rick—House~Building
2

Processing agent: User

Processing agent: Mark~House—Buildihg
Set task: Build-Interior status to NO PROBLEM

Processing agent: John-House-Building
Processing agent: Tom~House-Building
Processing agent: Paul-House-Building
Processing agent: Doug-House-Building
Processing agent: Rick-House-Building
)
érocessing agent: User ...
Processing agent: Mark-House-Building
Set task: House-Building status to NO PROBLEM
Notification sent from Mark-House-Building to User: House-Building (No-Problem)
Processing agent: John—House-Building
Processing agent: Tom-House-Building
Processing agent: Paul-House-Building

Processing agent: Doug~House—Building

Processing agent: Rick-House-Building

206

?

Processing agent: User

Processing agent: Mark-House-Building
Processing agent: John—House—Building
Processing agent: Tom-House-Building
Processing agent: Paul—House—Building
Processing agent: Doug-House-Building
Processing agent: Rick~House-Building

? AGENT: Mark—House—Building
Plan:
Task: House-Building
Sub-Tasks:
Build-Exterior
Build-Interior

Task:
Task: Build-Exterior
Agent Classes:
Task: Build-Interior

Agent Classes:

Agent Class:
Class Name:
Agents:
Class Name:
Agents:

Constraints:

Incoming Requests:
User: Task
Outgoing Requests:
John-House-Building:
John-House~Building:
Incoming Notification:
John-House-Building:
John-House-Building:
Outgoing Notification:
User: House-Building
Activity Blackboard:

Task: House-Building Status:
Status:
Status:

Task: Build-Exterior
Task: Build-Interior
? AGENT: John-House-Building
Plan:
Task: Build-Exterior
Sub-Tasks:
Lay-Foundation

Build~House-Frame

Task: Build-Interior
Sub-Tasks:
Plumbing

Task: Build~Interior
Sub-Tasks:
Electricity
Decoration

Task:
Task:
Agent Classes:
Task: Build-House-Frame
Agent Classes:
Task: Plumbing
Agent Classes:
Task: Electricity

Lay-Foundation

Task
Task

Build-Exterior
Build-Interior

(Mark—Class—Build—Exterior)
(Mark—Class—Build—Interior)
Mark-Class-Build-Exterior
(John-House-Building)

Mark-Class-Build-Interior
(John-House~Building)

(House-Building)

(Build-Exterior)
(Build-Interior)

(No-Problem)
(No-Problem)

(No-Problem)

No~-Problem~Replied Current Agent: Nil
No-Problem Current Agent: John—House—Building
No-Problem Current Agent: John-House-Building

(John-Class-Lay-Foundation)
(John—Class-Build—House—Frame)

(John~ClassjPlumbing)

207

Agent Classes:
Decoration
Agent Classes:

Task:

Agent Class:

(John—Class—Electricity)

Nil

Class Name: John-Class-Lay-Foundation

Agents: (Tom—House—Building Paul-House-Building}
Class Name: John—Class—Build—House—Frame

Agents: (Paul—House~Building)
Class Name: John-Class~Plumbing

Agents: (Tom—House—Building)
Class Name: John—Class—Electricity

Agents: (Tom—House—Building Paul-House—Building)
Class Name: John-Class-Decoration

Agents: (Tom-House-Building Paul-House-Building)

Constraints:

Incoming Requests:

Mark-House~Building: Task (Build-Exterior)

Mark-House-Building: Task (Build~Interior)
Outgoing Requests:

Tom~House-Building: Task (Lay-Foundation)

Paul—House—Building: Task (Build=-House~-Frame)

Tom-House-Building: Task (Plumbing)

Tom-House-Building: Clean~-Up (Plumbing)

Tom-House-Building: Task (Electricity)
Incoming Notification:

Tom-House-Building: Plumbing (Task-Problem)

Tom~House-Building:
Paul-House-Building:
Tom-House-Building:
Outgoing Notification:
Mark-House-Building:
Mark-House-Building:
Activity Blackboard:

Task: Build-Exterior Status:
Task: Build-Interior

Task: Lay-Foundation Status:
Task: Build-House-Frame

Task: Electricity Status:
Task: Decoration Status:

? AGENT: Tom-House-Building
Plan:
Task: Lay-Foundation
Sub-Tasks:

Lay-Foundation
Build-House~Frame
Electricity

Build~Exterior
Build~-Interior

Status:

{(No-Problem)
(No-Problem)

(No~-Problem)
(No-Problem}

No-~-Problem Current Agent:
No-Problem Current Agent:

Init-Lay-Foundation
Final-Lay-Foundation

Task: Electricity
Sub-Tasks:

Interior-Electricity

Task: Decoration
Sub-Tasks:

Interior-Decoration

(Tom~-Class~Lay-Foundation)
(Tom-Class~Lay-Foundation)
(Tom-Class-Build~Interior)

(Tom-Class~-Build-Interior)

Task:

Task: Init-Lay-Foundation
Agent Classes:

Task: Final-Lay-Foundation
Agent Classes:

Task: Interior-Plumbing
Agent Classes:

Task: Interior-Electricity
Agent Classes:

Task: Interior~Decoration

Agent Classes:

(Tom~-Class-Build-Interior)

Agent Class:

Class Name:

Class Name:

Tom~Class-Lay~Foundation
Agents: (Doug-House-Building)
Tom-Class~Build-Interior
Agents: (Rick~House-Building)

208

(No-Problem)

No-Problem~Replied Current Agent: Nil
Status: No-Problem-Replied Current Agent: Nil
No-Problem Current Agent: Tom-House-Building
No-Problem Current Agent:

Paul-House-Building
Tom-House-Building
Nil

Constraints:

Incoming Requests:
John-House~Building: Task (Lay~Foundation)
John-House-Building: Task (Plumbing)
John-House-Building: Clean-Up (Plumbing)
John-House-Building: Task (Electricity)

Outgoing Requests:

Doug~House—Building: Task (Init-Lay-Foundation)
Doug—House—Building: Task (Final-Lay~Foundation)
Rick—House-Building: Task (Interior—Electricity)

Incoming Notification:

Doug—House-Building: Init-Lay-Foundation (No-Problem)
Doug-House~Building: Final-Lay-Foundation (No-Problem)
Rick-House-Building: Interior-Electricity (No-Problem)

Outgoing Notification:

John—House-Building: Plumbing (Task~Problem)
John-House-Building: Lay-Foundation (No-Problem)
John-House~Building: Electricity (No-Problem)

Activity Blackboard:

Task: Lay-Foundation Status: No-Problem~Replied Current Agent: Nil

Task: Init-Lay-Foundation Status: No-Problem Current Agent: Doug-House~Building
Task: Final-Lay-Foundation Status: No-Problem Current Agent: Doug-House-Building

Task: Electricity Status: No-Problem-Replied Current Agent: Nil

Task: Interior-Electricity Status: No-Problem Current Agent: Rick-House-Building

? AGENT: Paul~House-Building

Plan:
Task: Build-House-Frame
Sub~-Tasks:
Build-Roof
Build-Wall
Task:
Task: Build-Roof
Agent Classes: (Paul-Class-Build-Roof)
Task: Build-Wall
Agent Classes: (Paul-Class~Build-Wall}

Agent Class:
Class Name: Paul-Class~Build-Roof

Agents: (Rick—House—Building)
Class Name: Paul-Class-Build-Wall
Agents: (Rick-House~Building)

Constraints:

Incoming Requests:
John-House-Building: Task (Build~House-Frame)
Outgoing Requests:
Rick-House-Building: Task (Build-Roof)
Rick-House-Building: Task (Build-Wall)
Incoming Notification:
Rick-House-Building: Build-Roof (No-Problem)
Rick-~House-Building: Build-Wall (No-Problem)
Outgoing Notification:
John-House-Building: Build-House-Frame {No-Problem)
Activity Blackboard:
Task: Build-House-Frame Status: No~Problem-Replied Current Agent: Nil
Task: Build-Roof Status: No-Problem Current Agent: Rick-House~Building
Task: Build-Wall Status: No-Problem Current Agent: Rick-House-Building
? AGENT: Doug-House-Building
Plan:

Task:
Task: Init-Lay-Foundation
Agent Classes: Nil
Task: Final-Lay-Foundation
Agent Classes: Nil
Agent Class:

Constraints:

209

Incoming Requests:
Tom-House—Building:
Tom-House-Building:

Outgoing Requests:

Incoming Notification:

Outgoing Notification:
Tom~House-Building:
Tom~House-Building:

Activity Blackboard:

Task {Init-Lay—Foundation)
Task (Final-Lay-Foundation)

Init-Lay~Foundation {(No-Problem)
Final-Lay-Foundation (No=-Problem)

Task: Init-Lay-Foundation Status: No-Problem-Replied Current Agent: Nil
Task: Final-Lay-Foundation Status: No-Problem-Replied Current Agent: Nil

? AGENT: Rick~House-Building

Plan:

Task:

Task: Interior-Plumbing

Agent Classes: Nil

Task: Interior-Electricity

Agent Classes: Nil

Task: Interior-Decoration

Agent Classes: Nil

Task: Build-Roof

Agent Classes: Nil

Task: Build~Wall

Agent Classes: Nil

Agent Class:
Constraints:

Incoming Requests:
Paul-House-Building:
Paul—House—Building:
Tom-House-Building:

Outgoing Requests:

Incoming Notification:

Outgoing Notification:
Paul—House—Building:
Paul-House-Building:
Tom-House-Building:

Activity Blackboard:

Task (Build-Roof)
Task (Build~Wall)
Task (Interior—Electricity)

Build-Roof (No-Problem)
Build-Wall (No-Problem)
Interior—Electricity (No-Problem)

Task: Build-Roof Status: No-Problem-Replied Current Agent: Nil
Task: Build-Wall Status: No-Problem-Replied Current Agent: Nil
Task: Interior—Electricity Status: No-Problem-Replied Current Agent: Nil

210

Sample Run with Dataset D2:

? Dataset D2 is used.
? Request sent from User to Mark—House—Building: Task (House~Building)
?

Processing agent: User

Processing agent: Mark-House-Building

Processing request (G416) of agent (Mark-House—Building): Task = House—Building
Set task: House-Building status to AWAITING SUBTASK DISTRIBUTION
Set task: Build-Exterior status to AWAITING DISTRIBUTION
Set task: Build-Interior status to AWAITING DISTRIBUTION

Processing agent: John-House~Building
Processing agent: Tom~House-Building
Processing agent: Paul—House—Building
Processing agent: Doug~House~Building

Processing agent: Rick-House-Building
?

Processing agent: User

Processing agent: Mark—House—Building .
Request sent from Mark—House—Building to John-House—Building: Task (Build-Exterior)
Request sent from Mark—House—Building to John—House—Building: Task (Build-Interior)

Processing agent: John-House-Building .
Processing request (G418) of agent (John—House—Building): Task = Build-Exterior
Processing request (G419) of agent (John—House—Building): Task = Build-Interior

Set task: Build-Exterior status to AWAITING SUBTASK DISTRIBUTION

Set task: Build-Interior status to AWAITING SUBTASK DISTRIBUTION

Set task: Lay-Foundation status to AWAITING DISTRIBUTION

Set task: Build-House-Frame status to AWAITING DISTRIBUTION

Set task: Plumbing status to AWAITING DISTRIBUTION
Request sent from John-House-Building to Tom-House-Building: Task (Lay-Foundation)
Request sent from John-House~-Building to Paul-House-Building: Task (Build-House~Frame)

Processing agent: Tom-House-Building

Processing request (G424) of agent (Tom-House-Building): Task = Lay-Foundation
Set task: Lay-Foundation status to AWAITING SUBTASK DISTRIBUTION
Set task: Init-Lay-Foundation status to AWAITING DISTRIBUTION
Set task: Final-Lay-Foundation status to AWAITING DISTRIBUTION

Processing agent: Paul—House—Building

Processing request (G425) of agent (Paul-House-Building): Task = Build-House-Frame
Set task: Build-House-Frame status to AWAITING SURTASK DISTRIBUTION
Set task: Build-Roof status to AWAITING DISTRIBUTION
Set task: Build-Wall status to AWAITING DISTRIBUTION

Processing agent: Doug-House~Building

Processing agent: Rick~House~Building
?

Processing agent: User
Processing agent: Mark-House~Building

Processing agent: John—House—Building .
Request sent from John-House-Building to Tom-House~Building: Task (Plumbing)

Processing agent: Tom-House-Building

Processing request (G426) of agent (Tom-House-Building): Task = Plumbing

Request sent from Tom~House-Building to Doug~House-Building: Task (Init-Lay~Foundation)

Request sent from Tom~House-Building to Doug~House-Building: Task (Final-Lay~Foundation)
Set task: Plumbing status to NO APPLICABLE PLANS

Processing agent: Paul-House~Building
Request sent from Paul-House~Building to Rick-House~Building: Task {Build-Roof)
Request sent from Paul-House-Building to Rick-House-Building: Task (Build-wWall)

211

Processing agent: Doug*House—Building
Processing request (G430) of agent (Doug—House-Building): Task = Init-Lay-Foundation
Processing request (G431} of agent (Doug—House-Building): Task = Final-Lay-Foundation
Set task: Init~Lay-Foundation cycle to 1 (Max = 22)
Set task: Final-Lay-Foundation cycle to 1 (Max = 22)

Processing agent: Rick—House—Building
Processing request (G433) of agent (Rick—House—Building): Task
Processing request (G434) of agent (Rick—House—Building): Task
Set task: Build-Roof cycle to 1 {Max = 25)
Set task: Build-Wall cycle to 1 (Max = 25)

Build~Roof
Build-wWall

i

5
Processing agent: User

Processing agent: Mark-House-Building
Processing agent: John—House—Building

Processing agent: Tom-House-Building
Notification sent from Tom-House~Building to John-House—Building: Plumbing (Task-Problem)

Processing agent: Paul-House-Building

Processing agent: Doug-House-Building
Set task: Init-Lay-Foundation cycle to 2 (Max = 22)
Set task: Final-Lay-Foundation cycle to 2 (Max = 22)

Processing agent: Rick-House-Building ...
Set task: Build~Roof cycle to 2 (Max = 25)
Set task: Build-Wall cycle to 2 (Max = 25)
5

Processing agent: User
Processing agent: Mark-House-Building

Processing agent: John-House~-Building ...
Set task: Plumbing status to TASK PROBLEM
Request sent from John-House-Building to Tom-House-Building: Clean-Up (Plumbing)

Processing agent: Tom=~House~Building
Processing request (G426) of agent (Tom~House-~Building): Clean~Up = Plumbing

Processing agent: Paul-House-Building

Processing agent: Doug-House-Building
Set task: Init-Lay-Foundation cycle to 3 {Max = 22)
Set task: Final-Lay-Foundation cycle to 3 (Max = 22)

Processing agent: Rick-House~Building
Set task: Build-Roof cycle to 3 (Max = 25)
Set task: Build-Wall cycle to 3 (Max = 25)
i

Processing agent: User
Processing agent: Mark-House-Building

Processing agent: John-House-Building
Set task: Plumbing status to NO APPLICABLE PLANS

Processing agent: Tom-House-Building
Processing agent: Paul—House—Building
Processing agent: Doug-House-Building
Set task: Init-Lay-Foundation cycle to 4 (Max = 22)
Set task: Final-Lay-Foundation cycle to 4 (Max = 22)
Processing agent: Rick-House-Building
Set task: Build-Roof cycle to 4 (Max = 25)
Set task: Build-Wall cycle to 4 (Max = 25)
?

Processing agent: User

Processing agent: Mark-House-Building

212

Processing agent: John—House~Building
Set task: Build-Interior Status to TASK PROBLEM

Processing agent: Tom—House—Building
Processing agent: Paul—House—Building

Processing agent: Doug—House—Building
Set task: Init-Lay-Foundation cycle to 5 {Max = 22)
Set task: Final~-Lay-Foundation cycle to 5 (Max = 22)

Processing agent: Rick—House—Building
Set task: Build-Roof cycle to 5 (Max = 25)

Set task: Build-wWall cycle to 5 (Max = 25)
?

Processing agent: User
Processing agent: Mark-House-Building

Processing agent: John-House-Building
Set task: Build-Interior status to NO APPLICABLE PLANS

Processing agent: Tom-House—Building
Processing agent: Paul-House-Building

Processing agent: Doug—House-Building
Set task: Init-Lay-Foundation cycle to 6 (Max = 22)
Set task: Final-Lay-Foundation cycle to 6 (Max = 22)

Processing agent: Rick-House-Building
Set task: Build-Roof cycle to 6 (Max = 25)

Set task: Build-Wall cycle to 6 (Max = 25)
ird

Processing agent: User
Processing agent: Mark—House-Building

Processing agent: John—House—Building
Set task: Electricity status to AWAITING DISTRIBUTION
Set task: Decoration cycle to 1 (Max = 24)

Processing agent: Tom—House-Building
Processing agent: Paul-House-Building

Processing agent: Doug*House~Building
Set task: Init-Lay-Foundation cycle to 7 (Max = 22)
Set task: Final-Lay-Foundation cycle to 7 (Max = 22)

Processing agent: Rick-House~Building
Set task: Build-Roof cycle to 7 (Max = 25)
Set task: Build-Wall cycle to 7 (Max = 25)
5
Processing agent: User

Processing agent: Mark—House-Building

Processing agent: John—House—Buildinq
Request sent from John-House~Building to Paul-House-Building: Task (Electricity)
Set task: Decoration cycle to 2 (Max = 24)

Processing agent: Tom-House-Building

Processing agent: Paul-House—Building
Processing request (G447) of agent (Paul-House-~Building): Task = Electricity
Set task: Electricity status to NO APPLICABLE PLANS

Processing agent: Doug-House-Building
Set task: Init-Lay-Foundation cycle to 8 (Max = 22)
Set task: Final-Lay-Foundation cycle to 8 (Max = 22)
Processing agent: Rick~House~Building
Set task: Build-Roof cycle to 8 (Max 25)
Set task: Build-Wall cycle to 8 (Max = 25§

it

213

?
Processing agent: User

Processing agent: Mark—House—Building

Processing agent: John—House—Building ...
Set task: Decoration cycle to 3 (Max = 24)

Processing agent: Tom—House—Buildinq

Processing agent: Paul-House-Building
Notification sent from Paul-House~-Building to John-House-Building: Electricity (Task-
Problem)

Processing agent: Doug-House-Building
Set task: Init-Lay-Foundation cycle to 9 (Max = 22)
Set task: Final-Lay-Foundation cycle to 9 (Max = 22)

Processing agent: Rick-House-Building
Set task: Build-Roof cycle to 9 (Max = 25)
Set task: Build-Wall cycle to 9 (Max = 25)
?

Processing agent: User
Processing agent: Mark-House-Building

Processing agent: John—House—Building
Set task: Decoration cycle to 4 (Max = 24)
Set task: Electricity status to TASK PROBLEM
Request sent from John—House—Building to Paul~House-Building: Clean-Up (Electricity)

Processing agent: Tom-House-Building

Processing agent: Paul-House-Building
Processing request (G447) of agent (Paul-House—Building): Clean-Up = Electricity

Processing agent: Doug-House~Building ...
Set task: Init-Lay-Foundation cycle to 10 (Max = 22)
Set task: Final-Lay-Foundation cycle to 10 (Max = 22)

Processing agent: Rick-House-Building
Set task: Build-Roof cycle to 10 (Max = 25)
Set task: Build-Wall cycle to 10 (Max = 25)
?

Processing agent: User
Processing agent: Mark-House-Building
Processing agent: John-House~-Building
Set task: Electricity status to NO APPLICABLE PLANS
Set task: Decoration cycle to 5 (Max = 24)
Processing agent: Tom-House-Building
Processing agent: Paul-House-Building
Processing agent: Doug-House-Building
Set task: Init-Lay-Foundation cycle to 11 (Max = 22)
Set task: Final-Lay-Foundation cycle to 11 (Max = 22)
Processing agent: Rick-House-Building ..
Set task: Build-Roof cycle to 11 (Max = 25)
Set task: Build-Wall cycle to 11 (Max = 25)

?

Processing agent: User
Processing agent: Mark~House—Building -
Processing agent: John-House-Building
Set task: Build-Interior status to TASK PROBLEM
Set task: Decoration cycle to 6 (Max = 24)

Processing agent: Tom-House-Building

Processing agent: Paul-House-Building

214

Processing agent: Doug~House—Building
Set task: Init-Lay-Foundation cycle to 12 {Max = 22)
Set task: Final-Lay-Foundation cycle to 12 (Max = 22)

Processing agent: Rick-House—Building
Set task: Build-Roof cycle to 12 (Max = 25)
Set task: Build-Wall cycle to 12 (Max = 25)
s

Processing agent: User
Processing agent: Mark—House—Building

Processing agent: John-House-Building
Set task: Build~-Interior status to NO APPLICABLE PLANS
Set task: Decoration cycle to 7 (Max = 24)

Processing agent: Tom~House~Building
Processing agent: Paul-House-Building

Processing agent: Doug-House-Building
Set task: Init-Lay-Foundation cycle to 13 (Max = 22)
Set task: Final-Lay-Foundation cycle to 13 (Max = 22)

Processing agent: Rick-House~Building
Set task: Build-Roof cycle to 13 (Max = 25)
Set task: Build-Wall cycle to 13 (Max = 25)
ird
Processing agent: User

Processing agent: Mark-House-Building

Processing agent: John-House~Building
Notification sent from John~House-Building to Mark-House~Building: Build-Interior (Task-
Problem)

Set task: Decoration cycle to 8 (Max = 24)

Processing agent: Tom-House—Building
Processing agent: Paul—House-Building

Processing agent: Doug~House~Building
Set task: Init-Lay-Foundation cycle to 14 (Max = 22)
Set task: Final~-Lay-Foundation cycle to 14 (Max = 22)

Processing agent: Rick-House—Building
Set task: Build-Roof cycle to 14 (Max = 25)
Set task: Build-Wall cycle to 14 {Max = 25)
il

Processing agent: User

Processing agent: Mark—House—Building
Set task: Build-Interior status to TASK PROBLEM
Request sent from Mark-House-Building to John-House—Building: Clean-Up (Build-Interior)

Processing agent: John-House~Building
Processing request (G419) of agent (John—House—Building): Clean-Up = Build-Interior

Processing agent: Tom-House~Building
Processing agent: Paul-House-Building

Processing agent: Doug-House-Building
Set task: Init-Lay-Foundation cycle to 15 (Max = 22)
Set task: Final-Lay-Foundation cycle to 15 (Max = 22)

Processing agent: Rick-House—Building
Set task: Build-Roof cycle to 15 (Max = 25)
Set task: Build-Wall cycle to 15 (Max = 25)
?
Processing agent: User

Processing agent: Mark-House-Building
Set task: Build-Interior status to NO APPLICABLE PLANS

215

Processing agent: John—House—Building
Processing agent: Tom—House—Building
Processing agent: Paul—House-Building
Processing agent: Doug—House—Building
Set task: Init-Lay~Foundation cycle to 16 (Max = 22)
Set task: Final-Lay-Foundation cycle to 16 (Max = 22)
Processing agent: Rick—House—Building

Set task: Build-Roof cycle to 16 (Max 25)
Set task: Build-Wall cycle to 16 (Max = 25)

it

il
Processing agent: User

Processing agent: Mark—House—Building
Set task: House-Building status to TASK PROBLEM

Processing agent: John-House-Building
Processing agent: Tom—House—Building
Processing agent: Paul—House—Building
Processing agent: Doug—House—Building
Set task: Init-Lay-Foundation cycle to 17 (Max = 22)
Set task: Final-Lay-Foundation cycle to 17 (Max = 22)
Processing agent: Rick—House-Building

Set task: Build-Roof cycle to 17 (Max
Set task: Build-Wall cycle to 17 (Max

25)
25)

el
Processing agent: User

Processing agent: Mark-House-Building
Set task: House-Building status to NO APPLICABLE PLANS

Processing agent: John-House—Building
Processing agent: Tom-House-Building
Processing agent: Paul—House—Building

Processing agent: Doug-House~Building
Set task: Init-Lay-Foundation cycle to 18 (Max = 22)
Set task: Final-Lay-Foundation cycle to 18 (Max = 22)

Processing agent: Rick-House-Building
Set task: Build~Roof cycle to 18 (Max = 25)

Set task: Build-Wall cycle to 18 (Max = 25)
?

Processing agent: User ...

Processing agent: Mark—House-Building
Notification sent from Mark-House—Building to User: House-Building (Task~Problem)

Processing agent: John—House-Building
Processing agent: Tom-House-Building
Processing agent: Paul-House-Building
Processing agent: Doug-House-Building
Set task: Init-Lay-Foundation cycle to 19 (Max = 22)
Set task: Final-Lay-Foundation cycle to 19 (Max = 22)
Processing agent: Rick-House—Building

Set task: Build-Roof cycle to 19 (Max = 25)
Set task: Build-Wall cycle to 19 (Max 25)

>
Processing agent: User
Request sent from User to Mark-House-Building: Clean-Up (House~Building)

216

Processing agent: Mark-House~Building
Processing request (G416) of agent (Mark—House—Building): Clean-Up = House—Building
Request sent from Mark-House~Building to John—House—Building: Clean-Up (Build-Exterior)

Processing agent: John—House—Building

Processing request (G418) of agent (John—House-Building): Clean-Up = Build-Exterior
Request sent from John—House-Building to Tom-House—Building: Clean-Up (Lay-Foundation)
Request sent from John—House—Building to Paul—House—Buildinq: Clean-Up (Build-House~Frame)

Processing agent: Tom—House—Building

Processing request (G424) of agent (Tom*House—Building): Clean-Up = Lay-Foundation
Request sent from Tom—House-Building to Doug-House—Building: Clean-Up (Init-Lay~-
Foundation)

Request sent from Tom—House-Building to Doug—House—Building: Clean~Up {(Final-Lay-
Foundation)

Processing agent: Paul—House-Building
Processing request (G425) of agent (Paul—House—Building): Clean-Up = Build~House-Frame
Request sent from Paul~House-Building to Rick—House—Building: Clean-Up (Build=-Roof}
Request sent from Paul-House-Building to Rick-House-Building: Clean-Up (Build-Wall)
Processing agent: Doug—House-Building

Processing request (G430) of agent (Doug-House-Building): Clean-Up = Init-Lay-Foundation
Processing request (G431) of agent (Doug-House-Building): Clean-Up = Final-Lay-Foundation
Processing agent: Rick—House~Building

Processing request (G433) of agent (Rick—House-Building): Clean~-Up = Build-Roof
Processing request (G434) of agent (Rick—House—Building): Clean-Up = Build-Wall

5

Processing agent: User

Processing agent: Mark-House-Building

Processing agent: John-House—Building

Processing agent: Tom~-House-Building

Processing agent: Paul—House—Building

Processing agent: Doug-House-Building

Processing agent: Rick—House—Building
? AGENT: Mark-House~Building

Plan:
Task: House-Building
Sub-Tasks:
Build-Exterior
Build~Interior
Task:
Task: Build-Exterior
Agent Classes: (Mark—Class—Build—Exterior)
Task: Build-Interior
Agent Classes: (Mark—Class—Build—Interior)

Agent Class:
Class Name: Mark-Class-Build-Exterior

Agents: (John-House-Building)
Class Name: Mark-Class-Build-Interior
Agents: (John-House-Building)

Constraints:

Incoming Requests:
User: Task (House-Building)
User: Clean-Up (House-Building)
Outgoing Requests:
John-House-Building: Task (Build-Exterior)
John-House-Building: Task (Build-Interior)
John-House=-Building: Clean-Up (Build-Interior)
John-House-Building: Clean-Up (Build-Exterior)
Incoming Notification:
John-House-Building: Build-Interior (Task-Problem)
Outgoing Notification:

217

User: House~Building
Activity Blackboard:
? AGENT: John—House-Building
Plan:
Task: Build-Exterior
Sub~Tasks:
Lay-Foundation
Build-House~Frame

Task: Build-Interior
Sub~Tasks:
Plumbing

Task: Build-Interior
Sub~Tasks:
Electricity
Decoration

Task:
Task:
Agent Classes:

Lay-Foundation

(Task-Problem)

(John—Class—Lay—Foundation)

Task: Build-House-Frame
Agent Classes: (John~Class—Build-House—Frame)
Task: Plumbing
Agent Classes: (John—Class—Plumbing)
Task: Electricity
Agent Classes: (John—Class—Electricity)
Task: Decoration

Agent Classes: Nil

Agent Class:
Class Name:
Agents:
Class Name:

John-Class-Lay-Foundation
(Tom—House—Building Paul—House—Building)
John-Class-Build-House-Frame

Agents: (Paul—House—Building)
Class Name: John~Class—Plumbing
Agents: (Tom—House~Building)

Class Name:
Agents:
John~Class-Decoration
Agents:

Class Name:

Constraints:

Incoming Requests:

John—Class~Electricity
(Paul—House—Building)

(Tom—House—Building Paul-House-Building)

Mark-House—Building: Task (Build-Exterior)
Mark-House-Building: Task (Build-Interior)
Mark-House-Building: Clean~Up (Build-Interior)
Mark-House-Building: Clean-Up (Build-Exterior)
Outgoing Requests:
Tom-House-Building: Task {Lay-Foundation)
Paul-House-Building: Task {Build-House-Frame)
Tom-House—Building: Task {Plumbing)
Tom-House-Building: Clean-Up (Plumbing)
Paul-House-Building: Task (Electricity)
Paul—House~Building: Clean-Up (Electricity)
Tom—House—Building: Clean~Up (Lay-Foundation)
Paul-House-Building: Clean-Up (Build-House-Frame)
Incoming Notification:
Tom-House-Building: Plumbing (Task-Problem)
Paul-House-Building: Electricity (Task~Problem)

Outgoing Notification:
Mark-House-Building:
Activity Blackboard:
? AGENT: Tom-House=-Building
Plan:
Task: Lay-Foundation
Sub-Tasks:
Init-Lay-Foundation
Final-Lay-Foundation

Task: Electricity
Sub~Tasks:
Interior—Electricity

Build-Interior

(Task-Problem)

218

Task: Decoration
Sub-Tasks:

Task:
Task:

Agent Classes:
Final-Lay-Foundation

Task:

Agent Classes:
Interior—Plumbing

Task:

Agent Classes:
Interior—Electricity

Task:

Agent Classes:
Interior-Decoration

Task:

Agent Classes:

Agent Class:
Class Name:

Class Name:

Interior-Decoration

Init-Lay-Foundation

(Tom—Class—Lay-Foundation)
(Tom-Class—Lay—Foundation)
(Tom-Class—Build—Interior)
(Tom—Class—Build—Interior)
(Tom—Class—Build—Interior)
Tom-Class-Lay-Foundation
Agents: (Doug—House—Building)

Tom-Class-Build-Interior
Agents: (Rick—House—Building)

Constraints:

Incoming Requests:
John—House—Building:
John~House-Building:
John-House-Building:
John—House—Building:

Outgoing Requests:
Doug-House—Building:
Doug—House-Building:
Doug—House-Building:
Doug-House-Building:

Incoming Notification:

Outgoing Notification:
John—House—Building:

Activity Blackboard:

? AGENT: Paul—House—Building

Plan:

Task: Build-House-Frame
Sub-Tasks:

Build-Roof

Build-Wall

Task:
Task: Build-Roof

Task (Lay~Foundation)

Task (Plumbing)

Clean-Up (Plumbing)

Clean-Up (Lay-Foundation)

Task (Init—Lay—Foundation)

Task (Final-Lay-Foundation)
Clean-Up (Init—Lay—Foundation)
Clean-Up (Final-Lay~Foundation}
Plumbing (Task-Problem)

Agent Classes:
Task: Build-Wall
Agent Classes:

(Paul-Class~Build~Roof)

(Paul-Class-Build-Wall)

Agent Class:
Class Name:

Class Name:

Constraints:

Paul-Class-Build-Roof
Agents: (Rick—House—Building)
Paul-Class-Build-Wall
Agents: (Rick—House—Building)

Incoming Requests:

John—House-Building:
John—House—Building:
John-House-Building:
John-House-Building:
Outgoing Requests:
Rick-House~Building:
Rick-House—Building:
Rick—House—Building:
Rick—House-Building:
Incoming Notification:
Outgoing Notification:
John—House—Building:

Task
Task
Clean-Up
Clean-Up

(Build-House~Frame)
(Electricity)
(Electricity)
(Build~House-Frame)

Task
Task
Clean~Up
Clean~Up

(Build~Roof)
(Build~-Wall)
(Build~Roof)
(Build-Wall)

Electricity (Task-Problem)

219

Activity Blackboard:
? AGENT: Doug—House—Building
Plan:

Task:
Task: Init-Lay-Foundation
Agent Classes: Nil
Task: Final-Lay-Foundation
Agent Classes: Nil

Agent Class:
Constraints:

Incoming Requests:
Tom-House-Building: Task (Init-Lay-Foundation)
Tom-House-Building: Task (Final-Lay-Foundation)
Tom—House—Building: Clean-Up (Init—Lay—Foundation)
Tom-House-Building: Clean~Up (Final~Lay-Foundation)

Outgoing Requests:

Incoming Notification:

Outgoing Notification:

Activity Blackboard:

? AGENT: Rick—House—Building

Plan:

Task:
Task: Interior-Plumbing
Agent Classes: Nil
Task: Interior—Electricity
Agent Classes: Nil
Task: Interior-Decoration
Agent Classes: Nil
Task: Build-Roof
Agent Classes: Nil
Task: Build-Wall
Agent Classes: Nil

Agent Class:
Constraints:

Incoming Requests:
Paul-House—Building: Task (Build~Roof)
Paul—House~Building: Task (Build-Wall)
Paul~House—Building: Clean-Up (Build-Roof)
Paul—House—Building: Clean-Up (Build-Wall)

Outgoing Requests:

Incoming Notification:

Outgoing Notification:

Activity Blackboard:

Y

220

