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Abstract 

Partid evaluation is a source-to-source program transformation 

technique which substitutes the constant or known part of the input at 

compilation time to get an updated program. To help make decisions as to 

what kind of partial evaluation to implement, statistics have been collected 

on the use of translation-time constant arguments in C language source code. 

Source code from three important projects coded in C was analyzed: the X- 

Windows library, the LINLTX operating system, and the Gnu C compiler 

"gcc." These projects also present typical modem uses of the C language. The 

fiequency of constant arguments in argument lists can have important 

implication on the worth of certain code improvement strategies. Speciîically, 

compiler writers and partial-evaluator designers can benefit fiom these 

statistics if they are planning to do any of the following: replacing calls of 

functions with all constant arguments by function results, unfolding function 

calls, or specializing functions for specïfic values of actual arguments. The 

statistics collected show that these partial evaluation techniques can yield 

significant performance improvement for some projects, at reasonable costs 

in memory usage. 
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Chapter 1 

Introduction 

1.1 Introduction 

This thesis modifies a C recognizer to collect statistics on function calls 

in C, and analyzes how much ben&t can be obtained fkom applying partial 

evaluation to C code. Therefore, it is also an evaluation of the potential 

benefit provided by partial evaluation to  a new language called Safer-C, 

which is a modern descendant of the C language. 

1.2 Partial Evaluation 

Partial evaluation is a source-to-source program transformation 

technique which substitutes the constant or known part of the input at  

compilation time to get an updated version of the program. The principal 

goal of partial evaluation is to increase execution speed. It can improve the 

efficiency ofprogïams by exploiting known information about the input of a 



program, performing some computation at compilation t h e ,  and generating 

a transformed program which can nui faster than the original one. 

Although the priaciple of partial evaluation is simple, its implications are 

surprisingly cornplex, especially when applied to imperative languages. The 

analysis of programming features for partial evaluation is an active area in 

the field of programming language design and implementation. 

1.3 A Survey of the Literature on Partial Evaluation 

This thetis surveys some recent results in the area of partial evaluation, 

especially issues dealing with the partial evaluation of imperative languages 

Given a general program and part of its input, partial evaluation deah with 

sp ecializing the program with respect to  this known information. 

Using the notation of Consel & Danvy[2], consider a program p and its 

input i , and Say that somehow we can split i into a static (Le. known) part s 

and a dynamic (i-e. unknown) part d. The literal constants used in a program 

can also be considered as part of s . Given a specializing function S, we can 

specializep with respect to s: 

s @,(S.-)) = ps 

By dcltinition, ninning the residual program Ps m u t  yield the same 

result as the general program would yield, provided both terminate: 

ninp(s,d)=runPs(@,d) 

The objective of partial evaluation is to produce a residual Ps that r u s  



faster than p. 

The major areas in m y  research topic and papers in those axeas are: 

(1) Memoizing[lO]. This is an early work in the fidd of partial 

evaluation. It proposes the concept of "Merno" functions which we can use to 

store the values of some functions which may be used fkequently later. In 

that way the program can be speeded up. 

(2) Partial evaluation [2,5,7,8,9,12]. This area consists of the concept of 

partial evaluation, and its various areas of applications which indude 

compiling and compiler generation, numerical computation, and hard real- 

time systems. 

(3) Partial evaluation for imperative languages [2.3,4,5,7,11]. This area 

presents some techniques for and applications of partial evaluation of 

imperative languages such as Pascal, C, and FORTRAN. 

1.4 Function Specidization 

Function specialization is a technique of partial evaluation to generate a 

specialized version of a function for each value of constant parameters. 

For example, for function c d  Work(ZjA), we can create a specialized 

version of that function c d e d  Woik-2(A) for h c t i o n  calls where the value of 

the first parameter is 2. In most cases, this can increase the speed of the 

execution of the program. 



1.5 Collecting Statistical Data on Function Calls in C 

This thesis project collects statistical data on  typical fimction calls in C 

code- The information collected includes: 

(1) How many functions have a l I  parameters constant? In this case, hc t ions  

with no side effects can be replaced by theh respective results. 

c2) How many functions have lin, 2/n, 3/n, ..., n-lin constant parameters 

(where n is the total number of the parameters in the function c d ) ?  

(3) How many specialized versions would be obtained? 

TO determine if a function can be specialized, collect data on: 

(a) How ofken the same constant parameter has the same value? 

(b) How often is this constant parameter the only constant value? 

1.6 Methodology 

An existing C recognizer is modi6ed to interpret the C code and tn 

retrieve the related information. The information is output to a H e .  The data 

on the 61e is analyzed to get the statistical results- . 

The source code for following software were chosen for analysis because of 

importance, wide use, and availability. 

(1) The X Windows system 

(2) The gcc compiler 

(3) The Linux operating system 



1.7 Organization of the Thesis 

This thesis is organized as follows. Chapter 2 is a survey of partial 

evaluation and its applications. The principles of partial evaluation are 

presented The basic shategies of partial evaluation are introduced. Several 

partial evaluation applications axe also presented. In chapter 3, the 

information to be collected 6.om the input C code is demonstrated. Row this 

information is related to the study of partial evaluation of imperative 

languages is also stated In chapter 4, the data collection method is 

presented. Our methodology is to interpret the input C code fkom the output 

of the parser, analyze the retrieved information, and obtaîn statistical data 

on the input C code. Some important implementation decisions are also 

discussed. In chapter 5, the statistical results of three selected widely used 

software - X Windows, the Linux system, and the gcc compiler are presented. 

Discussion of these results is also stated. In chapter 6, a conclusion is 

presented. It was found that polyvariant specialization of function calls with 

constant p arameters is feasible. 



Chapter 2 

Survey of Current Issues in Partial 

Evaluation 

2.1 Introduction 

This chapter discusses the concepts of partial evaluation and contains a 

survey of cunent resdts in this field. 

2.2 What Is Partial Evaluation? 

Given a general program and part of its input, partial evaluation deals 

with specializing this program with respect to this known idormation. 

Using the notation of Consel & Danvy[2], consider a program p and its 



input i, and suppose that somehow we can split i into a static (Le. known) 

part s and a dynamic (Le. unknown) part d.  Literal constants used in the 

program can also be considered to be part of the known input. Given a 

specializing function S, we can specialize p with respect to s 

s @, (ss- )) = ps 

By dewtion, runnïng the residual program Ps must yield the same result 

as the general program would yield, provided both terminate: 

nui p(s,d)=run Ps(0 ,d)  

The objective of partial evaluation is to produce a residual program Ps that 

nuis faster than p. 

2.3 How to Perform Partial Evaluation 

2.3.1 Two Basic Strategies of Partial Evaluation 

The purpose of partial evaluation is to specialize a program with respect 

to some known parts of input. The two basic strategies are folding and 

unfolding . 

2.3.1.1 Folding Constant Expressions 

The technique of foldïng constant expressions consists of propagating 

constant values, executing any constant expressions that result, and 

replacing the expressions by the results. 



2.3.1.2 Unfolding & Unrollhg 

Unfolding can be applied to control structures and function calls. 

If the control fiow of a program sequence c m  be determined at compile 

time, partial evaluation will unfold iterative loops, and reduce the 

conditional structures to one of their branches. 

Here is an example of unrolling control structures. 

Consider the following statements. 

If ( i > l O )  then j+=2; 

else j += 4; 

Also, assume we have i = 15 at compile time. 

Applying partial evaluation to the above code segment, one of the selective 

branch is eliminated. We obtain a simpler statement: j += 4; 

If a few of the parameters are known at compile time, partial evaluation 

will inline functions b y unfolding cds, and produce sp ecialized functions by 

ïesidualizing calls. 

For example, let's consider the following function defhition. 

int lamda(int x, int y) 

{ 

int result; 

resdt = (x + y ) 1 2; 

retum resdt; 

1 



For fimction ca l l  lamda(4,b). we c m  d o l d  the function and get a residual 

fwiction lamda,4(int 2). 

int lamda,4(ht z) 

int resdt; 

result = 2 + 212; 

return resdt; 

2.3.2 Online vs O f f i e  Partial Evaluation 

Partial evaluators are divided into two classes: online and o f i e  

(Consel & Danvy[2]). 

An online partial-evaluator is a non-standard interpreter. The 

treatment of each expression is detennined on the fly. Online partial- 

evaluators are veiy accurate but actually they have considerable overhead. 

For example, we have the following code segment in C. 

void rnain(argc, argv) 

{ 

int known, unknown; 

int result 1, result2; 



resultl = sqrwown); 

result2 = ( known + unknown ) 12; 

An online partial evaluator will determine if an expression can be 

evaluated according to the status of variables in it. The compile-time 

variables are declared at the beginning- Here is the code segment with the 

initial declaration. 

void main(argc, argv) 

{ 

compile-time int known; 

run-the int unknown; 

int result 1, result2; 

result 1 = sqr(known); 

resultt = ( known + unknown ) 1 2; 

1 

Having the initial compile-time variables declaration, the partial 

evaluator goes through every expression in the program and determines its 

status according to the declaration. Variable resultl is c l a s s e d  as a 

compile-time variable since known is a compile-the variable. Variable 

result2 is a run-the variable since it calls a compile-time variable knowrr 

and also a nin-tirne variable unknown. We can see an online partial 

evaluator is accurate but it is also slow. 



0-e partial evaluators are structured with a preprocessing phase PE 

and a processing phase m. The prepxocessing phase PE usually includes 

binding-tirne ctmtysis. Given the bindiag-tùne signature of a source 

program (Le., which part of the input is static and which part is dynamic), 

the binding-time analyzer propagates this information through the source 

program, detennlliing for each expression whether it can be evaluated at 

compile-tirne or whether it must be evaluated at r u - t h e .  An o&e partial- 

evaluator is less accurate than an o n h e  partial-evaluator since binding-time 

andysis is approdate. An example of an o f i e  partial evaluator for 

FORTRAN 77 will be given in a later section. 

Online and o f i e  partial-evaluation can be combined to get the best 

results. When the accurate binding-time property of an expression 1s known, 

ofBine partial-evaluation should be used. Otherwise, the evaluation of this 

expression is postponed until specialization-time; at this t h e  concrete values 

are available. 

2.3.3 The tradeoff of Partial Evaluation 

Using partial evaluation, we can get a transformed program (which is 

called the residual program) which can be run faster than the original one. 

But usually the residual program is bigger than the original one due to loop 

unrolling and function unfolding. That could be the tradeoff: taking more 

space for the propams and data can produce faster execution while taking 



less space can lead to slower computation. 

Nevertheless it can happen that a program can be made both smaller 

and faster. A well known example of this as given by Consel & Danvy[Z] is 

the program xphoon written by Poskanzer and Leres. That's the best case. 

2.4 A Summary of the Issues in the Field of Partial Evaluation 

This section will give a suvey of the history and issues in the field of 

partial evaluation. 

2.4.1 Memoizing 

This is an early work in partial evaluation. In his paper [IO], Donald 

Michie proposed a facility to convert functions into "memo functions." By 

doing this, a program can improve the speed of the evaluation of numerical 

functions a great deal. 

2.4.1.1 The "Ride Part" and the "Rote Part" 

In his paper, Michie pïesented an efficient way to evaluate mathematical 

functions, in which a program can avoid needless tests and redundant 

evaluation by Yearning fiom experience." 

For each function, there is a " d e  part" which is the computational 

procedure and a "rote part" which is a 'look up" table. That is, the " d e  part" 

is the operation by which the function is evaluated, the "rote partn is the 



table in which the value of the function is stored or  other look-up medium is 

stored after it has been computed. The %te part" is made up of results fkom 

previously computed function evaluations. Here is an example of the " d e  

part" and the "rote part" of the function fact. 

The d e  part of fact is: 

function fact n; 

if n c O or if not (n isinteger) then undef 

else 

if n = O then 1 else n*fact(n-1) 

end 

Suppose now the f i s t  cal l  of the function is fact(4). At f i s t  the rote part 

is invoked, but no entry for 4 is found. So the d e  part is invoked. The value 

ofn is not equal to O. The answer is 4*fact(3). We now set out to evahate 

fact(3). We check the rote again. There is no entry for 3 either. Then we enter 

the d e  and find 3*fact(2). We check the rote and again do not get an entry 

for 2. Now we have to corne back to the i d e  and repeat the process unfil we 

encounter fact(0). We can h d  the value of it by d e ,  which is 1. We can now 

evaluate fact(1) = 1 * fact(O), and hence fact(2) = 2*fact(l), and hence fact(3) 

= 3*fact(2), and fact(4) = 4*fact(3). Each of these evaluation adds a new entry 

to the rote part. Then at the end of the recursion, the rote part looks lüce this: 



Argument 

4 

3 

2 

1 

O 

Value 

24 

6 

2 

1 

1 

According to Michie, for each function, 

(1) The apparatus of evaluation associated with any given function consists 

of a " d e  put"  and a "rote part"; 

(2) The evaluation in the computer should on each given occasion proceed 

either by rule, or by rote, or by a blend of the two, solely as dictated by 

the expediency of the moment; 

(3) The d e  versus rote decisions can be handled by the machine behind 

the scenes; 

(4) various kinds of interaction are permitted to occur between the d e  part 

and the rote part. 

2.4.1.2 Self-Improvement of This Scheme 

There could be a lot of improved methods of this scheme. Michie 

proposed an improvement which we can call the "move-to-front" algorithm. In 



this algorithm, rarely-occwing problems will move towards the bottom of 

the rote table and fkequently occurring problems move towards the top. 

Any other searching algorithms such as hashing, most-cornmon-kt, LRU 

could also be used to Mprove to this scheme. 

8.4.1.3 Application of This Scheme 

This scheme can be applied to many digital computations to Mprove 

evaluation speed, especially for the recursively defhed functions, because it 

is obvious that we can  reuse the previous calculation results in the recursive 

hct ions .  

2.4.1.4 The Relationship Between Partial Evaluation and ''Memo 

Functions'' 

The "Memo Function" scheme was developed in the early stage of 

partial evaluation research. It gives the idea of efficient computation by the 

elimination of redundant calculation, s t o M g  the most frequently used data 

values which are going to be used in the evaluation. 

2.4.2 Partial Evaluation of Imperative Languages 

This section wiU present some techniques for the partial evaluation of 

imperative languages. Some applications are also introduced. 



2.4.2.1 Characteristics of Partial Evaluation for Imperative 

Languages 

A lot of research has been done on the partial evaluation of functional 

languages. In actual fact most of the "real world programs" are written in 

imperative languages such as C, COBOL, FORTRAN, etc. So the partial 

evaluation of imperative languages has received more attention recently. 

The partial evaluation of imperative programs is more difficult than 

that of funciional programs. Because of the la& of referential transparency, 

the program transformation phase must take into account the notion of state. 

The replication of side-effects is the main concern. 

2.4.2.2 Techniques for Partial Evaluation of Imperative languages 

Various techniques for the partial evaluation of imperative languages 

are presented in Consel & Danvy [Z], Meyer [3], Nkkhe & Pugh [Il]. This 

section will summarize those techniques. 

2.4.2.2.1 Dynamic Notation 

Partial evaluation could get stuck in two ways: either by unfolding 

infinitely many fimction calls or by creating infinitely many specialized 

functions. To avoid the non-termination problem, Meyer[3] simply assumes 

the program wiU terminate. 

According to the definition of partial evaluation, a partial evaluator has 



to decide whether the current statement (form, clause, etc) has to be executed 

or  not. Execution of the statement will change the state of the memory, and 

non-execution will add the statement into the residual program. 

To provide the proper information to the partial evaluator, there are two 

strategies (as we mentioned in the previous section): "static annotations" and 

"dynamic annotations". 

S tatic annotations are inserted into the text of the program in a 

separate phase before partial evaluation. They are either computed by hand 

or using abstract interpretation. AU parts of the progam with possibly 

unknown data have to be annotated, The term "annotation" here means 

making a note of the status of each variable. According to Meyer, this 

technique is appropriate for functional languages because variables in 

functional languages cannot change their values. In Meyer's opinion, the 

proper technique for imperative language is to make dynamic annotations. 

The user has to annotate only the declarations of the variables which should 

be treated as unknown data. These annotations give us information about 

the relation between variables and their states, Le., known or unknown. The 

partial evaluator has to look up the state of a variable when it encounters 

this variable. The state of a vaïiable might change from known to unknown 

and vice versa, if there is an assignment to that variable. With dynamic 

annotations the partial evaluator will decide dynamically whether the 

current statement has to be executed or suspended, depending on the states 



of the involved variables. Meyer also gives a formal description for this 

method (31. 

2.4.2.2.2 Specialization of Subroutines 

Specialization is an important technique for partial evaluation. In this 

section we will describe how this technique can be adapted to imperative 

languages. 

In the foIlowing discussion, we discard the cases in which global 

variables are used in the bodies of the subroutines (we will discuss those 

cases in section 2.4.3.3). We will present the techniques for function calls 

and procedure calls . 

Specializing Function Invocations 

For function invocations, we need to handle three cases. 

(1) AU the Values of the Actual Arguments Are Known At Compile-The 

When a partial-evaluator encounters a function invocation, it has to 

check the values of the actual arguments. If a l l  of them are known, the 

partial evduator will bind the formal parameters to the values of the actual 

arguments. With these variables and the local variables, the body of the 

function is evaluated. If we get residual statements (for example, the 

statement includes another fiuiction invocation which can't be evaluated 



to tdy  at this the ) ,  we have to constnict a residual function containing 

these residual statements as the body, and output the residual function. 

Otherwise the h c t i o n  can be evaluated to tdy .  We do not get a residual c d  

and there is no residual hction.  Just replace the function invocation by the 

result of the evaluation. 

(2) Not AU the Values of the Actual Arguments Are Known at Compile-Time 

If not all the values of the actual arguments are known at compile-time, 

the forma1 parameters should be suspendeé We will get a residual function- 

For each function c d ,  a list is evaluated. The list will contain the 

values of actual arguments (for those known actual argument values), and 

the formal parameters (for those parameters without the matching known 

arguments). For example, consider the function definition A(X,Y), for a 

compile-time known input X = 2, the list is (2,Y). 

These lists are stored in a table together with the name of the original 

function and the name of the specialized version of that hct ion.  When 

there is a function invocation, the partial evaluator will look up the table for 

a pattern with the name of the function and a list matching the actual 

argwmnts. If such a pattern has been found, the copy of the corresponding 

specialized version of the function is used for the construction of the residual 

fûnction c d .  The specialized fuactions are the functions of the residual 

program. 



If the termination condition of the function c d  depends on the variables 

in an unknown state, this method for specializing fimction calls might not 

terminate. To avoid this problem, Meyer [3] proposed the solution that the 

user can label the critical function calls with a symbol. When such a call is 

evaluated, only the actual arguments are evaluated and composed into a 

residual function c d .  The original fiuiction is copied into the residual 

program. 

Specializing Procedure Caus 

There are three cases in specializing procedue calls. 

(1) Cd-by-value Parameters 

For those procedure c a b  where parameters are passed by the mode 

call-by-value, parameters are handled in the same way as in the case of 

function calls. They will appear in the parameter list when the corresponding 

actual argument is unknown at the specialized tirne. 

(2) C d - b  y-result Parameters 

Call-by-result parameters appear in the parameter list only when the 

state of the variable for that parameter is unknown after the execution of the 

body of the procedure. The state of the actual argument is irrelevant. 



(3) C d - b  y-reference Paramet ers 

In this case, the forma1 parameters and the actual arguments denote the 

same memory location. There is only one state for both. 

In the case of parameters transmitted by location, if the value of the 

actual argument is unknown, it has to appear in the List of the parameters 

for the residual procedure invocation and the formal parameter has to be in 

the list of the parameters of the definition of the residual procedure. On the 

other hand, in the case of parameters transmitted by values, if the value of 

the formal parameter is unknown after the execution of the procedure the 

actual argument has to appear in the parameter kt in the residual function 

call and the foipial parameter has to be in the parameter list of the definition 

of the residual procedure. 

Global Variables and Side-effects 

Global variables and side-&ects pose a considerable problem in the 

partial evaluation ofimperative languages. The use of global variables in 

subroutines may cause problems if a c d  to these subroutines cannot be 

totally evaluated. 

Here is an example of the problem. 

void main(argc,argv) 

{ 

int global; 



int rel, re2, p l ,  p2; 

int work(int x, int y) 

{ 

int result; 

global = 5; 

global += x; 

resdt=(x+y)12;  

retuni result; 

1 

re i = work(2,p 1); 

re2 = work(2 ,p2); 

1 

After the execution of the program, the value of the global variable 

"global" is 9. 

Applying paxtial evaluation to the above code, we have a residual 

function work-2. 

int work-2(int z) 

{ 

int result; 

global = 7; 

result = 1 + 212; 

return resdt; 



1 

The invocation of the residual fuactions will be 

rei = work-2@ 1); 

re2 = work-2@2); 

After the execution of the program the value ofuglobal" is 7, which is 

obviously wrong. 

Meyer [3] proposes to set the states of a l l  global variables used in the 

subroutines to "unknown" to solve this problem. An algorithm is presented to 

compute the set of all global variables occui-ring in a subroutine or in 

subroutines reachable fkom a subroutine. The state of each global variable in 

the set is set to unknown. Then the techniques for specializing subroutines 

we described in the previous sections can be applied. 

2.4.2.3 Applications of Partial Evaluation of Imperative Languages 

Due to its conceptual simplicity and efficiency, partial evaluation has 

been applied to various areas which include numerical computation [7,13], 

hard real-time systems [5,11], and compiling and compiler generation [9,12]. 

In this section, we will illustrate several application areas of the partial 

evaluation of imperative languages. 

2.4.2.3.1 Numerical Computation 



Partial evduation is very effective in cases when some parts of the input 

change less frequently than others. That's the reason why specializing 

numerical computation algorithms b y p a-tial evaluation can give substantial 

savings. This section will describe some characteristics of numerically 

oriented programs and a partial evaluator for a subset of FORTRAN 77 

[7,131- 

(1) The Charactelistic Features of Numerical Problems 

A characteristic feahire of numerically oriented problems is that most of 

their numerical computations require dynamic data and therefore cannot be 

computed during specialization. But in many cases the control flow can be 

determined at specialization tirne. For example, for any given ma& size, 

rnatrix-multiply performs a fked set of multiplication's, even though the 

numerical values of the elements might be unknown at compile-time. 

Numerical programs can be divided into two types: data-independent 

and data-dependent code sequences. A sequence of operations is data- 

independent if the control flow can be determined at compile t h e .  Otherwise 

it is data-dependent. The largest part of numerical programs are usually 

data-independent. Partial valuation works best for data-independent code 

because iterative loops can be unfolded and reduced to one of the branches, 

while the contxol flow in data-dependent computation which depends on 

dynamic values cannot be determined by partial evaluation. 



(2) A Partial Evaluator for FORTRAN 77 

In [7], a partial evaluator for a substantial subset of FORTRAN 77 is 

presented 

(2.1) The Subset of FORTRAN 77 

The language selected for the partial evaluator is a subset of FORTRAN 

77, called F77. It includes multidunensional airays, functions. procedures, 

and COMMON regions. The statements include assignments, nested 

condition&, IF. unconditional jumps, GOTO, procedure calls, C U ,  

fimction calls, the RETURN, and the CONTINUE statement, Expressions 

include constants, identifiers, indexed arrays, arithmetic and relational 

operators. 

(2.2) The Partial Evaluator System 

The partial evaluator of Baier, Gluck,Zochling [7] is implemented in 

FORTRAN 77. The input and output of the partial evaluator are programs 

written in F77. The partial evaluator is off-line. The source program wiU be 

binding-time analyzed before it is specialized. The three phases of this 

partid evduator system are: 

-- The preprocessing phase translates an F77 source program into an 



intermediate language, c d e d  CoreF. The binding-time analysis (BTA) 

annotates a l l  statements(expressions) in the source program as either static 

or  dynamic correspondhg to the statiddynamic classification(SID) of its 

input. The output of the preprocessing phase is an annotated CoreF program. 

-- The specialization phase takes the annotated Cor@ program and 

the static data as input and specializes the program with respect to the static 

data. This phase is the main part of the partial-evaluator system. It contains 

an interpreter (MT) for the evaluation of static CoreF staternents. The 

output of the specialization phase is a specialized CoreF program. 

-- The postprocessing phase translates a specialized CoreF program 

into F77. 

(2.3) The BTA (Binding-Time Analysis) and the Partial Evaluation of 

statements 

Binding-time analysis classifies each variable as static or dynamic. The 

analysis used in the BTA is monovariant, Le., every statement (expression) 

can be given only one statiddynamic classification. The BTA is implemented 

by a fixed-point iteration: an approximate algorithm which iterates over the 

static-dynamic division until a stable classification is reached. 

The output of the %TA is an annotated CoreF program with a notation 

"static" or "dynamic" attached to every variable. 



The specialization phase foUows the annotation made by the BTA: it 

executes static statements, reduces partially static expressions, and 

specializes dynamic program points. 

During the specialization of a dynamic basic block, the partial 

evaluator N ~ S  thugh  the sequence of statements step by step, executing 

static statements and generating code for dynamic ones. When a dynamic 

conditional, e.g. an IF, is met, both branches are specialized. 

The experimental result of using this partial evaluator for a 

number of numerically oriented problems shows that the residual program 

runs 3-4 times faster than the original one. 

2.4.2.3.2 Partial Evaluation Applications in Hard Real-Time Systems 

This section will present how partial evaluation can be applied to the 

hard real-time systems. A partial evaluator for the Maniti hard real-time 

system is also introduced. 

(1) Problems with Current Hard Real-Thne System 

Haxd real-time systems are applications where it is catastrophic to 

violate timing constraints (such as weapons control, medicd 

instrumentation). The hard seal-time system requires ensuring predictable 

timing behavior of HRT applications by taking theïr timing and resource 

requirement into account. Problems arise when application programs use 



high-level constnicts (such as recusion, loops, and dynamic data structures). 

The execution tirne and other resource requirements are d iEcu l t  to estimate 

at compile time. Current techniques in the HRT operating system cannot 

handle this pmblem. Their solution to this problem is to forbid or restrïct the 

use of these high-level language features. That causes inconvenience for the 

system designers, and the developed low-level programs are hard to adapt for 

different environments. 

(2) The Solution of Partial Evaluation 

In their paper [5], Nirkhe and Pugh proposed their solution to this 

problem which is based on partial evaluation. In their method, a 

pmgramming language is designed. A program in this language can be 

partially evaluated which produces a residual program that is guaranteed to 

terminate. The tight upper bounds on execution time and resource 

utilization of the residual program can be automatically determined. The 

technique is to transfolm the program with high-level language features into 

a new program which has mostly linear code and an estimatable execution 

t h e .  

(3) A Partial Evaluator in the Mamti Real-time S ystem 

This section describes a partial evaluator of Maruti real-time system. 

Maruti is a hard-real-time opeïating system which is based on the 



technique of pre-scheduling. In this technique, the timeliness of the 

application execution is enswed by reserving the required resources prior to 

nrn-time. 

Application programs in Maruti are written in MPL (Maruti 

Programming Language). In MPL, a block is a collection of statements that 

have a separate temporal scope. Since blocks have separate timing 

constraints and resource requirements, they may be scheduled separately. 

The temporal and precedence relations among blocks is represented in the 

form of a graph, which is called a computation graph. 

Partial evaluation of a program produces a residual program in the 

form of a computation graph. In the computation graph, nodes conçist of 

sequential code segments. Nodes are labeled with their execution tirne and 

resource requirements. During partial evaluation, compound statements 

such as conditionals and loops are kansformed into ones with restricted use 

of these constnicts. For the resulting statements, the bounds of loops and 

depth of recursion are known and the tight estimate of execution time of 

blocks is determinable. The result of partial evaluation are nodes of the 

computation graph, in which edges represent execution ordering and tirne 

constraints. This computation graph is used by the Maniti Scheduler to 

preschedule the program in a way that guarantees that the program will 

satise a l l  of its timing and resource constraints. 

In this method, during partial evaluation, the residual program must 



be guaranteed to terminate and have a predictable behavior. If such 

prediction is not possible, errors are detected and reported as type errors. If 

in some cases partial evaluation fails to terminate d e r  a time period 

specified by the user, we abort the compilation and print a message 

describing the portion of the program apparently causing problems. Normal 

estimation techniques are used with the resulting program to estimate the 

resource requirements. 

(4) Advantage of Partial Evaluation of HRT Programs 

The main benefit of partial evaluation of real-tirne programs is 

allowing programmers to write using high-level, reuse-oriented programming 

styles. Traditional techniques of execution time estimation can be used on 

residual programs to obtain the time and resource requirements. Also, the 

residual programs are more efficient than the original ones. 

2.4.2.3.3 Applications of Partial Evaluation to Compiler Generation 

This section describes ano ther important application of p d a l  

evduation: automatic compiler generation. 

(1) Partial Evaluation and Interpreters 

Interpreters are easier to write than cornpilers, while compilers are 

more efficient. Partial evaluation c m  yield both those advantages. By the 



specialization of an interpreter to a program, the net a e c t  is compilation. If 

the partial evaluator is seSapplicable, an interpreter is automatically 

transformed into a compiler. 

The following diagrams illustrate how they relate. 

Fig 2.1 Partial Evaluation of An Interpreter Amounts to Compiling 

Compiler 0 
Fig. 2.2 Partially Evaluating A Partial Evaluator Yields A Compiler 



In the following subsection, we will give more explanation and a 

mathematical proof of the above statements. 

(2) How Partial Evaluation Works in Compiler Generation 

Partial evaluation works in compiler generation in this way: Consider 

an interpreter for a given language L. The specialization of this interpreter 

to a known source program Ps(mitten in L) already is a target program for 

P., written in the same language Lint as the interpreter. So, partial 

evaluation of an interpreter with respect to a fked source program amounts 

to compiling. 

The following subsections desciibe the applications of partial evaluation 

in compiler generation. 

(2.1) Compiling by Partially Evaluating an Interpreter 

According to the notation of [12], we denote an interpreter in language 

Lint as int, the source language as Ls. pïograms written in source language 

as Ps We define the interpreter int as follows. 

Rwt Ps Ls (di, ..., dn )= Run Luit int ( Ps, dl, ..., dn) (2.1) 

for al l  programs Ps written in language Ls and data dl, ..., dn- 



By this definition an interpreter takes both the program to be 

interpreted and al l  input data for the program as its input. 

Let the program PE written in language Lp be a partial evaluator for 

the ~0-e  language Ls, and let int be an interpreter for source language Ls- 

Let's see what happens Sint is partially evaluated with respect to a given 

program Ps written in the language Ls. According to (2.1), we have 

Run Ls Ps (dl, ..., dn )= Run &t int ( Ps, dl,  ..., dn) 

= RUT& k t  ( PE (int, Ps ) ) (dl, ..., dn) (2-2) 

Note that formula (2.2) describes the application of partial evaluation 

to an interpreter int. The result of this is the same as the result of applyuig 

the program Ps to data (dl, ..., dn ), so we call this 

target = PE (int, Ps) (2 -3) 

The program target is a program written in language k t  with the 

same input-output behavior as the source program Ps. In other words we 

have compiled the source program Ps into a program target written in 

language b t  by partially evaluating the interpreter int with respect to the 

source program Ps. 

(2 -2) Compiler Generation 

To illustrate the application of partial evaluation in compiler 

generation, we fist give a definition of autoprojector. 



Definition 2.1: A program mir written in language Lp is an 

autoprojector iffit  is a partial evaluator for language Lp. So an autoprojector 

is a partial evaluator for a language such that the partial evaluator is 

written in the same language. Assume that an autoprojector inix is given. 

Letting mUc play the role of the partial evaluator PE in formula (2.3). we 

have that 

target = inix (int, Ps ) (2-4) 

We define a computation Corn as follows. 

Corn = mix ( ln&, int) 

According to this definition, we have 

Corn Ps = (inix ( rnix, int)) Ps 

since rnix is self-applicable, i.e. an autoprojector, according to (2 .G), 

applying partial evaluation to mix itself, we have 

Corn Ps = rnix (int, Ps) 

Combining formula (2.4) and formula (2.7). we have 

Corn Ps = target (2 -8) 

Thus Corn is a compiler, since given Ps it produces a target program 

for Ps . 



(2 -3) Compiler Generator Generation 

By the same reasoning a compiler generator ComGen may be obtained 

by computing: 

ComGen = mùt (mix,mix) (2-9) 

This program ComGen transforms interpreters into compilers, 

because 

Corn = ComGen int 

The following is a proof of formula (2.10) 

Corn Ps= (mix (mix,mix), int ) Ps 

= ( mix (miu,int) ) Ps 

= mix (int, Ps) 

Combining formula (2.4) and (2.1 l), we have 

Corn Ps = target 



Chapter 3 

Data Collected 

3.1 Introduction 

A s u b p r o ~ a m  is an abstract operation defked by the programmer. 

Subprograms form the basic building blocks out of which most programs are 

constructed. Explicitly transmitted parameters and results are the major 

methods of shaiing data objects among subprograms. In the C piogramming 

language, al l  subprograms are functions, and the fmctions are the key parts 

that do the real work in the C programs. Functions are invoked by other 

functions and ultimately used by the function main( ) to solve the original 

problem. This ïesearch project collects statistical data on typical function 

calls in C code to predict how much benefit we can get fkom applying partial 

evaluation to C code. This chapter wïll describe what statistical data is 

collected, and why we collect these data. 



3.2 "Cd b y Value" Mechanism 

Since the purpose of our  research is to analyze the fiequency of constant 

parameters in function c a b  in C code, the following is a brief review of 

major methods of parameter passing in h c t i o n  invocations. 

There are three primary mechanisms for parameter passing: in-out 

parameters, in-only parameters, and out-only parameters. In C, parameters 

to functions are always passed '%y value", i-e., using the "in-only" 

mechanism. This means that when an expression is passed as an argument 

to  a function, the expression is evaluated, and it is this value that is passed 

to the function. The variables passed as arguments to functions are not 

changed in the calling environment. 

Our analysis program collects all the parameters to all function calls in a 

C program and reports this information to a file calledprog.stat for further 

andysis. It also reports whether or not each parameter is a constant. In the 

case where such a constant parameter is an expression, we output the whole 

expression to the file prog.stat instead of evaluating it, due to the complexity 

of interpreting C code, at this stage. Although we don't have the evaluated 

value of this expression, we do report whether or not it itselfis a constant 

value, and keep a record of al l  these unevaluated expressions for further 

analysis of possible errors in the resulting statistics. 



3.3 Statistical Data Collected in the Project 

3.3.1 Function Specialization 

As stated in the introduction, the hct ion  c d  is a vety important part of 

C pmgramming. Therefore, when applying partial evaluation to the C 

language, furiction specialization and functioa inüniag (UIlfolding) are 

important techniques. 

3.3.1.1 What is function specialization? 

Function specialization is a technique for partial evaluation to generate a 

specialized version of a function for each value of its constant arguments that 

is actually used in the program. Let us use an example to illustrate this. 

Suppose that in a C programprogx, there is a h c t i o n  prototype: uoid 

worh(int a, int b). Also suppose that there is a b c t i o n  invocation work(2, c). 

With the principle of partial evaluation, we can evaluate the function with 

the first parameter being 2 and therefore create a specialized version of that 

function work_2(int b). This new version, with fewer parameters, will run 

faster than the original version in most cases. The specialized h c t i o n  may 

also be smaller than the original version. To apply h c t i o n  specialization, 

whenever we encounter a h c t i o n  c d  work(2,x) with the first p arameter 

being 2, we can replace it with function call work_2(x). This This u s u d y  

make execution more efficient. In some interaction with cache and virtual 



memory, the specialized hct ion may nia slower than the original one due to 

mernory transfers if it is larger than the uispecialized version. 

3.3.1.2 How to perform hction specialization 

As we state in chapter 2, there are 2 different cases in specializing 

function invocations. 

Function invocation with dl constant parameters 

If a l l  the parameters are known at compile-the, the partial evaluator will 

evaluate the function with the values of the actual arguments and the local 

variables used in the function c d .  Eventually we will get either a residual 

fimction (if the function can't be evaluated U y )  or a particular result of the 

evaluation to replace the function c d .  

Function invocations with some but not al1 constant parameters 

In this case, we will get a residual function with the unknown parameters 

suspended. 

3.3.2 Statistical Data CoUected 

Since fiuiction specialization is an important part of the partial evaluation 

of imperative languages, to study how much benefit we can obtain when we 

apply partial evaluation to imperative programs, we have undertaken to 



d e c t  statistical data on function calls in standard C code. The fouowing is 

the infornation we collected, 

3.3.2.1 H o w  many fimctions have al l  parameters constant? 

The reason to collect this information is that w e  can determine how many 

functions can be replaced by an evahiated result (assuming there are no side 

af%ects in these functions). Such a change can have a sigdicant &ect on 

execution speed. 

3.3.2.2 How many functions have lin, 2/n, 3111, ..., n-lln constant 

parameters (where n is the number of the parameters in the 

function d l )  ? 

The layout of the output generated is the following: 

I I 
- - -- 

No. of Constant Args 

Table 3.1 Distribution of Constant Arguments 



As an example of how to read Table 3.1. notice that row 10 lists the 

numbers of functions which have OflO,  Y10,2/10, ... 9/10,10/10 constant 

arguments. W e  assume the number of parameters of all the functions does 

not exceed 10 for the analyzed code. In our implementation, we choose to test 

C programs of Werent &es and styles. Some of them have hundreds of 

fûnction calls in a single file. 

We designed a large size of output ma& for the rdatively large 

programs. Here we use an example of a 10 * 10 matrix Table. Element Table 

3.1[i,j] reports the number of invocations that have i parameters with j of 

them constant. The sum of Table[i,i] ( for O< i cl 1) is the number of functions 

which have a l l  parameters constant. For example, the value of Table 3.1 

entry [5,2] is 10, which means there are 10 function calls that have 5 

parameters with 2 of these parameters constant. 

The significance of this information is that the data reflects the fkequency 

of distribution of constant parameters. This is also a signiscant measure of 

the benefit that we can gain fkom applying partial evaluation. 

3.3.2.3 How many specialized versions would be obtained ? 

One of the basic strategies of partial evaluation is to produce specialized 

functions by residualizing calls. The partial evaluator propagates constant 

values and fol& constant expressions, produces speualized versions of the 



values and folds constant expressions, produces specialized versions of the 

source function. It is possible to generate more than one specialized version 

for each source fimction. For example, for the h c t i o n  work(int x, int y, int 

z), if there were four function invocations: 

(1) work(Z,a,b); (2) work(2,3,c); 

(3) work (d, 3, e); (4) work (g, 3, h); 

There would be three specialized versions obtained fiom the above 

function cslls: 

(1) work_2(int x, int y); 

(2) work-23(int x); 

(3) work-3 (int x, int y); 

There are two types of partial evaluator. A monovariant partial evaluator 

produces at most one specialized function for every source function. A 

polyuariant partial evaluator can produce many specialized versions of a 

source function. Our project collects the maximum numbet of specialized 

versions of source functions for the latter and for more complicated cases. So 

another important data item that we want to collect is the number of 

specialized versions that could be obtained. 

To determine if a h c t i o n  c d  should be specialized, we need data on: 

(1) How often the same constant parameter has the same value; and 

(2) How often it is the only constant value. 



Therefore, the statistical data we need to coIlect from the C code is: 

(1) The total number of fiinction calls; 

(2) The total number of functions; 

(3) For each fiuiction, the number of fimction invocations with the same 

number and value of constant parameters. 

We can determine the number of specialized versions according to the 

data we collect. 

3.3.2.4 The Number of Unevaluated Expressions and Functions with 

Unevaluated Expressions 

As we state in the previous section, rather than computing the value of an 

expression parameter, we output the whole expression as a parameter to a 

function c d  and judge ifit is constant. This might cause errors when we 

collect data on function calls with the same constant parameters. Let's 

consider the following two fimction invocations. 

(1) work(4,x) 

and (2) work(2+2,y) 

Our program will treat them as two invocations of function uiork(a,b), 

with different constant values for the &st parameter, 4 and (2+2), 

respectively, though these two in fact have the same constant value for the 

first parameter after f d y  evaluating the expression of the parameter. 

According to the report produced by our program, we might have a different 



number of function specialized versions and therefore jump to a different 

conclusion of the benefit of applying partial evaluation. 

That is the reason why these data need to be collected Due to the 

complexity of interpreting C code for typical systems applications, we do not 

evaluate the expressions at this point. In practical C code there is also little 

chance that fiuiction calls will have different constant forms of the same 

argument. We collect the number of these unevaluated expressions in order 

to see how much it affects the accuracy of our conclusions. If the fkaction of 

unevaluated constant arguments is small then our conclusions are valid. If 

the number is large then a more complex statistics gathering program would 

be needed. As is shown in Table 5.1, the number of unevaluated constant 

arguments is a s m d  fiaction of the total number of constant arguments, and 

hence the effort required for full evaluation of all constant arguments is not 

warranted. 



Chapter 4 

Data Collection Method 

4.1 Introduction 

In chapter 3, we state what End of statisticd data were collected Oui. 

methodology to do that data collection is to modify an existing C recognizer to 

read a C program, interpret the code, and report to a file the information 

about each function c d  invoked in the input program. With this file of 

hct ion  calls, we analyze the functions and their parameters, and get the 

statistical data we need. 

The following sections will illustrate the design and the implementation 

details of the project. 

4.2 The Analyzer 

A program called "Analyzer" was developed to collect the statistical data. 

The purpose of this program is to read the C code, and report every function 



invocation and its parameters. To do tbis we modified an existing C 

recognizer coded by members of the Programming Language Design and 

Implementation Group at the University of Manitoba. 

The C recognizer, Crec, was developed to a part of a source-to-source 

translater for the Safer-C project. Its main task is to read a program, build a 

parse tree for it, determine ifit is a C program, and give emor messages if 

there are any syntax errors. 

Crec uses Lex and Yacc to generate a scanner and a parser. It reads the 

input program, breaks the input into tokens using the scanner, and parses 

the token stream according to the syntax rules of the C language. In the 

parsing phase, it also produces a parse tree which we can think of as an 

image of the program. In other words the parse txee reflects the structure of 

the program. Our program, Analyzer, will process the C code accordùig to 

the parse tree, retrieve a l l  the information on every function c d ,  report them 

to a text file, analyze the information in the file, and get the statistical data. 

Accordhg to these data it estimates how much effort would be needed to 

apply partial evaluation to the input program and how much benefit would 

be gained. By running the program "Analyzer" against the representative C 

files that we selected, we corne to a conclusion on the bendit of applying 

partial evaluation to C code. 

Since the program *Analyzern uses Lex & Yacc and standard compiler 

construction techniques to generate the parse tree, the following section is a 



briefreview of the two widely used compiler generation tools, Lex and Yacc. 

4.3. Compiler Construction 

The following diagram illustrates the five phases of compilation. 

~ 6 u r c e  Tokcas Prrsc A ttribu ttd IR Targct 
Program Trec Parse Trec Progrzm 

Fig. 4.1 Compiler Construction 

To aid in the generation of compilers, a lot of compiler tools were 

developed. Lex and Yacc are two well known tools to generate scanners and 

p arsers, respectively. 

As a scanner generator, Lex accepts a high-level, problem oriented 

speacation for character string matching, and produces a function (the 

scanner) that recognizes tokens described by regular expressions. The 

regular expressions are specified by the user in the source specincations 
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given to Lex. The scanner generated by Lex recognizes strings described by 

these expressions in an input stream and partitions the input stream into 

strings matching the expressions. 

Yacc is a parser generator. The Yacc user prepares a specification of the 

parsing pmcess; this includes niles describïng the input structure, code to be 

invoked when these rules are applied, and a low-level routine to do the basic 

input. Yacc then generates a parser, which calls the user-supplied low-level 

input routine (the scanner) to pick up the basic elements fiom the input 

stream. These tokens are organized according to the input structure d e s ,  

called grammar d e s ;  when one of these d e s  has been recognized, the user 

code supplied for this rule, an action, is invoked. Actions have the ability to 

return values and make use of the values of other actions. 

In o u  project, the input user-specification for Lex is regular 

expressions describing C tokens, and the input for Yacc is the gramma d e s  

for ANS1 C and the code invoked for each d e ,  which generates the parse 

tr ee. 

4.4 Parse Tree 

As we have mentioned, the outcome of the parser is a parse tree. The 

way the parse tree is generated is that we put the code for parser tree 

generation in the action part of the Yacc grammar. When the right part of 

one of the grammar rules is recognized, the code is invoked to generate a 



node in the parse tree. 

For example, as defined in the fila "minqarse,tree.h in the package 

"Analyzern, each node in the parse tree consïsts of three parts: 

(1) Code : The code for grammar symbol represented by this node. 

For example, "ac-funcCcall" is the code representing a node 

in the parse-tree which stores the idormation of a fiinction 

invocation. 

(2) Value: For a nonterminal node, the value is a pointer to the fist 

descendant of this node. Remaining descendants are in the sibling 

list of the e s t  descendant. For example, if "ac-funcCcall" is a 

nonterminal node, then its value is its &st descendant node 

"acfunc-name." Remaining descendants like "parameter_list" 

which represents the parameters of the function are in the sibling 

list of this value node. 

For a terminal node, the value field may contain a text string 

giving the actual characters in the tenninal symbol. 

(3) sib: A pointer that points to the next sibling of this node in the parse 

tree- 

Therefore, for a function invocation work(2, b), the correspondhg part in 

the parse tree will look me: 



Fig. 4.2 A Subtree in the Parse Tree 

As shown above, the parse tree contains all the information of the 

program. By traversing the parse tree, we can get information about every 

fiuiction c d ,  which includes the values of the actual arguments of the 

bct ion ,  the loop nesting depth of the function c d ,  etc. We will explain 

important design decisions we made during the implementation of the 

project. 

4.5 The Design of Analyzer 

Following is a schematic diagram of the program Analyzer. 
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Fig. 4.3 A Schematic Diagram of Anaiyzer 



4.5.1 Traversing the Parse Tree 

Once the input program has been parsed, a parse tree which stores the 

whole program in its own structure is produced. By traversing the parse tree, 

a l l  the information of the program, including every declaration, every 

statement, etc, can be examined. For this project, we need a l l  the data on 

function invocations; therefore in the program "Analyzer," the whole parse 

tree is traversed, and the information is retrieved whenever a node related 

to a fitnction call is encountered. Basically, for a C program the parse tree 

consists of two parts. The following section will describe how the two basic 

kinds of nodes are being analyzed to get the information we need. 

(1) The declaration part. 

The declaration part is the code which includes a l l  the declaration before 

the maino function in a C program. Consider the following example. 

int a = sin(O.5); 

This declaration includes a function invocation sui(0.5), and data on this 

function c d  needs to be couected too. Therefore when traversing a parse 

tree, and a node which represents a dedaration is encountered, the proqam 

"Analyzer" examines the subtrees of this node and checks if there are any 



function invocations. 

(2) The function definition part. 

The other part of the parse tree that needs to be checked is the nodes 

representing function d a t i o n s .  Function invocation could happen in 

expressions, variable declaratims in the definition of the functions, 

statements, etc. 

4.5.2 Function Invocation Nodes 

When traversing the parse tree, evevy time a node that represents a 

function invocation is encountered, all the information about the function c d  

has to be retrieved, which indudes the function name, the actual arguments, 

etc. In this project, a function invocation node has the following format: 

Fig. 4.4 A Node of Function Invocation 

In this structure, the name of the function, which is stored as a string in 

this project, is the fist descendant of the node of uac_func-~all~ Its sibling is 



the argument Est of this hct ion  call. 

4.5.3 The Function Name and fhe Argument List 

To extract the h c t i o n  name fkom the parse tree, the value of the fïrst 

descendant of the node uacfunc-call" is retrieved, and is output to a text file 

which has been opened for this purpose. The next step is ptting the 

arguments. - 

An argument of a function c d  in C code is an expression that could be a 

variable, a constant, an assignment, a function c d ,  etc. For example, we 

might have a function c d  such as: 

work,a(2*3 +5, 4, x+ 1); 

For those arguments that are constant expressions, we decided to output 

the whole expression instead of partially evaluating them. For the above 

example, the arguments being output will be: 

(1) 2*3+5; (Not 11) Constant Value; 

(2) 4; Constant Value; 

(3) x+l; Non-Constant; 

The reason that we choose to do so is that it is too d i E c u l t  to interpret al l  

possible C expressions correctly with proper type promotions, word size, etc. 

As shown in Table 5.1, we later found that unevaluated constant expressions 

would only have a small d e c t  on the results collecte& Though we haven't - 



evduated the value of an expression, we still judge if it is a compile-time 

constant value. The method to judge a constant argument will be explained 

in section 4.5.7. 

Another case of tr icky arguments is when the argument itselfis a 

function call. 

Consider the following hct ion  c d :  

work-b(x, do-it (sin&)), cos(0 -5)) ; 

For this funetion c d ,  some of its arguments are nested funetion calls. We 

need to recognize and output it correctly, and determine if it is a constant 

value. The arguments to work-b0 that we get will be: 

(1) x; Non-Constant Value; 

(2) do-it (sin@)); Non-Cons t an t Value; 

(3) cos(0.5); Constant Value; 

This example is treated in more detail later. 

4.5.4 An Output File prg.stat 

To gather the idormation on function calls collected fkom a parse tree, a 

text file is created. This file is opened prior to the data collection. Its name 

wïil be of the formprg.stat which inherits the name of the input C program 

prg.c but with a different extension .stat. The stat is short for "statistics." 

Each line in the nle prg-stat contains the information for one function c d ,  

which includes 



(1) The name of the hct ion ,  

(2) each argument of the function, and 

(3) whether or not that argument is a constant expression. 

When the data collection has been finished, the nle will be sorted by 

function name and the data in it will be analyzed. 

The following figure shows the output lines for function cal l  

work-a & work-b shown previously, in the file progstat. 

@ w o k a  @ 2*3+5 $ 4 $ x+l # 

@ work-b @ x # dojt (sin@)) # cos (0.5) $ 

@ do-it O sin (y) # 

@sin@ y # 

@ cos @ 0.5 $ 

Fig. 4.5 Sample Lines of the File prog.stat 

4.5.5 A Recursive Algorithm for Retrieving Data on Function Calls 

The name of the fiuiction is stored as the first descendant of the node of 

the function c d .  Its value which is stored as a string is extracted and is 

output to the fileprg-stut. To collect the data on the arguments, a recursive 

algorithm is used. 



In a C program, the arguments of a function.cd are expressions that can 

be a variable, a numeric, a function c d ,  an assignment statement, etc. 

In the input specification to the parset generator YACC, Le., the program 

parsecy, expressions are debed  recursively: 

exPr 

: assignment-expr 

1 expr ',' assignment-expr 

And the assignment-erpr could be one of several kinds of expressions: 

assignment-expr 

: logical-or-expr 

1 logical-or-expr '3' logical-or-expr ':' c~nditional~expr 

Therefore, when we decode a parse tree, trying to extract the expression 

of the argument to the output nle prgstat, a recursive algorithm and a case 

statement are used. 

The case statement lists al l  the possible forms that an expression could 

take, Le., constant, identifier, assignment, b c t i o n  call, etc. For some simple 

cases, like identifiers, just simply getting the string value of this node and 

outputting it to the me prg.stat is required; for some complex cases, such as 

when the expression is an assignment expression, this assignment expression 

has to be retrieved recursively to get the whole expression. Actually, 

recursive c a b  have to be used for most of the branches in the case statement. 



4.5.6 A Linked List of the Funetion Calls 

The recursive algorithm is not enough for o u  task. For most of the 

cases, the argument expressiom can be extracted correctly to the output text 

file with this algorithm. But as we mentioned before, consider the function 

' c d  

work,b(x, dojt(sin(y)), cos(0.5)); 

In this b c t i o n  c d ,  the second argument do_it(sin(i)) is a nested 

function c d .  In our point ofview, it is not only an argument of one function 

c d ,  but also another function invocation itself; that is sinh). The original 

recursive algorithm can output this argument to the file correctly, but does 

nothing to deal with collecting the argument data for a function c d  which 

itselfis also an argument to a function c d .  

To solve this problem, we use a simple but elegant solution: Record the 

pointer to this hction-cd-argument node in the parse tree, keep a linked- 

list of these lMds of nodes, and handle them using the recursive algorithm 

when the whole program has been processed and the data for the first level of 

call has been collected. The following figure illustrates the linlred -kt 

structure. 



Function Call Function Call Function Call 

Parser Tree r 
Fig. 4.6 Linked-list of Function Calls 

Each node in the list consists of two pointers: one points to the next 

node in the list, another pointer points to the node of the function c d  in the 

parse tree. With this linked List, we will not miss any of the function calls in 

the program. 

For example, for function c d  work-b(x, do-it(sin@)), cos(0.5)), the 

analysis program outputs "work-bn as the function name; and "xn as its fïrst 

parameter, "do-it(sin(y))" as its second parameter, and ucos(0.5)" as its third 

parameter. The analysis program also realizes that the second and the third 

parameters are fiuiction c d s  also. Therefore udo-it(sin~))" and "cos(0.5)" will 

be sent to the linked-kt, and will be processed using the recursive algorithm 

to extract the idormation on these two function calls. 

4.5.7 Recognizing Constant Parameters 

An important job to do for the data collec~ed is to judge if an argument 

is a constant argument. Due to the varieties of expressions, a recursive 



algorithm is use& For an argument that is an expression involving operators, 

rather than a simple factor, since we do not evaluate the expression, we will 

decide ifit is a constant value according to the value ofits components. If 

d e y  are al l  constants, then the expression is considered to be a constant 

argument. For example, p8+12 is considered to be a constant value, while 

Pa+12 is not. 

For an argument that involves a function c d ,  we assume there are no 

global variables involved. Therefore if a l l  of the p arameters are constants, it 

itself is a constant argument, otherwise it is not. For example work(2,3,4) is 

considered to be a constant argument but work(2.3,t) is not. 

4.5.8 halyzing the Data File 

ARer traversing the whole parse tree, and reporting a l l  the information 

to the stat file, we start to analyze the file. This includes the following steps. 

(1) Sorting the file. 

We use the Unix utility "sort" to sort the file by the file name. That is a 

new experience for me to c d  "sort" within a C program. In th& project, we 

assume that hc t ions  are identined by their names. Function calls with the 

same name are considered to be the same function. A sorted file consists of 

function calls listed by theïr names. 

A pzoblem arises when only a pointer to a function is specïfîed in the 

function ca l l  instead of a function name. We decide to treat all such function 



c a b  as being to the same function because it is not possible to get the 

function name by a dynamic pointer. 

(2) Collecting the Data Distribution. 

When a sorted nle is ready, the next step is to collect the distribution of 

the data; that is, how many functions have O, Un, 2/n, 3/n. .., n-Un, d n  

constant parameters ( n is the number of the parameters ). The output of this 

distribution is a 2-dimensional matrix A[i,j] (Os i, j i n) which we presented in 

chapter 3. We also can get the number offunctions with all arguments 

constant fkom this matrix. This number is the sum of A[i,i] for i =O to n. 

(3) Determinhg the number of the specialized versions of a function. 

A function might be called a few times with different numbers and 

values of constant p arameters. Each of these combinations would generate a 

different specialized version of a hction. To determine the number of 

specialized versions of a function that would be produced, more analysis 

needs to be done to the file. This is a tricky part in terms of progrnmming 

because the information (function name, parameters, constant value, . ..) of 

each fiuiction invocation is stored in the text file as a string. The hard part is 

to extract each part of this information correctly fiom each line. 

4.6 Implementation of the Project 



The project is implemented on SunNnix, using Lex, Yacc and the C 

propamming language. 



Chapter 5 

Results 

5.1 Introduction 

The purpose of thisproject is to collect statistics on the use of 

translation-time constant arguments in C language source code. Our 

analysis program takes a C source program as input, and produces the 

statistical analysis as the output. We analyzed the source code 6.om three 

important projects coded in C: the X-Window Library, the LINUX operating 

system, and the Gnu C compiler. The fouonring sections describe how we ran 

the analysis program, report the results me obtained, and present some 

discussion of the results. 

5.2 Software Selected for Andysis 

In the project, we analyze the source code of the following software. 

(1) The X Window System. This code was initially developed at the 



Massachusettes Institute of Technology. It is now widely used as a 

graphical window system on UNIX systems for a large number of varied 

plattoms. The resdts are reported for veision 11 release 5. 

(2) The LINUX operating system. This code was initially developed by b u s  

Torvald in Norway. It is now rnauitained and enhanced by a large number 

of programmers scattered all over the net. It is widely used to provide the 

UNM environment on personal computers. The results are reported for 

version 1.1.59. 

(3) The Gnu C compiler gcc. This code was developed by the Free Software 

Foundation and has been maintained over the years by a variety of 

programmers It provides a reliable C compiler for a large number of 

target architectures and operating systems. Results are reported for 

version 2-7.2. 

The reasons for choosing the source code listed above are: 

(1) The source code was developed by different implementers. W e  don't want 

to select source fkom a speofic group ofimplementors which might have a 

specific style and may not be a representative of the C code in general. 

(2) The source represents typical applications of the C language, namely: 

graphical user interfaces, operating systems, and compilers. 

(3) The source code is well known and widely used. 

(4) The source code is available over the Internet. 



5.3 Data SampIing 

The source code analyzed had a high degree of complexity that is typical 

of systems programming. It can take years of work to perfect a language 

processor that correctly handles code with such a high-level of complexity. In 

fact, the software systems that were selected for analysis often specify the 

exact version of the compiler that must be used in order for the software to 

run correctly. They also often use special features of the gcc compiler that are 

not part of ANS1 C. 

As a result, we had two options: 

(1) Engage a long-term codïng effort to perfect a statistical analysis 

propam that could accept al l  this software correctly as is, or 

(2) Rand modifg the input code so that it could be acceptable to a simple 

program. 

Since the objective of our project is a single-usage data analysis program 

rather than a general purpose software package, we chose the second 

alternative. The changes to the input programs were carefully made to 

ensure that the statistics being collected would not be affected. This 

requirement for hand manipulation limits how much souxce code we could 

reasonably analyze. Our solution was to sample the input data by selecting 

one of every n source mes for analysis. The sampling rate for each input 

project is shown with the statistics. 



Even with this reduced code sample size, many weeks of careful editing 

were required to make the selected software acceptable to o u  translater. 

5.4 The Data Collection Method 

The data collection pmcess consists of the following steps. 

(1) Preprocessing 

Before a source ille can be analyzed it must be run through the C 

preprocessor Ucpp*. The reason for this is that a C program cannot be parsed 

correctly until the transformations described by the preprocessor directives 

are applied. In this step, the symbolic constants represented by preprocessor 

symbols are replaced by literal constants. 

In many cases, this step was not straightforward because the source code 

analyzed is highly portable low-level code. Sometimes the generated C source 

lines were too long to be loaded by a text editor such as the U N E  editor "vi", 

or to fit in the lixnited b d e r  normally provided for Yex" generated scanners. 

The ability to inspect and make s m d  changes to the source code was vital to 

allow the continued processing of source code that was otherwise rejected by 

our parset. A simple "preprocessor postprocessor" was coded to edit the 

output of preprocessor and break it up into manageable lines. 

(2) R u  the Analyzer 

To get the statistical data on the C source, the analyzer program is run 



on the C source program. The source propam is parsed into a syntax tree. 

The syntax tree is traversed recursively locating function invocations. 

Idormation about each function c d  is collected and output to a me, and the 

file is then sorted by the fuaction name. At the same tirne, our analyzer 

program &O collects statistical data on functions in the source program and 

reports them to standard output. Hence for each source program, the 

analyzed results consîsts of: 

(1) A text file which contains a l l  the data we need on function calls: the 

name of the function and a l l  the parameters of each function c d ,  and 

whether o r  not they are constant expressions. 

(2) Statistical data reported on the screen based on the text file. The data 

indudes: a matrix which indicates the distribution of constant 

parameters of function calls in the input program, the maximum 

number of speualized version of function c a s  that would be needed, 

the total number of functions, the total number of function calls in the 

program, the number of unevaluated argument expressions and the 

number of functions with unevaluated argument expressions. 

5.5 Results 

The following tables report the results for each package analyzed. 



Source file sampling rate 115 116 118 

No.ofsourceLinesanal@ed 11,396 16,O 18 33,024 

No, of function caUs 6 16 3,227 3,803 

No- of bctions invoked 2 18 527 690 

No, of calls with ail 4 141 120 

1 constant arguments 1 0.65% 1 4.4% 1 3.1% 

No. of specialized versions 

16% 
No- of unevaluated constant 2 65 4 

Expressions 0.3 % 1 2 %  10.1% 

No. of h c t i o n  c d s  with 2 62 4 

unevaluated constant 5.1 % 1 12 % 1 0.6% 

-- 

Total 

Table 5.1: Statistics on Function Calls 

5.5.1 Discussion of Table 5.1 

Row 5 in Table 5.1 shows that for at least two of the packages, LINUX 

and gcc, supporting the fidl evaluation of functions with d constant 

arguments could be an important feature of a code improver. It would reduce 

up to 4.4% of function calls to theh minimum possible implementation. At 

the very least, that row indicates that it is warranted to do a further analysis 

of which functions have side effects. 

Row 6 shows how many extra function versions would be produced if 

functions were specialized for every combination of unique constant 



arguments in al l  invocations. This result is înteresting because it shows that 

the to ta l  number of functions would not increase by more than 96%, and 

more commonly by less than that. This could be an acceptable price to pay for 

higher execution speeds. 

Rows 7 and 8 show how much error was introduced by the analysis 

program due to the fact that it did not compare the binary values of constant 

arguments, but rather compared theh lexeme strings. These rows show that 

the error is at most 12%. Furthemore this error is toward the favorable side, 

since it means that possibly up to 12% fewer specialized fhctions would be 

generated A cursory inspection however showed that in a l l  likelihood there 

were no constant arguments with equal binary values but different lexemes. 

This table also shows that there can be substantial merences in 

programming styles between programming groups. Thus code improvement 

techniques that benefit one project substantially may have little effort on 

other projects. 

5.5.2 Ratio of Constant Arguments to Total Arguments 

The following tables report the number of constant arguments versus 

the lengths of the argument lists. This information indicates the degree of 

specialization of a specialized version of a function. The more arguments that 

are constants, the more efficient will be the specialized version. An 

interesting fact represented in the table is that no function in the analyzed 



projects had more than three constant arguments, regardless of the length of 

the argument h t .  

Table 5.2: X Window System 



1 No. of Constant Args 1 Total 1 

No. 
of 

8 9 1 IO 
9 4 5 9 

, 10 1 1 
, 11 
, 12 

13 
14 I 1 l 

Total 2372 786 66 3 3227 

Table 5.3: The LINUX Operating System 

1 1 No. of Constant Args 1 Total 1 

Table 5.4: The Gnu C Compiler ''gocm 

No. 
of 
h~ 

, O 
1 
2 
3 

4 
5 

, 6 
7 

334 
1159 
1375 l 

7 19 
209 
89 
Il 
7 

30.3 Total 

O 
334 
1049 
1252 
614 
164 
34 
1 
7 

3455 

1 

110 
123 
78 
38 
44 
8 

401 

- 

2 

7 
6 
G 
2 

- 21 

3 

20 
1 
5 

26 



1 No. of Constant Args 1 Total 1 

Table 5.5: Tot& for Three Input Projects Taken Together 



Chapter 6 

Conclusions 

In this thesis, the principle of partial evaluation and its major 

applications are surveyed. Two important partial evaluation techniques are 

also discussed. Based on one of the basic strategies of partial evaluation - 

unfolding function calls, an analysis project was designed to collect statistics 

on the use of translation-the constants as arguments in C language source 

code. The project was implemented and source code fkom three well known 

projects coded in C was analyzed . 

It was found that polyvariant specialization of a l l  calls with some constant 

parameters is feasible on real system code. It can be an important feahire of 

a code improver. It was &O found that the effort of specialization can be 

made at an acceptable ptice for higher execution speed. 
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