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Abstrsct

Zero-knowledge protocols were introduced in 1985 an"d have since been the subiect of

extensive research. Such protocols have had sígníficant theoretícal and practical

rømífications for the field of cryptography. The basíc idea is as follows: a prover (PeÇgy)

owns a secret and through a series of exchanged messages, wíshes to convínce a verífier

(Vic) that she knows the secret withnut revealing anything about it (beyond the fact that

she knows it.) AIso, íf Peggy does not know the secret and attempts to cheat, Vic will

almost certainly detect the cheating. Furthermore, Vic cannot convince anyone else of the

exístence of Peggy's secret by exhibiting a transcrípt of his conversatíon with Peggy.

Since the field of zero-knowledge ís a relatívely young one, this thesís ís an attempt to

provide a broad survey of the area as well as to present a somewhat in-depth examinatíon

of the more important ideas that have emerged so far. The basic concepts are first

discussed ín some detail, and some of the more important zero-kno,ivledge protocols are

then presented, with examples taken mainly from number theory and graph theory. These

are then generalized and different methods for building zero-knowledge protocols for aII

languages ín NP are presented. The latter are compared and evalu.ated ìn ternß of

fficiency and suitabiliry for practical implementation.

At the heart of zero-knowledge protocols lies the principle of bit commitment. The

different levels of securiry obmined by specífic implementatíons of bít commitment

protocols are given. A very important result, namely the concept of non-interactive zero-

knowled.ge protocols is also discussed. Finally, some of the cryptographic applications of

both interactive and non-interactíve zero-knowledge protocols are presented anà directions

for fitture research in tlrc area are suggested.
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$X.1 Intnoductíon

The concepts of ínteractive proofs and zero-knnwledge were introduced by Goldwasser,

Micali and Rackhoff IGMRI] in 1985 and have since þen the subject of extensive resea¡ch

([GRM1],[BCC],[GQ1],ffiSl,etc). Although interesting for their theoretical implications,

these concepts have been shown to be applicable to cryptographic protocols. In Chapter 6

we shall given a brief of some of the contributions of zero-knowledge to the field of

cryptography.

Informally an ínteractive proof system is a two-party conversation during which an

infinitely powerful prover (P) attempts to convince a polynomial-time verifier (V) of some

fact, usually of the form x e ^L where L is some language, through a series of exchanged

messages. It should be emphasized that these proofs are not proofs'in the mathematical

sense of the word but in a probabilistic sense as there is always a (small) theoretical

possibility of the verifier being convinced of the validity of a false theorem. Such an

interactive proof is said to be zero-knowledge if, whenever the verifier is told by a trusted

oracle that x e L, he/she is able to compute on his/her own the conversations that he/she

would have had with the prover during an interactive proof of x e L. If the end result of a

protocol between two interactive parties P and V is to have P transmit to V the value of

some predicate (in this case the value of ¡ e l) then we should require that the protocol

reveal nothing more than this value. Furthermore, the above should also hold even if V

tries to cheat. So the verifier does not learn anything new from the prover other than what

the prover had set out to prove. Throughout this thesis we will informally refer to the

prover in a protocol as Peggy and to the verifier as Vic. Symbolically the following

notation wrll be used-

P(V) refers to the real prover (verifier) who is honest and follows the protocol.



Pn(V*) refers to an arbitrary (possibly cheating) prover (verifier) who is allowed to

deviate arbitrarily from the protocol.

By varying the limits we place on the computational abilities of our interacting parties we

can have different models of protocols. Specifically we allow the prover or the verifier to

be machines with infinite power or \pe restrict them to polynomial-time computations.

To give a concrete example, consider Peggy who is trytng to convince Vic that a certain

integer-r is a quadratic residue mod // where N is the prduct of two primes known only to

Peggy. If the protocol which is used by both parties is to be zero-knowledge, Vic should

not be able to trick Peggy into revealing a square root of x or the factors of l/ nor any

information that would allow Vic to compute these things much faster than before the start

of the protocol. More generally, the data that Vic sees during an execution of the protocol

give rise to a probability distribution which depends on the initial input. We can thus

define zero-knowledge to mean that given the fact that ¡ e L, Vic can generate on his own

and without any help from Peggy, a simulation of the conversation thát he would have had

with Peggy that is indistinguishable from the one that might have been generated during a

real conversation with Peggy.

In order to illustrate in a very intuitive manner the basic feature of zero-knowledge

protocols we present and adaptation of the following narrative due to Guillou and

Quisquater and [GQ3].

$1.2 ^åli Eaba and the 40 thieves Revisited

The story begins in.9th century Baghdad where Ali Baba was visiting the Old Ma¡ket

Place. Suddenly, a thief grabbed his purse and ran off. Ali Baba followed the thief and

saw him enter a cave whose plan is reproduced in Figure 1. Unfortunately, Ali Baba did

not see which of the passages the thief had taken. So he took the right passage, looking for

the thief along the way. Ali Baba reached a dead end without frnding the thief. He decided



to go back and explore the other passage and again reached a dead end without finding the

thief. Ali Baba was puzzled as to where the thief had gone but he left it at that.

Figure 1

The next day at the market another thief stole Ali Baba's basket and found refuge in the

same cave. As before, Ali Baba did not see which way the thief went. He decided to

explore the left passage and could not find the thief. After looking along the other passage

he again came up empty-handed. Ali Baba reasoned that in both cases the thieves were

lucky in choosing the passage that Ali Baba chose not to explore fust and escaped while he

was exploring the wrong passage. Days went by and every day Ali Baba was robbed by a

different thief. And thus, the sü'ange ritual of running after the thief, picking a random

passage and not finding the thief was repeated until the 40th day when Ali Baba finally

realised that there was something more to the cave. Indeed, the probability that he would

always pick the wrong passage 40 times in succession was U240, which is VERY small.

Ali Baba resolved to discover the secret of the cave. The next day, instead of going to the

market, Ali Baba hid beneath sacks at the end of one of the passages. After a long





worked. A member of the team of researchers, a certain Mick Ali who was also a

descendent of Ali Baba wanted to demonstrate that he knew the secret but he did not wish

to reveal it. This is what he did.

CNN (always in Baghdad) was granted an exclusive to the story and a television crew

filmed a detailed tour of the cave with the two dead-ends. Then everybody went out and

Mick went in alone and went down one of the passages. A reporter (Peter,{.) then went in

with a rolling camera but only as fa¡ as the fork. He then flipped a coin. If the coin came

up heads (tails) he would ask Mick to æme out on the right (left). The coin came up heads

and Mick was asked to come out on the right which he did. This scene was repeated 40

times, each time the crew filming the whole cave, everyone then leaving, Mick going in

alone and down one of the passages, and finally Peter asking to come out the appropriate

passage as determined by the outcome of his coin toss. Of course, since Mick knew the

secret he succeeded in all 40 scenes. Anyone who did not know the secret would have

been caught on the fîrst failure. A cheater is detected when the repoúer asks him to come

out on the right when he went down the left passage or vice-versa. Each new test thus

reduces by a factor of half the probability that the reporter will be fooled. By increasing the

number of tests ttre reporter can increase his confidence that the prover is not cheating.

The Simulated Tape

Another T.V. reporter @an R.) hired by a rival network also wanted to film the story but

Mick had given exclusive rights to CNN and could not participate. However, he suggested

to Dan that the story could still be filmed without knowtng the secret. After A LOT of

thought Dan finally understood how it could be done. He hired a stage actor who looked

like Mick and went through the same procedure that Peter and Mick had gone through. Of

course, during the course of filming about half of the scenes were spoilt as Mick's double

did not know how to get foom one passage to the next. However, Dan kept filming scenes

until he had fony successful ones. The spoilt scenes were edited out. That night, both



tapes rvere broadcast on each network. The matter was quickly taken to court with the two

tapes being the evidence. However, after viewing both tapes the judges could not tell the

genuine tape from the simulated one. Clearly the simulated tape did not reveal anything

about the secret as the double did not know the secret. But the simulated and genuine tape

were indistinguishable. Therefore the genuine tape also did not convey anything about the

secret. Recall that at the time Peær A. had þen convinced that Mick knew the secret but he

could not transfer his confidence to the judges or the television audience.

And by this demonstration Mick had shown that one could "convince without revealing"

which is the hallmark of zero-knowledge protocols.

$1.3 Some ComplexÍty T'heory

In the next chapter we will rigorously define the concept of interactive and zero'knowledge

proofs. In order to understand these on a more intuitive level, it is recommended that the

reader attempt to relate them to the rather informal narrative given above. In this section we

will give a brief overview of the following well-known concepts from the theory of

computation.

A function/(n) is expressed in the form O(g(n)) (called the "big-O" notation) where/(n) =

OG(n)) if there exists constants c and n¡ such that

Í(n)<clg(n)lforn>n6.
For example, if fln) = 6n + 8, then/(n) = O(n) since 6n + I < 7 n lor n> n0= 8 and c ='7.

The computational complexity of an algorithm A, which takes as input some x (l x I = n)l

is measured by its time and space requirements, T(n) and S(n). The O-notation allows the

classifîcation of any algorithm in terrns of T(n) and S(n). For example, an analysis of A

might reveal that T(n) = an2 i bn * c where a,b, and c are unspecified constants. Since n2

1Noæ that in the above equalion, the I l-notation was us.-d to refer to absolute value. From now onwa¡ds,

and unless othenvise specified, fhe noíation lxl refers to the number of bits required to represent x.

6



is the dominanr rerrn we say that T(¿) = O(n2). Thus an algorithm is said tok., poþnomial-

time if its running time is given by T(n) = O(nt) for some constant r. It is exponential-time

if T(n) = ççp(n)¡ for some constant r and polynomial p(n). It should be noted that any

problem is classified according to the minimum space and time required to solve the hardest

instance(s) of the problem on a Turing machine. Infonnally, a Turing machine can be

thought of as an idealized computer. Its purpose is to standardize ideas of computability

and computation time by referring all problems to one standard machine. A Turing

machine can also be considered as a "realistic" model of computation in that problems that

are solvable on a Turing machine are also solvabie on real systems and vice-versa. Such

problems are considered to be tractable as they can usually be solved for reasonably sized

inputs.

The class F consists of all problems solvable in polynomial-time. The class N F

(nondeterministic polynomial) consists of all problems that can be solved in polynomial

time on a non deterministic Turing machine. By this, rffe me¿m that the machine will guess

the solution and can then check its correctness in polynomial-time. Of course, there is no

gu¿rrantee that the machine will guess the right answer. It is clear that the class NP

includes the class F as any problem that is polynomially solvable on a deterministic Turing

machine is also polynomially solvable on a nondeterministic one. It would seem that to

determínísticølly solve certain problems in NF requires exponential time and these

problems are thus considered intractable. A famous example of such a problem is the

circuit satisfîability problem where one is required to determine whether there exist

assigned values to 4 set of n Boolean variables P = Pl,P2,...,Pn such that a given collection

of clauses over P is true. Cook has shown that every problem in NF can be reduced, in

polynomial rime, to a satisfiability problem. Thus, if the satisfiability problem is

polynomially solvable, then every problem in NF is polynomially solvable and if some

problem in NF is intractable, then the satisfiability problem is intractable. The set of all

problems that can be shown to be equivalent to satisf,rability is called the set of Ntr-

7



complete problems and if any one of the NP-complete problems were found to be in F, all

NF problems would be in F. ,{s such, NP-complete problems are the hardest problems

in NF with the property that known algorithms for solving them have worst-case

complexities that are exponential in the size of the input. The class co-NF consists of all

problems that are the complements of some problems in NF. Intuitively, an NF problem

is a question of the form "determine whether a solution exists " whereas a co-NF problem

can be formulated as "show that there are no solutions." As a matter of convenience the

theory of NP-completeness is designed to be applied only to dzcisíonproblems. These are

problems which have only two possible solutions, "yes" or "no." For example, in the

satisf,rability problem described above, the problem could be formulated to read: "Does

there exist a set of ¿ Boolean variables such that a given collections of clauses over P is

true?"

The concepts that are outlined above will be used extensively throughout this thesis and

should be sufficient for our purposes. For a more extensive discussion of these concepts

the reader is referred to [GI.

$f..4 R,andonr Vaniables and Frohability Ðüstributions

Since these two concepts are central to the definition of zero-knowledge, we will now give

a brief introduction and definitions. Informally, a random variable is one whose observed

value is determined by chance. Random variables usually fall in two categories; they are

either discrete or continuous. For example a random variable T can represent the time of

day at which demand for electricity peaks. This is a random variable since its value is

affected by chance factors such as time of the year, humidity, and temperature. Thus T can

take on any value in the Z4-hotr time span. If the numbr of possible values a random

variable can take on is finite or a count¿bly infiniæ set, then it is a discrete random variable;

otherwise it a conúnuous random variable. Thus, since time is measured continuously the



variable T above is a continuous random variable. Throughout this thesis we will be using

the idea of discrrete random variables and we now give a forrnal definition.

ÐefíniÉiom. A discrete random variables is one which can assume at most a finite or a

countably infinite set of values.

However, when dealing with random variables it is not enough just to determine what

values are possible. We also need to determine what is probable. That is, we want to be

able to predict what the values that the variable is likely to assume at any given time. Thus,

we want to be able to assign probabilities to each of the possible values that the random

variable can take on. Such a set of probabilities describ€s what is known as the probabiliry

dßtribution.

9



CåaapÊex" 2
V.æw ø ^Wçnaowåedge Ð eflåneed

$2.1 Tntroductio¡r

As mentioned in the previous chapter, we will now give the required dehnitions that will be

used throughout this thesis.

$2.2 nnteractive Turing Machines and Fnotocols ar¡d Fnoof Systerns

Ðefïnition tGMR2l : An ínteractive Turing Machine (ITM) is a Turing machine with a

read-only input tape, a read-only random tape, a read/write work-tape, a read-only

communication tape, a write-only cornmunication tape and a write-only output tape. The

random tape contains an infinite sequence of random bits which can be thought of as

unbiased coin tosses and can be scanned only from left to right. Thus the machine flips a

coin by reading the next bit from its random tape. The contents of the write-only tape can

be thought of as messages sent by the machine while those of the read-only tape can be

thought of as messages received

Definition tGMR2l : An interactive protocol ís an ordered pair of ITM's (P,V) which

share the same input tape. V's write-only communication tape is P's read-only

communication tape and vice-versa. Machine P is not computationally bounded while

Machine V's computation is bounded by a polynomial in the length of the common input.

The two machines take turns being active, with V starting first. During an active stage,

Machine P (V) first performs some internal computation based on the contents of its tapes

and then writes a string for V (P) on its write-only communication tape. As soon as

machine P (V) writes its message it is deactivated and unless the protocol is over, Machine

V (P) now becomes active. Either machine can terminate the protocol by not sending any

messages during its active phase. Machine V accepts (is convinced of the validity of the

prooÐ or rejecs by entering an accept or reject state thereby stopping the protocol.

10



Definition IGMR2I : let L be a language over {0,1}u. I-et (P,V) be an interactive protocol

where P is the prover and V the verifier. V/e say that (P,V) is an {mtenaaúive Fnoof

Systern for L if the following conditions hold:

1. Completeness ( in a probabilistic sense). For any x e L.given as inpüt to (P,V), V

halts and accepts with probability at least I - Ixl-È for sufficiently large x, where & is

some constant gleater than 0.

2, Soundness ( in a probabilistic sense). For any ITM Po which can interact with V,

and for sufficiently large x É L, V accepts with probability at most l-d -¿ .

where & is some constant greater than 0.

Informally, condition (1) says that if ¡ e L, then V will accept with high probability while

condition (2) ensures that if x ø L then it is highly unlikely that even a cheating machine

will be able to convince V of the veracity of the statement x e L.In fact V only has to

trust the randomness and secrecy of his own coin tosses.

Ðefinition: V/e define trF, Interactive Polynomial-time, to be the class of languages for

which there exist interactive proof systems.

4.2.3 Zero-Knowledge

Intuitively, a zero-knowledge proof is one which reveals only its validity. Recall

from $1.1 that we referred to zero-knowledge as the ability of the verifier to generate on

his/her own, after being told by a trusted third pany that the prover's assertion is correct, a

probability distribution that is indistinguishable from (or reasonably close to) that

generated during a conversation with the prover. We next focus on the notion of

indistinguishability for random variables.

$2.3.1 Xndístiregurishability of' nandonr¡ variables

We consider families of random variables R = { R(¡) } where -r is a string

belonging to some language L which is a particular subset of {0,1}* and all random

11



variables only take on values in {0,1}*. I-et n = {R(x)} and S = {S(x)} be two families of

random variables. V/e select a random sample from either of R(x) and S(.r) and give it to a

generic'Judge" who is to determine from which of R(x) or S(x) our sample comes . We

say that R(x) can be replaced by S(¡) if for long enough x, as x increases, the verdict of

any judge becomes irrelevant. Essentially the decision of the judge bcomes independent

of the family that the sample came from.

Two parameters a.re immediately apparent in the above scena¡io : the size of the

sample and the amount of time that the judge is allowed to study the sample. By varying

the bounds on these parameters we can obtain various degrees of indistinguishability for

random variables. We proceed in decreasing order of robustness.

" Equality : if the two families of random variables are exactly aiike, then the judge's

decision will be meaningless regardless of the sample size and the amount of time that the

judge is given to study the sample.

" Statistical indistinguishability : The 2 families of random variables are said to be

statistically indistinguishable, if the judge's decision becomes meaningless when given an

infinite amount of time to study the sample but the sample's size is polynomially bounded

in l¡ l.

" Computational indistinguishability : The 2 famiiies of random variables are said to be

computationally indistinguishable if the judge's decision becomes meaningless when he is

only given polynomial in l¡ I time to study the sample and is only given samples of size

polynomially bounded from above in Lrl.

We now præeed to formally define these concepts.

Ðefinition (statistical Indistinguishability). LetL c {0,1}* be u language. Two families

of randomvariables { R(¡ )} and { S(x) } aresaidtobestatistícallyinüstinguishnble on

Lif
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äI prou ( R(¡) = ø ) - prob (S (;r) = ø ) I < lxl-"
ae [01]"

for all constants c > 0 and suff,rciently large x .

Before defining computational indistinguishability, it is worth noting that the judge

that we will be using will be a polynomial-size family of circuits rather than a polynomial-

time Turing machine. The reasons for this will be described after zero-knowledge has been

formally defined. Let C = [ C.x ] be a family of Boolean circuits Cr with outdegree I and

lC, I ir ar most lxl¿ for some constant e > 1. Our family of random variables B = {R(x)},

in this case, will be such that all random variables R(-r) e R assign positive probability

only to those strings with size exactly lxld for some constan t d > 0 ( this to ensure that only

samples of polynomial size are presented to ttre judge). If C = {C" } is a poly-size family

of circuits and U = {U(:r)} is a poly-bounded family of random va¡iables, we denote by

P(R, U, ¡) the probability that C, ourputs a 1 upon input string where stríng is a random

string distributed according to U(;r).

Ðefinition (Computational or polynomial Indistinguishabiliry). LetL c {0,1}o be a

language. Two poly-bounded families of random variables R and S are computationally or

polynomialty indistinguíshable on L if for all polynomial-size families of circuits C, for all

suffîciently long strings.r e L and for all constans c > 0

I p( n, c,¡) -P( s, c,x ) I .H-'

Note: If R and S are equal, it is obvious that they are also statistically indistinguishable.

'We can also see that if R and S a¡e statistically indistinguishabie then they are also

compurarionally indistinguishable by the following argument. Consider the set I of inputs

upon which C, outputs 1. Since R and S are statistically indistinguishable, R(x) takes on

a value in I with almost the same probabitity that S (x) does. Thus P( R, C, r ) will be

very ciose to P(S,C, x).
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$2,3.2 Appnoxtrnating R.amdonm Varüables

The next logical step is to find an efficient algorithm that will take as input a random

variable R and output random strings in a way that is indistinguishable from S. In order to

motivate the discussion, recall that we are trying to formalize the notion of the amount of

knowledge transmitted by a series of messages. One gains no information from a message

which is the result of a feasible ( polynomial-time ) computation which one could have

performed by oneself.

Ðefïnition tGMR2l. Let M be a probabilistic Turing machine that halts with probability 1

on input ¡. For each input x, M will output some string cr with a particular probability Ps.

V/e denote by M(x) the random variable that takes on çr with probability Po.

Ðefinition tGMR2l. LetL c {0,1}o be alanguage andU = {U (.r)} be a family of

random variables. We say that U is perfectly approxímable on L if there exists a

probabilistic Turing machine M, running in expected polynomial-time (i.e. the average time

for generating M(.t) is polynomial in lxl ), such that V x e L, M(x) is equal to U(x)'

We say that U is statisticatty (computatíonally) approximable on L if there exists a

probabilistic Turing Machine M, running in expected polynomial time, such that the

families of random variables {M(x)} and {U(x)}are statistically (computationally)

indistinguishable on L.

$2.3.3 Zero-Knowledge Frotocols and Fnoofs.

As mentioned in the introduction, a protocol should only be considered zero-knowlege if

no additional information is leaked during a conversation between a prover and a verifier,

even if the verifier is dishonest and attempts to cheat the prover into revealing extra

knowledge. So we first consider a cheating verifier who is allowed to deviate arbitrarily

from the protocol.

Eì^fi-iÉi¡* rr:ìíD,)l . I pt ¡/Þ V\ hF en inferanrivp rìr frvÌrìl l-gt V* be an intefaCtive TUfing¡-rËlllrlll\rl! L\Jlvrt\l,l . ÞL \r ,1 | vv q¡ r¡rlvrevr¡

machine that has input x and an exb-a input tape H, where the length of H is bounded from
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above by a polynomial in the length of x. (One can think of H as information about x that

Vu already posesses. For instance if we consider the language of graph isomorphism, H

could be the colouring of the graphs that Vu posesses. Alternatively, H could be the

history of past conversations between P and V* that V* is attempting to use in order to

extract information from P.) For a round of the protocol on comrnon input x and extra

input H, we define the view of Vn to be everything that V* sees. Namely, let o (and p) be

the random strings contained in the random tapes of P (and Vo). Let the computation of P

and V* with these random choices consist of n rounds with the verifîer V* starting first,

where p¡ ( and v; ) are the ith messages of P (and Vo) respectively. Then we say that

(p,pI,vt,....,pn,vn\ is the view of V* upon input x and H. We let Viewp,y*(x,H) be the

variable whose value is this view. For convenience we consider each view to be a string

from {0,1}* of length l-rlc for some constant c > 0'

Ilefinition tGMR2l : Let L c {0,1}* be a language and (P,V) be a protocol. l-et Vo be a

machine as defined above. V/e say that (P,V) is perfectly (statistícally ) (computationally )

zero-knowledge on L for Vo, if the family of random variables Viewp,yo is perfectly

(statisticatly ) (compuøtionally) approximable on

Lo = { (x,H) I x e Land I H I = l¡lc }.

We say that (P,V) is perfectly (statistically) (computationally) zero-knowledge on L if it is

perfectly (statístically ) (computationally ) zero-knowledge on L îot all probabilistic

polynomial time ITM's V*.

Note: When a user performs P's role in a zero-knowledge protocol, it is the user's

responsibility not te cheat, since there is no guarantee that the protocol is secure if P is

replaced by a dishonest P*. Computational zero-knowledge is the most general of the

above concepts and will be simply referred to as zero-knowledge. Thus if (P,V) is zero-

knowledge it is not possible for even a dishonest verifier to obtain additional information

about members of L in polynomial time, during the course of an interaction with P-
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Ðeffi¡litio¡r : Iæt L c {0,1}* be a language. We say that (P,V) is a perfectly (statistically)

(computationatly) zero-knowledge proof system for L if it is an interactive proof system for

L and a perfectly (stastically) (computationally) zero-knowledge protocol on L.

Noæs:

1. It is important to realize that the coin tosses of V are a crucial part of the defrnition

of zero-knowledge for V. We can see this more clearly from the following example.

Consider the protocol (P,V) and the language L of all composite integers. Let the input be

n whose membership in L we want to establish.

Algorithm:

1. Vrandomly selectsx where I <x <nandgcd(x,n ) = 1.

2. V sends a=x2 mod ¿.

3. P responds with y, a randomly selected square root of 4.

If the view consists of only the text of the interaction between P and V (a and y) then the

above protocol would be zero-knowledge on L. All our simulator would have to do would

be to randomly generate _f, compute a = x2 mad, n and let y = ¡. The resulting distribution

would be identical to that of the text of the interaction between P and V. Howeve , \ve

define the view to also include the coin tosses of V (i.e. the x's). Thus if (x, a,y) is

randomly selected in Viewp,v(n), then our simulator will only be able to simulate this view

by actually factoring n. This is because even if we have the random root y, gcd(x + y) is

notl ornwithprobabilityatleast| {tit"r"are4roots if n=pq,wherep,q a¡edistinct

primes) which does not help us in factoring n Þel. Thus if one cannot factor in

probabilistic polynomial time, the above protocol is zero-knowledge.

2. As mentioned earlier, V* also sees an additional string H. The reason for this was

independently discovered by [GMR2], Oren[O], and Tompa and Woll[TV/]. H may be

thought of in different ways as mentioned in $2.3.3. Hypothetically, H could have been

-^-^-^+^J eL-^,,^L i-*--n¡+inn .',i+L an i-fi-i+ol.r nn.trar€rrl ñr^rrêr \Ã-/e rrrqnf tn cncrrre thqf
ËVlf\,rO,Uv\l IrUVUËrr lllLv¡4wllvll w¡l¡l e¡ u¡rr¡¡rlv¡J l,vvYv^rq¡ y¡vrvr.

even a verifier with access to H cannot exEact additional knowledge from P. This is why

t6



non-unifonnity was introduced in our definition of computational zero-knowledge in the

form of distinguishing circuits. The motivation for this was that 2 families of random

variables can be computationally distinguished if there are circuits that can discriminate

befween them whenever certain information is wired in the circuits.

3. The machine M simulating V*"s view is allowed to use V* in the strong sense as

defined nexr. V*'s probabilistic nature is modelled by providing it with a random read-only

tape. During the course of simulating P, M is allowed to "rewind" V a few steps back in

the simulated protocol, resetting Vo's random read-head to where it had been earlier and

proceed with the protocol from that point on. To use the Ali Baba analogy this would be

equivalent to the process where the fake Mick Ali cannot come out from the passage

dictated since he picked the wrong one. In this case Dan R. had to repeat the curent scene.

Using the above definitions, we present in the next chapter zero-knowledge protocols for

various languages.
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C&aæpÉex' 3

Søsrae ffiæw c,-&çaaowåedge Ps'oÉocoås

$3.n lntnodr¡ctiom

As promised in the previous chapter we now present zero-knowledge protocols for various

languages. More interestingly, we also present interactive proof systems for languages

which are not known to be in NP but nevertheless klong to IP.

$3.2 Quadratic Residuosity

V/e will first need the following defrnitions:

l-et N denote the nan¡ral numbers.

f). = tye Nl l SySxand gcd(¡,y) =1)and¡e N.

For any y. 1, we say that y is a quadratic residue mod x if there exists * . 1 such

that w2 : y mod x; otherwise y is a quadratic non residue mod x.

We define the quadratic residuosity predicate as

[0 if y is a quadratic residue mod x

Q'0) = l
L1 otherwise

In the protocol to be presented we consider the language of quadratic residues QR, where

QR = {(x,y) l¡ e N, x is not prime, y . 1, and Qr$) = 6¡.

Two interacting parties Peggy and Vic are both given as colnmon input a pair of integers

(x,y). Peggy knows that (-r,y) e QR and will attempt to prove to Vic that this is the case

without revealing any information to him such as the prime factors of x. If indeed (x,y) e

QR. then Vic is convinced by the protocol with a high degree of certainty. On the other

hand, if (¡,y) É QR and Peggy attempts to trick Vic, the laner will detect the subterfuge

with the same degree of certainty as above.
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Fnotocofi om ñnpart (.ry) çv'teere lxl = m

Fori= lto m

1a. Peggy generates a¡ where u¡is a random quadradic residue mod x.

lb. Peggy sends a; to Vic.

2. Vic sends to Peggy a random bit, bit¡ e {0, 1 }.

3a. Peggy performs the following:

ifbít¡=0then

wi i= a random square root of u¿ modx.

else

rri i= a random square root of (u¿ y) mod -r.

3b. Peggy sends w to Vic.

4. Vic performs the following checks.

if (bit¡= 0 and ú ^A x, = I.ti) ot (bit¡= 1 and 4 ^"¿ 
x = u¡y) then

Vic accepts.

else

Vic rejects.

end{ForiJ

Ðnd of Frotocol

Claim: The above protocol (P,V) is an interactive proof system for QR.

Proof [GMR2]: Consider our verifier Vic interacting with some arbitrary prover P*. Let

x>1 and y . 1. Consider the case for which y is not a quadratic residue mod x. In this

case it is not possible for both u¡ and (u¡y ) to have square roots mod .r, since (u¡y ) will

be a quadratic non residue and hence does not have square roots mod ¡. Since Vic's bits

bít¡, are secret (until he reveals them), the probability that Vic witl accept the ith round is at
I

most i and hence the probability that Vic will accept inconectly in an rn-round protocol is at
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1mostf. We now prove that the above interactive proof system is a perfectly zero-

knowledge proof system for QR.

T'heonem 3.1,. The protocol (P,V) above is a perfectly zero-knowledge proof system for

QR.

Fnoof [GMR2]: Consider our arbitrary (possibly dishonest) polynomial ITM Vo

interacting with our prover P. We will flust describe V*'s view during an execution of the

protocol and then descrik a probabilistic Turing machine M that will produce a simulation

of a view with the exact distribution as Vo's view durin g a real execution of the protocol.

If we can prove that the simulated view is distributed in exactly the same way as the view

generated during an actual conversation between the prover @) and the verifier (Vn), then

we will have proved the theorem.

Let (x,y) € QR be the common input to the pair (P,Vo) such that lxl = m and let H be the

extra input to V* (For more information on what H represents please consult $2.3.3). l,et

the following random variables denote Viewp,yo((x,y),H) (recall from $2.3.3 that this

variable represents everything Vo sees in an execution of the protocol).

R, IJt, BIT1, Wl, U2, BIT2, Vy'2, ..., Um, BIT6,W¡2 where

R <+ The string of random bits generated by V*

U¡ <+ Takes on the value of ø;

BIT¿ <+ Takes on Vo's i,å mesage to Peggy

W¿ <=+ Takes on the value of w;

We can define the distribution of the view in the following manner: R is assigned a random

string r. l.et V¡ bc the random variable consisting of R, U1, BIT1, Wt, U2, BIT2, W2,

...,U*, BITm,Wm. Assume that for some i, 1 s i < m,Vi has been assigned some value

v¡. We now describe the process by which values can be given to Ui+/, BIT¡a7,'W¿a7.

Method
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U¡¡7 is assigned a random quadratic residue modx. If we were dealing with V (whom we

know will follow the protocol) then BIT¡a7 would be assigned the i+1s¡ bit of the random

string r. However we ate dealing with V* who is allowed to deviate from the protocol, and

as such BIT¡a7 is assigned the value bít¡a1=f (x,!,H,vi, u¡11) where/is some {0' 1}-

valued function computable in deter-ministic polynomial úrne. If bit¡+i = 0 then W¿47 gets

assigned wi+1,&random Square root of a¡ç7 mod x. If bit¡a1 = 1 then W¡a7 gets assigned

w¿a7, this time a random square root of ui+I! mod x.

Having characterized V*'s view of the protocol we now show that the protocol is a perfect

zero-knowledge proof system by describing the operation of an arbitrary probabilistic

Turing machine M which will simulate the above view upon input (x,y) € QR and a string

H. M runs in expected polynomial time and produces a distribution M((x,y),H) which is

identical to Viewp,y*((¡J),H).

M's Algorithm

M begins by choosing a random string r of appropriate length. Assurhe that v¡ has already

been chosen for some i, 1 < í < m. Then M outputs u¡a1, bít¿a1,'tei+l according to the

following algorithm.

Repeat indefinitely

bit¡a1:= a random member of {0,1}

'ili+I l=a random member of i

if bit¡a1 =0then

2
Ui+l := W¡*1

else'

ui+l i= g?r*rl-I) mod.t.

lf bit¡+l =l(x,y, H, Vi, a¿"'7 ) then

M outputs u¡a1, bit¡a1, wi+l and HALT.

end {repeat}

mod x.
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Notes

1. M chooses a random element of Z*by generating random m-bitmessages until one

is found that is i"1. This is clearly expected polynomial time.

2. In the above algorithm y-1 refers to the element otitnat when multiplied by y

mod x gives 1.

We now show that M operates in expected polynomial time in m and also produces the

desired output distribution. Let R', {U'i, B IT'i, W'i I be the random variables

corresponding to the output of M, and let y. Ue ¿enned similary to V¡. R'is obviously,,
distributed similarly to R. Let 1 <i<m and assumethatv. has exactly the same

distribution as V¿ and assume that M assigns a value to y. in time polynomial in z. Say
t

that both V¡nd V. have been given the value v¡. We want to show that M's code halts in

expected polynomial time in m and has the same output distribution as the view

characteristic as described in the method above, given thatV¡=Vi = ui.

Consider the body of the repeat loop up to but not including the last test. Every

quadratic residue infl nas the same number of square roots [De]. Thus if bít¡a1 = 0,Iti+I

is a random quadratic residue and w¡a1is a random Square root of ui+1. 11 bit¡a1 = l, tti+l

is also a random residue and w¡a1is a random square root of ui+Ij. This means that the

body of the loop is equivalent to the following (although what follows may not be

efficiently executable) :

ni+l i= a random quadratic residue mod x.

bit¡a1:= a random element of {0 1}.

if bit¡+l =f(x, ), H, vi, r,l¿a7 ) then

if bit¡+l =0then

wi+l i= ^[rl.l mod x.

else

,ili+I t= ^l"l.l Y mod x.
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HALT and output (ui*L bit¡a1 , wi+t )

end if.

The above equivalent cde halts and outputs with probabifity j and hence the actual repeat

læp halts in expected potynomial time in the length of the inpur The equiválent cde is as

likely to halt for any value of u¡a1 and hence Uro, Eets assigned a random quadratic
t

residue. BITi+t will be assigned the value/(x, ), H, vi, tri+I ). When the code does halt,

W'ro, Eets assigned a random square root of ui+I ! mod x or tti¡l mod x depending on

bit¡a1as required.B

$3.3 Quadratic Non R.esiduosity

The protocol presented in [GMR2] is a simplified version of the protocol put forward in

tGMRll and makes use of cryptographic capsules invented by Cohen [Co]. For a

discussion of cryptographic capsules refer to Appendix A. In the protocol to be presented

we consider the language of quadratic non residues, QNR', where

QNR = {(x,}) I r e N,¡ is not prime, y. 4, andQr$) = 11

As previously, two interacting parties Peggy and Vic are both given as common input a pair

of integers (x,y). Peggy knows that (x,y) e QNR, and will attempt to prove to Vic that

this is the case without revealing any information to him such as the prime factors of ¡. If

indeed (x,y) e QNR then Vic is convinced by the protocol with a high degree of certainry.

On the other hand, if (x,y) e QNR and Peggy attempts to trick Vic, the latter will detect

the subterfuge with rhe same degree of certainty as above. Let (P,V) be an interactive

protocol given as input (x,y) where lxl = m. We first give an informal description of the

protocol. Informally, Vic generates random elements of the following 2 types:

I.w=12modx.

2. w =yr2 mod x.

reZx
*reZx
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Vic flips a coin to determine which of the above types to send to Peggy in any round. If

(x,y) e QNR, then Peggy can easily determine which of type 1 (w is a quadratic residue

mod x) or 2 (w is a quadratic non residue md x) Vic sent. If (r,y) ø QNR, then w is

always a quadratic residue regardless of whether it is of type 1 or 2 and Peggy's chance of

guessing the type of w is no better ttran ]. By repeating this protocol m times Vic's chance

of being fooled by a cheating Peggy becomes exponentially small. Thus, the above

qualifies as an interactive proof system but it is not azÊro-knowledge proof system. This

is because if we are dealing with an arbitrary verifier, the latter may have deviated from the

protocol in generating the w's in order to extract additional information from Peggy. Such

knowledge could consist of finding out whether a particular w is a quadratic residue or not

mod x. In order to avoid this we further require that the verifier prove to Peggy that the

lr's were generated as specified by the protocol. Essentially the verifier has to prove to

Peggy that he knows the type of w without revealing the fype. This can be done by using

the method of cryptographic capsules and residue classes as described in [Co]. We now

describe an interactive protocol which is a statistical zero-knowledge proof system for

QNR. This protocol should be repeated rz times upon input (x,y).

Frotocol on input (rry) where lxl = m

Fori= ltom
la. Vic chooses a random r e Zx andbít e {0,1} atrandom.

ifbit=0rhen

Vic sets w := û mod ¡.

else.

Vic sets w ;= !r2 mod x.

Vic sends lr to Peggy.

In this part of the protocol Vic now has to prove to Peggy that he indeed has

iollowed the protæol and knows the type of w without revealing it to

1b.

1c-
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Peggy. 'We now give an example of an implementation of øryptographic

capsules as discussed in Appendix A.

forj= ltom

Vic chooses r;/ and ,¡z . i and bít¡ e {0 1} at random.

Vic sets a¡:=(tmodx andb¡:=ynz.rmú x.

if bit¡= l then

Vic sends to Peggy the ordered pur, paír¡ = (a¡ ,b¡ )

else

Vic sends to Peggy the ordered paulr, pair¡ = (b¡, a¡)

end {for }

In the language of cryptographic capsules pair¡ becomes our capsule

2. Peggy sends to Vic an m-bit string i = iizis ...ím.

3. Vic sends to Peggy the sequence v = vi v2 v3... v', constructed as follows

lfi¡=0then

(Vic opens the capsule)

v¡ = (r¡t, r¡Z )

else

(Vic reveals he knows how w was constructed)

ifbit=0then

vj := rrjt mod ¡ (a square root of wa¡ mod x)
. 

else

vj := yrrji mod x (a square root of wb¡ mod x)

4a. Peggy now verifîes whether the sequence u was constructed properly

forj = I to m, Peggy performs the following checks
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ifi¡=0then

v; = (s,r) where (s2mod x,Py modx) =pairj

else

(f)*-t^a x e pair¡

If any of the above 2 conditions do not hold then Peggy halts the protocol

and rejects, else

4b. If w e QR then

Peggy sets ansve¿r:= 0

else
Peggy sets answer := |

Peggy sends answer to Vic

Vic does the following checks

if arswer = bit then

Vic continues the protocol

else

Vic rejecs and halts
end { For }

End of Frotocol

If Vic has not rejected after m iterations of the protocol, Vic accepts and halts.

Note : Step 3 can b thought of intuitively as follows: if lr'= 0 then Vic is convincing Peggy

that pair¡ was constructed properly. If ü' = I then Vic is convincing Peggy that, if paír¡ was

chosen properly, y/ was constructed as specified in the protocol. Vic is only able to do that

if he acrually consffucted w in the manner specified by the protocol. If he were to cheat and

try to use a specifîc value for w he would only be able to answer Peggy's queries by

finding the square root of w, which would involve factoring x. However the factors of r

consist of Peggy's secret and Vic is unable to factor x in polyomial (in l¡l) time.(If Vic

4c.

5
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knew the factors of x he would not need Peggy to tell him whether w is a quadratic residue

or not)

Clai¡'cr: The above protocol @,V) is an interactive proof system for QNR

Fnoof': (P,V) is clearly an interactive protocol. If (¡,y) e QNR then w is a quadratic non

residue iff bit =1 and P can always determine whether w is a quadratic residue or not. Thus

P can always calculate answer such that V will always accept. On the other hand, if (x¡) e

QNR and V is interacting with a dishonest prover Pu, then even if Pn has infinite power

she cannot distinguish the case where bít = 0 from the case where bit = 1. This is because

the messages P receives from V, consisting of w and paír¡, will consist only of random

quadratic residues and this yields absolutely no information on the value of bit. Now

consider step 3 of the protocol where P* receives the pair (rjt,rjz ) for the case ü'= 0.

Notethatl*tisarandomsquarerootof a¡andr¡z isarandomsquarerootof bp-L modx.

These too give no information on the value of bít. Now consider the'items received by P*

in step 3 when ¿l'= t. Il bít = 0 then Po receives rryf which is a random square root of wa¡

modx. If bít= l thenP* receivesrrj2,arandomsqu¿uerootof wb¡modx. Since pair¡is

a random ordering of (a¡ ,b¡ ), v¡is equally as likely to be a random square root of lv times

the first element of paír¡, as it is to be a random square root of w times the second element

of paír¡ regardless of the value of bit. Thus from the information received by Po, the value

of bit is as likely to be 0 or 1 and the probability that Po correctly guesses the value of äir is

no better tfran f. Given that the protocol consists of ln stages, the probability that Po

correctly guesses the value of bit for all rn iterations is at most 2-m. We next show that

(P,V) is statistically zero-knowledge for QNR. This is quite complex but we give a full

proof as it illustrates quite well the definitions and properties given in chapter 2.

T'heorern 3.2: The above protocol is a statistically zero-knowledge proof system for

QNR.

Fnoof [GMR2]: Consider our arbitrary probabilistic polynomial-time interactive Turing
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machine V* interacting with our prover P. ,As before we first describe V*'s view during an

execution of the protocol and then describe a probabilistic Turing machine M that will

produce a simulation of a view with the exact distribution as V*'s view during areal

execution of the protocol. If we can prove that the simulated view is distributed in exactly

the same way as the view generated during an actual conversation between the prover (P)

and the verifier (V*), then we will have proved the theorem.

Let (.r,y) e QNR. be the common input and lxl = m and let H be the extra input to V*. For

convenience, consider the random variable Viewp,v*((xJ),H), representing V*'s view of

an iteration of the protocol, to consist of the following random va¡iables:

where

RAN

y¿r

PAIRf
j
,k

y/i

ANSWER¿

RAN, and

{w¿, {PAInf : r <i < ml, {llr: r <i 3m},v¿, ANSwER¿ I 1 < k< mi

<+ String of random bits generated by Vo.

<+ Value of w in the kthround of the protocol.

<+ Value of pair¡ in the È'å round of the protocol.

<+ Value of 1 in the kråround of the protocol.

<+ Value of the sequence v in the krh rotndof the protocol.

<+ Value of answer in the &'fr round of the protocol.

For explanation purposes and clarity, we will concentrate on showing that a single iteration

of the protocol is statistically zero-knowledge. The proof can be generalised in the same

manner as was done in the proof of the previous theorem and involves carrying the view of

the protocol up to the current point. We therefore drop all superscripts and consider only

the following random variables:

RAN, W, {PAIR;}, {IJ'}, V=V;, ANSS/ER

It should k noted ttrat during an honest execution of the protocol, we expect that
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r is a substring of R {N

and

and

IfIr=0then

V¡= (r¡t, r¡z)

else

| ,rj mod x or
v;=j

t yrr¡ mod x
depending on the value of bít.

However, Vo may not follow the protocol and hence, the only thing we can say about these

random va¡iables is that:

RAN is assigned a random binary string,

W and PAIRJ' are assigned values w and pair¡ computed by V* upon inputs r, y, H and

RAN,

I is a random binary string of length m, and

V;is computed by Vo upon inputs x,y,H, RAN and I.

'Vy'e can now describe a probabitistic Tu¡ing machine M, which runs in expected polynomial

time and will oútput a distribution that is statistically indistinguishable from

Viewp,y*((xJ),H), given (x,y) e QNR and H.

M's algorithrn

1. M ouþuts a random string ran ofthe appropriate length and runs Vn on inputs (xJ,H)

and random tape ran. Vo goes through step I producing w, pair¡, for I < i < m.

( 12modxor
w=]

I r2y mod x

I rÛ, mod x, !(2moax) or

PAIRi = 

1 ( l(2moa *, úrmod x) ril 
'ri2 

are substrings of RAN

to



2. M next picks random íI,...i*where lr'e {0,1}, sets í=iliZí5...i^and writes i onto

V*'s communication tape thus activating step 3. In effect, M is playing Peggy's role.

3. V" then goes through stage 3, outputting a sequence v = {v/}. M ouçuts w, (paír¡}, i,

and v. M then performs the checking P would have done (step 4a). If the checks fails M

oulputs "terminate" and halts.

Let us assume that the checks succeeded. We can now think of x,y, ran, and H as being

fixed so that w and (paír¡l are also fixed. Since the checks succeeded, it implies that P

would at this point be ready to send to Vo the value of answer. Let us call those i's which

result in such cases specíal. Therefore M has discovered that f is special and now has to

compute the value of answer that P would have sent. This value is 0 if w e QR and 1

otherwise. Since V* might not have computed w in the same way that V would have and

M does not know the factorization of x, it is not immediately obvious as to how answer

can be calculated. We will now show that this can be done if ,we can find another special

string i'such that i'* i.

Suppose that lr' =0 and ¡t *t .r. i and i 'are special. Let v, v'be the sequences sent by V*

after receiving í and i'respectively. These can be constructed in polynomial time by

running Vo. Since ¿l'= 0, v¡ = (s,f) where (s2 mod x, Py mod -r) is equivalent to paír¡ with

rhe elements possibly interchanged. Also since 1i=t, {í,¡zr-t ) mod x e pair¡. It follows

that if tir¡z*-t = s2 mod.r, then w is a quadratic residue mod ¡ and if {i,¡zw-t = Py mad

r, then w is a quadratic non residue mod x. It now remains to find a special i'* í. The

following algorithm does this.

Atgonithm fon fïnding specian í' + í.

2u random strings i'are tested (with replacement) until either a special i'+ i is found

or 2m strings have been tested. In the event we do not find such a special i we then test all

2m strings looking for that special i.
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If a special i' * i is found then M calculates the value of answer as explained above. If no

such I exists, M ouçuts "?" which will happen when i is the only speclal string. We now

have to show that this algorithm operates in expected polynomial time. We show this for

each fixed value of f, y, H, and ran. I,e,tx,y,H, and ran be fixed which implies that w

and pair are also fixed. Let À be the number of strings that a¡e special.

Case f-: &= 0

In this case, the algorithm above will not even be invoked and the running time of M is

clearly polynomial in m.

Case2: k=\
1

In this case, the probability that M will choose a special i isfi and our algorithm runs for

tîme 2mmc(for some c) and the expected running time is lry+ a polynomial in lz].

Case3: k>L

In this case, rhe probability that M will choose a special ¿ is å . We want to calculate an
2m

upper bound on the expected running time of our algorithm and we do this by stipulating

that the algorithm will only stop when a special string i'* í is found. In effect, we are

tossing a biased coin where the probability of "heads" it h. This is a geometric

distribution and the expected number of coin tosses required to obtain the first head is

)m
exactly fu. H"n.", rhe expected running time for our algorith- i, <[ ffi"*t(for some

consrant c). Thus ihe total expected time is =\ffi+ a polynomial in lrt] which is

also a polynomial in ræ.

Recall that M((x,y),H) is the random va¡iable denoting the distribution of M's ouçut given

x, y and H. It remains to show that M's view is statistically close to Viewp,v*((x;),H).
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Fix ¡, y and H. If ran is such that the number of special su'ings is not exactly 1, any oufput

sn'ing cr beginning with ranis taken on with exactly equal probability by both M((xy),H)

and Viewp,vu((rJ),H). This is because we will always be able to find a special string and

hence calculate the value of answer. Let S be the set cr = (ren, w, lpair¡\, í, v, answerl

where i is the uníque special string determined by ran. The probability that

Viewp,v*((¡,y),H) takes on a value in S is = #since for each ranthere is at most one i

which will be the unique special string. Similarly, the probabiliry that M((x,y),H) takes on
1

a value in S is < :. Thus

f, terob( M((x,y),H) = cr ) - Prob( Viewp,V*((¡,y),H) = g) | :
cx'

) ffrob( M((x,y),H) = o ) - Prob( Viewp,yo((x,y),H) = g) |

GES

I lerob( M((r,y),H) = o ) - Prob( Viewp,yo((¡,y),H) = ø) I

cre S

112ll+-_L---" 2m' 2m 2m'

Note: The reason we have two terms for the case where cr e S is that the value of ran that

would give a unique i can be chosen by either M or by V* during a real conversation with

the prover. Both these cases will result in failure for our simulating machine.

Since the protocol consists of lz rounds, the difference is

m f, teroU( M((x,y),H) = ø ) - Prob( Viewp,yo((x,y),H) = ç¡) I <

ct,

This completes our proof.E

2m
2m

5Z



$3.4 Gnaph lsomronpXeisrm IGþ{WÍI

This problem can be stated as follows. Feggy and Vic have as common input two graphs

Gr and G2. Peggy knows that the two graphs are isomorphic and will prove this to Vic

without revealing the isomorphism or any additional information. This proof is presented

here for two reasons. First, the fact that a zero-knowledge proof exists without revealing

the isomorphism is in itself interesting. Second, our simulaúng probabilistic polynomial

time machine M will make use of the "rewinding" process discussed in Chapter 2. In case

of failure M will rewind itseH to the last point in the simulation where it was successful and

ty again with new random choices. [n effect, cases resulting in failure are ignored. In the

protocol due to Goldreich, Micali, and V/idgerson [GMWI] the prover only needs to be a

probabilistic polynomial time machine which obtains as auxilliary input the isomorphism

between the input graphs. Constrast this with our earlier model in which the prover was

infinitely powerful.

[æt G1(V,E1) and G2(Y,E) be the two graphs entered as common input to our

protocol where V is the set of vertices and E¿ refers to the edges in the graph G¿. Let Q be

the isomorphism between the two graphs Gt and Gz. In the following protocol Peggy

proves to Vic that the two graphs are isomorphic without revealing the isomorphism. The

following steps should b repeated n times where n = lVl, using random coin tosses.

Repeat ¡a tirnes

Peggy generates H, a random isomorphic copy of G1. This can be done by

selecting a random permutationæ e sym(V), where.ry??(V) is the symmetric group

of all permutations of V, and computing H(V,F) such that (ru(¡¿),ru(v)) e F iff (a,v)

e Et.

Peggy sends the graph H(V,Ð to Vic.

1a.

1b.
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2.

J.

Vic chooses a random ø e {1, 2} and sends cr to the prover. In effect Vic is

asking that Feggy demonsrate that H and Go are indeed isomorphic.

If cr ø (1,21(which means that Vic is obviously cheating) Peggy rejects and halts.

If ø = 1, Peggy sends ft to the verifier, else she sends 7r0 -1.

4. If the permutation received from Peggy is not an isomophism between H and

G6¿, Vic stops and rejects. Otherwise he continues the protocol.

If n successful iterations of the protæol have been compleæd by Vic, he then accepts.

AnalysÍs

The above protocol can be easily shown to be an interactive proof system for graph

isomorphism. If Peggy really knows the isomorphism, she can respond to either

challenge. If she doesn't know it and tries to cheat she can only respond to one of the

challenges and will be caught with probabifity j during each round. After n rounds the

probability that Vic would accept incorrectly is at most |. fnit probability can be made

exponentially small by increasing the value of r¿.

Intuitively, this protocol is zero-knowledge since all the verifier receives from the prover

are random isomorphic copies of the common input which she could obviously have

computed on her own. In any round of the protocol the verifier obtains either rr, a random

permutation which reveals no information about the value of Q, or the composition æQ-1

also being a random permutation which reveals nothing about 0. We now give the more

formal proof of zero-knowledge showing that no knowledge is revealed to the specified

verifer but also to any verifier including those which are allowed to deviate arbirarily from

the protocol.

T'heoner¡r 3.3: The above protocol constitutes a zero-knowledge interactive proof system

for Graph Isomorphism.
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Froof[GMWl]: As before let V* be an arbin'ary probabilistic polynomial-time Turing

machine interacting with the prover. V* is allowed to deviate arbitrarily from the protocol.

Vy'e now describe a probabilistic polynomial time machine M that generates a probability

distribution which is identical to that induced on Vo's tapes during an actual interaction with

the prover. We demonstrate its existence by consu-uction. We proceed by trying to guess

which isomorphism V* will ask to check. Thus, we will construct some graph H such ttrat

we will be able to answer in case we guessed right. The cases where we guessed wrong

will be ignored. It is essential from V*'s point of view that the cases which lead to failure

and those which lead to success look identicat. In this way, throwing away those instances

in which we failed merely slows down the construction without actually affecting the

probability distribution that Vo sees. We will now describe M's operation when given as

input the graphs Gt and Gz. M will monitor Vo's execution and will enact the role of the

prover to V*. M begins by chosing a random string ran of the appropriate length and

placing it on Vo's random tape and its own record tape. In effect this fixes V*'s random

coin tosses. M proceeds as follows.

M's algorithrn

1. M picks random Ê e { 1, 2} and a random permutation æ e Sym(V). It then

computes H(V,F) such that (æ(u),n(v)) e F iff (u,v) e Ep. M then places H on

. ,*,v 's communlcatron tape.

2. M now reads V*'s request from its communication tape. If the request is c = F

(lucky for M), M appends (FI,cr,æ) to its record tape and proceeds to the next

round.

If a ø. {1,2} in which case Vo is obviously cheating, M appends (H,cr) to its record and

stops. If cr + F = 3 (unlucky for M), M must repeat the current round. This is done by

first rewinding Vo to its configuration at the kginning of the current round and repeating

steos 1 znd2 above with new random choices. If all rounds are successfullv comnleted M
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oulpurs its record tape and halts. It should be noted that Prob(p = 1¡ gG)¡ =|wneregG) is

the list of graphs sent so far (including those sent in the current repetition of round i , but

excluding those sent after Vo was rerwound). This says that the value of p is independent

of the graphs sent so fa¡. Thus Prob(Þ = a(ran$(i)¡ ¡ ¡1(i)¡ = |, where a(ran,H$)¡ is Vn's

answer upon random tape ran andcommunication tape H(i). Thus the probability that the

irå round is repeated I times is at most 2-i . M stops and oulputs its record after n rounds

have been completed or after an invalid ø ø { 1 2} has been encountered. If n rounds were

successfully completed M outputs a triple of the form (H,ø,r) where æ is an isomorphism

between H and Go. It is easy to see that in both cases M ouçuts the right distribution.

Furthermore the probability distribution oulput by our simulator is identical to that observed

during an actual interaction between Vo and the real prover. Thus our protocol is a

perfectly zero-knowledge proof system for Graph Isomorphism.Q

$3.5 Graph Non nsomorphisrn

We now present an interactive proof system for graph non isomorphism due to Goldreich,

Micali, and Widgerson [GMWI]. This is particularly interesting since, although it has

been shown that zero-knowledge proofs exist for all statements in Ntr (See Chapter 4),

graph non isomorphism is not known to be in NF. This has significant ramifications for

the size of the class ÍF. In the following protocol the prover only needs to be a

probabilistic polynomial time machine with access to an oracle for graph isomorphism.

Let the common input to our protocol (P,V) be the graphs Gl(V,Et) and Gz(V,E2). The

following constitutEs a 2-move interactive protocol.

1. The verifier (Vic) chooses n random integers o¡ e [7,2],I1i<n. He then

computes n random graphs H¿(V,F) such that F¡ is a random isomorphic copy of

G6¡,. Vic sends all the H¡'s to the prover (Peggy).
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2.

J.

Peggy replies with a string of p¡'s € { 1, 2} such that H¡(V,F;) is isomorphic to

GB¡ff,8B).

Vic now checks whether cr¡ = F¿ V i, 1 < [ 1 n. If the condition does not hold for

at least one í, Vic rejects else he accepts.

Theonem 3.4: The above protocol constitutes a two-move interactive proof system for

graph non isomorphism.

Fnoof: If G1 and G2 are not isomorphic to each other and both parties follow the

prorocol, Peggy can always distinguish which of G1 or G2 the Hi s are isomorphic to and

Vic will always accept. If Gl and G2are isomorphic to each other and Peggy attempts to

cheat, then, due to the randomness of the permutation, the H¡'s are as likely to be

isomorphic to either graph. Since Peggy does not see the cr¿ 's, the probability that she

replies with the right p's is at most I fo, 
"u"t 

i and hence the probability that Vic accepts

incorrectly is at most 2-¿. This can be made arbirarily small by increasing the value of n.

The above protocol is not zero-knowledge as a cheating verifier could use the prover to

determine to which of the input graphs a particular graph G3 is isomorphic. This problem

can be remedied by first requiring the verifier to prove to the prover that he knows an

isomorphism berween the query graph H; and one of the input graphs. This is done by

using the principle of cryptographic capsules in a similar way that was used in the

Quadratic Non Residuosity protocol of $3.3 where the verifier was required to prove that

he knew the type of w. In the following case, residue classes are replaced by equivalence

classes induced by graph isomorphism and class equivalence is demonstrated by exhibiting

permutations.Q

$3.6 Graph 3-Cotourability

This protocol due to Goldreich, Micali, and Widgerson [GMW2] is presented as it is wiil

be used in Chapter 4 in the proof that atl statements in NP have zero-knowledge proof
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systems. The existence of secure encryption schemes is assumed (as described by

Goldwasser and Micali tGM). An encryption scheme secure as in [GM] is an algorithml

that upon input x and internal coin tosses r, outputs an encryption/(x,r) where/ should

obey the following properties:

1. /should b computable in polynomial time.

2. Decryption should be unique. That is

l@,r) =.f(y,s) -x=y
3. It is impossible to distinguish any encryption Í(x,r) from a random string in

polynomial time.

The graph 3-colourability problem can be summarized as follows: Given a graph G, can the

vertices of G be coloured using 3 colours such that adjacent vertices are coloured

differently? l-et G(V"E) be the common input to ourprotocol. Note that in our protocol the

prover only needs to be a probabilistic polynomial-time machine with access to an oracle

for a proper 3-colouring of our input graph. We denote the coloi¡ring as $ such that

(S:V*+ {1,2,3}). Let the number of vertices n = lVl and the number of edges m = lBl.

For convenience, we number V={ 1 2.... nl.

Fnotocot

Repeat the following steps n? dmes

la. The prover, Peggy, generates a random permutation æ of the 3-colouring

and random strings r 1,r2.......rn.

1b. Peggy computes R¡ =/(n($(v)),r) for every v e V.

lc. Peggy sends the R¿'s to the verifier Vic.

2. Vic picks a random edge e e E and sends it to Peggy.

3. If e = (u,v) e E, Peggy reveals the colouring of u and v as per step lb and

"proves" that they correspond to their encryption. More precisely, Peggy sends

(rc(þ(u)),ru) and (æ(Q(v)),rv) to Vic.

If e e E, Peggy halts and rejects.
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4. Vic now verifies Peggy's proof which has to meet the following 4 conditions

i. R" = f(n(þ(u)),ru)

ii. R, =/(æ($(v)),rv)

iii. n(0(ø)) * æ(Q(v))

iv. æ(0(¡¿)) and n(Q(v)) e {1,2,31

If any of these above conditions is violated, Vic rejects. Otherwise he goes on to

the next round of the protæol.

Clairn:The above protocol constitues an interactive proof system for graph 3-colourability.

Froof: If the graph is 3-colourable and both Peggy and Vic follow the protocol, the latter

will always accept. Consider now the case of a cheating prover. If Peggy does not know

the colouring or no such colouring exists, then there exists at least one edge (u,v) e E

such that 0(ø) = 0(v) and hence n(Q(u)) = æ(0(v)). Thus, in any round, Peggy will be

caught cheating with probabitity at t"urt |. After rz2 rounds, the probabitity that Peggy

wilt have been caught is 2ll)^tr[tJ' * required.

Theorem 3.5: If/(; , ;) is a secure probabilistic encryption, then the above protocol

constitutes a zero-knowledge interactive proof system for graph 3-colourability.

Froof (Sketch): It is clear that the prover reveals no additional knowledge to the specified

verifier. However, we require that no knowledge be leaked to any verifier, including

dishonest ones. As before, consider V*, il arbitrary verifier interacting with our prover P.

We will describe a probabilistic polynomial-time machine M that will generate a probability

distribution which is polynomially indistinguishable from the distribution induced on V*'s

tapes during its interaction with P. The construction of M follows-

M will moniror the execution of V* by fixing its random tape and reading from and writing

to its communication tapes. Basically, M attempts to guess the edge that Vo will ask to

check and encrypts an illegal colouring of G such that it can answer in case it guessed right.

Those attempts resulting in failure are ignored and here again M simply "rewinds" V* to its
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configuration after its last success and tries again with new random choices. Again, from

Vu's point of view, it is crucial that those cases that lead to success be polynomially

indistinguishable from those resulting in failure. M begins by picking a random tape ran

and writes it on Vo's random tape and its own record tape.

M's ,A,lgorithrn

Repeat r* ¡mes

la. Mpicksarandom eÅge(u,v) e Eandrandomintegers (a,b)e {(trr):1 <i*j<31.

It then picks random r¡'s and computes r?¿ as follows:

R¡ =f(c¡,r¡) where ci=0 forie V - {u,v l,cu=a,cr=b.

1b. M places the R¡'s on V*'s communication tapes.

2. M now reads Vo's request edge e. If e e E, Vo is obviously cheating and M

appends the Ri s and e to its record tape and stops.

If e *(u,v) (unlucky for M), M rewinds V* to its configuration at the beginning

of the current round and repeat the round using new random choices. ¡¡ ¿ = (u,v)

(lucky for M ), M places (a,rr) and (b,ru) on Vo's communication tape. Finally, it

places the R;'s, e, (a,rr), (b,rr) to its record tape and goes on to the next round.

If all m2 rounds are successfullly completed, M ouçuts its record tape. In a technical

lemma (to appear in a final version of [GMW2]), the authors prove that the three possible

replies of the verifier, namely e ê E,e e E - (u,v) ande = (ø,v), occurwith essentially the

same probability during the simulation as they do during an interaction between V* and the

real prover. Thus the probability that a particular round will have to be repeated more than

/øntimes is smaller than2-k so that M completes in polynomial time. The only difference

between the probability distribution generated during a real interaction and that generated

during our simulation, is that the former contains probabilistic encryptions of colourings

whereas the latter consists of encryption of mostly 0's. However, by property (3) of our
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encryprion function, we find that both these rypes are indistinguishable in polynomial

time.G

$3.7 Ðínected F{amiltonian Cycle [ts[Z]

This protocol is due to Blum and the problem can be described as follows: Given a

Hamiltonian graph G with n vertices as common input the following protocol allows

Peggy to convince Vic that she knows a Hamiltonian cycle H in G without revealing any

information about H. I-etf(x,r) be an arbitrary encryption scheme as per $3.6.

Repeat n times

Ia. Peggy generates a random permutation rc of G and petmutes the vertices of G to

yield G' = æ(G) and generates n2 random strings ri; where 13 íi < n. She then

constructs the adjacency marix A of G'where

6=[a¡J

lb. Peggy computes R¡j=f(a¡j,r¡) forall ti and sends them to Vic. At this point

Peggy is commined to the values of the adjacency matrix.

2. Vic picks a random bit å and sends it to Peggy.

3. If b = 0 Peggy sends æ and all the r¡ 's to Vic who checks that the R¡;s indeed

encrypr the adjacency matrix of G'. If b = I Peggy sends n values of R¿ such that

the edges (irr) form a valid directed cycle in G'. Vic checks that these correspond to

a cycle in G' from the structure of the adjacency matrix. If any of these conditions

does not hold Vic rejects. Otherwise he goes on to the next round of the protocol.

Theorem 3.6: The above protocol constitutes an inæractive proof system for the DHC.

Froof': If Peggy knows a cycle H and both parties follow the protocol Vic will always

accept. Consider the case where Peggy does not know H and attempts to cheat. She can

either send encryptions of the valid adjacency matrix or she ean scnd fake encryptions. In

the first case she cannot answer the challenge (b =1) and in the latter case she cannot
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answer (å =0). Thus she is caught cheating with probability round. After n

rounds the probability that Vic is fooled is less that 2-n.

T'Breore¡m 3.7: If/is a secure encryption scheme, the above protocol is a zero-knowledge

interactive proof system for the DHC.

Fnoof: The construction of the simulating machine is similar to the one in the previous

section and is left as an exercise for the reader.

$3.8 T'he Ðiscrete ï-og Fnoblern

The protocol that wilt be presented allows Peggy to prove to Vic that she knows the

solution to the Discrete Log Problem (for more on this problem see [Od]). This means that

Peggy demonstrates she knows -r such that crr: p mod I/ but does not reveal the value of

r or any extra knowledge to Vic. The protocol we present was frst put forward in a

somewhat more complex form by Chaum, Evertse, Van de Graaf and Peralta [CEPG] and

subsequently refîned and improved by Chaum, Evertse, and Van de 6raaf ICEGI and it is

the latter version that we will describe.

Given N, cx, e Z*,þ € (cÞ, where <cr> is the group generated by cr, demonstrate that we

know x such that 6¡r : p mod N, where l/ is either a prime or the product of two

primes,where the primes are of order O(r/-ÄD. If N is composite, it is assumed that the

prover knows its factorization. In the following protocol, Peggy proves to Vic that she

knows x such that Gr: B mod I/.

R.epeat the following T Éi¡nes

la. Peggy chooses random re {1,...,$(Àf }.

1b. She then computes \= ør mod l{ and sends yto Vic.

2. Vic chooses random b e {0 1} and sends b toPeggy.

3. Peggycomputes !=r +åxmod0(M) and sendsy toVic.

4. Vic checks that sf =ffib mod N.

1.
2n eaclr
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If condition 4 is violaæd in a.y round, Vic stops and rejects. Otherwise he accepts. In the

above protocol $ refers to Eulef s totient function. For an integer n, þ(n) is defined as the

number of elements of the set {0,...n- 1 } that are relatively prime to n [De].

Tt¡eorem. The above protocol is an interactive proof system for Discrete l-og.

Froof: If Peggy does not know r, the she will not be able to repond with the correct y

(step 3) with probability at trurt j. Thus Vic will detect a cheating prover with probability

atleast l-2-T.

Theorem 3.8: The above protocol is a zero-knowledge interactive proof system for the

Discrete Log problem.

Froof: We will demonstrate this by describing the operation of a polynomial time machine

M that will simulate the conversation ktween Peggy and any verifier Vo. For every round

of the protocol, our simulator does the following:

M's algoriÉhrn.

Repeat at most o =#Ë+ times.

1. Pick a random c e {0 1}.

2. Pick a random y e {O,...JV -2}.

3 . Let Y: s) P-' mod N.

4. Compute å ( the random bit generated by Vn in step 2 of theprotocol) using Vn's

machine and save it. I.et h be the intermediate results stored by V* during the

computation of b.

5. If b = c then M outputs {y, å, b, y} as required.

Until b = c.
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Il b * c for all L iterations then M oufputs "failure". Noæ that in the above ú =yp mod

¡/.

,4,malysis

Case 1. N is prime. In this case, since ordccr>l lGl , where ord<cr> is the order of the

group generated by a, G is the fînite group from which cr is chosen and lGl = 0(^/) =.ð{-1

which is the number of distinct elements from which y has been selected. Thus l is

uniformly distributed over <cr> and y and c are mutually independent. Also å is

independent of c. Thus the probability that b = c in at least one of the L executions steps 1-

5 abve is

='lå]ffi
rlr-lP€ lf

t-etm = li)r.r,
- loeN.logm =ffi7loe2

--logN=logN-1'

Thus the abve probability is in fact 
= 

t - 

"! 
as required.

Recalt that before the beginning of the protocol, both parties P and V are in an initial state

and their work tapes contain certain initial aata ç. In addition, P's tapes also contains the

secret x. l-ettp = (Ii,r). Let Viewp,vo(cr,P,¡/) denote the contents of Vo's work tapes

after the protæol with P is over. This view represents a random variable whose probability

distribution depends on the initial data Ip. Our simulator M produces a tuple M(cr,Þ¡\D

wirh almosr exactly the same probability distribution as Viewp,yn(o,P,¡V). l,et Q be the set

of values which M(g,ÊiD can take on, including the message "failure". Now, for every

co e Çl and co É "failure", it is trivial that

Prob( M(a,B,N) = co lM(cr,B/f *"failure") - Prob( Viewp,vn(cr,ÞlV) = co)
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Also, as calculated above

Frob(M (ø, p *ôl; - " failure" ) < ¡g! -d hence

S = X lProb(M(cr,B,N) - al) - Frob(

coe C¿

1 1 ^2
N +N nU=¡{.

Viewp,yu(cl,,plv) = (l)) |

Case 2.,ð/ is not prime and N=P lP2 where P7 and P2 are primes of order ri-N. We note

thattheorderof <cpinZ; (O(lÐ =(Pyt)(P2-1))nolongerdividesN-1 (thenumberof

elements from which y is selected). Hence, Y computed in step 3, is not uniformly

disrributed over <o>, since y is chosen from {0,...1/-2 } and l/-1 is not a multiple of

ord<cp. However we get around this diff,rculty by restricting the above set from which we

choose y to {0,...,Q(¡/)-1}, consider conditional probabilities on this restriction and the

argument used above still applies. Considering that

Prob(Q( D<Y <'t-2) = OCfr;l

it follows that S is bounded above Ul Off"i

The steps above are repeated T times thereby increasing the running time by that factor and

the value of S by < T. But T is bounded above by a polynomial in Log N and hence our

running time is still polynomial.E

$3.9 Verif'ying Zero-Knowledge

In atl the examples of zero-knowledge protocols presented so far, the prover attempts to

convince the verifîer that an input I belongs to some language L. In the following sections

r' , ,, -t,-- ^ -:--^- :----!T - f L^ -.^-:C^-¿ ^- +L^+'Í - I ^-we exteno üus concgpt II.om vuuuurcn tnat ä Brvglt rlrPut I c rJ, tv vct LJTLULLU|L tltaL r E L ur
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Iæ L. In this new model, aproverFproves to averifierV that I e LorI ø L, such that V

knows which claim is being established and is convinced with high probability. We also

introduce the concept of result-indisinguishabiliry, whereby a passive eavesdropper C

monitoring the conversation between P and V cannot determine which claim is being

proven. In fact, the protocol reveals rø knowledge at all to an eavesdropping third party.

The example protocol we present is due to Galil, Haber and Yung[GHI and was the first

non-trivial example of a language L for which proofs of memþrship and non-membership

in L a¡e done by means of the same protocol. More specifically, the predicate that will be

established is that of being a quadratic residue or not. Recall that in previous examples,

separate protocols were used for these nvo languages.

$3.9.n Verifying Interactive Froofs and Zeno-Knowledge

Suppose (P,V) is a pair of Interactive Turing machines and let I c {0, 1}n denote the set of

valid inputs to the pair (P,V). Suppose that L E I is a language for which P is able to

compute the predicate -r € L. The definition for an interactive proof system used so far

tGMR2l is now referred to as validating interactive proof system. 'We 
extend the def,rnition

to get the concept of averifying interactive proof system for L and it is defined thus:

Given any Turing machine Po interacting with V and cornmon input;r e I, V halts with the

correct value of the predicate x e L with high probability.

If (P,V) is a validating interactive proof system for a languageL, then the definition used

so far says that the system (P,V) is zero-knowledge if, given any probabilistic polynomial-

time Turing machine Vo, there exists another probabilistic polynomial-time Turing machine

M such that:

1. M can use V* as a subroutine in the strong sense (see $2.3.3 Note 3).

2. Viewp,y*(.r$) and M(x,H) are polynomially indistinguishable
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Note that an eavesdropper monitoring a successful execution of the protocol with input x

learns with a high degree of probability that x e L. 'We now extend the above definition to

include a more general definition of zero-knowledge.

The operations of any pak of interactive Turing machines (P,V) define a partial function

fp,v in the following way: Suppose P and V, upon common inputx, use a total of at most

k random bits, (with È is polynomial in lxl) during the course of their computations. For

any È-bit string r,letfp,y(x,r) denote the result of the computation of P and V when the

sequence of their coin flips is given by r. For the present discussion the function/ will

take on only Boolean values. More specifically, if (P,V) is a proof system for the language

L,thenlp,Áx.r) is (with a high degree of certainty,i.e for most r) equal to the membership

bit (x e L). We can now formulate a more general definition of zero-knowledge.

Ðefïnitior¡ (Verifying Zero-knowìedge Fnoof) IGHYI: An interactive proof

sysrem (P,V) is said to be zero-knowledge if, given any probabilistic polynomial-time

machine V*, there exists another probabilistic polynomial-time Turing machine M such ttrat:

1 . Given any input x, M has one-time access to an oracle for the value of fp,y(x,r) for

random re {0, 1}*.

2. M can use Vo as a subroutine in the strong sense as described earlier.

3. Viewp,y*(.r,H) and M(x,H) are indistinguishable (in polynomial time).

$3.9.2 R.esult Indistinguishability

An interactive proof system (P,V) is result-indistinguishable if an eavesdropper with access

to the communication between P and V, upon common inputx, gains no knowledge at all.

More formally, the system (P,V) is result-indistinguishable if there exists a probabilistic

polynomial-time Turing machine M such that Viewp,v*(r,H) and M(x,H) are

indistinguishable (in polynomial time). It is worth noting that there is a significant

difference between the machine M as described here and as described in our definition of

zero-knowledge. While the latter has an access to an oracle for the value of fp,v,the
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former is not privy to such knowledge. In other words, M can simulate the conversation

between P and V on input x regardless of the value of fp,v (even if such a value is the

result of an intractable computation). Since this simulation is something that the

eavesdropper could have computed for himself, no knowledge is gained even if such an

eavesdropper is given a text of the conversation between P and V. Before presenting our

protocol which is a verifying interactive proof system for the quadratic residuosity

problem, we will flrst present a coin-flipping protocol due to Blum [Bl] which will allow

two parties P and V to jointly generate a sequence of unbiased coin tosses.

$3.9.3 Blum's coin-flipping Frotocol

Before giving the actual protocol, we will introduce some notation that will be used

throughout the rest of this chapter. I.et v(ÀI) denote the number of distinct prime factors of

an integerN. Consider integers 1/ of the form l/ = l-årít such ttrat for all í, pl'=3 mod 4
f,-t

(where p¿ are primes). The Jacobi symbol of some integer y mod l/ is defined as

k

(Ë)=-'\f'
where f+l = 1 if y is a quadratic residue modp¡ and -1 otherwise (see Appendix B

\P¡)

for further discussion).

Let EX., known as Blum Integers, denote the set of such integers. According to Blum [Bl]

this set can k charactenzed in two alternate ways:

1. t/ e tsL iff for any quadratic residue mod l/ half of its square roots have Jacobi

symbl +1 and the other half have Jacobi symbol -1.

2. N e tstr iff there exists a quadratic residue mod l/ which has 2 square roots with

different Jacobi symbols.

V/e will consider a particulil subset of tsI- defined as follows:
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BLS = {//:I/e BL,N= 1mod4 andv(M¡ =21 or alternately

BT,S = (piE : p * qprime, i.¡r>1, pi = 4 : 3 mod 4)

Finatly let the language I k defined as

1 = { (N,z) : t/ e BX,S ,, u t, Ç¿) = +1}

and ¡ = {(N,z) :l/e I: zis a quadraticresidue modN}.

We now give Blum's coin flipping protocol.

Consider an integer.l/, such that l/ e tsl- and N = 1 mod 4. To generate a random bit å, P

and V perform the following steps:

1. V picks a random u e Zi' computes v = u2 modl/ and sends v to P.

2. P picks o = *1 at random as a guess for 
Ç4), the Jacobi symbol of z and sends o to

V.

3. V sends ø to P.

4. If o = (þ tnen å:=1 else å:=0.

If factoring N is an intractable problem, then since l/ e BL, the protocol generates random

bits by property 1 of Blum integers . We now demonstrate that the above protocol is zero-

knowledge.

Consider a fixed, possibly dishonest Turing machine V* interacting with P. We now

describe a probabilistic polynomial-time Turing machine M whose output, upon input N,

is a simulation of Viewp,y*(1/,H), namely the triple (v,o,u) as defined in the protocol

above. M also has access to an oracle which returns the value of the random bit å, and is

allowed to use V* as a subroutine.

M's algorithm

M consults the oracle and obtains the value of the bit b and executes the protocol with Vo.

M lets Vo "send" v, simulates P's choice of o in step 2 by flipping a coin and "receives" ¡l

from Vo. If the bit generated by this execution is b, then M outputs the triple (v, o,u).

49



Otherwise, M resets V* to its configwation at the beginning of the curent round, goes to

step 2, sends -O instead of O to V* and "receives" u'. M now ouqputs the triple (v, -C,u').

In either case rhe n'iple output by M corresponds to the bit b and the distribution of its

possible values is ind.istinguishable from Viewp,V*(N,H). Note that if V* is cheating then

it may happen that u and u'are not the same. However, these must have the same Jacobi

symbol, because the ability to extract 2 square roots of v (mod Äf with different Jacobi

symbols would enable V to factorN (for a proof see Appendix B).

g3.9.4 ^A Verifying Zeno-Knowledge, R.esult-lndistinguishable protocol for

the Quadratic R,esiduosity Froblern

This protocol (P,V) will take inputs from the set tr, as defined in the previous section, and

give a verifying interactive proof system for the language L. Peggy will reveal to Vic the

value of the predicate x e L without revealing any additional knowledge. Furthermore an

eavesdropping third party will not be able to find out the value of the predicate. The

protocol consists of 2 parts, the first being a validating interactive proof system for n, and

the second (assuming that the first part is successfully completed) consisting of the actual

protocol for the verifying proof system.

The first part of the protcol, establishing that the input string (N,z) belongs to l, is itself

made up of three separate suÞprotocols each of which validates a property of ly' or z.

1. N=1mod4,v(N)> L,retr and(þ=+1

Ne $tr

v(^D < 2

Stage X.: Trivial properties of N and z.

The verifier can easily check that l/ = 1 md 4, that N is not a prime power (this is done by

)l- . r !--\r----1^-t^*^¿L^l T)-.
f,nst tai<ing the qtr' root fq oiN ior aii vaiues oi q up to iog fV using l{Ëwion's mefnod. rJJ*

2.

-J.
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raising rq to the power of q, we know that // is a prime power if we get back the original

value), that z eZi @uclid's Algorithm) and that (fi = ot. All of these can be

accomplished in time polynomial in log //.

Stage 2:l/ e Bl-

This procedure due to Blum [Bl] depends on the first alternate charactenzation of Blum

integers (see $3.9.3). To guarantee the corectness of the protocol with probability at least

1-õ, the protocol should be repeated & times where È > log:. In order for this protocol to"õ

be executed, stage I must have been successfully executed so that l/ = I mod 4.

Frotocol

Repeat ft times

1. Peggy, picks a random quadratic residue , .4,t and sends r to Vic.

2.

J.

Vic picks random o e { 1 -1} and sends o to Peggy.

Peggy computes s such that s2 = r mod l/ and (#) = o, and sends s to Vic.

4. Vic checks to see if s meets the above conditions. If not, then he rejects the inputs

and halts the protocol.

Stage 3: I/ has 2 prime factors

I-etZ* (+1) denote the set of elements of Z" with Jacobi symbol *1 respectively. It can

be shown that for I/ with exactly f prime factors, fi tf the elements of Z| (+1) are

quadratic residues. We will make use of this fact by having Peggy and Vic jointly pick

random elements of 4(+1) and Peggy will then go on to show that half of them are

quadratic residues (by exhibiting their square roots mod Af thereby convincing Vic that

v(¡/) < 2. Since it was established in stage I that v(M) > l, together with v(l/) < 2, this

implies that v(Àf is exactly 2.

Peggy and Vic can jointly generate random elements of Zi, (+1) by using Blum's coin-

flipping protocol as described in the previous section. This requires that t/ e tsl- and l/:
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1 mod 4 which will be true if stage 2 has been successfully executed. To guarantee the

coffectness of the protocol with probability at least 1 -ô, it should be repeated k'times

where P'2!þ .

ô

1. Using Blum's coin-flipping protocol, Feggy and Vic generate k'random elements

rI...rk'e Zu G1). This can be done by bitwise generation of elements of Z* and

discarding those with Jacobi symbol -1.

2. For each of the r¿'s that are quadratic residues Peggy computes s¡ such that

ri= s? mod N

and sends s¡ to Vic.

3. Vic accepts the input if at least $ of the r¡'s are quadratic residues and rejects

otherwise.

Theorern 3.10: The above protocol is a zero-knowledge validating interactive proof

system for the language l.

Froof: Each of the three stages is zero-knowledge and the concatenation of the three is also

zero-knowledge. Since the main focus of this section is to describe the protocol by which

the value of the predicate x e X. is established in a result-indistinguishable manner, the

reader is referred to [GHY] for a complete proof of the theorem.

As an aside, it is interesting to note that the third stage can also be used as a zero-

knowledge proof system for the value of v(N). This can be done by replacing the value $

by suitable constants. For instance if the prover can show $ of tfre r¡'s to be residues the

verifier should be convinced that v(N) < 2. If this fraction is between * *U $, ,f,.

verifier should accept that v(M) < 3 and so on.

In conclusion we state that the concatenation of the 3 above stages yields a zero.knowledge

proof system for n.U
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$3.9.5 T'he .&ctr¡a[ FnoÉoco[

At this point, assuming that the validating part of our protocol has been successful, we

know with a high degree of certainty that the common input (1/,2) satisfies the following

properties:

1) v(nr¡ = 2

2)zeZ* and

3) (#) = ot

It is crucial for the next pafi of the protocol ttrat these conditions hold. We can now

describe the verifying, result-indistinguishable proof system for I-, where the inputs are

taken from [. In order to illustrate the different properties of the protocol, we present an

initial version and subsequently refine it to include the desired properties.

Lety:--1 mod N and for any * = 4 we define

Res¡g(x)=
I if x is a quadratic residue mod /V

0 otherwise

The following statements should be obvious. If we choose a random r e Zi then
1Y

*
x= f, mod N is a random quadratic residue inZN Gl)

x = yr2 mod .¡V is a random quadratic non-residue in Z, {+1). (This is because if

l/ e BL and l/ = 1 mod 4, then y = -l is always a quadratic non residue. If

another quadratic residue is desired, Peggy can use a subprotocol to prove to Vic

that y is indeed a quadratic non residue.)

x: zr2 mod N is one of the above depending on whether z is a quadratic residue

mod l/ or not.

In the following protocol the parameter È should be chosen such that k= Ç)(logl) to' "ô'

guamntee the correctness of the protocol with probability at least 1-ô.
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Vensñor'¡ I

Repeat 3k times 
t

i. Vic picks a random r e Z* .

2. Vic picks arandom c e [1 2 3] and

Case c of:

1: x=flmd^^/

2: x =y2 mod l/

3; x: zr2 mod N

and sends x to Peggy.

3. Peggy computes the value

å = Res¡u(¡)

and sends å to Vic.

4. Vic checks if the following conditions hold:

Ð If c= l thenb=1

ä) Ifc=2thenb=o

üi) if c = 3 then the value of å should be consistent with any previous vaiues of

å for which c = 3

If any of the above conditions is violated Vic halts and rejects.

If the conditions stipulated in step 4 are satisfied for all iterations, Vic accepts the value of

Res¡¡(x) to be the value of å he receives from Peggy when he sends c = 3.

In the above protocol, there are 2 ways in which a dishonest prover P* could fool our

verifier Vic.

1. P* could try to convince V that z is not a quadratic residue when it in fact is.

2. Po could try to convince V that z is a quadratic residue when it in fact is not.

The only way for P* to accomplish case 1 would be to correctly guess among all the

iterations for which Vic has sent a quadratic residue whether the iatter is a c=1 or c=3
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residue. Similarly, to achieve case 2, P* would have to distinguish between non residues

for which c = 2 andthose for which c = 3. The probability of either event occuring is Z-kC

for some suitable constant C. Hence the above protocol is a verífying interacnve proof

system for L. Flowever, the result-indistinguishability property does not hold. This is

because an eavesdropper on the conversation can determine the value of Res¡¿(¡) by

keeping a tally of the bits b sent during a conversation. The value of the most frequently

occuring bits gives the value of Resry(x).

Vensio¡l [n

The following simple modification to the above protocol, however, enables us to achieve

result-indistinguishability: Before Peggy starts the protocol she flips a fair coin to decide

between the following

R(x) = Res¡,r(x) or,

R(;r)=1-Res¡¿(r)

as an encoding for the value of the bit å sent to Vic during step 3 of the protocol. During

step 4 Vic now checks for consistency in the following way. Vic should receive the same

bit b during all case-1 iterations, its complement in case-2 iterations and a consistent value

for case-3 iterations which indicates whether z is a quadratic residue or not. If during any

iteration Vic realizes that the value of b contradicts the above pattern, he halts the protocol

and rejects. Thus the above remains a verifying interactive proof system for X..

Furthermore, we have also achieved result-indistinguishability since an eavesdropper

monitoring the conversation observes a value of å two-thirds of the time and its

complement the rest of the time but its value gives no information whatsoever as to the

value of Res¡(z).

The version presented so far is not zero-knowledge. This is because Peggy wants to avoid

acting as a residuosity oracle for Vic. This is essentially the same problem encountered in

the previous protocol presented for quadratic non residues. Vic could send specific values

forx in step 2 of the protocol instead of constructing them as specified and in this manner
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would exrract information from Peggy which Vic could not have computed for himself.

The only difference bet'oveen the above protocol and the ones previously presented is that

we know have 3 possible classes instead of just 2. In [GHY], a somewhat cumbersome

scheme was devised to ensure that Vic does follow the protocol and constructs the.r's as

specified. However, this can be considerably simptified using cryptogaphic capsules [Co]

as was done in the Quadratic Non residue protocol of $3.3.

The key addition ro rhe protocol of $3.3 is the addition of a third set of possibilities. The

prover now chooses from three sets X (c=1), Y (c=2), andZ (c=3). Memben of X consist

of randomly generated residues (class 0), those of Y are randomly generated non residues

(class 1), and members of Z are the product of random residues and z and will thus be of

class 0 or I depending on whether or not z is a residue mod N.

By using 3-component capsules, the protocol of [GHY] becomes considerably simplified.

Vic simply prepares a master capsule C consisting of one member each from the above

three sets and say 100 additional capsules of the same form. Peggy now designates a

random subset of these capsules which Vic opens, thereby demonstrating that they were

constructed as specified. Vic now shows that each remaining capsule is of the same form

as C by matching components and showing that their quotients are residues. Peggy should

now be fully convinced that C was generated as required and can now tell Vic which of the

capsules components is different from the others thereby revealing to Vic the class of z.

The rest of the protocol remains unchanged.

Theorem 3.X.1: Given input belonging to I, the above protocol is a result-

indistinguishable zero-knowledge verifying interactive proof system for F-.

Froof: Since we have already shown that version II is a verifying proof system for l- we

simply have to show that the refinement preserves that property. Since components of the

capsules are randomly generated it is impossible for a cheating Po to distinguish between

c=1 and c=3 iterations when z is a quadradc residue æd c4 and c=3 iterations when z is a
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quadratic non residue and hence the protocol remains a verifying interactive proof system

for 1,.

We prove the zero-knowledge property by describing the computâtion of a probabilistic

Turing machine M which will simulate the conversation bween our prover Peggy and an

arbitrary, possibly cheating, verifier V*. M consults the oracle and learns the value of

Resry(z). M then flips a fair coin to simulate Peggy's choice of whether to encrypt as

R(x)= Res¡s(¡) or, R(x) = 1 - Res¡s(x). The remainder of the simulation is very similar to

the protocol for quadratic non residues as presented in $3.3 and is left as an exercise for the

interested reader. Vy'e must now prove that the protocol is result-indistinguishable by

describing the operation of a probabilistic Turing machine M'which will simulate the

conversation between Peggy and an arbitrary verifier Vo. However, in this case M'does

not have access to the oracle and does nof know the value of Res¡g(z). M'flips a coin to

decide whether to simulate the choice R(z) = 0 or R(z) = l. M' now simulates the

computations of Peggy and Vo with the following exceptions

' In step 2, M'chooses r = zr2 withprobability la"ax= zy? with probaUifity ].
. In step 4, M' outputs b = R(z) if x : zf, and b = 1 -R(z) ifx = zyrz mod l/.

In this way, the values of r output by M'have the same distribution as those output by Vo

in a real conversation between Peggy and V* and M'(N,z) is polynomially indistinguishable

from Viewp,y*11y',2¡.ü
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CåaapËex' 4

ffiæww-&çxaøwBedge Fnotoeoås flon æåå åæxagwæges åna ruP

$4.å lxrtrod¿¡ctioxa

In the previous chapter we presented a number of examples of zero-knowledge

interactive protæols for a variety of languages. Fïowever, each of the languages described

had a different protocol. In the following chapter we present methods by which general

protæols can be built forvarious languages in NP and byond.

$4.2 Alf [amguages ü¡r NP Erave zeno-knownedge proof systexns:

T'å¡e Gnaph 3-colouning r¡rethod

T'heonern 4.1: If f(.;.) (as defined in $3.6) is a secure probabilistic encryption scheme,

then every language in NP possesses a zero-knowledge interactive proof system

FroofIGMW2l: We proceed by construction in 4 steps. LetL be any language in NP.

We construct a zero.knowledge proof system by incorporating a fixed reduction to graph 3-

colourability. Both parties compute the 3-colourability instance from the common input

and Peggy demonstrates to Vic via the zereknowledge protocol of $3.4 that this instance is

3-colourable. However, in the above theorem, Peggy has infinite computing power and

hence can always compute the appropriate colouring. The next theorem considers the more

realistic case where both Peggy and Vic are limiæd to polynomial-time computations.ü

T'heorern 4.2: If secure probabilistic encryption schemes exist, every language in NP has

a zero-knowledge interactive proof system where the prover is a probabilistic polynomial-

time machine which gets an NP proof as auxiliary input

FrooflGMW2l: The problem with this scenario is that Peggy might not be powerful

enough to play her role in the protocol. If she were given a colouring of the 3-colourability

incranr.e then fnllnrwino thc nrntnr.nl nf E? á rvnnld he eacv Ffnrvewer che ic onlv oive.n avè ùvr v ' v^r v^-Y Þ-'-.- *

NP proof for membership in an arbitrary language L in NP. We can get around this

58



difficulty by using the following Karp [GJ] reductions to transform L to a graph 3-

colourability instance.

1. Transform L to a SAT instance S via Cook's Theorem [C].

2. Transform S to a 3SAT insunce 35 via Cook's Theorem.

3. Transform 35 to a graph 3-colourability instance G via [GIl.

4. Frove via the protocol of $3.4 that G is 3-colourable.

The important thing to note about the abve reductions from L to G is that they all preserve

the witnesses (these are the values which satisfy the original equation) from the original

instance to the reduced instance so that the prover is always able to fulflrll her role in the

protocol.D

$4"3 A Øerø-kxtowledge Frotoco[ fon Boolear¡ Satisfiability

A protocol for Boolean satisf,rability was first proposed in [BCl] which relied substantially

on particular properties of quadratic residues and hence did not'extend to arbitrary

encryption functions. Chaum [Ch] proposed a similar protocol but under a different model

where the prover is restricted to polynomial-time computations but which allowed the

verifier to have infinite power. This model also stressed the unconditional privacy of the

prover's secret. Finally Brassard and Crépeau [BC2] proposed a model in which all parties

involved have "reasonable" computing power. The difference amongst these various

models can be illustrated by considering the case where Peggy claims to know the

factorization of some integer n.

" In the tGMR2l model it is pointless for her to try to convince Vic of this since he already

knows that this is so due to Peggy's infinite computing po\iler. However, the [GMR2]

model is interesting for its theoretical implications.

" In the setting of tChl Peggy's secret factors cannot possibly be unconditionally secure

nnne chc maLes n nrrhlin She rnioht ee well inst cnnvince Vic that she knows the factorsvrrvv J¡¡v ll¡6wù tl ysv¡¡v. u¡¡v ¡¡¡¡ó¡¡r

by giving them to him as Vic, with his infînite computing power, will always be able to
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factor r¿. However, Peggy might want to demonstrate that she knows something without

revealing what she knows. For example, if her claim had been that she knows non-trivial

divisors of n where ¿ is the product of several primes, it would make sense to use the

setting of [Ch] to convince Vic of her knowledge without disclosing any infomration about

which of the divisors she knows even if Vic has infinite computing power.

' In the setting of [BC2] where all parties have reasonable computing power it is reasonable

for Peggy to attempt to convince Vic of her knowledge without revealing any information

that would enable Vic to compute the factors of r¿. Of course, in this setting, if Peggy and

Vic have similar computing power, the obvious question is how did Peggy obtain a hard

enough proof to be of interest to Vic? One answer is that Peggy was lucky or worked hard

enough to find it. However, in our case Peggy could simply have picked some random

large primes and multiplied them together to produce n. She then knows the factors of the

result even though she is no better than Vic at factoring large integers. Abadi et al.

IAABFH] give a theorem on the efficient generation of solved hard instances in NP.

We next present the results of Brassard, Chaum and Crépeau [BCC] in which all the above

concepts are unified. They consider the resources available to either pany during and after

the protocol. Their main result is a protocol that is unconditionally secure for both parties

as long as Peggy is unable to factor some large integer (or find a discrete logarithm) while

the protocol is taking pløce. Once the protocol is over, it is too late for either parry to ry ro

cheat regardless of their computing power. We contrast this with the protocol of $3.4

which depends on the inability of the verifier to invert some encryption function.

Moreover, this weakness is retroactive in that even if Vic is unable to do this while the

protocol is taking place, he could go back to old transcripts of Peggy's proofs and spend as

much time as he likes in deciphering them.
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$4.3"1 WÊt Co¡mx¡rüfxaaexaÉ"

The crux of the protocols to be presented is the notion of bit commitmenr. This is the

process by which Peggy is able to commit to the value of some bits in a way that prevents

Vic from learning about them without Peggy's help. Intuitively, if Peggy wants to commit

to a bit b she places b in a box, locks it and sends the box to Vic. Vic can only learn the

value of the bit if Peggy gives him the key. The main primitive used in [BCC] for

implementing bit commiunent isthe blob. Each blob is used by Peggy to commit to either a

0 or a 1. The following are the abstract defining properties of blobs.

1 (Completeness). Peggy can commit to blobs representing I and blobs representing

0.

2 (Soundness). Peggy can open any blob she has committed to and can convince Vic

of the value of the bit she ,in effect, committed to when she committed to the blob.

Thus, there is no blob that Peggy can open both as 0 and as 1.

3. (Security). When presented with a blob, Vic cannot tell which bit it represents.

This remains true even after other blobs have been opened.

4. Blobs do not carry side-information in the sense that the processes by which Peggy

commits to and opens blobs are not related to any secrets she wishes to keep from

Vic.

It will be useful to think of the above properties in the following way. Peggy commits to a

bit (property 1) by writing it on the floor and before Vic can see it she covers it with a piece

of opaque tape. Although Vic cannot tell which bit is under the tape (propeny 3), Peggy

can no longer change it. Peggy "opens" the blob by letting Vic remove the tape and look at

the bit (property 2). A subtle point worth noting is that it is not necessarily the case that a

given blob must encode a unique bit. It is not the blob itself that determines the bit but

rather Peggy's knowledge about it. In this case the closer analogy is the box example that

.troc ,rcc¡l ohnrre Tn the fnllnrrrincnrntmnl ure qeerrmp fhc ewictennc nf hlnhc qn¿l lnter oivevY uù uow suv Y v. ^¡¡ r^¡v ¡v^¡v vY ^¡¡õ
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implementations of blobs that yield different levels of security for the prover and the

verifier.

$4"3.2 T'he Basüa Fnotoco[

Assume that Peggy knows the satisfying assignment to some Boolean formula. The basic

protocol allows Peggy to convince Vic that she knows such an assignment without

revealing any information about ir Consider the following formula

V=[ (p 
^ 

q)o (q " r) n t (T@q) " (p 
"Ð]

and let (p=true, q=false, r=true) be Peggy's secret satisfying assignment. Note that

although finding the satisfying assignment to the above formula is trivial, as the number of

variables in the formula increases the cost of testing all possible combinations increases

exponentially.

$4"3"2.n T'he lnitial Set {Jp

Peggy and Vic initially agree on the layout of the Boolean circuit to compute ty. Figure 4.1

gives the circuit for ry as well as Peggy's satisfying assignment and truth table of each gate.

The outlined rows correspond to the circuit's computation on Peggy's satisfying

assignment. Seeing the outlined rows is sufficient to verify that V is satisfiable by simply

checking the consistency of each wire and making sure that the ouçut of the final wire is a

1. The idea of the protocol is for Peggy to prove that she knows how to outline one row

in each truth table without revealing any information about which rows they are.

$4"3"2.2 ûverview of the Fnotoco[

The protocol will consist of È rounds in which the following is done:

1. Peggy scrambles the circuit's truth tables and commits to a corresponding set of blobs.

,) \/ì^ rho- ioo,roo ^-o nf tha fnllnttrinû frrr^ mccihle nhollancacL. t tv urv¡¡ ¡ùùuvò v¡¡w vr u¡v rv¡^v vY ¡¡¡6 r vr v lryùr¡urv v¡¡srv¡¡6vù
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A) Vic asks Peggy to show that thç blobs really encode a valid scrambling of the circuit's

truth t¿bles

B) Vic asks that Peggy open the blobs that correspond to rows that would be outlined

assuming that the scrambling is valid.

The challenges are thus designed in such a way that Peggy could only meet bth of them if

she knows the satisfying assignment but answering any one of them yields no information

about it. Thus if Peggy does not know the satisfying assignment and attempts to cheat she

witl be caught in any round with probaAlityl. By repeating the above steps fr times the

probability that Vic is fooled by a cheating Peggy is at most 2-&, which is equivalent to an

exponential increase in security for a linear increase in the number of rounds.

$4"3.2.3 The Scramblíng Fnocess

The scrambling of each truth table will consist of random row permutations and column

complementations. Figure 4.2a shows the truth table for the Boolean conjunction

"Al\D" of Figure 4.1. The rows of the truth table are randomly permuted to yield

the table in Figure 4.2b. Any of the 24 possible perrnutations may be chosen with

equal probability. One bit is then randomly chosen for each column of the truth

table and each column is complemented if the bit for that column is a I as illustrated

in Figure 4.2c. Note that we can still recognise the scrambled truth table as being

the Boolean conjunction provided the complementation bits shown in the circles a¡e

specified. It is important to be consistent and that all truth table columns

corresponding to the same wire in the circuit be either all complemented or remain

the same. Figure 4.3 gives the result of random permutations and

complementations. After producing a circuit similar to that of Figure 4.3 Peggy

commits to it as follows: for each truth table bit, Peggy commits to a blob that she

r_-_---- L_--- -- ^___ õL- ^r^- t_^^-- -L- -^-^-l^-----^-:^- L:-- -^^-^-.K-rruws iluw tu upgil. ùilc ¿ilsu Kçtrps urE uurilprtrrrrçllräuull urrs 5ççr'9r.
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Fig 4.1. A Bælean Circuit with explicit truth tables and rows outlined



Going back to the floor and tape analogy, Peggy has now written Figure 4.3 on the floor

a¡d covered each bit with opaque tape before Vic can see it.

h

Fig 4.2. Permutation and complementation of a truth table.

$4"3"2"4 T'he Chaltrenge

Peggy having committed herself, Vic may at this point issue one of either Chalienge A or B

as described above.

. lf Vic's challenge is A, Peggy must open each and every blob she just committed to

as weli as reveal the complementation bits used in the scrambling process.

Intuitively, Peggy strips off all the tape on the floor and allows Vic to look at the

equivalent of Figure 4.3. This allows Vic to verify that the information concealed

by the blobs indeed encodes valid permutations and complementations of the

circuit's truth tables.

' If Vic's challenge is B, Peggy only opens those blobs corresponding to one row in

each truth table. The rows that will be opened are those that were outlined in Figure

4.i in their now (probabiy) new iocation as determined by the row pennufations.
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Fig 4.3. A circuit with randornly permuted and complemented tn¡th tables.



Fig 4.4. The existence of a satisfying assignment is revealed.
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Intuitively, Feggy su'ips off pieces of tape to reveal to Vic the equivalent of Figure

4.4. This allows Vic to verify the consistency of each wire and the fact that the

final ouþut is indeed a 1.

$4.3"3 Pnoof of Correctmess of tk¡e FnoÉoco[

In order for the protocol to be correct the following 3 requirements should be satisfied

except perhaps with an exponentially small probability.

1. Peggy can carry out her share of the protocol if she knows a satisfying assignment

to v.

2. If Peggy does not know a satisfying assignment for ry, no matter how she pretends

to follow the protocol, Vic will detect ttre cheating.

3. If Peggy knows a satisfying assignment for \¡/, and she follows her share of the

protocol, nothing is revealed to Vic that will enable him to determine the satisfying

assignment (or even partial information about it) even if he deviates arbitrarily from

the protocol.

We now show why and how the above requirements are met.

Requirement 1. Peggy is able to commit to blobs and open them as required owing to

defining properties 1 and 2 of blobs. Anyone can ¡andonrly permute rows and complement

columns of a truth table to obtain a Figure 4.3. Since Peggy knows the satisfying

assignment she can outline the appropriate rows in each of the scrambled truth table by

simply remembering which columns are complemented and where each permut¿tion has

taken each row that she knows would have been outlined in the original truth table. Thus

requirement I is mel

Requiremenr 2. Assume Peggy does not know the satisfying assignment. In any round

she can either commit to genuine permutations and complementations of the original

circuit's truth tables or she can commit to something phoney. In the former case she cannot

answer challenge B without knowing a satisfying assignment for ty and in the latter case
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she cannot answer challenge A without breaking defining bit property 2 of blobs. Thus, as

long as Feggy is unable to predict Vic's challenges (and hence construct an arrangement

that would enable her to answer the challenge) she will be caught cheating by Vic with
1

probability i in each round. In a È-round protocol Peggy will be caught cheating with

probability at least | - 2-k and thus requirement 2 is satisfied.

Requiremenf 3. This is argued in wo steps as there are two levels of infonnation that may

be released in the protocol.

1. We frst argue that Vic cannot learn anything about the satisfying assignment (beyond

the fact that Peggy knows it) simply from receiving a Figure 4.3 or Figure 4.4. If Vic

issues challenge A, he receives a Figure 4.3 which consists of randomly permuted and

complemented versions of the originally agreed circuit's truth tables. This obviously does

not help Vic to find Peggy's satisfying assignment as he could have produced such a figure

by himself even if \+r was not satisfiable. On the other hand, if Vic issues challenge B, he

receives Figure 4.4 which is equivalent to applying a true one-time pad (Peggy's

independent wire complementations) on the Boolean values carried by the circuit's wires

during the computation of a satisfying assignment. A property of one-time pads is they

hide all information so that no advantage is gained by Vic that would enable him to learn

something about the satisfying assignment. The only way for Vic to obtain additional

information about the satisfying assignment would be to obtain a matching Figure 4.3

(which contains the complementation bits) and Figure 4.4 (which reveals the position that

the random permutation placed the satisfying row), something that Peggy will obviously

never release.

At this point, although we have established the correcfness of the protocol, the latter may

not in fact be zero-knowledge. It is quite possible that only Peggy has the required

technology to commit to blobs in which case the verifier obtains something that he could

nnt have nrrvinned nn his n'¡¡n The nrnfnenl is nnlv zero-knowlerlse if the the thirdr¡v! ¡¡eÌ v r¡vesvvs
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requirement is srengthened to the effect ttrat Vic cannot learn anything ø all beyond the fact

that Peggy knows the satisfying assignment. Recall that a protocol should only be

considered zero-knowledge if and only if Vic can reproduce on his own the conversations

that he would have had with Peggy during a real execution of the protocol, simply after

being told by a tmsted oracle that the formula is satisfiable. This is possible if we

strengthen defining property 4 of blobs to read as follows:

4' (Simulatability). Vic can simulate what he would have ben provided in the præess

by which Peggy commits to blobs that she could open as 0 and those she could

open as 1. He is further able to simulate the process by which Peggy would have

opened these blobs had she committed to them herself.

The blobs are said to be simulatable if in addition to properti es L, 2, and 3, they also satisfy

property 4' above.

T'heore¡n 4.3: If simulatable blobs are used, then our protocol is zero-knowledge.

Froof: We describe the process by which Vic could simulate the conversations that he

wouid have had with Peggy in a real execution of the protocol. Note that since Vic does

nor know the satisfying assignment, he will fail each round with probabifity I during the

course of the simulation. For the cases resulting in failure, Vic simply discards them and

repeats the current round with new random choices. 'We next describe the simulation

process.

$4.3.4 The StxnuBation

1. Vic flips a fair coin to determine which of challenges A or B he will be prepared to

answer.

Depending on the outcome of the coin toss, he generates a Figure 4.3 or a Figure

4.4 as required.

2.

70



J.

4.

5.

Vic prepares a collection of blobs corresponding to whichever of Fig. 4.3 or 4.4he

has produced by simulating the process that Peggy would have used. He can do

this because of the simulatability of blobs as defined above.

At this point, Vic asks himself (honestly!) which challenge he would have issued

had this ben a real conversation with Peggy.

If the challenge corresponds to one that he can actually meet he simulates Peggy

opening the blobs.

else

Vic fails, in which case he "rewinds" himself to the point immediately before the

curent round and starts again with new random choices. Thus the probability that

any round will have to be repeated r times is 24.

Due to defining property 3 of blobs, there is no correlation between the challenge Vic

decides he is ready to meet and the one that he actually issues to himself. After ft

successful rounds have been exeÆuted, the random variable representiúg the simulated view

is indistinguishable from that representing Vic's view during a conversation with the real

prover. Thus our protocol is a zero-knowledge protocol for SAT.a

$4"3"5 The Fanallel Version

Some interesting points arise when we consider the parallel version of the basic protocol in

which all È rounds of the protocol are carried out simultaneously. In this scenario, Peggy

commits herself at the outset to blobs corresponding to k circuits similar to Figure 4.3. Vic

then sends to Peggy his string of challenges and Peggy opens the blobs in the manner

requested by the chailenges. Such a version might be more desirable for efficiency

reasons.

This, however, makes it possible for Vic to choose his challenges as a function of the entire

eollection of blobs. Although this does not allow him to obtain any information about

Peggy's satisfying assignment, it might allow Vic to subsequently convince others that y is
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satisfiable by showing them the transcript of his conversation with Peggy. This even holds

if simulatable blobs are used. Assume that blobs are bit sn"ings and Peggy commits to a

blob by showing it in the clear. Vic can cheat in the following manner. After receiving

blobs corresponding to the k circuits with randomly permuted and complemented truth

tables from Peggy, Vic concatenates them together and uses the result as an input to some

one-way function. (A one-way function,/, is an irreversible function such that the

computation of c = Í(m), given rn, is easy; but for a given c, it is computationally infeasible

to determine m).He then uses the fî¡st k bits of the ouçut to determine the È challenges to

be issued. For this version to be zero-knowledge, Vic must be able to simulate the

conversation that he would have had during a real execution of the protocol. However, if

Vic attempts to use the simulation technique outlined above to simulate the protocol, the

probability that the one-\pay function will actually yield as the fust È bits of its output

exactly those bits that correspond to the challenges he is able to meet, is exponentially

small so that the parallel version is not zero-knowledge. Thus, although the parallel

version is not zero-knowledge and does not reveal any information about Peggy's sesret,

its transcript may be used to convince others of the existence of Peggy's secret! If it is

important that the protocol be carried out in parallel, we can make the protocol zeto-

knowledge by further strengthening property 4 of blobs so that in addition to properties 1-3

they also satisfy the following:

4o (trapdoor or chameleon). Vic can simulate what he would have been provided in the

process by which Peggy commits to blobs. Furthermore, for each of these blobs,

Vic can simulate either the process by which Peggy would open it as a 0 or the

process by which Peggy would open it as a 1.

Such blobs are known as chameleon (or trapdoor) and allow Vic to do exactly what

defining property 2 of blobs had prevented Peggy from doing. A trapdoor blob is such that

there is a secret known as the key to the trapdoor that allows Vic to open the blob to reveai

a 0 or 1 as required. They also allow Vic to simulate his conversations with Peggy without
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ever encountering any failures even if he deviates arbitrarily from the actual protæol. This

allows Vic to simulate the parallel version because since the blobs are h-apdoor, Vic does

not need ro have already decided in which way he expects Peggy to be able to open them,

since they can k opened to reveal either a Figure 4.3 or a Figure 4.4. In order to simulate

the parallel version, Vic simulates Peggy's commiûnent to ¿ts many blobs as she would

use. He then chooses his challenges as if the blobs actually came from Peggy. Whenever

he chooses Challenge A, he randomly perrnutes and complements the Boolean circuit's

truth tables to produce something like Figure 4.3 and op€ns the blobs accordingly.

Whenever he chooses Challenge B, he randomly selects a random row in each truth table

and one Boolean value for each wire in the circuit (except for the final output wire for

which he chooses 1) and opens the blobs in these rows to produce something like Figure

4.4.

$4.4 Zero-lrmowledge Frotocols for a!tr Laxrguages åxe F{F: The

Circn¡ít Satisfiahålity Mefhod.

In the previous sections we have shown how to prove the existence of zero-knowledge

protocols for atl languages in NP by reducing them to the graph 3-colourability method. In

this section we will proceed by reducing all languages in NP to a circuit satisfiability

problem

Theorem 4.4: Assuming the existence of bit commitment schemes, all languages in NP

possess an interactive zero-knowledge protocol. (Note that these protocols are not

technically interactive proof systems in the sense of tGMR2l which allowed the prover to

be infinitely powerful and hence allows her to cheat by changing her commitments. As we

will see in the next chapter these commitments typically rely on cryptogaphic assumptions.

Brassard and Crépeau [BC4] have argued that when the verifier's faith in the prover's

nleirn reliec nreeicalv nn s-neh assnmntions- the nrotclcols should instead be refcrrcd to asv¡gr¡¡¡

arguments. Interested readers a¡e referred to [BC4] for further elaborations)
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Froof: Using the fact that satisfiability is NP-complete [C,GI], the basic protocol can be

used to produce zero-knowledge protocols for all languages in NP. Let L c Iu, where I

represents {0,i }. From the definition of NP, there exists a "proof System" Q q L x Ð*

such that whenever x e L, there exists a succinct "certificate" c to that effect, and one can

efficiently verify that c is valid proof that ¡ e L. 'We say that such a c is verifiable

information ro the effect that x e L. Using Cook's theorem [C], Peggy and Vic can both

consrruct from any x e L, a Boolean formula V¿(¡) that is satisfiable if and only if x e L.

Due to the constructive nature of Cook's theorem it is enough for Peggy to know some

succinct c such that <.r, c> € Q in order to efficiently deduce a satisfying assignment for

V¿(¡). Therefore for any x e L, and L e NP where Peggy knows a succinct certificate c

to the effect that ¡ e L, she can use the basic protocol to convince Vic that V¿(r) is

satisfiable and hence that r e L and she knows how to prove it.U

As noted by several researchers and formalised by Feige, Fiat and Shamir IFFSI the term

"zero-knowledge" is somewhat misleading since the prover doés reveal one bit of

information, namely the value of the predicate x e L and hence some researchers have

suggested the term minimwn be used. It is possible to extend the concept to "knowledge

about knowledge" where the prover reveals that she knows the status of x with lespect to

L. Tompa and Woll tTWl also considered this concept using a somewhat different

approach than [FFS]. Consider the restricted set of languages L e NP n co-NF. In this

case we can consrruct for each ¡ e Lo two Boolean formulae A¿(x) and B¿(x) such that

exactly one of them is satisfiable (Aúx) if x e L and B¿(¡) tf x e L). The disjunction

CtQ) = A¿(x) v B¿(x) is always satisfiable. Assume Peggy knows the value of the

predicate x e L, and she knows the corresponding succinct NP certificate. This gives a

sarisfying assignment for either A¿(¡) or B¿(¡) , whichever is satisfiable and hence she can

also satisfy Cilx). Using the basic protæol she is able to convince Vic that she knows the

-^+.i^f,,i-- ^..1---^-+ f^- ñ, t/-\ 'Thic ¡{mc nnf rarraol anr¡thina ohnrrf rr tn Vin hrrf it ¡lnacùotrùrJrrrË 4òùIËrrrrlvrrl rvl vL\¿rr. r¡r¡ù uwù ¡¡vt rvrw4¡ 4ru.¡¡¡¡¡Ó svvsr

convince him that Peggy knows the status of .r with respect to L and that she can prove it.
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$4.5 Fnactåaaå Zeno-kxrowledge:Goüxeg Beyonad NP

In the previous sections we have presented general zero-knowledge protocols for languages

in NP where both interacting parties are resrricted to polynomial-time computations.

However, the class of languages that can be recognised by such protocols extends beyond

NP. In the next section we will cha¡acterize the class of languages for which such protocols

exist.

We flrst define some important classes of languages, give some important results with

respect to these classes and show how to extend our protocol to languages outside of NP.

Babai [Ba] introduced the notion of an Arthur-Merlin protocol. In this model, an infinitely

powerful Merlin plays the role of the prover, Arthur that of the verifier and Merlin sees all

of Arthur's coin tosses. This implies that any communication between the two parties will

consist of only random strings. It is pointless for Arthur to send anything else since Merlin

can obviously compute for himself whatever Arthur is able to send.

Definition: A language L is said to be in AM[&] if there exists an Arthur-Merlin À-round

protocol, that is È alternating messages between Arthur and Merlin, Arthur sending fust

such that

1. If ¡ e L, Arthur accepts with probabifiry > l
2. If x ê. L, Arthur accepts with probabifiry < $

V/e let MAU(I be defined as above except that Merlin sends first. Babai [Ba] showed that

MAt¿l C AM[¿]. Recall that a language L is said to be in IP if it can be recognised by

interactive proof system (see $2.2).

Although this new definition appears more restrictive, Goldwasser and Sipser [GS] show

that the AM and IP are equivalent with respect to language recognition. They even show

that for any language having an interactive protocol in R rounds, we can find an AM

protocol requiring R + 2 rounds. In fact it is shown in [GS] that a language has an

:--^--^^:__^--^^1 -__^--,-^:f __r __r :¡:-L-- ^_ alf ____¡_ _-_,- r 'r,__-____ ñ t . rñ Ilrrçrauuvtr prtXJr sysr.grn rr anu orrry rr rr nas an fl'rvr pr(x)r sysrcrn. rurtlrerrilore .rlaDar [t'al
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showed that for every constant ¿, AM[¿] collapses to AM[2]. Fortnow [f,] shows that if a

language L e IP and possesses a perfectly zero-knowledge proof system, L's complement

has a constant round interactive proof system. Ben-or et aI.IBGGHKRM] have shown

that every language in IP has a zero-knowledge proof system. The above results are all

theoretically compelling but most of them not only allow but require that the prover be

infinitely powerful. For example, in the graph nonisomorphism protocol (see $3.3.2) the

prover must be able to decide graph isomorphism and Fortnow's result depends on this

model in a critical way. Thus it is important to consider the class of "practical IP",

introduced by Brassard and Damgaard [BD], where "practical IP" refers to the class of

languages that can be recognised when both Peggy and Vic a¡e restricted to polynomial-

time computations.

Ðefinitior¡ [G]: A language L is said to be in BPP if there is a probabilistic polynomial

time algorithm which on each input can determine membrship in the language with a small

probability of error.

It is reasonable to consider BPP as the real class of tractable problems since the error can

always be decreased below any threshold ô > 0 by repeating the algorithm cdogô-l times

and taking the majority answer, where the constant ct, only depends on the original

probability of error. We can now define the class of languages (called "Practical IP" in

tBDl) which can be recognised by zero-knowledge protocols when both parties are

restricted to polynomial-time computations.

Babai's class MA is equal to the set of combined languages from NP and BPP (i.e. MA =

NPuBPP) and Brassard and Damgaard [BD] prove that "practical IP C MA". The class

MA is defined exactly as NP, except that we are satisfied with a BPP algorithm for

deciding, given ¡ and c whether 4,c) e Q. Whenever <x,c> e Q we now refer to c as a

convincing argurnent for the fact that x e L. It cannot be called a certificate because in

general it cannot be verified with certainty. If -r e L where L e MA it is enough for Peggy

to know a convincing argument to that effect. Consider the set B of integers having exactly
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two prime factors. If Peggy generates two distinct inægers p and q that pass a probabilistic

primality test to her satisfaction she is convinced that n= pQ e B with <p,q> as her

convincing argument. Vy'e next show how to extend the basic protocol to consider

languages L e MA.

$4"5.å TE¡e &,1,& Protocol [BAA]
'We consider languages L e MA. Assume Peggy possesses a succinct convincing

argument c to the effect that ¡ e L. Since c is not a certificate Peggy is not certain that -r e

L. Our protocol allows us to convince Vic that x e L and she knows a convincing

argument such that Vic does not obtain any information about ir

$4.5.1.1 FreXirninary Step

Peggy and Vic agree on the error probability ô that they are willing to tolerate for the

certifying BPP algorithm. They consequently modify the algorithm so that its emor

probability does not exceed 8. Once this is done we can now assume that the probability of

error of the certifying algorithm is negligible.

Let n = Lrl and m = lcl where the value of n is uniquely determined as a known function of

¿. This is so that the protocol will not have to hide the value of ln from Vic.

Let r be an upper bound on the number of coin flips that the certifying algorithm can

perform on any input <x,b where âis of size m. Using an argument simila¡ to the proof

of Cook's theorem we can get a Boolean formula ry with at least m+r variables. If ttre first

rn variables are set to represent the binary string c, and the next r variables are set

randomly, then (except with probability at most ô) it is easy to set the remaining variables

(if any) that will satisfy .ly if and only if c is a convincing argument that ¡ e L. Knowing x

and the certifying algorithm makes construction of the formula possible so that it can be

made public. However, the basic protocol cannot be used in is present form as Vic cannot

trust Peggy to actually choose the r inputs truly at random. By the same token, Peggy

cannot allow Vic to choose them either as a judicious choice of these values might enable
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Vic to learn something about Peggy's convincing argument c. This is resolved by

requiring that Peggy and Vic perform a sub-protocol that will generate random values that

cannot k influenced by either party. The sub-protocol should also k perfonned in such a

way as to prevent Vic from learning the value of the random bits. Although this could ba

done by using Blum's [Bl] protocol for coin-tossing "in a well", the same goal can be

achieved if we require that blobs satisfy the following additional properties:

Property 5 @uality). Given 2 unopened blobs that encrypt the same bit that Peggy has

committed to, Peggy is able to convince Vic that she could open them to reveal the same bit

without revealing any additional information.

Property 6 (Inequality). Given 2 unopened blobs that encrypt different bits that Peggy has

committed to, Peggy is able to convince Vic that she could open them to reveal different

bits without revealing any additional information.

We can now use property 6 to implement coin-flipping as follows:

Coin-Tossing ín a \&ell

1. Peggy commits to 2 blobs that she could open to reveal 2 distinct bits.

2. She convinces Vic that this is so and asks him to pick a blob.

3. When Vic makes his choice, the coin toss is determined and its outcome is the bit

Peggy could show by opening the blob chosen by Vic.

However, Vic cannot tell the value of the bit unless Peggy opens the corresponding blob

which, of course, she will never do. We can now describe the general protocol for the case

of probabilistically verifiable information. The idea is similar to the protocol already

presented with a few modifications to take care of the further complexities discussed above.

We now describe the modifications.

$4.5.1.2 The Ðxtended Frotoco!

Peggy and Vic have agreed on the Boolean circuit that will be used to probabilistically

verify Peggy's convincing argument c that x e L. Peggy commits to rn blobs, each
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corresponding to one bit of c, and the two parties perfonn the coin-tossing protocol

described above to generate the r ra¡rdom bits corresponding to the r remaining variables of

the Boolean formula represented by the circuit. The basic protocol must be changed to

force Peggy to use the proper bits for the inputs corresponding to c and to the r random

bits all the while ensuring that no information is leaked to Vic that would enable him to

learn something about the value of these bits. We use our earlier example to illustrate how

this would be done. Assume Peggy has committed to some blob b that she could open to

reveal a 1 but Vic does not know this. Peggy now wants to convince Vic that she knows a

satisfying assignment to V for which the first variable corresponds to the blob she could

open as b. Peggy scrambles the circuit's truth tables as before to produce something

similar to Figure 4.3 and commits to it. For each input bit that she has committed to (the

first bit in our example; the first m+r bits in general) Peggy now also commits to the

complementation bits that were used to produce the current Figure 4.3.

If Vic issues challenge A, Peggy reveals the equivalent of Figure 4.3 exactly as before by

opening all the corresponding blobs as well as the blobs corresponding to the

complementation bits. Vic can then check that the blobs encoded a valid scrambling of the

truth tables. However, if Vic issues challenge B, Peggy must do more than reveal the

equivaient of Figure 4.4. This is because Figure 4.4 says nothing about the value of the

input variables chosen by Peggy. Vic wants also to be convinced that these were chosen

properly by Peggy. For example the wire corresponding to the first input is 0 (see fi¡st bit

in outlined row of the top left truth table of Figure 4.4) and Peggy uses the equality

property of blobs to. prove to Vic that blob å and the blob associated with the corresponding

wire complementation encode the same bit without revealing what the bit is, of course. If

that value had been a 1, Peggy would have used the inequality property to convince Vic that

the blob å and the blob associated with the corresponding wire complementation encode

Jif,f^-^-a Ll¿^ 'T'L:^ --^^^-^ i^ -^-aa+^,1 8^- ^ll * r * "^;^Ll^. ^-,1 -"^*'+L;-- ^1.^ *^*^:--utlrç-rçrlt u¡tù. I rrrJ Pruvgòò tJ rgPgarlç'l'¡ t\tr a.tL I|LT, vcltLo,urvù 4r¡\¡ wYvrJ LrrrrrË vrùv rvril(rllrù

the same as the basic protocol.
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The above protocol is however not zero-knowledge from a theoretical standpoint This is

because different convincing arguments may cause the certifying algorithm to fail with

different probabilities. This element of randomness prevents Vic from simulating exactly

the conversation that would take place in a real execution of the protocol with Peggy.

Although running the protocol an exponentially large number of times with Peggy could

enable a very powerful Vic to learn something about Peggy's secret, the protocol is still

very safe if ô is chosen to be small enough.Q

$4.6 Summary

Throughout this chapter we have described general methods for zero-knowledge protocols

for all languages in NP and BPP. However these can be generalised further. Convincing a

certain verifier that a circuit is satisf,red by an input with a given blob encryption is a special

case of the following problem: If a circuit computes a certain function F(l) = O, then

convince a verifier that this is true given a blob encryption of l and O. Boyar and Peralta

[BP] give improved zero-knowledge protocols for arithmetic operations and give general

methods for proving satisfiability of circuits containing both arithmetic and logical gates.
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C&aæpÊen 5

ffiå€ Cøssasaaü6naaena6 æxad Gesaenæå ResaaåÉs

$5.3. {ratnod¿¡ctiona

In the previous chapter we showed how zero-knowledge protocols can be built for

various languages in NP and beyond using t'wo different methods. However, the existence

of bit commiûnent schemes was simply assumed. It is clear that bit commitment is central

to the protocols presented and the necessity for secure schemes is thus critical. In this

chapter we will describe various bit commitment schemes and then discuss the security

obtained from different implementations. We also discuss some general results about bit

commitment and finally present some efficiency improvements for the practical

implementation of zero'knowledge protocol s.

$5"2 Bloh Xmrplexnentations

Blobs can be implemented in many ways. When they are based on cryptography and

computational complexity they are necessarily imperfect. These imperfections manifest

themselves in many ways. If it is impossible for the prover to change her commitments

after having committed herself, the implementation is said to & unconditíowlly secure for

the verifier. Conversely if it is impossible for the verifier to determine the value hidden by

a blob the implementation is said to be unconditíonally secure for the prover. lf
impossibility is replaced by "near impossibility" then the scheme is said to be srarisfically

secure for the prover or the verifier whichever the case might be. By nearly impossible, we

mean that the probability of the event occuring is exponentially small and even infinitely

powerful parties cannot influence the outcome. Thus, the event occurs purely by luck. V/e

can now give a more formal definition, which we borrow from [BCC], of bit commitrnent.

A bit corwnitment scheme consists of 2 sets X and I aJong with a-n efficiently eomputable

verification function v:Xx Í+ {0, 1, "} where'stands for undefined. In order to
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commit to some bitb e {0, 1}, Peggy picks a patr x e X and y e Y such that v(x,y)=6.

Thus x is the blob and y is Peggy's additional knowledge about it. Peggy commits to b by

giving .x to Vic and opens the blob by giving y to Vic who can then compute v(x,y) and

learn the value of å.

$5.2.1 tslobs StaÉÍstically Secure f'on Élee Froven

In the following section we describe a blob implementation that is statistically secure for the

prover.

$5.2.X..1 Eased on Éhe Fnesumed Ðifficulty of Factoring [BCz]
Recall from $3.2.1 that QR, denotes the set of all quadratic residues mod n. fet y e Zln ,

â.if x=y¿s it is impossible to distinguish an x produced when s =1 from that produced

when s e QRr. I-etn=pq wherep andqare2 distinct large primes. Given n and s e

QR, it is infeasible at the present time to compute a square root of s mod n unless the

factors of n are known.

tslob Generation Frotocol

1. Vic randomly chooses two distinct large primes p andq and forms the product

n=p9.

2. He then picks a random f e zn , (t2 > N) and computes s = P mod n and sends n

and s to Peggy.

3. Vic assumes temporarily the role of the prover and uses another zero-knowledge

protocol to prove to Peggy that s e QRn and that he knows one of the square roots.

Once the steps 1-3-above are successfully executed the blobs can then be defined as two

sets X and I whereX = QRz and Y = Zon errtd
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0if¡=y2modn

Peggy commits to some bit å by picking a random y. fi,computing x = y2sbmod n and

giving x to Vic. She keeps y as a secret witness which allows her to open the blob. Thus,

the completeness property of blobs holds.

Since any quadratic residue could be used to encrypt zeros as well as ones, Vic cannot teil

an encryption of a 0 from an encryption of a 1 and hence the security property holds.

Soundness holds computationally since the only way Peggy could open a blob to show

either a 0 or a 1 would be to obtain a square root of s. This would allow Peggy to simply

send yZs as her¡ and send y if she wants to open the blob as 1 and send yr/s if she wants

to open the blob as a 0. Since Peggy is restricted to polynomial time computations we

assume this to be infeasible for her.

Claim: The above blobs are statistically secure for Peggy.

Fnoof: Although Vic cannot tell the bits hidden by a blob, there exists a subtle way that he

could cheat. In order to this he would have to use an s that is a quadratic nonresidue but he

would have to be able to convince Peggy that it is in fact a residue during step 3 above. If

he succeeds and the probability of such an event is exponentially small, then blobs that

encrypr 0 will always be quadratic residues mod n, something that Vic can easily check as

he knows the factors of n. This would permit Vic to obtain additional information about

Peggy's secret. Thus these blobs are statistically secure for Peggy, as only luck can help

Vic obtain additional information since no amount of computing power (since a quadratic

residue is used to represent both a 0 and a 1) will help him in doing so. Peggy could ask

Vic to reveal a square root of s at the end of the protocol which would convince her that Vic

had not learned any ofher secrets. It is clear that such blobs possess the trapdoorproperry

with r being the key that allows Vic to open blobs as both 0 and 1.8
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Ctai¡m: The above blob implementation makes retroactive (off-line) cheating impossible.

Fnoof': Consider the case where an efficient factoring algorithm is discovered some time

after the protocol btween Vic and Peggy takes place. Since quadratic residues are used to

encr)?t both 0 and 1, Vic will still have no idea of which case Peggy had in mind when she

produced the blobs.*

Claim: If Peggy does not actually know the secret, she can only fool Vic by obtaining a

square root of s while the protocol ís taktng plæe.

Fnoof: If Feggy manages to obtain such a square root of s at the outset, then she can open

any blob as 0 or 1. However she must b able to do this before the end of the first round in

which she is asked a challenge that she is not prepared to answer. Obtaining a square root

of s at a later time is of no use to her.D

$5.2.2 Blobs {Jnconditionally Secure for the Frover

$5.2.2.Í Based on the Ðiscrete Log Problem [CÐG, BKK]

For a discussion of the discrete log problem see $3.5.1. We can use the intractability

assumption of the discrete log problem to create blobs provided we strengthen the problem

to the effect that computing the discrete log modulo a large primep remains infeasible even

if the factors of p-1 a¡e known.

Blob Generation Frotocol

1. Peggy and Vic agree on a prime numberp for which they both know the factors of

p-1.

2. They also agree on the generator cr of the multiplicative group

3. Using thei¡ knowledge of the factors of p-l they can both verify with certainty that

p is a prime and cr is a generator.

%
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4. Vic chooses a random s e 2., (s * 1) and gives it to Peggy. Due to the

inn'actability assumption of the discrete log problem Feggy is unable to compute ¿

such that s = ae (mod p).

Once the steps 1-4 above are successfully executed the blobs can then be defined as two

sets X and y where X = Zp and I = f0,1,2,....p-21 and

[Oifx=a.vmodp
I

v(x,Y)= J t irx = crls mod p

L" orh.r*ir"

Peggy commits to some bit b by picking a random y eY , computes x= sbs) mod p and

gives x to Vic while keeping y as a secret witness which allows her to open the blob and

hence property 1 of blobs holds. Since any element of X could be used to encrypt zeros as

well as ones, Vic cannot tell an encryption of a 0 from an encryption of a I and hence

properry 3 holds. Property 2 holds computationally since the only way Peggy could open a

blob to show either a 0 or a I would be to obtain the value of e (which we assumed is

infeasible for her). Such blobs possess the trapdoor property with e being the key that

allows Vic to open blobs to reveal 0 or 1 as required.

Ctraim: The above blobs are unconditionally secure for Peggy.

Froof: The above blobs are fundamentally different from those in the previous section.

This is because there is not even a possibility for Vic to cheat. This follows from the fact

that blobs that Peggy could open as 0 and those she could open as 1 are indistinguishable

depends only on thé fact thatp is prime and that o generates 7, . Both of these facts can

be verified by Peggy evenbefore the protocol starts.Ü

Claim: The above blobs make reroactive cheating impossible.

Claim: If Peggy does not know the secret she can only cheat by finding the discrete log of

s while the protocol is taking place.
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Fnoof': The præf of the above two statements is analogous to those in the previous section

and is not repeated here.

$5.2.3 Blobs StatisÉicatly Secune f'on the VentfÍen

$5.2.3.1 Eased o¡r the Quadratic R,esiduosity Frobte¡¡r [BCl]
Recall from g3.6.4 øat fi[+l] denotes those elements of 7]n witha Jacobi symbol 1. If

n = pe wherep and qare distinct large primes, half the elemen ts of {r[+1] are quadratic

residues and half are non residues modulo n.

EIob Genenation Frotocol

1. Peggy chooses two distinct large primes and forms the prduct n.

2. She also chooses a quadratic nonresidue s with Jacobi symbol +1.

3. She convinces Vic that n has only 2 pnme factors using the protocol outlined in

stage 3 of $3.6.4 or the method outlined in [PG].

4. She convinces Vic that s is indeed a quadratic non¡esidue mod n using the protocol

of Ë3.2.2 or $3.6.4.

Using the quadratic residuosity assumption we assume that Vic cannot distinguish random

quadratic residues from nonresidues md n with Jacobi symbl +1.

Once the steps 1-4 above are successfully executed the blobs can then be defined as two

setsX and Y where X = Z;[+1] and Y =in and

Peggy commits to some bit å by picking a random y eY , computes x: yzsb md n and

gives x to Vie while keepins v as a secret witness which allows her to oDen the blob a-ndo-- -- -- '- ---'r---o J '--- 'r'-- ---'

hence property I of blobs holds. Property 2 holds unconditionally if and only if ¡ is a
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quadratic residue. Thus there is no blob that Peggy could open as both a 0 and a

Property 3 holds computationaily as we assume that testing for quadratic residuosity

infeasible for Vic.

Ctraím: The above blob implementation in statistically secure for Vic.

Froof: The only way for Peggy to cheat, if she does not know the secret, is to use an s

that is a quadratic residue and attempt to convince Vic that it is in fact a quadratic

nonresidue. This can only happen with an exponentially small probability. If she were

successful in doing it she could open any blob either as 0 or 1. Since luck is the only way

she could achieve this and no amount of computing power will help her, we consider these

blobs to be statistically secure for Vic.Q

Claim: The above blob implementation makes reroactive cheating possible.

Proof: An aigorithm capable of factoring efficiently would enable Vic to obtain additional

information about Peggy's secret as there is no ambiguity as to which blobs encrypt which

bit value.E

$5.2.4 Blobs Llnconditionally Secure for the Verifien

$5.2.4.1 Based on the Ðiscrete X.ogarithm Froblem tBACI
Lnt p bea large prime, cr be the generator of % and ube the smallest integer such that 2u

does not divide p-l. Peralta [Pe] has shown that given any s € 4, ttis easy to compute

theu-l least significantbits of theunique e such that0 <e<p-2 ands= cremodp. Under

the intractability assumption of the discrete log problem it is infeasible to learn anything

about the uü significant bit of e which is as diffîcult as f,rnding the discrete log itself [Pe].

tslob Generation Frotocol

1. Peggy and Vic agree on ap and o exactly as in $4.6.1.2andletube as above.

Once the above step is successfully executed the blobs can then be defined as two

setsX and ywhere X = % andy = {0,1,2,....p-21 and

1.

is
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(yuitx=o,Jmodp
l'

v(x,y) = \
L'other*ise

wherey, is the uth signlficant bit of y.

Peggy commits to some bit å by picking a random y eY such that lu = b, computes r =
q) mod p arrd gives x to Vic while keeping ) as a secret witness which allows her to open

the blob and hence property 1 of blobs holds. Note that in this case Peggy must remember

y as she could not recompute it from -r. Property 2 of blobs holds unconditionally as cr is a
*

generator of 7p and hence the discrete logarithm of x is uniqueiy defined so that there is

no biob that Peggy could open both as 0 or 1. Property 3 holds computationally if the

discrete log assumption is strengthened to the effect that finding discrete logarithms mod p

is stilt infeasible even if the factorization of p-1 is known.

Claim: The above blob implementation in unconditionally secure for Vic.

Froof: As opposed to the previous implementation it is now no longer possible to cheat by

an argument similar to that of $5.2.2.1

Ctraim: The above blob implementation makes reroactive cheating possible.

Froof: An algorithm for solving the discrete log problem would enable Vic to obtain the

hidden bits encrypted by the blobs and hence enable him to obtain additional information

about Peggy's secret.

$5.2.5 T'rapdoon Blohs not Based on Cryptographic Assumptions

The bit commitment schemes presented in the previous sections relied on specific

cryptographic assumptions, namely the difficulty of factoring and the discrete log problem.

In the following sections we present two bit commitment schemes that have the trapdoor

property but do not rely on such assumptions. These biobs are instead based on

comp utational complexity.
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$5.2.5.1. Eased on GnapÍa {somorphisna ttsC2l

G is defined to be a hard graph if, given G and a random isomorphic copy of G, it is

computationally infeasible to find an isomorphism between the two graphs.

tsloh Generation Fnotocol

1. Peggy and Vic agree on some hard graph GoCV,Eo).

2. Vic randomly chooses a random permutation æ and produces a graph Gt(V,Et)

where (u,v) e E1 iff (n(u),n(v)) e Eo.

3. Vic gives H to Peggy and convinces her using the zero-knowledge protocol of

$3.3.1 that Gg and G1 a¡e isomorphic to each other. The roles a¡e again

temporarily reversed as Vic assumes the role of the prover.

Once the steps 1-3 above are successfully executed the blobs can then be defined as two

setsXand f where¡= {K(N,E*) lKis agraphisomorphic toGg} and I/= {yl y: V-+ V

where yis a permutation) and

Io ir (u,v) e Eo iff (y(z),T(v)) e Eo

I

v((v,E*),y) = I t ir (u,v) e Eo iff (y(¡¿),y(v)) e Er
I

L'otherwise

That is, Peggy commits to a bit å by picking a random permutation y e I and producing

K, a random isomorphic copy of G6 and keeps T as a witness that allows her to open the

blob. Since K is isomorphic to both Gg and G1 and Vic knows the isomorphism he is

unable to figure out which case Peggy had in mind when she produced the blob so that any

K can be used to encrypt either a 0 or 1 and hence the security property holds. The

soundness property holds computationally as the only way Peggy could open a blob as 0 or

1 is for her to obtain some isomorphism between Go and Gt which we assumed was

infeasible for her. Such blobs possess the trapdoor property with æ being the key that

allows Vic to open blobs to reveal 0 or I as required.
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Claim: The above blobs are statistically secure for Feggy.

Fnoof: In the above implementation Vic could cheat by using some graph Gr that is not

isomorphic to Go and manage to convince Peggy in step 3 that it in fact is. If he succeeds,

and the probability of success is exponentially small, Peggy's blobs K will always be

isomorphic to G6 when they encrypt 0 and to G1 when they encrypt 1, a fact that can be

verified by Vic. Thus, these blobs are statistically secure as only luck can help Vic and no

amount of computing power can help him figure out Peggy's secret.

$5.2.5.2 Based on the Ðirected Ëlamiltonian Graph Froblem [FeSI.]

This scheme is based on the zero.knowledge protocol for DHC given in $3.6 and arises

from the following observation. In step 3 of the protocol, if Peggy does not know a cycle

in G, she cannot answer both a å = 0 and ab = | challenge.

FIob Generation Fnotocol

1. Vic selects a Hamiltonian graph G with n vertices, sends it to'Peggy and proves to

her via the protocol of $3.6 that he knows a cycle in G.

2. Peggy commits to a zero by choosing a random pennutation 7r, permutes the

vertices of G and commits (using a non-trapdoor bit commitment scheme) to the

entries of the adjacency matrix of the resulting graph and commits to a one by

choosing the n vertex clique and committing to its adjacency matrix (which is all

ones).

3. Peggy opens a blob to reveal a zero by sending rt and opens the blobs that

encrypted the entries of the matrix so that Vic can verify that they indeed correspond

to a valid permutation of G. She opens a blob to reveal a 1 by opening a random

cycle in the adjacency matrix.

The scheme is tra$oor as knowledge of a cycle in G allows Vic to open as I blobs that he

had orisinallv committed to a 0. The above Drotocol is secure for Vie as long as Peesv is* ., r_ _- --_ ____Q --_ _ _oeJ _-

unable to find a cycle in G while the protocol is taking place and is secure for Peggy if Vic
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cannot break the non rrapdoor commitment scheme. Such schemes can be constructed

from any one-to-one one-way function [GL] and from one-way functions at the expense of

an extra move ttr-L]. A non trapdoor commitment scheme based on any pseudo-random

generator is given by Naor [N]. The most general result so far is due to Impagliazzo and

Luby [L] who have argued that the existence of one-way functions is a prerequisite for any

protocol whose security relies on computational complexity.

$5"2.6 ûbtrivious Tnansfer and .A.NÐOS

An oblivious transfer (OT) protocol allows Vic to obtain Peggy's bit å with probability ].

At the end of the protocol Vic knows whether or not he received the bit and Peggy does

not. ANDOS ("All-or-Nothing Disclosure of Secrets") is a tool invented by Brassard,

Crépeau, and Robert IBCRll. In this scenario, Peggy owns n secret strings si,s2....sn.

An ANDOS protocol allows Vic to choose any r¿ from Peggy in such a way that prevents

her from learning the value of fr. That is, Peggy gives away a string s¿ but doesn't know

which one. Furthennore, as soon as Vic learns the value of s¿ he has wasted his chance of

learning anything about the remaining strings.

$5.2.6.1 tslobs based on Oblivious Transfer [Cn]

To commit to a bit b,Peggy picks a vector b = b¡,b2...b, such that b = bt@bzØ...@b,

and sends the å¡'s to Vic using an oblivious transfer protocol. At the end of the protocol

Vic will have received on the average half of the bits in b and he knows which ones they

are whereas Peggy.does not. At this point nothing is revealed about the value of b unless

Vic obtains all the bits of b which will happen only with exponentially small probability.

In order to open the blob Peggy sends Vic the vector b. Vic checks that all the bits that he

received correctly actually correspond to the respective bits in b. Other blob

implementations based on oblivious transfer are given in [BCC, K].
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$5.2.6.2 tslobs hased om ANÐOS

peggy asks Vic to prepare two secret strings Sp and St. To commit to a bit b, Peggy

obtains 56 through an ANDOS protocol. As mentioned above Vic then has no idea which

string peggy chose and hence nothing is revealed about the value of b. To reveal the value

of bpeggy simple shows the string 56 to Vic. Noæ that with OT blobs Peggy is the sender

and Vic the receiver whereas the roles are reversed for ANDOS btobs. The relationship

between OT and ANDOS has been investigated in [CT, BCR2] who showed that any OT

protocol can be efficiently transformed to an ANDOS protocol. Thus in the ANDOS

protocol, if the underlying OT protocol is unconditionally secure for Peggy (Vic) then the

ANDOS protocol is unconditionally secure for Peggy (Vic).

$5.2.7 Quantum tslobs tBC3l

These blobs are based on the principles of quantum cryptogaphy tBBl. The basic idea is

to use polarized photons to transmit bits and relies on Heisenberg's Uncertainty Principle to

prevenr cheating and hence infinite computing power is of no help (even if P = NP) in

breaking the scheme. An experimental prototype using this principle has been built and

achieved the secure transmission of a secret key over a public channel IBBBSS]. Such a

system is unconditionally secure for both parties. It is in fact shown that Vic can cheat only

if he can buitd a device that can transmit information faster than ttre speed of light'

$5.2.S Notes on.Bit Commitment Schemes

In this section we present some general results and observations on bit commitment

schemes. As we have seen, the existence of bit commitment schemes implies the existence

of zero-k¡rowledge protocols and are thus central to such protocols.

Tf thc hit nnrnrnirmcnr ceheme use.rl in a zero-k-nowledse orotocol is unconditionally secureu tllv ur! wvllu¡r¡q¡¡v f - -'-' -- -- -

for the prover, the protocol will be perfectly zero-knowledge in that a simulation will
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produce the same probability distribution as the actual protocol. If the scheme is only

statistically secure for the prover then the protocol is only statistically (almost perfectly)

zero-knowledge. Impagliazzo and Luby [IL] have shown that bit commitment schemes

unconditionally secure for the verifier exist if and only if one-way functions exist. Since

such schemes are only computationally secure for the prover, protæols resulting from thei¡

use ¿ìre only computationally zero-knowledge. On the other hand, Brassard and Yung

[BY] have shown that if one-way group actions (a generalizatton of one-way group

homomorphisms introduced by Impagliazzo and Yung[It] and used by Brassard, Crépeau,

and Yung [BCY] for implementing bit commitment schemes) exist, then bit commitment

schemes unconditionally secure for the prover can be implemented which yield perfectly

zero-knowledge protocols.

Some bit commitment schemes also have additional properties, a particularly important one

being the trapdoor property which allows the parallelization of zero-knowledge protocols.

Consequently, the use of trapdoor blobs allows the construction of constant round zero-

knowledge protocols for all languages in NP [BCY, FeSl].

$5.3 Constant nound Fenfect Zero-[<nowledge Frotocols [BCY, FeSl]

Brassard, Crépeau, and Yung [BCYI have constructed a 6-move perfect zero-knowledge

protocol for all languages in NP using a bit commitment scheme based on the discrete

logarithm problem. Under the same assumption, Feige and Shamir [FeSl] have

constructed a 4-move protocol which is perfectly zero-knowledge. Under the more general

assumption that onp-to-one one-way functions exist they build a protocol that still has 4

moves but is now only computationally zero-knowledge. Under the still more general

assumption that one-way functions exist, the protocol becomes a S-move computationaliy

zero-knowledge protocol. (This is because the construction of schemes based on one-way

firnnfinnc ranrri¡ec o nraliminoñr ñ^arê fN Tl I I \ \LIa npvf nrrflina fha nçmacc trrtr "'Li^L'Àurrwlrvr¡r ¡\^lsgvD 4 y^vr¡rru¡¡qJ ¡¡¡vvv LrrrLuuJ.t rr v rrv^! vuL¡¡¡¡v !¡¡v l/rvvvro vJ w¡¡lv¡l

[FeS1] built their constant round zero.knowledge protocol.
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Zero-knowledge protocols are usually constructed by sequentially iterating a basic step r¿

independent times with each round increasing the confidence of the verifier. The obvious

way to obtain a constant round protocol would be to execute the n steps in parallel thereby

minimizing interaction. Although a parallel execution doesn't reveal anything about

Peggy's secret, it does allow Vic to convince others of the existence of her secret. But we

have seen that using trapdoor blobs allows the construction of parallel zero-knowledge

protocols ($4.3.5). Thus using trapdoor blobs would seem to solve the problem but this

introduces a further complication. How does Peggy know that the commitment scheme

used by Vic is indeed trapdoor? For example, if Vic uses the bit commitnent scheme based

on rhe DHC ( 85.2.5.2 ) how can Peggy be sure that the graph G that Vic sends contains a

cycle and that Vic knows it. Thus, Vic must prove to Peggy his knowledge of the

trapdoor information. This can be done by a temporary role reversal during which Vic

proves to Peggy that he knows the key to the trapdoor via some appropriate zero-

knowledge protocol. But that brings us back to our original problem of sequential

composition. However, the zero-knowledge property is not really important in Vic's case.

It only suffices that Peggy does not learn anything about his trapdoor. Beyond that Vic

does not really care if additional information is leaked to Peggy. This extra flexibiiity

allows Vic to use the parallel version of the appropriate protocol to convince Peggy that he

knows the trapdoor information. Such a protocol is called a wítness hidíng protocol in

lFeSll and while being a weakerrequirement than zero-knowledge, it still satisfies the

security requirements of most crypto$aphic protocols. (For more on witness hiding

protocols see [FeS2])

Thus we can obtain a 2-round (4-move) perfect zero-knowledge protocol. In the first

round Vic proves to Peggy that he knows the trapdoor information to the bit commitment

scheme using the parallel version of the appropriate zero-knowledge protocol. If Peggy is

^^-.-,:-^^l ^L^ ,,^^^ +L^ *^-^lI^I "--"i^- ^f +1ra nnfrrol n*nfnnnl ,roinn \/intc trqnÁmr hlnhcutJllYl¡luq.¡, ù¡19 uùçJ Lrr\; Pd,rc¡¡rvr vvl,Jtvrr vr urv 4vrqo y¡vrwv¡ eo¡¡¡6 Y rv ù s4l/uvv¡ u¡vud
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which takes another round. This achieves a 2-round perfectly zero-knowledge protocol for

all languages in NP.

$5.4 T'he Complexity of Zeno-knowledge Fnotocols

In the last two chapters we have reviewed two general methods for the construction of

zero-knowledge protocols for languages L in NP. One involves the transformation of L to

a graph 3-colourability instance and the other proceeds by reduction to a verifying Boolean

circuit We can now æmpare the communication cost of each method. I-etL be a language

which has a zero-knowledge protocol and let CCt@) be the number of bits communicated

during the course of this protocol where n is the size of the input and k is a security

parameter selected such that the probabitity of error does not exceed 2-È.

The fust method involves proving that the resulting graph is 3-colourable so we let ¿ be the

number of vertices and e the number of edges in the resulting graph. If encryption cost is

constant then the communication cost, ,"t;o', incurred in proving that the graph is 3-

colourable is such thatClcol i, Oçk"r.r). However we have to reduce the language L to

a SAT instance before we can transform it to a graph 3-colourability instance. The size of

the SAT instance depends on the time complexity of the non deterministic Turing machine

(NDTM) for L. If the time complexity is linear in the size of the problem instance, we

obtain a SAT instance of size O(nz) which gives a graph with O(n2) vertices and edges and

hence CCr@) is Oçk.n4¡. If the time complexity is quadratic in the size of n as it would be

for many number theoretic languages, CC¿(n) is then Oçk"n8¡. Clearly such a cost is

prohibitive and cannot be used for practical purposes for arbitrary languages in NP.

In the circuit-based methods the cost CC¿(Ð is O(¿.Ð where,f is the size of the verifying

circuit. It has been shown that if the time required for a Turing machine to verify

membership in a language L is p(n) for a problem of size n then there exists a verifying
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circuit of size oççn¡,logp(n)). Consequently, if p(n) is linear then CC¿(n) is t(k"nlogn)

and if p@) is quadratic then CC¿(n) is A(k"n2logn).

Thus the circuit-based method is the more suitable method for practical implementation.

However, if the known techniques of n-uth tables are used the hidden constants in the

expressions above turn out to be quite large. It is therefore important to find methods by

which the number of bits communicated during the protocol be reduced to a minimum. In

the next sections we outline two techniques for doing this, one due to Boyar and Peralta

[BP] which eliminates the need for truth tables and the other due to Killian, Micali, and

Ostrovsky [KMOI which reduces the number of blobs required.

$5.4.I The tsnassard-Crépeau Cincuit-based Froof' System ttsCz]

To eliminate ûuth tables, Boyar and Peralta [BP] use techniques based on the original

ci¡cuit-based methds devised by Brassard and Crépeau [BC2]. Since the latær are slightly

different from their subsequent methods presented in $4.3.2, we gíve a brief outline of

their original method.

In [BC2] the rows of each truth table are pennuted as usual but there are no independent

wire complementations. Instead for each wire in the circuit Peggy determines which vaiue

would be carried by that wi¡e if the input wires were carrying the values corresponding to

the satisfying assignment. Peggy then commits to the bits in all the truth tables as well as

to the bits carried on the wi¡es.

If Vic issues challenge A, Peggy opens the blobs corresponding to all the truth tables and

Vic verifies that they correspond to valid permutations of the truth tables. If Vic issues

challenge B Peggy shows that the inputs to and output of each gate correspond to some

row in the truth table for that gate. This is done using the blob equality property of blobs

where Peggy shows that the blobs on the circuit wires which are the inputs and the ouÞut

of each gate correspond to the blobs in some row of the truth rable.
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$5.4.2 Ð[irminating T'rut[n T'ahles

In this section we outline the techniques used in [BP] to eliminate the need for truth tables

thereby reducing the number of bits communicated during the course of a zero-knowledge

protocol.

MAJORÏTV Gates

A majority gate with fan-in n = 2k + 1 is such that the output is one if at least k+l of the

inputs are one, and zero if at least fr+l of the inputs aÍe zero. To demonstrate, in a. zeÍo-

knowledge fashion, that the gate is working it suffices to show that k+l of the inputs

encrypt the same bit as the output. In order to hide which of the inputs are the same as the

output, Peggy produces n (= 2k + 1) additional blobs which she can open to reveal the

same bits as the inputs to the gate. However, she sends them to Vic in a random order so

as to prevent him from learning the correspondence.

If Vic's challenge is A, Peggy shows the correspondence between the input blobs and the n

additional blobs using the equality property. If Vic's challenge is B Peggy shows that &+1

of the additional blobs and the output blobs encrypt the same bit. It is clear the above

protocol reveals nothing about the value of the inputs or the output. We next show how

MAIORITY gates can be used to simulate AND/OR gates.

Si¡nulating ,{F{Ð/OR Gates using MAJORIT'V Gates

Consider an AND gate with n inputs. This can be simulated by a MAJOzuTY gate with

2n-1 inputs, n of which are the inputs to the AND gate whereas the remaining n-tcarry the

value zero. Thus, the output of the MAJOzuTY gate will be one if and only if all the inputs

to the AND gate were all one as required. OR gates can be simulated in the same manner

except that the ¿-1 additional inputs to the MAJORITY gate must now all be one. In the

latter case if at least one of the inputs to the OR gate is one the output of the MAJORITY

oate. rvill he nne nc renrrired '\tr/e nan nnr.¡¡ rlescrihe hnrw rncinritw ûâfêc r-ân hc rrcerl r^Þ*-- "

simulate AND/OR gates.
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For an AND/OR gate with n inputs, Feggy creates 2n-1 addttional blobs n of which

correspond to the inputs of the AND/OR gate and the remaining n-I corresponding to 0/1

for ANDiOR. If Vic issues challenge A, Peggy shows the correspondence between the

inpurs ro the AND/OR gate and n of the additional blobs and opens the remaining n-I blobs

to reveal a0/1. If Vic issues challenge B, Peggy shows that n of the additional blobs

encrypr rhe same bit as the ouçut of the AND/OR gate. NOT gates require no additional

blobs. If Vic issues challenge A, Peggy shows that the input blob and the output blobs

encrypt different bits. If Vic issues challenge B, Peggy can ignore NOT gates.

We can now compare the truth table method with the MAJORITY gate method. If the

AND/OR gates had 2 inputs, Peggy would have to create 12 blobs for the truth table and 1

more for the ouçut blob. With the new method we only require 2n-L = 3 additional blobs,

a substantial saving. If the number of inputs is N and considering a circuit with S gates,

the total number of blobs on the circuits wires is l/+S. If I of the gates are NOT gates,

then the truth table based method uses Iy' + 13(S-Ð + 5T where the second terïn represents

the size of the truth tables for AND/OR gates and the third term the size of a truth table for

NOT gates. On the other hand the new method only requires N +4(S-T) + T blobs per

round which represent about a threefold increase in effrciency over the former method.

$5.4.3 Reducing the Number of Blobs

In the previous section we presented a technique for reducing the number of bits that need

to be communicated during the course of a zero-knowledge protocol. Each of these bits

must be encrypted before it is sent to the verifier and it is clear that to encrypt a message

one must send more bits than the message itself. If the number of bits required to encrypt a

bit is O(k) we say that the cost of the blob is O(e) for a security parameter fr. For example,

to build a blob based on a probabilistic encryption scheme one might have to use 1@ bits.

'TL,,- +^ ^^*-i+ +^ l fWVì hir. i-'{i.'i,{"^ll" "'^ "'^"1,{ *ooã rn can¿{ o millinn }¡itc TÌn'rra.ræll¡uù L(J vtrllllllll l\, luww u¡Lù u¡u¡Y¡uuü¡J wv wvqg r¡vw !v ov¡ru 4 ¡ruruvrr v¡!ù. rrvYvvYwrt

we note that in zero-knowledge protocols, Peggy wants to commit to a sequence of bits
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b1,b2,..,b¡n to be revealed subsequently at the same tíme. Thus instead of having one bit

per blob, it would be more desirable to stuff all n¿ bits into a larger blob which could then

be opened to reveal all the desired bits. Killian, Micaii, and Osn-ovsky [KMO] have

presented such a protocol for aggregate bit commitnent such that when it is applied to the

above example, it is possible to commit to iffi00 bits in aggegate using only 11@ bits of

communication. The protocol (called a subset revealing protocol by IKMOI) retains the

zero-knowledge property and works as follows.

A,ggregate Bit Cornmitment Froúocol

To commit to a set of bits B = b1,b2,..,b^, Peggy chooses a set of random bits R =

rI,r2,..,rm. She then commits to a blob containing R and another containing R @ B (the

bitwise XOR of B and R). To open the blob to reveal a subset I c [1,n], the prover

reveals I and for each i e I, she sends r¡ and and b¡@r¡. Vic then asks Peggy to open the

blobs corresponding to either R or R @ B and checks that the committed values correspond

to the values sent by Peggy. If they are equal, Vic can now compute b¡for all i e I. An

efficient protocol for committing to many bits has been implemented by Naor [N] using a

pseudo random generator. Her main result is a protocol such that if m is at least linea¡ in

the security parameter ft, Peggy can commit to B while exchanging only O(Ë) bits. The

main theorem is as follows:

Theorern 4.4 [N]: If G is a pseudo-random generator then we can build an aggregate bit

commitment scheme to B = b1,b2,..,b¡n such that for any polynomial p and large enough

security parameter k:
1. After the commit stage, Vic cannot guess any bit å¿ with probability greater ** å

1* p(k), even when told the values b¡b2..b¡-Lbiot,..,b*.

2. For all I S i S m, Peggy can only reveal 1 possible value for b¡ except with

probability t"r, th* ¡fu.
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This methd of bit commitment gre.atly reduces the number of bits that are used fo¡ building

blobs in zero-knowledge protocols.

$5.5 Non nnteractive Zena Knowtredge Froofs [BF'M]

Three main characteristics of zero-knowledge protocols differentiate them from n'aditionai

ones.

1. Interaction. The prover and the verifier exchange messages back and forth.

2. Hidden randomization. The verifier generates random bits in a way that cannot be

predicted by the prover.

3. Computational Difficulty. The prover imbeds in her proofs the computational

difficulty of some other problem.

Although it appears that all these conditions Íre necessary, it is important to exÍact from

them the strict minimum conditions required to preserve the zero-knowiedge aspects of the

proofs. Blum, Feldman, and Micali [BFM] introduced the concept of a non interactive

zero-knowledge (NIZK) proof by eliminating the need for interaction (characteristic 1) . In

doing so they have also eliminated the need for secrecy in generating the required random

bits. Their main result states that a prover can prove in zero-knowledge and without any

interaction with the verifier any statement T in NP provided that the prover and the verifier

share a common random string o. That is, Peggy gives Vic a string m and upon examining

m, Yic is convinced that T is true but obtains no additional knowledge about the proof.

Note that sharing a random string is a weaker assumption than interaction. Obviously, if

Peggy and Vic could interact they could generate a random string while the converse is not

true. Such protocols are attractive since random public sources are available such as the 1

0m 000 random digits published by the RAND corporation.

The [BFM] implementation is based on the difficulty of distinguishing products of two

primes from products of three primes. De Santis, Micali, and Persiano IDMPI] have based

their implementation on the difficulty of distinguishing quadratic residues from non
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residues. Under the assumption that oblivious n-ansfer protocols exist, [KMO] and Bellare

and Micali [BM] have shown that at the cost of an initial preprocessing stage, the prover

can prove polynomially many statements in NP. However, these proofs are directed at a

specific verifier and are not publicly verifiable. Under the more general assumption that

one-way functions exist [DMP2] and Lapidot and Shamir [LS] have devised a model

whereby the prover first proves a random theorem Tg in an interactive preprocessing stage

and uses it to prove the actual theorem T non-interactively. The main results of [LS] is a

publicly verifiable NIZK proof for all languages in NP based on a common random string

under the assumption that one-way permutations (a permutation that can be easily evaluated

but cannot be inverted in polynomial time) exist. This eliminates the need for an initial

interactive preprocessing stage. If the prover is restricted to polynomial-time computations

the assumption needs to be strengthened to the effect that trapdoor permutations exist (a

trapdoor is similar to a one-way permutation except that there is a secret known as the key

to the trapdoor which allows one to easily invert the permutatiori), at the expense of

needing a longer coûtmon random string. A drawback of the ÞSl scheme is that it is

bounded in that only a single theorem can be proven by a NIZK proof using a particular

common random string. Independently, Feige, Lapidot, and Shamir IFLSI and De Santis

and Yung [DY] have shown how to transform any bounded NIZK proof system with

polynomial time provers into a more general NIZK system where polynomially

independent provers can share the same random string which can then be used to prove

polynomially many statements in NP.

It is clear that by eljminating interaction, the possibilities for practical uses of NIZK proof

systems are much greater and in the next chapter we will present some of their

cryptographic application s.
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C&aapÉen 6

Cnyptognæp&aøc,&ppååaætåøxas w{ V.ewo-Ksaowåedge

$6.1 Intnoductior¡

Since their introduction in 1985 the appiication of zero-knowledge to cryptography has

been a subject of continual research. In this chapter we will give a sample from the

literature of some of the more important contributions of zero-knowledge protocols to

cryptographic application s.

96.2 T.ero-KnowXedge and Fublic Key Cnyptosystems tGE{Yl

A public key cryptosystem is one in which each user, A, owns related keys P4 and

56, where Pa is A's public key and S¡ her secret key. In order to send a message rn to

A, anotheruserB computes c=E(PR, m)and sends ctoAwhoretrievesm= D(Sa,c). E

and D are polynomial-time algorithms and it is computationally infeasible to figure out m

without the secret key Sa. In the next sections we discuss one application each of

interactive zero-knowledge (IZK) and non-interactive zero-knowledge to public key

cryptosystems (PKC).

$6.2.1 nZK and Fublic [<ey Cnyptosysterns

Let P6 = ly' = pq where p and q are large primes known to A. Using a zero-knowledge

protocol A can convince any other user that P a, = pQ and that she knows the factors. Recall

from $3.7.5 that

| 1 if x is a quadratic residue mod /V
Res¡g(x¡ ='1

l0 otherwise

If x e ZN Gl) and A uses the result indistinguishable protocol of $3.9.4 to prove to B that

she knows the value of Resry(.r), x can be used as an encod.ing for bit Res¡¿(x). Thus the

sequence of random numbers xIJ2,..Jkcan be used as an encoding for the sequence of
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bits Res¡¿(-r7), Res¡¿(x2),...,Res¡¿(x¿) which can then be used as a one-time pad sent from

A to B or vice-versa. A much more efficient system can be obtained if the sequence

Res¡s(x7), Resry(-r2),...,Res¡¿(-r¿) is used instead as the random seed for a

cryptographically secure pseudo-random bit generator based 
9n 

PE. Since A and B both

share the seed both can use it to generate polynomially many bits which can be used as a

very long one-time pad with which to send messages back and forth.

In most pubic key cryptosystems the use of public keys is asymmetric in that only

messages sent to A can be encrypted using A's public key. In the system described above,

the keys are symmetric, since messages sent to A as well as messages A sends to others are

encrypted using A's public key. This can be useful in certain applications. For example it

allows secure communication with casual users who are not registered in the public key

directory. Also, since the same key is being used, A can transfer the same random bits to a

group of users who can in turn broadcast secret messages to other members.

ç6.2.2 NIZK, Fr¡blic key Cryptosystems and Solving am tpen Froblem

Using NIZK proof systems has lead to the solution of a well-known open problem. In the

chosen ciphertext attack, believed to be the strongest of all known natural attacks, the

cryptanalyst attempts to break the system by asking and receiving as many plaintext (ln)

and ciphertext (c) messages of his choice. This would be feasible for any individuat with

access to the decoding equipment. It has been shown ttrat Rabin's implementation which is

based on the difficulty of factoring is easily vulnerable to such an attack and designing a

public key cryptosystem that would be invulnerable to such an attack has been an open

problem since 1978.

Using NIZK proofs this problem can finally be solved. The basic idea, due ro Bium,

Feldman, and Micali, is that instead of A sending only the ciphertext c, that she also sends

along a string o which is a NIZK proof that the sender knows the decoding of c. The

decoding equipment outputs the message mif and only if the proof, o, is convincing and
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outputs nothing otherwise. Thus, being able to use the decoding equipment is of no use as

it will only ouçut the original message if one can prove that one knows what the decoding

will be. More simply, the decoding equipment can only be used to oulput what is already

known. Naor and Yung [NY] have built a PKC which is provably secure against chosen

ciphertext attacks, given an underlying PKC that is secure against passive eavesdroppers

and a NIZK proof system with common random sn'ing. By combining the results of [NY]

and [LS] we obtain the first example of a PKC provably secure against chosen ciphertext

attacks that is not based on the computational complexity of a specific problem but is

instead based on the more general assumption that one-way functions exist.

$6.3 Zero-Knowledge and ldentification Schemes

In this section we describe identification schemes based on zero-knowledge. Furthermore

due to their simplicity some of these schemes are suited to microprocessor-based devices

such as smart cards and personal computers. We also describe limitations and possible

abuses of such systems and how these can be remedied. An identification scheme is one

by which Peggy can prove to Vic that she is Peggy in such a way that prevents Vic from

impersonating Peggy.

$6.3.1 The Fiat-Shamir ndentification Scherne

This scheme due to Fiat and Shamir [FiS] is a combination of zero-knowledge protocols

and identity-based schemes. It assumes the existence of a trusted center which issues smafi

cards to users after properly checking their physical identity. Beyond that, no further

interaction is required with the center.

lnitial Setup

Before the center becomes operational, it chooses and makes public a modulus n = pq

where p and q are secÍet primes known only to the center and a pseudo-random function/
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which maps strings in the range 0,1,...,n-1. The function/ should be such that its output

should be polynomially indistinguishable from the output of a truly random function.

lssuing a Cand

V/hen an eligible user applies for a sma,rt card, the center prepares a string 1 which contains

the relevant information about the applicant such as name, social insurance number,

physical description, security clearance, expiration date, Iimitations on validity, etc. Since

this is the information that will be verified by the scheme it is vital that it be made as

detailed as possible and to double check its correctness. The center then performs the

following computations.

1. For small values ofj,

v¡ = f(t j)
2. For È values ofj for which v; e QRr,

mdn)
vJsj = I

3. Issue a smart card containing /, the & ¡- values and their indiôes. For convenience

we assume that the first k indices j = 1,2,...,k are used.

Verifying the validity of a card

The verification devices are identical standalone devices containing a microprocessor, a

small memory and VO interface and stores the modulus n and the function"f. A smart card

must then prove to the device that it knows the s; values without giving away any

information about them. When the card (prover) is inserted in the device (verifier) the

following protocol is executed.

1. The prover sends the string 1 to the verifier.

2. The verifier generates v¡ =f(1") forj = 1,2,...,k.

For i =1 to t repeat

3. The prover picks a random rie 4, computes
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xi=4mdn

and sends -ri to the verifier.

4. The verifier sends a random vector ei= (e¡1,e¡2,...,eik) to the prover.

5. The prover replies with

yi= ri ns.j md n

"ij=,

6. The verifier checks that the following condition holds

?zxi =yt llvj m@¿
' eil=l

If ail,trounds are successful, the prover's identity is verified and accepted by the device.

Theonern 5.X,. If the prover and verif,rer follow the protocol, the verifier always accepts.

Froof tF'iSI. By definition

,t,ffi't =

" 
¡j=t

4W?,v; mod n

eij=t

= x; modn.Ü

Theorern 5.2. If the prover does not know the square roots sj , the verifier will be fooled

with probabiüty at mo$z-kt.

Froof: The prover could cheat by guessing the correct vector e in each round and sending

the following

xi=li å-1", mod n and y; = r¡

"¡Fr
which could pass the verifrer's check as being correct.

The probability of guessing the correct vector is 2-È for each iteration and Z-kt lor the whole

protocol.S
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Theorerm 5"3" For a fixed k and arbitrary t , the above protocol is zero-knowledge.

Fnoof. Intuitively, the protocol reveals no information about the s;'s, since the r¡'s are

random squares and each yi contains an independent random variable which effectively

masks the values of the s¡ . Hence all messages from the prover to the verifier consist of

random numbers with uniform probability distribution.E

SecuniÉy

To attain a 2-20 security level (1 in a million) one could simply choose & = 5 and t = 4.

Such a scheme was implemented by [Kn] and allows the authentication of a 120 byte

identification string in an average time of six seconds.

$6.3.2 The Feige-Fiat-Shamir IdentifÏcation Scherne

In this scheme first put forward by Feige, Fiat, and Shamir IFFSI and subsequently

improved by Micali and Shamir [MS], the center's role is significantly diminished as its

only purpose is to publish the secret modulus n of the required form. Each individual then

chooses k random integers si,s2,...,s/< and for each s¡ slhe calculates

v;=*s-? mod ¿rl

where the sign is chosen randomly. He then keeps the ¡-'s secret and publishes the vj's

with which the individual's name is associated. The identification protocols consists of the

user proving that he knows the s¡'s without revealing anything about their values.

$6.3.3 .Aspects of the Fiat-Shamin Scherne not nelaûed to Zero-knowledge

The foilowing observations were made by Desmedt, Goutier, and Bengio [DGB] in

relation to the identifrcations schemes presented above. In the Fiat-Shamir protocol the

applicant's physical description is used as part of the su'ing / to be used as an input to some

.c__-^-:^- r rf ^--^-- ¿:*^ rr^----r^ .ll^-¡.1¿-. :^ -.^-:¡:^J L^- ^-^^:^l ^4-:-- r:^uiltt-way luilçtruil J. tr çvçry trrrlc rçËËy ù rugllrrry lù vçllrltttr, rrçr ùPçv¡4r ùurrrË r tù
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adequately tested, meaning that the verification of the physical description (which is

assumed to be unique) is always done by the verifier with l@Vo accuracy, then the security

of the protocol is not based on zero-knowledge. This is because her s;'s are of no use to

some other party whose physical description will be tested to reveal some other 1' which

corresponds to different JJ- . The main security feature is therefore the fact that physical

description is unique and tested adequately.

In the Feige-Fiat-Shamt scheme, however, the physical description of the applicant is no

longer part of the scheme. If we assume that physical description is not unique or is not

adequately tested some other frauds are still possible one of which we proceed to describe.

$6.3.4 T'he Mafia Fraud

This has been dubbed the "mafia" fraud because of a statement by Shamir in reference to

his identification scheme to the effect that "I can go to a Mafia-owned store a million

successive times and they still will not be able to misrepresent themselves as me". The

fraud works as follows.

A customer A is buying groceries at a market whose owrìer B is a member of the Mafia. At

the same time a¡rother member C of the same gang is negotiating the purchase of diamonds

in a jewelry store owned by D. C is linked to B via a secret radio link and C's

identification ca¡d is linked via a full duplex radio channel to B's verification device. At the

moment A is ready to pay, B informs his gang partner C of this fact. At this point C makes

his choice of diamonds and D proceeds to check C's identity. However, C's catd is linked

to B's verification device and the jeweler is in fact verifying A's identity who gets stuck

with a bill for diamonds he never purchased.

$6.3.5 T'he Sublin-¡ínal Channel

We now show how the verifier can communicate information in a subliminal way to either

the prover or an eavesdropper. A subliminal protocol is one in which it is possible to
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"hide" another protocol. For example, in the scheme presented above the verifier can

communicate a message M in a subliminal way to the smart card holder or to an

eavesdropper as follows. Instead of choosing the challenge vectors e randomly, he lets

them correspond to the encrypted message En(M) using a secret or public key system.

When the verifier issues the challenge a secret message is thus transmitted to the card

holder. If the message is , instead, directed at an eavesdropper, the prover will still not be

able to predict the bits coresponding to e and hence she is tested with the same degree of

accuracy. Thus if banks were to use the FiaçShamir protæol, a dishonest clerk could relay

confidential information in a completely undetectable way to eavesdropping members every

time a customer uses her card . The discussion on subliminal channels is outside the scope

of this work and interested readers are referred to [DBG].

$6.4 lmproving the Fiat-Shamir Scheme

In the previous sections we presented some of the frauds possible with the Fiat-Shamir

identification scheme; thus, such schemes although appearing secure on the surface should

be used with caution. As we have seen the [FiS] scheme is such that the probability of

undetected cheating is 2-kt where k refers to the number of secret square roots stored and r

is the number of rounds of the protocol. For example to attain a security level of 2-20 Qk =

20), when we reduce the number of interactions to f = I we must store k = 20 secret

integers. Conversely, if we reduce the number of stored integers to k = 1 we must increase

the number of interactions to t = 20. Thus there is a tradeoff between number of

transmissions and memory size so that the efficient parameter values t =k = I cannot be

used. This problem has been addressed in [GQl,GQ2 and OO]. We present the scheme

due to [GQl,GQ2].
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$6.4.1 T'he Guillou-Quisquaten Au¡Út¡e¡rticatüorn Scherme IGQII

This scheme achieves the optimal parameters t = k = 1 at the cost of longer computations.

As before the center owns a public composite modulus n whose factors are kept secret.

For each smaft ca¡d with identiry / the cenær prduces some,I such that J = F(l) where F is

a redundancy function .The value ,I produced by F, called the shadowed identiry of the

device, is a number as large as n. Half of its bits consist of the claimed identity 1 while the

remaining half is completed by a redundancy which depends on the value of /. Each device

then holds an authentication number B such that

Bv.I= l mod n

where v is a public exponent. Note that it is important that the factors of n as well as v be

chosen carefully to ensure that B can always be extracted from -I.

Whenever the card is inserted in the verification device, the following protocol is executed

exactly once. 
+

1. The card chooses a random integer r e 4 and computes

T=rvmodn.

and sends T to the verifier.

2. The verifier picks a random value d e {0,1,...v - 1} and sends d to the prover as

his challenge.

3. The prover computes a witness r as follows

t =rBd mod n.

4. The verifier checks that the following condition holds

FvLrmdn
If the above condition holds then the card is validated.

Note that if both parties follow the protocol then

Jd f = ¡d çrB|v mod n
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: ("f nu¡d rv mú n

: rv mod n since J Bv:1 mod n.

A device knowing the authentication number B can easily answer any challenge. If the

cheating prover is able to guess in advance the question d then she could easily prepare the

set of integers r and T that would pass the verifier's test. [GQ1] show that knowing two

witnesses tl and 12 corresponding to rwo different challenges dl and dz for the same test

number T gives significant (and generally total) knowledge abut the authentication number

B. Thus any cheater is able to produce in advance at most one witness number and by

guessing the correct challenge d has probability at rno* f of fooling the verifier. Thus by

fixing the size of v to achieve the desired level of security the need for several iterations of

the protocol is eliminated. Using Ali Baba's cave as an analogy, this would correspond to

a cave with v passages as opposed to 2.

$6.4.2 Cooperation between Ðevices tGQzl

There are 2 vanations of this scenario. In the first case users with different identities can

cooperate in a way that will make them look like a new user. In the second case the secret

is partitioned among distinct devices sharing the same identity. In both cases cooperating

parries reveal no information about their secret authentication numbers B.

$6.4.2.1 Same Exponent, Ðifferent ndentities tGQzl

Consider 2 security devices, each storing its unique authentication number B1 and B2

related to thei¡ identities Il and 12 in the following way

Burll= l mod

Burt2= 1 mod

where Jl=F(ll)

where Jz = F(IZ)

n

n

The 2 devices now cooperate via a personal computer and negotiate an authentication

transaction with the verifier according to the following protocol.
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1a. Devtcell chooses ara¡rdom 11e Znand computes

T1 = iI mod n.

and sends Ti and 1r to the PC. 
*

1b. Device /2 chooses a random 12 e Z, and computes

T7 = ri mod n.

and sends T1 and 12 to the PC.

2. The PC computes a coñrmon test number T as

T :TtTz md n

= (r1 r2)v mod n

= rv mod n where r = rI 12

and sends 11, 12 and T to the verifier.

3. The verifîer picks a random value d e {O,L,...v - 1} and sends d to both devices as

his challenge.

4a. Device /7 computes a witness ry as

t1 =r1ïd, mod n

and sends ft and r.¡ to the PC.

4b. Device 12 computes a witness f2 as

t2 =r2Bl, mdn

and sends 12.and 12 to the PC.

5. The PC computes a common witness number r as follows

t =tlt2 mdn

=(r1Bd,> frz B1) md n

= (r1 12) (Bt9zld mc^C n.
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and sends r to the veriñer.

6. The verifier checks that the following condition holds

fiÍrt'Z r

Note ttrat if all parties carry out their share of the protocol then

44n =.f,.f, lØBdt¡ çr2 ø|il'

= (J 1Bu, )d (lz r,Ðd Øt rz)u mod n

z rv = T mod n as required.

Note that this protocol can easily be extended to include any number of cooperating users.

ç6.4.2.2 Same Xdentity, Ðifferent Exponents [GQz]

In this case each of the two devices stores its unique authentication number B1 and B2 such

thatboth are related to the coûtmon identity 1as

JBit: l mod n andJBu;= 1 mod¿ where J=F(l)

The protocol allows two cooperating devices to simulate another device with entity l and

exponent v = rI v2 (assuming that v7 and v2 arc relatively prime) where

Bv J = 1 mod n where B1= Bv2 mod n and 82= Bu1 mod n

As previously the two devices are cooperating via a PC and negotiate an authentication

transaction with the verifier according to the following protocol.

7a. Device 1 picls a random r1 e z) and computes

ft=,Ï' modn

and sends T1 and / to the PC.
+

la. Device 2 picks a random 12e Zn and computes
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mod n

and sends T2 and 1 to the PC.

The PC computes a common test number T as

r =r!2 rll mod n

= (r1 r2)vi u2 mod n

= (r1r2)v mod n

:v9 mdn

and sends T and.I to the verifier.

The verifîerpicks arandom value de {0,1,...v - 1} and sends dtothe PC who

computes two questions d7 and d2 such that

dl = d/vz mod v7 and dZ= dlvl modv2

which are sent to devices 1 and2 respectively.

Device /.¡ computes a witness f7 as

t1= rlUd/ mod n

and sends I and tl to the PC.

Device 12 computes a witness 12 as

q =12B! modn

and sends I and t2 to the PC.

The PC computes the common witness r as

t = rBdlv2 + dzv| mod n.

5. The verifier then checks that the following condition holds

¡dtvZ + AZrt tu ZT md ¿

If the above condition holds the transaction is validated.

It is clea¡ that the protocol can be extended to include arbitrarily many users. Note that

cooperation protocols can be used to solve the problem of subliminal channels. It suffices

)

-̂1 .

4a.

4b.
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to have one of the cooperating devices act as a trusted warden whose purpose is to act as a

go-between. This effectively destroys any messages that might be transmitted from the

verifier to the prover.

$6.4.3 NIZK and ndentifTcatÍon Schen'res

In this setting, proposed by Bellare and Goldwasser [BG], a central authority needs to

generate unique unforgeable ID's for its users. Any user should be able to present their ID

in numerous, geographicatly distribuæd local stations which should be able to validate the

ID's. læt F¿ = { /5 : lsl = k l, for some security par¿Lmeter È, denote a collection of pseudo-

random functions such that no probabilistic polynomial-time algorithm can distinguish a

member/, from a truly random function. A previous non-interactive ID scheme has been

to select a random index s and to use the user's name and other related information as input

to the function/s to create the ID. A drawback of such a system is that all remote stations

need to store and keep secret the index s to the random function. Wé can get around this

difficulty by using the following scheme based on NIZK proofs.

In this scheme only the center possesses the secret index ,r to the pseudo-random function.

The center picks a random value r and computes cr = E(r,s) where E is a public encryption

function, and publishes in a public file the pair @,ø). When a user U applies for an ID,

the center computes I =/s(U) and issues a card to U containing I as well as a NIZK proof

of the following statement

T = fsirlcr = E(r,s) and I =/s(U)]

denoted NIZKp(T). where p is the common random string used to generate the NIZK

proof. In this manner the local centers no longer need to store any special information.

Whenever a user U wishes to authenticate himself he simply shows the center I and the

NIZK proof of the above statement which convinces the center that the user possesses a

legal ID number.
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$6.5 Sigreaúu.une Sche¡¡res

A signature scheme is one by which Peggy can prove to Vic that she is Peggy but Vic

cannor prove even to himself that he is Peggy. The difference between identihcation and

signature schemes can be seen when we are considering interactive protocols. In

identification schemes Vic could create a credible transcript by carefully selecting both

questions and answers in the dialog whereas in signature schemes only real communication

with Peggy could generate a credible transcript. We can illustrate this by considering the

Mafia fraud described above. When we were using an identification scheme it was

possible for a gang member to pass himself off as another user in a real-time fraud. A

signature scheme solves this problem by linking user identity and transaction puqpose in a

unique transaction. The fraud then no longer works as two distinct transactions are being

negotiated.

$6.5.1 The Fiat-Shanrir Signature Scheme [FiS]

In the identification scheme of $6.3.1 the role of the verifier was to send vectors €¡ =

(e¡1,e¡2,...,e¿) whose unpredictability prevented the prover from cheating. By replacing

the random vectors by a pseudo-random function/we can ü'ansform the identification

scheme into a signature scheme by which Peggy signs a message rn .

Frotocotr for Feggy's signing a ¡Tlessage tn

1a. Peggy picks random r1,e,...,t¡ e [0,1,...,n-1] and computes

xi= 4 mod n (í= I,2...,t)

She then computes l(m¿1,x2,...¡¡) and uses the flust &r bits as the e¡ vectors to

compute
mod n for i= I to r.

1b.

yi = ri fls¡
eij=t

and sends I, m, the ei vectors and the y¿'s to the verifier.
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Fnoúocol f'or Vic to venify .&'s sigmaúrrre om vra.

2a. Vic compu tes v¡ = f(l ¡) for j = 1 to k and

zí=!2i llvj
eil= t

mdnfori=itor

2b. He then verifies that the first kr bits of/(rrr,21,22,...,2p) correspond to the ei vectors

and if so, accepts the signature as valid.

Although the above scheme is not zero-knowledge, [FiS] show that the information about

the secret square roots obtained by Vic from various signatures is not enough to be of any

use in forging new signatures.

$6.5.2 NtrUK and Signature Schemes [BG]

'We now present a signature scheme using non-interactive zero-knowledge protocols. We

use rhe same notation as $6.4.3. Consider Peggy's attempt to sign a message m. If p is a

public random string, then for some security parameter &, a randomly chosen index s to the

family of pseudo'random functions Fpand c = E(r,s), Peggy's public file PKpsggy is then

{E,cr,p) and her secret file is {r,s}.

Fnotoco! to sigm rn

1. Peggy computes c =ft(m).

2. Peggy uses the conìmon random string to produce a NIZK proof, NIZKp(Ð where

T is the foliowing statement

T = fslrlcr = E(r,s) and c =fs(m)]

J. Peggy sends c, m and NIZKpCI) to the verifier as the signature of rn.

In this case anyone who has access to Peggy's public file can verify that the signature is

indeed valid by checking the validity of the NIZK proof. If the proof is valid then the

verifier is convinced that the signature was indeed produced by Peggy.
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$6.6 Müscellaneous Notes

Other applications of zero-knowledge are given in the literature. For example Chaum and

van Anfwerpen [CV] have introduced the notion of undeníable signatures which uniike

digital signatures can only be verified with the signer's cooperation. Other areas of

application have been proposed such as in the implementation of electronic currency

tCFNl. In the above sections some of the more significant and practical applications of

zero-knowledge to crypto$aphy have been presented.
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Couaaåu'ssåøxa

In this thesis we have attempted to describe the principles of interactive proofs and zero-

knowledge as well as give a broad view of the more important results arising from their

study. Originally intended to solve a specific problem, interactive proofs have spilled over

to other fields and given rise to new ones such as interactive complexity.

Interactive proofs are an extension of the classical NP notion of eff,rcient provability,

where non-determinism is enhanced by introducing two new features: randomness (the

verifier is allowed to toss coins) and interaction (the prover and the verifier exchange a

polynomial number of messages). The added power conferred by these new features has

been demonstrated: for example, the gtaph non-isomorphism problem, although not known

to be in NP nonetheless possesses an interactive proof system.

Zero-knowledge proofs have proved to be useful both in cryptography and complexity

theory. On a theoretical level, results of Forurow B] have provided an avenue for deciding

whether or not certain languages belong in NP. For example, one way to show that a

language L (for which no efficient algorithm is known) in not NP-complete is to exhibit a

perfect zero-knowledge proof for it. In cryptogaphy, we have seen some of the numerous

possible applications of zero-knowledge. However, most of the results obtained have

required either unproven complexity assumptions or an unbounded number of exchanged

messages. For example, the assumption that one-way functions exist, although a weak

one, has been used extensively. From a cryptogüphic point of view most of the currently

known one-way functions are almost exclusively based on number theory such as integer

factorization and discrete logarithms. If these were found to be efficiently solvable the

consequences would be disastrous for many of the results presented throughout this thesis.

Consequently is it important that alternate models be developed where intractability

assumptions are eliminated. One model which achieves this result was proposed by Ben-

Or, Goldwasser, Killian, and Widgerson [BGKWI] which we now describe briefly.
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Their multi-prover interactive proof system is an extension of the one-prover interactive

proof system. Instead of one prover attempting to convince the verifier that x e L, the

prover is replaced by two separate provers who jointly agree on a strategy by which to

convince the verifier that the statement is true. The provers are allowed to agree on a

strategy before the start of the protocol with the verifier but once this interaction starts the

provers can no longer talk to each other nor can they see the messages exchanged between

the verifier and the other prover. Using this mdel, Ben-ûr et al. [BGKW2] have shown

perfect zero-knowledge protocols for all languages in NP without using any intractability

assumptions. In their protocol the two provers share a common random string. The

responsibility for proving the assertion rests mainly with one of the provers while the main

role of the other prover is limited to periodically oupuning portions of the random string he

shares with the other prover. In effect, the verifier checks his communication with the

provers by playing them against each other. This means that if one of the provers is

cheating the verifier will catch her by asking the other prover what the valid response

should have been. By repeating this process randomly, the verifier ensures that the provers

cannot cheat. Note that in order for the verifier to believe the validiry of the proof, it is his

responsibility to ensure that the provers cannot communicate with each other while the

proof is taking place. However, even if this condition does not hold the interaction is still

zero-knowledge. In a cryptographic setting one can consider the verifier to be a bank

which issues two cards (the provers) to its users. Even more interestingly, the interactive

proofs based on the two-prover model remain zero-knowledge even when the rounds are

executed in parallel.

As we have seen in Chapter 4, the securiry of zero-knowledge protocols relied on the

security of the bit commitment schemes being used and these required typically complex

operations to implement. Using the two'prover model bit comminnent can be considerably

simplif,red and we next describe how this is done.
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Let the two provers be denoted Ft and P2 and the verifier as V. In this model P1 and P2

share a common random string CRS = r7,...,rk where r; e {0, I,2l and ft is the number

of bits that can be committed to using the CRS which we assume is polynomially bounded.

The following functions are known to all parties involved. Let o6 denote the identity

funcrion, or(0) = 0, ol(1) -- 2 and or(2) = l. Let r; denote the ith bit of the CRS. In

order to commit to some bit å where å is thelh bit being committed to, Pl and V execute

the following protæol

1. V generates a random bit c e {0, 1} and sends c to P1.

2. P1 computes v¡ = oc(r) + å mod 3 and sends v; to V.

3. V stores Ç, c,v¡).

In order to reveal the jth bit å the following is executed

1. P2 sends r; to V who can then compute b as

b =vj - or(r,,) mod 3.

Using the above bit commitment scheme Ben-Or et al.l BGKW2I have built an

identification scheme that is considerably more computationally efficient that the ones based

on the one prover model since the complex operations required for bit commitment are now

replaced by simple additions modulo 3.

Several aspects of interactive proofs, both theoreticai and practical, remain to be

investigated. The introduction of non-interactive zero-knowledge proofs has eliminated the

need for interaction as well as the need for secrecy of the random bits exchanged between

prover and verifier. 
_ 
Although randomness appears to be an essential feature of interactive

proofs, only recently have researchers turned their attention to the number of random bits

required during the course of such proofs (e.g. [BGG]), and much work remains to be

done. In the one-prover model, Bellare, Micali and Ostrovsky [BMO] have found

constant-round perfectly zero-knowledge protocols for graph isomorphism and quadratic

residuosity whích do not rely on complexiry assurnptíons. It would be interesting to find
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such protocols for other languages which ultimately lead to a class of such languages

whose structure could then be studied. Also, as we have seen, different models for

interactive and zero-knowledge protocols have been proposed. It would be desirable to

classify these different models in terms of to which cr)¡ptographic applications each model

is best suited. In view of the increasing proliferation of networks, the secure transmission

of information across possibly insecure channels will likely become a major problem. As

we have seen, zero-knowledge and witness-indistinguishable protocols can help alleviate

these problems. It would therefore seem important that these techniques be implemented

either as standalone schemes or that they be incorporated into existing schemes. With the

implementation of such systems the passage of zero-knowledge to the mainstream of

cryptogaphy will be complete.
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Cnyptognap&aic Capsules

Cryptographic capsules, a tool invented by Cohen [Co] have proven to be quite usefui in

zero-knowledge protocols. Informally, a cryptoglaphic capsule is a randomly ordered

collection of objects each of which is of a specified form. The purpose of the random

ordering is to hide the form of the various objects involved. The main feature of capsules

is that they allow a prover to convince a verifier, in an interactive manner that a capsule is

of a specif,red form without revealing anything about its contents.

In their application most relevant to this thesis, [Co] has shown that it is possible to

demonstrate that two integers belong to the same residue class without reveaiing any

information about which class it is. We will need the following dehnitions.

Ðefinition: Given integers n and y, y is said to be an rth residue mod n if there exists

some integer x such that

!=xrmodn.

We can now define residue classes.

T'heorem l[Co]: læt 0(n) denote Euler's totient function. Let n and r be defined such that

rl$(n) and Pl þ(n). If (y,n) = 1 and y is not an rth residue mod n, then for every w such

that (w,n) = l, w can be expressed as

w=aryimodn,0<¿<r

for some integerx.

We call i the residue class index of w with respect to n,y, and r. All elements which have

the same residue class index w.Í.t. n,y, and r a¡e said to belong to the same residue class.

Froof. A proof of the above statement does not appear in [Co] and we will first show

that the theorem does not hold in general. Indeed, consider the following counter-example

to Theorem 1"
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**
LetZn= {x I (x,n) = 1 and 1<x< n-11. Znforms a group under the operation of

multiplication modulo n. L-etrlQ(r¿) w*here 0(n) is the order of the goup.

Considernow the SetH = {xrlxe Znl.Clearly,His a subgroup otZi .

-r- ùô+
If we Z'n,thenwelF,g wherege Zn. Thusif w=xryi modn thenw e Hyi. We

will show that this is false for the case where n =77 and r = 15 and S(n) = 6x10 = 60.

In building the set H is suffices to consider those elements from I to n that are relatively

prime to n as foilows

Ç = {1,2,3,4,5,6,8,9,10,12,73,I5,76,17 ,78,19,20,22,23,24,25,26,27 ,29,30,3I,32,

34,36,37 ,38,... ).

We build H by raising the above elements of C to the power of r = 15 mod n =77. If we

do this for all elements of C, we find that only the following four elements a¡e in H

H = {1,43,34,761.

We now select some y such that y is not an rrh residue i.e. y êH. Iæt y = 65 and build the

cosets Hyi for different values of i.

Casej=0. H ={1,43,34,76J

Casei= 1. H65 = {65,23,54,121

Case i = 2. H652 =IFr67 since 652 = 67 mod77

= {67,32,45,10}

Case i = 3. H653 =IH43 since 653 =43mod77

= {43,1,76,34} = ¡1

Therefore H'= H u H65 u H67 are the only elements that can be expressed as v/ = fl565i

mod 77. If we now consider the integer 5 ø H' and (5,77) = 1, we find that 5 e H'and

hence cannot be expressed ut r1565i which disproves the theorem.ü

As mentioned before we now reformulate Theorem 1 to read as follows.
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T'heone¡m X.* : I.et Q(n) denote Euler's totient function. I.et n and r be defined such that

rlo(n), flXþ@) and r js príme. If Q,n) = I and y is not an rth residue mod n, then for every

w such that (w,n) = 1, w can be expressed as

w=x'yimodn,0<í<r

for some integer x.

Before proving the above theorem, we will need the following lemma-

Lenrma n. Given the sets Zf,and,H = [x' I x e Zi], we will show that lHl = ry

Froof. Let xr: yr mod n where x *y. By Sylow's Theorem, there exists w such that

wr = L mod n, w = x!-I mod z and w #1 mod n.

Then the set C¿ = {7,w,w2,...,wr-l } is a subgroup of Zi otorder r. Let S .Z; and the

{<

group Zn can be expressed as a sum of cosets

*z = \J^os
n 86J

If we definr nf) = {xr lx e Qg} then H can be expressed as

f{ = U_ o(t)
ce s g

Now, if x e Ç)g then

x : wig mod r¿

yr 3y¡irgr mod n

= gr mod n since yd: 1 mod n

and

r{ = \J^ {gt}ge ù

so rhar tHt = tSt = $ .o

We can now go on to prove the main theorem.
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Fnoof (T'heorern l*¡. Let Te Zn sothat yæìH(i.e.yisnotanrthresiduemodn). It

is obvious that f e H. Let r be the least positive integer such that

t'e H and let r = Qt+ s, 0(s < r.

Now, 1Ø.toteH,

but t'e H+1'4te}l,

hence, f Yt e H =r f e H which is a contradiction since ourinitial condition is that ris

the minimal value for which the above holds. Note that s = 0 + t I r + r= r, since r is

prime.

Consider now the following distinct cosets

H, Hy, Ijry2,...,Hyr'1.

There a¡e r such cosets each containing I (lemma 1) for a total of Q(n) elements which

is the exact order of {. tnu, any w . z) canbe expressed as

w=xrimodn.E

The following lemma on cryptogaphic capsules due to [Co] then holds.

I-emma 2. Two integers rJ and x2 such that (xl,n) = (x2,n) = 1 belong to the same

residue class with respect ro n, y, and r iff there exists some integer v such that

vr -Umod ¿.
x2

Thus to show that 2 integers are of the same residue class, one only needs to exhibit an rth

root of their quotient.
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Appemdüx ts

In this appendix we will def,rne Legendre and Jacobi symbols and give some of thei¡ well-

known properties. We will then use those to prove some important results as promised in

$3.9.3.

l-egendne and "Facobi Symbols

Consider a prime p > 2 and, an integer ¿ such thatp{a. Then, by Fermat's theorem aP-I = 1

mod p. Thus,

(o'o')'t -t)(o@-I)t2 *rr= o modp.

If a e QRo, then ,1oþ-1)12 -1by the following argument. Since a e QRo, there exists an

integer x, such that x2 = c mod p. Therefore,

oØ-l)t2^ru, =lpl( 
P - I ) /' 

^*d 
p

p-I
= x modp

(r 
: I mod,

and ae QRp if plo"'-I)t2 *1.

When p is prime we have three possibilities.

1. pla.
(o-1)12

2.a" -l modp =+ae QRo.
(o-1)12

3. a" --l modp +ae QRp.

We define the Lægendre symbol [:-l tt follows:' Lp_t

1. [ql = o if nta.
L_p )

z.lt = 1 if ae QRp.
L_p l

3.1:1 = -1 irae eR.
L.PJ

we see *" [Í-] = o@-')''^.dp.
L.PJ

We will now list some well-known properties of Legendre symbols.

1. [3] = l9-l tt a=bmodp.Lp) Lpl
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, wl = l;ll3)
3.[¿l = 1

t-p_t

Al?1 = lí1 P:+t*odBl,*' l_p) -t if p:+3 mod 8 J

t 
[Ë] bq = -rØ-I)tzx(Q-')''*h"r"p,qareprime.

The last property is known as the law of quadratic reciprocity 
k

The Jacobi symbol of some integer a md l/ of the form 
" 

= å-åoít lfor p; prime) is
i=1

defined as
k

("')= ATL"J"

where 
b"-l 

tt the corresponding Legendre symbol.

For any equation a = f, mod n =pq (p,qprime) it can be shown that ahas 4 roots given by

x, n - x,!, n - ! [De]. We can now prove the following lemma-

Lemrna. Given n¡,y and a as defined above, we show that GCD(x*1,ft) = p or q, where

GCD refers to Greatest Common Divisor.

Froof. Since x and y are roots we have

x2 =y2= a mod n.

Then x2=y2modp <+ plx2-f ëpLr-yorpu+y.

and fr=y2modq €) qLú-y2 ëqk-yorqlx+y.

Case 1. If plx - y and qLr - y, PQ = nlx - y.

But 0 < xJ < n + -n < x. - Y < ¿, therefore

X-y=0orx=1l.

Case 2. If plx + y and qLt + y, PQ = nlx + y.
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But 0 < xJ < n + 0 < x - y <2n, thercfore

X*y=nOÍX=t¡-j.

Case 3. If plx - y, p {x+y, and qlx + y, q {x- y . (Without loss of generality or else we

simply exchange p and q). Then, qLr + y and qln =r qIGCD(x + y,n).

Letd=GCD(; +y,n) andletåbe such that d=bq. Thenbldl(n=pq). Weidentify the

following subcases.

l.b= n. Then, plbldlx +y,whichis acontradiction.

2. b =p. As above by the same argument.

3. b = q. Then, bqln =pq + p = q which is contradiction.

4. b = 1. Then, Q = d= GCD(x +y, n).

By a similar argument we can show thatp = GCD(x - y, n).Q

Theorern. Given x, J, e, and n = pQ 4s defined above, where p = q: 3 mod 4, if one

can extract 2 square roots of a = x2 mod n with different Jacobi symbols, then one can

factor n.

Froof. As mentioned before, a has 4 square rootsx, tr-x,y,n -y. Let the Jacobi

symbol of t, lll = s where s e {1, -1}. Then,' '\n)
(f-:-¿\ = f¿lI n ) - [,J

= l/l êl (By properry 2 of l-e,gendre symbols)
l, )V)
[-ll l--ll ør
LPJLø)ln)

= -1 x-l xs sincep=q=3mod4where

[+l = -r@-1)t2 ^^P = -land
Lp)

[+l= -r@-1)t2^*Q =-r.
Lq _l

= .t.
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Therefore, x and n - xhave the same Jacobi syinbol. But we know that haif of the roots of

ø must have Jacobi symbol -s. Hence, y and /, - y must have precisely Jacobi symbol -s.

But f¡om the above lemma, knowing one of {x, n - x} (Jacobi symbol s) and one of {y, n -

y] (Jacobi symbol -s) enables one to factor n by obtaining one of p or 4 = GCD(-r + y, n).

Therefore, obtaining two square roots with different Jacobi symbols enables one to factor n

as stated.ü
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