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ABSTRACT

The subject of the present research is to investigate, model and solve the problems of Lot
Sizing and Distribution Inventory Management when the available data is given in the
form of fuzzy numbers. Subject to a variety of assumptions, main contribution of this
thesis is included in Chapters 3 to 5.

Chapters 1 and 2 provide introduction and literature survey, respectively, related
to the problems considered in the thesis. Chapter 3 deals with the distribution inventory
management problem with variable demand rate and both without and with backorders,
under fuzzy information. Similarly, Chapters 4 and 5 consider the lot sizing inventory
problem under variable demand rate and both without and with backorders, respectively,
under fuzzy information with a finite planning horizon. Finally, the conclusion and the
discussion on the contributions made in the thesis, along with some recommendations for

further research, are given in Chapter 6.
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Chapter 1

INTRODUCTION

The present thesis deals with the analysis and modeling of two important problems of lot
sizing and distribution inventory management in a fuzzy environment.

Lot Sizing is a significant aspect of Materials Requirement Planning (MRP) production
planning process. Although its perceived importance has declined as a result of system
development, wide spread Just in Time (JIT) orientations and development of satisfactory
heuristics, lot sizing is still a major component of a balanced MRP operation.

After a product is manufactured, the emphasis of an organization shifts towards
distributing the good at a reasonable cost to establish or maintain a competitive
advantage. Distribution Requirements Planning (DRP) helps achieving this objective by
effectively managing the required flow of goods and inventories between a firm and a
market. It provides planners with the visibility of future requirement and substantially
reduces unexpected demands. DRP also provides the basis for managing logistic system.
The present study is motivated by the realization that data for these problems normally
exists in an ambiguous (vague or imprecise) form. Therefore, it is natural to deal with
such problems through fuzzy systems. Under such circumstances, using the fuzzy
approach yields a relatively “more satisfactory and flexible solution”. The fuzzy
numbers, for example can be obtained from experts who, instead of one but possibly
forecasted estimate, provide three or four imprecise (vague) estimates of some important
parameters involved. We suggest that, under such circumstances, the related problem

may be handled using special type of fuzzy numbers (for example, triangle fuzzy



numbers or trapezoidal fuzzy numbers). The approach used in the present thesis is a small
step in this direction.

Under fuzzy information, we consider inventory problem with variable demand rate and a
finite-planning horizon, and solve it using Wagner-Whittin algorithm. Also, an attempt is
made to model the problem by incorporating back orders. Furthermore, the distribution
inventory management problem with fuzzy information is presented using DRP
approach.

We now give a brief introduction to these problems.

1.1 Lot Sizing

1.1.1 Basic Inventory Concepts

1 Inventory

Inventory includes all those goods and materials that are used in the production and
distribution process. Raw materials, component parts, subassemblies, and finished parts
are all part of inventory, as are the various supplies required in the production and
distribution process. Good inventory management is important to all firms, whether
manufacturing or service. Four reasons for its importance are:

Inventories can be a major commitment of monetary resources.

Inventories affect virtually every aspect of daily operations.

*Inventories can be a major competitive weapon.

*Inventories are the major control problem in many companies.

2 Independent Demand Items

These are shipped as end items to customers and may be finished goods or spare/repair

parts. Demand is market-based, and is independent of the demand for other items.
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Dependent Demand Items

These are used in the production of a finished product. Such items may be raw materials,

component parts or subassemblies. Demand is based on the number needed in each

higher-level (parent) item where the part is used. Dependent demand items are frequently

managed by certain inventory replenishment systems such as MRP or JIT systems.

1.1.2 Purpose Of Inventories

Some of the major reasons for holding inventories are:

1

2

Decouple demand from immediate dependence on the source of supply.

Service customer with variable demands.

Serve as a shock absorber between successive stages in operations.

Help level production activities, stabilize ‘employment, and improve labor
relations.

Provide a means of obtaining and handling materials in economic lot sizes and of
gaining discounts.

Facilitate the production of different products on the same facilities.

1.1.3 Methods for Measurement of Inventory

There are three accounting categories, or types, of inventories:

Raw materials
Work in process

Finished goods

There are at least three methods for measuring inventory



1. Aggregate inventory value (average or maximum) gives answer to the question
of HOW MUCH is the stock of inventory?
2. Weeks of supply (or other time unit) provide answer to the question of HOW

LONG will inventory last?
3. Inventory turnover or turns (ratio of sales to inventory) gives answer to the

question of HOW MANY times inventory is sold?

1.1.4 The Objectives of Inventory Management

The primary function of inventory management is to have items available to maintain the
flow of goods through the production process to the customer while minimizing the
investment required achieving this purpose.
An organization's Inventory Management System must carry out objectives set by upper
management and must perform in such a way that the organization's profit or
performance is enhanced. The objectives set by management will frequently fall into
either of two categories:

e customer service objectives, and

e inventory investment objectives.
The first category includes such concepts as service level and stock-out rate, and the
second category includes such items as number of inventory turnovers per time period.
Generally, the achievement of higher levels of customer service, however defined, is
accomplished with larger amounts of inventory, and is subject to diminishing returns. The
achievement of higher levels of the investment objectives is generally met with smaller
inventories. Thus, we see the basic conflict of inventory management: some objectives
call for economizing on inventory levels, while other objectives call for increasing

inventories. These objectives may create conflict along departmental lines: finance wants



smaller sums tied up in inventory, while marketing wants larger amounts so that customer

orders can be more promptly satisfied.

1.1.5 Functional Classifications of Inventories

1 Anticipation Inventories

Anticipation inventories are additional inventories that are either produced or purchased
in anticipation of infrequent events, such as vacations shutdowns, strikes, peak sales
periods, and sales promotions. Hedge inventory is a special type of anticipation
inventory, which is built or produced to take advantage of present costs or to avoid
anticipated substantial price increases. Ideally, anticipation inventory should consist of
items that have high labor content and a low material content.

2 Lot Sizing Inventory

Lot sizing is the purchasing or producing items in large enough lots to take advantage

of cost efficiencies, quantity discounts, learning curves, scale economies, etc.

3 Fluctuation Inventories

These are carried to absorb the variations in demand and lead-time because it is not
realistic in most cases to expect the demand for products to be perfectly predictable.
Fluctuation inventories are also know as safety stock. They enable an organization to
service its customers when the demand for that service is above average or when delivery
of replenishment stocks takes longer than usual.

4 Transportation Inventories

Items in movement from one stage to the next are called transportation inventories. They

are also referred to as pipeline inventory. This is a type of inventory often neglected.



Such inventories are important since they do reflect moneys tied up for periods of time,
and hence do incur inventory-holding costs.

5 Service Parts

These are the items carried in inventory as replacement parts for operating equipment or

other needs.

1.1.6 Classification of Inventory Models

There are several ways of classifying the inventory models. Some of the attributes useful
in distinguishing between various inventory models are given in this section (Gill, 1992).

1 Number of Items

Single Item — This type of model recognizes one type of product at a time. If the
demand rate changes from period to period, and then the problem becomes that of
a dynamic lot-sizing problem.

» Multi Item — This type of model considers a number of products simultaneously.
These products must have at least one interrelating or binding factor such as
budget or capacity constraint or a common setup. |

2 Stocking Points

e Single Echelon Models — Only one stocking location is considered.

* Multi Echelon Models — More than one interconnected stocking locations are
considered.

3 Frequency of Review
This is the frequency of assessment of the current stock position of the system and the

implementation of the ordering decision.



Periodic — Placement of orders is done at discrete points in time, with a given
periodicity.
Continuous — Order placement can occur at any time.
Order Quantity
Fixed — Order quantity is fixed to the same amount each time.
Variable — Order quantity can be variable.
Planning Horizon
Finite — Demands are recognized over a limited number of periods.
Infinite — Demands are recognized over an unlimited number of periods.
Demand
Deterministic — Demands are known with certainty over the planning horizon.
a) Static — Demand rate is constant over every period.
b) Dynamic — Demand rate is not necessarily constant.
Stochastic (Probabilistic) — Demand is unknown, and must be estimated. The
demand probability distribution may be known or unknown.
The emphasis in the present thesis is to deal with an inventory lot size problem
with ambiguous or imprecisely known demand.
Lead Time
Zero —No time elapses between placement and receipt of orders.
Non-Zero — Significant time elapses between the placement and receipt of orders.
This time may be constant or random.
Capacity

Capacitated — There are capacity restrictions on the amount produced or ordered.



e Un-capacitated — Capacity is assumed to be unlimited.
9 Unsatisfied Demand
¢ Not allowed — In this case, all demand is met and no shortages are allowed.
» Allowed — Demand not satisfied in a particular period may be retained and
satisfied in a future period (backlogging), partially retained and partially lost or

completely lost (no backlogging).

1.1.7 Lot Size Inventory Problem
Most of the inventory situations need answers to the following two basic questions:

e when to order (the reorder point) and,

e how much to order (the lot size).
Answers to above questions can be found out by using the Classical Economic Order
Quantity Model (EOQ Model), when the demand rate is constant over time. But when the
demand rate varies over time, i.e. not necessarily constant from one period to another, the
associated problem of planning is a bit more challenging and is said to be dynamic in
nature. The problem considered for this study is uncapacitated single item lot sizing

problem with dynamic demand.

1.2 Distribution Inventory Management

1.2.1 Distribution Inventory Management Systems

The objective of distribution inventory management is to have inventory in the right

place at the right time at reasonable cost. In brief, the objective is to achieve a desired



level of customer service at or below a specified cost. Distribution Inventory
Management systems can be divided into two categories.
e Pull System
e Push System

Pull System
In a pull system, inventory is pulled into the warehouse. The warehouse determines its
requirements and orders from the factory. The standard pull system orders without regard
for the needs of other warehouses, the inventory available at the central warehouse, or the
production schedule. Five types of traditional pull systems are (Fogarty 1991)
1 The Order Point System

In the order point system, the branch warehouse establishes a order point based on
the normal demand during the average time required to obtain the order from the central
warehouse plus the safety stock. The order is placed with the central warehouse when the
quantity in stock at branch reaches its order point.
2 The Periodic Review System

With this system, branch warehouse inventory status is determined at a regular
interval, and the warehouse orders the quantity required to bring inventory to the target
level. All other things being equal, branch warehouse safety stock must be greater in this
system than in order point system because it covér variations in demand during the cycle
as well as during lead time.
3 The Double Order Point System

As the name suggests, the second order point is established based on the normal

order point plus the normal demand during manufacturing lead-time. This enables the
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central warehouse to examine its inventory position relative to anticipated warehouse
orders and take appropriate action. Theoretically, the central warehouse need not carry
safety stock since it is forewarned of pending orders and adds inventory required to meet
those orders.
4 The Sales Replacement System

In this system each warehouse periodically establishes a stocking level based on
local demand. Sales at each warehouse are reported to the central warehouse at periods
shorter than the normal order interval. Shipments replacing the quantities sold are sent to
each warehouse at the end of replenishment periods.
5 The Base Stock System

This is also a sales replacement system. But, in this system, the base stock level is
established at each stocking location based on the normal demand during replenishment
lead-time and the interval between sales report and the safety stock. Sales are reported on
a weekly or, preferably, a daily basis to all inventory-holding facilities rather than only
when ordering. The primary advantage of this system is that it enables manufacturing, the
central warehouse, and regional warehouses to plan and react on the basis of actual
customer demand rather than on the basis of the replenishment orders filled at secondary
stock points, such as regional warehouse.
Push System
In a push system, inventory is pushed into the warehouses. This system considers total
projected requirements (all warehouse and direct sales replenishments), inventory
available at the regional warehouses and the central warehouse, inventory in transit, and

schedule receipt from the supplier and determines the quantity available for each
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warehouse and direct factory sale. This allocation is controlled centrally on the basis of

such criteria as equal day coverage, shipping schedule and competitive factors.

1.2.2 Distribution Requirements Planning (DRP)

Distribution requirements planning (DRP) is a push system. In DRP, the central
warehouse decides what to send to the regional warehouse. It provides the basis for tying
the physical distribution system to the manufacturing planning and control (MPC)
system. DRP relates current inventory positions and forecast of field demand to master
production schedule (MPS) and material planning modules. When the items on the MPS
are not the final product and require finishing, packaging, or fabrication into a final
assembly, these final operations can be viewed as the first stage in distribution. James
Heskett (1977) points out that automobile plants are distribution centers equipped to
receive orders, fabricate individually designed final assembly configurations from
standard components, and deliver them in a reasonable time.

DRP is best conceived as one part of demand management. It is a link between the
market place, demand management and master production scheduling. The link is
effected through time-phased information on inventories and through material and
shipping planes that coordinates activities in these modules. Finished good inventories
are often positioned in a complicated physical system, consisting of field warehouses,
intermediate distribution centers, and a central supply. In such a system, a key task is
effectively managing the required flow of material and inventories between the market
and the firm. In performing this task, DRP has a central coordinating role similar to

material requirements planning's role in coordinating materials in manufacturing. DRP's
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role is to provide the necessary data for matching customer demand with the supply of
products at various stages in the physical distribution system and product being
manufactured by manufacturing. Key elements of these data are the planned timings and
quantities for replenishing inventories throughout the physical distribution system. These

data take into account currently available field inventories and forecasts.

Production
Planning

A

—

Distribution
Requirements
Planning

h 4
Demand Master Rough-Cut
Management Production Capacity
Schedule Planning
Material Capacity
Requirements Requirements
Planning Planning

Figure 1.1. Information Flows in Distribution and Production Planning

1.2.3 DRP and Demand Management

According to Berry (1992), the demand management module is gateway between the
manufacturing facility and the market place. In some systems with field inventories, it is
where information on demand is taken in and where product for the field warehouse is
sent out. This process requires detailed matching of supply to demand in every location —

and requires providing supply to meet all sources of demand. DRP is a method for
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managing the resultant large volume of dynamic information and for generating the set of
plans for manufacturing and replenishment. As actual field demands vary around the
forecasts, adjustments to plans are required. DRP continually make these adjustments,
sending the inventories from central warehouse to those distribution centers where
they’re most needed. In circumstances where insufficient total inventories exist, DRP

provides the basis for deciding on allocations.

1.2.4 DRP and Master Production Schedule

Master Production Schedule (MPS) is a list of all the items that the firm anticipates to
manufacture each period. DRP provides the MPS better information, in a format
consistent with the MRP records, to matching manufacturing output with the shipping
needs. Requirements based on shipments to the distribution centers can be quite different
from the demand in the field. DRP data also provides the basis for adjusting MPS to
reflect changes in the demand or product mix. If manufacturing and shipping priorities
can’t be adjusted to respond to these requirements, the implications can be evaluated and
communicated to customer in a timely fashion. Common records and system integration
means there is complete visibility to see how best to use available inventories and to
adjust future schedules. DRP provides a solid base of information to make these

decisions, instead of relying on political negotiations between field and factory.

1.2.5 DRP and the Logistics System

Plans derived from the DRP information and the resultant shipping requirements are the
basis for managing the logistics system. Shipping requirements are used to determine

vehicle loads, vehicle dispatching, vehicle capacity planning and warehouse receipt
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planning. Vehicle capacity planning is the process of planning the vehicle availability for

the set of future shipments as generated by DRP. By planning future replenishment

needs, DRP establishes the basis for more effective vehicle decisions. These decisions are

continually adjusted to reflect current conditions. Long-term plans help to determine the

necessary transportation capacity. Warehouses’ near-term needs are used to efficiently

load a vehicle without compromising customer service levels. Data on the planned

resupply of the warehouses can be used for scheduling the labor force in the warehouses.

1.2.5

Benefits of Distribution Requirements Planning

Distribution requirements planning

enables us to capture data, including local demand conditions, for modifying the
forecast and to report current inventory positions,

avoids stock outs at the central warehouse by projecting warehouse requirements
by period and generating planned orders on the central warehouse,

improves customer service levels through deliveries consistent with promises,
reduces inventories investment by effectively allocating inventory,

quickly determines shortage and avoids unnecessarily premature commitment to
customers,

provides the database at warehouse level for consistent communication with
customers and the rest of the company, and

encourages significant logistic savings through better planning of aggregate

transportation capacity needs and dispatching of shipments.
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1.3 Fuzzy Set Theory

In this section we introduce some of the basic concepts and terminology of fuzzy
set theory. Theory of fuzzy sets is basically a theory of graded concepts (Zimmerman,
1991). A central concept of fuzzy set theory is that it is permissible for an element to

belong partly to a fuzzy set.

1.3.1 Fuzzy Set

Let X be a classical set of objects, called the universe, whose generic elements are
denoted by x. The membership in a crisp subset of X is viewed as a characteristic
function pa from X to [0, 1] such that:

0 ifxeA
1 ifxeA

pa(x) = {
where [0, 1] is called a valuation set (Lai and Hwang, (1992)).
If the valuation set is allowed to be the real interval [0, 1], A is called a fuzzy set
proposed by Zadeh (1996). pa(x) is the degree of membership of x in A. The closer the
value of pa(x) is to 1, the more x belongs to A. Therefore, A is completely characterized
by the set of ordered pairs:

A={(x pa(x))/x e X}
where pa(x) maps X to the membership space [0, 1]. Elements with zero degree of
membership are usually not listed. If Sup pu(x) = 1, ¥V x € R, then the fuzzy set A is

called a normal fuzzy set in R. A fuzzy set that is not normal is called subnormal fuzzy

set.
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1.3.2 o - Level Set or a — Cut

One of the most important concepts of fuzzy sets is the concept of an a-cut or
a-level set. An a-cut denoted by A, is the crisp set of elements x in R whose degree of
belongings to the fuzzy set A is at least a € [0, 1]. This means

Ag={xeR|pax)=a,a e [0, 1]}
that is, the a-cut or a-level set of a fuzzy set is the crisp set A, that contains all elements
of the universal set X € R whose membership grades in A are greater than or equal to the

specified value of a, a € [0, 1].

1.3.3 Support of a Fuzzy Set

Support of a fuzzy set A is a set S(A) such that X € S(A) if and only if pa(x) > 0.

1.3.4 Intersection of Fuzzy Sets

Intersection of two fuzzy sets A and B is a fuzzy set C denoted by C = A n B,

whose membership function is related to those of A and B by

He(x) =min [pa(x), ue(x)], Vxe X

1.3.5 Algebraic Operations on Fuzzy Sets

In addition to the set theoretic operations, we can also define a number of other
ways of forming combinations of fuzzy sets and relating them to one another. Here we
present some more important operations among those:

1. Algebraic product of two fuzzy sets A and B, is A () B, whose membership

function is

HAEB(X) = Ha(®) () pB(X), VxeX



17

2. The algebraic sum of A and B is A + B whose membership function is defined as

Ba)(X) = pa(x) (D pup(x), VxeX

provided pa(x) (+) up(x) <1, Vxe X

1.3.6 Convexity of Fuzzy Set

The notion of convexity can be extended to fuzzy sets in such a way as to
preserve many of the properties that it has in case of crisp sets. In what follows, we
assume that the set X is the n-dimensional space R". We now have the following two
equivalent definitions of convexity of a fuzzy set.

A fuzzy set A is convex if and only if every set A = {x € X | p,(x) = o} forall
a € [0, 1] is a convex set.

The second definition of convexity of a fuzzy set is as follows:

A fuzzy set A is said to be a convex set if

B (Axi+ (1-A)x2) =2 min (u(x)), W(x2)), x1,x2€ X, A € [0, 1].

1.3.7 Fuzzy Arithmetic

The first definition of a fuzzy set allows us to extend various properties of crisp
sets and operations on crisp sets to their fuzzy counterparts.
An ordinary number ‘a’ can be characterized by using the membership function

1 ifx=a

pa(x) = {

0 ifx=#a

Fuzzy Number

A fuzzy number A is a fuzzy set on the real line R, which possesses the following

properties:
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e A isanormal, convex fuzzy set on R
e The a-level set A, must be a closed interval for every a € [0, 1]

e The support of A, S(A) = {x | pa(x) > 0 }, must be bounded.

Fuzzy arithmetic is based on the following two properties of fuzzy numbers:
1. Each fuzzy set and thus, each fuzzy number can be fully and uniquely represented
by its a-level sets.

2. a-level sets of each fuzzy number are closed intervals of real numbers for all
a € [0, 1].
These properties enable us to define an arithmetic operation on fuzzy numbers in terms of

arithmetic operations on their a-level sets (i.e. arithmetic operations on closed intervals).

1.3.8 Fuzzy Arithmetic Based On Operations On Closed Intervals

A fuzzy number can be characterized by an interval of confidence at level «,

Ao = [2,Y, ,Y] which has the property 0 <d¢ = Ay C Aq .

According to Kaufmann and Gupta (1985, 1988), let A=[a,b] e Rand B=[c,d] € R be

two fuzzy numbers, then the arithmetic operations on them are as follows:

Addition A+B=Ja+c,b+d].

Subtraction A-B=[a-d,b-¢].

Multiplication AB = [min (ac, ad, bc, bd), max (ac, ad, bc, bd)] .
Division A/B = [min (a/c, a/d, b/c, b/d), max (a/c, a/d, b/c, b/d)] .
Minimum (A) A AB=[a Ac,bad].

Maximum (v ) A v B=[avc,bvd].
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Let A and B be two fuzzy numbers, A, = [;“, a,] be the a-level set of A, and
B = [0:%, Y] be the a-level set of B.
Let * denote any of the arithmetic operations +,—,.,/, A and v on fuzzy numbers.
Then, we define a fuzzy set A * B in R, by defining its a-level sets (A * B), as

(A*B)e=A,*Byforany a € [0, 1]
Since (A * B), is a closed interval for each o € [0, 1] and A and B are fuzzy numbers,
A * B is also a fuzzy number.
The multiplication of fuzzy number A < R by an ordinary number k € R can also be
defined as

k() Ax = [ka;®, ka)™]

or equivalently, pa(xX)=pa(x’k) V x € R.

1.3.9 Triangular Fuzzy Number
A triangular fuzzy number (T.F.N.), A, is denoted by the triplet (a;, as, a3) and its

membership function is written as

(0 Xsal
X—'al

al SXSaz
ay —a

Ha(X) = 4

a3—X

a2 SX<a3
a3z —ap
0 X 2aj

The a-level set of a triangular fuzzy number is
Ag=[a1, 2] = [(2 - a)o. +a1, ~(as - ar)a + 23] Vael0,1]

Below, in Figure 1.2, we give a graphic representation of a fuzzy number.
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Triangular Fuzzy Number

Membership Function
(]
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al a2 a3

Figure 1.2 Graphic representation of a Triangular Fuzzy Number

Algebraic Operations on T.F.N.

Let A =(ay, a, a3) and B = (by, b, bs) be two T.F.Ns then,
e Addition A+B=(a;+by,ay+by,a;+bsy)
e Subtraction A—-B=(a;—bs, ay—by,a3—by)

For the following two operations, we assume that a; and b;, i = 1, 2, 3 are positive.

e Multiplication A () B=(a1bj, ayby, azbs)
e Division A(GB= a_l,?l’fi
b3 by by

1.3.10 Special Triangular Fuzzy Number

A special triangular fuzzy number (S.T.F.N.), A, is a triangular fuzzy number

represented by the triplet [ay, a, (a2 +0')], where § — 0, and its membership function is

written as
O xSal
x—a1
ajsx<aj
a, —a
pax) = <72 771
(a2+§)~x
s ap <x<(a;+9)
0 xZ(a2+5)

The a-level set of a special fuzzy number is



Ag=[a1”, 9] = [(a2 —ap)a +a;, ~(8)a+(az+ )] Vael0,1]

Special Fuzzy Number
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Figure 1.3 Graphic representation of a Special Triangular Fuzzy

Number
Algebraic Operations on S.T.F.N.

Let A = [a, @, (a2 +6 )] and B = [by, by, (by +5)] be two S.T.F.N.'s, where & — 0,

then,
e Addition A+ B=[a; +by,a+b,, (a2+b_2+25)]
e Subtraction A-B=[(ai—(b2+5),a, - by, (a2+5) — by]

1.3.11 Trapezoidal Fuzzy Number

A trapezoidal fuzzy number (Tr.F.N.), A, is denoted by a quadruplet (ay, a,, a3, ag)

whose membership function is written as

(0 x<a,
X —a,
a, <x<a,
a,—a,
ty x) = 41 a,<xc<a,
a,—x
a;<x<a,
a, —a,
0 X=>a,

The a-level set of a trapezoidal fuzzy number A is

As = [3,, 2, = [(a; - ar)a + ay, —(as — a3)o + a4] Vael0,1]
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Graphically, a trapezoidal fuzzy number is shown as in Figure 1.4 below.

Trapezoidal Fuzzy Number

[y

Membership Function
<
()]

(e

al a2 a3 ad

Figure 1.4 Graphic representation of a Trapezoidal Fuzzy Number
Algebraic Operations on Tr.F.N.
Let A = (ay, a3, a3, a4) and B = (b, by, b3, bs) be two Tr.F.Ns then,

e Addition A +B=(a; +by,a,+by,as+bs, as+ by)
e Subtraction A-B= (al - b4, ap — b3, az — b2, ag — b1)

For the following two operations, we assume that a; and b;, i = 1, 2, 3 are positive.

° Multiplication A () B=(a;by, azby, azbs, asbs)
e Division A(B= ﬂ’a_z,a_3’a_4
b, by b, by

1.3.12 Ranking of Triangular Fuzzy Numbers

One can rank the triangular fuzzy numbers using a variety of criteria by using various
weights on the different features of the fuzzy numbers. We shall consider three different
criteria of ordering triangular fuzzy numbers. If the first criterion does not give a unique
linear order, then the second and the third criteria should be used.

Criterion 1. Linear Ordering using Associated Ordinary Number (A.O.N.)

Ordinary number associated with a T.F.N. A = (a;, ay, a3), is given by
ap+ 28.2 +aj )

AON.a= (
4
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If the values of A.O.N. for some T.F.Numbers happen to be equal, then form the classes
in the ascending order of the removal and go to the Criterion 2.

Criterion 2. Linear Ordering using the Mode.

In each class of T.F.Ns formed as a result of Criterion 1, look for modes. If all the modes
are different, we can rank the triangular fuzzy numbers within the class according to the
size of mode.

Fuzzy numbers having equal values of the mode within a class form a subclass. If modal
values of some of the triangular fuzzy numbers in a class happen to be same then form
sub-classes and go to Criterion 3.

Criterion 3. Linear Ordering using the Divergence
Divergence around a Mode in a Sub-class is given by a3 — a;.

In each sub-class consider the divergence around the mode and obtain sub-sub-classes.

Rank the fuzzy numbers in each sub-class according to the size of the divergence.

1.4 Organization of the Thesis

Chapter 1 provides an introduction to the concepts and problems considered in the thesis.
In Chapter 2, we review the literature of the related work done by other researchers. The
distribution inventory management problem with fuzzy information (data) is solved using
DRP approach in Chapter 3. Chapter 4 presents the inventory problem with variable
demand rate under fuzzy information (data) with a finite planning horizon. Chapter 5
extends the variable demand lot-sizing inventory problem with fuzzy information (data)
by incorporating backorders. Finally, the conclusion and the discussion on the
contributions made in the thesis, along with some recommendations for further research,

are given in Chapter 6.
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CHAPTER 2

LITERATURE SURVEY

This chapter provides a survey of the literature dealing with inventory lot sizing
problems, distribution inventory management problems and other concepts considered in
this thesis. The purpose of this chapter is to review the developments, and to identify the

status of existing literature in these areas.

2.1 Review of Literature on Inventory Lot Size Problem

2.1.1 Classification of Literature

We use the following classification, given by Zoller and Robrade (1988), to discuss the

existing literature on lot-sizing problems.

1. Optimizing techniques
2. Stop rules (heuristics) and
3. Heuristic algorithms.

1. Optimizing Techniques

The optimization techniques include EOQ and Wagner-Whitin algorithm

. Economic Order Quantity (EOQ)

Harris (1915) is usually cited as the first to study economic lot size models that assume
deterministic demand. He considered a model that assumes demand occur continuously

over time. The basic formula to compute economic order lot size is as follows:

25R
EOQ= YV kC
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where,

S = Fixed cost for the replenishment of an order,

R = demand rate of the item (normally annual usage rate),

C = cost of one unit,

k = cost of one dollar of item tied up in inventory for a unit of time.

Note that S and k should have same unit time basis (i.e. if annual demand is considered,

then k must be considered for one year, not one month).

° Wagner-Whitin algorithm

EOQ model gives the optimal solution only under the assumption of a steady demand.
But, when the demand rate varies from period to period, the EOQ formula no longer
assures a minimum cost solution. To deal with variable demand, Wagner- Whitin (1958)
presented a simple and most elegant dynamic economic lot size model. This model was
based on some important theorems established in their paper. These theorems were
themselves based upon the assumption that initial inventory is zero (I = 0). Before

stating their algorithm, we shall briefly state these theorems.

Theorem 1. There always exists an optimal policy such that

. X;=0 fort=1,2,...,N;
Where I; is the inventory entering a period t, X; is the amount produced in period t and N
is the length of planning horizon. This means that replenishment can be made only when
the inventory level becomes zero, i.e. having positive inventory and producing at the

same time never leads to optimality.
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Theorem 2. There exists an optimal policy such that for all t

k
Xi=0 or X;= Y.dj forsomek, t<k<N
Jj=t

where X, is the amount produced in period t and d; is the demand in period j. This means
that for any given period, production is either zero or is sum of subsequent demands for

some number of periods in the future.

Theorem 3. There exists an optimal policy such that if demand d, * in a period t*is
satisfied by some amount X, ** produced in period . , " <t* ,thend,, (t= 7 1,

oo t* - 1) 1s also satisfied by X, **.

Theorem 4.  Given that I; = 0 for period t, it is optimal to consider periods 1 through

(t—1) by themselves.

Planning Horizon Theorem

The planning horizon theorem states in part that if it is optimal to incur a setup cost in
period t* when periods 1 through t* are considered by themselves, then we may let X, =
> 0 in the N period model without foregoing optimality. By theorems 1 and 4 it follows
further that we adopt an optimal program for periods 1 through t*— 1 considered

separately.

The Algorithm
According to Wagner and Whitin (1958), the algorithm at period t* St = 1,2, ...,N,

may be generally stated as:

1. Consider the policies of ordering at period t**, = 1,2, ..., t » and filling

demands dt,t=t*>‘< ,t** +1, ...,t* , by this order.
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2. Determine the total cost of these t* different policies by adding the ordering and
holding costs associated with placing an order at period £ , and the cost of

acting optimally for periods 1 through t** —1 considered separately. The latter

cost is computed previously in computations for periodst=1, 2, ..., t* —1.

3. From these t* alternatives, select the minimum cost policy for periods 1 through
t* considered independently.

4. Proceed to period t* +1 (or stop ift" = N).
It may be observed here that the literature has tended to either ignore or, at least,
minimize the significance of the contribution of the Wagner-Whitin solution to this class
of the problem due to its complicated nature and enormous computational efforts
required. Frequently, excuses such as “the high computational burden and the near
impossibility of explaining it to the average MRP user” or “the complexity of the
procedure inhibits its understanding by the layman, and acts as an obstacle to its adoption
process” were used to justify other approximate (not optimal) alternatives to the Wagner-

Whitin procedure (Fordyce and Webster, 1984).

2. Stop Rules

Stop rules increase the cycle length t until some transformation of the controllable cost is
reached. Controllable cost C(t), is normally the sum of ordering and holding cost and
given as

t
Ct)=R+H. Y (h—1).dn
A=l
where d;, is the demand quantity in period h, H is the holding cost per period per unit, and

R is the fixed cost of each replenishment.
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. Least Unit Cost Rule (LUC)

This is probably the earliest heuristic. LUC chooses the least unit cost (setup + inventory
carrying cost per period) over successive periods by adding the total carrying costs to the
setup costs and finding the period for which the per unit cost is smallest. A shortcoming

in LUC is that it may perform well on one set of data and poorly on another set of data.

. The Silver and Meal Rule (SMR)
This is perhaps the most famous heuristic method (Silver and Meal, 1973). Silver-Meal
rule divides the total cost by the number of periods included in the Iot. It computes the

cost per period P(t) as follows:

P(t) = C(H)h,
and stops as soon as
P(t+1) > P(t).
. Groff’s Rule
Groff (1979) introduced a policy under which the demand for a period is added to the lot
if the marginal savings in ordering cost are greater than the marginal increase in carrying
cost. In mathematical terms,
Marginal savings in ordering cost = (S/t) — (S / t+1) =S/ (t. (t+1))
Marginal increase in holding cost = (1/2). H.d
Groff’s rule adds the demand for the period to the lot if S/(t. (t+1)) > (1/2).H. d s,
and stops as soon as

(1/2)H.dy1 =S/ (¢ (t+1))
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. Incremental Order Quantity (I0Q)

Boe and Yilmax (1983) suggested that cycle length be increased so long as the
incremental carrying costs H.t.d ++1 does not exceed S and it stops as soon as

Ht.dw =S

. Period Order Quantity (POQ)

Period Order Quantity is an EOQ based technique. It divides the EOQ quantity by the
average demand during one period to obtain the number of periods whose requirements
are to be covered by the lot size (rounded to the nearest positive integer).

Trog=EOQ / (Average demand during one period)

If D is the average demand for one period, then

2.8.D
EOQ=+"%C
2.8

Teoo=\7%.C.D

Thus in POQ method, the time between orders remains fixed, but lot size changes. This

approach does not minimize ordering and carrying costs, but it frequently is less costly

than ordering each period or arbitrarily selecting a fixed order period.

3. Heuristic Algorithms
In the previous section we discussed some rules that were basically single pass stop

rules. The stop rules terminate when some transformation of controllable cost is reached,



30

while algorithms seek to improve the decision by looking further ahead and comparing
alternative solutions. In contrast to the stop rules, they are sensitive, in their computing

time requirements, to the numerical structure of the demand rate.

. I0Q Algorithm
Trux (1972) proposed to use the IOQ rule to find a safe maximum and then examines if
the corresponding lot can be split into two lots. Gaither (1983) determined two
subsequent lengths and examined if shifting a demand from first lot to second lot is more
profitable or not.,

. Part Period Algorithm
To improve it's performance under conditions of erratic demand, several authors have
suggested modification of PPR.

PPA -FB:  DeMatteis (1968) suggested that the cycle length determined by the PPR
should be subjected to a forward or backward scan to determine if the periods of large
demand exist.

PPA - BM: Blackburn and Millen (1980) proposed that the cycle length determined by
PPR could be increased if a closer balance of ordering and carrying costs can be
maintained.

PPA -MG: Karni (1981) combined, through an iterative procedure, that pairs of lots
into a new single order which promises maximum gain in terms of net cost reduction.

. Silver Meal Algorithm
Silver and Meal (1973) observed that cost per period is not necessarily convex and may

hence have many local minima, however, SMR identifies only the first minima.
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Blackburn and Millen (1980) suggested that the absolute minima should be found by

exhaustive enumeration of C(t) over the entire planning horizon.

2.1.2 Other Approaches

Eppen et. al. (1969) evolved theorems that decrease the computational effort required to
find optimal policies and established the existence of planning horizons. Zangwill (1969)
extended the concepts of concave cost network to analyze the backorder version of
Wagner-Whitin model. Montgomery et al.(1973)solved continuous review and periodic
review inventory models that considered a mixture of back orders and lost sales..
Friedman and Hoch (1978) presented a model to find the lot size for perishable items by
assuming fixed-plus-linear production functions and linear age-independent inventory
cost functions. The issue of perishability was discussed extensively in Nahmias ( 1982).
In his paper, Nahmias distinguished between fixed and variable lifetime inventories.
Billington, McClain and Thomas (1983) presented a mathematical model that considers
set up times and proposes a compression technique for the size of the product structure ,
but it does not effectively provide a solution method. In another work, they (1986)
studied the multi-stage problem with constrained capacity in only one work center. Kim
and Park (1985) considered a continuous review system with constant lead-time where a
fraction of the unfilled demand was back ordered and the back order cost was assumed
proportional to the length of time the back order existed

Fordyce and Webster (1984) presented the Wagner-Whitin algorithm in a simple and
straightforward computational style in a tabular form, without using any mathematical

notation or formulas. In 1985, they demonstrated the ability of Wagner-Whitin
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Algorithm to be modified to situations in which unit cost price is not constant over the
planning horizon and included quantity discounts. Carrying on with their research,
Fordyce and Webster (1989) presented a back order version of the Wagner - Whitin
algorithm.

James R. Evans (1984) developed a microcomputer program to implement the Wagner-
Whittin algorithm. Prentis and Khumawala (1989) developed two heuristics based on
branch and bound method to solve closed loop MRP lot sizing problems. Padmanabhan
and Vrat (1990) developed an inventory model with a mixture of back orders and lost
sales such that the backlogged demand rate was dependent upon the negative inventory
level during the stock out period. Shtub (1990) presented a model of cellular production
system and a heuristic lot sizing procedure that is based on tradeoff between setup cost
and inventory carrying cost for MRP systems. McKnew et. al. (1991) presented a zero
one linear formulation of the multilevel lot-sizing problem for MRP systems without
capacity constraints. Roll and Karni (1991) present a model for multistage lot - sizing
problems with unit lead-time for all components. The heuristic finds the lot-size by
shifting production amounts between periods. Bretthauer et. al. (1994) formulated a
resource constrained production and inventory management model as a nonlinear integer
program.

Padmanabhan and Vrat (1995) presented inventory models for deteriorating items with
stock-dependent selling rates and derived the profit functions with and without
backlogging and complete backlogging cases. Arreola-Risa and DeCroix (1998) studied a
stochastic-demand inventory system where the product supply is randomly disrupted for
periods of random duration. They considered the stochastic- demand inventory system

will become a mixture of back orders and lost sales during demand shortage. DeCroix
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and Arreola-Risa (1998) explored the potential benefits of ordering economic incentives
to back order as a strategy for inventory management when the system involves an
unreliable supply. Martel (1998) formulated the problem with holding cost as a function
of purchasing price. Moncer and Ben-Daya (1999) developed stochastic inventory
models as continuous and periodic review models with mixture of backorders, lost sales
and the base stock model. Ouyang and Chuang (1999) investigated an inventory model
with a mixture of back orders and lost sales in which the back order rate was a random
variable and the quantity was discounted on the inventory model. Grewal (1999) applied
integer linear programming approach to solve lot-sizing problem with back orders
allowed under both crisp and fuzzy environments. He then extended his model to
incorporate quantity discounts. Hsu (2000) presented a lot size model for perishable
inventory where stock deterioration rates depend on both the stocks' ages and their period
of production. Pan and Hsiao (2001)presented inventory models with back order
discount and variable lead-time to ensure that customers were willing to wait for the back
orders. Chiu, Chen and Weng (2003) proposed a near optimal forward dynamic
programming algorithm to solve the deterministic time-varying demand lot-sizing
problem in which learning and forgetting in setups and production are considered
simultaneously. Suerie and Stadlter (2003) provided a mixed integer-programming model
for the capacitated lot-sizing problem with linked lot sizes.

None of the above approaches except Grewal (1999) consider the said problems under
fuzzy environment. However, Grewal (1999) uses a complicated linear integer
programming approach to solve the lot sizing problem with fuzzy data. In the present
thesis, we extend further the simple technique developed by Fordyce and Webster (1984,

1989), to solve the lot size dynamic problem with finite horizon under fuzzy data.
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2.2 Review of Literature on Distribution Inventory Management

Problems

Some major sources of this literature include Production and Inventory
Management Journal, Journal of Operation Research, Management Science Journal,
European Journal of Operations Research (EJOR) and Decision Sciences etc. According
to Clark and Scarf et. al (1960), there is a possibility that the distribution of stock in a
pure distribution system can become imbalanced. That is, if one computes the ideal stock
level for each location based on knowing only the total amount of stock in the system,
then it could be the case that some retailers have stock in excess of the ideal levels for
those locations. Since it is not possible to make shipments that reduce the stock level at a
retailer, the ideal levels are not attainable. They extend their algorithm for serial systems
to pure distribution systems by assuming that the probability of the system becoming
unbalanced is negligible.

Veinott (1965) investigates conditions that ensure the optimality of base-stock policies.
Schwarz (1973) derives a one-warehouse N-retailers inventory model. Goyal (1977)
proposes a joint economic lot size model to minimize the total relevant costs for both the
vendor and the single buyer. Graves (1979) shows that the Joint Replenishment problem
is closely related to the One-warehouse Multi-Retailer System problem. Deuermeyer and
Schwarz (1981) construct and test an approximate model for predicting fill rates and
expected backorders in two-echelon distribution system by assuming continuous review
policy at all locations. In their model, the re-order point at each location , including the
warehouse, is based only on the stock level at that location. Eppen and Schrage (1981)

study centralized systems with fixed -length order cycles and derive a Newsboy-like
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formula for determining an approximately optimal quantity of system stock. The order
policy is referred to as (m, y) policy. Erkip, Hausman and Nahmias (1984) extend the
model to allow demand to be correlated over time and between locations. Peter (1988)
extends Eppen and Schrage's model to allow the warehouse to hold stock and proposes a
policy to make allocations to the retailers in every period of the cycle. This policy is
called a " ship-up-to- 8" policy: the warehouse makes shipments to restore the inventory
position of each retailer to some predetermined value, S, in every period for which the
warehouse has sufficient stock. Blackburn and Millan (1982) introduce the concept of
echelon stock in the multi-echelon system. Roundy (1985) considers a policy where each
retailer orders at an integer or reciprocal of an integer multiple of the warehouse order
interval for one warehouse multi-retailer system. This type of policy is called an integer-
ratio policy. De Bodt and Graves (1985) proposes a nested continuous review policy for
serial systems based on echelon stock. Caplin (1985) studies an economy of multiple
retailers, within which each retailer is faced with the unit-sized demand at a time and
assumed to employ a continuous (R, Q) type policy. He shows that each retailer's
inventory position is independent of other's and uniformly distributed over [ R; + 1, R; +
Qi ]. Banerjee (1986) derives a joint economic lot size model for a single vendor, single
buyer system where the vendor has a finite production rate. Goyal (1988) extends
Banerjee's model by relaxing the lot-for-lot production assumption. Hill (1989) derives a
central warehouse, multi-retailer model with shortage by using simulation.

Federgruen and Zipkin (1984) consider periodic review, multiple-echelon systems with
interdependent demands under the assumption that the probability of imbalance is small.
Zipkin (1984) develops a measure of stock imbalance in a multi-retailer system and

formulate a dynamic programming to determine stocking policies when the problem of
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stock imbalance can't be ignored. He also demonstrates analytically that the risk pooling
benefit of warehouse decreases as the correlation in demand among the retailer increases.
Jonsson and Silver (1984a,b) consider a single reallocation opportunity occurring at the
beginning of the last period in the cycle by assuming costless transshipments are allowed.
Erkip (1984a, b) predetermines the reallocation time by formulating an approximating
dynamic program. Jackson and Muckstadt (1984a, b) consider a single, predetermined
reallocation time and derive both exact and approximate optimality conditions that don't
ignore the possibility of imbalance at the time of reallocation. Brown (1984) conducts
numerical experiments with the exact two retailer version of Jackson and Muckstadt
model.

Diaby and Martel (1993) formulate a mixed integer linear programming model and
develop a Lagrangian relaxation-based procedure to determine the optimal purchasing
and shipping quantities over a finite planning horizon for multi-echelon physical
distribution systems with deterministic, time-varying demands. Lu and Posner (1994)
introduce two heuristic procedures for one-warehouse multi-retailer system. Hariharan
and Zipkin (1995) consider a continuous review model where customers place orders L
units of time in advance of their requirements. They show that demand lead time L
directly offsets the supply lead time and, as of consequence, base stock and (s, S) policies
are optimal for zero and positive ordering costs, respectively. Atkins and Sun (1995)
derives 98%-effective lot sizing for series inventory systems with backlogging. Ha and
Kim (1997) integrates two-echelon inventory model using geometric programming. Yang
and Wee (2000) extends an integrated vendor-buyer inventory system of deteriorating
item. Gupta et al. (2000) considers the trade-off involved between inventory depletion

and production costs under demand uncertainty. Gallego and Ozer (2001) examine a
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periodic-review inventory model by allowing backorders and show that base stock and
(s, S) policies are optimal for zero and positive ordering costs respectively under advance
demand information. Sobel and Zang (2001) study a finite-horizon periodic review model
where, in addition to spot demands, there are known commitments in every period. They
assume that the commitments must be honored without delay, but allow spot demands to
be backordered, and show that a modified (s, S) policy is optimal. Yang and Wee (2002a)
analyzes an integrated single vendor multi-buyer inventory system of a deteriorating
item. Chen , Feng and Simchi-Levi (2002) consider the periodic review two-echelon
inventory system consisting of a supplier at the upper echelon and multiple retailers
facing interrelated demands at the lower echelon, and show that under certain condition,
inventory positions at each location are stationary, uniformly distributed and independent
of the inventory positions at other locations. Ozer (2003) proposes a close-to-optimal
solution based on the solution of a lower bound problem for a centralized system with
one warehouse serving multiple retailers under advance demand information. He also
provides an explicit solution for the system-wide inventory position. Martel (2003)
develops rolling planning horizon policies to manage material flows in multi echelon
supply-distribution networks with relatively general stochastic demand processes and
procurement, transportation, inventory and shortage cost structures. Yao and Chiou
(2003) considers an integrated supply chain model to minimize the vendor's total annual
cost subject to the maximum cost that buyer may be prepared to incur.

It is important to point out here that none of the above work conducted by various
researchers incorporates the fuzzy element present in most of the problems. In the present
thesis we consider the distribution inventory management problem under fuzzy

information.
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CHAPTER 3

A SIMPLIFIED APPROACH TO LOT SIZING INVENTORY
PROBLEM UNDER FUZZY INFORMATION WITH VARIABLE
DEMAND RATE AND NO BACKORDERS ALLOWED

In the present chapter, we consider a variable demand rate inventory problem with no
backorders allowed under fuzzy environment with a finite-planning horizon. We extend
the Wagner —Whitin algorithm to find the lot size for a given product P, assuming that the
demand for a given product P is represented not by a crisp number but by a triangular
fuzzy number, and similarly, the acquisition cost and the carrying cost for a given product
P are represented by other triangular fuzzy numbers. The approach can be extended further
when the demand for a given product P is represented by a trapezoidal fuzzy number, and
the acquisition cost and the carrying cost for a given product P are represented by other

trapezoidal fuzzy numbers.

3.1 Introduction

A product (which could be a raw material, a purchased part or a semi finished product) is
produced or purchased in lot quantities and placed in stock. As the stock is depleted by
demands for the product, more of the product must be produced or purchased. The object
of production planning is to minimize the cost of this cycle of filling and depleting the
stock. To achieve this object, determination of optimal lot size is very important.

Most of the times the production planner works with the forecasted demand and limited
budget. So, the demand is rarely known exactly as the forecasts do not always turn out to

be crisply accurate. Thus, in practice there is always a component of fuzziness in available
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data. Under condition of fuzzy demand and fuzzy costs, the models developed for the
crisp problem may not deliver optimal solution. In present chapter, we create a model, by
taking advantage of the fuzzy set theory developed by Zadeh and Bellman (1965), to deal
with fuzziness in demand.

In 1984, Fordyce and Webster presented a simplified version of the Wagner-Whitin
algorithm to determine the lot size under crisp environment. The present chapter is an
extension of their work with fuzzy information (data). This chapter also demonstrates the

simplicity of the technique when computations are made in several simple steps.

3.2 Lot Size Problem under Crisp Environment

3.2.1 Assumptions
For this model, the following assumptions are made:

1. The demand varies from one time period to another and is assumed to be known.

2. The units needed to satisfy demand during a particular period must be purchased
during a previous period or at the beginning of the specific period during which
they are needed.

3. Acquisition costs (setup costs of production run or ordering or follow-up costs for
purchased parts) are fixed relative to the quantity acquired, but may vary from one
time period to another.

4. Holding cost in a particular time period represents the cost of inventorying one unit
of product from that period until the next period. Units carried forward more than
one time period would be charged the accumulated holding cost of all periods from

acquisition period through the period prior to the actual period of demand or use.
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5. Holding cost may vary from one time period to another.
6. The replenishment lead-time is known with certainty so that delivery can be timed

to occur accordingly.

3.2.2 Notation

D; = number of units demanded during period j

H; = holding cost (in $) per unit during period i

Cjj = cumulative holding cost per unit during period j for the units needed during
period j but purchased during period i, 1 < j

A;j = acquisition cost, irrespective of the number of units acquired, during period j.

N = the number of periods during the planning horizon

T = cumulative cost ( acquisition cost + carrying cost) during period j for the units
needed during period j, but purchased during period i

M; = the minimum prior period cost for period i

Fjj = decision cost (cumulative cost + the minimum prior period cost) during period j
for the units needed during period j, but purchased during period i

L; = lot size during period i

3.2.3 General Formulation

J-1
Cy = > Hy for j>1i (3.1
k=i
Cij =0 for _] =i
J
Ty = Ai+ X (Cy *Dy) (3.2)

k=i
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Mi = minimum of F(i—l)j (3.3)
where 1=1,2,...,0-1)

Fij = Ty+M; (34)

3.3 Lot Size with Fuzzy Information (Data)

3.3.1 Assumptions

1.

The demand varies from one time period to another and is available in the form of
triangular fuzzy numbers.

The units needed to satisfy demand during a particular period must be purchased
during a previous period or at the beginning of the specific period during which
they are needed.

Acquisition cost (setup cost of production run or ordering or follow-up cost for
purchased parts) is available in the form of a triangular fuzzy number, and
unchanged relative to the quantity acquired.

Holding cost in a particular time period, assumed to be fuzzy, represents the cost
of inventorying one unit of product from that period until the next period. Units
carried forward more than one time period would be charged the accumulated
holding cost of all periods from acquisition period through the period prior to the
actual period of demand or use.

Holding cost may vary from one time period to another.

The replenishment lead-time is known with certainty so that delivery can be timed

to occur accordingly.
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3.3.2 General Formulation
We assume that each of Hy in equation (3.1), A; and Dy in equation (B32)form =1,2,.
emi=1,2, ..., n;;k=1,2,...,n isaT.F.N. of the type.
Hy = (Hi, Hio, His ) ; Ai = (Air, A, Az); Dy = Dy, Do, Di3)
The values of Hy, A; and Dy can be obtained from the experts who share the same
information but different opinion.
If we set Hy = (Hyxi, Hio, Hys ) in equation (3.1), then Cj is a triangular fuzzy number
given by

Cik= (Cik, Ciz, Cix3) (3.5)
In 3.2), if we set A; = (A1, Aiz, Az ); Dx = (Dx1, Dio, Di3 ) and Ci = (Cik1, Ciko, Cik3)

then
J
(i) each term in the second part ) (Cj *Dy), in the R.H.S of (3.2), is obtained by
k=i

multiplying two T.F.N.’s .
(i) each term obtained in (i) is itself a fuzzy number but not necessarily a T.F.N. and
(iif) Tj is obtained by adding the results of each individual multiplication obtained in
() to A

Thus, we have
] . .

Tij = A;j+ Z(Cik*Dk); 1:1,2,...,1’1; and J=1,2,...,n
k=1

In view of (ii), it is important to point out here that each of the values For Ty is a fuzzy
number, not necessarily triangular.
Thus, Tj; is a fuzzy number given by

T = (T, T, Ti) (3.6)
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Each fuzzy number, Tj; in equation (3.6) and its membership function are determined on

the line of Kaufman and Gupta (1985, 1988) by using the interval of confidence for A;,

Dy and Cj; respectively, at a — level

A% = [(An-Aa + A (Ap—Ap)a + Ag)] ¥V ael0,1] (3.7)
D% = [(Di2 - Du)e + Dy, (D~ Dig)a + Dia)] V' e [0,1] (3.8)
Cik® = [(Cia - Cix)@ + Cia, (Citz — Cis) @ + Cin)] V@ €[0,1] (3.9)

Fori=1,2,..,mk=1,2,..., n; We multiply the intervals in (3.8) and (3.9), and add
the result to the interval in (3.7).
This yields the following interval of confidence.

Thus, we get

]

kZ[(Dkz -Di1)*(Ciga - Cix)l 0 +

=i

kZ_[(Dkz -Di1) * Cik1 +(Cika -Cix1) * Dy +(Ap -Ajple +Au + kz.(Dkl Cik1 )
=7 =1

j . 5

kZ[(Dkz -Di3)*(Ciga -Cigz ) +

=i

j j
kZ,[(Dkz -Di3 )*Ci3 +(Cixz -Cia3 ) * D3 +(Ap -Ap)]o +Aj + kZ,(Dkz *Cikz )
=1 =]

In this interval of confidence

1. Setting a = 0, we get the end points Tjj; and Ti3
j J
Ty =[Au+ kz.(Dkl *Cikp )], and Tip =[ A +kZ,(Dk3 *Ciksz )]
=] =1

of the fuzzy number Tj

2. Setting a =1 gives the interior point Tjp of Tj
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j
Ty = [An +kZ§Dk2 *Cik2 )]
=i

The membership function is obtained from the interval of confidence by setting
separately, each of the quadratic function, equal to x and solving each of those equations

for . Thus,

]
kZ[(Dkz -Di)*(Cika - Cixp)l 0 +
=1
J *
kZ_[(Dkz “Dr)*Cikg +(Ciga -Cix ) *Dig +(Ap -Ajle + Ay +
=l

]
kz_(Dkl *Cik1) = x (3.10)
=i

solving (3.10) gives membership function between Ty and Tijp satisfying 0<a <1.

Next, we set

j
kZ[(Dkz -Di3)*(Cika -Ci3)]a” +
=1
j
2 [(Dy2 -Dy3 )*Cysz +(Cika -Cig3)*Dy3 +(Ap -Ap)la +Az +
=1

j
kZ_(Dk3*Cik3) = X (3.11)
=i

Solving (3.11) gives membership function between Tjj; and Tjj3 satisfying 0<a <1.
Similarly, We determine each fuzzy number, F;; in equation (3.4) and its membership
function by using the interval of confidence for Tjand M; respectively, at a — level.

Fj = (Fyi, Fip, Fip)



45

3.3.3 Computational Technique
Along the lines of Fordyce and Webster, we now give a simple and straightforward
computational technique to the discrete lot — size problem. It will be explained through the
progressive development of three tables, in which costs associated with the demand of a
particular time period (columns) are identified as a function of the period in which the
units are acquired, and four steps. Since backlogs are not allowed, only the upper right
triangular portion of the table is necessary. The first tableau contains the cumulative
carrying costs per unit, obtained as explained in Step 1 below. The second tableau
contains the cumulative costs, obtained as explained in Step 2 below, and the optimal
tableau is obtained from the second table as explained in Step 3. In Step 4, we identify the
optimal solution from the optimal table.
The four steps of our algorithm are as follows:
STEP 1. Obtaining Initial Tableau

Obtain the cumulative carrying cost C;; associated with each time period by using
(3.1) and prepare the following table in the form of a truncated upper triangular matrix
having n rows and n columns.

Initial Tableau

Time 1 2 3 m n—1 n
_>

Row 1 C11 C]z C13 voe Clm een Cl,n——l C]n
Row 2 sz C23 veo sz ses Cz,n—l Czn
ROW m Cmm CE Y Cm,n_l Cmn
Row n Cin
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STEP 2. Obtaining Second Tableau

Obtain the cumulative cost Ty associated with each time period by using (3.2) and
prepare the second tableau in the form of a truncated upper triangular matrix having n
rows and n columns.

Second Tableau

Time

N 1 2 3 m n—1 n
J

Row 1 T]] le T13 cos T]m cee Tl,n—l T]n
Row 2 Tzz T23 .o sz oo T2,n—1 Tzn
Row m Tom Tmn-1 Tmn
Row n Thn

STEP 3. Obtaining Optimal Tableau

1. Obtain Row 1 of the optimal tableau by duplicating Row 1 of the second
tableau.

Each subsequent row is obtained as follows:

2. To obtain Row 2 of the optimal tableau:
(a) Examine Column 1 of the optimal tableau and in the column

identify the element with smallest value s;.

(b) Obtain Row 2 of the optimal tableau by adding s, to each element

of Row 2 of the second tableau.
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3. To obtain Row 3 of the optimal tableau:
(a) Examine Column 2 of the optimal tableau and in the column
identify the element with smallest value s,.
(b) Obtain Row 3 of the optimal tableau by adding s, to each element
of Row 3 of the second tableau.
In general therefore, we compute Row k, where k = 1, 2, . . ., n; of the optimal
tableau as follows:

(a) Examine Column (k-1) of the optimal tableau and in the column
identify the element with smallest value S(k-1)-
(b) Obtain Row k, where k=1,2, ..., n; ofthe optimal tableau by

adding Sy to each element of Row k of the second tableau.

STEP 4. Identifying the optimal solution
1. @) Examine the column n of the optimal tableau and identify the
minimum value element s, in it. Then,
s*n = gn(1) is the minimum decision cost incurred from time 1 until
time n, i.e. during the planning horizon.
(i1) Suppose the position of s, is in Row u , U <n, of the optimal
tableau.
Then time u is the acquisition time immediately before time n.
2. (@) Examine the column u of the optimal tableau and identify the
minimum value element s, in it. Then,
sy = gu(1) is the minimum decision cost incurred from time 1 until

time u < n.
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(i1) Suppose the position of s’y is in Row q,q <u, of the optimal
tableau.

Then time q is the acquisition time immediately before time u.

Stopping Rule
We continue in the same manner until, in the optimal tableau, we identify a

minimum value element vy, (say), in Column b, (b<q), such that Row 1 is the row in
which vy lies and vy = gv(1). Once the minimum value element lies in Row 1, the
optimal overall policy has been reached and the process terminates.

The optimal policy is to acquire units at time 1, time b, . . ., time q, time u, and the

time n with the overall net optimal cost vn*.

3.3.4 Numerical Example with Fuzzy Information

We illustrate our method through the following numerical example (represented in Table
3.1 and Table 3.2). Demand, acquisition cost, and carrying cost are represented by
triangular fuzzy numbers. We assume that acquisition cost remain constant throughout the

planning horizon.

Table 3.1. Demand, Acquisition cost and Carrying cost (Week 1 to Week 3)

Period 1 2 3
Demand (17, 20, 25) (45, 50, 52) (9, 10, 12)
Acquisition Cost (98, 100, 105) (98, 100, 105) (98, 100, 105)
Carrying Cost (0.85,1,1.2) 0.9, 1, 1.15) (0.9,1,1.2)




Table 3.2. Demand, Acquisition cost and Carrying cost (Week 4 to Week 6)

Period

4

5

6

Demand

(8,10, 12)

(48, 50, 53)

(18, 20, 25)

Acquisition Cost

(98, 100, 105)

(98, 100, 105)

(98, 100, 105)

Carrying Cost

(95,1, 1.1)

(8,1, 1.25)

(85,1, 1.3)

3.3.5 Intervals of Confidence

3.3.5.1 Intervals of Confidence for Demand

;% = [3a + 17, =5a + 25]

;% = [la +9, —2a + 12]

ds? = [2a + 48, —3a + 53]

&% = [5a + 45, —2a + 52]

% = [2a + 8, —-2a + 12]

ds® = [2a + 18, —5a + 25]

3.3.5.2 Intervals of Confidence for Acquisition Cost

A% = [2a + 98, —5a + 105]

A% = [2a + 98, —5a + 105]

As% = [2a + 98, —5a + 105]

A% = [2a + 98, =50 + 105]

A = [2a + 98, —5a + 105]

As% = [2a + 98, —5a + 105]

3.3.5.3 Intervals of Confidence for Carrying Cost

Hi % = [0.15a + 0.85, —0.2a +1.2] H,;* = [0.10a + 0.90, —0.15¢ + 1.15]

H;% = [0.10a + 0.90, —0.3a +12] Hs% = [0.05a + 0.95, —0.10a + 1.10]

Hs% = [0.20a +0.80, —0.25a +1.25] H¢% = [0.15a + 0.85, —0.30c + 1.30]
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3.3.6 Calculating the Cumulative Carrying Cost per unit during Period

j for the units purchased during Period 1 (Cy;)

Obtaining Initial Tableau.

Using (3.1), we have

C“CZ =90
1
Co%® = > H* =H% = [015a+ 085, -02a +1.2]
k=1
a 2 (04 a a
Cis =ZHk =H" + H
k=1
Ci3% = [0.15a + 0.85, ~0.2a +1.2] +[0.10e + 0.90, —0.15¢ + 1.15]

Ci3% = [025a + 1.75, —0.35a +2.35]
We now set

025« + 1.75= x and —0.35a¢ +2.35 = x

This yields,

025 + 1.75-x =0 (3.12)
and -035x +235 - x =0 (3.13)
In (3.12) setting a=0 we get x = 1.75
In (3.13) setting a=0 we get x = 2.35
Setting « =1 in either we get x = 2

Therefore Ci3 = (1.75, 2, 2.35)
Similarly, we calculate Cy4, C;5 and Cyg

Cis = (2.65,3,3.55); Ci5s = (3.6,4,4.65); Cis= (44,5,5.9)
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Now, we determine membership function for Cy3
Solving  0.25¢ + 1.75- x = 0 for o we obtain

x-1.75

o= for 1.75 < x £ 2
0.25

and solving —0.35a +2.35 — x = 0 we obtain

x—2.35
o=
—-0.35

for 2 € x <€ 235

Thus, the membership function for Cj3 = (1.75, 2, 2.35)is

(0 x <1.75
x=1.75 1.75<x <2
] 025
eI =, 1535
: 2<x<2.35
~0.35
0 X >2.35

Similarly, we obtain the fuzzy carrying costs for rest of Cyj's (shown in Table 3.3).
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Table 3.3. Cumulative Carrying Costs during Period j (Initial Tableau)

Period 1 2 3 4 5 6
1 (0,0, 0) (0.85,1,12) (1.75,2,2.35) (2.65, 3, 3.55) (3.6, 4, 4.65) (4.4,5,5.9)
) (0,0,0) 09,1, 1.15) (1.8,2,2.35) (2.75, 3, 3.45) (3.55,4,4.7)
3 (0, 0, 0) 0.9, 1, 1.2) (1.85,2,2.3) (2.65, 3, 3.55)
4 (0, 0, 0) (0.95,1, 1.1) (1.75, 2, 2.35)
5 (0,0, 0) (0.8, 1, 1.25)

0,0,0)
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3.3.7 Calculating the Cumulative Cost during Period j for the units

purchased during Period 1 (Ty;)

Obtaining Second Tableau.
Using (3.2), we have
W = A¢ (~Cn=0)

a
T

I

[2a + 98, —~5a + 105] (3.14)

2
T = Al‘FkZ1 (Ci *Dy)

% = A% +(C,% *D,% Y+ (Cn% *D,%)
Ti2% = [2a + 98, -5 + 105]+ 0+
{[0.15 + 0.85, —02a +1.2] * [5a + 45, —2a + 52])

T% = [75a¢+ 13a +136.25, 40a%—17.8a +167.4]

We now set

T5a?+13a +136.25= x and 40a%-17.8a +167.4 = x

This yields,

T5a?+ 13 +13625— x = 0 (3.15)
and 400*-178a +167.4 — x = 0 (3.16)
In (3.15) setting a=0 we get x = 136.25
In (3.16) setting =0 we get x = 167.4
Setting «a =1 in either we get x = 150

Therefore Ty, = (136.25, 150, 167.40)
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Similarly, we calculate T3, Ti4, Tis and Tig

Now, we determine membership function for T,

Solving quadratic equation (3.15) .75a%+ 13 +136.25— x = 0 for & we obtain

o Z13+4/169-3(136.25 - x)
- 1.5

for 136.25 < x < 150

And solving quadratic equation (3.16) .40a* - 17.8c + 167.4 — x = 0 for a we obtain

17.8-./316.84-1.6(167.4—x)
B .80

for 150 < x < 167.40

a

Thus, the membership function for T1, = (136.25, 150, 167.40) is

(0 x <136.25
—13+,/169~3(136.25-x)

136.25 < x <150

_ 1.5
Hry (X)_
17.8-/316.84-1.6(167.4—x)
150<x <167.4
0.80

0 X 2167.40

\

Similarly, we obtain the fuzzy cumulative costs, along with their membership functions,
for rest of Tj's. Fuzzy cumulative costs are shown in Table 3.5.

In view of Ty , it is important to point out here that in Table 3.5, Tj’s are parabolic fuzzy
numbers. However, we may approximate a parabolic fuzzy number by a T.F.N. if by

doing so the % age error obtained is less than 3%.
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Curvature T.F.N. Error % Error

o Left Right Left Right Left Right Left Right
0 136.25 167.4 136.25 167.4 0 0 0 0
0.1 137.5575 | 165.624 | 137.625 | 165.66 | 0.0675 0.036 | 0.04907 |0.021736
0.2 138.88 | 163.856 139 163.92 0.12 0.064 |0.086406 |0.039059
0.3 140.2175 | 162.096 | 140.375 | 162.18 | 0.1575 0.084 10.112325|0.051821
0.4 141.57 1160.344| 141.75 | 160.44 0.18 0.096 |0.127146|0.059871
0.5 142.9375 | 158.6 143.125 | 158.7 0.1875 0.1 0.131176]0.063052
0.6 144.32 | 156.864 144.5 156.96 0.18 0.096 10.124723| 0.0612
0.7 145.7175 | 155.136 | 145.875 | 155.22 | 0.1575 0.084 |0.108086|0.054146
0.8 14713 |153.416| 147.25 | 153.48 0.12 0.064 0.081561|0.041717
0.9 148.5575 | 151.704 | 148.625 | 151.74 | 0.0675 0.036 |0.045437 | 0.02373
1 150 150 150 150 0 0 0 0

As we see from Table 3.4, the % error is less than 3%, therefore, we may assume that Ty,
1s a T.F.N.. The error analyses for all Tij's is shown in Appendix 1. Thus, from Table 3.4

and Appendix 1 we observe all Tij's can be approximated by triangular fuzzy numbers.
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Table 3.5. Cumulative costs during Period j (Second Tableau)

Period

1

2

(98, 100, 105)

(136.25, 150, 167.40)

(152, 170, 195.60)

(173.20, 200, 238.20)

(346, 400, 484.65)

(425.20, 500, 632.15)

(98, 100, 105)

(106.10, 110, 118.80)

(120.50, 130, 147)

(252.50, 280, 329.85)

(316.40, 360, 447.35)

(98, 100, 105)

(105.20, 110, 119.40)

(194, 210, 241.30)

(241.70, 270, 330.05)

(98, 100, 105)

(143.60, 150, 163.30)

(175.10, 190, 222.05)

(98, 100, 105)

(112.40, 120, 136.25)

(98, 100, 105)
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3.3.8 Calculating the Minimum Prior Period Cost for Period i and the

Decision Cost during Period j for the units purchased in Period i

Obtaining the Optimal Tableau.
As the minimum prior period cost for Priod 1 is zero, therefore,
M =0
Thus, we start Table 3.7 by adding zero to each entry in Row 1 of the Table 3.5 to form
Row 1 of Table 3.7. Now that Row 1 of Table 3.7 is complete, we observe that the
minimum cost of Period 1 is (98, 100, 105), as the (98, 100, 105) is the only entry in
Column 1. Therefore, the acquisition cost M, for Period 1 is
M, = (98, 100, 105).
Since no backorder is allowed as the units must be purchased in Period 1, therefore, M, =
(98, 100, 105), the acquisition cost of Period 1, by necessity has to be incurred.
Row 2 of Table 4.7 is completed by adding this cost to each entry in Row 2 of Table 4.5.
Thus, assuming that all the Tjj’s are T. F. N.’s, we have
Fpo = My + Ty,
Therefore Fy; = (98, 100, 105) + (98, 100, 105) = (196, 200, 210)
Similarly, we calculate the rest of Fy’s.
Now, we determine the minimum prior period cost M for Period 3.
Since, we want to keep the cost as low as possible, therefore, we identify the minimum of
two entries in Column 2 of Table 3.7. For this purpose we calculate the associated
ordinary number (A.O.N.) for each entry (Kaufman and Gupta, 1985).

For eample, for Fi; = (136.25, 150, 167.40) and F» = (196, 200, 210),
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*
AON. forFyy = 136.25+2 i50+167.40 — 15091
*
AON. forFy, = 20+2 jOOJ’ 210 _ 510,
In a similar fashion we calculate the A. O. N. for each of the F ij -
Table 3.6. Associated ordinary numbers for Fi's
Period 1 2 3 4 5 6
1 100.75 150.9125 171.9 202.85 407.6625 514.3375
2 201.5 211.975 232.625 386.3375 471.6875
3 251.6625 262.0625 364.7375 428.85
4 272.65 323.625 366.1875
5 303.6 325.0125
6 404.35

From Table 3.6 we observe that Fi; < Foy

Therefore,

and,

M;

F33 = M3 + Ts;

Fi2 = (136.25, 150, 167.40)

= (234.25, 250, 272.40)

Similalry, we calculate rest of F ij’s with their values as shown in Table 3.7.
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Table 3.7. Decision costs during Period j (Optimal Tableau)

Period 1 2 3 4 5 6
1 (98, 100, 105) (136.25, 150, 167.40) | (152, 170, 195.60) (173.20, 200, 238.20) (346, 400, 484.65) (425.20, 500, 632.15)
5 (196, 200, 210) (204.10, 210, 223.80) (218.50, 230, 252) (350.50, 380, 434.85) | (414.40, 460, 552.35)
3 (234.25,250, 272.40) | (241.45, 260, 286.80) | (330.25, 360, 408.70) | (377.95, 420, 497.45)
4 (250, 270, 300.60) (295.60, 320, 358.90) | (327.10, 360, 417.65)
5 (271.20, 300, 343.20) | (285.60, 320, 374.45)

(369.20, 400, 448.20)
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3.3.9 Calculating the Lot Size during Period j

For this purpose, we start from the last period of Table 3.7, Period 6. The minimum
decision cost in Period 6 is Fs¢ = (285.60, 320, 374.45), calculated by ordering the fuzzy
entries in Column 6, and it is obtained by acquiring Period 6's demand in Period 5.
Thus, lot size in Period 5 is given by

Ls% = Ds% + D&

Ls% = [2a + 48, —3a + 53] +[2a + 18, —5a + 25]
Ls%® = [4a +66, —-8a + 78]

We now set

do +66=x and -8 + 78 = x

This yields,

da +66— x = 0 (3.21)
and -8a + 78 —x =0 (3.22)
In (3.21) setting a=0 we get X = 66
In (3.22) setting a=0 weget x = 78
Setting @ =1 in either we get x = 70

Therefore Ls = (66, 70, 78)

Now, we move to Period 4. The minimum decision cost for Period 4 is F 14 = (173.20, 200,
238.20), and it is obtained by acquiring Period 4 demand in Period 1. So, Period 1 is an
acquisition period to satisfy the demand in Period 1, 2, 3 and 4.

Lot size in Period 1 is given by

L% =D% + D% + D;% + D%

I

L% = [lla +79, -11a + 101]



This yields,

Therefore, L; = (79, 90, 101)

Thus, we have lot size for each period as in Table 3.8.
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Table 3.8. Lot Size during Period j
Period 1 2 3 4 5 6
Lot Size | (79,90,101) | (0,0,0) | (0,0,0) | (0,0,0) | (66,70,78) | (0,0,0)

3.3.10 Interpretation of the Results

In Table 3.8, we calculated the lot size required to satisfy the demand during six weeks.

The lot size in Week 1, L; = (79, 90, 101), is used to satisfy the demand from Week 1

through Week 4. The lot size in Week 5, Ls = (66, 70, 78), is used to satisfy the demand

in Week 5 and Week 6.

Fuzzy set theory permits the partial belonging of an element to a fuzzy set characterized

by a membership function that takes values in the interval [0, 1]. Thus, fuzzy approach

yields a relatively “more satisfactory and flexible solution” within a pre-specified

intervals, whereas a conventional crisp set theory only permits an element either to belong

(membership grade 1) or not to belong (membership grade 0) to the set.
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CHAPTER 4

A SIMPLIFIED APPROACH TO LOT SIZING INVENTORY
PROBLEM WITH VARIABLE DEMAND RATE AND BACKORDERS
ALLOWED WITH FUZZY INFORMATION

In the present chapter, we modify Chapter 3 further by considering a variable demand rate
inventory problem with backorders allowed, under fuzzy environment with a finite-
planning horizon. We develop a technique based on dynamic programming to find the lot
size for a given product P, assuming that the demand, the acquisition cost, the carrying
cost and the back-ordering cost for a given product P are represented by triangular fuzzy

numbers.

4.1 Introduction

In 1989, Webster and Francis considered a back-order version of the Wagner-Whitin
algorithm to determine the lot size under crisp environment. The present chapter is an
extension of their work with fuzzy information (data). This back-order (BO) model
assumes that the demand in a given period can be met in future at some additional costs.
Under certain circumstances this could be more economical than supplying the required
units in the period of demand. The additional cost may be a function of the numbers of
units, the time on BO, the number of orders on BO, the number of customers awaiting
backordered units, or a variety of other variables. The BO costs in the model presented

here assumes BO costs are expressed as " dollars per unit per period of time".
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4.2 Lot Size Problem under Crisp Environment

4.2.1

Assumptions

For this model, the following assumptions are made (Webster and Francis (1989)).

1.

2.

The demand varies from one time period to another and is assumed to be known.
The units needed to satisfy demand during a particular period can be acquired at
any time including backorders.

Acquisition costs (setup costs of production run or ordering or follow-up costs for
purchased parts) are fixed relative to the quantity acquired, but may vary from one
time period to another.

Holding cost in a particular time period represents the cost of inventorying one unit
of product from that period until the next period. Units carried forward more than
one time period would be charged the accumulated holding cost of all periods from
acquisition period through the period prior to the actual period of demand or use.
Holding cost may vary from one time period to another.

Backorder cost represents the cost of backordering one unit of product from the
period in which it was needed to the next time period. Units backordered more
than one time period would be charged the accumulated backordering cost of all
the periods from the time period of demand till the time period of acquisition.
Backorder cost may vary from one time period to another.

The replenishment lead-time is known with certainty so that delivery can be timed
to occur accordingly.

The product is treated entirely independently of the other products i.e., benefits

from joint replenishment do not exist or are ignored.
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4.2.2 Notation

A
I

number of units demanded during period j

jan
I

holding cost (in $) per unit during period i
Cjj = cumulative holding cost per unit during period j for the units needed during
period j but purchased during period i, i < j
b; = backordering cost (in $) per unit during period i
Bjj = cumulative backordering cost per unit during period j for the units needed
during period j but purchased during period i, i > j
Aj = acquisition cost, irrespective of the number of units acquired, during period j.
n = the number of periods during the planning horizon
Tjj = cumulative cost ( acquisition cost + carrying cost + backorder cost) during period
J for the units needed during period j, but purchased during period i for k periods
of backorder
Mix = the minimum prior period cost for row i of k periods of backorder section
Fij = decision cost (cumulative cost + the minimum prior period cost) during period j
for the units needed during period j, but purchased during period i for k periods
of backorder

Li = lot size during period i

4.2.3 General Formulation

Using the notation given in Section (4.2.2) we have



j-1
Cj= X Hpy for j>1
m=i
C;j =0 for j<i
i-1 .
By = 2bp for j <i
m=j
Bij =0 for j>1i

For k=0 1i.e. no backorders allowed
J
Tijo = Ait X (Cim *Dpy)
m=i
For k >0 i.e. backorders allowed, and i< j
J i
Tijk = Aj+ Z(Cim *Dm) + Z(Bim *Dm)
m=i m=i—k
For k >0 i.e. backorders allowed; i>jandi-j <k

i
Tik =  2Bim *Dp)
m=i—k

For k=0 1.e. no backorders allowed

Mio = minimum of Fp-1yk

where m=2,3,...,1; k= 1,2,...,@G-1.

For k> 0 i.e. backorders allowed

Mix = minimum of F.1yo

where m= 1,2,... (-1).

Fijo = Tj0 + Mio

Fix = Tik + Mgk

4.1)

4.2)

4.3)

4.4)

(4.5)

(4.6)

4.7)

(4.8)

(4.9)

65
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4.3 Lot Size with Fuzzy Information (Data)

4.3.1 Assumptions

1. The demand varies from one time period to another and is assumed to be known
triangular fuzzy numbers.

2. The units needed to satisfy demand during a particular period can be acquired at
any time including backorders.

3. Acquisition cost (setup cost of production run or ordering or follow-up cost for
purchased parts) is available in the form of a triangular fuzzy number, and
unchanged relative to the quantity acquired.

4. Holding cost in a particular time period, assumed to be available in the form of a
triangular fuzzy number, represents the cost of inventorying one unit of product
from that period until the next period. Units carried forward more than one time
period would be charged the accumulated holding cost of all periods from
acquisition period through the period prior to the actual period of demand or use.

5. Holding cost may vary from one time period to another.

6. Backorder cost, during a particular time period, is available in the form of a
triangular fuzzy number, and represents the cost of backordering one unit of
product from the period in which it was needed to the next time period. Units
backordered more than one time period would be charged the accumulated
backordering cost of all the periods from the time period of demand till the time
period of acquisition.

7. Backorder cost may vary from one time period to another.
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8. The replenishment lead-time is known with certainty so that delivery can be timed
to occur accordingly.
9. The product is treated entirely independently of the other products i.e., benefits

from joint replenishment do not exist or are ignored.

4.3.2 Computational Technique

Along the lines of Francis and Webster (1989), we now give a simple and straightforward
computational technique to the discrete lot-size problem with backorders allowed. It will
be explained through the progressive development of three tables and four steps, in which
costs associated with the demand of a particular time period (columns) are identified as a
function of that period during which the units are acquired. The first tableau contains the
cumulative carrying costs per unit in the upper right triangular portion and cumulative
backordering costs per unit in the lower left triangular portion, obtained as explained in
Step 1 below. The second tableau shows the cumulative costs including the backordering
costs, obtained as explained in Step 2 below. There are (n+1) sections of this table;
Section 1 shows the cumulative costs for no BO; Section 2 shows the cumulative costs for
one period of BO; Section q contains the cumulative costs for (g-1) periods of BO. The
optimal tableau is obtained from the second table, as explained in Step 3, and also has
(n+1) sections. In Step 4, we identify the optimal solution from the optimal table.

The four steps of our algorithm are as follows:

STEP 1. Obtaining First Tableau

Obtain the cumulative carrying cost Cj and the cumulative back ordering cost Bj;
associated with each time period by using (4.1) and (4.2) respectively and prepare the

following table in the form of a triangular matrix having n rows and n columns.
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Initial Tableau
Time
N 1 2 3 m n-1 n
J
Row 1 0 Clz C13 C1m Cl,n-l Cln
Row 2 B2 0 Cas Com Can1 Con
Row 3 B31 B32 0 C3m C3,n-1 C3n
Row m B B2 B3 0 Cm,n-l Cun
Row n B B2 B.s Bum Bn,n-l 0

STEP 2.Obtaining Second Tableau

1. Obtaining Section 1

Obtain the cumulative cost Tjj associated with each time period by using (4.3) and

prepare Section 1 in the form of a truncated upper triangular matrix having n rows and

n columns.

2. Obtaining Section 2

Obtain the cumulative cost Tj;; associated with each time period by using (4.4) and

(4.5) prepare Section 2 in the form of a truncated upper triangular matrix having n

rows and n columns.

3. Obtaining Section 3

Obtain the cumulative cost Tj;; associated with each time period by using (4.4) and

(4.5) prepare Section 3 in the form of a truncated upper triangular matrix having

(n —1) rows and n columns.
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In general therefore, we compute Section q, where q= 2, 3, .. ., n+1; of the second
tableau as follows:

It shows the cumulative costs for (q —1) periods of back order. To obtain the
cumulative cost Tjq.1) associated with each time period we use (4.4) and (4.5), and
prepare the section in the form of a truncated upper triangular matrix having (n — q +2)

rows and n columns.

STEP 3. Obtaining Optimal Tableau
1. Obtaining Row 1 of each section
Obtain Row 1 of each section of the optimal tableau by duplicating Row 1 of
the corresponding section of the second tableau.
2. Obtaining Row 2 of each section
To obtain Row 2 of Section 1
I. Examine Column 1 of Section 2, Section 3, . . ., Section n+1 of the optimal
tableau and in the column identify the element with smallest value s;.
II. Obtain Row 2 of the first section of the optimal tableau by adding s; to each
element of Row 2 of Section 1 of the second tableau.
To obtain Row 2 of Section 2
II. Examine Column 1 of Section 1 of the optimal tableau and in the column
identify the element with smallest value v;.
IV. Obtain Row 2 of Section 2 of the optimal tableau by adding v; to each
element of Row 2 of Section 2 of the second tableau.

To obtain Row 2 of Section 3
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V. Examine Column 1 of Section 1 of the optimal tableau and in the column
identify the element with smallest value v;.
VI. Obtain Row 2 of Section 3 of the optimal tableau by adding v; to each
element of Row 2 of the third section of the second tableau.
In general therefore, we compute Row 2 of Section q, where q =2, 3, .. ., ntl; of the
optimal tableau as follows:
I. Examine Column 1 of Section 1 of the optimal tableau and in the column
identify the element with smallest value v;.
II. Obtain Row 2 of Section g of the optimal tableau by adding v; to each
element of Row 2 of Section q of the second tableau.
In general therefore, we compute Row p of Section q, where p=1,2,...,n;q9q=1,2,...,
n+1; of the optimal tableau as follows:
To obtain Row p of Section 1
I. Examine Column (p-1) of Section 2, Section 3, . . ., Section (n+1) of the
optimal tableau and in the column identify the element with smallest value
S(p-1)-
II. Obtain Row p of Section 1 of the optimal tableau by adding s(.1) to each
element of Row p of Section 1 of the second tableau.
To obtain Row p of Section q where q=2, 3, ..., n+l
II. Examine Column (p-1) of Section 1 of the optimal tableau and in the column
identify the element with smallest value v(.1).
IV. Obtain Row p of Section q of the optimal tableau by adding v(.)) to each

element of Row p of Section q of the second tableau.
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STEP 4. Identifying the optimal solution

@

(i)

Examine the column n of each section of the optimal tableau and

identify the minimum value element sn* in it.

Suppose sn* = Fmnk . Then Period m is the acquisition period for

demand Period n.

If m > n, then Fupnk is obtained by acquiring Period n, Period (n-1), .

.., Period (n-k+1)' s demand during Period m, then

a) Ignore all rows that have acquisition Period n, Period (n-1), .
.., Period (n-k+1) of each section.

b) Examine the column (n-k) of each section of the optimal
tableau and identify the minimum value element s(,. " in it.

c) Suppose Sk = Fring, then Period h is an acquisition period

for units required for Period (n-k).

d) Ignore all rows that have acquisition Period (n-k) of each
section.
€) Examine the column h of each section of the optimal tableau

and identify the minimum value element sh* in it.
1) Suppose s, = Fhng, then Period h is an acquisition period for
units required for Period h.
If m < n, then Fynk is obtained by acquiring Period n's demand
during Period m, then

a) Ignore all rows that have acquisition Period n of each section.
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b) Examine the column m of each section of the optimal
tableau and identify the minimum value element sm* in it.
c) Suppose sp = Frumg, then Period m is an acquisition period
for units required for Period m.
Stopping Rule
We continue in the optimal tableau in the same manner until we reach at the first
period of the planning horizon. At this stage we examine Column 1, and observe that

the optimal overall policy has been reached and the process terminates.

4.3.3 Numerical Example Under Fuzzy Environment

We illustrate our method through the following numerical example (represented in Table
4.1 and Table 4.2). Demand, acquisition cost, and carrying cost are represented by
triangular fuzzy numbers. We assume that acquisition cost remain constant throughout the

planning horizon.

Table 4.1.  Demand, Acquisition cost , Carrying and BO cost (Week 1 to Week 3)

Period 1 2 3
Demand (17, 20, 25) (45, 50, 52) (9,10, 12)
Acquisition Cost (98, 100, 105) (98,100, 105) (98, 100, 105)
Carrying Cost (0.85,1,1.2) (0.9, 1, 1.15) 09,1, 1.2)
Backordering Cost (0.2,0.5,0.7) (0.25, 0.5, 0.6) (0.35,0.5, 0.7)
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Table 4.2. Demand, Acquisition cost , Carrying and BO cost (Week 4 to Week 6)

Period 4 5 6
Demand (8,10,12) (48, 50, 53) (18, 20, 25)
Acquisition Cost (98, 100, 105) (98, 100, 105) (98, 100, 105)
Carrying Cost (95,1, 1.1) (.8,1,1.25) (.85,1,1.3)
Backordering Cost (0.3,0.5, 0.65) (042, 0.5, 0.55) (0.25, 0.5, 0.65)

4.3.4 Intervals of Confidence

4.3.4.1 Intervals of Confidence of Demand

&% = [3a + 17, -5a + 25] &% = [5a + 45, —2a + 52]
&Y = [la +9, —2a + 12] 4% = [2a + 8, —2a + 12]
ds% = [2a + 48, —3a + 53] ds% = [2a + 18, —5a + 25]

4.3.4.2 Intervals of Confidence of Acquisition Cost
A% = [2a + 98, —5a + 105] A% = [2a + 98, -5 + 105]
A% = [2a + 98, —=5a + 105] A% = [2a + 98, —5a + 105]
As% = [2a + 98, -5 + 105] A¢% = [2a + 98, —5a + 105]
4.3.4.3 Intervals of Confidence of Carrying Cost
H, % = [0.15a + 0.85, —02a +1.2] H,% = [0.10a + 0.90, —0.15a +1.15]
H;% = [0.10a + 0.90, —03a +1.2] Hs%* = [0.05a + 0.95, —0.10a +1.10]
Hs% = [0.20a +0.80, —0.25a +1.25] Hg% = [0.15a +0.85, —0.30a + 1.30]
4.3.4.4 Intervals of Confidence of Backordering Cost

b1% = [03a + 02, -02a +0.7] b,% = [025a + 0.25, —0.1a + 0.6]
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5% = [0.15a + 0.35, -02a +0.7] by% = [0.02a + 0.3, —0.15a +0.65]

bs% = [0.08a +0.42, —0.05a +0.55] bs% = [0.25c +0.25, —0.15a + 0.65]

4.3.5 Calculating the Cumulative Carrying Cost per unit and the
Cumulative Backordering Cost per unit during Period j for the

units purchased during Period i

Obtaining the First Tableau

Using (4.1), we have

C“a =0

i

% = > HK* H,% = [0.15a + 0.85, —0.2a +1.2]

Cs%= > H* =H% + KL%

0
R
I

[0.15 + 0.85, —0.2¢ +1.2] +[0.10a + 0.90, —0.15¢x + 1.15]
Ci3% = [025a + 1.75, —0.35a +2.35]
We now set
025« + 1.75= x and —0.35« +2.35 = x
This yields,
025c + 1.75- x = 0 (4.10)
and -035% +235 - x=0 4.11)

In (4.10) setting ¢ =0 we get x = 1.75

|

In (4.11) setting a =0 we get x = 2.35
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Setting « =1 ineither we get x = 2
Therefore Ci3 = (1.75, 2,2.35)
Similarly, we calculate Cy4, C;5 and Cig
Cis= (2.65, 3,3.55); Cis = (3.6,4,4.65); Cis= (4.4,5,5.9)

Membership function for Cj3 = (1.75, 2, 2.35) is

(0 x <1.75
x-1.75 175<x<2
] 025
IUCB(X)_ X—235
: 2<x<2.35
—-0.35
0 x>2.35

Again, we obtain
B3 = (0.45, 1, 1.30)

and its membership function xps3;(x) as

(0 x <0.45
x—0.45 0.45<x <1
_ | 055
mB3()=9 T
: 1<x<1.30
~0.30
0 x 21.30

We obtain in a similar manner the fuzzy carrying costs for rest of Cj's, and fuzzy

backordering costs for rest of Bj's. We thus obtain Table 4.3.
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Table 4.3. Cumulative Carrying Costs and Cumulative Backordering Costs during Period j
Demand Period

‘l}:l‘?i‘;i;iﬁ"" 1 2 3 4 5 6

1 (0, 0,0 085,1,12)  (1.75,2,235)  (2.65,3,355)  (3.6,4,4.65) 4.4,5,59)
2 (0.2,05,0.7) (©, 0, 0) ©9,1,1.15)  (1.8,2,235)  (275,3,345)  (3.55,4,47)
3 (045,1,13)  (0.25,0.5,0.6) ©, 0, 0) (09,1,12) (1.85,2,23)  (2.65,3,3.55)
4 (0.8.15,2) ©06,1,13)  (0.35,05,0.7) (0, 0,0) 095,1,1.1) (1.75,2,2.35)
5 (1.1,2,265)  (0.9,15,195  (0.65,1,135)  (0.3,0.5,0.65) ©, 0, 0) (03,1, 1.25)
6 (152,25,32)  (132,2,25)  (1.07,15,19)  (072,1,12) (042, 0.5,0.55) ©,0,0)

7 (1.77,3.385)  (1.57,25,3.15)  (1.32,2,2.55)  (0.97,15,185)  (0.67,1,12)  (0.25,0.5,0.65)

4.3.6 Calculating the Cumulative cost including Back order cost during

Period j for the units purchased during Period i for k periods of back

orders (Tijk)

Obtaining the Second Tableau

1. No Back orders allowed.

Using (4.3), we have
Tio% =A% (- Cy=0)
Tie% = [2a + 98, —5a + 105]

2
Ar+ Y, (Cie*Dy)
i=

« . A]a +(C11a *D]a )+(C12a *Dza)

4.12)
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Tin% = [2a + 98, =5 + 105]+0 +
{[0.15c + 0.85, —02a + 1.2] * [5ax + 45, —2a + 52]}
Tin% = [ 75+ 13a +136.25, 40a”—17.8a +167.4]
We now set
T5a?+13a +13625= x and .40a’—-17.8a +167.4 = x
This yields,
T5a*+ 13a +13625—- x = 0 (4.13)
and 400%—-178a +1674 — x = 0 (4.14)
In (4.13) setting ¢ =0 we get x = 136.25

167.4

Il

In (4.14) setting =0 we get X
Setting «a =1 ineither we get x = 150
Therefore Tiy0 = (136.25, 150, 167.40)

Now, we determine membership function for Tiag

Solving quadratic equation (4.13) .75 %+ 13a +136.25— x = 0 for a we obtain

e ~13+4/169-3(136.25—-x)
- 1.5

for 13625 < x < 150

And solving quadratic equation (4.14) .40a” - 178 +167.4 — x = 0 for & we obtain

17.8-./316.84-1.6(167.4-x)
- .80

for 150 < x £ 167.40

(94

Thus, the membership function for Ty, = (136.25, 150, 167.40) is
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-

0 x <136.25
~13+4/169-3(136.25 - x)
136.25 <x <150
90 )= =
17.8-4/316.84-1.6(167.4-x)
150 <x <167.4
0.80
0 X >167.40

A

Similarly, we obtain the fuzzy cumulative costs for rest of Tjjo's.

In view of Ty, it is important to point out here that in Table 4.6, Tjjo’s are parabolic
fuzzy numbers. However, we may approximate a parabolic fuzzy number by a T.F.N. if by
doing so the % age error obtained is less than 3%.

Table 4.4. Error Analysis for Tiz

Curvature T.F.N Error % Error

o Left Right Left Right Left Right Left Right
0 136.25 167.4 136.25 167.4 0 0 0 0
0.1 137.5575 | 165.624 | 137.625 | 165.66 | 0.0675 0.036 | 0.04907 |0.021736
0.2 138.88 | 163.856 139 163.92 0.12 0.064 |0.086406|0.039059
0.3 140.2175 | 162.096 | 140.375 | 162.18 | 0.1575 0.084 10.112325]0.051821
0.4 14157 |160.344 | 141.75 160.44 0.18 0.096 10.127146|0.059871
0.5 142.9375 | 158.6 143.125 158.7 0.1875 0.1 0.131176]0.063052
0.6 144.32 | 156.864 144.5 156.96 0.18 0.096 |0.124723| 0.0612
0.7 145.7175 | 155.136 | 145.875 | 155.22 | 0.1575 0.084 10.108086 |0.054146
0.8 14713 | 153.416 | 147.25 153.48 0.12 0.064 0.0815610.041717
0.9 148.5575 | 151.704 | 148.625 | 151.74 | 0.0675 0.036 |0.045437| 0.02373
1 150 150 150 150 0 0 0 0

As we see from Table 4.4, the % error is less than 3%, therefore, we may assume that Tizo
is a T.F.N.. The error analyses for all Tjy's is shown in Appendix 2. Thus, from Table 4.4

and Appendix 2 we observe all Tj's can be approximated by triangular fuzzy numbers.

2. One period of back orders.

Now, for k =1,i>]j, using (4.5), we have

1
Tai% = Y Bwm® *Dp %
m=1



Now, for m = 1,

T = Bu% *D%)

= [03a + 0.2, —=02a +0.7] * [3a + 17, ~5a + 25]

= [0.9a”+ 5.7 +3.4, la®- 8.5 +17.5] .

Setting

0902+ 570 +3.4=x and la?-8.5a +175 = x
yields,

0902+ 570 +34-x =0 (4.15)
and la?-8.5a +175 - x = 0 (4.16)

In (4.15) setting @ =0

In (4.16) setting o =0

we get x = 3.4

we get x = 17.5

Setting « =1 ineither weget x = 10

Therefore, the parabolic fuzzy number

Tan = 3.4, 10, 17.5)

with membership function s34

Ut231(X)=

Now, for k =1,i<j

3
To% = A+ 3
m=2

0 x <34

-5.7 +\/32.41?8—3.6(3.4 -x) 34<x<10
8.5- J72.252- 2(17.55-x) 10<x <175
. x217.55

, using (4.4), we have

2
(CZm*Dm) +Z (BZm*Dm)
nel

79
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Ton® =[2a + 98, —5a + 105]+[0.1a +0.9, —.15 +1.15] * [la +9, —2a + 12]

+[0.75a2 + 5a +4.25, .50a” - 5.5a +15]
[0.9c0%+5.7a +3.4, la?-8.5a +17.5]
T ® = [la?+ 9.5a +109.50, .1.3a* - 17.6c +136.3]

Setting 1+ 9.5a +109.50 = x and 13a”-17.6a +136.3 = x

yields, la?+9.5a +109.50- x = 0
and 13a¢2-17.6a +1363 —x =0
In (4.17) setting e =0  we get x = 109.50
In(4.18) setting a =0 we get x = 136.3

Setting «a =1 ineither weget x = 120

Therefore, Ty = (109.5, 120, 136.3)

(4.17)

(4.18)

Similarly, we obtain the fuzzy cumulative costs for rest of Ty'sfork=1,2,....n

In view of T,3;, it is important to point out here that in Table 4.6, Ty’s are parabolic

fuzzy numbers. However, we may approximate a parabolic fuzzy number by a T.F.N. if by

doing so the % age error obtained is less than 3%.

Table 4.5. Error Analysis for Ty3;

Curvature T.F.N Error % Error

o Left Right Left _Right Left Right Left Right
0 109.50 136.30 109.5 136.3 0 0 0 0

0.1 110.46 134.55 110.55 | 134.67 0.09 0.117 ]0.081477 |0.086955
0.2 111.44 132.83 111.6 133.04 0.16 0.208 |0.1435750.156589
0.3 112.44 131.14 112.65 | 131.41 0.21 0.273 |0.1867660.208179
0.4 113.46 129.47 113.7 129.78 0.24 0.312 |0.2115280.240986
0.5 114.50 127.83 114.75 | 128.15 0.25 0.325 |0.218341|0.254254
0.6 115.56 126.21 115.8 126.52 0.24 0.312 10.207684|0.247211
0.7 116.64 124.62 116.85 | 124.89 0.21 0.273 10.1800410.219071
0.8 117.74 123.05 117.9 123.26 0.16 0.208 |0.135893|0.1692034
0.9 118.86 121.51 118.95 | 121.63 0.09 0.117 10.0757190.096286
1 120.00 120.00 120 120 0 0 0 0
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As we see from Table 4.5, the % error is less than 3%, therefore, we may assume that To3;
is a T.F.N.. The error analyses for all Tjj's is shown in Appendix 2. Thus, from Table 4.5
and Appendix 2 we observe all Tjy's can be approximated by triangular fuzzy numbers,
therefore, in the analysis conducted in Section 4.3.6, use them as T. F. N.’s.

Values of all Tjji's are shown in Table 4.6.



Table 4.6. Cumulative Costs including Back-order Cost (Second Tableau)

Demand Period

Section 2: One period of back order

Acquisition 3 4 5 6
Period 1 2
Section 1: No back orders
1 Row 1
(98, 100, 105) (136.25, 150, 167.40) (152, 170, 195.60) (173.20, 200, 238.20) (346, 400, 484.65) (425.20, 500, 632.15)
5 Row 2
(1014, 110, 122.5) (109.5, 120, 136..3) (123.90, 140, 164 5) (255.9,290, 347.35) (319.80, 370, 464.85)
3 Row 3
(116.9, 145, 168.7) (124.1, 155, 183.1) (212.9, 255, 305) (206.6, 315, 393.8)
4 Row 4
(141.75, 185, 231) (187.35, 235,289.3) (218.85, 275, 348.05)
5 Row 5
(207.65, 225, 251.5) (222.05, 245, 282.75)
6 Row 6

(233.42,255,284.85)

2 | Rowl | 34010 17.50) | (101.40,110,122.50) (109.5, 120, 136.30) (123.90,140,164.5) (255.9, 290, 347.35) (319.8, 370, 464.85)

3 | Row2 (11.25,25.00,31.20) (109.25,125,136.20) (116.45,135,150.6) (205.25,235..272.50) (252.95,295, 361.25)
Row 3

4 (3.15,5.00,8.40) (101.15,105,113.40) (146.75,155,171.70) (178.25,195, 230.45)

5 | Row4 (2.40,5.00,7.80) (100.40,105,112.80) (114.80,125,144.05)

¢ | Rows (20.16,25,29.15) (118.16,125,134.15)

7 Row 6

(4.50,10,16.25)

(Continued on next page)
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Table 4.6. Cumulative Costs including Back-order Cost (Second Tableau)
Demand Period
Acquisiti
Period | ] 3 4 5 6
Section 3: Two periods of back order
3 Row 1 (18.90, 45.00,63.70) (116.90,145.00,168.70) | (124.10,155.00,183.10) | (212.90,255.00,305.00) | (260.60,315.00,393.75)
4 Row 2 (30.15,55.00,76.00) (128.15,155.00,181.00) | (173.75,205.00,239.30) | (205.25,245.00,298.05)
5 Row 3 (8.25,15.00,24.00) (106.25,115.00,129.00) | (120.65,135.00,160.25)
6 Row 4 (25.92,35.00,43.55) (123.92,135.00,148.55)
7 | Row5 (36.66,60.00,79.85)
Section 4: Three periods of back order
4 Row 1 (43.75,85.00,126.00) |  (141.75,185.00231.00) |  (187.35,235.00,28930) |  (218.85,275.00,348.05)
5 Row 2 (48.75,90.00,125.40) |  (146.75,190.00,23040) |  (161.15,210.00,261.65)
6 Row 3 (35.55,50.00,66.35) |  (133.55,150.00,171.35)
7 Row 4

Section 5: Four periods of back order

(44.42,75.00,102.05)

5 Row I (67.45,130.00,191.65) (165.45,230.00,296.65) (179.85,250.00,327.90)

6 Row2 (94.95,150.00,196.35) (192.95,250.00,301.35)
ow

7 Row 3

(56.30,95.00,132.65)

(Continued on next page)
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Table 4.6. Cumulative Costs including Back-order Cost (Second Tableau)
Demand Period
Acquisition
Period 1 3 5 6

Section 6: Five periods of back order

¢ | Rowl (120.79,200.00,276.35) | (218.79,300.00,381.35)
7 | Row2 (126.95, 220, 296.45)
Section 7: Six periods of back order

7 | Row1 (157.04, 280, 392.7
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4.3.7 Obtaining the Optimal Tableau

Since, M = 0, wherek=1,2,...,6,

we start Table 4.8 by adding zero to each entry in Row 1 of the each section of the

Table 4.6 to form Row 1 of the corresponding section of Table 4.8.
For k =0, Calculating the minimum prior period cost for Row 2 of Section 1.
Using (4.6), My = minimum of Fpx ,

where m=2,3,...,7;k=1,2,...,6.
Again, My =Fy;1= (3.4,10,17.5)
and Fxng = Mo+ Tao
= (101.4, 110, 122.5)

Similarly, we calculate the rest of the Fj ’s.

Calculating the minimum prior period cost for Row 2 for k > 0.

Using (4.7), M= F110 and Fijx = Tijx + Mgk

Thus, F321 = (109.25, 125, 136.20)

Similarly, we calculate the rest of the Fj; ’s.

Determining the minimum prior period cost for Row 3 for k> 0.
M3o = minimum of Fpox where m= 2,3 and k=1, 2.
M3¢ = minimum of [ F2z1, F321, F222, F322]

To calculate M3, we order these fuzzy entries.

Fop = (101.40, 110, 122.50)
F31 = (109.25, 125, 136.20)
Fpo=0

F3, = (18.90, 45, 63.70)
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101.4+2*110+122.50

A.ON. for Fyp; = 2 = 110.97
*
AON. for Fyp = 109.25+2 i25+136.20 — 123.86

*
AON. for Fay = 18.90+2*45+63.70 - 1315

4

Therefore, M3y = F3 = (18.90, 45, 63.70),
and Fs30 = (116.90, 145, 168.70)
Determining the minimum prior period cost for Row 3 for k > 0.
M;; = minimum of Fypo. m= 1,2

M3 = minimum of [ Fi29 Fago]

Fiao = (136.25, 150, 167.40)
Fao = (101.4, 110, 122.50)
*
AON. for Fpyy = 136:25+2 i50+167.40 _ 15001
*
AON. forFp = 014+27110+12250 _ oo

4
" Fazo < Fiap
(A.O.N. for each of Fjj's are shown in Table 4.7.)
Therefore, Mj = Fao = (101.4, 110, 122.50)
and  Fg3;= (104.55, 115, 130.9)

Similarly, we calculate the rest of the Fy ’s. Values of all Fy's are shown in Table 4.8.



Table 4.7. Associated ordinary numbers for Fjy's

Demand Period

Row 1

Section 7: Six Periods of back order

L1 | 2 T 3 4 | 5 | s
Section 1: No back orders
Row 1 | 100.75| 150.9125 171.9 202.85 |407.6625 | 514.3375
Row 2 110.975 121.45 1421 295.8125 | 381.1625
Row 3 143.9 154.3 256.975 | 321.0875
Row 4 185.6875 | 236.6625 | 279.225
Row 5 227.2875| 248.7
Row 6 257.0675
Section 2: One Period of back order
Row 1 | 10.225| 110.975 121.45 142.1 295.8125 | 381.1625
Row 2 123.8625 | 224.6125 | 235.0125 | 337.6875| 401.8
Row 3 116.3625 | 217.1125 | 268.0875 | 310.65
Row 4 126.5 227.25 | 248.6625
Row 5 166.9275 | 267.6775
Row 6 237.475
Section 3: Two Periods of back order
Row 1 ] 43.15 143.9 154.3 256.975 | 321.0875
Row 2 154.7875 | 255.5375 | 306.5125 | 349.075
Row 3 126.5375 | 227.2875 | 248.7
Row 4 156.3175 | 257.0675
Row 5 201.2275
Section 4: Three Periods of back order
Row 1 l 84.9375 | 185.6875 | 236.6625 | 279.225
Row 2 189.2875 | 290.0375 | 311.45
Row 3 161.45 262.2
Row 4 195.5675
Section 5: Four Periods of back order
Row 1 | 129.775 | 230.525 | 251.9375
Row 2 248.575 | 349.325
Row 3 205.7125
Section 6: Five Periods of back order
Row 1 | 199.285 | 300.035
Row 2 316.6

277.435

87
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Table 4.8. Decision Costs including Back-order Costs (Optimal Tableau)
Demand Period
Acquisition
Period 1 2 3 4 5 6

Section 1: No back orders

1 Row 1 (98, 100, 105) (136.25, 150, 167.40) (152, 170, 195.60) (173.20, 200, 238.20) (346, 400, 484.65) (425.20, 500, 632.15)
2 Row 2 (101.4, 110, 122.5) (109.5, 120, 136..3) (123.90, 140, 164 5) (255.9,290, 347.35) (319.80, 370, 464.85)
3 Row 3 (116.9, 145, 168.7) (124.1, 155, 183.1) (212.9, 255, 305) (206.6, 315,393.8)
4 Row 4 (141.75, 185, 231) (187.35, 235, 289.3) (218.85, 275, 348.05)
5 Row 5 (207.65, 225, 251.5) (222.05, 245, 282.75)
6 Row 6 (233.42, 255, 284.85)
Section 2: One period of back order

2 Row 1 (34,10, 17.5) (101.40,110,122.5) (109.5,120, 136.30) (123.9,140,164.5) (255.9, 290, 347.35) (319.8,370, 464.85)
3 Row 2 (109.25, 125, 136.20) (207.25, 225, 241.20) (214.45,235,255.60) (303.25,335,377.50) (350.95,395.00,466.25)
4 Row 3 (104.55,115,130.9) (202.55, 215, 235.9) '(248.15, 265, 294.2) (279.65, 305, 352. 95)
5 Row 4 (111.9, 125, 144.1) (209.9, 225, 249.1) (224 3, 245, 280.35)
6 Row 5 (144.06, 165,193.65) (242.06, 265, 298.65)
7 Row 6 (212.15, 235, 267.75)

(Continued on next page)
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Table 4.8. Decision Costs including Back-order Costs (Optimal Tableau)
Demand Period
Acquisition
qui 1 2 3 4 5 6
Period
Section 3: Two periods of back order
3 R i (18.90,45.00,63.70) (116.90,145.00,168.70) (124.10,155.00, 183.10) (212.90, 255.00, 305.00) (260.60, 315.00, 393.75)
oW

4 (128.15,155.00,181.00) (226.15, 255.00, 286.00) (271.75, 305.00, 344.30) (303.25, 345.00, 403.05)
Row 2

5 (109.65,125.00,146.5) (207.65, 225, 251.5) (222.05, 245, 282.75)
Row 3

6 (135.42,155,179.85) (233.42, 255, 284.85)
Row 4

7 (160.56, 200, 244.35)
Row 5

Section 4: Three periods of back order

4 (43.75,85.00,126.00) (141.75,185.00, 231.00) (187.35, 235.00, 289.30) (218.85, 275.00, 348.05)
Row 1

5 (146.75,190.00, 230.40) (244.75, 290.00, 335.40) (259.15, 310.00, 366.65)
Row 2

6 (136.95, 160, 188.85) (234.95, 260, 293.85)
Row 3

7 (153.92.195, 238.35)
Row 4

Section 5: Four periods of back order

5 (67.45,130.00,191.65) (165.45, 230.00, 296.65) (179.85, 250.00, 327.90)
Row 1

6 (192.95, 250.00, 301.35) (290.95, 350.00, 406.35)
Row 2

157.7, 205, 255.15
7 Row 3 ( )

(Continued on next page)
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Table 4.8. Decision Costs including Back-order Costs (Optimal Tableau)

Demand Period

Acquisition
Period ! 2

4

Section 6: Five periods of back order

6

Row 1

(120.79, 200.00, 276.35)

(218.79, 300.00, 381.35)

7 Row 2

Section 7: Six periods of back order

(224.95, 320, 401.45)

7

Row 1

(157.04, 280, 392.7)
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4.3.8 Calculating the Lot Size during Period I

We start from the last period of the optimal tableau (Table 4.8), Period 6. The minimum
decision cost in period 6 is F7e3 = (153.92, 195, 238.35), calculated by ordering the fuzzy
entries in Column 6. Because it is obtained by acquiring Period 4, Period 5 and Period 6's
demand in Period 7, it implies that the unit required for demand period 4, 5 and 6 are
backordered. This rules out Section 7, Section 6, Section 5, Section 4, Row 2 to Row 5 of
Section3 and Row 3 to Row 6 of Section 2, and thus requires that the least cost alternative
for Period 3 be selected from Sectionl, Row 1 & Row 2 of Section 2, and Row 1 of
Section 3. This least cost is (109.5,120, 136.30). While it occurs in two places i.e. Row 2
of Sectionl (F2309) and Row 1 of Section 2 (F,31), there is only one distinct strategy. Fo3 &
F231, both imply the acquisition of Period 3's demand in Period 2. The least cost for Period
21s (101.40,110,122.5), it also occurs in two places, Row 2 of Section]l (F,z0) and Row 1
of Section 2 (F»,;). As we observe from the notation, the acquisition period in both cases
is Period 2. Now we move to Period 1. The minimum decision cost for Period 1 is F5;; =
(3.4,10, 17.5), indicating that units required in Period 1 were backorder and must also be

produced in Period 2. So, Period 2 is an acquisition period for 1, 2, and 3.
Thus, lot size in Period 2 is given by

L, = Dy + D2+D3

(71, 80, 89)
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Table 4.9. Optimal Schedule (with backorder allowed in the last period of the planning

horizon)
Period Demand Action

1 (17, 20, 25) BO (1period)

2 (45, 50, 52) Produce (71, 80, 89)

3 (9,10, 12) From Inventory (1 period)
4 (8,10, 12) BO (3 periods)

5 (48, 50, 53) BO (2 periods)

6 (18, 20, 25) BO (1 period)

No Back Orders allowed in Final Period

It may be unacceptable to end a planning horizon with units on backorder. In that event, it
is only necessary to ignore those alternatives in Period 6 based on this, i.e., last row of
each section form Section 2 to Section 7. The resulting least cost alternative is indicated
by the cost of Fse = (224.3, 245, 280.35), and is obtained by acquiring Period 6's demand
in Period 5. The least cost for Period 4 is Fs4; = (111.9, 125, 144.1), indicating that units
required for Period 4 were on backordered and must also be produced in Period 5. So,
Period 5 is an acquisition period to satisfy the demand in Period 4, 5 and 6. This also rules
out Section 7, Section 6, Section 5, Section 4, Row 2 to Row 5 of Section3 and Row 3 to
Row 6 of Section 2, and thus requires that the least cost alternative for Period 3 be
selected from Sectionl, Row 1 & Row 2 of Section 2, and Row 1 of Section 3. This least
cost is (109.5,120, 136.30). While it occurs in two places i.e. Row 2 of Section] (F»30) and

Row 1 of Section 2 (Fa31), there is only one distinct strategy. Fa30 & Fa3;, both implies the
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acquisition of Period 3's demand in Period 2. The least cost for Period 2 is
(101.40,110,122.5), and it also occurs in two places, Row 2 of Section] (F220) and Row 1
of Section 2 (F21). As we see from the notation, the acquisition period in both cases is
Period 2. Now we move to Period 1. The minimum decision cost for Period 1 is For1 =
(3.4,10, 17.5), indicating that units required in Period 1 were backorder and must also be
produced in Period 2. So, Period 2 is an acquisition period to satisfy the demand in Period
1,2 and 3.
Thus, lot size during Period 2, L, = (71, 80, 89) ( as calculated above)
Lot size during Period 5 is given by

Ls = Ds+ Ds+ Dg

= (74, 80, 90)

Table 4.10.  Optimal Schedule ( with no backorder allowed in the last period of
planning horizon)

Period Demand Action
1 (17, 20, 25) BO (1period)
2 (45, 50, 52) Produce (71, 80, 89)
3 9,10, 12) From Inventory (1 period)
4 (8,10, 12) BO (1 period)
5 (48, 50, 53) Produce (74, 80, 90)
6 (18, 20, 25) From Inventory (1 period)

4.3.9 Interpretation of the Results

Table 4.9 and Table 4.10 show two different optimal strategies. In Table 4.9, we calculate

the optimal strategy, by allowing backorder in the last period of planning horizon, to
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satisfy the demand during six weeks. This schedule indicate that we acquire the units
required for Period 1, Period 2 and Period 3 during Period 3, and backorder Period 4's
demand for 3 periods, Period 5's demand for 2 periods and Period 6' demand for 1 period.
The total cost for this strategy is (153.92.195, 238.35).

In Table 4.10, we calculate the optimal strategy by not allowing backorder in the last
period of planning horizon to satisfy the demand during six weeks. According to this
schedule, the units required for Period 1, Period 2 and Period 3 must be acquired during
Period 3, and the units required for Period 4, Period 5 and Period 6 must be acquired
during Period 5. The total cost for this strategy is (224.3, 245, 280.35). This indicates that
there is a 27% increase in cost if we don't allow backorder in the lat period of planning

horizon.
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CHAPTER 5
DISTRIBUTION INVENTORY MANAGEMENT PROBLEM UNDER

FUZZY INFORMATION (DATA)

In the present chapter, we consider a two echelon distribution problem in which there are
one central warehouse and multiple branch warehouses. The projected orders from branch
warehouses along with direct sales constitute the demand on the central warehouse. We
formulate the problem under two different scenarios; one not allowing backorder, and other
allowing backorder. We first characterize the solution to no-backordering version of the
problem in which the demand, the expected inventory on hand, the expected receipt of an
order and expected release of an order of a given product P at a given branch warehouse k
during a given time period j are represented by a special type of triangular fuzzy numbers.
We extend the crisp distribution requirements planning (DRP) approach to find the demand
of a product P on a central warehouse during period j with fuzzy data. We then proceed
with the backordering version of the problem in which the demand, the expected inventory
on hand, the expected receipt of an order and expected release of an order of a given
product P at a given branch warehouse k during a given time period j are represented by
triangular fuzzy numbers. We extend the crisp DRP approach but with backorders allowed

to find the demand of product P on a central warehouse during period j.

5.1 Introduction

According to Fogarty et. al (1991), the DRP is the time-phased replenishment needs of

branch warehouses summed by period. These requirements are based on the difference
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between customer demand and the on-hand and in-transit inventory. In a branch warehouse
environment the DRP provides a solid link between distribution and manufacturing by
providing a record of the quantity and timings of likely orders.

The problem with most distribution systems is the assumption that the inventory will be
available in the central facility. So they focus on how best to allocate that inventory to the
different distribution centers. Shortages at the central supply facility can be frequent, and
these shortages are one of the most serious problems in managing a distribution network.
The fundamental problem, therefore, is how to get a system integrated with manufacturing
that will not only distribute the product in the best way, but also will make sure that the
product is available for distribution. DRP is the way to integrate distribution and
manufacturing (Martin 1983). However, both Fogarty et al. (1991) and Martin (1983) deal
with only crisp data. In the present chapter, using DRP approach, we deal with the problem

of distribution inventory management with fuzzy data.

5.2 DRP with Variable Demand Rate and No Backorders allowed under

Fuzzy Information (Data)

We assume that j represents the number of periods and k represents the number of branch
warehouses which get their supplies from the Central warehouse, where j = 1,2, ... m ;

and k=12,...,p.

5.2.1 Assumptions

For the fuzzy model, we make the following assumptions:
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. The demand at branch warehouses varies from one time period to another and is
available in the form of special triangular fuzzy numbers.

. The units needed to satisfy demand during a particular period must be purchased
during a previous period or at the beginning of a particular period during which
they are needed.

. The economic shipping quantity for each warehouse is available in the form of
special triangular fuzzy number.

. The beginning inventory is available in the form of special triangular fuzzy number
and in-transit inventory is zero.

. The lead-time is known with certainty so that delivery can be timed accordingly.

6. Warehouses are not allowed to redistribute their stock by lateral

transshipment.

5.2.2 Notation

dy; = Demand of product P at branch warehouse k during period j

Iy; = Expected inventory on hand of product P at branch warehouse k during period j
Ry = Expected receipt of an order of product P at branch warehouse k during period j
Oyj = Expected release of an order of product P at branch warehouse k during period j
D.; = Total demand of product P on central warehouse during period j

I;;= Expected Inventory on hand of product P at central warehouse during period j

S; = Direct sales of product P from central warehouse during period j

R¢ = Expected receipt of an order of product P at central warehouse during period j

O = Expected release of an order of product P at central warehouse during period j
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5.2.3 General Formulation

The formulas to compute Ii;’s and D;’s under crisp environment are given below:

Iy = I+ Ry — dy

(5.1
where r=j-1
k=12,...,p
j=1L2,...,m
Dg = Zp:lokj + S (5.2)
k=

We now assume that each of Iy, Ryjand dy; in equation (5.1); Oy and S;jin equation (5.2)

for k = 1,2,...,p;j = 1,2,...,m is a special triangular fuzzy number as given

below.
Lir = i1, Iz, (Iks + 0)] where 6 — 0
Ry = [Ruj1, Riz, (Rygz + )] where § — 0
dy = [dkj1, dipp, (diz+ 0)] where § —> 0
Oyj = [Okj1, Oxjz, ( Oxja + 0)] where § —» 0
S; = [Si1. Sz, (S + 8)] where & - 0

The values of Iy, Ryj, dij, ok and S; can be obtained from the experts who share the same
information but different opinion.

Ifwe set Iv= [Lirt, Ik, (Ikiz + 8)]; Rig = [Rygt, Riz, (Rigs+ )15 dig = [digr, dipp, (dyjz +
0)] equation (1), then Ii;is a special triangular fuzzy number (S.T.F.N.) given by

Iy = [Lig1, Tg2, (L + 6)] where & — 0 (5.3)
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Similarly, if we set Oy = [Oyj1, Oz, ( Oz + )15 Sij = [Sj1, Sz, ( Sj3 + )] in equation
(5.2) , then D; is a special triangular fuzzy number (S.T.F.N.) given by

D¢ = [Dgj1, Dej, (Dgjz + 6)] where 6 —> 0 5.4
We determine each S.T.F.N., Iij in equation (5.3) and its membership function on the line
of Kaufman and Gupta (1985, 1988) by using the interval of confidence for L, Ry and

dy; respectively, at o — level as follows.
e = {(ke =T @ + L, [z = (Ts + 8@ + (ks + )} ¥ @ €[0,1] (5.5)
Rkja = {Rizg —Riga + Ry, [Rip — (R + d)]@ + (Rs + )} Vae[0,1] (5.6)
dkja = {(dyg2 — dyji) @ + dig1, [dijz — (dia + )] + (dijs + )} Vael0,l] (5.7)
Forr=0,1,.. ,m~-1; k=1,2,..,p; j=1,2,...,m, (5.5),(5.6)and (5.7) yield
e + R % - 4% = ([ - Ten) + (Rij2 = Ryj1) —dyp + (dis+ 0 )] + Iiri + Ry
—(diz+ 0), [Ikiz = (I3 + ) + Ry — (Riz + 8) — (dijp — dig1)]
+ (kin+ 0)+ (R + 8)—dii}
In interval of confidence {[(I2 — Ixr1) + (Rij2 — Riji) — digz + (diz+ 8)] @ + It + Ry
—(dizt+ 8), [l — (I3 + 0) + R — (Ryz + 6 ) = (dkp — dig)] @ + (Liz + ) + ( Ry +
6)—diji}
1. Setting a =0, we get the end points Iij; and Iyj3 of the fuzzy number I
It = [k + Rigr = (dig + )] where 6 - 0
Iz = [(Ix3 + 8) + (Rigz + §) — di1] where § - 0
2. Setting a =1 gives the interior point Iij of Iy

Iz = [Ik2 + Rz — dij2 , Ik + Ry — dija]
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The corresponding membership functions from the above interval of confidence are
obtained by setting
[Tk = Tke) + Rigz —Ryg1) —dip + (dis + 6)]x + i+ Rigi— (dis + ) = x = (5.8)
Next, we set
[krz = (I3 + 6 )+Rigo = Rugz + 6) = (diga — dig)] ¢ + Iz + )
+ Rgs+ 6) - dgi = x (5.9)

Solving (5.8) and (5.9) give membership functions, respectively, between Iy;; and Iy ,
and Iy and Iy satisfying 0 <a <1.
Similarly, we determine each S.T.F.N., D in equation (5.4) and its membership function
by using the interval of confidence for Oyjand S; respectively, at a — level

D¢i = (Oy1 + Si1)

Dejp = (Okjp + Sp2)

D¢z = [(Oxs+ 8)+(S;z + )] where § -0

5.3.3 Computational Technique
Along the lines of Fogarty et al. (1989), in this section we give steps for a simple
and straightforward computational technique to solve the distribution inventory
management problem without backorders under fuzzy information. Later, in Section 3.4.3,
we modify the technique to incorporate backorders.
Step 1. Obtaining the Expected Order Release Period at Branch Warehouse k
(1) Starting with the first period, using (5.1) calculate the expected on hand
inventory in each period, up to and including the period in which the left end

point of the expected on hand inventory is less than zero.
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(ii) Suppose the left end point (Ix,) of the expected on hand inventory (Ii,) is less
than zero in Period n, schedule an expected receipt in Period n and recalculate
the expected on hand inventory Iy, by using (5.1).

(iii)  Calculate the expected order release period by subtracting the lead-time from
the expected receipt period.

(iv)  Go to Period (n+1) and repeat Step 1 (i) — (iii).

Continue the process to the end of the planning horizon.

Step 2. Obtaining Total Demand on the Central Warehouse
Calculate the total demand on the central warehouse during each period of the

planning horizon by using (5.2).

5.3.4 Numerical Example without allowing Backorders with Fuzzy

Information (Data)
In this section, to illustrate the method, we consider a numerical example with three branch
warehouses WH;, WH,, WH3, one central warehouse CWH, and eight time periods M,
My, Ms, My, Ms, Mg, M7 and Ms. The projected warehouse orders and direct sales
constitute the demand on the CWH. The lead-time, order quantity, beginning inventory on
hand and forecast demand for each warehouse are given in terms of the special triangular

fuzzy numbers as follows:
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Table 5.3.1. Lead-time, order quantity and beginning inventory, where § — 0

Lead Time Order quantity Beginning Inventory
(Periods)
WH; 2 (475, 500, 500+0) (204, 204, 204)
WH, 3 (150, 200, 200+5) (100, 100, 100)
WHj; 2 (550, 700, 700+46) (600, 600, 600)
CWH 3 (900, 1000, 1000+06) (950, 950, 950)
Table 5.3.2. Demand in product units (Period 1 to Period 3), where § — 0
M, M, M;
WH; (50, 80, 80+0) (70, 80, 80+) (68, 80, 80+05)
WH; (15,30, 30+06) (10, 30, 30+5) (18,30, 30+6)
WH;j; (70, 120, 120+6) (90, 120, 120+6) (95, 120, 120+6)
Direct (35,50, 50+6) (30, 50, 50+6) (40, 50, 50+6)
Supply
Table 5.3.3. Demand in product units (Period 4 to Period 6), where 6 — 0
My M; Mg
WH; (60,70, 70+5) (62,80, 80+0) (70,90, 90+6)
WH; (85,100, 100+6) (75, 100,100+ 5) (78,100, 100+6)
WH; (150, 200, 200+6) (100, 150, 150+9) (120, 150, 150+6)
Direct (37,50, 50+06) (40, 50, 50+6) (30, 50, 50+6)

Supply
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Table 5.3.4. Demand in product units (Period 7 to Period 8), where & — 0

M; Mg
WH, (70, 90, 90+6) (60, 90, 90+5)
WH, (75, 100, 100+ 6) (90, 100,100 +5)
WH; (75, 100, 100+ 5) (110, 150, 150+ 6)
Direct (35, 50, 50+6) (25, 50, 50+6)
Supply

5.3.5 Intervals of Confidence

Using Tables 5.3.1-5.3.4, below, we compute the intervals of confidence for demand, for
direct sales, and for beginning inventory so as to calculate the total demand on the CWH.

5.3.5.1 Intervals of Confidence for Demand
dn% = [30a + 50, (0-8)x + (80+6)]
di% = [10a + 70, (0-6)a + (80+5)]
diz® = [12a + 68, (0-8)x + (80+5)]
diu® = [10a + 60, (0-5)x + (70+65)]
dis® = [18a + 80, (0-6)a + (80+5)]
dis® = [20a + 70, (0-6)x + (90+6)]
diz% = [25a + 65, (0-6)a + (90+65)]
dis® = [20a + 70, (0-8)x + (90+65)]
dn® = [15a + 15, (0-8)x + (30+5)]

dn? = [20a + 10, (0-8)x + (30+6)]



5.3.5.2

dn® = [12a + 18, (0-6)x + (30+5)]
du® = [10a + 10, (0-8)x + (20+5)]
ds? = [10a + 20, (0-6)a + (30+5)]
d® = [15a + 20, (0-6)a + (35+5)]
d% = [20a + 15, (0-6)a + (35+5)]
ds® = [15a + 20, (0-8)x + (35+6)]
d3% = [50a + 70, (0-6)x + (120+6)]
d® = [30a + 90, (0-6)x + (120+5)]
d3® = [25a + 95, (0-6)x + (120+6)]
dsa® = [25a + 75, (0-8)a + (100+6)]
dss® = [40a + 80, (0-8)xr + (120+6)]
ds® = [40a + 100, (0-8)a + (140+5)]
dyy% = [30a + 110, (0-6)x + (140 +6)]
ds® = [50a + 90, (0-6)x + (140+6)]
Intervals of Confidence for Direct Sales
$1% = [15a + 35, (0-6)x + (50+6)]
$;% = [20a + 30, (0-8)x + (50+5)]
$3% = [10a + 40, (o-5)§ + (50+6)]

$:% = [13a + 37, (0-6)a + (50+6)]
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S5% = [10a + 40, (0-6)x + (50+5)]
S6¢% = [20a + 30, (0-6)a + (50+5)]
$;% = [15a + 35, (0-6)a + (50+5)]
Ss% = [25a +25, (0-8) + (50+6)]
5.3.5.3 Intervals of Confidence for Beginning Inventory

0% = [0a + 204, 0 + 204] 1% = [Oa + 100, O + 100]

0% = [0a + 600, 0a + 600] I10% = [0a +950, 0 + 950]

5.3.6 Obtaining the Expected Order Release Period at Warehouse 1

Using equation (5.1), we have

a a a a
In” = Li? —du” + Ry

1% = 0%+ (-du%)+ R %
1% = [0a + 204, 0 + 204] + [(8)e — (80+5), -30a — 50]+0
W% = [6a + 124 -6, -30a + 154]
We now set oa + 124 -5 = x and -30a + 154 = x
This yields,
Sa + [(124 =6)-x)] = 0 (5.10)
and =30 + (154 —x) =0 (5.11)

In (5.10) and (5.11) setting =0, weget x = (124 -6) and x = 154,
respectively.
Setting « =1 ineither (5.10) or (5.11), we get x = 124.

Therefore 1), = (124-6, 124, 154)
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Similarly, we obtain Iio = (44-25,44, 84)
Continuing in the same manner, we find that I;3; would be negative unless an order was
received. Therefore, an expected receipt Ry is planned for Period 3, and

Riz = (475,500, 500+5)
such that Ri3% = [25a + 475, (0-6) + (500+5)].
When the two-period lead-time is applied, we obtain that the expected order be planned for
release in Period 1, and
O11 = (475, 500, 500+6), and 0u% = [25a + 475, (0-8)x + (500+5)]
To determine membership function for Ij3, we have
3% = In% +Ri% —din® = [(25+38)a + (439 -35), (=52-8)ar + (516+5)]
Setting  (25+36 ) + (439-35) = x and ( -52-6 Ja + (516+5) = x,
yields, (25+36 Ja + (439 -35 — x) =0 (5.12)
and (-52-6 )a+ (516+5 —-x) = 0 (5.13)
In (5.12), (5.13) setting a =0, weget x = 439-35 and x = 516+ 5 respectively.
Setting «a =1 in either we get x = 464
Solving ( 25+368 )ar + (439 =36 — x) = 0 for & we obtain

a_x-439+35
25+36

for 439-35 < x < 464

Similarly, from (5.13) we obtain

x—=516-0
o=—

for 464 < x < (516+6)
—52-5

Thus, the membership function for I;3 = (439 -35, 464, 516+ 5 ) is
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-

0 X £439-35
x—439+35 439-35 < x <464
by ()= 25436
13 _ _
x-516-6 464<x <516+8
-52-5
0 x=2516+06

\

Similarly, we obtain the expected on hand inventories and expected order releases for rest

of Iij's, and Og’s respectively, and are in Tables 5.3.5-5.3.10.
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Table 5.3.5.  Distribution Requirements Planning for Warehouse 1 (Period 1 to Period 4)

M1 Mz M3 M4
Forecasted (50, 80, 80+6) (70, 80, 80+06) (68, 80, 80+6) (60,70, 70+ )
Demand
Expected Order (475, 500, 500+¢6)
Receipt
Expected Inventory (204, 204, 204) (124-6,124,154) | (44-26,44,84) (43936, 464, (369 —46, 394,
on hand 516+9) 456+0)
Expected Order (475, 500, 500+0)
Release
Table 5.3.6.  Distribution Requirements Planning for Warehouse 1 (Period 5 to Period 8)

M; Me M5 Mg
Forecasted (62, 80, 80+9) (70,90, 90+9) (65,90, 90+6) (70,90, 90+6)
Demand
Expected Order
Receipt
Expected Inventory (369 —-46, 394, (289 -56, 314, (199-66 , 224, (109-176, 134, (19-85, 44,
on hand 456+0) 394+6) 3244+65) 259+6) 189+0)
Expected Order

Release
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Table 5.3.7.  Distribution Requirements Planning for Warehouse 2 (Period 1 to Period 4)
M; M, M; My
Forecasted (15,30, 30+9) (10, 30, 30+9) (18, 30, 30+9) (10, 20, 20+9)
Demand
Expected Order (150, 200, 200+6)
Receipt
Expected Inventory (100, 100, 100) (70-6, 170, 85) (40-26,40,75) (10-36, 10, 57) (140-46, 190,
on hand 247+0)
Expected Order (150, 200, 200+0)
Release
Table 5.3.8.  Distribution Requirements Planning for Warehouse 2 (Period 5 to Period 8)
M5 M6 M7 Mg
Forecasted (20, 30,30+0) (20,35, 35+9) (15,35, 35+6) (20, 35, 35+9)
Demand
Expected Receipt
Expected Inventory (140 - 46, 190, (110-54, 160, (75-66, 125, (40-74,90, (5-85, 55,
on hand 247 +65) 227+9) 207+95) 192+6) 172+ 6)
Expected Order

Release
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Table 5.3.9.  Distribution Requirements Planning for Warehouse 3 (Period 1 to Period 4)
M1 M;)_ M3 M4
Forecasted (70, 120, 120+9) (90, 120, 120+06) | (95,120,120+6) | (75,100, 100+5)
Demand
Expected Order
Receipt
Expected Inventory (600, 600, 600) (480-6, 480, 530) (360-26, 360, (240-305, 240, (140-45, 140,
on hand 440) 345) 270)
Expected Order (550, 700, 700+6 )
Release
Table 5.3.10. Distribution Requirements Planning for Warehouse 3 (Period 5 to Period 8)
M; M My Mg
Forecasted (80,120, 120+6) | (100, 140, 140+5) | (110, 140, 140+6) | (90, 140, 140+5)
Demand
Expected Order (550, 700, 700+ )
Receipt
Expected Inventory (140 —-406, 140, (20-56, 20, (430-60, 580, (290-706 , 440, (150-84, 300,
on hand 270) 190 ) 790+6) 680+0) 590+6)
Expected Order

Release




5.3.7 Calculating the Total Demand on CWH during Period 1 (D))

Using (5.2)
3
D, % = Z O +85,%
k=1
Da® =[0n% + 05% + 05,% + §,%]

Do % =[25a + 475, (0-6)a + (500+5)] + [50a + 150,
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(0-8)r + (200+5)] + [15a + 35, (0-8)x + (50+65)]

Do % =[90a + 660, (0-38)e + (750+35)]
We now set

90a + 660 = x and (0-358)x + (750+35) = x
This yields,

90a + 660 — x =0

(0-38)x + (750+38) - x = 0

In (5.14) setting a=0 we get X = 660
In (5.15) setting a =0 we get X = (750 +3§)
Setting a =1 in either we get x = 750

Therefore D;; = (660, 750, 750+35)
Now, the membership function is obtained as follows.
Solving 90a + 660 — x.= 0 for  we obtain

x-660
a =
90

660 < x < 750

Solving (0-38)er + (750+36) — x = 0 for & we obtain

(5.14)

(5.15)
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x—=750-36
o=—

750 £ x < (750+36)
-36

Thus, the membership function for D;; = (660, 750, 750+35 ) is

(0 X <660
*—660 660 < x <750
#p ()= 97050 35
cl X2 Y20 750 < x < (750 +35)
235
0 x > (750-38)

Similarly, we obtain the fuzzy demands along with their respective membership

functions for rest of Dgj's.

As in 5.3.6 for different periods, we obtain expected on hand inventory and
expected order release period (see Tables 5.3.11 and 5.3.12) along with the

corresponding membership functions.



113

Table 5.3.11. Distribution Requirements Planning for Central Warehouse (Period 1 to Period 4)
Ml M2 M3 M4
Forecasted (660, 750, 750+ 36) (30, 50, 50+9) (40, 50, 50+6) (587, 750, 750 +26)
Demand
Expected Receipt (900, 1000, 1000+6)
Expected Inventory | (950, 950, 950) | (200-36,200,290) | (150-46,150,260) | (100-55, 100, 220) (250-74, 350,
on hand 633+06)
Expected Order (900, 1000, 1000+0)
Release
Table 5.3.12. Distribution Requirements Planning for Central Warehouse (Period 5 to Period 8)
M; Me M- Mg
Forecasted (40, 50, 50+9) (30,50, 50+9) (35,50, 50+6) (25,50, 50+9)
Demand
Expected Receipt
Expected Inventory (250-175, 350, (200-85, 300, (150-96, 250, (100 -106, 200, (50-115, 150,
on hand 633+0) 593+9) 563+9) 528+9) 503+9)
Expected Order

Release
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5.3.8 Interpretation of the Results

From Tables 5.3.11 and 5.3.12, we calculate the demand on CWH during 8 Periods by
assuming & = 0.005. The demand during Period 1, Period 2, Period 3, Period 4, Period 3,
Period 6, Period 7 and Period 8 is (660, 750, 750.015), (30, 50, 50.005), (40, 50, 50.005),
(587, 750,750.010), (40, 50, 50.005), (30, 50, 50.005), (35, 50,50.005) and (25, 50, 50.005)
respectively. This yields the replenishment strategy to satisfy the demand from Period 1
through Period 8. For example, the beginning inventory satisfies the demand from Period 1
through Period 3, and to satisfy the demand from Period 4 through Period 8, we must
schedule an expected receipt during Period 4. Also, we observe that when the three-week
lead-time is applied the expected order release is planned during Period 1.

In Appendix 3, we calculate the various values of x, by assuming & = 0.005, when o lies
between 0 and 1, and plot the membership function graphs for different values of x . For
example, the demand during Period 1 is (660, 750, 750.015). As we observe from the
membership function graph Dc;, when 660 < x < 750 the membership function increases
monotonically to the left and goes to its maximum value of 1 (level of one’s believe about
the belongingness of x to A, or level of truth of x belonging to A, or degree of
compatibility of x to A) at an interior point x = 750, and when 750 < x < 750.015 the
membership function decreases monotonically to the right and goes to 0 at a right end point
x =750.015, starting from 1 at x = 750. Similarly we have the membership function graph

for D, to Dcg along with the values of x..
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5.4 Distribution Requirements Planning with Variable Demand Rate

and Backorders allowed under Fuzzy Information (Data)
We now consider the option of backordering.
5.4.1 Assumptions

For this model, the following assumptions, in addition to the ones in Section 5.2.1, are

made :

1. The demand at branch warehouses varies from one time period to another and is
available in the form of triangular fuzzy numbers.

2. The units needed to satisfy demand in a particular period can be acquired at any
time including the backorders.

3. The economic shipping quantity for each warehouse is available in the form of

triangular fuzzy number.

4. The beginning inventory is available in the form of triangular fuzzy numbers and in
transit inventory is zero.
5.4.2 General Formulation
We assume that each of Ii;, Ry and dy; in equation (5.1); Oy and S;in equation
(5.2)for k = 1,2,...,p;j = 1,2,...,m is a triangular fuzzy number of the type.
ke = [Ikr1, T2, Ties]
Ry = [Ryj1, Rigz, Ryjs]
diy = [dij1, dijp, digs]
Oy =[Ox1, Oxja, O3]
Si = [Sj1, Sp2, Sjsl
The values of Iy, Ryj, dij, Ok and S; can, for example, be obtained from the experts who

share the same information but different opinion.
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If we set I = [Iir1, Iz, Iks]; Rig = [Rij1, Rijp, Ryjsl; dij = [dyi, dig, dijs] equation (5.1),
then Iy is a triangular fuzzy number (T.F.N) given by

Ly = i, Ik, Tas] (5.16)
Similarly, if we set Oy = [Oyj1, Ok, O3 l; Sj = [Sj1, S, Sj3 ]in equation (5.2) , then D;
is a triangular fuzzy number (T.F.N) given by

D¢ = [Dej1, Deja, Dej3 ] (5.17)

Each T.F.N, I; in equation (5.16) and its membership function are determined on the line
of Kaufman and Gupta (1985, 1988) by using the interval of confidence for Iy, Ry and

dy; respectively, at a — level

I & = (k2 — L) @ + Ikr1, (k2 = k) @ + Tks)] vV ael0,1] (5.18)
Ri;% = [(Rp — R + R, Re — Rig)a + Rygs)] ¥ @ €[0,1] (5.19)
dy& = [(diz —dg) @ + diji, (digo— dig)a + di3)] V@ €[0,1] (5.20)

forr=0,1,.. ,m-L;k=1,2,..,p;j=1,2,...,m.
(5.18), (5.19) and (5.20), along withr=0,1,... . m-1; k=1,2, .. .p;j=1,2,.. ., m,
yield the following interval of confidence.
[(ke2 = Trt + Riz = Rigt — digz. + digs) @ + (Tt + Rii — digs ) , (k2 — s + Ry — Rz — dipp
—dg)a + Lusz + Ryz— digi] -
In this interval of confidence
1. Setting & = 0, we get the end points Iy;; and I3
Igji = (Ike1 + Rigi — dij3 ), and Lz = ( Tz + Rigz — digi)
of the fuzzy number I; .
1. Setting o =1 gives the interior point I of Iy;

Iz = (k2 + Rip — dig2 , Tz + Riz — dij) -
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The membership function is obtained from the interval of confidence by setting separately,
each of the function, equal to x and solving each of those equations for . Thus,
(Ikr2 = Ikt + Ryjp — Ryg1 — diz + diga) @ + (Iurt + Rygi — dijz) = x (5.21)
Next, we set
(Ik2 = Tz + Ria = Rys —dip — dig) @ + (Ius + Rygs — dig1) = x (5.22)
Using (5.21) and (5.22), we obtain the membership function for Iy; .
Similarly, we determine each T.F.N. D (see (5.17)) along with its membership function
by using the interval of confidence for Oyjand S; respectively, at a — level, where

Dgji = (Okj1 + Sj1)

D¢z = (O + Sp2)

Dz = (O3 + Sp).

5.4.3 Computational Technique

Below, we now modify the computational technique given in 5.3.3 for the

distribution requirements planning problem by incorporating backorders.

Step 1. Obtaining the Expected Order Release Period at Branch Warehouse k
(1) Starting with the first period, using (5.1) calculate the expected on hand
inventory in each period, up to and including the period in which the interior
point of the expected on hand inventory is less than zero.
(i1) Suppose the interior point (Ikn2) of the expected on hand inventory (Ix,) is less
than zero in Period n, schedule an expected receipt in Period n and recalculate

the expected on hand inventory Iy, by using (5.1).
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(ili)  Calculate the expected order release period by subtracting the lead-time from

the expected receipt period.

(iv)  Goto Period (n+1) and repeat Step 1 (i) — (iii).

Continue the process to the end of the planning horizon.

Step 2. Obtaining Total Demand on the Central Warehouse

Calculate the total demand on the central warehouse during each period of the

planning horizon by using equation (5.2).

5.4.4 Numerical Example with Backorders allowed with Fuzzy

Information (Data)

We illustrate our method through the following numerical example in which we

have three branch warehouses WH;, WH,, WH;, one CWH, and eight time periods M;,

M,, M3, My, Ms, Mg, My and Ms. The projected orders from the branch warehouses and

direct sales from the CWH constitute the demand on the CWH. In Tables 5.4.1-5.4.4

below, we represent the lead-time, order quantity, beginning inventory on hand and

forecast demand for each warehouse in the form of triangular fuzzy numbers.

Table 5.4.1. Lead-time, order quantity and beginning inventory

Lead Time Order quantity Beginning Inventory

(Periods)
WH; 2 (300, 500, 600) (204, 204, 204)
WH, 3 (150, 200, 300) (100, 100, 100)
WH; 2 (600, 700, 850) (600, 600, 600)
Direct Supply 3 (950, 1000, 1100) (950, 950, 950)
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Table 5.4.2.  Demand in product units (Period 1 to Period 3)
M; M, M;
WH; (65, 80, 97) (72, 80, 95) (68, 80, 100)
WH, (15, 30, 40) (10, 30, 40) (18, 30, 45)
WH; (70, 120, 135) (100, 120, 145) (90, 120, 145)
Direct (40, 50, 65) (30, 50, 60) (42, 50, 62)
Supply
Table 5.4.3. Demand in product units (Period 4 to Period 6)
M4 MS M6
WH; (60, 70, 90) (71, 80, 99) (70, 90, 109)
WH, (10, 20, 35) (20, 30,45) (20, 35, 55)
WH;j; (75, 100, 120) (80, 120, 140) (100, 140, 160)
Direct (37, 50, 65) (40, 50, 70) (30, 50, 60)
Supply
Table 5.4.4  Demand in product units (Period 7 to Period 8)
My Mg
WH; (65, 90, 98) (60, 90, 100)
WH, (15, 35, 45) (20, 35, 50)
WH;3 (110, 140, 170) (100, 140, 185)
Direct (35, 50, 60) (40, 50, 70)

Supply
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5.4.5 Intervals of Confidence

Using Tables 5.4.1-5.4.4 below, we compute the intervals of confidence for demand, for

direct sales, and for beginning inventory so as to calculate the total demand on the CWH.

5.4.5.1 Intervals of Confidence for Demand

dn% = [15a + 65, —17a + 97] dn% = [8a + 72, ~15a + 95]
diz% = [12a +68, —20a + 100] di® = [10a + 60, =20 + 90]
dis% = [9a + 80, —19a + 99] dis® = [20a + 70, —19a + 109]
di7% = [25a + 65, —8a + 98] dis® = [30a + 60, —10a + 100]
dy?® = [15a + 15, —=10a + 40] dp® = [20a + 10, —10a + 40]
dy® = [12a + 18, —15a + 45] A2 = [10a + 10, —=15a + 35]
ds® = [10a + 20, —15a + 45] dys® = [15a + 20, —20a + 55]
dy® = [20a + 15, —=10a + 45] ds® = [15a + 20, —15a + 50]
ds;% = [50a + 70, =15 + 135] d? = [20a + 100, —25a + 145]
ds3% = [30a + 95, —25a + 145] d3¢% = [25a + 75, -20a + 120]
d;s% = [40a + 80, —20a + 140] d3s® = [40a + 100, —20a + 160]
ds;% = [30a + 110, —30a + 170] dss® = [40a + 100, —45a + 185]

5.4.5.2 Intervals of Confidence of Direct Sales

$1% = [10a + 40, —15a + 65] $;% = [15a + 35, ~10a + 60]
S;% = [8a + 42, —12a +62] S4% = [13a + 37, —15a +65]
Ss% = [10a + 40, —20c +70] S¢% = [20a + 30, —10a + 60]

$;% = [15a + 35, —10a + 60] Ss% = [10a +40, —20a +70]
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5.4.5.3 Intervals of Confidence of Beginning Inventory
L0% = [0a + 204, O + 204]  Ix% = [0a + 100, Oz + 100]

L% = [0a + 600, 0a + 600] 1% = [0a + 950, Oa + 950]

5.4.6 Obtaining the Expected Order Release Period at Warehouse 2
Li% = L% - du% +Ru?

I % Io% + (-dy ¥ )+ Ry %

1% = [0a + 100, Oa + 100] + [10a — 40, ~15a — 157+ 0

I,% = [10a + 60, —15a + 85]

We now set

100 + 60 = x and ~15a + 85 = x

This yields,

10 + 60 —x =0 (5.23)
and 15+ 85 —x=0 (5.24)
In (5.23) setting a=0 we get x = 60
In (5.24) setting a=0 we get x = 85
Setting « =1 in either we get x = 70

Therefore I;; = (60, 70, 85)
Similarly, we calculate I, and I3
I» = (20,40, 75), I3 = (=25, 10, 57),
Similarly, I = (-35,-10,25),
We observe that 1,4, is negative. Therefore, an order should be received in Period 4.

And from Table 5.4.1, Ry = (150, 200, 300).



When the three-Period lead-time is applied, the expected order is planned for release in

Period 1. Therefore,

021 = (150, 200, 300)

0% =(50a + 150, —100c + 300)
Along the same lines as for I; ,

L4 = (90, 190, 347)

with its membership function given by

:uIn (X) =9

0
x-90
100
X - 347
-157

x <90

90 <x <190

190 < x <347

x =347
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Similarly, we obtain the expected on hand inventories and expected order releases for rest

of Ij's, and O,’s respectively, and are in Tables 5.4.5-5.4.10.
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Table 5.4.5.  Distribution Requirements Planning for WH, (Period 1 to Period 4)
Ml M2 M3 M4
Fg:;l&i;tzd (65, 80, 97) (72, 80, 95) (68, 80, 100) (60, 70, 90)
EXPg’ggsigrder (300, 500, 600)
Expected Invent
e a2 | (204,204, 204) (107, 124, 139) (12, 44, 67) (212, 464, 599) (122, 394, 539)
Engcgfeciszrder (300, 500, 600)
Table 5.4.6.  Distribution Requirements Planning for WH, (Period 5 to Period 8)
M> M6 M7 M3
Fgfnclzs;gd (71, 80, 90) (70, 90, 109) (65, 90, 98) (60, 90, 100)
Expected Order
Receipt
E"pe"gidhgvdemory (122, 394, 539) (23, 314, 468) (-86, 224, 398) (-184, 134, 333) (-284, 44, 273)
Expected Order

Release
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Table 5.4.7.  Distribution Requirements Planning for WH, (Period 1 to Period 4)

M; M, M3 M,
Forecasted
Demand (15, 30, 40) (10, 30, 40) (18, 30, 45) (10, 20, 35)
Expected Order (150, 200, 300)
Receipt T
Expecéidhlar;\éentory (100, 100, 100) (60, 70, 85) (20, 40, 75) (-25, 10, 57) (90, 190, 347)
Expected Order
Release (150, 200, 300)
Table 5.4.8.  Distribution Requirements Planning for WH, (Period S to Period 8)
M;s Me M; Me
Forecasted
Demand (20, 30, 45) (20, 35, 55) (15, 35, 45) (20, 35, 50)
Expected Order
Receipt
Expected Inventory (90, 190, 347) (45, 160, 327) (-10, 125, 307) (-55, 90, 292) (-105, 55, 272)
on hand
Expected Order

Release
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Table 5.4.9.  Distribution Requirements Planning for WH; (Period 1 to Period 4)
M M, M; My
Fgf;ﬁfld (70, 120, 135) (90, 120, 145) (95, 120, 145) (75, 100, 120)
Expected Order
Receipt
EXpecéitha‘;‘fntory (600, 600, 600) (465, 480, 530) (320, 360, 430) (175, 240, 340) (55, 140, 265)
Exl’;ffec;s(zrder (600, 700, 850)
Table 5.4.10. Distribution Requirements Planning for WH; (Period 5 to Period 8)
Ms Ms M; Ms
Fgfgzsggd (80, 120, 140) (100, 140, 160) (110, 140, 170) (100, 140, 185)
Eprfgssigrder (600, 700, 850)
EXpecsidhi‘;Vdentory (55, 140, 265) (-85,20, 185 ) (355, 580, 935) (185, 440, 825) (0, 300, 725)
Expected Order

Release
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5.4.7 Calculating the Total Demand on CWH during Period 1 (D)

3
a a a
D™ = Z O™ +5
k=1

D% =[0n% + 00% + 05,% + $,%]
D = (200 + 300, —100a + 600) + (50 + 150, —100a + 300)
+ (10a + 40, —15a + 65)
Do * =[260a + 490, —215a + 965]
We now set 260 + 490 = x and —-215a +965 = x
This yields, 260a + 490 — x =0, and -215a +965 — x = 0
Therefore D;; = (490, 750, 965)

With membership function

0 X <490
x— 490 490 < x <750
pp =1, 260
cl _
X965 750 < x <965
215
0 X > 965

Similarly, we obtain the fuzzy demands for rest of Dyj's.

Furthermore, the expected on hand inventories and expected order releases for rest of Ls's,

and Og’s respectively and are as in Tables 5.4.11-5.4.12.
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Table 5.4.11. Distribution Requirements Planning for CWH (Period 1 to Period 4)

M, M, M3 M,
Forecasted (490, 750, 965) (35, 50, 60) (42, 50, 62) (637,750, 915)

Demand

Expected Order (950, 1000, 1100)
Receipt

Expected Inventory | — oo " "o (-15, 200, 460) (75, 150, 425) (-137, 100, 383) (-102, 350, 846)

on hand

Epr{f;‘;S(grder (950, 1000, 1100)

Table 5.4.12. Distribution Requirements Planning for CWH (Period 5 to Period 8)

M4

M5

M6

M7

Mg

Forecasted
Demand

(40, 50, 70)

(30, 50, 60)

(35, 50, 60)

(40, 50, 70)

Expected Order
Receipt

Expected Inventory
on hand

(-102, 350, 846)

(-172, 300, 806)

(-232, 250, 776)

(-292, 200, 741)

(-362, 150, 701)

Expected Order
Release
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5.4.8 Interpretation of the Results

From Tables 5.4.11 and 5.4.12, we calculate the demand on CWH during 8 Periods. The
demand during Period 1, Period 2, Period 3, Period 4, Period 5, Period 6, Period 7 and
Period 8 is (490, 750, 965), (35, 50, 60), (42, 50, 62), (637, 750, 915), (40, 50, 70), (30, 50,
60), (35, 50,60) and (40, 50, 70) respectively. This also gives us the replenishment strategy
to satisfy the demand from Period 1 through Period 8. The beginning inventory will satisfy
the demand from Period 1 through Period 3 . To satisfy demand from Period 4 through
Period 8, we must schedule an expected receipt during Period 4. When the three-week

lead-time is applied the expected order release is planned during Period 1.
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CHAPTER 6

CONCLUSION, CONTRIBUTION AND RECOMMENDATIONS

In the present chapter, we state the contributions and conclusions of this
dissertation. Finally, we give some recommendations for further research on the problems

considered in this dissertation.
6.1 Conclusion and Contribution

In the present dissertation, two important problems in the field of industrial engineering

Le. lot size inventory control problem (addressed by Wagner and Whitin, 1958) and
distribution inventory management problem have been revisited under fuzzy
environment. Using fuzzy algebra approach we deal with inventory lot sizing and
distribution inventory management problem when the data known is imprecise. We
believe this is more realistic approach to tackle these problems as most of the times data
is forecasted, and forecasts rarely-if-ever turn out to be crisply correct. Therefore, the

models based on precise knowledge of demand have little practical application.

Main contributions in this thesis are included in Chapters 3-5. Using fuzzy data, Chapter
3 and 4 deals with lot-sizing problem without back-ordering and with back ordering,
respectively. Chapter 5 modifies, under fuzzy data, the distribution requirement planning
(DRP) approach for a two-level distribution inventory management problem consisting of
one central warchouse and a finite number of branch warehouses. We develop the
technique for both without and with back-ordering situations. In Chapter 3, we discuss

the distribution inventory management problem under fuzzy information (data). In all the
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problems the data available is assumed to be available in the form of triangular fuzzy
numbers. Throughout the thesis, we have used Excel for the purpose of numerical
calculations.

Though most real productions systems still exceed the limits of the proposed models, yet

their potential impact on both practical and theoretical decision making is apparent.

6.2 Recommendations for Future Research

It is believed that a number of extensions are possible to both the lot sizing
inventory problem and distribution requirement planning problem. Results of Chapters 3
and 4 can be extended to the case when the estimates for various parameters involved are
provided in the form of Tr.F.N.’s or general fuzzy numbers. The results of Chapter 5 can
also be extended to the case when the data available is in the form of trapezoidal fuzzy
numbers (Tr.F.N.’s) or general fuzzy numbers. Furthermore, the problem may be further
extended from two-level to multi-level distribution inventory management systems

and/or when the lead time available is fuzzy.
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Error analysis corresponding to T,
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Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 136.25 167.4 136.25 167.4 0 0 0 0
0.1 137.5575| 165.624 | 137.625 165.66 0.0675 0.036 0.04907 | 0.021736
0.2 138.88 163.856 139 163.92 0.12 0.064 |0.086406 | 0.039059
0.3 140.2175 | 162.096 | 140.375 162.18 0.1575 0.084 ]0.112325| 0.051821
0.4 141.57 | 160.344 141.75 160.44 0.18 0.096 |0.127146 | 0.059871
0.5 142.9375 158.6 143.125 158.7 0.1875 0.1 0.131176 | 0.063052
0.6 144.32 156.864 144.5 156.96 0.18 0.096 |[0.124723 0.0612
0.7 145.7175 | 155.136 | 145.875 165.22 0.1575 0.084 |0.108086 | 0.054146
0.8 147.13 | 153.416 147.25 153.48 0.12 0.064 ]0.081561 | 0.041717
0.9 148.5575| 151.704 | 148.625 151.74 0.0675 0.036 |0.045437 | 0.02373
1 150 150 150 150 0 0 0 0

Error analysis corresponding to T 3

Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 152.00 195.60 152 195.6 0 0 0 0
0.1 1563.71 192.94 1563.8 193.04 0.09 0.099 0.068552 | 0.051311
0.2 155.44 190.30 155.6 190.48 0.16 0.176 0.102934 | 0.092484
0.3 157.19 187.69 157.4 187.92 0.21 0.231 0.133596 | 0.123076
0.4 158.96 185.10 169.2 185.36 0.24 0.264 {0.150981 | 0.142629
0.5 160.75 182.53 161 182.8 0.25 0.275 0.155521 | 0.150664
0.6 162.56 179.98 162.8 180.24 0.24 0.264 0.147638 | 0.146686
0.7 164.39 177.45 164.6 177.68 0.21 0.231 0.127745 | 0.130178
0.8 166.24 174.94 166.4 175.12 0.16 0.178 0.096246 | 0.100604
0.9 168.11 172.46 168.2 172.56 0.09 0.099 0.053536 | 0.057404
1 170.00 170.00 170 170 0 0 0 0

Error analysis corresponding to T 4

Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 173.20 238.20 173.2 238.2 0 0 0 0
0.1 175.73 234.18 175.88 234.38 0.153 0.198 |0.087067 | 0.08455
0.2 178.29 230.21 178.56 230.56 0.272 0.352 |0.152562 | 0.152905
0.3 180.88 226.28 181.24 226.74 0.357 0.462 |0.197365 | 0.204174
0.4 183.51 222.39 183.92 222.92 0.408 0.528 |0.222329 | 0.237419
0.5 186.18 218.55 186.6 2191 0.425 0.55 0.22828 | 0.251659
0.6 188.87 214.75 189.28 215.28 0.408 0.528 |0.216019 | 0.245865
0.7 191.60 211.00 191.96 211.46 0.357 0.462 0.186323 | 0.218959
0.8 194.37 207.29 194.64 207.64 0.272 0.352 [0.139941 | 0.169812
0.9 197.17 203.62 197.32 203.82 0.153 0.198 |0.077599 | 0.097239
1 200.00 200.00 200 200 0 0 0 0




Error analysis corresponding to T
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Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 346.00 484.65 346 484.65 0 0 0 0
0.1 351.18 475.81 351.4 476.185 0.225 0.3735 }0.064071 | 0.078497
0.2 356.40 467.06 356.8 467.72 04 0.664 ]0.112233| 0.142167
0.3 361.68 458.38 362.2 459.255 0.525 0.8715 | 0.145158 | 0.190125
0.4 367.00 449.79 367.6 450.79 0.6 0.996 |0.163488 ! 0.221435
0.5 372.38 441.29 373 442.325 0.625 1.0375 |{0.167842 | 0.235107
0.6 377.80 432.86 3784 433.86 0.6 0.996 ]0.158814 | 0.230095
0.7 383.28 424 .52 383.8 425.395 0.525 0.8715 |0.136977 | 0.205289
0.8 388.80 416.27 389.2 416.93 0.4 0.664 |0.102881| 0.159513
0.9 394.38 408.09 394.6 408.465 0.225 0.3735 | 0.057052 | 0.091524
1 400.00 400.00 400 400 0 0 0 0

Error analysis corresponding to T

Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 425,20 632.15 4252 632.15 0 0 0 0
0.1 432.35 618.16 432.68 618.935 0.333 0.7785 ]0.077021 | 0.125939
0.2 439.57 604.34 440.16 605.72 0.592 1.384 0.134678 | 0.229012
0.3 446.86 590.69 447.64 | 592.505 0.777 1.8165 | 0.173879{ 0.307522
0.4 45423 577.21 455,12 579.29 0.888 2.076 0.195495 | 0.359659
0.5 461.68 563.91 462.6 566.075 0.925 2.1625 |0.200357 | 0.383481
0.6 469.19 550.78 470.08 552.86 0.888 2.076 0.189262 | 0.376917
0.7 476.78 537.83 477.56 539.645 0.777 1.8165 | 0.162967 | 0.337747
0.8 484.45 525.05 485.04 526.43 0.592 1.384 0.122201 | 0.263596
0.9 492.19 512.44 492.52 513.215 0.333 0.7785 |0.067657 | 0.151921
1 500.00 500.00 500 500 0 0 0 0

Error analysis corresponding to To;

Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 106.10 118.80 106.1 118.8 0 0 0 0
0.1 106.48 117.89 106.49 117.92 0.009 0.027 10.008452 | 0.022902
0.2 106.86 116.99 106.88 117.04 0.016 0.048 ]0.014972 ) 0.041028
0.3 107.25 116.10 107.27 116.16 0.021 0.063 |0.019581 | 0.054265
04 107.64 115.21 107.66 115.28 0.024 0.072 0.022297 | 0.062496
0.5 108.03 114.33 108.05 114.4 0.025 0.075 0.023143 | 0.065602
0.6 108.42 113.45 108.44 113.52 0.024 0.072 ]0.022137 | 0.063465
0.7 108.81 112.58 108.83 112.64 0.021 0.063 0.0193 | 0.055962
0.8 109.20 111.71 109.22 111.76 0.016 0.048 ]0.014651 | 0.042968
0.9 109.60 110.85 109.61 110.88 0.009 0.027 {0.008212| 0.024357
1 110.00 110.00 110 110 0 0 0 0
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Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 120.50 147.00 120.5 147 0 0 0 0
0.1 121.41 145.21 121.45 145.3 0.045 0.09 0.037066 | 0.061979
0.2 122.32 143.44 122.4 143.6 0.08 0.16 0.065402 | 0.111545
0.3 123.25 141.69 123.35 141.9 0.105 0.21 0.085196 | 0.148211
0.4 124,18 139.96 124.3 140.2 0.12 0.24 0.096634 | 0.171478
0.5 125.13 138.25 125.25 138.5 0.125 0.25 0.0999 | 0.180832
0.6 126.08 136.56 126.2 136.8 0.12 0.24 0.095178 | 0.175747
0.7 127.05 134.89 127.15 135.1 0.105 0.21 0.082648 | 0.155682
0.8 128.02 133.24 128.1 133.4 0.08 0.16 0.06249 | 0.120084
0.9 129.01 131.61 129.05 131.7 0.045 0.09 0.034882 | 0.068384
1 130.00 130.00 130 130 0 0 0 0
Error analysis corresponding to Ty
Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 252.50 329.85 2525 329.85 0 0 0 0
0.1 255.16 324.65 255.25 324.865 0.09 0.2115 ]0.035272 | 0.065146
0.2 257.84 319.50 258 319.88 0.16 0.376 | 0.062054 ] 0.117682
0.3 260.54 314.40 260.75 314.895 0.21 0.4935 | 0.080602 | 0.156965
0.4 263.26 309.35 263.5 309.91 0.24 0.564 |0.091165| 0.18232
0.5 266.00 304.34 266.25 304.925 0.25 0.5875 |0.093985 | 0.193042
0.6 268.76 299.38 269 299.94 0.24 0.564 0.089299 | 0.188392
0.7 271.54 294.46 271.75 294.955 0.21 0.4935 | 0.077337 | 0.167594
0.8 274.34 289.59 274.5 289.97 0.16 0.376 0.058322 | 0.129837
0.9 277.16 284.77 277.25 | 284.985 0.09 0.2115 10.032472 | 0.07427
1 280.00 280.00 280 280 0 0 0 0
Error analysis corresponding to T
Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 316.40 447.35 316.4 447.35 0 0 0 0
0.1 320.59 438.09 320.76 | 438.615 0.171 0.5265 |0.053339 | 0.120181
0.2 324.82 428.94 325.12 429.88 0.304 0.936 |0.093591| 0.21821
0.3 329.08 419.92 329.48 | 421.145 0.399 1.2285 |0.121247 | 0.292558
0.4 333.38 411.01 333.84 412.41 0.456 1.404 |0.136779| 0.341601
0.5 337.73 402.21 338.2 403.675 0.475 1.4625 | 0.140647 | 0.363614
0.6 342.10 393.54 342.56 394.94 0.456 1.404 0.133293 | 0.356765
0.7 346.52 384.98 346.92 | 386.205 0.399 1.2285 |0.115145| 0.31911
0.8 350.98 376.53 351.28 377.47 0.304 0.936 ]0.086616 | 0.248583
0.9 355.47 368.21 35564 | 368.735 0.171 0.5265 |0.048105| 0.14299
1 360.00 360.00 360 360 0 0 0 0
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Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 105.20 119.40 105.2 119.4 0 0 0 0
0.1 105.66 118.42 105.68 118.46 0.018 0.036 |0.017035) 0.030399
0.2 106.13 117.46 106.16 117.52 0.032 0.064 | 0.030152 | 0.054488
0.3 106.60 116.50 106.64 116.58 0.042 0.084 0.0394 | 0.072105
0.4 107.07 115.54 107.12 115.64 0.048 0.096 0.04483 | 0.083085
0.5 107.55 114.60 107.6 114.7 0.05 0.1 0.04649 0.08726
0.6 108.03 113.66 108.08 113.76 0.048 0.096 |0.044431 ] 0.084459
0.7 108.52 112.74 108.56 112.82 0.042 0.084 |0.038703| 0.07451
0.8 109.01 111.82 109.04 111.88 0.032 0.064 |0.029356 | 0.057237
0.9 109.50 110.90 109.52 110.94 0.018 0.036 | 0.016438 | 0.032461
1 110.00 110.00 110 110 0 0 0 0

Error analysis corresponding to Tss

Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 194.00 241.30 194 2413 0 0 0 0
0.1 195.56 238.05 195.6 238.17 0.045 0.117 10.023011 ] 0.049149
0.2 197.12 234.83 197.2 235.04 0.08 0.208 |0.040584 | 0.088574
0.3 198.70 231.64 198.8 231.91 0.105 0.273 |0.052845| 0.117857
0.4 200.28 228.47 200.4 228.78 0.12 0.312 |0.059916 | 0.136562
0.5 201.88 225.33 202 225.65 0.125 0.325 0.06192 | 0.144236
0.6 203.48 222.21 203.6 222.52 0.12 0.312 10.058974 | 0.140409
0.7 205.10 219.12 205.2 219.39 0.105 0.273 ]0.051196 | 0.124591
0.8 206.72 216.05 206.8 216.26 0.08 0.208 0.0387 | 0.096273
0.9 208.36 213.01 208.4 213.13 0.045 0.117 ] 0.021598 | 0.054926
1 210.00 210.00 210 210 0 0 0 0

Error analysis corresponding to Tsg

Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 241.70 330.05 2417 330.05 0 0 0 0
0.1 244.42 323.68 244.53 | 324.045 0.108 0.3645 |0.044186| 0.112611
0.2 24717 317.39 247.36 318.04 0.192 0.648 0.07768 | 0.204164
0.3 249.94 311.18 250.19 | 312.035 0.252 0.8505 |0.100825| 0.273311
0.4 252.73 305.06 253.02 306.03 0.288 0.972 |10.113955 | 0.318628
0.5 255.55 299.01 255.85 | 300.025 0.3 1.0125 [0.117394 | 0.338615
0.6 258.39 293.05 258.68 294.02 0.288 0.972 10.111459 | 0.331686
0.7 261.26 287.16 261.51 288.015 0.252 0.8505 |0.096456 | 0.296172
0.8 264.15 281.36 264.34 282.01 0.192 0.648 |0.072687 | 0.230308
0.9 267.06 275.64 267.17 | 276.005 0.108 0.3645 | 0.04044 | 0.132237
1 270.00 270.00 270 270 0 0 0 0
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Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 143.60 163.30 143.6 163.3 0 0 0 0
0.1 144.23 161.94 144.24 161.97 0.009 0.027 0.00624 | 0.016673
0.2 144.86 160.59 144.88 160.64 0.016 0.048 ]0.011045| 0.029889
0.3 145.50 159.25 145.52 159.31 0.021 0.063 |0.014433 | 0.039561
0.4 146.14 157.91 146.16 157.98 0.024 0.072 ] 0.016423 ] 0.045596
0.5 146.78 156.58 146.8 156.65 0.025 0.075 |}0.017033 0.0479
0.6 147 .42 155.25 147.44 155.32 0.024 0.072 0.01628 | 0.046377
0.7 148.06 153.93 148.08 153.99 0.021 0.063 ]0.014184 | 0.040928
0.8 148.70 152.61 148.72 152.66 0.016 0.048 0.01076 | 0.031452
0.9 149.35 151.30 149.36 151.33 0.009 0.027 ]0.006026 | 0.017845
1 150.00 150.00 150 150 0 0 0 0

Error analysis corresponding to T

Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 175.10 222.05 175.1 222.05 0 0 0 0
0.1 176.54 218.66 176.59 | 218.845 0.054 0.1845 | 0.030589 | 0.084377
0.2 177.98 215.31 178.08 215.64 0.096 0.328 |0.053937 | 0.152337
0.3 179.44 212.00 179.57 | 212.435 0.126 0.4305 |[0.070217 | 0.203062
0.4 180.92 208.74 181.06 209.23 0.144 0.492 |0.079595 | 0.235702
0.5 182.40 205.51 182.55 | 206.025 0.15 0.5125 |0.082237 | 0.249377
0.6 183.90 202.33 184.04 202.82 0.144 0.492 0.078305| 0.24317
0.7 185.40 199.18 185.53 199.615 0.126 0.4305 0.06796 | 0.216131
0.8 186.92 196.08 187.02 196.41 0.096 0.328 0.051358 | 0.167277
0.9 188.46 193.02 188.51 193.205 0.054 0.1845 | 0.028654 | 0.095586
1 190.00 190.00 190 190 0 0 0 0

Error analysis corresponding to Tsg

Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 112.40 136.25 112.4 136.25 0 0 0 0
0.1 113.12 134.51 113.16 | 134.625 0.036 0.1125 | 0.031823 | 0.083635
0.2 113.86 132.80 113.92 133 0.064 0.2 0.056211 | 0.150602
0.3 114.60 131.11 114.68 | 131.375 0.084 0.2625 |0.073301| 0.20021
0.4 115.34 129.45 115.44 129.75 0.096 0.3 0.083229 | 0.23175
0.5 116.10 127.81 116.2 128.125 0.1 0.3125 10.086133 | 0.244499
0.6 116.86 126.20 116.96 126.5 0.096 0.3 0.082147 | 0.237718
0.7 117.64 124.61 117.72 | 124.875 0.084 0.2625 | 0.071407 | 0.210653
0.8 118.42 123.05 118.48 123.25 0.064 0.2 0.054047 | 0.162536
0.9 119.20 121.51 119.24 | 121.625 0.036 0.1125 0.0302 | 0.092583
1 120.00 120.00 120 120 0 0 0 0
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Error Analysis 143
Corresponding to T211
Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 3.40 17.50 3.4 17.5 0 0 0 0
0.1 3.98 16.66 4.06 16.75 0.081 0.09 [2.035687 | 0.540216
0.2 4.58 15.84 472 16 0.144 0.16 |3.146853|1.010101
0.3 5.19 15.04 5.38 15.25 0.189 0.21 3.640917 | 1.396277
0.4 5.82 14.26 6.04 14.5 0.216 0.24 |3.708791|1.683029
0.5 6.48 13.50 6.7 13.75 0.225 0.25 |3.474903|1.851852
0.6 7.14 12.76 7.36 13 0.216 024 [3.023516|1.880878
0.7 7.83 12.04 8.02 12.25 0.189 0.21 2.413485 ) 1.744186
0.8 8.54 11.34 8.68 11.5 0.144 0.16 [1.686973(1.410935
0.9 9.26 10.66 9.34 10.75 0.081 0.09 |0.874824]0.844278
1 10.00 10.00 10 10 0 0 0 0
Corresponding to T221
Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 101.40 122.50 101.4 122.5 0 0 0 0
0.1 102.18 121.16 | 102.26 121.25 0.081 0.08 0.07927310.074282
0.2 102.98 | 119.84 | 103.12 120 0.144 0.16  ]0.139838]0.133511
0.3 103.79 118.54 | 103.98 118.75 0.189 0.21 0.182097 [ 0.177155
0.4 104.62 117.26 | 104.84 117.5 0.216 0.24 0.206454 | 0.204673
0.5 105.48 116.00 105.7 116.25 0.225 0.25 0.213321]0.215517
0.6 106.34 114.76 | 106.56 115 0.216 0.24 0.20311410.209132
0.7 107.23 113.54 | 107.42 113.75 0.189 0.21 0.176255 | 0.184957
0.8 108.14 112.34 | 108.28 112.5 0.144 0.16 0.133166 | 0.142425
0.9 109.06 | 111.16 | 109.14 | 111.25 0.081 0.09 [0.074272|0.080964
1 110.00 110.00 110 110 0 0 0 0
Corresponding to T231
Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 109.50 | 136.30 | 109.5 136.3 0 0 0 0
0.1 110.46 | 134.55 | 11055 | 134.67 0.09 0.117 10.081477 | 0.086955
0.2 111.44 132.83 111.6 133.04 0.16 0.208 [0.143575|0.156589
0.3 112.44 | 131.14 | 112.65 | 131.41 0.21 0.273 ]0.186766 | 0.208179
0.4 11346 | 12947 | 1137 129.78 0.24 0.312 10.211528 | 0.240986
0.5 11450 | 127.83 | 114.75 | 128.15 0.25 0.325 |0.218341 | 0.254254
0.6 11556 | 126.21 | 115.8 126.52 0.24 0.312 10.207684 | 0.247211
0.7 116.64 | 124.62 | 116.85 | 124.89 0.21 0.273 10.180041|0.219071
0.8 117.74 | 123.05 ] 1179 123.26 0.16 0.208 |0.135893|0.169034
0.9 118.86 | 121.51 | 118.95 | 121.63 0.09 0.117 ]0.075719[0.096286
1 120.00 | 120.00 120 120 0 0 0 0
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Corresponding to T241
Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 123.90 | 164.50 123.9 164.5 0 0 0 0
0.1 125.38 | 161.87 | 125.51 162.05 0.126 0.18 [0.100491| 0.1112
0.2 126.90 | 159.28 | 127.12 159.6 0.224 0.32 [0.176523 | 0.200904
0.3 128.44 | 156.73 | 128.73 | 157.15 0.294 0.42 10.228908 [ 0.267977
0.4 130.00 | 154.22 | 130.34 154.7 0.336 0.48 [0.258454 |0.311244
0.5 131.60 | 151.75 | 131.95 | 152.25 0.35 0.5 0.265957 | 0.329489
0.6 133.22 | 149.32 | 133.56 149.8 0.336 0.48 [0.252207 | 0.321457
0.7 134.88 | 146.93 | 135.17 | 147.35 0.294 042 [0.217978| 0.28585
0.8 136.56 | 144.58 | 136.78 144.9 0.224 0.32 [0.164035|0.221331
0.9 138.26 | 142.27 | 138.39 | 142.45 0.126 0.18 0.09113 | 0.12652
1 140.00 | 140.00 140 140 0 0 0 0
Corresponding to T251
Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 25590 | 347.35 | 2559 347.35 0 0 0 0
0.1 259.14 | 341.31 | 259.31 | 341.615 0.171 0.3015 [0.065988 { 0.088335
0.2 262.42 | 335.34 | 262.72 | 335.88 0.304 0.536 [ 0.115847 [ 0.159836
0.3 265.73 | 329.44 | 266.13 | 330.145 0.399 0.7035 |0.15015210.213543
0.4 269.08 | 323.61 | 269.54 | 324.41 0.456 0.804 [0.169464 | 0.24845
0.5 272.48 | 317.84 | 272.95 | 318.675 0.475 0.8375 |0.174328 | 0.263499
0.6 27590 | 312.14 | 276.36 | 312.94 0.456 0.804 [0.165275| 0.25758
0.7 279.37 | 306.50 | 279.77 | 307.205 0.399 0.7035 |0.142821|0.229526
0.8 282.88 | 300.93 | 283.18 | 301.47 0.304 0.536 [0.107468 [0.178112
0.9 286.42 | 295.43 | 286.59 | 295.735 0.171 0.3015 |0.059703 | 0.102053
1 290.00 | 290.00 290 290 0 0 0 0
Corresponding to T261
Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 319.80 | 46485 | 319.8 464.85 0 0 0 0
0.1 324.57 | 454.75 | 324.82 | 455.365 0.252 0.6165 |0.077642 | 0.135569
0.2 329.39 | 444.78 | 329.84 | 445.88 0.448 1.096 ] 0.136008 | 0.246412
0.3 334.27 | 434,96 | 334.86 | 436.395 0.588 1.4385 [0.175905 | 0.330723
0.4 339.21 | 425.27 | 339.88 | 426.91 0.672 1.644 10.198109 | 0.386582
0.5 344.20 | 415.71 344.9 | 417425 0.7 1.7125 | 0.20337 10.411943
0.6 349.25 | 406.30 | 349.92 | 407.94 0.672 1.644 |0.192413]0.404631
0.7 354.35 | 397.02 | 354.94 | 398.455 0.588 1.4385 |0.165937 [ 0.362328
0.8 350.561 | 387.87 | 359.96 | 388.97 0.448 1.096 |0.124613|0.282566
0.9 364.73 | 378.87 | 364.98 | 379.485 0.252 0.6165 |0.069093]0.162721
1 370.00 | 370.00 370 370 0 0 0 0




Corresponding to T321 145
Curvature T.F.N Error % Error
a Left Right Left Right Left Right Left Right
0 11.25 31.20 11.25 31.2 0 0 0 0
0.1 12.51 30.56 12.625 30.58 0.1125 0.018 ]0.899101|0.058897
0.2 13.80 29.93 14 29.96 0.2 0.032 |1.4492750.106923
0.3 15.11 29.30 15.375 29.34 0.2625 0.042 |1.736973|0.143354
0.4 16.45 28.67 16.75 28.72 0.3 0.048 |1.823708]0.167411
0.5 17.81 28.05 18.125 28.1 0.3125 0.05 |1.754386|0.178253
0.6 19.20 27.43 19.5 27.48 0.3 0.048 1.6625 |0.174978
0.7 20.61 26.82 | 20.875 26.86 0.2625 0.042 11.2734990.156611
0.8 22.05 26.21 22.25 26.24 0.2 0.032 ]0.907029| 0.1221
0.9 23.51 25.60 | 23.625 25.62 0.1125 0.018 |0.478469 |0.070307
1 25.00 25.00 25 25 0 0 0 0
Corresponding to T331
Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 109.25 | 136.20 | 109.25 136.2 0 0 0 0
0.1 110.71 135.06 | 110.825| 135.08 0.1125 0.018 ]0.101615]0.013327
0.2 112.20 | 133.93 112.4 133.96 0.2 0.032 ]0.17825310.023893
0.3 113.71 132.80 ] 113.975| 132.84 0.2625 0.042 |0.230845(0.031627
0.4 115.25 | 131.67 | 11555 | 131.72 0.3 0.048 10.260304 | 0.036454
0.5 116.81 130.55 | 117.125] 130.6 0.3125 0.05 ]0.267523| 0.0383
0.6 118.40 | 129.43 118.7 129.48 0.3 0.048 |[0.2533780.037085
0.7 120.01 128.32 | 120.275| 128.36 0.2625 0.042 |0.218727}0.032731
0.8 121.65 | 127.21 | 121.85 | 127.24 0.2 0.032 ]0.164406 | 0.025156
0.9 123.31 126.10 | 123.425| 126.12 0.1125 0.018 ]0.091232|0.014274
1 125.00 | 125.00 125 125 0 0 0 0
Corresponding to T341
Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 116.45 | 150.60 | 116.45 150.6 0 0 0 0
0.1 118.17 | 148.99 | 118.305 | 149.04 0.1305 0.054 | 0.11043 [ 0.036245
0.2 119.93 | 147.38 | 120.16 | 147.48 0.232 0.096 0.193449}0.065136
0.3 121.71 145.79 | 122.015| 145.92 0.3045 0.126 ]0.250184 | 0.086423
0.4 123.52 | 144.22 | 123.87 | 144.36 0.348 0.144 ]0.281731 | 0.09985
0.5 125.36 | 142.65 | 125725 | 142.8 0.3625 0.15 ]0.289161[0.105152
0.6 127.23 | 14110 | 127.58 | 141.24 0.348 0.144 ]0.273516|0.102058
0.7 129.13 | 139.55 | 129.435| 139.68 0.3045 0.126 |0.235808 | 0.090288
0.8 131.06 | 138.02 | 131.29 | 138.12 0.232 0.096 [0.17702110.069553
0.9 133.01 136.51 | 133.145| 136.56 0.1305 0.054 | 0.09811 |0.039559
1 135.00 | 135.00 135 135 0 0 0 0




Corresponding to T351 146

Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 205.25 | 272.50 | 205.25 272.5 0 0 0 0
0.1 208.07 | 268.62 | 208.225 | 268.75 0.1575 0.135 {0.075697 | 0.050258
0.2 21092 | 264.76 | 211.2 265 0.28 0.24 10.132752 | 0.090648
0.3 213.81 260.94 | 214.175 | 261.25 0.3675 0.315 [0.171884 ) 0.12072
0.4 216.73 | 257.14 | 217.15 257.5 0.42 0.36 0.19379 | 0.140002
0.5 219.69 | 253.38 | 220.125| 253.75 0.4375 0.375 10.199147 | 0.148002
0.6 222.68 | 24964 | 223.1 250 0.42 0.36  ]0.188611[0.144208
0.7 225.71 | 245.94 | 226.075| 246.25 0.3675 0.315 ]0.16282110.128083
0.8 228.77 | 242,26 | 229.05 2425 0.28 0.24 }10.122394 ] 0.099067
0.9 231.87 | 238.62 | 232.025| 238.75 0.1575 0.135 ]0.067927 | 0.056576
1 235.00 | 235.00 235 235 0 0 0 0

Corresponding to T351

Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 252.95 | 361.25 | 252.95 | 361.25 0 0 0 0
0.1 256.93 | 354.24 | 257.155 | 354.625 | 0.2205 | 0.3825 | 0.08582 |0.107977
0.2 260.97 | 347.32 | 261.36 348 0.392 0.68 0.15021 |0.195785
0.3 265.05 | 340.48 | 265.565 | 341.375 | 0.5145 | 0.8925 |0.194114|0.262128
0.4 269.18 | 333.73 | 269.77 | 334.75 0.588 1.02 0.21844 | 0.305636
0.5 273.36 | 327.06 | 273.975 | 328.125 | 0.6125 1.0625 |0.224061 1 0.324861
0.6 277.59 | 32048 | 278.18 321.5 0.588 1.02 [0.211822(0.318273
0.7 281.87 | 313.98 ] 282.385| 314.875 | 0.5145 | 0.8925 |0.182531 | 0.284252
0.8 286.20 | 307.57 | 286.59 | 308.25 0.392 0.68 [0.136968 |0.221088
0.9 290.57 | 301.24 [ 290.795 | 301.625 | 0.2205 | 0.3825 }0.075884 | 0.126974
1 295.00 | 295.00 295 295 0 0 0 0
Corresponding to T431

Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 3.15 8.40 3.15 8.4 0 0 0 0
0.1 3.32 8.02 3.335 8.06 0.0135 0.036 | 0.406443 | 0.448654
0.2 3.50 7.66 3.52 7.72 0.024 0.064 [0.686499 |0.835946
0.3 3.67 7.30 3.705 7.38 0.0315 0.084 [0.857493(1.151316
0.4 3.85 6.94 3.89 7.04 0.036 0.096 [0.934094 | 1.382488
0.5 4.04 6.60 4.075 6.7 0.0375 0.1 0.928793 | 1.515152
0.6 4,22 6.26 4.26 6.36 0.036 0.096 ]0.852273 | 1.5632567
0.7 4.41 5.94 4.445 6.02 0.0315 0.084 [0.713719 | 1.415094
0.8 4.61 5.62 463 5.68 0.024 0.064 |0.521059 [ 1.139601
0.9 4.80 5.30 4.815 5.34 0.0135 0.036 [0.281162|0.678733
1 5.00 5.00 5 5 0 0 0 0




Corresponding to T441 147

Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 101.15 | 113.40 | 101.15 113.4 0 0 0 0
0.1 101.52 | 112.52 | 101.535| 112.56 0.0135 0.036 {0.013298 | 0.031993
0.2 101.80 | 111.66 | 101.92 [ 111.72 0.024 0.064 |[0.023553|0.057319
0.3 102.27 | 110.80 | 102.305| 110.88 0.0315 0.084 0.0308 {0.075815
0.4 102.65 | 109.94 | 102.69 | 110.04 0.036 0.096 | 0.035069 |0.087317
0.5 103.04 | 109.10 | 103.075| 109.2 0.0375 0.1 0.036395 | 0.091659
0.6 103.42 | 108.26 | 103.46 | 108.36 0.036 0.096 }0.034808 | 0.088672
0.7 103.81 107.44 ] 103.845 | 107.52 0.0315 0.084 |0.030343]0.078186
0.8 104.21 106.62 | 104.23 | 106.68 0.024 0.064 [0.023031 | 0.060029
0.9 104.60 | 105.80 | 104.615| 105.84 0.0135 0.036 | 0.012906 | 0.034025
1 105.00 | 105.00 105 105 0 0 0 0
Corresponding to T451

Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 146.75 | 171.70 | 146.75 171.7 0 0 0 0
0.1 147.55 | 169.97 | 147.575| 170.03 0.0225 0.063 [0.015249 | 0.037066
0.2 148.36 | 168.25 148.4 168.36 0.04 0.112 {0.026961 | 0.066568
0.3 149.17 | 166.54 | 149.225| 166.69 0.0525 0.147 |0.035194 | 0.088265
0.4 148.99 | 164.85 | 150.05 | 165.02 0.06 0.168 |[0.040003| 0.10191
0.5 150.81 163.18 | 150.875| 163.35 0.0625 0.175 (0.041442 | 0.107247
0.6 151.64 | 161.51 151.7 161.68 0.06 0.168 [0.039567 [ 0.104017
0.7 152.47 | 159.86 | 152.525 | 160.01 0.0525 0.147 [0.0344320.091954
0.8 153.31 158.23 | 153.35 | 158.34 0.04 0.112 {0.026091 | 0.070784
0.9 154.15 | 156.61 | 154.175| 156.67 0.0225 0.063 [0.014596 | 0.040228
1 155.00 | 155.00 155 155 0 0 0 0
Corresponding to T461

Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 178.25 | 230.45 | 178.25 | 230.45 0 0 0 0
0.1 179.86 | 226.68 | 179.925 | 226.905 | 0.0675 | 0.2205 | 0.03753 {0.097272
0.2 181.48 | 222.97 181.6 223.36 0.12 0.392 [0.066123| 0.17581
0.3 183.12 | 219.30 | 183.275] 219.815 | 0.1575 | 0.5145 | 0.08601 | 0.23461
0.4 184.77 | 21568 | 184.95 | 216.27 0.18 0.588 {0.097418[0.272624
0.5 186.44 | 212.11 | 186.625| 212.725 | 0.1875 | 0.6125 | 0.10057 ]0.288762
0.6 188.12 | 208.59 188.3 209.18 0.18 0.588 | 0.095684 | 0.28189
0.7 189.82 | 205.12 | 189.975 | 205.635 | 0.1575 | 0.5145 |0.082974|0.250828
0.8 191.53 | 201.70 | 191.65 | 202.09 0.12 0.392 [0.062653 | 0.19435
0.9 193.26 | 198.32 | 193.325| 198.545 | 0.0675 | 0.2205 |0.034927|0.111181
1 195.00 | 195.00 195 195 0 0 0 0




Corresponding to T541 148
Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 2.40 7.80 2.4 7.8 0 0 0 0
0.1 2.62 7.49 2.66 7.52 0.036 0.027 ]1.371951]0.360336
0.2 2.86 7.19 2.92 7.24 0.064 0.048 |2.240896 | 0.667408
0.3 3.10 6.90 3.18 6.96 0.084 0.063 ]2.713178]0.913441
0.4 3.34 6.61 3.44 6.68 0.096 0.072 [2.870813]1.089588
0.5 3.60 6.33 3.7 6.4 0.1 0.075 2.777778 | 1.185771
0.6 3.86 6.05 3.96 6.12 0.096 0.072 |2.484472|1.190476
0.7 4.14 5.78 4,22 5.84 0.084 0.083 |2.030948 | 1.090531
0.8 4.42 5.51 4,48 5.56 0.064 0.048 ] 1.449275]0.870827
0.9 4.70 5.25 4,74 5.28 0.036 0.027 [0.765306|0.513992
1 5.00 5.00 5 5 0 0 0 0
Corresponding to T551
Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 100.40 | 112.80 100.4 112.8 0 0 0 0
0.1 100.82 | 111.99 | 100.86 | 112.02 0.036 0.027 ]0.035706 | 0.024109
0.2 101.26 | 111.19 | 101.32 111.24 0.064 0.048 |0.063206 | 0.043169
0.3 101.70 | 11040 | 101.78 | 110.46 0.084 0.063 |[0.082599 | 0.057067
0.4 102.14 | 109.61 | 102.24 109.68 0.096 0.072 ]0.093985 | 0.065689
0.5 102.60 | 108.83 102.7 108.9 0.1 0.075 10.097466 | 0.068918
0.6 103.06 | 108.05 | 103.16 | 108.12 0.096 0.072 ] 0.093146 ] 0.066637
0.7 103.54 | 107.28 | 103.62 107.34 0.084 0.063 |0.081131|0.058726
0.8 104.02 | 106.51 | 104.08 | 106.56 0.064 0.048 |[0.061529 | 0.045065
0.9 104.50 | 105.75 | 104.54 | 105.78 0.036 0.027 [0.034448 |0.025531
1 105.00 | 105.00 105 105 0 0 0 0
Corresponding to T561
Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 114.80 | 144.05 114.8 144.05 0 0 0 0
0.1 115.75 | 142.01 | 115.82 | 142.145 0.072 0.1395 |0.062204 | 0.098236
0.2 116.71 139.99 | 116.84 | 140.24 0.128 0.248 [0.109672|0.177153
0.3 11769 | 138.01 | 117.86 | 138.335 0.168 0.3255 [0.142745|0.235853
0.4 118.69 | 136.06 | 118.88 ;| 136.43 0.192 0.372 [0.1617690.273413
0.5 119.70 | 134.14 119.9 | 134.525 0.2 0.3875 |0.167084 | 0.288883
0.6 120.73 | 132.25 | 120.92 | 132.62 0.192 0.372 [0.159035| 0.28129
0.7 121.77 | 130.39 | 121.94 | 130.715 0.168 0.3255 }0.137963 | 0.249637
0.8 122.83 | 128.56 | 122.96 | 128.81 0.128 0.248 |0.104207 | 0.192903
0.9 123.91 126.77 | 123.98 | 126.905 0.072 0.1395 [0.058108 | 0.110046
1 125.00 | 125.00 125 125 0 0 0 0




Corresponding to T651 149

Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 20.16 29.15 20.16 29.15 0 0 0 0
0.1 20.63 28.72 | 20.644 | 28.735 0.0144 | 0.0135 |0.069803 | 0.047003
0.2 21.10 28.30 | 21.128 28.32 0.0256 0.024 ]0.121313]0.084818
0.3 21.58 27.87 | 21.612 | 27.905 0.0336 | 0.0315 [0.155711]0.113011
0.4 22.06 2745 | 22.096 27.49 0.0384 0.036 ] 0.17409 |0.131128
0.5 22.54 27.04 22.58 27.075 0.04 0.0375 [0.177462 | 0.138696
0.6 23.03 26.62 | 23.064 26.66 0.0384 0.036 }0.166771)0.135216
0.7 23.51 26.21 23.548 | 26.245 0.0336 | 0.0315 |0.142891|0.120167
0.8 24.01 25.81 24.032 25.83 0.0256 0.024 [0.106638 | 0.093002
0.9 24.50 2540 | 24516 | 25.415 0.0144 | 0.0135 [0.058772|0.053146
1 25.00 25.00 25 25 0 0 0 0
Corresponding to 7661

Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 118.16 | 134.15 | 118.16 134.15 0 0 0 0
0.1 118.83 | 133.22 | 118.844 | 133.235 | 0.0144 | 0.0135 [ 0.012118{0.010133
0.2 119.50 | 132.30 | 119.528 | 132.32 0.0256 0.024 ]0.021422)0.018141
0.3 120.18 | 131.37 | 120.212 | 131.405 | 0.0336 | 0.0315 |0.027958 | 0.023977
0.4 120.86 | 130.45 | 120.896 | 130.49 0.0384 0.036 {0.031773]0.027596
0.5 121.54 | 129.54 | 12158 | 129.575 0.04 0.0375 [0.032911 | 0.028949
0.6 122.23 | 128.62 | 122.264 | 128.66 0.0384 0.036 |0.031417|0.027989
0.7 122.91 127.71 1 122.948 | 127.745 | 0.0336 | 0.0315 |0.027336 | 0.024665
0.8 123.61 126.81 | 123.632 | 126.83 0.0256 0.024 [0.020711]0.018927
0.9 124.30 [ 125.90 | 124.316 | 125,915 | 0.0144 | 0.0135 |0.011585|0.010723
1 125.00 | 125.00 125 125 0 0 0 0
Corresponding to T761

Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 4.50 16.25 4.5 16.25 0 0 0 0
0.1 5.01 15.56 5.05 15.625 0.045 0.0675 |0.899101|0.433874
0.2 5.52 14.88 5.6 15 0.08 0.12 1.449275 | 0.806452
0.3 6.05 14.22 6.15 14.375 0.105 0.1675 |1.736973| 1.10779
0.4 6.58 13.57 6.7 13.75 0.12 0.18 1.823708 | 1.326455
0.5 7.13 12.94 7.25 13.125 0.125 0.1875 [1.754386 | 1.449275
0.6 7.68 12.32 7.8 12.5 0.12 0.18 1.5625 |1.461039
0.7 8.25 11.72 8.35 11.875 0.105 0.1575 [ 1.273499 | 1.344143
0.8 8.82 11.13 8.9 11.25 0.08 0.12 ]0.907029 |1.078167
0.9 9.41 10.56. 9.45 10.625 0.045 0.0675 |0.478469 | 0.639356
1 10.00 10.00 10 10 0 0 0 0




Corresponding to T322 150
Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 18.90 63.70 18.9 63.7 0 0 0 0
0.1 21.25 61.68 21.51 61.83 0.261 0.153 | 1.228293 [ 0.248067
0.2 23.66 59.69 24.12 59.96 0.464 0.272 |1.961447 | 0.455703
0.3 26.12 57.73 26.73 58.09 0.609 0.357 |[2.331457|0.618364
0.4 28.64 55.81 29.34 56.22 0.696 0.408 }2.429828|0.731026
0.5 31.23 53.93 31.95 54.35 0.725 0.425 ]2.321857|0.788132
0.6 33.86 52.07 34.56 52.48 0.696 0.408 | 2.05528 | 0.78353
0.7 36.56 50.25 37.17 50.61 0.609 0.357 11.665709|0.710405
0.8 39.32 48.47 39.78 48.74 0.464 0.272 |1.1801810.561195
0.9 42.13 46.72 42.39 46.87 0.261 0.1563 10.619526 | 0.327504
1 45.00 45.00 45 45 0 0 0 0
Corresponding to T332
Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 116.90 | 168.70 116.9 168.7 0 0 0 0
0.1 119.45 | 166.18 | 119.71 166.33 0.261 0.163 [0.218503|0.092071
0.2 122.06 | 163.69 | 122.52 163.96 0.464 0.272 (0.380153 | 0.16617
0.3 124.72 | 161.23 | 125.33 161.59 0.609 0.357 | 0.48829 [0.221419
0.4 127.44 | 158.81 | 128.14 | 159.22 0.696 0.408 |0.546122|0.256908
0.5 130.23 | 156.43 | 130.95 156.85 0.725 0.425 |0.556729|0.271696
0.6 133.06 | 154.07 | 133.76 | 154.48 0.696 0.408 |[0.523057 | 0.264811
0.7 135.96 | 151.75 | 136.57 152.11 0.609 0.357 [0.447923|0.235251
0.8 138.92 | 149.47 | 139.38 149.74 0.464 0.272 [0.334015(0.181979
0.9 141.93 | 147.22 | 142.19 147.37 0.261 0.153 {0.183895{0.103928
1 145.00 | 145.00 145 145 0 0 0 0
Corresponding to T342
Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 124.10 | 183.10 124.1 183.1 0 0 0 0
0.1 126.91 180.10 | 127.19 180.29 0.279 0.189 |[0.219839 [ 0.104941
0.2 129.78 | 17714 | 130.28 | 177.48 0.496 0.336 {0.3821730.189676
0.3 132.72 | 174.23 | 133.37 174.67 0.651 0.441 0.49051 | 0.253115
0.4 135.72 | 171.36 | 136.46 | 171.86 0.744 0.504 |0.548204 |0.294125
0.5 138.78 | 168.53 | 139.55 169.05 0.775 0.525 [0.558458 | 0.311526
0.6 141.90 | 165.74 | 14264 | 166.24 0.744 0.504 |0.524328|0.304098
0.7 145.08 | 162.99 | 145.73 163.43 0.651 0.441 |0.448721| 0.27057
0.8 148.32 | 160.28 | 148.82 160.62 0.496 0.336 |[0.334403 | 0.209628
0.9 151.63 | 157.62 | 151.91 157.81 0.279 0.189 [0.183999[0.119908
1 155.00 | 155.00 155 155 0 0 0 0




Corresponding to T352 151

Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 212.90 | 305.00 | 212.9 305 0 0 0 0
0.1 216.80 | 299.73 | 217.11 300 0.306 0.27 10.141141 | 0.090081
0.2 220.78 | 29452 | 221.32 295 0.544 0.48 |0.246404 | 0.162977
0.3 224.82 | 289.37 | 225.53 290 0.714 0.63 ]0.317593|0.217714
0.4 228.92 | 284.28 | 229.74 285 0.816 0.72 0.35645 [0.253271
0.5 233.10 | 279.25 | 233.95 280 0.85 0.75 0.36465 | 0.268577
0.6 237.34 | 27428 | 238.16 275 0.816 0.72 0.343805 | 0.262505
0.7 241.66 | 269.37 | 242.37 270 0.714 0.63 ]0.295461 | 0.233879
0.8 246.04 | 264.52 | 246.58 265 0.544 0.48 ]0.22110610.181461
0.9 250.48 | 259.73 | 250.79 260 0.306 0.27 10.122163 | 0.103954
1 255.00 | 255.00 255 255 0 0 0 0
Corresponding to T362

Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 260.60 | 393.75 | 260.6 393.75 0 0 0 0
0.1 265.67 | 385.36 | 266.04 | 385.875 0.369 0.5175 [0.138894 | 0.134291
0.2 270.82 | 377.08 | 271.48 378 0.656 0.92 0.242224 | 0.24398
0.3 276.06 | 368.92 | 276.92 | 370.125 0.861 1.2075 | 0.31189 |0.327309
0.4 281.38 | 360.87 | 282.36 | 362.25 0.984 1.38 0.34971 | 0.382409
0.5 286.78 | 352.94 | 287.8 | 354.375 1.025 1.4375 | 0.357423 1 0.407296
0.6 292.26 | 34512 | 293.24 346.5 0.984 1.38 |0.336691 | 0.399861
0.7 297.82 | 337.42 | 298.68 | 338.625 0.861 1.2075 0.289102 | 0.357865
0.8 303.46 | 329.83 | 304.12 | 330.75 0.656 0.92 0.21617110.278932
0.9 309.19 | 322.36 | 309.56 | 322.875 0.369 0.5175 [0.119344 | 0.160536
1 315.00 | 315.00 315 315 0 0 0 0
Corresponding to T432

Curvature T.F.N Error % Error
a Left Right Left Right Left Right Left Right
0 30.15 76.00 30.15 76 0 0 0 0
0.1 32.44 73.81 32.635 73.9 0.1935 0.09 ]0.596458]0.121935
0.2 34.78 71.64 35.12 71.8 0.344 0.16 (0.9891880.223339
0.3 37.15 69.49 | 37.605 69.7 0.4515 0.21 1.215229 | 0.302202
0.4 39.57 67.36 40.09 67.6 0.516 0.24 1.303886 | 0.356295
0.5 42.04 65.25 | 42,575 65.5 0.5375 0.25 1.27862 |0.383142
0.6 44 54 63.16 45.06 63.4 0.516 0.24 1.158405 | 0.379987
0.7 47.09 61.09 | 47.545 61.3 0.4515 0.21 0.958731 | 0.343755
0.8 49.69 59.04 50.03 59.2 0.344 0.16 10.692348|0.271003
0.9. 52.32 57.01 52.515 57.1 0.1935 0.09 [0.369829(0.157867 |
1 55.00 55.00 55 55 0 0 0 0




Corresponding to T442

152

Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 128.15 | 181.00 | 128.15 181 0 0 0 0
0.1 130.64 | 178.31 | 130.835 178.4 0.1935 0.09 |{0.148115 | 0.050474
0.2 133.18 | 175.64 | 133.52 175.8 0.344 0.16 | 0.258305 [ 0.091095
0.3 135.75 | 172.99 | 136.205 173.2 0.4515 0.21 0.332588 | 0.121394
0.4 138.37 | 170.36 | 138.89 170.6 0.516 0.24 ]0.372902 | 0.140878
0.5 141.04 | 167.75 | 141.575 168 0.5375 0.25 0.381104 | 0.149031
0.6 143.74 | 165.16 | 144.26 165.4 0.516 0.24 10.358972(0.145314
0.7 146.49 | 162.59 | 146.945| 162.8 0.4515 0.21 0.308205 | 0.129159
0.8 149.29 | 160.04 | 149.63 160.2 0.344 0.16 0.23043 [0.099975
0.9 152.12 | 157.51 | 152.315| 157.6 0.1935 0.09 [0.127201 }0.057139
1 155.00 | 155.00 155 155 0 0 0 0
Corresponding to T452
Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 173.75 | 239.30 | 173.75 239.3 0 0 0 0
0.1 176.67 | 23575 | 176.875| 235.87 0.2025 0.117 [0.114619 [ 0.049628
0.2 179.64 | 232.23 180 232.44 0.36 0.208 |[0.200401 | 0.089566
0.3 182.65 | 228.74 | 183.125 | 229.01 0.4725 0.273 |0.258688 [ 0.119351
0.4 185.71 22527 | 186.25 | 225.58 0.54 0.312 [0.290776 | 0.138502
0.5 188.81 221.83 | 189.375| 222.15 0.5625 0.325 |0.297915(0.146512
0.6 191.96 | 218.41 192.5 218.72 0.54 0.312 [0.281309 | 0.142852
0.7 195.15 | 215.02 | 195.625| 215.29 0.4725 0.273 |0.242118 [ 0.126967
0.8 198.39 | 211.65 | 198.75 | 211.86 0.36 0.208 |0.181461[0.098275
0.9 201.67 | 208.31 | 201.875] 208.43 0.2025 0.117 | 0.10041 [0.056165
1 205.00 | 205.00 205 205 0 0 0 0
Corresponding to T462
Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 205.25 | 298.05 | 205.25 | 298.05 0 0 0 0
0.1 208.98 | 292.47 | 209.225| 292.745 | 0.2475 | 0.2745 [0.118434 |0.093856
0.2 212,76 | 286.95 | 213.2 287.44 0.44 0.488 |[0.206806 | 0.170063
0.3 216.60 | 281.49 | 217.175| 282.135 | 0.5775 | 0.6405 | 0.266624 | 0.227536
0.4 22049 | 27610 | 221.15 | 276.83 0.66 0.732 {0.2993330.265123
0.5 224.44 | 270.76 | 225125 | 271.525 | 0.6875 | 0.7625 |0.306321|0.281612
0.6 228.44 | 265.49 | 229.1 266.22 0.66 0.732 |0.288916 | 0.275719
0.7 232.50 | 260.27 | 233.075| 260.915 | 0.5775 | 0.6405 | 0.24839 | 0.246086
0.8 236.61 255.12 | 237.05 | 255.61 0.44 0.488 | 0.18596 | 0.191281
0.9 240.78 | 250.03 | 241.025 | 250.305 | 0.2475 | 0.2745 | 0.102792 | 0.109787
1 245.00 | 245.00 245 245 0 0 0 0




Corresponding to T542 153
Curvature T.F.N Error % Error
o3 Left Right Left Right Left Right Left Right
0 8.25 24.00 8.25 24 0 0 0 0
0.1 8.86 23.01 8.925 23.1 0.0675 0.09 |0.762066 | 0.391134
0.2 9.48 22.04 9.6 22.2 0.12 0.16 1.265823 | 0.725953
0.3 10.12 21.09 10.275 21.3 0.1575 0.21 1.556709 ] 0.995733
0.4 10.77 20.16 10.95 20.4 0.18 0.24 1.671309 | 1.190476
0.5 11.44 19.25 11.625 19.5 0.1875 0.25 1.639344 ] 1.298701
0.6 12.12 18.36 12.3 18.6 0.18 0.24 1.485149 | 1.30719
0.7 12.82 17.49 12.975 17.7 0.1575 0.21 1.228789 | 1.200686
0.8 13.53 16.64 13.65 16.8 0.12 0.16 }0.886918|0.961538
0.9 14.26 15.81 14.325 15.9 0.0675 0.09 ]0.473435| 0.56926
1 15.00 15.00 15 15 0 0 0 0
Corresponding to T552
Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 106.25 | 129.00 | 1086.25 129 0 0 0 0
0.1 107.06 | 127.51 | 107125 | 127.6 0.0675 0.09 0.06305 |0.070583
0.2 107.88 | 126.04 108 126.2 0.12 0.16 ]0.111235(0.126944
0.3 108.72 | 124.59 | 108.875| 124.8 0.1575 0.21 0.144871 {0.168553
0.4 109.57 | 123.16 | 109.75 123.4 0.18 0.24 {0.164279|0.194868
0.5 110.44 | 121.75 | 110.625 122 0.1875 0.25 [0.1697790.205339
0.6 111.32 120.36 111.5 120.6 0.18 0.24 [0.161696 | 0.199402
0.7 112.22 | 118.99 | 112.375| 119.2 0.1575 0.21 0.140352 | 0.176485
0.8 113.13 | 117.64 | 113.25 117.8 0.12 0.16 [ 0.106073 {0.136008
0.9 114.06 | 116.31 | 114.125| 116.4 0.0675 0.09 10.059181|0.077379
1 115.00 | 115.00 115 115 0 0 0 0
Corresponding to T562
Curvature T.F.N Error % Error
a Left Right Left Right Left Right Left Right
0 120.65 | 160.25 | 120.65 160.25 0 0 0 0
0.1 121.98 | 157.52 | 122.085 | 157.725 | 0.1035 | 0.2025 | 0.084849 |0.128553
0.2 123.34 | 154.84 | 123.52 155.2 0.184 0.36  ]0.149186 | 0.232498
0.3 124.71 1562.20 | 124.955 | 152.675 | 0.2415 | 0.4725 |0.193644 | 0.310442
0.4 126.11 149.61 | 126.39 150.15 0.276 0.54 0.21885 |0.360938
0.5 127.54 | 147.06 | 127.825| 147.625 | 0.2875 | 0.5625 |0.225424| 0.38249
0.6 128.98 | 144.56 | 129.26 145.1 0.276 0.54 0.21398 |0.373547
0.7 130.45 | 142.10 | 130.695 | 142.575 | 0.2415 | 0.4725 |0.185123)0.332506
0.8 131.95 | 139.69 | 132,13 | 140.05 0.184 0.36 [0.139451|0.257714
0.9 133.46 | 137.32 [ 133.565 | 137.525 | 0.1035 | 0.2025 | 0.07755 | 0.147463
1 135.00 | 135.00 135 135 0 0 0 0




Corresponding to T652 154

Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 25.92 43.55 25.92 43.55 0 0 0 0
0.1 26.76 42.65 | 26.828 | 42.695 0.0648 | 0.0495 |0.24212410.116073
0.2 27.62 4175 | 27.736 41.84 0.1152 0.088 0.417077)0.210768
0.3 28.49 40.87 | 28.644 | 40.985 0.1512 | 0.1155 | 0.53066 |0.282607
0.4 29.38 40.00 | 29.552 40.13 0.1728 0.132 ]0.588171}0.330017
0.5 30.28 39.14 30.46 39.275 0.18 0.1375 ]0.594452 | 0.351325
0.6 31.20 38.29 | 31.368 38.42 0.1728 0.132 ] 0.55393110.344756
0.7 32.12 37.45 32.276 | 37.565 0.1512 | 0.1155 | 0.470664 | 0.308415
0.8 33.07 36.62 33.184 36.71 0.1152 0.088 | 0.348365 | 0.240293
0.9 34.03 35.81 34.092 | 35.855 0.0648 | 0.0495 |0.190436 |0.138247
1 35.00 35.00 35 35 0 0 0 0
Corresponding to 7662

Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 123.92 | 148.55 | 123.92 148.55 0 0 0 0
0.1 124.96 | 147.15 | 125.028 | 147.195 | 0.0648 | 0.0495 |0.051855| 0.03364
0.2 126.02 | 145.75 | 126.136 | 145.84 0.1152 0.088 {0.0914130.060377
0.3 127.09 | 144.37 | 127.244 | 144485 | 0.1512 0.1155 [0.118968 | 0.080003
0.4 128.18 | 143.00 | 128.352 | 143.13 0.1728 0.132 [0.134811 [ 0.092309
0.5 120.28 | 141.64 | 129.46 | 141.775 0.18 0.1375 |0.139233 | 0.097079
0.6 130.40 | 140.29 | 130.568 | 140.42 0.1728 0.132 0.13252 {0.094092
0.7 131.52 | 138.95 | 131.676 | 139.065 | 0.1512 | 0.1155 [0.114959 | 0.083124
0.8 132.67 | 137.62 | 132784 | 137.71 0.1152 0.088 }0.086833|0.063943
0.9 133.83 | 136.31 | 133.892 | 136.355 | 0.0648 | 0.0495 |0.04842110.036315
1 135.00 | 135.00 135 135 0 0 0 0
Corresponding to T762

Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 36.66 79.85 36.66 79.85 0 0 0 0
0.1 38.89 77.74 | 38.994 | 77.865 0.1044 | 0.1215 |0.26845210.156283
0.2 41.14 75.66 | 41.328 75.88 0.1856 0.216 }0.451116[0.285473
0.3 43.42 73.61 43.662 | 73.895 0.2436 | 0.2835 | 0.561052 | 0.38513
0.4 45.72 71.59 | 45996 71.91 0.2784 0.324 [0.608956 | 0.452602
0.5 48.04 69.59 48.33 69.925 0.29 0.3375 |0.603664 | 0.485001
0.6 50.39 67.62 | 50.664 67.94 0.2784 0.324 ]0.552539|0.479177
0.7 52.75 65.67 | 52.998 | 65.955 0.2436 | 0.2835 |0.461762|0.431694
0.8 55.15 63.75 | 55.332 63.97 0.1856 0.216 {0.336559 [ 0.338802
0.9 57.56 61.86 | 57.666 | 61.985 0.1044 | 0.1215 | 0.181371] 0.1964
1 60.00 60.00 60 60 0 0 0 0




Corresponding to T433 155
Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 43.75 126.00 | 43.75 126 0 0 0 0
0.1 47.49 121.59 | 47.875 121.9 0.3825 0.315 | 0.80539 [0.259078
0.2 51.32 117.24 52 117.8 0.68 0.56 1.325019 | 0.477653
0.3 55.23 112.97 | 56.125 113.7 0.8925 0.735 [1.615896 | 0.650644
0.4 59.23 108.76 | 60.25 109.6 1.02 0.84 1.7221 10.772343
0.5 63.31 104.63 | 64.375 105.5 1.0625 0.875 [1.678184| 0.83632
0.6 67.48 100.56 68.5 101.4 1.02 0.84 1.511559 | 0.835322
0.7 71.73 96.57 72.625 97.3 0.8925 0.735 [1.244206]0.761145
0.8 76.07 92.64 76.75 93.2 0.68 0.56 {0.893914 | 0.604491
0.9 80.49 88.79 80.875 89.1 0.3825 0.315 0.4752 | 0.35479
1 85.00 85.00 85 85 0 0 0 0
Corresponding to T443
Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 141.75 | 231.00 | 141.75 231 0 0 0 0
0.1 145.69 | 226.09 | 146.075| 226.4 0.3825 0.315 |0.262539 | 0.139328
0.2 149.72 | 221.24 150.4 221.8 0.68 0.56 ]0.454181}0.253119
0.3 153.83 | 216.47 | 154.725| 217.2 0.8925 0.735 |[0.5801760.339547
0.4 158.03 | 211.76 | 159.05 212.6 1.02 0.84 |0.645447 |0.396675
0.5 162.31 207.13 | 163.375 208 1.0625 0.875 |0.654601 | 0.42245
0.6 166.68 | 202.56 167.7 203.4 1.02 0.84 [0.611951[0.414692
0.7 171.13 | 198.07 | 172.025 198.8 0.8925 0.735 |0.521526{ 0.37109
0.8 175.67 | 193.64 | 176.35 194.2 0.68 0.56 ]0.387089|0.289196
0.9 180.29 | 189.29 | 180.675| 189.6 0.3825 0.315 [0.212155|0.166416
1 185.00 | 185.00 185 185 0 0 0 0
Corresponding to T453
Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 187.35 | 289.30 | 187.35 289.3 0 0 0 0
0.1 191.72 | 283.53 | 192.115] 283.87 0.3915 0.342 0.2042 |0.120623
0.2 196.18 | 277.83 | 196.88 | 278.44 0.696 0.608 |0.354769(0.218837
0.3 200.73 | 27221 | 2016845 273.01 0.9135 0.798 |0.455086 [ 0.293154
0.4 205.37 | 266.67 | 206.41 267.58 1.044 0.912 [0.508361{0.341998
0.5 210.09 | 261.20 | 211.175| 262.15 1.0875 0.95 [0.517641 |0.363706
0.6 21490 | 255.81 | 21594 | 256.72 1.044 0.912 10.485816|0.356517
0.7 219.79 | 250.49 | 220.705| 251.29 0.9135 0.798 |0.41562110.318573
0.8 224.77 | 24525 | 22547 | 245.86 0.696 0.608 [0.309644 | 0.247908
0.9 229.84 | 240.09 | 230.235| 240.43 0.3915 0.342 }0.170333|0.142448
1 235.00 | 235.00 235 235 0 0 0 0




Corresponding to T463 156
Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 218.85 | 348.05 | 218.85 | 348.05 0 0 0 0
0.1 224.03 | 340.25 | 224.465 | 340.745 | 0.4365 | 0.4995 |0.194841 | 0.146806
0.2 229.30 | 332.55 | 230.08 | 333.44 0.776 0.888 |0.338415|0.267026
0.3 234.68 | 324,97 | 235.695 | 326.135 | 1.0185 1.1655 |0.434002 | 0.358649
0.4 240.15 | 317.50 | 241.31 318.83 1.164 1.332 |0.484705| 0.41953
0.5 245.71 310.14 | 246.925 | 311.525 | 1.2125 1.3875 |0.493463|0.447382
0.6 251.38 | 302.89 | 252.54 | 304.22 1.164 1.332 ] 0.463051|0.439767
0.7 257.14 | 295.75 | 258.155 | 296,915 | 1.0185 1.1655 | 0.396093 | 0.394084
0.8 262.99 | 288.72 | 263.77 | 289.61 0.776 0.888 |0.295064 | 0.307562
0.9 268.95 | 281.81 | 269.385| 282.305 | 0.4365 0.4995 |0.162299 | 0.17725
1 275.00 | 275.00 275 275 0 0 0 0
Corresponding to T543
Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 48.75 125.40 | 48.75 125.4 0 0 0 0
0.1 52.54 121.69 | 52.875 121.86 0.3375 0.171 |0.642398 | 0.140522
0.2 56.40 118.02 57 118.32 0.6 0.304 1.06383 | 0.257592
0.3 60.34 114.38 | 61.125 114.78 0.7875 0.399 [1.305158[0.348834
0.4 64.35 110.78 65.25 111.24 0.9 0.456 | 1.398601]0.411612
0.5 68.44 107.23 | 69.375 107.7 0.9375 0.475 |1.369863 |0.442994
0.6 72.60 103.70 73.5 104.16 0.9 0.456 | 1.239669 |0.439713
0.7 76.84 100.22 | 77.625 | 100.62 0.7875 0.399 1.02489 | 0.39812
0.8 81.15 96.78 81.75 97.08 0.6 0.304 ]0.739372}0.314127
0.9 85.54 93.37 85.875 93.54 0.3375 0.171 [0.394564 [ 0.183144
1 90.00 90.00 90 90 0 0 0 0
Corresponding to T553
Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 146.75 | 230.40 | 146.75 230.4 0 0 0 0
0.1 150.74 | 226.19 | 151.075 | 226.36 0.3375 0.171 }0.223899| 0.0756
0.2 154.80 | 222.02 155.4 222.32 0.6 0.304 |[0.387597 [ 0.136927
0.3 158.94 | 217.88 | 159.725 | 218.28 0.7875 0.399 [0.4954780.183127
0.4 163.15 | 213.78 | 164.05 | 214.24 0.9 0.456 | 0.55164 [0.213299
0.5 167.44 | 209.73 | 168.375| 210.2 0.9375 0.475 | 0.55991 [ 0.226487
0.6 171.80 | 205.70 172.7 206.16 0.9 0.456 {0.523865|0.221678
0.7 176.24 | 201.72 [ 177.025| 202.12 0.7875 0.399 | 0.44684 | 0.197798
0.8 180.75 | 197.78 | 181.35 | 198.08 0.6 0.304 | 0.33195 {0.153709
0.9 185.34 | 193.87.| 185.675| 194.04 0.3375 0.171 0.1821 |]0.088204
1 190.00 | 190.00 190 190 0 0 0 0




Corresponding to T563 157
Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 161.15 | 261.65 | 161.15 | 261.65 0 0 0 0
0.1 1656.66 | 256.20 | 166.035 | 256.485 | 0.3735 | 0.2835 | 0.22546 |0.110655
0.2 170.26 | 250.82 | 170.92 | 251.32 0.664 0.504 ] 0.390001 | 0.200944
0.3 174.93 | 245.49 | 175.805 | 246.155 | 0.8715 | 0.6615 | 0.498189(0.269457
0.4 179.69 | 240.23 | 180.69 | 240.99 0.996 0.756 ] 0.554276 | 0.314693
0.5 184.54 | 235.04 | 185.575 | 235.825 | 1.0375 | 0.7875 |0.562216 | 0.335053
0.6 189.46 | 229.90 | 190.46 | 230.66 0.996 0.756 |0.525694 ] 0.328833
0.7 194.47 | 224.83 | 195.345 | 225.495 | 0.8715 | 0.6615 |0.448133|0.294218
0.8 199.57 | 219.83 | 200.23 | 220.33 0.664 0.504 {0.3327220.229272
0.9 204.74 | 214.88 | 205.115| 215.165 | 0.3735 | 0.2835 |0.182425|0.131933
1 210.00 | 210.00 210 210 0 0 0 0
Corresponding to T653
Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 35.55 66.35 35.55 66.35 0 0 0 0
0.1 36.89 64.59 | 36.995 | 64.715 0.1035 | 0.1215 |0.280552 | 0.188099
0.2 38.26 62.86 38.44 63.08 0.184 0.216 | 0.48097 |0.343599
0.3 39.64 61.16 | 39.885 | 61.445 0.2415 | 0.2835 |0.609179)0.463527
0.4 41.05 59.49 41.33 59.81 0.276 0.324 {0.672285 | 0.544666
0.5 42 .49 57.84 | 42775 | 58.175 0.2875 | 0.3375 | 0.67667 | 0.583531
0.6 43.94 56.22 4422 56.54 0.276 0.324 |[0.628072|0.576348
0.7 45.42 54.62 | 45.665 | 54.905 0.2415 | 0.2835 |0.531663|0.519026
0.8 46.93 53.05 47 11 53.27 0.184 0.216 |0.392107 | 0.407132
0.9 48.45 51.51 48.555 | 51.635 0.1035 | 0.1215 10.213616 | 0.235861
1 50.00 50.00 50 50 0 0 0 0
Corresponding to 7663
Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 133.556 | 171.35 | 133.55 | 171.35 0 0 0 0
0.1 135.09 | 169.09 | 135.195| 169.215 | 0.1035 | 0.1215 [0.076615 | 0.071854
0.2 136.66 | 166.86 | 136.84 | 167.08 0.184 0.216 [0.134645{0.129447
0.3 138.24 | 164.66 | 138.485 | 164.945 | 0.2415 | 0.2835 [0.174692|0.172171
0.4 138.85 | 162.49 | 140.13 | 162.81 0.276 0.324 {0.1973490.199402
0.5 141.49 | 160.34 | 141.775 | 160.675 | 0.2875 | 0.3375 |0.203198]0.210493
0.6 143.14 | 158.22 | 143.42 | 158.54 0.276 0.324 [0.192813]0.204783
0.7 144.82 | 156.12 | 145.085 | 156.405 | 0.2415 | 0.2835 ]0.166755(0.181589
0.8 146.53 | 154.05 | 146.71 154.27 0.184 0.216 [0.125575]|0.140211
0.9 148.25 | 152.01 | 148.355 | 152.135 | 0.1035 | 0.1215 {0.069814 [ 0.079927
1 150.00 | 150.00 150 150 0 0 0 0




Corresponding to T763 158

Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 44 .42 102.05 | 44.42 102.05 0 0 0 0
0.1 47.28 99.16 | 47.478 | 99.345 0.1998 | 0.1845 }0.422605|0.186062
0.2 50.18 96.31 50.536 96.64 0.3552 0.328 | 0.70784 | 0.34056
0.3 53.13 93.50 53.694 | 93.935 0.4662 0.4305 | 0.877507 | 0.460406
0.4 56.12 90.74 | 56.652 91.23 0.5328 0.492 ]0.949408 | 0.54222
0.5 59.16 88.01 59.71 88.525 0.555 0.5125 |0.938213]0.582304
0.6 62.24 85.33 | 62.768 85.82 0.5328 0.492 |0.856107 | 0.576599
0.7 65.36 82.68 | 65.826 | 83.115 0.4662 0.4305 [0.713282 | 0.520654
0.8 68.53 80.08 | 68.884 80.41 0.3552 0.328 [0.518322 0.40958
0.9 71.74 77.52 71.942 | 77.705 0.1998 0.1845 | 0.278497 [ 0.238002
1 75.00 75.00 75 75 0 0 0 0
Corresponding to T544

Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 67.45 191.65 | 67.45 191.65 0 0 0 0
0.1 73.12 185.02 | 73.705 | 185.485 | 0.5805 | 0.4635 |0.793852|0.250511
0.2 78.93 178.50 79.96 179.32 1.032 0.824 |1.307521 {0.461635
0.3 84.86 172.07 | 86.215 | 173.155 | 1.3545 1.0815 | 1.596149 | 0.62851
0.4 90.92 165.75 92.47 166.99 1.548 1.236 | 1.702558 | 0.745683
0.5 97.11 159.64 | 98.725 | 160.825 | 1.6125 1.2875 | 1.660445 ] 0.80702
0.6 103.43 | 153.42 | 104.98 154.66 1.548 1.236 | 1.496635 | 0.805611
0.7 109.88 | 147.41 | 111.235| 148.495 | 1.3545 1.0815 ]1.232703 | 0.733651
0.8 116.46 | 141.51 | 117.49 | 142.33 1.032 0.824 |0.886156 | 0.582307
0.9 123.16 | 135.70 | 123.745| 136.165 | 0.5805 | 0.4635 |0.471321|0.341558
1 130.00 | 130.00 130 130 0 0 0 0
Corresponding to T554

Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 165.45 | 296.65 | 165.45 | 296.65 0 0 0 0
0.1 171.32 | 289.52 | 171.905| 289.985 | 0.5805 | 0.4635 |0.338831|0.160092
0.2 177.33 | 282.50 | 178.36 | 283.32 1.032 0.824 [0.5819720.291686
0.3 183.46 | 275.57 | 184.815| 276.655 | 1.3545 1.0815 ]0.738306 | 0.392454
0.4 189.72 | 268.75 | 191.27 | 269.99 1.548 1.236 |0.815931] 0.4599
0.5 196.11 262.04 | 197.725 | 263.325 | 1.6125 1.2875 ]10.822232|0.491342
0.6 202.63 | 25542 | 20418 | 256.66 1.548 1.236 |0.763946 | 0.483901
0.7 209.28 | 248.91 | 210.635| 249.995 | 1.3545 1.0815 |0.647217 | 0.434488
0.8 216.06 | 242.51 | 217.09 | 243.33 1.032 0.824 | 0.47765 |0.339785
0.9 222.96 | 236.20 | 223.545 | 236.665 | 0.5805 | 0.4635 |0.26035510.196231
1 230.00 | 230.00 230 230 0 0 0 0




Corresponding to T564 159

Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 179.85 | 327.90 | 179.85 327.9 0 0 0 0
0.1 186.25 | 319.53 | 186.865 | 320.11 0.6165 0.576 10.331009]0.180283
0.2 192.78 | 311.30 | 193.88 | 312.32 1.096 1.024 |0.568512{0.328947
0.3 199.46 | 303.19 | 200.895| 304.53 1.4385 1.344 0.72121 [0.443292
0.4 206.27 | 295.20 | 207.91 296.74 1.644 1.536 |[0.797029 | 0.520318
0.5 213.21 287.35 | 214.925 | 288.95 1.7125 1.6 0.803189 | 0.556812
0.6 220.30 | 27962 | 22194 | 281.16 1.644 1.536 | 0.746269 | 0.549309
0.7 227.52 | 272.03 | 228.955 | 273.37 1.4385 1.344 |0.632262 | 0.49407
0.8 234.87 | 264.56 | 23597 | 265.58 1.096 1.024 |0.466633|0.387064
0.9 242.37 | 257.21 | 242,985 257.79 0.6165 0.576 |0.254365]0.223938
1 250.00 | 250.00 250 250 0 0 0 0
Corresponding to T654

Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 94.95 196.35 94.95 196.35 0 0 0 0
0.1 100.05 191.50 | 100.455 | 191.715 | 0.4095 0.2115 ]0.409314 | 0.110442
0.2 105.23 | 186.70 | 105.96 187.08 0.728 0.376 [0.691805(0.201388
0.3 110.51 181.95 | 111.465 | 182.445 | 0.9555 0.4935 [0.864632|0.271226
0.4 115.88 | 177.25 | 116.97 177.81 1.092 0.564 0.94237 {0.318202
0.5 121.34 172.59 | 122,475 | 173.175 | 1.1375 0.5875 |0.937468 | 0.340407
0.6 126.89 167.98 | 127.98 168.54 1.092 0.564 | 0.860601 |0.335762
0.7 132.53 | 163.41 | 133.485| 163.905 | 0.9555 0.4935 | 0.720972 | 0.301998
0.8 138.26 158.89 | 138.99 159.27 0.728 0.376 [ 0.526537 | 0.236636
0.9 144.09 | 154.42 | 144.495 | 154.635 | 0.4095 0.2115 [0.284206 | 0.136961
1 150.00 150.00 150 150 0 0 0 0
Corresponding to T664

Curvature T.F.N Error % Error
a Left Right Left Right Left Right Left Right
0 192.95 | 301.35 | 192,95 | 301.35 0 0 0 0
0.1 198.25 | 296.00 | 198.655 ] 296.215 | 0.4095 0.2115 | 0.206562 [ 0.071452
0.2 203.63 | 290.70 | 204.36 | 291.08 0.728 0.376 }0.357508 { 0.129341
0.3 209.11 28545 | 210.065 | 285.945 | 0.9555 0.4935 |[0.4569380.172884
0.4 214.68 | 280.25 | 21577 | 280.81 1.092 0.564 |0.508669 | 0.201252
0.5 220.34 | 275.09 | 221.475| 275.675 | 1.1375 | 0.5875 |0.516253[0.213568
0.6 226.09 | 269.98 | 227.18 | 270.54 1.092 0.564 |0.482998 | 0.208907
0.7 231.93 | 264.91 | 232.885) 265.405 | 0.9555 0.4935 {0.411979]0.186289
0.8 237.86 | 259.89 | 238.59 | 260.27 0.728 0.376 0.30606 | 0.144674
0.9 243.89 | 254.92 | 244295 255.135 | 0.4095 | 0.2115 [0.167907 | 0.082966
1 250.00 | 250.00 250 250 0 0 0 0




Corresponding to T764

160

Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 56.30 132.65 56.3 132.65 0 0 0 0
0.1 59.91 128.60 | 60.17 | 128.885 0.261 0.2835 |0.435661 | 0.220448
0.2 63.58 124.62 | 64.04 125.12 0.464 0.504 {0.729835 |0.404442
0.3 67.30 120.69 | 67.91 121.355 0.609 0.6615 | 0.90489 | 0.548083
0.4 71.08 116.83 | 71.78 117.59 0.696 0.756 }0.979123[0.647072
0.5 74.93 113.04 | 75.65 | 113.825 0.725 0.7875 [0.967634 | 0.696671
0.6 78.82 109.30 | 79.52 110.06 0.696 0.756 | 0.88298 |0.691649
0.7 82.78 105.63 | 83.39 | 106.295 0.609 0.6615 | 0.735676 | 0.626222
0.8 86.80 102.03 | 87.26 102.53 0.464 0.504 |[0.534587 {0.493992
0.9 90.87 98.48 91.13 98.765 0.261 0.2835 |0.287227|0.287871
1 95.00 95.00 95 95 0 0 0 0
Corresponding to T655

Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 120.79 | 276.35 | 120.79 | 276.35 0 0 0 0
0.1 128.04 | 268.19 | 128.711 | 268.715 | 0.6741 0.5265 | 0.526489[0.196317
0.2 135.43 | 260.14 | 136.632 | 261.08 1.1984 0.936 |0.884862 | 0.359801
0.3 142.98 | 252.22 | 144.553 | 253.445 | 1.5729 1.2285 |1.100083 | 0.487082
0.4 150.68 | 244.41 | 152.474 | 245 .81 1.7976 1.404 1.19302 | 0.574454
0.5 168.62 | 236.71 | 160.395 | 238.175 | 1.8725 1.4625 | 1.18122 | 0.617838
0.6 166.52 | 229.14 | 168.316 | 230.54 1.7976 1.404 1.07952 | 0.612737
0.7 174.66 | 221.68 | 176.237 | 222.905 | 1.5729 1.2285 ]0.900529 ] 0.554186
0.8 182.96 | 214.33 | 184.158 | 215.27 1.1984 0.936 |[0.655008 | 0.436702
0.9 191.40 | 207.11 | 192.079 | 207.635 | 0.6741 0.5265 |0.352185|0.254215
1 200.00 | 200.00 200 200 0 0 0 0
Corresponding to T665

Curvature T.F.N Error % Error
o Left Right Left Right Left Right Left Right
0 218.79 | 381.35 | 218.79 | 381.35 0 0 0 0
0.1 226.24 | 372.69 | 226.911 | 373.215 | 0.6741 0.5265 |0.297962|0.141271
0.2 233.83 | 364.14 | 235.032 | 365.08 1.1984 0.936 |0.512501 | 0.257041
0.3 241.58 | 355.72 | 243.153 | 356.945 | 1.5729 1.2285 |0.651088 | 0.345359
0.4 249.48 | 347.41 | 251.274 | 348.81 1.7976 1.404 ]0.720549|0.404138
0.5 257.52 | 339.21 ] 259.395 | 340.675 | 1.8725 1.4625 |0.727121]0.431146
0.6 265.72 | 331.14 | 267.516 | 332.54 1.7976 1.404 |0.676506 | 0.423995
0.7 274.06 | 323.18 | 275.637 | 324.405 | 1.5729 1.2285 0.573917 1 0.380133
0.8 282.56 | 315.33 | 283.758 | 316.27 1.1984 0.936 |[0.424123|0.296828
0.9 291.20 | 307.61 | 291.879 | 308.135 | 0.6741 0.5265 |0.2314860.171159
1 300.00 | 300.00 300 300 0 0 0 0




Corresponding to T765 161
Curvature T.F.N Error % Error

o Left Right Left Right Left Right Left Right
0 126.95 | 296.45 | 126.95 | 296.45 0 0 0 0
0.1 135.58 | 288.40 | 136.255 | 288.805 | 0.6795 | 0.4005 | 0.501197 | 0.138867
0.2 144.35 | 280.45 | 14556 | 281.16 1.208 0.712 ] 0.836843 | 0.25388
0.3 153.28 | 272.58 | 154.865 | 273.515 | 1.5855 | 0.9345 |1.034385]0.342835
0.4 162.36 | 264.80 | 164.17 | 265.87 1.812 1.068 |1.116052 | 0.40332
0.5 171.59 | 257.11 | 173.475| 258.225 | 1.8875 1.1125 |1.100022 | 0.43269
0.6 180.97 | 249.51 | 182.78 | 250.58 1.812 1.068 | 1.00128210.428036
0.7 190.50 | 242.00 | 192.085 | 242.935 | 1.5855 0.9345 [0.832286 | 0.386156
0.8 200.18 | 234.58 | 201.39 | 235.29 1.208 0.712 ]0.603451 | 0.303524
0.9 210.02 | 227.24 ] 210.695| 227.645 | 0.6795 | 0.4005 |0.323548|0.176242
1 220.00 | 220.00 220 220 0 0 0 0

Corresponding to T766

Curvature T.F.N Error % Error

o Left Right Left Right Left Right Left Right
0 157.04 | 392.70 | 157.04 392.7 0 0 0 0
0.1 168.32 | 380.65 | 169.336 | 381.43 1.0116 0.783 [0.600982 [ 0.205702
0.2 179.83 | 368.77 | 181.632| 370.16 1.7984 1.392 | 1.000036 | 0.377473
0.3 191.57 | 357.06 | 193.928 | 358.89 2.3604 1.827 1.23215 10.511674
0.4 203.53 | 345,53 | 206.224 | 347.62 2.6976 2.088 1.32543 | 0.604286
0.5 215.71 334.18 | 218.52 | 336.35 2.81 2.175 |1.302675 | 0.650857
0.6 228.12 | 322.99 | 230.816 ] 325.08 2.6976 2.088 |1.182544 | 0.646456
0.7 240.75 | 311.98 | 243.112 | 313.81 2.3604 1.827 | 0.98043 | 0.585609
0.8 253.61 301.15 | 255.408 | 302.54 1.7984 1.392 |0.709121]0.462231
0.9 266.69 | 290.49 | 267.704 | 291.27 1.0116 0.783 }0.379313 [ 0.269547
1 280.00 | 280.00 280 280 0 0 0 0




APPENDIX 3

DRP with Variable Demand Rate and No Backorders
allowed under Fuzzy Information

(Membership Function Tables and Graphs)

(PAGE 162- 191)



Interval of Confidence for0 <o <1

Corresponding to I;;

o X = 0.005a + 123.995 o X = -30.0000 + 154.00
0 123.995 1 124.00
0.1 123.996 0.9 127.00
0.2 123.996 0.8 130.00
0.3 123.997 0.7 133.00
0.4 123.997 0.6 136.00
0.5 123.998 0.5 139.00
0.6 123.998 0.4 142.00
0.7 123.999 0.3 145.00
0.8 123.999 0.2 148.00
0.9 124.000 0.1 151.00
1 124.000 0.0 154.00
Corresponding to I,
o X = 00100 + 43.990 (0 X = -40.000 + 84.00
0 43.990 1.0 44.00
0.1 43.991 0.9 48.00
0.2 43.992 0.8 52.00
0.3 43.993 0.7 56.00
0.4 43.994 0.6 60.00
0.5 43.995 0.5 64.00
0.6 43.996 0.4 68.00
0.7 43.997 0.3 72.00
0.8 43.998 0.2 76.00
0.9 43.999 0.1 80.00
1 44.000 0.0 84.00
Corresponding to I3
o X = 25.020 + 438.985 o X = -5b2 o + 516.01
0 438.985 1.0 464.000
0.1 441.487 0.9 469.201
0.2 443.988 0.8 474.401
0.3 446.490 0.7 479.602
0.4 448.991 0.6 484.802
0.5 451.493 0.5 490.003
0.6 453.994 0.4 495.203
0.7 456.496 0.3 500.404
0.8 458.997 0.2 505.604
0.9 461.499 0.1 510.805
1 464.000 0.0 516.005
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Corresponding to I;4

o X = 25.020 oo + 368.980 o X = -62.0050 + 456.01
0 368.980 1.0 394.000
0.1 371.482 0.9 400.201
0.2 373.984 0.8 406.401
0.3 376.486 0.7 412.602
0.4 378.988 0.6 418.802
0.5 381.490 0.5 425.003
0.6 383.992 0.4 431.203
0.7 386.494 0.3 437.404
0.8 388.996 0.2 443.604
0.9 391.498 0.1 449.805
1 394.000 0.0 456.005
Corresponding to I;s
[0 X = 250250 + 288.975 o X = -80.005 0 + 394.01
0 288.975 1.0 314.000
0.1 291.478 0.9 322.001
0.2 293.980 0.8 330.001
0.3 296.483 0.7 338.002
0.4 298.985 0.6 346.002
0.5 301.488 0.5 354.003
0.6 303.990 0.4 362.003
0.7 306.493 0.3 370.004
0.8 308.995 0.2 378.004
0.9 311.498 0.1 386.005
1 314.000 0.0 394.005
Corresponding to I;4
o X = 25030 a0 + 198.970 o X = -100.01 o + 324.01
0 198.970 1.0 224.000
0.1 201.473 0.9 234.001
0.2 203.976 0.8 244.001
0.3 206.479 0.7 254.002
0.4 208.982 0.6 264.002
0.5 211.485 0.5 274.003
0.6 213.988 0.4 284.003
0.7 216.491 0.3 294.004
0.8 218.994 0.2 304.004
0.9 221.497 0.1 314.005
1 224.000 0.0 324.005
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Corresponding to I

o X = 25,035 0 + 108.965 o X = 12501 o + 259.01
0 108.965 1.0 134.000
0.1 111.469 0.9 146.501
0.2 113.972 0.8 159.001
0.3 116.476 0.7 171.502
0.4 118.979 0.6 184.002
0.5 121.483 0.5 196.503
0.6 123.986 0.4 209.003
0.7 126.490 0.3 221.504
0.8 128.993 0.2 234.004
0.9 131.497 0.1 246.505
1 134.000 0.0 259.005
Corresponding to Ig
o X = 25040 o0 + 18.960 o X = -14501 o0 + 189.01
0 18.960 1 44.000
0.1 21.464 0.9 58.501
0.2 23.968 0.8 73.001
0.3 26.472 0.7 87.502
0.4 28.976 0.6 102.002
0.5 31.480 0.5 116.503
0.6 33.984 0.4 131.003
0.7 36.488 0.3 145.504
0.8 38.992 0.2 160.004
0.9 41.496 0.1 174.505
1 44.000 0.0 189.005
Corresponding to I,

o X = 00050 + 69.995 o X = -15.000 00 + 85.00
0 69.995 1 70.000
0.1 69.996 0.9 71.500
0.2 69.996 0.8 73.000
0.3 69.997 0.7 74.500
0.4 69.997 0.6 76.000
0.5 69.998 0.5 77.500
0.6 69.998 04 79.000
0.7 69.999 0.3 80.500
0.8 69.999 0.2 82.000
0.9 70.000 0.1 83.500
1 70.000 0.0 85.000
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Corresponding to I,,

o X = 00100 + 39.990 o X = -35.000 00 + 75.00
0 39.990 1 40.000
0.1 39.991 0.9 43.500
0.2 39.992 0.8 47.000
0.3 39.993 0.7 50.500
0.4 39.994 0.6 54.000
0.5 39.995 0.5 57.500
0.6 39.996 0.4 61.000
0.7 39.997 0.3 64.500
0.8 39.998 0.2 68.000
0.9 39.999 0.1 71.500
1 40.000 0.0 75.000
Corresponding to I3
o X = 00150 + 9.985 o X = -47.000 0 + 57.00
0 9.985 1 10.000
0.1 9.987 0.9 14.700
0.2 9.988 0.8 19.400
0.3 9.990 0.7 24100
0.4 9.991 0.6 28.800
0.5 9.993 0.5 33.500
0.6 9.994 0.4 38.200
0.7 9.996 0.3 42.900
0.8 9.997 0.2 47.600
0.9 9.999 0.1 52.300
1 10.000 0.0 57.000
Corresponding to I,

o X = 50.020 o0 + 139.980 o X = -57.005 a0 + 247.01
0 139.980 1 190.000
0.1 144.982 0.9 195.701
0.2 149.984 0.8 201.401
0.3 154.986 0.7 207.102
0.4 159.988 0.6 212.802
0.5 164.990 0.5 218.503
0.6 169.992 0.4 224.203
0.7 174.994 0.3 229.904
0.8 179.996 0.2 235.604
0.9 184.998 0.1 241.305
1 190.000 0.0 247.005
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Corresponding to s

o X = 50.025 a0 + 109.975 o X = -67.005 0 + 227.01

0 109.975 1 160.000
0.1 114.978 0.9 166.701
0.2 119.980 0.8 173.401
0.3 124.983 0.7 180.102
0.4 129.985 0.6 186.802
0.5 134.988 0.5 193.503
0.6 139.990 0.4 200.203
0.7 144.993 0.3 206.904
0.8 149.995 0.2 213.604
0.9 154.998 0.1 220.305

1 160.000 0.0 227.005

Corresponding to I

o X = 50030 a0 + 74.970 o X = -82005a + 207.01

0 74.970 1 125.000
0.1 79.973 0.9 133.201
0.2 84.976 0.8 141.401
0.3 89.979 0.7 149.602
04 94.982 0.6 157.802
0.5 99.985 0.5 166.003
0.6 104.988 0.4 174.203
0.7 109.991 0.3 182.404
0.8 114.994 0.2 190.604
0.9 119.997 0.1 198.805

i 125.000 0.0 207.005

Corresponding to I,

o X = 50.035 o + 39.965 o X = -10201a + 192.01

0 39.965 1 90.000
0.1 44,969 0.9 100.201
0.2 49.972 0.8 110.401
0.3 54.976 0.7 120.602
0.4 59.979 0.6 130.802
0.5 64.983 0.5 141.003
0.6 69.986 0.4 151.203
0.7 74.990 0.3 161.404
0.8 79.993 0.2 171.604
0.9 84.997 0.1 181.805

1 90.000 0.0 192.005
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Corresponding to g

o X = 50.040 a0 + 4.960 o X = 11701 a0 + 172.01
0 4,960 1 55.000
0.1 9.964 0.9 66.701
0.2 14.968 0.8 78.401
0.3 19.972 0.7 90.102
04 24.976 0.6 101.802
0.5 29.980 0.5 113.503
0.6 34.984 0.4 125.203
0.7 39.988 0.3 136.904
0.8 44,992 0.2 148.604
09 49.996 0.1 160.305
1 55.000 0.0 172.005
Corresponding to I,
o X = 0.0050 + 479.995 o X = -5000a + 530.00
0 479.995 1 480.000
0.1 479.996 0.9 485.000
0.2 479.996 0.8 490.000
0.3 479.997 0.7 495.000
0.4 479.997 0.6 500.000
0.5 479.998 0.5 505.000
0.6 479.998 0.4 510.000
0.7 479.999 0.3 515.000
0.8 479.999 0.2 520.000
0.9 480.000 0.1 525.000
1 480.000 0.0 530.000
Corresponding to I3,

o X = 0010 o + 359.990 o X = -80.000 o + 440.00
0 359.990 1 360.000
0.1 359.991 09 368.000
0.2 359.992 0.8 376.000
0.3 359.993 0.7 384.000
0.4 359.994 0.6 362.000
0.5 359.995 0.5 400.000
0.6 359.996 0.4 408.000
0.7 359.997 0.3 416.000
0.8 359.998 0.2 424.000
0.9 359.999 0.1 432.000
1 360.000 0.0 440.000
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Corresponding to I3

o X = 00150 + 239.985 o -105.00 o0 + 345.00
0 239.985 1 240.000
0.1 239.987 0.9 250.500
0.2 239.988 0.8 261.000
0.3 239.990 0.7 271.500
0.4 239.991 0.6 282.000
0.5 239.993 0.5 292.500
0.6 239.994 0.4 303.000
0.7 239.996 0.3 313.500
0.8 239.997 0.2 324.000
0.9 239.999 0.1 334.500
1 240.000 0.0 345.000
Corresponding to 14
o X = 0.020 . + 139.980 o -130.00 oo + 270.00
0 139.980 1 140.000
0.1 139.982 0.9 153.000
0.2 139.984 0.8 166.000
0.3 139.986 0.7 179.000
0.4 139.988 0.6 192.000
0.5 139.990 0.5 205.000
0.6 139.992 0.4 218.000
0.7 139.994 0.3 231.000
0.8 139.996 0.2 244.000
0.9 139.998 0.1 257.000
1 140.000 0.0 270.000
Corresponding to I35

o X = 0.025a o X = -170.00 o0 +
0 19.975 1 20.000
0.1 19.978 0.9 37.000
0.2 19.980 0.8 54.000
0.3 19.983 0.7 71.000
0.4 19.985 0.6 88.000
0.5 19.988 0.5 105.000
0.6 19.990 0.4 122.000
0.7 19.993 0.3 139.000
0.8 19.995 0.2 156.000
0.9 19.998 0.1 173.000

1 20.000 0.0 190.000

168



Corresponding to 154

o X = 150.03 a0 + 429.970 o X= 210 o + 790.01
0 429.970 1 580.000
0.1 444,973 0.9 601.001
0.2 459.976 0.8 622.001
0.3 474.979 0.7 643.002
0.4 489.982 0.6 664.002
0.5 504.985 0.5 685.003
0.6 519.988 0.4 706.003
0.7 534.991 0.3 727.004
0.8 549.994 0.2 748.004
0.9 564.997 0.1 769.005
1 580.000 0.0 790.005
Corresponding to I35
o X = 150.04 oo + 289.965 o X = -240.01 o + 680.01
0 289.965 1 440.000
0.1 304.968 0.9 464.001
0.2 319.972 0.8 488.001
0.3 334.976 0.7 512.002
0.4 349.979 0.6 536.002
0.5 364.983 0.5 560.003
0.6 379.986 0.4 584.003
0.7 394.990 0.3 608.004
0.8 409.993 0.2 632.004
0.9 424.997 0.1 656.005
1 440.000 0.0 680.005
Corresponding to I3g
o X = 150.04 o + 149.960 [0 X = -290.01 oo + 590.01
0 149.960 1 300.000
0.1 164.964 0.9 329.001
0.2 179.968 0.8 358.001
0.3 194.972 0.7 387.002
0.4 209.976 0.6 416.002
0.5 224.980 0.5 445.003
0.6 239.984 0.4 474.003
0.7 254.988 0.3 503.004
0.8 269.992 0.2 532.004
0.9 284.996 0.1 561.005
1 300.000 0.0 580.005
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Corresponding to O11 & Ry;

o X = 25000 a + 475.000 o X = -0.005a + 500.01
0 475.000 1 500.000
0.1 477.500 0.9 500.001
0.2 480.000 0.8 500.001
0.3 482.500 0.7 500.002
0.4 485.000 0.6 500.002
0.5 487.500 0.5 500.003
0.6 490.000 0.4 500.003
0.7 492.500 0.3 500.004
0.8 495.000 0.2 500.004
0.9 497.500 0.1 500.005
1 500.000 0.0 500.005
Corresponding to 021 & Ry,
o X = 50.000 o + 150.000 o X = -0.005a + 200.01
0 150.000 1 200.000
0.1 155.000 0.9 200.001
0.2 160.000 0.8 200.001
03 165.000 0.7 200.002
04 170.000 0.6 200.002
0.5 175.000 0.5 200.003
0.6 180.000 04 200.003
0.7 185.000 0.3 200.004
0.8 190.000 0.2 200.004
0.9 195.000 0.1 200.005
1 200.000 0.0 200.005
Corresponding to 034 & R
o X = 150.00 oo + 550.000 o X = -0.001a + 700.00
0 550.000 1 700.000
0.1 565.000 0.9 700.000
02 580.000 0.8 700.000
0.3 595.000 0.7 700.000
0.4 610.000 0.6 700.000
0.5 625.000 0.5 700.001
0.6 640.000 04 700.001
0.7 655.000 0.3 700.001
0.8 670.000 0.2 700.001
0.9 685.000 0.1 700.001
1 700.000 0.0 700.001
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Corresponding to D,

o X = 90.000 oo + 660.000 o X = -0.015a + 750.02
0 660.000 1 750.000
0.1 669.000 0.9 750.002
0.2 678.000 0.8 750.003
0.3 687.000 0.7 750.005
0.4 696.000 0.6 750.006
0.5 705.000 0.5 750.008
0.6 714.000 0.4 750.009
0.7 723.000 0.3 750.011
0.8 732.000 0.2 750.012
0.9 741.000 0.1 750.014
1 750.000 0.0 750.015
Corresponding to D,
o X = 20.000 o + 30.000 o X = -0.005 a0 + 50.01
0 30.000 1.0 50.000
0.1 32.000 0.9 50.001
0.2 34.000 0.8 50.001
0.3 36.000 0.7 50.002
0.4 38.000 0.6 50.002
0.5 40.000 0.5 50.003
0.6 42.000 0.4 50.003
0.7 44.000 0.3 50.004
0.8 46.000 0.2 50.004
0.9 48.000 0.1 50.005
1 50.000 0.0 50.005
Corresponding to D,

o X = 10.000 a0 + 40.000 o X = -0.005 a0 + 50.01
0 40.000 1.0 50.000
0.1 41.000 0.9 50.001
0.2 42.000 0.8 50.001
0.3 43.000 0.7 50.002
0.4 44.000 0.6 50.002
0.5 45.000 0.5 50.003
0.6 46.000 0.4 50.003
0.7 47.000 0.3 50.004
0.8 48.000 0.2 50.004
0.9 49.000 0.1 50.005
1 50.000 0.0 50.005
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Corresponding to D4
o X = 163.00 a0 + 587.000 o X = -0.010 a0 + 750.01
0 587.000 1.0 750.000
0.1 603.300 0.9 750.001
02 619.600 0.8 750.002
0.3 635.900 0.7 750.003
0.4 652.200 0.6 750.004
0.5 668.500 0.5 750.005
0.6 684.800 0.4 750.006
0.7 701.100 0.3 750.007
0.8 717.400 0.2 750.008
09 733.700 0.1 750.009
1 750.000 0.0 750.010

Corresponding to D5
o X = 10.000 o + 40.000 o X = -0.005 oo + 50.01
0 40.000 1.0 50.000
0.1 41.000 0.9 50.001
0.2 42.000 0.8 50.001
0.3 43.000 0.7 50.002
04 44000 0.6 50.002
0.5 45.000 0.5 50.003
0.6 46.000 04 50.003
0.7 47.000 0.3 50.004
0.8 48.000 0.2 50.004
0.9 49.000 0.1 50.005
1 50.000 0.0 50.005

Corresponding to D
o X = 20.000 o + 30.000 o X = -0.005 a + 50.01
0 30.000 1.0 50.000
0.1 32.000 09 50.001
0.2 34.000 0.8 50.001
03 36.000 0.7 50.002
0.4 38.000 0.6 50.002
0.5 40.000 0.5 50.003
0.6 42.000 04 50.003
0.7 44.000 0.3 50.004
0.8 46.000 0.2 50.004
0.9 48.000 0.1 50.005
1 50.000 0.0 50.005

172



Corresponding to D,

o X = 15.000 a0 + 35.000 o X = -0.005 a + 50.01
0 35.000 1.0 50.000
0.1 36.500 0.9 50.001
0.2 38.000 0.8 50.001
0.3 39.500 0.7 50.002
0.4 41.000 0.6 50.002
0.5 42.500 0.5 50.003
0.6 44.000 0.4 50.003
0.7 45.500 0.3 50.004
0.8 47.000 0.2 50.004
0.9 48.500 0.1 50.005
1 50.000 0.0 50.005
Corresponding to D.g
o X = 25.000 o0 + 25.000 o X = -0.005 a + 50.01
0 25.000 1.0 50.000
0.1 27.500 0.9 50.001
0.2 30.000 0.8 50.001
0.3 32.500 0.7 50.002
04 35.000 0.6 50.002
0.5 37.500 0.5 50.003
0.6 40.000 04 50.003
0.7 42.500 0.3 50.004
0.8 45.000 0.2 50.004
0.9 47.500 0.1 50.005
1 50.000 0.0 50.005
Corresponding to I
o X = 00150 + 199.985 o X = -80.00 @ + 290.00
0 199.985 1 200.000
0.1 199.987 0.9 209.000
0.2 199.988 0.8 218.000
0.3 199.990 0.7 227.000
0.4 199.991 0.6 236.000
0.5 199.993 0.5 245.000
0.6 199.994 0.4 254.000
0.7 199.996 0.3 263.000
0.8 199.997 0.2 272.000
0.9 199.999 0.1 281.000
1 200.000 0.0 290.000
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Corresponding to I,

o X = 0.020 00 + 149.980 o X = -110.0 o + 260.00
0 149.980 1 150.000
0.1 149.982 0.9 161.000
0.2 149.984 0.8 172.000
0.3 149.986 0.7 183.000
0.4 149.988 0.6 194.000
0.5 149.990 0.5 205.000
0.6 149.992 04 216.000
0.7 149.994 0.3 227.000
0.8 149,996 0.2 238.000
09 149.998 0.1 249.000
1 150.000 0.0 260.000
Corresponding to I;
o X = 00250 + 99.975 [0 X = -1200 o + 220.00
0 99.975 1 100.000
0.1 99.978 0.9 112.000
0.2 99.980 0.8 124.000
0.3 99.983 0.7 136.000
04 99.985 0.6 148.000
0.5 99.988 0.5 160.000
0.6 99.990 0.4 172.000
0.7 99.993 0.3 184.000
0.8 99.995 0.2 196.000
0.9 99.998 0.1 208.000
1 100.000 0.0 220.000
Corresponding to I .4

o X = 100.04 o + 249.965 o X = 28300 + 633.01
0 249.965 1 350.000
0.1 259.969 09 378.301
0.2 269.972 0.8 406.601
0.3 279.976 0.7 434.902
04 289.979 0.6 463.202
0.5 299,983 0.5 491.503
0.6 309.986 04 519.803
0.7 319.990 0.3 548.104
0.8 329.993 0.2 576.404
0.9 339.997 0.1 604.705
1 350.000 0.0 633.005
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Corresponding to I .5

o X = 100.04 o + 199.960 o X = -293.0 o + 593.01
0 199.960 1 300.000
0.1 209.964 0.9 329.301
0.2 219.968 0.8 358.601
03 229.972 0.7 387.902
04 239.976 0.6 417.202
0.5 249,980 0.5 446.503
0.6 259.984 0.4 475.803
0.7 269.988 0.3 505.104
0.8 279.992 0.2 534.404
09 289.996 0.1 563.705
1 300.000 0.0 593.005
Corresponding to I ¢
o X = 100.05 ¢ + 149,955 o X = -313.0 o + 563.01
0 149.955 1 250.000
0.1 159.960 0.9 281.301
0.2 169.964 0.8 312.601
03 179.969 0.7 343.902
04 189.973 0.6 375.202
0.5 199.978 0.5 406.503
0.6 209.982 04 437.803
0.7 219.987 0.3 469.104
0.8 229.991 0.2 500.404
0.9 239.996 0.1 531.705
1 250.000 0.0 563.005
Corresponding to I 5

o X = 100.05 o + 99.950 o X = -328.0 a + 528.01
0 99.950 1 200.000
0.1 109.955 0.9 232.801
0.2 119.960 0.8 265.601
0.3 129.965 0.7 298.402
04 139.970 0.6 331.202
0.5 149.975 0.5 364.003
0.6 159.980 04 396.803
0.7 169.985 03 429.604
0.8 179.990 0.2 462.404
0.9 189.995 0.1 495.205
1 200.000 0.0 528.005
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Corresponding to I g

o X = 100.06 o0 + 49,945 a X = -353.0 o + 503.01
0 49.945 1 150.000
0.1 59.951 09 185.301
0.2 69.956 0.8 220.601
03 79.962 0.7 255.902
04 89.967 0.6 291.202
0.5 99.973 0.5 326.503
0.6 109.978 04 361.803
0.7 119.984 03 397.104
0.8 129.989 0.2 432.404
0.9 139.995 0.1 467.705
1 150.000 0.0 503.005
Corresponding to R4
o X = 100.00 o + 900.000 o X = -0.005 oo + 1000.01
0 900.000 1 1000.000
0.1 910.000 0.9 1000.001
0.2 920.000 0.8 1000.001
0.3 930.000 0.7 1000.002
04 940.000 0.6 1000.002
0.5 950.000 0.5 1000.003
0.6 960.000 04 1000.003
0.7 970.000 0.3 1000.004
0.8 980.000 0.2 1000.004
0.9 990.000 0.1 1000.005
1 1000.000 0.0 1000.005
Corresponding to O,
o X = 100.00 o« + 900.000 o X = -0.005 oo + 1000.01
0 900.000 1 1000.000
0.1 910.000 0.9 1000.001
0.2 920.000 0.8 1000.001
03 930.000 0.7 1000.002
04 940.000 0.6 1000.002
0.5 950.000 0.5 1000.003
0.6 960.000 04 1000.003
0.7 970.000 0.3 1000.004
0.8 980.000 0.2 1000.004
0.9 990.000 0.1 1000.005
1 1000.000 0.0 1000.005
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Graph of Membership Functions for lkj's
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Graph of Membership Functions for Dcj's
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