
A Statistical Analysis of the Benefits of

Partial Evaluation on C Function Calls

LIANG, Linda L.

A Thesis
Submitted to the Faculty of Graduate Studies

in Partid Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE

Department of Compu ter Science
The University of Manitoba

Winnipeg, Manitoba

O June 1997

National Library Bibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services services biûliographiquss

The author has granted a non- L'auteur a accordé une licence non
exclusive licence allowing the exclusive pemettant à la
National Library of Canada to Bibliothèque nationale du Canada de
reproduce, loan, distn'bute or seU reproduire, prêter, distri'buer ou
copies of this thesis in microform, vendre des copies de cette thèse sous
paper or electronic formats. la forme de midche/fiilm, de

reproduction sur papier ou sur fomat
électroniqye.

The author retahs ownership of the L'auteur conserve la propriété du
copyright in this thesis. Neither the droit d'auteur qui protège cette thése.
thesis nor substantial extracts fiom it Ni la thèse ni des exbaits substantiels
may be printed or otherwise de celle-ci ne doivent êâre imprimes
reproduced without the author's ou autrement reproduits sans son
permission. autorisation.

COPYRIGHT PERMlSSlON PAGE

A Thesis/Prncticum submitted to the Pacdty of Graduate Stuàies of The University

of Mnnitoba in pa*l fulfillment of the requinmen& of the degree

LiPdr L- Liang 1997 (c)

Permission bas beei gnmteà to tbe U b r y of The University of Manitoba to Iend or seil
copies of t b W thesis/practicum, to the National Library of Canada to micronlm this thesis

and to lend or seP copies of the mm, and to Dissertatiorw Abstmcb Internationai to pubiish
an abstract of this thcsidpracticum.

The author reseivés other publication rights, and neithcr thQ thesislpracticum nor
exteasive estracts from it may be printed or otherinire reproduced without the author's

written permission.

Abstract

Partid evaluation is a source-to-source program transformation

technique which substitutes the constant or known part of the input at

compilation time to get an updated program. To help make decisions as to

what kind of partial evaluation to implement, statistics have been collected

on the use of translation-time constant arguments in C language source code.

Source code from three important projects coded in C was analyzed: the X-

Windows library, the LINLTX operating system, and the Gnu C compiler

"gcc." These projects also present typical modem uses of the C language. The

fiequency of constant arguments in argument lists can have important

implication on the worth of certain code improvement strategies. Speciîically,

compiler writers and partial-evaluator designers can benefit fiom these

statistics if they are planning to do any of the following: replacing calls of

functions with all constant arguments by function results, unfolding function

calls, or specializing functions for specïfic values of actual arguments. The

statistics collected show that these partial evaluation techniques can yield

significant performance improvement for some projects, at reasonable costs

in memory usage.

Acknowledgements

First, 1 wisb to express my deep thanks to my s u p e ~ s o r professor Daniel

J. Salomon. He introduced me to the field of progsamming language and has

been giving me much valuable advice and guidance throughout the

preparation of the thesis. At the same t h e , 1 wish to express my thanks to

all members of my Advisory Cornmittee for thek reading this thesis and

giving many good suggestions.

Also, m y thanks are expressed to the Department of Computer Science

and professor Daniel J. Salomon for the financial support through a NSERC

grant.

Finally, 1 wish to express my sincere appreciation to my family for the

full understanding and the constant encouragement.

Contents

Abstract

Acknowledements

List of Figures

List of Tables

1 Introduction

iii

vii

viii

Introduction ... 1

Partial Evaluation , , , . . . 1

A Survey of the Literature on Partial Evaluation 2

FunctionSpeeialization 3

Collecting StatisticalData on Function Calls in C 4

Methodology .. 4

Organization of the Thesis . -5

2 Survey of Current Issues in Partial Evaluation 6

2.1 Introduction .. G

2 -2 What 1s Partial Evaluation , . 6

2.3 How to Perform Partial Evaluation . , , . 7

2 -4 A Summary of the Issues in the Field of Partial Evaluation ... -12

........... 2.4.2 Partial Evaluation of hperative Laaguages 15
2.4.2.1 Characteristics o f Partial Evaluation for Imperative

Languages 16

2.4.2.2 Techniques for Partial Evaluation of Imperative
.................................. Languages 16

2 -4.2 -3 Application of Partial Evaluation of Imperative
........................ Languages --. . 23

3 Data Coliected 36

3.1 Introduction ... 36

............................... 3 -2 "Cd by Value" Mechanism 37

..................... 3.3 Statistical Data Collected in the Project 38

............................. 3.3.1 Function Specialization 38

........................... 3-32 Statistical Data Collected 39

4 Data Collection Method

4.1 Introduction ... 45

... 4.2 TheAnalyzer 45

................................... 4.3 Compiler Construction 47

4.4 ParseTree ... 48

............................. 4.5 The Design of Analyzer -. 50

5 Results

5.1 Introduction .. 63

............................ 5 -2 Sohare Selected for Analysis 63

.. 5.3 Data Sampling 65

............*. 5.4 The Data Collection Method 66

5.5 Results,....................... 67

6 Conclusions

Bibliography

List of Figures

2.1 Parfially Evaluation of an Interpreter Arnounts to Compihg 31

........ 2.2 Partially Evaluating a Partial Evaluator Yields a Compiler 3 1

...................................... 4.1 Compiler Construction 47

..................................... 4.2 ANode in the Parse Tree 50

............................. 4.3 A Schematic Diagram of Analyzer 5 1

................................ 4.4 A Node of Function Invocation 53

............................. 4.5 Sample Lines of the File prog-stat 56

................................. 4.6 Linked-bt of Function Calls -59

List of Tables

3.1 Distribution of Constant Arguments -40

5.1 Statistics on Function C a b 67

5.2 X Window System ... -69

5.3 The LINUX Operating System -69

5.4 The Gnu C Compiler "gcc" - 7 0

5.5 Totals for Three Input Projects Taken Together 70

vii

Chapter 1

Introduction

1.1 Introduction

This thesis modifies a C recognizer to collect statistics on function calls

in C, and analyzes how much ben&t can be obtained fkom applying partial

evaluation to C code. Therefore, it is also an evaluation of the potential

benefit provided by partial evaluation to a new language called Safer-C,

which is a modern descendant of the C language.

1.2 Partial Evaluation

Partial evaluation is a source-to-source program transformation

technique which substitutes the constant or known part of the input at

compilation time to get an updated version of the program. The principal

goal of partial evaluation is to increase execution speed. It can improve the

efficiency ofprogïams by exploiting known information about the input of a

program, performing some computation at compilation t h e , and generating

a transformed program which can nui faster than the original one.

Although the priaciple of partial evaluation is simple, its implications are

surprisingly cornplex, especially when applied to imperative languages. The

analysis of programming features for partial evaluation is an active area in

the field of programming language design and implementation.

1.3 A Survey of the Literature on Partial Evaluation

This thetis surveys some recent results in the area of partial evaluation,

especially issues dealing with the partial evaluation of imperative languages

Given a general program and part of its input, partial evaluation deah with

sp ecializing the program with respect to this known information.

Using the notation of Consel & Danvy[2], consider a program p and its

input i , and Say that somehow we can split i into a static (Le. known) part s

and a dynamic (i-e. unknown) part d. The literal constants used in a program

can also be considered as part of s . Given a specializing function S, we can

specializep with respect to s:

s @,(S.-)) = ps

By dcltinition, ninning the residual program Ps m u t yield the same

result as the general program would yield, provided both terminate:

ninp(s,d)=runPs(@,d)

The objective of partial evaluation is to produce a residual Ps that r u s

faster than p.

The major areas in m y research topic and papers in those axeas are:

(1) Memoizing[lO]. This is an early work in the fidd of partial

evaluation. It proposes the concept of "Merno" functions which we can use to

store the values of some functions which may be used fkequently later. In

that way the program can be speeded up.

(2) Partial evaluation [2,5,7,8,9,12]. This area consists of the concept of

partial evaluation, and its various areas of applications which indude

compiling and compiler generation, numerical computation, and hard real-

time systems.

(3) Partial evaluation for imperative languages [2.3,4,5,7,11]. This area

presents some techniques for and applications of partial evaluation of

imperative languages such as Pascal, C, and FORTRAN.

1.4 Function Specidization

Function specialization is a technique of partial evaluation to generate a

specialized version of a function for each value of constant parameters.

For example, for function c d Work(ZjA), we can create a specialized

version of that function c d e d Woik-2(A) for h c t i o n calls where the value of

the first parameter is 2. In most cases, this can increase the speed of the

execution of the program.

1.5 Collecting Statistical Data on Function Calls in C

This thesis project collects statistical data on typical fimction calls in C

code- The information collected includes:

(1) How many functions have a l I parameters constant? In this case, hc t ions

with no side effects can be replaced by theh respective results.

c2) How many functions have lin, 2/n, 3/n, ..., n-lin constant parameters

(where n is the total number of the parameters in the function c d) ?

(3) How many specialized versions would be obtained?

TO determine if a function can be specialized, collect data on:

(a) How ofken the same constant parameter has the same value?

(b) How often is this constant parameter the only constant value?

1.6 Methodology

An existing C recognizer is modi6ed to interpret the C code and tn

retrieve the related information. The information is output to a H e . The data

on the 61e is analyzed to get the statistical results- .

The source code for following software were chosen for analysis because of

importance, wide use, and availability.

(1) The X Windows system

(2) The gcc compiler

(3) The Linux operating system

1.7 Organization of the Thesis

This thesis is organized as follows. Chapter 2 is a survey of partial

evaluation and its applications. The principles of partial evaluation are

presented The basic shategies of partial evaluation are introduced. Several

partial evaluation applications axe also presented. In chapter 3, the

information to be collected 6.om the input C code is demonstrated. Row this

information is related to the study of partial evaluation of imperative

languages is also stated In chapter 4, the data collection method is

presented. Our methodology is to interpret the input C code fkom the output

of the parser, analyze the retrieved information, and obtaîn statistical data

on the input C code. Some important implementation decisions are also

discussed. In chapter 5, the statistical results of three selected widely used

software - X Windows, the Linux system, and the gcc compiler are presented.

Discussion of these results is also stated. In chapter 6, a conclusion is

presented. It was found that polyvariant specialization of function calls with

constant p arameters is feasible.

Chapter 2

Survey of Current Issues in Partial

Evaluation

2.1 Introduction

This chapter discusses the concepts of partial evaluation and contains a

survey of cunent resdts in this field.

2.2 What Is Partial Evaluation?

Given a general program and part of its input, partial evaluation deals

with specializing this program with respect to this known idormation.

Using the notation of Consel & Danvy[2], consider a program p and its

input i, and suppose that somehow we can split i into a static (Le. known)

part s and a dynamic (Le. unknown) part d. Literal constants used in the

program can also be considered to be part of the known input. Given a

specializing function S, we can specialize p with respect to s

s @, (ss-)) = ps

By dewtion, runnïng the residual program Ps must yield the same result

as the general program would yield, provided both terminate:

nui p(s,d)=run Ps(0 ,d)

The objective of partial evaluation is to produce a residual program Ps that

nuis faster than p.

2.3 How to Perform Partial Evaluation

2.3.1 Two Basic Strategies of Partial Evaluation

The purpose of partial evaluation is to specialize a program with respect

to some known parts of input. The two basic strategies are folding and

unfolding .

2.3.1.1 Folding Constant Expressions

The technique of foldïng constant expressions consists of propagating

constant values, executing any constant expressions that result, and

replacing the expressions by the results.

2.3.1.2 Unfolding & Unrollhg

Unfolding can be applied to control structures and function calls.

If the control fiow of a program sequence c m be determined at compile

time, partial evaluation will unfold iterative loops, and reduce the

conditional structures to one of their branches.

Here is an example of unrolling control structures.

Consider the following statements.

If (i > l O) then j+=2;

else j += 4;

Also, assume we have i = 15 at compile time.

Applying partial evaluation to the above code segment, one of the selective

branch is eliminated. We obtain a simpler statement: j += 4;

If a few of the parameters are known at compile time, partial evaluation

will inline functions b y unfolding cds, and produce sp ecialized functions by

ïesidualizing calls.

For example, let's consider the following function defhition.

int lamda(int x, int y)

{

int result;

resdt = (x + y) 1 2;

retum resdt;

1

For fimction ca l l lamda(4,b). we c m d o l d the function and get a residual

fwiction lamda,4(int 2).

int lamda,4(ht z)

int resdt;

result = 2 + 212;

return resdt;

2.3.2 Online vs O f f i e Partial Evaluation

Partial evaluators are divided into two classes: online and o f i e

(Consel & Danvy[2]).

An online partial-evaluator is a non-standard interpreter. The

treatment of each expression is detennined on the fly. Online partial-

evaluators are veiy accurate but actually they have considerable overhead.

For example, we have the following code segment in C.

void rnain(argc, argv)

{

int known, unknown;

int result 1, result2;

resultl = sqrwown);

result2 = (known + unknown) 12;

An online partial evaluator will determine if an expression can be

evaluated according to the status of variables in it. The compile-time

variables are declared at the beginning- Here is the code segment with the

initial declaration.

void main(argc, argv)

{

compile-time int known;

run-the int unknown;

int result 1, result2;

result 1 = sqr(known);

resultt = (known + unknown) 1 2;

1

Having the initial compile-time variables declaration, the partial

evaluator goes through every expression in the program and determines its

status according to the declaration. Variable resultl is c l a s s e d as a

compile-time variable since known is a compile-the variable. Variable

result2 is a run-the variable since it calls a compile-time variable knowrr

and also a nin-tirne variable unknown. We can see an online partial

evaluator is accurate but it is also slow.

0-e partial evaluators are structured with a preprocessing phase PE

and a processing phase m. The prepxocessing phase PE usually includes

binding-tirne ctmtysis. Given the bindiag-tùne signature of a source

program (Le., which part of the input is static and which part is dynamic),

the binding-time analyzer propagates this information through the source

program, detennlliing for each expression whether it can be evaluated at

compile-tirne or whether it must be evaluated at r u - t h e . An o&e partial-

evaluator is less accurate than an o n h e partial-evaluator since binding-time

andysis is approdate. An example of an o f i e partial evaluator for

FORTRAN 77 will be given in a later section.

Online and o f i e partial-evaluation can be combined to get the best

results. When the accurate binding-time property of an expression 1s known,

ofBine partial-evaluation should be used. Otherwise, the evaluation of this

expression is postponed until specialization-time; at this t h e concrete values

are available.

2.3.3 The tradeoff of Partial Evaluation

Using partial evaluation, we can get a transformed program (which is

called the residual program) which can be run faster than the original one.

But usually the residual program is bigger than the original one due to loop

unrolling and function unfolding. That could be the tradeoff: taking more

space for the propams and data can produce faster execution while taking

less space can lead to slower computation.

Nevertheless it can happen that a program can be made both smaller

and faster. A well known example of this as given by Consel & Danvy[Z] is

the program xphoon written by Poskanzer and Leres. That's the best case.

2.4 A Summary of the Issues in the Field of Partial Evaluation

This section will give a suvey of the history and issues in the field of

partial evaluation.

2.4.1 Memoizing

This is an early work in partial evaluation. In his paper [IO], Donald

Michie proposed a facility to convert functions into "memo functions." By

doing this, a program can improve the speed of the evaluation of numerical

functions a great deal.

2.4.1.1 The "Ride Part" and the "Rote Part"

In his paper, Michie pïesented an efficient way to evaluate mathematical

functions, in which a program can avoid needless tests and redundant

evaluation by Yearning fiom experience."

For each function, there is a " d e part" which is the computational

procedure and a "rote part" which is a 'look up" table. That is, the " d e part"

is the operation by which the function is evaluated, the "rote partn is the

table in which the value of the function is stored or other look-up medium is

stored after it has been computed. The %te part" is made up of results fkom

previously computed function evaluations. Here is an example of the " d e

part" and the "rote part" of the function fact.

The d e part of fact is:

function fact n;

if n c O or if not (n isinteger) then undef

else

if n = O then 1 else n*fact(n-1)

end

Suppose now the f i s t cal l of the function is fact(4). At f i s t the rote part

is invoked, but no entry for 4 is found. So the d e part is invoked. The value

ofn is not equal to O. The answer is 4*fact(3). We now set out to evahate

fact(3). We check the rote again. There is no entry for 3 either. Then we enter

the d e and find 3*fact(2). We check the rote and again do not get an entry

for 2. Now we have to corne back to the i d e and repeat the process unfil we

encounter fact(0). We can h d the value of it by d e , which is 1. We can now

evaluate fact(1) = 1 * fact(O), and hence fact(2) = 2*fact(l), and hence fact(3)

= 3*fact(2), and fact(4) = 4*fact(3). Each of these evaluation adds a new entry

to the rote part. Then at the end of the recursion, the rote part looks lüce this:

Argument

4

3

2

1

O

Value

24

6

2

1

1

According to Michie, for each function,

(1) The apparatus of evaluation associated with any given function consists

of a " d e put" and a "rote part";

(2) The evaluation in the computer should on each given occasion proceed

either by rule, or by rote, or by a blend of the two, solely as dictated by

the expediency of the moment;

(3) The d e versus rote decisions can be handled by the machine behind

the scenes;

(4) various kinds of interaction are permitted to occur between the d e part

and the rote part.

2.4.1.2 Self-Improvement of This Scheme

There could be a lot of improved methods of this scheme. Michie

proposed an improvement which we can call the "move-to-front" algorithm. In

this algorithm, rarely-occwing problems will move towards the bottom of

the rote table and fkequently occurring problems move towards the top.

Any other searching algorithms such as hashing, most-cornmon-kt, LRU

could also be used to Mprove to this scheme.

8.4.1.3 Application of This Scheme

This scheme can be applied to many digital computations to Mprove

evaluation speed, especially for the recursively defhed functions, because it

is obvious that we can reuse the previous calculation results in the recursive

hct ions .

2.4.1.4 The Relationship Between Partial Evaluation and ''Memo

Functions''

The "Memo Function" scheme was developed in the early stage of

partial evaluation research. It gives the idea of efficient computation by the

elimination of redundant calculation, s t o M g the most frequently used data

values which are going to be used in the evaluation.

2.4.2 Partial Evaluation of Imperative Languages

This section wiU present some techniques for the partial evaluation of

imperative languages. Some applications are also introduced.

2.4.2.1 Characteristics of Partial Evaluation for Imperative

Languages

A lot of research has been done on the partial evaluation of functional

languages. In actual fact most of the "real world programs" are written in

imperative languages such as C, COBOL, FORTRAN, etc. So the partial

evaluation of imperative languages has received more attention recently.

The partial evaluation of imperative programs is more difficult than

that of funciional programs. Because of the la& of referential transparency,

the program transformation phase must take into account the notion of state.

The replication of side-effects is the main concern.

2.4.2.2 Techniques for Partial Evaluation of Imperative languages

Various techniques for the partial evaluation of imperative languages

are presented in Consel & Danvy [Z], Meyer [3], Nkkhe & Pugh [Il]. This

section will summarize those techniques.

2.4.2.2.1 Dynamic Notation

Partial evaluation could get stuck in two ways: either by unfolding

infinitely many fimction calls or by creating infinitely many specialized

functions. To avoid the non-termination problem, Meyer[3] simply assumes

the program wiU terminate.

According to the definition of partial evaluation, a partial evaluator has

to decide whether the current statement (form, clause, etc) has to be executed

or not. Execution of the statement will change the state of the memory, and

non-execution will add the statement into the residual program.

To provide the proper information to the partial evaluator, there are two

strategies (as we mentioned in the previous section): "static annotations" and

"dynamic annotations".

S tatic annotations are inserted into the text of the program in a

separate phase before partial evaluation. They are either computed by hand

or using abstract interpretation. AU parts of the progam with possibly

unknown data have to be annotated, The term "annotation" here means

making a note of the status of each variable. According to Meyer, this

technique is appropriate for functional languages because variables in

functional languages cannot change their values. In Meyer's opinion, the

proper technique for imperative language is to make dynamic annotations.

The user has to annotate only the declarations of the variables which should

be treated as unknown data. These annotations give us information about

the relation between variables and their states, Le., known or unknown. The

partial evaluator has to look up the state of a variable when it encounters

this variable. The state of a vaïiable might change from known to unknown

and vice versa, if there is an assignment to that variable. With dynamic

annotations the partial evaluator will decide dynamically whether the

current statement has to be executed or suspended, depending on the states

of the involved variables. Meyer also gives a formal description for this

method (31.

2.4.2.2.2 Specialization of Subroutines

Specialization is an important technique for partial evaluation. In this

section we will describe how this technique can be adapted to imperative

languages.

In the foIlowing discussion, we discard the cases in which global

variables are used in the bodies of the subroutines (we will discuss those

cases in section 2.4.3.3). We will present the techniques for function calls

and procedure calls .

Specializing Function Invocations

For function invocations, we need to handle three cases.

(1) AU the Values of the Actual Arguments Are Known At Compile-The

When a partial-evaluator encounters a function invocation, it has to

check the values of the actual arguments. If a l l of them are known, the

partial evduator will bind the formal parameters to the values of the actual

arguments. With these variables and the local variables, the body of the

function is evaluated. If we get residual statements (for example, the

statement includes another fiuiction invocation which can't be evaluated

to tdy at this the) , we have to constnict a residual function containing

these residual statements as the body, and output the residual function.

Otherwise the h c t i o n can be evaluated to tdy . We do not get a residual c d

and there is no residual hction. Just replace the function invocation by the

result of the evaluation.

(2) Not AU the Values of the Actual Arguments Are Known at Compile-Time

If not all the values of the actual arguments are known at compile-time,

the forma1 parameters should be suspendeé We will get a residual function-

For each function c d , a list is evaluated. The list will contain the

values of actual arguments (for those known actual argument values), and

the formal parameters (for those parameters without the matching known

arguments). For example, consider the function definition A(X,Y), for a

compile-time known input X = 2, the list is (2,Y).

These lists are stored in a table together with the name of the original

function and the name of the specialized version of that hct ion. When

there is a function invocation, the partial evaluator will look up the table for

a pattern with the name of the function and a list matching the actual

argwmnts. If such a pattern has been found, the copy of the corresponding

specialized version of the function is used for the construction of the residual

fûnction c d . The specialized fuactions are the functions of the residual

program.

If the termination condition of the function c d depends on the variables

in an unknown state, this method for specializing fimction calls might not

terminate. To avoid this problem, Meyer [3] proposed the solution that the

user can label the critical function calls with a symbol. When such a call is

evaluated, only the actual arguments are evaluated and composed into a

residual function c d . The original fiuiction is copied into the residual

program.

Specializing Procedure Caus

There are three cases in specializing procedue calls.

(1) Cd-by-value Parameters

For those procedure c a b where parameters are passed by the mode

call-by-value, parameters are handled in the same way as in the case of

function calls. They will appear in the parameter list when the corresponding

actual argument is unknown at the specialized tirne.

(2) C d - b y-result Parameters

Call-by-result parameters appear in the parameter list only when the

state of the variable for that parameter is unknown after the execution of the

body of the procedure. The state of the actual argument is irrelevant.

(3) C d - b y-reference Paramet ers

In this case, the forma1 parameters and the actual arguments denote the

same memory location. There is only one state for both.

In the case of parameters transmitted by location, if the value of the

actual argument is unknown, it has to appear in the List of the parameters

for the residual procedure invocation and the formal parameter has to be in

the list of the parameters of the definition of the residual procedure. On the

other hand, in the case of parameters transmitted by values, if the value of

the formal parameter is unknown after the execution of the procedure the

actual argument has to appear in the parameter kt in the residual function

call and the foipial parameter has to be in the parameter list of the definition

of the residual procedure.

Global Variables and Side-effects

Global variables and side-&ects pose a considerable problem in the

partial evaluation ofimperative languages. The use of global variables in

subroutines may cause problems if a c d to these subroutines cannot be

totally evaluated.

Here is an example of the problem.

void main(argc,argv)

{

int global;

int rel, re2, p l , p2;

int work(int x, int y)

{

int result;

global = 5;

global += x;

resdt=(x+y)12;

retuni result;

1

re i = work(2,p 1);

re2 = work(2 ,p2);

1

After the execution of the program, the value of the global variable

"global" is 9.

Applying paxtial evaluation to the above code, we have a residual

function work-2.

int work-2(int z)

{

int result;

global = 7;

result = 1 + 212;

return resdt;

1

The invocation of the residual fuactions will be

rei = work-2@ 1);

re2 = work-2@2);

After the execution of the program the value ofuglobal" is 7, which is

obviously wrong.

Meyer [3] proposes to set the states of a l l global variables used in the

subroutines to "unknown" to solve this problem. An algorithm is presented to

compute the set of all global variables occui-ring in a subroutine or in

subroutines reachable fkom a subroutine. The state of each global variable in

the set is set to unknown. Then the techniques for specializing subroutines

we described in the previous sections can be applied.

2.4.2.3 Applications of Partial Evaluation of Imperative Languages

Due to its conceptual simplicity and efficiency, partial evaluation has

been applied to various areas which include numerical computation [7,13],

hard real-time systems [5,11], and compiling and compiler generation [9,12].

In this section, we will illustrate several application areas of the partial

evaluation of imperative languages.

2.4.2.3.1 Numerical Computation

Partial evduation is very effective in cases when some parts of the input

change less frequently than others. That's the reason why specializing

numerical computation algorithms b y p a-tial evaluation can give substantial

savings. This section will describe some characteristics of numerically

oriented programs and a partial evaluator for a subset of FORTRAN 77

[7,131-

(1) The Charactelistic Features of Numerical Problems

A characteristic feahire of numerically oriented problems is that most of

their numerical computations require dynamic data and therefore cannot be

computed during specialization. But in many cases the control flow can be

determined at specialization tirne. For example, for any given ma& size,

rnatrix-multiply performs a fked set of multiplication's, even though the

numerical values of the elements might be unknown at compile-time.

Numerical programs can be divided into two types: data-independent

and data-dependent code sequences. A sequence of operations is data-

independent if the control flow can be determined at compile t h e . Otherwise

it is data-dependent. The largest part of numerical programs are usually

data-independent. Partial valuation works best for data-independent code

because iterative loops can be unfolded and reduced to one of the branches,

while the contxol flow in data-dependent computation which depends on

dynamic values cannot be determined by partial evaluation.

(2) A Partial Evaluator for FORTRAN 77

In [7], a partial evaluator for a substantial subset of FORTRAN 77 is

presented

(2.1) The Subset of FORTRAN 77

The language selected for the partial evaluator is a subset of FORTRAN

77, called F77. It includes multidunensional airays, functions. procedures,

and COMMON regions. The statements include assignments, nested

condition&, IF. unconditional jumps, GOTO, procedure calls, C U ,

fimction calls, the RETURN, and the CONTINUE statement, Expressions

include constants, identifiers, indexed arrays, arithmetic and relational

operators.

(2.2) The Partial Evaluator System

The partial evaluator of Baier, Gluck,Zochling [7] is implemented in

FORTRAN 77. The input and output of the partial evaluator are programs

written in F77. The partial evaluator is off-line. The source program wiU be

binding-time analyzed before it is specialized. The three phases of this

partid evduator system are:

-- The preprocessing phase translates an F77 source program into an

intermediate language, c d e d CoreF. The binding-time analysis (BTA)

annotates a l l statements(expressions) in the source program as either static

or dynamic correspondhg to the statiddynamic classification(SID) of its

input. The output of the preprocessing phase is an annotated CoreF program.

-- The specialization phase takes the annotated Cor@ program and

the static data as input and specializes the program with respect to the static

data. This phase is the main part of the partial-evaluator system. It contains

an interpreter (MT) for the evaluation of static CoreF staternents. The

output of the specialization phase is a specialized CoreF program.

-- The postprocessing phase translates a specialized CoreF program

into F77.

(2.3) The BTA (Binding-Time Analysis) and the Partial Evaluation of

statements

Binding-time analysis classifies each variable as static or dynamic. The

analysis used in the BTA is monovariant, Le., every statement (expression)

can be given only one statiddynamic classification. The BTA is implemented

by a fixed-point iteration: an approximate algorithm which iterates over the

static-dynamic division until a stable classification is reached.

The output of the %TA is an annotated CoreF program with a notation

"static" or "dynamic" attached to every variable.

The specialization phase foUows the annotation made by the BTA: it

executes static statements, reduces partially static expressions, and

specializes dynamic program points.

During the specialization of a dynamic basic block, the partial

evaluator N ~ S thugh the sequence of statements step by step, executing

static statements and generating code for dynamic ones. When a dynamic

conditional, e.g. an IF, is met, both branches are specialized.

The experimental result of using this partial evaluator for a

number of numerically oriented problems shows that the residual program

runs 3-4 times faster than the original one.

2.4.2.3.2 Partial Evaluation Applications in Hard Real-Time Systems

This section will present how partial evaluation can be applied to the

hard real-time systems. A partial evaluator for the Maniti hard real-time

system is also introduced.

(1) Problems with Current Hard Real-Thne System

Haxd real-time systems are applications where it is catastrophic to

violate timing constraints (such as weapons control, medicd

instrumentation). The hard seal-time system requires ensuring predictable

timing behavior of HRT applications by taking theïr timing and resource

requirement into account. Problems arise when application programs use

high-level constnicts (such as recusion, loops, and dynamic data structures).

The execution tirne and other resource requirements are d iEcu l t to estimate

at compile time. Current techniques in the HRT operating system cannot

handle this pmblem. Their solution to this problem is to forbid or restrïct the

use of these high-level language features. That causes inconvenience for the

system designers, and the developed low-level programs are hard to adapt for

different environments.

(2) The Solution of Partial Evaluation

In their paper [5], Nirkhe and Pugh proposed their solution to this

problem which is based on partial evaluation. In their method, a

pmgramming language is designed. A program in this language can be

partially evaluated which produces a residual program that is guaranteed to

terminate. The tight upper bounds on execution time and resource

utilization of the residual program can be automatically determined. The

technique is to transfolm the program with high-level language features into

a new program which has mostly linear code and an estimatable execution

t h e .

(3) A Partial Evaluator in the Mamti Real-time S ystem

This section describes a partial evaluator of Maruti real-time system.

Maruti is a hard-real-time opeïating system which is based on the

technique of pre-scheduling. In this technique, the timeliness of the

application execution is enswed by reserving the required resources prior to

nrn-time.

Application programs in Maruti are written in MPL (Maruti

Programming Language). In MPL, a block is a collection of statements that

have a separate temporal scope. Since blocks have separate timing

constraints and resource requirements, they may be scheduled separately.

The temporal and precedence relations among blocks is represented in the

form of a graph, which is called a computation graph.

Partial evaluation of a program produces a residual program in the

form of a computation graph. In the computation graph, nodes conçist of

sequential code segments. Nodes are labeled with their execution tirne and

resource requirements. During partial evaluation, compound statements

such as conditionals and loops are kansformed into ones with restricted use

of these constnicts. For the resulting statements, the bounds of loops and

depth of recursion are known and the tight estimate of execution time of

blocks is determinable. The result of partial evaluation are nodes of the

computation graph, in which edges represent execution ordering and tirne

constraints. This computation graph is used by the Maniti Scheduler to

preschedule the program in a way that guarantees that the program will

satise a l l of its timing and resource constraints.

In this method, during partial evaluation, the residual program must

be guaranteed to terminate and have a predictable behavior. If such

prediction is not possible, errors are detected and reported as type errors. If

in some cases partial evaluation fails to terminate d e r a time period

specified by the user, we abort the compilation and print a message

describing the portion of the program apparently causing problems. Normal

estimation techniques are used with the resulting program to estimate the

resource requirements.

(4) Advantage of Partial Evaluation of HRT Programs

The main benefit of partial evaluation of real-tirne programs is

allowing programmers to write using high-level, reuse-oriented programming

styles. Traditional techniques of execution time estimation can be used on

residual programs to obtain the time and resource requirements. Also, the

residual programs are more efficient than the original ones.

2.4.2.3.3 Applications of Partial Evaluation to Compiler Generation

This section describes ano ther important application of p d a l

evduation: automatic compiler generation.

(1) Partial Evaluation and Interpreters

Interpreters are easier to write than cornpilers, while compilers are

more efficient. Partial evaluation c m yield both those advantages. By the

specialization of an interpreter to a program, the net a e c t is compilation. If

the partial evaluator is seSapplicable, an interpreter is automatically

transformed into a compiler.

The following diagrams illustrate how they relate.

Fig 2.1 Partial Evaluation of An Interpreter Amounts to Compiling

Compiler 0
Fig. 2.2 Partially Evaluating A Partial Evaluator Yields A Compiler

In the following subsection, we will give more explanation and a

mathematical proof of the above statements.

(2) How Partial Evaluation Works in Compiler Generation

Partial evaluation works in compiler generation in this way: Consider

an interpreter for a given language L. The specialization of this interpreter

to a known source program Ps(mitten in L) already is a target program for

P., written in the same language Lint as the interpreter. So, partial

evaluation of an interpreter with respect to a fked source program amounts

to compiling.

The following subsections desciibe the applications of partial evaluation

in compiler generation.

(2.1) Compiling by Partially Evaluating an Interpreter

According to the notation of [12], we denote an interpreter in language

Lint as int, the source language as Ls. pïograms written in source language

as Ps We define the interpreter int as follows.

Rwt Ps Ls (di, ..., dn)= Run Luit int (Ps, dl, ..., dn) (2.1)

for al l programs Ps written in language Ls and data dl, ..., dn-

By this definition an interpreter takes both the program to be

interpreted and al l input data for the program as its input.

Let the program PE written in language Lp be a partial evaluator for

the ~0-e language Ls, and let int be an interpreter for source language Ls-

Let's see what happens Sint is partially evaluated with respect to a given

program Ps written in the language Ls. According to (2.1), we have

Run Ls Ps (dl, ..., dn)= Run &t int (Ps, dl, ..., dn)

= RUT& k t (PE (int, Ps)) (dl, ..., dn) (2-2)

Note that formula (2.2) describes the application of partial evaluation

to an interpreter int. The result of this is the same as the result of applyuig

the program Ps to data (dl, ..., dn), so we call this

target = PE (int, Ps) (2 -3)

The program target is a program written in language k t with the

same input-output behavior as the source program Ps. In other words we

have compiled the source program Ps into a program target written in

language b t by partially evaluating the interpreter int with respect to the

source program Ps.

(2 -2) Compiler Generation

To illustrate the application of partial evaluation in compiler

generation, we fist give a definition of autoprojector.

Definition 2.1: A program mir written in language Lp is an

autoprojector iffit is a partial evaluator for language Lp. So an autoprojector

is a partial evaluator for a language such that the partial evaluator is

written in the same language. Assume that an autoprojector inix is given.

Letting mUc play the role of the partial evaluator PE in formula (2.3). we

have that

target = inix (int, Ps) (2-4)

We define a computation Corn as follows.

Corn = mix (ln&, int)

According to this definition, we have

Corn Ps = (inix (rnix, int)) Ps

since rnix is self-applicable, i.e. an autoprojector, according to (2 .G),

applying partial evaluation to mix itself, we have

Corn Ps = rnix (int, Ps)

Combining formula (2.4) and formula (2.7). we have

Corn Ps = target (2 -8)

Thus Corn is a compiler, since given Ps it produces a target program

for Ps .

(2 -3) Compiler Generator Generation

By the same reasoning a compiler generator ComGen may be obtained

by computing:

ComGen = mùt (mix,mix) (2-9)

This program ComGen transforms interpreters into compilers,

because

Corn = ComGen int

The following is a proof of formula (2.10)

Corn Ps= (mix (mix,mix), int) Ps

= (mix (miu,int)) Ps

= mix (int, Ps)

Combining formula (2.4) and (2.1 l), we have

Corn Ps = target

Chapter 3

Data Collected

3.1 Introduction

A s u b p r o ~ a m is an abstract operation defked by the programmer.

Subprograms form the basic building blocks out of which most programs are

constructed. Explicitly transmitted parameters and results are the major

methods of shaiing data objects among subprograms. In the C piogramming

language, al l subprograms are functions, and the fmctions are the key parts

that do the real work in the C programs. Functions are invoked by other

functions and ultimately used by the function main() to solve the original

problem. This ïesearch project collects statistical data on typical function

calls in C code to predict how much benefit we can get fkom applying partial

evaluation to C code. This chapter wïll describe what statistical data is

collected, and why we collect these data.

3.2 "Cd b y Value" Mechanism

Since the purpose of our research is to analyze the fiequency of constant

parameters in function c a b in C code, the following is a brief review of

major methods of parameter passing in h c t i o n invocations.

There are three primary mechanisms for parameter passing: in-out

parameters, in-only parameters, and out-only parameters. In C, parameters

to functions are always passed '%y value", i-e., using the "in-only"

mechanism. This means that when an expression is passed as an argument

to a function, the expression is evaluated, and it is this value that is passed

to the function. The variables passed as arguments to functions are not

changed in the calling environment.

Our analysis program collects all the parameters to all function calls in a

C program and reports this information to a file calledprog.stat for further

andysis. It also reports whether or not each parameter is a constant. In the

case where such a constant parameter is an expression, we output the whole

expression to the file prog.stat instead of evaluating it, due to the complexity

of interpreting C code, at this stage. Although we don't have the evaluated

value of this expression, we do report whether or not it itselfis a constant

value, and keep a record of al l these unevaluated expressions for further

analysis of possible errors in the resulting statistics.

3.3 Statistical Data Collected in the Project

3.3.1 Function Specialization

As stated in the introduction, the hct ion c d is a vety important part of

C pmgramming. Therefore, when applying partial evaluation to the C

language, furiction specialization and functioa inüniag (UIlfolding) are

important techniques.

3.3.1.1 What is function specialization?

Function specialization is a technique for partial evaluation to generate a

specialized version of a function for each value of its constant arguments that

is actually used in the program. Let us use an example to illustrate this.

Suppose that in a C programprogx, there is a h c t i o n prototype: uoid

worh(int a, int b). Also suppose that there is a b c t i o n invocation work(2, c).

With the principle of partial evaluation, we can evaluate the function with

the first parameter being 2 and therefore create a specialized version of that

function work_2(int b). This new version, with fewer parameters, will run

faster than the original version in most cases. The specialized h c t i o n may

also be smaller than the original version. To apply h c t i o n specialization,

whenever we encounter a h c t i o n c d work(2,x) with the first p arameter

being 2, we can replace it with function call work_2(x). This This u s u d y

make execution more efficient. In some interaction with cache and virtual

memory, the specialized hct ion may nia slower than the original one due to

mernory transfers if it is larger than the uispecialized version.

3.3.1.2 How to perform hction specialization

As we state in chapter 2, there are 2 different cases in specializing

function invocations.

Function invocation with dl constant parameters

If a l l the parameters are known at compile-the, the partial evaluator will

evaluate the function with the values of the actual arguments and the local

variables used in the function c d . Eventually we will get either a residual

fimction (if the function can't be evaluated U y) or a particular result of the

evaluation to replace the function c d .

Function invocations with some but not al1 constant parameters

In this case, we will get a residual function with the unknown parameters

suspended.

3.3.2 Statistical Data CoUected

Since fiuiction specialization is an important part of the partial evaluation

of imperative languages, to study how much benefit we can obtain when we

apply partial evaluation to imperative programs, we have undertaken to

d e c t statistical data on function calls in standard C code. The fouowing is

the infornation we collected,

3.3.2.1 H o w many fimctions have al l parameters constant?

The reason to collect this information is that w e can determine how many

functions can be replaced by an evahiated result (assuming there are no side

af%ects in these functions). Such a change can have a sigdicant &ect on

execution speed.

3.3.2.2 How many functions have lin, 2/n, 3111, ..., n-lln constant

parameters (where n is the number of the parameters in the

function d l) ?

The layout of the output generated is the following:

I I
- - --

No. of Constant Args

Table 3.1 Distribution of Constant Arguments

As an example of how to read Table 3.1. notice that row 10 lists the

numbers of functions which have OflO, Y10,2/10, ... 9/10,10/10 constant

arguments. W e assume the number of parameters of all the functions does

not exceed 10 for the analyzed code. In our implementation, we choose to test

C programs of Werent &es and styles. Some of them have hundreds of

fûnction calls in a single file.

We designed a large size of output ma& for the rdatively large

programs. Here we use an example of a 10 * 10 matrix Table. Element Table

3.1[i,j] reports the number of invocations that have i parameters with j of

them constant. The sum of Table[i,i] (for O< i cl 1) is the number of functions

which have a l l parameters constant. For example, the value of Table 3.1

entry [5,2] is 10, which means there are 10 function calls that have 5

parameters with 2 of these parameters constant.

The significance of this information is that the data reflects the fkequency

of distribution of constant parameters. This is also a signiscant measure of

the benefit that we can gain fkom applying partial evaluation.

3.3.2.3 How many specialized versions would be obtained ?

One of the basic strategies of partial evaluation is to produce specialized

functions by residualizing calls. The partial evaluator propagates constant

values and fol& constant expressions, produces speualized versions of the

values and folds constant expressions, produces specialized versions of the

source function. It is possible to generate more than one specialized version

for each source fimction. For example, for the h c t i o n work(int x, int y, int

z), if there were four function invocations:

(1) work(Z,a,b); (2) work(2,3,c);

(3) work (d, 3, e); (4) work (g, 3, h);

There would be three specialized versions obtained fiom the above

function cslls:

(1) work_2(int x, int y);

(2) work-23(int x);

(3) work-3 (int x, int y);

There are two types of partial evaluator. A monovariant partial evaluator

produces at most one specialized function for every source function. A

polyuariant partial evaluator can produce many specialized versions of a

source function. Our project collects the maximum numbet of specialized

versions of source functions for the latter and for more complicated cases. So

another important data item that we want to collect is the number of

specialized versions that could be obtained.

To determine if a h c t i o n c d should be specialized, we need data on:

(1) How often the same constant parameter has the same value; and

(2) How often it is the only constant value.

Therefore, the statistical data we need to coIlect from the C code is:

(1) The total number of fiinction calls;

(2) The total number of functions;

(3) For each fiuiction, the number of fimction invocations with the same

number and value of constant parameters.

We can determine the number of specialized versions according to the

data we collect.

3.3.2.4 The Number of Unevaluated Expressions and Functions with

Unevaluated Expressions

As we state in the previous section, rather than computing the value of an

expression parameter, we output the whole expression as a parameter to a

function c d and judge ifit is constant. This might cause errors when we

collect data on function calls with the same constant parameters. Let's

consider the following two fimction invocations.

(1) work(4,x)

and (2) work(2+2,y)

Our program will treat them as two invocations of function uiork(a,b),

with different constant values for the &st parameter, 4 and (2+2),

respectively, though these two in fact have the same constant value for the

first parameter after f d y evaluating the expression of the parameter.

According to the report produced by our program, we might have a different

number of function specialized versions and therefore jump to a different

conclusion of the benefit of applying partial evaluation.

That is the reason why these data need to be collected Due to the

complexity of interpreting C code for typical systems applications, we do not

evaluate the expressions at this point. In practical C code there is also little

chance that fiuiction calls will have different constant forms of the same

argument. We collect the number of these unevaluated expressions in order

to see how much it affects the accuracy of our conclusions. If the fkaction of

unevaluated constant arguments is small then our conclusions are valid. If

the number is large then a more complex statistics gathering program would

be needed. As is shown in Table 5.1, the number of unevaluated constant

arguments is a s m d fiaction of the total number of constant arguments, and

hence the effort required for full evaluation of all constant arguments is not

warranted.

Chapter 4

Data Collection Method

4.1 Introduction

In chapter 3, we state what End of statisticd data were collected Oui.

methodology to do that data collection is to modify an existing C recognizer to

read a C program, interpret the code, and report to a file the information

about each function c d invoked in the input program. With this file of

hct ion calls, we analyze the functions and their parameters, and get the

statistical data we need.

The following sections will illustrate the design and the implementation

details of the project.

4.2 The Analyzer

A program called "Analyzer" was developed to collect the statistical data.

The purpose of this program is to read the C code, and report every function

invocation and its parameters. To do tbis we modified an existing C

recognizer coded by members of the Programming Language Design and

Implementation Group at the University of Manitoba.

The C recognizer, Crec, was developed to a part of a source-to-source

translater for the Safer-C project. Its main task is to read a program, build a

parse tree for it, determine ifit is a C program, and give emor messages if

there are any syntax errors.

Crec uses Lex and Yacc to generate a scanner and a parser. It reads the

input program, breaks the input into tokens using the scanner, and parses

the token stream according to the syntax rules of the C language. In the

parsing phase, it also produces a parse tree which we can think of as an

image of the program. In other words the parse txee reflects the structure of

the program. Our program, Analyzer, will process the C code accordùig to

the parse tree, retrieve a l l the information on every function c d , report them

to a text file, analyze the information in the file, and get the statistical data.

Accordhg to these data it estimates how much effort would be needed to

apply partial evaluation to the input program and how much benefit would

be gained. By running the program "Analyzer" against the representative C

files that we selected, we corne to a conclusion on the bendit of applying

partial evaluation to C code.

Since the program *Analyzern uses Lex & Yacc and standard compiler

construction techniques to generate the parse tree, the following section is a

briefreview of the two widely used compiler generation tools, Lex and Yacc.

4.3. Compiler Construction

The following diagram illustrates the five phases of compilation.

~ 6 u r c e Tokcas Prrsc A ttribu ttd IR Targct
Program Trec Parse Trec Progrzm

Fig. 4.1 Compiler Construction

To aid in the generation of compilers, a lot of compiler tools were

developed. Lex and Yacc are two well known tools to generate scanners and

p arsers, respectively.

As a scanner generator, Lex accepts a high-level, problem oriented

speacation for character string matching, and produces a function (the

scanner) that recognizes tokens described by regular expressions. The

regular expressions are specified by the user in the source specincations

v Z v 7

Code
Gcncrator

+ ~ lr)Opt imizer œ 4 Scanner

L

le) +
1

Scmzntic
An rlyzcr

L

Parscr

given to Lex. The scanner generated by Lex recognizes strings described by

these expressions in an input stream and partitions the input stream into

strings matching the expressions.

Yacc is a parser generator. The Yacc user prepares a specification of the

parsing pmcess; this includes niles describïng the input structure, code to be

invoked when these rules are applied, and a low-level routine to do the basic

input. Yacc then generates a parser, which calls the user-supplied low-level

input routine (the scanner) to pick up the basic elements fiom the input

stream. These tokens are organized according to the input structure d e s ,

called grammar d e s ; when one of these d e s has been recognized, the user

code supplied for this rule, an action, is invoked. Actions have the ability to

return values and make use of the values of other actions.

In o u project, the input user-specification for Lex is regular

expressions describing C tokens, and the input for Yacc is the gramma d e s

for ANS1 C and the code invoked for each d e , which generates the parse

tr ee.

4.4 Parse Tree

As we have mentioned, the outcome of the parser is a parse tree. The

way the parse tree is generated is that we put the code for parser tree

generation in the action part of the Yacc grammar. When the right part of

one of the grammar rules is recognized, the code is invoked to generate a

node in the parse tree.

For example, as defined in the fila "minqarse,tree.h in the package

"Analyzern, each node in the parse tree consïsts of three parts:

(1) Code : The code for grammar symbol represented by this node.

For example, "ac-funcCcall" is the code representing a node

in the parse-tree which stores the idormation of a fiinction

invocation.

(2) Value: For a nonterminal node, the value is a pointer to the fist

descendant of this node. Remaining descendants are in the sibling

list of the e s t descendant. For example, if "ac-funcCcall" is a

nonterminal node, then its value is its &st descendant node

"acfunc-name." Remaining descendants like "parameter_list"

which represents the parameters of the function are in the sibling

list of this value node.

For a terminal node, the value field may contain a text string

giving the actual characters in the tenninal symbol.

(3) sib: A pointer that points to the next sibling of this node in the parse

tree-

Therefore, for a function invocation work(2, b), the correspondhg part in

the parse tree will look me:

Fig. 4.2 A Subtree in the Parse Tree

As shown above, the parse tree contains all the information of the

program. By traversing the parse tree, we can get information about every

fiuiction c d , which includes the values of the actual arguments of the

bct ion , the loop nesting depth of the function c d , etc. We will explain

important design decisions we made during the implementation of the

project.

4.5 The Design of Analyzer

Following is a schematic diagram of the program Analyzer.

user
specification

Compare the
argumentswitl.iM
all invocation of the
same fkt ion

Get tbe statisticd I data

Fig. 4.3 A Schematic Diagram of Anaiyzer

4.5.1 Traversing the Parse Tree

Once the input program has been parsed, a parse tree which stores the

whole program in its own structure is produced. By traversing the parse tree,

a l l the information of the program, including every declaration, every

statement, etc, can be examined. For this project, we need a l l the data on

function invocations; therefore in the program "Analyzer," the whole parse

tree is traversed, and the information is retrieved whenever a node related

to a fitnction call is encountered. Basically, for a C program the parse tree

consists of two parts. The following section will describe how the two basic

kinds of nodes are being analyzed to get the information we need.

(1) The declaration part.

The declaration part is the code which includes a l l the declaration before

the maino function in a C program. Consider the following example.

int a = sin(O.5);

This declaration includes a function invocation sui(0.5), and data on this

function c d needs to be couected too. Therefore when traversing a parse

tree, and a node which represents a dedaration is encountered, the proqam

"Analyzer" examines the subtrees of this node and checks if there are any

function invocations.

(2) The function definition part.

The other part of the parse tree that needs to be checked is the nodes

representing function d a t i o n s . Function invocation could happen in

expressions, variable declaratims in the definition of the functions,

statements, etc.

4.5.2 Function Invocation Nodes

When traversing the parse tree, evevy time a node that represents a

function invocation is encountered, all the information about the function c d

has to be retrieved, which indudes the function name, the actual arguments,

etc. In this project, a function invocation node has the following format:

Fig. 4.4 A Node of Function Invocation

In this structure, the name of the function, which is stored as a string in

this project, is the fist descendant of the node of uac_func-~all~ Its sibling is

the argument Est of this hct ion call.

4.5.3 The Function Name and fhe Argument List

To extract the h c t i o n name fkom the parse tree, the value of the fïrst

descendant of the node uacfunc-call" is retrieved, and is output to a text file

which has been opened for this purpose. The next step is ptting the

arguments. -

An argument of a function c d in C code is an expression that could be a

variable, a constant, an assignment, a function c d , etc. For example, we

might have a function c d such as:

work,a(2*3 +5, 4, x+ 1);

For those arguments that are constant expressions, we decided to output

the whole expression instead of partially evaluating them. For the above

example, the arguments being output will be:

(1) 2*3+5; (Not 11) Constant Value;

(2) 4; Constant Value;

(3) x+l; Non-Constant;

The reason that we choose to do so is that it is too d i E c u l t to interpret al l

possible C expressions correctly with proper type promotions, word size, etc.

As shown in Table 5.1, we later found that unevaluated constant expressions

would only have a small d e c t on the results collecte& Though we haven't -

evduated the value of an expression, we still judge if it is a compile-time

constant value. The method to judge a constant argument will be explained

in section 4.5.7.

Another case of tr icky arguments is when the argument itselfis a

function call.

Consider the following hct ion c d :

work-b(x, do-it (sin&)), cos(0 -5)) ;

For this funetion c d , some of its arguments are nested funetion calls. We

need to recognize and output it correctly, and determine if it is a constant

value. The arguments to work-b0 that we get will be:

(1) x; Non-Constant Value;

(2) do-it (sin@)); Non-Cons t an t Value;

(3) cos(0.5); Constant Value;

This example is treated in more detail later.

4.5.4 An Output File prg.stat

To gather the idormation on function calls collected fkom a parse tree, a

text file is created. This file is opened prior to the data collection. Its name

wïil be of the formprg.stat which inherits the name of the input C program

prg.c but with a different extension .stat. The stat is short for "statistics."

Each line in the nle prg-stat contains the information for one function c d ,

which includes

(1) The name of the hct ion ,

(2) each argument of the function, and

(3) whether or not that argument is a constant expression.

When the data collection has been finished, the nle will be sorted by

function name and the data in it will be analyzed.

The following figure shows the output lines for function cal l

work-a & work-b shown previously, in the file progstat.

@ w o k a @ 2*3+5 $ 4 $ x+l #

@ work-b @ x # dojt (sin@)) # cos (0.5) $

@ do-it O sin (y) #

@sin@ y #

@ cos @ 0.5 $

Fig. 4.5 Sample Lines of the File prog.stat

4.5.5 A Recursive Algorithm for Retrieving Data on Function Calls

The name of the fiuiction is stored as the first descendant of the node of

the function c d . Its value which is stored as a string is extracted and is

output to the fileprg-stut. To collect the data on the arguments, a recursive

algorithm is used.

In a C program, the arguments of a function.cd are expressions that can

be a variable, a numeric, a function c d , an assignment statement, etc.

In the input specification to the parset generator YACC, Le., the program

parsecy, expressions are debed recursively:

exPr

: assignment-expr

1 expr ',' assignment-expr

And the assignment-erpr could be one of several kinds of expressions:

assignment-expr

: logical-or-expr

1 logical-or-expr '3' logical-or-expr ':' c~nditional~expr

Therefore, when we decode a parse tree, trying to extract the expression

of the argument to the output nle prgstat, a recursive algorithm and a case

statement are used.

The case statement lists al l the possible forms that an expression could

take, Le., constant, identifier, assignment, b c t i o n call, etc. For some simple

cases, like identifiers, just simply getting the string value of this node and

outputting it to the me prg.stat is required; for some complex cases, such as

when the expression is an assignment expression, this assignment expression

has to be retrieved recursively to get the whole expression. Actually,

recursive c a b have to be used for most of the branches in the case statement.

4.5.6 A Linked List of the Funetion Calls

The recursive algorithm is not enough for o u task. For most of the

cases, the argument expressiom can be extracted correctly to the output text

file with this algorithm. But as we mentioned before, consider the function

' c d

work,b(x, dojt(sin(y)), cos(0.5));

In this b c t i o n c d , the second argument do_it(sin(i)) is a nested

function c d . In our point ofview, it is not only an argument of one function

c d , but also another function invocation itself; that is sinh). The original

recursive algorithm can output this argument to the file correctly, but does

nothing to deal with collecting the argument data for a function c d which

itselfis also an argument to a function c d .

To solve this problem, we use a simple but elegant solution: Record the

pointer to this hction-cd-argument node in the parse tree, keep a linked-

list of these lMds of nodes, and handle them using the recursive algorithm

when the whole program has been processed and the data for the first level of

call has been collected. The following figure illustrates the linlred -kt

structure.

Function Call Function Call Function Call

Parser Tree r
Fig. 4.6 Linked-list of Function Calls

Each node in the list consists of two pointers: one points to the next

node in the list, another pointer points to the node of the function c d in the

parse tree. With this linked List, we will not miss any of the function calls in

the program.

For example, for function c d work-b(x, do-it(sin@)), cos(0.5)), the

analysis program outputs "work-bn as the function name; and "xn as its fïrst

parameter, "do-it(sin(y))" as its second parameter, and ucos(0.5)" as its third

parameter. The analysis program also realizes that the second and the third

parameters are fiuiction c d s also. Therefore udo-it(sin~))" and "cos(0.5)" will

be sent to the linked-kt, and will be processed using the recursive algorithm

to extract the idormation on these two function calls.

4.5.7 Recognizing Constant Parameters

An important job to do for the data collec~ed is to judge if an argument

is a constant argument. Due to the varieties of expressions, a recursive

algorithm is use& For an argument that is an expression involving operators,

rather than a simple factor, since we do not evaluate the expression, we will

decide ifit is a constant value according to the value ofits components. If

d e y are al l constants, then the expression is considered to be a constant

argument. For example, p8+12 is considered to be a constant value, while

Pa+12 is not.

For an argument that involves a function c d , we assume there are no

global variables involved. Therefore if a l l of the p arameters are constants, it

itself is a constant argument, otherwise it is not. For example work(2,3,4) is

considered to be a constant argument but work(2.3,t) is not.

4.5.8 halyzing the Data File

ARer traversing the whole parse tree, and reporting a l l the information

to the stat file, we start to analyze the file. This includes the following steps.

(1) Sorting the file.

We use the Unix utility "sort" to sort the file by the file name. That is a

new experience for me to c d "sort" within a C program. In th& project, we

assume that hc t ions are identined by their names. Function calls with the

same name are considered to be the same function. A sorted file consists of

function calls listed by theïr names.

A pzoblem arises when only a pointer to a function is specïfîed in the

function ca l l instead of a function name. We decide to treat all such function

c a b as being to the same function because it is not possible to get the

function name by a dynamic pointer.

(2) Collecting the Data Distribution.

When a sorted nle is ready, the next step is to collect the distribution of

the data; that is, how many functions have O, Un, 2/n, 3/n. .., n-Un, d n

constant parameters (n is the number of the parameters). The output of this

distribution is a 2-dimensional matrix A[i,j] (Os i, j i n) which we presented in

chapter 3. We also can get the number offunctions with all arguments

constant fkom this matrix. This number is the sum of A[i,i] for i =O to n.

(3) Determinhg the number of the specialized versions of a function.

A function might be called a few times with different numbers and

values of constant p arameters. Each of these combinations would generate a

different specialized version of a hction. To determine the number of

specialized versions of a function that would be produced, more analysis

needs to be done to the file. This is a tricky part in terms of progrnmming

because the information (function name, parameters, constant value, . ..) of

each fiuiction invocation is stored in the text file as a string. The hard part is

to extract each part of this information correctly fiom each line.

4.6 Implementation of the Project

The project is implemented on SunNnix, using Lex, Yacc and the C

propamming language.

Chapter 5

Results

5.1 Introduction

The purpose of thisproject is to collect statistics on the use of

translation-time constant arguments in C language source code. Our

analysis program takes a C source program as input, and produces the

statistical analysis as the output. We analyzed the source code 6.om three

important projects coded in C: the X-Window Library, the LINUX operating

system, and the Gnu C compiler. The fouonring sections describe how we ran

the analysis program, report the results me obtained, and present some

discussion of the results.

5.2 Software Selected for Andysis

In the project, we analyze the source code of the following software.

(1) The X Window System. This code was initially developed at the

Massachusettes Institute of Technology. It is now widely used as a

graphical window system on UNIX systems for a large number of varied

plattoms. The resdts are reported for veision 11 release 5.

(2) The LINUX operating system. This code was initially developed by b u s

Torvald in Norway. It is now rnauitained and enhanced by a large number

of programmers scattered all over the net. It is widely used to provide the

UNM environment on personal computers. The results are reported for

version 1.1.59.

(3) The Gnu C compiler gcc. This code was developed by the Free Software

Foundation and has been maintained over the years by a variety of

programmers It provides a reliable C compiler for a large number of

target architectures and operating systems. Results are reported for

version 2-7.2.

The reasons for choosing the source code listed above are:

(1) The source code was developed by different implementers. W e don't want

to select source fkom a speofic group ofimplementors which might have a

specific style and may not be a representative of the C code in general.

(2) The source represents typical applications of the C language, namely:

graphical user interfaces, operating systems, and compilers.

(3) The source code is well known and widely used.

(4) The source code is available over the Internet.

5.3 Data SampIing

The source code analyzed had a high degree of complexity that is typical

of systems programming. It can take years of work to perfect a language

processor that correctly handles code with such a high-level of complexity. In

fact, the software systems that were selected for analysis often specify the

exact version of the compiler that must be used in order for the software to

run correctly. They also often use special features of the gcc compiler that are

not part of ANS1 C.

As a result, we had two options:

(1) Engage a long-term codïng effort to perfect a statistical analysis

propam that could accept al l this software correctly as is, or

(2) Rand modifg the input code so that it could be acceptable to a simple

program.

Since the objective of our project is a single-usage data analysis program

rather than a general purpose software package, we chose the second

alternative. The changes to the input programs were carefully made to

ensure that the statistics being collected would not be affected. This

requirement for hand manipulation limits how much souxce code we could

reasonably analyze. Our solution was to sample the input data by selecting

one of every n source mes for analysis. The sampling rate for each input

project is shown with the statistics.

Even with this reduced code sample size, many weeks of careful editing

were required to make the selected software acceptable to o u translater.

5.4 The Data Collection Method

The data collection pmcess consists of the following steps.

(1) Preprocessing

Before a source ille can be analyzed it must be run through the C

preprocessor Ucpp*. The reason for this is that a C program cannot be parsed

correctly until the transformations described by the preprocessor directives

are applied. In this step, the symbolic constants represented by preprocessor

symbols are replaced by literal constants.

In many cases, this step was not straightforward because the source code

analyzed is highly portable low-level code. Sometimes the generated C source

lines were too long to be loaded by a text editor such as the U N E editor "vi",

or to fit in the lixnited b d e r normally provided for Yex" generated scanners.

The ability to inspect and make s m d changes to the source code was vital to

allow the continued processing of source code that was otherwise rejected by

our parset. A simple "preprocessor postprocessor" was coded to edit the

output of preprocessor and break it up into manageable lines.

(2) R u the Analyzer

To get the statistical data on the C source, the analyzer program is run

on the C source program. The source propam is parsed into a syntax tree.

The syntax tree is traversed recursively locating function invocations.

Idormation about each function c d is collected and output to a me, and the

file is then sorted by the fuaction name. At the same tirne, our analyzer

program &O collects statistical data on functions in the source program and

reports them to standard output. Hence for each source program, the

analyzed results consîsts of:

(1) A text file which contains a l l the data we need on function calls: the

name of the function and a l l the parameters of each function c d , and

whether o r not they are constant expressions.

(2) Statistical data reported on the screen based on the text file. The data

indudes: a matrix which indicates the distribution of constant

parameters of function calls in the input program, the maximum

number of speualized version of function c a s that would be needed,

the total number of functions, the total number of function calls in the

program, the number of unevaluated argument expressions and the

number of functions with unevaluated argument expressions.

5.5 Results

The following tables report the results for each package analyzed.

Source file sampling rate 115 116 118

No.ofsourceLinesanal@ed 11,396 16,O 18 33,024

No, of function caUs 6 16 3,227 3,803

No- of bctions invoked 2 18 527 690

No, of calls with ail 4 141 120

1 constant arguments 1 0.65% 1 4.4% 1 3.1%

No. of specialized versions

16%
No- of unevaluated constant 2 65 4

Expressions 0.3 % 1 2 % 10.1%

No. of h c t i o n c d s with 2 62 4

unevaluated constant 5.1 % 1 12 % 1 0.6%

--

Total

Table 5.1: Statistics on Function Calls

5.5.1 Discussion of Table 5.1

Row 5 in Table 5.1 shows that for at least two of the packages, LINUX

and gcc, supporting the fidl evaluation of functions with d constant

arguments could be an important feature of a code improver. It would reduce

up to 4.4% of function calls to theh minimum possible implementation. At

the very least, that row indicates that it is warranted to do a further analysis

of which functions have side effects.

Row 6 shows how many extra function versions would be produced if

functions were specialized for every combination of unique constant

arguments in al l invocations. This result is înteresting because it shows that

the to ta l number of functions would not increase by more than 96%, and

more commonly by less than that. This could be an acceptable price to pay for

higher execution speeds.

Rows 7 and 8 show how much error was introduced by the analysis

program due to the fact that it did not compare the binary values of constant

arguments, but rather compared theh lexeme strings. These rows show that

the error is at most 12%. Furthemore this error is toward the favorable side,

since it means that possibly up to 12% fewer specialized fhctions would be

generated A cursory inspection however showed that in a l l likelihood there

were no constant arguments with equal binary values but different lexemes.

This table also shows that there can be substantial merences in

programming styles between programming groups. Thus code improvement

techniques that benefit one project substantially may have little effort on

other projects.

5.5.2 Ratio of Constant Arguments to Total Arguments

The following tables report the number of constant arguments versus

the lengths of the argument lists. This information indicates the degree of

specialization of a specialized version of a function. The more arguments that

are constants, the more efficient will be the specialized version. An

interesting fact represented in the table is that no function in the analyzed

projects had more than three constant arguments, regardless of the length of

the argument h t .

Table 5.2: X Window System

1 No. of Constant Args 1 Total 1

No.
of

8 9 1 IO
9 4 5 9

, 10 1 1
, 11
, 12

13
14 I 1 l

Total 2372 786 66 3 3227

Table 5.3: The LINUX Operating System

1 1 No. of Constant Args 1 Total 1

Table 5.4: The Gnu C Compiler ''gocm

No.
of
h~

, O
1
2
3

4
5

, 6
7

334
1159
1375 l

7 19
209
89
Il
7

30.3 Total

O
334
1049
1252
614
164
34
1
7

3455

1

110
123
78
38
44
8

401

-

2

7
6
G
2

- 21

3

20
1
5

26

1 No. of Constant Args 1 Total 1

Table 5.5: Tot& for Three Input Projects Taken Together

Chapter 6

Conclusions

In this thesis, the principle of partial evaluation and its major

applications are surveyed. Two important partial evaluation techniques are

also discussed. Based on one of the basic strategies of partial evaluation -

unfolding function calls, an analysis project was designed to collect statistics

on the use of translation-the constants as arguments in C language source

code. The project was implemented and source code fkom three well known

projects coded in C was analyzed .

It was found that polyvariant specialization of a l l calls with some constant

parameters is feasible on real system code. It can be an important feahire of

a code improver. It was &O found that the effort of specialization can be

made at an acceptable ptice for higher execution speed.

Bibliography

(1) Salomon, Daniel J., "Using Partial Evaluation in Support of Portability,

Reusability, and Maintainability." International Conference on

Compiler Construction CC'9G. 1996.

(2) Charles Consel, Oliver Danvy, "Tutorid Notes on Partial Evaluation".

Conference Record of the 20th Annual ACM SIGPLAN-SIGACT

Symposium on principles of Progïamming Languages POPL'93,

Charleston , SC, 1993.

(3) Uwe Meyer, "Techniques for Partial Evaluation of Imperative

Languages". In Symposium on Partial Eualuution and Seinantics-Based

Program Manipulation, Pages 145-164. ACM, 1991.

(4) Daniel Weise, Roger Crew. "Programmable Syntax Macros". 1993, ACM

SIGPLAN Notices, V28, #6, pp 156-165.

(5) Vivek Nirkhe, William Pugh. " A Partial Evaluator for the Mamti Hard

Real-Time System", Proceedings of the TweWi Real-Time System

Symposium, San Atonio, Texas Dec., 199 1. IEEE Comput. Soc. Press.

(6) Salomon, Daniel J., "C-Breeze: Syntactically Improving the C Language

(6) Salomon, Daniel J., "C-Breeze: Syntactically ImproWlg the C Language

for Error Resistance", Technical Report, University of Manitoba, 1995.

(7) Romana Baier, Robert Gluck, Robert Zochling, "Partial Evaluation of

Numerical Programs in FORTRAN*, PEMP '94, ACM SIGPLAN

Workshop on Partial Evaluation and Semantics-Based Pmgram

Manipulation, 1994.

(8) Andxei P. Ershow, "On Mixed Computation: Informal Account of the

Strict and Polyvariant Computational Schemes", NATO AS1 Series, Vol.

F14 Control Flow and Data Flow: Concepts of Distributed Programming.

Edited by M. Broy, Springer-Verlag Berlui Heidelberg 1985.

(9) Lars Ole Andersen, "Partial Evaluation of C and Automatic Compiler

Generation8'.In Proc. of Compiler Constructions - 4th Internat ioml

Conference, CCY92, pp. 25 1 - 257, Springer-Verlag, October, 1992.

(10)Donald Michie, u'M:em~J Functions and Machine Leaming",

NATURE,Vol. 218, April6, 1968.

(1 1)Vivek Nirkhe, William Pughj "Partial Evaluation of High-Level

Imperative Programming Languages, with applications in Hard Real-

Time Systems", Conference Record of the Nineteenth Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL'92, 1992.

(12)Neil D-Jones, Peter Sestoft, Harald Sündergaard, "An Experiment in

Partial Evaluation: The Generation of a Compiler GeneratorJJ, First

International Conference on Rewriting Techniques and Applications,

May 1985.

(13) Neil D. Jones, "An Introduction to Partial Evaluation", ACM Computing

Surveys, Vol. 28, No.3, September 1996.

(14)Charles Consel, Francois Noel, "A General Approach for Rua-Time

Specialization and its Application to C, POPL'96, St. Petersburg FLA

USA, 1996.

