
rn'rpnovrNc THB PBnnonMANCE on Tcp ovER snrprrtrp
CnnNNprs

by

Spilos Philopoulos

A Thesis prescìilted to the Univcrsity rll Maniloba in

partial lullilllnelll. of lhe rcc¡uirelììculs lbr thc clegrec oI

It4astcr ol'Science

in 1hc

Deparlnrent oI lllectrical autì Computcr Engineering

Winnipeg, Manitoba

.lunc, 2001

O 2001 Spiros Phiìopouios

l*l tr¡$onat.uurav

Acquisitions and
Bibliographic Services

395 W6llingrton Str€et
Ottawa ON KIA 0N4
Canacb

Bibliothèque nationale
du Canada

Acquisitions et
services bibliographiques

3f)5, rue Wellington
OttawaON KlA0N4
Canada

Youñla VotrcéléNæ

Our fr,o Ì,lotß tèléîenæ

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loarl, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The authof retains ownership of the
copynght in this thesis. Neither the
thesis nor substantial extacts from it
may be printed or otherwise
reproduced without the author's
pennission.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproúdre, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/filn, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent ête imprimés
ou autrement reproduits sâns son
autorisation.

0-612-76847-3

Canadä

THE UNIVERSITY OF MANITOBA

FACULTY OF GRADUATE STUDIES

COPYRIG"""*'SSION PAGE

lmproving the Performance of TCP Over Satellite Channels

BY

Spiros Philopoulos

A ThesisÆracticum submitted to the Faculfy of Graduate Studies of The University

of Manitoba in partial fulfillment of the requirements of the degree

of

MASTER OF SCIENCE

SPIROS PHILOPOULOS @2001

Permission has been granted to the Library of The University of Manitoba to lend or sell copies

of this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend

or sell copies of the film, and to University Microfilm Inc. to publish an abstract of this
thesisi practicum.

The author reseryes other publication rights, and neither this thesis/practicum nor extensive

extracts from it may be printed or otherwise reproduced without the author's written
permission.

Ansrn¡.cr

Reliable transport protocols such as the TCP transport layer protocol have been

designed and tuned for traditional wired networks. TCP performs relatively well on such wired

networks by adapting to end-to-end delay and to losses caused by congestion. However, in the

case of wireless links, such as satellite channels, due to the special attributes of satellite links,

such as high bit emor rates, large propagation delays etc., TCP performance degrades

significantly. The work described in this thesis was motivated by the need for improving the

performance of TCP over satellite channels. In this thesis three connection-splitting

architectures based on the use of transparent proxies are implemented and tested. Namely, a

single-TCP-interproxy-connection connection-splitting architecture, a multiple-TCP-inteqproxy-

connection connection-splitting architecture and a UDP-interproxy-connection connection-

splitting architecture are implemented. The throughput increases obtained by the latter fwo

architectures were very significant with the UDP connection-splitting scheme even yielding a

throughput improvement of an order of magnitude in some cases.

- TT-

AcxxowLEDGEMENTS

I would like to begin by thanking Dr. K. Ferens for proposing this topic and helping me

throughout the course of this thesis. I would also like to thank Dr. R. D. Mcleod for his advice

and help in completing this thesis. Many thanks also go out to Guy Jonatschick, Arindam Mitra,

Thuraiappah Vaseeharan and especially to Dr. Muthucumaru Maheswaran for providing me

with some of the resources necessary to complete this thesis.

-III-

Tasr-n or CoNTENTS

Page

ABSTRA.CT . ii

ACKNOWLEDGMBNTS . iii
LIST oF TABLES . vii

LIST OF FIGURES viii

I INTRODUCTION . I

1.1 Overview of TCP Protocol .l

1.2 Satellite Link Characteristics and their Adverse Effects on TCP .4

Satellite Link Characteristics . 4

Adverse Effects of Propagation Delay .6

Adverse Effects of High Bit Error Rate . 9

Adverse Effects of Bandwidth Asymmetry .9

Adverse Effects of Satellite on TCP performance: Experimental Verification .1 1

II BACKGROUND THEORY . 12

2.1 Background Literature .12

TCP for Transactions .12

Slow start 13

Congestion Avoidance 15

Loss Recovery 16

Multiple Parallel Connections 18

Header Compression . 19

Sharing of TCP State Information .20

ACK Rate Control .2l

Error Recovery . .23

-IV-

2.2Yandermonde Matrix based Erasure Codes '23

Introduction to Erasure Codes 23

Linear Block Erasure Codes . 25

An Erasure Code based on Vandermonde Matrices . 29

III SYSTEM DESCRIPTION 31

3.1 Performance Enhancing Proxies . 3l

TCP Spoofing Proxy Scheme 32

TCP Connection-splitting Proxy Scheme . 34

Terminology ' 36

3.2 Single-TCP-Connection Connection-Splitting Performance

Enhancing Proxies . 36

3.3 Multiple-TCP-Connection Connection-Splitting Performance

Enhancing Proxies . 4l

3.4 Single/Multi-UDP-Connection Connection-Splitting

Performance Enhancing Proxies - 45

EXPERIMENTAL RESULTS AND ANALYSIS .52

4.1 Test Confîguration and Methodology - 52

4.2 Obtained Results and Analysis .53

CONCLUSIONS AND FUTURE WORK . 63

5.1 Single-TCP-Connection Connection-Splitting Performance Enhancing Proxy

Architecture ' 63

5.2 Mutli-TCP-Connection Connection-Splitting Performance Enhancing Proxy

Architecture .63

5.3 UDP Connection-Splitting Performance Enhancing Proxy Architecture .64

5.4 Future Work and Recommendations 64

IV

REFERENCES 67

APPENDICES

A C Language Listing for Single-connection-TCP Connection-splitting Proxies .71

B C Language Listing for Multi-connection-TCP Connection-splitting Proxies 101

c c Language Listing for [rDP connection-splitting proxies . 153

-vl-

Lrsr on Taslns

Page

4.1 Average transfer times and the percent improvement in throughput for l0-? bit error rate 57

4.2 Averuge transfer times and the percent improvement in throughput for 10-6 bit error rate 60

-viÌ-

Lrsr on'FrcuRES

Page

Fig' 1.1 Slow start mode comparison (mathematical models) for satellite and terrestrial

networks .7

Fig. 1.2 Congestion avoidance comparison (mathematical models) for satellite and

terrestrial networks g

Fig' 1.3 &' 1.4 Yaiation of TCP-over-Satellite throughput with varying satellite link BER and

propagation delay. . t0
Fig.2.l Graphical representation of erasure code encoding/decoding process. .25

Fig.2.2 Graphical representation of the encoding/decoding process in matrix form .27

Fig. 3.1 TCP spoofing proxy architecture .33

Fig. 3.2 TCP connection-splitting proxy architecture 35

Fig. 3'3 Timing diagram for single-connection TCP connection-splitting proxy architecture .38

Fig. 3.4. Program structure abstract model for single-connection TCP connection-splitting

proxy architectu¡e 39

Fig. 3'5 Timing diagram for multi-connection TCP connection-splitting proxy architecture .42

Fig' 3'6 Program structure abstract model for multi-connection TCP connection-splitting proxy

architecture . M
Fig.3.7 Timing diagram for UDP connection-splitting proxy architecture . 46

Fig' 3.8 Program structure abstract model for UDP connection-splitting proxy architecture 48

Fig. 3.9 UDP proxy architecture packet header .50

Fig' 3.10 Simplified flow of execution from reception of packets to erasure decoding .51

Fig. 4.1 Test configuration 52

Fig. 4.2 Transfer times for 3.8 MB file at 10-? bit error rate for Straight TCP vs Single-

connection TCP proxy scheme vs Single-connection uDp proxy scheme . s4

Fig' 4.3 Transfer times for 3.8 MB file at 10-? bit error rate for Straight TCp vs Single-

connection TCP proxy scheme vs 2-connection TCP & UDP proxy schemes . 55

- vnt

Fig. 4.4 Transfer times for 3.8 MB file at 10-? bit error rate for Straight TCp vs Single-

connection TCP proxy scheme vs 3-connection TCP & UDP proxy schemes . 56

Fig. 4.5 Average transfer times for 3.8 MB file at l0-7 bit error rate 56

Fig.4.6 Transfer times for 3.8 MB file at 10-6 bit error rate for Straight TCp vs Single-

connection TCP proxy scheme vs Single-connection UDP proxy scheme . 57

Fig. 4.7 Transfer times for 3.8 MB file at 10-6 bit error rate for Straight TCp vs Single-

connection TCP proxy scheme vs 2-connection TCP & UDP proxy schemes . 5g

Fig. 4'8 Transfer times for 3.8 MB file at 10-6 bit error rate for Straight TCp vs Single-

connection TCP proxy scheme vs 3-connection uDp proxy scheme and3 &.4
connection TCP proxy scheme

Fig.4.9 Average transfer times for 3.8 MB file at 10-6 bit error rate

Fig. 4.10 UDP proxy schemes for varying redundancies at l0-7 bit error rate

Fig. 4.1 I UDP proxy schemes for varying redundancies at l0-6 bit error rate

58

59

.61

.61

-tx-

CHAPTER I
InrRonucTroN

Reliable transport protocols such as the TCP transport layer protocol have been

designed and tuned for traditional wired networks. TCP performs relatively well on such wired
networks by adapting to end-to-end delay and to losses caused by congestion. However, in the

case of wireless links, such as satellite channels, due to the special characteristics of satellite

links, such as high bit error rates, large propagation delays etc., TCp performance degrades

significantly. The following is a brief overview of the TCP protocol, followed by an outline of
the problems encountered by TCp in a satellite environment.

1.1 Overview of TCP Protocol

TCP is a networking protocol that provides reliable connections between two
applications. TCP provides congestion control so as to not send data to the receiver faster than

the receiver can receive data, and also provides flow control so as to not congest the network.
Data is sent by TCP by segmenting a byte stream of data into a number of segments up to a
maximum segment size, called MS^S, typically 536 or 1460 bytes in size. In order for data to be

exchanged between two endpoints first a connection must be established between them and this
is done by performing the so called three-way handshake. The three-way handshake consists of
having the initiator of the connection send a packet/segment with the ,Sy}y' flag set to the receiver

to be' which receiver if it decides to accept the connection request will respond by sending a
segment with the SYN andACKflags set, acknowledging and accepting the connection request.

Then the connection setup will be completed by the initiator by sending an ACK segment (i.e.

ACK flag set) back to the receiver. This connection setup procedure is referred to as the three-
way handshake and takes an approximate amount of time of one round trip time (RTT),which
is the amount of time for a segment to traverse the network path in both directions.

-t-

Once the connection setup is complete the two endpoints can exchange data and every

packet sent must be acknowledged by the receiver. In older TCP implementations

acknowledgments were sent for every segment transmitted, however for years now TCp

implementations implement the so-called delayed ACKwhereby acknowledgments are coalesced

for up to two segments. In TCP, acknowledgments are cumulative rather than selective, meaning

that TCP will not acknowledge a particular segment if there are segments preceding it that have

not been received yet.

Flow control and congestion control are made possible by the use of what are called

sliding windows and are defined in terms of M,S,S segments in size. The size of the sending

window determines how many segments can be sent by the transmitter so as to not congest the

receiver (congestion control) or the network (flow control). The two windows that exist in TCp

are the receiver-advertised wíndow -advertised in every packet sent by the receiver- and the

congestion window. The receiver-advertised window value reflects the approximate amount of
data that the receiver is capable of receiving without being congested i.e. without having its

receive buffers overflow. To what value the receiver-advertised window is set to, e.g. whether it
is exactly the amount of free space in the receive buffers or some other way of calculation, varies

depending on the particular TCP implementation. The congestion window on the other hand, is

the window used by the transmitter and it represents the amount of data the sender can transmit

before receiving an acknowledgement. The actual window used by the sender though when

hansmitting data is not the congestion window but the so-called effective window which is

defined as the minimum of the congestion window and the receiver-ødvertised wíndow. Since

in well designed TCP implementations the receiver-advertised window is typically set to a fixed

size of 64KB , the congestion wíndow determines the flow of data from the sender.

While TCP manages congestion control via the use of sliding windows, there is also the

issue of flow control i.e. not congesting the other network resources along a given network path

e'9. routers. If TCP's transmission rates are too high then intermediate routers along the

network path will be overwhelmed, leading to buffer overfÌow and eventually causing the routers

to discard packets. Therefore, TCP must adjust its transmission rate to the network conditions in

-2-

order to avoid segment loss and thus retransmissions. If a large number of TCP connections are

sending data at rates inappropriately high then the network might suffer from congestive

collapse. ln a state of congestive collapse most of the data segments sent, and even their

corresponding acknowledgments, will be lost forcing segment retransmission making the

situation even worse, bringing the network to a virhial halt. The flow control mechanisms

employed by TCP are the Retransmission Time-Out (RTO) mechanism and the Fast Recovery

& Fast Retransmíssion mechanism. Before proceeding to the explanation of these two flow

control mechanisms it is necessary to first explain how the congestion window evolves.

There are two ways by which the congestion window evolves: a) slow start and b)

congestion avoidance. In slow start the congestion window starts off with a small size of
typically one M,S,9 and gradually increases in size by one M^!^S for every acknowledgment

received, resulting in an exponeniial congestion window growth rate. TCP uses slow start

whenever it is not sure how fast to send data, as for example at the beginning of a TCP session,

after congestion in some cases and after idle periods. Once fhe congestion window size reaches

the value of the slow start threshold-(sstresh), slow start mode terminates and congestion

avoidance mode commences. The slow start threshold is initially set to the value of the

receíver-advertised window at the start of the connection. In congestion avoidance mode, the

congestion window increases at a slower rate than in slow start mode, by increasing by

ll(congestion window), unless the window size is equal to the receiver-advertísed wíndow size,

for every acknowledgement received thus resulting in a linear sliding window growth rate of

approximately one segment every RTT. The linear window growth rate reflects the fact that

congestion avoídance mode is used to conservatively probe for additional bandwidth after slow

start mode [Allm97].

Returning to the Retransmission Tíme-Out and Fast Recovery &. Fast Retransmission

mechanisms, both of these mechanisms detect packet loss and retransmit the lost segments(s).

With the Retransmission Time-Out mechanism, every segment sent by TCP has a timer

associated with that segment. If an acknowledgement for that segment is not received within a

certain amount of time, the timer expires (a timeout occurs) and the sender responds by

-3-

retransmitting the segment and entering into slow start mode reducing its congestion window

size to one. This has the effect of severely reducing the sender's transmission data rate, and also

resets the slow start threshold to half of the current congestion window size (before the

congestion window is set to one of course). The timeout value associated with each TCP

segment is a smoothed estimation of the round trip time-(RZf plus some variation. The second

method is based on receiving multiple duplicate acknowledgments (with the receiver sending the

same acknowledgment for every segment received after the lost one), typically three, which leads

the sender to believe that the segment after the last acknowledged segment has been lost (with

the TCP segments after the lost one not being able to be acknowledged since TCP uses

cumulative acknowledgments). In response the sender will retransmit the packet believed to be

lost, referred to as afast retransmit, and will halve the congestion window as opposed to setting

it to one M'SS as with s/ow start, and the slow start threshold is set to the new congestion

window size. This is referred to asfast recovery. As can be easily understood the effects of fast
retransmission andfast recovery on the TCP sendin g rate are are significantly less adverse than

those of the Retransmission Time-Out mechanism. When a retransmission occurs due to a
timeout expiry TCP cannot infer anything about the state of the network and thus reduces its

congestion window to one and enters slow start in order to not aggravate a potentially serious

congestion problem in the network. In the case of fast retransmission though, TCP does receive

duplicate acknowledgements for TCP segments that were transmitted after the lost segment thus

indicating that there continues to be a flow of data from sender to receiver and therefore the

sending rate reduction does not have to be as severe [Allm97].

1.2 Satellite Link Characteristics and their Adverse Effects on TCp

1.2.1 Satellite Link Characteristics

Communication satellite systems can be categorized into three categories based on their

orbit: Geosynchronous (GSO), Medium Earth Orbit (MEO) and Low Earth Orbit (LEO).

Geosynchronous satellites are located at a geostationary orbit with an altitude of approximately

36,000 km. Due to this large altitude the propagation delay for these satellites is large compared

to that of terrestrial links, or any other type of link for that matter, varying in range typically

ftom240 msec to 270 msec for a signal to travel twice that distance of 36,000 km i.e. one hop

(from ground-station to satellite to ground-station). Thus the Round Trip Time (RTT) for a
GSO satellite link alone approaches 500 msec on aveÍage, not including the delay of the rest of
the network. For LEO satellites the delay is significantly smaller ranging from a few msec to as

much as 80 msec. The large propagatíon delays are one of the important characteristics of
satellite networks that distinguish them from terrestrial networks. A second fundamental

characteristic of satellite channels is fhe hígher bit error rates (BER) that they exhibit which are

typically in the range of one error in 102 bits or I x 10-7, and for some older satellite systems the

BER even reaches levels of 1xl0-s. Other fundamental characteristics of satellite channels

include bandwidth asynxmetry, variable RTTs and interminent connectivity [RFC248S].
Bandwidth asymmetry is exhibited in asymmetric satellite networks that where built, usually due

to cost reasons, with one direction of the link having a higher capacity than the reverse direction

link' For example outgoing traffrc might use the satellite channel but with the return link using a

slow terrestrial link for example, such as a modem channel. Regarding variable RTTs, in some

satellite environments, such as LEO satellite systems, the propagation delay will vary over time.

However it is still uncertain whether variable RTTs have an adverse affect on TCp performance.

Regarding the last fundamental characteristic mentione d, interminent connectivt4l is exhibited in

non-GSO satellite systems where handoffs are required, which if not performed will lead to

increased packet loss.

Summarizing, the fundamental characteristics of satellite systems that distinguish them

from terrestrial networks are:

i) Large propagation delays (in GSO systems to a greater extent)

ii) High bit error rates

iii) Bandwidth asymmetry

iv) Variable RTTs (in LEO satellite systems to a greater extent)

v) Interminent connectivity leading to greater packet loss (in non-GSO systems)

5-

The two satellite channel characteristics with the largest adverse effect on TCp

performance are the large propagation delay exhibited in GSO satellite networks and.the high

bit error rates. Since these two characteristics are those that most adversely affect TCp, the

focus in this thesis will be on those, along with bandwidth asymmetry, and on GSO satellites as

GSO satellites exhibit these characteristics most.

1.2.2 A.dverse Effects of Propagation Delay

Two adverse effects of the large propagation delays in satellite networks on TCp

performance are: sliding window growth problems and underutilization of available bandwidth

[Allm97] [Krus95]. Sliding window growth problems are exhibited in both the slow start and

congestion avoidance phases. [JaKa88] defines that the time needed in slow start mode for the

sliding window to reach a size of I.Z segments given a RTT of .R is:

Slow Start Time= R.logrLV' (l.l)

Therefore, for a given effective sliding window of ïl segments, we have:

Satellite Slow Start Time

Terrestrial Slow Start Time
_ Rrnr-log,ll' RTT,A,

Rr"^.1ogrW RTTTER
(r.2)

For typical RZlvalues the ratio in (1.2) exceeds the value of 5 i.e. in a satellite environment in

slow start mode it takes the sliding window much longer to reach its maximum size. Fig. l.l
shows, based on the mathematical model of equation (1.1), the time required by a satellite

network and a terrestrial network to complete fhe slow start mode at the start of a TCp

connection, i.e. starting from a congestion window of size one up to the typical sstresh of
64I<8, using fypical RTT values and using a segment size of lI(B (i.e. W: 64 segments),

assuming lossless operation. Many short flow (i.e. small size) data transfers can complete

without ever having attained a window large enough for optimal link utilization. Similarly, in the

-6-

T¡mE tÈ -lhryJÌdrl nompl*ti*n iW$64 áéBrñÊrit#l l{B ¡n*j

Terrestríal

-

Satetlite

31 3ü 4q

*cgme*t È,lunnh+r

Fig. 1.1. Slow staf mode comparison (mathematical models) for satellite and terrestrial
networks.

congestion avoidance phase it is obvious that the growth rate of the sliding window in a satellite

network will be much smaller than in a terrestrial network since as we know the congestion

window increases in congestion avoidance by approximately one segment every RTT with the

RTTbeing much larger in the satellite case. The time to increase fhe congestion window size by
7Z segments in congestion avoidance is simply RTT ' W . Using this simple mathematical model

Fig' l'2 compares the times required in congestion avoidanc¿ mode for both terrestrial and

satellite nefworks to increase the congestion window ftom 32 to 64 segments. Again, as in Fig.

l.l, the satellite nefwork with its much larger RZZ takes significantly longer to increase the

c onges tíon window size.

.õ 2.0
qJ
ü

s l's
E
F

t.ü

7-

a.¿nídance romFarisqn {12 sesments/l ltB

ÏT.00

t2.y5

È,5û

4.t5

t.tü

TÉrrÈåli*¡d

E
¡lù
,¡u

E
F

Fig' 1.2. Congestion avoidance comparison (mathematical models) for satellite and terrestrial
networks.

The second adverse effect of the large propagation delays in satellite environments, as

mentioned before, is the significant undertÍilization of available bsndwidth. As given in the

original RFC 793 that defined TCP, the maximum throughput of a TCP connection is

Max Throughput =
Max Receiver l\/índow Síze

RTT
(1.3)

therefore for a typical GSO satellite link RTT of 500 msec and the maximum possible receiver

advertised window in TCP of 64 KB, the maximum throughput for TCP over a satellite link is:

Max Throughpu, = ffi= l3 1,070 bytes / sec

This maximum throughput is well below the bandwidth capabilities of many satellite

channels which can range from compressed phone circuits of a few kb/s to very large

bandwidths. Compared to for example the throughput of a Tl rate satellite channel of 1.536

Mbits/sec (192,000 bytes/sec) there is only a 68% maximum utilization of bandwidth. For other

higher bandwidth satellite channels the bandwidth utilization reaches of course even lower

8-

unacceptable levels.

1.2.3 Adverse Effects of High Bit Error Rate

Another fundamental characteristic of satellites that has a significant effect on the

performance of TCP is the relatively high bit error rate (BER). This aside from leading to

performance degradation because of needed retransmissions, performance is further reduced

since TCP assumes every loss is due to congestion, thus unnecessarily resorting to congestion

mitigation in many instances. In the case that a segment loss due to comrption, and not

congestion, results in a timeout, TCP enters slow start mode, the congestion window is reset to a

size of one, having a detrimental effect on the TCP sendingrate,and the slow start threshold is

set to half of the current congestion window value (before being reset to one of course), thus

reducing the rate at which the congestion window will grow since s/ow start withits exponential

window growth rate will terminate earlier with the reduced sstresh value. In the case that a

segment loss due to comrption results in afast retransmission andfast recovery, the effect on

the TCP sending rate is less adverse than in the case of a timeout but still significant. The

congestion wíndow is set to half its current size, thus halving the sending rate, and the slow start

threshold is set to half of the congestion window value (before it is reset), thus reducing the rate

at which the congestion window will grow when TCP is in s/ow start mode as explained

previously.

1.2.4 Adverse Effects of Bandwidth Asymmetry

Bandwidth asymmetry is another property of some satellite channels that adversely

affects TCP performance due to the fact that TCP relies on feedback in the form of cumulative

acknowledgments in order to perform flow and congestion control properly. When the

bandwidth asymmetry between the forward and reverse link charurels exceeds a certain

threshold then the reverse acknowledgment channel will become congested because of the

number of acknowledgments that must be transmitted in order to acknowledge the data flowing

in the forward direction link. This reverse link congestion will disrupt the flow of

-9-

TtF over 5.¡ts¡l ItE thntrrrghput v*riatien r'¿ith satel4he
hlt Errqr rate (for 1.t F'åB fllp trilnsfgr rvl Sa-t FTT*50ú mçecl

r" såß¡li[É

+Te¡re{;bl¡å!

TÇP çr¡*r S.:tËlE¡IË !Þrçwgh$¡r.¡t vÈri¡tisn r¡¡ith s*t.!i:nk
dei*y ,lfpr 1Æ MB fiìlç [r,Þn¡fcr wl 5¡r.. ßEF=l8-

n Satellúte

<.¡"ierr:estsüå[

13È ?{H} 15û 3Ð{t

úrue-nray Fropagotlcm tela,y (rnsecl

Fig. 1.3 &. 1r4. Variation of TCP-over-Satellite throughput with varying satellite link BER and
propagation delaY.

acknowledgments to the transmitter presenting hindrances in maintaining proper flow and

congestion control on the sender's part, ultimately resulting in lost acknowledgments and thus

inducing unnecessary timeouts, retransmissions and sending rate reduction/congestion

mitigation.

î{H}

t* 40ð

Þr

* 3{K

ñ. zrs]
E
¡n
3
E rao
F

e

5üfJ

¿lr.{ 4Ð{l
Ð

* 3çÐ

* xco
Èn

?Y 1{rÐg
t-

0

-10-

1.2.5 Adverse Effects of Satellite on TCP performance: Experimental Verification

Fig. 1.3 and I '4 show the actual variation of TCP-over-satellite throughput with varying

satellite link BER and propagation delay, compared to TCP performance without the satellite

link, obtained from experiments performed for a 1.8 MB file transfer. Fig. 1.3 more specifically,

shows the effect of increasing the satellite channel bit error rate on TCP performance, with the

error rate varying from l0-6 to 10-8 while using a typical satellite link RZZ of 500 msec. This is

compared to TCP performance when omitting the satellite link. The very significant adverse

affect of satellite channel attributes on TCP performance is obvious, with the TCp throughput

when the satellite link is included being less than25o/o of that when the satellite channel is not
present, and decreasing as the BER increases. Similar results are obtained, as shown in Fig. 1.4,

when varying the satellite channel one-way propagation delay from 150 msec to 300 msec, while

using a typical BERof l0-7. The tests performed to obtain the aforementioned results, where

done using a proprietary TCP-based file transfer protocol implemented by the author of this

thesis [PhilOO], and to emulate the satellite link, the NIST Net 2.0.10 link emulation package

INISTOO] was used. More details on these and the test configuration can be found in Chapter 4

and the aforementioned references.

- II

CHAPTER II
Becrcnou¡{D THnony

2.1 Background Literature

The topic of TCP performance over satellite channels has been studied quite extensively

the past few years, producing a plethora of literature and proposed solutions on this topic.
Below a list of many of the most important proposals is given, most of which have already been

documented in RFCs by the IETF[RFC24B8] [RFC2760].

2.f .1 TCP for Transactions

[RFCI644] As we know TCP uses a connection setup procedure to establish a

connection between two endpoints with the typical setup being the so-called three-way

handshake. The connection setup procedure takes between i and 1.5 RTTs (Round Trip Times)
to complete. During this period there is no transfer of data which is a small inefficiency of the

TCP protocol which though is quite significant for short flow TCp connections such as HTTP
connections for example. This can be mitigated by implementing TCp extensions for
translations (T/TCP), as specified in RFC 1644 *T/TCP - TCp Extensions for Transacrions,,

in 1994, which allows the transfer of data during connection setup by including data in the
connection setup packets. It should be noted that while T/TCP was recommended in the RFC

1644 (1994), it was also part of the original TCP specification in RFC 793 in 19g1. The
implementation of T/TCP requires modification of both the transmitter's and receiver,s stacks

and is considered safe to be implemented in a shared network environment, such as the Internet,

from a congestion control point of view. However there are some security issues that arise by
sending data in the initial setup packets.

12-

2.1.2 Slow start

2.1.2.1 Larger Initial Congestion Windows

[RFC2414] TCP uses the slow start algonthm at the beginning of a new connection,

after long idle periods and after congestion has been detected. Slow start grows the window at

an exponential rate however always starts from an initial window size of one. Starting from such

a small initial window size is inefficient particularly for short flow transfers such as WWW

traffic. The problem is further amplified by the use of Delayed ACKs whereby an ACK is not

sent by the receiver until two full-sized segments have been received or a 500 msec (maximum)

timer has expired leading to a significant delay until the window grows to a size of two. Starting

from a larger size would improve efficiency during the startup phase of a connection and an

optional initial window size of two has already been proposed by RFC 2581. Experiments have

also been done with initial widow sizes of 3 and 4 which showed improved performance

although a small increase in dropped packets was also observed. Implementing initial window

sizes of 2 to 4 is considered safe from a congestion perspective and would require modification

of the transmitter's stack only.

2.1.2.2 Delayed ACKs after slow størt

Today's TCP stacks implement the Delayed ACK mechanism whereby an ACK is not

sent by the receiver urtil tr¡¡o full-sized segments have been received or a max 500 msec timer

has expired. One option is to implement Delayed ACKs only after slow start so that the ACK

rate increases thus resulting in faster congestion window growth. Experiments have shown an

increase in throughput by implementing Delayed ACKs only after slow start,however the loss

rate also increases somewhat due to the faster window growth. This could also be a problem for
nefworks that have asymmetric links (in terms of bandwidth) where the reverse link (carrying

the ACK stream) would be further congested and the Delayed ACKs after slow start

mechanism would also conflict with ACK rate reduction measures such as ACK congestion

control and ACK filtering that will be presented later on. The implementation of this mechanism

- 13 -

requires only modification of the receiver stack and there would have to be some way by which

the receiver can detect if the transmitter is currently in slow start or not. This slow start

detection could be done by using a heuristic or having the transmitter indicate to the receiver that

it is in slow start (which would require modifications on the sender's side also to implement).

2.1.2.3 Terminating slow størt

[JHoe96] One of the more important issues with TCP is the s/ow start threshold value

sstresh, i.e. the value used to determine when s/ow s/arl should cease for congestion avoidance

to take over. Choosing an appropriate sstresh value can eliminate the problem of having s/ow

start not end soon enough leading to congestion of the link and dropped packets. Currently

sstresh is set to the size of the receiver advertised window initially and to half the current

congestion window size after congestion. One algorithm proposed to determine more

appropriate sstresh values is the packerpair algorithm in combination with the measured round-

trip time RTT proposed by [JHoe96]. The algorithm estimates the link bandwidth by observing

the spacing of the ACKs in the reverse link, and together with the estimated RTT is used to

calculate the bandwidth-delay product which is used as the sstres h value. The implementation of
this mechanism requires modifications to the transmitter's stack only and can be safely

implemented in shared networks. A problem however is the correct estimation of the available

bandwidth and more so in the case of asymmetric networks where the bandwidths of the

forward and reverse links differ and thus the bandwidth estimated from the reverse link is
erroneous and not representative at all of the forward link bandwidth.

2.1.2.4 Byte Counting

[Allm97] [Allm98] A method that can be used to implement congestion window growth

that is independent of the ACK mechanism used by the receiver stack is byte counting. With
byte counting instead of basing the growth of the congestion window on the number of ACKs

received (e.g. in slow start the congestion window grows by one for each ACK received) the

window growth is based on the number of bytes of acknowledged data. Two byte counting

-14-

algorithms that have been proposed are the Unlimited Byte Counting (UBC) algorithm and the

Limited Byte Counting (LBC) algorithm. With the UBC algorithm, the congestion window

grows by the amount of b¡es of acknowledged data, while the LBC algorithm limits the

congestion window growth to two segments. Studies [Allm98] have shown that LBC byte

countingleads to throughput improvement while also slightly increasing the packet drop rate.

2.1.2.5 More Conservative Congestion Control

Because of the relatively high bit error rates over satellite channels many segments lost

due to com:ption will be falsely assumed to have been lost because of congestion, resulting in

the sender going into slow start unnecessarily many times and consequently degrading

performance. One possible method to mitigate this is to use more conservative congestion

control by not employing slow start after assumed congestion but rather have the congestion

window be reduced to half its cunent value (as is done in Fast Recovery) as opposed to a size of
just one as happens with slow start. If congestion is still perceived to be continuing then the

sliding window can be halved again and so on and so forth.

2.1.3 Congestion Avoidance

[SLSC98] It has been observed that during the congestion avoidance phase there is

unfair sharing of bandwidth when multiple connections of varying RTTs exist over the same

bottleneck link. More specifically, connections with large RTT values, such as those that traverse

a satellite link somewhere along their path, have their congestion window grow too slowly. A
proposed remedy is to have the window growth rate during congestion avoidance be increased

so that it is larger than one segment per RTT. Two such proposed algorithms are the Increase-

by-K and Constant Rare policies.

With the Constant Rate algorithm the congestion window will grow at a rate larger than

one segment per RTT, with the rate depending on the RTT value. Two issues with this method

are the correct estimation of the RTT and the proper selection of the constant growth rate.

- 15

The Increase-by-K algorithm adds K segments (instead of one) to the congestion

window per RTT, for connections over a given RTT. The value of K and the RTT threshold

values are still open issues. It has been shown that small values of K used when there is a
relatively small number of connections over a bottleneck link improves throughput and faimess.

However both of the above policies can lead to increase of the number of dropped segments and

are not recommended for implementation in a shared network environment at this time since

they violate the congestion avoidance algorithm outlined in RFC 25g1.

2.1.4 Loss Recovery

2.1.4.1 Non-conservative Fast Recovery

Forms of fast retransmit have been implemented in previous versions of TCp such as

Tahoe TCP and Reno TCP whereby upon receiving K duplicate acknowledgments (fypically

K:3) a lost segment is retransmitted without waiting for the retransmission timeout to occur.

However, the recovery after a fast retransmit was either conservative (Reno TCP) or non-existent

(Tahoe TCP). In newer TCP algorithms, such as NewReno TCP, an aggressive fast recovery is

implemented whereby upon retransmitting a first lost segment (after receiving K duplicate

ACKs), to fast retransmit a second lost segment K duplicate ACKs are not required to be

received but rather just a single ACK. Therefore in cases of multiple lost segments algorithms

with more aggressive fast recovery, such as NewReno TCP, have a smaller probability of
resorting to a coarse timeout and thus resulting in better throughput in some cases. However

studies [FaFl96] have shown that in some instances it is more advantageous to resort to a RTO

timeout to recover from multiple lost segments. Implementing this fype of more aggressive fast

recovery requires modifications to the transmitter stack only and is allowed by RFC 2581

("TCP Congestion Control", 1999). It has been observed that fast recovery algorithms also

tend to create bursts after loss recovery and thus some sort of burst suppression algorithm, such

as Sender Adaption (SA),whichlimits the number of segments transmitted, may be useful.

-16-

2.1.4.2 Selective Acknowledgments

[FaFl96] With this type of mechanism instead of using the classical TCp cumulative

acknowledgments, selective ACKs (SACKÐ are used to identify which packets have arrived at

the receiver thus giving the ability to the transmitter to know which specific segments to

retransmit. A slight variation of this would be to use instead an explicit loss notification

mechanism. One selective acknowledgments algorithm that has been studied and proposed is

the Fast Recovery SACK algorithm, which is an extension to a normal fast recovery algorithm,

whereby the receiver sends selective acknowledgment information to the transmitter. After a fast

retransmit and after reducing the congestion window to half its size, the sender maintains a

variable called a "pipe", which is an estimate of the number of outstanding TCP segments. The

"pipe" variable is increased by one segment for each duplicate ACK that is received containing

SACK information, and is decremented by one for each segment sent out (new or

retransmitted). When the value of the "pipe" variable is lower than that of the congestion

window size then a segment can be transmitted. This transmitted segment will be a new segment

unless the selective acknowledgment information from the receiver indicates that there are

retransmissions left to be carried out. The SACK algorithm has been shown in studies [FaFl96]
to improve performance for the cases of I to 4 segments lost in a window of data and

particularly in satellite environments but in some cases can lead to throughput degradation by

causing bursts at the end of loss recovery. This algorithm requires modifications to both the

sender's and receiver's stacks and is considered safe to be used in shared nefworks and has

been allowed by RFC 2581 ("TCP Congestion Control", l99g).

2.1.4.3 DetectionÆ.{otification of Losses due to congestÍon or corruption

[RFC2481] [FIoy94] The way TCP currently operates is to assume that every lost

segment is due to congestion. While this may work well for the case of wired networks, in the

case of satellite links and wireless networks in general this is significant cause for throughput

degradation due to the fact that satellite (and wireless) links exhibit relatively high bit-enor rates

(BER) in the range from l0-7 to lO-s. As a result a large number of the losses that are due to

- 17 -

corruption, and not congestion, will result in congestion mitigation taking place with the use of
slow start,resulting in degraded performance. What is necessary is for better mechanisms to be

put into place to detect if a loss is due to congestion or coffuption, with just retransmission

being required in the latter case. Such mechanisms are divided into two separate general

categories: a) Explicit Congestion Notification where the sender is informed of congestion by

either the receiver or an intermediate router and b) Corruption Loss Detection.

There are two types of Explicít Congestion Notification which are Backward Explicit

Congestion Noffication (BECN) and Forward Explicit Congestion Notification (FECN). Wlrh
BECN a router will inform the sender of congestiotr, o.g. through the use of an ICMp "source

Quench" message. With FECN, routers will mark packets using a tag when congestion is

imminent but will still forward the segment. The receiver upon getting the tagged segments will
notify the transmitter. FECN requires modifications to both the sender's and receiver's stack

and that routers tag segments. BECN requires modifications only at the transmitter.

With regards to Comrption Loss Detection, the receiver or a router that detect a corrupt

packet could notify the sender of this so as to not assume the segment was lot due to
congestion. However this is not a reliable method since the source address listed in the packet

might also be comrpted and thus this method should not be used. A variation of this method

that is more reliable is for a router to maintain a cache of recent destinations and when

comrption is detected above a certain threshold level have the router send a comrption-

experienced ICMP message to all destinations listed in the destinations cache. Then each

destination would inform its respective transmitter through a TCP option of experienced

comrption and each sender would refrain for some period from implementing congestion

mitigation.

2.1.5 Multiple Parallel Connections

As mentioned previously at the beginning of this thesis, one of the problems with TCp

connections over satellite links is the significant underutilization of satellite link bandwidth due

-18-

to the maximum window size limit of 64 KB and the large RTT values for GSO satellites. One

way to mitigate this is to use multiple simultaneous TCP connections. With N connections the

effective initial congestion window size is N, the window increases by l/ segments per RTT

during congestion avoidance and in general the use of l/ simultaneous connections makes the

sender N times more aggressive. Simulations have shown improved performance when utilizing
multiple connections. This is an application layer modification requiring no stack migration.

However this increased aggressiveness can lead to congestive collapse and it is not considered

safe to use multiple connections in a shared network and should be limited for the time being to

private networks only. To a certain extent the advantages that would be provided by multiple

connections can be provided by using other methods that have been proposed in this report,

such as larger initial window sizes. It should be noted that the method of utilizing multiple

connections is already being used today by Web browsers, which typically use 4 simultaneous

connections.

2.1.6 Header Compression

One method used to improve the efficiency of data transmission is to perform header

compression of TCP and IP headers. Header compression is based on the idea that since a large

portion of the information contained in the TCP and IP headers remains the same, or changes

infrequently, or changes in a predictable matter during the life of a given connection, this

information need not be transmitted in every header. Header compression algorithms have been

proposed by [RFC2507], [DENP97I and IRFCll44]. According to these methods tull TCp

and IP headers are sent at the beginning including a session identifier that will be used to

reference that particular connection. Later packets will simply contain the session identifier and

any needed information that can't be derived from the full TCP/IP header sent initially which

will be used as a template to derive all information that isn't contained in the compressed

headers.

Header compression reduces overhead and can be of significant benefit for data

-19-

transmissions that have relatively small data payloads such as Telnet sessions and to a lesser

extent WWW sessions. Some header compression methods can reduce TCP/IP header size

from the typical 40 bytes down to 5 bytes in general and even 3 bytes for common cases.

Header compression also has the added benefit of leading to a reduced rate of packet comrption

due to the smaller packet sizes.

Header compression can be applied either end-to-end between the communicating

endpoints or be applied transparently between the routers at the two edges of a satellite link. In
the first case of end-to-end, header compression must be applied below the IP layer and be

implemented at every intermediate router used in the connection and potentially also at the two

communicating hosts. By implementing compression below the IP layer, header compression is

transparent to routing by passing uncompressed headers to the IP layer. A more transparent

way of implementing header compression is by performing compression only over a given

satellite channel between the two routers (referred to from here on as pivot-points) at the edges

of the satellite link. In the latter, case the compression should also performed below the Ip layer

and since compression is limited to over just the satellite link it requires modifications only at

the two pivot-point routers and not at all routers along the path. In simulations, header

compression has proven to be beneficial for cases with small packets sizes (larger overhead) and

medium to low bandwidth links and/or links with relatively high bit error rates (such as is the

case for satellite channels).

2.1.7 Sharing of TCP State Information

[RFC1379] [BaRS99] [RFC2l40] There are many parameters in TCP which are set to

initial values and later on modifìed during the duration of the connection such as the initial

congestion window size for example. Changes have been proposed to these initial parameter

values, however it is difficult to find one value that is suitable for all cases and environments.

One proposition is to have the sharing of state information across TCP connections in the same

environment. A characteristic example that shows the benefit of state information sharing is the

-20-

case of the initial congestion window size, where instead of starting from an initial window size

of one the congestion window size could initially be set to the sustained "steady-state,,window

size used in previous connections over the same path. Sharing of state information could also be

extended to the case of parameters that do not use preset initial values such as the round-trip

time, Max Segment Size (MSS) etc. Sharing of state information could occur between

connections originating from the same host or between hosts in the same subnet. Sharing state

information across connections requires modifications to the sender's stack and possibly to

receiver stacks also.

2.1.8 ACK Rate Control

In asymmetric networks where the bandwidth of the forward link is significantly higher

than that of the return link, if the difference in links speeds is high enough then congestion will
be exhibited in the return ACK link due to the high sending rate of the transmitter which will
result in a large number of ACKs being generated and sent out by the receiver. In the case of
1500 byte data segments, given the typical 40 byte ACK packets (standard TCp/Ip header size),

congestion in the retum link will be exhibited for bandwidth asymmetries of approximately

75:f in the case that Delayed-ACKs are used, and 37:l if ACKs are generated for each

segment. One way to mitigate this problem is to implement rate control which will limit the

sending rate of the transmitter, resulting in a reduced ACK rate. Such sender-rate limiting
techniques are rate-to-window translation schemes where the receiver advertised window is

modified by a router, thus forcing an upper limit on the transmitter sending rate (since the

window used by the sender has as a maximum upper bound the receiver advertised window).

However such sender-rate limiting techniques also lead to underutilization of the available

bandwidth thus degrading throughput. A more efficient way would be to simply control the

ACK rate directly rather than indirectly. Two such algorithm s are ACK Filtering and ACK
Congestíon Control.

-21 -

2.1.8.1 ACK Congestion Control

[KaVR98] With the ACK Congestion Control (ACC) algorithm, if a router along the

reverse link path observes congestion then it will notifo the sender of this. Then the sender will
notifu the receiver of the congestion in the reverse link, and the receiver wilt adjust its ACK rate

accordingly using multiplicative backoff. When the receiver is not notified of congestion

anymore then it resumes its normal ACKing policy. A problem with ACC is that since the

ACKs are fewer and each ACK packet acknowledges more data, this will result in erratic sender

window growth and thus the sender traffic becomes bursty. To mitigate this sender rate

adaptation has to be implemented which will limit the max number of segments sent out

regardless of window size. ACC requires modifications to both the transmitter and receiving

TCP stacks as well as to routers. A variant of the above method would be to omit notification of
the sender and receiver and simply have the router that detects congestion on the reverse link to
perform a filtering/compounding of ACKs itself (e.g. if one ACK acknowledges up to { and a

second ACK acknowledges up to iy'*Æ, then these two ACKs cold be compounded into one

ACK for N+k). However this still presents the same problem of causing bursfy traffic and

requiring sender adaptation. Furthermore because of the change to the ACKing policy it is

recommended that ACC not be implemented in shared networks.

2.1.8.2 ACK Filtering

[BaPK97] A second algorithm for ACK rate control is to implement ACK Filtering.

With this policy a router maintains a queue of ACKs that have passed through, and for each

new ACK that comes the router scans the ACK queue to determine if the new ACK is
redundant. If the ACK is redundant it is discarded. Thus ACK Filtering, as opposed to ACC,

does not result in bursty sender traffic. Studies [BaPK97] however have shown performance to

fall when using ACK Filtering alone and results in increased performance only when used in
combination with ACK Reconstruction. With ACK Reconstruction, the router observes the

ACK streams looking for large gaps. If a gap is observed then it constructs and inserts a new

ACK(s) to "smooth out" the ACK stream. In studies [BaPK97] it has been shown that ACK

1a-zz-

Filtering offers significantly better performance than ACC. Both ACK Filtering and ACK
Reconstruction require only router modification and thus have the advantage of being applied

transparently.

2.1.9 Error Recovery

One promising method to mitigate the problem of high error rates over satellite links is
to implement reliability at the link layer over a given satellite channel. Caching of link layer

frames would take place at the pivot-points (e.g. ground-station hardware) of a satellite link and

any frames that where not received at the receiving pivot-point would be retransmitted by the

sender pivot-point. The reliability would be based on an acknowledgment mechanism

implemented at the link layer which would be based most likely on selective acknowledgments.

A scheme like this has been proposed in [BaSa98]. The error recovery could be expanded

further if for the case of packets that where not received at all (and thus not cached) at the first
pivot-point, the pivot-point could trigger a fast retransmission from the TCp sender by sending

multiple duplicate ACKs to receive the lost segment(s). Similar experimental techniques have

been implemented in wireless systems where the performance increase was significant for
higher error rates, in some cases more than doubling receiver throughput. This can be

complemented with the use of error correction codes such as Reed-Solomon codes, BCH codes

etc.

2.2 Yandermonde Matrix based Erasure Codes

2.2.1 Introduction to Erasure Codes

For years the telecommunications industry has used Forward Error Correction (FEC)

techniques. FEC techniques try to prevent losses by producing redundant information ÍÌom the

data that it is to be transmitted, and appending this redundant data to the information that was to
be originally transmitted. This redundant information is used to be able to reconstruct data that

-23-

has been comrpted during transmission, rather than just discard the data.

FEC techniques are generally based on error detection and error coffection codes. Error
detection codes, as their name implies, are used to detect data that has been comrpted. A well
known example of an error correction code is the Cyclic Redundancy Check (CRC) code which
is commonly used, for example by the IEEE 802.3 (Ethernet) link layer protocol. In the case of
computer/networking communications, error detection codes are typically used at various layers,

starting from the lower link layer protocols up to the higher layers such as at the transport layer

where for example TCP and UDP implement checksums to verift the validity of received data

segments' However use of error detection codes alone only offers us the ability to detect and

discard comrpt packets. With the use of error correcting codes, such as Reed-Solomon codes,

we can also recover and reconstruct comrpted data based on the redundant information

included' While, as mentioned before, error detection codes have been and are widely used in

networking communications, error correction codes have not been widely used. In the case of
networking communications, the use of so-called erasure codes is of greater benefit rather than

the use of error correction codes. Erasure codes are used not to reconstruct from comrpted data

but rather to allow us to recover from erasures i.e. missing data. The reason for this is that in
networking communications due to the widespread use of error detection codes at the various

protocol layers which will result in any comrpted data being discarded, we deal with lost packets

at the higher layers (e.g. application layer) and not comrpted packets.

Despite the apparent benefit and suitability of the use of erasure codes for networking

communications and the general consensus of their usefulness [Rizz97], FEC techniques and

erasure codes more specif,rcally have not been used in Internet protocols. One reason for this is

likely the fact the FEC techniques used in other areas, such as the telecommunications industry,

have focused on error correction codes operating on relatively short strings of bits and running

on dedicated hardware; while networking communications require erasure codes operating on

relatively large packets of data that must be implemented efficiently in software lRizz91l.

-24-

Encaded Data Heceived Ðata

Sounre Ðat¡
ftecar¡struct€d

Ðata

ft parkets paekets

n

Fi5.2.1. Graphical

packets k'pachets

representation of erasure code encoding/decoding process.

2.2.2 Linear Block Erasure Codes

Linear block codes are a category of erasure codes that are relatively simple and allow

for an efficient implementation thus making them suitable for network communications

applications. Linear block codes are named as such as they can be analyzedusing the properties

of linear algebra.

The concept behind erasure codes is that k blocks of source data can be encoded to

produce n blocks that contain redundant information , with n>k, such that if any Æ blocks of data

are received at the receiver the original Æ blocks of source data can be reconstructed. Such a code

is called an (n, k) code. Fig.2.l provides a graphical representation of the encoding/decoding

process of erasure codes. This differs from simply transmitting duplicate packets as erasure

codes provide significantly greater efficiency and resiliency against losses. Regarding resiliency

against losses, this is because in the case of transmitting duplicates it is required that at least one

copy of each packet suwive, while this is not the case with erasure codes as any Æ packets of the

r transmitted, that are received suffice to reconstruct all source data. As for efficiency, in terms

-25-

of amount of redundant data produced and transmitted, sending duplicates requires that at least

two copies of every packet are transmitted, which is not the case for erasure codes. To explain

this better, let us consider wanting to send /c packets of data. If using the duplicates method, at

least 2 xÈ packets must be sent to include any redundancy for each source data packet. Ifusing
an erasure code on the other hand, transmitting a total of even only k + I packets provides some

degree ofredundancy/loss resilience for each packet ofsource data.

Let X=x,,..., xk_2, xo_, be the source data, i.e.

string) consisting of the same number of bits for all i. Given

linear block erasure code (n, k) can be represented as:

each x, is a packet of data (bit

anappropriafe nxk matrix G,a

l= G' x (2.1)

where y is a n x I vector representing the n produced encoded packets to be transmitted. As

dictated by the erasure code properties, any Æ of the n transmitted packets/blocks that are

received successfully will allow for the reconstruction of the original fr blocks of data x. More

analytically:

/.' = G' ' x = L- G'-t .y. (2.2)

where y' ,epres"nts the subset of È packets of the number of packets (elements of y) that were

received successfully , and G' is the subset of rows of G that correspond to the elements of /'
[Rizz97]. Fig. 2.2 gives a graphical representation of the encoding/decoding process in matrix
form. For reconstruction of the source data additional information is also required that will have

to be transmitted along with the encoded data, such as the number of source packets È, the

26-

Ë*csder Decoder

ñ

Fig.2.2' Graphical representation of the encoding/decoding process in matrix form.

identity of each packet of data, the packet size etc. Additional overhead is incurred by the

required precision for computations. More specifically, if packet x, is represented using ó bits

and each element Eu of G is represented using å'bits, then to represent each element y, of y,

b + b' +llog, tl Uits are required i.e. an overhead of b' +ltogrklbits for every packet in order

that there be no loss of precision. Another very important issue is the size of the bit strings used

to represent the data packets i.e. the elements of ¿ and Z. More specifically, while in

telecommunications each block of data is a small number of bits, in networking communications

each packet of data is typically in the thousands of bits, e.g. a typical packet size of IKB
corresponds to 8,192 bits. Of course such a large number of bits can not be represented by the

typical data structures available in programming languages with an integer for example being

only 32 bits and a long integer being only 64 bits (typical size values). Therefore the issue is

how to represent such large bit strings in order to perform the required matrix operations as

specified above in (2.1) and (2.2) in a computationaly efficient manner.

In order to get around these problems finite fields must be used. Afield, roughly

speaking, is a set in which we can operate as on normal integers by adding, subtracting,

tti
{u

"Er_J
rtl
É
4

qtl

{u

Lrft

E

1a

multiplying and dividing with the distinct difference that fields are closed under the operations

of addition and multiplication, i.e. the result of summation and multiplication of elements of a

field are also elements of the same field. Finitefields are fields that consist of a finite number of
elements and most properties of linear algebra apply to finite fìelds. The usefulness of finite
fields for erasure code implementation lies in the closure property of finite fields, meaning that

no additional bits are required to represent the results of operations. Thus for erasure code

implementation, the data elements can be mapped to field elements, with operations being

performed on those field elements producing results that do not require additional bits for
representation because of the closure property of fields, and then finally remap the resulting
field elements to data elements lüzz97).

Fields with p elements where p is prime are called prime fields or GF(p), where GF
stands for Galois fields. GF(p) is simply the set of integers from 1 to p-I under the operations

of addition and multiplication modulo p. Fields with q:pr elements, where p prime, are called

extensionfields or GF(pr). Extension fields are of more use than prime f,relds for erasure codes

because fot p:2, operations on extension fields can become relatively simple also resulting in
efficient implementations. The operations of interest to us are addition and multiplication as

required by the matrix operations in equations (2.1) and (2.2). For extension f,ields, summation
and subtraction become the same operation (bit-by-bit sum modulo 2) which is simply
implemented with an XOR.

A property ofextension fîelds is that the for every extension field there is at least one

special element of the field, cr, whose powers generate all the non-zero elements of that field,

and the powers repeat with a period of q-I i.e. s"o-t = cf,o = 1. Thus, every non-zero element of

the extension field -r can be represented as x=dk,. since x=c[ro&,, k, can simply be

considered to be logo x. Therefore, for multiplication we have that:

x' y=Go' .Cf,o'' -C[(À'+f'')
modQ-l)

Q3)

-28-

For more details on extension fields, and so as to not go beyond the scope of this thesis,

one is referred to lRizz97l.

2.2.3 An Erasure Code based on Vandermonde Matrices

In section 2-2.2it was stated that given an appropriate nxÈ matrix G, a linearblock

erasure code (n, k) canbe represented as:

l= G'x (2.1)

G is called the generator matrix of the code and in order for the properties of the erasure code

to hold G must posses cefain properties. Since G is an n x Æ matrix with rank k, any subset of
Æ encoded blocks should convey information on all È source data blocks. Therefore, each

column of G must have at most Æ-1 zero elements per column. A simple and effective way to
generate a generator matrix is by using matrices known as Vandermonde matrices which are of
the form:

I t xt ,!-'
I r x2 x!-'

I

Ll xN
"J-'

(2.4)

using as x,'s elements of the GF(p) extension field. The determinant of Vandermonde

matrices is given by:

ff (x, - ",; (z.s)
i 'j=1"'k' i< j

If all -4''sare different then the determinant is non zero and thus the generator matrix is

-29-

invertible which is necessary for reconstructing the original source data according to equation

(2'2).lf all x, are non-zero and the period q (as defined in section 2.2.2) is greater than the

number of encoded packets r then tp to q-t rows can be constructed thus satis$ring the

properties for the generator matrix fÙzzgTl.

-30-

CHAPTER III
Sysrnlvr DnscnrprroN

3.1 Performance Enhancing Proxies

TCP was designed for general purpose links and thus is not optimal for specific types

of links, and satellite links in particular, as analyzed in section 1.2. While enhancements and

modifications to the TCP protocol might mitigate problems to a certain extent there are various

issues:

- some problems are still not addressed by the plethora of TCP modification proposals,

such as the high penalty of congestion mitigation techniques for packet losses on

satellite links. Also, they may not provide such a substantial performance increase

[BhBBee].

- this is a non-transparent solution and it would take years to get approved by standards

bodies and implemented in the field.

- TCP stacVprotocol modifìcations would make the protocol link-specific thus making it
unsuitable for other types of links. A major design decision behind TCp was a simpler

protocol design that ignored link characteristics. This of course was known that it would

lead to suboptimal performance but was considered an acceptable tradeoff tBhBBgg].

- would increase complexity of TCP implementations. Particularly not suitable for

smaller embedded type devices [BhBB99].

Proxies can be used to separate links or groups of links with highly dissimilar attributes.

These proxies can take advantage of their "knowledge" of the characteristics of the particular

links and try to achieve closer-to-optimal performance, while isolating end hosts from these

- 31 -

details' Essentially isolating the end hosts from these dissimilar, in attributes, Iinks that

adversely affect end-to-end perfornance. This is also a transparent type ofsolution that requires

no modifications to end-to-end protocols that can be readily implemented by placing the proxies

in between the two communicating end hosts. The most suitable position for placement of
proxies would be at the edges of the link to be "isolated" (in our case the satellite link) so as to

intercept all the network traffic that is to traverse the satellite link, and would likely be integrated

with the ground-station hardware. No TCP stack modifications are required at the two endpoints

of the communication and this is of great importance and benefit. Performance enhancement is

obtained at the expense of increasing somewhat the complexity in the network rather than at the

end-user point [BhBB99]. Thus, this is a type of solution architecture that can be implemented

much more readily and in a significantly more timely manner.

Two types of proxies architectures (commonly referred to as Performance Enhancing

Proxies - PEPs) have been proposed in literature:

a) TCP spoofing proxies

b) TCP connection-splitting proxies

3.1.1 TCP Spoofing Proxy Scheme

TCP spoofing proxies (Fig. 3.1) would be placed at the edges of the satellite link, so as

to be able to monitor all traffic that is to traverse the satellite link. A proxy would "spoof' the

sending TCP end host by monitoring TCP segments sent by the transmitting TCp host and

based on that traffic locally generate and send appropriately spaced TCP acknowledgments to

the sending end host. This would result in maintaining a stable and open sliding window at the

transmitting host giving it the illusion of a short path delay. The data sent by the sending TCp

end host would route normally to the destined TCP end host, however acknowledgments send

by the receiver would be intercepted (filtered) by the proxy as the acknowledgments have

already been sent by the sender-side proxy as exprained before (Fig. 3.1).

-32-

1 Transmitted data .-----l
TCP ACKs

TCP Sender TCP Receiver
3 Transmitted data

4

TCP spoofing will result in hiding the large satellite link propagation delay from the

TCP end hosts and giving the illusion of a smaller delay path and thus accelerating sliding
window growth and increasing bandwidth utilization at the end hosts since as stated in section

1.2.2

Max Throughput =
Max Receiver lVindow Size

RTT
(1.3)

Additionally, because each proxy acknowledges all data sent by its corresponding end

host, they must also be responsible for the reliable delivery of that data to its destination and

thus must cache the data and perform any necessary retransmissions. As a result the end hosts

are also essentially isolated from the relatively high satellite channel bit error rate. On the other

hand, TCP spoofing does nothing to mitigate the effects of bandwidth asymmetry.

Despite the apparent benefits there are also problems associated with the use of a TCp
spoof,rng scheme. One problem is that symmetric paths are required in order to use TCp

spoofing proxies i.e. that data and acknowledgments must flow along the same path through the

proxies, otherwise acknowledgment filtering will not be possible. A second problem is the

inability to work with encrypted IP datagrams as the proxies will not be able to read TCp
headers to obtain the required information [paSh97].

TCP Receiver ACls (intercepted)

Fig. 3.1. TCP spoofing proxy architecture.

Proxy Proxy

-JJ-

3.1.2 TCP Connection-splitting Proxy Scheme

The other type of performance enhancing proxy scheme is that of TCp connection-

splitting proxies (also referred to as the Cascading TCP proxy scheme). This is the scheme the

author's own variations and specific implementations of which will be studied and implemented

in this thesis. TCP connection-splitting proxies would be placed at the edges of a satellite link
(so that all traffic to traverse the satellite link will go through the proxies) with the puqpose of
transparently splitting the end-to-end TCP connection between two end hosts into three separate

connections as shown in Fig. 3.2.Two TCP con¡ections would exist between the end hosts and

their respective connection-splitting proxies (i.e. the proxy on each end-host's side of the

satellite link). The third connection would be between the two connection-splitting proxies. The

connections between the end hosts an their respective proxies must be TCP connections as the

end hosts use TCP. The middle connection segment between the two proxies however does not

need to be TCP and another transport layer protocol can be chosen. As mentioned, the

connection splitting is transparent to the two TCp end hosts.

The connection-splitting proxy on the side of the end host that is transmitting data at a

particular instance, will intercept the sent TCP traffic and send acknowledgments back to the

sending TCP host impersonating the intended receiver end host i.e. the source Ip address used

in the acknowledgments will be that of the intended receiver. The data intercepted by the proxy,

Iet us call it the sender-side proxy, will be forwarded to the proxy on the other side of the

satellite link (receiver-side proxy) using whatever transport-layer protocol has been implemented

for that connection segment. The receiver-side gateway will then transmit the received data to the

intended receiver end host, in this case not impersonating the original sending host though.

Thus the receiving host will "think" that the entire TCP session was originally initiated by the

receiver-side proxy. The receiving end host will acknowledge all received data by sending ACKs

-34-

1 Transmitted data (intercepted by proxy) offi
2 , TCP ACKs 3 Data transmitted to siblinq prexv 5 TCP ACK5

##d$ *um
Proxy Proxy

æ+€TCP TCp or other transport TCp
connection layer connection connection

Fig. 3.2. TCP connection-splitting proxy architecture.

to the receiver-side proxy (Fig.3.2). Any data transmitted by the former receiving end host will
be sent to, and acknowledged by, its proxy and the data will again be forwarded to the sibling

proxy. The sibling proxy will then transmit this data to the former sending host impersonating,

as before when acknowledging, the former receiver. From the aforementioned it can be seen

how the end-to-end TCP session is broken into three separate connections.

The advantages of using the connection-splitting scheme and how it mitigates the

adverse effects of satellite channel attributes on TCP performance, will be analyzed in detail for
each connection-splitting architecture examined later on as the advantages vary depending on the

type of implementation of the scheme.

As with TCP spoofing, the split-connection proxy scheme cannot work when encrypted

IP datagrams are used [PaSh97]. However it does not require the use of symmetric paths, as

TCP spoofing did, as each connection is terminated and there is no filtering of
acknowledgments.

End Host End Host

-35-

3.1.3 Terminology

A more consistent and coherent terminology that will be used from here on is that of
client, client-side proxy, server-side proxy and seryer. Client is the initiator of a given TCp
session and server is the intended receiver of the TCP session initiation request. Client-side

proxy is the connection-splitting proxy on the client side of the satellite link and receiver-side

proxy is naturally the proxy on the serl)er side of the satellite link. Both of the proxies will be

sender-side and receiver-side proxies at different times as the client and server respectively

alternate between transmitting and receiving data. Also the terms proxy and gateway may be

used interchangeably.

3.2 Single-TCP-Connection Connection-Splitting Performance Enhancing proxies

The single-TCP-connection connection-splitting proxy scheme is a connection-splitting

scheme, where the protocol used for the second connection segment to handle communication

between the two gateways is the TCP transport layer protocol. One TCP connection is used

between the two gateways for each end host TCP session. Fig. 3.3 shows a timing diagram for
the connection-splitting procedure from initial connection setup to two-way data transfer and

session close-down. As depicted in Fig. 3.3, when the client end host initiates a TCp session by

sending a SYN segment (i.e. a TCP segment with the SYN flag set indicating a TCp connection

setup request), the client-side proxy detects this session initiation request and responds with a

SYN-ACK segment. The connection setup is completed with the client sending an ACK
segment' Upon completion of the connection-setup between client and client-side proxy, the

client-side proxy will then make a TCP connection-setup request to its sibling proxy, the server-

side proxy, going through the same TCP three-way handshake procedure as detailed before.

Finally, after the TCP connection-setup between the two proxies has completed, the server-side

proxy will similarly send a TCP connection-setup request to the other end host (the server), and

once this last connection is setup the 3-segment virtual connection between the two end hosts

will exist.

-36-

As depicted in Fig. 3.3, exchange of data between the two hosts occurs in a similar way.

Data sent by the client host will be intercepted by the client-side proxy which will acknowledge

it. This data is then transmitted over the satellite link using the TCp connection established

between the two gateways. Then of course the data received at the server-side proxy will be sent

to the server host over the TCP connection setup between them. The proxy will not perform any

host/address impersonation since, as mentioned before and repeated so as to avoid any

confusion, the TCP connection was setup between the two and the server host believes all data to

originate from the server-side proxy. For data originating from the server end host, the

procedure is the same with the only difference that the data transmitted by the server host does

not need to be intercepted by the server-side proxy as it is sent to it directly.

Session tear-down is dissimilar to session setup. Because the proxies are protocol-

agnostic, i.e. they are not customized to interoperate with any specific protocol, this means that

they also do not know when a particular connection session between two end hosts will
terminate. Thus, the proxies rely on the client and/or server end hosts to terminate the session.

More specifically, when an end host notifies that it is closing the TCP connection, by sending a

FIN TCP segment, the connection between the host and its proxy terminates. The other end host

might also terminate the connection with its proxy or not. In any case, the closing of at least one

TCP connection between a host and its corresponding proxy will result in the TCp connection

between the proxies to be closed. This subsequently will cause the shutting-down of the TCp

connection befween the other end host and its proxy, if not already done so.

One fact that should be noted regarding the implementation of all connection-splitting

proxy schemes in this thesis is that while normally the client-side proxy must intercept all

information sent by the client end host to the server end host (i.e. TCP connection setup

requests, data and connection tear-down requests), having the client-side proxy respond by

impersonating the server end host, the client end host actually addresses all data to the client-

side proxy. Doing this is necessary due to implementation constraints imposed by the available

resources. More specifically, having the client-side proxy transparently intercept all information

sent by the client

-37-

dåient-side
Fro:<¡r

Ser,ver-tldp
Proxy

Client
End l-lcst

5e¡sionJfonnectÍon
Setup

Épii¡er
Ertd l"{sst

Ðat¡ Ïransfer

9És9¡ó11TÞrr$iffitiórì

Fig. 3.3. Timing diagram for single-connection TCP connection-splitting proxy architecture.

to the server end host would require the use of either a network interface card operating in

promiscuous mode or having the proxies operate on workstations that function as routers for

the network. The first was not possible due to security concerns and performance issues

associated with promiscuous mode NIC operation, and the second was not feasible. This small,

needed modification in the operation of the connection-splitting scheme should not affect the

performance of the corurection-splitting proxy architectures in any significant way at all.

Fll¡ Fc-ÈDrfqr

ÈìlJ
¡- ttfl

FtH.¡lCH

-38-

Another consequence of this is that port information is not maintained (in order to contact the

server at the intended port address) as the client addresses the proxy directly rather than the

server.

Single-TCP-connection connection-splitting will result in hiding the large satellite link

propagation delay from the TCP stacks of the end hosts. This results in giving the illusion of a

smaller delay path and thus accelerating sliding window growth at the end hosts as the

acknowledgments are coming at a faster rate. Additionally, increasing bandwidth utilization at

the end hosts is possible for the same reason. The end hosts are also isolated from the relatively

high satellite channel bit error rate as any data sent by the hosts has been acknowledged and

retransmissions required because of losses over the satellite channel are the responsibility of the

proxies. This will allow the sliding windows of the end hosts to grow at a more normal rate

rather than have unnecessarily deployed congestion mitigation techniques reduce them.

However the "hiding" of the large propagation delay and the high bit error rate of the satellite

channel from the end hosts, and the benefits that this incurs, is offset to a certain extent by the

fact that both the satellite channel propagation delay and high bit error rate will still affect the

transmission of data from one proxy to the other as they also use a TCP connection that will of
course be affected by these factors. Finally, single-TCP-connection connection-splitting does

not reduce the number of acknowledgments that will traverse the satellite link and thus does not

Fig.3.4. Program structure abstract model for single-connection TCP connection-splitting
proxy architecture.

-39-

mitigate the effects of bandwidth asymmetry.

The proxies are implemented as concurrent servers with the ability to handle multiple

sessions between any number of end host pairs. For each session befween a pair of hosts, a

child process is created to handle the given session. Fig.3.4 shows an abstract model of the

program structure that depicts the operation of the proxies. Each child process that is created

uses a multi-threaded architecture. More analytically, each child process employs four th¡eads

that are used to receive and hansmit data: a pair of threads are used to transmit and receive data

tolfrom the one end host and the other pair of threads is used to transmit and receive data

tolfrom the sibling proxy on the other edge of the satellite link. Data received from either the

host or sibling proxy is placed in the corresponding buffers, while data to be transmitted is

obtained from the same respective buffers where it was placed by the receiving threads. There is

of course a variable delay due to buffering at the proxy and it is important to utilize buffers large

enough so as to prevent congestion at the proxy and consequently a large delay that will
adversely affect performance.

During the lifetime of the session a "back-pressure" algorithm is used to implement

flow control across the three connections. In other words, it is not possible for the ingress data

rate into the proxy to be larger than that of the egress data rate otherwise there will be

congestion at the proxy, leading to performance degradation. The "back-pressure" algorithm

takes care of not having the ingress data rate significantly exceed the egress. This "back-
pressure" algorithm is not implemented explicitly but is an inherent property of using multiple

TCP connections in series. More analytically, as a receiver of data (whether it be a proxy or an

end host) starts getting congested it will start reading data from the nefwork at a slower rate thus

resulting in the system network receive buffers having reduced free space. Therefore, leading to

a smaller receiver advertised window which will lead to the slower growth of the senders sliding

window and consequently to a reduced rate of transmission. The buffers are necessary in order

to compensate for any small or temporary significant differentials in the ingress and egress data

rates at the proxies. The proxies were implemented in the C programming language and run on

the Sun Solaris operating system.

-40-

3.3 Multiple-TCP-Connection Connection-Sptitting Performance Enhancing Proxies

The multi-TCP-connection connection-splitting proxy scheme is similar to that

described in the previous section with the difference that multiple TCP connections are being

used between the two proxies for each end host TCP session. One must note that this is
significantly different than simply using multiple TCP connections between the two end hosts

for two reasons: a) using multiple connections end-to-end would require new versions of all

applications and thus is not a transparent solution b) many, including the IETF through its

RFCs, do not consider it safe to use multiple connections across a shared network, such as the

Internet, for fear of congestive collapse. With the multi-connection proxy solution, the use of
multiple connections is limited to just the satellite link and not over any shared network

segment. Fig. 3.5 shows a timing diagram for the multi-connection connection-splitting

architecture from initial connection setup to session termination. When the client end host

initiates a TCP session by sending a SYN segment, the client-side proxy detects this connection

setup request and responds with a SYN-ACK segment, and the three-way handshake is

completed with the client sending an ACK segment. Upon completion of the corurection-setup

between client and client-side proxy, the clienhside proxy will then make a TCP connection-

setup request to its sibling proxy going through the same TCP three-way handshake procedure

as detailed before. Once the first TCP connection between the two proxies has been established,

the client-side proxy will use this connection to transmit to the server-side proxy the total

number of TCP connections to be opened between the two for the given session. Following this,

the advertised number of connections is opened between the two gateways. The number of TCp

connections to be shared between the two proxies for a given session is a configurable value.

Finally, after the TCP connection-setup between the two proxies has completed, the server-side

proxy will similarly establish a TCP connection with the server end host, completing the session

setup befween the two end hosts.

Exchange of data between the two hosts occurs in a similar way. Data sent by the client

host will be received by the client-side proxy which will acknowledge it. This data is then

4I

Clle¡rt
End l-lost

tTi,ent sidp
Pr+ty

5er'¡er-side
Frçry

*etv4r
Ënd ldprt

Sesslon Senrp

D¿faTr¿nsfer

SeEs:i*n

TerÍnin¿îinn

Fig. 3.5. Timing diagram for multi-connection TCP connection-splitting proxy architecture.

transmitted over the satellite link to the sibling proxy. The multiple TCP connections between

the two proxies are utilized by hansmitting each packet of data over the multiple connections in

a round-robin manner, i.e. one packet is sent over a given connection, the next packet through

the next TCP connection and so on and so forth. More on this will be explained later on when

examining proxy operation below. The data received at the server-side proxy will be then sent to

the server host over the TCP connection setup between them. Data transmission from server to

Ëetup of (n-l ! <*naectfons

ú¡:¿ Ynglst'er

ttooing of ,r lnterçrør7
l'CF ornnectlons

{One ç,f mqny Fsàrib{ç sqs¡iq¡
tcrrnir¡¡lip n sçen ¡rjcal

-42-

client follows the exact same procedure.

Session tear-down is identical to that for single-TCP-connection connection-splitting,

with either (or both) end hosts closing their TCP connection to their proxy, causing the proxies

to close the multiple TCP connections between them. This will subsequently lead to the closing

of the TCP connection between the other host-proxy pair, if not done so already.

Multi-TCP-connection connection-splitting, as with the single-connection scheme, will
result in hiding the large satellite link propagation delay and bit error rate from the TCp stacks

of the end hosts. The first, results in giving the illusion of a smaller delay path and thus

accelerating sliding window growth at the end hosts. The latter allows for increased bandwidth

utilization and improved sliding window growth, as explained in section 3.2. However, as also

applies and was mentioned for the single-TCP-connection scheme, the hiding of the large

propagation delay and the high bit error rate ofthe satellite channel from the end hosts is offset

to a certain extent by the fact that both the satellite channel propagation delay and high bit enor

rate will still affect the transmission of data from one proxy to the other as they also use a TCp

connection that will of course be affected by these factors. The multiple TCP connections are

used to mitigate these adverse effects. By using iy' connections between the proxies we are .Ày'

times more aggressive, having essentially an initial sliding window of size N as opposed to one,

with a N times larger effective sliding window. In addition, it is more resilient to packet losses

since from a given loss only one sliding window of the N will be affected by the congestion

mitigation policies. Finally, multi-TCP-connection connection-splitting does not reduce the

number of acknowledgments and thus does not counter the effects of bandwidth asymmetry.

The proxies are implemented as concurrent servers with the ability to handle multiple

sessions. The program structure is quite different from that of the single-TCP-connection

proxies, an abstract model of which showing proxy operation is shown in Fig. 3.6, given that

they must now handle multiple TCP connections for each session. Each packet of data received

43-

Pvl
o
T Hl

I

t:#;f¡þÅ

í;i:i

Fig. 3.6. Program structure abstract model for multi-connection TCP connection-splitting
proxy architecture.

by a proxy is transmitted over the multiple connections in a round-robin manner, i.e. one packet

is sent over a given connection, the next packet through the next connection etc. At the receiving

proxy this data must be collected from the multiple connections and reconstructed in the correct

order. In order for this to be possible, because of the byte stream property of TCp (i.e. the fact

that packelsegment boundaries may not be maintained), packet boundaries must be known so

as to be able to reconstruct the data from the multiple connections correctly. This is done by

appending to the beginning of every transmitted packet a2-byteheader containing the length of
the packet, from which the receiver is able to distinguish between individual packets (as when

transmitted) and thus reconstruct the data in proper order. The data is collected from each

individual connection by a separate thread which also performs the above aforementioned tasks,

and once a full packet has been obtained it is copied to the receive buffer, as shown in Fig. 3.6.

Data placed in the receive buffer is collected according to the order of transmission and placed

in order in the single-column buffer from where data is read and sent out to the end host. Data

received from an end host goes through the reverse procedure, by being placed in a buffer by

the host-side receiving thread, from where the packet is read and then the length header is

appended. Finally, the packet is transmitted over the appropriately selected TCP connection.

-44-

During the lifetime of the session the "back-pressure" algorithm is in effect, used to

implement flow control among the three connection segments. The multi-connection proxies

were implemented in c and operate on the Sun solaris operating system.

3.4 Single/Multi-UDP-Connection Connection-Sptitting Performance Enhancing
Proxies

This new connection-splitting proxy scheme follows the same concept as the

connection-splitting schemes examined in the previous sections with the difference that UDp is
used to implement a protocol for the exchange of data between the proxies as opposed to TCp,
whether it be one or more connections for each session handled. The timing diagram for the

UDP connection-splitting scheme detailing the procedure from initial connection setup to
session termination is given in Fig. 3.7. A TCP connection is first established between the client

end host and the client-side proxy in a manner identical to that detailed for the previously

examined schemes. Upon completion of the connection-setup between client and client-side

proxy' the client-side proxy will then initially establish a TCP connection with the server-side

proxy' This TCP connection is used by the client-side proxy to transmit to the server-side proxy

the total number of UDP con¡ections to be opened between the two for a given session, and this

information will be used by the server-side proxy to open the appropriate number of UDp
sockets. The TCP connection is not closed at this point as it will be used to transmit congestion

control information as will be detailed later on. The host-to-host virrual connection is then

completed by having a TCP connection established between the server-side proxy and the server

end host.

Any data sent by an end host will be received by its corresponding proxy which will
acknowledge it. This data is then transmitted over the satellite channel to the sibling proxy. The

multiple UDP connections between the two proxies are utilized by transmitting each packet of
data over the multiple connections in a round-robin manner as with the multi-connection TCp
scenario. The data received by the sibling proxy will be then sent to the othe¡ end host over the

-45-

{llent
En.d l-{ost

Client-slde
Pr+ry

5en¡er-side
Pro+ry

Server
End Hs:t

5ÊËsiúñ sËilJp

ÐataTr¡mle¡

Sessisn
ï-er¡¡nination

:

Cln:in gr of TCP,inler.prc,xy
eçnneçtlon

FTN

Flhr+6K

*@
l$¡w olrna ny pcrc.ble. ffssr.G&

ten'¡ina[iosr sc,en*rh¡I

Fig.3.7. Timing diagram for UDP connection-splitting proxy architecture.

TCP connection established between them.

Session tear-down takes place with either end host closing its TCP connection with its
proxy, causing the proxies to close the single TCP connection between them (UDP connections

are not closed as there are no UDP connections given that UDP is non-connection oriented

datagram protocol). This leads to the close-down of the TCP connection between the other

Þsr¡ T*anr{ey:

-46-

proxy and end host (ifnot already done so).

UDP connection-splitting, as with both previously examined schemes, will result in
hiding the large satellite link propagation delay and bit error rate from the TCP stacks of the end

hosts. The significant difference though with the two previous TCP schemes, is that by using

UDP for inter-proxy data exchange, the large propagation delay and the high bit error rate of the

satellite channel will affect the transmission of data from one proxy to the other to a much lesser

extent than it will the TCP schemes. This is because UDP does not use a sliding window for
transmitting data, who's growth depends on the arrival of (higtrly delayed) acknowledgments,

and who's size will be affected by packet losses due to high satellite bit error rate. This makes

the UDP approach significantly more resilient to the adversely affecting satellite channel

attributes. One drawback however of using UDP is that there is no built-in congestion control

and no mechanism to ensure reliable delivery of data, as TCP provides, for the communication

between the two proxies. Thus a congestion control mechanism must be implemented in
addition to a mechanism for ensuring reliable data transfer.

For reliable data transfer use of erasure codes is made. Erasure codes, as examined, in
section 2.2, can be used to encode data and by using redundancy allow for the full
reconstruction of all source data from less packets than the total amount of packets transmitted.

Thus, by using a sufficient degree of redundancy it is possible to achieve reliable transmission

of data over a lossy link without the need of an acknowledgment mechanism. The erasure code

used is a computationaly efflicient Vandermonde matrix based erasure code described in

lRizz97l, developed, and with the source code written by, the author of the aforementioned

paper.

Congestion control is implemented by transmitting Ri/J? (Receive Not Ready) messages

to the sibling proxy when a proxy's buffers occupancy percentage exceeds a certain threshold

value' The RNR message will result in the proxy that receives the RNR message to cease

transmitting temporarily. After an RNR message has been transmitted, once the proxy's buffers

47-

'Ptn
o
-L

Fig- 3'8' Program structure abstract model for UDP connection-splitting proxy architecture.

occupancy percentage falls below a th¡eshold value, a ,RR (Receive Ready) message is

transmitted to the other proxy allowing it to commence transmitting again. The threshold value

used for triggering a RR message transmission is smaller than the threshold value used for
triggering a RNR message transmission so as to introduce a hysteresis and thus avoid a ..pirrg-

pong" effect of continuously transmitting in alternating order RNR and RR messages. The

RNR and RR messages are transmitted over the TCP connection that was established between

the proxies to transmit the connection number at the beginning of the session in order to insure

the guaranteed delivery of the congestion control messages.

Another advantage of the UDP scheme is that because of the lack of an acknowledgment

mechanism, there are of course no acknowledgments at all and the only traffic in the reverse

direction channel are occasional RNR and RR messages. This leads to a very effective

mitigation of bandwidth asymmetry over the satellite link segment.

FIow control is not implemented for the inter-proxy connection(s) as it is not required

since the path between the two proxies is a simple point-to-point connection over a single

"bent-pipe" satellite link [BhBB99].

-48-

An abstract model of the program structure for the UDP connection-splitting proxies is

shown in Fig. 3.8 and depicts how the proxies operate. Data received from an end host is placed

in a buffer by the host-side receiving th¡ead. A separate th¡ead is used to collect a block of
packets from the buffer, which are then encoded using the erasure code. For a (n, k) code, k
source packets will be encoded to produce a block with a total of rz packets and any Æ will
suffice for source packet reconstruction at the receiver. Collecting and encoding multiple
packets at a time is done because using blocks ofjust one packet results in the erasure code just

producing duplicate. This would also be inefficient as the ratio of total encoded packets to

source packets will be at least 2, while better ratios can be achieved using multiple packets at a

time. The number È of packets collected and encoded, as well as n, canbe varied. The proxy will
try to use blocks of Æ packets, however if not enough packets are available within a specified

amount of time it will proceed with less so as to avoid delays. It is necessary along with the

encoded packets to also transmit additional information needed to reconstruct the data at the

receiving proxy. This information must include the total number of encoded packets of a packet

block and the number of source packets which will indicate the number of packets needed to

reconstruct the original data at the receiving proxy. Also, since there will be some lost packets,

each encoded packet must carry an identifier, a sequence number, so as to be able to identiSr

each individual packet and derive how many and which packets have been lost which is also

information needed in reconstructing the data.

An 8-byte header containing all this and additional needed information is appended to

every encoded packet transmitted and is shown in Fig. 3.9. The first and last bytes of the header

are beginning and end-of-header indicator bytes. The second and third bytes of the header

indicate the number of source data packets and the total number of encoded packets of the

packet block of which the current packet is a member of. The fourth byte of the header contains

the sequence number while the next two bytes contain the length of the current packet (including

the header)' Finally, the seventh byte indicates the position of the packet within its packet block.

After a block ofpackets have been encoded, the header containing all the necessary

-49-

2nd byte of
' packet

length

Fig. 3.9. UDP proxy architecture packet header.

information is appended to each encoded packet and the individual packets are transmitted over

the single connection. Or if multiple UDP connections exist, the packets are transmitted in a

round-robin manner over the different connections just as with the multi-TCp-connection

scheme' In the UDP connection-splitting scheme there is no need for packet reconstruction as

with the previous two TCP-based proxy architectures as, unlike TCp, UDp is a datagram and

not a byte stream protocol and thus all transmitted segments will be received exactly as

transmitted. The packets received by the other sibling proxy will have their sequence number

checked in order for the receiving th¡ead to determine if there have been any lost packets and if
so will set a skip flag in the appropriate receiving buffer cells indicating that these packets have

not been received. The received packet will be written in the receive buffer in the cell that

corresponds to its sequence number. A separate handling thread will read the packets from the

receive buffer, ignoring buffer entries that have the skip flag set. Once enough packets from a

packet block have been obtained (for a (n, k) code, packet blocks will consist ofn packets and

any k suffrce for source packet reconstruction) the packets are sent for erasure code decoding

and the original source packets are obtained. Fig. 3. I 0 depicts the (simplified) flow of execution

from reception of packets to erasure decoding. The reconstructed source data packets are then

written to the single column buffer, as shown in Fig. 3.8, from where they will be of course read

and sent out to the end host.

During the lifetime of the session the "back-pressure" algorithm is in effect,

implementing flow control across the three connection segments. The UDP connection-splitting

proxies were implemented in C and operate on the Sun Solaris operating system.

I

Sequence I lstbrteof
number I PacKet

I tensrh

i:ír::..:!î:-llr: ir';:rf lìlì':t t a a,..','t: at."'i::a t'.:t:,

-50-

Fig' 3.10' Simplified flow of execution from reception of packets to erasure decoding.

+
¡E -----"'--

Separale -.-rrlrre¡d¡ oI r
E¡e{utl0n

H+ad nêx?:

parter frorn
rÉ€ÊiuË tï¡fl¿t

Yes
:ket

l',ls
F¡dl

ãxnçr i,r¡fo fbø

ðrwunt Filctçf blÐEl
froru p+*hrt he"id*r

fe.o.*.nl

Eerãd fi€xt
fa*etüicrn

rr¡eirc br¡ffeq

Tes F4ñ
P{q¡rü*

H;H-
F*¡sdç Fr{ftçtr&

çb!"'rin * ¡pr¡rçç
d¡$paçhsH

lT.*riqe surcr
F¡cl*rts 1ç butkr in
çrdçr lç &s E4ntta

hort

ls æquenre
nsmberlhal

ExE*rted

hla*fi krr p*dke{s &
copy parltet 1* recel',e
buffer lin cnlumn th¡t

ronesponds {n
ms,l¡ertlnn,ï

-51 -

CHAPTER IV
ExpnnrMENTAL Rnsur,rs AND ANar,ysrs

4.1 Test Configuration and Methodology

The test configuration used for conducting all experiments is shown in Fig.4.l. The

current implementations of the connection-splitting proxies run on the Sun Solaris 5.8 operating

system, with Sun Ultra l0 workstations being used as the hardware platform. The same

software and hardware platform is used to run the client and server applications. The client and

server applications used implement a proprietary file transfer protocol implemented by the

author of this thesis [PhilO0]. This file transfer protocol uses TCP to transfer files in blocks,

with 106 byte blocks being used for the experiments conducted and analyzed in this chapter.

Satellite Link Emulator

Client
Sun Ultra 10

Solaris 5.8

^ P1o.xY NlsrNet2.o.loon Proxy
Sun Ultra 10

iOAO Linux2..2.17_21 Sun Ultra t0
Solaris 5.8 Solaris 5.8

Server
Sun Ultra l0
5olaris 5.8

Fig. 4.1. Test configuration.

To emulate the satellite link, the NIST Net 2.0.l0link emulation package INISTOO] was

used running on the Linux operating system (kernel version 2.2.17-21) on Intel i686 hardware.

The setup was conf,tgured such that the satellite link-emulating Linux workstation was the

default gateway for all data exchange between the two proxies. The NIST Net 2.0.10 link

emulation package was used to implement a 255 msec one-way link delay and a lg-t and 10-6

bit error rate, corresponding to a typical GEO satellite link one-way propagation delay and bit

52-

elror rates respectively. A typical GEO satellite channel bit erro¡ rate is closer to l0-7, with the

l0 -6 bit error rate value also being tested in order to identify the effects of larger bit error rates

on throughput performance.

All workstations used in the experiments were on the same LAN connected via 100

Mbps Fast Ethemet links, with the server application being tuned to implement a small time

delay in order to limit server (and thus overall) data throughput to approximately 500 KB/sec.

This was done in order to reflect more realistic throughputs typical of Internet and remote

connections as opposed to the very high LAN speeds. Performance tests were executed

measuring the time required for the transfer of a 3.8 x 106 byte file. Please note that the notation

of MB used in the graphs and tables in this chapter refers to "millions of bytes" and not

MBytes as in 220 bytes. A second note is that all UDP proxy scheme tests use a (4,2) erasure

code unless explicitly stated otherwise.

4.2 Obtained Results and Analysis

Fig.4.2 shows the results obtained from multiple tests of each scheme, for the transfer of
a 3.8 MB file utilizing an emulated satellite link with a 255 msec one-way delay and an l0-7 bit

error rate. It compares the performance of the reference case of straight TCp (i.e. direct TCp
connection between client and server with no proxies) versus that of the single-connection TCp
proxy scheme and the single-connection UDP proxy scheme using a (4, 2) erasure code. The

results show a very significant performance advantage of the UDP proxy scheme, which seems

to outperform straight TCP by a factor of over four. The single-connection TCp proxy scheme

on the other hand does not perform too well and seems to perform at the levels of straight TCp.

The results show a rather significant variation in the transfer times for straight TCp and the

single-connection TCP proxy scenario. On the other hand, the UDP proxy scheme seems to be

very consistent in regards to the download times. This variation in transfer times for straight

TCP and the single-connection TCP proxy scheme is likely due to the effects of the bit error

-53-

Times for 3.8M8 data transfer at l0-7 bit error rate
80

70

U

Soo
0,

Ès0
E
ßo40
c
3
8¡o

20

10

+UDP(I conn.)

' o SingleTCP

+Str¿ightTcP

Fig.4'2' Transfer times for 3.8 MB file at 10-7 bit error rate for Straight TCp vs Single-
connection TCP proxy scheme vs Single-connection uDp proiy scheme.

rate (i.e. packet loss) on the growth of the TCp sliding window.

It is believed that the exceptional performance of the UDP proxy scheme is due to the

fact that because UDP, unlike TCP, does not use a sliding window it is largely unaffected by the

large link propagation delay and relatively high bit error rate. Large propagation delay and high

bit error rate lead to, as explained analytically in Chapter l, slower sliding window growth due to

large delay before ACKs arrive, frequent shrinking of the sliding window due to congestion

mitigation mechanisms being used every time there is packet loss, bandwidth underutilization

due to a small maximum sliding window and large link delay etc. 'While the TCp proxy scheme

does theoretically isolate the end host TCP stacks from the satellite link's large delay and bit
error rate, the TCP connection used by the proxies for transfer of data between them is affected

to the fullest extent by these satellite link attributes with the analogous adverse effects on

performance, thus decreasing end-to-end throughput. With the UDp proxy scenario on the

other hand, packet losses will not cause it to reduce the sending rate of the proxies, nor are

acknowledgments expected in order to increase the transmission rate between proxies, at the

same time isolating the TCP end hosts from the adversely affecting satellite channel attributes.

Fig. 4.3 depicts the download times for the same set of conditions (i.e. file size, link delay

-54-

Tmes for 3.8M8 data transfer at 107 bit error rate

80

70

ug60
c,
E

'= 50
Eo
_9 40
3
8¡o

20

10

+UDP(2conn.)

"'"""€* Mult¡TCP (2 conn.)

' tr SingleTCP

+straíghtTcP

Fig. 4.3. Transfer times for 3.8 MB file at l0-? bit error rate for Straight TCP vs Single-
connection TCP proxy scheme vs 2-connection TCp & uDp prõxy schemes.

and error rate) comparing the 2-interproxy-connection TCP and UDP schemes versus straight

TCP and the single-connection TCP proxy scheme. It is observed that the UDP proxy scheme

performance is at the same levels as with the single-connection UDP proxy scheme examined

previously far ouþerforming straight TCP. While the 2-connection TCp proxy scheme also

shows a distinct performance advantage over straight TCP as opposed to the single connection

case. Fig. 4.4 shows the results obtained for using 3 inter-proxy connections for both the UDp
and TCP proxy schemes. Again the UDP proxy times remain at the same levels as with a single

and two connections and far lower than any of the other times. The fact that the use of 2 or 3

inter-proxy UDP connections did not increase performance further is in all likelihood due to the

fact that the server throughput is not enough to saturate a single UDP connection and thus

increasing the number of UDP inter-proxy connections further will not yield any performance

improvement. Performance of the 3-connection TCP proxy scheme is at the same levels as that

of the 2-connection TCP proxy scheme, with both yielding a significant improvement in

performance over straight TCP and the single-connection TCP proxy case. It is apparent that the

use of multiple inter-proxy TCP connections helps improve the performance by being more

aggressive. An interesting fact is that the use of 3 TCP connections provides only a marginal

improvement in download times compared to 2 corurections, despite still being significantly

-55-

80

70

960
6'c
¡! 50
Eñ
_9 40
B
8¡o

20

10

+UDP(3conn.)
,@ MultiTCP(3conn.)

o SingleTCP

+StraightTcP

Fig. 4.4. Transfer times for 3.8 MB f,rle at l0-7 bit error rate for Straight TCP vs Single-
corurection TCP proxy scheme vs 3-connection TCP & UDP proxy schemes.

higher than the UDP proxy architecture download times i.e. despite there being more room for

higher end-to-end aggregate throughput rates. From the above one draws the conclusion that the

TCP proxy architecture has reached its upper bound due to the limitations of the TCP protocol

and how adversely it is affected by the satellite charurel attributes.

Straight TCP

SingleTCP

MultiTcP (2 conn,)

MuhiTCP (3 conn.)

UDP (l conn.)

UDP (2 conn.)

UDP (3 conn.)

Fig. 4.5. Average transfer times for 3.8 MB file at l0-? bit error rate.

I
tr
ffi
tr
ffi
l.r'6f:1

T
W

-56-

Fig. 4.5 summarizes the performance of all

Table 4.1 lists a summary of the average

throughput.

average transfer times while

the percent improvement in

schemes giving the

transfer times and

Connec-
tions

Straight
TCP

Single
connection

TCP

Throughput
increase (%)

Mulri-
connection

Tap

Throughput
increase (oó) UDP

Throughput
increase (%)

1 54.3 sec 50.8 sec 6.9% 12.4 sec 338%
2 (543 sec) 33.5 sec 63 o/o 13.1 sec 315%
3 (54.3 sec) 3l.4 sec 73% 13.3 sec 308 0ó

Table 4. I Average transfer times and the percent improvement in throughput for I 0
-7 bit error

rate.

The experiments were performed again for all cases, but using this time an increased

satellite link bit error rate of 1 0-6 in order to observe the effects of an increased error rate on the

performance of all schemes. The experiments are exactly the same as those performed before

for the lower bit error rate with the difference that the multi-connection TCp proxy scheme was

also tested for the case of 4 inter-proxy connections as there seemed to be a noticeable

for 3.8M8 data transfer at l0{ bit enor rate

200

180

^ 160
U

ëßo
(u

Ê 120
tr
E i00
o880
3
860

40

20

0

+ UDP(I conn.)

.tr
SingleTCP

+SrraighrTcP

Fig. 4.6. Transfer times for 3.8 MB file at l0-6 bit error rate
connection TCP proxy scheme vs Single-connection

for Straight TCP vs Single-
UDP proxy scheme.

-57

Fig. 4.7. Transfer times for 3.8 MB file at 10-6 bit error rate for Straight TCp vs Single-
connection TCP proxy scheme vs 2-connection TCp & uDp prõxy schemes.

Times for 3.8M8 data transfer at 106 b¡t enor rãæ

200

180

^ 160

E r¿o
o
E 120
tr
E 100
o880ì
860

40

20

0

+Multi UDP(2conn.)

...'.e MultiTCP(zconn.)

o SingleTCP

+SrraightTcp

for 3.8M8 data transfer at I0-6 bit error rate

200

180

^ 160
I

S r¿o
o
É.120
tr
E 100
o880
3
860

&
20

0

"*þ Multi UDp (3 conn.)

--F MulrlTCP (4 conn.)

+ MultiTCP(3conn)

D SÌngleTCP

-r- StraightTCP

Fig. 4.8. Transfer times for 3.8 MB file at 10-6 bit error rate for Straight TCP vs Single-
connection TCP proxy scheme vs 3-connection UDP proxy scheme and í& 4 connectioî TCp

proxy scheme.

improvement this time with increasing the corurection number. The obtained results are shown

in Fig. 4.6,Fi5.4.7 and Fig.4.8.

A concise summary of the obtained results is given in Fig. 4.9 andTable 4.2 which show

-58-

Download Times for 3.8M8 data transfer at i error fa

StraightTCP

SingleTCP

MuhiTCP (2 conn)

MuhiTCP (3 connJ

MulriTCP (4 conn.)

UDP (t conn.)

UDP (2 conn.)

UDP (3 conn.)

50 75 100 125 r50

Average Download Tme (sec)

Fig. 4.9. Average transfer times for 3.8 MB file at l0-6 bit error rate.

the average download times and the performance improvement achieved by the various proxy

architectures, with Table 4.2 also comparing with the results for utilizing the l0-7 bit error rate.

By observing the results in Table 4.2, it is noticed that for the new increased bit error

rate there is almost a tripling of the download time for straight TCP. Undoubtedly a result of the

more frequent retransmissions required and particularly the increased use of congestion

mitigation resulting in more frequent "shrinking" of the TCP sliding window. This increase in
download times is also observed for both TCP proxy schemes with the reasons for this being

the same as for the straight TCP case. What is of interest is that the single-connection TCp
proxy scheme now performs v/orse than straight TCP going from an average 6.9% performance

improvement to an l iolo decrease.

Another important fact regarding the multiple-connection TCP proxy scheme is that now

there is a significant increase in performance by increasing the number of connections utilized

as opposed to the marginal increases obtained when using the lower error rate. Also these

r
tr
ffi
ffi
W
I
w
W

-59-

1ù7/
-/to6
Connec-

tions
Straight

TCP

Single
connection

TCP

Throughput
increase (70)

MultÈ
connection

TCP

Throughput
increase (90) UDP

Throughput
increase (%)

1

54.3s9,.r
,/lszr..

50,8se9./

-4rr",
6.90h _/
-/-ttE

t2.4:y
áaÁ..o,

338Vo -./
-/^^r r^

2
s4.32y
-/Í153 sec

33.5se9./

-4t+r",
63y/

34.2Vo

t3.1ï/
./'t2..*

31sy//
-/ 1ñ770r

3
543syY
-rús3t.r'

31.4sy
-/73.4sec

73%/./
/ rceo/o

t3.3y//
-/l) A

"o,

zosy
-/ 1095o/o

4
,54.Jsej)-

-Æzr.r' 59.4 ser 1580,6

Table 4.2 Average transfer times and the percent improvement in throughput for 10-ó bit error
rate.

performance improvements are of greater magnitude for an increased number of connections.

This is explained by the fact that the increased bit error rate also has a greater impact on TCp
performance (as analyzed above) thus providing more room for improvement which is realized

by utilizing a greater number of inter-proxy connections. For the UDP proxy scheme on the

other hand, it is observed that the download times have remained largely unchanged indicating

that the increased bit error rate had no effect. This is apparently due to the fact, as noted in the

previous round of experiments, that the UDP proxy scheme does not utilize a window and the

inter-proxy transmission rate is largely unaffected by the bit error rate. As a result the UDp
proxy scheme exhibits rather exceptional performance improvements of an order of magnitude.

The UDP proxy scheme was also tested for varying redundancy ratios in order to

observe the effects of increasing the erasure code redundancy on performance. Fig.4.l0 and

4.11 depict the results obtained by varying the erasure code redundancy from a(3,2) erasure

code, to (4,2) and (5,2), for both bit error rates of 10-6 and 10-7. From the figures it can be

seen that the variation ofthe redundancy ratio for either bit error rate, and for utilizing a different

number of connections, has small effect on performance. This is very likely due to the fact that

the aggregate throughput is not high enough to stress the UDP proxies and any modest increase

-60-

I
ffi
Er
W
Er
w
tr

Fig. 4.11. UDP proxy schemes for varying redundancies at

(3:) I conn.

(4,2) 1 conn.

(5,2) I conn.

(3,2) 2 conn.

(42) 2 conn.

(5,2) 2 conn.

(31) 3 conn.

(4,2) 3 conn.

(5,2) 3 conn.

Average Download Times for 3.BMB data transfer for vary¡ng
redundancy of UDP oroxv scheme

t3

12.4

12.9

r35

t3.1

r33

r2¡
r3.3

Fig. 4.10. UDP proxy schemes for varying redundancies at l0-7 bit error rate.

Average Download Imes for 3.8M8 data transfer for varying
of UDP proxy scheme (10{ bit error

't32

(3,2) I conn.

(42) 1 conn.

(5i) I conn.

(3,2) 2 conn.

(4J) 2 conn.

(5,2) 2 conn.

(3,2) 3 conn.

(42) 3 conn.

(5J) 3 conn.

1L6

13

12.4

12.6

rz8

I
ffi
tr
I
W
n
I
W
E

-61

10-6 bit effor rate.

ofredundancy does not affect a significant change.

Two important facts must be noted regarding the UDP connection-splitting architecture.

Firstly, a bug in the erasure code open source code prevents it from reconstructing the data

properly when running on the Solaris operating system, and this I was not able to correct in

time' The erasure code coding and decoding still run normally with the correct number of bytes

being transfened thus leaving the performance benchmarks unaffected and valid, with the simple

difference that the received at the end host data while correct in amount is not the same byte-for-

byte as the data transmitted. A second note is that during the testing of the UDp proxy scheme,

in some instances (when using a single inter-proxy connection and very rarely when using

miltiple connections) the data transfer would fail due to relatively rare burst losses that resulted

in not enough packets being available to reconstruct the source data packets from a given packet

block' This, and the fact the in practice the presence of rain fade can result in similar burst or

extended losses dictate that for a real-world implementation the UDP proxy scheme must be

complemented with a retransmission mechanism to recover from such losses. While using

multiple connections and/or increased redundancy can mitigate the effect of extended losses, a

retransmission mechanism is still deemed necessary. One was not implemented due to time

constraints, but it is proposed that an explicit loss notification (or "negative" acknowledgment)

mechanism be implemented rather than a "positive" acknowledgment mechanism. I.e. there

would not be an acknowledgment for every packet or group ofpackets received, but rather only
when there is an insufficient number of packets to reconstruct the source data packets would a

retransmission request be sent for the packets of that given block. The use of explicit loss

notification rather than a "positive" acknowledgment mechanism would result in far less traffic
in the reverse channel (important when bandwidth asymmetry exists), be less complex and pose

a smaller burden on the proxies. This is one of the recommendations for future work as noted in
the next chapter.

62-

CHAPTER V

CoNcr,usIoNS AND Furunn'Wonx

The work described in this thesis was motivated by the need for improving the

performance of TCP over satellite channels which suffers to a large degree. In this thesis three

connection-splitting architectures based on transparent proxies were implemented and tested.

The connection-splitting architectures implemented and the performance improvements they

yielded are as follows:

5.1 Single-TCP-Connection Connection-Splitting Performance Enhancing Proxy

Architecture

This connection-splitting architecture utilizes two transparent proxies that use a single

TCP connection for inter-proxy data exchange. The performance enhancements obtained at the

typical GEO satellite bit error rate of 10-7 where marginal yielding only a 6.90/o improvement in

throughput on average compared to standard straight TCP. At an increased bit error rate of 10-6

the performance of the architecture is worse actually leading to a decrease in throughput

performance (of I Io/o on average) compared to straight TCP. While the use of proxies does

isolate the end-hosts from the satellite link attributes that adversely effect TCp performance, the

adverse effects of the satellite link on inter-proxy data exchange is the major pitfall of this

scheme. Thus, this architecture proved to be ineffective.

5.2 Mutli-TCP-Connection Connection-Splitting Performance Enhancing Proxy

Architecture

This proxy architecture is similar to the previous one with the difference that multiple

TCP connections, as opposed to just one, are used for inter-proxy communication. The goal is

to be more aggressive in inter-proxy data transfer by using multiple connections. This proved to

-63-

be quite effective yielding average throughput performance improvements of the order of greater

than 600/o for using 2 and 3 connections at the typical satellite bit error rate of l0r. While

yielding even greater throughput improvements at the higher error rate of 10-6 that exceeded

l50o/o on average when using 4 inter-proxy connections. Thus, this connection-splitting proxy

architecture obviously proved to be very effective.

5.3 UDP connection-splitting performance Enhancing proxy Architecture

This was the third and last connection-splitting architecture implemented and proved to

be the most effective of all of them, yielding exceptional throughput performance increases.

Under the typical bit error rate (10-7), the UDP proxy architecture provided a throughput

increase of more than 4-fold even for utilizing just a single inter-proxy UDp connection. At a

higher bit error rate (10-6), the throughput increase was even greater leading to an order of

magnitude increase in throughput.

5.4 Future Work and Recommendations

i) As noted in chapter 4 for the UDP connection-splitting architecture, in some instances

extended losses can cause data transfer to fail due to occasional burst losses or rain fade that

can result in not enough packets being available to reconstruct the source data packets from a

given packet block. This dictates that for a real-world implementation, the UDp proxy scheme

must be complemented with a retransmission mechanism in order to be able to recover from
such losses. While using multiple connections and/or increased redundancy can mitigate the

effect of extended losses, a retransmission mechanism is necessary for the (infrequent but

occuning) case that packet losses are too great for the redundancy mechanism to recover. It is
proposed that an explicit loss notification mechanism be implemented rather than a ,þositive',

acknowledgment mechanism, meaning there would not be an acknowledgment for every packet

or group of packets received. Rather, only when there is an insufficient number of packets to

reconstruct the original source data packets, would a retransmission request be sent for the

-64-

packets of that given block. The use of explicit loss notification rather than a "positive,'

acknowledgment mechanism would result in far less traffic in the reverse channel (important for

when bandwidth asymmetry exists), be less complex and pose a smaller burden on the proxies.

ii) Another possible enhancement to the UDP connection-splitting architecture is the

runtime variation of the erasure code redundancy based on the observed amount of packet loss.

In other words, if the packet loss due to comrption is less than expected then the erasure code

redundancy could be reduced to allow for more efficient operation and vice versa if the packet

loss rate due to comrption is larger than expected. This would also require a mechanism that

would be able to identiff if packets losses are due to comrption or congestion, which can prove

to be very difficult to implement.

iii) An important potential enhancement for the UDP connection-splitting architecture is

the use of a more efficient erasure code. An ideal erasure code would be the relatively new

Tornado erasure codes, which are according to benchmarks very efficient, requiring very small

encoding and decoding times.

iv) One potential enhancement for all types of connection-splitting proxy architectures is

the implementation of a more sophisticated end-to-end flow control mechanism to complement

the "back-pressure" algorithm in order to reduce performance dependency on proxy buffer

sizes. Some such potential modifications have been proposed in [BhBB99], such as for example

deliberately causing packets losses in some instances in order to reduce the end host

transmission rate.

v) A final recommendation regarding the actual implementation of the connection-

splitting proxy architectures, is that for better performance a lower layer (e.g. kernel level) or

even more suitably a hardware implementation (as with IP routers for example) would be more

suitable for a real-world implementation.

Of course there are a plethora of modifications that can be made to the connection-

65-

splitting proxy architectures that have been implemented and studied in this thesis. For example,

by using modified or radically different inter-proxy protocols, as there have been some

commercial and non-commercial implementations of connection-splitting proxy architectures,

that go beyond the scope of this thesis to cover.

-66-

RnrnnnNcES

[Allm97] M. Allman, "Improving TCP performance over satellite channels", Master,s thesis,

Ohio University, June 1997.

[Allm98] M' Allman, "On the generation and use of TCP acknowledgments", ACM Computer

Communication Review, 28(5), October 199g.

[BaPK97] H. Balakrishnan, V. N. Padmanabhan and R. Katz, "The effects of asymmetry on

TCP performance", Proceedings of the ACM/IEEE Mobicom, Budapest, Hungary,

ACM, September 1997.

[BaRS99] H' Balakrishnan, H. Rahul and S. Seshan, "An integrated congestion management

architecture for Internet hosts", ACM SIGCOMM, September 1999.

[BaSa98] K. Bajaj and H. Saran, "A link layer protocol for improving TCP performance over

satellite channels", Dept. of computer science & Eng., Indian Institute of
Technology, New Delhi-l l0 016, India, 1998.

[Bhar99] V. G. Bharadwaj, "Improving TCP performance over high-bandwidth geostationary

satellite links", Master of Science thesis, Department of Electrical and Computer

Engineering, University of Maryland, lg9g.

[BhBB99] V. Bharadwaj, J. S. Baras and N. P. Butts, "An architecture for Intemet Service via

Broadband satellite networks", Centre for Satellite and Hybrid Communication

Networks, Technical Research Report, CSHCN T.R. 99-12 (ISp T.R. gg-22),lggg.

[BSAK95] H. Balakrishnan, S. Seshan, E. Amir and R. Katz, "Improving TCP/Ip performance

over wireless nefwolks", Proceedings of lst ACM International Conference on

-67-

Mobile Computing and Networking (Mobicom), 1995.

[CaSA98] N. Cardwell, S. Savage and T. Anderson, "Modelling the performance of short TCp

connections", Department of Computer Science and Engineering, University of
Washington, October 1 998.

[DENP97] M. Degermark, M. Engan, B. Nordgren and S. Pink, "Low-loss TCp/Ip header

compression for wireless networks", ACM/Baltzer Journal on Wireless Networks,

vol. 3, no. 5, p. 375-87.

[FaFl96] K. Fall and S. Floyd, "simulation-based comparisons of Tahoe, Reno and SACK

TCP", Computer Communication Review,V.26, N. 3, p. 5_21, July 1996.

[Floy94] s. Floyd, "TCP and explicit congestion notification", ACM computer

Communication Review ,V. 24, N. 5, Octob er 1994.

[Frie95] D. E. Friedman, "Error control for satellite and hybrid communication networks',,

Master's thesis, CSHCN M.S. 95-l (ISR M.S. 95-10), Center for Satellite and

Hybrid communication Networks - university of Maryland, r995.

[GhDi99] N. Ghani and S. Dixit, "TCP/IP enhancements for satellite networks", IEEE

Communications Magazine, p. 64-72,July 1999.

[JaKa88] R. Van Jacobson and M. J. Karels, "Congestion avoidance and control", ACM
SIGCOMM. 1988.

[JHoe96] J. Hoe, "Improving the starlup behavior of a congestion control scheme for TCp",

ACM SIGCOMM, August 1996.

[KaVR98] L. Kalampoukas, A. Varma and K. K. Ramakrishnan, "Improving TCp throughput

-68-

over two-way asymmetric links: Analysis and solutions", Measurement and

Modeling of Computer Systems, p. 78-89, 199g.

[Krus95] H. Kruse, "Performance of common data communications protocols over long delay

links: An experimental examination", 3rd International conference on

Telecommunication Systems Modeling and Design, 1995.

[Metz0O] C.Metz, "IP-over-satellite: Internet connectivity blasts off', IEEE Intemet

Computing, p. 84-89, July/August 2000.

INISTOO] NIST Net emulation package 2.0.70,National Institute of Standards and

Technology, http ://www.antd.nist. gov/itglnistnet.

[PaSh97] C. Partridge and T. J. Shepard, "TCP/IP performance over satellite links", IEEE

Network, September/October, p. 44-49, 1997 .

[Phil0O] S. Philopoulos, "Intemet Mirror Site Parallel Downloading Schemes", Department of
Electrical and computer Engineering, university of Manitoba, winnipeg, MB,

Canada,2000.

IRFC I 144] v . Jacobson. "RFC I 144: compressing TCp/Ip headers,', February 1990.

IRFC I 323] V' Jacobson, R. Braden and D. Borman, "RFC 1323: TCP extensions for high

performance networks", May I 992.

IRFCl379] R. Braden, "RFC 1379: Transaction TCp - concepts", september 1992.

IRFC1644] R. Braden, "RFC 1644:TITCP - TCP extensions for transactions: Functional

specif,rcation", July I 994.

-69-

[RFC2018] M' Mathias, J. Mahdavi, S. Floyd and A. Romanow, "RFC 2018: TCp selective

acknowledgment options", October 1 996.

[RFC2140] J. Touch, "RFC 2140: TCp control block interdependence,' , Apnl 1997.

[RFC2414] M. Allman, S. Floyd and C. Partridge, "RFC 2414:lncreasing TCp's initial

window", September 1998.

[RFC2481] K. Ramakrishnan and s. Floyd, "RFC 24gl Aproposal to add Explicit

Congestion Notification (ECl.Ð to Ip',, January 1999.

[RFC2488] M. Allman et al., "RFC 2488: Enhancing TCP over satellite channels using

standard mechanisms", January 1999.

[RFC2507] M' Degermark, B. Nordgren and S. Pink, "RFC 2507:lP header compression",

February 1999.

[RFC2760] M' Allman et al., "RFC 2760: Ongoing TCP research related to satellites",

February 2000.

[Nzz97l L.Rjzzo, "Effective erasure codes for reliable computer communication protocols",

Dip. di Ingegneria dell'Informazione,Universita di pisa, 1997.

[SLSC98] B. Suter, T. Lakshman, D. Stiliadis and A. Choudhury, "Design considerations for

supporting TCP with per-flow queuing", proceedings of IEEE Infocom ,9g

Conference, 1998.

[XyPo99] G. Xylomenos and G. C. Polyzos, "Internet protocol performance over networks

with wireless links",IEEE Network, p. 55-63,July/August 1999.

-70-

AppBxnx A

C LaNcUAGE LrsrrNc FoR Srxcr,n-coNNECTIoN-TCp

C oxilncrroN-spr,rrrrNc pnoxrn s

-71 -

#define _REENTRANT
#include <stdio.h>
#include <stdlib.h>
#include <sys/types. h>
#include <sys/socket. h>
#include <netineVin.h>

#include <netdb.h>
#include <string.h>
#include <sys/stat.h>
#include <thread.h>
#include <synch.h>
#include <sched.h>

#include <sys/uio.h>
#include <sys/sem.h>
#include <sys/ipc.h>
#include <memory.h>
#include <time.h>
#include <sys/time.h>
#include <unistd.h>

//Choose whether serv-side proxy Name or lp read from file
/ l#define SS_PRX_USE_NAME
#define SS_PRX_USE_lP

#define C-PORTNUMBER 6005 //Server-side proxy will listen on different
(get from file)
#define FILENAME "smpl-cs-proxy-file.txt" /lFile that contains address &
of serv-side proxy
#define SOCK_BUFFER_SIZE 1024
#define cs-To-ss-PRoxYBUFFER_stzE 1oo il#of nodes in buffer
#define ss-To-cs-PRoxYBUFFER_srzE s00o /t# ofnodes in buffer

#define DELAY_IN_MSEC 0
ll#define UStr_DELAY

port

port

-72-

* Function prototypes

void *proxyside_send_ThreadFunc(void *);

void *proxyside_recv_Thread Func(void *)
;

void *clientside_send_ThreadFunc(void *);

void *clientside_recv_Thread Func(void ");

struct BufferNode {
int EntryFull; //Flag (serves as semaphore). lf 1 then value stored, else is

empty and can be written into
long int DataSize; llSize of data stored in entry
char Data[SOCK_BUFFER_StZE];

h

int sockfd, newsockfd, servlen, cli_len, childpid;
struct sockaddr_in cli_addr, serv_addr;
int niaa;
struct BufferNode cs_to_ss_proxyBuffertcs_To_ss_pRoxyBU FFER_stZEl;
/ lBuff er used for cl ient->server_side_proxy traffic
struct BufferNode ss_to_cs_proxyBuffer[ss_To_cs_pRoxyBU FFER_slZE];
/ I Buff er u sed for server_side_ proxy->cl ie nt traffic
int ssp_sock; //socket used to connect to seryer-side proxy

int main(void) {

/lCreate the socket
if ((sockfd=socket(AF_lNET, SOCK_STREAM, O)) . 0) {

perror("ERROR: socket creation \n");
exit(1);

)

/ lCreate (client-side) proxy address

-73-

memset(&serv_addr, 0, sizeof(struct sockaddr_in));

serv_addr.sin_family = AF_lN ET;
serv_addr.sin_port = htons(C_pORTN U MBER);
servlen = sizeof(struct sockaddr_in);

niaa = INADDR_ANY;
memcpy(&serv_addr.sin_addr, &niaa, sizeof(long)) ;

//Bind socket to server address
if (bind(sockfd, (struct sockaddr *) &serv_addr, servlen) < O) {

perror("ERROR: bind \n");
exit(1);

)

//Listen for client connections
if (listen(sockfd, 5) . 0) {

perror("ERROR: listen \n");
exit(1);

)

for (;;) {

cli_len = sizeof(cli_addr) ;

newsockfd = accept(sockfd, (struct sockaddr *) &cli_addr, &cli_len);

if (newsockfd < 0) {
perror("ERROR: Can't create new socket \n");
exit(1);

)

//Create child process
if ((childpid = forkQ) . O) {

perror("ËRROR: Fork \n");
exit(1);

)
else if (childpid -= O) { /* ****** child process ****** */

-74-

/* Child process vars */

struct hostent *hp; //used in connecting to server_side
proxy

struct sockaddr-in name; //used in connecting to server-
side proxy

int len; //used in connecting to server-side proxy
int thr_concurrency_counter;
thread_t ThreadlD[4]; //Array of thread lDs for

thr_create calls
void *dummyPTR[a]; llArray of dummy pointers used in

thr_create calls
FILE *fd;

int S_Port_Number; llPort on which server-side proxy
listens

char S_Proxy_Name[64]; //tp USED NOW!! DNS name of
server-side proxy

int i; //counter var
size_t TaskStatus[4]; //Used in thr_join0 calls
int mm;
char S_Proxy_lP[55]; ttlp address of proxy now read
ulong_t addr; /iUsed for getting serv.side proxy info from its

lP address

close(sockfd); //close original socket

I / -------------------cod e

printf("CHECK: CHILD process created \n\n");

" Read file to obtain address (name & port #) of server-side

* Format: "porf# ss-proxy-name" ("'s not included)

proxy

-75-

//sem_lock not needed

if ((fd = fopen(F|LENAME, "r")) == NULL) {
perror("ERROR: Couldn't open file \n,');
exit(1);

)

#ifdef SS_PRX_USE_NAME
fscanf(fd, " o/od o/os", &S_Port_ N u m ber, S_proxy_N am e) ;

#endif
#ifdef SS_PRX_USE_lP
fsca nf(fd, " o/od o/os", &S_ Port_ N u m be r, S_p roxy_ I

p)
;

#endif

llCheck values read from file
#ifdef SS_PRX_USE_NAME
p rintf("C H E C K : S_ P roxy_ N a m e : yo s\n,', S_ p roxy_ N a m e) ;

#endif

#ifdef SS_PRX_USE_lP
printf("C H ECK: S_Proxy_ I

p : Zos\n,', S_proxy_ I p)
;

#endif

printf("C H EC K: S_Port_ N umber: yo d \n", S_port_ N u m ber) ;

fclose(fd);

//sem_unlock not needed

* lnitialize proxy buffers (i.e. set all flags to O)

for (i=0; |<CS_TO_SS_PROXYBUFFER_S|ZE; i++¡ 1

cs_to_ss_ProxyBuffer[i]. EntryFu ll = 0 ;

-76-

)
for (i=0; ¡<SS_TO_CS_PROXYBUFFER_StZE; i++) {

ss_to_cs_ProxyBuffer[i]. EntryFull = O;

)

* Open connection to server-side proxy

/ /-----------
//Get server-side proxy's address
#ifdef SS_PRX_USE_NAM E

if ((hp = gethostbyname(S_proxy_Name)) =- NULL) {
printf("ERROR: Can't get server-side proxy address

(7os)\n\n", S_Proxy_Name);
exit(1);

)
#endif

#ifdef SS_PRX_USE_tP
//Get server-side proxy's address
if ((int)(addr = inet_addr(S_proxy_tp)) -- -1) {

printf("lP-address must be of the form a.b.c.d\n,');
exit (2);

)
hp = gethostbyaddr((char *)&addr, sizeof(addr), AF_INET);

if (hP -= NULL) {
printf("host information for Zos not found\n',,

S_Proxy_lP);
exit (3);

)
#endif

/lCreate socket
if ((ssp_sock = socket(AF_tNET, SOCK_STREAM, 0)) . 0) {

printf("ERROR: Can't create socket for server_side proxy
\n\n");

exit(1);

-77-

)

I lCreate server address
memset(&na me, 0, s izeof(struct sockaddr_i n)) ;

name.sin_family = AF_l NET;
name.sin_port = htons(S_Port_Num ber) ;

memcpy(&name.sin_addr, hp->h_addr_list[O], hp->h_length) ;

len = sizeof(struct sockaddr_in);

//Connect to server
if (connect(ssp_sock, (struct sockaddr *) &name, len) < O) {

printf("ERROR: Can't connect to server-side proxy\n\n,');
exit(1);

)

//-----------

* Spawn the sending/receiving threads

thr_create(NULL, 0, clientside_recv_ThreadFunc, (void *)
dummyPTR[O], 0, &ThreadtD[0]);

thr_create(NULL, 0, clientside_send_ThreadFunc, (void *)
dummyPTR[1], 0, &ThreadlD[1]);

thr_create(NULL, 0, proxyside_recv_ThreadFunc, (void ")
dummyPTR[2], 0, &Threadt D[2]);

thr_create(NULL, 0, proxyside_send_ThreadFunc, (void *)
dummyPTR[3], 0, &ThreadlD[3]);

*set the thread concurrency. could improve thread scheduling.

thr_concurrency_counter = 4+1; //lnclude mainQ
th r_setco n cu rre n cy(th r_co n cu rre n cy_ cou n ter) ;

-78-

* Make thr_join calls so that program doesn't terminate right
after creating threads

thljoin(ThreadlD[0], 0, (void *) &TaskStatusl0]);
thljoin(ThreadlD[1], 0, (void *) &TaskStatus[1]);
thljoin(ThreadlD[2], 0, (void *) &TaskStatus[2]);
thljoin(ThreadlD[3], 0, (void *) &TaskStatus[3]);

) //endelseif

close(newsockfd);

j llendfor

I l*main*l

/* ****** child process ****** */

'*l * ** * *** * * * * * * * * *** * * * * * * * * * * ** * *** ** ** * * * * * * * * * * ** * ** * ** * ** * * ** ** * * * ** * * *
********************* */t

void *clientside_recv_ThreadFunc(void "dummyPTR) i/Receives data from client &
stores in buffer(cs_to_ss_ProxyBuffer)
{

int n;
int i; //counter var
char buf[SOCK_BUFFER_SIZE];
void "thr_exit status;

-79-

printf("C H ECK: clientside_recv_Thread spawned\n\n") ;

i=-1: /llnitcounter
while ((n = recv(newsockfd, buf, sizeof(buf), O)) t 0) {

//lncrement counter
if (i < (cs_To_ss_pRoxyBUFFER_S|ZE-1))

l++,
else

i= 0;

/*
* Copy received data to cs_to_ss_proxyBuffer;*/
while (cs_to_ss_ProxyBuffer[i].EntryFutt != 0) {

printf("STATU S/CH EC K(cl ientside_recv) : Waitin g on
cs_to_ss_ProxyBuffer != O\n\n");

thr_yield0;
)
memcpy(cs_to_ss_ProxyBuffer[i].Data, buf, n);
cs_to_ss_ ProxyBuffer[i]. DataS i ze = n;
cs_to_ss_ProxyBuffer[i]. EntryFull = 1 ;

) /iwhile
if (n<=O) {

printf("CHlLD PROC. EXITING: n<=0 while recv. from client(client-side
proxy)\n");

printf("lF AT END OF CLIENT-SERVER COMMUN. THEN OK \n\n',);
close(newsockfd);
exit(1);
th r_ exit(th r_ex it_ statu s) ;

)

) //clientside_recv_ThreadFunc

-80-

********* ******** *** ******* *********************************** *************
********************* */

void *clientside-send-ThreadFunc(void *dummyPTR) /iGets data from
buffer(ss_to_cs-ProxyBuffer) & sends to client

{

int n;
int i; //Counter var
char buf[SOCK-BUFFER-SIZE];
void *thr_exit_status;

printf("CH ECK: clientside-send-Thread spawned\n\n") ;

i = -1; //lnit counter
while (1) {

/*
* Get data from ss-to-cs-ProxyBuffer;
*/

//lncrement counter
if (i < (ss_To_cs_PRoxYBUFFER_SIZE-1))

¡++;
else

i= 0;

while (ss-to-cs-ProxyBuffer[i].EntryFull != 1) {
thr_yield0;

)
memcpy(buf , ss-to-cs-ProxyBuffer[i]. Data,

ss_to_cs_ProxyB ufferli]. DataSize) ;

n = ss_to_cs_ProxyBuffer[i]. DataS ize ;

ss-to-cs-ProxyBuffer[i]. EntryFull = 0;

-81 -

/*
* Send data to client
*/
if (send(newsockfd, buf, n, 0) . 0) {

printf("ERROR: (smpl_cs_proxy) While sending data to client
<O \n\n");

exit(1);
th r_exit(th r_exit_status) ;

)

) //while

] //clientside_send_ThreadFunc

ä:::::::::::-:--::-::;***

void *proxyside_recv_ThreadFunc(void "dummyPTR) //Gets data from
buffer(ss_to_cs_ProxyBuffer) & sends to client
{

int n;
int i; //Counter var
char buf[SOCK_BUFFER_SIZE];
void "thr_exit_status;

pri ntf("C H ËCK: proxyside_recv_Th read spawned\n\n") ;
: _ 4.| - - I'

while ((n = recv(ssp_sock, buf, sizeof(buÐ, 0)) > 0) {

* Copy received data to ss_to_cs_ProxyBuffer;

-82-

n/

//lncrement counter
if (i < (ss_To_cs_pRoxyBUFFER_S|ZE_1))

¡++l
else

i= 0;

/*
* Copy received data to ss_to_cs_proxyBuffer;*/
while (ss_to_cs_ProxyBuffer[i].EntryFuil l= 0) {

printf("STATU S/C H ECK(proxyside_recv): Wa iting on
ss_to_cs_ProxyBuffer != O\n\n");

thr_yield0;
)
memcpy(ss_to_cs_ProxyBuffer[i].Data, buf, n);
ss_to_cs_ ProxyB uffer[i]. DataS i ze = n:
ss_to_cs_ProxyBuffer[i]. EntryFull = 1 ;

) //while
if (n<=0) {

printf("FATAL ERROR: n<=0 while recv. from server-side proxy (client-
side proxy) \n\n");

close(ssp_sock);
exit(1);
th r_ exit(th r_ ex it_statu s) ;

)

] //proxyside_recv_Thread Func

ii:::::::::::::::-::::;----**********************************

void "proxyside-send_ThreadFunc(void *dummyprR) //Gets data from

-83-

buffer(cs_to_ss_ProxyBuffer) & sends to server-side proxy
{

int n;
int i; //Counter var
char buf[SOCK_BUFFER_StZE];
void "thr_exi+_status;

struct timeval *start_time;

struct timeval "curr_time;
long staft_time_in_msec, curr_time_in_msec;

printf("CHECK: proxyside_send_Thread spawned\n\n");

* Allocate memory to time vars

start-time = (struct timeval ") malloc(sizeof(struct timeval));
curr-time = (struct timeval ") malloc(sizeof(struct timeval));

i- 4 .l-- I'

while (1) {

* Get data from cs_to_ss_proxyBuffer;

//lncrement counter
if (i < (cs_To_ss_pRoxyBUFFER_S|ZE_1))

i++;
else

i= 0;

while (cs_to_ss_ProxyBuffer[i].EntryFuil != 1) {
thr_yield0;

-84-

)
memcpy(buf, cs_to_ss_proxyB uffer[i]. Data,

cs_to_ss_ProxyB uffer[i]. DataS ize) ;

n = cs_to_ss_ProxyBuffer[i].DataSize;
cs_to_ss_ProxyBuffer[i]. EntryFull = 0;

/*
* Send data to server-side proxy*/

if (n>0) {

#ifdef USE_DELAY

//----------------

if (gettimeofday(staft_time, NULL) .O) {
pri ntf("E RRO R(proxy_send) : gettimeofday error\n\n ") ;

exit(1);
)

start-time-in-msec = (start_time->tv_sec)*1 0oo + (start_time-
>tv_usec)/1000;

while (1) {

if (gettimeofday(curr_time, NULL) .0) {
pri ntf(" E RROR(proxy_send) : getti meofday error\n\n") ;

exit(1);
)

curr-time-in-msec = (curr_time->tv_sec)*1 0oo + (curr_time-
>tv_usec)/1OOO;

if ((curr_time_in_msec - start_time_in_msec) >= DELAY_lN_MSEC)
break;

-85-

//Since haven't reached timeout value yet have thread sleep/yield
thr_yield0;

) /iwhile

t/----------------

#endif

if (send(ssp_sock, buf, n , 0) . O) {
printf("ERROR: (smpl-cs-proxy) While sending data to server-side

proxy <0 \n\n");
exit(1);
th r_ ex it(th r_exit_status) ;

)

j //if n>O

) //while

) //proxyside_send_ThreadFunc

-86-

#define _REENTRANT
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/socket. h>
#include <netineVin.h>
#include <netdb.h>
#include <string.h>
#include <sys/stat.h>
#include <thread.h>
#include <synch.h>
#include <sched.h>
#include <sys/uio.h>
#include <sys/sem.h>
#include <sys/ipc.h>
#include <memory.h>
#include <time.h>
#include <sys/time.h>
#include <unistd.h>

I l#define SERV_USE_NAME
#define SERV_UStr_tP

#define S-PORTNUMBER s0o6 //server-side proxy listens on this port
#define FILENAME "smpl-ss-proxy-file.txt" //File that contains address & port
of server
#define SOCK_BUFFER_StZE 1024
#define cs-To-s-PRoxyBUFFER_stzE 100 ll# ofnodes in buffer
#define s-To-cs-PRoxyBUFFER_stzE s00o il#of nodes in buffer

#define DELAY_IN_MSEC 0
ll#define USE_DELAY

-87-

* Function prototypes

void *serverside_send_ThreadFunc(void *)
;

void "serverside_recv_Thread Fu nc(void *) ;

void *cproxyside_send_ThreadFunc(void *);

void *cproxyside_recv_ThreadFunc(void
");

struct BufferNode{
int EntryFull; //Flag (serves as semaphore). lf 1 then value stored, else

is empty and can be written into
long int DataSize; llSize of data stored in entry
char Data[SOCK_BU FFER_StZE];

h

int sockfd, newsockfd, servlen, cli_len, childpid;
struct sockaddr_in cli_addr, serv_addr;
struct BufferNode
csproxy-to-server-ProxyBufferlcs_To_s_pRoxyBUFFER_slzE]: llBuffer used
for cl ient->server_side_proxy traffic
struct BufferNode
server-to-csproxy-ProxyBufferls_To_cs_pRoxyBUFFER_Slz1l; llBuffer used
for server_side_ proxy->cl ient traffic
int server_sock; //Socket used to connect to seryer
int niaa;

int main(void) {

l/Create the socket
if ((sockfd = socket(AF_lNET, SOCK_STREAM, 0)) . 0) {

perror("ERROR: socket creation \n");

-88-

exit(1);
)

I /Create (server-side) proxy address
memset(&serv_add r, 0, sizeof(struct sockadd r_ i n)) ;

serv_addr.sin_family = AF_l NET;
serv_addr.sin_port = htons(S_pORTN U MBER) ;

servlen = sizeof(struct sockaddr_in);

niaa = INADDR_ANY;
memcpy(&serv_addr.sin_addr, &niaa, sizeof(long)) ;

/lBind socket to server address
if (bind(sockfd, (struct sockaddr *) &serv_addr, servlen) . O) {

perror("ERROR: bind \n");
exit(1);

)

//Listen for client connections
if (listen(sockfd, 5) . 0) {

perror("ERROR: listen \n");
exit(1);

)

for (;;) {

cli_len = sizeof(cli_addr);
newsockfd = accept(sockfd, (struct sockaddr *) &cli_addr, &cli_len);

if (newsockfd < 0) {
perror("ERROR: Can't create new socket \n,');
exit(1);

)

/lCreate child process

-89-

if ((childpid = forkQ) . O) {
perror("ERROR: Fork \n");
exit(1);

)
else if (childpid -- 0) { 7* ****** child process ****** */

i* Child process vars */
struct hostent *hp; //used in connecting to server
struct sockaddr-in name; //used in connecting to server
int len; //used in connecting to server
int thr_concurrency_counter;
thread_t ThreadlD[4]; llArray of thread lDs for

thr_create calls
void *dummyPTR[a]; llArray of dummy pointers used in

thr_create calls
FILE "fd;
int Server_PortNumber; /lport on which server listens
char Server_Name[64]; /iDNS name of server
char Server_lP[64]; //lp of server
ulong_t addr;
int i; //counter var
size_t TaskStatus[4]; //Used in thfoinO calls

close(sockfd); //close original socket

/ / ---------- ---------code

printf("CHECK: CHILD process created \n\n");

" lnitialize proxy buffers (i.e. set all flags to 0)

for (i=0; |<CS_TO_S_PROXYBUFFER_StZE; i++¡ 1

cs proxy_to_s e rver_ p roxyB uffe r[i]. E ntryF u I I = 0 ;
)
for (i=0; i<S_TO_CS_PROXYBUFFER_StZE; i++¡ I

-90-

server_to_cs proxy_ ProxyB uffer[i]. E ntryFu ll = 0 ;

)

* Read file to obtain address (name & port #) of server* Format: "porf# server_name" ("'s not included)

//sem_lock not needed

if ((fd = fopen(FILENAME, "r")) == NULL) {
perror("ERROR: Couldn't open file \n,');
exit(1);

)

#ifdef SERV_USE_NAME
fsca nf(fd, " Yod o/os", &Server_portN u m ber, Server_ Na me) ;

#endif
#ifdef SERV_USE_lP
fsca nf(fd, " o/od o/os", &Se rver_ portN u m ber, S erver_ I

p)
;

#endif

llCheck values read from file
#ifdef SERV_USE_NAME
printf("C H EC K : Server_Na m e: Zo s\n", Server_ Na me) ;

#endif
#ifdef SERV_USE_lP
printf("CHECK: Server_I p: %s\n", Server_lp) ;

#endif

printf("CHECK: Server_PortNumber: Zod \n",
Server_PortNumber);

fclose(fd);

//sem_unlock not needed

-91 -

* Open connection to server

//-----------
//Get server's address
#ifdef SERV_USE_NAME
if ((hp = gethostbyname(Server_Name)) == NULL) {

printf("ERROR: Can't get server address(%s)\n\n",
Server_Name);

exit(1);
)
#endif
#ifdef SERV_USE_lP
if ((int)(addr = inet_addr(Server_tP)) -= -1) {

printf("lP-address must be of the form a.b.c.d\n");
exit (2);

)
hp = gethostbyaddr((char *)&addr, sizeof(addr), AF_INET);
if (hP == NULL) {

printf("host information for 7os not found\n",
Server_lP);

exit (3);

)
#endif

/lCreate socket
if ((server_sock = socket(AF_lNET, SOCK_STREAM, 0)) . O) {

printf("ERROR: Can't create socket for server \n\n");
exit(1);

)

I lCreate server address
memset(&name, 0, sizeof(struct sockadd r_ i n)) ;

name.sin_family = AF_l NET;
name.sin_port = htons(Server_PortNumber) ;

memcpy(&name.sin_addr, h p->h_addr_list[O], hp->h_length) ;

len = sizeof(struct sockaddr_in);

-92-

//Connect to server
if (connect(server-sock, (struct sockaddr *) &name, len) < 0

){
printf("ERROR: Can't connect to server \n\n");
exit(1);

)

/t-----------

* Spawn the sending/receiving threads

thr-create(NULL, 0, cproxyside-recv-ThreadFunc, (void *)

dummyPTR[O], 0, &ThreadlD[0]);
thr-create(NULL, 0, cproxyside-send-ThreadFunc, (void *)

dummyPTR[1], 0, &ThreadlD[1]);
thr-create(NULL, 0, serverside-recv-ThreadFunc, (void *)

dummyPTR[2], 0, &ThreadlD[2]);
th r-create(N U LL, 0, serverside-send-Thread Fu nc, (void ")

dummyPTR[3], 0, &ThreadlD[3]);

*Set the thread concurrency. Could improve thread scheduling.

thr-concurrency-counter = 4+1; //lnclude mainQ
t h r-s etco n c u rre n cy(t h r-co n cu rre n cy-co u nte r) ;

" Make thloin calls so that program doesn't terminate right

after creating threads

thljoin(ThreadlD[0], O, (void *) &TaskStatus[0]);
thr-join(ThreadlD[1], 0, (void ") &TaskStatus[1]);
thljoin(ThreadlD[2], 0, (void *) &TaskStatus[2]);

-93-

thljoin(ThreadlD[3], 0, (void ") &TaskStatus[3]);
) //endelseif /* ****** child process ****** */

close(newsockfd);

j /lendfor

j l*main*l

ä::::::::::: - -:: -:::-:;
- - - -* * * * ** * * * * * * ** * * * * * * * * ** * ** * * * * * * * * * ** * * * * * * * * *

void "cproxyside-recv-ThreadFunc(void *dummyPTR) //Receives data from
client-side proxy & stores in csproxy_to_server_proxyBuffer
{

int n;
int i; //counter var
char buf[SOCK_BUFFER_SIZE];
void *thr_exit_statusl

i=-1: lllnitcounter
while ((n = recv(newsockfd, buf, sizeof(buf), 0)) t 0) {

* Copy received data to csproxy_to_server_proxyBuffer;

//lncrement counter
if (i < (cs_To_s_pRoxyBu FFER_StZE-1))

i++;
else

i= 0;

-94-

while (csproxy_to_server_proxyBuffer[i].EntryFull != 0) {
printf("STATUS/C H ECK(cproxyside_recv) : Waitin g on

csproxy_to_seryer_ ProxyB uffer ! = O\n\n") ;

thr_yield0;
)
memcpy(csproxy_to_server_proxyBuffer[i].Data, buf, n);
cs p roxy_to_server_ proxyB uffer[i]. Data S ize = n ;
csproxy_to_server_ProxyB uffer[i]. EntryFu ll = 1 ;

) //while
if (n<=0) {

printf("cHlLD PRoc.EXlÏNG:n<=0 while recv. from client-side
proxy(server-side proxy)\n") ;

printf("lF END oF cltENT-SERVER coMMUN. THEN ts oK\n\n");
close(newsockfd);
exit(1);
th r_exit(th r_exit_status) ;

)

j I / cproxyside_recv_ThreadFunc

i:::::::::::::::--:::-:;----***

void *cproxyside_send_ThreadFunc(void *dummyprR) //Gets data from
buffer(server-to-csproxy_ ProxyBuffer) & sends to client-side proxy
{

int n;
int i;

char buf[SOCK_BUFFER_StZE];
void "thr_exit_status;

struct timeval *start_time;

-95-

struct timeval *curr_time;

long start_time_in_msec, curr_time_in_msec;

/*
* Allocate memory to time vars*/
start-time = (struct timeval *) malloc(sizeof(struct timeval));
curr_time = (struct timeval *) malloc(sizeof(struct timeval));

i-
^

.
l-- |

'

while (1) {

/*
* Get data from server_to_csproxy_proxyBuffer;*/

//lncrement counter
if (i < (s_To_cs_pRoxyBu FFER_StZE_1))

i++;
else

i= 0;

while (server_to_csproxy_ProxyBuffer[i].EntryFull l= 1) {
thr_yield0;

)
m e mcpy(buf , se rve r_to_cs proxy_ proxyB uffer[i]. Data,

server_to_csproxy_ ProxyBuffer[i]. DataS ize) ;

n = server_to_csproxy_ P roxyB uffer[i]. Data S ize ;

s erver_to_cs p roxy_ P roxyB uffe r[i]. E ntryF u I I = 0 ;

" Send data to client-side proxy

if (n>0) {

-96-

#ifdef USE_DELAY

/ / ----------------

if (gettimeofday(start_time, NULL) .0) {
pri ntf(" ERROR(proxy_sen d) : getti meofday error\n\n") ;

exit(1);
)

start_time_in_msec = (start_time_>tv_sec)*1 oOO +
(sta rt_ti me->tv_ u sec)/1 0O0 ;

while (1) {
if (gettimeofday(curr_time, NULL) .0) {

pri ntf("E R RO R(proxy_send) : g ettimeofday
error\n\n");

exit(1);
)

curr_ti me_in_msec = (curr_ti m e_>tv_sec) *
1 oO0 +

(cu rr_ti me->tv_usec)/1 000 ;

if ((curr_time_in_msec - start_time_in_msec) >=
DELAY_tN_MSEC)

break;

//Since haven't reached timeout value yet have thread
sleep/yield

thr_yield0;

) //while

I I ----------------

#endif

-97-

if (send(newsockfd, buf, n, 0) . O) {
printf("ERROR: (smpl_ss_proxy) While sending data to

client-side proxy <0 \n\n");
exit(1);
th r_exit(th r_ exit_ statu s) ;

)

| //if n>O

) //while

\ I lcproxyside_send_ThreadFunc

ä :::::::::::: - -:-:::-:;
- - - - ** ** * * * * * * * ** * * * * ** * * * *

void *serverside-recv-ThreadFunc(void *dummyPTR) //Receives data from
server & stores in buffer (server_to_csproxy_proxyBuffer)
{

int n;
int i;

char buf[SOCK_BUFFER_StZE];
void *thr_exit_status;

i- 4.l-- I'

while ((n = recv(server_sock, buf, sizeof(buf), 0)) t O) {

" Copy received data to server_to_csproxy_proxyBuffer;

//lncrement counter
if (i < (s_To_cs_pRoxyBuFFER_StZE_1))

¡++;
else

-98-

i= 0;
wh i le (server_to_csproxy_proxyB uffer[i]. EntryFull l= 0) {

pri ntf("STATU S/C H EC K(servers id e_ recv) : Wa iti n g on
server_to_csproxy_ ProxyB uffer ! = 0\n\n") ;

thr_yield0;
)
m e mcpy(server_to_cs proxy_ proxyB uffer[i]. Data, b uf , n) ;
serve r_to_cs proxy_ proxyB uffer[i]. DataS ize = n ;
server_to_cs proxy_proxyBuffer[i]. E ntryFu ll = I ;

) //while
if (n<=0) {

printf("FATAL ERROR: n<=0 while recv. from seryer (server-side
proxy) \n\n");

close(server_sock);
exit(1);
th r_ex it(th r_ ex it_ statu s) ;

)

) //serverside_recv_ThreadFunc

ii::::::::::::::-::::*:;***

void "serverside-send-ThreadFunc(void *dummyPTR) //Retrieves data from
buffer (csproxy_to_server_proxyBuffer) & sends to server
{

Ínt n;
int i; //counter var
char buf[SOCK_BUFFER_SIZE];
void *thr_exit_status;

i=-1 ;

while (1) {

-99-

/*
" G et d ata from csproxy_to_server_ proxyB uffer;*/
//lncrement counter
if (i < (cs_To_s_pRoxyBUFFER_StZE_1))

i++;
else

i= 0;

while (csproxy_to_server_proxyBuffer[i].EntryFull != 1) {
thr_yield0;

)
m em cpy(buf , cs proxy_to_server_ proxyB uffer[i]. Data,

cs proxy_to_ se rve r_ p roxyB uffer[i]. Data S ize) ;

n = cs proxy_to_serve r_ proxyB uffer[i]. Data S ize ;
cs p roxy_to_server_ p roxyB uffer[i]. E n tryF u I I = 0 ;

/*
* Send data to server*/
if (send(server_sock, buf, n, 0) < 0) {

printf("ERRoR: (smpl-ss-proxy) while sending data to seryer
<O \n\n");

exit(1);
th r_exit(th r_ exit_statu s) ;

)

j llwhtle

) //serverside_send_ThreadFunc

-100-

Apppxurx B

C LaxcuAGE Lrsrrxc FoR Mur,rr-coNflECTIoN-TCp

CoxNncrroN-splrrrrNc pnoxrns

-I0l-

#define _REENTRANT
#include <stdio.h>
#include <stdlib.h>
#include <sys/types. h>
#include <sys/socket. h>
#include <netineVin.h>
#include <netdb.h>
#include <string.h>
#include <sys/stat.h>
#include <thread.h>
#include <synch.h>

#include <sched.h>
#include <sys/uio.h>
#include <sys/sem.h>
#include <sys/ipc.h>
#include <memory.h>
#include <time.h>
#include <sys/time.h>
#include <unistd.h>

//Debug "defines"
I l#define new2_PRl NT_DEBUG

//Choose whether serv-side proxy
I l#define SS_PRX_USE_NAME
#define SS_PRX_USE_lP

Name or lP read from

#define c-PoRTNUMBER o00s //client-side proxy listens on this port
#define FILENAME "p-cs-proxy-file.txt" llFile that contains address & port #
of server-side proxy
#define SOCK_BUFFER_StZE 1024
#define PS_TO_C_PROXYBU FFER_StZE
#defìne C_TO_PS_PROXYBUFFER_StZE
I l#define PROXY_S I DE_BU FFER_S tZE
#define S_PROXY_SIDF_BUFFER_StZE

file

4OOO ll# of nodes in buffer
2O0 /l# of nodes in buffer

IOOO /l# of nodes in buffer
1 i/NOT USED -50- # of nodes in buffer

- 102 -

#define R-PROXY-SIDE-BUFFER-SIZE 10000 //5000 # of nodes in buffer

#define LENGTH-HEADER-SIZE 2 //Length of Length header that is appended in
front of packets

#define MAX-CONN NUMB PER LOGICAL-CONN 5 //Max # of connections per
logical connection

ll#define USE_DELAY
#define DELAY_IN_MSEC 0

* Function prototypes

void "proxyside_recv_Thread Fu nc(voÍd *);

void "clientside_send_ThreadFunc(void *);

void "clientside_recv_ThreadFunc(void *);

void *cl ient_to_ proxy_Control_Th read Fu nc(void *) ;

void *proxy_to_cl ient_Control_Thread Fu nc(void *) ;

struct BufferNode {
int EntryFull; //Flag (serves as semaphore). lf 1 then value stored, else

is empty and can be written into
long int DataSize; llSize of data stored in entry
char Data[SOCK_BUFFER_SIZE];

);

int sockfd, servlen, cli_len, childpid;
int client_sock; //Socket created from cl.side-proxy listening
struct sockaddr_in cli_addr, serv_addr;
int niaa;
i nt servsideproxy_sockfdlMAx_CON N_N U M B_ P ER_LOG I CAL_CO N Nl ; //sockets

-103-

used to connect to serv-side proxy
struct BufferNode client-to-ssproxy_ProxyBuffer[C_To_pS_pROXYBUFFER_SIZE];
/ I Buff er u sed fo r cl ient->server_s ide_ proxy traffic
struct BufferNode ssproxy-to-client_ProxyBuffer[PS_TO_C_pROXYBUFFER_StZE];
I / Buff er used for server_sid e_proxy->cl ie nt traffic
struct BufferNode
proxy_side_sendBufferls_PRoxY_stDE_BUFFER_stzElIMAX_coNN_NUMB_pER_Lo
GICAL_CONNI; //Used to store temporarity data that will be

//sent out to cl.side proxy
struct BufferNode
proxy_side_recvBuffer[R_PROXY_stDE_BUFFER_StZE][MAX_coNN_NUMB_pER_Lo
GICAL_CONNI; /iUsed to store temporarily data that is

//received fromt to cl.side proxy
int Connection-Number; //Number of connections to be opened for a given proxy-
to-proxy'logical' connection

int main(void) {

/lCreate the socket
if ((sockfd=socket(AF_lNET, SOCK_STREAM, 0)) . 0) {

perror("ERROR: socket creation \n,');
exit(1);

)

/ / Create (client-side) proxy address
memset(&serv_addr, 0, sizeof(struct sockaddr_in));

serv_addr.sin_family = AF_INET;
serv_addr.sin_port = htons(C_pORTNU MBER);
servlen = sizeof(struct sockaddr_in);

niaa = INADDR_ANY;

- 104 -

memcpy(&serv_addr.sin_addr, &niaa, sizeof(lon g)) ;

llBind socket to address
if (bind(sockfd, (struct sockaddr ") &serv_addr, servlen) . O) {

perror("ERROR: bind \n");
exit(1);

)

//Listen for client connections
if (listen(sockfd, 7) . 0) {

perror("ERROR: listen \n");
close(sockfd);
exit(1);

)

for (;;) {

cli_len = sizeof(cli_addr);
client-sock = accept(sockfd, (struct sockaddr *) &cli_addr, &cli_len);

if (client_sock < 0) {
perror("ERROR: Can't create new socket (from cl.side proxy

listening socket) \n");
exit(1);

)

llCreate child process
if ((childpid = forkQ) . o) {

perror("ERROR: Fork \n");
exit(1);

)
else if (childpid -= O) { f* ****** child process ****** */

-105-

/* Ch¡ld process vars */
struct hostent *hp; //used in connecting to server
struct sockaddr-in name; //used in connecting to server
int len; //used in connecting to server
int n;
int thr_concurrency_counter;
thread_t

Th read I D[MAX_CO N N_N U M B_ p E R_ LOc I CAL_CON N
* 2+4]: I I Array of thread I Ds

for thr_create calls
int

thr_ I D_PTRIMAX_CO N N_N U M B_p E R_ LOG I CAL_CON N "2+41 ; I I Array of thr_t D
pointers used in thr_create calls

FILE *fd;

int ServSideProxy_PortNumber; /lpor| on which server
listens

char ServSideProxy_Name[64]; //DNS name of server
int i,j; llcounter var
size_t

TaskStatuslMAX_CON N_N U M B_pER_LOG I CAL_CON N*2+4¡; //Used in thljoin0
call

char buf[SOCK_BUFFER_StZEj; ll3ufter used by parent to
send to other proxy # of connections to be opened

char Connection_Number_str[31]; //String containing
Connection_Number(as to be sent to other proxy)

char servsideProxy-lP[ss]; //used for reading from file serv-
side proxy lP address

ulong_t addr;

close(sockfd); //close original socket

/ / ---------- - --------cod e

printf("CHECK(p_cs_proxy): CHILD process created \n\n");

-106-

* Read file to obtain address (name & port #) of server-side
proxy

* Format: "port# proxy_name" ("'s not included)

//sem_lock not needed

if ((fd = fopen(FlLENAME, "r")) == NULL) {
perror("ERROR(p_cs_proxy): Couldn't open file \n");
exit(1);

)

#ifdef SS_PRX_USE_NAM E

fsca nf(fd, " %o d o/o s", &Se rvS id e p roxy_ portN u m ber,
ServSideProxy_Name);

#endif

#ifdef SS_PRX_USE_tp
fsca nf(fd, " Yo d Yos", &ServS idep roxy_portN u m ber,

ServSideProxy_lP);
#endif

//Check values read from file
#ifdef SS_PRX_USE_NAME
p ri n tf (" C H E C K (p_ cs_ p roxy) : S e rvs i d e p roxy_ N a m e : yo s\ n ",

ServSideProxy_Name);
#endif

#ifdef SS_PRX_USE_tP
printf("C H EC K(p_cs_ proxy) : ServS ideproxy_ I p : yo s\n",

ServSideProxy_lP);
#endif

printf("C H EC K(p_cs_proxy) : ServSideproxy_portN u m ber: %d
\n", ServSideProxy_PortNum ber) ;

fclose(fd);

- 107 -

//sem_unlock not needed

* Open connection to server-side proxy

//-----------
//Get server-side proxy's address

#ifdef SS_PRX_USE_NAME
if ((hp = gethostbyname(ServSideproxy_Name)) == NULL) {

pri ntf(" E R RO R(p_cs_proxy) : Ca n't get server_side proxy
address(%s)\n\n", ServSideproxy_Name) ;

exit(1);
)
#endif

#ifdef SS_PRX_USE_lP
if ((int)(addr = inet_addr(ServSideproxy_tp)) == -1) {

printf("lP-address must be of the form a.b.c.d\n");
exit (2);

)
hp = gethostbyaddr((char *)&addr, sizeof(addr), AF_INET);
if (hP -= NULL) {

printf("host information for Zos not found\n",
ServSideProxy_lP);

exit (3);
)
#endif

I /Create server-side proxy address
memset(&name, 0, sizeof(struct sockaddr_i n)) ;

name.sin_family - AF_l NET;
nam e.sin_port = htons(ServSideproxy_portN um ber) ;
memcpy(&name.sin_addr, hp->h_addr_list[O], hp_>h_length);
len = sizeof(struct sockaddr_in);

-108-

/lCreate socket
if ((servsideproxy_sockfd[0] = socket(AF_l NET,

SoCK_STREAM, 0)).0) {
printf("ERROR(p_cs_proxy): Can't create socket for

server-side proxy \n\n");
exit(1);

)

//Connect to server-side proxy

&name, ren) < o) { 't
(connect(servsideproxy-sockfdlo], (struct sockaddr *)

printf("ERROR(p_cs_proxy): Can't connect to server_
side proxy \n\n");

exit(1);
)

" Read # of TOTAL connections to be opened (for each
'logical' connection to serv-side proxy)

* & send it to server-side proxy.
* Format: string containing # followed by '\0'

printf("Enter # of phys. connections per logical connection (%d
max):", MAX_CON N_N UMB_PER_LOGtCAL_CON N);

scanf("7od", &Connection_Number);

set buf size

spri ntf(Con nection_N umber_str, u yod, Con nection_N u mber) ;

llCopy connection # in buf to send out to serv-side proxy &

strcpy(buf, Connection_Number_str) ;

n = strlen(buf) + 1; llstrlenQ+t to account for the '\O' char
that must be included

-109-

if (send(servsideproxy_sockfdl0], buf, n , O) < 0) {
printf(" ERRO R(p_cs_proxy) : While sending con n ection #

to serv-side proxy <0 \n\n");
exit(1);

I //if

printf("CHECK(p_cs_proxy): Zod connections to be opened
\n\n",Connection_N umber);

* Open (Connection_Number-1) connections .

NOTE:Connection_Number is TOTAL connections to be opened

for (i=1; i<Connection_Number; i++¡ i

/lCreate socket
if ((servsideproxy_sockfd[i] = socket(AF_tNET,

SOCK_STREAM,0)). o) i
printf("ERROR(p_cs_proxy): Can't create socket

for server-side proxy for i:%d\n\n", i);
exit(1);

)

//Connect to server-side proxy
if (connect(servsideproxy_sockfd[i], (struct sockaddr*)&name, len)<0){

printf("ERROR(p_cs_proxy): Can't connect to
server-side proxy for i:%d\n\n", i);

exit(1);
)

\ /lfor

-1r0-

j++)

* lnitialize proxy buffers (i.e. set all flags to 0)

for (i=0; i<S_PROXY_SIDE_BUFFER_StZE; i++¡ 1

for fi=6' j<MAX_CON N_NU MB_PER_LOG tCAL_CON N ;

{
proxy_side_send Buffer[i][]. EntryFull = 0 ;

)
)
for (i=0; I<R_PROXY_SI DE_BUFFER_St ZE; i++¡ I

for 6=6' j<MAX_CON N_NUMB_pER_LOctCAL_CONN;
j++) {

proxy_side_recvBuffer[i][]. EntryFull = 0;
)

)

for (i=0; i<PS_TO_C_PROXYBUFFER_StZE; i++¡ 1

ssproxy_to_client_ ProxyBuffer[i]. E ntryFu ll = 0 ;

)
for (i=0; |<C_TO_PS_PROXYBUFFER_StZE; i++¡ 1

cl ient_to_ss proxy_ ProxyBuffer[i]. E ntryFu ll = 0 ;

)

I t-----------

* lniVfill-in thr_lD array. Thread lDs start from ZERO !!!

for (i=0; i<(MAX_CON N_N U M B_pER_LOG I CAL_CON N"2+4);
i++¡

thr-lD-PTR[i] = ¡'

- IlI -

:*
* NOTE: proxy-side sending threads have thread lDs from (0

to Connection_Number-1) and
* proxy-side receíving threads have thread lDs from

(Connection_N um ber to 2"Connection_N um ber- 1)

:,

* spawn the server-side proxy sending/receiving threads. pair
for each connection w/ serv-side proxy

for (i=Connection_Number; i<(2*Connection_Number); i++¡ 1
thr_create(N U LL, 0, proxyside_recv_Thread Fu nc, (void*) &thr_lD_PTRlil, 0, &ThreadtDIil);

\ /lfor

if (i != (2"Connection_Number)) {
printf("ERROR/C H ECK(p_cs_proxy) : i cou nter <>

2*Connection_Number \n") ;

exit(1);
)

* Spawn the client-side sending/receiving threads. Just one pair
for the single connection to client

thr_create(NULL, 0, clientside_send_ThreadFunc, (void *)
&thr_lD_PTR[¡], 0, &ThreadlD[il);

- 112 -

i++;
thr_create(NULL, 0, clientside_recv_ThreadFunc, (void ")

&thr_l D_PTRlil, 0, &Thread I Dtil) ;

* Spawn Control threads

i++;
th r_create(N U LL, 0, cl ient_to_ proxy_Co ntrol_Th read Fu nc,

(void *) &thr_lD_PTRlil, 0, &ThreadtDtil);
i++;
th r_create(N U LL, 0, proxy_to_client_Control_Th read Fu nc,

(void *) &thr_lD_PTRlil, 0, &ThreadtDtil);

*set the thread concurrency. could improve thread scheduling.

thr_concurrency_counter = Connection_Number* 1+4 + 1 ;
th r_s etco n c u rre n cy (t h r_ co n c u rre n cy_ co u n te r) ;

* Make thlioin calls so that program doesn't terminate right
after creating threads

for (i= Connection_Number; i<(2*Connection_Number+4); i++)
{

thljoin(ThreadlD[i], 0, (void ") &TaskStatus[i]);
)

) //endelseif /* ****** child Procgss ****** */

- 113 -

* Close in parent the "passed off to child" socket

close(client_sock);

\ /lendfor

\ /*main*/

******** * ******** ********** *** *** *********** * ******* ****** **** *************
********************* */

void "proxyside_recv_Th read Fu nc(void "thr_l D_ pTR) {

/*
* Get thread lD*/
int thr_lD = *((int *) thr_lD_pTR);

int n,m;
int i,k; //counter vars
char *buf; //socket buffer
char *bufStart; //Used to store temporarily the socket buffer starting

address
int buf-size; llSize of buf. Used because sizeof(buf) doesn't work for

char *

unsigned int Packet_Length; //Holds packet length derived from arrived
packet's Length header

//lnit buffer
buf_size = (SOCK_BUFFER_SIZE+2); ll new2 - buf_size was

- 114 -

SOCK-BUFFER_SIZE

buf = (char *) malloc(buf_size*sizeof(char));

/*
" NorE: proxy-side sending threads have thread lDs from (0 to

Connection_Number-1) and
* proxy-side receiving threads have thread lDs from

(Connection_Number to 2*Connection_Number-1)* Therefore (thr-lD-Connection-Number) is the connection # that should
be used by the proxy-side

* receiving threads*/

i=0; //lnit counter

while (1) { /lnew2

/*
* Get exaclty LENGTH_HEADER_SIZE bytes of new packet i.e. the

Length header
*/

m=0;
while (m.2) {

if ((n=recv(servsideproxy_sockfd[thr_ I D-Connection_Number],
buf+m, LENGTH_HEADER_StZE-m,0)) t 0) {

m = m+n;
I //if
else{

printf("FATAL E R ROR(px_side_recv_Th read) : n <=0
while recv. Length header\n\n");

close (servs ide proxy_sockfd [th r_ I D-
Connection_Numberl);

exit(1);
)

j llwhile

- Its -

#ifdef new2_PRl NT_DEBUG
printf("CHECK new2: right after recv0 #1 \n\n");
#endif

* Get length from Length field

Packet_Length = buflO];
Packet_Length = (Packet_Length<<B) | (buftll);

/*
* Receive entire packet now*/
m=0;

while (mcPacket_Length) {

if ((n=recv(servsideproxy_sockfd[thr_ I D-Connection_Number],
buf+m, Packet_Length-m, 0)) t 0) {

m = m+n;

I //.f
else {

printf(" FATA L E R RO R(p rx_sid e_recv_Th read) : n <=0
while recv. remaining packet \n\n");

close (servs i de proxy_sockfd [th r_ I D-
Connection_Numberl);

exit(1);
) //else

) //while

- 116-

llError check
if (m != Packet_Length) {

printf("ERROR(recv[%d]): m != packet_Length (is >) \n\n",
thr_lD);

close(servsideproxy_sockfd [th r_ I D-Con nection_N um ber]) ;

I /lafexit(1);

/*
* Now that got entrire packet, write it (w/o Length header) to

p roxy_s i d e_ recvB uffer
*/

wh ile (proxy-sÍd e-recvBuffer[i] [th r_ I D-Con nection_ N u m be r]. EntryFu ll
!=o){

printf("CH ECK(prx_recv[%d]) : Waiting for
p roxy_ s i d e_ recv B uffe r[] [! = O\n\n", th r_ I D) ;

thr_yield0;
) //while

memcpy(proxy-side-recvBufferli]lthr_l D-Connection_Number]. Data,
buf, Packet_Length);

proxy-side-recvBuffer[i][thr- I D-Connection_Number]. DataSize =
Packet_Length;

proxy-side-recvB uffer[i][thr- I D-Con nection_ N u mber]. E ntryFul I = 1 ;

//lncrement counter
¡f (i < (R_pRoxy_stDE_BUFFER_S|ZE_1))

i++;
else

i= 0;

) //while(1)

) //proxyside_recv_Thread Func

- 117 -

****************+********** *********************************** *************
********************* */

void *clientside_send_ThreadFunc(void .thr_lD_pTR)
{

* Get thread lD

int thr_lD = *((int ") thr_lD_pTR);

int n;

int i; //counter var
char buf[SOCK_BUFFER_S|ZE];

i=-1;
while (1) {

/*
* Get data from ssproxy_to_client_proxyBuffer;*/
//lncrement counter
¡f (i < (ps_To_c_pRoxyBuFFER_S|ZE_1))

I++,
else

i= 0;

while (ssproxy_to_client_proxyBuffer[i].EntryFull != 1) {
thr_yield0;

)
m emcpy(buf , ss proxy_to_cl i ent_ proxyB uffe r[i]. Data,

ss p roxy_to_ cl i e nt_ P roxy B uffer[i] . D ata S ize) ;

n = ss proxy_to_cli e nt_ proxyB uffe r[i]. DataS ize ;

-118-

ss proxy_to_cl ie nt_ P roxyB uffer[i]. E ntryF u I I = 0 ;

/*
* Send data to client*/
if (n>0) {

if (send(client_sock, buf, n, 0) . 0) {
pri n tf(" E R RO R(p_cs_ p roxy server_se nd_th rea d) : Wh í I e

sending data to client <0 \n\n");
exit(1);

I //.f
I //if

) //while

) //clientside_send_ThreadFunc

ii:-:::::::::::::-:::-:;-----**

void *clientside_recv_Th read Fu nc(void -th r_ I D_pTR) {

* Get thread lD

int thr_lD - *((int *) thr_tD_pTR);

int n;
int i; //counter var
char buf[SOCK_BUFFER_SIZE];

-l19-

i=-1;

while ((n = recv(client_sock, buf, sizeof(buf), 0)) t 0) {

/*
* Copy received data to client_to_ssproxy_proxyBuffer;*/

//lncrement counter
if (i < (c_To_ps_pRoxyBUFFER_S|ZE_1))

¡++l
else

i= 0;

wh ile (client_to_ss proxy_ proxyB uffer[i]. EntryFul I l= 0) {
printf("CH ECK(cl_recv) : waiting for

client_to_ssproxy_ProxyBuffer[i] != O\n\n");

thr_yield0;
)
me mcpy(cl ient_to_ssproxy_proxyB uffer[i]. Data, buf , n) ;

clíenf_to_ss proxy_ProxyB uffer[i]. Data S ize = n ;
cl ient_to_ssproxy_ ProxyBuffer[i]. EntryFu ll = 1 ;

) //while
if (n<=0) {

printf("FATAL ERROR(p-cs clientside-recv): n<=0 while recv. from
client \n");

printf("(Non-fata I if end of cl ient-server comm u n ication)\n\n") ;

close(client_sock);
exit(1);

)

) //clientside_recv_ThreadFunc

-120-

********* *** *************
********************* * /

void "proxy_to_cl ient_Co ntrol_Th read Fu nc(void *th r_ I D_ pTR) {

/*
* Get thread lD*/
int thr_lD = *((int *) thr_tD_pTR);

int i,j,k; llcounter vars

int First_Time = 0;
time_t curr_time, start_time;
int NO_RECV_T|MEOUT = 10;

/*
" NorE: proxy-side sending threads have thread rDs from (0 to

Connection_Number-1) and
" proxy-side receiving threads have thread lDs from

(Connection_Number to 2"Connection_N um ber- 1)* Therefore (thr-lD-Connection-Number) is the connection # that should
be used by the proxy-side

* receiving threads*/

k=-1; //lnit counter var

while (1) {

for (i=0; i<R_PROXY_StDE_BUFFER_StZE; i++¡ 1

/*
" Get data from proxy_side_recvBuffer and copy to

cl i e n t_to_ss proxy_ ProxyB uffer

-12r-

for (¡=g' j<Connection_Number; j++¡ 1

//lncrement k counter (used as client_to_ssproxy_proxyBuffer
index)

if (k < (ps_To_c_pRoxyBU FFER_S tZE_1))
k++;

else

k=0;

while (proxy_side_recvBuffer[i]fi].Entryfull != 1) {

/ / ---------
if (First_Time==O) {

First_Time=1;
start_time = time(NULL);

)

curr_time = time(NULL);

if ((float)difftime(curr_time, start_time) >
NO_RECV_T|MEOUT) {

printf("EXlT(recv_Control): %od sec w/ no new
data received\n\n", NO_RECV_TI M EOUT) ;

exit(1);
)

/ I -------

thr_yield0;

\ llwhile

First_Time = 0; //Reset flag

-122-

wh ile (ssproxy_to_ctie nt_proxyBuffer[k]. EntryFu ll != O) {
printf("CH ECK(recvCntrl) : waiting for

ssproxy_to_cl ient_ ProxyB uffer[] ! = O\n\n") ;

thr_yield0;
)

* Copy to ssproxy_to_client_proxyBuffer

memcpy(ssproxy_to_cl ient_ proxyBuffer[k]. Data,
proxy-side-recvBuffer[i][].Data, proxy_side_recvBuffer[i][i].Datasize);

ss p roxy_to_ cl ie nt_ ProxyB uffer[k]. Data S ize =
proxy_side_ recvB uffer[i] [j]. DataS ize ;

proxy_side_recvBuffer[i][]. EntryFull = 0;
ss proxy_to_client_ProxyBuffer[k]. E ntryFull = I ;

j llfor - j

/lWrap counter var
if (i =- R_PROXY_SIDE_BUFFER_StZE-1)

break;
// í=-1;

| llfor - i

) //while (1)

! I / proxy _to_cl ient_Control_Th read Fu nc

-123-

***** **** *******+********** ************* ***********************************
********************* */¡

void *client_to_ proxy_Co ntrol_Th read Fu n c(void *th r_ I D_pTR) {

/n
* Get thread lD*/
int thr_lD = *((int *) thr_lD_pTR);

int i,j,k; //counter vars
int n;
unsigned char buf[SOCK_BUFFER_StZE+2];
int send_sock_index = -1;
struct timeval *start_time;

struct timeval *curr_time;

long sta rt_time_i n_msec, cu rr_time_ i n_msec;

/*
* NorE: proxy-side sending threads have thread rDs from (0 to

Connection_Number-1) and
* proxy-side receiving threads have thread lDs from

(Connection_Number to 2*Connection_Number-1)* Therefore (thr-lD-Connection-Number) is the connection # that should
be used by the proxy-side

" receiving threads*/

" Allocate memory to time vars

start-time = (struct timeval *) malloc(sizeof(struct timeval));
curr_time = (struct timeval ") malloc(sizeof(struct timeval));

- 124 -

* NorE: proxy-side sending threads have thread lDs from (0 to
Connection_Number-1) and

* proxy-side receiving threads have thread lDs from
(Connection_N um ber to 2"Connection_N umber- 1)* Therefore (thr-lD-Connection-Number) is the connection # that should
be used by the proxy-side

" receiving threads
*/

k=-1; //lnit counter var

while (1) {

* Get data from clienf_to_ssproxy_proxyBufler

//l ncrement k cou nter (used as cl ienr_to_ssproxy_ proxyB uffer i ndex)
if (k < (c_To_ps_pRoxyBUFFER_StZE_1))

k++;
else

k=0;

while (client_to_ssproxy_ProxyBuffer[k].EntryFuil l= 1) {
thr_yield0;

)

/*
* Copy to buf
n/

memcpy(buf+ LENGTH_H EADE R_S tZE,
client_to_ssproxy_ ProxyB uffer[k]. Data,
cl ient_to_ssproxy_ProxyBuffer[k]. DataSize) ;

n = client_to_ss proxy_ proxyB uffer[k]. DataSize;
cl ient_to_ss proxy_ proxyB uffer[k]. E ntryF u ll = 0 ;

-125-

* lnsert Length header

buf[O] = (unsigned char)(n>>B);
buf[1] = (unsigned char)n;

#ifdef USE DELAY

/ I ----------------

if (gettimeofday(start_time, NULL) .0) {
pri ntf(" E RRO R(proxy_send [% d]) : getti m eofday error\n\n",

thr lD):
exit(1);

)

start-time_in_msec = (start_time->tv_sec)*1 ooo + (start_time-
>tv_usec)/100O;

white (1) {
if (gettimeofday(curr_time, NULL) .O) {

pri ntf(" E R RO R(proxy_send [%d]) : getti meofday
error\n\n", thr_lD);

exit(1);
)

curr_time_in_msec = (curr_time->tv_sec)"1 O0O + (curr_time_
>tv_usec)/100O;

if ((curr_time_in_msec - start_time_in_msec) >=
DELAY_tN_MSEC)

break;

-126-

//Since haven't reached timeout value yet have thread
sleep/yield

thr_yield0;

) i/while

//----------------

#endif

if ((n+LENGTH_HEADER_SIZE)>0) i

/ / ---------
//lncrement socket index
if (send_sock_index < (Connection_Number-1))

send_sock_index++;
else

send_sock_index = 0;
/ / ---------
if (send (servsideproxy_sockfd [se nd_sock_i nd ex], buf,

n+LENGTH_HEADER_SIZE, 0) .0) {
printf("ERROR(send/Control): While sending data

to serv-side proxy <0 \n\n");
exit(1);

\ //.f

) //if n+Lf ¡tGTH-HEADER-SIZE>O

) //while (1)

) //cl ient_to_proxy_Control_Thread Fu nc

** ************************ ** *******

-127-

********************* */

128 -

#define _REENTRANT
#include <stdio.h>
#include <stdlib.h>
#include <sys/types. h>
#include <sys/socket. h>
#include <netineVin.h>

#include <netdb.h>
#include <string.h>
#include <sys/stat.h>
#include <thread.h>
#include <synch.h>

#include <sched.h>

#include <sys/uio.h>
#include <sys/sem.h>
#include <sys/ipc.h>
#include <memory.h>
#include <time.h>
#include <sys/time.h>
#include <unistd.h>

// Debuging "defines" (enable debug printouts)
I l#define new2_P Rl NT_D E B U G

I l#define SERV_USE_NAME
#define SERV_UStr_lP

#define S-PORTNUMBER 6006 //server-side proxy listens on this port
#define FILENAME "p-ss-proxy-file.txt" /lFile that contains address & port #
of server
#define SOCK_BUFFER_SIZE 1024
#define CS_TO_S_PROXYBU FFER_StZE
#define S_TO_CS_PROXYBU FFER_StZE
/ l#define PROXY_S I DE_BU FFER_SIZE
#defìne S_PROXY_SI Dtr_BUFFER_S|ZE

200 ll# of nodes in buffer.
5000 //4000 # of nodes in buffer.

1OOO ll# of nodes in buffer.
2 IINOT USED 2000- # of nodes in buffer.

- 129 -

#define R_PROXY_SIDE_BUFFER_SIZE 50 ll# of nodes in buffer.

#define MAX_CONN_NUMB_PER_LOGICAL_CONN 5 //Max # of connections per
logical connection

#define LENGTH_HEADER_SIZE 2 //Length of Length header that is appended in
front of packets

ll#define USE_DELAY
#define DELAY_IN_MSEC 0

* Function prototypes

void *proxyside_recv_Thread Fu nc(void *) ;

void *serverside_send_Thread Fu nc(void *);

void *serverside_recv_Thread Func(void *);

void *proxy_to_server_Control_Th read Fu n c(void *)
;

void *server_to_ proxy_Control_Thread Fu nc(void *)
;

struct BufferNode {
int EntryFull; //Flag (serves as semaphore). lf 1 then value stored, else

is empty and can be written into
long int DataSize; /lSize of data stored in entry
char Data[SOCK_BUFFER_SIZE];

h

int sockfd, servlen, cli_len, childpid;
int newsockfd[MAx_CON N_NUMB_PER_LOGICAL_CONN]; //Array of sockets.
Used to accept
struct sockaddr_in cli_addr, serv_addr;

-130-

int niaa;
char buf-par[SOCK-BUFFER-SIZE]; ll3uffer used by parent process to receive
of connections opened
int m_par, c_par; //Counter vars
int n_par;
int connection_Number; //Number of connections to be opened for a given
proxy-to-proxy'logical' connection
char Connection-Number-str[3 1]; //String containing Connection_Number as
read from other proxy
int server_sock; //socket used to connect to server
struct BufferNode
csproxy-to-server-ProxyBuffer[cs_To_s_pRoxyBUFFER_stZE]; ll3uffer used
for cl ient->server_side_ proxy traffic
struct BufferNode
server-to-csproxy-ProxyBufferls_To_cs_pRoxyBUFFER_slzEl; ll}uffer used
for seryer_side_ proxy->cl ient traffic
struct BufferNode
proxy-side-sendBuffer[s-PRoXy_stDE_BUFFER_stzE][MAX_coNN_NUMB_pER_Lo
GICAL_CONNI; //Used to store temporarily data that wiil

// be sent out to cl.side proxy
struct BufferNode
proxy_side-recvBufferlR_PROXY_SIDE_BUFFER-SIZE]IMAX-CoNN-NUMB_PER_Lo
GICAL_CONNI; //Used to store temporarily data that

//is received fromt to cl.side proxy

int main(void) {

llCreate the socket
if ((sockfd=socket(AF_lNET, SOCK_STREAM, 0)) < O) {

perror("ERROR: socket creation \n");
exit(1);

)

-I3l-

I /Create (server-side) proxy address
memset(&serv_addr, 0, sizeof(struct sockaddr_in));

serv_addr.sin_family = AF_l N ET;
serv_addr.sin_port = htons(S_pORTN U MBER) ;

servlen = sizeof(struct sockaddr_in);

niaa = INADDR_ANY;
memcpy(&serv_addr.sin_addr, &niaa, sizeof(long)) ;

/lBind socket to (server-side) proxy address
if (bind(sockfd, (struct sockaddr *) &serv_addr, servlen) < 0) {

perror("ERROR: bind \n");
exit(1);

)

//Listen for client connections
if (listen(sockfd, 7) . 0) {

perror("ERROR: listen \n");
close(sockfd);
exit(1);

)

for (;;) {

cli_len = sizeof(cli_addr);
newsockfdlo] = accept(sockfd, (struct sockaddr *) &cli_addr,

&cli_len);

if (newsockfdl0l < 0) {
perror("ERROR: Can't create new socket (1st proxy listening

socket)\n");
exit(1);

)

- 132 -

* Read number of TOTAL connections to be opened (for this 'logical'
connection).

* Format: string containing # followed by '\0,
n/

strcpy(Connection_Number_str,"\0"); //lntt

m_par=0; //lnit counter
while ((n-par = recv(newsockfd[0], buf_par, sizeof(buf_par), 0)) >

o){
m_par = m_par+n_par;
strncat(Con n ectio n_ N um ber_str, buf_pa r, n_pa r) ;

if (Connection_Number_str[m_par-1] == '\0,)
break;//if '\0' in string then done so exit recv/while loop

)
if (n_par<=O) {

printf("FATAL ERROR: n_par<=0 while recv. connection #
(parent process)\n\n") ;

close(newsockfd[0]);
exit(1);

)

//Convert # of connections to int from string
sscanf(connection-N umber_str)'o/od", &connection_Number);

printf("cHECK(p-ss-proxy): yod connections to be opened (%d
max)\n\n",connection-Number, MAX_coNN_NUMB_pER_LoG lcAL_coNN);

/*
* wait for connection-Number connections to be opened.

NOTE:Connection_Number is total connections to be opened*/
for (c_par=1 ; c_parcConnection_Number; c_par++) {

newsockfd[c_par] = accept(sockfd, (struct sockaddr *)
&cli_addr, &cli_len);

if (newsockfd[c_par] . 0) {

-133-

perror("ERROR: Can't create new socket \n");
exit(1);

/lCreate child process
if ((childpid = fork0) . o) {

perror("ERROR: Fork \n");
exit(1);

)
else if (childpid -= O) { 7* ****** child process ****** *l

/* Child process vars */

struct hostent *hp; //used in connecting to server
struct sockaddr_in name; //used in connecting to server
int len; //used in connecting to server
int thr_concurrency_counter;
thread_t

Th read I D[MAX_CO N N_N U M B_pE R_ LOG I CAL_CO N N
* 2+ 4]; I I Arr ay of th read I Ds

for thr_create calls
int

th r_ I D_PTRIMAX_CON N_N U M B_pE R_ LOG ICAL_CON N"2+41 ; / I Array of thr_ I D
pointers used in thr_create calls

FILE *fd;

int Server_PortNumber; /lport on which server listens
char Server_Name[64]; //DNS name of server
char Server_lP[64]; lllP of server
ulong_t addr;

int i,i; llcounter var
size_t

ïaskStatus[MAX_CO N N_N U M B_ pE R_LOG I CAL_CON N*2+4] ; //Used in th ljoin 0
calls

close(sockfd); //close original socket

-134-

I / -------------------cod e

printf("CHECK(p_ss_proxy): CHILD process created \n\n");

" lnitialize proxy buffers (i.e. set all flags to 0)

for (i=0; i<S_PROXY_SIDE_BUFFER_StZE; i++¡ I
for 6=6' j<MAX_CON N_N U MB_pER_LOG tCAL_CON N ;j*+) {

proxy_side_sendBuffer[i][]. EntryFuil = 0;
)

)
for (i=0; i<R_PROXY_SIDE_BUFFER_StZE; i++¡ 1

for 6=9' j<MAX_CON N_N U MB_pER_LOG |CAL_CON N ;j++) {
proxy_side_recvBuffer[i] [j]. EntryFull = 0;

)
)

for (i=0; i<CS_TO_S_PROXYBUFFER_StZE; i++¡ 1

csproxy_to_server_ ProxyB uffer[i]. EntryF u ll = 0;
)
for (i=0; i<S_TO_CS_PROXYBUFFER_SIZE; i++) 1

serve r_to_cs p roxy_ P roxyB uffer[i]. E ntryF u I I = 0 ;

)

* Read file to obtain address (name & port #) of server
* Format: "porf# server_name" ("'s not included)

//sem_lock not needed

if ((fd = fopen(F|LENAME, "r")) == NULL) {
perror("ERROR(p_ss_proxy) : Couldn't open fi le \n") ;

-135-

exit(1);
)

#ifdef SERV_USE_NAME
fsca nf(fd, " o/od o/os", &S erve r_PortN u m ber, Se rve r_ N a m e) ;

#endif
#ifdef SERV_USE_lP
fsca nf(fd, " o/o d o/os", &S erver_ Port N u m ber, Server_ I

p)
;

#endif

llCheck values read from file
#ifdef SERV_USE_NAME
pri ntf("CH EC K(p_ss_ proxy) : Server_ N ame : yos\n",

Server_Name);
#endif
#ifdef SERV_USE_lP
printf("CH EC K(p_ss_proxy) : Server_ I P : Yos\n", Server_ I

p)
;

#endif

printf("C H ECK(p_ss_proxy) : Server_ portN u m ber: Zod \n",
Server_PortNumber);

fclose(fd);

//sem_unlock not needed

* Open connection to server

I /-----------
//Get server's address
#ifdef SERV_USE_NAME
if ((hp = gethostbyname(Server_Name)) == NULL) {

printf("ERROR(p_ss_proxy): Can't get server
address(%s)\n\n", Server_Name);

exit(1);
)

- t36 -

#endif

#ifdef SERV_USE_lP
íf ((int)(addr = inet_addr(Server_lP)) == -1¡ 1

printf("lP-address must be of the form a.b.c.d\n");
exit (2);

)

hp = gethostbyaddr((char *)&addr, sizeof(addr), AF_INET);
if (hP -= NULL) {

printf("host information for 7os not found\n",
Server_lP);

exit (3);

)
#endif

//Create socket
if ((server_sock = socket(AF_tNET, SOCK_STREAM, 0)) < 0) {

printf("ERROR(p_ss_proxy): Can't create socket for
server\n\n");

exit(1);
)

llCreate seryer address
memset(&name, 0, sizeof(struct sockaddr_in));

name.sin_family - AF_l NET;
name.sin_port = htons(Server_PortNumber) ;

memcpy(&name.sin_addr, hp->h_addr_list[O], hp->h_length) ;

len = sizeof(struct sockaddr_in);

//Connect to server
if (connect(server_sock, (struct sockaddr *) &name, len) < O

printf("ERROR: Can't connect to server \n\n");
exit(1);

){

-137-

//-----------

" lniVfill-in thr_lD array. Thread lDs start from ZERO ll!

for (i=0; i<(MAX_CON N_N U M B_p ER_LOG I CAL_CON N.2+4) ;
i++)

thr_lD_PTR[|] = ¡'

:*
* NOTE: proxy-side sending threads have thread lDs from (0

to Connection_Number-1) and
* proxy-side receiving threads have thread lDs from

(Connection_Num ber to 2*Connection_N umber-1)**,

* Spawn the proxy-side sending/receiving threads. pair for
each connection w/ client-side proxy

for (i=Connection_Number; i<(2*Connection_Number); i++) 1

thr_create(NULL, 0, proxyside_recv_ThreadFunc, (void*) &thr_lD_PTRIi], 0, &ThreadtDtil);
\ llfor

if (i != (2*Connection_Number))
printf("ERROR/CH EGK(p_ss_proxy) : i cou nter <>

2*Connection_Number \n");

-138-

* Spawn the server-side sending/receiving threads. Just one
pair for the single connection to server

thr_create(NULL, 0, serverside_send_ThreadFunc, (void ")
&thr_lD_PTR[i], 0, &ThreadlDlil);

i++;
th r_create(N U LL, 0, serverside_recv_Th read Fu nc, (void *)

&thr_l D_PTRlil, 0, &Threadl Dlil);

" Spawn Control threads

i++;
th r_create(N U LL, 0, server_to_ proxy_Control_Th read Fu nc,

(void *) &thr_lD_PTRlil, 0, &ThreadtDIil);
i++;
th r_create(N U LL, 0, proxy_to_seryer_Control_Th read Fu nc,

(void *) &thr_lD_PTR[|], O, &ThreadtDIil);

*Set the thread concurrency. Could improve thread scheduling.

thr_concurrency_counter = Connection_Number* 1+4 + 1 ;
t h r_s etco n c u rre n cy (t h r_ co n cu rre n cy_ co u n te r) ;

* Make thfoin calls so that program doesn't terminate right
after creating threads

for (i=Connection_Number; i<(2"Connection_Number+4); i++¡ 1

thljoin(ThreadlD[i], 0, (void *) &TaskStatus[i]);
)

-139-

) //endelseif /* ****** child Procgss ****** */

* Close in parent the "passed off to child" sockets*/
for (c_par=0; c_parcConnection_Number; c_par++) {

close(newsockfd [c_par]) ;

)

j llendfor

j l*main*/

**** ************ ****** *************************** * *************************
********************* */

void *proxyside_recv_Th read Fu nc(void .th r_ I D_pTR) {

/*
" Get thread lD*/
int thr_tD = *((int *) thr_lD_PTR);

int n,m;
int i,k; //counter vars
char *buf; llBuffer into which received data is copied into & data

pasted to
char *bufStart; //Used to store temporarily the socket buffer starting

address
int buf_size; //Used because sizeof(buf) doesn't work for char *
unsigned int Packet-Length; //Holds packet length derived from arrived

- 140 -

packet's Length header

//lnit bufter
buf_size = (SOCK_B U F FE R_ SIZE+2): //buf_size was

SOCK-BUFFER-SIZE
buf = (char *) malloc(buf_size*sizeof(char));

/*
* NorE: proxy-side sending threads have thread rDs from (0 to

Connection_Number-1) and
* proxy-side receiving threads have thread lDs from

(Connection_Number to 2"Connection_N umber-1)* Therefore (thr-lD-Connection-Number) is the connection # that should
be used by the proxy-side

* receiving threads*/

i=0; //lnit counter

while (1) {

/*
* Get exaclty LENGTH_HEADER_s|ZE bytes of new packet i.e. the

Length header
*/

m=0;
while (m.2) {

if ((n=recv(newsockfd [th r_ I D-Con nection_ N u m ber], buf+m,
LENGTH_HEADER_SIZE-n,0)) t 0) {

m = m+n;
I //if
elsei

pri ntf(" FATAL E R RO R(prx_s id e_recv_Th read) : n <=0

-141 -

while recv. Length header\n\n");
close(newsockfd[th r_l D-Con nection_ Nu mber]) ;

exit(1);
)

) /iwhile

#ifdef new2_PRl NT_DEBUG
printf("CHECK: right after recvQ #1 \n\n");
#endif

* Get length from Length field

Packet_Length = buf[O];
Packet_Length = (Packet_Length<<B) I (buftll);
printf("C H EC K: Packet_Len gth : Zod\n\n", packet_Len gth) ;

/*
* Receive entire packet now*/
m=0;

while (mcPacket_Length) {

if ((n =recv(newsockfd [th r_ I D-Con nection_ N um ber], buf+m,
Packet_Length-m, 0)) > 0) {

m = m+n;

I //if
else {

printf("FATAL E RRO R(px_side_recv_Th read) : n <=0
while recv. remaining packet \n\n");

cl os e (n ews ockfd [t h r_ I D-C o n n ectio n_ N u m b e r]) ;

-r42-

exit(1);
) //else

) //while

/lError check
if (m != Packet_Length) {

printf("ERROR(recv[%d]): m != packet_Length (is >) \n\n",
thr_lD);

c I os e (n ews ockfd [t h r_ I D- C o n n e cti o n_ N u m b e r]) ;
exit(1);

\ //.f

/*
* Now that got entrire packet, write it (w/o Length header) to

proxy_s i d e_ recv B uffe r*/

wh i le (proxy-side-recvB uffer[i] [thr- I D-Con nection_ N um ber]. EntryFu I I

!=0){
printf("C H ECK(px_recv[%d]) : Waitin g for

proxy_s ide_recvB uffe r[] [] ! =O\n\n", th r_ I D) ;

thr_yield0;
) //while

memcpy(proxy-side-recvBuffer[i][thr- I D-Connection_N umber]. Data,
buf, Packet_Length);

proxy-side-recvBuffer[i][thr-l D-Connection_N umber]. DataSize =
Packet_Length;

proxy-side-recvBuffer[i][th r- I D-Con nection_ Number]. EntryFull = 1 ;

//lncrement counter
¡f (i < (R_pRoxy_st DE_BUFFER_S tZE_1))

i++;

-t43-

else
i= 0;

) //while(1)

) //proxyside_recv_Thread Func

ii::::::--:-:::::::::-:;----***

void *serverside_send_Thread
Fu nc(void .thr_l D_ pTR) {

/*
* Get thread lD*/
int thr_lD = *((int *) thr_lD_pTR);

int n;
int i; //counter var
char buf[SOCK_BUFFER_S|ZE];

i=-1:
while (1) {

* Get data from csproxy_to_server_proxyBuffer;

//lncrement counter
¡f (i < (cs_To_s_pRoxyBUFFER_StZE_1))

i++;
else

i= 0;

while (csproxy_to_server_proxyBuffer[i].EntryFull != 1) {
thr_yield0;

-144-

)
m em cpy(buf , cs proxy_to_server_ p roxyB uffer[i]. D ata,

cs p roxy_to_ s e rve r_ P roxy B uffe r[i] . D ata S i ze) ;

n = cs p roxy_to_serve r_ ProxyB uffer[i]. Data S ize ;

csproxy_to_server_ProxyB uffer[i]. E ntryFu ll = 0 ;

/*
* Send data to server*/
if (n>o) {

if (send(server_sock, buf, n, 0) < 0) {
p ri n tf(" E R RO R(p_ss_ proxy/se rve r_s e n d_th read) : Wh i l e

sending data to server <0 \n\n");
exit(1);

)
)

) /iwhile

) //serverside_send_ThreadFunc

******* ************************* ************ *******************************
********************* */

void *serverside_recv_ThreadFunc(void .thr_lD_pTR)
{

" Get thread lD

int thr_lD - "((int *) thr_lD_PTR);

int n;
int i; //counter var

-145-

char buf[SOCK-BUFFER-SIZE];

t_ 4 ,
l--l'

while ((n = recv(server-sock, buf, sizeof(buf), 0)) t 0) {

/*
* Copy received data to server-to-csproxy-ProxyBuffer;
*/

//lncrement counter
if (i < (s_To_cs_PRoxYBU FFER-SIZE-1))

i++;
else

i= 0;

wh i le (server-to-csproxy- ProxyB uffer[i]. E ntryFu ll != 0) {
printf("CH ECK(serv-recv) : waiting for

server-to-csproxy-ProxyBuffer[i] != 0 \n\n");

thr_yield0;
)
memcpy(server-to-cs proxy-ProxyBuffer[i]. Data, buf , n) ;

server-to-cs proxy- ProxyB uffe r[i]. DataS ize = n ;

server-to-cs proxy-ProxyB uffer[i]. EntryFu ll = 1 ;

) /iwhile
if (n<=0) {

printf("FATAL ERROR: n<=0 while recv. from server (server-side

proxy) \n\n");
close(server-sock);
exit(1);

)

) //serverside-recv-Th read Fu nc

-146-

********* *********** *********** ************* *******************************
********************* * /
void *proxy_to_server_Control_Th read Fu nc(void -th r_ I D_ PTR) {

/*
" Get thread lD*/
int thr_lD = *((ínt *) thr_tD_pTR);

int i,j,k; //counter vars

/*
* NOTE: proxy-side sending threads have thread lDs from (0 to

Connection_Number-1) and
* proxy-side receiving threads have thread lDs from

(Connection_Number to 2*Connection_N um ber-1)
* Therefore (thr_lD-Connection_Number) is the connection # that should

be used by the proxy-side
* receiving threads*/

k=-1; //lnit counter var

while (1) {

for (i=0; i<R_PROXY_SIDE_BUFFER_SIZE; i++¡ 1

/*
* Get data from proxy_side_recvBuffer and copy to

cs proxy_to_serve r_ P roxyB uffe r
*/

for 6=9' j<Connection-Number; j++¡ 1

-147-

//lncrement k counter (used as
csproxy_to_server_ProxyB uffer i ndex)

if (k < (cs_To_s_pRoxyBU FFER_StZE_1))
k++;

else
k=0;

while (proxy_side_recvBuffer[i]ff].EntryFuil != 1) {
thr_yield0;

)
while (csproxy_to_server_proxyBuffer[k].EntryFull != O) {

printf("CH ECK(recvControl) : waiting for
csproxy_to_server_ProxyBuffer[i] != 0 \n\n");

thr_yield0;
)

" Copy to csproxy_to_seryer_proxyBuffer

m e m c py(cs p roxy_ to_s e rve r_ p roxy B uffe r[k] . D ata,
proxy-side-recvBuffer[i][].Data, proxy_side_recvBuffer[i][].Datasize);

cs p roxy_to_serve r_ ProxyB uffer[k]. Data S ize =
proxy_s ide_recvB uffer[i] []. DataS ize ;

proxy_side_recvBuffer[i] []. E ntryFull = 0;
csproxy_to_server_ProxyBuffer[k].EntryFull = 1 ;

j llfor - j

/lWrap counter var
if (i =- R_PROXY_SIDE_BUFFER_StZE-1)

break;
// i=-1;

\ lltor - i

-148-

) //while (1)

j / / proxy _to_server_ Control_Th read Fu n c

************** ************* ** *************** ******** ******** ***************
********************* */

void *server-to-proxy-control-Th
read Fu nc(void *thr_

I D_prR) {

" Get thread lD

int thr_lD - *((int *) thr_lD_pTR);

int i,j,k; //counter vars
int n;

char buf[SOCK_BUFFER_StZE+2];
int send_sock_index = -1;
struct timeval *start_time;

struct timeval *curr_time;

lon g start_time_ i n_ msec, cu rr_time_ i n_msec;

/*
* NorE: proxy-side sending threads have thread rDs from (0 to

Connection_Number-1) and
* proxy-side receiving threads have thread lDs from

(Connection_Num ber to 2*Connection_N umber- 1)* Therefore (thr-lD-Connection-Number) is the connection # that should
be used by the proxy-side

" receiving threads*/

-149-

/*
* Allocate memory to time vars*/
start-time = (struct timeval *) malloc(sizeof(struct timeval));
curr-time = (struct timeval *) malloc(sizeof(struct timeval));

k=-1; //lnit counter var

while (1) {

/*
* Get data from server_to_csproxy_proxyBuffer*/

//l ncrement k cou nter (used as seryer_to_cs proxy_ proxyB uffer
index)

if (k < (s_To_cs_pRoxyBUFFER_S tZE_1))
k++;

else
k=0;

while (server_to_csproxy_ProxyBuffer[k].EntryFull != 1) {
thr_yield0;

)

/*
* Copy to proxy_side_sendBuffer
*/
memcpy(buf+LENGTH_HEADER_StZE,

serve r_to_cs p roxy_ P roxyB uffe r[k]. Data,
server_to_csproxy_ ProxyBuffer[k]. DataS ize) ;

n = server_to_cs proxy_ proxyB uffer[k]. Data S ize ;

s erver_to_ cs proxy_ P roxyB uffe r[k]. E ntryFu I I = 0 ;

- 150 -

" lnsert Length header*/
buf[0] = (unsigned char)(n>>B);
buf[1] = (unsigned char)n;
#ifdef USE DELAY

/ / ----------------

if (gettimeofday(start_time, NULL) <O) {
pri ntf("E RROR(proxy_se nd [% d]) : getti m eofday error\n\n",

thr_lD);
exit(1);

)

start-time-in_msec = (start_time->tv_sec)*1 o0o + (start_time-
>tv_usec)/1000;

round_count++i
while (1) {

if (gettimeofday(curr_time, NULL) .0) {
pri ntf(" E R RO R(proxy_send [%d]) : gettimeofday

error\n\n", thr_lD);
exit(1);

)

curr_time_in_msec = (curr_time->tv_sec)*1 0OO + (curr_time-
>tv_usec)/1O00;

if ((curr_time_in_msec - start_time_in_msec) >=
DELAY_tN_MSEC)

break;

//Since haven't reached timeout value yet have thread
sleep/yield

thr_yield0;

| llwhile

-151-

//----------------

#endif
if (n+LENGTH_HEADER_S|ZE>O) {

I / ---------
//l ncrement socket index
if (send_sock_i ndex < (Connection_N um ber- 1))

send_sock_index++;
else

send_sock_index = 0;
/ / ---------
if (send(newsockfd[send_sock_index], buf,

n+LENGTH_HEADER_SIZE, 0) .0) {
printf("ERROR(send/Control):While sending data to \n");
printf("client-side proxy <0 \n\n");
exit(1);

\ //.f

) //if n+LEruGTH-HEADER SIZE>0

) //while (1)

) //server_to_proxy_Control_Th read Fu n c

*************************** *********************************** *************
********************* */

-152-

Appnxnrx C

c LaxcuAGE Lrsrrxc FoR unp col,wncrroN-spr.rrrrNc

Pnoxrns

-153-

#define _REENTRANT
#ínclude <stdio.h>
#include <stdlib.h>
#include <sys/types. h>
#include <sys/socket. h>
#include <netineUin.h>
#include <netdb.h>
#include <string.h>
#include <sys/stat.h>
#include <thread.h>
#include <synch.h>
#include <sched.h>
#include <sys/uio.h>
#include <sys/sem.h>
#include <sys/ipc.h>
#include <memory.h>
#include <time.h>
#include <sys/time.h>
#include <unistd.h>
#include "fec.c"

// Debuging "defines" (enable debug printouts)
I l#de'line E N C_ DEB UG_ON
I l#define new2_P Rl NT_DE B U G
#define FLOW_CNTRL_DEBUG_pRtNT
I l#define RECV_CONTROL_DEB UG

//choose whether serv-side proxy Name or lp read from file
I l#define SS_PRX_USE_NAM E
#define SS_PRX_USE_lP
I l#define EXTRA_RECV_PACKET_CH ECKS

#define SSP-UDP_BASE_PORTNUMBER 8000 //server-side proxy uDp base
portnumber i.e. (SSP_U DP_BASE_PORTN U M B ER+thread I D)

//(or (SSP-U DP-BAS tr-PORTN U M BER+th read I D-Con nection_N umber)) is

-154-

port number to be used by each thread
#define csP-uDP-BASE-PORTNUMBER 7000 ltctient-side proxy uDp base
portnumber
#define c-PoRTNUMBER 6005 //client-side proxy listens on this port
#define FILENAME "p-cs-proxy-file.txt" /lFile that contains address & port #
of server-side proxy
#define SOCK_BUFFER_SIZE 2048
#define PS-To-c-PRoxYBUFFER_stzE 4000 //# of nodes in buffer
#define c-To-PS-PRoxYBUFFER_stzE 20o //# of nodes in buffer
ll#define PROXY_SIDtr_g¡¡pER_SIZE 10 ll# of nodes in buffer
#define R-PRoxY-slDE-BUFFER_stzE 6000 //# of nodes in buffer
#define S_PROXY_SIDE_BUFFER_S|ZE SO ll# of nodes in buffer

#define MAX-CONN-NUMB-PER-LOGICAL-CONN 5 //Max # of connections per
logical connection
#define EXIT-TIME-DELAY 3 //Number of sec of time delay before child proc.
terminated after client has closed
#define RNR-PROXY-RECV-BUF-SIZE-THRESH 0.8 //Percentage full treshhotd of
proxy recv.buffer which if exceeded

//results in RNR
message being sent to serv-side proxy
#define RR-PROXY-RECV-BUF-SIZE-THRESH 0.6 //Percentage full treshhotd of
proxy recv.buffer which íf exceeded

//results in RNR
message being sent to serv-side proxy

#define K-DESIRED 2 /l# of client_to_ssproxy_proxyBuffer we wANT to
read(actual# read may differ)
#define THR-YIELD-MAX 1 llMax number of times will thread yield to read entry
from cl ienr-to_ss proxy_ProxyBuffer

//Set it to O if don't want to wait at all

#define N-FACTOR 2 i/N-FACTOR*k packets will be produced by encoding and
sent out(k = #data packets)
#define ENC-DEBUG-FILENAME "er-cs-enc-dbg-file.txt" //File descriptor of a file
used for debug output in client-to-proxy thread
#define HEADER-SIZE B llSize (in bytes) of header added to encoded packets
(0x00,k, n, seq.#,length(2-bytes),packet in block,0x00)
#define MAX_SEQ_NUMB_VALUE 2S5
#defi ne H EADE R-sRT-EN D-BYTES_CODE_VALU E (unsigned char)0x0 1

#define DEC-ARRAY-SIZE 10 //Number of array entries for decoding array

- 155 -

(array of gf*)
#define DEC-ARR-BUF-SIZE SOCK-BUFFER-SIZE llsize of each decoding array
bufier
#define EN C-PACKET-BU F-S IZE SOCK-BU FFER-S IZE I I Size of buffer containing
encoded packet(what you get from enc.func.)
#define EN C-SOU RCE-B U F- BU FFE R-S IZE SOCK-BU FFER-S tZ E I I Size of buffers
containing source data headed for encoding
#define CL-RECV-SOCK-BUFFER-SIZE 1024 //Socket buffer size for ctient
receiving
#dEfiNE TEMP-CUMUL_BUF_SIZE-TRËSH CL_RECV-SOCK-BUFFER_SIZE I IIf TOIAI
of bytes to be encoded(&sent-out) each time

//is smaller than this value
then amalgamate into one big packet(for efficiency)

#define DELAY_IN_MSEC 0
ll#define USE_DELAY

* Function prototypes

void *proxyside_recv_ThreadFunc(void *);

void *clientside_send_ThreadFunc(void *);

void *clientside_recv_Thread Func(void *);

void *Cong_Msg_Recv_ThreadFunc(void *);

vo i d *cl
i ent_to_ proxy_Co ntrol_Th read Fu nc(vo i d *) ;

void *proxy_to_client_Control_ThreadFunc(void *)
;

struct BufferNode {
int ËntryFull; llFlag (serves as semaphore). lf 1 then value stored, else

is empty and can be written into
long int DataSize; llStze of data stored in entry
unsigned char Data[SOCK_BUFFER_StZE + HEADER_StZE];
int Skip; //Used only for proxy-side-recvBuffer. Recv. thread sets flag

- 156 -

to 1 to tell control to skip cell
int Control_Skip; llFlag set by recv_Control ',stating" that it has

skeeped the entry (because doesn't need
/lmore data for current block)

h

int sockfd, servlen, cli_len, childpid;
int client_sock; //Socket created from cl.side-proxy listening
struct sockaddr_in cli_addr, serv_addr;
int niaa;
i nt servsideproxy-sockfd [MAX_co N N_N u M B_p E R_ Loc I cAl_co N N] ; //sockets
used to connect to serv-side proxy
int tcp-sock; //Socket for TCP connection used to tranmsit to server-side proxy
the # of UDP connections to be used
struct BufferNode client-to_ssproxy_ProxyBuffer[C_TO_PS_PROXYBUFFER_SIZE];
/ lBuffer used for client->server_side_proxy traffic
struct BufferNode ssproxy_to_client_ProxyBuffer[PS_TO_C_PROXYBUFFER_StZE];
I lBuffer used for server_side_proxy->client traffic
struct BufferNode
proxy-side-sendBuffer[S_PROXY_StDE_BUFFER_StZE][MAX_coNN_NUMB_pER_Lo
GICAL_CONNI; //Used to store temporarily data that wiil be

//sent out to server-side proxy
struct BufferNode
proxy_side-recvBuffer[R-PROXY_SIDE_BUFFER_SIZE][MAX_coNN-NUMB-PER_Lo
GICAL_CONNI; //Used to store temporarily data that is

//received fromt to cl.side proxy
int Connection_Number; //Number of connections to be opened for a given proxy-
to-proxy'logical' connection
struct hostent *hp; //used in connecting to server

int RecvBufSizeCounter = O; i/Used for congestion control(# of full cells of proxy
recv. buffer)
int RecvBufSizeCounter_copy = O; llCopy of above counter. Used to unlock
mutex quickly
int HoldBack = 0; llFlag used forcongestion control i.e. when 1 then send

-157-

threads pause
m utex-t RecvBufsizecou nter_Lock; //RecvBufsizecou nter semaphore
mutex_t HoldBack_Lock; //HoldBack semaphore
int PROXY_RECV_BUF_CAPACITy: llCapacity of proxy-side recv buffer. ls
R_ P ROXY_S I D E_ B U F FE R_S I ZE.(#U D p con nections)
mutex_t
control-skip-Lock[R-PRoxY_st DE_BU FFER_srzE]IMAX_coN N_NUMB_pER_Loctc
AL-CONNI; //Mutex for setting/reseting Control-Skip flag. One mutex for each
cell of proxy_side_recvBuffer
int mi,mj; //Counter vars

int main(void) {

/*
* lnit HoldBack mutex var - Used for congestion control i.e. when 1 then

send threads pause
*/

mutex_init(&HoldBack_Lock, USyNC_THREAD, (void *) NULL);

/*
* lnit RecvBufSizeCounter mutex var - Used for congestion control(# of

full cells of proxy recv. buffer)*/
mutex-in it(& RecvBufsizecou nter_ Lock, usyN c_TH READ, (void -) N u LL) ;

/*
* lnit control_skip_Lock mutex vars (one mutex for each cell of

proxy_s i de_ recvB uffer)
*/
for (mi=0; mi<R_PROXY_StDE_BUFFER_StZE; mi++¡

for (mj=g' mjcMAX_CON N_N U M B_PER_LOG I CAL_CONN ; mj++)

-1s8-

mutex_init(&Controt_Skip_Lock[mi][mj], USyN C_TH READ,
(void *) NULL);

/lCreate the socket
if ((sockfd=socket(AF_tNET, SOCK_STREAM, O)) . 0) {

perror("ERROR: socket creation \n");
exit(1);

)

/ I Create (client-side) proxy address
memset(&serv_addr, 0, sizeof(struct sockaddr_in));

serv_addr.sin_family = AF_lN ET;
serv_addr.sin_port = htons(C_pORTN U MBER);
servlen = sizeof(struct sockaddr_in);

niaa = INADDR_ANY;
memcpy(&serv_addr.sin_addr, &niaa, sizeof(long)) ;

/lBind socket to address
if (bind(sockfd, (struct sockaddr *) &serv_addr, servren) . o) {

perror("ERROR: bind \n");
exit(1);

)

i/Listen for client connections
if (listen(sockfd, 7) . 0) {

perror("ERROR: listen \n");
close(sockfd);
exit(1);

)

-159-

for (;;) {

cli_len = sizeof(cli_addr);
client-sock = accept(sockfd, (struct sockaddr ") &cli_addr, &cli_len);

if (client_sock < 0) {
perror("ERROR: Can't create new socket (from cl.side proxy

listening socket) \n");
exit(1);

)

llCreate child process
if ((childpid = fork0) . 0) {

perror("ERROR: Fork \n");
exit(1);

)
else if (childpid -- O) { /* ****** child process ****** */'

/* Child process vars */

struct sockaddr_in name; //used in connecting to server
struct sockaddr_in cli_name; //used for server-side proxy

UDP sockets
int len; //used in connecting to server
int n;
int thr_concurrency_counter;
thread_t

Thread I D[MAX-CON N-N U M B-PER-LOG I CAL-CON N * 2+ 4+ 1l; I / Array of thread I Ds
for thr_create calls

int
thr_ I D_ PTRIMAX_CON N_N U M B_pE R_LOG I CAL_CON N*2+4+ 1 I ; I / Array of thr_ I D
pointers used in thr_create calls

FILE *fd;

int ServSideProxy_PortNumber; llport on which server
listens

unsigned char ServSideProxy_Name[64]; //DNS name of
server

- 160 -

int i,); /lcounter var
size_t

TaskStatuslMAX_CON N_N U M B_p ER_ LOG I CAL_CO N N*2+4+ 1 I ; //Used in
thfoin0 call

unsigned char buflSOCK_BUFFER_StZEl; ll9uffer used by
parent to send to other proxy # of connections to be opened

unsigned char Connection_Number_str[31]; //String
containing connection-Number(as to be sent to other proxy)

int nn;

char ServSideProxy_lP[SO]; //Used for reading serv-side
proxy lP address from file

ulong_t addr;

close(sockfd); //close original socket

I / ------- ------------cod e

* lnit the erasure code encoder/decoder

init_fec0;

* Read file to obtain address (name & port #) of server-side
proxy

* Format: "porf# proxy_name', (,"s not included)

//sem_lock not needed

if ((fd = fopen(FILENAME, "r")) == NULL) {
perror("ERRO R(p_cs_proxy) : Couldn't open file \n") ;

exit(1);
)

-161-

#ifdef SS_PRX_USE_NAME
fscanf(fd, " Vod Yos", &ServS ideproxy_ portN u m ber,

ServSideProxy_Name);
#endif

#ifdef SS_PRX_USE_tp

servsideproxy- r
p) ;

fscanf(fd

"'

o/od o/os"' &servs ideProxy-PortN u m ber'

#endif

//Check values read from file
#ifdef SS_PRX_USE_NAME
printf("C H ECK(p_cs_proxy) : ServSideproxy_ Na me : Zos\n",

ServSideProxy_Name);
#endif

#ifdef SS_PRX_USE_tp
p ri n tf(" C H E C K(p_cs_ proxy) : S e rvS id e p roxy_ I p : o/o s\n ",

ServSideProxy_lP);
#endif

printf("c H E CK(p-cs-proxy) : TC p Servs ideproxy_portN um ber:
7od \n", ServSideProxy_PortNumber) ;

fclose(fd);

//sem_unlock not needed

* Open connection to server-side proxy

/ /-----------
/lGet server-side proxy's address

#ifdef SS_PRX_USE_NAME
if ((hp = gethostbyname(ServSideproxy_Name)) == NULL) {

printf("ERROR(p_cs_proxy): Can't get server_side proxy

- 162 -

address(%s)\n\n", ServSideproxy_Name);
exit(1);

)
#endif

#ifdef SS_PRX_USE_lP
if ((int)(addr = inet_addr(ServSideProxy_tp)) == -1) {

printf("lP-address must be of the form a.b.c.d\n");
exit (2);

)
hp = gethostbyaddr((char *)&addr, sizeof(addr), AF_INET);
if (hp -= NULL) {

printf("host information for Zos not found\n",
ServSideProxy_lP);

exit (3);

)
#endif

/ / Create server-side proxy address
memset(&name, 0, s izeof(struct sockaddr_ i n)) ;

name.sin_family = AF_l NET;
na m e. sin_port = htons(ServSide proxy_ portN u m ber) ;

memcpy(&name.sin_addr, h p->h_addr_list[O], hp->h_length) ;

len = sizeof(struct sockaddr_in);

:*
* tcp-sock is TCP socket used to communicate to server-side

proxy the # of connections
* to be used. After connection # is sent the TCp connection is

closed with UDP being used
* from that point on to tranmsiVreceive data

" servsideproxy_sockfd[i] are UDp sockets to be used

- 163 -

/lCreate TCP connection socket
if ((tcp_sock = socket(AF_tNET, SOCK_STREAM, 0)) < O) {

printf("ERROR(p_cs_proxy): Can't create socket for
server-side proxy \n\n") ;

exit(1);
)

//Establish TCP connection to server-side proxy
if (connect(tcp_sock, (struct sockaddr *) &name, len) < O) {

printf("E RROR(p_cs_proxy) : Ca n't esta blish TCp
connection to server-side proxy \n\n");

exit(1);
)

printf("cHECK(p-cs-proxy): TCp connection to serv-side proxy
opened \n\n");

* Read # of TOTAL connections to be opened (for each
'logical' connection to serv-side proxy)

* & send it to server-side proxy over the TCp connection.* Format: string containing # followed by'\0'

printf("Enter # of phys. connections per logical connection (yod
max): ", MAX_CON N_NUMB_PER_LOGtCAL_CON N);

scanf(" o/o d", &Con nection_ N u m ber) ;

//Connection_Number = I ;

set buf size

sprintf(Connection_Number_str,',o/od", Connection_Number);

llCopy connection # in buf to send out to serv-side proxy &

strcpy(buf, Connection_Number_str) ;

n = strlen(buf) + 1; //strlenO+t to account for the ,\O'char
that must be included

- 164 -

if (send(tcp_sock, buf, n , O) . O) {
printf("ERRO R(p_cs_proxy) : While sending con n ection #

to serv-side proxy <0 \n\n");
exit(1);

\ //.f

* Now that we got the # of UDp connections to be used
calculate the proxy recv. buffer capacity

PROXY_RECV_BUF_CApACtTy =
R_ P ROXY_ S I D E_ B U F F E R_ S I Z E.Co n n ectio n_ N u m be r;

* - Now that UDP connection # has been sent to server_side
proxy close the TCP connection

//close(tcp-sock); - need rcp socket to send/receive RNR/RR
flow control messages

* open connection-Number uDp sockets (numbered from 0 to
Con nection_N um ber- 1).

for (i=0; i<Connection_Number; i++¡ 1

/lCreate socket
if ((servsideproxy_sockfd[i] = socket(AF_lNET,

SoCK_DGRAM, 0)).0) {
printf("ERROR(er_cs_proxy): Can't create UDp

socket for server-side proxy for i:%d\n\n", ¡);
exit(1);

)

- 165 -

llCreate the address to bind the UDp socket. port #:
(csP_uDP_BASE_PORTNUMBER + i)

memset(&cli_name, 0, sizeof(struct sockaddr_in));
cli_name.sin_family = AF_l N ET;
cli_name.sin_port =

htons(CSP_UDP_BASE_PORTNUMBER + i);
nn = INADDR_ANY;
memcpy(&cli_name.sin_addr, &nn, sizeof(long));

//Bind UDP socket to above address
if (bind(servsideproxy_sockfd[i], (struct sockaddr *)

&cli_name, sizeof(struct sockaddr_in)) <0) {
printf("ERROR: Can't bind UDp socket to port

%d\n\n",CSP_U DP_BAS tr_ PORTN U M B ER+i) ;

exit(1);
)

\ /lfor

* lnitialize proxy buffers (i.e. set all flags to 0)

for (i=0; i<R_PROXY_SIDE_BUFFER_StZE; i++¡ 1

for 6=6' j<MAX_CON N_NU MB_pER_LOGtCAL_CON N ;j+*) {
proxy_side_recvBuffer[i][]. EntryFull = 0;
proxy_side_recvBufferli]ül.Skip = O;
proxy_side_recvB uffer[i] []. Controt_S kip = e.

)
)
for (i=0; |<S_PROXY_SIDE_BUFFER_StZE; i++¡ 1

for 6=6' j<MAX_CON N_N U MB_pER_LOc |CAL_CON N ;j++) {
proxy_side_sendBuffer[i][]. EntryFull = 0;

)
)

-166-

for (i=0; I<PS_TO_C_PROXYBUFFER_StZE; i++¡ 1

ssproxy_to_client_ proxyBuffer[i]. E ntryFu ll = 0 ;

)
for (i=0; |<C_TO_PS_PROXYBUFFER_StZE; i++¡ 1

cl ient_to_ssproxy_proxyB uffer[i]. E ntryFu ll = O ;

)

/t-----------

* lnivfill-in thr-lD array. Thread rDs start from ZERO r!r

for (i=0 ; |<(MAX_CO N N_ N U M B_pE R_ LOG I CAL_CON N*2+4+ 1) ;i++)
thr_lD_PTR[|] = ¡'

:*
* NOTE: proxy-side sending threads have thread lDs from (O

to Connection_Number-1) and
" proxy-side receivíng threads have thread lDs from

(Con nection_N u m ber to 2*Con nection_N u m ber- 1)

* spawn the server-side proxy sending/receiving threads and
receive buffering threads.

" Pair for each connection w/ serv-side proxy.

for (i=Connection_Number; i<(2*Connection_Number); i++¡ 1
thr_create(NULL, 0, proxyside_recv_ThreadFunc, (void*) &thr_lD_PTRlil, 0, &ThreadtDIil);

\ l/for

- 167 -

if (i != (2*Connection_Number)) {
printf("E RROR/C H ECK(p_cs_proxy) : i cou nter <>

2*Connection_ N um ber \n") ;

exit(1);
)

* spawn the client-side sending/receiving threads. Just one pair
for the single connection to client

thr_create(NULL, 0, clientside_send_ThreadFunc, (void .)
&thr_lD_PTRlil, 0, &Thread I D[il);

i++;
thr_create(NULL, O, clientside_recv_ThreadFunc, (void *)

&thr_lD_PTRlil, 0, &Threadt DIil) ;

* Spawn Control threads

i++;
th r_create(N U LL, 0, client_to_proxy_Control_Th read Fu nc,

(void *) &thr_lD_PTRlil, 0, &ThreadtDtil);
i++;
th r_create(N U LL, 0, proxy_to_client_Control_Th read Fu nc,

(void ") &thr_lD_PTR[¡], 0, &ThreadtDtil);

" spawn RNR/RR message receiving thread that wirr receive
congestion messages from serv-side proxy

i++;
thr_create(NULL, 0, Cong_Msg_Recv_ThreadFunc, (void *)

NULL, 0, &ThreadtD[i]);

- 168 -

*set the thread concurrency. could improve thread scheduling.

thr_concurrency_counter = Connection_N umber" 1 +4+ 1 i
t h r_ s etco n c u rre n cy (t h r_ co n cu rre n cy_ co u n te r) ;

* Make thr-join calls so that program doesn't terminate right
after creating threads

for (i=Con n ection_ N u m ber; i<(Con nection_ N u m b er* 2+ 4+ 1);
¡++) {

thr_join(ThreadlD[i], 0, (void *) &TaskStatus[i]);
)

) //endelseif /* ****** child ProcgSS ****** */¡

" Close in parent the "passed off to child,' socket

close(client_sock);

) //endfor

j /*main*/

** *****
********************* */

- 169 -

void *proxysíde_recv_Thread
Fu nc(void -thr_

I D_pTR) {

/*
* Get thread lD*/
int thr_lD - "((int *) thr_tD_pTR);

int n;
int i,k,m; //counter vars
unsigned char *buf; //socket buffer
unsigned char *bufstart; //Used to store temporarily the socket buffer

starting address
unsigned char *tempbuf; //Temp. buffer used to copy segments read

from buf & copy into proxy recv buffer at end
int tempbuf_Size; //Current capacity of tempbuf t.e. # of bytes

currently stored
unsigned char *tempbuf_Start; //Used to store temporarily tempbuf

starting address
int tempbuf_Capacity: /lCapacity of tempbuf. Value set later on &

must remain constant
int buf_size: llSize of buf. Used because sizeof(buf) doesn,t work for

char *

unsigned char *c-location; //Contains result of memccpy operation
int Total-buf-BytesRead;//Number of bytes already read from socket

buffer(buf). used in writing received data to proxy_side_recvBuffer
int ZeroByteAtEndlastRound=O; //Used as a flag. True(i.e. 1) when last

byte in buf(in 1st or nth round) was a OxOO byte
i nt concatRemai n i n g_ buf_contents_to_ buf_for_ next_rou nd = o ;

l/Flag
int concated_to_buf_start_bytes = O;
u ns ig ned ch ar *new-received-data-sta rt_add r_in_ b uf : I / ln case of

concating data at start of buf, this is the pointer to
//the first byte in buf of the newly

received(from the network) data
unsigned char *dummy_buf; /l9uffer into to which socket data is

copoed into initially
int dummy_buf_size; llCapacity of dummy_buf buffer
int len; //Used in recvfromO call
struct sockaddr-in from; //Address of sender of data i.e. server-side

proxy. Used in recWrom$ call
int Header_Derived_packet_Length; llpacket length as derived from

-170-

header
unsigned char hb_size, lb_síze; //Used in getting packet length from

header
unsigned int Next_Expected_Seq_Number,

N ext_Expected_Seq_N um ber_copy, previous_Seq_ N um ber;
unsig ned int Current_packet_Derived_Seq_ N u m ber;
int Cells_To_Skip;
int Wrap_Around_Counter; //Used in seq.# validation and skip count

calculation

//lnit buffer
buf_size = 2*(SOCK_BU FFE R _S.IZE* 2+2+H EAD E R_S IZE) ; //buf_size was

SOCK-BUFFER-SIZE

buf = (unsigned char ") malloc(buf_size*sizeof(unsigned char));

d u m my- b uf-s ize = (s o c K- B u F F E R_ s r zE* 2+ 2+ HEA D E R_ s r Z E) ;
I lbuf _size was SOCK_B U FFER_S tZE

//l nit Previous_Seq_Number
Previous_Seq_N umbe¡ = (thr_ I D-Connection_Number+ 1) _

Connection_Number;

/*
* NorE: proxy-side sending threads have thread rDs from (0 to

Connection_Number-1) and
* proxy-side receiving threads have thread lDs from

(Connection_Num ber to 2*Connection_N umber-1)* Therefore (thr-lD-Connection-Number) is the connection # that should
be used by the proxy-side

* receiving threads*/

-171-

llCopy starting address of socket bufler
bufStart=buf;

i=O; /llnit counter

while (1) {

len = sizeof(struct sockaddr_in);
if ((n =recvfrom (servs ide p roxy_sockfd [th r_ I D_

connection-Number], buf,dummy_buf_size, o, (struct sockaddr *) &from,&len)) >o){

ll ----------- UDp packet handting

/*
"Check that first bytes are header _ DEBUG*/

if (!((buf[O]==(unsigned char)0x00) &&
(buf[1]!=(unsigned char)oxOo) && (buf[1]!=(unsigned char)OxfD &&
(buf[HEADER_StZE-1]==(unsigned char)0x00))) {

printf("E R RO R(proxyside_recv) : H eader does not
verify\n\n");

exit(1);
I //if - header incorrect

/*
"Verify length etc. -DEBUG
n/

llGet length
if (((unsigned char)(Ox40) & bufl l) != (unsigned

char)0x00) {

-172-

hb_size = ((unsigned char)(Ox3f) & buf[4]);
lb_size = ((unsigned char)(Ox7f)) & buf[5];

)
else {

hb_size = ((unsigned char)(Ox7f)) & buf[4];
lb_size = buf[S];

)

Header_Derived_Packet_Length = hb_size;
H eader_ Derived_Packet_Len gth =

(H ead er_ D erive d_ Pa cket_ Len gth < < B) ;

Header_Derived_Packet_Length =
Header_Derived_Packet_Length I lb_size;

lNerify length
if (Header_Derived_Packet_Length l= n) {

printf("E RRO R(proxyside_recv) : Header derived
length != recv.packet length\n\n");

exit(1);
)

#ifdef EXTRA_ RECV_pACKET_C H ECKS

/*
*Check header bytes <>0x00 (except starVend bytes) -

DEBUG
*/
for (m=1; m<HEADER_SIZE-1; m++) {

if (buf[m] == O) {
printf("ERROR: %d th byte of header is

OxOO\n\n", m+1);
exit(1);

\ //if
)

-173-

#endif
/*
" Check the sequence number. Must be

Next_Expected_Seq_Number OR a multiple of
* Connection_Number + Next_Expected_Seq_Number

OR may have wrapped around.
*/

Next_ Expected_Seq_N u mber = previous_Seq_ N um ber
+ Connection_Number;

//lf exceeded seq.# max value wrap it around
if (Next_Expected_Seq_N umber >

MAX_SEQ_NUMB_VALUE)

Next_Expected_Seq_N um ber =
N ext_ Expected_S eq_ N u m be r- MAX_S Ee_ N U M B_VAL U E ;

Current_Packet_ Derived_Seq_ N u m ber = buf[3] i

/*
* NOTE: Packet seq.# must be ==

N ext_Expected_Seq_N um ber O R be N ext_Expected_Seq_N um ber
+ a multiple of Connection_Number OR

Packet seq.# may have wrapped around skipping cells*/
if (C urrent_Packet_Derived_Seq_Number >

N ext_Expected_Seq_N um ber) {
if (((Current_Packet_Derived_Seq_Number-

Next_Expected_Seq_Number) 7o Connection_Number) != 0) {
printf("ERROR: Seq.# INCORRECT(#1).

Expecting %d and got
%od\n\n",Next-Expected-seq-Number,currenr_packet_Derived_seq_Number);

exit(1);
)

j ilrt - Currenr_Packet_Derived_Seq_Number >
N ext_Expected_Seq_N um ber

else if (Current_Packet_Derived_Seq_Number <

-174-

Next_Expected_Seq_Number) { /lWrap-around case
Next_Expected_Seq_Nu m ber_copy =

N ext_Expected_Seq_N u m ber;

Wrap_Around_Counter = 0; //Reset
while (Next_Expected_Seq_N umber_copy <

MAX_SEQ_NUMB_VALUE) {
Next_Expected_Seq_ N u mber_copy =

Next_Expected_Seq_Number_copy + Connection_Number;
Wra p_Arou nd_Cou nter++ ;

)

//Now that Next_Expected_Seq_Num ber_copy
> MAX_SEQ_NUMB_VALUE wrap it

N ext_Expected_Seq_ N u mber_copy =
(Next_ Expected_Seq_ N u mber_copy - MAX_S EQ_N U M B_VALU E) ;

if (((Current_Packet_Derived_Seq_Number-
Next_Expected_Seq_Number_copy) % Connection_Number) != 0) {

printf("ERROR: Seq.# I NCORRECT (#2).

Expecting %d and got
%od\n\n",Next_Expected_Seq_Number,Current_Packet_Derived_Seq_Number);

exit(1);
)

) //else

Previous_Seq_Number =
Cu rrent_Packet_ Derived_Seq_N umber;

//lf sequence != Next_Expected_Seq_Number then skip
cells & clear/reset buf

if (Current_Packet_Derived_Seq_N um ber !=
N ext_ Expected_Seq_N umber) {

-175-

//Calculate # of cells to skip
if (Current_Packet_Derived_Seq_N umber >

Next_Expected_Seq_Number) {

C e I I s_To_ S k i p = (C u rre n t_ P a cket_ D e rived_S eq_ N u m b e r-
N ext_Expected_Seq_N u m ber)/Con nection_N u m ber;

)
else { //Current_packet_Derived_Seq_Number <

Next_ Expected_Seq_ Num ber
Cells_To_Skip - Wrap_Around_Counter +

((C u rrent_ Packet_ Derived_Seq_N u m ber-
N ext_ E x p ecte d_ S eq_ N u m b e r_ co py)/C o n n e cti o n_ N u m b e r) ;

)

for (m=1; m<=Cells_To_Skip; m++) {

llWait for cell to be read
while ((proxy_side_recvBuffer[i][thr_ I D-

con nection- N u mberl. EntryFu I I !=0) | | (proxy_side_recvBuffer[i] [th r_ I D-
Connection_Numberl.Skip!=0)) {

pri ntf("C H E C K(prx_ re cvlVo d)) : #1
wa iti n g for proxy_sid e_recvB ufler[] [! =O\n\n',, th r_ I D) ;

thr_yield0;
) //while

// *********
m utex_ lock(&Contro l_S ki p_ Lock[i] [th r_ I D-

Connection_Numberl);

if (proxy_side_recvB uffer[i] [th r_ I D-
Connection_Numberl.Control_Skip == g¡

1

i/Set Skip bit for cell
p roxy_ s id e_recvB uffer[i] [th r_ I D-

Connection_Numberl.Skip = 1
.

- 176 -

//Since data just written into proxy-
side recv. buffer increment RecvBufsizeCounter counter

m utex_ lock(& Recv B ufS izeCou nte r_ Lock) ;

RecvBufSizeCounter++ ;

m utex_u nlock(&RecvBufSizeCou nter_Lock) ;

j //if
else if (proxy_side_recvBuffer[i][thr_ I D-

Connection_Numberl.Control_Skip=-1) { //Control_Skip is set
p roxy_s id e_recvB ufter[i] [th r_ I D-

Connection_Num berl.Control_Skíp = 0;

) //else if - Control_Skip is set
else {

printf("E RRO R(proxy_side_ recv) :

Control_Skip != 0, 1\n\n");
exit(1);

) //else - error case

m utex-u nlock(&control-ski p_Lock[i] [th r_ I D-connection_N u mber]) ;

// *********

//lncrement counter
if (i < (R_pRoxy_st DE_BUFFER_S|ZE_1))

i++;
else

i= 0;

\ llfor - skip cells

j lfif - seq.# != next expected seq.#

-177-

ll ----------- UDP packet handling

\ //,f
else{

printf("FATAL E RRO R(px_side_recv_Th read) : n<=0
while recv. \n\n");

cl ose (se rvs i de proxy_sockfd [th r_ I D-
Connection_Numberl);

exit(1);
) //else - n<=0 from recvfromQ

* Copy data from temp. buffer (buf) into
proxy_side_recvBuffer & set size and flag

while ((proxy_side_recvBuffer[i][thr_ I D-
con nection- N u mberl. E ntryFu I I ! =0) | | (proxy_side_recvB uffer[i][th r_ I D-
Connection_Numberl.Skip!=0)) {

printf("CHECK(prx_recv): #3 waiting for
proxy_side_ recvB uffer[[! =O\n\n") ;

thr_yield0;
) //while

// *********
mutex_ lock(&Controt_S ki p_ Lock[i] [th r_ I D-

Connection_Numberl);

if (proxy_side_recvB uffer[i] [th r_ I D-
Connection_Numberl.Control_Skip == g¡

1

-178-

memcpy(proxy_side_recvB ufferli] lth r_ I D-
Connection_Number].Data, buf, n);

proxy_s ide_recvB uffer[i] [th r_ I D-
Connection_N umber]. DataSize = n;

p roxy_s ide_recvB uffer[i] [th r_ I D-
Connection_Numberl.EntryFull = 1 ;

//Since data just written into proxy-side recv. buffer
increment RecvBufSizeCounter counter

m utex_ loc k(& Recv B ufS izeCou n te r_ Lock) ;

RecvBufS izeCou nter++ ;

m utex_ u n lock(& Recv B ufS izeCou nte r_ Lock) ;

\ //tf
else if (proxy_side_recvBuffer[i] [thr_l D-

Connection_Numberl.Control_Skip=-1) i //Control_Skip is set
p roxy_s id e_recvB uffer[i] [th r_ I D-

Connection_Numberl.Control_Skip = g'

) //else if - Control_Skip is set
else {

printf("E RRO R(proxy_side_recv) : Control_Skip ! =
O,1\n\n");

exit(1);
) //else - error case

m utex_u n lock(&Control_Ski p_Lock[i] [thr_ I D-
Connection_Numberl);

// *********

//lncrement counter
if (i < (R_pRoxy_stDE_BUFFER_StZE-1))

i++;
else

i= 0;

\ llwhile - 1

-r79-

) //proxyside_recv_Thread Fu nc

************************** * ***************** ****************** *************
********************* */

void "clientside_send_ThreadFunc(void *thr_lD_pTR)
{

* Get thread lD

int thr_lD = *((int *) thr_lD_PTR);

int n;
int i; //counter var
unsigned char buf[SOCK_BUFFER_StZE];

"_
4 .

l-- |
'

while (1) {

/*
" Get data from ssproxy_to_client_proxyBuffer;*/
//lncrement counter
if (i < (ps_To_c_pRoxyBUFFER_StZE_1))

i++;
else

i= 0;

wh ile (ssproxy_to_client_ProxyBuffer[i]. E ntryFull l= 1) {
thr_yield0;

)
m em cpy(buf , ss proxy_to_cl i ent_ p roxyB uffer[i]. Data,

ss p roxy_to_ c I i e n t_ P roxy B uffe r[i] . D a ta S ize) ;

n = ss proxy_to_client_proxyBuffer[i]. DataS ize ;

ss proxy_to_cl ient_ ProxyB uffe r[i]. E ntryF u I I = 0 ;

- 180 -

/*
* Send data to client
*/
if (n>0) {

if (send(client_sock, buf, n, O) < O) {
pri ntf(" E R RO R(p_cs_ p roxy server_se n d_th read) : Wh i le

sending data to client <0 \n\n");
exit(1);

\ //,f
\ //.f

) //while

) //clientside_send_Thread Fu nc

ii:::::::::::::::::::-:;----***

void *clientside_recv_ThreadFunc(void -thr_lD_pTR)
{

/*
* Get thread lD
n/

int thr_lD - *((int *) thr_tD_pTR);

int n;
int i,j; //counter vars
unsigned char buf[CL_RECV_SOCK_BUFFER_StZE];
time_t client_sock_close_time; //timestamp, used to implement time

delay before child terminated

-181-

i_ 4 .l-- I'

while ((n = recv(client_sock, buf, sizeof(buf), 0)) > 0) {

* Copy received data to client_to_ssproxy_ProxyBufTer;

//lncrement counter
if (i < (c_To_ps_pRoxyBUFFER_StZE-1))

i++;
else

i= 0;

wh ile (client_to_ss proxy_ProxyB uffer[i]. E ntryFul I ! = 0) {
thr_yield0;

)
memcpy(cl ient_to_ss proxy_ ProxyB uffer[i]. Data, buf , n) ;

clienr_to_ss proxy_ProxyB uffer[i]. Data Size = n ;

cl ient_to_ss proxy_ ProxyBuffer[i]. E ntryFu ll = 1 ;

) //while
if (n<=0) {

printf(" FATAL E RROR(er-cs/clientside-recv): n <=0 while recv. from
client \n");

printf("(Non-fatal if end of cl ient-server com mu n ication)\n\n") ;

/*
* Client has closed so won't tranmsit anything else. lmplement a wait

using thr_yieldQ ro
" allow for any data remaining to be sent (& received by) to client*/

client_sock_close_time = time(NULL);

close(client_sock);

while (((time_t) difftime(time(NULL), çlis¡t_sock_ctose_time)) <=
EXrT_TtME_DELAY)

-182-

thr_yield0;
exit(1);

)

) //clientside_recv_Thread Func

************* ************** ** * ******** ************* *********** *************
********************* */

void *proxy_to_cl ie nt_Co ntrol_Th read Fu nc(void *th r_ I D_ PTR) {

/*
* Get thread lD
*/
int thr_lD - "((int *) thr_lD_PTR);

int i,j,k; //counter vars
int RNR_flag - 0; lflrue if an RNR message has been sent to serv-side

proxy.
unsigned char cong-msg_buff1o24l; llbyte buffer used to send RR &

RNR messages to serv-side proxy
int cong-Control-Check-Counter; //Used to control when cong.cntrl

checks occur
unsigned int Next_Expected_Seq_Number=0; //Between 1 and

MAX_SEQ_NUMB_VALUE (not 0 to MAX_SEQ_NUMB_VALUE)!!!
unsigned int Block_First_Seq_Num; //Seq.# of first packet of a block
int Encoded_Packets_Number; //Number of encoded packets for

current block(i.e. what is known as "n" in header)
int Encoded-Packets-Read; //Counter var. Used in reading packets

from every block
int Source-Packets-Number; //Number of source packets for current

block(i.e. what is known as "k" in header)
int Source-Packets-Read; //Number of source/data packets already

read from current block
int Curr_Block_Packet_Size; llSize if packets(not including header) of

-r83-

a given block
int RR_counter=0; //Bookeeping var that just keep track of RR

messages sent out
int RNR_counter=0; //Bookeeping var that just keep track of RNR

messages sent out
gf "dec_src[DEC_ARRAy_SIZE]; //Used as argument in decoding

function
gf *dec_dst[DEC_ARRAy_SIZE]; //Used as argument in decoding

function
int dec_index[DEC_ARRAy_SIZE]; //UseO as argument in decoding

function. lndexes of packets handed to dec. function
int ic; //Counter var
int EPR_Start=1;
int Block_First_Seq_Num_Set = O; llFlag
int Number_of_Packets_Skipped ;

int CONG_CNTRL_CHECK_PER|OD; //period of congestion controt check.
CAUTION: lf this value is too large then

//might fall into deadlock (i.e.
not sending a RR at all after a RNR)!!!

time_t start_time, curr_time;
int First_Time=0;
int NO_RECV_TIMEOUT = 10;
int last_index_value; //Used in index calculation (for decoding)

int Cumul_Source_packets_Read=0; //Test var
int TestThresh = 760;

/*
* Set congestion control check period
n/

//CON G_C NTRL_C H ECK_ p ERIO D = Connection_ N u mber;
CONc_CNTRL_CHECK_pERtOD = 0;

/*
* NorE: proxy-side sending threads have thread rDs from (0 to

Connection_Number-1) and
* proxy-side receiving threads have thread lDs from

(Connection_Number to 2*Connection_Number-1)* Therefore (thr-lD-Connection-Number) is the connection # that should
be used by the proxy-side

* receiving threads

- 184 -

* Allocate memory to dec_src and dec_dst

for (ic=O; |c<DEC_ARRAY_SIZE; ic++¡ 1

dec_src[ic]= (gf *) malloc(D EC_ARR_B U F_S tZE*sizeof(gf)) ;

dec_dst[ic]= (gf *) malloc(DEC_ARR_B U F_S tZE*sizeof(gf)) ;

\ /lfor

k = O; //lnit counter var
i = 0; //lnit counter var
j = 0; //lnit counter var

cong-control-check-counter = coNG_cNTRL_cHEcK_pERloD; //lnit

while (1) { llHandle current block of packets

if (Cumul_Source_Packets_Read > TestThresh)
printf("CHECK**: RIGHT BEFORE T/O WHILE

1 (Pa ck#: 7o d)\n ", C u m u l_ So u rce_ Pa ckets_ Rea d) ;

First_Time = 0;
while ((proxy_side_recvBuffer[i][].EntryFuil != 1) &&

(proxy_side_recvBuffer[i][j].Skip != 1)) {

// ********
#ifdef RECV CONTROL DEBUG
if (Cumul-Sãurce-Packets-Read > TestThresh)

if (First-Time==0)
printf("CHECK"*: RIGHT INSIDE T/O WHILE

I (P a ck# : o/o d)\ n ", C u m u l_ S o u rc e_ P a c k e t s_ R e a d) ;

#endif

-185-

if (First_Time==O) {
First_Time=1;
start_time = time(NULL);

)

curr_time = time(NULL);

if ((float)difüime(curr_time, start_time) >
NO_RECV_T|MEOUT) {

printf("EXlT(recv_Control): 7od sec w/ no new data
received\n\n", NO_RECV_Tl M EOUT) ;

exit(1);
)

thr_yield0;
\ llwhile

First_Time = O;

#ifdef RECV_CONTROL_DEBUc
if (Cumul_Source_packets_Read > TestThresh)

printf("CHECK*": RIGHT AFTER T/O WHILE #1
(P ack#:%od)\n", Cu m ul_Sou rce_Packets_ Read) ;

#endif

if (proxy_side_recvBuffer[i][j].Skip == 1¡ 1

//caclulate next expected sequence number. lnited to 0. starts
from 1 (1 ->MAX_SEQ_NUMB_VALUE)

if (Next_Expected_Seq_N u mber < MAX_SEQ_N U M B_VALU E)
Next_Expected_Seq_N u m ber++ ;

else
Next_Expected_Seq_Number = 1 ;

- 186 -

//Reset Skip bit
proxy_side_recvBuffer[i] [].Skip = 6;

* Get sequence # of first packet of block (if not done already)

if (Block_First_Seq_Num_Set != 1) {
Block_ First_Seq_N u m = N ext_ Expected_Seq_ N um ber;
Block_First_Seq_Num_Set = 1 ;

\ //.f

//Skip current cell. Have for loop below staft after skipped
cells

EPR_Start - EPR_Start++;

// i,j incrementation
if (j<(Connection_Number-1))

j++;
else {

j=0;

if (i<(R_pRoxy_st DE_BUFFER_S tZE-1))
i++;

else
i= 0;

)
/l i,j incrementation

//Proceed to next cell
continue;

I /lif - must Skip current cell

- 187 -

/n
* Now that we got out of skipping first packet(s) check if we skipped

entire block
*/
Number_of_Packets_Skipped = EPR_Start - 1 ;

if (Number_of_Packets_Skipped >=
proxy_s ide_recvB uffer[i][]. Data [6]) {

printf("ERROR/STATUS: Entire block skipped.
Terminating\n\n");

exit(1);
j lltf - check if entire block skipped

* Get seguence # of first packet of block (if not already done)

if (Block_First_Seq_Num_Set I= 1) {
B lock_ F i rst_Seq_ N u m = proxy_side_recvB uffer[i][]. Data [3] ;

\ //if
else

Block_First_Seq_Num_Set = 0;

/*
* NOTE: Header format: (0x00, k, n, seq.#, length(2-bytes), packet#

in block,0x00)
*/

* Get number of packets for current block i.e. "n"

E n co d e d- P a ckets_ N u m b e r = p roxy_s i d e_ recv B uffe r[i] [] . D ataÍ21;

* Get number of source/data packets for this block i.e. "k"

- 188 -

*/
Sou rce- Packets- N um ber = proxy_side_recvB uffer[i][]. Data [1] ;

/*
* Get packet size (NOT including header) for current block*/
c u rr-Block-Packet-size = proxy_side_recvB uffer[i] [i]. Datas ize -

HEADER-SIZE;

* Reset vars

Source_Packets_Read = 0;

/*
* Go through Encoded-Packets-Number entries of proxy-side receive

buffer i.e. one block of "r"ì" packets
*/
for (Encoded_Packets_ Read =E p R_Start;

Encoded-Packets-Read<=Encoded_Packets_Number; Encoded_Packets_Read++)
{

llCaclulate next expected sequence number. lnited to 0. Starts
from 1 (1 ->MAX_SEQ_NUMB_VALUE)

if (Next-Expected-Seq-N u m ber < MAX-SEe-N U M B-VALU E)
Next_ Expected_Seq_N um ber++;

else
Next_Expected_Seq_Number = 1 ;

//while and if used to be here before Control_Skip

if (source-Packets-Read < source_packets_Number) { //i.e. not
enough packets read yet for decoding

- r89 -

// *********

#ifdef RECV_CONTROL_DEBUG
if (Cumul_Source_Packets_Read > TestThresh)

printf("CHECK*": RIGHT BEFORE T/O WHTLE
#2(Pack#:%"d wl
k=7od)\n", Cu m u l_Source_Packets_ Read,Sou rce_Packets_N um ber) ;

#endif

ll\Nait until entry full or recv. thread "says" to skip current cell
First_Time = 0;
while ((proxy_side_recvBuffer[i][j].EntryFull != 1) &&

(proxy_side_recvBuffer[i][j].Skip != 1)) {

// ******
#ifdef RECV_CONTROL_DEBUG
if (Cumul_Source_Packets_Read > TestThresh)

if (First-Time==0)
printf("CHECK**: INSIDE T/O WHILE

#2(Pack#:%od wl
k=7od)\n", Cu mu l_Source_Packets_Read,Source_Packets_N um ber) ;

#endif

if (First-Time==O) {
First_Time=1;
start_time = time(NULL);

)

curr_time = time(NULL);

if (((float)difüime(curr_time, start_time)) >
NO_RECV_T|MEOUT) {

printf("EXlT(recv_Control): 7od sec w/ no
new data received\n\n", NO_RECV_TI MEOUT);

exit(1);
)

-r90-

thr_yield0;

) //while
// ********BELOW

First_Time = 0;
#ifdef RECV_CONTROL_DEBUc
if (Cumul_Source_Packets_Read > TestThresh)

printf("CHECK**: RIGHT AFTER T/O WHILE #2
(Pack#:Y"d wl
k= %d)\n\n", Cum u l_Sou rce_Packets_ Read,Sou rce_packets_N um ber) ;

#endif

if (proxy_side_recvBuffer[i][j].EntryFuil == 1) {

//Check if seq.number valid (stored in 4th byte of
header)

if (proxy_side_recvBuffer[i][]. Data[3] ! =
Next_Expected_Seq_N um ber) {

pri ntf(" E R R O R(p roxy_to_cl ie nt_ Co ntro I) :

Sequence # is WRONG. %d expected but got %d
\n\n", Next- Expected-Seq- N u m ber, proxy_side_ recvB uffer[i] []. Data [3]) ;

exit(1);
j llif - seq.number is NOT next expected seq.number

llError check: check if k and n of current packet is
thart of current block

if (proxy_side_recvBufter[i][j]. Data[1] !=
Source_Packets_Number) {

printf(" E R RO R(er-csiproxy-to-client-Control) : Source_Packets_ N u m ber(k) is not
that expected \n\n");

exit(1);
I //.f
if (proxy_s ide_recvB uffer[i] [j]. D ataf2! t=

Encoded_Packets_N umber) {

printf("ERROR(er-cs/proxy-to-client-Control): Encoded_Packets_Number(n) is

-191-

not that expected \n\n");
exit(1);

j //.t

llÊrror check: compare size with
Curr_Block_Packet_S ize

if ((proxy_side_recvBuffer[i][]. DataSize-H EAD E R_S tZE)
!= Curr_Block_Packet_Size) {

p ri ntf(" E R R O R (e r_ cs/p roxy_ to_ c I i e n t_ C o n tro I) :

Size of read packet<>Cu rr_ B lock_packet_S ize\n\n") ;

exit(1);
) //if - error check for size

\ //if - if data in cell perfrom some checks

// ********x

//Read cell data if cell full, else if skip specified just reset skip
flag

if (proxy_side_recvBuffer[i]fl].EntryFuil == 1) {

memcpy(dec_src[Source_packets_Read],
proxy_s id e_ recvB uffer[i] []. Data+ H EAD E R_S tZ E,
p roxy*s id e_ re cv B uffe r[i] []. D ata S ize- H ËA D E R_ S I Z E) ;

//Calculate dec_index[] for fec decoding
if (proxy_side_recvBuffer[i][]. Data[3] >-

Block_First_Seq_Num) {
dec_index[Source_Packets_ Read] =

proxy_s ide_recvB uffer[i] []. Data [3] - B lock_ Fi rst_Seq_ N u m ;

last_index_value =
dec_index[Sou rce_Packets_ Read] ;

)
else if (proxy_side_ recvB uffer[i] [j]. Data [3] <

-192-

Block_First_Seq_Num)
dec_index[Source_Packets_Read] =

last_ i n dex_va lue + proxy_s ide_recvBuffer[i] []. Data [3] ;

proxy_side_recvBuffer[i] [j]. EntryFull = 0;

//lncrement counter of # of packets read from
current block

Sou rce_Packets_Read++ ;

\ //.f
else if (proxy_side_recvBuffer[i][j].Skip -= 1) {

proxy_side_recvBuffer[i] [j].Skip = a ;

) //else if
else {

printf("ERROR(er_cs/proxy_to_client_Control) : Neither
entry full nor Skip set\n\n");

exit(1);
) //else

j llif - # of packets read until now < source_packets Number i.e.
not enough packets yet

else { //Source-Packets-Read packets have been read i.e. enough
data packets obtained for decoding

#ifdef RECV_CONTROL_DEBUG

if (Cumul_Source_Packets_Read > TestThresh)
printf("CHECK**: lN 'ENOUGH PACKETS' START #3

(Pack#:%od w/ k=%d)\n",cumul-source_Packets_Read,source_packets_Number);
#endif

// *********
m utex_lock(&Control_S kip_Locktil Ul) ;

- 193 -

/lError check
if ((proxy_side_recvBuffer[i][j].EntryFuil == 1) &&

(proxy_side_recvBuffer[i][j].Skip == 1)) {
printf("ERROR(recv_Control): EntryFull && Skip

==1\n\n")i
exit(1);

)

if (proxy_side_recvBuffer[i]fi].EntryFuil == I) {
proxy_side_recvBuffer[i][]. EntryFuil = O;

\ //.f
else if (proxy_side_recvBuffer[i]ff].Skip == 1) {

proxy_side_recvBuffer[i][j].Skip = e;
) /ielse if
else {

proxy_side_recvBuffer[i] []. Control_Ski p = .l .

//Since data just written into proxy-side recv. buffer
increment RecvBufSizeCounter counter

m utex_lock(&RecvBufSizeCou nter_Lock) ;

RecvBufSizeCounte¡++; lllncrement to offset default
decrement below

mutex_u nlock(&RecvB ufS izeCounter_Lock) ;

) //else

m utex_u n lock(&Controt_S ki p_ Locklil ül) ;

// *********

#ifdef RECV_CONTROL_DEBUc

if (Cumul_Source_Packets_Read > TestThresh)
printf("CHECK**: lN'ENOUGH PACKETS' END #3

(Pack#:%d w/ k=%d)\n",cumul_source_packets_Read,source_packets_Number);
#endif

) //else - source-Packets-Read packets have been read i.e. enough

-194-

data packets obtained for decoding

#ifdef RECV_CONTROL-DEBUG
Cumul_Sou rce_Packets_Read++;
#endif

// i,j incrementation
if (j<(Connection_Number-1))

j++;
else {

j=o;

if (i<(R_P RoxY_s I DE_BU FFER_S IZE-1))
i++;

else
i=0;

)
// i,j incrementation

I I -------------------CONGESTION CONTROL

/*
* Congestion control check perfromed every

CONG_CNTRL-CHECK-PERIOD+1 rounds. ls VAR(not constant)!!!
*/

//Regardless of if will perform congestion control check,
packet reception/reading must be

i/ logged i.e. RecvBufSizeCounter decremented
mutex-lock(&RecvBufSizeCou nter-Lock) ;

RecvBufSizeCounter--;
RecvBufSizeCounter-copy = RecvBufSizeCou nter;

m utex_u n lock(&RecvBufSizeCou nter-Lock) ;

if (cong-Control-Check-Counter == 0) {

//Reset cong-Control-Check-Cou nter
cong-Control-Check-Cou nter = CON G-C NTRL-CH ECK-PERI OD ;

-195-

if (RecvBufSizeCounter_copy<O) {
printf("ERROR: RecvB ufS izeCou nter < O\n\n") ;

exit(1);
)

if (RNR_flag == 0) { //Send RNR message lF congested

if(
(RecvBufSizeCounter_copy/PROXY_RECV_BUF_CAPACtTy) >-
RN R_PROXY_RECV_B UF_S |ZE_TH RESH) {

RNR-flag = 1; //Set flag

//Send ReceiveNotReady-RNR message("RNR"
NULL terminated string) to server-side proxy

strcpy(cong_msg_buf, "RN R");
if (send(tcp_sock, cong_msg_buf,

strlen(cong_msg_buÐ+1, 0) <O) {
printf("ERROR: send0.O for RNR \n\n");
close(tcp_sock);
exit(1);

)

RNR_counter++; //Bookeeping var
printf("STATUS: %d RNR messages sent out until

now\n\n", RN R_counter) ;

\ //if
I //íf - RNR-flag =- Q

else if (RNR_flag -= 1) { //RNR_flag == 1 & thus send
RR message if not congested anymore

¡f(
(RecvB ufS izeCou nter_copy/P ROXY_RECV_ B U F_CAPAC lTY) .
RR_PROXY_RECV_BUF_SIZE_THRESH) {

RNR-flag = 0; /iSet flag

//Send ReceiveReady-RR message("RR" NULL
terminated string) to server-side proxy

strcpy(cong_msg_buf, "RR");
if (send(tcp_sock, cong_msg_buf,

strlen(cong_msg_buÐ+1, 0) <0) {

-196-

printf("ERROR: send0<O for RR \n\n");
close(tcp_sock);
exit(1);

)

RR_counter++, //Bookeeping var
printf("STATUS: %d RR messages sent out until

now\n\n", RR_counter) ;

j lhf

) /ielseif - RNR-flag == 1

else //error case
printf("ERROR: RNR_flag neither 0 nor 1 \n\n");

j /h'f - cong_Control_Check_Counter == 0
else { //else - cong_Control_Check_Counter > 0

co n g_ Contro l_C h eck_ Cou nter-- ;

) //else - cong_Control_Check_Counter > 0

I I -------------------C O N G EST| O N C O NTRO L--__

#ifdef RECV_CONTROL_DEB UG

if (Cumul_Source_Packets_Read > TestThresh)
printf("CHECK**: AT END OF'BLOCK' FOR LOOP #4

(Pack#:%od wi k=%d)\n",cumul_source_Packets_Read,source_packets_Number);
#endif

\ llfor - Go through Encoded-Packets-Number entries of proxy-side
receive buffer

#ifdef RECV CONTROL DEBUG

if (Cumul_Source_Packets_Read > TestThresh)
printf("CHECK**: AFTER'BLOCK' FOR LOOP #s

(Pack#:%d w/ k=%d)\n",cumul_source_packets_Read,source_packets_Number);

-197-

#endif

/*
* Having read entire current block do error check if enough packets read

needed for decoding
*/
if (Source_Packets_Read != Source_packets_Number) {

pri ntf(" E R RO R(er-cs/proxy-to-client-Control) : N ot enou g h packets
for decoding(or too many)\n\n");

exit(1);
I //.f

/*
* Having read current block and having sufficient # of packets for

decoding, proceed w/ decoding
* and writing to ssproxy_to_client_proxyBuffer*/

#ifdef RECV_CONTROL DEBUG

if (Cumul_Source_Packets_Read > TestThresh) {
printf("CHECK**: RIGHT BEFORE DECODING fec #6

(Pack#:o/od w/ k=%d)\n",cumul_source_packets_Read,source_packets_Number);
printf("dec_index's: %d %d - Source_packets_Number:yod -

curr-Block-Packet_size: %d\n",dec_index[O],dec_index[1],source_packets_Numb
er, C u rr_ B lock_ Packet_ S ize) ;

)
#endif

//Decode - decode-fec(gf "src[], gf *dst[, int indexfl, int k, int sz);
decode-fec(dec-src, dec_dst, dec_index, source_packets_Number,

Cu rr_Block_Packet_Size) ;

#ifdef RECV_CONTROL DEBUG

-198-

if (Cumul_Source_packets_Read > TestThresh)
printf("CHECK**: AFTER DECODTNG fec #7 (pack#:%d

w/ k= % d)\n ", cu m u l-sou rce-Packets_ Read,sou rce_ packets_ N um ber) ;

#endif
/ l\N rite d ecoded packets to ss proxy_to_cl ient_ proxyB uffe r
for (ic=O; ic<Source_Packets_Number; ic++) {

wh ile (ssproxy_to_cl ient_proxyBuffer[k]. E ntryFul I t= 0) {
printf("CH ECK(recvControl) : waiting for

ss p roxy_to_ cl i e nt_ ProxyB uffe r[] ! = 0\n\n ") ;

thr_yield0;
)

memcpy(ssproxy_to_cl ient_ proxyB uffer[k]. Data, dec_dstIic],
Cu rr_B lock_Packet_Size) ;

ssproxy_to_cl ient_ ProxyBuffer[k]. DataS ize =
C urr_B lock_ Packet_Size;

ssproxy_to_client_ProxyBuffer[k].EntryFull = 1 ;

if (k < (ps_To_c_pRoxyBU FFER_StZE_1))
k++:

else
k=0;

\ /lfor - write decoded packets into ssproxy_to_client_proxyBuffer

//Reset
EPR_Start = 1;

#ifdef RECV_CONTROL_DEBUG

if (Cumul_Source_packets_Read > TestThresh)
printf("CHECK**: AT END'WHILE' LOOP #B- (pack#:%d

w/ k= % d)\n\n ", c u m u l-s o u rce- Pa ckets_ Rea d, sou rce_ pa ckets_ N u m be r) ;
#endif

-199-

) //while (1) - Handle current block of packets

j / / proxy _to_client_Control_Th read Fu nc

********* ** * ***** ******************** *** ******* * ************* * *************
********************* */

void *cl ie nt_to_ proxy_Control_Th read Fu nc(vo id *th r_ I D_pTR) {

/*
* Get thread lD*/
int thr_lD - *((ínt ") thr_lD_PTR);

int i,j,k; //counter vars
int K_actual=O: ll# of entries actually read(& to be encoded) from

cl i e n t_to_ss proxy_ P roxyB uffe r
int m, thryield_counter, pi llCounter vars
unsigned char *cumul_buf; //Cumulative buffer into which packets read

from client_to_ssproxy_ProxyBuffer are copied into
int cumul-buf-Size=0; //Current size(i.e. # entries full) of cumul_buf
int cumul_buf_Size_temp=g' //A temp var
unsigned char *cumul-buf-Start; //Used to store original starting

address of cumul_buf
int packet_Size=0; llSize of packets to be encoded and writeen to

send-out buffer
int packet_Number=0; //Number of packets to be encoded. Equal to

K_actual in general
int encode-index; //COunter used as index when calling encoding

function
gf *encoded-Packet; //Used in encoding function call. Contains encoded

packet
gf "sou rce_data_Packets[K_ DES I RED] ; / I Array of buffers conta i n i ng

-200-

source(data) packets to be used in encoding
int Num-Encoded-Packets=0; llrotal number of packets to be

produced from encoding
FILE *enc_debug_fd; llFile descriptor of a file used for debug output

ENC_DEBUG-FILENAME

unsigned char
header_added_PacketlsOCK_BUFFER_StZE+HEADER_StZEl; ltpacket copied into
send buffer. lncludes header plus the encoded packet

unsigned int Sequence-Number=1; //Sequence number used in header.
lnited to 1!!!

u nsig ned cha r *Sta rt_Ad rr_of_ Remai n i n g_ Bytes ;

struct timeval *start_time;

struct timeval "curr_time;
lon g sta rt_time_i n_msec, cu rr_time_ i n_msec;

struct sockaddr_in
ssp-name[MAx-co N N-N u M B_ PER_Loc I cAL_coN N] ; //server-side proxy
address

int send_socket_index = -1: /llnit

* Allocate memory to time vars

start_time - (struct timeval *) malloc(sizeof(struct timeval));
curr_time = (struct timeval *) malloc(sizeof(struct timeval));

" Setup address on server-side proxy with which this thread

//
****************+********** ************** ********************* *************

-201-

communicates
*/
for (i=0; i<Connection_Number; i++¡ 1

memset(&ssp_name[i], 0, sizeof(struct sockaddr_in)) ;

ssp_name[i].sin_family = 4p_' * tt'
ssp_name[i].sin_port = htons(SSP_U Dp_BASE_pORTN U M B ER + i);
memcpy(&ssp_name[i].sin_addr, hp->h_addr_tist[0], hp->h_length);

//hp has been set from above in child process
j /lfor

* Open encoding debug file descriptor

#ifdef ENC_DEBUG_ON
enc_debug_fd = fopen(ENC_DEBUG_Fl LENAM E, "w");

#endif

/*
* Allocate memory to encoded_Packet and source_data_packets[]*/
encoded_Packet = (gf *) mal loc(E N C_PAC KET_ BU F_S |ZE*sizeof(gf)) ;

for (m=0; m<K_DESIRED; m++) {
source_data_Packets[m]= (gf *)

ma I loc(E N C_SO U RC E_ B U F_ B U F F E R_S I ZE*sizeof(gf)) ;

\ /lfor

/*
* Allocate memory to cumul_buf*/
cumul_buf = (unsigned char ")

malloc((K-DESI RED+ 1)-SOCK_BUFFER_SlZE"sizeof(unsigned char));

-202-

/*
* Store starting address of cumul_buf*/
cumul_buf_Start = cumul_buf;

/*
* NOTE: proxy-side sending threads have thread lDs from (0 to

Connection_N umber-1) and
* proxy-side receiving threads have thread lDs from

(Connection_Number to 2*Connection_Number- 1)* Therefore (thr-lD-Connection-Number) is the connection # that should
be used by the proxy-side

" receiving threads*/

k = 0; //lnit client_to_ssproxy_ProxyBuffer counter
i = O; lllnit
i = O; lllnit

while (1) {

K_actual = O; //Reset

* Reset cumul_buf_Size and cumul buf address

cumul_buf_Size = 0;
cumul_buf = cumul_buf_Start;

" Try to geVread K_DESIRED entries from

-203-

cl i e nt-to-ss proxy_ P roxyB uffe r.

" K_actual is number of entries that were actually read.*/

for (m=1; m<=K_DESIRED; m++) {
if (m==1) {

llWait until entry/packet written into next cell to be read
while (client_to_ssproxy_ProxyBuffer[k].EntryFull != 1) {

thr_yield0;
) //while

K_actual = 1;

I llif - m==1
else{ //else-m>1

for (th ryield_cou nter= 1 ; th ryield_cou nter<=TH R_yl EL D_ MAX;
thryield_counter++) {

if (client_to_ssproxy_ProxyBuffer[k].EntryFult != 1) {
#ifdef ENC_DEBUG_ON

fprintf(enc_debug_fd, "Thread slept to get o/od

th packet\n", m);
#endif
thr_yield0;

\ //if
else

break;

I /lfor

if (client_to_ssproxy_ProxyBuffer[k].EntryFuil l= 1)
break;

//lncrement # of packets/entries read from
cl i en t_to_ss p roxy_ P roxyB ufle r

K_actual = K_actual +1;

-204-

) //else - m>1

llWrite packet into cumulative buffer & increment cumulative buffer
size(# bytes in c.buffer) etc.

m em cpy(cu m ul_buf , client_to_ss proxy_ proxyB uffer[k]. Data,
c I i e n t_to_ s s p roxy_ P roxy B uffe r [k] . D ata S i ze) ;

cu m u l_buf=cu mu l_buf + client_to_ssproxy_ProxyBuffer[k]. DataSize;
llMove cumul-buf start so as to copy in next packet next round (if done)

cumul_buf_Size = cumul_buf_Size +
cl ie nt_to_ss p roxy_ P roxyB uffe r[k] . D a ta S ize ;

cl ienf_to_ss proxy_ ProxyBuffer[k]. E ntryFu ll = 0 ;

//l ncrement cl ient-to-ss proxy- ProxyB uffer i ndex/cou nter k (at E N D
of for loop)

if (k < (c_To_ps_pRoxyBU FFER_StZE_1))
k++;

else
k=0;

\ /lfor

tl------------

/n
* Write K_actual/K_DESIRED to enc. debug file*/
#ifdef ENC_DEBUG_ON

fpri ntf(enc-debug-fd, "K-actua l/K- D ES I R E D = o/od/ o/od \n", K_actua l,
K_DESIRED);

#endif

-205-

* Make an error check for K actual*/
if (K_actual > K_DESIRED) {

pri ntf("E R RO R(client_to_ proxy_Control_Th read) : K_actua I >
K_DESIRED\n\n");

exit(1);
)
/*
* Having read K-actual entries from client-to_ssproxy_ProxyBuffer,

now encode these entries/packets
* & write them to proxy_side_sendBuffer
*/

=---==-::==== == === = === === === == == ========== = === ==== = ==== ===== ====

//Reset cumul_buf to its startíng address
cumul_buf = cumul_buf_Start;

llCopy cumul_buf_Size into a temp var to use
cumul_buf_Size_temp = cum ul_buf_Size;

//Set size of packets to be encoded and written to send-out buffer
(K_actual is # of packets)

if (cumul_buf_Size_temp > TEMp_CUMUL_BUF_S|ZE_TRESH) {

while ((cumul_buf_Size_temp Vo K_actuat) != 0)
cumul_buf_Size_temp = cumul_buf_Size_temp - 1 ;

#ifdef ENC DEBUG ON
tprinUlenc-OeUu g-fO, "cu m ul-buf-Size= % d a nd

cum ul_buf_Size_tem p= 7od\n",cum ul_buf_Size, cum ul_buf_Size_temp) ;

#endif

-206-

llError check. cumul-buf-Size-temp must have reduced in size no
more than (K_actual-1)

if ((cumul_buf_Size - cumul_buf_Size_temp) > (K_actuat-1)) {
printf(" E RRO R(client_to_ proxy_Control_Th read) : More th a n

(K_actual-1) bytes'removed' from cumul_buf\n\n");

j /lafexit(1);

packet_S i7s = (cumu l_ buf_S ize_temp/K_actua I) ;

packet_Number = K_actual;

j //.f
else { //cumul_buf_Size_temp<=TEMP_CUMUL_BUF_SIZE_TRESH so

encode/send out as one packet(for efficiency)

packet_Size = cumul_buf_Size_temp;
packet_Number = 1;

#ifdef ENC_DEBUc_ON
if (K_actual>1)

fpri ntf(enc_debu g_fd, "Ama I ga mation occu rred(%d bytes)
\n", cumul_buf_Size_temp);

#endif
) //else - cu mul_buf_Size_temp<=TEM P_CU M U L_BU F_S IZF_TRES H so

encode/send out as one packet(for efficiency)

llPrint blank line in enc. debub file
#ifdef ENC_DEBUG_ON

fpri ntl(enc_debu g_fd,"\n") ;

#endif

/lError check
if (packet_Size > CL_RECV_SOCK_BU FFER_S tZÊ) {

printf("ERROR(client_to_proxy_Control): packet_Size >
CL_RECV_SOCK_B U FFER_SIZE \n\n");

exit(1);

-207-

\ //if

/lcopy source(data) packets into source_data_packets[] array of
buffers

for (p=6' pcpacket_Number; p++) {
sou rce_data_ Packets[p] = cu m u l_ buf+ (p"packet_S ize) ;

)

//Record addres of byte after end of last packet read (needed below
for sending out remaining bytes)

Sta d_Adrr_of_ Rema i n in g_Bytes = cu m u l_ bL¡f+(p"packet_S ize) ;

llSet# of packets to be produced from encoding
Num_Encoded_Packets = N_FACTOR*packet_Number;

/*
* Encode the packet-Number packets of size packet_size and copy

them to proxy_side_sendBuffer[][l
*/
for (encode_index=O ; encode_index<Num_Encoded_packets;

encode_index++) {

llGet one encoded packet (out of Num_Encoded_packets)
bu ild_fec(source_data_ Packets, packef_ N u m ber, packer_Size,

header_added_Packet+H EADER_S lZE, encode_index) ;

/*
* Copy encoded packet to proxy_side_sendBuffer
*/
llAdd header (k, n, Seq.#, length[2-bytes], packet# in block)
header_added_Packet[0] = (unsÍgned char) 0x00;
header-added-Packet[1] = (unsigned char)packet_Number; //Set k

i.e. # of data/source packets

-208-

header-added-Packet[2] = (u nsig ned char) N um_Encoded_Packets ;

//Set n i.e. # of enc.packets
header-added-Packet[3] = (unsigned char)sequence_Number;

//Set sequence #. Keep it here!!!
header_added_Packet[S] = (unsig ned

char)(packet_Size+HEADER_SIZE): /tSet length (2nd byte [tow])
header_added_Packet[4] = (unsig ned

char)((packet_Size+HEADER_S tZE)>>B)i /iSet tength (1 st byte thighl)
header-added_Packet[4] = (unsigned char)(((unsigned char)(0x80))

I header_added_Packet[4]); llCode so that <>0

if (header_added_Packet[S] == (unsigned char)0x00) {
header_added_Packetls] = (unsigned char)(((unsigned

char)(0x8O)) | header_added_Packet[S]);
header_added_Packet[4] = (unsigned char)(((unsigned

char)(Ox40)) | header_added_Packet[4]);
I /ltf - code length fields so that <>0

header_added_Packetl6] = encode_index+ 1 ;

header_added_Packetl7] = (unsigned char) 0x00;

//lncrement sequence number after using it
if (Sequence_Number < MAX_SEQ_NUMB_VALU E)

Sequence_Number++;
else

Sequence_Number=1 ;

/ / +++++++++++++++++++++++++++++++++++++++

/*
* Send data to server-side proxy*/

i/Check congestion control flag HoldBack before sending data and
wait if set

m utex_ lock(&Hold Back_ Lock) ;

-209-

while (HoldBack != 0) {
m utex_u nlock(& Hold Back_ Lock) ;

thr_yield0;
m utex_lock(&H old Back_ Lock) ;

)
m utex_unlock(& H old Back_ Lock) ;

#ifdef USE DELAY

//----------------

if (gettimeofday(start_time, NULL) .0) {
pri ntf("E RRO R(send_Control) : getti meofday error\n\n") ;

exit(1);
)

start-time-in-msec = (start_time->tv_sec)"1 oo0 + (start_time-
>tv_usec)/1O00;

while (1) {
if (gettimeofday(curr_time, NULL) .O) {

pri ntf("E RROR(send_Control) : g etti meofday error\n\n,') ;

exit(1);
)

curr_time_in_msec = (curr_time->tv_sec)*1 O0O + (curr_time-
>tv_usec)/1000;

if ((curr_time_in_msec - start_time_in_msec) >=
DELAY_rN_MSEC)

break;

//Since haven't reached timeout value yet have thread
sleep/yield

thr_yield0;

-210-

) /iwhile

il ----------------

#endif

/ /---------
//lncrement send socket identifier/index (to change sending socket

used)
if (send_socket_index < (Connection_Number-1))

send_socket_index++;
else

,-------:-:"d-socket-index
= 0 ;

I n cP -if (send(servsideproxy_sockfd[send_socket_index], buf, n, 0).0){
if (se ndto (servs ide proxy_sockfd [se n d_socket_ i n d ex],

header-added-Packet, packet_size+ H EADE R_s lzE, 0, (struct sockaddr *)

&ss p_n a me[se nd_socket_i n dex],s izeof(struct sockadd r_ i n)) . O) {
printf("ERROR(send/Control): While sending data to

serv-side proxy <O \n\n");
exit(1);

\ //,t

| / +++++++++++++++++++++++++++++++++++++++

//Updatej&ivalues
if (i < (Connection_Number-1))

j++;
else { //j wraps-around so update i also

j=o;

¡f (¡ < (s_pRoxy_st DE_BU FFER_S tZE-1))

- 211 -

i++;
else

i=0;

)

\ ttfor - encode packets & copy them to proxy-side-sendBuffer[][]
/*
* lf bytes left over send them out - NO PASTING else can fall into

deadlock !!!
*/
if (cumul-buf-Size-temp < cumul-buf-Size) {

// ********

Packet-Number = 1;

packet-Size = cumul-buf-Size - cumul-buf-Size-temp;

llset# of packets to be produced from encoding

Num-Encoded-Packets = N-FACTOR*packet-Number;

llCopy source(data) packets into source-data-Packets[] array of

buffers
source-data-PacketslO] = Start-Adrr-of-Remaining-Bytes;

for (encode_index=o ; encode_index<Num-Encoded-Packets;
encode_index++) {

/iGet one encoded packet (out of Num-Encoded-Packets)
bu ild_fec(sou rce_data_Packets, packet- N u m ber, packet-size,

header-added-Packet+H EADER-S lZE, encode-i ndex) ;

* Copy encoded packet to proxy-side-sendBuffer

llAdd header (k, n, Seq.#, length[2-bytes], packet# in block)

-212-

header_added_Packet[O] = (unsigned char) 0x00;
header_added_Packet[1] = (unsigned char)packer_Number; //Set k

i.e. # of data/source packets
header-added-Packet[2] = (unsigned char)Num_Encoded_Packets;

//Set n i.e. # of enc.packets
header_added_Packet[3] = (unsigned char)Sequence_N umber;

//Set sequence #. Keep it here!!!
header_added_Packet[5] = (unsigned

char)(packet_Size+HEADER_SIZE); llset length (2nd byte [tow])
header_added_Packetl4] = (unsigned

char)((packet_Size+H EADER_S IZE)>>B)' //Set length (1 st byte [high])
header_added_Packet[4] = (unsigned char)(((unsigned char)(0x80))

I header_added_Packet[]); llCode so that <>0

if (header_added_Packet[5] == (unsigned char)0x00) {
header_added_Packetls] = (unsigned char)(((unsigned

char)(0x80)) | header_added_Packet[5]);
header_added_Packet[4] = (unsigned char)(((unsigned

char)(0x40)) | header_added_Packet[4]);
j llif - code length fields so that <>0

header_added_Packet[6] = encode_index+ 1 ;

header_added_Packetl7] = (unsigned char) 0x00;

//lncrement sequence number after using it
if (Sequence_Number < MAX_SEQ_N U MB_VALU E)

Sequence_Number++;
else

Sequence_Number=1 ;

// +++++++++++++++++++++++++++++++++++++++

* Send data to server-side proxy

//Check congestion control flag HoldBack before sending data and

-213-

wait if set
m utex_lock(&Hold Back_ Lock) ;

while (HoldBack != 0) {
m utex_u nlock(&Hold Back_Lock) ;

thr_yield0;
m utex_lock(& Hold Back_ Lock) ;

)
m utex_u n lock(& HoldBack_Lock) ;

#ifdef USE DELAY

t/----------------

if (gettimeofday(start_time, NULL) .0) {
pri ntf("E RRO R(sen d_Control) : getti meofday error\n\n") ;

exit(1);
)

start-tíme-in_msec = (start_time->tv_sec)*1 000 + (start_time-
>tv_usec)/1000;

white (1) {
if (gettimeofday(curr_time, NULL) <0) {

pri ntf(" E RROR(sen d_Control) : gettimeofday error\n\n") ;

exit(1);
)

curr_time_in_msec = (curr_time->tv_sec)*1 000 + (curr_time-
>tv_usec)/100O;

if ((curr_time_in_msec - start_time_in_msec) >=
DELAY_tN_MSEC)

break;

//Since haven't reached timeout value yet have thread
sleep/yield

-214-

thr_yield0;

) //while

/ / ----------------

#endif
/ / ---------
//lncrement send socket identifier/index (to change sending socket

used)
if (send_socket_index < (Connection_Number-1))

send_socket_index++;
else

,-------:-:"d-socket-index
= 0;

// printf("CHECK(sendControl)Sending via socket
7o d\n\n ", s e n d_socket_ i n d ex) ;

/ n cP -if (send(servsideproxy-sockfd [send_socket_index], buf, n, 0)
.0){

if (se ndto (se rvs i d e proxy_sockfd [se n d_socket_ i n d ex],
header-added-Packet, packet_size+HEADER_slzE, 0, (struct sockaddr ")
&ssp_name[send_socket_index],sizeof(struct sockaddr_in)) . O) {

printf("ERROR(send/Control): While sending data to
serv-side proxy <0 \n\n");

exit(1);
\ //if

// +++++++++++++++++++++++++++++++++++++++

//Updatej&ivalues
if fi < (Connection_Number-1))

j++;
else { //j wraps-around so update i also

j=o;

- 215 -

if (i < (s_pRoxy_st DE_BU FFER_S tZE_1))
i++;

else
i=0;

)

\ llfor - encode and write-out packets to send buffer

// ********

\ //.r
else if (cumul-buf-size-temp > cumul_buf_size) { //error case

pri ntf(" E R Ro R(server-to- proxy-control) : cu m u l_buf_s ize_tem p >
cumul_buf_Size\n\n") ;

exit(1);
) //else - error case

) //while(1)

******* ********** ******************** ******* *******************************
*************+*

) //cl ient_to_ proxy_Control_Th read Fu nc

- 216 -

************************** * ******** ***** **** *************** *** *************
********************* */

* Thread (one instance) used to receive congestion control messages from server-
side proxy(RNR/RR)

void *Cong_Msg_Recv_ThreadFunc(void .JunkpTR)
{

int n,m;
unsigned char cong-msg-bufl2}l; /l3uffer used to receive congestion

control messages
unsigned char congMessage[20]; //congestion control message

eventually written into here
int Last-Message-was-RNR=2; llFlag.lnit to a neutral value

while (1) {

* Read-in congestion control message from server-side proxy

strcpy(CongMessage,""); //lnit string
m=0;
while ((n = recv(tcp_sock, cong_msg_buf, sizeof(cong_msg_buf),

o)) >o) {

m=m+n;
strncat(CongMessage, cong_msg_buf, n);
if (CongMessage[m-1] =-'\0')

break;//if '\0' in string then done so exit recv/while loop

) /iwhile
if (n<=0) {

pri ntf("ERRO R(Cong_Msg_Recv_Thread) : n<=0 recvQ \n\n") ;

close(tcp_sock);

-217-

exit(1);

/*
* Read cong. control message received and act appropriately*/
if (strcmp(CongMessage, "RNR") == 0) {

if (Last_Message_was_RNR -- 1)
printf("E RRO R //ARN I N G(Cong_Msg_ Recv_Thread) :

Multiple RNR messages received in a row\n\n");

/lPrint out that "RNR" message received
#ifdef FLOW_CNTRL_DEBUc_PRt NT
pri ntf("STATU S(Cong_Msg_Recv_Th read) : RN R message

received\n\n");
#endif

Last_Message_was_RNR = 1; i/Set flag

m utex_lock(& Hold Back_ Lock) ;

HoldBack = 1;

m utex_u nlock(& HoldBack_ Lock) ;

)
else if (strcmp(CongMessage, "RR") == 0) {

if (Last_Message_was_RNR -= 0)
printf("ERROR /VARN I N G(Cong_Msg_Recv_Thread) :

Multiple RR messages received in a row\n\n");

llPrint out that "RR" message received
#ifdef FLOW_CNTRL_DEBUG_PRt NT
printf("STATU S(Cong_M sg_ Recv_Thread) : RR message

received\n\n");
#endif

Last_Message_was_RNR = O; //Set flag

m utex_lock(&H old Back_ Lock) ;

HoldBack = 0;
m utex_ u n lock(& H o ld B ack_ Lock) ;

- 2t8 -

)
else { //Error case

printl("ERROR(Cong_Msg_Recv_Thread) : Cong Message neither
RNR nor RR \n\n");

close(tcp_sock);
exit(1);

) //else

) i/while(1)

j I lCong_Msg_Recv_ThreadFunc

-219-

#define _REENTRANT
#include <stdio.h>
#include <stdlib.h>
#include <sys/types. h>
#include <sys/socket. h>
#include <netineVin.h>

#include <netdb.h>
#include <string.h>
#include <sys/stat.h>
#include <thread.h>
#include <synch.h>

#include <sched.h>

#include <sys/uio.h>
#include <sys/sem.h>
#include <sys/ipc.h>
#include <memory.h>
#include <time.h>
#include <sys/time.h>
#include <unistd.h>

#include "fec.c"

// Debuging "defines" (enable debug printouts)
ll#define ENC_DEBUG_ON
I l#define new2_PRl NT_DE BUG
#define FLOW_CNTRL_DEBUG_PRl NT

I l#define CS_PRX_USE_NAM E

#define CS_PRX_USE_IP
I l#define SE RV_US E_NAM E
#define SERV_UStr_lP
I l#define EXTRA_RECV_PACKET CHECKS

-220-

#define ssP-uDP_BASE_PORTNUMBER 8000 //server-side proxy uDp base
portnumber i.e. (SSP_UDP_BASE_PORTN UM BER+thread I D)

//(or (SSP-U D P- BAS tr-PORTN U M B ER+th read I D-Con nection_N u mber)) is
port number to be used by each thread
#define csP-uDP_BASE_PORTNUMBER 7000 //ctient-side proxy uDp base
portnumber
#define s_PoRTNUMBER 6006 //server-side proxy listens on this port
#define FILENAME "p-ss-proxy-file.txt" /lFile that contains address & port #
of server
#define CSP-FlLENAME "erss-cs-proxy-file.txt" IlFile that contains client-side
proxy name(DNS)
#define SOCK_BUFFER_SIZE 2048
#define cs-To-s-PRoxYBUFFER-stzE 200 //# of nodes in buffer.
#define s-To-cs-PRoxYBUFFER_stzE 4000 il#of nodes in buffer.
ll#define PRoxY-slDE-BUFFER-slzE 10 il# of nodes in buffer.
#define R-PRoxY-slDE-BUFFER-StzE s0 ll# of nodes in buffer.
#define s-PRoxY-slDE_BUFFER_stzE 2000 il# of nodes in buffer.
#define MAX-CONN NUMB PER LOGICAL-CONN 5 //Max # of connections per
logical connection
#define SERV-SLEEP COUNTER 1000 //NOT USED. Amount of times to call
thr_yield to implement a wait after server has closed
#define EXIT-TIME-DELAY 3 //NOT USED(??m is). Number of sec of time detay
before child proc. terminated after server has closed
#define RNR-PROXY-RECV-BUF-SIZE-THRESH 0.8 //Percentage full treshhotd of
proxy recv.buffer which if exceeded

//results in RNR
message being sent to serv-side proxy
#defìne RR-PROXY-RECV-BUF-SIZE-THRESH 0.6 //Percentage full treshhold of
proxy recv.buffer which if exceeded

//results in RNR
message being sent to serv-síde proxy

#define K-DESIRED 2 /l# of client_to_ssproxy_proxyBuffer we wANT to
read(actual # read may differ)
#define THR-YIELD-MAX 1 llMax number of times will thread yield to read entry
from cl ient_to_ssproxy_ ProxyBuffer

//Set it to O if don't want to wait at all

#define N-FACTOR 2 //N-FACTOR*k packets will be produced by encoding and
sent out(k = #data packets)
#define ENC-DEBUG-FILENAME "er-ss-enc-dbg_file.txt" //File descriptor of a file

-221-

used for debug output in client-to-proxy thread
#define HEADER-SIZE B llSize (in bytes) of header added to encoded packets
(0x00,k, n, seq.#,length(2-bytes),packet# in block,0x00)
#define MAX_SEQ_NUMB_VALUE 2S5
#define H EADER-sRT-EN D-BYTES_COD E_VALU E (unsigned char)oxO 1

#define DEC-ARRAY-SIZE 10 //Number of array entries for decodin g array
(array of gf*)
#define DEC-ARR-BUF-SIZE SOCK-BUFFER*SIZE llsize of each decoding array
buffer
#define ENC-PAC KET- B U F-SIZE SOCK-B U FFER-S IZE I I Size of buffer containing
encoded packet(what you get from enc.func.)
#define EN C-SOU RCE-B U F-BU FFER-S IZE SOCK-B U FFE R_S lZ E I I Size of buffers
containing source data headed for encoding
#defìne SERV-RECV-SOCK-BUFFER-SIZE 1O24 llsocket buffer size for seryer
receiving
#dCfiNE TEMP-CUMUL_BUF-SIZE_TRESH SERV_RECV_SOCK-BUFFER SIZE I IIT
total # of bytes to be encoded(&sent-out) each time

//is smaller than this value
then amalgamate into one big packet(for efficiency)
ll#define NETW-RECV-BUFFER-SIZE 40 ll# of cells for each network receive
buffer (used ín

//
proxyside-recvBufferi ng-Th read Fu nc threads to buffer network U D P packets)

#define DELAY_IN_MSEC 0
ll#define USE_DELAY

* Function prototypes

void *proxyside_recv_Thread Func(void ") ;

void "seryerside_send_ThreadFunc(void ");
void "serverside_recv_ThreadFunc(void ");
void "Cong_Msg_Recv_ThreadFunc(void *);

void *proxy_to_server_Control_Th read Fu nc(void *)
;

vo i d *server_to_p roxy_ Co ntrol_Th read F u n c(voi d *
) ;

-222-

struct BufferNode {
int EntryFull; //Flag (serves as semaphore). lf 1 then value stored, else

is empty and can be written into
long int DataSize; llSize of data stored in entry
unsigned char Data[SOCK_BUFFER_StZE + HEADER_StZE];
int Skip; //Used only for proxy-side-recvBuffer. Recv. thread sets flag

to 1 to tell control to skip cell
int control-skip; llFlag set by recv-control "stating" that it has

skeeped the entry (because doesn't need
/lmore data for current block)

h

int sockfd, servlen, cli_len, childpid;
int newsockfdlMAX_CONN_NUMB_PER_LOGICAL_CONNI; //Array of UDp
sockets
int tcp-sock; lÆCP socket used to receive the # of UDP connections to be used
struct sockaddr_in ssp_name; //Address of server-side proxy
int nn; //Used in setting up UDP socket addresses
struct sockaddr_in cli_addr, serv_addr;
int niaa;
unsigned char buf_par[SOCK_BUFFER_SIZE]; ll9uffer used by parent process to
receive # of connections opened
int m_par, c_par; //Counter vars
int n_par;
int connection-Number; //Number of connections to be opened for a given
proxy-to-proxy'logical' con nection
unsigned char Connection_Number_str[32]; i/String containing
Connection_Number as read from other proxy
int server_sock; //socket used to connect to server
struct BufferNode
csproxy_to_se rver_ P roxyB uffe r[CS_TO_S_ P ROXYB U F F E R_S I ZEI; I Bufte r u sed
for cl ient->server_side_proxy traffic
struct BufferNode
server_to_csproxy_ProxyBuffer[S_TO_CS_PROXYBUFFER_SlZEl: ll9utfer used
for server_side_ proxy->cl ient traffic
struct BufferNode
proxy-side-sendBufferls_PRoxY_slDE_BUFFER_stzElIMAX_coNN_NUMB_pER_Lo
GICAL_CONNI; //Used to store temporarily data that wiil

-223-

// be sent out to cl.side proxy
struct BufferNode
proxy-side-recvBuffer[R_PROXY_SIDE_BUFFER_stzE][MAX_coNN_NUMB_pER_Lo
GICAL_CONNI; //Used to store temporarily data that

//is received fromt to cl.side proxy
struct hostent *.hp; //Used to get client-side proxy address

int RecvBufSizeCounter = 0; //Used for congestion control(# of full cells of proxy
recv. buffer)
int RecvBufSizeCounter_copy = O: llCopy of above counter. Used to unlock
mutex quickly
int HoldBack = 0; llFlag used for congestion control i.e. when 1 then send
threads pause
m utex_t RecvBufSizeCou nter_Lock; //RecvB ufsizeCou nter semaphore
mutex_t HoldBack_Lock; //HoldBack semaphore
int PRoXY-REcv_BUF_cAPAclrY; llcapacity of proxy-side recv buffer. ts
R_ PROXY_S I DE_BU FFER_S lZE.(#U D P connections)
mutex_t
control-skip-Lock[R_PRoxY_sl DE_BU FFER_stzE]tMAX_coN N_N UMB_pER_Loct c
AL-CONNI; //Mutex for setting/reseting Control-SkÍp flag. One mutex for each
cell of proxy_side_recvBuffer
int mi,mj; //Counter vars
int PFTPblock_size= 1 0001 ;

int main(void) {

/n
* lnit HoldBack mutex var - Used for congestion control i.e. when 1 then

send threads pause
*/
mutex_init(&HoldBack_Lock, USYNC_THREAD, (void .) NULL);

/*
* lnit RecvBufSizeCounter mutex var - Used for congestion control(# of

full cells of proxy recv. buffer)*/

-224-

mutex_in it(&RecvBufsizecounter_Lock, u syN c_TH READ, (void ") N u LL) ;

/*
* lnit control-skip_Lock mutex vars (one mutex for each cell of

proxy_side_recvB uffer)*/
for (mi=0; mi<R_PROXY_S I DE_BU FFER_StZE; mi++)

for (mj=g' mjcM AX._CON N_N U M B_p ER_ LOG I CAL_CON N ; mj++¡
m utex_in it(&Control_Skip_ Lock[mi][mj], USyN C_TH R EAD,

(void.) NULL);

//Create the socket
if ((sockfd=socket(AF_lNET, SOCK_STREAM, 0)) . O) {

perror("ERROR: socket creation \n");
exit(1);

)

I /Create (server-side) proxy address
memset(&serv_a dd r, O, s izeof(struct sockadd r_in)) ;

serv_addr.sin_family = AF_ I N ET;
serv_addr.sin_port = htons(S_PORTNUMBER);
servlen = sizeof(struct sockaddr_in);

niaa = INADDR_ANY;
memmove(&serv_addr.sin_addr, &niaa, sizeof(long)) ;

/lBind socket to (server-side) proxy address
if (bind(sockfd, (struct sockaddr *) &serv_addr, servlen) . O) {

perror("ERROR: bind \n");
exit(1);

)

//Listen for client connections
if (listen(sockfd, 5) . O) {

perror("ERROR: listen0 \n");
close(sockfd);
exit(1);

-225-

)
for (;;) {

cli*len = sizeof(cli_addr);
tcp-sock = accept(sockfd, (struct sockaddr *) &cli_addr, &cli_len);

if (tcp_sock . 0) {
perror("ERROR: Can't create new socket (1st proxy listening

socket)\n");
exit(1);

)

/*
* Read number of TOTAL connections to be opened (for this 'logical'

connection).
* Format: string containing # followed by '\0'*/

strcpy(Connection_Number_str,"\O"); //lnit

m_par=0; //lnit counter
while ((n_par = recv(tcp_sock, buf_par, sizeof(buf_par), 0)) t O) {

m_par = m_par+n_par;
strncat(Connection_Number_str, buf_par, n_par);
if (Connection_Number_str[m_par-1] == '\0')

break;//if '\0' in string then done so exit recv/while loop

)
if (n-par<=0) {

printf("FATAL ERROR: n_par<=O while recv. UDp connection #
(parent process)\n\n");

close(tcp_sock);
exit(1);

)

* - xNow that connection # has been received close the TCp socketx -

-226-

will use for cong.control messages*/
//close(tcp_sock);

//Convert # of connections to int from string
s s ca n f (C o n n e ct i o n_ N u m b e r_ str," o/o d", & C o n n e ct i o n_ N u m b e r) ;

printf("CHECK(er-ss-proxy): %d UDP connections to be opened\n\n",
Connection_Number);

/n
* Now that we got the # of UDP connections to be used calculate the

proxy recv. buffer capacity
*/
PROXY_RECV_BU F_CAPACtTy =

R_ P ROXY_ S I D E_ B U F F E R_ S lZE. Co n n ectio n_ N u m ber;

/*
* Wait for Connection_Number connections to be opened.

NOTE:Connection_Number is total connections to be opened*/
for (c_par=O; c_parcConnection_Number; c_par++) {

/lCreate socket
if ((newsockfd[c_par] = socket(AF_lNET, SOCK_DGRAM, O)).o){

printf("ERROR(er_ss_proxy): Can't create UDp socket
for i: 7od\n\n", c_par);

exit(1);
)

llCreate the address to bind the UDP socket. port #:

))'7

(SSP_UDP_BASE_PORTN U MBER + c_par)
memset(&ss p_name, 0, sizeof(struct sockadd r_ i n)) ;

ssp_name.sin_family = AF_l N ET;
ssp_name.sin_port = htons(SSP_ U DP_ BAS E_PORTN U M B ER +

c_par);
nn = INADDR_ANY;
memmove(&ssp_name.sin_addr, &nn, sizeof(long));

ll9ind UDP socket to above address
if (bind(newsockfd[c_par], (struct sockaddr *) &ssp_name,

sizeof(struct sockaddr_in)) .O) {
printf("ERROR: Can't bind UDP socket to port

7od\n\n",SS P_U D P_BAS E_PORTN U M BER+c_par) ;

exit(1);
)

\ /lfor

IlCreate child process
if ((childpid = forkQ) . 0) {

perror("ERROR: Fork \n");
exit(1);

)
else if (childpid -= 0) { 7* ****** child process ****** */

/* Child process vars "/
struct hostent *hp; //used in connecting to server
struct sockaddr_in name; //used in connecting to server
int len; //used in connecting to server
int thr_concurrency_counter;
thread_t

Thread I D[MAX_CON N_N U M B_PER_LOG I CAL_CON N * 2+ 4+ 1]: I I Array of th read I Ds
for thr_create calls

int
th r- I D- PTRIMAX-CON N_N u M B_PER_LOG I cAL_coN N*2+4+ 1] ; I / Array of thr_ I D

110- ¿zo -

pointers used in thr_create calls
FILE *fd;

int Server_PortNumber; llPort on which server listens
unsigned char Server_Name[64]; //DNS name of server
unsigned char Server_lP[64]; lllp of server
ulong_t addr;
int i,j; //counter var
size_t

Taskstatus[MAx-coN N- N u M B_P ER_ LoG I cAl_co N N*2+4+ 1] ; //used i n
thr_join0 calls

unsigned char client_side_proxy_name[55]; //String
containing clien-side proxy as read from file

unsigned char client_side_proxy_l p[S0]
;

close(sockfd); //close original socket

I I -------------------cod e

printf("CHECK(er_ss_proxy): CHILD process created \n\n");

* lnit the erasure code encoder/decoder

init_fecQ;

* lnitialize proxy buffers (i.e. set all flags to 0)

for (i=0; i<R_PROXY_SIDE_BUFFER_StZE; i++¡ 1

for 6=9' j<MAX_CON N_N U MB_pER_LOc tCAL_CON N ;j++) {
proxy_side_recvBuffer[i] []. EntryFull = 0;
proxy_side_recvBuffer[i] [].Skip = a;
proxy_side_recvB uffer[i][]. Control_Skip = e -

)

-229-

)
for (i=0; ¡<S_PROXY_SIDE_BUFFER_StZE; i++) I

for 1¡=6' j< MAX_CO N N_ N U M B_P ER_ LOG I CAL_CON N ;j++) {
proxy_side_sendBuffer[i][]. EntryFull = 0 ;

)
)

for (i=0; i<CS_TO_S_PROXYBUFFER_SIZE; i++¡ I
csproxy_to_server_ ProxyBuffer[i]. E ntryFu I I = 0 ;

)
for (i=0; |<S_TO_CS_PROXYBUFFER_StZE; i++¡ i

server_to_csproxy_ ProxyB uffer[i]. EntryFu I I = 0 ;

)

* Read file to obtain address (name & port #) of server
" Format: "port# server_name" ("'s not included)

//sem_lock not needed

if ((fd = fopen(FILENAME, "r")) == NULL) {
perror("ERROR(p_ss_proxy): Couldn't open file \n");
exit(1);

)

#ifdef SERV_USE_NAME
fsca nf(fd, " %od o/os", &S erve r_ PortN u m ber, S erver_ N a me) ;

#endif
#ifdef SERV_USE_lP
fsca nf(fd, " %od o/os", &S erver_ PortN u m be r, Server_ I P) ;

#endif

//Check values read from file
#ifdef SERV_USE_NAME
p ri ntf("C H E C K(p_ss_ p roxy) : S e rve r_ N a m e I Yo s\n ",

Server_Name);

-230-

#endif
#ifdef SERV_USE_lP
printf("C H EC K(p_ss_ proxy) : Server_ I P : 7os\n", Server_ I p)

;

#endif

pri ntf("C H ECK(p_ss_ proxy) : Server_PortN u m ber: Zo d \n",
Server_PortNumber);

fclose(fd);

//sem_unlock not needed

* Get server address & open connection to server

//-----------
llGet server's address
#ifdef SERV_USE_NAME
if ((hp = gethostbyname(Server_Name)) == NULL) {

printf(" E RRO R(er_ss_ proxy) : Ca n't get server
address(%s)\n\n", Server_Name) ;

exit(1);
)
#endif
#ifdef SERV_USE_lP

if ((int)(addr = inet_addr(Server_lP)) == -1¡ 1

printf("lP-address must be of the form
a.b.c.d\n");

exit (2);

)
hp = gethostbyaddr((char *)&addr, sizeof(addr),

AF_rNET);
if (hp -- NULL) {

printf("host information for 7os not found\n",
Server_lP);

exit (3);
)

#endif

-231-

){

/lCreate socket
if ((server_sock = socket(AF_lNET, SOCK_STREAM, 0)) . O) {

printf("ERROR(er_ss_proxy): Can't create socket for
server\n\n");

exit(1);
)

/ / Create server address
memset(&na me, 0, s izeof(struct sockaddr_ i n)) ;

name.sin_family = AF_l N ET;
name.sin_port = htons(Server_PortNumber) ;

memmove(&name.sin_addr, hp->h_addr_list[0], h p-
>h_length);

len = sizeof(struct sockaddr_in);

//Connect to server
if (connect(server_sock, (struct sockaddr *) &name, len) < O

printf("ERROR: Can't connect to server \n\n");
exit(1);

il----

* Get the client-side proxy's name(DNS)

* Read file to obtain address (DNS) of server
* Format: "client_side_proxy_name" ("'s not included)

if ((fd = fopen(CSP_FILENAME, "r")) == NULL) {

-232-

perror("ERROR(er_ss_proxy): Couldn't open file to get
csprx name(or lP)\n");

exit(1);
)

#ifdef CS_PRX_USE_NAME
fsca nf(fd, " o/os", client_s ide_ proxy_ na me) ;

#endif

#ifdef CS_PRX_USE_lP
fscanf(fd, "7oS", client_side_proxy_l P) ;

#endif

//Check values read from file
#ifdef CS_PRX_USE_NAME
pri ntf("C H EC K(er_ss_proxy) : client_sid e_proxy_n a me : Yo s\n",

client_side_proxy_name) ;

#endif
#ifdef CS_PRX_USE_lP
p ri n tf (" C H E C K (e r_ s s_ p roxy) : c l i e n t_s i d e_ p roxy_ l P : 7o s\ n ",

client_side_proxy_l P) ;

#endíf

fclose(fd);

#ifdef CS_PRX_USE_NAME
if ((chp = gethostbyname(client_side_proxy_name)) == NULL)

{
printf("ERROR: Can't get client-side proxy address

(gethostbyname)\n\n") ;

exit(1);
)
#endif
#ifdef CS_PRX_USE_lP
if ((int)(addr = inet_addr(client_side_proxy_lP)) -= -1) {

printf("lP-address must be of the form a.b.c.d\n");
exit (2);

-233-

)
chp = gethostbyaddr((char *)&addr, sizeof(addr), AF_INET);
if (chP == NULL) {

printf("host information for 7os not found\n",
client_side_proxy_l P);

exit (3);

)
#endif

* lniVfill-in thr_lD array. Thread lDs start from ZERO l!!

for (i=0 ; ¡<(MAX_CO N N_ N U M B_P ER_ LOG I CAL_CO N N*2+4+ 1) ;

i++¡
thr-lD-PTR[|] = ¡'

:*
* NOTE: proxy-side sending threads have thread lDs from (0

to Connection_Number-1) and
* proxy-side receiving threads have thread lDs from

(Con nection_N u m ber to 2*Con nection_N u m ber- 1)

* Spawn the proxy-side sending/receiving threads. pair for
each connection w/ client-side proxy

for (i=Connection_Number; i<(2"Connection_Number); i++¡ 1

-234-

thr_create (N U LL, 0, proxyside_recv_Thread Fu nc, (void
*) &thr_lD_PTRlil, 0, &ThreadlDlil);

\ llfor
if (i != (2*Connection_Number))

printf(" E RRO R/C H ECK(er_ss_proxy) : i cou nter <>
2*Connection_Number \n") ;

" Spawn the server-side sending/receiving threads. Just one
pair for the single connection to server

th r_create(N U LL, 0, serverside_send_Thread Fu nc, (void *)

&thr_lD_PTRlil, 0, &Threadl Dlil);
i++;
th r_create(N U LL, 0, serverside_recv_Th read Fu nc, (void *)

&thr_l D_PTRlil, 0, &Thread I Dlil);

* Spawn Control threads

i++;
th r_create(N U LL, 0, server_to_ proxy_Control_Th read Fu nc,

(void ") &thr_lD_PTRlil, 0, &ThreadtDt¡l);
i++;
th r_create(N U LL, 0, proxy_to_server_Control_Thread Fu nc,

(void *) &thr_lD_PTRlil, 0, &ThreadtDtil);

" Spawn RNR/RR message receiving thread that will receive
congestion messages from serv-side proxy

i++;
thr_create(NULL, 0, Cong_Msg_Recv_ThreadFunc, (void *)

NULL, 0, &ThreadlDlil);

-235-

*Set the thread concurrency. Could improve thread scheduling.

th r_concu rrency_cou nter = 1
*Con nection_N um b er+ 4+ 1 ;

th r_s etco n c u rre n cy (t h r_ co n c u rre n cy_ co u n te r) ;

" Make thljoin calls so that program doesn't terminate right
after creating threads

for (i=Con nection_N um ber; i<(2*Con nection_N umber+4+ 1);
¡++) {

thljoin(ThreadlD[i], 0, (void *) &TaskStatus[i]);
)

) i/endelseif /* ****** child Process ****** */

/*
* Close in parent the "passed off to child" UDP sockets & the TCP

socket tcp_sock(used for cong.control)*/
close(tcp_sock);
for (c_par=0; c_parcConnection_Number; c_par++) {

close(newsockfd[c_par]) ;

)

\ llendfor

| /*main*/

-236-

*** ****** ********** *** ***** ******************** **** *********** *************
********************* */t

void *proxyside_recv_Th read Fu nc(void *th r_ I D_pTR) {

/*
* Get thread lD*/
int thr_lD - *((int *) thr_lD_PTR);

int n;
int i,k, m; //counter vars
unsigned char *buf; ll3utfer into which received data is copied into &

data pasted to
unsigned char *bufStart; //Used to store temporarily the socket buffer

starting address
int buf-size; //used because sizeof(buf) doesn't work for char *
unsigned char *tempbuf; /iremp. buffer used to copy segments read

from buf & copy into proxy recv buffer at end
int tempbuf_Size; //Current capacity of tempbuf i.e. # of bytes

currently stored
unsigned char *tempbuf-Start; //Used to store temporarily tempbuf

starting address
int tempbuf_Capacity; llCapacity of tempbuf. Value set later on &

must remain constant
unsigned char *c-location; //Contains result of memccpy operation
int Total_buf_BytesRead; //Number of bytes already read from socket

buffer(buf). used in writing received data to proxy_side_recvBuffer
int ZeroByteAtEndLastRound=O; //Used as a flag. True(i.e. 1) when last

byte in buf(in 1st or nth round) was a 0x00 byte
i nt concatRema i n i n g- buf_contents_to_buf_for_next_rou nd = 0 ;

l/Flag
int concated_to_buf_start_bytes = O;

u nsig ned cha r " new-received-data-sta rt_add r_ i n_ b uf ; I / ln case of
concating data at start of buf, this is the pointer to

//the first byte in buf of the newly

-237-

received(from the network) data
unsigned char "dummy-buf; /l3uffer into to which socket data is

copoed into initially
int dummy_buf_size;
struct sockaddr-in from; //Used in recvfromQ call. Address of sender

Ís written into this var after every recvfrom0
int len; //Used for recvfrom0
int Header-Derived-Packet-Length; //Packet length as derived from

header
unsigned char hb_size,lb_size; //Used in getting packet length from

header
unsigned int Next_Expected_Seq_Number,

N ext_Expected_Seq_N um ber_copy, previous_Seq_ N um ber;
unsigned int Current_Packet_Derived_Seq_Number;
int Cells_To_Skip;
int Wrap-Around-Counter; //Used in seq.# validation and skip count

calculation

//lnit buffer
buf-size = 2*(SOCK- BU FFER

-SIZE"
2+2+ H EAD ER_S IZE) ; //buf_size was

SOCK_BUFFER-SIZE
6u¡ = (unsigned char *) malloc(buf_size"sizeof(unsigned char));

d u m my_ b uf_s ize = (S O C K_ B U F F E R_ S I ZE* Z+2+HEA D E R_S I ZE) ;

//buf_size was SOCK BUFFER S|ZE

//l nit Previous_Seq_Number
Previous_Seq_N umbe¡ = (thr_l D-Connection_N um ber+ 1) -

Connection_Number;

/*
* NOTE: proxy-side sending threads have thread lDs from (0 to

Connection_Number-1) and
* proxy-side receiving threads have thread lDs from

(Connection_Number to 2"Connection_Number-1)

-238-

* Therefore (thr-lD-Connection-Number) is the connection # that should
be used by the proxy-side

" receiving threads
*/
/lCopy starting address of socket buffer
bufStart=buf;

i=0; //lnit counter

while (1) {

len = sizeof(struct sockaddr_in);
if ((n = recvfrom(newsockfd[thr_lD-Connection_Number], buf,

dummy_buf_size, 0, (struct sockaddr *) &from, &len)) t O) {

ll ----------- UDP packet handling

*Check that first bytes are header - DEBUG

if (!((buf[O]==(unsigned char)0x00) && (buf[1]!=(unsigned
char)0x00) && (buf[1]!=(unsigned char)Oxff) && (buf[HEADER_SIZE-1]==(unsigned
char)OxoO))) {

printf("ERROR(proxyside_recv): Header
does not verify\n\n");

exit(1);
I llif - header incorrect

*Verify length etc. -DEBUG

//Get length

-239-

if (((unsigned char)(0x40) & buf[]) != (unsigned char)OxO0) {
hb_size = ((unsigned char)(Ox3f) & buflal);
lb_size = ((unsigned char)(Ox7f)) & buf[5];

)
else {

hb_size = ((unsigned char)(Ox7f)) & buf[4];
lb_size = buflb];

)

Header_Derived_Packet_Length = hb_size;
Header_Derived_Packet_Length =

(H eader_ Derived_ Packet_ Length..8) ;

Header_Derived_Packet_Length =
Header_Derived_Packet_Length I lb_size;

lNerify length
if (Header_Derived_Packet_Length != n) {

printf(" E RRO R(proxyside_recv) : H eader derived
length != recv.packet length\n\n");

exit(1);
)

#ifdef EXTRA RECV PACKET CHECKS

/*
*Check header bytes <>0x00 (except starVend bytes) -

DEBUG
*/
for (m=1; m<HEADER_SIZE-1; m++) {

if (buf[m] -= o) {
printf("ERROR: %d th byte of header is

0x00\n\n", m+1);
exit(1);

\ //if
)

-240-

#endif

/*
" Check the sequence number. Must be

Next_Expected_Seq_Number OR a multiple of
* Connection_Number + Next_Expected_Seq_Number*/

Next_Expected_Seq_Number = Previous_Seq_Number
+ Connection_Number;

//lf exceeded seq.# max value wrap it around
if (Next_Expected_Seq_Number >

MAX_SEQ_NUMB_VALUE)
Next_Expected_Seq_Number =

(N ext_ Ex pe cted_ S e q_ N u m b e r- MAX_ S E Q_ N U M B_VA L U E) ;

C u rrent_Packet_ Derived_Seq_ N um ber = buf[3] ;

/*
* NOTE: Packet seq.# must be ==

N ext_ Expected_Seq_N u m ber O R be N ext_Expected_Seq_N um ber
+ a multiple of Connection_Number OR

Packet seq.# may have wrapped around skipping cells*/
if (Current_Packet_Derived_Seq_Number >

Next_Expected_Seq_Number) {
if (((Current_Packet_Derived_Seq_Number-

Next_Expected_Seq_Number) 7o Connection_Number) != 0) {
printf("ERROR: Seq.# INCORRECT(#1).

Expecting %d and got
7od\n\n",Next-Expected-seq-Number,current_Packet_Derived_seq_Number);

exit(1);
)

I /lrt - Current_Packet_Derived_Seq_Number >

-241 -

N ext_ Expected_Seq_N u m ber
else if (Current_Packet_Derived_Seq_Number <

Next_Expected_Seq_Number) { /lWrap-around case
N ext_Expected_Seq_ N u m ber_copy =

N ext_Expected_Seq_ N u mber;

Wrap_Around_Counter = 0; //Reset
while (Next_Expected_Seq_Number_copy <

MAX_SEQ_NUMB_VALUE) {
Next_ Expected_Seq_ Nu m ber_copy =

Next_Expected_Seq_Number_copy + Connection_Number;
Wra p_Arou nd_Cou nter++ i

)

//Now that Next_Expected_Seq_Numbe_copy >
MAX_SEQ_NUMB_VALUE wrap it

Next_ Expected_Seq_ N u m ber_copy =
(N ext_Expected_Seq_N u m ber_copy - MAX_S EQ_N U M B_VALU E) ;

if (((Current_Packet_Derived_Seq_Number-
Next_Expected_Seq_Number_copy) % Connection_Number) != 0) {

printf("ERROR: Seq.# I NCORRECT (#2).
Expecting %d and got
%od\n\n",Next_Expected_Seq_Number,Current_Packet_Derived_Seq_Number);

exit(1);
)

) //else

Previous_Seq_Number =
Cu rrent_Packet_Derived_Seq_N um ber;

//lf sequence # != Next_Expected_Seq_Number then
skip cells & clear/reset buf

if (Current_Packet_Derived_Seq_Number !=

-242-

Next_Expected_Seq_N umber) {

printf("CHECK(recv[%d]): Expecting %d and got
7od\n\n",
th r- I D, N ext- Expected-S eq_ N u m be r, c u rre n t_ Pa cket_ D e rived_ s eq_ N u m be r) ;

//Calculate # of cells to skip
if (Current_Packet_Derived_Seq_Number >

Next_Expected_Seq_N umber) {

C e I I s_To_ S k i p = (C u rre n t_ P a c ket_ D e rived_ S eq_ N u m b e r-
N ext_Expected_Seq_N u m ber)/Con nection_ N u m ber;

printf("CHECK: in lst Cell to Skip
case\n\n");

)
else { //Current_Packet_Derived_Seq_Number <

Next_Expected_Seq_ N u m ber
Cells_To_Skip - Wrap_Around_Counter +

((C u rrent_ Packet_ Derived_Seq_ N u m ber-
Next_ Expected_Seq_ N u mber_copy)/Con nection_ N umber) ;

printf("CHECK: in 2nd Cell to Skip
case\n\n");

)

p ri ntf ("STAT U S (p roxys id e_ recv [% dj) : G o i n g to
skip %d cells w/ i=7od\n\n",thr_ID,Cells_To_Skip,i);

for (m=1; m<=Cells_To_Skip; m++) {

l/\Nait for cell to be read
wh ile ((proxy_side_recvBuffer[i] [thr_l D-

Con nection_ Nu mberl. E ntryFu ll ! =0) | | (proxy_side_recvB uffer[i] [th r_ I D-
Connection_Numberl.Skip!=0)) {

thr_yield0;
) //while

m utex_ lock(&Co ntro l_S ki p_ Lock[i] [th r_ I D-

-243-

Connection_Numberl);

if (proxy_side_recvBuffer[i] [th r_ I D-
Connection_Numberl.Control_Skip == g¡

1

i/Set Skip bit for ceil

proxy_side_recvBufferli] lth r_ I D-Con n ection_ N um ber]. S kip = 1
.

printf("CHECK(recv)[%d]: Skip bit set in
[% d] t% dl\n\n ", th r_ I D, i, th r_ I D-Co n n ecti o n_ N u m ber) ;

m utex_lock(& RecvBufSizeCou nter_Lock) ;

RecvBufSizeCounter++; //lncrement

m utex_ u n lock (& Recv B ufS izeCo u nte r_ Lock) ;

\ //if
else if (proxy_side_recvBuffer[i][thr_ I D-

Connection_Numberl.Control_Skip==1) { //Control_Skip is set

proxy_side_recvBuffer[i] [th r_ I D-Con nection_N u m ber]. Control_S ki p = 6.

) //else if - Control_Skip is set
else {

pri ntf("E R RO R(proxy_s ide_ recv) : Control_S kip ! = 0, 1 \n\n") ;

exit(1);
) //else - error case

mutex_un lock(&Control_Skip_Lock[i] [thr_t D-Co nn ection_ N u mber]) ;

// *********

//lncrement counter
if (i <

(R_ P ROXY_S r DF_3 g ppER_S tzE-1))
i++'

else
i= 0;

-244-

\ /lfor - skip cells

pri ntf("STATU S(proxyside_recvI o/odl):

Skipped %d cells wl i=Vod now\n\n",thr_lD,Cells_To_Skip,i);

\ llif - seq.# != next expected seq.#

ll ----------- UDP packet handling

\ //if
else {
printf(" FATAL E R RO R(prx_side_recv_Thread) : n <=0 wh ile recv.\n") ;

printf("(Non-fatal if end of client-server
commun ication)\n\n");

close (n ewsockfd [th r_ I D-Con n ection_ N u m ber]) ;

exit(1);
)

/*
* Copy data from temp. buffer (buf) into

proxy_side_recvBuffer & set size and flag
*/
wh ile ((proxy_side_recvBuffer[i][thr_t D-

Con nection_ Numberl. E ntryFu ll !=O)
| | (proxy_side_recvBuffer[i] [th r_ I D-

Connection_Numberl.Skip!=0)) {
printf("CH ECK(prx_recv[%d]) : #2 waiting for

proxy_side_recvB uffer! =0\n\n",th r_ I D) ;

-245-

thr_yield0;
) i/while

m utex_ I ock(&Co ntro l_S ki p_ Lock [i] [th r_ I D-
Connection_Numberl);

if (proxy_s ide_recvB uffer[i] [th r_ I D-
Connection_Numberl.Control_Skip == 6¡ 1

memmove(proxy-side_recvBuffer[i][thr_lD-connection_Number].Data, buf, n);
proxy_s ide_ recvB uffer[i] [th r_ I D-

Connection_Numberl.DataSize = n;
proxy_s ide_recvB uffer[i] [th r_ I D-

Connection_Numberl.EntryFull = 1 ;

//Since data just written into proxy-side
recv. buffer increment RecvBufSizeCounter counter

m utex_ loc k(& RecvB ufS izeCo u nter_ Lock) ;

RecvBufSizeCounter++: /llncrement to offset
default decrement below

m utex_u nlock(&RecvBufSizeCou nter_ Lock) ;

\ //.f
else if (proxy_side_recvBuffer[i] [thr_ I D-

Connection-Numberl.Control_Skip==1) { //Control_Skip is set
proxy_s ide_recvB uffer[i] [th r_ I D-

Connection_Numberl.Control_Skip = 0;
prinIf("STATU S/C H EC K(proxy_recv) :

**Control said to skip cell(refers to BELOW)"" \n")'
) //else if - Control_Skip is set
else i

pri ntf (" E R RO R(proxy_s ide_recv) :

Control_Skip != 0, 1 \n\n");
exit(1);

) //else - error case

m u tex_ u n I o ck (& C o n tro l_ S k i p_ Lo ck [i] [th r_ I D -

-246-

Connection_Numberl);

//lncrement counter
if (i < (R_pRoxy_stDE_BUFFER_StZE-1))

i++;
else

i=O;

) //while - 1

) //proxyside_recv_ThreadFunc

********* ******* **************************** * ************** ****************
********************* */

void "serverside_send_ThreadFunc(void *thr_lD_pTR)
{

" Get thread lD

int thr_lD - *((int *) thr_lD_PTR);

int n;
int i; //counter var
unsigned char buf[SOCK_BUFFER_StZE];

i- 4 .
l-- |

'
while (1) {

* Get data from csproxy_to_server_ProxyBuffer;*/

-247-

//lncrement counter
if (i < (cs_To_s_pRoxyBU FFER_StZE-1))

¡++;
else

i= 0;

while (csproxy_to_server_ProxyBuffer[i].EntryFull != 1) {
thr_yield0;

)
m em move(buf , csproxy_to_se rver_ P roxyB uffer[i]. D ata,

cs proxy_to_server_ P roxy B uffe r[i]. D ata S ize) ;

n = cs p roxy_to_se rve r_ ProxyB uffer[i]. Data S ize ;

csproxy_to_server_P roxyBuffer[i]. EntryFu ll = 0 ;

/*
* Send data to seryer
*/
if (n>0) {

if (send(server_sock, buf, n, O) < 0) {
p ri ntf(" E R RO R (p_ss_ proxy/serve r_s en d_th read) : Wh i l e

sending data to seryer <O \n\n");
exit(1);

)
)

) //while

) //serverside_send_ThreadFunc

ü:::::::::-::-:-:::::;----***

void *serverside_recv_ThreadFunc(void -thr_lD_PTR)
{

-248-

/*
* Get thread lD*/
int thr_lD - *((int *) thr_lD_PTR);

int n;
int i,j; //counter vars
unsigned char buf[SERV_RECV_SOCK_BUFFER_StZE];
time-t serv-sock-close-time; //timestamp use in implementing delay

vbefore terminating child process

int recv_counter;
int recv_data;

l- 4 .
l-- |

'

while ((n = recv(server_sock, buf, sizeof(buf), 0)) > 0) {

* Copy received data to server_to_csproxy_ProxyBuffer;

//lncrement counter
if (i < (s_To_cs_pRoxyBUFFER_stzE-1))

i++;
else

i= 0;

while (server_to_csproxy_ProxyBuffer[i].EntryFull != 0) {
printf("CH ECK(serv_recv) : waiting for

server_to_cs proxy_ P roxyB uffer ! =O\n\n ", th r_ I D) ;

thr_yield0;
)
memmove(server_to_csproxy_ProxyBuffer[i]. Data, buf, n);
se rve r_to_csproxy_ ProxyB uffer[i]. DataS ize = n ;

server_to_cs proxy_ProxyB uffe r[i]. E ntryF u ll = 1 ;

-249-

) //while
if (n<=0) {

printf("FATAL ERROR: n<=0 while recv. from server (server-side
proxy) \n");

printf("(Not fatal if client-server communication over)\n\n");
/*
* Client has closed so won't tranmsit anything else. lmplement a wait

using thr_yieldQ ro
* allow for any data remaining to be sent (& received by) to client*/

serv_sock_close_time = time(NULL);

close(server_sock);

while (((time_t) diftime(time(NULL), serv_sock_ctose_time)) <=
EXIT-TIMF-DELAY)

thr_yield0;
exit(1);

)

)

) //serverside_recv_ThreadFunc

********* ****************** *********************************** *************
********************* */

void "proxy_to_server_Control_Th read Fu nc(void *thr_
I D_PTR) {

" Get thread lD

int thr_lD - "((int *) thr_lD_PTR);

-250-

int i,j,k; //counter vars
int RNR_flag = 0; llfrue if an RNR message has been sent to serv-side

proxy.
unsigned char cong_msg_buf]O2al; llbyte buffer used to send RR &

RNR messages to serv-side proxy
int cong-Control-Check-Counter; //Used to control when cong.cntrl

checks occur
unsigned int Next_Expected_Seq_Number=0; //Between 1 and

MAX_S EQ_N U M B_VALU E (not 0 to MAX_SEQ_N U M B_VALU E) ! ! !

unsigned int Block-First-Seq-Num; //Seq.# of first packet of a block
int Encoded_Packets_Number; //Number of encoded packets for

current block(i.e. what is known as "n" in header)
int Encoded-Packets-Read; //Counter var. Used in reading packets

from every block
int Source-Packets-Number; //Number of source packets for current

block(i.e. what is known as "k" in header)
int Source-Packets-Read; i/Number of source/data packets already

read from current block
int Curr-Block-Packet-Size; /lSize if packets(not including header) of

a given block
int RR_counter=0; //Bookeeping var that just keep track of RR

messages sent out
int RNR_counter=0; //Bookeeping var that just keep track of RNR

messages sent out
int size_temp1, size_temp2; //Utility ints
gf *dec_src[DEC_ARRAY_SIZE]; //Used as argument in decoding

function
gf *dec_dstlDEC_ARRAY_SIZE]; //Used as argument in decoding

function
int dec_index[DEC_ARRAY_SIZE]; //UseO as argument in decoding

function. lndexes of packets handed to dec. function
int ic; //Counter var
int EPR_Start=1;
int Block_First_Seq_Num_Set = O; lÆlag
int Number_of_Packets_Skipped;
int CONG-CNTRL-CHECK-PERIOD; //Period of congestion control check.

CAUTION: lf this value is too large then
//might fall into deadlock (i.e.

not sending a RR at all after a RNR)!!!
int last_index_value; //Used in index calculation for decoding

-251 -

* Set congestion control check period

CONG_CNTRL_CHECK_PERIOD = 0;

/*
* NOTE: proxy-side sending threads have thread lDs from (0 to

Connection_N umber-1) and
* proxy-side receiving threads have thread lDs from

(Con nection_N um ber to 2*Connection_Num ber-1)
* Therefore (thr-lD-Connection-Number) is the connection # that should

be used by the proxy-side
* receiving threads*/

* Allocate memory to dec_src and dec_dst

for (ic=O; Ic<DEC_ARRAY_SIZE; ic++¡ 1

dec_src[ic]= (gf *) m alloc(D EC_AR R_B U F_S tZE"sizeof(gf)) ;

dec_dst[ic]= (gf *) malloc(D EC_ARR_B U F_S tZE"sizeof(gf)) ;

| /lfor

k = 0; //lnit counter var
i = 0; //lnit counter var
j = 0; //lnit counter var

cong_Control_Check_Cou nter = CO NG_CNTRL_CH EC K_pERlO D ; //l nit

while (1) { llHandle current block of packets

-2s2-

while ((proxy_side_recvBuffer[i]fi].EntryFuil != 1) &&
(proxy_side_recvBuffer[i]fi].Skip != 1))

thr_yield0;

if (proxy_side_recvBufier[i][j].Skip == 1¡ 1

//Caclulate next expected sequence number. lnited to 0. Starts
from 1 (1 ->MAX_SEQ_NUMB_VALUE)

if (Next_Expected_Seq_N u m ber < MAX_SEQ_N U M B_VALU E)
Next_ Expected_Seq_ N u m ber++ ;

else
Next_Expected_Seq_Number = 1 ;

//Reset Skip bit
proxy_side_recvBuffer[i] [].Skip = Q;

" Get sequence # of first packet of block (if not done already)

if (Block_First_Seq_Num_Set != 1) {
Block_ First_Seq_Nu m = N ext_Expected_Seq_N u m ber;
Block_First_Seq_Num_Set = 1 ;

I //.f

//Skip current cell. Have for loop below start after skipped

EPR_Start - EPR_Start++;

ll i,j incrementation

cells

-253-

íf (j<(Connection_Number-1))
j++;

else {
j=o;

if (i<(R_pRoxy_st DE_BUFFER_S tZE_1))
I++,

else
i= 0;

)
// i,j incrementation

//Proceed to next cell
continue;

I //if - must Skip current cell

/*
* Now that we got out of skipping first packet(s) check if we skipped

entire block
*/
Number_of_Packets_Skipped = EpR_Start - 1 ;

if (N umber_of_Packets_skipped >=
proxy_s ide_recvB uffer[i] []. Data [6]) {

printf("ERROR/STATUS: Entire btock skipped.
Terminating\n\n");

exit(1);
\ /lif - check if entire block skipped

* Get sequence # of first packet of block (if not already done)

if (Block_First_Seq_Num_Set != 1) {
B lock_ First_Seq_ N um = proxy_s ide_recvB ufler[i] []. Data[3] ;

\ //if

-254-

else
Block_First_Seq_Num_Set = 0;

/*
* NOTE: Header format: (0x00, k, n, seq.#,length(2-bytes), packet#

in block0x00)
*/

/*
* Get number of packets for current block i.e. "n"*/
E n co d e d_ P a ckets_ N u m b e r = p roxy_s i d e_ re cv B uff e r [i] [] . D afal2l;

/*
* Get number of source/data packets for this block i.e. "k"*/
S o u rce- Packets- N u m ber = p roxy_s i d e_ recv B uffe r[i] []. D ata[1];

/*
* Get packet size(NOT including header) for current block*/
C u rr_Block_ Packet_S ize = proxy_side_recvBuffer[i] []. DataS ize -

HEADER-SIZE;

* Reset vars

Source_Packets_Read = 0;

* Go through Encoded_Packets_Number entries of proxy-side receive

-255-

buffer i.e. one block of "n" packets
*/
for (Encoded_Packets_Read= 1 ;

Encoded-Packets-Read<=Encoded-Packets_Number; Encoded_Packets_Read++)
{

//caclulate next expected sequence number. lnited to 0. starts
from 1 (1 ->MAX_SEQ_NUMB_VALUE)

if (Next_Expected_Seq_N u m ber < MAX_SEQ_N U M B_VALU E)
Next_ Expected_Seq_N um ber++ ;

else
Next_Expected_Seq_Number = 1 ;

/lwhile check and if used to be here before Control_Skip

if (source-Packets_Read < source_packets_Number) { lli.e. not
enough packets read yet for decoding

// ********

ll\Nait until entry full or recv. thread "says" to skip current cell
while ((proxy_side_recvBuffer[i][j].EntryFuil != 1) &&

(proxy_side_recvBuffer[i]ff].Skip != 1))
thr_yield0;

if (proxy_side_recvBuffer[i][j].EntryFutt == 1) {

//Check if seq.number valid (stored in 4th byte of
header)

if (proxy_side_recvBuffer[i][j]. Data[3] !=
Next_ Expected_Seq_N um ber) {

p ri ntf(" E R RO R (proxy_to_serve r_ Co ntro I) :

Sequence # is WRONG. %d expected but got %d
\n\n", Next Expected-seq- N um ber, proxy_s ide_ recvB uffer[i] []. Data [3]) ;

-2s6-

exit(1);
\ lffi - seq.number is NOT next expected seq.number

llError check: check if k and n of current packet is
thart of current block

if (proxy_side_recvBuffer[i][j]. Data[1] ! =
Source_Packets_Number) {

p ri n tf (" E R R O R (e r_ ss/p roxy_to_s e rve r_ C o n t ro I) :

Source_Packets_Number(k) is not that expected \n\n");
exit(1);

\ //.f
if (p roxy_sid e_ recvB uffer[i] [j]. D atal2l t =

Encoded_Packets_Num ber) {

p r i n tf (" E R RO R (e r_ s s/ p roxy_to_ s e rve r_ Co n tro I) :

Encoded_Packets_Number(n) is not that expected \n\n");
exit(1);

I //ir

/l5rror check: compare size with
Cu rr_B lock_Packet_Size

if ((proxy_síde_ recvBuffer[i][]. DataSize-H EAD E R_S IZE)
!= Curr_Block_Packet_Size) {

p ri n tf(" E R R O R (e r_ ssi p roxy_to_ s e rve r_ C o n t ro I) :

Size of read packet<>Cu rr_B lock_Packet-Size\n\n") ;

exit(1);
\ //if - error check for size

) //if - if data in cell perfrom some checks

// ********

//Read cell data if cell full, else if Skip specified just reset Skip
flag

-257-

if (proxy_side_recvBuffer[i][].EntryFull == 1) {

mem move(dec_src[Sou rce_Packets_ Read],
proxy_sid e_recvBuffer[i] []. Data+ H EAD E R_S lZE,
proxy_sid e_ recvB uffe r[i] [j]. Data S ize- H EA D E R_S I Z E) ;

if (proxy_side_recvB uffer[i] []. Data[3] >=
Block_First_Seq_Num) {

dec_index[Source_Packets_Read] =
proxy_s ide_recvB uffer[i] []. Data [3] - B lock_ F i rst_gsq_ N u m ;

last_index_value =
d ec_ index[Sou rce_Packets_ Read] ;

)
else if (proxy_side_recvBuffer[i][j].Data[3] <

Block_First_Seq_Num)
dec_index[Source_Packets_Read] =

last_ i n dex_va I ue + proxy_s i de_recvB uffer[i] []. Data [3] ;

proxy_side_recvBuffer[i] []. EntryFull = 0;

lllncrement counter of # of packets read from
current block

Sou rce_ Packets_Read++ ;

\ //if
else if (proxy_side_recvBuffer[i][j].Skip -= 1) {

proxy_side_recvBuffer[i][].Skip = 9;

) //else if
else {

printf("ERROR(er_cs/proxy_to_server_Control) : Neither
entry full nor Skip set\n\n");

exit(1);
) //else

\ lltf - # of packets read until now < Source_Packets_Number i.e.
not enough packets yet

-258-

else { //Source_Packets_Read packets have been read i.e. enough
data packets obtained for decoding

// *********
m utex_lock(&Control_S ki p_Locklil ül) ;

/lError check
if ((proxy_side_recvBuffer[i][j].EntryFull == 1) &&

(proxy_side_recvBufferlilfil.Skip =: t)) {
printf("ERROR(recv_Control): EntryFull && Skip

== 1\n\n"),
exit(1);

)

if (proxy_side_recvBuffer[i][].EntryFull -= 1) {
proxy_side_recvBuffer[i] []. EntryFull = 0 ;

\ //if
else if (proxy_side_recvBuffer[i][j].Skip == 1) {

proxy_side_recvBuffer[i][j].Skip = a;

) //else if
else {

proxy_side_ recvB uffer[i] []. Control_S ki p ='l ;

m utex_lock(&RecvBufS izeCou nter_ Lock) ;

RecvBufSizeCounter++; //lncrement to offset
decrement below

m utex_ u n lock (& RecvB ufS izeCo u n te r_ Lock) ;

) //else

m utex_u n lock(&Control_Ski p_Locklil [jI) ;

// *********

) //else - Source_Packets_Read packets have been read i.e. enough
data packets obtained for decoding

// i,j incrementation
if (<(Connection_Number-1))

-259-

j++;
else {

j=0;

if (i<(R_PRoxY_s I DE_BU FFE R_StZE-1))
i++;

else
i=0;

)
// i,j incrementation

I I -------------------CONGESTTON CONTROL

/*
* Congestion control check perfromed every

CONG_CNTRL_CHECK_PERIOD+1 rounds. ls VAR(not constant)!!!*/

//Regardless of if will perform congestion control check, packet
reception/reading must be

// logged i.e. RecvBufSizeCounter decremented
m utex_lock(&RecvB ufS izeCou nter_Lock) ;

RecvBufSizeCounter--;
RecvB ufSizeCou nter-copy = RecvBufSizeCounter;

m utex_ u n lock(& Recv B ufSizeCo u nter_ Loc k) ;

if (cong_Control_Check_Counter == 0) {

//Reset cong_Control_Check_Cou nter
cong_Control_Check_Counter = CON G_C NTRL_CH ECK_ P E Rl OD;

if (RecvBufSizeCounter_copy<0) {
printf("ERROR: RecvBufSizeCounter < O\n\n") ;

exit(1);
)

-260-

if (RNR_flag == O) { //Send RNR message lF congested

if ((RecvBufSizeCounter_copy/PROXY_RECV_BU F_CAPACITY)
>= RNR_PROXY_RECV_BUF_SIZE_THRESH) {

RNR-flag = 1; //Set flag

//Send ReceiveNotReady-RNR message("RNR" NULL
terminated string) to server-side proxy

strcpy(cong_msg_buf, "RN R") ;

if (send(tcp_sock, cong_msg_buf,
strlen(cong_msg_buÐ+1, 0) <0) {

printf("ERROR: sendO.O for RNR \n\n");
close(tcp_sock);
exit(1);

)

RNR_counter++, //Bookeeping var
printf("STATUS: %d RNR messages sent out until

now\n\n", RN R_counter) ;

\ //.f
j //if - RNR-flag == g
else if (RNR_flag -- 1) { //RNR_flag == 1 & thus send RR message

if not congested anymore
if ((RecvBufSizeCounter_copy/PROXY_RECV_BUF_CAPACITY)

< RR_PROXY_RECV_BU F_S |ZE_THRESH) {

RNR-flag = O; //Set flag

//Send ReceiveReady-RR message("RR" NULL terminated
string) to server-side proxy

strcpy(cong_msg_buf, "RR");
if (send(tcp_sock, cong_msg_buf,

strlen(cong_msg_buÐ+1, 0) <0) {
printf("ERROR: sendO.O for RR \n\n");
close(tcp_sock);
exit(1);

)

-261-

RR_counter++i //Bookeeping var
printf("STATUS: %d RR messages sent out untíl

now\n\n", RR_cou nte r) ;

\ //if

) //elseif - RNR-flag == 1

else //error case
printf("ERROR: RNR_flag neither 0 nor 1 \n\n");

I llif - cong_Control_Check_Counter == 0
else { //else - cong_Control_Check_Counter > 0

con g_ Control_C h eck_Co u nter-- ;

) //else - cong_Control_Check_Counter > 0

I I -------------------CONGESTTON CONTROL

I llfor - Go through Encoded_Packets_Number entries of proxy-side
receive buffer

/*
* Having read entire current block do error check if enough packets read

needed for decoding
*/
if (Source_Packets_ Read ! = Sou rce_Packets_ N um ber) {

pri ntf(" E R RO R(e r_cs/proxy_to_server_ Con tro I) : N ot e no u g h packets
for decoding(or too many)\n\n");

exit(1);
I //.f

/*
" Having read current block and having sufficient # of packets for

decoding, proceed w/ decoding
" and writing to csproxy_to_server_ProxyBuffer
n/

-262-

//Decode - decode_fec(gf *src[], gf *dst[, int index[], int k, int sz);
decode_fec(dec_src, dec_dst, dec_i ndex, Source_Packets_ N u m ber,

Cu rr_ Block_Packet_Size) ;

I lW rite d ecoded packets to cs proxy_to_server_ P roxyB uffer
for (ic=O; ic<Source_Packets_Number; ic++) {

wh il e (csproxy_to_server_ ProxyBuffer[k]. E ntryFu I I ! = 0)
thr_yield0;

memmove(csproxy_to_server_ProxyBuffer[k]. Data, dec_dst[ic],
Cu rr_ Block_Packet_Size) ;

cs p roxy_to_se rve r_ P roxy B uffe r[k]. Data S ize =
C u rr_Block_ Packet_Size ;

csproxy_to_server_ProxyB uffer[k]. E ntryFu I I = 1 ;

if (k < (cs_To_s_pRoxyBUFFER_StzE-1))
k++;

else
k=0;

\ llfor - write decoded packets into csproxy_to_server_ProxyBuffer

//Reset
EPR_Start = 1;

) //while (1) - llH.andle current block of packets

j I I proxy _to_server_Control_Th read Fu nc

********* * ***
********************* */

-263-

void *server_to_ proxy_Control_Th read Fu nc(void *th r_ I D_PTR) {

/*
* Get thread lD*/
int thr_lD = *((int *) thr_tD_PTR);

int i,j,k; //counter vars
int K_actual=O; l/# of entries actually read(& to be encoded) from

cl i e nt_to_ss proxy_ P roxyB uffe r
int m, thryield_counter, p; //Counter vars
unsigned char *cumul_buf; //Cumulative buffer into which packets read

from client_to_ssproxy_ProxyBuffer are copied into
int cumul_buf_Size=O; /lCurrent size(i.e. # entries full) of cumul_buf
int cumul_buf_Size_temp=0; //A temp var
unsigned char *cumul_buf_Start; //Used to store original starting

address of cumul_buf
int packet_Size=0; llSize of packets to be encoded and writeen to

send-out buffer
int packet_Number=0; //Number of packets to be encoded. Equal to

K_actual in general
int encode_index; //COunter used as index when calling encoding

function
gf *encoded_Packet; //Used in encoding function call. Contains encoded

packet
gf "sou rce_data_Packets[K_ D ES I RED] ; I / Array of buffers conta i n i n g

source(data) packets to be used in encoding
int Num_Encoded_Packets=0; lff otal number of packets to be

produced from encoding
FILE *enc_debug_fd; llFile descriptor of a file used for debug output

ENC-DEBUG_FILENAME
unsigned char

header_added_PacketlsOCK_BUFFER_SIZE+HEADER_SlZEl; i/Packet copied into
send buffer. lncludes header plus the encoded packet

unsigned int Sequence_Number=1; //Sequence number used in header.
lnited to 1!!!

u nsig ned cha r *Sta rt_Ad rr_of_ Remai n i ng_Bytes;

struct timeval *start_time;

-264-

struct timeval *curr_time;

long start_ti m e_i n_msec, cu rr_time_i n_msec;

struct sockaddr_in
csp_name[MAX_CO N N_N U M B_PE R_LOG I CAL_CON N] ; //Client-side proxy address

int send_socket_index = -'l;

/*
* NOTE: sending thread will place 0x00 bytes on left & right of the

header. Thus the first 0x00 byte
* will be followed by k(# of source/data packets) which is <>0x00 and

<>OxFF so header is uniquely
* identified at receiver
*/

*!!************************ ************** ********************* *************

/*
" Allocate memory to time vars
*/
start_time = (struct timeval *) malloc(sizeof(struct timeval));
curr_time = (struct timeval *) malloc(sizeof(struct timeval));

/*
* Setup addresses on client-side proxy with which this thread

communicates (multiple of them !!)
*/
for (i=0; i<Connection_Number; i++) t

memset(&csp_name[i], 0, sizeof(struct sockaddr_in));
csp-name[i].sin-familY = 4p-' *=t'
csp_name[i].sin_port = htons(CSP_U DP_BASE_PORTN U MBER + i);
memcpy(&csp_name[i].sin_addr, chp->h_addr_list[O], chp-

>h_length); llchp has been set above in child

\ /lfor

-265-

/n
* Open encoding debug file descriptor*/
#ifdef ENC_DEBUG_ON

enc_debug_fd = fopen(ENC_DEBU G_Fl LENAM E, "w");
#endif
/*
* Allocate memory to encoded_Packet and source_data_Packetsl]*/
encoded_Packet = (gf ") m al loc(E N C_ PAC KET_BU F_S IzE*sizeof(gf)) ;

for (m=0; m<K_DESIRED; m++) {
source_data_Packets[m]= (gf -)

ma I loc(E N C_SO U RC E_ B U F_ B U F F E R_ S lZ E"s izeof(gf)) ;

I //for

/*
* Allocate memory to cumul_buf
*/
cumul_buf = (unsigned char *)

malloc((K_DES I RED+ 1).SOCK_BUFFER_SIZE*sizeof(unsigned char)) ;

" Store starting address of cumul_buf

cumul_buf_Start = cumul_buf;

/*
" NOTE: proxy-side sending threads have thread lDs from (0 to

Connection_N umber-1) and
* proxy-side receiving threads have thread lDs from

(Connection_Number to 2*Connection_N umber-1)
* Therefore (thr_lD-Connection_Number) is the connection # that should

be used by the proxy-side

-266-

* receiving threads
*/

k = 0; //lnit server_to_csproxy_ProxyBuffer counter
i = O; //lnit
j = o; lllnit

while (1) {

K_actual = O; //Reset

* Reset cumul_buf_Size and cumul_buf address

cumul_buf_Síze = 0;
cumul_buf = cumul_buf_Start;

/*
* Try to geVread K_DESIRED entries from

s e rve r_to_ cs p roxy_ P roxyB uffe r.
* K_actual is number of entries that were actually read.
*/

il --------

for (m=1; m<=K_DESIRED; m++) {

if (m==1) {

llWait until entry/packet written into next cell to be read
while (server_to_csproxy_ProxyBuffer[k].EntryFull != 1) {

thr_yield0;

-267-

) i/while

K_actual = 1;

I llif - m==1
else{ //else-m>1

for (thryield_counter= 1 ; thryield_counter<=TH R_Yl ELD_MAX;
thryield_counter++) {

if (server_to_csproxy_ProxyBuffer[k].EntryFull != 1) {
#ifdef ENC_DEBUG_ON

fprintf(enc_debug_fd, "Thread slept to get %d
th packet\n", m);

#endif
thr_yield0;

\ //if
else

break;

j /lfor

if (server_to_csproxy_ProxyBuffer[k].EntryFull != 1)
break;

//lncrement # of packets/entries read from
server_to_csp roxy_ P roxyB uffe r

K_actual = K_actual +1;

) //else - m>1

//Write packet into cumulative buffer & increment cumulative buffer
size(# bytes in c.buffer) etc.

memcpy(cumul_buf, server_to_csproxy_ProxyBuffer[k]. Data,
s e rve r_to_ cs p roxy_ P roxyB u ff er [k] . D ata S ize) ;

cumul_buf=cumul_buf + server_to_csproxy_ProxyBuffer[k]. DataSize;
//Move cumul_buf start so as to copy in next packet next round (if done)

-268-

cumul_buf_Size = cumul_buf_Size +
s e rve r_to_ cs p ro xy_ P roxy B uffe r[k] . D a ta S i ze ;

server_to_cs proxy_ ProxyBuffer[k]. E ntryFu I I = 0 ;

//l ncrement server_to_csproxy_ProxyB uffer i ndex/cou nter k (at E N D

of for loop)
if (k < (s_To_cs_PRoxYBU FFER_SrZE-1))

k++;
else

k=0;

/lfor

/*
" Write K_actual/K_DESIRED to enc. debug file*/
#ifdef ENC_DEBUc_ON

fpri ntf(en c_debug_fd, " K_actua l/K_ D ES I RE D = Vodl %od \n", K_actua l,

K_DESTRED);

#endif

/*
* Make an error check for K actual
*/
if (K_actual > K_DESIRED) {

printf("E RRO R(serv_to_proxy_Control_Th read) : K_actual >
K_DESIRED\n\n");

exit(1);
)

/*
* Having read K_actual entries from server_to_csproxy_ProxyBuffer,

now encode these entries/packets

)

il

-269-

* & write them to proxy_side_sendBuffer
*/
//

==============

//Reset cumul_buf to its starting address
cumul_buf = cumul_buf_Start;
llCopy cumul_buf_Size into a temp var to use
cumul_buf_Size_temp = cumul_buf_Size;

//Set size of packets to be encoded and written to send-out buffer
(K_actual is # of packets)

if (cumul_buf_Size_temp > TEMP_CUMUL_BUF_SIZE_TRESH) {

while ((cumul_buf_Size_temp o/o K_actual) != 0)
cumul-buf-Size-temp = cumul-buf-Size-temp - I ;

#ifdef ENC DEBUG ON
f p ri n tf le n c- O1 U u g-t0, " cu m u l- b uf- S ize = 7o d a n d

cu mul_buf_Size_tem p= 7od\n",cumu l_buf_Size, cumul_buf_Size_tem p) ;

#endif

llError check. cumul_buf_Size_temp must have reduced in size no
more than (K_actual-1)

if ((cumul_buf_Size - cumul_buf_Size_temp) > (K_actual-1)) {
printf("ERROR(serv_to_proxy_Control_Thread) : More tha n

(K_actual-1) bytes'removed' from cumul_buf\n\n");
exit(1);

\ //if

pa cket_S i2s = (cu m u l_buf_S ize_tem p/K_actu a I) ;

packet_N umber - K_actual ;

j //.f

-270-

else { //cu m u l-buf_Size-tem p<=TE M P-CU M U L-B U F-S IZE-TRES H so

encode/send out as one packet(for efficiency)

packet_Síze = cumul_buf_Size_temp;

Packet-Number = 1;

#ifdef ENC_DEBUG_ON
if (K_actual>1)

fpri ntf(enc_d ebu g_fd, "Amal g amation occu rred (% d bytes)
\n", cumul_buf_Size-temp) ;

#endif
) //else - cu mu l_buf-Size-temp<=TEM P-CU M U L-BU F-SIZE-TRES H so

encode/send out as one packet(for efficiency)

llPrint blank line in enc. debub file
#ifdef ENC_DEBUG_ON

fpri ntf(enc_d eb u g_fd, "\n") ;

#endif

llError check
if (packet_S ize > S ERV_ RECV_SOCK_BU FFER_S IZE) {

printf(" E R RO R(serv_to_ proxy_Co ntrol) : packet_Size >

SERV_RECV_SOCK_B U FFER_SIZE \n\n") ;

exit(1);
\ //.f

/lCopy source(data) packets into source_data_Packets[] array of
buffers

for (p=g' pcpacket-Number; p++) {
sou rce_data_ Packets[p] = cum u l_buf+ (p*packet_Size) ;

)

//Record addres of byte after end of last packet read (needed below
for sending out remaining bytes)

Start_Adrr_of_Remaining_Bytes = cumul_bLrf+(p*packet_Size);

-271-

llSet# of packets to be produced from encoding
Num_Encoded_Packets = N_FACTOR*packet_Number;

/*
* Encode the packet_Number packets of size packet_Size and copy

them to proxy_side_sendBuffer[] []*/
for (encode_index=O ; encode_index<N u m_ Encoded_ Packets;

encode_index++) {

//Get one encoded packet (out of Num_Encoded_Packets)
bu i ld_fec(source_data_ Packets, packet_ N u m ber, packet_Size,

head er_add ed_ Packet+ H EAD E R_S lZE, en code_i ndex) ;

/n

" Copy encoded packet to proxy_side_sendBuffer
*/
ll\dd header (k, n, Seq.#, length[2-bytes], packet# in block)
header_added_Packetl0] = (unsigned char) 0x00;
header_added_Packet[1] = (unsigned char)packet_Number; //Set k

i.e. # of data/source packets
header-added_Packet[2] = (u nsig ned char) N u m_ E ncoded_Packets;

//Set n i.e. # of enc.packets
header_added_Packet[3] = (unsigned char)Sequence_Number;

//Set sequence #. Keep it here!!!
header_added_Packetls] = (u nsig ned

char)(packet_Size+HEADER_SIZE); / lSet length (2nd byte [low])
header_added_Packet[4] = (unsigned

char)((packet_Size+H EADER_S IZE)>>B); //Set length (1 st byte thighl)
header_added_Packet[4] = (unsigned char)(((unsigned char)(0x80))

I header_added_Packet[a]); llCode so that <>0

if (header_added_Packet[S] == (unsigned char)0x00) {
header_added_Packetls] = (unsigned char)(((unsigned

char)(Ox8O)) | header_added_Packet[S]);
header_added_Packet[4] = (unsigned char)(((unsigned

char)(0x40)) | header_added_Packet[4]);
I llif - code length fields so that <>0

-272-

header_added_Packet[6] = encode_index+ 1 ;

header_added_Packetl7] = (unsigned char) 0x00;

//lncrement sequence number after using it
if (Sequence_Number < MAX_SEQ_NU M B_VALU E)

Sequence_Number++;
else

Sequence_Number=1 ;

/*
* Send data to server-side proxy
*/

llCheck congestion control flag HoldBack before sending data and
wait if set

m utex_lock(&Hold Back_Lock);
while (HoldBack != 0) {

m utex_ u n lock(& H old B ack_ Lock) ;

thr_yield0;
mutex_lock(& HoldBack_Lock);

)
mutex_unlock(&HoldBack_Lock);

#ifdef USE DELAY

/ / ----------------

if (gettimeofday(start_time, NULL) .0) {
pri ntf(" ERRO R(send_Control) : getti meofday error\n\n") ;

exit(1);
)

sta rt_time_i n_msec = (sta rt_time->tv_sec)* 1 000 + (start_ti me-
>tv_usec)/1000;

-273-

while (1) {
if (gettimeofday(curr_time, NULL) .0) {

pri ntf("E RRO R(send_Control) : gettimeofday error\n\n") ;

exit(1);
)

curr_time_in_msec = (curr_time->tv_sec)*1 000 + (curr_time-
>tv_usec)/1000;

if ((curr_time_in_msec - start_time_in_msec) >=
DELAY_rN_MSEC)

break;

//Since haven't reached timeout value yet have thread
sleep/yield

thr_yield0;

) //while

il ----------------

#endif

/ / ---------
//lncrement send socket identifier/index (to change sending socket

used)
íf (send_socket_index < (Connection_Number-1))

send_socket_index++;
else

,-------"-:"d-socket-index
= 0;

// printf("CHECK(sendControl)Sending via socket
Zo d\n\n,,, sen d_sockef_ i n d ex) ;

-274-

IITCP-if (send(newsockfd[send_socket_index], buf, n , 0) . 0) {
if (sendto(newsockfd[send_socket_index],

header_added_Packet, packet_Size+H EADER_SlZE, 0, (struct sockaddr *)

&csp_name[send_socket_index],sizeof(struct sockaddr_in)) . 0) {
printf("ERROR(send/Control): While sending data to

serv-side proxy <0 \n\n");
exit(1);

\ //.f

//Update j & ivalues
if (j < (Connection_Number-1))

j++;
else { //j wraps-around so update i also

j=0;

if (i < (s_pRoxy_stDE_BUFFER_StZE-1))
i++:

else
i=0;

)

\ llfor - encode packets & copy them to proxy_side_sendBuffer[][]

/*
* lf bytes left over send them out - NO PASTING else can fall into

deadlock !!!
*/
if (cumul_buf_Size_temp < cumul_buf_Size) {

// ********

packet_Number = 1;

packet_Size = cum ul_buf_Size - cu mul_buf_Size_temp;

-275-

//Set # of packets to be produced from encoding
Num_Encoded_Packets = N_FACTOR"packet_Number;

/lCopy source(data) packets into source_data_Packets[] array of
buffer

sou rce_data_ Packets[0] = Start_Adrr_of_Rema i n i ng_ Bytes ;

for (encode_index=O ; encode_index<Num_Encoded_Packets;
encode_index++) {

llGet one encoded packet (out of Num_Encoded_Packets)
bu ild_fec(sou rce_data_ Packets, packet_ N u m ber, packet_Size,

h eader*ad d ed_ Packet+ H EAD E R_S I ZE, encode_i nd ex) ;

/*
* Copy encoded packet to proxy_side_sendBuffer
n/

ll\dd header (k, n, Seq.#, length[2-bytes], packet# in block)
header_added_Packet[0] = (unsigned char) 0x00;
header_added_Packetl1] = (unsigned char)packet_Number; //Set k

i.e. # of data/source packets
header_added_Packet[2] = (unsigned char)Num_Encoded_Packets;

//Set n i.e. # of enc.packets
header_added_Packet[3] = (unsigned char)Sequence_N u mber;

//Set sequence #. Keep it here!!!
header_added_Packet[5] = (unsigned

char)(packet_Size+HEADER_SIZE); llSet length (2nd byte [ow])
header_added_Packet[4] = (unsigned

char)((packet_Size+HEADER_S IZE)>>B); //Set length (1 st byte [high])
header_added_Packet[4] = (unsigned char)(((unsigned char)(OxBO))

I header_added_Packet[4]); /iCode so that <>0

if (header_added_Packet[5] == (unsigned char)Ox00) {
header_added_Packetl5] = (unsigned char)(((unsigned

char)(0x80)) | header_added_Packet[S]);
header_added_Packet[4] = (unsigned char)(((unsigned

char)(0x40)) | header_added_Packet[4]);
I llif - code length fields so that <>0

-276-

header_added_Packet[6] = encode_index+ 1 ;

header_added_Packet[7] = (unsigned char) 0x00;

//lncrement sequence number after using it
if (Sequence_Number < MAX_SEQ_N U MB_VALU E)

Sequence_Number++;
else

Sequence_Number=1 ;

/*
* Send data to server-side proxy
*/

//Check congestion control flag HoldBack before sending data and
wait if set

mutex_lock(&Hold Back_Lock) ;

while (HoldBack != 0) {
mutex_unlock(&HoldBack_Lock) ;

thr_yield0;
mutex_lock(&Hold Back_Lock);

)
m utex_u nlock(&Hold Back_Lock) ;

#ifdef USE DELAY

//----------------

if (gettimeofday(start_time, NULL) .0) {
pri ntf("8 RROR(send_Control) : gettimeofday error\n\n") ;

exit(1);
)

start_time_in_msec = (start_time->tv_sec)*1 0O0 + (start_time-
>tv_usec)/1000;

-277-

while (1) {
if (gettimeofday(curr_time, NULL) .0) {

pri ntf(" E RROR(sen d_Control) : getti meofday error\n\n") ;

exit(1);
)

curr_time_in_msec = (curr_time->tv_sec)*'1 O00 + (curr_time-
>tv_usec)/1000;

if ((curr_time_in_msec - start_time_in_msec) >=
DELAY_rN_MSEC)

break;

//Since haven't reached timeout value yet have thread
sleep/yield

thr_yield0;

) //while

/ I ----------------

#endif

I / ---------
//lncrement send socket identifier/index (to change sending socket

used)
if (send_socket_index < (Connection_Number-1))

send_socket_index++;
else

,-------:-:"d-socket-i
ndex = 0;

ln9P-it (send(newsockfd[send_socket_index], buf, n , 0) . 0) {
if (sendto(newsockfd [send_socket_ in dex],

header_added_Packet, packet_Size+H EAD E R_S lZE, 0, (struct sockadd r *)

&csp_n ame [send_socket_i ndex],sizeof(struct sockadd r_i n)) < 0) {

-278-

serv-side proxy <0 \n\n");
printf("ERROR(send/Control): While sending data to

exit(1);
I //,f

//Update j & ivalues
if fi < (Connection_Number-1))

j++;
else { lljwraps-around so update ialso

j=o;

if (i < (s_PRoxY_sr DE_BUFFER_SrZE-1))
i++;

else
i=0;

)

j llfor - encode and write-out packets to send buffer

// ********

\ //if
else if (cumul_buf_Size_temp > cumul_buf_Size) { //error case

pri ntf(" E R RO R(server_to_proxy_Control) : cu mul_buf_S ize_tem p >
cumul_buf_S ize\n\n") ;

exit(1);
) //else - error case

//

==============

) //while(1)

-279-

*** * ***** *** ** ************* *************** ** * * ****** *************** *** *****

) //server_to_proxy_Co ntrol_Th read Fu n c

**** ***** ********************* * ****** ** * *** * * ***************** *************
+******************** */

* Thread (one instance) used to receive congestion control messages from client-
side proxy(RNR/RR)

void *Cong_Msg_Recv_ThreadFunc(void "JunkPTR) i

int n,m;
unsigned char cong_msg_buf[20l; llBuffer used to receive congestion

control messages
unsigned char CongMessage[2O]; //Congestion control message

eventually written into here
int Last_Message_was_RNR=2; llFlag.lnit to a neutral value

while (1) {

/*
* Read-in congestion control message from client-side proxy
*/
strcpy(CongMessage,""); //lnit string
m=0;
while ((n = recv(tcp_sock, cong_msg_buf, sizeof(cong_msg_buf),

o)) >o) {

m=m+n;
strncat(CongMessage, cong_msg_buf, n);
if (CongMessage[m-1] =-'\0')

-280-

break;//if '\0' in string then done so exit recv/while loop

) i/while
if (n<=0) {

printf("ERROR(Cong_Msg_Recv_Thread): n<=0 recvQ \n\n");
close(tcp_sock);
exit(1);

)
/*
* Read cong. control message received and act appropriately
*/
if (strcmp(CongMessage, "RNR") == 0) {

if (Last_Message_was_RNR -= 1)

p ri n tf (" E R R O RA/VA R N I N G (C o n g_ M s g_ Recv_T h re a d) :

Multiple RNR messages received in a row\n\n");

Last_Message_was_RNR = 1; //Set flag

llPrint out that "RNR" message received
#ifdef FLOW_CNTRL_DEBUG_PRl NT

pri ntf("STATU S(Con g_Msg_Recv_Thread) : RN R messag e

received\n\n");
#endif

m utex_ lock(& H o ld B ack_ Lock) ;

HoldBack = 1;

mutex_unlock(&HoldBack_Lock);

)
else if (strcmp(CongMessage, "RR") == 0) {

if (Last_Message_was_RNR -- 0)
pri ntf("E RRO R

^/AR
N I N G (Con g_ Msg_Recv_Th read) :

Multiple RR messages received in a row\n\n");

Last_Message_was_RNR = 0; //Set flag

llPrint out that "RR" message received
#ifdef FLOW_CNTRL_DEB U G_PRl NT

-281-

printf("STATU S (Cong_Msg_Recv-Thread) : RR messag e
received\n\n");

#endif

m utex_lock(& H old Back_ Lock) ;

HoldBack = 0;
mutex_unlock(&HoldBack-Lock) ;

)
else { //Error case

printf("ERROR(Cong_Msg_Recv_Thread): CongMessage neither
RNR nor RR \n\n");

close(tcp_sock);
exit(1);

) //else

) //while(1)

I I lCong_Msg_Recv_ThreadFunc

-282-

