IMPROVING THE PERFORMANCE OF TCP OVER SATELLITE

CHANNELS

by

Spiros Philopoulos

A Thesis presented to the University of Manitoba in
partial fulfillment of the requirements for the degree of
Master of Science
in the

Department of Electrical and Computer Engineering

Winnipeg, Manitoba
June, 2001

© 2001 Spiros Philopoulos

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale

‘du Canada

Acquisitions et
services bibliographiques

385, rue Wellington
Ottawa ON K1A ON4

Canada Canada

Your file Votre référence

Our file Notre référence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
¢lectronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-76847-3

THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES

*kkkk

COPYRIGHT PERMISSION PAGE
Improving the Performance of TCP Over Satellite Channels

BY

Spiros Philopoulos

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University
of Manitoba in partial fulfillment of the requirements of the degree

of

MASTER OF SCIENCE
SPIROS PHILOPOULOS ©2001

Permission has been granted to the Library of The University of Manitoba to lend or sell copies
of this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend
or sell copies of the film, and to University Microfilm Inc. to publish an abstract of this
thesis/practicum.

The author reserves other publication rights, and neither this thesis/practicam nor extensive
extracts from it may be printed or otherwise reproduced without the author's written
permission.

ABSTRACT

Reliable transport protocols such as the TCP transport layer protocol have been

designed and tuned for traditional wired networks. TCP performs relatively well on such wired
networks by adapting to end-to-end delay and to losses caused by congestion. However, in the
case of wireless links, such as satellite channels, due to the special attributes of satellite links,
such as high bit error rates, large propagation delays etc., TCP performance degrades
significantly. The work described in this thesis was motivated by the need for improving the
performance of TCP over satellite channels. In this thesis three connection-splitting
architectures based on the use of transparent proxies are implemented and tested. Namely, a
single-TCP-interproxy-connection connection-splitting architecture, a multiple-TCP-interproxy-
connection connection-splitting architecture and a UDP-interproxy-connection connection-
splitting architecture are implemented. The throughput increases obtained by the latter two
architectures were very significant with the UDP connection-splitting scheme even yielding a

throughput improvement of an order of magnitude in some cases.

-1~

ACKNOWLEDGEMENTS

I would like to begin by thanking Dr. K. Ferens for proposing this topic and helping me
throughout the course of this thesis. I would also like to thank Dr. R. D. McLeod for his advice
and help in completing this thesis. Many thanks also go out to Guy Jonatschick, Arindam Mitra,

Thuraiappah Vaseeharan and especially to Dr. Muthucumaru Maheswaran for providing me

with some of the resources necessary to complete this thesis.

- iii -

TABLE OF CONTENTS

Page

ABSTRACT i v v e it e e e e e e et e e e e e e e e e ii
ACKNOWLEDGMENTS« & v v v vt v e e e e e e e e e e e 1ii
LISTOFTABLES ¢ i i e et e et e e e e e e e e e e vii
LISTOFFIGURES & v vt vt e et e e e e e e e e e e viil
IINTRODUCTION & v vt vttt e e e et e e e e e e e e e s 1
1.1 Overview of TCP Protocoll

1.2 Satellite Link Characteristics and their Adverse Effectson TCP 4
Satellite Link Characteristics e e e e 4

Adverse Effects of Propagation Delay O ¢

Adverse Effects of High Bit Error Rate e e e oL Y

Adverse Effects of Bandwidth Asymmetry 9

Adverse Effects of Satellite on TCP performance: Experimental Verification .11

II1 BACKGROUNDTHEORY v v v v v v i v e v v e e e e e 12
2.1 Background Literature R 2
TCP for Transactions « « . o « o12
Slowstarto .13
Congestion Avoidance T
LossRecovery16
Multiple Parallel Connections 18
Header Compression 19
Sharing of TCP State Information A
ACKRateControl coe e 21
ErrorRecovery 23

-Iyv-

2.2 Vandermonde Matrix based Erasure Codes .
Introduction to Erasure Codes
Linear Block Erasure Codes . . .

An Erasure Code based on Vandermonde Matrices . .

I SYSTEMDESCRIPTION o o v v vt v o o v o v o o s

3.1 Performance Enhancing Proxies e e e e e e e

TCP Spoofing Proxy Scheme .
TCP Connection-splitting Proxy Scheme .
Terminology .
3.2 Single-TCP-Connection Connection-Splitting Performance
Enhancing Proxies . .
3.3 Multiple-TCP-Connection Connection-Splitting Performance
Enhancing Proxies .
3.4 Single/Multi-UDP-Connection Connection-Splitting

Performance Enhancing Proxies .

IV EXPERIMENTAL RESULTSAND ANALYSIS

4.1 Test Configuration and Methodology . . .
4.2 Obtained Results and Analysis . .

V CONCLUSIONSAND FUTUREWORK

5.1 Single-TCP-Connection Connection-Splitting Performance Enhancing Proxy
Architecture

5.2 Mutli-TCP-Connection Connection-Splitting Performance Enhancing Proxy
Architecture

5.3 UDP Connection-Splitting Performance Enhancing Proxy Architecture . . .

5.4 Future Work and Recommendations . . .

REFERENCES & ¢ v v v v e v e e o e e e e e oo o o o o

.23
. 23
. 25
. 29

31
31

. 32

. 34

. 36

. 36

. 41

.45

63

.63

.63
. 64
. 64

APPENDICES

A CLanguage Listing for Single-connection-TCP Connection-splitting Proxies . .71
B C Language Listing for Multi-connection-TCP Connection-splitting Proxies . 101

C C Language Listing for UDP Connection-splitting Proxies 153

- vi-

Li1ST OF TABLES

Page
4.1 Average transfer times and the percent improvement in throughput for 10 bit error rate 57

4.2 Average transfer times and the percent improvement in throughput for 107 bit error rate 60

- Vil -

L1ST OF FIGURES

Fig. 1.1 Slow start mode comparison (mathematical models) for satellite and terrestrial
networks .
Fig. 1.2 Congestion avoidance comparison (mathematical models) for satellite and

terrestrial networks .

Page

8

Fig. 1.3 & 1.4 Variation of TCP-over-Satellite throughput with varying satellite link BER and

propagation delay.
Fig. 2.1 Graphical representation of erasure code encoding/decoding process.
Fig. 2.2 Graphical representation of the encoding/decoding process in matrix form .
Fig. 3.1 TCP spoofing proxy architecture .
Fig. 3.2 TCP connection-splitting proxy architecture .

. 10
25
27
33

. 35

Fig. 3.3 Timing diagram for single-connection TCP connection-splitting proxy architecture .38

Fig. 3.4. Program structure abstract model for single-connection TCP connection-splitting

proxy architecture .

. 39

Fig. 3.5 Timing diagram for multi-connection TCP connection-splitting proxy architecture .42

Fig. 3.6 Program structure abstract model for multi-connection TCP connection-splitting proxy

architecture .

Fig. 3.7 Timing diagram for UDP connection-splitting proxy architecture . .

.44
. 46

Fig. 3.8 Program structure abstract model for UDP connection-splitting proxy architecture 48

Fig. 3.9 UDP proxy architecture packet header .

Fig. 3.10 Simplified flow of execution from reception of packets to erasure decoding .
Fig. 4.1 Test configuration .

Fig. 4.2 Transfer times for 3.8 MB file at 10~ bit error rate for Straight TCP vs Single-

connection TCP proxy scheme vs Single-connection UDP proxy scheme . .

Fig. 4.3 Transfer times for 3.8 MB file at 10 bit error rate for Straight TCP vs Single-

connection TCP proxy scheme vs 2-connection TCP & UDP proxy schemes .

~ Vi -

.50
Sl
. 52

. 54

. 55

Fig. 4.4 Transfer times for 3.8 MB file at 10~ bit error rate for Straight TCP vs Single-

connection TCP proxy scheme vs 3-connection TCP & UDP proxy schemes .

Fig. 4.5 Average transfer times for 3.8 MB file at 10~ bit error rate . .

Fig. 4.6 Transfer times for 3.8 MB file at 10™° bit error rate for Straight TCP vs Single-
connection TCP proxy scheme vs Single-connection UDP proxy scheme

Fig. 4.7 Transfer times for 3.8 MB file at 10™° bit error rate for Straight TCP vs Single-
connection TCP proxy scheme vs 2-connection TCP & UDP proxy schemes

Fig. 4.8 Transfer times for 3.8 MB file at 10™° bit error rate for Straight TCP vs Single-

connection TCP proxy scheme vs 3-connection UDP proxy scheme and 3 & 4

connection TCP proxy scheme .

Fig. 4.9 Average transfer times for 3.8 MB file at 10 bit error rate
Fig. 4.10 UDP proxy schemes for varying redundancies at 10~ bit error rate .

Fig. 4.11 UDP proxy schemes for varying redundancies at 10~ bit error rate .

-Ix-

. 56
. 56

.57

. 58

58
. 59

61

.61

CHAPTER1

INTRODUCTION

Reliable transport protocols such as the TCP transport layer protocol have been
designed and tuned for traditional wired networks. TCP performs relatively well on such wired
networks by adapting to end-to-end delay and to losses caused by congestion. However, in the
case of wireless links, such as satellite channels, due to the special characteristics of satellite
links, such as high bit error rates, large propagation delays etc., TCP performance degrades
significantly. The following is a brief overview of the TCP protocol, followed by an outline of

the problems encountered by TCP in a satellite environment.

1.1 Overview of TCP Protocol

TCP is a networking protocol that provides reliable connections between two
applications. TCP provides congestion control so as to not send data to the receiver faster than
the receiver can receive data, and also provides flow control so as to not congest the network.
Data is sent by TCP by segmenting a byte stream of data into a number of segments up to a
maximum segment size, called MSS, typically 536 or 1460 bytes in size. In order for data to be
exchanged between two endpoints first a connection must be established between them and this
is done by performing the so called three-way handshake. The three-way handshake consists of
having the initiator of the connection send a packet/segment with the SYN flag set to the receiver
to be, which receiver if it decides to accept the connection request will respond by sending a
segment with the SYN and 4CK flags set, acknowledging and accepting the connection request.
Then the connection setup will be completed by the initiator by sending an 4CK segment (ie.
ACK flag set) back to the receiver. This connection setup procedure is referred to as the three-
way handshake and takes an approximate amount of time of one round trip time (RTT), which

is the amount of time for a segment to traverse the network path in both directions.

Once the connection setup is complete the two endpoints can exchange data and every
packet sent must be acknowledged by the receiver. In older TCP implementations
acknowledgments were sent for every segment transmitted, however for years now TCP
implementations implement the so-called delayed ACK whereby acknowledgments are coalesced
for up to two segments. In TCP, acknowledgments are cumulative rather than selective, meaning
that TCP will not acknowledge a particular segment if there are segments preceding it that have

not been received yet.

Flow control and congestion control are made possible by the use of what are called
sliding windows and are defined in terms of MSS segments in size. The size of the sending
window determines how many segments can be sent by the transmitter so as to not congest the
receiver (congestion control) or the network (flow control). The two windows that exist in TCP
are the receiver-advertised window -advertised in every packet sent by the receiver- and the
congestion window. The receiver-advertised window value reflects the approximate amount of
data that the receiver is capable of receiving without being congested i.e. without having its
receive buffers overflow. To what value the receiver-advertised window is set to, e.g. whether it
is exactly the amount of free space in the receive buffers or some other way of calculation, varies
depending on the particular TCP implementation. The congestion window on the other hand, is
the window used by the transmitter and it represents the amount of data the sender can transmit
before receiving an acknowledgement. The actual window used by the sender though when
transmitting data is not the congestion window but the so-called effective window which is
defined as the minimum of the congestion window and the receiver-advertised window. Since
in well designed TCP implementations the receiver-advertised window is typically set to a fixed

size of 64KB, the congestion window determines the flow of data from the sender.

While TCP manages congestion control via the use of sliding windows, there is also the
issue of flow control i.e. not congesting the other network resources along a given network path
e.g. routers. If TCP’s transmission rates are too high then intermediate routers along the
network path will be overwhelmed, leading to buffer overflow and eventually causing the routers

to discard packets. Therefore, TCP must adjust its transmission rate to the network conditions in

order to avoid segment loss and thus retransmissions. If a large number of TCP connections are
sending data at rates inappropriately high then the network might suffer from congestive
collapse. In a state of congestive collapse most of the data segments sent, and even their
corresponding acknowledgments, will be lost forcing segment retransmission making the
situation even worse, bringing the network to a virtual halt. The flow control mechanisms
employed by TCP are the Retransmission Time-Out (RTO) mechanism and the Fast Recovery
& Fast Retransmission mechanism. Before proceeding to the explanation of these two flow

control mechanisms it is necessary to first explain how the congestion window evolves.

There are two ways by which the congestion window evolves: a) slow start and b)
congestion avoidance. In slow start the congestion window starts off with a small size of
typically one MSS and gradually increases in size by one MSS for every acknowledgment
received, resulting in an exponential congestion window growth rate. TCP uses slow start
whenever it is not sure how fast to send data, as for example at the beginning of a TCP session,
after congestion in some cases and after idle periods. Once the congestion window size reaches
the value of the slow start threshold-(sstresh), slow start mode terminates and congestion
avoidance mode commences. The slow start threshold is initially set to the value of the
receiver-advertised window at the start of the connection. In congestion avoidance mode, the
congestion window increases at a slower rate than in slow start mode, by increasing by
1/(congestion window), unless the window size is equal to the receiver-advertised window size,
for every acknowledgement received thus resulting in a linear sliding window growth rate of
approximately one segment every RT7T. The linear window growth rate reflects the fact that
congestion avoidance mode is used to conservatively probe for additional bandwidth after slow

start mode [Allm97].

Returning to the Retransmission Time-Out and Fast Recovery & Fast Retransmission
mechanisms, both of these mechanisms detect packet loss and retransmit the lost segments(s).
With the Retransmission Time-Out mechanism, every segment sent by TCP has a timer
associated with that segment. If an acknowledgement for that segment is not received within a

certain amount of time, the timer expires (a timeout occurs) and the sender responds by

-3.

retransmitting the segment and entering into slow start mode reducing its congestion window
size to one. This has the effect of severely reducing the sender’s transmission data rate, and also
resets the slow start threshold to half of the current congestion window size (before the
congestion window is set to one of course). The timeout value associated with each TCP
segment is a smoothed estimation of the round trip time-(RTT) plus some variation. The second
method is based on receiving multiple duplicate acknowledgments (with the receiver sending the
same acknowledgment for every segment received after the lost one), typically three, which leads
the sender to believe that the segment after the last acknowledged segment has been lost (with
the TCP segments after the lost one not being able to be acknowledged since TCP uses
cumulative acknowledgments). In response the sender will retransmit the packet believed to be
lost, referred to as a fast retransmit, and will halve the congestion window as opposed to setting
it to one MSS as with slow start, and the slow start threshold is set to the new congestion
window size. This is referred to as fast recovery. As can be easily understood the effects of fast
retransmission and fast recovery on the TCP sending rate are are significantly less adverse than
those of the Retransmission Time-Out mechanism. When a retransmission occurs due to a
timeout expiry TCP cannot infer anything about the state of the network and thus reduces its
congestion window to one and enters slow start in order to not aggravate a potentially serious
congestion problem in the network. In the case of fast retransmission though, TCP does receive
duplicate acknowledgements for TCP segments that were transmitted after the lost segment thus
indicating that there continues to be a flow of data from sender to receiver and therefore the

sending rate reduction does not have to be as severe [Allm97].

1.2 Satellite Link Characteristics and their Adverse Effects on TCP
1.2.1 Satellite Link Characteristics

Communication satellite systems can be categorized into three categories based on their

orbit: Geosynchronous (GSO), Medium Earth Orbit (MEO) and Low Earth Orbit (LEO).
Geosynchronous satellites are located at a geostationary orbit with an altitude of approximately

36,000 km. Due to this large altitude the propagation delay for these satellites is large compared

to that of terrestrial links, or any other type of link for that matter, varying in range typically
from 240 msec to 270 msec for a signal to travel twice that distance of 36,000 km i.e. one hop
(from ground-station to satellite to ground-station). Thus the Round T rip Time (RTT) for a
GSO satellite link alone approaches 500 msec on average, not including the delay of the rest of
the network. For LEO satellites the delay is significantly smaller ranging from a few msec to as
much as 80 msec. The large propagation delays are one of the important characteristics of
satellite networks that distinguish them from terrestrial networks. A second fundamental

characteristic of satellite channels is the higher bit error rates (BER) that they exhibit which are

typically in the range of one error in 107 bits or 1 x 107", and for some older satellite systems the

BER even reaches levels of 1x107. Other fundamental characteristics of satellite channels

include bandwidth asymmetry, variable RTTs and interminent connectivity [RFC2488].
Bandwidth asymmetry is exhibited in asymmetric satellite networks that where built, usually due
to cost reasons, with one direction of the link having a higher capacity than the reverse direction
link. For example outgoing traffic might use the satellite channel but with the return link using a
slow terrestrial link for example, such as a modem channel. Regarding variable RTTs, in some
satellite environments, such as LEO satellite systems, the propagation delay will vary over time.
However it is still uncertain whether variable RTTs have an adverse affect on TCP performance.
Regarding the last fundamental characteristic mentioned, interminent connectivity is exhibited in
non-GSO satellite systems where handoffs are required, which if not performed will lead to

increased packet loss.

Summarizing, the fundamental characteristics of satellite systems that distinguish them
from terrestrial networks are:

i) Large propagation delays (in GSO systems to a greater extent)

i1) High bit error rates

1ii) Bandwidth asymmetry

iv) Variable RTTs (in LEO satellite systems to a greater extent)

v) Interminent connectivity leading to greater packet loss (in non-GSO systems)

The two satellite channel characteristics with the largest adverse effect on TCP
performance are the large propagation delay exhibited in GSO satellite networks and the high
bit error rates. Since these two characteristics are those that most adversely affect TCP, the
focus in this thesis will be on those, along with bandwidth asymmetry, and on GSO satellites as

GSO satellites exhibit these characteristics most.
1.2.2 Adverse Effects of Propagation Delay

Two adverse effects of the large propagation delays in satellite networks on TCP
performance are: sliding window growth problems and underutilization of available bandwidth
[Allm97] [Krus95]. Sliding window growth problems are exhibited in both the slow start and
congestion avoidance phases. [JaKa88] defines that the time needed in slow start mode for the

sliding window to reach a size of W segments given a RTT of R is:
Slow Start Time= R-log, W (L.1)
Therefore, for a given effective sliding window of W segments, we have:

Satellite Slow Start Time _ Rg,r-log, W RTTy,,
Terrestrial Slow Start Time Rpg,-log, W RIT,,

(1.2)

For typical RTT values the ratio in (1.2) exceeds the value of 5 i.e. in a satellite environment in
slow start mode it takes the sliding window much longer to reach its maximum size. Fig. 1.1
shows, based on the mathematical model of equation (1.1), the time required by a satellite
network and a terrestrial network to complete the slow start mode at the start of a TCP
connection, i.e. starting from a congestion window of size one up to the typical sstresh of
64KB, using typical RTT values and using a segment size of 1KB (i.e. W= 64 segments),
assuming lossless operation. Many short flow (i.e. small size) data transfers can complete

without ever having attained a window large enough for optimal link utilization. Similarly, in the

Time te slow stont completion (W=64 sogmoents/1 KB segment strzig

" Texrestrizl

Sateflive

Wossisiiar l"lfl;llx\‘] Bli ! iI lllllu 1.5, l 1 I! I iklh Iill! lx!}l bl 9 | E‘i ELAbit Lid Evl
00 0 10 2 30 40 50 o4
Segment Mumber

Fig. 1.1. Slow start mode comparison (mathematical models) for satellite and terrestrial
networks.

congestion avoidance phase it is obvious that the growth rate of the sliding window in a satellite
network will be much smaller than in a terrestrial network since as we know the congestion
window increases in congestion avoidance by approximately one segment every RTT with the
RTT being much larger in the satellite case. The time to increase the congestion window size by
W segments in congestion avoidance is simply RTT- W. Using this simple mathematical model
Fig. 1.2 compares the times required in congestion avoidance mode for both terrestrial and
satellite networks to increase the congestion window from 32 to 64 segments. Again, as in Fig,
1.1, the satellite network with its much larger RTT takes significantly longer to increase the

congestion window size.

[Cmgest‘ion avoidance comparison 32 segments/ KB segment sEze’;E

oo - Tarrastriad

1375 b= Fesm— Satellite

Time {sec)
o
5
o
§

425

T et e ST SN T M lt T W T AT ; r bl il X
000

32 i 40 43 i) 55 &0 o4
Sagment Mumber

Fig. 1.2. Congestion avoidance comparison (mathematical models) for satellite and terrestrial
networks.

The second adverse effect of the large propagation delays in satellite environments, as
mentioned before, is the significant underutilization of available bandwidth. As given in the

original RFC 793 that defined TCP, the maximum throughput of a TCP connection is

Max Throughput = Max Re cezv;rT TWzndow Size (1.3)

therefore for a typical GSO satellite link RTT of 500 msec and the maximum possible receiver

advertised window in TCP of 64 KB, the maximum throughput for TCP over a satellite link is:

65,535 bytes

Max Th hput =
@ Hiroughpu 500 %107 sec

=131,070 bytes/sec

This maximum throughput is well below the bandwidth capabilities of many satellite
channels which can range from compressed phone circuits of a few kb/s to very large
bandwidths. Compared to for example the throughput of a T1 rate satellite channel of 1.536
Mbits/sec (192,000 bytes/sec) there is only a 68% maximum utilization of bandwidth. For other

higher bandwidth satellite channels the bandwidth utilization reaches of course even lower

unacceptable levels.

1.2.3 Adverse Effects of High Bit Error Rate

Another fundamental characteristic of satellites that has a significant effect on the

performance of TCP is the relatively high bit error rate (BER). This aside from leading to
performance degradation because of needed retransmissions, performance is further reduced
since TCP assumes every loss is due to congestion, thus unnecessarily resorting to congestion
mitigation in many instances. In the case that a segment loss due to corruption, and not
congestion, results in a timeout, TCP enters slow start mode, the congestion window is reset to a
size of one, having a detrimental effect on the TCP sending rate, and the slow start threshold is
set to half of the current congestion window value (before being reset to one of course), thus
reducing the rate at which the congestion window will grow since slow start with its exponential
window growth rate will terminate earlier with the reduced sstresh value. In the case that a
segment loss due to corruption results in a fast retransmission and fast recovery, the effect on
the TCP sending rate is less adverse than in the case of a timeout but still significant. The
congestion window is set to half its current size, thus halving the sending rate, and the slow start
threshold is set to half of the congestion window value (before it is reset), thus reducing the rate
at which the congestion window will grow when TCP is in slow start mode as explained

previously.

1.2.4 Adverse Effects of Bandwidth Asymmetry

Bandwidth asymmetry is another property of some satellite channels that adversely
aftects TCP performance due to the fact that TCP relies on feedback in the form of cumulative
acknowledgments in order to perform flow and congestion control properly. When the
bandwidth asymmetry between the forward and reverse link channels exceeds a certain
threshold then the reverse acknowledgment channel will become congested because of the
number of acknowledgments that must be transmitted in order to acknowledge the data flowing

in the forward direction link. This reverse link congestion will disrupt the flow of

- 9.

TCP over Satellite throughput variation with satellite
bit error rate (for 1.8 MB file transfer w/ Sat, BT T=500 msec)

500 cgzees Sapellite
T F = - -
% a00 b —— TErrestrial
25 -
g a0}
g 200F
Ko
g\ -
Q § i x. - L; .
108 10’-? 13‘6
Bit Error Bate
TCP over Satelfite throughpit variation with sat.fink
propag, delay or 1.8 MB file transfer w/ Sar. BER=10-7}
500 - o Satellive
a3 L » - i -
% b i T yresteiak
v;.[e
£ 300
3 200
2 100+ ’ £ i
z — Foui? - § o
a : » '
120 200 250 300

One-way Propagation Delay (msed)

Fig. 1.3 & 1.4. Variation of TCP-over-Satellite throughput with varying satellite link BER and
propagation delay.
acknowledgments to the transmitter presenting hindrances in maintaining proper flow and
congestion control on the sender’s part, ultimately resulting in lost acknowledgments and thus
inducing unnecessary timeouts, retransmissions and sending rate reduction/congestion

mitigation.

-10-

1.2.5 Adverse Effects of Satellite on TCP performance: Experimental Verification

Fig. 1.3 and 1.4 show the actual variation of TCP-over-satellite throughput with varying
satellite link BER and propagation delay, compared to TCP performance without the satellite
link, obtained from experiments performed for a 1.8 MB file transfer. F ig. 1.3 more specifically,
shows the effect of increasing the satellite channel bit error rate on TCP performance, with the
error rate varying from 107 to 10~ while using a typical satellite link RTT of 500 msec. This is
compared to TCP performance when omitting the satellite link. The very significant adverse
affect of satellite channel attributes on TCP performance is obvious, with the TCP throughput
when the satellite link is included being less than 25% of that when the satellite channel is not
present, and decreasing as the BER increases. Similar results are obtained, as shown in Fig. 1.4,
when varying the satellite channel one-way propagation delay from 150 msec to 300 msec, while
using a typical BER of 107 The tests performed to obtain the aforementioned results, where
done using a proprietary TCP-based file transfer protocol implemented by the author of this
thesis [Phil00], and to emulate the satellite link, the NIST Net 2.0.10 link emulation package
[NIST0O0] was used. More details on these and the test configuration can be found in Chapter 4

and the aforementioned references.

-1]-

CHAPTER 11

BACKGROUND THEORY

2.1 Background Literature

The topic of TCP performance over satellite channels has been studied quite extensively
the past few years, producing a plethora of literature and proposed solutions on this topic.

Below a list of many of the most important proposals is given, most of which have already been

documented in RFCs by the IETF[RFC2488] [RFC2760].

2.1.1 TCP for Transactions

[RFC1644] As we know TCP uses a connection setup procedure to establish a
connection between two endpoints with the typical setup being the so-called three-way
handshake. The connection setup procedure takes between 1 and 1.5 RTTs (Round Trip Times)
to complete. During this period there is no transfer of data which is a small inefficiency of the
TCP protocol which though is quite significant for short flow TCP connections such as HTTP
connections for example. This can be mitigated by implementing TCP extensions for
translations (T/TCP), as specified in RFC 1644 “T/TCP - TCP Extensions for Transactions”
in 1994, which allows the transfer of data during connection setup by including data in the
connection setup packets. It should be noted that while T/TCP was recommended in the RFC
1644 (1994), it was also part of the original TCP specification in RFC 793 in 1981. The
implementation of T/TCP requires modification of both the transmitter’s and receiver’s stacks
and is considered safe to be implemented in a shared network environment, such as the Internet,
from a congestion control point of view. However there are some security issues that arise by

sending data in the initial setup packets.

-12-

2.1.2 Slow start

2.1.2.1 Larger Initial Congestion Windows

[RFC2414] TCP uses the slow start algorithm at the beginning of a new connection,
after long idle periods and after congestion has been detected. Slow start grows the window at
an exponential rate however always starts from an initial window size of one. Starting from such
a small initial window size is inefficient particularly for short flow transfers such as WWW
traffic. The problem is further amplified by the use of Delayed ACKs whereby an ACK is not
sent by the receiver until two full-sized segments have been received or a 500 msec (maximum)
timer has expired leading to a significant delay until the window grows to a size of two. Starting
from a larger size would improve efficiency during the startup phase of a connection and an
optional initial window size of two has already been proposed by RFC 2581. Experiments have
also been done with initial widow sizes of 3 and 4 which showed improved performance
although a small increase in dropped packets was also observed. Implementing initial window
sizes of 2 to 4 is considered safe from a congestion perspective and would require modification

of the transmitter’s stack only.

2.1.2.2 Delayed ACKs after slow start

Today’s TCP stacks implement the Delayed ACK mechanism whereby an ACK is not
sent by the receiver until two full-sized segments have been received or a max 500 msec timer
has expired. One option is to implement Delayed ACKs only after slow start so that the ACK
rate increases thus resulting in faster congestion window growth. Experiments have shown an
increase in throughput by implementing Delayed ACKs only after slow start, however the loss
rate also increases somewhat due to the faster window growth. This could also be a problem for
networks that have asymmetric links (in terms of bandwidth) where the reverse link (carrying
the ACK stream) would be further congested and the Delayed ACKs after slow start
mechanism would also conflict with ACK rate reduction measures such as ACK congestion

control and ACK filtering that will be presented later on. The implementation of this mechanism

-13-

requires only modification of the receiver stack and there would have to be some way by which
the receiver can detect if the transmitter is currently in slow start or not. This slow start
detection could be done by using a heuristic or having the transmitter indicate to the receiver that

it is in slow start (which would require modifications on the sender’s side also to implement).

2.1.2.3 Terminating slow start

[JHoe96] One of the more important issues with TCP is the slow start threshold value
sstresh, i.e. the value used to determine when slow start should cease for congestion avoidance
to take over. Choosing an appropriate sstresh value can eliminate the problem of having slow
start not end soon enough leading to congestion of the link and dropped packets. Currently
sstresh is set to the size of the receiver advertised window initially and to half the current
congestion window size after congestion. One algorithm proposed to determine more
appropriate sstresh values is the packet-pair algorithm in combination with the measured round-
trip time RTT proposed by [JHoe96]. The algorithm estimates the link bandwidth by observing
the spacing of the ACKs in the reverse link, and together with the estimated RTT is used to
calculate the bandwidth-delay product which is used as the sstresh value. The implementation of
this mechanism requires modifications to the transmitter’s stack only and can be safely
implemented in shared networks. A problem however is the correct estimation of the available
bandwidth and more so in the case of asymmetric networks where the bandwidths of the
forward and reverse links differ and thus the bandwidth estimated from the reverse link is

erroneous and not representative at all of the forward link bandwidth.

2.1.2.4 Byte Counting

[Allm97] [Allm98] A method that can be used to implement congestion window growth
that is independent of the ACK mechanism used by the receiver stack is byte counting. With
byte counting instead of basing the growth of the congestion window on the number of ACKs
received (e.g. in slow start the congestion window grows by one for each ACK received) the

window growth is based on the number of bytes of acknowledged data. Two byte counting

-14-

algorithms that have been proposed are the Unlimited Byte Counting (UBC) algorithm and the
Limited Byte Counting (LBC) algorithm. With the UBC algorithm, the congestion window
grows by the amount of bytes of acknowledged data, while the LBC algorithm limits the
congestion window growth to two segments. Studies [Allm98] have shown that LBC byte

counting leads to throughput improvement while also slightly increasing the packet drop rate.

2.1.2.5 More Conservative Congestion Control

Because of the relatively high bit error rates over satellite channels many segments lost
due to corruption will be falsely assumed to have been lost because of congestion, resulting in
the sender going into slow start unnecessarily many times and consequently degrading
performance. One possible method to mitigate this is to use more conservative congestion
control by not employing slow start after assumed congestion but rather have the congestion
window be reduced to half its current value (as is done in Fast Recovery) as opposed to a size of
just one as happens with slow start. If congestion is still perceived to be continuing then the

sliding window can be halved again and so on and so forth.

2.1.3 Congestion Avoidance

[SLSC98] It has been observed that during the congestion avoidance phase there is
unfair sharing of bandwidth when multiple connections of varying RTTs exist over the same
bottleneck link. More specifically, connections with large RTT values, such as those that traverse
a satellite link somewhere along their path, have their congestion window grow too slowly. A
proposed remedy is to have the window growth rate during congestion avoidance be increased
so that it is larger than one segment per RTT. Two such proposed algorithms are the Increase-

by-K and Constant Rate policies.

With the Constant Rate algorithm the congestion window will grow at a rate larger than
one segment per RTT, with the rate depending on the RTT value. Two issues with this method

are the correct estimation of the RTT and the proper selection of the constant growth rate.

-15-

The Increase-by-K algorithm adds K segments (instead of one) to the congestion
window per RTT, for connections over a given RTT. The value of K and the RTT threshold
values are still open issues. It has been shown that small values of K used when there is a
relatively small number of connections over a bottleneck link improves throughput and fairness.
However both of the above policies can lead to increase of the number of dropped segments and
are not recommended for implementation in a shared network environment at this time since

they violate the congestion avoidance algorithm outlined in RFC 2581,

2.1.4 Loss Recovery

2.1.4.1 Non-conservative Fast Recovery

Forms of fast retransmit have been implemented in previous versions of TCP such as
Tahoe TCP and Reno TCP whereby upon receiving K duplicate acknowledgments (typically
K=3) a lost segment is retransmitted without waiting for the retransmission timeout to occur.
However, the recovery after a fast retransmit was either conservative (Reno TCP) or non-existent
(Tahoe TCP). In newer TCP algorithms, such as NewReno TCP, an aggressive fast recovery is
implemented whereby upon retransmitting a first lost segment (after receiving K duplicate
ACKs), to fast retransmit a second lost segment K duplicate ACKs are not required to be
received but rather just a single ACK. Therefore in cases of multiple lost segments algorithms
with more aggressive fast recovery, such as NewReno TCP, have a smaller probability of
resorting to a coarse timeout and thus resulting in better throughput in some cases. However
studies [FaF196] have shown that in some instances it is more advantageous to resort to a RTO
timeout to recover from multiple lost segments. Implementing this type of more aggressive fast
recovery requires modifications to the transmitter stack only and is allowed by RFC 2581
(“TCP Congestion Control”, 1999). It has been observed that fast recovery algorithms also
tend to create bursts after loss recovery and thus some sort of burst suppression algorithm, such

as Sender Adaption (SA), which limits the number of segments transmitted, may be useful.

- 16 -

2.1.4.2 Selective Acknowledgments

[FaF196] With this type of mechanism instead of using the classical TCP cumulative
acknowledgments, selective ACKs (SACKs) are used to identify which packets have arrived at
the receiver thus giving the ability to the transmitter to know which specific segments to
retransmit. A slight variation of this would be to use instead an explicit loss notification
mechanism. One selective acknowledgments algorithm that has been studied and proposed is
the Fast Recovery SACK algorithm, which is an extension to a normal fast recovery algorithm,
whereby the receiver sends selective acknowledgment information to the transmitter. After a fast
retransmit and after reducing the congestion window to half its size, the sender maintains a
variable called a “pipe”, which is an estimate of the number of outstanding TCP segments. The
“pipe” variable is increased by one segment for each duplicate ACK that is received containing
SACK information, and is decremented by one for each segment sent out (new or
retransmitted). When the value of the “pipe” variable is lower than that of the congestion
window size then a segment can be transmitted. This transmitted segment will be a new segment
unless the selective acknowledgment information from the receiver indicates that there are
retransmissions left to be carried out. The SACK algorithm has been shown in studies [FaF196]
to improve performance for the cases of 1 to 4 segments lost in a window of data and
particularly in satellite environments but in some cases can lead to throughput degradation by
causing bursts at the end of loss recovery. This algorithm requires modifications to both the
sender’s and receiver’s stacks and is considered safe to be used in shared networks and has

been allowed by RFC 2581 (“TCP Congestion Control”, 1999).

2.1.4.3 Detection/Notification of Losses due to Congestion or Corruption

[RFC2481] [Floy94] The way TCP currently operates is to assume that every lost
segment is due to congestion. While this may work well for the case of wired networks, in the
case of satellite links and wireless networks in general this is significant cause for throughput

degradation due to the fact that satellite (and wireless) links exhibit relatively high bit-error rates

(BER) in the range from 10-7 to 10-5. As a result a large number of the losses that are due to

-17-

corruption, and not congestion, will result in congestion mitigation taking place with the use of
slow start, resulting in degraded performance. What is necessary is for better mechanisms to be
put into place to detect if a loss is due to congestion or corruption, with just retransmission
being required in the latter case. Such mechanisms are divided into two separate general
categories: a) Explicit Congestion Notification where the sender is informed of congestion by

either the receiver or an intermediate router and b) Corruption Loss Detection.

There are two types of Explicit Congestion Notification which are Backward Explicit
Congestion Notification (BECN) and Forward Explicit Congestion Notification (FECN). With
BECN a router will inform the sender of congestion, e.g. through the use of an ICMP “Source
Quench” message. With FECN, routers will mark packets using a tag when congestion is
imminent but will still forward the segment. The receiver upon getting the tagged segments will
notify the transmitter. FECN requires modifications to both the sender’s and receiver’s stack

and that routers tag segments. BECN requires modifications only at the transmitter.

With regards to Corruption Loss Detection, the receiver or a router that detect a corrupt
packet could notify the sender of this so as to not assume the segment was lot due to
congestion. However this is not a reliable method since the source address listed in the packet
might also be corrupted and thus this method should not be used. A variation of this method
that is more reliable is for a router to maintain a cache of recent destinations and when
corruption is detected above a certain threshold level have the router send a corruption-
experienced ICMP message to all destinations listed in the destinations cache. Then each
destination would inform its respective transmitter through a TCP option of experienced
corruption and each sender would refrain for some period from implementing congestion

mitigation.

2.1.5 Multiple Parallel Connections

As mentioned previously at the beginning of this thesis, one of the problems with TCP

connections over satellite links is the significant underutilization of satellite link bandwidth due

- 18-

to the maximum window size limit of 64 KB and the large RTT values for GSO satellites. One
way to mitigate this is to use multiple simultaneous TCP connections. With N connections the
effective initial congestion window size is N, the window increases by N segments per RTT
during congestion avoidance and in general the use of N simultaneous connections makes the
sender N times more aggressive. Simulations have shown improved performance when utilizing
multiple connections. This is an application layer modification requiring no stack migration.
However this increased aggressiveness can lead to congestive collapse and it is not considered
safe to use multiple connections in a shared network and should be limited for the time being to
private networks only. To a certain extent the advantages that would be provided by multiple
connections can be provided by using other methods that have been proposed in this report,
such as larger initial window sizes. It should be noted that the method of utilizing multiple
connections is already being used today by Web browsers, which typically use 4 simultaneous

connections.

2.1.6 Header Compression

One method used to improve the efficiency of data transmission is to perform header
compression of TCP and IP headers. Header compression is based on the idea that since a large
portion of the information contained in the TCP and IP headers remains the same, or changes
infrequently, or changes in a predictable matter during the life of a given connection, this
information need not be transmitted in every header. Header compression algorithms have been
proposed by [RFC2507], [DENP97] and [RFC1144]. According to these methods full TCP
and IP headers are sent at the beginning including a session identifier that will be used to
reference that particular connection. Later packets will simply contain the session identifier and
any needed information that can’t be derived from the full TCP/IP header sent initially which
will be used as a template to derive all information that isn’t contained in the compressed

headers.

Header compression reduces overhead and can be of significant benefit for data

-19-

transmissions that have relatively small data payloads such as Telnet sessions and to a lesser
extent WWW sessions. Some header compression methods can reduce TCP/IP header size
from the typical 40 bytes down to 5 bytes in general and even 3 bytes for common cases.
Header compression also has the added benefit of leading to a reduced rate of packet corruption

due to the smaller packet sizes.

Header compression can be applied either end-to-end between the communicating
endpoints or be applied transparently between the routers at the two edges of a satellite link. In
the first case of end-to-end, header compression must be applied below the IP layer and be
implemented at every intermediate router used in the connection and potentially also at the two
communicating hosts. By implementing compression below the IP layer, header compression is
transparent to routing by passing uncompressed headers to the IP layer. A more transparent
way of implementing header compression is by performing compression only over a given
satellite channel between the two routers (referred to from here on as pivot-points) at the edges
of the satellite link. In the latter, case the compression should also performed below the IP layer
and since compression is limited to over just the satellite link it requires modifications only at
the two pivot-point routers and not at all routers along the path. In simulations, header
compression has proven to be beneficial for cases with small packets sizes (larger overhead) and
medium to low bandwidth links and/or links with relatively high bit error rates (such as is the

case for satellite channels).

2.1.7 Sharing of TCP State Information

[RFC1379] [BaRS99] [RFC2140] There are many parameters in TCP which are set to
initial values and later on modified during the duration of the connection such as the initial
congestion window size for example. Changes have been proposed to these initial parameter
values, however it is difficult to find one value that is suitable for all cases and environments.
One proposition is to have the sharing of state information across TCP connections in the same

environment. A characteristic example that shows the benefit of state information sharing is the

-20-

case of the initial congestion window size, where instead of starting from an initial window size
of one the congestion window size could initially be set to the sustained “steady-state” window
size used in previous connections over the same path. Sharing of state information could also be
extended to the case of parameters that do not use preset initial values such as the round-trip
time, Max Segment Size (MSS) etc. Sharing of state information could occur between
connections originating from the same host or between hosts in the same subnet. Sharing state
information across connections requires modifications to the sender’s stack and possibly to

recetver stacks also.

2.1.8 ACK Rate Control

In asymmetric networks where the bandwidth of the forward link is significantly higher

than that of the return link, if the difference in links speeds is high enough then congestion will
be exhibited in the return ACK link due to the high sending rate of the transmitter which will
result in a large number of ACKs being generated and sent out by the receiver. In the case of
1500 byte data segments, given the typical 40 byte ACK packets (standard TCP/IP header size),
congestion in the return link will be exhibited for bandwidth asymmetries of approximately
75:1, in the case that Delayed-ACKs are used, and 37:1 if ACKs are generated for each
segment. One way to mitigate this problem is to implement rate control which will limit the
sending rate of the transmitter, resulting in a reduced ACK rate. Such sender-rate limiting
techniques are rate-to-window translation schemes where the receiver advertised window is
modified by a router, thus forcing an upper limit on the transmitter sending rate (since the
window used by the sender has as a maximum upper bound the receiver advertised window).
However such sender-rate limiting techniques also lead to underutilization of the available
bandwidth thus degrading throughput. A more efficient way would be to simply control the
ACK rate directly rather than indirectly. Two such algorithms are 4CK Filtering and ACK

Congestion Control.

-2]-

2.1.8.1 ACK Congestion Control

[KaVR98] With the ACK Congestion Control (ACC) algorithm, if a router along the
reverse link path observes congestion then it will notify the sender of this. Then the sender will
notify the receiver of the congestion in the reverse link, and the receiver will adjust its ACK rate
accordingly using multiplicative backoff. When the receiver is not notified of congestion
anymore then it resumes its normal ACKing policy. A problem with ACC is that since the
ACKs are fewer and each ACK packet acknowledges more data, this will result in erratic sender
window growth and thus the sender traffic becomes bursty. To mitigate this sender rate
adaptation has to be implemented which will limit the max number of segments sent out
regardless of window size. ACC requires modifications to both the transmitter and receiving
TCP stacks as well as to routers. A variant of the above method would be to omit notification of
the sender and receiver and simply have the router that detects congestion on the reverse link to
perform a filtering/compounding of ACKs itself (e.g. if one ACK acknowledges up to N, and a
second ACK acknowledges up to N+k, then these two ACKs cold be compounded into one
ACK for N-+k). However this still presents the same problem of causing bursty traffic and
requiring sender adaptation. Furthermore because of the change to the ACKing policy it is

recommended that ACC not be implemented in shared networks.

2.1.8.2 ACK Filtering

[BaPK97] A second algorithm for ACK rate control is to implement ACK Filtering.
With this policy a router maintains a queue of ACKs that have passed through, and for each
new ACK that comes the router scans the ACK queue to determine if the new ACK is
redundant. If the ACK is redundant it is discarded. Thus ACK Filtering, as opposed to ACC,
does not result in bursty sender traffic. Studies [BaPK97] however have shown performance to
fall when using ACK Filtering alone and results in increased performance only when used in
combination with ACK Reconstruction. With ACK Reconstruction, the router observes the
ACK streams looking for large gaps. If a gap is observed then it constructs and inserts a new
ACK(s) to “smooth out” the ACK stream. In studies [BaPK97] it has been shown that ACK

-22-

Filtering offers significantly better performance than ACC. Both ACK Filtering and ACK
Reconstruction require only router modification and thus have the advantage of being applied

transparently.

2.1.9 Error Recovery

One promising method to mitigate the problem of high error rates over satellite links is
to implement reliability at the link layer over a given satellite channel. Caching of link layer
frames would take place at the pivot-points (e. g. ground-station hardware) of a satellite link and
any frames that where not received at the receiving pivot-point would be retransmitted by the
sender pivot-point. The reliability would be based on an acknowledgment mechanism
implemented at the link layer which would be based most likely on selective acknowledgments.
A scheme like this has been proposed in [BaSa98]. The error recovery could be expanded
further if for the case of packets that where not received at all (and thus not cached) at the first
pivot-point, the pivot-point could trigger a fast retransmission from the TCP sender by sending
multiple duplicate ACKs to receive the lost segment(s). Similar experimental techniques have
been implemented in wireless systems where the performance increase was significant for

higher error rates, in some cases more than doubling receiver throughput. This can be

complemented with the use of error correction codes such as Reed-Solomon codes, BCH codes

etc.

2.2 Vandermonde Matrix based Erasure Codes
2.2.1 Introduction to Erasure Codes

For years the telecommunications industry has used Forward Error Correction (FEO)
techniques. FEC techniques try to prevent losses by producing redundant informatjon from the

data that it is to be transmitted, and appending this redundant data to the information that was to

be originally transmitted. This redundant information is used to be able to reconstruct data that

-23-

has been corrupted during transmission, rather than just discard the data.

FEC techniques are generally based on error detection and error correction codes. Error
detection codes, as their name implies, are used to detect data that has been corrupted. A well
known example of an error correction code is the Cyclic Redundancy Check (CRC) code which
is commonly used, for example by the IEEE 802.3 (Ethernet) link layer protocol. In the case of
computer/networking communications, error detection codes are typically used at various layers,
starting from the lower link layer protocols up to the higher layers such as at the transport layer
where for example TCP and UDP implement checksums to verify the validity of received data
segments. However use of error detection codes alone only offers us the ability to detect and
discard corrupt packets. With the use of error correcting codes, such as Reed-Solomon codes,
we can also recover and reconstruct corrupted data based on the redundant information
included. While, as mentioned before, error detection codes have been and are widely used in
networking communications, error correction codes have not been widely used. In the case of
networking communications, the use of so-called erasure codes is of greater benefit rather than
the use of error correction codes. Erasure codes are used not to reconstruct from corrupted data
but rather to allow us to recover from erasures i.e. missing data. The reason for this is that in
networking communications due to the widespread use of error detection codes at the various
protocol layers which will result in any corrupted data being discarded, we deal with lost packets

at the higher layers (e.g. application layer) and not corrupted packets.

Despite the apparent benefit and suitability of the use of erasure codes for networking
communications and the general consensus of their usefulness [Rizz97], FEC techniques and
erasure codes more specifically have not been used in Internet protocols. One reason for this is
likely the fact the FEC techniques used in other areas, such as the telecommunications industry,
have focused on error correction codes operating on relatively short strings of bits and running
on dedicated hardware; while networking communications require erasure codes operating on

relatively large packets of data that must be implemented efficiently in software [Rizz97].

-24-

Encoded Data Received Data)
e . . Reconstructed
Data

Source Bata

packets k' packets

Fig. 2.1. Graphical representation of erasure code encoding/decoding process.

2.2.2 Linear Block Erasure Codes

Linear block codes are a category of erasure codes that are relatively simple and allow
for an efficient implementation thus making them suitable for network communications
applications. Linear block codes are named as such as they can be analyzed using the properties

of linear algebra.

The concept behind erasure codes is that & blocks of source data can be encoded to
produce 7 blocks that contain redundant information, with n>%, such that if any % blocks of data
are received at the receiver the original k blocks of source data can be reconstructed. Such a code
is called an (n, k) code. Fig. 2.1 provides a graphical representation of the encoding/decoding
process of erasure codes. This differs from simply transmitting duplicate packets as erasure
codes provide significantly greater efficiency and resiliency against losses. Regarding resiliency
against losses, this is because in the case of transmitting duplicates it is required that at least one
copy of each packet survive, while this is not the case with erasure codes as any k packets of the

n transmitted, that are received suffice to reconstruct all source data. As for efficiency, in terms

-25-

of amount of redundant data produced and transmitted, sending duplicates requires that at least
two copies of every packet are transmitted, which is not the case for erasure codes. To explain
this better, let us consider wanting to send k packets of data. If using the duplicates method, at
least 2 x k packets must be sent to include any redundancy for each source data packet. If using
an erasure code on the other hand, transmitting a total of even only k£ +1 packets provides some

degree of redundancy/loss resilience for each packet of source data.

Let x=x,, ..., x,,, x,_, be the source data, i.e. each x, is a packet of data (bit

string) consisting of the same number of bits for all i. Given an appropriate # X k matrix G, a

linear block erasure code (n, k) can be represented as:

y=Gx (21)

where y is a n x1 vector representing the n produced encoded packets to be transmitted. As

dictated by the erasure code properties, any k of the » transmitted packets/blocks that are
received successfully will allow for the reconstruction of the original & blocks of data x. More

analytically:

Y =G x=x=G6".y (2.2)

where Z’ represents the subset of & packets of the number of packets (elements of y) that were

received successfully, and G’ is the subset of rows of G that correspond to the elements of Z,

[Rizz97]. Fig. 2.2 gives a graphical representation of the encoding/decoding process in matrix
form. For reconstruction of the source data additional information is also required that will have

to be transmitted along with the encoded data, such as the number of source packets £, the

-26 -

Encoder Decoder

1t packets
&'packets

Fig. 2.2. Graphical representation of the encoding/decoding process in matrix form.

identity of each packet of data, the packet size etc. Additional overhead is incurred by the

required precision for computations. More specifically, if packet x, is represented using b bits

and each element g, of G is represented using b bits, then to represent each element ¥, of y,

b+b + flog2 k] bits are required i.e. an overhead of b + flog2 k] bits for every packet in order

that there be no loss of precision. Another very important issue is the size of the bit strings used

to represent the data packets i.e. the elements of x and y- More specifically, while in

telecommunications each block of data is a small number of bits, in networking communications
each packet of data is typically in the thousands of bits, e.g. a typical packet size of 1KB
corresponds to 8,192 bits. Of course such a large number of bits can not be represented by the
typical data structures available in programming languages with an integer for example being
only 32 bits and a long integer being only 64 bits (typical size values). Therefore the issue is
how to represent such large bit strings in order to perform the required matrix operations as

specified above in (2.1) and (2.2) in a computationaly efficient manner.

In order to get around these problems finite fields must be used. A field, roughly

speaking, is a set in which we can operate as on normal integers by adding, subtracting,

-27-

multiplying and dividing with the distinct difference that fields are closed under the operations
of addition and multiplication, i.e. the result of summation and multiplication of elements of a
field are also elements of the same field. Finite Jfields are fields that consist of a finite number of
elements and most properties of linear algebra apply to finite fields. The usefulness of finite
fields for erasure code implementation lies in the closure property of finite fields, meaning that
no additional bits are required to represent the results of operations. Thus for erasure code
implementation, the data elements can be mapped to field elements, with operations being
performed on those field elements producing results that do not require additional bits for
representation because of the closure property of fields, and then finally remap the resulting

field elements to data elements [Rizz97].

Fields with p elements where p is prime are called prime fields or GF(p), where GF
stands for Galois fields. GF(p) is simply the set of integers from / to p-1 under the operations

of addition and multiplication modulo p. Fields with g=pr elements, where p prime, are called
extension fields or GF(pr). Extension fields are of more use than prime fields for erasure codes

because for p=2, operations on extension fields can become relatively simple also resulting in
efficient implementations. The operations of interest to us are addition and multiplication as
required by the matrix operations in equations (2.1) and (2.2). For extension fields, summation
and subtraction become the same operation (bit-by-bit sum modulo 2) which is simply

implemented with an XOR.

A property of extension fields is that the for every extension field there is at least one

special element of the field, o, whose powers generate all the non-zero elements of that field,

and the powers repeat with a period of g-/ i.e. o’ =0 =1. Thus, every non-zero element of
the extension field x can be represented as x =a* . Since x =057 k. can simply be

considered to be log,, x. Therefore, for multiplication we have that:

K, & +k,) mod g1
x-y=ol.of =g mded g g

-28-

For more details on extension fields, and so as to not go beyond the scope of this thesis,

one is referred to [Rizz97].

2.2.3 An Erasure Code based on Vandermonde Matrices

In section 2.2.2 it was stated that given an appropriate n X k matrix G, a linear block

erasure code (n, k) can be represented as:

y=G-x (2.1)
G 1is called the generator matrix of the code and in order for the properties of the erasure code
to hold G must posses certain properties. Since G is an 7 x & matrix with rank k, any subset of
k encoded blocks should convey information on all k source data blocks. Therefore, each
column of G must have at most -/ zero elements per column. A simple and effective way to

generate a generator matrix is by using matrices known as Vandermonde matrices which are of

the form:

1 x x
1 x, x) !

. 2.4)
[l x, Xy

using as x's elements of the GF(pr) extension field. The determinant of Vandermonde

matrices is given by:

[-x) @39

ij=l.k, i<j
If all x'sare different then the determinant is non zero and thus the generator matrix is

-20.

invertible which is necessary for reconstructing the original source data according to equation

(2.2). If all x; are non-zero and the period g (as defined in section 2.2.2) is greater than the

number of encoded packets n then up to g-I rows can be constructed thus satisfying the

properties for the generator matrix [Rizz97].

-30 -

CHAPTER I1I

SYSTEM DESCRIPTION

3.1 Performance Enhancing Proxies

TCP was designed for general purpose links and thus is not optimal for specific types
of links, and satellite links in particular, as analyzed in section 1.2. While enhancements and
modifications to the TCP protocol might mitigate problems to a certain extent there are various

issues:

- some problems are still not addressed by the plethora of TCP modification proposals,
such as the high penalty of congestion mitigation techniques for packet losses on
satellite links. Also, they may not provide such a substantial performance increase

[BhBB99].

- this is a non-transparent solution and it would take years to get approved by standards

bodies and implemented in the field.

- TCP stack/protocol modifications would make the protocol link-specific thus making it
unsuitable for other types of links. A major design decision behind TCP was a simpler
protocol design that ignored link characteristics. This of course was known that it would

lead to suboptimal performance but was considered an acceptable tradeoff [BhBB99].

- would increase complexity of TCP implementations. Particularly not suitable for

smaller embedded type devices [BhBB99].
Proxies can be used to separate links or groups of links with highly dissimilar attributes.
These proxies can take advantage of their "knowledge" of the characteristics of the particular

links and try to achieve closer-to-optimal performance, while isolating end hosts from these

-37-

details. Essentially isolating the end hosts from these dissimilar, in attributes, links that
adversely affect end-to-end performance. This is also a transparent type of solution that requires
no modifications to end-to-end protocols that can be readily implemented by placing the proxies
in between the two communicating end hosts. The most suitable position for placement of
proxies would be at the edges of the link to be "isolated" (in our case the satellite link) so as to
intercept all the network traffic that is to traverse the satellite link, and would likely be integrated
with the ground-station hardware. No TCP stack modifications are required at the two endpoints
of the communication and this is of great importance and benefit. Performance enhancement is
obtained at the expense of increasing somewhat the complexity in the network rather than at the
end-user point [BhBB99]. Thus, this is a type of solution architecture that can be implemented

much more readily and in a significantly more timely manner.

Two types of proxies architectures (commonly referred to as Performance Enhancing
Proxies - PEPs) have been proposed in literature:
a) TCP spoofing proxies

b) TCP connection-splitting proxies

3.1.1 TCP Spoofing Proxy Scheme

TCP spoofing proxies (Fig. 3.1) would be placed at the edges of the satellite link, so as
to be able to monitor all traffic that is to traverse the satellite link. A proxy would "spoof" the
sending TCP end host by monitoring TCP segments sent by the transmitting TCP host and
based on that traffic locally generate and send appropriately spaced TCP acknowledgments to
the sending end host. This would result in maintaining a stable and open sliding window at the
transmitting host giving it the illusion of a short path delay. The data sent by the sending TCP
end host would route normally to the destined TCP end host, however acknowledgments send
by the receiver would be intercepted (filtered) by the proxy as the acknowledgments have
already been sent by the sender-side proxy as explained before (Fig. 3.1).

-32.-

1 Transmitted data

2, TCPACKs

»

-0

TCP Sender Proxy Proxy TCP Receiver
3 Transmitted data
o
4 - TCP Receiver ACKs (intercepted)

Fig. 3.1. TCP spoofing proxy architecture.

TCP spoofing will result in hiding the large satellite link propagation delay from the
TCP end hosts and giving the illusion of a smaller delay path and thus accelerating sliding
window growth and increasing bandwidth utilization at the end hosts since as stated in section

1.2.2

Max Throughput = Max Re cezv;rT TWzndow Size (1.3)

Additionally, because each proxy acknowledges all data sent by its corresponding end
host, they must also be responsible for the reliable delivery of that data to its destination and
thus must cache the data and perform any necessary retransmissions. As a result the end hosts
are also essentially isolated from the relatively high satellite channel bit error rate. On the other

hand, TCP spoofing does nothing to mitigate the effects of bandwidth asymmetry.

Despite the apparent benefits there are also problems associated with the use of a TCP
spoofing scheme. One problem is that symmetric paths are required in order to use TCP
spoofing proxies i.e. that data and acknowledgments must flow along the same path through the
proxies, otherwise acknowledgment filtering will not be possible. A second problem is the
inability to work with encrypted IP datagrams as the proxies will not be able to read TCP

headers to obtain the required information [PaSh97].

-33.

3.1.2 TCP Connection-splitting Proxy Scheme

The other type of performance enhancing proxy scheme is that of TCP connection-
splitting proxies (also referred to as the Cascading TCP proxy scheme). This is the scheme the
author’s own variations and specific implementations of which will be studied and implemented
in this thesis. TCP connection-splitting proxies would be placed at the edges of a satellite link
(so that all traffic to traverse the satellite link will go through the proxies) with the purpose of
transparently splitting the end-to-end TCP connection between two end hosts into three separate
connections as shown in Fig. 3.2. Two TCP connections would exist between the end hosts and
their respective connection-splitting proxies (i.e. the proxy on each end-host's side of the
satellite link). The third connection would be between the two connection-splitting proxies. The
connections between the end hosts an their respective proxies must be TCP connections as the
end hosts use TCP. The middle connection segment between the two proxies however does not
need to be TCP and another transport layer protocol can be chosen. As mentioned, the

connection splitting is transparent to the two TCP end hosts.

The connection-splitting proxy on the side of the end host that is transmitting data at a
particular instance, will intercept the sent TCP traffic and send acknowledgments back to the
sending TCP host impersonating the intended receiver end host i.e. the source IP address used
in the acknowledgments will be that of the intended receiver. The data intercepted by the proxy,
let us call it the sender-side proxy, will be forwarded to the proxy on the other side of the
satellite link (receiver-side proxy) using whatever transport-layer protocol has been implemented
for that connection segment. The receiver-side gateway will then transmit the received data to the
intended receiver end host, in this case not impersonating the original sending host though.
Thus the receiving host will "think" that the entire TCP session was originally initiated by the

receiver-side proxy. The receiving end host will acknowledge all received data by sending ACKs

-34.-

1 Transmitted data (intercepted by proxy)
4 Data transmitted to end-host

2 _ TCPACKs 3 Data transmitted to sibling progy 5 TCP ACKs
«

n-—.,-—_—

Proxy

<«

Proxy

End Host

End Host

< > < > < >
TCP TCP or other transport TCP
connection layer connection connection

Fig. 3.2. TCP connection-splitting proxy architecture.

to the receiver-side proxy (Fig.3.2). Any data transmitted by the former receiving end host will
be sent to, and acknowledged by, its proxy and the data will again be forwarded to the sibling
proxy. The sibling proxy will then transmit this data to the former sending host impersonating,
as before when acknowledging, the former receiver. From the aforementioned it can be seen

how the end-to-end TCP session is broken into three separate connections.

The advantages of using the connection-splitting scheme and how it mitigates the
adverse effects of satellite channel attributes on TCP performance, will be analyzed in detail for
each connection-splitting architecture examined later on as the advantages vary depending on the

type of implementation of the scheme.

As with TCP spoofing, the split-connection proxy scheme cannot work when encrypted
IP datagrams are used [PaSh97]. However it does not require the use of symmetric paths, as
TCP spoofing did, as each connection is terminated and there is no filtering of

acknowledgments.

-35.

3.1.3 Terminology

A more consistent and coherent terminology that will be used from here on is that of
client, client-side proxy, server-side proxy and server. Client is the initiator of a given TCP
session and server is the intended receiver of the TCP session initiation request. Client-side
proxy is the connection-splitting proxy on the client side of the satellite link and receiver-side
proxy is naturally the proxy on the server side of the satellite link. Both of the proxies will be
sender-side and receiver-side proxies at different times as the client and server respectively
alternate between transmitting and receiving data. Also the terms proxy and gateway may be

used interchangeably.

3.2 Single-TCP-Connection Connection-Splitting Performance Enhancing Proxies

The single-TCP-connection connection-splitting proxy scheme is a connection-splitting
scheme, where the protocol used for the second connection segment to handle communication
between the two gateways is the TCP transport layer protocol. One TCP connection is used
between the two gateways for each end host TCP session. F ig. 3.3 shows a timing diagram for
the connection-splitting procedure from initial connection setup to two-way data transfer and
session close-down. As depicted in Fig. 3.3, when the client end host initiates a TCP session by
sending a SYN segment (i.e. a TCP segment with the SYN flag set indicating a TCP connection
setup request), the client-side proxy detects this session initiation request and responds with a
SYN-ACK segment. The connection setup is completed with the client sending an ACK
segment. Upon completion of the connection-setup between client and client-side proxy, the
client-side proxy will then make a TCP connection-setup request to its sibling proxy, the server-
side proxy, going through the same TCP three-way handshake procedure as detailed before.
Finally, after the TCP connection-setup between the two proxies has completed, the server-side
proxy will similarly send a TCP connection-setup request to the other end host (the server), and
once this last connection is setup the 3-segment virtual connection between the two end hosts

will exist.

- 36 -

As depicted in Fig. 3.3, exchange of data between the two hosts occurs in a similar way.
Data sent by the client host will be intercepted by the client-side proxy which will acknowledge
it. This data is then transmitted over the satellite link using the TCP connection established
between the two gateways. Then of course the data received at the server-side proxy will be sent
to the server host over the TCP connection setup between them. The proxy will not perform any
host/address impersonation since, as mentioned before and repeated so as to avoid any
confusion, the TCP connection was setup between the two and the server host believes all data to
originate from the server-side proxy. For data originating from the server end host, the
procedure is the same with the only difference that the data transmitted by the server host does

not need to be intercepted by the server-side proxy as it is sent to it directly.

Session tear-down is dissimilar to session setup. Because the proxies are protocol-
agnostic, i.e. they are not customized to interoperate with any specific protocol, this means that
they also do not know when a particular connection session between two end hosts will
terminate. Thus, the proxies rely on the client and/or server end hosts to terminate the session.
More specifically, when an end host notifies that it is closing the TCP connection, by sending a
FIN TCP segment, the connection between the host and its proxy terminates. The other end host
might also terminate the connection with its proxy or not. In any case, the closing of at least one
TCP connection between a host and its corresponding proxy will result in the TCP connection
between the proxies to be closed. This subsequently will cause the shutting-down of the TCP

connection between the other end host and its proxy, if not already done so.

One fact that should be noted regarding the implementation of all connection-splitting
proxy schemes in this thesis is that while normally the client-side proxy must intercept all
information sent by the client end host to the server end host (i.e. TCP connection setup
requests, data and connection tear-down requests), having the client-side proxy respond by
impersonating the server end host, the client end host actually addresses all data to the client-
side proxy. Doing this is necessary due to implementation constraints imposed by the available
resources. More specifically, having the client-side proxy transparently intercept all information

sent by the client

-37-

{lient-side Sarverside
Proxy Prosy
Server

Client ,
End Host

EndHost [45

SessionyConnection a¥N

Setup ” SYB-ACK

- S—

ACK

, ACK
e .
Data Transfer Dhata ﬁ%&r&sﬁ:r

- ALK B
—h_h_h"‘““—}

T
FNRCR
L ALK
\ Y i haun RN
Session Termination | (— - AR ‘-ﬁ
e ., ALK
— M

1Gre of marty possible session _EM-ACE
termination scenasios) | - ALK »

Fig. 3.3. Timing diagram for single-connection TCP connection-splitting proxy architecture.

to the server end host would require the use of either a network interface card operating in
promiscuous mode or having the proxies operate on workstations that function as routers for
the network. The first was not possible due to security concerns and performance issues
associated with promiscuous mode NIC operation, and the second was not feasible. This small,
needed modification in the operation of the connection-splitting scheme should not affect the

performance of the connection-splitting proxy architectures in any significant way at all,

- 38 -

Another consequence of this is that port information is not maintained (in order to contact the
server at the intended port address) as the client addresses the proxy directly rather than the

SCrver.

Single-TCP-connection connection-splitting will result in hiding the large satellite link
propagation delay from the TCP stacks of the end hosts. This results in giving the illusion of a
smaller delay path and thus accelerating sliding window growth at the end hosts as the
acknowledgments are coming at a faster rate. Additionally, increasing bandwidth utilization at
the end hosts is possible for the same reason. The end hosts are also isolated from the relatively
high satellite channel bit error rate as any data sent by the hosts has been acknowledged and
retransmissions required because of losses over the satellite channel are the responsibility of the
proxies. This will allow the sliding windows of the end hosts to grow at a more normal rate
rather than have unnecessarily deployed congestion mitigation techniques reduce them.
However the “hiding” of the large propagation delay and the high bit error rate of the satellite
channel from the end hosts, and the benefits that this incurs, is offset to a certain extent by the
fact that both the satellite channel propagation delay and high bit error rate will still affect the
transmission of data from one proxy to the other as they also use a TCP connection that will of
course be affected by these factors. Finally, single-TCP-connection connection-splitting does

not reduce the number of acknowledgments that will traverse the satellite link and thus does not

Fig. 3.4. Program structure abstract model for single-connection TCP connection-splitting
proxy architecture.

-39.

mitigate the effects of bandwidth asymmetry.

The proxies are implemented as concurrent servers with the ability to handle multiple
sessions between any number of end host pairs. For each session between a pair of hosts, a
child process is created to handle the given session. Fig. 3.4 shows an abstract model of the
program structure that depicts the operation of the proxies. Each child process that is created
uses a multi-threaded architecture. More analytically, each child process employs four threads
that are used to receive and transmit data: a pair of threads are used to transmit and receive data
to/from the one end host and the other pair of threads is used to transmit and receive data
to/from the sibling proxy on the other edge of the satellite link. Data received from either the
host or sibling proxy is placed in the corresponding buffers, while data to be transmitted is
obtained from the same respective buffers where it was placed by the receiving threads. There is
of course a variable delay due to buffering at the proxy and it is important to utilize buffers large
enough so as to prevent congestion at the proxy and consequently a large delay that will

adversely affect performance.

During the lifetime of the session a "back-pressure" algorithm is used to implement
flow control across the three connections. In other words, it is not possible for the ingress data
rate into the proxy to be larger than that of the egress data rate otherwise there will be
congestion at the proxy, leading to performance degradation. The "back-pressure” algorithm
takes care of not having the ingress data rate significantly exceed the egress. This "back-
pressure" algorithm is not implemented explicitly but is an inherent property of using multiple
TCP connections in series. More analytically, as a receiver of data (whether it be a proxy or an
end host) starts getting congested it will start reading data from the network at a slower rate thus
resulting in the system network receive buffers having reduced free space. Therefore, leading to
a smaller receiver advertised window which will lead to the slower growth of the senders sliding
window and consequently to a reduced rate of transmission. The buffers are necessary in order
to compensate for any small or temporary significant differentials in the ingress and egress data
rates at the proxies. The proxies were implemented in the C programming language and run on

the Sun Solaris operating system.

-40 -

3.3 Multiple-TCP-Connection Connection-Splitting Performance Enhancing Proxies

The multi-TCP-connection connection-splitting proxy scheme is similar to that
described in the previous section with the difference that multiple TCP connections are being
used between the two proxies for each end host TCP session. One must note that this is
significantly different than simply using multiple TCP connections between the two end hosts
for two reasons: a) using multiple connections end-to-end would require new versions of all
applications and thus is not a transparent solution b) many, including the IETF through its
RFCs, do not consider it safe to use multiple connections across a shared network, such as the
Internet, for fear of congestive collapse. With the multi-connection proxy solution, the use of
multiple connections is limited to just the satellite link and not over any shared network
segment. Fig. 3.5 shows a timing diagram for the multi-connection connection-splitting
architecture from initial connection setup to session termination. When the client end host
initiates a TCP session by sending a SYN segment, the client-side proxy detects this connection
setup request and responds with a SYN-ACK segment, and the three-way handshake is
completed with the client sending an ACK segment. Upon completion of the connection-setup
between client and client-side proxy, the client-side proxy will then make a TCP connection-
setup request to its sibling proxy going through the same TCP three-way handshake procedure
as detailed before. Once the first TCP connection between the two proxies has been established,
the client-side proxy will use this connection to transmit to the server-side proxy the total
number of TCP connections to be opened between the two for the given session. Following this,
the advertised number of connections is opened between the two gateways. The number of TCP
connections to be shared between the two proxies for a given session is a configurable value.
Finally, after the TCP connection-setup between the two proxies has completed, the server-side
proxy will similarly establish a TCP connection with the server end host, completing the session

setup between the two end hosts.

Exchange of data between the two hosts occurs in a similar way. Data sent by the client

host will be received by the client-side proxy which will acknowledge it. This data is then

-4] -

Client Client-side Server-side Server

EndHost .~ Froxy . Proxy End Host
Sesslon Setup W‘“‘h‘:h
. ACK

Sry .

%
Data Transfer [\%\3
ACHK -

P = %‘

it Yramshar

Setup of (1) connactions

N
peack 2
. Ak Chosing of & inter-proxy
session = SRl ICRoomections
‘ e 2]
{Qne of many poasible session RN
AR - ACK
termanation scenarios) T e

Fig. 3.5. Timing diagram for multi-connection TCP connection-splitting proxy architecture.

transmitted over the satellite link to the sibling proxy. The multiple TCP connections between
the two proxies are utilized by transmitting each packet of data over the multiple connections in
a round-robin manner, i.e. one packet is sent over a given connection, the next packet through
the next TCP connection and so on and so forth. More on this will be explained later on when
examining proxy operation below. The data received at the server-side proxy will be then sent to

the server host over the TCP connection setup between them. Data transmission from server to

- 42 -

client follows the exact same procedure.

Session tear-down is identical to that for single-TCP-connection connection-splitting,
with either (or both) end hosts closing their TCP connection to their proxy, causing the proxies
to close the multiple TCP connections between them. This will subsequently lead to the closing

of the TCP connection between the other host-proxy pair, if not done so already.

Multi-TCP-connection connection-splitting, as with the single-connection scheme, will
result in hiding the large satellite link propagation delay and bit error rate from the TCP stacks
of the end hosts. The first, results in giving the illusion of a smaller delay path and thus
accelerating sliding window growth at the end hosts. The latter allows for increased bandwidth
utilization and improved sliding window growth, as explained in section 3.2. However, as also
applies and was mentioned for the single-TCP-connection scheme, the hiding of the large
propagation delay and the high bit error rate of the satellite channel from the end hosts is offset
to a certain extent by the fact that both the satellite channel propagation delay and high bit error
rate will still affect the transmission of data from one proxy to the other as they also use a TCP
connection that will of course be affected by these factors. The multiple TCP connections are
used to mitigate these adverse effects. By using N connections between the proxies we are N
times more aggressive, having essentially an initial sliding window of size N as opposed to one,
with a N times larger effective sliding window. In addition, it is more resilient to packet losses
since from a given loss only one sliding window of the N will be affected by the congestion
mitigation policies. Finally, multi-TCP-connection connection-splitting does not reduce the

number of acknowledgments and thus does not counter the effects of bandwidth asymmetry.

The proxies are implemented as concurrent servers with the ability to handle multiple
sessions. The program structure is quite different from that of the single-TCP-connection
proxies, an abstract model of which showing proxy operation is shown in Fig. 3.6, given that

they must now handle multiple TCP connections for each session. Each packet of data received

-43-

Fig. 3.6. Program structure abstract model for multi-connection TCP connection-splitting
proxy architecture.

by a proxy is transmitted over the multiple connections in a round-robin manner, i.e. one packet

is sent over a given connection, the next packet through the next connection etc. At the receiving
proxy this data must be collected from the multiple connections and reconstructed in the correct
order. In order for this to be possible, because of the byte stream property of TCP (i.e. the fact
that packet/segment boundaries may not be maintained), packet boundaries must be known so
as to be able to reconstruct the data from the multiple connections correctly. This is done by
appending to the beginning of every transmitted packet a 2-byte header containing the length of
the packet, from which the receiver is able to distinguish between individual packets (as when
transmitted) and thus reconstruct the data in proper order. The data is collected from each
individual connection by a separate thread which also performs the above aforementioned tasks,
and once a full packet has been obtained it is copied to the receive buffer, as shown in Fig. 3.6.
Data placed in the receive buffer is collected according to the order of transmission and placed
in order in the single-column buffer from where data is read and sent out to the end host. Data
received from an end host goes through the reverse procedure, by being placed in a buffer by
the host-side receiving thread, from where the packet is read and then the length header is

appended. Finally, the packet is transmitted over the appropriately selected TCP connection.

-44 -

During the lifetime of the session the "back-pressure" algorithm is in effect, used to
implement flow control among the three connection segments. The multi-connection proxies

were implemented in C and operate on the Sun Solaris operating system.

3.4 Single/Multi-UDP-Connection Connection-Splitting Performance Enhancing

Proxies

This new connection-splitting proxy scheme follows the same concept as the
connection-splitting schemes examined in the previous sections with the difference that UDP is
used to implement a protocol for the exchange of data between the proxies as opposed to TCP,
whether it be one or more connections for each session handled. The timing diagram for the
UDP connection-splitting scheme detailing the procedure from initial connection setup to
session termination is given in Fig. 3.7. A TCP connection is first established between the client
end host and the client-side proxy in a manner identical to that detailed for the previously
examined schemes. Upon completion of the connection-setup between client and client-side
proxy, the client-side proxy will then initially establish a TCP connection with the server-side
proxy. This TCP connection is used by the client-side proxy to transmit to the server-side proxy
the total number of UDP connections to be opened between the two for a given session, and this
information will be used by the server-side proxy to open the appropriate number of UDP
sockets. The TCP connection is not closed at this point as it will be used to transmit congestion
control information as will be detailed later on. The host-to-host virtual connection is then
completed by having a TCP connection established between the server-side proxy and the server

end host.

Any data sent by an end host will be received by its corresponding proxy which will
acknowledge it. This data is then transmitted over the satellite channel to the sibling proxy. The
multiple UDP connections between the two proxies are utilized by transmitting each packet of
data over the multiple connections in a round-robin manner as with the multi-connection TCP

scenario. The data received by the sibling proxy will be then sent to the other end host over the

-45-

Client Client-side Servar-side Server
End Host vy Prexy Proxy End Host

Session Setup

SYN-ACK
i ACK
‘ »
i : ‘ __ 5¥w
Ak S
, ACK
Ty
. a2

Dats Transfer Bata Transfer (-_--—’“"/—

it

*’W %ﬁ
B

| RN
o ARt Clusing of TCP inter-prosy
= ar cannection
b LLK . FIN | |
Session FIR-ACK
Termination L lal v
e SR N
N PR
{One of many possible session _ﬂﬁ’i’f“‘“ﬁ'&u
tepmination scenarias) - ACK »

i

Fig. 3.7. Timing diagram for UDP connection-splitting proxy architecture.

TCP connection established between them.

Session tear-down takes place with either end host closing its TCP connection with its
proxy, causing the proxies to close the single TCP connection between them (UDP connections
are not closed as there are no UDP connections given that UDP is non-connection oriented

datagram protocol). This leads to the close-down of the TCP connection between the other

- 46 -

proxy and end host (if not already done so).

UDP connection-splitting, as with both previously examined schemes, will result in
hiding the large satellite link propagation delay and bit error rate from the TCP stacks of the end
hosts. The significant difference though with the two previous TCP schemes, is that by using
UDP for inter-proxy data exchange, the large propagation delay and the high bit error rate of the
satellite channel will affect the transmission of data from one proxy to the other to a much lesser
extent than it will the TCP schemes. This is because UDP does not use a sliding window for
transmitting data, who’s growth depends on the arrival of (highly delayed) acknowledgments,
and who’s size will be affected by packet losses due to high satellite bit error rate. This makes
the UDP approach significantly more resilient to the adversely affecting satellite channel
attributes. One drawback however of using UDP is that there is no built-in congestion control
and no mechanism to ensure reliable delivery of data, as TCP provides, for the communication
between the two proxies. Thus a congestion control mechanism must be implemented in

addition to a mechanism for ensuring reliable data transfer.

For reliable data transfer use of erasure codes is made. Erasure codes, as examined in
section 2.2, can be used to encode data and by using redundancy allow for the full
reconstruction of all source data from less packets than the total amount of packets transmitted.
Thus, by using a sufficient degree of redundancy it is possible to achieve reliable transmission
of data over a lossy link without the need of an acknowledgment mechanism. The erasure code
used is a computationaly efficient Vandermonde matrix based erasure code described in

[Rizz97], developed, and with the source code written by, the author of the aforementioned

paper.

Congestion control is implemented by transmitting RNR (Receive Not Ready) messages
to the sibling proxy when a proxy’s buffers occupancy percentage exceeds a certain threshold
value. The RNR message will result in the proxy that receives the RNR message to cease

transmitting temporarily. After an RNR message has been transmitted, once the proxy’s buffers

-47 -

Fig. 3.8. Program structure abstract model for UDP connection-splitting proxy architecture.

occupancy percentage falls below a threshold value, a RR (Receive Ready) message is
transmitted to the other proxy allowing it to commence transmitting again. The threshold value
used for triggering a RR message transmission is smaller than the threshold value used for
triggering a RNR message transmission so as to introduce a hysteresis and thus avoid a “ping-
pong” effect of continuously transmitting in alternating order RNR and RR messages. The
RNR and RR messages are transmitted over the TCP connection that was established between
the proxies to transmit the connection number at the beginning of the session in order to insure

the guaranteed delivery of the congestion control messages.

Another advantage of the UDP scheme is that because of the lack of an acknowledgment
mechanism, there are of course no acknowledgments at all and the only traffic in the reverse
direction channel are occasional RNR and RR messages. This leads to a very effective

mitigation of bandwidth asymmetry over the satellite link segment.
Flow control is not implemented for the inter-proxy connection(s) as it is not required

since the path between the two proxies is a simple point-to-point connection over a single

“bent-pipe” satellite link [BhBB99].

- 48 -

An abstract model of the program structure for the UDP connection-splitting proxies is
shown in Fig. 3.8 and depicts how the proxies operate. Data received from an end host is placed
in a buffer by the host-side receiving thread. A separate thread is used to collect a block of
packets from the buffer, which are then encoded using the erasure code. For a (n, k) code, k
source packets will be encoded to produce a block with a total of n packets and any k will
suffice for source packet reconstruction at the receiver. Collecting and encoding multiple
packets at a time is done because using blocks of just one packet results in the erasure code Jjust
producing duplicate. This would also be inefficient as the ratio of total encoded packets to
source packets will be at least 2, while better ratios can be achieved using multiple packets at a
time. The number k of packets collected and encoded, as well as n, can be varied. The proxy will
try to use blocks of k packets, however if not enough packets are available within a specified
amount of time it will proceed with less so as to avoid delays. It is necessary along with the
encoded packets to also transmit additional information needed to reconstruct the data at the
receiving proxy. This information must include the total number of encoded packets of a packet
block and the number of source packets which will indicate the number of packets needed to
reconstruct the original data at the receiving proxy. Also, since there will be some lost packets,
each encoded packet must carry an identifier, a sequence number, so as to be able to identify
each individual packet and derive how many and which packets have been lost which is also

information needed in reconstructing the data.

An 8-byte header containing all this and additional needed information is appended to
every encoded packet transmitted and is shown in Fig. 3.9. The first and last bytes of the header
are beginning and end-of-header indicator bytes. The second and third bytes of the header
indicate the number of source data packets and the total number of encoded packets of the
packet block of which the current packet is a member of. The fourth byte of the header contains
the sequence number while the next two bytes contain the length of the current packet (including

the header). Finally, the seventh byte indicates the position of the packet within its packet block.

After a block of packets have been encoded, the header containing all the necessary

-49-

AR
| packetsin |

Istbyteof | 2ndbyteof | Positionof | K
| packet | packet |

Fig. 3.9. UDP proxy architecture packet header.

information is appended to each encoded packet and the individual packets are transmitted over
the single connection. Or if multiple UDP connections exist, the packets are transmitted in a
round-robin manner over the different connections just as with the multi-TCP-connection
scheme. In the UDP connection-splitting scheme there is no need for packet reconstruction as
with the previous two TCP-based proxy architectures as, unlike TCP, UDP is a datagram and
not a byte stream protocol and thus all transmitted segments will be received exactly as
transmitted. The packets received by the other sibling proxy will have their sequence number
checked in order for the receiving thread to determine if there have been any lost packets and if
so will set a skip flag in the appropriate receiving buffer cells indicating that these packets have
not been received. The received packet will be written in the receive buffer in the cell that
corresponds to its sequence number. A separate handling thread will read the packets from the
receive buffer, ignoring buffer entries that have the skip flag set. Once enough packets from a
packet block have been obtained (for a (n, k) code, packet blocks will consist of packets and
any k suffice for source packet reconstruction) the packets are sent for erasure code decoding
and the original source packets are obtained. Fig. 3.10 depicts the (simplified) flow of execution
from reception of packets to erasure decoding. The reconstructed source data packets are then
written to the single column buffer, as shown in Fig. 3.8, from where they will be of course read

and sent out to the end host.
During the lifetime of the session the "back-pressure" algorithm is in effect,

implementing flow control across the three connection segments. The UDP connection-splitting

proxies were implemented in C and operate on the Sun Solaris operating system.

- 50 -

Recelve packet
froam
connection

»

i
L

Varify sequence
rumber s valid

Mark dost packets &
copy packet 1o receive
buffar fin column that
corrasponds o
onmection)

'

15 sequence
pumiber that
grperted
?

4

Foad fext

: 3 ¥

packet from

cannaction)

Copy packet to recelve
buffer fin column that
rorresponds to

receives ity

Extract info for

curment packey block

from packet header
fe.0.k.nl

L 4
Pead mext
packet from

o

/

,/,/

Leparate
theads of
exgcution

Yes
e Was packes losp

reseive biffer

~ Enpaigih
packets from

Ko

current biock

P —

Pecode packets &
obtain k source
dats packets

¥
Write source
packets to buffer in
grder o ke sent to
hosy
i

Fig. 3.10. Simplified flow of execution from reception of packets to erasure decoding

-51-

CHAPTER IV

EXPERIMENTAL RESULTS AND ANALYSIS

4.1 Test Configuration and Methodology

The test configuration used for conducting all experiments is shown in Fig. 4.1. The
current implementations of the connection-splitting proxies run on the Sun Solaris 5.8 operating
system, with Sun Ultra 10 workstations being used as the hardware platform. The same
software and hardware platform is used to run the client and server applications. The client and
server applications used implement a proprietary file transfer protocol implemented by the

author of this thesis [Phil00]. This file transfer protocol uses TCP to transfer files in blocks,

with 10° byte blocks being used for the experiments conducted and analyzed in this chapter.

Satellite Link Emulator

Client] PL‘?:‘Y 1o NISTNet20100n P{ﬁt"y " Server
n Uitra ; :
Sun Ultra 10 . . ' i686 Linux 2.2.17-21 >N . a Sun Ultra 10
. Solaris 5.8 Solaris 5.8 i
Solaris 5.8 Solaris 5.8

Fig. 4.1. Test configuration.

To emulate the satellite link, the NIST Net 2.0.10 link emulation package [NIST00] was
used running on the Linux operating system (kernel version 2.2.17-21) on Intel 1686 hardware.
The setup was configured such that the satellite link-emulating Linux workstation was the

default gateway for all data exchange between the two proxies. The NIST Net 2.0.10 link
emulation package was used to implement a 255 msec one-way link delay and a 10~ and 107

bit error rate, corresponding to a typical GEO satellite link one-way propagation delay and bit

-52-

error rates respectively. A typical GEO satellite channel bit error rate is closer to 1077, with the

10 bit error rate value also being tested in order to identify the effects of larger bit error rates

on throughput performance.

All workstations used in the experiments were on the same LAN connected via 100
Mbps Fast Ethernet links, with the server application being tuned to implement a small time
delay in order to limit server (and thus overall) data throughput to approximately 500 KB/sec.
This was done in order to reflect more realistic throughputs typical of Internet and remote

connections as opposed to the very high LAN speeds. Performance tests were executed
measuring the time required for the transfer of a 3.8 x10° byte file. Please note that the notation
of MB used in the graphs and tables in this chapter refers to “millions of bytes” and not
MBytes as in 2*° bytes. A second note is that all UDP proxy scheme tests use a (4, 2) erasure

code unless explicitly stated otherwise.

4.2 Obtained Results and Analysis

Fig.4.2 shows the results obtained from multiple tests of each scheme, for the transfer of
a 3.8 MB file utilizing an emulated satellite link with a 255 msec one-way delay and an 10~ bit

error rate. It compares the performance of the reference case of straight TCP (i.e. direct TCP
connection between client and server with no proxies) versus that of the single-connection TCP
proxy scheme and the single-connection UDP proxy scheme using a (4, 2) erasure code. The
results show a very significant performance advantage of the UDP proxy scheme, which seems
to outperform straight TCP by a factor of over four. The single-connection TCP proxy scheme
on the other hand does not perform too well and seems to perform at the levels of straight TCP.
The results show a rather significant variation in the transfer times for straight TCP and the
single-connection TCP proxy scenario. On the other hand, the UDP proxy scheme seems to be
very consistent in regards to the download times. This variation in transfer times for straight

TCP and the single-connection TCP proxy scheme is likely due to the effects of the bit error

-53.

[Times for 3.8MB data transfer at 107 bit error rate |

80
s~&=~ JDP {1 conn.}
70
w0 Single TCP

60 e Straight TCP

50

40

Download Time (sec)

30

LI L L L O O B B

20

|

Fig. 4.2, Transfer times for 3.8 MB file at 10™" bit error rate for Straight TCP vs Single-
connection TCP proxy scheme vs Single-connection UDP proxy scheme,

rate (1.e. packet loss) on the growth of the TCP sliding window.

It is believed that the exceptional performance of the UDP proxy scheme is due to the
fact that because UDP, unlike TCP, does not use a sliding window it is largely unaffected by the
large link propagation delay and relatively high bit error rate. Large propagation delay and high
bit error rate lead to, as explained analytically in Chapter 1, slower sliding window growth due to
large delay before ACKs arrive, frequent shrinking of the sliding window due to congestion
mitigation mechanisms being used every time there is packet loss, bandwidth underutilization
due to a small maximum sliding window and large link delay etc. While the TCP proxy scheme
does theoretically isolate the end host TCP stacks from the satellite link’s large delay and bit
error rate, the TCP connection used by the proxies for transfer of data between them is affected
to the fullest extent by these satellite link attributes with the analogous adverse effects on
performance, thus decreasing end-to-end throughput. With the UDP proxy scenario on the
other hand, packet losses will not cause it to reduce the sending rate of the proxies, nor are
acknowledgments expected in order to increase the transmission rate between proxies, at the

same time isolating the TCP end hosts from the adversely affecting satellite channel attributes.

Fig. 4.3 depicts the download times for the same set of conditions (i.e. file size, link delay

-54-

[ﬁmes for 3.8MB data transfer at 107 bit error rate
80
I~ B {JDP (2 conn.)

701
= - e Multi TCP (2 conn)
7] .y
> 60 n 0 Gingle TCP
E 5o} .
= W Straight TCP
T L
S 4
: —
g
o 30

20

10 d

Fig. 4.3. Transfer times for 3.8 MB file at 10~ bit error rate for Straight TCP vs Single-
connection TCP proxy scheme vs 2-connection TCP & UDP proxy schemes.

and error rate) comparing the 2-interproxy-connection TCP and UDP schemes versus straight
TCP and the single-connection TCP proxy scheme. It is observed that the UDP proxy scheme
performance is at the same levels as with the single-connection UDP proxy scheme examined
previously far outperforming straight TCP. While the 2-connection TCP proxy scheme also
shows a distinct performance advantage over straight TCP as opposed to the single connection
case. Fig. 4.4 shows the results obtained for using 3 inter-proxy connections for both the UDP
and TCP proxy schemes. Again the UDP proxy times remain at the same levels as with a single
and two connections and far lower than any of the other times. The fact that the use of 2 or 3
inter-proxy UDP connections did not increase performance further is in all likelihood due to the
fact that the server throughput is not enough to saturate a single UDP connection and thus
increasing the number of UDP inter-proxy connections further will not yield any performance
improvement. Performance of the 3-connection TCP proxy scheme is at the same levels as that
of the 2-connection TCP proxy scheme, with both yielding a significant improvement in
performance over straight TCP and the single-connection TCP proxy case. It is apparent that the
use of multiple inter-proxy TCP connections helps improve the performance by being more
aggressive. An interesting fact is that the use of 3 TCP connections provides only a marginal

improvement in download times compared to 2 connections, despite still being significantly

-55-

[Times for 3.8MB data transfer at 107 bit error rate

80
- g JDP (3 cOnn)

oo Multi TCP (3 conn.)
‘G- Single TCP

et Straight TCP

Download Time (sec)

10 : !

Fig. 4.4. Transfer times for 3.8 MB file at 10™" bit error rate for Straight TCP vs Single-
connection TCP proxy scheme vs 3-connection TCP & UDP proxy schemes.

higher than the UDP proxy architecture download times i.e. despite there being more room for
higher end-to-end aggregate throughput rates. From the above one draws the conclusion that the
TCP proxy architecture has reached its upper bound due to the limitations of the TCP protocol

and how adversely it is affected by the satellite channel attributes.

[Average Download Times for 3.8MB data transfer at 10°7 bit error rate |

. Straight TCP

| singleTcp

543

50.8

Multi TCP (2 conn.)

335

314 . Multi TCP (3 conn.)
. B

UDP {1 conn)

. UDP {2 conn.)

UDP (3 conn.)

4] 10 20 30 40 50 60
Average Download Time (sec)

Fig. 4.5. Average transfer times for 3.8 MB file at 10~ bit error rate.

-56-

Fig. 4.5 summarizes the performance of all schemes giving the average transfer times while

Table 4.1 lists a summary of the average transfer times and the percent improvement in

throughput.
) Single Multi-
Co‘nnec- Straight connection Throughput connection Throughput UDP .Throughput
tions TCP increase (%) increase (%) increase (%)
TCP TCP

1 54.3 sec 50.8 sec 6.9% 12.4 sec 338%

2 (54.3 sec) 33.5sec 63 % 13.1sec 315%

3 {54.3 sec) 314 sec 73% 13.3 sec 308 %

Table 4.1 Average transfer times and the percent improvement in throughput for 107 bit error
rate.

The experiments were performed again for all cases, but using this time an increased
satellite link bit error rate of 10™° in order to observe the effects of an increased error rate on the

performance of all schemes. The experiments are exactly the same as those performed before
for the lower bit error rate with the difference that the multi-connection TCP proxy scheme was

also tested for the case of 4 inter-proxy connections as there seemed to be a noticeable

{Times for 3.8MB data transfer at 10 bit error rate |

200
=1 ; P u | o= UDP (1 conn.)

o Straight TCP

-
[e]
(=]

FTTTTTTOITTTITITTIOITTI

[0,
(=]
a

- Single TCP

T
!

Download Time (sec)
22 Fa
5388823

[

(=]
]
@
2
B
]

o

Fig. 4.6. Transfer times for 3.8 MB file at 107° bit error rate for Straight TCP vs Single-
connection TCP proxy scheme vs Single-connection UDP proxy scheme.

-57-

[Times for 3.8MB data transfer at 106 bit error rate]

200 -

180 - s a.. ‘ g Q =—~wme= Multi UDP (2 conn.)
~ 160 o’) 4\/ o Multi TCP (2 conin,)
2 ~ om —

% 140 ™~ “-8-- Single TCP
E 1200 .. o @’/,@\@ — Straight TCP
T 100 -
b4 n
< 80
3 ol
] 0

40

- 4 £ — = ™

O 1]] 1 3

Fig. 4.7. Transfer times for 3.8 MB file at 10™° bit error rate for Straight TCP vs Single-
connection TCP proxy scheme vs 2-connection TCP & UDP proxy schemes.

[Times for 3.8MB data transfer at 106 bit error rate |
200 -
180 : G MUl UDP (3 conn.)
5 160 » el MUILETCP (4 conn)
Q
2140 7 e Multi TCP (3 conn,)
£ 120 - O Single TCP
Q100 ~
s i
% 80 - Straight TCP
3 -
a 60
40~
20 : {5 0 L womeren i)
0 1 \ 1 1 3

Fig. 4.8. Transfer times for 3.8 MB file at 10 bit error rate for Straight TCP vs Single-
connection TCP proxy scheme vs 3-connection UDP proxy scheme and 3 & 4 connection TCP
proxy scheme.

improvement this time with increasing the connection number. The obtained results are shown

in Fig. 4.6, Fig. 4.7 and Fig. 4.8.

A concise summary of the obtained results is given in Fig. 4.9 and Table 4.2 which show

-58-

|Average Download Times for 3.8MB data transfer at 100 bit error rate]

. Straight TCP
Single TCP

Multi TCP (2 conn.)

172

Multi TCP (3 conn)

Multi TCP (4 conn)

UDP (1 conn))

UDP (2 conn.)

UDP (3 conn))

0 25 50 75 100 125 150 175 200
Average Download Time (sec)

Fig. 4.9. Average transfer times for 3.8 MB file at 10™° bit error rate.

the average download times and the performance improvement achieved by the various proxy

architectures, with Table 4.2 also comparing with the results for utilizing the 1077 bit error rate.

By observing the results in Table 4.2, it is noticed that for the new increased bit error
rate there is almost a tripling of the download time for straight TCP. Undoubtedly a result of the
more frequent retransmissions required and particularly the increased use of congestion
mitigation resulting in more frequent “shrinking” of the TCP sliding window. This increase in
download times is also observed for both TCP proxy schemes with the reasons for this being
the same as for the straight TCP case. What is of interest is that the single-connection TCP
proxy scheme now performs worse than straight TCP going from an average 6.9% performance

improvement to an 11% decrease.
Another important fact regarding the multiple-connection TCP proxy scheme is that now

there is a significant increase in performance by increasing the number of connections utilized

as opposed to the marginal increases obtained when using the lower error rate. Also these

-59.

107
10-6
R Single Multi-
Copnec— Straight connection Throughp ut connection Throughput uDP ?’hroughput
tions TCP TCp increase (%) TCP increase (%) increase (%)
1 54.3 se 50.8 sec 6.9 % 1245 338%
153 sec 172 sec -11% 13.4 sec 1041 %
5 54.3 se 33.5sec 63 % %/ 315%
153 sec)] 114 sec 342 % 13 sec 1077 %
3 54.3 se 314 sec 73% 133 se 308 %
153 sec)} 734 sec 108 % 12.8 seq 1095 %
4 (54.3 se
153 sec)} 59.4 sec 158 %

Table 4.2 Average transfer times and the percent improvement in throughput for 10~ bit error
rate.

performance improvements are of greater magnitude for an increased number of connections.
This is explained by the fact that the increased bit error rate also has a greater impact on TCP
performance (as analyzed above) thus providing more room for improvement which is realized
by utilizing a greater number of inter-proxy connections. For the UDP proxy scheme on the
other hand, it is observed that the download times have remained largely unchanged indicating
that the increased bit error rate had no effect. This is apparently due to the fact, as noted in the
previous round of experiments, that the UDP proxy scheme does not utilize a window and the
inter-proxy transmission rate is largely unaffected by the bit error rate. As a result the UDP

proxy scheme exhibits rather exceptional performance improvements of an order of magnitude.

The UDP proxy scheme was also tested for varying redundancy ratios in order to
observe the effects of increasing the erasure code redundancy on performance. Fig. 4.10 and
4.11 depict the results obtained by varying the erasure code redundancy from a (3, 2) erasure
code, to (4, 2) and (5, 2), for both bit error rates of 10™° and 10, From the figures it can be
seen that the variation of the redundancy ratio for either bit error rate, and for utilizing a different
number of connections, has small effect on performance. This is very likely due to the fact that

the aggregate throughput is not high enough to stress the UDP proxies and any modest increase

- 60 -

Average Download Times for 3.8MB data transfer for varying
redundancy of UDP proxy scheme {107 bit error rate)

4,2) 1 conn.

(5,2) 1 conn.

(4,2) 2 conn.

{5,2) 2 conn.

4,2)3 conn.

(5,2} 3 conn.

Average Download Time {sec)

Fig. 4.10. UDP proxy schemes for varying redundancies at 107 bit error rate.

Average Download Times for 3.8MB data transfer for varying
redundancy of UDP proxy scheme (10-6 bit error rate)

Average Download Time (sec)

Fig. 4.11. UDP proxy schemes for varying redundancies at 10~ bit error rate.

-61 -

of redundancy does not affect a significant change.

Two important facts must be noted regarding the UDP connection-splitting architecture.
Firstly, a bug in the erasure code open source code prevents it from reconstructing the data
properly when running on the Solaris operating system, and this I was not able to correct in
time. The erasure code coding and decoding still run normally with the correct number of bytes
being transferred thus leaving the performance benchmarks unaffected and valid, with the simple
difference that the received at the end host data while correct in amount is not the same byte-for-
byte as the data transmitted. A second note is that during the testing of the UDP proxy scheme,
in some instances (when using a single inter-proxy connection and very rarely when using
miltiple connections) the data transfer would fail due to relatively rare burst losses that resulted
in not enough packets being available to reconstruct the source data packets from a given packet
block. This, and the fact the in practice the presence of rain fade can result in similar burst or
extended losses dictate that for a real-world implementation the UDP proxy scheme must be
complemented with a retransmission mechanism to recover from such losses. While using
multiple connections and/or increased redundancy can mitigate the effect of extended losses, a
retransmission mechanism is still deemed necessary. One was not implemented due to time
constraints, but it is proposed that an explicit loss notification (or “negative” acknowledgment)
mechanism be implemented rather than a “positive” acknowledgment mechanism. l.e. there
would not be an acknowledgment for every packet or group of packets received, but rather only
when there is an insufficient number of packets to reconstruct the source data packets would a
retransmission request be sent for the packets of that given block. The use of explicit loss
notification rather than a “positive” acknowledgment mechanism would result in far less traffic
in the reverse channel (important when bandwidth asymmetry exists), be less complex and pose
a smaller burden on the proxies. This is one of the recommendations for future work as noted in

the next chapter.

-62 -

CHAPTER V

CONCLUSIONS AND FUTURE WORK

The work described in this thesis was motivated by the need for improving the

performance of TCP over satellite channels which suffers to a large degree. In this thesis three
connection-splitting architectures based on transparent proxies were implemented and tested.
The connection-splitting architectures implemented and the performance improvements they

yielded are as follows:

5.1 Single-TCP-Connection Connection-Splitting Performance Enhancing Proxy

Architecture

This connection-splitting architecture utilizes two transparent proxies that use a single

TCP connection for inter-proxy data exchange. The performance enhancements obtained at the

typical GEO satellite bit error rate of 10~ where marginal yielding only a 6.9% improvement in

throughput on average compared to standard straight TCP. At an increased bit error rate of 10~

the performance of the architecture is worse actually leading to a decrease in throughput
performance (of 11% on average) compared to straight TCP. While the use of proxies does
isolate the end-hosts from the satellite link attributes that adversely effect TCP performance, the
adverse effects of the satellite link on inter-proxy data exchange is the major pitfall of this

scheme. Thus, this architecture proved to be ineffective.

5.2 Mutli-TCP-Connection Connection-Splitting Performance Enhancing Proxy

Architecture
This proxy architecture is similar to the previous one with the difference that multiple

TCP connections, as opposed to just one, are used for inter-proxy communication. The goal is

to be more aggressive in inter-proxy data transfer by using multiple connections. This proved to

-63-

be quite effective yielding average throughput performance improvements of the order of greater

than 60% for using 2 and 3 connections at the typical satellite bit error rate of 10~7. While

yielding even greater throughput improvements at the higher error rate of 10™ that exceeded

150% on average when using 4 inter-proxy connections. Thus, this connection-splitting proxy

architecture obviously proved to be very effective.

5.3 UDP Connection-Splitting Performance Enhancing Proxy Architecture

This was the third and last connection-splitting architecture implemented and proved to

be the most effective of all of them, yielding exceptional throughput performance increases.
Under the typical bit error rate (107), the UDP proxy architecture provided a throughput
increase of more than 4-fold even for utilizing just a single inter-proxy UDP connection. At a
higher bit error rate (107°), the throughput increase was even greater leading to an order of

magnitude increase in throughput.

5.4 Future Work and Recommendations

i) As noted in chapter 4 for the UDP connection-splitting architecture, in some instances
extended losses can cause data transfer to fail due to occasional burst losses or rain fade that
can result in not enough packets being available to reconstruct the source data packets from a
given packet block. This dictates that for a real-world implementation, the UDP proxy scheme
must be complemented with a retransmission mechanism in order to be able to recover from
such losses. While using multiple connections and/or increased redundancy can mitigate the
effect of extended losses, a retransmission mechanism is necessary for the (infrequent but
occurring) case that packet losses are too great for the redundancy mechanism to recover. It is
proposed that an explicit loss notification mechanism be implemented rather than a “positive”
acknowledgment mechanism, meaning there would not be an acknowledgment for every packet
or group of packets received. Rather, only when there is an insufficient number of packets to

reconstruct the original source data packets, would a retransmission request be sent for the

-64 -

packets of that given block. The use of explicit loss notification rather than a “positive”
acknowledgment mechanism would result in far less traffic in the reverse channel (important for

when bandwidth asymmetry exists), be less complex and pose a smaller burden on the proxies.

if) Another possible enhancement to the UDP connection-splitting architecture is the
runtime variation of the erasure code redundancy based on the observed amount of packet loss.
In other words, if the packet loss due to corruption is less than expected then the erasure code
redundancy could be reduced to allow for more efficient operation and vice versa if the packet
loss rate due to corruption is larger than expected. This would also require a mechanism that
would be able to identify if packets losses are due to corruption or congestion, which can prove

to be very difficult to implement.

ii1) An important potential enhancement for the UDP connection-splitting architecture is
the use of a more efficient erasure code. An ideal erasure code would be the relatively new
Tornado erasure codes, which are according to benchmarks very efficient, requiring very small

encoding and decoding times.

iv) One potential enhancement for all types of connection-splitting proxy architectures is
the implementation of a more sophisticated end-to-end flow control mechanism to complement
the “back-pressure” algorithm in order to reduce performance dependency on proxy buffer
sizes. Some such potential modifications have been proposed in [BhBB99], such as for example
deliberately causing packets losses in some instances in order to reduce the end host

transmission rate.

v) A final recommendation regarding the actual implementation of the connection-
splitting proxy architectures, is that for better performance a lower layer (e.g. kernel level) or
even more suitably a hardware implementation (as with IP routers for example) would be more

suitable for a real-world implementation.

Of course there are a plethora of modifications that can be made to the connection-

- 65 -

splitting proxy architectures that have been implemented and studied in this thesis. For example,
by using modified or radically different inter-proxy protocols, as there have been some
commercial and non-commercial implementations of connection-splitting proxy architectures,

that go beyond the scope of this thesis to cover.

- 66 -

REFERENCES

[Allm97] M. Allman, “Improving TCP performance over satellite channels”, Master’s thesis,

Ohio University, June 1997.

[Allm98] M. Allman, “On the generation and use of TCP acknowledgments”, ACM Computer
Communication Review, 28(5), October 1998.

[BaPK97] H. Balakrishnan, V. N. Padmanabhan and R. Katz, “The effects of asymmetry on
TCP performance”, Proceedings of the ACM/IEEE Mobicom, Budapest, Hungary,
ACM, September 1997.

[BaRS99] H. Balakrishnan, H. Rahul and S. Seshan, “An integrated congestion management
architecture for Internet hosts”, ACM SIGCOMM, September 1999.

[BaSa98] K. Bajaj and H. Saran, “A link layer protocol for improving TCP performance over
satellite channels”, Dept. of Computer Science & Eng., Indian Institute of
Technology, New Delhi-110 016, India, 1998.

[Bhar99] V. G. Bharadwaj, “Improving TCP performance over high-bandwidth geostationary
satellite links”, Master of Science thesis, Department of Electrical and Computer

Engineering, University of Maryland, 1999,
[BhBB99] V. Bharadwaj, J. S. Baras and N. P. Butts, “An architecture for Internet Service via
Broadband satellite networks”, Centre for Satellite and Hybrid Communication

Networks, Technical Research Report, CSHCN T.R. 99-12 (ISP T.R. 99-22), 1999.

[BSAK95] H. Balakrishnan, S. Seshan, E. Amir and R. Katz, “Improving TCP/IP performance

over wireless networks”, Proceedings of 1st ACM International Conference on

-67 -

Mobile Computing and Networking (Mobicom), 1995.

[CaSA98] N. Cardwell, S. Savage and T. Anderson, “Modelling the performance of short TCP
connections”, Department of Computer Science and Engineering, University of

Washington, October 1998.

[DENP97] M. Degermark, M. Engan, B. Nordgren and S. Pink, “Low-loss TCP/IP header
compression for wireless networks”, ACM/Baltzer Journal on Wireless Networks,

vol. 3, no. 5, p. 375-87.

[FaF196] K. Fall and S. Floyd, “Simulation-based comparisons of Tahoe, Reno and SACK
TCP”, Computer Communication Review, V. 26, N. 3, p. 5-21, July 1996.

[Floy94] S. Floyd, “TCP and explicit congestion notification”, ACM Computer
Communication Review, V. 24, N. 5, October 1994.

[Frie95] D. E. Friedman, “Error control for satellite and hybrid communication networks”

Master’s thesis, CSHCN M.S. 95-1 (ISR M.S. 95-10), Center for Satellite and

b4

Hybrid Communication Networks - University of Maryland, 1995.

[GhDi99] N. Ghani and S. Dixit, “TCP/IP enhancements for satellite networks”, IEEE
Communications Magazine, p. 64-72, July 1999.

[JaKa88] R. Van Jacobson and M. J. Karels, “Congestion avoidance and control”, ACM
SIGCOMM. 1988.

[THoe96] J. Hoe, “Improving the startup behavior of a congestion control scheme for TCP”,
ACM SIGCOMM, August 1996.

[KaVR98] L. Kalampoukas, A. Varma and K. K. Ramakrishnan, “Improving TCP throughput

-68 -

over two-way asymmetric links: Analysis and solutions”, Measurement and

Modeling of Computer Systems, p. 78-89, 1998.

[Krus95] H. Kruse, “Performance of common data communications protocols over long delay
links: An experimental examination”, 3rd International Conference on

Telecommunication Systems Modeling and Design, 1995.

[Metz00] C. Metz, “IP-over-satellite: Internet connectivity blasts oft”, IEEE Internet
Computing, p. 84-89, July/August 2000.

[NIST00] NIST Net emulation package 2.0.10, National Institute of Standards and
Technology, http://www.antd.nist.gov/itg/nistnet.

[PaSh97] C. Partridge and T. J. Shepard, “TCP/IP performance over satellite links”, IEEE
Network, September/October, p. 44-49, 1997.

[Phil00] S. Philopoulos, “Internet Mirror Site Parallel Downloading Schemes”, Department of
Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB,
Canada, 2000.

[RFC1144] V. Jacobson. “RFC 1144: Compressing TCP/IP headers”, February 1990.

[RFC1323] V. Jacobson, R. Braden and D. Borman, “RFC 1323: TCP extensions for high
performance networks”, May 1992.

[RFCI1379] R. Braden, “RFC 1379: Transaction TCP - Concepts”, September 1992.
[RFC1644] R. Braden, “RFC 1644: T/TCP - TCP extensions for transactions: Functional

specification”, July 1994,

- 69 -

[RFC2018] M. Mathias, J. Mahdavi, S. Floyd and A. Romanow, “RFC 2018: TCP selective
acknowledgment options”, October 1996.

[RFC2140] J. Touch, “RFC 2140: TCP control block interdependence”, April 1997.

[RFC2414] M. Allman, S. Floyd and C. Partridge, “RFC 2414: Increasing TCP’s initial

window”, September 1998.

[RFC2481] K. Ramakrishnan and S. Floyd, “RFC 2481: A proposal to add Explicit
Congestion Notification (ECN) to IP”, January 1999.

[RFC2488] M. Allman et al., “RFC 2488: Enhancing TCP over satellite channels using

standard mechanisms”, January 1999.

[RFC2507] M. Degermark, B. Nordgren and S. Pink, “RFC 2507: IP header compression”,
February 1999.

[RFC2760] M. Allman et al., “RFC 2760: Ongoing TCP research related to satellites™,
February 2000.

[Rizz97] L. Rizzo, “Effective erasure codes for reliable computer communication protocols”,

Dip. di Ingegneria dell’Informazione, Universita di Pisa, 1997.
[SLSC98] B. Suter, T. Lakshman, D. Stiliadis and A. Choudhury, “Design considerations for
supporting TCP with per-flow queuing”, Proceedings of IEEE Infocom ‘98

Conference, 1998.

[XyP099] G. Xylomenos and G. C. Polyzos, “Internet protocol performance over networks
with wireless links”, IEEE Network, p. 55-63, July/August 1999.

- 70 -

APPENDIX A

C LANGUAGE LISTING FOR SINGLE-CONNECTION-TCP

CONNECTION-SPLITTING PROXIES

- 7] -

#define _REENTRANT
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <string.h>
#include <sys/stat.h>
#include <thread.h>
#include <synch.h>
#include <sched.h>
#include <sys/uio.h>
#include <sys/sem.h>
#include <sys/ipc.h>
#include <memory.h>
#include <time.h>
#include <sys/time.h>
#include <unistd.h>

//Choose whether serv-side proxy Name or IP read from file
/l#define SS_PRX_USE_NAME
#define SS_PRX_USE_IP

#define C_PORTNUMBER 6005 //Server-side proxy will listen on different port
(get from file)

#define FILENAME "smpl_cs_proxy_file.txt" //File that contains address & port
of serv-side proxy

#define SOCK_BUFFER_SIZE 1024

#define CS_TO_SS_PROXYBUFFER_SIZE 100 //# of nodes in buffer

#define SS_TO_CS_PROXYBUFFER_SIZE 5000 //# of nodes in buffer

#define DELAY_IN_MSEC 0
/f#define USE_DELAY

-72-

/*

* Function prototypes

*/

void *proxyside_send_ThreadFunc(void *);
void *proxyside_recv_ThreadFunc(void *);
void *clientside_send_ThreadFunc(void *);

void *clientside_recv_ThreadFunc(void *);

struct BufferNode {

int EntryFull; //Flag (serves as semaphore). If 1 then value stored, else is
empty and can be written into

long int DataSize; //Size of data stored in entry

char Data[SOCK_BUFFER_SIZE];

int sockfd, newsockfd, servlen, cli_len, childpid;

struct sockaddr_in cli_addr, serv_addr;

int niaa;

struct BufferNode cs_to_ss_ProxyBuffer[CS_TO_SS_PROXYBUFFER_SIZE];
//Buffer used for client->server_side_proxy traffic

struct BufferNode ss_to_cs_ProxyBuffer[SS_TO_CS_PROXYBUFFER_SIZE];
/IBuffer used for server_side_proxy->client traffic

int ssp_sock; //socket used to connect to server-side proxy

int main(void) {
//Create the socket
if ((sockfd=socket(AF_INET, SOCK_STREAM, 0N <0){

perror("ERROR: socket creation \n");
exit(1);

//Create (client-side) proxy address

-73-

memset(&serv_addr, 0, sizeof(struct sockaddr_in));

serv_addr.sin_family = AF_INET;
serv_addr.sin_port = htons(C_PORTNUMBERY);
servlen = sizeof(struct sockaddr_in);

niaa = INADDR_ANY;
memcpy(&serv_addr.sin_addr, &niaa, sizeof(long));

//Bind socket to server address

if (bind(sockfd, (struct sockaddr *) &serv_addr, servien) < 0) {
perror("ERROR: bind \n");
exit(1);

//Listen for client connections

if (listen(sockfd, 5) <0) {
perror("ERROR: listen \n");
exit(1);

for (;;) {

cli_len = sizeof(cli_addr);
newsockfd = accept(sockfd, (struct sockaddr *) &cli_addr, &cli_len);

if (newsockfd < 0) {
perror("ERROR: Can't create new socket \n");
exit(1);

//Create child process

if ((childpid = fork()) <0){
perror("ERROR: Fork \n");
exit(1);

}

else if (Chlldpld == 0) { [FEEERE ohild process ek kdk */

-74 -

/* Child process vars */

struct hostent *hp; //used in connecting to server-side
proxy

struct sockaddr_in name; //used in connecting to server-
side proxy

int len; //used in connecting to server-side proxy

int thr_concurrency_counter;

thread_t ThreadlD[4]; //Array of thread IDs for
thr_create calls

void *dummyPTRI[4]; //Array of dummy pointers used in
thr_create calls

FILE *id,

int S_Port_Number; //Port on which server-side proxy
listens

char S_Proxy_Name[64]; //IP USED NOW! DNS name of
server-side proxy

int i; //counter var

size_t TaskStatus[4]; //Used in thr_join() calls

int mm;

char S_Proxy_IP[55]; //IP address of proxy now read

ulong_t addr; //Used for getting serv.side proxy info from its

IP address

close(sockfd); /lclose original socket

/! code

printf("CHECK: CHILD process created \n\n");

/*

* Read file to obtain address (name & port #) of server-side
proxy

* Format: "port# ss-proxy-name" ("'s not included)
*/

- 75 -

//sem_lock not needed

if ((fd = fopen(FILENAME, "r")) == NULL) {
perror("ERROR: Couldn't open file \n");
exit(1);

}

#ifdef SS_PRX_USE_NAME

fscanf(fd, "%d %s", &S_Port_Number, S_Proxy_Name);
#endif

#ifdef SS_PRX_USE_IP

fscanf(fd, "%d %s", &S_Port_Number, S_Proxy_IP);
#endif

//Check values read from file

#ifdef SS_PRX_USE_NAME

printf("CHECK: S_Proxy_Name: %s\n", S_Proxy_Name);
#endif

#ifdef SS_PRX_USE_IP
printf("CHECK: S_Proxy_IP: %s\n", S_Proxy_IP);
#endif

printf("CHECK: S_Port_Number: %d \n", S_Port_Number);

fclose(fd);

//sem_unlock not needed

/*

* Initialize proxy buffers (i.e. set all flags to 0)

*/

for (i=0; i<CS_TO_SS_PROXYBUFFER_SIZE; i++) {
cs_to_ss_ProxyBuffer[il.EntryFull = 0;

- 76 -

}

for (i=0; i<SS_TO_CS_PROXYBUFFER_SIZE; i++) {
ss_to_cs_ProxyBuffer[i].EntryFull = 0;

}

/*
* Open connection to server-side proxy
*/

/IGet server-side proxy's address
#ifdef SS_PRX_USE_NAME
if ((hp = gethostbyname(S_Proxy_Name)) == NULL)
printf("ERROR: Can't get server-side proxy address
(%s)\m\n", S_Proxy_Name);
exit(1);
}
#endif

#ifdef SS_PRX_USE_IP

/IGet server-side proxy's address

if ((int)(addr = inet_addr(S_Proxy_IP)) == -1 {
printf("IP-address must be of the form a.b.c.d\n");
exit (2);

}

hp = gethostbyaddr((char *)&addr, sizeof(addr), AF_INET);

if (hp == NULL) {
printf("host information for %s not found\n",

S_Proxy_IP);
exit (3);
3
#endif
//Create socket
if ((ssp_sock = socket(AF_INET, SOCK_STREAM, 0)<0){
printf("ERROR: Can't create socket for server-side proxy
\n\n");

exit(1);

-77-

/ICreate server address
memset(&name, 0, sizeof(struct sockaddr_in));

name.sin_family = AF_INET;

name.sin_port = htons(S_Port_Number);
memcpy(&name.sin_addr, hp->h_addr_list[0], hp->h_length);
len = sizeof(struct sockaddr_in);

//Connect to server
if (connect(ssp_sock, (struct sockaddr *) &name, len) <0){
printf("ERROR: Can't connect to server-side proxy\mn");

exit(1);
3
e
/*
* Spawn the sending/receiving threads
*/

thr_create(NULL, 0, clientside_recv_ThreadFunc, (void ")
dummyPTR[0], 0, &ThreadID[0]);

thr_create(NULL, 0, clientside_send_ThreadFunc, (void *)
dummyPTR[1], 0, &ThreadID[1]);

thr_create(NULL, 0, proxyside_recv_ThreadFunc, (void *)
dummyPTR[2], 0, &ThreadID[2]);

thr_create(NULL, O, proxyside_send_ThreadFunc, (void *)
dummyPTR[3], 0, &ThreadID[3]);

/*

*Set the thread concurrency. Could improve thread scheduling.
*/

thr_concurrency_counter = 4+1; //Include main()
thr_setconcurrency(thr_concurrency_counter);

-78 -

/*

* Make thr_join calls so that program doesn't terminate right
after creating threads

*/

thr_join(ThreadiD[0], 0, (void *) &TaskStatus[0]);

thr_join(ThreadID[1], O, (void *) &TaskStatus|[1]);

thr_join(ThreadID[2], 0, (void *) &TaskStatus[2]);

thr_join(ThreadID[3], O, (void *) &TaskStatus|[3]);

} //lendelseif /¥ FFeeer child process **t ¥/

close(newsockfd);

} //endfor

} Fmain*/

/*

KhhkAhrhkhkhkihkhkhhkhkhkdkhhbhkhbhbhrdhhrkhbidrbhhhihhbrbdhbrbhdbrrdhbrhdhhhrdhbhrhrrhdhrhikhkidhhdhdid

*hhkhkhkkhhhhhkhhhhhkhikiiik */

void *clientside_recv_ThreadFunc(void *dummyPTR) //Receives data from client &
stores in buffer(cs_to_ss_ProxyBuffer)

{

int n;

int i; //counter var

char buffSOCK_BUFFER_SIZE];
void *thr_exit_status;

-79 -

printf("CHECK: clientside_recv_Thread spawned\n\n");

i=-1; //Init counter
while ((n = recv(newsockfd, buf, sizeof(buf), 0)) > 0) {

//Increment counter
if (i < (CS_TO_SS_PROXYBUFFER_SIZE-1))

i++;
else

i=0;
/*
* Copy received data to cs_to_ss_ProxyBuffer;
*/

while (cs_to_ss_ProxyBuffer[i].EntryFull != 0) {
printf("STATUS/CHECK(clientside_recv): Waiting on
cs_to_ss_ProxyBuffer = O\n\n");
thr_yield();
}
memcpy(cs_to_ss_ProxyBuffer[i].Data, buf, n);
cs_to_ss_ProxyBuffer[i].DataSize = n;
cs_to_ss_ProxyBuffer[i]. EntryFull = 1;

} /lwhile
if (n<=0) {
printf("CHILD PROC. EXITING: n<=0 while recv. from client(client-side
proxy)\n");
printf("IF AT END OF CLIENT-SERVER COMMUN. THEN OK \n\n");
close(newsockfd);
exit(1);
thr_exit(thr_exit_status);
3

} //clientside_recv_ThreadFunc

- 80 -

/*
B T T o o R R o R L o o ot o ek R R ik ko

hhkkAhkhhkikikhhhrhhkikikhkix */

void *clientside_send_ThreadFunc(void *dummyPTR) //Gets data from
buffer(ss_to_cs_ProxyBuffer) & sends to client

{

int n;

int i; /Counter var

char buf[SOCK_BUFFER_SIZE];
void *thr_exit_status;

printf("CHECK: clientside_send_Thread spawned\n\n");

i =-1; //Init counter
while (1) {

/*
* Get data from ss_to_cs_ProxyBuffer;
*/

//Increment counter
if (i < (8S_TO_CS_PROXYBUFFER_SIZE-1))
i+t

else
i=0;

while (ss_to_cs_ProxyBuffer[i].EntryFull I= 1) {
thr_yield();
}
memcpy(buf, ss_to_cs_ProxyBuffer[i].Data,
ss_to_cs_ProxyBuffer[i]. DataSize);
n = ss_to_cs_ProxyBuffer[i].DataSize;
ss_to_cs_ProxyBuffer[i].EntryFull = 0;

-81 -

/=
* Send data to client
*/
if (send(newsockfd, buf, n, 0) < 0) {
printf("ERROR: (smpl_cs_proxy) While sending data to client
<0 \n\n");
exit(1);
thr_exit(thr_exit_status);

} /fwhile

} /clientiside_send_ThreadFunc

/*
Fe Je e Fe e de Fe e Fe ke e e ke e P ke ke Fe e e Fe e e g ke sk e e e e e ke e vk TR v o e P de T ok e v ke e Tk ke S e vk e e ok e e e ke vk gk o ok I ke R o ok ke e ke ke e kA

2 S e */

void *proxyside_recv_ThreadFunc(void *dummyPTR) //Gets data from
buffer(ss_to_cs_ProxyBuffer) & sends to client

{

int n;

int i; /Counter var

char buf[SOCK_BUFFER_SIZE];
void *thr_exit_status;

printf("CHECK: proxyside_recv_Thread spawned\n\n");
i=-1;
while ((n = recv(ssp_sock, buf, sizeof(buf), 0)) > 0) {

/*
* Copy received data to ss_to_cs_ProxyBuffer;

-82-

*/

//Increment counter
if (i < (SS_TO_CS_PROXYBUFFER_SIZE-1))

i++;
else
i=0;
/*
* Copy received data to ss_to_cs_ProxyBuffer;
*/

while (ss_to_cs_ProxyBuffer[i]. EntryFull = 0) {
printf("STATUS/CHECK(proxyside_recv): Waiting on
ss_to_cs_ProxyBuffer != 0\n\n");
thr_yield();
}
memcpy(ss_to_cs_ProxyBuffer[i].Data, buf, n);
ss_to_cs_ProxyBuffer[i].DataSize = n;
ss_to_cs_ProxyBuffer[il.EntryFull = 1;

} /iwhile
if (n<=0) {
printf("FATAL ERROR: n<=0 while recv. from server-side proxy (client-
side proxy) \n\n");
close(ssp_sock);
exit(1);
thr_exit(thr_exit_status);

} //proxyside_recv_ThreadFunc

/*

FThhkhhkhdhhkhrrikidhdhdi itk */

void *proxyside_send_ThreadFunc(void *dummyPTR) //Gets data from

-83 -

buffer(cs_to_ss_ProxyBuffer) & sends to server-side proxy

{

int n;

int i; //Counter var

char buf[SOCK_BUFFER_SIZE];
void *thr_exit_status;

struct timeval *start_time;
struct timeval *curr_time;
long start_time_in_msec, curr_time_in_msec;

printf("CHECK: proxyside_send_Thread spawned\n\n");

/*

* Allocate memory to time vars

*/

start_time = (struct timeval *) malloc(sizeof(struct timeval));
curr_time = (struct timeval *) malloc(sizeof(struct timeval));

i=-1;
while (1) {

/*
* Get data from cs_to_ss_ProxyBuffer;
*/

//Increment counter
if (i < (CS_TO_SS_PROXYBUFFER_SIZE-1))
i++;

else
i=0;

while (cs_to_ss_ProxyBuffer[i]. EntryFull = 1) {
thr_yield();

-84 -

}

memcpy(buf, cs_to_ss_ProxyBuffer|i].Data,
cs_to_ss_ProxyBuffer[i].DataSize);

n = cs_to_ss_ProxyBuffer[i].DataSize;

cs_to_ss_ProxyBuffer[i].EntryFull = 0;

/*
* Send data to server-side proxy
*/

if (n>0) {

#ifdef USE_DELAY

if (gettimeofday(start_time, NULL) <0) {
printf("ERROR(proxy_send): gettimeofday error\n\n");
exit(1);

}

start_time_in_msec = (start_time->tv_sec)*1000 + (start_time-
>tv_usec)/1000;

while (1) {

if (gettimeofday(curr_time, NULL) <0) {
printf("ERROR(proxy_send): gettimeofday error\n\n");
exit(1);

}

curr_time_in_msec = (curr_time->tv_sec)*1000 + (curr_time-
>tv_usec)/1000;

if ((curr_time_in_msec - start_time_in_msec) >= DELAY_IN_MSEC)
break;

-85-

//Since haven't reached timeout value yet have thread sleeplyield
thr_yield();

} //while

#endif

if (send(ssp_sock, buf, n, 0) < 0) {
printf("ERROR: (smpl_cs_proxy) While sending data to server-side
proxy <0 \n\n");
exit(1);
thr_exit(thr_exit_status);

} //if n>0

} /iwhile

} //proxyside_send_ThreadFunc

- 86 -

#define _REENTRANT
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <string.h>
#include <sys/stat.h>
#include <thread.h>
#include <synch.h>
#include <sched.h>
#include <sys/uio.h>
#include <sys/sem.h>
#include <sys/ipc.h>
#include <memory.h>
#include <time.h>
#include <sys/time.h>
#include <unistd.h>

/Hdefine SERV_USE_NAME
#define SERV_USE_IP

#define S_PORTNUMBER 5006 //Server-side proxy listens on this port
#define FILENAME "smpl_ss_proxy._file.txt" //File that contains address & port
of server

#define SOCK_BUFFER_SIZE 1024

#define CS_TO_S_PROXYBUFFER_SIZE 100 //# of nodes in buffer

#define S_TO_CS_PROXYBUFFER_SIZE 5000 //# of nodes in buffer

#define DELAY_IN_MSEC 0
/#define USE_DELAY

-87-

/*

* Function prototypes

*/

void *serverside_send_ThreadFunc(void *);
void *serverside_recv_ThreadFunc(void *);
void *cproxyside_send_ThreadFunc(void *);
void *cproxyside_recv_ThreadFunc(void *);

struct BufferNode{

int EntryFull; //Flag (serves as semaphore). If 1 then value stored, else
is empty and can be written into

long int DataSize; //Size of data stored in entry

char Data[SOCK_BUFFER_SIZE];

int sockfd, newsockfd, servilen, cli_len, childpid;

struct sockaddr_in cli_addr, serv_addr;

struct BufferNode
csproxy_to_server_ProxyBuffer[CS_TO__S_PROXYBUFFER,SIZE]; //Buffer used
for client->server_side_proxy traffic

struct BufferNode
server_to__csproxy__ProxyBuffer[S_TO_CS_PROXYBUFFER_SIZE]; //Buffer used
for server_side_proxy->client traffic

int server_sock; //Socket used to connect to server

int niaa;

int main(void) {
//Create the socket

if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
perror("ERROR: socket creation \n");

-88 -

exit(1);
}

/[Create (server-side) proxy address
memset(&serv_addr, 0, sizeof(struct sockaddr_in));

serv_addr.sin_family = AF_INET:;
serv_addr.sin_port = htons(S_PORTNUMBER);
servlen = sizeof(struct sockaddr_in);

niaa = INADDR_ANY;
memcpy(&serv_addr.sin_addr, &niaa, sizeof(long));

//Bind socket to server address

if (bind(sockfd, (struct sockaddr *) &serv_addr, servlen) < 0){
perror("ERROR: bind \n");
exit(1);

}

//Listen for client connections

if (listen(sockfd, 5) <0) {
perror("ERROR: listen \n");
exit(1);

}

for (;;) {

cli_len = sizeof(cli_addr);
newsockfd = accept(sockfd, (struct sockaddr *) &cli_addr, &cli_len);

if (newsockfd < 0) {
perror("ERROR: Can't create new socket \n");
exit(1);

//Create child process

-89

if ((childpid = fork()) < 0) {

}

perror("ERROR: Fork \n");
exit(1);

else if (childpid == 0) { /* ****** child process ****** */

thr_create calls

thr_create calls

/* Child process vars */

struct hostent *hp; //used in connecting to server

struct sockaddr_in name; //used in connecting to server
int len; //used in connecting to server

int thr_concurrency_counter:

thread_t ThreadID[4]; //Array of thread IDs for

void *dummyPTR[4]; //Array of dummy pointers used in

FILE *fq;

int Server_PortNumber; //Port on which server listens
char Server_Name[64]; //DNS name of server

char Server_IP[64]; //IP of server

ulong_t addr;

int i; //counter var

size_t TaskStatus[4]; //Used in thr_join() calls

close(sockfd); /Iclose original socket

// code

printf("CHECK: CHILD process created \n\n");

/*

* Initialize proxy buffers (i.e. set all flags to 0)

*/

for (i=0; i<CS_TO_S_PROXYBUFFER_SIZE: i++) {
csproxy_to_server_ProxyBuffer[i].EntryFull = 0;

¥
for (i=0; i<S_TO_CS_PROXYBUFFER_SIZE; i++) {

-90-

server_to_csproxy_ProxyBuffer[i].EntryFull = 0;

/*

* Read file to obtain address (name & port #) of server
* Format: "port# server_name" ("'s not included)

*/

//sem_lock not needed

if ((fd = fopen(FILENAME, "r")) == NULL) {
perror("ERROR: Couldn't open file \n");
exit(1);

}

#ifdef SERV_USE_NAME

fscanf(fd, "%d %s", &Server_PortNumber, Server_Name);
#endif

#ifdef SERV_USE_IP

fscanf(fd, "%d %s", &Server_PortNumber, Server_IP);
#endif

/ICheck values read from file

#ifdef SERV_USE_NAME

printf("CHECK: Server_Name: %s\n", Server_Name);
#endif

#ifdef SERV_USE_IP

printf("CHECK: Server_IP: %s\n", Server_IP);

#endif

printf("CHECK: Server_PortNumber: %d \n",
Server_PortNumber);

fclose(fd);

//sem_unlock not needed

-9] -

Server_Name);

Server_IP);

/*
* Open connection to server
*/

/IGet server's address

#ifdef SERV_USE_NAME

if ((hp = gethostbyname(Server_Name)) == NULL) {
printf("ERROR: Can't get server address(%s)\n\n",

exit(1);

by

#endif

#ifdef SERV_USE_IP

if ((int)(addr = inet_addr(Server_IP)) == -1) {
printf("IP-address must be of the form a.b.c.d\n");
exit (2);

H

hp = gethostbyaddr((char *)&addr, sizeof(addr), AF_INET);

if (hp == NULL) {
printf("host information for %s not found\n",

exit (3);

}
#endif

//Create socket

if ((server_sock = socket(AF_INET, SOCK_STREAM, 0)) < 0){
printf("ERROR: Can't create socket for server \n\n");
exit(1);

//Create server address
memset(&name, 0, sizeof(struct sockaddr_in));

name.sin_family = AF_INET;

name.sin_port = htons(Server_PortNumber);
memcpy(&name.sin_addr, hp->h_addr_list[0], hp->h_length);
len = sizeof(struct sockaddr_in);

-92.

//IConnect to server
if (connect(server_sock, (struct sockaddr *) &name, len) <0

) {

printf("ERROR: Can't connect to server \n\n");
exit(1);

3

[[~mmmmmmmm e

/*

* Spawn the sending/receiving threads

*/

thr_create(NULL, 0, cproxyside_recv_ThreadFunc, (void *)
dummyPTR[0], 0, &ThreadID[0]);

thr_create(NULL, 0, cproxyside_send_ThreadFunc, (void *)
dummyPTR[1], 0, &ThreadID[1]);

thr_create(NULL, 0, serverside_recv_ThreadFunc, (void *)
dummyPTR[2], 0, &ThreadIDI[2]);

thr_create(NULL, 0, serverside_send_ThreadFunc, (void *)
dummyPTR[3], 0, &ThreadID[3]);

/*

*Set the thread concurrency. Could improve thread scheduling.
*/

thr_concurrency_counter = 4+1; //Include main()
thr_setconcurrency(thr_concurrency_counter);

/*

* Make thr_join calls so that program doesn't terminate right
after creating threads

*/

thr_join(ThreadIDI[0], 0, (void *) &TaskStatus[0]);

thr_join(ThreadlID[1], 0, (void *) &TaskStatus[1]);

thr_join(ThreadlDJ[2], 0, (void *) &TaskStatus[2]);

S |}

-93-

thr_join(ThreadID[3], 0, (void *) &TaskStatus[3]):
}//endelseif J* FEFEFEE Shild Process ****** %/

close(newsockfd);

} //endfor
} Fmain*/

/*
Fo R e de e e o ke ok I e dhe ok e S e e ke T o e e sk e Sk e ok e gk g T e v ok e e o ok ke e e i ok e e ke e ol ok o e e e e o o e vk e ke ok e S e Sk ok ke v 9 ok ke o o e ke

Fhkdkhhkhkhkhhkdrrrhkkhkhihkik */

void *cproxyside_recv_ThreadFunc(void *dummyPTR) //Receives data from
client-side proxy & stores in csproxy_to_server_ProxyBuffer

{

int n;

int i; //counter var

char buf[SOCK_BUFFER_SIZE];
void *thr_exit_status:

i=-1; //Init counter
while ((n = recv(newsockfd, buf, sizeof(buf), 0)) > 0) {

/*
* Copy received data to csproxy_to_server_ProxyBuffer;
*/

//Increment counter
if (i < (CS_TO_S_PROXYBUFFER_SIZE-1))
i+

else
i=0;

-94.

while (csproxy_to_server_ProxyBufferfi]. EntryFull 1= 0) {
printf("STATUS/CHECK(cproxyside_recv): Waiting on
csproxy_to_server_ProxyBuffer I= O\n\n");

thr_yield();
b
memcpy(csproxy_to_server_ProxyBuffer[i].Data, buf, n);
csproxy_to_server_ProxyBuffer[i].DataSize = n;
csproxy_to_server_ProxyBuffer[il.EntryFull = 1;

} /iwhile
if (n<=0) {
printf("CHILD PROC.EXITING:n<=0 while recv. from client-side

proxy(server-side proxy)\n");
printf("IF END OF CLIENT-SERVER COMMUN. THEN IS OK\n\n");
close(newsockfd);
exit(1);
thr_exit(thr_exit_status);

} //cproxyside_recv_ThreadFunc

/*

e Fe e e e e e e e S A e e e e ke ok e Ao ke */

void *cproxyside_send_ThreadFunc(void *dummyPTR) //Gets data from
buffer(server_to_csproxy_ProxyBuffer) & sends to client-side proxy

{

int n;

int i;

char buf[SOCK_BUFFER_SIZE];
void *thr_exit_status;

struct timeval *start_time;

-95.

struct timeval *curr_time;
long start_time_in_msec, curr_time_in_msec;

/=
* Allocate memory to time vars

*/

start_time = (struct timeval *) malloc(sizeof(struct timeval));
curr_time = (struct timeval *) malloc(sizeof(struct timeval));

i=-1;
while (1) {

/*
* Get data from server_to_csproxy_ProxyBuffer;
*/

//Increment counter
if (i < (S_TO_CS_PROXYBUFFER_SIZE-1))
i++;

else
i=0;

while (server_to_csproxy_ProxyBuffer[i].EntryFull I= 1) {
thr_yield();
3
memcpy(buf, server_to_csproxy_ProxyBuffer[i].Data,
server_to_csproxy_ProxyBuffer[i].DataSize);
n = server_to_csproxy_ProxyBuffer[i].DataSize;
server_to_csproxy_ProxyBuffer[i]. EntryFull = 0;

/*

* Send data to client-side proxy
*/

if (n>0) {

- 96 -

#ifdef USE_DELAY

if (gettimeofday(start_time, NULL) <0) {
printf("ERROR(proxy_send): gettimeofday error\n\n");
exit(1);

}

start_time_in_msec = (start_time->tv_sec)*1000 +
(start_time->tv_usec)/1000;

while (1) {
if (gettimeofday(curr_time, NULL) <0) {
printf("ERROR(proxy_send): gettimeofday
error\n\n");
exit(1);
}

curr_time_in_msec = (curr_time->tv_sec)*1000 +
(curr_time->tv_usec)/1000;

if ((curr_time_in_msec - start_time_in_msec) >=

DELAY_IN_MSEC)
break;

//Since haven't reached timeout value yet have thread
sleeplyield
thr_yield();

} //while

#endif

-97.-

if (send(newsockfd, buf, n, 0) < 0) {
printf("ERROR: (smpl_ss_proxy) While sending data to
client-side proxy <0 \n\n");
exit(1);
thr_exit(thr_exit_status);

3
} /it n>0

} //while
} /lcproxyside_send_ThreadFunc

/*

Fhhhkhkhkhikhhhhhbhhhikhidx */

void *serverside_recv_ThreadFunc(void *dummyPTR) //Receives data from
server & stores in buffer (server_to_csproxy_ProxyBuffer)

{

int n;

int i;

char buf[SOCK_BUFFER_SIZE];
void *thr_exit_status;

i=-1;
while ((n = recv(server_sock, buf, sizeof(buf), 0)>0){

/*
* Copy received data to server_to_csproxy_ProxyBuffer;
*/

//Increment counter
if(i< (S_TO_CS_PROXYBUFFER_SIZE-1))
i++;

else

- 98-

i=0;
while (server_to_csproxy_ProxyBuffer[i]. EntryFull I= 0){
printf("STATUS/CHECK(serverside_recv): Waiting on
server_to_csproxy_ProxyBuffer != O\n\n");
thr_yield();
}
memecpy(server_to_csproxy_ProxyBuffer[i].Data, buf, n);
server_to_csproxy_ProxyBuffer[i].DataSize = n;
server_to_csproxy_ProxyBuffer[i]. EntryFull = 1;

} //while
if (n<=0) {
printf("FATAL ERROR: n<=0 while recv. from server (server-side
proxy) \n\n");
close(server_sock);
exit(1);
thr_exit(thr_exit_status);

}

} [//serverside_recv_ThreadFunc

/*

e e e e Fe o e e e ke ke e ke ok e ok ke ke ke A ke */

void *serverside_send_ThreadFunc(void *dummyPTR) //Retrieves data from
buffer (csproxy_to_server_ProxyBuffer) & sends to server

{

int n;

int i; //counter var

char buf[SOCK_BUFFER_SIZE];
void *thr_exit_status;

i=-1;
while (1) {

-99.

/*
* Get data from csproxy_to_server_ProxyBuffer;
*/
/llncrement counter
if (i < (CS_TO_S_PROXYBUFFER_SIZE-1))
j++;

else
i=0;

while (csproxy_to__server_ProxyBuffer[i].EntryFulI I=1){
thr_yield();
}
memcpy(buf, csproxy_to_server_ProxyBuffer[i].Data,
csproxy_to_server_ProxyBuffer[i]. DataSize);
n = csproxy_to_server_ProxyBuffer[i]. DataSize;
csproxy_to_server_ProxyBuffer[i]. EntryFull = 0;

/*
* Send data to server
*/
if (send(server_sock, buf, n, 0) < 0) {
printf("ERROR: (smpl_ss_proxy) While sending data to server
<0 \n\n");

exit(1);
thr_exit(thr_exit_status);

} /iwhile

} //serverside_send_ThreadFunc

- 100 -

APPENDIX B

C LANGUAGE LISTING FOR MULTI-CONNECTION-TCP

CONNECTION-SPLITTING PROXIES

- 101 -

#define _REENTRANT
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <string.h>
#include <sys/stat.h>
#include <thread.h>
#include <synch.h>
#include <sched.h>
#include <sys/uio.h>
#include <sys/sem.h>
#include <sys/ipc.h>
#include <memory.h>
#include <time.h>
#include <sys/time.h>
#include <unistd.h>

//Debug "defines"
/Htdefine new2_PRINT_DEBUG

//IChoose whether serv-side proxy Name or IP read from file
/Htdefine SS_PRX_USE_NAME
#define SS_PRX_USE_IP

#define C_PORTNUMBER 6005 /IClient-side proxy listens on this port
#define FILENAME "p_cs_proxy_file.txt" //File that contains address & port #
of server-side proxy

#define SOCK_BUFFER_SIZE 1024

#define PS_TO_C_PROXYBUFFER_SIZE 4000 //# of nodes in buffer

#define C_TO_PS_PROXYBUFFER_SIZE 200 //# of nodes in buffer

/f#define PROXY_SIDE_BUFFER_SIZE 1000 //# of nodes in buffer

#define S_PROXY_SIDE_BUFFER_SIZE 1 //NOT USED -50- # of nodes in buffer

-102 -

#define R_PROXY_SIDE_BUFFER_SIZE 10000 //5000 # of nodes in buffer

#define LENGTH_HEADER_SIZE 2 //Length of Length header that is appended in
front of packets

#define MAX_CONN_NUMB_PER_LOGICAL_CONN 5 //Max # of connections per
logical connection

/l#define USE_DELAY
#define DELAY_IN_MSEC 0

/*

* Function prototypes

*/

void *proxyside_recv_ThreadFunc(void *);

void *clientside_send_ThreadFunc(void *);

void *clientside_recv_ThreadFunc(void *);

void *client_to_proxy_Control_ThreadFunc(void *);
void *proxy_to_client_Control_ThreadFunc(void *);

struct BufferNode {

int EntryFull; //Flag (serves as semaphore). If 1 then value stored, else
is empty and can be written into

long int DataSize; //Size of data stored in entry

char Data[SOCK_BUFFER_SIZE];

int sockfd, servlen, cli_len, childpid;

int client_sock; //Socket created from cl.side-proxy listening

struct sockaddr_in cli_addr, serv_addr;

int niaa;

int servsideproxy_sockfd[MAX_CONN_NUMB_PER_LOGICAL_CONN]; //sockets

-103 -

used to connect to serv-side proxy

struct BufferNode client_to_ssproxy_ProxyBuffer[C_TO_PS_PROXYBUFFER_SIZE];
//Buffer used for client->server_side_proxy traffic

struct BufferNode ssproxy_to_client_ProxyBuffer[PS_TO_C_PROXYBUFFER_SIZE];
//Buffer used for server_side_proxy->client traffic

struct BufferNode
proxy_side_sendBuffer[S_PROXY_SIDE_BUFFER_SIZE][MAX_CONN_NUMB_PER_LO
GICAL_CONNJ; //Used to store temporarily data that will be

//sent out to cl.side proxy

struct BufferNode
proxy_side_rechuffer[R__PROXY_SIDE_BUFFER_SIZE][MAX_CONN_NUMB_PER_LO
GICAL_CONN]J; //Used to store temporarily data that is

/Ireceived fromt to cl.side proxy
int Connection_Number; //Number of connections to be opened for a given proxy-
to-proxy 'logical' connection

int main(void) {

//Create the socket

if ((sockfd=socket(AF_INET, SOCK_STREAM, 0)) < 0) {
perror("ERROR: socket creation \n");
exit(1);

}

/ICreate (client-side) proxy address
memset(&serv_addr, 0, sizeof(struct sockaddr_in));

serv_addr.sin_family = AF_INET,;
serv_addr.sin_port = htons(C_PORTNUMBER);

servlen = sizeof(struct sockaddr_in);

niaa = INADDR_ANY;

-104 -

memcpy(&serv_addr.sin_addr, &niaa, sizeof(long));

//Bind socket to address

if (bind(sockfd, (struct sockaddr *) &serv_addr, servlen) < 0){
perror("ERROR: bind \n");
exit(1);

}

//Listen for client connections

if (listen(sockfd, 7) <0) {
perror("ERROR: listen \n");
close(sockfd);
exit(1);

¥

for (;;) {

cli_len = sizeof(cli_addr);
client_sock = accept(sockfd, (struct sockaddr *) &cli_addr, &cli_len);

if (client_sock < 0) {
perror("ERROR: Can't create new socket (from cl.side proxy
listening socket) \n");
exit(1);
}

/ICreate child process

if ((childpid = fork()) <0) {
perror("ERROR: Fork \n");
exit(1);

}

else if (childpid == 0) { /* ****** child process ****** */

-105 -

/* Child process vars */

struct hostent *hp; //used in connecting to server

struct sockaddr_in name; //used in connecting to server

int len; //used in connecting to server

int n;

int thr_concurrency_counter;

thread_t
ThreadlD[MAX_CONN_NUMB_PER_LOGICAL_CONN*2+4]; /[Array of thread IDs
for thr_create calls

int
thr_lD_PTR[MAX_CONN_NUMB_PER_LOGICAL_CONN*2+4]; //Array of thr_ID
pointers used in thr_create calls

FILE *fd;

int ServSideProxy_PortNumber; //Port on which server
listens

char ServSideProxy_Name[64]; //DNS name of server

int i,j; //counter var

size_t
TaskStatus[MAX_CONN_,NUMB_PER_LOGICAL_CONN*2+4]; //Used in thr_join()
call

char buf[SOCK_BUFFER_SIZE]; //Buffer used by parent to
send to other proxy # of connections to be opened

char Connection_Number_str[31]; //String containing
Connection_Number(as to be sent to other proxy)

char ServSideProxy_IP[55]; //Used for reading from file serv-
side proxy IP address

ulong_t addr;
close(sockfd); //close original socket
/1 code

printf("CHECK(p_cs_proxy): CHILD process created \n\n");

- 106 -

/*

* Read file to obtain address (name & port #) of server-side
proxy

* Format: "port# proxy_name" ("'s not included)

*/

//sem_lock not needed

if ((fd = fopen(FILENAME, "r")) == NULL) {
perror("ERROR(p_cs_proxy): Couldn't open file \n");
exit(1);

3

#ifdef SS_PRX_USE_NAME

fscanf(fd, "%d %s", &ServSideProxy_PortNumber,
ServSideProxy_Name);

#endif

#ifdef SS_PRX_USE_IP

fscanf(fd, "%d %s", &ServSideProxy_PortNumber,
ServSideProxy_IP);

#endif

//Check values read from file

#ifdef SS_PRX_USE_NAME

printf("CHECK(p_cs_proxy): ServSideProxy_Name: %s\n",
ServSideProxy_Name);

#endif

#ifdef SS_PRX_USE_IP
printf("CHECK(p_cs_proxy): ServSideProxy_IP: %s\n",

ServSideProxy_IP);
#endif

printf("CHECK(p_cs_proxy): ServSideProxy_PortNumber: %d
\n", ServSideProxy__PortNumber);

fclose(fd);

- 107 -

//sem_unlock not needed

/*

* Open connection to server-side proxy
*/

//Get server-side proxy's address
#ifdef SS_PRX_USE_NAME

if ((hp = gethostbyname(ServSideProxy_Name)) == NULL) {
printf("ERROR(p_cs_proxy): Can't get server-side proxy

address(%s)\n\n", ServSideProxy_Name);

ServSideProxy_IP);

exit(1);

}
#endif

#ifdef SS_PRX_USE_IP

if ((int)(addr = inet_addr(ServSideProxy_IP)) == -1) {
printf("IP-address must be of the form a.b.c.d\n");
exit (2);

}

hp = gethostbyaddr((char *)&addr, sizeof(addr), AF_INET);

if (hp == NULL) {
printf("host information for %s not found\n”,

exit (3);

b
#endif

/[Create server-side proxy address
memset(&name, 0, sizeof(struct sockaddr_in));

name.sin_family = AF_INET:;

name.sin_port = htons(ServSideProxy_PortNumber);
memcpy(&name.sin_addr, hp->h_addr_list[0], hp->h_length);
len = sizeof(struct sockaddr_in);

- 108 -

//Create socket
if ((servsideproxy_sockfd[0] = socket(AF_INET,
SOCK_STREAM, 0)) <0) {
printf("ERROR(p_cs_proxy): Can't create socket for
server-side proxy \n\n");
exit(1);
3

/IConnect to server-side proxy
if (connect(servsideproxy_sockfd[0], (struct sockaddr *)
&name, len) < 0){
printf("ERROR(p_cs_proxy): Can't connect to server-
side proxy \n\n");
exit(1);

/*

* Read # of TOTAL connections to be opened (for each
'logical’ connection to serv-side proxy)

* & send it to server-side proxy.

* Format: string containing # followed by "\0'

*/

printf("Enter # of phys. connections per logical connection (%d
max):", MAX_CONN_NUMB_PER_LOGICAL_CONN);

scanf("%d", &Connection_Number);

sprintf(Connection_Number_str, "%d", Connection_Number);

//Copy connection # in buf to send out to serv-side proxy &
set buf size

strepy(buf, Connection_Number_str);

n = strlen(buf) + 1; //strlen()+1 to account for the "\0O' char
that must be included

- 109 -

if (send(servsideproxy_sockfd[0], buf, n , 0)<0){
printf("ERROR(p_cs_proxy): While sending connection #
to serv-side proxy <0 \n\n");
exit(1);
Y /if

printf("CHECK(p_cs_proxy): %d connections to be opened
\n\n",Connection_Number);

/*

* Open (Connection_Number-1) connections .
NOTE:Connection_Number is TOTAL connections to be opened

*/

for (i=1; i<Connection_Number; i++) {

/ICreate socket
if ((servsideproxy_sockfd[i] = socket(AF_INET,
SOCK_STREAM, 0)) < 0) {
printf("ERROR(p_cs_proxy): Can't create socket
for server-side proxy for i:%d\n\n", i);
exit(1);
}

//Connect to server-side proxy
if (connect(servsideproxy_sockfd][i], (struct sockaddr
*) &name, len) < 0) {
printf("ERROR(p_cs_proxy): Can't connect to
server-side proxy for i:%d\n\n", i);
exit(1);
}

} //for

-110-

j*+)

i)

i++)

/*
* Initialize proxy buffers (i.e. set all flags to 0)
*/
for (i=0; i<S_PROXY_SIDE_BUFFER_SIZE: i++) {
for (j=0; j<MAX_CONN_NUMB_PER_LOGICAL_CONN;
{
proxy_side_sendBuffer]i][j].EntryFull = 0;
}
}
for (i=0; i<R_PROXY_SIDE_BUFFER_SIZE: i++) {
for (j=0; J<MAX_CONN_NUMB_PER_LOGICAL_CONN;
{
proxy_side_recvBuffer{i][j].EntryFull = 0;
}

for (i=0; i<PS_TO_C_PROXYBUFFER_SIZE; i++) {
ssproxy_to_client_ProxyBuffer[i].EntryFull = 0;

3
for (i=0; i<C_TO_PS_PROXYBUFFER_SIZE; i++) {
client_to_ssproxy_ProxyBuffer[i]. EntryFull = 0;

}

/*

* Init/fill-in thr_ID array. Thread IDs start from ZERO 1!

*/

for (i=0; i<(MAX_CONN_NUMB_PER_LOGICAL_CONN*2+4);

thr_ID_PTR][i] = i;

-111-

/*

* NOTE: proxy-side sending threads have thread IDs from (8]
to Connection_Number-1) and

* proxy-side receiving threads have thread IDs from
(Connection_Number to 2*Connection_Number-1)

*

*/

/*

* Spawn the server-side proxy sending/receiving threads. Pair
for each connection w/ serv-side proxy

*/

for (i=Connection_Number; i<(2*Connection_Number); i++) {
thr_create(NULL, 0, proxyside_recv_ThreadFunc, (void
*) &thr_ID_PTRYi], 0, &ThreadIDIi]);
} //for

if (i != (2*Connection_Number)) {
printf("ERROR/CHECK(p_cs_proxy): i counter <>
2*Connection_Number \n");
exit(1);
}

/*

* Spawn the client-side sending/receiving threads. Just one pair
for the single connection to client

*/

thr_create(NULL, O, clientside_send_ThreadFunc, (void *)
&thr_ID_PTR]Ji], 0, &ThreadIDIi));

-112-

i++;

?

thr_create(NULL, O, clientside_recv_ThreadFunc, (void *)
&thr_ID_PTR]i], 0, &ThreadIDI[i});

/*

* Spawn Control threads
*/
i++;

thr_create(NULL, 0, client_to_proxy_Control_ThreadFunc,
(void *) &thr_ID_PTR]i], 0, &ThreadIDJ[i]);

4+

thr_create(NULL, 0, proxy_to_client_Control_ThreadFunc,
(void *) &thr_ID_PTRYi], 0, &ThreadIDI[i]);

/*

*Set the thread concurrency. Could improve thread scheduling.
*/

thr_concurrency_counter = Connection_Number*1+4 + 1;
thr_setconcurrency(thr_concurrency_counter);

/*
* Make thr_join calls so that program doesn't terminate right
after creating threads

*/
for (i= Connection_Number; i<(2*Connection_Number+4); i++)

thr_join(ThreadIDIi], 0, (void *) &TaskStatusli]);

}//endelseif [* FEERER ohild process FkFKE X f

-113-

/*

* Close in parent the "passed off to child" socket
>/

close(client_sock);

} //endfor

} Fmain*/

/*

Fhhkhkhkdhrhbhkhdrrhkrhrihd */

void *proxyside_recv_ThreadFunc(void *thr_ID_PTR) {

/*

* Get thread ID

*/

int thr_ID = *((int *) thr_ID_PTR);

int n,m;

int ik; //counter vars

char *buf; //socket buffer

char *bufStart; //Used to store temporarily the socket buffer starting
address

int buf_size; //Size of buf. Used because sizeof(buf) doesn't work for
char *

unsigned int Packet_Length; //Holds packet length derived from arrived
packet's Length header

//Init buffer
buf_size = (SOCK_BUFFER_SIZE+2); // new2 - buf_size was

-114-

SOCK_BUFFER_SIZE
buf = (char *) malloc(buf_size*sizeof(char));

/*

* NOTE: proxy-side sending threads have thread IDs from (0 to
Connection_Number-1) and

* proxy-side receiving threads have thread IDs from
(Connection_Number to 2*Connection_Number-1)

* Therefore (thr_ID-Connection_Number) is the connection # that should
be used by the proxy-side

* receiving threads

*/

i=0; //Init counter

while (1) { //new2

/*

* Get exaclty LENGTH_HEADER_SIZE bytes of new packet i.e. the
Length header

*/

m = 0;
while (m<2) {

if ((n=recv(servsideproxy__sockfd[thr_lD-Connection_Number],
buf+m, LENGTH_HEADER_SIZE-m, 0)) > 0) {
m = m+n;
} /if
else{
printf("FATAL ERROR(prx_side_recv_Thread): n<=0
while recv. Length header\n\n");
close(servsideproxy_sockfd[thr_ID-
Connection_Number]);
exit(1);
}

} /fwhile

-115-

#ifdef new2_PRINT_DEBUG
printf("CHECK new2: right after recv() #1 \n\n");
#endif

/*

* Get length from Length field

*/

Packet_Length = buf[0];

Packet_Length = (Packet_Length<<8) | (buf[1]);

/*

* Receive entire packet now
*/

m = 0;

while (m<Packet_Length) {

if ((n=recv(servsideproxy_sockfd[thr_ID-Connection_Number],
buf+m, Packet_Length-m, 0)) > 0) {

m = m+n;

Y} //if
else {

printf("FATAL ERROR(prx_side_recv_Thread): n<=0
while recv. remaining packet \n\n");
close(servsideproxy_sockfd[thr_ID-
Connection_Number]);
exit(1);
} lelse

} /iwhile

-116-

//Error check
if (m != Packet_Length) {
printf("ERROR((recv[%d]): m != Packet_Length (is >) \n\n",
thr_ID);
close(servsideproxy_sockfd[thr_ID-Connection_Number]);
exit(1);
} //if

/*

* Now that got entrire packet, write it (w/o Length header) to
proxy_side_recvBuffer

*/

while (proxy_side,_rechuffer[i][thr_lD-Connection_Number].EntryFulI
I=0){
printf("CHECK(prx_recv[%d]): Waiting for
proxy_side_recvBuffer[][]!=0\n\n", thr_ID);
thr_yield();
} /iwhile

memcpy(proxy_side_rechuffer[i][thr_lD-Connection_Number].Data,
buf, Packet_Length);

proxy_side_recvBuffer[i][thr_ID-Connection_Number].DataSize =
Packet_Length; .
proxy_side_recvBuffer[i][thr_ID-Connection_Number].EntryFull = 1;

//Increment counter
if (i < (R_PROXY_SIDE_BUFFER_SIZE-1))
i++;

else
i=0;

} /iwhile(1)

} //proxyside_recv_ThreadFunc

-117 -

/*

Fhkhhkkhkrrikhhkhkhhhhkhkrhikik */

void *clientside_send_ThreadFunc(void *thr_ID_PTR) {

/*

* Get thread 1D

*/

int thr_ID = *((int *) thr_ID_PTR);

int n;
int i; //counter var
char buf[SOCK_BUFFER_SIZE];

i=-1;
while (1) {

/*
* Get data from ssproxy_to_client_ProxyBuffer;
*/
/lIncrement counter
if (i < (PS_TO_C_PROXYBUFFER_SIZE-1))
i+

else
i=0;

while (ssproxy_to_client_ProxyBuffer[i]. EntryFull 1= 1) {
thr_yield();
}
memcpy(buf, ssproxy_to_client_ProxyBuffer[i].Data,
ssproxy_to_client_ProxyBuffer[i].DataSize);
n = ssproxy_to_client_ProxyBuffer[i]. DataSize;

-118 -

ssproxy_to_client_ProxyBuffer[i].EntryFull = 0O;

/*
* Send data to client
*/
if (n>0) {
if (send(client_sock, buf, n, 0) < 0) {

printf("ERROR(p_cs_proxy server_send_thread): While
sending data to client <0 \n\n");

exit(1);
} Vif
}y /if

} /iwhile

} /iclientside_send_ThreadFunc

/*

Fhhhkhkhhhikhhhhhkhirhhkiki */

void *clientside_recv_ThreadFunc(void *thr_ID_PTR) {

/*

* Get thread ID

*/

int thr_ID = *((int *) thr_ID_PTR);
int n;

int i; //counter var
char buf[SOCK_BUFFER_SIZE];

-119-

i=-1;
while ((n = recv(client_sock, buf, sizeof(buf), 0)) > 0) {

/*
* Copy received data to client_to_ssproxy_ProxyBuffer;
*/

//Increment counter
if (i< (C_TO_PS_PROXYBUFFER~SIZE-1))
i++;

else
i=0;

while (client_to_ssproxy_ProxyBuffer[i]. EntryFull = 0) {
printf("CHECK(cl_recv): waiting for
client_to_ssproxy_ProxyBuffer{i] = 0\n\n");

thr_yield();
}
memcpy(client_to_ssproxy_ProxyBufferfi]. Data, buf, n);
client_to_ssproxy_ProxyBuffer[i].DataSize = n;
client_to_ssproxy_ProxyBuffer[i].EntryFull = 1;

} /fwhile
if (n<=0) {
printf("FATAL ERROR(p_cs clientside_recv): n<=0 while recv. from
client\n");
printf("(Non-fatal if end of client-server communication)\n\n");
close(client_sock);
exit(1);

} //clientside_recv_ThreadFunc

-120-

/*

Fhhkhkhhhkhkikhkhhkhhkhhhikik */

void *proxy_to_client_Control_ThreadFunc(void *thr_ID_PTR) {

/*

* Get thread ID

*/

int thr_ID = *((int *) thr_ID_PTR);

int i,j,k; /counter vars

int First_Time = 0;
time_t curr_time, start_time;
int NO_RECV_TIMEOUT = 10;

/*
* NOTE: proxy-side sending threads have thread IDs from (0 to
Connection_Number-1) and

* proxy-side receiving threads have thread IDs from
(Connection_Number to 2*Connection_Number-1)
* Therefore (thr_ID-Connection_Number) is the connection # that should

be used by the proxy-side
* receiving threads
>/

k=-1; //Init counter var

while (1) {

for (i=0; i<R_PROXY_SIDE_BUFFER_SIZE; i++) {

/*
* Get data from proxy_side_recvBuffer and copy to
client_to_ssproxy_ProxyBuffer

-121 -

*/

for (j=0; j<Connection_Number; j++) {

/lincrement k counter (used as client_to_ssproxy_ProxyBuffer

index)
if (k < (PS_TO_C_PROXYBUFFER_SIZE-1))
K++;
else
k=0;

while (proxy_side_recvBuffer{il[j].EntryFull 1= 1A

/]~
if (First_Time==0) {
First_Time=1:
start_time = time(NULL);
}

curr_time = time(NULL);

if ((float)difftime(curr_time, start_time) >
NO_RECV_TIMEOUT) {
printf("EXIT(recv_Control): %d sec w/ no new
data received\n\n",NO_RECV_TIMEOUT);

exit(1);
}
/] -
thr_yield();
} //while

First_Time = 0; //Reset flag

-122 -

while (ssproxy_to_client_ProxyBuffer[k].EntryFull != 0){
printf("CHECK(recvCntrl): waiting for
ssproxy_to_client_ProxyBuffer[] I= 0\n\n");

thr_yield();
3
/*
* Copy to ssproxy_to_client_ProxyBuffer
*/

memcpy(ssproxy_to_client_ProxyBuffer[k].Data,
proxy_side_recvBuffer[i][j].Data, proxy_side_recvBuffer[i][j]. DataSize);

ssproxy_to_client_ProxyBuffer[k].DataSize =
proxy_side_recvBuffer[i][j]. DataSize:

proxy_side_recvBuffer[i][j].EntryFull = 0;
ssproxy_to_client_ProxyBuffer[k].EntryFull = 1;

} //for -

/Wrap counter var :

if (i == R_PROXY_SIDE_BUFFER_SIZE-1)
break;

// i=-1;

} //for -

} //while (1)

} /lproxy_to_client_Control_ThreadFunc

/*

-123 -

Fhhhhkhikhithhhhhihhihih */

void *client_to_proxy_Control_ThreadFunc(void *thr_ID_PTR) {

/*

* Get thread 1D

*/

int thr_ID = *((int *) thr_ID_PTR);

int ij,k; //counter vars

int n;

unsigned char buf[SOCK_BUFFER_SIZE+2];

int send_sock_index = -1;

struct timeval *start_time;

struct timeval *curr_time;

long start_time_in_msec, curr_time_in_msec;

/*

* NOTE: proxy-side sending threads have thread IDs from (0 to
Connection_Number-1) and

* proxy-side receiving threads have thread IDs from
(Connection_Number to 2*Connection_Number-1)

* Therefore (thr_ID-Connection_Number) is the connection # that should
be used by the proxy-side

* receiving threads

*/

/*

* Allocate memory to time vars

*/

start_time = (struct timeval *) malloc(sizeof(struct timeval));
curr_time = (struct timeval *) malloc(sizeof(struct timeval));

/*

-124-

* NOTE: proxy-side sending threads have thread IDs from (0 to
Connection_Number-1) and

* proxy-side receiving threads have thread IDs from
(Connection_Number to 2*Connection_Number-1)

* Therefore (thr_ID-Connection_Number) is the connection # that should
be used by the proxy-side

* receiving threads

>/

k=-1; //Init counter var

while (1) {

/*
* Get data from client_to_ssproxy_ProxyBuffer
*/
/lIncrement k counter (used as client_to_ssproxy_ProxyBuffer index)
if (k < (C_TO_PS_PROXYBUFFER_SIZE-1))
K+-+;
else
k=0;

while (client_to_ssproxy_ProxyBuffer[k].EntryFull I= 1 {

thr_yield();
}
/*
* Copy to buf
*/

memcpy(buf+LENGTH_HEADER_SIZE,
client_to_ssproxy_ProxyBuffer[k].Data,
client_to_ssproxy_ProxyBuffer[k].DataSize);

n = client_to_ssproxy_ProxyBuffer[k].DataSize;

client_to_ssproxy_ProxyBuffer[k].EntryFull = 0;

-125 -

/*

* Insert Length header

*/

buf[0] = (unsigned char)(n>>8);
buf[1] = (unsigned char)n;

#ifdef USE_DELAY

if (gettimeofday(start_time, NULL) <0) {
printf("ERROR(proxy_send[%d]): gettimeofday error\n\n",
thr_ID);
exit(1);
}

start_time_in_msec = (start_time->tv_sec)*1000 + (start_time-
>tv_usec)/1000;

while (1) {
if (gettimeofday(curr_time, NULL) <0) {
printf("ERROR(proxy_send[%d]): gettimeofday
error\n\n", thr_ID);
exit(1);
}

curr_time_in_msec = (curr_time->tv_sec)*1000 + (curr_time-
>tv_usec)/1000;

if ((curr_time_in_msec - start_time_in_msec) >=
DELAY_IN_MSEC)
break;

-126 -

//Since haven't reached timeout value yet have thread
sleeplyield
thr_yield();

} //while

#endif

if (n+LENGTH_HEADER_SIZE)>0) {

//Increment socket index

if (send_sock_index < (Connection_Number-1))
send_sock_index++;

else
send_sock_index = 0;

if (send(servsideproxy_sockfd[send_sock_index], buf,

n+LENGTH_HEADER_SIZE, 0) < 0) {

printf("ERROR(send/Control): While sending data
to serv-side proxy <0 \n\n");

exit(1);
Y} //if

} /[if n+LENGTH_HEADER_SIZE>0

} //while (1)

} //client_to_proxy_Control_ThreadFunc

/*

Fe e e e S e e e e e e dhe o o e ke vk ke e sk ok ke e S v ke ke o o SR e SR 9 ke e 9k o o ok 3R 9 SR e ok R ke sk e S ke e Sk 9 e 9k 2 e e o 9 v v g o ok o ok ok e e ke o e e

-127 -

FhRAFIEAAALAAAT Ak ki */

-128 -

#define _REENTRANT
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <string.h>
#include <sys/stat.h>
#include <thread.h>
#include <synch.h>
#include <sched.h>
#include <sys/uio.h>
#include <sys/sem.h>
#include <sys/ipc.h>
#include <memory.h>
#include <time.h>
#include <sys/time.h>
#include <unistd.h>

/I Debuging "defines" (enable debug printouts)
/#define new2_PRINT_DEBUG

/#define SERV_USE_NAME
#define SERV_USE_IP

#define S_PORTNUMBER 6006 //Server-side proxy listens on this port
#define FILENAME "p_ss_proxy_file.txt" //File that contains address & port #
of server

#define SOCK_BUFFER_SIZE 1024

#define CS_TO_S_PROXYBUFFER_SIZE 200 //# of nodes in buffer.

#define S_TO_CS_PROXYBUFFER_SIZE 5000 //4000 # of nodes in buffer.
/Htdefine PROXY_SIDE_BUFFER_SIZE 1000 //# of nodes in buffer.

#define S_PROXY_SIDE_BUFFER_SIZE 2 //NOT USED 2000- # of nodes in buffer.

-129 -

#define R_PROXY_SIDE_BUFFER_SIZE 50 //# of nodes in buffer.

#define MAX_CONN_NUMB_PER_LOGICAL_CONN 5 //Max # of connections per
logical connection

#define LENGTH_HEADER_SIZE 2 //Length of Length header that is appended in
front of packets

/Htdefine USE_DELAY
#define DELAY_IN_MSEC 0

/*

* Function prototypes

*/

void *proxyside_recv_ThreadFunc(void *);

void *serverside_send_ThreadFunc(void *);

void *serverside_recv_ThreadFunc(void *);

void *proxy_to_server_Control_ThreadFunc(void *);
void *server_to_proxy_Control_ThreadFunc(void *);

struct BufferNode {

int EntryFull; //Flag (serves as semaphore). If 1 then value stored, else
is empty and can be written into

long int DataSize; //Size of data stored in entry

char Data[SOCK_BUFFER_SIZE];

int sockfd, servlen, cli_len, childpid;

int newsockfd[MAX_CONN_NUMB_PER_LOGICAL_CONN]; //Array of sockets.
Used to accept

struct sockaddr_in cli_addr, serv_addr;

-130-

int niaa;

char buf_par[SOCK_BUFFER_SIZE]; //Buffer used by parent process to receive
of connections opened

int m_par, c_par; //Counter vars

int n_par;

int Connection_Number; //Number of connections to be opened for a given
proxy-to-proxy 'logical' connection

char Connection_Number_str[31]; /[String containing Connection_Number as
read from other proxy

int server_sock; //socket used to connect to server

struct BufferNode
csproxy_to“server_ProxyBuffer[CS_TO_S_PROXYBUFFER_SIZE]; //Buffer used
for client->server_side_proxy traffic

struct BufferNode
server_to_csproxy_ProxyBuffer[S_TO_CS_PROXYBUFFER_SIZE]; //Buffer used
for server_side_proxy->client traffic

struct BufferNode
proxy_side_,sendBuffer[S_PROXY_SIDE_BUFFER_SIZE][MAX_CONN_NUMB_PER_LO
GICAL_CONN]J; //Used to store temporarily data that will

/I be sent out to cl.side proxy

struct BufferNode
proxy_side_rechuffer[R_PROXY_SIDE_BUFFER_SIZE][MAX~CONN_NUMB_PER_LO
GICAL_CONN]J; //Used to store temporarily data that

/lis received fromt to cl.side proxy

int main(void) {

//Create the socket

if ((sockfd=socket(AF_INET, SOCK_STREAM, 0))<0){
perror("ERROR: socket creation \n");
exit(1);

3

-131-

/[Create (server-side) proxy address
memset(&serv_addr, 0, sizeof(struct sockaddr_in));

serv_addr.sin_family = AF_INET;
serv_addr.sin_port = htons(S_PORTNUMBERY);
servlen = sizeof(struct sockaddr_in);

niaa = INADDR_ANY;
memcpy(&serv_addr.sin_addr, &niaa, sizeof(long));

//Bind socket to (server-side) proxy address
if (bind(sockfd, (struct sockaddr *) &serv_addr, servien) < 0 M {

}

perror("ERROR: bind \n");
exit(1);

//Listen for client connections
if (listen(sockfd, 7) <0) {

H

perror("ERROR: listen \n");
close(sockfd);
exit(1);

for (5;) {

&cli_len);

socket)\n");

cli_len = sizeof(cli_addr);
newsockfd[0] = accept(sockfd, (struct sockaddr *) &cli_addr,

if (newsockfd[0] < 0) {
perror("ERROR: Can't create new socket (1st proxy listening

exit(1);

/*

-132-

* Read number of TOTAL connections to be opened (for this 'logical’
connection).

* Format: string containing # followed by "\0'

*/

strepy(Connection_Number_str,"\0"); //Init

m_par=0; //Init counter
while ((n_par = recv(newsockfd[0], buf_par, sizeof(buf_par), 0)) >
0) {
m_par = m_par+n_par;
strncat(Connection_Number_str, buf_par, n_par);
if (Connection_Number_str[m_par-1] == "\0')
break; //if \0' in string then done so exit recv/while loop

}
if (n_par<=0) {
printf("FATAL ERROR: n_par<=0 while recv. connection #
(parent process)\n\n");
close(newsockfd[0]);
exit(1);

//Convert # of connections to int from string
sscanf(Connection_Number_str,"%d", &Connection_Number);

printf("CHECK(p_ss_proxy): %d connections to be opened (%d
max)\n\n",Connection_Number,MAX*CONN_NUMB_PER_LOGICAL_CONN);

/*
* Wait for Connection_Number connections to be opened.
NOTE:Connection_Number is total connections to be opened
>/
for (c_par=1; c_par<Connection_Number; c_par++) {
newsockfd[c_par] = accept(sockfd, (struct sockaddr *)
&cli_addr, &cli_len);

if (newsockfd[c_par] < 0) {

-133-

perror("ERROR: Can't create new socket \n");
exit(1);

/ICreate child process

if ((childpid = fork()) <0){
perror("ERROR: Fork \n");
exit(1);

}

else if (childpid == 0) { /* ****** child process ****** */

/* Child process vars */

struct hostent *hp; //used in connecting to server

struct sockaddr_in name; //used in connecting to server

int len; //used in connecting to server

int thr_concurrency_counter;

thread_t
ThreadID[MAX_CONN_NUMB_PER_LOGICAL_CONN*2+4J; //Array of thread |Ds
for thr_create calls

int
thr_lD__PTR[MAX_CONN__NUMB_PER__LOGICAL_CONN*2+4]; //Array of thr_ID
pointers used in thr_create calls

FILE *fd;

int Server_PortNumber; //Port on which server listens

char Server_Name[64]; //DNS name of server

char Server_IP[64]; //IP of server

ulong_t addr;

int ij; //counter var
size_t

TaskStatus[MAX_CONN_NUMB_PER_LOGICAL_CONN*2+4]; //Used in thr_join()
calls

close(sockfd); //close original socket

-134-

j*++)

)

/! code

printf("CHECK(p_ss_proxy): CHILD process created \n\n");

/*
* Initialize proxy buffers (i.e. set all flags to 0)
*/
for (i=0; i<S_PROXY_SIDE_BUFFER_SIZE; i++) {
for (j=0; j<MAX_CONN_NUMB_PER_LOGICAL_CONN:
{
proxy_side_sendBuffer[il[j].EntryFull = 0;
3
}
for (i=0; i<R_PROXY_SIDE_BUFFER_SIZE; i++) {
for (j=0; j<MAX_CONN_NUMB_PER_LOGICAL_CONN:
{
proxy_side_recvBufferli][jl. EntryFull = 0;
}

for (i=0; i<CS_TO_S_PROXYBUFFER_SIZE; i++) {
csproxy_to_server_ProxyBuffer[i].EntryFull = 0;

3
for (i=0; i<S_TO_CS_PROXYBUFFER_SIZE; i++) {
server_to_csproxy_ProxyBuffer[i]. EntryFull = 0;

}

/*

* Read file to obtain address (name & port #) of server
* Format: "port# server_name" ("'s not included)

*/

//sem_lock not needed

if ((fd = fopen(FILENAME, "r")) == NULL) {
perror("ERROR(p_ss_proxy): Couldn't open file \n");

-135-

exit(1);
3

#ifdef SERV_USE_NAME

fscanf(fd, "%d %s", &Server_PortNumber, Server_Name);
#endif

#ifdef SERV_USE_IP

fscanf(fd, "%d %s", &Server_PortNumber, Server_IP);
#endif

//Check values read from file

#ifdef SERV_USE_NAME

printf("CHECK(p_ss_proxy): Server_Name: %s\n",
Server_Name);

#endif

#ifdef SERV_USE_IP

printf("CHECK(p_ss_proxy): Server_IP: %s\n", Server_IP);

#endif

printf("CHECK(p_ss_proxy): Server_PortNumber: %d \n",
Server_PortNumber);

fclose(fd);

//sem_unlock not needed

/*

* Open connection to server

*/

Jfmmmmmmeeem

//Get server's address

#ifdef SERV_USE_NAME

if ((hp = gethostbyname(Server_Name)) == NULL) {
printf("ERROR(p_ss_proxy): Can't get server

address(%s)\n\n", Server_Name);

exit(1);

}

-136 -

Server_IP);

server\n\n");

) {

#endif

#ifdef SERV_USE_IP

if ((int)(addr = inet_addr(Server_IP)) == -1) {
printf("IP-address must be of the form a.b.c.d\n");
exit (2);

3

hp = gethostbyaddr((char *)&addr, sizeof(addr), AF_INET);
if (hp == NULL) {
printf("host information for %s not found\n",

exit (3);

}
#endif

//Create socket
if ((server_sock = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf("ERROR(p_ss_proxy): Can't create socket for

exit(1);

/ICreate server address
memset(&name, 0, sizeof(struct sockaddr_in));

name.sin_family = AF_INET;

name.sin_port = htons(Server_PortNumber);
memcpy(&name.sin_addr, hp->h_addr_list[0], hp->h_length);
len = sizeof(struct sockaddr_in);

//IConnect to server
if (connect(server_sock, (struct sockaddr *) &name, len) <0

printf("ERROR: Can't connect to server \n\n");
exit(1);

-137-

/*
* Init/fill-in thr_ID array. Thread IDs start from ZERO 11!
*/
for (i=0; i<(MAX_CONN_NUMB_PER_LOGICAL_CONN?*2+4);
i++)
thr_ID_PTR]i] = i;

/*

* NOTE: proxy-side sending threads have thread IDs from (0
to Connection_Number-1) and

* proxy-side receiving threads have thread IDs from
(Connection_Number to 2*Connection_Number-1)

*

*/

/*

* Spawn the proxy-side sending/receiving threads. Pair for
each connection w/ client-side proxy

*/

for (i=Connection_Number; i<(2*Connection_Number); i++) {
thr_create(NULL, 0, proxyside_recv_ThreadFunc, (void
*) &thr_ID_PTR]i}, 0, &ThreadIDJi]);
} //for

if (i != (2*Connection_Number))
printf("ERROR/CHECK(p_ss_proxy): i counter <>
2*Connection_Number \n");

-138-

/*

* Spawn the server-side sending/receiving threads. Just one
pair for the single connection to server

*/

thr_create(NULL, 0, serverside_send_ThreadFunc, (void *)
&thr_ID_PTR]i], 0, &ThreadIDIi]);

i++;

thr_create(NULL, 0, serverside_recv_ThreadFunc, (void)
&thr_ID_PTR]i], 0, &ThreadIDIi]);

/=
* Spawn Control threads
*/
j++;

thr_create(NULL, 0, server_to_proxy_Control_ThreadFunc,
(void *) &thr_ID_PTRYi], 0, &ThreadIDI[i]);

j++;

thr_create(NULL, 0, proxy_to_server_Control_ThreadFunc,
(void *) &thr_ID_PTRYi], 0, &ThreadIDIi]);

/*

*Set the thread concurrency. Could improve thread scheduling.
*/

thr_concurrency_counter = Connection_Number*1+4 + 1;
thr_setconcurrency(thr_concurrency_counter);

/*
* Make thr_join calls so that program doesn't terminate right
after creating threads
*/
for (i=Connection_Number; i<(2*Connection_Number+4); i++) {
thr_join(ThreadIDIi], 0, (void *) & TaskStatusli]);
}

-139-

} l/lendelseif [* ¥ child process ****** */

/*

* Close in parent the "passed off to child" sockets

*/

for (c_par=0; c_par<Connection_Number; c_par++) {
close(newsockfd[c_par]);

}

} /fendfor

} Fmain®/

/*

R b b e Y X 3 */

void *proxyside_recv_ThreadFunc(void *thr_ID_PTR) {

/*

* Get thread ID

*/

int thr_ID = *((int *) thr_ID_PTR);

int nm;
int ik; //counter vars

char *buf; //Buffer into which received data is copied into & data
pasted to

char *bufStart; //Used to store temporarily the socket buffer starting
address

int buf_size; //Used because sizeof(buf) doesn't work for char *
unsigned int Packet_Length; //Holds packet length derived from arrived

-140-

packet's Length header

//Init buffer

buf_size = (SOCK_BUFFER_SIZE+2); //buf_size was
SOCK_BUFFER_SIZE

buf = (char *) malloc(buf_size*sizeof(char));

/*

* NOTE: proxy-side sending threads have thread IDs from (Oto
Connection_Number-1) and

* proxy-side receiving threads have thread IDs from
(Connection_Number to 2*Connection_Number-1)

* Therefore (thr_ID-Connection_Number) is the connection # that should
be used by the proxy-side

* receiving threads

*/

i=0; //Init counter

while (1) {

/*

* Get exaclty LENGTH_HEADER_SIZE bytes of new packet i.e. the
Length header

*/

m = 0;
while (m<2) {

if ((n=recv(newsockfd[thr_ID-Connection_Number], buf+m,
LENGTH_HEADER_SIZE-m, 0)) > 0) {
m = m+n;
} //if
else{
printf("FATAL ERROR(prx_side_recv_Thread): n<=0

- 141 -

while recv. Length header\n\n");
close(newsockfd[thr_ID-Connection_Number]);
exit(1);
}

} /iwhile

#ifdef new2_PRINT_DEBUG
printf("CHECK: right after recv() #1 \n\n");
#endif

/*

* Get length from Length field

*/

Packet_Length = buf[0];

Packet_Length = (Packet_Length<<8) | (buf[1]);
printf("CHECK: Packet_Length: %d\n\n", Packet_Length);

/*

* Receive entire packet now
*/

m = Q;

while (m<Packet_Length) {

if ((n=recv(newsockfd[thr_ID-Connection_Number], buf+m,
Packet_Length-m, 0)) > 0) {

m = m+n;

} //if
else {
printf("FATAL ERROR(prx_side_recv_Thread): n<=0
while recv. remaining packet \n\n");
close(newsockfd[thr_ID-Connection_Number]);

- 142-

exit(1);
} /lelse

} /while

//Error check
if (m != Packet_Length) {
printf("ERROR(recv[%d]): m != Packet_Length (is =) \n\n",
thr_ID);
close(newsockfd[thr_ID-Connection_Number]);
exit(1);
} //if

/*

* Now that got entrire packet, write it (w/o Length header) to
proxy_side_recvBuffer

*/

while (proxy_side_rechuffer[i][thr_lD-Connection_Number].EntryFuII
= 0) {
printf("CHECK(prx_recv[%d]): Waiting for
proxy_side_recvBuffer[][]!=0\n\n", thr_ID);
thr_vyield();
} //while

memcpy(proxy~side_rechuffer[i][thr_ID-Connection__Number].Data,
buf, Packet_Length);

proxy_side_rechuffer[i][thr__lD-Connection_Number].DataSize =
Packet_Length;

proxy_side__rechuffer[i][thr_!D-Connection_Number].EntryFull =1;

//Increment counter
if (i< (R_PROXY_SIDE_BUFFER_SIZE-1))
j++;

- 143 -

} //while(1)

} //proxyside_recv_ThreadFunc

/*

B R o o o o */

void *serverside_send_ThreadFunc(void *thr_ID_PTR) {

/*

* Get thread ID

*/

int thr_ID = *((int *) thr_ID_PTR);

int n;
int i; //counter var
char buf[SOCK_BUFFER_SIZE];

i=-1;
while (1) {

/*
* Get data from csproxy_to_server_ProxyBuffer;
*/
//Increment counter
if (i < (CS_TO_S_PROXYBUFFER_SIZE-1))
i++;

else
i=0;

while (csproxy_to_server_ProxyBufferi]. EntryFull != 14
thr_yield();

- 144 -

}

memcpy(buf, csproxy_to_server_ProxyBuffer|i].Data,
csproxy_to_server_ProxyBuffer[i]. DataSize);

n = csproxy_to_server_ProxyBuffer[i]. DataSize;
csproxy_to_server_ProxyBuffer{i].EntryFull = 0;

/*
* Send data to server
*/
if (n>0) {
if (send(server_sock, buf, n, 0) < 0) {

printf("ERROR(p_ss_proxy/server_send_thread): While
sending data to server <0 \n\n");

exit(1);
}

} /iwhile

} //serverside_send_ThreadFunc

/*
Fe e e Fe P S e e o ek e vk e e de dk ok 3 e e T ke ok ok e v ke ok S ok b e ke ok e ok e e e e e ke Rl R v SR RISV RN Ty

EaE ke o */

void *serverside_recv_ThreadFunc(void *thr_ID_PTR) {

/*

* Get thread 1D

*/

int thr_ID = *((int *) thr_ID_PTR);

int n;
int i; //counter var

- 145-

char buf[SOCK_BUFFER_SIZE];

i=-1;
while ((n = recv(server_sock, buf, sizeof(buf), 0)) > 0) {

/*
* Copy received data to server_to_csproxy_ProxyBuffer;
*/

//Increment counter
if (i < (S_TO_CS_PROXYBUFFER_SIZE-1))
i++;

else
i=0;

while (server_to_csproxy_ProxyBuffer[i]. EntryFull I= 0) {
printf("CHECK(serv_recv): waiting for
server_to_csproxy_ProxyBufferfi] 1= 0 \n\n");

thr_yield();
}
memcpy(server_to_csproxy_ProxyBuffer[i].Data, buf, n);
server_to_csproxy_ProxyBuffer[i]. DataSize = n;
server_to_csproxy_ProxyBuffer[i].EntryFull = 1;

} /iwhile
if (n<=0) {
printf("FATAL ERROR: n<=0 while recv. from server (server-side
proxy) \m\n");
close(server_sock);
exit(1);
}

} //serverside_recv_ThreadFunc

_ 146 -

/*
AR I AT EIETAR A IAITIAAAAAEAAAAAAAARA T A A AR AR A A A A A A AT hhdhkhhhdrhhhdrhdhhrrhihk

E ok ko R b bl o T e */

void *proxy_to_server_Control_ThreadFunc(void *thr_ID_PTR) {

/*

* Get thread ID

*/

int thr_ID = *((int *) thr_ID_PTR);

int i,j,k; //counter vars

/*
* NOTE: proxy-side sending threads have thread 1Ds from (0 to
Connection_Number-1) and

* proxy-side receiving threads have thread IDs from
(Connection_Number to 2*Connection_Number-1)

* Therefore (thr_ID-Connection_Number) is the connection # that should
be used by the proxy-side

* receiving threads

k=-1; //Init counter var
while (1) {
for (i=0; i<R_PROXY_SIDE_BUFFER_SIZE; i++) {
/*
* Get data from proxy_side_recvBuffer and copy to

csproxy_to_server_ProxyBuffer
*/

for (j=0; j<Connection_Number; j++) {

- 147 -

/lincrement k counter (used as
csproxy_to_server_ProxyBuffer index)
if (k < (CS_TO_S_PROXYBUFFER_SIZE-1))
K++;

else
k=0;

while (proxy_side_recvBuffer[i][j]. EntryFull = 1) {
thr_yield();
}
while (csproxy_to_server_ProxyBuffer[k].EntryFull != 0){
printf("CHECK(recvControl): waiting for
csproxy_to_server_ProxyBufferfi] = 0 \n\n");

thr_yield();
}
/*
* Copy to csproxy_to_server_ProxyBuffer
*/

memcpy(csproxy_to_server_ProxyBuffer[k].Data,
proxy_side_recvBuffer[i][j].Data, proxy_side_recvBuffer]i}[j].DataSize);

csproxy_to_server_ProxyBuffer[k].DataSize =
proxy_side_recvBuffer[i][j]. DataSize;

proxy_side_recvBuffer[i][jl.EntryFull = 0;
csproxy_to_server_ProxyBuffer[k].EntryFull = 1;

} /for - j

/M\Wrap counter var

if (i == R_PROXY_SIDE_BUFFER_SIZE-1)
break;

// i=-1;

} /ffor - i

- 148 -

} //while (1)

} //proxy_to_server_Control_ThreadFunc

/*

kR o */

void *server_to_proxy_Control_ThreadFunc(void *thr_ID_PTR) {

/*

* Get thread ID

*/

int thr_ID = *((int *) thr_ID_PTR);

int ij,k; //counter vars

int n;

char buf[SOCK_BUFFER_SIZE+2];

int send_sock_index = -1;

struct timeval *start_time:

struct timeval *curr_time;

long start_time_in_msec, curr_time_in_msec;

/*
* NOTE: proxy-side sending threads have thread IDs from (0 to

Connection_Number-1) and

* proxy-side receiving threads have thread |Ds from

(Connection_Number to 2*Connection_Number-1)

* Therefore (thr_ID-Connection_Number) is the connection # that should

be used by the proxy-side

* receiving threads
*/

- 149 -

/=
* Allocate memory to time vars

*/

start_time = (struct timeval *) malloc(sizeof(struct timeval));
curr_time = (struct timeval *) malloc(sizeof(struct timeval));

k=-1; //Init counter var

while (1) {
/*
* Get data from server_to_csproxy_ProxyBuffer
*/

/lincrement k counter (used as server_to_csproxy_ProxyBuffer

index)
if (k < (S_TO_CS_PROXYBUFFER_SIZE-1))
K+-+;
else
k=0;

while (server_to_csproxy_ProxyBuffer[k].EntryFull = 1) {

thr_yield();
}
/*
* Copy to proxy_side_sendBuffer
*/

memcpy(buf+LENGTH_HEADER_SIZE,
server_to_csproxy_ProxyBuffer[k].Data,
server_to_csproxy_ProxyBuffer[k].DataSize);

n = server_to_csproxy_ProxyBuffer[k].DataSize;

server_to_csproxy_ProxyBuffer[k].EntryFull = 0;

/*

-150-

* Insert Length header

*/

buf[0] = (unsigned char)(n>>8);
buf[1] = (unsigned char)n;
#ifdef USE_DELAY

if (gettimeofday(start_time, NULL) <0) {
printf("ERROR(proxy_send[%d]): gettimeofday error\n\n",
thr_ID);
exit(1);
}

start_time_in_msec = (start_time->tv_sec)*1000 + (start_time-
>tv_usec)/1000;

round_count++;
while (1) {
if (gettimeofday(curr_time, NULL) <0) {
printf("ERROR(proxy_send[%d]): gettimeofday
error\m\n”, thr_ID);
exit(1);
3

curr_time_in_msec = (curr_time->tv_sec)*1000 + (curr_time-
>tv_usec)/1000;

if ((curr_time_in_msec - start_time_in_msec) >=
DELAY_IN_MSEC)
break;

//Since haven't reached timeout value yet have thread
sleeplyield
thr_yield();

} //while

-151-

#endif
if (n+LENGTH_HEADER_SIZE>0) {

/lincrement socket index

if (send_sock_index < (Connection_Number-1))
send_sock_index++;

else
send_sock_index = 0;

if (send(newsockfd[send_sock_index], buf,
n+LENGTH_HEADER_SIZE, 0) < 0) {
printf("ERROR(send/Control):While sending data to \n");
printf("client-side proxy <0 \n\n");
exit(1);
} //if

} /lif n+LENGTH_HEADER_SIZE>0

} //while (1)

} //server_to_proxy_Control_ThreadFunc

/*

bkt ot o o */

-152 -

APPENDIX C

C LANGUAGE LISTING FOR UDP CONNECTION-SPLITTING

PROXIES

-153-

#define _REENTRANT
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <string.h>
#include <sys/stat.h>
#include <thread.h>
#include <synch.h>
#include <sched.h>
#include <sys/uio.h>
#include <sys/sem.h>
#include <sys/ipc.h>
#include <memory.h>
#include <time.h>
#include <sys/time.h>
#include <unistd.h>
#include "fec.c"

// Debuging "defines" (enable debug printouts)
/f#define ENC_DEBUG_ON

/l#define new2_PRINT_DEBUG

#define FLOW_CNTRL_DEBUG_PRINT

/AR#define RECV_CONTROL_DEBUG

//IChoose whether serv-side proxy Name or IP read from file
/l#define SS_PRX_USE_NAME

#define SS_PRX_USE_IP

/#define EXTRA_RECV_PACKET_CHECKS

#define SSP_UDP_BASE_PORTNUMBER 8000 //Server-side proxy UDP base
portnumber i.e. (SSP_UDP_BASE_PORTNUMBER+thread ID)
/l(or (SSP_UDP_BASE_PORTNUMBER+thread ID-Connection_Number)) is

154 -

port number to be used by each thread

#define CSP_UDP_BASE_PORTNUMBER 7000 //Client-side proxy UDP base
portnumber

#define C_PORTNUMBER 6005 /IClient-side proxy listens on this port
#define FILENAME "p_cs_proxy._file.txt" //File that contains address & port #
of server-side proxy

#define SOCK_BUFFER_SIZE 2048

#define PS_TO_C_PROXYBUFFER_SIZE 4000 //# of nodes in buffer
#define C_TO_PS_PROXYBUFFER_SIZE 200 //# of nodes in buffer
/#define PROXY_SIDE_BUFFER_SIZE 10 //# of nodes in buffer

#define R_PROXY_SIDE_BUFFER_SIZE 6000 //# of nodes in buffer
#define S_PROXY_SIDE_BUFFER_SIZE 50 //# of nodes in buffer

#define MAX_CONN_NUMB_PER_LOGICAL_CONN 5 //Max # of connections per
logical connection
#define EXIT_TIME_DELAY 3 //Number of sec of time delay before child proc.
terminated after client has closed
#define RNR_PROXY_RECV_BUF_SIZE_THRESH 0.8 //Percentage full treshhold of
proxy recv.buffer which if exceeded

/lresults in RNR
message being sent to serv-side proxy
#define RR_PROXY_RECV_BUF_SIZE_THRESH 0.6 //Percentage full treshhold of
proxy recv.buffer which if exceeded

//results in RNR
message being sent to serv-side proxy

#define K_DESIRED 2 //# of client_to_ssproxy_ProxyBuffer we WANT to
read(actual # read may differ)
#define THR_YIELD_MAX 1 //Max number of times will thread yield to read entry
from client_to_ssproxy_ProxyBuffer

//Set it to O if don't want to wait at all

#define N_FACTOR 2 //N_FACTOR*k packets will be produced by encoding and
sent out(k = #data packets)

#define ENC_DEBUG_FILENAME "er_cs_enc_dbg_file.txt" //File descriptor of a file
used for debug output in client-to-proxy thread

#define HEADER_SIZE 8 //Size (in bytes) of header added to encoded packets
(0x00,k, n, seq.#,length(2-bytes),packet in block,0x00)

#define MAX_SEQ_NUMB_VALUE 255

#define HEADER_SRT_END_BYTES_CODE_VALUE (unsigned char)0x01

#define DEC_ARRAY_SIZE 10 //Number of array entries for decoding array

-155-

(array of gf*)
#define DEC_ARR_BUF_SIZE SOCK_BUFFER_SIZE //Size of each decoding array
buffer
#define ENC_PACKET_BUF_SIZE SOCK_BUFFER_SIZE //Size of buffer containing
encoded packet(what you get from enc.func.)
#define ENC_SOURCE_BUF_BUFFER_SIZE SOCK_BUFFER_SIZE //Size of buffers
containing source data headed for encoding
#define CL_RECV_SOCK_BUFFER_SIZE 1024 //Socket buffer size for client
receiving
#define TEMP_CUMUL_BUF_SIZE_TRESH CL_RECV_SOCK_BUFFER_SIZE //If total
of bytes to be encoded(&sent-out) each time

/lis smaller than this value
then amalgamate into one big packet(for efficiency)

#define DELAY_IN_MSEC 0
/H#define USE_DELAY

/*

* Function prototypes

*/

void *proxyside_recv_ThreadFunc(void *);

void *clientside_send_ThreadFunc(void *);

void *clientside_recv_ThreadFunc(void *);

void *Cong_Msg_Recv_ThreadFunc(void *Y

void *client_to__proxy_Control_ThreadFunc(void *);
void *proxy_to_client_Control_ThreadFunc(void *);

struct BufferNode {

int EntryFull; //Flag (serves as semaphore). If 1 then value stored, else
is empty and can be written into

long int DataSize; //Size of data stored in entry

unsigned char Data[SOCK_BUFFER_SIZE + HEADER_SIZE];

int Skip; //Used only for proxy_side_recvBuffer. Recv. thread sets flag

- 156 -

to 1 to tell control to skip cell
int Control_Skip; //Flag set by recv_Control "stating” that it has
skeeped the entry (because doesn't need
//more data for current block)

o

int sockfd, servlen, cli_len, childpid;

int client_sock; //Socket created from cl.side-proxy listening

struct sockaddr_in cli_addr, serv_addr;

int niaa;

int servsideproxy_sockfd]MAX_CONN_NUMB_PER_LOGICAL_CONN]; //sockets
used to connect to serv-side proxy

int tcp_sock; //Socket for TCP connection used to tranmsit to server-side proxy
the # of UDP connections to be used

struct BufferNode client_to_ssproxy_ProxyBuffer[C_TO_PS_PROXYBUFFER_SIZE];
//Buffer used for client->server_side_proxy traffic

struct BufferNode ssproxy_to_client_ProxyBuffer[PS_TO_C_PROXYBUFFER_SIZE];
//Buffer used for server_side_proxy->client traffic

struct BufferNode
proxy_side_sendBuffer[S_PROXY_SIDE_BUFFER_SIZE]]MAX_CONN_NUMB_PER_LO
GICAL_CONN]J; //Used to store temporarily data that will be

/lsent out to server-side proxy

struct BufferNode
proxy_side_recvBuffer[R_PROXY_SIDE_BUFFER_SIZE][MAX_CONN_NUMB_PER_LO
GICAL_CONNJ; //Used to store temporarily data that is

/lreceived fromt to cl.side proxy

int Connection_Number; //Number of connections to be opened for a given proxy-
to-proxy 'logical' connection

struct hostent *hp; //used in connecting to server

int RecvBufSizeCounter = 0; //Used for congestion control(# of full cells of proxy
recv. buffer)

int RecvBufSizeCounter_copy = 0; //Copy of above counter. Used to unlock
mutex quickly

int HoldBack = 0; //Flag used for congestion control i.e. when 1 then send

-157 -

threads pause

mutex_t RecvBufSizeCounter_Lock; //RecvBufSizeCounter semaphore

mutex_t HoldBack_Lock; //HoldBack semaphore

int PROXY_RECV_BUF_CAPACITY; //Capacity of proxy-side recv buffer. Is
R_PROXY_SIDE_BUFFER_SIZE*(#UDP connections)

mutex_t
Control_Skip_Lock[R_PROXY_SIDE__BUFFER_SIZE][MAX_CONN_NUMB_PER_LOGIC
AL_CONN]; //Mutex for setting/reseting Control_Skip flag. One mutex for each
cell of proxy_side_recvBuffer

int mi,mj; //Counter vars

int main(void) {

/*
* Init HoldBack mutex var - Used for congestion control i.e. when 1 then
send threads pause
*/
mutex_init(&HoldBack_Lock, USYNC_THREAD, (void *) NULL);

/*
* Init RecvBufSizeCounter mutex var - Used for congestion control(# of
full cells of proxy recv. buffer)
*/
mutex_init(&RecvBufSizeCounter_Lock, USYNC_THREAD, (void *) NULL);

/*
* Init Control_Skip_Lock mutex vars (one mutex for each cell of
proxy_side_recvBuffer)
*/
for (mi=0; mi<R_PROXY_SIDE_BUFFER_SIZE; mi++)
for (mj=0; mj<MAX_CONN_NUMB_PER_LOGICAL_CONN:; mj++)

-158 -

(void *) NULL);

mutex_init(&Control_Skip_Lock[mi][mj], USYNC_THREAD,

//Create the socket
if ((sockfd=socket(AF_INET, SOCK_STREAM, 0))<0){
perror("ERROR: socket creation \n");

exit(1);

}

/ICreate (client-side) proxy address
memset(&serv_addr, 0, sizeof(struct sockaddr_in));

serv_addr.sin_family = AF_INET;
serv_addr.sin_port = htons(C_PORTNUMBER);
servlen = sizeof(struct sockaddr_in);

niaa = INADDR_ANY;
memcpy(&serv_addr.sin_addr, &niaa, sizeof(long));

//Bind socket to address
if (bind(sockfd, (struct sockaddr *) &serv_addr, servlen) <0) {
perror("ERROR: bind \n");

exit(1);

}

//Listen for client connections

if (listen(sockfd, 7) <0) {
perror("ERROR: listen \n");
close(sockfd);

exit(1);

}

-159 -

for (;;) {

cli_len = sizeof(cli_addr);
client_sock = accept(sockfd, (struct sockaddr *) &cli_addr, &cli_len);

if (client_sock < 0) {
perror("ERROR: Can't create new socket (from cl.side proxy
listening socket) \n");
exit(1);
}

//Create child process

if ((childpid = fork()) < 0){
perror("ERROR: Fork \n");
exit(1);

}

else if (childpid == 0) { /* ****** child process ****** */

/* Child process vars */

struct sockaddr_in name; //used in connecting to server

struct sockaddr_in cli_name; //used for server-side proxy
UDP sockets

int len; //used in connecting to server

int n;

int thr_concurrency_counter;

thread_t
ThreadID[MAX_CONN_NUMB_PER_LOGICAL_CONN*2+4+1]; /[Array of thread IDs
for thr_create calls

int
thr_ID_PTR[MAX_CONN__NUMB__PER_LOGICAL_CONN*2+4+1]; /[Array of thr_ID
pointers used in thr_create calls

FILE *fd;

int ServSideProxy_PortNumber; //Port on which server
listens

unsigned char ServSideProxy_Name[64]; //DNS name of
server

- 160 -

int i,j; //counter var

size_t
TaskStatus[MAX~CONN~NUMB_PER,_LOGICAL_CONN*2+4+1]; /Used in
thr_join() call

unsigned char buffSOCK_BUFFER_SIZE]; //Buffer used by
parent to send to other proxy # of connections to be opened

unsigned char Connection_Number_str[31]; //String
containing Connection_Number(as to be sent to other proxy)

int nn;

char ServSideProxy_IP[50]; //Used for reading serv-side
proxy IP address from file
ulong_t addr;

close(sockfd); /{close original socket

// code

/*

* Init the erasure code encoder/decoder
*/

init_fec();

/*

* Read file to obtain address (name & port #) of server-side
proxy

* Format: "port# proxy_name" ("'s not included)

*/

/Isem_lock not needed

if ((fd = fopen(FILENAME, "r")) == NULL) {

perror("ERROR(p_cs_proxy): Couldn't open file \n");
exit(1);

-161 -

#ifdef SS_PRX_USE_NAME

fscanf(fd, "%d %s", &ServSideProxy_PortNumber,
ServSideProxy_Name);

#endif

#ifdef SS_PRX_USE_IP

fscanf(fd, "%d %s", &ServSideProxy_PortNumber,
ServSideProxy_IP);

#endif

//Check values read from file

#ifdef SS_PRX_USE_NAME

printf("CHECK(p_cs_proxy): ServSideProxy_Name: %s\n",
ServSideProxy_Name);

#endif

#ifdef SS_PRX_USE_IP

printf("CHECK(p_cs_proxy): ServSideProxy_IP: %s\n",
ServSideProxy_IP);

#endif

printf("CHECK(p_cs_proxy): TCP ServSideProxy_PortNumber:
%d \n", ServSideProxy_PortNumber);

fclose(fd);

//sem_unlock not needed

/*
* Open connection to server-side proxy
*/

//Get server-side proxy's address
#ifdef SS_PRX_USE_NAME

if ((hp= gethostbyname(ServSideProxy_Name)) == NULL)
printf("ERROR(p_cs_proxy): Can't get server-side proxy

-162 -

address(%s)\n\n", ServSideProxy_Name);
exit(1);
3
#endif

#ifdef SS_PRX_USE_IP

if ((int)(addr = inet_addr(ServSideProxy_IP)) == -1) {
printf("IP-address must be of the form a.b.c.d\n");
exit (2);

}

hp = gethostbyaddr((char *)&addr, sizeof(addr), AF_INET);

if (hp == NULL) {
printf("host information for %s not found\n”,

ServSideProxy_IP);

exit (3);

}

#endif

/ICreate server-side proxy address
memset(&name, 0, sizeof(struct sockaddr_in));

name.sin_family = AF_INET:

name.sin_port = htons(ServSideProxy_PortNumber);
memcpy(&name.sin_addr, hp->h_addr_list[0], hp->h_length);
len = sizeof(struct sockaddr_in);

/*

* tcp_sock is TCP socket used to communicate to server-side
proxy the # of connections

* to be used. After connection # is sent the TCP connection is
closed with UDP being used

* from that point on to tranmsit/receive data

E3

* servsideproxy_sockfd[i] are UDP sockets to be used

*

*/

-163 -

/[Create TCP connection socket
if ((tcp_sock = socket(AF_INET, SOCK_STREAM, 0)<0){
printf("ERROR(p_cs_proxy): Can't create socket for
server-side proxy \n\n");
exit(1);
}

//[Establish TCP connection to server-side proxy
if (connect(tcp_sock, (struct sockaddr *) &name, len) <0){
printf("ERROR(p_cs_proxy): Can't establish TCP
connection to server-side proxy \n\n");
exit(1);
}

printf("CHECK(p_cs_proxy): TCP connection to serv-side proxy
opened \n\n");

/=

* Read # of TOTAL connections to be opened (for each
'logical' connection to serv-side proxy)

* & send it to server-side proxy over the TCP connection.

* Format: string containing # followed by "\0'

*/

printf("Enter # of phys. connections per logical connection (%d
max): ", MAX_CONN_NUMB_PER_LOGICAL_CONN);

scanf("%d", &Connection_Number);

//Connection_Number = 1;

sprintf(Connection_Number_str, "%d", Connection_Number);

//Copy connection # in buf to send out to serv-side proxy &
set buf size

strepy(buf, Connection_Number_str);

n = strlen(buf) + 1; //strlen()+1 to account for the "\O' char
that must be included

- 164 -

if (send(tcp_sock, buf, n, 0) < 0) {
printf("ERROR(p_cs_proxy): While sending connection #
to serv-side proxy <0 \n\n");
exit(1);
} //if

/*

* Now that we got the # of UDP connections to be used
calculate the proxy recv. buffer capacity

*/

PROXY_RECV_BUF_CAPACITY =
R_PROXY_SIDE_BUFFER_SIZE*Connection_Number:

/*

* - Now that UDP connection # has been sent to server-side
proxy close the TCP connection

*/

/lclose(tep_sock); - need TCP socket to send/receive RNR/RR
flow control messages

/*

* Open Connection_Number UDP sockets (numbered from 0 to
Connection_Number-1).

*/

for (i=0; i<Connection_Number; i++) {

//Create socket
if ((servsideproxy_sockfd[i] = socket(AF_INET,
SOCK_DGRAM, 0)) < 0) {
printf("ERROR(er_cs_proxy): Can't create UDP
socket for server-side proxy for i:%d\n\n", i);
exit(1);
3

-165 -

/[Create the address to bind the UDP socket. Port #:
(CSP_UDP_BASE_PORTNUMBER + i)

memset(&cli_name, 0, sizeof(struct sockaddr_in));

cli_name.sin_family = AF_INET:

cli_name.sin_port =
htons(CSP_UDP_BASE_PORTNUMBER + i);

nn = INADDR_ANY;

memcpy(&cli_name.sin_addr, &nn, sizeof(long));

//Bind UDP socket to above address
if (bind(servsideproxy_sockfd]i], (struct sockaddr *)
&cli_name, sizeof(struct sockaddr_in)) <0) {
printf("ERROR: Can't bind UDP socket to port
%d\n\n",CSP_UDP_BASE_PORTNUMBER+i);

exit(1);
}
} //for
/*
* Initialize proxy buffers (i.e. set all flags to 0)
*/

for (i=0; i<R_PROXY_SIDE_BUFFER_SIZE; i++) {
for (j=0; j<MAX_CONN_NUMB_PER_LOGICAL_CONN:

jt+) {
proxy_side_recvBuffer[i][j].EntryFull = 0;
proxy_side_recvBuffer[i][j].Skip = 0;
proxy_side_recvBuffer[i][j]. Control_Skip = 0;
3
}

for (i=0; i<S_PROXY_SIDE_BUFFER_SIZE; i++) {
for (j=0; j<MAX_CONN_NUMB_PER_LOGICAL_CONN:
j++) {
proxy_side_sendBufferi][j]. EntryFull = 0;

- 166 -

for (i=0; i<PS_TO_C_PROXYBUFFER_SIZE; i++) {
ssproxy_to_client_ProxyBufferi].EntryFull = 0;

}

for (i=0; i<C_TO_PS_PROXYBUFFER_SIZE; i++) {
client_to_ssproxy_ProxyBuffer[i]. EntryFull = 0;

3

/*
* Init/fill-in thr_ID array. Thread IDs start from ZERO !lI
*/
for (i=0; i<(MAX_CONN~NUMB_PER_LOGICAL_CONN*2+4+1);
i++)
thr_ID_PTR[i] = i;

/*

* NOTE: proxy-side sending threads have thread IDs from (o)
to Connection_Number-1) and

* proxy-side receiving threads have thread IDs from
(Connection_Number to 2*Connection_Number-1)

*

*/

/*
* Spawn the server-side proxy sending/receiving threads and
receive buffering threads.

* Pair for each connection w/ serv-side proxy.
*/

for (i=Connection_Number: i<(2*Connection_Number); i++) {
thr_create(NULL, 0, proxyside_recv_ThreadFunc, (void
*) &thr_ID_PTR]i], 0, &ThreadIDI[i]);
} //for

-167 -

if (i I= (2*Connection_Number)) {
printf("ERROR/CHECK(p_cs_proxy): i counter <>
2*Connection_Number \n");
exit(1);
3

/*

* Spawn the client-side sending/receiving threads. Just one pair
for the single connection to client

*/

thr_create(NULL, 0, clientside_send_ThreadFunc, (void *)
&thr_ID_PTRYi], 0, &ThreadIDJi]);

i++;

thr_create(NULL, 0, clientside_recv_ThreadFunc, (void *)
&thr_ID_PTRYi], 0, &ThreadIDI[i]);

/%
* Spawn Control threads
*/
i++;

thr_create(NULL, 0O, client_to_proxy_Control_ThreadFunc,
(void *) &thr_ID_PTRYi], 0, &ThreadIDIi]);

j++;

thr_create(NULL, 0, proxy_to_client_Control_ThreadFunc,
(void *) &thr_ID_PTRYi], 0, &ThreadIDIi]);

/*

* Spawn RNR/RR message receiving thread that will receive
congestion messages from serv-side proxy

*/

i++;

thr_create(NULL, 0, Cong_Msg_Recv_ThreadFunc, (void *)
NULL, 0, &ThreadID}i});

/*

- 168 -

*Set the thread concurrency. Could improve thread scheduling.
>/

thr_concurrency_counter = Connection_Number*1+4+1;
thr_setconcurrency(thr_concurrency__counter);

/*

* Make thr_join calls so that program doesn't terminate right
after creating threads

*/

for (i=Connection_Number; i<(Connection_Number*2+4+1);

i++) {
thr_join(ThreadID[i], 0, (void *) &TaskStatusli]);
}
} //fendelseif [* %% child process ****** */
/*
* Close in parent the "passed off to child" socket
*/
close(client_sock);
} //endfor
} Fmain*/
/*

TRAFAEAIA A A Ah AR hhhrhikii */

- 169 -

void *proxyside_recv_ThreadFunc(void *thr_ID_PTR) {

/*

* Get thread ID

*/

int thr_IiD = *((int *) thr_ID_PTR);

int n;

int i,k,m; //counter vars

unsigned char *buf; //socket buffer

unsigned char *bufStart; //Used to store temporarily the socket buffer
starting address

unsigned char *tempbuf; //Temp. buffer used to copy segments read
from buf & copy into proxy recv buffer at end

int tempbuf_Size; //Current capacity of tempbufi.e. # of bytes
currently stored

unsigned char *tempbuf_Start; //Used to store temporarily tempbuf
starting address

int tempbuf_Capacity; //Capacity of tempbuf. Value set later on &
must remain constant

int buf_size; //Size of buf. Used because sizeof(buf) doesn't work for
char*

unsigned char *c_location; //Contains result of memccpy operation

int Total_buf_BytesRead;//Number of bytes already read from socket
buffer(buf). Used in writing received data to proxy_side_recvBuffer

int ZeroByteAtEndLastRound=0; //Used as a flag. True(i.e. 1) when last
byte in buf(in 1st or nth round) was a 0x00 byte

int ConcatRemaining_buf_contents_to_buf_for_next_round = 0;
//Flag

int concated_to_buf_start_bytes = 0;

unsigned char *new_received_data_start_addr_in_buf; //In case of
concating data at start of buf, this is the pointer to

/lthe first byte in buf of the newly

received(from the network) data

unsigned char *dummy_buf; //Buffer into to which socket data is
copoed into initially

int dummy_buf_size; //Capacity of dummy_buf buffer

int len; //Used in recvfrom() call

struct sockaddr_in from; //Address of sender of data i.e. server-side
proxy. Used in recvfrom() call

int Header_Derived_Packet_Length; //Packet length as derived from

-170-

header

unsigned char hb_size, Ib_size; //Used in getting packet length from
header

unsigned int Next_Expected_Seq_Number,
Next_Expected_Seq_Number_copy, Previous_Seq_Number;

unsigned int Current_Packet_Derived_Seq_Number:

int Cells_To_Skip;

int Wrap_Around_Counter; //Used in seq.# validation and skip count
calculation

/Init buffer

buf_size = 2*(SOCK_BUFFER_SIZE*2+2+HEADER_SIZE); //buf_size was
SOCK_BUFFER_SIZE

buf = (unsigned char *) malloc(buf_size*sizeof(unsigned char));

dummy_buf_size = (SOCK_BUFFER_SIZE*2+2+HEADER_SIZE);
//buf_size was SOCK_BUFFER_SIZE

/lnit Previous_Seq_Number
Previous_Seq_Number = (thr_ID-Connection_Number+1) -
Connection_Number;

/*

* NOTE: proxy-side sending threads have thread IDs from (0 to
Connection_Number-1) and

* proxy-side receiving threads have thread IDs from
(Connection_Number to 2*Connection_Number-1)

* Therefore (thr_ID-Connection_Number) is the connection # that should
be used by the proxy-side

* receiving threads

*/

-171-

//Copy starting address of socket buffer
bufStart=buf;

i=0; //Init counter
while (1) {
len = sizeof(struct sockaddr_in);
if ((n=recvfrom(servsideproxy_sockfd[thr_ID-

Connection_Number], buf,dummy_buf_size, 0, (struct sockaddr *) &from,&len)) >

0 {

R UDP packet handling --------eeeeee--
/*

*Check that first bytes are header - DEBUG

*/

if (1((buf[0]==(unsigned char)0x00) &&
(buf[1]'=(unsigned char)0x00) && (buff1]!=(unsigned char)Oxff) &&
(buf[HEADER_SIZE-1}==(unsigned char)0x00))) {

printf("ERROR(proxyside_recv): Header does not
verify\n\n");

exit(1);
} //if - header incorrect

/*

*Verify length etc. -DEBUG
*/

//Get length

if (((unsigned char)(0x40) & buf[4]) != (unsigned
char)0x00) {

-172 -

hb_size = ((unsigned char)(0x3f) & buf[4]);
Ib_size = ((unsigned char)(0x7f)) & buf[5];

3

else {
hb_size = ((unsigned char)(0x7f)) & buf[4];
Ib_size = buf[5];

}

Header_Derived_Packet_Length = hb_size;

Header_Derived_Packet_Length =
(Header_Derived_Packet_Length<<8);

Header_Derived_Packet_Length =
Header_Derived_Packet_Length | Ib_size;

/Verify length
if (Header_Derived_Packet_Length = n) {
printf("ERROR(proxyside_recv): Header derived
length != recv.packet length\n\n");
exit(1);
}

#ifdef EXTRA_RECV_PACKET_CHECKS

/*
*Check header bytes <>0x00 (except start/end bytes) -
DEBUG
*/
for (m=1; m<HEADER_SIZE-1; m++) {
if (buffm] == 0) {
printf("ERROR: %d th byte of header is
0x00\n\n", m+1);
exit(1);
Y} /if

-173 -

#endif

/=

* Check the sequence number. Must be
Next_Expected_Seq_Number OR a multiple of

* Connection_Number + Next_Expected_Seq_Number
OR may have wrapped around.

*/

Next_Expected_Seq_Number = Previous_Seq_Number
+ Connection_Number;
//if exceeded seq.# max value wrap it around
if (Next_Expected_Seq_Number >
MAX_SEQ_NUMB_VALUE)
Next_Expected_Seq_Number =
Next_Expected_Seq_Number-MAX_SEQ_NUMB_VALUE:

Current_Packet_Derived_Seq_Number = buf[3];

/*
* NOTE: Packet seq.# must be ==
Next_Expected_Seq_Number OR be Next_Expected_Seq_Number
* + a multiple of Connection_Number OR
Packet seq.# may have wrapped around skipping cells
*/
if (Current_Packet_Derived_Seq_Number >
Next_Expected_Seq_Number) {
if (((Current_Packet_Derived_Seq_Number-
Next_Expected_Seq_Number) % Connection_Number) 1= 0) {
printf("ERROR: Seq.# INCORRECT(#1).
Expecting %d and got
%d\n\n",Next_Expected_Seq_Number,Current_Packet__Derived_Seq__Number);
exit(1);
}
} /lif - Current_Packet_Derived_Seq_Number >
Next_Expected_Seq_Number
else if (Current_Packet_Derived_Seq_Number <

-174 -

Next_Expected_Seq_Number) { //Wrap-around case
Next_Expected_Seq_Number_copy =
Next_Expected_Seq_Number;

Wrap_Around_Counter = 0; //Reset
while (Next_Expected_Seq_Number_copy <
MAX_SEQ_NUMB_VALUE) {
Next_Expected_Seq_Number_copy =
Next_Expected_Seq_Number_copy + Connection_Number;
Wrap_Around_Counter++;

}

//Now that Next_Expected_Seq_Number_copy
> MAX_SEQ_NUMB_VALUE wrap it

Next_Expected_Seq_Number_copy =
(Next_Expected_Seq_Number_copy - MAX_SEQ_NUMB_VALUE);

if (((Current_Packet_Derived_Seq_Number-

Next_Expected_Seq_Number_copy) % Connection_Number) != 0) {
printf("ERROR: Seq.# INCORRECT (#2).

Expecting %d and got
%d\n\n",Next_Expected_Seq_Number,Current_Packet_Derived_Seq_Number);
exit(1);
}

} /lelse

Previous_Seq_Number =
Current_Packet_Derived_Seq_Number;

//f sequence != Next_Expected_Seq_Number then skip
cells & clear/reset buf

if (Current_Packet_Derived_Seq_Number =
Next_Expected_Seq_Number) {

-175 -

/ICalculate # of cells to skip
if (Current_Packet_Derived_Seq_Number >
Next_Expected_Seq_Number) {

Cells_To_Skip=(Current_Packet_Derived_Seq_Number-
Next_Expected_Seq_Number)/Connection_Number:

}

else { //Current_Packet_Derived_Seq_Number <
Next_Expected_Seq_Number

Cells_To_Skip = Wrap_Around_Counter +

((Current_Packet_Derived_Seq_Number-
Next_Expected_Seq_Number_copy)/Connection_Number);

h

for (m=1; m<=Cells_To_Skip; m++) {

//Wait for cell to be read
while ((proxy_side_recvBuffer[i][thr_ID-
Connection_Number].EntryFull!=0) || (proxy_side_recvBuffer]il[thr_ID-
Connection_Number].Skip!=0)) {
printf("CHECK(prx_recv[%d]): #1
waiting for proxy_side_recvBuffer[][]'=0\n\n", thr_ID);
thr_yield();
} /fwhile

/ Fe ke dedeok Kk

mutex_lock(&Control_Skip_Lock([i][thr_ID-
Connection_Number]);

if (proxy_side_recvBufferfi][thr_ID-
Connection_Number].Control_Skip == 0) {

//Set Skip bit for cell
proxy_side_recvBuffer[i][thr_ID-
Connection_Number].Skip = 1;

-176 -

//Since data just written into proxy-
side recv. buffer increment RecvBufSizeCounter counter

mutex_lock(&RecvBufSizeCounter_Lock);
RecvBufSizeCounter++;
mutex_unlock(&RecvBufSizeCounter_Lock);

Y //if
else if (proxy_side_recvBuffer[i][thr_ID-
Connection_Number].Control_Skip==1) { //Control_Skip is set
proxy_side_recvBuffer][i][thr_ID-
Connection_Number].Control_Skip = 0;
} /leise if - Control_Skip is set
else {
printf("ERROR(proxy_side_recv):
Control_Skip != 0,1\n\n");
exit(1);
} /lelse - error case

mutex_unlock(&Control_Skip_Lock[i][thr_ID-Connection_Number]);

// P A e de I ke e ke ke

//Increment counter
if (i < (R_LPROXY_SIDE_BUFFER_SIZE-1))
j++;

else
i=0;

} //for - skip cells

} //if - seq.# != next expected seq.#

-177 -

} //if
else{

printf("FATAL ERROR(prx_side_recv_Thread): n<=0
while recv. \n\n");

close(servsideproxy_sockfd[thr_ID-
Connection_Number]);

exit(1);
} /lelse - n<=0 from recvfrom()

/*
* Copy data from temp. buffer (buf) into
proxy_side_recvBuffer & set size and flag

*/
while ((proxy_side_recvBuffer]i][thr_|D-

Connection_Number].EntryFull!=0) || (proxy_side_recvBuffer[i][thr_ID-
Connection_Number].Skip!=0)) {

printf("CHECK(prx_recv): #3 waiting for
proxy_side_recvBuffer[][]!=0\n\n");

thr_yield();
} /iwhile

// KKk ok ke ok ok ke

mutex_lock(&Control_Skip_Lock]i][thr_ID-
Connection_Number]);

if (proxy_side_recvBuffer[i][thr_ID-
Connection_Number].Control_Skip == 0) {

-178 -

memcpy(proxy_side_recvBuffer]i][thr_ID-
Connection_Number].Data, buf, n);

proxy_side_recvBuffer[i]{thr_ID-
Connection_Number].DataSize = n;

proxy_side_recvBuffer[i|[thr_ID-
Connection_Number].EntryFull = 1;

//Since data just written into proxy-side recv. buffer
increment RecvBufSizeCounter counter
mutex_lock(&RecvBufSizeCounter_Lock);
RecvBufSizeCounter++;
mutex_unlock(&RecvBufSizeCounter_Lock);

} //if
else if (proxy_side_recvBuffer[i|[thr_ID-
Connection_Number].Control_Skip==1) { //Control_Skip is set
proxy_side_recvBuffer[i][thr_ID-
Connection_Number].Control_Skip = 0;
} /lelse if - Control_Skip is set
else { :
printf("ERROR(proxy_side_recv): Control_Skip !=
0,1\n\n");
exit(1);
} /lelse - error case

mutex_unlock(&Control_Skip_Lock[i][thr_ID-
Connection_Number));

// % e K ek e ke ke

//Increment counter
if (i < (R_LPROXY_SIDE_BUFFER_SIZE-1))
i++;

else
i=0;

} //while - 1

-179 -

} //proxyside_recv_ThreadFunc
/*

hkrhhkkhhhhhhhhihihihik */

void *clientside_send_ThreadFunc(void *thr_ID_PTR) {

/*

* Get thread ID

*/

int thr_ID = *((int *) thr_ID_PTR);

int n;
int i; /counter var
unsigned char buf[SOCK_BUFFER_SIZE];

i=-1;
while (1) {

/*
* Get data from ssproxy_to_client_ProxyBuffer;
*/
/lIncrement counter
if (i < (PS_TO_C_PROXYBUFFER_SIZE-1))
i++;

else
i=0;

while (ssproxy_to_client_ProxyBuffer[i].EntryFull I= 1) {
thr_yield();
}
memcpy(buf, ssproxy_to_client_ProxyBuffer[i].Data,
ssproxy_to_client_ProxyBuffer[i]. DataSize);
n = ssproxy_to_client_ProxyBuffer[i]. DataSize;
ssproxy_to_client_ProxyBuffer{i]. EntryFull = 0;

- 180 -

/*
* Send data to client
*/
if (n>0) {
if (send(client_sock, buf, n, 0) < 0) {

printf("ERROR(p_cs_proxy server_send_thread): While
sending data to client <0 \n\n");

exit(1);
Y} /7if
} //if

} //while

} //clientside_send_ThreadFunc

/*

bk b o b b S o T T T */

void *clientside_recv_ThreadFunc(void *thr_ID_PTR) {

/*

* Get thread ID

*/

int thr_ID = *((int *) thr_ID_PTR);

int n;
int i,j; //counter vars
unsigned char buf[CL_RECV_SOCK_BUFFER_SIZE];

time_t client_sock_close_time; //timestamp, used to implement time
delay before child terminated

- 181 -

i=-1;
while ((n = recv(client_sock, buf, sizeof(buf), 0)) > 0) {

/*
* Copy received data to client_to_ssproxy_ProxyBuffer;
*/

//Increment counter
if (i < (C_TO_PS_PROXYBUFFER_SIZE-1))
i++;

else
i=0;

while (client_to_ssproxy_ProxyBuffer[i].EntryFull I= 0) {
thr_yield();

by

memcpy(client_to_ssproxy_ProxyBuffer{i].Data, buf, n);

client_to_ssproxy_ProxyBuffer[i].DataSize = n;

client_to_ssproxy_ProxyBuffer[i]. EntryFull = 1;

} //while
if (n<=0) {
printf("FATAL ERROR(er_cs/clientside_recv): n<=0 while recv. from
client\n");
printf("(Non-fatal if end of client-server communication)\n\n");
/*
* Client has closed so won't tranmsit anything else. Implement a wait
using thr_yield() ro
* allow for any data remaining to be sent (& received by) to client
*/

client_sock_close_time = time(NULL);
close(client_sock);

while (((time_t) difftime(time(NULL), client_sock_close_time)) <=
EXIT_TIME_DELAY)

-182 -

thr_yield();
exit(1);

} /iclientside_recv_ThreadFunc

/*
ke e e ke ke ke e ke ok gk e ke o ek e vk e e g S TR ok R e e ke e s o ok e b ke i e 9 ok R o e ok SR o o ke ok o ok ok o o vk e ok ok ok ke e e ke e e e e ke ke e e e e e ke ke

hhkkhkkhkkhkhkhhhhikikhhkhhhhi */

void *proxy_to_client_Control_ThreadFunc(void *thr_ID_PTR) {

/*

* Get thread ID

*/

int thr_ID = *((int *) thr_ID_PTR);

int i,j,k; //counter vars

int RNR_flag = 0; //True if an RNR message has been sent to serv-side
proxy.

unsigned char cong_msg_buf[1024]; //byte buffer used to send RR &
RNR messages to serv-side proxy

int cong_Control_Check_Counter; //Used to control when cong.cntrl
checks occur

unsigned int Next_Expected_Seq_Number=0; //Between 1 and
MAX_SEQ_NUMB_VALUE (not 0 to MAX_SEQ_NUMB_VALUE)!!!

unsigned int Block_First_Seq_Num; //Seq.# of first packet of a block

int Encoded_Packets_Number; /Number of encoded packets for
current block(i.e. what is known as "n" in header)

int Encoded_Packets_Read; //Counter var. Used in reading packets
from every block

int Source_Packets_Number; //Number of source packets for current
block(i.e. what is known as "k" in header)

int Source_Packets_Read; //Number of source/data packets already
read from current block

int Curr_Block_Packet_Size; //Size if packets(not including header) of

-183-

a given block

int RR_counter=0; //Bookeeping var that just keep track of RR
messages sent out

int RNR_counter=0; //Bookeeping var that just keep track of RNR
messages sent out

gf *dec_src[DEC_ARRAY_SIZE]; //Used as argument in decoding
function

gf *dec_dst[DEC_ARRAY_SIZE]; //Used as argument in decoding
function

int dec_index|DEC_ARRAY_SIZE]; //Used as argument in decoding
function. Indexes of packets handed to dec. function

int ic; //Counter var

int EPR_Start=1;

int Block_First_Seq_Num_Set = 0; //Flag

int Number_of_Packets_Skipped;

int CONG_CNTRL_CHECK_PERIOD:; //Period of congestion control check.
CAUTION: If this value is too large then

/Imight fall into deadlock (i.e.

not sending a RR at all after a RNR)!!!

time_t start_time, curr_time;

int First_Time=0;

int NO_RECV_TIMEOQUT = 10;

int last_index_value; //Used in index calculation (for decoding)

int Cumul_Source_Packets_Read=0; //Test var
int TestThresh = 760;

/*

* Set congestion control check period

*/

[/ICONG_CNTRL_CHECK_PERIOD = Connection_Number;
CONG_CNTRL_CHECK_PERIOD = 0;

/*

* NOTE: proxy-side sending threads have thread IDs from (O to
Connection_Number-1) and

* proxy-side receiving threads have thread IDs from
(Connection_Number to 2*Connection_Number-1)

* Therefore (thr_ID-Connection_Number) is the connection # that should
be used by the proxy-side

* receiving threads

- 184 -

*/

/=

* Allocate memory to dec_src and dec_dst

*/

for (ic=0; ic<DEC_ARRAY_SIZE; ic++) {
dec_src[ic]= (gf *) malloc(DEC_ARR_BUF_SIZE*sizeof(gf));
dec_dst[ic]= (gf *) malloc(DEC_ARR_BUF_SIZE*sizeof(gf));

} //for

k = 0; //Init counter var
//Init counter var
//Init counter var

0;
0;

i
]

cong_Control_Check_Counter = CONG_CNTRL_CHECK_PERIOD; //Init

while (1) { //Handle current block of packets

if (Cumul_Source_Packets_Read > TestThresh)
printf("CHECK**: RIGHT BEFORE T/O WHILE
#1(Pack#:%d)\n",Cumul_Source_Packets_Read);

First_Time = 0;
while ((proxy_side_recvBuffer[i][jl.EntryFull = 1) &&
(proxy_side_recvBuffer[i][j].Skip != 1)) {

// Fe e Fe e e A e K

#ifdef RECV_CONTROL_DEBUG
if (Cumul_Source_Packets_Read > TestThresh)
if (First_Time==0)
printf("CHECK**: RIGHT INSIDE T/O WHILE
#1(Pack#:%d)\n",Cumul_Source_Packets_Read);
#endif

-185-

if (First_Time==0) {
First_Time=1;
start_time = time(NULL);
}

curr_time = time(NULL);

if ((float)difftime(curr_time, start_time) >
NO_RECV_TIMEOUT) {
printf("EXIT(recv_Control): %d sec w/ no new data
received\n\n”",NO_RECV_TIMEOUT);

exit(1);
}
thr_yield();
} //while
First_Time = 0;

#ifdef RECV_CONTROL_DEBUG
if (Cumul_Source_Packets_Read > TestThresh)
printf("CHECK**: RIGHT AFTER T/O WHILE #1
(Pack#:%d)\n",Cumul_Source_Packets_Read);
#endif

if (proxy_side_recvBuffer]i][j]. Skip == 1) {

/ICaclulate next expected sequence number. Inited to 0. Starts
from 1 (1->MAX_SEQ_NUMB_VALUE)

if (Next_Expected_Seq_Number < MAX_SEQ_NUMB_VALUE)
Next_Expected_Seq_Number++;

else
Next_Expected_Seq_Number = 1;

- 186 -

cells

//Reset Skip bit
proxy_side_recvBuffer[i][j].Skip = O;

/*
* Get sequence # of first packet of block (if not done already)
>/
if (Block_First_Seq_Num_Set = 1) {
Block_First_Seq_Num = Next_Expected_Seq_Number;
Block_First_Seq_Num_Set = 1,
}y /it

/ISkip current cell. Have for loop below start after skipped

EPR_Start = EPR_Start++;

/7 i,j incrementation
if j<(Connection_Number-1))
| R
else {
i=0;

if (i<(R_PROXY_SIDE_BUFFER_SIZE-1))
i++;
else
i=0;
}

/1i,j incrementation

//Proceed to next cell
continue;

} //if - must Skip current cell

-187 -

/*
* Now that we got out of skipping first packet(s) check if we skipped
entire block
*/
Number_of_Packets_Skipped = EPR_Start - 1;
if (Number_of_Packets_Skipped >=
proxy_side_recvBuffer[i][j]. Data[6]) {
printf("ERROR/STATUS: Entire block skipped.
Terminating\n\n");
exit(1);
} //if - check if entire block skipped

/*
* Get sequence # of first packet of block (if not already done)
*/
if (Block_First_Seq_Num_Set != 1) {
Block_First_Seq_Num = proxy_side_recvBuffer[i][j].Data[3];
Y} //if
else
Block_First_Seq_Num_Set = 0;

/*
* NOTE: Header format: (0x00, k, n, seq.#, length(2-bytes), packet#
in block,0x00)

*/

/*

* Get number of packets for current block i.e. "n"

*/

Encoded_Packets_Number = proxy_side_recvBuffer]i][j].Data[2];

/*
* Get number of source/data packets for this block i.e. "k"

- 188 -

*/
Source_Packets_Number = proxy_side_recvBuffer]i][j].Data[1];

/*

* Get packet size (NOT including header) for current block

*/

Curr_Block_Packet_Size = proxy_side_recvBuffer[i][j]. DataSize -
HEADER_SIZE;

/*

* Reset vars

*/

Source_Packets_Read = 0;

/*

* Go through Encoded_Packets_Number entries of proxy-side receive
buffer i.e. one block of "n" packets

*/

for (Encoded_Packets_Read=EPR_Start;
Encoded_Packets_Read<=Encoded_Packets_Number; Encoded_Packets_Read++)

{

//Caclulate next expected sequence number. Inited to 0. Starts
from 1 (1->MAX_SEQ_NUMB_VALUE)
if (Next_Expected_Seq_Number < MAX_SEQ_NUMB_VALUE)
Next_Expected_Seq_Number++;
else

Next_Expected_Seq_Number = 1;

/Iwhile and if used to be here before Control_Skip

if (Source_Packets_Read < Source_Packets_Number) { //i.e. not
enough packets read yet for decoding

-189 -

// Fe e Fe g e ke ke ke e

#ifdef RECV_CONTROL_DEBUG
if (Cumul_Source_Packets_Read > TestThresh)
printf("CHECK**: RIGHT BEFORE T/0 WHILE
#2(Pack#:%d w/
k=%d)\n",Cumul_Source_Packets_Read,Source_Packets_Number);
#endif

//Wait until entry full or recv. thread "says" to skip current cell

First_Time = 0;

while ((proxy_side_recvBuffer[i][j]. EntryFull I= 1) &&
(proxy_side_recvBuffer]i][j].Skip 1= 1)) {

de g e kek A
/

#ifdef RECV_CONTROL_DEBUG
if (Cumul_Source_Packets_Read > TestThresh)
if (First_Time==0)
printf("CHECK**: INSIDE T/O WHILE
#2(Pack#:%d w/
k=%d)\n",Cumul_Source_Packets_Read,Source_Packets_Number);
#endif

if (First_Time==0) {
First_Time=1;
start_time = time(NULL);
}

curr_time = time(NULL);

if (((float)difftime(curr_time, start_time)) >
NO_RECV_TIMEOUT) {
printf("EXIT(recv_Control): %d sec w/ no
new data received\n\n",NO_RECV_TIMEOUT);
exit(1);
}

- 190 -

thr_yield();

} /iwhile

[FFFFREABELOW

First_Time = 0;

#ifdef RECV_CONTROL_DEBUG

if (Cumul_Source_Packets_Read > TestThresh)

printf("CHECK**: RIGHT AFTER T/O WHILE #2

(Pack#:%d w/
k=%d)\n\n",Cumul_Source_Packets_Read,Source_Packets_Number);

#endif

if (proxy_side_recvBuffer[i][j].EntryFull == 1) {

//Check if seq.number valid (stored in 4th byte of
header)
if (proxy_side_recvBuffer[i][j]. Data[3] !=
Next_Expected_Seq_Number) {
printf("ERROR(proxy_to_client_Control):
Sequence # is WRONG. %d expected but got %d
\n\n",Next_Expected_Seq_Number,proxy_side_rechuffer[i][j].Data[3]);
exit(1);
} /if - seq.number is NOT next expected seq.number

//Error check: check if k and n of current packet is
thart of current block

if (proxy_side_recvBuffer[i][jl.Data[1] !=
Source_Packets_Number) {

printf("ERROR(er_cs/proxy_to_client_Control): Source_Packets_Number(k) is not
that expected \n\n");
exit(1);
y /if
if (proxy_side_recvBuffer]i][j]. Data[2] !=
Encoded_Packets_Number) {

printf("ERROR(er_cs/proxy_to_client_Control): Encoded_Packets_Number(n) is

-191 -

not that expected \n\n");
exit(1);
Y} /if

//Error check: compare size with
Curr_Block_Packet_Size
if ((proxy_side__rechuffer[i][j].DataSize-HEADER_SIZE)
I= Curr_Block_Packet_Size) {
printf("ERROR(er_cs/proxy_to_client_Control):
Size of read packet<>Curr_Block_Packet_Size\n\n");
exit(1);
} //if - error check for size

} //if - if data in cell perfrom some checks

// Y e e K Ko ke ke ke

//Read cell data if cell full, else if Skip specified just reset Skip
flag
if (proxy_side_recvBuffer[i][jl.EntryFull == 1) {

memcpy(dec_src[Source_Packets_Read],
proxy_side_recvBuffer]i][j]. Data+HEADER_SIZE,
proxy_side_recvBuffer[i][j]. DataSize-HEADER_SIZE);

//Calculate dec_index]] for fec decoding
if (proxy_side_recvBuffer]i][jl.Data[3] >=
Block_First_Seqg_Num) {
dec_index[Source_Packets_Read] =
proxy_side_recvBuffer[i][j]. Data[3] - Block_First_Seq_Num;
last_index_value =
dec_index[Source_Packets_Read];

}
else if (proxy_side_recvBuffer|i][j].Data[3] <

-192-

Block_First_Seq_Num)
dec_index[Source_Packets_Read] =
last_index_value + proxy_side_recvBuffer[il[j]. Data[3];

proxy_side_recvBuffer]i][jl.EntryFull = 0;

/Nncrement counter of # of packets read from
current block
Source_Packets_Read++;

Y} /if

else if (proxy_side_recvBuffer]i][j].Skip == 1) {
proxy_side_recvBuffer{i][j].Skip = 0;

} /else if

else {
printf("ERROR(er_cs/proxy_to_client_Control): Neither

entry full nor Skip set\n\n");

exit(1);

} /else

} //if - # of packets read until now < Source_Packets_Number i.e.
not enough packets yet

else { //Source_Packets_Read packets have been read i.e. enough
data packets obtained for decoding

#ifdef RECV_CONTROL_DEBUG

if (Cumul_Source_Packets_Read > TestThresh)
printf("CHECK™*: IN 'TENOUGH PACKETS' START #3
(Pack#:%d w/ k=%d)\n",Cumul_Source_Packets_Read,Source_Packets_Number);
#endif

/ K ek e ke e kK

mutex_lock(&Control_Skip_LockK[il[j]);

-193 -

//Error check
if ((proxy_side_recvBuffer][i][j].EntryFull == 1) &&
(proxy_side_recvBuffer|i][j].Skip == 1)) {
printf("ERROR(recv_Control): EntryFull && Skip
==1\n\n");
exit(1);
}

if (proxy_side_recvBuffer[i][jl.EntryFull == 1) {
proxy_side_recvBuffer]i][jl.EntryFull = 0;

Y //if

else if (proxy_side_recvBuffer]i][j]. Skip == 1) {
proxy_side_recvBuffer[i][j].Skip = 0;

} /else if

else {
proxy_side_recvBuffer]i][j]. Control_Skip = 1;
/ISince data just written into proxy-side recv. buffer

increment RecvBufSizeCounter counter

mutex_lock(&RecvBufSizeCounter_Lock);
RecvBufSizeCounter++: //Increment to offset default
decrement below

mutex_unlock(&RecvBufSizeCounter_Lock);
} /lelse

mutex_unlock(&Control_Skip_Lockfil[j]);

// Je e e de Kok e ke ke

#ifdef RECV_CONTROL_DEBUG
if (Cumul_Source_Packets_Read > TestThresh)
printf("CHECK™**: IN 'ENOUGH PACKETS' END #3

(Pack#:%d w/ k=%d)\n",Cumul_Source_Packets_Read,Source_Packets_Number);
#endif

} //else - Source_Packets_Read packets have been read i.e. enough

- 194 -

data packets obtained for decoding

#ifdef RECV_CONTROL_DEBUG
Cumul_Source_Packets_Read++;
#endif
/1 i,j incrementation
if (j<(Connection_Number-1))
s
else {
i=0;

if (i<(R_PROXY_SIDE_BUFFER_SIZE-1))
i++:
else
i=0;
}

/1 1,j incrementation

R ——— CONGESTION CONTROL

/*

* Congestion control check perfromed every
CONG_CNTRL_CHECK_PERIOD+1 rounds. Is VAR(not constant)!!!

*/

//Regardless of if will perform congestion control check,
packet reception/reading must be
// logged i.e. RecvBufSizeCounter decremented
mutex_lock(&RecvBufSizeCounter_Lock);
RecvBufSizeCounter--;
RecvBufSizeCounter_copy = RecvBufSizeCounter;
mutex_unlock(&RecvBufSizeCounter_Lock);

if (cong_Control_Check_Counter == 0) {

//Reset cong_Control_Check_Counter
cong_Control_Check_Counter = CONG_CNTRL_CHECK_PERIOD,;

-195 -

if (RecvBufSizeCounter_copy<0) {
printf("ERROR: RecvBufSizeCounter < O\n\n");
exit(1);

if (RNR_flag == 0) { //Send RNR message IF congested

if (
(RecvBufSizeCounter_copy/PROXY_RECV_BUF_CAPACITY) >=
RNR_PROXY_RECV_BUF_SIZE_THRESH) {
RNR_flag = 1; //Set flag

//Send ReceiveNotReady-RNR message("RNR"
NULL terminated string) to server-side proxy
strepy(cong_msg_buf, "RNR");
if (send(tcp_sock, cong_msg_buf,
strlen(cong_msg_buf)+1, 0) <0) {
printf("ERROR: send()<0 for RNR \n\n");
close(tcp_sock);
exit(1);
}

RNR_counter++; //Bookeeping var
printf("STATUS: %d RNR messages sent out until
now\n\n",RNR_counter);

} //if

} /if - RNR_flag == 0

else if (RNR_flag == 1) { //RNR_flag == 1 & thus send
RR message if not congested anymore

if (
(RecvBufSizeCounter_copy/PROXY_RECV_BUF_CAPACITY) <
RR_PROXY_RECV_BUF_SIZE_THRESH) {

RNR_flag = 0; //Set flag

//Send ReceiveReady-RR message("RR" NULL
terminated string) to server-side proxy

strcpy(cong_msg_buf, "RR");

if (send(tcp_sock, cong_msg_buf,
strlen(cong_msg_buf)+1, 0) <0) {

- 196 -

printf("ERROR: send()<0 for RR \n\n");
close(tcp_sock);
exit(1);

}

RR_counter++; //Bookeeping var

printf("STATUS: %d RR messages sent out until
now\n\n",RR_counter);

} /if

} /lelseif - RNR_flag == 1
else //error case

printf("ERROR: RNR_flag neither O nor 1 \n\n");

} //if - cong_Control_Check_Counter ==

else { //else - cong_Control_Check_Counter > 0
cong_Control_Check_Counter--;

} /lelse - cong_Control_Check_Counter > 0

P CONGESTION CONTROL

#ifdef RECV_CONTROL_DEBUG

if (Cumul_Source_Packets_Read > TestThresh)

printf("CHECK**: AT END OF 'BLOCK' FOR LOOP #4
(Pack#:%d w/ k=%d)\n",Cumul_Source_Packets_Read,Source_Packets_Number);
#endif

} /ffor - Go through Encoded_Packets_Number entries of proxy-side
receive buffer

#ifdef RECV_CONTROL_DEBUG
if (Cumul_Source_Packets_Read > TestThresh)

printf("CHECK**: AFTER 'BLOCK' FOR LOOP #5
(Pack#:%d w/ k=%d)\n",Cumul_Source_Packets_Read,Source_Packets_Number);

-197 -

#endif

/> .
* Having read entire current block do error check if enough packets read
needed for decoding
*/
if (Source_Packets_Read != Source_Packets_Number) {
printf("ERROR(er_cs/proxy_to_client_Control): Not enough packets
for decoding(or too many)\n\n");
exit(1);
y //if

/*
* Having read current block and having sufficient # of packets for
decoding, proceed w/ decoding

* and writing to ssproxy_to_client_ProxyBuffer
*/

#ifdef RECV_CONTROL_DEBUG

if (Cumul_Source_Packets_Read > TestThresh) {
printf("CHECK**: RIGHT BEFORE DECODING fec #6
(Pack#:%d w/ k=%d)\n",CumuI_Source_Packets_Read,Source_Packets_Number);
printf("dec_index's: %d %d - Source_Packets_Number:%d -
Curr_BIock_Packet_Size:%d\n",dec_index[O],dec_index[1],Source_Packets_Numb
er,Curr_Block_Packet_Size);

b
#endif

//Decode - decode_fec(gf *src[l], gf *dst[], int index]], int k, int sz);
decode_fec(dec_src, dec_dst, dec_index, Source_Packets_Number,
Curr_Block_Packet_Size);

#ifdef RECV_CONTROL_DEBUG

- 198 -

if (Cumul_Source_Packets_Read > TestThresh)
printf("CHECK**: AFTER DECODING fec #7 (Pack#:%d
w/ k=%d)\n",Cumul_Source_PacketsﬁRead,Source_Packets_Number);
#endif
//Write decoded packets to ssproxy_to_client_ProxyBuffer
for (ic=0; ic<Source_Packets_Number; ic++) {

while (ssproxy_to_client_ProxyBuffer[k].EntryFull != 0){
printf("CHECK(recvControl): waiting for
ssproxy_to_client_ProxyBuffer[]!=0\n\n");
thr_yield();
3

memcpy(ssproxy_to_client_ProxyBuffer[k].Data, dec_dstlic],
Curr_Block_Packet_Size);

ssproxy_to_client_ProxyBuffer[k].DataSize =
Curr_Block_Packet_Size;

ssproxy_to_client_ProxyBuffer[k].EntryFull = 1;

if (k < (PS_TO_C_PROXYBUFFER_SIZE-1))
K+-+;
else
k=0;

} /ffor - write decoded packets into ssproxy_to_client_ProxyBuffer

//Reset
EPR_Start = 1;

#ifdef RECV_CONTROL_DEBUG
if (Cumul_Source_Packets_Read > TestThresh)
printf("CHECK™**: AT END '"WHILE' LOOP #8- (Pack#:%d

w/ k=%d)\n\n",CumuI_Source__Packets_Read,Source_Packets_Number);
#endif

-199 -

} /lwhile (1) - Handle current block of packets

} /iproxy_to_client_Control_ThreadFunc

/*
Fe ke e ok de ke e ke Sk ok e T ke e g e Sk ok ok ke e ke R ke Tk ok ke ok 9 T S ok o e o R Sk ok o e o o Sk v e S 9 S vk vk 9k 9 9 T T o ok v e e g e e e v e de dh e ke e ke ok ke oA

Bk ok bl e */

void *client_to_proxy_Control_ThreadFunc(void *thr_ID_PTR) {

/*

* Get thread ID

*/

int thr_ID = *((int *) thr_ID_PTR);

int i,j,k; //counter vars

int K_actual=0; //# of entries actually read(& to be encoded) from
client_to_ssproxy_ProxyBuffer

int m, thryield_counter, p; //Counter vars

unsigned char *cumul_buf; //Cumulative buffer into which packets read
from client_to_ssproxy_ProxyBuffer are copied into

int cumul_buf_Size=0; //Current size(i.e. # entries full) of cumul_buf

int cumul_buf_Size_temp=0; //A temp var

unsigned char *cumul_buf_Start; //Used to store original starting
address of cumul_buf

int packet_Size=0; //Size of packets to be encoded and writeen to
send-out buffer

int packet_Number=0; //Number of packets to be encoded. Equal to
K_actual in general

int encode_index; //COunter used as index when calling encoding
function

of *encoded_Packet; //Used in encoding function call. Contains encoded
packet

of *source_data_Packets[K_DESIRED]; //Array of buffers containing

-200 -

source(data) packets to be used in encoding

int Num_Encoded_Packets=0; //Total number of packets to be
produced from encoding

FILE *enc_debug_fd; //File descriptor of a file used for debug output
ENC_DEBUG_FILENAME

unsigned char
header_added_Packet{SOCK_BUFFER_SIZE+HEADER_SIZE]; //Packet copied into
send buffer. Includes header plus the encoded packet

unsigned int Sequence_Number=1; //Sequence number used in header.
Inited to 111

unsigned char *Start_Adrr_of_Remaining_Bytes;

struct timeval *start_time:
struct timeval *curr_time;
long start_time_in_msec, curr_time_in_msec;

struct sockaddr_in
ssp_name[MAX_CONN_NUMB_PER_LOGICAL_CONN]; //Server-side proxy
address

int send_socket_index = -1; //Init

//

% e e de g ek e ke e kok ok

/*

* Allocate memory to time vars

*/

start_time = (struct timeval *) malloc(sizeof(struct timeval));
curr_time = (struct timeval *) malloc(sizeof(struct timeval));

/*
* Setup address on server-side proxy with which this thread

-201 -

communicates
*/
for (i=0; i<Connection_Number; i++) {
memset(&ssp_nameli], 0, sizeof(struct sockaddr_in));
ssp_nameli].sin_family = AF_INET;
ssp_nameli].sin_port = htons(SSP_UDP_BASE_PORTNUMBER + i);
memcpy(&ssp_nameli].sin_addr, hp->h_addr_list[0], hp->h_length);
//hp has been set from above in child process
} //for

/*
* Open encoding debug file descriptor
*/
#ifdef ENC_DEBUG_ON
enc_debug_fd = fopen(ENC_DEBUG_FILENAME, "w");
#endif

/*
* Allocate memory to encoded_Packet and source_data_Packets]
*/
encoded_Packet = (gf *) malloc(ENC_PACKET_BUF_SIZE*sizeof(gf));

for (m=0; m<K_DESIRED; m++) {
source_data_Packets[m]= (gf *)
malloc(ENC_SOURCE_BUF_BUFFER_SIZE*sizeof(gf));
} //for

/*

* Allocate memory to cumul_buf

*/

cumul_buf = (unsigned char *)
malloc((K_DESIRED+1)*SOCK_BUFFER_SIZE*sizeof(unsigned char));

-202 -

/*

* Store starting address of cumul_buf
*/

cumul_buf_Start = cumul_buf:

/*

* NOTE: proxy-side sending threads have thread IDs from (O to
Connection_Number-1) and

* proxy-side receiving threads have thread IDs from
(Connection_Number to 2*Connection_Number-1)

* Therefore (thr_ID-Connection_Number) is the connection # that should
be used by the proxy-side

* receiving threads

*/

k = 0; //Init client_to_ssproxy_ProxyBuffer counter

i=0; //Init
j=0; //nit
while (1) {

K_actual = 0; //Reset

/*

* Reset cumul_buf_Size and cumul_buf address
*/

cumul_buf_Size = 0;

cumul_buf = cumul_buf_Start;

/*
* Try to get/read K_DESIRED entries from

-203 -

client_to_ssproxy_ProxyBuffer.

* K_actual is number of entries that were actually read.
*/

I

for (m=1; m<=K_DESIRED; m++) {
if (m==1) {

//Wait until entry/packet written into next cell to be read

while (client_to_ssproxy_ProxyBuffer[k].EntryFull I= 1) {
thr_yield();

} //while

K_actual = 1;

} //if - m==1
else { /lelse - m>1

for (thryield_counter=1; thryield_counter<=THR_YIELD_MAX;
thryield_counter++) {

if (client_to_ssproxy_ProxyBuffer[k].EntryFull 1= 1) {
#ifdef ENC_DEBUG_ON

fprintf(enc_debug_fd, "Thread slept to get %d
th packet\n", m);

#endif
thr_yield();
Y} //if
else
break;
} //for

if (client_to_ssproxy_ProxyBuffer[k].EntryFull != 1)
break;

/l'ncrement # of packets/entries read from
client_to_ssproxy_ProxyBuffer

K_actual = K_actual +1;

- 204 -

} /else - m>1

//Write packet into cumulative buffer & increment cumulative buffer

size(# bytes in c.buffer) etc.

memcpy(cumul_buf, client_to_ssproxy_ProxyBuffer[k].Data,
client_to_ssproxy_ProxyBuffer[k].DataSize);

cumul_buf=cumul_buf + client_to_ssproxy_ProxyBuffer[k].DataSize;
/IMove cumul_buf start so as to copy in next packet next round (if done)

cumul_buf_Size = cumul_buf_Size +
client_to_ssproxy_ProxyBuffer[k].DataSize;

client_to_ssproxy_ProxyBuffer[k].EntryFull = 0;

/lIncrement client_to_ssproxy_ProxyBuffer index/counter k (at END
of for loop)
if (k < (C_TO_PS_PROXYBUFFER_SIZE-1))
K++;

else
k=0;

} //for

1

/*
* Write K_actual/K_DESIRED to enc. debug file
*/
#ifdef ENC_DEBUG_ON
fprintf(enc_debug_fd, "K_actual/K_DESIRED = %d/%d \n", K_actual,
K_DESIRED);
#endif

/*

- 205 -

* Make an error check for K_actual
*/
if (K_actual > K_DESIRED) {
printf("ERROR(client_to_proxy_Control_Thread): K_actual >
K_DESIRED\n\n");
exit(1);
}
/=
* Having read K_actual entries from client_to_ssproxy_ProxyBuffer,
now encode these entries/packets
* & write them to proxy_side_sendBuffer
*/
//

//Reset cumul_buf to its starting address
cumul_buf = cumul_buf_Start;

//Copy cumul_buf_Size into a temp var to use
cumul_buf_Size_temp = cumul_buf_Size;

/[Set size of packets to be encoded and written to send-out buffer

(K_actual is # of packets)
if (cumul_buf_Size_temp > TEMP_CUMUL_BUF_SIZE_TRESH) {

while ((cumui_buf_Size_temp % K_actual) !=0)
cumul_buf_Size_temp = cumul_buf_Size_temp - 1;

#ifdef ENC_DEBUG_ON
fprintf(enc_debug_fd,"cumul_buf_Size=%d and
cumul_buf_Size_temp=%d\n",cumul_buf_Size,cumul_buf_Size_temp);
#endif

- 206 -

/[Error check. cumul_buf_Size_temp must have reduced in size no
more than (K_actual-1)
if ((cumul_buf_Size - cumul_buf_Size_temp) > (K_actual-1)) {
printf("ERROR(client_to_proxy_Control_Thread): More than
(K_actual-1) bytes 'removed' from cumul_buf\n\n");
exit(1);
} //if

packet_Size = (cumul_buf_Size_temp/K_actual);
packet_Number = K_actual;

} //if
else { //cumul_buf_Size_temp<=TEMP_CUMUL_BUF_SIZE_TRESH so
encode/send out as one packet(for efficiency)

packet_Size = cumul_buf_Size_temp;

packet_Number = 1;

#ifdef ENC_DEBUG_ON

if (K_actual>1)
fprintf(enc_debug_fd, "Amalgamation occurred(%d bytes)

\n", cumul_buf_Size_temp);

#endif

} llelse - cumul_buf_Size_temp<=TEMP_CUMUL_BUF_SIZE_TRESH so

encode/send out as one packet(for efficiency)

//Print blank line in enc. debub file
#ifdef ENC_DEBUG_ON

fprintf(enc_debug_fd,"\n");
#endif

//Error check
if (packet_Size > CL_RECV_SOCK_BUFFER_SIZE) {
printf("ERROR(client_to_proxy_Control): packet_Size >
CL_RECV_SOCK_BUFFER_SIZE \n\n");
exit(1);

-207 -

Y //if

/ICopy source(data) packets into source_data_Packets[] array of
buffers

for (p=0; p<packet_Number; p++) {
source_data_Packets[p] = cumul_buf+(p*packet_Size);

}

//IRecord addres of byte after end of last packet read (needed below
for sending out remaining bytes)

Start_Adrr_of_Remaining_Bytes = cumul_buf+(p*packet_Size);

//Set # of packets to be produced from encoding
Num_Encoded_Packets = N_FACTOR*packet_Number;

/*

* Encode the packet_Number packets of size packet_Size and copy
them to proxy_side_sendBuffer(][]

*/

for (encode_index=0 ; encode_index<Num_Encoded_Packets;
encode_index++) {

//Get one encoded packet (out of Num_Encoded_Packets)
build_fec(source_data_Packets, packet_Number, packet_Size,
header_added_Packet+HEADER_SIZE, encode_index);

/*

* Copy encoded packet to proxy_side_sendBuffer

*/

//Add header (k, n, Seq.#, length[2-bytes], packet# in block)
header_added_Packet[0] = (unsigned char) 0x00;

header_added_Packet[1] = (unsigned char)packet_Number; //Set k
i.e. # of data/source packets

-208 -

header_added_Packet[2] = (unsigned char)Num_Encoded_Packets:
/ISet n i.e. # of enc.packets

header_added_Packet[3] = (unsigned char)Sequence_Number;
//Set sequence #. Keep it herell!

header_added_Packet[5] = (unsigned
char)(packet_Size+HEADER_SIZE); //Set length (2nd byte [low])

header_added_Packet[4] = (unsigned
char)((packet_Size+HEADER_SIZE)>>8); //Set length (1st byte [high])

header_added_Packet[4] = (unsigned char)(((unsigned char)(0x80))
| header_added_Packet[4]); /Code so that <>0

if (header_added_Packet[5] == (unsigned char)0x00) {
header_added_Packet[5] = (unsigned char)(((unsigned
char)(0x80)) | header_added_Packet[5]);
header_added_Packet[4] = (unsigned char)(((unsigned
char)(0x40)) | header_added_Packet[4]);
} //if - code length fields so that <>0

header_added_Packet[6] = encode_index+1;
header_added_Packet[7] = (unsigned char) 0x00;

/lincrement sequence number after using it

if (Sequence_Number < MAX_SEQ_NUMB_VALUE)
Sequence_Number++;

else
Sequence_Number=1;

/] +++++++tttt bbb bbb bbb

/*
* Send data to server-side proxy
*/

//Check congestion control flag HoldBack before sending data and
wait if set
mutex_lock(&HoldBack_L.ock);

- 209 -

while (HoldBack != 0) {
mutex_unlock(&HoldBack_Lock);
thr_yield();
mutex_lock(&HoldBack_Lock);

ks
mutex_unlock(&HoldBack_Lock);

#ifdef USE_DELAY

if (gettimeofday(start_time, NULL) <0) {
printf("ERROR(send_Control): gettimeofday error\n\n");
exit(1);

}

start_time_in_msec = (start_time->tv_sec)*1000 + (start_time-
>tv_usec)/1000;

while (1) {
if (gettimeofday(curr_time, NULL) <0) {
printf("ERROR(send_Control): gettimeofday error\n\n");
exit(1);
3

curr_time_in_msec = (curr_time->tv_sec)*1000 + (curr_time-
>tv_usec)/1000;

if ((curr_time_in_msec - start_time_in_msec) >=
DELAY_IN_MSEC)
break;

//Since haven't reached timeout value yet have thread
sleeplyield
thr_yield();

-210-

} //while

//Increment send socket identifier/index (to change sending socket
used)
if (send_socket_index < (Connection_Number-1))
send_socket_index++;
else
send_socket_index = 0;

IITCP-if (send(servsideproxy_sockfd[send_socket_index], buf, n , 0)
<0){
if (sendto(servsideproxy_sockfd[send_socket_index],
header_added_Packet, packet_Size+HEADER_SIZE, 0, (struct sockaddr *)
&ssp_name[send_socket_index],sizeof(struct sockaddr_in)) < 0) {
printf("ERROR(send/Control): While sending data to
serv-side proxy <0 \n\n");
exit(1);
} /1if

F A e B b L o S L S S N R N W S S B WS S I St A NP AR

//Update j & i values

if (j < (Connection_Number-1))
jH+;

else { //j wraps-around so update i also
i=0;

if (i < (S_PROXY_SIDE_BUFFER_SIZE-1))

-211-

i++:
else
i=0;

} /ffor - encode packets & copy them to proxy_side_sendBuffer[][]

/*

* If bytes left over send them out - NO PASTING else can fall into
deadlock 1!

*/

if (cumul_buf_Size_temp < cumul_buf_Size) {

// % Je de kK kk

packet_Number = 1;
packet_Size = cumul_buf_Size - cumul_buf_Size_temp;

//Set # of packets to be produced from encoding
Num_Encoded_Packets = N_FACTOR*packet_Number;

//Copy source(data) packets into source_data_Packets[] array of
buffers
source_data_Packets[0] = Start_Adrr_of_Remaining_Bytes;

for (encode_index=0 ; encode_index<Num_Encoded_Packets;
encode_index++) {

//Get one encoded packet (out of Num_Encoded_Packets)
build_fec(source_data_Packets, packet_Number, packet_Size,
header_added_Packet+HEADER_SIZE, encode_index);

/*

* Copy encoded packet to proxy_side_sendBuffer

*/

/IAdd header (k, n, Seq.#, length[2-bytes], packet# in block)

-212-

header_added_Packet[0] = (unsigned char) 0x00;

header_added_Packet[1] = (unsigned char)packet_Number; //Set k
i.e. # of data/source packets

header_added_Packet[2] = (unsigned char)Num_Encoded_Packets;
//Set ni.e. # of enc.packets

header_added_Packet[3] = (unsigned char)Sequence_Number;
//Set sequence #. Keep it herel!!

header_added_Packet[5] = (unsigned
char)(packet_Size+HEADER_SIZE); //Set length (2nd byte [low])

header_added_Packet[4] = (unsigned
char)((packet_Size+HEADER_SIZE)>>8); //Set length (1st byte [high])

header_added_Packet[4] = (unsigned char)(((unsigned char)(0x80))
| header_added_Packet[4]); //Code so that <>0

if (header_added_Packet[5] == (unsigned char)0x00) {
header_added_Packet[5] = (unsigned char)(((unsigned
char)(0x80)) | header_added_Packet[5]);
header_added_Packet[4] = (unsigned char)(((unsigned
char)(0x40)) | header_added_Packet[4]);
} //if - code length fields so that <>0

header_added_Packet[6] = encode_index+1;
header_added_Packet[7] = (unsigned char) 0x00;

/lIncrement sequence number after using it

if (Sequence_Number < MAX_SEQ_NUMB_VALUE)
Sequence_Number++;

else
Sequence_Number=1;

/]t b

/*
* Send data to server-side proxy
*/

//Check congestion control flag HoldBack before sending data and

-213-

wait if set
mutex_lock(&HoldBack_L ock);
while (HoldBack != 0) {
mutex_unlock(&HoldBack_Lock);
thr_yield();
mutex_lock(&HoldBack_Lock);
}

mutex_unlock(&HoldBack_Lock);

#ifdef USE_DELAY

if (gettimeofday(start_time, NULL) <0) {
printf("ERROR(send_Control): gettimeofday error\n\n");
exit(1);

}

start_time_in_msec = (start_time->tv_sec)*1000 + (start_time-
>tv_usec)/1000;

while (1) {
if (gettimeofday(curr_time, NULL) <0) {
printf("ERROR(send_Control): gettimeofday error\n\n");
exit(1);
}

curr_time_in_msec = (curr_time->tv_sec)*1000 + (curr_time-
>tv_usec)/1000;

if ((curr_time_in_msec - start_time_in_msec) >=
DELAY_IN_MSEC)
break;

//Since haven't reached timeout value yet have thread
sleeplyield

-214-

thr_yield();

} //while

/NIncrement send socket identifier/index (to change sending socket
used)
if (send_socket_index < (Connection_Number-1))
send_socket_index++;
else
send_socket_index = 0;

/1 printf("CHECK(sendControl)Sending via socket
%d\n\n",send_socket_index);

/ITCP-if (send(servsideproxy_sockfd[send_socket_index], buf, n , 0)
<0){
if (sendto(servsideproxy_sockfd[send_socket_index],
header_added_Packet, packet_Size+HEADER_SIZE, 0, (struct sockaddr *)
&ssp_name[send_socket_index],sizeof(struct sockaddr_in)) < 0) {
printf("ERROR(send/Control): While sending data to
serv-side proxy <0 \n\n");
exit(1);
} //if

[/ ++++++ bbb

//Update j & i values

if (j < (Connection_Number-1))
j++;

else { //j wraps-around so update i also
j=0;

-215 -

if (i < (S_PROXY_SIDE_BUFFER_SIZE-1))
i++;

else
i=0;

} /ffor - encode and write-out packets to send buffer

// Hek kKA Kk kK

Yy //if
else if (cumul_buf_Size_temp > cumul_buf_Size) { //error case
printf("ERROR(server_to_proxy_Control): cumul_buf_Size_temp >
cumul_buf_Size\n\n");
exit(1);
} /lelse - error case

//

} //while(1)

//

Fe ke KKk ek R Ak ek ok ok ok ok

} //client_to_proxy_Control_ThreadFunc

/*

-216 -

LAk b o o e T Y */

/*

* Thread (one instance) used to receive congestion control messages from server-
side proxy(RNR/RR)

*/

void *Cong_Msg_Recv_ThreadFunc(void *JunkPTR) {

int n,m;

unsigned char cong_msg_buf[20]; //Buffer used to receive congestion
control messages

unsigned char CongMessage[20]; //Congestion control message
eventually written into here

int Last_Message_was_RNR=2; //Flag. Init to a neutral value

while (1) {

/*

* Read-in congestion control message from server-side proxy

*/

strcpy(CongMessage,™); //Init string

m=0;

while ((n = recv(tcp_sock, cong_msg_buf, sizeof(cong_msg_buf),

0)) >0) {

m=m-+n;
strncat(CongMessage, cong_msg_buf, n);
if (CongMessage[m-1] =="\0")

break; //if \0' in string then done so exit recv/while loop

} /iwhile

if (n<=0) {
printf("ERROR(Cong_Msg_Recv_Thread): n<=0 recv() \n\n");
close(tcp_sock);

-217 -

exit(1);

/*
* Read cong. control message received and act appropriately
*/
if (stremp(CongMessage, "RNR") == 0) {
if (Last_Message_was_RNR == 1)
printf("ERROR/WARNING(Cong_Msg_Recv_Thread):
Multiple RNR messages received in a row\n\n");

//Print out that "RNR" message received
#ifdef FLOW_CNTRL_DEBUG_PRINT

printf("STATUS(Cong_Msg_Recv_Thread): RNR message
received\n\n");

#endif
Last_Message_was_RNR = 1; //Set flag

mutex_lock(&HoldBack_Lock);
HoldBack = 1;
mutex_unlock(&HoldBack_Lock);

}
else if (strcmp(CongMessage, "RR") == 0) {
if (Last_Message_was_RNR == 0)
printf("ERROR/WARNING(Cong_Msg_Recv_Thread):
Multiple RR messages received in a row\n\n");

/[Print out that "RR" message received
#ifdef FLOW_CNTRL_DEBUG_PRINT

printf("STATUS(Cong_Msg_Recv_Thread): RR message
received\n\n");

#endif
Last_Message_was_RNR = 0; //Set flag
mutex_lock(&HoldBack_Lock);

HoldBack = 0;
mutex_unlock(&HoldBack_Lock);

-218-

h

else { /Error case

printf("ERROR(Cong_Msg_Recv_Thread): CongMessage neither
RNR nor RR \n\n");

close(tcp_sock);
exit(1);
} /lelse

} /iwhile(1)

} //Cong_Msg_Recv_ThreadFunc

-219 -

#define _REENTRANT
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <string.h>
#include <sys/stat.h>
#include <thread.h>
#include <synch.h>
#include <sched.h>
#include <sys/uio.h>
#include <sys/sem.h>
#include <sys/ipc.h>
#include <memory.h>
#include <time.h>
#include <sys/time.h>
#include <unistd.h>
#include "fec.c"

// Debuging "defines" (enable debug printouts)
/H#define ENC_DEBUG_ON

/f#define new2_PRINT_DEBUG

#define FLOW_CNTRL_DEBUG_PRINT

/H#define CS_PRX_USE_NAME

#define CS_PRX_USE_IP

/H#define SERV_USE_NAME

#define SERV_USE_IP

/I#define EXTRA_RECV_PACKET_CHECKS

-220-

#define SSP_UDP_BASE_PORTNUMBER 8000 //Server-side proxy UDP base
portnumber i.e. (SSP_UDP_BASE_PORTNUMBER+thread ID)
/l{or (SSP_UDP_BASE_PORTNUMBER+thread ID-Connection_Number)) is

port number to be used by each thread
#define CSP_UDP_BASE_PORTNUMBER 7000 //Client-side proxy UDP base
portnumber
#define S_PORTNUMBER 6006 l/Server-side proxy listens on this port
#define FILENAME "p_ss_proxy_file.txt" //File that contains address & port #
of server
#define CSP_FILENAME "erss_cs_proxy._file.txt" //File that contains client-side
proxy name(DNS)
#define SOCK_BUFFER_SIZE 2048
#define CS_TO_S_PROXYBUFFER_SIZE 200 //# of nodes in buffer.
#define S_TO_CS_PROXYBUFFER_SIZE 4000 //# of nodes in buffer.
/I#define PROXY_SIDE_BUFFER_SIZE 10 //# of nodes in buffer.
#define R_PROXY_SIDE_BUFFER_SIZE 50 //# of nodes in buffer.
#define S_PROXY_SIDE_BUFFER_SIZE 2000 //# of nodes in buffer.
#define MAX_CONN_NUMB_PER_LOGICAL_CONN 5 //Max # of connections per
logical connection
#define SERV_SLEEP_COUNTER 1000 //NOT USED. Amount of times to call
thr_yield to implement a wait after server has closed
#define EXIT_TIME_DELAY 3 //NOT USED(??m is). Number of sec of time delay
before child proc. terminated after server has closed
#define RNR_PROXY_RECV_BUF_SIZE_THRESH 0.8 //Percentage full treshhold of
proxy recv.buffer which if exceeded

//results in RNR
message being sent to serv-side proxy
#define RR_PROXY_RECV_BUF_SIZE_THRESH 0.6 //Percentage full treshhold of
proxy recv.buffer which if exceeded

//results in RNR
message being sent to serv-side proxy

#define K_DESIRED 2 //# of client_to_ssproxy_ProxyBuffer we WANT to
read(actual # read may differ)
#define THR_YIELD_MAX 1 //Max number of times will thread yield to read entry
from client_to_ssproxy_ProxyBuffer

//Set it to O if don't want to wait at all

#define N_FACTOR 2 //IN_FACTOR*k packets will be produced by encoding and

sent out(k = #data packets)
#define ENC_DEBUG_FILENAME "er_ss_enc_dbg_file.txt" //File descriptor of a file

-221 -

used for debug output in client-to-proxy thread
#define HEADER_SIZE 8 //Size (in bytes) of header added to encoded packets
(0x00,k, n, seq.#,length(2-bytes),packet# in block,0x00)
#define MAX_SEQ_NUMB_VALUE 255
#define HEADER_SRT_END_BYTES_CODE_VALUE (unsigned char)0x01
#define DEC_ARRAY_SIZE 10 //Number of array entries for decoding array
(array of gf*)
#define DEC_ARR_BUF_SIZE SOCK_BUFFER_SIZE //Size of each decoding array
buffer
#define ENC_PACKET_BUF_SIZE SOCK_BUFFER_SIZE //Size of buffer containing
encoded packet(what you get from enc.func.)
#define ENC_SOURCE_BUF_BUFFER_SIZE SOCK_BUFFER_SIZE //Size of buffers
containing source data headed for encoding
#define SERV_RECV_SOCK_BUFFER_SIZE 1024 //Socket buffer size for server
receiving
#define TEMP_CUMUL_BUF_SIZE_TRESH SERV_RECV_SOCK_BUFFER_SIZE //If
total # of bytes to be encoded(&sent-out) each time
/lis smaller than this value

then amalgamate into one big packet(for efficiency)
//#define NETW_RECV_BUFFER_SIZE 40 // # of cells for each network receive
buffer (used in

//
proxyside_recvBuffering_ThreadFunc threads to buffer network UDP packets)

#define DELAY_IN_MSEC 0
/H#define USE_DELAY

/*

* Function prototypes

*/

void *proxyside_recv_ThreadFunc(void *);

void *serverside_send_ThreadFunc(void *);

void *serverside_recv_ThreadFunc(void *);

void *Cong_Msg_Recv_ThreadFunc(void *);

void *proxy_to_server_Control_ThreadFunc(void *);
void *server_to_proxy_Control_ThreadFunc(void *);

-222-

struct BufferNode {

int EntryFull; //Flag (serves as semaphore). If 1 then value stored, else
is empty and can be written into

long int DataSize; //Size of data stored in entry

unsigned char Data]SOCK_BUFFER_SIZE + HEADER_SIZE];

int Skip; //Used only for proxy_side_recvBuffer. Recv. thread sets flag
to 1 to tell control to skip cell

int Control_Skip; //Flag set by recv_Control "stating” that it has
skeeped the entry (because doesn't need

//more data for current block)

int sockfd, servlen, cli_len, childpid;

int newsockfd[MAX_CONN_NUMB_PER_LOGICAL_CONN]; //Array of UDP
sockets

int tcp_sock; //TCP socket used to receive the # of UDP connections to be used
struct sockaddr_in ssp_name; //Address of server-side proxy

int nn; //Used in setting up UDP socket addresses

struct sockaddr_in cli_addr, serv_addr;

int niaa;

unsigned char buf_par[SOCK_BUFFER_SIZE]; //Buffer used by parent process to
receive # of connections opened

int m_par, c_par; //Counter vars

int n_par;

int Connection_Number; //Number of connections to be opened for a given
proxy-to-proxy 'logical' connection

unsigned char Connection_Number_str[32]; //String containing
Connection_Number as read from other proxy

int server_sock; //socket used to connect to server

struct BufferNode
csproxy_to_server_ProxyBuffer[CS_TO_S_PROXYBUFFER_SIZE]; //Buffer used
for client->server_side_proxy traffic

struct BufferNode
server_to_csproxy_ProxyBuffer[S_TO_CS_PROXYBUFFER_SIZE]; //Buffer used
for server_side_proxy->client traffic

struct BufferNode
proxy_side_sendBuffer[S_PROXY_SIDE_BUFFER_SIZE][MAX_CONN_NUMB_PER_LO
GICAL_CONN]; //Used to store temporarily data that will

-223-

// be sent out to cl.side proxy

struct BufferNode
proxy_side_recvBuffer[R_PROXY_SIDE_BUFFER_SIZE][MAX_CONN_NUMB_PER_LO
GICAL_CONN]J; //Used to store temporarily data that

//is received fromt to cl.side proxy
struct hostent *chp; //Used to get client-side proxy address

int RecvBufSizeCounter = 0; //Used for congestion control(# of full cells of proxy
recv. buffer)

int RecvBufSizeCounter_copy = 0; //Copy of above counter. Used to unlock
mutex quickly

int HoldBack = 0; //Flag used for congestion control i.e. when 1 then send
threads pause

mutex_t RecvBufSizeCounter_Lock; //RecvBufSizeCounter semaphore

mutex_t HoldBack_Lock; //HoldBack semaphore

int PROXY_RECV_BUF_CAPACITY; //Capacity of proxy-side recv buffer. Is
R_PROXY_SIDE_BUFFER_SIZE*(#UDP connections)

mutex_t
Control_Skip_Lock[R_PROXY_SIDE_BUFFER_SIZE][MAX_CONN_NUMB_PER_LOGIC
AL_CONN]J; //Mutex for setting/reseting Control_Skip flag. One mutex for each
cell of proxy_side_recvBuffer

int mi,mj; //Counter vars

int PFTPblock_size=10001;

int main(void) {

/*

* Init HoldBack mutex var - Used for congestion control i.e. when 1 then
send threads pause

*/

mutex_init(&HoldBack_Lock, USYNC_THREAD, (void *) NULL);

/*

* Init RecvBufSizeCounter mutex var - Used for congestion control(# of
full cells of proxy recv. buffer)

*/

-224 -

mutex_init(&RecvBufSizeCounter_Lock, USYNC_THREAD, (void *) NULL);

/*

* Init Control_Skip_Lock mutex vars (one mutex for each cell of
proxy_side_recvBuffer)

*/

for (mi=0; mi<R_PROXY_SIDE_BUFFER_SIZE; mi++)

for (mj=0; mj<MAX_CONN_NUMB_PER_LOGICAL_CONN; mj++)
mutex_init(&Control_Skip_Lock[mi][mj], USYNC_THREAD,

(void *) NULL);

//ICreate the socket

if ((sockfd=socket(AF_INET, SOCK_STREAM, 0)) < 0){
perror("ERROR: socket creation \n");
exit(1);

}

/[Create (server-side) proxy address
memset(&serv_addr, 0, sizeof(struct sockaddr_in));

serv_addr.sin_family = AF_INET;
serv_addr.sin_port = htons(S_PORTNUMBERY);
servlen = sizeof(struct sockaddr_in);

niaa = INADDR_ANY;
memmove(&serv_addr.sin_addr, &niaa, sizeof(long));

//Bind socket to (server-side) proxy address

if (bind(sockfd, (struct sockaddr *) &serv_addr, servien) <0) {
perror("ERROR: bind \n");
exit(1);

}

//Listen for client connections
if (listen(sockfd, 5) <0) {
perror("ERROR: listen() \n");
close(sockfd);
exit(1);

-225-

b

for (;;) {

socket)\n");

connection).

cli_len = sizeof(cli_addr);
tep_sock = accept(sockfd, (struct sockaddr *) &cli_addr, &cli_len);

if (tcp_sock < 0) {
perror("ERROR: Can't create new socket (1st proxy listening

exit(1);

/*
* Read number of TOTAL connections to be opened (for this 'logical’

* Format: string containing # followed by "\0'
*/

strcpy(Connection_Number_str,"\0"); //Init

m_par=0; //Init counter
while ((n_par = recv(tcp_sock, buf_par, sizeof(buf_par), 0)) > 0) {
m_par = m_par+n_par;
strncat(Connection_Number_str, buf_par, n_par);
if (Connection_Number_strim_par-1] =="0")
break; //if \0' in string then done so exit recv/while loop

3
if (n_par<=0) {
printf("FATAL ERROR: n_par<=0 while recv. UDP connection #

(parent process)\n\n");

close(tcp_sock);
exit(1);

/*
* - xNow that connection # has been received close the TCP socketx -

-226 -

will use for cong.control messages
*/
/Iclose(tcp_sock);

/[Convert # of connections to int from string
sscanf(Connection_Number_str,"%d", & Connection_Number);

printf("CHECK(er_ss_proxy): %d UDP connections to be opened\n\n",
Connection_Number);

/*

* Now that we got the # of UDP connections to be used calculate the
proxy recv. buffer capacity

*/

PROXY_RECV_BUF_CAPACITY =
R_PROXY_SIDE_BUFFER_SIZE*Connection_Number:;

/*

* Wait for Connection_Number connections to be opened.
NOTE:Connection_Number is total connections to be opened

>/

for (c_par=0; c_par<Connection_Number; c_par++) {

//Create socket
if ((newsockfd[c_par] = socket(AF_INET, SOCK_DGRAM, 0))
<0){
printf("ERROR(er_ss_proxy): Can't create UDP socket
for i:%d\n\n", c_par);
exit(1);
}

//Create the address to bind the UDP socket. Port #:

-227 -

(SSP_UDP_BASE_PORTNUMBER + c_par)
memset(&ssp_name, 0, sizeof(struct sockaddr_in));
ssp_name.sin_family = AF_INET,;
ssp_name.sin_port = htons(SSP_UDP_BASE_PORTNUMBER +
C_par);
nn = INADDR_ANY;
memmove(&ssp_name.sin_addr, &nn, sizeof(long));

//Bind UDP socket to above address
if (bind(newsockfd[c_par], (struct sockaddr *) &ssp_name,
sizeof(struct sockaddr_in)) <0) {
printf("ERROR: Can't bind UDP socket to port
%d\n\n",SSP_UDP_BASE_PORTNUMBER+c_par);
exit(1);
}

} //for

//Create child process

if ((childpid = fork()) < 0) {
perror("ERROR: Fork \n");
exit(1);

}

else if (Chlldpld == O) { JF* REEERE il process FhRdAK K]

/* Child process vars */

struct hostent *hp; //used in connecting to server

struct sockaddr_in name; //used in connecting to server

int len; //used in connecting to server

int thr_concurrency_counter;

thread_t
ThreadIlDIMAX_CONN_NUMB_PER_LOGICAL_CONN*2+4+1]; //Array of thread IDs
for thr_create calls

int
thr_ID_PTR[MAX_CONN_NUMB_PER_LOGICAL_CONN*2+4+1]; //Array of thr_ID

-228 -

pointers used in thr_create calls

FILE *fd;

int Server_PortNumber; //Port on which server listens
unsigned char Server_Name[64]; //DNS name of server
unsigned char Server_IP[64]; //IP of server

ulong_t addr;
int i,j; //counter var
size_t

TaskStatus[MAX_CONN_NUMB_PER_LOGICAL_CONN*2+4+1]; //Used in

thr_join() calls

unsigned char client_side_proxy_name[55]; //String

containing clien-side proxy as read from file

i)

unsigned char client_side_proxy_IP[50];

close(sockfd); /lclose original socket

/! code

printf("CHECK(er_ss_proxy): CHILD process created \n\n");

/*

* Init the erasure code encoder/decoder
*/

init_fec();

/*
* Initialize proxy buffers (i.e. set all flags to 0)
*/
for (i=0; i<R_PROXY_SIDE_BUFFER_SIZE; i++) {
for (j=0; j<MAX_CONN_NUMB_PER_LOGICAL_CONN;

{
proxy_side_recvBuffer[il[j].EntryFull = 0;
proxy_side_recvBuffer]il[j].Skip = 0;
proxy_side_recvBufferfi][j].Control_Skip = 0;
}

- 229 -

)

Server_Name);

}
for (i=0; i<S_PROXY_SIDE_BUFFER_SIZE; i++) {
for (j=0; j<MAX_CONN_NUMB_PER_LOGICAL_CONN;:
{
proxy_side_sendBuffer{il[j]. EntryFull = 0;

for (i=0; i<CS_TO_S_PROXYBUFFER_SIZE; i++) {
csproxy_to_server_ProxyBuffer{i].EntryFull = 0;

b

for (i=0; i<S_TO_CS_PROXYBUFFER_SIZE; i++) {
server_to_csproxy_ProxyBuffer[i].EntryFull = 0;

}

/*

* Read file to obtain address (name & port #) of server
* Format: "port# server_name" ("'s not included)

*/

//sem_lock not needed

if ((fd = fopen(FILENAME, "r")) == NULL) {
perror("ERROR(p_ss_proxy): Couldn't open file \n");
exit(1);

b

#ifdef SERV_USE_NAME

fscanf(fd, "%d %s", &Server_PortNumber, Server_Name);
#endif

#ifdef SERV_USE_IP

fscanf(fd, "%d %s", &Server_PortNumber, Server_IP);
#endif

//Check values read from file
#ifdef SERV_USE_NAME
printf("CHECK(p_ss_proxy): Server_Name: %s\n",

-230-

#endif

#ifdef SERV_USE_IP

printf("CHECK(p_ss_proxy): Server_IP: %s\n", Server_IP);
#endif

printf("CHECK(p_ss_proxy): Server_PortNumber: %d \n",
Server_PortNumber);

fclose(fd);

//sem_unlock not needed

/*
* Get server address & open connection to server
*/

//Get server's address

#ifdef SERV_USE_NAME

if ((hp = gethostbyname(Server_Name)) == NULL) {
printf("ERROR(er_ss_proxy): Can't get server

address(%s)\n\n", Server_Name);

exit(1);

}

#endif

#ifdef SERV_USE_IP
if ((int)(addr = inet_addr(Server_IP)) == -1) {

printf("IP-address must be of the form

a.b.c.d\n");
exit (2);
3
hp = gethostbyaddr((char *)&addr, sizeof(addr),
AF_INET);
if (hp == NULL) {
printf("host information for %s not found\n",
Server_IP);
exit (3);
3
#endif

-231-

//Create socket
if ((server_sock = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf("ERROR(er_ss_proxy): Can't create socket for
server\n\n");
exit(1);

//Create server address
memset(&name, 0, sizeof(struct sockaddr_in));

name.sin_family = AF_INET;
name.sin_port = htons(Server_PortNumber);
memmove(&name.sin_addr, hp->h_addr_list[0], hp-

>h_length);
len = sizeof(struct sockaddr_in);
//Connect to server
if (connect(server_sock, (struct sockaddr *) &name, len) < 0
) {
printf("ERROR: Can't connect to server \n\n");
exit(1);
¥
/!
/*
* Get the client-side proxy's name(DNS)
*/
/*

* Read file to obtain address (DNS) of server
* Format: "client_side_proxy_name" ("s not included)
*/

if ((fd = fopen(CSP_FILENAME, "r")) == NULL) {

-232-

perror("ERROR(er_ss_proxy): Couldn't open file to get
csprx name(or IP)\n");
exit(1);
3

#ifdef CS_PRX_USE_NAME
fscanf(fd, "%s", client_side_proxy_name);
#endif

#ifdef CS_PRX_USE_IP
fscanf(fd, "%s", client_side_proxy_IP);
#endif

//ICheck values read from file

#ifdef CS_PRX_USE_NAME

printf("CHECK(er_ss_proxy):client_side_proxy_name: %s\n",
client_side_proxy_name);

#endif

#ifdef CS_PRX_USE_IP

printf("CHECK(er_ss_proxy):client_side_proxy_IP: %s\n",
client_side_proxy_IP);

#endif

fclose(fd);

#ifdef CS_PRX_USE_NAME
if ((chp = gethostbyname(client_side_proxy_name)) == NULL)
{
printf("ERROR: Can't get client-side proxy address
(gethostbyname)\n\n");
exit(1);
}
#endif
#ifdef CS_PRX_USE_IP
if ((int)(addr = inet_addr(client_side_proxy_IP)) == -1) {
printf("IP-address must be of the form a.b.c.d\n");
exit (2);

-233-

}
chp = gethostbyaddr((char *)&addr, sizeof(addr), AF_INET);
if (chp == NULL) {
printf("host information for %s not found\n",
client_side_proxy_IP);
exit (3);
}
#endif

/1

/*
* Init/fill-in thr_ID array. Thread |Ds start from ZERO Il
*/
for (i=0; i<(MAX_CONN_NUMB_PER_LOGICAL_CONN*2+4+1);
i++)
thr_ID_PTR[i] = i;

/*

* NOTE: proxy-side sending threads have thread IDs from (0
to Connection_Number-1) and

* proxy-side receiving threads have thread IDs from
(Connection_Number to 2*Connection_Number-1)

*

*/

/*

* Spawn the proxy-side sending/receiving threads. Pair for
each connection w/ client-side proxy

*/

for (i=Connection_Number; i<(2*Connection_Number); i++) {

-234 -

thr_create(NULL, 0, proxyside_recv_ThreadFunc, (void
*) &thr_ID_PTR]i], 0, &ThreadIDJi]);
} //for
if (i I= (2*Connection_Number))
printf("ERROR/CHECK(er_ss_proxy): i counter <>
2*Connection_Number \n");

/*

* Spawn the server-side sending/receiving threads. Just one
pair for the single connection to server

*/

thr_create(NULL, 0, serverside_send_ThreadFunc, (void *)
&thr_ID_PTR]i], 0, &ThreadID[i]);

i++;

thr_create(NULL, 0, serverside_recv_ThreadFunc, (void *)
&thr_ID_PTRYJi], 0, &ThreadID[i});

/>
* Spawn Control threads
*/
i++;

thr_create(NULL, 0, server_to_proxy_Control_ThreadFunc,
(void *) &thr_ID_PTR]i], 0, &ThreadIDI[i]);

i++;

thr_create(NULL, 0, proxy_to_server_Control_ThreadFunc,
(void *) &thr_ID_PTR]il, 0, &Thread!DIi));

/*

* Spawn RNR/RR message receiving thread that will receive
congestion messages from serv-side proxy

*/

i++;

thr_create(NULL, 0, Cong_Msg_Recv_ThreadFunc, (void *)
NULL, 0, &ThreadID[i]);

-235-

/*

*Set the thread concurrency. Could improve thread scheduling.
*/

thr_concurrency_counter = 1*Connection_Number+4+1:
thr_setconcurrency(thr_concurrency_counter);

/*
* Make thr_join calls so that program doesn't terminate right
after creating threads
*/
for (i=Connection_Number; i<(2*Connection_Number+4+1);
i++) {
thr_join(ThreadIDI[i], 0, (void *) &TaskStatus]i]);

}//endelseif [* FEFREE ~hlild process ***x** %/

/*
* Close in parent the "passed off to child" UDP sockets & the TCP
socket tcp_sock(used for cong.control)
*/
close(tcp_sock);
for (c_par=0; c_par<Connection_Number; c_par++) {
close(newsockfd[c_parl);

}

} //endfor

} Mmain®/

-236 -

/*

dhEkhkEAhhkhkdkdrrhbhhhkhikhik */

void *proxyside_recv_ThreadFunc(void *thr_ID_PTR) {

/*

* Get thread ID

*/

int thr_ID = *((int *) thr_ID_PTR);

int n;

int ik, m; //counter vars

unsigned char *buf; //Buffer into which received data is copied into &
data pasted to

unsigned char *bufStart; //Used to store temporarily the socket buffer
starting address

int buf_size; //Used because sizeof(buf) doesn't work for char *

unsigned char *tempbuf; //Temp. buffer used to copy segments read
from buf & copy into proxy recv buffer at end

int tempbuf_Size; //Current capacity of tempbuf i.e. # of bytes
currently stored

unsigned char *tempbuf_Start; //Used to store temporarily tempbuf
starting address

int tempbuf_Capacity; //Capacity of tempbuf. Value set later on &
must remain constant

unsigned char *c_location; //Contains result of memccpy operation

int Total_buf_BytesRead; //Number of bytes already read from socket
buffer(buf). Used in writing received data to proxy_side_recvBuffer

int ZeroByteAtEndLastRound=0; //Used as a flag. True(i.e. 1) when last
byte in buf(in 1st or nth round) was a 0x00 byte

int ConcatRemaining_buf_contents_to_buf_for_next_round = 0;
//Flag

int concated_to_buf_start_bytes = 0;

unsigned char *new_received_data_start_addr_in_buf; //In case of
concating data at start of buf, this is the pointer to

/lthe first byte in buf of the newly

-237-

received(from the network) data

unsigned char *dummy_buf; //Buffer into to which socket data is
copoed into initially

int dummy_buf_size;

struct sockaddr_in from; //Used in recvfrom() call. Address of sender
is written into this var after every recvfrom()

int len; //Used for recvfrom()

int Header_Derived_Packet_Length; //Packet length as derived from
header

unsigned char hb_size, Ib_size; //Used in getting packet length from
header

unsigned int Next_Expected_Seq_Number,
Next_Expected_Seq_Number_copy, Previous_Seq_Number;

unsigned int Current_Packet_Derived_Seg_Number;

int Cells_To_Skip;

int Wrap_Around_Counter; //Used in seq.# validation and skip count
calculation

//Init buffer

buf_size = 2*(SOCK_BUFFER_SIZE*2+2+HEADER_SIZE); //buf_size was
SOCK_BUFFER_SIZE

buf = (unsigned char *) malloc(buf_size*sizeof(unsigned char));

dummy_buf_size = (SOCK_BUFFER_SIZE*2+2+HEADER_SIZE);
/lbuf_size was SOCK_BUFFER_SIZE

//Init Previous_Seq_Number
Previous_Seq_Number = (thr_ID-Connection_Number+1) -
Connection_Number;

/*

* NOTE: proxy-side sending threads have thread IDs from (0 to
Connection_Number-1) and

* proxy-side receiving threads have thread IDs from
(Connection_Number to 2*Connection_Number-1)

-238 -

* Therefore (thr_ID-Connection_Number) is the connection # that should
be used by the proxy-side

* receiving threads

*/

/ICopy starting address of socket buffer
bufStart=buf;

i=0; //Init counter

while (1) {

len = sizeof(struct sockaddr_in);

if ((n = recvfrom(newsockfd[thr_ID-Connection_Number], buf,
dummy_buf_size, 0, (struct sockaddr *) &from, &len)) > 0) {

F e UDP packet handling ----=----=eeom--
/*
*Check that first bytes are header - DEBUG
*/

if (I((buf[0]==(unsigned char)0x00) && (buf[1]!=(unsigned
char)0x00) && (buf[1]!=(unsigned char)0xff) && (buf[HEADER_SIZE-1]==(unsigned
char)0x00))) {

printf("ERROR(proxyside_recv): Header
does not verify\n\n");

exit(1);
} //if - header incorrect

/*

*Verify length etc. -DEBUG
*/

//Get length

-239-

if (((unsigned char)(0x40) & buf[4]) != (unsigned char)0x00) {
hb_size = ((unsigned char)(0x3f) & buf[4]);
Ib_size = ((unsigned char)(0x7f)) & buf[5];

else {
hb_size = ((unsigned char)(0x7f)) & buf[4];
Ib_size = buf[5];

}

Header_Derived_Packet_Length = hb_size;

Header_Derived_Packet_Length =
(Header_Derived_Packet_Length<<8);

Header_Derived_Packet_Length =
Header_Derived_Packet_Length | Ib_size;

/N erify length
if (Header_Derived_Packet_Length != n) {
printf("ERROR(proxyside_recv): Header derived
length != recv.packet length\n\n");

exit(1);
3

#ifdef EXTRA_RECV_PACKET_CHECKS

/%
*Check header bytes <>0x00 (except start/end bytes) -
DEBUG
*/
for (m=1; m<HEADER_SIZE-1; m++) {
if (bufim] == 0) {
printf("ERROR: %d th byte of header is
Ox00\n\n", m+1);
exit(1);
Yy //if

- 240 -

#endif

/*

* Check the sequence number. Must be
Next_Expected_Seq_Number OR a multiple of

* Connection_Number + Next_Expected_Seq_Number

*/

Next_Expected_Seq_Number = Previous_Seq_Number
+ Connection_Number;

//1f exceeded seq.# max value wrap it around

if (Next_Expected_Seq_Number >
MAX_SEQ_NUMB_VALUE)

Next_Expected_Seq_Number =
(Next_Expected_Seq_Number-MAX_SEQ_NUMB_VALUE);

Current_Packet_Derived_Seq_Number = buf[3];

/*
* NOTE: Packet seq.# must be ==
Next_Expected_Seq_Number OR be Next_Expected_Seq_Number
* + a multiple of Connection_Number OR
Packet seq.# may have wrapped around skipping cells
*/
if (Current_Packet_Derived_Seq_Number >
Next_Expected_Seq_Number) {
if (((Current_Packet_Derived_Seq_Number-
Next_Expected_Seq_Number) % Connection_Number) != 0) {
printf("ERROR: Seq.# INCORRECT(#1).
Expecting %d and got
%d\m\n",Next_Expected_Seq_Number,Current_Packet_Derived_Seq_Number);
exit(1);
}
} //if - Current_Packet_Derived_Seq_Number >

=241 -

Next_Expected_Seq_Number
else if (Current_Packet_Derived_Seq_Number <
Next_Expected_Seq_Number) { //Wrap-around case
Next_Expected_Seq_Number_copy =
Next_Expected_Seq_Number;

Wrap_Around_Counter = 0; //Reset
while (Next_Expected_Seq_Number_copy <
MAX_SEQ_NUMB_VALUE) {
Next_Expected_Seq_Number_copy =
Next_Expected_Seq_Number_copy + Connection_Number:;
Wrap_Around_Counter++;

}

//INow that Next_Expected_Seq_Numbe_copy >
MAX_SEQ_NUMB_VALUE wrap it

Next_Expected_Seq_Number_copy =
(Next_Expected_Seq_Number_copy - MAX_SEQ_NUMB_VALUE);

if (((Current_Packet_Derived_Seq_Number-
Next_Expected_Seq_Number_copy) % Connection_Number) != 0) {
printf("ERROR: Seq.# INCORRECT(#2).
Expecting %d and got
%d\m\n",Next_Expected_Seq_Number,Current_Packet_Derived_Seq_Number);
exit(1);
¥

} /else

Previous_Seq_Number =
Current_Packet_Derived_Seq_Number;

//1f sequence # != Next_Expected_Seq_Number then
skip cells & clear/reset buf

if (Current_Packet_Derived_Seq_Number 1=

-242-

Next_Expected_Seq_Number) {

printf("CHECK(recv[%d]): Expecting %d and got
Yod\N\n",
thr_ID,Next_Expected_Seq_Number,Current_Packet_Derived_Seq_Number);

//Calculate # of cells to skip
if (Current_Packet_Derived_Seq_Number >
Next_Expected_Seq_Number) {

Cells_To_Skip=(Current_Packet_Derived_Seq_Number-
Next_Expected_Seq_Number)/Connection_Number;
printf("CHECK: in 1st Cell to Skip
case\n\n");
b
else { //Current_Packet_Derived_Seq_Number <
Nexi_Expected_Seq_Number
Cells_To_Skip = Wrap_Around_Counter +
((Current_Packet_Derived_Seq_Number-
Next_Expected_Seq_Number_copy)/Connection_Number);
printf("CHECK: in 2nd Cell to Skip
case\n\n");

printf("STATUS(proxyside_recv[%d]): Going to
skip %d cells w/ i=%d\n\n",thr_ID,Cells_To_Skip,i);

for (m=1; m<=Cells_To_Skip; m++) {

/\Wait for cell to be read
while ((proxy_side_recvBuffer]i][thr_ID-
Connection_Number].EntryFull!=0) || (proxy_side_recvBuffer[i][thr_ID-
Connection_Number].Skip!=0)) {
thr_yield();
} /lwhile

mutex_lock(&Control_Skip_Lock]i][thr_ID-

- 243 -

Connection_Number));

if (proxy_side_recvBuffer]il[thr_ID-
Connection_Number].Control_Skip == 0) {
//Set Skip bit for cell

proxy_side_recvBuffer|i][thr_ID-Connection_Number].Skip = 1;

printf("CHECK(recv)[%d]: Skip bit set in
[Y%d][%d\n\n",thr_ID,i,thr_ID-Connection_Number);

mutex_lock(&RecvBufSizeCounter_Lock);
RecvBufSizeCounter++; //Increment

mutex_unlock(&RecvBufSizeCounter_Lock);

Yy /it
else if (proxy_side_recvBuffer]|i][thr_ID-
Connection_Number].Control_Skip==1) { //Control_Skip is set

proxy_side_recvBuffer]i][thr_ID-Connection_Number].Control_Skip = 0;
} /lelse if - Control_Skip is set
else {

printf("ERROR(proxy_side_recv): Control_Skip != 0,1\n\n");
exit(1);
} /lelse - error case

mutex_unlock(&Control_Skip_Lock]i][thr_ID-Connection_Number]);

/ % e e e ke ke ke ok ke

/Increment counter
if (i <
(R_PROXY_SIDE_BUFFER_SIZE-1))

-244 -

} //for - skip cells

printf("STATUS(proxyside_recv[%d]):
Skipped %d cells w/ i=%d now\n\n",thr_ID,Cells_To_Skip,i);

} /lif - seq.# I= next expected seq.#

}y if
else {
printf("FATAL ERROR(prx_side_recv_Thread): n<=0 while recv.\n");
printf("(Non-fatal if end of client-server
communication)\n\n");
close(newsockfd[thr_ID-Connection_Number]);
exit(1);

/*

* Copy data from temp. buffer (buf) into
proxy_side_recvBuffer & set size and flag

*/

while ((proxy_side_recvBuffer[i][thr_ID-
Connection_Number].EntryFull!=0) || (proxy_side_recvBuffer]i][thr_ID-
Connection_Number].Skip!=‘O))R

printf("CHECK(prx_recv[%d]): #2 waiting for

proxy_side_recvBuffer!=0\n\n",thr_ID);

- 245 -

thr_yield();
} //while

mutex_lock(&Control_Skip_Lock[i][thr_ID-
Connection_Number});

if (proxy_side_recvBuffer[i][thr_ID-
Connection_Number].Control_Skip == 0) {

memmove(proxy_side_recvBuffer[i][thr_ID-Connection_Number].Data, buf, n);
proxy_side_recvBuffer{i][thr_ID-
Connection_Number].DataSize = n;
proxy_side_recvBuffer{i][thr_ID-
Connection_Number].EntryFull = 1;

/ISince data just written into proxy-side
recv. buffer increment RecvBufSizeCounter counter
mutex_lock(&RecvBufSizeCounter_Lock);
RecvBufSizeCounter++; //increment to offset
default decrement below
mutex_unlock(&RecvBufSizeCounter_Lock);

} //if
else if (proxy_side_recvBuffer][i][thr_ID-
Connection_Number].Control_Skip==1) { //Control_Skip is set
proxy_side_recvBuffer]i][thr_ID-
Connection_Number].Control_Skip = 0;
printf("STATUS/CHECK(proxy_recv):
Control said to skip cell(refers to BELOW) \n");
} /lelse if - Control_Skip is set
else {
printf("ERROR(proxy_side_recv):
Control_Skip != 0,1\n\n");
exit(1);
} l/else - error case

mutex_unlock(&Control_Skip_Lock]i][thr_ID-

- 246 -

Connection_Number});

//Increment counter
if (i < (R_LPROXY_SIDE_BUFFER_SIZE-1))
i++;

else
i=0;

} //while - 1
} //proxyside_recv_ThreadFunc

/*
ek e ke Fe e I T e e e e ke o R e ke ke e ke v ok ok ok e vk e e ke e die ke e e e e vk e ke Sk e S sk ok e ke s e e ok ok A ok T ke v ok 9k S T e e o ok e o e e ok e ke

A kR 22 2 T T */

void *serverside_send_ThreadFunc(void *thr_ID_PTR) {

/*

* Get thread ID

*/

int thr_ID = *((int *) thr_ID_PTR);

int n;
int i; //counter var
unsigned char buf[SOCK_BUFFER_SIZE];

i=-1;
while (1) {

/*

* Get data from csproxy_to_server_ProxyBuffer;
*/

-247-

//Increment counter
if (i < (CS_TO_S_PROXYBUFFER_SIZE-1))
i++;

else
i=0;

while (csproxy_to_server_ProxyBuffer[i].EntryFull 1= 1) {
thr_yield();
}
memmove(buf, csproxy_to_server_ProxyBuffer[i].Data,
csproxy_to_server_ProxyBuffer[i]. DataSize);
n = csproxy_to_server_ProxyBuffer[i]. DataSize;
csproxy_to_server_ProxyBuffer[i].EntryFull = 0;

/=
* Send data to server
*/
if (n>0) {
if (send(server_sock, buf, n, 0) < 0) {
printf("ERROR(p_ss_proxy/server_send_thread): While
sending data to server <0 \n\n");
exit(1);
}
}

} //while
} //serverside_send_ThreadFunc

/*
e e e e e gk e e Sk kS e T e e ok ke v sk ke I ke e ke v ke e 9k T b ke e g ok e ke v e ke ok e 9k R ok e e ok 5k ok 2 v e v e e ok e o e e ok ok ok sk o ke ke ok e ok e g ok v ke

E b b e R R S */

void *serverside_recv_ThreadFunc(void *thr_ID_PTR) {

- 248 -

/*

* Get thread ID

*/

int thr_ID = *((int *) thr_ID_PTR);

int n;

int i,j; //counter vars

unsigned char buf[SERV_RECV_SOCK_BUFFER_SIZE];

time_t serv_sock_close_time; //timestamp use in implementing delay
vbefore terminating child process

int recv_counter;
int recv_data;

i=-1;
while ((n = recv(server_sock, buf, sizeof(buf), 0)) > 0) {

/*
* Copy received data to server_to_csproxy_ProxyBuffer;
>/

//Increment counter

if (i < (S_TO_CS_PROXYBUFFER_SIZE-1))
i++;

else
i=0;

while (server_to_csproxy_ProxyBufferfi]. EntryFull = 0) {
printf("CHECK(serv_recv): waiting for
server_to_csproxy_ProxyBuffer I=0\n\n",thr_ID);
thr_yield();
>
memmove(server_to_csproxy_ProxyBuffer[i]l.Data, buf, n);
server_to_csproxy_ProxyBuffer[i].DataSize = n;
server_to_csproxy_ProxyBuffer[i]. EntryFull = 1;

- 249 -

} //while
if (n<=0) {
printf("FATAL ERROR: n<=0 while recv. from server (server-side
proxy) \n");
printf("(Not fatal if client-server communication over)\n\n");
/*
* Client has closed so won't tranmsit anything else. Implement a wait
using thr_yield() ro
* allow for any data remaining to be sent (& received by) to client
*/

serv_sock_close_time = time(NULL);

close(server_sock);

while (((time_t) difftime(time(NULL), serv_sock_close_time)) <=
EXIT_TIME_DELAY)

thr_yield();
exit(1);

}

} //serverside_recv_ThreadFunc

/*
F e e Fe ek Fe e ke e e v e e sk e e e e e ke e e v ok ok e R e sk o e ok e ok o ke ol e ke e 3k ok ok R e R ok 5k o ke ot ke ke ok ke e e ke ke ke ok ok e ok ok e e ke e ke ke ok

dhhkAhrkhhhhhhrhiiihhtt */

void *proxy_to_server_Control_ThreadFunc(void *thr_ID_PTR) {

/*

* Get thread ID

*/

int thr_ID = *((int *) thr_ID_PTR);

-250-

int ij,k; //counter vars

int RNR_flag = 0; //True if an RNR message has been sent to serv-side
proxy.

unsigned char cong_msg_buf[1024]; //byte buffer used to send RR &
RNR messages to serv-side proxy

int cong_Control_Check_Counter; //Used to control when cong.cntrl
checks occur

unsigned int Next_Expected_Seq_Number=0; //Between 1 and
MAX_SEQ_NUMB_VALUE (not 0 to MAX_SEQ_NUMB_VALUE)!!

unsigned int Block_First_Seq_Num; //Seq.# of first packet of a block

int Encoded_Packets_Number; //Number of encoded packets for
current block(i.e. what is known as "n" in header)

int Encoded_Packets_Read; //Counter var. Used in reading packets
from every block

int Source_Packets_Number; //Number of source packets for current
block(i.e. what is known as "k" in header)

int Source_Packets_Read; //Number of source/data packets already
read from current block

int Curr_Block_Packet_Size; //Size if packets(not including header) of
a given block

int RR_counter=0; //Bookeeping var that just keep track of RR
messages sent out

int RNR_counter=0; //Bookeeping var that just keep track of RNR
messages sent out

int size_temp1, size_temp2; //Utility ints

gf *dec_src[DEC_ARRAY_SIZE]; //Used as argument in decoding
function

of *dec_dst[DEC_ARRAY_SIZE]; //Used as argument in decoding
function

int dec_index[DEC_ARRAY_SIZE]; //Used as argument in decoding
function. Indexes of packets handed to dec. function

int ic; //Counter var

int EPR_Start=1;

int Block_First_Seq_Num_Set = 0; //Flag

int Number_of_Packets_Skipped;

int CONG_CNTRL_CHECK_PERIOD; //Period of congestion control check.
CAUTION: If this value is too large then

//might fall into deadlock (i.e.

not sending a RR at all after a RNR)!I!

int last_index_value; //Used in index calculation for decoding

-251 -

/*

* Set congestion control check period
4

CONG_CNTRL_CHECK_PERIOD = 0;

/*

* NOTE: proxy-side sending threads have thread IDs from (0 to
Connection_Number-1) and

* proxy-side receiving threads have thread IDs from
(Connection_Number to 2*Connection_Number-1)

* Therefore (thr_ID-Connection_Number) is the connection # that should
be used by the proxy-side

* receiving threads

*/

/*
* Allocate memory to dec_src and dec_dst
*/
for (ic=0; ic<DEC_ARRAY_SIZE; ic++) {
dec_srclic]= (gf *) malloc(DEC_ARR_BUF_SIZE*sizeof(gf));
dec_dst[ic]= (gf *) malloc(DEC_ARR_BUF_SIZE*sizeof(gf));
} //for

k = 0; //Init counter var
//Init counter var
//Init counter var

]

0;
0;

i
j

cong_Control_Check_Counter = CONG_CNTRL_CHECK_PERIOD; //Init

while (1) { //Handle current block of packets

-252-

while ((proxy_side_recvBuffer[i][jl.EntryFull != 1) &&
(proxy_side_recvBuffer]i][j].Skip 1= 1))
thr_yield();

if (proxy_side_recvBufferli][j]. Skip == 1) {

//Caclulate next expected sequence number. Inited to 0. Starts
from 1 (1->MAX_SEQ_NUMB_VALUE)
if (Next_Expected_Seq_Number < MAX_SEQ_NUMB_VALUE)
Next_Expected_Seq_Number++;
else
Next_Expected_Seq_Number = 1;

//Reset Skip bit
proxy_side_recvBuffer]i][j].Skip = 0;

/*
* Get sequence # of first packet of block (if not done already)
*/
if (Block_First_Seq_Num_Set != 1) {
Block_First_Seq_Num = Next_Expected_Seq_Number;
Block_First_Seq_Num_Set = 1;
} /if

//Skip current cell. Have for loop below start after skipped
cells
EPR_Start = EPR_Start++;

/1 i,j incrementation

-253-

if (j<(Connection_Number-1))

j¥+;
else {
i=0;
if (i<(R_LPROXY_SIDE_BUFFER_SIZE-1))
i++;
else
i=0;
}

/1'i,j incrementation

//Proceed to next cell
continue;

} //if - must Skip current cell

/*
* Now that we got out of skipping first packet(s) check if we skipped
entire block
*/
Number_of_Packets_Skipped = EPR_Start - 1;
if (Number_of_Packets_Skipped >=
proxy_side_recvBufferli][j]. Data[6]) {
printf("ERROR/STATUS: Entire block skipped.
Terminating\n\n");
exit(1);
} //if - check if entire block skipped

/*
* Get sequence # of first packet of block (if not already done)
*/
if (Block_First_Seq_Num_Set = 1) {
Block_First_Seq_Num = proxy_side_recvBuffer[i][j]. Data[3];
} //if

-254 -

else
Block_First_Seq_Num_Set = 0;

/*

* NOTE: Header format: (0x00, k, n, seq.#,length(2-bytes), packet#
in block0x00)

*/

/*

* Get number of packets for current block i.e. "n"

*/

Encoded_Packets_Number = proxy_side_recvBuffer]i][j].Data[2];

/*

* Get number of source/data packets for this block i.e. "k"

*/

Source_Packets_Number = proxy_side_recvBuffer][i][j]. Data[1];

/*

* Get packet size(NOT including header) for current block

*/

Curr_Block_Packet_Size = proxy_side_recvBuffer]i][j]. DataSize -
HEADER_SIZE;

/*

* Reset vars

*/

Source_Packets_Read = 0;

/*
* Go through Encoded_Packets_Number entries of proxy-side receive

-255-

buffer i.e. one block of "n" packets

*/

for (Encoded_Packets_Read=1;
Encoded_Packets_Read<=Encoded_Packets_Number:; Encoded_Packets_Read++)

{

//Caclulate next expected sequence number. Inited to 0. Starts
from 1 (1->MAX_SEQ_NUMB_VALUE)
if (Next_Expected_Seq_Number < MAX_SEQ_NUMB_VALUE)
Next_Expected_Seq_Number++;
else
Next_Expected_Seq_Number = 1;

/fwhile check and if used to be here before Control_Skip

if (Source_Packets_Read < Source_Packets_Number) { //i.e. not
enough packets read yet for decoding

¥ % Kot Kk K
/

//Wait until entry full or recv. thread "says" to skip current cell
while ((proxy_side_recvBuffer[i][jl. EntryFull 1= 1) &&
(proxy_side_recvBuffer[i][j].Skip != 1))
thr_yield();

if (proxy_side_recvBuffer[i][j].EntryFull == 1) {

//ICheck if seq.number valid (stored in 4th byte of
header)
if (proxy_side_recvBuffer[il[j].Data[3] I=
Next_Expected_Seq_Number) {
printf("ERROR(proxy_to_server_Control):
Sequence # is WRONG. %d expected but got %d
\n\n",Next_,Expected_Seq_Number,proxy_side_rechuffer[i][j].Data[3]);

- 256 -

exit(1);
} //if - seq.number is NOT next expected seq.number

/IError check: check if k and n of current packet is
thart of current block

if (proxy_side_recvBuffer]il[j].Data[1] =
Source_Packets_Number) {

printf("ERROR(er_ss/proxy_to_server_Control):
Source_Packets_Number(k) is not that expected \n\n");
exit(1);
} /if
if (proxy_side_recvBuffer[i][j].Data[2] !=
Encoded_Packets_Number) {

printf"ERROR((er_ss/proxy_to_server_Control):
Encoded_Packets_Number(n) is not that expected \n\n");
exit(1);
Yy /if

//Error check: compare size with
Curr_Block_Packet_Size
if ((proxy_side_recvBuffer]i][j]. DataSize-HEADER_SIZE)
I= Curr_Block_Packet_Size) {
printf("ERROR(er_ss/proxy_to_server_Control):
Size of read packet<>Curr_Block_Packet_Size\n\n");
exit(1);
} //if - error check for size

} //if - if data in cell perfrom some checks

// * ek kg e kK

/IRead cell data if cell full, else if Skip specified just reset Skip
flag

-257-

if (proxy_side_recvBufferl[i][j].EntryFull == 1) {

memmove(dec_src[Source_Packets_Read],

proxy_side_recvBufferfi]f[j]. Data+HEADER_SIZE,
proxy_side_recvBuffer|i][j]. DataSize-HEADER_SIZE);

if (proxy_side_recvBuffer]i][j].Data[3] >=

Block_First_Seq_Num) {

dec_index[Source_Packets_Read] =

proxy_side_recvBuffer][i][j].Data[3] - Block_First_Seq_Num;

last_index_value =

dec_index[Source_Packets_Read];

}
else if (proxy_side_recvBuffer[i][j].Data[3] <

Block_First_Seq_Num)

dec_index[Source_Packets_Read] =

last_index_value + proxy_side_recvBuffer]i][j]. Data[3];

current block

entry full nor

proxy_side_recvBuffer[i][jl.EntryFull = 0;

/lIncrement counter of # of packets read from

Source_Packets_Read++;

Y} //if

else if (proxy_side_recvBuffer]i][j].Skip == 1) {
proxy_side_recvBuffer]i}[j].Skip = 0;

} /else if

else {
printf("ERROR(er_cs/proxy_to_server_Control): Neither

Skip set\n\n");

exit(1);

} /else

} /1if - # of packets read until now < Source_Packets_Number i.e.

not enough packets yet

-258 -

else { //Source_Packets_Read packets have been read i.e. enough
data packets obtained for decoding

/ Fe ok ek ek Kk K

mutex_lock(&Control_Skip_Lock]i][j]);

/{Error check
if ((proxy_side_recvBuffer[i][j].EntryFull == 1) &&
(proxy_side_recvBufferli][j]. Skip == 1)) {
printf("ERROR(recv_Control): EntryFull && Skip
==1\n\n");
exit(1);
3

if (proxy_side_recvBuffer[i][j].EntryFull == 1) {
proxy_side_recvBuffer]i][j].EntryFull = 0;

Y /iif

else if (proxy_side_recvBufferl[i][j].Skip == 1) {
proxy_side_recvBuffer[i][j].Skip = 0;

} /else if

else {
proxy_side_recvBufferfi][j]. Control_Skip = 1;
mutex_lock(&RecvBufSizeCounter_Lock);

RecvBufSizeCounter++; //Increment to offset
decrement below

mutex_unlock(&RecvBufSizeCounter_Lock);

} llelse

mutex_unlock(&Control_Skip_Lock[il[j]);

/ Bk 2 o

} /lelse - Source_Packets_Read packets have been read i.e. enough
data packets obtained for decoding

/1 i,j incrementation
if (j(<(Connection_Number-1))

-259-

else {
i=0;
if (i<(R_PROXY_SIDE_BUFFER_SIZE-1))
i++;
else
i=0;
b

/! 1,j incrementation

R —— CONGESTION CONTROL

/*

* Congestion control check perfromed every
CONG_CNTRL_CHECK_PERIOD+1 rounds. Is VAR(not constant)!!l

*/

/IRegardless of if will perform congestion control check, packet
reception/reading must be

// logged i.e. RecvBufSizeCounter decremented

mutex_lock(&RecvBufSizeCounter_Lock);

RecvBufSizeCounter--;

RecvBufSizeCounter_copy = RecvBufSizeCounter;

mutex_unlock(&RecvBufSizeCounter_L.ock);

if (cong_Control_Check_Counter == 0) {

//IReset cong_Control_Check_Counter
cong_Control_Check_Counter = CONG_CNTRL_CHECK_PERIOD;

if (RecvBufSizeCounter_copy<0) {
printf("ERROR: RecvBufSizeCounter < 0\n\n");
exit(1);

- 260 -

if (RNR_flag == 0) { //Send RNR message IF congested

if ((RecvBufSizeCounter_copy/PROXY_RECV_BUF_CAPACITY)
>= RNR_PROXY_RECV_BUF_SIZE_THRESH) {
RNR_flag = 1; //Set flag

//Send ReceiveNotReady-RNR message("RNR" NULL
terminated string) to server-side proxy
strepy(cong_msg_buf, "RNR");
if (send(tcp_sock, cong_msg_buf,
strlen(cong_msg_buf)+1, 0) <0) {
printf("ERROR: send()<0 for RNR \n\n");
close(tcp_sock);
exit(1);
}

RNR_counter++; //Bookeeping var
printf("STATUS: %d RNR messages sent out until
now\n\n",RNR_counter);

Y /it
} //if - RNR_flag ==
else if (RNR_flag == 1) { //RNR_flag == 1 & thus send RR message
if not congested anymore
if ((RecvBufSizeCounter_copy/PROXY_RECV_BUF_CAPACITY)
< RR_PROXY_RECV_BUF_SIZE_THRESH) {

RNR_flag = 0; //Set flag

//Send ReceiveReady-RR message("RR" NULL terminated
string) to server-side proxy
strepy(cong_msg_buf, "RR");
if (send(tcp_sock, cong_msg_buf,
strlen(cong_msg_buf)+1, 0) <0) {
printf("ERROR: send()<0 for RR \n\n");
close(tcp_sock);
exit(1);

- 261 -

RR_counter++; //Bookeeping var
printf("STATUS: %d RR messages sent out until
now\n\n",RR_counter);

y //if

} /lelseif - RNR_flag ==
else //error case
printf("ERROR: RNR_flag neither 0 nor 1 \n\n");

} //if - cong_Control_Check_Counter ==
else { //else - cong_Control_Check_Counter > 0
cong_Control_Check_Counter--;
} //else - cong_Control_Check_Counter > 0

— CONGESTION CONTROL

} /ffor - Go through Encoded_Packets_Number entries of proxy-side
receive buffer

/*
* Having read entire current block do error check if enough packets read
needed for decoding
*/
if (Source_Packets_Read != Source_Packets_Number) {
printf("ERROR(er_cs/proxy_to_server_Control): Not enough packets
for decoding(or too many)\n\n");
exit(1);
¥} /7if

/*

* Having read current block and having sufficient # of packets for
decoding, proceed w/ decoding

* and writing to csproxy_to_server_ProxyBuffer

*/

- 262 -

//Decode - decode_fec(gf *srcf], gf *dst[], int index[], int k, int sz);
decode_fec(dec_src, dec_dst, dec_index, Source_Packets_Number,
Curr_Block_Packet_Size);

//Write decoded packets to csproxy_to_server_ProxyBuffer
for (ic=0; ic<Source_Packets_Number; ic++) {

while (csproxy_to_server_ProxyBuffer[k].EntryFull I= 0)
thr_yield();

memmove(csproxy_to_server_ProxyBuffer[k].Data, dec_dst][ic],
Curr_Block_Packet_Size);

csproxy_to_server_ProxyBuffer[k].DataSize =
Curr_Block_Packet_Size;

csproxy_to_server_ProxyBuffer[k].EntryFull = 1;

if (k < (CS_TO_S_PROXYBUFFER_SIZE-1))
K++;
else
k=0;

} //for - write decoded packets into csproxy_to_server_ProxyBuffer

//Reset
EPR_Start = 1;

} /fwhile (1) - //Handle current block of packets

} /lproxy_to_server_Control_ThreadFunc

/*
R o L T L X R R R

Bk b ok ok ok bl S */

-263 -

void *server_to_proxy_Control_ThreadFunc(void *thr_ID_PTR) {

/*

* Get thread ID

*/

int thr_ID = *((int *) thr_ID_PTR);

int i,j,k; //counter vars

int K_actual=0; //# of entries actually read(& to be encoded) from
client_to_ssproxy_ProxyBuffer

int m, thryield_counter, p; //Counter vars

unsigned char *cumul_buf; //Cumulative buffer into which packets read
from client_to_ssproxy_ProxyBuffer are copied into

int cumul_buf_Size=0; //Current size(i.e. # entries full) of cumul_buf

int cumul_buf_Size_temp=0; //A temp var

unsigned char *cumul_buf_Start; //Used to store original starting
address of cumul_buf

int packet_Size=0; //Size of packets to be encoded and writeen to
send-out buffer

int packet_Number=0; //Number of packets to be encoded. Equal to
K_actual in general

int encode_index; //COunter used as index when calling encoding
function

gf *encoded_Packet; //Used in encoding function call. Contains encoded
packet

gf *source_data_Packets[K_DESIRED]; //Array of buffers containing
source(data) packets to be used in encoding

int Num_Encoded_Packets=0; //Total number of packets to be
produced from encoding

FILE *enc_debug_fd; //File descriptor of a file used for debug output
ENC_DEBUG_FILENAME

unsigned char
header_added_Packet{SOCK_BUFFER_SIZE+HEADER_SIZE]; //Packet copied into
send buffer. Includes header plus the encoded packet

unsigned int Sequence_Number=1; //Sequence number used in header.
Inited to 111

unsigned char *Start_Adrr_of_Remaining_Bytes;

struct timeval *start_time;

-264 -

struct timeval *curr_time;
long start_time_in_msec, curr_time_in_msec;

struct sockaddr_in
csp_name[MAX_CONN_NUMB_PER_LOGICAL_CONN]; //Client-side proxy address
int send_socket_index = -1;

/*

* NOTE: sending thread will place 0x00 bytes on left & right of the
header. Thus the first 0x00 byte

* will be followed by k(# of source/data packets) which is <>0x00 and
<>0xFF so header is uniquely

* identified at receiver

*/

/!

% % % e Fe ek e e e e e e e ke ok ke e e ok ke e e e e e ok SR O e vk ke ok e ke ok e ke o e ok e ok e ke e ke ok ke e R ok e e e Ok o e e ok e ok e e e vk ok e e ke ke e ok

Bk ok ke e

/*

* Allocate memory to time vars

>/

start_time = (struct timeval *) malloc(sizeof(struct timeval));
curr_time = (struct timeval *) malloc(sizeof(struct timeval));

/*

* Setup addresses on client-side proxy with which this thread
communicates (multiple of them 1)

*/

for (i=0; i<Connection_Number; i++) {

memset(&csp_nameli], 0, sizeof(struct sockaddr_in));

csp_namelil.sin_family = AF_INET;

csp_nameli]l.sin_port = htons(CSP_UDP_BASE_PORTNUMBER + i);

memcpy(&csp_nameli].sin_addr, chp->h_addr_list[0], chp-
>h_length); //chp has been set above in child

} //for

- 265 -

/*
* Open encoding debug file descriptor
*/
#ifdef ENC_DEBUG_ON
enc_debug_fd = fopen(ENC_DEBUG_FILENAME, "w");
#endif
/*
* Allocate memory to encoded_Packet and source_data_Packets]]
*/
encoded_Packet = (gf *) malloc(ENC_PACKET_BUF_SIZE*sizeof(gf));

for (m=0; m<K_DESIRED; m++) {
source_data_Packets[m]= (gf *)
malloc(ENC_SOURCE_BUF_BUFFER_SIZE*sizeof(gf));
} //for

/*

* Allocate memory to cumul_buf

*/

cumul_buf = (unsigned char *)
malloc((K_DESIRED+1)*SOCK_BUFFER_SIZE*sizeof(unsigned char));

/*

* Store starting address of cumul_buf
*/

cumul_buf_Start = cumul_buf;

/*

* NOTE: proxy-side sending threads have thread IDs from (0 to
Connection_Number-1) and

* proxy-side receiving threads have thread IDs from
(Connection_Number to 2*Connection_Number-1)

* Therefore (thr_ID-Connection_Number) is the connection # that should
be used by the proxy-side

- 266 -

* receiving threads
*/

k = 0; //Init server_to_csproxy_ProxyBuffer counter

i=0; //nit
j=0; //nit
while (1) {

K_actual = 0; //Reset

/*

* Reset cumul_buf_Size and cumul_buf address
cumul_buf_Size = 0;

cumul_buf = cumul_buf_Start;

/*
* Try to get/read K_DESIRED entries from
server_to_csproxy_ProxyBuffer.

* K_actual is number of entries that were actually read.
*/

I

for (m=1; m<=K_DESIRED; m++) {

if (m==1) {

//Wait until entry/packet written into next cell to be read

while (server_to_csproxy_ProxyBuffer[k].EntryFull I= 1) {
thr_yield();

- 267 -

} //while
K_actual = 1;

} /if - m==
else { //else - m>1

for (thryield_counter=1; thryield_counter<=THR_YIELD_MAX;
thryield_counter++) {

if (server_to_csproxy_ProxyBuffer[k].EntryFull 1= 1) {
#ifdef ENC_DEBUG_ON
fprintf(enc_debug_fd, "Thread slept to get %d
th packet\n”, m);

#endif
thr_yield();
Y} //if
else
break;
} //for

if (server_to_csproxy_ProxyBuffer[k].EntryFull 1= 1)
break;

//tncrement # of packets/entries read from
server_to_csproxy_ProxyBuffer
K_actual = K_actual +1;

} /else - m>1

//Write packet into cumulative buffer & increment cumulative buffer
size(# bytes in c.buffer) etc.

memcpy(cumul_buf, server_to_csproxy_ProxyBuffer[k].Data,
server_to_csproxy_ProxyBuffer[k].DataSize);

cumul_buf=cumul_buf + server_to_csproxy_ProxyBuffer[k].DataSize;
//Move cumul_buf start so as to copy in next packet next round (if done)

- 268 -

cumul_buf_Size = cumul_buf_Size +
server_to_csproxy_ProxyBuffer[k].DataSize;
server_to_csproxy_ProxyBuffer[k].EntryFull = 0;

/lincrement server_to_csproxy_ProxyBuffer index/counter k (at END
of for loop)
if (k < (S_TO_CS_PROXYBUFFER_SIZE-1))
k++;

else
k =0;

} //for

1

/*

* Write K_actual/K_DESIRED to enc. debug file
*/

#ifdef ENC_DEBUG_ON

fprintf(enc_debug_fd, "K_actual/K_DESIRED = %d/%d \n", K_actual,
K_DESIRED);

#endif

/*

* Make an error check for K_actual
*/

if (K_actual > K_DESIRED) {

printf("ERROR(serv_to_proxy_Control_Thread): K_actual >
K_DESIRED\n\n");

exit(1);
}

/*
* Having read K_actual entries from server_to_csproxy_ProxyBuffer,
now encode these entries/packets

- 269 -

* & write them to proxy_side_sendBuffer
*/
V4

//Reset cumul_buf to its starting address
cumul_buf = cumul_buf_Start;

/ICopy cumul_buf_Size into a temp var to use
cumul_buf_Size_temp = cumul_buf_Size;

/ISet size of packets to be encoded and written to send-out buffer

(K_actual is # of packets)
if (cumul_buf_Size_temp > TEMP_CUMUL_BUF_SIZE_TRESH) {

while ((cumul_buf_Size_temp % K_actual) I=0)
cumul_buf_8ize_temp = cumul_buf_Size temp - 1;

#ifdef ENC_DEBUG_ON
fprintf(enc_debug_fd,"cumul_buf_Size=%d and
cumul_buf_Size_temp=%d\n",cumul_buf_Size,cumul_buf_Size_temp);
#endif

/[Error check. cumul_buf_Size_temp must have reduced in size no
more than (K_actual-1)
if ((cumul_buf_Size - cumul_buf_Size_temp) > (K_actual-1)) {
printf("ERROR(serv_to_proxy_Control_Thread): More than
(K_actual-1) bytes 'removed' from cumul_buf\n\n");
exit(1);
y /it

packet_Size = (cumul_buf_Size_temp/K_actual);
packet_Number = K_actual;

Y0

-270 -

else { /[cumul_buf_Size_temp<=TEMP_CUMUL_BUF_SIZE_TRESH so
encode/send out as one packet(for efficiency)

packet_Size = cumul_buf_Size_temp;

packet_Number = 1;

#ifdef ENC_DEBUG_ON

if (K_actual>1)
fprintf(enc_debug_fd, "Amalgamation occurred(%d bytes)

\n", cumul_buf_Size_temp);

#endif

} /lelse - cumul_buf_Size_temp<=TEMP_CUMUL_BUF_SIZE_TRESH so

encode/send out as one packet(for efficiency)

//Print blank line in enc. debub file
#ifdef ENC_DEBUG_ON

fprintf(enc_debug_fd,"\n");
#endif

/{Error check
if (packet_Size > SERV_RECV_SOCK_BUFFER_SIZE) {
printf("ERROR(serv_to_proxy_Control): packet_Size >
SERV_RECV_SOCK_BUFFER_SIZE \n\n");
exit(1);
} /it

//Copy source(data) packets into source_data_Packets[] array of
buffers

for (p=0; p<packet_Number; p++) {
source_data_Packets[p] = cumul_buf+(p*packet_Size);

}

//Record addres of byte after end of last packet read (needed below
for sending out remaining bytes)

Start_Adrr_of_Remaining_Bytes = cumul_buf+(p*packet_Size);

-271 -

/ISet # of packets to be produced from encoding
Num_Encoded_Packets = N_FACTOR*packet_Number;

/*

* Encode the packet_Number packets of size packet_Size and copy
them to proxy_side_sendBuffer[][]

*/

for (encode_index=0 ; encode_index<Num_Encoded_Packets;
encode_index++) {

//Get one encoded packet (out of Num_Encoded_Packets)
build_fec(source_data_Packets, packet_Number, packet_Size,
header_added_Packet+HEADER_SIZE, encode_index);

/*

* Copy encoded packet to proxy_side_sendBuffer

*/

/[Add header (k, n, Seq.#, length[2-bytes], packet# in block)

header_added_Packet[0] = (unsigned char) 0x00;

header_added_Packet[1] = (unsigned char)packet_Number; //Set k
i.e. # of data/source packets

header_added_Packet[2] = (unsigned char)Num_Encoded_Packets;
/ISet ni.e. # of enc.packets

header_added_Packet[3] = (unsigned char)Sequence_Number;
//Set sequence #. Keep it here!!!

header_added_Packet[5] = (unsigned
char)(packet_Size+HEADER_SIZE); //Set length (2nd byte [low])

header_added_Packet[4] = (unsigned
char)((packet_Size+HEADER_SIZE)>>8); //Set length (1st byte [high])

header_added_Packet[4] = (unsigned char)(((unsigned char)(0x80))
| header_added_Packet[4]); //Code so that <>0

if (header_added_Packet[5] == (unsigned char)0x00) {
header_added_Packet[5] = (unsigned char)(((unsigned
char)(0x80)) | header_added_Packet[5]);
header_added_Packet[4] = (unsigned char)(((unsigned
char)(0x40)) | header_added_Packet[4]);
} //if - code length fields so that <>0

-272-

wait if set

header_added_Packet[6] = encode_index+1;
header_added_Packet[7] = (unsigned char) 0x00;

//Increment sequence number after using it

if (Sequence_Number < MAX_SEQ_NUMB_VALUE)
Sequence_Number++;

else
Sequence_Number=1;

* Send data to server-side proxy

//Check congestion control flag HoldBack before sending data and

mutex_lock(&HoldBack_l ock);

while (HoldBack != 0) {
mutex_unlock(&HoldBack_L ock);
thr_yield();
mutex_lock(&HoldBack_Lock);

}
mutex_unlock(&HoldBack_Lock);

#ifdef USE_DELAY

if (gettimeofday(start_time, NULL) <0) {
printf("ERROR(send_Control): gettimeofday error\n\n");
exit(1);

}

start_time_in_msec = (start_time->tv_sec)*1000 + (start_time-

>tv_usec)/1000;

- 273 -

while (1) {
if (gettimeofday(curr_time, NULL) <0) {
printf("ERROR(send_Control): gettimeofday error\n\n");
exit(1);
}

curr_time_in_msec = (curr_time->tv_sec)*1000 + (curr_time-
>tv_usec)/1000;

if ((curr_time_in_msec - start_time_in_msec) >=

DELAY_IN_MSECQC)
break;

/1Since haven't reached timeout value yet have thread

sleeplyield
thr_yield();

} //while

I —mmmmm e

#endif

[]~mmmmmmmm

/lincrement send socket identifier/index (to change sending socket
used)

if (send_socket_index < (Connection_Number-1))
send_socket_index++;

else
send_socket_index = 0;

I printf("CHECK(sendControl)Sending via socket
%d\n\n",send_socket_index);

-274 -

/ITCP-if (send(newsockfd[send_socket_index], buf, n, 0) < 0) {
if (sendto(newsockfd[send_socket_index],
header_added_Packet, packet_Size+HEADER_SIZE, 0, (struct sockaddr *)
&csp_name[send_socket_index],sizeof(struct sockaddr_in)) < 0) {
printf("ERROR(send/Control): While sending data to
serv-side proxy <0 \n\n");
exit(1);
Y //if

//Update j & i values

if (j < (Connection_Number-1))
jE+;

else { //j wraps-around so update i also
j=0;

if (i < (S_PROXY_SIDE_BUFFER_SIZE-1))
[

else
i=0;

} /lfor - encode packets & copy them to proxy_side_sendBuffer]][]

/=
* If bytes left over send them out - NO PASTING else can fall into
deadlock !
*/
if (cumul_buf_Size_temp < cumul_buf_Size) {

// % e e ek ok e e

packet_Number = 1;
packet_Size = cumul_buf_Size - cumul_buf_Size_temp;

-275 -

/ISet # of packets to be produced from encoding
Num_Encoded_Packets = N_FACTOR*packet_Number;

//Copy source(data) packets into source_data_Packets[] array of
buffer
source_data_Packets[0] = Start_Adrr_of_Remaining_Bytes;

for (encode_index=0 ; encode_index<Num_Encoded_Packets;
encode_index++) {

//Get one encoded packet (out of Num_Encoded_Packets)
build_fec(source_data_Packets, packet_Number, packet_Size,
header_added_Packet+tHEADER_SIZE, encode_index);

/=
* Copy encoded packet to proxy_side_sendBuffer
*/
/IAdd header (k, n, Seq.#, length[2-bytes], packet# in block)
header_added_Packet[0] = (unsigned char) 0x00;
header_added_Packet[1] = (unsigned char)packet_Number; //Set k
i.e. # of data/source packets
header_added_Packet[2] = (unsigned char)Num_Encoded_Packets;
//Set n i.e. # of enc.packets
header_added_Packet[3] = (unsigned char)Sequence_Number;
//Set sequence #. Keep it herell!
header_added_Packet[5] = (unsigned
char)(packet_Size+HEADER_SIZE); //Set length (2nd byte [low])
header_added_Packet[4] = (unsigned
char)((packet_Size+HEADER_SIZE)>>8); //Set length (1st byte [high])
header_added_Packet[4] = (unsigned char)(((unsigned char)(0x80))
| header_added_Packet[4]); //Code so that <>0

if (header_added_Packet[5] == (unsigned char)Ox00) {
header_added_Packet[5] = (unsigned char)(((unsigned
char)(0x80)) | header_added_Packet[5]);
header_added_Packet[4] = (unsigned char)(((unsigned
char)(0x40)) | header_added_Packet[4]);
} //if - code length fields so that <>0

-276 -

wait if set

header_added_Packet[6] = encode_index+1;
header_added_Packet[7] = (unsigned char) 0x00;

//increment sequence number after using it

if (Sequence_Number < MAX_SEQ_NUMB_VALUE)
Sequence_Number++;

else
Sequence_Number=1;

* Send data to server-side proxy

/ICheck congestion control flag HoldBack before sending data and

mutex_lock(&HoldBack_Lock);

while (HoldBack != 0) {
mutex_unlock(&HoldBack_Lock);
thr_yield();
mutex_lock(&HoldBack_L.ock);

}
mutex_unlock(&HoldBack_L.ock);

#ifdef USE_DELAY

if (gettimeofday(start_time, NULL) <0) {
printf("ERROR(send_Control): gettimeofday error\n\n");
exit(1);

}

start_time_in_msec = (start_time->tv_sec)*1000 + (start_time-

>tv__usec)/1000;

-277 -

while (1) {
if (gettimeofday(curr_time, NULL) <0) {
printf("ERROR(send_Control): gettimeofday error\n\n");
exit(1);
}

curr_time_in_msec = (curr_time->tv_sec)*1000 + (curr_time-

>tv_usec)/1000;

if ((curr_time_in_msec - start_time_in_msec) >=

DELAY_IN_MSEC)

sleeplyield

used)

break;

//Since haven't reached timeout value yet have thread
thr_yield();

} //while

//Increment send socket identifier/index (to change sending socket

if (send_socket_index < (Connection_Number-1))
send_socket_index++;

else
send_socket_index = 0;

/ITCP-if (send(newsockfd[send_socket_index], buf, n, 0) < 0) {
if (sendto(newsockfd[send_socket_index],

header_added_Packet, packet_Size+HEADER_SIZE, 0, (struct sockaddr *)
&csp_namefsend_socket_index],sizeof(struct sockaddr_in)) < 0) {

-278 -

printf("ERROR(send/Control): While sending data to
serv-side proxy <0 \n\n");
exit(1);
Y //if

//Update j & i values

if (j < (Connection_Number-1))
j*+

else { //j wraps-around so update i also
j=0;

if (i < (S_PROXY_SIDE_BUFFER_SIZE-1))
i++:

H

else
i=0;

} //for - encode and write-out packets to send buffer

// d kA KKk hk

Y} //if
else if (cumul_buf_Size_temp > cumul_buf_Size) { //error case

printf("ERROR(server_to_proxy_Control): cumul_buf_Size_temp >
cumul_buf_Size\n\n");

exit(1);
} //else - error case

1/

} /iwhile(1)

-279 -

/!

KAEEA K AA AL AEXTAXTAAXTAATAAXAAAARARAAAAIT A A AT A A A A DA A DA IA A A A AA A AT A I AAddohdhddhhhhhdhii

e de e ek Kk ke ke e kekeok

} //server_to_proxy_Control_ThreadFunc

/*
e e g v e e g e v ke e e e e g ke e e ok e v de ke ok S ke e e e e e R ke e ke e ke ok o e vk e ok ok e ok o S Sk e e e O g R ok ke o o e T ok ke ke ke e e e ke e de e e ke e

FhAIAhkAhhhkhhhhhkhhhhiidx */

/*

* Thread (one instance) used to receive congestion control messages from client-
side proxy(RNR/RR)

*/

void *Cong_Msg_Recv_ThreadFunc(void *JunkPTR) {

int n,m;

unsigned char cong_msg_buf[20}; //Buffer used to receive congestion
control messages

unsigned char CongMessage[20]; //Congestion control message
eventually written into here

int Last_Message_was_RNR=2; //Flag. Init to a neutral value

while (1) {

/*

* Read-in congestion control message from client-side proxy

*/

strepy(CongMessage,"); //Init string

m=0;

while ((n = recv(tcp_sock, cong_msg_buf, sizeof(cong_msg_buf),

0)) >0) {
m=m-+n;

strncat(CongMessage, cong_msg_buf, n);
if (CongMessage[m-1] =="\0")

- 280 -

break; //if \0' in string then done so exit recv/while loop

1 /while
if (n<=0) {

printf("ERROR(Cong_Msg_Recv_Thread): n<=0 recv() \n\n");

close(tcp_sock);

exit(1);
}
/*
* Read cong. control message received and act appropriately
*/

if (strcemp(CongMessage, "RNR™) == 0) {
if (Last_Message_was_RNR == 1)
printf("ERROR/WARNING(Cong_Msg_Recv_Thread):
Multiple RNR messages received in a row\n\n");

Last_Message_was_RNR = 1; //Set flag

//Print out that "RNR" message received

#ifdef FLOW_CNTRL_DEBUG_PRINT

printf("STATUS(Cong_Msg_Recv_Thread): RNR message
received\n\n");

#endif

mutex_lock(&HoldBack_Lock);
HoldBack = 1;
mutex_unlock(&HoldBack_Lock);

}
else if (strcmp(CongMessage, "RR") == 0) {
if (Last_Message_was_RNR == 0)
printf("ERROR/WARNING(Cong_Msg_Recv_Thread):
Multiple RR messages received in a row\n\n");

Last_Message_was_RNR = 0; //Set flag

//Print out that "RR" message received
#ifdef FLOW_CNTRL_DEBUG_PRINT

-281 -

printf("STATUS(Cong_Msg_Recv_Thread): RR message
received\n\n");
#endif

mutex_lock(&HoldBack_Lock);
HoldBack = 0;
mutex_unlock(&HoldBack_Lock);
}
else { //[Error case
printf("ERROR(Cong_Msg_Recv_Thread): CongMessage neither
RNR nor RR \n\n");
close(tcp_sock);
exit(1);
} Jlelse

} /iwhile(1)

} //Cong_Msg_Recv_ThreadFunc

-282 -

