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The micromachined mechanical resonators using MEMS technology have potential

industrial applications in the fields of sensors and actuators as well as in the field of
wireless telecommunications where the single chip transiver system might be possible by

using the micromachined mechanical resonators to replace all bulky, expensive and off-

chip filters and oscillators. The rapid growth of these micromachined mechanical

vibrating devices has increased needs for developing highly effective testing systems

which are capable of testing the performance of the vibrating elements.

The testing of the micromechanical vibrating devices is usually performed using

capacitive, piezoelectric and piezoresistive detection with network analyzer, spectrum

analyzer and lock-in techniques. They, however, often encounter the interference from

other parasitic signals including electrostatic feedthrough currents.

In this thesis optical techniques for detecting tiny movement of object were employed

and compared with traditional electrical techniques. The optical methods utilized were

laser beam deflection and optical interferometry,

The simple micromachined mechanical beam resonators with the expected resonant

frequency of near 150 kHz and 1l MHz were tested. For the 150 kHz resonator, the

experimental data acquired using capacitive coupling detection indicate the existence of
significant parasitic signals characterized by low resonant peak amplitude and small

phase shift (-250) at resonant frequency. In contrast, optical measurements, using laser

beam deflection technique, do not show significant effect of parasitic signals evidenced

by its large peak amplitude and 1800 phase change at the resonant frequency, clearly

demonstrating advantages of optical methods. Non-linear behavior of the vibration of the

micromechanical resonator was observed and identified as a "spring softening" effect

mainly induced by the large electrostatic force. Criterion of nonlinear behavior and its

hysteresis were also investigated and discussed.

For 1 1 MHz resonator, electrical measurement was first done with network analyzer by

capacitive coupled method. Experimental data show three very week resonant peaks

accompanied by very small phase shifts of about a few degrees. The very small amplitude

I
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and phase change at the resonant frequency are attributed to the contribution from other

parasitic signals. In contrast, the experimental data measured using optical fibre

interferometer give a large amplitude peak at the frequency of I 1.8 MHz accompanied by

a large phase shift of about 120 degree, clearly indicating much less susceptibility to

parasitic signals using optical measurement method. The "spring softening" nonlinear

behavior was also observed when high DC bias voltages were applied, very similar to the

behaviors displayed by the 150 kHz resonator.

Based on the experimental data for above two electromechanical systems, their

mechanical properties, such as spring constant kr and resonant frequency f., and

equivalent electrical parameters, such as resistance Rr, capacitance C, and inductance

Ln,', were approximately derived in terms of equivalent electrical circuit theory. These

parameters can be used no only to evaluate the mechanical properties of device structure

and provide feedback to design and fabrication processes but also to perform simulation

on electrical circuit and serve the construction of practical circuits, such as filters and

oscillators.
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Chapter 1 Introduction

Microelectromechanical Systems (MEMS) technology, developed initially from the

silicon integrated circuit (IC) industry, has been extensively explored and developed for

fabricating various micromachined mechanical transducers [-2]. These MEMS devices

are actually the interface between the physical world and the electronic world, and they

convert energy from one form to another form based on a wide variety of transduction

mechanisms. Their potential industrial applications are involved in the fields of sensors

and actuators as well as others including wireless communications, fluid transport, optical

communication, etc. The engineering efforts of MEMS technology are to minimize size

and power consummation of devices, to reduce cost and to improve performance through

the batch-fabrication techniques as IC technology. Thus far, the complete integration of

MEMS devices with the current IC is a great challenge to the commercial products.

1.1 Micromachined Mechanical Resonators

Micromachined mechanical devices with released movable mechanical structures

occupy an important position in the MEMS family I1l. One of them is the

micromechanical resonator. The operation mechanism of resonator is that the movable

structure is excited and detected at its mechanical resonant frequency; change in resonant

frequency due to either external force on the resonator or mass absorption can be detected.

Thus, the real physical information related to the origins of change in resonant frequency

can be disclosed.



The resonant vibration of the micromachined mechanical resonator can be practically

applied to many fields. For instance, in the field of inertial sensors: accelerometers and

gyroscopes are two main examples [3,4]. Accelerometers measure the acceleration of

moving objects and gyroscopes measure the angular motion of rotating objects.

Commercial MEMS accelerometers and gyroscopes, based on conventional capacitive -

coupling mechanism, are now available from Analog Devices Inc., MEMSIC, Motorola,

British Aerospace Ltd. and Silicon Sensing Systems [5].

Besides the inertial devices, the feasibility of the micromechanical resonators

applicable to wireless communications has intensively been investigated in order to

replace bulky and expensive quartz crystal oscillators, surface acoustic wave (SAW)

oscillators, filters and mixers [6-11]. Their working principle is based on the property of

resonance at its mechanical resonant frequency. For example, in a filter an input signal is

used to excite the vibration of the resonator and output signal is resulted from the

amplitude response of the resonator; signals with frequencies shifted away from the

resonant frequency are filtered out. If such a resonator is connected with a feedback

amplifier, an oscillator can be built under certain conditions, and its output signal has the

resonant frequency of the resonator, which can be used as a carrier frequency in wireless

communications. So far, MEMS resonators have not been practically available for

wireless communications. One of the main reasons for this is that the integration with the

integrated circuitry (C) is diffrcult. To integrate sensors, the electronics are often built on

one chip and the actual sensor on another chip; two chips are then wire-bonded together.

This method is not feasible for wireless communications, because the advantage of size



reduction compared to quartz crystal resonators would be lost. The frequency regime of

MEMS resonators may also limit their possible applications in wireless communications.

In addition, resonant sensing has been applied in numerous devices for the

measurement of pressure, humidity, temperature, mass flow, specific gas, biological

detection, force and magnetic field [12-19]. The mechanical structures of the resonant

sensors can take a number of configurations such as a cantilever, a double-ended tuning

fork or a clamped beam, etc. An atomic force microscope (AFM) is an example of the

cantilever sensors, where resonant frequency changes with the force between the atoms

of sample and a probe tip, the force of nano-Newton can be sensed [12]. Another

application of such characteristic of resonant frequency is pressure sensor, where the

force acted on the resonator is induced by the interaction of resonant element with

surrounding gas. The pressure can be determined by detecting change in the resonant

frequency caused by the force. Gas sensors are made based on the same mechanism, the

resonant frequency changes due to the mass absorption by coating the resonator with an

active layer that attracts certain gas molecules. Since different coatings select different

molecules, gas sensors can be made for very specific gases [16]. Biological sensors work

in a similar way, where the resonator is coated with an immobilized antibody and has a

sensitivity of a few cells [17, l8].

1.2 Detection of Resonant Frequency

The design, performance and reliability of the MEMS devices largely depend on how

much is known about their mechanical properties of materials and dynamical behaviors

of microstructures. Thus, with the rapid development of movable micromechanical



systems, characterization of the static and dynamic behavior of these micro-devices is

becoming increasingly important by establishing appropriate testing techniques for

precise measurements on the microstructures so as to verifu and to provide feedback to

design and fabrication process.

1.2.1 Electrical Detection Methods

The resonant vibration of the micromechanical devices can usually be excited and

detected electrically through capacitive-coupling. Piezoelectric and piezoresistive sensing

[1] are also commonly used to convert the mechanical motion into the electrical signal.

These conventional measurements can provide the information of their mechanical

properties through their electrical perforrnance. However, they often encounter the

problem of the interference from other parasitic signals.

In contrast, optical detection methods for very small mechanical vibrations have been

proved to be highly effective ways due to their sub-nanometer resolution and

insusceptibility to the electrical parasitic signals.

1,2.2 Optical Detection Methods

Optical testing can perform MEMS surface profiling and measurement of in-plane and

out-of-plane motion 120-221. Surface profiling mainly includes focus detection

profilometers and microscopic interferometry. Scanning point profilometer uses a point

measurement probe with a translation of the light beam or sample; Full-field profilometer

uses a detector array to obtain simultaneous measurements of a large number of points.

Scanning point profilometers are based on the detection of the focusing variations of a



laser or white light beam when the sample is scanned in its XY plane. Focus detection

profilometers have typically a vertical resolution in the l-10 nm range, a spot size down

to 1 pm, a vertical dynamic range of 10 to 100 pm or more and frequency bandwidth of a

few kHz or a few tens of kHz. Scanning point profilometers are suited for l-D and2-D

measurements; Full field profilometers are better suited for 3-D surface profiling.

Microscopic interferometry is a most widely used optical technique for microdevice

profiling. Holographic inteferometry and speckle techniques are common full field

techniques in mechanical engineering for surface contouring and displacement field

measurements. Both are based on the interferences between a laser beam scattered by the

sample surface and a reference laser beam.

Measurement of out-of-plane motion is usually carried out using the following methods:

Laser beam deflection detection

Laser beam deflection technique measures the vibration of movable devices by

detecting the angular variations of the laser beam reflected from the vibrating element

using a spectrum analyzer or lock-in amplifier. It has a sub-nanometer resolution for out-

of-plane vibration; but, accurate calibration of vibration amplitude is difficult. In-plane

spatial resolution below a few micrometers is limited by its focusing ability and spot size.

Optical interferometer techniques

There are two kinds of interfering techniques: heterodyne and homodyne. Heterodyne

interferometer measures the phase changes resulted from both phase difference induced

by the motion of device and the frequency shift introduced between the probe path and

the reference path where RF-driven Bragg cells modulate the frequency of the reference

light. The phase changes are detected through measuring the interfering intensity



produced from the probe light and the frequency modulated reference light. Heterodyne

interferometer, often named velocimeter, measures velocity rather than displacement. It

has a 0.01 nm motion resolution in a frequency bandwidth of a few MHz and submicron

spatial resolution. Homodyne interferometer directly detects the interference intensity

related to the phase change between the probe light and the reference light, which is

introduced by the displacement of moving object, both lights have the same frequency.

Both amplitude and phase information can be extracted using Lock-in technique. Typical

resolution values lie between 0.01-0.1 nrn 1221.

1.3 Objective of Thesis Work

This thesis work mainly focuses on some important issues in the detection of the

resonant vibration of the micromechanical resonators, and in the characterization of the

dynamic vibration behaviors using both electrical measurements and optical

measurements. Their advantages and disadvantages will be demonstrated experimentally.

It is expected that experimental measurements will demonstrate how well the

performance of practical devices agrees with the theoretical mechanics and its design

expectation. Many important mechanical parameters are expected to be derived from the

experimental measurements, such as resonant frequency, spring constant and quality

factor; electromechanical properties, such as equivalent electrical components of the

mechanical system, will also be explored so as to further study of this electromechanical

system. It is hoped that these experimental data for the micromechanical resonators are

helpful to further understand how the micromachined mechanical resonator filters and

oscillators work and how they can be constructed.



1.4 Outline of the Thesis

The task of this thesis is to explore the experimental techniques for measuring dynamic

behaviors of micromachined mechanical resonators using both electrical methods and

optical methods. Prior to the description of measurement techniques and experiment

setup, the understanding of the dynamic motion behavior of micromachined mechanical

resonators is necessary. Mechanical properties of the mechanical resonators will be

presented in chapter 2, some important dynamic mechanical properties and their related

theoretical analysis will be reviewed. Nonlinearity of vibration in the mechanical system,

due to its interesting and important property directly related to the performance of the

mechanical devices, will also be introduced. In addition, vibrating mechanical system is

electrically analogous to an electrical circuit; hence, equivalent electrical circuit will be

briefly discussed so as to allow the current powerful circuit theories and simulation tools

be applied to the micro-electromechanical system. After that, mechanisms of a few

typical electrical and optical detection techniques will be discussed in detail in chapter 3.

Chapter 4 will first give a comprehensive conception of the MEMS technology

concerning its special fabrication processes; then, our experimental setup for electrical

and optical measurements will be illustrated. In chapter 5 the experimental results and

data analysis will be presented and discussed based on the theoretical conception

described in chapter 2. Finally, summarization of this thesis work and suggestions for

future work will be proposed in chapter 6.



Chapter 2 Properties of the Mechanical Resonators

The micromachined mechanical resonators have many geometrical topologies: such as,

the free-fixed cantilever, the clamped-clamed resonate beam, comb type driver, etc. Their

design, fabrication and modeling require a thorough theoretical analysis on their

mechanical behaviors on which experimental setup and data analysis rely. General

mechanical properties of mechanical resonant beam structures will be reviewed in this

chapter. Resonance problem of a clamped-clamped (C-C) beam and free-fixed cantilever

will be discussed in terms of a simplified beam theory. The dynamical properties of the

beam resonator will be modeled and analyzed using a simplified lumped harmonic

oscillator in a single degree of freedom. Nonlinear behavior of the beam resonator will

also be discussed. By analyzing the electromechancial coupling between electrical signal

and mechanical vibration, equivalent electrical circuit for the mechanical system will be

established to describe its electrical behavior based on circuit theory.

2.1 Transverse Vibration of Prismatic Beams

A flexural beam structure in the form of cantilever, as a simple and special example

shown in figure 2.1, is assumed to be composed of homogeneous, linearly elastic

materials in a shape of a rectangular cross-section. A linear dynamic equation governing

the transverse deflections u(x,t) of such prismatic beam as a function of the longitudinal

coordinate x and the time / can be expressed as follows 123-251.

Er W - N 
ô'#;'') * pbhry *,ry! = F(x,t) (2.r)



where p denotes the mass density of the beam material, b and h arc the width and

thickness of the beam, respectively, c is the viscous damping coefficient per unit length,

F(x,t) represents all externally applied transverse mechanical forces per unit length. E is

the Young's modulus of the beam material,lis the second moment of inertia of the beam,

Nis an applied axial force (for the cantilevers, N:0). Equation (2.1) applies to the beams

for which the width ó is comparable to the thickness ft, i.e., b - h. For so-called wide

beams (plates), i.e., b > 5h, Young's modulus is effectively replaced by E:E4(I - u)2,

where vdenotes Poisson's ratio.

L

To solve the differential equation (2.1), the method of 'variables separation'

applied to derive characteristic equations. Solution to equation (2.1) based on the

of modal analysis can be written as follows:

u(x,t) =fu,(x)u,(t)
,1=l

Figure 2.1 Schematic diagram of cantilever-type beam structure

Electrode

can be

concept

(2.2)



where u,(x) is a spatial function representing different mode shapes of vibration and u,(t)

is a time-dependant function representing the displacement of the motional beam. When

the equation (2.2) is substituted into the equation (2.1), by multiplying each term in the

equation (2.1) with a normal mode un(x) and integrating along the beam length, then, by

utilizing the orthogonal properly of the mode shapes, the following formulas are deduced

[2fl:

u ô' 
:,Í') - w 

ô' Y^,!') = a¡\ pbhu,(x)
ôxo ôx' 

tt' tt\ /

M ,,tP + ,,,ø9 + K,u(t) = F,(t) = Fne,*'"at'"at
V/here fl: 1, 2,3 ..., n is the mode number.

I

M,, = !ofnu',(x)dx = pbhl = m
0

which is the generalized mass coresponding to mode n;

u, =' 
[u, 

@)tEr W - N 
ô' 

#:Ð )dx : on2 M,,

which is the generalized spring stiffness corresponding to mode n.

I

,,= [cul(fldx=cl
0

which is the generalized viscous damping corresponding to mode n.

I

p, = [rçx)u,,(x)dx
0

which is the generalized external force corresponding to mode z.

(2.3)

(2.4)

(2.s)

(2.6)

(2.7)

10
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where ø, denotes the non-damped resonant frequency associated with mode n. m is the

total mass of the beam. The above relations assume mode shapes are normalized. It is

noticed that r, and Mn are independent of the mode number n for the beam structures.

Equation (2.4) represents an infinite set of uncoupled ordinary differential equations with

the same form describing the motion of a lumped parameter system. As a matter of fact,

the partial differential equation of motion for a distributed system is replaced by an

infinite set of uncoupled ordinary differential equations in the modal analysis. Each of the

distributed systems is now represented by an infinite number of lumped-parameter

systems.

Equation (2.3) is called Euler beam equation, which can be solved as an eigenvalue

problem, eigenvalue an2 and its corresponding eigenfuncti on u,(x) can be determined

under appropriate boundary conditions. Each of eigenvalue-eigenfunctiongpair defines a

mode of the system. ú)n aÍe called the natural frequencies while un(x) are named as the

mode shapes of the system.

When electromechanical interactions and axial load (l/) are absent, the eigenfunctions

for a clamped--clamped beam of length / are found to be [24]

u,',(x)=cos(fr,I)_cosh(Æ,,xl-ffi(sin(Æ,x)_sinh(É,x))

for a cantilever (fixed-free) beam, it becomes:

u,,r(x)=cos(k,,x)_cosh(Æ,x,_ffi(sin(Æ,,x)_sinh(fr,x))

where kn arc constants corresponding to mode n. It is easily verified that the above mode

shapes are normalized, i.e., l'¡u,ç*¡u,,(x)dx = 6,,, , where ô,, denotes the Kronecher
tõ

(2.e)
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delta. These constants kn can be determined from the characteristic equation by solving

the special eigenvalue problem under the appropriate boundary conditions. The

corresponding natural frequencies (Dn can be found for zero axial load N as follows

Where I: bh3l12.

For a clamped-clamped beam the characteristic equation can be derived as

cos(Æi)cosh(kl):1, yielding the following fundamental mode h, kJ - 4.730, and for a

cantilever, cos(kl) cosh(kl):-1, yielding, kl -1.875. Table 2.1 lists the values of k,l

corresponding to the first five mode shapes [23].

aÎ =kl@ttpbh)

Table 2.I Values of the first five mode shapes

n

1

Cantilever beam

2

J

(2.rr)

3.5t6

4

22.034

5

2.2 Spring Constant k

( k"l)'

6t.701

In above section the vibration modes and their corresponding natural frequencies were

derived. Now, a general expression for the effective stiffness of the beam system will be

defined based on the mode shapes. The effective stiffness K"¡¡ is defined as F/un,u* where

l2

120.912

Clamped-clamped beam

199.855

22.373

61.678

r20.903

199.860

298.526



F is a uniformly distributed load over a section of the beam of the length L, and un,'u* is

the maximum deflection of a continuous beam structure. For a C-C beam u,nu* is at the

center of the beam and for a fixed-free beam u.u* is at the tip of free end for the first

mode shape. The clamped-clamped beam with immovable edges subjected to

symmetrically distributed transverse load and axial force N is schematically shown in

frgure2.2.

x

Figure2.2 A C-C beam subjected to symmetrically distributed uniform load

Normally the stiffness is attributed to the bending and the stretching of the beam. The

contribution to the beam stiffness not only includes built-in stress øo but also the

induced nonlinear stress o r,. that arises from a large deflection. A generalized expression

for the stiffness must take all these effects into account.

L

For the C-C beam with a uniform load F, the boundary conditions require

u(0)=u(L)= 0 and du/dx: 0 at both sides of x:0 and x:L. When tensile stress N is

zero,the solution is derived as follows [26]:

x'(L2 -2Lx + :c2 ) -Ø-----------------r
2Ebh'
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Using the def,rnition of Hook law, kif, : FL

u^o

where un,u* is at the position of x: Ll2,thus

l cc 32Ê:bh3K"Í= 
f

When an axial loading is applied, a tensile force takes a form of N: (oo+o*,.)bh,

where ôo: õo(l-v) is the residual film stress; aNr.=t# is an estimate of the
+T

induced axial stress due to the nonlinear stretching. The effective stiffiress kii, of a fixed-

fixed beam can be derived as follows [27]

where Ê:nlç-u'; forb > 5h, Ê:Eforb = h. The secondterm comes fromthe axial

loading resulted from axial stretching.

2.3 Nonlinear Mechanical Deflection

32qbh3 8¡/
Lee _ll'¡r_---------:-cJr I' I

It is mentioned above that when the C-C beam is subjected to the large deflection the

elongation of the beam need to be considered. Besides the bending of the beam, the

stretching of the beam also contributes the strain in the structure in a nonlinear form.

'Variation approach', by minimizing energy with respect to displacement u, yields the

following expression relating an applied force F to the deflection amplitude u [26]

(2.r3)

(2.14)

r ro Ebht . ro Ebh 3.f =--_-:-i/t+- = l,l-6 I: 8I:

t4

(2.ts)



The second non-linear term makes the effective spring constant of the non-linear beam

stiffer as the deflection amplitude u increases, this is called Duffing stiffening which is

often encountered in MEMS structures. The solution includes two parts: the first term is

due to the bending of the beam, as being linear; and the second term is due to the

stretching of the beam, introducing the non-linearity.

When the nonlinear stiffening effect becomes dominant due to the stretching induced

by the large deflection of the beams, the nonlinear stiffness term will be larger than the

total stiffness induced by the bending of the beam and the residual stress of the beam

material. The nonlinear stiffening becomes important if the following condition is

reached[27]:

The formula2.16 can be used as a criterion to evaluate the nonlinear behavior.

Above analysis is mainly concerned with the static mechanics of a continuously

distributed mass described in equation (2.3). Next, the dynamic mechanical behavior will

be dealt with a lumped harmonic model.

2n2 Ebhul^. __ 32Ê,bh3 , gôobh

r "--F - t

2.4 Lumped Harmonic Oscillation

As it can be seen from the equation (2.1), it is difficult to solve the dynamic mechanics

of a continuously distributed system. Even for such a simple beam structure, the

derivation of the natural resonant frequencies and the mode shapes requires a simplified

model for the mathematical description of the problem. An equivalent lumped model for

the distributed system has been developed and proved as a reasonably good method for

analyzing the dynamic problems. The simplest of them is one-degree of freedom system

15
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consisting of a massless spring with spring constant k and a mass m attached to the spring.

The model will be discussed and it will show that the model of a harmonic oscillator can

reasonably well describe the vibration of complex structures like cantilever and C-C

beams. The equation (2.4) can be rewriten as follows

where m, c, k and F can be considered as effective parameters as described

(2.3) , By neglecting damping and extemal forces, the equation of motion is

a simple harmonic oscillation

t2aum4+ku=0
dt'

The solution of this equation is assumed as

u(t) = A, sin(a4t) + A, cos(a4t)

where o16 is a resonant frequency in a form

Now the beam resonator is approximated as a simple harmonic oscillator with an

effective spring constant kand an effective mass m.

If a damping force -c(dr"r/dt), in addition to a spring restoring force -ku, is included,

and the externally applied force F(t) on the vibrating mass varies harmonically, by

(2.r7)

in the section

simplif,red as

introducing the following notations:

zk^c
Cùo =- i ¿f =-'mm

Equation (2.17) becomes

Øo=
k

m

(2.18)

(2.1e)

Fo=F
m

(2.20)

t6



This is the differential equation of motion for a forced oscillator subjected to the viscous

damping. A particular solution of equation (2.21) can be taken as the following form:

#*rrry+afiu(t)= Foei*'

where M and N are constants. To determine these constants, by substitute the trial

solution (2.22) into equation (2.21), M and N are found as follows [23]:

x=Mcoscùt+NsinaÍ

The solution of this equation can also be rewritten using vibration amplitude A and phase

0 angle defined in the following formulas:

tr Fo@J -cù')tvl:ffi

Àr _ Fo(2ra)
" - çr; -rtr' *o^'

where A = JM\ N' and, 0= tan-r ,#l Thus, they can be derived as

(2.2t)

u=Acos(a¡t-0)

(2.22)

, Folar2

Let Ç: r/ro6, the formula (2.24) can be rewritten as the following equation

u=Lp"os(øt-0)k'

¿T

Jtt - ø' r,o') + 4ç' ø' r a4'

o-an_,(ï#h)

(2.23a)

(2.23b)

(2.24)

(2.zsa)
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Where B is called magnification factor, which represents how much amplitude of

vibration is magnified when the frequency rrl of external force approaches to the resonant

frequency ros of the oscillator.

Figure 2.3 (a) and (b) shows the frequency dependence of the amplitude and the phase

of the damping harmonic oscillation plotted using equation (2.27) (a) and (b). Thus, a

steady-state forced vibration with viscous damping now is seen as a simple harmonic

motion with constant amplitude A, phase angle 0 and period T : 2nlr:ts.It can be seen

that the amplitude of the vibration is magnified greatly when external forcing frequency

r,l approaches to the resonant frequency 1116, the magnification can be expressed by quality

factor Q which is derived as follows:

o = tan-t( 
zca¡ t a¡, )(t-r'IØr')

In addition, the amplitude of resonance and the quality factor Q will decrease as the

viscous damping increases, and the resonant frequency is shifted down due to the viscous

damping, which can be expressed in the following form [23]

(2.27b)

G't -o')+(2ça¡)'

atl

f2tar = a\rlt_a

(2.2e)

l8

(2.28)
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Figure 2.3 Frequency response of the simple harmonic vibration. (a) is dependence of

vibration amplitude upon frequency; (b) is the phase change with frequency.
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2.5 Nonlinear Vibration

In above section the linear differential equation is used to describe the vibration

behavior when the deflection linearly responses to the external force for its small

displacement. Once the deflection becomes large enough to make the system show

nonlinear behavior, the equation (2.17) becomes the following form:

ü +2rù + a4'7uI t*t) = F cosatt

The new term of u3 ,.pr.r.nts the nonlinear contribution. The equation is called

Duffing's equation which describes the steady-state response of a non-linear system

subjected to a periodic forcing function and viscous damping. The Ritz averaging method

can be used to deduce an approximate solution as follows [23].

As a f,rrst approximation, solution can be written in a form:

where A2 : at2 + bt2, andtanrp: b/at. Two constantS â1 and br can be determined by the

Ritz averaging method, and the following formulae can be derived

u = Acos(a;t - e) = a, cos of + b,sin at

where equation (2.32a) applies to the case of the 'hardening spring' and equation (2.32b)

to the 'softening spring'.

(2.30)

(2.31)

(2.32a)

(2.32b)
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Figwe 2.4 Schematic of the nonlinear behavior. (a) shows the 'spring hardening' and (b)

shows the 'spring softening' [23].

(b)
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The behavior of the vibration amplitude versus sweep frequency is schematically

illustrated in the figure 2.4 where (a) describes the 'spring hardening' and (b) describes

the 'spring softening'. In the figure 2.a @) and (b), nonlinear resonant frequency cùr, at

the highest point of amplitude, shifted up and down, respectively. But, the nonlinear

resonant states, labeled as point 7 in both figures, may not actually occur because of the

non-stable condition. In fact, the rapid jump in amplitude from point 3 to point 4 in the

f,rgure 2.a @) may occur when frequency sweeps down; the rapid drop from point 7 to 2

may occur when frequency sweeps up. The rapid jump in amplitude from point 3 to point

4 in the figure 2.4 (b) may occur when frequency sweeps up; the rapid drop from point 7

to 2 may occur when frequency sweeps down. Hysteretic behavior will occur when

frequency was swept up and down.

In the damped systems, the phase angle <p varies continuously from 0 to ru as the driving

frequency o varies from 0 to co. At resonance the phase angle is theoretically nl2, bu|

actually it changes abruptly when a drop or a jump occurs. Such a change is from a value

slightly below zero to a value slightly above æ.

2.6 Electromechanical Coupling

Micromechanical system is typically interacted with electronics through capacitive

coupling; electrostatic coupling has minimal power consumption. Electrostatic energy

stored in a capacitor C is

and

2

/1LL-t-=

E =lcrJ'

d -u l-ul d

co
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where U is the voltage applied on the capacitor. The capacitance value depends on the

gap size d and on the displacement u of the moving resonator. Capacitance with zero

displacement u is Co, A is the effective area overlapped by the electrode and the resonator.

The electrostatic force equals the negative gradient of energy. Using Taylor's series, it

can be written as follows:

," = -' ;:' l'. 
r(i).'(i)',

The electrostatic force is proportional to the voltage squared. Thus, a DC voltage is

required to create the force that excites the oscillator exactly at the frequency of AC

driving voltage. If both DC and AC voltage are applied, we have

2ôu

^ê)'

from above two equations it can be seen that the electrostatic force has components at

frequencies of zero, ol and 2co. Since the excitation at the frequency of AC driving

voltage is required, the DC voltage must be much stronger than the AC voltage. In

addition, the displacement u is typically small compared with the gap size d, which

means that the force can be approximated as follows

+ + ,.u(î)'] ,'0. 
',

(J' =(J,'rr, *)ri, *Iri,. cos2at +2[J,rr(J n,- cosatt

,, = -*lt.r(i))r, * -coui,,, -',1i, ,-cou,\(r n, cos(ø/)

where the multiplying factor of u can be interpreted as an electrical spring constant k..

It can be seen that the magnitude of the electrostatic force at rrl depends on the applied

AC and DC voltage and the gradient of the capacitance.

(2.3s)

(2.36)

(2.37)
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2.7 Electromechanical CouplingFactor

The electromechanical coupling factor rì can be derived from

relation between the AC voltage and the force F. is

F"=Urr\,^,
ou

The electromechanical coupling factor is defined as:

ôc ff co
4=Un<'--ãUrr-toua

Thus, the coupling between the electrostatic and mechanical domains depends on the

coupling capacitance Co and the gap size d between the electrode and the resonate beam

as well as on the DC bias voltage over the gap. Narrow gap will strongly enhance the

electromechanical coupling.

2.8 Sensing of Vibration

The oscillating MEMS resonator works by applying a DC bias voltage and an AC

exciting signal on it. The motional current induced by the vibration can be derived as

follows, when Uoc >>Uec'

equation (2.38), the

(2.3e)

lf the motion is assumed to be sinusoidal, the motion current can be rewritten as

. dg d(uc) f f ôctu,=ã= 
dt 

Èurx: 
*

(2.40)

In addition to the DC bias voltage and the vibration amplitude, the motional current

depends also on the frequency and the gradient of the capacitance between the electrode

ir,=Uoc
õC ôu

ôu ôt

ôC
=uttc ôr*-qcÙu
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and the resonator. Based on Hook's law, the vibration amplitude at resonance

obtained by dividing the force (equation (2.39)) with the spring constant, Q

amplification factor at the resonance.

Thus, the motional current depends strongly on the electromechanical coupling factor,

DC-bias voltage and AC voltage, and the derivative of the coupling capacitance; also,

High quality factor Q is also important for getting high motional current.

¿ = ç4U n, * gCoU o,,U o,
kkd

2.9 Effective Electrical Spring Constant þ
The overall spring constant of the electro-mechanical system is the sum of mechanical

spring constant k¡ and electrical spring constants k". The electrical spring constant þ is

defined as

can be

is the

Since the total spring constant is reduced by the electrical spring constant, it thus has an

effect on the resonance frequency ofthe resonator

,- 4U r, - CoUl*n"=--7-=- *

(2.43)

where ú = k,lm.

The resonant frequency becomes smaller due to the electrostatic force. Therefore, the

electromechanical coupling can be used to tune the resonance frequency. However, the

frequency tuning is limited by a pull-in effect.

Ø,=00ffi=rrFffi

(2.44)

(2.4s)
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2.10 Pull-in Voltage

Pull-in voltage is defined as the voltage at which the restoring spring force can no

longer balance the attractive electrostatic force. Pull-in instability is fundamental to the

understanding of many MEMS devices and it can be used to determine some unknown

electromechanical properties.

It is assumed that two plates, separated by a gap spacing d, form a capacitor with an

effective overlap area A,¡. The bottom plate is fixed and the top plate is suspended by a

spring with stiffness K.n By applying a DC voltage V¿, across the plates, an electrostatic

attractive force is induced, which leads to a decrease of the gap spacing, thereby

stretching the spring. This results in an increase of the spring force which counteracts the

electrostatic force. Pull-in instability occurs when the voltage is so high that the resonator

beam sticks to the electrode. The pull-in behavior is observed when the mechanical and

electrical forces (and simultaneously also their derivatives) cancel each other. The value

of pull-in voltage for a static case can be calculated as follows [27]:

where dç is the separation between two plates in the absence of DC voltage.

2.ll Equivalent Electrical Circuit for Electromechanical System 124,251

Electromechanical coupling realizes the conversion between mechanical energy and

electrical energy through exciting and detecting the mechanical vibration. There are many

techniques to fulfill the electromechanical coupling, such as piezoresistive, piezoelectric,

and capacitive methods. Other ways for actuating and sensing include magnetic, optical

Vt't, =
27e oA*

(2.46)
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and acoustic, etc. Of all techniques, As far as practical application is concemed, the

electrostatic excitation and detection are preferred because it makes the co-fabrication of

microbeam resonators and peripheral electronic circuits on a single chip possible. The

microbeams and the electrode can be easily implemented for the purpose of excitation

and detection.

Since the electrostatically driven beam resonator has the characteristics of nonlinearity

in the electrostatic excitations, the devices require a DC bias voltage and a small

sinusoidal AC signal to excite and detect a purely sinusoidal resonancs. It should be

noticed that the DC bias possibly results in a mechanical instability and a lowering of the

quality factor. Existence of parasitic signals in the electrostatically driven and sensed

microbeam can also be a problem for the electrical performance of the resonant system.

Since electrical network theory and circuit simulation software such as SPICE have

been well developed, it is very helpful to analyze the performance of the electrostatically

driven beam tesonator using the equivalent electrical circuit of the microbeam resonator.

The electrical equivalent circuit is also useful in interpreting the parasitic effects on the

performance of the polysilicon beam resonator, especially the gain-phase response.

The mechanical behavior of microbeam resonator is described by the differential

equation of motion with a set of boundary conditions. The electromechanical coupling

associates the electrical performance with the mechanical properties. Thus, the

electromechanical system behaves like an equivalent electrical circuit composed of

inductors, resistors, and capacitors. These equivalent electrical components for the

electromechanical system can be derived based on the analogy of the mathematical

description for electrical and mechanical properties. In this wây, the electrical

27



components in an electric circuit such as inductors, resistors, and capacitors can be

represented by the properties of the mechanical system, such as mass, stiffness, and

damping, with the help of the electromechanical coupling coefficient. The corresponding

parameters for the mechanical and the electrical description are listed in the table 2.2.

Table 2.2 The correspondent mechanical and electrical parameters [28]

Mechanical parameters

Mass (m)

Compliance (spring) (1/k)

Viscous damping (c)

Force (F)

Displacement (x)

Velocity (dx/dÐ

Electrical parameters

Momentum þ)

As shown in figure 2.5 (a) the transverse electrostatic microbeam is taken to establish

the equivalent electrical circuit of the micromechanical system [28]. The transversely

vibrating beam is the upper plate of capacitor parallel to the lower electrode in the

substrate. The current flowing into the capacitor between the upper and the lower plates

is found to be

Inductance (L)

Capacitance (C)

Resistance (R)

Voltage (U)

Charge (q)

Cunent (i)

Magnetic flux ((Þ)

Since the gap d is much larger than the beam deflection u(t) and

equation (2.47) is approximated as

28
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where e = (J ,r.+ = U ,,.+ is the coupling factor of the electromechanical system. i6(t)' !'\ ôu t)\ d

is the feedthrough current and i.(t) is the electromechanically induced motional current.

i(t) : ço +.Try = io(t). ry # = io(t) + i^(t) (2.48)

Figure 2.5 The schematic diagram of the capacitive beam resonator (a) and its

equivalent electrical circuit (b).

(a)

Co

(b)
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The electrostatically driven and sensed microbeam resonator described in figure 2.5

generally vibrates at the same frequency as that of the excitation AC signal, which can be

characterized as a harmonically excited oscillating system. The goveming equation of the

mechanical motion in the harmonic system is given by

where Ë, is the effective electrical spring constant./(t) isthe electrostatic force acting on

the moving plate

dzu du
m -- + c -+ + (k - k")u = f"(t)dt' dt

From LRC circuit theory the voltage related to the motion current i, across the beam

resonator can be represented by the following differential equations in terms of charge q,

inductance L., capacitance Cn' and resistance R,

f"(t) = u ,r, #U nc : TU o,

u,,(t) = ,,,#* 
^,,,#.t = ,,ry+ R,,i,,rr-.+ [i,,çt¡at

where Lm , Rm , and Cm are the equivalent inductance, resistance, and capacitance,

respectively, i,(t) is the electromechanically induced motional current.

By substituting f"(t) (equation (2.50)) and i,(t) (equation (2.47)) into equation (2.49),

the analogous differential equation for the electromechanical beam becomes

(2.4e)

then u.,(r)=#T*þ,^a).?lt,çt¡at

m d'u c du (k-k \
u ot:\o ,l -i- 

---:- 
T 

- 

Ø

Tl dt' ry dr rt

(2.s0)

(2.st)
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By comparing equation (2.51) and (2.53), the equivalent electrical parameters such as

inductance, resistance, and capacitance can be extracted for the electromechanical

microbeam as follows

where T=U,u.X"r^+.

r -ffiuyl 
- )

ry'

The equivalent electrical circuit given in figure 2.5(b) resembles that of a crystal

resonator. It can be used to determine the frequency response of the electromechanical

systems, thereby, conveniently allowing the use of powerful analytical tools developed

for electrical network theory, for instance, circuit simulation software, such as SPICE.

Besides the derived equivalent electrical components L*, Cn., and Rn', the vacuum

capacitance, Co, comprised of the lower electrode and the upper beam, is connected to the

equivalent circuit in parallel, contributing the feedthrough current io to the expected

useful motion current in,'. In addition, the effect of parasitic capacitances arising from the

bond pads and wires and resistances from the doped polysillicon beam and electrode in

the electrical circuit should be considered for the electromechanical beam when its

equivalent electrical circuit is used to analyze the performance of the system.

R,,, =4
ry'

c,, =
rl'

(k - k")
(2.s4)
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Chapter 3 Mechanisms of Sensing and Actuating

The excitation and detection of the mechanical beams can be performed in a variety of

ways, such as piezoresistive, piezoelectric, capacitive, optical, magnetic, acoustic

methods. The understanding of the operation mechanisms of these methods for excitation

and detection is necessary for selection of the appropriate testing techniques. In this

chapter some of typical electrical and optical methods will be reviewed concerning their

working principles, and their advantages and disadvantages will be discussed.

3.1 Electrical Techniques

3.1.1 Piezoresistive Sensing

Piezoresistive sensing utilizes special resistors that their resistance varies with change

of their physical dimensions resulted from external force such as pressure. It can be used

to measure strain or displacement of movable structures. Piezoresistive sensor, often used

as a strain sensor, is usually constructed by building the piezoresistive materials on the

surface of a movable structure. The deflection of the movable structure leads to change in

physical dimension of the resistor, resulting in the change of resistance due to the

piezoresistive effect, as expressed in the following formula []:

where A R is the change of the resistance, R is the original resistance, v is the Poisson

ratio, Â / is the length change of the resistor, / is the original length of the resistor, and

A p andp represent the resistivity change and resistivity of the resistor, respectively.

M 
- 0+2v\4*aPRlp
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It can be easily found out that the resistance ofthe resistors used for the piezoresistive

sensor is proportional to the extemal force when the resistivity change is ignored since

the dimension change is proportional to the applied force.

The sensitivity of the sensors can be represented by the gauge factor which is defined as:

The gauge factors of various types of strain sensors show much difference, for example,

semiconductor sensors have GF ranging from 80-200, much larger than that of metal

sensors from 1-5 [1].

The performance of the piezoresistive sensors is very much susceptible to temperature.

The sensitivity of the sensors decreases as temperature increases. Hence, temperature

compensation is necessary for their use (for example, using Wheatstone bridge). In

addition, any residual stress generated during fabrication will also influence the

sensitivity of the sensors.

GF =ry+- oÂ/A 
=(1+ 2fl+M-t P

LLIL E t

3.1.2 Capacitive Coupled Detection

Capacitive sensing utilizes a capacitor that its capacitance changes due to the

deformation of structure. Through capacitive coupling electrical signals (current) is

induced by mechanical motion. A typical structure of capacitive sensor is composed of

two parallel plates. Its capacitance is expressed as:

(3.2)

where A is the area of the plates and d is the distance between the two plates, e is the

permittivity of the dielectric between the two plates.

€A

d

JJ

(3.3)



The commonly used forms of capacitive sensor include various membranes applicable to

the fields of microphone and pressure sensor. For membranes, the capacitance change is

not linear with respect to the structural deformation; also, very small capacitance (1 to 3

pF) requires measurement circuit to be integrated on a single chip. For a comb driver

capacitor, its fringing field will become very significant when the size of device reaches

at the scale of micrometer.

Capacitive sensing is found to potentially have higher performance than piezoresistive

sensing in the application fields requiring high sensitivity, low pressure range and high

stability. But, capacitive structures fabricated by surface micromachining often have very

small capacitance (femto or atto farad), any potential advantage in signal to noise ratio

(SNR) for the capacitive sensing cold be eliminated by the interface electronics.

From the equation (3.3) it can be seen that the change in the distance of the two plates

will induce the change of the capacitance. Given an example, if the two plates have a

width of 30pm and a length of 300¡.rm, and the distance between the two plates is 2 pm,

the resulting capacitance is 40 ff. The change in the capacitance due to a change in the

distance ( A d) is given as follows:

For a maximum deflection of 2 nm the change of capacitance is then AC:0.04 ff. In

contrast, a bonding pad usually has a size of (100pm x l00pm) and has a capacitance of

0.17 pF (e(sio2) : 3.9 so and assuming d is 2 pm). Thus, during measurement, the

percentage of the change in capacitance relative to the total capacitance should be

considered in order to detect such a small change in capacitance with available

equipments, especially in the RF frequency range.
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3.1.3 Piezoelectric Sensing

Piezoelectric sensing is based on the piezoelectric effect of piezoelectric materials. A

material displays piezoelectricity when a mechanical stress on a material produces an

electrical polarization and reciprocally an applied electrical field produces a mechanical

strain. This effect can be applied to the sensing of mechanical stress, or indirectly, the

displacement of structure.

The sensitivity of piezoelectric sensors is expressed by the charge sensitivity

coefficients d¡, (in units of CIN), which represents the charge generated on the surface of

area A in the i axis when a force is applied in the j axis [1]

For a given thickness t of a piezoelectric material, the voltage V induced

electrode plates, when they are subjected to a force, would be

,r-Q - 
d"
'' tLF,

C €nE,A I

Vise versa, the voltage applied to the piezoelectric material can produce the force which

is able to stretch the dimension of the piezoelectric material, typical values of

dimensional variation range from 10-10 to 10-7 cm/V. This is the operation mechanism of

piezoelectric actuators.

Piezoelectric materials include quartz, polymer PVDF, Barium Titanate (BaTiO3), Lead

Zirconate Titanate (PZT) and Zinc oxide (ZnO). The piezoelectric sensing has found its

applications in the f,relds of SAW devices, pÍessrue sensors, force sensors, speedometers,

accelerometers, hydrophones and microphones, etc.

LQ,=drM., =du\oA (3.s)

across the

(3.6)
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3.1.4 Resonant Sensing

The natural frequency of the resonant microsensor changes when a tensile force is

applied. The variation of natural frequency the resonator is directly related to the strain.

For example, the natural resonant frequency of a flexure resonator with both fixed ends

can be derived in a form [29,301:

t

where ./ is the natural frequency of the fundamental oscillating mode, / is the length of

resonator, å is the thickness of resonator, E is the Young's modulus, p is the density of

material and e is the strain generated inside the resonator structure.

Comparing resonant sensing with piezoresistive sensing, the resonator acts as a kind of

strain gauge, which relates the strain to the resonant frequency. The relationship between

frequency change and strain can be expressed in the following form:

r=ï#l*l*n66(í)'")]'

where kgris the gauge factor of the resonant strain gauge:

ï= o*'

as a simple estimate of kgi, assuming a strain is 1 00 ppm for a t .2 mm long, 20 pm wide

and 5 pm thick resonator strain gauge, the gauge factor can be as high as 3000; whereas,

the piezoresistive strain gauge factor is only about 2. Since the gauge factor directly

relates to the sensitivity of the sensor, the resonant sensing can be used as highly sensitive

microsensors. However, the resonant sensing usually requires a more complex sensor

r. --:1,n66(+)'l[,.0,,u ,(r)' ,f'

(3.7)

(3.8)

(3.e)
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structure than piezoresistive sensing does; also, the resonant strain gauges need to be

vacuum-encapsulated.

3.2 Optical Detection Methods

3.2.1 Optical Beam Deflection Method

One optical method for detecting the displacement of a micro-scale cantilever is to use

a position-sensitive photodetector (PSPD) as implemented in most Atomic Force

Microscopy (AFMs) [31-33]. A laser is reflected off the end of a cantilever and received

by a bi-cell photodetector. The photocurrent produced in a bi-cell detector changes with

the position of the reflected light on the detector, which is directly related to the angle

between the surface of the cantilever and the incident laser beam, The detector can sense

the displacements of a light beam in the nanometer scale, which is equivalent to the

displacement of the cantilever in the subangstrom scale.

As indicated in Figure 3.1 when the cantilever is subjected to a vertical force F, the

deflection of the cantilever takes the following form [32]

Where / is the length of the cantilever, E is the modulus of elasticity , and I is the moment

of inertia of the cantilever. Due to the very small deflection magnitude of the cantilever,

the angle of the deflection 0 at the end of the cantilever, where x: l, can be approximated

as follows:

z(x) = !-çU'- n')\ / 6EI'

e=øl =
&1,=,

Fl2

2EI

(3.10)
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By using equation (3 . I 0) and substituting F: k\z, (Az is the deflection of the cantilever).

3Az
u x__2l

Laser

Laser s

it:l
iV

pot shift

""i

Ði-
1,if.'

In Figure 3.1 it is assumed that L is the distance between the bi-cell photodiode and the

laser spot on the cantilever and that fu is the displacement of the reflected laser beam

spot on the bi-cell photodetector, approximately t * ï. Thus, the relation between As

and Lz can be found as follows

Figure 3.1 Schematic diagram of laser beam deflection system

(3.t2)

t^z

It can be seen that the shift of beam spot Âs is proportional

cantilever, i.e., to the force applied to the cantilever.
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When the two cells of the photodiode are first positioned and receive an equal optical

power from the reflected laser beam, the photocurrents from the two cells are balanced,

thus, the bi-cell detector output is zero. Once the cantilever is deflected by L,z, the spot

shift of the reflected laser beam will produce the output cuffent proportional to the

difference of the irradiance received by the two photocells.

Let us estimate the photocurrent produced in the bi-cell photodetector. If it is assumed

that optical beam is monochromatic and its intensity distribution of beam is a Gaussian

type. The quantum efficiency of photons to the electrical charges is assumed to be unity.

The number of the photons falling on each cell can be calculated by integrating over the

portion of the Gaussian beam. The total electrical charges are given by

where N is the total number of photons per second incident on the

charge of an electron, and the induced electron current I is calculated

deviation of Gaussian function,

- P tJ-zr .I __q Lz
hv' ol

I:2Nq"!#

where ø is standard deviation of Gaussian function. The above equation gives an

approximation of the output current produced by the bi-cell photodetector [33].

3.2.2 Noise in the Optical Deflection Sensor

There are two main types of noises in the optical detector [33], shot noise induced by

the photons randomly falling on the surface of the detector; l/f noise arising from the low

frequency change in the output power of the laser source.

(3.r4)

detector. q is the

using the standard

(3.15)
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Shot noise, or quantum noise, is a fundamental limit of the nature of light and is

characterized by the fluctuation of the photons arriving at the detector. Photoelectrons

can be described by Poisson's statistics. The variance of the shot noise is therefore equal

to the mean number n of the collected photoelectrons during a characteristic time

interval, called integration time t : ll2B, where B is the detection bandwidth. The ratio

of the number of created photoelectrons ne to the number of incoming photons no is called

quantum efficiency, r'1 : nr/no. The ratio of the current i and the optical power popt is

defined as the spectral sensitivity

c- t 
-ryq"_ p,,n,_ h,

where q : 1.602x10-re C, h : 6.626xl0'3a

frequency. The varianr. (;1" ) of the shot

electrons n generated in the photodiode in the bandwidth B

(il'):zqen"

where B is the noise bandwidth. If the dark-current i¿, which is the remaining current

when the photodetector is not exposed to light, is considered, the electrical power for the

shot noise within the frequency bandwidth B can be written as

Ps,v = (rÍ")^, =2qB(sP,,, +i)Ro (3.1s)

If the total electrical power P1o1 is much larger than the dark current i6, the electrical

power of the shot noise from the detector becomes

J is Planck's

noise current

constant,

is given

(3.16)

and v is the light

by the number of

The performance of the optical beam deflection sensor is mostly limited by the shot noise.

P'w :2qBSP,",Ro

(3.r7)
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Another noise source is l/f noise which becomes important at low frequency. However,

the optical beam deflection system is insensitive to l/f noise because the l/f noise from

the bi-cell photodetector is cancelled each other.

The sensitivity of the optical beam-bounce system was estimated to be 7.9 x10-6

nml^lflz [31]. In order to detect the correct signals related to the mechanical beam

vibration, the spot size of the laser beam should be focused as small as possible, If the

laser beam diameter is large, very little of the light will fall on the cantilever and most of

the light will be due to the reflections off the substrate. In addition, the micromachined

cantilevers and clamped beams tend to be fabricated smaller and smaller with higher and

higher resonant frequencies, high-speed PSPD is required for the measurement of the

resonance of micromachined vibrating elements.

3.2.3 Interferometry Techniques

Apart from the optical beam deflection method using position sensitive photodetector

for measuring very small displacement of objects, interferometric techniques have been

used in the fields of high-precision measuring systems and displacement sensors 133,341.

Interferometric techniques can be mainly placed into two categories; static (homodyne)

and dynamic (heterodyne) methods. Homodyne works only with one optical frequency

for the interfering light beams. Heterodyne uses two or more frequencies for the

interfering waves. Fabry-Perot and Mach-Zeh'nder interferometers are two kinds of

common configurations of interferometers.

The intensity of the interference light of two beams can be deduced as follows [34]:

I = Io + I, +2"ft{ cos(Latt + Lø(t))

4l

(3.20)



The interference signal is of sinusoidal form with the frequency of À ro and the amplitude

of 2,[t, and Io + I, is the dc signal. The information of the moving object is related to

the phase variation A0(t). Only the ac component is interested, the electrical signal takes

the following form:

where A,a = at - az is the frequency difference of the two

Ló(t)=þ,(t)-óz:T-Ur+þ0, x(t) is the displacement of object; S is the detector

sensitivity, and v is the visibility of the interference in the following form

I (t¡ = vs2"[I J, cos(aar - Lø(t))

1.r* * 1*in

Equation (3.21) is a phase modulated signal with canier frequency A o and phase

modulation 
^ 

0(t).

'When 
the frequencies of the two interfering beams are different, i.e. Lo - at o, + 0 ,

method based on the equation (3.21) is called heterodyne interferometry, its commercial

lrnu* - f.in

instrument is called velocimeter.

When the interfering lights have the same frequency,

interference intensity becomes

4nI(t¡ = acos(-; x(t) + óo)
A

I (t¡ : a cos(pcos(a "t + ç) + þo)

where x(t) : x6cos(rort*q), and þ: nxslL.

(3.2t)

interfering lights, and

(3.22)

i.e., A,ø - a)1 - ø, = 0, the
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Equation (3.24) can be expanded into the following form with the Bessel function J"(Þ),

fo. 0o 
: (2n + I)nl2

for B<<l

I(t¡ = acosþ,[Jr(P) -2Jr(/)cos 2(at.t + Ð +...]

+ asin ó,12J,(B)cos(at.t + A)-2Jr(P)cos3(ø"/ + Ð+...1

It is obvious that when the vibration amplitude of object is much smaller than wavelength,

the interference intensity is proportional to the object displacement. From the above

equations the interferometer phase angle þe 
: (2n + l)nl2 is required to get an optimum

sensitivity. Method based on the equation (3.26) is called homodyne interferometry. In

homodyne interferometer, noise is the limiting factor for the resolution. Typical

resolution values lie between 10 and 100 x10-r2m, depending on the quality of the

equipment.

I(t) x (-l)" aB cos(ørt + rp)

3.2.4 Fabry-Perot Optical Fiber Interferometer

Optical fiber interferometers usually have the two types: Mach-Zebnder and Fabry-

Perot, and they have been known as extremely compact and economic displacement

sensors with high sensitivity [35-39]. The operation principle of the Fabry-Perot optical

fiber interferometer is schematically shown in figure 3.2. The laser is coupled into the

fiberl and propagates through the optical coupler to fiber2. Then, one part of light in

fïoer 2 is reflected from the end face of the ftber 2 and other part of light is reflected from

the moving object and returned back into the fiber 2. The two parts of light in fiber 2

interferes with each other, resulting the interfering signal, which propagates through the

(3.2s)

(3.26)
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coupler to the fiber 3 then received by the photodetector. The intensity of the interfering

signal changes periodically which depends on the distance x(t) between the end of fiber2

and the object as follows:

I = I t + I, + 2^[I J, cosç!*çr) + ëo)

Laser source

Figure 3.2 Schematic diagram of the Fabry-Perot Optical Fiber Interferometer

In Fabry-Perot optical fiber interferometer lrrlo is the intensity of light reflected

from the end face of fiber2 and Iz : (l-r 1)2rls is the intensity of light reflected from the

moving object and returned into frber2, where 1o is the intensity of laser coupled into

ftber2, r7 is the reflectivity of the end face of fiber 2 and r is the reflectivity of moving

object. For quartz frber r¡:0.04 is Fresnel reflectivity of boundary surface between the

interface of glass with refractive index n:1.5 and air with refractive index n:1. Thus,

when the distance between interferometer mirrors equals x¡, the light intensity detected

by a photodetector is described as follows:

(3.27)

Object

lndex matching epoxy

¡...

l¿l ;.i
ê
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I = I o(n + (1 - r,)' r + 2(l - r,rJ, V "o"ç9 
*o sin(atr + rp) + óo))

where € = o!, sin(/( represents the degree of coherence, which is introduced because' I,'

any light source can not be exactly monochromatic. The radiation of laser diode consists

typically of several frequency modes and the total width of the spectrum A I is equal

approximately to 3-5 nm. Coherence length /, of such a radiation can be estimated by

¡2

1,, =4 ^. The visibility of interference fringes will be affected by coherence length of the' L)"

light. Increase in the path difference of interfering beams decreases the visibility of

interference pattern. When the path difference reaches the coherence length, the visibility

equals zero.

Because the intensity of the beam reflected from the end face of fiber is about an order

of magnitude less than the intensity of radiation reflected from moving object and

returned back into the flrber, 100% visibility of interference can not be achieved even at

zero path difference of interfering rays. Thus, the optical power arriving at the

photodetector depends upon the distance between fiber and moving object.

If the multiple beam interference produced from the interface between the end of

ftber 2 and the surface of moving object is considered instead of the two beams

interference described above, the interference intensity of light arriving at the detector is

given bv [35]

(3.28)

where Þ :lrrlfçn I a) and, F(D I a) =71 @

I-
Io

(rr'+ þ')-2rrpcos6
(l+rr2 B2)-2rrBcosõ
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In the above equations r¡ and 12 ãrë the reflection coeff,icients at the end of f,rber and at

the surface of moving object, respectively. l" is the wavelength of light, D is the distance

between the fiber end and the surface of moving object. 6 = 4nD I ), is the phase

difference induced by the distance D. B is called an electric field damping parameter,

which is related to the beam spreading represented by the function F(D/a). a is the

diameter of the core of fiber. 0 is the half angle of the spreading cone for the single-mode

fiber.

When the multiple reflections between the end of fiber and the moving object are

ignored the problem can be simplified as the two beams interference problem as

described above [33].
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Chapter 4 Fabrication Process and Testing Set-up

4.1 MEMS Technology

Micromachining technology for the fabrication of micromechanical resonators in

MEMS will be briefly described in order to better understand structures of the resonators.

MEMS technology has been developed from the traditional IC industry in which the

fabrication process generally includes photolithography, thermal oxidation, doping,

diffusion, ion implantation, low pressure chemical vapor deposition (LPCVD), PECVD,

evaporation, sputtering, wet etching, plasma etching, reactive-ion etching, ion milling;

and the materials are silicon, silicon dioxide, silicon nitride, aluminum [1].

In addition to the above standard IC processes, MEMS has its o\iln special

microfabrication techniques, such as anisotropic wet etching of single crystal silicon,

deep reactive-ion etching, x-ray lithography, electroplating, etc., and the materials

include piezoelectric films (e.g., PZT), magnetic films (e.g., Ni, Fe, Co, and rare earth

alloys), high-temperature materials (e.g., SiC and ceramics), mechanically robust

aluminum alloys, stainless steel, platinum, gold, sheet glass, plastics (e.g., PVC and

PDMS) [2].

Two mostly common used micromachining methods in the MEMS are named as bulk

micromachining and surface micromachining based on how to process silicon substrate

[40]. Bulk machining builds structures by etching into the body of the silicon substrate to

form membranes, trenches and holes, etc., and surface micromachining constructs the

micromechanical structural layers by depositing thin films layer by layer on the substrate

surface.
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Photolithography is a first important process which defines the degree of integrity and

the microscopic dimension of microdevices. In the photolithography process a mask,

defining the desired pattern of structure, is first designed and fabricated, then it is used to

transfer the structure pattern to a photo-sensitive polymer called photoresist which is

coated on the substrate. Part of the photoresist can be removed after exposed to UV light,

leading to the desired structural pattern forming on the silicon wafer. Then, through the

process of etching and depositing, the expected structures can be built on the silicon

wafer. Figure 4.1 gives an illustrative diagram of the photolithography process.

ial
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4.1.1 BulkMicromachining

Figure 4.1 Schematic diagram of photolithography process [2].

Bulk micromachining technique is used to form structures on one side of a wafer in the

forms of membranes, trenches and holes, etc. by selectively removing significant
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amounts of silicon from the substrate through wet etching and dry etching. V/et etching

uses liquid enchants of aqueous chemicals; and dry etching employs vapor and plasma

etchants. Figure 4.2 schematically shows some basic forms of the bulk micromachined

structures.

':
{1OS} Siliccul lÀfafer

ÞÈ,siliùon

In wet etching process the desired structures on the silicon substrate can be formed by

putting the substrate into an etching bath which may be acid or alkaline. Various

structures can be created by either isotropic etching or anisotropic etching depending on

the materials or the etchants. For the material such as amorphous or polycrystalline wet

etching is always isotropic etching. The isotropic etching is not suitable for deep etching

due to its undercut effect. For single-crystal silicon anisotropic etching is a very useful

way to be used to build the desired structure. Main feature of the anisotropic etching is

that etching speed is dependent on the crystal's orientation. The etching slows down
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Figure 4.2 Schematic diagrams of bulk micromachined structures [2]
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significantly at the (111) planes of silicon relative to other planes. For the wafers with

different crystal orientation, different bulk machined features can be achieved. The most

common etchants for the anisotropic etching of silicon are alkali hydroxide (KOH,

NaOH); ammonium-based solutions (NH+OH, TMAH) and EDP (ethylene diamine

pyrocatechol). In addition, electrochemical etch-stop technique by combining anisotropic

etching with boron implantation (P+ etch-stop) can be used to generate various silicon

microstructures [1,40].

In dry etching the desired structwes on the substrate can be built through chemical or

physical interaction between the ions in the gas and the atoms of the substrate. Non-

plasma, isotropic dry etching can be possible using xenon difluoride or a mixture of

interhalogen gases and provides very high selectivity for aluminum, silicon dioxide,

silicon nitride, photoresist, etc.. The most common dry etchings of bulk silicon are

plasma etching and reactive ion etching (RIE). The common reactants include

chlorofluorocarbon gases, sulfur hexafluoride, bromine compounds and oxygen. The

anisotropic dry etching processes are widely used in MEMS because of the geometry

flexibility and less chemical contamination than in wet etching. Arbitrarily oriented

features can be etched deep into silicon using anisotropic dry etching. Very deep silicon

microstructures can be obtained by the deep RIE (DRIE) [1,40].

4.1.2 Surface Micromachining

Surface micromachining forms structures on the surface of the silicon by depositing

thin films as structural layers or sacrifrcial layers and then eventually removing the

sacrificial layers to release the desired mechanical structures. The dimensions of these
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surface micromachined structures can be several orders of magnitude smaller than bulk-

micromachined structures. The prime advantage of surface-micromachined structures is

that they are easy to be integrated with IC components. Surface micromachining requires

a compatible set of structural materials, sacrificial materials and chemical etchants. The

structural materials must have the physical and chemical properties that are suitable for

the desired application. In addition, they must have satisfactory mechanical properties:

e.g., high yield and fracture stresses, minimal creep and fatigue and good wear resistance.

The sacrificial materials must have good mechanical properties to avoid device failure

during fabrication. These properties include good adhesion and low residual stress in

order to eliminate device failure by delaminating and/or cracking. The etchants to remove

the sacrificial materials must have excellent etch selectivity and be able to etch off the

sacrificial materials without affecting the structural ones. In addition, the etchants must

have proper viscosity and surface tension characteristics. The common IC compatible

materials used in surface micromachining are: first, polysilicon and silicon dioxide family.

LPCVD deposited polysilicon as the structural material and LPCVD deposited oxide as

the sacrificial material. The oxide is readily dissolved in HF solution without affecting

the polysilicon. Silicon nitride is often used for electrical insulation. Second, Polyimide

and aluminum family, in this system polyimide is the structural material and aluminum is

the sacrificial material. Acid-based etchants are used to dissolve the aluminum sacrificial

layer. Third, Silicon nitride and polysilicon group, silicon nitride is used as the structural

material, whereas, polysilicon is the sacrificial material. In this material system, silicon

anisotropic etchants such as KOH and EDP are used to dissolve polysilicon. Fourth,

Tungsten and silicon dioxide; CVD deposited tturgsten is used as the structural material
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with oxide as the sacrificial material. HF solution is used to remove the sacrificial oxide.

Other lC-compatible materials such as silicon carbide, diamond-like carbon, zinc oxide,

gold, etc. are also used. Figure 4.3 gives a simple example of how surface

micromachining works.

Figure 4.3 Structural and sacrificial layers formed by surface micromachining [2].

Structural Layer

Surface micromachining could also be performed using dry etching methods. Plasma

etching of the silicon substrate with SF6/Oz-based and CF+/Hz-based gas mixtures is

advantageous since high selectivity for photoresist, silicon dioxide and aluminum masks

can be employed. However, when plasma etching is applied, a large undercut of the mask

is produced due to the isotropic fluorine atom etching of silicon which is known to be

high compared with the vertical etch induced by ion bombardment. In contrast, reactive

ion etching of poly-Si using a chlorine/fluorine gas combination produces virtually no

undercut and almost vertical etch profiles when photoresist is used as a masking material.

Besides bulk and surface micromachining, other fabrication techniques have also been

developed [2], such as LIGA (lithographe (ltography), galvanoformung (plating) and
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abformung (molding)), SUU-8 (cheap alternative to LIGA) and plastic molding with

PDMS (Polydimethylsiloxane).

In addition, wafer bonding is also very important processes for successful operation of

the fabricated microdevices. Anodic bonding, fusion bonding, eutectic bonding and

adhesive bonding have been developed to bond silicon, glass, metal and polymeric

substrates [1,40].

4.1.3 MUMPs Technology

The Multi-User MEMS Processes (MUMPs) was developed to serve the MEMS

foundries in order to reduce the cost of microfabrication due to very expensive

fabrication facility [41]. MUMPs is a three-layer polysilicon surface micromachining

process which has general features of a surface micromachining process: (1) polysilicon

is used as the structural material, (2) deposited silicon oxide is used as the sacrificial layer,

(3) silicon nitride is used as electrical isolation between the polysilicon and the substrate,

(4) metal (usually gold) is the top layer of the device and can be used as a conductive

layer.

The MUMPs process uses a 100 mm n-type (100) silicon wafer of I-2 f)-cm resistivity.

The surface of the wafers is highly doped with phosphorus. First, a silicon nitride layer is

deposited on the wafers as an electrical isolation layer, followed by the direct deposition

of a polysilicon film called Poly0. Poly0 can not be released in the MUMPs process; it is

typically used as a ground plane or for routing purposes. Poly0 is then patterned by

photolithography process that includes the coating of the wafers with photoresist, the

exposure of the photoresist to the UV light with the appropriate mask, and the developing
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of the exposed photoresist to create the desired etch mask for subsequent pattem transfer

into the underlying layer. After the photolithography process, the Poly0 layer is etched in

a special system. Following that, a phosphosilicate glass (PSG) sacrificial Iayer of 2.0 m

is then deposited and annealed. The layer of PSG, known as first oxide, will be removed

at the end of the whole MUMPs process to free the first mechanical layer of polysilicon.

After the first oxide is patterned, the f,rrst structural layer of polysilicon (Polyl) is

deposited in a thickness of 2.0 m. The polysilicon is lithographically pattemed using a

mask designed to form the first structural layer Polyl. After Polyl is etched, a second

PSG layer (Second Oxide) is deposited, annealed, pattemed and etched so as to form

holes and anchors to provide a mechanical and electrical connection between the Poly 1

and Poly 2 layers. The Poly2 structural layer is created as same as Poly 1. The Polyl and

Poly2layers are the mechanical structural layers in MUMPs process because they both

can be released by etching the sacrificial oxide layer at the end of the process. A 0.5 m

metal layer is f,rnally deposited, which provides for probing, bonding, and electrical

routing. During the processes the photoresist can be stripped by immersing the devices in

acetone for 3 minutes, and then in de-ionized (DI) water for 1 minute. The sacrifrcial

oxides can be remove for releasing the mechanical structure by putting the chips in a bath

of 49Yo HF for 1.5 - 2 minutes followed by several minutes in DI water and then alcohol

for 2 minutes to reduce friction, followed by 30 minutes in an oven at 90 "C [41].

Our resonators were provided by Gennum Corporation and were fabricated in a

process very similar to the MUMPs process. Figure 4.4 shows a typical mechanical

structure of micromachined resonator provided by Gennum Corporation, which is a

clamped-clamped mechanical resonator.
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Figure 4.4 SEM picture of a clamped-clamped micromachined resonator

Based on the information provided by Gennum Corp, the material for the resonator

beam is P-doped PolySi with sheet resistance of 4 Q/sq, and residual stress is between -

10 and -ll MPa (compressive). Young's modulus E is 165GPa and density p is 2330

kg/m3. The samples offered by Gennum Corp. include the resonators with the resonant

frequency of about 11 MHz and 150 kHz, respectively. For the 150 kHz resonator, the

polySi beam has a length (L) of 300 um and width (\Ð of 30 um and thickness (h) of 1.6

um, the spacing between the beam and the underneath electrode d is about 2.0 um. For

the 11 MHz resonators (18C and FLI samples), d is around 150 nm, L is about 30.6 um,

W is 9 um and h is about 1.6 um. These data were provided Gennum Corp.

Figure 4.5 shows the optical pictures of the resonators taken in our lab. Figure 4.5 (a) is

the 150 kHz resonator, figure 4.5(b) is the 11 MHz resonator with one beam and figure

4.5 (C) is the 1i MHz resonator with 5 beams.

Vibratins beam
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Figure 4.5 Pictures of the C-C resonators taken by optical microscopy. (a) is 150 kHz

resonator; (b) is 11 MHz resonator (L:30.6 pm, W:9 pm) and (c) is llMHz resonator

with five parallel beams
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4.2 ExperimentalSet-up

4.2.1 Capacitive Coupled Sensing With Network Analyzer

Testing of electromechanical devices is often performed using Network analyzer by

measuring transmission S-parameter Szl. The 8753E network analyzer in our lab with

bias-tee circuit can provide DC bias voltage up to 30 V to the testing device. In this

experiment the two RF ports of network analyzer are directly connected to the input and

output of the tesonator, respectively, without using an amplifier. No attempt is made to

match the resonator to the testing circuit, as doing so would load the device, reducing its

Q. The large mismatch between the 50O impedance of the test equipment and the

resonator will result in a rather high, but tolerable, insertion loss in the measurement [42].

DC bias voltage from a DC power supply is applied to the resonator through a bias-T

circuit embedded inside network analyzer. The resonator is positioned in a vacuum

chamber which can be pumped with mechanical pump and turbo molecular pump. Figure

4.6 gives the schematic diagram of such an experimental setup.

Figure 4.6 Experimental set-up by capacitive sensing with network analyzer
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4.2.2 Capacitive Coupled Sensing by Lock-in Technique

The 150 kHz C-C resonator can also be measured by capacitive coupled exciting and

sensing using lock in technique as shown in figure 4.7. The resonator was placed in a

vacuum chamber under pressure less than 10-3 Ton. An exciting AC signal and a DC bias

voltage were supplied with the DS345 30MHz Synthesized Function Generator. The DC

bias voltage applied varies from 0 V to 10 V, and the sinusoidal driving voltage of 20 mV

was first selected. The capacitive coupled signal from the output pin of the resonator was

directly sent to the SR844 Lock-in amplifier which was synchronized with the driving

signal. The output signal of the lock-in amplifier was then recorded using TDS3012

Digital Phosphorus Oscilloscope. Lock-in Amplifier offers higher sensitivity compared to

the network analyzer.

Figure 4.7 Experimental set-up using capacitive sensing with Lock-in technique

4.2.3 Optical Beam Deflection Detection

Locñq-En

Optical beam deflection method is capable of detecting sub-nanometer movement. In

figure 4.8 laser is focused on the center of the resonator beam, the reflected light is
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collected by the bi-cell photodetector, which output the differential signal proportional to

the vibration amplitude of the beam. The signal was fed into lock-in amplifier to perform

frequency sweep. The differential signal from the photodetector can also directly be

recorded using spectrum analyzer,

Laser

(a)

Figure 4.8 (a) Experimental setup of laser beam deflection and (b) schematic diagram.

Lock-in Amplifien

Function Generator

(b)
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4.2.4 Optical Fiber fnterferometer

Figure 4.9 shows the experimental set-up of optical fiber interferometer. Tunable laser

(Agilent 816894) was used as a light source. The light was directed into a2x2 single

mode directional coupler using single mode fiber. The coupler splits the incident optical

power equally and output one part to the resonator through tapered fiber and other part to

the matching index epoxy. Approximately 4o/o of the light in tapered fiber (Oz Optics

LTD) is reflected from the glass-air interface at the cleaved end of the fiber. The other

96%o of the light pass through the fiber and incident on the resonator, part of which is

reflected back into the fiber and interferes with the light reflected from the end of fiber.

The intensity of total interfering light depends on phase difference between the light

beams from the end of fiber and the resonator, i.e., the distance between the end of fiber

and the resonator. The half of the interfering light is directed into a photodetector

(THORLAB Model D400FC InGaAs Detector) through the coupler. The power of the

interfering light, carrying the information of phase difference, is converted into electrical

signal which is fed into lock-in amplifier. The resonator is exited by an AC signal with a

DC bias voltage from Function Generator. When the AC exciting signal is swept around

resonant frequency of the resonator, the lock-in amplifier detects amplitude and phase of

the input signal related to the vibration of the resonator and gives a signal which can be

recorded by oscilloscope.
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Optical fiber

Lock-in Amplifier

Function Generator

Figure 4.9 Schematic diagram of measurement by optical fiber interferometer is shown
in (a) and experimental setup in (b)
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Chapter 5 Bxperimental Results and Analysis

The experimental characterization of dynamic vibration behavior of micromachined

resonators was performed using both electrical and optical methods as described

previously. The resonant frequency of resonators and its dependence upon DC bias

voltage are first important properties to be determined. The experimental data for them

will provide direct feedback for the design principle and the manufacturing processes.

Nonlinear vibration behavior is a very interesting phenomenon, it is necessary to

understand its origins and its behavior under various operating conditions. In addition, the

experimental data will demonstrate advantages and disadvantages of the electrical

measurements and optical measurements; data analysis will give out the

electromechanical parameters and equivalent electrical components.

5.1 Measurement of 150 kHz Resonator

5.1.1 Capacitive Coupled Measurement

The clamped-clamped resonator with the frequency of 150 kHz was first measured in a

vacuum chamber under pressure less than 10-3 Torr using capacitive coupled technique.

Figure 5.1 shows measured databy sweeping frequency from 100 kHzto 200 kHz. The

exciting AC voltage of 20 mV and the DC bias voltage of 10 V were applied. It can be

first seen that output signal from lock-in amplifier displays an absorption-type peak

around the frequency of 144.500 kHz accompanied by a phase change from 10 degree to

50 degree. Reason for this is not clear. Data also clearly show that another sharp peak

appears at the frequency of 147.516 klIz, and the peak is accompanied by a small phase
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change from 45 degree to 25 degree. Figure 5.2 shows the data obtained within a naffow

sweeping frequency range. In addition, the data indicates the significant existence of

large background signals, leading to the very poor peak amplitude. The sharp drop

occurred just above the peak frequency might be linked to the existence of parallel-

resonance right following series resonance [42]. Although the 150 kHz resonator was

first examined using network analyzer, no any resonant peak was observed when

frequency was swept near the frequency of 150 kHz.

Figure 5.1 Amplitude and phase versus sweeping frequency using capacitive coupled

measurement.
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Figure 5.2 Data collected near peak frequency by capacitive coupled measurement.
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5.1.2 Measurement by Optical Beam Deflection

5.1.2.1 Resonant FrequencY

This 150 kHz resonator was also measured under mechanical pumped vacuum using

optical beam deflection technique. Figure 5.3 shows the data measured with the DC bias

voltage of 10 V and the AC driving voltage of 20 mV within sweeping frequency fange

of 100 kHz to 200k1z. The data collected in a narrow frequency range are shown in

frgure 5.4. Here, the amplitude peak was found at frequency of 147'080 kHz' By

comparing with the data obtained above using capacitive coupled method, two measured

resonant frequencies are very close; also, it is obvious that the signalinoise ratio for

optical method is much better. In addition, the data in figure 5.4 shows a rapid jump in

amplitude at the resonant frequency, this phenomenon is nonlinear behavior and will be

discussed in detail later.
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Figure 5.3 Amplitude and phase versus frequency measured by optical beam deflection'
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Figure 5.4 Measurement data by frequency sweeping using optical beam deflection

Theoretically, the principal natural resonant frequency can be calculated using the

following equation derived from the equation (2.II) in chapter 2:
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For the 150 kHz resonator E : 165 GPa, p :2330 kg/m3, L :300 pm, h : 1.6 ¡rm, f6 is

calculated as 151.9 kHz. Other researchers took the value of E as 150 GPa [8], if this

value is used here, the calculated fo is 144.9 kHz. Actually, it is reasonable we assume the

following uncertainties for the parameters of the resonator beam: 5o/o of 8,3% ofh and d¿,

lo/o of L and W. By doing so f0: (150t l0) kHz was calculated. Here the peak resonant

frequencies given in figure 5.2 and figure 5.4 for two methods, being 147.516 kHz in

capacitive couple measurement and 147.076 kHz in beam deflection measurement,

respectively, fall within the above calculated regime despite the applied DC bias voltage

of 10 V induced a decrease of the resonant frequencies. Experimentally the resonant
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fr:7*E# 5.1
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frequency under zero DC bias voltage can be obtained by extrapolating the data of

resonant frequencies dependence on DC bias voltages. These will be discussed later.

Figure 5.5 gives the data measured with a DC bias voltage of I V and an AC driving

signal of 20 mV using optical method. As a comparison, figure 5.6 shows the data

measured with a DC bias voltage of 2 V and an AC driving signal of 20 mV using

capacitive coupled method. The data by optical method clearly show a well-def,rned

resonance peak occurred at the frequency of 151.310 kHz, accompanied by a phase

change of 180 degree. This is the typical characteristic of mechanical resonance. But, the

data by capacitive coupled method show a very small peak in amplitude accompanied by

a very ambiguous phase shift. This clearly demonstrates the existence of large parasitic

signals in the capacitive coupled detection, the motional current almost completely buried

in the background signals.
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Figure 5.5 Measurement data under DC Bias voltage of 1 V and AC driving voltage of

20 mV using optical beam deflection method.
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Figure 5.6 Measurement data under the DC Bias voltage of 2 V and AC driving voltage

of 20 mV using capacitive coupled method.
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5.1.2.2 Quality Factor Q

An important mechanical property, Quality factor Q, can be deduced from the

frequency response of the amplitude. Q is defined as the ratio between the total energy

stored in the vibration and the energy loss per cycle:

Q :2n (total energy stored in vibration )/(dissipated energy per period)
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The quality factor Q is a measure for the energy losses in the resonator (or for the

mechanical damping). A high Q implies low energy losses, which is always expected.

When a resonator is excited by a harmonic force with constant amplitude, Q is commonly

determined from the response characteristics of the resonator using -3db definition:

Q = .f ,, /(Lf-ruo), where f, is the frequency with maximum frequency response and Âf-:¿e

is the half power bandwidth of the frequency response. Hence, a sharp resonant peak will

result in a high Q factor, which is preferred by the frequency selectivity of the resonator.

Here, from the experimental data in f,rgure 5.5 the value of Q is estimated as 700.
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High Q is desired because of the low energy requirement for maintaining the vibration,

low sensitivity to mechanical disturbances and minimal effect of the electronic circuitry

on the oscillation frequency. Usually, the energy losses in the resonator are attributed to

three contributions: losses into the sunounding medium, losses into the mechanical

support of the resonator and intrinsic energy dissipation inside the material of the

resonator. Thus, it is important to carefully distinguish the dominant source of energy

losses in order to effectively improve the quality factor.

5.1.2.3 Motional and Feedthrough Currents

The following gives the estimation of feedthrough current and motional current based

on theoretical formula. The motional current can be calculated using following equation

deduced from equation (2.48)

When U¿. is I V and Uu" is 20 mY, d:2 ¡tm,ro,s:2n x 150 kHz,Kl is calculatedas23

N/m using equation (2.13), C6 is calculated using the dimension of the resonator is 40 ff.

The motional curent i, has a value of 0.26 nA using quality factor estimated by optical

method. For U6. :10 V and i, :26 nA, if Q is assumed as the same value.

On the other hand, the feedthrough current from Ce can be calculated using the

following equation

i,,, = (Q\JI,U",øoCl) l(kø2)

io :0.75 nA. io is not affected by DC bias voltage based on equation (5.3).

When the DC bias voltage is 2 V, i. is about 0.67 nA using Q of 437 estimated from

the optical data under DC bias voltage of 2Y, which is very close to is. Thus, it is very

io = CoØoU o,

5.2
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hard to resolve the motional current from the feed through current and other parasitic

currents. This rough estimation agrees well with what the experimental data revealed in

figure 5.6.

The experimental data acquired using optical beam deflection method can be used to

estimate vibration amplitude experienced by the resonant beam, the amplitude in voltage

can be converted into the amplitude in nanometer by taking an approximate conversion

coefficient of 0.4 mV/nm [43], then, peak-peak value of vibrating amplitude of about 15

nm is yielded for the data in figure 5. under the DC bias voltage of 1 V and the AC

driving voltage of 20 mV. Theoretical resonance amplitude can be calculated based on

the following equation:

u,", is about 14 nm using Q of 700. This value agrees well with that obtained from the

experimental data. For the experimental data taken under the DC bias voltage of 2 V and

the AC driving voltage of 20 mV the estimated vibration amplitude is about 23 t:rrt while

the calculated value from formula$.$ is about 18 nm using Q of 437 extracted from the

experimental data by optical beam deflection method. They are still in a good agreement.

That the calculated value is a little bit smaller than the measured one might be speculated

to be caused by the occurrence of nonlinearity when DC bias voltage reached 2 V. Q

factor is now hard to be accurately evaluated from the experimental data.

5.1.2.4 Dependence of Resonance Frequency on DC Bias Voltage

In order to investigate dependence of resonant frequency and quality factor on DC bias

voltage, measurements were done by varying DC bias voltage from 1 V to 10 V. The

69

5.4



experimental data of dependence of the peak frequency on the DC bias voltage for both

capacitive coupled technique and optical beam deflection method were summarized in

Table 5.1. The values of peak frequencies were directly read from the measurement data.

Table 5.1 Experimental dataof peak frequency versus DC bias voltage when Vu.:20 V

DC bias voltage (V)

Peak frequency (kHz)
(Capacitive coupled method)

Peak frequency (kHz)
(Optical deflection method)

f/fo (Theoretical data)
fo:(150+ 10) kHz

f/f6 @xperimental optical data)
fo:(15r.2t0.1)kHz

2

r s 1.086

151.078

4

0.999r
(0.0002)

t50.461

152

151

r50

149

148

147

0.9989
(0.0000)

150.463

6

0.9966
(0.0010)

149.721

N

.Y

o
o
ct
oL
II

0.9955
(0.0002)

8

149.526

0.9922
(0.0022)

t48.7t3

0.9899
(0.0004)

148.4tt

10

0.9861
(0.0038)

147.5r7

0.9819
(0.0007)

141.076

Figure 5.7 Peak frequency versus DC bias voltage using optical beam deflection method

0.9783
(0.0060)

0.97t6
(0.0010)

468
DC bias vo¡tage Vd. (V)

70



ôt
N
I

(\¡rÈ

22.4G

fo=(151.2 +/- 0.1)

22.0G

o/(krdo2) =(5.6+/- 0.2)xl oa

21.6G

Figure 5.8 Data were fitted for dependence of DC bias voltage on peak frequency

Figure 5.7 plotted the data of peak frequency versus DC bias voltage acquired by

optical beam deflection method. It is clearly seen that the peak frequency decreases with

increase in DC bias voltage. This agrees well with the theoretical expectation based on

the equation (2.45), which is rewritten in the following form

vo"'{v')

The experimental data were fitted based on the above equation, and the fitted data can

be utilized to examine how well theoretical calculation and experimental data agree. As

shown in figure 5.8, the fitted value of co/krdo2 is (5.6+ 0.2)x 10 a and f¡ is (151.2t 0.1)

kHz using the experimental data. Theoretical calculation of Co/krds2 is 14.3 tl.2) x 10-a.

They agree pretty well even if the peak resonant frequencies, rather than real resonant

frequencies due to the nonlinear behavior, were applied.

f, = -f, 5.5

71



Figure 5.9 plotted the normalized resonant frequency against the DC bias voltage for

both theoretically calculated data and experimental data by optical beam deflection. They

are in very good agreement at low DC bias voltages. The deviation at higher DC voltages

(over 3 V) might be caused by 'spring softening' nonlinear behavior, which usually

makes the resonant peak bend towards lower frequency. Equation (5.3) is only valid for

linear behavior of beam vibration.

Figure 5.9 Normalized resonant frequency versus DC bias voltage for theoretical and

experimental data.

Table 5.2 summarizes the estimated major mechanical properties and electromechanical

parameters for the 150 kHz micromachined resonator. The important parameters such as

resonant frequency and spring constant coefficient were obtained both theoretically and

experimentally. Based on the experimental data, the equivalent electrical components of

this electromechanical system were deduced in terms of the description in the section

2.11 of the chapter 2.The equation (2.54) can be rewritten in the following forms:

Theoretical
Experimental

468
DG bias voltage Vd. (V)
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, k-k"
"n22

ØoT

where 4*Uor,ft, una k"-U:,*

The values of k, ao and Q are taken from the experimental data with the DC bias voltage

of 1 V. k. is 0.01 N/m for U¿" of I V. Experimentally the uncertainty of k was estimated

to be of 12%o per cent, and the uncertainty of ao of 0.04% is negligible. The uncertainties

of k and r7 of 8% were only considered to estimate the uncertainties of R',, C. and Ln,.

The equivalent electrical circuit can be constructed using these equivalent electrical

parameters for fuither analysis in terms of circuit theory and simulation tools.

Rr=ffi rl'
f :-"n G-k")

Table 5.2 Theoretical and experimental data for the 150 kHz resonator

Length of beam, L, (pm)

Mechanical parameters

Width of beam,'W, (pm)

Thickness of beam, h, (pm)

Beam-substrate spacing, do (pm)

Young's Modulus, E (GPa)

Density of polysilicon, p (kg/m3)

Beam mass, m (kg x10-r2¡

300

Spring constant, K1 (N/m)

30

Resonant frequency, t GHz)

Static capacitance, Co (fF)

1.6

Electromechanical parameters

2.0

Quality factor, Q (V6"=lV)

157+ 8

EM coupling, 11 (V¿.=lV) xl0-8

2330

Equivalent resistance, R. (MO)

32.9

Equivalent inductance, L. (kH)

23+ 4

Equivalent capacitance, C, (aF)

150+ 10

Pulling Voltage, Vp"rr (V)

40+ 2

Measured Kr CN/m)

700

Measured f, (kHz)

2+ 0.2

70 +20

50+10

t3

22 +2

23+ 3

l8+ I

151.2 + 0.1



5.1.2.5 Nonlinear Behavior

In Figure 5.10 nonlinear vibration is evidenced by the rapid jump in amplitude when

the resonant frequency is approached, reflecting the nonlinearity of spring restoring force.

The curve at peak frequency bent towards lower frequency, which is caused by the so-

called 'spring softening' induced by the DC bias voltage. Experimental data show that the

nonlinear behavior occurred when the DC bias voltage reached over approximate 2 V.

The rapid jump of amplitude indicates that vibration quickly changes from an unstable

state to another stable state when sweeping frequency passes through the resonance

regime. Because the real resonance frequency is hard to be def,rned due to the occunence

of nonlinearity, the peak frequencies are used to be approximate resonant frequencies. In

addition, the peak amplitude increases with the DC bias voltage. But the value of

vibration amplitude is not proportional to the DC bias voltage as equation (2.43) expected

because nonlinearity limited the resonant peak value.
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Most existing models proposed for the explanation of nonlinearity are based on specific

experimental observations þ4-491. For instance, the observed 'spring hardening'

behavior is attributed to the mechanical restoring force with a positive cubic form, which

tends to shift natural frequency to higher value; whereas, the 'spring softening' behavior

is associated with electrostatic force, which tends to shift natural frequency to lower

value. In actual devices, however, mechanical and electrical nonlinearity usually

simultaneously contribute to the nonlinear behavior. In addition, the microbeam is a

distributed mass system rather than a single-degree-of-freedom system as assumed in

many models. The electric force is dependent on the variable gap between the resonant

beam and the electrode; the natural frequencies of a straight beam and a DC biased beam

are different. Thus, it is often hard to analytically predict what type of nonlinearity will

occur. Experimentally, some devices exhibited softening behavior, whereas others

exhibited hardening behavior [44l.In many experiments the 'spring hardening' behavior

was observed by increasing AC driving voltage [48-52]. The experimental data in

reference [49] are in good agreement with their simulation results, the simulation data

was derived using the method of harmonic balance by assuming the mid-plane stretching

being an only contribution to the nonlinearity without the electrostatic force; on the other

hand, the simulation results show a softening-type behavior by solely considering the

electrostatic force and neglecting the mid-plane stretching. Our experimental data, as far

as we know, first experimentally demonstrated the softening-type behavior as shown in

the figure 5.10. That quantitatively how well our experimental data can be fitted into their

model is suggested for future work.
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A comprehensive description of the distributed-parameter system for a microbeam was

introduced by accounting for mid-plane stretching, an applied axial load, and the

microbeam response to both DC and AC components [53]. The study shows that either

the increase or the decrease in the nonlinear resonance frequency depends on the sign of

the effective nonlinearity coeffìcient which is associated with the mid-plane stretching,

the DC bias voltage and the AC driving voltage, and the damping and the axial force. The

increasing in the axial force tends to improve the linear characteristics and decrease the

frequency shift. In contrast, the increasing in the mid-plane stretching will increase the

nonlinear resonance frequency. On the other hand, the DC bias voltage affects the

effective nonlinearity coeff,rcient of the system, if the sign of the effective nonlinearity

coefficient changes from positive to negative, the vibration system changes its behavior

from a 'spring hardening' type to a "spring softening' type, this is attributed to the

electrical nonlinearity, which drastically increases in magnitude and overcomes the

influence of the geometrical nonlinearity. Most likely this is the case occurred for our 150

kHz resonator, the applied DC bias voltage dominates the nonlinearity of the microbeam

rather than the mechanical stretching does. But, further quantitative calculation based on

the design parameters and the measured properties is necessary for correct evaluation of

the practical device.

5.1.2.6 Nonlinear Criterion

Theoretically critical condition for linear and nonlinear operation of the forced

vibration can be computed, the maximum vibration amplitude for the linear motion is

given by the following formula [45]
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Where h is the thickness of the microbeam, Q is the quality factor, v is the Poisson's

ration (for polysilicon v is about 0.2). When the vibration reaches nonlinear regime, the

amplitude has triple values for certain frequency, showing unstable state. Thus, resonant

amplitude u,., must be smaller than the critical amplitude in order for linear operation.

Critical amplitude calculated based on the equation (5.6) is estimated as 83 nm using the

estimated Q factor of 700.

Combining the equation 5.4 and 5.6 yields the driving voltage condition for linear

operation:

ur=
053QQ-v'z)

Equation (5.7) shows the limitation for the linear operation by the structure parameters of

device and its quality factor; and for a microstructure, driving signal and DC bias voltage

should be carefully chosen to ensure linear operation.

The theoretical calculation based on equation (5.7) predicts the critical value of DC bias

voltage for the occuffence of nonlinearity much larger than the experimental data for the

AC driving voltage of 20 mV. The theoretical computation gives a critical value of DC

bias voltage of about (6t 1) V using estimated Q value of 700 under the DC bias voltage

of I V, it is as 3 times large as the experimental value of 2 Y. But, this result is not

unreasonable, given the large uncertainties in many of the parameters. Figure 5.11 plots a

critical curve for the linear operation based on the equation (5.7).

5.6

UurUortþY 5.7
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Figure 5.12 Lock-in output versus frequency by optical beam deflection.
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Figure 5.12 shows the experimental data collected under zero DC bias voltage and AC

driving voltage of 20 mV in the turbo pumped vacuum. The data presents a very
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pronounced peak around 150 kHz, its resonant vibration amplitude was estimated about

1.5 nm. The measurement clearly demonstrates that the optical method offers much

higher resolution than the electrical measurement. Therefore, the optical testing

techniques for the characterization of the MEMS device are a good choice.

5.1.3 Experimental Data by Optical Fiber Interferometer

5.1.3.1 Resonant Frequency

The 150 kHz resonator was also examined using optical fiber interferometer as

described in the figure 4.9 of the chapter 4. Figure 5.13 illustrated the spatial relationship

between the tapered fiber and the resonator beam. It can be seen that it is hard to position

the core fiber right above the resonator with a naffow width.

Tapered fiber

250 pm coat¡ng

125 pm cladding

Figure 5.13 Schematic diagram of the tapered fiber and its position relative to the

mechanical resonator beam.

fã w=30Fril,L=300¡rm
h=1.6 pm

Resonant beam
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Figure 5.14 shows the measurement data obtained with an AC driving signal of 20 mV

and a DC bias voltage of 1 V under turbo pump vacuum. Peak resonant frequency is

1 5 1 .3 80 kHz around which phase shifts about 180 degree. Q factor of 540 was found by

-3dB definition. The data obtained here show the same behaviors as those measured using

optical beam deflection discussed previously.
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Figure 5.14 The resonator vibration measured using optical fiber interferometer

5.1.3.2 Effect of DC bias voltage
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The effect of DC bias voltage on the vibration of the resonator was also investigated

using optical fiber interferometer. The experimental data are shown in the figure 5.15,

from which the peak frequencies under different DC bias voltages were obtained and

listed in the Table 5.3.
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Table 5.3 Peak frequencies measured when Vu. :20 mV

Va" (V)

f (KHz)

V¿" (V)

0

f (KHz)

15 1.400

(Up)- frequency sweep up; (down)** frequency sweep down

0.2

5

150.880

l s l.440

0.5

6

151.420

ts0.720

7

1

151.380

1s0.480

2

8

151.300

1s0.360

>= tso
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Figure 5.15 Effect of DC bias voltage measured by optical fiber interferometer
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As same behavior as in the measurement by optical beam deflection method, the

resonant frequency decreases with increase in the DC bias voltage, and the nonlinear

vibration behavior of the resonator occurs at high DC bias voltages. The difference is that

here the changes in resonant frequency under high DC bias voltages are less than those

measured by optical beam deflection. The reason for this is unclear. It is speculated that
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the mechanical properties of the beam probably changed after high AC driving voltage

was applied during the measurement using optical beam deflection. Based on the same

data analysis as that used for the beam deflection method, the resonant frequency of

151.4 kHz and spring constant kt of 47.7 N/m were deduced by fitting the experimental

data. It is obvious that kr obtained using fiber optical interferometer is roughly two times

larger than that using optical beam deflection method. It seems that the resonant beam

became stiffer, but, resonant frequency did not increase much corresponding to the

increase of the spring constant. Quantitatively the value of k¡ seems not reasonable when

compared with the theoretical expectation and the measurement result by optical beam

deflection method.

5.1.3.3 Effect of AC exciting voltage

In figure 5.16 the effect of AC driving voltage on the vibration was investigated by

fixing DC bias voltage at 2 V . The peak frequencies under different AC driving voltages

were listed in the Table 5.4. It is evidenced that the vibration behavior is very close to be

linear under the AC voltage of 20 mV and DC bias voltage of 2 V and tends to display

nonlinearity under high AC driving voltages, especially under the AC voltage of 100mV.

The nonlinearity belongs to the type of 'spring-softening' as discussed previously. This is

contrary to the other experimental results [50-52] where the nonlinearity of 'spring

hardening' was observed when the AC driving voltage increased. These experimental

results reveal the complexity of the mechanisms affecting practical devices; they are

difficult to predict unless the controlling of all relevant parameters is available.
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Table 5.4 Peak frequencies measured when V¿. :2 V

Vu. (mV)

f (kHz)

20

151.300

40

200

150

r00

50

151.180

o
E
.Ë
CL
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V. =2Vdc

80

151.060
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T\t t v".=6omV
+ ßM,\,! Y%\ V-- = 40 mV
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150.980

Figure 5. 16 Effect of AC driving voltage on the vibration by optical fiber interferometer

5.1.3.4 Hysteresis in the Mechanical Response

The nonlinear frequency response of the vibrating amplitude predicts the possibility of

hysteresis as stated in chapter 2. Experimentally, this hysteresis was investigated by

sweeping frequency up and down, respectively. The data shown in f,rgure 5.17 indicate

that the mechanical system really displays the hysterisis behavior. The peak amplitude in

frequency sweeping-down is a little bit higher than that in frequency sweeping-up, and

the peak frequency of 149.700 kHz in the frequency sweeping-down is lower than that of

150000 r5r000 152000

Frequency (Hz)
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149.860 kHz in the frequency sweeping-up. Difference of the two frequencies is

significant for real time applications.
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Figure 5.17 Hysteresis behavior measured under a DC Bias voltage of 10 V and an AC

voltage of 20 mV by sweeping frequency up and down, respectively.
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5.1.3.5 Effect of Viscous Damping

Another factor affecting the resonator is the viscous damping of the surrounding gas.

The effect of pressure on the vibration of the resonator was roughly investigated in our

experiment, and experimental data are shown in figure 5.18. It is obviously seen that the

increasing of pressure in the vacuum chamber significantly reduced the vibration

amplitude and quality factor Q. The quality factor and the peak frequency of vibration

under different pressure environments are tabulated in Table 5.5. When the vacuum

chamber was under the pressure of atmosphere, the signals of amplitude and phase of the

Frequency
sweep up
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vibration were almost completely buried in noise background. This indicates that the

measurement of the resonator has to be carried out under certain vacuum environment.

Table 5.5 Effect of pressure on the vibration of the resonator (Va. : 2V,Vu": 20mV)

a

fp*r (kHz)

P<l0-3 torr

378

151.2

t hours after
stoooins DumD

b

5

)r
oïr^
=J.Ë
CL

1

0

90.8

150.7

(a) 9 Hours
after stoping pump

60 hours after
stoppins Dumþ

12.1

150.5

After releasing
some air in

Figure 5.18 Effect of vacuum pressure on the vibration of the resonator under DC bias

voltage of 2Y and an AC driving voltage of 20 mV.

3.7
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The interaction between the resonator and the surround gas molecules was investigated

in terms of the pressure and relative geometrical dimension of the resonator where three

situations were discussed [1]: One is for pressure much below 1 atm under which the

(c) Releasing some air in chamber
still in certain vacuum

140000 160000

Frequency (Hz)

85



mean free path of gas molecules is suff,rciently long so that they do not interact with each

other significantly. The momentum exchange of the gas molecules with the resonator

structure is proportional to the difference in velocity between them, leading to the

damping proportional to gas pressure. Second is for the micromachined resonators with

widths greater than 0.4 pm, gases can be treated as a viscous fluid where molecules

interact with each other and Stoke's Law can be employed to compute Q by taking into

account the damping force. Third is for the resonant beam with the spacing to the

substrate less than approximately one-third of the width of beam, the squeeze damping

effects take effect, where the flow velocities are subsonic. The relationship between Q

and pressure can be evaluated theoretically under the above three conditions.

The viscous damping will severely affect the performance of the micromachined

resonator, especially, when the size of resonators becomes smaller and smaller, such as

for the so-called Nano-mechanical devices (NEM). Thus, complete study on the effect of

pressure on the resonators is very necessary for the practical applications of the

micromachined resonator, especially for the vacuum package.

5.1.3.6 Conversion of Lock-in Output to Nanometer

In order to estimate the vibration amplitude of the resonator, output of lock in amplifier

in voltage needs to be converted to actual vibration amplitude. Based on the interfering

intensity equation (3.38), intensity changes with distance between the end face of fiber

and the surface of the vibrating resonator in a sinusoidal form, assuming the light

reflected back into the fiber keeps constant when the spacing d changes, the interfering

intensity I/Is changes with the distance d as illustrated in figure 5.19.

86



1

0_s

û.6

0.4

0_2

s

-0.r

-0.4

-0.6

-û.s

-1

+.
-{,
+

:F
iF

È
:F

o +

+s
+

11.

'tr-
å

-Nt-

ìlr
rL

+
+
+
+

+
+
+
+
+

"--T-"'-''l----
.r, I

+l
+*l

+r
+t+r+l
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For a small signal, the signal modulation is best to be positioned on the point of C where

the slope is maximum so as to get best sensitivity of measurement. To locate the position

C, the spacing d is adjusted to the position where the maximum signal is obtained. Also,

wavelength of light can be tuned so that the maximum signal can be obtained. In order to

determine the maximum slope, the intensity of signal should be measured against the

change of known spacing d. Because the C point is hard to set, one method can be

approximately used to estimate the slope as indicated in figure 5.19, where points A and

B can be approximated as two peak points. The peak-peak amplitude of the signal is

divided by the one fourth of the wavelength, giving the maximum slope of voltage signal

against the vibration amplitude in nanometer, i.e., conversion coefficient. In our
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experiment, wavelength of laser was tuned to the 1571(0.3) nm for the set-up of

maximum slope; the maximum peak-peak signal of about 206 mV was measured for the

vibration of the sample stage with low frequency. The conversion coeffrcient of

0.525mV/nm was roughly derived. For the measurement data obtained under the DC bias

voltage of 2 V and AC driving voltage of 20 mV, the lock-in output is 70 ¡rV in RMS, the

peak-peak value V is 198¡rV. It is also needed to account for the limited frequency

response of the photodetector and lock-in amplifier. As far as lock-in amplifier is

concerned, there exists the frequency cut-off by the bandwidth formed by input

impedance and input capacitance of lock-in amplifier in our experiment. The lock-in

input was the port of 1MO//30pF, if the capacitance contributed by coaxial cable is

included, total of 100 PF was estimate; thus, -3 dB frequency bandwidth calculated for

the lMO//tggpF is 1.59 kHz. For the input impedance of 10 kO//100pF,159 kflz

bandwidth was yielded. This tells us that the signal measured using the input port of

1MA//100pF for lock-in amplif,rer was actually decayed very much. The measurement

was carried out under the input of lMf¿//100pF and 10kO//100pF, respectively. The

lock-in output gave the value of about 70 pV for both under the V¿" of 2 V and Vu. of 20

mV. By taking account of the difference of two input impedances (1 MO and 10 kO), the

signal measured for the input of 10kO//100pF should be multiplied by 100 so as to get

the value corresponding to that for the input of I MO//100pF because the signal was

actually decayed due to the frequency cut-off during the measurement. By doing so, the

vibration amplitude of 33.8 nm was obtained, which falls in a reasonable range'
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5.2 Measurement of llMHz Resonator

5,2.1 Measurement by Network Analyzer

The sample of 18C device with 5 beams (beam L:30.6 pm,W:9pm) was measured

using network analyzer. The power of RF signal from network analyzer is 0 dbm

(0.2225V) and DC bias voltage of 25 V applied to the resonator. Measurements were

performed under the mechanical pumped vacuum chamber. No attempt was made to

match the resonator to the testing circuit. Figure 5.20 shows the results of the

measurements, where the upper part is transmission parameter 521. The data indicate that

the power transmitted through the resonator peaks at around 10.9 MHz with peak value

of -45.6 db. Corresponding to the amplitude peak, phase shift of about 8 degree is

observed in the lower part of the figure. The width of peak is large and its peak height is

very low, only about 0.5 db higher than the noise floor. Thus, it is hard to estimate Q

value for this resonator. Both very small peak value and phase change at the resonance

indicate that other parasitic signals rather than the desired signal induced by the resonant

vibration of the resonator co-exist in the measuring circuit. These parasitic signals usually

include the feedthrough capacitive signal of the resonator, bond pads capacitive signal

and the cable capacitive signal. They are frequency-dependent, leading to the upward

ramp. The experimental data show that the peak of S21 was becoming too small to be

seen when the DC bias voltage decreased down to around 15 V, indicating that the

motion current was buried in the parasitic signals. The peak value versus frequency listed

in the table 5.6 qualitatively demonstrates the dependence of the resonance frequency on

the DC bias voltage. Viscous damping can reduce the a value, following the

measurement under mechanical-pumped vacuum (usually less than 10-2 Torr), the
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vacuum chamber was pumped using turbo-molecular pump, but, no significant difference

of the measurement results under two vacuum pressures was observed, indicating that

vacuum higher than mechanical-pumped system seems not improve the resonant

vibration much (at least in our experiment). The damping caused by air becomes

negligible when the pressure is below that of the mechanical pump. The peak frequency

obtained in the measurement is very close to the data provided by Gennum Corporation.

Table 5.6 Dependence of peak frequency on DC bias voltage for P : -10dbm

V¿" (V)

f (peak)

15

I 1.080

l8

I 1.058

20

31

6-o

826I
o
Ø
G

f21

I 1.000

23

10.968

25

10.90s

30

16

Figure 5.20 Transmission parameter 321 and phase measured by network analyzer with

DC bias voltage of 25 V and RF power of 0 dBm in the vacuum for the sample 18C.
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Another sample device of FL1 with 5 fingers (beam L:30.6 pm, W:9 pm) was

measured via VNA with -10dbm and DC bias voltage 30 V under mechanical-pumped

vacuum. The data is shown in frgure 5.2l.It is clearly seen that there exist three peaks at

three different frequencies in the upper part of diagram and three correspondent phase

shifts in the lower part. The results indicate that five identical f,rngers of the resonator did

not response to the exciting signal at the same frequency. Considering the measurement

data of l8C device with five fingers, it seems that it was hard to control fabrication

process to build completely identical multiple-beams, which is initially expected for.
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Figure 5.21 Transmission parameter S21 and phase measured by network analyzer for

the sample FLl.
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All of such samples were failed during the measurement. The sample 18 C was failed

when exciting signal with high power was applied; others changed their resistivity from

open circuit into around 200 O. The direct consequence was that no any resonant peaks

could be observed again during the measurement. It is speculated that the devices are

electrostatic sensitive and probably inappropriately handling caused the breakdown

between electrode and substrate although much attention was already taken during the

measurement.

Based on the equation (5.2) and (5.3), the ratio of the motional current i, and the

feedthrough current i6 can be used to roughly evaluate the effect of parasitic signal. Here

it is not intended because of unknown Q factor. The effect of parasitic signals on the

measurement was also observed in many experiments performed by other investigators.

In reference 134,54], measurements were done for piezoelectrically/capacitively driven

resonator beam force sensors. Their experimental data also showed a pronounced

background signals occurring in the gain data, where a small resonant peak accompanied

by a small phase shift at the resonance rather than 180 degree phase change as expected

by resonance theory. The large background signals (crosstalk) were attributed to the

substrate currents which were coupled to the detection frelds. In order to eliminate the

crosstalks, other two drive-detect schemes were successfully used to suppress the

crosstalk [3a]. In reference [50], in order to separate the feedthrough current from the

motional current for a low Q comb-drive microresonator, an electromechanical amplitude

modulation (EAM) measurement system was developed to remove the parasitic signal in

frequency domain. In reference 1421, mixing technique was used to separate the motional

current from extraneous parasitic currents.
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5.2.2 Measurement of 11 MHz Resonator by Optical Fiber Interferometer

5.2.2.1 Measurement by Network Analyzer

Before measurement on the resonator (labeled as 19D 9comb with 14 beam fingers,

beam L:31.6 pm, W = 3pm) was done using optical fiber interferometer, network

analyzer was first used to examine the frequency response of the S-parameters. Figure

5.22 gives experimental data for the sample measured under the DC bias voltage of 10 V

and AC signal of -10 dbm in the mechanically pumped vacuum using network arølyzer,

indicating one resonant peak around 1I.0 MHz and another two very closed peaks around

11.805 MHz and 12.0 MHz accompanied by very small phase shifts of about a few

degree.
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Figure 5.22 Experimental datameasured using network analyzer.
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The experimental data show the significant effect of parasitic signals on the measurement,

which resulted in the degradation of signal/noise ratio. It is clear that the other better

method for characterizing this elechomechanical system is needed.

5.2.2,2 Measurement by Optical Fiber Interferometer

Figure 5.23 shows the experimental data measured under the DC bias voltage of 10 V

and AC signal of 70 mV in the turbo pumped vacuum using optical fiber interferometer.

A major amplitude peak at a frequency of I 1.805 MHz is accompanied by a large phase

shift of about 120 degree. The amplitude jump at 11.805 MHz clearly demonstrates

nonlinear behavior of vibration with the type of "spring softening" which was introduced

mainly by the electrostatic force applied to the resonator beam.
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Figure 5.23 Amplitude and phase shift versus sweeping frequency under a DC bias
voltage of 10 V and an AC exciting voltage of 70 mV in turbo pumped vacuum chamber.
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'5.2.2.3 Effect of DC Bias Voltage on Resonance

In figure 5.24 dependence of resonant frequency upon DC bias voltage was studied. It

is clearly seen that the resonant frequency decreases with increase in DC bias voltage,

peak frequency versus DC bias voltage is plotted in figure 5.25 andtabulated in Table 5.7.

As described before for the 150 kHz resonator, the experimental data were fitted as

shown in the figure 5.26,the resonant frequency atzerc DC bias and spring constant kr

were derived from the fitting results. Here the data of peak resonant frequencies were

directly taken from the measulement, errots were not considered.

Table 5.7 Peak frequency measured when Vu.: 70 mV

Va" (V)

f (MHz)

2

12.018

J

12.058

4

r 2.038

1.5

5

t 1.0

ot,
Ë-g o.s)-

t2.006

6

lt.969

7

11.937

10v

Frequency (MHz)

Figure 5.24 Dependence of resonant frequency and resonant amplitude upon DC bias

Voltages at the same AC exciting voltage of 70 mV.
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5.2.2.4 Effect of AC driving voltage on Resonance

The effect of AC exciting voltage on the resonant vibration behavior was investigated

as shown in figure 5.21 where increase in AC voltage not only induced larger vibration

amplitude but also significantly reduced the resonant frequency and enhanced the

nonlinearity. This is because the applied AC driving signals were not very small

compared to the DC bias voltages. As occurred in the 150 kHz resonator, increase in the

AC driving voltage caused the occurrence of the 'spring softening' nonlinearity instead of

"spring hardening'. The peak frequencies for different AC driving voltages are listed in

Table 5.8.

Table 5.8 Peak frequencies versus AC voltages when Va, : 10 V

V.. (mV)

I (MHz)

l0

11.862
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1 1.840
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1 1 .819
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Figure 5.27 Dependence of resonance on AC driving voltages.
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5.2.2.5 Mechanical and Electromechanical Parameters

Based on the experimental data, equivalent electrical parameters Rn.,, C, and L* for this

resonator can be approximately derived in the same way as done for the 150 kHz

resonator. The following formulas were written again to show how the electromechanical

parameters were derived.

, k-ku
uu - a )a;ry'

where U = U or:ft, unA k" - U:,ft .

Q factor of 630 was taken from the experimental data with the DC bias voltage of 4 V

and AC driving voltage of 70 mV. The values of k and oo were obtained by fitting

experimental data. ry ffird k. were calculated for U¿, of 4 V. k. is 6.4 N/m. Most of the

mechanical and electromechanical parameters for the resonator are listed in Table 5.9.

The information about the dimension, young's modulus and density of the resonator

beam was provided by Gennum Corp. The length of beam is not measurable by optical

microscopy since the clamped area is not visible due to 40 nm topography/anchor. The

length of 31.6 pm was used to calculate the resonant frequency, the expected value is

13.9 MHz for E of 165 GPa . Even if we use smaller Young's modulus E of 150 GPa, the

resonant frequency is calculated to be 13.3 MHz Here, we assume the following

uncertainties for the parameters of the 1 1 MHz resonator beam: 5o/o of E, 3yo of h and fu,

5% of L and lYo of W. By doing so f0: (I4t2) MHz was calculated. Here, the measured

resonant frequency is 12.1 MHz, which falls in the region of the expected resonant

frequency. The spring constant kr of (1.8 t 0.3) kN/m was obtained by fitting the

experimental data. When young's modulus E of 157.5 GPa is used, the calculated k1 is

98

n k-k"
rL-. - 

--------------;- unt -"t ,oQrlt
rl'

(k - k")



(2.0! 0.6) kNim, They agree very well within the uncertainty. The pull-in voltage Vpr of

(25t5) V was calculated based on the equation (2.46) by using experimental k of 1.8

kN/m. This value seems lower than that expected for the practical device. Probably the

effective overlap area of the capacitor formed by the beam and the electrode should be

considered because it may become significant when the beam becomes much smaller.

Here equivalent electrical resistance R* and equivalent inductance L. are much smaller

than that for the 150 kHz resonator beam, this is attributed to the very small beam-

electrode spacing d, which greatly enhanced the electromechanical coupling. This is

expected by the design ofbeam resonator.

Table 5.9 Theoretical and experimental data for the 11 MHz resonator

Length of beam, L, (pm)

Mechanical parameters

Width of beam, W, (pm)

Thickness of beam h'. (pm)

Beam-substrate spacing, do (nm)

Young's Modulus, E (GPa)

Density of polysilicon, p (kg/m3)

31.6r 1.6

Beam mass, m (kg x10-r3)

3.0r 0.03

Spring constant, K1 (kN/m)

t.6 r 0.05

Static capacitance, Co (ff)

Electromechanical parameters

Resonant frequency, f, (MHz)

100+3

Quality factor, Q (V¿":4V)

157r 8

EM coupling, ïì (V¿,:4V) xl0-7

Equivalent resistance, R'' (kO)

2330

Equivalent inductance, Ln., (H)

J.JJ

2.0x0.6

Equivalent capacitance, Cn,, (aF)

8.4r 0.8

Pulling Voltage, Vp"u (V)

14+ 2

630

Measured Kr (kN/m)

3.4+ 0.4

Measured f, (MHz)

300r 100

3t I

70t30

99

25!5

1.8 + 0.3

12.1+ 0.0



Chapter 6 Conclusions and Further Work

6.1 Conclusions

With the rapid development of various micromachined devices using the MEMS

technology, such as the micromechanical resonators, it is becoming more and more

important to develop the testing tools for characterization of static and dynamic behavior

of the MEMS devices in order to effectively evaluate their performances and to provide

feedback to their design and fabrication processes. Besides conventional electrical

measurements of the micromechanical devices using capacitive, piezoelectric and

piezoresistive detection with network analyzer, spectrum analyzer and lock-in techniques,

optical detection techniques, using laser beam deflection, heterodyne interferometer and

homodyne interferometer, provide much better means by their high sensitivity of sub-

nanometer resolution and much less susceptibility to parasitic signals. Through dynamic

measurements of out-of-plane vibration, the mechanical and electromechanical properties

can be obtained. These have been demonstrated through the measurements of the

microresonators in this thesis work. Both electrical and optical measurements were

carried out on the micromechanical resonators with the expected resonant frequency of

near 150 kHz and 11 MHz, respectively.

For 150 kHz resonator, measurements were performed using capacitive coupled

detection with lock-in technique as well as optical beam deflection and optical fiber

interferometer methods. The experimental data show that this system behaved very much

like a simple harmonic oscillator at low actuation levels and its resonance frequency very

close to the expected theoretical calculation. Dependence of resonance frequency on DC

bias voltage was investigated and the experimental data show a good agreement with
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theoretical expectation. In addition, non-linearity of vibration of the micromechanical

beam was observed and identified as a "spring softening" effect mainly induced by the

large electrostatic force when higher actuation levels were applied. The experimental data

demonstrate both optical methods display superior testing capability to the electrical

measurements.

For the 1l MHz resonator, electrical and optical measurements were done using

network analyzer by capacitive coupling method and optical fiber interferometer,

respectively. Electrical measurement data show three resonant peaks, indicating the

complicated electrical responses of the multi-beams structure of resonator. Its resonant

frequency obtained experimentally is in a reasonable agreement with theoretical

calculation. Dependence of resonance frequency on DC bias voltage agrees with

theoretical prediction. A "spring softening" non-linearity of the beam vibration was also

observed, which is similar to that occurred for the 150 kHz resonator.

The important features were evidenced by the experimental data are that the electrical

measurements display very small resonant peaks accompanied by very small phase shifts

and that the optical measurements show significantly large resonant peaks accompanied

by large phase shifts about 180 degree which is a typical characteristic of mechanical

resonant problem. The electrical measurements clearly indicate that the large parasitic

signals exist in the capacitive coupled detection, which can greatly degrade the

measurement. By contrast, the optical measurements are much less susceptible to the

parasitic signals, especially to the feedthrough signal caused by the static capacitance of

the resonator. Our experimental data undoubtedly demonstrate the advantages of the

optical detection over the electrical detection.
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Based on the experimental data, mechanical spring constant k and quality factor Q were

derived; and the equivalent electrical parameters (resistance R',, capacitance C- and

inductance L.) for the electromechanical system were approximately derived in terms of

equivalent electrical circuit theory. These parameters, on the one hand, can be applied to

the evaluation and simulation of the mechanical and electrical properties of the device; on

the other hand, are beneficial to the construction and simulation of practical electrical

circuits, such as, filters and oscillators.

6.2 Construction of a Microresonator Oscillator

Micromechanical resonators have potential applications in the fields of sensors and

electrical circuits of wireless communication. One possible application is to construct

oscillators using these micromachined mechanical resonators so as to replace current

quartz crystal oscillators in order for realizing system on a chip.

As described in the chapter 2, the microresonator can be modeled by the equivalent

electrical circuit composed of purely passive circuit elements L., Cn., and R,n, these

electrical components consist of a series LRC circuit for describing the current-voltage

characteristics of the resonating mechanical elements. These parameters can be found in

the way as demonstrated by the 150 KHz and 11 MHz resonators. Besides the Ln,,, C',

and Rn,,, parasitic elements in a practical electrical circuit should be appropriately

modeled and included. The parasitic feedthrough capacitor Co is a major physical element

affecting the performance of the electrical circuit. Other parasitic signals also should be

carefully treated including interconnections, couplings from input and output ports to the

ground and couplings between input and output port through the substrate.
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A basic principle for construing an oscillator requires that a micromechanical resonator

and an electronic amplifier are implemented in a positive feedback loop circuit. The

resonator serves as a time element and the amplifier as a gain element. Two conditions

need to be satisfied for the operation of the oscillator, one is that the loop gain must be

designed to be larger than unity, second is the loop phase change should be 3600 degree

at the designed oscillating frequency.

A number of different oscillator topologies have been investigated and reported [55-

60]. Among them two main types of oscillator topologies were employed, they are the

transimpedance amplifier and the pierce oscillators. The general block diagram of the

oscillator is shown in figure 6.1. The conditions for oscillation of loop circuit are

represented by the following mathematical forms:

G(iø):

lcl¡a.,¡l>t

G,,ZtZ2

Zr+Zr+2,

lc(iø) = 0o(3600)

Figure 6.1 Schematic diagram of the microresonator oscillator

(6.1)

(6.2)

(6.3)
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As shown in figure 6.1, Gn,, is the gain of an amplifier,Z,represents impedance of the

resonator, Zt aîd Zz aft the impedance of capacitive or resistive elements. The sustaining

circuit using capacitive Zt aîd Zz is defined as the pierce oscillator and for resistive Z1

and Zz the transresistance amplifier oscillator is named. The oscillator outputs its

periodical signal through a buffer amplifier which does not affect the performance of

positive feed back loop circuit.

Based on above oscillator schemes, an oscillator was constructed and tested using the

measured 11 MHz resonator. Its success still remains to be explored.
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