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Abstract

People want to use forests for their benefits as much as possible but
environmental impacts of their actions should be minimized. This leads to difficult land
management problems with multiple, conflicting objectives. Forest land management
analysts have developed and utilized sophisticated planning methods to address
complex issues involving multiple objectives. An intensive literature review ot these
techniques is presented. The most popular multiobjective technique among forester is
Goal Programming. Multiobjective Genetic Algorithms are relatively new optimization
techniques which have not yet been used in forestry. Two multiobjective forestry
problems are solved using a Multiobjective Genetic Algorithm and the results are
compared to Goal Programming solutions. It is shown that the Multiobjective Genetic

Algorithm can find solutions with better tradeotts between conflicting objectives.
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Chapter 1

Introduction

Consideration of alternative uses of the forest and its products nearly always
raises the question, *“What is the best way?” Because of the number of alternatives, the
complexity of the product interactions, and the contflicting desires of the public, an
optimal answer may be impossible to find. Some help has been provided for forest
managers by the decision tool known as Operations Research (OR).

Over the past few decades several factors have altered the practice of forest land
management. As population and resource development increase. many forest-based
outputs are approaching or exceeding sustainable levels of use. People are increasingly
aware of the need to preserve the forest ecosystem, to sustain threatened and
endangered species, wildlife habitat, scenic beauty, and biodiversity. As a result, forest
land manager ~ especially on public lands - are shifting their emphasis from the
production ot goods and services towards the maintenance of forest health. biodiversity,
and productivity. On private timberlands this trend is tempered by the concurrent need
to remain competitive in the global market place.

Both classes of ownership have created new challenges for the OR community.
On public land, the shift toward an ecology system model has necessitated the
development of a new set of OR models that incorporate spatial relationship, ecological
relationships, resource protection issues, and consideration of a wide spectrum of
natural resources beyond timber. In the private sector, the increase in open. global
markets has encouraged forest products companies to improve productivity and

managerial efficiency while being cognizant of environmental and ecological values.
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In the late 1950’s the most common OR method in forestry was Linear
Programming (LP), in which objectives and constraints are expressed in the form of
linear equations. A few applications were suggested in the 1950°s and early 1960’s.
Many of these early suggestions were for problems such as optimizing harvest
schedules, production mixes, and product distribution. In the 1970’s, applications
expanded rapidly, and models based on variations of LP were developed. The U.S
Forest Service uses LP in both timber management and land-use planning.

LP models work quite well in allocating resources for market-value goods.
However, they may involve unrealistic assumptions when applied to the kind of
complicated decision making situations common in multiple-use forest management.
The manager is charged with obtaining a desired mix of goods and services from
limited resources, and will usually have several alternative courses of action open to
him. To choose among them, he must know both the tradeoffs between one course of
action and another, and the relative desirability of the goods and services. Goal
Programming (GP) provides a way of allocating resources efficiently in decision
making situations that involve multiple goals.

To use GP to solve multiobjective problems, a target level of each goal is
required. Decision makers usually specify these target levels. However. the target levels
are sometimes not optimal in the sense that all or some of the target levels are still
upgradable without sacrificing any goal. Even if target levels are optimal, the solutions
generated by GP are sometimes extreme; that is, one or more goals are achieved but the

other(s) might be very far from the target level specified. This implies that good



tradeoff solutions are not captured by GP. However, in real problems good tradeoff
solutions are usually preferable.

A relatively new technique, effective at finding tradeoff solutions, is the
Multiobjective Genetic Algorithm (MOGA). Genetic Algorithms (GAs) are useful
search methods loosely based on ideas from population genetics. The output from a
MOGA contains many solutions, each of which represents a good tradeotf between the
(possibly) contflicting goals. In this thesis, it is shown that MOGAs are potentially very
useful in solving forestry problems.

[n chapter 2, several OR techniques commonly used in forestry management are
discussed. First Linear Programming, along with its variations, is examined. However,
this can only optimize one objective, so multiobjective optimization techniques are
needed to solve multiobjective problems which are common in forestry. The most
common technique used in forestry management is Goal Programming. Another
technique, used to capture uncertainties in forestry problems is called tuzzy
optimization. The shortest path algorithm (Dijkstra’s algorithm) is described as a tool to
determine the shortest route in a road network in a forest. Finally, Dynamic
Programming is described, a technique usually used to accommodate forest products
such as tree bucking.

In chapter 3 a literature review is presented discussing the OR techniques that
have been proposed to solve forestry problems. Four broad areas of forestry are
discussed: resource allocation, spatial concerns, road construction, and forest products.
Proper allocation of resources, such as labour, equipment, and land management, can

save a lot of money and time. A spatial concern arises when considering the harvest of



adjacent land parcels in the same time period. This spatial concern is imposed in
forestry models in order to ensure ecosystem stability. In the construction of a road
network in a forest, economic and environmental impacts must be considered. One of
the main issues when considering forest products is to obtain maximal profit from
selling the tree. In this regard, cutting patterns must be carefully designed in advance.

In chapter 4, Genetic Algorithms are discussed. Genetic Algorithms are
relatively new optimization techniques based on a model of biological evolution. When
using a cycle of evaluation, selection, and genetic changes, iterated for many
generations, the overall fitness of the population generally improves. The individuals in
the population represent improved solutions to whatever problem was posed. In GAs,
the individuals converge to a single optimal value (single objective). Multiobjective
Genetic Algorithms are an extension of Genetic Algorithms designed such that the
individuals in the population converge to optimal solutions representing tradeoffs
among many objectives.

In chapter 5, two conflicting multiobjective forestry problems are solved by
Goal Programming and Multiobjective Genetic Algorithm. and the results are
compared. In the first problem the decision makers specify a target level for each goal
and in the second problem decision makers do not specify either the target levels or the
priorities of the goals. Some MOGA solutions are comparable to GP solution. but other
MOGA solutions represent better tradeoffs among the goals. Thus MOGA has

excellent potential for forestry management.



Chapter 2

Operations Research Methods Commonly Used in Forestry

Operations Research (OR) is the professional discipline that deals with the
application of information technology to informed decision making. OR professionals
aim to provide rational bases for decision-making by seeking to understand and
structure complex situations. This understanding is used to predict system behavior
and to predict decisions which give improved system performance. Much of this work
is done using analytical and numerical techniques to develop and manipulate
mathematical algorithms which model the organizational systems composed of people.
machines. and procedures.

The main methods of OR are linear programming, integer and mixed
programming, dynamic programming, fuzzy programming, stochastic programming,
goal programming, etc. Using OR methods can save a lot of goods. money and time as
OR methods can provide us with information which can help make efficient decisions.
OR methods have also been used to solve forestry problems as tforestry problems
become more complex.

Forests provide many natural resources that benefit people. give shelter for
animals and contain much of the world’s biodiversity. This last topic being very
important to the integrity of the earth’s biosphere.

Back in 1849, Faustman (1849) first proposed a conceptually correct analysis
of optimal rotation length for “‘even-aged™ timber stands. He treated timber as a

maturing asset and located the optimum rotation-age for identifying harvesting (a



fixed amount each year.) Andersen (1976) used optimal control theory to study the
problem and derived a model identical to Faustman’s. Amidon et al. (1968) found an
optimal solution for the joint stocking-rotation decision for an even-aged stand using
dynamic programming. Grevatt at al. (1967) deveioped two linear programming
models to aid in nursery planning.

In the sections below, OR methods commonly used in forestry problems are
described and cited so that the reader can form a general idea about main OR methods
that have been intensively applied to the problems. We will encounter these methods

frequently in the remaining chapters.

2.1. Linear Programming
Increasing complexity in the forestry industry characterizes the evolution of
the planning problems perceived by agency analysts, planners and managers. They are
pressured by society to take into concerns about threatened species and endangered
species, wildemness and old growth preservation, water quality and road construction.
Consequently, forest planners have to follow a systematic planning procedure
proposed by Cortner et al. (1983), which
1. Defines objectives or values to be optimized:
2. Identifies the full range of possible alternatives for achieving the desired
objectives;
3. Comprehensively evaluates the physical, environmental, social, and economic
consequences of each alternatives; and

4. Chooses the course of action which best realizes the stated objectives.



To best satisfy all the issues, linear programming (LP) has been utilized.
Navon (1971) used LP to develop a timber resource allocation model (timber RAM)
that saw widespread use throughout the forest community. It was designed primarily
to address timber production, but the many other forest values such as recreation and
wildlife were addressed by way of constraints on harvest and regeneration activities.

LP is an optimization method applicable for the solution of problems in which
the objective function and the constraints appear as linear functions of decision
variables. The constraint equations in a LP problem may be in the form of equalities
or inequalities.

The general LP problem can be stated in the following standard form
(Grossman, 1991)

n

Minimize  f(x[3X750000X,) = ZC‘ X

j=1

subject to constraints
n
Za,-jxj- =bi7 i=1,2,...,m
J=l

X

j 20, /j=L2,...,n

where ¢, bj,and a;j (i=1,2,...,m; j=1,2,...,n) are known constants, and

X ;are decision variables.

Any LP problem can be put in the standard form by the use of the following

transformations.
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The maximization of a function f(x,x7,..,X,) is equivalent to the minimization
of the negative of the same function.

In most real optimization problems, decision variables, x;, have to be

nonnegative. However, a variable may be unrestricted in sign in some problems. In
such a case, an unrestricted variable (which can take a positive, negative or zero

value) can be written as the difference of two nonnegative variables. Thus, if x; is

unrestricted in sign. it can be written as x;=x’; —x; where x; 20 and x; 20.

If a constraint appears in the form of a “less than™ type of inequality it can be
converted into the equality by adding a nonnegative slack variable. Similarly. if
the constraint is in the form of a “‘greater than” type of inequality it can be
converted into the equality form by subtracting a variable known as surplus
variable.

The standard simplex solution method is available in many computer software

packages such as LINDO and LINGGO (LINDO Systems Inc.) which can be used to
solve this LP problem.

Example 2.1;

LP is used to solve a simple reforestation planning and budgeting problem.

Assume that the activity alternatives available to the forest manager include the

following four land classes:

Class 1: Site II type B bare land with a north aspect in seed zone 53
Class 2: Site III type B bare land with a south aspect in seed zone 52

Class 3: Site [V type B bare land with a north aspect in seed zone 51

Class 4: Site II substocked land with a south aspect in seed zone 52



Assume further that there are 100 acres in each land class and that any portion
of the total may be scheduled for treatment. Resources available are: budget-$S8000;
seedlings-30,000, 55,000 and 35,000 for zones 51, 52. and 33, respectively; and seeds
— 251b for each zone.

Assume that 0.75 Ib of seed or 600 seedlings are required to treat 1 acre of
bare land, and in the case of interplanting, 500 seedlings per acre. If necessary, seed
and seedlings may be transferred between adjacent zones. Thus seedling supply in
zone 51 is 85,000 trees; in zone 52, 120,000 trees; and in zone 53, 90.000 trees.

The alternative activities, capital requirements, and activity values are shown
in the following table. There are two alternative activities — seeding or planting - for
bare land situations, while interplanting is the only possible treatment for substocked
plantations. In the paragraph above there are in total 30.000+55.000 + 35,000 =
120,000 seedlings available. Zone 51 and 52 are adjacent and hence zone 51 could

have 30,000 + 55,000 or 85,000 seedlings if zone 52 used none.
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Decision Resources requirements Present net
Variable | Activity Capital | Seedlings | Seeds | Worth

&) ®
X Acres planted in land 31.50 | 600 0 163.20

class 1, seed zone 53
X5 Acres seeded in land 10.80 |0 0.75 104.10

Class 1, seed zone 33

% Acres planted in land 31.50 ;600 0 58.90
class 2 seed zone 52
X4 Acres seeded in land 10.80 0 0.75 19.30
class 2 seed zone 52
X3 Acres planted in land 31.50 600 0 6.30
class 2 seed zone 51
Xg Acres seeded in land 10.80 |0 0.75 -1.35
class 2 seed zone 51
X7 Acres interplanted in | 24.00 500 0 73.80

land class 4, seed zone 52

The objective function of this problem is to maximize present net worth of
acres planted, that is,
Maximize
(163.20x; +104.10x7 +58.90x3 +19.30x4 +6.30x5 —1.35x¢ +73.80x7)

Constraints are



1. Budget constraint

31.50 x;+10.80 x5 +31.50 x3+10.80 x4 +31.50 x5 +10.80 x¢ +24.00 x7 < 8,000

2. Seedling constraints
600x; < 90,000
600xs < 85.000

600x, + 600 x; +600x5 +500x; < 120.000

3. Seed constraints

0.75x5 < 50
0.75x4 <75
0.75x5 < 50

0.75x +0.75x4 +0.75 x4

IN
~3
w

4. Area constraints

N

xp + x3 £ 100 (land class 1)

IN

x3 + xg < 100 (land class 2)
x5 + xg < 100 (land class 3)
x7 < 100 (land class 4)

5. Nonnegative solutions, x; 2 0 fori=1,...,7.

Solving the above problem using LINGO gives results as follows. Objective
value = $26290.00, x; = 100.00, x5 =0, x5 =16.67. x4 =83.33. x5 =0. xg =0, x7

= 100.00.



2.2. Integer Linear and Mixed Integer Linear Programming

Forestry problems have become more complex due to considerations of
environmental impacts, recreational and other needs from the forests. Spatial
consideration is one of the central issues that foresters have to take account in their
decisions. This means that harvesting is restricted to a certain area. Therefore, forests
should be blocked into contiguous areas so that, for example, adjacent blocks cannot
be harvested in the same period of time. To accommodate this concern, a model can be
creating using integer 0-1 programming, with | indicating harvesting and 0 indicating
not harvesting. Similarly in resource allocation problems. integer variables can be used
to indicate decisions such as the amount ot equipment to buy or the amount which
must be operated in order to achieve the required goals.

Integer linear programming is similar to linear programming except that all
variables can only take integer values. Usually to solve this integer linear
programming the equivalent linear programming is solved first and then the integer
constraints are introduced using certain methods such as the commonly used branch
and bound method (Winston. 1987). Mixed Integer Linear Programming is similar in
that some of the variables are integer variables, but the remaining variables are
continuous variables.

2. 3. Goal Programming

Multiple-use forest resource problems involve a consideration of multiple
conflicting goals and objectives such as: increased net revenue from timber resources,
improved water quality, protection of wildlife, preservation of natural beauty, and

increased recreational opportunities. Managing multiple-use resources requires more
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complicated decision making. Managers are charged with obtaining a desired mix of
goods and services using limited resources, and will usually have several alternative
courses of action open to them. To choose among them, they must know both the
tradeoff between one course of action and another, and the relative desirability of the
goods and services. For example, if the decision makers want to provide 20 % more
recreation in the forests, what quantity of timber products (if any) must be
relinquished, and is there enough money and land to provide both the desired
recreation and timber products ? (Schuler, et al. 1975).

Finding the best solution to multiple-use forest resources is very hard because
some problems (goals) are complementary. For instance, Some timber harvesting
helps wildlife by improving habitat. providing good forage. but full utilization of
torage reduces timber yield. Since it is not possible to meet all objectives (goals). a
good balancing (tradeoff) solution among the goals is preferable. The best tradeoff
solutions are often considered to lie on the non-dominated (Pareto-optimal) set.

Pareto Optimal

In multi criterion or multiobjective problems, there is typically no solution that is
“better than™ all others, but rather tradeoffs must be made between the various
objective functions.

Suppose, without loss of generality, that the objective functions form the

vector function
f= (.f‘l’f:""’fn)
with

f,:S—=R
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for each component f;, and assume further that each function is to be minimized. A
solution xe& S is now said to dominate another solution ye § if it is no worse with
respect to any component than y and is better with respect to at least one. Formally

xdominatey &  Vie{l.2...n}: f(x)< £, (v)
and  Fje{l2..n}: £, (x)< f,(»)

A solution is said to be Pareto Optimal in § if it is not dominated by any other

solution in S, and the Pareto optimal set or Pareto optimal front is the set of such

nondominated solutions, defined formally as
S"={xeS\noye S:y donimates x }.

Multiobjective problems are usually formulated as covering problems. with the
goal being to find either the entire Pareto optimal set, or a number of different points
near it.

Goal programming (GP) provides a way of allocating resources efficiently in
decision making situations that involve mutiobjectives. Field (1973) is the first
researcher introducing goal programming to solve multiobjective forestry problems.

A GP decision situation is generally characterized by multiple objectives.
Some of these objectives may be complementary, while others may be conflicting in
nature. GP allows the decision maker to specify a target for each objective. A solution
of the complete problem minimizes the total deviations from the prescribed set of
target values. The method for minimizing this deviation is called the method of
distance function (Srinivas, N. et al. 1994). Our usage of the term goal function is

synonymous with that of the objective function.
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The team of Chamnes and Cooper (1961) is generally credited with introducing
the method to industrial problems. It may be noted that the initial purpose of
developing the method was not multiple-objective decision making, but its
subsequent use justifies the credit generally given to Chames and Cooper for
pioneering in the field. Lee (1972) has applied GP to problems in production planning,
financial decisions, academic planning, and medical care. to mention a few. More
recently, Kendall and Lee (1980) have applied the technique to the design of the
operating policy of a blood bank. A text by Ignizio (1976) deals with GP, exclusively,
as it extends the general formulation to linear integer, and nonlinear forms: it also
offers a computer code with a cutting-plane option. Werczberger (1976) uses GP for
industrial-location analysis involving environmental factors. and Bres et al. (1980)
analyze military-manpower problems using this approach.

One form of GP model can be stated as follows:

p
min Y |Fi(x)-T;| (1)

i=l

Subjectto x€ X
where T; denotes the target or goal set by the decision maker for the ith linear
objective function Fi(x), and X represents the feasible region defined by a system of

linear inequalities/or equalities. A more general formulation of the GP objective
function is a weighted sum of the pth power of the deviation iF; (x)- T,I ( Haimes et

al., 1975). Such a formulation has been called generalized GP ( Ignizio, 1976, 1981;

Szidarovszky, 1979).
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Returning to formulation (1) above, the objective tunction is nonlinear and the
simplex method, with its many inherent advantages, cannot be applied directly.
However, it is possible to transform (1) into a linear form, thus reducing GP to a

special type of linear programming. The transformation (Charnes and Cooper. 1961 )

defines new slack variables 4} and &~ such that

ar =—AF -1+ [F-T} @

4 ={F -7/~ lFm-1] ®

Examination of 2 reveals that dis the positive deviation from the ith target for the

ith objective (i.e., overachievement of a goal). The second slack vanable d 7 1s the
negative deviation from the ith target for the ith objective (i.e.. underachievement of a
goal).
Adding (2) to (3), it is seen that
df +di =|F,(0)~ T
Thus the objective function in formulation (4-1) can be replaced by an equivalent
linear relationship. Furthermore, by subtracting (2) from (3), we get
F)-T,=df -dr
It is also required that d; and dj be nonnegative, that is d;.d; 20. and.

since it is not possible to have both underachievement and overachievement of a goal
simultaneously, then one or both of the deviational slack variables must have a zero

value; that is
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dit.di=0.
Fortunately, this constraint is automatically fulfilled by the simplex method.

This is because the objective function will drive either ( or perhaps both ) d;* or d~

to zero for all .
Thus, an equivalent linear formulation of (1) is
P
min Wy = 3 (dF +dr) 4)
i=l|
Subjectto xe X

F(x)-di +d- =T,

dr,.d720.i=1..p

]
Once the GP model is formulated as in (4), the computational procedure can

make use of the simplex method as in linear programming method described in section

1.1.

In formulation (4), both d;* and d; appear in the objective function and are

assigned equal weights. This form of the model will attempt to achieve the goal
exactly; but, if exact achievement is not possible, no preference for overachievement
or underachievement of a goal is built into the model. Nor is any goal in formulation
(4) given any particular weight. However, it is possible to assign priority factors and

weights to goals. Only a slight modification of formulation (4) is required.
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Assigning Priority Factors (Ordinal Ranking and Weights (Cardinal Ranking) to
Goals

To express preference for deviations, the decision maker can assign relative

weights w;", wr to positive and negative deviations. respectively, for each target, 7} .

Since we are minimizing, choosing the w; to be larger than w; would be expressing
preference for underachievement of a goal (for example, such may be the case when
overachievement would result in an overtime requirement).

[n addition, GP allows flexibility needed to deal with cases with conflicting

multiple goals. Essentially, goals can be ranked in order of importance. That is, a
priority factor, P(i =1,..., p) is assigned to the deviation slack variables associated
with the goals. These factors, £}, are conceptually different from weights. as will be
illustrated in the next section. It is assumed that the priorities are ordered so that for i =
l.....p, B> PF,,. Another possibility is F; >> £, which is equivalent to stating

that goal / has absolute priority over goal / + 1.

Thus. our GP model is now formulated as:

p
min Sy =Y B(widf +wid;) (%)
i=l
Subject to
xe X
Fi(x)-d} +d7 =T,

dF.dr20.i=1..p
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Solution Method

The simplex method can also be applied to solve the problem by making some
modification to the GP. Goal | (priority 1) is solved first by ignoring the other lower
priorities. Putting this resulting goal | as a constraint, goal 2 (priority 2) is solved by
ignoring the other lower priorities and this procedure is continued until the lowest
priority is solved. There are many commercial software packages available to solve
this GP. Usually before analysts solve the GP problem. the project manager has to
specify priorities and weights. [n practice it is often very difficult to determine
appropriate priorities and weights in a specific problem.

There are many techniques proposed by researchers to resolve these problems
of assigning of weights and priorities in GP models. Rustagi et al (1987) describe in
their paper titled *“resolving multiple goal conflicts with interactive goal
programming” how “interactive goal programming” is used. In this method the
problem is first solved with initial target levels and weights. On the basis of this
solution, the project manager would revise the target levels and weights and the
process would be repeated until an acceptable compromised is found.

Dyer et al., (1979) consider GP with “preemptive priorities”. where weights
are not included. Preemptive priorities are not rigidly determined and the method
attempts to reorder the priorities so as to get the optimal result.

Kangas et al., (1992) suggest that the project manager’s judgment of priorities

is most of the time not very accurate. They give a method for determining priorities by
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using analytic hierarchy process. In the next example we will see how GP can be used
to best satisfy our preferences in a small forestry problem.
Example 2.3

Jackson has 24 acres of fallow land available and wants to use it to increase
his/her income. He can either plant fast-gro hybrid Christmas tree transplants that
mature in one year, or he can fatten steers by putting part of his acreage in pasture.
The trees are planted and sold in lots of 1,000. It takes 1.5 acres to grow a lot of trees
and 4.0 acres to fatten a steer. The farmer is busy and only has 200 hours per year to
spend on this enterprise. Experience shows it takes 20 hours to cultivate, prune,
harvest, and package one lot of trees and also 20 hours per steer. There is a $1,200.00
operating budget available for the year and annual expense are $30 per lot of trees and
$240 per steer. At current prices, Christmas trees will return a net revenue of $0.50
each and steers will return a net revenue of $1,000 each.

For other reasons, he/she wanted to use all of the budget allocation and that he
truly hoped for an even mix of 5 steers and 35 tree lots. Achieving these three goals is
more important than maximizing income, and and achieving the budget goal is at least
twice as important as either of the other 2 goals.

Let x; = number of steers fattened per year
x> = number of 1000-tree lots of fast-gro-Christmas trees grown per year

The formulations of the goals are:
(1) achieving 5 steers;
X1 = 5

(2) achieving 5 tree lots;



X =35
(3) spending all the budget;
240 +30xy =1,200

Constraints;
(1) Land 24 acres available, 4 acres per steer, 1.5 acres per tree lot. So we get

4x +1.5x, <24
(2) Budget: $ 1,200 available, $ 240 per steer, $ 30 per tree lot. So we gete

240 +30xy < 1,200
(3) Labor 200 hours available, 20 hours per steer, 20 hours per tree lot. So we get

20 +20x < 200

Then we introduce additional variables to represent deviation from the goals.

Let dl* = positive deviation (amount of overachievement) from the 3 steer goal.

di- = negative deviation (amount of underachievement) from the 5 steer goal.

d¥ = positive deviation from the 5 tree goal.

dy = negative deviation from the 5 tree goals.

di = positive deviation from the § 1,200 budget goal

diy = negative deviation from the $ 1,200 budget goal
So our objective now is to:

Minimize (di" + di )+ (d5 + d7)+2(d5 + d5)
Subject to:

4.\.‘1 +1.5 X <24



20x +20 x5 <200

240x +30xy +d3 —df =1,200
x+di-df =5

Xy +dy —di =5

x,x2 20

Solving this formulation using LINGGO gives us the results summarized

below:;

Variable value row slack dual
dft 0

di 0.5 land 0 0.875
d3 0 labor 30 00

ds 0 budget 0 -0.0
dy 0 steers 0 -0.5
ds 0 trees 0 -1.0

x| 4.5

Xy 4.0

We can see from this result that the solution minimizes the deviations at x;= 4.5 and

x3=4.0. All of the budget and land are used. By implementing this result he will have

profit of $ 4.0(1000x0.5) + $4.5x1000 = $6500.



2.4. Fuzzy Optimization

Allen et al. (1986) described forest planning or systems not only as complex
but also as wicked systems. This is due to the diversified nature of the forest itself as
well as the different biological, physical, and economic processes within and outside
the forest ecosystem. In view of the inherent complexity of the forests, planning for
their efficient use and the effective management has become an increasingly difficult
task.

Concermns about the use of LP models have also been raised (Bare et.al, 1987).
The main criticisms deal with the inherently deterministic nature of LP models. and
their use of precise coefficients. In traditional LP models. the coefficients or
parameters are assumed to be known with certainty, but in many real world forest
planning situations it is very unlikely that this assumption is valid. For example, forest
managers otften have to deal with insufficient or imperfect information due to the
inherent complexity of the system as described above. In this case, the forest managers
have to be able to capture the uncertainties in their decisions

The term *“‘uncertainty” has been widely used to describe several phenomena. [t
has been used to represent risks, imprecision, randomness, inaccuracy, ambiguity or
inexactness. In our discussion here in this thesis, uncertainty is used to reflect any
phenomena other than those regarded as random or probabilistic in nature. There are
several reasons for incorporating uncertainty in forest planning. First, forest planning
involves long planning horizons (e.g. several decades) with accurate long-term
projections generally difficult to make and are at best only educated guesses of future

outcomes. Future timber prices, for instance, are highly dependent on several variables



making them difficult to predict. Moreover, most forest lands covering large diverse
geographical areas produce multiple goods and services which are valued differently
by forest users. Some of these uses can be adequately measured while others are
inherently qualitative and difficult to quantify. Finally, forest planning often requires
the incorporation of human subjectivity which is both difficult to elicit and express in
quantitative terms. Therefore, the use of optimization models that can incorporate
imprecise information, has become a prerequisite to comprehensive planning,
particularly in complex planning environments, such as forestry. A relatively new

approach called fuzzy programming may be better suited under these environments.

Basics of Fuzzy Set Theory

In this section, a formal treatment of fuzzy logic is provided by considering
membership or indicator functions for fuzzy sets (objective targets) and fuzzy
members for imprecise values of the technical coefficients in the decision model. This

background constitutes the formal foundation for the fuzzy programming.

Fuzzy sets and membership functions

An element x of X is assigned to an ordinary (crisp) set 4 via the

characteristic ~ function p4 such thatt W y(x)=1 if xe 4. and
W4(x)=0 if xe& A. The valuation set for the function is the pair of points

{0,1}. A fuzzy set A is also described by a characteristic function, the difference

being that the function now maps to all points in the closed interval [0,1].
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Formally, a fuzzy set A of the universal set X is defined by its membership

functionpt 37 : X —[0,1], which assigns to each element xe& X a real number 1 7(¥)

in the interval [0,1], where the value of Ly at x represents the grade or degree of

membership of x in A (Sakawa 1993). While membership functions can take on a
varicty of functional forms, linear specifications are ofien employed.

As an example of fuzzy membership, consider the set of “natural forests™. It is
clear that old-growth forests belong to this set, they have a degree of membership
equal to I. As we consider progressively heavier logged forests, the descriptor
“natural” becomes less apt. Is a selectively logged forest “natural”?. To capture the
uncertainty surrounding their membership in the set of “‘natural forests”. partly logged
forests are assigned a partial degree of membership, something less than one. This is
an example of a one-sided fuzzy set. Membership in this set approaches zero as the
exploitation pressure increases.

In this regard, fuzzy set theory can be used to deal with unclear objectives.
This will be illustrated with an example. An objective of the land-use decision model
developed below will be to preserve wilderness by setting land aside as protected
areas. The question is: how much land should be protected? According to some
government guidelines 15% of the land should be protected. Since “undershooting” of
this goal will be politically sensitive, it can be argued that 15% serves to define the
lower limit and a lower percentage of the land base as wilderness will be unacceptable
and have a membership value of 0. On the other hand, there are many who would

argue that more land should be set aside. Claims up to 35% have been put forward. If
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we adopt 35% as a perfectly satisfactory level of forest protection, then the linear
membership function describing the fuzzy set for a forest x is:

U (x)=1, ifPA 2 35%

u;(x)=(PA-15)/(35-15), if 15% < PA< 35%

U;(x)=0, ifPA<15%
where PA refers to the percentage of the land base that is to be protected. If the
solution to the optimization problem allocates 25% of the land base to protected areas,
w;(x)=0.50.

The preceding definitions have employed the concept of a normalized fuzzy
set. A fuzzy set A, defined over a finite interval, is said to be normal if there exists an
xe X suchthat g y(x)=1l,and p 4(x) <1 Vxe X.

Set theoretic operations are defined for fuzzy sets. Among these are the

concepts of containment, complement, intersection and union. A fuzzy set A is
contained in the fuzzy set B (Ais a subset of B), if and only if the membership
function of A is less than or equal to that of B everywhereon X :
EgﬁmuA(x)SuB(x) forall xe X.

The complement of A (written as A ) is defined as:

L) =1-p 7).

The intersection of fuzzy set 4 and B is defined as:

]
ot

NB & U GnE) = min {u 4(x), pg(x)} forall xe X', and the union as:

BN
ol

UB & W 5 5 = max {1 (x), up(x)} forall xe X.



Hence, the intersection AN B is the largest fuzzy set contained in both A andB , and

the union A U B is the smallest fuzzy set containing both A andB.

While both union and intersection of fuzzy sets are commutative, associate and
distributive, as is the case for ordinary or crisp sets, fuzzy logic deviates from crisp
logic because, if we do not know 4  with certainty, then its complement 4 is also
not known with certainty. Thus, AN A does not produce the null set as is the case for
crisp sets (where A¢ 4 =®d). Thus, fuzzy logic violates the “law of non-
contradiction”. It also violates the “law of the excluded middie” because the union ot a
fuzzy set and its complement does not equal the universe of discourse — the universal
set X .Thus, 4 is properly fuzzy iff Aud £ X (Kosko 1992).

Another concept required for model building with fuzzy sets is that of the o -

level set. The o -level setA, is simply that subset of 4 for which the degree of

membership exceeds the levela . and is itself a crisp set (an element either meets the

required level of & or it does not).
Ap = (x| 4(0) 20, ae 0,11,
Ay 1s an upper level set of A . The use of a -level sets provides a means of transferring

information from a fuzzy set into a crisp form. Defining an a -level set is referred to
as taking an o -cut, cutting off that portion of the fuzzy set whose members do not
have the required membership or possibility value. It can be argued that the level of
the o -cut is a measure of the faith that the decision maker has in the reliability of the
imprecise coefficient. The more the decision makers’ confidence, the higher the o -cut

is set.



Fuzzy Linear Programming

Fuzziness can be modeled in several ways depending upon the nature of
imprecision, the context in which uncertainty occurs, and how it is accommodated in
the problem. For instance, in a mathematical programming setting, fuzziness can be
restricted to the constraints, the objective function, or both; and tuzziness may be
manifested as fuzzy numbers (i.e., coetficients in the objective function or constraints)
or as fuzzy sets (i.e., the objective function or constraints).

Before formally defining the fuzzy LP, note that the classical LP problem can
be restated as follows(Sukawa, [993):

minimize = =c¢X
subject to Ax<b (2.4.1)
x20

where € = (CyeesC,) . X= (x[ yoros X,y )T b= (bl yoeesDyy )T A = m x n matrix.

Zimmermann (1976) proposed to soften the rigid requirements of the decision
maker to strictly minimize the objective function and to strictly satisfy the constraints.
In other words, the goal of the decision maker can be expressed as a fuzzy set and the
solution space is defined by constraints that can be modeled by fuzzy sets. In such
situation a better model than (2.4.1) would be:

Find x such that

n
”
Y]
X

2.4.2)

e
v 3
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where the symbol “<* denotes a relaxed or fuzzy version of the ordinary inequality
“<"”. These fuzzy inequalities mean that the objective function ¢X should be
essentially smaller than or equal to z, vaguely specified by decision makers or
maximum value of the crisp systems of the problem, and the constraints AX should

be essentially smaller than or equal to b, respectively.
By substituting [: ]: B and (: ): d. (2.4.2) becomes:

Find x such that

Bx=d (2.4.3)
x20

Each of the (m+1)rows of (2.4.3) shall now be represented by a fuzzy set, whose
membership functions are W;(x), i=l..,m+1. [i;(x) can be interpreted as the
degree to which x fulfills (satisfies) the fuzzy inequality (Bx); < (d);.

Denote the ith fuzzy inequality (Bx); < d);, i=0,1,...,m, Zimmerman

used the following linear membership function:

r

Bx). —d;
u,—((Bx)i)=<l—(—r);—' ;dy S(Bx); Sd; + pivi=le,m+l
4
0 ,(Bx); 2d; + p;

(2.4.4)
where each p; is a subjectively chosen constant expressing the limit of the admissible

violation of the ith inequality. This ensures that the ith membership function should be
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1 if the ith constraint is well satisfied, 0 if the ith constraint is violated beyond its limit
D;i , and linear in between.

Following the fuzzy programming method of Bellman and Zadedh (1970) to

choose x* such that

w(e)=max min §a((80) )} 0459
x20 i=0...., m

In other words, the problem is to find the X" 2 0 which maximizes the smallest
membership function values( i.e. try to minimize the deviation of the inequalities from
being fully satisfied). Substituting (2.4.5) to (2.4.4) yields, after some rearrangements

(Zimmermann 1976),

max  min {1 —(—‘?‘—)i} (2.4.6)

x20 i=0....m Pi

Introducing one new variable A, this problem can be transformed into the
following equivalent conventional LP problem:

maximize A

subject to

Ap; +(Bx); <d;+p; i=lem+l
0<A<l

(2.4.7)

x20.
If the optimal solution to (2.4.5) is the vector (A*,x*) then x* is the
maximizing solution (2.4.5) of model (2.4.2) . We should realize that the maximizing

solution can be found by solving one standard (crisp) LP.
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2.5. Shortest Paths

Transportation systems in forests are one of the most crucial decisions that
have to be made. The determination of the shortest route (or path) through a network
of available routes is often an important step in planning transportation. A system of
forest routes may be described as a network, a collection of interconnected segments
or links. Each link describes a unique path between two adjacent nodes. A node is any
feature that might be treated as the point of departure or destination of some path
through the network, such as a landing or mill (Carson et al. 1978). Nodes are also
commonly used to indicate points at which road design standards change or there is a
marked change in grade or curvature. Such changes would be expected to influence
costs of hauling logs (Byme et al. 1960) and may therefore be of interest in the
solution of many transportation problems.

Planning a network for transportation in a forest is also very important since
we can reduce transportation costs by having an efficient network. Before deciding on
a permanent system of forest roads, we usually create a network road plan and put a
cost value on each road segment in the network. Then we analyze the network road
planning to get a more efficient alternative road network. The shortest path algorithm
is commonly utilized for this purpose (Carson, et. al 1978).

The shortest path can be found by using a linear optimization method or an
efficient graphical solution procedure (Mandl 1979). We will first use the formulation
of shortest distances (paths) as a linear optimization model.

Assume a directed network given by N = (X, A) has a set of nodes X and set

of arcs A. Suppose that each arc j € 4 has a length or other cost measurement ¢ ;. If
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we want to find the shortest distance and route from nodes s€ X to node t€ X then
this can be formulated as a linear optimization model as follows: let x ;be a variable

which has value one if the arc j is used on the route from sto ¢/, and is otherwise

zero. The problem becomes then

minimize chxj (1)
jed
subject to

| for k=se X

> X - Y. x; =40 forallotherke X ()
fe A with initial i€ 4 with terminal

{vertex ke X {/enex Ilce X —-lfork=te X

x;20forall je 4 (3)

One convenient property of this problem is that there is always a solution
{Mandl 1979) in which the variables all have values 0 or 1. even if the variables are
continuous. Hence, there is no need to specify this condition. Equations (2) are called
the conservation equations and simply state that if a route enters a node then it must
also leave the node, unless this node is the origin or destination.

Equation (2) may be written as

Bx=e (4)
where B denotes the network incidence matrix, xthe flow vector and e the right-

hand side vector of equation (2).

1 if arc j starts at vertex {
The entries of B are defined by: b;; =40 if arc j neither starts nor ends at vertex i
-1 if arc j ends at vertex i.
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Obviously, both problem (1) — (3) may be solved with the simplex algorithm.
However due to the special structure of the incidence matrix, taster algorithms are

available. One of the algorithms is called Dijkstra’s algorithm (Winston 1987). For
this algorithm it must be assumed that the cost ¢; 20 for all arcs j€ 4. However,
for problems we are considering this is not a restrictive assumption, because negative

costs do not have a practical meaning. The algorithm is divided into two parts: first the

shortest distance are found, and, secondly. the associated shortest paths.

Algorithm D ( Dijkstra’s algorithm for shortest distances)

To each node xe X a value v(x) is assigned. which at the end will denote
the shortest distance from some node s€ X . This value v(x) may be temporary.
indicating that v(x) could still be reduced, or permanent, indicating that this value
denotes the shortest distance from s to node x.

D1 [Initialization]. Set v(s)(— 0 and mark this value as permanent. Set v(x)« oo
for all x€ X and x#s and mark these values as temporary. Set p <—s. the
current working node.

D2 [Updating the values]. For all nodes x which have temporary values v(x) and

which are connected by an arc from p ., set v(x) e min [1(x}v(p)+c(p,x)], where
X

c(p,x) is the length from node p tonode x.
D3 ([Fixing a value as permanent]. Among all nodes x with associated temporary

values v(x) choose a node y for which v(y)= min v(x). Mark the value v(y) as
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permanent and set p ¢— V. If no such nodes x exist (so y cannot be found), go to

D4.

D4 [Termination]. If the shortest distance from node § to node ¢ is wanted and if
p =1, then the algorithm terminates with v(t) as the answer. If p#! we return
to D2. If the shortest distance from node s to all other nodes are wanted then the

algorithm terminates if all values v(x) are permanent; otherwise return to D2.

Algorithm D ( algorithm for shortest routes)

To apply this algorithm, algorithm D has first to be solved and the values v(x)

are used as an input to algorithm 5 .

[_)l [Initialization]. Set p ¢ ¢. where ¢ is the node for which a shortest path from s

is required. The value v(t) from algorithm D must be permanent. p is the current

working node.

[)2 [Iteration]. From among all nodes x€ X from which there is an arc from xto
node p find the node y, for which v(v)+c(v,p)=v(p), where arc c(y,p)

connects node y with node p . Store arc c(y, p) as belonging to the shortest route.
53 [Termination]. Set p «— y. If p =s the algorithm terminates with the sequence

of arcs belonging to the shortest § to / route as the result. If p # sreturnto D2.



Example 1.5;

Consider the following network transportation problem, (X ={u,v,w,_v,z})
with the associated costs, and structure shown in the diagram below. Node u is a
landing and node = is the mill. We want to find the most efficient route to drive logs

from the landing to the mill through the existing network transportation.

We now want to find the shortest path from node u to node z, and therefore first apply
algorithm D .
D1: ()0, v(v) e~ v(w) e v(x) e~ v(y) e~ v(z) = o0, p u.

v(u) is permanent.

D2 v(y)e—min[e,0+4]=4  v(w)e min [ee,0+3]=3
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v(x) < min [e0,0 + 2]=2 v(v)<—min [00,0 + 1]=1

D3: v(v) is permanent. p < v

D4: Returnto D2.

D2: v(w)emin 3,1 +1]=2, v(z) e min [eo,l +2]=3

D3: v(:c) or v(w) is permanent. Choose v(x). p X

D4: Returmnto D2.

D2: W(y)« min [4,2 + 2]=4 v(w)e—min[2,2+5]=2
v(z) ¢ min [3,2 +4]=3

D3: v(w) is permanent. p ¢ w

D4: Returnto D2.

D2: v(z)«min [3,2+3]=3

D3: v(z) is permanent. p ¢ Z.

D4: Terminate. The shortest distance from uto z is 3.

Now we have to use algorithm D for computing the shortest route.

Dl: pe:z.

52: v(y)+c(y,p)=4+7#3. v(v)+e(v,p)=1+2=3. c(v,p)belongs to the

shortest route.

D3: p < Vv.Retumto D2.

D2: v(u)+c(u, p) =0+1=1. c(u, p) belongs to the shortest route.
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D3: p < u. Terminate. The shortest route is the arc sequence c(u,p)— c(v,p).

When the shortest distance and routes between all pairs of nodes of a network are

required, a feasible way for obtaining the information is to apply algorithm D and D

for each node of the network.

2.6. Dynamic Programming

Operations Research techniques can be used to tackle the increased complexity
of resource management and resource management and resource problems entail
decisions which are sequential. risky and irreversible. Dynamic programming (DP) is
a versatile technique with considerable scope for helping to solve such problems.

The ability of DP to decompose big problem into small problems, where the
small problems interrelate to each other sequentially, makes it become a very usetul
tool for optimization. Many people have successfully used this technique to solve not
only resource allocation (resource management) but also production problems such as
bucking tree problem. Pnevmaticos et al (1972) show how DP can be applied to
select the optimal bucking patterns for single logs, assuming uniform taper. with no
defective stem sections. and probabilistic grading of wood quality. Haight et al.(1985)
show that the incorporation of stand growth and yield simulators. whether they involve
whole stands or single trees, and whether they are free of. or dependent on. either
distance or diameter, into DP algorithms has improved the analysis of silvicultural
investment decisions for even-age stand management by allowing the simultaneous

determination of optimal timing and intensity of thinning and rotation age.
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To solve resource allocation problems in which limited resources must be
allocated among several activities, people usually use LP. To use LP to do resource
allocation, three assumptions must be satisfied:

Assumption 1: The amount of a resource assigned to an activity may be any non-
negative number.

Assumption 2: The benefit obtained from each activity is proportional to the amount
of the resource assigned to the activity.

Assumption 3: The benefit obtained from more than one activity is the sum of the
benefits obtained from the individual activities.

Even if assumptions 1 and 2 do not hold, DP can be used to solve resource
allocation problems efficiently when assumption 3 is valid and when the amount of the
resource allocated to each activity is a member of a finite set.

DP is an approach to problem solving that permits decomposing one large
mathematical model, that may be very difficult to solve, into a number of smaller
problems that are usually much easier to solve (Schmidt et al. 1981). Moreover, the
DP approach allows us to break up a large problem in such a fashion that once all the
smaller problems have been solved, we are left with an optimal solution to the large
problem. We shall see that each of the smaller problems is identified with a stage of
the DP solution procedure. As a consequence, the technique has been applied to many
decision problems that are multi stage in nature. Often, multiple stages are created
because a sequence of decisions must be made over time. For example, a problem of
determining an optimal decision over a 100-year horizon might be broken into 10

smaller stages , where each stage requires an optimal decision over a l-decade
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horizon. In most cases, each of these smaller problems cannot be considered to be
completely independent of the others, and this is where DP is helpful.
DP is an approach that can be used fruitfully in the modeling and analysis of
many diverse operational problems. As a modeling tool it provides a framework for
building mathematical relationships that describe the operational behavior and
performance of multistage decision processes. As an analysis tool, it provides a
structure whereby a large problem (in terms of the number of decision variables) can
be decomposed into a series of interrelated small problems. These small problems are
solved sequentially utilizing their interrelationships until. ultimately, the solution to
the large problem is obtained. Each of the small problems is associated with a stage in
the solution process. This staging implies that the problem is separable, that is, can be
validly decomposed into such stages.
There are several basic features associated with using a DP rationale to define
an optimal solution to a mathematical programming problem. They are
1) The problem can be divided into stages with a policy decision required at each
stage.

2) Each stage has a number of states associated with it.

3) The effect of the policy decision at each stage is to transform the current state into
a state associated with the next stage.

4) Given the current state of the system in a particular stage, an optimal policy for
subsequent stages is independent of the policy adopted in previous stages.

5) The solution procedure begins by finding the optimal policy for each state of the

last stage.
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6) A recursive relationship is available which identified the optimal policy for each
state with N —k stages remaining (£ =0,1,..., N —1).
7)  Using this recursive relationship, the solution procedure moves backward stage-
by-stage, each time
Finding the optimal policy for each state of that stage, until it finds the optimal
policy when starting at the initial stage.

These basic features provide the framework through which a dynamic
programming solution is implemented. Having indicated that the problem is to be
decomposed into stages, it is important to identity specitically how a typical stage is
represented. A typical stage (here denoted the ith stage ) can be represented by Fig.

2.6.1 and is characterized by five fundamental factors (Schmidt, 1981):

Fig. 2.6.1. Typical stage diagram
(1) an input stage s;, which gives all relevant information about inputs to the stage; s;
is called the initial stage of stage / as it gives a description of the system at the
beginning of the stage;
(2) stage transition functions7;(.), sometimes called the stage-coupling functions,
which express each component of the output state as a function of the input state

and stage decisions;
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(3) an output state 5, which gives all relevant information about outputs from the
stage; s; is called the final state of stage / as it gives a description of the system at
the end of the stage: 5; = T;(s;,d;) =5,

(4) a decision d;, which controls the operation of the stage;

(5) a stage return ;. which is a variable that measures the utility or performance of
the stage as a function of the input state and decision:

[f the objective function F(d) is separable into individual stage returns r;

N
which are additive in their effect on the total objective, that is, F(d) = Y. r; then the

i=l
basic optimization principle of dynamic programming can be stated in a maximization

context as follows:

(a). For every possible input state value s,. in the first stage of analysis. the optimum
decision d|, will maximize fj(s;)= R)(s,d;) and for each of the other stages.

(b). For every possible input state value s; in stage k& of the analysis, the optimal

decision d; will maximize fi(s;)=Ri(si,dg)+ fi_1(sk,dy) where fi(.) is the

cumulative return for stage & and f;"_;(.) is the optimal cumulative return from stage

k-1 given in terms of each input state to stage k. The key to formation of the

cumulative return function is recognizing that each input state of stage £ —1 for which
f#— is defined can be associated with a specific input state-and-decision pair at stage
k . This relationship is explicitly defined by the stage coupling function at stage k.
That is s;_; =5; =T;(s;.d;).

Example.



A private forestry company has $6000 to invest in growing three types of trees. If 4 j

dollars (in thousands) are invested to grow trees type j(investment j), then a net
present value (in thousands) of r fi (d;) is obtained, where the r j-(d ;)’s are as follows:

n(dy)=17d, +2 (d; >0), n(0)=0

ry(dy)=3d> +7 (d» >0), n(0)=0

ry{dy)=4d; +5 (d3 >0), 5(0)=0
The amount placed in each investment must be an exact multiple of $1000. In order to
maximize the net present value obtained from the investments, how should the
company allocate the $6000?.

The return on each investment is not proportional to the amount invested in it
(for example, 16 =nr(2)# ri(1)=18). Thus, LP cannot be used to find an optimal
solution to this problem.
Mathematically, the company’s problem may be expressed as

max {r (dy ) +ry(d>)+nr(d3)}

such that dy+d, +d3; =6

d ; non-negative integer (j =1, 2, 3).

To formulate the company’s problem as a DP problem, we begin by identifying the
stage. The stage should be chosen so that when one stage remains the problem is easy
to solve. Then, given that the problem has been solved for the case where one stage
remains, it should be easy to solve the problem where two stages remain, etc. Clearly,

it would be easy to solve the problem in which only one investment was available, so
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we define stage ¢ to represent a case where funds must be allocated to investments ¢,
t+1,...,3.

For a given stage, what must we know to determine the optimal investment amount?
Simply how much money is available for investments ¢, ¢+1, ...,3. Thus, we define
the state at any stage to be the amount of money ( in thousands) available for
investments ¢, t+1, ...,3. Since we can never have more than $6000 available, the

possible states at any stage are 0,1,23.4,5, and 6. We define f,(d,) to be the
maximum net present value (NPV) that can be obtained by investing 4, thousand
dollars in investments ¢, t+1. ....3. Also define x,(d,) to be the amount that should
be invested in investment ¢ in order to attain f,(d,). We start to work backwards by
computing f3(0), f3(1), ... f3(6) and then determine f5(0). f>(1)..... f2(6).
Since $6000 is available for investment in investments 1.2, and 3. we terminate our
computations by computing f;(6). Then we retrace our steps and determine the

amount that should be allocated to each investment .

Stage 3 computations
We first determine f3(0), f3(1)..... f3(6). We see that f3(d3) is attained by

investing all available money (d3) in investment 3. Thus.

f3(0)=0 x3(0)=0
f(DH=9 x3(1) =1
f[r)=13 x3(2)=2
£3)=17 x3(3)=3

f3(4)=21 x3(4)=4
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f3(5)=25 x3(5)=5
f3(6)=29 x3(6)=6

Stage 2 computations
To determine f5(0), f5(1l), ..., f>(6) we look at all possible amounts than can be

placed in investment 2. To find f5(d,}, let x; be the amount invested in investment 2.
Then an NPV of ry(xy) will be obtained from investment 2, and an NPV of
f3(da1 -x3) will be obtained from investment 3. Since x> should be chosen to

maximize the net present value earned from investments 2 and 3, we write

fr(dr) =max {rr(x3)+ f3(ds - x3)}

where x5 must be a member of {0,1...., > }. The computations for /5(0). f>(1).....
f2(6) and x3(0). x5(1),.... 2 x,(6) are given in Table 2.6.1.
Stage | computations

Following trom stage 2, we write £} (6) = max {r(x;) + f>(6 — x;)} where x| must
I|

be a value from {0,1.2,3,4,5,6}. The computations for f|(6) are given in Table 2.6.2.
Determination of the optimal investment

Since x;(6) = 4, the company invests $4000 in investment . This leaves 6000-4000 =
$2000 for investment 2 and 3. Hence the company should invest x,(2)= $1000 in
investment 2. Then $1000 is left for investment 3, so the company chooses to invest
x3(1)=$1000 in investment 3. Hence the company can attain a maximum net present
value of f{(6) =$49,000 by investing $4000 in investment I, $1000 in investment 2,

and $1000 in investment 3.
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Table 2.6.2. Computation for f](6)
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dp | x n(x) | f2(6-x;) |NPV from | £1(6)
investments 1 - 3 x1(6)

6 0 0 33 35 f1(6)=49

6 1 9 31 40 X (6)=4

6 2 16 27 43

6 3 23 23 46

6 4 30 19 49%*

6 5 37 10 47

6 6 44 0 44




Chapter 3

Literature Review

Forests cover approximately 31% of the earth’s land surface (Sedjo and Lyon
1990). They provide many natural resources that benetit individuals, corporations and
governments, and they contain much of the world’s bicdiversity that is so essential to
the integrity of the earth’s biosphere. Forest management, once the sole domain of the
professional forester who attempt to regulate forests to maximize the value of the timber
and other natural resources extracted from the forest, has taken center stage as many
powerful interests compete aggressively to have forests managed to satisfy their often
conflicting objectives.

Forest management has changed greatly over the last few decades. [nitially,
relatively simple stand rotation decision-making was performed (i.e. deciding when to
cut individual stands to maximize the present net value of the timber). Then industrial
agricultural approach was adopted for the production of timber from large forest
management units while attempting to reconcile conflicting demands for non-timber
resources. In the current era, environmental concerns have become a major factor in
resource exploitation in many forested areas. It is therefore imperative that foresters and
operational researchers seek methods to solve those problems in order to get optimal
results.

Some foresters and operational researchers have attempted to use mathematical
approaches to forestry problems. Some of these are described in this chapter, focusing
on four aspects of forestry: resource allocation, spatial consideration, road construction

and forest products.
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3.1. Resource Allocation
3.1.1. Multiobjective

When allocating resources in forestry practice there are usually multiple
objectives. The objectives are often measured in different measurement units, and the
goals are incommensurable. Forest analysts usually utilize goal programming to resolve
this problem.

Goal Programming

Goal programming (GP) is a very popular method in forestry problems where
there are multiple and conflicting objectives. Goal programming was introduced into
forestry management for the first time by Field (1973). He was motivated to introduce
this method because of the two major weaknesses of ordinary linear programming,
which had dominated in forestry problems up to that time.

Firstly, linear programming yields an optimal solution to a quantitative
allocation problem only if a feasible solution exists. Feasibility is assured if the
requirements specified by the analyst and the constraints imposed by the problem
environment are all mutually consistent. But, inconsistencies are not always readily
apparent. For example, it may not be obvious, prior to the analysis. that limited
resources preclude the simultaneous satisfaction of a minimum desired timber yield
goal and a watershed management objective. In contrast, the objectives specified in a
goal programming format are approached as closely as possible but need not all be met
completely. This flexibility allows the specification of a problem in terms of multiple

conflicting goals and the allocation of resources according to subjective priorities.
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Secondly, even if feasible solutions exist, in linear programming there can be
only one optimization criterion. Whatever measure is associated with the objective
specified by this criterion, the outcomes of several conflicting activities must be
included and must be expressed in the common units of measurement. This requirement
has two particularly serious effects. First, analysts attempting to apply linear
programming to problems involving incommensurable values are tempted to search for,
inaccurate but easily computed, indirect measures of relatively intangible results. Thus,
for example, vacation expenditures are used as a surrogate gauge of outdoor recreation
benefits, and a wilderness preserve is valued in terms of timber harvests foregone.
Second, even when a clearly valid relationship between the optimization criterion
standard and a particular activity does exist, that relation may be very difficult to
specify. For example, Goal programming allows not only the simultaneous
consideration of resources allocation to activities whose outcomes cannot be valued in
like terms, but it also permits the analyst to specify directly activities whose levels can
be associated with a common measure. For example, the consequences of a shortage of
pulpwood at a mill can be expressed in cords rather than requiring the difficult estimate
of overall dollar impact of such a shortage on the firm’s operating costs and sales
revenue.

Field used GP in advising a small woodland owner how best to satisfy
immediate and long-range goals. The objective function is expressed as a weighted sum
of the deviations from the goals. The weights are priority factors that retlect the

priorities of the different goals. The general form of the GP proposed is:

minimize z=w.d* +w.d”
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At most only one of df and 4 is non-zero, w isa l.xm vector of priority factors,
+ - . . . .
d and d  are m x1 vectors representing, respectively, positive and negative

deviation from goals, where d,:‘ is the ith entry in d tod ; isthekthentryin 4, A

is an m xn matrix which expresses the technical relationship between goals and sub-

goals, X is an n x| vector of decision variables called subgoals. b is an m X1 vector

of desired goal attainment levels, B is a p x n matrix describing the relationship
between subgoals and specified constraints on subgoals. and 2 is a p x| vector of

constraint levels imposed on subgoals. The proposed procedure for determining the
priority factors and weights is as follows:
(1) Formulate the problem with no priority factors or weights and solve. If all goals are

met, stop. [f one or more goals are not met, go to step 2.

(2) Define priorities for the set of goals and establish the weights wy..

Another example of using GP to reconcile conflicting objective in a forestry
problem us given by Kao and Brodie (1979). Some Managers accept even-flow harvest
as a necessary feature of harvest control. That is, exactly the same amount of timber is
cut during each period in the planning horizon. A fully regulated sustained yield should
provide a constant flow of forest production, as well as allegedly more stable income

and employment. To be fully regulated, the forest must have a normal age class



distribution; that is, each age-class must have the same area, the number of age-classes

must equal the rotation period, and no age classes can be older than the rotation period.

For a given planning period, if an equal amount of volume is cut each cutting cycle,

then the final age-class distribution may not be regulated. If we want the final age-class

distribution to be regulated, then the harvest at each cutting cycle usually cannot be the

same. GP is a good technique to compromise the conflict of the three goals: even-flow

harvesting, regulating the stand, and maximizing the present net worth from the harvest.

The specific form of the Goal Programming model is developed in detail in the next

five pages.

Let

Xi; = acres harvested in age-class j in the ith period

P; = unit price of stumpage in age-class j harvested in the ith period. (Stumpage is
timber in unprocessed form as found in the woods. Normally it means the physical

content of standing trees, within a contiguous area, whether live or dead.)

N
[

volumes per acre of age-class j
a; = initial area of age-class j

oldest age-class in the initial stand

=
I

n
A =total area= Zla j
j:

p = cutting cycle (the interval between harvests in an uneven-aged stand. of the
planning period.)
N = rotation age (the interval between one regeneration harvest and the next

regeneration harvest.)
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m = the maximum age-class the stand can reach during the planning period.

Constraints

Certain constraints must be maintained or the problem is infeasible. Harvesting
must be limited to the initial forest and its subsequent growth. That is, the area of trees
in age class j that are cut in the first period cannot exceed the initial area of age-class ;.
The area cut in age-class | in the second period cannot exceed that cut in the first period
from all age-classes. The area cut in age-class /., /> 2 in the second period cannot exceed
the initial area of age-class j-/ left after the first cut. and so on.

For the first cut:

[1] X}, Sa; where j =1.23....n

For the second cut,

[2a] XajSa;j =Xy ;| where j=23..,n+]

For the third cut,

n+l

X3’j Saj—z—Xl,j_z—X‘_)'j_l, j=3,4,...,n+2=m

and for the pth cut

Xp,l SXp—l,l +Xp_[,2 +"'+Xp—l,m



m
Kok S Y Xk i=Xppatd =X pogara ==X pp oy
I=1

m
Xpp-1 S X X1 j=Xo1=X33-X
j=1

XP‘P SQ] -‘Yl.l —Xz'z—...—X

—1.p=2
[3b] p-lLp=-2
p—1,p=-1

Xp,p+l Say—-X12p-Xa3 _"'Xp-l,p

Xp.p-t-l Saz-X153-Xa4 —"'Xp-l.p+1

Xpop+k Sapet = Xpkel =X k42 = X pop, prk-i

Bel Xpm<ay=Xin=Xone1 ==X p-im-1
Constraints of form | to 3 restrict every possible age class that could develop over the
planning period.

Goal constraints arise from objectives the manager would like to achieve as
closely as possible, but for which some deviation is tolerable. The deviation is permitted
and feasibility is ensured through use of the d—,d* variables. Different goals in harvest
scheduling are accommodated in these three constraint sets.

Regulating the Stand Constraints

At period p+1, each age-class has the same area, C (=4/N)



Thus we need

4] Y X ok tdi —di, =C
k=1

[5] ZX ik - ZXP ik k T im0 =C =12 N =]

k=1 k=1
Equation [4] states that the total area cut in the pth period should be C so age-class | at
period ( p+1) wil have area C. Equation [5] states that the total are cut in (p—i)th
period subtracted from the area cut in subsequent periods (from ( p—i+1) to p) should
be C so the area of age-class (i+1) at period ( p+1) will be C.

At period ( p+1), age-classes from N up to m should not contain any area thus

(6] ZXP ~jk ~ ka jHii Y40 el A oye =0

i=1
where Jj=N,N+l,,m-1

[7] a; Zix, jriml H 02, p-N+j = ye =00 S =12 N+
i=

The terms in the first summation in equation [6], or the first term in equation [7], are
those age-classes that will grow to age-class (j+1) in equation [6] or (p+i) in
equation [7]. The terms in the second summation are the same age-class cut in the
subsequent periods. Setting term to O ensures that no age-classes older than N will
remain at period ( p+1).
Even-flow harvesting Constraints

For the same harvest each cutting cycle of the planning period requires these

constraints:
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(8] ZX,JV zX,HJV +d,I d =0; i=1,2,, p—1
Jj=1 =1

[9] ZXuV EX“V +dy, -d5 =0
=1

Equation [8] states that the volume cut in cutting cycle / should be as close as possible

to that cut in period (i +1). Equation [9] states that the cut in cutting cycle p should be

as close as possible to the cut in cutting cycle 1. Hence the chain relation forms a closed
loop that prevents all the deviation from occurring in a single cutting cycle.
Maximizing the Present Net Worth Constraints

Because we want to maximize the present net worth, we can set equal to a large

number M. M is usually subjectively determined by decision makers.
P m

00 X 3. X, VB, +d5 =M
i=1j=I

and try to minimize the underachievement.

All variables of type X and & should be nonnegative.

The objective function depends on the priority: if even-flow harvesting and
regulating the stand area are equally important, and both are more important than the
income from the harvests in the planning period, the objective function is

N m—N+1
[11] minimize PI[Z(dl_,l,i rdi )+ Zdl )i+ z(dﬁ +d3 ,)} + Pyds
i=l
where £, P, are ordinal weights (ranking goals 1,2,3,...).
Different Cardinal weights (using real numbers to measure priorities of goals

relating to one another) can also be introduced to the objective function if w' units of



deviation in even-flow harvesting and 1 unit of deviation in the final age-class

distribution are equally important, then the objective function becomes

N m-N+1 P

Z(dﬁl,i + dfl,f)"' Ydia |+ Z(dl_,i + dif) + Pydy
i=l i=1

[12] minimize Pll:w[
i=1

Useful information Kao and Brodie found here is that good compromised result
of three conflicting objectives can be achieved using these objective function
formulations. The three conflicting objectives are economic (maximization of present
net worth), even-flow harvest, and a normal age-distribution; that is, each age-class
must have a similar area, the number of age-classes must equal the rotation age. and no
age-classes can be older than the rotation age.

According to theoretical and empirical studies, the pretferences of forestry
decision makers vary considerably from one decision maker to another (Hyberg and
Holthousen 1989). There are some crucial problem when utilizing goal programming
which include: specifying the target levels of the goal, determining the weights used in
the objective function and making goais measured with different units commensurable.
Prior information on the requirements of the decision maker is needed to formulate the
problem appropriately. Because there is usually no single overriding management goal
in multiple-use forestry. but a set of more or less conflicting objective having certain
trade-offs, cardinal weighting is recommended instead of ordinal weighting.

Specifying a set of priori relative weights for goals is often found to be difficult.
Kangas, et al. (1992) showed that the Analytic Hierarchy Process (AHP) can be utilized
in the estimation these weights. AHP is a mathematical method for analyzing complex

deviation problems with multiple criteria. It was originally developed by Saaty (1977).
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Basically, the AHP is a general theory of measurement, having both mathematical and
psychological features.

For estimating a priori weights of proportional deviations from the target levels,
pairwise comparisons between decision criteria (goals) are carried out. When making
the comparisons, the question is: which of the two factors has a greater weight in

decision making, and how much greater? Verbal comparisons are connected into the

numerical form */ ., measuring the relative priority of goal i with respect to goal ;.
/

Reciprocal matrices of pairwise comparisons are constructed as in the matrix below:

W W,
“'y l H'z
w o w,

Wy Wy 1
Wy wa

Using the pairwise comparisons as input, the relative weights of elements are computed

A= (a,j ):

by using an eigenvalue method (Anderson et al., 11994). The resulting weights
represent the decision maker’s perception of the relative importance, or preference, of
the criteria.

Based on properties of reciprocal matrices, a consistency ratio can be calculated.
The consistency ratio measures the coherence of the pairwise comparisons. In human
decision making, some inconsistencies can be expected. As a rule of thumb, a
consistency ratio value of 10 percent or less is consider acceptable (Saaty, 1980).
Otherwise, all or some of the comparisons should be repeated to resolve the

inconsistencies of the pairwise comparison. For more details on the AHP theory and the
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estimation for relative priorities, readers are referred to Saaty(1977, 1980) and Saaty
and Kearns (1985).
Disadvantages of GP

Although GP has become very popular lately there have been a lot of issues and
criticisms for using this GP as a tool to get optimal solutions to multiobjective forestry
problems. Those issues are related to GP with pre-emptive (pre-assigned) target levels,
priorities or weights of the objective functions.

Some features and assumptions of GP that are often considered its major
weaknesses are infinite trade-offs between goals of different priority levels and the
possibility of generating a dominated solution. Infinite tradeoff occurs when one goal is
satisfied (or nearly satisfied), but others are not satisfied at all. The disturbing
implications of this possibility have been pointed out by Dyer et al. (1979) and
Mendoza (1987) and are described briefly by considering a simple case involving two
objectives.

Assume that the production frontier (i.e.. nondominated solution set) for

objectives | and 2 is shown in Fig. 3.1. [f the goals or target levels for each objective

are set at Gl' and G{ , respectively, and objective 1 is the first priority, GP will generate
point A as the optimal solution. This solution implies 2 maximum of objective | and
nothing of objective 2. In fact, point A will be the solution generated by GP regardless
of the target level set for objective 2. Hence, the only possibility that an optimal
solution generated by GP is along the production frontier between point A and point B (
a more realistic situation) is when the prespecified levels for objectives 1 and 2 are less

than A and D, respectively. For instance, if objective 1 is the first priority and the target



level for this objective is specified at Gll, GP will generate an optimal solution that is

equal to £, provided that the specified target level for objective 2 is greater than or

equal toG> . If the target level for objective 2 is less than G3, say G3. a dominated

solution at £, will be generated by GP.

Objective |

G|

- >
G3 G35 Gl

Objective 2

Figure 3.1. Objective space showing the
non-dominated solution set of a two-
objective problem

Objective 1
A
i
A B
£
C
D
: >
Gy

Objective 2

Figure 3.2. Objective space showing the
non-dominated solution set of a two-
objective problem with alternate optima

Another situation where GP may generate a dominated solution is described in

Fig. 3.2. Assume that the target levels for objective 1 and objective 2 are set at Gll and

G; , respectively. If objective 1 is the first priority, GP will generate the solution equal

to Fj, which gives the maximum possible value for objective 1. However, F is a
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dominated solution (dominated by B). Note that Fjis dominated , even though it
yielded the highest value of the objective with the highest priority.

Some concerns have also been raised on the specification of weights in
Weighted Goal Programming (WGP). Zeleny (1982) and Kluyver (1979) have noted
that care should be exercised in assigning weights to the various deviations. This
specifically applies to problems with noncommensurable goals and the objective
function is formulated as the sum of absolute deviations from targets measured in
different units that may not be comparable. As Romero (1985) has pointed out. when
the approach is used with goals that are not commensurable. the straightforward
objective function aggregating all the deviational variables is meaningless.

The problem of weighted deviations also has some direct implications in the
solutions generated, particulariy when the goals are expressed in different measurement
units (e.g., some goals are in thousand units while others are in decimal units.). In this
situation, the goals expressed with the highest magnitude will drive or dictate the
solution generated by WGP. Hence, some normalizing or scaling system must be used
in calculating weights assigned to each deviation variable. Zeleny (1982) and de
Kluyver (1979) have suggested ways of normalizing or calculating scaled weights but
Zeleny has also noted that dominated solution may be generated by WGP.
Nondominance in GP solutions

Nondominance is often a desirable characteristic of any solution to a
multiobjective problem. Intuitively, the selection of a nondominated solution is
appealing because from standpoint of rational decision making, no other solution leads

to better attainment of the stated objectives.



6l

Critiques of GP have raised concern about the possibility that a dominated or
inefficient solution may be generated by GP. Figures 3.1 and 3.2 describe two situations
where this possibility may occur. Zeleny (1982) has also described situations where
dominated solutions may be generated under GP or WGP formulations.

Intuitively, it is not a difficult task to detect whether a dominated solution may
have been generated. A closer look at Fig. 3.1 indicates that whenever a GP solution
yields a zero value in any one or more of the deviation variables it is possible that this

solution may be dominated. For instance, at solution £ all the deviational variables are

zero because the two goals are met. However, E; is a dominated solution and it can be

improved by increasing the deviational variables d; and 4" from their current zero

values. This can be done by increasing the goal levels for both objectives. In these

circumstances any point on the line segments £,8 and BE; would give a

nondominated solution. Along these two lines. either one or both of the deviational
variables are greater than zero.

Ignizio (1981) has developed a procedure that can be used to generate a subset
of nondominated solutions in GP. His procedure involves a parametric increase of the
target level(s) whose deviational variable(s) is(are) equal zero. His technique could be
adopted to WGP. Hannan (1980) has also described a mathematical technique to test

dominance of GP solutions.

Multi-Attribute Decisionr Theory
Hyber, T.B. (1987) resolved these conflicting objectives by implementing multi-

attribute decision theory. He presented the procedures required to implement multi-



attribute decision theory. These procedures are quite different from other methods
dealing with resolution of conflicting objectives. The procedures result in a utility
function that can accommodate the conflicting objectives. He helped a non-industrial
private forest landowner manage his forest to maximize timber harvest revenue while
maintaining an attractive site.

Multi-attribute decision theory is a procedure where the manager can structure a
problem for analysis, quantify the relative advantages of the available options, and
arrive at the preferred solution (Keeney and Raiffa, 1976). The procedure incorporates
the expected utility framework developed by von Neumann and Morgenstern (1974)
with the decision analysis technique of Raiffa (1968).The general description of multi-
attribute decision theory is as follows.

Multi-attribute decision theory presents a decision maker with a series of
choices requiring an assessment of preference. This can be best describe in terms of a
special kind of lottery. Considering a situation in which a person will receive either a

reward n with probability p; or a reward » with probability p,. This is denoted as
the lottery L( py,n; p2,m). Decision theory is a method of choosing between lotteries.
Consider. for example, timber revenue. Suppose that with certainty, lottery L; yields
$10,000. Lottery L, has a 0.5 probability of yielding $30,000 and 0.5 probability of
yielding SO. The decision maker must decide whether he prefers L;(1,510,000)or

L»(0.5,830,000;0.5,80) . He is said to be indifferent between L; and L, if there is no
preference.

In order to rank more than two lotteries, a utility is defined for each possible

reward. First identify the most favorable and least favorable rewards that can occur,
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Mhese and 1,0, , TESPectively. The utility, u;, of each of the remaining possible rewards,
r;, is defined to be the probability, g;, such that the decision maker is indifferent

between lottery (1, r;) and lottery (q;./ess 1-9;i . hvors:)- The decision maker must

then determine a utility function. This estimates the utility of any given reward r,

g woursi

<r<n,» with the utility of r,_,.., chosen to be 0 and that of n,, to be 1. To
clarify the foilowing discussion the decision maker will be assumed to be interested in
only two commodities — timber revenue and aesthetics.

Once the decision maker’s utility functions for both attributes(i.e. revenue and
aesthetics) have been estimated in the above manner, three additional questions are
asked. These questions are used to define a multi-attribute utility function. This
describes the utility as a function of the levels of both attributes. The first question is
“Given the choice between (1) a state with the maximum quantity of aesthetics and the
minimum quantity of timber revenue, and (2) a state with the minimum amount of
aesthetics and the maximum quantity of timber revenue, which would you choose?”
This question asks the decision maker to decide, given an either/or situation, which
commodity he or she would choose.

Assume for this example the landowner selects option 2, indicating that he or
she would rather have the maximum income over the maximum aesthetics. Given this
response, the landowner is asked, *“What amount of timber revenue, with no aesthetics,
would make you indifferent to a trade for the maximum amount of aesthetics with no
timber revenue?” The response to this question provides the dollar amount of landowner

would require in order to sell the total esthetic value of his forest. With this value, a

functional relationship between the two goods can be developed.
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Finally the decision maker is asked, “What probability of success in a lottery
involving the maximum amount of both goods versus the minimum amount of both
goods would make you indifferent to a choice of participating in the lottery or receiving
the maximum income with no aesthetics?” This question allows the estimation of a
weighting coefficient for the utility from timber income. It also assesses the individual’s

aversion to the worst possible outcome. These three questions are used to define

constants K ;, K¢, and K ¢, given below.

With the utility function estimated through a series of lottery and an assumption
of utility independence, the following equation represents the decision maker’s utility.
Ula,b)= K 4U 4(a)+ KsUs(b)+ K 45U 4(a)lUs b)
where a=level of aesthetics, b= level of revenue
Ula,b) = total utility

U, (a) = utility from aesthetics at level a

Us (6)

utility from timber revenue at level b
K, K, and K ;g are scaling parameters
K 4 1s the probability such that the decision maker is indifferent between lottery
Ly(Lt(@pests byvorse))and Lo (K 4, u(apests Opest 3 1 = K > u(@yyorst - Brorst ) -
K¢ is the probability such that the decision maker is indifferent between lottery

Li(L,u(@yopst - bpest))and Ly (K, u(apesys bpest )i 1 — Kgo @ysorst s buorst)) -

Kys=1-K—Kg

Interactive Multicriteria Programming



Korhonen. P. et al. (1986) introduced a wvisual interactive approach to
multicriteria mathematical programming that shares the advantages of goal
programming while providing more effective means of interaction between the decision
maker and the computer than traditional goal programming. Interactive use of computer
graphics plays a central role in this approach. It gives the decision maker the ability to
see the big picture of the problem at hand and enables him to evaluate any part of the
Pareto optimal set.

The decision maker’s targets are often impossible to achieve simultaneously.
However, the decision maker may be interested only in nondominated solutions (the
Pareto-optimal set). [f there exists a feasible solution for which his targets are attained,
there may also exist feasible solutions that are better in all respects. This means that
some rules must be established for selecting attainable solutions that bear some relation
to the decision maker’s targets. Such rules are often defined using an achievement
function. The term *“‘achievement function” to refers to all techniques for projecting a
given solution onto the Pareto optimal set. There are several ways to specify an
achievement function (Ignizio,1983).

[nteractive multicriteria programming methods generate a sequence of attainable
solutions for the decision maker’s evaluation until a satisfactory solution is found.
Attainable solutions are often generated using some kind of achievement functions.
Visual representation enables the decision maker to evaluate a continuum of solutions
simultaneously. Besides the use of visual aids, this approach has two particular
desirable features. Firstly, the decision maker is free to examine any part of the Pareto

optimal set he pleases at any moment, i.e., he is not confined to evaluating only extreme
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point solutions, nor is his freedom limited by his earlier behavior during the interactive
process. Secondly, the approach needs no specific assumptions concerning the decision
maker’s underlying utility function (discussed in multi-attribute section above) during
the interactive process. The utility function can be even assumed to be changing due to
learning and changes of mind during the process

The features of this approach are very useful for solving complex problems in
forestry but this approach is only efficient for a certain number of objective functions
(at most 10) due to complexity of the approach. However, forestry problems in real life
are always complex involving a lot of goals.

Bare et al. (1988) illustrated the potential use of multicriteria (mulitiobjective)
programming in land management planning by solving a demonstrative example using
an interactive technique called the STEM method. Among the interactive approaches,
the STEM method is applicable to forest land management planning because it can
computationally accommodate problems of the size commonly encountered and is easy
to understand. Further, it uses the highly efficient simplex method from linear
programming which is familiar to most forest planners. This method seeks to identify
the best compromise solution by presenting sequential compromise solutions to the
decision maker, each reflecting the decision maker’s preferences.

3.1.2 Uncertainty

Uncertainty in forest planning is pervasive, entering in the form of a lack of
infénnation, imprecision or inaccuracies in estimating model parameters, and inexact or
imperfect data. All of these cause uncertainties that must be incorporated in any

planning model. Besides imprecision, forest planning is also inherently multiple
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objective, mainly due to the multiple use nature of forest management. Hence, forest
planning models should also address multiple objective concerns in forest management.
During the last few decades, mathematical programming models have been used
extensively in forest planning, with linear programming and multiobjective linear
programming being the most commonly used methods. However, concerns about the
use of these models have also been raised. The main criticisms deal with inherently
deterministic nature of models, and their use of precise coefficients. In traditional linear
programming and multiobjective linear programming models, the coefficient or
parameters are assumed to be known with certainty. In many real world forest planning
problems, however, it is very unlikely that this assumption is valid. For example. forest
managers often have to deal with insufficient or impertect information due to the
inherent complexity of the system (Allen. et. al (1986)). Hence to enhance model utility.
it is necessary to be able to incorporate uncertain information (fuzziness) into the model
(Mendoza, et al., 1993). In some cases, fuzzy formulations are actually able to provide
improvements in all goals (Pikens and Hof, 1989).

In recognition of some of these problems, Mendoza and Sprouse (1989)
described a procedure that is particularly suited for complex forest planning problems
such as multiple-use forestry. The procedure they proposed is a two stage approach or
method. The first stage uses fuzzy models for generating alternative solutions. These
models offer some desirable features. First, they allow a more robust generation of
widely different alternative solutions. Second, they provide a convenient framework for
accommodating a certain amount of fuzziness, uncertainty, vagueness, or ambiguity in

the modeling and decision making processes. The second planning stage and its
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corresponding methodology deal with the evaluation and prioritization of alternatives.
One of the goals is to derive a global priority ranking of the alternatives by explicitly
considering pairwise comparison of the different alternatives which respect to each
criterion. The AHP (Analytic Hierarchy Process — see section 3.1.1) model was adopted
to derive a global priority ranking.

The multiple-use forest planning problem considered in their study is a 29,000
acre forest tract located in the Shawnee National Forest. In managing the forest, three
goals are considered simultaneously: maximize the economic return from the forest in
terms of discounted net revenue, maximize the area suitable for wildlife habitat, and
maximize the area suitable for non-motorized semiprimitive recreation. What they have
found here is that they can create the payoff table representing the optimal values of
cach objective as well as the values of other objectives at the optimum values of a given
objective. The payoft table provides a convenient framework to describe the maximum
model in the context of a bargaining situation where alternatives must be negotiated.

Pikens and Hof (1989) used fuzzy goal programming to solve a forestry
problem, harvesting scheduling plan, where the goals are maximization of Net Present
Value (NPV) and a stable flow of wood and fiber. The traditional solution to this
problem is to maximize NPV subject to a set of constraints which assure that planned
harvests will never decline between any successive pair of harvests of the model. Thus,
the problem is addressed by selecting one goal as the objective and the other as a crisp
constraint. [n this study, the problem was reformulated to treat the stable flow of wood
and fiber as a “fuzzy” concept rather than as a crisp constraint set. They found that

formulating harvest scheduling models with conflicting goals of profit maximization
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and stable harvests as a fuzzy goal programming problem has the potential to generate
solutions which are superior to the traditional crisp formulation for both of the stated
goals. That is, fuzzy goal programming gives more profit then crisp goal programming
does and the harvest determined by fuzzy goal programming is much more even
compared to that determined by crisp goal programming.

Motivated by criticism of using linear programming (LP) for determining timber
harvest scheduling where all data are considered to be non-stochastic measurements that
are known with certainty, Bare and Mendoza (1992) described how fuzzy mathematical
programming can be used to cope with uncertainty in timber harvest scheduling models.
They assume that uncertainties can be adequately modeled as fuzzy sets. Thus. timber
yield coefficients are treated as deterministic, but strict satistaction of constraint limit is
relaxed and attainment of goal aspiration level is sought but not required. They assume
that the fuzziness appears only in the objective function and the timber harvest flow
constraints. Other constraints of the LP model are treated as a crisp constraints. The
problem addressed represents a situation where the decision maker tolerates some
degree of violation in the accomplishment of the timber harvest flow constraints.

A crisp linear programming problem can be written as

maximize e¢Tx (NPV)
subject to

bTx<bh  (harvest flow constraint)

Dx<b, (other constraints) .

To treat the objective function and harvest flow constraint as fuzzy, we want to find x

such that
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xSz
BTx<p
DXSb2

where Z is an aspiration (target) level. The crisp model equivalent to this fuzzy model
is as follows.
maximize «

subject to

kt+clx<Z+t=cIx<Z+1(1-k)
kt+BTx<b +t=>BTx<b +1(1-k)
DXsz

Bare and Mendoza compared fuzzy linear programming with the linear
programming solution of a timber harvest scheduling problem. (The problem was
selected from McQuillan (1986), and Pickens et. Al (1990). They found out that by
relaxing the harvest flow constraint, the NPV slightly increases and the harvest flow
remains reasonably nondeclining. Also by relaxing the objective function, they found
out that the NPV can be increased to a certain amount depending on the tolerable
deviation and the degree of satisfaction needed. Therefore, they conclude that fuzzy
linear programming has potential as a tool to systematically explore alternative
solutions.

Mendoza et al. (1993) used a fuzzy Multiple Objective Linear Programming

approach to forest planning. They assumed that the decision maker can specify the
coefficients in the objective function as intervals [c/ ,c¥ ] rather than exact values. The

paper is organized as follows. First, a single objective function with interval-valued

coefficients is formulated as a two-objective function problem. Then, in the presence of



71

multiple objectives, some of which have exact coefficients while others have interval-
valued coefficients, the problem is formulated as a multiple objective linear
programming problem. Finally, a fuzzy multiple objective linear programming model is
formulated with both interval-valued and exact coefficients.

They tested the method with a case study adopted from Johnson et al. (1986).
There are four goals, namely, minimizing sediment (solid material, both mineral and
organic, that is in suspension and being transported from its site of origin by the force of
air, water, gravity or ice), maximizing timber, maximizing forage, and maximizing the
net present value (NPV), in which the first three objectives have exact coetficients and
the last mentioned objective has interval coefficients, subject to some constraints. The

form in the mathematical formulations is:

maximize z; =¢f x NPV
minimize z; = cg X sediment
maximize =3 =c¢lx timber
maximize =4 =clx forage use

subjectto AX<B
x20.
Based on the yields, costs, and interest rates, the NPV’s coefficients are
computed using arithmetic operations in determining interval values. Atter determining

the interval coefficients for PNV, the problem is formulated as:

maximize z{ = (cf)Tx
PNV
maximize z}' = (e})T x



minimize z, =c¢lx sediment
maximize z3 = c%' X timber
maximize zy =cfx forage use

subjectto AX<B

x=>0.

where z{ is the lower side of objective | (that is, the lower bound of the interval of the

coefficients of objective 1), and z{* is the upper side of the objective 1.

Among the five objective functions, one (i.e. sediment) is to be minimized.
Following Zimmermann (1978), the fuzzy multi-objective linear programming for this
case study is formulated as a maximum problem described below:

maximize &

subject to
eHTx 24, +(1-k) £,
)T 2§ +(1-k) £
eIx Sk +(1-K) fi
elx2 kg3 +(1-K) i3
el x 2 ko4 +(1-k) fi4
Ax<B
x=0.
where fy; is the optimal or most desirable value for objective i, and fi;is the least

desirable or tolerable value for objective /. To find a solution using this formulation,
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the fy;’sand f};’s must be known. These values may be specified by the decision

maker. Otherwise, these values can be computationally derived using a payoff table as

explained in Mendoza et al. (1993).

3.2. Spatial Consideration

Mathematical analysis is usually included in a forest management project in
order to ensure that the varying interests and concerns of the general public and industry
are being addressed and taken to account. At the most detailed levels of planning, it is
necessary to conduct analysis that incorporates high levels of spatial interaction. This
means that management activity in one area impacts the kind of activity that is
acceptable in neighboring or adjacent areas. Concerns for the size of open areas, habitat
disruption, and fragmentation of a forest are examples of the management
considerations where adjacency restrictions have been utilized.

People everywhere are saying it is high time to shift the focus of forest planning
from economic production of goods and services to sustainable ecosystem management.
In this new paradigm, three classes of forest outputs are recognized: economic
commodities, human services, and the health state of the forest ecosystem itself. The
weighting on these classes has shifted over the past 20 years from near total
preoccupation with producing economic commodities to today’s struggles to assign
higher priority to the health and sustainability of the total forest ecosystem. It is rare to
find an environmentally-related meeting or read a professional journal or even the daily

newspaper without seeing this simple message over and over again. It is easy to say
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forest health should come first but hard to find the balance and also hard to understand
the impact of management actions.

Integrated forest management planning is a rudimentary science owing to our
poor understanding of the impacts that management actions (such as timber harvest )
have on other aspects of the forest. As a result, management objectives, such as
preservation of wildlife habitat or biodiversity, are often not explicitly included in the
harvest schedule optimization process but instead, are incorporated in the planning
process through the series of restrictions to harvest scheduling. Two commonly used
restrictions to harvest scheduling are minimum exclusion periods between adjacent
clear-cuts (Gross and Dykstra 1988) and the maximum clear-cut size restriction
(Hokans 1983). While not directly addressing non-timber concerns. these two
restrictions prevent some timber harvest schedules that are known to have poor
characteristics.

However, when sustainable ecosystem management becomes paramount. then
spatial considerations become crucial. The spatial considerations are usually resolved
by using *“adjacency constraints” which restrict the time that must elapse before
contiguous forested areas of a given maximum size may be harvested. These contiguous
areas are usually referred to as harvest blocks.

Mathematical models involving spatial considerations require integer variables
resulting in potentially larger and more difficult mathematical formulations than large-
scale linear programming forest models such as FORLAN. The more spatial
restrictions included, the more integer variables are needed. Usually the integer form of

linear programming is used to handle these spatial considerations. Due to the difficulty



of solving the integer linear programming problems, some analysts use aggregation
heuristics — ways of combining some similar characteristics into one criterion - in order
to reduce the number of variables (Meneghin et al., 1988, Tores-Rejo et al., 1990).
However, this heuristic method is not always successful especially in large problems.
Some analysts use other mathematical approaches to reduce the total number of
necessary constraints in light of the spatial considerations. The most promising one so
far is that proposed by Murray and Church (1996). They propose methods that could
minimize the number of constraints so that the Mixed Integer Programming (MIP)
method can be used successfully. The main purpose of management considerations is
to impose adjacency constraints in harvesting forest so that there are no two adjacent
units being harvested at the same time. They present a general formulation of an
operational forest planning problem which is based in large part on the work of Nelson
and Brodie (1990). The objective of this formulation is to maximize net present value

while imposing adjacency constraints.

The problem formulation is to maximize z = z z a; X, subjectto
it

(1)Limit harvest of a unit to at most once in planning interval £t —p (o ¢+ p.

I=t+p
in, <1 forall i, andall te [p+l,T—p]
I=t-p

(2)Adjacency restrictions to prevent simultaneous harvest of neighboring units.

x, +x;, <1 forall i,t andforall je N;
(3)Upper and lower bounds on harvest volume in each time period.

@). Y v,x, 2L, foralit
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(®). Y v,x, U, forall t
i
(4)Undiscounted revenue bound requirement in each time period.

2 air X, 2 R, forallt

(5)Integer requirements.
x, =0,1 forall i,z.
Where
{ = index of harvest units (i =12,..., [)

t = index of time periods (t =12,..., T)

( integer decision variables)

1 if unit /is harvested in time ¢
X, =
710 otherwise

a, = discounted revenue generated from harvesting unit  in period ¢

A

ai; = undiscounted revenue generated from harvesting unit { in period ¢

U

, = upper bound on total volume harvested in period ¢

L, = lower bound on total volume harvested in period ¢

R, = lower bound on total undiscounted revenue generated in period ¢

P = harvest exclusion period length

2
I

; = set of indices of all harvest units adjacent to unit {
v; = volume generated from harvesting unit / in period ¢

Many researchers have developed adjacency constraints based on a pairwise

adjacency approach similar to the above, but this often results in an excessive number
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of necessary constraints. To deal with this problem, cliques have been used to create
better constraint formulations. A clique is defined as a set of mutually adjacent units.
That is, each member of a clique is adjacent to the other members of the clique. Figure

2.1 depicts some possible cliques (Murray and Church, 1996).

, 6 10
3 7 " 1
|
2 4 5 ] 9 14 13
@ (b) © (d)

Figure 3.1. Possible adjacency patterns for cliques: (a) pair. (b) triplet. (c) quadruplet.
(d) higher ordered

Simultaneous harvesting of two adjacent units (e.g., unit | and 2 given in figure
2.1.a) is prevented using the following constraint: x; + x5 <1. In the pairwise adjacency

approach, constraints of this form are necessary for each pair of adjacent planning units.
This has been the traditional approach used to prevent simultaneous activities in
adjacent units (Nelson and Brodie, 1990). The unfortunate problem with the pairwise
approach is that it typically requires a large number of constraints to impose all the
necessary adjacency conditions. Fortunately, it is possible to identify higher ordered
cliques which form stronger inequalities than the pairwise clique constraints. Such
higher ordered clique constraints can represent the entire set of adjacency restrictions
with a significantly fewer total number of needed inequalities, compared to the total

number of unique pairwise constraints. For example, in order to prevent adjacent




78

activity in figure 3.1.b, three pairwise constraints can be enforced:
x3+x4<1; x3+x5<l; x4+x5<1. Alternatively, adjacency restrictions for the
three mutually adjacent units can be enforced by using one inequality of the form:
X3+x4+x5<1.

The formal definition of a clique is as follows. In order for a set C to be a

clique, it is required that all potential pairs of harvest units i, j € C be adjacent to each

other. For each clique C, there is a constraint z.\f ;< 1 which imposes the condition
jeC

that at most one unit in the clique can be harvested.
Clique Constraints and Forest Planning
Type [ Approach

Meneghin et. al (1988) develop an approach for identifying quadruplet, triplet,
and pairwise cliques in order to maintain all of the required adjacency or pairwise
conditions, while also attempting to keep the total number of required constraints to a
minimum. They call this set of clique conditions type I constraints. The type [ constraint
identification approach is very fast and resembles an enumerative approach found in the
clique literature (Bron and Kerbosch, 1973). It represents the first practical approach for
utilizing clique conditions within an optimization problem.

Type I approach is as follows. First identify all quadruplet cliques such that at
most two of the compartments in a potential clique are represented in a previously
identified quadruplet clique. After all quadruplets are identified, triplet cliques are
identified by selecting those triplets that do not have more than two of their harvest
units (compartments) in any previously identified quadruplet or tripiet clique. The

remainder of unrepresented adjacency conditions are imposed through pairwise cliques.
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The Type [ approach represents an improvement, because the number of cliques
generated is significantly less than the total number of pairwise restrictions so that it
provides a substantial benefit to the LP model.

Maximal Cliques
Although the type [ approach allows a maximum clique size of four, in many

forest planning problems larger cliques exist. For example, it is possible to have
common boundary that is defined by a point like the five units given in figure 3.1.d.
Also adjacent units need not be defined as those sharing a common edge or point, but
may be defined as those units within a specified distance of each other. Because using
type I is beneficial, a natural approach to deal with larger cliques would be an extension
of this approach (Daust and Nelson. 1994.) To facilitate this, a maximal clique is

defined to be the largest subset of mutually adjacent units. For each harvest unit with
index i, we can determine the maximal clique that inciudes it and a subset of N ; (the

set of units adjacent to unit {.) Following the identification of cliques larger than
quadruplets, the type [ approach could then be utilized to identify the remaining
necessary clique constraints to form a complete adjacency constraint set.

The process described above identifies cliques that do not have a specified
amount of overlap with selected cliques. Murray and Church (1996) propose an
alternative selection approach. Rather than wusing a rule to narrow the
selection/generation of the prospective cliques, they are interested in all alternative
cliques and how they compare to other previously identified cliques. As such, a
prospective clique may be redundant or dominated by one of the already identified
cliques.

This can be demonstrated using the following example of inequalities:
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@ x;+x;+x, <1, () x;+x;+x+x, <L

Constraint (a) is a triplet clique and (b) is a quadruplet clique condition. Inequality (a) is
said to be dominated by inequality (b) since (b) logically implies (a). Thus inequality
(b) need only be used. This rule can be used to modify the type [ approach by selecting
only nondominated cliques. The nondominated approach for clique selection is to begin
by selecting nondominated maximal cliques that are larger than quadruplet, next, non-
dominated quadruplets are selected which impose adjacency conditions that are not yet
represented (nondominated by selected maximal cliques), then triplets that are not
dominated are identified, finally, nondominated pairwise cliques are used to impose the
remaining adjacency conditions.

Methods that provide a reduction in the number of necessary constraints
typically produce constraint forms that are of poor structure. Poor constraint structure
generally results in the inability to solve for the optimal integer solution. Murray and
Church (1996) propose an approach which uses a minimal subset of clique constraints
approach to develop a process that can identify a minimal set of adjacency constraints,
without sacrificing the constraint structure that aids in the solution process.

It is important to recognize that there could be a certain amount of
representational redundancy in a given selected clique set. Even though each clique is
nondominated, there still exists the likelihood that some clique may not be necessary in
order to maintain all of the pairwise adjacency restrictions. Example, consider the

following clique constraints;

Xp+x, +x3+x4 <1

X3t+xs+x; <1
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Neither constraint dominates the other, but the adjacency relationship of unit 3 and 4 is
imposed in both constraints and can be considered redundantly imposed to a certain
extent. That is, other clique constraints may exist that impose the restrictions between
units 3 and 5 and 4 and 5, as an example, so that the second constraint given above

could be eliminated.
A set-covering formulation can be utilized to express the optimization problem
of identifying a minimal subset of nondominated cliques.
Let & =index of potential clique constraints
[ = index of pairwise adjacency conditions
S; = the set of clique constraint 4 that imposes pairwise condition .
Choose the decision variables:

1 if clique constraint & is used to impose adjacency conditions
Vi =

0 otherwise

The set covering problem for clique constraint selection:

Minimize z =y,
k

subject to:
(1) ensure that all pairwise adjacency conditions are represented in the selected set of

clique constraints:

> oy 21 foralli
kES,'

(2) integer requirements y; =0orl forall &

The objective is to minimize the number of clique constraints used. Constraint

(1) requires that each pairwise adjacency condition is imposed at least once in the
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selected set of clique constraints. Constraint (2) imposes integer restrictions on the
decision variables. Given a clique set, for example a nondominated clique set, we can
identify a minimal subset of these cliques which maintain all pairwise restrictions by
using this set-covering approach.

Nonlinear techniques
Solving integer linear programming problems using the simplex algerithm is quite

difficult. Therefore, some analysts use other algorithms to solve these problems.
Clements and Jamnick (1990) use Monte Carlo integer programming (MCIP) to
generate short-term (25-year), spatially feasible timber harvest plans for a New
Brunswick Crown license. A typical MCIP algorithm begins by generating random
solutions to a mixed-integer programming problem. These solutions are tested against
a set of spatial and temporal constraints, and solutions meeting all of the constraints are
designated feasible. Each feasible solution is evaluated relative to an objective
function. After a large number of feasible solutions have been identified. the solutions
best satisfying the objective function are selected for further analysis. This procedure
does not guarantee finding the optimal solution, but it does quickly generate several
near-optimal ones. [t also has the advantage of being able to handle large. complex
problems that are too large or complex to solve, in reasonable amounts of time.
Jammick, and Walter (1991) used MCIP to determine timber harvest volumes in
the presence of adjacency constraints. Their study presumed that a particular harvest
blocking pattern has been established. Given this pattern, the objectives is to determine
a near optimal integer solution. They present an analysis of twelve alternative harvest
blocking patterns for a small New Brunswick forest. For this particular forest, the

difference between blocking patterns are relatively small and forest managers have
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considerable flexibility in choosing a blocking pattern which best meets operational
criteria without sacrificing timber harvest volume.

Lockwood and Moore (1993) used the nonlinear optimization method called
simulated annealing (SA) to generate harvest scheduling solutions of a model with
many spatial constraints, especially the requirement to comply with exclusion periods
and maximum clear-cut size restrictions. SA is a stochastic optimization technique,
which has been used successfully to solve large combinatorial optimization problems.
An attractive feature of the SA procedure is that it allows nonlinear and discontinuous
constraints and objectives in an optimization framework.

Linear programming has become one of the most common analysis techniques
in renewable natural resource management and planning. The intrinsic linearity of the
approach is clearly a limitation, but the exact nature of this limitation is rather subtle.
Linear programming can be used to piecewise approximate highly nonlinear
relationship between inputs and outputs. For example, if different management
prescriptions are included that involve different levels of intensity of some input’s
utilization, the different A-matrix coefficients under these different management
prescriptions can reflect highly nonlinear response to changing input intensity. This
linearity assumption of the LP do cause some problems, however. The most important
of these problems is that of accounting for the impact of the spatial configuration of a
management action on outputs of interest. If management prescriptions are based on a
per acre basis, the LP determines the number of acres to which each management

prescription applies. The problem is, the (nonlinear) response to different sizes and
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shapes of the management action is lost in a fixed per-acre production coefficient.
Considering these concerns, many authors have tried to resolve them.

Clement et al. (1990) and Nelson and Finn (1991) have detined the management
variables in terms of timber stand that are treated discretely and are preserved as
discrete units in solution. The spatial considerations are then typically viewed in terms
of nonadjacency constraints over time constraints that limit the size of contiguous
cutover areas at any given time. Considerable progress has been made in solving the
problem viewed this way, but the approach is limited by accepting and preserving the
initial stand definitions. Also, this approach avoids *‘spatial anomalies™ but it does not
account for the nonlinear response of many forest outputs (such as wildlife and fish.
water, esthetics, etc.) to different sizes, shapes, and arrangement actions. It would be
difficult to argue that it finds “‘spatial optimal™ solutions for all outputs of concern (as
opposed to just timber). Thinking that this approach does not give “‘spatial optimal™
solution, Hof and Joyce have proposed several nonlinear approaches to land allocation
modeling that optimize spatial layout, per se, for a single time period and that have the
property that the number of choice variables increases linearly with the level of spatial
resolution. Their paper focuses mainly on wildlife habitat as the primary non-timber
spatial concern. Wildlife habitat requirements include factors related to food, shelter,
and shelter or cover needed. They address a subset of these needs that are related to
spatial configuration and assume that the following criteria are important in the spatial
layout of wildlife habitat and vary according to the species considered: the amount of
edge, the juxtaposition of different habitat types for cover versus feeding needs, the

distance between favorable habitats, and the minimum size of a patch of habitat. They
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propose two nonlinear models: one that accounts for spatial patterns with a cellular grid,
and an alternative that uses geometric shapes.

What they concluded from their study is that this nonlinear problem is not easy
to solve even for the simple case considered and is not realistic. Consequently, this
approach is not recommended as a method to optimize spatial layout but they propose
instead a different way of looking at the problem of spatially specified forest

management.

3.3. Road construction

It takes more than two centuries for a forest to recover naturally from the
damage caused by harvesting and revert to a usetul softwood forest again (Minamikata.
1984). In contrast the regeneration periods if planned artificial methods are used can be
less than seventy —five years. However, in comparison with natural regeneration,
artificial regeneration requires lots of labor for planting, weeding, pruning, and
thinning. Generally speaking, the greater the labor required in stand management and
the higher the labor cost, the more economically significant will be the road network in
the forest. In these cases, the forest agency therefore tends to use the roads in the forest
area as much as possible so as to give minimum cost of operation. On the other hand.
the influence of forest road construction on the ecosystem or natural environment of the
forest may be very important. For example, opening up forest roads occasionally causes
landslides, sometimes on a large scale.

To accommodate the economic affects and various impacts of road construction,

Minamikata (1984) proposed a road planning system based on a mesh analysis method.
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Using this method, the forest road is extended section by section. Extensions consist of
road along the sides of the grid or along a diagonal, taking into account the direction
along which the route has already been laid, and extension directions with the highest
economic effect. The procedure is then repeated from the new starting point.

Road construction in forest management is also very important because by
constructing a road network in the forest properly, we can minimize the cost of
harvesting or other activities and also minimize the influence of forest road construction
on the forest environment. Carson et al. (1978) showed that a transportation system of
forest roads may be described as a network, a collection of interconnected segments or
links. Each link describes a unique path between two adjacent nodes. A node may be as
departure or destination of some path through network such a landing or mill. Nodes
may also be road intersections, viewpoints, scaling stations, and bridges. The unit of
measure selected to judge a path’s length can be anything, such as hauling cost, distance
or time, construction cost. maintenance cost, or even a measure of scenic or esthetic
value along the link. Carson et al. produced a program that can find the shortest path
through a network from a specified point of departure utilizing the *“Moore algorithm” .
However this program is limited only to 60 nodes and 255 links with no more than 8
links meeting at a single node.

Planning forest road networks in steep mountain terrain is very difficult to
achieve using analytic methods. Kouchi (1966) proposed a forest road planning
technique using topological considerations in conjunction with analytic methods.

Typical objectives of planning a forest road network are to minimize the length

of the roads in the network or to minimize the cost. The objective considered by Kouchi
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is planning a road network with shortest possible length. The method of Kouchi starts
by picking out all places where the road must pass through without actually drawing
any road lines. If these so-called passing points can be picked successfully, then the job
is to complete the network by connecting them - aiming at the shortest total road length
at minimum total cost.

A typical system of logging and transportation is to gather the cut trees with or
without branches in some open area - called a landing- where log making and sorting
take place. The timber is transported directly from this landing to markets or factories.
This method is agreed to be ideal in many logging areas from the stand point of cost
management. Using the Ashu Forest in Japan as a study case. Kouchi decided that the
ideal system is to have one step to the landing and one step to market. and that the total
road length should be minimized.

To realize the idea above, the collection areas selected must have enough width
and flatness for log making operation and must not result in delays in the delivery of
the timbers. Therefore, at first, a large number of such places were chosen all over the
forest on a map of 1/10000 scale. Then the criterion applied was that the gradient in a
circle of 1 cm diameter on the map was less than 3/10. The number of the places
selected was about 100.

The next job was to select a minimal number of these locations sufficient to
carry out successfully the one step logging to landing stage. For this purpose, we can
utilize the concept of minimum external stable set from graph theory. It is assumed that
some logging level optimal for Ashu Forest has been decided and that some passing

points have already been decided. Here, “logging level” is a phrase Kouchi used to
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express what kind of logging method is used and to what extent, for example, tractor
skidding within 30 minutes cycle time, cable way of one span within 1000m, and so on.
Then if any timber at any location in the forest can be gathered to some of the selected
passing points, using the decided logging level he call such set of collection points an
“external stable set”. An external stable set with a minimum number of points is called a
“minimum external stable set *“. In the study of Kouchi, a cable way of one span within
1000m was taken uniformly for all points, as the logging level. And he drew the sphere
of logging from each preliminary collection point on the same map.

The algorithm for extracting a minimum external stable set out of the above

preliminary selected points is illustrated by the following.

Fig. 3.3. Logging area of each landing
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Assume A, B, C, D on figure 2.3 are the points initially selected. Lines on the map
representing the sphere of logging from each point divide the forest into many small
domains, In figure 1 the total area is divided into 12 domains. Timber in the domain |
can be gathered to A or B, and so it is represented as (A+B). The domain 2 belongs only
to B, so it is denoted by B, on so on. Any domain needs to belong to some of the points
for our purpose, so we represent that as ().

1 2 3 4 5 6 7 8 9 10 112
(A+B)B(B+C)(A+B+C)(A+C)A(B+D)(B+C+D)(A+B+C+D)(A+C+D)(A+D)(C+D)
(1)

Logical meaning of this is (A+B) AND B AND (B+C) AND ...... AND (C+D).

In the next step shrink the number of points by using the law of absorption
which is as follows; AX — A if A is entirely included in X, for example, A(A+B+C) —
A. This reduced (1) to (2),
AB(C+D) )
[n the next step expand (2) to get (3) which is the solution
ABC+ABD (3
For this to be true, either ABC has to be true or ABD. Hence, the minimal number is 3
and we have two choices ABC or ABD, and the choice might be the one which could be
connected by the shorter road line.
Decision of the forest road network

There will be a lot of discussion about what kind of network should be chosen,

but here our only aim is that the total road length should be minimal. The algorithm for
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connecting all the points by the roads with shortest total length makes use of the
concept of “tree” from the graph theory. It is assumed that connecting roads never cross
each other except at the passing points and the algorithm is as follows.
a) Choose the shortest one out of the road-lines connecting any two of the points
b) Delete the road-lines already chosen and the ones that will make cycles with the
formers. And after that, choose the shortest just like in a).

c) Iterate b)’s step until all the points will be connected by chosen lines.
3.4. Forest Products

Foresters and other executives engaged in the forest products industries are
constantly faced with the problem of how to allocate their resources in a manner that
will maximize some utility, usually profit. In making these decisions, they usually think
in terms of improved manufacturing methods. One of the most difficult and costly
components in the process of converting the forest crop into useful products is the
production of logs. Once the tree is on the ground, a bucking crew begins to make some
fundamental decisions that are as important as any that are made in the total process of
tree conservation. The loggers, with their axes and chainsaws, determine what portions
of the tree to allocate to lumber production, veneer, and pulp. Further, they influence
greatly the length of lumber and veneer or plywood to be produced, and ultimately
profits. The log makers are constantly looking for better methods to assist them in their
effort to maximize returns.

Pnevmaticos and Mann (1972) use dynamic programming to produce a pattern
of tree bucking (sawing felled trees into shorter lengths). The problem is formally

defined as follows: Given a stem (fig. 2.4) of length L, larger diameter D, and smaller
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diameter d, it is desired to cut it into logs in such a way so that the total return from the
stem is maximized. The objective is to maximize the returns from the tree by finding the
number of logs to be cut, their length and diameter, and the location of the cuts. The
constraints are: the total length of the logs must be equal to or less than the initial stem
length, the diameters of any log must be within the limits of the diameters of the
remaining stem, and both log length and diameter must be within the limits specified by

management.

N
-
\4

_i_@ ; | "

Stage n Stage |

Figure 2.4. Relation of dynamic programming terminology to tree bucking

For this type of decision process, dynamic programming (DP) is an appropriate
technique for finding an optimal cutting policy. Some necessary parameters are as
follows:

L = stem length in feet

D= large diameter of stem inside bark in feet

d = small diameter of stem inside bark in feet

k = minimum length of log, in feet, acceptable to management

m = maximum length of log, in feet, acceptable to management



Costs and revenue in this operation are c(r,u), the cost of making a cut of diameter «

for alog of length r, and v, (r,s,t), the value of a log of length r, large diameter s,

small diameter, and grade g .

Let pg(r,s,t)be the probability that a log of length r, large diameter s, and

small diameter ¢, is of grade g. Define f;(L,0,d) as the maximum expected value of
a stem of length L, large diameter D, and small diameter d with / stages remaining in
the decision process. We assume f,(L,D,d)=0 for all valuesof L. D, and d . Then.

assuming that cutting begins at the large end of the stem and proceeds toward the end

with the smaller diameter, we have

S velik. 0.0 k(B4 )a |pg ik, + k(24 )a

fulL,D,d) = max{ ¢

I -l + @t [ koD - k(4 ) ]

where ; is the decision variable indicating the number of minimum log lengths to

remove from the stem with a single cut. The decision variable j is constrained as
follows: 1< j <min @,%D where [m/k] indicates the greatest integer contained in

m/ k. This constraint on ; is imposed to insure that at least a single log of minimum

length is removed from the stem, but no more is removed than the maximum allowable
log length.

Bucking decisions should include consideration of stem taper, stem length. and
the log quality , as well as capability and capacity of manufacturing machinery and
market demands for various end-use products. If the stem can be bucked so that it meets

the above considerations, optimal revenue can be produced. An approach that takes into
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account simultaneously the limitations of the forest resource in terms of quality and
quantities and the market requirement for end-use products seems superior. Eng, (1986)
tries to accommodate those considerations in order to prescribe appropriate bucking

patterns.
Mathematical Model of Eng,
The DP sub-problem, bucking the stem, is used to generate activities for the
Linear Programming (LP), so that the bucking strategies can reflect properly the
opportunity cost resulting from critical constraints on demands and (or) resources.
Assume that the forest resource has been classified into J tree classes, each
defined by size and quality of the stems found in one or more stands. Let X; denote the

number of true stems of class j bucked by pattern .

Define r;as the retun from bucking a stem of class j by pattern / and Ay, as the

associated volume of log type &, k=/.2....K.

Let S ; be the number of stems of class j available in the wood resource, and b, the

required demand in the given time period for log type & The objective is to determine

the optimal X; value so as to
maximize Z z r,-jX if subject to the constraints [1]
i g

zzanXy &, =2) bk, k =1,2,...,K [2]
And the tree supply constraints

> X; <S80 =120, (3]
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X; 20 (4]

Note that X i is an integer but X if values are large for most practical

application so that the integer constraint can be dropped and the problem reverts to a
regular LP.

Note that each column or activity in this LP problem represents a possible

bucking pattern for a given tree class. To determine the return rij and parameters

Ay k=12,..,Kcolumn ij, we use a streamlined dynamic programming
formulation for finding the optimal bucking pattern. Consider a stem of class j. For
large scale practical applications, the dimensions of a stem are approximated by a taper
equation as a function of tree species, forest locality, age, etc. , and either height of stem
or its diameter at breast height over bark(dbhob). Using height as the index for site.
consider a section of a stem of length L, measured from the base of the stem. with

0< L < Ly, j. where Ly, ; is the total usable length of the stem. We wish to buck
that section optimally into shorter logs so as to maximize a return function that reflects
the marketable values of those logs.

Let y, denote the length of a short log of type & cut a distance L — y,. from the

base of the stem and r(y;,L)represent its associated end-use product value then the

following recursive relation results.

f(L)= t}:aximmn(r(yk,L)+f(L—_vk))
i€¥(L) [5]



for 0 < L < Ly, jand with f{0)=0 and where Y(L) is the set of feasible short logs at L
for all K end-use products. This set depends on factors such as minimum and maximum
length, minimum small-end diameter, and permissible defects, as dictated by marketing
considerations. The optimization is over all log types K and all short log lengths y,

feasible at L. The value of a short log from a stem of tree class / can be made
depending on both location and length. For instance. sawlogs cut from large diameter
sections of the stem have a higher value per unit volume than those coming from
smaller diameter sections. Similarly . the unit volume value of long poles is higher than

that of short poles of the same large end diameter.
Making r(y;,L) location dependent also allows the formulation to

accommodate any stem defects of tree class j. This is achieved by repricing any

potentially defective short logs. Assume a stem contains a defect from

location/; to [ & » Which render that portion unsuitable for inclusion in short log of

type k. Then any short log of type k cut from the stem from location L to L — y,.

where position [/ ,/; ] is contained in [L,L — y ], is assigned a negative r( VioL)

value. As a result, the optimal DP solution will never include such short logs.

The output of the DP bucking problem for each tree class j consists ot the vector

of log type volumes. {a,-jl,a,-jz,...,a,jk}, and the associated return per stem

T =F(L

muj)'
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Solution Method

The output of the DP recursion becomes the input to the LP problem. The
Dantzig-Wolfe decomposition algorithm allows us to approach the global optimum
successively. This algorithm can be viewed as a notional dialogue between a forest
resource planner and buckers. The planner’s job is to coordinate bucking patterns
applied to the forest resource so as to meet end-use product demands, while maximizing
the total value of the forest resource in terms of log type production. The buckers are
responsible for bucking all stems in a given tree class. Each party is viewed as a profit-
maximizing unit. Starting with an initial set of bucking patterns, the planner finds a
provisional operating plan in the form of a subset of bucking patterns to match demand
and supply constraints. The planner then assesses the internal penalties and premiums
associated with the demand and supply constraints for that solution. The use of any
stems from a tree class in tight supply is penalized to discourage their use. Similarly,
any log types with upper demand limits fully met are penalized to discourage their
production, while those with lower demand limits just met will be given a premium to
encourage their production. Given the original log type prices and these penalties and
premiums, the buckers, in turn, attempt to generate new bucking patterns that maximize
their return. They do so without regard for the feasibility of the planner’s overall
allocation problem. These new bucking patterns are reported back to the planner, who
adds them to the previous set of alternative bucking patterns to find a new operating
plan and a new set of internal penalties and premiums. This iterative process continues

until the buckers are unable to generate new bucking patterns that are profitable at the
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prevailing set of penalties and premiums. At this point the process terminates. The
globally optimal solution has been found.

We now outline how the above process translates into an algorithm. The
algorithm is initiated by finding at least one bucking pattern for each tree class using
recursion [5]. It would also be useful, though not necessary, to generate additional
patterns for some tree classes. This will facilitate finding an initial feasible solution to
the LP on the first iteration. Assume now that we have just solved the LP at iteration
n2l.

Denote by n; the shadow price of the demand constraint for log type k. This is the
negative of the premium or penalty per unit volume referred to above. The r(y;.L)
values to be used in [5] are now adjusted to retlect the shadow prices. Say. for
simplicity py . is the unit market value of log type k. Then. the new adjusted unit price
becomes p; ~m; . Let i€ be the shadow price for the supply constraint of tree class j.
A new bucking pattern for tree class / is profitable if

F(LMAX ;) 21fj [6]

Hence, at each iteration, we apply recursion [5] to find a new bucking pattern for each
tree class using the newly adjusted log type prices. Those that satisfy condition [6] are
added as new activities to the LP. The LP is then resolved. resulting in new shadow
prices and the process is repeated. It stops when no tree class can generate a new

bucking pattern that satisfies [6]. At this point, as shown in End.(1982), the optimal

solution has been found.



Chapter 4

Genetic Algorithms

4.1. Introduction

Any abstract task to be accomplished can be thought of as solving a problem,
which, in turn, can be perceived as a search through a space of potential solutions. Since
we want the best solution, we can view this task as an optimization process. For
continuous and simple solution spaces, classical exhaustive methods usually suffice; for
more complicated spaces special techniques must be employed. Genetic Algorithms
(GAs) are among these special techniques. They are stochastic algorithms whose search
methods model some natural phenomena: genetic inheritance and Darwinian natural
selection or survival of the fittest.

In the biological world. the process of natural selection is thought to be a major
control over evolution. Organisms most suited for their environment tend to live long
enough to reproduce and are more successful in their reproduction, whereas less-suited
organisms often die before producing young or produce tewer and/or weaker young. A
GA is an artificial life simulation method that mimics the process of evolution by
creating an artificial world, populated with pseudo-organisms governed by some
measures of survival and reproduction. The given measures of survival and reproductive
success can be chosen to ensure that this very crude form of evolution encourages the
pseudo-organisms to evolve to a specific goal.

GAs have been successfully applied to optimization problems such as wire
routing, scheduling, adaptive control, game playing, cognitive modeling, transportation

problems, traveling salesman problems, and optimal control problems. However, De
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Jong (1985) wamed against perceiving GAs as a completely reliable optimization tool:
“because of the historical focus and emphasis on function optimization applications, it
is easy to fall into the trap of perceiving GAs themselves as optimization algorithms and
then being surprised and/or disappointed when they fail to find an ‘obvious’ optimum in
a particular search space.” He suggests that a way to avoid this perceptual trap is to
think of GAs as a simulation of a natural process. As such they embody the goals and
purposes of that natural process. On the other hand, optimization is a major field of
GA’s applicability.

4.2. General Structure of Genetic Algorithms

GAs were formally introduced in the United States in the 1970s by John Holland
at the University of Michigan (Holland, 1975). The continuing price/performance
improvements of computational systems have made them attractive for some types of
optimization. In particular, genetic algorithms work very well on mixed (continuous
and discrete), combinatorial problems. They are less susceptible to getting 'stuck’ at
local optima than gradient search methods. But they tend to be computationally
expensive.

GAs belong to the class of stochastic search methods (other stochastic search
methods include simulated annealing, and some forms of branch and bound (Goldberg,
1989)). Whereas most stochastic search methods operate on a single solution to the
problem at hand, genetic algorithms operate on a population of solutions. This
population evolves, from generation to generation, into a population of better solutions

to the problem.
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The general structure of a typical GA is as follows. First, solutions to a problem
must be encoded in a structure that can be stored in the computer. Each encoded
solution is called a chromosome. An initial population of chromosomes is created.
These initial chromosomes can be chosen at random or by using information that is at
hand. Genetic operators, called recombination (or crossover) and mutation are applied
to the individuals in the population to generate new individuals. Some selection criteria
is used to choose fitter individuals for the next generation. Fitness is usually determined
by an objective function value.

Encoding of solutions (chromosomes) can be done in many ways. Traditionally,
GAs use strings of bits to represent solutions. Holland worked primarily with strings of
bits, but arrays, trees, lists, or any other object can be used. The key thing to keep in
mind is that the genetic machinery will manipulate a finite representation ot solutions,
not the solutions themselves. Of course, mutation, crossover, and selection will be
defined differently depending on the representation chosen.

Selection is some means or procedure for discriminating good solutions from
bad solutions. This can be as simple as having a human intuitively choose better
solutions over worse solutions, or it can be an elaborate computer simulation or model
that helps determine what “‘good™ means. But the idea is that something must determine
a solution’s relative fitness. This will be used by the genetic algorithm to guide the
evolution of future generations. Simply stated, selection allocates a greater likelihood of
survival to better individuals — this is the survival-of-the-fittest mechanism we impose

on our solution.
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Selection can be used in two different ways. On the one hand, it can determine
how individuals are chosen for mating by recombination and mutation. On the other, it
can be used to choose, among the parents and children, those individuals that will
survive into the next generation. Either way, if we use a selection method that picks
only the best individual, then the population will quickly converge to that individual. So
the selector should be biased toward better individuals, but should also pick some that
aren't quite as good (but hopefully have some good genetic material in them).

Some of the more common methods of selection include the following. In
roulette wheel selection, the likelihood of picking an individual is proportional to the
individual's fitness. Thus a new population is selected with respect to the probability
distribution based on fitness value. See section 4.3 for a detailed example. In a
tournament selection a number of individuals are picked using roulette wheel selection,
then the best of these are chosen for mating. In rank selection the best individuals are
picked everytime. Recombination (crossover) is a genetic operator that combines
bits and pieces of parental solutions to form, new, possibly better offspring. There are
many ways of accomplishing this, but the primary idea to keep in mind is that the
offspring under recombination will not be identical to any particular parent and will
instead combine parental traits in a novel manner. Typically crossover is defined so that
two individuals (the parents) combine to produce two more individuals (the children).
But you can define asexual crossover or single-child crossover as well. The primary
purpose of the crossover operator is to get genetic material from the previous generation

to the subsequent generation. By itself, recombination is not all that interesting an
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operator, because a population of individuals processed under repeated recombination
alone will undergo what amounts to a shuffling of extant traits.

The mutation operator introduces a certain amount of randomness to the search.
It can help the search find solutions that crossover alone might not encounter. Mutation
acts by simply modifying a single individual. There are many variations of mutation,
but the main idea is that the offspring be identical to the parental individual except that
one or more changes is made to an individual’s trait or traits by the mutation operator.
By itself mutation represents a random walk in the neighborhood of a particular
solution. [f done repeatedly over a population of individuals, we might expect the
resulting population to be indistinguishable from one created at random.

Two of the most common genetic algorithm implementations are 'simple' and
'steady state’. The simple genetic algorithm is a generational algorithm in which the
entire population is replaced at each generation. In the steady state genetic algorithm,
only a few individuals are replaced at each 'generation’. This type of replacement is
often referred to as overlapping populations.

In recent years, genetic algorithms have taken many forms, and in some cases
bear little resemblance to Holland’s original formulation. Researchers have
experimented with different types of representations, different crossover and mutation
operators, and different approaches to reproduction and selection. However, all these
methods have a family resemblance in that they take some inspiration from biological

evolution and from Holland’s original GA.
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4.3. Example

In this section, one implementation of a GA (Michalewicz, 1992) is discussed by
way of a simple example. It is a steady state GA, using strings of bits to encode real
numbers, and a roulette wheel selection method.

Suppose the optimum is required of a simple function of one variable, defined as

f(x)=xsin(lOnx)+1. The problem is to find x from the range [-1, 2] which
maximizes the function f,i.e, to find xg such that f(xg) 2 f(x),forall xe[-1,2].

The approximate solution can be found analytically, for comparison purposes, as
follows.

f'(x) = sin(10mx) + 10rxcos(10rx) = 0 when tan(10m.x) = —10mx.
This has solutions of the form.

2i-1

X =5 +g;,fori=12,...
X0 = 0
x; = 2:')'[ —g;,fori=—-1,"2..,
where terms €;s represent decreasing sequences of real numbers (for i=1,2,.... and

{ = -1,-2,...) approaching zero.
Note also that the function f reaches its local maxima for x; if / is an odd
integer, and its local minima for x; if i is an even integer.

Since the domain of the problem is xe[-1,2], the function reaches its

37

maximum for xj9 =3 0

+€19 =1.85+€gj9 where f(x;9) is slightly larger than

f(1.85) = 1.85.sin(18n +5)+1.0=2.85
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Now a genetic algorithm is used to solve the above problem, i.e., to maximize
the function f.
Representation

We use a binary vector as a chromosome to represent real values of the variable
x. The length of the vector depends on the required precision. Suppose that a solution
is required to be accurate to six decimal places. Since the domain of the variable xhas
length 3, the precision requirement implies that the range [-1,2] should be divided into

at least (3x106) = 3000000 equal size ranges. The required number of bits (denoted by
m ) must satisfy m = smallest integer larger than log,(3000000),

2m-1 < 3000000 < 2m —|

2097152 = 221 < 3000000 < 222 = 4194304 .
This means that 22 bits are required in the binary vector (chromosome):
Initial Population
The initialization process is to create a population of chromosomes, where
each chromosome is a binary vector of 22 randomly chosen bits.
Evaluation function

Since the evaluation function f(x) is real valued, the binary vector v must first
be decoded. The mapping from a binary string {bsb2g---b3b288) into a real number

x from the range [-1.2] is straightforward and is completed in two steps:

e convert the binary string {bybsg...b3b2byby) from the base 2 to base 10:



2
({b21B29--b3brbi b)) =[Zbi-2i1 =x
i=0

0

* find a corresponding real number x in the range [-1,2]

x=-1L0+x.

22

The evaluation function eva! for binary vectors v is equivalent to the function

eval(v) = f(x),
where the chromosome v represents the real value x.
As noted earlier, the evaluation function plays the role of the environment,

rating potential solutions in terms of their fitness. For example, three chromosomes:

vy = (1000101110110101000111),

v, = (0000001110000000010000),

vy=(1110000000111111000101),
Correspond to values x; =0.637197, x;=-0.958973, and x3=1.6278388.
respectively. Consequently, the evaluation function would rate them as follows:

eval(v) = f(x) =1.586345

eval(vy) = f(xy)=0.078878

eval(vy) = f(x3) = 2250650
Clearly, the chromosome v; is the best of the three chromosomes, since its evaluation

returns the highest value. On the other hand, v, has a very low fitness.



106

Selection
A roulette wheel approach is adopted as the selection procedure. The roulette

wheel can be constructed as follows;

1. Calculate the fitness value eval(v; ) for each v, :

eval(vi )= f(x), k=12,..., pop _size

2. Calculate the total fitness for the population:
pop __size
F= Zeval(vk)
k=1
3. Calculate selection probability p; for each chromosome vy :
= evalf(,v") k=1.2...., pop _size
4. Calculate cumulative probability g for each chromosome vy :

k
Qk=2pj~ k=12,.... pop _size.
=1

The selection process begins by spinning the roulette wheel pop _size times: each
time, a single chromosome is selected for a new population in the following way:
Step 1. Generate a random number » from the range [0,1].

Step 2. If r <gq, then select the first chromosome v;; otherwise, select the Ath
chromosome v (2 < k < pop _size) suchthat q;_ <r<g.

Genetic operators
After pop_size vectors (not all different) are chosen, some of them will be
altered. This alteration phase uses two classical genetic operators: mutation and

Crossover.
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Mutation is an operation that alters a gene (i.e. a position in the
chromosome). In binary representation, a mutation is simply a bit flip. As an example, if

the fifth gene from chromosome v; is selected for a mutation, the current value 0 is
flipped into a 1 yielding

vy = (11101000001 11111000101).
This chromosome represents the value x3 = 1.721638 and f(x3)= -0.082257which is
a significant decrease of the fitness value of the chromosome v;. On the other hand, if

the 10" gene of chromosome vy was selected for mutation, then
v3=(1110000001111111000101). The corresponding real value is xj= 1.630818. and

f(x3)= 2.343555 represent an improvement in fitness over the original value of
f(x3)=2.250650.

Mutation occurs with a probability equal to the mutation rate, p,,. If, for
example, p,, =0.01, it is probable that 1% of the total number of genes in the population
would undergo mutation. For each gene in a given chromosome, a random number
r € [0,1] is chosen. If r < p,,, that gene is mutated (i.e. the bit is flipped). Otherwise it
is not.

After mutation is performed on the selected chromosomes, crossover is
performed. This combines the features of two parent chromosomes to form two similar

offspring by swapping corresponding segments of the parents. For each pair of

chromosomes a random integer number pos is generated from the range [1..m-1],

where m is the total length (number of bits) in a chromosome. The number pos
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indicates the position of the crossing points. The chromosomes (&b posb pos+1-+-bn )

and (€|€3-..C posC pos+1---Cm) are replaced by their offspring (0iBy-..bposC pos+1---¢m) and
(€1€2--Cposbpos+1-+-bm) -

For example, consider applying the crossover operator to chromosomes v, and
v . First randomly select the crossover point. Assume it is selected after the 5" gene.

v4 = (00000/01110000000010000),

vy = (11100}00000111111000101),

The two resulting offspring are

v4’=(00000[00000111111000101),
v3'=(11100]01110000000010000).
These resulting offspring fitness values are:
f(v2") = f(-0.998113) =0.940865,
S(v3") = £(1.666028) = 2.459245 ., which are better than both of each parent.

In each case, the new vector is fitter than the old one.

Crossover occurs with a probability ot p,.. If. for example, p.=0.25, it is

probable that 25% of chromosomes will undergo the crossover operation. For each

chromosome, a random number r € [0,1] is generated. If r<p,., that chromosome is

selected for crossover. From this list of selected chromosomes, pairs are chosen at

random for crossover, as described above.
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Parameters

For this particular problem the following parameters have been used: population
size pop_size = 50, probability of crossover p.= 0.25, probability of mutation
Pm=0.01. The following section presents some experimental results for such a genetic
system.

Experimental resuits

In Table 4.1 the generation number and function value are provided for which
an improvement in the evaluation function was noted. The best chromosome after 150
generations was in generation 145 where vy, = (1111001101000100000101),
corresponding to  Xpa = 1.850773 and f(Xpac ) =2.85. This is very close to the

approximation found previcusly by analysis.



Table 4.1 . Results of 150 generations

Generation number

Evaluation function

1

1.441942

2.250003

[RS]
[S]

250283

I~
o

250284

2.250363

2.328077

2.344251

2.345087

2.738930

2.849246

2.850217

2.850227

4.4. Genetic Algorithms for Multiobjective Optimization
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The GAs discussed in the previous section are designed to optimize single-

objective functions. In the real world, however, typical optimization problems have

multiple objectives, as discussed in section 3.1.1. GAs can be easily modified to solve

multiobjective problems.

Muitiobjective optimization seeks to optimize the components of a vector-

valued function. Unlike single objective optimization, the solution to this problem is not
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a single point, but a family of points known as the Pareto-optimal set as discussed in
Chapter 2 section 2.3. Each point in this surface is optimal in the sense that no
improvement can be achieved in one cost vector component that does not lead to
degradation in at least one of the remaining components. That is, the solution set
represents the best compromises among all the objectives.

The main difference between GAs for single objective optimization and for
multiobjective optimization is that in single objective optimization, fitness can easily be
defined by the value of the objective function. [n multiobjective optimization, however,
fitness must be based on all objective functions. Since GAs maintain a population of
solutions they can search for many non-dominated solutions in parallel. Thus the
concept of Pareto-optimality can be used to define fitness. The idea then is that an
initial population evolves into a population that is representative of the Pareto-optimal
set. Two such approaches will be discussed below -~ Vector Evaluated Genetic
Algorithm (VEGA) (Schafter, 1985) and Multi-Objective Genetic Algorithm (MOGA)
(Fonceca and Fleming, 1993).

Being aware of the potential GAs could have in multiobjective optimization.
Schafter (1985) proposed an extension of simple GAs to accommodate vector-value
fitness measures, which he called a VEGA. A simple vector version of the survival of
the fittest process was implemented. The selection step was modified so that, at each
generation, a number of sub-populations was generated by performing proportional
selection according to each objective function in turn. Thus, for a problem with

q objectives and population of size NV, selection is used to generate g sub-populations

of size %. These would then be shuffled together to obtain a new population of size



N, in order for the algorithm to proceed with the application of crossover and mutation
in the usual way.

However, as noted by Richardson et al. (1989), shuffling all the individuals in
the sub-populations together to obtain the new population is equivalent to linearly
combining the fitness vector components to obtain a single-valued fitness function. The
weighting coefficients, however, depend on the current population. This means that, in
the general case, not only will two non-dominated individuals be sampled at different
rates, but also, in the case of a concave trade-off surface, the population will tend to
split into different species, each of them particularly strong in one of the objectives.
Schaffer anticipated this property of VEGA and called it speciation. Speciation is
undesirable in that it is opposed to the aim of finding a compromise solution.

To avoid combining objectives in any way requires a different approach to
selection. Fonseca and Fleming (1993) proposed a technique which they called a
MOGA in which fitness is based on ranking.

Multiobjective Pareto Ranking

Ranking of solutions according to Pareto-optimality can be done as tollows.

Consider an individual x; at generation ¢+ which is dominated by p,-(') individuals in

the current population. Its current position in the individuals’ rank can be given by

rank (x;,2)=1+ plg[) .
Thus, all non-dominated individuals are assigned the best ranking, 1. The fitness of an
individual can then be assigned, for example, as the reciprocal of the rank.

To clarify the concept of Pareto-ranking, consider the following example:

Maximize: fj =x, fr=y
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Subjectto: x2+y2 <l and 0<x, y<I.
The Pareto front is then a quarter arc of the circle x2+y2 =1 at 0<x, v<Il. In

Fig.4.1 the ranking of several points is shown.

Recently, Fonseca et al. (1995) published a survey of evolutionary algorithms
for multiobjective optimization. They identified several open research issues, and
provided an overview of two categories of techniques - (those which combine many
criteria into one objective function and return a single value, and those, which are based

on Pareto-optimality and return a set of values).
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Fig. 4.1. Pareto ranking method



Chapter 5

Some examples of Multiobjective Operations Research Solutions

to Forestry Problem

I[n chapter 3 various techniques used to solved multiobjective problems in
forestry management have been discussed. The most popular one is Goal Programming
(GP). After a thorough search of the literature, it appears that a Multiobjective Genetic
Algorithm (MOGA) has not yet been used to solve forestry problems. As discussed in
chapter 4, MOGAs can search for the Pareto-optimal set, making them potentially
useful for resource allocation in forestry management where there are often multiple
conflicting objectives. A MOGA would enable decision makers to choose one solution,
suitable to the current situation, out of many alternatives in the Pareto-optimal set.

In this chapter two forestry problems with many conflicting objectives are
solved using a MOGA and compared with the GP solution.

In the first problem, decision makers have decided in advance the target level of
each objective that they want to achieve and they are satisfied if their target levels are
met. In the second problem, the decision makers don’t specify any target level for the
goals. Instead they want to obtain the best possible solution.

5.1. A Multiobjective Forestry Problem with specified target levels of goals.

The first type of problem solved is a multiobjective forestry problem where the
decision makers specify the target levels of their goals. The decision makers must also
give their preferences (priorities) for the cases where not all goals are satisfied. The

problem will be solved using two approaches, GP and MOGA.



The specific example solved is given by Field (1973). Josiah Freeman, of
South Haven, Conn., purchased a 600-acre track of woodland in west-central Maine.
His motives for acquiring this land were twofold: to provide a recreational retreat for his
family, and to develop a supplementary source of income. A local consulting forester
provided Mr. Freeman with a timber management plan that specifies a sustained-yield
allowable cut of about 21 MBF (thousand board feet) per year. The only other major
potential income-producing feature of the property, as well as an important leisure-time
asset, is a cabin in a grove of pine trees near the center of the property.
At the time of purchase, Mr. Freeman had definite ideas about the management
of his new property:
1) From his preliminary calculation he thought that a realistic goal would be to net
about $2100 a year from timber sales and rental of the cabin.
2) He wished to ensure the availability of the property for his family’s 30-day summer
vacation,
3) He wanted the use of the property for his own annual 7-day fall hunting trip.
4) In addition, he preferred not to endanger the long-term production potential of the
forest by exceeding the allowable cut.
5) For reasons of safety and esthetics, he felt that no timber harvesting should be going
on while either he or his tenants were using the property.
These goals were constrained by the following facts:
1) The number of summer and fall days available are estimated to be 90 and 60,

respectively.
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2) For every four days that the cabin was rented, about one day of Mr. Freeman’s own
time had to be spent in maintaining the cabin and access road. Assume that half of
the maintenance time is spent in fall, and half in summer.

3) The part-time timber harvesting crew he wanted to employ was available during
summer day only and could turn out, on the average, about 3 (three) MBF per day.
The net returns on harvest and rental activities were estimated to be:

a) summer rental $20/ day:;
b) fall rental $15/day;

¢) timber $15/MBF.

5.1.1. Using Goal Programming Procedure.
Mathematical Formulation of the Problem.

First of all we formulate the goal equations.

Let  x; = number of days of summer rental
x> =number of days of fall rental
x3 = number of days of timber harvesting
x4 = number of days of summer vacation plan
x5 = number of days of fall hunting plan
Xg = number of days of work days for maintenance

As discussed in section 2.3, the goal programming approach is to introduce variables

d;, and d;,, where d;, represents the amount by which goal i is underachieved. and

d;, that by which it is overachieved. The overall objective is thus to minimize these
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deviations. For example, the underachievement variable, dy, , has value zero if goal 1 is
satisfied or overachieved. Similarly the overachievement variable, dy,, has value zero if
goal 1 is exactly satisfied or is underachieved.
Goal 1. Net income, coming from rental and sale of timer, is about $2100.
20x+15xy+45x3+ dy, - d1,=2100
where dy,is the shortfall in achieving this income (in dollars), and 4, = excess of
income above the goal. The goal is to minimize dy,, .
Goal 2. Availability of 30 days for summer vacation.
X4 tdyy, - dr, =30
where d,, = number of days less than 30 available for vacation, and 5, = number of
extra days above 30 available for vacation.
The goal is to minimize d»,,.
Goal 3, Availability of 7 days for fall hunting
X5 +dy, -dy, =7
where 43, = number of days less than 7 available for hunting, and 43, = number of

extra days above 7 available for hunting. The goal is to minimize d3y,, .

Goal 4. Not to endanger the long term production. The goal here is to not exceed the
allowable cut of 21MBF (7 days of harvesting).

x3tdyy -dy =7
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where d4, = number of days less than 7 available for harvesting, and d4, = number of
extra days above 7 available for harvesting. The goal is to minimize d4, +d4,.
Goal 5. The goal is that every 4 days rental needs one work day for maintenance. That
is,-x; - xp+4xg=0o0r —%xl —%xz + x¢ = 0. Hence, the formulation of goal 5 is as
follows.

‘}./4-"1 -%xz +xg +ds5, —ds5, =0
where ds, = the number of days less than the goal allocated to maintenance and ds, =
the number of days more than the goal available for maintenance. The goal is to
minimize ds, .
In summary, the five goals are:
Goal 1: Minimize d,
Goal 2: Minimize d,,
Goal 3: Minimize dy4
Goal 4: Minimize d4, +d4,
Goal 5: Minimize d5,

The constraints :

l. There are only 90 days available for summer. These days are used for rental,
harvest, family’s vacation. and repair. Half of the work days will occur in the
summer.

X +x3+x4+ 0'5"6 <90.
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2) There are only 60 days in the fall. They are used as fall rental, fall hunting, and
work days. Four days rental needs 1 day repair and 4 day fall hunting needs 1 day

repair. So we can formulate the constraint as follows:

Xy +x5 +0.5x6 <60.
The formulation of the problem

[nitially, Mr. Freeman did not rank his goals. That is, each goal is given weight
one. The problem formulation is thus, after putting zero values on variables which he
did expect to be positive (d1,,d3,.495,)

Minimize d,, +d,, +d3, +dy, +d4, +ds,
Subject to

20x+15x,+45 x5+ dy, 2 2100

x4 +dHy, =30

x5 +dsy, =7

X3t dyy -dgy =17

-%.rl —%xl +xg+ds5, =0

x; +x3 +x4 +0.5x5 <90

X3 + x5 +0.5x5 <60

All variables are non-negative.
The formulation problem is solved using LINGO ( LINDO System Inc., 1999). The
output is summarized in Table 5.1 below. The formulation of the model for LINGO

and the output can be found in Appendix | and Appendix 2.
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Table 5.1. Unranked goals of Mr.Freeman

Activity Allocation (no. of days) Goal Deviation
Summer rental 33 Income 0

Fall rental 43 Harvest +11
Harvest 18 Summer vacation | 0
Summer vacation | 30 Fall hunting

Fall hunting 7 Work days 0

Work 19

We can see from this result that we cannot achieve all goals. The variable d 4,
=11 which means that there is an overcut of 33 MBF (11 days of harvesting). This is
an undesirablie result of this simple problem formulation. In order to improve the result
the individual goals must be given specific priorities based on other considerations.

For the purposes of this problem it is supposed that Mr. Freeman makes the
following decisions. He decided that he would, most of all, like to make the $2100 per
year. More would be acceptable. Meeting the allowable cut ranked second in his
scheme of things, but he was twice as concerned over the consequences of exceeding
the limit as he was about to undercutting. Thus dy4, is multiplied by 2 in the priority 2
part, as shown below. Summer and fall leisure time and working days all ranked in the
third level, but assuring vacation and hunting time (equally valued) seemed three times

as important as getting the work done. Thus 4, and d5, are multiplied by 3 in

priority 3. Let P, refer to first priority, P refer to second priority, and P refer to third

priority. The problem we want to solve now is



Minimize PAdy, + P>(d4y, +2d4,)+ P3(3d,, +3d3, +ds,)
Subject to

20x+15xy+45 x5+ dy, 2 2100

x4 +dy, =30

xs +dy, =7

X3 tdy, -dyy =7

—%xl —%xz +xg+ds, =0

xp +x3 +x4 +0.5x4 <90

X7 + x5 +0.5xg <60

All variables are non-negative.
This formulation solved using LINGO and the results are summarized in the
Table 5.2. The source code of this LINGO formulation and the output can be found in

Appendix 3 and Appendix 4.



Table 5.2. Ranked goals of Mr.Freeman

Activity Allocation Goal Deviation

(no. of days)

Summer rental 51 Income 0
Fall rental 51 Harvest 0
Harvest 7 Summer vacation 0
Summer vacation 30 Fall hunting 0
Fall hunting 7 Work days -21
Work 4

It is shown in Table 9 that in the first run the work days goal could be met but
after this goal is ranked as ranking number 3 (third priority) this goal becomes
underachieved by 21 days. On the other hand, the harvest goal that is not satistied in the
first run becomes completely satisfied as this goal is ranked as ranking number 2
(second priority). [t shows that goal ranked 3, work days, is sacrificed in order to satisfy

goal ranked 2, harvesting.

5.1.2. Solutions using Multiobjective Genetic Algorithm (MOGA).

The above stated problem of 5.1.1 is now solved using the MOGA algorithm
(Binh, 1996) implemented in MATLAB. This algorithm is used to search for the Pareto-
optimal set of a given vector-valued objective function. The source code for this
function can be found in Appendix 5. A population size of 100 is used. The output can
be found in Appendix 6 and rounded to integer values in Appendix7. A summary of the

solution is given in Table 5.3. The table gives some extreme pareto optimal solutions
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for which optimal results for the goal are given regardless of the other goals. For
example, to achieve goal 1 as closely as possible (i.e. satisfy the target level exactly
without considering the other goals then solution number 1 might be the best. In table
5.4 some reasonably good trade-off solutions are displayed. For example, solution
number 1 is quite good trade-off solution, i.e., we achieve net income of $1930 ( target
of $2100), 20 day summer vacation (target of a 30 days), and -2 work days ( target of
0, short of only a half working day). There are other trade-off solutions in this table or

we might prefer another solution from table 5.5.
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What we can see from this result is that the MOGA’s solution gives many
alternative schedules with many different trade-offs. This allows us to choose a solution
that is acceptable based on other considerations which are not part of the mathematical
problem. In contrast the GP solution only gives one solution without displaying any
other potentially good trade-offs. Even for this simple problem, the genetic algorithm
generates solutions no worse (if not better) than that generated by GP approach. On the
other hand, MOGA s are capable of handling complex problems where the GP approach
might not be very etficient.

5.2. A Muiltiobjective Forestry Problem without specified goal target levels.

Here we will solve a multiobjective forestry problem where the decision makers
don’t specify targets for the goals they want to achieve. In this case the decision makers
might have no idea about the target levels they can achieve. The problem is a
modification of a reforestation budgeting and planting stock allocation study of
MacLean (1980). MacLean used linear programming to solve the original problem.
However, the GP procedure and MOGAs techniques have been used to solve the
modified problem. The specific goal programming used here was proposed by Walker,
H. D. (1984).

The general background of the problem is as follows. The silviculture staff in
the district office of a public forest management agency is planning reforestation
activities for the coming season. An area of 5000 ha of unstocked land is available for
this purpose. The land has been classified into three types: 1000 ha of site type X, 2200

ha of site type Y, and 1800 ha of site type Z. The staff are confident that areas within



127

any of these site types which are not treated will not regenerate naturally to commercial
stands. Three species ( A,B, and C) are being considered. For each of the nine
combinations of species and site type, three alternative reforestation treatments (1,2, and
3) have been defined, with high, medium, and low costs and yields, respectively.
Treatments 1 and 2 involve planting, while treatment 3 involves seeding in combination
with one or more other operations.

Specific data for the problem are as follows: A limited supply of planting stock
is available. Based upon prescribed planting densities, up to 700 ha of species A. 400 ha
of species B, and 400 ha of species C could be planted. Seed for all three species is
available in abundance. To meet expected future wood requirements, minimum yields
have been established. These yields are expressed as average yields per year over the

chosen rotation ages. Species A and B have a combined minimum yield of 3300
m3 / year and species C has a minimum yield of 1700 m3 / year . An overall minimum
yield for the area is set at 5500 m3 /year. A budget of $800,000 is available. No

equipment or labor shortages are foreseen. Table 6 shows the expected establishment

costs and yields in cubic meter per hectare per year for each of the 27 activities.
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Table 5.6. Establishment costs and expected yields for sample problem

Silvicultural treatment

1 2 3
Species | Site | Cost | Yield Cost | Yield Cost | Yield

type | (S/ha) (§/ha) ($/ha)

A X 350 |27 x; | 310 1.6 xy | 140 1.0 X3
A Y 350 |23 x4 | 270 1.4 xs | 140 | 0.6 Xg
A Y4 270 1.4 x7 | 170 1.3 xg | 100 0.6 Xg
B X 350 |29 xjg {310 1.9 xy | 140 1.1 X012
B Y 350 |23 x3 | 270 1.4 xpy | 140 |06 x5
B Z 270 1.1 xe | 170 1.0 x;7 {100 |05 X8
C X 310 | 3.4 xj9 | 170 2.6 X | 90 1.1 X1
C Y 310 |29 xyy | 170 2.1 x23 | 90 0.8 X24
C Y4 170 1.4 x5 | 130 1.0 x2¢ | 90 0.5 X157

The silviculture staff wishes to incorporate three different goals into the
analysis. These include maximum expected annual volume yields. maximum area
replanted, and minimum cost to achieve required yields. The staff realizes that these
goals are competitive, but wishes to attempt to meet all of them concurrently.

Problem formulation

A total of 27 variables, x;, i =1,2,..,27, each corresponding to the area planted
under a specific regeneration system ( combination of species, site type, and
silvicultural treatment), is needed, as shown in Table 5.6.

Five types of constraints are needed. The budget constraint is formulated as:




27
Y Cix; < $800,000

i=l
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(1]

where C; is the cost (dollars per hectare) of regeneration system i, and x; is the area

(hectares) assigned to regeneration system i .
The planting stock area constraints are:

X +xXy) +x3+Xy+X5+Xg+X7+Xg +Xg <700
X0 +X11 T X12 + X3 + X4 + X5+ X156 T X7 X8 <400
Xig + X909 + X2 + X235 + X33 + X34 + X35 + X6 +X37 £400

The minimum volume yield constraints needed are:

18
Y ¥;x; 23300

i=l

27
Y Y;x; 21700
i=19

27
Y Y;x; 25500

i=l

(3]

where Y; is the yield (cubic meters per hectare per year) of species A or B under

regeneration system .

Three maximum area constraints are needed:

3 12 21
in + Zx,» + in- <1000

i=] =10 i=19

6 15 24
Doxi+ Y+ Y x; 2200

i=4 =13 i=22

9 18 27
in + Z.fi + in <1800

=7 i=16 =25

(6]
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Additional nonnegativity constraints ensure that all variables are assigned

nonnegative values.

The three goals are:
27
Maximize Z| = Z Yix; [7]
i=l
27
Maximize Z5 =) x; [8]
=l
27
Minimize Z3 = ) C;x; [9]

=l
where Z; is the total expected yield (cubic meters per year), Z, is the total area
replanted (hectares), and Zj is the total expected replanting cost (dollars).

5.2.1. Goal Programming Approach

Constraints [3] — [6] define a feasible set of solutions. Within this set the
feasible policy space for each goal is determined by formulating and solving a pair of
linear programming (LP) problems. including all constraints but including only the one
goal. One of these problems maximizes the goal level, while the other minimizes the
goal level. The best goal level is called the simple optimal level and the worst goal level
is called the worst feasible level. The interval between the simple optimal and worst
feasible levels is the feasible policy space. It indicates to decision makers the range of
possible attainment levels for that goal. Deletion or modification of any other goals. or
the addition of new goals, may or may not affect this feasible policy space. The results

are summarized in Table 5.7.



The multiobjective programming problem is now solved using ordinal ranking
GP. The problem is formulated as a GP problem, with goal levels set to the best values
in the feasible policy space. In ordinal ranking, each of the three goals is ranked with
priority one, two, or three. Table 5.8 shows the goal attainment levels and solutions
associated with each of the six possible ordinal rankings. Having these alternative
solutions, the decision makers can choose one of those alternatives according to their
preference. If none of the alternatives are satisfactory the decision makers must then

specify their preferred target level of each goal, and new solutions would be found.

Table 5.7. Feasible and optimal goal attainment levels and policy space

Goal attainment levels and policy spaces
Simple Worst  feasible | Feasible policy
Goal Optimal level | level space
Maximum volume 6473 5500 973
(m?/ year)
Maximum area 5000 3209 1791
(ha)
Minimum cost (S) 652082 800000 147918




Table 5.8. Solution for the problem with ordinal goal ranking

132

Goal ranks
Solution 1:  Solution 2:  Solution 3: Solution 4: Solution 5: Solution 6
Activitie 1.2.3 132 213 2.3_1 3_1_2 3.2_1

s
X1 200.0 200.0 200.0 0.0 285.0 285.0
X2 0.0 0.0 0.0 0.0 0.0 0.0
X3 0.0 0.0 0.0 0.0 0.0 0.0
X4 278.8 278.8 278.8 0.0 0.0 0.0
X5 0.0 0.0 0.0 0.0 0.0 0.0
X6 0.0 0.0 0.0 0.0 0.0 0.0
X7 0.0 0.0 0.0 0.0 0.0 0.0
X8 221.3 221.3 221.3 700.0 415.0 415.0
X9 1578.8 1578.8 1578.8 1100.0 1385.0 1385.0
X10 400.0 400.0 400.0 400.0 400.0 400.0
X11 0.0 0.0 0.0 0.0 0.0 0.0
X12 0.0 0.0 0.0 518.2 0.1 0.0
X13 0.0 0.0 0.0 0.0 0.0 0.0
X14 0.0 0.0 0.0 0.0 0.0 0.0
X15 0.0 0.0 0.0 0.0 0.0 0.0
X16 0.0 0.0 0.0 0.0 0.0 0.0
X17 0.0 0.0 0.0 0.0 0.0 0.0
X18 0.0 0.0 0.0 0.0 0.0 0.0
X19 400.0 400.0 400.0 0.0 0.0 0.0
X20 0.0 0.0 0.0 81.8 315.0 315.0
X21 0.0 0.0 0.0 0.0 0.0 0.0
X22 0.0 0.0 0.0 0.0 0.0 0.0
X23 0.0 0.0 0.0 174.8 85.0 85.0
X24 1921.3 1921.3 1921.3 2025.2 1503.1 1503.1
X25 0.0 0.0 0.0 0.0 0.0 0.0
X26 0.0 0.0 0.0 0.0 0.0 0.0
X27 0.0 0.0 0.0 0.0 0.0 0.0
Volume 6473.0 6473.0 6473.0 5500.0 5500.0 5500.0
Area 5000.0 5000.0 5000.0 5000.0 4388.2 4388.2
Cost  800000.0 800000.0 800000.0 667440.6 652082.0 652082.0
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The results in Table 5.7 gives decision makers ideas about possible maximum
and minimum values of each goal, and Table 5.8 gives several solutions that they can
choose from. However, these solutions are very extreme in the sense that one goal is
satisfied completely but some other goals may be very far from their optimal values. In
real problems, a solution representing more compromise is usually preferred. In this
example the decision makers might prefer results (volume and cost) that lie between
those of solutions 3 and 4 in Table 5.8. If that were the case, the decision makers would
have to specify new target levels and the problem would be reformulated and resolved.
Much interaction with forestry users is necessary for this process, which can be very

time consuming and costly.

5.2.2. Multiobjective Genetic Algorithm Solution

The problem of 5.2 is now solved using the MOGA previously described in
5.1.2, run in MATLAB. Optimization in this case is set up as a minimization. The
source code of the function for this second problem can be found in Appendix 8. A
population size of 100 is used. Seven of the better solutions are shown in Table 5.9. If
the user does not find the initially selected solutions to be satisfactory, it might be
beneficial to show other alternative solutions generated. In Table 5.10 are 40 different

alternative solutions.
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Table 5,10, MOGAs' solution tor reforestration budget aliocation

No

O 0N DD WN -

-

x)

1986
2031
203.1
1978
201.6
2011
196 56
201.6
1956
198 4
2022
1854
1954
2031
1997
197.3
197.3
1273
1093
1709
1324
1202
524
1840
2009
2020
20456
2026
204 6
2037
198 3

9956
188 2
1977
204 1
1980
1970
1850
1959
1950

x2

54
17
32
06
16
12
01
36
80
25
29
06
06
10
30
05
13
2350
2547
90
2008
24
2360
74
128
ns
74
52
e
64
122
163
76
62
a8
94
a8
84
100
100

Ex]

65
57
57
54
74
a2
27
57
25
76
44
20
20
04
44
16
18
2160
1206
846
913
177
1621
2179
130
134
82
85
136
142
87
245 1
148
96
136
92
50
102
108
8

x4

2819
2817
28156
2778
2778
2743
2177
2760
2822
2188
2761
2762
2762
2741
2153
2768
2768
208 5
201 4
229
ns
s
2738
1281
1030
1018
28 8
1006
1031
996
956
362
1039
263
077
263
1006
963
850
850

x5

37
55
04
40
60
a1
05
7%
61
53
0og
34
34
53
14
03
03
78
183
46 1
1646
1801
369
2058
138
52
122
132
w7
61
nz
1996
74
72
124
96
142
as
72
72

34
13
66
68
27
34
22
43
50
519
21
23
23
"
55
28
29
1925
292
10me2
163 4
1221
T ]
2196
1o
60
nz
66
104
101
68
2266
101
53
74
66
66
142
106
106

x7

73
27
73
22
0o
o8
73
13
08
'8
27
22
22
54
18
18
18
183
2512
144 5
2760
3756
1427
1571
126
ns
60
100
74
148
1s
8
72
nse
114
134
57
107
B2
A2

x8

2237
2254
2258
2246
2226
2216
2201
2229
2163
2229
2241
2199
2199
2196
2210
2166
2165
507
199
1497
1719
2057
1597
209
2077
304 7
303 6
3042
304 3
300 6
206 4

N4
3041
036
206 2
298 4
3029
3017
2992
2093

x9

1573
1581 3
16833
15817
1580 8
16809
1582 0
1582 7
1679 5
18759
18741
1580 4
1680 4
15743
1674 8
1576 2
1576 2
2803
176 0
2280
257 4
176 0

497
1270
13041
1301 4
13041
1304 4
13031
1287 4
13032
1737
1297 6
13000
12890
12070
1302 4
13003
13009
13009

x10

4003
3980
4029
4039
402 6
308 6
396 1
396 8
398 5
3998
400 1
3971
3971
396 2
396 6
396 7
396 7

301
1435

630

830

367

225
2930
3992
404 2
4050
401 2
0o
3987
3959
1341
398 2
3977
397 9
3983
398 6
4003
398 7
3987

xn

t8
73
26
64
48
74
a5
55
a7
03
18
23
23
14
05
32
32
167 6
439
2550
28
218
1457
93
140
98
na
1ms
75
125
104
51t
98
103
60
94
62
94
96
95

x12

67
38
69
37
33
16
61
34
a9
16
01
49
49
51
18
29
29
640
neé
168 6
97
1568
2228
190
87
106
"9
149
125
147
51
439
139
93
137
79
69
120
81
81

13

02
65
29
49
61
26
as
06
17
09
56
51
s51
o8
69
02
02
880
972
281
492
2850
1502
267
28
140
130
138
91
123
144
994
128
141
56
100
nuz
93
72
72

x4

57
19
56
50
31
k)]
12
05
06
28
43
20
20
36
0B
13:]
09
32
289
163 4
344
9689
533
683
137
108
120
59
27
67
132
696
17
83
140
58
53
50
68
58

x15

a7
23
84
57
62
54
24
03
12
34
05
a4
a4
85
20
52
52
a8
181
138 7
1466
251
nie
1303
123
122
73
138
ns
75
109
07
"7
136
88
23
81
130
81
a1

LYL]

87
44
21
3t
46
67
61
56
28
38
18
14
14
57
33
13
13
[h.1
2305
1423
198
203
282
165
26
1na
98
na
a8
07
77
245 4
127
100
106
105
75
53
77
77

x17

39
48
33
58

4.9
43
19
19
24
87
47
47
28
29
32
3z
66.9
2509
1409
1496
162 1
2343
453
142
99
124
14
106
147
136
2884
50
121
na
57
52
66
14
M4

18
b2
43
31
42
66
46
01
[¢X:]
e
01
58
60
25
6.2
46
4.6
2841
219
2781
2313
1442
2572
78.3
124
128
86
132
6.5
124
84
1701
89
79
61
13
ua
63
S2
52

x19

4033
401.7
3980
4013
4000
4037
403.1
396 9
396.3
3958
396.3
2988
308 8
395.0
3952
404 8
404 8
2325
18]
2603
1633
1noe
119

aro
2048
2024
2021
2026
2010
2007
2038
108
196 8
1953
1968
2020
196 8
1960
204 6
2046

@0

66
6.2
16
41
01
07
1.9
66
6.8
61
17
10
1.0
67
68
1.3
1.3
2148
801
259.0
2843
1997
239.3
174.0
1987
203 8
199.9
202.6
2022
2029
2018
25650
201.2
2006
1989
204 4
204.4
1987
1992
199

135



No

-0 O O N DO I WN -

k1]

33
34
35
36
7
38
a9
40

x21

64
77
37
20
76
17
45
27
42
29
75
15
1.6
17
37
79
79
20013
268 7
1726
74
1349
2281
2864
146
na
48
149
84
104
138
20871
20
nsae
04
a3
120
89
81
81

%22

68
63
32
55
64
38
33
08
26
32
09
63
63
33
27
44
46
29256
1260
2280
1336
940
1618
1307
178
29
227
180
202
208
248
6542
164
219
80
198
184
214
189
189

P

60
az
64
66
58
49
44
02
25
a2
03
03
03
52
16
18
18
55 4
2007
1720
178
2513
2009
2278
96
62
na
103
77
84
"t
1636
83
126
55
76
89
63
1o
11K}

24

19192
19240
18231
19233
1921 5
1917 9
19199
1923 56
19177
10179
19197
19258
19258
1916 7
19174
19220
18220

601

616
1801
2841

ne
206 3
246 4
19956
2000 &
19990
1998 3
2002 3
1997 2
1999 6
2129
2004 0
1955 4
19998
1997 6
2003 6
19998
1997 8
1997 8

25

19
29
39
23
09
06
33
52
22
22
o2
68
58
o8
26
40
40
2526
60
ns
1787
2496
1532
232
137
171
1356
175
167
179
180
2407
165
195
107
136
142
192
103
103

x26

56
(1]
14
60
39
36
51
619
20
23
69
24
24
10
69
39
39
1873
2428
306
157 4
781
160
946
165
082
122
188
142
14
148
106 2
179
16
56
128
140
132
143
143

x27

"
36
58
67
74
08
2%
77
o8
20
06
38
38
20
54
13
13
2495
2018
2311
2812
1163
2374
133
139
58
126
98
132
148
146
13056
134
129
6
130
9
134
140
40

Otyective 1
Volume
6620
6620
6610
6610
6600
6580
6560
6540
6540
6540
6530
6530
6530
6520
6530
6530
6530
6220

6140
6740
5790
5630
6770

6220
6220
6550
6180
6170
6150
6160
6150
6140
6140
6140

Objective 2
Area
5100
5100
5100
5100
5090
5080
5070
5070

4020
3880
3980
4010
3720

3770
4950

4930
4840
4840
4930
4930
3950
4920

4890

Objective 3
Cost
820820
820230
819670
818180
818340
815360
at1840
811370
809830
809570
808860
808780
808780
808140
807930
806760
806760
799620
793230
7867950
762730
779110
764130
768520
765370
753130
751430
750790
750410
748420
748100
745210
743960
741380
740110
739980
7137910
737880
737030
737030

136
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Some of the MOGA results are very similar to GP solutions. For example, GP
solution 3 is (6473, 5000, 8000) for goal 1, goal 2, and goal 3 respectively and MOGA
solution 2 (Table 5.9) is (6530, 5040, 806760). While all GP solutions in Table 5.8 are
extreme non-dominated solutions, the MOGA solutions mostly represent tradeoffs
between extreme solutions, along the Pareto-front. One good tradeoff solution that
decision makers might consider is the one between GP solutions 3 and 4 in Table 5.8,
which are (6473, 500, 8000) and (5500. 5000, 667440) for volume, area. and cost
respectively. Where GP failed to find a tradeotf between these two solutions, MOGA
succeeded. For example, MOGA solution 3 in Table 5.9 is (6250, 4900, 751430) for
volume, area, and cost respectively. Solution number | in Table 5.9 (6620, 5100.
820830) is another possible good tradeoff from MOGA if the decision makers are

willing to increase their budget. That is, by adding only $20820 to their cost. they

receive significant increase in volume (147 m3 per ha per year) and area (100 ha).

The ability of MOGA to search for many Pareto-optimal solutions, where
representing tradeoffs between the extremes, makes it possible for the forestry analysts
to minimize interactton with the forest users (decision makers). Multiple meetings
between the analysts and the forest users would not be necessary resulting in time and

cost savings.



Chapter 6

Conclusion

For the last few decades, operation research (OR) has been intensively used in
forestry management. Initially forest analysts used one of the OR methods, linear
programming (LP), for decision making. Because of the incapability of LP to
accommodate many forestry problems and because of the advances of OR technique,
forestry analysts began to use many other different OR techniques to solve their
problems. The most common of these are goal programming (GP), fuzzy programming,
shortest path algorithms, and dynamic programming.

Due to the increasing demands from forests, forestry problems are better
formulated as multiobjective problems. Some of these objectives might be in contlict
with each other. For example, forest industries want to maximize the profit. people
surrounding the forests want to use forest for their benefits, wildlife need forest for
forage and shelter, and environmental impacts of the actions should be minimized.
These demands could not possibly be met simultaneously. Therefore, forest analysts
must find a good tradeoff between these conflicting demands. Conventional OR
techniques, usually GP, have been used with limited success to accomplish this. GP can
be easily used to find some Pareto-optimal solutions but these solutions are usually
extreme, in that they optimize one goal at the expense of the others. Usually. solutions
representing better tradeoffs between all goals are preferable. Therefore. it would be
beneficial if an OR technique were able to find many Pareto-optimal solutions, both

extreme and non-extreme, in a single run.
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Recently developed techniques called genetic algorithms have a different
approach from that of conventional OR techniques. They operate on a population of
solutions. This population evolves from generation to generation into one containing
better solutions to the problem. An extension of these GAs, called a multiobjective
genetic algorithm (MOGA), is designed to search for many Pareto-optimal solutions
where most of those are not extreme. The ability of this MOGA to search for the Pareto-
optimal set makes it useful for solving conflicting muitiobjective forestry problems.

In this thesis, two multiobjective forestry problems are solved using MOGA. [n
the first problem the decision makers specify their target level of each objective (goal)
and in the second problem they do not specify the target levels or priorities of the
objectives. In both problems, MOGA generates some extreme solutions, similar to
those generated by GP, but it also produce some very good tradeott solutions. Thus
MOGA is demonstrated to be able to generate many potential solutions in a single run.
This minimizes interaction between forest analysts and forestry users, improving the
efficiency of the overall process. Since these are both real problems. it is shown that
MOGA is a valuable tool that could be used by foresters.

The set of MOGA solutions shows that the algorithm does not search for
Pareto-optima uniformly. In a large population there are only a few solutions that are
truly unique. That is, some of the individuals in the population converge to exactly the
same solution. It would be ideal if the individuals were spread more uniformly
throughout the Pareto-optimal set, giving the decision makers a greater variety of

potential strategies. Further work is needed for this purpose.



140

Bibliography

Allen, J.A. (1986), "Multiobjective regional forest planning using the noninferior set
estimation (NISE) method in Tanzania and the United States”, For. Sci. 32(2):
517-533.

Amidon, E. and Akin, G. (1968), "Dynamic programming to determine optimum levels
of growing stock", Forest Science 14, 287-291.

Anderson, F.J. (1976), "Control theory and the optimum timber rotation". Forest
Science 22, 242-246.

Bare, B.B. and Field. R.C. (1987), "An evaluation of FORPLAN from an operations
research perspective". [n FORPLAN: An evaluation of a forest planning tool.
Symposium Proceedings. U.S. For. Serv. Rocky Mt. For. Range Exp. Stn.
Gen. Tech. Rep. RM-140. pp. 133-144.

Bare, B.B. and Mendoza, G.A. (1988), "Multiple objective forest land management
planning: An illustration,” European Journal of Operational Research. Vol. 34,
No.1, pp. 44-55.

Bellman, R., and Zadeh, L. (1970), "Decision making in fuzzy environments". Manage.
Sci. 17:141-156.

Binh, T.T. (1996), "Evolution Strategy Toolbox", http://ifatwww.et.uni-
magdeburg.de/~binl/evolution/esdoc.html

Bron, C., and Kerbosch, J. (1983), "Finding all cliques of an undirected graph",
Communications of the ACM 16, 575-577.

Byme, J.J., Nelson, R.J., and Googins, P.H. (1960), "Logging road handbook: the effect
of road design on hauling costs", Agric. Handb. No. 183, 65 p. USDA For.
Serv., Washington, DC.

Carson, W. and Dykstra, D.P. (1978), "Programs for road network planning", USDA
Forest Service, general technical report PNW-67, Portland, Oregon.

Charnes. A., and Cooper, W.W. (1961), "Management Models and Industrial
Applications of Linear Programming”, Wiley, New York.

Clements, S.E., Dallain, P.L., and Jamnick, M.S. (1990), "An operational, spatially
constrained harvest scheduling model", Can. J. For. Res. 20:1438-1447.

Daust, D.K., and Nelson, J.D. (1993), "Spatial reduction factors for strata-based harvest
schedules”, Forest Science, Vol. 39, No. 1, pp. 152-165.



141

DeJong, K.A., (1988), "Learning with genetic algorithm: An overview". Machine
Learning, Vol. 3, pp.121-138.

De Kluyver, K.A. (1979), "On the importance of goal-norming in non-preemptive goal
programming", Opsearch, 16: 88-97.

Dyer, A.A, Hof, J.G., Kelly, J.W., Grim, S.A., and Alward, G.S., (1979), "Implications
of goal programming in forest resource allocation". For. Sci. 25(4), 535-543.

Eng, G. (1982), "A methodology for forest outturn assessment and optimal tree
bucking”, M.Sc. thesis, University of Canterbury, Christchurch, New Zealand.

Eng, G., Daellenbach, H.G., and Whyte, A.G.D. (1986), "Bucking tree-length stems
optimally”, Canadian Journal of Forest Research, Vol. 16, No.5, pp. 1030-
1035.

Faustman, M. (1849), "Calculation of the value which forest land and immature stands
possess for forestry”, translated by W. Linnard (1968), institute paper 42.
Commonwealth Forest Institute, University of Oxtord, England.

Field, D.B. (1973), "Goal programming for forest management", Forest Science 19,
125-135.

Fonseca, C.M., and Fleming, P.J. (1993), "Genetic algorithms for multiobjective
optimization: Formulation, Discussion, and Generalization". in Genetic
Algorithms: Proc. 5th Int. Conf. On Genetic Algorithms (San Mateo, CA),
Forrest, S., ed. Morgan Kaufmann.

Fonseca, C.M., and Fleming, P.J. (1995), "An overview of evolutionary algorithms in
multiobjective optimization". Evolutionary Computation. Vol. 3. No. 1. pp.
165-180.

Grevatt, ].G. and Wardle, P.A. (1967), "Two mathematical models to aid in nursery
planning", XIV World Congress of IUFRO, Section 25, Munich. Germany.
Fed. Rep., 362-370.

Gross, T.E., and Dykstra, D.P. (1988), "Harvest scheduling with nonadjacency
constraints" In Proceedings, Soc. Am. For. Nat. Conv., 16-19 Oct. 1988,
Washington, DC. pp. 310-315.

Grossman, [. S., (19994), “Applications supplement to elementary linear algebra”,
Saunders College Publishing, United Stated of America, p. 168.

Hannan, E. (1980), "Nondominance in goal programming", INFOR, 18: 300-309.



142

Haimes, Y.Y., Hall, Y.Y., and Freedman, H.T. (1975), "Multiobjective optimization in
water resource systems", Elsevier Science Publishing Co., Inc., New York.

Holland, J. (1975), "Adaptation in natural and artificial systems", University of
Michigan Press, Ann Arbor.

Hokans, R.H. (1983), "Evaluating spatial feasibility of harvest schedules with simulated
stand-selection decisions", J. For. 81(7): 601-603, 613.

Hvberg, B.T. (1987), "Multi-attibute decision theorv and forest management: A
discussion and application”, Forest Science, Vol. 33, No. 4, pp. 835-845.

Hyberg, B.T., and Holthausen, D.M. (1989), "The behaviour of nonindustrial private
forest landowners", Canadian Journal of Forest Research 19, pp. 1014-1023.

Ignizio, J.P. (1976), "Goal programming and extensions”, D.C. Heath and Co..
Lexington, MA.

Ignizio, J.P. (1981), "The determination of a subset of efficient solutions via goal
programming”, Computers and Operations Research 8(1), 9-16.

Ignizio, J.P. (1983), "Generalized goal programming", Comput. & Oper. Res. 10(4):
277-289.

Jamnick, M., Walters, K. (1991), "Harvest blocking, adjacency constraints. and timber
harvest volumes", Proceedings of the Planning and Implementing Future
Forest Operations, International Mountain Logging and 8th Pacific Northwest
Skyline Symposium, 14-16 December 1992, Bellevue, Washington. USA,
Published by University of Washington, Forestry Continuing Education
Department, pp. 241-247.

Johnson, K.N., Stuart, T., and Crimm, S.A. (1986), "FORPLAN, Version 2: An
overview," USDA Forest Service, Land Management Planning Systems
Section, Washington, DC.

Kao, C. and Brodie, J.D. (1979), "Determination of optimal thinning interval using
dynamic programming", Forest Science 25(4), 672-674.

Kangas, J., and Pukkala, T. (1992), "A decision theoretic approach applied to goal
programming of forest management", Silva Fennica 1992, Vol. 26, No. 3, pp.
169-176.

Keeney, R.L., and Faiffa, H. (1976), "Decision analysis with multiple contlicting
objectives", John Wiley & Sons, Inc., New York. 736 p.



143

Korhonen, P., and Laakso, J. (1986a), "A visual interactive method for solving the
multiple criteria problem”, European Journal of Operational Research 26: 335-
363.

Kosko, B. (1992), "Neural Networks and Fuzzy Systems", Englewood Cliffs, New
Jersey: Prentice Hall.

Kouichi, K. (1966), "A planning of the forest road network by the theory of graphs",
Faculty of Agriculture, Kyoto University, Kyoto. Journal of the Japanese
Forestry Society 48(10)'66:265-371,

Lee, S.M. (1972), "Goal programming for decision analysis", Auerbach Publishers, Inc.,
Philadelphia.

Lindo Systems, Inc. (1999), "Lingo", Premier Modeling Tools.

Lockwood, C., and Moore, T. (1993), "Harvest scheduling with spatial constraints: A
simulated annealing approach”, Canadian Journal of Forest Research, Vol. 23,
No. 3, pp. 468-478.

MacLean, H.R. (1980), "Operations research using reproduction inventory data and
linear programming to help select optimum forest regeneration systems for
Nipigon District", B.Sc.F. thesis, Lakehead University, Thunder Bay. Ontario.

Mandl, C., (1979), “Applied network optimization”, Academic Press, London. p. 1735.

Michalewicz, Z. (1996), "Genetic Algorithms + Data Structures = Evolution Programs”.
Springer-Verlag, New York. p.387.

Minamikata, Y. (1984), "Effective forest road planning for forest operations and the
environment", [n COFE/IUFRO (15-18 Aug. 1984, Fredericton, NB, Canada).
pp. 219-224.

Murray, A.T., Church, R.L. (1996a), "Constructing and selecting adjacency
constraints", INFOR, Vol. 34, pp. 232-248.

Murray, A.T., Church, R.L. (1996b), "Analysing cliques for imposing adjacency
restrictions in forest models", For. Sci. 42(2), 166-175.

Navon, D.I. (1971), "Timber RAM... A long-range planning method for commercial
timber lands under multiple-use management”, USDA Forest Service,
Research Paper PSW-70, Berkeley, California, 22pp.

Nelson, J., Brodie, D. (1990), "Comparison of a random search algorithm and mixed
integer programming for solving area-based forest plans", Canadian Journal of
Forest Research 20, 934-942.



144

Nelson, J.D., and Finn, S.T. (1991), "The influence of cut block size and adjacency
rules on harvest levels and road networks", Can. J. For. Res. 21:595-600.

Pnevmaticos, S.M., and Mann, S.H. (1972), "Dynamic programming in tree bucking",
Forest Products Journal 22(2), 26-30.

Raiffa, H. (1968), "Decision analysis", Addison-Wesley, Reading, MA. 569 p.

Richardson, J.T., Palmer, M.R,, Liepins, G., and Hilliard, M. (1989), "Some guidelines
for genetic algorithms with penalty functions. In Schaffer, J.D., editor, Proc.
3rd Int. Conf. On Genetic Algorithms, pp. 191-197. Morgan Kaufmann.

Romero, C. (1985), "Naive weighting in non-preemptive goal programming. J. Oper.
Res. Soc. Am. 7:647-649.

Rustagi, K.P., and Bare, B.B. (1987), "Resolving multiple goal conflicts with interactive
goal programming", Canadian Journal of Forest Research, Vol. 17, Ne. 11, pp.
1401-1407.

Saaty, T.L. (1977), "A scaling method for priorities in hierarchical structures”. Journal
of Mathematical Psychology 15, 234-281.

Saaty, T.L. (1980), "The analytic hierarchy process. Planning, priority setting, resource
allocation", McGraw-Hill.

Saaty, T.L., and Kearns, K.P. (1985), "Analytic planning. The organization of systems".
Pergamon Press, Oxford.

Sakawa, M. (1993), "Fuzzy sets and interactive multiobjective optimization”, Plenum
Press, New York.

Schaffer, J.D. (1985), "Multiple objective optimization with vector evaluated genetic
algorithms", Proc. Lst Int. Conf. On Genetic Algorithms (Pittsburgh, PA, July
1985) ed. Grefenstette, J.J. (Hillsdale, NIJ:

Erlabaum) pp. 93-100.

Schmidt, J.W. (1981), "Foundations of analysis in operations research”, Academic
Press, Inc. Ltd., London. p. 383.

Schmidt, J.W., and Tedder, P.L. (1981), "A comprehensive examination of economic
harvest optimization simulation methods", Forest Science 27, 523-536.

Schuler, A. and Meadows, J. (1975), "Planning resource use on national forests to
achieve multiple objectives", Journal of Environmental Management 3, 351-
366.



145

Srinivas, N., and Deb, K. (1994), "Multiobjective optimization using nondominated
sorting in genetic algorithms", Evolutionary Computation 2(3), 221-248.

Torres-Rojo, J.M., and Brodie, J.D. (1990), "Adjacency constraints in harvest
scheduling: an aggregation heuristic". Can. J. For. Res. 20: 978-986.

Walker, H.D. (1984), "An alternative approach to goal programming”, Can. J. For.
Res., Vol. 15, pp. 319-325.

Winston, W.L. (1987), "Operations research: applications and algorithms", Ist ed.,
PWS-KENT Publishing Company, Boston. p. 1025.

Zeleny, M. (1982), "Muitiple criterion decision making", McGraw-Hill, New York.

Zimmermann, H.J. (1976), "Description and optimization of fuzzy systems", Internat. J.
General Systems 2, 209-215.



Appendix 1
LINGO Formulation for Mr. Freeman’s Problem (unranked goals)

! This is Mr. Freeman's model ;
MIN = diM + d2M + d3M + d4M + d4P + dsM;
! constraints;

INet income of about $2100 a vear :
20* x1 + 15 *x2 + 45* x3 + d1M = 2100;

! availability of the property for his family's 30-day summer

vacation;
x4 + d2M = 30;

! His 7- day fall hunting trip;
x5 + d3M = 7;

! Stability of the harvest {(allowable harvest}:
X3 + d4M - d4pP = 7;

! For safety and aesthetics (working days):;
x6 - 1/4* x1 - 1/4* x2 + d5M = Q;

! Summer activicies;
X1 + x3 + x4 + 0.5* x6 <= 90;

!t Fall activities;
x2 + x5 + 0.5* x6 <= 60;
! End;
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Appendix 2
Output of LINGO Model of Mr. Freeman’s (unranked goals)

" The output of the linggo solution of Mr. Freeman's forestry problem
without priority goals”

8 vVars= 16 No.
38 Constraint nonz=

Rows=
Nonzeros=
Density=0.279

integer vars= 0 ( all are linear)
26 ( 20 are +- 1}

Smallest and largest elements in abs value= 0.500000 2100.00
No. < 2 No. =: S No. > : 0. Obi=MIN. GUBs <= 4
Single cols= 4
Global optimal solution found at step: 14
Objective value: 10.56140
Variable Value Reduced Cost
D1M 0.0000000 0.9649123
D2M 0.0000000 0.4210526
D3M 0.0000000 0.5964912
D4M 0.0000000 2.000000
D4pP 10.56140 0.0000000
D5SM 0.0000000 0.8771930
X1 32.89474 0.00000400
X2 43.45614 0.0000000
X3 17.56149 0.00000400
D1P 0.0000000 0.3508772E-01
X4 30.00000 0.0000000
D2P 0.0000000 0.5789474
X5 7.000000 0.0000000
D3p 0.0000000 0.4035088
X6 19.08772 0.0000000
D5P 0.0000000 0.1228070
Row Slack or Surplus Dual Price
1 10.56140 1.000000
2 0.0000000 -0.3508772E-01
3 0.0000000 ~-0.5789474
4 0.0000000 ~-0.4035088
5 0.0000000 1.000000
6 0.0000000 -0.1228070
7 0.0000000 0.5789474
8 0.0000000 0.4035088
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Appendix 3
LINGO Formulation for Mr. Freeman’s Problem (ranked goals)

! This is Mr. Freeman's model with third priority goal of

’

MIN = 3*d2M + 3*d3M + dSM;
! constraints;

INet income of about $2100 a year ;
20* x1 + 15 *x2 + 45* x3 + diM = 2100;

! availability of the property for his family's 30-day summer
vacation;
x4 + d2M = 30;

! His 7- day fall hunting trip;
x5 + d3M = 7;

! Stability of the harvest (allowable harvest);
x3 + d4M - d4p = 7;

! For safety and aesthetics (working days);
x6 - 1/4* x1 - 1/4* x2 + d5M = 0;

! Summer activities;
X1 + x3 + x4 + 0.5* x6 <= 90;

t Fall activities;
x2 + X5 + 0.5* x6 <= 60;

t the result of first and second priority goals as a constraints;
diM=0;
d4M=0;
d4pP=0;
! End;



Appendix 4

OQutput of LINGO Model of Mr. Freeman’s (ranked goals)
Global optimal solution found at step:
Objective value:

variable

dim
d2m
d3m
ddm
d4p
dSm
x1
x2
x3
dlp
x4
d2p
X5
d3p
x6
dSp

A
(o}
£

M~ Utde W

value
0.0000000
0.0000000
0.0000000
0.0000000
10.56140
0.0000000
32.89474
43.45614
17.5614¢0
0.0000000
30.00000
0.0000000
7.000000
0.0000000
19.08772
0.0000000

slack or surplus

10.56140
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000

[eNoNoNeoNeNolol

21.50000

reduced cost

0.9649123
0.4210526
0.5964912
2.000000
.0000000
.R771930
.0000000
.0000000
.0000000

.0000000
.5789474
.0000000
.4035088
.0000000
.1228070

[N elelNoelNolleNelNelolle e o]

dual price
1.000000

-0.3508772e-01

~-0.5789474
-0.4035088
1.000000
-0.1228070
0.5789474
0.4035088

6

.3508772e-01
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Appendix 5
Matlab Scurce code for Mr. Freeman’s Problem

¥This is the Mr.Freeman's forescry problem
$File name is Mr_Freeman
funcrion g = forestl (x)
%
if all(x>=0),
g=zeros({6,1);

% Compute the objective function
AN =aRme IITNN_IN*YG I TV _TR*Q /DN _AK*ep TV
- b (v~ e am oy - en \ ey E e dmrNw s g g

g(3)=abs(30-x(4));
g(4)=abs(7-x(5));
g(5)=abs(7-x(3));
g(6)=abs({x(1l)+x(2)-4*x(6));
% Compute the Constraints, in zhe Iorm gconsIimpr=49
geonstmp=90-x(1)-x(3)-x(4)-0.5*x(6);
if gconstmp<0,
g(l}=g(l)+gconstmp~4;
end
gconstmp=60-x(2)-x(5)-0.5*x(6) ;
if gconstmp<0,
g(l)=g(l) +gconstmp™4;
end

else,
g=inf;
end
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41.6524
44,3872
47,2898
43,2303
43.2919
48.7825
42,0278
43.2366
43.0693

43.237
41.8878
41.3844
42,8519
41.6977
47.2141
43.2956
43.0693
43.2586
41.8639
42,9519
46.0614
42,7365
47.1041
45,3732
43.1688
47,2141
47,6312

47.579

47.579
471111
34.4736

43.237
48,9727
42,1623
43,2784
41.497
47.3423
43.2794
43.2586

45,5606
39.0571
38.2831
40.5156
40.6444
40,0785
43.7718
43.5695
40.9645
43,7192
40.6369
40.844
39.12
44.2902
45,1816
42278
44.4848
45.5694
40.432
39.12
39.5169
42,0215
39.2544
40.6024
39.2328
41.4073
37.7306
38.6486
38.6486
39.12
40,4025
38,6572
38.6572
44.2715
40,4025
43.4092
44,2994
46.9194
45.5694

7.3771
12.6437
12.8514

7.3771

6.8927
12.0095

9.3442

7.5885

7.6307

9.3452

7.1023

7.4226

7.0276

7.0999

7.2378

7.381

7.6307

7.8452

8.1528

8.5105

9.3442
10.0001
10.4056
11.1358
11.7321
12.2753
12.9805
12.6457
12.6457
12.6607

8.1953

7.5643

8.7221

7.4675

7.5793

7.7116

7.1023
12.6296

7.4226

19.8274
19.6155
19,4236
29.8533
29.3854
19.749
29.259
30.0639
30.0948
27.8397
19.8274
29.2725
24,9046
29.2641
29.1761
28.3176
30.0948
29,9419
28.8799
19.749
22.026
25.4604
20.0581
22,7415
21.1568
19.6518
18.8211
19.3168
19,3168
19.985
27.9518
18.0944
18.0944
28.0657
27.9518
29.2627
19.8274
27.45
29,9419

6.892
6.6988
6.563
6.3634
6.1237
65.8115
8.6164
4.9873
4.5628
3.9224
3.5115
1.5378
6.563
9.1816
7.0006
5.7502
4.5628
7.3364
5.7709
7
6.8194
3.3723
6.999
5.8819
8.8946
6.8163
7
5.9501
5.9501
7.0006
7.0006
6.6445
6.6445
3.6537
6.9761
6.4526
5.4827
6.563
7.3364

5.8266
20.6912
20.8633

5.8256

5.3737
13.9886

4.5689

5.9551

5.9794

7.8864
12.7671

14.04
20.5194
12.7905

5.7701
20.4278

5.9794

5.8559

20.559
20.5168
18.6049
21.1693
17.6513
16.2881
20.5194
20.6565
21.0083
20.9167
20.9167
20.4278
20.5194
16.9402
16.9402

15.452
13.9769
12.6393

11.986

8.8538

5.8559

1848.4265
2042567
2098.3555
1804.3095
1785.6755
2117.255
1917.622
1859.757
1819.235
1941.062
1766.913
1774.365
1762.08
1817.8025
1947.707
1832.227
1872.0395
1901.747
1810.634
1828.8105
1934.4705
1935.057
1899.15
2017.611
1979.8125
2117.78
2100.7055
2100.3655
2100.3655
2098.7535
1664.298
1783.4915
1950.3065
1843.356
1812.674
1828.102
1930.9405
2137.711
1882.73

19.8274
19.6155
19.4236
290.8533
29.3854
19.749
29.259
30.0639
30.0948
27.8397
19.8274
20.2725
24.9046
29.2641
29.1761
28.3176
30.0948
29.9419
28.8799
19.749
22.026
25.4604
20.0581
22.7415
21.1568
19.6518
18.8211
19.3168
19.3168
19.985
27.9518
18.0944
18.0944
28.0657
27.9518
29.2627
19.8274
27.45
29.9419

6.892
6.6988
6.563
6.3634
6.1237
5.8115
8.6164
4.9873
4.5628
3.8224
3.5115
1.5378
6.563
9.1816
7.0006
5.7502
4.5628
7.3364
5.7709
7
6.8194
3.3723
6.999
5.8819
8.8946
6.8163
7
5.9501
5.9501
7.0006
7.0006
6.6445
6.6445
3.6537
6.9761
6.4526
5.4827
6.563
7.3364

7.3771
12.6437
12.8514

7.3771

6.8927
12.0095

9.3442

7.5885

7.6307

9.3452

7.1023

7.4226

7.0276

7.0999

7.2378

7.381

7.6307

7.8452

8.1528

8.5105

9.3442
10.0001
10.4056
11.1358
11.7321
12.27563
12,9805
12.6457
12.6457
12.6607

8.1953

7.5643

8.7221

7.4675

7.5793

7.7116

7.1023
12.6296

7.4226

-63.9106
-0.6795
-2.1197

-60.4435

-62.4415

-32.9066
-67.524

-62.9857

-60.1162

-55.4106

-31.4563

-26.0684

0.0057

-34.8259

-69.3163
-3.8624

-63.6365

-65.4044
-0.0599
-0.0047

-11.1687
-0.0808

-15.7633

-20.8232

-0.324
-5.9954
-1.2286
-2.5608
-2.6608
-4.5199

7.2015

-14.0334

-19.7691

-24.6258

-27.7733

-34.3491

-43.6977

-54.7836

-65.4044

71,7697
86.992
89.99645
83.3735
82.25685
87.5353
82.91545
83.86655
83.7845
84.3651
75.20105
85.0995
85.1438
84.45695
86.51305
89.2081
83.7845
83.97365
89.1761
81.4698
86.73405
88.78165
86.39345
87.39455
86.3174
89.46945
89.83695
89.99985
89.99985
89.9707
80.8804
77.3658
84.2593
85.4215
85.79795
84.79105
80.265
87.7859
83.55105

65.3654
56.1015
56.27775
49.7918
49.45495
52.8843
54.67265
51.63435
48.517
51.5848
50.563195
49.4018
55.9427
59.86705
55.06725
58.2421
52.0373
56.83375
56.4824
56.3784
55.63875
55.97845
55.07905
54.62835
58.3871
58.56185
56.23475
55.05705
55.05705
56.3345
57.6628
53.6718
53.6718
55.6512
54.36705
56.18145
55.7751
57.9093
65.83375
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Appendix 7
MOGAs Solution of Mr.Freeman's Forestry Problem (Rounded to Integer)
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Appendix 8
Matlab Source code Walker’s Problem

% Tunction source cede fo0r second proplem
funccion g = walker(x)
%
if all(x>=0),
g=zeros(4,1);
¥ Compurze the objective ZIuncrion
g(2)=-2.7T*x(1)-1.6*%(2)-1.0"%(3)-2.3*x(4)-1.4*x(5)-0.6"x(6)-
1.4*x(7)-1.3*x(8)-0.6*x(9)-2.9*x(10)-1.9*x(11)~-1.1*x(12)-2.3*x(13)

L R{Ia)-0.0 X)L 116~ 0" K{LT)~0. 0% K131 -3 .4 rki15:-2.67x20) -
1.1*x%(21)-2.9*%(22)-2.1*%(23)-0.8*%x(24)-1.4*%(25)-1.0"%x(26})-0.5*%x(27);
rve=enes{l”, 1)

g{3)=-x(1)-%x(2)-x(3)-x(4)-%x(5)-%x(6)-x(7)-%x(8)-x(9)-x(10})-x(11)~
x(12)-x{13)-x(14)-x(15)-x(16)-%x(17)-x(18,-x(19)-x(20)-x(21}-x{22) -
x(23)-x(24)-x(25)-x(26)-x(27) ;

g(4)=350*"*x(1)+310*x(2)+140*x(3)+350*x(4)+270*x(5)+140*%x(6)+270*x(7)+17
0*x(8)+100*x{9)+350*x(10)+310*x(11)+140*x(12)+~350*x(13)+270*x(14)+140"
X(15)+270*x(16)+170*x(17)+100*x(18)+310*x(19)+170*x(20)+90*%x(21)+310*x
{22)+170*x(23)+90*x(24) +170*x(25)+130*%x(26)+90*x(27);
* Compute the {onstralincs, in the Zorm goonsIime>=4
x constraint L
gconstmp=800000-350*x(1)-310*x(2)-140*x(3)-350*%x(4)-270*x(5) -
140*x(6)-270*x(7)~-170*x(8)-100*%x(9)~-350*x(10)-310*x(11)-140*x(12)-
350*x(13)-270"x(14)-140*x(15)-270*x(16)-170*x(17)-100*x(18)-310*x(19)-
170*x(20)-90*x(21)-310*%(22)-170*x(23)-90*x(24)-170*x(25)-130"x(26) -
80*x(27);
if gconstmp<0,
gi{ll=g(l})+gconstmp~4;
end
» constrainz 2
gconstmp=700-x(1)-x(2)-x(3)-x(4)-xX(5)-x{6)-x(7)-x(8)-%x(9};
1£ gconstmp<0,
g(l)=g(l)+gconstmp~4;
end
= censtrainT 3
geconstmp=400~-x(10)-x(11)-x(12)-x(13)-x(14)-x(15)-x(16)-x(17)-
x(18);
if gconstmp<0,
g(l)=g(l)+gconstmp”™4;
end
t conmstraint 4
gconstmp=400-x(19)-x(20) -x(21)-x(22) -x(23) ~x(24) -x(25) -x(26) -
x(27);
if gconstmp<0,
g(l)=g{l)+gconstmp"4;
end
% cons:trainT 3

geonstmp=2.7*x(1)+1.6*x(2)+1.0*x(3)+2.3*x(4)+1.4*x(5)+0.6*x(6)+1.4*x(7
}+1.3*%x(8)+0.6*x(9)+2.9*x(10)+1.9*x(11)+1.1*x(12)+2.3*x{13)+1.4*x(14)+
0.6"x(15)+1.1*x(16)+1.0*x(17)+0.5*x(18)-3300;
if gconstmp<0,
g{l)=g(l)+gconstmp™4;



end

-

¢ constraint 6

geonstmp=3.4*x{19)+2.6*x(20)+1.1*x{21)+2.9*x(22)+2.1*x(23)+0.8*x(24)+1
LAY (25)+1.0*x(26)+0.5*x(27)-1700;
if gconstmp<0,
g{l)=g(l)+gconstmp"4;
end
¥ constraint 7
geonstmp=2.7*x(1)+1.6*x({2)+1.0*x(3)+2.3*x(4)+1.4*x(5)+0.6*x(6)+1.4*x(7
) +1.3*x(8)+0.6*%(9)+2.9*x(10)+1.9*x (11} +1.1*x(12)+2.3*%x(13)+1.4*x(14)+
0.6*x(15)+1.1*x(16)+1.0*x(17)+0.5*x{18)+3.4*x(19)+2.6*x(20)+1.1*x(21)+
2.9*x(22)+2.1*x(23)+0.8*x(24)+1.4*x{25)+1.0*x(26)+0.5*%x(27)-5500;
if gconstmp<0,
g{l)=g(l)+gconstmp"4;
end
%¥ constraint 3
geconstmp=1000-x(1)-x(2}-x(3)-x(10}-x(11)-x(12)~-x(19)-x(20)-x(21);
if gconstmp<0,
g(l)=g(l)+gconstmp”4;
end
5 constrain:
geconstmp=2200-x(4)-x(5)~x(6)-x(13)-x(14)-x{15)-x(22)-x(23}-%(24);
i1f gconstmp<0,
g(l)=g(l)+gconstmp"4;
end
5 constraint L0
geconstmp=1800-x(7}-x(8) -x(9) -x(16)-x(17)-x(18)-x(25)-x(26) -x(27) ;
if gconstmp<0,
g(l)=g(l)+gconstmp"4;
end

else,
g=inf;
end





