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Abstract

Partial evaluation is a source-to-source program transformation
technique which substitutes the constant or known part of the input at
compilation time to get an updated program. To help make decisions as to
what kind of partial evaluation to implement, statistics have been collected
on the use of translation-time constant arguments in C language source code.
Source code from three important projects coded in C was analyzed: the X-
Windows library, the LINUX operating system, and the Gnu C compiler
“gcc.” These projects also present typical modern uses of the C language. The
frequency of constant arguments in argument lists can have important
implication on the worth of certain code improvement strategies. Specifically,
compiler writers and partial-evaluator designers can benefit from these
statistics if they are planning to do any of the following: replacing calls of
functions with all constant arguments by function results, unfolding function
calls, or specializing functions for specific values of actual arguments. The
statistics collected show that these partial evaluation techniques can yield
significant performance improvement for some projects, at reasonable costs

in memory usage.
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Chapter 1

Introduction

1.1 Introduction

This thesis modifies a C recognizer to collect statistics on function calls
in C, and analyzes how much benefit can be obtained from applying partial
evaluation to C code. Therefore, it is also an evaluation of the potential
benefit provided by partial evaluation to a new language called Safer_C,

which is a modern descendant of the C language.

1.2 Partial Evaluation

Partial evaluation is a source-to-source program transformation
technique which substitutes the constant or known part of the input at
compilation time to get an updated version of the program. The principal
goal of partial evaluation is to increase execution speed. It can improve the

efficiency of programs by exploiting known information about the input of a



program, performing some computation atcompilation time, and generating
a transformed program which can run faster than the original one.
Although the principle of partial evaluation is simple, its implications are
surprisingly complex, especially when applied to imperative languages. The
analysis of programming features for partial evaluation is an active area in

the field of programming language design and implementation.

1.3 A Survey of the Literature on Partial Evaluation

This thesis surveys some recent results in the area of partial evaluation,
especially issues dealing with the partial evaluation of imperative languages.
Given a general program and part of its input, partial evaluation deals with
specializing the program with respect to this known information.

Using the notation of Consel & Danvy[2], consider a program p and its
input ¢, and say that scmehow we can split i into a static (i.e. known) part s
and a dynamic (i.e. unknown) part d. The literal constants used in a program
can also be considered as part of s. Given a specializing function S, we can
specialize p with respect to s:

S (p(s,”)) = Ps

By definition, running the residual program Ps must yield the same
result as the general program would yield, provided both terminate:

runp(s,d)=run Ps(J,d)

The objective of partial evaluation is to produce a residual Ps that runs

~



faster than p.

The major areas in my research topic and papers in those areas are:

(1) Memoizing{10]. This is an early work in the field of partial
evaluation. It proposes the concept of “Memo” functions which we can use to
store the values of some functions which may be used frequently later. In
that way the program can be speeded up.

(2) Partial evaluation [2,5,7,8,9,12). This area consists of the concept of
partial evaluation, and its various areas of applications which include
compiling and compiler generation, numerical computation, and hard real-
time systems.

(3) Partial evaluation for imperative languages [2, 3,4,5,7,11]. This area
presents some techniques for and applications of partial evaluation of

imperative languages such as Pascal, C, and FORTRAN.

1.4 Function Specialization

Function specialization is a technique of partial evaluation to generate a
specialized version of a function for each value of constant parameters.

For example, for function call Work(2,A), we can create a specialized
version of that function called Work_2(A) for function calls where the value of
the first parameter is 2. In most cases, this can increase the speed of the

execution of the program.



1.5 Collecting Statistical Data on Function Callsin C
This thesis project collects statistical data on typical function calls in C
code. The information collected includes:
(1) How many functions have all parameters constant? In this case, functions
with no side effects can be replaced by their respective results.
(2) How many functions have 1/n, 2/n, 3/n, ..., n-1/n constant parameters
(where n is the total number of the parameters in the function call)?
(3) How many specialized versions would be obtained?
To determine if a function can be specialized, collect data on:
(a) How often the same constant parameter has the same value?

(b) How often is this constant parameter the only constant value?

1.6 Methodology

An existing C recognizer is modified to interpret the C code and to
retrieve the related information. The information is output to a file. The data
on the file is analyzed to get the statistical results. .

The source code for following software were chosen for analysis because of
importance, wide use, and availability.

(1) The X Windows system
(2) The gcc compiler

(3) The Linux operating system



1.7 Organization of the Thesis

This thesis is organized as follows. Chapter 2 is a survey of partial
evaluation and its applications. The principles of partial evaluation are
presented. The basic strategies of partial evaluation are introduced. Several
partial evaluation applications are also presented. In chapter 3, the
information to be collected from the input C code is demonstrated. How this
information is related to the study of partial evaluation of imperative
languages is also stated. In chapter 4, the data collection method is
presented. Our methodology is to interpret the input C code from the output
of the parser, analyze the retrieved information, and obtain statistical data
on the input C code. Some important implementation decisions are also
discussed. In chapter 5, the statistical results of three selected widely used
software - X Windows, the Linux system, and the gcc compiler are presented.
Discussion of these results is also stated. In chapter 6, a conclusion is
presented. It was found that polyvariant specialization of function calls with

constant parameters is feasible.



Chapter 2

Survey of Current Issues in Partial

Evaluation

2.1 Introduction
This chapter discusses the concepts of partial evaluation and contains a

survey of current results in this field.

2.2 What Is Partial Evaluation?
Given a general program and part of its input, partial evaluation deals
with specializing this program with respect to this known information.

Using the notation of Consel & Danvy[2], consider a program p and its



input ¢, and suppose that somehow we can split ¢ into a static (i.e. known)
part s and a dynamic (i.e. unknown) part d. Literal constants used in the
program can also be considered to be part of the known input. Given a
specializing function S, we can specialize p with respect to s

S@,(s-) = Ps

By definition, running the residual program Ps must yield the same result
as the general program would yield, provided both terminate:

run p(s,d)=run Ps (D,d)
The objective of partial evaluation is to produce a residual program Ps that

runs faster than p.

2.3 How to Perform Partial Evaluation
2.3.1 Two Basic Strategies of Partial Evaluation

The purpose of partial evaluation is to specialize a program with respect
to some known parts of input. The two basic strategies are folding and

unfolding .

2.3.1.1 Folding Constant Expressions
The technique of folding constant expressions consists of propagating
constant values, executing any constant expressions that result, and

replacing the expressions by the results.



2.3.1.2 Unfolding & Unrolling

Unfolding can be applied to control structures and function calls.

If the control flow of a program sequence can be determined at compile
time, partial evaluation will unfold iterative loops, and reduce the
conditional structures to one of their branches.

Here is an example of unrolling control structures.

Consider the following statements.

If (1>10) then j+=2;
else j+=4;
Also, assume we have 1 =15 at compile time.
Applying partial evaluation to the above code segment, one of the selective
branch is eliminated. We obtain a simpler statement: j +=4;

If a few of the parameters are known at compile time, partial evaluation
will inline functions by unfolding calls, and produce specialized functions by
residualizing calls.

For example, let’s consider the following function definition.
int lamda(int x, int y)
{

int result;

result=(x+y)/2;

return result;



For function call lamda(4,b), we can unfold the function and get a residual
function lamda_4(@int z).

int lamda_4(@nt z)

{
int result;
result = 2 +2/2;
return result;

}

2.3.2 Online vs Offline Partial Evaluation

Partial evaluators are divided into two classes: online and offline
(Consel & Danvy{2]).

An online partial-evaluator is a non-standard interpreter. The
treatment of each expression is determined on the fly. Online partial-
evaluators are very accurate but actually they have considerable overhead.

For example, we have the following code segment in C.

void main(argc, argv)

{

int known, unknown;

int resultl, result2;

9



resultl = sqr(known);
result2 = ( known + unknown )/ 2;
H
An online partial evaluator will determine if an expression can be
evaluated according to the status of variables in it. The compile-time
variables are declared at the beginning. Here is the code segment with the
initial declaration.

void main(arge, argv)

{
compile_time int known;
run_time int unknown;
int resultl, result2;
resultl = sqr(known);
result2 = ( known + unknown )/ 2;
H

Having the initial compile_time variables declaration, the partial
evaluator goes through every expression in the program and determines its
status according to the declaration. Variable resultl is classified as a
compile_time variable since known is a compile_time variable. Variable
result2 is a run_time variable since it calls a compile_time variable known
and also a run_time variable unknown. We can see an online partial

evaluator is accurate but it is also slow.

10



Offline partial evaluators are structured with a preprocessing phase PE
and a processing phase PE. The preprocessing phase PE usually includes
binding-time analysis. Given the binding-time signature of a source
program (i.e., which part of the input is static and which part is dynamic),
the binding-time analyzer propagates this information through the source
program, determining for each expression whether it can be evaluated at
compile-time or whether it must be evaluated at run-time. An offline partial-
evaluator is less accurate than an online partial-evaluator since binding-time
analysis is approximate. An example of an offline partial evaluator for
FORTRAN 77 will be given in a later section.

Online and offline partial-evaluation can be combined to get the best
results. When the accurate binding-time property of an expression is known,
offline partial-evaluation should be used. Otherwise, the evaluation of this
expression is postponed until specialization-time; at this time concrete values

are available.

2.3.3 The tradeoff of Partial Evaluation

Using partial evaluation, we can get a transformed program (which is
called the residual program) which can be run faster than the original one.
But usually the residual program is bigger than the original one due to loop
unrolling and function unfolding. That could be the tradeoff: taking more

space for the programs and data can produce faster execution while taking

11



less space can lead to slower computation.
Nevertheless it can happen that a program can be made both smaller
and faster. A well known example of this as given by Consel & Danvy[2] is

the program xphoon written by Poskanzer and Leres. That's the best case.

2.4 A Summary of the Issues in the Field of Partial Evaluation
This section will give a survey of the history and issues in the field of

partial evaluation.

2.4.1 Memoizing

This is an early work in partial evaluation. In his paper [10], Donald
Michie proposed a facility to convert functions into “memo functions.” By
doing this, a program can improve the speed of the evaluation of numerical

functions a great deal.

2.4.1.1 The “Rule Part” and the “Rote Part”

In his paper, Michie presented an efficient way to evaluate mathematical
functions, in which a program can avoid needless tests and redundant
evaluation by “learning from experience.”

For each function, there is a “rule part” which is the computational
procedure and a “rote part” which is a “look up” table. That is, the “rule part”

is the operation by which the function is evaluated, the “rote part” is the

12



table in which the value of the function is stored or other look-up medium is
stored after it has been computed. The “rote part” is made up of results from
previously computed function evaluations. Here is an example of the “rule

part” and the “rote part” of the function fact.

The rule part of fact is:
function fact n;
if n <0 or if not (n isinteger) then undef
else
if n =0 then 1 else n*fact(n-1)
end
Suppose now the first call of the function is fact(4). At first the rote part

is invoked, but no entry for 4 is found. So the rule part is invoked. The value
of n is not equal to 0. The answer is 4*fact(3). We now set out to evaluate
fact(3). We check the rote again. There is no entry for 3 either. Then we enter
the rule and find 3*fact(2). We check the rote and again do not get an entry
for 2. Now we have to come back to the rule and repeat the process until we
encounter fact(0). We can find the value of it by rule, which is 1. We can now
evaluate fact(1) = 1 * fact(0), and hence fact(2) = 2*fact(1), and hence fact(3)
= 3*fact(2), and fact(4) = 4*fact(3). Each of these evaluation adds a new entry

to the rote part. Then at the end of the recursion, the rote part looks like this:

13



Argument Value

4 24
3 6
2 2
1 1
0 1

According to Michie, for each function,

(1) The apparatus of evaluation associated with any given function consists

of a “rule part” and a “rote part”;

(2) The evaluation in the computer should on each given occasion proceed
either by rule, or by rote, or by a blend of the two, solely as dictated by
the expediency of the moment;

(3) The rule versus rote decisions can be handled by the machine behind
the scenes;

(4) various kinds of interaction are permitted to occur between the rule part

and the rote part.

2.4.1.2 Self-Improvement of This Scheme
There could be a lot of improved methods of this scheme. Michie

proposed an improvement which we can call the “move-to-front” algorithm. In

14



this algorithm, rarely-occurring problems will move towards the bottom of
the rote table and frequently occurring problems move towards the top.
Any other searching algorithms such as hashing, most-common-first, LRU

could also be used to improve to this scheme.

2.4.1.3 Application of This Scheme

This scheme can be applied to many digital computations to improve
evaluation speed, especially for the recursively defined functions, because it
is obvious that we can reuse the previous calculation results in the recursive

functions.

2.4.1.4 The Relationship Between Partial Evaluation and “Memo
Functions”

The “Memo Function” scheme was developed in the early stage of
partial evaluation research. It gives the idea of efficient computation by the
elimination of redundant calculation, storing the most frequently used data

values which are going to be used in the evaluation.

2.4.2 Partial Evaluation of Imperative Languages

This section will present some techniques for the partial evaluation of

imperative languages. Some applications are also introduced.

15



2.4.2.1 Characteristics of Partial Evaluation for Imperative
Languages
A lot of research has been done on the partial evaluation of functional

languages. In actual fact most of the “real world programs” are written in
imperative languages such as C, COBOL, FORTRAN, etc. So the partial
evaluation of imperative languages has received more attention recently.

The partial evaluation of imperative programs is more difficult than
that of functional programs. Because of the lack of referential transparency,
the program transformation phase must take into account the notion of state.

The replication of side-effects is the main concern.

2.4.2.2 Techniques for Partial Evaluation of Imperative languages
Various techniques for the partial evaluation of imperative languages
are presented in Consel & Danvy [2], Meyer [3], Nirkhe & Pugh [11]. This

section will summarize those techniques.

2.4.2.2.1 Dynamic Notation

Partial evaluation could get stuck in two ways: either by unfolding
infinitely inany function calls or by creating infinitely many specialized
functions. To avoid the non-termination problem, Meyer[3] simply assumes
the program will terminate.

According to the definition of partial evaluation, a partial evaluator has

16



to decide whether the current statement (form, clause, etc) has to be executed
or not. Execution of the statement will change the state of the memory, and
non-execution will add the statement into the residual program.

To provide the proper information to the partial evaluator, there are two
strategies (as we mentioned in the previous section): “static annotations” and
“dynamic annotations”.

Static annotations are inserted into the text of the program in a
separate phase before partial evaluation. They are either computed by hand
or using abstract interpretation. All parts of the program with possibly
unknown data have to be annotated. The term “annotation” here means
making a note of the status of each variable. According to Meyer, this
technique is appropriate for functional languages because variables in
functional languages cannot change their values. In Meyer’s opinion, the
proper technique for imperative language is to make dynamic annotations.
The user has to annotate only the declarations of the variables which should
be treated as unknown data. These annotations give us information about
the relation between variables and their states, i.e., known or unknown. The
partial evaluator has to look up the state of a variable when it encounters
this variable. The state of a variable might change from known to unknown
and vice versa, if there is an assignment to that variable. With dynamic
annotations the partial evaluator will decide dynamically whether the

current statement has to be executed or suspended, depending on the states

17



of the involved variables. Meyer also gives a formal description for this

method [3].

2.4.2.2.2 Specialization of Subroutines

Specialization is an important technique for partial evaluation. In this
section we will describe how this technique can be adapted to imperative
languages.

In the following discussion, we discard the cases in which global
variables are used in the bodies of the subroutines (we will discuss those
cases in section 2.4.3.3). We will present the techniques for function calls

and procedure calls .

Specializing Function Invocations

For function invocations, we need to handle three cases.

(1) All the Values of the Actual Arguments Are Known At Compile-Time
When a partial-evaluator encounters a function invocation, it has to
check the values of the actual arguments. If all of them are known, the
partial evaluator will bind the formal parameters to the values of the actual
arguments. With these variables and the local variables, the body of the
function is evaluated. If we get residual statements (for example, the

statement includes another function invocation which can’t be evaluated
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totally at this time), we have to construct a residual function containing
these residual statements as the body, and output the residual function.
Otherwise the function can be evaluated totally. We do not get a residual call
and there is no residual function. Just replace the function invocation by the

result of the evaluation.

(2) Not All the Values of the Actual Arguments Are Known at Compile-Time

If not all the values of the actual arguments are known at compile-time,
the formal parameters should be suspended. We will get a residual function.

For each function call, a list is evaluated. The list will contain the
values of actual arguments (for those known actual argument values), and
the formal parameters (for those parameters without the matching known
arguments). For example, consider the function definition AX,Y), for a
compile-time known input X =2, the listis 2,Y).

These lists are stored in a table together with the name of the original
function and the name of the specialized version of that function. When
there is a function invocation, the partial evaluator will look up the table for
a pattern with the name of the function and a list matching the actual
argumants. If such a pattern has been found, the copy of the corresponding
specialized version of the function is used for the construction of the residual
function call. The specialized functions are the functions of the residual

program.

19



If the termination condition of the function call depends on the variables
in an unknown state, this method for specializing function calls might not
terminate. To avoid this problem, Meyer [3] proposed the solution that the
user can label the critical function calls with a symbol. When such a call is
evaluated, only the actual arguments are evaluated and composed into a
residual function call. The original function is copied into the residual

program.

Specializing Procedure Calls

There are three cases in specializing procedure calls.

(1) Call-by-value Parameters

For those procedure calls where parameters are passed by the mode
call-by-value, parameters are handled in the same way as in the case of
function calls. They will appear in the parameter list when the corresponding

actual argument is unknown at the specialized time.

(2) Call-by-result Parameters
Call-by-result parameters appear in the parameter list only when the
state of the variable for that parameter is unknown after the execution of the

body of the procedure. The state of the actual argument is irrelevant.

20



(3) Call-by-reference Parameters

In this case, the formal parameters and the actual arguments denote the
same memory location. There is only one state for both.

In the case of parameters transmitted by location, if the value of the
actual argument is unknown, it has to appear in the list of the parameters
for the residual procedure invocation and the formal parameter has to be in
the list of the parameters of the definition of the residual procedure. On the
other hand, in the case of parameters transmitted by values, if the value of
the formal parameter is unknown after the execution of the procedure the
actual argument has to appear in the parameter list in the residual function
call and the formal parameter has to be in the parameter list of the definition

of the residual procedure.

Global Variables and Side-effects
Global variables and side-effects pose a considerable problem in the
partial evaluation of imperative languages. The use of global variables in
subroutines may cause problems if a call to these subroutines cannot be
totally evaluated.
Here is an example of the problem.
void main(argc,argv)
{
int global;

21



int rel, re2, p1, p2;

int work(@nt x, int y)

{
int result;
global = 5;
global +=x;
result =(x+y)/2;
return result;
h

rel = work(2,p1);
re2 = work(2,p2);
}
After the execution of the program, the value of the global variable
“global” is 9.
Applying partial evaluation to the above code, we have a residual
function work_2.
int work_2(int z)
{
int result;
global = 7;
result =1 + 2/2;

return result;

22



}

The invocation of the residual functions will be
rel = work_2(pl);
re2 = work_2(p2);
After the execution of the program the value of “global” is 7, which is

obviously wrong.

Meyer [3] proposes to set the states of all global variables used in the
subroutines to “unknown” to solve this problem. An algorithm is presented to
compute the set of all global variables occurring in a subroutine or in
subroutines reachable from a subroutine. The state of each global variable in
the set is set to unknown. Then the techniques for specializing subroutines

we described in the previous sections can be applied.

2.4.2.3 Applications of Partial Evaluation of Imperative Languages
Due to its conceptual simplicity and efficiency, partial evaluation has

been applied to various areas which include numerical computation [7,13],

hard real-time systems [5,11], and compiling and compiler generation [9,12].
In this section, we will illustrate several application areas of the partial

evaluation of imperative languages.

2.4.2.3.1 Numerical Computation



Partial evaluation is very effective in cases when some parts of the input
change less frequently than others. That's the reason why specializing
numerical computation algorithms by partial evaluation can give substantial
savings. This section will describe some characteristics of numerically
oriented programs and a partial evaluator for a subset of FORTRAN 77

[7,13].

(1) The Characteristic Features of Numerical Problems
A characteristic feature of numerically oriented problems is that most of

their numerical computations require dynamic data and therefore cannot be
computed during specialization. But in many cases the control flow can be
determined at specialization time. For example, for any given matrix size,
matrix-multiply performs a fixed set of multiplication's, even though the
numerical values of the elements might be unknown at compile-time.

Numerical programs can be divided into two types: data-independent
and data-dependent code sequences. A sequence of operations is data-
independent if the control flow can be determined at compile time. Otherwise
it is data-dependent. The largest part of numerical programs are usually
data-independent. Partial valuation works best for data-independent code
because iterative loops can be unfolded and reduced to one of the branches,
while the control flow in data-dependent computation which depends on

dynamic values cannot be determined by partial evaluation.
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(2) A Partial Evaluator for FORTRAN 77
In [7], a partial evaluator for a substantial subset of FORTRAN 77 is

presented.

(2.1) The Subset of FORTRAN 77

The language selected for the partial evaluator is a subset of FORTRAN
71, called F77. It includes multidimensional arrays, functions, procedures,
and COMMON regions. The statements include assignments, nested
conditionals, IF, unconditional jumps, GOTO, procedure calls, CALL,
function calls, the RETURN, and the CONTINUE statement, Expressions
include constants, identifiers, indexed arrays, arithmetic and relational

operators.

(2.2) The Partial Evaluator System

The partial evaluator of Baier, Gluck,Zochling [7] is implemented in
FORTRAN 77. The input and output of the partial evaluator are programs
written in F77. The partial evaluator is off-line. The source program will be
binding-time analyzed before it is specialized. The three phases of this

partial evaluator system are:

-- The preprocessing phase translates an F77 source program into an



intermediate language, called CoreF. The binding-time analysis (BTA)
annotates all statements(expressions) in the source program as either static
or dynamic corresponding to the static/dynamic classification(S/D) of its
input. The output of the preprocessing phase is an annotated CoreF program.

-- The specialization phase takes the annotated CoreF program and
the static data as input and specializes the program with respect to the static
data. This phase is the main part of the partial-evaluator system. It contains
an interpreter (INT) for the evaluation of static CoreF statements. The

output of the specialization phase is a specialized CoreF program.

-- The postprocessing phase translates a specialized CoreF program

into F77.

(2.3) The BTA (Binding-Time Analysis) and the Partial Evaluation of

Statements

Binding-time analysis classifies each variable as static or dynamic. The
analysis used in the BTA is monovariant, i.e., every statement (expression)
can be given only one static/dynamic classification. The BTA is implemented
by a fixed-point iteration: an approximate algorithm which iterates over the
static-dynamic division until a stable classification is reached.

The output of the BTA is an annotated CoreF program with a notation

"static” or "dynamic” attached to every variable.
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The specialization phase follows the annotation made by the BTA: it
executes static statements, reduces partially static expressions, and
specializes dynamic program points.

During the specialization of a dynamic basic block, the partial
evaluator runs through the sequence of statements step by step, executing
static statements and generating code for dynamic ones. When a dynamic
conditional, e.g. an IF, is met, both branches are specialized.

The experimental result of using this partial evaluator for a
number of numerically oriented problems shows that the residual program

runs 3-4 times faster than the original one.

2.4.2.3.2 Partial Evaluation Applications in Hard Real-Time Systems
This section will present how partial evaluation can be applied to the
hard real-time systems. A partial evaluator for the Maruti hard real-time

system is also introduced.

(1) Problems with Current Hard Real-Time System

Hard real-time systems are applications where it is catastrophic to
violate tunmg constraints (such as weapons control, medical
instrumentation). The hard real-time system requires ensuring predictable
timing behavior of HRT applications by taking their timing and resource

requirement into account. Problems arise when application programs use
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high-level constructs (such as recursion, loops, and dynamic data structures).
The execution time and other resource requirements are difficult to estimate
at compile time. Current techniques in the HRT operating system cannot
handle this problem. Their solution to this problem is to forbid or restrict the
use of these high-level language features. That causes inconvenience for the
system designers, and the developed low-level programs are hard to adapt for

different environments.

(2) The Solution of Partial Evaluation

In their paper [5], Nirkhe and Pugh proposed their solution to this
problem which is based on partial evaluation. In their method, a
programming language is designed. A program in this language can be
partially evaluated which produces a residual program that is guaranteed to
terminate. The tight upper bounds on execution time and resource
utilization of the residual program can be automatically determined. The
technique is to transform the program with high-level language features into
a new program which has mostly linear code and an estimatable execution

time.

(3) A Partial Evaluator in the Maruti Real-time System

This section describes a partial evaluator of Maruti real-time system.

Maruti is a hard-real-time operating system which is based on the
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technique of pre-scheduling. In this technique, the timeliness of the
application execution is ensured by reserving the required resources prior to
run-time.

Application programs in Maruti are written in MPL (Maruti
Programming Language). In MPL, a block is a collection of statements that
have a separate temporal scope. Since blocks have separate timing
constraints and resource requirements, they may be scheduled separately.
The temporal and precedence relations among blocks is represented in the
form of a graph, which is called a computation graph.

Partial evaluation of a program produces a residual program in the
form of a computation graph. In the computation graph, nodes consist of
sequential code segments. Nodes are labeled with their execution time and
resource requirements. During partial evaluation, compound statements
such as conditionals and loops are transformed into ones with restricted use
of these constructs. For the resulting statements, the bounds of loops and
depth of recursion are known and the tight estimate of execution time of
blocks is determinable. The result of partial evaluation are nodes of the
computation graph, in which edges represent execution ordering and time
constraints. This computation graph is used by the Maruti Scheduler to
preschedule the program in a way that guarantees that the program will
satisfy all of its timing and resource constraints.

In this method, during partial evaluation, the residual program must
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be guaranteed to terminate and have a predictable behavior. If such
prediction is not possible, errors are detected and reported as type errors. If
in some cases partial evaluation fails to terminate after a time period
specified by the user, we abort the compilation and print a message
describing the portion of the program apparently causing problems. Normal
estimation techniques are used with the resulting program to estimate the

resource requirements.

(4) Advantage of Partial Evaluation of HRT Programs

The main benefit of partial evaluation of real-time programs is
allowing programmers to write using high-level, reuse-oriented programming
styles. Traditional techniques of execution time estimation can be used on
residual programs to obtain the time and resource requirements. Also, the

residual programs are more efficient than the original ones.

2.4.2.3.3 Applications of Partial Evaluation to Compiler Generation
This section describes another important application of partial

evaluation: automatic compiler generation.

(1) Partial Evaluation and Interpreters
Interpreters are easier to write than compilers, while compilers are

more efficient. Partial evaluation can yield both those advantages. By the



specialization of an interpreter to a program, the net effect is compilation.
the partial evaluator is self-applicable, an interpreter is automatically
transformed into a compiler.

The following diagrams illustrate how they relate.

Interpreter;
\ Patial Compiled
Evaluator | —» gp“t
Toput / ugram
Program

Fig 2.1 Partial Evaluation of An Interpreter Amounts to Compiling

Patial

Evaluator
N Partial
et

Evauator | —» Compiler

Interpreter

Fig. 2.2 Partially Evaluating A Partial Evaluator Yields A Compiler
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In the following subsection, we will give more explanation and a

mathematical proof of the above statements.

(2) How Partial Evaluation Works in Compiler Generation

Partial evaluation works in compiler generation in this way: Consider
an interpreter for a given language Ls. The specialization of this interpreter
to a known source program P«(written in L) already is a target program for
Ps, written in the same language Lin: as the interpreter. So, partial
evaluation of an interpreter with respect to a fixed source program amounts
to compiling.

The following subsections describe the applications of partial evaluation

in compiler generation.
(2.1) Compiling by Partially Evaluating an Interpreter

According to the notation of [12], we denote an interpreter in language
Lint as int, the source language as Lg, programs written in source language
as Ps. We define the interpreter int as follows.

Run PsLs(d1, ..., dn )= Run Lint int ( Ps, d}, ..., dn) (2.1

for all programs Pg written in language Ls and data dj, ..., dn.
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By this definition an interpreter takes both the program to be
interpreted and all input data for the program as its input.

Let the program PE written in language Lp be a partial evaluator for
the source language Lg, and let int be an interpreter for source language Ls,
Let’s see what happens if int is partially evaluated with respect to a given

program Pg written in the language Ls. According to (2.1), we have

Run Lg Ps{dj, ..., dn )= Run Lint int ( Ps, di, ..., dn)
= Run Lint ( PE (int, Ps) ) (d1, ..., dn) (2.2)

Note that formula (2.2) describes the application of partial evaluation
to an interpreter int. The result of this is the same as the result of applying
the program Pgsto data (di, ..., dn ), so we call this

target = PE (int, Pg) (2.3)

The program target is a program written in language Lint with the
same input-output behavior as the source program Ps. In other words we
have compiled the source program Pginto a program target written in
language Lint by partially evaluating the interpreter int with respect to the

source program Ps.

(2.2) Compiler Generation

To illustrate the application of partial evaluation in compiler

generation, we first give a definition of autoprojector.
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Definition 2.1: A program mix written in language Lp is an
autoprojector iff it is a partial evaluator for language Lp. So an autoprojector
is a partial evaluator for a language such that the partial evaluator is
written in the same language. Assume that an autoprojector mixis given.
Letting mix play the role of the partial evaluator PE in formula (2.3), we
have that

target = mix (int, Pg) 2.4)

We define a computation Com as follows.

Com = mix ( mix, int) (2.5)

According to this definition, we have

Com Ps = (inix ( mix, int)) Pg (2.6)

since mix is self-applicable, i.e. an autoprojector, according to (2.6),
applying partial evaluation to mix itself, we have
Com Pg=mix (int, Ps) 2.7
Combining formula (2.4) and formula (2.7), we have
Com Pg = target (2.8)
Thus Com is a compiler, since given Ps it produces a target program

for PS .
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(2.3) Compiler Generator Generation
By the same reasoning a compiler generator ComGen may be obtained
by computing:
ComGen = mix {mix,mix) 2.9)
This program ComGen transforms interpreters into compilers,
because
Com = ComGen int (2.10)
The following is a proof of formula (2.10)
Com Pg= (mix (mix,mix), int) Ps
= (mix (mix,int} ) Ps
= mix (int, Ps) (2.11)
Combining formula (2.4) and (2.11), we have

Com Pg = target

w
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Chapter 3

Data Collected

3.1 Introduction

A subprogram is an abstract operation defined by the programmer.
Subprograms form the basic building blocks out of which most programs are
constructed. Explicitly transmitted parameters and results are the major
methods of sharing data objects among subprograms. In the C programming
language, all subprograms are functions, and the functions are the key parts
that do the real work in the C programs. Functions are invoked by other
functions and ultimately used by the function main( ) to solve the original
problem. This research project collects statistical data on typical function
calls in C code to predict how much benefit we can get from applying partial
evaluation to C code. This chapter will describe what statistical data is

collected, and why we collect these data.
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3.2 “Call by Value” Mechanism

Since the purpose of our research is to analyze the frequency of constant
parameters in function calls in C code, the following is a brief review of
major methods of parameter passing in function invocations.

There are three primary mechanisms for parameter passing: in-out
parameters, in-only parameters, and out-only parameters. In C, parameters
to functions are always passed “by value”, i.e., using the “in-only”
mechanism. This means that when an expression is passed as an argument
to a function, the expression is evaluated, and it is this value that is passed
to the function. The variables passed as arguments to functions are not
changed in the calling environment.

Our analysis program collects all the parameters to all function calls in a
C program and reports this information to a file called prog.stat for further
analysis. It also reports whether or not each parameter is a constant. In the
case where such a constant parameter is an expression, we output the whole
expression to the file prog.stat instead of evaluating it, due to the complexity
of interpreting C code, at this stage. Although we don’t have the evaluated
value of this expression, we do report whether or not it itself is a constant
value, and keep a record of all these unevaluated expressions for further

analysis of possible errors in the resulting statistics.

37



3.3 Statistical Data Collected in the Project

3.3.1 Function Specialization

As stated in the introduction, the function call is a very important part of
C programming. Therefore, when applying partial evaluation to the C
language, function specialization and function inlining (unfolding) are

important techniques.

3.3.1.1 What is function specialization?

Function specialization is a technique for partial evaluation to generate a
specialized version of a function for each value of its constant arguments that
is actually used in the program. Let us use an example to illustrate this.
Suppose that in a C program prog.c, there is a function prototype: void
work(int a, int b). Also suppose that there is a function invocation work(2, c).
With the principle of partial evaluation, we can evaluate the function with
the first parameter being 2 and therefore create a specialized version of that
function work_2(int b). This new version, with fewer parameters, will run
faster than the original version in most cases. The specialized function may
also be smaller than the original version. To apply function specialization,
whenever we encounter a function call work(2,x) with the first parameter
being 2, we can replace it with function call work_2(x). This will usually

make execution more efficient. In some interaction with cache and virtual
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memory, the specialized function may run slower than the original one due to

memory transfers if it is larger than the unspecialized version.

3.3.1.2 How to perform function specialization
As we state in chapter 2, there are 2 different cases in specializing

function invocations.

Function invocation with all constant parameters

If all the parameters are known at compile-time, the partial evaluator will
evaluate the function with the values of the actual arguments and the local
variables used in the function call. Eventually we will get either a residual
function (if the function can't be evaluated fully) or a particular result of the

evaluation to replace the function call.

Function invocations with some but not all constant parameters
In this case, we will get a residual function with the unknown parameters

suspended.

8.3.2 Stiatistical Data Collected
Since function specialization is an important part of the partial evaluation
of imperative languages, to study how much benefit we can obtain when we

apply partial evaluation to imperative programs, we have undertaken to
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collect statistical data on function calls in standard C code. The following is

the information we collected.

3.3.2.1 How many functions have all parameters constant?

The reason to collect this information is that we can determine how many
functions can be replaced by an evaluated result (assuming there are no side
affects in these functions). Such a change can have a significant effect on

execution speed.

3.3.2.2 How many functions have 1/n, 2/n, 3/n, ..., n-1/n constant
parameters (where n is the number of the parameters in the
function call) ?

The layout of the output generated is the following:

No. of Constant Args Total
0 1 2 3 4 5 6 7 8 9 10
0 4 4
No. 1 4 4
2111 | 71 2 20
of 3 5 4 9
419 8 6 1 24
Arg [ 5 "2 | 10 3 15
613 |14 5 2 24
7 5 1 1 7
8 2 1 3
9 1 1 2
0 1 1 1 1 4
Total 27 140 |1 21 8 10 3 3 1 0 2 1 11G

Table 3.1 Distribution of Constant Arguments
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As an example of how to read Table 3.1, notice that row 10 lists the
numbers of functions which have 0/10,1/10, 2/10, .., 9/10,10/10 constant
arguments. We assume the number of parameters of all the functions does
not exceed 10 for the analyzed code. In our implementation, we choose to test
C programs of different sizes and styles. Some of them have hundreds of
function calls in a single file.

We designed a large size of output matrix for the relatively large
programs. Here we use an example of a 10 * 10 matrix Table. Element Table
3.1[i,j] reports the number of invocations that have i parameters with j of
them constant. The sum of Table[i,i] ( for 0<i <11) is the number of functions
which have all parameters constant. For example, the value of Table 3.1
entry [5,2] is 10, which means there are 10 function calls that have 5
parameters with 2 of these parameters constant.

The significance of this information is that the data reflects the frequency
of distribution of constant parameters. This is also a significant measure of

the benefit that we can gain from applying partial evaluation.

3.3.2.3 How many specialized versions would be obtained ?
One of the basic strategies of partial evaluation is to produce specialized
functions by residualizing calls. The partial evaluator propagates constant

values and folds constant expressions, produces specialized versions of the

41



values and folds constant expressions, produces specialized versions of the
source function. It is possible to generate more than one specialized version
for each source function. For example, for the function work(int x, int y, int

z), if there were four function invocations:

(1) work(2,a,b); (2) work (2, 3, ¢c);

@3) work(d, 3,e); (@) work (g, 3, h);

There would be three specialized versions obtained from the above
function calls:

(1) work_2(@int x, int y);

(2) work_2_3(int x);

(3) work_3(int x, int y);

There are two types of partial evaluator. A monovariant partial evaluator
produces at most one specialized function for every source function. A
polyvariant partial evaluator can produce many specialized versions of a
source function. Our project collects the maximum number of specialized
versions of source functions for the latter and for more complicated cases. So
another important data item that we want to collect is the number of
specialized versions that could be obtained.

To determine if a function call should be specialized, we need data on:
(1) How often the same constant parameter has the same value; and

(2) How often it is the only constant value.
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Therefore, the statistical data we need to collect from the C code is:

(1) The total number of function calls;

(2) The total number of functions;

(3) For each function, the number of function invocations with the same
number and value of constant parameters.

We can determine the number of specialized versions according to the

data we collect.

3.3.2.4 The Number of Unevaluated Expressions and Functions with
Unevaluated Expressions

As we state in the previous section, rather than computing the value of an
expression parameter, we output the whole expression as a parameter to a
function call and judge if it is constant. This might cause errors when we
collect data on function calls with the same constant parameters. Let’s
consider the following two function invocations.

(1) work(4,x)
and (2) work(2+2,y)

Our program will treat them as two invocations of function work(a,b),
with different constant values for the first parameter, 4 and (2+2),
respectively, though these two in fact have the same constant value for the
first parameter after fully evaluating the expression of the parameter.

According to the report produced by our program, we might have a different

43



number of function specialized versions and therefore jump to a different
conclusion of the benefit of applying partial evaluation.

That is the reason why these data need to be collected. Due to the
complexity of interpreting C code for typical systems applications, we do not
evaluate the expressions at this point. In practical C code there is also little
chance that function calls will have different constant forms of the same
argument. We collect the number of these unevaluated expressions in order
to see how much it affects the accuracy of our conclusions. If the fraction of
unevaluated constant arguments is small then our conclusions are valid. If
the number is large then a more complex statistics gathering program would
be needed. As is shown in Table 5.1, the number of unevaluated constant
arguments is a small fraction of the total number of constant arguments, and
hence the effort required for full evaluation of all constant arguments is not

warranted.
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Chapter 4

Data Collection Method

4.1 Introduction
In chapter 3, we state what kind of statistical data were collected. Our

methodology to do that data collection is to modify an existing C recognizer to
read a C program, interpret the code, and report to a file the information
about each function call invoked in the input program. With this file of
function calls, we analyze the functions and their parameters, and get the
statistical data we need.

The following sections will illustrate the design and the implementation

details of the project.
4.2 The Analyzer

A program called “Analyzer” was developed to collect the statistical data.

The purpose of this program is to read the C code, and report every function
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invocation and its parameters. To do this we modified an existing C
recognizer coded by members of the Programming Language Design and
Implementation Group at the University of Manitoba.

The C recognizer, Crec, was developed to a part of a source-to-source
translator for the Safer_C project. Its main task is to read a program, build a
parse tree for it, determine if it is a C program, and give error messages if
there are any syntax errors.

Crec uses Lex and Yacc to generate a scanner and a parser. It reads the
input program, breaks the input into tokens using the scanner, and parses
the token stream according to the syntax rules of the C language. In the
parsing phase, it also produces a parse tree which we can think of as an
image of the program. In other words the parse tree reflects the structure of
the program. Our program, Analyzer, will process the C code according to
the parse tree, retrieve all the information on every function call, report them
to a text file, analyze the information in the file, and get the statistical data.
According to these data it estimates how much effort would be needed to
apply partial evaluation to the input program and how much benefit would
be gained. By running the program “Analyzer” against the representative C
files that we selected, we come to a conclusion on the benefit of applying
partial evaluation to C code.

Since the program “Analyzer” uses Lex & Yacc and standard compiler

construction techniques to generate the parse tree, the following section is a
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brief review of the two widely used compiler generation tools, Lex and Yacc.

4.3. Compiler Construction

The following diagram illustrates the five phases of compilation.

Scanner Parser Semantic Optimizer Code
Analyzer Generator
Source Tokens Parse Attributed IR Target
Program Tree Parse Tree Program

Fig. 4.1 Compiler Construction

To aid in the generation of compilers, a lot of compiler tools were
developed. Lex and Yacc are two well known tools to generate scanners and
parsers, respectively.

As a scanner generator, Lex accepts a high-level, problem oriented
specification for character string matching, and produces a function (the
scanner) that recognizes tokens described by regular expressions. The

regular expressions are specified by the user in the source specifications
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given to Lex. The scanner generated by Lex recognizes strings described by
these expressions in an input stream and partitions the input stream into
strings matching the expressions.

Yacc is a parser generator. The Yacc user prepares a specification of the
parsing process; this includes rules describing the input structure, code to be
invoked when these rules are applied, and a low-level routine to do the basic
input. Yacc then generates a parser, which calls the user-supplied low-level
input routine (the scanner) to pick up the basic elements from the input
stream. These tokens are organized according to the input structure rules,
called grammar rules; when one of these rules has been recognized, the user
code supplied for this rule, an action, is invoked. Actions have the ability to
return values and make use of the values of other actions.

In our project, the input user-specification for Lex is regular
expressions describing C tokens, and the input for Yacc is the grammar rules
for ANSI C and the code invoked for each rule, which generates the parse

tree.

4.4 Parse Tree

As we have mentioned, the outcome of the parser is a parse tree. The
way the parse tree is generated is that we put the code for parser tree
generation in the action part of the Yacc grammar. When the right part of

one of the grammar rules is recognized, the code is invoked to generate a
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node in the parse tree.
For example, as defined in the file "min_parse_tree.h" in the package
"Analyzer", each node in the parse tree consists of three parts:
(1) Code : The code for grammar symbol represented by this node.
For example, "ac_func_call” is the code representing a node
in the parse-tree which stores the information of a function
invocation.
(2) Value: For a nonterminal node, the value is a pointer to the first
descendant of this node. Remaining descendants are in the sibling
list of the first descendant. For example, if “ac_func_call”’ is a
nonterminal node, then its value is its first descendant node
“ac_func_name.” Remaining descendants like “parameter_list”
which represents the parameters of the function are in the sibling
list of this value node.
For a terminal node, the value field may contain a text string
giving the actual characters in the terminal symbol.
(3) sib: A pointer that points to the next sibling of this node in the parse
tree.
Therefore, for a function invocation work(2, b), the corresponding part in

the parse tree will look like:
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ac_func_call

postfix_expr ——» argument, expr. list

} }

ac_identifier assignment, expr + assignment _mcpI
wo}k a:_coniiant ac_identifier
} }
2 b

Fig. 4.2 A Subtree in the Parse Tree

As shown above, the parse tree contains all the information of the
program. By traversing the parse tree, we can get information about every
function call, which includes the values of the actual arguments of the
function, the loop nesting depth of the function call, etc. We will explain
important design decisions we made during the implementation of the

project.

4.5 The Design of Analyzer

Following is a schematic diagram of the program Analyzer.
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Fig. 4.3 A Schematic Diagram of Analyzer
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4.5.1 Traversing the Parse Tree

Once the input program has been parsed, a parse tree which stores the
whole program in its own structure is produced. By traversing the parse tree,
all the information of the program, including every declaration, every
statement, etc, can be examined. For this project, we need all the data on
function invocations; therefore in the program “Analyzer,” the whole parse
tree is traversed, and the information is retrieved whenever a node related
to a function call is encountered. Basically, for a C program the parse tree
consists of two parts. The following section will describe how the two basic

kinds of nodes are being analyzed to get the information we need.

(1) The declaration part.
The declaration part is the code which includes all the declaration before
the main() function in a C program. Consider the following example.
int a =sin(0.5);
This declaration includes a function invocation sin(0.5), and data on this
function call needs to be collected too. Therefore when traversing a parse
tree, and a node which represents a declaration is encountered, the program

“Analyzer” examines the subtrees of this node and checks if there are any
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function invocations.

(2) The function definition part.
The other part of the parse tree that needs to be checked is the nodes
representing function definitions. Function invocation could happen in

expressions, variable declarations in the definition of the functions,

statements, etc.

4.5.2 Function Invocation Nodes

When traversing the parse tree, every time a node that represents a
function invocation is encountered, all the information about the function call
has to be retrieved, which includes the function name, the actual arguments,

etc. In this project, a function invocation node has the following format:

ac_func_call

{

function_name — parameter_list

Fig. 4.4 A Node of Function Invocation

In this structure, the name of the function, which is stored as a string in

this project, is the first descendant of the node of “ac_func_call.” Its sibling is
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the argument list of this function call.
4.5.3 The Function Name and the Argument List

To extract the function name from the parse tree, the value of the first
descendant of the node “ac_func_call” is retrieved, and is output to a text file
which has been opened for this purpose. The next step is getting the
arguments.

An argument of a function call in C code is an expression that could be a
variable, a constant, an assignment, a function call, etc. For example, we
might have a function call such as:

work_a(2*3 +5, 4, x+1);

For those arguments that are constant expressions, we decided to output
the whole expression instead of partially evaluating them. For the above
example, the arguments being output will be:

(1) 2*3+5; (Not 11) Constant Value;

(2)4; Constant Value;

(3) x+1; Non-Constant;

The reason that we choose to do so is that it is too difficult to interpret all
possible C expressions correctly with proper type promotions, word size, etc.
As shown in Table 5.1, we later found that unevaluated constant expressions

would only have a small effect on the results collected. Though we haven’t
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evaluated the value of an expression, we still judge if it is a compile-time
constant value. The method to judge a constant argument will be explained
in section 4.5.7.
- Another case of tricky arguments is when the argument itself is a
function call.
Consider the following function call:
work_b(x, do_it(sin(y)), cos(0.5));

For this funetion call, some of its arguments are nested function calls. We
need to recognize and output it correctly, and determine if it is a constant
value. The arguments to work_b() that we get will be:

(1) x; Non-Constant Value;

(2) do_it(sin(y)); Non_Constant Value;

(3) cos(0.5); Constant Value;

This example is treated in more detail later.

4.5.4 An Output File prg.stat

To gather the information on function calls collected from a parse tree, a
text file is created. This file is opened prior to the data collection. Its name
will be of the form prg.stat which inherits the name of the input C program
prg.c but with a different extension .stat. The stat is short for “statistics.”
Each line in the file prg.stat contains the information for one function call,

which includes
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(1) The name of the function,

(2) each argument of the function, and

(3) whether or not that argument is a constant expression.

When the data collection has been finished, the file will be sorted by
function name and the data in it will be analyzed.

The following figure shows the output lines for function call

work_a & work_b shown previously, in the file prog.stat.

@work_a@ 2*3+5 $ 4 § x+1 #

@ work_b @ x # do_it (sin(y)) # cos (0.5) $
@ do_it@ sin (y) #

@sin@ y #

@cos@05 %

Fig. 4.5 Sample Lines of the File prog.stat

4.5.5 A Recursive Algorithm for Retrieving Data on Function Calls
The name of the function is stored as the first descendant of the node of

the function call. Its value which is stored as a string is extracted and is

output to the file prg.stat. To collect the data on the arguments, a recursive

algorithm is used.
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In a C program, the arguments of a function.call are expressions that can
be a variable, a numeric, a function call, an assignment statement, etc.
In the input specification to the parser generator YACC, i.e., the program
parser.y, expressions are defined recursively:
expr
: assignment_expr
| expr ‘’ assignment_expr
And the assignment_expr could be one of several kinds of expressions:
assignment_expr
: logical_or_expr

| logical_or_expr ‘? logical_or_expr “’ conditional_expr

Therefore, when we decode a parse tree, trying to extract the expression
of the argument to the output file prg.stat, a recursive algorithm and a case
statement are used.

The case statement lists all the possible forms that an expression could
take, i.e., constant, identifier, assignment, function call, etc. For some simple
cases, like identifiers, just simply getting the string value of this node and
outputting it to the file prg.stat is required; for some complex cases, such as
when the expression is an assignment expression, this assignment expression
has to be retrieved recursively to get the whole expression. Actually,

recursive calls have to be used for most of the branches in the case statement.
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4.5.6 A Linked List of the Function Calls
The recursive algorithm is not enough for our task. For most of the
cases, the argument expressions can be extracted correctly to the output text
file with this algorithm. But as we mentioned before, consider the function
call

work_b(x, do_it(sip(y)), cos(0.5));

In this function call, the second argument do_it(sin(y)) is a nested
function call. In our point of view, it is not only an argument of one function
call, but also another function invocation itself; that is sin(y). The original
recursive algorithm can output this argument to the file correctly, but does
nothing to deal with collecting the argument data for a function call which
itself is also an argument to a function call.

To solve this problem, we use a simple but elegant solution: Record the
pointer to this function_call_argument node in the parse tree, keep a linked_
list of these kinds of nodes, and handle them using the recursive algorithm
when the whole program has been processed and the data for the first level of
call has been collected. The following figure illustrates the linked _list

structure.
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Function Call — Function Call — Function Call

~ |

Parser Tree

Fig. 4.6 Linked_list of Function Calls

Each node in the list consists of two pointers: one points to the next
node in the list, another pointer points to the node of the function call in the
parse tree. With this linked list, we will not miss any of the function calls in
the program.

For example, for function call work_b(x, do_it(sin(y)), cos(0.5)), the
analysis program outputs “work_b” as the function name; and “x” as its first
parameter, “do_it(sin(y))” as its second parameter, and “cos(0.5)” as its third
parameter. The analysis program also realizes that the second and the third
parameters are function calls also. Therefore “do_it(sin(y))” and “cos(0.5)” will
be sent to the linked_list, and will be processed using the recursive algorithm

to extract the information on these two function calls.

4.5.7 Recognizing Constant Parameters

An important job to do for the data collected is to judge if an argument

is a constant argument. Due to the varieties of expressions, a recursive
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algorithm is used. For an argument that is an expression involving operators,
rather than a simple factor, since we do not evaluate the expression, we will
decide if it is a constant value according to the value of its components. If
they are all constants, then the expression is considered to be a constant
argument. For example, 3*8+12 is considered to be a constant value, while
3*a+12 isnot.

For an argument that involves a function call, we assume there are no
global variables involved. Therefore if all of the parameters are constants, it
itself is a constant argument, otherwise it is not. For example work(2,3,4) is

considered to be a constant argument but work(2,3,t) is not.

4.5.8 Analyzing the Data File

After traversing the whole parse tree, and reporting all the information
to the stat file, we start to analyze the file. This includes the following steps.
(1) Sorting the file.

We use the Unix utility “sort” to sort the file by the file name. Thatis a
new experience for me to call “sort” within a C program. In this project, we
assume that functions are identified by their names. Function calls with the
same name are considered to be the same function. A sorted file consists of
function calls listed by their names.

A problem arises when only a pointer to a function is specified in the

function call instead of a function name. We decide to treat all such function
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calls as being to the same function because it is not possible to get the

function name by a dynamic pointer.

(2) Collecting the Data Distribution.

When a sorted file is ready, the next step is to collect the distribution of
the data; that is, how many functions have 0, 1/n, 2/n, 3/n, .., n-1/n, n/n
constant parameters ( n is the number of the parameters ). The output of this
distribution is a 2-dimensional matrix A[1,j]J(0<1,j < n) which we presented in
chapter 3. We also can get the number of functions with all arguments

constant from this matrix. This number is the sum of Afi,i] for i =0 to n.

(3) Determining the number of the specialized versions of a function.

A function might be called a few times with different numbers and
values of constant parameters. Each of these combinations would generate a
different specialized version of a function. To determine the number of
specialized versions of a function that would be produced, more analysis
needs to be done to the file. This is a tricky part in terms of programming
because the information (function name, parameters, constant value, ...) of
each function invocation is stored in the text file as a string. The hard part is

to extract each part of this information correctly from each line.

4.6 Implementation of the Project
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The project is implemented on Sun/Unix, using Lex, Yacc and the C

programming language.
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Chapter 5

Results

5.1 Introduction
The purpose of this project is to collect statistics on the use of

translation-time constant arguments in C language source code. Our
analysis program takes a C source program as input, and produces the
statistical analysis as the output. We analyzed the source code from three
important projects coded in C: the X-Window Library, the LINUX operating
system, and the Gnu C compiler. The following sections describe how we ran
the analysis program, report the results we obtained, and present some

discussion of the results.

5.2 Software Selected for Analysis

In the project, we analyze the source code of the following software.

(1) The X Window System. This code was initially developed at the
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Massachusettes Institute of Technology. It is now widely used as a
graphical window system on UNIX systems for a large number of varied
platforms. The results are reported for version 11 release 5.

(2) The LINUX operating system. This code was initially developed by Linus
Torvald in Norway. It is now maintained and enhanced by a large number
of programmers scattered all over the net. It is widely used to provide the
UNIX environment on personal computers. The results are reported for
version 1.1.59.

(3) The Gnu C compiler gee. This code was developed by the Free Software
Foundation and has been maintained over the years by a variety of
programmers. It provides a reliable C compiler for a large number of
target architectures and operating systems. Results are reported for

version 2.7.2.

The reasons for choosing the source code listed above are:

(1) The source code was developed by different implementers. We don’t want
to select source from a specific group of implementors which might have a
specific style and may not be a representative of the C code in general.

(2) The source represents typical applications of the C language, namely:
graphical user interfaces, operating systems, and compilers.

(3) The source code is well known and widely used.

(4) The source code is available over the Internet.
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5.3 Data Sampling

The source code analyzed had a high degree of complexity that is typical
of systems programming. It can take years of work to perfect a language
processor that correctly handles code with such a high-level of complexity. In
fact, the software systems that were selected for analysis often specify the
exact version of the compiler that must be used in order for the software to
run correctly. They also often use special features of the gcc compiler that are
not part of ANSI C.

As a result, we had two options:

(1) Engage a long-term coding effort to perfect a statistical analysis

program that could accept all this software correctly as is, or

(2) Hand modify the input code so that it could be acceptable to a simple

program.

Since the objective of our project is a single-usage data analysis program
rather than a general purpose software package, we chose the second
alternative. The changes to the input programs were carefully made to
ensure that the statistics being collected would not be affected. This
requirement for hand manipulation limits how much source code we could
reasonably analyze. Our solution was to sample the input data by selecting
one of every n source files for analysis. The sampling rate for each input

project is shown with the statistics.
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Even with this reduced code sample size, many weeks of careful editing

were required to make the selected software acceptable to our translator.

5.4 The Data Collection Method

The data collection process consists of the following steps.
(1) Preprocessing

Before a source file can be analyzed it must be run through the C
preprocessor “cpp”. The reason for this is that a C program cannot be parsed
correctly until the transformations described by the preprocessor directives
are applied. In this step, the symbolic constants represented by preprocessor
symbols are replaced by literal constants.

In many cases, this step was not straightforward because the source code
analyzed is highly portable low-level code. Sometimes the generated C source
lines were too long to be loaded by a text editor such as the UNIX editor “vi”,
or to fit in the limited buffer normally provided for “lex” generated scanners.
The ability to inspect and make small changes to the source code was vital to
allow the continued processing of source code that was otherwise rejected by
our parser. A simple “preprocessor postprocessor” was coded to edit the

output of preprocessor and break it up into manageable lines.

(2) Run the Analyzer

To get the statistical data on the C source, the analyzer program is run
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on the C source program. The source program is parsed into a syntax tree.
The syntax tree is traversed recursively locating function invocations.
Information about each function call is collected and output to a file, and the
file is then sorted by the function name. At the same time, our analyzer
program also collects statistical data on functions in the source program and
reports them to standard output. Hence for each source program, the

analyzed results consists of:

(1) A text file which contains all the data we need on function calls: the
name of the function and all the parameters of each function call, and

whether or not they are constant expressions.

(2) Statistical data reported on the screen based on the text file. The data
includes: a matrix which indicates the distribution of constant
parameters of function calls in the input program, the maximum
number of specialized version of function calls that would be needed,
the total number of functions, the total number of function calls in the
program, the number of unevaluated argument expressions and the

number of functions with unevaluated argument expressions.

5.5 Results

The following tables report the results for each package analyzed.
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X-Windows | LINUX gece Total
1 | Source file sampling rate 1/5 1/6 1/8
2 | No. of source lines analyzed 11,396 16,018 | 33,024 | 60,438
3 | No. of function calls 616 3,227 3,803 | 7,746
4 | No. of functions invoked 218 527 690 1,435
5 | No. of calls with all 4 141 120 265
constant arguments 0.65% 4.4% 3.1% 3.4%
6 | No. of specialized versions 35 504 269 | 808
16% 96% 39% | 56.3%
7 | No. of unevaluated constant 2 65 4 71
Expressions 0.3% 2% 0.1%| 0.1%
8 | No. of function calls with 2 62 4 G8
unevaluated constant 5.1% 12 % 06% | 4.7%

Table 5.1: Statistics on Function Calls

5.5.1 Discussion of Table 5.1
Row 5 in Table 5.1 shows that for at least two of the packages, LINUX

and gcc, supporting the full evaluation of functions with all constant
arguments could be an important feature of a code improver. It would reduce
up to 4.4% of function calls to their minimum possible implementation. At
the very least, that row indicates that it is warranted to do a further analysis
of which functions have side effects.

Row 6 shows how many extra function versions would be produced if

functions were specialized for every combination of unique constant
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arguments in all invocations. This result is interesting because it shows that
the total number of functions would not increase by more than 96%, and
more commonly by less than that. This could be an acceptable price to pay for
higher execution speeds.

Rows 7 and 8 show how much error was introduced by the analysis
program due to the fact that it did not compare the binary values of constant
arguments, but rather compared their lexeme strings. These rows show that
the error is at most 12%. Furthermore this error is toward the favorable side,
since it means that possibly up to 12% fewer specialized functions would be
generated. A cursory inspection however showed that in all likelihood there
were no constant arguments with equal binary values but different lexemes.

This table also shows that there can be substantial differences in
programming styles between programming groups. Thus code improvement
techniques that benefit one project substantially may have little effort on

other projects.

5.5.2 Ratio of Constant Arguments to Total Arguments

The following tables report the number of constant arguments versus
the lengths of the argument lists. This information indicates the degree of
specialization of a specialized version of a function. The more arguments that
are constants, the more efficient will be the specialized version. An

interesting fact represented in the table is that no function in the analyzed
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projects had more than three constant arguments, regardless of the length of

the argument list.
No. of Constant Args Total
0 1 2 3
0 6 6
1 256 | 4 260
No. 2 119 i 126
of 3 114 5 2 121
Args 4 27 8 1 36
5 17 2 1 20
6 8 14 22
i 9 1 10
8 1 1
9 2 2
10
11
12_ 4 2 4 2 12
Total_ 563 | 42 | 8 3 616

Table 5.2: X Window System
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No. of Constant Args Total
0 1 2 3
0 41 41
1 1312 | 112 1424
No. | 2 687 542 | . 27 1256
of 3 218 100 28 2 348
Args 4 41 16 8 65
5 45 8 53
6 10 1 1 12
7 3 1| 2 1 7
8 9 1 10
9 4 5 9
10 1 1
11
(12
13
14 1 1
Total 2372 | 786 | 66 3 3227
Table 5.3: The LINUX Operating System
No. of Constant Args Total
0 1 2 | 3
0 334 334
1 1049 110 1159
No. 2 1252 | 123 1375
of 3 614 | 18 1 20 719
Args 4 164 | 38 6 1 — 209
) 34 44 6 5] 89
6 1 8 9 11
1 7 7
Total 3455 | 401_| 21 | 26 3903

Table 5.4: The Gnu C Corapiler “gec”
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No. of Constant Args Total
0 1 2 | 3

0 381 381

1 2617 | 226 2843
No. 2 2058 | 672 27 _ 2757
of 3 946 183 a7 22 1188
Args 4 232 62 15 1 310

5 96 54 7 5 162__

6 19 2 3 45

7 19 1 2 2 24

8 10 1 11

9 6 5 11

10 1 1

11

12 4 2 4 2 12

13

14 1 1

Total _ 6390 | 1229 | 95 | 32 7746

Table 5.5: Totals for Three Input Projects Taken Together
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Chapter 6

Conclusions

In this thesis; the principle of partial evaluation and its major
applications are surveyed. Two important partial evaluation techniques are
also discussed. Based on one of the basic strategies of partial evaluation -
unfolding function calls, an analysis project was designed to collect statistics
on the use of translation-time constants as arguments in C language source
code. The project was implemented and source code from three well known

projects coded in C was analyzed .

It was found that polyvariant specialization of all calls with some constant
parameters is feasible on real system code. It can be an important feature of
a code improver. It was also found that the effort of specialization can be

made at an acceptable price for higher execution speed.
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