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Subsynchronous resonance is a phenomenon which occurs in a host
of power system configurations. Often subsynchronous oscillations initiate
torsional interactions between the masses of a multimass turbine-
generator. In many systems the mechanical shaft oscillations must be

measured for control purposes.

In this thesis, a new technique is developed to determine the
amplitude of these oscillations. The technique is based on the Fourier
Transform of the machine’s teminal voltage. A useful relation between the
voltage frequency spectrum and the mechanical oscillation amplitudes is
derived and tested. Verification of the theory is carried out using EMTDC

simulation for a variety of network configurations.
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1.1 Motivation

Subsynchronous resonance (SSR) is a phenomenon which occurs in
a variety of power system schemes. Predominantly, SSR exists in systems
which either contain long series compensated lines or employ HVDC links.
The pssibility exists, however, for almost any system to display SSR effects
of some type, if the system is not appropriately designed. An official
definition for SSR was proposed by the IEEE SSR working group in 1980
[1]:

"SSR is an electric power system condition where the electric network
exchanges energy with a turbine generator at one or more of the natural
Jrequencies of the combined system below the synchronous Jrequency of the
system.”

This type of resonance may appear in a system for a number of
reasons, including self-excitation, torsional interactions and DC converter

control interactions.

1.2 Background

Until the introduction of HVDC transmission systems, SSR was

primarily due to an abundance of series compensation in long EHV AC
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transmission lines. Already in the 1930’s, series capacitors were described
to be one of the most efficient ways of increasing the transmission capacity
for longlines. Unfortunately, experimentation with series capacitors proved
much less ideal than expected, and many papers were written on the
stability problems associated with the use of these capacitors. Generally,
the stability problems were attributed to self-excitation [2] and the negative
damping [3] introduced by nearby generating units. A few of the instabilities

were attributed to other factors, such as ferroresonance [4].

In 1970, however, a great deal of attention was suddenly focussed on
the effects of torsional interactions in the generator/turbine shaft. This was
most likely due to the actual shaft failure which occurred at the Mohave
Generating Station in southern California [5]. Since that time many papers
have been written on the prediction and control of subsynchronous

torsional interactions.

In 1977 torsional interactions between a turbine-generator and an
HVDC link were observed during tests at Square Butte in North Dakota [6].
Once again, explanations and corrective proceedures quickly started to

appear in the literature.

It soon became apparent that the load characteristics of an HVDC link
generally display negative damping at a variety of subsynchronous
frequencies. Under the appropriate conditions, the negative damping of an
HVDC link can cause the entire system to go unstable, with the generator

shaft oscillations at one of its natural frequencies.

It seems very intuitive that the best way to control subsynchronous
torsional interactions (SSTI) between an HVDC link and a turbine-generator
is to carefully design the HVDC link and/or power plant in such a manner

that the torsional modes are not excited in the first place. In other words,
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the torsional modes should be positively damped in an optimally designed
system. (Such a design approach is discussed by R. J. Piwko, et al. [7]} For
a whole host of reasons, however, an optimal design is not always possible.
In such cases supplementary subsynchronous damping controllers (SSDC)
can be added to the HVDC controls in order to maintain stability.

Generally, SSDC’s require an input which reflects the generator
speed deviation or the generator's instantaneous position [8]. This
information is often measured directly from sensors located on the

generator shaft,

There are, however, two major problems associated with such an
approach. First, the generator shaft might not be directly accessible (due
to shaft elasticity, sensors must be mounted directly at the generator), and
a critical control input variable is lost. Second, even if the shaft information
is available at the power plant, there is still the problem of forwarding these
data to the SSDC located at the HVDC converter station which might be

several hundred kilometers away.

1.3 Problem

The determination of the generator speed deviation can often prove
difficult, especially at large distances from the generating station. This
speed deviation, however, also causes a distortion of the generator’s internal
voltage and output current. Since a unique relation exists between the
speed deviation and the voltage (and current) distortion, development of an
appropriate analysis technique has the potential to eliminate the need for
direct speed measurement. The intent of this thesis is to develop such an
analysis technique and test its validity and accuracy using EMTDC

simulation for passive, as well as active, HVDC load configurations.



2.1 Introduction

In order for the effects of subsynchronous torsional interactions to be
studied, a synchronous machine model must be employed which accurately
represents the electro-mechanical interactions that occur in a
turbine-generator. The electrical properties of the machine are naturally
modelled with the help of Park’s Transform [9], while the mechanical system

is directly modelled by a set of differential equations.

2.2 The D-Q Axis Machine Model

The field and armature windings of a three phase synchronous
machine are all magnetically coupled. Due to the generator action of the
machine, its mathematical model consists of at least four mutually

dependant differential equations.

In order to solve this system of equations, R. H. Park suggested a
transformation matrix which could be used in order to decouple the
equations. Park’s Transform converts the three phase A, B, C, 60 hertz
quantities into d~q-0 DC quantities. The transform and inverse transform

matricies are given below.



cos(6} cos(f - 2x/3) cos(f - 4n/3)

T) = % [sin(ﬂ) sin(@ - 27/3) sin(@ - 4x/3) :l

1/2 1/2 1/2
(2.1)
cos(8) sin(@) 1
T1@) = | cos(@-27/3) sin(g — 2x/3) 1
cos(@ —4r/3) sin(@ — 4ar/3) 1
(2.2)

where @ = the rotor position measured from the d-axis of the machine.

All three-phase and d-g-axis quantities are related through this
transformation. The values i,, i, and i.are the phase currents, and iy,

iy and jgare the transformed d, q, and O-axis currents. { Similar notation

is used for the voltages, v and the fluxes, ¥.)
id ia Va Va ‘Pd \pa
iy | =T®)| iy ve | =T@] vs Y, | =T@O)} ¥,
ip i Vo Ve W v,
(2.3)

Since Park’s Transform and the rather lengthy application of his
transform are very well known, only a brief summary of the resulting
machine equations in the new d-q axis reference frame is given. A very
complete discussion of the transform can be found in a variety of books
[91[10][11]. In the new reference frame, it can be shown that the fluxes ¥

and currents i are now very simply related:

Wy=Lgig+Lnu l}

(2 .4)
W, =L, i

(2.5)
Wy=Lg ip

(2.8)
Wi =L, ig+Ly it

(2.7)



where Ly is the self~inductance of the d-axis winding
Ly  is the self-inductance of the g-axis winding
Lo is the zero-sequency inductance
Lma  is the d~axis magnitizing (or mutual) inductance
Lng  is the g-axis magnitizing (or mutual) inductance
Ly is the self~inductance of the field winding

if is the reflected field current seen from the stator side

and W; is the reflected field flux seen from the stator side

As can be seen the d-q-0 flux equations are all independent of one

another. It can also be seen that the field is coupled only to the d axis.

Application of the Park Transform also yields the following set of

differential equations relating the voltages to the fluxes and currents:

. d¥,

dt
(2.8)
Vg—Ig Ra=—w‘¥d+#
(2.9}
vg - ip R0=£——;I:g
(2.10)
v}—t}Rf=—d;itf—
(2.11)

It is very important to note all quantities in the d~q-0 reference frame
are constant in the steady state. This means that in the steady state all the
differentials are zero. It should also be realized that vy =iy =¥, =0 under
all balanced load conditions. Since all work in this thesis is based on the
assumption of a balanced load, the zero sequence equations will be

completely omitted in future discussions.
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2 .3 Calculation of the Steady State Voltage

When a synchronous machine is running in the steady state, a
constant (dc) field voltage is required. This field voltage comes from the
exciter which may be constructed in a variety of ways. Some possible
construction styles include dc machines, ac machines with some
rectification, or completely electronic devices. In most studies of SSR,
however, the modelling of the excitation system is not required [12] . Also
since the different types of exciters have such very different properties, it is
hardly worth the inclusion of an excitation system unless the specific effects
of one particular exciter are to be examined in great detail. Therefore, for
the purposes of this thesis it will suffice to simply model the entire excitation
system by a constant field voltage with the appropriate magnitude to yield

1.0 p.u. terminal voltage for the given load under study.

Use of this approach, however, requires the calculation of the exact
excitation voltage in advance. This excitation voltage is determined using

the D-Q axis machine equations in the steady state.

The phasor diagram for a salient pole synchronous machine is given in
Figure 2.1 . The standard convention for normalizing the field voltage is
to set the voltage base to be equal to the voltage required to supply 1.0 p.u.
terminal voltage on the machine under a no load condition (this normalized
field quantity is referred to as Vy) Using this convention, the terminal

voltage of the machine is given by:

Vi=Vi=Raloy—Xda—iX,l,
(2.12)

where R, ., the armature resistance, is small and will be neglected.
Xq=JjoLy and is the d-axis reactance

Xy =jwL, and is the g-axis reactance
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Figure 2 .1 : Phasor Diagram of a Salient Pole Synchronous Machine

Manipulation of equation 2 .12 by adding and subtracting the quantity
JXqla yields:

Vi = Vit Koy + 1) +laXa—X,) .
(2.13)
From the phasor diagram, however, it is apparent the I, = I; + I

therefore equation 2 .13 can be simplified to:

Vi = Vo4 jXola+jXa— XDl
(2.14)



Since the vector sum of V; and jXI, lies along the quadrature axis (as
can be seen in the phasor diagram) the angles @ , 8 and ¥ can be easily

determined.

a=L(Vi+jXd)—~ L(V)

(2.15)
B=L(V)- L)

(2.186)
y=a+p

(2.17)

Finally this allows for the calculation of 1.

{g=1I,siny

(2.18)

Hence the field voltage is now uniquely defined as a function of the

load currents, terminal voltage and the machine parameters [9].

2 .4 The Multimass Machine Model

Aturbine-generator system generally consists of several turbines and
one generator mounted on a single continuous shaft. In the steady state,
each unit moves at exactly the base speed of the machine without any

deviations.

Figure 2 .2 shows a typical lumped element spring-mass
turbine~generator model. For the purposes of this discussion three masses
will be used, however, the expansion of the theory to four or more masses

should be self-evident.

The linear model shown in this figure accurately represents the real

system as long as the shaft is not stressed beyond its elastic limit. Certainly
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for the purposes of this thesis it is reasonable to assume that the system will

be operating within its linear range.

J 3 Jo J1
mass # 3 mass # 2 mass # 1
K>3 =Kz Ky =Ky
turbine 2 = turbine 1 generator
i o e e

S D12 =D21

/

2]

2]

Figure 2 .2 : Lumped Element Spring-Mass Turbine-Generator Model.

Such a lumped element model is definitely not unique to
turbine-generators and the equations describing the system are readily
found in most books dealing with system modelling and control [13][14].
For convenience, though, these equations are stated without derivation

below.

dew
T =J1—2‘,t—1+D1w1 +Dy(w) —w)) + K12(61 - 62)
(2.19)
dw)
T = Jz*gr— +Dyw3 + Dy (w2 — 1) + Dy3(w2 — w3) + K21(02 —61) + K23(02 - 03

(2.20)

dw
T3 = 13*53— + Daws + D3p(ws ~w2) + K32(03 - 65)

(2.21)
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where T; = the torque on mass i

J; = the inertia of mass i

w; = the angular velocity of mass i

0; = the angular position of mass i

D; = the self-damping of mass i

Dy = the damping between masses i and j

Ky = the spring constant between masses i and j
Dy =Dy

Ky = K

and

_ db;
dt
(2.22)

Equation 2 .19 describes the motion of the generator. Ty is therefore
the electrical braking torque of the generator while T; and T3 are the

mechanical accelerating torques of the two turbines.

In large turbine~generator units all mechanical losses are minimized
in order to obtain optimal efficiency. This results in extremely small
self-damping coefficients. Also, due to the nearly ideal spring behaviour of
the turbine-generator shaft, the damping between masses is also very
small. These two facts permit the multimass model equations to be greatly
simplified by assuming that the self damping and the intermass damping

are both negligible, i.e.

D=0
D;=0
Di=0.

The simplified equations are:

11—



dw
T =J1—d—t1+K12(91 —-8)

(2.23)
dw»
T; = 127+K21(92-91) + K3(0, - 63)
(2 .24)
I/
T3 =J3%+K32(93 -07) .
t
(2.25)

A slightly more accurate system representation could be obtained by
including all damping terms, assuming they are all known (which is
generally not the case anyway). However, it is important to realize that the
approximation is a very conservative one, because there will always be

slightly more system damping than predicted by this model.

2 .5 The Theory of the Modal Model

The matrix solution of a multimass machine model can be carried out
in various ways. If, however, damping terms are neglected, then a
particularly effective "modal” approach can be used [15]. (Some
approximate procedures for using a modal approach in a sytem with
damping have been developed [12], but they generally introduce an
unnecessary degree of complexity.) Fortunately, itis already known that the
damping terms in the turbine-generator model are extremely small and that

neglecting these terms will not introduce any significant errors.

In order to find the natural oscillating frequencies, the external
torques in the system are set to zero. The equations 2 .23 through 2 .25

of the previous section can then be rewritten as:

- 12—



doy

0=J1—%+Kix(6,-0))

(2.26)
0= Jz%+1{21(92—91) +K3(02 - 63)

(2.27)
0=Jg%+K32(93—92) :

(2.28)

where of course,

_d do, do;

1= 2= 3=

w w
dt dt dat

These six equations can now be condensed to three second order

differential equations (with no single derivatives of position at all).

a6,
O=Ji—+K1201 - K50
1~ + Kif1 - K126,
(2.29)
d%e,
0= JZ_dtfg"'—Kﬂei + (K21 + K23)02 — K303
(2.30)
d293
0 =J3—=+K3,60,-K3,87
37+ K5282 - K503
(2.31)

or in matrix form

- 13-



In general, this matrix equation can be simply expressed as

d%0
[J]? + [KI0=0 .

(2.33)
However, in this case it is much more useful to let [N]? = [J] and write

a6
[N]z‘:i? + {K]g =0 .

(2.34)
Applying the change of variables y = [N]@ to equation 2 .34 yields

[INUKINY

&y -
[N}a‘.tz + K1V 7y =0
(2.35)
or
d’y | -1, =
g + [INIZ[KIINTy =0 .
(2.36)
If matrix [C] is now chosen so that it diagonalizes the matrix
ie.

v mmvtert =

(2.37)

- 14~



then a final change of variables y = [C]z will completely decouple the
system of second order differential equations. Thus equation 2 .36

becomes:

2

d°z _ _ B
(1= + [V KIVIiic) 2 =0
(2.38)

2
S+ e (vl 2 =0

(2.39)
which (due to equation 2 .37} is identical to

(2.40)

(2 .41)
which has the general solutions of

z;=Ajt+B ford; =0
z; = A;sin(wy,it + ¢;) ford; >0

where wm-=,/f; .
(2.42)

Hence the eigenvalues 4; , i= 1, ... n are simply the eigenvalues of
[NI"}[KIINI"! as shown in equation 2 .37 and the transformation matrix
between the z and 6 reference frames can be found from the two

substitutions that were performed.

6 = [Nty = [N]'[C] 2
(2.43)

- 15-



2 .6 The Calculation of Normalized Mode Shapes

The fundamental advantage of using a modal approach is its ability
to determine the normalized mode shapes of a turbine-generator. When a
power system is subject to any sort of disturbance, the multimass
turbine-generator unit begins to oscillate at its resonant frequencies (given
by w,; = ,/:1—, in the previous section). Due to the variety of inertia and spring
constant values, however, each mass oscillates at each frequency with its
own amplitude. Although the amplitudes vary from mass to resonant
frequency there is a "mode shape” which gives the ratios of the oscillation
amplitudes between all masses for that one specific frequency. Since this
mode shape is indeed frequency dependent one mode shape exists for each
resonant frequency. The calculation procedure required to determine the
mode shapes of the three mass turbine-generator system shown in Figure
2 .2 willnow be presented. Since this system has 3 masses, 3 eigenvalues
will exist. The first eigenvalue always turns out to be zero because of the
nature of the matrix equation. (This is also physically reasonable because

the entire mass assembly must rotate at synchronous frequency and this
corresponds to z; =w,t in equation 2 .45) Therefore 3 modes result, but

only the modes associated with the 2 non-zero eigenvalues represent

resonant oscillations.

The eigenvalues will therefore be:

Ar=0
Ar=w,
l3=w,f3

(2.44)
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and the modes of oscillation will be:

71 = At + ¢
23 = Aj sin{lw ot + @)

z3 = A3z Sin(w,;3t + ¢3)
(2 .45)

where once again it can be seen that the first mode does not actually

oscillate.

The angular position of each mass can now be found by applying the

transform given in equation 2 .43 to the equations 2 .45 .

91 21
6; | = INT[Cl| 2
93 Z23

(2 .46)
To simplify this equation, let [R] = [N]"![C] to give:
0, TR SV I T At + @
Orl=|ra r2 m Azsin(@ ot + @)
03 rai T3 a3 Az sin(@at + @)
(2 .47)

or, setting ¢; =0 as a chosen frame of reference and collecting terms:

0 FAy oAz rpsds . t
6y | =] raAi rpAsr r3ds sin(@nt + @2)
03 rsidy  rpAz  rasds sin(w,3? + ¢3)
(2.48)

In the above equation the quantity 6; gives the angular position of the

generator. All oscillating amplitudes can now be normalized with respect

to the generator oscillating amplitudes. Since all three masses are rotating
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at the same base speed, it can be shown that ry; = ry; = r3 .

61.1 1 1 1 t
O, =1 rafriz ra/rs sin(wzf + ¢2)
63, 1 rpfrp rsfrs sin(w it + ¢3)

(2.49)

or simply,

0 = [R,] 2y
(2.50)
The mode shapes associate with the modes of oscillation are given by
the columns in the matrix [R,]

along with their corresponding resonant frequencies. Mode 1 is often

. The three mode shapes are given below

referred to as the rigid-body mode since it corresponds to all three masses

moving together. In a normal system they would move together at a speed

of w,.

Table 2 .1 : Normalized Mode Shapes of a Three Mass Turbine-Generator

Mode 1 Mode 2 Mode 3
mass Wn1 = Orad/s | wpp=vAyrad/s | oy = VAzrad/s
generator 1 | 1
turbine 1 1 r22 /112 23/ 113
turbine 2 1 r32 /112 133 /113

2 .7 The Machine Model Under Study

For the purposes of this thesis, one particular turbine-generator unit will
be employed. The unit to be used was somewhat arbitrarily selected to be
a 588 MVA machine produced by ABB. The primary motivation behind
choosing this unit was the ready availability of all necessary

turbine-generator data.
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Figure 2 .3 shows a reduced lumped element spring-mass model of

the turbine-generator under study.

K23 = 105,000 kN m/rad K12 = 178,000 kN m/rad
mass # 3 mass # 2 mass # 1
turbine 2 turbine 1 generator
J3 = 14,200 kgm? Jy = 8,590 kgm? J1 = 10,500 kgm?

Figure 2 .3 : The Turbine-Generator under Study.

Modal analysis of this system can easily be carried out using most
pre-packaged programs equipped to solve for eigenvalues and eigenvectors.
Appendix A gives the Mathcad 3.0 routine required to solve for the resonant
frequencies and normalized mode shapes of the multimass system shown

in Figure 2 .3 . The results of this analysis are summarized below,

The resonant frequencies of the system are:

wn1 =0 radfsec =0 hz
Wy = 1044 rad/sec fm2=16.61 hz
w3 =211.2 radfsec fin=33.61 hz

The mode shapes are given in Table 2 .2 .
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Table 2 .2 : Mode Shapes of the Turbine-Generator under Study

Mode 1 Mode 2 Mode 3
mass fhi=0hz fio= 16.61 hz | f3= 33.61 hz
generator 1 1 |
turbine 1 1 —0.6852 1.553
turbine 2 1 —0.0896 —3.458

These specific mode shapes will later be required to determine the

oscillation amplitudes on turbines 1 and 2 given a known oscillation of the

generator.
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of Shaft Oscillations

from Generator Terminal Quantities

3.1 Introduction

The modal analysis presented in Sections 2.5 through 2.7 proves
extremely valuable in determining the oscillating amplitudes of all turbines
given the generator’s amplitudes of oscillation. These generator quantities
can be determined from the generator’s terminal voltage and/or current

waveforms provided that an overly complex machine model is not employed.

3 .2 Approxzimations to the Electrical Machine Model

In order to facilitate the development of an analytic procedure which
is capable of determining generator shaft oscillations from terminal

quantities, the following assumptions and approximations are made;

1. The machine is assumed to be a linear device; or at very least to have
a linear small signal response.

2. Itis assumed that the machine is accurately represented by the D-Q
Axis model. (i.e. use of Park’s Transform itself requires certain
approximations to be made [9] and these are simply accepted as a
consequence of using his transform.)

3. The effects of damper windings are ignored.

4. The armature resistance of the synchronous generator is considered
negligible and its effect is ignored. (This assumption is only required
under load conditions.)
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5. It is assumed that the machine is basically operating in the steady
state and that any disturbances to the system only cause slight
perturbations to the steady state quantities.

6. The machine is always operating under balanced load conditions.

Certain further approximations will be required throughout the
development of the analytic procedure and they will be discussed as they

are made.

3 .3 The Electric Machine under No Load

Under a no load condition, the synchronous generator machine
equations can be greatly simplified. Since under no load the phase currents
are all zero, the d—q axis currents are also zero. Setting {; = 0 and =0 in

the flux equations of section 2.2 (equations 2 .4 to 2.7 ) yields

W, =Ly 1}'

(3.1)
W, =0

(3.2)
¥ =Lyi

(3.3)

Also, if steady state operation is assumed, all differentials in the
voltage equations of section 2.2 are zero. (This is because the d—q axis

quantities are DC.} Thus equations 2.8, 2 .9 and 2 .11 are simplified to:

va= 0¥,

(3.4)
vq=—w‘11d

(3.5)
Ve =Reiy ,

(3.6)

From equation 3 .6 it can be seen that the field current is constant

in the steady state and given by i;" = v’ /R, . This results in the d-axis flux

- 929



ofequation 3.1 being constant as well. Thus, for simplicity, equation 3.1

is rewritten as follows:

Wo=Lg if' =Wy .
(3.7)
Substituting the necessary values of flux into the d and q axis voltage

equations yields

vag=10
(3.8)
Vg = —w‘I’d .

(3.9)
With the application of Park’s Transform, these new d and g axis

voltage equations can be used to determine the three phase terminal

V4 Va
vl =T v | .
Vo Ve

voltage:

(3.10)
This yields a phase A voltage of
Vo = vy8inf
(3.11}
or Vg =~0W,,sin8 ,
(3.12)

while the B and C phase voltages are simply shifted by plus/minus
120 degrees.

In order to proceed further, an expression for 6 and w, the

generator’s position and speed, must be developed. Normally the

mechanical angular position of the generator shaft in a two pole
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synchronous machine is given by

0 =w,t
(3.13)
where w, = the electrical base speed (equal to the

mechanical base speed for a two-pole machine).

If, however, the generator is subject to a resonant oscillation (as
discussed in Chapter 2) with amplitude 8 and frequency w, then the

equation for the generator’s shaft position becomes

6 =wt+PBsinw,t
(3.14)
where the possibility of a phase shift in the resonant oscillation is ignored,

since it is of no consequence in the following analysis.

Given an expression for the shaft position, the shaft speed can be

easily determined from the relation:

_db
T odt
(3.15)
Hence,
W =w,+PBw,cosw,t .
(3.16)

Now returning to the phase A voltage equation 3 .12, the values of
6 and w given in equations 3 .14 and 3 .16 can be substituted to yield:

Va=— (0, + B coswy) Wy, sin(w,t + B sinw,t) .
(3.17)

For small values of 8 (which will later be seen to be always the case)
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the following approximation can be made:

sinfw,t + B sinw,f) = sinw,t+ B sinw,t cosw,t .
{3.18)
Application of the trigonometric product identity on the last term of

the above equation yields:

(SRR~

[ sinf@ -0+ sinf@, + w1 | .
(3.19)
Thus making the substitutions suggested in equations 3 .18 and

B sinw,t cosw,t =

3 .19 yield a new equation for uv,.

Va = — (W, + By cos w,f) Wdo{ sinw,f + % [sin((wx —wo)t) + sin((w, + wo)t)] } .

(3.20)
Expansion of equation 3 .20 yields:

Vg =~ ‘I’do{mo sinw,t + ﬁ;% [sin((wo + @)t - sin{(w, — wx)t)]
. Bw, . .
+ B, coswytsinw,t + 5 Cosa,t [sm((a)a + wy)f) —sin({w, ——wx)t)] .

(3.21)
Once again the product terms in the above equation are eliminated
using trigonometric identities.
Wy [ :
f 5 { sin((@, + w1 + sin((@, — w,)1) }

(3.22)

Bwscosw,t sinw,t =

B 2wx
2

2
cos @ {sin((@, + w,)) — sin((@, — w,)f)] = P :’x [sin((@, + 2w ,)1) - sin((@, — 20,)0)]

(3.23)
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Replacing the product terms in equation 3 .21 with their
equivalences given in equations 3 .22 and 3 .23 and simplifying yields:

Vg = — ‘deo[a)o sinw,t + —'g-(a)o + ) sin((w, + w,)f) ——% (@, —wy) sin{{lw, —w,)f)

ﬂzajx ﬂ?’wx

+ sin{(w, + 2w )1) —

sin({w, — 2wx)t)} .

(3.24)

Since it has already been stated that B is small the above formula can

be approximated by setting 2 = 0.

Vg = —‘I’do{wo Sin@ ¢ +§(wo +wy) sin((w, + @w,)f) —g-(wo—wx) sin((wo—wx)t)}

(3.25)

or if equation 3 .25 is normalized:

Vg, = Sinw,t +

(wo + wy) sin((w, + wy)) —

(o —wy) sin((w, — wx)1)

(3.26)

Inspection of the above equation shows that the voltage waveform v,

has a component at the fundamental frequency o, , as well as two additional
components; one at w, +w, and one at w,-w, (where, once again, w, is the

frequency of the mechanical oscillation superimposed on the shaft speed).
Finally, equation 3 .26 can be expressed graphically in terms of its Fourier

spectrum as shown in Figure 3 .1.
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Figure 3 .1 : Expected Fourier Spectrum of the Terminal Voltage of a Generator whose
Shaft is subject to a Mechanical Oscillation of Amplitude g and Frequency o

x

3 .4 The Electric Machine under a Passive Load

When the synchronous generator is driving a given load, the machine
equations become somewhat more complex than described in the previous
section. However, if the assumptions of section 3.1 are once again made,
analysis of the machine subject to an arbitrary passive load becomes

possible,

Since the machine is assumed to be stably operating in the steady
state, all d—q axis currents will be constant (DC) values. The field current
will also have a constant (DC) value. Therefore, all the machine fluxes will

also be constant; this is symbolized by a subscript "o".

Wy=Lgig+Lyg iy =Wy,
(3.27)
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(3.28)
\Pf' =Lﬁ' I'f'+Lmd id = lpfof

(3.29)

The d and q axis voltages are now given by

vy =W,

(3.30)
Vq = “‘wlIfdo .

(3.31)

Once again the phase A terminal voltage of the machine is found by

employing Park’s Transform. It turns out to be

Vg = V4€08 0 + v, sin 6

= @WW; 080 — g Wyosin @ .
(3.32)
A similar analysis is now carried out as presented in the previous

section. Solution for the second term in this equation has already been
given in equation 3 .25 and application of all the same simplifications to

the first term yields a very similar result.
Vg = ‘qu{wo CoOS Wt + %(wo + ;) cos({w, + w o)) —-—g—(a)o —wy) cos{(w, — wx)r)}

- ‘I’do{wo sinw,f + % (W, + wy) sin((w, + w1 ——g- (@, —w,) sin{(w, - wx)t)}

(3.33)
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Normalization of this waveform, however, must be carried out in a
much different manner than in the last section. First all terms of similar

frequencies must be collected. This yields

Va = wo{‘yqo COS wot - lI’do SiI’l wot}

B

+5 @o+ o) {Wgocos(@o + w,)0) ~ Wy sin((@, + w,)0)

B

=5 @0 wy) {¥go c08((@,—w)t) - W sin(@o - w)1)] .

(3.34)
The sines and cosines can now be combined using the phasor relation

shown in equation 3 .35 ; this yields equation 3 .36 .

Acoswt+Bsinwt = VA2 + B? sin(wt +¢)

A
e = tap-12
where @ = tan 3
(3.35)
Va=, ‘/II%O + ‘Pﬁo sin(w,f +¢1)
B 2 2
) (@0 +wy) f Weo + W5, sin((w, + @)t +pa)
+ﬁ(w —wy) /W2, + W3 sin((w, - w,)t +¢3)
5 o x qo do o X 3
-y o
where 9 =6 =¢o2=¢3=tan‘1( ! )
‘Pdo
(3.36)

Normalization of equation 3 .36 with respect to the fundamental can
now be carried out. This yields the expression for v, given in equation 3 .37

which corresponds to the normalized Fourier spectrum shown in Figure
3.2.

Va = SINWof + @) + (@o + @) sin((w, + W)t + @) + zf) (Wo—wx)sin((w, — wy)t + )

o o

{3.37)
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Figure 3 .2 : Expected Fourler Spectrum of the Terminal Voltage of a Generator whose
Shaft is subject to a Mechanical Oscillation of Amplitude 8 and Frequency w, .

Comparing Figures 3 .1 and 3.2 it canbe seen that the normalized
Fourier spectra of the generator’s terminal voltage are completely
independent of the load condition. This permits the theory to be used even

in cases where no load information is available.

3 .5 Extension of the Theory for Multiple Resonances

The extension of the theory to accomodate two or more mechanical
oscillating frequencies is quite trivial. If, for example, a three mass machine
model were to be analyzed, two resonant frequencies would be found. If the
amplitudes of these oscillations are 8; and 8, and their frequencies are o,
and w; then the Fourier spectrum of the generator’s terminal voltage will

be as shown in Figure 3 .3, where the generator shaft displacement and
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speed are as given in equation 3 .38 .

9=a)oz‘+ﬁlsinw1t+ﬁzsinwgt
(3.38)

W =W, + 101 coswit + Bywy coswot
(3.39)
It should therefore be clear that if a spectrum analyzer were

connected to the terminals of a generator that all values, w; and w,, as well
as B; and B, could be easily calculated and the instantaneous values of

generator shaft speed and displacement (minus a possible off-set) would

thus be known.

N 1.0
A
[
o]
=
o
% ﬁZ(mo-l-wQ)
i 20,
= A
g Bilw, +w;)
Bilw,~w;) 2,
Bilw,—w,) .
W, — W, w,—w, @, W, +w, W+ W,

frequency (rad/sec)

Figure 3 .3 : Expected Fourler Spectrum of the Terminal Voltage of a Three Mass
Turbine-Generator

Combining the information on the generator’s shaft speed and
displacement with the mode shape theory of Chapter 2 (Sections 2.5
through 2.7) yields the speed and displacement of all turbines. Therefore,
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all mechanical quantities of interest can be directly calculated from the

normalized Fourier spectrum of a synchronous machine’s terminal voltage.
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4 .1 Introduction

The discussion presented so far has been based solely on theory.
Also, in the theoretical development several approximations and
assumptions had to be made. Although no gross oversimplifications to the
model were required, the exact accuracy of the approach presented may
seem somewhat questionable. Verification of the theory is therefore carried
out by EMTDC simulation. Before this is done, however, it is important to
realize some of the limitations inherent to the discrete time Fourier

spectrum that will be applied.

4 .2 The Discrete Fourier Transform

As already stated, verification of the theory will be performed using
the EMTDC simulation package. Since digital simulation is used, all
subsequent analysis must be performed in the discrete time domain. This
unfortunately means that all of the required Fourier spectra will have to be
produced using the discrete Fourier Transform instead of the more

desirable continuous Fourier Transform.

The common problem which arises when using the discrete Fourier

Transform is aliasing. This occurs when the Nyquist sampling theorem is
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not adhered to. Aliasing, however, is not a problem when working with
EMTDC, because the output time step can be adjusted to yield any desired
output frequency bandwidth.

The problem which does arise when performing a discrete Fourier
Transform on an EMTDC output waveform stems from the sampled spectral
output. In order to best describe this limitation it is beneficial to look at an
example. Figure 4 .1, on the next page, shows two curves, a 60 hz and a
33.7 hertz waveform with amplitudes of 1.0 and 0.25 respectively, The
result of adding these two waveforms together is shown in Figure 4.2 .
(Figures 4.1 and 4 .2 show only the first 0.08 seconds of the waveforms

in question for the sake of graphical clarity.)

Itis very important to minimize leakage noise [16] which results when
the Fourier Transform is calculated over a non-integer number of periods.
Since the 60 hz waveform has a much larger amplitude than the 33.7 hz
waveform, the leakage noise is best minimized by truncating the combined
signal at an integer number of 60 hz periods (i.e. at T}, Ty, Ts, etc.). Figure

4 .3 shows the discrete Fourier Transform of the curve in Figure 4 .2

taken over T3 seconds (with a sampling rate far exceeding the Nyquist rate).

The frequency axis must of course be scaled to represent hertz and
this is shown by the secondary x-axis. It is important to notice that the
separation between the bands in the spectrum is defined by Af , given by

|
M=
(4.1)
where T = the interval of transformation in the time domain.
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As can be seen, the 60 hz waveform shows up very clearly on the
spectrum with exactly the correct amplitude, while the 33.7 hz signal can
by no means be accurately measured or even identified. It is therefore quite
apparent that this limited spectrum is of little use as it stands, and a much

denser spectrum is required.

In order to obtain a denser spectrum (i.e. one with the bands much
closer together) the interval of analysis in the time domain must be greatly
increased. Figure 4 .4 on the previous page shows a discrete transform
of the curve in Figure 4 .2 where a time interval of 0.5 seconds is now used.
(This interval once again contains an integer number of cycles of the 60 hz
waveform.) Although the amplitude and the precise frequency of the 33.7
hz signal are still not exactly known, a very good approximation to these

values can now be made.

Ideally, the time interval should be chosen in such a manner that it
contains an integer number of periods of all frequencies present, but in
practice this becomes very difficult when an entire host of sub~ and
supersynchronous frequencies exist. Therefore, for the purpose of this

thesis, a 4 second time interval will be used, in order to yield a fairly dense

discrete transform with an incremental frequency of Af=0.25 hz. Very
minor modifications to this time interval may be required to ensure that a
minimum amount of noise is introduced by the fundamental which may

drift slightly from its 60 hz value.

Of course, the problems discussed in this section only manifest
themselve when the Discrete Fourier Transform is used. In practice, use
of a continuous spectrum would eliminate these problems. Perhaps an even
more useful tool to use in a practical setting, however, would be a phase
locked loop. Although their primary use in power systems is to determine

the zero crossing of the fundamental, they can be modified to yield
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amplitude and phase information of known non-fundamental frequencies

in a voltage or current waveform.

4 .3 The Electro-Mechanical System to be Simulated

The multimass machine model to be simulated consists of two
turbines and one generator, and the mechanical specifications for this
system were given in Section 2.7. In Chapter 2 it was also stated that the
excitation system need generally not be modelled, therefore a constant field
voltage is used in the simulation. Finally, since the machine is operating
in the steady state and any disturbances are very minor, the governor
system is not required and a constant driving torque matched to the load

and field voltage can be employed.

The system to be simulated is therefore very simple as shown in

Figure 4 .5 .

/

turbine 2 turbine 1] |

\

generator

Figure 4 .5 : The System to be Simulated.

Since the above system is running stably in the steady state, a small

amount of positive damping must exist. This positive damping will
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eventually eliminate the presence of all resonant oscillations. (Otherwise
the system would be unstable.) Therefore in order to study these resonant

oscillations, a small disturbance must be introduced to initiate them.

The disturbance to be used will be a small impulse superimposed on
the constant input torque supplied to the turbines. An impulse is chosen
because it is guaranteed to excite all resonances without introducing other

changes to the "steady state” system.

4 .4 Simulation of the No Load Synchronous Machine

Simulation of the system in Figure 4 .5 under "no load” is actually

carried out using an extremely large resistive load (R = 100 pu. ).

This is required because no mechanical damping is included in the
model (as explained in Section 2.7) and if the machine were run open

circuited, it would not be possible to achieve stable operation.

As discussed in Section 4.2, at least four seconds of simulation are
required (after the disturbance which initiates the resonant oscillations) in
order to obtain a discrete Fourier spectrum with the desired resolution of
0.25 hertz.

Figure 4 .6 shows the normalized Fourier spectrum of the phase A
generator terminal voltage at a time directly following the application of a

small disturbance.

As can be seen the disturbance has very slightly affected the base
shaft speed of the machine. Although this effect is not desired and would
not occur if the machine were operating in a normal system it has basically

no impact (good or bad) on any calculations regarding resonant oscillations.
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Figure 4 .6 : The Fourier Spectrum of the Generator Terminal Voltage —
The No Load Case.

From Figure 4 .6 the resonant frequencies can quickly be
determined and compared with the values expected by the eigenvalue
analysis of Chapter 2. These are compared in Table 4 .1 . For all practical
purposes the theoretical and simulated resonant frequencies can be

considered identical.

Table 4 .1 : Comparison of the Theoretical and Simulated Resonant

Frequencies.

Mode Resonant Frequency Resonant Frequency
Number from Theory from Simulation
Mode 1 16.61 16.60
Mode 2 33.61 33.65

Next, the side band amplitudes of Figure 4 .6 can be employed to

calculate the amplitudes of the resonant oscillations at fo1 and fys.
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Theoretically, either the upper or lower set of side bands can be used to find
the oscillation amplitudes, but in practice, the upper bands should be used
because they are larger. Not only can the larger bands be measured with
more accuracy, but more importantly, they are much less susceptible to

accuracy losses caused by background noise.

Since the magnitudes of the bands at fy +1,; and fy + 5 are 0.01223
and 0.001291 respectively, the generator shaft oscillation amplitudes are

found to be

ﬁl(wo + Wp1) _

= 0.01223 0.01916
20, A

ﬁZ(wo + W) _

= 0.001004 0.001291 .
20, A2

(4.2)
Therefore from equations 3 .38 and 3 .39 the generator shaft

position and speed are given below (there could be a phse shift for each

oscillation, but it cannot be determined by the analysis presented.)

Ogen = w,t +0.01916 sin 2atf,, £ + 0.001291 sin 27f,,5¢

(4.3)
Wgen = Wy + 1.995 cos 2mfy1t + 0.2729 cos 2mfynt

(4.4)
Employing the mode shapes -calculated for this particular

turbine-generator yields the speed and position of each of the turbines.

Orurb1 = ot +0.01313 sin 27f,,1£ + 0.001746 sin 27f,5t

(4.5)
Wbl = W0t + 1.367 cos 2mfy, 1t + 0.3691 cos 2, ¢t

(4.6)
Brurb2 = @ot +0.001717 sin 21,4t + 0.004463 sin 21f, ¢

(4.7)
Dpurb2 = W + 0.1788 cos 27xf,,1¢ + 0.9437 cos 2mf;0t

(4.8)
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Unfortunately, the instantaneous position and speed of each mass
are not normally available on EMTDC {17]. However, minor modifications
to the code allow output of at least the individual mass speeds. This is
sufficient to test the accuracy of the theory because mass speed and

position are not independant quantities.

Figure 4 .7 shows the simulated shaft speeds of each of the three
masses after the application of a disturbance at 0.1 seconds. The Fourier
spectra of the generator speed and the two turbine speeds are given in
Figure 4 .8 . These spectra show the actual oscillating amplitudes of each
mass at each of the two resonant frequencies. They also include the
theoretically predicted oscillating amplitudes and frequencies for the sake

of comparison.

The simulated and theoretically predicted results are compared in
tabular form as well. This is shown in Table 4 .2 below, where the

percentage errors between theory and simulation are shown in Table 4 .3 .

Table 4 .2 : Comparison of the Theoretical and Simulated Oscillation
Amplitudes — No Load.

Oscillating Amplitude at Oscillating Amplitude at
16.6 hz 33.6 hz
mass predicted measured predicted measured
generator 1.995 1.997 0.2729 0.2749
turbine 1 1.367 1.373 (0.3691 0.3709
turbine 2 0.1788 0.1863 0.9437 0.9510
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Table 4 .3 : The Percentage Error in the Theoretical Oscillation
Amplitudes — No Load.

Percent Error in the Theoretical || Percent Error in the Theoretical
mass Amplitude at 16.6 hz Amplitude at 33.6 hz
generator -0.1% -0.7 %
turbine 1 - 0.4 % ~0.5%
turbine 2 ~4.0 % -0.8%

As is evident, the predicted amplitudes at 33.7 hz fall about 4% shy
of the simulation results. The reason for this becomes apparent when
looking back at the voltage spectrum given in Figure 4 .6 . It can be seen
there that the band at (approximately) 94 hz is quite small and it is not

surprising that the background noise introduces a certain degree of error.

The accuracy of the modal theory presented in Chapter 2 can also be
checked with simulation results, to insure that all approximations
performed are reasonable. The theoretical mode shapes, repeated from

Chapter 2 are given in Table 4 .4 .

Table 4 .4 : The Theoretical Mode Shapes of the Turbine — Generator.

Mode 1 Mode 2 Mode 3
mass fi=0hz fo= 16.6 hz f;= 33.6 hz
generator 1 1 1
turbine 1 1 —0.6852 1.353
turbine 2 1 —0.0896 —3.458

Using the simulation results given in Figure 4 .8 the magnitudes of
the true mode shapes of the turbine generator can be determined. These

are shown in Table 4 .5 .
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Table 4 .5 : The Mode Shapes of the Turbine — Generator from Simulation

Mode 1 Mode 2 Mode 3
mass fi=0hz f= 16.6 hz f3= 33.6 hz
generator 1 1 1
turbine 1 I 0.6877 1.349
turbine 2 1 0.0933 3.459

Comparison of the above two tables shows that the simulated and
theoretical mode shape are indeed almost the same. The percent error in

the theoretical mode shapes is shown below.

Table 4 .6 : The Percent Error in the Theoretical Mode Shapes.

Error in the Theoretical Error in the Theoretical
mass Amplitude at 16.6 hz Amplitude at 33.6 hz
generator 0 % by definition 0 % by definition
turbine 1 -04 % 03 %
turbine 2 -4.0% 0.0 %

The theory clearly produces quite accurate results for the no load
turbine-generator. The next logical step is therefore to see if the theory
holds equally well when the machine is subject to arbitrary load conditions.

4 .5 The Machine Under Load

Several load conditions will be considered in this section. All the
cases that will be presented, however, will be with the turbine-generator run

at or near its rated MVA. This approach is taken because it represents a
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worst case scenario and it corresponds to the maximum discrepancies
between theoretical and simulated results. Although this statement may
not seem self-evident, its validity was indeed checked through many

comparison tests.

Three load cases will be investigated. The first simply comprises a
purely resistive load with R= 1.0 p.u. The second is chosen to be an RL load
(Z = 1.0 p.u.) with a power factor of 0.707 . The final case will consist of
an active, HVDC load. In this case the validity of the theory has not
expressly been proven; however since the theory is valid for a completely
arbitrary passive load, it should prove to be of some use in analyzing the

behaviour of turbine-generators connected to HVDC link as well.

4 .5 .1 The Resistive Load

The system to be modelled here is again shown in Figure 4 .5 ,where

the load is now purely resistive with a magnitude of 1.0 pu.

Once again the phase A terminal voltage of the generator is analyzed
and its normalized Fourier spectrum is shown in Figure 4 .9 . From this
spectrum and the modal theory the speeds of the three masses are
calculated (again, the possiblity of a phase shifts are ignored).

Wgen = Wo + 1.564 cos 27f,,1 + 0.2749 cos 2mf,ot

(4.9)
Wbt = W, + 1.072 cos 2af,,1¢ + 0.3718 cos 2mf, 0t
(4.10)
Oprp2 = W + 0.1402 cos 27f,, 1t + 0.9507 cos 2nf, ot
(4.11)
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Figure 4 .9 : The Fourier Spectrum of the Generator Terminal Voltage -

The Resistive Load Case.
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Figure 4 .10 gives the actual spectra of the mass speeds. The

predicted oscillating amplitudes found from the theory are also shown on

these plots. The exact oscillating amplitudes are given in Table 4 .7 and

the percent errors between the theoretical and simulated results are given

in Table 4 .8 .

Table 4 .7 : Comparison of the Theoretical and Simulated Oscillating

Amplitudes - Resistive Load of 1.0 pu.

Oscillating Amplitude at Oscillating Amplitude at
16.6 hz 336 hz
mass predicted measured predicted measured
generator 1.564 1.619 0.2749 0.2793
turbine 1 1.072 1.115 0.3718 0.3716
turbine 2 0.1402 0.1519 0.9507 0.9633
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Table 4 .8 : The Percent Error in the Theoretical Oscillation Amplitudes -
Resistive Load of 1.0 p.u.

Error in the Theoretical Error in the Theoretical

mass Amplitude at 16.6 hz Amplitude at 33.6 hz
generator -34% -1.6%
turbine 1 ~-39% +0.1%
turbine 2 7.7 % -13%

Although the predicted oscillation amplitudes are not quite as accurate as
in the no load case of the previous section, the errors are still quite
acceptable. This increased error is partially due to the neglect of the
armature resistance which now plays a role, and also the damping
introduced by the resistive load which causes some distortion of the Fourier
spectrum. (Once again the error is largest in the 33.6 hz oscillation due to

the small size of its corresponding band, at 94 hz, on the Fourier Spectrum.)

4 .5 .2 The RL Load

In order to demonstrate that the theory holds for an arbitrary RL load
many simulations should be run and all results should be checked against
thee theory. Such a rigorous verification of the theory was indeed
performed, however, for the sake of brevity only one sample RL load will be
considered. Also, introduction of a capacitor into the circuit has no
substantial impact on the accuracy of the theory; however this can only be

proven by simulation if stable operation exists.

Figure 4 .11 shows the normalized Fourier Spectrum of the phase
A terminal voltage. From this spectrum the mass speeds are calculated to

be as shown on the following page (phase information ignored).
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Figure 4 .11 : The Fourier Spectrum of the Generator Terminal Voltage —
The RL Load Case.

Ween = Wo + 1.960 cos 27fit + 0.3165 cos 2frt

(4.12)
Wbl = W, + 1.343 cos 2nf1¢ + 0.4282 cos 2mfyt

(4.13)
Brurby = W, + 0.1756 cos 27f11 + 1.095 cos 2mfst

(4.14)

Figure 4 .12 graphically compares the theoretical and simulated
mass. The exact oscillating amplitudes are given in Table 4 .9 and the
percent errors between the theoretical and simulated results are given in
Table 4 .10 .
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Table 4 .9 : Comparison of the Theoretical and Simulated Oscillation

Amplitudes - RL Load of 1.0 pu, 0.707 pf.

Oscillating Amplitude at Oscillating Amplitude at
16.6 hz 33.6 hz
mass predicted measured predicted measured
generator 1.960 1.958 0.3165 0.3212
turbine 1 1.343 1.340 0.4282 0.4371
turbine 2 0.1756 0.1747 1.095 1.107

Table 4 .10 : The Percentage Error in the Theoretical Oscillation
Amplitudes - RL Load of 1.0 pu, 0.707 pf.

Error in the Theoretical Error in the Theoretical
mass Amplitude at 16.6 hz Amplitude at 33.6 hz
generator 0.1 % -1.5%
turbine 1 02% -2.0%
turbine 2 0.5 % —-1.1%

Three loads with very different characteristics have now been
analyzed: a no load case, a full load resistive case and a highly inductive
fullload case. Tables 4.3, 4 .8 and 4 .10 show the percent error between
the theory and simulation results for the three cases. Comparing these
three tables now shows that the load conditions really only have a marginal
influence on the accuracy of the theoretical calculations. By extension, it
should be clear that the inclusion of documentation on other load scenarios

will introduce no new insights into the area.
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4 .5 .3 The HVDC Load

The theory has now been validated for a variety of passive load
conditions. Itis conjecture that the same analysis technique can be usefully
applied to other types of loads. A test of this conjecture will be performed
which consists of connecting the multimass machine model to an HVDC
load network. The HVDC network to be used will be a modification of the
CIGRE Benchmark model [18]. All power at the rectifier end will be
supplied, through a transformer, by the 588 MVA machine which has
already been analyzed. The power demands of the system are modified so
that the machine is operating near its full load rating and the compensation

on either side of the link is adjusted accordingly.

Turbine~Generator Rectifier inverter AC Powar System

B3O

' _'IH’ Damped low

é— m ZS —%%— frequency filter
4 S1S —]

Damped low

frequency filter

I
. q = b
Damped high .
frequency tilter Damped high

frequency filter

Figure 4 .13 : The Multimass Turbine-Generator connected to the CIGRE Benchmark
Model

Although a completely static field voltage is still employed on the
machine, all DC link controls are left unmodified and fully enabled. The

basic system configuration is as shown in Figure 4 .13 .
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Amplitude (p.u.)

Just as in the previous cases, the phase A generator voltage is
analyzed and its normalized Fourier spectrum is shown in Figure 4 .14
below. Due to the large size of the new network, simulation was only carried
out for 2 seconds after the application of the disturbance. For this reason

the spectrum of Figure 4 .14 has a frequency increment of Af=0.5 hz

rather than 0.25 hz as in the previous cases.
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Figure 4 .14 : The Fourier Spectrum of the Generator Terminal Voltage ~

The HVDC Load Case

Unlike the spectra of the previous sections, a substantial amount of
noise is now present in the subsynchronous domain. Thisisa consequence
of the normally operating HVDC controls which are reacting to the system
disturbance that initiated the turbine-generator shaft oscillations [19].
This noise has the effect of masking the lower subsynchronous bands and
therefore, only the upper bands of the spectrum can be used to determine
the amplitudes of the shaft oscillations.
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Figure 4 .15 graphically shows the simulated and theoretical
turbine-generator shaft oscillation amplitudes for the HVDC load case. The
exact amplitudes are also shown in Table 4 .11, while the percent error in

the theoretical values is given in Table 4 .12 .

Table 4 .11 : Comparison of the Theoretical and Simulated Oscillation
Amplitudes — The HVDC Load.

Oscillating Amplitude at Oscillating Amplitude at
16.6 hz 33.6 hz
mass predicted measured predicted measured
generator 2.232 2.115 0.2901 0.2973
turbine 1 1.529 1.468 0.4505 0.4204
turbine 2 0.2000 (0.1986 1.003 1.044

Table 4 .12 : The Percentage Error in the Theoretical Oscillation

Amplitudes — The HVDC Load.

Mass

Error in the Theoretical
Amplitude at 16.6 hz

Error it the Theoretical
Amplitude at 33.6 hz

generator 5.5% ~-24%
turbine 1 4.2 % 7.2 %
turbine 2 0.7 % -39%

As can be seen from the spectra of Figure 4 .15, and the percent

errors of Table 4 .12, the conjecture does, in fact, prove to hold for the
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HVDC load case. Although the theory produces somewhat less accurate
results than when a passive load is used, the errors which exist here are by

110 means excessive,

This load case is significant because it demonstrates the validity of the
theory even when a turbine-generator is connected into a system which

contains active elements, run by complex control structures.
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5 .1 Conclusions

A process based on the Fourier Transform of a machine’s terminal
voltage was proposed, to measure the frequency and amplitude of
subsynchronous resonances in a multimass turbine-generator system. A
theoretical mode shape model was developed for a three mass system to
relate generator terminal measurements to the amplitude of shaft angle
oscillations. Although only a 3 mass model was investigated, extension of
the theory to 4 or more masses requires only a straightforward recalculation

of the mode shapes.

The theory was first developed for an unloaded generator and then
expanded to include arbitrary load conditions. Rigorous testing of the
theory was performed using EMTDC simulation, and the results for
selected passive load configurations were presented. The applicability of the
theory to an active HVDC load was also demonstrated. The accuracy of all
theoretical results proved to be very acceptable.

The information obtained by this analysis technique has, of course,

many applications in the areas of system control and shaft stress
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monitoring. This process should prove to be an economical and practical
alternative to the installation of shaft angle sensors which are used in many

applications today.

5 .2 Recommendations

There is a great deal of room for further work in the area of
subsynchronous oscillation measurement. The analysis presented in this
thesis has related shaft oscillation amplitudes to the Fourier spectrum of
the terminal voltage waveform. When implementing such a process, it
would, however, be beneficial to perform the spectral analysis on the
machine’s internal voltage rather than the terminal voltage. This would
have the effect of increasing the accuracy of the calculated oscillation

amplitudes.

Perhaps the most meaningful extension of this work would be to
replace the Fourier spectral analysis with phase locked loop technology.
Since the oscillating frequencies of the turbine-generator are known in
advance, phase locked loops could be tuned to lock on to and measure the
amplitude of the side bands in the voltage spectrum. Not only would this
be an extremely practical extension, but it would also yield phase
information about the subsynchronous oscillations. This information

could be directly employed in the control networks of HVDC links.
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Calculation of Mode Shapes
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GENERATOR TURBINE 1 TURBINE 2

jl = 10500 j2 = 8590 i3 = 14200 k12 := 105000000
k23 1= 178000000
Sit 0o o k12 -k12 0
K = | -k12 kI12+k23 -k23
N = i2
0 J"_ 0 0  -k23 k23
0 0 JB
B = N1.K+N!
A = eigenvals(B)
1.089604+ 10" Ay 000 00 0
A=|0 Di=|0 A& 0 D=f0 10910 o0
4.458445+10° 0 0 A, 00 44610
¢l = eigenvec[B,Al] c2 = eigenvec[B,?\o] c3 = eigenvec[B,?\z]
0.561614 -0.780495 -0.274621
cl =| 0.507972 ¢2 = 0063256 3 =| 0859048
0.653111 0.621953 -0.431995

Define the C matrix which contains the eigenvectors:

cly ¢2, c3,
Ci=fcly c2; ¢3;

cl2 c22 c:32



0.005481 -0.007617 -0.00268

1 -
N -C E=| 0005481 6.825038+10" 0.009269
0.005481 0.005219 -0.003625

E:

The resonant frequencies of the system ara:

w2 = P\.O w2 = 1044 w3 = I?tz w3 = 2112
w2 w3
2 = f2 = 16.613248 f3 = f3 = 33.605615
[2+7] [2:n]

The Mode shapes can now be found from appropriate normalization of the E
matrix.

i i i

Ez,00 Ea.y Ea.y

R = E(O.O) E(O,l) E(G.z)

Euio Bany Eup

| Bo.0) Bo.1y Eeo,2 ]
11 1

R =] 1 -0.685232 1352679
1 -0.089604 -3.458445



