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The subject of the present research is to investigate, model and solve the problems of Lot

Sizing and Distribution Inventory Management when the available data is given in the

form of fuzzy numbers. Subject to a variety of assumptions, main contribution of this

thesis is included in Chapters 3 to 5.

Chapters i and 2 provide introduction and literature survey, respectively, related

to the problems considered in the thesis. Chapter 3 deals with the distribution inventory

management problem with variable demand rate and both without and with backorders,

under fiizzy information. Similarly, Chapters 4 and 5 consider the lot sizing inventory

problem under variable demand rate and both without and with backorders, respectively,

under fuzzy information with a finite planning horizon. Finally, the conclusion and the

discussion on the contributions made in the thesis, along with some recommendations for

further research, are given in Chapter 6.
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The present thesis deals with the analysis and modeling of two important problems of lot

sizing and distribution inventory management in afuzzy environment.

Lot Sizing is a significant aspect of Materials Requirement Planning (MRP) production

planning process. Although its perceived importance has declined as a result of system

development, wide spread Just in Time (JIT) orientations and development of satisfactory

heuristics, lot sizing is still a major component of a balanced MRP operation.

After a product is manufactured, the emphasis of an organization shifts towards

distributing the good at a reasonable cost to establish or maintain a competitive

advantage. Distribution Requirements Planning (DRP) helps achieving this objective by

effectively managing the required flow of goods and inventories between a firm and a

market. It provides planners with the visibility of future requirement and substantially

reduces unexpected demands. DRP also provides the basis for managing logistic system.

The present study is motivated by the realization that data for these problems normally

exists in an ambiguous (vague or imprecise) form. Therefore, it is natural to deal with

such problems through fuzzy systems. Under such circumstances, using the fuzzy

approach yields a relatively "more satisfactory and flexible solution". The fuzzy

numbets, for example can be obtained from experts who, instead of one but possibly

forecasted estimate, provide three or four imprecise (vague) estimates of some important

parameters involved. We suggest that, under such circumstances, the related problem

may be handled using special type of fuzzy numbers (for example, triangle fuzzy

Chapter 1

TNTRODUCTION
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numbers or trapezoi dal fuzzy numbers). The approach used in the present thesis is a small

step in this direction.

Under fuzzy information, we consider inventory problem with variable demand rate and a

finite-planning horizon, and solve it using Wagner-Whittin algorithm. Also, an attempt is

made to model the problem by incorporating back orders. Furthermore, the distribution

inventory management problem with fuzzy information is presented using DRP

approach.

We now give a brief introduction to these problems.

1.1 Lot Sizing

1.1.1 Basic fnventory Concepts

L lnventory

Inventory includes all those goods and materials that are used in the production and

distribution process. Raw materials, component parts, subassemblies, and finished parts

are all part of inventory, as are the various supplies required in the production and

distribution process. Good inventory management is important to all firms, whether

manufacturing or service. Four reasons for its importance are:

.Inventories can be a major commitment of monetary resources.

.lnventories affect virtually every aspect ofdaily operations.

.Inventories can be a major competitive weapon.

.lnventories are the major control problem in many companies.

These are shipped as end items to customers and may be finished goods or spare/repair

parts. Demand is market-based, and is independent of the demand for other items.

Independent Demand Items



These are used in the production of a finished product. Such items may be raw materials,

component parts or subassemblies. Demand is based on the number needed in each

higher-level (parent) item where the part is used. Dependent demand items are frequently

managed by certain inventory replenishment systems such as MRP or JIT systems.

Dependent Demand Items

1.1.2 Purpose Of Inventories

Some of the major reasons for holding inventories are:

I Decouple demand from immediate dependence on the source of supply.

2 Service customer with variable demands.

3 Serve as a shock absorber between successive stages in operations.

4 Help level production activities, stabilize employment, and improve labor

relations.

5 Provide a means of obtaining and handling materials in economic lot sizes and of

gaining discounts.

6 Facilitate the production of different products on the same facilities.

1.1.3 Methods for Measurement of Inventory

There are three accounting categories, or types, ofinventories:

o Raw materials

o Vy'ork in process

o Finished goods

There are at least three methods for measuring inventory
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Aggregate inventory value (average or maximum) gives answer to the question

of HOW MUCH is the stock of inventory?

Weeks of supply (or other time unit) provide answer to the question of HOW

LONG will inventory last?

Inventory turnover or turns (ratio of sales to inventory) gives answer to the

question of HOW MANY times inventory is sold?

1.

2.

a

1.1.4 The Objectives of Inventory Management

The primary function of inventory management is to have items available to maintain

flow of goods through the production process to the customer while minimizing

investment required achieving this purpose.

An organization's Inventory Management System must carry out objectives set by upper

management and must perform in such a way that the organization's profit or

performance is enhanced. The objectives set by management will frequently fall into

either of two categories:

customer service objectives, and

inventory investment obj ectives.

The first category includes such concepts as service level and stock-out rate, and the

second category includes such items as number of inventory tumovers per time period.

Generally, the achievement of higher levels of customer service, however defined, is

accomplished with larger amounts of inventory, and is subject to diminishing returns. The

achievement of higher levels of the investment objectives is generally met with smaller

inventories. Thus, we see the basic conflict of inventory management: some objectives

call for economizing on inventory levels, while other objectives call for increasing

inventories. These objectives may create conflict along departmental lines: finance wants

the

the
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smaller sums tied up in inventory, while marketing wants larger amounts so that customer

orders can be more promptly satisfied.

1.1.5 Functional Classifications of Inventories

Anticipation inventories are additional inventories that are either produced or purchased

in anticipation of infrequent events, such as vacations shutdowns, strikes, peak sales

periods, and sales promotions. Hedge inventory is a special type of anticipation

inventory, which is built or produced to take advantage of present costs or to avoid

anticipated substantial price increases. Ideally, anticipation inventory should consist of

items that have high labor content and a low material content.

Anticipation Inventories

Lot sizing is the purchasing or producing items in large enough lots to take advantage

of cost efficiencies, quantity discounts, learning curves, scale economies, etc.

Lot Sizing Inventory

These are carried to absorb the variations in demand and lead-time because it is not

realistic in most cases to expect the demand for products to be perfectly predictable.

Fluctuation inventories are also know as safety stock. They enable an organization to

service its customers when the demand for that service is above average or when delivery

of replenishment stocks takes longer than usual.

Fluctuation Inventories

Items in movement from one stage to the next are called transportation inventories. They

are also referred to as pipeline inventory. This is a type of inventory often neglected.

Transportation Inventories
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Such inventories are important since they do reflect moneys tied up for periods of time,

and hence do incur inventory-holding costs.

These are the items carried in inventory as replacement parts for operating equipment or

other needs.

Service Parts

1.f.6 Classification of fnventory Models

There are several ways of classifying the inventory models. Some of the attributes useful

in distinguishing between various inventory models are given in this section (Gi11,1992).

I Number of Items

o Single Item - This type of model recognizes one type of product at a time. If the

demand rate changes from period to period, and then the problem becomes that of

a dynamic lot-sizing problem.

o Multi Item - This type of model considers a number of products simultaneously.

These products must have at least one interrelating or binding factor such as

budget or capacity constraint or a common setup.

Stocking Points

. Single Echelon Models - Only one stocking location is considered.

o Multi Echelon Models - More than one interconnected stocking locations are

considered.

Frequency of Review

This is the frequency of assessment of the current stock position of the system and the

implementation of the ordering decision.



o Periodic - Placement of orders is done at discrete points in time, with a given

periodicity.

o Continuous - Order placement can occur at any time.

Order Quantity

. Fixed - Order quantity is fixed to the same amount each time.

¡ Variable - Order quantity can be variable.

Planning Horizon

Finite - Demands are recognized over a limited number of periods.

Inhnite - Demands are recognized over an unlimited number of periods.

Demand6

o Deterministic - Demands are known with certainty over the planning horizon.

a) Static - Demand rate is constant over every period.

b) Dynamic - Demand rate is not necessarily constant.

. Stochastic (Probabilistic) - Demand is unknown, and must be estimated. The

demand probability distribution may be known or unknown.

The emphasis in the present thesis is to deal with an inventory lot size problem

with ambiguous or imprecisely known demand.

7 Lead Time

Zero - No time elapses between placement and receipt of orders.

Non-Zero - Significant time elapses between the placement and receipt of orders.

This time may be constant or random.

Capacify

o Capacitated - There are capacity restrictions on the amount produced or ordered.



Un-capacitated - Capacity is assumed to be unlimited.

Unsatisfied Demand

Not allowed - In this case, all demand is met and no shortages are allowed.

Allowed - Demand not satisfied in a particular period may be retained and

satisfied in a future period (backlogging), partially retained and partially lost or

completely lost (no backlogging).

1.1.7 Lot Size Inventory Problem

Most of the inventory situations need answers to the following two basic questions:

o when to order (the reorder point) and,

o how much to order (the lot size).

Answers to above questions can be found out by using the Classical Economic Order

Quantity Model (EOQ Model), when the demand rate is constant over time. But when the

demand rate varies over time, i.e. not necessarily constant from one period to another, the

associated problem of planning is a bit more challenging and is said to be dynamic in

nature. The problem considered for this study is uncapacitated single item lot sizing

problem with dynamic demand.

1.2 DistributionfnventoryManagement

1.2.1 Distribution fnventory Management Systems

The objective of distribution inventory management is to have inventory in the right

place at the right time at reasonable cost. In brief, the objective is to achieve a desired



level of customer service at or

Management systems can be divided

o Pull System

o Push System

Pull System

In a pull system, inventory is pulled into the warehouse. The warehouse determines its

requirements and orders from the factory. The standard pull system orders without regard

for the needs of other warehouses, the inventory available at the central warehouse, or the

production schedule. Five types of traditional pull systems are (Fogarty 1991)

9

below a specified cost. Distribution Inventory

into two categories.

In the order point system, the branch warehouse establishes a order point based on

the normal demand during the average time required to obtain the order from the central

warehouse plus the safety stock. The order is placed with the central warehouse when the

quantity in stock at branch reaches its order point.

The Order Point System

With this system, branch warehouse inventory status is determined at a regular

interval, and the warehouse orders the quantity required to bring inventory to the target

level. All other things being equal, branch warehouse safety stock must be greater in this

system than in order point system because it cover variations in demand during the cycle

as well as during lead time.

The Periodic Review System

As the name suggests, the second order point is established based on the normal

order point plus the normal demand during manufacturing lead-time. This enables the

The Double Order Point System
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central u/arehouse to examine its inventory position relative to anticipated warehouse

orders and take appropriate action. Theoretically, the central warehouse need not carry

safety stock since it is forewarned of pending orders and adds inventory required to meet

those orders.

4 The Sales Replacement System

In this system each warehouse periodically establishes a stocking level based on

local demand. Sales at each warehouse are reported to the central warehouse at periods

shorter than the normal order interval. Shipments replacing the quantities sold are sent to

each warehouse at the end of replenishment periods.

This is also a sales replacement system. But, in this system, the base stock level is

established at each stocking location based on the normal demand during replenishment

lead-time and the interval between sales report and the safety stock. Sales are reported on

a weekly or, preferably, a daily basis to all inventory-holding facilities rather than only

when ordering. The primary advantage of this system is that it enables manufacturing, the

central warehouse, and regional warehouses to plan and react on the basis of actual

customer demand rather than on the basis of the replenishment orders filled at secondary

stock points, such as regional warehouse.

Push System

The Base Stock System

In a push system, inventory is pushed into the warehouses. This system considers total

projected requirements (all warehouse and direct sales replenishments), inventory

available at the regional warehouses and the central warehouse, inventory in transit, and

schedule receipt from the supplier and determines the quantity available for each



warehouse and direct factory sale. This allocation is controlled centrally on the basis of

such criteria as equal day coverage, shipping schedule and competitive factors.

1.2.2 Distribution Requirements Planning (DRP)

Distribution requirements planning (DRP) is a push system. In DRP, the central

warehouse decides what to send to the regional warehouse. It provides the basis for tying

the physical distribution system to the manufacturing planning and control (MPC)

system. DRP relates current inventory positions and forecast of field demand to master

production schedule (MPS) and material planning modules. When the items on the MPS

are not the final product and require finishing, packaging, or fabrication into a final

assembly, these final operations can be viewed as the first stage in distribution. James

Heskett (1977) points out that automobile plants are distribution centers equipped to

receive orders, fabricate individually designed final assembly configurations from

standard components, and deliver them in a reasonable time.

DRP is best conceived as one part of demand management. It is a link between the

market place, demand management and master production scheduling. The link is

effected through time-phased information on inventories and through material and

shipping planes that coordinates activities in these modules. Finished good inventories

are often positioned in a complicated physical system, consisting of field warehouses,

intermediate distribution centers, and a central supply. In such a system, a key task is

effectively managing the required flow of material and inventories between the market

and the firm. In performing this task, DRP has a central coordinating role similar to

material requirements planning's role in coordinating materials in manufacturing. DRP's

l1
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role is to provide the necessary data for matching customer demand with the supply of

products at various stages in the physical distribution system and product being

manufactured by manufacturing. Key elements of these data are the planned timings and

quantities for replenishing inventories throughout the physical distribution system. These

data take into account currently available field inventories and forecasts.

Production
Planning

Distribution
Requirements

Planning

Figure 1.1. Information Flows in Distribution and Production Planning

1.2.3 DRP and Demand Management

According to Berry (1992), the demand management module is gateway between the

manufacturing facility and the market place. In some systems with f,reld inventories, it is

where information on demand is taken in and where product for the field warehouse is

sent out. This process requires detailed matching of supply to demand in every location -
and requires providing supply to meet all sources of demand. DRP is a method for

Rough-Cut
Capacity
Planning

Capacity
Requirements

Planning
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managing the resultant large volume of dynamic information and for generating the set of

plans for manufacturing and replenishment. As actual field demands vary around the

forecasts, adjustments to plans are required. DRP continually make these adjustments,

sending the inventories from central warehouse to those distribution centers where

they're most needed. In circumstances where insuffìcient total inventories exist, DRP

provides the basis for deciding on allocations.

1.2.4 DRP and Master Production Schedule

Master Production Schedule (MPS) is a list of all the items that the firm anticipates to

manufacture each period. DRP provides the MPS better information, in a format

consistent with the MRP records, to matching manufacturing output with the shipping

needs. Requirements based on shipments to the distribution centers can be quite different

from the demand in the field. DRP data also provides the basis for adjusting MPS to

reflect changes in the demand or product mix. If manufacturing and shipping priorities

can't be adjusted to respond to these requirements, the implications can be evaluated and

communicated to customer in a timely fashion. Common records and system integration

means there is complete visibility to see how best to use available inventories and to

adjust future schedules. DRP provides a solid base of information to make these

decisions, instead of relying on political negotiations between field and factory.

1.2.5 DRP and the Logistics System

Plans derived from the DRP information and the resultant shipping requirements are the

basis for managing the logistics system. Shipping requirements are used to determine

vehicle loads, vehicle dispatching, vehicle capacity planning and warehouse receipt
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planning. Vehicle capacity planning is the process of planning the vehicle availability for

the set of future shipments as generated by DRP. By planning future replenishment

needs, DRP establishes the basis for more effective vehicle decisions. These decisions are

continually adjusted to reflect current conditions. Long-term plans help to determine the

necessary transportation capacity. Warehouses' near-term needs are used to efficiently

load a vehicle without compromising customer service levels. Data on the planned

resupply of the warehouses can be used for scheduling the labor force in the warehouses.

1.2.5 Benefits of Distribution Requirements Planning

Distribution requirements planning

o enables us to capture data, including local demand conditions, for modifying the

forecast and to report current inventory positions,

avoids stock outs at the central warehouse by projecting warehouse requirements

by period and generating planned orders on the central warehouse,

improves customer service levels through deliveries consistent with promises,

reduces inventories investment by effectively allocating inventory,

quickly determines shortage and avoids unnecessarily premature commitment to

customers,

provides the database at warehouse level for consistent communication with

customers and the rest of the company, and

encourages significant logistic savings through better planning of aggregate

transportation capacity needs and dispatching of shipments.



1.3

In this section we introduce some of the basic concepts and terminology of fuzzy

set theory. Theory of fuzzy sets is basically a theory of graded concepts (Zimmerman,

1991). A central concept of fttzzy set theory is that it is permissible for an element to

belong partly To afuzzy set.

Fuzzy Set Theory

1.3.1 Fuzry Set

Let X be a classical set of objects, called the universe, whose generic elements are

denoted by x. The membership in a crisp subset of X is viewed as a characteristic

function pa from X to [0, 1] such that:

lo ifxøA
pe(x): {

Ll ifxeA

where [0, 1] is called a valuation set (Lai and Hwang, (1992)).

If the valuation set is allowed to be the real interval [0, 1], A is called a fuzzy set

proposed by Zadeh (1996). ¡ra(x) is the degree of membership of x in A. The closer the

value of ¡ra(x) is to 1, the more x belongs to A. Therefore, A is completely characterized

by the set ofordered pairs:

A:{(x,pa(x))/xeX}

where pn(x) maps X to the membership space [0, 1]. Elements with zero degree of

membership are usually not listed. If Sup p(x) : 1, V x e R, then the fuzzy set A is

called a normal fuzzy set in R. A fuzzy set that is not normal is called subnormal fuzzy

set.

l5
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1.3.2 a-Level Set or a-Cut

One of the most important concepls of fuzzy sets is the concept of an o-cut or

s-level set. An o,-cut denoted by Ao is the crisp set of elements x in R whose degree of

belongings to the fuzzy set A is at least o e [0, l]. This means

Ao : {x e R | ¡r¡(x) )0, cr e [0, 1]]

that is, the o,-cut or o-level set of a fazzy set is the crisp set Ao that contains all elements

' specified value of o, o e [0, 1].

1.3.3 Support of aFuzzy Set

Support of a fuzzy set A is a set S(A) such that X e S(A) if and only if pn(x) > 0.

1.3.4 Intersection of Fuzry Sets

Intersection of two fizzy setsA and B isafuzzy set C denotedbyC:A ñ B,

whose membership function is related to those of A and B by

pc(x): min [pe(x), pe(x)], V x e X

1.3.5 Algebraic Operations on Fuzry Sets

In addition to the set theoretic operations, we can also def,rne a number of other

ways of forming combinations of fuzzy sets and relating them to one another. Here we

present some more important operations among those:

1. Algebraic product of two fuzzy sets A and B, is A ( ) B, whose membership

function is

Per le(x): Pe(x) (-) Ps(x)' v x e X
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2. The algebraic sum of A and B is A + B whose membership function is defined as

Pra+Bl(x): pa(x) (+) ps(x), V x e X

provided pa(x) (+) ps(x) < 1, V x e X

1.3.6 Convexity of Fuzzy Set

The notion of convexity can be extended to fuzzy sets in such a way as to

preserve many of the properties that it has in case of crisp sets. In what follows, we

assume that the set X is the n-dimensional space Rn. We now have the following two

equivalent definitions of convexity of a fuzzy set.

A fuzzy set A is convex if and only if every set Ao : {x e X I po(*) > o} for all

o e [0, 1] is a convex set.

The second definition of convexity of a fuzzy set is as follows:

Afuzzy set A is said to be a convex set if

p (l"xr+ (1-À)x2) > min (p(*,), p(x2)), Xr, X2 e X, À e [0, 1].

1.3.7 Fuzzy Arithmetic

The first definition of a fuzzy set allows us to extend various properties of crisp

sets and operations on crisp sets to their fuzzy counterparts.

An ordinary number'a' canbe characterizedby using the membership function

1 if x = a
pe(x): { ^[0 ifx + a

Fuzzy Number

A fuzzy number A is a fuzzy set on the real line R, which possesses the following

properties:



o A is a normal, convex fuzzy set on R

The o-level set Ao must be a closed interval for every o e [0, 1]

The support of A, S(A) : {x I pa(x) > 0 }, must be bounded.

Fuzzy arithmetic is based on the following two properties of fuzzy numbers:

1. Eachfuzzy set and thus, each fuzzy number can be fully and uniquely represented

by its a,-level sets.

2. ü,-level sets of each fuzzy number are closed intervals of real numbers for all

o e [0, 1].

These properties enable us to define an arithmetic operation on fuzzy numbers in terms of

arithmetic operations on their o-level sets (i.e. arithmetic operations on closed intervals).

1.3.8 Fuzzy Arithmetic Based On Operations On Closed Intervals

A fuzzy number can be characterized by an interval of confidence at level u,

A* : [a,(o), ar(o)] which has the property c ( cl Ð Ao, c Ao .

According to Kaufmann and Gupta (1985, 1988), let A: [a, b] e R and B : [", d] e R be

two fuzzy numbers, then the arithmetic operations on them are as follows:

18

Addition

Subtraction

Multiplication

Division

Minimum ( n )

Maximum ( v )

A+B:[a+c,b+d] .

A_B:[a_d,b_c].

AB : [min (ac, ad, bc, bd), max (ac, ad, bc, bd)] .

NB: [min (a/c, a/d,b/c, b/d), max (a/c, a]d, b/c, b/d)] .

A nB: [a nc, bnd] .

A v B: [a vc, bvd] .



Let A and B be two fuzzy numbers, Ao: [a,(o), a2(o\ be the a-level set of A, and

Bo : ¡b,(o), b2('\ be the o-level set of B.

Let * denote any of the arithmetic operations *,-,., /, n and v onfuzzy numbers.

Then, we define afuzzy set A + B in R, by defining its s-level sets (A * B)o as

(A * B)o: Ao * Bo for any 0 e [0, 1]

Since (A * B)o is a closed interval for each o, e [0, 1] and A and B are fuzzy numbers,

A * B is also afuzzy number.

The multiplication oî fuzzy number A c R by an ordinary number k e R* can also be

defined as

k (.) A" : [kal(o), ka2(')]

or equivalently, pr..e(x): pa(x/k) V x e R.

1.3.9 Triangular Fuzzy Number

A triangular fuzzy number (T.F.N.), A, is denoted by the triplet (at, az, a3) and its

membership function is written as

l9

-r:{

0

x-al
az-al
â3 -x

The a-level set of a triangular fuzzy number is

a3-a2
0

x(at

ãl1x<a2

a21x14t

x)a3

Below, in Figure l.2,we give a graphic representation of a fazzy number.

Ao : [a,(o), ar@)1: Kø - a¡)o + at -(at - a2)u + a3] Voe[0, 1]
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Figure l 2 Graphic representation of a Triangular Fuzzy Number

Algebraic Operations on T.F.N.

Let A : (â1, az, at) and B : (br, bz, bs) be two T.F.Ns then,

Triangular F uzzy Number

o Addition

o Subtraction

For the following two operations, we assume that a¡ and b¡, i : I,2,3 are positive.

. Multiplication

o Division

20

A + B : (ar + b1, a2*b2, a3 -f b3)

A - B : (ar - bt, az -b2, a3 -b)

1.3.10 Special TriangularFuzzy Number

A special triangular fuzzy number (S.T.F.N.), A, is a triangular fizzy number

represented by the triplet lat, az, (ø+ A )], where á -+ 0 , and its membership function is

written as

A (.) B : (albl, a2b2, a3b3)

A(:)B:[ü,f,fr)

The s-level set of a special fuzzy number is

Fo(x) :

0

x -al
a2-at
(az+ä)-x

x<al

a1 <x<a2

az <x< (a2 + õ)

x >(a2 + 6)



Ao:[a,(o),ar(o)1 : [@z-a1)a + at,-(6)a+(a2+ á)]

coE(J
c
flr
Eo o.
U'
(l)
-o
E
c)
Þ

1

5

0

Number

Special Fuzzy Number

Algebraic Operations on S.T.F.N.

Figure 1.3 Graphic representation of a special rriangurar Fuzzy

Let A : [al, az, (az+á)] and B : [br, bz, (bz+á)] be two S.T.F.N.'s, where á -+ 0,

then,

o Addition

o Subtraction

a2 az*f,

1.3.11 Trapezoidal Fuzzy Number

Vae[0, l]

A trapezoidal fuzzy number (Tr.F.N.), A, is denoted by a quadruplet (a1, a2, a, aq)

whose membership function is written as

- 
Seriesl

21

A + B: lar + b1,a2-rbz,(az+b2+26)]
I

A - B : [(ar - (bz+ õ ), az - bz, (az+ô) - br]

0

X-âr
àz-ãt

I

â,t -X
ãq-àt

0

Fa (x) :

The a-level set of a

Ao : [a,(o),

X(â,

Ar1X1A,

Ar1X1A.,

ar(x(ao

x) ão

trapezoidal furzy number A is

ar(o)] : [(az - a¡)o + at, -(aq - a3)a + aa] Va e [0, 1]



Graphically, atrapezoidalfuzzy number ís shown as in Figure 1.4 below.

Figure 1.4 Graphic representation of aTrapezoidalFuzzy Number

Algebraic Operations on Tr.F.N.

Let A: (âr, à2, à3, aa) and B : (br, bz,bt, b¿) be two Tr.F.Ns then,

Trap ezo idal F uzry Number

. Addition

o Subtraction

For the following two operations, we assume that a¡ and b¡, i : I,2,3 are positive.

. Multiplication A (.) B : (arbr, a2b2, a3b3, aaba)

o Division
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A + B : (ar + bu az*b2, a3 *b3, aa+ba)

A - B : (ar - bc, az -bz, az -b2, aa -b1)

1.3.12 Ranking of Triangular Fuzzy lt[umbers

One can rank the triangular fizzy numbers using a variety of criteria by using various

weights on the different features of the fuzzy numbers. 'We shall consider three different

criteria of ordering triangular fuzzy numbers. If the first criterion does not give a unique

linear order, then the second and the third criteria should be used.

Criterion 1. Linear Ordering using Associated Ordinary Number (A.O.N.)

Ordinary number associated with a T.F.N. A: (ar, az, az), is given by
(ar+2a^,+a"\

A.O.N.a: | ' ' " I

[4)

A(:)B:(ï,i,i,ï)
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If the values of A.O.N. for some T.F.Numbers happen to be equal, then form the classes

in the ascending order of the removal and go to the Criterion 2.

Criterion 2. Linear Ordering using the Mode.

In each class of T.F.Ns formed as a result of Criterion 1, look for modes. If all the modes

are different, rve can rank the triangular fiizzy numbers within the class according to the

size of mode.

Fuzzy numbers having equal values of the mode within a class form a subclass. If modal

values of some of the triangular fiizzy numbers in a class happen to be same then form

sub-classes and go to Criterion 3.

Criterion 3. Linear Ordering using the Divergence

Divergence around a Mode in a Sub-class is given by a3 - a¡

In each sub-class consider the divergence around the mode and obtain sub-sub-classes.

Rank the fazzy numbers in each sub-class according to the size of the divergence.

1.4 Organization of the Thesis

Chapter 1 provides an introduction to the concepts and problems considered in the thesis.

In Chapter 2,we review the literature of the related work done by other researchers. The

distribution inventory management problem with fuzzy information (data) is solved using

DRP approach in Chapter 3. Chapter 4 presents the inventory problem with variable

demand rate under fuzzy information (data) with a finite planning horizon. Chapter 5

extends the variable demand lot-sizing inventory problem with fuzzy information (data)

by incorporating backorders. Finally, the conclusion and the discussion on the

contributions made in the thesis, along with some recommendations for further research,

are given in Chapter 6.



This chapter provides a survey of the literature dealing with inventory lot sizing

problems, distribution inventory management problems and other concepts considered in

this thesis. The purpose of this chapter is to review the developments, and to identify the

status of existing literature in these areas.

2.1 Review of Literature on Inventory Lot Size Problem

2.1.1 Classification of Literature

CHAPTER 2

LITERATURE SURVEY

We use the following classification, given by Zoller and Robrade (1988), to discuss the

existing literature on lot-sizing problems.

l. Optimizing techniques

2. Stop rules (heuristics) and

3. Heuristicalgorithms.

24

1. Optimizing Techniques

The optimizationtechniques include EoQ and wagner-whitin algorithm

o Economic Order Quantity (EOe)

Hanis (1915) is usually cited as the first to study economic lot size models that assume

deterministic demand. He considered a model that assumes demand occur continuously

over time. The basic formula to compute economic order lot size is as follows:



where,

S : Fixed cost for the replenishment of an order,

R: demand rate of the item (normally annual usage rate),

C : cost of one unit,

k: cost of one dollar of item tied up in inventory for a unit of time.

Note that S and k should have same unit time basis (i.e. if annual demand is considered,

then k must be considered for one year, not one month).

EOQ model gives the optimal solution only under the assumption of a steady demand.

But, when the demand rate varies from period to period, the EOQ formula no longer

assures a minimum cost solution. To deal with variable demand, Wagner- Whitin (195S)

presented a simple and most elegant dynamic economic lot size model. This model was

based on some important theorems established in their paper. These theorems were

themselves based upon the assumption that initial inventory is zero (Io : 0). Before

stating their algorithm, we shall briefly state these theorems.

Theorem 1. There always exists an optimal policy such that

It. Xt : 0 fort: 1,2, ...,N;

Wagner-Whitin algorithm
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Where It is the inventory entering a period t, X¡ is the amount produced in period t and N

is the length of planning horizon. This means that replenishment can be made only when

the inventory level becomes zero, r.e. having positive inventory and producing at the

same time never leads to optimality.



Theorem 2. There exists an optimal policy such that for all t

where Xt is the amount produced in period t and d¡ is the demand in period j. This means

that for any given period, production is either zero oÍ is sum of subsequent demands for

some number of periods in the future.

k
Xt:O or Xt: I d¡ for somek, t < k < N

j=t

Theorem 3. There exists an optimal policy such that if demand d¡ * in a period t 
* 

is

satisfied by some amount X, ** produced in period t** , t** . t*, then d,, (t: r*x + 1,

..., t* - 1) is also satisfied by X¡ **.

Theorem 4. Given that 11: 0 for period t, it is optimal to consider periods 1 through

(t - 1) by themselves.

Planning Horizon Theorem

The planning horizon theorem states in part that if it is optimal to incur a setup cost in

period t * when periods I through t * are considered by themselves, then we may let X1x

> 0 in the N period model without foregoing optimality. By theorems I and 4 it follows

further that we adopt an optimal program for periods 1 through t*- I considered

separately.

The Algorithm

According to Wagner and Whitin (1958), the algorithm at period t* ,fa : l, 2, ..., N,

may be generally stated as:

1. Consider the policies of ordering at period t**, t** : I,2, ..., t * and filling

demands dt, t : t**, t**' a 1, ..., t*, bythis order.

26
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2. Determine the total cost of these t* different policies by adding the ordering and

holding costs associated with placing an order at period t 
* * 

, and the cost of

acting optimally for periods 1 through t** -l considered separately. The latter

cost is computed previously in computations for periods t : l, 2,..., t 
* 

-1.

3. From these t* alternatives, select the minimum cost policy for periods 1 through

t 
* 

considered independently.

4. Proceed to period t* +1 ( or stop if t* : N).

It may be observed here that the literature has tended to either ignore or, at least,

minimize the significance of the contribution of the Wagner-Whitin solution to this class

of the problem due to its complicated nature and enormous computational efforts

required. Frequently, excuses such as "the high computational burden and the near

impossibility of explaining it to the average MRP user" or "the complexity of the

procedure inhibits its understanding by the layman, and acts as an obstacle to its adoption

process" were used to justify other approximate (not optimal) alternatives to the Vy'agner-

Whitin procedure (Fordyce and Webster, 1984).

)

Stop rules increase the cycle length t until some transformation of the controllable cost is

reached. Controllable cost C(t), is normally the sum of ordering and holding cost and

given as

Stop Rules

t
c(t):R+H >(h-l).dn

h=1

where dr, is the demand quantity in period

R is the fixed cost of each replenishment.

h, H is the holding cost per period per unit, and
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. Least Unit Cost Rule (LUC)

This is probably the earliest heuristic. LUC chooses the least unit cost (setup r inventory

carrying cost per period) over successive periods by adding the total carrying costs to the

setup costs and finding the period for which the per unit cost is smallest. A shortcoming

in LUC is that it may perform well on one set of data and poorly on another set of data.

. The Silver and Meal Rule (SMR)

This is perhaps the most famous heuristic method (Silver and Meal, 1973). Silver-Meal

rule divides the total cost by the number of periods included in the lot. It computes the

cost per period P(t) as follows:

P(t): C(t)tf,

and stops as soon as

P(t+l) > P(t).

. Groffls Rule

Groff (1979) introduced a policy under which the demand for a period is added to the lot

if the marginal savings in ordering cost are greater than the marginal increase in carrying

cost. In mathematical terms,

Marginal savings in ordering cost : (S/t) - (S i t+l) : S / (t. (t+1))

Marginal increase in holding cost: (1/2). H.dt+r

Groff s rule adds the demand for the period to rhe lot if S/(t. (t+1)) > (l/Z).H. dÈl

and stops as soon as

(I/2).H.dt+r = S / (t. (t+1))



Boe and Yilmax (1983) suggested that cycle length

incremental carrying costs H.t.d t+l does not exceed

H.t. dt+r = S

Incremental Order Quantity (IOQ)

Period Order Quantity is an EOQ based technique. It divides the EOQ quantity by the

average demand during one period to obtain the number of periods whose requirements

are to be covered by the lot size (rounded to the nearest positive integer).

Tpoe: EOQ / (Average demand during one period)

If D is the average demand for one period, then

Period Order Quantity (POQ)

be increased so long as the

S and it stops as soon as

EOq:
2.5 .D
k.c

Thus in POQ method, the time between orders remains fixed, but lot size changes. This

approach does not minimize ordering and carrying costs, but it frequently is less costly

than ordering each period or arbitrarily selecting a fixed order period.

Tpoe:
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3. Heuristic Algorithms

In the previous section we discussed some rules that were basically single pass stop

rules. The stop rules terminate when some transformation of controllable cost is reached,



while algorithms seek to improve the decision by looking fuither ahead and comparing

alternative solutions. In contrast to the stop rules, they are sensitive, in their computing

time requirements, to the numerical structure of the demand rate.

Trux (1972) proposed to use the IOQ rule to find a safe maximum and then examines if

the corresponding lot can be split into two lots. Gaither (1983) determined two

subsequent lengths and examined if shifting a demand from first lot to second lot is more

profitable or not..

IOQ Algorithm

To improve it's performance under conditions of erratic demand, several authors have

suggested modification of PPR.

PPA - FB: DeMatteis (1968) suggested that the cycle length determined by the PPR

should be subjected to a forward or backward scan to determine if the periods of large

demand exist.

PPA - BM: Blackburn and Millen (1980) proposed that the cycle length determined by

PPR could be increased if a closer balance of ordering and carrying costs can be

maintained.

Part Period Algorithm
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PPA - MG: Karni (198i) combined, through an iterative procedure, that pairs of lots

into a new single order which promises maximum gain in terms of net cost reduction.

Silver and Meal (1973) observed that cost per period

hence have many local minima, however, SMR

Silver Meal Algorithm

is not necessarily convex and may

identifies only the first minima.
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Blackbum and Millen (1980) suggested that the absolute minima should be found by

exhaustive enumeration of C(t) over the entire planning horizon.

2.1.2 Other Approaches

Eppen et. al. (1969) evolved theorems that decrease the computational effort required to

find optimal policies and established the existence of planning horizons. Zangwill (1969)

extended the concepts of concave cost network to analyze the backorder version of

Wagner-'Whitin model. Montgomery et al.(i973)solved continuous review and periodic

review inventory models that considered a mixture of back orders and lost sales..

Friedman and Hoch (1978) presented a model to find the lot size for perishable items by

assuming fixed-plus-linear production functions and linear age-independent inventory

cost functions. The issue of perishability was discussed extensively in Nahmias ( 1982).

In his paper, Nahmias distinguished between fixed and variable lifetime inventories.

Billington, McClain and Thomas (1983) presented a mathematical model that considers

set up times and proposes a compression technique for the size of the product structure ,

but it does not effectively provide a solution method. In another work, they (1986)

studied the multi-stage problem with constrained capacity in only one work center. Kim

and Park (1985) considered a continuous review system with constant lead-time where a

fraction of the unfilled demand was back ordered and the back order cost was assumed

proportional to the length of time the back order existed

Fordyce and Webster (1984) presented the Wagner-Whitin algorithm in a simple and

straightforward computational style in a tabular form, without using any mathematical

notation or formulas. In 1985, they demonstrated the ability of Wagner-Whitin
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Algorithm to be modified to situations in which unit cost price is not constant over the

planning horizon and included quantity discounts. Carrying on with their research,

Fordyce and Webster (1989) presented a back order version of the Wagner - Whitin

algorithm.

James R. Evans (1984) developed a microcomputer program to implement the Wagner-

Whittin algorithm. Prentis and Khumawala (1989) developed two heuristics based on

branch and bound method to solve closed loop MRP lot sizing problems. Padmanabhan

and Vrat (1990) developed an inventory model with a mixture of back orders and lost

sales such that the backlogged demand rate was dependent upon the negative inventory

level during the stock out period. Shtub (1990) presented a model of cellular production

system and a heuristic lot sizing procedure that is based on tradeoff between setup cost

and inventory carrying cost for MRP systems. McKnew et. al. (1991) presented a zeÍo

one linear formulation of the multilevel lot-sizing problem for MRP systems without

capacify constraints. Roll and Karni (1991) present a model for multistage lot - sizing

problems with unit lead-time for all components. The heuristic finds the lot-size by

shifting production amounts between periods. Bretthauer et. al. (1994) formulated a

resource constrained production and inventory management model as a nonlinear integer

program.

Padmanabhan and Vrat (1995) presented inventory models for deteriorating items with

stock-dependent selling rates and derived the profit functions with and without

backlogging and complete backlogging cases. Arreola-Risa and DeCroix (199S) studied a

stochastic-demand inventory system where the product supply is randomly disrupted for

periods of random duration. They considered the stochastic- demand inventory system

will become a mixture of back orders and lost sales during demand shortage. DeCroix
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and Arreola-Risa (1998) explored the potential benefits of ordering economic incentives

to back order as a strategy for inventory management when the system involves an

unreliable supply. Martel (1998) formulated the problem with holding cost as a function

of purchasing price. Moncer and Ben-Daya (1999) developed stochastic inventory

models as continuous and periodic review models with mixture of backorders, lost sales

and the base stock model. Ouyang and Chuang(1999) investigated an inventory model

with a mixture of back orders and lost sales in which the back order rate was a random

variable and the quantity was discounted on the inventory model. Grewal (1999) applied

integer linear programming approach to solve lot-sizing problem with back orders

allowed under both crisp and fuzzy environments. He then extended his model to

incorporate quantity discounts. Hsu (2000) presented a lot size model for perishable

inventory where stock deterioration rates depend on both the stocks' ages and their period

of production. Pan and Hsiao (2O0l)presented inventory models with back order

discount and variable lead-time to ensure that customers were willing to wait for the back

orders. Chiu, Chen and Weng (2003) proposed a near optimal forward dynamic

programming algorithm to solve the deterministic time-varying demand lot-sizing

problem in which learning and forgetting in setups and production are considered

simultaneously. Suerie and Stadlter (2003) provided a mixed integer-programming model

for the capacitated lot-sizing problem with linked lot sizes.

None of the above approaches except Grewal (1999) consider the said problems under

fuzzy environment. However, Grewal (1999) uses a complicated linear integer

programming approach to solve the lot sizing problem with fuzzy data. In the present

thesis, we extend further the simple technique developed by Fordyce and Webster (1984,

i989), to solve the lot size dynamic problem with finite horizon under fuzzy data.



2.2 Review of Literature on Distribution Inventory Management

Problems

Some major sources of this literature include Production and Inventory

Management Joumal, Journal of Operation Research, Management Science Journal,

European Journal of Operations Research (EJOR) and Decision Sciences etc. According

to Clark and Scarf et. al (1960), there is a possibility that the distribution of stock in a

pure distribution system can become imbalanced. That is, if one computes the ideal stock

level for each location based on knowing only the total amount of stock in the system,

then it could be the case that some retailers have stock in excess of the ideal levels for

those locations. Since it is not possible to make shipments that reduce the stock level at a

retailer, the ideal levels are not attainable. They extend their algorithm for serial systems

to pure distribution systems by assuming that the probability of the system becoming

unbalanced is negligible.

Veinott (1965) investigates conditions that ensure the optimality of base-stock policies.

Schwarz (1973) derives a one-warehouse N-retailers inventory model. Goyal (1977)

proposes a joint economic lot size model to mìnimize the total relevant costs for both the

vendor and the single buyer. Graves (1979) shows that the Joint Replenishment problem

is closely related to the One-warehouse Multi-Retailer System problem. Deuermeyer and

Schwarz (1981) construct and test an approximate model for predicting fill rates and

expected backorders in two-echelon distribution system by assuming continuous review

policy at all locations. In their model, the re-order point at each location , including the

warehouse, is based only on the stock level at that location. Eppen and Schrage (1931)

study centralized systems with fixed -length order cycles and derive a Newsboy-like

34
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formula for determining an approximately optimal quantity of system stock. The order

policy is referred to as (m, y) policy. Erkip, Hausman and Nahmias (1984) extend the

model to allow demand to be correlated overtime and between locations. Peter (1988)

extends Eppen and Schrage's model to allow the warehouse to hold stock and proposes a

policy to make allocations to the retailers in every period of the cycle. This policy is

called a " ship-up-to- S" policy: the warehouse makes shipments to restore the inventory

position of each retailer to some predetermined value, S, in every period for which the

warehouse has sufficient stock. Blackburn and Millan (1982) introduce the concept of

echelon stock in the multi-echelon system. Roundy (1985) considers a policy where each

retailer orders at an integer or reciprocal of an integer multiple of the warehouse order

interval for one warehouse multi-retailer system. This type of policy is called an integer-

ratio policy. De Bodt and Graves (1985) proposes a nested continuous review policy for

serial systems based on echelon stock. Caplin (1985) studies an economy of multiple

retailers, within which each retailer is faced with the unit-sized demand at a time and

assumed to employ a continuous (R, Q) type policy. He shows that each retailer's

inventory position is independent of other's and uniformly distributed over I Ri + 1, R¡ r

Q¡ ]. Banerjee (1986) derives a joint economic lot size model for a single vendor, single

buyer system where the vendor has a fìnite production rate. Goyal (1988) extends

Banerjee's model by relaxing the lot-for-lot production assumption. Hill (19S9) derives a

central warehouse, multi-retailer model with shortage by using simulation.

Federgruen andZipkin (1984) consider periodic review, multiple-echelon systems with

interdependent demands under the assumption that the probability of imbalance is small.

Zipkin (1984) develops a measure of stock imbalance in a multi-retailer system and

formulate a dynamic programming to determine stocking policies when the problem of
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stock imbalance can't be ignored. He also demonstrates anal¡ically that the risk pooling

benefit of warehouse decreases as the correlation in demand among the retailer increases.

Jonsson and Silver (1984a,b) consider a single reallocation opportunity occurring at the

beginning of the last period in the cycle by assuming costless transshipments are allowed.

Erkip (I984a, b) predetermines the reallocation time by formulating an approximating

dynamic program. Jackson and Muckstadt (1984a, b) consider a single, predetermined

reallocation time and derive both exact and approximate optimality conditions that don't

ignore the possibility of imbalance at the time of reallocation. Brown (19S4) conducts

numerical experiments with the exact two retailer version of Jackson and Muckstadt

model.

Diaby and Martel (1993) formulate a mixed integer linear programming model and

develop a Lagrangian relaxation-based procedure to determine the optimal purchasing

and shipping quantities over a finite planning horizon for multi-echelon physical

distribution systems with deterministic, time-varying demands. Lu and Posner (1994)

introduce two heuristic procedures for one-warehouse multi-retailer system. Hariharan

and Zipkin (1995) consider a continuous review model where customers place orders L

units of time in advance of their requirements. They show that demand lead time L

directly ofßets the supply lead time and, as of consequence, base stock and (s, S) policies

are optimal for zero and positive ordering costs, respectively. Atkins and Sun (1995)

derives 9\o/o-effective lot sizing for series inventory systems with backlogging. Ha and

Kim (1997) integrates two-echelon inventory model using geometric programming. Yang

and Wee (2000) extends an integrated vendor-buyer inventory system of deteriorating

item. Gupta et al. (2000) considers the trade-off involved between inventory depletion

and production costs under demand uncertainty. Gallego and Ozer (2001) examine a
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periodic-review inventory model by allowing backorders and show that base stock and

(s, S) policies are optimal for zero and positive ordering costs respectively under advance

demand information. Sobel andZang (2001) study a finite-horizon periodic review model

where, in addition to spot demands, there are known commitments in every period. They

assume that the commitments must be honored without delay, but allow spot demands to

be backordered, and show that a modif,red (s, S) policy is optimal. Yang and Wee (2002a)

analyzes an integrated single vendor multi-buyer inventory system of a deteriorating

item. Chen , Feng and Simchi-Levi (2002) consider the periodic review two-echelon

inventory system consisting of a supplier at the upper echelon and multiple retailers

facing interrelated demands at the lower echelon, and show that under certain condition,

inventory positions at each location are stationary, uniformly distributed and independent

of the inventory positions at other locations. Ozer (2003) proposes a close-to-optimal

solution based on the solution of a lower bound problem for a centralized, system with

one warehouse serving multiple retailers under advance demand information. He also

provides an explicit solution for the system-wide inventory position. Martel (2003)

develops rolling planning horizon policies to manage material flows in multi echelon

supply-distribution networks with relatively general stochastic demand processes and

procurement, transportation, inventory and shortage cost structures. Yao and Chiou

(2003) considers an integrated supply chain model to minimize the vendor's total annual

cost subject to the maximum cost that buyer may be prepared to incur.

It is important to point out here that none of the above work conducted by various

researchers incorporates the fuzzy element present in most of the problems. In the present

thesis we consider the distribution inventory management problem under fuzzy

information.



A SIMPLIFIED APPROACH TO LOT SIZING INVENTORY

PROBLEM UNDER FU ZZY INFORMATION \ryITH VARIABLE

DEMAND RATE AND NO BACKORDERS ALLOWED

In the present chapter, we consider a variable demand rate inventory problem with no

backorders allowed under fuzzy environment with a finite-planning horizon. We extend

the Wagner -Whitin algorithm to find the lot size for a given product P, assuming that the

demand for a given product P is represented not by a crisp number but by a triangular

fuzzy number, and similarly, the acquisition cost and the carrying cost for a given product

P are represented by other triangular fuzzy numbers. The approach can be extended further

when the demand for a given product P is represented by a trapezoidal fuzzy number, and

the acquisition cost and the carrying cost for a given product P are represented by other

tr apezoidal fuzzy numbers.

CHAPTER 3
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3.1

A product (which could be a raw material, a purchased part or a semi finished product) is

produced or purchased in lot quantities and placed in stock. As the stock is depleted by

demands for the product, more of the product must be produced or purchased. The object

of production planning is to minimize the cost of this cycle of filling and depleting the

stock. To achieve this object, determination of optimal lot size is very important.

Most of the times the production planner works with the forecasted demand and limited

budget. So, the demand is rarely known exactly as the forecasts do not always turn out to

be crisply accurate. Thus, in practice there is always a component of fazziness in available

Introduction
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data. Under condition of fazzy demand and fuzzy costs, the models developed for the

crisp problem may not deliver optimal solution. In present chapter, we create a model, by

taking advantage of the fuzzy set theory developed by Zadeh and Bellman (1965), to deal

with fuzziness in demand.

In i984, Fordyce and Webster presented a simplified version of the Wagner-Whitin

algorithm to determine the lot size under crisp environment. The present chapter is an

extension of their work with fuzzy information (data). This chapter also demonstrates the

simplicity of the technique when computations are made in several simple steps.

3.2 Lot Size Problem under Crisp Environment

3.2.1 Assumptions

For this model, the following assumptions are made:

1. The demand varies from one time period to another and is assumed to be known.

2. The units needed to satisfy demand during a particular period must be purchased

during a previous period or at the beginning of the specific period during which

they are needed.

3. Acquisition costs (setup costs of production run or ordering or follow-up costs for

purchased parts) are fixed relative to the quantity acquired, but may vary from one

time period to another.

4. Holding cost in a particular time period represents the cost of inventorying one unit

of product from that period until the next period. Units carried forward more than

one time period would be charged the accumulated holding cost of all periods from

acquisition period through the period prior to the actual period of demand or use.



5.

6.

Holding cost may vary from one time period to another.

The replenishment lead-time is known with certainty so that delivery can be timed

to occur accordingly.

3.2.2 Notation

Q : number of units demanded during period j

Hi : holding cost (in $) per unit during period i

C¡ : cumulative holding cost per unit during period j for the units needed during

period j but purchased during period i, i < j

4:
N_

TÙ:

acquisition cost, irrespective of the number of units acquired, during period j.

the number of periods during the planning horizon

cumulative cost ( acquisition cost + carrying cost) during period j for the units

needed during periodj, but purchased during period i

the minimum prior period cost for period iM¡

F¡
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: decision cost (cumulative cost * the minimum prior period cost) during period j

for the units needed during period j, but purchased during period i

: lot size during period i

3.2.3 General Formulation

j-r
Cij : I Hr.

l- _:l\ -l

C,j:0

j
T¡ : A¡* I(Cit *Dr)

k=i

forj>i

forj:i

(3.1)

(3.2)



Mi : minimum of F1i-r¡;

where

F¡: T¡*M¡

3.3 Lot Size with Fuzzy Information (Data)

3.3.1 Assumptions

i. The demand varies from one time period to another and is available

triangular fuzzy numbers.

2. The units needed to satisfy demand during a particular period must

during a previous period or at the beginning of the specific period

they are needed.

j: 1,2,...,(i-l)

3. Acquisition cost (setup cost of production run or ordering or follow-up cost for

purchased parts) is available in the form of a triangular fuzzy number, and

unchanged relative to the quantity acquired.

4t

(3.3)

4. Holding cost in a particular time period, assumed to be fuzzy, represents the cost

of inventorying one unit of product from that period until the next period. Units

carried forward more than one time period would be charged the accumulated

holding cost of all periods from acquisition period through the period prior to the

actual period of demand or use.

Holding cost may vary from one time period to another.

The replenishment lead-time is known with certainty so that delivery can be timed

to occur accordingly.

(3.4)

in the form of

5.

6.

be purchased

during which



3.3.2 GeneralFormulation

We assume that each of Hr in equation (3.1), Ai and Dr in equation (3.2) for m :1,2, .

..,fl, i:1,2,...,fli k:1,2,. .,n isaT.F.N. ofthetype.

Hr : (Hg, Hrz,Hç3);Ai : (Air, Aiz,Ai¡) ; Dr : (Dp, D¡2,Dn)

The values of Hr, Ai and D¡ can be obtained from the experts who share the same

information but different opinion.

If weset Ht: (Hn, Hrz,Hr¡)inequation(3.1),thenCirisatriangularfuzzynumber

given by

C*: (Cin, C¡r,2, Cin) (3.5)

In (3.2), if we set A¡ : (Air, A¡2, Ai¡ ); Dr : (Dg, D¡,2, D¡3 ) and C1: (C¡g, Cip, C¡r.:)

then

(i) each term in the second parr .*(a,o *Dr), in the R.H.s of (3.2),is obtained by
k=i

multiplying two T.F.N.'s .

(ii) each term obtained in (i) is itself a fuzzy number but not necessarily a T.F.N. and

(iii) T¡ is obtained by adding the results of each individual multiplication obtained in

(i) to A¡

Thus, we have

j
Tù : Ai* .I(Cit *Dt) ; i:7,2,. . ., n; and j:7,2,. . ., n

t. _:
l\-l
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In view of (ii), it is important to point

number, not necessarily triangular.

Thus, T¡ is a fuzzy number given by

T¡ : (T¡r. T¡2, Tin)

out here that each of the values For T¡ is a fuzzy

(3.6)
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Each fuzzy number, T¡ in equation (3.6) and its membership function are determined on

thelineof KaufmanandGupta(1985, 19S8)byusingtheintervalof confidencefor A¡,

D¡ and C¡¡ respectively, at a - level

Aid : [(Aiz- A¡ùd *A¡r,(Aiz- Aiùa + A¡¡)] V øe[0,1] (3.7)

D*d: [(D¡2-Dg)a *Drr,(D¡2-Dn)ø + D6)] V øe[0,1] (3.8)

C¡xã : [(C¡¡2-Cpr)ø *C1r,(Crr.z-Cis)ø + Cin)] V aef0,1f (3.9)

For i: 7,2,.. ., n; k:7,2,. . ., fl, We multiply the intervals in (3.8) and (3.9), and add

the result to the interval 1n (3.7).

This yields the following interval of confidence.

Thus, \¡/e get

J

Él(r¡, -D.)*(cio, -c*r )lo2 +
l-_:r\ -l

j
.I[(D¡2 -D6)*Cpr +(Ci¡2 -Cpr)*D¡1 +(Aiz -Atr)]ø *A¡r *
t. _:
tL -t

j

È1, 
o, - Drc ) * (ciu - c*s )lo2 +

j
).[(D¡2 -Dn )*Cim +(Ci¡2 -Circ)*Dm +(Az -Ar)]a tA¡¡ f

In this interval of confidence

1. Setting d : 0, we get the end points T¡r and T¡r

j
T¡r : I A" * ,ìÍDrr 

+C¡¡r )], and T¡:: I Ar +
I\. rl

of the fuzzy number T¡

2. Setting a : 7 gives the interior point T¡z of T¡

JI (Dn
k=i

*cin ),

J

I (Drc
k=i

j
I(Dts

k=i

* circ ,Ì

*ciks )l
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j
Tiiz: I Aiz + I(Dnz *Cip2 

) ]
l- _:t\ -t

The membership function is obtained from the interval of confidence by setting

separately, each of the quadratic function, equal to x and solving each of those equations

for a. Thus,

j
Ét(oo' -Do')*(cip -c¡.)lo2 +

t. _:t\ -l

l
,I[(Dk2 -Drr)*Ckl +(C*z -Cikr)*Drr +(A¡z_A¡ù]a + Air +
t. _:tt-t

j
-I(D6*Cpr):x (3.10)
l, _:r\ -l

solving(3.i0) givesmembershipfunctionbetweenT¡r and T¡zsatisfying 0< a<7.

Next, we set

j
_Ét(ou, -Dm)*(c*z -c*:)lo2 +
1, _:
-I\ -l

j
.I.[(Dk2 -Dm )*Cik3 +(Cik2 -Ck:)*Dr: +(A¡z -A¡3)]c +A¡3 +
l-_:l\ -l

j
.I(Dr¡*CiB):x (3.H)
l, _:
-t\ -l

Solving (3.11) gives membership function between T¡z and T¡3 satisfying 0 < a <1.

Similarly, We determine each fuzzy number, F¡ in equation (3.4) and its membership

function by using the interval of confidence for T¡ and M¡ respectively, at a - level.

FU : ( F¡r, F¡2, F¡: )



3.3.3 ComputationalTechnique

Along the lines of Fordyce and Webster, we now give a simple and straightforward

computational technique to the discrete lot - size problem. It will be explained through the

progressive development of three tables, in which costs associated with the demand of a

particular time period (columns) are identified as a function of the period in which the

units are acquired, and four steps. Since backlogs are not allowed, only the upper right

triangular portion of the table is necessary. The first tableau contains the cumulative

carrying costs per unit, obtained as explained in Step 1 below. The second tableau

contains the cumulative costs, obtained as explained in Step 2 below, and the optimal

tableau is obtained from the second table as explained in Step 3. In Step 4,we identify the

optimal solution from the optimal table.

The four steps of our algorithm are as follows:

STEP 1.

Obtain the cumulative carrying cost C¡ associated with each time period by using

(3.1) and prepare the following table in the form of a truncated upper triangular matrix

having n rows and n columns.

Initial Tableau
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Obtaining Initial Tableau



STEP 2.

Obtain the cumulative cost T¡ associated with each time period by using (3.2) and

prepare the second tableau in the form of a truncated upper triangular matrix having n

rows and n columns.

Second Tableau

Obtaining Second Tableau
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STEP 3. Obtaining Optimal Tableau

1. Obtain Row I of the optimal tableau by duplicating Row 1 of the second

tableau.

Each subsequent

2. To obtain

(a)

row is obtained as follows:

Row 2 of the optimal tableau:

(b)

Examine column I of the optimal tableau and in the column

identify the element with smallest value sr.

obtain Row 2 of the optimal tableau by adding s1 to each element

of Row 2 of the second tableau.
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3. To obtain Row 3 of the optimal tableau:

(a) Examine Column 2 of the optimal tableau and in the column

identify the element with smallest value s2.

(b) Obtain Row 3 of the optimal tableau by adding s2 to each element

of Row 3 of the second tableau.

In general therefore, we compute Row k, where k : 1 , 2, .., n; of the optimal

tableau as follows:

(a) Examine Column (k-l) of the optimal tableau and in the column

identify the element with smallest value Sln_l).

(b) obtain Row k, where k: 1, 2, . . ., n; of the optimal tableau by

adding Slr-r; to each element of Row k of the second tableau.

STEP 4. Identifuing the optimal solution

1. (i) Examine the column n of the optimal tableau and identify the

minimum value element sn* in it. Then,

s*n : g"(1) is the minimum decision cost incurred from time 1 until

time n, i.e. during the planning horizon.

(ii) suppose the position of sn* is in Row u , u ( n , of the optimal

tableau.

Then time u is the acquisition time immediately before time n.

2' (i) Examine the column u of the optimal tableau and identify the

minimum value element sr* i., it. Then,

S*u : gr(1) is the minimum decision cost incur¡ed from time 1 until

time u < n.



Then time q is the acquisition time immediately before time u.

Stopping Rule

We continue in the same manner until, in the optimal tableau, we identify a

minimum value element v6* (say), in Column b, (b<q), such that Row 1 is the row in

which v6* lies and vo* : gb(l). Once the minimum value element lies in Row 1, the

optimal overall policy has been reached and the process terminates.

(ii)
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Suppose the position of s*u is in Row q , q < u , of the optimal

tableau.

The optimal policy is to acquire units at time 1, time b, . . ., time q, time u, and the

time n with the overall net optimal cost vn*.

3.3.4 Numerical Example with Fuzzy Information

We illustrate our method through the following numerical example (represented in Table

3.1 and Table 3.2). Demand, acquisition cost, and carrying cost are represented by

triangular fuzzy numbers. We assume that acquisition cost remain constant throughout the

planning horizon.

Tabl
Period

e J.l.

Demand

Acquisition Cost

Demand,

Canying Cost

Acqursrtron cost an

I

(17,20,25)

(98, 100, 105)

(0.85, 1,1.2)

ins cost lWeek
2

(45,50,52)

(98, 100, 105)

to

(0.9, 1,1.15)

Week 3
a
J

(e, 10,

(98, 100, 105)

t2)

(0.9,1,1.2)



Table 3.2.
Period

.2. Demand, Acquisition cost and Canying cost (Week 4 to Week 6)

Demand

Acquisition Cost

Carrying Cost

3.3.5 Intervals of Confidence

3.3.5.1 Intervals of Confidence for Demand

dtd = [3a + 77, -5a + 25]

dro : fla +9, -2a + 12]

dro = [2a + 48, -3a + 53]

4

(8, 10,

(98, 100, 105)

t2)

(.95, l, l.l)

5

(48, 50, 53)

3.3.5.2 Intervals of Confidence for Acquisition Cost

(98,100, 105)

(.8, 1, 1.25)

Ard : 12ø + 98, -5ø + 105]

Atd = l2a + 98, -5ø + 105]

Ar& = [2a + 98, -5ø + 105]

49

6

(18,20,25)

3.3.5.3 Intervals of Confidence for Carrying Cost

Hrd = p.15ø + 0.85, -0.2a + l.2l H2G = [0.10ø + 0.90, -0.15a + i.15]

H3d = [0.10a + 0.90, -0.3a +1.2] Hod : [0.05a + 0.95, -0.10a + 1.10]

Hrd : [0.20a +0.80, -0.25a +1.25] H6d = l0.l5a +0.85, -0.30a + 1.301

(98, i00, 105)

(.85, 1, 1.3)

dr.o =

dod =

drd =

Í5a

[2a

l2a

+ 45, -2ø + 521

* 8, -2a + 12)

+ 18, -5a + 251

Ard : l2a + 98, -5a + 105]

Aod =[2a+ 98,-5a+105]

Aud =f\a+ 98,-5a+1051
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3.3.6 Calculating the Cumulative Carrying Cost per unit during Period

j for the units purchased during Period 1 (C,¡)

Obtaining Initial Tableau.

Using (3.1), we have

Cttd : o

Crzd :
I

I Hrø : Htd : [0.15ø + 0.85, -0.2a + 1.2]
L_1,1--l

2

I Hxd : Hrd * Hzd
l-_1
ft-l

l0.l5a + 0.85, -0.2a + 1.21+ [0.10ø + 0.90, -0.15a + 1.15]

[0.25a + 1.75, -0.35a +2.35]

dLl3 :

We now set

Crrd

cns

This yields,

0.25a + 1.75 = x and -0.35a +2.35 : x

and

In (3.12) setting d = 0 we get

In (3.13) setting a =0 we get

Setting a =7 in either we get x : 2

Therefore Ct3 : (L75,2,2.35)

Similarly, we calculate Ctq, Cls and Clo

0.25a+1.15-x-0

-0.35a+2.35-x:0

Cr¿ : (2.65,3,3.55); Cr5 : (3.6,4,4.65); C16: (4.4,5,5.9)

X:

X:

1.75

2.35

(3.12)

(3.13)



Now, we determine membership function for Cl¡

Solving 0.25a + 1.75- x : 0 for a weobtain

and solving - 0.35a + 2.35 - x : 0 we obtain

d=
x -1.75

0.2s

Thus, the membership function for Cl: : (1.75,2,2.35) is

x -2.35n--

- 0.3s

for 1.75 1 x < 2

-,-r:{

for2<x<2.35

0

x-1.75

Similarly, we obtain the fuzzy carrying costs for rest of C¡'s (shown in Table 3.3).

0.25

x-2.35

5l

- 0.35

0

x <1.75

1.75 < x <2

2<x<2.35

x>2.35
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Table 3.3aDre J.J.

Period

Cumulaïlvelative Carrvins C

2

J

1

I

(0,0, o)

4

osts dunnq Pefl

5

duri

6

Period

2

(0.85, 1,1.2)

Initial Tableau

(0,0, 0)

J

(1.75,2,2.35)

(0.9, l, 1.15)

(0, 0, 0)

4

(2.65,3,3.55)

(1.8,2,2.35)

(0.9, l, 1.2)

5

(3.6, 4, 4.65)

(0, 0,0)

(2.75,3,3.45)

(1 .85, 2, 2.3)

(0.95, l, l.l)

6

(4.4,5,5.9)

(3.55, 4,4.7)

(0 0, 0)

(2.65,3,3.55)

(1.7s,2,2.3s)

(0.8, 1,1.25)

(0, 0, 0)



3.3.7 Calculating the Cumulative Cost during Period j for the units

purchased during Period 1 (Tt:)

Obtaining Second Tableau.

Using (3.2), we have

Trra : Ata ('.'cr:o)

Trrd : l2a + 98, -5ø + 105]

2

Trz: Ar* | (Crr*Dr)
L_1ft-t

Trr& : Ard +(cr',d *Drd )+(c,rd *D2d )

Trr.& : l2a + 98, -5ø + 105] +0+

{[0.15a + 0.85, -0.2a +1.21*l5a + 45, -2a + 52]]

Trrd : [.75a2 + l3a + 136.25, .40a2 - 17.8a + 167.41

We now set

53

This yields,

.75a2 + l3a +

and .40a2 - I7.8a +

.75a2+73a +136.25= x ard .40a2-17.8a +16i.4

In (3.15) setting

In (3.16) setting

(3.14)

Setting a =l in either

Therefore Tn : (136.25, 750,

136.25-x:0

167.4 - x : 0

wegetx:736.25

weget x: 767.4

weget x: 150

167.40)

a=0

a=0

(3.15)

(3.16)



Similarly, we calculate Tl¡, Tl¿, Trs and T16

Now, we determine membership function for T¡2

Solving quadratic equation (3.15) .75a2 + 13a + 136.25- x : 0 for d weobtain

And solving quadratic equation (3.16) .40a2 - 17.8a + 167.4 - x : 0 for d weobtain

A=

.80

Thus, the membership function for T12

A=
t7.B-@

1.5

,t,,.r: 

{

0

-13+

forl36.25(x(150

Similarly, we obtain fhe fuzzy cumulative costs, along with their membership functions,

for rest of T¡'s. Fuzzy cumulative costs are shown in Table 3.5.

In view of T¡2 , it is important to point out here that in Table 3.5, T¡'s are parabolic fuzzy

numbers. Howevet, we may approximate a parabolic fuzzy number by a T.F.N. if by

doing so the o/o age error obtained is less than3o/o.

17.8-@

169 -3036.25 -x

54

: (136.2s,

1.5

for150 ( x ( 167.40

150, 167.40) is

0.80

x <736.25

136.25 < x <150

150< x<167.4

x>167.40



'able3.4. Error

c[

0
0.1

Curvature

0.2

Left

0.3

136.25

sis for T

137.5575

0.4

0.5

138.88
140.2175

Riqht

0.6

0.7

167.4

141.57

165.624

142.9375

0.8

163.856

0.9

144.32

162.096

145.7175

Left

T.F.N.

1

136.25

160.344

147.13

137.625

As we see from Table 3.4, the %o enor is less than 3o/o, therefore, we may assume thatTn

is a T.F.N.. The error analyses for all Tij's is shown in Appendix 1. Thus, from Table 3.4

and Appendix 1 we observe all Tij's can be approximated by triangular fuzzy numbers.

148.5575

158.6

156.864

139

Riqht

140.375

150

1 55.1 36

167.4

141.75

153.416

165.66

143.125

151.704

163.92

144.5

162.18

Left

145.875

Error

150

160.44

147.25

0.0675
0

158.7

148.625

156.96

0.12

Riqht

0.1 575

150

155.22

153.48

0.18

0

0.036

0.1875

151.74

0.064

55

0.18

o/o Error

Left

0.084

0.1575

150

0.04907

0.096

0

0.12

0.086406

0.0675

0.1

0.112325

0.096

Riqht

0.127146

0.084

0

0.021736
0

0.131176

0.064

0.039059

0.124723

0.036

0.051821

0.1 08086

0.059871

0

0.081561

0.063052

0.045437

0.0612
0.054146

0

0.041717
0.02373

0
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Table 3.5a e

Period

Cumulatlve costs

1

un

2

1

Period

(98, 100, 105)

3

Second Tableau

4

2

(1 36.25, 1 50, 1 67.40)

5

(98, 100, 105)

6

â
J

(152, 170, 1 95.60)

(106.10, 110, 118.80)

4

(173.20,200,238.20)

(98, 100, 105)

(1 20.50, 130, 147)

(105.20,110,119.40)

5

(346, 400, 484.65)

(252.50,280, 329.85)

(e8, 100, 105)

(194, 210, 241 .30)

6

(425.20, 500, 632.15)

(143.60, 150, 163.30)

(316.40, 360,447.35)

(241 .70,270, 330.05)

(98, 100, 105)

(175.10, 190,222.05)

(112.40,120, 136.25)

(98, 100, 105)
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3.3.8 Calculating the Minimum Prior Period Cost for Period i and the

Decision Cost during Period j for the units purchased in Period i

Obtaining the Optimal Tableau.

As the minimum prior period cost for Priod I is zero, therefore,

Mt:0

Thus, we start Table 3.7 by adding zero to each entry in Row 1 of the Table 3.5 to form

Row I of Table 3.7. Now that Row I of Table 3.7 is complete, we observe that the

minimum cost of Period 1 is (98, 100, 105), as the (98, 100, 105) is the only enrry in

Column i. Therefore, the acquisition cost Mz for Period 1 is

M2: (98, 100, 105).

Since no backorder is allowed as the units must be purchased in Period l, therefore, M2 :

(98, 100, 105), the acquisition cost of Period 1, by necessity has to be incurred.

Row 2 of Table 4.7 is completed by adding this cost to each entry in Row 2 of Table 4.5.

Thus, assuming that all the T¡'s are T. F. N.'s, we have

Fzz : }l{2't T22

Therefore Fzz: (98, 100, 105) + (98, 100, 105; : (196,200,210)

Similarly, we calculate the rest of F2¡'s.

Now, we determine the minimum prior period cost M3 for Period 3.

Since, we want to keep the cost as low as possible, therefore, we identify the minimum of

two entries in Column 2 of Table 3.7 . For this purpose we calculate the associated

ordinary number (A.O.N.) for each entry (Kaufman and Gupta, 19S5).

Foreample, for F¡2 : (136.25,150,167.40) and Fzz : (196,200,270),



136.25 +2* t50 +167 .40A.O.N. for Frz : 4 
:

In a similar fashion we calculate

Table 3.6. Associated ordì

A.O.N. for F22 :

Period

.o. .é\SSOCTaïeO Orornary num

1

2

J

196+2* 200 +210

4

5

1

100.75

6

From Table 3.6 we

Therefore, M3

the A. O.

umbers f

4

N.

rrF

150.9125
2

and,

for each of the F¡ .

201.5

1s0.91

: 210.5.

Of .Fii S

observe that Frz < Fzz

: Fr2 : (136.25, 150, I 67 .40)

:M3+T¡¡

: (234.25,250,272.40)

Similalry, we calculate rest of F¡'s with their values as shown in Table 3.7.

3

171

211.975

F¡¡

251.6625

I
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202.85
4

232.625
262.0625
272.65

407.6625
5

386.3375
364.7375
323.625
303.6

514.3375
6

471.6875
428.85

366.1 875
325.0125

404.35
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Tablc

Period

3.7 Decisilon costs

1

2

un

1

(98, 100, 105)

3

enod

4

imal

2

(1 36.25, 1 50, 1 67.40)

5

ableau

(196,200,210)

6

3

(152, 170, 1 95.60)

(204.10,210,223.80)

(234.25,250,272.40)

4

(173.20,200, 238.20)

(21 8.50, 230,252)

(241.45,260, 286.80)

5

(346, 400, 484.65)

(250, 270, 300.60)

(350.50, 380, 434.85)

(330.25, 360, 408.70)

6

(425.20, 500, 632.1 5)

(295.60, 320, 358.90)

(414.40,460,552.35)

(271 .20,300, 343.20)

(377.95, 420,497.45',)

(327.10,360, 417.65)

(285.60, 320,374.45)

(369.20, 400,448.20)



3.3.9 Calculating the Lot Size during Period j

For this purpose, we start from the last period of Table 3.7, Period 6. The minimum

decision cost in Period 6 is F56 : (285.60,320, 374.45), calculated by ordering the fuzzy

entries in Column 6, and it is obtained by acquiring Period 6's demand in Period 5.

Thus, lot size in Period 5 is given by

Lro:Dro*Dod

r d 
- r,L5* : L2d + 48, -3a + 531 +[2a + 18, -5a + 25]

Lrd : I4a + 66, -Ba + 7Bl

We now set

This yields,

4a+66:xand -8a+ 78=x

and

In (3.21) setting

In (3.22) setting

4a + 66- x: 0

-Ba + 78 -x : 0

60

Setting a =l ineither we get

Therefore L5 : (66,10,78)

Now, we move to Period 4. The minimum decision cost for Period 4 is F1a : (173.20,200,

238.20), and it is obtained by acquiring Period 4 demand in Period 1. So, Period 1 is an

acquisition period to satisfy the demand in Period 1,2,3 and 4.

Lot size in Period 1 is given by

Lrd :Drd t Dza *Dtd *Dcd

Lra : llla +79, -11a + 101]

a=0

a=0

weget x:

weget x:

x:70

66

78

(3.21)

(3.22)



This yields,

Therefore, L1 : (79,90, 101)

Thus, we have lot size for each period as in Table 3.8.

Table 3.8.
Period

Lot Size

Lot Size d

I

(79,90,101)

3.3.10 Interpretation of the Results

unn

In Table 3.8, we calculated the lot size required to satisfy the demand during six weeks.

The lot size in Week 1, L1: (79,90, 101), is used to satisfy the demand from Week 1

through Week 4. The lot size in Week 5, Ls : (66,70,78), is used to satisfy the demand

in Week 5 and Week 6.

Fuzzy set theory permits the partial belonging of an element to a fuzzy set characterized

by a membership function that takes values in the interval [0, 1]. Thus, fuzzy approach

yields a relatively "more satisfactory and flexible solution" within a pre-specified

intervals, whereas a conventional crisp set theory only permits an element either to belong

(membership grade 1) or not to belong (membership grade 0) to the set.

Period i

2

(0,0,0)

a
J

(0,0,0)

4

(0,0,0)

6t

5

(66,70,79)

6

(0,0,0)



A SIMPLIFIED APPROACH TO LOT SIZING INVENTORY
PROBLEM WITH VARTABLE DEMAND RATE AND BACKORDERS

ALLOWED WITIil FTI ZZY INFORMATION

In the present chapter, we modify Chapter 3 fuither by considering a variable demand rate

inventory problem with backorders allowed, under fuzzy environment with a finite-

planning horizon. We develop a technique based on dynamic programming to find the lot

size for a given product P, assuming that the demand, the acquisition cost, the carrying

cost and the back-ordering cost for a given product P are represented by triangul ar fuzzy

numbers.

CHAPTER 4

4.1 Introduction

In 1989, Webster and Francis considered a back-order version of the Wagner-Whitin

algorithm to determine the lot size under crisp environment. The present chapter is an

extension of their work with fuzzy information (data). This back-order (BO) model

assumes that the demand in a given period can be met in future at some additional costs.

Under certain circumstances this could be more economical than supplying the required

units in the period of demand. The additional cost may be a function of the numbers of

units' the time on BO, the number of orders on BO, the number of customers awaiting

backordered units, or a variety of other variables. The BO costs in the model presented

here assumes Bo costs are expressed as " dollars per unit per period of time".
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4.2 Lot Size Problem under Crisp Environment

4.2.1 Assumptions

For this model, the following assumptions are made (Webster and Francis (1989)).

1. The demand varies from one time period to another and is assumed to be known.

2. The units needed to satisfy demand during a particular period can be acquired at

any time including backorders.

3. Acquisition costs (setup costs of production run or ordering or follow-up costs for

purchased parts) are fixed relative to the quantity acquired, but may vary from one

time period to another.

4. Holding cost in a particular time period represents the cost of inventorying one unit

of product from that period until the next period. Units carried forward more than

one time period would be charged the accumulated holding cost of all periods from

acquisition period through the period prior to the actual period of demand or use.

Holding cost may vary from one time period to another.5.

6.
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Backorder cost represents the cost of backordering one unit of product from the

period in which it was needed to the next time period. Units backordered more

than one time period would be charged the accumulated backordering cost of all

the periods from the time period of demand till the time period of acquisition.

Backorder cost may vary from one time period to another.7.

8. The replenishment lead-time is known with certainty so that delivery can be timed

to occur accordingly.

9. The product is treated entirely independently of the other products i.e., benefits

from joint replenishment do not exist or are ignored.



4.2.2 Notation

Q : number of units demanded during period j

H¡ : holding cost (in $) per unit during period i

C¡ : cumulative holding cost per unit during period j for the units needed during

period j but purchased during period i, i < j

backordering cost (in $) per unit during period ibi :

B,j : cumulative backordering cost per unit during period j for the units needed

during period j but purchased during period i, i > j

A¡ : acquisition cost, irrespective of the number of units acquired, during period j.

n : the number of periods during the planning horizon

T¡r: cumulative cost ( acquisition cost + carrying cost * backorder cost) during period

j for the units needed during periodj, but purchased during period i for k periods

ofbackorder

Mir.: the minimum prior period cost for row i of k periods of backorder section

F¡r : decision cost (cumulative cost + the minimum prior period cost) during period j

for the units needed during period j, but purchased during period i for k periods

of backorder

L¡ : lot size during period i

64

4.2.3 General Formulation

Using the notation given in Section (4.2.2) we have



J-l
C,j : I.Ht

m:l

c,j:o
i-t

Bü : IÞ* for j <i
m=J

Bü:0 forj>i

For k:0 i.e. no backorders allowed

j
T¡o : Aif I(Ct- *D-)

m=i

forj>i

forj<i

For k >0 i.e.backordersallowed,andi< j

ji
T¡r:Ai* I(Cm*D*) + I(Bm*D*)

m=i m=i-k

For k >0 i.e.backordersallowed; i>jandi-j <k

i
T,jr : I@i- *D*)

m=i-k

For k: 0 i.e. no backorders allowed

Mio: minimum of F.1¡-¡¡¡

where fr: 2,3, . . .,i; k: 1 ,2, . .., (i-1).

For k> 0 i.e. backorders allowed

Mik: minimum of Fn'1¡-¡¡o

where ffi: 1, 2, . . ., (i-1).

Füo: T¡o+Mio

F,jr: T¡¡+M1i-r¡r
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(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.e)



4.3 Lot Size with Fuzzy Information (Data)

4.3.1 Assumptions

1. The demand varies from one time period to another and is assumed to be known

triangular fazzy numbers.

2. The units needed to satisfy demand during a particular period can be acquired at

any time including backorders.

3. Acquisition cost (setup cost of production run or ordering or follow-up cost for

purchased parts) is available in the form of a triangular fuzzy number, and

unchanged relative to the quantity acquired.

4. Holding cost in a particular time period, assumed to be available in the form of a

triangular fuzzy number, represents the cost of inventorying one unit of product

from that period until the next period. Units carried forward more than one time

period would be charged the accumulated holding cost of all periods from

acquisition period through the period prior to the actual period of demand or use.

Holding cost may vary from one time period to another.

66

5.

6. Backorder cost, during a particular time period, is available in the form of a

triangular fuzzy number, and represents the cost of backordering one unit of

product from the period in which it was needed to the next time period. Units

backordered more than one time period would be charged the accumulated

backordering cost of all the periods from the time period of demand till the time

period of acquisition.

7. Backorder cost may vary from one time period to another.
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8. The replenishment lead-time is known with certainty so that delivery can be timed

to occur accordingly.

9. The product is treated entirely independently of the other products i.e., benefits

from joint replenishment do not exist or are ignored.

4.3.2 ComputationalTechnique

Along the lines of Francis and Webster (1989), we now give a simple and straightforward

computational technique to the discrete lot-size problem with backorders allowed. It will

be explained through the progressive development of three tables and four steps, in which

costs associated with the demand of a particular time period (columns) are identified as a

function of that period during which the units are acquired. The first tableau contains the

cumulative carrying costs per unit in the upper right triangular portion and cumulative

backordering costs per unit in the lower left triangular portion, obtained as explained in

Step 1 below. The second tableau shows the cumulative costs including the backordering

costs, obtained as explained in Step 2 below. There are (n+1) sections of this table;

Section I shows the cumulative costs for no BO; Section 2 shows the cumulative costs for

one period of BO; Section q contains the cumulative costs for (q-1) periods of BO. The

optimal tableau is obtained from the second table, as explained in Step 3, and also has

(n+1) sections. In Step 4,we identify the optimal solution from the optimal table.

The four steps of our algorithm are as follows:

STEP 1. Obtaining First Tableau

Obtain the cumulative carrying cost C¡ and the cumulative back ordering cost

associated with each time period by using (4.1) and (4.2) respectively and prepare

following table in the form of a triangular matrix having n rows and n columns.

B¡

the



Initial Tableau

STEP 2.Obtaining Second Tableau

1. Obtaining Section I

Obtain the cumulative cost T¡o associated with each time period by using (4.3) and

prepare Section 1 in the form of a truncated upper triangular matrix having n rows and

n columns.

2. Obtaining Section 2

Obtain the cumulative cost T¡r associated with each time period by using (4.4) and

(4.5) prepare Section 2 in the form of a truncated upper triangular matrix having n

rows and n columns.

3. Obtaining Section 3

Obtain the cumulative cost T¡z associated with each time period by using (4.4) and

(4.5) prepare Section 3 in the form of a truncated upper triangular matrix having

(n -l) rows and n columns.
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In general therefore, we compute Section g, where g: 2,3,. . ., n+1; of the second

tableau as follows:

It shows the cumulative costs for (q -l) periods of back order. To obtain the

cumulative cost T¡1q-r¡ associated with each time period we use (a.\ and (4.5), and

prepare the section in the form of a truncated upper triangular matrix having (n - q +2)

rows and n columns.

STEP 3. Obtaining Optimal Tableau

1. Obtaining Row I of each section

Obtain Row 1 of each section of the optimal tableau by duplicating Row 1 of

the corresponding section of the second tableau.

2. Obtaining Row 2 of each section

To obtain Row 2 of Section 1

I. Examine Column 1 of Section 2, Sectiofl 3, . . ., Section n+l of the optimal

tableau and in the column identify the element with smallest value s¡.

II. Obtain Row 2 of the first section of the optimal tableau by adding s1 to each

element of Row 2 of Section I of the second tableau.

To obtain Row 2 of Section 2

n. Examine Column I of Section I of the optimal tableau and in the column

identify the element with smallest value v1.

IV. Obtain Row 2 of Section 2 of the optimal tableau by adding v1 to each

element of Row 2 of Sectio n 2 of the second tableau.

To obtain Row 2 of Section 3



t0

V. Examine Column I of Section I of the optimal tableau and in the column

identify the element with smallest value v1.

VI. Obtain Row 2 of Section 3 of the optimal tableau by adding v1 to each

element of Row 2 of the third section of the second tableau.

In general therefore, we compute Row 2 of Section q, where g:2,3, ., n+i; of the

optimal tableau as follows:

I. Examine Column I of Section 1 of the optimal tableau and in the column

identify the element with smallest value v1.

II. Obtain Row 2 of Section q of the optimal tableau by adding v¡ to each

element of Row 2 of Section q of the second tableau.

In general therefore, we compute Rowp of Section q, where p:\,2,. ., n;q: 1,2,. . .,

n+l; of the optimal tableau as follows:

To obtain Row p of Section I

L Examine Column (p-1) of Section 2, Section 3, . ., Section (n+1) of the

optimal tableau and in the column identify the element with smallest value

s(p-r ).

II. Obtain Row p of Section 1 of the optimal tableau by adding s1p-r¡ to each

element of Row p of Section I of the second tableau.

To obtain Row p of Section q where g:2,3,. . ., n*l

ilI. Examine Column (p-1) of Section 1 of the optimal tableau and in the column

identify the element with smallest value v1p-r¡.

IV. Obtain Row p of Section q of the optimal tableau by adding v1p-r; to each

element of Row p of Section q of the second tableau.
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STEP 4. Identiffing the optimal solution

(i) Examine the column n of each section of the optimal tableau and

identify the minimum value element ,n* in it.

(ii) Suppose sn* : F'nnk . Then Period m is the acquisition period for

demand Period n.

If m > n, then F*n¡ is obtained by acquiring Period n, Period (n-1), .

. ., Period (n-k+l)'s demand during Period m, then

a) Ignore all rows that have acquisition Period n, Period (n-1), .

. ., Period (n-k+1) of each section.

b) Examine the column (n-k) of each section of the optimal

tableau and identify the minimum value element s1n-r¡* in it.

c) Suppose s1n-k¡* : Fn(n-r)e, then Period h is an acquisition period

for units required for Period (n-k).

d) Ignore all rows that have acquisition Period (n-k) of each

section.

e) Examine the column h of each section of the optimal tableau

and identify the minimum value element sn* in it.

Ð Suppose sh* : Fhhg, then Period h is an acquisition period for

units required for Period h.

If m < n, then Fn,,n¡ is obtained by acquiring Period n's demand

during Period m, then

a) Ignore all rows that have acquisition Period n of each section.
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b) Examine the column m of each section of the optimal

tableau and identify the minimum value element sr* in it.

c) Suppose s,n* : F..r. then Period m is an acquisition period

for units required for Period m.

Stopping Rule

We continue in the optimal tableau in the same manner until we reach at the first

period of the planning horizon. At this stage we examine Column 1, and observe that

the optimal overall policy has been reached and the process terminates.

4.3.3 Numerical Example Under Fuzzy Environment

We illustrate our method through the following numerical example (represented in Table

4.1 and Table 4.2). Demand, acquisition cost, and carrying cost are represented by

triangular fuzzy numbers. We assume that acquisition cost remain constant throughout the

planning horizon.

able 4.1. Demand
Period

Demand

Acquisition Cost

Carrying Cost

Backordering Cost

uisition cost , Carrying and BO cost (W
1

(11,20,25)

(98,100,105)

(0.85, l, 1.2)

(0.2,0.5,0.7)

2

(45,50,52)

(98, 100, 105)

ek 1 to Week 3)

(0.9, I, 1.15)

(0.25,0.5,0.6)

a
J

(e, 10,

(98, 100, 105)

t2)

(0.9,1,1.2)

(0.35, 0.5,0.7)



Table 4.2. Demand,
Period

Demand

Acquisition Cost

Carrying Cost

uisition cost , C

Backordering Cost

4

(8,

4.3.4 Intervals of Confidence

4.3.4.1 Intervals of Confidence of Demand

10,

(98,100,105)

12)

ns and BO cost (Week 4 to Week 6

(.95, 1, 1.1)

(0.3, 0.5, 0.65)

dro = l3a + 17, -5a + 251

drd = lla + 9, -2a + I2l

dro = l2a + 48, -3a + 531

5

(48, 50, 53)

(98,100, 105)

4.3.4.2 Intervals of Confidence of Acquisition Cost

Ard = l2a + 98, -5ø + 105] Ard : l2a + 98, -5a +

A3d : l2a + 98, -5ø + 1051 Aoü = [2a + 98, -5a +

Aro = [2ø + 98, -5ø + 105] Auo : f2a + 98, -5a +

4.3.4.3 Intervals of Confidence of Carrying Cost

Hrd = [0.15a + 0.85, -0.2a +1.2] Hrd : [0.104 + 0.90,

Hrd : [0.104 + 0.90, -0.3a +1.2] Hod = [0.054 + 0.95,

Hro = 10.20a + 0.80, -0.25a + 1.251 Hed = 10.15a + 0.85,

(.8, 1, 1.25)

(0.42,0.5, 0.55)

t3

6

(18,20,25)

(98,100,105)

(.85, 1, 1.3)

(0.25,0.5, 0.65)

drd = f5a + 45, -2a + 521

doo = f2a + 8, -2a + 121

duo : l2a + 18, -5ø + 251

4.3.4.4 Intervals of Confidence of Backordering Cost

brü = 10.3a + 0.2, -0.2a + 0.71 bro : 10.25a + 0.25, -}.Ia + 0.61

1 Osl

1 0sl

I Osl

-0.15a + 1.151

-0.10a + 1.101

-0.30a + 1.301



bro

brd

= 10.75a

4.3.5 Calculating the Cumulative Carrying

Cumulative Backordering Cost per unit

units purchased during Period i

Obtaining the First Tableau

[ 0.08ø

+ 0.35, -0.2a +0.71 boo

+ 0.42, -0.05a + 0.551 buo

Using (4.1), we have

c,ø:o
1

crr.d : I Hra
l- _1tL-l

2
cna: I Hxd :

l-_1tu-l

Cßd : l0.l5a + 0.85,

Cßã:10.25a+1.75,

We now set

0.25a + l.J5:

: 10.02a + 0.3, -0.15a + 0.651

= 10.25a +0.25, -0.15a +0.651

Cost per unit and the

during Period j for the
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Hrd : l0.I5a + 0.85,

H,,d -r Hzd

This yields,

-0.2a + 1.21+ [0.10a + 0.90, -0.15a + 1.15]

-0.35a +2.351

-0.2a + l.2l

and

0.25a+1.75-x:

-0.35a +2.35 - x

In (a.10) setting a = 0 we get

In (4.1 1) setting a = 0 we get

x and -0.35a +2.35 = x

0

:0

:X

X

t.75

2.3s

(4.10)

(4.11)



Setting a =l in either we get x : 2

Therefore Cr: : (I.75,2,2.35)

Similarly, we calculate Cl¿, C¡5 and C¡6

C1a: (2.65,3,3.55); Cr5 : (3.6,4,4.65);

Membership function for C¡3 : (1.75,2,2.35) is

,.,,., : 

{

0

x -1.75

Again, we obtain

0.25

x-2.35

B¡r : (0.45,1, 1.30)

and its membership function ¿rs31 (x) as

- 0.3s
0

,"r,Or: 

{

Crc: (4.4,5,5.9)

75

0

x - 0.45

0.55

x - 1.30

We obtain in a similar manner

backordering costs for rest of B¡'s.

x <l.75

1.75 <x<2

2<x<2.35

x>2.35

- 0.30

the fuzzy carrying costs

We thus obtain Table 4.3.

x < 0.45

0.45<x<1

1< x < 1.30

x >1.30

lor rest of C¡'s, and fuzzy
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Table 4.3. Cumulative Carrying Costs and Cumulative Backordering Costs during Period j
Demand Period

Acquisition
Period

I

.,

3

4

5

6

123456

(0. 0, o)

(0.2,0.5, 0.7)

(0.45, r,1.3)

(0.8. 1.5, 2)

(1.t,2,2.6s)

(t.s2,2.s,3.2)

(1.77,3,3.8s)

(0.85, l,1.2)

(0, 0, 0)

(0.25, 0.5, 0.6)

(0.6, r, r.3)

(0.9,1.5, r.95)

(1.32,2,2.5)

(t.s7,2.s,3.ts)

(t.7s,2,2.35)

(0.9, l, l .l5)

(0, 0, 0)

(0.35, 0.5, 0.7)

(0.65, l,1.35)

( 1.07, l .5, r .9)

(t.32,2,2.55)1

4.3.6 Calculating the Cumulative cost including Back order cost during

Period j for the units purchased during Period i for k periods of back

(2.65, 3, 3.55)

(1.8,2,2.3s)

(0.9, 1. 1.2)

(0, 0,0)

(0.3,0.5, 0.65)

(0.72, t, 1.2)

(0.97,1.5, l.8s)

orders (T':u)

(3.6,4,4.6s)

(2.75,3.3.45)

(t.8s,2,2.3)

(0.9s, r, l.r)

(0, 0, 0)

(0.42, 0.s,0.55)

(0.67,1,1.2)

Obtaining the Second Tableau

1. No Back orders allowed.

Using (4.3), we have

Trroa : Ard ('.'cr:o)

Trroa : l,2a + 98, -5ø + 105]

(4.4, s, s.9)

(3.55,4,4.7)

(2.65, 3, 3.ss)

(t.75,2,2.35)

(0.8, l, r.2s)

(0, 0, 0)

(0.25, 0.s, 0.65)

2

Tr2o: A,+ I (Crr*Dr)
l._1ñ--t

Trroã : Ard +(cuo *Dto )*(crrd *Dzd )

(4.12)



Tnod : l2a + 98, -5ø + 105]+0+

{[0.15a + 0.85, -0.2a +1.2]*l5a + 45, -2a + 521]

Trrod : 1.75a2 + 73a + 136.25, .40a2 - I7.8a + 167.41

We now set

.75a2 + I3a + 136.25: x ard .40a2 - 17.8a + 16'7.4 = x

This yields,

and

15a2+l3a +136.25- x: 0

.40a2 - 17.8a +16'7.4 - x : 0

In(4.13)setting d=0 weget x: 736.25

In (4.14) setting a = 0 we get x : 167 .4

Setting a=I in either we get x : 150

Therefore Tlzo : 036.25, 150, 167.40)

Now, we determine membership function for Tlzo

Solving quadratic equation (4.13) .75a2 + 13a + 136.25- x : 0 for a weobtain

-13+@o=È for 136.25 ( ¡
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Andsolvingquadraticequation (4.14).40a2-17.8a +161.4 - x : 0 for a weobtain

Thus, the membership function for Tl2 0 :

(4.13)

(4.r4)

17.8-@
.80

(136.25, 1 50, I 67.40) is

for150 ( x ( 167.40



l'\zo,.r: 

{

Similarly, we obtain the fiizzy cumulative costs for rest of T¡o's.

ln view of T¡26, it is important to point out here that in Table 4.6, T¡s's are parabolic

fiizzy numbers. However, we may approximate a parabolic fizzy number by a T.F.N. if by

doing so the o/o age error obtained is less than3Yo.

1.5

0.80

Table 4.4. Error A

ct

0
0.1

78

x<136.25

136.25<x<150

150 < x <167.4

x>167.40

Curvature

0.2

Left

0.3

136.25

137.5575

0.4

0.5

138.88

for

140.2175

Riqht

0.6

167.4

0.7

141.57

165.624

142.9375

0.8

163.856

0.9

144.32

162.096

Left

145.7175

T.F.N

136.2s

1

As we see from Table 4.4,the]:o enor is less than3o/o, therefore, we may assume that Trzo

is a T.F.N.. The error analyses for all T¡o's is shown in Appendix 2. Thus, from Table 4.4

and Appendix 2 we observe all T¡o's can be approximated by triangular fuzzy numbers.

160.344

147.13

137.625

148.5575

158.6

156.864

139

Rioht

140.375

1 55.1 36

150

167.4

141.75

153.416

165.66

143.125

151.704

163.92

144.5

Left

162.18

Error

145.875

150

160.44

147.25

0.0675
0

2. One period of back orders.

Now, for k : 1, i>j, using(4.5),wehave

148.625

158.7

0.12

156.96

Rioht

0.1575

150

155.22

0.18

0

153.48

0.036

0.1 875

151.74

0.064

0.18

o/o Êrror

Left

0.084

0.1575

150

0.096

0.04907

Trrrd : i Bz^d *D^d
m=I

0

0.12

0.086406

0.0675

0.1

0.112325

0.096

Risht

o127146

0.084

0

0.021736
0

0.131176

0.064

0.039059

0.124723

0.036

0.051821

0.108086

0.059871

0

0.081561

0.063052

o.045437

0.0612
0.054146

0

0.041717
0.02373

0



Now, for

dL2tt :

:

ffi:1,

(Bzra * DJ )

[0.3a + 0.2, -0.2a + 0.7] *

t0.9a2 + 5.7a +3.4, la2

Setting

yields,

0.9a2 + 5.7a +3.4=

and

[3a + 77, -5a + 251

- 8.5a + 17.51 .

0.9a2 + 5.7a +3.4 - x

lr¿2-8.5a+17.5-x

In (4.15) setting a =0 we get x : 3.4

In(4.16)setting a=0 weget x: 17.5

Setting a =l in either we get x : 10

Therefore, the parabolic fuzzy number

T2 r I : (3 .4, 10, 17 .5)

with membership function ¡t1231

x and la2 - 8.5a + ll.5

:0

:0

79

=X

lrrz¡ r (x):

Now, for

dr23t :

0

- 5.1 + "132.49 -3.613.4 - x

(4.15)

(4.16)

k : l, i<j, using (4.4), wehave

3z
Az+ I (Cz**Dnl) +l (Bz,*Dnl)

m=2 nÅ

8.5 -

x <3.4

3.4<x<10

10<x<17.5

x 2 17.55



Tnru :lza + 98, -5a + 1051+ l}.la + 0.9, -.15a + 1.151 'r lla

+ 10.75a2 + 5a + 4.25, .50a2 - 5.5a + l5l

10.9a2 + 5.7a +3.4, 1a2 - 8.5a + 17-51

Trtra : lIa2 + 9.5a + 109.50, .1.3a2 - 17.6a + 136.31

Setting la2+9.5a +109.50 = x and 1.3a2-17.6a +136'3 = x

yields, la2+9.5a +109.50- x:0

and 7.3a2-17.6u +136.3 - x:0

In(4.17) setting d=0 we get x : 109.50

In (4.18) setting a =0 we get x : 136.3

Setting a =7 in either we get x : 720

Therefore, Tzzt : (109.5, 120,136.3)

80

t 9, -2a + l2l

Similarly, we obtain the fuzzy cumulative costs for rest of T¡t's for k :I , 2,. . . , n

In view of T23¡, it is important to point out here that in Table 4.6, T¡r's are parabolic

fuzzy numbers. However, we may approximate a parabolic fuzzy number by a T.F.N. if by

doing so the %o age error obtained is less than3Yo.

able 4.5. Error Analysis for

ct

0

0.1

Curvature

o.2

Left

(4.17)

(4.18)

0.3

109.50

0.4

110.46

0.5

111.44

for T

Riqht

0.6

112.44

0.7

113.46

36.30

0.8

114.50

34.55

0.9

1 15.56

32.83

Left

T.F.N

31.14

116.64

1

109.5

117.74

29.47

I 10.55

1 18.86

27.83

111.6

Rioht

120.00

26.21

112.65

136.3

24.62

113.7

134.67

23.05

114.75

133.04

21.51

115.8

Left

131.41

Error

20.00

116.85

129.78

0

117.9

0.09

128.15

1 18.95

0.16

126.52

Riqht

0.21

124.89

120

0.24

0

123.26

o.117

0.25

121.63

0.208

0.24

0.273

o/o Error

Left

120

0.21

0.312

0.081477
0

0.'16

0.325

0.143575

0.09

0.312

0.'186766

Riqht

0.273

0

0.211528

0.086955

0.208

0

0.218341

0.1 56589

0.117

0.207684

0.208179

0.1 80041

0

0.240986

0.1 35893

0.254254

0.075719

0.247211
0.219071

0

0.169034
0.096286

0
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As we see from Table 4.5,theo/o enor is less than3%io, therefore, we may assume thatTztt

is a T.F.N.. The error analyses for all T¡r's is shown in Appendix 2. Thus, from Table 4.5

and Appendix 2 we observe all T¡r's can be approximated by triangular finzy numbers,

therefore, in the analysis conducted in Section 4.3.6, use them as T. F. N.'s.

Values of all T¡r's are shown in Table 4.6.
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Table 4.6.

Acquisition
Period

Section l: No back orders

Cumulative Costs including Back-order Cost (Second Tableau)
Demand Period

I
Row I

2

J

;
-
5

T
Secr

I

(98,100, r05)

2

(136.25, I 50, 167.40)

on 2: One

2

( 101.4, | 10. t22.s) | t r oe.s, t20. I 36..3)

I

| (t t6.9, r4s. 168.7)

Row I

3
Row 2

period ofback order

4

J

Row 3

(3.40, r0,17.s0)

5

(1s2, r70,19s.60)

Row 4

6
Row 5

7
Row 6

(101.40,1 t0,t22.50)

4

(11.2s.2s.00,31.20) | (109.25.125.t36.20)

| (3.I 5.5.00.8.40)

(t73.20,200,238.20)

(r23.90, r40,1645)

(124.t,155,183.1)

(t4t.7s,185,231)

(r09.5,120,136.30)

5

(346, 400,484.65)

(2s5.9,290,347 .35)

(212.9,2s5,305)

(r 87.3s, 23s, 289.3)

(207 .65 ,22s, 2s t .5)

( 1 23.90, r 40,1 64.5)

6

(l 16.4s,t35,150.6)

(101.r5,105,r 13.40)

(2.40,5.00,7.80)

(425.20,500, 632.1s)

(3 l 9.80, 370, 464.85)

(206.6,315,393.8)

(2r8.85,275,348.0s)

(222.0s,24s,282.'1s)

(233.42,2ss,284.8s)

(255.9,290,347 .35\

(205.2s.235.,272.50)

(146.75,15s,t7t.70)

(100.40,r0s,1 12.80)

(20.t6,25,29.t5)

(3 l 9.8, 370, 464.85)

(2s2.9s,29s.36t .2s)

( 1 78.25, r 95, 230.45)

(l 14.80,12s,144.05)

(r l8.r6,l2s,r34.ls)

(Continued on next page)

(4.s0, r0, r 6.2s)
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Table 4.6.

Acquisition
Period

Section 3: Two periods of back order

Cumulative Costs including Back-order Cost (Second Tableau)
Demand Period

4

-)

7

Row I

I

Row 2

Row 3

R"* 4

R"w 5

Sect

2

(l 8.90, 4s.00,63.70)

on 4: Three

4

5

6

,
^.Sectl

Row I

periods ofback order

a
J

(l l 6.90, I45.00, l 68.70)

on 5: Four

5

(30.15.55.00,76.00) 
| frza.rs,rss.o0.l8l.00)

l(r*tr*.-

Row 1

6

,eriods of back order

Row 2

7

4

Row 3

(124. r 0,r 55.00, I 83. I 0)

(43.75,85.00, r26.00)

5

(2 12.90,25 5.00,3 0s.00)

(t 7 3.7 s,20 5.00,239.3 0)

(l 06.2s, l l 5.00, I 29.00)

(25.92,3 5.00,43.5 5)

( l4l .7s, r 85.00,23 1.00)

(48.75,90.00,125.40)

6

(260.60,3 I s.00,393.75)

(20 5.25,24 s.00,29 8.0 s)

(l 20.65, r 35.00, t60.2s)

(l 23.92, r 35.00,148.55)

(3 6.66,60.00,79.85)

( l 87.3s,235.00,289.30)

(67.45, r 30.00,I9l .6s)

( r 46.75, I 90.00,230.40)

(3 5.55,s0.00,66.3 5)

(2 l 8.85,27s.00,348.0s)

(l 61. I s,2 I 0.00,26 l.6s)

( 133.55,150.00, t 71.35)

(44.42,7 s.00,t02.0s)

(l 65.45,230.00,296.65)

(94.95, I 50.00, 1 96.35)

(t 7 9.8s,2s 0.00,327 .9 0)

(r 92.95,2s0.00,30 I.35)

(Continued on next page)

(s 6.3 0,95.00, 132.6s)
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Table 4.6.

Acquisition
Period

Section 6: Five periods ofback order

Cumulative Costs including Back-order Cost (Second Tableau)
Demand Period

6
Row I

7

1

Row 2

Section 7: Six

7 Row I

periods ofback or

2

er

J 4 5

(t 20.7 9,200.00,27 6.3 5)

6

(2r 8.79,300.00

(t26.95,220,296.45)

,381 .3s)

(ts7 .04,280.392.7



4.3.7 Obtaining the Optimal Tableau

Since, Mlk : 0, where k: 1, 2, . . .,6,

we start Table 4.8 by adding zero to each entry in Row I of the each section of the

Table 4.6 to form Row 1 of the corresponding section of Table 4.8.

For k: 0, Calculating the minimum prior period cost for Row 2 of Section 1.

Using (4.6), M2o: minimum of Fn'1¡ ,

where ffi : 2, 3, . . ., 7; k:7,2, . . ., 6.

Again, M2o : F2l I : (3.4, 10, 17 .5)

and Fzzo : Mzo'r Tzzo

: (101 .4,110,122.5)

Similarly, we calculate the rest of the F¡o 's.

Calculating the minimum prior period cost for Row 2 for k > 0.

Using (4.7), Mzr: Flro and FUr : T¡¡ + M1i-r.¡r,

Thus, F32r : 009.25,125,136.20)

Similarly, we calculate the rest of the F¡r 's.

Determining the minimum prior period cost for Row 3 for k > 0.

M30: minimum of F.zr where m: 2,3 and k: 1,2.

M3o : minimum of I Fzzl, Fzzt ,Fzzz,Fnzl

To calculate M¡0, we order these luzzy entries.

Fzzt : (101.40, 110,122.50)

F32r : 009.25, 125, 136.20)

Fzzz:0

Fnz : (18.90, 45,63.70)

85



A.O.N. for F22¡

A.O.N. for F¡zr

+

Therefore, M¡o : F3zz : (18.90, 45,63.70).

A.O.N. forF322 :

101.4 + 2* ll0 +122.50

Determining the minimum prior period cost for Row 3 for k > 0.

M3l : minimum of Fn,,2o m: 1,2

M¡r: minimum of I Frzo,Fzzo]

Frzo : (136.25, 150, 167.40)

Fzzo : (101.4, 110,122.50)

109.25 +2+725 +136.20

and F33o : (116.90, 145,168.70)

18.90 + 2+ 45 + 63.70

: 110.97

: 123.86

= 43.15

A.O.N. for F12e =

86

:.Fzzo < Flzo

(A.O.N. for each of F¡r's are shown inTable 4.7.)

Therefore, M¡r : Fzzo : (101.4, 110,122.50)

A.O.N. for Fzzo

136.25 +2+ 150 +167 .40

and Fc:r: (104.55, 115, 130.9)

Similarly, we calculate the rest of the F¡r 's. Values of all F¡r's are shown in Table 4.8.

101 .4 + 2* ll0 +122.50

: 150.91

: 110.98



Table 4.7. Associated ordi

1: No back orders

numbers for F¡

2: One Period of back order

150.9125
110.975

Demand Period

3: Two Periods of back order

110.975

407.6625
295.8125

121.45
224.6125

87

256.975

116.3625

4: Three Periods of back order

514.3375

235.0125
217.1125

n 5: Four Periods of back order

255.5375

6: Five Periods of back order

237.475

156.3175

7: Six Periods of back order

185.6875
189.2875

257.0675
201.2275

311.45

251.9375
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Table 4.8.

Acquisition
Period

Section 1: No back orders

1

2

J

^
5

6

*

Decision Costs including Back-order Costs (Optimal Tableau)
Demand Period

Rnw 1

Row 2

Row 3

Row 4

Row 5

Row 6

tion 2: One

(98, r00, l0s)

2

(136.2s,150, 167.40)

2

J

(101.4, 110, 122.5)

Þ nrr¡ 1

period ofback order

4

R nr¡¡ ?

5

(3.4,10,17.5)

Þnu¡ ?

3

6

R nr¡¡ /

( 1 s2, 1 70, 1 9s.60)

1

Rnrv {

(109.s, 120,136..3)

(116.9, l4s,168.7)

Þnrr, Á

( t 0l .40,1 r 0,122.s)

(109.2s, t2s, t36.20)

4

(173.20,200,238.20)

(123.90,140, 164 s)

(124.1, ls5,183.r)

(141.7s,185,231)

(109.5,120, r36.30)

(207 -2s,225,24t.20)

5

(104.55, r ls, r30.9)

(346,400,484.6s)

(2ss.9,290,347.35)

(212.9,zss,30s)

(187.3s,23s,289.3)

(207 .6s,22s,zst.s)

(123.9,r40,t64.s)

(2r4.4s,23s,255.60)

6

(202.ss,2t5,23s.9)

(t11.9,12s,144.1)

(42s.20, s00, 632.15)

(3 1 9.80, 370, 464.8s)

(206.6, 3 r5, 393.8)

(2 l 8.85, 27s, 348.0s)

(222.05 ,24s, 282.7 s)

(233.42,25s,284.8s)

(2s5.9,290,347.3s)

(303.2s,335,377 .s0)

'(248.15,26s,294.2)

(209.9,22s,249.1)

(144.06,16s,193.65)

(319.8,370,464.8s)

(3 50.95,39s.00,466.2s)

(Continued on next page)

(279.6s,305, 3s2. 95)

(224.3,24s,280.3s)

(242.06,26s,298.65)

(2t2.1s,235,267 .7 s)
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Table 4.8. Decision Costs including Back-order Costs (Optimal Tableau)
Demand Period

Acquisition
Period

Section 3: Two periods ofback order

3

4

Þ n'rr I

I

5

Þ nr¡¡ ')

6

Row 3

7

z

Row 4

Set

( l 8.90,4s.00,63.70)

Row 5

:tion 4: Th

4

5

6

;
Ser

Pnrw I

ree periods of back order

aJ

Row 2

( I 16.90, 145.00,1 68.70)

Row 3

(128. l s,1 ss.00,1 8 1.00)

Rnw 4

tion 5: F

5

6

Þn"' I

ur periods ofback order

4

7

Þ nrrr ?

(124.10,155.00, 183.10)

(226.1 s, 2ss.00, 286.00)

Row 3

(43 .75,85.00,126.00)

( 109.65, 1 2s.00, 146.5)

5

(2t2.90, 25 5.00, 305.00)

(2'7 1.7 s, 30s.00, 344.30)

(141.7s,18s.00, 23 1.00)

(t 46.7 s,t 90.00, 230.40)

(207.65,225,25r.s)

(1 3s.42,1 5s, l 79.8s)

6

(260.60, 3 l 5.00, 393.75)

(303.2s, 345.00, 403.05)

(l 87.35, 235.00, 289.30)

(67.4s, 1 30.00, l 9 1.65)

(244.7s,290.00

(222.0s,24s,282.7s)

(233.42,2ss,284.8s)

( 1 36.9s, 1 60, 1 88.8s)

( r 60.56, 200,244.3s)

,335.40)

(218.8s, 27s.00, 348.05)

( I 65.4s, 230.00, 29 6.6s)

(259.ls, 3 10.00, 366.6s)

(192.9s, 2s0.00, 301.3s)

(234.9s,260,293.8s)

(ts3.92.t9s,238.3s)

(t7 9.8s, 2s0.00, 327 .90)

(Continued on next page)

(290.9s, 350.00, 406.3 5)

( 1s7.7,20s,2ss.15)



Table 4.8. Decision Costs including Back-order Costs (Optimal Tableau)
Demand Period

Acquisition
Period

Section 6: Five periods ofback order

6

I

Row I

7

Section 7: S

Row 2

7

2

Row I

periods fback order

Ĵ 4 5

(120.7 9, 200.00, 27 6.3 s)

6

(218.79, 300.00, 38 1.35)

(224.9s,320,401.4s)

(ts7 .04,280,392.7)



4.3.8 Calculating the Lot Size during Period I

We start from the last period of the optimal tableau (Table 4.8), Period 6. The minimum

decision cost in period 6 is F763 : (153.92,195,238.35), calculated by ordering the fuzzy

entries in Column 6. Because it is obtained by acquiring Period 4, Period 5 and Period 6's

demand in Period 7, it implies that the unit required for demand period 4, 5 and 6 are

backordered. This rules out Section 7, Section 6, Section 5, Section 4, Row 2 to Row 5 of

Section3 and Row 3 to Row 6 of Section2, and thus requires that the least cost alternative

for Period 3 be selected from Sectionl, Row 1 & Row 2 of Section 2, and Row 1 of

Section 3. This least cost is (109.5,120, 136.30). While it occurs in two places i.e. Row 2

of Sectionl (Fz:o) and Row I of Section2 (F4), there is only one distinct strategy. Fzto &

F¡¡ , both imply the acquisition of Period 3's demand in Period 2.The least cost for Period

2 is (101 .40,110,122.5), it also occurs in two places, Row 2 of Sectionl (Fzzù and Row I

of Section 2 (Fzzt). As we observe from the notation, the acquisition period in both cases

is Period 2. Now we move to Period l. The minimum decision cost for Period 1 is Fzr r :

(3.4,10,7'7.5), indicating that units required in Period I were backorder and must also be

produced in Period 2. So, Period 2 is an acquisition period for 1,2, and 3.

Thus, lot size in Period 2 is given by

9t

Lz: Dl + D2+D3

(71, 80, gg)



Table 4.9. Optimal Schedule (with backorder allowed in the last period of the planning
horizon
Period

I

2

J

4

Demand

5

(17,20,25)

No Back Orders allowed in Final Period

6

(45,50,52)

It may be unacceptable to end a planning horizon with units on backorder. In that event, it

is only necessary to ignore those alternatives in Period 6 based on this, i.e., last row of

each section form Section 2 to Section 7. The resulting least cost alternative is indicated

by the cost of Fser: (224.3,245,280.35), and is obtained by acquiring Period 6's demand

in Period 5. The least cost for Period 4 is Fs+r : (111.9,125,144.1), indicating that units

required for Period 4 were on backordered and must also be produced in Period 5. So,

Period 5 is an acquisition period to satisfy the demand in Period 4,5 and 6. This also rules

out Section 7, Section 6, Section 5, Section 4, Row 2 to Row 5 of Section3 and Row 3 to

Row 6 of Section 2, and thus requires that the least cost alternative for Period 3 be

selectedfromSectionl,Rowl &Row2of Section2,andRowl of Section3.Thisleast

cost is (109.5,I20, 136.30). While it occurs in two places i.e. Row 2 of Sectionl (F23e) and

Row 1 of Section 2 (Fztt), there is only one distinct strategy. Fzzo & F231 , both implies the

(9,10,12)

(8, 10, 12)

(48, 50, 53)
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Action

(18,20,25)

BO (lperiod)

Produce (71, 80, 89)

From Inventory (1 period)

BO (3 periods)

BO (2 periods)

BO (1 period)
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acquisition of Period 3's demand in Period 2. The least cost for Period 2 is

(101.40,110,122.5), and it also occurs in two places, Row 2 of Sectionl (Fzzo) and Row 1

of Section 2 (Fzzù.As we see from the notation, the acquisition period in both cases is

Period 2. Now we move to Period 1. The minimum decision cost forPeriod I is Fzlr :

(3-4,I0, 17.5), indicating that units required in Period 1 were backorder and must also be

produced in Period 2. So, Period 2 is an acquisition period to satisfy the demand in period

1,2 and3.

Thus, lot size during Period 2 ,Lz : (71,80, 89) ( as calculated above)

Lot size during Period 5 is given by

Ls : D¿* D5+D6

(74,90,90)

Table 4.10. optimal schedule ( with no backorder allowed in the last period of

Period
ins horizon

1

2

a
J

4

Demand

5

(17,20,25)

4.3.9 Interpretation of the Results

6

(45,50,52)

Table 4.9 and Table 4.10 show two different optimal strategies. In Table 4.g,wecalculate

the optimal strategy, by allowing backorder in the last period of planning horizon, to

(e, 10,

(8, 10,12)

t2)

(48, 50, 53)

Action

(18,20,25)

BO (lperiod)

Produce (71, 80, 89)

From Inventory (l period)

BO (1 period)

Produce (74,80,90)

From Inventory (1 period)
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satisfy the demand during six weeks. This schedule indicate that we acquire the units

required for Period 1, Period 2 and Period 3 during Period 3, and backorder Period 4's

demand for 3 periods, Period 5's demand for 2 periods and Period 6' demand for 1 period.

The total cost for this strategy is (153.92.195,238.35).

In Table 4.10, we calculate the optimal strategy by not allowing backorder in the last

period of planning horizon to satisfy the demand during six weeks. According to this

schedule, the units required for Period 1, Period 2 and Period 3 must be acquired during

Period 3, and the units required for Period 4, Period 5 and Period 6 must be acquired

during Period 5. The total cost for this strategy is (224.3,245,280.35). This indicates that

there is a 27o/o increase in cost if we don't allow backorder in the lat period of planning

horizon.



DISTRIBUTION INVENTORY MANAGEMENT PROBLEM UNDER

FUZZy TNFORMATTON (DATA)

In the present chapter, we consider a two echelon distribution problem in which there are

one central warehouse and multiple branch warehouses. The projected orders from branch

warehouses along with direct sales constitute the demand on the central warehouse. We

formulate the problem under two different scenarios; one not allowing backorder, and other

allowing backorder. We first characterize the solution to no-backordering version of the

problem in which the demand, the expected inventory on hand, the expected receipt of an

order and expected release of an order of a given product P at a given branch warehouse k

during a given time period j are represented by a special type of triangular fuzzy numbers.

Vy'e extend the crisp distribution requirements planning (DRP) approach to find the demand

of a product P on a central warehouse during period j with fuzzy data. We then proceed

with the backordering version of the problem in which the demand, the expected inventory

on hand, the expected receipt of an order and expected release of an order of a given

product P at a given branch warehouse k during a given time period j are represented by

triangular fuzzy numbers. We extend the crisp DRP approach but with backorders allowed

to find the demand of product P on a central warehouse during period j.

CHAPTER 5

95

5.1 Introduction

According to Fogarty et. al (1991), the DRP is the time-phased replenishment needs of

branch warehouses summed by period. These requirements are based on the difference



96

between customer demand and the on-hand and in-transit inventory. In a branch warehouse

environment the DRP provides a solid link between distribution and manufacturing by

providing a record of the quantity and timings of likely orders.

The problem with most distribution systems is the assumption that the inventory will be

available in the central facility. So they focus on how best to allocate that inventory to the

different distribution centers. Shortages at the central supply facility can be frequent, and

these shortages are one of the most serious problems in managing a distribution network.

The fundamental problem, therefore, is how to get a system integrated with manufacturing

that will not only distribute the product in the best way, but also will make sure that the

product is available for distribution. DRP is the way to integrate distribution and

manufacturing (Martin 1983). However, both Fogarty et al. (1991) and Martin (1983) deal

with only crisp data. In the present chapter, using DRP approach, we deal with the problem

of distribution inventory management with fuzzy data.

5.2 DRP with Variable Demand Rate and No Backorders allo\ryed under

F uzzy Information (Data)

'We 
assume that j represents the number of periods and k represents the number of branch

warehouses which gettheir supplies from the Central warehouse, where j: l, 2,. . .,fr1

and k:1,2,...,p.

5.2.1 Assumptions

For the fuzzy model, we make the following assumptions:



97

l. The demand at branch warehouses varies from one time period to another and is

available in the form of special triangular fuzzy numbers.

2. The units needed to satisfy demand during a particular period must be purchased

during a previous period or at the beginning of a particular period during which

they are needed.

J. The economic shipping quantity for each warehouse is available in the form of

special triangular fuzzy number.

The beginning inventory is available in the form of special triangular fuzzy number

and in-transit inventory is zero.

4.

5.

6.

The lead-time is known with certainty so that delivery can be timed accordingly.

Warehouses are not allowed to redistribute their stock by lateral

transshipment.

5.2.2 Notation

d¡¡ : Demand of product P at branch warehouse k during period j

I¡¡ : Expected inventory on hand of product P at branch warehouse k during period j

R¡.¡ : Expected receipt of an order of product P at branch warehouse k during period j

O¡¡ : Expected release of an order of product P at branch warehouse k during period j

D.¡ : Total demand of product P on central warehouse during period j

I"¡: Expected Inventory on hand of product P at central warehouse during period j

S; : Direct sales of product P from central warehouse during period j

R.¡ : Expected receipt of an order of product P at central warehouse during period j

O.¡ : Expected release of an order of product P at central warehouse during period j



5.2.3 General Formulation

The formulas to compute I¡¡'s and D.¡'s under crisp environment are given below:

Irj: Iu+ R¡¡ - d¡¡

where r:j-1

k : 1,2,.. .rp

j:1,2,...,ffi

We now assume that each of I¡r, R¡¡ and d¡.¡

for k : 1,2,.. ., p; j 1,2,..., m

below.

p

¡'j: 
àou:* 

t'
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Im: [Ir,l, Inz, ( Irr¡ + á)]

R',¡ : [Rt¡t, Rrjz, ( Rkj3+ á)]

dt¡ : [dr.jr, driz, ( dr¡¡+ â)]

Or¡ : [Or¡r, Or¡2, ( OkF + á)]

S¡ : [S¡r, S¡2, ( S¡r + â)]

(s.2)

in equation (5.1); O¡¡ and S¡ in equation (5.2)

is a special triangular fuzzy number as given

The values of I¡.¡, RLj, dr,j, okj and S¡ can be obtained from the experts who share the same

information but different opinion.

If weset In: Umr, Ir.z,(In:+ â)l; Rr.j: lRrjr, Rnjz,(R¡p+ á)]; dr.j - ldrjr, d¡¡2,(d¡¡3+

á )l equation (1), then I¡¡ is a special triangular fuzzy number (S.T.F.N.) given by

(5.1)

where á -+ 0

where â + 0

where á -+ 0

where á -+ 0

where á -+ 0

Ir¡ : llrjr, Irjz, ( Ig¡ + ô)] where á -+ 0 (5.3)
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Similarly,ifweset 3*j: [or¡r, or¡2,(orjs+ ä)]; S;: [S;r, s¡2,(s¡r + á)]inequation

(5.2) , then Q is a special triangular fuzzy number (S.T.F.N.) given by

We determine each S.T.F.N., I¡¡ in equation (5.3) and its membership function on the line

of Kaufman and Gupta (1985, 1988) by using the interval of confidence for I¡,, R¡¡ and

d¡.¡ respectively, at a - level as follows.

P.j : lDcjl, Dcjz, ( D"¡l + á)l

Ikd : {(lnz-Iur)ø-f lr.r,[Inz-(In¡+ 6)]a *(In¡+ á)] V ael},ll

**ro : {(Rt:z-Rr¡r)ø +Rrjr,[Rr¡z - (Rr.i¡ + 6)]a + (Rri¡ + ô)] V a e[0,1] (5.6)

¿rio : {(dr¡z-dr.ir)a+drjr,ldr¡r-(du¡+ 6)]a + (dr.¡¡+â)] Vøe[0,1] (5.7)

For r :0, 1,...,ffi-l; k : I,2,...,p; j:1,2,...,m, (5.5),(5.6)and(5.7)yield

Ixd lRkjø- dr,o : {[(Imz - Ir,r) + (Rr.iz - Rr¡r) - drjz + ( dr¡¡ + á )] a -r Ix,t+ Rrjr

- ( dr¡¡+ á), [Ir¡z - ( Im¡ + á) + Rkj2 - ( Rr¡¡+ á) - (dçz - dr:r)]a

+ ( In¡ + á) + (Rr¡¡+ â) - dr¡r)

In interval of confidence {[(I¡,2 - Il*,r) + (Raz - Rr¡r) - drjz + ( dkjl+ á)]ø * Ir,r + Rrjr

-(dr¡¡+ ô), [Ir¡z-(Ir,: r á)+Rkj2-(Rr¡¡+ á)-(dgz-dr:r)]ø + (Ir,¡+ á)+(Rr¡:+

á) - dr:r)

1. Setting d :0, we get the end points I¡¡¡ and I¡¡3 of the fuzzy number I¡;

where á -+ 0 (s.4)

Ir.jr : [Inl + Rr.jr - ( d*¡¡ + á)]

Ir¡¡: [( I¡,3-| á)+(Rr¡¡ + ô)-d¡¡1] where á-+0

2. Setting d : 7 gives the interior point I¡¡2 of I¡¡

Itjz : [Inz + Rrjz - drjz ,Ik2 * Rr¡z - dr¡z]

(s.5)

where â -+ 0
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The corresponding membership functions from the above interval of confidence are

obtained by setting

[(Inz-Iu)* (Rr¡z-&,¡r)-drjz -|(dr¡¡ + õ)]a *Inr-f Rrjr-(dr.¡E + á) : * (5.8)

Next, we set

[Ir,z - (In¡ + á)+Rkj2 - (Rr¡¡+ á) - (dçz - dr¡r)]ø + (Ikr3 + á)

+(Rt¡:+ á)-dr.jr: x (5.9)

Solving (5.8) and (5.9) give membership functions, respectively, between I¡¡¡ and Iujz ,

and I¡¡2 and I¡¡3 satisfying 0 < a <1.

Similarly, we determine each S.T.F.N., D"¡ in equation (5.4) and its membership function

by using the interval of confidence for O¡¡ and S¡ respectively, at a - level

Dcjr: (O¡¡¡+S¡r)

Dcjz: (Or.¡z+S.iz)

Dcj3 : [(Ou¡+ á)+(Sj3 + á)] where á-+0

5.3.3 Computational Technique

Along the lines of Fogarty et al. (i989), in this section we give steps for a simple

and straightforward computational technique to solve the distribution inventory

management problem without backorders under fuzzy information . Lafer, in Section 3.4.3,

we modify the technique to incorporate backorders.

Step 1. Obtaining the Expected Order Release Period at Branch Warehouse k

(i) Starting with the first period, using (5.1) calculate the expected on hand

inventory in each period, up to and including the period in which the left end

point of the expected on hand inventory is less thanzero.
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(ii) Suppose the left end point (I¡n¡) of the expected on hand inventory (I¡n) is less

than zero in Period n, schedule an expected receipt in Period n and recalculate

the expected on hand inventory Im by using (5.1).

(iiÐ Calculate the expected order release period by subtracting the lead-time from

the expected receipt period.

(iv) Go to Period (n+1) and repeat Step 1 (i) - (iiÐ.

Continue the process to the end of the planning horizon.

Step 2. Obtaining Total Demand on the Central Warehouse

Calculate the total demand on the central warehouse during each period of the

planning horizon by using (5.2).

5.3.4 Numerical Example without allowing Backorders \ryith Fuzzy

Information (Data)

In this section, to illustrate the method, we consider a numerical example with three branch

warehouses WH¡, Vy'Hz, V/H¡, one central warehouse CWH, and eight time periodS Mr,

Mz, M¡, M+, M5, Mo, Mz and Ms. The projected warehouse orders and direct sales

constitute the demand on the CWH. The lead+ime, order quantity, beginning inventory on

hand and forecast demand for each warehouse are given in terms of the special triangular

fitzzy numbers as follows:



able 5.3.1 Lead

WHr

tlme, order quantrty and begrnning inventory, wl

WH2

rde
Lead Time
(Periods)

WH¡

CWH

2

and

able 5.3.'2.

-t

bl

Order quantity

2

(475,500,500+á)

WHr

aJ

Demand ln product units (Period I to Period 3). w

(150,200, 200+6)

WHz

(550, 700, 700+ 6 )

WH:

rere á -+ 0

M¡

(50,80, 80+á)

(900, 1000, 1000+á)

Direct
Supplv

Beginning Inventory

(15,30, 30+á)

Table

(70,120, 120 + 6)
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(204,204,204)

(35,50, 50+â)

(100, 100, 100)

WHr

(600, 600, 600)

Demand rn product units (Period 4 to Period 6). w

Mz

(70,80, 80+á)

WHz

(950, 950, 950)

(10,30, 30+á)

WH¡

(90, 120, 120 + õ )

rere á -+ 0

M¿

(60,70,70+6)

Direct
Supply

(85, 100, i00+á)

(30,50, 50+á)

(150,200, 200+õ)

M3

(68,80, 80+á)

(37,50,50+â)

(i8,30, 30+á)

(95,120,120+6)

M5

(62,80,80+á)

(75, 100,100+á)

(40,50, 50+á)

(100, 150, 150+á)

rere á -+ 0

(40,50, 50+á)

M6

(70,90, 90+ 6)

(78, 100, 100+á)

(120,150, 150+á)

(30, 50, 50+ á)



TabLe 5.J.4. I)emand rn

WHr

WH2

WH3

Mu

(70,90,90+á)

Direct
Supplv

(75, 100, 100+á)

units (PeriodT to Period 8). w

(75,100, 100+á)

5.3.5 Intervals of Confidence

(35,50, 50+â)

Using Tables 5.3.1-5.3.4, below, we compute the intervals of confîdence for demand, for

direct sales, and for beginning inventory so as to calculate the total demand on the CV/H.

Mg

(60,90,90+á)

5.3.5.1

(90, 100,100+á)

(110, 150, 150+á)

here á-+0

(25, 50, 50 + á )

Intervals of Confidence for Demand

drrd = l3oa + 50, (o -6þ + (so+a)1

drrd = ltoø + 70, (o -õþ + (ao+a)1

d,ro = ll2a + 68, (o -6þ + (so+a)1

druã = lroa + 60, (o -6Þ + (zo+a)1

drro = [l8a + 80, (o -6þ + (so+a)1

druo = lzoø + 70, (0-6þ + (lo+a)1

drro = [z5a + 65, (o -6Þ + (lo+a)1

r03

drro =

dr.ro =

[2oa + 70, (o -õÞ + (lo+a)1

[15a + ls, (0 -õþ + (:o+a)1

drrü = [2oa + 10, (o -6þ + (:o+a)1



drro = [12a + 18, (0 -6þ + (rO+a)1

drod = l10a + 10, (0 -6Þ + Ql*ä)l

drrd = [10ø + 20, (0-6þ + (f o+a)1

druo : lt5a + 20, (0-õþ + (:s+a)1

dr.ro = [2oa + 15, (o-õþ + (:s+a)1

drro : [15a + 20, (o - 6þ + (:s + a)1

drro : [5oa + 70, (o -6Þ + (rzo+a)1

drro = l3oa + 90, (o -õþ + (rzo+a)1

dtro = l25a + 95, (o -õÞ + (rzo+a)1

dro& = [25a + 75, (0-6þ + (OO * á)]

drrd = [4oa + 80, (o -6\p + (rzo+a)1

druo : [4oa + 100, (0 -õþ + (t+o*á)]

drro : l3oa + 110, (o -õÞ + (t+o*ä)l

drro : l5oa + 90, (0 -6Þ + (t+o*á)l

Intervals of Confidence for Direct Sales

S,o = lt5a + 35, (o -6þ + (so+a)1

szd = l2oa + 30, (o -õþ + (so+a)1

Sro = ltla + 40, (0 -6Þ + (so+a)1

t04

5.3.5.2

sod = [t3a + 37, (0-6þ + (so+a)1



Srd: lroa+ 40,(o-6Þ +(so+a)1

Suo : lloa + 30, (o -6Þ + (so+a)1

Srd = [t5a + 35, (0 -õÞ + (so+a)1

s8o = [25ø +25, (o-6þ + (so+a)J

5.3.5.3 Intervals of Confidence for Beginning fnventory

Irod = [0a + 204,0a + 2041 Irod = f\a + 100,0a + 100]

Irod = [0a + 600,0a + 600] I"gd = [0a +950,0a + 950]

5.3.6 Obtaining the Expected Order Release Period at Warehouse 1

Using equation (5.1), we have

rtd = rrod - d,,d+ Rr,ø

rttd = Irod + (-d,,ø )+ R,,a

I,,d = [0a + 204,0a + 2041 + l,@þ - (SO +6),-30a - 50]+0

I¡d = l6a + 124 -õ, -30a + I54l

Wenowset 6a + 124 -6 - x and -30a + 154 = x

This yields,
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6a + [(124 -á)- x)] : 0

and -30q + (154 - x) : 0

In (5.10) and (5.11) setting d,=0, we get x : (124 -6) and x : 154,

respectively.

Setting a=7 ineither (5.10)or(5.11), weget x: 724.

Therefore In : (124-6 ,124,154)

(5.1 0)

(s.1 t)



Similarly, we obtain

Continuing in the same manner, we find that I¡31 would be negative unless an order was

received. Therefore, an expected receipt R13 is planned for Period 3, and

Rr3 : (475, 500, 500 + á )

such that Rr: Ø = l25a + 475, (0 - 6Þ + (SOO * á)l

When the two-period lead-time is applied, we obtain that the expected order be planned for

release in Period 1, and

Orr : (475,500,500+á), and Orrd = l25a + 475,(0-6þ + (SOO*á)I

To determine membership function for Ir¡ , we have

Ind = Irra +R,ro - drrd = l(25+36)a + (43g-36), (-52-6)a +(516+á)l

Setting (ZS+36)o+ (39-3á) = x and ( -SZ-6Þ + (s16*ä) = ¡,

In = (44-26,44,84)

yields,

and

rn(5.12),(5.13) setting d=0, weget x: 439-36 and x : 516+á respectively.

Setting a =I in either we get x : 464

Solving ( ZS + 36 þ + @39 -3á - x) : 0 for d weobtain

106

(zs+36þ+@3e-3á-x) -0

( -sz-6 þ + (516+6 -x) = 0

Similarly, from (5.13) we obtain

x-516-õ
d-_

-s2- õ

x- 439 +36
25+36

Thus, the membership function for Ir¡ : ( 439 - 36 ,464, 516 + á ) is

for439-36 <x<464

(s.12)

(s.13)

for464 (x( (516+á)



-rr, ,,.r: 

{

0

x- 439 +36
25 +36

x -516-á

Similarly, we obtain the expected on hand inventories and expected order releases for rest

of I¡¡'s, and Ou¡'s respectively, and are in Tables 5.3.5-5.3.10.

-52- 6

x <439-36

439-36 <x<464

464<x<516+ä

x>516+á

107
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able 5.3.5. Distri

Forecasted
Demand
Expected Order
Receiot
Expected Inventory
on hand

lution Reourrements P

Expected Order
Release

annlns f-or Warehouse

able 5.3.ó. Drstr

(204,204,204)

Forecasted
Demand

(50,80, 80+á)

Mr

Expected Order
Receipt

istributi

Expected lnventory
on hand

(124-6,124,r54)

tron Requrrements P

Period 1 to Period 4

Expected Order
Release

(475, 500, 500 + ä )

(70,80, 80+á)

Mz

annlng tor Warehouse

(369 - 4õ ,394,
456+ 6 )

(44 -26 ,44,84)

fo

(62,80,80+á)

M5

(68,80, 80+á)

M¡

ho

(475, 500, 500 + á )

(289 -56 ,314,
394+ 6 )

(439 -36 ,464,
516+á)

Periolod 5 to Period 8

(70,90,90+á)

Mo

(60,70,70+8)

Ma

iod

(199- 66 ,224,
324+ 6 \

(369 - 46 ,394,
456+ 6 )

(65,90, 90+á)

Mz

(109-16,t34,
259+õ)

(70,90,90+á)

Mg

(r9 -8õ ,44,
189+â)
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able 5.3.'/. Drstn

Forecasted
Demand

Distribution R

Expected Order
Receipt

Expected lnventory
on hand

on Requrrements

Expected Order
Release

able

Plannins for Warehouann

(100, 100, 100)

.8. I)rstrtbutton R

Forecasted
Demand

ot

Expected Receipt

(15,30, 30+á)

M1

Expected Inventory
on hand

se 2 (Penod I to Penod 4

Expected Order
Release

(70 - â, 70, 85)

rrements P

(150,200, 200+6)

iod

(10,30, 30+á)

Mz

(140 - 46 ,190,
247 +6\

rìnrns tor Warehouse 2

iod

(40-26,40,75)

(20,30,30 + â )

M5

(18,30, 30+á)

M3

(110- 56,160,
227+6\

nod 5 to Period 8

(10 - 3á ,10,57)

(20,35,35+á )

M6

(10,20,20+6)

M+

(150,200, 200+6)

(75-66 ,725,
207 +6\

(140- 46,190,
247 +6\

(15,35, 35+á )

M7

(40-76,90,
192+ 6 \

(20,35,35+á )

Mg

(5 - 8á, 55,
172+6\
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Table 5.3.9. Distribution Requirements Planning for Warehouse 3 (Period I to Period 4)

Forecasted
Demand

Expected Order
Receipt

Expected Inventory
on hand

Expected Order
Release

able 5.3.10. Distri

(600, 600,600)

Forecasted
Demand

Expected Order
Receipt

(70,120, 120 + 6)

Mr

Expected Inventory
on hand

ution Requirements P

(480-á,480,530)

Expected Order
Release

(90, 120, 120 + 6 )

Mz

anning for Warehouse

(140- 46,r40,
270)

(360-26,360,
440\

(80, 120, 120+6)

Ms

(95, 120, 120 + 6 )

M3

(20 - 56 ,20,
1e0 )

eriod 5 to Period 8

(240-36,240,
34s)

(100,140, 140+á)

Me

(550, 700, 700+á )

(75,100, 100+á)

M¿

(430 - 6á, 580,
790+6)

(140- 48,t40,
270\

(110, 140, 140+á)

(550,700, 700+á )

M7

(290-7õ ,440,
680+á)

(90,140,140+á)

Mg

(150-8á, 300,
590+á)



5.3.7 Calculating the Total Demand on

Using (5.2)

J

D.,o: I
l. 1L-l

D.rd:IOn

D"1d : l25a

o*.rd + s,o

(o-dþ + (zoo+a)1

D"td :f9oa + 660, (o-zaþ + (lso+:ä)l

We now set

d+ozto *orrd+Srdl

+ 475, (o-¿Þ + (soo+a)1 +

CWH during Period I (Dt)

9oa+660 =Xârd (o-laþ+(zso+3â) =¡
This yields,

90a+660 -x -0

(o-zdþ + (zso+3á) -

In (5.la) setting a = 0

In (5.15) setting a =0

Setting a =l in either

tll

[50a + 150,

+ [t5a + 35, (o-dþ + (so+a)1

Therefore Dcl : (660,750, 750+36 )

Now, the membership function is obtained as follows.

Solving 90a + 660 - x.:. 0 for a we obtain

x:0

we get

we get

90

Solving (o-zaþ + (zso+3á) - x : 0 for a

x:660

x : (7so+3á)

weget x:750

A=
x -660

(s.14)

(s.1s)

660<x<750

we obtain



Thus, the membership function for D.1

d=
x -750 -36

-3õ

tto (x):
cl

0

x-660
90

x-750 -36

Similarly, we obtain the fuzzy demands along with their respective membership

functions for rest of D.¡'s.

-36
0

: (660,750,750+3â) is

750

As in 5.3.6 for different periods, we obtain expected on hand inventory and

expected order release period (see Tables 5.3.11 and 5.3.12) along with the

corresponding membership functions.

x <660

660 < x <750

750<x<(750+36)

x>(750-3ä)

tt2

(zso + ra)
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able 5.3.11. Distri

Forecasted
Demand

Expected Receipt

istrib

Expected Inventory

uhon Reourrements Plannrn

Expected Order
Release

on hand

able 5.3.I2. Drstnbuíon

(950, 950, 950)

ins for C

Forecasted
Demand

(660,750, 750 +33)

Expected Receipt

MI
entral Warehouse (Penod I to Perrod 4

ib

Expected Inventory
on hand

(200 -36 ,200,290)

Expected Order
Release

(900, 1000, 1000+ä)

urrements Plannl

(30, 50, 50+á )

la

Mz

(250-76,350,
633+á)

(150- 46,t50,260)

for Central Warehouse (Penod 5 to Perrod 8

(40,50, 50+á)

M5

(40,50, 50+á)

M3

(200-8ô,300,
593+á)

(100- 5õ ,100,220)

(30,50, 50+á)

M6

(587 ,7 50, 7 50 + 2õ )

(150 - 96 ,250,
563+â)

Mq

(900, 1000, 1000+á)

(35, 50, 50+â )

(250-76,350,
633+á)

Mz

(100-106,200,
528+á)

(25,50,50+á)

Ms

(50-11á,150,
503+á)



5.3.8 Interpretation of the Results

From Tables 5.3.11 and 5.3.12,we calculate the demand on CWH during 8 Periods by

assuming á = 0.005. The demand during Period 1, Period 2, Period 3, Period 4, Period 5,

Period6, Period 7 and Period 8 is (660,750,750.015), (30,50,50.005), (40,50,50.005),

(587,750,750.010), (40,50,50.005), (30,50,50.005), (35,50,50.005) and (25,50,50.005)

respectively. This yields the replenishment strategy to satisfy the demand from Period I

through Period 8. For example, the beginning inventory satisfies the demand from Period 1

through Period 3, and to satisfy the demand from Period 4 through Period 8, we must

schedule an expected receipt during Period 4. Also, we observe that when the three-week

lead-time is applied the expected order release is planned during period 1.

In Appendix 3, we calculate the various values of x, by assuming á = 0.005, when ct lies

between 0 and 1, and plot the membership function graphs for different values of x. For

example, the demand during Period 1 is (660, 750,750.015). As we observe from the

membership function graph D.¡, when 660 < x < 750 the membership function increases

monotonically to the left and goes to its maximum value of I (level of one's believe about

the belongingness of x to A, or level of truth of x belonging to A, or degree of

compatibility of x to A) at an interior point x: 750,and when 750 < x < 750.015 the

membership function decreases monotonically to the right and goes to 0 at a right end point

x:750.015, starting from 1 at x:750. Similarly we have the membership function graph

for D.2 to D.s along with the values of x..
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5.4 Distribution Requirements Planning with Variable Demand Rate

and Backorders allowed under Fuzzy fnformation (Data)

We now consider the option of backordering.

5.4.1 Assumptions

For this model, the following assumptions, in addition to the ones in Section 5.2.7, are

made:

1. The demand at branch warehouses varies from one time period to another and is

available in the form of triangular fuzzy numbers.

2. The units needed to satisfy demand in a particular period can be acquired at any

time including the backorders.

3. The economic shipping quantity for each warehouse is available in the form of

triangular fuzzy number.

4. The beginning inventory is available in the form of triangular fuzzy numbers and in

transit inventory is zero.

5.4.2 GeneralFormulation

we assume that each of I¡.., R¡¡ and d¡¡ in equation (5.1); o¡¡ and S; in equation

(5.2) for k : 1,2,. . .,p ;j : 1,2,. . ., m is atriangular fuzzynumber ofthetype.

Im : [Inr, Ir,z. Im¡]

Rrj : [RUl, Rr¡2, Rr¡¡]

dr¡ : [dr.¡r, dr¡2, dr¡¡]

Okj : [O¡¡¡, Oç2, Or¡:J

S; : [S¡r, S¡2, S¡]

The values of I¡r, Rrj, dr.j, o¡¡ and S¡ can, for example, be obtained from the experts who

share the same information but different opinion.
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If we set lrr= [Iu, Ikz,Ik,s]; Rrj : [&.j1, R¡*¡2, RçlJl ¿rj :

then Iç.¡ is a triangular fuzzy number (T.F.N) given by

Irrj : [Ir,jl, Irjz, Ig¡]

Similarly, if we set 6*j : [Or:r, Or¡2, Or¡ll; S¡: [S¡r, S¡2,

is a triangular fuzzy number (T.F.N) given by

P.j : [D.¡¡, D.¡2, D.¡3 ]

Each T.F.N, I¡.¡ in equation (5.16) and its membership function are determined on the line

of Kaufman and Gupta (1985, 1988) by using the interval of confidence for I¡,, R¡; and

d¡¡ respectively, at a - level

Ir,d : [(Ir,z-Inr)ø *Ir,r, (Ir,z- Ik,s)a + Ik,s)] V ae[0,1] (5.18)

Bu,o: [(Rr¡z-Rr¡r)a *Rrjr, (Rr¡z- Rr.¡:)ø + Rr¡¡)] Vae[0,1] (5.19)

d*jo: l(driz-dr¡r)a +drjr, (dr;z- dr.i¡)a + dr.¡¡)] Vøe [0,1] (5.20)

forr:0, 1,...,ffi-l;k: 1, 2,. .,p;j : 1,2,...,m.

(5.18),(5.19) and(5.20), alongwithr:0, l, .,ffi-l;k:1,2,...,p; j:1,2,...,ffi,

yield the following interval of confidence.

[(Ir,z - Iul * Rrjz - Rrjr - dr.jt + dr¡¡) ø * (I¡,1 * Rrjr - dr.¡: ) , (Inz - Ir,.: * Rrjz - RLj¡ - drjz

- dr¡r) a * I*.,t + Rrj¡ - dArJ .

In this interval of confidence

1. Setting d : 0, we get the end points I¡¡1 and I¡¡3

Itjr: (II*,r+Rrjr-drj:), andl¡¡3:(Im¡ + Rrjs -dr¡r)

of the fuzzy number I¡¡ .

l. Setting d : I gives the interior point I¡¡2 of I¡;

Irjz : (lnz + Rgz - drjz , Ik,2 * Rgz - dr¡z) .

116
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(s.16)

S¡r lin equation (5.2) , then Q
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The membership function is obtained from the interval of confidence by setting separately,

each of the function, equal to x and solving each of those equations forø. Thus,

(Ir.'z- Int *RLjz-Rrjr -dr.jz +dr¡¡)ø +(Ir,l+Rrjr-dr¡r): x

Next, we set

(It'z- In:*Rrjz- Rr.j¡-dr.jr-dr¡r)ø + (In: + Rrj¡-drjl): x

Using (5.21) and (5.22), we obtain the membership function for I¡.¡ .

Similarly, we determine each T.F.N. D.¡ (see (5.17)) along with its membership function

by using the interval of confidence for O¡.¡and S; respectively, at a - level, where

Dcjl : (O¡¡1 +S¡r)

DcJ2: (Or¡z + S.¡z)

D.j3 : (O¡¡3 + S¡l).

5.4.3 ComputationalTechnique

Below, we now modify the computational technique given in 5.3.3 for the

distribution requirements planning problem by incorporating backorders.

Step 1. Obtaining the Expected Order Release Period at Branch Warehouse k

(i) Starting with the first period, using (5.1) calculate the expected on hand

inventory in each period, up to and including the period in which the interior

point of the expected on hand inventory is less than zero.

(ii) Suppose the interior point (I¡n2) of the expected on hand inventory (I¡n) is less

than zero in Period n, schedule an expected receipt in Period n and recalculate

the expected on hand inventory Im by using (5.1).

(s.21)

(s.22)
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(iii) Calculate the expected order release period by subtracting the lead-time from

the expected receipt period.

(iv) Go to Period (n+1) and repeat Step 1 (Ð - (iii).

Continue the process to the end of the planning horizon.

Step 2. Obtaining Total Demand on the Central Warehouse

Calculate the total demand on the central warehouse during each period of the

planning horizon by using equation (5.2).

5.4.4 Numerical Example with Backorders allowed with Fuzzy

Information (Data)

We illustrate our method through the following numerical example in which we

have three branch warehouses WH¡, WHz, WH¡, one CWH, and eight time periods Mr,

Mz, M¡, M+, M5, Me, Mz and Ms. The projected orders from the branch warehouses and

direct sales from the CWH constitute the demand on the CWH. In Tables 5.4.1-5.4.4

below, we represent the lead-time, order quantity, beginning inventory on hand and

forecast demand for each warehouse in the form of triangular fuzzy numbers.

Table 5.4.1. Lead-time. orderaDle ).4.I.

WHr

tr

WHz

WH:

Direct Supply

o

Lead Time
(Periods)

uantrtv and

2

a
J

2

nnrng rnve
Order quantity

J

(300, 500, 600)

(150,200,300)

(600,700, 950)

(950,1000,1100)

Beginning Inventory

(204,204,204)

(100, 100, 100)

(600, 600, 600)

(950, 950, 950)



Table 5.4.2a .4

wHr

WHz

andi1n

WH¡

Mr

Direct
Suoolv

(65,90,97)

uct units (Period I to Period

(15,30,40)

Table 5.4.3

(70,120, r35)

a e

(40, 50, 65)

WHr

Demand

Mz

(72, 80,95)

WHz

(10, 30,40)

WH¡

m

(100, 120, 145)

M¿

Direct
Suonlv

(60,70,90)

units (Period 4 to Period 6

(30, 50, 60)

(10, 20, 35)

l19

Table 5.4

(75,100,120)

M3

(68,80, 100)

(37,50,65)

.+

(18, 30, 45)

WHr

M5

(90,120,145)

(71, 80,99)

ma

WHz

(42,50,62)

(20,30,45)

WHs

ln
Mt

(80, 120, 140)

Direct
Supplv

(65, 90, gg)

(40,50,70)

unrts (PeriodT to Period I

(15,35, 45)

(110, 140, 170)

Mo

(70,90, l0g)

(35, 50, 60)

(20,35, 55)

Mg

(100, 140, 160)

(60,90, 100)

(30, 50, 60)

(20,35,50)

(100,140,195)

(40,50,70)



5.4.5 Interyals of Confidence

Using Tables 5.4.1-5.4.4 below, we compute the intervals of confidence for demand, for

direct sales, and for beginning inventory so as to calculate the total demand on the CWH.

5.4.5.1 Intervals of Confidence for Demand

drrd = ll5a + 65, -17a + 971

drrd = fl\a +68, -20a + l00l

drrd:l9a+ 80,-I9a+991

drro = l25a + 65, -8a + 98]

drtd : [l5a + 75, -l\a + 40]

drro = l12a + 78, -l5a + 451

drsd = fl\a + 20, -15a + 451

drrd = [20a + 75, -l\a + 45]

drro = l50a + 70, -I5ø + 1351

dtto : 130ø + 95, -25a + 1451

drro : [40a + 80, - 20a + 140)

drro : [30a + 110, - 30a + I70]

drro = [8a + J2, -l5a + 95]

droo = [l0a + 60, -20a + 90]

druo = l20a + 70, -19ø + 1091

drro = [30a + 60, -10ø + 100]

drr& : [20a + 70, -l\a + 40]

drod = lI\a + 10, -15a + 351

dr6o = l15a + 20, -20a + 551

dr.s& = [15a + 20, -15a + 501

drro = l20a + 100, - 25a + 1451

dtod = l25a + 75, -2Oa + l20l

dr6d = [40a + 100, - 20a + 160]

drro = l40a + 100, - 45ø + l85l

120

5.4.5.2 Intervals of Confidence of Direct Sales

S,d : [10a + 40, -l5a +65]

Srd : [8a + 42, -l2a +62]

Srd = l10a + 40, -20a +701

Srd = ll5a + 35, -l\a + 601

Sro

Sod

Suo

Sro

l15a + 35, -l\a + 601

ll3a + 37, -15a + 651

l20a + 30, -l\a +60)

l10a +40, -20a +701



5.4.5.3 Intervals of Confidence of Beginning Inventory

Irod = f\a + 204,0a + 2041 lrod : f\a + 100, 0ø + 100]

Izod = [0ø + 600,0a + 600] I"gd : [0a +950,0a + 950]

5.4.6 Obtaining the Expected Order Release Period at Warehouse 2

rrrd = rzoa - d,21d +F*2yd

lrrd : lrod + (-dzrd )+R¿rø

lrrd : f\a + 100, 0ø + 1001 + [l\a - 40,-l5a- 15]+0

l2rd : [10ø + 60, -15ø + 85]

We now set

This yields,

lïa+60=xand-l5a+85=x

and

t2t

In (5.23) setting

In (5.2\ setting

l0ø +

-I5a +

a=0

d, =0

Setting a =l ineither

Therefore 12¡ : (60,70,85)

Similarly, we calculatel22 andI23

60-

85-

x:0

X: O

we get x

we get x

we get x

Izz = (20,40,75), 14 : (-25,10,57),

Similarly, I2a : (-35, -10, 25 ),

We observe that Izqz is negative. Therefore, an order should be received in Period 4.

And from Table 5.4.7, Rz+ : (150, 200, 300).

60

85

70

(s.23)

(s.24)



'When 
the three-Period lead-time is applied, the expected order is planned for release in

Period 1. Therefore,

Ozt : (150,200, 300)

Ortd =(50a + 150, -100ø +300)

Along the same lines as for I2i ,

I2a : (90,I90,347)

with its membership function given by

",,,., 
: 

{

0

x -90

Similarly, we obtain the expected on hand inventories and expected order releases for rest

of I¡,'s, and Ou¡'s respectively, and are in Tables 5.4.5-5.4.10.

100

x-347
-r57

0

122

x <90

90<x<190

190 < x<347

x> 347
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Tablable 5.4.5. Distri

Forecasted
Demand

Expected Order
Receipt

Expected Inventory
on hand

rution Reouirements P

Expected Order
Release

Table 5.4.6able 5.4.6. Distri

.anning for WHr (Perio

(204,204,204)

Forecasted
Demand

Di

Expected Order
Receipt

Mr

(65, 80, 97)

Expected Inventory
on hand

ution Requirements P

d 1 to Period 4

(t07, 124, I3g)

Expected Order
Release

(300, 500, 600)

M2

(72,80,95)

lanning for V/Hr (Perio

(122,394, 539)

(12,44,67)

M5

(71, 80, g0)

Mg

(68,80, 100)

d 5 to Period 8

(300, 500, 600)

(23,314, 469)

(212,464,599)

M6

(70,90, 109)

M¿

(60, 70, g0)

(-86,224,399)

(122,394,539)

M7

(65, 90, gg)

(-184, t34,333)

M8

(60, 90, 100)

(-284,44,273)



t24

Table 5.4.7able 5.4.1 . L)tstrr

Forecasted
Demand

Distribution R

Expected Order
Receipt

Expected Inventory
on hand

Expected Order
Release

utrements

Table 5.4.8

PI

e J.+.ó.

annlng tor WHr (Perr

(100,100,100)

Forecasted
Demand

fo

Distributi

Expected Order
Receipt

Ml

(15,30,40)

Expected Inventory
on hand

on

d I to Period 4

uuements Plannlng tor WHz (Perior

Expected Order
Release

(60, 70, g5)

(150, 200, 300)

PI

M2

(10, 30,40)

(90, 190,347)

(20,40,75)

M5

(20,30, 45)

M3

(18, 30, 45)

to Period

(45,160,327)

(-25,10,57)

M6

(20, 35, 55)

M¿

(10, 20, 35)

(-10, 125,307)

(150, 200, 300)

(90, 190,347)

M7

(15, 35, 45)

(-55,90,292)

Mg

(20, 35, 50)

(-105,55,272)
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Table 5.4.9a e

Forecasted
Demand

Di

Expected Order
Receipt

lstnbutlonib

Expected Inventory
on hand

R

Expected Order
Release

rements P

Table 5.4.10

lann

(600, 600, 600)

brW

Forecasted
Demand

Distributi

Expected Order
Receipt

M¡'

(70,120,135)

Expected Inventory
on hand

t

eriod I to Period 4

ron Ì(equlrements

Expected Order
Release

(465, 490, 530)

M2

(90,120,145)

Planni

(55,140,265)

(320,360,430)

or WHr (PerrWH¡
M5

(80, 120, 140)

M3

(95, r20,145)

d 5 to Period 8

(-85,20, 195 )

(175,240,340)

M6

(100, 140, 160)

Ma

(75, 100, 120)

(600, 700, 950)

(355, 590, 935)

(55,140,265)

Mz

(600, 700, 850)

(1 10, 140, i70)

(185,440,925)

Mg

(100, 140, 195)

(0,300,725)



5.4.7 Calculating the Total Demand on CWH during Period I (D.r)

J

D"td:I o*,o +S,o
k=l

D"td :[,Ond * Ozrd + Oya + Slf

D"td : (200a + 300, -100a + 600) + (50a + 150, -100a + 300)

+ (10ø + 40, -l5a +65)

D"td :1260a + 490, -215ø + 965]

We now set 260a + 490 = x ard -2I5a + 965 = x

Thisyields, 260ø + 490 - x = 0, and -215a +965 - x:0

Therefore Dcr : (490,750, 965)

With membership function

126

I 260
lto¿lx):1*_geS

Similarly, we obtain the fuzzy demands for rest of D.¡'s.

Furthermore, the expected on hand inventories and expected order releases for rest of I.¡'s,

and O".¡'s respectively and are as in Tables 5.4.11-5.4.12.

0

x-490

-215
0

x <490

490 < x <750

750<x<965

x> 965
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Table 5.4.11aDle J.+.

Forecasted
Demand

Distributi

Expected Order
Receipt

1SÏT

Expected Inventory
on hand

ron t(equrements

Expected Order
Release

Table 5.4

PI annrng tor CWH

e

(950, 950, 950)

fo

Forecasted
Demand

Drstribution Requirements P

(490,750,965)

M¡

Expected Order
Receipt

Expected Inventory
on hand

od I to Period 4

(-15,200,460)

Expected Order
Release

(950, 1000, I 100)

M4

M2

(35, 50, 60)

nning for CWH (Period 5 to Period 8

(-t02,350,946)

(-75,150,425)

M5

(40, 50, 70)

M3

(42, 50,62)

(-r72,300, 906)

(-137,100, 393)

M6

(30, 50, 60)

(637 ,7 50, 915)

M¿

(950, 1000, 1 100)

(-232,250,776)

(-102,350,946)

M7

(35, 50, 60)

(-292,200,741)

M8

(40, 50, 70)

(-362, 150, 701)



5.4.8 Interpretation of the Results

From Tables 5.4.11 and 5.4.12, we calculate the demand on C'WH during 8 Periods. The

demand during Period 1, Period 2, Period 3, Period 4, Period 5, Period 6, Period 7 and

Period 8 is (490,750,965), (35,50, 60),(42,50,62),(637,750,915),(40,50,70), (30,50,

60), (35, 50,60) and (40, 50, 70) respectively. This also gives us the replenishment strategy

to satisfy the demand from Period 1 through Period 8. The beginning inventory will satisfy

the demand from Period 1 through Period 3 . To satisfy demand from Period 4 through

Period 8, we must schedule an expected receipt during Period 4. When the three-week

lead-time is applied the expected order release is planned during Period 1.
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CONCLUSION, CONTRIBUTION AND RECOMMENDATIONS

In the present chapter, we state the contributions and conclusions of this

dissertation. Finally, we give some recommendations for further research on the problems

considered in this dissertation.

6.1 Conclusion and Contribution

CHAPTER 6

In the present dissertation, two important problems in the field of industrial engineering

i.e. lot size inventory control problem (addressed by Wagner and'Whitin, 1958) and

distribution inventory management problem have been revisited under fuzzy

environment. Using fuzzy algebra approach we deal with inventory lot sizing and

distribution inventory management problem when the data known is imprecise. We

believe this is more realistic approach to tackle these problems as most of the times data

is forecasted, and forecasts rarely-if-ever turn out to be crisply correct. Therefore, the

models based on precise knowledge of demand have little practical application.

Main contributions in this thesis are included in Chapters 3-5. Using fuzzy data, Chapter

3 and 4 deals with lot-sizing problem without back-ordering and with back ordering,

respectively. Chapter 5 modifies, under fuzzy data, the distribution requirement planning

(DRP) approach for a two-level distribution inventory management problem consisting of

one central warehouse and a f,rnite number of branch warehouses. We develop the

technique for both without and with back-ordering situations. In Chapter 3, we discuss

the distribution inventory management problem under fuzzy information (data). In all the
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problems the data available is assumed to be available in the form of triangular fuzzy

numbers. Throughout the thesis, we have used Excel for the purpose of numerical

calculations.

Though most real productions systems still exceed the limits of the proposed models, yet

their potential impact on both practical and theoretical decision making is apparent.

6.2 Recommendations for Future Research

It is believed that a number of extensions are possible to both the lot sizing

inventory problem and distribution requirement planning problem. Results of Chapters 3

and 4 can be extended to the case when the estimates for various parameters involved are

provided in the form of Tr.F.N.'s or general fuzzy numbers. The results of Chapter 5 can

also be extended to the case when the data available is in the form of trapezoidal fuzzy

numbers (Tr.F.N.'s) or general fuzzy numbers. Furthermore, the problem may be further

extended from two-level to multi-level distribution inventory management systems

and/or when the lead time available is fuzzy.
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