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Abstract

SubsSmchronous resonance is a phenomenon which occurs in a host

of porver system configurations, Often subs5mchronous oscillations initiate

torsional interactions between the masses of a multimass turbine-

generator. In many systems the mecha¡rical shaft oscillations must be

measured for cont¡ol purposes.

In this thesis, a new technique is developed to determine the

amplitude of t-hese oscillations. The technique is based on the Fourier

Transform of the rnachine's teminal voltage. A useful relatjon between the

voltage frequency spectruût and the mechanica_l oscillation amplitucles is

derived a¡d tested. Verification of the theory is ca¡ried out using EMTDC

simulation for a val-iety of network configurations,
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Chapter X

lntroduetion

I .l Motivation

Subs¡mchronous resonance (SSR) is a phenomenon which occurs in
a variety of power system schemes. Predominantly, SSR exists in systems

whlch either contaln long series compensated lines or employ FIVDC links.
The pssibility exists, however, for almost any system to display SSR effects

of some type, if the system is not appropriately designed. An offìcial

defÌnition for SSR was proposed by the IEEE SSR working group in lggO

[1]:

"SSR rs øn eLectrí.c power sgstem condíÍ.íon where the electríc network
exchanges energA wifh a h¡bíne generotor at one or more oJ th.e nah,t¡al

JreELerrcies oJ tlæ combhed sgstem betntu tlrc sgnctvortous Jrequeræg oJ tttÊ

systerru "

This type of resonance may appea-r in a system for a number of
reasons, including selÊexcitation, torsional interactions and DC converter
control interactions.

I .2 Backgfround

Until the int¡oduction of FIVDC trânsmission systems, SSR was
primarily due to a¡ abunda¡rce of series compensation in long EFIV AC



transmission lines, Already in the Ig30's, series capacitors were descrlbed

to be one of the most effìcient ways of increasing the transmission capacity
for long lines. Unfortunately, experlmentation with series capacitors proved

much less ideal than expected, and many papers were written on the
stability problems associated with the use of these capacitors. Generally,

the stability problems were attributed to self-excitation [2] and ûre negative

damping [3] introduced by nea-rby generating unÍts. A few of the instabilities
were attributed to other factors, such as ferroresonance [4].

In t 97O, however, a great deal of attention was suddenly focussed on

the effects of torsional interactions in the generator/turbine shaft. This was

most likely due to tlle actual shaft failure which occurred at the Mohave

Generating Station in southern California [5]. Since that time many papers

have been written on the predictìon and control of subsynchronous

torsional interactions.

ln 1977 torsional interac ons between a turbine-generator and an

FIVDC link were observed during tests at Square Butte in North Dakota [61.

Once again, ex¡rlanations and corrective proceedures quickly started to

appear in the llterature.

It soon became apparent tJlat the load cha¡acteristics of an FIVDC link
generally display negatjve damping at a varietSr of subsynchronous
frequencies. Under the appropriate conditions, the negative damping of an
HVDC link c¿ìn cause the enflre system to go unstable, with üre generator

shaft oscillations at one of its natural frequencies.

It seems very intuitive that the best way to control subsynchronous
torsional interactions (SSTI) between an F{VDC link and a turbine-generator
is to carefu-lly design the HVDC link a¡d,/or power plant in such a manner
that the torsional modes a¡e not excited in the ffrst place. In other words,



the torsional modes should be positìvely damped fn an optimally designed

system. (Such a design approach is discussed by R. J. piwko, et aI. [7]) For

awhole host of reasons, however, an optimal design is not always possible.

In such cases supplementary subsy'nchronous damping controllers (SSDC)

can be added to the FIVDC cont¡ols in order to malntaln stability.

Generally, SSDC's require an input which reflects the generator

speed deviation or the generator's instantaneous position [g], This
information is often measu¡ed directly from sensors located on the
generator shaft.

There are, however, two maJor problems associated with such an

approach. First, the generator sha-ft might not be direcUy accessible (due

to sha-ft elasticity, sensors must be mounted direc y at tÌìe generator), and
a critÍcal control inputvariable is lost. second, even if the shaft information
is available at the power plant, there is still the problem of forwarding these

data to the SSDC located at the FIVDC converter station which might be

several hundred kilometers away.

1.3 P¡oblem

The determinatjon of the generator speed deviation can often prove

difficult, especially at large distances from the generating station. This
speed deviation, however, also causes a distortion ofthe generator's internal
voltage ald output current. Since a u¡ique relation exists between the
speed deviation and t-I.e voltage (and current) distortion, development of an
appropriate analysis technique has the potential to eliminate the need for
direct speed measurement. The intent of this thesis is to develop such a¡r

ana-lysis technique and test its validity and accuracy using EMTDC

simu-lation for passive, as well as active, FIVDC load confìgurations.



Ghapter 2

The Electro-Mechanieal Machine

Model

2.1 Introduction

In order for the effects of subslmchronous torsional interactions to be

studied, a s¡mchronous machine model must be employed which accurately

represents the electro-mechanical interactions that occlrr in a

turbine-generator. The electrical properlies of the machine are naturally
modelled with the help of Pa¡k's Transform [g], while tlre mechanical system

is directly modelled by a set of differential equations.

2 .2 The D-Q Arts Machine Model

The fìeld and a¡mature windings of a three phase slmchronous

machine are all magnetically coupled, Due to the generator action of the
machine, its mathematical model consists of at least four mutually
dependant differential equations.

In order to solve this system of equations, R. H, park suggested a
transformation matrtx which could be used ln order to decouple the
equations. Park's Transform converts tlre three phase Â B, C, 60 hertz
quantities into d-q-o DC quantities. The transform and inverse t¡ansform
matricies are given below.

-4=



(2.1)

(2,2)
where á = the rotor position measured from tfre d-axis of the machine.

AII three-phase and d-q-axis qua¡tities a¡e related through this
tra¡rsformation. The values io, i¿ and j" are the phase currents, and j¿,

lo and Ís a¡e the tra¡rsformed d, q, and O-axis currents. ( Similar notaüon

is used for the voltages, u and the fluxes, tU.)

[i;]=*,1*l
(2.3)

Since Pa¡k's Transform and the rather lengthy application of his
t¡ansform are very well known, only a brief summar5¡ of the resulting
machine equations in the new d-q axis reference frame is given. A very

complete discussion of the transform can be found in a variety of books

tglttOltt ll. In the new reference frame, it can be shown that the fluxes l[
a¡ld currents i are now very simply related:

c fcos(d) cos(O -2ø/3) cos@ - aølsll
r(9) =f, | sin(9) sin(e-z?r'/s) str¡te-an/Sj I" L'/" 1/2 r/2 I

I cos(d) sin(d) I I
1t'r(d) = | cos(O -2tt/3) sn(O -2tr/3) I I

lcos@-aø/3) srr,(0-4it/3) I I

'rl 
ltrl=*'[ü,]l*l=*'

Va=La i¿+La i¡

Yn= Ln io

llto =lo ,o

V¡=t* t¿+t¡i¡

-5-

(2.4)

(2.5)

(2.6)

(2.7)



where -L¿ is the selÈinducta_nce of the d-axis winding

Lq is the self-inductarce of the q-axis winding

Lû is the zero-sequency inductance

L.¿ is the d-axis magnitizing (or mutual) inductance

Ln, is ttre q-a:ds magnitjzing (or mutual) inductance

Lf is the self-tnductance of the fìeld winding

ú i" the reflected fleld current seen from the stator side

and t4 is the reflected fìeld ftr¡x seen from the stator side

As can be seen the d-q-O flux equatÌons are all independent of one

another. It ca¡ also be seen that the fìeld is coupled only to the d axis.

Application of the Park Transform also yields the following set of

differential equations relating tJ e voltages to t}te flr:xes and currents:

r¿-í¿ Ra= aVn+ff

vn-in Ro=-aVa+ff

vo-io no=ff

,i-v+=ff
(2 .r1 )

It is very important to note all quantities in tJle d-q-O reference frame

a¡e constant in the steady state. This means that in the steady state all the

differentials are zelo. It should also be reattzed that ve = lo = ìUo = 0 under

all balanced load conditions. since all work in tlÍs thesis is based on t-l.e
assumption of a balanced load, the zero sequence equations wilt be

completely omitted in future discussions.

(2.8)

(2,e)

( 2 .10 )

-6-



2 .3 Calculation of the Steady State Voltage

When a s¡'nchronous machine is running in the steady state, a
constant (dc) fìeld voltage is required. This field voltage comes from üre
exciter which may be const¡ucted in a variety of ways. some possible

construction styles include dc machines, ac machines with some
rectlffcation, or completely electronic devices. In most studies of ssR,
however, t].e modelling of the excitation system is not required [12] . Also
since the different types of exciters have such very different properties, it is
hardly worth the inclusion of an excitation system unless the specific effects

of one particular exciter a¡e to be examined in great detall. Therefore, for
the purposes of this thesis it will suffìce to simply model the entire excitation
system by a constant fìeld voltage rvith the appropriate magnitude to yield
1.0 p.u. terminal voltage for tlre given load under study.

Use of tì is approach, however, requires Ûre calculation of the exact
excitation voltage in adva¡rce. This excitation voltage is determined using
the D-Q axis machine equaüons in the steady state.

The phasor diagram for a salient pole s5mchronous machine is given in
Figure 2 , 1 . The standa¡d convention for normalizing the field voltage is
to set the voltage base to be equal to tJle voltage required to supply l.O p.u.
terminal voltage on the machine under a no load condition (this normalized
fìeld quantity is referred to as vi ) using this convention, the termina-l
voltage of the machine is given by:

Vt = Vf -RJ,- jXaIa- jxqlc

(2.r2)
Ro, the armature resistance, is small and v¡ill be neglected.

X¿ = jaL¿ and is the d-axis reactance

Xq = i@Lq and is the q-ards reactance

where



jId(xd-xq)

00

reference

\
\

\. D-A"is

Figure 2 . I : Phasor Diagram of a Sallent pole S],'nchronous Machine

Manipulation of equation 2 ,12 by adding a¡rd subt¡acting the quanüty

i&ã Ytelds:

...' q_Axis

(2 .r3 )

=Id+h

Vi = V, + jXs(t a + I ò + it a(Xa - Xq)

From the phasor diagram, however, it is apparent the Io

therefore equation 2 .I3 can be simplifìed to:

Vi =Vt+ jXqI"+ j(X¿-XqYa

(2.r4)



Since the vector sum of V¡ and jXnIolies aìong the quadrature axis (as

can be seen in the phasor diagram) the angles a , p and y can be easily

determined.

a = L(Vt+ jXqlo)- L(V,)

(2.15)

þ = L(V)- L(t.)

(2.16)
y =a+p

(2 .t7 )

Finally this allows for tlle calculation of Id.

I¿ = Iosiny

(2 .r8 )

Hence the fìeld voltage is now uniquely defìned as a funcüon of the
load currents, terminal voltage and the machine parameters [g].

2.4 Tl¡e Multlmass Machine Model

A turbine-generator system generaJly consists ofseveral turbines a¡rd

one generator mounted on a single continuous shaft. In the steady state,

each unit moves at exactly the base speed of the machine without any
deviations.

Figure 2 .2 shows a typical lumped element spring-mass
turbine-generator model. For t]:e purposes of this discussion three masses

will be used, however, tl'e ex¡ransion of the theory to four or more masses

should be self-evident.

The linea¡ model shown in this fìgure accurately represents tl'e real
system as long as the shaft is not stressed beyond its elastic limit. certainly

-9-



for tlre purposes of this thesis it is reasonable to assume that the system will
be operating within its linear range.

J3 Jz J1

Figu¡e 2 .2 : Lumped Element Spring-Mass Turbine-Gene¡ator Model.

Such a lumped element model is definitely not unique to
turbine-generators and the equatìons describing Ûre system are readily
found in most books dealing with system modelling a¡rd cont¡ol tl3ltl4l.
For convenfence, tlough, these equations are stated without derivation
below,

T, = Jr#*O1u1+ Dp(a1-øù+ K12(|t-02)

(2.le)

fz= Jz#+ O2a2+ D21(ot2-to) + D¡(ttt2-a3) + K21@2-0) + K23(02-fu¡

(2.20)

mass # 1

generator

mass # 3

turbine 2

mass # 2

turbine 1

Kn= Kzt

r, = h# * O3a3 + D32(a3 - ø2) + fu2@3 - 92)

(2.2r)



where ?ì = the torque on mass i
J¿ = the inertia of mass i

Øi = the angular velocit¡r of mass i

9i = tfre a-ngula-r position of mass i

4 = the self-damping of mâss i

4l = the damplng between masses i and j
4l = the spring constant between masses i and j
4 =D¡,

4¡ =4,
and

(2.22)

Equation 2 .lg describes the motion of the generator. T1 is therefore

the electrical braking torque of tJre generator while ?2 and ?3 are the
mechanica-l accelerating torques of the two turbines.

In large turbine-generator units all mecha¡rica,l losses a¡e minimized
in order to obtaln optimal efficiency. This results in extremely small
self-damping coefficients. AIso, due to the nearly ideal spring behaviour of
the turbine-generator sha_ft, the damping between masses is also very
small. These two facts permit the multimass model equations to be greatly

simplified by assuming that tl¡e self damping a¡d the intermass damping
are both negligible, i.e.

4=0
4i=o
Qi=0.

The simplified equations are:

d0;
A; = -:-'dt



rr= h#*xtz(|t-gz)

(2 .2s)

r, = Jr# * Kn@z - 0 t) + Ky@2- fu)

(2.24)

r, = Jr#* Krz@z-02)

(2.25)
A slightly more accurate system representation could be obta_ined by

including all damping terms, assuming they a¡e all known (which is
generally not the case anyway). Howeve¡ it is importa¡t to realize that the
approximation is a very conseryative one, because there will always be

slightly more system damping tÌan predicted by this model.

2 .5 The theory of the Modal Model

The matrix solution of a multimass machine model can be carried out
in various ways. If, howeve¡ damping terms a-re neglected, tìren a
particularly effective "modal" approach can be used [151. (Some

approximate procedures for using a modal approach in a sytem with
damping have been developed li2l, but they generally int¡oduce an

unnecessary degree of complexity.) Fortunately, itis aJreadyknown that the

damping terms in t-I e turbine-generator model a¡e ext¡emely small and that
neglecting these terms will not int¡oduce any signifìcant errors.

In order to flnd the natura_l oscillatjng frequencies, the edernal
torques in the system a-re set to zero. The equations 2 ,28 througtr 2 .25
of the previous secüon can tlen be rewritten as:



o = Lff*r,r@t-02)

(2 ,26)

o = nff+ xzt@z-gt) + Kzz@z-0ù

(2 .27 )

o=nff+xzz@s-|2) ,

(2 .28)
where of course,

d9t d9t d0^t¿t=-îl az=T 'r=i

These six equaûons can now be condensed to three second order

differential equations (with no single derivatives of position at all).

o = ¡'#*x,2g1-Kpo2

(2.2e)

0 = Jz#'.-Kr101+ (K21+K23)02- K2r03

(2,30)

o=nþ+x2202-K3203 ,

or in matrix form 
( 2 '3I )

It 
:' l,l*låi] . l# *,îir," irlliil=,

(2.32)



In general, tllis matrix equation can be simply expressed as

')qtti] + Íne =odt

(2 .33 )

However, in this case it is much more useful to let [M2 = [J] and write

ttrlr{ + tKle=odr

(2.34)
Applying the change of variables U = ttvlg to equation 2 .S4 yields

(2 .35 )

or

&n
¿î * tn-'tn [M-'] = o

(2.36)
If matrix [C] is now chosen so that it diagonalizes ûre matrix

tNl-ttKltM-l,
i.e.

tc{tru-ltiltru'}to-' = ttt,
(2 .37 )

ttq# *tKlr4-ly=o



then a ffnal change of variables A = lclz will completely decouple tlle
system of second order differentìal equations. Thus equation 2 .86

becomes:

,q #.{rrvr-'rrrrrvr-'}r e z = o

(2 .38 )

(2.39)
#.ro'1rr-'rnrrur,}ro , = o

which (due to equaüon 2 ,37 ) ls idenücal to

n_!1+t1l z =0dr
(2 .4O)

Since this system is now decoupled, we can simply write

Ð

4+]"¡ z¡=0 ,dr
{2 ,4r I

which has the general solutions of

zi=Af+B for,l,¡ = ¡

zi = A¡sin(ø,¡t + ó¡) forl¡ > 0

where tn = fXi
(2.42)

Hence the eigenvalues 7¡ , í = 7, ,,, n are simply the eÍgenvalues of

tNJ-ttKltN-t as shown in equation 2 .BZ and the transformation matrix

between tfle z and 0 reference frames can be found from the two

substitutjons that were performed,

0 =ÍM-ty = [N]-l[c] z

(2.43)



2 .6 The Calculation of Normalized Mode Shapes

The fundamental advantage of using a modal approach is its ability
to determine fþs ¡6¡maliz6d mode shapes of a turbine-generator. When a

power system is subject to any sort of disturbance, the multimass
turbine-generâtor unit begins to oscillate at its resonant frequencies (given

by an¡ = nfil in ttre previous section). Due to the variety of inertìa and spring

constant values, however, each mass oscillates at each frequency with its
own amplitude. Although the amplitudes varJ¡ from mass to resonant
frequency there is a "mode shape" which gives the ratios of t]le oscillation
amplitudes between all masses for that one speclffc frequency. Since this
mode shape is indeed frequency dependent one mode shape exists for each

resonant frequency. The calcula on procedure required to determine the
mode shapes of the three mass turbine-generator system shown in Figure

2 .2 will now be presented. Since this system has 3 masses, B eigenvalues

will edst. The ffrst eigenvalue always turns out to be zero because of re

nature of the matrix equation. (This is also physically reasonable because

the entire mass assembly must rotate at s¡mchronous frequency and this

corresponds to z1 = oo¡ in equatjon 2 .45 ) Therefore 3 modes result, but
only the modes associated with the 2 non-zero eigenvalues represent

resonant oscillations.

The eigenvalues will therefore be:

h=0
A2

^2=CDn2
^2L3=C0n3

- 16-
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and the modes of oscillation will be:

zt= Aú+Qt

z2= A2sin(a n2t + þ2)

4 = A3 sin(a 6t + Q3)

where once again it cax be seen tlat the fìrst mode does

oscillate.

(2.45)
not actua-lly

The angular posltion of each mass can now be found by applying the
t¡ansform given in equation 2 .43 to the equations 2 .45 .

lâil=^'-1,:l
(2.46)

To simpü$r this equat-Íon, let [R] = UVI-IICI to give:

I f i ] 
= 

I ri i: ïill x:i.ir,!,is:tl
(2 .47]l

or, setting Cl = 0 as a chosen frame of reference and collecting terms:

f et I f ,,,4, rnAz ,,rÁrl f r l
l8:l= l;::i: ;1#:'Åti!l:il8;;tî Í;l I

(2.48)
In the above equation the quantity 01 gives the angular position of t-Ile

generator. All oscillating amplitudes c¿ì.n now be normalized wiür respect

to t].e generator oscillating amplitudes. since all three masses are rotating



at the same base speed, it can be shown that rn = rzr = nl

[:,ll;,tg ]
(2.49)

or simply,

0n = fRnl zn

(2 .5O)
The mode shapes associate with the modes of oscillation are given by

the columns in the mat¡ix [&l . The three mode shapes are given below
along with their corresponding resonant frequencies. Mode I is often
referred to as the rigid-body mode since it corresponds to all flrree masses

moving together. In a normal system they would move together at a speed

of o;o,

Table 2 .I : Normalized Mode shapes of a Three Mass Turbine-Generator

2 .7 Tbe Machlne Model Under Study

For the purposes of this thesis, one particular turbine-generator unit will
be employed. The unit to be used was somewhat arbitrarily selected to be
a 588 MVA machine produced by ABB. The primary motivation behind
choosing this unit v/as the ready availability of all necessa-ry

turbine-generator data.

,r'),uf
,tt/rrt 

Jfållli
I

rzz/r n
rn/¡'tz

mass
Mode 1

onr = O rad/s
Mode 2

<.r)nZ = {ÀZ rad/s
Mode 3

(r}r,s = !I¡ radls
generatot I I

turbine 1 rzz / rp vt /rn
tu¡bine 2 rzz I rn 43 / 113

I8-



Figure 2 .3 shows a reduced lumped element spring-mâss model of
the turbine-generator under study.

Kz¡ = 105,000 kN mf rad Krz= 178,000 kN mfrad

Jz= 14,200 ksm2 Jz=8,590 kgmz Jt = 10,500 kgm2

Ftgure 2 .3 : The Tu¡blne-Generator under Study.

Modal analysis of this system can easily be carried out using most
pre-packaged programs equipped to solve for eigenvalues and eigenvectors.

AppendixA gives the Mathcad 3.o routine required to solve for the resonant
frequencies a.d normalized mode shapes of Ûre multimass system shown
in Figure 2 .3 . The results of this analysis are summarized below.

The resonant frequencies of tJre system are:

an=0 rad/se, fnt=Q hz

@n2= 104.4 radf sec fnz= 16.61

@ß = 217.2 radf sec fn = 33.61

The mode shapes are given In'lable 2 ,2 ,

hz

hz

mass # I
generator



Table 2 .2 : Mode Shapes of the Trrrbine-Generator under Study

These specifìc mode shapes will later be required to determlne the
oscillation amplitudes on turbines I and 2 given a known oscillation of t] e

generator.

mass

Mode 1

fnt=Ohz
Mode 2

fa= 16.6I hz
Mode 3

fn3 = 33.61 hz

generator i 1

tu¡bine I - 0.68s2 1.553

turbine 2 - 0.0896 -i.4s8



ehapter 3

Determination of Shaft Oscillations

from Generator Terminal Quantities

3.1 Introduction

The modal analysis presented in Sectjons 2.b through 2.7 proves

extremely valuable in determining the oscillatìng amplitudes of all turbines
given tlìe generator's amplitudes of oscillation. These generator quantities
can be determined from the generator's terminal voltage and/or current
waveforms provided that an overly complex machine model is not employed.

3 .2 Approrlmations to the Electrical Machine Model

In order to facilitate the development of an analytic procedure which
is capable of determining generator shaft oscillations from terminal
quantities, the following assumptions and approximaüons a¡e made:

I. The machine is assumed to be a linear device; or at very least to have
a linea¡ small signal response.

2. It is assumed that the machine is accurately represented by the De
Axis model. (i.e. use of pa¡k's Transform itself requires certaln
approdmations to be made [9] and ûrese are simply accepted as a
consequence of using his t¡ansform.)

3. The effects of damper windings are ignored.

4. The a¡mature resistance of Ûre syrnchronous generator is considered
negligible and its effect is ignored. (This assumption is only required
under load conditions.)



5. It is assumed that the machine is basically operating in tìle steady
state and that any disturbances to the system only cause slight
perturbations to t]le steady state quantities.

6. The machine is always operatjng under balanced load conditions.

Certain further approximatjons v,¡ill be required throughout the

development of the analytic procedure and they will be discussed as ürey
a¡e made.

3 .3 The Þlectric Machine under No Load

Under a no load conditjon, the slmchronous generator machine

equations can be greatly simplifìed. Since under no load the phase currents
are all zero, the d-q axis currents a¡e also zero. Settlng U = O and b = O in
the flr:x equatjons of sectjon 2,2 (equation s 2 .4 to 2 .7 ) yields

Va = L.¿ i¡

%=o

V¡' =Lt i¡'
(3'3)

.Also, if steady state operaüon is assumed, all differentials in t}re
voltage equations of sectjon 2.2 are zero. (This is because the d-q axis
quantities are DC.) Thus equations 2 .8 , 2 ,9 and 2 .l I are simplifìed to:

(3.1)

(3.2)

(3.4)

(3,5)

v¿ = rÐV,

vs = -@Va

v¡ = R¡ i¡'
(3.6)

From equatìon 3 .6 it can be seen that the ffeld current is consta¡rt

in the steady state and given by t¡' = v¡' /R¡ . This results in the d-axis flux
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of equation 3 .1 being consta¡rt as well. Thus, for simplicity, equation S .1

is rewritten as follows:

V¿= L,¿ if' =V¿o .

(s.7)
Substitutìng the necessar5r values of flux into tÌle d and q axis voltage

equations yields

(3.8)

(3.e)
'With the application of Park's Transform, these new d and q axis

voltage equations can be used to determine the three phase terminal
voltage:

v¿=0

vq = -aVa

(3.r0)

(3 .11)

(3.r2)
while the B and C phase voltages are simply shifted by plus/minus

120 degrees.

In order to proceed further, an expression for d and ø, the

generator's positjon and speed, must be developed. Normally the
mechanical angular position of the generator sha-ft in a two pole

li;]*'['l]
This yields a phase Avoltage of

va = vqsin0

or vo = - zaVdosinfl 
,



s5mchronous machine is given by

0 = @ot

(3.13 )

where (l)o = the electrical base speed (equal to the

mechanical base speed for a two-pole machine).

If, however, tlìe generator is subject to a resonant oscillation (as

discussed in Chapter 2) with amplitude þ and frequency ø" then the

equat-ion for the generator's shaft position becomes

0=øot+þsinaxt

(3.14)
where the possibility of a phase shift in the resonant oscillation is ignored,

since it is of no consequence in tJle following analysis,

Given an expression for the shaft position, the shaft speed can be

easily determined from the relation:

d0(t) =-dt

Hence,
(3.15)

@ = @o+ p@xcos¡¿,xt

(3.16)
Now returning to the phase A voltage equation B .12 , the values of

0 and. ø given in equations 3 .I4 and 3 .16 can be substjtuted to yield:

v o = - (a o + Bø rcosar¡f) ìÍ¿o sin(a ot + B sintø rt)

(s .r7 )

For small values of p (which will later be seen to be always the case)
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the following approximation can be made:

sin(arof +Bsinørt) = sinøot+þ sinúDrt cosøot

(3 .18 )

Application of the trigonometric product identity on the last term of
the above equation yields:

B sin ø,t 
"or 

r,, = f; [ sn[(ttt, - a )t]+ sin[(ø, + ø,)r] ]
(3.le)

Thus making the substitutjons suggested in equations S.Ig and

3 .19 yield a new equation for ua.

vo=-(ao+ Bot,.".r,rl vr{ ,irrr,r+f;[rin{{, ,-ao)t)+ sinlfø,+ø,1)] 
}

(3 .20 )

Expansion of equation 3.20 yietds:

,, = - * *{, " rin, 
"t 

* )l"in((øo + (d¡)r) - sin ((a, - a,) t))
t

+ p ø, cos to rt sinr. 
", 

* S " 
o, a,t fsin((ø o + a r) r) - sin ((øo - ør)Ðl 

Ì
(3 .21 )

Once âgain the product terms in the above equation are eliminated
using trigonometric Ídentities.

pø,cosø"t sino) ot = þ{ ,tn<<r" *ø")r) + sin((øo -ø")l) }
(s.22)

þ"orr,tl"in((øo + ø,)r) - sin ((ao*a,)t)l - þ[rrn{{r" + 2at*)t) - sin((ao-2t),)t))

(3.23)

- 25-



,. = - v o "{r, rin ø,t + PV 
@. + to,) sin((a o + a,) tl - f; f, "

Replacing the product terms in equation B .Zl wiûr their
equivalences given in equations B .22 and 3 .23 and simpliffing yields:

-ø¡) sin((oo - ør)r)

+ þ sin11a 
" 

+ ?-,)t¡ - * rin(, 
" 
- ?ro,)t)] .

(s .24)

Since it has already been stated tlat B is small the above formula can

be approximated by settìng B2 = Q,

,, - -r*f ,,rinrot *f;@o* a*) sin((ao + a,)t) -Lrçtt"-a,¡sin1(ø, -ø,)r)][ 2 z'," "")
(3 .25 )

or if equation 3 .25 is normalized:

.ßß
v a 

^ 
= stn (D ot + ;;(øo + ror) si n ((ø o + a ) t) - fi-" 

(a o _ a,) sin((a o _ a,)t)

(3 .26 )

Inspection of the above equa on shows that the voltage waveform vo

has a component at the fundamental frequency øo , as well as two additional

components; one at ao+a, and one at øo-ø, (where, once again, ø, is tlre

frequency of the mecha¡rical oscillation superimposed on the sha-ft speed).

Finally' equation 3 .26 can be expressed graphically in terms of its Fourier
spectrum as shown in Figure 3 .I .
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Figure 3 .I : Expected Fourier spectrum of t¡e Terminal voltage of a Gene¡â.to¡ whose

Shaft ls subJect to â Mechanical Oscillation of Amplitude p and Frequenry ø,.

3 .4 the Electric Machine under a passive Load

When tì.e s)mchronous generator is driving a given load, tlre machine

equatjons become somewhat more complex tÌìan described in the previous

section. However, if the assumptions of sectjon 3.I a_re once again made,

analysis of the machine subject to an arbitrary passive load becomes

possible.

Since t}re machine is assumed to be stably operating in tJ.e steady

state, all d-q axis currents wiII be constant (DC) values. The field crüTent

will also have a constant (DC) value. Therefore, all t]..e machine fluxes will
also be constant; this is s¡rmbolized by a subscript "o".

Va=Lai¿+Lr¿i¡'=V¿o

(s .27 )



Vq=Lqio=Vqo

(3 .28 )

Vt' = Lt íÍ' + L,ø ía = Vþ

(3.2e)
The d and q ards voltages are now given by

v¿ = eVqo
(3 .30 )

vq= -oV¿o
(3.31)

Once again the phase A terminal voltage of the machine is found by
employing Park's Transform. It turns out to be

va= vdcose + vssina

= @Vqocos9 - @ grrV aosin 0

(3'32)
A similar analysis is no\Ã¡ caried out as presented in the previous

section. Solution for tle second term in this equation has already been

given in equation 3 .25 and application of all the same simplifications to
the ffrst term yields a very similar result.

,o * vn"{r""osøot +f;@o + a,)cos((ao+ a,)t) -Prça"-ø,)costfø, -ø,lO}

- vr, 
{ 
r, rin r, t + f, kt 

" 
+ ø *) srn((a 

" 
+ ø,)t) - L, (a o - ø,) sin((ø o r;r: 

L'



Normalization of this waveform, however, must be carried out in a
much different manner than in the last section. First all terms of simila¡
frequencies must be collected. This yields

v o = ø olV no "os 
a ot - V ¿o sin a ol

B
+ -V(ao + a,) {lVqo cos((øo + rù,)r) - lf¿o sin((ø 

" 
+ ø))J

- L, {, 
" 
- r,¡ {\[no cos{(øo - ø)r) - ll¿, sin ((ø o - a )Ð]

(3 '34 )

The sines and cosines can now be combtned using the phasor rela on

shown in equation 3 ,35 ; this yields equation B ,36 .

A cosat + B sína,t =,1 A2 + 82 sin(ør +/)
,A

e = tan-'Ewhere

,, =, 
" J Vh * W'* sin(arol + f 1)

þ,-
+ | fø. + a ) J vlo + Vlo sin((ø o + ot ¡)t + Q 2)

A
* | f, 

" - 
r,¡ | vl" * vr* sin((a o - ot,)t + þ 3)

where Q=ôt=Qz=þs=r"-'(#)
(3 .36 )

Normaliz¿fls¡ of equaüon 3 .36 with respeet to the fundamental can

nowbe carried out, Thisyields the ex¡rression for uo given in equation S.87
which corresponds to the normalized Fourier spectrum shown in Figure
3.2 .

vo = sin(aot + ó¡ **;fr"+ ø,) sin((ø, + ø .V + 6 + 
fi;@o -ú))sin((ú)o-a*)t + ø)

(3.s5)

(3 .37 )
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Figure 3 .2 : Expected Fourler spectrum of the Termlnal voltage of a Generato¡ r;¡hose

Shaft is subJect to a Mecha¡tcal Oscillaüon of Amplitude B and Frequency ø,.

Comparing Figures 3 . 1 and 3 .2 it carr be seen that the normalized
Fourier spectra of the generator's terminal voltage are completely
independent of the load condition. This permits the theory to be used even

in cases where no load information is available.

3 .5 Extension of the Theory for Multlple Resona¡ces

The extension of the theory to accomodate two or more mechanical
oscillating frequencies is quite trivial, If, for example, a tÌìree mass machine
model were to be analyzed, two resona¡t frequencies would be found. If the

amplitudes of these oscillations are B1 and þz and their frequencies are ø1

and a2 tflen the Fourier spectrum of t].e generator's terminal voltage will
be as shown in Figure 3 .3, where the generator shaft. displacement a¡rd
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speed are as given in equation 3 .38 .

0 = o¡ ot + þ t snao ¡ + B2sin ø2t

a = ao+ þ1ø1cosaÍ + ß/!o2cosø2t

(3.38)

(3.3e)
It should therefore be clear that if a spectrum analyzer were

connected to the terminals of a generator tJ.at all values, rD1 ând a;2 , as well

as B1 and B2 could be easily calculated arìd the instanta¡eous values of
generator shaft speed and displacement (minus a possible ofÈset) would

thus be known.

Q)o-4)z @o-(ùt (D" A¿+(Dr (Ð.*@2

frequency (rad/sec)

Ftgure 3 .3 : Expected Fourier Spectrum of the Termlnal Voltage of a Three Mass

Turbine-G enerator

Combining the information on the generator's shaft speed and
displacement with the mode shape theory of Chapter 2 (sections 2,5
through 2.7) yrelds the speed and displacement of all turbines. Therefore,

tr
(!)a
(¡) þ"(a. + a)



all mecha¡ical quantities of interest can be directly calculated from tle
normâlized Fourier spectrum of a slmchronous machine's terminal voltage.



ehapter 4

Verification of Theory by Simulation

4.1 Introduction

The discussion presented so far has been based solely on theory.

Also, in the theoretical development several approximations and

assumptions had to be made. Although no gross oversimplificafions to the
model were required, the exact accuracy of the approach presented may

seem somewhat questionable. verifìcation of tJle theory is therefore ca¡ried

out by EMTDC simulatlon. Before this is done, howeve¡ it is important to

realize some of the limitatlons inherent to the discrete time Fourier
spectrum that v¡ill be applied.

4 .2 Tl¡e Dlscrete Fourier Transform

As aJready stated, verification of the theory will be performed using

the EMTDC simu-lation package. Since digital simulation is used, all

subsequent analysis must be performed ln the discrete time domain, This

unfortr:nately means that all of the required Fourier spectra will have to be

produced using the discrete Fourier Transform instead of the more

desirable continuous Fourier Transform.

The common problem which arises when using the discrete Fourier

Transform is a-liasing. This occurs when the Nyquist sampling theorem is
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not adhered to. Aìiasing, howeve¡ is not a problem when working with

EMTDC, because the output time step can be adjusted to yield arry desired

output frequency bandwidth.

The problem which does arise when performing a discrete Fourier

Tra¡lsform on a¡ EMTDC output waveform stems from the sampled spectral

output. In order to best describe this limitation it is benefìcial to look at an

example. Figure 4 .l , on the next page, shows two clrrves, a 6O hz and a

33,7 }rertz waveform with amplitudes of I.O and O.25 respectìvely. The

result of adding these two waveforms togetler is shown in Figure 4 .2 .

(Figures 4.1 a¡d4,2 show only the fìrst O.0B seconds of the waveforms

in question for t}re sake of graphical ctarity.)

It is very important to minimize leakage noise [16] which results when

the Fourier Transform is calculated over a non-integer number of periods.

Since the 6O hz waveform has a much larger amplitude than the 33.7 hz

waveform, the leakage noise is best minimized by truncating the combÍned

signal at an integer number of 60 hz periods (i.e. at T1, T2, T3, etc.). Figure

4 .3 shows the discrete Fourier Transform of the curve in Figure 4 .2
taken over T3 seconds ( with a sampltng rate far exceeding the Nyquist rate).

The frequency a:ds must of course be scaled to represent hertz and

tJlis is shown by the secondary x-alds. It is important to nouce that the

separation between the bands in the spectrum is defìned by A/ , given by

L¡=r"T
(4'I)

where T = the interval of transformation in the time domain.



ô)

Þ.
E

1.25

1.00

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

-1.00

-1.25

o 60 hz waveform tr 33.7 hz wavefoEo

0.020 0.030 0.040 0,050 0.060

time (seconds)

Figure 4.1: A 60 HerE and 33.7 Hertz Waveform

0.030 0.040 0.050

time (se¡onds)

0.000 0.010 0.070

1.25

1.00

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

-1.00

-1.25

0.010

/\

l-,_
-il--t--

t--\-I
,,4r \ T\ T

" 
-/1 \

I

0.000

Figure 4.2: Sum of the Wavefo¡ms in Figure 4.1



c)

Ë. 0.s0

Ä 33.7 bz s?ecFum

- 
60 bz spectrum

frequeny (number)

20 40 60 80 100 120 140 160 180

fre4uency (herø)

Figure 4.3: The Discrele Fou¡ier Tra¡lsform ovø a Time Interyal of 0.05 Seconds

Â 33.7 hz spectrum

- 
60 bz spectrul[

10 20 30 40 50 60 70 80 90

frcqueny (number)

20 40 60 80 100 r20 140 160 180

frequency (hertz)

Figure 4,4: The D¡screte Fou¡ie¡ Transform ove¡ a Time In¡erval of 0,5 Se4onds

c)E
E
Ë. o.so

200



As can be seen, the 60 hz waveform shows up very clearly on the

spectrum with exactly the correct amplitude, while the Sg,T hz signal can

by no means be accurately measured or even identified. It is tlerefore quite

apparent that this limited spectrum is of little use as it stands, and a much
denser spectrum is required.

In order to obtain a denser spectrum ( i.e. one rvith the bands much
closer together) tle interval of analysis in t}le time domain must be greatly

increased. Figure 4 .4 on the previous page sho\¡/s a discrete t¡ansform
of the curve in Figure 4 .2 where a time interval of O.5 seconds is nowused.
(This interval once again contains arr integer number of cycles of the 60 hz

waveform.) Although the amplitude and the precise frequency of the SB.7

hz signal a¡e still not exactly known, a very good approximation to these

values can now be made.

Ideally, the tlme interval should be chosen in such a manner that it
contalns an integer number of periods of all frequencies present, but in
practice this becomes very difflcult when an entire host of sub- and

supers¡mchronous frequencies exist. Therefore, for the purpose of this
tfresis, a 4 second time interval will be used, in order to yield a fairly dense

discrete transform with an incremental frequency of {¡= 0.25 hz. Very

minor modifìcations to this time interval may be required to ensure that a
minimum amount of noise is int¡oduced by the fundamental which may

drift slightly from its 6O hz value.

Of course, tlte problems discussed in thLis section only manifest

themselve when the Discrete Fourier Transform is used. In practice, use

of a continuous spectrum would eliminate these problems. perhaps an even

more useful tool to use in a practical settjng, however, would be a phase

locked loop. Although their primary use in power systems is to determine

the zero crossing of the fundamental, they can be modified to yield



amplitude and phase information of known non-fundamental frequencies

in a voltage or current waveform.

4 .8 The Electro-Mechanical System to be Simulated

The multimass machine model to be simulated consists of two

turbines a¡d one generator, and tJle mechanical specifìcations for tl.Ís
system \À/ere given in Section 2,7. ln Chapter 2 it was also stated that the
excitation system need generally not be modelled, therefore a constant fìeld

voltage is used in the simulatjon. Finally, since the machine is operating
in t-l.e steady state and any disturbances a-re very minor, the governor

system is not required and a constant driving torque matched to the load

and field voltage can be employed.

The system to be simulated is therefore very simple as shown in
Figure 4 .5

turbine 2
__l

-l lurbino I
J\
t.''"")_ll

load

Figure 4 .5 : The System to be Strnulated.

Since tJ".e above system is ru_nning stably in t-l.e steady state, a small
amount of positive damping must exist. This positive damping will
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eventually eliminate t] e presence of all resona¡rt oscillations, (Otherwise

tl.e system would be unstable.) Therefore in order to study these resonant

oscillations, a small disturba¡ce must be introduced to initiate them.

The disturba¡ce to be used will be a sma-ll impulse superimposed on

the constant input torque supplied to the turbines. An impulse is chosen

because it is guaranteed to excite all resonances without introducing other
changes to the "steady state" system.

4 .4 Simulatlon of the No Load Synchronous Machlne

Simulatjon of the system in Figu-re 4 .5 under "no load" is actually
carried out using an extremely large resistive load (R = IOO pu, ),

This is required because no mechanical damping is included in the

model (as explained in Section 2.7) and if the machine were mn open

circuited, it would not be possÍble to achieve stable operation.

As discussed in Section 4.2, at least four seconds of simulation a¡e

required (after the disturbance which initiates the resonant oscillations) in
order to obtain a discrete Fourier spectrum with the desired resolution of
O,25 hertz.

Figure 4 .6 shows the normalized Fourier speetrum of the phase A
generator termlnal voltage at a üme directly following the application of a

small distu¡bance.

As can be seen the disturba¡rce has very slighily affected ttre base

shaÍt speed of the machine, Although this effect is not desired and would
not occur if tle machine were operating irì a normal system it has basically
no impact (good or bad) on any calculations regarding resonant oscillations.
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Flgure 4 .6 : The Fourler Spectrum of tìe Generator Terrnjnal Votiage _

The No Load Case.

From Figure 4 .6 the resona¡t frequencies can quickly be

determined and compared with the values expected by the eigenva_lue

analysis of Chapter 2. These are compared in Table 4 ,I . For aJl practical
puq)oses the theoretical and simulated resonant frequencies can be

considered identical.

Table 4 . 1 : Comparison of the Theoretical and Simulated Resona¡t

Flequencies.

Mode

Number
Resonant Frequency

from Theory
Resonant Frequency

from Simulation

Mode I t6.6t 16.60

Mode 2 33.61 33.65

Next, tìe side band amplitudes of Figure 4 .6 ca¡r be employed to
calculate the amplitudes of tJle resona¡rt oscillaüons at f¡¡ zrnd f¡2.
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Theoretically, either the upper or lower set of side bands can be used to fìnd
the oscillatjon amplitudes, but in practice, the upper bands should be used

because they are larger. Not only can the Iarger bands be measured wÍth
more accuracy, but more importantly, they are much less susceptible to

accuracy losses caused by background noise.

Since the magnitudes of tlle bands at fs + fr¡ and f6 + fn2 arc O,OI22S

and 0.0O1291 respectively, the generator shaft oscillation amplitudes are

found to be

h = 0.01916

þz= 0.00129t

(4.21
Therefore from equations 3 .88 and 3 ,Sg the generator sha_ft

posiilon and speed are given below (t}lere could be a phse shift for each

oscillatjon, but it cannot be determtned by the analysis presented.)

0.01223

0.001004

0sen = @ot * 0.01916 sin2rf,¡ + 0.001291 sin2nf,2t

ú) sen = ú) o * 1 .995 cos 2nfnf + 0.2729 cos Znfn2t

0 w = ø ot + 0.01373 sin2øf¿t + 0.0017 46 sin2nf,2t

atu bt = (Ð ot + 1.367 cos2ttf¡t + 0.3691cos?,ttfn2t

0,*az = aot + 0.001717 sin%tf,yt + 0.00M63 sin$n2t

o¡u,62 = a¿ * 0.7788 cos2øf¡t + 0.9437 cos2ttf,2t

(4.3)

(4,4)
Employing the mode shapes calculated for Ûris particular

turbine-generator yields tle speed arrd position of each of the turbines.

(4.5)

(4.6)

(4,7)

(4,8)
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Unfortunately, the instanta¡reous position anci speed of each mass

are not normaìIy available on EMTDC II7]. However, minor modifications

to the code allow output of at least the individua-l mass speeds. This is

sufficient to test the accuracy of the theory because mass speecl and

position a¡e not independant quantities.

Figure 4 .7 shows the simulated shaft speeds of each of the three

masses after the application of a disturbance at O.1 seconds. The Fourier

spectra of the generator speed and the two turbine speeds are given in

Figure 4 .8 . These spectra show the actua,l oscillatjng a-rnplitudes of each

mass at each of the two resonart frequencies. They also include the

theoreticaìly predictecl oscillating amplitudes and frequencies for the sake

of comparison.

The simulated a¡rd theoretjcaìly predicted results are compared in

tabular form as well. This is shown in Table 4 .2 below, where the

percentage errors between theory and simulation a¡e shown in Table 4 .3 .

TaLrle 4 .2 : Comparison of the Theoretical and Simulated Osciliation

Amplitudes - No l,oad.

mass

Oscillating Arnplitude at
16.6 hz

Oscillating Arnplitude at

33.6 hz

preclicted measured predicted measured

generato¡ 1.995 1.997 0.2'729 0.2'749

turbine I t.367 1.3'73 0.3691 0.3709

turbine 2 0.1788 0. 1863 0.9437 0.9510
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Table 4 ,3 : The Percentage Error in tlie Theoretical Oscillation

Amplitudes - No l,oad,

As is evident, the predicted amplitudes at 33.7 hz fall about 40/o shy

of the simulation results. The reason for this becomes apparent when

looking back at the voltage spectrum given in Figure 4 .6 . It can be seen

there that the band at (approximately) 94 hz is quite small arid it is not

surprising that the background noise introduces a certain degree of error.

The accuracy of the moda,i tleory presented in Chapter 2 can a-lso be

checked with simulation results, to insure that all approximalions

performed a¡e reasonable. The theoretjcal mode shapes, repeated froÍt
Chapter 2 are given in Table 4 .4 .

Tatrle 4 .4 : The Theoretjcal Mode Shapes of the Turbine - Generator.

UsinS the simulation results given in Figure 4 .B the magnitudes of

the true mode shapes of the turbine generator can be determined. These

a¡e shown in Table 4 .5 .

I,l1AS S

Percent Error in the Theoretical

Amplitude at 16.6 hz
Pelcent En or in the Theoletical

An-rplitude at 33.6 hz

seneratot - 0.1 Vo -0.7 Vr'

turbine 1 - 0.4 Vo * 0.5 Vo

turbine 2 - 4.0 qk - 0.8 la

mass

Mocle I

h= Ohz
Mode 2

fz= 16.6 hz
Mode 3

f¡ = 33.6 hz

generator I

turbine I - 0.68s2 1.353

turbine 2 - 0.0896 -3.45ri
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Table 4 .5 ; The Mode Shapes of tïe Turbine - Generator from Simulation

Comparison of the above two tables shows that the simulated a¡ld

theoretica,l mode shape are indeed almost the same. The percent error in
the theoretical mode shapes is shown below.

Table 4 .6 : The Percent Error in the Theoretical Mode Shapes.

mass

Error in the Theoreticai
Amplitude at 16.6 hz

Enor in the Theoretical
Amplitude ar33.6hz

generalor 0 7o by definition 0 7o by definition

turbine I -0.4 va 0.3 ?o

turbine 2 - 4.0 vo 0.0 vo

The theory clearly produces qulte accurate results for the no load

turbine-generator. The next logical step is therefore to see if the theory

holds equally well when the machine is subject to arbitrary load conditions.

4 .5 The Machine Under Load

Several load conditlons will be considered in this section. All the
cases that will be presented, however, wlll be witl. tle turbine-generator run
at or near its rated MVA. This approach is taken because it represents a

mass

Mode I
fl=0hz

Mode 2
1z= 16.6}rz

Mode 3
f¡ = 33.6 hz

generator I I

tübine I I 0.687'7 1.349

tu¡bine 2 1 0.0933 3.459
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worst case scena-rio and it corresponds to the maximum discrepancies

between theoretical and simulated results. Although this statement may

not seem selËevident, its validity was indeed checked through many

compadson tests.

Three load cases will be investigated. The fìrst simply comprises a
purely resistive load with R = I.O p.u. The second is chosen to be an RL load
(Z=1.O p.u. )with a power factor of 0.707. The ffnal case rvill consist of
an active, FIVDC load. In this case t-l-e validity of the theory has not
expressly been proven; however since the theory is valtd for a completely

arbitrary passive load, it should prove to be of some use in analyzing the
behaviour of turbine-generators connected to ÉIVDC link as well.

4 .6 .l The Resistive Load

The system to be modelled here is again shown in Figure 4 .b ,where
the load is now purely resistive with a magnitude of 1.O pu,

Once again the phase A terminal voltage of the generator is analyzed

and its normalized Fourier spectrum is shown in Figure 4 .9 , From this
spectrum and tJre modal theory t-Ile speeds of the tlrree masses are

calculated (again, the possiblity ofa phase shifts are ignored).

(Ð gen = ú) o t 1 .564 cos 2nfr1 + 0 .27 49 cos 2,ttfr2t

()) ¡u.61 = 0) ¿ t 7.072 cos 2øfn¡ + 0.37 78 cos ?-trf,,2t

(D ¡a¡62 = @ o-t 0.1402 cos2ttfnlt + 0.9507 cos?-ttfn2t

(4.e)

(4 .10 )

( 4 .11)
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Figure 4 .9 : The Fourier SpecFum of the Generator Termjnal Voltage _

The Reslstive Load Case.

Figure 4 .lO gives the actual spectra of the mass speeds. The
predicted oscillating amplitudes found from the theory are also shown on
tlrese plots. The exact oscillating amplitudes are given in Table 4 .Z and
the percent errors between the theoretical and simu-lated resr¡lts are given

in Table 4 .8 .

Table 4 .7 : Comparison of the Theoretical and Simulated Oscillating

Amplitudes - Resistive Load of l.O pu.

mass

Oscillating Amplitude ar

16.6 hz
Oscillati-ng Amplitude at

33.6h2

predicted measu¡ed predicted measu¡ed

generator t.564 1.619 0.2749 0.2793

tu¡bine I t.072 1.115 0.3718 0.3716

nubine 2 0.r402 0.1519 0.9507 0.9633
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Tabie 4 .B :The Percent Error in the Theoretical Oscillation Amplitudes -
Resistive Load of I.0 p.u.

mass

Er¡or in the Theoretical

Amplitude at 16.6 hz

Eno¡ in the Theoretical

Anrplitude at 33.6 hz

generator - 3.4 9o - 1.6 0k

turbine 1 - 3.9 Vo * 0.1 c/a

turbine 2 -7.'7 7o -l.3Vo

Although the predicted oscillation Ðnplitudes are not quite as accurate as

in tJ.e no load case of the previous sectjon, tl're errors are still quite

acceptable. This increased error is partiaìly due to t}le neglect of the

armature resistance which now plays a role, and also the damping

introduced by the resistjve load which causes some distortion of the Fourier

spectrum. (Once again the error is largest in the 33.6 hz oscillation due to

the small size of its corresponding band, at94hz, on the Fourier Spectrum.)

4 .6 .2 The RL Load

In order to demonstrate that the theory holds for an arbitlary RL load

many simulations shoulcl be n:n a¡d all results should be checked against

thee theory. Such a rigorous verificatìon of the theory was indeed

performed, however, for the sake of brevity only one sample RL load will be

considered. Also, introductjon of a capacitor into the circuit has no

substantial impact on the accuracy of the theory; however this can only be

proven by simulation if stable operation exists.

Figure 4 .l I shows the normalized Fourier Spectrum of the phase

A terminal voltage, From this spectmm the mass speeds are ca-lculated to

be as shown on the following page (phase information ignored).
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@ sen = (D o t L960 cos ?-ttfit + 0.3165 cos ?nf2t

( 4 .r2)
0) ¡¡a.61 = a 6 t L.343 cos Tnflt + 0.4282 cos?-ttf2t

(4.13 )

@ wøz = a o + 0,17 56 cos2ttfit + 1.095 cosT-ttf2t

( 4 .r4)
Figure 4 .12 graphically compares the theoretical and sfmulated

mass. The exact oscillatlng amplitudes are given in Table 4.9 and the
percent errors between the theoretical and slmulated results are given in
Table 4 .10 .

\- I
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Table 4 .9 : Comparison of the Theoretica,l and Simulated Oscillatjon

Amplitudes - RL Load of 1.O pu, O.7O7 pf ,

Table 4 .I0 : The Percentage Error in the Theoretjcal Oscillation

Amplitudes - RL Load of 1.0 pu, O.7O7 pf .

Three loads with very different characteristics have now been

analyzed: a no load case, a full load resistive case a¡d a highly inductive

full load case. Tables 4.3,4.8and 4.I0 show the percent error between

tle theory and simulation results for the three cases. Comparing these

three tables now shows that the load conditions really only have a marginal

influence on the accuracy of the theoretical ca-lculatjons. By extension, it
should be clear tìat the inclusion of documentation on other load scenarios

will int¡oduce no new insights into the a¡ea.

mass

Oscillating Arnplitude at

16.6 hz

Oscillating Arnplitude at

33.6 hz

predicted measured preclicted rreasu¡ed

genel ator 1.960 1.958 0.3165 0.3212

turbine I 1.343 1.340 0.4282 0.4371

turbine 2 0. 1756 0.17 47 1.095 1.107

lnas s

Error in the Theoretical
Amplitude at 16.6 hz

Error in the Theoretical

Amplitude at 33.6 hz

generator 0.1 0/c -1.5%
tu¡bine 1 0.2 q/c

- 2.0 lc

turbine 2 0.5 cr, - 1.1 c/o



4 .5 .3 The IÍVDC Load

The theory has now been validated for a variety of passive load

conditlons. It is conJecture that the same âna_lysis technique can be usefully

applied to other types of loads. A test of this conjecture will be performed

which consists of connecting the multimass machine model to an FWDC

load network. The FIVDC network to be used will be a modifìcation of the

CIGRE Benchma¡k model [18]. All power at the rectiffer end will be

supplied, through a t¡a¡rsformer, by the 588 MVA machine which has

already been analyzed. The power demands of tlle system a¡e modifìed so

that the machine is operatlng nea-r its full load rating and the compensation

on either side of the link is adjusted accordingly.

Tu rb in e-Ge n e rato r AC Power System

Damped
lrequency

Damped high
frequency filter Damped high

frequêncy filter

Flgure 4 .13 : The Multlmass Turbtne-Generator connected to the CIGRE Benchmark

Model

Although a completely static ffeld voltage is still employed on the

machine, all DC link controls a¡e left unmodified and fully enabled, The

basic system conflguratton is as shown in Figure 4.13 .
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Just as i_n the previous cases, the phase A generator voltage is

analyzed ând its norm¡rrzed Fourier spectrum is shown in Figure 4 . 14

below. Due to the Iarge size of t].e new network, simulation was only carried

out for 2 seconds a-fter the application of the distu¡ba¡ce. For this reason

the spectrum of Figure 4.14 has a frequency increment of $=g.5 hz

0.020

0.015

0.010

0 10 20 30 40 50 60 70 80 90 100 110 120

tequency (renz)
Flgure 4 . 14 : The Fou-rler Spectrum of the Generator Termtnal Voltage _

The HVDC LÆad Case

unlike the spectra of tl.e previous sections, a substanüar amor¡nt of
noise is now present in t]le subsynchronous domain. This is a consequence

of the normally operating TIVDC controls which are reacting to trre system

distr¡rbance that tiiüated the turbine-generator sha-ft oscillations [1g],
This noise has the effect of masking the lower subsynchronous ba¡rds and

therefore, only the upper bands of the spectrum can be used to determine
the amplitudes of the sha-ft oscillaüons.

ratlrer than O.25 hz as t_n the previous cases.
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Figure 4 ,15 graphica-lly shows the simulated and theoretical

turbine-generator shaft oscillation amplitudes for the FIVDC load case. The

exact amplitudes are also shown in Table 4 .I I , while the percent error in

tJle tlreoretical values is given in Table 4 ,I2 .

Table 4 .11 : Comparison of the Theoretica,l and Simulated Oscillation

Amplitudes - The FIVDC l,oad.

Table 4 .12 : The Percentage Error in the Theoretical Oscillation

Amplitudes - The FIVDC t¡ad.

As can be seen from the spectra of FÍgure 4 .I5 , a¡ld the percent

errors of Table 4 .12 , t}:e conjecture does, in fact, prove to hoid for the

mass

Oscillating Arnplitude at

16.6 hz

Oscillating Arnplitude at

33.6 hz

predicted measured preclicted measured

genelator 2.232 2.lts 0.2901 o.2973

turbine I 529 1.468 0.4505 0.4204

turbine 2 0.2000 0.1986 1.003 1.044

lnass

Er¡o¡ in the Theoretical

Arnplitude at 16.6 hz

Error in the Theoretical
Arnplitucle at33.6 hz

generator 5.5 Va - 2.4 o/a

turbine 1
,1 1 07, 7 .2 c/o

turbine 2 0.7 o/o - 3.9 s/c

- 57-



FIVDC load case. Although the theory produces somewhat less accurate

results than when a passive load is used, the errors which edst here are by

no means excessive.

This load case is significant because it demonstrates the validity of the

theory even when a turbine-generator is connected into a system which
contains active elements, run by complex control structures.



Chapter 5

Goncl usions and Recom mendations

5 .l Concluslons

A process based on the Fourier Tra¡sform of a machine's terminal
voltage was proposed, to measure the frequency and amplitude of
subslmchronous resonances in a multimass turbine-generator system. A
theoretical mode shape model was developed for a three mass system to

relate generator terminal measurements to the amplitude of shaft angle

oscillations. Although only a 3 mass model was investigated, extension of
the theory to 4 or more masses requires only a stralghtforward recalculation

of t-Ile mode shapes.

The theory was fìrst developed for an unloaded generator and Ûren

expanded to include arbitrary load condiüons. Rigorous testìng of the

theory was performed using EMTDC simulation, and the resr:Its for

selected passive load configurat_ions were presented, The applicability of the

theory to an active FIVDC load was also demonstrated, The accuracy of all

theoretical results proved to be very acceptable.

The information obtalned by this analysis technique has, of course,

many applicatlons in the a¡eas of system cont¡ol and shaft stress



monitoring. This process should prove to be a¡r economical a¡rd practical

alternative to the installation of shaft angle sensors which are used in many

applications today.

5.2 Recommendations

There is a great deal of room for further work in the a¡ea of

subs¡mchronous oscillation measurement. The analysis presented in this

thesis has related sha-ft. oscillation amplitudes to the Fourier spectrum of

the terminal voltage waveform, When implementing such a process, it
would, however, be benefìcial to perform the spectral analysis on t-l.e

machine's internal voltage rather than the terminal voltage. This would

have t}te effect of increasing the accuracy of the calculated oscillation

amplitudes.

Perhaps the most meaningful extension of this work would be to

replace the Fourier spectral analysis with phase locked loop technologi.

Since the oscillating frequencies of tlle turbine-generator a¡e known in

advarìce, phase locked loops could be tuned to lock on to and measure the

amplitude of tJ.e side ba¡ds in the voltage spectrum. Not only would this

be an ext¡emely practical extension, but it would also 5rield phase

information about the subs¡mchronous oscillations. This information

could be directly employed in the control networks of FWDC links.
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Appendix A

Mathcad 3.0 File

Calculation of Mode Shapes



GENERATOR

jl := 105@

lfi0
N'i=lo fp

IIo o

TURBINE 1

j2 r= 8590

TURBINE 2

j3 := 14200 k12 := 1050@000

k23 r= 178000000

-k12 0 I

kt2 +k23 -kl¿lll
I-k23 k23 )

0l

ål

lnz
x ,= I -trz

lo

B r= N-l'K.N-l

À ;= eigenvals( B )

I r.oæoø.roo

l=lo
I o.orr*r.ron

loo , o

D=10 1.09.10 0

I o o 4'6.rc4

cl ;= eicenvec[n,lr]

I -o.ztqøzt l

"s = I o.assoas I

["..'nnt]

lr,
o,=lo

['

0 0l
I\ rl

I rrJ

c1 r= eigenvecl8, Àr 
]

I o.se rer¿

"t =l o.sotstz

I o.urr,,,

c2 r= ei*.ou..¡ 
" 

, 

^0,

I -o.z¡o¿qs I

.r=l o.ourrru I

I o.eztss¡ I

Dsfins ths C matr¡x wh¡ch conlains ths sigsnvsctors:

I clo c2o c3o I

c ,= | cr, .2, .r, 
I

lø, "2, *rl



E := N-l 'C

Ths resonant frequenciss of the system ars:

r.-t.-
*z ,= Jlo w2 = LMí ' *S ,= Jlz w3 = 2t1.2

w2:
tz:= n n= ß.613 8 ' n,=-t3. f3 = 33.605615Lz'") : lz.r)

:

The Mode shapes can now bs lound from appropr¡alê normalization of the E
matrix.

R:=

I o.oosqal -0.007617 -0.00268
I

e = | o.oos+ar 6.825038'r0-4 olos26s

I o.oosaar o.ooszu -0.003625

Ir r I 'l

*=l , r.urrrr t.3s267sl

I r -o.oaeoø -3.45844s )


