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ABSTRACT 
 

It is difficult to detect atherosclerotic plaque from optical coherence tomography (OCT) images 

via visual inspection. In this work, we developed three algorithms to allow us to detect 

atherosclerotic plaque more effectively: (i) a statistical method that uses higher-order moments; 

(ii) a model-based method that enables vascular plaque to be automatically identified based on the 

textural features in OCT images; (iii) and a sparsity-based segmentation algorithm in the curvelet 

domain. All three algorithms do not rely on visual inspection at all.  

The statistical method consists of three main components: extracting statistical image textural 

features using the Spatial Gray Level Dependence Matrix (SGLDM) method; applying an 

unsupervised Fuzzy C-means clustering algorithm to these features; and, finally, mapping specific 

clustered regions—namely, background, plaque, vascular tissue, and the deep-depth degraded 

signal in feature-space—back to the actual image. Since the use of the full set of 26 textural 

features is computationally expensive and may not be practical for real-time implementation, we 

identified a reduced set of 6 textural features, which were used to characterize vascular plaque via 

sparse principal component analysis. However, our clustering-based algorithm results had some 

limitations, most notably non-smooth and coarse segmentation results.  

To overcome this low spatial resolution limitation, we developed a stochastic model to segment 

OCT images of vascular tissue into plaque and non-plaque (i.e., healthy tissue) regions, as well as 

background regions. Our stochastic model is based on a maximum a posteriori-Markov Random 

Field (MRF-MAP) framework wherein OCT images of vascular tissue were modeled as a Markov 

random field. This MRF-MAP-based algorithm yielded results with better spatial resolution, but 

it is not consistent and also computationally expensive, thereby impractical for real-time 

implementation. 
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Our third approach, using a sparsity-based segmentation algorithm in the curvelet domain, 

overcame the two limitations above by generating both fast and high-resolution vascular plaque 

detection from OCT images.  

We verified the validity of the results of all three methods using both qualitative and quantitative 

methods. Specifically, all results were compared with 1) actual photographic images of vascular 

tissue samples, 2) histology results, and 3) ground truth obtained from manual segmentations 

performed by four cardiovascular surgeons from the Intervention Cardiology Group at St. Boniface 

Hospital, Winnipeg, Manitoba. These comparisons of results demonstrated that our three methods 

allow good plaque detection, thus making them potential clinical tools for the detection of vascular 

plaque from OCT images and for clinical studies involving OCT imaging of vascular plaque.  
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Chapter 1: INTRODUCTION 

1.1 Thesis motivation 
 

Cardiovascular diseases are one of the leading causes of mortality and morbidity around the world. 

As such, it is crucial for medical professionals to be able to detect the conditions that cause 

cardiovascular disease. The formation of vascular plaque is considered to be the primary 

underlying pathology of coronary heart disease, as it can accumulate to the point where it blocks 

arterial blood flow. Among the many medical imaging methods that have been utilized to detect 

vascular plaque, Intravascular Optical Coherence Tomography (IVOCT) has been proven to be 

equal to Intravascular High-Resolution Ultrasound (IVUS) in its ability to detect calcified plaque 

morphologies. In addition, IVOCT also possesses several features that make it highly suitable for 

intravascular imaging, including high imaging resolution, small-size fiber-based imaging probes, 

and the availability of advanced image-processing techniques, which allow physicians to extract 

diagnostic information from Optical Coherence Tomography (OCT) images. In this work, we 

present three algorithms that enable the automatic detection of vascular plaque from OCT images: 

(i) a statistical method that utilizes higher-order moments; (ii) a model-based method that enables 

vascular plaque to be automatically based on the textual features of OCT images; and (iii) a 

sparsity-based segmentation algorithm in the curvelet domain that does not rely on visual 

inspection. Our statistical method consists of 3 main steps: using the Spatial Gray Level 

Dependence Matrix (SGLDM) method to extract a full set of 26 statistical features; applying an 

unsupervised clustering algorithm method on these features; and mapping of the clustered regions: 

namely, background, plaque, vascular tissue, and the deep-depth degraded signal in the feature-

space back to the actual image. Given that the use of the full set of 26 textural features is 

computationally expensive and may not be feasible for real-time implementation, we also identify 
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a reduced set of 6 textural features, which we use to characterize vascular plaque via sparse 

principal component analysis. However, our clustering-based algorithms are hampered by several 

limitations, most notably non-smooth and coarse segmentation results. To overcome this 

limitation, we developed a stochastic model based on a maximum a posteriori – Markov Random 

Field (MRF-MAP) framework, wherein OCT images of vascular tissues are segmented into 

plaque and non-plaque. One of the main disadvantages of the MRF-MAP technique is that it has 

extremely high computational costs due to requiring numerically approximating the MAP 

estimate. To address this limitation, we utilize a sparsity-based method using a curvelets-based 

algorithm, wherein the image is sparsely represented in the curvelets transform domain. The results 

of these three algorithms were validated quantitatively by comparing them with ground truth, 

which was formed based on the consensus of four surgeons. In addition, we further validated our 

results visually by comparing them with histology and actual photographic images of vascular 

tissues. It is expected that our results will yield an efficient pre-clinical tool for detecting vascular 

plaque from OCT images. 

1.2 Background on vascular plaque and a review of relevant imaging techniques 

1.2.1 A general overview of vascular disease  

Coronary heart disease (CHD) did not become a significant problem until the beginning of the 

20th century. The later part of the 20th century, particularly between 1968 and 1980 [1], saw a 

dramatic increase in the prevalence of CHD and its entrenchment as a significant cause of 

mortality and morbidity in developed countries in Europe and North America [1,2], largely due to 

changing lifestyles within these countries. Comparative prevalence of the condition is currently 

witnessed in several countries across the globe. In the developed world, atherosclerosis is a leading 
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cause of death and disability, with vascular diseases being one of the leading causes of death in 

Canada.  

Approximately 70,000 Canadians suffer strokes each year; another 16,000 die from heart attacks, 

which accounts for 29% of all deaths in Canada [3]. The decline is partially explained by improved 

survival rates after myocardial infarction (MI). Nine in ten Canadians, or 90% of the population, 

possess one of the major risk factors of heart attack or strokes, which include physical inactivity, 

smoking, obesity, high blood cholesterol, high blood pressure, and diabetes [3]. With the projected 

increase in the number of cases, there is a need for more research into novel methods that can be 

used to identify and characterize CHD efficiently.  

It is difficult to track the development of vascular plaque on the artery wall during the early stages 

of CHD due to its asymptomatic and silent nature, and the inability to completely characterize 

vascular plaque lesions in individual patients is a key limitation currently faced by medical 

professionals [4]. Cardiovascular diseases are the clinical consequences of arteriosclerosis [5], 

which is a chronic lesion that affects segments of arteries. Arteriosclerosis is generally caused by 

a combination of hypertrophic (enlargement of cells) and fibrous changes in the entire thickness 

of the inner arterial wall [6]. 

Arteries are the blood vessels that carry blood from the heart to all parts of the body, and their 

thick wall structure is critical in managing the high pressure of ventricular heart contractions. 

Arteries are composed of 3 different tunica (layers): the endothelium (intima), the media, and the 

adventitia [5] (Fig.1.1). The endothelium, also referred to as the "intima," is the innermost layer of 

the artery, and it is composed of endothelium cells, which are responsible for lining the interior 

surface of blood vessels, fluid filtration, and blood clotting [7]. The media is the middle layer of 

the artery and is composed of a layer of elastic tissue and smooth muscle. The primary function of 
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this layer is to control vascular tonus [8]. The outermost layer, the adventitia, is composed of 

collagen and fibrous connective tissue, which cover and protect the artery structure in order to 

support the artery wall and prevent it from tearing [8, 9]. 

Plaque formation most commonly impacts the media and adventitia by obstructing blood flow, 

which can lead to angina, myocardial infarction, heart failure, sudden death, or stroke. 

 

 
Fig. 1.1. Arterial anatomy. 

1.2.2 Formation of vascular plaque 

Vascular plaque is comprised of fatty substances such as cholesterol (low-density lipoprotein and 

very-low-density lipoprotein), cells, calcium, and fibrin [10]. The formation of vascular plaque 

occurs when cholesterol deposits on the arteries harden. In response, the body’s immune system 

attempts to remedy the situation by sending white blood cells to trap the cholesterol; however, this 

causes the cholesterol to further turn into foamy cells that release more fat and cause more 

inflammation. The muscle cells of the arteries are subsequently triggered to multiply and form a 

cap over the affected area, which is problematic because the soft plaque trapped beneath the cap 

is often quite dangerous. Indeed, this soft plaque is the leading cause of heart attack. When the 

person’s blood pressure spikes, the soft plaque exerts pressure on the plaque's thin walls, which 

consequently break open and cause a clot to form. This process causes the artery wall to thicken, 
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which reduces the artery's interior diameter, thus obstructing blood flow within [10]. This process 

occurs gradually, and larger plaques can completely block blood flow. When coronary arteries are 

affected, the obstruction of blood that supplies the heart muscle can lead to angina or myocardial 

infarction; conversely, when the carotid arteries that supply the brain are obstructed, a stroke may 

occur. Similarly, obstruction of the renal arteries may result in kidney disease, while obstruction 

of the peripheral arteries may lead to gangrene [10]. 

Unfortunately, the process of removing the cholesterol from the plaque is often difficult, as it 

involves adjusting the levels of blood cholesterol [11]. Low-density lipoprotein (LDL) deposits 

cholesterol into the blood vessels; however, high LDL removes deposited cholesterol from the 

bloodstream. The process of changing normal concentrations of LDL is not easy and wrought with 

complexities. Nonetheless, several processes exist for reducing increased LDL concentrations, 

including the use of statins, lovastatin, and pravastatin, which impede the liver’s production of 

cholesterol-inducing enzymes. In addition, the use of another drug, ezetimibe, has also been shown 

to be effective at blocking cholesterol in the digestive tract. The process of shrinking plaques using 

statins has come to be considered desirable, especially when the LDL value gets below 70 mg/dl.  

There are other methods of preventing this condition as well. For instance, previous studies have 

demonstrated the importance of lifestyle changes in mitigating the condition. While post-mortem 

examinations provide invaluable information about the histopathologic tendencies of the 

vulnerable plaques, such studies are often limited by selection bias. Additionally, previous studies 

have only considered lesions at the most advanced stages. As such, these studies are considered a 

snapshot that cannot provide primary information relating to the natural history of the plaque-

build-up process. This deficiency is partly due to the use of intracoronary imaging in patients [12]. 
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This paucity in research clearly highlights the need for the development of intracoronary imaging 

methods that are able to quantify unstable and rapture-prone plaques. 

1.2.3 Risk factors of vascular disease 

Kakkos et al. (2007) [13] have described the causes of vascular plaque and its associated risk 

factors. High blood concentration of lipoprotein B-containing lipoproteins, of which LDL is the 

most dominant form, is one of the main determinants of CHD. LDL is also strongly associated 

with familial hypercholesterolemia (FH) and genetic hyperlipidemias (monogenic disease). 

Vascular plaque often develops under low LDL concentrations alongside a combination of other 

risk factors, including diabetes, smoking, hypertension, gender, and genetic susceptibility to the 

condition. The condition is normally prevented using statins and anti-hypersensitive drugs. 

Lifestyle modification is another necessary approach to preventing the condition. For instance, 

since smokers have an increased risk of suffering from the condition, it would be prudent for them 

to quit in order to reduce their chances of developing it. Lifestyle changes indicate the 

multifactorial basis of the condition.  

Previous research has established that individuals with exceedingly low LDL fail to develop 

clinically relevant atherosclerosis, irrespective of other risk factors [12,13]. Mendelian 

randomization studies have demonstrated that LDL acts as a buffer against the pathogenesis of 

vascular plaque [14], which underscores its central higher order as a causal factor for the common, 

multifactorial form of the condition. Previous studies indicate that modifiable risk factors explain 

more than 90% of the causes of MI across the world [15]. Cardiovascular disease (CVD) is the 

main cause of mortality and disability in various countries across the world and initially manifests 

in the form of fatal or leaves irreversible sequelae [16]. While CVD must be stratified according 

to the patient’s risk level, experts are exempted from using primary prevention risk equations when 
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assessing patients with genetic hypercholesterolemia (GH), as prior research has demonstrated 

that the use of such equations underestimates this group’s risk level [17]. Indeed, GH patients are 

at high-risk for CVD due to their abnormal levels of atherogenic lipoproteins, which they normally 

possess from birth.  

Apart from lifestyle changes, there are recommendations for food consumption. For instance, one 

study indicated that eating a Mediterranean diet—which is rich in olive oil, fruits, vegetables, fish, 

low-processed foods, and moderate wine consumption—reduces the chances of cholesterol 

development by approximately 30% [18]. Additionally, the role of a sedentary lifestyle in the 

pathophysiology of cardiovascular diseases has been well-established. Aerobic exercise has been 

shown to increase HDL levels, lower blood pressure, burn body fat, and lower blood sugar levels. 

Individuals with risk factors for CVD should consider engaging in moderate-intensity exercise for 

150 minutes per week, as exercise regimens oriented towards weight loss have been shown to 

further lower LDL levels in the blood [19]. Smoking cessation is another notable step that one can 

take to reduce one’s risk of developing CVD. Research indicates that quitting smoking can lower 

one’s risk of developing CVD by approximately 20%, in addition to raising their HDL levels. In 

summary, the most common risk factors that contribute to the development of CVD are as follows: 

• Hypertension 

• Dyslipidemia (Referred to as High blood cholesterol) 

• Cigarette Smoking 

• Diabetes Mellitus 

• Physical Inactivity 

• Stressful Lifestyle 

 



21 

 

1.2.4 Types of vascular plaque 

Type I (Adaptive Initial Thickening): This is the earliest vascular change that can be described 

microscopically and is found in at least 30% of neonates at birth. The intima of human arteries 

contains resident smooth muscle cells [20]. 

Type II (Fatty Streaks): This lesion starts when extracellular lipids are caused by risk factors such 

as high cholesterol, smoking, hypertension, obesity, insulin resistance, and the accumulation of 

adhesion molecules in the intima as a result of endothelium dysfunction. The inflammatory process 

begins with the adherence of leukocytes (immune system cells), especially monocytes (a larger 

version of leukocytes), in the intima. When the lipid accumulation is not significant enough, the 

leukocytes begin to accumulate lipids and transform them into foam cells. Fatty Streaks do not 

cause symptoms, can evolve into more complex lesions, or even disappear.  

Type III (Pathologic Intimal Thickening): When the lipid accumulation (fatty streaks) does not 

disappear, it grows up into intermediate lesions due to the attraction of numerous leukocytes 

(monocytes). Known as an intermediate lesion, this lesion type is characterized by lipid pools near 

the medial wall in areas that generally lack smooth muscle cells (due to the apoptosis of foam cells 

produced by the down-regulated degeneration of the fatty streaks by the leukocytes). 

The luminal surfaces, however, are most abundant in smooth muscle cells and are often 

accompanied by infiltrating foam cells. Another characteristic of these lesions is 

microcalcification. 

Type IV Fibroatheromas (vulnerable plaques) are the first of the advanced lesions and are 

characterized by an acellular necrotic lipid core that attracts more macrophages from the 

bloodstream. The core is embedded in the depth of the plaque, surrounded by fibrous tissue. 
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Type V (Plaque Stability): This lesion is characterized by the migration of smooth muscle cells to 

the affected lesion. This results in the overgrowth of the foam cells, which leads to the formation 

of a layer of collagen called the fibrous cap. The fibrous cap (considered as stable plaque) plays a 

critical role in harboring the contents of the necrotic core, and its integrity is one of the defining 

influences on plaque stability. 

Type VI (Thrombosis): This is the last lesion prior to atherosclerosis. In this stage, the artery wall 

thickens, resulting in reduced artery diameter and obstructed blood flow [20]. The endothelial cells 

(due to the degeneration of this layer) covering the fibrous cap become extremely thin, fragile, and 

susceptible to erosion. As a result, the endothelial layer becomes injured, and the released material 

exposed to the flowing blood initiates the sudden formation of a blood clot, also known as 

thrombosis, which blocks the lumen of the artery. Plaque rupture is the primary process responsible 

for myocardial infarction and stroke. 

1.3 Imaging techniques 

Vascular plaque formation is a chronic disease that progresses slowly and presents significant 

symptoms. Although it cannot be tracked during the early stages, it can be monitored via diagnostic 

imaging processes prior to clinical manifestations of CVD. New imaging modalities continue to 

emerge because of new developments, device improvements, and the application of new energy 

sources. A sample population from the Asymptomatic Polyvascular Abnormalities Community 

(APAC) study was examined via sonography with high-resolution beta-mode ultrasounds in order 

to investigate the epidemiology and presence of asymptomatic intracranial atherosclerosis stasis, 

carotid atherosclerosis, and peripheral artery disease [21]. The study examined the bilateral carotid, 

including the common carotid artery, carotid bifurcation, and the internal carotid artery (ICA). 

However, the researchers reported issues with the use of sonography, which emphasizes the need 
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for effective strategies for the detection and prevention of atherosclerosis and IS. The research 

findings further found that individuals with higher cardiovascular health (CVH) scores were at 

lower risk of developing carotid plaque.  

Treating CVD typically involves targeting small and unstable plaques. For a 30% blockage, the 

goal is usually to reduce it to 15% by sucking the cholesterol from the inside of the artery. The 

common understanding of the pathology of unstable and vulnerable atherosclerotic plaques is 

mainly based on a limited number of studies [22], which have usually consisted of post-mortem 

examinations of the human coronary arteries. Other studies have used resected surgical specimens 

from patients who underwent carotid endarterectomy for either primary or secondary prevention 

of transient ischemic attack or stroke [22].  

The most common imaging modalities used in vascular plaque imaging are:  

Angiography: First performed in humans in 1958, this traditional method is used to visualize 

arteries, veins, and heart chambers [23]. Angiography is an invasive technique that provides in-

vivo high-resolution images. In this imaging method, a contrast agent is applied to the area to 

enhance the medium, which is imaged using an X-ray-based technique (fluoroscopy) [23]. 

Angiography provides detailed anatomic imaging but is unable to provide a functional assessment. 

Intravascular Ultrasound (IVUS): This technique provides extremely high-resolution cross-

sectional images with direct arterial vascular wall imaging through high-frequency ultrasound. 

This kind of ultrasound is typically performed at 20-40 MHz, which allows resolutions of 

approximately 15-20 μm [23]. Compared with conventional angiography, IVUS imaging enables 

the tomographic assessment of the lumen area, as well as plaque size, distribution, and 

composition. However, this modality still relies on visual inspection, which can be problematic, 

as different tissue components may appear remarkably similar [24]. 
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Computed Tomography (CT): This imaging procedure uses special x-ray equipment to create a 

series of scans of areas inside the body. A fast-gated helical CT (i.e., multidetector CT) can 

precisely detect the quantity of calcium in vascular plaque lesions. 

Magnetic Resonance Imaging (MRI): MRI is a non-invasive medical imaging technique that 

employs magnetic radio waves to take anatomical images, and it is also capable of distinguishing 

soft-tissue contrast. The advantage of MRI is that it can detect plaque formation in its early stages, 

but it is unable to provide any information on the actual risk of plaque rupture [24]. 

Near-Infrared Spectroscopy: This technique is based on the principle that organic molecules 

absorb and scatter light to different degrees at various wavelengths (800-2500 nm). This approach 

works by sending light into a sample and then measuring the proportion that is returned. This 

method enables researchers to obtain the chemical characterization of coronary artery plaques 

(chemo grams, which display the probability of lipid core plaque). Although this technique has 

been demonstrated to be feasible, accurate, and safe for application in humans, it requires further 

extensive study before it can be applied in clinical practice [23]. 

Intravascular Optical Coherence Tomography (IVOCT): IVOCT is a minimally invasive light-

based imaging modality based on low-coherence interferometry and developed explicitly for the 

identification of vascular plaque [25- 27]. IVOCT generates cross-sectional 2-dimensional images 

from emitted and reflected near-infrared light. It offers a superior resolution to that of IVUS (about 

4-20 μm) but limited tissue penetration of 2-3 mm, which enables improved plaque 

characterization and a histology-grade definition of the coronary plaque microstructure. OCT can 

accurately detect thin fibrous caps, lipid pools, and macrophage infiltration.  
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Additionally, OCT uses a caterer to reach the medium that is to be imaged; however, since light 

emission is highly attenuated by blood, it should be displaced during OCT imaging by applying 

contrast flushes or an angioplasty balloon [23]. 

OCT has been employed in numerous applications, and it has the potential to be used in many 

medical imaging fields and applications. The two most promising areas of OCT application are 

heart disease and cancer detection. Furthermore, the use of OCT imaging can improve current 

cardiovascular therapies, such as stenting and balloon angioplasty, as it is able to provide vascular 

images in real-time.  

OCT can differentiate between stable and unstable plaques by visually identifying the plaques in 

the bloodstream. These types of plaque are responsible for up to 70% of all heart attacks. The 

OCT’s optical fiber probe is easily adaptable to coronary catheters [28], which allows it to be 

inserted into arteries to acquire arterial pathology images. The first investigation of IVOCT 

demonstrated its ability to perform microscopic tomographic imaging of the internal 

microstructure of vascular plaques in vitro [29]. In addition, further developments in IVOCT 

technology have enabled intracoronary imaging in human patients [30-33]. IVOCT can 

differentiate the three layers of an artery wall. It depicts the intima (innermost layer) as a signal-

rich layer, the media (middle layer) as a weak signal layer, and the adventitia as a signal-rich layer. 

Moreover, OCT is also able to identify three types of vascular plaques: lipid-rich, fibrous, and 

fibrocalcific.   

Yabushita et al. (2002) developed the first steps to differentiating different vascular plaque 

components using IVOCT imaging, thereby validating and testing its accuracy. To perform this 

validation and accuracy test, they used 357 specimens and histology images to perform different 

vascular plaque characterizations.  
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Their validation results showed that sensitivity and specificity ranged from 71% to 79% and 97% 

to 98% for fibrous plaques, 90% to 94% and 90% to 92% for lipid-rich plaques, and 95% to 96% 

and 97% for fibrocalcific plaques, thus demonstrating IVOCT’s potential for differentiating lipid-

rich plaques from other plaque types [28]. IVOCT is also capable of identifying additional plaque 

components that may be associated with coronary events. Some of these features [33] and calcic 

nodules are associated with plaque thrombosis in some cases [23, 24]. Studies have also shown 

that, compared to histopathology, IVOCT can diagnose calcific nodules with 96% sensitivity and 

97% specificity [33]. Cholesterol crystals are another notable feature that can be imaged via 

IVOCT. Studies have shown that the presence of cholesterol crystals increases the stiffness of the 

lipid pool stiffness and may, therefore, decrease the likelihood of plaque rupture [34]. Cholesterol 

crystals appear in OCT images as oriented, linear, and highly reflecting structures within the 

plaques [35]. Multinucleated macrophages are an inflammatory response to a foreign body, such 

as cholesterol crystals, within the plaque. These cells can also be identified by IVOCT, appearing 

as large, highly reflecting regions [33]. The features of IVOCT that make it attractive and superior 

for intravascular imaging are its high resolution, the small size of its fiber-based imaging probes, 

and the availability of advanced image-processing techniques to extract and assess diagnostic 

information [36-45]. IVUS is capable of higher resolution compared to IVOCT, which enables it 

to provide more detailed visualizations of the anatomical features of the arterial wall and plaque. 

Furthermore, IVOCT’s ability to detect calcified plaque morphologies has also been shown to be 

equal to that of IVUS. Additionally, other studies have demonstrated the clinical application 

of IVOCT and its superiority to IVUS in detecting characteristics of vascular plaque 

[46]. Although IVUS is not capable of identifying microstructural features of vascular plaque, it 

can identify non-plaque vessels and arterial disruptions. A study was conducted to compare 
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IVOCT-IVUS image pairs obtained from different patients [47]; in all cases, it was found that the 

IVOCT observations were more consistent than the IVUS observations. These findings establish 

IVOCT as a promising imaging modality for extracting diagnostic information related to a 

vascular plaque. Finally, the use of texture analysis may make it possible to differentiate between 

visually uniform tissue types in IVOCT images [48].  Recently researchers also have also used 

deep learning techniques such as convolutional neural networks to characterize vascular plaques 

in OCT images [49].  

Juhwan et al. developed a fully automated vascular plaque characterization using deep learning 

models to classify lipidous and calcification plaque regions.  The algorithm was validated on 89 

volumes of interest having calcification on 32 regions, lipidous on 36 regions, both calcification 

and lipidous on 12 regions, and 9 regions of both without calcification and lipidous regions. They 

found the sensitivities and specificities for pixel-wise classification to be 87.4% /85.1% and 

85.1%/94.2%, respectively.  

Abdolmanafi et al. [50] used a deep learning AlexNet model to extract features, and then the 

arterial borders and plaque region were classified using supervised classifiers, e.g.,  random forest 

and support vector machine classifiers. Addolmanafi et al. [51] also proposed another deep 

learning-based method using a convolutional neural network and a fully convolutional neural 

network to classify the normal arterial wall and diseased or affected arterial wall. Their dataset 

compromised of 45 OCT pullbacks with ~100 images per pullback.  They found the accuracy to 

be 96% for a diseased arterial wall structure and 91 % for a normal arterial wall.  
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Yong et al. [52] proposed a fully automated algorithm based on linear regression convolutional 

neural network to segment coronary lumen in IVOCT. They achieved 98.5% in dice coefficient 

and 97% in the Jaccard similarity index.  

He.et.al [53] proposed a convolutional neural network-based method to classify vascular plaque 

in OCT images automatically. Their dataset consisted of 269 OCT images, and they found the 

average prediction accuracy to be 86.6%.  

In summary, IVOCT imaging could enable faster and more accurate diagnoses of vascular disease. 

As technology becomes increasingly advanced, it may be possible for physicians to use IVOCT 

as a clinical tool for diagnosis.  

1.4 Dissertation outline 

 
This thesis proposal consists of six chapters. In chapter 2, we present the dataset used in this thesis, 

we describe the main advantage of using a specific animal model, and we explain the specifics of 

the OCT imaging technique used in this work. Furthermore, we introduce our evaluation 

technique, which utilizes both qualitative and quantitative measurements. In Chapter 3, we 

describe our first plaque detection algorithm, and we also introduce the feature generation and 

selection methods used in this work. In Chapter 4, we present our model-based plaque detection 

algorithm, in which OCT images are modeled as a Markov random field. Chapter 5 presents our 

sparsity-based vascular plaque segmentation method in the curvelet domain. Finally, Chapter 6 

presents the conclusions of our work and outlines directions for future work. 
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Chapter 2: DATASETS 

2.1   Texture analysis 
 

IVOCT’s high spatial resolution (typically 10 to 15 µm), high contrast, and volumetric 

imaging make it a potentially useful tool for the detailed study of the morphological structures of 

plaques. OCT’s high resolution enables it to contrast structural proteins, which makes it invaluable 

in observing plaque risk stratification. While many medical imaging methods have been utilized 

to detect vascular plaque, OCT has proven to be particularly effective for high-resolution detection 

of calcified plaque morphologies. Furthermore, OCT possesses several additional features that 

make it highly suitable for intravascular imaging; however, the use of OCT images to visually 

quantify and detect atherosclerotic plaques is a difficult task. Some studies have attempted to 

analyze the texture of carotid plaques through ultrasound models using a statistical method based 

on the Gray Level Co-occurrence Matrix (GLCM). Textural analysis could be very useful in 

developing automated systems for characterizing and classifying carotid ultrasound images, and 

the use of GSM (gray-scale median) allows researchers to find the historical features of plaque. 

These studies quantified textural features such as contrast, energy, dissimilarities, difference 

variance, entropy, cluster variance, homogeneity, sum entropy, and the sum of square variance 

extracted from the areas of interest.  

Other studies have demonstrated the potential of using textural analysis to determine the 

behavior and the interaction between anti-hypersensitive drugs and plaque [14]. Information from 

such changes can be useful in allowing medical practitioners to adjust patient medication and 

regimens based on the plaque texture.  

The use of textural analysis to evaluate the prognosis of other diseases has also been 

demonstrated. Loizou et al. (2011) [54] used magnetic response images of the brain obtained via 
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multiscale amplitude moderation-frequency modulation (AM-FM) to study the textures of lesions 

in patients with multiple sclerosis. There has been significant clinical interest in identifying lesion 

texture and progression. In addition to showing that AM-FM is able to differentiate between 

various features of lesions, their results also showed that AM-FM could be used to quantify other 

features such as the gray-scale median, contrast, and coarseness, which can help to develop a more 

detailed understanding of how these features are linked to brain lesions. A similar MRI study [55] 

produced comparable results, demonstrating that the use of textural analysis is complementary to 

MRI. As these studies show, texture contains crucial information about particular diseases and can 

be used to identify various morphological features of a disease.  

Doonan et al. (2013) [56] estimated the correlation between echo density and textural 

features by analyzing ultrasound and digital images of plaques taken from patients with bilateral 

carotid stenosis who were to undergo carotid endarterectomies. Their results showed that the 

textual and echo density characteristics of carotid plaques are similar between the two sides in 

patients suffering from bilateral stenosis. This observation supports previous findings that plaque 

instability is a confounding of systemic factors. Doonan et al.’s study was pioneering in that it 

showed the role that the textural analysis of images can play in determining the features and 

characteristics that define the histopathology of the conditions. Previous studies have further 

indicated that unstable carotid atherosclerotic plaques exhibit higher lipid and hemorrhage content 

and less fibrous tissue calcification. The textural analysis is based on previous findings that have 

shown that the tissue content of carotid plaques is often correlated to features obtained through 

ultrasound images, for example, GSM. More particularly, high-lipid-content plaques that 

ultimately hemorrhage appear echolucent in ultrasounds with low GSM. Similarly, fibrous plaques 

often appear echogenic with high GSM, irrespective of their calcification status. Furthermore, 
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symptomatic plaques are often more echo lucent than asymptomatic plaques. All of these 

variations in the features of plaques can be leveraged to quantify their activities and development.  

Van Engelen et al.’s (2014) [57] study, in which carotid plaque volumes and plaque texture 

in 298 carotid atherosclerosis patients were monitored for one year, highlighted the need for fast, 

reliable, and cost-effective methods of monitoring patients with increased risk of CVD. After the 

initial phase of the study had concluded, they followed up with the patients for a period of up to 

five years in order to record instances of myocardial infarction, transient ischemic attack, and 

stroke. Using Kaplan-Meier analysis, the researchers realized that the use of plaque texture was 

invaluable in providing information about vascular events, thus confirming the usefulness of 

textural analysis in patients with increased risk. 

The earlier detection of atherosclerosis is critical in determining the occurrence of stroke and other 

heart conditions and providing opportunities for their prevention [58]. However, the quantification 

of the early streaks of plaque is often nuanced in that interpretation is based on the competence of 

a medical professional. Predicting the progression of atherosclerosis requires novel methods to 

identify blood fluid and cardiovascular wall dynamics, which can be used to identify instances of 

vessel abnormalities. A recent analysis indicated that the inner surface of the arterial wall often 

becomes rough before increasing in thickness [59]. Therefore, the ability to quantify the roughness 

of the inner surface of the arterial walls is important for the early diagnosis of the condition. To 

this end, previous studies have used ultrasound as a non-destructive method for evaluating arterial 

wall roughness.  

Various methods have been developed to measure arterial texture—for instance, the use of 

the angular spectrum-based formulation [19]. In the experiment, the roughness of the surface 

varied with the specular reflection and corresponding scattering intensities: the rougher the surface, 
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the higher the proportion of scattered ultrasound. Other researchers developed an ultrasonic 

spectroscopic technique that quantified the gross surface texture of non-medical materials using a 

coefficient of roughness. However, the use of these programs is limited by their error range, which 

is often high, sometimes in the millimeter range. Additionally, such methods have underscored the 

importance of using textural properties to determine carotid atherosclerotic plaque. The present 

study attempts to fill this research gap by assessing the usefulness of textural analysis methods in 

quantifying arterial roughness and by defining textural features that can provide an accurate 

analysis.  

Voros et al. (2011) [60] indicated that the molecular and cellular events that underpin 

atherosclerosis—for example, the deposition of lipoprotein, inflammation, the proliferation of the 

smooth muscles, apoptosis, necrosis, calcification, and fibrosis—have a specific influence on the 

compositional and geometric changes in coronary vessels. The use of Computerized Tomography 

Angiography (CTA) has been imperative in evaluating these changes, specifically changes in 

positive remodeling, lipoprotein deposition, and calcification. When the specific focus is placed 

on plaques, information about the various features that underpin the histopathology of CVD can 

be quantified. For instance, one study that used CTA to determine plaque characteristics assessed 

plaque segments based on stenosis severity while classifying the plaques into three categories: 

calcified, non-calcified, and partially calcified. The novel CTA procedure showed minimal 

variation between interobserver and intra-observer agreements, with clinically reproducible results 

that can be used to guide further research in CTA. While textural analysis is still in its infancy, it 

could be a breakthrough in determining the characteristics of plaques. As recent studies have 

shown, textural analysis can be useful in segmenting tissue types with similar appearances based 

on their speckle features [61-65]. 
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2.2 Datasets 
 

This research in this thesis was carried out using OCT images of vascular tissues from Watanabe 

heritable hyperlipidemic rabbits, henceforth referred to as WHHLMI rabbits. Our repository of 

datasets also contained histological and photographic images of these vascular tissues. We used 

ten different tissue sections of arterial samples from 7 WHHMI rabbits aged 309, 316, 330, 342, 

365, 456, and 577 days. The dataset used in this research is provided in Table 2.1.  

 

Table 2.1. OCT dataset used in this research. 

Image 

# 

OCT sample ID Age 

(days) 

Age 

(months) 

OCT 

B-scan 

# 

1 2009_12_15_W21_

092_01_511 

309 10 165 

2 2009-05-27_W21-

087-511 

316 10 310 

3 2009-05-27_W21-

087-611 

316 10 330 

4 2010_03_03_W20_

084_02 

330 11 190 

5 2009-06-23_W20-

087-01-6-1-2 

342 11 220 

6 2009-08-12_W21-

085-01-611 

365 12 350 

7 2009-12-08_W20-

084-04-6-1-1 

456 15 170 

8 2010_02_02_W20_

086_02_512 

577 19 450 

9 2010-02-02-W20-

086-02-612 

577 19 130 

10 2010-02-02-W20-

086-511 

577 19 75 
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2.2.1 Animal model 

 

Samples of vascular tissue with atherosclerotic plaque were obtained from myocardial-infarction-

prone WHHLMI rabbits [66-67].  We obtained the photographic, histology, and OCT dataset of 

arterial samples from the Institute for Biodiagnostics, National Research Council Canada. Arterial 

segments of tissue, starting from the ascending aorta to the external iliac artery, were excised from 

all specimens and subdivided into sections 20~30 mm in length. Arterial samples were harvested 

from seven WHHLMI rabbits aged 309 days, 316 days, 330 days, 342 days, 365 days, 456 days, 

577 days. We used 10 OCT B-scan images from 10 different volume scans of tissue sections. A 

breakdown of a sample tissue section is shown in Fig. 2.1, and an actual photographic image of a 

sample vascular tissue section is shown in Fig. 2.2. This study was approved by the local animal 

care committee at the Institute for Biodiagnostics, National Research Council Canada (Winnipeg, 

Manitoba).  

 

 
Fig. 2.1. Vascular tissue breakdown. 
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Fig. 2.2. Photographic image of vascular tissue of section 5-1-2 of a 456 days old WHHML rabbit. 

 

2.2.2 OCT imaging modality used in this work  

 

IVOCT is a catheter-based intravascular imaging technique that uses near-infrared light to create 

images [68-72]. OCT is very similar to ultrasound imaging; only it uses light waves instead of 

sound waves to create images. Because of this, OCT is able to produce images with resolutions 

ten times higher than those produced via ultrasound imaging. OCT uses light with wavelengths 

ranging from 1.25 to 1.350 µm, which minimizes light wave absorption in water, lipids, and 

hemoglobin. In OCT, the light from the source is split into two parts, with one part being directed 

toward the arterial wall and the other part being directed toward a mirror. The reflected signals 

interfere on the surface of a photodetector, which creates images based on the intensity of the 
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interference signal. The lateral resolution of the OCT system ranges between 20-90 µm, compared 

to 150-300 µm for IVUS. Similarly, OCT’s range of axial resolution is 12-18 microns, compared 

to 150-200 microns for IVUS [67]. However, the tissue penetration depth is limited to 1-3 mm in 

OCT as opposed to 4-8 µm for IVUS. The IVOCT system consists of a catheter, an imaging 

engine, and a computer (Fig. 2.3). In this work, we used a swept-source OCT (SS-OCT) [73] with 

a central wavelength of 1310 nm and a sweep rate and range of 30 kHz and 110 nm, respectively. 

Our SS-OCT unit was configured as a Mach-Zehnder interferometer with balanced optical 

detection.    

Fig. 2.3 (a). Intravascular OCT imaging setup. 
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The optical power at the sample was measured to be 8.45mW, and the collimator’s lens focal 

distance was 25 mm. As shown in Fig 2.3 (b), the dimension of the generated image, in the X 

direction, is ~8 mm ×~20 mm.   

 

 

 
 

Fig. 2.3 (b). Intravascular OCT imaging setup. 

 

 

 

2.3 Preprocessing of OCT data 
 

Since our raw OCT vascular images were represented as floating point numbers, we performed 

segmentation using image normalization on each image file to achieve a uniform distribution of 

intensities on a standardized intensity range and to improve contrast. After image normalization, 

each pixel had a brightness value ranging from 0 to 255. Image normalization was performed via 

a Min-Max normalization operation, which preserves all relationships between the data values 

exactly [74] and compresses the normal range if extreme values or outliers exist. Min-Max 

normalization is carried using the following formula:  
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                                    𝑋′ =
x−min (x)

max(𝑥)−min (𝑥)
                                                                   (2.1) 

where x’ is the processed image, and x is the raw OCT image.  

After normalizing our image file, we improved the image quality by performing automatic image 

segmentation using a threshold. Examples of preprocessed images are shown in Fig. 2.4. 

 

  

Fig. 2.4. Examples of preprocessed OCT images of tissue sections: (a) 6-1-1 from a 309 day-old 

rabbit; (b) 6-1-2 from a 316 day-old rabbit; (c) 5-1-1 from a 577 day-old rabbit;  (d) 5-1-1 from a 

309 day-old rabbit; (e) 6-1-1 from a 316 day-old rabbit; (f) 5-1-2 from a 577 day-old rabbit. 

 

 

 

 

 

 

 

 

   

   

   
 

(a) 
 

(b) 
 

(c) 
 

(d) 
 

(e) 
 

(f) 
 

(g) 
 

(h) 
 

(i) 
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2.4   Evaluation of our segmentation results 

 

          We evaluated our segmentation results using both qualitative and quantitative approaches. 

2.4.1 Qualitative evaluations 

 

We evaluated our results using by comparing them with ground truth, histology images, and actual 

photographs of vascular tissues. Each surgeon independently and blindly outlined the plaque 

region in 10 selected OCT images. Ground truth for the segmented vascular plaque images was 

obtained based on the consensus of assessments of the images (Fig. 2.5) provided by four 

interventional cardiologists with the Intervention Cardiology group at St. Boniface Hospital 

(Winnipeg, Manitoba): Dr. David Allen, Dr. Kunal Minhas, Dr. Amir Ravandi, and  Dr. Ashish 

Shah. We also compared our results with actual photographic images (Fig. 2.6) and histology 

images (Fig. 2.7).  
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Fig. 2.5. OCT images of vascular tissues based on the consensus of 4 cardiac surgeons: (a) 5-1-2 

from a 316 day-old rabbit; (b) 6-1-2 from a 316 day-old rabbit; (c) 6-1-2 from a 365 day-old rabbit; 

(d) 6-1-2 from a 456 day-old rabbit; (e) 6-1-2 from a 342 day-old rabbit; (f) 6-1-2 from a 330 day-

old rabbit; (g) 6-1-2 from a 577 day-old rabbit; (h) 5-1-1 from a 577 day-old rabbit; (i) 5-1-2 from 

a 577 day-old rabbit; (j) 6-1-2 from a 309 day-old rabbit.  

 

 

 

 

 

 

 

   

   

   

 

(a) 
 

(b) 
 

(c) 
 

(d) 
 

(e) 
 

(f) 
 

(g) 
 

(h) 
 

(i) 
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We used oil red histology images and actual photographic images to compare our plaque detection 

results visually. Oil red is a staining agent used for the qualitative measurement of lipid deposit 

formation. The red regions in the histology image highlight the plaque region, as shown in Fig 2.7.  

 

 

Fig. 2.6. Photographic images of vascular tissues: (a) 5-1-2 from a 316 day-old rabbit; (b) 6-1-2 

from a 316 day-old rabbit; (c) 6-1-2 from a 365 day-old rabbit; (d) 6-1-2 from a 456 day-old rabbit; 

(e) 6-1-2 from a 342 day-old rabbit; (f) 6-1-2 from a 330 day-old rabbit; (g) 6-1-2 from a 577 day-

old rabbit; (h) 5-1-1 from a 577 day-old rabbit; (i) 5-1-2 from a 577 day-old rabbit; (j) 6-1-2 from 

a 309 day-old rabbit. 
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Fig. 2.7. Histology images of vascular tissues: (a) 5-1-2 from a 316 day-old rabbit; (b) 6-1-2 from 

a 316 day-old rabbit; (c) 6-1-2 from a 365 day-old rabbit; (d) 6-1-2 from a 456 day-old rabbit; (e) 

6-1-2 from a 342 day-old rabbit; (f) 6-1-2 from a 330 day-old rabbit; (g) 6-1-2 from a 577 day-old 

rabbit; (h) 5-1-1 from a 577 day-old rabbit; (i) 5-1-2 from a 577 day-old rabbit; (j) 6-1-2 from a 

309 day-old rabbit.  
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2.4.2 Quantitative evaluations 

 

We evaluated the performance of our segmentation results using six well-known standard metrics: 

sensitivity (recall), specificity, accuracy, precision, Matthews Correlation Coefficient (MCC), and 

Dice similarity coefficient [70-73, 75-78].  The pixels in the segmented region and its 

corresponding ground truth could be categorized into four categories: true positive (TP), false 

positive (FP), true negative (TN), and false-negative (FN). An example illustrating the relationship 

between these four categories is shown in Fig. 2.8. 

             
Fig. 2.8. Illustration of TP, TN, FP, and FN. 

 

Sensitivity and specificity are the statistical quantitative error evaluation metric for classification 

problems. Sensitivity is also considered to be a true positive (TP) rate, as it measures the percentage 

of actual positives that are correctly labeled as such; in our case, the pixels labeled as plaque were 

correctly identified as such. Conversely, specificity is considered to be a measure of the true 

negative (TN) rate, as it gives the proportion of actual true negatives that are correctly detected as 

negatives. In our case, these pixels labeled as a non-plaque region are true negatives. Accuracy is 

the overall measure of the method’s ability to classify positives and negatives correctly. To 

calculate the accuracy measure, the proportion of both true positives and true negatives must be 

considered. Also, precision is defined as the proportion of plaque, and non-plaque regions are 

correctly segmented as TP and TN. In other words, precision is the proportion of true positives out 

of all detected true positives.  
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Mathematically, sensitivity, specificity, precision, and accuracy can be stated as follows,  

 

                                   𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑅𝑒𝑐𝑎𝑙𝑙) =  
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
                                                          (2.2) 

 

                                    𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

(𝑇𝑁+𝐹𝑃)
                                                                       (2.3) 

                                       

                                   𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑁

(𝑇𝑁+𝑇𝑃+𝐹𝑁+𝐹𝑃)
                                                               (2.4)     

                                                

                                    𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
                                                                           (2.5) 

 

Additionally, we also used the Matthews Correlation Coefficient (MCC), which gives an overall 

summary of the performance of the segmentation algorithm, and it takes into account all the four 

values: TP, TN, FP, and FN. It is generally regarded as a balanced measure that could be used even 

if the true negatives are very unbalanced compared with true positives. It returns a value between 

-1 and 1, where 1 represents a complete agreement, –1 represents a complete disagreement, and 0 

is no better than a random prediction. 

 

                          𝑀𝐶𝐶 =
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
                                                          (2.6) 

 

Since the regions of interest are small, the specificity (true negatives), and even the accuracy, may 

appear artificially high relative to the sensitivity. Therefore, we also used an alternative error-

measurement metric, called the Dice similarity coefficient. The Dice similarity coefficient 

evaluates the spatial overlap between the ground truth and the segmentation results. The value of 

the Dice similarity coefficient ranges from 0 to 1, with 0 representing no overlap between ground 

truth and the segmented result and 1 representing a perfect overlap between the two regions.   

 

                          𝐷𝑖𝑐𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 2
𝐴∩𝐵

|𝐴|+|𝐵|
                                                     (2.7) 
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In the above equation, A is the manual segmented volume of the ground truth, and B is the 

segmented volume extracted by our proposed automated segmentation algorithm. |𝐴| is the 

absolute value of the segmented region of the ground truth, |𝐵| is the absolute value of the 

automated segmented region by our proposed algorithms, and 𝐴 ∩ 𝐵 is the area of overlap between 

ground truth and automated segmentation.  

For our plaque segmentation problem, the region of interest, which is the plaque only, is usually 

small, and therefore the three most relevant evaluation metrics are precision, MCC, and Dice 

coefficient metric.  

2.5 Summary 
 

In this chapter, we introduced the dataset used for this work. This chapter consists of five sections. 

In the first section, we briefly explained the texture analysis methods and their applications.  In the 

second section, we introduced the details of the OCT dataset and the OCT imaging framework 

used for this work. In the third section, we explained the pre-processing process of raw OCT 

images. And the fourth section introduces images used for qualitative evaluation and explains the 

metrics used for quantitative evaluation of our segmentation results, and the final fifth section 

presents the conclusions.  
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Chapter 3:   DETECTION OF VASCULAR PLAQUE IN OPTICAL COHERENCE 

TOMOGRAPHY IMAGES USING TEXTURAL FEATURES  

3.1 Introduction 

In earlier work, we proposed a method of automatically detecting vascular plaque that uses a full 

set of 26 Haralick textural features and K-means clustering [79]. However, the computational 

complexity of our plaque detection method was limited by the dimensionality of the feature space. 

Therefore, we selected only the most important features in order to reduce the number of features 

while also retaining as much information as possible. This procedure is known as feature selection 

or reduction. If we select features with little discrimination power, the resultant segmentation 

algorithm will perform poorly. On the other hand, if information-rich features are selected, the 

algorithm design can be greatly simplified. As such, features should take distant values in the 

different classes, as well as closely located values within the same class. Thus, it is crucial to 

reduce the feature set by selecting only those features that characterize the vascular plaque texture. 

We used two techniques to perform feature selection: (i) genetic algorithm (GA) optimization and 

(ii) sparse principal component analysis (PCA). 

Using GA enabled us to identify a reduced set of 3 textural features. Unfortunately, GA suffers 

from high computational complexity and is also prone to overfitting. In order to overcome these 

limitations, we used sparse PCA. This approach allowed us to identify a set of 6 textural features 

that characterize vascular plaque in OCT images, thereby making OCT a viable option for real-

time applications. Finally, we also incorporated an advanced clustering technique (Fuzzy C-means) 

to detect plaque regions within this reduced feature space [80].  
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3.2 Methods of plaque detection 

3.2.1 Textural feature generation 

Texture can be defined as visual patterns composed of spatially repetitive organized structures. 

Although there is no precise mathematical approach to describing texture, it is sufficient to 

describe it using the specific qualitative properties of an image. For example, the texture of an 

image could be referred to as being fine, coarse, smooth, irregular, homogenous, or 

inhomogeneous. Textural features are those that can be used to quantify such properties in an 

image, and its histogram or statistical moments can be used to characterize its textural properties. 

The most commonly used second-order statistical features are calculated using a Spatial Gray 

Level Dependent Matrix (SGLDM) [81]; these features showed great potential for discriminating 

between different textures in biomedical images [82-83]. The SGLDM-based approach has also 

been shown to outperform transform-based methods, such as the use of wavelets in texture 

classification [84]. The main advantage of using SGLDM features is that they extract second-

order statistics. Prior studies have compared visual-texture-differentiation [85], power-spectrum-

based, and structural-based [86] methods and found that textures are discriminated only when they 

differ in their second-order statistics.  

 

The SGLDM method is widely considered to be the most powerful textural feature extraction 

method [87]. Textural features are useful in many applications, including medical imaging. Image 

texture has been recognized as a significant feature in applications such as medical image analysis, 

image classification, and automatic image inspection [87-88]. Our method uses a statistical method 

to extract second-order statistical textural features where pixels are considered in pairs of plaque 

of images obtained via OCT. The use of first-order statistics is generally insufficient for measuring 



48 

 

an image’s structural and textural characteristics, as they only provide information such as 

histograms, which capture pixel intensity distribution but do not provide information about the 

position or structure of these pixels within an image. To extract this information, we used second-

order statistics, wherein pixels are considered in pairs. Prior studies have also shown that SGLDM 

based texture analysis outperformed other texture analysis methods such as the gray level run 

length method (GLRLM), the gray level difference method (GLDM), and the power spectral 

method (PSM) [89-91]. The SGLDM provides information on both the relative distance between 

the pixels and their relative orientation to one another. In our application of SGLDM, we used a 

distance (d) equal to 1 pixel (i.e., neighboring pixels), and two different orientations: one in a 

horizontal direction (𝜃 =00), and one in a vertical direction (𝜃 =900) (Fig. 3.1). 

 

Fig. 3.1. The two (0o and 90o) orientations used to construct the SGLDM matrices in our algorithm. 

 

For each combination of distance, d, and orientation, 𝜃, a two-dimensional histogram is defined    

as: 

00 = 𝑃(𝐼(𝑖, 𝑗) = 𝐼1,𝐼(𝑖 ± 𝑑, 𝑗) = 𝐼2) 

                                               900 = 𝑃(𝐼(𝑖, 𝑗) = 𝐼1,𝐼(𝑖, 𝑗 ∓ 𝑑) = 𝐼2)                                        (3.1)    

 

After using the probabilities of grey-level occurrence with respect to a pixel’s position in order to 

form the SGLDM matrices, we then used them to calculate the Haralick textural features [92-94]. 

Some of these features can be directly interpreted with respect to texture; for example, the angular 

second-moment feature is the measure of the image’s smoothness; contrast is the measure of the 

local gray level variation within the image, and entropy is the measure of randomness in an image, 
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and therefore produces low values for smooth images. While other features do not enable such 

direct interpretation, they can still convey texture-related information with high discriminatory 

power. Table 3.1 summarizes all the Haralick textural features extracted from OCT images of 

vascular tissues. 

     

    Table 3.1. Haralick textural features.  

Feature Number   Formula Feature Name 

𝑓1,𝑓14 

 

∑∑(𝑃(𝑖, 𝑗)2)

𝑗𝑖

  Angular Second Moment at  

Orientations (ASM) (𝜃 = 00, 𝜃 

= 900) 

𝑓2,𝑓15 
∑∑

(𝑖, 𝑗)𝑃(𝑖, 𝑗) − 𝜇𝑥 𝜇𝑦

𝜎𝑥𝜇𝜎𝑦
  

𝑗𝑖

 
Correlation (𝜃 = 00, 𝜃 = 900) 

𝑓3,𝑓16 

∑ 𝑛2

{
 
 

 
 

∑ ∑ 𝑃(𝑖, 𝑗)
𝑗
|𝑖−𝑗|=𝑛

𝑖

}
 
 

 
 𝑁𝑔−1

𝑛=0

       

Inertia at orientations (𝜃 = 00, 

𝜃 = 900) 

𝑓4,𝑓17 ∑∑(𝑖 − 𝜇)2𝑃(𝑖, 𝑗)   

𝑗𝑖

 Variance at orientations (𝜃 = 

00, 𝜃 = 900) 

𝑓5,𝑓18 
∑∑

𝑃(𝑖, 𝑗)

1 + (𝑖 − 𝑗)2
𝑗𝑖

 
Inverse Difference Moment at  

orientations (𝜃 = 00, 𝜃 = 900) 

𝑓6,𝑓19 

∑ 𝑖𝑃𝑥+(−)𝑦(𝑖)

2(𝑁𝑔−1)

𝑖=0

  

Sum Average at angles  

(𝜃 = 00, 𝜃 =900) 

𝑓7,𝑓20 

∑ (𝑖 − 𝐹5

2𝑁𝑔−2

𝑖=0

)2𝑃𝑥+𝑦(𝑖)       

Sum Variance at  

orientations (𝜃 = 00, 𝜃 = 900) 
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𝑓8,𝑓21 

− ∑ 𝑃𝑥+𝑦(𝑖) 𝑙𝑜𝑔{ 𝑃𝑥+𝑦(𝑖)

2𝑁𝑔−2

𝑖=0

}      

Sum Entropy at  

orientations (𝜃 = 00, 𝜃 = 900) 

𝑓9,𝑓22 −∑∑𝑃(𝑖, 𝑗) 𝑙𝑜𝑔 𝑃 (𝑖, 𝑗)

𝑗𝑖

   Entropy at  

orientations (𝜃 = 00, 𝜃 = 900) 

𝑓10,𝑓23 

− ∑ (𝑖 − 𝐹5)
2𝑃𝑥−𝑦(𝑖)

𝑁𝑔−1

𝑖=0

       

Difference Variance at  

orientations (𝜃 = 00, 𝜃 =900) 

𝑓11,𝑓24 

− ∑ 𝑃𝑥−𝑦(𝑖) 𝑙𝑜𝑔 𝑃𝑥−𝑦 (𝑖)

𝑁𝑔−1

𝑖=0

  

Difference Entropy at  

orientations (𝜃 = 00, 𝜃 = 900) 

𝑓12,𝑓25 𝐻𝑥𝑦 − 𝐻𝑥𝑦
1

𝑚𝑎𝑥[𝐻𝑥 − 𝐻𝑦]
 

 

Information Measure I of  

Correlation at orientations  

(𝜃 = 00, 𝜃 = 900) 

𝑓13,𝑓26 
√1 − 𝑒𝑥𝑝( − 2(𝐻𝑥𝑦2 − 𝐻𝑥𝑦)) 

 

Information Measure II of  

Correlation at orientations  

(𝜃 = 00, 𝜃 = 900) 

 

where, 𝐻𝑥𝑦
1 = −∑ ∑ 𝑃(𝑖, 𝑗) 𝑙𝑜𝑔( 𝑃𝑥(𝑖)𝑃𝑦(𝑗))𝑗𝑖 , 𝐻𝑥𝑦

2 = −∑ ∑ (𝑃𝑥(𝑖)𝑃𝑦(𝑗) 𝑙𝑜𝑔( 𝑃𝑥(𝑖)𝑃𝑦(𝑗))𝑖𝑗 , 

 

P(i, j) is the (i, j)th entry in the SGLDM matrix, Px(i) is the marginal probability of the ith entry, 

Ng is the number of gray levels in the image, and Py(i) is the marginal probability of the jth entry.   

3.2.2 Feature normalization 

Feature normalization is an important step in pre-processing features for clustering algorithms. 

Since the scale of our textural features had different dynamic ranges, we normalized the entire 

textural feature vector to ensure that all of the features had the same influence on our method’s 

performance. Each textural feature vector was normalized as [95], 
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                                                               𝑋′ =
𝑥−𝑥

𝜎
                                                               (3.2) 

 

where 𝑋′is the new rescaled feature vector, x is the raw feature vector before rescaling, �̅� is the 

mean of all entries of x, and σ is the corresponding standard deviation.  

3.2.3 Textural feature selection  

 

Vascular plaque can be detected from Optical Coherence Tomography (OCT) images by using the 

full set of 26 Haralick textural features and the standard K-means clustering algorithm [96]. 

However, the use of the full set of 26 textural features is computationally expensive and may not 

be feasible for real-time implementation. Therefore, the use of a feature reduction step was critical 

for optimizing the performance and robustness of our method. Given a number of generated 

features, it is important to reduce the number of dimensions by selecting only the most informative 

features, as this will enable the number of dimensions to be reduced while retaining their class 

discriminatory information. This procedure, known as feature selection or feature reduction, is 

highly vital because the selection of features with little discrimination power may cause the 

segmentation algorithm to perform poorly. The two main disadvantages of irrelevant features are 

that they incur substantial computational costs, and they may also lead to overfitting. We aimed to 

reduce the number of features, selecting only those that are rich in information with respect to our 

plaque detection problem. Accordingly, we used two different feature selection algorithms—a 

genetic algorithm (GA) and a sparse principal component regression (PCR)—to attain the smallest 

number of textural features possible without sacrificing textural information.   
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3.2.3.1  Feature selection using an evolutionary algorithm 

 

A GA is a computation model inspired by Darwin’s Theory of Evolution [97-98]. Since any feature 

selection problem can be considered as a multi-criteria optimization problem, evolutionary 

algorithms offer an attractive approach to solving such problems [99-101].   

Each individual in the algorithm represents a potential candidate to feature subset selection 

problem. The fitness function is an evaluation function, which is a combination of two criteria: the 

accuracy of the segmentation or classification and the costs involved in performing the 

segmentation. We chose a fitness function based on the max-relevance and min-redundancy 

principle. According to this principle, the optimal number of subset features will be selected, thus 

satisfying the following maximization problem, 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 {𝑓(𝑥)} 

where 𝑓(𝑥) the objective function. Subsequently,  

A complete genetic algorithm consists of the steps below and those shown in Fig. 3.2.  

1. Initialization: An initial population is entered into a loop, which runs until convergence or 

termination criteria are met.  

2. Evaluation: The fitness or the quality-measure of the individuals is computed using the 

following entropy-based fitness function, 

                                            𝐻(𝑌|𝑥𝑖) = ∑ −𝑙𝑜𝑔(𝑃(𝑦𝑘
𝑁
𝑘=1 |𝑥𝑖)). 𝑃(𝑦𝑘|𝑥𝑖)                                (3.5) 

where Y is the target variable, and x is the input variable. 

3. Selection: The fittest individuals from the current population are selected to form a mating pool 

for reproduction. Each individual, x, is selected and copied in the mating pool with probability 

being proportional to fitness (f(x) / Σf(x)). Selection is made via a roulette wheel selection,  

                                                  
𝑒𝑥𝑝(𝑔𝑢)−1

𝑒𝑥𝑝(𝑢)−1
                                                                                 (3.6) 
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where g is a positive constant value used to tune the selective pressure; the larger the value of g, 

the faster the algorithm will converge, and u is a uniformly distributed random variable.  

5. Crossover: The genes of two selected parents are merged to yield two new children. In this work, 

a single-point crossover is assumed. Two individual parents are selected from the mating pool. 

The crossover point is randomly chosen, and the strings are swapped with respect to the crossover 

point between the two parents. 

6. Mutation: One or more of the elements of the genotype is spontaneously changed. The mutation 

operator is applied gene-wise; that is, each gene undergoes mutation with the probability, pm. 

When the mutation operation occurs in a gene, its value is flipped. 

7.  Termination: This evolution process is carried out until the termination criterion is met. 
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Fig. 3.2. Flowchart of the genetic algorithm optimization working principle [98]. 

 

We identified the best three features subset (Table 3.2).  

               Table 3.2. Haralick textural feature set in the ϴ = 00 and ϴ = 900 directions with d=1 

selected using the GA feature selection algorithm. 

 

Selected feature set Feature name 

f1 Angular Second Moment at 

orientations(ASM)  (ϴ = 00) 

f3 Inertia at orientations (ϴ = 00) 

f14 Angular Second Moment at 

orientations(ASM)  (ϴ = 900) 

 

However, we noticed that one of the disadvantages of using a GA to select a subset of features is 

that GAs tend to converge towards the local optimum rather than the global optimum, and therefore 
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it does not converge to one unique solution, which makes GAs prone to overfitting. To improve 

the robustness of our feature selection problem, we employed another technique: sparse PCA.  

 

3.2.3.2 Feature selection using sparse principal component regression 

 

PCA, also known as the Karhunen-Loeve transformation, is one of the most straightforward and 

robust dimensionality reduction techniques. PCA is one of the widely used techniques in statistics 

and data analysis. It projects the high-dimensional input features into a low-dimensional subspace 

with only a few linear combinations of input features, known as principal components. If we have 

a set of features 𝑋1, 𝑋2,……𝑋p, PC is a linear combination of these variables,  

 

 

 

 

 

  

𝑌1 = 𝜑11𝑋1 + 𝜑12𝑋2 + .  .  .  + 𝜑1p𝑋p= 𝑉1𝑋              

                     𝑌2 = 𝜑21𝑋1 + 𝜑22𝑋2 + .  .  .  + 𝜑2p𝑋p= 𝑉2𝑋              

. 

. 

                                        𝑌p= 𝜑p1𝑋1 + 𝜑p2𝑋2 + . . . + 𝜑pp𝑋p= 𝑉p𝑋 

which could rewritten as, 𝑌𝑛×𝑝 = 𝑋𝑛×𝑝𝑉𝑝×𝑝  

Each column of matrix V is called an eigenvector or loading vector, and coefficient(weights) are 

called the loadings for that vector. Each of the principal components Y1….Yp is, therefore, a linear 
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combination of all the 26 original Haralick features. As most of the coefficients (or loadings) in 

the principal components are not zero, and, therefore, they are not suitable feature selection. 

However, it is possible to reduce the number of features using an ad-hoc PCA method, which 

involves threshold loadings. However, this approach can be misleading [102-104], and it has been 

hampered by the significant drawback of determining how to identify the threshold value and the 

best discrete-valued loading coefficients. Various methods based on imposing sparsity to PCA 

have been proposed to overcome this limitation, including sparse PCA [105-109], sparse factor 

analysis [114,116], sparse singular value decomposition [117,118], and sparse support vector 

machines [114-119]. The sparse PCA formulation is closely related to the dictionary learning 

problem with one main difference: sparsity is enforced on the dictionary’s atoms (loadings), not 

on the coefficient matrix (principal components). In this work, we used the most common approach 

to inducing sparseness into PCA: the least absolute shrinkage and selection operator (LASSO) 

[108]. LASSO was originally used in linear regression models to select important variables by 

shrinking negligibly small estimates to zero via an L1 penalty function. The same shrinkage 

concept can also be used in PCA by formulating PCA as a principal-component-regression-type 

problem and by adding a sparsity constraint on the loadings. In this work, we apply sparsity on the 

loadings in order to perform feature selection [116]. Sparse PCA methods adjust the PCA method 

to inject sparseness into the loading vectors, much like in regularization methods wherein 

sparseness is injected into the parameter estimates in the regression setting. Our method consists 

of the following three main steps. This motivated us to use a variant of the classical PCA problem 

called sparse principal component analysis (SPCA). The sparse algorithm is based on framing PCA 

as a least-squares type problem, and sparsity is enforced to coefficient (or loadings) by imposing 

Lasso (L1) type penalty.   
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The first step in SPCA involves computing PCA by singular value decomposition (SVD) of our 

feature matrix X. The SVD of X yields,  

 

𝑋 = 𝑈𝐷𝑉𝑇                                                                    (3.7) 
 

where, 𝑌𝑖 = 𝑈𝑖𝐷𝑖𝑖 gives the principal component of each observation, and 𝑉𝑖 is the corresponding 

loading vector of the PCA (principal direction). X is our observation matrix of dimension 𝑁 × 𝑝 

whose columns, 𝑝, are the centered input features. U is an 𝑁 × 𝑝 orthogonal matrix, whose 

columns, 𝑢𝑗 , 𝑎re referred to as the left singular vectors. V is also an orthogonal matrix with 

dimensions of 𝑝 × 𝑝 whose columns, 𝑣𝑗 , are referred to as the right singular vectors. D  is a 𝑝 × 𝑝 

diagonal matrix with diagonal elements known as the singular values.  

Since 𝑌𝑖  can also be obtained by projecting X on the vector 𝑉𝑖 (i.e., 𝑌𝑖 = 𝑋𝑉𝑖 ), one can view PCA 

as a regression type problem where 𝑌𝑖 is the response vector and 𝑉𝑖 is the regression coefficient. 

To improve sparsity, authors of SPCA propose to impose the lasso penalty [104], resulting in the 

following optimization problem,      

β̂ = argmin
𝛽

‖𝑌𝑖 − 𝑋𝛽‖2
2 + 𝜆‖𝛽‖1 

where,  ‖𝛽‖1=∑ |𝛽𝑗|
𝑝
𝑗=1  is the l1-norm of 𝛽. 𝑉�̂�=

�̂�

‖�̂�‖
 an approximation of 𝑉𝑖 and 𝑋𝑉𝑖 is the ith principal 

component. 𝜆 is the Lagrange multiplier.  

The above formulation cannot be directly used to find sparse loadings; we must first perform PCA 

to find the principal components and their loadings or coefficients (loadings), and then we must 

solve a LASSO regression framework for the PCA. This allowed us to find the reduced four-

feature set shown in Table 3.3. 
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Table 3.3. Selected Haralick textural feature set in ϴ = 00 and ϴ = 900 directions with d=1 

obtained using the PCR feature selection method. 

Selected feature 

set 

Feature name 

𝑓1 Angular Second Moment (Energy) at 0o, 

𝑓6 Sum average at 0o 

𝑓13 Information measures of correlation II at 0o 

𝑓16 Inertia at 900 

𝑓23 Sum Variance at 900 

𝑓20 Difference Variance at 900 

 

3.3 Application of Fuzzy C-means algorithm on reduced feature space 
 

Various methodologies that use a clustering technique have also been proposed for the 

segmentation of vascular plaque [117-122]. Clustering analysis is an unsupervised technique 

wherein different grouping regions within an image are grouped into subsets of similar properties. 

Unsupervised methods do not require a priori knowledge of samples; that is, their class labels do 

not need to be known. Thus, unsupervised methods aim to organize a dataset into sensible clusters 

or groups by finding the similarities or differences within it. Since each region of vascular tissue 

is composed of different textural features, a clustering algorithm could be applied to the group 

using similarities among these textural features — clustering algorithms group feature vectors into 

their respective classes. In the present work, we performed clustering using the Fuzzy C-means 

algorithm [123]. One of the main advantages of Fuzzy C-means clustering over the standard K-

means clustering is that it allows data points to belong to more than one cluster by assigning a 

membership value. Thus, this approach is useful for overlapping data sets, as Fuzzy C–means 

considers every data point to be a member of every cluster, with varying degrees of membership.  

The Fuzzy C-means algorithm tries to minimize the following objective function: 

                                                 𝐽 =  ∑ ∑ 𝜇𝑖,𝑘
𝑚 𝑑𝑖,𝑘

2𝑁
𝑘=1

𝐶
𝑖=1                                                              (3.9) 
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where J is the objective function; 𝜇𝑘𝑖 is the degree of membership, which is defined as the 

closeness of each feature vector to the cluster center; m is the weighting exponent, which 

determines the fuzziness of clusters; and 𝑑𝑖,𝑗
2  is the Euclidean norm between the feature vector and 

the cluster center. 

The first step in Fuzzy C -means is to initialize the cluster centroid randomly. The cluster centroid 

is computed as,  

                                                         𝑣𝑖 =
∑ 𝜇𝑖,𝑘

𝑚𝑁
𝑘=1 𝑥𝑘

∑ 𝜇𝑖,𝑘
𝑚𝑛

𝑘=1

                                                                 (3.10) 

where 𝑥𝑘 is the feature vector, and 𝜇𝑖,𝑘 is the membership of a feature vector, 𝑥𝑘 , to the ith cluster. 

Next, the Euclidean distance between cluster centroids and each data point is calculated, and the 

fuzzy membership matrix is subsequently determined based on each cluster centroid and each data 

point. The fuzzy membership criterion is determined by, 

                                                                 𝜇𝑖,𝑘 =
1

∑ (
‖𝑥𝑘−𝑣𝑖‖

‖𝑥𝑘−𝑣𝑗‖
)

2
𝑚−1

𝐶
𝑗=1

                                                  (3.11) 

The final step in this process is to find the centroid from the updated membership matrix and then 

repeat these procedures until the algorithm converges.   

Fuzzy C-means clustering has three main parameters. The first parameter is the number of clusters 

(C), which is the only parameter that should be known a priori. In our vascular detection problem, 

there are 4 clusters in total (plaque region, healthy tissue region, OCT deep-depth degraded signal 

region, and background). The second parameter is the fuzziness parameter (m), which is also 

referred to as the weighting exponent. This parameter influences the fuzziness of the partitioning 

clustering; as m gets closer to 1, the partitioning clustering becomes hard or crisp, similar to 

conventional K-means clustering. As m →∞ (m>1), the partitioning clustering starts to become 

fuzzy, allowing for the overlapping of clusters. The standard value for the fuzziness parameter, m, 
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is 2. The selection of the fuzziness parameter is a complex process, and the accurate selection of 

the optimal parameter is subjective. The third parameter is the termination criterion: the Fuzzy C-

means algorithm stops the iteration process once the distance between 2 successive iterations is 

smaller than the termination parameter (ϵ=0.001), or once the algorithm has reached a certain 

number of iterations. In our problem, we used 100 iterations. Finally, we mapped the clustered 

regions (plaque region, healthy tissue region, OCT deep-depth degraded signal region, and 

background) from reduced feature space back to the original image.  

3.4  Plaque detection results 
 

3.4.1 Qualitative evaluation of our results by comparing with ground truth 

 

Figure 3.3. shows different images of vascular tissue with plaque build-up taken from 10 and 19-

month-old WHHLMI rabbits: Fig. 3.3(a) raw OCT image of vascular tissue Fig. 3.3(b) processed 

OCT image; Fig.3.3(c) shows a photographic OCT image at the marked B-scan location; 

Fig.3.3(d) shows the oil red histology image of vascular tissue where red region depicting both the 

plaque and the remaining as non-plaque regions; Fig. 3.3(d) shows the ground truth, which was 

established based on the consensus of all four surgeons; Fig. 3.3(e) shows the plaque detection 

results of analysis of the OCT image using the full set of 26 textural features, and Fig. 3.3(f) shows 

the plaque detection results of analysis of the OCT image using the reduced set of 6 textural 

features obtained from GA algorithm; Fig3.3(h) shows the plaque detection results of analysis of 

the OCT image using the reduced set of 6 textural features obtained from sparse PCA method.  

Similar results are shown in Fig. 3.4, Fig. 3.5, Fig. 3.6, Fig. 3.7, Fig. 3.8, Fig. 3.9, Fig. 3.10,  

Fig. 3.11, and Fig. 3.12. 
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Fig. 3.3. (a) Raw OCT image of vascular tissue section 5-1-1 taken from a 309 day-old WHHLMI 

rabbit; (b) photographic image of vascular tissue section; (b) oil red histology of vascular tissue; 

(c) ground truth; (d) plaque detection results of analysis of an OCT image of vascular tissue 

showing plaque and no-plaque regions using the full set of 26 textural features; (e) plaque detection 

results of analysis of an OCT image of vascular tissue using the reduced set of 6 textural features 

from GA algorithm; (f) plaque detection results of analysis of an OCT image of vascular tissue 

using the reduced set of 6 textural features from sparse PCA algorithm. 
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Fig. 3.4. (a) Raw OCT image of vascular tissue section 5-1-2 from a 316 day-old WHHLMI rabbit; 

(b) photographic image of vascular tissue section; (b) oil red histology of vascular tissue; (c) ground 

truth; (d) plaque detection results of analysis of an OCT image of vascular tissue showing plaque and 

no-plaque regions using the full set of 26 textural features; (e) plaque detection results of analysis of an 

OCT image of vascular tissue using the reduced set of 6 textural features from GA algorithm; (f) plaque 

detection results of analysis of an OCT image of vascular tissue using the reduced set of 6 textural 

features from sparse PCA algorithm. 
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Fig. 3.5. (a) Raw OCT image of vascular tissue section 6-1-2 taken from a 316 day-old WHHLMI 

rabbit; (b)  photographic image of vascular tissue section; (b) oil red histology of vascular tissue; 

(c) ground truth; (d) plaque detection results of analysis of an OCT image of vascular tissue 

showing plaque and no-plaque regions using the full set of 26 textural features; (e) plaque detection 

results of analysis of an OCT image of vascular tissue using the reduced set of 6 textural features 

from GA algorithm; (f) plaque detection results of analysis of an OCT image of vascular tissue 

using the reduced set of 6 textural features from sparse PCA algorithm. 
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Fig. 3.6. (a) Raw OCT  image of vascular tissue section 6-1-2 taken from a 330 day-old WHHLMI 

rabbit; (b) photographic image of vascular tissue section; (b) oil red histology of vascular tissue; 

(c) ground truth; (d) plaque detection results of analysis of an OCT image of vascular tissue 

showing plaque and no-plaque regions using the full set of 26 textural features; (e) plaque detection 

results of analysis of an OCT image of vascular tissue using the reduced set of 6 textural features 

from GA algorithm; (f) plaque detection results of analysis of an OCT image of vascular tissue 

using the reduced set of 6 textural features from sparse PCA algorithm. 
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Fig. 3.7. (a) Raw OCT image of vascular tissue section 6-1-2 taken from a 342 day-old WHHLMI 

rabbit; (b) photographic image of vascular tissue section; (b) oil red histology of vascular tissue; 

(c) ground truth; (d) plaque detection results of analysis of an OCT image of vascular tissue 

showing plaque and no-plaque regions using the full set of 26 textural features; (e) plaque detection 

results of analysis of an OCT image of vascular tissue using the reduced set of 6 textural features 

from GA algorithm; (f) plaque detection results of analysis of an OCT image of vascular tissue 

using the reduced set of 6 textural features from sparse PCA algorithm. 
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Fig. 3.8. (a) Raw OCT image of vascular tissue section 6-1-2 taken from a 365 day-old WHHLMI 

rabbit; (b) photographic image of vascular tissue section; (b) oil red histology of vascular tissue; 

(c) ground truth; (d) plaque detection results of analysis of an OCT image of vascular tissue 

showing plaque and no-plaque regions using the full set of 26 textural features; (e) plaque detection 

results of analysis of an OCT image of vascular tissue using the reduced set of 6 textural features 

from GA algorithm; (f) plaque detection results of analysis of an OCT image of vascular tissue 

using the reduced set of 6 textural features from sparse PCA algorithm. 
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Fig. 3.9. (a) Raw OCT image of vascular tissue section 6-1-2 taken from a 456 day-old WHHLMI 

rabbit; (b) photographic image of vascular tissue section; (b) oil red histology of vascular tissue; 

(c) ground truth; (d) plaque detection results of analysis of an OCT image of vascular tissue 

showing plaque and no-plaque regions using the full set of 26 textural features; (e) plaque detection 

results of analysis of an OCT image of vascular tissue using the reduced set of 6 textural features 

from GA algorithm; (f) plaque detection results of analysis of an OCT image of vascular tissue 

using the reduced set of 6 textural features from sparse PCA algorithm. 
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Fig. 3.10. (a) Raw OCT image of vascular tissue section 5-1-2 taken from a 577 day-old 

WHHLMI rabbit; (b) photographic image of vascular tissue section; (b) oil red histology of 

vascular tissue; (c) ground truth; (d) plaque detection results of analysis of an OCT image of 

vascular tissue showing plaque and no-plaque regions using the full set of 26 textural features; (e) 

plaque detection results of analysis of an OCT image of vascular tissue using the reduced set of 6 

textural features from GA algorithm; (f) plaque detection results of analysis of an OCT image of 

vascular tissue using the reduced set of 6 textural features from sparse PCA algorithm. 
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Fig. 3.11. (a) Raw OCT image of vascular tissue section 6-1-2 taken from a 577 day-old 

WHHLMI rabbit; (b) photographic image of vascular tissue section; (b) oil red histology of 

vascular tissue; (c) ground truth; (d) plaque detection results of analysis of an OCT image of 

vascular tissue showing plaque and no-plaque regions using the full set of 26 textural features; (e) 

plaque detection results of analysis of an OCT image of vascular tissue using the reduced set of 6 

textural features from GA algorithm; (f) plaque detection results of analysis of an OCT image of 

vascular tissue using the reduced set of 6 textural features from sparse PCA algorithm. 
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Fig. 3.12. (a) Raw OCT image of vascular tissue section 5-1-1 taken from a 577 day-old 

WHHLMI rabbit; (b) photographic image of vascular tissue section; (b) oil red histology of 

vascular tissue; (c) ground truth; (d) plaque detection results of analysis of an OCT image of 

vascular tissue showing plaque and no-plaque regions using the full set of 26 textural features; (e) 

plaque detection results of analysis of an OCT image of vascular tissue using the reduced set of 6 

textural features from GA algorithm; (f) plaque detection results of analysis of an OCT image of 

vascular tissue using the reduced set of 6 textural features from sparse PCA algorithm. 
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3.4.2 Quantitative evaluation of our results by using standard metrics 

 

 

We evaluated our plaque segmentation results quantitatively by comparing the pixel accuracy, 

sensitivity, precision, MCC, Dice coefficient, and specificity of our results with the ground truth.  

Table 3.4 shows the segmentation results for all ten OCT images with the full feature set, Table 

3.5 shows the results for all ten OCT images with reduced features set using GA, and Table 3.6 

shows the results for all ten OCT images with the reduced features using sparse PCA.  
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Table 3.4. Quantitative evaluation of Fuzzy C-means plaque segmentation algorithm using the 

full 26 feature set 

 

 

 

 

 

 

Image 

# 

Image ID Sample 

rabbit age 

(days) 

Sensitivity 

(%)   

Specificity 

(%)   

Accuracy 

(%)   

Precision 

(%)   

MCC 

(%)   

Dice 

Coefficient 

(%)   

1 2009_12_15_21_0

92_01_511 

 

309 65.947 96.557  94.513 57.808 58.817 61.610 

2 2009_05_27_21_0

87_01_5L2 

 

316 38.362 98.542 96.013 53.586 43.347 44.713 

3 2009_05_27_21_0

87_01_6L2 

 

316 35.088 97.868 94.316 49.665 38.868 41.123 

4 2010_03_03_20_0

84_02_612 

 

330 65.522 97.026 94.978 60.496 60.275 62.909 

5 2009-06-23-W21-

087-04-612 

 

342 78.567 94.472 93.453 49.338 59.092 60.613 

6 2009_08_12_W21

_085_01_611 

 

365 80.410 98.608 97.469 79.402 78.557 79.906 

7 2009-12-08-20-08-

04-01-611 

 

456 36.647 99.317 90.656 89.583 53.740 52.015 

8 2010_02_02_20_0

86_02_512 

 

577 25.303 99.305 94.021 73.689 40.973 37.671 

9 2010-02-02-086-

02-612 

 

577 36.981 99.268 95.248 77.709 51.621 50.113 

10 2010-02-02-086-

511 

 

577 34.893 98.299 92.953 65.390 44.493 45.504 
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Table 3.5. Quantitative evaluation of Fuzzy C-means plaque segmentation algorithm using 

reduced feature set obtained from the GA algorithm. 

Image 

# 

Image ID Sample 

rabbit age 

(days) 

Sensitivity 

(%)   

Specificity 

(%)   

Accuracy 

(%)   

Precision 

(%)   

MCC 

(%)   

Dice 

Coefficient 

(%)   

1 2009_12_15_21_0

92_01_511 

309 50.481 97.689 94.537 60.973 52.617 55.233 

2 2009_05_27_21_0

87_01_5L2 

316 22.985 99.413 96.201 63.221% 36.639 33.713 

3 2009_05_27_21_0

87_01_6L2 

316 19.972 99.720 95.209 81.062 38.806 32.048 

4 2010_03_03_20_0

84_02_612 

330 30.189 98.747 94.291 62.615 40.942 40.737 

5 2009-06-23-W21-

087-04-612 

342 32.130 98.807 94.531 64.851 43.212 42.971 

6 2009_08_12_W21

_085_01_611 

365 40.812 99.303 95.643 79.631 55.144 53.966 

7 2009-12-08-20-08-

04-01-611 

456 22.628 99.702 89.050 92.404 42.617 36.354 

8 2010_02_02_20_0

86_02_512 

577 20.932 99.757 94.128 86.897% 40.975 33.737 

9 2010-02-02-086-

02-612 

577 25.683 97.985 93.318 46.789 31.460 33.163 

10 2010-02-02-086-

511 

577 25.098 98.882 92.661 67.403 38.210 36.577 
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Table 3.6. Quantitative evaluation of Fuzzy C-means plaque segmentation algorithm using the 

reduced feature set obtained from the sparse PCA algorithm. 

Image 

# 

Image ID Sample 

rabbit age 

(days) 

Sensitivity 

(%)   

Specificity 

(%)   

Accuracy 

(%)   

Precision 

(%)   

MCC 

(%)   

Dice 

Coefficient 

(%)   

1 2009_12_15_21_

092_01_511 

309 66.308 97.006 94.957 61.307 61.058 63.710 

2 2009_05_27_21_

087_01_5L2 

316 37.319 99.378 96.770 72.483 50.607 49.270 

3 2009_05_27_21_

087_01_6L2 

316 29.347 99.199 95.248 68.729 42.954 41.131 

4 2010_03_03_20_

084_02_612 

330 74.833 96.370 94.970 58.903 63.774 65.920 

5 2009-06-23-W21-

087-04-612 

342 69.710 96.678 94.949 58.977 61.448 63.896 

6 2009_08_12_W21

_085_01_611 

365 79.111 99.033 97.786 84.519 80.598 81.725 

7 2009-12-08-20-

08-04-01-611 

456 47.690 99.363 92.222 92.315 63.067 62.891 

8 2010_02_02_20_

086_02_512 

577 32.473 99.670 94.004 90.056 52.018 47.733 

9 2010-02-02-086-

02-612 

577 24.323 99.678 94.297 85.308 43.761 37.853 

10 2010-02-02-086-

511 

577 34.292 99.702 95.480 88.810 53.583 49.479 
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We also compared the quantitative segmentation results using a full feature set, the reduced feature 

set obtained from GA, and the reduced feature set obtained from the sparse PCA method for 

precision, MCC, and Dice similarity metric, as these three metrics are the most important and 

relevant metrics for plaque segmentation problem. 

Fig. 3.13 shows the comparison of segmentation results of OCT vascular tissue images obtained 

using full features, reduced feature set using GA, and the reduced feature set using sparse PCA 

method. Our reduced feature set using sparse PCA generated notably higher results in comparison 

to the full feature set and GA.   

 

 

Fig. 3.13. Comparison of precision metric of segmentation results obtained using reduced feature 

sets from GA and sparse PCA method, and a full feature set. 

 

Fig. 3.14 and Fig.3.15 show the comparison of segmentation results obtained using full features, 

reduced feature set using GA, and the reduced feature set using sparse PCA method for MCC and 

Dice similarity coefficient metric, respectively. It is clear from both graphs that our reduced feature 

set using sparse PCA generated better results, followed by the full feature set and then GA.  
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Fig. 3.14. Comparison of MCC metric of segmentation results obtained using reduced feature sets 

from GA and sparse PCA method, and a full feature set 

 

 

 

Fig. 3.15. Comparison of Dice coefficient metric of segmentation results obtained using reduced 

feature sets from GA and sparse PCA method, and a full feature set 
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3.5 Discussions  

3.5.1 Discussion on quantitative results 

 

Fig. 3.16 shows the average values of all the evaluation metrics over all the 10 images.  We 

compared the segmentation results obtained using reduced feature sets from GA and the sparse 

PCA method, and a full feature set.  In general, reduced features obtained from the sparse PCA 

method performed the best. We now discuss results obtained for individual error metrics. 

For accuracy and specificity, although all the three approaches performed well, the best result of 

95% accuracy and 99% specificity obtained for the reduced feature set using sparse PCA. Since 

the count of true negatives, which is the non-plaque region, is far greater than true positive counts, 

i.e., plaque region, accuracy, and specificity may inflate the performance, which could be 

misleading.  

For sensitivity, segmentation results obtained from the reduced feature set method of 50% 

performed far better than using the full feature set. This could be attributed to the fact that full 

features could increase model overfitting. This is also clear from Fig. 3.5 and Fig. 3.10 panel (e), 

where the results obtained from using the full feature set show a non-plaque region segmented as 

a plaque region.  

For precision, MCC, Dice similarity coefficient, the segmentation result obtained from the reduced 

set using sparse PCA method performed better than the GA method and using full feature set.  

This is because GA is not quite robust, and the optimal solution (i.e., the best combination of 

features) difficult to be found as the algorithm could get stuck in local minima. With a full feature 

set (i.e., without any feature selection), the results are prone to overfitting and thereby segmenting 

the nonplaque region as plaque region, which in turn increases the false positive count.  
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Fig. 3.16. Comparison of average values of evaluation metrics of segmentation obtained using 

reduced feature sets from GA and sparse PCA method, and a full feature set 

 

3.5.2 Discussion on computation time 

We also profiled the computation time required in case both the full feature set and a reduced 

feature set, as shown in table 3.5. 
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Table 3.4. Computation-time comparison between the 26-feature set and the 6-feature set. 

Image 

# 

Image ID Sample 

rabbit age 

(days) 

Computation time 

with 26 feature set (s) 

Computation time 

with 6 feature set (s) 

1 2009_12_15_21_092_01_511 309 27.438  13.92  

2 2009_05_27_21_087_01_5L2 316 15.56  9.97  

3 2009_05_27_21_087_01_6L2 316 14.232  10.71  

4 2010_03_03_20_084_02_612 330 18.539  16.26  

5 2009-06-23-W21-087-04-612 342 15.616  9.34  

6 2009_08_12_W21_085_01_611 365 22.298  11.00  

7 2009-12-08-20-08-04-01-611 456 18.970  11.75  

8 2010_02_02_20_086_02_512 577 22.44  12.27  

9 2010-02-02-086-02-612 577 13.042  8.28  

10 2010-02-02-086-511 577 14.404  8.86  

  

 

As our time comparison results show, the speed of our algorithm more than doubles when the set 

of features is reduced, as shown in Fig. 3.17.  



80 

 

 

Fig. 3.17. computation time required using the full feature set and the reduced feature set 

 

All experiments were performed on a machine with an Intel Core (i5) CPU, 8 GB RAM, and a 

Windows 7 OS using an interpreted programming language, MATLAB. All execution times 

exclude the time required to read the images and calculate the metrics. 

3.5.3 Discussion on the effect of image window size for feature generation 

 

Texture segmentation consists of dividing an image into different regions of similar textural 

properties. In the first stage of texture segmentation, we extract textural features and perform 

feature selection, while the second stage entails using previously selected features to segment 

similar regions via clustering-based algorithms. However, the quality of any texture-based 

segmentation dramatically depends upon the window size over which features are calculated. We 

analyzed various window sizes over a region of interest from the plaque and non-plaque regions, 

as shown in Fig. 3.18. Small windows may not have enough pixels to accurately capture the texture 
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of underlying tissue, while windows that are too large may contain tissues with significantly 

different textures, which may result in coarse segmentation results. We chose the window size 

experimentally. We tried several different window sizes, with our findings showing that a window 

size of 32x32 pixels yielded the best results for plaque segmentation from other regions.  
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Fig. 3.18. Comparison of  second-order parameters extracted from the SGLDM of plaque vs non 

-plaque regions on different windows size: (a) angular second moment (ASM ); (b) sum average; 

(c) information measures of correlation II; (d) inertia; (e) sum variance; (f) difference variance. 

Features were evaluated with various window sizes — Gray bars plaque region; White bars: 

healthy regions.  
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3.6  Conclusions  

In this chapter, we presented two different feature selection methods (GA and sparse PCA) and 

an advanced clustering technique (Fuzzy C-means) to enable the detection of vascular tissue 

texture using OCT images. 

We were able to successfully reduce the full set of 26 textural features down to a set of 6 textural 

features, and we quantitatively evaluated the accuracy of our method by comparing our plaque 

detection results with both the full texture feature set and the reduced feature sets obtained from 

GA and sparse PCA method (see Table 3.4, 3.5 and 3.6) using the ground truth images. Our results 

show that although all the three approaches (full features set, reduced feature set obtained using 

GA, reduced feature set obtained using sparse PCA) were successful in identifying plaque region, 

our reduced feature set obtained using sparse PCA based method provided the most satisfactory 

results both visually and quantitatively. We found the average sensitivity, specificity, accuracy, 

precision, MCC and Dice similarity coefficient for our three approaches (full features set, reduced 

feature set obtained using GA, reduced feature set obtained using sparse PCA)  as (49.541%, 

97.926%, 94.362%, 65.667%, 52.978%, 53.618), (29.091%, 99.001%, 93.957%, 70.585%, 

42.062%, 39.850%) and (49.541%, 98.608%, 95.068%, 76.141%, 57.287%, 56.361%), 

respectively. 

Our new reduced feature sets from sparse PCA method, which are f1, f6, f13, f16, f20, and f23 (Angular 

Second Moment (ASM) at 0o, Sum average at 0o, Information measures of correlation II at 0o, 

Inertia at 900, Sum Variance at 900, and Difference Variance at 900), along with Fuzzy C-means 

clustering, and with its average processing time of ~ 11 secs could help to detect vascular plaque 

using OCT images.  
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Chapter 4:   DETECTION OF VASCULAR PLAQUE FROM OPTICAL COHERENCE 

TOMOGRAPHY IMAGES USING MARKOV RANDOM FIELD MODEL-BASED 

SEGMENTATION 

4.1  Introduction 
 

In any image segmentation problem, the objective is to divide an image into finite subregions; 

therefore, image segmentation is inherently a discrete problem. Typically, image segmentation 

approaches can be classified into three groups: (i) region-based, (ii) contour-based, and (iii) 

clustering. The contour-based algorithm is based on boundary features and partitions the image 

based on the boundaries of each object in the image. It does not involve any stochastic technique; 

it starts with a spline curve and optimizes it based on the energy function. One of the disadvantages 

of such methods is that they tend to get stuck in the local minima easily. In addition, these methods 

are not completely automatic and require manual assistance to initialize the curves. Region-based 

segmentation methods are based on partitioning different homogeneous regions. One of the 

traditional region-based algorithms is watershed segmentation, which segments the image into 

different regions based on pixel intensity. Usually, this algorithm is used to segment the foreground 

and background in an image. However, this approach often produces unsatisfactory results for 

images with many different regions. Two of the most common non-parametric statistical-based 

clustering methods are K-means and Fuzzy C-means. Some of the major limitations of the K-means 

clustering method are that it does not work very well with global clusters, and the algorithm has a 

difficult time converging when data has outliers. Thus, non-parametric methods may not result in 

robust image segmentation. Many machine-learning algorithms have also been proposed for 

detecting vascular plaque using medical imaging modalities. These modalities include computed 
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tomography using a regression approach, K-NN classifier, graph cuts, and kernel regression 

approaches. Ultrasounds using contour-based segmentation, Fuzzy C-means and ensemble 

clustering, backpropagation, support vector machines. In OCT using contour-based, clustering-

based method. These clustering-based algorithms face several limitations, including non-smooth 

and coarse plaque detection results and less robust outcomes when high noise levels are present. 

Therefore, to overcome these limitations, we propose a more robust stochastic algorithm that uses 

Bayesian segmentation based on an MRF-MAP approach. Our proposed algorithm considers 

images as random objects and pixels as random variables. In any image texture labeling problem, 

we observe the pixels that form a digitized picture, but not the type of texture (texture labels). 

Thus, the purpose of texture image segmentation is to estimate the texture type labels from the 

observed image. 

Pixels that are close to each other or neighboring pixels tend to have similar textural properties. 

This information is known as contextual information. MRF is a probabilistic model that captures 

such contextual constraints with respect to neighboring pixels. 

Consequently, we developed a stochastic model generated by MRF in order to address our plaque 

segmentation problem.  We considered our OCT images as random objects and the constituent 

pixels as random variables, and we aimed to extract vascular plaque regions, which were label type 

and cannot be observed directly.  

Our second approach is an MRF-based model. There are also models based on fractals, which 

have shown potential for use in modeling natural textural images [124-126]; however, these 

methods are not suitable for characterizing the local structures of images. Our model uses an MRF, 

which is a stochastic process wherein all interactions within a pixel are local; that is, the probability 
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of a pixel is solely determined by its neighboring states [127-128], with interactions between pixels 

always being direct with neighboring pixels. 

4.2 Definition of Markov Random Field (MRF) 
 

One of the basic building blocks of MRF is a neighborhood system, wherein each pixel’s 

neighborhood is defined based on the pixels immediately surrounding it (Fig. 4.1). 

 

            

                                            (a)                                (b) 

 Fig. 4.1. (a) First-order neighborhood system, where the conditional probability of Xs (black 

pixel) depends only on four neighboring random variables represented as white pixels; (b) second 

neighborhood system, where the conditional probability of Xs (black pixel) depends only on eight 

neighboring random variables. 

 

Let us assume an image to be a random field, X, and divided into 𝑁𝑥 ×𝑁𝑦 non-overlapping 

blocks. In this scenario, 𝑋 = {𝑋𝑖,𝑗|(𝑖, 𝑗) ∈ Ω}, where Ω = {(𝑖, 𝑗)|1 ≤ 𝑖 ≤ 𝑁𝑥, 1 ≤ 𝑗 ≤ 𝑁𝑦} is an 

index set on 𝑁𝑥 × 𝑁𝑦 blocks (Fig. 4.2). 

 
 

 

Fig. 4.2. 2D rectangular image block. 

 

𝑁𝑥 

𝑁𝑦 

  (𝑖, 𝑗) ∈ Ω 

 



87 

 

 

𝑋𝑖,𝑗 is an MRF if it is independent of other pixels outside the neighborhood, given all of the pixels 

in the neighborhood (i.e.,  𝑋𝑖,𝑗  is conditionally independent of all the pixels outside its 

neighborhood). Since pixel 𝑋𝑖,𝑗 is completely characterized by its local conditional probability, 

there are certain limitations of MRF in terms of its conditional pdfs, such as:   

(i) Computing the joint probability distribution function (JPDF) from its local conditional 

pdf is cumbersome and not straightforward.  

(ii) The relationship between local spatial characteristics and the local conditional 

probability distribution function form is not very obvious.  

To overcome these limitations, MRF can be characterized by a Gibbs Random Field (GRF) 

according to the Hammersley-Clifford theorem, which relates the GRF-MRF [129], to construct 

the JPDF of the random variable 𝑋𝑖,𝑗  from its local conditional probabilities. This theorem bridges 

MRFs and GRFs and makes them equivalent.  

The Gibbs distribution, which is the JPDF of all of the random variables in the random field, takes 

the following form: 

 

                                            𝑃(𝑋 = 𝑥) =
1

𝑍
𝑒𝑥𝑝 [

−𝑢(𝑥)

𝑇
]                                                          (4.1) 

 

where Z is the normalizing constant (also known as the partition function), and T is the temperature 

parameter. 𝑈(𝑥) is the energy function of the form,  

                                                   𝑈(𝑥) =  ∑ 𝑉𝑐𝑐∈𝐶 (𝑥)                                                         (4.2) 

 

where C is a set of cliques. A clique is a subset if every pair of pixels in the subset are neighbors. 

For each clique, c ∈ 𝐶, 𝑉𝑐(𝑥) is a clique potential.  
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Any observed two-dimensional image can be represented as a random field, 𝑌 = {𝑌𝑠},  on the 

lattice, S, where Ys is the random variable in the observed space representing gray-level value 

(0…255).  In an image segmentation problem, there exists a second different random field, X, that 

represents variables that are not directly observable, taking values in the space, 𝑋 =

{𝐿1, 𝐿2, . . 𝐿𝑥}, where Lx is the number of segmented regions that can only assume integer values, 

which, in our problem, is 4 (Fig. 4.3). These hidden variables, known as a Hidden Markov Random 

Field (HMRF), represent the labels of different image regions.  

 
                          
                              X: Hidden OCT image random field                Y: Observed OCT image                       

                                       with four hidden classes (labels)     

  

Fig. 4.3. Y is the observed MRF, X is the HMRF whose labels are estimated using the observed 

random field. 

4.3 Representing OCT images as MRFs 
 

We formulated our OCT image segmentation problem as an MRF estimation problem. The 

advantage of using MRF-model-based segmentation is that it allows spatial information to be 

incorporated into an image as a priori information [129]. We then used a maximum a posteriori 

(MAP) approach to obtain optimal values for labels corresponding to different image regions 
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(MRF-MAP). MAP criterion is the most commonly used in Bayesian segmentation problems due 

to the binary nature of its cost function.  

                          𝐶(𝑥, �̂�) = 1 − 𝛿(𝑥 − �̂�) = {
1, 𝑖𝑓 𝑥 ≠ �̂�
0, 𝑖𝑓 𝑥 = �̂�

                                                           (4.3) 

This cost function has a value of 1 if there is an error in labeling. Since the image segmentation 

problem is discrete by nature, this cost function will assign equal error to single mislabeled pixels 

or all mislabelled pixels.  

Given the observed random field (i.e., the raw OCT image, Y), the MAP formulation finds the 

class label, which maximizes the conditional probability,  

 

                                        �̂� = argmax
𝑥

𝑃(𝑥|𝑦)                                                                   (4.4) 

 

which could be rewritten using Bayes’ formula as, 

 

                                    �̂� = argmax
𝑥

𝑃(𝑦|𝑥) 𝑝(𝑥)                                                              (4.5)                                                                                                      

 

The term, 𝑃(𝑥), is the prior probability. One of the major advantages of using MRF-based models 

is that they allow priors to be represented using a Gibbs distribution, which is characterized by 

energy functions. These energy functions are more intuitive for modeling than working directly 

with probabilities. The prior in our texture segmentation problem is hidden texture label types, 

which we assumed to follow a Gibbs distribution.  

As an a priori probability distribution, Gibbs Random Field (GRF) takes the form, 

 

 

                                    𝑃(𝑋 = 𝑥) =
1

𝑍
𝑒𝑥𝑝{−𝑈(𝑥)}                                                           (4.6) 

   

 

with the energy function, 𝑈(𝑥), taking the form, 

 

                                 

                                   𝑈(𝑥) = −𝛽∑ 𝛿(𝑥𝑖 − 𝑥𝑗)𝑗∈𝒩𝑖
                                                         (4.7) 
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where the summation is over all neighboring pairs, 𝒩𝑖 is a neighborhood of 𝑗, and 𝑥𝑖  is the 

spatial label distribution that can take values of 1,2, 3, 4, 𝛿(. ) is the Kronecker delta function, 

and 𝛽 ≥ 0 is a scalar model parameter.  

In our implementation, we used the four nearest neighbors. This type of MRF model is 

referred to as the Potts model, which is a generalized form of the Ising model.  

                                                                                             

𝑃(𝑦|𝑥) is the likelihood and represents the conditional probability density function of the observed 

image data given its segmentation labels. We assumed that the pixel intensity in the image would 

follow a Gaussian distribution given the segmentation labels.  

 

                            𝑃(𝑦𝑖|𝑥𝑖) = ∏
1

√2𝜋
exp(

−(𝑦𝑖−𝜇𝑥𝑖)
2

2𝜎𝑥𝑖
2 − log (𝜎𝑥𝑖))  𝑖∈𝑠                                      (4.8) 

 

 

Using Gaussian distribution as the likelihood and Potts model as the MRF gives the posterior 

distribution as, 

                           𝑃(𝑦𝑖|𝑥𝑖) =
1

√2𝜋𝜎𝑥𝑖
2 exp(

−(𝑦𝑖−𝜇𝑥𝑖)
2

2𝜎𝑥𝑖
2 − β∑ 𝛿(𝑥𝑖𝑗∈𝒩𝑖

− 𝑥𝑗))                             (4.9) 

 

where y is the observed data, and the summation is over the four neighboring pixels of 𝑖. 

Given the form of the prior and likelihood functions, our next step in formulating the complete 

statistical model is to estimate all the unknown parameters, which is known as the parameter 

estimation step. We assumed a Gaussian distribution for the observed image and then used the 

Expectation-Maximization (EM) algorithm to estimate its parameters, including their mean and 

variance. The algorithm begins by estimating the initial values for the parameters, i.e., mean and 

standard deviation. Since the EM algorithm is sensitive to the initial estimates of these unknown 

parameters, we also used a K-means clustering algorithm to obtain appropriate initial estimates. 
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This was followed by EM steps, which iteratively updates our class labels and the parameters. In 

each iteration of our MRF-MAP approach, the iterated conditional modes (ICM) based 

optimization method [124] were used to estimate class. ICM is a deterministic optimization 

algorithm that uses a greedy strategy to maximize local conditional probability in a sequential 

manner. The computation time required in ICM is linear to the number of labels.   

4.4 MRF-MAP model-based segmentation results 

4.4.1 Qualitative evaluation of our results by comparing with ground truth 

 

We validated our OCT image segmentation results by comparing them with both histology images 

and photographic images of vascular plaque samples. The validation results indicated that our 

proposed algorithm had a good ability with respect to detecting vascular plaque from OCT images, 

which means that it could be of significant help in using such images to diagnose cardiovascular 

diseases 

Our OCT image-segmentation-based vascular plaque detection results are shown in Fig 4.4. To 

validate our results, we compared our segmentation results with actual photographic images (Fig. 

4.4(b)) and oil red histology images (Fig. 4.4(c)). The red regions in the histology images highlight 

the plaque region, which accurately matches our segmented plaque region. Similar results are 

presented in Fig. 4.5, Fig. 4.6, Fig. 4.7, Fig. 4.8, Fig. 4.9, Fig. 4.10, Fig. 4.11, Fig. 4.12, and Fig. 

4.13. 
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Fig. 4.4. (a) Raw OCT image of vascular tissue section 5-1-1 taken from a 309 day-old WHHLMI 

rabbit; (b) photographic image of vascular tissue; (c) corresponding oil red-stained histology 

image; (d) ground truth; (e) plaque segmentation using MRF-MAP based segmentation; (f) 

extracted plaque region. 

 

 

 

Fig. 4.5. (a) Raw OCT image of vascular tissue section 5-1-2 taken from a 316 day-old WHHLMI 

rabbit; (b) photographic image of vascular tissue; (c) corresponding oil red-stained histology 

image; (d) ground truth; (e) plaque segmentation using MRF-MAP based segmentation; (f) 

extracted plaque region. 
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Fig. 4.6. (a) Raw OCT image of vascular tissue section 6-1-2 taken from a 316 day-old WHHLMI 

rabbit; (b) photographic image of vascular tissue; (c) corresponding oil red-stained histology 

image; (d) ground truth; (e) plaque segmentation using MRF-MAP based segmentation; (f) 

extracted plaque region.  

 

 

 Fig. 4.7. (a) Raw OCT image of vascular tissue section 6-1-2 taken from a 330 day-old WHHLMI 

rabbit; (b) photographic image of vascular tissue; (c) corresponding oil red-stained histology 

image; (d) ground truth; (e) plaque segmentation using MRF-MAP based segmentation; (f) 

extracted plaque region.  
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Fig. 4.8. (a) Raw OCT image of vascular tissue section 6-1-2 taken from a 342 day-old WHHLMI 

rabbit;  (b) photographic image of vascular tissue; (c) corresponding oil red-stained histology 

image; (d) ground truth; (e) plaque segmentation using MRF-MAP based segmentation; (f) 

extracted plaque region. 

 

  

 

Fig. 4.9. (a) Raw OCT image of vascular tissue section 6-1-2 taken from a 365 day-old WHHLMI 

rabbit;  (b) photographic image of vascular tissue; (c) corresponding oil red-stained histology 

image; (d) ground truth; (e) plaque segmentation using MRF-MAP based segmentation; (f) 

extracted plaque region.  
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Fig. 4.10. (a) Raw OCT image of vascular tissue section 6-1-2 taken from a 456 day-old 

WHHLMI rabbit;  (b) photographic image of vascular tissue; (c) corresponding oil red-stained 

histology image; (d) ground truth; (e) plaque segmentation using MRF-MAP based segmentation; 

(f) extracted plaque region.  

 

 

Fig. 4.11. (a) Raw OCT image of vascular tissue section 5-1-2 taken from a 577 day-old 

WHHLMI rabbit;  (b) photographic image of vascular tissue; (c) corresponding oil red-stained 

histology image; (d) ground truth; (e) plaque segmentation using MRF-MAP based segmentation; 

(f) extracted plaque region.  
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Fig. 4.12. (a) Raw OCT image of vascular tissue section 6-1-2 from a 577 day-old WHHLMI 

rabbit;  (b) photographic image of vascular tissue; (c) corresponding oil red-stained histology 

image; (d) ground truth; (e) plaque segmentation using MRF-MAP based segmentation; (f) 

extracted plaque region.  

 

 

Fig. 4.13. (a) Raw OCT image of vascular tissue section 5-1-1 from a 577 day-old WHHLMI 

rabbit;  (b) photographic image of vascular tissue; (c) corresponding oil red-stained histology 

image; (d) ground truth; (e) plaque segmentation using MRF-MAP based segmentation; (f) 

extracted plaque region.  
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4.4.2 Quantitative evaluation of MRF-MAP based segmentation results 

 

We also evaluated the performance of our MRF-MAP algorithm quantitatively by forming a 

ground truth based on the consensus of four surgeons, as shown in Table 4.1.  

Table 4.1. Quantitative evaluation of MRF-MAP-based plaque segmentation algorithm. 

Image 

# 

Image ID Sample 

rabbit age 

(days) 

Sensitivity 

(%)   

Specificity 

(%)   

Accuracy 

(%)   

Precision 

(%)   

MCC 

(%)   

Dice 

Coefficient 

(%)   

1 2009_12_15_21_0

92_01_511 

309 58.597 

 

98.550 

 

95.882 

 

74.292 

 

63.865 

 

65.518 

 

2 2009_05_27_21_0

87_01_5L2 

316 41.566 

 

99.039 

 

96.624 

 

65.497 

 

50.567 

 

50.857 

 

3 2009_05_27_21_0

87_01_6L2 

316 12.308 

 

99.979 

 

95.020 

 

97.288 

 

33.675 

 

21.852 

 

4 2010_03_03_20_0

84_02_612 

330 46.086 97.750 

 

94.392 

 

58.749 

 

49.127 

 

51.653 

 

5 2009-06-23-W21-

087-04-612 

342 31.446 

 

99.192 

 

94.848 

 

72.718 

 

45.710 

 

43.905 

 

6 2009_08_12_W21

_085_01_611 

365 35.801 99.773 

 

95.770 

 

91.333 

 

55.701 

 

51.438 

 

7 2009-12-08-20-08-

04-01-611 

456 48.230 

 

99.674 

 

92.564 

 

95.951 

 

65.023 

 

64.193 

 

8 2010_02_02_20_0

86_02_512 

577 26.292 

 

99.843 

 

94.590 

 

92.774 

 

47.793 

 

40.972 

 

9 2010-02-02-086-

02-612 

577 29.861 

 

99.359 94.874 

 

76.284 

 

45.753 

 

42.921 

 

10 2010-02-02-086-

511 

577 37.994 

 

99.900 

 

94.680 

 

97.218 

 

58.984 

 

54.636 
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4.5  Discussions 

4.5.1 Discussion on quantitative results  

 

Fig. 4.14 shows the average values of all the evaluation metrics over all the 10 images. When 

compared to the clustering method, we notice that MRF-MAP performed poorly on some of the 

error evaluation metrics.  This is attributed to the fact that we used a deterministic algorithm, ICM, 

to compute the posterior probability and, the major disadvantage of the deterministic ICM method 

is that it uses a greedy strategy in the iterative local minimization which makes it easy to get stuck 

in a local optimum. Also, the MRF-MAP method is overly sensitive to the model parameters; 

therefore, it performed poorly.  

We now discuss results obtained for individual error metrics. 

For accuracy and specificity, MRF-MAP based method performed slightly better with the result 

of 95.1% accuracy when compared to the clustering method of 94.9% accuracy and specificity of 

99.3% for the MRF-MAP method and 98.6% for the clustering method. Both accuracy and 

specificity are sensitive to true negative counts, i.e., plaque region pixels segmented as non-plaque. 

The MRF-MAP-based method detected most of the non-plaque region pixels and missed plaque 

regions.  Since non-plaque region pixels are far greater in number than plaque region pixels, 

accuracy and specificity metrics may appear to inflate the performance for the MRF-MAP 

method. For sensitivity, MCC, Dice similarity coefficient, the segmentation result of the clustering 

method performed better than the MRF-MAP method. For precision, MRF-MAP with 82.2% 

performed better than the clustering method of 76.1%. The main advantage of MRF-MAP based 

method is that prior information could be imposed on the pixel labels as a random field model. In 

real-world images, regions are often homogenous; neighboring pixels usually have similar 

properties, and the MRF model captures such contextual constraints through the clique potential 

(i.e., by adding a continuous windowing effect). To make sure we obtain a smooth segmentation, 
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we chose the smallest possible window of a first-order neighborhood with a distance of 1 pixel.  

And therefore, similar to the clustering method, the MRF-MAP method also has an inherent 

windowing effect, which would result in a low-resolution segmentation. Another disadvantage of 

the MRF-MAP method is its sensitivity to the model parameters. Also, by using a greedy 

optimization method, ICM, MRF-MAP did not give very satisfactory results.  

 

 

Fig. 4.14. Comparison of average values of quantitative results of all the metrics of MRF-MAP 

and clustering algorithm results 

 

The performance of MRF-MAP could be improved further by using by applying stochastic 

algorithms, such as the Gibbs sampler or Simulated Annealing, instead of ICM to estimate the 

class labels. However, such an improvement will necessarily come at the cost of a further 

significant increase in computation complexity.  

4.5.2 Discussion on computation time  

 

With the current implementation using ICM, we already see an extremely high computation cost 

of the MRF-MAP method, as shown in table 4.2. On average, the MRF-MAP-based segmentation 
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method is about 9 times slower than the curvelet method and about 13 times slower than the 

clustering method. All experiments were performed on a machine with an Intel Core (i5) CPU, 8 

GB RAM, and a Windows 7 OS using an interpreted programming language, MATLAB. All 

execution times exclude the time required to read the images and calculate the metrics. 

Table 4.2. Computation time required to implement the MRF-MAP method. 

Image # Image ID   Age 

(days) 

Computation 

Time(s) 

1 2009_12_15_21_092_01_511 300  121.18  

2 2009_05_27_21_087_01_5L2 316  75.75  

3 2009_05_27_21_087_01_6L2 316  118.76  

4 2010_03_03_20_084_02_612 330  114.71  

5 2009-06-23-W21-087-04-612 342  85.68  

6 2009_08_12_W21_085_01_611 365  90.06  

7 2009-12-08-20-08-04-01-611 456  122.33  

8 2010_02_02_20_086_02_512 577  91.15  

9 2010-02-02-086-02-612 577  74.59  

10 2010-02-02-086-511 577  78.83  

 

4.5 Conclusions  
 

We implemented a fully automatic algorithm that employs a stochastic approach to conduct 

vascular plaque segmentation using OCT images. Our method is based on the MRF-MAP 

framework. We assumed a Gaussian distribution for likelihood, and we modeled prior, which is a 

latent random field, as the Potts model. We used the EM algorithm to estimate our parameter 

values and the deterministic ICM algorithm to estimate class labels. We showed that our MRF-

MAP-based model is capable of providing high-resolution segmentation results as opposed to 

coarse segmentation results, which were obtained using the clustering algorithm. However, our 

findings also showed that, compared to the clustering results, the MRF-MAP-based model did not 

improve quantitative results for all of the images, and it also requires a very high computation 

time. 
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Chapter 5:   HIGH-RESOLUTION CLASSIFICATION OF VASCULAR PLAQUE IN 

OPTICAL COHERENCE TOMOGRAPHY IMAGES USING SPARSITY-BASED 

SEGMENTATION IN THE CURVELET DOMAIN 

5.1 Introduction 
 

OCT generates cross-sectional images of tissue with spatial resolutions of approximately 10 𝜇m, 

which is higher than other clinical intravascular imaging methods, such as intravascular ultrasound. 

Such high spatial resolution, in addition to the small size of OCT’s fiber-based imaging probes, 

make it a highly suitable option for intravascular imaging. 

Despite these advantages, the ability to detect vascular plaque from OCT images by visual 

inspection is often limited due to a lack of contrast. To overcome this problem, we developed an 

image segmentation algorithm based on Haralick textural features.  However, the disadvantage of 

this image segmentation method is that it uses local image windows to calculate textural features. 

While the use of large local image windows makes it possible to compute these textural features 

accurately, it often also results in non-smooth low-resolution segmentation. On the other hand, 

using small local image windows results in image segmentation with an acceptable resolution but 

reduced accuracy. Therefore, there is always an inherent trade-off between resolution and accuracy 

when using texture-based image segmentation methods. 

We also developed an MRF-based model that is capable of providing high-resolution 

segmentation results, as opposed to the coarse segmentation results obtained with the clustering 

algorithm. However, one of the main disadvantages of the MRF-MAP technique is that it requires 
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numerically approximating the MAP estimate, which results in high computational costs. To 

overcome this problem, we develop a method that utilizes sparsity-based segmentation in the 

curvelet domain to enable the high-resolution classification of vascular plaque in OCT images. 

Our classification results show an excellent match with histology and photographic images of 

vascular plaque samples, in addition to having significantly higher spatial resolution than both 

MRF and clustering methods.  

5.2 Sparsity-based image segmentation 

Our objective is to classify vascular plaque from OCT images by identifying different image 

regions represented by directional lines and edges. We note that such image discontinuities 

correspond to the high-magnitude non-zero coefficients in an appropriate image representation 

domain (e.g., wavelet domain). Therefore, image segmentation can be viewed as the process of 

obtaining a sparse representation of an image, typically in the wavelet domain [130].  

Instead of using a sparse wavelet representation to classify vascular plaque regions from OCT 

images in this work, we segmented the image using the curvelet transform [131] due to its superior 

directional sensitivity. Therefore, the curvelet transform offers better performance than the wavelet 

transform with respect to representing curves and segmenting curvilinear regions. The curvelet 

transform is an extension of the traditional wavelet transform that overcomes its poor directionality 

by representing two-dimensional signals (e.g., images) using wavelets with different translations, 

scales, and angular orientations. 

5.2.1 Curvelet transform 

 

The first step in computing the curvelet transform of an image is to apply the 2D fast Fourier 

transform (FFT). The Fourier plane is constructed so that the center frequency (i.e., the D.C. value) 
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is located at the center of the plane. Next, the FFT plane is divided into tiles. The coarsest level 

(scale 0, innermost level) is not directional, and the curvelet becomes more sensitive to curved 

edges as the resolution level increases. Thus, curvelets are capable of effectively capturing curved 

edges at finer scales, making it possible to approximate curved singularities with few curvelet 

coefficients accurately. At a higher scale (scale 4), the curvelet waveform is very fine, with a 

needle-like structure.  

When we combine the frequency responses of curvelets at all of the different scales and 

orientations, we obtain a frequency tiling wherein periodic extension is used in the outer scales. In 

order to achieve high computational efficiency, curvelet transforms are usually implemented in the 

frequency domain. In other words, both the curvelet and the image are transformed and then 

multiplied in the frequency domain. Next, the inverse Fourier transform of the product is used to 

obtain the curvelet coefficients; however, the product forms a trapezoidal wedge in the spectral 

domain, which is not suitable for inverse Fourier transform (Fig. 5.1).  

Fortunately, Candes et al. (2006) have developed a wedge-wrapping operation that enables the 

inverse Fourier transform of these non-rectangular wedges to be acquired. In this operation, every 

wedge is localized inside a parallelogram with sides, 2j and 2j/2, to support the wedge. The 

wrapping operation is performed via the periodic tiling of the spectrum inside the wedge data, with 

the curvelet coefficients being obtained by taking the inverted Fourier transform of this wrapped 

wedge data.  
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Fig. 5.1. Illustration of the curvelet algorithm. 

 

 

 

5.3 Implementation and results of our vascular plaque classification method 
 

 

We used Meyer wavelets with four scales and eight angular orientations to decompose each of our 

OCT images (3700 × 650 pixels) into cells of curvelet coefficients ranging from low-frequency 

coefficients to high-frequency coefficients. The Discrete Curvelet Transform (DCT) is a 

decomposition of the OCT image, I, into curvelet coefficients, 𝐶𝑙𝑑𝑘1,𝑘2 

 

                                 𝐶𝑖𝑑𝑘1,𝑘2 = ∑ 𝐼[𝑛1, 𝑛2]
0≤𝑛2<𝑀
0≤𝑛1<𝑁

𝜑𝑖𝑑𝑘1,𝑘2(𝑛1, 𝑛2)                                          (5. 1) 

 

where (𝑛1, 𝑛2) are pixel indices, 𝜑𝑖𝑑𝑘 are discrete curvelets with scales i, directions d, and spatial 

shifts k1, k2.  At scale 𝑖 ≥ 2, there are N orientations, 

 

                                             𝑁 = 𝑁𝜃(2
⌈
𝑖−2

2
⌉)                                                                                   (5.2) 

where 𝑁𝜃 = 2𝑎 and 𝑎 ≥ 3. Thus, the minimum number of orientations or angles must be 8.  
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     The discrete curvelet transform (DCT) decomposes the image into dyadic rectangular coronae 

in different scales and orientations (angles). These rectangular coronae are divided into wedges, 

which double every second level. To extract the curvelet coefficients, each OCT image is divided 

into different subbands of different frequencies. In this work, we used i=4 scales and set the second 

coarsest curvelet transform to 16 angles. The next two higher frequency levels contain 32 angles 

in each scale, for a total of 80 angular wedges. Table 5.1 shows the scale and orientation of curvelet 

subbands,  

 

Table 5.1. Scale and orientation of subbands. 

Scale Number 

 of orientations 

1 1 

2 8 

3 16 

4 32 

 

On the finest level (i.e., i = 4), we used wavelets to exclude the noise, which helped to decrease 

the computer’s memory requirements and total execution time. At the coarsest level (i.e., when i 

= 1), the curvelets behave like Meyer wavelets and are nondirectional. To remove the background 

information, we discarded the coarsest level, which makes our method insensitive to variations in 

background intensity. All the parameters used in the curvelet domain are shown in Table 5.2. 

To enhance computational efficiency, we used the simpler and faster discrete fast curvelet 

transform followed by a simple hard thresholding step to retain only the large magnitude 
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coefficients [132] from each sub-band. Hard thresholding sets any coefficients less than or equal 

to our threshold to zero.  

 

 

Table 5.2. Parameters used in image transformation in the curvelet domain. 

Curvelab version CurveLab 2.1.3 

Open-source site www.curvelab.org 

Matlab file Fdct_wrapping.org 

Input image OCT image 

is_real 0 (complex curvelet coefficients) 

finest 2 (wavelet at scale 0, finest scale) 

Nbscales 4 (number of levels of decomposition) 

Nbscales_coarse 8 (number of orientations at the second 

coarsest level) 

 

5.3.1 Qualitative evaluation of our results by comparing with ground truth 

 

To demonstrate the validity of our plaque classification method, we compared our results—which 

were obtained using OCT images of vascular tissues from WHHLMI rabbits—with actual 

photographic images, oil red histology images, and ground truth images.  

Fig. 5.2 shows a raw OCT image of vascular tissue from a 309 days old WHHLMI rabbit (panel 

a), the ground truth, which was formed based on the consensus of all four surgeons (panel d), and 

the sparsity-based segmented images  (panel e). A comparison of the photographic (panel b) and 

oil red histology images (panel c) with the plaque region extracted using our sparsity-based 
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segmentation method (panel f) revealed an excellent match between the plaque regions in all of 

these images. We also note that our method enabled significantly improved resolution in plaque 

classification compared to the textural-feature-based classification method. This improvement in 

resolution and reduction in computational complexity with respect to plaque classification is the 

main contribution of this work. To validate our results further, we show other successful plaque 

detection results for 316, 330, 342, 365, 456, and 577 days old WHHLMI rabbits in Fig. 5.3, Fig 

5.4, Fig. 5.5, Fig. 5.6, Fig. 5.7, Fig. 5.8, Fig. 5.9, Fig. 5.10, and Fig. 5.11.  

 

 

Fig. 5.2. (a) Raw OCT image of vascular tissue section 6-1-2 taken from a 309 day-old WHHLMI 

rabbit; (b) photographic image of vascular; (c) corresponding oil red-stained histology image; (d) 

ground truth; (e) plaque segmentation using curvelet-based segmentation; (f) extracted plaque 

region. 
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Fig. 5.3. (a) Raw OCT image of vascular tissue section of 5-1-2 taken from a 316 day-old 

WHHLMI rabbit;  (b) photographic image of vascular tissue; (c) corresponding oil red-stained 

histology image; (d) ground truth; (e) plaque segmentation using curvelet-based segmentation; (f) 

extracted plaque region. 

 

 

 Fig. 5.4. (a) Raw OCT image of vascular tissue section of 6-1-2 taken from a 316 day-old 

WHHLMI rabbit; (b) photographic image of vascular tissue; (c) corresponding oil red-stained 

histology image; (d) ground truth; (e) plaque segmentation using curvelet-based segmentation; (f) 

extracted plaque region. 
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Fig. 5.5. (a) Raw OCT image of vascular tissue section 6-1-2 taken from a 330 day-old WHHLMI 

rabbit; (b) photographic image of vascular tissue; (c) corresponding oil red-stained histology 

image; (d) ground truth; (e) plaque segmentation using curvelet-based segmentation; (f) extracted 

plaque region. 

 

 

Fig. 5.6. (a) Raw OCT image of vascular tissue section 6-1-2 taken from a 342 day-old WHHLMI 

rabbit; (b) photographic image of vascular tissue; (c) corresponding oil red-stained histology image; 

(d) ground truth; (e) plaque segmentation using curvelet-based segmentation; (f) extracted plaque 

region. 
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Fig. 5.7. (a) Raw OCT image of vascular tissue section 6-1-2 taken from a 365 day-old WHHLMI 

rabbit; (b) photographic image of vascular tissue; (c) oil red-stained histology image; (d) ground 

truth; (e) plaque segmentation using curvelet-based segmentation; (f) extracted plaque region.  

 

 

Fig. 5.8. (a) Raw OCT image of vascular tissue section 6-1-2 taken from a 456 day-old WHHLMI 

rabbit;  (b) photographic image of vascular tissue; (c) oil red-stained histology image; (d) ground 

truth; (e) plaque segmentation using curvelet-based segmentation; (f) extracted plaque region.  
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Fig. 5.9. (a) Raw OCT image of vascular tissue section 5-1-2 taken from a 577 day-old WHHLMI 

rabbit; (b) photographic image of vascular tissue; (c) corresponding oil red-stained histology 

image; (d) ground truth; (e) plaque segmentation using curvelet-based segmentation; (f) extracted 

plaque region. 

 

 

Fig. 5.10. (a) Raw OCT image of vascular tissue section 6-1-2 taken from a 577 day-old 

WHHLMI rabbit;  (b) photographic image of vascular tissue; (c) corresponding oil red-stained 

histology image; (d) ground truth; (e) plaque segmentation using curvelet-based segmentation; (f) 

extracted plaque region.  
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Fig. 5.11. (a) Raw OCT image of vascular tissue section 5-1-1 taken from a 577 day-old 

WHHLMI rabbit; (b) photographic image of vascular tissue ; (c) corresponding oil red-stained 

histology image; (d) ground truth; (e) plaque segmentation using curvelet-based segmentation; (f) 

extracted plaque region. 

 

5.3.2 Quantitative evaluation of curvelet based segmentation results 

 

We also evaluated the performance of our segmentation results quantitatively by computing the 

evaluation metric described in chapter 2. Table 5.3 shows the quantitative results of segmentation 

using our curvelet-based algorithm. 
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          Table 5.3. Quantitative evaluation of curvelet-based plaque segmentation algorithm. 

Image 

# 

Image ID Sample 

rabbit age 

(days) 

Sensitivity 

(%)   

Specificity 

(%)   

Accuracy 

(%)   

Precision 

(%)   

MCC 

(%)   

Dice 

Coefficient 

(%)   

1 2009_12_15_21_0

92_01_511 

309 70.493 99.595 97.653 92.573 79.642 80.038 

2 2009_05_27_21_0

87_01_5L2 

316 90.664 99.027 98.676 80.353 84.676 85.198 

3 2009_05_27_21_0

87_01_6L2 

316 26.770 99.999 95.856 99.927 50.620 42.228 

4 2010_03_03_20_0

84_02_612 

330 78.789 97.738 96.507 70.777 72.819 74.568 

5 2009-06-23-W21-

087-04-612 

342 84.782 98.361 97.491 77.997 79.986 81.248 

6 2009_08_12_W21

_085_01_611 

365 84.762 99.511 98.589 92.052 87.591 88.256 

7 2009-12-08-20-08-

04-01-611 

456 88.740 99.449 97.969 96.275 91.286 92.354 

8 2010_02_02_20_0

86_02_512 

577 44.290 99.653 95.699 90.750 61.698 59.528 

9 2010-02-02-086-

02-612 

577 73.862 99.340 97.696 88.542 79.693 80.538 

10 2010-02-02-086-

511 

577 59.373 99.847 96.434 97.274 74.476 73.739 
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5.4 Discussions 
 

5.4.1 Discussion on quantitative evaluations and computation time 

 

Fig. 5.12 shows the average values of different evaluation metrics over all the 10 images. Our 

curvelet-based method generated notably higher results in comparison to the MRF-MAP and 

clustering method. 

As mentioned in chapter 3, our clustering-based method suffered from a poor resolution because 

of its windowing effect, which resulted in high false positives. And therefore, our clustering 

method performed worst on precision and specificity with an average score of 76.1% and 98.6%.  

MRF-MAP resulted in high false negatives and performed worst on sensitivity, MCC, and Dice 

similarity coefficient metric with the average score of 36.8%, 57.3%, and 48.8%, respectively. 

On all the evaluation metrics, our curvelet-based segmentation performed the best. While we are 

at 88.7% for precision, 76.2% for MCC, and 75.8% for Dice similarity coefficient, it is not perfect. 

This could because the manual segmentation which formed the ground truth is not perfect. There 

was some variance in the ground truth, as the manual segmentation formed by different 

cardiologists had some differences. We, therefore, feel confident in the ability of our curvelet-

based algorithm to detect plaque effectively. 
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Fig. 5.12. Comparison of average values of quantitative results of all the error metrics of Curvelet 

based, MRF-MAP based, and clustering methods. 

 

The computation time that was required to implement our curvelet method on all of the image 

samples is shown in Table 5.4. Our curvelet-based method shows a considerable improvement in 

both segmentation quality and computation efficiency when compared to clustering-based and 

MRF-based algorithms. All experiments were performed on a machine with an Intel Core (i5) 

CPU, 8 GB RAM, and a Windows 7 OS using an interpreted programming language, MATLAB. 

All execution times exclude the time required to read the images and calculate the metrics. 
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Table 5.4. Computation time required for the implementation of our curvelet method. 

Image # Image ID  Sample 

rabbit Age 

(days) 

Computation 

Time(s) 

1 2009_12_15_21_092_01_511 
309 8.089 

 

2 2009_05_27_21_087_01_5L2 
316 6.662 

 

3 2009_05_27_21_087_01_6L2 
316 7.961 

 

4 2010_03_03_20_084_02_612 
330 9.362 

 

5 2009-06-23-W21-087-04-612 
342 6.591 

 

6 2009_08_12_W21_085_01_611 
365 7.742 

 

7 2009-12-08-20-08-04-01-611 
456 9.872 

 

8 2010_02_02_20_086_02_512 
577 7.646 

 

9 2010-02-02-086-02-612 
577 6.483 

 

10 2010-02-02-086-511 
577 6.932 

 

 

5.5 Conclusions 
 

This chapter presented a method that uses sparsity-based segmentation in the curvelet domain to 

achieve a high-resolution detection of vascular plaque region in OCT images. Our results visually 

showed an excellent match with the histology, photographic and ground truth image. To confirm 

the validity of our method, we also evaluated our plaque detection results quantitatively, attaining 

average sensitivity, specificity, accuracy, precision, MCC, Dice similarity coefficient values of   

70.253%, 99.252%, 97.257%, 88.652%, 76.249%, 75.770% respectively. 
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Thus, our automated curvelet-based method of identifying vascular plaque from OCT images 

produced very promising results and could be adopted as practical clinical tools for automated 

real-time identification of vascular plaque in OCT images. 
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Chapter 6:   CONCLUSIONS AND FUTURE WORK 

6.1  Summary 
 

In this dissertation, we have shown three methods that are capable of differentiating tissue types 

in OCT images without relying on visual structures. Although OCT is an important modality for 

intravascular imaging, it is usually quite difficult to accurately identify atherosclerotic plaque from 

OCT images through visual inspection. We have described three novel fully automated algorithms 

that are capable of identifying vascular plaque in OCT images without relying on visual 

inspection: (i) a statistical-based method, (ii) a model-based method, and (iii) a sparsity-based 

model that uses curvelets to detect vascular plaque regions in OCT images automatically. While 

our first clustering-based algorithm, which was based on reduced feature-sets, provided successful 

visual results, however, because of its underlying windowing effect, its segmentation had a low 

resolution.  

Our second algorithm, which was based on MRF, was able to improve the resolution of plaque 

identification regions in some images, though it was not very consistent. However, the main issue 

with the MRF-based method was that it required a high amount of computation time.   

Finally, our third algorithm, which used a curvelet domain sparsity-based image segmentation 

method, provided the most satisfactory results with respect to both computation speed and 

resolution.  

We qualitatively compared our algorithms’ plaque identification results to photographic images 

and histology slides, as well as to the ground truth, which was based on the consensus assessments 

of the images by four interventional cardiologists. 

We also quantitatively evaluated our results for all the error evaluation metrics presented in chapter 

2. However, the three most relevant evaluation metrics for our plaque detection problem are 
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precision, MCC, and Dice similarity coefficient as the region of interest, i.e., the plaque-only 

region is significantly small when compared to the non-plaque region. An unbalanced plaque and 

non-plaque region may inflate the values of accuracy and specificity, which could be a misleading 

result. Where in the case of sensitivity, it may appear to be very low.  

 The average precision, MCC, and Dice similarity coefficient values obtained for our three 

algorithms (curvelet, MRF, and clustering method) were (88.7%,76.2%, and 75.8%), (82.2%, 

51.6%, and 48.8%) and (76.1%, 57.1%, and 56.4%). Comparisons of our three algorithms with 

respect to each of the above evaluation metrics are shown in Fig. 6.1, Fig. 6.2, Fig. 6.3 

 

Fig. 6.1. Comparison of the precision metric for all three methods 
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Fig. 6.2. Comparison of the MCC metric for all three methods 

 

 

     

Fig. 6.3. Comparison of the Dice coefficient metric for all three methods 
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We also compared the computation time required for each of the three methods, with the curvelet 

method providing the best performance. All experiments were performed on a machine with an 

Intel Core (i5) CPU, 8 GB RAM, and a Windows 7 OS using an interpreted programming 

language, MATLAB. All execution times exclude the time required to read the images and 

calculate the metrics. The average computation times obtained for the curvelet-based, clustering-

based, and MRF-MAP-based methods were 7.735secs, 11.235secs, 97.304secs, respectively. The 

imaging parameters of a commercial extreme resolution IVOCT of St. Jude Medical Inc. for 

maximum frame rate is 100 fps, and nominal pullback speed is 20 mm/sec. The average frame rate 

of MRF-MAP based is 0.010 fps which might be too slow for real-time application. The clustering 

method is fast enough with its average frame rate of 0.089 fps, but it suffers from poor resolution. 

The average rate for our curvelet-based method is 0.128 fps which is suitable for the commercial 

system and real-time applications. 

A comparison of the computation time required for the three algorithms is provided in Fig. 6.4.  

 

Fig. 6.4. Comparison of computation time for all three methods. 
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Our results show that the novel algorithms presented herein could be adapted as clinical tools for 

the automated real-time identification of vascular plaque in OCT images.  

The main contributions made by this thesis can be summarized as follows: 

• Our statistical approach is based on extracting second-order moments as textural features 

derived from SGLDM matrices and applying a clustering algorithm. As the use of this full 

set of 26 texture features is computationally expensive and could also lead to overfitting, 

it may not be practically fast for real-time clinical implementation. So, we reduced the 

computational complexity of our earlier method by using a reduced set of only 6 texture 

features, along with a Fuzzy C-means clustering algorithm. This additional step of feature 

selection is important to reduce computational complexity, as only features resulting in 

significant vascular plaque discrimination should be included in this reduced set, and other 

features should be ignored. Our goal then is to select those features that are rich in 

information related to our plaque identification problem. Sparse PCA expands the well-

known PCA data analysis method by requiring its loading vectors to be sparse, i.e., to have 

as many zeros as possible. These sparse loading vectors are typically computed using the 

least absolute shrinkage and selection operator (LASSO) method [29]. To select only the 

information-rich features from the full set of 26 Haralick texture features, we computed 

the sparse PCA for all the vectors containing the full set of 26 Haralick image texture 

features and used the sparsity of its loading vectors for such selection.   

• To overcome the limitation of redundancy and to reduce computation, we further improved 

our statistical method using a reduced set of 6 textural features and the Fuzzy C-means 

clustering algorithm. Our feature-reduction work comprised three main steps: 

implementing an SGLDM method to extract the full set of 26 textural features, identifying 
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a reduced set of 6 textural features from the full set, and applying the clustering algorithm 

on the reduced feature space. Our feature-reduction method combines sparse PCA with an 

advanced clustering technique (Fuzzy C-means) to detect vascular plaque in OCT images. 

We evaluated the accuracy of our method by comparing our plaque detection results with 

both the 26-feature set and the 6-feature set, with promising results being obtained for the 

reduced-feature set. We also validated our plaque detection results using histology, 

photographic and ground truth images. Our method, which combines the use of a reduced 

set of 6 textural features and OCT imaging, may offer an efficient tool for the real-time 

detection of vascular plaque in a clinical setting, thereby enhancing clinicians’ ability to 

diagnose vascular disease earlier. Although our proposed method yielded promising 

results, it is hampered by some limitations, such as non-smooth and coarse plaque detection 

results. Therefore, to further improve our results and to overcome these limitations, we 

implemented an MRF-MAP-based approach. 

• Image segmentation using the MAP-MRF approach has become extremely useful in the 

area of image segmentation. Since in the MRF-MAP-based approach, prior information 

could be imposed on pixel labels as a random field model, which makes it mathematically 

more feasible. In real-world images, regions are often homogenous; neighboring pixels 

usually have similar properties, and the MRF model captures such contextual constraints 

through the clique potential (i.e., by adding a continuous windowing effect). We assumed 

the pixel segmentation labels have a Gibbs probability distribution, characterized by energy 

functions that promote similarity of neighboring pixel labels. To make sure a smooth 

segmentation, we chose the smallest possible window of a first-order neighborhood with a 

distance of 1 pixel.  We also assumed a conditional Gaussian distribution, with unknown 
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mean and variance, for each observed image pixel given its segmentation label. Then we 

used the EM algorithm to estimate both pixel segmentation labels and unknown Gaussian 

distribution parameters. Because the EM algorithm is sensitive to the initial values of 

unknowns, we used a K-means clustering algorithm to obtain good initial estimates for the 

pixel segmentation labels. This initialization is then followed by EM steps, which 

iteratively update pixel labels and the parameters using the ICM optimization method.  

Similar to the clustering method MRF-MAP method also has an inherent windowing 

effect, which resulted in low resolution. Another disadvantage of the MRF-MAP method 

is sensitivity to the model parameters, and by using a greedy optimization method, ICM 

we, therefore, did not achieve a satisfactory result for all the images.  

The performance of MRF-MAP could be improved further by applying stochastic 

algorithms, such as the Gibbs sampler or Simulated Annealing, instead of ICM to estimate 

the class labels. However, such an improvement will necessarily come at the cost of a 

further significant increase in computation complexity.  

• To overcome the low spatial resolution of results from our first method and the impractical 

long computation time required for our second method, we developed a third plaque 

identification method based on OCT image segmentation in the curvelet domain wherein 

the image is sparsely represented. To achieve significantly better directional sensitivities 

in representing curvilinear region boundaries, our method obtains a sparse representation 

of the image in an extension of the wavelet domain, i.e., the curvelet domain. Images are 

represented in the curvelet domain using wavelets that have different angular orientations 

(angles), in addition to their original spatial translations and scales. 
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A 2-D discrete curvelet transform could be easily implemented with Meyer wavelets 

having four scales, eight angular orientations, and by using the discrete Fourier transform. 

Each OCT image is divided into subbands of different frequencies before decomposing it 

into dyadic rectangular coronae that are further divided into wedges having different 

angular orientations and scales. Afterward, we applied a hard thresholding step to all 

subband coefficients, where any coefficient less than our chosen threshold is set to zero.  

Our results show that although all three methods were successful in identifying plaque regions, 

our curvelet-based method provided the most satisfactory results both visually and quantitatively. 

We believe our curvelet-based algorithm, with its average processing times of ~7 secs and with 

high segmentation performance, and with high segmentation performance, could be adopted as an 

efficient pre-clinical tool for automated real-time identification of vascular plaque in OCT images. 

To the best of our knowledge, this research marks the first attempt to perform the automatic 

segmentation of vascular plaque regions from structureless OCT images using MRF-MAP and 

sparsity-based algorithms. Our novel algorithms could be adopted as practical clinical tools for 

automated real-time identification of vascular plaque in OCT images. 

As future work, we anticipate the application of our intravascular methods to human in-vivo OCT 

3-D images. Other unsupervised plaque segmentation methods based on sparse signal processing 

and dictionary learning could be promising. In addition, supervised plaque segmentation methods 

based on Deep learning architectures and convolutional neural networks could be promising as 

well.   
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APPENDIX A: SPATIAL GRAY LEVEL DEPENDENCE MATRICES (SGLDM) 
 

This appendix details the SGLDM matrices used in this dissertation. 

 

The features resulting from first-order statistics, such as central moments, provide information 

about the image’s gray-level distribution, but they do not provide any information about the 

relative positions of the various gray levels, e.g., if all low-value gray-level pixels are placed 

together or if are they are interchangeable. Such information can be generated from the second-

order histograms, where the pixels are considered in pairs. The two new parameters are the relative 

distance and their relative orientations among the pixels. Let d be the relative distance measured 

in pixel numbers (d equals1 for neighboring pixels). The orientation, 𝛉, is measured in four 

directions: horizontal, diagonal, vertical, and anti-diagonal (0◦, 45◦, 90◦, 135◦), as shown in  

Fig. A-1.  

 

 

 

Fig. A-1. The four orientations used to construct SGLDM matrices. 
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For each combination of d and 𝛉, a two-dimensional histogram is defined as,  

 

00 = 𝑃(𝐼(𝑖, 𝑗) = 𝐼1,𝐼(𝑖 ± 𝑑, 𝑗) = 𝐼2) 

 900 = 𝑃(𝐼(𝑖, 𝑗) = 𝐼1,𝐼(𝑖, 𝑗 ∓ 𝑑) = 𝐼2)                                         
 

 

 

These probability density functions, 𝑝(𝑖, 𝑗; 𝑑, 𝜃), measure the probability that two pixels located 

with an inter-sample distance, d, and direction, θ, will have gray levels i and j. 

 

This is known as the Spatial Gray Level Dependence Matrix (SGLDM) method, which is a known 

method for extracting second-order statistical texture features. Rosenfeld and Troy [A1] and 

Haralick et al.  [A2] first proposed SGLDM matrices for arbitrary spatial distances and angular 

directions. The SGLDM method determines the probability of the occurrence of gray levels with 

respect to relative spatial pixel positions in an image. SGLDM matrices are based on an estimate 

of the second-order joint-conditional probability density functions,  𝑝(𝑖, 𝑗; 𝑑, 𝜃). 

The following examples illustrate the construction of SGLDM matrices:  

Let I (i, j) be a 4 ×4 image  

 

𝐼 = [

1 2 1 2
1 2 0 1
1 0 2 1
1 2 2 1

] 

 

 then 4×4 image with three gray levels Ng= 0, 1, and 2. 

 

𝐴 =
1

𝑅
[

𝜂(0,0) 𝜂(0,1) 𝜂(0,2)
𝜂(1,0) 𝜂(1,1) 𝜂(1,2)
𝜂(2,0) 𝜂(2,1) 𝜂(2,2)

] 

 

 An SGLDM matrix for a pair (d, 𝛉), where R is the total number of pixel pairs. 
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𝐴0(𝑑 = 1) =
1

23
[
0 2 2    
2 0 6    
2 7 2    

]
0
1
2

 

                          0 1 2 

 

The SGLDM matrix for the above image with d = 1, 𝛉=0. 

 

For each of the intensity pairs, such as (0, 0), we count the number of pixel pairs at a relative 

distance d =1 and orientation 𝛉=0◦ that take these values. 

After using the probabilities of gray-level occurrence with respect to the pixel position in order to 

form the SGLDM matrices, we use them to calculate the corresponding Haralick features. Some 

of these features have a direct interpretation with respect to texture; for example, the angular 

second-moment feature is the measure of the image’s smoothness; contrast is the measure of local 

gray-level variation within the image, and entropy is the measure of randomness in an image, and 

therefore produces low values for smooth images.  However, there are other features that do not 

possess such a direct interpretation but that can still convey texture-related information with high 

discriminatory power. Even though these textural features contain information about the textural 

characteristics of an image, it is difficult to identify which specific textural characteristic is 

represented by each of these features.  
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APPENDIX B: LEAST ABSOLUTE SHRINKAGE AND SELECTION OPERATOR  
 

Least Absolute Shrinkage and Selection Operator (LASSO) was originally formulated in the 

context of least squares models [B1]. In signal processing, the LASSO method is also known as 

Basis Pursuit [B2]. The LASSO method is a coefficient-shrunken version of the ordinary least 

square estimated. As such, it minimizes the squared sum of residual subjection to constrain the 

sum of the absolute value of the coefficients, which should be no greater than a constant. Let us 

assume, 

                                                 𝑌 = 𝑓(𝑥) + 𝑒𝑟𝑟𝑜𝑟                                                                     B.1 

and E(휀) = 0, Var(휀)=𝜎2, then the prediction error of the estimate 𝑓(𝑥) is 

                                        𝐸𝑟𝑟𝑜𝑟(𝑥) = 𝐸 [(𝑦 − 𝑓(𝑥))] 

                                        𝐸𝑟𝑟𝑜𝑟(𝑥) = 𝜎2 + [𝐸𝑓(𝑥) − 𝑓(𝑥)]
2
+ 𝐸[𝑓(𝑥) − 𝐸𝑓(𝑥)]

2

 

                                        𝐸𝑟𝑟𝑜𝑟(𝑥) =  𝜎2 + 𝐵𝑖𝑎𝑠2 (𝑓(𝑥)) + 𝑣𝑎𝑟(𝑓(𝑥))                                  B.2 

Ordinary least square estimates often have low bias but high variance; however, the LASSO 

method can improve overall prediction accuracy by sacrificing a little bias to reduce the variance 

of the predicted value.  

LASSO takes the following form:  

                                     �̂� = argmin
𝛽

{∑ (𝑦𝑖 − 𝛼 − ∑ 𝛽𝑗𝑗 − 𝑥𝑖𝑗)
2𝑁

𝑖=1 } subject to |𝛽𝑗| ≤ 𝑡           B.3 

The criterion, ∑ (𝑦𝑖 − ∑ 𝛽𝑗𝑗 − 𝑥𝑖𝑗)
2𝑁

𝑖=1 , equals the quadratic function as 

                                                (𝛽 − �̂�0)
𝑇
𝑋′𝑋(𝛽 − �̂�0)                                                                     B.4 

This function is represented as elliptical contours.  
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The L1 norm constraint in the LASSO method is represented as a square centered at the origin, 

and the LASSO solution is the first place where the contour touches the square. 

Another equivalent of LASSO exists in a Lagrangian form: 

 

                      �̂� = argmin
𝛽

{
1

2
∑(𝑦𝑖 −∑𝛽𝑗

𝑗

− 𝑥𝑖𝑗)

2
𝑁

𝑖=1

+ 𝜆∑|𝛽𝑗|

𝑗

}   

                                                  = argmin
𝛽

‖𝑌 − 𝑋𝛽‖2
2 + 𝜆‖ 𝛽‖1                                               (B.5) 

 

where ‖ 𝛽‖1 is the 𝐿1 LASSO penalty. This constraint makes the solution nonlinear in Y and 

lacking a closed-form, making it solvable using LARS.  
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APPENDIX C: LEAST ANGLE REGRESSION (LARS) 
 

 Least Angle Regression (LARS) is a very efficient algorithm that solves for the entire path of the 

solution as Lambda is varied [C1]. LARS requires the same computation as least square fit with p 

variables and takes p steps to reach a full least-squares fit. LARS follows a similar concept to 

forward stepwise regression, which builds the model sequentially by adding one variable at a time. 

At each sequential step, forward stepwise regression finds the best set of variables and keeps 

updating the least square fit to include all the best variables. LARS operates similarly: in the first 

step, LARS identifies the variable most correlated with the response variable and keeps it in the 

active set until the second variable enters. Unlike forward stepwise regression, LARS does not 

take many small steps to select variables; instead, the steps are determined algebraically. The 

computation cost of LARS is 𝑂(𝑝3 + 𝑛𝑝2) computations, where p is the number of variables. This 

computational cost is the same as least squares for p variables. A more detailed description of 

LARS follows below: 

  Step 1: Standardize all variables to have a mean of zero and a unit norm. Start with all coefficients, 

𝛽1,  𝛽2 ,…., 𝛽𝑝, equal to zero 

 Step 2: find the variable, 𝑥𝑗, most correlated with the residual, 𝑟, by finding the largest value of 

〈𝑥𝑗 , 𝑟𝑗〉, and define the active set, 𝒜 = {𝑥𝑗}, and the active matrix, 𝑋𝒜𝑗,
 containing active variables 

as its columns. 

 Step 3: Move 𝛽𝑗 from 0 in the direction of its least-squares coefficients 〈𝑥𝑗 , 𝑟𝑗〉.  The direction is 

defined as ∆𝑗= (𝑋𝒜𝑗

𝑇 𝑋𝒜𝑗
)
−1

𝑋𝒜𝑗

𝑇 𝑟𝑗,  and the coefficient becomes 𝛽𝒜𝑗
(𝜂) = 𝛽𝒜𝑗

+ 𝜂. ∆𝑗 , where 𝜂 
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is the step size defined as 𝜂 = min
𝑗∈𝑋𝒜

{
�̂�−𝑐̂𝑗

𝑋𝒜𝑗−𝑟𝑗
,
�̂�+𝑐̂𝑗

𝑋𝒜𝑗+𝑟𝑗
} , 𝑐𝑗 is the current correlation, and �̂� =

min
𝑗
{�̂�𝑗}.   

Step 4: Move 𝛽𝑗 until some other variable, 𝑥𝑘, catches up and has as much as correlation with the 

residual as 𝑥𝑗 and enters in the active set.  

Step 5:  Continue until all of the variables have been entered into the active set. At this point, we 

will have arrived at the full least-squares solution.  
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LIST OF ACRONYMS 
 

AIC: Akaike Information Criterion 

AM-FM: Amplitude Modulation-Frequency Modulation 

APAC: Asymptomatic Polyvascular Abnormalities Community 

ASM: Angular Second Moment 

CHD: Coronary Heart Disease 

CT: Computed Tomography 

CTA: Computerized Tomography Angiography 

CVD: CardioVascular Disease 

CVH: CardioVascular Health score 

FFT: Fast Fourier transform 

FH: Familial Hypercholesterolemia 

FP: False Positive 

FN: False Negative 

GLCM: Gray Level Co-occurrence Matrix 

GA: Genetic Algorithm 

GRF: Gibbs Random Function 

GSM: Gray-Scale Median 

HC: HyperCholesterolemia 

HMRF: Hidden Markov Random Field 

ICA: Internal Carotid Artery 

ICM: Iterated Conditional Modes 
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IVOCT: Intravascular Optical Coherence Tomography 

IVUS: Intravascular Ultrasound 

JPDF: Joint Probability Distribution Function 

MCC: Matthews’ Correlation Coefficient  

MRF: Markov Random Field 

MRF-MAP: Markov Random Field-Maximum A Posteriori 

MI: Myocardial Infarction 

MRI: Magnetic Resonance Imaging 

LARS: Least Angle Regression 

LASSO: Least Absolute Shrinkage and Selection Operator 

LDL: Low-Density lipoprotein   

OCT: Optical Coherence Tomography 

PC: Principal Component 

PCA: Principal Component analysis 

PCR: Principal Component Regression 

SGLDM: Spatial Gray Level-Dependent Matrix 

SS-OCT: Swept-Source Optical Coherence Tomography 

SVD: Singular Value Decomposition 

TP: True Positive 

TN: True Negative 

VLDL: Very Low-Density Lipoprotein 

WHHLMI: Watanabe Heritable Hyperlipidemic Rabbits 

 


