
Mathematical Assessment of the Role of Pap Screening on

HPV Transmission Dynamics

by

Ali Javame

A Thesis submitted to the Faculty of Graduate Studies of

The University of Manitoba

in partial fulfilment of the requirements of the degree of

MASTER OF SCIENCE

Department of Mathematics

University of Manitoba

Winnipeg

Copyright c© 2014 by Ali Javame



Abstract

Human papillomavirus (HPV), a major sexually-transmitted disease, causes cervical cancer,

in addition to numerous other cancers in females and males. This thesis uses mathematical

modeling, theory and simulations to study the transmission dynamics of HPV, and associ-

ated dysplasia, in a community. A new deterministic model is designed and used to assess

the population-level impact of Pap cytology screening on the transmission dynamics of the

disease in a community. The model is rigorously analyzed for its dynamical features, vis-

a-vis determining the conditions for the effective control (or elimination) and persistence

of the disease. Furthermore, the effect of uncertainties in the estimates of the parameter

values used in the numerical simulations of the model is accounted for via uncertainty and

sensitivity analysis. Simulations of the model show that Pap screening dramatically reduces

the incidence of cervical cancer in the community.
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Chapter 1

Introduction

This chapter provides a brief review of some of the main biological and epidemiological

features of HPV disease, and the associated cancers it causes.

1.1 Human Papillomavirus (HPV)

Human papillomavirus (HPV), a major sexually-transmitted disease, is known to be the

causative agent of cervical cancer [1, 14] (in addition to causing many other cancers in both

females and males [6, 14, 62, 63]). Each year, about 500,000 women develop cervical cancer

(with more than half of those women dying of the disease) globally [4, 62]. In the year

2011, for instance, about 12,000 cervical cancer cases were recorded in the USA (with about

4,000 fatalities) [4]. It is estimated that the annual direct medical costs associated with the

prevention and treatment of anogenital warts and cervical HPV-related disease in the US

was at least US$4 billion in 2005 [42]. Figure 1.1 depicts the global cervical cancer incidence.

HPV affects people of all ages, starting in early childhood for some (Figure 1.2) [36, 70].

About 75% of sexually-active males and females will have an HPV infection at some point in

their lifetime [14, 19, 61]. There are over 150 related HPV types, categorized as low-risk (such

as, HPV-6 and HPV-11 [14, 28]) and high-risk (such as, HPV-16, HPV-18, HPV-31, HPV-

33, HPV-35, HPV-39, HPV-45, HPV-51, HPV-52, HPV-56, HPV-58 and HPV-59 [14, 29])

1



Figure 1.1: Worldwide cervical cancer incidence [8].

types (based on the degree of risk of developing cancer after HPV infection). While the

low-risk HPV types do not cause cancers (but cause genital warts) [14, 61, 85], the high-risk

HPV types cause various cancers, such as cervical, anal, vulvar, vaginal, and penile cancers

[14, 61, 65, 85]. For instance, the high-risk HPV-16 and HPV-18 types cause about 70%

of cervical cancers [14, 61] (other high-risk HPV types, such as HPV-31, HPV-33, HPV-35,

HPV-39, HPV-45, HPV-51, HPV-52, HPV-56, HPV-58 and HPV-59, also cause cervical

cancer [14, 61, 65]). Furthermore, HPV-16 and HPV-18 are known to cause about half of

vaginal, vulvar, penile cancer and, most recently, cancer of oropharynx [14, 61, 65]. Risk

factors for HPV infection include having multiple sexual partners, unprotected sex, weakened

immune system and tobacco use [14, 61, 85].

HPV targets epithelial basal cells, and HPV-associated diseases are transmitted via skin-

to-skin contact [36]. It is known that 70%−90% of HPV cases clear their infections naturally

within two years [1, 14, 20]. In women who do not clear their HPV infection (typically

2



Figure 1.2: HPV prevalence by age. HPV prevalence exists at all ages [36].

those infected with the high-risk HPV types [6, 14, 83]), pre-cancerous lesions (cervical

intraepithelial neoplasia (CIN)) may persist for many years and, consequently, progress to

cervical cancer [14, 55, 62, 63]. Furthermore, high-risk HPV types cause pre-cancerous

intraepithelial neoplasia in males (INM), resulting in various cancers (such as anal and penile

cancers) [5, 27]. Figure 1.3 depicts the natural history of HPV infection and the various

dysplasia stages.
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Figure 1.3: Progression and regression of HPV for various stages of cervical dysplasia and
cervical cancer [44].

1.2 Control Strategies

1.2.1 Pap screening, HPV testing and treatment

Pap screening has played an essential role in the early detection of CIN and, consequently,

reduce cervical cancer incidence and mortality [55, 63]. For instance, it is known that regular

Pap screening decreases the incidence of cervical cancer by 70% over the last five decades [35,

54]. Pap screening detects abnormal cervical cells, including pre-cancerous cervical lesions

and early cervical cancers [14, 23, 63]. Once detected, pre-cancerous lesions can be treated

successfully (using, for instance, loop electrosurgical excision procedure, which involves the

removal of a cancerous tissue using a wire loop, or using laser therapy [15, 63, 69]). Cervical

cancer screening consists of two screening tests, namely cytology-based screening (known as

the Pap test (or Pap smear or Pap cytology), and HPV testing [63].

It has recently been recommended that women have their Pap test at the age of 21 [63]

(and such test should be administered every 3 years for women of age 21 through 29 [63];

4



Age ACS ACOG USPSTF

Every two years with a
21 to 29 liquid-based test or Annual Pap tests Pap tests at least every

annually with a three years
conventional test

Every two or three Every two or three
Over 30 years if you have had years if you have had Pap tests at least every

three negative tests in three negative tests in three years
a row a row

Table 1.1: Recommendations by American Cancer Society (ACS), the American College
of Obstetricians and Gynecologists (ACOG) and the U.S. Preventive Services Task Force
(USPSTF) regarding when a woman should have a Pap smear [56].

women of age 30 through 65 can be screened every 5 years with Pap and HPV co-testing or

every 3 years with a Pap test alone [20, 63]) (Table 1.1). Figure 1.4 depicts Pap screening

process for females. While the major goal of the screening is to detect abnormal cells that

may develop into cancer if left untreated, HPV testing is used to check for the presence of

DNA or RNA of high-risk HPV types in cervical cells [63]. Pap screening is not administrated

for males.

1.2.2 Vaccination

Two anti-HPV vaccines, namely Cervarix R©(GlaxoSmithKline) and Gardasil R©(Merck Inc.),

have been approved, by the U.S. Food and Drug Administration (in 2005 and 2009, respec-

tively), for use to protect new sexually-active males and females against some of the most

common HPV types [45, 62, 64, 82]. The vaccines are implemented via a three-dose strat-

egy [14, 29, 62]. These licensed vaccines are very efficacious (with efficacy of at least 90%)

[26, 28, 82]. Furthermore, while Gardasil costs about US $400 for the three required doses

[54, 77], Cervarix costs about US $300 for the three doses [59]. Thus, these vaccines are, un-

5



Figure 1.4: General Pap screening process for females [67].
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doubtedly, among the most expensive in the market [13, 77], and countries with the heaviest

burden of cervical cancer mortality (i.e., Ghana, Nigeria and Uganda [77]) are less likely to

afford implementing a routine mass vaccination program using these vaccines. Additionally,

the coverage associated with these vaccines (in countries that offer them routinely) is not

as high as is needed [77, 86] due to side-effects, poor compliance to the three doses [74, 77],

and other factors. Hence, for these reasons, Pap screening remains a viable (and affordable)

option for combating HPV (and related cancers) in many (developing) nations of the world.

Consequently, the main motivation of this thesis is to use mathematical approaches to qual-

itatively and quantitatively assess the impact of Pap screening in curtailing the spread of

HPV in a community.

1.3 Thesis Outline

Mathematical models, typically of the form of deterministic systems of non-linear differential

equations, have been developed and used to study the role of Pap screening on the trans-

mission dynamics of HPV and associated dysplasia in a community [28, 50, 55, 60]. Myers

et al. [60] modeled the natural history of HPV infection and cervical carcinogenesis using

a deterministic model. Malik et al. [55] investigated the combined impact of an anti-HPV

vaccine and Pap screening on the dynamics of HPV and associated dysplasia. The purpose

of this thesis is to extend prior HPV transmission models in the literature (that incorporate

Pap screening) by developing, and rigorously analyzing, a more realistic model for assess-

ing the population-level impact of Pap screening on the dynamics of HPV and its related

cancers in the community. Some of the notable features of the novel model to be designed

include adding the dynamics of pre-cancerous and HPV-related cancers in males, HPV trans-

mission by individuals in the pre-cancerous stages and including the dynamics of exposed

(asymptomatic) individuals (i.e., HPV-infected individuals with no clinical symptoms of the

HPV).
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The thesis is organized as follows. Some of the basic mathematical definitions, theories

and techniques used in the thesis are briefly introduced in Chapter 2. In Chapter 3, a

basic model for HPV transmission (and associated dysplasia) is formulated and rigorously

analyzed. In Chapter 4, the basic model developed in Chapter 3 is extended to include the

routine implementation of Pap screening to sexually-active females. This entails adding two

CIN and INM stages (for females and males, respectively), as well as classes for detected

females with pre-cancerous lesions and cervical cancer.

Some of the main questions to be addressed in the thesis are:

1. What are the main qualitative features of a realistic basic (in the absence of anti-HPV

intervention) model for the transmission dynamics of HPV (and associated dysplasia)

in a community? In particular, emphasis will be on determining conditions for the

existence and asymptotic (both local and global) stability of the associated disease-

free equilibrium of the model.

2. What is the distribution of the values of the reproduction number of a realistic HPV

transmission model (in the absence of any intervention strategy)? This distribution will

provide insight into the persistence or effective control of the disease in the community.

3. What are the main parameters (of the model) that influence the values of the associated

reproduction number (hence, drive the disease transmission dynamics):

(a) for a basic model for HPV transmission dynamics in a population (in the absence

of Pap screening);

(b) for a model for HPV transmission dynamics in the presence of Pap screening.

4. What is the population-level impact of HPV transmission by individuals (females and

males) with pre-cancerous CIN and INM lesions?

5. Does the community-wide implementation of routine Pap screening offer a quantifiable

community-wide impact in minimizing cervical cancer cases in females?

8



Chapter 2

Mathematical Preliminaries

This chapter introduces some of the basic mathematical definitions, theories and method-

ologies relevant to the thesis.

2.1 Equilibria of Linear and Non-linear Autonomous

Systems

This thesis considers autonomous systems of ordinary differential equations (ODEs) given

by (where a dot represents differentiation with respect to time t)

ẋ = f(x), x ∈ Rn. (2.1)

That is, non-autonomous ODE systems of the form,

ẋ = f(x, t), x ∈ Rn, and t ∈ R, (2.2)

where the vector field f ∈ Cr (with r ≥ 1) depends on the independent variable t, are not

considered in this thesis.

Definition 2.1. A point x̄ ∈ Rn is called an equilibrium point of the autonomous system

9



(2.1) if f(x̄) = 0.

Definition 2.2. The Jacobian matrix of the vector field f , of the system (2.1), at the equi-

librium x̄, denoted by Df(x̄), is the matrix,

J(x̄) =


∂f1
∂x1

(x̄) · · · ∂f1
∂xn

(x̄)

...
...

...

∂fn
∂x1

(x̄) · · · ∂fn
∂xn

(x̄)

 ,

of partial derivatives of f evaluated at x̄.

Definition 2.3. The linear system ẋ = Ax, with the matrix A = Df(x̄), is called the

linearization of the autonomous system (2.1) at x̄.

2.2 Stability Theory

Definition 2.4. [84]. The equilibrium x̄ is said to be stable if given ε > 0, there exists a

δ = δ(ε) > 0 such that, for any solution y(t) of (2.1) satisfying |x̄− y(t0)| < δ, |x̄− y(t)| < ε

for t > t0, t0 ∈ R.

Definition 2.5. [84]. The equilibrium x̄ is said to be asymptotically-stable if it is stable and

there exists a constant c > 0 such that, for any solution y(t) of (2.1) satisfying |x̄− y(t0)| < c,

then lim
t→∞
|x̄− y(t)| = 0.

Definition 2.6. An equilibrium solution which is not stable is said to be unstable.

Theorem 2.1. [84]. Suppose all the eigenvalues of Df(x̄) have negative real parts. Then,

the equilibrium solution x = x̄ of the system (2.1) is locally-asymptotically stable (LAS). It

is unstable if at least one of the eigenvalues has positive real part.

Definition 2.7. If all solutions in the feasible (and invariant) region (Ω) of the model

converge to the equilibrium x̄ as t→∞, then x̄ is globally-asymptotically stable (GAS) in Ω.
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Definition 2.8. [84]. An equilibrium point x̄ is called a hyperbolic if none of the eigenvalues

of Df(x̄) has zero real part.

Definition 2.9. [84]. An equilibrium point that is not hyperbolic is called non-hyperbolic.

2.3 Lyapunov Function Theory

Definition 2.10. [84]. Let S ⊂ Rn be a set. Then, S is said to be invariant under the flow

φ generated by ẋ = f(x) if for any x0 ∈ S, we have φ(t, x0) ∈ S for all t ∈ R.

Definition 2.11. [84]. A function V : Rn → R is said to be positive-definite at x̄ if:

(i) V (x) > 0 for all x 6= x̄,

(ii) V (x) = 0 if and only if x = x̄.

Definition 2.12. [84]. Consider the system (2.1). Let, x̄ be an equilibrium solution of (2.1)

and let V : U → R be a C1 function defined on some neighborhood U of x̄ such that

(a) V is positive-definite,

(b) V̇ (x) ≤ 0 in U \ {x̄}.

Any function, V, that satisfies Conditions (a) and (b) above is called a Lyapunov function.

Theorem 2.2. (LaSalle’s Invariance Principle [53]). Suppose that there exists a positive-

definite C1 function V : Rn −→ R whose derivative along solutions of the system (2.1)

satisfies the inequality V̇ (x) ≤ 0, ∀x. Let M be the largest invariant set contained in the set

{x | V̇ (x) = 0}. Then the system is stable and every solution that remains bounded for t ≥ 0

approaches M as t −→∞.

Corollary 2.1. If M contains no trajectory of the system except the trajectory x(t) = x̄ for

t ≥ 0, then the solution is globally-asymptotically stable.

Lyapunov Function Theory and LaSalle’s Invariance Principle are used to prove the global

asymptotic stability of an equilibrium in Chapter 3.
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2.4 Comparison Theorem

Definition 2.13. [75]. An open subset D ⊂ Rn is said to be p−convex if tx+ (1− t)y ∈ D

for all t ∈ [0, 1] whenever x, y ∈ D and x ≤ y.

Definition 2.14. [75]. If D is a p-convex subset of Rn and

∂fi
∂xj
≥ 0, i 6= j, x ∈ D,

then a continuously-differentiable function f is of Type K in D.

Theorem 2.3. (Comparison Theorem [51]). Let f be continuous on D and of Type K.

Suppose that x(t) be a solution of ẋ = f(x) defined on [a, b].

• If z(t) is a continuous function on [a, b] satisfying ż ≤ f(z) on (a, b), with z(a) ≤ x(a),

then z(t) ≤ x(t) for all t ∈ [a, b];

• If y(t) is a continuous function on [a, b] satisfying ẏ ≥ f(y) on (a, b), with y(a) ≥ x(a),

then y(t) ≥ x(t) for all t ∈ [a, b].

Comparison Theorem is used to prove the global asymptotic stability of the disease-free

equilibria of the models developed in Chapters 3 and 4.

2.5 Next Generation Operator Method

One of the most popularly-used methods for computing the reproduction number (R0) of

disease transmission models is the next generation operator method [24, 80]. The repro-

duction number measures the average number of new cases of infections generated by a

typical infected individual if introduced in a susceptible population [37]. The formulation

(for computing R0) given in [80] is described below.
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Suppose the given disease transmission model, with non-negative initial conditions, can

be written in terms of the following autonomous system [80]:

ẋi = f(xi) = Fi(x)− Vi(x), i = 1, ..., n, (2.3)

where V −i −V +
i and the functions satisfy the following axioms (V +

i (x) is the rate of transfer

of individuals into compartment i by all other means and V −i (x) is the rate of transfer of

individuals out of compartment i) [80]. First of all, {Xs = x ≥ 0|xi = 0, i = 1, ...,m}

is defined as the disease-free states (non-infected state variables) of the model, where x =

(x1, ..., xn)T , xi ≥ 0 represents the number of individuals in each compartment of the model

and m is the number of the compartments correspond to infected individuals.

(A1) If x ≥ 0, then Fi, V
+
i , V −i ≥ 0 for i = 1, ...,m.

(A2) If xi = 0, then V −i = 0. In particular, if x ∈ Xs then V −i = 0 for i = 1, ...,m.

(A3) Fi = 0 if i > m.

(A4) If x ∈ Xs, then Fi(x) = 0 and V +
i (x) = 0 for i = 1, ...,m.

(A5) If F (x) is set to zero, then all eigenvalues of D(f(x0)) have negative real parts.

In the above, Fi(x) represents the rate of appearance of new infections in compartment i,

V +
i (x) represents the rate of transfer of individuals into compartment i. It is assumed that

these functions are at least twice continuously-differentiable in each variable [80].

Definition 2.15. [21]. A matrix A = (aij) ∈ Rn×n is called an M-matrix if aij ≤ 0 for i 6= j

and A−1 > 0 (i.e. (A−1)ij > 0).

Lemma 2.1. (van den Driessche and Watmough [80]). If x̄ is a DFE of (2.3) and fi(x)

satisfy (A1)− (A5), then the derivative DF (x̄) and DV (x̄) are partitioned as

DF (x̄) =

F 0

0 0

 , DV (x̄) =

V 0

J3 J4

 ,
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where F and V are the m×m matrices defined by,

F =

[
∂Fi
∂xj

(x̄)

]
and V =

[
∂Vi
∂xj

(x̄)

]
with 1 ≤ i, j ≤ m.

Furthermore, F is non-negative, V is non-singular M-matrix and J3 and J4 are matrices

associated with the transition terms of the model, and all eigenvalues of J4 have positive real

parts.

Theorem 2.4. (van den Driessche and Watmough [80]). Consider the disease transmission

model given by (2.3) with f(x) satisfying axioms (A1)-(A5). If x̄ is a DFE of the model, then

x̄ is LAS if R0 = ρ(FV −1) < 1 (where ρ is the spectral radius), and unstable if R0 > 1.

This technique is used to prove the local asymptotic stability of the disease-free equilibria of

the models developed in Chapters 3 and 4.

2.6 Krasnoselskii Sub-linearity Argument

Definition 2.16. [48]. A Banach space X is a complete normed vector space. For example,

the Cartesian space Rn is a Banach space with

‖(x1, · · · , xn)‖p =

(
n∑
i=1

|xi|p
) 1

p

, when 1 ≤ p ≤ ∞.

Definition 2.17. [47]. Let E be a real Banach space. A set K ⊂ E is called a cone if the

following conditions are satisfied:

• the set K is closed;

• if u, v ∈ K, then αu+ βv ∈ K for all α, β ≥ 0;

• for each pair of points x,−x, at least one does not belong to K, provided x 6= θ, where

θ is the zero of the space E.
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Definition 2.18. [47]. Let u0 be some fixed non-zero element of K. If for every x ∈ K

(x 6= θ)

αu0 ≤ Anx ≤ βu0,

for some positive α, β and n, then the operator A is called u0-positive.

Theorem 2.5. (Krasnoselskii [47]). Let u0 ∈ K. If A is a u0-positive operator, then the

cone K has a unique characteristic vector.

The Krasnoselskii sub-linearity argument [31, 32, 47, 76] is based on showing that the lin-

earization of the non-linear system ẋ = f(x), given by Ż(t) = Df(x̄)Z where x̄ is an

equilibrium solution of the non-linear system has no solution of the form

Z̄(t) = Z̄0e
wt, (2.4)

with Z̄0 = (Z1, Z2, · · · , Zn), Zi ∈ C, w ∈ C, and Re(w) ≥ 0 (n is the dimension of the

associated linearized system). The consequence of this is that all the eigenvalues of the

characteristic polynomial associated with the linearized version of ẋ = f(x) will have negative

real part (so that the associated equilibrium is locally-asymptotically stable). This technique

is used to prove the local asymptotic stability of an equilibrium in Chapter 3.

2.7 Uncertainty and Sensitivity Analysis

Definition 2.19. [7, 40]. Uncertainty analysis is a technique for assessing the variability in

an outcome variable that arise due to the uncertainty in estimating the input values.

Definition 2.20. [7, 40]. Sensitivity analysis is concerned with identifying the key input pa-

rameters that contribute to the imprecision in the estimate of the output (response) variable.

In other words, while uncertainty analysis is focused on assessing the impact of the uncer-

tainties in the parameters of the model being studied on the outcome (simulations of the
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model), sensitivity analysis is based on identifying the key parameters of the model that most

influence the outcome (response function) [7].

Definition 2.21. [57]. Latin Hypercube Sampling (LHS) is a statistical method for generat-

ing a sample of plausible collections of parameter values from a multidimensional distribu-

tion. LHS is an efficient sampling technique, since each sampled value of each of the input

parameters is used only once in the computation (of the associated response function) [7].

Definition 2.22. [16]. The continuous uniform distribution is a family of symmetric proba-

bility distributions such that, for each member of the family, all intervals of the same length

on the distribution’s support have equal probabilities.

Definition 2.23. [79]. Partial Correlation Coefficient is used to measure the degree of linear

relationship between two variables, after adjusting for, or controlling for, the effect of some

set of variables.

Definition 2.24. [7, 39, 40, 46]. Partial Rank Correlation Coefficients (PRCC) are computed

for each input parameter (sampled by the LHS scheme) and each output variable to measure

the amount of linear relationship between two variables after adjusting for (or controlling

for) the effect of some set of variables.

PRCC are, typically, obtained via the following steps [7]:

i) Choosing an outcome (response) vector for the system (model) being analyzed.

ii) Adding the outcome vector as an additional column (column K + 1) of the matrix of

input values (of the model parameters).

iii) Defining the ordinal numbers representing the rank, from 1 to N (where N is the

number of runs), of each of these columns as the set (r1i, r2i, . . . , rki, Ri), where i is the

run number.

iv) Defining a (K+ 1)× (K+ 1) symmetric matrix, C = [cij] (where µ is the average rank

and equals to (1 +N)/2), by
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cij =

N∑
t=1

(rit − µ)(rjt − µ)√
N∑
t=1

(rit − µ)2
N∑
s=1

(rjs − µ)2

, i, j = 1, 2, . . . K.

v) Defining the matrix B = [bij] = C−1 (for the ci,k+1 elements Ri replaces rjt and rjs

and the leading diagonal elements of C are all ones).

vi) Finding the PRCC (γi) between the ith input parameter and the outcome variable using

the relation

γi =
−bi,K+1√
biibK+1,K+1

.

These steps are followed in the computation of PRCC values of the parameters of the models

developed in Chapters 3 and 4.
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Chapter 3

Basic HPV Transmission Model

3.1 Introduction

As stated in Chapter 1, HPV is a major sexually-transmitted disease that induces significant

public health and socio-economic burden globally [6, 14, 61, 62, 85]. Furthermore, although

70%−90% of HPV cases (in both females and males) clear their infections naturally [1, 14, 20],

females who do not clear their HPV infection (typically those infected with high-risk HPV

types, such as HPV-16 and HPV-18 [6, 14, 83]) can develop persistent HPV infection (leading

to pre-cancerous cervical intraepithelial neoplasia (CIN) and cervical cancer [14, 55, 62, 63]).

The aim of this chapter is to design, and rigorously analyze, a new realistic deterministic

model for the transmission dynamics of HPV (and related dysplasia) in a community. The

central objective is to gain insight into the qualitative dynamics of the resulting model, vis-

a-vis determining the conditions for the persistence or effective control (or elimination) of

the disease in the community. The new deterministic model to be developed extends many

others in the literature. Furthermore, detailed uncertainty and sensitivity analyses (of the

parameters of the model that drive the disease transmission process) will be carried out

to assess the effect of uncertainties in the estimate of the parameters of the model on the

output (and to also identify the key parameters that drive the dynamics of the model). In
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particular, Questions 1, 2 and part (a) of Question 3 in Section 1.3 will be addressed in

this chapter. It is worth stating that although there are numerous HPV serotypes (low- and

high-risk; as stated in Chapter 1) [19, 55], this study lumps them all into one HPV type

(since the objective of the thesis is to assess the impact of Pap screening, and Pap screening

detects CIN lesions caused by any of the high-risk HPV types).

3.2 Model Formulation

The new model for the transmission dynamics of HPV in a community is designed by strat-

ifying the total sexually-active female population at time t (denoted by Nf (t)) into eight

mutually-exclusive sub-populations of susceptible females (Sf (t)), exposed (asymptomatic;

infected but without clinical symptoms of HPV) females (Ef (t)), symptomatic (infected with

clinical symptoms of HPV) females (If (t)), females with persistent HPV infection (Pf (t)),

females with CIN lesions (Qf (t)), females with cervical cancer (Cf (t)), females who recov-

ered from cervical cancer (Rfc(t)) and females who recovered from HPV infection without

developing cervical cancer (Rf (t)), so that

Nf (t) = Sf (t) + Ef (t) + If (t) + Pf (t) +Qf (t) + Cf (t) +Rfc(t) +Rf (t). (3.1)

Similarly, the total sexually-active male population at time t (denoted by Nm(t)) is sub-

divided into eight mutually-exclusive sub-populations of susceptible males (Sm(t)), exposed

(asymptomatic; infected but without clinical symptoms of HPV) males (Em(t)), symptomatic

males (Im(t)), males with persistent HPV infection (Pm(t)), males with INM lesions (Qm(t)),

males with HPV-related cancer (Cm(t)), males who recovered from HPV-related cancer

(Rmc(t)) and males who recovered from HPV infection without developing HPV-related

cancer (Rm(t)). Thus,

Nm(t) = Sm(t) + Em(t) + Im(t) + Pm(t) +Qm(t) + Cm(t) +Rmc(t) +Rm(t). (3.2)
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It follows from (3.1) and (3.2) that the total sexually-active (heterosexual) population, at

time t, is given by N(t) = Nf (t) +Nm(t).

The population of susceptible females (Sf (t)) is generated by the recruitment of new sexually-

active females (at a rate πf ). This population is decreased by the acquisition of HPV infec-

tion, following effective contact with infected males in the symptomatic (Im) and persistent

infection (Pm) classes at a rate λm, given by (it is assumed, for mathematical convenience,

that exposed males (Em) and males with INM (Qm) do not transmit HPV to susceptible

females)

λm =
βmcf (Nm, Nf ) (Im + θmPm)

Nm

. (3.3)

In (3.3), βm is the probability of transmission of HPV infection from infected males to sus-

ceptible females per contact, and cf (Nm, Nf ) is the average number of female partners per

male per unit time (hence, βmcf (Nm, Nf ) is the effective contact rate for male-to-female

transmission of HPV). Furthermore, θm > 0 models the assumed variability of the infec-

tiousness of HPV-infected males in the Pm class in relation to HPV-infected males in the

Im class. The population of susceptible females is further diminished by natural death (at a

rate µf ; it is assumed that females in all epidemiological compartments suffer natural death

at this rate). Thus,

dSf
dt

= πf − (λm + µf )Sf . (3.4)

The population of females exposed to HPV (Ef (t)) is generated by the infection of susceptible

females (at the rate λm). Exposed females develop clinical symptoms of HPV (at a rate σf )

and suffer natural death. Thus,

dEf
dt

= λmSf − (σf + µf )Ef . (3.5)

The class of infected females with clinical symptoms of HPV (If (t)) is populated by the

development of clinical symptoms of HPV by exposed females (at the rate σf ). Members
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of this class recover (at a rate rf1) and develop persistent HPV infection (at a rate ψf ).

It is assumed, in this thesis, that recovery gives permanent immunity against HPV re-

infection with the disease (it should be mentioned, however, the re-infection is possible in

HPV dynamics, especially with a different HPV strain [28, 78]). This population is further

decreased by natural death. Thus,

dIf
dt

= σfEf − (rf1 + ψf + µf )If . (3.6)

The population of females with persistent HPV infection (Pf (t)) [61] is generated by the de-

velopment of persistent HPV infection by symptomatic females (at the rate ψf ). Individuals

move out of this class through recovery (at a rate rf2), development of CIN lesions (at a rate

αf ) and natural death. Hence,

dPf
dt

= ψfIf − (rf2 + αf + µf )Pf . (3.7)

The population of females with CIN lesions (Qf (t)) is generated by the development of CIN

lesions by females with persistent HPV infection (at the rate αf ). Although there are three

multiple CIN stages (based on the size of the associated lesions) [19, 55], they are lumped

into one in this thesis, for mathematical convenience (this assumptions is relaxed in Chapter

4, where Pap screening is explicitly modeled). Transition out of the CIN class occurs through

recovery (at a rate rf3), development of cervical cancer (at a rate gf ) or natural death. Thus,

dQf

dt
= αfPf − (rf3 + gf + µf )Qf . (3.8)

The population of females with cervical cancer (Cf (t)) is generated at the rate gf . It is

decreased by recovery (at a rate rf4), natural death and cancer-related mortality (at a rate

δf ). Thus,

dCf
dt

= gfQf − (rf4 + µf + δf )Cf . (3.9)
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The population of females who recovered from cervical cancer (Rfc(t)) is generated at the

rate rf4. Like in other epidemiological classes, females in this class also suffer natural death

(at the rate µf ). Hence,

dRfc

dt
= rf4Cf − µfRfc. (3.10)

The population of females who recovered from HPV infection without developing cervical

cancer (Rf (t)) is populated by the recovery of females in the If , Pf and Qf classes (at the

rates rf1, rf2 and rf3, respectively). It is diminished by natural death, so that

dRf

dt
= rf1If + rf2Pf + rf3Qf − µfRf . (3.11)

The population of susceptible males (Sm(t)) is generated by the recruitment of new sexually-

active males (at a rate πm). This population is decreased by the acquisition of HPV infection,

following effective contact with infected females with clinical symptoms of HPV (If ) or

persistent HPV infection (Pf ), at a rate λf , given by (here, too, it is assumed that females

in Ef and Qf classes do not transmit HPV to susceptible males)

λf =
βfcm(Nm, Nf ) (If + θfPf )

Nf

. (3.12)

In (3.12), βf is the probability of transmission of HPV infection from infected females to

susceptible males per contact, and cm(Nm, Nf ) is the average number of male partners per

female per unit time (hence, βfcm(Nm, Nf ) is the effective contact rate for female-to-male

transmission of HPV). Furthermore, θf > 0 models the assumed variability of the infectious-

ness of HPV-infected females in the Pf class in relation to HPV-infected males in the If

class. The population of susceptible males is further diminished by natural death (at a rate

µm; it is assumed that males in all epidemiological compartments suffer natural death at this

rate). Thus,

dSm
dt

= πm − (λf + µm)Sm. (3.13)
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The population of males exposed to HPV (Ef (t)) is generated by the infection of susceptible

males (at the rate λf ). Exposed males develop clinical symptoms of HPV (at a rate σm) and

suffer natural death. Thus,

dEm
dt

= λfSm − (σm + µm)Em. (3.14)

The class of infected males with clinical symptoms of HPV (Im(t)) is populated by the

development of clinical symptoms of HPV by exposed males (at the rate σm). It is assumed

that members of this class recover (at a rate rm1) and develop persistent HPV infection (at

a rate ψm). This population is further decreased by natural death. Thus,

dIm
dt

= σmEm − (rm1 + ψm + µm)Im. (3.15)

The population of males with persistent HPV infection (Pm(t)) is generated at the rate ψm.

Individuals move out of this class through recovery (at a rate rm2), development of INM

lesions (at a rate αm) and natural death. Hence,

dPm
dt

= ψmIm − (rm2 + αm + µm)Pm. (3.16)

The population of males with INM lesions (Qm(t)) is generated by the development of INM

lesions by males with persistent HPV infection (at the rate αm). Transition out of this class

occurs through recovery (at a rate rm3), development of HPV-related cancer (at a rate gm)

or natural death. Thus,

dQm

dt
= αmPm − (rm3 + gm + µm)Qm. (3.17)

The population of males with HPV-related cancer (Cm(t)) is generated at the rate gm. It

is decreased by recovery (at a rate rm4) and natural death (it should be mentioned that
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since HPV-related cancers, such as penile cancer, are rare in males [81], no mortality due to

HPV-related cancer is assumed for males). Thus,

dCm
dt

= gmQm − (rm4 + µm)Cm. (3.18)

The population of males who recovered from HPV-related cancer (Rmc(t)) is generated by

the recovery of males with HPV-related cancer (at a rate rm4). This population is decreased

by natural death (at the rate µm). Hence,

dRmc

dt
= rm4Cm − µmRmc. (3.19)

The population of males who recovered from HPV infection without developing HPV-related

cancer (Rm(t)) is populated by the recovery of males in the Im, Pm and Qm classes (at the

rates rm1, rm2 and rm3, respectively). It is diminished by natural death, so that

dRm

dt
= rm1Im + rm2Pm + rm3Qm − µmRm. (3.20)

It is worth stating, from the equations given in {(3.13)− (3.20)}, that the rate of change

of the total male population (Nm(t)) is given by

dNm(t)

dt
= πm − µmNm(t), so that Nm(t) −→ πm

µm
, as t −→∞. (3.21)

That is, the total male population is asymptotically constant. Furthermore, since the model

{(3.4) - (3.11), (3.13) - (3.20) with (3.3) and (3.12)} is a sex-structured one, the following

conservation law of sexual contacts (i.e., the total number of sexual contacts made by males

balances that by females) is preserved in the heterosexual community [55]. That is, for the

model {(3.4) - (3.11), (3.13) - (3.20) with (3.3) and (3.12)},

cm(Nm, Nf ) Nm = cf (Nm, Nf ) Nf . (3.22)
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It is assumed that male sexual partners are abundant, and that females can have enough

number of male sexual partners per unit time (so that it is reasonable to assume that

cf (Nm, Nf ) = cf , a constant) [26, 55]. Hence, Equation (3.22) can be re-written as

cm(Nm, Nf ) =
cfNf

Nm

. (3.23)

Consequently, using (3.22) in (3.3) and (3.12), the forces of infection, λm and λf , are now

re-written, respectively, as

λm =
βmcf (Im + θmPm)

Nm

, λf =
βfcf (If + θfPf )

Nm

. (3.24)

Based on the above formulations and assumptions, and using (3.24) for (3.3) and (3.12), it

follows that the basic model for the transmission dynamics of HPV (and associated dysplasia)

in a community is given by the following deterministic system of non-linear differential

equations (a flow diagram of the model is depicted in Figure 3.1. The associated state

variables and parameters are tabulated in Tables 3.1, and 3.2):
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

dSf
dt

= πf − (λm + µf )Sf ,

dEf
dt

= λmSf − (σf + µf )Ef ,

dIf
dt

= σfEf − (rf1 + ψf + µf )If ,

dPf
dt

= ψfIf − (rf2 + αf + µf )Pf ,

dQf

dt
= αfPf − (rf3 + gf + µf )Qf ,

dCf
dt

= gfQf − (rf4 + µf + δf )Cf ,

dRfc

dt
= rf4Cf − µfRfc,

dRf

dt
= rf1If + rf2Pf + rf3Qf − µfRf ,

M
al

es



dSm
dt

= πm − (λf + µm)Sm,

dEm
dt

= λfSm − (σm + µm)Em,

dIm
dt

= σmEm − (rm1 + ψm + µm)Im,

dPm
dt

= ψmIm − (rm2 + αm + µm)Pm,

dQm

dt
= αmPm − (rm3 + gm + µm)Qm,

dCm
dt

= gmQm − (rm4 + µm)Cm,

dRmc

dt
= rm4Cm − µmRmc,

dRm

dt
= rm1Im + rm2Pm + rm3Qm − µmRm.

(3.25)
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The basic HPV transmission model (3.25) is an extension of many HPV transmission

models in the literature, such as those in [2, 3, 10, 28, 30, 55], by, inter alia,

(i) incorporating the dynamics of exposed females (Ef ) and males (Em) (this is not in-

cluded in the models considered in [10, 28, 30, 55]);

(ii) incorporating the dynamics of individuals (males and females) in the pre-cancerous

intraepithelial neoplasia stages, as well as the dynamics of HPV-related cancers in

males (which are not included in the models considered in [3, 10, 28, 30]; it should,

however, be stated that three CIN stages for females are included in [55]);

(iii) incorporating the dynamics of males with persistent HPV infection (this is not included

in the models considered in [3, 10, 28, 30, 55]);

(iv) incorporating the dynamics of males who recovered from HPV-related cancer (this is

not included in the models considered in [3, 10, 28, 30, 55]).

Furthermore, this chapter will contribute by way of providing detailed qualitative analyses

of the basic model (3.25).

3.2.1 Basic properties

Since the model (3.25) monitors the dynamics of human populations, all its associated pa-

rameters and state variables are non-negative for all time t ≥ 0.

Theorem 3.1. Let the initial data be Sf (0) > 0, Ef (0) ≥ 0, If (0) ≥ 0, Pf (0) ≥ 0,

Qf (0) ≥ 0, Cf (0) ≥ 0, Rfc(0) ≥ 0, Rf (0) ≥ 0, Sm(0) > 0, Em(0) ≥ 0, Im(0) ≥ 0,

Pm(0) ≥ 0, Qm(0) ≥ 0, Cm(0) ≥ 0, Rmc(0) ≥ 0, Rm(0) ≥ 0. Then, the solutions

(Sf (t), Ef (t), If (t), Pf (t), Qf (t), Cf (t), Rfc(t), Rf (t), Sm(t), Em(t), Im(t), Pm(t), Qm(t), Cm(t),

Rmc(t), Rm(t)) of the model (3.25) will remain positive for all t > 0.

The proof of Theorem 3.1 is given in Appendix A.
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Lemma 3.1. The closed set

D = Df ∪ Dm ⊂ R8
+ × R8

+,

with,

Df =

{
(Sf , Ef , If , Pf , Qf , Cf , Rfc, Rf ) ∈ R8

+ : Nf ≤
πf
µf

}
,

and,

Dm =

{
(Sm, Em, Im, Pm, Qm, Cm, Rmc, Rm) ∈ R8

+ : Nm ≤
πm
µm

}
,

is positively-invariant and attracting for the model (3.25).

Proof. Adding the first eight equations of the model (3.25) gives

dNf

dt
= πf − µfNf − δfCf ≤ πf − µfNf . (3.26)

It follows from (3.26) that
dNf

dt
< 0 if Nf (t) >

Πf

µf
. Furthermore, it follows, using Comparison

Theorem [51], that

Nf (t) ≤ Nf (0)e−µf (t) +
πf
µf

[1− e−µf (t)],

so that, Nf (t) ≤
πf
µf

if Nf (0) ≤ πf
µf

. Similarly, it follows from (3.21) that

Nm(t) ≤ Nm(0)e−µm(t) +
πm
µm

[1− e−µm(t)].

Thus, Nm(t) ≤ πm
µm

if Nm(0) ≤ πm
µm

. Therefore, the region D is positively-invariant for the

model (3.25). Furthermore, if Nf (0) >
πf
µf

and Nm(0) >
πm
µm

, then either the solution enters

the region D in finite time, or Nf (t) approaches
πf
µf

and Nm(t) → πm
µm

asymptotically [55].

Hence, the region D attracts all solutions in R16
+ .
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Since the region D is positively-invariant, the usual existence, uniqueness, continuation re-

sults hold for the system (hence, it is sufficient to consider the dynamics of the flow generated

by the basic model (3.25) in this region [37]).

3.3 Asymptotic Stability of Disease-free Equilibrium

(DFE)

3.3.1 Local asymptotic stability

The DFE of the basic model (3.25), obtained by setting the right-hand sides of the equations

of the model to zero, is given by,

E0 = (S∗f , E
∗
f , I
∗
f , P

∗
f , Q

∗
f , C

∗
f , R

∗
fc, R

∗
f , S

∗
m, E

∗
m, I

∗
m, P

∗
m, Q

∗
m, C

∗
m, R

∗
mc, R

∗
m)

=

(
πf
µf
, 0, 0, 0, 0, 0, 0, 0,

πm
µm

, 0, 0, 0, 0, 0, 0, 0

)
.

As discussed in Chapter 2, the local asymptotic stability of the DFE (E0) can be established

using the next generation operator method [24, 80]. Using the notation in [80], the non-

negative matrix F (of new infection terms), and the M -matrix V (of the transition terms)

associated with the model (3.25), evaluated at E0, are given, respectively, by:
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F =



0 0 0 0 0 0
βmcfS

∗
f

N∗
m

βmcfS
∗
fθm

N∗
m

0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 βfcf βfcfθf 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0



,

and,

V =



h1 0 0 0 0 0 0 0 0 0

−σf h2 0 0 0 0 0 0 0 0

0 −ψf h3 0 0 0 0 0 0 0

0 0 −αf h4 0 0 0 0 0 0

0 0 0 −gf h5 0 0 0 0 0

0 0 0 0 0 h6 0 0 0 0

0 0 0 0 0 −σm h7 0 0 0

0 0 0 0 0 0 −ψm h8 0 0

0 0 0 0 0 0 0 −αm h9 0

0 0 0 0 0 0 0 0 −gm h10



,
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with, h1 = σf+µf , h2 = rf1 +ψf+µf , h3 = rf2 +αf+µf , h4 = rf3 +gf+µf , h5 = rf4 +µf+δf ,

h6 = σm+µm, h7 = rm1+ψm+µm, h8 = rm2+αm+µm, h9 = rm3+gm+µm and h10 = rm4+µm.

It follows from [80] that the basic reproduction number of the basic model (3.25) [37],

denoted by R0, is given by (where ρ is the spectral radius of the next generation matrix

FV−1)

R0 = ρ(FV −1) =
√
RmRf , (3.27)

with,

Rm =
πfµmβmcfσm
µfπmh6h7

(
1 +

θmψm
h8

)
and Rf =

βfcfσf
h1h2

(
1 +

θfψf
h3

)
.

The result below follows from Theorem 2 of [80].

Lemma 3.2. The DFE, E0, of the model (3.25) is locally-asymptotically stable (LAS) if

R0 < 1, and unstable if R0 > 1.

The epidemiological consequence of Lemma 3.2 is that HPV can be effectively controlled in

the community (when R0 < 1) if the initial sizes of the sub-populations of the model (3.25)

are in the basin of attraction of the DFE (E0). The threshold quantity, R0, represents the

average number of secondary HPV infections generated by one infected male (female) in a

completely-susceptible male (female) population [37].

3.3.2 Interpretation of the basic reproduction number

The basic reproduction number (R0) can be epidemiologically interpreted as follows. Sus-

ceptible males acquire HPV infection, following effective contacts with symptomatic females

(If ) or females with persistent HPV infection (Pf ). The number of male infections gener-

ated by symptomatic females is the product of the infection rate of symptomatic females(
βf cfS

∗
m

N∗
m

)
, the probability that an exposed female survives the exposed class and move to

the symptomatic stage
(

σf
σf+µf

=
σf
h1

)
and the average duration in the symptomatic class
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(
1

rf1+ψf+µf
= 1

h2

)
. Furthermore, the number of male infections generated by females with

persistent HPV infection is the product of the infection rate of females with persistent HPV

infection
(
βf cfθfS

∗
m

N∗
m

)
, the probability that an exposed female survives the exposed class and

moves to the persistent infection class
(

ψf

rf1+ψf+µf
=

ψf

h2

)
and the average duration in the

persistent infection class
(

1
rf2+αf+µf

= 1
h3

)
. Hence, the average number of new male infec-

tions generated by infected females (symptomatic or those with persistent HPV infection) is

given by (it is worth noting that N∗m = S∗m = πm
µm

)

(
µmβfcfσf
πmh1h2

+
µmβfcfσfθfψf
πmh1h2h3

)
S∗m =

βfcfσf
h1h2

(
1 +

θfψf
h3

)
. (3.28)

The terms in the left-hand side of (3.28) represent the number of new male infections gen-

erated by symptomatic females (If ) and females with persistent HPV infection (Pf ).

Similarly, susceptible females acquire HPV infection, following effective contacts with

symptomatic males (Im) or males with persistent HPV infection (Pm). The number of

female infections generated by symptomatic males is the product of the infection rate of

symptomatic males
(
βmcfS

∗
m

N∗
m

)
, the probability that an exposed male survives the exposed

class and move to the symptomatic stage
(

σm
σm+µm

= σm
h6

)
and the average duration in the

symptomatic class
(

1
rm1+ψm+µm

= 1
h7

)
. Furthermore, the number of female infections gen-

erated by males with persistent HPV infection is the product of the infection rate of males

with persistent HPV infection
(
βmcfθmS

∗
f

N∗
m

)
, the probability that an exposed male survives

the exposed class and moves to the persistent HPV infection class
(

ψm

rm1+ψm+µm
= ψm

h7

)
and

the average duration in the persistent infection class
(

1
rm2+αm+µm

= 1
h8

)
. Thus, the average

number of new female infections generated by infected males (symptomatic or those with

persistent HPV infection) is given by (noting that S∗f =
πf
µf

)

(
µmβmcfσm
πmh6h8

+
µmβmcfσmθmψm

πmh6h7h8

)
S∗f =

πfµmβmcfσm
µfπmh6h7

(
1 +

θmψm
h8

)
. (3.29)

The terms in the left-hand side of (3.29) represent the number of new female infections
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generated by symptomatic males (Im) and males with persistent HPV infection (Pm).

Since two generations are needed in the female-male-female HPV transmission cycle, the

geometric mean of (3.28) and (3.29) gives the basic reproduction number, R0.

3.3.3 Global asymptotic stability

Lemma 3.2 shows that effective disease control (when R0 < 1) is dependent on the initial

sizes of the sub-populations of the model. In order to show that such control is independent

of the initial sizes of the sub-populations, a global asymptotic stability result has to be

established for the DFE (E0). This is done below.

Theorem 3.2. The DFE, E0, of the model (3.25) is GAS in D whenever R0 < 1.

The proof of Theorem 3.2, based on using a comparison theorem, is given in Appendix B.

The epidemiological implication of Theorem 3.2 is that HPV will be eliminated from the

community whenever the associated basic reproduction threshold (R0) is less than unity.

Figure 3.2 shows the solution profiles of the basic model (3.25), generated by simulating the

model using various initial conditions, showing convergence to the DFE (E0) for the case

when R0 < 1 (in line with Theorem 3.2).

3.4 Existence and Stability of Endemic Equilibrium

Point (EEP)

In this section, conditions for the existence of endemic equilibria (i.e., equilibria where the

infected components of the basic model (3.25) are non-zero) will be explored. Let,

E1 = (S∗∗f , E
∗∗
f , I

∗∗
f , P

∗∗
f , Q

∗∗
f , C

∗∗
f , R

∗∗
fc, R

∗∗
f , S

∗∗
m , E

∗∗
m , I

∗∗
m , P

∗∗
m , Q

∗∗
m , C

∗∗
m , R

∗∗
mc, R

∗∗
m ), (3.30)
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represents an arbitrary EEP of the model (3.25). Furthermore, let

λ∗∗m =
βmcfµm (I∗∗m + θmP

∗∗
m )

πm
and λ∗∗f =

βfcfµm
(
I∗∗f + θfP

∗∗
f

)
πm

, (3.31)

be the force of infection for males and females at endemic steady-state, respectively (it should

be mentioned that Nm(t) is now replaced by its limiting value πm
µm

). Solving the equations of

the basic model (3.25) at the endemic steady-state gives:

S∗∗f =
πf

λ∗∗m + µf
, E∗∗f =

λ∗∗mS
∗∗
f

h1

, I∗∗f =
σfE

∗∗
f

h2

, P ∗∗f =
ψfI

∗∗
f

h3

, Q∗∗f =
αfP

∗∗
f

h4

,

C∗∗f =
gfQ

∗∗
f

h5

, R∗∗fc =
rf4C

∗∗
f

µf
, Rf =

rf1I
∗∗
f + rf2P

∗∗
f + rf3Q

∗∗
f

µf
, (3.32)

S∗∗m =
πm

λ∗∗f + µm
, E∗∗m =

λ∗∗f S
∗∗
m

h6

, I∗∗m =
σmE

∗∗
m

h7

, P ∗∗m =
ψmI

∗∗
m

h8

, Q∗∗m =
αmP

∗∗
m

h9

,

C∗∗m =
gmQ

∗∗
m

h10

, R∗∗mc =
rm4C

∗∗
m

µm
, Rm =

rm1I
∗∗
m + rm2P

∗∗
m + rm3Q

∗∗
m

µm
.

Substituting the expressions in (3.32) into (3.31) gives

λ∗∗m =
βmcfµmσm(θmψm + h8)λ∗∗f

h6h7h8(λ∗∗f + µm)
, (3.33)

λ∗∗f =
πfβfcfµmσf (θfψf + h3)λ∗∗m

πmh1h2h3(λ∗∗m + µf )
. (3.34)

Substituting (3.33) into (3.34), and simplifying, gives

λ∗∗f =
µm [(R0)2 − 1]

πmh1h2h3 [βmcfµm(ψmσmθm + σmh8) + µfh6h7h8]
. (3.35)

It follows from (3.35) that, since all the parameters of the model (3.25) are positive, λ∗∗f

is positive whenever R0 > 1 (so that the basic model (3.25) has a unique EEP whenever

R0 > 1). The components of the unique EEP can then be obtained by substituting (3.35)

into the steady-state expressions in (3.32). Furthermore, if R0 = 1, then λ∗∗f = 0 (which
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corresponds to the DFE, E0). For R0 < 1, λ∗∗f < 0 (which is biologically meaningless). These

results are summarized below.

Theorem 3.3. The basic model (3.25) has a unique endemic equilibrium (of the form E1)

whenever R0 > 1, and no endemic equilibrium otherwise.

The local asymptotic stability property of the unique EEP (E1) of the basic model (3.25)

will now be explored, for a special case with no disease-induced mortality for the females

(i.e., δf = 0). Further, it is convenient to define ∆ = µfµm(D1D2 −D3), where,

D1 = αmgmλ
∗∗
f µmψmσm + αmgmλ

∗∗
f ψmrm4σm + αmλ

∗∗
f µmψmσmh10 + αmλ

∗∗
f ψmrm3σmh10

+µmh6h7h8h9h10 + λ∗∗f µmh7h8h9h10 + λ∗∗f µmσmh8h9h10 + λ∗∗f rm1σmh8h9h10

+λ∗∗f µmψmσmh9h10 + λ∗∗f ψmrm2σmh9h10,

D2 = αfgfλ
∗∗
mµfψfσf + αfgfλ

∗∗
mψfrf4σf + αfh5λ

∗∗
mµfψfσf + αfh5λ

∗∗
mψfrf3σf

+µfh1h2h3h4h5 + λ∗∗mµfh2h3h4h5 + λ∗∗mµfσfh3h4h5 + λ∗∗mrf1σfh3h4h5

+λ∗∗mµfψfσfh4h5 + λ∗∗mψfrf2σfh4h5,

D3 =
1

(N∗m)2

(
S∗∗f S

∗∗
m µfµmσfσmβfβmcf

2h4h5h9h10

)
(ψmθm + h8) (ψfθf + h3) ,

with,

S∗∗f = N∗f − E∗∗f − I∗∗f − P ∗∗f −Q∗∗f − C∗∗f −R∗∗fc −R∗∗f ≥ 0,

S∗∗m = N∗m − E∗∗m − I∗∗m − P ∗∗m −Q∗∗m − C∗∗m −R∗∗mc −R∗∗m ≥ 0,

and,

λ∗∗m =
βmcf (I

∗∗
m + θmP

∗∗
m )

N∗m
, λ∗∗f =

βfcf (I
∗∗
f + θfP

∗∗
f )

N∗m
.

Theorem 3.4. The EEP (E1) of the model (3.25) is LAS if R0 > 1, δf = 0 and ∆ 6= 0.

The proof of Theorem 3.4, based on using a Krasnoselskii argument [31, 32, 76], is given in

Appendix C. The epidemiological implication of Theorem 3.4 is that, for the basic model
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(3.25) with R0 > 1 and negligible cancer-induced mortality in females (δf = 0), HPV will

persist in the community whenever the initial sizes of the sub-populations of the model (3.25)

are in the basin of attraction of the unique EEP (E1). The equilibrium (E1) is now shown to

be globally-asymptotically stable for a special case (below).

It is convenient to define R1 = R0|θm=θf=0 and the region (stable manifold of the DFE

of the basic model (3.25))

D0 = Df0 ∪ Dm0 ⊂ R8
+ × R8

+,

with,

Df0 =
{

(Sf , Ef , If , Pf , Qf , Cf , Rfc, Rf ) ∈ R8
+ : Ef = If = Pf = Qf = Cf = 0

}
,

Dm0 =
{

(Sm, Em, Im, Pm, Qm, Cm, Rmc, Rm) ∈ R8
+ : Em = Im = Pm = Qm = Cm = 0

}
.

Theorem 3.5. The unique EEP (E1) of the basic model (3.25), with θm = θf = 0, is GAS

in D\D0 whenever R1 > 1, Sf (t) ≤ S∗∗f and Sm(t) ≤ S∗∗m for all t.

The proof of Theorem 3.5, based on using a nonlinear Lyapunov function of Goh-Volterra

type, is given in Appendix D. Theorem 3.5 shows that, for the case of the model (3.25) where

individuals with persistent HPV infection do not transmit infection (i.e., θm = θf = 0), the

disease will always persist in the population whenever the associated reproduction threshold

(R1) exceeds unity, and that Sf (t) ≤ S∗∗f and Sm(t) ≤ S∗∗m for all t. Figure 3.3 depicts

solution profiles of the basic model, showing convergence to the unique EEP (E1) for the

case when R1 > 1 (in agreement with Theorem 3.5). It is worth stating that although

the conditions Sf (t) ≤ S∗∗f and Sm(t) ≤ S∗∗m for all t are somewhat restrictive, extensive

numerical simulations of the model (3.25) suggest that the conditions always hold (all the

extensive simulations carried out support this claim).
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3.5 Uncertainty and Sensitivity Analysis

The basic model (3.25) contains 27 parameters. Hence, uncertainties are expected to arise

in the estimates of the values of these parameters used in the numerical simulations of

the model. To account for the effect of such uncertainties in the numerical simulations of

the model (3.25), a detailed uncertainty analysis, using Latin Hypercube Sampling (LHS)

[7, 39, 40, 41, 57, 58], is carried out.

As introduced in Chapter 1, the practical implementation of the LHS technique en-

tails defining each parameter of the basic model (3.25) as a distribution, and, subsequently,

generating numerous LHS runs for a given output (which, in this chapter, is the basic re-

production threshold, R0) [7, 39, 40, 41, 57, 58]. For the purpose of this thesis, and in line

with [25, 58, 68], each parameter of the basic model (3.25) is assumed to follow a (continu-

ous) uniform distribution (see Definition 2.22) [16]. Furthermore, sensitivity analysis, using

Partial Rank Correlation Coefficients (PRCC) [39, 40, 41], is carried out to determine the

key parameters of the model that affect the disease transmission dynamics (i.e., parameters

of the basic model (3.25) that most affect the value of the response function, R0).

Figure 3.4 depicts the box plots of the basic reproduction number (R0), as a function of

the 1000 LHS runs (NR = 1000) carried out, using the baseline parameter values and ranges

in Table 3.2. For any given number of runs (i.e., for any value of NR), each box plot displays

the lower and upper quartile ranges of R0 (denoted by the lower and upper horizontal lines

on a box, respectively). The horizontal line within a box denotes the median value (middle

quartile) of R0. The upper and lower whiskers denote the most extreme values for R0 [58].

Values for R0 plotted beyond the whiskers are classified as outliers. Figure 3.4 shows the

distribution of R0 lies in the range R0 ∈ [2.80, 4.95], with a mean of R0 = 3.875 (which is

in line with the R0 values reported in [30, 55]). Since the distribution of R0 exceeds unity,

it follows (from Theorem 3.4) that the disease will persist in the population. Thus, this

study shows that until an intervention strategy (such as routine Pap screening of sexually-

active females) that can reduce (and maintain) R0 to a value less that unity is used in the
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community, HPV (and associated dysplasia) will always persist in the population.

The effect of HPV transmission by individuals with persistent HPV infection on the

cumulative number of new HPV cases for females is assessed by simulating the model (3.25)

using the different values of the associated modification parameter for the infectiousness of

individuals with persistent infection, relative to those in the If class (denoted by θf ). The

results obtained, depicted in Figure 3.5A, show a marked increase in the cumulative number

of new HPV cases with increasing values of the parameter θf .

Furthermore, it is shown (Figure 3.5B) that HPV transmission by males with persistent

infection induces a significant indirect effect on the cumulative number of new female infec-

tions (i.e., HPV transmission by males with persistent infection results in the corresponding

increase in the cumulative number of new HPV cases in females). Similar results are obtained

for the cumulative mortality for females (Figure 3.6) and cumulative new cases for males

(Figure 3.7). In other words, these simulations show that HPV transmission by individuals

with persistent HPV infection significantly increases the HPV burden (and, by extension,

increases the incidence of cervical cancer in females and HPV-related cancers in males) in

the community. Furthermore, HPV transmission by those with persistent infection induces

an indirect negative effect on the HPV burden of individuals of the opposite gender.

Table 3.3 shows the PRCC values of the parameters of the model (3.25), from which it is

clear that the most dominant parameters are the average number of female sexual partners

for males per unit time (cf ), the average duration of sexual activity for females and males (µf

and µm), the infection probability for females and males (βf and βm), the recruitment rate of

new sexually-active individuals (πf and πm), modification parameter for the infectiousness

of individuals with persistent infection, relative to those in the corresponding symptomatic

class (θf and θm) and the natural recovery rate of infected females (rf1). The effect of the

aforementioned ten dominant (PRCC-ranked) parameters is further assessed by simulating

the basic model (3.25) for the following two scenarios:

(i) the baseline value of each of the top-ten PRCC-ranked parameters in Table 3.3 is
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increased by 10%;

(ii) the baseline value of each of the top-ten PRCC-ranked parameters in Table 3.3 is

decreased by 10%.

It follows from Figure 3.8 that such an increase (decrease) in the baseline values of these

top PRCC-ranked parameters lead to a corresponding increase (decrease) in the numerical

simulation results obtained (cumulative number of HPV cases over a 10-year period). This

figure clearly shows the sensitivity of the outcome of the model’s simulations on these param-

eters. Figures 3.9 and 3.10 also show similar sensitivities of these top-ranked parameters on

the cumulative number of cervical cancer (for females) and HPV-related cancers (for males)

cases, respectively.

3.6 Summary of Chapter

A new deterministic model for the transmission dynamics of HPV (and related dysplasia)

in a community is designed and rigorously analyzed in this chapter. Some of the main

mathematical and numerical simulation results obtained are summarized below:

i) The disease-free equilibrium of the basic model (3.25) is locally- and globally- asymp-

totically stable whenever the associated reproduction number (R0) is less than unity.

The epidemiological implication of this result is that the community-wide control (or

elimination) of HPV (and related dysplasia) is feasible if the basic reproduction num-

ber (R0) of the basic model (3.25) can be reduced to (and maintained at) a value less

than unity. This can be achieved via the use of intervention strategies, such as Pap

cytology screening (which is addressed in Chapter 4).

ii) The basic model (3.25) has a unique endemic equilibrium point whenever the basic

reproduction number (R0) exceeds unity. This equilibrium is shown to be locally- and

globally- asymptotically stable for special cases.
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iii) Numerical simulations of the basic model show that HPV transmission by individu-

als with persistent infection significantly increases the HPV burden (hence, increase

the incidence of cervical cancer in females and HPV-related cancers in males) in the

community. Furthermore, HPV transmission by males (females) with persistent HPV

infection induces an indirect negative effect on the HPV burden of males (females).

iv) It is determined (based on the detailed uncertainty and sensitivity analyses carried out

in Section 3.5) that the most dominant parameters that affect the disease transmis-

sion dynamics (as measured in terms of increase in the value of the associated basic

reproduction threshold, R0) are:

(a) the average number of female sexual partners for males per unit time (cf );

(b) the average duration of sexual activity for females and males (µf and µm);

(c) the infection probability for females and males (βf and βm);

(d) the recruitment rate of new sexually-active individuals for females and males (πf

and πm);

(e) the modification parameters for the infectiousness of individuals with persistent

infection (in relation to those in the respective symptomatic class) (θf and θm);

(f) the natural recovery rate of infected females (rf1).

Items (i) to (iv) above provide answers to Questions 1, 2 and 3 (Part (a)) raised in Section

1.3.
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Variable Description

Sf (t) Population of susceptible females
Ef (t) Population of exposed (asymptomatic) females
If (t) Population of symptomatic (infected with clinical symptoms of HPV) females
Pf (t) Population of females with persistent HPV infection
Qf (t) Population of females with CIN
Cf (t) Population of females with cervical cancer
Rfc(t) Population of females who recovered from cervical cancer
Rf (t) Population of females who recovered from HPV infection without developing

cervical cancer

Sm(t) Population of susceptible males
Em(t) Population of exposed (asymptomatic) males
Im(t) Population of symptomatic males
Pm(t) Population of males with persistent HPV infection
Qm(t) Population of males with INM
Cm(t) Population of males with HPV-related cancer
Rmc(t) Population of males who recovered from HPV-related cancer
Rm(t) Population of males who recovered from HPV infection without developing

HPV-related cancer

Table 3.1: Description of the state variables of the basic HPV model (3.25).
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Parameter Description Baseline Value Ranges Ref.
per year

πf (πm) Recruitment rate of new sexually-active 10000 [9000,11000] [66]
females (males)

1
µf

( 1
µm) Average duration of sexual activity 65 [59.5,71.5] [9]

for females (males)
βm(βf ) HPV infection probability from males to 0.8/contact [0.72,0.88] [30]

females (females to males) (0.7/contact) [0.63,0.77]

cm(cf ) Average number of male (female) sexual 2 (2
Nf

Nm
) [1.8,2.2] [66]

partners for females (males) per unit time
σf (σm) Rate of symptoms development for 5 [4.5,5.5] A

exposed females (males)
ψf (ψm) Rate of development of persistent infection 0.5 [0.45,0.55] [30]

for females (males)
αf (αm) Progression rate from HPV to CIN (INM) 0.1 [0.09,0.11] [29]

for females (males)
gf (gm) Progression rate from CIN (INM) to cancer 0.08 [0.079, 0.081] [29]

for females (males)
rf1(rm1) Natural recovery rate of infected females 0.495 [0.446,0.545] [30]

(males) (0.9) [0.89, 0.91]
rf2(rm2) Natural recovery rate of females (males) 0.1 [0.09,0.11] [55]

with persistent HPV infection
rf3(rm3) Natural recovery rate of females with CIN 0.05 [0.045,0.055] [60]

(males with INM)
rf4(rm4) Natural recovery rate of females with 0.76 [0.68,0.84] [29]

cervical cancer (males with HPV-related
cancer)

θf (θm) Modification parameter for the 0.9 [0.8,1] [55]
infectiousness of females (males) with
persistent infection, relative to those in
the If (Im) class

δf Cancer-induced mortality rate for 0.01 [0.009,0.011] [55]
females

Table 3.2: Description of parameters of the basic HPV model (3.25).
Notation: ”A” denotes ”assumed”.
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Table 3.3: PRCC values of the parameters of the basic model (3.25) using R0 as output.
Baseline parameter values and ranges used are as given in Table 3.2.
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Figure 3.1: Schematic diagram of the basic HPV model (3.25).
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Figure 3.2: Solution profiles of the basic model (3.25), showing the total number of HPV-
infected individuals (females and males) as a function of time using various initial conditions.
Parameter values used are as given in Table 3.2, with cf = 1, βf = 0.2 and βm = 0.2 (so
that, R0 = 0.5159 < 1).
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Figure 3.3: Solution profiles of the basic model (3.25), showing the total number of HPV-
infected individuals (females and males) with θm = θf = 0 as a function of time using various
initial conditions. Parameter values used are as given in Table 3.2, with cf = 3, βf = 2.5
and βm = 2.5 (so that, R1 = 6.2549 > 1).
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Figure 3.4: Box plot of the basic reproduction number (R0) as a function of the number of
runs (NR) for the basic model (3.25), using the baseline parameter values and ranges given
in Table 3.2.
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Figure 3.5: Simulations of the basic model (3.25), showing the cumulative number of new
HPV cases for females, as a function of time, for various values of θf and θm. Parameter
values used are as given in Table 3.2 with (A) green color: θf = 1; blue color: θf = 0.75; red
color: θf = 0.5; magenta color: θf = 0.25; cyan color: θf = 0. (B) green color: θm = 1; blue
color: θm = 0.75; red color: θm = 0.5; magenta color: θm = 0.25; cyan color: θm = 0.
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Figure 3.6: Simulations of the basic model (3.25), showing the cumulative number of cancer-
induced mortality for females, as a function of time, for various values of θf and θm. Param-
eter values used are as given in Table 3.2 with (A) green color: θf = 1; blue color: θf = 0.75;
red color: θf = 0.5; magenta color: θf = 0.25; cyan color: θf = 0. (B) green color: θm = 1;
blue color: θm = 0.75; red color: θm = 0.5; magenta color: θm = 0.25; cyan color: θm = 0.
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Figure 3.7: Simulations of the basic model (3.25), showing the cumulative number of new
HPV cases for males, as a function of time, for various values of θm and θf . Parameter values
used are as given in Table 3.2 with (A) green color: θf = 1; blue color: θf = 0.75; red color:
θf = 0.5; magenta color: θf = 0.25; cyan color: θf = 0. (B) green color: θm = 1; blue color:
θm = 0.75; red color: θm = 0.5; magenta color: θm = 0.25; cyan color: θm = 0.
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Figure 3.8: Simulations of the basic model (3.25), showing the cumulative number of new
HPV cases (for females and males) as a function of time. Parameter values used are as
given in Table 3.2 (with the top ten ranked parameters modified accordingly). Green color:
baseline parameters as in Table 3.2 (R0 = 3.8607). Blue color: top-ten PRCC-ranked
parameters in Table 3.3 decreased by 10% (R0 = 2.9771). Red color: top-ten PRCC-ranked
parameters in Table 3.3 increased by 10%(R0 = 4.8612).
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Figure 3.9: Simulations of the basic model (3.25), showing the cumulative number of cervical
cancer cases in females, as a function of time. Parameter values used are as given in Table
3.2 (with the top ten PRCC-ranked parameters modified accordingly). Green color: baseline
parameters as in Table 3.2 (R0 = 3.8607). Blue color: top-ten PRCC-ranked parameters in
Table 3.3 decreased by 10% (R0 = 2.9771). Red color: top-ten PRCC-ranked parameters in
Table 3.3 increased by 10%(R0 = 4.8612).
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Figure 3.10: Simulations of the basic model (3.25), showing the cumulative number of HPV-
related cancer cases for males as a function of time. Parameter values used are as given in
Table 3.2 (with the top ten PRCC-ranked parameters modified accordingly). Green color:
baseline parameters as in Table 3.2 (R0 = 3.8607). Blue color: top-ten PRCC-ranked
parameters in Table 3.3 decreased by 10% (R0 = 2.9717). Red color: top-ten PRCC-ranked
parameters in Table 3.3 increased by 10%(R0 = 4.8612).
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Chapter 4

Model with Pap Screening

4.1 Introduction

In this Chapter, the basic HPV transmission model developed in Chapter 3 will be extended

and used to assess the community-wide impact of Pap screening on HPV transmission dy-

namics (and associated dysplasia) in the community. As stated in Chapter 1, the main

objective of Pap screening is the early detection of abnormal cells (i.e., pre-cancerous CIN

lesions) in females. Once detected, the lesions can be treated successfully (using, for instance,

loop electrosurgical excision procedure, which involves the removal of a cancerous tissue us-

ing a wire loop, or using laser therapy [15, 63, 69]). Cervical cancer screening consists of

two screening tests, namely cytology-based screening (known as the Pap test (or Pap smear

or Pap cytology)), and HPV testing [63]. Regular Pap screening is known to significantly

decrease the incidence of cervical cancer [35, 54].

Furthermore, owing to the relatively low coverage rates of the two licensed anti-HPV

vaccines (as discussed in Chapter 1), as well as their associated side-effects and high costs

[13, 54, 77], Pap screening remains the most realistic option for controlling the spread of

HPV in most populations (particularly, in developing nations). The aim of this chapter is

to develop, and rigorously analyze, a new model for theoretically assessing the impact of
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Pap screening on curtailing the spread of HPV (and related dysplasia) in a community. The

model to be designed is based on extending the basic model (3.25). The new model will be

used to answer Questions 3 (Part (b)), 4 and 5 raised in Section 1.3.

4.2 Mathematical Model

The new model for the transmission dynamics of HPV in a community, in the presence of the

Pap cytology screening, is designed by stratifying the total sexually-active female population

at time t (denoted by Nf (t)) into twelve mutually-exclusive sub-populations of susceptible fe-

males (Sf (t)), exposed (asymptomatic) females (Ef (t)), symptomatic (infected with clinical

symptoms of HPV) females (If (t)), females with persistent HPV infection (Pf (t)), females

with undetected low-grade CIN (Lfu(t)), females with detected low-grade CIN (Lfd(t)),

females with undetected high-grade CIN (Hfu(t)), females with detected high-grade CIN

(Hfd(t)), females with undetected cervical cancer (Cfu(t)), females with detected cervical

cancer (Cfd(t)), females who recovered from cervical cancer (Rfc(t)) and females who recov-

ered from HPV infection without developing cervical cancer (Rf (t)), so that

Nf (t) = Sf (t) + Ef (t) + If (t) + Pf (t) + Lfu(t) + Lfd(t) +Hfu(t) +Hfd(t)

+ Cfu(t) + Cfd(t) +Rfc(t) +Rf (t). (4.1)

Similarly, the total sexually-active male population at time t (denoted by Nm(t)) is sub-

divided into nine mutually-exclusive sub-populations of susceptible males (Sm(t)), exposed

(asymptomatic) males (Em(t)), symptomatic males (Im(t)), males with persistent HPV in-

fection (Pm(t)), males with low-grade INM (Lm(t)), males with high-grade INM (Hm(t)),

males with HPV-related cancer (Cm(t)), males who recovered from HPV-related cancer

(Rmc(t)) and males who recovered from HPV infection without developing HPV-related
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cancer (Rm(t)). Thus,

Nm(t) = Sm(t) +Em(t) + Im(t) + Pm(t) + Lm(t) +Hm(t) + Cm(t) +Rmc(t) +Rm(t). (4.2)

It follows from (4.1) and (4.2) that the total sexually-active (heterosexual) population, at

time t, is given by N(t) = Nf (t) +Nm(t). The model for the transmission dynamics of HPV

(and associated dysplasia) in a community, in the presence of Pap screening, is given by

the following deterministic system of non-linear differential equations (a flow diagram of the

model is depicted in Figure 4.1; the associated state variables and parameters are tabulated

in Tables 4.1, 4.2 and 4.3):
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

dSf
dt

= πf + ξfRf − (λm + µf )Sf ,

dEf
dt

= λmSf − (σf + µf )Ef ,

dIf
dt

= σfEf − (ψf + µf )If ,

dPf
dt

= (1− bf )ψfIf + df2gfLfu + qf4zfHfu − (αf + µf )Pf ,

dLfu
dt

= (1− kf )αfPf + qf2zfHfu − (gf + µf )Lfu,

dLfd
dt

= df3gfLfu − (r1 + µf )Lfd,

dHfu

dt
= [1− (df1 + df2 + df3)]gfLfu + jf2γfCfu − (zf + µf )Hfu,

dHfd

dt
= qf3zfHfu − (r2 + µf )Hfd,

dCfu
dt

= [1− (qf1 + qf2 + qf3 + qf4)]zfHfu − (γf + µf + δfu)Cfu,

dCfd
dt

= jf1γfCfu − (r3 + µf + δfd)Cfd,

dRfc

dt
= [1− (jf1 + jf2)]γfCfu + r3Cfd − µfRfc,

dRf

dt
= bfψfIf + kfαfPf + df1gfLfu + r1Lfd + qf1zfHfu + r2Hfd − (ξf + µf )Rf ,

M
al

es



dSm
dt

= πm + ξmRm − (λf + µm)Sm,

dEm
dt

= λfSm − (σm + µm)Em,

dIm
dt

= σmEm − (ψm + µm)Im,

dPm
dt

= (1− bm)ψmIm + dm2gmLm + qm3zmHm − (αm + µm)Pm,

dLm
dt

= (1− km)αmPm + qm2zmHm − (gm + µm)Lm,

dHm

dt
= [1− (dm1 + dm2)]gmLm + jmγmCm − (zm + µm)Hm,

dCm
dt

= [1− (qm1 + qm2 + qm3)]zmHm − (γm + µm)Cm,

dRmc

dt
= (1− jm)γmCm − µmRmc,

dRm

dt
= bmψmIm + kmαmPm + dm1gmLm + qm1zmHm − (ξm + µm)Rm.

(4.3)
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The derivation of the equations for the Pap screening model (4.3) is described in Appendix

E. The model (4.3) is an extension of the basic HPV transmission model (3.25) developed

in Chapter 3, by

(a) adding Pap screening for females (no Pap screening was considered in the basic model

(3.25));

(b) incorporating multiple CIN (Lfu, Lfd, Hfu and Hfd) and INM (Lm and Hm) stages

(a single CIN and INM stage was considered in the basic model (3.25)). Two cancer

classes (Cfu and Cfd) for undetected and detected females with cervical cancer, are

also added (only one cancer class for females is considered in the basic model (3.25));

(c) allowing for HPV transmission by individuals (females and males) in the exposed classes

as well as those in the various intraepithelial neoplasia stages (these were not considered

in the basic model (3.25));

(d) allowing for the loss of infection-acquired immunity by recovered individuals (these

were not considered in the basic model (3.25));

(e) allowing for the regression from cervical (for females) and other HPV-related cancers

(for males) to high-grade intraepithelial neoplasia stages and from low- and high-grade

intraepithelial neoplasia stages (for both females and males) to persistent infection

(these were not considered in the basic model (3.25)).

Furthermore, the Pap screening model (4.3) is an extension of many of the HPV models

that (also) incorporate Pap screening in the literature, such as those in [2, 3, 10, 28, 30, 55],

by, inter alia,

(i) incorporating the dynamics of exposed females (Ef ) and males (Em), and allowing for

HPV transmission by exposed males and females (this is not included in the models

developed in [10, 28, 30, 55]);
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(ii) incorporating the dynamics of individuals (females and males) in the pre-cancerous

intraepithelial neoplasia stages (CIN and INM), as well as the dynamics of HPV-related

cancers in males (which are not included in the models developed in [3, 10, 28, 30, 55];

it should, however, be stated that three CIN stages for females are included in the

model developed in [55]);

(iii) allowing for the loss of infection-acquired immunity by recovered individuals (this is

not included in the models considered in [10, 28, 30, 55]);

(iv) incorporating the regression from cervical (for females) and other HPV-related cancers

(for males) to high-grade intraepithelial neoplasia stages and from low- and high-grade

intraepithelial neoplasia stages to persistent infection (this is not included in the models

considered in [3, 10, 28, 30, 55]); it should, however, be stated that only regression

from high-grade intraepithelial neoplasia stage to persistent infection is included in the

model developed in [2]);

(v) allowing for HPV transmission by individuals (females and males) in the various in-

traepithelial neoplasia stages (this is not included in the models considered in [2, 3, 10,

28, 30, 55]).

4.2.1 Basic properties

The following result can be proved using the approach in Appendix A.

Theorem 4.1. Let the initial data be Sf (0) > 0, Ef (0) ≥ 0, If (0) ≥ 0, Pf (0) ≥ 0, Lfu(0) ≥

0, Lfd(0) ≥ 0, Hfu(0) ≥ 0, Hfd(0) ≥ 0, Cfu(0) ≥ 0, Cfd(0) ≥ 0, Rfc(0) ≥ 0, Rf (0) ≥ 0,

Sm(0) > 0, Em(0) ≥ 0, Im(0) ≥ 0, Pm(0) ≥ 0, Lm(0) ≥ 0, Hm(0) ≥ 0, Cm(0) ≥ 0, Rmc(0) ≥

0, Rm(0) ≥ 0. Then the solutions (Sf (t), Ef (t), If (t), Pf (t), Lfu(t), Lfd(t), Hfu(t), Hfd(t),

Cfu(t), Cfd(t), Rfc(t), Rf (t), Sm(t), Em(t), Im(t), Pm(t), Lm(t), Hm(t), Cm(t), Rmc(t), Rm(t)) of

the Pap screening model (4.3), with positive initial data, will remain positive for all time

t > 0.
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Furthermore, using the approach in Section 3.2.1, the following result can be established for

the Pap screening model (4.3).

Lemma 4.1. The closed set

Ds = Df ∪ Dm ⊂ R12
+ × R9

+,

with,

Df =

{
(Sf , Ef , If , Pf , Lfu, Lfd, Hfu, Hfd, Cfu, Cfd, Rfc, Rf ) ∈ R12

+ : Nf ≤
πf
µf

}
,

and,

Dm =

{
(Sm, Em, Im, Pm, Lm, Hm, Cm, Rmc, Rm) ∈ R9

+ : Nm ≤
πm
µm

}
,

is positively-invariant and attracting for the Pap screening model (4.3).

Hence, it is sufficient to study the dynamics of the Pap screening model (4.3) in the invariant

region Ds [37].

4.3 Asymptotic Stability of DFE

4.3.1 Local asymptotic stability

The DFE of the Pap screening model (4.3) is given by,

E0s = (S∗f , E
∗
f , I
∗
f , P

∗
f , L

∗
fu, L

∗
fd, H

∗
fu, H

∗
fd, C

∗
fu, C

∗
fd, R

∗
fc, R

∗
f , S

∗
m, E

∗
m, I

∗
m, P

∗
m, L

∗
m, H

∗
m,

C∗m, R
∗
mc, R

∗
m) =

(
πf
µf
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

πm
µm

, 0, 0, 0, 0, 0, 0, 0, 0

)
.
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Using the next generation operator method (as in Chapter 3), it follows that the associated

next generation matrices, Fs and Vs, are given, respectively, by:

Fs =

09×9 F1

F2 06×6

 and Vs =

 V1 06×6

010×10 V2

 ,
where (with 0n×n being the zero matrix of order n),

F1 =



βmcfS
∗
fηm

N∗
m

βmcfS
∗
f

N∗
m

βmcfS
∗
fθm

N∗
m

βmcfS
∗
fθm

N∗
m

βmcfS
∗
fθmθmh

N∗
m

0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



,

F2 =



βfcfηf βfcf βfcfθf 0 βfcf βfcfθfθfh 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0



,
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V1 =



h1 0 0 0 0 0 0 0 0

−σf h2 0 0 0 0 0 0 0

0 −(1− bf )ψf h3 −df2gf 0 −qf4zf 0 0 0

0 0 −(1− kf )αf h4 0 −qf2zf 0 0 0

0 0 0 −df3gf h5 0 0 0 0

0 0 0 −b1 0 h6 0 −jf2γf 0

0 0 0 0 0 −qf3zf h7 0 0

0 0 0 0 0 −b2 0 h8 0

0 0 0 0 0 0 0 −jf1γf h9



,

V2 =



h10 0 0 0 0 0

−σm h11 0 0 0 0

0 −(1− bm)ψm h12 −dm2gm −qm3zm 0

0 0 −(1− km)αm h13 −qm2zm 0

0 0 0 −b3 h14 −jmγm

0 0 0 0 −b4 h15


,

with, b1 = [1− (df1 +df2 +df3)]gf , b2 = [1− (qf1 + qf2 + qf3 + qf4)], b3 = [1− (dm1 +dm2)]gm,

b4 = [1 − (qm1 + qm2 + qm3)]zm, h1 = σf + µf , h2 = ψf + µf , h3 = αf + µf , h4 = gf + µf ,

h5 = r1 +µf , h6 = zf +µf , h7 = r2 +µf , h8 = γf +µf +δfu, h9 = r3 +µf +δfd, h10 = σm+µm,

h11 = ψm + µm, h12 = αm + µm, h13 = gm + µm, h14 = zm + µm and h15 = γm + µm.

It follows from [80] that the effective reproduction number (i.e., reproduction number of

the model in the presence of Pap screening) of the model (4.3) is given by

R0s = ρ(FV −1) =
√
Rf Rm, (4.4)

where, Rf = ρ(F1V
−1

2 ) = A1

A2
and Rm = ρ(F2V

−1
1 ) = B1

B2
and,
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A1 = βmcfπfµm(a3b3c10h15σmθm + a3b4c11h13σmθm − a3h13h14h15σmθm + a4b3c9ηmh11h15

−a4b4c8c11ηmh11 + a4c8ηmh11h14h15 + b3c10ηmh11h12h15 + b4c11ηmh11h12h13

−ηmh11h12h13h14h15 + a4b3c9h15σm − a4b4c8c11σm + a4c8h14h15σm + b3c10h12h15σm

+ b4c11h12h13σm − h12h13h14h15σm),

A2 = µfπmh10h11(a4b3c9h15 − a4b4c8c11 + a4c8h14h15 + b3c10h12h15 + b4c11h12h13

− h12h13h14h15),

B1 = βfcf (a1b1c3h8σfθf + a1b2c5h4σfθf − a1h4h6h8σfθf + a2b1c2ηfh2h8 − a2b2c1c5ηfh2

+a2c1ηfh2h6h8 + b1c3ηfh2h3h8 + b2c5ηfh2h3h4 − ηfh2h3h4h6h8 + a2b1c2h8σf

− a2b2c1c5σf + a2c1h6h8σf + b1c3h3h8σf + b2c5h3h4σf − h3h4h6h8σf ),

B2 = (a2b1c2h8 − a2b2c1c5 + a2c1h6h8 + b1c3h3h8 + b2c5h3h4 − h3h4h6h8)h1h2,

with a1 = (1− bf )ψf , a2 = (1− kf )αf , a3 = (1− bm)ψm, a4 = (1− km)αm, c1 = df2gf , c2 =

qf4zf , c3 = qf2zf , c4 = df3gf , c5 = jf2γf , c6 = qf3zf , c7 = jf1γf , c8 = dm2gm, c9 = qm3zm, c10 =

qm2zm, c11 = jmγm. It can be shown that the quantities A1, A2, B1 and B2 are positive (the

calculations are lengthy, thus, not reported here). Hence, the reproduction number, R0s, is

positive. The result below follows from Theorem 2 of [80].

Lemma 4.2. The DFE, E0s, of the Pap screening model (4.3) is LAS if R0s < 1, and

unstable if R0s > 1.

As in Chapter 3, the epidemiological consequence of Lemma 4.2 is that the use of Pap

screening in the community could lead to the effective control (or elimination) of HPV

(when R0s < 1) if the initial sizes of the sub-populations of the Pap screening model (4.3)

are in the basin of attraction of the DFE (E0s). The associated threshold quantity, R0s,

represents the average number of secondary HPV infections generated by one infected male

(female) in a susceptible male (female) population where a certain fraction of susceptible
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females undergo routine Pap screening [37].

4.3.2 Global asymptotic stability

Consider the Pap screening model (4.3). The global asymptotic stability property of its DFE

(E0s) is established below.

Theorem 4.2. The DFE, E0s, of the Pap screening model (4.3) is GAS in Ds whenever

R0s < 1.

Proof. The proof of Theorem 4.2 is given in Appendix F.

The epidemiological implication of Theorem 4.2 is that HPV will be eliminated from the

community whenever the community-wide implementation of the routine Pap screening pro-

gram is effective enough to bring down (and maintain) the associated effective reproduction

threshold (R0s) to a value less than unity. Figure 4.2 shows solution profiles of the model

(4.3) converging to the DFE (E0s) when R0s < 1 (in line with Theorem 4.2).

4.4 Uncertainty and Sensitivity Analysis

As in Chapter 3, the effect of uncertainties in the estimates of the parameter values of

the Pap screening model (4.3) is accounted for using Latin Hypercube Sampling (based on

the baseline parameter values and ranges tabulated in Tables 4.2 and 4.3). Furthermore,

sensitivity analysis is carried out using PRCC.

Figure 4.3 depicts the box plots of the effective reproduction number (R0s), as a function

of the LHS runs carried out (NR = 1000), from which it is evident that the distribution

of R0s, for the Pap screening model (4.3), lies in the range R0s ∈ [1.45, 2.70] (which is in

line with those reported in [22, 30, 55]). Thus, although Pap screening reduces the range

of the basic reproduction number (R0) of the basic HPV transmission model (3.25) (from

R0∈ [2.80, 4.95] to R0s∈ [1.45, 2.70]), the community-wide implementation of a routine Pap
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screening program for females is insufficient (albeit it greatly reduces HPV burden) to lead

to the effective control of HPV in the community (since the distribution of R0s > 1, and

the disease will persist in this case). Table 4.4 depicts the PRCC values of the parameters

of the Pap screening model (4.3), from which it is clear that the most dominant parameters

(that govern the dynamics of the Pap screening model (4.3), with respect to the threshold

quantity, R0s) are the average number of female sexual partners for males per unit time (cf ),

the fraction of symptomatic females (males) who recovered naturally from HPV (bf (bm)),

the infection probability for individuals (βm and βf ), the recruitment rate of new sexually-

active individuals (πf and πm), the average duration of sexual activity (µf and µm) and the

transition rate out of the If (Im) class (ψf (ψm)).

The effect of the aforementioned eleven dominant (PRCC-ranked) parameters is further

assessed by simulating the Pap screening model (4.3) for the following two scenarios:

(i) the baseline value of each of the top-eleven PRCC-ranked parameters in Table 4.4 is

increased by 10%;

(ii) the baseline value of each of the top-eleven PRCC-ranked parameters in Table 4.4 is

decreased by 10%.

It follows from Figure 4.4 that an increase (decrease) in the baseline values of these top

PRCC-ranked parameters lead to a corresponding increase (decrease) in the numerical simu-

lation results obtained (cumulative number of HPV cases over a 10-year period), confirming

the sensitivity of the simulation results on these parameters. Figures 4.5 and 4.6 show sim-

ilar sensitivities of these parameters on the cumulative cervical cancer (for females) and

HPV-related cancers (for males) cases, respectively.

The effect of the HPV transmission by individuals in the pre-cancerous stages (both CIN

and INM) on the dynamics of HPV is assessed by simulating the Pap screening model (4.3)

in the presence, and absence, of such transmission. Figure 4.7 shows that HPV transmission

by individuals with CIN and INM increases (in the long run) the cumulative number of
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HPV cases. Thus, these simulations suggests that HPV transmission models that do not

incorporate HPV transmission by individuals in the pre-cancerous (CIN and INM) stages

may underestimate HPV (and, consequently, cancer) burden in the community.

A contour plot of the effective reproduction number (R0s), as a function of the frac-

tion of symptomatic females who recovered naturally from HPV (bf ) and the fraction of

symptomatic males who recovered naturally from HPV (bm), is depicted in Figure 4.8. As

expected, the plot shows a decrease in R0s values with increasing values of the fractions bf

and bm. Furthermore, it shows that, based on the parameter values in Tables 4.2 and 4.3 used

in the simulations, even if 100% of symptomatic females and males recover naturally from

HPV, the disease will still persist in the population (since such recovery fails to reduce the

effective reproduction number, R0s, to a value less than unity; which is needed to eliminate

the disease, in line with Theorem 4.2).

Finally, the effect of Pap screening on the cumulative number of cervical cancer cases is

assessed by simulating the model (4.3) with different values of the fraction of females with

CIN detected. Figure 4.9 confirms the effectiveness of Pap screening on minimizing cervical

cancer cases. For example, while detecting 25% of females with CIN leads to about 65%

reduction of cervical cancer cases in the community over a 10-year period, detecting 50% of

females with CIN results in a 95% reduction of cervical cancer in the community over the

same time period.

4.5 Summary of Chapter

A new deterministic model for the transmission dynamics of HPV and related cancers in

a community, where Pap cytology screening is administrated for females, is designed. The

resulting 21-dimensional Pap screening model extends numerous other HPV transmission

models in the literature by, for instance, incorporating the dynamics of individuals (females

and males) in the pre-cancerous (CIN and INM) and cancerous stages. Furthermore, it
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allows for the loss of infection-acquired immunity by recovered individuals, and incorporates

the regression from cervical (for females) and other HPV-related cancers (for males) to high-

grade intraepithelial neoplasia stages (and from low- and high-grade intraepithelial neoplasia

stages to persistent infection). Some of the main theoretical and numerical results obtained

are summarized below:

i) The disease-free equilibrium of the Pap screening model (4.3) is locally- and globally-

asymptotically stable whenever the associated reproduction number is less than unity.

Thus, the community-wide control or elimination of HPV (and related dysplasia) is

feasible if the community-wide implementation of Pap screening could reduce (and

maintain) the associated reproduction number (R0s) to a value less than unity.

ii) The parameters that most influence the disease transmission dynamics (with respect

to the effective reproduction threshold, R0s) are:

(a) the average number of female sexual partners for males per unit time (cf );

(b) the fraction of symptomatic females (males) who recovered naturally from HPV

(bf (bm));

(c) the infection probability for females and males (βf and βm);

(d) the recruitment rate of new sexually-active individuals (πf and πm);

(e) the average duration of sexual activity (µf and µm);

(f) the average duration of sexual activity and the transition rate out of the If (Im)

class (ψf (ψm)).

iii) Numerical simulations of the Pap screening model (4.3) suggest that:

(a) HPV transmission by individuals with CIN and INM increases (in the long run)

the cumulative number of new HPV cases;
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(b) Pap screening is very effective in minimizing cervical cancer cases. For instance,

detecting 50% of females with CIN results in a 95% reduction of cervical cancer

cases in the community over a 10-year period;

(c) Pap screening alone is insufficient to lead to effective control of HPV in the com-

munity (since it fails to reduce R0s to a value less than unity);

(d) HPV transmission models that do not include disease transmission by individuals

in the pre-cancerous stages may underestimate HPV-associated burden in the

community.

Items (i) to (iii) provide answers to Questions 3 (Part (b)), 4 and 5 raised in Section 1.3.
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Variable Description

Sf (t) Population of susceptible females
Ef (t) Population of exposed (asymptomatic) females
If (t) Population of symptomatic (infected with clinical symptoms of HPV) females
Pf (t) Population of females with persistent HPV infection
Lfu(t) Population of females with undetected low-grade CIN
Lfd(t) Population of females with detected low-grade CIN
Hfu(t) Population of females with undetected high-grade CIN
Hfd(t) Population of females with detected high-grade CIN
Cfu(t) Population of females with undetected cervical cancer
Cfd(t) Population of females with detected cervical cancer
Rfc(t) Population of females who recovered from cervical cancer
Rf (t) Population of females who recovered from HPV infection without developing

cervical cancer

Sm(t) Population of susceptible males
Em(t) Population of exposed (asymptomatic) males
Im(t) Population of symptomatic males
Pm(t) Population of males with persistent HPV infection
Lm(t) Population of males with low-grade INM
Hm(t) Population of males with high-grade INM
Cm(t) Population of males with HPV-related cancer
Rmc(t) Population of males who recovered from HPV-related cancer
Rm(t) Population of males who recovered from HPV infection without developing

HPV-related cancer

Table 4.1: Description of the state variables of the Pap screening model (4.3).
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Parameter Description Baseline Value Ranges Ref.
per year

πf (πm) Recruitment rate of new sexually-active 10000 [9000,11000] [66]
females (males)

1
µf

( 1
µm) Average duration of sexual activity 65 [59.5,71.5] [9]

for females (males)
βm(βf ) Infection probability for females (males) 0.4/contact [0.34,0.44] [12]

cm(cf ) Average number of male (female) sexual 2 (2
Nf

Nm
) [1.8,2.2] [66]

partners for females (males) per unit time
ξf (ξm) Rate of loss of infection-acquired 0.5 [0.45,0.55] [49]

immunity for females (males)
σf (σm) Rate of symptoms development for 5 [4.5,5.5] A

exposed females (males)
bf (bm) Fraction of symptomatic females (males) 0.95 [0.75,0.95] [71]

who recover naturally from HPV
(but do not develop persistent infection)

ψf (ψm) Transition rate out of the If (Im) class 0.5 [0.45,0.55] [30]
for females (males)

kf (km) Fraction of symptomatic females (males) 0.5 [0.45,0.55] [55]
who recover naturally from persistent
infection with HPV

αf (αm) Transition rate out of the Pf (Pm) class 0.25 [0.2,0.3] [29]
for females (males)

df1(dm1) Fraction of infected females (males) with 0.04 [0.01,0.1] [55]
low-grade low-grade CIN (INM ) who
recover naturally from HPV infection

df2(dm2) Fraction of females (males) with undetected 0.28 [0.2,0.35] [29]
low-grade CIN (INM) who revert to the
Pf ] (Pm) class

df3 Fraction of females with low-grade CIN 0.64 [0.6,0.7] [55]
who is detected

gf (gm) Transition rate out of Lfu (Lm) class 1.18 [1,1.5] [55]
for females (males)

r1 Recovery rate of detected females with 0.13 [0.1,0.2] [60]
low-grade CIN

qf1(qm1) Fraction of infected females (males) with 0.24 [0.2,0.3] [55]
high-grade CIN 2/3 (INM 2/3) who recover
naturally from HPV infection

qf2(qm2) Fraction of females (males) with undetected 0.04 [0.03,0.05] [60]
high-grade CIN 2/3 (INM 2/3) who revert
to the Lfu (Lm) class

Table 4.2: Description of parameters of the Pap screening model (4.3).
Notation: ”A” denotes ”assumed”.
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Parameter Description Baseline Value Ranges Ref.
per year

qf3 Fraction of females with high-grade 0.47 [0.4,0.55] [55]
CIN 2/3 who is detected

qf4(qm3) Regression rate from the Hfu (Hm) class 0.17 [0.1,0.25] [43]
to Pf (Pm) class

zf (zm) Transition rate out of the Hfu(Hm) class 2.08 [2,2.2] [55]
for females (males)

r2 Recovery rate of detected females with 0.13 [0.1,0.2] [60]
high-grade CIN 2/3

jf1 Fraction of females with cervical cancer 0.62 [0.5,0.7] [52]
who is detected

jf2(jm) Fraction of females (males) with cervical 0.23 [0.15,0.3] [29]
(HPV-related) cancer who revert to the
Hfu (Hm) class

γf (γm) Transition rate out of the Cfu(Cm) class 1.31 [1.2,1.4] [52]
for females (males)

r3 Recovery rate of females with detected 0.75 [0.65,0.85] [29]
cancer

ηf (ηm) Modification parameter for infectiousness 0.5 [0.45,0.55] A
of exposed females (males) in the Ef (Em)
class, relative to those in the If (Im) class

θf (θm) Modification parameter for infectiousness 0.9 [0.8,1] [55]
of females (males) in the Pf , Lfu, Lfd,
Hfu, Hfd (Pm, Lm, Hm) classes, relative
to those in the Ef , If (Em, Im) classes

θfh(θmh) Modification parameter for infectiousness 1.5 [1.35,1.65] A
of females (males) in the Hfu (Hm) class,
relative to those in the Pf , Lfu (Pm, Lm)
classes

δfu(δfd) Cancer-induced mortality rate for 0.01 (0.001) [0.009,0.02] [55]
undetected (detected) females ([0.0009,0.002])

Table 4.3: Description of parameters of the Pap screening model (4.3) continued.
Notation: ”A” denotes ”assumed”.
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Parameter PRCC value

cf 0.9123
bm −0.8571
bf −0.8494
βf 0.8133
βm 0.8128
πm −0.7373
πf 0.7281
µf −0.7258
µm 0.7098
ψm −0.6151
ψf −0.5868
αm −0.4380
αf −0.4110
θm 0.2732
θf 0.2257
dm2 0.1199
qm3 0.0986
ηf 0.0984
df2 0.0773
gm 0.0690
jm 0.0668
qf4 −0.0563
km −0.0473
r3 0.0472
qm1 0.0376
qm2 −0.0355

Parameter PRCC value

r2 0.0348
σm −0.0340
gf −0.0300
kf −0.0274
jf1 −0.0269
ξf 0.0262
df3 0.0223
ξm −0.0200
r1 0.0192
δfd 0.0182
θfh 0.0178
jf2 0.0173
ηm 0.0166
df1 −0.0152
dm1 −0.0141
δfu 0.0123
zm −0.0101
γm −0.0090
zf −0.0068
qf3 −0.0066
γf 0.0059
σf 0.0051
θmh −0.0028
qf1 0.0010
qf2 0.0007

Table 4.4: PRCC values of the parameters of the Pap screening model (4.3), using R0s as
output. Baseline parameter values and ranges used are as given in Tables 4.2 and 4.3.
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Figure 4.1: Schematic diagram of the Pap screening model (4.3).
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Figure 4.2: Solution profiles of the Pap screening model (4.3), showing the total number
of HPV-infected individuals (females and males) as a function of time, using various initial
conditions. Parameter values used are as given in Tables 4.2 and 4.3, with cf = 1.3, βm = 0.25
and βf = 0.25 (so that, R0s = 0.8111 < 1).
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Figure 4.3: Box plot of the effective reproduction number (R0s) as a function of the number
of runs (NR) for the Pap screening model (4.3), using the parameter values and ranges given
in Tables 4.2 and 4.3.
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Figure 4.4: Simulations of the Pap screening model (4.3), showing the cumulative number of
new HPV cases (for females and males) as a function of time. Parameter values used are as
given in Tables 4.2 and 4.3 (with the top eleven ranked parameters modified accordingly).
Green color: baseline parameters as in Tables 4.2 and 4.3 (R0s=2.1019). Blue color: top-
eleven PRCC-ranked parameters in Table 4.4 decreased by 10% (R0s=1.8537). Red color:
top-eleven PRCC-ranked parameters in Table 4.4 increased by 10% (R0s=2.1734).
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Figure 4.5: Simulations of the Pap screening model (4.3), showing the cumulative number of
cervical cancer cases as a function of time. Parameter values used are as given in Tables 4.2
and 4.3 (with the top eleven PRCC-ranked parameters modified accordingly). Green color:
baseline parameters as in Tables 4.2 and 4.3 (R0s=2.1019). Blue color: top-eleven PRCC-
ranked parameters in Table 4.4 decreased by 10% (R0s=1.8537). Red color: top-eleven
PRCC-ranked parameters in Table 4.4 increased by 10% (R0s=2.1734).
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Figure 4.6: Simulations of the Pap screening model (4.3), showing the cumulative number of
HPV-related cancer cases for males as a function of time. Parameter values used are as given
in Tables 4.2 and 4.3 (with the top eleven PRCC-ranked parameters modified accordingly).
Green color: baseline parameters as in Tables 4.2 and 4.3 (R0s=2.1019). Blue color: top-
eleven PRCC-ranked parameters in Table 4.4 decreased by 10% (R0s=1.8537). Red color:
top-eleven PRCC-ranked parameters in Table 4.4 increased by 10% (R0s=2.1734).
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Figure 4.7: Simulations of the Pap screening model (4.3), showing the cumulative number of
new HPV cases (for females and males) as a function of time in the presence (green color) and
absence (blue color) of the HPV transmission by individuals in the pre-cancerous stages (both
CIN and INM). Parameter values used are as given in Tables 4.2 and 4.3 (R0s = 2.1019 > 1).
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Figure 4.8: Simulations of the Pap screening model (4.3), showing a counter plot of R0s, as
a function of the fraction of symptomatic females who recovered naturally from HPV (bf )
and the fraction of symptomatic males who recovered naturally from HPV (bm). Parameter
values used are as given in Tables 4.2 and 4.3.
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Figure 4.9: Simulations of the Pap screening model (4.3), showing the cumulative number
of cervical cancer cases for females as a function of time. Green color: 0% of females with
CIN detected (R0s=2.1201). Blue color: 25% of females with CIN detected (R0s=2.1118).
Red color: 50% of females with CIN detected (R0s=2.1051).
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Appendix A

Proof of Theorem 3.1

Proof. Let

t1 = sup { t > 0 : Sf (0) > 0, Ef (0) ≥ 0, If (0) ≥ 0, Pf (0) ≥ 0, Qf (0) ≥ 0, Cf (0) ≥ 0,

Rfc(0) ≥ 0, Rf (0) ≥ 0, Sm(0) > 0, Em(0) ≥ 0, Im(0) ≥ 0, Pm(0) ≥ 0,

Qm(0) ≥ 0, Cm(0) ≥ 0, Rmc(0) ≥ 0, Rm(0) ≥ 0} > 0.

The first equation of the basic model (3.25) can be re-written as

d

dt

{
Sf (t) exp

[∫ t

0

λm(u)du

]}
≥ πm exp

[∫ t

0

λm(u)du+ µm(t)

]
,

so that,

Sf (t1) exp

[∫ t1

0

λm(u)du+ µf )t1

]
− Sf (0) =

∫ t1

0

πf exp

[∫ z

0

λm(u)du+ µfz

]
dz.
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Thus,

Sf (t1) ≥ Sf (0) exp

[
−
∫ t1

0

λm(u)du− µf t1
]

+ exp

[
−
∫ t1

0

λm(u)du− µf t1
]

×
∫ t1

0

πf exp

[∫ z

0

λm(u)du+ (ξ + µf )z

]
dz > 0.

Similarly, it can be shown that Ef (t) ≥ 0, If (t) ≥ 0, Pf (t) ≥ 0, Qf (t) ≥ 0, Cf (t) ≥ 0,

Rfc(t) ≥ 0, Rf (t) ≥ 0, Sm(t) ≥ 0, Em(t) ≥ 0, Im(t) ≥ 0, Pm(t) ≥ 0, Qm(t) ≥ 0, Cm(t) ≥ 0,

Rmc(t) ≥ 0 and Rm(t) ≥ 0 for all time t > 0. Hence, all solutions of the basic model (3.25)

remain positive for all non-negative initial conditions.
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Appendix B

Proof of Theorem 3.2

Proof. The proof is based on using a Comparison Theorem [51]. It is worth mentioning, first

of all, that since the off-diagonal entries of the Jacobian matrix of the infected components

of the basic model (3.25), at the DFE (E0), are non-negative, the system (3.25) satisfies the

Type K condition [51]. Hence, comparison theorem can be used.

Let R0 < 1 (so that the DFE, E0, of the basic model (3.25) is LAS, in line with Lemma

3.2). The infected components of the model (3.25) can be re-written as:

dx

dt
= (F − V)x− Jx, (B.1)

where,

x = [Ef (t), If (t), Pf (t), Qf (t), Cf (t), Rfc(t), Rf (t), Em(t), Im(t), Pm(t), Qm(t),

Cm(t), Rmc(t), Rm(t)]T ,

where the matrices F and V are as defined in Section 3.3, and

J =

[
1− µfSf (t)

πf

]
J1 +

[
1− µmSm(t)

πm

]
J2,

where,
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J1 =

 07×7 J1

07×7 07×7

 , J2 =

 07×7 07×7

J2 07×7

 ,

with,

J1 =



0
βmcfπfµm
πmµf

βmcfθmπfµm
πmµf

0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



, J2 =



0 βfcf βfcfθf 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



.

It is worth noting that J1 and J2 are non-negative matrices. Furthermore, since, for all

t ≥ 0 in D, Sf (t) ≤ Nf (t) ≤ πf
µf

and Sm(t) ≤ Nm(t) ≤ πm
µm
, it follows that,

µfSf (t)

πf
≤

1 and µmSm(t)
πm

≤ 1. Hence, J is a non-negative matrix. Thus, it follows, from (B.1), that

dx

dt
≤ (F − V)x.. (B.2)

Using the fact that the eigenvalues of the matrix F − V all have negative real parts when

R0 < 1 (based on the local asymptotic stability result given in Lemma 3.2), it follows that the

linear differential inequality system (B.2) is stable whenever R0 < 1. Hence, by Comparison

Theorem [51],

lim
t→∞

(Ef (t), If (t), Pf (t), Qf (t), Cf (t), Rfc(t), Rf (t), Em(t), Im(t), Pm(t), Qm(t), Cm(t),

Rmc(t), Rm(t)) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

Substituting Ef (t) = If (t) = Pf (t) = Qf (t) = Cf (t) = Rfc(t) = Rf (t) = Em(t) = Im(t) =
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Pm(t) = Qm(t) = Cm(t) = Rmc(t) = Rm(t) = 0 into the first and ninth equations of the

model (3.25) shows that Sf (t)→ S∗f and Sm(t)→ S∗m as t→∞ (for R0 < 1). Thus,

lim
t→∞

(Sf (t), Ef (t), If (t), Pf (t), Qf (t), Cf (t), Rfc(t), Rf (t), Sm(t)Em(t), Im(t), Pm(t),

Qm(t), Cm(t), Rmc(t), Rm(t)) = E0.
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Appendix C

Proof of Theorem 3.4

Proof. LetR0 > 1 (so that the unique EEP (E1) of the basic model (3.25) exists, by Theorem

3.3), δf = 0 (hence, Nf (t) = N∗f =
πf
µf

at steady-state) and ∆ 6= 0. Thus (using N∗f =
πf
µf

),

and Sf (t) = N∗f (t) − Ef (t) − If (t) − Pf (t) − Qf (t) − Cf (t) − Rfc(t) − Rf (t) and Sm(t) =

N∗m(t)− Em(t)− Im(t)− Pm(t)− Qm(t)− Cm(t)− Rmc(t)− Rm(t), it is sufficient to study

the following limiting system (instead of the system (3.25)):
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dEf
dt

= λm(N∗f − Ef − If − Pf −Qf − Cf −Rfc −Rf )− (σf + µf )Ef ,

dIf
dt

= σfEf − (rf1 + ψf + µf )If ,

dPf
dt

= ψfIf − (rf2 + αf + µf )Pf ,

dQf

dt
= αfPf − (rf3 + gf + µf )Qf ,

dCf
dt

= gfQf − (rf4 + µf + δf )Cf ,

dRfc

dt
= rf4Cf − µfRfc,

dRf

dt
= rf1If + rf2Pf + rf3Qf − µfRf , (C.1)

dEm
dt

= λf (N
∗
m − Em − Im − Pm −Qm − Cm −Rmc −Rm)− (σm + µm)Em,

dIm
dt

= σmEm − (rm1 + ψm + µm)Im,

dPm
dt

= ψmIm − (rm2 + αm + µm)Pm,

dQm

dt
= αmPm − (rm3 + gm + µm)Qm,

dCm
dt

= gmQm − (rm4 + µm)Cm,

dRmc

dt
= rm4Cm − µmRmc,

dRm

dt
= rm1Im + rm2Pm + rm3Qm − µmRm.

Consider, next, the model (C.1) with R0 > 1. The proof is based on showing that the

linearization of the model (C.1), around the associated EEP (E1), has no solution of the

form [31, 32, 76]

Z̄(t) = Z̄0e
wt, (C.2)

with Z̄0 = (Z1, Z2, · · · , Z14), Zi ∈ C, w ∈ C, and Re(w) ≥ 0. The consequence of this is

that the eigenvalues of the characteristic polynomial associated with the linearized version

of model (C.1) will have negative real part (in which case, the EEP (E1) is LAS).

88



Let E∗∗f , I
∗∗
f , P

∗∗
f , Q

∗∗
f , C

∗∗
f , R

∗∗
fc, R

∗∗
f , E

∗∗
m , I

∗∗
m , P

∗∗
m , Q

∗∗
m , C

∗∗
m , R

∗∗
mc, R

∗∗
m denote the coordinates

of the endemic equilibrium, EEP . Substituting the solution of the form (C.2), into the lin-

earized system of (C.1) around (E1), gives the following system of linear equations:

wZ1 = −(λ∗∗m + h1)Z1 − λ∗∗mZ2 − λ∗∗mZ3 − λ∗∗mZ4 − λ∗∗mZ5 − λ∗∗mZ6 − λ∗∗mZ7

+A∗∗1 Z9 + θmA
∗∗
1 Z10,

wZ2 = σfZ1 − h2Z2,

wZ3 = ψfZ2 − h3Z3,

wZ4 = αfZ3 − h4Z4,

wZ5 = gfZ4 − h5Z5,

wZ6 = rf4Z5 − µfZ6,

wZ7 = rf1Z2 + rf2Z3 + rf3Z4 − µfZ7, (C.3)

wZ8 = A∗∗2 Z2 + θfA
∗∗
2 Z3 − (λ∗∗f + h6)Z8 − λ∗∗f Z9 − λ∗∗f Z10 − λ∗∗f Z11 − λ∗∗f Z12

−λ∗∗f Z13 − λ∗∗f Z14,

wZ9 = σmZ8 − h7Z9,

wZ10 = ψmZ9 − h8Z10,

wZ11 = αmZ10 − h9Z11,

wZ12 = gmZ11 − h10Z12,

wZ13 = rm4Z12 − µmZ13,

wZ14 = rm1Z9 + rm2Z10 + rm3Z11 − µmZ14,

where,

A∗∗1 =
βmcf (N

∗
f − E∗∗f − I∗∗f − P ∗∗f −Q∗∗f − C∗∗f −R∗∗fc −R∗∗f )

N∗∗m
,

A∗∗2 =
βfcf (N

∗
m − E∗∗m − I∗∗m − P ∗∗m −Q∗∗m − C∗∗m −R∗∗mc −R∗∗m )

N∗∗m
.
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Solving for Z2 from the second equation of and also for Z9 from the ninth equation of (C.3)

and substituting the results into the remaining equations of (C.3), gives the following system

{
1 +

1

h1

[
w + λ∗∗m

(
1 +

σf
w + h2

)]}
Z1 = −λ

∗∗
m

h1

Z3 −
λ∗∗m
h1

Z4 −
λ∗∗m
h1

Z5 −
λ∗∗m
h1

Z6 −
λ∗∗m
h1

Z7

+
A∗∗1
h1

Z9 +
θmA

∗∗
1

h1

Z10,(
1 +

w

h2

)
Z2 =

σf
h2

Z1,(
1 +

w

h3

)
Z3 =

ψf
h3

Z2,(
1 +

w

h4

)
Z4 =

αf
h4

Z3,(
1 +

w

h5

)
Z5 =

gf
h5

Z4,(
1 +

w

µf

)
Z6 =

rf4

µf
Z5,(

1 +
w

µf

)
Z7 =

rf1

µf
Z2 +

rf2

µf
Z3 +

rf3

µf
Z4,{

1 +
1

h6

[
w + λ∗∗f

(
1 +

σm
w + h7

)]}
Z8 =

A∗∗2
h6

Z2 +
θfA

∗∗
2

h6

Z3 −
λ∗∗f
h6

Z10 −
λ∗∗f
h6

Z11 −
λ∗∗f
h6

Z12

−
λ∗∗f
h6

Z13 −
λ∗∗f
h6

Z14,(
1 +

w

h7

)
Z9 =

σm
h7

Z8,(
1 +

w

h8

)
Z10 =

ψm
h8

Z9,(
1 +

w

h9

)
Z11 =

αm
h9

Z10,(
1 +

w

h10

)
Z12 =

gm
h10

Z11,(
1 +

w

µm

)
Z13 =

rm4

µm
Z12,(

1 +
w

µm

)
Z14 =

rm1

µm
Z9 +

rm2

µm
Z10 +

rm3

µm
Z11.

Adding the first, third, fourth, fifth, sixth and seventh and then the eighth, tenth, eleventh,
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twelfth, thirteenth and fourteenth equations of (C.3), and finally moving all the negative

terms to the left-hand sides gives

[1 + F1(w)]Z1 + [1 + F3(w)]Z3 + [1 + F4(w)]Z4 + [1 + F5(w)]Z5 + [1 + F6(w)]Z6

+ [1 + F7(w)]Z7 =
(
HZ̄

)
1

+
(
HZ̄

)
3

+
(
HZ̄

)
4

+
(
HZ̄

)
5

+
(
HZ̄

)
6

+
(
HZ̄

)
7
,

[1 + F2(w)]Z2 =
(
HZ̄

)
2
, (C.4)

[1 + F8(w)]Z8 + [1 + F10(w)]Z10 + [1 + F11(w)]Z11 + [1 + F12(w)]Z12 + [1 + F13(w)]Z13

+ [1 + F14(w)]Z14 =
(
HZ̄

)
8

+
(
HZ̄

)
10

+
(
HZ̄

)
11

+
(
HZ̄

)
12

+
(
HZ̄

)
13

+
(
HZ̄

)
14
,

[1 + F9(w)]Z9 =
(
HZ̄

)
9
,

where,

F1(w) =
1

h1

[
w + λ∗∗m

(
1 +

σf
w + h2

)]
, F2(w) =

w

h2

,

F3(w) =
1

h3

(
w +

h3λ
∗∗
m

h1

)
, F4(w) =

1

h4

(
w +

h4λ
∗∗
m

h1

)
,

F5(w) =
1

h5

(
w +

h5λ
∗∗
m

h1

)
, F6(w) =

1

µf

(
w +

µfλ
∗∗
m

h1

)
,

F7(w) =
1

µf

(
w +

µfλ
∗∗
m

h1

)
, F8(w) =

1

h6

[
w + λ∗∗f

(
1 +

σm
w + h7

)]
,

F9(w) =
w

h7

, F10(w) =
1

h8

(
w +

h8λ
∗∗
f

h6

)
,

F11(w) =
1

h9

(
w +

h9λ
∗∗
f

h6

)
, F12(w) =

1

h10

(
w +

h10λ
∗∗
f

h6

)
,

F13(w) =
1

µm

(
w +

µmλ
∗∗
f

h6

)
, F14(w) =

1

µm

(
w +

µmλ
∗∗
f

h6

)
,

with,
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H =



0 0 0 0 0 0 0 0
A∗∗

1

h1

θmA∗∗
1

h1
0 0 0 0

σf
h2

0 0 0 0 0 0 0 0 0 0 0 0 0

0
ψf

h3
0 0 0 0 0 0 0 0 0 0 0 0

0 0
αf

h4
0 0 0 0 0 0 0 0 0 0 0

0 0 0
gf
h5

0 0 0 0 0 0 0 0 0 0

0 0 0 0
rf4
µf

0 0 0 0 0 0 0 0 0

0
rf1
µf

rf2
µf

rf3
µf

0 0 0 0 0 0 0 0 0 0

0
A∗∗

2

h6

θfA
∗∗
2

h6
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 σm
h7

0 0 0 0 0 0

0 0 0 0 0 0 0 0 ψm

h8
0 0 0 0 0

0 0 0 0 0 0 0 0 0 αm

h9
0 0 0 0

0 0 0 0 0 0 0 0 0 0 gm
h10

0 0 0

0 0 0 0 0 0 0 0 0 0 0 rm4

µm
0 0

0 0 0 0 0 0 0 0 rm1

µm
rm2

µm
rm3

µm
0 0 0



.

It should be noted note that the notation H(Z̄)i (with i = 1, . . . , 14) denotes the ith coor-

dinate of vector H(Z̄). Furthermore, the matrix H has no negative entries, and the EEP

E1 = (E∗∗f , I
∗∗
f , P

∗∗
f , Q

∗∗
f , C

∗∗
f , R

∗∗
fc, R

∗∗
f , E

∗∗
m , I

∗∗
m , P

∗∗
m , Q

∗∗
m , C

∗∗
m , R

∗∗
mc, R

∗∗
m ) satisfies E1 = HE1.

Furthermore, since the coordinates of the EEP, E1, are all positive, it follows that if Z̄ is a

solution of (C.4), then it is possible to find a minimal positive real number, s, such that

|Z̄|≤ s E1,

where |Z̄|= (|Z1|, . . . , |Z9|), and |.| is a norm in C. The task ahead is to show that Re(w) < 0.

It will be proved by contradiction. Assume the first case w = 0 then, (C.3) is a homogeneous

linear system in the variables Zi (i = 1, . . . , 14). The determinant of this system corresponds

to that of the Jacobian of the system (C.1), evaluated at E1, given by, ∆ = µfµm(D1D2−D3).

It should be recalled that ∆ 6= 0 (Theorem 3.4). Hence, the linear system (C.3) can only
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have the trivial solution which contradicts the existence of the EEP, E1. Now consider the

case when w 6= 0 for which Re (Fi(w)) ≥ 0 (i = 1, . . . , 14) since, by assumption, Re w ≥ 0. It

means that |1 + Fi(w)| > 1 for all i. Now, by defining F (w) = min|1 + Fi(w)|, i = 1, . . . , 14,

we obtain F (w) > 1. Hence,
s

F (w)
< s. The minimality of s implies that |Z̄|> s

F (w)
E1. On

the other hand, taking norms of both sides of the forth equation of (C.4), and using the fact

that all the entries of H are non-negative, gives,

F (w)|Z9| ≤ H(|Z|)9 ≤ s(H|E1|)9 ≤ sI∗∗m .

Hence, |Z9| ≤
s

F (w)
I∗∗m which is a contradiction. Thus, Re w < 0. Hence, the unique endemic

equilibrium (E1) of the model (3.25) is LAS whenever R0 > 1, δf = 0 and ∆ 6= 0.
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Appendix D

Proof of Theorem 3.5

Proof. Consider the basic model (3.25), with R1 > 1 (so that its unique EEP (E1) exists, by

Theorem 3.3). Furthermore, let Sf (t) ≤ S∗∗f and Sm(t) ≤ S∗∗m for all t. It should be noted,

first of all, that none of the state variables Rfc(t), Rf (t), Rmc(t) and Rm(t) feature in any of

the other equations of the model (3.25). Thus, the equations for Rfc(t), Rf (t), Rmc(t) and

Rm(t) can be temporarily removed from the analysis.

Consider, next, the following non-linear Lyapunov function for the sub-model (consisting

of the equations for the variables Sf , Ef , If , Pf , Qf , Cf , Em, Im, Pm, Qm and Cm) of the

basic model (3.25):

F =

(
Sf − S∗∗f − S∗∗f ln

Sf
S∗∗f

)
+

(
Ef − E∗∗f − E∗∗f ln

Ef
E∗∗f

)

+b1

(
If − I∗∗f − I∗∗f ln

If
I∗∗f

)
+ b2

(
Pf − P ∗∗f − P ∗∗f ln

Pf
P ∗∗f

)

+b3

(
Qf −Q∗∗f −Q∗∗f ln

Qf

Q∗∗f

)
+ b4

(
Cf − C∗∗f − C∗∗f ln

Cf
C∗∗f

)
(
Sm − S∗∗m − S∗∗m ln

Sm
S∗∗m

)
+

(
Em − E∗∗m − E∗∗m ln

Em
E∗∗m

)
(D.1)

+b5

(
Im − I∗∗m − I∗∗m ln

Im
I∗∗m

)
+ b6

(
Pm − P ∗∗m − P ∗∗m ln

Pm
P ∗∗m

)
+b7

(
Qm −Q∗∗m −Q∗∗m ln

Qm

Q∗∗m

)
+ b8

(
Cm − C∗∗m − C∗∗m ln

Cm
C∗∗m

)
,
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where,

b1 =
βmcfµmS

∗∗
f I
∗∗
m

σfπmE∗∗f
, b2 =

βmcfµmS
∗∗
f I
∗∗
m

ψfπmI∗∗f
, b3 =

βmcfµmS
∗∗
f I
∗∗
m

αfπmP ∗∗f
, b4 =

βmcfµmS
∗∗
f I
∗∗
m

gfπmQ∗∗f
,

b5 =
βfcfµmS

∗∗
m I
∗∗
f

σmπmE∗∗m
, b6 =

βfcfµmS
∗∗
m I
∗∗
f

ψmπmI∗∗m
, b7 =

βfcfµmS
∗∗
m I
∗∗
f

αmπmP ∗∗m
, b8 =

βfcfµmS
∗∗
m I
∗∗
f

gmπmQ∗∗m
.

The Lyapunov derivative of (D.1) is given by

Ḟ =

(
1−

S∗∗f
Sf

)[
πf −

(
βmcfµmIm

πm
+ µf

)
Sf

]
+

(
1−

E∗∗f
Ef

)[
βmcfµmIm

πm
Sf − (σf + µf )Ef

]
+b1

(
1−

I∗∗f
If

)
[σfEf − (rf1 + ψf + µf )If ]

+b2

(
1−

P ∗∗f
Pf

)
[ψfIf − (rf2 + αf + µf )Pf ]

+b3

(
1−

Q∗∗f
Qf

)
[αfPf − (rf3 + gf + µf )Qf ]

+b4

(
1−

C∗∗f
Cf

)
[gfQf − (rf4 + µf + δf )Cf ] (D.2)

+

(
1− S∗∗m

Sm

)[
πm −

(
βfcfµmIf

πm
+ µm

)
Sm

]
+

(
1− E∗∗m

Em

)[
βfcfµmIf

πm
Sm − (σm + µm)Em

]
+b5

(
1− I∗∗m

Im

)
[σmEm − (rm1 + ψm + µm)Im]

+b6

(
1− P ∗∗m

Pm

)
[ψmIm − (rm2 + αm + µm)Pm]

+b7

(
1− Q∗∗m

Qm

)
[αmPm − (rm3 + gm + µm)Qm]

+b8

(
1− C∗∗m

Cm

)
[gmQm − (rm4 + µm)Cm] .

The following relations, at the endemic steady-state (obtained from the associated sub-model
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of the model (3.25)), will be used to simplify (D.2):

πf =
βmcfµm
πm

I∗∗m S
∗∗
f + µfS

∗∗
f , σf + µf =

βmcfµm
πm

I∗∗m S
∗∗
f

E∗∗f
, rf1 + ψf + µf = σf

E∗∗f
I∗∗f

,

rf2 + αf + µf = ψf
I∗∗f
P ∗∗f

, rf3 + gf + µf = αf
P ∗∗f
Q∗∗f

, rf4 + µf + δf = gf
Q∗∗f
C∗∗f

, (D.3)

πm =
βfcfµm
πm

I∗∗f S
∗∗
m + µmS

∗∗
m , σm + µm =

βfcfµm
πm

I∗∗f S
∗∗
m

E∗∗m
, rm1 + ψm + µm = σm

E∗∗m
I∗∗m

,

rm2 + αm + µm = ψm
I∗∗m
P ∗∗m

, rm3 + gm + µm = αm
P ∗∗m
Q∗∗m

, rm4 + µm = gm
Q∗∗m
C∗∗m

.

Substituting (D.3) into (D.2), and simplifying, gives

Ḟ ≤ µfS
∗∗
f

(
2−

S∗∗f
Sf
− Sf
S∗∗f

)
+ µmS

∗∗
m

(
2− S∗∗m

Sm
− Sm
S∗∗m

)

+ M1

(
7−

S∗∗f
Sf
−
ImSfE

∗∗
f

I∗∗m S
∗∗
f Ef

−
EfI

∗∗
f

E∗∗f If
−
IfP

∗∗
f

I∗∗f Pf
−
PfQ

∗∗
f

P ∗∗f Qf

− Cf
C∗∗f
−
QfC

∗∗
f

Q∗∗f Cf

)
(D.4)

+ M2

(
7− S∗∗m

Sm
− IfSmE

∗∗
m

I∗∗f S
∗∗
mEm

− EmI
∗∗
m

E∗∗m Im
− ImP

∗∗
m

I∗∗m Pm
− PmQ

∗∗
m

P ∗∗m Qm

− Cm
C∗∗m
− QmC

∗∗
m

Q∗∗mCm

)
,

where,

M1 =
βmcfµm
πm

S∗∗f I
∗∗
m > 0 and M2 =

βfcfµm
πm

S∗∗m I
∗∗
f > 0.

Since the arithmetic mean exceeds the geometric mean, it follows that the parentheses of

(D.4) are negative. Hence, Ḟ ≤ 0. Furthermore,

lim
t→∞

(Sf (t), Ef (t), If (t), Pf (t), Qf (t), Cf (t), Sm(t), Em(t), Im(t), Pm(t), Qm(t), Cm(t))

→ (S∗∗f , E
∗∗
f , I

∗∗
f , P

∗∗
f , Q

∗∗
f , C

∗∗
f , S

∗∗
m , E

∗∗
m , I

∗∗
m , P

∗∗
m , Q

∗∗
m , C

∗∗
m ).

Substituting (If (t), Pf (t), Qf (t), Im(t), Pm(t), Qm(t)) =
(
I∗∗f , P

∗∗
f , Q

∗∗
f , I

∗∗
m , P

∗∗
m , Q

∗∗
m

)
into the

model (3.25) shows that (Rfc(t), Rf (t), Rmc(t), Rm(t)) →
(
R∗∗fc, R

∗∗
f , R

∗∗
mc, R

∗∗
m

)
as t → ∞.

Hence, the unique endemic equilibrium of the basic model (3.25), with θm = θf = 0, is GAS

in D\D0 whenever R1 > 1, Sf (t) ≤ S∗∗f and Sm(t) ≤ S∗∗m for all t.
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Appendix E

Description of the Pap Screening

Model (4.3)

The population of susceptible females (Sf (t)) is generated by the recruitment of new sexually-

active females (at a rate πf ). This population is increased by the loss of infection-acquired

immunity by infected females who recovered from HPV-infection without developing cervical

cancer (at a rate ξf ). The population is decreased by the acquisition of HPV infection,

following effective contact with infected males (i.e., males in the Em, Im, Pm, Lm and Hm

classes), at a rate λm, given by

λm =
βmcf (Nm, Nf ) [ηmEm + Im + θm(Pm + Lm + θmhHm)]

Nm

. (E.1)

In (E.1), βm is the probability of transmission of HPV infection from infected males to

susceptible females per contact, and cf (Nm, Nf ) is the average number of female partners

per male per unit time (hence, βmcf (Nm, Nf ) is the effective contact rate for male-to-female

transmission of HPV). Furthermore, 0 ≤ ηm < 1 is a modification parameter accounting for

the assumption that exposed males (in the Em class) are less infectious than symptomatically-

infected males, and θm > 0 models the assumed variability of the infectiousness of HPV-

infected males in the Pm, Lm and Hm classes in relation to HPV-infected males in the Em
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and Im classes. Furthermore, θmh ≥ 1 accounts for the assumed increase of the infectiousness

of males with high-grade INM in comparison to infected males in the Pm and Lm classes.

The population of susceptible females is further diminished by natural death (at a rate µf ;

it is assumed that females in all epidemiological compartments suffer natural death at this

rate). Thus,

dSf
dt

= πf + ξfRf − (λm + µf )Sf . (E.2)

The population of females exposed to HPV (Ef (t)) is generated by the infection of susceptible

females (at the rate λm). Exposed females develop clinical symptoms of HPV (at a rate σf )

and suffer natural death. Thus,

dEf
dt

= λmSf − (σf + µf )Ef . (E.3)

The class of infected females with clinical symptoms of HPV (If (t)) is populated by the

development of clinical symptoms of HPV by exposed females (at the rate σf ). It is assumed

that a fraction, 0 ≤ bf ≤ 1, of members of this class recovers (at a rate bfψf ), while the

remaining fraction, 1 − bf , develops persistent HPV infection (at a rate (1 − bf )ψf ). This

population is further decreased by natural death. Thus,

dIf
dt

= σfEf − (ψf + µf )If . (E.4)

The population of females with persistent HPV infection (Pf (t)) is generated by the de-

velopment of persistent HPV infection by symptomatic females (at the rate (1 − bf )ψf ) as

well as by the reversion of individuals with low-grade and high-grade CIN (at a rate df2gf

and qf4zf , respectively; where the fractions df2 and qf4 are defined below). It is assumed

that detected individuals with CIN do not develop persistent HPV infection (since they are

expected to be effectively treated). Individuals move out of this class through recovery (at a

rate kfαf ; where kf is the fraction of females with persistent HPV infection that recovers; the
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remaining fraction, 1− kf , progress to low-grade CIN stage), development of pre-cancerous

CIN lesions (at a rate (1− kf )αf ) and natural death. Hence,

dPf
dt

= (1− bf )ψfIf + df2gfLfu + qf4zfHfu − (αf + µf )Pf . (E.5)

The population of females with undetected low-grade CIN (Lfu(t)) is generated by the

development of CIN lesions by females with persistent HPV infection (at the rate (1−kf )αf )

or by the regression of females with high-grade CIN (at a rate qf2zf ; where the fraction qf2

is defined below). Transition out of this class occurs at a rate gf (where a fraction, df1,

recovers; another fraction, df2, reverts to Pf class; yet another fraction, df3, is detected and

the remaining fraction, 1 − (df1 + df2 + df3), progresses to the high-grade CIN 2/3 stage).

Furthermore, this population is decreased by natural death. Thus,

dLfu
dt

= (1− kf )αfPf + qf2zfHfu − (gf + µf )Lfu. (E.6)

The population of females with detected low-grade CIN (Lfd(t)) is populated by the detection

of females in the Lfu(t) class (at the rate df3gf ). It is decreased by recovery (at a rate r1)

and natural death. Hence,

dLfd
dt

= df3gfLfu − (r1 + µf )Lfd. (E.7)

The population of females with undetected high-grade CIN 2/3 (Hfu(t)) is generated by the

progression of females with low-grade CIN (at the rate [1 − (df1 + df2 + df3)]gf ) or by the

regression of individuals in the Cfu class (at a rate jf2γf ; where the fraction jf2 is defined

below). Transition out of this class occurs at a rate zf (where a fraction, qf1, recovers; a

fraction, qf2, reverts to the Lfu class; a fraction, qf3, is detected; another fraction, qf4, reverts

to the Pf class and the remaining fraction, 1− (qf1 + qf2 + qf3 + qf4), progresses to the Cfu
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class). Furthermore, this population is decreased by natural death. Thus,

dHfu

dt
= [1− (df1 + df2 + df3)]gfLfu + jf2γfCfu − (zf + µf )Hfu. (E.8)

The population of females with detected high-grade CIN 2/3 (Hfd(t)) is populated by the

detection of females in the Hfu(t) class (at the rate qf3zf ). It is decreased by recovery (at a

rate r2) and natural death. Hence,

dHfd

dt
= qf3zfHfu − (r2 + µf )Hfd. (E.9)

The population of females with undetected cervical cancer (Cfu(t)) is generated by females

in the Hfu class who develop cervical cancer (at the rate [1 − (qf1 + qf2 + qf3 + qf4)]zf ).

Transition out of this class occurs at a rate γf (where a fraction, jf1, is detected; another

fraction, jf2, reverts to the Hfu class and the remaining fraction, 1− (jf1 + jf2), recovers).

Furthermore, it is decreased by natural death and cancer-related mortality (at a rate δfu).

Thus,

dCfu
dt

= [1− (qf1 + qf2 + qf3 + qf4)]zfHfu − (γf + µf + δfu)Cfu. (E.10)

The population of females with detected cervical cancer (Cfd(t)) is populated by the detection

of females in the Cfu(t) compartment (at the rate jf1γf ). It is diminished by the recovery

(at a rate r3), natural death and cancer-related mortality (at a rate δfd). Hence,

dCfd
dt

= jf1γfCfu − (r3 + µf + δfd)Cfd. (E.11)

The population of females who recovered from cervical cancer (Rfc(t)) is generated by the

recovery of females with undetected (at the rate [1 − (jf1 + jf2)]γf ) and detected (at the

rate r3) cervical cancer. Like in other epidemiological classes, females in this class also suffer
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natural death (at the rate µf ). Hence,

dRfc

dt
= [1− (jf1 + jf2)]γfCfu + r3Cfd − µfRfc. (E.12)

The population of females who recovered from HPV infection without developing cervical

cancer (Rf (t)) is populated by the recovery of females in the If , Pf , Lfu, Lfd, Hfu and Hfd

classes (at the rates bfψf , kfαf , df1gf , r1, qf1zf and r2, respectively). It is decreased by the

loss of infection acquired immunity (at the rate ξf ) and natural death, so that

dRf

dt
= bfψfIf + kfαfPf + df1gfLfu + r1Lfd + qf1zfHfu + r2Hfd − (ξf + µf )Rf . (E.13)

The population of susceptible males (Sm(t)) is generated by the recruitment of new

sexually-active males (at a rate πm). This population is further increased by the loss of

infection-acquired immunity by infected males who recovered from HPV infection without

developing HPV-related cancer (at a rate ξm). The population is decreased by the acquisition

of HPV infection, following effective contact with infected females (in the Ef , If , Pf , Lfu,

Lfd, Hfu and Hfd classes), at a rate λf , given by

λf =
βf cm(Nm, Nf ) {ηfEf + If + θf [(Pf + Lfu + θfhHfu + ν (Lfd + θuHfd)]}

Nf

. (E.14)

In (E.14), βf is the probability of transmission of HPV infection from infected females to sus-

ceptible males per contact, and cm(Nm, Nf ) is the average number of male partners per female

per unit time. Similarly, 0 ≤ ηf < 1 is a modification parameter accounting for the assump-

tion that exposed females (in the Ef class) are less infectious than symptomatically-infected

females, and θf > 0 models the assumed variability of the infectiousness of HPV-infected

females in the Pf , Lfu, Lfd, Hfu and Hfd classes in relation to the infectiousness of females

in the Ef and If classes. Furthermore, θfh > 1(θu > 1) accounts for the assumed increase

of the infectiousness of females with undetected (detected) high-grade CIN, in comparison
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to those in the Pf and Lfu (Lfd) classes. The parameter ν > 0 models the variability of the

infectiousness of females with detected CIN, in relation to the infectiousness of females with

undetected CIN. The population of susceptible males is further diminished by natural death

(at a rate µm; it is assumed that males in all epidemiological compartments suffer natural

death at this rate). Thus,

dSm
dt

= πm + ξmRm − (λf + µm)Sm. (E.15)

The population of exposed males (Em(t)) is generated by the infection of susceptible males

(at the rate λf ). Exposed males develop clinical symptoms of HPV (at a rate σm) and suffer

natural death. Thus,

dEm
dt

= λfSm − (σm + µm)Em. (E.16)

The class of infected males with clinical symptoms of HPV (Im(t)) is populated by the

development of clinical symptoms of HPV by exposed males (at the rate σm). It is assumed

that a fraction, 0 ≤ bm ≤ 1, of individuals in this class recovers (at a rate bmψm), while the

remaining fraction, 1− bm, develops persistent HPV infection (at the rate (1− bm)ψm). This

population is further decreased by natural death. Thus,

dIm
dt

= σmEm − (ψm + µm)Im. (E.17)

The population of males with persistent HPV infection (Pm(t)) is generated by the develop-

ment of persistent HPV infection by symptomatic males (at the rate (1− bm)ψm) as well as

by the reversion of males with low-grade and high-grade INM (at a rate d2gm and qm3zm,

respectively; where the fractions d2 and qm3 are defined below). Individuals move out of this

class through recovery (at a rate kmαm; where km is the fraction of males in this class that

recovers; the remaining fraction, 1 − km, progresses to low grade INM stage), development
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of pre-cancerous INM lesions (at a rate (1− km)αm) and natural death. Hence,

dPm
dt

= (1− bm)ψmIm + dm2gmLm + qm3zmHm − (αm + µm)Pm. (E.18)

The population of males with the low-grade INM (Lm(t)) is generated by the development of

INM lesions by males with persistent infection (at the rate (1− km)αm) or by the regression

of males in the Hm class (at a rate qm2zm). Transition out of this class occurs at a rate gm

(where a fraction, dm1, recovers; another fraction, dm2, reverts to Pm class and the remaining

fraction, 1 − (dm1 + dm2), progresses to the high-grade INM 2/3 stage). Furthermore, this

population is decreased by natural death. Thus,

dLm
dt

= (1− km)αmPm + qm2zmHm − (gm + µm)Lm. (E.19)

The population of males with the high-grade INM 2/3 (Hm(t)) is generated by the progression

of infected males with INM (at the rate [1− (dm1 +dm2)]gm) or regression of males in the Cm

class (at a rate jmγm; where the fraction jm is defined below). Transition out of this class

occurs at a rate zm (where a fraction, qm1, recovers; a fraction, qm2, reverts to the Lm class;

another fraction, qm3, reverts to Pm class and the remaining fraction, 1− (qm1 + qm2 + qm3),

progresses to class Cm). Furthermore, the population is decreased by natural death. Thus,

dHm

dt
= [1− (dm1 + dm2)]gmLm + jmγmCm − (zm + µm)Hm. (E.20)

The population of males with HPV-related cancer (Cm(t)) is generated by males in the Hm

class who develop HPV-related cancer (at the rate [1 − (qm1 + qm2 + qm3)]zm). Transition

out of the class occurs at a rate γm (where a fraction, jm, reverts to the Hm class and the

remaining fraction, 1−jm, recovers). Furthermore, it is decreased by natural death (it should

be mentioned that since HPV-related cancer, such as penile cancer, is rare in males [81], no

103



mortality due to HPV-related cancer is assumed for males). Thus,

dCm
dt

= [1− (qm1 + qm2 + qm3)]zmHm − (γm + µm)Cm. (E.21)

The population of males who recovered from HPV-related cancer (Rmc(t)) is generated by

the recovery of males with HPV-related cancer (at the rate (1 − jm)γm). It is reduced by

natural death. Hence,

dRmc

dt
= (1− jm)γmCm − µmRmc. (E.22)

The population of males who recovered from HPV infection without developing HPV-related

cancer (Rm(t)) is populated by the recovery of males in the Im, Pm, Lm and Hm classes (at

the rates bmψm, kmαm, dm1gm, and qm1zm, respectively). It is decreased by the loss of

infection acquired immunity (at the rate ξm) and natural death, so that

dRm

dt
= bmψmIm + kmαmPm + dm1gmLm + qm1zmHm − (ξm + µm)Rm. (E.23)

It is worth stating, from the equations given in {(E.15)− (E.23)}, that

dNm(t)

dt
= πm − µmNm(t), so that Nm(t) −→ πm

µm
, as t −→∞. (E.24)

Furthermore, since the model {(E.2) - (E.23)} is a sex-structured one, it is crucial that the

conservation law of sexual contacts (i.e., the total number of sexual contacts made by males

balances that made by females) is preserved in the heterosexual community [55]. Hence, for

the model {(E.2) - (E.23)},

cm(Nm, Nf ) Nm = cf (Nm, Nf ) Nf . (E.25)

It is assumed that male sexual partners are abundant, and that females can have enough

number of male sexual partners per unit time (so that it is reasonable to assume that
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cf (Nm, Nf ) = cf a constant). Hence, (E.25) can be re-written as

cm(Nm, Nf ) =
cfNf

Nm

. (E.26)

It is assumed (for mathematical convenience), from the now on, that only undetected infected

females with low- or high-grade CIN can transmit HPV infection to males (i.e., ν = 0).

Consequently, using (E.25) in (E.1) and (E.14), the force of infections, λm and λf , are now

re-written, respectively, as

λm =
βmcf [ηmEm + Im + θm(Pm + Lm + θmhHm)]

Nm

, (E.27)

λf =
βfcf [ηfEf + If + θf (Pf + Lfu + θfhHfu)]

Nm

.
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Appendix F

Proof of Theorem 4.2

Proof. The proof is based on using a Comparison Theorem [51]. As in Appendix B, it can

be shown that the system (4.3) satisfies Type K condition (hence, Comparison theorem can

be used).

Let R0s < 1 (so that the DFE, E0s, is LAS, in line with Lemma 4.2). The infected

components of the model (4.3) can be re-written as:

dxs
dt

= (Fs − Vs)xs − Jsxs, (F.1)

where,

xs = [Ef (t), If (t), Pf (t), Lfu(t), Lfd(t), Hfu(t), Hft(t), Cfu(t), Cfd(t), Rfc(t), Rf (t),

Em(t), Im(t), Pm(t), Lm(t), Hm(t), Cm(t), Rmc(t), Rm(t)]T ,

with the matrices Fs and Vs are as defined in Section 4.3, and

Js =

[
1− µfSf (t)

πf

]
J1 +

[
1− µmSm(t)

πm

]
J2,

where,
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J1 =

 011×11 J1

011×8 08×8

 and J2 =

 011×11 08×11

J2 08×8

,
with,

J1 =



βmcfηmπfµm
µfπm

βmcfπfµm
µfπm

βmcfθmπfµm
µfπm

βmcfθmπfµm
µfπm

βmcfθmθmhπfµm
µfπm

0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



,

J2 =



βfcfηf βfcf βfcfθf βfcfθf 0 βfcfθfθfh 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0



.

It is worth noting that J1 and J2 are non-negative matrices. Furthermore, since, for all t ≥ 0

in D,
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Sf (t) ≤ Nf (t) ≤
πf
µf

and Sm(t) ≤ Nm(t) ≤ πm
µm

,

it follows that,

µfSf (t)

πf
≤ 1 and

µmSm(t)

πm
≤ 1.

Hence, J is a non-negative matrix. Thus, it follows, from (F.1), that

dxs
dt
≤ (Fs − Vs)xs. (F.2)

Using the fact that the eigenvalues of the matrix Fs − Vs all have negative real parts when

R0s < 1 (based on the local asymptotic stability result given in Lemma 4.2), it follows

that the linear differential inequality system (F.2) is stable whenever R0s < 1. Hence, by

Comparison Theorem [51],

lim
t→∞

(Ef (t), If (t), Pf (t), Lfu(t), Lfd(t), Hfu(t), Hfd(t), Cfu(t), Cfd(t), Rfc(t),

Rf (t), Em(t), Im(t), Pm(t), Lm(t), Hm(t), Cm(t), Rmc(t), Rm(t))

= (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

Substituting Ef (t) = If (t) = Pf (t) = Lfu(t) = Lfd(t) = Hfu(t) = Hfd(t) = Cfu(t) =

Cfd(t) = Rfc(t) = Rf (t) = Em(t) = Im(t) = Pm(t) = Lm(t) = Hm(t) = Cm(t) = Rmc(t) =

Rm(t) = 0 into the first and thirteenth equations of the model (4.3) shows that Sf (t)→ S∗f

and Sm(t)→ S∗m as t→∞ (for R0s < 1). Thus,

lim
t→∞

(Sf (t), Ef (t), If (t), Pf (t), Lfu(t), Lfd(t), Hfu(t), Hfd(t), Cfu(t), Cfd(t), Rfc(t),

Rf (t), Sm(t)Em(t), Im(t), Pm(t), Lm(t), Hm(t), Cm(t), Rmc(t), Rm(t)) = E0s.
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