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Abstract 

People want to use forests for their benefits as much as possible but 

environmental impacts of their actions should be minimized. This Ieads to difficult land 

management problems with multiple, conflicting objectives. Forest land management 

analysts have developed and utilized sophisticated planning methods to address 

complex issues involving multiple objectives. An intensive literature review of these 

techniques is presented. The most popular multiobjective technique among forester is 

Goal Programrning. Multiobjective Genetic Algorithms are relatively new optimization 

techniques which have not yet been used in forestry. Two multiobjective forestry 

problems are solved using a Multiobjective Genetic Algorithm and the results are 

compared to Goal Programrning solutions. It is shown that the Multiobjective Genetic 

Algorithm cm find solutions with better tradeoffs between contliciing objectives. 
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Chapter 1 

Introduction 

Consideration of alternative uses of the forest and its products nearly always 

raises the question, "What is the best way'?" Because of the nurnber of alternatives. the 

complexity of the product interactions, and the contlicting desires of the public, an 

optimal answer may be impossible to find. Some help has been provided for forest 

managers by the decision tool known as Operations Research (OR). 

Over the past few decades several factors have altered the practice of forest land 

management. As population and resource development increase. many forest-based 

outputs are approaching or exceeding sustainable levels of use. People are increasingly 

aware of the need to preserve the forest ecosystem. to sustain threatened and 

endangered species, wildlife habitat, scenic beauty, and biodiversity. As a result. forest 

land manager - especially on public lands - are shifting their emphasis tiom the 

production of goods and services towards the maintenance of forest health. biodivenity. 

and productivity. On private timberlands this trend is tempered by the concurrent need 

to remain cornpetitive in the global market place. 

Both classes of ownenhip have created new challenges for the OR cornmunity. 

On public land, the shifi toward an ecology system model has necessitated the 

development of a new set of OR models that incorporate spatial relaiionship, ecological 

relationships, resource protection issues, and consideration of a wide spectrum of 

natural resources beyond timber. In the private sector, the increase in open. global 

markets has encouraged forest products companies to improve productivity and 

managerid eficiency while being cognizant of environmental and ecological values. 



In the late 1950's the most cornmon OR method in forestry was Linear 

Programming (LP), in which objectives and constraints are expressed in the form of 

linear equations. A few applications were suggested in the 1950's and early 1960's. 

Many of these early suggestions were for problems such as optin~izing haniest 

schedules, production mixes, and product distribution. In the 1970's, applications 

expanded rapidly. and models based on variations of LP were developed. The U.S 

Forest Service uses LP in both timber management and land-use planning. 

LP models work quite well in allocating resources for market-value goods. 

However, they may involve unredistic assurnptions when applied to the kind of 

complicated decision making situations common in multiple-use forest management. 

The manager is charged with obtaining a desired mix of goods and services fiom 

limited resources, and will usually have several alternative courses of action open to 

him. To choose among them, he must know both the tradeoffs between one coune of 

action and another. and the relative desirability of the goods and services. Goal 

Programming (GP) provides a way of allocating resources efficiently in decision 

making situations that involve multiple goals. 

To use GP to solve multiobjective problems. a target level of each goal is 

required. Decision makers usually speci@ these target levels. However. the target levels 

are somehmes not optimal in the sense that al1 or some of the target levels are still 

upgradable without sacrificing any goai. Even if target levels are optimal, the solutions 

generated by GP are sometimes extreme: that is, one or more goals are achieved but the 

other(s) might be very fa. fiorn the target level specified. This implies that good 



tradeoff solutions are not captured by GP. However, in real problerns good tradeoff 

solutions are usually preferable. 

A relatively new technique, effective at finding tradeoff solutions, is the 

Multiobjective Genetic Algorithm (MOGA). Genetic Algorithms (GAs) are useful 

search methods loosely based on ideas from population genetics. The output from a 

MOGA contains many solutions, each of which represents a good tradeoff between the 

(possibly) conflicting goals. In this thesis, it is shown that MOGAs are potentially very 

useful in solving forestry problems. 

in chapter 2. several OR techniques commonly used in forestry management are 

discussed. Fint Linear Programming, along with its variations. is exarnined. However. 

this can only optimize one objective, so multiobjective optimization techniques are 

needed to solve multiobjective problems which are comrnon in forestry. The most 

comrnon technique used in forestry management is Goal Programming. Another 

technique, used to capture uncertainties in forestry problems is called t ù n y  

optimitation. The shortest path algorithm (Dijkstra's algorithm) is described as a tool to 

determine the shonest route in a road network in a forest. Finally. Dynamic 

Programrning is described. a technique usually used to accommodate forest products 

such as tree bucking. 

In chapter 3 a literature review is presented discussing the OR techniques that 

have been proposed to solve forestry problems. Four broad areas of forestry are 

discussed: resource allocation, spatial concems, road construction, and forest products. 

Proper allocation of resources, such as labour, equipment, and land management, can 

Save a lot of money and tirne. A spatial concem arises when considering the harvest of 



adjacent land parcels in the sarne tirne period. This spatial concem is imposed in 

forestry models in order to ensure ecosystem stability. In the construction of a road 

network in a forest, econornic and environmental impacts must be considered. One of 

the main issues when considering forest products is to obtain maximal profit from 

selling the tree. In this regard, cutting patterns must be carefully designed in advance. 

in chapter 4. Genetic Algorithms are discussed. Genetic Algorithrns are 

relatively new optimization techniques based on a mode1 of biological evolution. When 

using a cycle of evaluation, selection, and genetic changes, iterated for many 

generations, the overall fitness of the population generall y improves. The individuals in 

the population represent improved solutions to whatever problem was posed. In GAs. 

the individuals converge to a single optimal value (single objective). Multiobjective 

Genetic Algorithrns are an extension of Genetic Algorithms designed such that the 

individuals in the population converge to optimal solutions representing tradeoffs 

among many objectives. 

In chapter 5, two con flicting multiobjective forestry problems are solved b y 

Goal Programrning and Multiobjective Genetic Algorithm. and the results are 

compared. In the first problern the decision maken specify a target level for each goal 

and in the second problem decision rnakers do not specify either the target levels or the 

prionties of the goals. Some MOGA solutions are comparable to GP solution. but other 

MOGA solutions represent better tradeoffs among the goals. Thus MOGA has 

excellent potential for forestry management. 



Chapter 2 

Operations Research Methods Commonly Used in Forestry 

Operations Research (OR) is the professional discipline that deals with the 

application of information technology to informed decision making. OR professionals 

aim to provide rational bases for decision-making by seeking to understand and 

structure complex situations. This understanding is used to predict system behavior 

and to predict decisions which give improved system performance. Much of this work 

is done using analytical and numerical techniques to develop and manipulate 

mathematical algorithms which mode1 the organizûtional systems composed of people. 

machines. and procedures. 

The main methods of OR are linear programming, integer and mixed 

programming, dynarnic progamrning. %=y programming, stochastic programming, 

goal progamming, etc. Using OR methods c m  Save a lot of goods. money and time as 

OR methods can provide us with information which can help make efficient decisions. 

OR rnethods have also been used to solve forestry problems as fores. problems 

become more complex. 

Forests provide many natural resources that benefit people. give shelter for 

animals and contain much of the world's biodiversity. This last topic being very 

important to the integrity of the earth's biosphere. 

Back in 1849, Faustman (1849) fint proposed a conceptually correct analysis 

of optimal rotation length for "even-aged" hmber stands. He treated timber as a 

maturing asset and located the optimum rotation-age for identifjmg harvesting (a 



fixed amount each yeac) Andersen (1976) used optimal control theory to study the 

problem and denved a mode1 identical to Faustman's. Amidon et al. (1968) found an 

optimal solution for the joint stocking-rotation decision for an even-aged stand using 

dynamic progmmming. Grevatt at d. (1967) deveioped two linear programrning 

models to aid in nursery planning. 

In the sections below, OR methods cornmonly used in forestry problems are 

described and cited so that the reader can tom a general idea about main OR methods 

that have been intensively applied to the problems. We will encounter these methods 

frequently in the rernaining chapters. 

2.1. Linear Programming 

Increasing complexity in the forestry industry characterizes the evolution of 

the planning problerns perceived by agency analysts, planners and managers. They are 

pressured by society to take into concems about threatened species and endangered 

species, wildemess and old growth presewation, water quality and road construction. 

Consequently, forest planners have to follow a systematic planning procedure 

proposed by Cortner et al. (1983), which 

1. Defines objectives or values to be optimized: 

2. Identifies the full range of possible alternatives for achieving the desired 

objectives; 

3. Cornprehensively evaluates the physical, environmental, social. md economic 

consequences of each alternatives; and 

4. Chooses the course of action which best realizes the stated objectives. 



To best satisfy al1 the issues, linear programming (LP) has been utilized. 

Navon (1971) used LP to develop a timber resource allocation mode1 (timber RAM) 

that saw widespread use throughout the forest comrnunity. It was designed p r i m d y  

to address timber production, but the many other forest values such as recreation and 

wildlife were addressed by way of constraints on harvest and regeneration activities. 

LP is an optimization method applicable for the solution of problems in which 

the objective ninction and the constraints appear as linear hnctions of decision 

variables. The constnint equations in a LP problem may be in the form of equalities 

or inequalities. 

The general LP problem can be stated in the following standard tom 

(Grossman, 1 99 1 ) 

subject to constraints 

where ci, b j ,  and av ( i=1,2 ,..., rn; j=1 ,2  ,..., n) are known constants. and 

x are decision variables. 

Any LP problem can be put in the standard fonn by the use of the following 

transformations. 



1. The maximization of a function f '(xi , x7 ,..., x, ) is equivalent to the minimization 

of the negative of the same function. 

2. In most real optimization problerns, decision variables, x,, have to be 

nomegative. However, a variable may be unrestricted in sign in some problems. In 

such a case, an unrestricted variable (which can take a positive. negative or zero 

value) cm be written as the difference of two nomegative variables. Thus, if .rj is 

unrestricted in sign. it can be written as .r,- = x) - XI. where x) > O and 17 2 0. 

3. If a constraint appears in the f o m  of a "less than" type of inequality it c m  be 

converted into the equality by adding a n o ~ e g a t i v e  slack variable. Similady. if 

the constraint is in the form of a "greater than" type of inequality it c m  be 

converted into the equality form by subtracting a variable known as surplus 

variable. 

The standard simplex solution method is available in many computer sofhvare 

packages such as LINDO and LMGGO (LMDO Systems Inc.) which cm be used to 

solve this LP problem. 

Example 2.1; 

LP is used to solve a simple reforestation planning and budgeting problem. 

Assume that the activity alternatives available to the forest manager include the 

following four land classes: 

Class 1: Site II type B bue land with a north aspect in seed zone 53 
Class 2: Site III type B bare land with a south aspect in seed zone 52 

Class 3: Site IV type B bare land with a north aspect in seed zone 5 1 

Class 4: Site II substocked land with a south aspect in seed zone 52 



Assume M e r  that there are 100 acres in each land class and that any portion 

of the total may be scheduled for treatrnent. Resources available are: budget-S8000; 

seedlings-30,000, 55,000 and 35,000 for zones 5 1. 52. and 53. respectively; and seeds 

- 251b for each zone. 

Assume that 0.75 Ib of seed or 600 seedlings are required to treat 1 acre of 

bare land. and in the case of interplanting, 500 seedlings per acre. If necessary, seed 

and seedlings may be transferred between adjacent zones. Thus seedling supply in 

zone 5 1 is 85,000 trees; in zone 52, 120,000 trees; and in zone 53. 90.000 trees. 

The alternative activities. capital requirements, and activity values are s h o w  

in the following table. There are two alternative activities - seeding or planting - for 

bare land situations, while interplanting is the only possible treatment for substocked 

plantations. In the paragraph above there are in total 30.000+55.000 + 35,000 = 

120,000 seedlings available. Zone 51 and 52 are adjacent and hence zone 51 could 

have 30,000 + 55,000 or 55,000 seedlings if zone 52 used none. 



Decision 

Variable 

Acres planted in land 

class 1, aeed zone 53 

Acres seeded in land 

CIass 1, seed zone 53 

Acres planteci in land 

class 2 seed zone 52 

Acres seeded in land 

class 2 seed zone 52 

Acres planted in land 

class 2 seed zone 51 

Acres seeded in land 

class 2 seed zone 51 

Acres interplanted in 

land class 4, seed zone 52 

Resources requirements 

Capital / Seedlings 1 Seeds 

Present net 

Worth 
(5) 

The objective function of this problem is to maximize present net worth of 

acres planted, that is. 

Maximize 

(1 6 3 . 2 0 ~ ~  + 104.10~7 - + 5 8 . 9 0 ~ ~  + 19.30.~~ + 6.30~~ - 1 . 3 5 ~ ~  + 7 3 . 8 0 ~ ~ )  

Constraints are 



1. Budget constraint 

3 1 . 5 0 ~ ~ + 1 0 . 8 0 ~ ~  - +31.50...3+10.80.~;l+31.50.rj+10.80.rg +?4.00~7 I 8.000 

2. Seedling consbaints 

6 0 0 ~ 1  < 90,000 

60Oxc 5 55.000 

600 x1 + 600 x3 + 600 .Y + 500 s7 < 120.000 

3. Seed constraints 

0.75~7 - 5 50 

0.75.q 1 75 

0.75 .Q 1 50 

0.75 .q + 0.75 .q + 0.75 .rg C 75 

3. Area constraints 

.q + 12 < 100 (land class 1) 

r~ + .r4 I 100 (land class 2) 

xg + "6 5 100 (land class 3) 

<- 100 (land class 4) 

5. Nonnegative solutions, xi 2 O for i = 1. . . . ,7. 

Solving the above problem using LMGO gives results as follows. Objective 

value = $26290.00. = 100.00. ~2 = O. = 16-67. .y4 = 83 3 3 .  x j = O. - ~ g  = O, -r7 

= 100.00. 



2.2. Integer Linear and Miwed Lnteger Linear Programming 

Forestry problems have becorne more complex due to considerations of 

environmental impacts, recreational and other needs from the forests. Spatial 

consideration is one of the central issues that foresters have to take account in their 

decisions. This means that harvesting is restncted to a certain area. Therefore, forests 

should be blocked into contiguous areas so that, for exarnple. adjacent blocks c m o t  

be harvested in the same period of time. To accomrnodate this concern. a mode1 c m  be 

creating using integer 0-1 programrning, with 1 indicating harvesting and O indicating 

not harvesting. Similarly in resource allocation problems. integer variables c m  be used 

to indicate decisions such as the amount of equipment to buy or the arnount which 

must be operated in order to achieve the required goals. 

Integer linear programming is similar to linear programming except that al1 

variables c m  only take integer values. Usually to solve this integer linear 

programming the equivalent linear programming is solved fint and then the integer 

constraints are introduced using certain methods such as the commonly used branch 

and bound method (Winston. 1987). Mixed Integer Linear Prograrnrning is similar in 

that some of the variables are integer variables, but the remaining variables are 

continuous variables. 

2.3. Goal Progamming 

Multiple-use forest resource problems involve a consideration of multiple 

conflicting goals and objectives nich as: increased net revenue from tirnber resources. 

improved water qudity, protection of wildlife, presmation of natural beauty, and 

increased recreational opportunities. Managing multiple-use resources requires more 



complicated decision making. Managers are charged with obtaining a desired rnix of 

goods and services using limited resources, and will usually have several alternative 

courses of action open to them. To choose among them, they must know both the 

tradeoff between one course of action and another. and the relative desirability of the 

goods and services. For exarnple. if the decision makers want to provide 20 % more 

recreation in the forests. what quantity of timber products (if any) must be 

relinquished, and is there enough money and land to provide both the desired 

recreation and timber products ? (Schuler. et al. 1975). 

Finding the best solution to multiple-use forest resources is very hard because 

some problems (goals) are complementary. For instance. Some timber hamesting 

helps wildlife by improving habitat. providing good forage. but full utilization of 

forage reduces timber yield. Since it is not possible to meet al1 objectives (goals). a 

good balancing (tradeoff) solution among the goals is preferable. The best tradeoff 

solutions are ofien considered to lie on the non-dominated (Pareto-optimal) set. 

Pareto Optimal 

In multi criterion or multiobjective problems, there is typically no solution that is 

"better than" al1 others, but rather tradeoffs must be made benveen the various 

objective fictions. 

Suppose, without loss of generality, that the objective functions form the 

vector function 

with 



for each component f ,  , and assume further that each function is to be minimized. A 

solution .TE S is now said to dominate another solution y E S if it is no worse with 

respect to any component than y and is better with respect to at least one. Formally 

xdominate-v o t/&{1,2 ,..., ~}:L(..)I~;[V) 
and 3 j a ( l . ~  ..... n}: f,(x)c f , (v)  

A solution is said to be Pareto Optimal in S if it is not dorninated by any other 

solution in S ,  and the Pareto optimal set or Pareto optimal front is the set of such 

nondominated solutions, defined forma11 y as 

Multiobjective problems are usually formulated as covering problems. with the 

goal being to find either the entire Pareto optimal set. or a number of difkent points 

near it. 

Goal programming (GP) provides a way of allocating resources efficiently in 

decision making situations that involve mutiobjectives. Field (1973) is the first 

researcher introducing goal prognmming to solve multiobjective forestry problems. 

A GP decision situation is generally characterized by multiple objectives. 

Some of these objectives may be cornplementary. while others may be conflicting in 

nature. GP ailows the decision mdcer to speciQ a target for each objective. A solution 

of the complete problem minimizes the total deviations from the prescribed set of 

target values. The method for minùnizing this deviation is called the rnethod of 

distance function (Srinivas, N. et al. 1994). Our usage of the term goal fùnction is 

synonymous with that of the objective function. 



The team of Chames and Cooper (1961) is generally credited with introducing 

the method to industrial problems. It may be noted that the initial purpose of 

developing the method was not multiple-objective decision making, but its 

subsequent use justifies the aedit generally given to Charnes and Cooper for 

pioneenng in the field. Lee (1972) has applied GP to problems in production planning, 

financial decisions, academic planning, and medical care. to mention a few. More 

recently, Kendall and Lee (1980) have applied the technique to the design of the 

operating policy of a blood bank. A text by Ignizio (1976) deals with GP. exclusively, 

as it extends the general fomulation to linear integer. and nonlinea. forms: it also 

offers a computer code with a cutting-plane option. Werczberger (1976) uses GP for 

industrial-location anal ysis involving environmental factors. and Bres et al. ( 1 980) 

analyze military-manpower problems using this approach. 

One form of GP mode1 can be stated as follows: 

Subject to x E X 

where T; denotes the target or goal set by the decision maker for the ith linear 

objective function Fi(x), and X represents the feasible region defined by a systern of 

linear inequalitiedor equalities. A more general formulation of the GP objective 

function is a weighted sum of the pth power of the deviation 15 (x) - T , I  ( Haimes et 

al., 1975). Such a formulation has been called generalized GP ( ignizio, 1976, 198 1 ; 

Szidarovszky, 1979). 



Retuming to formulation (1) above, the objective tùnction is nonlinear and the 

simplex method. with its many inherent advantages, cannot be applied directly. 

However. it is possible to transform (1) into a linear form, thus reducing GP to a 

special type of linear prograrnming. The transformation (Chames and Cooper. 196 1 ) 

defines new slack variables di+ and d~ such that 

Examination of 2 reveals that d: is the positive deviation f?om the ith target for the 

ith objective (i.e., overachievement of a goal). The second slack variable d l  is the 

negative deviation From the ith target for the ith objective (i.e.. undenchievernent of a 

g o a .  

Adding (2) to (3). it is seen that 

d: + d; =I<.(x) - TJ 

Thus the objective function in formulation (3-1) can be replaced by an equivalent 

linear relationship. Furthemore, by subtracting (2) from (3). we get 

&@)-Ti =cl; -d; 

It is also required that d: and d;be nomegative. that is d r  . d; 2 0 . and. 

since it is not possible to have both underachievement and overachievement of a goal 

simuItaneousIy, then one or both of the deviationai slack variables must have a zero 

value; that is 



Fortunately, this constraint is automatically fulfilled by the simplex method. 

This is because the objective function will drive either ( or perhaps both ) di+ or d; 

to zero for al1 i. 

Thus, an equhralent linear fomulation of ( ! ) is 

rJ 
min = c (dif + tir) 

i=l 

Subject to x E X 

Once the GP model is fomulated as in (4, the computationd procedure c m  

make use of the simplex method as in linear programrning method described in section 

1.1. 

In formulation (4), both diç and d~ appear in the objective tùnction and are 

assigned equal weights. This fotm of the model will attempt to achieve the goal 

exactly; but, if exact achievement is not possible, no preference for overachievernent 

or underachievement of a goal is built into the model. Nor is any goal in formulation 

(4) given any particular weight. However, it is possible to assign pnority factors and 

weights to goals. Only a slight modification of formulation (4) is required. 



Assigning Priority Factors (Ordinal Ranking and Weights (Cardinal Ranking) to 

Goals 

To express preference for deviations, the decision maker can assign relative 

weights wif , NF to positive and negative deviations. respectively. for each target. c. 

Since we are minimizinp, cliciosing the M;iC tu be liuger iIim WT wouid be expressing 

preference for underachievement of a goal (for example, such may be the case when 

overachievement would result in an overtime requirement). 

In addition, GP allows flexibility needed to deal with cases with conflicting 

multiple goals. Essentially, goals can be ranked in order of importance. That is, a 

pnority factor, 4 (i = 1, ..., p) is assigned to the deviation slack variables associated 

with the goals. These factors. 4 .  are conceptually different %om weights. as will be 

illustrated in the next section. It is assumed that the priorities are ordered so that for i = 

1. .. .. p, 4 :: >+1 . Another possibility is >> + which is equivalent to stating 

that goal i has absolute pnonty over goal i + 1. 

Thus, our GP mode1 is now formulated as: 

Subject to 



Solution Method 

The simplex method can also be applied to solve the problem by making some 

modification to the GP. Goal 1 (priority 1) is solved first by ignoring the other lower 

pnorities. Putting this resulting goal I as a constraint, goal 2 (priority 2) is solved by 

ignonng the other lower pnorities and this procedure is continued until the lowest 

pnonty is solved. There are many commercial software packages available to solve 

this GP. Usually before analysts solve the GP problem. the project manager has to 

speciQ priorities and weights. In practice it is ofien very difficult to determine 

appropnate priorities and weights in a specific problem. 

There are many techniques proposed by researchers to resolve these problems 

of assigning of weights and priorities in GP models. Rustagi et al (1987) describe in 

their paper titled "resolving multiple goal conflicts with interactive goal 

programrning" how "interactive goal prograrnming" is used. [n this method the 

problem is fint solved with initial target levels and weights. On the basis of this 

solution, the project manager would revise the target levels and weights and the 

process would be repeated until an acceptable cornpromised is found. 

Dyer et al., (1979) consider GP with "preemptive priorities". where weights 

are not included. Preemptive pnonties are not ngidly determined and the method 

attempts to reorder the priorities so as to get the optimal result. 

Kangas et al., (1992) suggest that the project manager's judgment of prionties 

is most of the time not very accurate. They give a method for detmining priorities by 



using analytic hierarchy process. In the next example we will see how GP can be used 

to best satisfi our preferences in a mal1 forestry problern. 

Exampie 2.3 

Jackson has 24 acres of fallow land available and wants to use it to increase 

hisher income. He can either plant fast-gro hybrid Christmas tree transplants that 

mature in one year, or he can fatten steers by putting part of his acreage in Pasture. 

The trees are planted and sold in lots of 1,000. It takes 1.5 acres to grow a lot of trees 

and 4.0 acres to fatten a steer. The famer is busy and only has 100 hours per year to 

spend on this enterprise. Experience shows it takes 20 hours to cultivate. prune. 

harvest, and package one lot of trees and also 10 houn per steer. There is a S 1,200.00 

operating budget available for the year and annual expense are S30 per lot of trees and 

S240 per steer. At current prices. Christmas trees will retum a net revenue of 50.50 

each and steers will return a net revenue of $1,000 each. 

For other reasons, he!she wanted to use al1 of the budget allocation and that he 

ûuly hoped for an even mix of 5 steers and 5 tree lots. Achieving these three goals is 

more important than maximizing income. and and achieving the budget goal is at least 

twice as important as either of the other 2 goals. 

Let .q = number of steers fattened per year 

xz = number of 1000-tree lots of fast-gro-Christmas trees grown per year 

The formulations of the goals are: 

(1) achieving 5 steers; 

-ri = 5 

(2) achieving 5 tree lots; 



..Y2 = 5 

(3) spending al1 the budget: 

240 + 30 -Q = 1,200 

Constraints; 

(1) Land 24 acres available, 4 acres per steer, 1.5 acres per tree lot. So we get 

4.q + l.j.r, - 5 24 

(2) Budget: B 1,200 available, $ 240 per steer. S 30 per tree lot. So we gete 

140.~~ +30xî  - S 1,200 

(3) Labor 200 hours available, 10 hours per steer, 20 hours per tree lot. So we get 

20 .ri + 20 x, - 1 200 

Then we introduce additional variables to represent deviation tiom the goals. 

Let d i  = positive deviation (amount of overachievernent) from the 5 steer goal. 

d l  = negative deviation (amount of underachievement) h m  the 5 steer goal. 

df = positive deviation from the 5 tree goal. 

d~ = negative deviation from the 5 tree soals. 

d; = positive deviation from the S 1,200 budget goal 

dy = negative deviation from the S 1,200 budget goal 

So our objective now is to: 

Minimize(di + d i  ) +(dT - + d r )  + 2 (d3+ + d ~ )  

Subject to: 

4-14 + 1.5 .q 1 24 



+ d~ - d: = 5  - 

xl,  . Y  r O 

Solving this formulation using LMGGO gives us the results summarized 

below: 

Variable 

di+ 

di 

df 

dy 

d,' 

-Q 

value 

O 

0.5 

O 

O 

O 

O 

4.5 

4.0 

row 

land 

labor 

budget 

steers 

trees 

slack 

We can see from this result that the solution minimizes the deviations at q = 4.5 and 

- 2  4.0. Al1 of the budget and land are used. By implementing diis result he will have 

profit of S 4.0( 1 OOOxO.5) + S4.5~  1000 = S6500. 



2.4. F u v y  Optimization 

Allen et al. (1986) described forest planning or systems not only as complex 

but also as wicked systems. This is due to the diversified nature of the forest itself as 

well as the different biological, physical, and economic processes within and outside 

the forest ecosystem. In view of the inherent complexity of the forests, planning for 

their efficient use and the effective management has become an increasingly difficult 

task. 

Concems about the use of LP models have also been raised (Bare et.al, 1987). 

The main aiticisms deal with the inherently deterministic nature of LP models. and 

their use of precise coefficients. In traditional LP models. the coefficients or 

parameters are assumed to be known with certainty, but in many real world forest 

planning situations it is very unlikely that this assumption is valid. For example. forest 

managers often have to deal with insufficient or imperfect information due to the 

inherent complexity of the system as described above. In this case. the forest managers 

have to be able to capture the uncertainties in their decisions 

The term "uncertainty" has been widely used to describe several phenomena. It 

has been used to represent risks, imprecision, randormess. inaccuracy, ambiguity or 

inexactness. In Our discussion here in this thesis. uncertainty is used to retlect any 

phenomena other than those regarded as random or probabilistic in nature. There are 

severai reasons for incorporating uncertainty in forest planning. First. forest planning 

involves long planning horizons (e.g. several decades) with accurate long-term 

projections generally difficult to make and are at best only educated guesses of future 

outcornes. Future timber pnces, for instance, are highiy dependent on several variables 



making them difficult to predict. Moreover, most forest lands covering large diverse 

geographical areas produce multiple goods and services which are valued differentl y 

by forest users. Some of these uses can be adequately measured while others are 

inherently qualitative and difficult to quanti@. Finally, forest planning often requires 

the incorporation of human subjectivity w hich is both di fficul t to elicit and express in 

quantitative ternis. Therefore, the use of optimization models that can incorporate 

imprecise information, has become a prerequisite to comprehensive planning, 

particularly in complex planning environments, such as forestry. A relatively new 

approach called fuvy programming may be better suited under these environments. 

Basics of F l q  Set T7ieor-y 

In this section. a forma1 treatment of fuzzy logic is provided by considering 

mernbership or indicator functions for fuuy sets (objective targets) and fuuy 

members for imprecise values of the technical coefficients in the decision model. This 

background constitutes the forma1 foundation for the fuuy programrning. 

FUZT sets and ntembership/iinctions 

An element x of X is assigned to an ordinary (crisp) set .4 via the 

characteristic Function p.d such that: p ~ ( x ) = l  if X E A .  and 

p A (x) = O if x E A .  The valuation set for the function is the pair of points 

(0,l). A fiiW set 2 is also described by a characteristic hc t ion .  the difference 

being that the h c t i o n  now maps to al1 points in the closed interval [O, 11. 



Formally, a funy set 2 of the universal set X is defined by its membership 

function p 3 : X + [O. 1 1, which assigns to each element x E X a real number p *T (x) 

in the interval [0,1], where the value of p.; at x represents the grade or degree of 

membership of x in 2 (Sakawa 1993). While membership functions can take on a 

vvicty of functiond foms. linear spccifications arc o f i m  emplopd. 

As an example of fuvy membership, consider the set of "natural forests". It is 

clear that old-growth forests belong to this set, they have a degree of membership 

equal to 1. As we consider progressively heavier Iogged forests, the descriptor 

"natural" becomes less apt. 1s a selectively logged forest "natural"?. To capture the 

uncertainty surrounding their membership in the set of "natunl forests". panly logged 

forests are assigned a partial degree of membership, something less than one. This is 

an example of a one-sided f u a y  set. Membership in this set approaches zero ûs the 

exploitation pressure increases. 

In this regard. fuzzy set theory can be used to deal with unclear objectives. 

This will be illustrated with an example. An objective of the land-use decision mode1 

developed below will be to preserve wildemess by setting land aside as protected 

areas. The question is: how much land should be protected? According to some 

governrnent guidelines 15% of the land should be protected. Since "undershooting" of 

this goal will be politically sensitive, it can be argued that 15% serves to define the 

lower limit and a lower percentage of the land base as wilderness will be unacceptable 

and have a membership value of O. On the other hand, there are many who would 

argue that more land should be set aside. Claims up to 35% have been put fonvard. If 



we adopt 35% as a perfectly satisfactory level of forest protection, then the linear 

membership function descnbing the fuay set for a forest x is: 

 pi(^) = I r  ifPA 1 35% 

pi (x) = (PA - 19435 - 15). if 15% I PAS 35% 

pi (.Y) = O, if P.AI  ! $O/, 

where PA refers to the percentage of the land base that is to be protected. If the 

solution to the optimization problem allocates 25% of the land base to protected areas. 

pi (x) = 0.50. 

The preceding definitions have employed the concept of a normalized h u y  

set. A funy set A, defined over a finite interval, is said to be normal if there exists an 

X E  X suchthat pa4(x)=l.and pa4(x; 51 VXE X. 

Set theoretic operations are defined for tùzzy sets. Among these are the 

concepts of containment, complement, intersection and union. A fuvy  set .4 is 

contained in the f u z y  set B (.?is a subset of B), if and only if the membership 

function of 2 is less than or qua1 to that of everywhere on X : 

A ~ Ë o y ~ ~ ( . r ) ~ p ~ ( . r )  fora11 XEX.  

nie  complement of 2 (written as A ) is defined as: 

~2 (-Y) = 1 - p *; (1). 

The intersection of fuay set -1 and Ë is defined as: 

A n L  p(dnz) = min{pd(...), ps(x)} fora11 .XE X ,  andtheunionas: 



Hence, the intersection 2 ri is the largest fiizzy set contained in both 2 and , and 

the union 2 u is the srnallest funy set containing both 2 and B . 

While both union and intersection of fiinv sets are commutative, associate and 

distributive, as is the case for ordinary or crisp sets, fuzzy logic deviates from crisp 

logic because, if we do not know 2 with certainty, then its complement A is also 

not known with certainty. Thus, A n  .z does not produce the nul1 set as is the case for 

crisp sets (where A C  n A = @). Thus, hzzy logic violates the "law of non- 

contradiction". It also violates the "law of the excluded middle" because the union of a 

funy set and its complement does not equal the univene of discourse - the universal 

set X . Thus, d is properly fuvy  iff d u A t X (Kosko 1992). 

Another concept required for mode1 building with fuzzy sets is that of the a - 

level set. The a -1evel set& is simply that subset of.: for which the degree of 

membership exceeds the levela. and is itself a crisp set (an element either meets the 

required level of a or it does not). 

rl, is an upper level set of A. The use of a -1evel sets provides a means of transfemng 

information fkom a funy set into a crisp fom. Defining an a -1evel set is refmed to 

as taking an a -cut, cutting off that portion of the fuzzy set whose members do not 

have the required membership or possibility value. It can be argued that the level of 

the a -cut is a measure of the faith that the decision maker has in the reliability of the 

imprecise coefficient. The more the decision makers' confidence, the higher the a -cut 

is set. 



F q  Linear Programming 

Fuzziness c m  be modeled in several ways depending upon the nature of 

imprecision, the context in which uncertainty occurs, and how it is accomrnodated in 

the problem. For instance, in a mathematical programrning setting, Fuviness c m  be 

restricted to the constraints, the objective function, or both; and fuviness may be 

manifested as fuzzy numbers (i.e., coefficients in the objective function or constraints) 

or as fwzy sets (i.e., the objective function or constraints). 

Before formally defining the fuzzy LP. note that the classical LP problem c m  

be restated as follows(Sukawa 1993): 

minimize = = cx 

subject to AK 5 b 

x 1 0  

where c =(cl ,..., c,), x=(q  ,..., .Y,)? b=(bl ,..., bm)7. A =  mx n matrix. 

Zimmermann (1976) proposed to soften the rigid requirements of the decision 

maker to sûictly minimize the objective function and to strictly satisfy the constraints. 

In other words, the goal of the decision rnaker c m  be expressed as a fiizzy set and the 

solution space is defined by constraints that can be modeled by f u u y  sets. In such 

situation a better mode1 than (2.4.1) would be: 

Find x such that 



where the syrnbol " 2" denotes a relaxed or fuvy version of the ordinary inequality 

"I". These funy inequalities rnean that the objective function cx should be 

essentially smaller than or equal to ;, vaguely specified by decision maken or 

maximum value of the cnsp systems of the problem, and the constraints AX should 

be essentially smaller than or equal to b , rrspectively. 

By substituting (1) = B and (i ] = c i .  (2.42) becornes: 

Find x such that 

BK 2 d 
(2.43) 

x 2 0  

Each of the (m +1) rows of (2.4.3) shall now be represented by a k u y  set. whose 

mernbership functions are pi (x) , i = 1, ..., m + l . pi (x) cm be interpreted as the 

degree to which r fùlfills (satisfies) the fuzy  inequality ( B x ) ~  2 (d)i .  

Denote the ith fuzzy inequality ( B x ) ~  2 (d)i, i = O, 1,. . . , m,  Zimmeman 

used the following Iinear rnembership function: 

(2.4.4) 

where each pi is a subjectively chosen constant expressing the limit of the admissible 

violation of the ith inequality. This ensures that the ith membership function should be 



1 if the ith constraint is well satisfied, O if the ith constraint is violated beyond its limit 

pi, and linear in between. 

Following the funy programming method of Bellman and Zadedh (1970) to 

choose X* such that 

u(x*)= m m  min {u ( (B~)~) ) .  (3.4.5) 
x10 i=O, .... m 

in other words, the problem is to find the X* 2 O which maximizes the smallest 

membership function values( i.e. try to minimize the deviation of the inequalities from 

being fully satisfied). Substituting (2.4.5) to (2.4.4) yields. after some rearrangements 

(Zimmermann 1976), 

m m  min 
x10 i = O  ...., m Pi 

introducing one new variable h , this problem c m  be transfonned into the 

following equivalent conventional LP problem: 

ma~imize  h 

subject to 

If the optimal solution to (2.4.5) is the vector (h*.x*) then x' is the 

maximizing solution (2.4.5) of model (2.4.2) . We should realize that the rnaximizïng 

solution can be found by solving one standard (crispl LP. 



2.5. Shortest Paths 

Transportation systems in forests are one of the most crucial decisions that 

have to be made. The determination of the shortest route (or path) through a network 

of available routes is often an important step in planning transportation. A system of 

forest routes may be described as a network, a collection of intercomected segments 

or links. Each link describes a unique path between two adjacent nodes. A node is any 

feature that might be treated as the point of depature or destination of some path 

through the network, such as a landing or mil1 (Carson et al. 1978). Nodes are also 

commonly used to indicate points at which road design standards change or there is a 

marked change in grade or curvature. Such changes would be expected to influence 

costs of hauling logs (Byme et al. 1960) and may therefore be of interest in the 

solution of many transportation problerns. 

Planning a network for transportation in a forest is also very important since 

we cm reduce transportation costs by having an efficient network. Before deciding on 

a permanent system of forest roads. we usually create a network roûd plan and put a 

cost value on each road segment in the network. Then we analyze the network road 

planning to get a more efficient alternative road network. The shortest path aigorithm 

is commonly utilized for this purpose (Carson. et. al 1978). 

The shortest path c m  be found by using a linear optirnization method or an 

efficient graphical solution procedure (Mandl 1979). We will first use the formulation 

of shortest distances (paths) as a iinear optimization model. 

Assume a directed network given by N = (X, A) has a set of nodes X and set 

of arcs A. Suppose that each arc j E A has a length or other cost measurement ci. if 



we want to find the shortest distance and route fiom nodes s E X to node t E X then 

this can be formulated as a linear optimization mode1 as follows: let -9 be a variable 

which has value one if the arc j is used on the route fiom s to i ,  and is otherwise 

zero. The problem becomes then 

minimize C c;x j  

subject to 

(1 for k = s ~ X  

j~ A with initia1 j~ -4 with terminal 
vertex k~ ,Y vertex X-E .Y [ - 1 f o r k = t ~  x 

One convenient property of this problem is that there is always a solution 

(Mandl 1979) in which the variables al1 have values O or 1. even if the variables are 

continuous. Hence. there is no need to specify this condition. Equations (2) are called 

the conservation equations and simply state that if a route enters a node then it must 

also leave the node, unless this node is the ongin or destination. 

Equation (2) may be wrinen as 

B... = e 

where B denotes the network incidence maaix, xthe flow vector and e the ri&- 

hand side vector of equation (2). 

1 if arc j starts at vertex i 

The entries of B are defined by: bv = O if arc j neither starts nor ends at vertex i 
- 1 if arc j ends at vertex i. 



Obviously, both problem (1) - (3) may be solved with the simplex algorithm. 

However due to the specid structure of the incidence matrix, faster algorithrns are 

available. One of the algorithrns is called Dijkstra's algorithm (Winston 1987). For 

this algonihm it must be assumed that the cost c 2 0 for dl arcs j E A . However, 

for problems we are considenng this is not a restrictive assumption. because negative 

costs do not have a practical meaning. The algodhm is divided into two parts: first the 

shortest distance are found, and, secondly. the associated shortest paths. 

Mgonthm D ( Dijkstra's algorithm for shortest distances) 

To each node .ré X a value V ~ Y )  is assigned. which at the end will denote 

the shortest distance tiom some node SE X . This value V(Y) may be ternporary. 

indicating that V ~ Y )  could still be reduced, or permanent, indicating that this value 

denotes the shortest distance trom s to node K. 

D 1 [Initialization]. Set v(s)  t 0 and mark this value as permanent. Set i(x) t = 

for al1 XE X and # s and mark these values as ternporary. Set p t S. the 

curent working node. 

D2 [Updating the values]. For al1 nodes .Y which have temporary values ver) and 

which are connected by an arc h m  p , set v(r) c min [Y(-r ), i(p)+ C ( ~ , X ) ] ,  where 
.r 

c ( p , x )  is the length fiom node p to node x . 

D3 Fixing a value as permanent]. Arnong al1 nodes x with associated temporary 

values v(x )  choose a node y for which vk) = m h  vk) . Mark the value v(y ) as 



permanent and set p t y.  If no such nodes x exist (so y cannot be found), go to 

D4. 

D4 [Terrnination]. If the shortest distance from node s to node t is wanted and if 

p = t , then the algorîthm terminates with v(t) as the answer. If p # t we retum 

to D2. If the shortest distance fiom node s to ail other nodes are wanted then the 

alg~rîthm terminates if al1 values v t . )  are permanent; othenvise return to D2. 

- 
Algorithm D ( algorithm for shortest routes) 

To apply thiç algorithm, algonthm D has first to be solved and the values v(x) 

- 
are used as an input to algorithm D . 

- 
D 1 [Initialization]. Set p t t . where t is the node for which a shortest path from s 

is required. The value v(t)  from aigorithm D rnust be permanent. p is the current 

working node. 

- 
0 2 [Iteration]. From among al1 nodes XE X from which there is an arc from .r to 

node p find the node y ,  for which v t v ) + c ( y , p ) = v ( p ) ,  where arc c (y ,p )  

connects node y with node p .  Store arc c(y, p) as belonging to the shortest route. 

- 
0 3 [Termination]. Set p + y .  If p = s the algorithm terminates with the sequence 

- 
of arcs belonging to the shortest s to f route as the result. If p # s retum to 0 2 .  



Example 1.5; 

Consider the following network transportation problem. (X = ( l i ,  v, w, y ,  r }) 

with the associated costs, and structure s h o w  in the diagram below. Node 11 is a 

landing and node r is the mill. We want to find the most efficient route to drive Iogs 

from the landing to the mill through the existing network transportation. 

We now want to find the shortest path from node u to node z, and therefore first apply 

algorithm D . 

Dl: V(LI)+O, v(v)+ v(w)+ V ( X ) C  v ( y ) t  v ( z ) t o o ,  p t LI. 

v(u ) is permanent. 

D2: v(y)tmin[-,0+4]=4 v(w)tmin[-,0+3]=3 



~ ~ r ) t r n i n [ - , 0 + 2 ] = 2  v ( v ) t m i n [ = , o + ~ ] = ~  

D3: v(v) is permanent. p + v 

D4: Retum to D2. 

D2: v ( w ) c  min [3,l+ 1]= 2 ,  v(z) t min [=,1+ 2]=  3 

D3: v C , )  or v(w) is permanent. Choosc v(.r). p t x. 

D4: Return to D2. 

D2: v(y) t min [4,2 + 2]=  4 v(w) c min [2,2 + 5 ] =  2 

v(z) t min [3,2 + 4]= 3 

D3: v(w)  is permanent. p t w 

D4: R e t m  to D2. 

D7: v(z) c min [3,2 + 3]= 3 

D3: v(z)  is permanent. p t z . 

D4: Terminate. The shortest distance from u to z is 3. 

- 
Now we have to use algorithm D for computing the shortest route. 

- 
Dl:  p t z .  

- 
D 2 : v(y)+ c ( ~ ,  p )  = 4 + 7 # 3. v(v)+ c(v ,  p )  = 1 + 1 = 3 . c(i9.p) belong to the 

shortest route. 

- 
D 2 : v6i)+ c(u, p )  = O + 1 = 1 . c(u, p) belongs to the shortest route. 



- 
0 3  : p t u . Terminate. The shortest route is the arc sequence c(l1,p) - C(V, p )  . 

When the shonest distance and routes between ail pairs of nodes of a network are 

- 
required, a feasible way for obtaining the information is to apply algorithm D and D 

for each node of the network. 

2.6. Dynamic Programming 

Operations Research techniques can be used to tackle the increased complexity 

of resource management and resource management and resource problems entai1 

decisions which are sequential. risky and irreversible. Dynarnic programming (DP) is 

a versatile technique with considerable scope for helping to solve such problems. 

The ability of DP to decompose big problem into small problerns, where the 

small problems interrelate to each other sequentially. makes it become a very usetùl 

tool for optimization. Many people have successfully used this technique to solve not 

only resource allocation (resource management) but also production problems such as 

bucking tree problern. Pnevmaticos et al (1972) show how DP c m  be applied to 

select the optimal bucking patterns for single logs. assuming unifom taper. with no 

defective stem sections. and probabilistic grading of wood quality. Haight et d.( 1985) 

show that the incorporation of stand growth and yield simulators. whether they involve 

whole stands or single trees, and whether they are free of. or dependent on. either 

distance or diameter. into DP algorithrns has improved the analysis of silvicultural 

investment decisions for even-age stand management by allowing the simultaneous 

determination of optimal timing and intensity of thinning and rotation age. 



To solve resource allocation problems in which limited resources must be 

allocated among several activities, people usually use LP. To use LP to do resource 

allocation. three assumptions must be satisfied: 

Assumption 1: The amount of a resource assigned to an activity may be any non- 

negative number. 

Assumption 2: The benefit obtained from each activity is proportional to the arnount 

of the resource assigned to the activity. 

Assumption 3: The benefit obtained fiom more than one activity is the surn of the 

benefits obtained from the individual activities. 

Even if assumptions 1 and 2 do not hold, DP c m  be used to solve resource 

allocation problems efficiently when assumption 3 is valid and when the amount of the 

resource allocated to each activity is a member of a finite set. 

DP is an approach to problem solving that permits decomposing one large 

mathematical model, that may be very difficult to solve, into a number of smaller 

problems that are usuall y much easier to solve (Schmidt et al. 1 98 1 ). Moreover. the 

DP approach allows us to break up a large problem in such a fashion that once al1 the 

smaller problems have been solved, we are left with an optimal solution to the large 

problem. We shall see that each of the smaller problems is identified with a stage of 

the DP solution procedure. As a consequence, the technique has been applied to many 

decision problems that are multi stage in nature. Often. multiple stages are created 

because a sequence of decisions must be made over tirne. For example, a problem of 

determining an optimal decision over a 100-year horizon might be broken into 10 

srnailer stages , where each stage requires an optimal decision over a 1-decade 



horizon. In most cases, each of these smaller problerns cannot be considered to be 

completely independent of the others, and this is where DP is helpful. 

DP is an approach that can be used hitful ly in the modeling and analysis of 

many diverse operational problems. As a modeling tool it provides a fiamework for 

building mathematical relationships that describe the operational behavior and 

performance of multistage decision processes. As an analysis tool. it provides a 

structure whereby a large problem (in terms of the number of decision variables) c m  

be decomposed into a series of interrelated small problems. These small problems are 

solved sequentially utilizing their interrelationships until. ultimateiy. the solution to 

the large problem is obtained. Each of the small problems is associated with a stage in 

the solution process. This staging implies that the problern is separable. that is. can be 

validly decomposed into such stages. 

There are several basic features associated with using a DP rationale to define 

an optimal solution to a mathematical programming problem. They are 

The problem c m  be divided into stages with a policy decision required at each 

stage. 

Each stage has a number of States associated with it. 

The effect of the policy decision at each stage is to transform the current state into 

a state associated with the next stage. 

Given the current state of the system in a particular stage, an optimal policy for 

subsequent stages is independent of the policy adopted in previous stages. 

The solution procedure begins by finding the optimal policy for each state of the 

1 s t  stage. 



6) A recursive relationship is available which identified the optimal policy for each 

state with N - k stages remaining ( k = 0,1, ..., N - 1 ). 

7) Using this recursive relationship, the solution procedure moves backward stage- 

by-stage, each time 

Finding the optimal policy for each state of that stage, until it finds the optimal 

policy when starting at the initial stage. 

These basic features provide the framework through which a dynamic 

programming solution is implemented. Having indicated that the problem is to be 

decomposed into stages. it is important to identi@ specifically how a typical stage is 

represented. A typical stage (here denoted the ith stage ) c m  be represented by Fig. 

2.6.1 and is characterized by five fundamentai factors (Schmidt, 198 1): 

ri 

Fig. 2.6.1. Typical stage diagram 

(1) an input stage si, which gives d l  relevant information about inputs to the stage; si 

is called the initial stage of stage i as it gives a description of the system at the 

begiming of the stage; 

(2) stage transition functions q(.). sometimes called the stage-coupling functions, 

which express each component of the output state as a function of the input state 

and stage decisions; 



(3) an output state 3,  which gives al1 relevant information about outputs fiom the 

stage; S;: is called the final state of stage i as it gives a description of the system at 

the end of the stage: $ = ( s i ,  di ) = si- 1 ; 

(4) a decision d i ,  which controls the operation of the stage; 

(5) a stage rctum i ; .  whish is a variablc that mecuurcs the uiilitj 

the stage as a fùnction of the input state and decision: 

If the objective function F ( d )  is separable into individual stage retums ri 

!V 
which are additive in their effect on the total objective, that is. F ( d )  = ri then the 

i=l  

basic optimization principlz of dynamic prograrnming can be stated in a maximization 

context as follows: 

(a). For every possible input state value sl .  in the fint stage of analysis. the optimum 

decision di ,  will maximize f i  (sl ) = Ri (si, di  ) and for each of the other stages. 

(b). For every possible input state value sk in stage k of the analysis. the optimal 

cumulative renini for stage k and fLd1 (.) is the optimal cumulative r e m  fiom stage 

k - L given in tems of each input state to stage k .  The key to formation of the 

cumulative retum function is recognizing that each input state of stage k - 1 for which 

fcl is defined can be associated with a specific input state-and-decision pair at stage 

k . This relationship is explicitly defined by the stage coupling fùnction at stage k . 

That is si-1 = E;: = C(sitdi)- 

Example. 



A private forestry company has S6000 to invest in growing three types of trees. If di 

dollars (in thousands) are invested to grow trees type j (investment j), then a net 

present value (in thousands) of r, (di ) is obtained. where the rj (di ) 's are as follows: 

r l ( d l )  = 7d1 + 2  (d l  >O), @) = 0 

q ( d 2 ) = 3 d 2  + 7  (4 'O), ?(O) = O  

r 3 ( d 3 ) = l d 3 + 5  (d3 >O), ~ ( 0 ) = 0  

The amount placed in each investment must be an exact multiple of S 1000. In order to 

maximize the net present value obtained From the investments. how should the 

company allocate the S6000?. 

The retum on each investment is not proportional to the amount invested in it 

(for example. 16 = q ( 2 )  8 ri ( 1)  = 18 ). Thus. LP cannot be used to find an optimal 

solution to this problem. 

Mathernatically, the company's problem may be expressed as 

max { r l (d l )+r?(d î )+r3(d3) )  

such that dl + dz + dj = 6 

d  non-negative integer ( j = 1, 7, 3). 

To formulate the company's problem as a DP problern, we begin by identifying the 

stage. The stage should be chosen so that when one stage remains the problem is easy 

to solve. Then, given that the problem has been solved for the case where one stage 

remains, it should be easy to solve the problem where two stages rernain, etc. Clearly, 

it wodd be easy to solve the problern in which o d y  one investment was available, so 



we define stage t to represent a case where h d s  must be allocated to investments t , 

t + 1 ,  ..., 3. 

For a given stage, what must we know to determine the optimal investment amount? 

Simply how much money is available for investments r , t + 1 , . . .,3. Thus, we define 

the state at any stage to be the amount of money ( in thousands) available for 

investments t , t + 1 , . . .,3. Since we cm never have more than S6000 available, the 

possible states at any stage are 0.1,2.3.4,5, and 6. We define j; ( d , )  to be the 

maximum net present value (NPV) that cm be obtained by investing d,  thousand 

dollars in investments r , t + 1 . . . ..3. Also define x, (d, ) to be the amount that should 

be invested in investment r in order to attain /, (d ,  ) . We start to work backwards by 

computing f3 (O). f3 ( 1 ) , . . ., j j  (6) and then determine fi (0) . ji ( l ) . . . .. ji (6) . 

Since $6000 is available for investment in investments 1.2, and 3, we terrninate our 

computations by computing fl(6). Then we retrace our steps and determine the 

amount that shouId be allocated to each investment . 

Stage 3 computations 
We first determine f- (O), j j  (1). . . .. f3 ( 6 ) .  WC sec that f3 (4 ) is attained by 

inveshng al1 available money (d3 ) in investment 3. Thus. 



Stage 2 computations 
To detemine f2 (O), f2 ( 1). . . . . f2 (6) we look at al1 possible arnounts than can be 

placed in investment 2. To find f2 ( d 2 ) ,  let r2 be the amount invested in investment 2. 

Then an NPV of q ( x 2 )  will be obtained from investment 2, and an NPV of 

f3(d2 -x,) - will be obtained from investment 3. Since x2 should be chosen to 

maximize the net present value eamed from investments 2 and 3, we write 

where XI must be a mernber of {O, 1 ,. . .. d - 7 ) . The computations for j j  (0) . ( 1 ) . . . . . 

f2 ( 6 )  and -Q (0) . ( 1 ) , . . . . x2 (6) are given in Table 2.6.1. 

Stage 1 compirtations 

Following tiom stage 2, we write f i  (6) = max (ri (xl ) + f2 ( 6  - XI ) ) where xl must 
" I 

be a value fiom (0,1.2,3,4,5,6]. The computations for fi (6) are given in Table 2.6.2. 

Determination of the optimal investmenr 

Since xi (6 )  = 4. the company invests $4000 in investment 1. This leaves 60004000 = 

$2000 for investment 2 and 3. Hence the company should invest x7 - (2) = $1000 in 

investment 2. Then $ 1000 is lefi for investment 3, so the company chooses to invest 

x3 (1) =S 1000 in investment 3. Hence the company can attain a maximum net present 

value of fi (6) = $49,000 by investing $4000 in investment 1, S 1000 in investment 2, 

and $1000 in investment 3. 





Table 2.6.2. Computation for f1 (6) 

NPV fiom 

investrnents 1 - 3 



Chapter 3 

Literature Review 

Forests cover approximately 3 1% of the earth's land surface (Sedjo and Lyon 

1 990). They provide many natural resources that benetit individuals, corporations and 

govemments, and they contain much of the world's biodiiersity thd is so essentid to 

the integrity of the earth's biosphere. Forest management. once the sole domain of the 

professional forester who attempt to regulate forests to maximize the value of the timber 

and other natural resources extracted from the forest. has taken center stage as many 

powerful interests compete aggressively to have forests managed to satisfy their often 

conflicting objectives. 

Forest management has chmged geatly over the last few decades. Initially, 

relatively simple stand rotation decision-making was performed (i.e. deciding when to 

cut individual stands to mavimize the present net value of the timber). Then industrial 

agicultural approach was adopted for the production of timber fiom large forest 

management units while attempting to reconcile conflicting demands for non-timber 

resources. In the current era, environmental concems have become a major factor in 

resource exploitation in many forested areas. It is therefore imperative that foresten and 

operational researches seek methods to solve those problems in order to get optimal 

results. 

Some foresters and operationai researchers have attempted to use mathematical 

approaches to forestry problems. Some of these are described in this chapter, focusing 

on four aspects of for-: resource allocation, spatial consideration, road constniction 

and forest products. 



3.1. Resource Allocation 

3.1.1. lMultiobjective 

When allocating resources in forestry practice there are usually multiple 

objectives. The objectives are often measured in different measurement units, and the 

goals are incornrnensurable. Forest analysts usually utilize goal programming to resolve 

this problem. 

Goal Programming 

Goal programming (GP) is a very popular rnethod in forestry problems where 

there are multiple and conflicting objectives. Goal programming was introduced into 

forestry management for the first time by Field (1973). He was motivated to introduce 

this method because of the two major weaknesses of ordinary linear prognmming, 

which had dominated in forestry problems up to that time. 

Fintly, linear programming yields an optimal solution to a quantitative 

allocation problem only if a feasible solution exists. Feasibility is assured if the 

requirements specified by the analyst and the constraints imposed by the problem 

environment are al1 mutually consistent. But. inconsistencies are not always readily 

apparent. For example, it may not be obvious, prior to the analysis. that limited 

resources preclude the simultaneous satisfaction of a minimum desired timber yield 

goal and a watershed management objective. In contrast, the objectives specified in a 

goal programming format are approached as closely as possible but need not al1 be met 

completely. This flexibility allows the specification of a problem in terms of multiple 

conflicting goals and the allocation of resources according to subjective priorities. 



Secondly, even if feasible solutions exist, in linear prograrnming there c m  be 

only one optirnization critenon. Whatever measure is associated with the objective 

specified by this criterion, the outcomes of several conflicting activities must be 

included and mut be expressed in the common units of rneasurernent. This requirement 

has two particularly serious effects. First. anaiysts attempting to apply linear 

programrning to problems involving incommensurable values are tempted to search for, 

inaccurate but easily computed, indirect rneasures of relatively intangible results. Thus. 

for example, vacation expenditures are used as a surrogate gauge of outdoor recreation 

benefits, and a wildemess preserve is valued in terms of timber harvests foregone. 

Second, even when a clearly valid relationship between the optimization criterion 

standard and a particular activity does exist, that relation may be very difficult to 

specify. For example, Goal programming allows not on1 y the simultaneous 

consideration of resources allocation to activities whose outcomes cannot be valued in 

like t m s ,  but it also permits the analyst to specify directly activities whose levels c m  

be associated with a comrnon measure. For example. the consequences of a shortage of 

pulpwood at a mil1 can be expressed in cords rather than requiring the dificult estimate 

of overall dollar impact of such a shortage on the firm's operating costs and sales 

revenue. 

Field used GP in advising a small woodland owner how best to satisfi 

immediate and long-range goals. The objective function is expressed as a weighted sum 

of the deviations fiom the goals. The weights are pnority factors that retlect the 

priorities of the different goals. The general fom of the GP proposed is: 



subject to 

At most only one of d l  and d; is non-zero, w is a 1 x m vector of priority factors, 

d+ and b- are rn xl vecton representing, respectively, positive and negative - 

deviation from goals, where d l  is the kth entry in &. d; is the kth entry in 6 - ,  

is an rn xn  matrix which expresses the technical relationship between goals and sub- 

goals. is an n x 1 vector of decision variables called subgoals. b is an rn xl vector 

of desired goal ûttainrnent levels. B is a p r n matnx describing the relationship 

between subgoals and specified constraints on subgoals. and is a p x 1 vector of 

constraint levels imposed on subgoals. The proposed procedure for determining the 

pnority factors and weights is as follows: 

(1) Formulate the problem with no prionty factors or weights and solve. If dl goals are 

met, stop. If one or more goals are not met. go to step 2. 

(2) Define priorities for the set of goals and establish the weights wk . 

Another example of using GP to reconcile conflicting objective in a forestry 

problem us given by Kao and Brodie (1 979). Some Managers accept even-flow harvest 

as a necessary feature of harvest control. That is. exactly the same arnount of tirnber is 

cut during each period in the planning horizon. A fully regulated sustained yield should 

provide a constant flow of forest production. as well as allegedly more stable income 

and employment. To be fùlly regulated, the forest must have a nomal age class 



distribution; that is, each age-class m u t  have the same area, the number of age-classes 

m u t  equal the rotation period, and no age classes can be older than the rotation penod. 

For a given planning penod, if an equal amount of volume is cut each cum'ng cycle, 

then the final age-class distribution may not be regulated. If we want the final age-class 

distribution to be regulated, then the harvest at each cutting cycle usually cannot be the 

sarne. GP is a good technique to compromise the conflict of the three goals: even-tlow 

harvesting, regulating the stand, and maximizing the present net worth from the harvest. 

The specific form of the Goal Pmgrarnming mode1 is developed in detail in the next 

five pages. 

Let 

Xv = acres harvested in age-class j in the ith period 

Pu = unit price of stumpage in age-class j harvested in the ith period. (Stumpage is 

timber in unprocessed form as found in the woods. Normally it means the physical 

content of standing trees. within a contiguous area, whether live or dead.) 

V,  = volumes per acre of age-class j 

a, = initial area of age-class j 

n = oldest age-class in the initial stand 

n 
A = total area = a 

j=l 

p = cutting cycle (the interval between harvests in an uneven-aged stand. of the 

planning period.) 

N = rotation age (the interval between one regeneration harvest and the next 

regeneration harvest.) 



rn = the maximum age-class the stand c m  reach during the planning period. 

Constraints 

Certain constraints must be maintained or the problem is infeasible. Harvesting 

must be limited to the initial forest and its subsequent growth. That is. the area of trees 

in age class j that are cut in the first period cannot exceed the initial area of age-class j. 

The area eut in age-class 1 in the second period cannot exceed that cut in the first petiod 

fiom ail age-classes. The area cut in age-class j . j>7 in the second penod c m o t  exceed 

the initial area of age-class j-l left after the first eut. and so on. 

For the first cut: 

[ I l  XI,, $ a j  where j =L.2.3 ..... n 

For the second cut, 

[2a] S a j m i  -Xi,,-1 where j = I J  ,.., n t 1  

For the third cut, 

n- t l  

and for the pth cut 



Constraints of form 1 to 3 restrict every possible age class that could develop over the 

planning penod. 

Goal constraints arke fiom objectives the manager would like to achieve as 

closely as possible, but for which some deviation is tolerable. The deviation is pmitted 

and feasibility is ensured through use of the d - , d+  variables. Different goals in harvest 

scheduling are accornmodated in these three constraint sets. 

Regdaring the Stand Comtraints 

At periodp+l, each age-class has the same area, C (=w 



Thus we need 

Equation [4] states that the total area cut in the pth period should be C so age-class 1 at 

penod ( p + 1 ) wll have area C . Equation [5] states that the total are cut in ( p - i )th 

perîod subtracted from the area cut in subsequent periods (frorn ( p - i + 1 ) to p ) should 

be C so the area of age-class ( i + 1 ) at period ( p + 1 ) 4 1  be C . 

At penod ( p + 1 ), age-classes ttom N up to m should not contain any area thus 

where j =  N,N+I,.. ,rn-1 

The terms in the first summation in equation [6] ,  or the first term in equation [7]? are 

those age-classes that will grow to age-class ( j + 1 ) in equation [6] or ( p + i ) in 

equation [7]. The t m s  in the second summation are the same age-ciass cut in the 

subsequent periods. SeMng term to O ensures that no age-classes older than iV will 

remain at period ( p + 1 ). 

For the same harvest each cutting cycle of the planning period requires these 



Equation [8] states that the volume cut in cutting cycle i should be as close as possible 

to that cut in period ( i + 1 ). Equation [9] states that the cut in cutting cycle p should be 

as close as possible to the cut in cutting cycle 1. Hence the chain relation foms a closed 

loop that prevents al1 the deviation from occuning in a single cuning cycle. 

hfarimizing the Presen t Nef Worth Cons train rs 

Because we want to maximize the present net worth. we cm set equal to a large 

number hf. ,M is usually subjectively determined by decision makers. 

and try to minimize the underachievement. 

Al1 variables of type X and d should be nomegative. 

The objective function depends on the priority: if even-flow harvesting and 

regulating the stand area are equally important? and both are more important than the 

income from the harvests in the planning period, the objective function is 

where Pl , & are ordinal weights (ranking goals 1,2,3,. . .). 

Différent Cardinal weights (using real numbers to measure priorities of goals 

relating to one another) can also be introduced to the objective function if w units of 



deviation in even-flow harvesting and 1 unit of deviation in the final age-class 

distribution are equally important, then the objective function becomes 

Usefùl information Kao and Brodie found here is that good compromised result 

of three conflicting objectives c m  be achieved using these objective function 

formulations. The three conflicting objectives are economic (maximization of present 

net worth), even-flow harvest. and a normal age-distribution; that is, each age-class 

must have a similar area, the number of age-classes must equal the rotation age. and no 

age-classes can be older than the rotation age. 

According to theoretical and empincal studies, the preferences of forestry 

decision rnaken Vary considerably from one decision maker to another (Hyberg and 

Holthousen 1989). There are some crucial problem when utilizing goal propramrning 

which include: specifjmg the target leveis of the goal, determinhg the weights used in 

the objective function and making goals measured with different units commensurable. 

Prior information on the requirements of the decision maker is needed to formulate the 

problem appropnately. Because there is usually no single ovemiding management goal 

in multiple-use forestry. but a set of more or less conflicting objective having certain 

trade-offs, cardinal weighting is recomrnended instead of ordinal weighting. 

Specifjmg a set of priori relative weights for goals is ofien found to be difficult. 

Kangas, et al. (L992) showed that the Analytic Hierarchy Process (AHP) c m  be utilized 

in the estimation these weights. AKP is a mathematicai method for analyzing complex 

deviation problems with multiple criteria. It was originally developed by Saaty (1977). 



Basically, the AHP is a general theory of measurement, having both mathematicai and 

psychological features. 

For estimating a prion weights of proportional deviations fiom the target levels, 

painvise comparisons between decision criteria (goals) are carried out. When making 

the comparisons, the question is: which of the two factors has a greater weight in 

decision making, and how much greater? Verbal comparisons are comected into the 

numerical form A, . rneasuring the relative priority of goal i with respect ta goal j . 

Reciprocal matrices of pairwise comparisons are constructed as in the matrix below: 

Using the painvise comparisons as input. the relative weights of elements are computed 

by using an eigenvalue method (Anderson et al., 11994). The resulting weights 

represent the decision maker's perception of the relative importance. or preference. of 

the cnteria. 

Based on properties of reciprocal matrices, a consistency ratio cm be calculated. 

The consistency ratio measures the coherence of the pairwise comparisons. In human 

decision making, some inconsistencies can be expected. As a mle of thumb. a 

consistency ratio value of 10 percent or less is consider acceptable (Saaty, 1980). 

Otherwise, al1 or some of the c o m p ~ s o n s  shodd be repeated to resolve the 

inconsistencies of the painvise cornparison. For more details on the AHP theory and the 



estimation for relative pnorities. readers are referred to Saaty(1977, 1980) and Saaty 

and Kearns (1985). 

Disadvantages of GP 

Although GP has become very popular lately there have been a lot of issues and 

criticisms for using this GP as a tool to get optimal solutions to multiobjective forestry 

problems. Those issues are related to GP with pre-emptive (pre-assigned) target levels, 

pnorities or weights of the objective functions. 

Some features and assumptions of GP that are ofien considered its major 

weaknesses are infinite trade-offs between goals of different pnonty levels and the 

possibility of generating a dominated solution. Infinite tradeoff occurs when one goal is 

satisfied (or nearly satisfied), but others are not satisfied at all. The disturbing 

implications of this possibility have been pointed out by Dyer et al. (1979) and 

Mendoza (1987) and are described briefly by considering a simple case involving two 

objectives. 

Assume that the production fiontier (Le.. nondominated solution set) for 

objectives 1 and 2 is s h o w  in Fig. 3.1. If the goals or target levels for each objective 

are set at G: and G:, respectively. and objective 1 is the first pnority. GP will generate 

point A as the optimal solution. This solution implies a maximum of objective 1 and 

nothing of objective 2. In fact, point A will be the solution generated by GP regardless 

of the target level set for objective 2. Hence? the only possibility that an optimal 

solution generated by GP is dong the production frontier between point A and point B ( 

a more realistic situation) is when the prespecified levels for objectives 1 and 2 are less 

than A and D, respectively. For instance, if objective 1 is the first pnority and the target 



level for this objective is specified at G:, GP will generate an optimal solution that is 

equai to Eo, provided that the specified target level for objective 2 is greater than or 

equal to G; . If the target level for objective 2 is less than G: , say G:. a dominated 

solution at El will be generated by GP. 

Objective 1 

G? - G:- G! - 
Objective 2 

Figure 3.1. Objective space showing the 
non-dominated solution set of a two- 
objective problem 

Objective 1 

G; 
Objective 2 

Figure 3.2. Objective space showing the 
non-dominated solution set of a two- 
objective pmblem with altemate optima 

Another situation where GP may generate a dorninated solution is described in 

Fig. 3.2. Assume that the target levels for objective 1 and objective 2 are set at G: and 

G:, respectively. If objective 1 is the first prionty, GP will generate the solution equal 

to 4 , which gives the maximum possible value for objective 1. However, F, is a 



dominated solution (dominated by 3). Note that F, is dominated , even though it 

yielded the highest value of the objective Mth the highest prionty. 

Some concerns have also been raised on the specification of weights in 

Weighted Goal Programming (WGP). Zeleny (1982) and Kluyver (1979) have noted 

that care should be exercised in assigning weights to the various deviations. This 

specifically applies to problems with noncommensurable goals and the objective 

function is formulated as the surn of absolute deviations from targets measured in 

différent units that may not be comparable. As Romero (1985) has pointed out. when 

the approach is used with goals that are not commensurable. the straightforward 

objective function aggregating al1 the deviational variables is meaningless. 

The problem of weighted deviations also has some direct implications in the 

solutions generated, particularly when the goals are expressed in different measurement 

units (e.g., some goals are in thousand units while othen are in decimal units.). In this 

situation, the goals expressed with the highest magnitude will drive or dictate the 

solution generated by WGP. Hence, some normalizing or scaling system must be used 

in calculating weights assigned to each deviation variable. Zeleny (1982) and de 

Kluyver (1979) have suggested ways of normalizing or calculating scaled weights but 

Zeleny has also noted that dominated solution may be generated by WGP. 

Nondominance in GP sohtions 

Nondominance is ofien a desirable characteristic of any solution to a 

multiobjective problern. Intuitively, the selection of a nondorninated solution is 

appealing because fiom standpoint of rational decision making, no other solution leads 

to better attainment of the stated objectives. 



Critiques of GP have raised concern about the possibility that a dominated or 

inefficient solution may be generated by GP. Figures 3.1 and 3.2 descnbe two situations 

where this possibility may occur. Zeleny (1982) has also described situations where 

dominated solutions rnay be generated under GP or WGP formulations. 

Intuitively, it is not a difficult task to detect whether a dominated solution rnay 

have been generated. A closer look at Fig. 3.1 indicates that whenever a GP solution 

yields a zero value in any one or more of the deviation variables it is possible that this 

solution rnay be dominated. For instance. at solution El al1 the deviational variables are 

zero because the two goals are met. However. El is a dominated solution and it c m  be 

improved by increasing the deviational variables d; and dlf from their current zero 

values. This c m  be done by increasing the goal leveis for both objectives. in these 

circumstances any point on the line segments E,B and BE,, would give a 

nondominated solution. Along these two lines. either one or both of the deviational 

variables are greater than zero. 

Ignizio (1981) has developed a procedure that can be used to generate a subset 

of nondominated solutions in GP. His procedure involves a parametric increase of the 

target level(s) whose deviational variable(s) is(are) equal zero. His technique could be 

adopted to WGP. Hannan (1980) has also described a mathematical technique to test 

dominance of GP solutions. 

Multi-Attribute Decision Theory 

Hyber? T.B. (1987) resolved these conflicting objectives by implementing multi- 

attniute decision theory. He presented the procedures required to implement multi- 



attribute decision theory. These procedures are quite different firom other methods 

dealing with resolution of conflicting objectives. The procedures result in a utility 

function that can accommodate the conflicting objectives. He helped a non-industrial 

pnvate forest landowner manage his forest to maximize timber harvest revenue while 

maintaining an attractive site. 

Multi-attribute decision theory is a procedure where the manager cm structure a 

problem for analysis, quanti& the relative advantages of the available options. and 

arrive at the preferred solution (Keeney and Raiffa 1976). The procedure incorporates 

the expected utility framework developed by von Neumann and Morgenstern ( 1  974) 

with the decision analysis technique of Raiffa (1 968).The general description of multi- 

attribute decision theory is as follows. 

Multi-attribute decision theory presents a decision maker with a series of 

choices requiring an assessrnent of prefèrence. This cm be best describe in terms of a 

special kind of lottery. Considering a situation in which a person will receive either a 

reward q with probability or a reward rl with probability p z .  This is denoted as 

the lottery L( pl, q ; p z ,  r2 ). Decision theory is a method of choosing between lottenes. 

Consider. for example, timber revenue. Suppose that with certainty, lottery Li yields 

f 10,000. L o t t q  L? - has a 0.5 probability of yielding $30,000 and 0.5 probability of 

yielding 60. The decision maker must decide whether he prefers Li(l,S1O.OOO) or 

-(O. 5,8309000;0.5,$O) . He is said to be indifferent between Li and Lz if there is no 

preference. 

Ln order to rank more than two lottenes, a utility is defined for each possible 

reward. First identi& the most favorable and least favorable rewards that c m  occur, 



aesr and r,vo,, respectively. The utility, r l i ,  of each of the remaining possible rewards, 

5 ,  is defined to be the probability, qiT such that the decision maker is indifferent 

between lottery (1, 5 )  and Ioaery ( qi , >besr ; 1- qi, r,,orsI ) The decision maker must 

then determine a utility function. This estimates the utility of any given reward r ,  

r < r < %rAr , "th the utility of ri %,,,, chosen to he O and that of a,, to he 1 . To 

clari@ the foilowing discussion the decision maker will be assumed to be interested in 

only two cornmodities - timber revenue and aesthetics. 

Once the decision rnaker's utility functions for both attributes(i.e. revenue and 

aesthetics) have been estimated in the above marner, three additional questions are 

asked. These questions are used to define a multi-amibute utility Function. This 

describes the utility as a function of the levels of both attributes. The first question is 

"Given the choice between ( 1 )  a state with the mâuimum quantity of aesthetics and the 

minimum quantity of timber revenue, and (2) a state with the minimum amount of 

aesthetics and the maximum quantity of timber revenue, which would you chooseb?" 

This question asks the decision maker to decide, given an eithedor situation, which 

commodity he or she would choose. 

Assume for this example the landowner selects option 2, indicating that he or 

she would rather have the maximum income over the maximum aesthetics. Given this 

response, the landowner is asked, "What arnount of timber revenue, with no aesthetics, 

would make you indifferent to a trade for the maximum amount of aesthetics with no 

tirnber revenue?" The response to this question provides the dollar amount of landowner 

would require in order to sel1 the total esthetic value of his forest. With this value, a 

functional relationship between the two goods can be developed. 



Finally the decision maker is asked, " M a t  probability of success in a lottery 

involving the maximum amount of both goods versus the minimum amount of both 

goods would make you indifferent to a choice of participating in the lonery or receiving 

the maximum income with no aesthetics'?" This question allows the estimation of a 

weighting coefficient for the utility frorn timber income. It also assesses the individual's 

aversion to the worst possible outcorne. These three questions are used to define 

constants K a 4 ,  Ks , and KAS, given below. 

With the utility function estimated through a senes of lottery and an assumption 

of utility independence. the following equation represents the decision maker's utility. 

t%b) = WJ.4 (a)+ W s ( b ) +  K 4 s 4  ( ~ ) L / s ( b )  

where a = level of aesthetics, b = level of revenue 

Ll(a,b) = total utility 

ua4 (a) = utility h m  aesthetics at level a 

us (b) = utility h m  timber revenue at level b 

Ka4, Ks , and are scaiing parameters 

K is the probability such that the decision maker is indifferent between lottery 

Interactive Mdticnteria Programming 



Korhonen. P. et al. (1986) introduced a visual interactive approach to 

multicriteria mathematical programming that shares the advantages of goal 

programming while providing more effective means of interaction between the decision 

maker and the computer than traditional goal programming. Interactive use of computer 

graphics plays a central role in this approach. It gives the decision maker the ability to 

see the big picture of the problem at hand and enabies him to evaluate any part of the 

Pareto optimal set. 

The decision maker's targets are often impossible to achieve simultaneo us1 y. 

However, the decision maker may be interested only in nondominated solutions (the 

Pareto-optimal set). If there exists a feasible solution for which his targets are attained, 

there may also exist feasible solutions that are better in al1 respects. This mems that 

some niles must be established for selecting attainable solutions that bear some relation 

to the decision maker's targets. Such rules are often defined using an achievement 

function. The terrn "achievement function" to refers to al1 techniques for projecting a 

given solution ont0 the Pareto optimal set. There are several ways to specify an 

achievernent function (Ignizio, 1983). 

Interactive multiniteria programming methods generate a sequence of attainable 

solutions for the decision maker's evaluation until a satisfactory solution is found. 

Attainable solutions are ofien generated using some kind of achievement functions. 

Visual representation enables the decision maker to evaluate a continuum of solutions 

simultaneously. Besides the use of visual aids, this approach has two particular 

desirable features. Firstly, the decision maker is fiee to examine any part of the Pareto 

optimal set he pleases at any moment, i.e., he is not confined to evaluating o d y  extreme 



point solutions, nor is his fieedom limited by his earlier behavior during the interactive 

process. Secondly, the approach needs no specific assurnptions concerning the decision 

maker's underlying utility function (discussed in multi-attribute section above) dunng 

the interactive process. The utility fünction c m  be even assumed to be changing due to 

leaming and changes of mind during the process 

The features of this approach are very useful for solving complex problems in 

forestry but this approach is oniy efficient for a certain number of objective functions 

(at most 10) due to complexity of the approach. However. forestry problems in real life 

are always complex involving a lot of goals. 

Bare et al. (1 988) illustrated the potential use of rnulticriteria (multiobjective) 

programming in land management planning by solving a demonstrative example using 

an interactive technique called the STEM method. Among the interactive approaches. 

the STEM method is applicable to forest land management planning because it c m  

computationally accommodate problems of the size cornrnonly encountered and is easy 

to understand. Further. it uses the highly efficient simplex method fiom linear 

programming which is farniliar to most forest planners. This method seeks to identify 

the best compromise solution by presenting sequential compromise solutions to the 

decision maker, each reflecting the decision maker's preferences. 

3.1.2 Uncertainty 

Uncertainty in forest planning is pervasive, entering in the form of a lack of 

information, imprecision or inaccuracies in estimating model parameters, and inexact or 

imperfect data. All of these cause uncertainties that m u t  be incorporated in any 

planning model. Besides imprecision, forest planning is also inherently multiple 



objective, mainly due to the multiple use nature of forest management. Hence, forest 

planning models should also address multiple objective concems in forest management. 

During the last few decades, mathematicai prograrnrning models have been used 

extensively in forest planning, with linear programrning and multiobjective linear 

programming being the most commonly used methods. However, concems about the 

use of these models have also been raised. The main criticisms deal with inherently 

deterministic nature of models, and their use of precise coefficients. In traditional linear 

programming and multiobjective linear programrning models, the coefficient or 

parameten are assurned to be known with certainty. In many real world forest planning 

problems, however, it is very unlikely that this assumption is vaiid. For example. forest 

managers often have to deal with insuficient or imperfect information due to the 

inherent complexity of the system (Allen. et. al (1986)). Hence to enhance mode1 utility. 

it is necessary to be able to incorporate uncertain information (fuuiness) into the mode1 

(Mendoza, et al., 1993). In some cases, f u z q  formulations are actuaily able to provide 

improvements in ail goals (Pikens and Hof, 1989). 

In recognition of some of these problems, Mendoza and Sprouse (1989) 

described a procedure that is particularly suited for complex forest planning problems 

such as multiple-use forestry. The procedure they proposed is a two stage approach or 

method. The first stage uses fùw models for generating alternative solutions. These 

models offer some desirable features. First, they allow a more robust generation of 

widely different alternative solutions. Second, they provide a convenient framework for 

accommodating a certain amount of fuzziness, uncertainty, vagueness, or ambiguity in 

the modeling and decision making processes. The second planning stage and its 



corresponding methodology deal with the evaluation and pnoritization of alternatives. 

One of the goals is to denve a global priority ranking of the alternatives by explicitly 

considering pairwise cornparison of the different alternatives which respect to each 

criterion. The AHP (Analytic Hierarchy Process - see section 3.1.1 ) model was adopted 

to derive a global pnority ranking. 

The multiple-use forest planning problem considered in their study is a 29.000 

acre forest tract located in the Shawnee National Forest. In managing the forest, three 

goals are considered sirnultaneously: maximize the economic return fiom the forest in 

tenns of discounted net revenue, maximize the area suitable for wildlife habitat. and 

maximize the area suitable for non-motorized semiprimitive recreation. What they have 

found here is that they cm create the payoff table representing the optimal values of 

each objective as well as the values of other objectives at the optimum values of a aven  

objective. The payoff table provides a convenient Barnework to describe the maximum 

model in the context of a bargaining situation where alternatives must be negotiated. 

Pikens and Hof (1989) used hzzy goal programming to solve a forestry 

problem, harvesting scheduling plan, where the goals are maximization of Net Present 

Value (NPV) and a stable flow of wood and fiber. The traditional solution to this 

problem is to maxirnize NPV subject to a set of constraints which assure that planned 

harvests will never decline between any successive pair of harvests of the model. Thus, 

the problem is addressed by selecting one goal as the objective and the other as a crisp 

constraint. in this study, the problem was reformulated to treat the stable flow of wood 

and fiber as a "fiinv" concept rather than as a crisp constraint set. They found that 

formulating harvest scheduling models with conflicting goals of profit maximization 



and stable harvests as a fuzzy goal programrning problem has the potential to generate 

solutions which are superior to the traditional crisp formulation for both of the stated 

goals. That is, f ù q  goal programming gives more profit then crisp goal programming 

does and the harvest determined by funy goal programming is much more even 

compared to that determined by crisp goal programming. 

Motivated by criticism of using linear programming (LP) for determining timber 

harvest scheduling where al1 data are considered to be non-stochastic measurements that 

are known with certainty, Bare and Mendoza (1992) described how fiizzy mathematical 

programrning can be used to cope with uncertainty in timber harvest scheduling models. 

They assume that uncertainties can be adequately modeled as fuvy sets. Thus. timber 

yield coefficients are treated as deterministic. but strict satisfaction of constraint limit is 

relaxed and attainment of goal aspiration level is sought but not required. They assume 

that the fuznness appears only in the objective function and the timber hanest flow 

constraints. Other constraints of the LP mode1 are treated as a crisp constraints. The 

problem addressed represents a situation where the decision maker tolerates some 

degree of violation in the accomplishment of the timber harvest flow constraints. 

A aisp linear programming problem c m  be written as 

maximize cTx WV) 

subject to 

b *x 5 4 (harvest tlow consnaint) 

Dx S b 2 (other constraints) . 

To treat the objective function and harvest flow constraint as fuzzy, we want to find x 

such that 



where Z is an aspiration (target) leve 

is as follows. 

majcimizc k 

subject to 

1. The cnsp model equivalent to t his fuzzy model 

Bare and Mendoza compared fuvy linear prograrnrning with the linear 

programming solution of a timber harvest scheduling problem. (The problem was 

selected From McQuillan (1986), and Pickens et. Al (1990). They found out that by 

relaxing the harvest flow constraint. the NPV slightly increases and the harvest flow 

remains reasonably nondeclining. Also by relâuing the objective function, they found 

out that the NPV c m  be increased to a certain amount depending on the tolerable 

deviation and the degree of satisfaction needed. Therefore, they conclude that liizzy 

linear programming has potential as a tool to systematically explore alternative 

solutions. 

Mendoza et al. (1993) used a funy Multiple Objective Linear Programming 

approach to forest planning. They assurned that the decision maker c m  specify the 

coefficients in the objective function as intervals [c! ,cy ] rather than exact values. The 

paper is organized as follows. Fw a single objective fiinction with interval-valued 

coefficients is formulated as a two-objective function problern. Then, in the presence of 



multiple objectives, some of which have exact coefficients while othen have interval- 

valued coefficients, the problem is formulated as a multiple objective linear 

programming problem. Finally, a fuzzy multiple objective linear programming mode1 is 

fonnulated with both interval-valued and exact coefficients. 

They tested the method with a case study adopted from Johnson et al. (1986). 

There are four goals, namely, minimizing sediment (solid material, both minera1 and 

organic, that is in suspension and being transported from its site of origin by th- force of 

air, water, gravity or ice), maximizing timber, maximizing forage, and maximizing the 

net present value (NPV), in which the first three objectives have exact coeficients and 

the 1 s t  mentioned objective has interval coefficients. subject to some constraints. The 

form in the mathematical formulations is: 

T maximize -1 = cl  r NPV 

sediment 

T maximize 13 = c3 x timber 

T maximize z4 = c4 x forage use 

subject to AX 5 B 

x 2 0 .  

Based on the yields, costs, and interest rates, the NPV's coefficients are 

computed using arithmetic operations in determining interval values. After determining 

the interval coefficients for PNV, the problem is formulated as: 

- 
maximize zf = (cf )T x 

P N V  
maximize zr = (cf< )T r 1 



- T minimize z ,  =c,x - 

T maximize z3 = c j  x 

T maximize q = c4 x 

sediment 

timb er 

forage use 

subject to Ax 5 B 

s 2 0 .  

where z( is the lower side of objective I (that is, the lower bound of the interval of the 

coefficients of objective I), and ZP is the upper side of the objective 1. 

Arnong the five objective functions, one (i.e. sediment) is to be minimized. 

Following Zimmermann (1 978). the fuzzy rnulti-objective linear prograrnming for this 

case study is formulated as a maximum problem described below: 

mmimize k 

subject to 

where foi is the optimal or most desirable value for objective i , and fii is the least 

desirable or tolerable value for objective i . To find a solution using this formulation, 



the foi's and Ai ' s  must be known. These values may be specified by the decision 

maker. Othenvise, these values can be computationally derived using a payoff table as 

explained in Mendoza et al. (1 993). 

3.2. Spatial Consideration 

Mathematical analysis is usually included in a forest management project in 

order to ensure that the varying interests and concerns of the general public and industry 

are being addressed and taken to account. At the most detailed levels of planning, it is 

necessary to conduct analysis that incorporates high levels of spatial interaction. This 

means that management activity in one area impacts the kind of activity that is 

acceptable in neighboring or adjacent areas. Concems for the size of open areas, habitat 

disruption, and tiagmentation of a forest are exarnples of the management 

considerations where adjacency restrictions have been utilized. 

People everywhere are saying it is high time to shifi the focus of forest planning 

from economic production of goods and services to sustainable ecosystem management. 

In this new paradigm, three classes of forest outputs are recognized: economic 

cornmodities, human services, and the health state of the forest ecosystem itself. The 

weighting on these classes has shifled over the past 20 years from near total 

preoccupation with producing economic comrnodities to today's stniggles to assign 

higher priority to the health and sustainability of the total forest ecosystem. It is rare to 

find an environrnentally-related meeting or read a professional journal or even the daily 

newspaper without seeing this simple message over and over again. It is easy to Say 



forest health should corne first but hard to h d  the balance and also hard to understand 

the impact of management actions. 

Integrated forest management planning is a nidimentary science owing to our 

poor understanding of the impacts that management actions (such as timber harvest ) 

have on other aspects of the forest. As a result, management objectives, such as 

preservation of wildlife habitat or biodiversity, are often not explicitly included in the 

harvest schedule optimization process but instead, are incorporated in the planning 

process through the senes of restrictions to harvest scheduling. Two cornmonly used 

restrictions to harvest scheduling are minimum exclusion periods between adjacent 

clear-cuts (Gross and Dykstra 1988) and the maximum clear-cut size restriction 

(Hokans 1983). While not directly addressing non-timber concems. these two 

restrictions prevent some timber harvest schedules that are known to have poor 

chancteristics. 

However. when sustainable ecosystem management becomes paramount. then 

spatial considerations becorne crucial. The spatial considerations are usually resolved 

by using "adjacency constraints" which restrict the time that must elapse before 

contiguous forested areas of a given maximum size may be harvested. These contiguous 

areas are usually refmed to as harvest blocks. 

Mathematical models involving spatial considerations require integer variables 

resulting in potentially larger and more difficult mathematical formulations than large- 

scale linear programming forest models such as FORLAN. The more spatial 

restrictions included, the more integer variables are needed. Usudly the integer fonn of 

linear programming is used to handle these spatial considerations. Due to the difficulty 



of solving the integer linea. prograrnming problems, some analysts use aggregation 

heuristics - ways of combining some similar characteristics into one criterion - in order 

to reduce the nurnber of variables (Menegh et al., 1988. Tores-Rejo et al., 1990). 

However, this heuristic method is not always successful especially in large problems. 

Some anaiysts use other mathematical approaches to reduce the total nurnber of 

necessary constraints in light of the spatial considerations. The most promising one so 

far is that proposed by Murray and Church (1996). They propose methods that could 

minimize the nurnber of constraints so that the Mixed integer Programming (MIP) 

method can be used successfblly. The main purpose of management considerations is 

to impose adjacency constraints in hmesting forest so that there are no two adjacent 

units being harvested at the sarne time. They present a general formulation of an 

operational forest planning problem which is based in large part on the work of Nelson 

and Brodie (1990). The objective of this formulation is to maximize net present value 

while imposing adjacency constraints. 

The problem fomulation is to rnaximize z = LZ,,.~, subject to 

(1)Limit harvest of a unit to at most once in planning interval t - p to t + p .  

(2)Adjacency restrictions to prevent simultaneous harvest of neighboring units. 

x + , 1 for ail i, t and for al1 j E Ni 

(3)Upper and lower bounds on harvest volume in each tirne period. 

(a). C vit?cit 1 L, for t 



(b). C vi,x, 5 Ut for al1 t 

(4)Undiscounted revenue bound requirement in each time period. 

(5) Integer requirements. 

.r, = 0,1 for al1 i, t . 

Where 

i = index ofharvest units (i = 1,2, ..., 1) 

t = index of time periods (1 = 1,2, ..., T )  

1 if unit i is harvested in tirne t 
( integer decision variables) 

O otherwise 

a, = discounted revenue generated from harvesting unit i in period t 

A 

ai, = undiscounted revenue generated from harvesting unit i in period t 

U, = upper bound on total volume harvested in penod î 

L, = lower bound on total volume harvested in penod t 

R, = lower bound on total undiscounted revenue generated in penod t 

p = harvest exclusion penod length 

Ni = set of indices of al1 harvest units adjacent to unit i 

vit = volume generated From harvesting unit i in penod t 

Many researchers have developed adjacency constraints based on a pairwise 

adjacency approach similar to the above, but this ofien results in an excessive number 



of necessary constraints. To deal with this problern, cliques have been used to create 

better constraint formulations. A clique is defined as a set of mutually adjacent units. 

That is, each member of a clique is adjacent to the other members of the clique. Figure 

2.1 depicts some possible cliques (Murray and Church, 1996). 

Figure 3.1. Possible adjacency patterns for cliques: (a) pair. (b) triplet. (c) quadruplet. 
(d) higher ordered 

Simultaneous harvesting of two adjacent uni& (e.g., unit 1 and 2 given in figure 

2.1 .a) is prevented using the following constraint: rl + -9 5 1 . In the painiise adjacency 

approach, constraints of this form are necessary for each pair of adjacent planning units. 

This has been the traditional approach used to prevent sirnultaneous activities in 

adjacent units (Nelson and Brodie, 1990). The unfortunate problem with the painvise 

approach is that it typically requires a large number of constraints to impose al1 the 

necessary adjacency conditions. Fominately, it is possible to identify higher ordered 

cliques which form strooger inequalities than the painvise clique constraints. Such 

higher ordered clique constraints can represent the entire set of adjacency restrictions 

with a significantly fewer total number of needed inequalities, compared to the total 

number of unique pairwise constraints. For example, in order to prevent adjacent 



activity in figure 3.l.b, three painvise constraints can be enforced: 

x3 + .y4 1 1; x3 + .Xj 51; .rd + .rj l 1 . Altematively, adjacency restrictions for the 

three mutually adjacent units can be enforced by using one inequality of the form: 

The forrnal definition of a clique is as follows. in order for a set C to be a 

clique. it is required that al1 potential pairs of harvest units i, j E C be adjacent to each 

other. For each clique C, there is a constraint x . r j  5 1 which imposes the condition 
j€ c 

that at most one unit in the clique c m  be harvested. 

Ciique Constraints and Forest Planning 
Type I Approach 

Meneghin et. a1 (1988) develop an approach for identifjmg quadruplet, triplet, 

and pairwise cliques in order to maintain al1 of the required adjacency or painvise 

conditions, while also attempting to keep the total number of required constraints to a 

minimum. They cd1 this set of clique conditions type 1 constraints. The type I constraint 

identification approach is very fast and resembles an enurnerative approach found in the 

clique literature (Bron and Kerbosch, 1973). It represents the first practical approach for 

utilizing clique conditions within an optimization problem. 

Type I approach is as follows. First identie a11 quadruplet cliques such that at 

most two of the compartments in a potential clique are represented in a previously 

identified quadruplet clique. After al1 quadruplets are identified, triplet cliques are 

identified by selecting those triplets that do not have more than two of their harvest 

units (comparûnents) in any previously identified quadruplet or triplet clique. The 

remainder of unrepresented adjacency conditions are imposed through painvise cliques. 



The Type 1 approach represents an improvernent, because the number of cliques 

generated is significantly less than the total number of painvise restrictions so that it 

provides a substantial benefit to the LP model. 

Maximal Cliques 
Although the type 1 approach allows a maximum clique size of four. in many 

forest plwiing pmblems larger cliques exist. For example, it is possible to hiive 

common boundary that is defined by a point like the five units given in figure 3. l .d. 

Also adjacent units need not be defined as those sharing a common edge or point. but 

may be defined as those units within a specified distance of each other. Because using 

type 1 is beneficial. a natural approach to deal with larger cliques would be an extension 

of this approach (Daust and Nelson. 1994.) To facilitate this, a maximal clique is 

defined to be the largest subset of mutually adjacent units. For each harvest unit with 

index i ,  we cm detemine the maximal clique that includes it and a subset of Ni (the 

set of units adjacent to unit i .) Following the identification of cliques larger than 

quadruplets, the type I approach could then be utilized to identXy the remaining 

necessary clique constraints to form a complete adjacency constraint set. 

The process desaibed above identifies cliques that do not have a specified 

amount of overlap with selected cliques. Murray and Church (1996) propose an 

alternative selection approach. Rather than using a nile to narrow the 

selectiodgeneration of the prospective cliques, they are interested in al1 alternative 

cliques and how they compare to other previously identified cliques. As such, a 

prospective clique may be redundant or dominated by one of the akeady identified 

cliques. 

This can be demonstrated using the following example of inequalities: 



Constraint (a) is a triplet clique and (b) is a quadruplet clique condition. inequality (a) is 

said to be dominated by inequality (b) since (b) logically implies (a). Thus inequality 

@) need only be used. This rule can be used to modie the type 1 approach by selecting 

only nondominated cliques. The nondominated approach for clique selection is to begin 

by selecting nondominated maximal cliques that are larger than quadruplet, next. non- 

dorninated quadruplets are selected which impose adjacency conditions that are not yet 

represented (nondominated by selected maximal cliques). then triplets that are not 

dominated are identified, finally, nondominated painvise cliques are used to impose the 

remaining adjacenc y conditions. 

Methods that provide a reduction in the number of necessary constraints 

typically produce constraint foms  that are of poor structure. Poor constraint stmcture 

generally results in the inability to solve for the optimal integer solution. Murray and 

Church (1 996) propose an approach which uses a minimal subset of clique constraints 

approach to develop a process that c m  identifi a minimal set of adjacency constraints. 

without sacnficing the constraint structure that aids in the solution process. 

It is important to recognize that there could be a certain amount of 

representational redundancy in a given selected clique set. Even though each clique is 

nondominated, there still exists the likelihood that some clique may not be necessary in 

order to maintain al1 of the pairwise adjacency restrictions. Example. consider the 

following clique constraints; 



Neither constraint dominates the other, but the adjacency relationship of unit 3 and 4 is 

irnposed in both constraints and can be considered redundantly imposed to a certain 

extent. That is, other clique constraints may exist that impose the restrictions between 

units 3 and 5 and 4 and 5, as an example, so that the second conçtra.int given above 

could be eliminated. 

A set-covenng formulation can be utilized to express the optimization problem 

of identivng a minimal subset of nondominated cliques. 

Let k = index of potential clique constraints 

i = index of pairwise adjacency conditions 

Si = the set of clique constraint k that imposes pairwise condition i . 

Choose the decision variables: 

1 if clique constraint k is used to impose adjacency conditions 
Yk = 

O otherwise 

The set covenng problem for clique constraint selection: 

Minimize z = yk 
k 

subject to: 

(1) ensure that ail painvise adjacency conditions are represented in the selected set of 

clique constraints: 

(2) integer requirernents y k  = O or I for al1 k 

The objective is to minirnize the number of clique conmaints used. Constra.int 

(1) requires that each painvise adjacency condition is imposed at least once in the 



selected set of clique constraints. Constraint (2) imposes integer restrictions on the 

decision variables. Given a clique set, for exarnple a nondominated clique set, we can 

identiQ a minimal subset of these cliques which maintain al1 painvise restrictions by 

using this set-covering approach. 

Nonlinear techniques 
Sohing integer linear progamning problems using the sirnplex cilgorithm is quite 

difficult. Therefore, some analysts use other algorithms to solve these problems. 

Clements and Jarnnick (1 990) use Monte Car10 integer programming (MCIP) to 

generate short-term (35-year), spatially feasible timber harvest plans for a New 

Brunswick Crown license. A typical MCIP algorithm begins by generating random 

solutions to a mixed-integer prograrnming problem. These solutions are tested against 

a set of spatial and temporal constraints, and solutions meeting al1 of the constraints are 

designated feasible. Each feasible solution is evaluated relative to an objective 

function. After a large number of feasible solutions have been identified. the solutions 

best satisfjmg the objective function are selected for M e r  analysis. This procedure 

does not guarantee finding the optimal solution. but it does quickly generate several 

near-optimal ones. It also has the advantage of being able to handle large. complex 

problems that are too large or complex to solve. in reasonable amounts of tirne. 

Jammick, and Walter (199 1) used MCIP to determine timber harvest volumes in 

the presence of adjacency constraints. Their study presumed that a particular harvest 

blocking pattern has been established. Given this pattern, the objectives is to determine 

a near optimal integer solution. They present an analysis of twelve alternative harvest 

blocking patterns for a small New Brunswick forest. For this particular forest, the 

difference between blocking patterns are relatively smail and forest managers have 



considerable flexibility in choosing a blocking pattern which best meets operational 

criteria without sacrificing timber harvest volume. 

Lockwood and Moore (1993) used the nonlinear optirniration method called 

simulated annealing (SA) to generate harvest scheduling solutions of a mode1 with 

many spatial constraints, especially the requirement to comply with exclusion penods 

and maximum clear-cut size restrictions. SA is a stochastic optirnization technique, 

which has been used successfully to solve large combinatonal optimization problems. 

An attractive feature of the SA procedure is that it allows nonlinear and discontinuous 

constraints and objectives in an optimization t'rarnework. 

Linear programming has become one of the most cornmon andysis techniques 

in renewable natural resource management and planning. The intrinsic linearity of the 

approach is clearly a limitation. but the exact nature of this limitation is rather subtle. 

Linear programming cm be used to piecewise approximate highly nonlinear 

relationship between inputs and outputs. For example, if different management 

prescriptions are included that involve different levels of intensity of some input's 

utilization, the different A-matrix coeficients under these different management 

prescriptions can reflect highly nonlinear response to changing input intensity. This 

linearity assumption of the LP do cause some problems, however. The most important 

of these problems is that of accounting for the impact of the spatial configuration of a 

management action on outputs of interest. If management prescriptions are based on a 

per acre basis, the LP determines the number of acres to which each management 

prescription applies. The problern is, the (noniinear) response to different sizes and 



shapes of the management action is lost in a fixed per-acre production coefficient. 

Considering these concerns, many authors have tried to resolve them. 

Clement et al. (1 990) and Nelson and Finn (199 1) have defined the management 

variables in tems of timber stand that are treated discretely and are preserved as 

discrete units in solution. The spatial considerations are then typically viewed in tems 

of nonadjacency constraints over time constraints that limit the size of contiguous 

cutover areas at any aven tirne. Considerable progress has been made in solving the 

problern viewed this way, but the approach is limited by accepting and preserving the 

initial stand definitions. Also, this approach avoids "spatial anomalies" but it does not 

account for the nonlinear response of many forest outputs (such as wildlife and fish. 

water, esthetics, etc.) to different sizes, shapes. and arrangement actions. It would be 

difficult to argue that it finds "spatial optimal" solutions for a11 outputs of concern (as 

opposed to just timber). Thinking that this approach does not give "spatial optimal" 

solution, Hof and Joyce have proposed several nodinear approaches to land allocation 

modeling that optimize spatial layout, per se. for a single time period and that have the 

property that the number of choice variables increases linearly with the level of spatial 

resolution. Their paper focuses mainly on wildlife habitat as the primary non-timber 

spatial concern. Wildlife habitat requirements include factors related to food. shelter. 

and sheIter or cover needed. They address a subset of these needs that are related to 

spatial configuration and assume that the following critena are important in the spatial 

layout of wildlife habitat and Vary according to the species considered: the amount of 

edge, the juxtaposition of different habitat types for cover versus feeding needs, the 

distance between favorable habitats, and the minimum sue  of a patch of habitat. They 



propose two nonlinear models: one that accounts for spatial patterns with a cellular grid, 

and an alternative that uses geometric shapes. 

What they concluded fYom their study is that this nonlinear problem is not easy 

to solve even for the simple case considered and is not realistic. Consequently, this 

approach is not recommended as a method to optimize spatial layout but they propose 

instead a different way of looking at the problem of spatially specified forest 

management. 

3.3. Road construction 

It takes more than two centuries for a forest to recover naturally fiom the 

damage caused by harvesting and revert to a useful softwood forest again (Minamikata. 

1984). In contrast the regeneration penods if planned artificial methods are used c m  be 

less than seventy -five years. However. in cornparison with natural regeneration, 

artificial regeneration requires lots of Iabor for planting, weeding, pruning, and 

thiming. Generally speaking, the greater the labor required in stand management and 

the higher the labor cost, the more economically signifiant will be the road network in 

the forest. In these cases, the forest agency therefore tends to use the roads in the forest 

area as much as possible so as to give minimum cost of operation. On the other hand. 

the influence of forest road construction on the ecosystem or natural environment of the 

forest may be very important. For example, opening up forest roads occasionally causes 

landslides, sometimes on a large scale. 

To accommodate the economic affects and various impacts of road construction, 

Minamikata (1984) proposed a road planning system based on a mesh analysis method. 



Using this method, the forest road is extended section by section. Extensions consist of 

road along the sides of the grid or along a diagonal, taking into account the direction 

along which the route has already been laid, and extension directions with the highest 

economic effect. The procedure is then repeated fiom the new starting point. 

Road const.ction in forest management is also very important because by 

constructing a road network in the forest properly, we can minimize the cost of 

harvesting or other activities and also minimize the intluence of forest road construction 

on the forest environment. Carson et al. (1978) showed that a transportation system of 

forest roads may be descnbed as a network, a collection of intercomected segments or 

links. Each link describes a unique path between two adjacent nodes. A node rnay be as 

depamire or destination of sorne path through network such a landing or mill. Nodes 

may also be road intersections, viewpoints. scaling stations, and bridges. The unit of 

measure selected to judge a path's length can be anything, such as hauling cost. distance 

or time. construction cost. maintenance cost, or even a measure of scenic or esthetic 

value along the link. Carson et al. produced a program that can find the shortest path 

through a network from a specified point of depamire utilizing the "Moore algorithm" . 

However this program is lirnited only to 60 nodes and 155 links with no more than 8 

links meeting at a single node. 

Planning forest road networks in steep mountain terrain is very dificult to 

achieve using analytic methods. Kouchi (1966) proposed a forest road planning 

technique using topological considerations in conjunction with analytic methods. 

Typicd objectives of planning a forest road network are to minimize the length 

of the roads in the network or to minimize the cost. The objective considered by Kouchi 



is planning a road network with shortest possible length. The method of Kouchi starts 

by picking out al1 places where the road must pass through without actually drawing 

any road lines. If these so-called passing points can be picked successfully, then the job 

is to complete the network by comecting them - aiming at the shortest total road length 

at minimum total cost. 

A typical system of logging and transportation is to gather the cut trees with or 

withoiit branches in some open area - called a landing- where log making and sorting 

take place. The timber is transported directly fiom this landing to markets or factones. 

This method is agreed to be ideal in many logging areas fiom the stand point of cost 

management. Using the Ashu Forest in Japan as a study case. Kouchi decided that the 

ideal system is to have one step to the landing and one step to market, and that the total 

road length should be minimized. 

To realize the idea above, the collection areas selected must have enough width 

and flatness for log making operation and must not result in delays in the delivery of 

the timbers. Therefore, at first, a large number of such places were chosen al1 over the 

forest on a map of 1/10000 scale. Then the critmion applied was that the gradient in a 

circle of 1 cm diarneter on the rnap was less than 3/10. The number of the places 

selected was about 100. 

The next job was to select a minimal number of these locations sufficient to 

carry out successfully the one step logging to landing stage. For this purpose, we can 

utilize the concept of minimum extemal stable set fkom graph theory. It is assumed that 

some logging level optimal for Ashu Forest has been decided and that some passing 

points have already been decided. Here, "logging level" is a phrase Kouchi used to 



express what kind of logging method is used and to what extent, for example, tractor 

skidding within 30 minutes cycle tune, cable way of one span within 1000m, and so on. 

Then if any timber at any location in the forest can be gathered to some of the selected 

passing points, using the decided logging level he cal1 such set of collection points an 

"external stable set". An external stable set with a minimum number of points is called a 

"minimum extemai stable set ". In the study of Kouchi, a cable way of one span within 

l O O û m  was taken uniformly for al1 points, as the logging level. And he drew the sphere 

of logging fiom each preliminary collection point on the sarne map. 

The algorithm for extracting a minimum extemal stable set out of the above 

prelirninary selected points is illustrated by the following. 

Fig. 3.3. Logging area of each landing 



Assume A, B, C, D on figure 2.3 are the points initially selected. Lines on the map 

representing the sphere of logging fkom each point divide the forest into many mal1 

domains, In figure 1 the total area is divided into 12 domains. Timber in the domain 1 

can be gathered to A or B, and so it is represented as (A+B). The domain 2 belongs only 

to B, so it is denoted by B, on so on. Any domain needs to belong to some of the points 

for our purpose, so we represent that as 0. 

1 2 3  4 5 6 7  8 9 1 O 11 12 

(A+B)B(B+C)(A+B+C)(A+C)A(B+D)(B+C+D)(A+B+C+D)(A+C+D)(A+D)(C+D) 

4 1) 

Logical meaning o f  this is (A+B) AND B AND (B+C) AND . . . . . . 4 N D  (C+D). 

In the next step shnnk the number of points by using the law of absorption 

which is as follows; AX -t A if A is entirely included in X, for example, A(A+B+C) + 

A. This reduced ( 1 ) to (3, 

AB(C+D) (2 )  

in the next step expand (2) to get (3) which is the solution 

ABC+ABD (3) 

For this to be bue, either ABC has to be true or ABD. Hence, the minimal number is 3 

and we have two choices ABC or ABD, and the choice rnight be the one which could be 

comected by the shorter road line. 

Deeision of the forest road network 

There will be a lot of discussion about what kind of network should be chosen, 

but here our only aim is that the total road length should be minimal. The algorithm for 



comecting al1 the points by the roads with shortest total length makes use of the 

concept of "tree" frorn the graph theory. It is assumed that connecting roads never cross 

each other except at the passing points and the algorithm is as follows. 

a) Choose the shortest one out of the road-lines connecting any two of the points 

b) Delete the road-lines already chosen and the ones that will make cycles with the 

fonners. And afier that, choose the shortest just like in a). 

C) Iterate b)'s step until al1 the points will be comected by chosen lines. 

3.4. Forest Products 

Foresters and other executives engaged in the forest products industries are 

constantly faced with the problem of how to allocate their resources in a manner that 

will maximize some utility, usually profit. In making these decisions, they usually think 

in terms of improved rnanufacniring methods. One of the most difficult and costly 

components in the process of converting the forest crop into useful products is the 

production of logs. Once the tree is on the ground. a bucking crew begins to make some 

fundamental decisions that are as important as any that are made in the total process of 

tree conservation. The loggers, with their axes and chainsaws, determine what portions 

of the tree to allocate to lumber production, veneer, and pulp. Further, they influence 

greatly the length of lumber and veneer or plywood to be produced, and ultimately 

profits. The log makers are constantly looking for better methods to assist them in their 

effort to maximize returns. 

Pnevmaticos and M m  (1972) use dynamic programrning to produce a pattern 

of tree bucking (sawing felled trees into shorter lengths). The problem is fomdly 

defined as follows: Given a stem (fig. 2.4) of length L, larger diameter D, and smaller 



diameter d, it is desired to cut it into logs in such a way so that the total retum from the 

stem is rnaximized. The objective is to maximize the retums fiom the tree by finding the 

nurnber of logs to be cut, their length and diameter, and the location of the cuts. The 

constraints are: the total length of the logs m u t  be equal to or less than the initial stem 

length, the diameters of any log must be within the limits of the diameters of the 

remaining stem, and both log length and diarneter must be within the lirnits specified by 

management. 

Figure 2.4. Relation of dynamic programming terminology to tree buckhg 

For this type of decision process, dynamic programming (DP) is an appropriate 

technique for finding an optimal cutting policy. Some necessary parameters are as 

follows: 

L = stem length in feet 

D = large diarneter of stem inside bark in feet 

d = small diameter of stem inside bark in feet 

k = minimum length of log, in feet, acceptable to management 

m = maximum length of log, in feet, acceptable to management 



Costs and revenue in this operation are c(r,ci) , the cost of making a cut of diameter t ï  

for a log of length r , and iPg (r , s, t) , the value of a log of length r , large diameter s , 

small diameter t , and grade g . 

Let pg ( r , s , f )  be the probability that a log of length r ,  large diameter s ,  and 

srnail diameter r , is of ~ d d e  g . Defint: / i{L,D,d) as Lhe maximum expected value of 

a stem of length L , large diameter D , and small diarneter d with i stages remaining in 

the decision process. We assume f, (L, D, d) = O for al1 values of L . D . and d . Then. 

assuming that cutting begins at the large end of the stem and proceeds toward the end 

with the smaller diameter, we have 

where j is the decision variable indicating the number of minimum log lengths to 

remove fkom the stem wiîh a single cut. The decision variable j is constrained as 

follows: 1 < j 5 min &j where [m / k ]  indicates the greatest integer contained in 

rn / k . This constraint on j is imposed to insure that at least a single log of minimum 

length is removed fiom the stem, but no more is removed than the maximum allowable 

log length. 

Bucking decisions should include consideration of stem taper, stem length. and 

the log quality , as well as capability and capacity of manufacturing rnachinery and 

market demands for various end-use products. If the stem c m  be bucked so that it meets 

the above considerations, optimal revenue can be produced. An approach that takes into 



account simultaneously the limitations of the forest resource in terms of quality and 

quantities and the market requirement for end-use products seems superior. Eng, (1 986) 

tries to accommodate those considerations in order to prescribe appropnate bucking 

pattern. 

Mathematical Mode1 of Eng, 

The DP sub-problem, bucking the stem, is used to generate activities for the 

Linear Prograrnming (LP), so that the bucking strategies c m  reflect properiy the 

opportunity cost resuiting from critical constraints on demands and (or) resources. 

Assume that the forest resource has been classified into J tree classes, each 

defined by size and quality of the stems found in one or more stands. Let Xii denote the 

number of tme stems of class j bucked by pattern i. 

Define q--as the retum from bucking a stem of class j by pattern i and avk as the 

associated volume of log type k, k= 1.2. .... K. 

Let Si be the number of stems of class j available in the wood resource, and bk the 

required demand in the given time penod for log type k. The objective is to determine 

the optimal Xii value so as to 

maximize 5, Xy subject to the constraints 
1 I 

zCavkx, (5, =,>) bk, k = l J  ,..., K 

And the tree nipply constraints 

ZX, GY,, j=l,Z,...J, 



Note that Xii is an integer but Xii values are large for most practical 

application so that the integer constraint c m  be dropped and the problem reverts to a 

regular LP. 

Note t h t  e x h  column or acti-.<r; in this LP problem represents s possible 

bucking pattern for a given tree class. To determine the retum c, and parameters 

aijk , k = 42, ..., K column , we use a strearnlined dparnic programming 

formulation for finding the optimal bucking pattern. Consider a stem of class j. For 

large scale practical applications, the dimensions of a stem are approximated by a taper 

equation as a function of tree species, forest locality. age, etc. , and either height of stem 

or its diarneter at breast height over bark(dbhob). Using height as the index for site. 

consider a section of a stem of length L ,  measured fiom the base of the stem. with 

O 5 L I &, j .  where ka., is the total usable len@ of the stem. We wish to buck 

that section optimally into shorter logs so as to maximize a retum function that reflects 

the marketable values of those logs. 

Let yk denote the length of a short log of type k cut a distance L - yp from the 

base of the stem and r(yk ,l)represent its associated end-use product value then the 

following recursive relation results. 

f (L)=  maximurn(r(-vk,L)+ f(L-yk)) 
k 
. v k ~  y(L) 



for O 5 L S La. and with f(0)=0 and where Y(L) is the set of feasible short logs at L 

for ail K end-use products. This set depends on factors such as minimum and maximum 

length, minimum small-end diameter, and pmissible defects, as dictated by marketing 

considerations. The optimization is over al1 log types K and al1 short log lengths JQ. 

feasible at L. The value of a short log fiorn a stem of tree class j can be made 

depending on both location and length. For instance. sawlogs cut fiom large dianieter 

sections of the stem have a higher value per unit volume than those coming from 

smaller diameter sections. Similarly . the unit volume value of long poles is higher than 

that of short poles of the sarne large end diameter. 

Makuig r(y& location dependent also allows the formulation to 

accommodate any stem defects of tree class j. This is achieved by repricing any 

potentially defective short logs. Assume a stem contains a defect from 

- 
lo~ation!~ to I,,  which render that portion unsuitable for inclusion in short log of 

type k. Then any short log of type k cut from the stem from location L to L+ - -vk. 

where position [Ik ,lk ] is contained in [ L,L - yk 1, is assigned a negative r ( yk ,  L )  

value. As a result, the optimal DP solution will never include such short logs. 

The output of the DP bucking problem for each tree class j consists of the vector 

of log type volumes. ( aVl,a,, - ,...,aok }, and the associated r e m  

r- Y = F(Lma. ,). 

per stem 



Solution Method 

The output of the DP recursion becomes the input to the LP problem. The 

Dantzig-Wolfe decomposition algorithm allows us to approach the global optimum 

successively. This algorithm cm be viewed as a notionai dialogue between a forest 

resource planner and buckers. The planner's job is to coordinate bucking pattems 

applied to the forest resource so as to meet end-use product demands, while maximizing 

the total value of the forest resource in tems of log type production. The buckers are 

responsible for bucking al1 stems in a given tree class. Each party is viewed as a profit- 

maximizing unit. Starting with an initial set of bucking pattems, the planner finds a 

provisional operating plan in the form of a subset of bucking pattems to match demand 

and supply constraints. The planner then assesses the intemal penalties and premiums 

associated with the demand and supply constnints for that solution. The use of any 

stems from a tree class in tight supply is penaiized to discourage their use. Similarly, 

any log types with upper demand limits fully met are penaiized to discourage their 

production, while those with lower demand limits just met will be given a premium to 

encourage their production. Given the original log type prices and these penalties and 

premiums, the buckers, in turn, atternpt to generate new bucking pattems that rnaximize 

their retum. They do so without regard for the feasibility of the planner's overall 

allocation problem. These new bucking patterns are reported back to the planner. who 

adds thern to the previous set of alternative bucking patterns to find a new operating 

plan and a new set of internai penalties and premiums. This iterative process continues 

until the buckers are unable to generate new bucking pattems that are profitable at the 



prevailing set of penalties and premiums. At this point the process terminates. The 

globally optimal solution has been found. 

We now outline how the above process translates into an aigorithm. The 

algorithm is initiated by finding at least one bucking pattem for each tree class using 

recursion [j]. It would also be useful. though not necessary, to generate additional 

patterns for some tree classes. This will facilitate finding an initial feasible solution to 

the LP on the fint iteration. Assume now that we have just solved the LP at iteration 

n 2 l .  

Denote by rrk the shadow pnce of the demand constraint for log type k .  This is the 

negative of the premium or penalty per unit volume referred to above. The r ( y k .  L) 

values to be used in [5] are now adjusted to retlect the shadow pnces. Say. for 

simplicity pk . is the unit market value of log type k . Then. the new adjusted unit price 

becomes pk -q . Let f be the shadow price for the supply constraint of tree class j . 

A new bucking pattem for tree class j is profitable if 

F ( L i L Y , )  '6, Pl 

Hence, at each iteration. we apply recursion [5] to find a new bucking pattern for each 

tree class using the newly adjusted log type prices. niose that satisfy condition [6] are 

added as new activities to the LP. The LP is then resolved. resulting in new shadow 

prices and the process is repeated. It stops when no tree class can generate a new 

bucking pattem that satisfies [6 ] .  At this point, as shown in End.(l982). the optimal 

solution has been found. 



Chapter 4 

Genetic Aigorithms 

4.1. Introduction 

Any abstract task to be accomplished c m  be thought of as solving a pmblem, 

which. in tum, can be perceived as a search through a space of potential solutions. Since 

we want the best solution, we c m  view this task as an optimization process. For 

continuous and simple solution spaces, classical exhaustive methods usually suffice; for 

more complicated spaces special techniques must be employed. Genetic Algonthms 

(GAs) are among these special techniques. They are stochastic algorithm whose search 

methods modei some natural phenornena: genetic inheritûnce and Danvinian natural 

selection or survival of the fittest. 

In the biological world. the process of natural selection is thought to be a major 

control over evolution. ûrganisms most suited for their environment tend to live long 

enough to reproduce and are more successfil in their reproduction, whereas less-suited 

organisms often die before producing young or produce fewer and/or weaker young. A 

GA is an artificial Me simulation method that mimics the process of evolution by 

creating an artificial world, populated with pseudo-organisrns govemed by some 

measures of sumival and reproduction. The given measures of survival and reproductive 

success c m  be chosen to ensure that this very crude form of evolution encourages the 

pseudo-organisms to evolve to a specific goal. 

GAs have been successfully applied to optimization problems such as wire 

routing, scheduling, adaptive control, game playing, cognitive modeling, transportation 

problems, traveling salesman problems, and optimal control problems. However. De 



Iong ( 1985) warned against perceiving GAs as a completel y reliable optimization tool: 

"because of the histoncal focus and emphasis on function optimization applications, it 

is easy to fa11 into the trap of perceiving GAs themselves as optimization algonthms and 

then being surprised and/or disappointed when they fail to h d  an 'obvious' optimum in 

a particular search space." He suggests that a way to avoid this perceptual trap is to 

think of GAs as a simulation of a natural process. As such they ernbody the goals and 

purposes of that natural process. On the other hand, optimization is a major field of 

GA'S applicability. 

4.2. General Structure of Genetic Algorithms 

GAs were formally introduced in the United States in the 1970s by John Holland 

at the University of Michigan (Holland, 1975). The continuing pncelperformmce 

improvernents of computational systerns have made them attractive for some types of 

optimization. In particular. genetic algorithms work very well on mixed (continuous 

and discrete), combinatorial problems. They are less susceptible to getting 'stuck' at 

local optima than gradient search methods. But they tend to be computationally 

expensive. 

GAs belong to the class of stochastic search methods (other stochastic search 

methods include sirnulated annealing, and some forms of branch and bound (Goldberg, 

1989)). Whereas most stochastic search methods operate on a single solution to the 

problem at hand, genetic algonthms operate on a population of solutions. This 

population evolves, from generation to generation, into a population of better solutions 

to the problem. 



The general structure of a typical GA is as follows. First, solutions to a problem 

must be encoded in a structure that can be stored in the computer. Each encoded 

solution is called a chromosome. An initial population of chromosomes is created. 

These initial chromosomes cm be chosen at random or by using information that is at 

hand. Genetic operators, called recombination (or crossover) and mutation are applied 

to the individuals in the population to generate new individuals. Some selection criteria 

is used to choose fitter individuals for the next generation. Fitness is usually determined 

by an objective function value. 

Encoding of solutions (chromosomes) can be done in many ways. Traditionally, 

GAs use stnngs of bits to represent solutions. Holland worked prirnarily with strings of 

bits, but m y s ,  trees, lists, or any other object can be used. The key thing to keep in 

mind is that the genetic machinery will manipulate a finite representation of solutions, 

not the solutions themselves. Of course, mutation, crossover, and selection d l  be 

defined differently depending on the representation chosen. 

Selection is some means or procedure for discriminating good solutions fiom 

bad solutions. This can be as simple as having a human intuitively choose better 

solutions over worse solutions, or it cm be an elaborate computer simulation or mode1 

that helps determine what "good" means. But the idea is that something must detemine 

a solution's relative fitness. This will be used by the genetic algorithm to guide the 

evolution of friture generations. Simply stated, selection allocates a greater likelihood of 

nwivai to better individuals - this is the sumival-of-the-tittest mechanism we impose 

on our solution. 



Selection can be used in two different ways. On the one hand, it cm determine 

how individuals are chosen for mating by recombination and mutation. On the other, it 

can be used to choose, among the parents and children, those individuals that will 

survive into the next generation. Either way, if we use a selection method that picks 

o d y  the b a t  individual, then the population will quickly converge to that individual. So 

the selector should be biased toward better individuals, but should also pick some that 

aren't quite as good (but hopefully have some good genetic material in them). 

Some of the more cornmon methods of selection include the following. In 

roulette wheel selection, the likelihood of picking an individual is proportional to the 

individual's fitness. Thus a new population is selected with respect to the probability 

distribution based on fitness value. See section 4.3 for a detailed example. In a 

tournament selection a nurnber of individuais are picked using roulette wheel selection. 

then the best of these are chosen for mating. In rank selection the best individuals are 

picked every time. Recombination (crossover) is a genetic operator that combines 

bits and pieces of parental solutions to form, new, possibly better offspring. There are 

many ways of accomplishing this, but the pnmary idea to keep in mind is that the 

offspring under recombination will not be identical to any particular parent and will 

instead combine parental traits in a novel marner. Typically crossover is defined so that 

two individuals (the parents) combine to produce two more individuals (the children). 

But you c m  detine asexual crossover or single-child crossover as well. The primary 

purpose of the crossover operator is to get genetic matenal from the previous generation 

to the subsequent generation. By itself, recombination is not dl that interesting an 



operator, because a population of individuais processed under repeated recombination 

alone will undergo what amounts to a shuffling of extant traits. 

The mutation operator introduces a certain arnount of randomness to the search. 

It can help the search find solutions that crossover alone might not encounter. Mutation 

acts by simply modifjmg a single individual. There are many variations of mutation. 

but the main idea is that the offspring be identical to the parental individual except that 

one or more changes is made to an individual's trait or traits by the mutation operator. 

By itself mutation represents a random walk in the neighborhood of a particular 

solution. If done repeatedly over a population of individuals, we might expect the 

resulting population to be indistinguishable fiom one created at random. 

Two of the most cornmon genetic algorithm implernentations are 'simple' and 

'steady state'. The simple genetic algorithm is a generational algorithm in which the 

entire population is replaced at each generation. In the steady state genetic algorithm. 

only a few individuals are replaced at each 'generation'. This type of replacement is 

often referred to as overlapping populations. 

In recent years, genetic algorithrns have taken many forms. and in some cases 

bear little resemblance to Holland's original formulation. Researchers have 

experimented with different types of representations, different crossover and mutation 

operators, and different approaches to reproduction and selection. However, al1 these 

methods have a f m i l y  resemblance in that they take some inspiration corn biological 

evolution and fiom Holland's original GA. 



4.3. Example 

In this section, one irnplementation of a GA (Michalewicz, 1992) is discussed by 

way of a simple example. It is a steady state GA, using strings of bits to encode real 

numbers, and a roulette wheel selection method. 

Suppose the optimum is required of a simple function of one variable? defined as 

f (.Y) = x sh(l Olur) + 1 . The problem is to find x from the range [- 1. 21 which 

maximizes the function f , i.e., to find xg such that f (x0) 2 f (x), for al1 x E [- 1 ,?] . 

The approximate solution c m  be found anaiytically, for comparison purposes. as 

follows. 

f '(x) = sin(1 ûm) + 1 OIcxcos(1 ûm) = O when tan(1 Olr .x) = - 1 Chu. 

This has solutions of the form. 

- 3 - 1  
X i  - -+~~ , fo r i=1 ,2  ..... 

'O 

"0 = O 

2i+ 1 xi = - - ei, for i = -1,-7,.... , 
20 

where tems E ~ S  represent decreasing sequences of real numbers (for i =1,2.. . .. and 

i = - 1 ,-2 ,... ) approaching zero. 

Note also that the function f reaches its local maxima for xi if i is an odd 

integer, and its local minima for xi if i is an even integer. 

Since the domain of the problem is .ré [-1,2]. the function reaches its 

maximum for -q9 = + eI9 = 1.85 + E 19 where f (x19 ) is slightly !arger than 
20 



Now a genetic algorithm is used to solve the above problern, i.e., to maximize 

the function f . 

Representation 

We use a binary vector as a chromosome to represent real values of the variable 

x. The length of the vector depends on the required precision. Suppose that a solution 

is required to be accurate to six decimal places. Since the domain of the variable x has 

length 3, the precision requirement implies that the range [- 1,1] should be divided into 

at least (3x106) = 3000000 equal size ranges. The required number of bits (denoted by 

m ) must satisfy m = smallest integer larger than log7 - (3000000). 

2m-1 < 3000000 < 2m - 1 

2097152 = 221 < ~ O O O O O O  5 213 = 4194304. 

This means that 22 bits are required in the binary vector (chromosome): 

Initial Population 

The initialization process is to create a population of chromosomes. where 

each chromosome is a binary vector of 23 randomly chosen bits. 

Evaluation function 

Since the evaluation function f ( x )  is real valued, the binary vector if must fint 

be decoded. The mapping from a binary string (b+Ow.&l$$bO) into a real number 

x fiom the range [- 1.21 is straightforward and is completed in two steps: 

convert the binary string hlhO ...l@$&q$ fiom the base 2 to base 1 0: 



find a corresponding real nurnber x in the range [- 1 ,Z] 

The evûluation function clal for binv; vecton Y is equivcilent to the h c t i o n  

f :  

eval(v) = f ( x )  , 

where the chromosome v represents the real value x . 

As noted earlier. the evaluation function plays the role of the environment. 

rating potential solutions in terms of their tltness. For example, three chromosomes: 

Y, = (1000101 1101 101010001 11). 

t.2 = (000000 1 1 100000000 1 OOOO), 

v3 = ( 1  1 ~ O O O O O O O ~  1 1  1 1  ~ O O O ~ O I ) ,  

Correspond to values .q = 0.637 197, x2 = -0.958973 . and 13 = 1.627585. 

respective1 y. Consequentl y, the evaluation function would rate them as follows : 

eval(vi ) = f (xi ) = 1.586345 

eval(vz) = f (x?) = 0.078878 

eval(y ) = / ( .y3  ) = 2 250650 

Clearly, the chromosome v3 is the best of the three chromosomes, since its evaluation 

returns the highest value. On the other hand, 9 has a very low fitness. 



Selection 

A roulette wheel approach is adopted as the selection procedure. The roulette 

wheel can be constnrcted as foIlows: 

1. Calculate the fitness value evai(vk ) for each vk : 

evai(vk ) = f (x) , k = 1,2,. . ., pop -si.e 

2. Calculate the total fitness for the population: 

3. Calculate selection probability pk for each chromosome q : 

mal(% ) Pk =- 
F *  k = 1,2.. . ., pop -ske 

4. Calculate cumulative probability qk for each chromosome q : 

k 

q k  =CP,? k = 1.2.. . .. pop -sée . 
j=l 

The selection process begins by spiming the roulette wheel pop-size times: each 

time. a single chromosome is selected for a new population in the following way: 

S tep 1. Generate a random number r from the range [O, 1 1. 

Step 2. If r l qi ,  then select the fint chromosome y ; othenvise. select the hth 

chromosome ~ ~ ( 2  5 k I pop r k e )  such that qk-1 c r C q k  . 

Genetic operators 

Afier pop-size vectors (not al1 different) are chosen, some of them will be 

altered. This alteration phase uses two classical genetic operaton: mutation and 

CTOSSOVer. 



Mutation is an operation that alters a gene (i.e. a position in the 

chromosome). Ln binary representation, a mutation is simply a bit fiip. As an example, if 

the fifth gene tiom chromosome 13 is selected for a mutation, the current value O is 

flipped into a 1 yielding 

V;  = (1 1 i01000001 i l  1 1  lOOOioi,. 

This chromosome represents the value x i  = 1.72 1638 and f (-6 ) = -0.087257which is 

a significant decrease of the fitness value of the chromosome v3. On the other hand, if 

the IoLh gene of chromosome 1.3 was selected for mutation. then 

vy =( 1 1 10000001 1 1 1 1 1 1000 10 1). The conesponding real value is -6 = 1 A308 18. and 

f ( x 3 ) =  2.343555 represent an improvement in fitness over the original value of 

f (x3 ) =2.250650. 

Mutation occurs with a probability equal to the mutation rate. p, . If, for 

example. p, =0.0 1, it is probable that 1 % of the total number of genes in the population 

would undergo mutation. For each gene in a given chromosome, a random number 

r E [0,1] is chosen. If r < p, . that gene is mutated (Le. the bit is flipped). Otherwise it 

is not. 

Afier mutation is performed on the selected chromosomes, crossover is 

perfiorrned. This combines the features of two parent chromosomes to f o m  two similar 

offspring by swapping corresponding segments of the parents. For each pair of 

chromosomes a random integer number pos is generated from the range [ L m - l ] ,  

where m is the total length (number of bits) in a chromosome. The number pos 



indicates the position of the crossing points. nie chromosomes (b&...bp,bp+i... - b,) 

and (qcz. .. cp,scp,+l. .. cm) are replaced b y their offspnng (&. . . b p o s c p o s + ~  ) and 

For example, consider applying the crossover operator to chromosomes v7 and 

v3 . First randomly select the crossover point. Assume it is selected after the 5" gene. 

vz = (00000(0 1 1 100000000 1 OOOO), 

v3 = ( 1  1100(00000111111000101), 

The two resulting offspnng are 

\y= (00000~00000111111000 10 l), 

vjr = ( 1  1 100(@1110000000010000). 

These resulting offspnng fitness values are: 

f (v,  ') = /(-0.998 1 13) = 0.940865, 

/ ( v 3  ') = f (1,666028) = 2.459245 ., which are better than both of each parent. 

In each case, the new vector is fitter than the old one. 

Crossover occurs with a probability of p,.  If. for example, pc=0.15, it is 

probable that 25% of chromosomes will undergo the crossover operation. For each 

chromosome, a random number r é [OJ] is generated. If r < p, , that chromosome is 

selected for crossover. From this list of selected chromosomes, pairs are chosen at 

randorn for crossover, as described above. 



Parameters 

For this particular problern the following parameters have been used: population 

size pop-ske = 50, probability of crossover p,= 0.25, probability of mutation 

p,  =0.0 1. The following section presents some experimental results for such a genetic 

system. 

Experimental results 

In Table 4.1 the generation number and function value are provided for which 

an improvement in the evaluation fùnction was noted. The best chromosome afler 150 

- generations was in generation 115 where vmaK - (llllOOllOlOOOlOOOOOioi), 

corresponding to .r,, = 1 MO773 and f (x,, ) = 2.85. This is very close to the 

approximation found previously b y analysis. 



Table 4.1 . Results of 150 generations 

Generation number 

4.4. Genetic Algorithms for Multiobjective Optirnization 

The GAs discussed in the previous section are designed to optimize single- 

objective functions. in the real world, however, typical optimization problerns have 

multiple objectives, as discussed in section 3.1.1. GAs can be easily modified to solve 

multiobjective problems. 

Multiobjective optimization seeks to optimize the components of a vector- 

valued function. Unlike single objective optimization. the solution to this problern is not 



a single point, but a family of points known as the Pareto-optimal set as discussed in 

Chapter 2 section 2.3. Each point in this surface is optimal in the sense that no 

improvement c m  be achieved in one cost vector component that does not lead to 

degradation in at least one of the remaining components. That is, the solution set 

represents the best compromises among al1 the objectives. 

The main difference between GAs for single objective optimization and for 

multiobjective optimization is that in single objective optimization, fitness can easily be 

defined by the value of the objective function. In rnultiobjective optimization. however. 

fitness must be based on al1 objective Functions. Since GAs maintain a population of 

solutions they can search for many non-dominated solutions in parallel. Thus the 

concept of Pareto-optimality can be used to define fitness. The idea then is that an 

initial population evolves into a population that is representative of the Pareto-optimal 

set. Two such approaches will be discussed below - Vector Evaluated Genetic 

Algonthm (VEGA) (Schafter, 1985) and Multi-Objective Genetic Algorithm (MOGA) 

(Fonceca and Fleming, 1993). 

Being aware of the potential GAs could have in multiobjective optimization. 

Schafter (1 985) proposed an extension of simple GAs to accommodate vector-value 

fitness measures, which he called a VEGA. A simple vector version of the survival of 

the fittest process was implemented. The selection step was modified so that. at each 

generation, a nurnber of sub-populations was generated by perfonning proportional 

selection according to each objective function in turn. Thus, for a problem with 

q objectives and population of size N ,  selection is used to generate q sub-populations 

of size //9. These would then be shuflled together to obtain a new population of size 



N , in order for the algorithm to proceed with the application of crossover and mutation 

in the usual way. 

However, as noted by Richardson et al. (1989), shuffling al1 the individuals in 

the sub-populations together to obtain the new population is equivalent to linearly 

combining the fitness vector components to obtain a single-valued fitness tùnction. The 

weighting coefficients, however, depend on the current population. This means that, in 

the general case, not only will two non-dominated individuals be sampled at different 

rates, but also, in the case of a concave trade-off surface, the population will tend to 

split into different species. each of them particularly strong in one of the objectives. 

Schaffer anticipated this property of VEGA and called it speciation. Speciation is 

undesirable in that it is opposed to the aim of finding a compromise solution. 

To avoid combining objectives in any way requires a different approach to 

selection. Fonseca and Fleming (1993) proposed a technique which they called a 

MOGA in which fitness is based on ranking. 

Multiobjective Pareto Ranking 

Ranking of solutions according to Pareto-optimality c m  be done as follows. 

Consider an individual xi at generation t which is dorninated by pik)  individuals in 

the current population. Its current position in the individuals' rank can be given by 

Thus, d l  non-dominated individuals are assigned the best rankuig, 1. The fitness of an 

individual can then be assigned, for example, as the reciprocal of the rank. 

To cl&@ the concept of Pareto-ranking, consider the following example: 

Maximize: A=x ,  f 2 = y  



Subjectto: d + y Z  Il and O ~ X ,  y S 1 .  

The Pareto front is then a quarter arc of the circle x Z  + y = 1 at O 5 x, y 5 1 . in 

Fig.4.l the ranking of several points is shown. 

Recently. Fonseca et ai. (1995) published a survey of evolutionary algorithms 

for multiobjective optimization. They identified several open research issues, and 

provided an overview of two categories of techniques - (those which combine many 

criteria into one objective function and r e t m  a single value, and those. which are based 

on Pareto-optimality and retum a set of values). 

"fi 
Fig. 4.1. Pareto ranking method 



Chapter 5 

Some examples of Multiobjective Operations Research Solutions 

to Forestry Problem 

In chapter 3 various techniques used to solved multiobjective problems in 

forestry management have been discussed. The most popular one is Goal Programming 

(GP). AAer a thorough search of the literature, it appears that a Multiobjective Genetic 

Algorithm (MOGA) has not yet been used to solve foresûy problems. As discussed in 

chapter 4, MOGAs cm search for the Pareto-optimal set. making them potentially 

useful for resource allocation in forestry management where there are ofien multiple 

conflicting objectives. A MOGA would enable decision maken to choose one solution. 

suitable to the current situation, out of many alternatives in the Pareto-optimal set. 

In this chapter two forestry problems with many conflicting objectives are 

solved using a MOGA and compared with the GP solution. 

In the first problem, decision makers have decided in advance the target level of 

each objective that they want to achieve and they are satisfied if their target levels are 

met. In the second problem, the decision makers don't specifi any target level for the 

goals. instead they want to obtain the best possible solution. 

5.1. A Multiobjective Forestry Problem with specified target levels of goals. 

The first type of problem solved is a multiobjective forestry problem where the 

decision maken specify the target levels of their goals. The decision makers m u t  also 

give their preferences (prionties) for the cases where not d l  goals are satisfied. The 

problem will be solved using two approaches, GP and MOGA. 



The specific example solved is given by Field (1973). Josiah Freeman, of 

South Haven, Corn., purchased a 600-acre track of woodland in west-central Maine. 

His motives for acquiring this land were twofold: to provide a recreational retreat for his 

family, and to develop a supplementary source of income. A local consulting forester 

provided Mr. Freeman with a timber management plan that specifies a sustained-yield 

allowable cut of about 21 MBF (thousand board feet) per year. The only other major 

potential income-producing feature of the property. as well as an important leisure-time 

asset, is a cabin in a grove of pine trees near the center of the property. 

At the tirne of purchase, Mr. Freeman had definite ideas about the management 

of his new property: 

1) From his preliminary calculation he thought that a realistic goal would be to net 

about $2100 a year from timber sales and rental of the cabin. 

2) He wished to ensure the availability of the property for his family's 30-day sumrner 

vacation. 

3) He wanted the use of the property for his own annual 7-day fa11 hunting trip. 

4) In addition, he prefmed not to endanger the long-term production potential of the 

forest by exceeding the allowable cut. 

5) For reasons of safety and esthetics, he felt that no timber harvesting should be going 

on while either he or his tenants were using the property. 

These goals were constrained by the following facts: 

1) The number of summer and fa11 days available are estimated to be 90 and 60, 

respectively. 



2) For every four days that the cabin was rented, about one day of Mr. Freeman's own 

time had to be spent in maintaining the cabin and access road. Assume that half of 

the maintenance time is spent in fall, and haif in surnmer. 

3) The part-time timber harvesting crew he wanted to employ was available dunng 

summer day only and could tum out, on the average, about 3 (three) M B F  per day. 

The net r e m s  on harvest and rental activities were estimated to be: 

a) sumrner rentd â20/ day: 

b) fa11 rental % 1 9day; 

c) timber $ 1  YMBF. 

5.1.1. Using Goal Programming Procedure. 

Mathematical Formulation of the Problem. 

Fint of al1 we formulate the goal equations. 

Let xi = number of days of summer rental 

xz = nurnber of days of faIl rental 

.q = number of days of timber hawesting 

-q = number of days of sctnmer vacation plan 

"5 = nmber  of days of faIl hunting plan 

.rg = nurnber of days of work days for maintenance 

As discussed in section 2.3, the goal programrning approach is to introduce variables 

diu and dio , where diu represents the amount by which goal i is underachieved. and 

dio that by which it is overachieved. The overall objective is thus to minimize these 



deviations. For example. the underachievement variable, d l ,  , has value zero if goal 1 is 

satisfied or overachieved. Similarly the overachievement variable, di,, has value zero if 

goal 1 is exactly satisfied or is underachieved. 

Goal 1. Net income, coming from rental and sale of timer. is about $2 100. 

7 0 ~ ~ + 1 5 ~ ~ + 4 5 ~ ~ +  d l [ ,  - dl,=2100 

where d i ,  is the shortfall in achieving this income (in dollars), and d l ,  = excess of 

income above the goal. The goal is to minimize dl,, . 

Goal 2. Availability of 30 days for sumrner vacation. 

-q + dZu - dZo = 30 

where d2 ,  = nurnber of days less than 30 available for vacation. and dl ,  = number of 

extra days above 30 available for vacation. 

The goal is to minimize d- ,  . 

Goal 3, Availability of 7 days for faIl hunting 

"5 + d3,  - d30 = 7  

where d 3 ,  = number of days less than 7 available for hunting, and d3, = number of 

extra days above 7 available for hunting. The goal is to minimize d3,, . 

Goal 4. Not to endanger the long tenn production. The goal here is to not exceed the 

allowable cut of 2 1 MBF (7 days of harvesting). 

53 + dqu - d40 = 7 



where d4, = number of days less than 7 available for harvesting, and dl, = number of 

extra days above 7 available for hawesting. The goal is to minimize d4u + d4*. 

Goal 5. The goal is that every 4 days rental needs one work day for maintenance. That 

is, - xi - x2 + 4 x6 = O or - .q - .q + = O .  Hence, the formulation of goal 5 is as 

fo!~o\vs* 

-xq-Xq +y +dSu -djo = O  

where d ju = the number of days less than the goal allocated to maintenance and d jO = 

the number of days more than the pal available for maintenance. The goal is to 

minimize ds . 

In surnmary, the five goals are: 

Goal 1 : Minimize d 

Goal 2: Minimize d,,, 

Goal 3: Minimize dw 

Goal 4: Minimize d4 ,  + d40 

Goal 5: Minimize ds, 

The constraints : 

1. There are only 90 days available for summer. These days are used for rental, 

harvest, farnily's vacation. and repair. Half of the work days will occur in the 

summer. 

- . l  + x3 + .r4 + 0.5.~~ < 90. 



2) There are only 60 days in the fdl. They are used as fdl rental, fa11 hunting, and 

work days. Four days rental needs 1 day repair and 4 day fdl hunting needs 1 day 

repair. So we can formulate the constm.int as follows: 

X, - + "5 4-0.5~~ 5 6 0 .  

The formulation of the problem 

initidly, Mr. Freeman did not rank his goals. That is, each goal is aven weight 

one. The problem formulation is thus, after putting zero values on variables which he 

did expect to be positive ( d2 , ,  d3 ,  , dSo ) 

Minirnize di,, + dîu + d3, + d 4 ,  + dJ, + dg ,  

Subject to 

7 0 ~ ~ + 1 5 ~ 7 + 4 5 . ~ ~ +  - dlrd L 1100 

XJ + dZu =30 

"5 + dJrd = 7  

"3 + dl, - d4, = 7 

-x.rl -X.r2  f.% +dSu = 0 

xl + x3 + xq + 0 . 5 ~ ~  190 

"1 +"5 +0.5x6 S60 

Al1 variables are non-negative. 

nie formulation problem is solved using LINGO ( LMDO System Inc., 1999). The 

output is summarized in Table 5.1 below. The formulation of the mode1 for LMGO 

and the output can be found in Appendix 1 and Appendix 2. 



We can see tiom this result that we cannot achieve al1 goals. The variable d4 ,  

= I  1 which means that there is an overcut of 33 MBF (1  1 days of harvesting). ïhis  is 

an undesirable result of this simple problem formulation. In orcler to improve the result 

the individual goals must be gwen specific priorities based on other considerations. 

For the purposes of this problem it is supposed that Mr. Freeman makes the 

following decisions. He decided that he would, most of d l ,  like to make the S2100 per 

year. More would be acceptable. Meeting the allowable cut ranked second in his 

scherne of things, but he was twice as concemed over the consequences of exceeding 

the limit as he was about to undercutting. Thus d4,  is multiplied by 2 in the priority 2 

part, as shown below. Summer and fa11 leisure time and working days al1 ranked in the 

third level, but assuring vacation and hunting t h e  (equaily valued) seerned three tirnes 

as important as getting the work done. Thus dl,  and d3, are multiplied by 3 in 

priority 3. Let 4 refer to h t  priority, P, - refer to second priority, and Pj refer to third 

priority. The problem we want to solve now is 



This formulation solved using LMGO and the resu 

+ d,, ) 

i t s  are sumrnarïzed in the 

Table 5.2. The source code of this LING0 formulation and the output c m  be found in 

Appendix 3 and Appendix 4. 



Table 5.2. Ranked goals of Mr.Freeman 

Swnmer rental 

Fa11 rental 

Harvest 

Surnmer vacation 

Fa11 hunting 

Work 

Allocation 

(no. of days) 

Goal 

tncorne 

Harvest 

Sunmer vacation 

Fall hunting 

Work days 

Deviation 

It is s h o w  in Table 9 that in the first run the work days goal could be met but 

after this goal is ranked as ranking number 3 (third prionty) this goal becomes 

underachieved by 21 days. On the other hand. the harvest goal that is not satistïed in the 

fint run becomes completely satisfied as this goal is ranked as ranking number 2 

(second priority). It shows that goal ranked 3, work days. is sacnficed in order to satisfi 

goal ranked 2, harvesting. 

5.1.2. Solutions using Multiobjective Genetic Algorithm (MOGA). 

The above stated problem of 5.1.1 is now solved using the MOGA algorithm 

(Binh, 1996) implemented in MATLAB. This algorithm is used to search for the Pareto- 

optimal set of a given vector-valued objective function. The source code for this 

function can be found in Appendix 5. A population size of 100 is used. The output can 

be found in Appendix 6 and rounded to integer values in Appendix7. A summary of the 

solution is given in Table 5.3. The table gives some extreme pareto optimal solutions 



for which optimal results for the goal are aven regardless of the other goals. For 

example, to achieve goal 1 as closely as possible (i.e. satisfi the target level exactly 

without considering the other goals then solution number 1 rnight be the best. In table 

5.4 some reasonably good trade-off solutions are displayed. For example, solution 

number 1 is quite good trade-off solution, i.e., we achieve net income of S 1930 ( target 

of %2100), 20 day summer vacation (target of a 30 days), and -2 work days ( target of 

O, short of only a half working day). There are other trade-off solutions in this table or 

we might prefer another solution fiom table 5.5. 
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What we cm see fiom this result is that the MOGA's solution gives many 

alternative schedules with many different trade-offs. This allows us to choose a solution 

that is acceptable based on other considerations which are not part of the mathematical 

problem. In contrat the GP solution only gives one solution without displaying any 

other potentially good trade-offs. Even for this simple problem, the genetic algorithm 

getierates solutions no wone (if not better) than that generated by GP approach. On the 

other hand, MOGAs are capable of handling complex problems where the GP approach 

might not be very efficient. 

5.2. A Multiobjective Forestry Problem without s pecified goal target levels. 

Here we will solve a multiobjective forestry problem where the decision makers 

don't specify targets for the goals they want to achieve. In this case the decision makers 

might have no idea about the target levels they can achieve. The problem is a 

modification of a reforestation budgeting and planting stock allocation study of 

MacLean (1 B O ) .  MacLean used linear programming to solve the original problem. 

However, the GP procedure and MOGAs techniques have been used to solve the 

modified problem. The specific goal prograrnrning used here was proposed by Walker. 

H. D. (1984). 

The general background of the problem is as follows. The silviculture staff in 

the district office of a public forest management agency is planning reforestation 

activities for the coming season. An area of 5000 ha of unstocked land is available for 

this purpose. The land has been classified into three types: 1000 ha of site type X 2200 

ha of site type Y, and 1800 ha of site type 2. The staff are confident that areas within 



any of these site types which are not treated will not regenerate naturaily to commercial 

stands. Three species ( A,B, and C) are being considered. For each of the nine 

combinations of species and site type, three alternative reforestation treatments (1,2, and 

3) have been defined, with hi&, medium. and low costs and yields, respectively. 

Treatments 1 and 2 involve planting, while treatment 3 involves seeding in combination 

with one or more other operations. 

Specific data for the problem are as follows: A limited supply of planting stock 

is available. Based upon prescribed planting densities, up to 700 ha of species A. 400 ha 

of species B, and JO0 ha of species C could be planted. Seed for al1 three species is 

available in abundance. To meet expected Future wood requirements, minimum yields 

have been established. These yields are expressed as average yields per year over the 

chosen rotation ages. Species A and B have a combined minimum yield of 3300 

m3 / year and species C has a minimum yield of 1700 m-' / year . An overall minimum 

yield for the area is set at 5500 m3 / year . A budget of $800.000 is available. No 

equipment or labor shortages are foreseen. Table 6 shows the expected establishment 

costs and yields in cubic meter per hectare per year for each of the 27 activities. 



Table 5.6. Establishment costs and expected yields for sample problem 

Species r 1 Siiviculturai treatment 

The silviculture staff wishes to incorporate three different goals into the 

anal ysis. These include maximum expected annual volume yieids. maximum area 

replanted, and minimum cost to achieve required yields. The staff reaiizes that these 

goals are cornpetitive, but wishes to attempt to meet al1 of them concurrently. 

ProbIern formulation 

A total of 27 variables, xi ? i = 1,2,..,?7 . each corresponding to the area planted 

Site 

type 

under a specific regeneration system ( combination of species. site type, and 

silviculhiral treatment), is needed, as s h o w  in Table 5.6. 

Five types of constraints are needed. The budget constra.int is fomulated as: 

Cost 

(Siha) 

Yield Cost 

($/ha) 

Yield Cost 

($/ha) 

Y ield 



where Ci is the cost (dollars per hectare) of regeneration system i ,  and -ri is the area 

(hectares) assigned to regeneration system i . 

The planting stock area constraints are: 

The minimum volume yield constraints needed are: 

where Yi is the yield (cubic meters per hectare per year) of species A or B under 

regeneration system i . 

Three maximum area constraints are needed: 



Additional nomegativity constraints ensure that al1 variables are assigned 

nomegative values. 

The three goals are: 

where 

- 

Maximize Z1 = 

A 1 

Maximize 2, - = xi 

AI 

Minirnize Z3 = C Cixi 

Zi is the total expected yield (cubic meters per year). Z 2  is the total area 

replanted (hectares), and Z3 is the total expected replanting cost (dollars). 

5.2.1. Goal Programming Approach 

Constraints [3] - [6] define a feasible set of solutions. Within this set the 

feasible policy space for each goal is determined by forrnulating and solving a pair of 

linear programming (LP) problems. including al1 constraints but including only the one 

goal. One of these problems maximizes the goal level, while the other minimizes the 

goal level. The best goal level is called the simple optimal level and the wont goal level 

is called the worst feasible level. The interval between the simple optimal and worst 

feasible levels is the feasible policy space. It indicates to decision maken the range of 

possible attainment levels for that goal. Deletion or modification of any other goals. or 

the addition of new goals, may or may not affect this feasible policy space. The results 

are summarized in Table 5.7. 



The multiobjective prograrnming problem is now solved using ordinal ranking 

GP. The problem is fomulated as a GP problem, with goal levels set to the best values 

in the feasible policy space. in ordinal ranking, each of the three goais is ranked with 

priority one, two, or three. Table 5.8 shows the goal attainrnent levels and solutions 

associated with each of the six possible ordinal rankings. Having these alternative 

solutions, the decision makers c m  choose one of those alternatives according to their 

preference. If none of the alternatives are satisfactory the decision makers must then 

specify their preferred target level of each goal, and new solutions would be found. 

Table 5.7. Feasible and optimal goal attainment levels and policy space 

Goal 

Maximum volume 

( rn3 1 year) 

Maximum area 

(ha) 

Minimum cost (S) 

Goal attainment levels and poücy spaces 

Simple 

Optimal level 

Worst feasible 

level 

Feasible policy 

space 



Table 5.8. Solution for the problem with ordinal goal ranking 

Goal ranks 

Solution 1: Solution 2: Solution 3: Solution 4: Solution 5: Solution 6 

Act iv itie 1 -2-3 1-32 2-1 3 2-33 3-13 32-1 

S 

X1 200.0 200.0 200.0 0.0 285.0 285.0 

X2 0.0 0.0 0.0 0.0 0.0 0.0 

X3 0.0 0.0 0.0 O .O 0.0 0.0 

X4  278.8 278.8 278.8 0.0 0.0 0.0 

X5 0.0 0.0 0.0 0.0 0.0 0.0 

X6 0.0 0.0 0.0 0.0 0.0 0.0 

X7 0.0 0.0 0.0 0.0 0.0 0.0 

X8 221.3 221.3 2î1.3 700.0 41 5.0 41 5.0 

X 9  1578.8 1578.8 1578.8 1 100.0 1385.0 1 385.0 

X I  O 400.0 400.0 400.0 400.0 400.0 400.0 

X I  1 0.0 0.0 0.0 0.0 0.0 0.0 

X12 0.0 0 .O 0.0 51 8.2 O. 1 0.0 

X1 3 0.0 0.0 0.0 0.0 0.0 0.0 

X14 0.0 0.0 0.0 0.0 0.0 0.0 

X15 0.0 0.0 0.0 0.0 0.0 0.0 

X I 6  0.0 0.0 0.0 0.0 0.0 0.0 

X I 7  0.0 0.0 0.0 0.0 0.0 0.0 

X1 8 0.0 0.0 0.0 0.0 0.0 0.0 

X I  9 400.0 400.0 400.0 0.0 0.0 0.0 

X20 0.0 0.0 0.0 81 -8 31 5.0 31 5.0 

X21 0.0 0.0 0.0 0.0 0.0 0.0 

X22 0.0 0.0 0.0 O .O 0.0 0.0 

X23 O .O 0.0 0.0 174.8 85 .O 85.0 

X24 1921.3 1921.3 1 921.3 2025.2 1503.1 1503.1 

X25 0.0 0.0 0.0 0.0 0.0 0.0 

X26 0.0 0 .O 0.0 0.0 0.0 0.0 

X27 0.0 0.0 0.0 0.0 0.0 0.0 

Volume 6473.0 6473.0 6473.0 5500.0 5500.0 5500.0 

Area 5000.0 5000.0 5000.0 5000.0 4388.2 4388.2 

Cost 800000.0 800000.0 800000.0 667440.6 652082.0 652082.0 



The results in Table 5.7 gives decision makers ideas about possible maximum 

and minimum values of each goal, and Table 5.8 gives several solutions that they can 

choose nom. However, these solutions are very extreme in the sense that one goal is 

satisfied completely but some other goals may be very far tiom their optimal values. in 

real problems, a solution representing more compromise is usually preferred. In this 

exarnple the decision makers might prefer results (volume and cost) that lie between 

those of solutions 3 and 4 in Table 5.8. lf that were the case, the decision makers would 

have to specify new target levels and the problem would be reforrnulated and resolved. 

Much interaction with forestry users is necessary for this process. which can be very 

time consuming and costly. 

5.2.2. Multiobjective Genetic Aigorithm Solution 

The problem of 5.2 is now solved using the MOGA previously descnbed in 

5.1.2. run in MATLAB. Optimization in this case is set up as a minimization. The 

source code of the function for this second problem can be found in Appendix 8. A 

population size of 100 is used. Seven of the better solutions are s h o w  in Table 5.9. If 

the user does not find the initially selected solutions to be satisfactory, it might be 

beneficial to show other alternative solutions generated. in Table 5.10 are 40 different 

alternative solutions. 
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Table 5,lO. MOGAs' solution tor raforestration budget allocallon 
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Some of the MOGA results are very similar to GP solutions. For example. GP 

solution 3 is (6473, 5000, 5000) for goal 1, goal 2, and goal 3 respectively and MOGA 

solution 3 (Table 5.9) is (6530. 5040, 806760). While al1 GP solutions in Table 5.8 are 

extreme non-dominated solutions, the MOGA solutions mostly represent tradeoqs 

between extreme solutions, dong the Pareto-front. One good tradeoff solution that 

decision makers might consider is the one between GP solutions 3 and 4 in Table 5.8. 

which are (6473, 500, 8000) and (5500. 5000. 667440) for volume, area. and cost 

respectively. Where GP failed to find a tradeoff between these two solutions. MOGA 

succeeded. For example, MOGA solution 3 in Table 5.9 is (6250, 4900, 75 1430) for 

volume, area, and cost respectively. Solution number I in Table 5.9 (6630. 5 100. 

820830) is another possible good tradeoff from MOGA if the decision maken are 

willing to increase their budget. That is. by adding only 620820 to their cost. they 

receive significant increase in volume ( 147 m3 per ha per year) and area ( 100 ha). 

The ability of MOGA to search for many Pareto-optimal solutions, where 

representing tradeoffs between the extremes, makes it possible for the forestry analysts 

to minimize interaction with the forest users (decision makers). Multiple meetings 

between the analysts and the forest users would not be necessary resulting in time and 

cost savings. 



Chapter 6 

Conciusion 

For the last few decades, operation research (OR) has been intensively used in 

forestry management. Initially forest analysts used one of the OR methods, linear 

programming (LP), for decision making. Because of the incapability of LP to 

accommodate many forestry problems and because of the advances of OR technique, 

forestry analysts began to use many other different OR techniques to solve their 

problerns. The most common of these are goal programming (GP), f u n y  progrmrning, 

shortest path dgorithms, and dynamic programming. 

Due to the increasing demands from forests. forestry problems are better 

formulated as multiobjective problems. Some of these objectives might be in conflict 

with each other. For example. forest industries want to maximize the profit. people 

surrounding the forests want to use forest for their benefits, wildlife need forest for 

forage and shelter, and environmental impacts of the actions should be minimized. 

These demands could not possibly be met simultaneously. Therefore, forest analysts 

must find a good tradeoff between these conflicting demands. Conventional OR 

techniques, usually GP, have been used with lirnited success to accornplish this. GP c m  

be easily used to find some Pareto-optimal solutions but these solutions are usually 

extreme, in that they optimize one goal at the expense of the others. Usually. solutions 

representing better tradeoffs between al1 goals are preferable. Therefore. it would be 

beneficial if an OR technique were able to h d  many Pareto-optimal solutions, both 

extreme and non-extreme, in a single run. 



Recently developed techniques called genetic algorithrns have a different 

approach from that of conventional OR techniques. They operate on a population of 

solutions. This population evolves from generation to generation into one containing 

better solutions to the problem. An extension of these GAs, called a multiobjective 

genetic algorithm (MOGA), is designed to search for many Pareto-optimal solutions 

where most of those are not extreme. The ability of this MOGA to search for the Pareto- 

optimal set makes it useful for solving conflicting multiobjective forestry problems. 

in this thesis. two rnultiobjective forestry problems are solved using MOGA. In 

the first problern the decision rnakers specify their target level of each objective (goal) 

and in the second problem they do not specify the target levels or priorities of the 

objectives. In both problems, MOGA generates some extreme solutions. similar to 

those generated by GP, but it also produce some very good tradeoff solutions. Thus 

MOGA is demonstrated to be able to generate many potential solutions in a single W. 

This minimizes interaction between forest analysts and forestry users, improving the 

efficiency of the overall process. Since these are both real problems. it is shown that 

MOGA is a valuable tool that could be used by foresters. 

The set of MOGA solutions shows that the algorithm does not search for 

Pareto-optima uniformly. ln a large population there are only a few solutions that are 

tnily unique. That is, some of the individuals in the population converge to exactly the 

same solution. It would be ideal if the individuals were spread more uniformly 

throughout the Pareto-optimal set, giving the decision rnakers a greater variety of 

potential strategies. Further work is needed for this purpose. 
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Appendix 1 
LINOO Forirmlation for Bk. Freamants Problem (unranked goals) 

! This is Mr. Freeman's mode1 ; 

MIN = d l M  + d2M + d3M + d4M + d4P + d5M; 

! constraints ; 

!Net incorne of abouc $2100 a year : 
20f xl + 15 *x2 + 45" x3 + dlM = 2100; 

! availability of the property for his family's 30-day s m e r  
vacation; 
x4 + d 2 M  = 30; 

! His 7- day fa11 hunting trip; 
x5 i d 3 M  = 7 ;  

! Stability of the harvest (allowable harvesc); 
x3 + d4M - d4P = 7 ;  

! For safety and aesthetics (working days); 
x6 - 1/4' XI - 1/4' XS + d5M = 0; 

! Summer activities; 
XI i x3 + x4 + O.SC x6 c= 90; 

! F a l l  activities; 
x2 + x5 + 0.5' x6 c= 60; 
! End; 



Appeu ld ix  2 
Output of LINGO Model of Mr. Frenmnn8s (uaranked goals) 

" The output of izhe linggo solution of M r .  Freeman's forestry problem 
without priority goalsm 

ROWS = 8 Vars= 16 N o .  integer vars= O ( al1 are linear) 
Nonzeros= 38  Constraint n o m =  2 6 (  20 are +- 1) 

D e n s i t y = 0 . 2 7 9  
Smallest and largest elements in abs value= 0.500000 2 1 0 0 . 0 0  
No. < : 2 No. =: 5 No. > : O .  Obi=MIN. GUBs <= 4 
Single cols= 4 

Global optimal solution found at step: 14 
Objective value: 10.56140  

Variable 
D1M 
D2M 
D3M 
D4M 
D4P 
D5M 
X1 
x2 
X3 

D1P 
X 4  

D2P 
x5 

D3 P 
X6 

D 5 P  

Row 
1 
2 
3 
4 
5 
6 
7 
8 

Value 
O *0000000  
0 .0000000  
0 .0000000  
0 .0000000  

I O .  56140 
o .  0000000 

32 .89474  
43 .45614 
1 7 .  S6 l4r )  

o .  0000000 
3O.OOOOO 

0 ,0000000  
7 .000000  

o .  0000000 
19 -08772  

0 .0000000  

Slack or Surplus 
10.56140  

0.0000000 
O * 0000000 
O .  0000000 
0 .0000000  
0.0000000 
0.0000000 
o .  0000000 

Reduced Cost 
O ,9649123 
0 .4210526  
0.5964912 

2 .000000  
0 .0000000  
0 .8771930  
O .  0000000 
o .  0000000 
0 .0000000  
0.3508772E-01 
0.0000000 
O .  5789474 
0 .0000000  
O. 4035088 
o .  0000000 
0 .  î 22807Q 

Dual P r i c e  
1 .000000  

-0.3508772E-01 
-0 .5789474  
-0.4035088 

1 .000000  
-0 .1228070  

0 .5789474  
0 ,4035088  



Appeodix 3 
LXNGû Fornnrlation for Mr. Frenmrnts Problem (ranked goals) 

! This is M r .  Freeman's model with thixd priority goal of 

MIN = 3*d2M + 3*d3M + d5M; 
! constraints; 

!Net incorne of about $2100 a year ; 
20' xl + 15 *x2 + 4S*  x3 + dlM = 2100; 

! availability of the property for his family's 30-day summer 
vacation; 
x4 + d2M = 30; 

! His 7- day fa11 hunting trip; 
x5 + d3M = 7 ;  

! Stability of the harvest (allowable harvest); 
x3 + d4M - d4P = 7 ;  

! For safety and aesthetics (working days); 
x6 - i / 4 *  xl - 1/4* x2 + d5M = 0; 

! Summer activities; 
xl + x3 + x4 + O.Sf x6 <= 90; 

! Fall activities; 
x2 + x5 + 0.5' x6 <= 60; 

! the result of first and second priority goals as a constraints; 
d l M = O  ; 
d4M=0 ; 
d4P=0 ; 
! End; 



Appendix 4 
Output of L3NGO Mode1 o f  Mr. Freeauanrs (ranked goals) 
Global optimal solution found at step:  6 
Objective value : 

variable 
dlm 
d2m 
d3m 
d4m 
d4E? 
d5m 
xl 
x2 
x3 

d l p  
x4 

d 2 ~  
x5 

d3p 
x6 

d5p 

row 
1 
2 
3 
4 
5 
6 
7 
8 

value 
o. 00C0000 
o. 0000000 
o. 0000000 
0.0000000 
lO.56I4O 

1). 0000000 
32.89474 
43.45614 
l7.56I.40 

0.0000000 
3O.OOOOO 

0.0000000 
7.000000 

0.0000000 
19 .O8772 

0.0000000 

slack or surplus 
lO.5614O 

o. 0000000 
0.0000000 
O .  0000000 
o. 0000000 
O. 0000000 
o. 0000000 
O. 0000000 

reduced cost 
O. 9649123 
O -4210526 
0.5964912 
2.000000 

o. 0000000 
O .  877l9'3r) 
0.0000000 
o. 0000000 
0.0000000 
0.3SO8772e-Ol 
o. 0000000 
0 -5789474 
o. 0000000 
O .4O35O88 
0.0000000 
O.lî2807O 



Appendiu 5 
Matlab Source code for Mr. Freeman's Problem 

else, 
g= inf ; 

end 









Appendix 7 
MOGAs Solution of Mr.Freernanls Forestry Problem (Rounded 10 Integer) 

No. 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
2 1 
22 
23 
24 
25 
26 
27 
28 
29 
30 
3 1 
32 

Summer 
Renlal 

5 1 
43 
48 
42 
43 
47 
48 
45 
43 
47 
45 
47 
43 
43 
43 
43 
36 
43 
43 
47 
40 
43 
43 
43 
44 
43 
44 
45 
46 
45 
45 
46 

Goal 1 : Goal 2 Goal 3 Goal 4 Goal 5 
Fall Hatvest Summer Fall Worh Nel lncome Sumrner vac hunling Harvesling Resl days Const. 1 Const 2 

Rental Days Vacalion Hunting Days $2,100.00 30days 7days 7 days 

11 
7 

13 
7 

13 
13 
12 
13 
13 
10 
10 
9 
9 
7 
7 
7 
8 
7 
7 
8 
9 
7 
7 
9 
9 

10 
10 
11 
12 
9 

13 
13 

O days Goalc-90 Goalc=60 







Appenàix 8 
Matlab Source code Walker's Problem 



end 
consïrzint 5 

end 

else, 
g=inf; 

end 




