
T'OEPT,TTZ M,ATR,IX

VLST

PROELEMS, FINTTE RINGS AND

AR.CHITECT{JRES

by

Christopher J. Zarowski

A thesis

presented to the University of Manitoba

in parrial fulfillment of the

requirements for the degree of

Doctor of Philosphy

1n

Elec trical En gineerin g

Winnipeg, Manitoba

@ Christopher Jonathan Za¡owski, 1988

Permieeíon has been grant.ed
to the Natíonal- T,åbrary @f
Canada to microfítm t,hís
thesi-s and to Ì-end or eel-t
copies of Èhe fíl-m"

The author (copyríght owurer)
has reserved ot.hen
publ-ícat.ion ríghtsu and
neíther the t,hesís nor
ext.ensíve extracts from ig
may be prínted @tr otherwåee
reproduced cdithout his/her
wri.t,ter¡ permíeeíon

"

l,uaut,orieation a étê accordêe
å i-a tsi.bl-iothðque y¡at,ional-e
du Canada de mícnofílmer
cet,Èe thðse et de pnêter ou
de s/endre dee eNenpJ-aíres du
fíl-m,

l,n aut,eur (tieul-aire du droít
d u autei¡r) se rêserve l-es
a¡:Ères droit,e de pubticat.åon;
ni l-a Èhèee ní de 3-ongs
exeraít.s de eel-l-e-cí ne

.A.C(1oI. venË etE'e 3. mpr]. mes ou
autrement reprodu$.t,s Êana son
autorieatlo¡l ôcríte

rsBN 0-31-5-481-06-4

TOEPLITZ MATRIX PROBLEMS, FINITE RINGS AND

VLSI ARCHITECTURES

CHRISTOPHER J. ZAROI^ISKI

A thesis st¡b'irted ro thc Ëaculty of Gracruate stuclies of
the u¡riversity of Ma'itoba in partiar furfiilnle¡lt of trre requirerìe'ts
of the degree o[

DOCTOIì OF PH¡LOSOPI{Y

o t988

Permission has bee¡r gra'ted to tl:e LIBRARy oF THE uNlvER-
s¡TY oF MANITOBA to re¡rd or seil copies of tr:is trresis. to
the NATIONAL LIBRARy oF CANADA ro rnicrofirnr rrris
thesis a¡rd to lend or seil copies oi the firm, and uNlvERsrry
MICROFILMS to prrblish an absrracr of ¡his thesis.

The author reserves other publication righfs, anrJ neither thc
thesis nor extensive extracts from it may be printec or other-
wise reproduced without the author's writte¡l peimissio'.

BY

AtsSTRACT

This thesis is concerned with the solution of certain problems involving Toeplitz
matrices. Specificatly, the inversion and/or LDU factorization, reflection coefficient
computation, and the solution of Toepliu systems of equadons are alt of interest.
These Toepliz matrix problems may be solved in many ways, but of particular interesr
a¡e the Schur and split Schu¡ algorithms. A parallel-pipelined processor a¡chitecrure
for the implementation of the Schur algorithm is due to Kung and Hu, and we simi-
larly develop an architecture for the split Schur algorithms. In both cases rhe parallel-
pipelined processor system is a linear a:ray of O (n) processors (toeplitz marix is
order n). The resulting machines have dme complexiries of O (n). A Schur algorithm
for the Hermitian Toeplitz matrices of any rank profile is developed as well, and a
parallel processor implementation of it is considered. This latter algorithm is based
upon the Levinson-Durbin algorithm for such matrices developed by Delsarte, Genin
and Kamp. The behaviour of the Schur and split Schur algorithms under fixed-point
arithmeric implementation conditions is considered. It is found that they are numeri-
cally stable, but that one must bewa¡e of ill-condirioned input data. To handle the ill-
conditioned data cases, quantization error-free computation implementations of the
Schur algorithm are considered. [t is shown that quantization error-free computation
should take place in finite rings and fields. Hensel codes and ràtional arithmetic are
shown to be unsatisfactory quantization error-free computation methods. euantization
error-free computation in the finite ring of integers modulo pr, denoted Zo,, is con_
sidered for the special cases of p =2n * I. Ha¡dware structures for modulo p' arith-
metic (addition, subtraction, âod multiplication) are described, and a technique for
mapping integer data into Zo' without the need for integer division is presented. Com-
putation in the nng Zo, is advocated because it is easy to achieve a ring of large size
simply by increasing r while holding p fixed. Large rings are needed because the
quanrization error-f¡ee solution of Toeplitz matrix problems produces numbers of large
size in general. Furthermore, large quadratic residue number systems can be con-
structed from Zo, when p is a Gaussian prime of the form 2n + 1. This is useful in
the complex-valued data case.

-l
t

-4f

ACKNOWI,EDGEMENTS

The author wishes to thank Dr. H. C. Ca¡d for his patient encouragement and
supervision throughout the course of this work.

The financial assistance of the Natural Sciences and Engineering Resea¡ch Coun-
cil (NSERC) in the form of Postgraduate Schola¡ships is gratefully acknowledged.

-11 t
-

TAtsN,E OF'CONT'ENTS

ABSTRACT

ACKNOWLEDGEMENTS

TABLE OF CONTENTS

Chapær

I. INTRODUCTION

1. The Moüvation

2. Objectives

3. Contributions of this Thesis

4. Thesis Organization

2.5 The Split Schur Algorithms of Delsa¡æ and Genin
2.6 Positive Definiæ Toeplitz Marrices
21 Other Algorirhms

3. On the Origin of Toepliø Matrix problems

3.1 A Miscellany

3.2 Padê, Approximanrs
3.3 Pisarenko's Harmonic Decomposition
3.4 Gaussian Signal Deæction

3.5 The Layered Ea¡th Model - A Geophysical Application
3.6 Lattice Filters

It

iii
iv

l.l
1.1

t.2
r.3

1.4

II. BACKGROUND: ALcoRmHMS FoR ToEpLITz MATRTX PROBLEMS 2.r
l. Toepliø Matrix problems Defined Z.l
2. AJgorithms for the Solurion of Toepliø Matrix problems Z.Z

2.1 The Levinson-Durbin Class of Algorithms Z.z
2.2 T'he Trench Algorithm and the Gohberg-semencul Formula Z.g
2.3 T\e Schur Atgorithm Z.t6
2.4 The Ba¡eiss Algorithm Z.zt

2.24

2.28

2.29

2.30

2.30

2.32

2.33

2.34

2.35

2.42

2.49
REFERENCES

-lv-

Chapter

III. SOME FI.IRTHER RESI.ILTS ON THE SCHTIR
AND SPLIT scHLrR ALcozuTHMS

.................... 3.rl. The læ Roux_Gueguen and Kung_Hu Schur
Aìgorithms are Equivaient

2. A¡ lnverse Mapping

;;;il;
of Any Rank Pronte
3.1 A Summary of the Delsane, Genin and Kamp Algorithm
3.2 Ttre Kung and Hu Schur Algorithm
3.3 The Desired Result
3.4 Numerical Examples

REFERENCES ..

3.1

3.3

3.3

3.4

3.6

3.7

3.rr

IV. PARALLEL.PIPELINED PROCESSOR ARCHITECTURES FOR THEscHUR AND SpLrT scHUR ALCORTTHMS
4.11' Primary Issues in the vLSI Imprernentation of parallel-pipelined

Processing Systems
4.12. Parallel-pipelined Archirectures for the Schur Algorithm 4.43. Parallel-pipelined Architecrures for the

Split Schur Algorithms
4.n4' Para'el-piperined Architectures for the schur Algorithm forHermitian Toeplitz Matrices of Any Rank profile

3. l5

REFERENCES . 4.17

4.30
V. THE BEHAVIO.IR OF THE SCHUR AND SPLIT SCHUR ALGORITHMS UNDERFDGD.POTNT ARITHMETIC CONDITIONS

5.Il. Literature Review
5.12. Analysis Assumptions
5.63. Fixed-point Arithmetic proprties of rhe Schur Algorirhm 5.g3.1 Analysis
5.g3.2 Discussion and Simularion

5.104. Fixed-poinr Arirhmetic proprties of the Split SchurAlgorithms
S.n4.1 Analysis

4 2 lìicn,rooin- ^-¡ o:- r .. 5-l)

JF'ERFNTEC

5.t2
5.t2
5.t7

5.20

Chapær

VI. TFIE QUADRATIC RESIDUE NUMBER SYSTEM, FAREY FRACTIONS, AND
HENSEL CODES

6.t
l. Rational Arithmetic

6.2
2. Hensel Codes

6.2
2.1 The order-N Farey Fractions and the Ring Zo, 6.4
2.2 The Fietd of p -adic Number5 0e 6.6
2.3 Hensel Codes finite Segment p_adic Numbers) 6.10
2.4 Restoring the Elements of X as Valid Operands 6.15
2.5 Conclusions

6.21
3. Finite Rings and Fields

6.21
4. The Quadratic Residue Number system and Farey Fractions

4.1 The Conventional euadratic Residue Number System
4.2 How to Include Rational Data
4.3 What Elements arc in 20, ?

6.24

6.25

6.26

6.27

6.30
REFERENCES

VII. AN ERROR.FREE FORM OF TFIE SCHUR ALGORITHM 7.I
l. Oprions

7.1
2. Error-Free Schur Algorithm:

Nonsymmetric Toepliz Matrix tnput 7.z
3. Error-Free Schur Algorithm:

Symmetric Toepliø Marrix Input 7.5
4. Enor-Free Schur Algorirhm:

Hermitian Toepliz Matrix Input
5. Size of Modulus Needed

REFERENCES

7.6

7.8

7.10

-vi-

Chapter

VIII. SOME DESIGNS FOR COMPUTATION T{ Z .-p'
l. Seriai and Paraltel Architectures for Addition and

Multiplication ln zo,
l.l Ha¡dwa¡e for Modulo p Arithmeric
1.2 Arithmeãcin Zr,
1.3 Parallel Hardware for Modulo p' Arithmetic
1.4 Serial Ha¡dware for Modulo pr Arithmetic
1.5 Asymptotic Area and Time Complexities

2. Mapping From the Integers o ttre Finite Ring Zr,
2.1 Case p = 2^ + I

2.2 Case p =2o - I

2.3 Mappingfrom Zo, to Z

REFERENCES

IX. FAULT-TOLERANT DESIGN
l. Types of Faults

2. Fault Tolerance in VLSI Based Systems
2.1 Testing and Restructuring

2.2 Tnpte Redundancy V/ith Voting
2.3 Error Control Coding Theory Approaches
2.4 Techniques Peculiar to Residue Number Systems
2.5 Soft-Error Filrering (SEÐ

3. The Prospects for Reliable computation in Large Finite Rings
REFERENCES

X. CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH
l. Summary a¡rd Conclusions

2. Suggestions for Future Resea¡ch

REFERENCES

8.r

8.1

8.5

8. l2

8. l3
8. r9

8.22

8.27

8.28

8.31

8.33

8.35

9.1

9.t
9.2

9.2

9.3

9.6

9. r0

9.r2

9.13

9. r5

10.1

l0. r

10.2

10.6

-vu-

Appendix

A. Finite Precision Arithmetic Simulator for the Schur Algorithm
B. Summary Tables for Ourput from the program in Appendix A
c. Finite Precision Arithmeric simularor for the symmetric split schur

A-lgorithm (Checks Expression for Vart^Kzl)
D. Summary Tables for Output from the program in Appendix C
E. Program o Compute the Theoretical Value of Varl\Kpl

for the Symmerric Split Schur Algorithm
F. Program to Produce Nominal Normalized Autocorrelation coefficiens

for 4th Order AR Processes

G. Program to Compute the Experimental Values of Var[L,Kr]
for the Symmetric Split Schur Algorirhm

H. summary Tables for output from the programs in Appendices E and G
I. Program to Test if j e 20,

L Summary Table for Output from the program in Appndix I

-vut-

Chapter I

XNT'RODUCT[ON

1. The Motivation

This thesis is concerned with a parricular class of matrix algebra problems. The
matrices of interest here a¡e finite-dimensional, nonsingular Toeplitz matrices, and

these may be real-valued or complex-valued. We are specifically interested in the
problems of Toeplitz matrix inversion and/or LDU factorization, Toeplitz system solu-
tion, and reflecdon coefficient computation. We refer to these problems as ,,Toeplitz

matrix problems" in the remainder of this thesis. Note that these problems a¡e more
precisely defined in Chapter tr.

As will be demonstrated in Chapter II, these Toeplitz matrix problems a¡ise in
diverse ways and have enormous applications in all areas of science and engineeúng,

and for this reason they have been widely studied by many resea¡chers for many years.

Thus, the study of Toeplirz matrix problems at a theoretical (i.e., mathematical) level is
certainly well motivated.

In the engineering literarure especially, most of the theorerical srudies of Toeplitz
matrix problems revolve around the issue of how to solve them in a computationally
efficient manner. The sea¡ch for computationally efficient algorirhms is often driven
by the need to solve Toeplitz matrix problems at a speed that is sufficient to meet the

needs of the application at hand. Studies in this a¡ea have yielded rnany fast algorithms
for the solution of Toeplitz matrix problems, and in the process have yietded much

insight into the properties of Toeplitz matrices. Note that classically it is intended that

such efficient algorithms shall run on conventional sequential processing systems.

t.2

More recently, due to the need for real-time solurions to Toeplitz marrix prob-

lems, there has be"n aãarch for algoritnì, t¡ut a¡e amenable to paraJlel processing

system implementarion. In this regard it has been discovered that some of the classical

algorithms for the solution of Toeplitz matrix problems are suitable fór such an imple-
mentation while others are nor.as suitable (see chapter rV).

Since some Toepliø marix problems are ill-condirioned (see Chapter V), conven-

tional finite precision arithmetic implementations (i.e., fixed-point or floating-point

arithmetic) of these algorithms wilt yield poor results (Chapter V). Thus, we are

motivated to investigate the quantization error-free implementation of solutions to the

Toeplitz marrix problems (see Chapters VI and VII).

Because of the high complexity of quantization error-free parallel processor

implementations of the algorithms for solving Toeplitz marrix problems, very large

scale integration CVLSÐ æchnology, or even wafer scale integration 6VSÐ technology

will be needed to successfully implement them. Since quantization error-free compura-

tion should take place in a finite ring or field (see Chapter Vf), we a¡e motivated to

examine VLSIAVSI implementable a¡chitectures for a¡ithmetic in finite rings (see

Chapter VItr).

2. Objectives

Given the modvations of the preced.ing section, this thesis seeks to srudy certain

algorithms for the solution of Toepliu matrix problems, their finite precision a¡ithmetic
properties, and the quantization error-free parallel processor implementation of them

using a¡ithmetic in finite rings. Note that the finite precision parallel processor imple-

mentations are very similar to the quantization error-free parallel processor implemen-

tations.

1.3

3. Contributions of this Thesis

To the knowledge of the author, this thesis represenrs the first artempr at applying
quanrization error-free computarion techniques to the solution of Toepliø matrix prob-
lems. Arising from a srudy of this problem, the contributions of this thesis a¡e:

(i) A new derivation of the split Schur algorithms of Delsarte and Genin based upon

the Kung-Hu form of the Schur algorithm, rather than upon rhe Le Roux-Gueguen

forrn of the schur algorithm (see chapter II, section 2.5).

(ii) A demonstration of the fact that the I-e Roux-Gueguen and Kung-Hu Schur algo-

rithms are acrually the same algorithm (see chapær [II, secrion l).

(iii) An inverse mapping from the split Schur va¡iables to the Schur variables is
developed (see Chapter [II, section 2).

(iv) A Schur algorithm for Hermitian Toeplitz marrices of any rank profile is

presenred (see Chapter IIf, section 3).

(v) Parallel-pipelined processor arrays to implement the split Schur algorithms of
Delsarte and Genin ¿rrc presented (see chapter [v, section 3).

(vi) A parallel-pipelined processor implementation of the Schur algorithm for Hermi-
tian Toeplitz matrices of any rank profile is discussed (see Chapter IV, segion 4).

(vii) The behaviour of the Schur and split Schu¡ algorithms when implemenred wirh
fixed-point a¡ithmetic is studied using the method of Alexander and Rhee. It is

shown that the Schur and split Schur algorithms a¡e numerically stable, although

one must bewa¡e of ill-conditioned roeplitz matrices (see chapter v).
(viii)It is shown that quantization error-free computation should only rake place in a

finite ring or field, and that Hensel codes and rational a¡ithmeric are ineffective
quantization error-free computation methods (see Chapter VI, sections I and 2).

(ix) The quadratic residue number system is extended to include complex-valued data

with rational-valued real and imaginary parts (see Chapter VI, sections 4. i and

4.2).

1.4

(x) A conjecture concerning the structure of a certain subset of the finite ring Zr, is

stated, and cenain evidence is presented that supports the conjecture (see Chapter

VI, section 4.3).

(xi) Quanrizarion error-free forms of the Schur algorithm a¡e developed (see Chapter

vu).

(xii) serial and parallel vLSI¡1vsI implementable hardware sructures

subtraction (via negation), and multiplication modulo p' when p

presented (see Chapter Vflf, secrion l).

(xiii)A vLSVlvsI implementabre architecture for mapping from the

finite ring zo, is presented, and the problem of mapping data in

integers is also considered (see Chapter VIII, section 2).

for addition,

=2" * I are

integers to the

Zr, back to the

4. Thesis Organization

The subject matter of this thesis is organized into nine chapters. Chapter tr
largely presents background material that is either essential ro understanding the

remainder of this thesis, or else helps the reader to understand how this thesis relares

to the work on Toepliu matrix problems that has already been done by others. In this

chapter all of the classical methods for solving Toeplitz matrix pr.oblems are presented,

and a listing of various arcas where Toepliø matrix problems arise is presented.

Chapter III presents some new results concerning Schur and split Schur algorithms.

Chapter tV describes various parallel-pipelined processor arrays for the implementation

of the Schur and split Schur algorithms. Chapter V considers the behaviour of the

Schur and split Schur atgorithms under fixed-point a¡ithmetic implementarion condi-

tions, and shows that the Schur and split Schur algorirhms are numerically stable.

Chapter VI describes the opdons available for implementing quanrization error-free

computarion, and rejects two of them leaving only computarion in finite rings and

fields. Chapter VII presents quanrizarion error-free forms of the Schur algorithm.

These forms a¡e suitable for implementation with a¡ithmetic in finite rings and fields.

Chapter VIII presents hardwa¡e a¡chitectu¡es for arithmeric in the finite ring Zr,, rrrrd. a

1.5

means of mapping data from the integers into this ring (and vice versa). Chapter iX
considers the prospects for successfully implementing fault-rolerant designs of the sys-

tems that compute in zr,, since these systems will be quiæ large in general (as is
shown in Chapter VII). Their large size will cause them to suffer from serious relia-
bility problems unless fault-tolerant design merhods are employed ro mitigate them.

Finally, Chapter X presents the conclusions and several d.i¡ections that furure work
may uke.

Chapter II

EACKGROUND: ALGORITHMS FOR TOEPLITZ, MATRIX
PROBT.EMS

We now present, as background material, a discussion of the origin of Toeplitz
matrix problems, and classical algorithms for their solution, as well as a few more

modern approaches ¡o the solution of these problems. I-ater chapters of this thesis will
often d¡aw upon the material of this chapter. In particula.r, we shall see that some of
the algorithms to be presented are more amenable to parallel processor implementation

than others.

X. Toeplitz Matrix Froblems Defined

In this thesis we are interested in the solution of three problems:

(i) Toeplitz matrix inversion anüor LDU factorization.

(ii) The solurion of Toeplirz sysrems of equarions.

(iii) The computarion of reflection coefficients.

The need to solve these problems arises in many different circumstances, as we,ll soon

see. A Toeplitz matrix T is simply

T =ft¡j)@*l)x(n+t) =[tj-iJ1z+l)x(n+r) ,0<i,j Sn ,

where T is (n+1) x (n+1), and it may be rcal or complex valued, and r¡¡ is the ele-

ment in the ith row andi th column of T. Since t¡¡ = t¡_r, all of the elements along a

given diagonal of I a¡e equal to each other: this is the meaning of Toeplitzness. The

LDU factorizarion of T is

T =LDU ,

where L is a lower triangular matrix, D is a diagonal matrix, and u is an upper

2.2

triangular mau'ix. L and U consist entirely of ones on the main diagonal
(U =[u¡i],L =fl¡j),u¡¡=li¡= I for all i). Reffection coefficienrs will be defined
later on' we note that reflection coefficients a¡e often akematively called par1iai cone-
lation, or PARCOR, coefficients in the literature.

2. Algorithrns fon the solution of roeplitz Matrix Frobtems

Toeplitz matrix problems have been, and continue to be, the subject of intense

study' Some of the reasons for this a¡e considered in section 3. New reasons to be

interested in Toeplitz rratrix problems emerge periodically. As a result, many algo-
rithms for the solution of Toeplitz matrix problems have appeared over the years, and

we will consider some of these algorithms here.

2.I The l-evinson-Du¡bin Class of Algorithms

Consider the linear system of equations

Tnan=en, (l)

where T,, is a complex Toeplitz matrix of d.imension (n +l) x (n +l), and we have the

complex vectors

Qn = f1n,o Qn,l dn,nfT ,

en=fon0 0]r ,

where a,, is the (¿+l) x I solution vector. Note that r, is not necessarily symmerric,

or even Hermitian. The Lævinson-Durbin algorithm will be used to obtain an and on

given T,r. twe will let I,, =[tj-iJln+r)x(n+t) where i is the row index and i is the

column index- Note that historically Levinson [i] only considered the case where ?",,

was real and symmetric, and en,o = I (this is merely a normalization convention).

Certain extensions were made by Durbin [2] to this original problem. The problem in
(1) is a well-known generalization of the early work in [1,2], and is in fact based upon

an exercise from the texthok t3l by Roberts and Mullis (see problem 11.13 on page

s51 of [3]).

(2)

)7'

Define the (n+1) x (n+1) exchange matrix /,, ö the matrix consisring entirely of
ones along the main antidiagonal but with zeros elsewhere. For example,

lo o rltr= l0 I 0l
LrooJ

It is easy to see rhat J] = In ((n+l)th order identity marrix). It may also be readily
verified that

JnTnJn = TI (3)

Property (3) is called persymmetry in Blahut [4] and in Datta and Morgera [5] (Note:

On page 362 of [4] it is said that JnTnJn =Tn, but this is false !). If I,, is symmetric

then clea¡ly JnTnJn =Tni this is catled cen¡osymnetry IS].

Define the column vectors

t" = ft*+t tJT ,

tr=lr-qk+t)...r_rlT ,

and so

,r.,=lîi;;] = l¡: r-) , (5)

-^^
where t" =J¡rt" , t) =J¡rtr, Ð that the hat denotes a vector with its elemens written
in reverse order. We may augment (1) as

Tt [q b*] = [er ê*]

We will letap,s= bt,o= I (normalization). If we expand (6) we get

(4)

Tk

r br*
a*.J ur,:u

o¿0
00

00o o¡.

l= I I

(6)

(7)

dk,*-r bt,t
at,t I

It is clea¡ that

(8)

2.4

r*, ft :r]= lîrxl
where

,'rk
* = tlb¡ = ltçr+t>_ibk,¡ ,

j=0

via (5) and (6). Expanding (B) gives

T*t

10

ak,k bt.t
01

Postmulriplying (10) by

where the reflectíon cofficienrs are

k

Zti-1t*¡¡ap,¡ , (9)
t=0

=

Ir
0

ó
6p

tÏat

6p

0

.

ó
Tt

lk-

I t K[*rf
Lx[., t .i '

(10)

(11)

(12)K[*t=-" , K[,. =-\kÇ¡ -'t --o*

yields

T**t la**t btr*tl = f"ut ê**rfT , (1 3)

where

o&+l = ok +\kK[+r = oÈ +,lt K[+t = o¿(1 - K[*ß[*) , (14)

and

, dk+t,i=ek,i+K[*rbr,o+l_i,(0<t<k+1) (15)

b*t.¡ = bt.¡ + K[*ra¿,¡r+l_i, (0 S t < È+1)

where ak,k+r = bk,k+t = 0 , dk*r,o = å¿+1,0 = 1. Thus, we have derived the Levinson-
Durbin algorithm for solving (1). This derivation is essentially the same as thar in
Kung and Hu [6].

2.5

we may summarize the previous algorithm in the form of pseudocode:

.
Og:=f6i

açp := l;

å6,6 := 1;

For k := 0 to n_l do b€gtn

k
rl¿ := EtQr*ty¡bt,¡;

i=0

k

It := Et¡<r+tf*,ii
¡=O

rì¿
Ái+t l=

6¡

K[*t ,= -'o ,
Ç¡.-

o¿+r != o¿(1 - K[*$[t);
For i := 0 to k+l do begin

dk+t.i t= ak,i + K[*þp,*+t_¡i

but,¡ := bt,¡ + K[*p¿,¿¡y_¡i

end;

end;

The input to this algorithm is T,, from (1). Clearly, the algorith* tu, a time complex-
ity of O (nz) on a sequential processor. This is a more efficient means of solving (1)

than Gaussian elimination which requires o(n3) operations on a sequential processor.

The Lævinson-Durbin algorithm yields a uDL decomposirion of ?",,r. This may

be demonsrated as follows. Via (10) we may write

rtUP=Ðþ, tfrr=2;u, (16)

where.

2.6

uP=

tA-rJk -

1 bt r bçt.t-t bt.,*

ô i" . . bçt,t-z br.t-t

..::
00 r bt,t00 0 I

I 6 ooat.r
i ::

ak-t,k-ta*t.t-2. I 0
ak,k Ctt,t-t . . atl I

ooo o oxor..0 0

l, (L7a)

"x..o¿-rôXXX6p

oox.. x x
0ot.. x x

0 0..or_r x
0 0.. 0 6¡

, (17b)

sL-,Lk-

sU-¡þk -

where the enrries ma¡ked 'x' denote 'don't care' entries. The second equation in (16)

follows from the facr that J¡rT¡J¡J¡at = èt which implies that T[âk = èk so

âfrr = â[. o,

fatkat,çl ...at tllI¿=[00 0o*] (1g)

From (16)

ftrru! = ttvt = D{uf - Dk = aios {oo o, o*-, oo } , (re)r '-)
snce L!>,þ is lower triangular na z{uf is upper triangular. Thus,

To=(L!)-torlu¿¡-r, (20)

or

T*t = uf o;ttf et)
Equation (21) is equation (2.8) in Kung and Hu [6]. Hence, given T¿ and]¿ in
Tkxk, =lt we may solve forx¿ via (21). This will take o(&2) operarions.

From (20), the determinant of Tp is given by

det(T)= I1o, , (22)
i{

and from (22)

2.7

det (T¿)
ak=

det(Te_r) (23)

Thus, ir is clear thar the l-evinson-Durbin algorithm will compure r;r if and only if
det(Tr) * 0 for k =0,-..,n. This implies that the Levinson-Durbin a-lgorithm must be

terminated if and when o* = 6. If ?"" has singular leading principal submatrices, and

yet T;1 exisrs, then the algorirhm of Rissanen [7] may be used ro compute T;r in

o (n2) time on a sequential processor. If Ç is Hermitian, so that Tn = Tl (H denores

the Hermitian (complex-conjugate) rranspose) then Delsarte, Genin and Kamp [g] have

shown how to modify the Levinson-Durbin algorithm to accommodate the singular

submatrix case.

It is worth considering the special case of Hermitian Toeplitz matrices separately,

since some simpLifications in the previously presented Levinson-Du¡bin algorithm
arise, and this special case is particularly useful in practice . ff Tn is Hermirian then

JnTnJn = Tn , (24)

where the ba¡ denotes conjugation, and ir is clearly tn¡e thar r-i = t. This is the

ceüro-Hermitían sytrunerry properry [5]. Because 7,, is Hermitian and persymmetric it
is called Hermiilan persymmetríc t5l.

As before, Tkak = e¿ = fo¿ 0

(2s)

where

(26)

Since

0lT so that

'lrl = [;]Tt*

rt*,r,*,ft] = r,., fí:] = [ä]

k_
Yt = f,r**ç¡4t,¡

i{

we can use (24) to write

which may be conjugared to yield

where

Kr*, = -! t
6¡

and so

o&+l = o¡ + K¡*1j¡, = o¿(l _ I Xr*, 12)

Clearly, o¿ is real for aLl k, since o6 = f6 is real and I Kr*,
K*yThus, the (È+l)th reffection coefficient is

Kr*, = -Tk
6p

From (28),

ak+r,i = Qk,i * K*ßt,*+r-i, (0 < t < k+l)

where Qk,o = L, ak,k+t= 0 for all Ê = 0,1,...,n-1.

Thus we may summarize rhe Levinson-Durbin algorithm for
matrices as follows:

2.8

ro*,rr*,[t] = -r.,ftr] =
lX]

Combining (27) with (25) yietds

rk*,ak*,=rk+,

{t-l
'F K*,1;]}=

ltr]
* K¿*,

¡;] = êk+, ,

'r.,1#rl = iä]

I is the

(27)

(28)

(2e)

magnirude of

(30)

(31)

Hermitian Toeplitz

06 i= fgj

49,g := li
For t := 0 to r¡-l do begrn

k_
Y¡ := ltlt+t>-iak,iit{

?.9

Kr-, ' l= -Ir ,Æ1r
c¿'

o¿+l r= o¿(l - I Ko*, lt);
For i := 0 to È+l do begin

dk+t,i t= dk,i t K*úp,t*t_¡i

end;

end;

The case where I,, is real and symmetric follows trivially. This case is also discussed

in Roberts and Mullis [3] (see pp. 520-523).

Since Tkdk=e¡,, frâr=èo (via (24)), and so à[ry =âl which is àffr=è[
and this yields

Lfrr = 2,{ e2)

where L! arrrdL{ have the same form as in (l7b). As well, Tplp =ã¿ yields

rkøîf =zL , (33)

where r*¿ has the same form as in (17a). combining (32) and (33) gives

rArLtt kØtf = z{ØÐH = LfÐt - Dk = a*s{oo
"* } e4)r.)

Thus,

T*t = ltf¡H o;ttf . (3s)

The relations in (22) and (23) continue to hold.

The Levinson-Durbin algorithm has been derived and extended in various alterna-

tive ways not covered here. Other derivations and extensions may be found in Blahut

[4], Hänig and Messerschmin [9], Friedlander [10], carayannis [11], Robinson and

Treitel [12], Bruckstein and Kailath [13], and in Ma¡kel and Gray [14].

2-2 The Trench Algorithm and the Gohberg-semencul Formula

Trench's algorithm [15] is another popular "classical" approach ro the solution of
Toeplitz systems of equations and Toeplitz marrix invenion. Zohar [16] argues that

2.10

Trench's original derivation is unnecessarily complex and so znhar presents a

simpiified derivation. various extensions to the original Trench algorithm are to be
found in Akaike [17] and Zohar [18]. The derivarion thar we presenr below is essen-
tially that of Zohar [16]. Note that the Trench algorithm also presumes that the lead-
ing principai submatrices of Tn are nonsingular. This is cailed srong nonsingulariry
in Zohar [16].

Define the column vectors

tt+t = ft,*r t lT ,

t[+t = [f1r*r¡ r_r]r ,

so that

T*t (37)

Define

B*t = Tflt (38)

Thus,

Tk*tBk*t = = Ik*t, (39)

- I rk t*".,1-
lití*,)t to

-J

- l- Mk øfu1- l{uí*r)' uf.rl

I rru1o,¡*t@¡*)r rþÊ,¡+b¿D*rtf*, I [r- ol
f(rí+r)I M ¡+t s(b'r*)r (t[q)r bf*, +afl,rsJ =

L
o t

J

(36)

(40a)

(40b)

(40c)

(40d)

which implies that

T*Mt + tf+tþ[¡)r = Ik ,

Tt,bÊt +åfl,6, -0,
(t[t)r Mt + ts(b[a1)r = 0,

(t[*)rbÊ*1 +åfl,r'= I.
Premultiplying (40a,b) by g¿ gives

Mk = B¡ - B¡tf*t(b[*)r ,

2.tI

bfot = -b¿o*rBrtf*,

which combine to yield

Mt=Bt+

Substituring (41) inro (38) gives us

bf+r
(41)

(42)

JkBkJk = BI,

us to write

(43)

(44)

(45)

(46)

l r, * bl*t@[*)r
.l

Br*r=l bf*' bful
L @[¡)r uf-r)

We know that J¡TpJp =Tl and so JpT;tJp =T{ which implies that

i.e.'Bp is persymmetric as is T¿. This fact, combined with (42), enables

D - lr*0., (Êi*)' I
"r*, - lÊí*, ,, * tí.,-râf*.>, |

.

l, "r-- å*o-,-J

If we let B¡, = tb¡j*lçr*l)x(È+l) then via (42)

bi¡,r,*r = b¡i,t *
ft W.'t(bí*trr)ii, (0 < t,i s k)

where [X]¡ means 'component 17 of the matrix X'. From (43),

br*r.¡*r,r*r = b¡it " #ûr*,
(&*,)tlü, (0 < r i s k) .

Subtracting (44) from (45) produces

bi+r.¡+r,r+r = bi¡,t*r " #ûr*,
(á."*,)r - bÊ*t@[*ùr]¡¡ ,

and using (a4) and (45) again we ger

bi-t,¡-r,**r = bi¡.t*r * *wf.t@[*t>, - Êí.(tf*),],_,,,¡ _,

where in this instance I < i,j < &+1.

bf¡(b[¡)r

, (47)

2.12

r[Ê"r*, +åf*,ff*, =6,
and so we have

Êf,*, = -bf*rB[ff.,

which may be expanded as

l rt-, o !!eÐ' I

âr*,=_br*,L'É-' .{ ,*l
[,j,]

o l#.ryft*u¡,r.f
'k+t l, <unr|* * bftr*,

J

This can be rewritten as

l*l luiruø' I

k=lTl Lw':þl [,t,]
If we compure the product Bp*rTr*, using (37) and (3g) then \ile get

From (40b)

From (50)

or

JkTkJkJkbf+r + bf*rJot¡*, =g

(b[q)rT*+bf*rG[*)r =o

t orft rl rul+t + b¿o*rJ ot¿o, = g

¡48)

(4e)

(s0)

which implies that

TrÊí*, + tf*rfr*, =ç

2.r3

Ê[¡ = -bf*rlo|**,

We may expand (51) to get

l rr-,
Êí*t = -bf*, I

L

Itt
=_åro*r læ

This may be rewritten as

lbÊ(b[)' I" u*o bfll * IþÐr uf) Lt-,**,,J

.ryft*ø¡,-rr.,)]
þi)rl+b¡,ot_ç,+r¡ l

(s 1)

(s2)

I ul I utøt>, I
Êí*, _ ItFl lZ- brl
40.,=Lo j-Lþit, ,þl

Let us define cenain normalized va¡iables namely

êt+,=tf] @+-'tï]

.bÍb[,i=t,c[=ft,rr=# (53)

We can use these definitions along with (a9) and (52) to

(5aa)

(s4b)

Now, all we need is a recursion for l,¿.

From @2) nd @3)

bf*t = bæ* +
ftrrt_r(ål*r

)rlm ,

but å6¡,¿ = b*0. From (a9) and (52)

trÐrfr * r¿*r

(s5)

2.14

bf,+t,o = -bf¡ L@ÐrE + bpor¡*1) (56)

bí*t' = -bf*t tø¿¡r¡ + b¿\t_1t*t¡J ,

which a¡e the first elements of the vectors å¿c*, and b[*1, respectively. Thus, substi_

tuting (5ó) into (55) yietds

bfq = bpÙ + bf;*rtþÐr+ + b¡otp*rl l@I)rl + b¡,It_q**¡)

t?[)rl + t-<r*rl ÍkÐrfr+ r¿,.11

7tk

and this is the desired recursion for r¿. Equations (a6) (or (47)), (54a,b), (57) and the

definitions in (53) constitute the Trench atgorithm. Simply iterate using (54a,b) and
(57) until k = n-l and then use (53) and (46) (or (47)). The rime comptexity of the

Trench algorithm is O (n2¡ on a sequential processor.

We may initialize the Trench algorithm in the following manner. Consider the

case /¿ = 1, then

D1
' Dl- -,

-
t6 -t-{ |

which reduces to

Thus,

or, alternatively,

= b*0 + bfiþÐzlGÐr* * r¿*rl t4Ðrl+,_(¿+r,

Àt*r = Àt -

Tt= fl;;J

(s7)

(58a)

(s8b)

1 - t-ltt , t-t ^ tt
/v1 =f6--- ,c\=--,ci=- -,t6'f6f6

^, -- '-' Lc -
tl

-l ----r

-,o1

= ---;--t6 -t_f I t(_t_rt,

We now wish to obtain the Gohberg-sernencul formula [19], which is an alterna-

tive means of writing Tfl. The Gohberg-semencul formula expresses rfl as a sum of
products of upper and lower triangular Toepliu marrices. This fact proves useful in
certain applications to be discussed later on in this chapter.

We begin by noting that

BI, = UPOO'Lî =

?.t5

XX

iX
..
XX

_tAp'at&,_t O*'a*1

_t .
6 *'bt,t
_l .

Ç t'br,k,-t

.l'
oilbt,t

_t
O¿'

X

;
_16t'ap,t

where we have used (l7a"b) and (21). Comparing (59) with (a2) reveals that

bf =o*r '

bÊ. = otr [bt,* bt ,t-t . ' . bt,z bt,úr ,

bí = Atr Lat * at&-r . . . at,z a*¡fT

As well, f,r = or via (53). Therefore, the Trench algorirhm provides us with the same

information about Ç as the Levinson-Durbin algorithm, but in a d.ifferent way. This

tulns out to provide useful insight into the stn¡cture of Tfl as we shall now see.

From (a6) and (60a,b,c)

where b¡o.t

0<i,j <¿-1.

bi*t,¡*t,t = b¡j,* + otl lat ,¡*tbt,j*t - bt t-¡at ,*-¡) , (61)

= 6lrat,¡ " boj,p = okrbk,j (at,o= å¿,0 = l) from (43), and

From (61) we may write

(5e)

(60a)

(60b)

(60c)

Ir o oolfra^,,.?,yrbrt llo o o
I on¡ I o ollo I .btl-zhl-tl lbr, o oorr;çl : ::ll: ':l_l :": :

LTii,l-: i,ÎJl8 3 : å 'ï'J Ll:';:, ,i,

This is one form of the Gohberg-semencul formula. other

Kailath, Vieira and Morf [20]. V/e may write (62) compactly

ll llr.ll.ollo o
oJlo o

. arz ar,tf

. att a¡.zl

::l 62)
, o ortl. o oJ

may be found in

Ttr = okt Ø[,u[- LpÐ , (63)

where L[, aifrd, LI are lower triangular Toeplitz marrices with first columns

U atl . . . dn,*_t at,tlr , and [0 á¿,¿ b¡,2 bp,¡)T ,

respectively, and u[, arrrd, uI are upper triangular Toeplitz matrices with first rows

2.16

U btl bt,t,_t bt,tl , and [0 a¡.p at,z at,J ,

respectively.

2.3 The Schur Algorithm

We will now derive the Schur algorithm for Tn in (1) via the method presented in

Kung and Hu [6]. We will illustrate the method for rhe special case of n = 3 as was

done in [6]. The exrension to arbitrary n is straighdorwa¡d.

consider the augmented form of T3, where we will letT =T3,

It-rt-2t-r, to tr tz tt1
, _ I o t+t-z I r-t ro tt tzl
':lq q t_tlt_zr_116r,l '

Lo o o l r-rt-rt--ttol

and so ?n is the righrrnost four columns of f. we wish ro compure (¿-)-l and u in
(t.)-rÍ = [X I U], where this may be expanded as follows

llzol,.1 ql'-lxxxl0 0 uzzunl
L;rãr'ttrr) lxxxl o o o'r?r)

(6s)

l ró')
lo (66a)

(e)

We may write

I t Ã'í o ol - -l'1" v$z) ,¡zt
Lx{ I o oJ LulÐ ulz) uÍz)

o r9'rQ)l

"9) "9 u9r))'

where

K{=-'.t , yi
f6

The fi¡st rows of (¿
*
)-l and U are obviously

tr
=--.

lg
(66b)

[1 0 00], and ltst, t2t3l,

respecrively. From (66a) the second rows of (L')-1 and (J are, respectively,

t({ 1 0 0l , and [0 u!| u-Qr) aQ)1

Because T is Toeplitz (and so is 1), we can shift the second row of (66a) to ger

2.t7

Thus,

llii? s] . =
f'å" :!?',i;i', ¿l::s::ul,:¿rl ,.7)

l;tr,']f; fi ? s] ' =
l:!,?,',;t:,):Í:l I

'á" 8,?,, Iiil] (68a)

where

rcl= #, K5= #. (6Bb)

We have

It x;]lrrciool _ It Ki+KlKix:ol
Lrc| 1 J Lo r{ I oJ - lxg rc{+xircg I o.i '

and so the thi¡d rows of (¿')-t and U are, respectively,

¡x$ rc{+xixi t 0l , and t0 0 nl} u trrrl

We may repeat the preceding process one final time producing

I l. çl lr xi+x{xi .Ki o-1, - lulo, ulo,v{ar ¡ vJer o o o
'l

lrl tJ¡o 'x[' -x{+riixgi]t=
l,t^,,þ,;þ, 1'ö öt,ïl,J , (6ea)

where

K{= # 'K5= #, (6eb)

and so the final (fourth) rows of (¿
*)-l and u are, respectively,

tK{ x$+x{çxi+rc{rc5¡ x{+x,rx$+xix[t] , and t0 0 0 u!!t1 .

Note that we have again employed shifring to obtain (69a).

Fiom the preceding, we may write the Schur algorithm in the form of pseu-

docode:

For i := -n to n do begin

v¡(1) := r-¡ ; u¡Q) := t-¡;

end;

2.18

For k := 1 ro n do begin

- u{k)
Kt '= - ' 'K' ,ór¡'

.. (¿)

Kl:=- "r' t(
uL)*r'

For i := _n to n do begin

u.&+t);= ([y.(k) + u¡\f);

v,(t*t) ;= y-(È) + X[u¡fl:
end;

end;

Since we have (L.)-rT = (J , it is possible to write

çt)¡-lr^ =

,, ¡1, , r1l u1| u-Q)-,t
"!!^)*3

ug, ullt . . ,Itrì-,r
":a^)o o' u9r). . u{ì_rl ultn)

.::
0000u1i+tt

(70)

But what is tj ?

Suppose Tn = LnDn luo, where Ln = L)Dn , and (Jn = D^Ui. Thus the proper

LDU factorization of rn is r,, = L;D^uj. Note that the
"rt.rirk

denotes a triangular
marix with the main diagonar consisting entirely of ones. Define i^ = Tl, and so

i, = LnDn'Ùn , and since fl = U|O;rtl,we conclude that

Ln=UT,l)n=Dn, Un=LI . (71)

Running the Schu¡ algorithm with Ç as the input produces va¡iables r/ , K; , i.G) ,

and ú'(¿) that may be related to the variables KI , KI,v.G), and u-(&) produced by the

Schur algorithm when In is the input. We will now find this relationship, and in so

doing we will answer the question of the previous paragraph.

It is clea¡ ttrat r¡ = r*¡ whert r¡ ir an element of in For k = L, from the Schur

algorithm we have

2.19

KI= # =-I=r, '

)r -
;1lt t-L ,-ÍKi =lP=-*-=t{

Thus we surmise tnat rcf = K[and rcí = rc[. In fact, we a]so have

v¡(e)-u*!u*,,,u.G)=rjfl**,, (.¡z)

and this may be proven inductively as follows. Suppose that (72) holds for k, so råen

-'-r ù{r) ,9>xl=--ã=-ft=*r,

ur = _19) ,f¡ ..r"K ùE; =-6=r'
As well,

¡.(k+r) = ¡i[;.{r,) + r,fl

= x[u!f!¡*, + r$ì¿ = vl,&lrÀrxr ,

;-(t+t¡ - ¡.(tc) + X¡,;,fl

= uSlt*t + x[v$)¡, = ¡¿I,4årÀrxr ,

and so (72) is true for È+1. Therefore, (72) is valid by inducion.

Because of (72), row j (0 < i < n) of U, is

to o ù_d,*t) ;_ft\ = ¡o o vd.r+rl ,f_î\
But L,, = ùI from (71) and so

Ln=

,ór) o ^
v{r) u6zr " ä

:

,l') rl|l. . vd"+t¡

Since Tn = LnDnrUn we must have

(73)

2.20

Dn = diag

- díag

that is,

vók) = u&\t

This is equation (3.13a,b) in t6l. The proof of (76)

essentially contained in Appendix A of [6].

If we compare (20) with (76) we see thar

"é^.',Ì

,9."] ,

{"ó" "ó"

{,ó',
.,i,

['d";ij]: ;,i, I
l: : :l Q6)

lo o.ur^+tll

I

,t]

that

(74)

(75)

Finally, from (73) and (70),

[, J')

l'T"'þ: 3r.=
|

fr^i,r ,,e1 . vJ"*r¡

we have just presented is

o¿ = vór*l, (ll)
for & = 0,1,...,n. Hence the Schu¡ algorithm will work only when the leading princi-
pal submatrices of Tn are nonsingular. From (70) (t[¡-tfr = ¿¡r and from (20)

Ltrr=DúuÐ-l and so tf =çti¡-l qnote that we are assuming'T¿ is srrongry non-

singular again). If we compare the elements in the lower left corners of L! (see (17b))

and (¿r')-l (generalize derivation in equations ,,ó4) - (69a,b) to arbitrary n) we get

KI = or,*

From (lÐ KI = dk,k, and so the reflection coefficients K/ produced by the Schur algo-

rithm a¡e identical to the reflection coefficients K/ produced by the Lævinson-Du¡bin

algorithm. It should be evident that K[in the Schur algorithm equals K[in the

Levinson-Durbin algorithm for all k as well. This fact follows by using an argumenr

simila¡ to the one used in proving ttrat É/ = Kí and XI = rc[.

If r,, is Hermitian then it can be shown that the schur algorithm becomes:

For i := 0 to n do begin

2.2r

u!! := t¡ ' u.{t) = t;;

end;

For È := I to n do begin

u {k)
Kt l=Á ' u#\t'
For i := 0 to n -k do begrn

u{,?t ,= a$I¡*1 + Korafl;

u.G+L) := Kpu9ì_¡*, + u;f/;
end;

end;

We have used the fact that t|= çU)¡H, and vJe) = "!f\, so that

v,G) - t!ì_,*, (78)

holds.

2.4 The Ba¡eiss Algorithm

Ba¡eiss [21] considers the solution of the Toeplitz sysrem of equatio ns Tx = b
where 7n is (n +l) x (n+l) and is not necessarily symmerric (i.e., T has the form of ?",,

in (1)), and b =Lbo år,¡r is an arbitrary column vector. T may of course be

complex-valued- Brent and Luk [22] compactly write the Bareiss algorithm as fol-
lows:

¡(o) ¡= f ; b(o) :- b;

For & := I ro n do begin

. û-¿)¡t"0
l7l -p i=

f6

7(-t) .- f(-¿+l) _ m_¡Z_rTG-L).

6Çk) .= 6?k+r) _ m_kZ_kb?-Ð.
. (¿-l)
L A,ktrt¡ i=;(-rt;
tn,n

7(k) y7(&-l) - mkzkTek).

6(k) .= 6G-r) - mtZr6(t).

2.22

end;

Z -p and Zp aÍe shift matrices defined by

z-k = tz¡l-k)1= [ð¡_;_È f , zt, = ¡z¡f\ = [ôr._i*rl (7g)

where ð is the K¡onecker delta. If z-p is applied to a matrix as indicated in the pseu-

docode above, that matrix will b,e shifted down by ,t rows and the top k rows will be

filled in with zeros. Similarly, Zp applieÅ, to a matrix as ind.icated above will shift thar

matrix up by & rows and will fill the bonom & rows with zeros. Thus Z_¿ is a down-

shift matrtx, and Zp is an upshif"t matrix.

It is evident that the Ba¡eiss algorithm produces a sequence of systems of linear

equations, namely

7r D, - 6?r) , T{o)x _ ¡(r) 7Gn)* _ 6i.-n) , T@)a _ 6@), (g0)

where T(-) is uPper triangular and T(") is lower rriangular. The algorithm has a time
complexity of O (nz) (including the back-substitution step).

The operation of this algorithm becomes clea¡er if we consider an example. Let
us consider the special case of ¿ = 3 as we did in section 2.3, and so I is as in (64).

The Bareiss algorithm will then produce the following sequence of parameters m¡¡
and matrices ?"(#):

- rf3 _ r-1
trt-l - t, - t, '

7(-t)-7(o)- m_rZ_rT@)

t.r,=
ró:1

=
r,

'
'á.r') ré-tl '

¡(t)-¡(0)- mrzLTçr)

(81a)

(8 1b)

'd ,il",,i-i' ,;t"f
',t('r', , -Pr'tó-t' 'j-llj

lro11 tzttf io oool
= li: i:,',:',',1- ^u I ,1 ;; ',1',ll =

Lt_, t_z r_r roj l,_r,_, to ttl

(8 1c)

(81d)

rs o tp tlt)
rlfr to ó t.,,)

tllt tllt ro 0

t4 t-2 t-1 tg

,l','ó-'r:;:il ;il] I
'td','t', B ',;',.l

=

Iro t1 rz ttf
l r-, ro tt tzl

=ll

l,_r,_, ¡o fr
I

Lt=3 t_z r_r rol

Lå,,!:,
:p if,f

-,
f,,i,,

å,l,,rr] L;u:,'t"'f,, ifi]

f,,?,,8'ó;";Ëll -[,'4, I B',;'J
Lï s B il=Liiii åå]

f to o ,1,r,lt)l
_ lrl|r re o ,lDl

It!\t r1|) ro 0
I

It4 t-2 tt to
J

[ooool lro tt..t2 trl
looo õ l- lo t[-tt,¡-trtl-trl

Lfl
3 3,,s,j

-
L3

3 ,\', ,,';:"]
I r ,lt, ,?,,,?,,f-
1,,?',

3 'ó;"',[::l

2.23

,l:or) r (;l)

¡o f9

-m1

l|L ¡=

7Gz) - ¡(-t) - m_22_2Te)

(82a)

(82b)

(82c)

(82d)

(83a)

(83b)

,62 t|t
rfi^=-=_" ,t:? ,ó-'t '

7(2)-7(t)- mrZrT(z)

-m2

lil ¡=

7G3)-7?2)-m4Z_rTe)

,l:P ,!t')
=_fof6'

- m_3

, tt)
tó-') '

rrtc = 'ó'l =" ,t:?

7Q) =7Q) - m3Zr7F3)

(83c)

(83d)

160
tg) rs
rI| ¡ r1r

t-z t-z
-m3

uÍ]) = t, ,

Kk=

2.24

(i = 0,1,...,n)

u{r)

"!l\, '

rso
r!2) ro
r1|r ¡ r1r

t-z t-z

00
00
tso
t , to

-I

[o o o ,ó-')l
looo o I

looo o l=
looo o l

0 ,{j',)
00
ts0

t,fg
-I

The Ba¡eiss algorithm works as long as the leading principal submarrices of i" are

nonsingular. An LU factorization of I is

T =LU ,

I
where 7 = -!-1T@)¡T2, and U =7Çn), and where 'T2' denotes matrix transpositiontg

about the main antidiagonal (see tZ2l).

2.5 The Split Schur Algorithms of Delsa¡te and Cenin

Delsarte and Genin [23] have shown that the l-evinson-Durbin algorithm, for the

case where ?nn is real and symmetric, is redundant in complexiry by a constant factor.

Speciñcally, if the Levinson-Durbin algorithm of section 2.1 (real-symmerric T,,)

requires c 1n
2 multiplications (large n assumed), and if the split (symmetric or

antisymnetric form) Levinson-Durbin algorithm requires c2n2 multiplications, then

c2< cr The method in [23] has been extended by Krishna and Morgera [24] to
accommodate the Hermitian Toeplitz case. As well, Delsarte and Genin [25] have

presented symmetric and antisymmetric split Schur algorithms for the case where T,, is

real and symmetric. The split Schur algorithms of [25] a¡e faster than the Schur algo-

rithm of section 2.3 by a constant factor, at least insofa¡ as the computation of
reflection coefficients is concerned. We will only derive the symmerric split Schur

algorithm here, and we will simply state the antisymmerric split Schur algorirhm, as its

derivation is so close to that of the symmetric case.

From the Schur algorithm for Hermiti ú Tn we have

(84)

(85a)

(85b)

2.25

,!flò =ufl*oy, +K¿u¡\fl , (B5c)

u'&+t)=K¿ufl***t +u¡fl , (g5d)

where the ba¡s have been eliminated since we ¿ue now assuming that Tn is real.

Defi¡e rhe variables

Variables vp,¡ are used in the construction of the symmetic split Schur algorithm, and

va¡iables vf,¡ are used in the construction of the antisymmetríc splít Schur algorithn.
We call v*,¡ the symmeffic Schur variables, vf,, the antísyrwnetríc Schur variables,

and ¡.¿-(e) the Schur varíables (as in t25l).

Using (85c,d) and the definirion (86a) gives

(I + K)vp+r,i = u-('t+l) * ulfflò

(86a)

(86b)

(87)

From (85d) and (86a)

vÈ+r,j = u'(k+r) + (1 - rcùuÍ.?*r>*, (88)

From (87)

(1 + K¿-1)v r,¡ = u¡(k) + a{/*¿xr

If we substitute (89) into (88) we get

vr+t,i =(1 -Kr)(l *Kp_)v¿,¡ -u,G) +a,(&+t) *K¡u.&). (90)

But from (85c) K¿a¡<r> = u\ill*r-ufl*i>*2 and this may be substituted into (90) giv-

ing

.vk+r,i = (l -K¿Xl +K¿_1)v¿,¡ _ u,&) + a,(&+r)* u$,?p, _ u\),>*2. (91)

From (86a)

(8e)

2.26

and so (91) becomes

vk+t,i = (1 - Kt)e + Kp_)v¡.¡ - y¿+l,i_l * vk+2,i_l

or

uu*Li = YÈ+t,i * YÈ+1,¡+l - dkvk,i+l ,

where

cr¿=(1 -KrXt+Kt_). (93)

we call c¿ rhe kth synunetric split reflection coeficient. straighforwüdly,

K¿=l -, o!=''- 1*K-, (9+1

Since k = | n, we will let Ko = 0 as a convention (as is done in t25l).

We need initial conditions, and we need an expression for the symmetric split

reflection coefficient in terms of the symmetric Schur variables. Clearly, from (g6a)

and (85b)

yÈ+r,g =u{r, +u*\t =(1 - Kòulf\t =(l - K*)oçt, (95)

where we have also used (75) and (77). From the Levinson-Durbin algorithm

o¿ = (1 - K?)ou = (l - KrXl + KÈ)o¿-l. Hence, o¿ =yÈ+1.0(l + Ke) or

o&_r = v¿,0(1 + K*_ù. As a result, from (93),

a¿ = (1 - K¿Xl + K¿-r) = 'l*',0 (96)
Y¿,0

From (86a)

vLi=r¡*ì +¡rll)=r¡*r¡*1 , (0<i<n-l) , (g7)

urd .via (85b) Kr=-ulr)tuót)=-t¡to. Since Kr=1_crr and

v z-o
crr = i.^ - (ro+11)/16 we must have vt,' = f0. From (89)

v l,o

(1 + Ke)v r,¡ = Ir¡(l) + u!!) = 2¡, ,

or v1.¡ =2t¡ (l < i < ¿).

(e2)

2.27

Thus, the symmetric splír Schw algorirhm is:

Kg := 0;

v1,g i= fg i vL,i :=zti (1 < i < n);

e¿¡ t= t¡ r *1 (0 S t S n_1);

For È := I ro n do begin

v&+l.o
Cfk'.=

-l
v&.0

U.pK¿:=l--:-'* I * Kk_r'

For i := 0 to ¿ -È do besln

V&+2.j l= v&+l,i f v¿+l,i+l - d.pv¿,¡a1i

end;

end;

we may reindex the variables of this pseudocode program ro get:

Kg := 0;

vg,s := fg i vo,¡ ;=2t¡ (1 < i < n);

vl,i l= t¡ * t¡¡1 (0 < t < n_1);

For & := I ro n do begin

vÈ.0
&p i=

-i
Yt-t,o

C[,
Kt l=1-

*&
tß' - 1*Kt_l'

For i := 0 to n-k do begin

V&+1,¡ i= vk,i * vk,i+t - Ct¿v¿_1,¡¡1i

end;

end;

This is essentially the symmetric split Schur algorithm of Table W in [25]. The only
difference is that the innermost For-do loop of the above pro$am continues unril

í = n-É whereas the corresponding loop in the Table VI program of [25] only contin-

ues until i = n-k-L. This difference is insignificant, and is due to the use of a

2.28

different form of the Schur algorithm as a sta¡ring point for the derivarion of the split
Schur algorithms in [25]. We note that the Schur algorithm in [25] is essenrially rhe

s¿rme as that in [6]. The Schur algorithm in [25] is that of Læ Roux and Gueguen [26],
and is derived directly from the Levinson-Durbin algorithm via the derivation of
Ma¡kel and Gray [14], which is different from the l-evinson-Durbin aigorithm deriva-
tion of section 2.1.

We may state the awisymmeîíc splít Schur algorítlun in rhe notation of Delsarte
and Genin [25] as follows:

Kg := 0;

vfi,s := re; vð,¡ := 0 (1 < í S n);

vT,¡ := ti-ti+t (0 < t < ¿-l);
For È := 1 ro n do begin

* vË.0
C[¿ l= --, _]

v¿-t,o

aiKi := -l + ----r-'* l -Kk4'
For i := 0 to n -,t do begin

yår,¿ := ,i,¡ + ui,¡*r - a¿ovf_¡,¡,.1;

end;

end;

we call crf ttre kth antisymnetric split reflection cofficient.

A comparison of the split Schur algorithms with the Schur algorithm reveals that

the split Schur algorithms use about half of the mulriplications that the Schur atgorithm

does in order to compute the reflection coefficients K¿. It is still true t¡ough that both

types of algorithms have dme complexiti es of O (nz).

2.6 Positive Definite Toeplitz Matrices

If T,, is an autæorrelation matrix, then r,, is positive semidefinite [3]. This is
often symbolized by writing Tr, 2 0. For complex dara, T,, will be Hermitian if it is
an autocorrelation matrix. From [3], a necessary and sufficient condition for rhe

2.29

positive definiteness of Z, (symbolizedby T, > 0) is that

det (T¡r) > 0 for k = O,I,...,n

If we recali equation (23) of section 2.1, the Levinson-Durbin algorithm has a built-in
test for positive definiteness. Since o&+1 = oe(1 - I Kn*,l2; lequation (29)), rhen 2,,

ispositivedefiniteifandonlyiflxol<1,fork=l,2,...,n.clearly,ifrn>0then
0<o¿*1 (o¿ ,k>0aswell.

It can be shown that the Schur variables, in the Hermitian Toeplitz autocorrelation

matrix case, satisfy I u,&) I < ro (see [25], or [26]). similarly, the symmerric and

antisymmetric Schur va¡iables satisfy l ro,¡ I <2t0,l ri,¡ | .2t0, and the split

reflection coefficients satisfy 0 < c¿¿ , uf < 4, (see 125D. The bounds satisfied by the

Schur and split Schur variabies make the Schur and splir Schur algorithms suitable for

fixed-point arithmetic implementarion.

2.7 Other Algorithms

The list of algorithms for the solution of Toeplitz matrix problems that we have

so far presented is not complete. We can name others. All of the preceding algo-

rithms have time complexities of O çn2¡, but there exist algorithms with time complex-

ities of O (n \og2n). These algorithms are not practical unless n is quite large, how-

ever. The reader shouid see Kumar lz7l, Brent, Gustavson, and yun [2g], and Bit-
mead and Anderson [29]. Alt three algorithms use so-called "doubling strategies,'.

Doubling strategies a¡e introduced in Btahut [4]. Connections berween Euclid's algo-

rithm, Padé approximation and Toeplitz problems are discussed in [28]. A summary

of some of the results in [28] may be found in Gustavson and Yun [30]. Bitmead and

Anderson [29] employ the Gohberg-semencul formula in thei¡ algorithm.

Some Toeplitz matrices are banded. This means that there are integers p and, q

such that lSp,q <n andtr+0, t_q* 0butf¡ =0fori > p and,i <_q. If p is

of the same order as q, then Jain [31] presents an algorithm for solving Tnx = y ,

based upon the use of fast Fourier transforms (FFT), and. the Trench algorithm, and it
has a time complexity of O(n log n + p2), on a sequential processor. Dickinson [32]

presents an algorithm that uses results from Trench [15] and Zohar [I8]. It has a rime

2.30

complexity of O(pn + qn + (p+q)z) which is much faster than thar of Jain if p and q

are fixed while n grows.

Many concePts that have been used to solve Toeplitz matrix problems can be

extended to solve cenain non-Toepliu matrix problems. For example, the Levinson-

Du¡bin algorithm can be extended to solve Toepliu-plus-Hankel matrices as is shown

in Merchant and Pa¡ks [33]. If T is Toepliu and Ii is Hankel, then I + H is a

Toeplitz-plus-Hankel matrix. r/ is Hankel if H = Íh¡jl = [h¡*jf, rhat is, H is ,,Toeplitz

in its antidiagonals". Note that if H is Hankel, then JH is Toepliu and so the algo-

rithms of the previous sections can potentially be used ro solve Él¡ = y. Levinson-

Durbin-like algorithms can be found for the solution of systems of equations involv-
ing so'called diagorul íntnvations matrices (DIM), and peripheral innovatíons

maffices (Plfol). This is shown in Carayannis, Kalouptsid"is, and Manolakis t3al. Toe-

plitz marices belong to the class of PIM matrices. I'he displacement rank tlæory of
Kailath, Kung and Morf [35,36] allows the extension of the Lævinson-Durbin class of
algorithms to near-to-Toeplin matices. A matrix is nea¡-to-Toeplitz if is displace-

ment rank is fixed compared with n, the size of the matrix. The reader should consult

[35'36] for an explanation of this idea. Applications of d.isplacemenr rank theory can

be found in Friedlander, Morf, Kailath, and Ljung [37]. Improvements to the work in

Í371 are suggested in Kalouptsidis, Manolakis, and Carayannis [38]. An extension of
the Levinson-Durbin algorithm to the covariance meúod of linear predíction can be

found in Morf, Dickinson, Kailath, and Vieira [39].

3. On The Origin of Toeplitz Matrix problems

We have seen that many algorithms exist for the solution of Toeplitz matrix prob-

lems. Now we shall consider some examples of where Toeplitz matrix problems arise.

3.1 A Miscellany

V/e begin by presenting a list of applications with short explanations. Succeed.ing

sections will consider other examples in greater detail.

2.31

(i) Complex-valued, block Toeplitz matrices arise in the analysis of diffraction grat-

ings (see Jull, Hui, Facq [40], and Facq t41l).

(ii) The discrete form of the Gel'fand-Levitan integral equation, which a¡ises in geo-

physical applications, has a Toepliu-plus-Hankel stn¡crure (see Merchant and

Parks [33], and Aki and Richa¡ds [42]).

(iii) The numerical solution of boundary value problems in ordinary differential equa-

tions leads to the need to invert banded Toeplie matrices (see Usmani I43l).
(iv) Linea¡ predictive deconvolution to remove reverberations in ma¡ine seismograms,

and Wiener filtering can involve the need to invert Toepliu matrices (see Wood

and Treitel [4a], Wiggins and Robinson t45l).

(v) The linear predictive analysis of speech signals can involve the need to invert

Toepliu matrices (see schafer and Rabiner [46], and Markel and Gray tl4l).
(vi) Reed-Solomon elÏor control codes can be decoded via Toepliu matrix inversion

(see Blahu t [4,47,48]).

(vii) Finding the poles of an autoregressive (AR) system function can involve the need

to compure reflection coefñcients (see Jones and steinhardt [49]).

(viii)Parametric bispectrum analysis can involve the need to invert a nonsymmetric

Toepliu matrix (see Raghuveer and Nikias t50l).

(ix) Linear inteqpolation can require the Gohberg-semencul formula (see Kay t51l).
(x) Moving average (MA) system identification problems can be solved by an itera-

tive algorithm that uses Trench's algorithm, and rhe resulting method is applicable

to the modeling of so+alled 2-phase ffows in fluid mechanics (see Ohsmann

ts2l).

(xi) The identification of nonlinear systems can involve the need to solve Toeplitz

systems of equations, and this has applications in the modeling of nonlinear phy-

siological systems such as neurons (see Korenberg t53l).

(xii) Capon's [54] maximum likelihood method (MLM) is used for wavenumber spec-

tral analysis for wave propagarion with spatially distributed sensor arrays, and the

) a',

Cohberg-semencul formula can b€ used in the

Capon's MLM (see Musicus [55]).

3.2 Padé Approximants

From Gragg [56], the padé table of a power series

c(z)= i.r^,^
m4

is a doubly infinite array of rarional functions

high-speed computation of

aO+aF+... +e^z^
bs+brz + +bnzn

detennined in such a manner that the Maclaurin expansion of r,*, agrees with C (z) as

far as possible, where m,n 2 0. Ir is possible that deg (p,,-) < m , and deg (q,,_) < n .

C (z) is normal if, for each pair (m ,n), this agreement is exact through to rhe power
z^rn ' Note that z, c^ , ct¡ and á¡ may be complex-valued in general. The conver-
gence of (98) is not essential. r,*,(z) is a padé form of type (m,n) for c(z) if
q,*r(z) * 0 and

C(z)q,*,(z) - p,*r(z) = O(zm+n+r, (100)

o (z^+n+t, means that the right side is a power series beginning exactly with a power
,m+n+k+\, where 0<¿Soo; È=- implies that Cq,*r-pnn=0. The padé form
approximates the power series C (z), and so is called a Pade approxímant. Equation
(1m) is equivalent to a linea¡ system of m + n + lequations in m + n * Zunknowns
de,..., dmrandåg,.., bni

P,".(z)f,r-lZ)=--;==
qrr-\z)

å Io,,i=o,...,m,
Po''-,å¡

= 10, i = m*r,..., m*n,

(e8)

(101)

(9e)

and this is a Toeplitz system of equations. Various results on the existence and

uniqueness of solutions, and how to find them, a¡e found in t561.

It is beyond the scope of this thesis to consider the details of the theory of padé

approximants and their relationship to Toeplitz matrix problems, Euclid's algorithm,

2.33

AR signal modeling, etc- The interested reader is refered to such publications as

Brenr' Gustavson and yun [28], Gustavson and yun [30], cybenko [57], weiss and

McDonough [58], and McEliece and Shea¡er [59]. The padé approximanr problem is
related to the minimal paniat realization problem (see Imamua [6O] or Kailath [61]
(pp' 322-326 or pp. a9la9l). The Padé approximant problem has applicarions in
system identification since, for exampl e, C (z) might represent the impulse response of
some linear time-invariant system.

3.3 Pisa¡enko's Harmonic Decomposition

Pisa¡enko's harmonic decomposition (PHD) t62l is a spectral analysis technique
that involves the computation of eigenvalues and eigenvectors of autocorreladon

matrices' A summary of this method and a comparison of it with other spectral
analysis methods may be found in Kay and Marple [63], and the method is also d,is-

cussed in Roberts and Mullis [3] (see pp. 535-538), albeit rather brieffy. However,
we shall sum¡narize the main concepts here.

The PHD method assumes that the signal, for which a spectral estimate is desi¡ed,
is composed of a finite sum of sinusoids plus white noise. Thus, the pHD approach
will yield a line spectral estimate of the signal in question. Specifically, given n rcal
sinusoids in additive white noise, and the autocorrelation matrix. (R) of order zn + I
for this signal, then the minimum eigenvalue of R is the va¡iance of rhe noise (see

[3]'[62-63]). The eigenvector coresponding to the minimum eigenvalue of R may be

used to construct a polynomial, the zeros of which have unity magnirude and the argu-
menß specify the frequencies of the sinusoids (see t62-631). once the noise va¡iance
and frequencies of the sinusoids are known, it is possible to find the amplirudes of the
sinusoids (see [62-63]).

Iterative approaches to the computation of the minimum eigenvalue and
corresponding eigenvector of R rnay be found in Hu and Kung [64], and in Hayes and

Clements [65]. The method proposed in [6a] involves Toeplitz system solution and so

can use the parallel-pipelined a¡chitecture of Kung and Hu [6]. As a resulr, the rime
complexity of the Toeplitz eigensystem solver in [6a] is o (kn), where É is the number

2.34

of iterations. In the case of Hayes and Clements [65], the computarion of reflecdon

coefficients is required, and the parallel-pipelined Schur algorithm machine in [6] can

be used here as well. In this instance, the rime complexity of the Hayes-Clements

algorithm will also æ, o (kn), where k is again the numkr of iterarions.

3.4 Gaussian Signal Detecrion

The problem of Gaussian signal detection is a fundamental one in partern recogni-
tion theory (see Tou and Gonzal ez 166)), and in communications theory (see van
Trees t6z1¡. It turns out that the Gohberg-Semencul formula is applicable to the

design of linea¡ time-invariant, and. fast Gaussian signal detecton (see Kailath , IÊvy,
Ljung, and Morf t68l). We shall explain how this is so in the context of pattern

recognition.

Suppose that there exists a set of M panern classes @l , . . , (ùM, and that we
have a measured signal vector -r = [-ro ' ' ' xnlT that originates from one of these

classes' We would naturally like to know from which class this vector originated. we
will assume, for simpliciry, that the a priori probabilities for the occrurence of each

class are equal, and that p @ I ol¡) is the probabiliry density funcrion of x given that x
came from <o¡. If we assume that p (x I ol¡) is Gaussian, then

p(x I o¡¡) = I
(2n¡í,+un @etßjÐî

e*pt-*G -m¡)r(Rj)-t(r - m¡)1 , (Luz)

where R,i is the covariance matrix of class o¡, and m¡ the corresponding mean vector.
Rj is of order n+1. We have r € oj if and only if

From (102),

p(¡ lor) f a.,fnl>)i
p(x I to¡) laetla¡ J

Taking the logarithm of (104), x

*o
{-å

f e -^)r (R; f , (' -oc.) - (x -nj)1 (R/l-, <r --¡)f j

p(x I to¡)
; ¡ : >1 foreveryj*ip(x I o¡) (103)

e ol¡ if and only if

(104)

2.35

Â(r) = (x-m¡)r çRl)-r(r-*,) - (x-mj)r(n/)-,(r-
^¡) < r^o:t\:_1,) , (l0s)' dcr (R j,)

for every i * í. Lik¿lihood function.&1x) must be computed and compared to a thres-

hold in order to ascertain from which class ¡ is most likely to have come. From (105)

it is clear that the principal operãtion involved in computing the likelihood funcrion is

the evaluation of expressions of the form

vr T;ty , (106)

where T, is Toepliø. As is noted in [68], the operation in (106) is in the form of a

linear time-variant ñltering operation. However, it is also noted in t6gl that the

Gohberg-Semencul formula can be used to rewrite (106) in the form of a linear dme-

invariant filtering operation.

For real-valued data, T,, will be real and symmetric. Thus, (63) will have the

form

Tn-' = a;t Ø[,Ø[)r - gÐr uÐ , (107)

where t[is lower triangular Toeplitz, nd U[is upper triangular Toeplitz. Hence,

(106) becomes

yrT;ty = oo t [(tÐr y)r Ø[)r y - (uly)r u[y] . (108)

ØÐr y and, U[y rnay be rapidly computed through the use of fast Fourier transforms

or fast convolution algorithms (see Blahut t4l). It is clear that these a¡e linea¡ time-

invariant filtering operations.

3.5 The layered Eanh Model - A Geophysical Application

We will consider a rrdel of the stratified (layered) ea¡th as in Figure l(a). This

model, and the attendant notation, is from Robinson and Treitel [12]. From this exam-

ple it will be seen how the reflection coefficients K¿ of section 2 got their n¿une.

In the model of Figure 1(a) each layer is assumed to have a thickness such that

the travel time th¡ough it is one-half time unit (i.e., the two.way travel time is one

unit). In other words, all layers have the same Eavel rime. lnterface 0 is the ea¡th-air,

2.36

or perhaps water-air, interface. The present model supports travelling-wave motion

from bottom to top (upgoing wøtes), and from top to bottom (downgoing waves). par-

tial reflection and nansmission of the waves occurs at the interface between the layers.

Let cn denote the reflcction cofficient of interface ¿, and, r,n the transmission

cofficient. By convention, all wave modon is measured in physical units proportionai

to the square root of energy (i.e., the square of the amplirude of a wave is in terms of
energy). A pulse is a narow spike-like wavefomr associated \¡¡ith a particular

discrete-time instant Thus, the present model is acrually a discrete-time model, and

each pulse has an energy proporrional to the square of its amplirude.

As in Figure 1(b) (lefÐ, a unit energy downgoing pulse is partially reflected and

partially transmitted. The reflected pulse has amplitude c,,, and the transmitæd pulse

has amplitude Ín. By the law of conservarion of energy, c] + r] = y or

"n = {4 (positive squ¿ue root chosen by convention). The case of the upgoing

pulse incident upon the bonom of interface n is shown in the right of Figure l(b).

Let z denote the unit time delay operator (electrical engineers would normally

choose z-l but we shall adopt the geophysicists' conventions). Thus, a half unit deiay
1¡

is zd , and a half unit advance i, ,-i .

From Figure 1(c), let d^(r) and u,,(r) be the downgoing'and upgoing waves,

respectively, at the top of layer n, and let d'n?) and u'"(r) be the downgoing and

upgoing waves' respectively, at the bonom of layer n (all at time r). Since waves pro-.

pagate through a layer unchanged, it must be true that

(10e)

It may be readily shown that, at interface n,

u'nG) = cnd'nG) + T,nun*1(t) ,

dn+t!) - -cnun¡G) + tnd'nG) .

(1 10a)

(1 10b)

(a)

2.37

ak

hbrhc€ 0

layør 1

Iayer 2

inþrfacâ 2

lsy6r n

@

ø

@

lntorlåco n

(c)

dn(q ü | un(o

dnto
^

unto
hyern

I.ul

FÍgure I: (a) t aycred earth nder; (b) Downgoing unit pulse (left), and upgoing

unit pulse (right) incident upon interface n (c,, = squarc roor energy reflection

coefficient, ro = square root energy transmission coefficient); (c) upgoing and

downgoing waves at the top, and bottom of layer n.

Equarions (l10a,b) solve to yield

l;;:ltl] =+ [-:"t'] itil;ì]
and this combined wirh (l0g) gives us

(111)

2.38

r ì -lld^*t?)l t 2

Lu"*t(t)-J
=

", l-:^,-'rll:;tll

[*:rn] =+l;:s:l[trn]

we can relate the waves of layer n+l to those of layer I using (112) as follows:

where ?',, = !-fr¡, and
i=l

(l 12)

(1 13)

(1 1s)

lrï a;1 L

l8^ r^ l= L-r^'

It may be shown that pj(z)= z"pn(z

Treitel t69l).

-',1 | , -',1tJ L-rr, rJ' (114)

-t) , QÏf¡ = z" Qn(z-|) (see Robinson and

Let us now consider the marine seismogram (as in section v of t12l). we will
excite the layered system with a surface source. Assume that it is a downgoing unit
pulseô, setoff art =0 justbelowinterface0(surface). wehaveô, = l if , =0,and
ôr = 0 if t * 0 (Kronecker delta). We assume that the surface is a perfect reflector (a
water-air interface is a good approximarion of this). As a result, I ,o | = t (so

co = tl). Therefore, upgoing wave ur(r) (at the top of layer l) is rcflected at the sur_

face to yield downgoing wave -c6n1(r). Thus,

d {t) = õ, - caa 1(r)

It is clear that the first nonzero value of rz1(r) occurs at t = l, and so a1(f) is the time
series 4r(l), uJZ), ar(3), "', which has its first break (or arrival tíme) ar r = l.
The downgoing wave d1(r) is the time series I ,i0u1(l), _csn1(2), , which
has its fi¡st break at r = 0 (see (l 15)). In general, it is easy to see that the first break

of upgoing wâvo ll,,a1(r) at the top of layer ¿+1 occurs one time unit after the first
break of downgoing wave dn*t?) at the top of the same layer. Furthermore, the fi¡st
break of d,,*¡(r) is produced by the unit source pulse rravelling down through the first
n layers directly from the surface and through inrerface ¿. The amplitude of this

2.39

pulse is then I" = gt", and its favel time is f units. Hence, the downgoing wave

dn*t?) is the time series ¿^*r(T) ,d^*r(| + 1) , d^u(+ + Z) , Recall that

unq(t) arrives one time unit after dn+{t). Thus, un+t?) is of the form

u^*Jf + 1), u^*Jf +2), . Pulse u^*Jî+ r) is the reflecrion of d.irect purse

¿^-(T) from interface n+1, and so u^*{î + l) has amplirude Tncn+t.

Given G (z), let us denore G (z-t) by G @, or simply G. The z-rransform of
(113) is

[r,.,-l ,-+ I
pi a:] [r,l

Lu".t.j
= r^ lO^ e^J Lu,J

' (116)

Replacing z by z-t in (l 16) yields

n

lo^*rl ;z lr^ o^'J [¡,.l
Lu".,J

= Ti loì ri I Lt;j (117)

Combining (116) and (117) gives

f -
-ì -z r - ,r r --l?ru %.1 - , r lr: a: I lr' q'l

Itt^*, o*'J= T ^ le^ r^J Lui p;J , (118)

The determinant of (l18) is

Dn+tõn+t-un*ttnor=
ft e:P^ -O:e^)@pt- urur), (u9)

where we have used the fact that drnr(kc)= k^det(C) (kis a scalar, and C is an

order rn matrix). The determinant of (114) is

P^P: - Q^o: = r" ú(t - c¡2) - ,"T: , (t2o)
i=l

and so (119) becomes

Dn+tDn+t-Un*tÙn*t=DrD, - UrÚr. (121)

2.40

This may k interpreted to mean that the net downgoing energy in layer n+l equals

the net downgoing energy in layer I (see Robinson and Treitel t69-701). At infinite
depth U*=0, and the net downgoing energy is rhen D*Ð*which is in the form of a
spectral function (z-transform of an autocorrelation function - see t69-701). That is,
D*,D- is the z-ransform of the autocorrelation of d*(t). Let this autocorrelation

function be rr. Thus,

R(z)= ir,r,=D5-
I =<

But by (121),

R = Do*1õn*t - Un*ttn*t = DrD, - U rU, .

From (115) Dl = I - csUl and so

DrDr- UrUr= (1 - c6uy)e - coUt) - UrUr= | - csuT- c6U1

as cA2 = 1. Thus,

R = (1 - csuù - coU t= D 1 - csú1

R = (1 - coU) - coU t= D t - co(Jt .

From (I24a,b) we have R =R (i.e., autocorrelation

would expect).

Adding -cs rimes (116) to (l 17) (suitably rearranged) gives

(r22)

, (r23)

Q2aa)

(t24b)

is symmetric about f = 0 as we

f
-

-r -n r ''l

l-"oD"*, * %*rl : r, 14 aïl
L-coUn+t + Dn+tJ rn lQ" P" l

f
-'ll-rÐr + Ur I

L*."'.a;j ' (12s)

[Q"(iP, + U1) + Poecsur +Dr)] . (tZ6)

From (125)

a oUn+t * dnrt =

From (124a)

n
,,

r"

-c çD ,, + U , = -c o(D, - ca7l) = -coß ,

2.41

where we have used coz = r, and frorn (124b), R = -co(J t i D t, and so (126)

becomes

If we expand the right-hand side of (128), then

¡
Toz2(-csIJo,¡ + D-.*r) = .. + T.4*r(l+Dza +T! + .. -Tlcsc"*¡2"*¡ - T".dr",,(

l+2)2".2+ .. . (129)

Note that the timedomain equivalent of (129) is zero for r = l, , n. Hence,

operator.4n acts upon R to annihilata t1 , . . . , rn V/e can relate the present d.iscus-

sion to the Levinson-Du¡bin atgorithm in the following revealing way.

Consider the autocorrelarion sequence rr, with tt =r_t An operator defined by

the parameters 4¿,q , akJ , , at,* (at,o = 1) acts upon r, to produce g, as fol-
lows:

_n

-c oUn+t * õn*t = + (pn - coe)R
rn

Let An - Pn - c¡Q.n, and so (127) becomes

AnR = TnrT (-c o(Jn+t+ D,,*1).

k
gt= 2otrr,-,

which is really y¿

tian Toeplirz case.

form of g, is

(t27)

(128)

(130)
s =0

We want 8, = 0 for r = 1,...,*, and go = o&. Clearly then, (130) is like (l) in section

2'1 in this event (r¡ = r¡). We recall from section 2.1 that the Levinson-Durbin recur-

sion computes d¿a1 given a¿ (and a few other parameters) such that g¿+r = 0. From
(130) then

k

8È+l= Et(¿*rF"¿¿," (131)
s =0

in the pseudocode for the l-evinson-Durbin algorithm in the Hermi-

Thus, KÈ+l = #
or 8r+r = úpKpr1= -gño,t The z-domain

2.42

. - * g-ú-t n go * gn*rzn*l + gn*2zn+z +

and this may.be compared to (129) giving

80= In'
'

En+t = -T]rúno, = -flgcgcn¡1 t

or -gßn+t = -gococn*1 implying that

(r32)

Kn+l = C OCn+l (133)

This kind of comparison is reasonable since .4,,R from (128) is essentially the right-

hand side of (130). Evidently, the reflection coefficients produced by the Levinson-

Durbin algorithm a¡e essentially the s¿ìme as the "physical" reflection coefficients c,, of
the layered earth model.

3.6 Lattice Filters

We now demonstrate a connection between Toeplitz matrix problems, and so-

called orthogonal polynomials. The central result will be that the solution of a Toe-
plitz matrix problem yields a class of digital filters called lattíce filters. The results to
follow are aken f¡om Marker and Gray [14], and from Gray and Markel [71].

We begin by presenting an altemative derivation of the lævinson-Durbin algo-
rithm for Hermitian Toepliu matrices. What follows is based priÀarity upon results in

[14], but we note that [l4] does not acnrally consider the Hermirian Toeplirz case.

Ma¡kel and Gray [14] only consider the case of a real and symmetric Toeplirz marrix,
and so the derivation to follow is somewhat more general than that in [14].

Suppose we are given a discrete-time sequence of complex-valued numbers, and

that these numbers are used to prduce the complex-valued autocorrelation sequence

c¡ ,í = 0,1,...1. Let us ¡lssume the following model for this signal. Consider a digi-
tal filter with system function

o

'"(t)
'

where

HnQ) = (134a)

2.43

n
xn?)=[xn,izt ,xn.o=l

¡=0

Note that' except for r,,,p, xn,¡ Ne complex-valued in general. It is clearly ur¡e that the

impulse response sequence of Hn(z), which we shall designate as hp,satisfies

å¿ =oôr - Lrn.,ho-,,

so that lr¿

(I 34b)

(13s)

(137)

(1 38)

=0for

/=l

where ô¿ is the Kronecker delta- If the filter is stable, then the autocorrelation

sequence r¡ of output h¡ can be defined as

\-*=.Ë.n,_,h¡_t= io,l,*,_0, (136)j =* i =<

where the bar denotes complex-conjugation. We have rk=î_k We may rewrite
(135) as

oô¿ - L r^,,hr-,
i =0

Multiplyin g (137) by hr_, and summing over all È yields

6h--, = f ,^,,"-,
i =0

From (135), å0 = o" where we are assuming that the filter is cauial

& < 0. Thus, (138) becomes

n

Et,,¡4=lo12'
i=0

n

Exn,¡4_t, =0 , (È = 1,...,n)
i =0

If we set the measured values c¡ equal to the model values r¡, then

n

Z,n,¡4 = Çn ,
j=0

n

I Irr,¡c¡_¿ = 0, (k = 1,...,n),
i =0

(1 39a)

(139b)

(140a)

(140b)

2,M

where o,, = | o 12. Clearly, (l40a,b) is a Toeplitz system of equadons of the same
form as (1) in section 2.1- Thus, our measured autocorrelation sequence is assumed to
have originated from an alr-pore frrter Hn(z) that was,,struck,,with an impurse. A
system of equations like (140a,b) can also be obained on the assumption thatHo(z) is
being d¡iven by white noise (see [9]).

æ

I1 F(z)= Z f *zk, then let pt(r)= Ë f rr-r. Let C(z)= Ë c¿z¿; thisÊ=* &=* ft=<
is the z-transform of the measured autocorrelation sequence, and it is a specral func-
tion. From Laurent's theorem (see Kieys:zrg[72],page 711)

1ct = c_¡ = -+- lce> z-k-r dzÉ -Á znll-t I-

for È = 0,L,2,'.. . f is a simple closed contour enclosing the origin of the complex
z-plane. This is essentiaily (r2a) in [14]. From [r4] we have the inner product

(141)

(t42)

Ga3a)

(143b)

(143c)

(144)

(t4s)

and so is

where

We have

Thus, (140b) becomes

n

E xn,¡<zk,zi> = 1zk
i =0

for & = 1,...,n. [n other words, xne)
called an orthogonal polynomial.

<F(z),G(z)> = # {rU,
pt(z)G(z)z-t dz ,

<cF (z),bG (z) + aH (z)> = bl<F (z),G (z)> + a7<F (z)fl Q)> ,

4þ,zi) - -L Ic e¡ z<k-i>-r ¿7 = ck_i = e_r .2nl-l r

, Z rn,,zi> = qrk,tn(z)> - 0,
r =0

is orthogonal to zk for k = 1,...,n,

2.45

We may write

kn=

For n . 0, go = <z Jo(z)> = <z ,z) = co ,

r0,0 = 1. These are initial conditions.

V/e may write

<zu ln?)> = qlþ),2-' > = <zn*rxl(z),2-r+(n+lL = 0,

<Yn(z),zv> = Q ,

wherev=1,...,n. Define

ynQ) = zn*rx,l(z) = å^r^,, ,n+r-i = itr",* +r¡-¡zj = i ln,¡zj , (1,47)
i=0 j=l j=l

so that !n,j =[n,(n+t>j and since xn.g= 1, we have !n.n+t= 1. Thus, (146) becomes

(r46)

(148)

for v = 1,...,r1. yn?) is another orthogonal polynomial, and its coefficients are rhe

same as those of xo?) except that they a¡e in rcverse order and are complex-

conjugates. As well, the degree of yne) is n+1, whereas the degree of xn(z) is n.

We want xn¡(z) such that xrr*1,g = I and 1zu ,tn+t(z)> = 0 for y = 1,...,n+1. We
can construct such a function via

xn*1(z) = xnQ) + knynQ) 04g)

since deg{lnl = n*L, yn,g= 0 and rrr,0 = l. Thus, we must find Èrr. This can be

accomplished as follows:

0 = <zn+l,tn ¡(z)> = <zn+ltne) + knyne)>

= <zn*rÍn(z)> + knczn+t¡n(z)>

= 9r, * kndn .

Hence,

p"

g^

Fo = .t JoQ)> = <z,l>

(1s0)

(1s 1)

= C1, âfld we have

2.46

þn = 4zn+' *nQ)) = <zn*I, fr ,n,,r,,
i =0

- (1, E rr,., ,-(n+l)+i,
j =0

n*l
- (1, E xn,(n+t>jz-i > (152)

/=l
¿+l

= E rn,1n+t¡.¡ <L,z-i2
j =l
¡*l

= 2 xn,1n+tY¡c¡
j=l

n

= 2cø+t>-¡xn,¡ t
i =0

and this is equivalenr ro r,t in (26) of section 2.1. similarry,

dn = 1zn*lJne)) = <zr*l ,2"*1xf e)>

= <ttÌe)>

- lxn(z),1>

n

= (1, Ð *^,¡r-i>
¡ =0

n

= E'n,¡<l,t-i'
i =0

å-
= L Xn,¡C¡ = O, ,

i=0

where the last equaliry is due to (140a). Note that

Qn(z),tn7)> = < L rn,,r,, f ,^.¡ri,
i=0 .l=0

n

= E 'n,¡cn!)'zj
>

j =0

(153)

2.47

=1r t

where we have used (l40a,b) again. Thus,

dn=en?)ln?)>=on. (154)

From (153) ø" = C'(z),1> and so

0z+l - U,n = {xn*l(z),1> - Çrr(e),1>

- 1xn(z) + knyn(z),1> - <.r.n(z),1>

= <tile¡ + k^yJ1z)> - cn(z),1>

= k^<t¡jçt¡>

- Ç<r"+1, f(z),1>

= Ç<2"+t¡n(z)>

= k^þ^

=Ç(<.nk) ,

and so

G¿+l=ør,(l- I r^12), (155)

or o,,+t =õ"(1 - | ¿" 11. Since o0= c0 is real, o' is real for all ¿ and c[,, = o,, is
real for all ¿. If we note that (ra9) is essentially the same as (31), sincex¿ = d¿, rhen

we have in fact derived the lævinson-Du¡bin algorithm for Hermitian Toeplitz matrices
by a different means. However, the present orthogonal polynomial interpretarion leads

to interesting (and useful) digital filter sructures.

V/e have xnnl(z) = xne) + knyn(z) (from (149)), so

yn*{z) = z"'ZxÌotQ)

= f ,^.,1 tr^,r,.-,fj=o [r=o '-j

2.48

= z"*ztxJ(z) + t,y|e)l

t n +2¡r1n +t)
^

Q) + in z-(n*r)x n e))

= en(z) + k"un(z)

We may combine (149) with (156) to ger

(is6)

(157)h:l[: l] = lå,r:l l;;t:l]
where xo?) = I , and !oþ)=2. Norice the similariry benveen (157) and (ll2) of
section 3'5' Given the results of this and the previous section, we should not be
surprised' Interpreting z as a unit time delay operator, we may use (157) to cons¡ruct
the digital filter of Figure 2(a,b). This is essentially the laníce n th ord¿r pred.ictor of
Figure 4'9 in Hänig and Messerschmin [9] (see p. 102). It is a srucnre due to Gray
and Markel t711. V/e shall not investigate the origin of the rerm "pred¡ctor,, here, bur
shall instead refer the reader to [9] for an explanation. It is evident that the reflection
coefficients È,, paramerize the lattice fi,lter.

xrr*lz)

rl
(a)

[-'
L
**'

Y rn{z)

r0 y1 r¡ yk+lyn-l yn

Figure 2: (a) Correspondence between the 2 x 2 matrix operaror of equation
(157) and a filter section; (b) Gray-Markel lanice nth order predictor.

The filter of Figure 2(b) impremenrs the denominator polynomiar xne) of Hne)
in (134a)' From the standpoint of a VLSI implementation it is evident that this fi-lter
has desirable featu¡es. The filter is composed of a single basic building block (as

2.49

shown in Figure 2(a)), and it can be readily pipelined for high throughput applications.
The ñlter also has a regular linear layout.

It is possible to constn¡ct a lattice fi.lrer to realize Hne), the all-pole filter. How-
ever' we shall not show how to do this here. Instead, we refer the reader to Gray and
Ma¡kel [71], or to [9]. we note as well that latrice pole-zero filters can be consrrucred
(see [9] or [71]). These filters are known to be superior to d.i¡ect form digital fi,lters
under finite precision a¡ithmetic implemenration conditions (see Markel and Gray [73],
or Gray and Ma¡kel t74l).

The Gray-Ma¡kel orthogonal filter srucrures that we have discussed here have
been generalized in many ways. Generalizations may be found in Delsa¡te, Genin and
Katnp [75], tæv-Ari and Kailath [76], tæv-Ari, Kailath and Cioffi [77], and in Hänig
and Messerschmin [9], Friedlander [10], and Delsarte and Genin [25]. we emphasize
that this list of references is fa¡ from complete.

REF'ERENCES

tll N' Levinson, "The Wiener RMS Error Criterion in Filter Design and predicrion,',

J. Math. Phys., vol. 25, Jan. 1946, pp.26L_27g.

Lzl J. Durbin, "The Fitting of rime series Models,,, Rev. Int. stat. Inst., vor. 2g,
1960, pp. 233-244.

t31 R' A' Roberts, C. T. Mullis, Dtgital Signat Processing. Reading, Massachusetrs:

Addison-Wesley, 19g7.

t4l R' E' Blahut, Fast Algoríthns for Digítat Signat processing. Reading, Mas-
sachuserrs: Addison-Wesley, I 9g5.

t51 L' Dana, S' D. Morgera, "Some Results on Marix Symmetries and a pattern

Recognition Application," IEEE Trans. on Acoust., speech, and Signal proc., vol.
ASSP-34, Aug. 1986, pp. 992_994.

t6l S'-Y' Kung, Y. H. Hu, "A Highly Concurrent Algorithm and pipelined Architec-
ture for solving Toepliu systems," IEEE Trans. on Acoust., Speech, and Signal
Proc., vol. ASSp-31, Feb. 19g3, pp. 66_75.

2.50

t7l J. Rissanen, "Solution of Linea¡ Equations with Hankel and Toeplitz Matrices,,,

Numerische Mathemarik, vol. 22, 1974, pp. 361-366.

t8l P' Delsarte, Y. V. Genin, Y. G. Kamp, "A Generalization of the l-evinson AIgo-
rithm for Hermitian Toeplitz Matrices with Any Rank h.oñle,', IEEE Trans. on
Acousr., Speech, and Signar koc., vol. ASSp-33, Aug. 19g5, pp. g&-g7r.

t9l M ' L' Fl'o'nig, D. G. Messerschmitç Adapdve Filters Snucrures Algorittuns, and
Applícations. Hingham, Massachusetts: Kluwer Academic publ., 19g4.

[10] B' Friedlander, "Lattice Filters for Adaptive Processing," proc. IEEE, vol. 70,

Aug. 1982, pp. 829-867.

[11] G' Carayannis, "An Alternative Formularion for the Recu¡sive Solution of the

Covariance and Autocorrelation Equadons," IEEE Trans. on Acoust., Speech, and

Signal Proc., vol. ASSp-25, Dec. 1977, pp. 574_577.

Uz) E' A' Robinson, S. Treitel, "Maximum Entropy and the Relationship of the parrial

Autocorrelation to the Reflection Coefficients of a l-ayered System,,, IEEE Trans.

on Acousr., speech, and Signar proc., vol. ASSp-2g, April r9g0, pp. 224-235.

t13l A' Bruckstein, T. Kailath, "An Inverse Scattering Framework for Several prob-

lems in signal processing," IEEE Assp Magazine, vol. 4, Jan. 19g7, pp. 6-20.

[14] J. D. Markel, A. H. Goy, Jr., "on .q,urocorrelation Equâdons as Applied to
Speech Analysis," IEEE Trans. on Aud.io and Elecnoacoustics, vol. AU-21, April
1973, pp. 69-79.

[15] w' F. Trench, "An Algorithm for the Inversion of Finite Toeplitz Marrices,,' J.

SIAM, vol. 12, Sept. 1964, pp. 515_522.

t16l s. ?ahar"'Toeplitz Matrix lnversion: The Algorithm of w. F. Trench,,' J. ACM,
vol. 16, Oct. 1969, pp. 592-601.

[17] H. Akaike, "Block Toepliu Matrix Inversion," SIAM J. Appl. Math., vol. 24,
Ma¡ch 1973, pp. 234-241.

[18] s. Tf,har, "The solution of a Toeplitz Set of Linear Equations,,, J. ACM, vol. 21,
April 197 4, pp. 272-27 6.

2.5t

[19] I. C. Gohberg, A. A. Semencul, "On the Inversion of Finite Toeptiu Marices and

Their continuous Analogs," Mar. Issred. (in Russian), vol. z, rg7z, pp. 201-233.

[20] T. Kailath, A. Vieira, M. Morf, "Lnverses of Toepitz Operators, Innovations, and

orthogonal Polynomials," sIAM Review, vol. 20, Jan. r97g, pp. lOG119.

Lzll E' H. Bareiss, "Numerical Solution of Linear Equations with Toeplitz and Vector
Toepliø Matrices," Numerische Mathematik, vol. 13, 1969, pp. 404-424.

[22] R. P. Brent, F. T. Luk, "A Systolic Array for the Linea¡-Time Solution of Toe-
plitz Systems of Equarions," J. of VLSI and comp. sys., vol. l, 19g3, pp. L-zz.

[23] P. Delsarte, Y. v. Genin, "The split Levinson Algorithm," IEEE Trans. on

Acousr-, speech, and signal proc., vor. ASSp-34, June 19g6, pp. 47047g.

[24] H. Krishna, S. D. Morgera, "The Levinson Recurrence and Fast Algorithms for
Solving Toeplitz Systems of Linear Equations," IEEE Trans. on Acoust., Speech,

and Signal Proc., vol. ASSp-35, June 19g7, pp. 939_94g.

[25] P. Delsarte, Y. V. Genin, "On the Splining of Classical Algorithms in Linea¡
Prediction Theory," IEEE Trans. on Acoust., Speech, and signal proc., vol.
ASSP-35, May 1987, pp. 645-653.

126l I' Le Roux, C. Gueguer, "A Fixed Point Computation of partiat Correlation
coefficients," IEEE Trans, on Acousl, speech, and signal'proc., vol. ASSp_25,

June 1977, pp. 257-259.

[27] R. Kumar, "A Fast Algorithm for solving a Toeplitz sysæm of Equations,,, IEEE

Trans. on Acousr, speech, and signal proc., vol. ASSp-33, Feb. 19g5, pp. 254-

267.

t28] R. P. Brent' F. G. Gustavson, D. Y. Y. Yun, "Fasr Solution of Toeplitz Systems

of Equations and Computation of Padé Approximants," J. Algorithms, vol. 1,

t980, pp.259-295.

[29] R. R. Bitrnead, B. D. O. Anderson, "Asymptorically Fast Solution of Toeplitz and

Related systems of Linear Equarions," Lin. Alg. and its Appl., vol. 34, 19g0, pp.

103-1 16.

2.52

t30l F' G' Gustavson, D. Y. Y. Yun, "Fast Algorithms for Rational Hermite Approxi-
mation and Solution of Toeplitz Systems," IEEE Trans. on Circ. and Syst., vol.
CAS-26: Sept. 1979, pp. 750-755.

[3 U A' K' Jain, "Fast Inversion of Banded roeplitz Matrices by Circular Decomposi-
tions," IEEE Trans. on Acoust., speech, and signal proc., vol. ASSp_26, Aprir
1978, pp. LZL-126.

[32] B' W' Dickinson, "Efficient Solution of Linear Equations with Banded Toeplitz
Matrices," IEEE Trans. on Acoust., speech, and signal proc., vol. ASSp_ 2-7, Aug.
1979, pp. 42t423.

t33l G' A. Merchant, T. W. Parks, "Efficient Solution of a Toeplitz-plus-Hankel

coefficient Marix system of Equations," IEEE Trans. on Acoust., speech, and

Signal Proc., vol. ASSp-30, Feb. 19g2, pp. 4O_M.

t34l G' Carayannis, N. Kalouptsidis, D. G. Manolakis, "Fast Recu¡sive Algorithms for
a Class of Linear Equations," IEEE Trans. on Acousl, Speech, and Signal proc.,

vol. ASSP-3O, April 1982, pp. ZZ7-239.

t35l r. Kailath, S.-Y. Kung, M. Morf, "Displacement Ranks of a Matrix,,' Buu. Amer.
Math. Soc., vol. l, Sept, 1979, pp.769_773.

136l T' Kailath, S.-Y. Kung, M. Morf, "Displacement Ranks of Matrices and Linea¡
Equations," J. Marh. Anal. Appl., vol. 69, lg7g, pp. 395_a07.

[37] B. Friedlander, h/Í. Morf, T. Kailath, L. Ljung, ,,New Inversion Formuras for
Matrices Classified in Terms of Their Distance from Toeplitz Matrices,,, Lin. Alg.
and is Appl., vol. 27,1979, pp. 3l-60.

t38l N' Kalouptsidis, D. Manolakis, G. Carayannis, "Efficient Triangularizarion, Inver-
sion and System Solution for Near-to-Toeplitz Marrices," proc. l9g3 IEEE Int.
Conf. on Acoust., Speech, and Signal proc., pp. 24_27.

t39l M' Morf, B. Dickinson, T. Kailath, A. Vieira, "Efficient Solution of Covariance

Equations for Linea¡ prediction," IEEE Trans. on Acoust., speech, and Signal

Proc., vol. ASSp-25, Oct. 1977, pp. 429433.

2.53

t40l E. v. Jull, D. c. w. Hui, p. Facq, "scartering by Dual_Blaze.d com:gated con-
ducting strips and small Reflection Grarings,', J. opt. soc. Amer. A, vol. z, July
1985, pp. 1049-1056.

[41] P. Facq, "Diffraction par des Structu¡es Cylindriques périodiques Limitées,,, Ann.
Telecommun;, vol. jI, L976, pp. 99_107.

[42) K' Aki, P. G. Richards, Quantitative Seismology Theory and Mettøds. San Fran-

cisco, California: Freeman, 19g0.

[43] R' A. Usmani, Applied Linear Algebra. Cou¡se notes ro Engineering Analysis III,
course no. 24.810, DepL of Appl. Math., universiry of Manitoba, winnipeg, Man_

itoba, Canada, 1984.

L44l L. c. wood, S. Treitel, "seismic signal processing,,' proc. IEEE, vol. 63, April
1975, pp. &9-66t.

[45] R' A. Wiggins, E. A. Robinson, "Recursive Solution to the Multichannel Filtering
Problem," J. Geophys. Res., vol. 70, April 1965, pp. lgg5_1g90.

[46] R' W. Schafer, L. R. Rabiner, "Digital Representations of Speech Signals,,' proc.

IEEE, vol. 63, April l9Z5 , pp. 662-677.

[47] R' E. Blahut' "Algebraic Fields, Signal Processing, and Error Conrrol,,, proc.

IEEE, vol.73, May 1985, pp. g74-g93.

[48] R. E. Blahut, Theory and, pracdce of Error control codes. Read.ing, Mas_

sachusetts: Addison-Wesley, 19g3.

[49] w' B. Jones, A. O. Steinha¡dt, "Finding the Poles of the I-attice Filter,,' IEEE
Trans. on Acoust., speech, and signat proc., vol. ASSp-33, oct. 19g5, pp. r3zg_

1,33t.

t50l M' R. Raghuveer, C. L. Nikias, "Bispectrum Estimarion: A pa¡ametric Approach,,,

IEEE Trans. on Acoust., speech, and Signal proc., vol. ASSp-33, oct. 19g5, pp.

1213_1230.

t51l S' Kay, "Some Results in Linear tnterpolation Theory," IEEE Trans. on Acousr.,

Speech, and Signal proc., vol. ASSp-31, June 19g3, pp. 746_749.

2.54

t52l M' Ohsmann, "An Iterarive Method for the Idendfication of MA Systems,,, IEEE
Trans. on Acousr., speech, and signal proc., vor. ASSp-36, Jan. r9gg, pp. 106_

109.

l53l M' Korenberg, "Functional Expansions, Parallel Cascades and Nonlinea¡
Difference Equations," in Advanced Methods of physiological System Modeling,
vol' I N ' z' Mannarelis, ed,itor). Universiry of Southern California, [,os Angeles,
ca-lifornia: Biomedical simurarions Resource, I 9g7, pp. 2zr -240.

[54] J' Cupon, "High Resolution Frequency-wavenumber spectmm Analysis,,, proc.

IEEE, vol. 57, Aug. 1969, pp. l40g_t4tg.

t55l B' R' Musicus, "Fast MLM Power Spectrum Estimation from Uniformly Spaced
correlations," IEEE Trans. on Acoust., speech, and signal proc., vol. ASSp_33,
Ocr 1985, pp. 1333-1335.

t56l w' B' Gragg, "The Padé Table and Its Relarion to Certain Algorithms of Numeri-
cal Analysis," SIAM Review, vol. 14, Jan. 1972, pp. I_62.

t57l G' Cybenko, "ResEictions of Normal Operators, Padé Approximation and Autore-
gressive Time series," sIAM J. Math. Anar., vol. 15, Jury r9g4, pp.753_767.

[58] L. weiss, R. N. McDonough, "prony's Method, z-Transforms, and padé Approxi_
marion," SIAM Review, vol. 5, April 1963, pp. 145_149.

[59] R' J' McEliece, J. B. shearer, "A Property of Euclid's Algorithm and an Applica-
tion to Padé Approximarion," SIAM J. Appr. Math., vol.34, June r97g, pp.61r_
615.

160l K' Imamura, "Two Recursive Algorithms for Solving the Scalar parrial Realiz¿-
tion Problem," prc€. r9g5 IEEE Int. Symp. on circ. and syst., Kyoto, Japan, June
5-7, 1985, pp.823-824.

t6ll T' Kailath' Linear Systems. Englewood Cliffs, New Jersey: prentice-Halt, 19g0.

t62l v' F' Pisa¡enko, "The Retrieval of Harmonics from a Covariance Function,,, Geo-
phys. J. Roy. Astron. Soc., vol. 33, 1973, pp.347_366.

2.55

t63] s. M. Kay, s. L. Marple, "spectrum Analysis - A Modern perspective,,, proc.

IEEE, vol. 69, Nov. 1981, pp. l3B0-1419.

t64] Y' H' Hu, S.-Y. Kung, "Toeplitz Eigensystem Solveç" IEEE Trans. on Acoust.,

speech, and Signat proc., vol. ASSp-33, ocr 19g5, pp. 1264-127r.

[65] M. H. Hayes, M. A. clemenrs, "An Efficient Algorithm for computing
Pisarenko's Harmonic Decomposition Using l-evinson's Recursion,,, IEEE Trans.
on Acoust., Speech, and signal proc., vol. ASSp-34, June 19g6, pp. 4g5-49r.

t66l J' T' Tou, R. C. Gonz¡'lez, Pattern Recognitíon Principles. Read,ing, Mas-
sachusens: Addison-Wesley, 1974.

t67l H. L. Van Trees, Detection, Estimatíon and Modulation Theory, pan I. New
York, New York: John Wiley & Sons, 196g.

[68] T' Kailath, B. C. Lævy, L. Ljung, M. Morf, "Fast Time-lnvariant Implementations

of Gaussian signal Detectors," IEEE Trans. on Info. Theo., vol. IT_24, July 197g,

pp. 469-477.

[69] E' A. Robinson, S. Treitel, "The Specral Function of a Layered System and the

Deærmination of waveforms at Depth," Geophys. prosp., vol. 25, 1977, pp. 434-
459.

[70] E' A. Robinson, S. Treitel, "The Fine Structure of the Nonndl Incidence Syntheric

Seismogram," Geophys. J. Roy. Asrron. soc., vol. 53, 197g, pp. 2g9-310.

[71] A' H. Gray, Jr., J. D. Markel, "Digital t-attice and L¿dder Filter Synthesis,,, IEEE
Trans. on Audio and Elecrroacousrics, vol. AU-21, Dec. 1973, pp.491-500.

[72] E. Kreyszig, Advanced Engineeríng Mathemancs, 4rh edirion. New york, New
York: John Wiley & Sons, 1979.

t73l J' D' Ma¡kel, A. H. Gray, Jr., "Roundoff Noise Cha¡acteristics of a Class of
onhogonal Polynomial sFuctures," IEEE Trans. on Acoust., speech, and signal
Proc., vol. ASSp-23, Oct. 1975, pp. 473_4g6.

[74) A' H' Gray, Jr., J. D. Ma¡kel, "A Normalized Digital Filter Strucrure,,, IEEE
Trans. on Acousr., speech, and signar proc., vol. ASSp-23, Iune 1975, pp.26g_

2.56

276.

t75l P' Delsane, Y. Genin, Y. Kamp, "Orthogonal Polynomial Matrices on the Unit
circle," IEEE Trans. on ci¡c. and sysr, vor. cAS-25, Mar. r97g, pp. 149_r@.

176l H' [æv-Ari, T. Kailath, "[-å.ttice Filter Paramerization and Modeling of Nonsta-
tionary Processes," IEEE Trans. on Info. Theo., vor. IT-30, Jan. 19g4, pp. z-L6.

t77l H' Lev-Ari, T. Kailath, J. Ciofñ, "Læast-squares Adapdve l-attice and Transversal

Filters: A unified Geomeric Approach," IEEE Trans. on Lnfo. Theo., vol. IT-30,
Mar. 1984, pp. 222-236.

Chapter III

SOME F'{jR,T'HER, R,ESUT,T'S ON SCHUR, AND SPÍ,TT SCFIUR,
ALGORITHMS

In Za¡owski and Card [l] it is shown that the Schur algorithm of Le Roux and

Gueguen [2] is equivalent to rhe schur algorithm of Kung and Hu [3]. To our

knowledge, this has not been noted previously. This equivalence, which we have

stated in Chapter II, shall be demonstrated in this chapter. The symmetric split Schur

algorithm of Delsarte and Genin [4] was rederived in [1] using the Schur atgorithm in

Kung and Hu [3], rarher than the algorithm of I-e Roux and Gueguen [2]. The

rederivation was presented in Chapter tI of this thesis (see section 2.5). In [1] an

inverse mapping from the split Schur variables to the Schur variables is obtained, as

no such mapping was derived by Delsarte and Genin [4]. This inverse mapping is

important in the context of a parallel-pipelined processor implementation of the split

Schur algorithms (see Chapter IV), and so we shall include it here. Finally, we shail

present the derivation of a Schur algorithm for Hermitian Toeplirz matrices of any rank

profile. This algorithm is due to Za¡owski and Card [5], and it is derived using the

Levinson-Durbin algorithm of Delsarte, Genin and Kamp [6] for such matrices, and the

Kung-Hu Schur algorithm [3] for strongly nonsingular Hermitian Toeplitz marrices

(see Chapter II, secrion 2.3).

L. The Le Roux-Gueguen and Kung-Hu Schur Algorithms are Equivalent

Let us assume that Tn is a real and symmetric Toeplitz matrix (so

Tn = lt I i-, 111,,*r¡*1,,*r¡). The Le Roux-Gueguen [2] Schur algorithm is summarized

in Table II of [4], and we repeat it here:

For i := 0 to n do begin

3.2

end;

For k := 1 to n do begin

Kp := -€t-t't '
€ t _t,o

Fori :=0 to n - k - I do begin

€k,_i t= ek_t,_i + K¡ep_y¡a¡i

€k,k+i+t i= Kke*-t,<i+t) + ek-tt+¡+ti

end;

end;

From [2], Schur va¡iables e¿.¡ ar€, defined as

€k,i = O',o*(r), , (1)

where this expression is taken f¡om Chapter II, section 3.6 (with trivial notariona-l
changes). Recall that the material of section 3.6 in Chapter II is adapted from Ma¡kel
and Gray [7]. Equation (1) then expands as

k
€k.i = Zt I ¡-¡ lat .¡j=0

Although the simila¡ity of trre above algorithm to the Kung-Hu algorithm of
II, section 2.3 is evident, because of the manner in which the variables

obtained in [2], it is not clear how they relate to the erements u,G) o, ¡he LDU
position of Tn. However, from Chapter II, section 2.3 we have

(2)

Chapter

et,¡ a.re

decom-

(4)

LfTr=¡¡r, (3)

where r/ is defined in (17b) (Chapter II, secrion 2.1), and (Jp isthe right hand side of
(70) (chaprer II, section 2.3). Equadon (3) expands to become

ug) =*ir,r*,-**, lat-t,jj4

Thus, we can compare (2) with (4), and this yields

€k,i = utt¡tl

We may therefore conclude that rhe Schur algorithm of I-e

(s)

Roux and Gueguen [2], and

3.3

of Kung and Hu [3] are equivalent.

2. .4n Inverse Mapping

Given v¿,¡ (symmetric Schur variables of Chapter II), we might want u¡(&), the

elements of Un Thus we need an inverse mapping from values yÈ,i to values r,(¿).

From (86a) (Chapter II, secrion 2.5) v¡*r,,-r - a,(&+t) + u$ilXr, and this may be sub_

srituted in to (87) (Chapter II, secrion 2.5) giving

,\i|ù = u\ill>q + (t + Kr)v*t,¡ - vk+z,i-r , (6)

where 01k 1n , I < i < ¿-È since we want the elements of u,, in (70) (chapter

u, section 2.3). Equation (6) is recursive, and for a given k we nee.d

u!till>., l¡=r = ulf*rl = oÈ. This is an initial condition. Recall from Chapter II, sec-

tion 2.5 that o¿ = v¿a1,s(l + K¿).

For the purpose of computing reflection coefficients, the split Schur algorithms
require approximately half of the number of multiplications that the Schur algorithm
does' However, if we are to use the split Schur algorithms to LDU factorize Ç, then

the number of mukiplicarions is about the same in both cases. It is the presence of a

multiplication operation in (6) that makes the number of multiplicarions comparable.

There appears to be no way of eliminating this extra multiplicaubn. Thus, there is no

apparent advantage in using the split Schur algorithms to LDU factorize Toeplitz
matrices. However, in Chapær IV we shall see that this conclusion is false in the con-
text of a parallel-pipelined processor implementation of the split Schu¡ algorithms.

That is, the extra multiplications due to (6) causes no rouble in this conrext. only in
the case of a sequential processor implemenrarion of the split Schur algorithms is the

presence of these extra multiplications a problem.

3. .4. Schur Algorithm for Hermitian Toeplitz Matrices of Any Rank Frofile

Delsarte, Genin and Kamp [6] have derived an extended form of rhe Levinson-
Durbin algorithm for Hermitian Toeplitz matrices. Thei¡ algorithm is able ro cope
with the case when one or more of the leading principal submatrices of the marrix is

3.4

singular. Recail from Chapter II, section 2.1 that the classica-l form of the Levinson-

Durbin algorithm described therein must terminate when a singular submatrix is

encountered. In this section we shall use the algorithm of t6l and the Kung-Hu Schur
aigorithm of [3] to derive a Schur algorithm for the singular submatrix case. The
result will bre a schu¡ algorithm for Hermitian Toeplitz matrices of any rank profi_le.

In the derivation to follow we adopt the noradon of [6], which d,iffers slightly from the
notation of Chapter tI. However, this will facilitate any comparisons of the resuls in
this section to those in t6l rhat the reader might wish to make.

3.1 A summary of rhe Delsarre, Genin and Kamp Algorithm

Let there be an mxm Hermitian Toeplitz matrix

l--''rlco cl ..t--tl
I r, cs . . c^_zlc^=l l, (7)l..l'
Lt^_, cm_z . . co l

where c6 is real, c¡ (l < i Sm-l) a¡e complex, and c_¡ _ q. I-et C¡ =Lc¡_jl**
(j = row index , j = column index) denote the t th order submatrix of c_, so

L<k<m and 0<i,j <k-1. I-et f¡=det(C¡¡, with /o=1 by convention. Let
Qk-r = [açt,O trk_t,r a*t3_t)T safisfy

C*a*t=[l 0 0]r, (ga)

and let xk4 = [x¿_r,o rr_r,r . . . x*t.t_1ìr satisfy

Crx*t = [o¿

, f*_where açt,o = T , xk.o= I and o¿ =

p r e dt c to r p o ly no mials, respectively,

atQ)=for,,zi, tkçz¡=fx¡.¡zi, (9)j=0 i{

and' ap-, = T
(assuming oÈ É 0). The reciprocal of at(z) is âo(z) = zk atø-l).

0

fr

011 , (8b)

We may construct the l¿vittson andfçt

3.5

Index r is called a right singular point as f, *0, but fr+t = 0. Similarly, index

n is called a
.left

singular point since /n * 0 but Í nt = 0. ft is known that

(10)n _r =21 ,

where i is cailed the lohvidov índex (see [6],[g]).

The algorirhm of Dersa¡te, Genin and Kamp [6] may be summa¡ized in pseu-

docode form as:

k := 0 i oÊ+l := c6i hþ):= 1; a¿_1(z) := 0;

While k < m-2 do begrn

If o¿*, * 0 then begrn

vlLnr+r i= _=ZcG+t>¡\.¡:
vt+l ¡{

6k+zi= o¿a¡(l - lK**, lt);
4Q)ap(z)'=
ñ,

x¡r¡1(z) := x¡(z) + K¿*rzî¡e);

k:=k+1.
end

else begin [r = kl
Find smallest / satisfying exr,s * 4+rrr.r + .. + d¡*rx,.rfl;
If r =0thenbegin

Vi := {¡,1 (0 < d < /);

cr¡ i= c¡*¡ (0 S i < /);

end

else begin

r_l
Vi := 2cr+t_¡_jar_r,; (0 S ¿ < /);

j4
r

0¡ f= Ecr+t+i_¡xr,, (0 . í < l);
j=0

end;

3.6

Solve

p(z) 7 = -P-¡-¡);

n._ 1p0.-=-; n:=k+2'I;
Po

an_t(z'¡ := p;rzt xp(z);

xn(z) 7 $o¡zt a¿_t(z) + p (z\rte)h

o¿+l r= I Êo lz[p, o p¿ + aeae)];

k;=ni
end;

end;

Note that this program assumes C- is nonsingular, otherwise if at any stage no / satis-

fying

fî,*,x,,, *o (r1)
j={

can be found, then the program must be modified to terminate.

3.2 The Kung and Hu Schur Algorithm

We may restate, for convenience, the Schur algorithm of Chapter II using the

notation of section 3.1 (this chapter) above:

For i := 0 to ¡n -l do begin

a1]) :=

"
' u¡Q) := c¡;

For È := 1 ro m-L do begln

u {tl
K,'-=* ,9\r'
For i := 0 to ¡n -k-I do begin

u\i.\ ,= ,!f)-¡*1 + r*,a.f/;

u.&+r) := Kkr&)_,*, + u¡fl;

qo o.o
crl%.0

O¡ Cll-t . qO

2t

Zp¡t' (pt*¡
¡=O

Po
Pt

Pt

V¡
V¡-r

Vo

3.7

end;

end;

It is clear from the results of Chapter II that we have

ct = u{Dr1(l¿ ,

cr' = t{o;trr ,

where

(r2a)

(12b)

(13a)

, (13b)

(1aa)

(14b)

(ls)

upt u!| uilf,
o uS) '.'. u%\t

:::o o . ."*\t

and where ot = u{¿\t. As well,

L* = DtrU*H ,

LkCk - Uk ,

and the latter equation expands to give us

ug) =fu,*,-r*rx*,-t,j
j4

È_l
-s= Lck-i-j-Ft-t,¡j4

1 g oorr,l 1 .. 0 0
uk- f_

t Lk-

4-z,r-zx*-zt-t.. I 0
xk-t,k-L Xt-t,t-2. . f¿-r,t 1

3.3 The Desired Result

We must relate the variables in the Delsarte, Genin and Kamp algorithm summar-
ized in section 3.1 above, to the Schur variables in order to find the required Schur
algorithm.

Using (15) it is sraightforwa¡d to verify that

3.8

uliï]l¡ = lc-ç*iy,,¡ = fq*¡x,,¡ ,¡=0 t=O

r_l
uXl-t-tl = o, Ð cr+t-i-¡er-t,i = o,Vi ,j=0

utllÐ = þ-c,*t*i-jx,.j = di
j=0

:r-l _ u r
!n,i = Foå4*¡-i a,-r,j + po ir, ir+j_ixr.i, (0 < i < n)j=O v=0 È-O ' - 'r

(1 6a)

(l6b)

(16c)

Thus, (16a) may be used to find /, the Iohvidov index, and (16b,c) may be used to ûnd
V¡ md cr¡, respectively.

we want to compute the order ¿ and n+l schur variabres a¡(r) and u,@+L),
respectively, if possibre. Thus, from the algorithm of secdon 3.r,

an_1(z) = Ftlrtrre) ,

xn(z) = $o¡zt ar-rçz) + p (z) xtre)l ,

where k = r. We have

bn_r = Cndn_r = [l 0 0]r ,

ln=Cn+Lxn=[on*r0 OJr

Hence we may subsritute (l7a) into (lga) and get

bn-rj= Þol fr,*¡-,*,,¡, (0 < i S n-l)j4
Similarly, subsdruting (l7b) into (lgb) produces

(r7a)

(17b)

(l 8a)

(18b)

(l9a)

(1eb)

We can use (15) again

Therefore,

to express vectors å¡ and /¡ in terms of schur variables.

ln,i =

we have u.(o) - o (ail t)

bn-t,i = po tuiqïl/)

- f r .. u I
Pt

L",
,r?'+/þ1 * \o"r'9:\r)

since a-1(z) = 0. Vy'e also have, from (18a)

(20a)

(20b)

and (18b),

3.9

respectively,

n-l n
bn-t,i = Z^l¡_¡an_r.j, !n,i = T,_ixn,¡j=0 j=O -

The equarions in (21) can be expressed in terms of schur va¡iables as

,1bn-r,i = o:utg)+t, Jn,i = u,*D

There is clearly a æchnical problem involving the expression for bn_t.i in (22)

ever. Since or, - f n
f,*,

and f n¡ =0, we have or, =t*. Hence, we cannot

*u,tJ., = Ptr&iQll/¡ (obtained by combining (20a) with the first equation in

Thus, u,(") ir unobtainable, although we do have

u¡9,1,)= O [+ u¡Í-+o+t o
þ:,r,grl],] , e3)

which is obtained by combining the second equadon in (22) with (20b). Equation (23)

is to be evaluated for i = O,-r,...,n -m*l and i = n,...m-Lin general.

Although we cannor ger u¡(n), bn_r.i exists and is finite (see (zr)). This fact is
useful since if o¿+l = 0, then the else case of the "If o¿ * 0 then" statement is exe-

cuted again, where now k = n + I and r = n The problem is ttat

1*=ärIi/-,-tr (ost</)

in this case. But å,,-1,¡ = *u,*J-¡,
ârd so

From (20a)

(zt)

(22)

how-

write

(22)).

(26)

(24)

(2s)

Vn+t_i = po taiq;?r) , or ry, = p;ta{il,lt

Vl and so ¡ = n, ,n+l in (26). Thus,

Vo = Êo
l¡¿ ll*') , , V/ = q-trr(r+l)

V/e want ye

(27)

3.10

Since u'Q+r) exists, we can obtain V¡ as in (27). Note that it is genuinely possible rhat

o,,+t = 0' An example with this propeny is presented in t6l. We emphasize that the
va¡iables / and r in (26) and (27) have the values that they had ;',:st prior to the com-
putarion of on+r(= 0). Similarly, 0o in (26) and (27) is thar value used to obtain
o¿+1.

Equations (16a,b,c) and (23) represent rhe Schur algorithm for the case where
oÈ+l = 0 in the algorithm of section 3.1. The algorithm does nor allow us to deter-
mine ar(r+2) u¡ø), and so some of the rows of u^ in (13b) a¡e missing as a
result. The size of the resurting gap, which we shall call a síngular gap, is
n - (r+2) + 1= 2l - | (/ > 1) (using (10)). It is possible to use the known schu¡
variables, and (14a) (nonsingular case) to find the polynomials an_1(z) andx,,(z) how_

ever.

We may finally summarize the Schur algorithm for Hermitian Toeplitz matrices
of any rank profile using pseudocode:

k := Li o¿ :=ca I u1|) := 4, u,Q):=c¡ (0<i < m_l) ;

While k < m-l do begin

If o¿ * 0 then begin

u{r)
Kp :=

u&\t '

For i := 0 to m_k_l do begin

uWù := u*)_¡*t + K*¡fl ;

a,(&+t) ,= Ktu!ì_¡*r + u¡fl ;

end;

o&+l r= u$*tl ,

k:=k+1.
end

else begin {r = È - 1}

Find smallest / such that u$/) É 0 ;

Ifr=0thenbegin

3.1 1

Vj:=-ô¡,1 (0<j</);
o¡ l=cl*¡ (0<i </);
end

else begin

uil.'t),= Bi
l+,,*.¿¡+,

+ î^r,,,\p,,]

(0 >,)_ n-m+I, n < i < m_I) :

on+l i= | po l, [p, +lt + L)
;

(replace-!or0ifr=0)-
o,,

k:=n+L;
end;

end;

The pseudocode omits to account for the case where on+t = 0. This is done to sim-

plify the presentation of the algorithm. As a final remark, it may be read,ily shown

that the above algorithm and that of Delsarte, Genin and Kamp [6], borh have time

complexities of O1z2¡ 1on a sequential processor).

3.4 Numerical Examples

IìÚ. ._ _
YI ' or

ø¡ := Url{

end;
r
l% 0
lar CIo

Solve I

I

Lo, o,-, '

Pt+i := -Pt-¡ (I S

Þo:= I ; n :=2
Po

u\)-t-rt

l)(0<¡

ïl

(0

<l

1;

i <i);

ollpo

;]L;
i </);

l+k-

Considertheorder m =5 matrix

lz _t I _1 tl
r__li2-il-1 It'=

l-t, i'r 7 :rl '

Lt -1 r j z_l

andso co=2, cl = j ,cz=I,c3--l , c4=1. If weexecutethealgorithmof sec-

rion 3.1 we get:

3.12

We may clarify the operation of the algorithm of the secrion 3.3 with the aid of
two numerical examples.

Example I

)
;l)

+ 2l = 4. It is also

6t=2, xs(z)=1, aaþ)=Q ,

3 xo?) I, Çz= í, ooQ, = I = ;,x¡(z) =xs(z¡ +K,zfo(z) = | - lir,
Kz=-r,6i3=0, x{z) 2 Ia{z)=

ã = - - tir,x2Q)= x1(z¡ + Xrzîr(z) = | - j, - rz .

Since o3 = 0 we have r =2, and the smailest value of / for which fr,*,rr,, * 0 is
¡=0

I = L It may be readily shown that

1. l.Vo=-ã-;i,Vr=1,

CIO=-l -2j , et= j
t

Therefore, Êo = * = | - 2j, since
Po

oo=* -li, pt=-å. |i, or=-!-
At this point in the algorithm of section 3.1, k =2 and so n = k
straightforwa¡d ro show that

x, = -!i

a3e) = g¡tzx2e) = (+*3 j)z + tI-Iiv, + eI_Ii>,3

3. l3

xq(z) ==,u,."ii?1.,:,u.':älli,,**

nå-* j)23 + e]*!it,, ,

os = | þo l'lpt +lt+ ar(O)l = #
If we now use the Schur algorithm of section 3.2, rhen

u9 = l,u!\) =-1, u!Ð -t, aIl) =-j,ról) =2(=or),
,fr)= j,rlt)=l,u{D =-l ,u[D=I ,

rr=-ti,uQ --1 - ti,uS, =1+ li ,rS¡ =-]i ,uS) =|r=oz) ,

uó2) =o,u{2) =+,uá2) =-r- T, ,rlz) =r*T¡ ,

Kz=-l ,uQ=j,ug) =l-2j,ug =0(=o¡),
uó3) = 0, rz{3) = -l - 2j , ul3) = ¡

Sinceo3=0, r =2 asbefore. From(l6a) ¡¿l?i*z) =0if /=0, but u_\) *0andso
I = l. From (16b,c) the values of ry¡ and ü,j are correctly produced. From (23)

¿,¡9 = Q + 2i) t+r,9) *
fu"&iQ,*z¡,, .

which yields ug) = ff f = o5). We can now wrire

Us=

u¡rr alf) u!\t u!\t u\t
ö uS) u?z) u93) uQ
q q u92) uar) ,9t
3 3 o- uit¡ ugvouQ)

-j I -1 I
2 3 3,.1. 1.
0 t -1t I+Tr -r-;i
00 0 r-zj j
000xx
00 0 0 34

where the x denotes an unknown value. In summary, the Schur algorithm of section
3'3 produces results in agreement with those produced by the algorithm of section 3.1,

15

3.14

as we expect.

Example 2

Now consider the order ¡n = 4 matrix

[-o _r I ol
co= ll'-0, i -i I ,

Lo I -1 oJ
where c0 = 0, cr = -r , cz= I , ca = Q. Let us again begin by executing the argo-

rithm of section 3.1. Clearly, ol = c0 = 0 and so r = 0. The smallest value of / such
0that Q*¡xo,¡ * 0 is / = 1. Thus, V¡ ={¡,r, and so V0=0, Vr =-1. As well,j=O

ct'¡ = c¡¡1r giving Ql = -1 , clt = 1. Therefore, po= -L , pt= -I , pz= I. Hence,

Þo = -1, and

a yQ) = p;lzxe(z) = -z ,

xz!) = Fo[za-t(z) + p (z)xs(z)] = I + z - 22,

o¡ = | Fo l2tpr +pr + a_1(o)l = -l
wehave n=k+21 =0+2.L=2. Atthispointt becomes¿,so k=2. since
o3*0,

12rr=-älca-¡x2.¡=L,

o¿ = o¡(1 - I Ã's 12) = 0 ,

^ ,-\ xz?) I 1 I na2\z) = o, =-=-;z*Zt,,

x3Q) = x2(z¡ + Krzîr(z) = I + z3

Now let us use the Schu¡ algorithm for Hermitian Toeplitz matrices of any rank
profile. We have

rulfl - 0, u!\) = t, all) =-1, uóÐ =0(=or),

3. l5

,ft) = -l , u{t) - 1 , u{r)

and so or = Q implying that r = 0. euantities V¡ , o¡

fore going to be compured correctly and will take on

graph. We don't know u¡(2), but vta (23),

7

u¡9) = -Ëo"u¡9J = a,(r) o u¡ll - u¡!) ,
v{

and this gives us

u-Q2>=-/, &g)=0,

uót) =0, uP) =z

Now È = 3, and \,ve may use the schur argorithm of section 3.2. Hence,

" (3)

K3--:!-=lu$"
,lro,)*¡l = uf¡ì*z¡ + X3u¡fl ,

u,@) - x3u\'!*z> + u¡fì

For i = 0, the latter two equations give

u!t) f=04)=0, &óa) =0

Finally,

U¿=

R,EFERENCES

tll C. J. Zarowski, H. C. Ca¡d, "Relations Benveen the Schur and Split Schur Algo-
rithms," submitted to the 14th Biennial Symposium on Communications, eueen's
University, Kingston, Onta¡io, Canada, l9gg.

-u t

, I , n , p(z) and Êo a¡e there-

the values of the previous para-

3.16

tzl J. L€ Roux, C. Gueguen, "A Fixed Point Computation of parcial Conelation

coefficiens," IEEE Trans. on Acousl, speech, and signal proc., vol. ASSp_25,

June 1977, pp. 257-259.

t3l S'-Y' Kung, Y. H. Hu, "A Highly Concurrent Algorithm and pipelined A¡chitec-
ture for solving Toeplitz Systems," IEEE Trans. on Acoust., speech, and signal
Proc., vol. ASSp-31, Feb. 19g3, pp. 66_75.

t4l P' Delsarte, Y. V. Genin, "On the Splining of Classical Algorithms in Linear
Prediction Theory," IEEE Trans. on Acoust., speech, and signal proc., vol.
ASSP-35, May 1987, pp. 6a5-653.

t5l C. J. Za¡owski, H. C. Card, "A Schur Algorithm for Hermirian Toepliu Matrices

of Any Rank Profile," submitted to the IEEE Trans. on Acoust., Speech, and Sig-

na] Proc.

t6l P' Delsarte' Y. V. Genin, Y. Kamp, "A Generalization of the Levinson Algorithm
for Hermitian Toeplitz Matrices of Any Rank ProñIe," IEEE Trans., on Acoust.,

Speech, and Signal proc., vol. ASSp-33, Aug. 19g5, pp. g&_g7L.

t7l J' D' Markel' A. H. Gray, Jr., "On Autocorrelation Equarions as Applied to

speech Analysis," IEEE Trans. on Aud. and Electroac., vol. ALI-LL,April 1973,

pp.69-79.

l8l I' S- Iohvidov, Hankel and Toeplitz Matrices and Forms. Bosron, Massachusetts:

Birkhaü ser, l9BZ.

Chapter IV

P,4RAT.LEX,-PIPELINED PROCESSOR ARCT{MECTURES FOR
THE SCHUR, AND SPLM SCHUR AI,GORITHMS

In this chapter we present parallel-pipelined processor implementations of the

Schur and split Schur algorithms described in the previous two chapters. As we have

seen' on a sequential processor, these algorithms have a time complexity of O (nz)
(n th order matrix). The Schur and split Schur algorithms can be implemented, in
parailel form, on a linear array of O (n) processors. In this situation these algorithms
will run in o (n) time. As will be seen, in many cases it is possible to arrange the

computations so that processors in the a:ray need only communicate with their nearest

neighbors. This is done th¡ough the use of pipelining. Thus, the need for globai

communications can often be eliminated. The parallel-pipelined processor implemenra-

tion of the Schur algorithm is due mainly to Kung and Hu [1], but parrly to Brent and

Luk t2l. The parallel-pipelined processor implementation of the split Schur algorithms
is due to Zarowski and Ca¡d [3], as is the implementarion of the Schur algorithm for
Hermitian Toeplitz matrices of any rank profile.

tr' Primary Issues in the VLSI Implementation of Farallel-Fipelined processing

Systems

We shall begtn by discussing the formulation of parallel algorithms to solve prob-

lems. In this regard we shall first note that algorithms which are efficienr on sequen-

tiai machines are not necessarily efficient on parailel machines. For example, we have

seen in Chapter II that the Levinson-Durbin and Schur algorithms both have a dme

complexity of o (n2) on u sequentiai processor. However, it is noted in Kung and Hu

[1] that the lævinson-Durbin algorithm, when implemented on a linea¡ array of proces-

sors, will have a time complexity of o (n log n). on the other hand, the schu¡

4.2

algorithm will have a time complexity of o (n). This is due ro fundamental
differences in the structure of the two algorithms. In particular, the Lævinson-Durbin
class of algorithms all possess inner product operations, i.e., operations of the form

on a linea¡ array of n processors this operafion can be performed in log n rime ar
best' Clearly, the products ï¡)¡ can be computed in O (l) time. The bottleneck is due
to the need to sum the products, and this takes logarithmic time on a linear anay of n
processors' The Schur-type algorithms possess no inner product operations and so a¡e

completely unconstrained by this operation. As a result, in formulating algorithms to
solve a¡birary problems in parallel, very close attention must be paid to algorithm
structure. It is reasonable to state that the theory of algorithms is more imponant in a
parallel-processing conrext than it is in a sequential processing context.

In a sequential processing environment, computational complexity is rrad"itionally
measured in terms of the number of arithmetic operations required by the atgorithm.
However, we have seen that some algorithms a¡e more amenable to parallel implemen-
tation than others' even when they all possess the same time complexity (operations
count) on a sequential machine. Thus, operations count is not a vaiid criterion for
judging which algorithm is most amenable ro parallel implementrtion. Kung and Hu

[1] suggest that throughput rate replace operations counr as the performance criterion
of a parailel solution to a problem. We shall adopt this criterion here. We may there-

fore state that in formulating a parallel algorithm, structure the algorithm to achieve
the maximum parallelism (concurrency) and, therefore, the maximum throughput
rate' According to this criterion, the Schur-type algorithms are superior to the

Levinson-Durbin-type algorithms at solving Toeplitz problems (defined in Chapter II,
secdon l).

In Chapter II other algorithms, besides the l-evinson-Durbin and Schur algo-
rithms, were described. Specifically, the Trench and Ba¡eiss algorithms were also

derived' The presence of inner product operations in the Trench algorithm leads us to

n

Z*t yt
.'-t¿ -l

4.3

conclude that it is a poor candidate for parallel processor implementarion. However,

the Ba¡eiss algorithm is shown by Brent and Luk l2l to be a good candidate for such

an implemeniation. In fact, they show that in some respects the Ba¡eiss algorithm is

superior to the Schur algorithm of [1] in this context. For example, the Schur algo-
rithm can LDtl factonze and compute the reflection coefficients of a nonsymmeric
Toeplitz matrix' But the para-llel processor implementation of it requires that rhe
reflection coefficients of this form of the Schur algorithm be globally broadcasted to all
other processors in the aray. This is undesi¡able, especiaily in the context of a vLSI
(very large scale integration) implementation. The carallel implementarion of rhe
Ba¡eiss algorithm proposed by Brent and Luk [2] does not have this problem, i.e.,
communications between processors can be strictly local. Note however, that the
Bareiss aigorithm is no better than the Schur algorithm when the Toeplitz marrix is
either symmeric, or Hermitian. It is only these latter two cases that a¡e of interest to
us in this chapter. It appears that these a¡e the most useful cases in practical applica-
tions.

It is well known that contemporary VLSI technology is limited by communica-
tions consËraints (see Mead and Conway l4l, or Kung, Whitehouse, and Kailath [5]).
A parallel algorithm can be read.ily implemented with VLSI technology only if com-
munications is localized (i-e., between neighboring processors bnly). A¡chitectures
such as the systolic anay ([4],[5]), and the wavefronr array processor (t5l,t6l) employ
localized interprocessor communicarions, and so a¡e viable candidates for VLSI imple-
mentation' Thus, if possible, we must arrange a computation so that communica-
tions constraints are satisfied, and processing throughput rate is simultaneously
maximized' The parallel-pipelined processor implementations of the Schur algorithm
in [1] and the split Schur aigorithms in t3l sarisfy this requiremenr quite well. The
commtmications constraint is satisfied by pipelining. Notice that in general the
requirement of satisfying communications constraints conflicts with the requirement of
maximizing throughput. Thus, a compromise may be necessary. If such a comprom_
ise proves unacceptable, then it will be necessary to find a better algorithm. Unfor-
tunately, it may well be that no such algorithm exists and so compromises may be

4.4

unavoidable afterall.

Note th.at the criterion of the preceding paragraph neglects the problem of data
input and outPut to the VLSI chip. This is a significant considerarion in pracrice since
all VLSI chips have a finite number of VO pins. It turns our however, rhar the prob_

lems of interest to us in this thesis have pin VO requirements which a¡e fixed and

independent of n, the size of the problem. This fact shall become obvious to rhe

reader in the remainder of this chapter.

2. Parallel-Fipetined Architectures for the schur Algorithm

In this section we describe the parallel-pipelined processor implementation of the

Schur algorithm due to Kung and Hu [1], along with a certain improvement suggested.

by Brent and Luk [2]. Although the material of this secrion is found in [1,2], the
presentation of this section is more complete and detailed, and we believe that the
present exposition is easier to understand than that in [1,2]. As in Kung and Hu [l],
we shall assume that ?'" is an (n+1) x (¿+1) symmeric Toeplirz marrix. The exten-

sion to the Hermitian Toeplitz case is sraightforward (simply take conjugates ar the

appropriate places). Furthermore, we shall consider the special case of n = 3, as gen-

eralization to arbitrary n is straightforward, and special cases a¡e easier to visualize
than the general case.

Figure l(a) shows the linea¡ array of processors suggested by Kung and Hu [1]
for the parallel implementation of thei¡ form of the Schur algorithm. The processors

are represented as larger boxes containing two smaller boxes. The smaller boxes

denote srorage locations for the numbers ,tr)*vt and r.r¡f/. Number u!t)*t>*,
appears in cell i, while a¡f1 appears in cell i+1. Cell 0 is represented by a double

box' This is to signify the fact that this is the only cell rhat musr be capable of per-

forming division- Recail that division is used to produce the reffection coefficienrs K¿,

but division will also be used in certain back-subsrirurion operations to be described
later in this section.

(a)

fl=3

X = don't care

t¡me cell
u ¿ J

0
U

(1)
0

X

, jl'
, {t)

U
(1)
-2
(1)
2U

X

,t'
1 l,iíl

IU ò'I

U

u

1)
1

1)

u
(1)
-2
(1)
2U

X

u åt)

2
, 11'

, Át)

I, Jåì

l, Í'l
u

(1)
-2
(1)
2U

X

, 5')

J
, Jiì

ts)iu ò'l

, (3)

, {,)

¡, 13ì

l" rl

X

, å')

4
, j:'
, Ár)

[Tr
1-*3

u
(2)
-3
(21

2u

X

, å')

5 Fjil
bil

, i3)

, {.,

, 1å'

u L'l

X

,å"

Figure l: (a) Linear array of processors used to execure the Schur algorithm of
Kung and Hu; (b) Computation of the Schur variables without pipelining; (c)

Computation of the Schur variables with pipelining.

It is important to note that we can interpret indices k and i in u.ß) as time and

sPace (or cell) indices, respectively. With this interpreration in mind, Figure l(b)
shows the flow of the Schur variables through the machine of Figure l(a). At time
¡ = 0 the initial state of the machine is shown. It is clear that the machine can be ini-
tialized in o (n) time. The reader must visualize the computation, and broadcasting to

all cells (processors), of the reflection coefficient K¿*, between Í = k and t = k+I
(¿ > 0). Since

(b) (c)

time c€il
U ¿ J

0
, Á')

X

, j;'
, {t)

,g)
, jt)

X

, át)

1

, 11)

(2\
u ò'

, (^2)

, Ít)

uEl
u t'l

X

X

2

l3)u'Á

, ,3'

, j3)

(3)u ì'

X

X

X

X

t4ì
uìs

, tå'

X

X

X

X

X

X

4.6

r, _ u{1) uÍÐ u{3)
^t-d,'A2=,g),nr=ugl ,

K¿ is computed in cell 0, hence the need for this cell to be capable of performing divi-
sion. Since to compute u.G+L) requires Kp and u,G), ', is necessary that K¿ be avail_

able to all processors at any given r in Figure 1(b), hence the appareru need to glo-
bally broadcast K¿. It is imponant to nore rhar the Schur variables in a given cell,
say cell i, are functionally dependent upon the Schur variables of cells i and j+l
exclusively (from one r to the next) via

which is taken from the innermost For-do loop of rhe Schur algorithm (see Chapter II,
section 2.3). Thus, aside from the global broadcasting of reflection coefficienrs, inrer-
processor communications is localized. Clearly, a Toeplitz matrix will be factorized in
O (n) time on the machine of Figure 1(a).

The global broadcasting of reflection coefficienrs can be eliminated entirely by the

use of pipelining, as is demonsrrated in [1]. We thus satisfy our conununications con-
straints (i-e., local communications requirements) without reducing processing

throughput rate. This is illustrated in Figure l(c). Here K1 is computed berween

f =0 and r =L,K2 between t =z andr =3,andK3 betweent =4 andf =5. Dur_

ing r = 1, Kt is used to obtain u$) and uó2) , and is simultaneously broadcasted to

cell 1. During t =2, K1 is used to compure u!l) ana r{z) 6, is in cell I now), and

Kt is simultaneously sent to cell 2. During t =3, K2 is used to compure u!)) ana

rzJ3), while K1 is used to compure u!!) and rJ2) since K2 is in cell 0, and K1 is in
cell 2' Simultaneously, K1 is sent to cell 3, and K2 is senr to cell 1. Similar opera-

tions a¡e applied to obtain the remaining Schur variables. Notice thar in Figure 1(b),

the Schur va¡iables u,Q) or" all computed during r = 1, the Schur variables r,(3) ..
computed during t = 2, and so on. In Figure 1(c) on the other hand, the Schur vari-
ables n,(2) are produced staggered in rime, as are ¡1.Q) un¿ u.(). Despite this staggering

of the outputs, the marrix ?",, will be LDU factorized in O (n) time. In addition, abour

[;Íi*] = f,t "r] f'ïki'l (1)

4.7

half of the cells in Figure 1(c) a¡e inactive for a given r. As we shall soon see, it is

possible to use these inert processors to perform useful work.

Often we wish to solve

Tnxn = ln (Z)

for a given Tn and yn. Since the Schur algorithm LDU factonzes Tn, we can com-

pute -rn via two successive back-substitutions. From Chapter tr

Tn=ulDirun, (3)

where Un is in (70) (Chapter II), and D,, is in (74) (Chapter II). Thus, (2) may be

w¡itten as

U[D;runxn=yn, (4)

and if we define bn = DnlU,,,ï,r, then

Ulbn=yn, (5a)

Dnr(Jnxn=bn. (5b)

If we also define õn = Dnån then (5b) can be replaced by

(Jnxn=ãn. (6)

Equations (5a,b) show that xn can be computed in ,*o ,u.""rsive back-subsritution

operations, given Un (Dn is the main diagonal of Un), andln.

We will begin by considering the first back-substitution represented by (5a). This \ .

one is of the form

Lnxn=ln, (7)

where Ln = U;jì(n+r¡x1n+r¡ (i = row index, j = column index) is lower rriangular,

xn ='lxn,g .'. xn,nJT, ln =ún' . . . Jn,nfT. The following algorithm readily

solves the fust back-substitution problem in (7) (hence in (5a)):

First Back-Substitution Algorithm:

y(o) := yn i

For ,t := 0 to n do begin

4.8

,, (¿)
./n.k

"n,K ' r 'Ll. t-K,K

For i := k+I rc n do begin

yl!,*t) := yl:i) - xn,pt¡.¡ i

end;

end;

on a sequendal processor rhis argorithm has a dme complexity
linea¡ systolic array para,er processor sorution to this probrem
[4] (see pp. 285-2gg), with a time comptexity of O (n), and
development for n = 3. Figure 2(a) assunes that it is possible
casting of the numbers rn.p ro air ceils. in this case

of O (nz). There is a

in Mead and Conway

Figure 2 illustrates its

to allow global broad_

^i ? -

and so cell 0 is the only ceil that must be capable of performing division. In Figure
2(a)' xnJ' is computed and broadcasted to all orhe¡ cells between , = k and. t = k+1.
Elements in ce' i are updated using rhe conrents of ce, i +1 at any given r. Thus,
aside from the global broadcastin g of xn,r, communications is strictly localized. As in
the case of the schur algorithm, pipelining may be used to eliminare rhe need for glo_
bally broadcasting;rn'¿' This is illustrated in Figure 2(b), and the resu* is essenrially
the linear back-substitution anay in [4].

If Ln = U[, rhen

l,r=¿¿Q+l),
(g)

and the First Back-substitution Algorithm may be rewrirren using (g), and by replacing
r,, with bn as per equation (5a). Thus.

v.((l) vJr.)-. J!,U r\l-'i,ii - r,¡J.l = ---,fr.r =¿ o,o l t.t
J,L

,, (2)t 3.7

tn

À _ y::l
un.k - ¡f_t ,

where we have

nAnle changes.

õ^t = vl!ì

used the First Back_Substirution Algorirhm u,ith the
Figure 2(b) then becomes Figure 3, which shows

(e)

suggested variable

thar the fi¡sr back-

trme cell

0 I 2 3

0
/oo

., (0)
t30

/ro
y l?)

l?r
yt2)

ln
ylg)

I
/rr

.y{l)

lzt

vlt)
ly
y{y

X
X

2
lzz

y#)
ln

y{?)
X
X

X
X

J
lß
vÍï

X
X

X
X

X
X

(a)

4.9

(b)

l,*
llrc
It^
Lr,

0 0l0 0l|.ol
t32 tn)

time cell

0 I 2 5

0
/oo
., (0)
r30

I
/ro

vJ?)

2
/u

vJl)

Izo
., (0)
t32

3
lzt
ylÐ

ln
ylg)

4
lzz

., c2)t32

ly
., (l)t33

5
ln
yll)

6
lr

., (3)
r31

L3=

Figure 2: (a) Back-substitution using global communicarions; (b) Back-
substirurio' wirh piperining to eriminate grobal communicarions.

substitution of (5a) can be ca¡ried out concurrently wirh the compulation of u,. Alrer-
natively, variables ylk) can be computed when a cell is orherwise inactive.

Now let us consider the sccond, and final back-substitution operation represenred
by (6), which canre from (5b). Equation (6) has the form

Unxn = ln , (t0)

rvhere un = lu¡¡ì1n+t¡x1n+1¡ (i = row index, 7 = column index) is upper rriangular,
u'ith x,, and 1'n as in (7). The following algorirhm readily solves rhe second back-
substitr¡tion problenr of (10) (hence of (6)):

Second IJack-Substitution Algorithm:

,, (0) .- .,Jn .-,rn)

For,t:=0ton do begin

,, (¿)
./n,n-k

lln-k,n-k

0
I tt
Izt
ltt

'\n,n-k .-

410

timc ccl I

0 I 2 J

0
, ó')
., (0)
t30

¡l 1l)

v{?)

u!\t
y19\

ullr
v{3)

I
uQ)

vJl)

z (l)

., (0)
t3t

, (l)
., (0)
!32

nllr
., (0)
t33

2
,, (z)
ut

., (r)t3r
uQ)

ylt)
rr llr
ylg)

,ll)
v{3)

J
ullt
y13)

,r!?
., (l)t32

,s\
)i¡)

r1!r
.. (0)
t33

AI
,,13:)

j" \:r)

uQ)

vi1)

usl
., (r)t33

u1l)

vÍ3)

5
,, lå)
., (3)
)33

,,1?
., (2)
)33

u:i)
., (l))\3

ulå)
., (0)
t33

-+ b3s, be

Figure 3: The firsr back-subsrirurion nray be canied

generarion or un.

For i := 0 ro ¿¡-t-l do begin

,, (1.+l) ._ ., (t) -)'n',i .=)'i,i' - Ín,n-kui,n-k i

end;

-+ bg , b33

out cotìcurrently with the

end;

As with the First Back-Substitution Algorirhm, a sequenrial processor implenrentation

will have a tinle complexity of O (n2¡, and the linear sysrolic array solution with have

a time complexity of O (n).

There are two ways of incorporating the second back-substirution represenred by

(6) into the array of Figure l(a). One of these merhods is suggesred by Kung and Hu

[1]' and the other is suggested by Brent and Luk [2]. We shall first describe the

Kung-Hu solution.

Kung and Htt tl I suggest the stacking of rhe eienlenrs of (J n (fronl

T^ = Ul'D;tUn) as indicated in Figure 4. The elenle nt ãn.p can be stored in cell

n -,t during the first back-substitution phase. As a resulr, all of the necessary paranle-

ters will be in place for the final back-subsriturion phase. The second back-substirurion

+E,,,by

+ F32, b32

4.1 I

is shown in Figure 5, assunring the global broadcasting of xn,¿, ând. where u¡¡ = ¿¿(i+r)

ia the Second Back-Substitution Algorithm. Comparing Figure 5 with Figure 4 ¡eveals
tlras the elements of Un' when stacked as indicated in Figure 4, will indeed be avail-
able at the proper place and time for the second back-subsrirurion.

cell 0 cell '1 cell 2 cell 3

stacks

u{t=õz --)

u!| u(L)

u!2) ullt
0 uQ.)oo'

i,, 6'r
loio
LO

;ürl i.;:l [;;:l
îf,tlL::l LI:l

Figure 4: Storage of Un on stacks ro

subsritr¡tion. Illusrrared is the state of the

and before the second back-substirution.

facilitare rhe second and final back-

stacks afrer rhe fi¡st back-substitution,

The Kung-Hu solution has the advantage of simplicity, bur it has the obvious
disadvantage of requiring O (nz) storage. If n is large rhen this could be a serious

drawback' It has been shown by Brent and Luk [2] thar the o1n2) storage problenr

can be avoided by regenerating the elenrenrs of Un as they are needed during the

second back-stlbstitution. This can be accomplished wirh only O (n) srorage and some

extra conlputations. One *,ay to do ¡his is to store

.1.12

trnlc ccl I

0 I 2 3

0
t¡)

u)t'
., (0)
t33

,!1)
yly

,r!i)
., (0)
.r 3l

,, il)
y {3)

I
, (1)

vlt)
u !\)
yll)

¿,
(l)

., (r)t30

2
uQ)

v{1)

ril)
., (2)
)30 X

3
uó')

v{¿)

X
X

X
X

X
X

Figure 5: Second back-sr¡bsrinlriorì :rssunring global

elenlent of the solution vector -r,¡).

rrJ;) , ,,!¡) (l < ¡ < ru+t), Ki (l s t

., (0)

-l rrr -
131

u!1)
., (l). t32

-) X¡¡rL
u (1)

., o)
-)Ì3r =ft
. y3ß)-r r3o =

,6u
broadcasting of .r¿.¿ (kth

Srr)

nray be used

only consider

follows wirh

f¿rctoriz¿rrion (Schur :rrrorirhnr) phase. Ir is rhen possi-

i < n-k,

I I r -Ktl [,,tfi- 1-y¿l-xr r Ji_,,,ti.
(l l)

u'hich is derived from (r), ro regene.rre rhe Schur variabres

needed during rhe final b¿rck-subsrirurion phase.

)'(¡ > 0) as they are

Figtrre 6(a) shows the set¡ttertce in which the Schur variables are computed usirrg
(l l)' Note that the prestored variables ¿rre conurined in boxes and the conrpurable
vitri¿tbles are contained in circles. Figure (r(b) shows rhe desired locario¡s, for a giverr
¡' of the prestored Schtlr vrtriitbles rr1!t), urrci rhe refìecrion coeffìcienrs K¡, during rhe

course of rhe regenerati'n ope*rrion iilu.sr*rtecr i. Figure 6(a).

in cell n-i+l
ble ro use, for

3. Parallcl-Pipelined Architectr¡rcs for thc split Sctrt¡r Atgorithnrs

Now we preselìt the parlrllel-pipelinecl processor :rrchirecrure which

to irrrplenrerr eirher of rhe sprit schur ul_sorirh.ls in o (rt) rinre. we will
the case of the synttttetric split Schur ll-i¡orirhnr; the antisynrmetric case

dtrrirrg ùe LDtl

l<k<n,0<

f"{ào *,1
L "'fi]

nI
¿)l
r,-i

ulf

4.13

cell

0123
time'

= slored values (during LDU factorization)

computable from stored and
= previously computed values

X = don't care

Figure 6: (a) Elenlents of Un can be regenerated by storing a cenain ser (see

text) of O (n) values during the execution of the Schur algorithm. This figure il-
luscrates the relevant dependencies; (b) posirion of K¡ and rJ;l o, any rime during
the regeneration of Ur,.

trivial modifications. In this section we will use the symmerric splir Schur algorithm
of Delsarte and Genin [7], namely:

v6,O t= r6i K6 := 0;

For 7 := I to n do begin

v g,¡ := 2r¡;

end;

For 7 := 0 to n-l do begin

V l,/ := r, * r¡+ti

end;

For k := 1 ro n do begin

(b)(a)

m
t9

Nt\v

6,1
àt
_7

l-;..1I .:l

I "l"ltl

l'\ I " lil

I \õõ
_-/

l, !t) \-,ñ 'l\
NS
ffiñ
NE

@
X

o

r
()

time cell
o) I

0
X

uþ
K3

,(3

K2

,(2
ô

K,

u(

I
(4)

ô

K
Ĵ

u12

¿
K¡

u(3

Kz
(:

3
u(3

Kz
(2

K

4
K2

uG

K.,

5
u12

K',

b
K

4.t4

d¡, i= vp.g/vp-y,g; Kk

For 7 := 0 to n-k-l
v tl-*t,¡ :-- v n,,

end;

:= 1-o¿ l(l+K2);

do begin

+ vk,¡nt - &kvk-t.j*

end;

Recall that the only difference between the above algorithm and that of Chapter II is in
the duration of the innermost For-do loop. The symmetric splir Schur algorithm of
chapter I[has an innermosr For-do loop thar rerminares at n-k.

Figure 7(a) depicts the paraliel-pipelined processor which is used ro implement
the symmetric or antisymmetric split Schur algorithms. The machine consists of n

processors in a linea¡ array (labeled CELL 0, .,CELL j,...,CELLn_I)
which are used to compute G¿ and v¿,;, plus one additional processor (box labeled K)
that computes K¿- All processors must be capable of performing addition/subtracrion,

and other operations to be specified presently. The proces sor CELL 0 is in bold lines.

We distinguish CELL 0 in this way in order ro symbolize the fact that CELL 0 must

be capable of perfornting division so that it may compure c[¿. processor K must also
perform division, but CELL I to CELL n-I need only perform multiplication.
CELL i (0 < i 3 n-1) contains two boxes, one of which synrbolizes a storage ioca-
tion for v¿,7 and the other symbolizes a storage location for v¿*1,¡. A storage location
must also be provided for a¿ in each cell, but rhis is not shown.

For the special case of n = 4, Figure 7(b) depicts the fìow of data through the
machine of Figure 7(a). Note that 7 is interprered as a space (cell) index, and k is

interpreted as a time index. The basic unit of time is the duration of a muhiply-add or
a divide-add step. For & = 0 in Figure 7(b), the initial state of the processor array is
depicted. In between the time instants for each value of k depicted rwo things must

happen. First of all, c¿ must be conrputed by CELL 0 and broadcasr ro all other cells
(including lí). This is assunled to take one time unit. Nexr, each processor conrpures

Ì'k+rJ for 0 s i < n-k-l according to the innernrost For-do ioop of the split Schur

algorithrn. This will t¿tke orle tinre unit. Hence, each vaiue of ,t shown in the figirre

4.15

(a)
CELL O CELL 1 CELL n-l

oo

K

(b)

tinre (k) cell (1)

0 I 2 J

0
v o,o

v l,o

Y o,l
Y I.t

v 0,2

9t¡
v 0,3

v 1,3

I
v l,o
v 2.0

v ¡,1
v z,l

v l,z
V'¡'¡

Y 1,3

X

2
v 2,0

Y 3,0

Y 2,r

Y 3.1

vt't
X

X
X

3 1v3,0I vq.o

v 3,i
X X

X
X

Figure 7: (a) Parallel-pipelined processor array to implemenr the split Schur algo-

rithms; (b) FIow of data through the nlachine assunring global broadcasti¡g of the

splir refìection coetficients (nor shown).

represents two basic tinle units. During the first tinle unit quanrity I + K¡_¡ may be

contputed by processor K . During rhe second tinre unit K nlÍry conrpute

Kx=7-arl(l+K¿_l).

Aside from the apparent need to globally broadcast splir reflection coefficie¡rs,
comnrunications between the processors of Figure 7(a) is strictly local, i.e., between
neighboring processors only. Through pipelining, ir is in fact possible to elimirare

CELL j

4.16

global data transfers altogether. For n = 4, Figure 8 shows the fìow of data rhrough

the machine of Figure 7(a), assuming the use of pipelining, and assuming that rhe

nrachine is initialized as indicated (time = 0 enrry of Figure 8). Figure 8 depicts rhe

flow of the split refìection coefficients explicitly. The unir of rime in Figure g is rhe

basic time unit previously stated. Note rhat the machine may be initialized ín O (n)

time quite readily.

time cell

0 I 2 J

0

Y o,o

Y l,o
X

v 0,1

Y t,l
X

v o,z
Vr r
X

Y 0.3

Y t.3

X

v o,o

Y l,o
Gr

Y 0,t
Y t,t
X

v O,z

v 1,2

X

v 0,3

Y l.3
X

2

Y l.o
v 2,0

c,t

vo,t

Y r.¡
0¡

v o.z

v t,z
X

voJ
Y r,3

X

J

v r.o
v z.o

d¡

Y l,r
v Z,t

0¡

v o.z

v r,z
G¡

v 0.3

Y t,3
X

4

v 2.0

Y 3,0

d2

I vt.t

B
Vr I
Vr r

û¡

Y 0,3

Y t,3

Gr

5
I vz.o

I ',.0
lG¡

v 2,r

Y 3,t

A2

| 'r,z
|",

d2

v r,3
X
gt

6

v 3,0

Y q,o

03

v 2,t
Y 3.1

01

X
d2

v 1.3

X
d2

7

Y 3,0

Y c,o

04

v 3.t
X

G3

V¡¡
X

G3

X
X
d2

= lnactlve

Figure 8: Pipelined flow of data through rhe nrachine of Figure 7(a) elinrinaring

all global dara ransfers.

It is not necessary to fully initialize the nlachine before conrpur¿rrion can begin.

For n = 4, Fi8ure 9 depicts the flow of data wirhour inirialization. Figure 9 depicts

two successive sers of inputs. The firsr ser is (vo,¡ , v r..,¡ and the second ser

4.17

{'o,i ,vt.; } is denoted by baned variables to distinguish ir from rhe firsr ser. The out-
puts due to the second set of inputs are similariy barred. It is necessary, in this
scenario, for all cells to be able to perfomr division. Ir is assumed, for simplicity, that
G¿ is immediately outpLlt to processor K upon its creation, but this may be avoided by

further pipelining. It is ciear that the overall throughput of the nlachine is now derer-
nlined by the length of our basic time unit. As a result, a high throughpur is possible

with the arrangement of Figure 9.

From the inverse mapping of equation (6) in Chapter III, it is possible to obtain
the Schur variables ølf) rto- the split Schur variables y¿.¡, ând. so to obtain rhe ele-

ments of nratrix Un in T^ = UID;\Un. An inspection of (6) (Chapter III) reveals rhat

the Schur va¡iables may be computed when the processors of Figure 7(a) a¡e inactive
during the tinres indicated in Figure 8. A processor is inactive if ir is nor computing a

split Schur variable.

Fronr the standpoint of the computation of refìection coefficienrs and the conrpu-
lation of the elenrents of IJn, the split Schur algorirhnrs ¿ìre n]ore efficient than rhe

Schur algorithm, in the context of a parallel-pipelined processor implementation.
Although the inverse mapping from the splir Schur variables to the Schur va¡iables

requires extra nrultiplications, these multiplications may be perfomred when the pro-

cessors in the array of Figure 7(a) are otherwise inactive. Recall that these exrra mul-
tiplications rendered the split Schur algorithms no more efficient ar computing the ele-

ments of Un than the Schur algorithm, in the context of a sequential processor imple-
mentation (see Chapter II[, section 2). However, in the contexr of a parallel processor

implementarion, this limirarion is lifted.

4' Parallel-Pipelined Architectures frlr the Schur Algorithm frlr Hermitian Toe-
plitz N{atrices t¡f Any Rank profite

We will now consider the parallel-pipelined processor inrplementation of the

Schur algorithnr for Hernlitian Toeplitz nlarrices of any rank profile derived in secrion

3 of Chapter III. The relevant algorithm is summarized in the fornr of pseudocode in

4.t8

timc output cell input data srcârn

0 I 2 3

0
X

X
X

X
X
X

X
X
X

Y o,o

Y t,o

Y o,l

X

v o.z

vt2
Yo.3

v 1,3

x
X

X
X

X
X
X

X
X
X

Y o.o

V t,0

X

vo,t

Vr r

X

v02

x

Y o.¡

Y t,3
X

Yo,o

v 1,0

Y

2 0¡
X
X
X

X
X

Y o,o

Y 1,0

û.1

Yo.t

Y l,t
X

v o.z

X

Y 0,3

Y t,3
X

ro,o

-vl.0
X

Yo.t

t,,
X

J
X
X
X

v t,o
vLo
û1

Y o,t

9 t,t
û1

v o,z

v t,2
X

Y o,¡
v t,3
X

%,0
ir,o
x

Y o,l

X

Yn
"

vt.z
X

^ A2

Y t,O

v z,o

d2
Vt ¡

t¡

v02

v t,z
t.1

Y o,¡

Y t,3

X

Yo,o

u t,o
X

v-o,t

ür,r

X

v 0,2

f,r
X

%.r
,r,¡
X

5
,zo
v 3.0

A-2

Y l,¡

d2

Vtt

d.¡

Y o,o

Fr,o

X

uo,t

ir,,
X

voz

it.z
X

v 0,3

ir.:
X

X
X
X

6 d: Gr

vzo
u 3,0

û,3

Y3,t

ù.2

üo,o

, t,O

dr

Yo,t

t,,
X

.yo.z

t,.
X

Y 0,3

rr,¡
X

X
X

X
X
X

7

v 3.0

V ¿,0

û,3

Y t,o

uz.o

dr

Y o,t

ñr.r

û'l

vo.z

it.z
X

Yo,3

,t.¡
X

X
X

X

X
X
X

8 a¿ az

Y t,o

lz.o

ù.2

Vî,

dr

'o.z
1,"
dr

Y 0,3 X
X
X

X
X
X

X
X
X

X
X
X

9

lz,o

i¡.0
d2

v t,l
1.,
d.2

t,"
%"

dr

X
X
X

X
X

X
X
X

X
X

X
X
X

l0 û,3

lzo
%.0

Ca

V¡ r

,-:, t

d.2

X
X
X

X
X
X

X
X

X
X
X

X
X

X
X
X

ll
r¡.0
lq,o

d3

X
X
X

X
X
X

X
X
X

X
X
X

X
X

X
X
X

X
X
X

t2 A4
X
X
X

X
X
X

X
i(
X

X
X
X

X
X
X

X
X
X

X
X
X

X
X
X

FÌgure 9: Flow of data through the machine of Figure 7(a) withour rhe use of a

separare inirialization phase.

section 3.3 of Chapter III. For the sake of brevity, we

the Schur algorirhm in the remainder of rhis secrion. Ir

rithm nlay be nlosr plausibly implemenred on a linear

shall refer ro rhis algorirhm as

is apparenr that rhe Schur algo-

array of processors like that in

4.t9

Figure l(a).

In the Schur algorithm, the processor array of Figure l(a) musr cope wirh two
cases: 6¡, * 0, which gives rise to what we usually mean by the Schur algorithm (i.e.,

Chapter II Schur algorithm), and o¿ = 0 which gives rise to modificarions that facili-
tate 'junrping over the singurar gap". since o* = ufr)*t is computed in cell 0, it is
cell 0 that nrust determine which case applies. Furthermore, it must communicate
whether or not o¿ = 0 to the other processors in the array in order that they may take

the proper course of action. As long âs o¿ * 0, the array may run in the usual way
(e.g., as depicted in Figure 1(c)). If o'¿ = 0, the array musr compure the Schur vari_

ables u'(1) ,r.(r+t) (k = r + r, r is the right singular point), and it is necessary to

save the variables tl,(') ond u,Q*l), in the cells in which they were created, since they

are used to jump over the singular gap (see the Schur algorithnr for the case where

o¿ = 0). Thus, when cell 0 derects that o¿ = 0, ir must notify the remai¡ing proces_

sors that they are only going to conlpute the Schur variables of up ro order r*1, rhar

is, tt,('+l). It is then necessary to execute the "If o¿ * 0 then" statemenr of the Schur

algorithnt for the case where o¿ = 0. This will involve compuring / (lohvidov index),

oi , Vi , P¡ , þ0, on+l and the order n +i Schur variables, u.Ø+l). We will discuss, in
greater detail, the computation of these parameters below

In what follows we shall assume that the processor (cell) which compures

r , I , o, , or Þo is allowed to globally broadcast the result to all other processors. It
turns out that cell 0 compures r , o¡ , and p6, while cell / computes /. In practice,

such limited global communications simplifies the parallel implemenration of the Schur

algorithm.

It will be useful to consider Toeplitz matrices C. with many singular gaps. For

example, consider a c^ with reading principal submatrices cI,... , c^, where,

recalling that /¿ = det(Cù (Chaprer III),

ft*0,f2=0,/r*0,
For this to make sense /?¿ nlust be odd and n¿

right singular points

,f^l=0'f^*0 (12a)

> l. Thus we have the sequence of

4.20

rl=l,rZ=3, ,tm_l=m-Z,
2

(so r, = 2i - l), and rhe sequence of Iohvidov indices

(r2b)

(12c)

(10) in

/l = I ,12=l

A sequence of left singular points (n¡)

Chaprer III). Norice rhar

I - r,,m_l - L

2

is also generated (n¡ = r¡ + 2!¡ via

l¡=O(m) (13)

Equation (13) simply says that the size of all singular gaps combined is of the order of
m (the size of the Toeplitz nlatrix). Note that we are assuming that a matrix C- with
the properties of (12a,b,c) exists (for all odd, m , nt > r). This might not be so. More
generally, C^ has nlany singular gaps if it possesses an Iohvidov index sequence satis-
fying

=O(m), So=O(n¿) ,

m-l
2s

i=i

Zt¡
ieS

(14)

where 'So = the number of elements in the index set.S. The example of C,n satisfy-
ing (12a,b,c) is intended merely to indicate how such a marrix might arise. ¡ is clea¡
though that the existence problem remains since we do not know if there exists a C-
satisfying (14) for all m. We will simply conjecture that such marrices exisr.

It is important to note that Toeplitz matrices sarisfying (14) represenr rhe worsr-
case scen¿rrio. If C^ satisfies (14), then the "else" case of the "lf o¿ * 0 then,' state-

ment in the Schur algorithm will be executed often enough to dominare rhe complexity
of the overall algorithm- Hence, a complexiry analysis of the Schur algorithm (or that

in [6]) must consider this case, and this case alone.

If o¿ = 0 then it is first necessary to compute /, before we can find p¡ , Lt,Ø*r),

etc' Recall that / is the sntallest positive integer such rhar r1¡f/, * o. The order r+l
Schur variable uliill¡ resides in cell /. one way to trnd / is as follows. Since cell 0
has computed r, and broadcasted this knowledge to all orher processors, all of the

4.21

processors know that they are to do nothing untii / is found (other rhan to conrinue

computing the order r+1 Schur variables). Cell 0 has a1;*t) = 0, and ir can norify cell

i of this facr. rr uiif|¡ = 0 (this is in cell 1) then cell I norifies cell 2 of rhis facr,

and so on, until cell / is reached where ,r!ri]'l¡ * 0 holds. Ar this poinr cell / knows

wh¿tt / is, and it can globally broadcast / to all of the remaining processors. Since in

the worst possible case (14) holds, a total of no nrore than o (rn) clock cycles are used

by the processor array in conrputing and broadcasting each value /¡. Thus, the compu-

tation and communication of Iohvidov indices does not lead to a parallel processing

bottleneck.

Having computed /, it is now necessary to compute p¡ for i = 0, L,...,zr. This

requires the parameters cr; and ry¡ which a¡e Schur variables. Recail that

G¡ = ¿¿rÍ¡*r), V¡ = l¿¿1?/-,-,1

if r * 0, and rhat

if r = 0, for i = 0,1,...,/.

is depicted in Figure 10.

di = cl+ì , V¡ = -õ,,¡

(l5a)

(1sb)

in the cells of Figure 1(a)

(16)

paranleters

solving

V, I
vr-r

I.l'
voJ

and we have p¡*; = -Pt-¡ (i = 1,...,/). It is ciea¡ that (16) can be solved via the Firsr

Back-Substitution algorithm (see section 2 of this Chapter). Fronr Figure 10, the

pa'rameters {; and cr must be relocated in order to facilirare the execurion of rhis

algorithm. Specifically, ty¡ should be iocated in cell /-i, and ø¡ should be locared in

cell i. However, fronl the figure we initially have y¡ in cell l-i+y and cr¡ is in cell

l+i' Clearly, all that we need to do is to shift the elements ü¡ in cells i to 2/ Iefr-

wards by / cell positions. This wiil t¿rke / clock cycles. Sinrilarly, the elements ry, in
cells I to /+l need only be shifted lefrwards by one ceil position. This will only rake

4.22

one clock cycle. Since cell 0 is capable of performing division, by comparison wirh
Figure 2, the First Back-Substitution algorithm may proceed in the usual manner.
Pa¡ameters Po,..., Pr (in this order) will then emerge f¡om cell 0. It is suggested

that p¡ be stored in RAM (random access memory) in cell 0. The reasons for this will
become apparent later on in this section. It is clear that p¡ (all ¿) will be computed in
o(/) time' This includes both the shifting into their proper cell positions of the
parameters c¡ and y¡, and the back-substitution operation itself. Once again, since
(t4) holds in the worst case, this will not resuh in a parallel processing bottleneck.

celll-l cell f cell l+t cell 2l.."-ilEF@ø"fl
cell 0 cell I

(b) cell O cett 1
cell 2l

oe " io¡l
l=' r"tf

. I 2rl

Figure 10: Positions of the paranrerers ry; and a¡ in rhe cells of Figure I (a) be_

fore shifring rhem into their proper cell posirions. (a) case r = 0; (b) case r * 0.

The order ¿+l Schur variables u,b*D are computed via

u¡l:L)= O l+
ui(!,+tyr .

fu,r,g,:if ,] , (t7)

for 0> ¡ > n-m+|, t Si Sm-|.
summation. As such, it can be put

The summarion rerrn of (17) is a convolutional

into "matrix form", where the matrix will have a

cell l-t cell I cell l+1

cell l-1 cell I cell l+l

cell 0 cell j cell l-1 cell I cell l+t

Toeplitz

4.73

Thus,

+F; (18a)

and for n

(1 8b)

From (l8a,b) we see that to compute all order n+1 Schur variables requires all of rhe

order r+l Schur variables and certain order r Schur va¡iables. The order r+l Schur
variables are present in cells 0 through to m-r-\. The order r Schur va¡iables

u!i)*t>rt ,rí!)*z are in cells / to l+m-n-r, respecrively. The order r schur
variables rz¡$1 u,{),q a¡e conrained in cells /+l to l+m-n, respectively. we
want the order n+l Schur variables u:n+r)

"!iÅ\1, and rJ"+l) u,f_*nr), in

cells 0 to nt-ìL-1, respectively. Thus, the order r Schur variabies in (l8a,b) must be

shifted illto these cell positions, since they are used to determine the order ¡¿+l Schur
variables. This shifting operation will take no more than o (/) rime.

Let p =tPo ' '' PziT,let the mat¡ix in (lSa) be H, and iet rhe matrix in (lgb)
be T' Both ^Ë1 and I ue (m-n) x (21+L) matrices. Inspections of É1 and T reveal

that they are Hankel and Toeplitz, respectively. Define,

u* =Tp , u- = Hp (19)

The vectors ¿¿+ and ¿¿- are the results of matrix-vector products. Matrix-vecror pro-

ducts may be implemented on linear systolic anays in O (w) time, where w is the

nratrix bandwidth (see [4], pp. ?7a-276). The bandwidth of a marrix is here defined as

the sum of the nunrber of rows and columns minus unity. We will brieffy digress to
e.xplain the linear systoiic inrplenrentation of a nratrix-vector product.

often (as in (19)) we wish to perform matrix-vector mulriplication:

for0) i> n-m+l, (17) beconres

I
u:;.D u!;atl

f
rr l

L. fi:,,., .,, !I;]l] Lr,l'

(or possibly Hankel) srnrcrure.

[,, r,,+' I
f,,lí/.,,.,1l:'-" l-p,r r

1,,,r,,,J
-

"' 1,,,r,r.,1

< i < m-1, (17) becomes

f
'':."1

- u, i ''*t l-
l,,*.ru,.J

= o
L,^-,-,1*

luSr-', . u['*t¡ l Irr
-l

0ol ll l

lr*:r), . . uf,!,r)1) lnr,)

4.24

| =Ar (20)

Here)=b,on_ìT, r=[.r0 x^_t)T, and A=[a¡j]nr^
(i = 0'l'"''n-l ' i - 0,7,...,nt-r)' Figtrre 11 depicts systolic nlarrix-vecror multiplica-
tion for the special case where n = m = 3. The systolic array is, as we have noted, a
linea¡ array of n * nt - r processors (celis). Vector x is fed into the anay at irs
left-hand end (cell 0), and vector) = 0 is fed into rhe array ar its right-hand end (cerl
n+m-Z = 4)' The solution y appears at the left-hand end beginning wirh rhe com-
ponent !6 at n + m - 1 clock cycles alter we began feeding data into the array. The
elemenrs of nlatrix A are fed into rhe "rops,, of the ceils. For example, ag2feeds into
cell 0, ap and agt feed into ceir r, azz, a¡ and. a66 feed into ce¡ z, etc. Thus, A is
fed into the array "diagonal-wise". The flow of dara through rhe machine is shown in
Figure l1' To understand this flow, consider the progress of the element y6 through
the array' At tinle = 0, y0 enters cell 4 (with an initial value of zero), and after every
clock cycle it nloves to the left by one cell posirion. when ir reaches cell 2 at time =
2, cell 2 perfornrs

)O =)O + 400.10 ,

and passes this new value fory6 on to cell l, where cell I then performs

!O=lO*ag1X1 ,

and this value is passed on to cell 0, where cell 0 performs

.}O=)O*aO2xz

At tinle = 5,)0 enlerges from cell 0 with the final value

!0 = a0ùrO * agyyt * aOzxz

which.is the correct value fbr.r,6 in rhe vector), = Ax. Similar reasoning applies to
the vector contponents y1 and y2.

We may apply the systolic anay of Figure I I to the problem of computing rr*
and ¿¿- in (19)' Since the elements of A feed inro the array diagonai-wise, it is desir-
able for A to be Toeplitz, since then all of the eienrents of A on a given diagonal are

azl

a lo

yl

Figure l1: Linear sysrolic array for matrix-vector multiplication.

the same. clearly, ?" in (19) is Toeplitz, but É/ is not. However, we can wrire

u- = (HJ)(Jp) ,

4.25

atz

a ol

cell 4

nr
nr
t--;l
I azo

II'o I

Tillil

cell 3r
n
T
HlI'o I

T
l-- v,l

El_l

Tilr

æll 2r
T
T'.]
E:_i

T
l--it
I ar

I

| '' I

T
f v,l
I 4"" I

I r- Ir
T

cell Iril
T
E¡Il'' Ir
[lII'z Ir
|_l;IL]r

cell 0ilrilrftrI aoz
Il"Ir

n
T
tr

Yo

As an exanrple, let us consider H and r for nt=7,r =2,1=1, and so

n = 4. Thus, fronl (18a,b)

azo

a2?

a1i

aoo

ae2

trme

0

where HJ ís Toeplitz, and Jp = lpzt pzt_t

order). Recall that -/ is our synrbol for the

2.r).

(21)

the elements in reverse

(see Chapter II, secrion

. . p olr (p with

exchange marix

4.26

H_ T- ()'t1

Figure l2(a) shows rhe locarions of rhe schur variables,

that make up f and H prior ro the computation of the

Clearly,

in the array of Figure 1(a),

order r¡+1 Schur variables.

u !1.'t

l13ul

u Q.)

(23)

To compute ¿¿ we use É/-/, since the elements of it a¡e located in the proper cell posi-
tions to f¿rcilitate the systolic nrultiplication of HJ by Jp . Thar is, p musr be fed into
cell 0 in reverse order (i.e., p2¿ first, then p 2!_1, ..., and finally ps). This is ilrustr¿lted

in the nriddle of Figure 12 (see Figure 12(b)). Since the elçmenrs of I are in their
proper cells, þ may be conrputed in the usual way (see the bottom of Figure l2(b)).
The reader can now see rhe desirabiliry of storing p¡ in RAM in cell 0.

In Figure 11 notice that processors a-re inactive half of the time, and on alternat-
ing cycles. In other words, it is possible to inrerleave the computation of rwo nlatrix-
vector products. This is advantageous in our present problem since we wish to com-
pute the two products Hp and Tp. By interleaving the computation of Hp and, Tp we

can compute (18a) and (l8b) simultaneously.

The order n+i Schtrr vari¿¡bles of (18a) will be produced by cell 0 in rhe order
u!i,*t) " ' u!7j!1¡. Similarly, the order ¡¿+1 Schur va¡iables of (lgb) will be pro-

drced in the order,Jn*l) u[\i')r. Recail that we *ant r,1l*r) ... ,,I¡Jl\¡ to

be finally located in cells 0 ro m-n-1, respecrively, and similarly, we wanr

rrj"*t¡ " ' ",Í\il, to be finally located in cells 0 to m-n-:, respectively. It shall
take O (m-n) clock cycles to ensure that rhis is so.

Since f and H are (nt-n) x (2t+1), the order ¿+l Schur variables can be conr-
puted on the linear systolic array in O(m-n+Zl) = O(nt-r) time. Recall rhat rhe

bandu'idrhs of H and I derernline the tinre conrplexirlr, and rheir bandwidrhs a¡e

rr Jrr.l
rr {rl ¡

uPI

luft
lul"
I uF)L*

,,(1)l:. I

¿rli) I ,

,ç'J

[,, ('.)

I ,'lí,
I uQ)L_

u llt
u!r)
uQ)

u Í3)

uát)

u13)

,r!1rl
,,11)l

,,9)j

[,,gr
HJ = I ¿¿(1)

1,,,í,

4.21

(a) cell 0 celt 1 cell 2 ce| 3 ceil 4

,l?
, ltJ

l3)u';.¿ ,l?
,l?

Po Pl Pe

,(?
l3)u' 1' ,(?

,(?
,(?

u(?

Pz Pl Po

Figure 12: Example of the compuration of ¿¿jg,r+t) for m =7, r =2, I = I, n = 4.

(a) Contents of the cells before the conrputation of t¿¡!ï1); (b) Systolic nrarrix-

vector nttrltiplication to conrpute ¿¿* and ¿¿- which are used ro detemlin" u¡\|t).
nt-n*71 (see [4], page 274). If C,n satisfies (14), then rhe amount of time thar rhe

array spends in computing the order ¿+l schur variables is

,!?

',(3)-J

u(?,(?
,(t/

ul?

,, (3)

Ð (r, - r¡) = O(.?)
ieS

(24)

4.28

Evidently this presents a serious problem since rhe machine of Figure l(a) will
perform no better (asymptotically) than a sequenrial processing machine. In
words, it appears that the computation of order n+l Schur va¡iables is a parallel

cessing borrieneck.

Is it possible to overcome this bottleneck ? Unforrunarely, we shali see that we
cannot renlove this bottleneck while using systolic matrix-vector multiplication. How-
ever' there remains the possibility that other marrix-vector multiplication schemes exist
that do not give rise to the botrreneck ro be described berow.

In Figure t(c) we note that it is possible to commence computing the order,t+l
Schur variables only two clock cycles after commencing the computation of the order
k Schur va¡iables. The computation of Schur variables of all orders may then be said
to be ovcrlappcd' It is because of overlapping that the machine of Figure 1(a), when
operated as in Figure l(c), continues to have a time complexity of O(m), jusr as it did
when it wÍls operated as in Figure 1(b). If we could overlap the compuration of the
order n+1 SchLrr variables with the Schur variables of all other orders, much as in Fig-
ure l(c), then the bottleneck could be removed. Note that ir would be acceptable for
the instant we begin to compute order È Schur variables to be separated from the
instant we begin to compute the order,t+1 Schur variables by o(/) clock cycles.
such a separation would only occur when singular gaps are encountered however.
This is vital since before we could begin to compure the order n +1 Schur variables it
was necessary ro spend o(/) clock cycles computing the paramerers p,

Recall that it takes at least z +n-l clock cycles before the first conrponenr of rhe

product vector appears, in a matrix-vector product, given that the matrix A is n x m.
This delay we shall call the latency of the systolic array. Thus, in our presenr prob-
iem' it will take at least m-n+21 = m-r clock cycles to produce the first order n+l
Schur va¡iable. Hence it will also be at least m-r clockcycles before we can begin
contputing the order n+2 Schur variables (using the usual form of rhe Schur algorirhm,
which would assunle that o,,*, * 0). Because it takes so long to begin the co¡rputa-
tion of the order r¡+2 Schur variables, it will rake a toral of o(nt2) clock cycles ro

then

other

pro-

4.29

compute the order n¡ * r Schrrr variables associared with each singuiar gap i (as in
(24))' It is :ow clear that to successfuily eiiminare rhe borrleneck requires a means of
contputing the matrix-vector products of (19) with a larency of not nlore rhan O(/)
clock cycles, rather than o (m-r) clock cycles. Furthermore, rhe new method (assum-

ing that it exists), must never require that all of the order r+l schur variables be avail-
able simultaneously, or else overlapping would once again be precluded. As well, rhe
new method should run on a linea¡ processor array (i.e., we do not want to change the
array topology)' It is not known whether such a method exists. Thus, for the presenr
at least, the bottleneck is impossible to remove.

It is important to note that alternative matrix-vecror multiplication schemes do
exist (e'g', nlethods involving wavefront array processors [5,6]), and that it may be
possible to adapt these nrethods to our present problem and so eliminate rhe unfor-
tunate bottleneck. FIowever, it is anticipated that significanr exrra work shall be
required in this area, and so we shall leave rhis as an open problem. orher open prob-
lems exist in the area of inrplementing the Schur algorithm in a parallel processing
envi¡onment. These are summarized in Chapter X.

Since we nlust conclude (tentatively) that the bottleneck is unremovable, we are
in fact stating that the Schur algorithm is inherenrly sequential. But this of course
assumes that C^ satisfies (14), and this is the worsr-cur" r..n-io. Suppose thar we
now assume S o = O Q)- In other words, assume that the number of singular gaps in
c- is independent of m. rf m is rarge, then c- wiil have very few singurar gaps. In
this case the complexity of the Schur algorithm will be dominated by the complexiry
of the usual form of the Schur algorithm. Hence, no bottleneck will exisr, and rhe
parallel-pipelined processor intplenrentation of the Schur algorirhm will run ín O Qrt)
tinre, despite our present inability to properly overlap the computarion of rhe Schur
variables' Furthemrore, the pipelining of such parameters as r and / to all processors

can be undenaken without any increase in the time complexity of the inrplementarion.
Thus' in this instance, all global communications can certainly be elinlinared. It is
now clea¡ that the success of the Schur algorithm in its parallel form strongly depends
upon the nunlber of singuÌar gaps (not their size) in C^ relative to the order of C^.

4.30

REFEREN{CES

tll S'-Y' Kung, Y. H. Hu, "A Highly Concurrent Algorithnr and pipelined Archirec-

ture for solving Toeplitz Sysrems," IEEE Trans. on Acoust., Speech, and signal
Proc., vol. ASSp-31, Feb. 1983, pp. 66_75.

L?l R' P. Brent, F. T. Luk, "A Systolic Anay for rhe Linear-Time Solution of Toe-

plitz systems of Equations," J. of vLSI and comp. sysr., vor. i, 19g3, pp. L_22.

t3l C' J. Zarowski, H. C. Card, "A Parailel-Pipelined Architecture for Implementing

the Split Schur Algorithms for Reflection Coefficient Compuraiion," to be submir-

ted to CCVLSI'88.

t4) C. Mead, L' Conway, Introd¿tction ro VISI Systems. Reading, Massachusetts:

Addison-Wesley, 1980.

t5l S'-Y. Kung, H. J. Whitehouse, T. Kailath (eds.), VLSI and Modcrtt Signal pro-

cessing. Englewood criffs, New Jersey: prentice-Hall, 19g5.

t6l S.-Y. Kung, K. s. Arun, R. J. cal-Ezer, D. V. Bhaskar Rao, ,,wavefronr Array

Processors: Language, Architecture, and Applicarions,,' IEEE Trans. on comp.,
vol. C-31, Nov. 1.982, pp. 1054-1066.

L7l P' Delsa¡te, Y. Genin, "On the Splitting of Classical Algorithms in Linear predic-

tion Theory," IEEE Trans. on Acoust., speech, and signal'proc., vol. ASSp-35,

May 1987, pp. 645-653.

Chapter V

THE BEFNAVIOUR, OF TT{E SCHUR AND SPLIT SCHUR
ALGORITT{MS {JNDER FIXED.POXNT ARITHMETTC

CONDITIONS

So fa¡ we have considered the Schur and split Schur algorithms (of Chapter IIl
without regard to the practical matter of how these algorithms behave when imple-

mented using finite precision a¡ithmetic. It is clea¡ that the issue of finite precision

a¡ithmetic effects is important, as there is no point in implementing an algorithm that

is numerically unstable. As well, it is also important to identify ill-conditioned prob-

lem instances. In the Present chapter we shall therefore present a finite precision arith-

metic analysis of the Schur and split Schur algorithms. Some simulation results will
also be presented as a check of the analytical results. We shall confine our attention to

Toeplitz matrices that a¡e real-valued, positive definite autocorrelation matrices. Furth-

errnore, we shail only consider fixed-point arithmeric. Recall from Chapter II (section

2.6) that the Schur and split Schur variables satisfy cerrain bounds that make the Schur

and split Schur algorithms particularly desi¡able from the standpoinr of a fixed-point
arithmetic implementarion. This is beneficial from an economic point of view as

floaring-point arithmetic hardware is generally more expensive than fixed-point arith-

metic ha¡dwa¡e. The fixed-point arithmetic analyses and simulations of the Schur and

split Schur algorithms are due to Za¡owski and Card [1,2].

l. Literature Review

Before we present the analyses of the behaviour of the Schur and split Schur

algorithms under fixed-point arithmetic conditions, it is informative to consider the

behaviour of the Lævinson-Durbin algorithm under finite precision a¡ithmetic condi-
tions. The results on the l-evinson-Durbin algorithm to follow are due to Cybenko

5.2

[3,4] and to Alexander and Rhee [5]. Since we may derive the Schur algorithm from

the Levinson-Durbin algorithm (recatl Le Roux and Gueguen [6]), we might reason-

ably expect that the numerical properties of rhe Schur and Levinson-Du¡bin algorithms

will be qualitatively similar. Similarly, as the split Schur algorithms a¡e derivable

from the Schur algorithm, we would expect that the split Schur algorithms have

numerical propenies simila¡ to those of the parent Schur algorithm. By the end of the

chapter we shall see that this is so.

cybenko [3,4] considers Toeplitz matriceS R,, = lr l ¡_j l],,x,, that are real, sym-

metric and positive definite, and they are normalized so that r0 = I (hence

I t, | . I , i > 1). Autocorrelation matrices for real-valued data a¡e real and sym-

metric, and they are often positive definite as well. Recall that, in general, if Ro is an

autocorrelation matrix it will at least be positive semidefinite (see Roberts and Multis

l7l). Under the assumption of positive definiteness, the reflection coefficients K¡ asso-

ciated with R,, will satisfy, for all i,

lr¡l.r (1)

The Durbin algorithm [3], or the lævinson-Durbin algorithm as it is called in [4], is

used to solve

Rnan=-fr1 rn)T =-rn

Equation (2) is somewhat different from equation (1) in Chapter II, but it rurns out rhat

there is no significant difference between the Levinson-Durbin algorithm of [4] and

that in Chapter tr (for the special case of I,, considered here). The solution vecror dn

of (2) has the form a,, = fanJ an,z an,nfT .

Cybenko [3,4] presents results on the condition number of R,,, andon the numeri-

cal stability of the Levinson-Durbin algorithm. We will fi¡st summarize Cybenko's

results concerning the condition number of R,,. Fint of all, it is well known (see

Golub and Van t oan t8l) that the condition number of a matrix A is given by

r(a)=llA llll¿-tll,where llÁ ll isthenormof .A (anysuitablematrix

norrn will do). If r(,4) is large, then no algorithm operaring under finite precision

(2)

5.3

a¡ithmetic condirions can reasonably be expected to leld an accurate solurion to

Ax = ! . A matrix with a large condition number is said to & íll-conditioned. In t4l
Cybenko only considers l-norms (he summa¡izes 2-norm results in i3l). If .r is a^ n-

vecror then the l-norm ofx is I l,r I I = É | *, l. IfA is an n x n marrix, then the
i=l

l-norm of ,a is ll .4 ll = | I ,ti:l= 1 ll Ax ll. From [4]

1<llR"ll<n, (3a)

(3b)

and from Theorem 3.1 in [4]

Equadons (3a,b) and the definition of condition number readily yield bounds on K(Rn).
From (3b) it is clear that r(R,,) is large if any reflecrion coefficient is ,,large,, (i.e.,

close to unity in magnirude). Cybenko [4] observes that it is necessary for reflecrion
coefficients to be quite large before the effects of ill-cond.irioning become very evident.
However, this observadon was made for rather small n (n on the order of 10).

We shall now surrunarize the results of Cybenko [4] concerning the numerical
stability of the Levinson-Durbin algorithm. Both fixed-point anå floating-point arith-
metic results are to be found in [4J, but we shall only examine the fixed-point case.
The fixed-point and floating-point results are qualitatively the same. Let us begin by
describing the quantization error model involved in obtaining rhe results in tal. For
fixed-point arithmetic, the rounding error model is (in the norarion and language of [4])

fx(a +b)= a + b, fx(ab) = ab +1,

where a and b ate fixed-point numbers, and, f x(.) is rhe fixed-point representation of
the argument. Quantities Ë and (." so-called local rounding errors sarisfying

| (L I 6 I sÂ, where A depends upon the wordlength and method of tn¡ncarion.
Suppose 4,, is the true solution (infinite precision solurion) to (2). The computed solu-
tion will be denoted by ân = dn * c,,,, where cln is the pernrrbation of the true

¡,rl)=l*c, (4)

5.4

solution due to the cummulative effects of all of the local rounding errors. Thus,

Rnân = Rn (an * grr) = -rr, * ôr,

Rndn = õr, , or c[r, = R;lôr,

Cybenko [3,4] calls ô,, the residual vectÐr. A bound on I I

obtained, and this bound determines the numerical stability

algorithm. Thus, from Theorem 4.1 in [4],

(s)

ô,' I I (l-norm) rnay be

of the lævinson-Du¡bin

lla"¡l<¡þ,t+lK¡ u] c; *|,,*n)+o(tz), (6)

where O @\ symbolizes the fact that only fint order errors are considered in the
derivation of (6). Cybenko [4] argues that higher order terms are insignificant, in the

course of deriving (6). The bound in (6) is largest when K¡ is large (as defined in the

previous paragraph). However, despite this, the bound in (6) shows that the Levinson-
Du¡bin algorithm is numerically stable. This is so because, as is argued in [4], the
bound in (6) is comparable to that for the Cholesky algorith m (LU decomposirion, see

i8l)' The Cholesky algorithm is known to be numerically stable. Thus, the Levinson-
Du¡bin algorithm performs poorly only when it is exposed to ill-cond.itioned data. In
this sense it performs no better or worse than any other method.

A more recent analysis of the Levinson-Durbin algorithm is due to Alexander and
Rhee [5], However, their analysis technique is quite different from that of Cybenko

[3'4]' Their method is an adaptation of the merhd commonly used to compure

roundoff noise gains and va¡iances in digital fi-lter structures (see Roberts and Mullis
[7], Chen [9], or Oppenheim and Schafer t10l). The analyses of the Schur and split
Schur.algorithms in Za¡owski and Card ü,21 also make use of this technique. V/e
shall now briefly summarize the results of Alexander and Rhee [5] concerning the

Levinson-Durbin atgorithm.

Alexander and Rhee [5] urilize a statistical model for roundoff errors (as is sug-

gested for digital fi"lters in [7,9,10]). If ¡ is an infinire precision variable, uñ g[¡] is

5.5

the quantized (finite precision) value of x, rhen î = elx] = x * l' where r.¡, is the

error due to quantization. The error is modeled as a random variable (see, for exarn-

ple, Chen [9] (Chapter l1)). From Chapter II, section 3.6 we know that the reflection

coefficients parametrize certain digital filter structures, such as the all-pole lattice filter.
It is known (see [7]) that if I Ki | < t for all i then the ail-pole, or pole-zero lattice
filters will b€ stable (stability theory for digital filters is discussed in [7,9,10]). Insra-

bility results if | Ã', I > 1 for any i. Alexander and Rhee [5] derive formulae that can

be used to estimate the value of Var t^K¡ I (subject to certain assumptions that will be

specified later), the variance of the error AK¡ in the i th reflection coefficient due ro the

cummulative effects of ail rounding errors. Such results can be used in investigaring

the stability of lattice filters under finite precision arithmetic cond.itions, for example.

Note that Alexander and Rhee [5] assume the use of fixed-point arithmeric only. The

method of [5] takes into account the presence of quantiz¿tion errors in the normalized

autocorrelation sequenca 11t , rr, (sequence is normalized if 16 = 1¡. The error

due to quantization in r¡ is denoted by Ar¡. From [5]

Var tò,r ù + 4r lVar[Ârr] + on2Var[LK 2] =

8r1a + 4rl +2r] +Z
ont

' (7)
Q - r?)z

where on2 is the variance of the quantization error of a single product or quotient.

From (7) it is clear that the finite precision estimate of K2 is likely to be poor if
r1 -+ tl. It is shown in [5] that this will happen when R,, is due to either a nar-

rowband highpass or lowpass input signal. It is straightforward to show that K | = r l
(by the conventions in [3,4,5]), so (7) is large if K1 is large. In other words, it is ill-
conditioned input data that lead to poor esrimates of the reflection coefficients, and so

the results in [5] actually agree with those in [3,4]. It is worth noring that ill-
conditioned data can readily arise in practice. For example, Ma¡kel and Gray [11]
sometimes observed the effects of ill-conditioning in their experiments with linea¡
predictive (speech signai) vocoders that employ the Levinson-Durbin algorithm.

5.6

2. .A,nalysis Assumptions

In this secrion we present the assumptions behind the analyses of the Schur and

spüt Schur algorithms under fixed-point arithmetic conditions. These results appear in
secrions 3 and 4 of this chapter. The analysis assumptions are essentially those of
Alexander and Rhee [5].

V/e shall assume (as in [5]) that R,, is an aurocorrelation marix, and that it is
positive definite. Alexander and Rhee [5], as we have already noted, take into accounr
quandzation erors in the estimates of r¡ (normatized autocorrelation coefficients).
Thus, their results involve the analysis of a particular autocorrelation sequence estima-
tor under finite precision arithmetic conditions. The estimator that they chose (and that
we choose) was

R(t)=
L-i-r

E s(k) s(¿ + t)
t=0

for i = 0,1,...,2, where s(É) is a real-valued signal. ln computing (g), the signal s(¡,)
is windowed, and so we may assume that s(,t) is zero for¿ < 0 and t >L. we will
let

,, = Å(i)- (9)' R(0)

for j =0,1,...,n, and so I r, I < I for all i. Equadon (9) is the definirion of the lag i
(or i th) normaltzed autocorrelation cofficíent. Other esrimators (besides (g)) could
have been chosen. However, the estimator in (8) is desi¡able in practice as it is
unbiased and the variance of the estimates that it produces approach zero as L -+ *,
assuming that s(k) is ergodic (see Chen [9], pp. 388-390). Hence, the esdmator is sta-

tistically consistent (see t9l). Thus, we shall assume that L > n to ensure good esri-
mates.

Let x be any infinite precision (nominal) variable. r-et î be the quanrized form
of .r. Then, as before,

î=Q[¡]=r*î.x, (10)

where rl' is the quantization enor. we will assume Qt I to be a roundoff quantizer.

(8)

5.7

We will also assume that all quantization errors are zero mean, uncorrelated and uni-

formly distributed over the quantizer bin width. The quantizers themselves are uni-

form and produce a å -bit binary word for any variable -r with the dynamic range

-r-^x (x (r*o. Note that this assumption will be slightly modified in section 4.

Thus, the quantization error variance o'"2 is

o,2=En?l=*3^ 2-2b
(11)

where El,) is the statistical expectation operator. For us, r_ux = t holds (e.g.,

lrlt)lsro=1).
Multiplication and division produce roundoff errors that may be modeled as

Qtxyl = xJ * \p , (L2a)

arf=î*ro ezb)

We are assuming that the roundoff error is uniformly distributed over the interval

[-2-b ,z-bf which gives (11) (x** = 1¡. As in [5], n with a suitable subscript

denotes the quantization error of a single product or quotient (local rounding error in

the language of 13,41), and Ax denotes the error in some variable x due to the cummu-

lative effects of quantization error. Second order products such as Lr Ly or Ax q
will be ignored as they arise in the computation of expressions for such parameters as

ÂK¡ since they are small relative to first order emors like ar c, r"¡.

From Alexander and Rhee [5], Är¿ = 4 - r¡ ând

, ÎR, - r¡IRo
r\t'¡= LR16¡ +l', (13)

(1aa)

(14b)

(I4c)

fori = I,...,fl,where

nnß,1 = l(L

n6fiS = ¡r

nnll = ol

- t) R (¡>l2oî

R (0)l2on2 ,

s.8

^ .)_2b

and onr = î. Equation (13) uses the assumption that L > n.

3. Fixed-Foint Arithmetic properties of the schun Algorithne

In this section we use the model and assumptions of the previous section to
analyse the Schu¡ algorithm. The results to follow a¡e from Zarowski and Card [l].

3.1 Analysis

We will beg¡n by presenting some analytical results. For this we need to apply
the model of section 2 to the infinite precision form of the Schur algorithm of Chapter
II. Thus, according to this model, rhe Schu¡ algorithm becomes:

û!le) ,= f¡ ; û[) := f¿ ;

For í := I to ¿ do begin

P,
'= QVn¡it tûg',;

Fork:=0ron-idobegin

h!ii|,¡ ,= ûjl)_,*, + e[k¡â*(iìl ,

¡(i+t) ,= e[Ê¡ù!tì_,*r] + âliì ;

end;

end;

This is the finite precísion Schur algorítlvn.

It is now possible to obtain error expressions for the reflection coefficients K¡ and

the Schur variables aa(i). Thus, from the finite precision Schur algorirhm it is easy to
see that

Ð ,fj) + Âafi)
Ai = - ;q;

^,,It
+ rrJ ' (15)

and so.

Similarly,

(16)

5.9

ûji;ll) =riiällr +Lu!iÌ-¡*t +K¡Luf')1 +nx,u{'*\ +ra1¡*,¡,i , e7a)

û(i+r) = uk(i+r) + L"1|\ + rc¡a,uli)_i +l * AK¡u\i)_¡*r + Ia.,i . (l7b)

From (l7a,b) we ger

¿¿¿liilll = Âul'¿)-¡*r + K¡Lu[']1+ ÂK¡ u*\\ + rìa1,*,¡i ,

Ntoq+t) = tul'À + x,Mfl_i+l * a,K¿u!i)_¡*r + Tìa,i

We can use (16), and (18a,b) in combination with the infinite precision Schur algo-
rithm of chapter II (which gives us the nominal parameters K¡ and r.r*(;) ro ger

closed-form expressions for ÅK¡. This is practical only for small i, since for large i
the expressions are exuemely unwieldy and ha¡d to obtain because of the large effort
involved.

Let us first consider the case of i = l. From (16) it is clear that

ÅK1 =-Á¡t+Ir,r
V/e can compute an estimate of the variance of this error, and the result is

VarIÃK]=Var[Âr1]+on2

From [5), Var [Arr] = fl + Zrf ;on2 luse (13) and (l4a,b,c)), and so

Var[AK]=2[I+rllol

From (19), if &l = 0, then Var[LK y] = on2. Thus, much of the error in our finite pre-

cision arithmetic estimate of K1 is due to errorin the esdmate of r1.

We can repeat the above analysis for rhe special case of i = Z. Once again, from
(16), and wirh the aid of (18a,b),

Lrz 2r{r2- llÂrr
LI(2

(18a)

(l8b)

(1e)

(20)

(2r)r? -r tr? -tlz
r y[r2 - l] Ia,.l*
tr¡ Ut

Tlr,t *
nt-'

rz- r?
trT- ,fÎ'-''t

+ Îtr'z

parts denored by P, and p 2 (so rhat
va¡iance of A,K 2 will consist of two

5. r0

Var[AK)= P1+ P2). The fi¡st part will involve the fi¡st rwo reûns of (21), and wili
give the variance due to errors in the esdmation of r1 and 12. The second pan

involves the iast four terms of (21), and gives the error due to the quanrization of pro-

ducts and quorients in the course of executing the finite precision Schur algorithm.

From [5], Var[Lrù = tl + Zr]lon2, and so

Pt= It + zrîllr? - tlz + qr?Vr- tlzlt + zrll
Ír? _ tl4

on2 , (zza)

DI2- ol . ezb)

For a second order AR (autoregressive) process with poles at z = p¿tie, it is straight-

forward to show that

r?[rz- t)2 + lrz - r?]2 + tr? - t1a + ¡rl - t1z

2o cos 0 _ É\ti, 30 - p2 sin 0)'r --:- r ¡'?--r+p' (l+p,)sin0 (23)

Such a process may be generated by passing white noise (zero-mean) through an all-
pole filter with the said pole locations. Note rhat the filter must þ stable, and so

0 < p < 1. Equations (23) is obtained via the method described in Chen [9] (see

chapter 10, pp. 346-353)- If 0 + 0, and p -+ l, then r, + 1, and r2+ L. A signal

such as this is a narrowband lowpass signal. similarly, if g -l n, and p -+ 1, then

rt i -1, and 1241, and the result is a na¡rowband highpass signal. Either fype of
signal will lead to a large value for var[Mz], imprying a poor esrimate of K¡ for

i > 2. This may be readily seen by considering (22a,b).

3.2 Discussion and Simularion

V/e will now present some simulation results. These results confi.rm the valid.ity

of the previous analysis. We will also discuss how the present results concerning the

Schur algorithm relate to the lævinson-Durbin results found in [3,4,5].

V/e will begtn by describing the method of simularion. A series of 2nd order AR

signals were constructed by passing zero-mean, white Gaussian noise through a 2nd

order all-pole fi-lter with poles at z =p¿tiø. In all of the experiments performed, ten

5.1 1

lM-point signais were constructed for various values of p and 0. Floating-poinr

a¡ithmetic was used to construct the test signais, and to compute the nominal values of
the normalized autocorrelation coefficients. Floating-point arithmetic was then used to

compute the nominal reflection coefficient values. The nominal values a¡e taken to be

the "infinite precision" values. Quantized normalized autocorrelation coefficients were

produced by rounding the nominal normalized autocorrelation coefficients to ö -bit 2s

complement numb€rs. The resulting quantized coefficients were used to obtain the

fixed-point reflection coefficients. Appendix A contains the C program used to per-

forrn the simulations (on the Data General Eclipse MV/g000 computer _ all simulations

in this thesis were performed on this machine), along with a page of typical prograrn

output. Note however that the reflection coefficients are indexed differently in the pro-

gram outPut from the indexing that we have used so far. Specifically, K(i) in the pro-

gram ouQut is K¡-1 in the notation above. The experimentally derived variance esti-

mates were obtained by squaring the difference between the nominal and fixed-point

reflection coefficient estimates and averaging over the number of experimenrs (ten in
this case). Appendix B contains tabular summa¡ies of various experiments with

lowpass signals (highpass results omitted).

Because of the manner in which quantized autocorrelation coefficienn were

obtained, equation (22a) must be modified. Specifically, var[lirr] = varflr) = 6]
now. Thus,

Var[LK) = P't * Pz , (24)

where

I l-
tr? - L)z + 4r?trr- t),

ol (2s)
tr? - \o

Hence, equation (24) becomes the expression for the "theoretical variance" of the 2nd

reffection coefficient. The simulation results arc compared with the results provided by

(24) in the tables of Appendix B. Note that the nominal normalized aurocorrelarion

coefficients needed by eg a¡e obtained using (23).

5.r2

Each of Tables I,II and trI in Appendix B represents simulation results for a par-

ticula¡ combination of p and 0. In general, there is good agreement b€tween the

theoretical pred,ictions and the experimental (simulation) results in the sense that rhe

discrepancies seem to decrease as å increases. This is reasonable since as å íncreases

the assumption of uncorrelated quantization errors becomes more accurate. A com-
parison of the results in all of the tables confirms that the reflection coefficient error
va¡iance does indeed increase as p + I and 0 + 0.

If we compare the expressions for Var[LK) due to the Schur algorithm with rhe

similar expression for the lævinson-Durbin algorithm (see (7)), we conclude rhat the

two algorithms a¡e qualitatively the same in terms of their finite precision arithmeric

behaviour. In other words, the Schur algorithm is numerically stable. However, the

expressions for VartLKù in (24) and (22a,b), not surprisingly, indicate once again that

na¡rowband lowpass and highpass signals yield ill-cond,irioned autocorrelation marrices.

This of course agrees with Cybenko's results in [3,4]. As a result, the Schur algo-

rithm performs no worse than any other algorithm for LDLI factorization (such as

cholesky's algorithm) when exposed to ill-condirioned input data.

4. Fixed-Foint A,nithr¡retic Froperties of the split schur Algorithms

As we d"id in section 3, in this section we shall use the model and assumptions of
section 2 to analyse the split Schur algorithms (symmetric and antisymmetric forms)

with real, symmetric, positive definite autocorrelation matrices as input, under fixed-
point arithmetic cond.itions. The results to follow are from Zarowski and Card [2].

4.1 Analysis

We will again begtn by presenting analytical results. As in se4ion 3.1, applica-

tion of .the model of section 2 to the infinite precision symmetric split Schur algorithm
yields the finite precision form:

t6,s := Ê9 ;

K6:=0;

0s,¡:=zÞ¡ (tsi sn);

5.13

ïr,j ,= Þ¡ + f¡,' (o <i < n_t);
For k := I ro n do begin

ô¿ := 8[0*,/0*t'];
ko ,= | - gtô¿(l + É¿_r)l ;

ForT := 0 to n - k - 1 do begin

ût*t,j := h,¡ + îr,¡*, - Qt&rû¿-r.j*,1 ;

end;

end;

This is the finite precision synvnetric split Schur algorithm. Similarly, ..:e antisym-

metric split schur atgorithm has the finite precision form:

l'i,s := Ê¡ ;

És:=o;
t'f;,¡:=0 (tsjS¿);
ûi,¡ := f¡ - f¡... (o <i < ¿_1) ;

For È := 1 ro n do begin

ôf := g¡\i'di_r'1 .

ko ,= -L + etô*ïtr - 4_,)l ;

Forf :=0ton -k- ldobegin

fi....j,= tJ,, * þ1.¡*, - Ote;ç;_r,;*r I ;

end;

end;

This is rhe finíte precísion antisymmetric split schur algoríthnt.

We will now derive analytical results for the symmerric split Schur algorithm.

Naturally, we need iterative expressions for the errors due to quanrization of the va¡i-
ables cr¿, v¿,; ândK¿. These errors a¡e denoted by Âo¿, aK¿ and Lvt,j,in conformity
with the notational conventions of section 2. V/e shatl determine closed-form expres-

sions for Var[La] and Vart^KrJ. Closed-form expressions for Âa2 and aK2 shall
i

also be found, from which expressions for the variances oi these errors may be readily
determined.

5.14

From the error model of section 2, and from the finite precision symmeric split
Schur algorirhm

LQ.p = &* - ø* -
Y¿'o * av¿'o

-
u*'o

,'- vk-r,o*
^r*_rp

- ,-_* + Tìa.e

=
Oro,o - 0,¡Lvp_r,6

%-
* Tìa,r (26)

for È = r,--.,^, where we have assumed that v¿-r,o is much larger than Âv¿_r,6. simi-
Iarly, it is easy to show that

av Q-Kt)^Ke-l-Âa¿rjl\¿=E+TìK* (27)

for k = 1,...,/!. we have assumed that l +K¿-l is much larger than ÂK¿_1 in the

derivation of (27). Finally,

Lv*+t,¡ - Lvt,j *Avr,¡*r -G¿Âv¿-1,;+r -vt_1,¡+rÅcr¿ *îur,,,j , (Zg)

where k = I,...,n and i = 0,1,...,n -k-I.
From the initiallizarion phase of the finite precision symmeric split Schur algo-

rithm,

AKg = 0, Âv6,6 = 0, Âv1,9 = ôr1

As well, Ko = 0 and vs,s = r. Thus, for & = I we may use (26) to obtain

Âc1 =Åvr'o:-lrÂvo'o*qcr,r=arl*r1.., , (zg)
Yo,o

where or = I * rr. Similarly, via (27),

^Kl--Âør+qtr,r=-Arl-î.çr+I,r,r, (30)

where Kl = -rl. Using the fact rhat

Var[A,r¡] = [l + 2r,21 ofi , (31)

(see [5]), we have

5.15

Var[&a]=Var[År,]+ol=20nr?lol , (32a)

Varlò,K t) = Var [Âr r] + Zol = çl + Zrl¡ol eìb)

Clearly, much of the error in the estimation of ø, and K¡ is due to error in the esd-

mate of the normalized autocorrelation coefficient rr. This is especia-lly tn're when r,
is close to *1.

Now let us consider the case k = 2. Using (2g)

Âv¿o = 4r 1ò,r t + Lrz - 2r t\o¡ * lr.o , (33)

where we have used Âv1,1 =Ar1 * Lr2 and Aus,l =2!rt (yo,r =2r1) which follow
from the initiallization parts of the finite precision symmetric split Schur algorithm.

Therefore, substituting (33) into (26) and simplifying gives

DtLwz--Í2rl +4r1*12* llÂrr+(l+ rt)Lrz e4)

-2r{l + rr)qcr,r + (l + rt)\qz+ (l + 11)Í1,.0 ,

where Dt= (1 + rr)2. An expression for var[Lw] may now be obtained, but for
brevity we will nor stare it explicitly. It is enough ro see from (34) that

Varf\a) -> "o if r¡ + -1

For a second order AR process with poles at z = ,)e*iø, and such that p + I and

0 -+ ?r, then rr + -1 (as we know f¡om section 3 - see (23)). Hence, if the input to
the finite precision symmetric split Schur algorithm is from a na¡rowband highpass

process, then large efrÐrs in the estimates of a¿ (k > 2) can be expected.

From (27) with k = 2, substirudng in the appropriate values, and simplifying
gives

. DzLKz=[(t- rr)(2r? -rr-txl +r)z+(1 - rl¡qZrl +4r1*12* t)]Ar1

- (1 + rrXl - rl¡d,r2

+ I(1 - r)(2r? - rr- lxt * rr), +2r7(l + r,)(t - ri)lrlo,r

- (l + r)2(I - r?)q.-.z (35)

5.16

+ (l - r¡)(l + r2- Zrí)ft * rr)hr,r

+ (1 - rrXl - ,?)0 + r)\x.z

- (1 + rrXl - ,?)\u^o ,

where D2= (L - rrXl - tíXt + r)2. Again, it is easy (though tedious) to obtain an

expression for Var[LKù, but for brevity we shall once again decline ro stare it expli-

citly. From (35)

Var[ò,K) + "o if r1 -r *1

Thus, Var[LK2] -+ - if the input is from either a narrowband highpass or lowpass

process. Obviously, we can expect large errors in the estimates of K¿ for È > 2 for

such signals as well. This is so since ÂK¿ is a funcrion of aK¿_1.

We will simply state the results for the antisymmetric split Schur algorithm as the

process of obtaining them is identical to that used to obrain the above results for the

symmetric split Schur algorithm. Thus, the expressions analogous to (26), (27) and,

(28) a¡e

ÂrJ,o - afavf_,.'
Âc[,¿o = û

vt-t,o
* la',Ê '

LKk -
(1 +K¿)ÂK¿_,+Âaf

r - K*-t + Tlf,t ,

ÂvË*r.r =
^v;,j

+ Åvf,¡*¡ - e¿oÂuf-r,j+r - ui-r,¡*r Âaf + î,,.,,J ,

where k = 1,...,n and j = 0,1,...,n -k-I. Using (36a,b,c) it can be shown that

(36a)

(36b)

(36c)

Acti=-Ârr*qa".r , (37a)

ÂK1 =-&r+la.,r*lr,r, (37b)

D$eå =(l - r2)Lry-(l - r1)Lr2+(t -rr)ho",2+(t -rr)e,io , (37c)

D¿Mz=2rt(l - rrXl - rùLrr - (t - rrXl - r?)Lrz

+ (1 - rz)e - rr)ho",r + (t - rt)z(t - r?)\o..2

5.t7

+ (1 - rù(t - r)\rct + (l - ,?)e _ rt)2(t + rt)\x.z

+ (l - rrXl - ,?)\,10 ,

where D3= 0 - r¡)2 and D4= (l - rílf f _ ,t)z(L o r,).

From (37c) it is evident that

(37d)

Varf\a.il + ". if 11 -) I ,

and this will happen if the input data a¡e from a na¡rowband lowpass process. This is
in contrast with the results for Varf,Lg-J stnce Varl\eù + oo for a na¡rowband
highpass process. As well,

Var[LK) + "" if 11 -+ tl ,

and so errors in the esdmation of K2(and of Kt , k > 2) will be large if the input data
are from a na:rowband highpass or lowpass process. This result is qualitatively the
same as the result for vartAKù in the case of the symmerric split Schur algorithm.

4.2 Discussion and Simulation

we will present simulation results for rhe finite precision symmetric split Schur
algorithm' These results will conñrm the valid"ity of the analysis in section 4.1. we
will also discuss how the present results relate to those for the Schur algorithm in sec-
tion 3.

Because the variables @¿, and v¿,r. in general possess a nonzero integer part, the
simulations which follow use twos complement binary words of rhe form

x-n x-1Xg.xt '" xb_t , (38)

where x¡ e (0,1), andx-- is the sign bit. Thus p[] quantizes nominal values down
to m+b -bit numbers (in secdons ? and 3 we had m = 0). The integer parts of all pro-
ducts and quodents shatl of course be retained. However, f¡actional pans will be

quandzed by roundin g to b-l bits. ^ o-2b
Hence, oi = = Z , just as it was in sections 2

and 3' In all of the simurations that foilow we pick m = z. Thus, the rotal
wordlength is b+2 bits with å_l fractional bits.

5. 18

In one set of simulations, a series of second order AR signals were constructed by

passing ze¡þ-mean, white Gaussian noise through a second order all-pole filter with
poles at z =p¿tiø. In all of the experiments, ten lM-point signals were constructed

for each of the various sets of p and 0. Floating-point arithmetic was used to con-

struct the test signals and to compute the nominal normalized autocorrelation
coefficients. Floating-point arithmetic was then used to compute the nominal reflecrion
coefficient values, since we are interested specifically in comparing the experimentally

measured values of Varl,LKù with the theoretically pred.icted values. All nominal

values derived via floating-point arithmetic were taken to be "infinite precision,, values.

Quantized normalized autocorrelarion coefficients were produced by rounding the nom-

inal normalized autocorrelation coefficients to å+2-bit twos complement numbers of
the form in (38). Thus, Var[A,r¡] = of for k > L. This condition also held for the

second set of simulacion experiments to be described below. The resulting quantized

coefficients were used to obtain the fixed-point reflection coefficients. The C pro$am
used to produce the theorerical and experimental results is to be found in Append.ix C.

Typical program output is included. Appendix D contains Tables I to VI which sum-

marize the results of certain experiments using this program. These results test the

validity of rhe expression for aK2 (which we know yields var[LK2]) in (35). In gen_

eral, the agreement between theory and experiment is good.

The reader may be distu¡bed by the fact that we have not presented closed-form
expressions for ÂK¿ when & > 2. This is simply due to the fact that such expressions

a¡e difficult to derive (note the complexity of (35)). Fornrnately, it is nor necessary ro

derive such expressions which would, if they were available, be useful as design equa-

tions (for the selection of a suitable å). It is possible to use recursive progrünming to

"implement" the equations (26-28) in the form of softwa¡e. Such a program has been

written'in PASCAL, and it may be found in Append"ix E. Roughly speaking, a rree

data structu¡e is created (via dynamic allocarion) such that each node in the ree (a

PASCAL recond type) contains the terrns of the equations (26-28). pointers from one

node to the next symbolize the índividual terms in (26-28). A suitable rraversal of the

tree may then be used to "collect like terms" in the variables Lr¡, , fl..,t, t1¡ç,¿ and

5.19

î'lv¡*r.,. The program requires the nominai normalized autocorelation coefficients as

input. These may be produced by another PASCAL program in Appendix F (for
fou¡th order AR models).

A second set of experiments was performed using fourth order AR signals con-

structed by passing zero-mean, white Gaussian noise th¡ough a 4th order all-pole ñlter

with poles p¡eti\ and ppxie2. The theoretical va¡iance estimates (Var[AK¿]) arc
obtained using the nominal normalized autocorrelation coefficients produced by the

program in Appendix F as input to the progam in Appendix E. The c program in
Appendix G computes the experimental variance estimates. Typical oulput f¡om this

progrÍÌm is to be found in Appendix G. Results for various experiments with the pro-

grams of Appendix E and G a¡e to be found in rhe form of Tables VII to D(in
Appendix H. Once again, in all of the simulations, ten lM-point signals were con-

stn¡cted for each set of Pt , Pz, 01 , 02 and, b stated in order to produce the entries in

the experimental columns of the tables. As before, the agreement between theory and

experiment is reasonably good.

It is worth noting the possible sources of the d"iscrepancies benveen the experi-

mental and theoretical results. V/e have the following list of possibilities:

(i) The assumption of uncorrelated errors is clearly not completely valid, but it is

necessary for reasons of analytic tractability.

(ii) Only ten 1000-point sequences were used to generate each experimental column

entry in the tables.

(iii) The values of å used in the experiments may be too small for the assumprion of
uncorrelated errors to hold very accurately.

(iv) tÈ/e have neglected any second order error tenns that may have arisen in the

course of deriving expressions for ÁK¿.

(v) The pseudorandom number generator is not perfectly random, and this could

cause some deviation between the theoretical predictions and experimental results,

since there may be hidden period,iciries in the pseudorandom sequence.

5.20

(vi) The use of floating-point estimates to represent infinite precision values ca¡ries

some risk (but is expedient).

Points (iv-vi) are likely to be rather insignificant. It is the fi¡st th¡ee points that no

doubt matter the most. The above six possible d.iscrepancy sources also apply to the

results in section 3 of course.

It is clear from the results of this section that the symmetric split Schur algorithm
is qualitatively similar to the Schur algorithm under fixed-point a¡ithmeric implementa-

tion conditions- That is, the symmetric split Schur algorithm is numerically stable, and

any poor estimates of K¡ a¡e due to the use of ill-conditioned input data. Simila¡ con-

clusions can safely be reached concerning the andsymmetric split Schur algorithm.

We may finally conclude that the Levinson-Du¡bin, Schur, and split Schur algo-

rithms a¡e all numerically stable, and that poor reflection coefficient estimates a¡e due

to ill-condirioned inpurs.

REFERENCES

tll C. J- Zarcwski, H. C. Ca¡d, "Finite Precision A¡ithmeric and the Schur Algo-
rithm," submined to the IEEE Trans. on Acoust., speech, and signal proc.

L21 C. J. 7-arowski, H. C. Card, "Finite Precision A¡ithmetic ¿nd the Split Schur

Algorithms," submitted to the IEEE Trans. on Acoust., Speech, and Signal proc.

t3] G. Cybenko, "Round-off Error Properties in Durbin's, l.evinson's, and Trench,s

Algorithms," Proc. 1979 Int. conf. on Acoust., Speech, and signal proc., wash-
ington, D.C., April Z-4, 1979, pp. 49g-501.

t4l G. Cybenko, "The Numerical Stability of the l-evinson-Durbin Algorithm for Toe-

plitz systems of Equations," SIAM J. sci. stat. comp., vol. l, Sept. 19g0, pp.

303-3 19.

t5l S. T. Alexander, Z. M. Rhee, "Analytical Finite Precision Results for Burg's

Algorithm and the Autocorrelation Method for Linear Pred,icrion," IEEE Trans.

on Acousr., Speech, and Signal proc., vol. ASSp-35, May 19g7, pp. 626-63s.

5.21

t6l J. Le Roux, C. Gueguen, "A Fixed Point Computation of Panial Conelarion

coefficiena," IEEE Trans. on Acousl, Speech, and signal proc., vol. ASSp-25,

Jan. 1977, pp. 257-259.

l7l R. A. Roberts, C. T. Mullis, Dígital Signal Processing. Read.ing, Massachusetts:

Addison-Wesley, 1987.

t8l G. H. Golub, C. F. Van Loan, Matrix Computations. Baltimore, Maryland: Johns

Hopkins Universiry Press, 1983.

t9l C.-T. Chen, One-Dimercional Digitat Signal Processing. New York, New york:

Ma¡cel Dekker, 1979.

ll0l A. V. Oppenheim, R. W. Schafer, Digital Signal Processing. Englewood Cliffs,

New Jersey: Prentice-Hall, 1975.

[11] J. D. Markel, A. H. Gray, Jr., "Fixed-PointTruncation Arithmetic Implementation

of a Linea¡ Prediction Autocorrelation Vocoder," IEEE Trans. on Acoust.,

Speech, and Signal Proc., vol. ASSp-22, Aug. 1974, pp. 273-292.

Chapter VI

T'F{E QUADR,ATIC RESTDUE NUMBER SYSTEM, F'"4,R,8Y
FRACT'TONS, .AND FIENSEÍ. CODES

As we know, some problem instances are ill-cond.itioned (e.g., narrowband high
and lowpass signals give ill-conditioned autocorrelation matrices), and some algorithms

are numerically unstable. It is desi¡able to consider rhe solution of such problems

using arithmetic in finite number systems that enable the computation to proceed free
of quantizarion errors. This is the meanin g of error-free computatíon. while the

Schur algorithm is numerically stable, it will give poor esrimates of Schur va¡iables

and reflection coefficients when the input is ill-conditioned (see Chapter V). The
Schur algorithm for Hermitian Toeplitz marrices of any rank proñle (Chapter IIf)
requires testing for zero, a risþ operation to implement with any form of finire preci-

sion a¡ithmetic (be it fixed-point or floating-point). Thus, such algorithms are candi-
dates for error-free computation implementation. There a¡e three principal means of
performing error-free computations: (i) by rational arithmeric,. (ii) by Hensel code

arithmetic, and (iii) by computing in finite rings and fields. In this chapter we shall

show why we reject options (i) and (ii), thus leaving us with compuution in finite
rings and ñelds as our only oprion. Our rejection of oprion (ii) is based upon results

from Zarowski and Ca¡d tll. We shall review the concept of a quadratic residue

number system (QRNS), a well-known means of performing error-free computation

with complex-valued dau in an efficient way. We shall sraighrforwardly extend the

usual
.QRNS to accommodate fractional (meaning non-integer) data, as in Za¡owski

and Ca¡d [2].

6.2

L. Rational .Arithmetíc

In this form of error-f¡ee computation, all numbers are represented in the form I
b

(a,b e Z, the set of integers). Thus, the addirion and mulriplication of such numbers

proceeds as follows:

a c ad+bc
b- d=--l¡-'

a.c
bd bd

Simila¡ reasoning applies to subtraction and d"ivision. It is clear that rarional arithmeric

is very inefficient as, for example, addition requires three integer multiplications.

Furthermore, as we do not quantize results, numbers can grow in size at a geometric

rate. Note that this problem is common to all error-free computation methods. How-

ever, the growth in size of rational numbers is likely to be particularly grear, since a

result 1 ^ut be of the form
t)

That is, the numerator and denominator may contain common facton (i.e.,

gcd(a,b) + I). This means that a and b may be unnecessarily large. Eliminaring

common factors is computationally laborious, as it involves employing Euclid's algo-

rithm to find &. Thus, we can readily reject rarional arithmetic as a viable means of
performin g error-free computation.

2. fIensel Codes

The Hensel codes a¡e defi¡ed in Krishnamurthy, Rao and Subramanian [3], and in

Gregory and Krishnamunhy [4]. As well, the basic operations of addition, subrracrion

(via negation), multiplication and division of Hensel codes is also defined. The Hensel

codes of [3,4] a¡e in one-to-one correspondence with a certain finite subset of the

rational numbers Q, and it is intended that arithmetic with Hensel codes should

correspond to arithmetic with the numbers in this subset. Let rhis subset of rhe rarion-

als be denoted by F¡7 uX. F¡r' is the set of order-N Farey f¡actions, and X is the ser of

aa&a1
-=_=_bbßbl

6.3

invalid order-N Farey f¡actions which is a finite subser of Q (see secrion 2.1 below).

Let H denote the set of Hensel codes conesponding to the members of F¡¿ , and,let Hy
denote the set of Hensel codes corresponding to the members of X. Then HvHr
denotes the set of Hensel codes corresponding to the set F¡¡vX. Gorgui-Naguib and

King [5] have shown that addition and multiplication of Hensel codes in HvHy, using

the arithmetic in [3,4], does not always correspond to addition and multiplication in
F¡yuX. Specifically, let a,b e F,¡vX, and let H(p,r,a),H(p,r,b)e HuH¡, then

even if a + b , ab e F¡nr;X, it will not necessarily be the case that

H (p ,r ,a) + H (p ,r ,b) , H (p ,r,a)H Qt,r,b) e H vHy. vy'e show that this difficulty

never a¡ises provided that the input data and final results of a computation with those

inputs lies entirely within the set F¡g.

Gorgui-Naguib and King [5] have also shown how to modify the operations of
addirion and multiplication on HwHy originally defined in [3,4] in order that the

correct results are produced. However, theii method involves mapping operands in

HwHT¡ back to the set F¡¡vX when it is discovered that an incorrect Hensel code will
be produced by a sum or product of those operands. The operands in F¡yuX are then

mapped back to H vHy, but this time r (the number of Hensel code d.igits) is larger

than before. It is clear that this mapping back and fonh precludes a special purpose

ha¡dwa¡e implementation of the methods in [5], although a software implementation

may be more practical. It is worth noting that in many practical cases it is not a seri-

ous limitation if the inputs and final ourputs are restricted to the ser F1y (see [4]). This

is particularly true if the only operations involved a¡e addirion, subrraction and multi-
plication. Fu¡thermore, the hardwa¡e cost of such a restriction will often be minimal

compared with the cost of implementing rhe schemes in t5l.

Wc also demonstrate that the concept of Hensel codes becomes redundant when

we restrict ourselves to using operands from the set F¡¿ alone. This is because of the

fact that there is a frnite ring of Hensel codes containing H such that this ring is iso-

morphic to the ring Zp, = {0,1,..."p'-l} under modulo pr addition and multiplica-

tion.

6.4

Thus, we wish to find an alternative method of reinnoducing the set X as

operands (and final results), that precludes the need to map back and forth berween

HvHv and Fo¡u,rX as is done in [5]. This is the final objective accomplished in this

section- However, it tums out that in order to avoid mapping back and fonh, very long
Hensel code words will be required in general. As a result, our approach is probably

no more practical than that of [5]. It does however provide an alternate perspective on

the problem.

2.I The order-N Farey Fractions and, Rjng Zr,

Here we define the order-N Farey fracrions

tions X, and their relationship with the finite ring

Let Z be the set of integen, and let p be any prime positive integer. I-et e be

the set of rational numbers. Define the following subset of e:
.(l

Ô = 1l I scaçu,p)= I Ilä l
It is easily demonstrated that $ it u commutative ring with identity under the usual

definition of addition and multiplication that it inherits from the field of rationals B
(see [4], page 25). set Zo, = [0,1,...p'-l] forms a finite ring under modulo p, addi-

tion and multiplication. If ¡ e Z, then let | ¡ lo, denot" the mòdulop' reduction of
r: I ' Ir, I z -> zr,. we mayextend rhe mappingl.le, in thefolrowing manner.

rct f =þ,,hrn

lo, = | oU-r le, ,

where å-l (modulo p') exists since å is mutually prime to p . It may be readily pro-

ven that I . lr, I Ô n Zo, is a ring homomorphism (see [4], pp. 25-26). .et

FN

ZP,

, the invalid order-N Farey frac-

tAtu

nr={i.ôt

and so clearly Ô =orj^ar. Each Q¡ is called a generalized resídue class.Ideally, we
¿=0

lf t''=rl '

6.5

would like to establish a one-to-one correspondence between a single representative

from each Q* Md a member of Zp, Unfortunarely, we can identify such a unique

element in only some of the generalized residue classes, but not ail of them. These

elements are specified by

Definition I , The finite subse t of þ

l, ^ I
FN - li. Ô | sca@,b)=t,0< | a | <N,0 <l u I <¡ufl,)

where ¡/ > 0 is an integer, is called the set of order-N Farey fractions.

This is Definition 5.13 of [4] (see pagezT). Also from [4] we have

Theorem tr " Let N be the rargest integer sarisfying the inequality

ZNz+lí=p,

and let the generalized residue class p¿ contain the order-N Farey fraction

x = alb. Then ¡ is the only order-N Farey fraction in etr.

The proof is on page 27 of [4]. We shall always assume thar N satisfies Theorem I
from now on. Theorem I motivates the definition of set

20. ={, i to.t l= F"}

and 20, czr,. From Theorem 5.17 of [4] (see p. 2g), I lo, I fr n 20, is

one-to-one and onto. Thus, we can state the immediate

Theorem 2 ' Addition and multiplication in Zp, corresponds to addition and

muldplication in F¡y provided that the input dara and final results of the arith-

metic in F¡¿ lie entirely wirhin the set F¡y.

Proof . l'lo, lÔnZo, is a ring homomorphism, and Fucô.,
2o,.Zr,,and, l. lo, lF¡,, - 20, isone-to-oneandonto.

It wül prove useful later on ro have

Ðeffnition 2 " The finite subset of e

6.6

I
x =li. O I gcd(a,b)=t,b =cp (c ez),0< lo ls¡¿,0< l¿ l=¡¿i

)

where l/ is as in Definition 1, is called the set of invalid order-N Farey frauions.
From Definition 2, b = cp and so b-t (mod p') does not exisl clearly,

(
Fyvx = l+ | scd(a,b)=r,0< I ¿ I <¡¿,0< | ¿ t <¡¿l|.a -'-"J

As well, XrrF¡¿ = Ø (empty set), and X aþ = g.

2.2 The Field of p-adic Numbers po

Here we will present a working definition of the p-adic numbers as well as the

a¡ithmetic operations upon this set that contribute to making it a rue algebraic field.

We note that it is the ring structure of the p-adic numbers that interests us most, and

so we will largely ignore the operation of division. A good introductory rrearment of
the p-adic numbers is in Koblitz [6]. However, some of the material that follows is

summarized from Gregory and K¡ishnamunhy [4] (see sections 1 - 3 of chapter tr).

The field of p-adíc nutnbers Qo is the completion of the radonal numbers with

respect to the p-adic metric, which is induced by the p-adíc norm. If c¡ = alb e e is

nonzero, and gcd(a,b) = 1, then it can be expressed uniquely as

ft= (1)In"

= k,'

where p is any prime number, gcd(c,d)=gcd,(cp)=Scd(dp)= 1. The p_adic

norm is defined as follows (see [4], Theorem 2.3, page 64).

Theorern 3'The mapping ll . ll ol e n R (fierd of real numbers) defined

by

lløllo , 0É0
ø=0

rs a norrn on 8.

The proof is in Koblitz t6l (see Proposition on page 2). The p-adic metric induced by

the p-adic norm is simply d(x¡)= ll r * y ll p @J e 0).The completion of e

6.7

with respect to ll ' ll o is discussed in Koblitz [6] (Chapter I), and so will not be

considered here. However, we are interested in one of its consequences, namely

Theorenr 4 " Any rational number s e g has the unique p-adic expansion

o= fio¡ oi
j=n

where each coefficient (digit) a; is an integer in {0,1,...,p-i}, and n is such that

llollp=p-".
In other words, the infinite series converges to ø e p in the p-ad.ic metric. Theorem

4 is a corollary ro Theorem z.l5 in t4l (see page 67). As an example,

r + p2 + pa + converges to (1 - p\-r in the p-adic metric. However, in the

more familia¡ absolute value norm (l r l=¡ if -r >0, lx l=_, if x <0), it is

obvious that the same series diverges.

We a¡e interested primarily in p-ad.ic expansions of the members of Ô., and hence

of F¡¿. If cr e f , then its p-adic expansion has the form

æ

a= Z_a¡pi = ao+ arp + * dn_rpn-r + anpn + (?a)j4

We can dispense with the need to d,isplay the powers of p explicitly by employing a

p-adic point (as is done in [3,4]):

g,= .aott . . dn-14n (2b)

If ae ó,thenohastheformin (l) withn >0. Thus, lla llo irasinTheorem
3 which implies that n >0 in Theorem 4. As aresult,ai=0 for0< j <n_l will
hold in (2a,b).

It is possible to do a¡ithmetic with the p-ad.ic numbers since we have stared that

they fprm a field. We will concentrate on negation, addition, subtraction (via nega-

tion), and multiplicarion.

Fi¡st consider negation. Let

g. = anpn * dn*lpn*l + an*2pn*? +

6.8

then

-g.= bnpn * bn*rpn*r * br*lpn+2 ç,

where bn = p-en , bj =(p - 1) - a¡ for j > n. The proof is straightforwa¡d and is

contained in [] on page 69.

Now consider add-irion. [æt c, . Ô æ, as in (2a), and let F . ó U"

F= f;b¡n, -bo+b1p + *bo,_1p^-r +b^p^ +,
i=o

where llpllp=p-^ and¡æà0. Thus,

ææ
cr+p=Zojpi+lb¡ni

j=o j=o

where

aj +bj * rj =s¡ +c¡+p U >0),

and 0Stj. p, c¡+t is the carry out of position j, and c0=0.. Via Theorem 4, rhe
æ

p-adic sum f,s;P/ is the unique p-adic expansion of a + p. Subtraction is accom-j=0

plished by negaring the subtrahend and adding ir to the minuend: cr-F = o + (-p).

Lastly, we consider multiplication. Let cr and B be defined as in the previous

paragraph, then

r- ìr- ì
øF = | Zo¡pill¿u,rtl

tl=o J U=o)

*(; ì
=Ðlf,oet¡+loi

j=o lÉ=0)

6.9

€
= EP¡nl

j=0

rvhere

b¡-¿+cj=Pj*c¡+p U>0),

such that 0 < pj 1p, c¡+t is the carry our of position j, and c0 = 0. Via Theorem 4,
æ

the padic sum Z^nini is the unique p-ad.ic expansion of ap. we may thereforej=o

define the mapping O I é n Qe as the operation of p-adically expanding the elements

of the
^g Ô. We are of course at liberty ro write 0(a) = c¡ because of Theorem 4

and the way in which the addition and multiplication of p-adic numbers is defined. In
fact we have

Lemma I " 0l Ô neo isaringhomomorphism. Thatis,forany a,þ. ô,
Q(cr + Ê) = 0(s) + 0(p) ,

0(oÞ) = 0(a)0(Ê)

Froof " Follows automatically from the definition of p-adic add.ition and multipli-
cation defined above, and Theorem 4.

As well, we have

Lemma 2'lret Otól = {øe ep I ø= Q(a) for some a e ô1, then 0(é) is a

subring of the ñeld eo.

Proof ' It is a basic property of all ring homomorphisms that the image set of the

ring homomorphism is itself a ring.

Because of rheorem 4 o I Ô + q(Ô) is one- ro-one as well as onro (isomorphism).

Division i¡, Qn is discussed in [4,6]. We will not consider it here as our primary

concern is with the operations of addition and multiplication i¡1 ee. The addition and

multiplication operations on Hensel codes, which we shail define in the next secrion,

are directly inherited from the corresponding operarions on the p-adic numbers thar we

have defined in this secrion.

foo
k4

6.10

2.3 Hensel Codes (Finite Segment p -Adic Numbers)

In this section we define the Hensel codes, or finite-segment p-adic numbers as

they are alternarively called, and we define arithmetic on the Hensel codes.

we begin by defining the mapping ìy I orél -o zr, , where þ(ô) is the image

^^orp in Qrunder0(seesection2.2). Letae f,then0(cr)= lo,rt € o(é),and
j=0

v(Q(cr)) ='fo¡ni = cto* atp + + a,-1p,-r e zp, , (3)
j4

where llø ll p=p-", andif n2r theny(Q(a))=0. Inotherwords,themapping

ry formally rruncares the p-adic sum (expansion) of s. e Ô. we have

Lemma 3 . ì+/ I oré I -u Zp, is a ring homomorphism. That is, for any

cr,F e þ(Ô),

V(cr + Þ) = V(cr) + V(p) ,

V(crÊ) = V(cr)V(F)

Froof . O(Ó) is a ring (Lemma 2). zp, is a ring as defined in section 2.1. Let

cr,Þ e 0(ô) such thar

o=i"¡pi, B=fiu,pi
l=0 j{

Thus,

v(cr)+v(B) ='fo¡pi *'fu,ot ='fço,*u¡)pi ='Ër,r, = v(cr+Ê) ,j=0 j=0 j4 l=0
-

since

a¡+b¡*cj=s¡*c¡+p (0Si <r-l) ,

where 0 s s¡ q p, c¡+r is the carry out of position j, co = 0 and we ignore cr.

We have employed the definition of addition in the ring Zp, when the members

oî Zr, are given the radix-p representation in (3). This representation is readily

proven ro be unique. Similarly,

6.1 I

(,t ll,-t I ,tfj I ._r
v(a)v(Þ) =

ltn",il Jlu\u,o'J
=,Ð,

l,å,,
u'-rl='ionini = v(a') ,

slnce

i
¿a¿b¡-t * rj = p¡ + c¡+tp (0 <j <r-i),

where 0 < pi
' p, c¡+r is the carry out of position j, co= 0 and we ignore c,.

We have employed the definition of multiplication in zp, when the members of
Zp, are given in a radix-p representarion as in (3).

We also have

T-emma 4 " y maps 0(é) onto Zr, .

Proof . Let d, e Zr, , then we may write

o ='î o,rju JLi{
æ

If a=.\^î¡pi then ry(a)=o, where dj=aj for 0< j <r-L, but a¡ can bej4

arbitraryfor j>r. Thatis,foranyoe zp, thereis anae Q(þ)suchthat
V(a) = a.

we may define another mapping w I orÓ) -+ Hv as follows. Let cr € o(é) where

U. = .dga1a2 ar_1arClrç¡

anditisof coursepossiblethata¡ =0for0<i <n-l with n)r. Wewrite

Y(cr) = .aúßz dr_L

we let Hv = {Y(cr) I cr. Oféll. we may define addition and multiplication on this

set and so make it into a cornmutative ring with identity. This we do as follows.

Let a = .ao ctr_r , and b = .bo br_t belong to H,y. Addirion is

defined as

where

ntL-u -r u -.u0 Ur_1 +.Og Dr_l =.S0 Sr_l ,

6.12

a¡ * b¡ * c¡ = s¡ * c¡a1p (0< j <r-l)

such that 0 (s¡ 1p, ci+t is the carry out of position i, co= 0 and we ignore c,.
Muhiplicarion is defined as

ab = (.ao a,_)(.bç b,_) = .po . pr_r ,

where

i

àorU,_r
f c¡ = p¡*c¡+tp (0< j <r-l)

such that 03p¡ 1p, ci+t is the carry out of position i, cg=O and we ignore c,'.

Thus, we may state

I-emma S'Y I Ofé) + Hv is an onro ring homomorphism.

Froof " Similar to the proof of læmmas 3 and 4.

I-emma 6 . 0 I Hv + Zp, as defined by

o(.aoal . . . a,-t) ='Ëo,rt
i{

is a ring isomo¡phism.

Froof ' Addition and multiplication in H.y is the s¿Lme as add.ition and multiplica-
tion in Zp, except for rivial notarional differences: I/,y uses positional notarion,

and Zp' uses radix-p representations. As well, 0 is clearly a one-to-one onto

mapping.

We have F¡t c Ô. , q(F,v) c O(é), and we may define

rlH=|y(s)lcl€q(FN)l
I

which. gives us H cH,y. It may be readity seen that H = {H(p,r,o) I o. F¡¡) as

well. H (p ,r,ø) denotes the Hensel code (see [4]) for o, where r is the number of p-

adic digits after the p-adic point that we retain (the digits are rhe a¡ in (2a,b)). Thus,
I

ã a F¡¿, p =5, andr =4, then

6. l3

I
Q(;) = .23t31313

and H(5,4,1/3) =.2313. 0(10) =.02000 ... , and 11(5,4,10) =.020O. It is actually
possible to find Hensel codes for any u- e g as specified by Theorem 4.5 in [4] (see

pp. 80-81). We witl tet

r1
Hx=lrø,r,cr)la=xltJ

denote the Hensel codes for the invalid order-N Fa¡ey f¡actions X. When cr e X is

written as in (1) we get n < 0. As a result, the p-adic expansion of a contains nega-

tive powers of p (see Theorem 4). É1¡ is obtained by rn:ncadng the p-ad.ic expansions

of all of the members of X as described in [4]. Thus, H r:IIy = e.

The following lemma makes it possible to equivalently add, subrracr, or multiply
in F¡¿ , 20, , oÍ H.

[-emma 7'Mapping | ' lo, I FN I 2e, is equivalent to the composite map-

ping V"0lF¡u -2'0,(=V"Q(F,v)). That is, V"O(c) =lolr, for all

a e Fy, both mappings ar€ one-to-one and onto 1so {, = 2'0,).

Proof " I lr, I FN + 2p, is one-ro-one and onto (Theorem 5. 17,page2g of

t4l). If c¡ = * . Fr, rhen
b

and so

I = ror+ atp + * d,-tp'-r) + p,R,

o=l=âo,r,=O(cr),

or

a =b(ao+ap + *dr_tpr-l¡+ bprR,

Hence

I a lo, =l b@o+ap + +a,_p,-r) lp,

6.r4

which implies that

I ob-' lr, = eo* al_p + * dr_tpr-r = | o lr,

tsur V.q(o) ='flo¡ni and so V"$(o) =lolo, for all øeF¡¿. Thus,
j=0

V " O I r¡y - 2'0, irone-ro-one and onto, ana 20, -2'0,.
The proof of læmma 7 is similar to the proof of rheorem 4.5, pages g0-gl of [a].

We a¡e now in a position to state

T'heorem 5 " A¡ithmetic with the elements of F¡y can be equivalently performed

with the elements of 2r,, o, with the elements of H,provided that the input

data and final results of a¡ithmetic with the elements of F¡¿ lie enrirely within F¡¡.

By arithmetic we mean addition, subrraction, and multiplication.

Froof " since F¡¿ c Ó , o(rr) co(é), 20, = zo, and ^É/ cHy, rhe result

follows from the use of the previous lemmas. we omit the details.

We have defined many sets and mappings between sets. These sets and mappings

are summarized in Figure I for the convenience of the reader.

What we have proven is that the ring Zp, and the ring /ly a¡e the s¿une. As a
result, there is little reason to map add"ition, subrraction or muhiplication in the ring
Zp' to similar operations in //,y. It would seem then that the concept of Hensel

codes is redundant from a practical standpoinl As we have already noted in the Intro-
duction, Gorgui-Naguib and King [5] have shown that it is hazardous ro compute with
the members of the set HwHx, unless special steps are raken. Specifically, they have

shown how to redefine the operations of addition and multiplication of Hensel codes so

that the colrect results a¡e obtained even though the input data and final results may

correspond to invalid order-N Farey fractions. Unfortunately, their methods are nor

very practical since one is effectively forced (in general) to map from F¡y ux ro

H wHv and vice versa' perhaps several times, during the course of a computation.

This effectively precludes using any form of speciai purpose hardwa¡e to implement
the methods described in t5l. Thus, from a practical standpoint one is forced to shun

6.t5

Figure l: A summary of the various sets and mappings in sections 2.1 - 2.3.

the use of invalid Farey fracrions as operands, but this eliminates the usefulness of the

Hensel code concept. We a¡e thus led to ask if it is possible to include the elements

of the set X as operands but eliminate the need to map back and forth between the

rationals and the Hensel codes during the course of a computation. It is possible to do

this, as we'll soon see, although not in a very practical way in the general case.

To conclude this section, it is possible to divide with the elements of F¡7

(Fu c Q the field of rational numbers), but this is potentially rroublesome, since if

a ,b e F¡¡, then i . * is possible. We note that addition, subtraction, and multipli-

cation of the elemenrs of F¡y will never produce an element of x (F¡r, c p the com-

mutariúe ring such that X n Ô. = Ø). Thus, division with the elemenrs of H, as

deñned in [a] (pp. 92-93), is potentially troublesome too, although addirion, subrraction

and mulriplication are not.

2.4 Restoring the Elements of X as Valid Operands

6. i6

In this section we show how to compute with the Hensel codings of H'vHy'
(these sets are deñned below), such that the resulrs of these computations correspond

to the colTect element of F¡¡uX. By computation we mean, as usual, addition, sub-

traction and multiplicarion.

\Me may naturally extend the mapping q I Ô n ee of secrion z.z ro

þ I O n Qn (via Theorem 4) excepr that n < 0 is now possible. once again,

q I O a Qn is a ring homomorphism (in fact, Q I e -0(0) is an isomorphism).

1Ve must of cou¡se modify (slightly) the operations of negarion, addirion and multipli-

cation on the members of O(Ó) c Qp that were defined in section 2.2 in order ro

accommodate the fact that n < 0 may now hold.

Acrually, negation need not be modified: simply allow ¿ < 0 to hold. As for

addition, let a,p e A(Q) such rhat

a=La¡pt , p=
JlL

and assume, without loss of generality, that n 1 m. Note that an * 0, and, b^ * 0

according to the notational convenrions of this secrion. Thus,

.,+p =io¡ni* iu¡oi=i@,+u,)pi =Ër,0, ,
j=n j--^ j=n j=n.

where bj =0 for n (j < m-l and

a¡+b¡trj=s¡+-c¡+p U>n)
such that 0 S s; < p, c¡+t is the carry our of position 7, and cn = 0. It is clear that if
n > 0 then the above definition of addition coincides with the previous one. Similarly,

Ðb¡Pj'
l=m

li,u,r,l = r^*^; lt dn+kbm+j-r)0, = i ,,0,
ll-un) j=0 l¿{) i=n+m

(4)

for mulriplicarion

(*
cF = l}o¡oi

L/?t

where i - j+n+m and

6.1'7

(/ >o)

such that 0 3 p¡ 1p, c¡+n+,m +t is the carry out of position j+n+m, and cn*_ = 0. ff
n > 0 , m > 0 then this definirion of mulriplication coincides with the previous one.

Since n < 0 is possible in (4), we want to know the largest value of I n I for all
o' e X ' This is determined by l/, which specifies rhe maximum size of the input
operands and final results. Knowing i/ fixes r (for a given p) via Theorem l. Thus,

O i . F¡,t wX, rhen

tot,t ¿t<"=LFl .pi

Therefore, the largest pÈ which divides I o I o, I ¿ | is Ot
-',assuming

that r is

even which we sha-ll do from now on for simpliciry. Naturally, r 2 2, and if r = Z

then t = 0. Thus, we shall neea | - I digits to rhe left of the p-adic point in order

to find the full p-adic expansion of any a e X. As well, there will never be more

tnarr- | - I zeros to the right of the p-adic point.

The ser H¡ corresponds to rhe Hensel codes of x is .defined in [3,4]. If
q=anan+l "' d¡.ao dr,d- and ee x, then the Hensel code for it
in Hv is obtained by uking the first r nonzero digls of its p-ad.ic expansion. As a

result, the fi¡st digit of the Hensel code will & on The position of the p-adic point

must of course be maintained. Hence

l
.Ean*tb^+j-k * C¡+n+m = P¡+n+^ * C¡+n+^+lp
k4

,r =
{o,

a-t.do an+,-t I

æl
a= Za¡p¡ e 0(X) | ,

J--n)

where -; .1 S n < 0. We have

tr'emma I ' The elements of Hy a¡e in one-to-one correspondence with the ele-

ments of X.

6. l8

Froof " This result follows from Theorem 4.5, pages g0-gl of [4].

We may extend the mapping y I þ(Ô) -+ Hv. Let

o= i,o¡ni e ,+(e)
J--4

and so let W | þ(e) + Hv& defined by

W1ø¡ = dnãn+t a_r.ao aî_t ,

where n e z andÊ>t. specificaily,if cre o(Ó)trren n)O,otherwisen <0. Asa
resulr, W(cr) is I n I + Ê aigits long if n 1 O,otherwise it is Ê digits long. If Ê = r
thenw I çô)+Hvandg=yinthiscase. Aswell,s"q lr¡n -H holds.

Let us define addition and multiplication on Ë1ç as follows. Negation is defined

in the obvious way. First, consider addirion. Let

Ø = ctn a-t.ao dþ_r , þ = b^ b_rbo b¡_, e Hq , (5)

and assume without loss of generaliry that n 1 m. Then,

a+p-sn s_r.so sp_r

where bj =0 forn S j <m-1,and

a¡ + b¡ * c¡ = s¡ i- c¡+tp @ <j <Ê_t).

such that 0 s s¡ t p , c¡+t is the carry out of position i , cn = 0 and we ignore c¡. As

for multiplication,

(Iþ=Pn*^Pn+m+L "' p-t.po "' pÞ-t

where

i
Ean*¿b^*j-k + c¡+n+n = P¡+n+m + c¡+n+^+tp (0 <i <f-n-m-l)
k4

such that 0 <pj 1P, c¡+n+-+l is the carry out of position j+n+m, cn.+rn = 0, and we

ignore cp.

6.19

Hq is not a commutative ring with identiry under the above operafions since

there is no associarive law for muitiplication. For example, rhe reader should try muiti-
plying a = ct-t.aúr,b =.bobt, c = c-¡.c6c, where f =zand it will be seen that
(ab)c * a(bc)- As well, even if Hw were a ring, w I oro) -+ t/,* is nor a

homomorphism since WfaÊ) + W(s)*fÞ). For example, let p = 5, p = r = 4, wirh

w"o(;)=.M33, goocfl =2.3131 ,

then .0433 x z.3t3t = .342i. But w " orfl = .3424 and, i *=+ and so

.3423 is the wrong answer.

Let us define two new sets, namely

irll'-.lW"O(ol lo. f" l.ËIs,andt "j Y

Hx'={*.r,.,, lo="} ."*
Notethat H =H'if Þ=r.

Because of læmma 8, the elements of H7ç'a¡e in one-to-one correspondence with
the elements of X. In fact we have

Lemma9'W"q IF"ux ->H'vHy'wirh f =r isone-to-oneandonto.

Froof ' w o o I F¡¿ -l H is one-to-one and onto, and use Lemma g. crearry,
H'r\Hx'-Ø,F¡¡r-ð{ =Ø.

since w I occ) + /rw is not a homomorphism, w. q I g nHg is obviousry nor a

homomorphism either. Thus, despite Lemma 9, we cannot perform a¡ithmetic in
H'wHv ' such that it corresponds to arithmetic in F¡¡wX, unless Ê is sufficiently large

with rbspect to r. How large Ê should be depends upon the number and kind of arith-
metic operarions to be performed.

For example, if we wish to find op (a,p as in (5)), then Ê = *-r is needed,
2

since n ,^
'-t*1,

and to correctìy compute digits n+m tor-l of ap it is necessary

6.20

that we know the digits of the p-adic expansion

p = 5 , ï = 4. so Ê = 5, with

and so 3.3222 + 2.4131

-:___ 11 16 13slnce_+ - =_10 15 6'

to position !-t Consider

w " o(;) = .0433i, w " o(+) = z.3t3:3

and so '04333 x 2-3I3L3 = -3424x. We have omitteri to compute the digit labeled -r

since.3424 is enough to idenrify the product as ueins f. In facr, with Ê = 1L-1 *"
cannot in general compute r correctly. Thus, any succeed.ing products involving

'3424x as an operand cannot be guaranteed to produce the correct result (unless we

increase Ê1. If we wish to find c + p, rhen þ = r will work. consider
p=5,f=r=4with

w' o(iå) = 3.3222, w " o(-ïf) = 2.4t31

= 0.3404 and W " Otf I = .3404 which is rhe conecr result

ln general, if Ê = r, rhen

W " Q(a + Ê) = W " 0(s) + W o O(p),

and so it is multiplication that causes difficulties, as we've a_lready noted.

Thus, we must select Ê so that if n < 0 for some result a e H.vHx,, the first r
digits of s must be correct, and if ¿ > 0 then rhe fust r digits to the right of the p-

adic point must be correcL Thus, it will be necessary in practice to select a large
value for Ê, especially if multiplicarion is to be performed ofren.

The discussions and analyses of this and the preced.ing sections underscores the

importance of the following principle. Given two rings R and .S such that we wish ro

perfolm addition and multiplication in S so that it corresponds to the same operations

in R, it is necessary that we have a mapping o I n + s such that Q is a ring
homomorphism. Since Q is many-tmne and into in general, it is also necessary that

weidentifysubsetsÁ c¡t ancig cs suchthatQ i¿ -oB isone-to-oneandonto.

6.2r

Thus, our attempt at including the elements of X as valid operands and final
results is limited since l/ç, is not a ring, and w . þ I e n Hv is not a homomor_

phism' Furtrrermore, there appears to be no reasonable way of augmenting F¡¡ with X
and yet obtain a suitable ring structure in the sense specified in the previous paragraph.

2.5 Conclusions

We have demonstrated that arithmetic wirh Hensel codes as defined in K¡ish-
namurthy, Rao and Subramanian [3] and in Gregory and Krishnamurthy [4] will work
provided that the input data and final results correspond to order-N Farey f¡actions.
By arithmetic we mean negation, add.ition, subtraction (via negation), and multiplica-
tion.

We have a-lso shown that by excluding the inva.lid Farey fractions from considera-
tion we eliminate the need for the Hensel code concept. This is due to rhe fact that
Zp' and r/,v are isomorphic rings, and that the differences between them are purely

notational.

Finally, we have shown how to include the invalid Farey fractions as operands
and results such that in computing with their Hensel codes, it is not necessa¡y ro map
back and forth between the Hensel codes and the rationals. Unfortunately, the pro-
posed solution is generally impractical as it requires the use of Hensel codes of very
large size.

3. Finite Rings and Fields

We have seen in section 2 that mapping computations involving rational data inro
Hensel codes (finite segment p -adic numbers) is of little, if any, practical use. Thus,
having also rejected rational arithmetic, we a-re compelled to conclude that error-free
computation should only be performed in finite rings or fields. We shall see in rhis
and the next section that various choices exist when it comes to selecting a suitable
ring or field. We have already seen one choice in section 2 where, via Theorem 2,

arithmetic (meaning addition, subtracdon anci multiplication only) with a suitable sub-

set of the radonals can be performed in the finite nng z^, where m = p, (p is a

6.22

positive prime, r is a posirive integer).

Thus, in general, the set z^ = [0,1,...,m-r) forms a finite ring under modulo rn

addition and multiplicadon. It is possible for m to be composite, but if it is prime

then Z^ forms a finite field (more usually denoted by GF (m)). A ring z^ may be

called asingle modult'ts residue nu¡nber system (SMRNS/ [4], where m is the modul6s.

If we are interested in computing with a subset s_ of the integers z, where

(n odd) then such a computation may be mapped into the nng Z^, provided that the

input data and final answer are from s- (see [4]). rf x e s^ and x à 0 then x maps

to x inZ^. Ifx e S^ but¡ < 0 then-r maps ro x + m inZ^.

suppose now that ïr =t,t|r2 ..- m¡r, and gcd(m¡¡rj)= 1 (j *7) for ail i
and /, then Z^ can be made isomorphic ro the product ring

Z^r*Z^r* xZ^t

V/e call m¡ the i th modulus. The product ring in (7) is often refered ro as a multiple

madulus residue nu¡nber system (MMRNS). If ¡ e z^ then r maps to a unique k_

tuple (x1,x z,...Jt) e Z^, x * Z^, where xi = x (mod m¡).. We will discuss the

inverse mapping from the product ring back to Z^ below, but let us now consider

a¡ithmetic in (7). If (x1 xp) , (ll , , !t) e Z^rx x Z^,, then

x Z^ , (8a)

where '@ ' reprcsents addition, subraction or mukiplication in the product ring, and

z¡=x¡ol¡,

(7)

(6)

(8b)

where''o' represents addition, subtraction or multiplication modulo m¡. Thus, arith-

metic in the product ring is performed component-wise. That is, no carry information

is propagated from one component to the next, in contrast with conventional weighted

binary arithmetic schemes. Note that it is carry propagation that often dominares rhe

time taken to perform basic arithmetic operations. It is primarily for rhis reason that

6.23

the MMRNS has been proposed as a means of implemenring certain d.igiral signal pro-
cessing (DSP) algorithms (see [7,8]), and enor-free compurarion algorithms (see [4]) ar

high speed. DSP algorithms that have been implemented with MMRNS schemes
include FIR fi"ltering [9], IIR filtering [10], and number theoretic rransforms (NTrs)
[11], which may be used to perform error-free ci¡cula¡ convolurions and correlations.

An element of the product ring (7) may be mapped back to irs corresponding
unique member of Z^ via either:

(i) the Chinese Remainder Theorem (CRT), or

(ii) the mixed-radix number represenration (NIRNR).

The CRT is explained in such books as McClellan and Rader [8], and Blahut [12], and
the MRNR is explained in Gregory and Krishnamunhy [4], and raylor [7], but we
shall review the main points here.

Let us begin with the cRT. suppose u = fi*¡ (so M = m), and that
i=l

M¡ = M /m¡, and if we know the residues xi = x (mod m¡) (x e Z^) for all
i = 1,...,k, then we can recover¡ via

k
x = lx¡M¡N¡ (mod M)

i=l

such that N¡ satisfies the diophanrine equarion

N¡M¡+n¡m¡=l

(9a)

(eb)

The Euclidean algorithm [4,8,12] can be used to solve (9b) for n¡ and.a/¡. The proof
of (9a,b) rnay b found in [12]. It is clea¡ that the inverse mapping of (9a) is quite
complex from a computational standpoint. it is also complex from rhe viewpoint of a

special purpose hardware implementation. As is argued in [12] (see page 60), it is

only wonhwhile mapping a computarion in .s- (or, equivalentl y, in z^) to the product

ring if the computation in S- is complicated (i.e., has many steps) in relarion to the

complexity of the inverse mapping in (9a). Intermediate results can remain in the pro-
duct ring and only the final answer must be mapped back to S_.

6.24

The MRNR [4,7] is an alternative means of mapping a product ring element back

to Z^' This mapping is generally accepted as being superior to the CRT (see [4,7]),
either in terms of computariona-l speed or because specia.l purpose ha¡dware implemen-
tarions of the MRNR are rnore efficient than equivalent CRT implementations. The
MRNR is known to be particularly convenient to work with for certain combinations
of moduli, such as mr=zn -1, mr=2n, and m3=2n + I (see [7]). We may
describe the MRNR as folows. tæt {r y, 12, , rt } be a set of radices. Let

k
R = fïr¡. Every integer y such that 0 < y

i=l

y =yt* !zrt+ y3r{z+

< R can be uniquely expressed as

+ Ykr{z rk-t ,

where ! I , lz , , lp àÍa the mixed-radix digits (see [4], pp. 17_lg), such that

0Sy¡<r¡ i=1,...*

(l0a)

(10b)

If (x1 x*) e Z^r, *Z^ then by assigning ti = rTti it is possible to map

(xt,' . , xk) to a representation like that in (lOa). Such a mapping can be performed

with residue a¡ithmeric. This mapping is exprained in detail in [4] (see pp. rg_23)
where examples a¡e also given. Special purpose ha¡dwa¡e structures for the MRNR
may be viewed in [7].

Even though the MRNR may represent a better means of cairying our the invene
mapping from the product ring of (7) to Z^ compared to the CRT, it is clear that the

MRNR is still quite complicated from a computarional and implementarional stand-
point' Thus' it is primarily the complexity of the inverse mapping problem that limits
the applicability of MMRNSs. However, we have already noted that certain moduli
a¡d combinations of moduli make the MRNR relatively easy to work with, thus mak-
ing MMRNS arithmetic practical, at least in certain applications.

4. The Quadratic Residue Number system and Farey Fractions

Herein we extend the definition of a quadraric residue number sysrem (eRNS) to

accommodate complex numbers with real and imaginary pans that are members of the

set of order-N Farey fractions, a special subset of the rationals (see secrion 2.1). On

6.25

the basis of rheorem 6 (below), and some computer sea¡ch results, we conjecture rhar

^i È Zp,, i.e.' that 7 does not colrespond to an order-N Farey fraction, where j . Zp,

is a solution to jz = -r (mod p'). This presumes that p is prime, and
p = 4k + r (¿ > 0). The results of sections 4.2 and 4.3 below a¡e from Za¡owski
and Ca¡d [2].

4.1 The convenrionar euadratic Residue Number system

We will begrn by describing what is classically understood to be the quadratic
residue number system.

we may define a Gaussian nngzo,[il= {a * ib I a,b e zp,), where j = [T,
and where the ring operarions are

addirion: (a+ib)+(c +id)=(a+c)mod p, +i(b +d)mod, pr ,

multiplication: (a + ib)(c + id) = (ac - bd) mod p, + i(ad + bc) mod p,
This ring is often called a complex residu¿ number system (CRNS). Note that multipli-
cation in Zp, [í] involves four multiplications in the ring Zp, in general. If there is

no i e zp, such that i2 = -l (mod p'), then -1 is called a quadratic nonresid.ue,

otherwise it is called a quadratic resid,ue (see Taylor [13], Jenkins and Krogmeier [14],
Jullien, K¡ishnan and Miller [15], Dudley t16l (p. 85), or Hillman and Alexanderson

[17] (p' 422)). It is well known that -1 is a quadratic residue if þ is prime and of the
form 4È+l (¿ > 0) (see [13-17]). Similarly, -1 is a quadratic non¡esidue if p is prime
but of the form 4k+3. rf p = 4k + I and is prime, then it is called a Gaussian prime.

If -1 is a quadratic residue then there are precisely two distinct solutions to

xz = -l (mod p'), and these solutions are additive and multiplicative inverses of each

other' The theorem in the appendix of [1a] shows how to solve this equarion, given

the two solurions t*.o x2 = -r (nnd p). This ratter equation is easy to sorve if
p =2* + 1(n > l) sincethen¡ =znZ orr = 2" -2"û+1. Thismakes senseif and

only if n is even (see Theorem 2 in tl4l).

We may define the product ring Zo, xZo, = {(a,b) | a,b e Zr, l, where the

ring operations a¡e

6.26

addition: (a,b)+(cd)-(a +c (mod p,),b +d (mod p,)) ,

multiplication: (a,b)(cd)- (ac (mod p,),bd (mod p,))

Note that muldplicarion in Zo, x Zr, only involves rwo muldplications in the ring
Zp,. When p =4k +l,wemaydefinethemappingQ I Zo,[í)+ Zo,xZr, as

þ(a + ib) = (a + jb (mod p,),a - jb (mod p,)) , (l 1a)

where

j2 = -t (mod p,) . (ilb)

It turns out thar $ is a ring isomorphism, and so a computation in zp, [i] can be

mapped into an equivalent one in Zo, * Zr, . It is clea¡ that the main advantage in

doing so is that the number of multiplications in Zr, is reduced from four ro two.

Since Q is an isomorphism, O-l I Zr, xZo, _> Zr, [i] exists and is

O-t((a,b))=x+iy, (I2a)

where

x =2-r(a + b) (mod pr) , (12b)

t - z-t¡-r@ - b) (mod p'¡

when p is a caussian prime, zo, x zr, forms what is commonly called a quad,ratic

residue nwnber system (2RNS). The properries and applications of the eRNS are

further explored in Leung [18], Vanwormhoudt [9], Baraniecka and Jullien [ll], and

Krogmeier and Jenkins [20], in addirion to [13-15].

4.2 How To Include Rational Data

We now Propose extensions to the results summarized in the previous section.

The exrcnsions allow efficient computation with complex numbers that have rational-
valued real and imaginary parts from the order-N Farey fractions.

we may define the Gaussian ring etil= (a +ib I a,b e e ,i ={-rl. It is

sraightforwa¡d to verify *ar $[r] = {c + ib I a,b e ô , i =[Ti i, a subring of
Qti)' The operations defined on Qtil nd inherited av Ôt¡l are analogous to those

6.27

for zo, [il in section 4.r. sets F¡ø Ii] t . ôLil), 2p, i,I (c zp, lil), a¡d
^^Zo, x Zr, (c Zp, x Zr,) a¡e defined in the obvious way.

It is necessary to extend rhe mapping I .lo, I ô - zr, of section 2 to

| 'Io. I ét¿l -o zp, til. This extended mapping is defined as

lr+iylp,=lxlr,+illlo,, (13)

where x + iy . ÔUl, so x ,y e Ô. This extended mapping for modulo p, reducrion
is clearly a ring homomorphism. It is also straightforward to verify that

| 'lo'I r"¡;¡ -r 20, [t] is one-to-one and onto. Hence, a compuration with input

data and final results in F¡y[i] may be mapped equivalently into the finite nng Zo, [i).
It is also clear that s | 2r, u1 -> 20, x 20, is one-to-one and onto, since

0 I zp, lif -> zo, x zo, is a ring isomorphism. we can map a computation with
inputs and final results in 2r, u] to an equivalent computation in Zo, x zo, . Thus,

we have formally extended the QRNS to accornmodate complex rational data. Figure 2
summarizes the mappings and sets involved in the extension process.

We note that the ability to accommodate rarional data is valuable as, for example,
the Schur algorithm for Hermitian Toeplitz matrices requires the division operarion.

Even with Hermitian Toeplitz matrices with Gaussian integer entries only, the Schu¡
variables and reflection coefficients will generally be rational in rheir real and ima-
gina¡y parts.

4.3 What Elements are in 2r, ?

It appears that there are no results concerning what elements of Zp, a¡e to be

found in 2r, . certainly, no resurrs are ro be found in [3,4,21]. Naturally, given a

particular member of a particular Zo,, one could use the inverse mapping aigorithm

in [4,21] to determine whether or not it maps to a Farey f¡action. However, this is
highly inefficient if p' is large, and it offers no insighr into rhe srrucrure of set 2r, .

We do not propose to solve this problem completely here, but nevertheless we

can state

6.28

8[,i1
Zo, x Zo,

2r,ul

2n * 2r,0(l e lo'¡

Figure 2: A summary of sets and mappings in sections z.r, 4.r and,4.2.

Theorem 6" j ë20,*herep=2b +l,r =L,ne (l,Z,3,...l,andl satisfies

(r rb).

Froof ' According to the theorcm in the appendix of [14], there a¡e precisely two

distinct solutions to (1lb). These are readily shown to be

j=2",2h-2"+1.

From Theorem I of section 2.1 we have

N <z"-t^[r<2"

we can carry out the inverse mapping algorithm on pp. 42-46 of t4l in order ro

ascenain whether or not rhe above values of i belon g ,o 2r,. Thus, for j - z"

we have the table

6.29

2b +l
2n

2n

valid order-N Farey fracrion. Thus, j = Z"

j = 2h - 2n + 1 we have the table

Hence i = 2" maps to the rationarr * o. -+. Neither of these rationals is aL2n

0

I

2" ^n

7b+l

is not in 2r, . Similarly, for

Therefore, j =2h -Zn + I maps to the rationals 2h -2" + I

I'
2n1-._or-.12"

None of these rationals is a valid order-N Farey fraction. Thus, j = zb - zn + |
is not in 20, .

It is possible to constn¡ct an alternate proof with the aid of

Theorem 7 " l,-et jt, jze Zp, be the solurions to (llb). If i I É 20, , then

jrê 2r, .

Froof " without loss of generality we may consider j1. Assume that i, n 20, .

we have I Q¡, lr, =./r, i.e., all members of the generarized residue class p;,
maps to 7¡ e zp, - The inverse mapping algorithm in [4,2r), that maps the ele-

ments of 20, to F", produces a finite sequence of erements from e¡r, Eiven,it
and p'. If it were true that i, e 2r, then the finite sequence would contain the

element of FN that maps to / r. But since j, ë 20,, no such erement wil be

2h +l
22n -2" +r

-(t + zh)

6.30

found by the inverse mapping. since jz= jr, (*o¿ pr), applying the inverse

mapping to iz will produce a finite sequence of elements from e¡, that are

reciprocals of elements from Q¡,. None of the elements of p¡, is an order-N

Farey fraction, and so therefore none of the elements of Q¡ris an order-N Farey

fraction. Thus, if i I é 2r, , ,h"n j, é 20, .

Appendix I contains the PASCAL program used to obrain the results in Tabte I of
Appendix J. Table I shows several sets of p ñd r illustrating that j ë 20,. Note

that the theorem in the appendix of [14] was used ro compure j sarisfying (llb) in a¡t

cases. The inverse mapping of l4,2ll was then used to test whether or not / € 20, .

No case of I e 20, was ever found. On the basis of this adminedly scant computer

search evidence, and upon Theorem 6, we conjecrure that i n 2r., where p is a

Gaussian prime, r is a positive integer, and I satisfies (llb).

REFERENCES

tll C. I. Tatowski, H. C. Ca¡d, "On Addition and Muhiplicarion with Hensel Codes,,,

submitted ro rhe IEEE Trans. on Comp.

I2l C- J. Zarowski, H. C. Card, "Quadratic Residue Number Systems and Farey Frac-

tions," submitted to the IEEE Trans. on Acoust., Speech, and signal proc.

t3l E. V. Krishnamurthy, T. M. Rao, K. Subramanian, "p-adic Arithmetic procedures

for Exact Matrix computations," proc. Indian Acad. sci., vol. g2A, 1975b, pp.

165-175.

t4l R. T. Gregory, E. V. K¡ishnamurthy, Methods and Applications of Error-Free

Computatíon. New York, New york: Springer-Verlag, 19g4.

t5] R. N. Gorgui-Naguib, R. A. King, "Comments on "Matrix Processors Using p-

Adic A¡ithmetic for Exact Linear Computations"," IEEE Trans. on Comp., vol.

C-35, Ocr. 1986, pp. 928-930.

lÃ1 I\T &'^hli+- ^ ^):^ Àt..--L^-- - -): t ll'rJ rì. Ã.uui¡i¿t p'auic tY'.i"rnÐers, p'a,Ac Analysß, anfi Zeta-F-unctions. New York,

New York: Springer-Yerlag, 1977.

6.31

[7] F. J. Taylor, "Residue Arithmetic: A Tutoriai with Examples," IEEE Computer

Magazine, May 1984, pp. 50-62.

t8l J. H. McClellan, C. M. Rader, Number Theory in Digitat Sígnat processing.

Englewood Cliffs, New Jersey: prenrice_Hall, lg7g.

t9l w' K. Jenkins, B. J. Læon, "The Use of Residue Number Systems in the Design

of Finite Impulse Response Digital Filters," IEEE Trans. on Ci¡c. and Syst., vol.
CAS-24, Apnl 1977, pp. 191-201.

t10l w. K. Jenkins, "Recent Advances in Residue Number Techniques for Recursive

Digital Filtering," IEEE Trans. on Acousl, speech, and signal proc., vol.

ASSP-27, Feb. 1979, pp. 19-30.

tlll A. Z. Baraniecka, G. A. Jullien, "Residue Number System Implementations of
Number Theoretic Transforms in Complex Residue Rings," IEEE Trans. on

Acoust., speech, and signal proc., vol. ASSp-2g, June 19g0, pp. 2g5-zgr.

tl2l R. E. Blahut, Fast Algorithrns for Digital Sígnal Processing. Reading, Mas-

sachusetts: Addison-Wesley, 1985.

[13] F. J. Taylor, "On the Complex Residue Arithmetic System (CRNS)," IEEE Trans.

on Acoust., speech, and signal proc., vol. ASSp-34, Dec. 19g6, pp. 1675-L677.

[14] W. K- Jenkins, J. V. Krogmeier, "The Design of Dual-Mode Complex Signal pro-

cessors Based on Quadratic Modular Number Codes," IEEE Trans. on Circ. and

Syst., vol. CAS-34, April 1987, pp. 354-364.

t15l G. A. Jullien, R. Krishnan, w. C. Miller, "Complex Digital Signal processing

over Finite Rings," IEEE Trans. on circ. and Syst., vor. cAS-34, April 19g7, pp.

365-377.

[16] u. Dudley, Elementary Number Thcory,2nd ed. New york, New york: Freeman,

1978.

[17] A' P. Hillman, G. L. Alexanderson,.4 Fírst Undergraduate Course in Abstract

Algebra,3rd ed. Belmont, Califomia: Wadswonh, 19g3.

6.32

[18] S.-H. Leung, "Application of Residue Number Sysrems to Complex Digital

Filters," Præ. of the l5th Asiloma¡ conf. on circ., sysl, and comp., pacific

Grove, California, Nov. 198 I, pp.70-74.

[19] M. C. Vanwormhoudt, "Shrctural Properies of Complex Residue Rings Applied
to Number Theoretic Fourier Transforms," IEEE Trans. on Acoust., Speech, and

Signal Proc., vol. ASSp-26, Feb. 197g, pp. 99_104.

t20l J. V. Krogmeier, W. K. Jenkins, "Eûor Detection and Correction in euadraric
Residue Number Systems," Proc. of the 26th Midwest Symp. on Circ. and Syst.,

Puebla, Mexico, Aug. 1983, pp. 408-411.

[2U P. Komerup, R. T. Gregory, "Mapping Integers and Hensel codes onto Farey

Fractions," BlT, vol. 23, lgï3, pp. 9-20,

Chapter VII

.EN ERROR,.F''R,EE F'OR.M OF' TF{E SCH{JR .{[,GTRXT'E{E{

In Chapter V we found that although the Schur algorithm is numerically stable,

applying the algorithm to ill-conditioned input dara can give poor results. In Chapter

VI we considered various arithmetics for error-free computation, as error-free compura-

tion can be used to successfully handle ill-cond"itioned data. In Chapter VI the term
"arithmetic" generally Íreant addition, subtraction and multiplication, but not division.
This is because division is potentially quite troublesome. For example, if a þ e F¡t

*enl éF¡s waspossible(section 2.3ofChapterVI). Inadd.irion,if rheinputdatais

integer-valued and from S,,, (defined in Chapter VI, section 3), then division will yield

non-integer (rational) results. Since we wish ro map computations with data from
^S_

to residue number systems (SMRNS or MMRNS), the division operation will conffict
with this requirement. Thus, we seek to modify the Schur algorithm of Chapter II to
defer the division operation such that it may be performed under. more convenient cir-
cumstances. The meaning of this will become clear as the reader studies this chapter.

In this chapter we shall focus exclusively on the problem of LDU factorizing the Toe-
plitz matrix 7"o, and the computarion of its reflection coefficients. These results a¡e

taken from Za¡owski and Card tll.

tr. Options

The type of error-free computation number system to employ will depend at least

in part on the elements of the Toeplitz matrix Tn. In a d.igitat signal processing con-

text, fn will usually consist of elements that are fixed-point weighted binary numbers.

Sueh numb'ers, if they contain fractional paris, can be scaied to 'oecome integers.

Hence, in this case we can map the elements of r,, to s- c Z, for n sufficiently

7.2

large' A computarion with the elements of S- can then be mapped into a suirable

residue number system (see Chapter VI, section 3).

on the other hand, if the elements of Tn are rational numbers that have no exact
finite precision weighted binary number rcpresentation, it may be useful to map the
eiements of T,, to a suitable set of order-ly' Farey fractions. This will simply involve a

suitable choice for p and r (subject to the constraint in Theorem I of chapter vI, and
the definition of F¡¿ (Definition 1, Chapter vI)). The computarion wirh elements of
F¡¿ ma! then be mapped into the finite ring Zo, (se,e Chapter vI, secrion 2). The divi-
sion operation required by the Schur algorithm may be caried out by the computation
of modulo p' inverses, since we are mapping rational operands into the finite nng Zo,.
However, such inverses won't always exist in Zo, as the number to be inverted might
contain the factor p, although the likelihood of encountering a noninvenible operand
decreases as p increases (see Thomas and Parker [2]). When mapping results in Zo,

back to the Farey fractions, the answer will be in lowest terms (i.e., no conunon factor
between numerator and denominator). However, if p¡ is large, mapping from zo,
back to F¡¿ will be a very onerous task. Forrunately, it is still possible to scale the
entries of Tn such that it becomes a matrix of integers, and so the option in the previ-
ous paragraph remains open to matrices with rational entries. Note that to scale the
entries of Tn ideally requires knowledge of the least common multiple of the denomi-
nators of r¡.

Recall that, as always, when mapping any computation into a finite ring or field ir
is necessary that the ring or field be large enough to contain the input data and the
final results. It should also be clear that, if In is complex-valued, then the use of a

QRNS (Chapter VI, secrion 4) becomes possible.

2. Error-Free schur Argorithm: Nonsymmetric Toepritz Matrix Input

We will assume with little loss of generality that i"" is a Toeplitz matrix of
integers from S-. This is reasonable given the discussion of the previous section. v/e
a¡e also assuming that I,, is not complex-valued, as this case will be d.iscussed later on

7.3

(Hermitian Toeplitz case only). In addition, T,, will be nonsymmeric. Since we wish

to I'DU factorize Tn in an error-free manner with residue arithmetic, and division in a

residue number system is d-ifficult, we should like to rearrange the computarions

involved in executing the Schur algorithm so that d.ivision is avoided. We shall show

how to do this here.

Since T,, is nonsymmetric we are considering the Schu¡ algorithm for this case in

Chapter II (see the pseudocode immediately following equarion (69a,b)). Since the

enries of T, are inægers we may write

v.(t) - 4(*) . u.Qr) -
û¡(k)vi' :ì;'"' - dn ' (1)

where 0,&) , û,(t) , c¿ and d.p are integers. It is therefore possible to write the inner-

most For-do loop of the pseudocode as

I
trû{r)- ,rw

dnï!o)-;M
1

or equivalently as

(3a)

(3b)

(2)

läl
i 4t*.t' 1

| ,r*, I

I â'<**tr ¡
=

t-t
I dr*, J

(3c)

l4'*."1 - [a$1,, -û$)l lqu'l
lâ rt*tr1 -

L-¿Í0, ûé*) ..| LAgiJ
,

ck+r = trû!fr).r, dk*t = dûf,
It is clear that c t = dt = I and that

v,(1) - 4(t) = r_,, u.Q) -4(t) = r_,

It is also tn¡e that

KI = -4 = - 'rlÍ,r,' '9') drîfr)- uP ,rçF'K't=-;11¡ =-ffi' (4)

Equation (3a,b,c) constitutes the unsimplified error-free form of the Schur atgorithm.
The ñnal simplified form appea¡s below. Equation (4) can be used to obtain the

7.4

reflection coefficients as they a¡e needed. This of course involves d,ivision, but this

operation can be carried out after cp , dp ,0,G) , and, û.(k) a¡e determined. It is clea¡
that d'ivision has been deferred, but at the expense of add.itional muldplicarions.

It is possible to show that c¿ - dp for all k, and so (l) and (3b) simplify. we
have the following

Lemma . rór) = u!l\, for a¡ &.

Froof " Follows simply from the fact that To = LnDnlUr,, where Ln = LiDn and

Un = DnU). The quantities vdt) an¿ r¿$)*r lie on the main diagonals of Lo and

Ur,, respectively (see Chapter II, section 2.3).

From this Lemma we immediately deduce rhar ct = dtc for all k, and that

ûó*) = û!r\r. Thus, the error-free form of the schur argorithnzbecomes:

C1 := I ;

For i := -n to n do begin

û.(l) := r-¡ ; {.(l) := r_¡ ;

end;

For & := I ro n do begin

ck+r i= c*û!*\t ;

For i := -n to n do begin

¡.(k+r) ,= -ùÍr)0.(k) + û$!*rû¡fl ;

ú'.(e+r) ,= û9\r0,@, _ OI¡,4*, ,

end;

end;

For É := I to n do begin

ô(¿) ^ttlKI:= dt i Kí:=-ffi,
end;

For ¡t := I to n do begin

For ¡ := -n to n do begin

, .= 4t**t' : u,(k+t),= ht**t'
,ck+r ' --'

ck+r '

7.5

end;

end;

Note that if we are not interested in obtaining the Schu¡ variables u,G)
^Or¡(u),

th.n
we can omit the computation of c¿, and the computation of the last nested For-do
loop' It may even be appropriate to keep the reflection cæfficients in the form

i , (a þ € s^), and so division can be eliminated entirery in this case.

3. Ernor-Free schur .A,lgorithm: symmetric Toeplitz Matrix [npuÉ

V/e shall assume that T' is as it was in section Z, except that now it is sym-
metric.

Because T,, is symmeFic, we must now consider the Schur algorithm for this spe-

cial case. The relevant Schur algorithm is in Chapter II (section 2.3) ber,,veen equa-
tions (77) and (78) (ignore the complex conjugation operations). Via rhe straighfor-
ward extension of the results in section 2 abve, the error-free form of the Schur algo-
rith¡n is:

C1 := 1 ;

For i := 0 to n do begin

ù¡(r) := t¡ ; û1|) := r¡ ;

end;

For & := I to n do begin

, cg+t t= t$#)*t ;

Forí:=0ton -t dobegin

û\i:Ì, ,= ûS).$!)+iþr - û{o)û,fì ,

¡.(k+t) ,= -ùÍo)û!ì+rþr + û*\rû,fl ,

end;

end;

For k := 1 ro n do begin

l, (k)
41

I¡(.- :=* n{k¡ 'u)k+l

7.6

end;

For & := I ro n do begin

Fori:=0ton-Èdobegln

urk+t) .-

end;

¡.(k+t)

end;

The operarions in the nested For-do loop used to compute û¡&) can be wrinen in
matrix form as

Note that the 2 x 2 matrix in (5) is circulant. It can therefore be diagonal izeÀ by a Z-

point DFT (discrete Fourier transform) and we can eliminate rwo multiplications.
Thus,

l:#þ: ,oó.',f =r'[l -',1 fottt'o
âÍ*'

û!r\,î o,-,] il -l] (6)

It û'G) e Z^, then 2-L e Z^ if ¡n contains no factor of value two. The benefit in
using the factorization in (6) can be maximized if rn is chossn such that 2-1 is a

"nice" number, such as an integer power of two. For example, iî m = 2b + I , then

2-r = -zb-t. [n a case like this, multiplication by 2-l becomes shifting mdulo m.

4. Ernor-F'ree schur Algorithm: Flermitian Toeplitz Matrix [nput

We will now assume that 1,, is Hermitian with Gaussian integer entries of the

form r + ry ,x,y e s,,,. Straightforwildly, the error-free form of the schur algo-
ritlun is now:

^ .- I .Ll'- r t

For í := 0 to ¿ do begin

â1])
'=

r¡ ; û,(t) :=f, ;

end;

ck+t

¡ (k+t)

; ugt]ì\ '- u-{k+i)
.

ck+l

(5)

7.7

For k := 1 ro n do begin

ck+t i= ,oû!rì-., ;

Fori:=0ton-kdobegin
b:ii]ì) := â{/*¡¡.r û:rì.., - î,fln¡rt ,

¡.(k+t):= -Djt/*,x,âÍo) * tt,flti!k)*, :

end;

end;

For k := 1 ro n do begin

11 h&)
r\¿ .= - ;r¿) ;

uJ+t

end;

For ,t := I to n do begin

Fori:=0ton -t dobegin

= '':r.' ; ,!f¡]),'= âit*..ti'
.

Lk+l ck+l

end;

end;

Note that cp e S^ for all t, as D!k¿)*r € S- for all k. This latter facr is consisrent

with

(ì!f*u = fû$fr)z - | î{k) ¡z , ûét, = 16 e s_

This is obtained from the above pseudocode. It is clear that computation in a eRNS
will result in a significant savings in the number of multiplications to be perfomred.

The nested For-do loop where 4(') it computed involves 12 multiplications in the ring

Zo, Per iteration of the loop, if the computation is performed in a CRNS. Only g mul-

tiplications are required if rhe conrputation is performed in a eRNS.

The problem of developing an error-free fornl the of the Schur algorirhm for Her-

nlitian Toeplitz nratrices of any rank profile (Chapter III) remains open. For the

present, one can consider the elements of rn to be of the form x + iy , x ,y e F¡¡,

and map the contputation into an extended QRNS (extended as in Chaprer VI, section

7.8

4'2)' As we have noted, this ca¡ries the risk of not being able to divide, as not all
members of Zo, xZr, have modulopt invenes. However, as we have also noted, this

risk declines as P increases in value. Another open problem is that the back-
subsdrudon algorithms of Chapter [V must somehow be "integrated', into the Schur
algorithm in an error-free manner. This is necessary to facilitate the error-free solution
of Toeplitz systems of equations.

5. Size of Modulus Needed

How big should modulus rn be ? Not only musr ¡n be big enough so rhat
t¡, e S^ for all È, but rn musr also be big enough so rhar û,Qr) ,4(*), c¿ e S^ for all
i and,t. In this section we considerTn to satisfy the assumptions of section 2.

We can use (3a) to a¡rive at a pessimistic upper bound for rhe values ,r , î,(r) ,

and. û.(k). From (3a)

| ¿tt*t¡ I < I â$i, ¡ | q(*) | + | ûg) I I qfi
I

I 4<t*t¡ I s | ¿¡tr I I q(') I + | tátr I I Afì |

Define

Thus, I ûrtl L I 4ttl I sr forallf . From (7a,b) it is evident that

sr ¡ + t t =2t2 ,

<tt+tt=2t2,

and similarly

I ûttll , I û.,r, | <z12tz¡z ,

| 4'ror LI û,@) I szQ(zt2)z)z ,

and so on. In general it may be shown that

(7 a)

(7b)

(8)

10,Øl

lû,Øl

I 4(o) L I ûlkt
1

7.9

s t2'-'ffiro = tt-, 2z.-t-1
/=0

(e)

(9) to
ror k > 2- Since cn+t=rlrn!t,'-, (using the section 2 pseudocode) we can use

i=l
write

| ,n*t I <, ftt'i-t ,zi-r-r . (io)
i=2

vy'e musr have lcn*tlsÇ a"a lûoto*r¡ l,lù "*r, l=^;, as well. This

gives

(11)

If we assume n =9,t =27 (not unusual values) then ¡n >24080 which implies
that we need a dynamic range of at least 4080 bits. This is a very large value, and is
likely to be larger than what is actually necessary. Thus, there is a need for a much
tighter bound on m. An alternative means of determin ing m involves the use of com-
puter simulations of the error-free form of the Schu¡ algorithm. one can produce ran-
domly generated sets of autocorrelarion coefficients for the classes of input signals of
interest, and run the error-free Schur algorithm using these dan.sets to estimate how
large the Schur va¡iables and paramet€rs c¿ actually are.

It is obvious that the large numbers produced by the error-f¡ee versions of the
Schur algorithm will limit the size of matrix (n) that can be considered. Unfor-
tunately, there is no way to avoid this problem. This is especially tn¡e of problems
involving Hermitian Toeplitz matrices with singular lead.ing principal submarrices,

since in this case quantization error is completely intolerable (the problem is extremely
ill-conditioned (reflection coefficients with unity magnirude are present) due to the

need to test for equality to zero). In the case of Toeplitz matrices without singular
leading principal submatrices, the conventional form of the Schur algorithm (Chapter
Ir) applies' In this case' one could compromise by using error-free compuration until
the numbers reach some intolerably large size, and then the results could be scaled

7.r0

down to a reasonable size. Error-free computation could then resume until the

numkrs become intolerably large again. Clearly, quanrization errors will be inro-
duced in a scheme such as this, but the rate at which such errors accumulate would be

greatly diminished, relative to conventional finite precision arithmetic implementations,
when the input is badly ill-eonditioned (reflecion coefficients with a magnitude close -
to, but not equalling unity).

REFERENCES

tU C' I' 7-arowski, H. C. Cård, "An Error-Free Form of the Schur Algorithm,,, to be

submined ro rhe IEEE Trans. on Acoust., speech, and signal proc.

tzl J' J' Thomas, S' R. Pa¡ker, "Implemenring Exact Calculations in Ha¡dware,', IEEE
Trans. on Comp., vol. C-36, June 19g7, pp.764_76g.

Chapter VIII

soME DESIGNS FOR COMPUT,.{TION [v zp,

In Chapters VI and VII we have often refered ro computation in the finite ring
Zp' ' Since we ¿ue interested in the VLSI implementation of the error-free forms of

the algorithms in Chapter VII, and these a¡e to be implemenred in the form of parallel
processing systems simila¡ to those in Chapter IV, we shall consider the ha¡dware

implementation of addition and multiplication in Zp, . Resuhs on this subject are

taken from Zarowski and ca¡d [1] (see section I below). The problem of mapping
integer data (i.e., data from Z) into Zr, was considered in Za¡owski and Ca¡d [2] and

will be presented here as well (see secion 2).

l. Serial and Paraltel Architectures for Addition and Multiplica tion in Zo,

Recall that Z^ denotes the finite ring of integers {0,1,...,rn-l} under modulo rn
addition and multiplication, and that it forms a so-called sirigle modulus residue
nu¡nber system (SMRNS). As welr, if m = mtmz mp and, gcd(m¡,m¡) = |
(i * i) for every i andi, then Z^ can be made isomo¡phic to the direct product ring

Z^rxZ^rx xZ^r.

The product ring in (1) is often refered to as a multiple modults resídu¿ number sys-

tem (À4MRNS). If x e Z^ rhen x maps ro a unique
(xv ãÐ e z^,* xzmt, where xi =x (mod m¡). An erement of the pro-

duct ring may be mapped back to its correspond.ing unique member of Z^ via either
the chinese Remainder Theorem (cRT) (see [3,4]), or the mixed-radix number

represenrairon (iviRÀiR) (see [5]).

(1)

8.2

If (x 1, Ãt) , (J r ,yt) e Zor, x Z^o then

,zk) e Z^, X

where '@ ' represents addition, subtraction or multiplication in the product ring, and

Zi=Xioli, (2b)

where ' o ' rePresents addition, subtraction or multiplication modulo m¡. Thus arith-

metic in the product ring is performed component-wise, and no carry information is

propagated from one component to the next. Recall that for this reason the multiple
modulus residue number system has been proposed as a means of implementing certain

digital signal processing (DSp) algorithms ar high speed (such as in [6,7,g]).

We also know that the possibility of the high speed implementation of algorithms

is certainly not the only reason to perforrn computations in a finite ring. The other

main reason is that computation in any finite ring is exact; therc is no quantization

error. Thus, it is possible to implement algorithms with reduced, or even without,
quantization error' depending upon the algorithm. For example, circular convolution

algorithms based on NTTs terminate in a finire nurnber of steps, and so it is possible

to completely eliminate all quantization error with suitable scaling of rhe input data

and suitable choice of ring (see [8]). IIR filtering algorithms never terminate in princi-

ple, and so intermed.iate results must be scaled ro prevent ou".flo* (see t7]). Overflow
occurs when a result is produced that cannot be uniquely rcpresented in the chosen

ring. Overflow is refercd to as pseudo.overffow in t5l.

Some algorithms are numerically unstable in that quantization errors tend to accu-

mulate as the computation proceeds, regard.less of the nature of the input. Such

unstable algorithms can be stabilized by using error-free compuration wirh a finite ring.
Other problems are ill-conditioned in that the final solution is highly sensitive to small
perturbations in the input data. In panicular, many linea¡ algebra problems a¡e of this

class, such as the problems discussed in Chapter V. The use of error-free computation

with fi¡ite rings aoplied to other linear alsehra nrnhlemc rnnv tp f^,,-ã i* r(lr¡vv¡vr^¡ù Ltrq, w r\rult\t r¡¡ LJl.

8.3

We have already alluded to the fact that overflow in an RNS system must be

avoided- That is, we must select the ring Z^ such that all input data and final results

are uniquely representable in Z^ (or its product ring equivalent in (l)). As a result of
this requirement, it is possible that ¡n may be extremely large, as we,ve seen in
Chapter VII. Any number rn Z^ can be represented by an q-bit binary numb€r, where

q = flog2ml (3)

As a rough guide, extremely rarge may be taken to mean that n > r00.

The need to compute in a large ring poses serious problems. Clearly, one solu-

tion is to isomorphicalty map our computational problem in Z^ to an equivalent prob-

lem in the product ring of (1). we thus conveniently break the problem into t
independent' and smaller parts. Arithmetic modulo zn¡ is likely to be much simpler
and faster than arithmetic modulo m since rn¡ is rypically much smaller than m, and it
is often possible to select convenient values for m¡.

Mapping a computation in Z^ to an equivalent computation in the product ring is
not a panacea' however. For one thing, the inverse mapping from the product ring
back to Z^ via the CRT, or even via the MRNR, is a difficult operation. The

ha¡dwa¡e complexity of these inverse mappings is rather high. Ha¡dwarc implementa-

tions of the MRNR and the CRT are described in t9l and [6], respecrively. In addi-
tion, if ,t is large (i-e., there are many mutually prime moduli), then many different
modulo m¡ arithmetic units must be designed. This is inconvenienr, and potentially

costly, in the context of VLSI designs, since it will be necessary to maintain a large

library of different computational circuit blocks.

Many of the ha¡dware designs proposed as a means of implementing a¡ithmeric

modulo m involve the use of lookup tables. These tables may be implemented using

RAM or ROM (usually ROM). We refer the reader to references [6,11] for examples

of this practice. As well, ways have been suggested of avoiding or at least reducing

the use of lookup tables. We refer the reader to references [12,13] for examples.

Arguments against the use of lookup tables are ro be found in Taylor [12]. Although
memory density and speed are high, the cost of fast and dense memory is also high

8.4

enough to discourage their widespread use. Power dissipation is also a d¡awback. It
is a-lso possible to argue that, despite the existence of high densiry memory, rhe

memory intensive approach to RNS system implementarion is very exp€nsive in terïns

of chip area requirements when compared with combinatorial logic implementarions.

This is likely to be significant in the context of the VLSI implementation of RNS sys-

tems.

In view of the prcceding remarks it has been suggested that computation should
occur in rings of the form zr, (see Ramnarayan and raylor [14], or Thomas and

Parker [15,16] for example). crearry, for a fixed p, unlimited dynamic range can be

achieved by increasing r (a positive integer). If ¡ e zo, then r can be uniquely ,,¡rTit-

ten as a radix-p number

x =x0txp +xzp¿ + *xr_tpr-|, (4)

where x¡ € [0,1,...,p-1]. when the members of zr, are expanded as in (4), arith-

metic with such numbers is simila¡ to arithmeric in a weighted binary arithmetic sys-

tem, as has been noted in [14,15]. This is due to the propagation of carry informarion
from digit to digit. The digits are the x¡ variables in (4). We shall describe add,irion,

negation and muhiplicarion in zr, in a later section of this chapter.

Because of the need to manage carry information, special þurpose ha¡dware for
computation in Zp, is likely to be slower than equivalent special purpose hardware

for computation in a product ring of similar size, at least provided that ¡n is not too
large. However, the relative ease of obtaining a large dynamic range in Zp, makes

compuErion in Zo, highly attractive.

In the present chapter we propose serial and parallel a¡chitectu¡es for the add,irion,

subtraction (via negation), and multiplication modulo p, of numbers in the form of
(4)' By serial a¡chitectures we mean processors that accept operands one digit xi ar. a

time, and which produce outputs one d,igit at a time. These a¡chitectures ¿ìre simila¡ to
those presented in Lyon [17], and in Jackson, Kaiser and McDonald [1g] for two,s
complement arithmetic. The resulting machines are highly modula¡, read"ily cascade-

able, and the flow of data through them is highly regular. In the case of serial modulo

8.5

p' multiplication, the cells making up the multiplier only communicate with their
nearest neighbors. Thus, the machines that we propose are highly suitable for VLSI
implementation. By virtue of their serial design, their main d¡awback is a high latency
and low throughput (see section 1.5). That is, it will take o(r) clock cycles to com-
pute any new sum or product (the length of a clock cycle will depend upon p). It is
possible, however, to obtain a reasonable throughput via pipeiining, at least for some
applications. As well, one should note that present technology places rather sringent
upper limits on the number of VO pins that a chip may have, and on the size of
parallel-input' paratlel-ouçut ALU that can realistically be built. These consrrainrs
will cause us to favour the use of serial machines despite their slow speed, especially
if ¡n is to be extremely large, and the desire for numerical stabiliry and the suppression

of ill-condirioned data effects, rakes precedence over operating speed.

In this thesis we shall consider p to have the form z" + I since it is generally
accepted that such numbers yield the most pracdcal modulo p arirhmetic units, other
than the choice of p - 2" (which is trivial). Furthermore, none of our designs make
use of lookup tables. Thus, we eliminate the drawbacks of lookup table based designs
previously cited.

we shail also present asymptotic area and time complexity esúmates for the
designs proposed, and compare them to the asymptotic area and time complexiries of
certain parallel modulo pr arithmeric processors; the latter a¡e also to be described in
this chapter.

1.1 Ha¡dwa¡e for Modulo p Arithmetic

It is necessary to have hardwa¡e that can perform modulo p arithmedc before one
can constn¡ct modulo p' arithmetic hardware. In this secrion we present ha¡dwa¡e
structures for addition, negation and multiplication modulo p when p = zn + i (n is a

positive integer) and p > 3.

Let us first consider modulo p addirion. Let a¡ , b¡ e zo and c¡ e (O,rJ. we
¡-en rt-it-vs¡ vr¡¡lv

8.6

ai+bi *c¡=S¡*C¡*1p, (5)

where ci+l € {0,1}, and 0 <s¡ (P. This follows from the d,ivision algorithm for
integers- Thus, si = ei + bi + c¡ (mod p). Later on, c¿ and c¡*1 shaü represent car-
ries into and out of the ith position of a parallel modulo p' adder, respectively. This
is the reason for the use of the i subscript.

¡n'ci

test

block

Figure l: Modulo p adder wirh carry ourput (c¡*l).

If p -2" + | then a¡,b¡ and s¡ can be represented as N =n+l bit posirive
integers. similarly, if p =2" - r then a¡,å¡ and .r¡ can be represented as N = n bit
positive integers. In this chapter all operand and rcsult digits shau be so represented.

Figure I depicts a modulo p adder simila¡ ro rhe offset adders described in Tay-
lor [13]. The modulo p adder is composed of two ordinary adders (Adder #l and

Adder #2) which are symbolized in this and all following figures by a box with a plus

sign (+)' The carry out of Adder #1 and the N-bit ourpur of it are resred by the test

block to determine whether or not a¡*b¡*c¡ > p. rf a¡+b¡+c; > p then cj+l = r, oth-
erwise cj+l = 0. The l/-bit outpur of Adder #1 is added to _p (= rwo,s complement

of p) using Adder #2. The ouçut of Adder #2 feeds into the Channel 1 input of the
multiplexer (MUX box). The Channel 0 input of the MUX is the N-bit ourput of

b.
I

a
I

ai+b¡+c,

>-p ?

8.7

.A&er #1. Channel 1 is selected if c¡*1 = l, orherwise Channel 0 is selected.

MUX ourput is s¡, while the test block output is of cours€ c¡+1.

ai+bi+ci ai + bi + c¡ (mod p)

0000

0001

0010

0011

0100

000

001

010

011

100

0101

0110

0111

1000

1001

000

001

010

011

100

Table I: Table of all possible values raken on by a¡+b¡+c¡ for p = 22 + r.
A study of Tables I and II yields the test blocks depicted in Figure 2: Figure 2(a)

shows the test block for p = 2n + 1, and Figure 2(b) shows. the test block for
p =2" -l- rf p -2n +l thena¡*b¡*c¡2p if bitn+l is 1, orbitn is l, provided
that a,+b,+c¡ * 2n. Note that the bits are indexed from 0 (I-sn¡ ro n *l (MSB). This
convention shall be followed throughout this chapter. The large n+l bit AND gate

with the inputs inverted detects the speciar case where a¡*b¡*ci =zn and forces

ci+r = 0. Input z+1 of the test block is the carry oulptrt cour from Adder #1. If
P =2n - 1 then a¡+b¡+c¡>p if bit n is l, or if a¡*b¡*c¡ =p. The n-input AND
gate det'ects the special case where a¡+b¡+c¡ - p and forces c¡+l = 1. Input n of the

test block is co, from Adder #1.

Let us now consider modulo p multiplicarion. Figure 3 depicts a modulo p mul-
tiplierforp -2" +7- Figure4depictsamodurop multiplierfor p =zn -r.

The

a,i+bi+ci

00m

0001

0010

0011

0100

0101

0110

000

m1

010

011

100

101

110

ooÕ.('

0111

1000

1001

1010

l01l

I 100

1i01

ai + bi + c¡ (rnod p)

000

001

010

011

100

r01

110

Table II: Table of all possible values raken on by a¡+b¡+c, forp =23 - l.
Any productof a,b e Zo may be written in the form

ab =c *xp

where 0 s c (p, and 0 r¡ <p-2. Thus, we shall want a circuit that produces x
c as oulputs for the inputs a and b. The circuits of Figures 3 and 4 perform

function.

Let us consider Figure 3 fint. The modulo p multiplier consisrs of an ordinary
posirive integer mukiplier, which is symbolized by a box with a multiplication sign
(x), a modulo p adder of the type in Figure 1, which is symbolizedby a box with a

ring-sum sign (O), a modulo p negator (to be described later on), which is symbol-
ized by a box with NEG written in it, an ordinary subtracror, which is a box with a

(6)

and

this

8.9

n+1 n n-1
n-1 n-z

Figure 2: (a) Test block for the adder of Figure I (p = 2" + l); (b) Test block
for the adder of Figure | (p = 2" - L).

minus sign (-), and some additional logic circuiury. We may write the binary (radix-2)

expansion of product ab as

ab=P=Pu+tPuPu-t pn+tpnpn-t prpo, e)
where p¡ e (0,1). We may define cenain positive integers

(a) (b)

(8a)

(8b)

(8b¡

we interpret pn to be the LSB of positive integer p¡a and pzrr_r ro be the MSB of it.
A similar interpretarion applies to p¿. From Mcclellan and Rader [3] (see pp. 1a-i5)

c=PL-PM (modp),

PH =Þzn,

PM = Pu-t Pn ,

PL = Pn-t Po .

(e)

unless PH = 1 in which case c = 1. The combinational logic of Figure 3 accounts for

this latter special case. Clearly, r = L
ob

J ^ap

xp=ab-ab(modp)=ab-c. (10)

It is staightforward to show that ¡ = PL - c. The multiplier of Figure 3 is simila¡ to
-L- --

r.. t.ir-re muitrpirer in Figure 6 oi [13].

8.10

NEG
n n-l... f o

'tsL- c c=ab(modp)

Figure 3: Modulo p =2n + 1 murtiprier with quorienr ourpur (r).
Let us now consider Figure 4. The notational conventions of this figure are

s¿une as those of Figure 3. we may write the weighted binary exiansion of ab as

ab=P=PuPzn-t pn+rpnpn-l po

and, as in (8a,b,c), we may define the positive integers

PH = pzn_t pn ,

Pt = Pnl po

Once again, from pp. 14-15 of [3],

c=P¿*p¡1 (modp),

and it is sraightforward to show rhat r = c _ pL.

(11)

(t2a)

(12b)

(l3)

8.1 i

a

Figure 4: Modulo p = 2n - 1 multiplier with quorienr ouÞur (r).
Finally, let us consider modulo p negation since it is needed by the multiplier of

Figure 3. Let A e Zo and its binary expansion is

A =AnAn_t . .. AtAo

We have

-A (mod p)=p -/ - (2" + f) +Ã+ t = 2n +i +2, (15)

where Ã is th" bit-wise complement of A in (14). If we let s = Ã + 2, then it may be

readily seen that, for ¿ = 4, and A * 0,

(14)

Sg=46,

Sr = Ãr @ I =,4 r ,

Sz=îz@Ã,,

S¡ =ÃzÁr OÁ-¡,

So,=aÁÃ1 @A-a,

(16)

n-1 n-2...0

2n2î-1i'll,-2...n+l n

Pr-

n-l... 1 0

I n-2...1 0 n-1 ...1 O

o

c - ab (mod p)

where ' o ' denotes the exclusive-oR operarion here. If .4 = 0 we want -fi = 0, and

and 0 <.rj < p, ci+r is the carry out of digit position i, cg=Q, and we ignore c' As
in (5), c¡ e {0,1} for all i.

Now let us consider negation. Let

i = O,...,e-I (if e = 0 then a0 ,é 0). Let b

Thus, b¡ =0 fori < €,b, =þ -a, andå¡

Finally, let us consider mulriplication.

ab (mod p,) = l'Ër,0,
U=o

where

8. 13

and 0.pj .p,r¡+r is the carry out of digitposition j, ro=0 and we ignore r,.
1.3 Parallel Ha¡dwa¡e for Modulo p' Arithmeric

In this section we describe certain parallel modulo pr adders and multipliers.
Specifically, we describe a parallel modulo p' adder that is analogous to a parallel
binary adder, where the latter is essentiaily the same as the adder depicted in Figure
2(a) of [14]. However, we also present a carry-lookahead array for it, and we show
that it is possible to develop a Brent-Kung [19] mdulo p,

^Åd"r.
In addirion we

present a ripple-through modulo p' array muhiplier, and a pipelined modulo p, a¡,ay
multiplier of a design simila¡ to the pipelined positive integer multiplier in Figure I of
McCanny and Mcwhiner [20]. These designs will later be compared, in terms of
asymptotic area and time complexities, with the serial designs of the next section.

From the modulo p' addition algorithm of (19a,b) we obtain ttre ripple-rhrough
parallel modulo p' adder array of Figure 6(a). The srrucrure of Figure 6(a) is a linear
anay of modulo p adders of the rype shown in Figure 1. As in Figures 3 and 4,
modulo p adders are depicted as a box with a ring-sum sign (@) wrinen in it. It is
evident that the ripple-through adder will be quite slow. Thus, a carry-lookahead unit
may prove to be a useful way of speeding up the summarion process. Naturally, one

a be as in (18) bur where d¡ = 0 for

be as in (18) but where b = -a (mod p,).

-(p-l)-a¡foralll>e.

With a and å as in (18),

I

f,aú¡-r
* r¡ =p¡ + r¡+p (0 <l <r-t),

(,-t I r-r
lÐb¡pi l=¿p,pi ,Lr=o) ¡<'

(20a)

(20b)

8.r2

so this yields the logic network of Figure 5(a). The generalizarion to arbirary n

straightforward. The negator of Figure 5(a) is essenrially that of Figure a in [13].

5-input
OR

P= 2n+1

Figure 5: (a) Modulo p = 2a + i negaror; (b) Modulo p - 24 - | negaror.

For the sake of completeness, a modulo (2" - 1) negator is illustrated in Figure

5(b) for the special case of n = 4. Once again, if A e Z,, then

-A (mod p) = p - I = (2" - l) +Ã+ I = Z" + A

which implies that -A = Ã, unless A = 0 in which case -A = 0.

I.2 Arirhmetic in Zo,

In this section we describ€ addition, negation and multiplication modulo pr when
the members of Zr, are representeci as in (4). It will then become possible to discuss

hardware structures for modulop' arithmetic.

First we consider addition. Let

is

r-l ¡-l
d=\aip', b=Zb¡p'

¡=0 i{

be elements of Zo, . Then

a+b(modp')=r='Ër,Ot,
i{

where

(r7)

(19a)

(18)

ai+bilc¡=s¡*c¡*1p (1eb)

8.14

could also use carry-lookahead units of conventional design to speed up the summation
process within the modulo p adder cells themselves.

(a) br-r âr-r b1 â1 bo â6

1cr
1

N
S,, S r-1 S1

(tI"'"' 9b2 0

Sg

bo (c)

cl

%

ignore

E

ignore

%

ignore

c out

Figure 6: (a) Ripple-through parallel modulo p, adder, Unpipelined modulo

cin

(b)

p' artay multiplier; (c) basic cell of (b).

Define the test function

ft. x+v>d.
to.(x,y)=lo, x+ycc-.

This function will be used to produce signals analogous

generate signals. We have

. co=0

c | = tp(ag,bg)

c2= tP(ayb) v GP_r@,'å1) ¡ c1)

(zr)

to carry propagate and carry

PSort

(22)

8. r5

ci+L =. to(ai,bi) ç Qr_1@¡,b¡) n c¡)

where a and å are as in (1g) and we a¡e of course compuring s = a + b. In
expressions for c¡, u, means rogical oR and n means logicat AND. Thus,

gi = tp(a¡,b¡) ,

pi = tp_íai,bi) ,

are the carry generate and propagate conditions at position i+1, respectively. If r = 4,
then

co=0

c t = tp(aO,bO)

cz= tp(ayb) ¿l Go_{ar,år) n tr(a6,bs))

c 3 = t p @ 2,b 2)¿t (t o -t(a z,b z) ¡t, (a pb))ç1 G, - {a 2,b 2) ¡}t, _ {a vb) Õt p (a s,b s))

which gives us the carry-lookahead array of Figure 7.

ca c2 cf

Figure 7: carry-rookahead circuit for rhe adder in Figure 6(a).

The Brent-Kung t19l parallel adder can be adapted to the presenr modulo p'
summarion problem. The o-operator of tlgl is

(23)

8.16

@p)o(s'p) =k U @
^g),p ^p)

.

Note that the prime (') does not denore logical complement. Symbols çl and ¡
have the same meanings that they did in (22). There is little danger of confusion
between the carry propagare p and the p in zo, . The following lemmas apply to this

operator:

I-emma I' Let

(G¡,P,) =
if ¡ =0
ifl<i3r-1

Then

ci*t = Gi

for i = 0,...,r-1.

Lemma 2 ' The o-operator is associative.

These lemmas may be proven in exactly the same manner as thei¡ counterparts in [19]
and so we shall not presenr the proofs here.

The above lemmas yield the structure of Figure 8 (which is essenrially the same

as Figure 5 in [19]) for r = 8. Note, however, that the left-most column of processors

that produce cs rna)r be eliminated as ca is not needed when r = 8. Variables g¡ md

P¡ üe as defined in (23). The black and white processors, described at the bonom of
Figure 8, perform the same operations as their counterpart black and white processors

in Figure 4 of tt9l.

Figure 6(b) is a ripple-through modulo p, anay multiplier (for r = 3). The pro_
,

duct output is f,p¡p¡. This multiplier is adapted from rhe positive integer array mulri-
i=0

plier depicted in Figure 8.30 of Rabiner and Gold [21]. However, its cell complexity
is much higher than that of the positive integer array multiplier of [21]. The cell that

makes uP the modulo pr multiplier is shown in Figure 6(c). This cell is itself com-
posed of a modulo p multiplier of the type shown in Figures 3 or 4, and of a cell
denoted by a box with a sigma sign (E). This sigma-cell will be described in grearer

l@ o,p o)

1G, r,)o(G¡-rf¡-r)

@t pt) @ç pe) @s p) @,, pò @t, pt) @2, p) @t, p) @o, po)

G*, Po') @o., po-) (r*, po^) Gon, prr)

9ou = f,¡^

Pou = Pin

Soot=g¡oVP;^^Ê¡^

Pot=P¡^ñþ¡^

@¡", p¿,) (g¡^, p¡^) tA' â,'")

Figure 8: Brent-Kung carry generarion array for the adder in Figure 6(a).

detail shonly.

It is obvious that the ripple-through array multiplier will be very sto* in terms of
throughput. However, the throughput can be considerably increased (and made

independent of r) by pipelining the array multiplier in rhe manner depicted in Figure

9' This pipelined modulo p' array multiplier is simila¡ ro rhe pipelined posirive

integer multiplier of Figure I in [20]. The da¡kened circles (.) of Figurc 9 a¡e the

latches (delays) used to achieve pipelining. It is clea¡ that the throughput of the pipe-

lined m.ultiplier is determined by the propagarion delay of signals through the cells of
which it is composed. This delay is a function of p bur is independent of r. The

cells making up the multiplier of Figure 9 a¡e identical ro rhose making up the multi-
plier in Figure 6(b).

It is now appropriate to discuss the sigma-cell in Figure 6(c). Ler us consider the

case where a and b a¡e as in (18) but r = 3. We can write the modulo p3 product of

8. l8

Figure 9: Pipelined modulo p, aurray multiplier.

and b in "pencil- and-paper" fashion as follows:

aobz

atb t

azb o

aob o

This product should be compared with the strucrure of the array multiplier in Figure

6(b)' This is because the array multiplier approach to multiplicarion closely follows
the pencil-and-paper method. The product components pj are obtained as described in
(20b). The sigma-cell sums the produc t ab , the carry out from the column of cells to
the right c¿, ârd the partial sum out from the row of cells immediately above, psi^.

The ctt- nf oll ¡ t¡ ol.^r ^^-.-:L.-^- ^^ - : iA rrL ùu!¡¡ ur ¡il¡ c¿ s tnai coÍìirrDiiîe io pj ts equai io r¡ in (20b). Thus, the sum com-
puted by the sigma-cell is

b

c¡n

b2 br bo

a2 at ag

aob t

atbo

PoPtPz

cout ps out

8. i9

ab + Cirl * ps¡n = psow * Cootp ,

where Psow Td coú aÍe the output from the sigma-cell. As in section 2, the modulo
p multiplier, symbolized by a box with a ring-product sign (E), produces ourpurs x
a¡d c from the inputs a and å, where as before

ab =c *xp (2s)

We have

PSow = pS¡n * C¡n * C (mod p) ,

r PS¡r*c¡n*c,cow=x+L
e J

The sigma-cell computes pso¡¡l and. co* according to (26a,b), and is depicted in Figure

10' In Figure 10 we have the following correspondences between variables:

(24)

(26a)

(26b)

(27)

It uses the carry

The ordinary rV-

x =Í¡,

PSou = PSi+l ,

ps¡n = ps¡ ,

c =pi,

1. =1.-tn "t ,

Low - çi+I.

Note that the box with the tIA written in it is an ordinary half-adder.

ourputs of the two modulo p adders to compure , Ps¡^ + c¡^ + c
t.p

bit adder then sums the half-adder output and ¡ in order to compure cou (c¡+t in the

figure). Vy'e can have lV=N or, alternatively, tf p =Zn + I we can have N =n
(instead of N = n + l) and use the carry out of the ordinary adder.

I.4 Serial Ha¡dwa¡e for Modulo p' Arithmetic

In this section we present architectures for serial modulo p' addition, negation

and multiplication. The machines to be described a¡e modifications of the serial
weighted binary arithmetic schemes presented in [17] and tlgl.

8.20

c in= o

cin= o

os' i+1

Figure 10: Sigma-cell of Figure 6(c).

Figure ll(a) depicts the serial modulo p' adder. It is composed of a single
modulo p adder of the type in Figure 1, and of a single bit of .srorage to hold carry
outputs from the current digit position. The delay element is denoted by a box with a

triangle (A). Naturally, the operands enter the machine in a digit serial fashion, least
significant digit (as,å6) first. The output also appears in digit serial fashion, leasr

significant digit (ss) first.

Figure 11(b) depicts the serial modulo p' negator. It is based upon the negation
algorithm of section 3. Table trI specifies the operadon of the control box. The
operands enter the negator in digit serial fashion, least significant digit (øs) first, and

the result leaves the negator in digit serial fashion, leasr significant digit (åfl first. The
initial state of the conrrol unit is zero (0).

Figure 12 illustrates the serial modulo p' multiplier. Figure 12(a) shows the
inner details of the r identical cells making up the serial multiplier, which are

8.21

Table

tor.

(a)

z present state switch position (Aß,C) NEil îrurc

0

0

I

1

0

1

0

1

C

B

A

B

0

I

I

1

ffi: state transition table for the control box of the serial modulo p, nega-

NB
Pl- a

(b)

N-input
1

OR

Reset

Figure l1: (a) Serial modulo p, adder; (b) Serial modulop' negaror.

connected in the manner indicated in Figure 12(b). The da¡kened circles of Figure
12(b) denote the optional latches (delays) for pipelining.

Each cell consists of a modulo p multiplier of the rype in Figures 3 or 4, a

sigma-cell of the type in Figure 10, plus some switching circuitry and storage. Regis-

ters A¡. and B¡ save the digits of the operands which are input d.igit-wise, least

significant digit first, at the ports labeled c¡ and Þo (pso = 0). The producr ourput

appears in digit serial fashion least significant digit first at pst Register e¡ is a single

bit controi register, the state of which determines the posirion of the switches indicated
in the cell. Register C¡ saves the carry ourputs that make up the va¡iables labeled r;

8.22

(a)

O¡

Ê¡

ps

q
I

(b)
Cell r-1

%
Fo

os'0
qo

ar

p,

os'r
q

I

Figure 12: (a) Basic cell of the serial modulop' multipliec 16) Serial modulop'
multiplier as a cascade of the cells in Figure l2(a).

in (20b). Figure 13 shows the flow of data and control through ù r = 3 cell machinc.

The contents of registers Co,Ct and C2 are not shown. Figure 13 assumes ripple-

through operation. Because of the relatively high time complexities of rhe modulo p

multiplier and sigma-cells, pipelining of the rype depicted in Figure l2(b) will likely

be essential in pracrice.

1.5 Asymptotic A¡ea and Time Complexities

In .this section we evaluate the relative cosrs of the prcviously described designs

in terms of their asymptotic a¡ea and time complexities. rùr'e shall use the definitions

of functtonal latency (T), and functional period (P) found in Capello and Steiglitz
l)))2,1 1l/6 -ê€-- cL^ -^^J^-'À^ -^f^--- - - - r^^ ^-ì ^'t'L'Lii. Yrü içiÇr ine Íeac¡er io reîerences L¿¿,¿5j ior the ciehntnon sBtements. We

shall denote the a¡ea by A.

8.23

r
Tr
tr
tr
tr
E
E
tr
tr
E
tr
E
tr
tr

A1

B1

Q1

Tr
T
E
tr
tr
tr
E
tr
tr
tr
tr
tr
E
tr

ruo
Ito
Ioo

"oE
ooE
oI

"tEotE
r@

"rEorE
rI
H
Erf

Az

B2

Q2

Time

0

ourput (p.
s

)

0

fobo
(mod p)

to bl ot1 boot1
(mod p)

to b2o"1 bt n% boorz
(mod p)

Figure tr'3: Flow of data through the serial modulo p' multiflier of Figure 12.

The modulo p arithmetic units a¡e used to construct modulo p, arithmetic units,
and the modulo p arithmetic units a¡e in turn constructed using ,,conventional,,

binary
arithmetic units' Thus, Table IV lists the asymptoric a¡ea and time complexities of the
Brent-Kung adder [19], the McCanny-McWhirter pipelined array multiplier [20], the
Luk recursive muldplier ([24], pp.3l7-326), and the pipelined Dadda multiplier
123'251' other multiplier designs could have been added to the list: for example,
Lyon's.serial multiplier [17], or the various DFf-FFt based designs of Brenr and
Kung [26], and of Preparata ([24], pp. 31r-316). However, we regard these designs as

being either too slow (serial multiplier), or nor practical (DF|-FFT based muldpliers)
for the reasons discussed in [24,26]. we shail assume that the serial and parallel
modulo p' arithmedc units of the previous sections are composed exclusively of the

8.24

Binary circuits A T P

Brent -Kung ad.der O (n log n) O (log n) o (t)

Multiplters:

McCanny -McWhirter

Luk

Dadda

o (n2)

O (nzlogzn)

O (nzlog n)

o (n)

O (logzn)

O (log n)

o (1)

o (L)

oQ)

Table fV: Asymptotic a¡ea and dme complexities of the basic build,ing blocks
making up the modulo p and modulo p. arithmeric units.

binary a¡ithmetic units in Table IV.

Table V: Asymptotic area and time complexiries of the serial and parallel modulo
p' arithmetic unirs.

Mod p' arith. circs. A T P

Brent-Kung adder O (rnlog ntrlog r) O (log n + log r) oQ)

McCanny et al. arr6y:

McCanny -McWhirter

Luk

Dadda

O (rznz)

o (rznzlog¿n)

O (r2nzlog n)

O (rn)

O (r logzn)

O (r log n)

o (r)

o (r)

o (r)

Serial adder O (n log n) O (r log n) O (r log n)

Sertal mulr. Qtipelined):

Arrøy

IÅk

Dadda

O (rnz)

O (rnzlogzn)

O (rnzlog n)

O (rn)

o Q to*n)

O (r log n)

O (rn)

O (r logzn)

O (r log n)

8.25

Thsefore' from the entries of Table fV, we can consrruct Table V. This table
contains the asymptotic area and dme complexity expressions for the serial and parallel
modulo p' arithmetic units. The Brent-Kung adder enury of Table v is the modulo p,
adder of Figure 6(a), but with the ca¡ries generated by the Brent-Kung array of Figure
8' As we have al¡eady noted, the modulo p adders themselves are constructed using
ordinary Brent-Kung adders (of size n *I bits if p =Zn + 1, and of size n bits if
p =2" -7).

The McCanny-Mcwhiner ¿uray multiplier enry of Table v is the pipelined
modulo p' array multiplier of Figure 9. The three subentries labeled McCanny-
Mcwhirter, Luk and Dadda assume that the basic cells of Figure 9 are composed of
o (n) bit binary McCanny-McWhirter, Luk and Dadda multipliers, respectively. pipe-

lining to the fullest extent possible is assumed so that in all cases p = O (l). The
resulting machines arc completely pipelined, as defrned in Capello and Steiglitz [22,23].

The serial adder enury of Table v has p = o (r rog n), and so it is nor com-
pletely pipelined. This is because the cycle dme (see [22,23]) is o (log n), and the
number of cycles separaring correspond,ing bits of successive inpus (elements of
Zr,), or ourputs, of the add,ition function is O (r).

The serial multiplier (pipelined) enrry of Table v has three subentries labeled
Array, Luk and Dadda. The serial modulo p' multiplier is pipelined as in Figure
12(b)' The Array subentry assumes that the modulo p cell is composed of an ordinary
o (n) bit unpipelined array multiplier, since pipelining it would serve no useful pur-
pose' Similarly, the Luk and Dadda subentries assume that the modulo p multiplier
cell is composed of unpipelined o (n) bit Luk and Dadda multipliers. Thus, for the
serial modulo p' multiplier, P = o (r log ¿) is the smallest possible period. In rhis
case the cycle time takes on its smallest possible value of o (log n). Hence, the serial
modulo p' multiplier is not completely pipelined either. Note that the serial modulo
p' multiplier, with a Dadda multiplier cell, has the same T and p as the serial modulo
p' adder (to within a consrant factor).

8.26

Some comparisons a¡e worth making. The parallel modulo pt arithmetic unirs,

which a¡e based upon the McCanny-McWhùrer [20] design, have a high throughput
(P = o(l)), but they also have a large area (o(rznzlog n) > A > o(rzn2¡ , depend-

ing upon which multiplier from Table tv is used). The serial modulo p' arithmedc
uni6, which are based upon Lyon's serial multiplier design [17), have a low
throughput (i.e., high P) since p can va¡y from o(r rogn) to o(rn) (see Tabre v),
but they have a relatively low a¡ea since A varies from O (rnz logn) to O (rnz) (see

Table v)- As well, their latency is comparable to the parallel modulo p' arithmeric

unis (O (r log n) S T < O (rn)). It seems reasonable to conclude rhat the parallel

units are the most desi¡able when a high throughput is needed and one is willing to
pay the price in chip area.

The digit serial units a¡e most desi¡able when a fast response (low I) is needed, a

low area design is required, and one is willing to compromise on tl¡oughpur Note

that the digit serial approach to modulo p' a¡irhmetic can have an asymprorically

lower T than a completely bit serial approach. A completely bit serial modulo p'
multiplier would have T6, = O (nr), but a d.igit serial modulo p' multiplier, using a

Dadda multiplier cell, has Td" = O (r log n) and thus

+=',&u'1
for sufficiently large n. Note that the asymptoric upper bunds for T (and for ,4 and

P) are tight in all cases that we have covered. That is, they are accurate for large n
and r to within a constant factor. Similarly, pb, = O(nr) and p¿, = O(r log n), and

so

Pds los n

'^=cP:11
for sufficiently large z. In add.ition, Ab, = O(nr) and Ads = O(r n2 logn) which
gives

8.27

o*
=conlogn

Ab"

Hence, in rerurn for an improvement in p and r, the digit serial modulop' multiplier
requires a larger area than the completely bit serial modulo p' multiplier. Simila¡
results can be obtained for completety bit serial rrodulo p' addirion and d"igit seriai
addition.

1.6 A Note concerning the euadratic Residue Number System

From chapter vI, the quadratic residue number system (eRNS) of Leung [27]
(see also Jenkins and Krogmeier [28], Jullien, Krishnan, and Miller [29f, or Taylor

[13]) may be constructed out of prime numbers of the form 4& + 1. Recall that if
p = 2n + 1, then p has the form 4k + r if and only if n is even (see [2g], Theorem
2), and in fact a QRNS can be constructed using zp, for any such p even if r > I
holds (see [28]). Thus, the architectures for a¡ithmetic in Zp, have potential applica-

tions in the construction of QRNSs with a large dynamic range. Furthermore, if the
parallel modulo p' arithmetic unit designs are employed, then high throughputs can be

expected.

2. Mapping From the Integers to the Finite Fring Zo,

In this section we consider the problem of mapping an integer to a number of the
form in (4). That is, we consider the problem of mapping certain elements of Z (ring
of integers under the usual op€rations) to the elements of Zo,. The merhod described

herein does not use integer division. We only consider p = 2" + l. The case p = Zn

is trivial. In addition, the problem of mapping the elements of zp, back to the

integers is briefly considered.

It is useful to begin by defining certain sets and ideas which we shall use in
succeeding sections.

The input data to a computational problem in a finite ring often originate from a
finite subset of the integers Z. This subset is usually rather small. Læt this subset be

denoted by S. In computing with the elements of ^S, the final solution(s) may lie in a

8.28

larger subset of Z. Ler this subser be denoted by

.s . = {-o'-' .-1.0.r. p'-t }sp, = 1-=-,
"' ,-1,0,1,

)

Thus we have .l c .So, c Z.

We shall therefore map the computation in Sp, to an equivalent one in Zp. in

the usual way (see Gregory and K¡ishnamurthy [5], pp. 9-10). Thus, if ¡ e sp, and

x >0then¡ e zo,,but if¡ e sp, and¡ <0,thenr maps tox +p, e zp,. we
shall want to place the elements of S, the input data set, in the form shown in (4).

If we want ro express ¡ e ^s, with ¡) 0, in the form of (4), we need only com-

pute the fi¡st few (2 or 3 usually) digits, since the remaining digits will be zero. This
is so since the members of S consist of relatively small integers, often in the range of
8 to 16 birs. Thus, we can expect simprifications in the mapping from s to zo, .

2.1 Casep =2" +I
Letus assumeX e S withX >0(caseX <0willbeconsideredlater). As we

have stated, we want ro map x to x e zp, with;r in the form shown in (4). we can

write

(28)

(2e)X =Xo+ Z"Xr+ zhXr+ + zbxo +

Thus, X¡ e (0,...,2"-ll.

From now on we shall proceed by example. r..et us assume that

X = Xo+ 2"X, + 2hX, ,

soX¡ = 0fori > 3 holds. Since p =2n + l,X will map to

X=x0+xp +xZpZ ,

since;r¡ =0fort >3.

It is srraighforwa¡d to verify that

(30)

(3 i)

8.29

(X F?Å ù2" + (X s_X ù = (X o_X fX z) + (X ¡?_X)p
via the rule for inreger division. Thus,

x = (x o-x ,+x2) + g r_?)()p + xtPz (32)

It is clea¡ that further work is needed in order to obtain x6,x1and x2. clearly,

Xo-Xt+Xz=xs*rp
,

rg+Xt-XZ=xyirlp , (33)

r, * X2= X2* r2p ,

but we ignore 12 as it will be zero. Thus, we must find r9 and r, in order to compute
xs,x1andx2. bror, denote the remainder (residue) of ;r divided by p. Hence,

-rg=(X6-X1+X2>o,

r1=(rs*Xr_2){2>P ' (34)

x2=<rt*Xz>p

It is evident that rs and r1 will be small integer multiples of p. In fact, it is readily
shown that

in the worst possible case.

sincex¡ isn +r bitslong, wemakex¡ n *L bitslongby juxtaposingazero
(0) to the most significant bit position of xr. Clearly, this does not affecr the value of
X¡. As well, we consider r¡ to be n + I bits long. Define

fo=(Xo-Xr+Xù-xo=r@,
(36a)

tr = (rg+Xt - Xz) - xr = rtp,
where

(3s)

te = to,nto,n-t fo,tto.o , (36b)

8.30

tr=tl,nfl¡-l f t.t,f r,o '

and 16,¡ , rl,¡ € {0,1}. Equation (36b) rcpresenrs rhe binary expansion of re and 11.

we will assume a twos comprement representation in parricurar.

By examining the possible va-lues for rp at the bit level, knowing that 16

sarisfies (35), we conclude that

ro=1onf0,rr-l fo.rfo.o , à,r, = ro.dìr, , (37a)

where the juxtaposition of rs,s atrd r0," is rhe logical AND of the arguments, and ¡,n
is the logical complement of rqr. Similarly, by examining the possible values for r ¡p
at the bit level, knowing that r, satisifies (35), we conclude that

rt =ll,nf l,r,-l tt,trt,' , lrr, = t.orr,o + rrrrlr.O, (37b)

where '+' is the logical OR operation. Thus, simple logical operations on f6 and r,
suffice to determine rg and r¡.

F''igure 14: MachineromapX e S forX 2 }to Zr, forp -2" +1.

Figure 14 depicts
.an

a¡chitecture that may be

mapping algorirhm. The boxes labeled rR6 and Â1

according to (37a,b). Notice rhar the least significant

useful when the modulo p' arithmetic operations are

fashion.

t
Xr

\

used to implement the preceding

produce rg and 11, respectively,

digits are produced ñrsr. This is

to be performed in a digit serial

rì+1

X 6-X ¡+X 2 ro+X ¡-2)(2

<r o+X ,-2)(¿, <t,+X¿,

8.31

2.2 Casep =2" -I
We will again proceed by example. As before, assume that X e S and that

X > 0 such that (30) is sarisfied. Since p = 2n - I, X will map to

x = xo+ xtp + xzpz * xzp3. (3g)

Via the merhod used to obtain (32) we can write

X=(Xo+X,+Xù+(Xr+Xùp+Xzpz. (39)

As in (33) we have

Xo+Xt+Xz=x6* rp ,

ro+Xt+Xz=xr+ rrp ,

r1+ X2= x2* r¡p ,

(40)

rZ=X3+r3p ,

but we ignore 13 as it will be zero. As in (34),

rg=<Xg+Xt+Xz>p,

x1= 1rs + xt + ?Åz>p , (41)

X2=1t't*XZ>p

x3=lz

ln the worst case

f.lrlrs,11 €{o,t,z,:} ,rzê to,tl @z)

x¡ and ri aÍe æ bits long, since -r¡ is n bits long. Define by analogy with (36a)

f6=(X6+Xr+Xù-xo=rú
,

fr=(ro+Xt+Xù-xt=rjp,

t2=(rr+X)-x2=r2p ,

where

Ø3a)

8.32

t0 = tO,n-.,tO,n_Z fO,tlO,O ,

tt = t t,n_lf l.æ_2 tt,tf t,O ,

t z = t z,n-Lt 2,n-z , r,r,
^o

,

and 16.¡ , tt,i , t\¡. [0,1]. The n bit binary represenrarion of p is ll
ones).

(43b)

l(n

By examining the possibre varues for rp , rrp , and, r,2p at the bit rever, know_
ing that they satisfy (42), we conclude that

f ç=twos complement of tg ,

r | = twos complemcnt of t, ,

12= twos complement of t,

Nore thar r¡ is z bits long.

Figure 15 depicts an a¡chitecrure, like thar

implement rhe prcceding mapping algorithm. The

and 12 according to (44). As in Figure 14, rhe

first.

(44)

of Figure 14, that may be used to

boxes labeled NEG compute 1.6, i'1

least significant digits are produced

t
Xr

\

to *1 *z

Zp, forp -2" -1.

*3

Figure L5: Machine ro mapX e S forX > 0 to

8.33

If xes andx<0, then simply map lx I (absorute varue of x) to zp,
according to the methods described in this and the previous se¡tion. Finally, negare
the result modulop'. Moduro p' negation is straighdorwa¡d (see [r5]).

2.3 Mapping from Zo, to Z

Thus fa¡ we have considered how to map from z to zo,. Now we consider the
inverse problem of mapping from Zo, back ø Z.

In principle one could use Horner's rule for polynomial evaluation to map x in
(4) to an integer in Z, i.e.,

x = xa+ pGt+ p@z+ pxù)

if r = 4, for example. Equation (45) is evaiuated starting wirh the innermosr

parentheses. However, since ¡ , + corresponds to a negative integer in Z, this

approach must be modified.

nf
-1ifx>+holds,and

¿
if this is so,

(4s)

compute

(45). The

(a6a)

(46b)

One way would be to test

I t | = -t (mod p'), and so map

sign could then be readily corrected.

-x (mod p') to a positive integer via

It may be readily shown rhat

Çn,r¡-P'-lü..1 ai=O L
y=

for

[2"-', p=zn+r,
li=12"-t-L, p=Zn-1,

(all t). Thus, to check if ¡ e zp, corresponds to a negative integer, we must com_

pare it to y in (46a) whose digits satisfy (46b).

Magnitude comparison in zp, is straightforward, provided that we interpret all
of the elements of Zo, as nonnegative integers. This will be the case when we com-
pare any r € Zp' against y in (46a,b) to see ¡f ; conesponds to a negative integer.
Let us consider arbitrary magnirude comparison with an example. Let

8.34

x=x0+x1p*xzpz+x3p3,

! =lo+ytp +y2p'*ypt ,

where xJ e Zp, . Define test functions

fr, a=b.e(a,b)=lo,a*b,

(47)

(48a)

(48b)
It, a)b,g(a,b)=10,a<b.

We a¡e assuming that a,å e {0,1,...p-1}. Such test functions could be constructed in

the usual manner (see Mano [30], pp. L64-167). Ler

ft, rtu.
T,-7=

lo, r sy, (49)

where xJ e Zo,,and sox and y úe r d.igits long (inourcurrentexample r =4).
It is straighrforward to verify that for x and y in (47)

Ts = gl + e3g2t e3e2!1 * ê3€2€¡[s, (50a)

where

g¡ = g(x¡,y¡), €i = e(x¡J¡)

Tr-7 can be recursively computed via

(s0b)

T¡ = g(x¡,y¡) + e(x¡,!¡)T¡-.. ,To= g@oJù ,

where0<i <r-1.

Equation (50a,b) is analogous to the expression for (A > I) at the bottom of page

165 in [30]. Equation (51) makes it possible to compare x and y in digit serial

fashion.beginning with the least significanr digit. Sincey satisfies (46a,b) in our prob-

lem, the comparator structure will simplify. This is especially tn¡e of the structure to

implement g (a,b). However, we omit the details. Note that once we have obtained

I r l, scaling by a power of p is trivial.

(s 1)

8.3s

R,EF'ERENCES

tll C. J. 7-arowski, H. C. Card, "Serial and parallel

Mukiplication in the Ring 20,," submitted to the

Architectu¡es for Addirion and

IEEE Trans. on Circ. and Sysr

tzl C' I' 7'a¡owski, H. C. Card, "Mapping From the Integers to the Finite Ring Zo,
(p = 2" t l)," submitted to the IEEE Trans. on Comp.

t3l J' H' McClellan, c. M. Rader, Number Theory in Digitat Sígnal processing.

Englewood Cliffs, New Jersey: prentice_HaLl, Ig7g.

t4l R' E. Blahut, Fast Algoritlns for Digital Signal processing. Read,ing, Mas-
sachusetts: Addison-Wesley, 19g5.

t5l R' T' Gregory, E. V. Krishnamu¡thy, Methods and Applícations of Error-Free
Computat[on. New york, New york: Springer_Verlag, 19g4.

t6l w' K' Jenkins, B. J. Iæon, "The Use of Residue Number Systems in the Design
of Finite Impulse Response Digital Filters," IEEE Trans. on Circ. and Syst., vol.
CAS-24, April 1977, pp. l9t-201.

t7l w' K' Jenkins, "Recent Advances in Residue Number Techniques for Recursive
Digital Filtering," IEEE Trans. on Acoust., Speech, and signal proc., vol. ASSp_
27, Feb. 1979, pp. l9-30.

l8l A' Z' Ba¡aniecka, G. A. Jullien, "Residue Number system Implementadons of
Number Theoretic Transforms in complex Residue Rings,', IEEE Trans. on
Acousr., speech, and signal proc., vol. ASSp-2g, June 19g0, pp. zgs-zgr.

t9l A' Baraniecka, G. A. Jullien, "On Decoding Techniques for Residue Number Sys-
tem Realizations of Digital Signal Processing Hardware," IEEE Tran. on Circ.
and Syst., vol. CAS-25, Nov. 197g, pp. 935_936.

t10l G' A' Jullien, "Residue Number Scaling and Other Operarions Using ROM
Arrays," IEEE Trans. on Comp., vol. C-27, April 197g , pp. 325_336.

[11] G' A' Jullien, "Implementation of Multiplication, Modulo a prime Number, with
Applications to Number Theoretic Transforms," IEEE Trans. on comp., vol. c_
29, Oct. i980, pp. g99-905.

8.36

[12] F. J. Taylor, "A VLSI Residue Arithmetic Multiplier," IEEE Trans. on Comp.,

vol. C-31, June 1982, pp. 540-546.

[l3] F' J. Taylor, "A single Modulus complex ALu for signat processing,,' IEEE
Trans. on Acoust., speech, and signar proc., vol. ASSp-33, oct. r9g5, pp. r30z-
13 15.

tl4] R. Ramnarayan, F. J. Taylor, "RNS Cellula¡ Arrays," IEEE Trans. on Ci¡c. and

Syst., vol. CAS-33, May 1986, pp. 526-532.

[15] J' J. Thomas, S. R. Pa¡ker, "Implementing Exact Calculations in Hardware,', IEEE

Trans. on Comp., vol. C-36, June 19g7, pp.764_76g.

t16l J. J. Thomas, S. R. Pa¡ker, "A Viable Technique for Calcularing Algorithms to

any specified Accuracy," EUSIpco-g3, Erlangen, v/est Germany, Sepl 12_16,

1983.

[17] R. F. Lyon, "Two's Complement Pipeline Multiplien," IEEE Trans. on Commun-

icarions, vol. COM-24, Apnl 1976, pp. 4Lg_425.

t18l L. B. Jackson, J. F. Kaiser, H. S. McDonald, "An Approach to the Implementa-

tion of Digital Filters," IEEE Trans. on Audio and Electroacoustics, vol. AU-16,
Sept. 1968, pp. 413421.

tlg] R. P. Brent, H. T. Kung, "A Regular Layout for Pa¡allel Adders," IEEE Trans. on

Comp., vol. C-31, March 1982, pp. 2ffi_Z&.

[20] J' V. McCanny, J. G. McV/hirter, "Completely Iterative, pipelined Multiplier
Array suitable for vLSI," IEE koc., vol. 129, pt. G, April r9g2, pp. 40-46.

[2])L' R. Rabiner, B. Gold, Theory and Application of Digiral Signal processing.

Englewood Cliffs, New Jersey: prentice_Hall, 1975.

[22] P..R. Capello, K. Steiglitz, "Completely-Pipelined Archirecrures for Digital Signal

Processing," IEEE Trans. on Acoust., speech, and signal proc., vol. ASSp-3r,
Aug. 1983, pp. i016-1023.

í23) P' R. Capello, K. Steiglitz, "A VLSI Layout for a Pipelined Dadda Mulriplier,',
ACM Trans. on Comp. Syst., vol. l, May 19g3, pp. L57_174.

8.37

Í241 H' T' Kung, B. Sproull, G' Steele (ects.), VLSI Systems and Computarions. Rock-
ville, Maryland: Computer Science press, l9gl.

t25l L. Dadda, "some schemes for parallel Mulripliers,,' Alta Frequenza, vol. 34,
1965, pp. 349-356.

t26l R' P' Brent, H' T' Kung, "The A¡ea-Time Complexiry of Binary Mulriplication,,,
J. Assoc. Comp. Mach., vol. 2g, July 19g1, pp.52l_534.

t27l s' H' Leung, "Application of Residue Number systems to complex Digital
Filters," Proc. 15th Asilomar Conf. Circuit Syst., pacific Grove, Caüfornia, Nov.
1982, pp.70-74.

[28] w. K. Jenkins, J. v. Krogmeier, "The Design of Dual-Mode comprex signal pro-

cessors Based on Quadratic Modula¡ Number Codes," IEEE Trans. on Circ. and
Syst., vol. CAS-34, April 19g7, pp. 354-364.

t29) G. Jujiien, R. K¡ishnan, w. c. Miller, "complex Digital signal processing over
Finite Rings," IEEE Trans. on circ. and Syst., vor. cAS-34, April r9g7, pp.
365-377.

t30l M' M' Mano, Dígítat t-ogic and Computer Design. Englewood Cliffs, New Jer-
sey: Prentice-Hall, 1979.

Chapter IX

F"AIJI,T.TOX,ERANT DESTGN

when Zo' is a large ring (i.e., rarge p'), the arithmeric units used to perform
modulo p' operations, and the units to map from Z to Zr, and vice versa will occupy
a large chip area' Indeed, the area required may be so large that such technologies as
wafer-scale integration (wsD may be necessary in order to successfully construct such
systems' we know that errors in finite ring computations a¡e intolerable in general,
especially if the ring is a product ring. Yet ir is also known that the yield (fraction of
chips or wafers fabricated that a¡e fully functional) falls rapidly as areas increase, and
can be close to zero for large area systems. clearly then, unless special steps are
taken' it will not be possible to compute in a very large ring at all since ir will not be
possible to build working ha¡dwa¡e. Furthermore, even if such hardwa¡e could be
built' it is likely to have reliability problems. Thus, we musr be able to design fault-
tolerant systems' However, it is beyond the scope of the present work to consider this
problem in detail' Instead we will outline the problem and attempt to evaruate rhe
prospects of arriving at a successful solution to it.

1. Types of Faults

An integrated ci¡cuit (IC) may be afflicted by two classes of faults. These a¡e:
(Ð ha¡d faults, and

(ii) soft faults.

Ha¡d faults are due to physical failures in the circuiry itself. These faults can
occur during fabricarion, or when the IC is operating in the fierd (i.e., wear-our
failures)' Physical iaiiures in ICs are discussed in greater detail in pradhan [1] (see
pp.6-15).

9.2

Soft faults (errors) can be caused in at least three ways (Savaria et al. [2]):
(i) ionizing radiarion (e.g., alpha panicles),

(ii) electromagnetic interference,

(iii) electrical noise (e.g., thermal noise, shot noise, erc.).

Soft fauls a¡e of a transient nature, and so are ha¡d to detect. We shall consider the
phenomenon of charge leakage to be a hard fault. Note that ha¡d faults (such as

charge leakage) can be of an intermittent nature as well, and so can mimic soft faults.

In designing a system for computation in a large ring, it will b€ necessary in gen-

eral to design the system ro tolerate both ha¡d and soft faults.

2. Fault Tolerance in V[,SX Based Systems

The modvation for incorporating fault tolerance into a system is actually nvofold
(see [1], pp.547-549):

(Ð yield enhancement, and

(ii) reliability improvemenr.

Faulçtolerant system design involves the use of ha¡dwa¡e redundancy. In this section

we brieffy outline various strategies for fault tolerance, some of which are applicable

to arbitrary design problems, and some of which are peculiar o residue number sys-

tems.

2.1 Testing and Restn¡cturing

Testing and restructuring strategies are discussed in [1] (see Chapter 7, secrion

7'9), and we summa¡ize a few concepts from [1] on this subject here. Note that

design for testability (Drf) is a vital consideration if the test and resrrucrtlre philoso-
phy is to be employed in the construction of fault-tolerant hardwa¡e. DFI is discussed

in tll (Chapters I and 2) and so we will not consider ir here. However, we

emphasize that testing does not indicate that no fauls are present. It can only indicate

if faults are presenl This means that some faults will inevitably escape detecrion. The
challenge then is to reduce the level of undetected faults to an acceptable minimum.

9.3

Since faults can occur during fabrication , yield enhancement carr be achieved by
incorporating spare elements on the chip or wafer to replace those elements that are
tested and found to be defective. Such testing and replacement is performed during
production testing (i.e., before the chip or wafer is sent out into the field for use).
Yield enhancement is therefore achieved by making it possible to use defecdve cir-
cuits.

Relíability ímprovemenr is achieved by replacing defecrive elements with properly
operating sparcs while the chip or wafer is out in the field. Such replacemen6 may
even occur while the chip or wafer is in operation. Note that in the field, the chip or
wafer is not directly accessible as it is at the production facility prior to assembly.
Thus, strategies for fault tolerance as a means of achieving reliability improvement are
generally different from strategies for achieving yield enhancement. Fault tolerance
for reliabiliry improvement will often require the chip or wafer ro tesr itself.

An important point concerning the test and restn¡cture strategy is that there is a

basic tradeoff berween yield and speed/performance, as is argued in tll (see pp. 565_

567)' When defective elements are replaced (bypassed), the path lengths between the
working elements often increases, and this causes a degradation in the system,s
speed/perfonnance. Thus, given a fixed speed/ perfomrance requirement, one cannot
permit arbitrarily large numbers of elements on a wafer withoit reducing the total
yield' C-onversely, given a fixed total yield requirement, the allowable
speed/perfonnance degradation due to element replacement may have to increase with
the number of wafer elements.

2.2 Triple Redundancy With Voting

Figure I illustrates the principle of triple redundancy wirh voting, also ca¡ed tri-
ple modular redundancy (TMR). suppose f (x) e {0,1} is a Boolean funcrion, where
¡ is a Boolean input vector. The circuit implemenring / is duplicated th¡ee rimes
(blocks labeled A,B, and C). If the oulput of one of the three circuits disagrees with
that of the other two, then the voter circuit wili select the ouçut to be that of the two
circuits that agree with each other. A VLSI bit seriat adder and mulriplier by

9.4

Kanopoulos [3] uses this method of achieving faurt torerance. clearry, the method hasdisadvanþges. For one thing, the voter is a crirical circuit; it cannor be ailowed tofail' Faults at the input x cannot a-rways be corrected. The method has a l-rìqh areaoverhead since it occupies an area of more rhan th¡ee dmes that of the non¡edundantimplementation of funcdon / ' The circuit is arso somewhat srower than that of thenon¡edundant implemenmdon of /.
TMR can be used for reliability improvemenl

in yield enhancement here.

We will examine its possible role

Figure n: Triply redundant implementation of Boorean funcdon /(x) with a vor-ing circuit.

suppose '4¡ is the a¡ea of the ci¡cuit that imprements / non¡edundantry, and á,is the a¡ea of the voting circuit. we can reasonably model yield in the following way,at least to a fi¡st approximation. If there a¡e i/ fatal flaws per unit area on a chip ofarea A, then the probabiliry of a bad chip is (see [4], pp. a5_a6)

p =l_e_NA (t)
It is assumed that the fatal flaws a¡e randomly d,istributed over the wafer. Thus, if the

::t"t'
for implemendng / is implemented non¡edundandy, it has a failu¡e probab'ity

Pt=!-e4At
If / is impremented redundantry as in Fig. l, ir has a fairure probab'ity of

(2a)

9.5

P, = I - 3(l - r-'o,)r-z\At e-NA, - e-3Nü e-NA'

= | - 3e-N(Ato,n,) + Z,-NQü + A,)

where we assume that the three copies of / and the voter circuit fail independently.

For simpliciry, let A, = 0, and ret o - "-rot
(- probabirity that the circuit which

implemenm / nonredundantly works). Thus

(3a)

(3b)

A sketch of P¡ and P¡¡ versus ct may be seen in Figure 2. It is clear that p ¡¡ < p ¡ for
I
t ' o' t' Thus yield is enhanced if and only if * .

"< I in our present nrodel.

In facr, if s -+ I th
P'

" ù+
æ, and cr -r I if NA¡ + 0.

F''igure 2: p¡ and p¿¡ versus o.

Assume that NÁ¡ and Ná, a¡e small enough so that we may accurately approxi-

mate e' by I +.r. Then, using (2a) and (2b),

PI _A¡
n,= 4 (4)

Thus, since we want P¡ > pil, we must have A¡) A,. Thus, a significant enhance-

ment of yield will occur if NAf is small and A, is much less than A¡. This suggesrs

(2b)

Pt=l-cf,,

Pu=l-3ø2+2é

9.6

that TMR as a means of achieving enhanced yield should only be used at low levels in
a design, i.e., at the level of circuits with a small a¡ea relative to the a¡ea of the enti¡e
design.

Another point of importance is that, on a wafer of a given size, the number of
redundantly implemented functions / that can fit onto it is much less than the number
of non¡edundantly implemented functions. ln the present case, the redundantly imple-
mented function is more than three dmes larger than the non¡edundant function.
Clearly then, the increase in the yield of funcrions per wafer due to the use of redun-
dancy must offset the loss in yield of functions per wafer due to the larger a¡ea of the
redundantly implemented functions. Thus the large area of a redundantly implemented
function will likely discourage the use of rMR as a yield enhancement srraregy.

we emphasize that the yield model of (l) is known to be rather simplistic. For
example, it is known that yield varies radially with d,istance from the edge of the wafer
(see Ferris-Prabhu et al. [5]). A better model is based upon the use of the so-called
generalized negative binomial distribution [6,7], since it accounts for the tendency of
faults to cluster.

As a historical nore, TMR was originally conceived by von Neumann [g]. The
methd is an example of an error masking stategy. Another error masking srrategy is
called qwdded logic, which is a quadruple redundancy method. ft was developed by
Tryon ([9], pp. 205-228; also see Kohavi tt0l).

2.3 Error Control Coding Theory Approaches

Error control cding theory is known to be useful in digital communicarions sys-
tems since errors that occur in data transmitted over a communications channel may be

corrected at the receiver provided that the data was suitably coded at the transmitter
and the channel capacity is not exceeded (see Blahut tlU orMacWilliams and Sloane

tl2l)' It was realized in the 1950's (e.g., see [8] or Peterson and Rabin [13]) that cod-
ing theory could also be applied to the problem of fault-tolerant system design, since a

processing unit resembles a communications channel, and in particular, a faulry proces-

sor resembles a noisy communications channel. Thus, Figure 3 illustrates the principle

9.7

behind the error control coding theory approach to fault-tolerant system design.

In Fig. 3 ouçut z is some function of the inputs x and y. Inputs .r and y are

encoded as U(x) and VO), respecrively. Instead of processingx andy directly, the
processor operares on the coded inputs u(.r) and vþ) giving coded ourpur w(z).
W (z) is then decoded as z, the true output, by the decoder block. Clearly, for this

scheme to succeed, the processor must produce a valid codeword ourput for a valid
codeword input. This narurally constrains the coding methods that can be employed.

Figure 3: Illustration of the error control cod.ing approach to fault-toleranr sytem

design.

Perhaps the simplest example of the coding theory approach to fault-toleranr sys-

tem design is pariry prediction (see [1], pp. 3a4-359). In this method the parity of the

result of some operation is predicted by a pariry pred.iction circuit, and compared with
the true parity of the result that is actually produced. If there is a d.isagreemenr

between the predicted parity and the actual pariry then an error signal is generated.

This concept can be employed in adders, multipliers, dividers, and even in arbitrary
combinational logic ci¡cuits. The area of a circuir with pa¡iry pred,iction is roughly
twice that of a ci¡cuit without it.

Aritlmetic codes are error control codes used to check arithmetic operations (see

[1]' pp. 312-319, and pp. 337-344). Since the algorithms considered in this thesis a¡e

very arithmetic intensive, such codes may be very useful in solving the reliability
enhancement problem. One type of arithmeric code involves the use of residue

u(x)

v(v)

processor

9.8

arithmetic. Let N represent a positive integer. Læt

R =N mod A ,

so R is the residue of l/ modulo .4 . The concatenarion of N and R, denoted. (l/R), is
cailed a residu¿ code (see [lJ, pp. 339_340). The modulus A is called a check base.
with this code errors may be detected in thì following way. Suppose thatð/1 andN2
are positive integers with modulo A residues r?1 and R2, respectively. Then

(t/r t N2) nød Á = (Rr t Rz) rnod A ,

(Nrl/z) nnd A = (RrRÐ mod A

Checking involves the comparison of the residues of rhe operations on ly'1 and i/2 with
the residues of the operations on R 1 and R 2. Any discrepancy indicates the presence

of an elror. The choice of check base inffuences the implementational complexity of
the residue code. So-called low-cost codes arise when one considers a check base of
the form A = 2b - I (see [l], pp. 3,4}44l, or Avizienis [3al).

Reed-Muller codes (see [11,L2]) may be employed in the constn¡ction of fault-
tolerant combinational logic (see [l] pp. ilg-izl, pradhan and Reddy [14], and

Pradhan t15l). A Reed-Muller code of blocklength2^ and of order i (0 s, < m) has

a minimum Hamming disrance of z^-i and so it can conect ¡
(2--l - t)

J errors'2
and detect 2m-i-r errors. The central result of [14] is a lemma:

Lemma (Pradhan and R.eddy ttal): If x and y exist in an i th order Reed-

Muller code, then x * y exists in a 2irh order Reed-Muller code, where * is

any two variable function, performed bit_by_bit.

Thus, the technique in [14] can correct up ro L
12^-u - ¡ I errors and detect

2m-2i-t erïors in the output of the processor (see [14], Theorem 2). Note that with
this approach the decoder is critical and so a failure in it is not tolerable. The decod-

ing operation involves the use of majoriry logic and exclusive-OR gates (see [11,12]).

Based upon certain assumptions (see [4], section II), the maximum efñciency of

any error control scheme that can either detect or correct errors in W (zl ir * (= L,
LN

9.9

k - numhr of information bits, n = blocklength of the code). The Reed-Muller
scherne of Pradhan and Reddy [14] asymptotically approaches this efficiency, for a

cde with a given minimum distance specification, as ¡l = Z + *. The a¡ea over-
head of the Pradhan and Reddy strategy for fault tolerance is not evaluated in either

[1a] or [15]. It will depend upon the areas of the encod,ing and decoding circuits, and

upon the efficiency of the particular code chosen. However, it seems reasonable to
assume that the area of a processor with Reed-Muller coding for fault tolerance will be

at least twice as large as a processor without such a scheme. It is also clear that the

speed of a circuit that uses Reed-Muller coding wiil be lower than that of one which

does not use it.

Checksum techniques can be applied to error detection and correction in processor

¿urays for the solution of certain linea¡ algebra problems. This fact is demonstrated in
Huang and Abraham [16], and in Jou and Abraham [17].

rf A is an n x rn matrix such that A =[a¡j]n¡a,r, where a¡¡ ma! be integer or
ffoating-point, and I < ¡ < n, L < j s m, then the colwnn checlçun m^atrix A, of A
may be defined as the marix .4 augmented with an (¿+l)th row eT A (T is transpose),

where eT =[l I "' r]isa l xn vectorallof ones. symboricalry,

A"=
eTA

(5a)

Similarly, the row checksu¡n matrix of Ä is

e,=lele,
where Ae is the (m+l)th column used to augmenr A, and the full checkswt matrix A¡
of '4 is defined as the column checksum marix of .4r. These definitions a¡e from

t16l' In [16] it is shown that certain operations performed on checksum marices
result in valid checksum matrices. For example, from Theorem 4.1 in [16], if c = AB
(matrix product), then

(sb)

smce

C¡ = A,B, , (6a)

9. t0

ArB, - I't,,1 =l#t#eTA (6b)

A more general version of this checksum encoding scheme, called the weighted, check-
sum coding (wcc) scheme, may be found in Jou and Abraham t17r. The wcc is
more powerful than the scheme in [l6J since it is more general in that it can co,,ecr
and detect multiple elTors' It is importanr ro note that these techniques are applicable
at high levels in a system, i.e., at the processor level. As such, the method is to be
used in solving the reliability enhancement problem, rather than rhe yield enhancemenr
problem' wcc is only applicable to a limited (though vital) class of matrix algebra
problems' Patiry prediction and the Reed-Muller coding method are applicable ar
lower levels in a design, and so are more universalry appricable.

There is of course a dme and a¡ea overhead involved in the use of checksum
schemes for fault-tolerant system design. For example, consider the problem of multi-
plyrng rwo n x n ma*ices on a mesh-connected processor a:ray (see Fig. zin tr6l).
The array without the simple checksum scheme of [16] requires n 2 processors. If the
simple checksum scheme of (6a,b) is used, then an additional zn + I processors a¡e
needed' on such an ¿uray, the two macrices are multipried in o (n) time, but an addi-
tional o (log n) time units a¡e needed in order to detect any errors that may have
occu:red [16].

2.4 Techniques peculia¡ to Residue Number Systems

Cenain techniques have been developed for the design of fault-tolerant RNS com-
puters' often these methods a¡e based upon the use of redund¿nt resídu¿ digíts.
Examples of this practice may be found in Mandelbaum [lg], Barsi and Maestrini [lg],
or Ranachandran t201. The redundant residue concepr is exændable to compudng in
quadratic residue number systems (see Krogmeier and Jenkins t2ll). Ha¡dwa¡e shrc-
tures to implement the redundant residue schemes are discussed in Jenkins [22,23].
The convolution of finite length sequences over finite fierds can be made fault-tolerant
using resulß from the theory of cyclic error conu'ol codes (see Redinbo [24,25] and
LaMacchia and Redinbo t}6l).

9.11

A redundant residue nwnber system IRRNS) may be described in the following
way (see t18l). ordinarily, the nonnegarive integers r in the range [0,M), where

M =m1m2 mn and, gcd(mí,rnj)=r for ail i * j, are mapped to the n-tupre
(xtiz, ¡,,), where ir¡ = | x l,rq (= residue (remainder) obtained upon dividing
x by modulus .¡). In an RRNS the nonredund,ant moduti f,r,..., mn are aug-

mented by r addiúonal redundantrnoduliffin+r,.. tffin*t Thus,xe [0"ðd) is

mapped to the (n+r)- tuple (x[,...,xn,xn+t, ,xn+r). The d.igits x¡ for
1 < i < n are called nonredundant dígíts, while the digits for n*l 1í < n*r are

called redundant digits. Note that, from [lg],

ñn+r))ffin+l>mn>)mt, (7)

but this restriction is actually relaxed in Ba¡si and Maesrrini tlgl. In [1g] it is shown

that an RRNS with r redundant moduli will detect r errors and correc, L ;J enors

in any ith residue digit (1 < i < n+r). It is importanr ro nore that input data and the

results of computations in an RRNS must b€ restricted to range L1,lvI), nor

[jMmn*t ñn*r), as numbers in the range from M fo Mmn*1 ffin+, _ I will
be considered as the result of errors by the RRNS error detection and correction cir-
cuits. The implementation techniques discussed in [18-23] a¡e all quite complex from
the hardware implementational standpoint.

We shall not consider the fault-tolerant convolurion scheme s in [24-26] since we

are not directly concerned with convolution in this work. However, we note that the

methods in t24'261 are applicable to the design of fault- tolerant correlarors for
sequences over finite fields. Recall that correlation coefficients often constitute the

input data to the Schur (and other) algorithms. It may be wonh noring thar binary
multiplication can be considered as the convolution of finite length sequences over a
finite field with a "carÐ/ release" operation (see Brent and Kung l\7l, or preparata in

[28] on pp.31l-316). Thus, Redinbo's cyclic coding schemes could conceivably be

used in the design of fault-tolerant binary multipliers, exeept that sorne scheme other

than a cyclic coding one would be needed to make the carry release circuitry fault-
tolerant. This is likely to be a d.ifficult problem, however.

9.12

2.5 Soft-Enor Filtering (SEÐ

In savaria, Hayes, Rumin and Agarw ar [z], and in savaria, Rumin, Hayes and
Agarwal [29], it is argued that soft errors (faulrs) will be the dominant factor determin-
ing the reliability of V[^sI and wsl ci¡cuia with submicron fea_rure sizes. In facr,
they argue that soft elrors will exceed enors due to hard fauls. They propose a
method, called soft-eftor filtering (SEF), as a means of controling errors caused by
ionizing radiation, and elecrrical noise or interference.

The finite state machine of Figure 4 is a widely applicable model for digital
machines, and so when SEF is applied to this ci¡cuit, the method can be readily
extended ro other circuits (e.g., pipelined machines). The model in Fig. 4 is taken
from Fig' I in [2,29] and assumes a two'phase nonoverlapping clock scheme (clock
signals are Ql and Q 2). The outputs of rhe latches follow the inpus when the clock
signals are high.

Figure 4: Illusration of the soft-error filtering (SEÐ concepr ci¡cuit model.

A soft elTor can occur in either the latches, or the combinational logic network.
sEF assumes intrinsically soft error tolerant latches (static latches), and so soft errors
can only result from transients injected into the combinarional logic. Such injected
transients will appear as ransiens in the ouÞut of that logic (i.e", at the inputs to the
ourPut latches, which a¡e clocked with 0 2). ft is readily seen that if the rransient is of
a duration less than the setup time of the output latches, then the transient will nor

combinational

logíc

latches latches

9. 13

pass through the output latches. Thus, the principle of SEF is ro increase the latch

setup times sufficiently to reduce soft error rates to acceptable levels. Evaluation of
the effectiveness of SEF, the design of SEF latches for CMOS technology, and an

evaluation of the a¡ea and time overheads involved in the use of the method may be

found in [2,29]. It is concluded in [2,2g] that SEF is likely to be a superior way of
controlling soft errors when compared with classical approaches based upon such

methods as TMR, and error control cod.ing theory approaches. It is important to note
that SEF does not work with dynamic logic; it is intended for use with staric ci¡cuits
only' As well, SEF obviously gives no protection against hard faults, unless their
effects are of sufficienrly shorr durarion (which is unlikely of course).

3. The Frospects for Reliable computation in Large Finite Rings

On the basis of what we have seen so far, is it likety that reliable computation in
large finite rings can be achieved ? We shall attempt to answer this question here.

The phrase "reliable computation" shall be taken to mean the following. If we can

build ha¡dware for computation in large finite rings with an acceptable yield, and if the
resulting hardwa¡e has a sufficiently high probabiliry of working for some prespecified

length of time without failures (hard or soft) that result in errors, then we have

achieved reliable computation. For us, a finite ring will be large'if hardware for com-
putation in it must be built with WSI technology, or ar least with VLSI rechnology
possibly employing submicron feature sizes, multiple layers of metal, polysilicon, erc.,

anüor large die sizes. The use of the vague term "likely" is deliberate. we use it
because it is not possible, in the present work, to definitively prove that reliable com-
putation in a large finite ring can be achieved. Definitive proof will necessarily require

the design, fabrication, and tesring of real physical systems, and this will be a very
arduous task.

Let us first add¡ess the yield enhancement problem. From the arguments of sec-

non 2.2 it is unlikely that such approaches as TMR, quadded log:c, or even the error
control coding methods (with the possible exception of low-cost coding schemes) can

be used successfully in solving the yield enhancement problem. This is due to the

9.r4

relatively large area overhead involved in using these methds. The redundant residue

schemes of section 2.4 are not useful either since they are used at the system level
(i'e., at a high level in the design) and occupy a large area. SEF obviously can,r
enhance yield. Thus, it appears that we are left with the æst and restructure methodol-

ogy of section 2.1. This srategy is advocated in Koren and pradhan [7], and is
reviewed in Moore t301. In t30l it is concluded that VL,SI chips with a one-

dimensional array a¡chitecture (the structures of interest to us here) could successfully

exploit the test and restructure methodology. This conclusion is panly based upon

results presented in Manning [31], and in Finnila and Love [32]. ln [32] a whole-

wafer linea¡ ¿uray processor was proposed for radar tracking and general arithmeric

applications. Discretionary wiring was used to interconnect working processing ele-

ments on the wafer. Discretionary wiring involves the testing of processing elements

and the use of a metallization layer dedicated to the task of interconnecting working
processors. Since faults can occ¡rr in this metallization layer, electronic switching was

also incorporated in order to isolate faulty cells. In [31], cellula¡ grids that can be pro-
grammed to link themselves into working systems were investigated, and the systems

either had a one-dimensionai topology (i.e., were linear arrays) or had a tree topology.
In both cases the operations performed by the cells were not highly complex. Thus,

the success of these test and restructure methods seems to hingi on the simpliciry of
the constituent cells þrocessors) since simple and regular processing elements a¡e

more testable than complex and irregular processing elements. Since the cells compos-

ing the modulo pt arithmedc units are simple and regular, the prospects of success-

fully employing such test and reconfigure schemes appears to be reasonably good.

References to more recent examples of the successful exploitation of test and

reconfigure methods in systolic processors may be found in [l] (see page 567), and

also in.Kuhn [33].

As we have seen, many approaches exist for solving the reliability problem (e.g.,

TMR, elTor control schemes, etc.). Many of these methods yield systems tolerant to
both soft and ha¡d faults. However, it seems the best merhod of achieving tolerance to

soft faults (in static circuits) is the soft-error filtering (SEÐ method of Savaria et al.

f. i5

1229). Error control coding methods may well be the most efficient way of achieving

tolerance to ha¡d faulm, especially since this approach can be applied at all levels in a
system. The overheads appear reasonable when compa¡ed with classical ,,brute

force,,

strategies such as TMR and quadded logic. The redundant residue schemes of secrion
2'4 are likely to be of little use. This is because the redundant moduli are so large
compared with the non¡edundant moduli thus add.ing enormously to the a¡ea and time
overhead.

Thus, we tentadvely conclude that reliable computarion in large finite rings is
now, or will soon be, possible. Acceptable yields will b€ achieved mainly through the
use of test and restn¡cture schemes. Reliable operarion will be achieved through SEF
(for soft faults) and through error control coding methods (for soft or ha¡d faults). In
view of the large areas required by implementations of the a¡chitectures in this thesis,
it is recommended that a systematic study of the schemes for fault tolerance outlined
above be included in funher work on this topic.

REFERENCES

tll D. K. Pradhan (d,-), Faurt-torerant computing Theory and, Techniqucs, vors. I &
II. Englewood-Cliffs, New Jeney: prentice_Hall, 19g6.

12) Y. sava¡ia, J. F. Hayes, N. c. Rumin, v. K. Agarwal, ,,A l-t*ry for the Design
of Soft-Error-Tolerant VLSI Circuits," IEEE Jour. on Select. Areas in Comm.,
vol. SAC-4, Jan. 1986, pp. l5_23.

i3l N' Kanopoulos, "A Bit-Serial A¡chitecture for Digital Signal processing,,, IEEE
Trans. on circ. and syst., vol. cAS-32,Mar. r9g5, pp. 2gg-zgr.

l4l C' Mead, L. Conway, Introduction to VIÅI Systems. Reading, Massachusels:

Addison-Wesley, 1980.

t5l A. v. Ferris-Prabhu, L. D. smith, H. A. Bonges, J. K. paulien, ,,Radial yield

va¡iations in semiconductor wafers," IEEE ci¡c. and Dev. Magazine, vor. 3,

March 1987, pp. 42-47.

9.16

t6l C. H. Stapper, A. N. Mcla¡en, M. Dreckman, "Yield Model for hrductiviry
Optimization of VLSI Memory Chips with Redundancy and panially God pro-

ducr," IBM J. of Res. Devel., vol. Z4,May 19g0, pp. 39g-409.

t7l I' Koren, D. K. Pra'dhan, "Yield and Performance Enhancement Through Redun-

daacy in VLSI and TVSI Multiprocessor Systems,,, proc. IEEE, vol. 74, May
1986, pp. 699-7Lt.

t8l J' Von Neumann, "Probabilistic Lngics and the Synrhesis of Reliable organisms
from unreliable components," Automata stud.ies, no. 34, pp. 43-49. princeton,

New Jersey: Princeton Univ. press, 1956.

t9l Wilcox and Mann (eds.), Redundancy Techniqucs for Computíng Systems. Wash-

ington, D.C.: Spanan Books, 1962.

tl0l z. Kohavi, switching and Finite Automata Theory. New york, New york:

McGraw-Hill, 1978.

[11] R' E. Blahut, Theory and Practice of Enor Contol Codes. Reeding, Mas-
sachusens: Addison-Wesley, 19g3.

[12] F. J. williams, N. J. A. sroane, The Theory of Error-correcting codes. New

York, New York: North-Holland, 1977.

[13] V/' W. Petersotr, M. O. Rabin, "On Codes for Checking'Logical elerarions,,,
IBM J. Res. Devel., vol. 3, April 1959, pp. 163_16g.

[14] D' K' R'adhan, S. M. Reddy, "Error-Control Techniques for Logrc processors,,,

IEEE Trans. on Comp., vol. C-21, Dec. L972, pp. l33l_1336.

[15] D. K- Pradhan, "Fault-Tolerant carry-save Adders," IEEE Trans. on comp., vor.

C-z3,Drlæ. 1974, pp. 1,320-t322.

[16] K'-H. Huang, J. A. Abraham, "Algorithm-Based Fault Tolerance for Marix
operations," IEEE Trans. on comp., vol. c-33, June 19g4, pp. 51g-52g.

[17] J'-Y. Jou, J. A. Abraham, "Fault-Tolerant Matrix A¡irhmetic and Signal process-

ing on Highty concurrent computing stn:crures,', IEEE proc., vol.74, May 19g6,

pp.732-741.

9.17

tlSl D. Mandelbaum, "Error Corre*ion in Residue Arithmeric,,' IEEE Trans. on
Comp., vol. C-21, Iune 1972, pp. 53g_545.

t19l F Ba¡si, P. Maesrini, "Error Correcting Properties of Redundant Residue Numkr
sysrems," IEEE Trans. on comp., vol. c-zz, March r.973, pp.307-3L5.

t20l v' Ramachandran, "single Residue Error Correction in Residue Number Sys-
tems," IEEE Trans. on Comp., vol. C_32, May 19g3, pp. 504-507.

l2rl l' V' Krogmeier, w. K. Jenkins, "Error Detection and Correction in euadratic
Residue Number Sysrems," proc. of the 26th Midwest symp. on circ. and syst.,
Puebla, Mexico, Aug. 19g3, pp. 40g_411.

t22) w ' K' Jenkins, "The Design of Error Checkers for Self-Checking Residue
Number Arithmetic," IEEE Trans. on comp., vol. c-32, April r9g3, pp. 3gg-396.

t23l w' K' Jenkins, "A Technique for the Efficient Generation of projections for Error
correcting Residue codes," IEEE Trans. on ci¡c. and syst., vol. cAS_3r, Feb.
1984, pp. 223-226.

t24l G' R' Redinbo, "Finite Field Fault-Tolerant Digital Filtering A¡chitectures,,, IEEE
Trans. on Comp., vol. C-36, Oct. 19g7, pp. 123ÇL242.

t25l G' R' Redinbo, "Fault-Tolerant Digital Filtering Architecrures Using Fast Finite
Field Transforms,,' Signal proc., vol. 9, 19g5, pp. j7_SO.

126l B' V/' LaMacchia, G. R. Redinbo, "RNS Digital Filtering Strucru¡es for Wafer-
scale lntegration," IEEE J. on select. A¡eas in comm., vol. SAC4, Jan. 19g6,
pp.67-79.

[27] R' P' Brent' H. T. Kung, "The A¡ea-Time Complexity of Binary Mulriplicarion,,,
J. Assoc. Comp. Mach., vol. 2g, July l9gl, pp.52I_534.

[28] H' T' Kung, B. Sproull, G. Steele (eds.), vLSI Systems and Computatíors. Rock-

'nillr, Mutyland: Computer Science press, l9gl.

t29l Y. savaria, N. c. Rumin, J. F. Hayes, v. K. Agarwal, ,,soft-Error Filtering: A
Solution to the Reliability Problem of Furu¡e VLSi Digìiai Circuirs,,, Froc. ¡EEE,
vol.74, May 1986, pp. 669-6g3.

9.18

t30] w' R' Moore, "A Review of Fault-Tolerant Techniques for the Enhancement of
Inægrated circuit yierd," koc. IEEE, vor.74, May r9g6, pp. 6g4-69g.

t31l F B' Manning, "An Approach to Highly Integrated, computer-Maintained cellu-
lar A:rays," IEEE Trans. on Comp., vol. C_26, lune 1977, pp. 53G5SZ.

t32) c- A. Finnila, H. H. [..ove, Jr., "The Associative Linea¡ Ar:ay processor,, IEEE
Trans. on Comp., vol.C-26, Feb. L977, pp. ll2_125.

t33l R' H' Kuhn, "Yield Enhancement by Fault-Tolerant Systolic Arrays,', in VLSI and
Modern Sigrul Processíng, (S. Y. Kung, H. J. whirehouse, T. Kailath, eds.).
Englewood Cliffs, New Jersey: prentice-Hall, 19g5, pp. l7g_1g4.

[34] A' Avizienis' "Arithmetic Error codes: Cost and Effecriveness Studies for Appli-
cation in Digital system Design," IEEE Trans. on comp., vol. c_20, Nov. rg7r,
pp.1322-1331.

Chapter X

CONCT.USTONS AND SUGGEST'TONS F'OR F'UT'URE
R,ESEAR.CF{

L. Summary and Conclusions

We have investigated the solution of certain problems invoiving Toeplitz

matrices. These problems were: (i) Toeplitz matrix inversion and/or LDU factonza-

tion; (ii) Toeplitz system solution; (iii) reflection coefficient computation. The Toeplitz
matrix problems were examined from several different viewpoints. The main points

may be summa¡ized as follows. We have considered the Schu¡ and split Schur algo-

rithms for the solution of Toeplitz marrix problems, and in the process a Schur algo-

rithm for Hermitian Toeplitz matrices of any rank profile (i.e., the singular leading

principal submatrix case) was developed. VLSI MSI implementable linear parallel-

pipelined processor ¿urays consisting of O (n) processors (n is the order of the marrix)

were presented to implement the Schur and split Schur algorithms. These had a rime

complexity of O (n), except in the singular lead,ing principal submatrix case where the

time complexity may be as high as O (nz). The splir Schur algorithms, when imple-

mented on a sequential processing system, represent a mor€ efficient means of comput-

ing reflection coefficients than the Schur algorithm, but a¡e not well suited to the prob-

lem of LDU factorization. This is because the inverse mapping from the split Schur

variables to the Schur variables increases the number of multiplications needed, and

this makes the split algorithms no more efficient for this applicarion than the Schur

algorithm. However, the inverse mapping presents no problem in the context of a

parallel processor implementation. The fixed-point arithmetic properties of the Schur
qn¡l o^lìc Q^L,,- ^l,-^-.i¡L-- ------
'1r¡u sPut ùsnur algoninms \trere consiciered, anci the aigorithms were found to be

numerically stable. Only ill-conditioned input data gives poor results. To cope with

r0.2

the ill-conditioned data cases, error-free computation was advocated. In particular,

compuadon in finite rings was shown to be better than computation with Hensel codes

or with rational numbers. The finite ring of integers modulopr, denoted Zr,,was sttt-

died for the cases where p =2" + L. The ring zo, was advocated mainly because of
the ease with which its size can be increased; sirnply incrcase r while holding p fixed.
As well, large quadratic residue number systems (QRNSs) can be created when p is a

Gaussian prime of the form p = 2n + 1. This is potentially useful in the complex data
case' To handle complex-valued data with rational-valued real and imagin¿ìry parrs,
the conventional QRNS was extended. Hardwa¡e structures for modulo p' arithmetic
(addition, subtraction, multiplication), and for mapping integer data into Zo, without
integer division were presented. These srructures are VLSI/TVSI implementable.
Error-free forms of the Schu¡ algorithm were presented to facilitate their implemenra-
tion with arithmetic in finite rings.

We conclude that error-free computation must b€ used to handle the ill-
conditioned roeplitz matrix cases. These cases arise when reflection coefficients have
magnitudes at or near unity. Thus, the singular lead.ing principal submarix case is
severely ill-conditioned, and error-free computation is essential to successfully solve
such a problem. Furthermore, to solve Toeplitz matrix problems as rapidly as possi-
ble, parallel-pipelined processor Íurays of the type discussed in this thesis musr b"
employed. Because rings of large size are needed, the ring Zo, is a logical choice.

Finally, we tentatively conclude that fault-tolerant design methods are, or will soon be,
sufñciently advanced to permit the actual VLsI/Tysl implementation of the Toeplitz
matrix problem solution methods that appear in this thesis.

2. Suggestions for Future Research

There is much potential for further work. V/e have already noted certain open
problems, rhe most important of which are:

(1) It is necessary to investigate means of multiplying macrices by vectors other than

the linear systolic array such that the Schur algorithm for Hermitian Toeplitz

10.3

matrices of any rank profi-le will have a dme complexiry of no worse than O (n)
(see Chapter IV, section 4).

(2) An error-free form of the Schur algorithr:' ior Hermitian Toepliu matrices of any

rank profile would be useful.

(3) Error-free forms of the First and Second Back-Substirution Algorithms (Chapter

lV) should be "integrated" with the error-free fonns of the Schur algorithm
(Chapter VII).

(4) The problem of fault-tolerant system design in the conrexr of the problems con-

sidered in this thesis needs to be intensively investigated, and this includes design

for testability issues as well.

However, rnany other open problems exist v/e list a few more here:

(5) The Levinson-Durbin algorithm of Delsaræ, Genin and Kamp [l] produces Lævin-

son polynomials a¿ (z), and predictor polynomial s xp(z). The Schur atgorithm of
Chapter III, section 3 can be modified to produce these polynomials without the

need for inner product computation. A parallel processor implementation of rhe

resulting modified Schur algorithm would be desirable.

(6) Split Schur algorithms for the Hermitian Toeplitz case have yer to be developed.

The results in K¡ishna and Morgerz tzl may help to solve thr\ problem.

(7) Rissanen's algorithm [3] is applicable to both Hankel and Toeplirz matrices, but it
has not yet been investigated to see if it is amenable to parallel processing sysrem

implementation. Note that this algorithm applies to the singular submatrix case.

(8) It would be worthwhile to find Schur-like algorithms for the nea¡-to-Toeplitz

mauix problems noted in secrion 2.7 of Chapter II.

(9) An error-free form of the Ba¡eiss algorithm would be useful.

(10) Can the Bareiss algorithm be modified to cope with the singular leading principal

submatrix case ?

(ll) Invesúgate error-free iorms of Jain's algorithm [4] for banded Toeplitz matrices.

10.4

(12) An inverse scanering theory framework has been developed by Brucksæin and

Kailath [5] for the systematic development of Schur and lævinson-Durbin algo-

rithms to solve one-d"imensional inverse scartering problems (the geophysical

example of Chapær II, section 3.5 fits this description). The Gohberg-Semencul

formula (see Chapter II, section 2.2) fits into this f¡amework (see Kailath, Bn¡ck-

stein, Morgan [6]), and so it is reasonable to suspecr that Trench's algorithm does

so too (this is not shown in [6], and so it needs to be verified formally). Brent

and Luk [7] observe that the Trench and Bareiss algorithms a¡e "related", but they
do not define this precisely. Thus, is it possible that the Ba¡eiss algorithm may

be derived in the inverse scattering theory framework of Bruckstein and Kailath ?

(13) Can abstract algebra reveal methods of solving Toepliz marix problems in an

error-free rnanner when the entries of the matrix are irratíonal nunbers ?

(14) Prove (or disprove) the conjecture of Chapter VI.

(15) How about extending the results of this thesis to handle block-Toeplitz matrix
problems ?

(16) Suppose a parallel processing array is too small ro handle the Toeplitz matrix that

it is given, and that we cannot make the array larger (due to economic or other

constrainrs). How can we partition the problem to fit the available array ?

(17) It would be interesting to apply the finite precision arithmeric analysis method of
Cybenko [8] to the Schur and split Schur algorithms, and to Bareiss's aìgorithm
as well.

(18) Do the split algorithms of Delsa¡te and Genin [9,10] and of Krishna and Morgera

[2] fit into the inverse scattering theory framework of Bruckstein and Kailath ? If
so, then how ?

(19) Develop a method to synthesize Toeplitz matrices of any rank proflle. This
would be a useful means of generating test matrices.

(20) can Dadda's multipliers tlll be adapted to the problem of modulopr mulriplica-

tion ?

10.s

{21) Ha¡dware su-uctures for d.ivision (mod p' inverses) in Zo, need to be obtained.

(22) Tt.e problem of mapping from the product ring

Zpí xZpLxZpi

where Pt=2" + I ,pz=2n ,p3=2" - l, back to the ring of integers needs to

be studied, as does the problem of scaring in such a product ring.

(23) Computation in Zo, for p - 2n t k (k = small and odd positive integer other

than uniry) should be examined.

(2a) The constant factors and lower order terms of the asymptotic area and time com-
plexity expression of Chapter VIII, section 1.5 should bc worked out. A good

first approximarion can be found by counting gates and levels of gates.

(25) Ha¡dware structures for the inverse mapping from Zo, to F¡¡ require development.

(26) It might be best to implement any error-free form of the Schu¡ algorithm for Her-

mirian Toeplitz matrices of any rank profile in a multimicroprocessor-based parai-

lel processing system. Traditional microprocessor designs are not optimized to

support error-free computation. Thus, it might prove useful to develop a

microprocessor optimized for error-free computation problenrs. Such a micropro-
cessor would be useful in many other kinds of problems where computation in
finite rings and fields is performed.

(27) Cn free accumulation (defined in Cappello and Steiglitzllll) be used ro remove

the parallel processing bonleneck that the inner product operarion in the

Levinson-Durbin algorithm represents ?

This concludes our list of future resea¡ch topics. No doubt many others could be

added ró rhe lisr.

10.6

R.EFERENCES

iil P. Delsarte, Y. V. Genin, Y. Kamp, "A Ceneralization of the Levinson Algorithm
for Hermitian Toeplitz Man-ices of Any Rank Profile," IEEE Trans. on Acousr.,

Speech, and Signal proc., vol. ASSp-33, Aug. 19g5, pp. g&_g71.

I2l H' Krishna, S. D. Morgera, "The Lævinson Recurrence and Fast Atgorithms for
Solving Toeplitz Sysæms of Linear Equations," IEEE Trans. on Acoust., Speech,

and Signal Proc., vol. ASSp-35, June 19g7, pp. g39_g4g.

t3l J. Rissanen, "Solution of Linea¡ Equations with Hankel and Toeplitz Marrices,,'

Numerische Mathemarik, vol. 22, 1974, pp. 361_366.

L4l A. K. Jain, "Fast Inversion of Banded Toepliu Matrices by Circular Decomposi-

tions," IEEE Trans. on Acoust., speech, and signal proc., vol. ASSp-26, April
1978, pp. I2t-126.

l5l A. Bruckstein, T. Kailath, "An Inverse Scanering Framework for Severa.l prob..

lems in signal Processing," IEEE ASSP Magazine, vol. 4, Jan. 19g7, pp. 6-20.

t6l T. Kailath, A. Bruckstein, D. Morgan, "Fast Matrix Factorizarions Via Discrete

Transmission Lines," Lin. Alg. and its Appl., vol. 75, 19g6, pp. 1-25.

t7) R. P. Brent' F. T. Luk, "A Systolic Array for the Linea¡-Time Solution of Toe-

plitz sysrems of Equadons," J. of VLSI and comp. syst., vol. l, r9g3, pp. r-zz.

t8l G. Cybenko, "The Numerical Stability of the l-evinson-Durbin Algorithm for Toe-
plitz systems of Equadons," SIAM J. of sci. and stat. comp., vol. 1, sept. 19g0,

pp. 303-319.

t9l P. Delsarte, Y. v. Genin, "The Sprit Levinson Algorithm," IEEE Trans. on

Acoust., speech, and signal proc., vor. ASSp-34, June 19g6, pp. 4747g.

[10] P. Delsarte, Y. V. Genin, "On the Splitting of Classical Algorithms in Linea¡

Prediction Theory," IEEE Trans. on Acoust., speech, and signal proc., vol.

ASSP-35, May 1987, pp. ó45-653.

tllj L. Dacida, "Some Schemes for pa¡allel Muhipliers,', Alta Frequenza, vol. 34,

1965, pp.349-356.

t0.7

[12) P. R. cappello, K. steigritz, "A Note on "Free Accumuration', in VLSI Fürer
A¡chitecru¡es," IEEE Trans. on ci¡c. and syst., vol. cAS-32, Ma¡ch r9g5, pp.
29t-296.

APPENDD(A

Finite Precision Arithmetic Simulator

for the Schur Algorithm

Fi le fp_echur*eiø printed on [Jed Aug lS lZ:16:34 1967
------:-::-:l_:::1 pase I or 6

lnol i st
finclude <Etdio,h>
l/include <Eath.h>
ll iet

HdeÍine CLIñ ßldørinø Llnl f. l2øBø

fdefine finpar
f,deÍ ine f fout

,PAR'

"F&.iT'

/a l1ax. no. of autococ. coeffs. &/
/øllauiaum number of date points u./

/e Input data to the aimulator
/ø 0utput ctata sequenca

a/
a/

FILE
FILE

ainpp¡ /.v declare po¡nter to input data f ileeoup!¡ ,/E dec laro pointer to ouiput dâta f ¡ le

doublo btof(l¡

s i ggen (s i gna I, I ength, rho, theta)
/s thi E function Eodel s a Zñd order AR procesg El/E uith a eingle complex pote pair (aodllus rho. El/* argunent thata (degreesl). 'A

2nd ordei all_iotea//E til ter ie driven Ug a al/E Gaussian noiee genãrator routine based on the È//* algor i the describ€d in: s//* Rabiner and Gold.,Theorg and Appl ication of alfa Oigi tal Signal processiÃg. 8/douÞle eignal [l:
double Érho.sthcta:
int length;
I

double vãr.x,U.u:
double al,eZ,
double pie;
int i¡

printf(. _ SIGNAL t1oOEL PARAñETERS _ \n");printf(' Enter deeired noia€ variance: \n");
scan f ('X f' . 6var) :printf(' Enter degired pole modulus: \n"):
scanf (":f'. rhol ¡printf(' Enter desired pole argument {degrees): \n.):
scanf ('U f'. theta):

fprinttlorpp.'Ís'.'- Znd 0rder AR process parar¡eters _ \n,);fprìntf(oupp.'\n.);
fprint{forpp,"ls 112.6f \n... pole modutus -,.qrhol:fprintÍlorpp.'ls 112.6f \n.." pote angte ia"g.åes) ..,rtheta):fprintÍforpp,'Zs 112.6f \n.." noiee vãriance"- i-rar)¡
fpr intf (oupp.'\n\n.)

¡

pie - 3.14159265a;
*th6te--_ûthcta 8 piø /LBB.B7 ls conve-t to radi ans ElaI - -¿.8*cos(*theta)r rrho;a2-srhosarho;

for .(i-8; i <-(length - l); ++i l

- randl (l:
- Bqrt (2.8*varalog(l.B/x)) :

--.gacoa(2.0tpierrandl Olt ld ¡¡ is a noise point s/f (¡--8)

a/
¿/

l
x
U
u
i

I
e igna I t0l - ¡r:
I

iç (i .- t)
{

aignat tlJ . u - ãl s aignal tOl ¡
I

¡f (¡ > I)
I
eignal Ii] - r¡ - al a aignat (¡-l¡ - aZ s 3ignat ti_Zl¡
I

I
I

autocorre I ate (s, r, I .nco. nseg)
/u Conpute nominal ensemb.le of norrnalized 4//s autocorrelation coefficients s,/

Fi le fp-schur_siø pr inted on lJed Aug lS IZ: 16:34 lggT page 2 of 6

. /a (¡rust have length >- I v nseg).
i nt I . nco. nseg;
double eil,r tl tCLIlll :
I

double susl.su;2:
int i. j.n¡

for (i-8; i<-(neeg-l) ¡ i++l
I
sun? - Ø.t;
for (n-B: n<-(l-l) ¡ n++)

I
sumz - sumz + e(n + iElt*stn + ì*ll;
l

sumz - sua/,/13
for (j.l¡ j<-ncoi j++)

f
suml - 8.8:
for (n.t; n<-(l-j-l); n++)

I
suml - suml + s[n + islJEe[n + ixt + jl¡
I

sunl. BuRl/(l- jl,
r til tj¡ . sugl/Bu;z:
I

r t il t0l - l.6r
I

I

quant(x.n)

int x, n¡
I

int q,mask,roun;

iÍ (z >- gl
I
mask - tl;
mâsk - mask <<

"oun - 83
il ({mask I x}

{

roun - l;
I

q-x>>(n-l)¡
qaq+roun¡
I

9l s€
(

q'-x:
q - q + l: /t q - 2s compl. of x ^ou. ü/
haEk - al;
mask - saEk << (n-2):
roun - 8:
if((aaekEql!-0)

{
roun . 1¡
I

q-q>>(n_ll;
q-q+roun¡
q--q¡
9 - q o 1; /a restore true sign of q */
I

re turn (q) :

/a Argumont x is a Zn-bit number th¿¡t q€ uant to tl/E round off to n-bits. Argurnent x is ê "standard s//.a Íorøal' 2n-bi t nunber. ihi s funct ¡on assume3 *//û that the computer uses 2s cornplement ar¡ thmetic Ë//-a for integcr arithrnetic itself. This function 4/la can be used for .double-precision. mul tiplg_ t//t accumu I ate operat i ons. 8/

(n-2);

!- a)

I

f tob (x, n) /s Convert the double precision floating
/t point nurñber x into a standard formaI/q uord.

8/
8/
s/int n¡

doub I e x¡
I

int i.c.mask,,¡agks, sign. ix;
doub I e fx:

Fi le fp-schur_sim printed on Lled Aug lg 12:16:34 1.987 page 3 of 6

sign - B;
if (x < 0.8)

I
3¡gn - -l'
x _ _x¡
I

ix - xi ls Íind integer part of x s/fx - x - (doublelix¡ /e Íind ir.aclional part of x Elc-0:
øask . 6l;
for (i-(n-2)¡ i>-B; i--)

I
fx . 2.Brfx¡
easks - tse6k << ¡ t
if (fx >- l.8l

f
fx'¡¡-l.B¡
c-cløaekg¡
I

I
fx.2.0*fx¡
if (fx >. 1.8)

I ./s Add unitg to effect the rounding operation t/
c - c + l:
)

ix - ix << (n-l)¡
C - C + ix:
if (sign -- -l)

(

I - -F.

l
return(c):

I

double btof(g.nl /s Convert standard forñìat g into float */
¡nt n,g¡

/t tgPe' - 4/
f

¡nt i. j. s¡gn,rnask,nasks¡
doub I e c;

c - B.Oi
aign - 8¡
nask - 9l:

if (((nask << (n-11) 6 g) l- g) '
(

sign - -1'
I

for (i-(n-2); i>-B; i--)
(

masks - mask << i;
if ((haske E rJ) 1.0 I

I
j - n - i - l;
9 - c + pou(Z.Ø, (clouulel -j)¡
I

I
if {si9n Éo -l)

I
c--1.8+c;
I

returñ(c)¡
I

divide(x,9,n) /E Find the n-bi t. 2s comprement {standard fornrat} 4//a coding ol x/g. x and g are standard format aos. s/int x,g.n¡
{

double xf,gf3

xf - btof {x.n) ¡
gf - btof (9. n) ¡
return (f tob (xflgf .n)) ¡

I

File fp_schur_Eim printed on !.led Aug 1g 12:16;34 ISBT page 6 of g

øain O /ø FP_SCHUR_SI|I
/E (Finite Preciaion Schur Algorithn Sinulator)
/w
/s lJe úee fix6d*point 2s complement ari thnetic (n-bi tg,/E inc luding siçn) ui th format (standård format):
/g x I x x x ... x .lE ø LZ 3 kls uherø x is thø aign bit, and n. k + l./ø8
/a l.le use ¡ntgggr tup€s to conta¡n standard forBat b¡nerg/E numbers. Ihe rightaoEt ileast signi ficant! bi t of an/r integer tgpe coiresponds to x ./øk
/t
/.ø 'Íhi s progra6 siarulateg the Schur algorithø f or sgmmetr ic/a Toeplitz natriceE under finite precieion aritnaeíic/E conditions. The purpose of this progreh is to te3t the/û theorstical prediction6 derived in tñe paper:
/E
/¿ C. J. Zaroueki, H. C. Car¿, "Fini te preci eion
ls Ari thmetic and the Schur Algori thr¡.. to be subni ttedla to ths IEEE Trana. on Acousl., Speech. and Signal/ø proc.

/* negativelg indexed u-parañeters el
/s (n-bi t. 2e conplement) sl
/t nonnegativalg indexed u-parameters */
/* (n-bi t, 2s complement) 4/
/u negativelg indexed u-parameters ul
/s (double precision floating-point) t/
/t nonnegativelg indexed u-pãraneters z/
/s (douOle precision floating-point) ¿/
/a €nrshblo of nornalized auiocorrel. s/
/t coe(ficientg (no¡rinal) constructed */
lt i¡oç segnents of signal [l; ¿/
ls rtiltjl - ¡ - segrnent ¡ndex t/
/,t - j - jth coeff. of seg. i t/
/a Bsan of reflection coeff¡cient3 ìn s/
/t arrag fp_k t) tl s/
/* variance of reflection coefficie¡,ts z/
/t in arrag fp_kt) tl about the¡r nean ü/
/¿ va I ues i n mean l) ¿/
/* signal generated bg siggen function 8/
/û (double precision floatlng-point) q{.
/a enseable of nominal refleètion tl
/¿ coaîî icients sl
/* double precision floating-point sl
ls røl lection coefficient tl
/e enseable of fini te precision (n-bil. a,/
ls 2e conplement) reflection coeffs. 4/
/t pole ¡rodulus of 2nd order AR nodel sl
/u pole aîguß€nt ot Znd orde¡ AR model t/
/8 thsoretical values for rtll,rtZI */
/t aesuaing Znd order AR process t/
/s thêoret i ca I var i ance of i ndex 3 s/
lt ref lect ion coef f ¡cient assurning no s/
/s error in our knouledge of rtll.rt2l */
/t tenporarg var i ab I es s/
/s loop counter var i ab I es a/
/s nuaber of bits (including sign bit) sl
/t length of signal 0 s/
/s number of points used to get rtl u/
/t larç"st lag value AN0 alsó the s/
/a nurber oÍ ref lection coeffs. to be E/
/t computed sl
/a temporarg integers 4/
/a nuñber of segments of signal [] used */
/e to compute r tl tl (I ength >- l*nseg) al

fd', 8n. 6l ength. 6 l, 6nco, Ensegl ;

siggen(sìgnal, tangth.6rho.Ethata)¡ /x construct the test signar a/autocorrelats(3ignal.r, l,nco,naegl t /* r ind floating-pt. autõcorr. r//s coeif icients s,/

a/
8/
8/
*/
8/
4/
x/
8/
e/
s/
s/
8/
E/
8/
El
8/
4/
a/
*/
a/
g,/
e/
8/

int fp_ut tCLII'11 (CLInl:

int fp_uu tCLlñ1 (CLtnJ ¡

double ul tCLltll tCLltll ¡

doub I e ut¡ tCL I111 tCL ltll ;

doubl€ r tCLllll tCLItll:

doub I e nean ICL I l1l :

double vari ICLI11];

double signat tLIlllTl ¡

douÞ | e no_k tCL I l1l tCL I lll ;

double bigk¡

int fp_k (CLInt tCLIllt ¡

double rho;
doub I e th@ta¡
double 11.12:

double ver_bi9k_3;

doub I e tl. t2. denom:
int i,j,k;
int n¡
i nt I ength¡
int l¡
i nt ncoi

int prodl,pcod73
int neeg¡

inpp - fopen{f inpar,'r') :
ouPP E fopen(ffout, "!¡");

fscanf(inpp,"ld ld ld ld

lll:_jl_lllï::11_ll.r^ted on ued Aus ls 12:16:34 rsBT pase s of 6

rprintr(oupÞ.'Íe' : ,n""*,;";; ; r ;"';".,;"; ;"",,;.;.:; ;:,,fprintf!ouOp,"1e',' Variance \n.);fprintf (oupp..\n.):
r1 . Zarhoacos(th€tâ)/(1 + rhoar¡rol¡denop. (l + rhosrhol s ein(theta)¡¡2 - rhosrho*(ain(3Ettreta) -r¡¡o#Àoåain(theta)) /denom;fprintf(oupp."ie flg.6f \no." thooretical .tt¡ _-"."i1:fprintf(oupp.'ts flg.6f rn.," *,eã.ãiiiar

" t}l - .:"Zi
tl - r1*ls (r2-llt(rZ-Ll + i.2-riE"ii"t.Z_"forl); ' '
t2 - (rlurl - l)s(rlarl _ tlE(l i r"ii"r-- i)ûi;is.t _ lll:
YPr-biSf_3 . (tl + t2) c.poue.ø,-Z.Bs(f toat) nt/3.Ø1.tl - (rl*rt - 1) ø (rlart'_ li ;'(;i;"i _ it ; r.iiir _ u¡var_bigk_3 . var_bigk_3/tl¡
tI. {rlrrl - llr(rlxrl - l);tZ - (tl + 4srlarla(rZ - l)sir2 - L)r/(tl ¿ tl)¡tZ - tZ a pou(2.Ø,-2.0s(t toatln ltá.Ø;'/ø ¡2 is-the co@ponent of var_bigk_3 that is due to a//a roundi ng of the noa i na I .,oãraí i ãã¿ ärioco..e I . øt/a coefficientg eIvar_bigk_3 - var_bigk_3 + t2:fpr¡ntÍforpp,'fs 1l4.lgf \n.." variancE . ".var_bi9k_3)¡fpr i nt f (oupp. .\n\n.) ;

fprintf{oupp.'ta',' Ensegble of Norsinal and Noreal izEd \n.);fprintf(oupp.*!s'.' AutocorrEtat¡o" Coeirii¡ãÃi.--- \n.):fpr i nt f (oupp. '\n. I ;for (i.0¡ i < nseg¡ i++)
f
for (k-0¡ k<-nco¡ k++l

I
fprintf(oupp,'Is fd fe Ig.6f ,,.r(".k,"1 . ..rtil (kll¡
I

fprintf(oupp."\n')¡
I

f pr i nt f (oupp.'\n\n') ;

/a computc ense'bre of noninar refrection coefficients */
fpn i ntf {oupp.'fs',' Eneenbre of Nomi nar Ref r ect i on coef f ic ients \n- r ¡fpr i nt f {oupp.'\n") ;for (j-B¡ j < naeg¡ j++)

I
for (k-8: k<-nco3 k++)

I
utul trl . rtjl tkl¡
uu(ll (kl - r tjl tkl:I -.Íor (i-l: i<.nco: i+r)
I
bigr, -- -uuIil tll/ul til fi-l] ¡no-kIjl Ii+tl - bisk¡
fpr i nt f (oupp.'Írfdfs1l8.6f', .

K (", i +1. .1 -for (1,-8; k<.(nco-i)¡ k++l
f

.bigkl¡

ul Ii+11 [k+il . ut [il tk+i-ll + oigkruu(il tk+ll:uuIi+t] [kl - bisksut (il fk+¡-ll +-uutil fi"f]:t-
I

fprintf(oupp. '\n'l ¡

fpr i nt f (ouap, "\n\nol ¡

/a conpute .nsserbr6 of fixed-point refrection coefficients E//a ascuning thet ther€ is no quant¡zãt¡on.."o" ir,, t¡re sl
{t agtocorrelation co6fficient estinates except that ãue u//s to rounding to n-bit. Zs conpleoent numberE 8/

fprintf(oupp,'ts'.' Ensenble of Fixed-point Reflection \n,.):fprint!lo"pp.-'f"".. Coefiicients \n");fprintllorpp.-f.'r' (error-free eutocorrslation coeffs.l \n-)¡fpr intf (oupp.'\n'l ¡

!1 -.1.9 - por(2.S.-((floar)n - t.t));for, (i^Øi j < nseg; j++)
I
for (k-8; k<-nco¡ k++)

(

fp_ultll tkl
fp_uu [1] [kl
fp_ultll t6l
fp_uu (ll t0)

. ftob(. tj¡ tk¡,n) ¡. ftob(r tjl txl.nt ¡. ftob{tl.n):

. ftob(tl,n);

File fÞ-Echur_s¡ø printed on !.led Aug lg lZ:16:34 lSgT_-____:::::::l'*' pase 6 0f 6

t-
for {i.l¡ f<anco; i++)

I

-fp_ktjl ti+ll - aivide!-Jo_uuiil tll,fp_ut til ti_11.n)¡rprintf (oupp,'tsfdlsfr0.6r',' K(', ¡+1 ,;l - ;.otãiiip_r*t jl ti+il,n))¡foc (k-B¡ k<. (nco- i) ¡ k++)
f
prodl - quant(tp_k !j! [i+l)rfp_uuti] fk+ll.n];
qrod? ¡ quant{fp_ktjl ti+l¡rrþ]ut ¡'¡ ¡¡o¡_it.Åt;
fp_ut Ii+l] [k+il - fÉ_ut ti¡ tklï_ll + prodl;fp_uuti+ll (¡l . proO2 + fp_uutil tx+lj;
I

I
fpr int f (oupp.'\n") ¡
I

fpr intf foupp,'\n\n'l ¡fprintfloupp.'Ís td ls \n... lJordslze - '.ñ,' Oi ts "l:fpr i nt f (oupp. "\n\n") ¡

/a coapute and output th€ ø6ans and variances of the alla reil ection coefiiciente sl
fprintf(oupp,'fs'.' Fixed-point Reflection Coefficient \n,l
Iprlnt!{oupp,'Is'," lleans and Varianceg \n.)fpr i nt f (oupp. '\n') ;for. (j-13 j<.(nco+l) : j++l

f
neanIjl - 0.0¡
for (i-g¡ i < nsog¡ i++)

I
neanIjl 6 Rean[jI + btof(fp_k(il (jl,n);

meanIjl o E€an(jllnseg:

lor, lj-?i j<-(nco+l) ¡ j++)

variIjl - Ø.8t
for (i-8¡ i < neeg; i++)

b¡gk . btof(fp_ktil tjl.n);
vari Ijl - vðri Ijl + (no_kt¡¡ tj¡ - oigk]ø(no_ktiJ (jl

vari Ijl - var¡ [jllnseg;

Var i ance

bigk) ¡

'l:fpr i nt f (oupp. '!s\n,, " ltEanfor,lj-/¿ j<-(nco+l)¡ j++)
I
fpr i ntf (oupp.'lefdÍe tll.6f Z16.Bf \n., "K (.. j..),, nean t j j, var i f jl) ¡

pole Eodutus - ø.75øøOg
ry j:_""9rø (desreeE) -. -----5.

øøøøøSnorse variance - l.øgOABg ----

Iheoretical Index 3 Rer,ection Coefficient
Var i ance

theoreticat rtll . 8.956346
.11_ugi.tical rtZl - 0.s66SGivarrance - ø.S0€6g79122

Ensemble of Noainal and Noraal izedAutocorre I at i on Coef f ¡ ;l ;;i;---
è 1.8800A8 rt L6 t.a08A0O rt t- L.Ø8ØB0B rt I- l.øø8øg8 rt I- 1.808000 rt I

ø
a
ø
g
sI
ø
ø
ø
ø

- 0.953886 r(2ø 9.952875 rt Z- 8.958227 rt 2- 4.95S9G3 rt 2- 8.955819 rt 2- 8.ß74t2 rt Z- 8.952398 rt Z- 8.954367 rt Z. 0.948484 rt Z- 8.955099 rt 2

Ensemble of Nominal Reflection Coefficients

r
r
I

'.r
?
r
r
?
r

K(2!. .
K(?) -
K(2t -
Kt2! -
K12' -
K(2t -K(2t -
K(2) -K(zt -
K(2' -

- s.876623. 8.860ø52
- 8.871æ9
- 4.E64753
- 8.8648S4. 4.878561
- 0.E55361
- ø.864344
- ø.84t988
- ø.865224

- |.ABA808 rt i- !.ØBØBBB r(t- 1.808008 rt- 1.0Ø8800 rl- 1.880008 r(

-8.959886 K(3) _
-8.952875 K(3) -
-4.958?27 K(3) -
-0.955963 K (3) .
-a.ss68t9 K(3) -
-ø.957492 K(3) -
-4.95239A K(3) -
-0.954367 K(3) -
-8.348484 K(3) -
-8.9S5øS9 Kt3) -

0. s6s323
ø.s2ø78E
ø.s78527
ø.s7øt78
s.60aæ¡
a. s52373
0. s45299
8. 52l88r
8.584t27
8. s35295

Enser¡ble of Fixed-point Ref lect ion
, Coefficientsterror-frea autocorrelation coef fs.)

Ktz' -K(?t -
K{¿l -K(2' -
K(2' -
K (z',, -
KrzI .
K(zt -Ktz' -
K(2) .

llords ize

Fixed-Point Ref lection Coef f icient
. ñeans and Var¡a"ããs

llean Var ianca
[Í3i 3:33]ãã9!î S:SffS3åSi

-q.gqg937 K(3) - 8.S8sE43
-8.sssa78 K(3) - à.siaizs-q.sge37 K(3) . à.sseãrõ

.å'#$i iÍii ; å'tríå{
,i,ËËi iiii ; t,Fl;tri-4.s7æl K(3t - s.sazæl

- l8 bits

APPENDIX B

Summary Tables for Ouçut from the

Program in Appendix A

Wordlength (birs) var¡LKß)1 tga

Theoretical Experimental

6

8

10

t2

14

r6

38.1

2.38

0.149

0.m93

O.ms8

0.m36

343m

15.5

0.960

0.0768

0.@2

0.wl

Table I: Comparison of theoreticai and experimental results for the finite precision Schur

algorithm. Here p = 0.9375 and 0 = 45o.

Wordlength Gits) var¡ÂK(3)1 tga

Theoretical Experimental

l0

t2

t4

16

89.9

5.62

0.35r

0.022

24LW

20.5

1.63

0.106

Table II: Comparison of theoretical and experimental results for the finite precision

Schur algorithm. Here p = 0.875 and 0 = 5o.

Wordlength @its) varlLKa)1 1ga

Theoretical Experimental

I
10

l2

l4

16

94.1

5.88

0.367

0.023

0.m14

s0@

30.7

2.m

0.0633

0.m78

Table ffl: Comparison of theoretical and experimental results for the finite precision

Schur algorithm. Here p = 0.75 and 0 = 5o.

APPENDIX C

Finite Precision Arithmetic Simulator

for the Symmetric Split Schur Algorithm

(Checks Expression for Var[d'f^zl)

Fi le fp-spl i t_Echur_eia printed on Lled Aug lg 13:04:03 1987 page I of 7

fnol i et
#include
linclude
Él ist

fldøÍine
Êdefine

fldefina
ldefine

FILE
FILE

<std¡o.h>
<eatl}. h>

ct¡11
LIIIIT

f i npar
ffout

t i npp;
üoupp;

L2
L28øg

"PAR".FdJT"

/s døclarø
/ø døclarø

ls l1ax. no. of autocor. coeffe. el
/ø llaximun nunber of data points sl

/a lnput data to the siaulator vl
/a Output data s€quenèE sl

pointer to input date fi le --
pointer to output data fi l@

double btof(l;

e i ggen (e i gna I , I ength. rho, theta)
ls l¡:'i a function nodels a Znd ord€r AR process el
/s r¡i th a eingle coñplex pole pair (modulus rho, a/
/ø argunent theta (degrees)1. A 2nd order all-polee/
/8 iil ter ie driven Þg a sl
/s GausEian no¡s6 generator rout¡ne based on th6 zl
/ø algor i thø dEscribed in: 8/
ls Rabiner and Gold.'Theorg and Appl ication of 8/
lE Oigi tal Signal Proceaaing' sf

double eignal0r
doublo *rho.üthgte¡
int length¡
I

double var,x,Uru:
double aL,a?i
doubla pie;
int i:
printf(' - SIGNAL n00EL PAFAñETERS - \n"):
pr intf (' Enter desired no¡ Eê var i ance: \n') ¡
Bcanf (':f',8varl ¡printf (' Enter desired pole eodulus: \n') ¡
acanf ('lf',rho);
printf(' Entar desìred pole argument (degrees): \n"):
scanf ('ff'. theta) ;

fprintf(oupp."le".'- 2nd 0rder AR Procesg Parameterg - \n');
fprintf(oupp.'\n")¡
fprintf(oupp.'ls flZ.6f \n".' pole modulus -'.arhol
fprintf(oupÞ,"fe fl2.6f \n"." pole angle (degrees) -',stheta):
fprintf(oupp,nle tlz.6f \n'.' noise variance .'.varl:
fpr intf (oupp.'\n\n") ¡

pie - 3.141592854¡
atheta. sth€ta e piø /188.8¡ /a convert to radians s/
al . -2.8tcoc(tthøta)a úrrho:
a2-æhoaerhot

for (i.8; i<.(length - 1); +ril
{
x - randl();
U . sqrt (2.O*varalog(1.8/x! l ;
¡{ c gacos(2.8*pie*randlOl¡ la u is a noice point */
if (i -- 9)

f
aignal (81 - x¡
I

if (¡ -- I)
(

aignal
I

if (i >
f
aignal
I

tll . u - al I eignal[0];

s/
El

l)
til - ¡¡ al I signal(i-ll - a2 r aignalt¡-21;

I

Sutocorre I ate (e, r, I . nco. neeg)
/a Conpute noninal enselrble of norøal ized
/a autocorrelation coef f ici ente

4/
ø/

Fi te fp-spl i t-achur-siø printed on [Jed Aug lg 13:g4:æ lgET

/a (øuEt have length >- I * nseg).int l,nco.naeg3
doubl€ eil.r[l (CLl¡i].
I

doublo suøl,eua2:
int i.j,n¡
for (i-8: i<-(nseg-l) ¡ i++)

I

sunZ . Ø.Øt
for (n-8¡ n<.(l-l) ; n++)

f
euerZ - eu@z + e[n + iEllueln + irll;
I

suts2 . Eua2/l¡
for (j-l; j<-nco; j++)

I
euml . B.O¡
for (n-0; n<-(l-j-l) ; n++)

I
EuEl - su@l + e[n + ieltas[n + iul + jl¡l

eual-euøl/(t-j):
rtiJ tjl . euEl/auáZi
I

r f il t8J . 1.0:
I

I

quant(x,n) /a Arguaent x is a 2(n+m)-bit numþer that ue uant tola t ound off to Za+n+l_bi te_

page 2 of 7

s/

li In: .fractional part of the quantized product ¡3/t n-I-b¡ ts long. The integer part is not al tered./a Arguisnt x is a .standard fornat.
/.s ?(n+øl-bit product. Th¡c funiiion assunes/t that, tho coñputer us€s 2s complemcnt ari thnetict,a tor tntogrr ar¡ tha€tic i tsel f. Th¡B function/s can bo u6cd for .double-precieionj

Àul tiplg_/s accunulate opcratione.

4/
ET
s/
8/
e/
a/
sf
*/
8/
s/ínt

(

int q.hask.roun;

if (x >- Bl
I
cask - 8l:
Bask . Reak <<
roun . 0;
if ((øaek 6 xl

f
roun - li
I

q-x>>(n-l)¡
q-q+roun¡
I

else
I

h-?t;
!- 81

q'-x:
q - C +-l¡ lv q - 2e coapl. of x nou. a/mask ã 81:
6a8k . aaeh << (n-Zl rroun o t¡
if((naekEqll.B)

I
roún - l3
I

Q-q>>(n-l)¡qGq+roun;
q--q¡
3 - C + l; /a reatore tru€ ei.gn of q a/
I

f-6rurntq,;

ftob(x,nl

int n;
double x;

./t Convort the double precieion floating a//a point nunber x into a stendard forøaí s//s uord. s/

File fp-split-echur-eiø printed on lJed Aug rg 13:04:ø3 lggT
--------:____________________ :{-

i.nt i,c.aaEk.øaEke. eign. ix;double fx¡

sign - B;
i((x < Ø.Bl

(

8¡gn . -l:
x o _x¡
I

ix . ¡; /.s f ind ìnteger part of x elfx . y - (doublelix¡ /a lind f.aclionat part oÍ x vlc.8;
Eaak - 8l:
for (i-ln-21 ¡ i>-8. i__)

(

fx - /.$sçr.
haska d øaak << i ¡
i f (fx >. 1.81

I
fx ' fx - 1.8;
c.clRaeks:
I

I
lx-2.8afx:
íf (fx >- 1.t)

I /t Add.unitg to effect the rounding operat ion slc - c + l¡
I

ix . ¡r << (n-l)¡
c - c + ¡x;
if (eign -- -l ¡

(

c-_ci
I

return(c):
l

doubl6 btof(x,n,n) /E Convert standard format x into double r/
¡nt n,m.x¡ /v pracision floating-point nur¡oãr. - 8/
(

int i. j, sign,mask.Rasksi
ctoub I e c:

6 - 8.8;
aign - $;
hask - Bl;
if (x < 6)

{
3¡gn . -1.
x - -x;
I

for (i-h-2); i >- 0: i--)
I

sraskg - aaek << i;if ((aaeks I x) ¡- A)
f
j - n - i - l;
9 - c + pou(2.8, (doubte)_j)¡
I

I
j-ot
for (i-(n-l)¡ i <- (n+s-l)¡ i++)

Í
maEks - nask << i:
if ((maeka 6 x) i- gl

I

9 - c + 9ou(2.8. (douote) j)3
I

; - j + 1:
I

if (sign -. -1 ¡
I

C@-C;
I

return(c) ¡

File fp-split-echur-gia printed on rJed Aug rs 13:Ø4:a3 lgET page 4 of 7
dlvide(x.g,n,øl /s Find th. n+R-b it, Zs comptenrent {standard w//a forgat) coding o(x/g. x and V ars etarróacd ø/la Íorøat n+ø_bi i uina"! nunber€. Elint x,y.n.e¡
I

doubl@ xî,gt1

xf - 616¡ (x. n, n) ¡
Uf - btof (U. n. n) :

. return(ftoo(xflgf,n)) ¡
,

aain () tø, Fp_SpLlT_SCt[A_SInla (Fìnite precraron- sprit slÃu- Argorithø siøuratorl/s
./e lJe uEe f ixed-point 2e coaple,¡ent arithøetic (n+ø _ bi te,/a inctr¡ding eisn) uitn fornãt iEta"ãa"j îã.åãti,""/t
ls o-" "' *rl tr*rt3 ". rk
/s uhere x i6 th€ sign bit,-an¿ n - k + l.la -E
/s lJa use integer tgp66 to contain-Btandârd fornat binarg/E nu¡bers. ,Trre risñiaost ttãàst rigniii"aÀti-Li'î'or an/a intagar tgpe coireeponae iã-o ./s
/Ek
,/E lhis prograa si¡ulates tha spl i t Schur algo. for sgmn./t Toepr i tz aatricee under finiie precision ari thnretic/s conditions.
/.t fhø epr i t schur argori thm siaurated is taken froñ the/t paper:
/*
/t P. 0olsarte, y. Genin. .0n the Spl i tting of Classical/.ø AtsorithEs in Linear Þ""J¡'ction-ihe;;e.; iÉEË'i"".,"./s on Acougt.l_!Þacch. a"a-5i9"at p";;..'"o1.-Àõsp_sS./.a pp. 645 - 653, ñas-198i.- -

/ø

s/
s/
s,l
*/
E/
E/
E/
E/
t/
s/
a/
E/
a/
*/
s/
El
sf
E/
a/
s/
a/
s/
t/
s/
¿f

i nt fp_v tCLItil (CLllfl :
double v (CLIt1l (CLllll :

doubl e r tCLIttt tCLltll :

douÞt€ aeanICLIlll;

double var i (CLIñl ;

doub le a igna I tLIlll T1 ¡

doub I e no_k (CL I t1l tCL I n) ;

doub I e no_a tCL I tll tCL I t1l ;

double bigk;

double alphak;

int fp_k tCLlnl tCLInl;

¡nt fp_a tCLItll tCLl¡tt ¡

int fp_bigk¡

int fp_alphak¡

double rho;
doub I e theta:
double rl.r?t

/r nonnegativelg indaxed v_parameters il/q (n+o-bi t. 2s compleaent) El/t nonncgativelg indexed v-paraneters 8J./a (doublo precieion floating_point) E//û €nge¡bl€ of norral ized au[oèorrel. sl/.E coøtt icients (noninat) conõi;;"i¿; st/.s lro-a-segnentE of signalii: - -
al/.a rtiltjl - i - eegnãnt inåex *tt,y -1- jthcoeff.of seg.ial/a ¡san of reflection coefficients in El/,a array fp_k O 0 ¿//a vartanc€.of reflection coefficients s//.s in .arrag f p_k 0 0 aoout ih" i.-";;;- t/f.s valuc¿ in nean[] ¿//.t aignal generated bg siggen function al/a {doubt6 precision floating_pointl ú/û enreñbf€ of noninal reflection *//.a coeîticienta 4//s ensenble of noøinal spl i t Schur sl/,E reflection coef f icienis E//.¿ doub le prec i s ion f loa t ing-po in I ú/.s rei lection coef f icient sl/t split Schur reflaction coefficient E//s (doubla preciaion ftoating-poini) -

al/E ense!ìblB of fini te precisíon (n+m_oi t*//-ø , 2ø complernent) reilection coe f f s.
'El

/a anseabla of fini te prec¡s¡on (n+e_úi t*//.¿ , 2a conrplenentì spl it Schur al/.9 rel icction coef f icients a//* fixed-point, 2e conp. vereion of E//.u u1r iablc bigk tl/t fixcd-point. 2E conp. vereion of E//.¿ var ¡ablc elphak t//.s pol e Àodulue of Znd order AR arode I tl/.a polc argument of Znd o"¿u. ÀR iãJet E//a th€oretical valueE f or r [l).r tZ] *//* asauning Znd order nR proãÀås--- s/

Fi le fp-spt it_achur_eia printed on lJed Aug lg 13:04:A3 lggT page S of 7int one: /4 ltanóard forøat repreeentat l;;-;;----;]
int i, j,k; iå l::r^::::î": J:ïI ."

-
xlint n,ø¡ ,¿e nun[ei-of b¡tB (including eiqn bit) ul- la in the fixed_po¡"t ,oi¿ ï"-.,Ì, ulint tensth: za renjlñ åi eignar 0 E/int l: /E nruË.. ãi oo,nts usec, to get r[) v/int nco: /;'i;;;;'"; ias ,atre Al€ at"ã t¡," *//a nunb€r of reflection coeffs. to bo a/

int prod; ii ffii::::s intaser productdouble danosi _ /s teaôorarü variãbte' 8/doub I e trl. tr2. tl. tZ, t3; /, ;;;ã-i;;f,o"""g var i ab I es tldoubte t4, tS¡ tE àiiil'iäi". t€Eporarg variabtee s/double var_blgk_Z¡ /E tfreoreîical variance of th€ Znd El
int nses; íå;:jJ::,:?^.ï::jl:':?i",;",;;;,". fl/E to cooput€ rïl t¡ irã"gin"rli""""9r al
i"pp - fopen(f inpar,.r.) ;oupp Ê fopen(ffout, "uo);
facanf (inpp,'t¿ Nd Xd Nd Íd ld.,6n, in,6length,gt,Enco.6nseg)

¡
aiggcn(cignal, length.grho,gthetal¡ /* construct the test signal vlâutocorr€ late(ai gnal.r. l.nco.noøgi z ti f ind f loat ing_pt. autocorr.. q//* coøfîiciEnts al
fprintf(oupp."rr'-l Theoreticar 2nd Refrection coefficient \n,)¡rprintÍforpp,.za.," -- --Ë";;;

vã"¡ancefprintt(oupb.'\n.i: rd¡ rdncet \n')¡
rl . Zrrhoacoa(thatal/û + rho*rho):
l!"ou: (I + rhosrho) E ein(thota)¡'r¿ - rhosrhos(ein(3sthetal_rho*rhossin(theta)

)/denom;fprintf (oupp..rs fl0.6i {^..;-th;;åi'i'.", rrlt -.,rl):fprintf (oupp,'fe fl0.6r-\;.:" ìË;;"iii", ríZ! -..r?t:deno¡r - (1.0-rllt(l.8_rl¡rtirti.ãi.iinii.ø*"U
:trt - (2.gtrlrrl_r2_l.9i"ri.a.iiii'ri.ãi.U .(l. B-rlrl) r (2.oælrri.4. ã;i;;ã*i. sl ,llZ .._!t.B-rlrtlr{l.8+rij¡-'--

tl - (2.8¡¡lrrl-r2-l.glrli.g+rl)r(l.8+rl)
+

17 - iiiãiiïiiiítãiliÍliÎïllllll,,
tJ . ¡¡.E+r?-2.gtrl¡r1)¡{l.S*"ili-(í.g+rl)

;lf - fi.0-rl)ru.B_rr*rr)iii.äiiriiii.bi"u,ts - {l.g+rl}¡(l.B_rl*ri}: -'-!..v-'¡.,i
ver-b i gk-2' (trls trl+tr2åtr?+tlatl + t2* t2+ t3* ¡3+ t4s t4+ t5at5). / (denoeadenoel

¡

iËiiii ?it,;-.
yii-ii tl¡? î.ry:,l;l ; ;Í¿l.j ?".,?å i, :, . l.l; 3å i sk_z) 3fpr i nt f (oupp. .\n\n,)

;

fprintf(oupp,'Ie".o EnEeable of Nominal and Nor¡ral izedrprintrÍoupp.'ta'.' auioi.;;rj'ãî;;; coerrici6ntEfprintf(oupp..\n.j:
for (i-Q¡ i < nrcgi i++)

for (k.@¡ k<.nco. k++)
f
fprintf(oupp,.lE fd zE fg.6f ",,r[.,k.,] - ..rtil tkl):

fpr i nt f (ouÞp. "\n.) ;
t

fpr i nt f (oupp, .\n\n')
;

/t conpute ens€6ble of noøinal reflection coefficients a,/

i5: ;lli Í3Ji3: :il. ;, Ensenrb I e of No¡n i na I Ref I ect ion coef f i cients \n") ;for (j.@; j < nacgi ;++)
vISl (01 . rfjl t0l:b¡sk - g.g:
for (k-l: i<-nco; k++)

v(Bltrl -2.0E rtjJtk)¡
,

for (¡-Q; kcnco ¡ k++)

vtll(x] . rtjl[kI + r(j]tk+ll¡

\n') ;
\n") :

Fi le fp-epl i t_Echur_eiø printød on Lled Aug lg 13:04:t3 lg87 page 6 of 7----;;;-ì;-i;-;;-;;;;l;;--------
I
alPhak . vtil l8l/vli-ll tøl¡
bigk . 1.9 - (alphak / (1.8 + oisk)l;
no-aIj] [ìl - alphak;
no_ktjJ tiJ - bisk¡
fprintf{oupp.'Íafdfell8.6f',' K(". ¡, ") . ",bigk);
for (k-B¡ (k <- (nco-¡-lll 88 tk > -l) ; k+o)

(

v(i+lJ tk! . vtil tkl
I

I
fpr i nt f (oupp,'\n'I ¡
I

fpr i nt f (oupp, "\n\n') 3

/a output enseøbl€ of noainal spl i t Schur reflection/s coøÍliciante

fprintfforpp._" Eneemble of Noøinel Split Schur Reflection \n.);fprlntffoupp.l Coefficiente \n");
fpr i nt f (oupp, '\n") ;for(j-0;j<n8êg¡j++)

(

for (i-l¡ l<-nco ¡ i++l
(

fprintf (oupp,'tefdtoXl8.6f",' a('. ¡,.) - .,no_atj! til)¡
I

fprintf(oupp,"\n')¡
¡

fpr i nt f (oupp.'\n\n') ¡

/s conrpute €nsetrble of fixed-point reflection coafficients u//v aseuaing that there is no quantization error in the 8l/E autocorrElation coefficient estiaatas 6xcept that due El/s to rounding to n-bit, 2e cornplement nuebers ul
fprintf(oupp.'Ía'.' Ensemble of Fixed-Point Reflection \n.):fprintf(oupp,'la'.' Coefficients \n.):fprintf (oupp,'ls',' (error-free autocorrelation coeffs.) \n.);fprintf(oupp,'\n")¡
one - 81¡
ong s one << (n-1)¡
for (j-8¡ j < nccg; j++)

{
fp_v(01 t8l - rto¡(rtjl tOl,n):
fp_bigk - 8:
for (k-1¡ k<-nco: k++l

I
fp_v tol tkl - 2eftoo(r t¡) trl ,n) ¡
I

for (k.Q; kcnco ¡ k++)
I
fp_v(ll [k] . ftob(r(j) (kl,n] + ftob(r(jl tk+lt,n)¡
I

f or (i-1 ¡ i<.rrco; i++)
I
fp_alphak - divide(fp_v(i¡ tOl, fp_vIi-ll [fl.n,n];
fp-ÞiS! -€- on6 - clivide(fp_alphak,one + fp_bigk.n.a);
fp-atjl (il - fp_alphak;
fp-ktjl Iil - fp_bigk¡
fprintf (oupp,'lotdfoflS:6f',' K(', ¡."1 - ".btof (fp_oigk.n,ml Ifor (k-8¡ (k <- (nco-i-l)) 66 (k > -l) ¡ k++)

{
prod . quant(fp_alphakafp_vti-ll [k+11.n) ¡'fp_vIi+1! tk] . fp_vf il tt<) + fp_vIil tk+l] - prod¡
I

I
fpr i nt f (oupp. '\n') ;
I

fpr intf (oupp.'\n\n') ¡

,/a output eneesble of fixed-point epl i t Schur reflection tl/s coefficientg */

+ v(il tk+l! - alphak E vti-ll tk+ll;

E/
ø/

fprintf (oupp,' Eneeable of Fixed-Point Spl i t Schurfprintf(oupp." Reflectlon Coofficientsfprintf(oupp.'\n-)¡
for(j-S¡j<n86g¡j++)

I
for (i-l¡ i<-nco ¡ i++)

\n");
\n') ¡

Fi le fp-epl i t_schur_eia printed on lJed Âug lg 13:Ø4:t3 lg87 page 7 ol 7

I
fpr intf (otpp.'fofOloÍl8.6f ',' a('. ¡.') -'. btof (fp_a (jl (i l, n, ø) l :
I

fpr i ntf (oupp. '\n" I ¡
I

f pr i nt f (oupp, "\n\n") ¡fprintf (oupp, "íø 7d XE \n', " lJordEiZa - .,n+m, " Þi ts ,l ¡fprintf(oupp.'Íe td \n',' No. of fractional bi to - .,n-I)
¡fpr int f (oupp. "\n\n'l ¡

/e compute and output the øeans añd variances of the 8/lE rel loction co€ff¡cientø al
fprintf(oupp."feo,' Fixød-Point Reflection Coefficient \n');fprintf(oupp.'fE',' lleanc and Variances \n.t:
fpr i nt f (oupp. "\n") ¡for (j-1; j <. nco ¡ jaa)

I
mean[jl - 8.8¡
for (i.0; i < naeg¡ i++)

I
ts€an(jl @ EeanIjl + btof(fp_ktil Ijl.n,m)¡
I

uean(j) o treanIjllneeg;
t

for (j.1 ¡ j<.nco¡ j*¡
{
vari Ij) . 8.8:
for (i-8¡ i < naeg¡ i++l

t
bigk - btof(fp_ktil tjl.n,ø) 3vari Ijl - var¡tjl + (no_kt¡l tj¡ - bigk)r(no_kIi¡ tj¡ - bigk);
I

vari Ij) o var¡ [jllnsag;
fprintf(oupp,'ts\n"," ltean
for(¡-1; j <- nco: j++)

fpr i nt f (oupp.'fsfdls Xll. 8f ZL4.8r \n','K (". j, ") ", øean t jl, var i t j I) ;

Var i ance ') ¡

File f out printed on lJ€d Aug lg L3 Ø4:lS lgET

- 2nd Orde¡ AR Proceaa parameters -
pole Eodulus. ø.75øøøø

page I of I

pole angle (degreee) - L7S.øAøøøø
no¡s6 variance - L.0øøøøø

Theoret ical 2nd Ref lect ion Coef f icient
Error Var i ance

theoretical rtll - -A.gSG346theoretical r[2J . B.8S6561
Variance ot K(€I - g.øOøø9249

Ensemble of Nooinal and Noraal ized
Autocorre I at i on Coef f i c i ents

K(1) -
K(1) -K(t) -
K(1) -K(l) -
K(1) -K(l) -
K(1) -
K(r) -
K(1) .

r
r
r
r
r
I
r
r
I
r

a(l) .
a(l) -
a(11 -
a(l) -
a(l) .
a (11 -
a(l) -
a(1) -
a(l] .
a(l) -

- t.542863
- 0.596887
- s.s56391
- 0.578931
- 4.s3s663
- Ø.5827Ø4
- 8.574666
- 8.584826
- 0.681837
- 4.562988

a. E956ø8
8.789661
s.867548
4.838171
0.9t7237
9.8t7254
8.E3?47L
s. El3889
ø.779925
s.8s6538

ø
I
ø
g
ø
ø
ø
ø
ø
ø

- L.Øt0808 r- L.8808Ø0 r- l.AØØOØ0 r- I.O88868 r
- l.Ø000ØO r. 1.008Ø08 r
- 1.8808Ø0 r
- t.ØO0OØ8 r- 1.868088 r- 1.0ØOØØ8 r

- -8.959196 r- -8.954644 r
- -t.9S5647 r- -0.953459 r- -0.954328 r- -0.958454 r- -0.35722Ø r- -8.968358 r. -8.9548E2 r- -0.959615 r

s.87665E
8.8585ø7
s. E650gl
8.8572t9
ø.863378
4.87t223
r.868155
0.876835
8.8S879A
ø.676313

I
I
I
I
I

2
2
2
a
?

2)
2
?
a

Ensemble of Nominal Reflection Coefficients

Ensenble of NoFinal Split Schur Reflection
Coefficienta

ø.9S9196 K(2)
0.954644 K(2)
0.955647 K (2)
ø.953469 K(2)
s.954328 K(2)
s.958454 K(2)
s.9s722ø K(zt
4.96æ55 K(2)
8.9548E2 K(2)
s.9s961S K(2)

ø.ø4ø8f3 a2l -
S.8453SS a(21 -
ø.ø44352 a(21 -
4.S46538 aQl .
8. S45671 alz't -
8.S41S45 a(2) -
9.842773 a(21 -
8.æ9643 a(21 -
ø.ø49ll7 a(Él -g.8É,æ84 a(21 -

4.959228 KtZl -
4.954589 K (21 -
8.955688 K|€t -
8.953431 K(2) .
4.954345 Kt2) ^4.956496 K(2) -
ø.357275 K(21 -
ø.960í327 K(2) -
a QcLQ'2a v tar
0.9s9S94 K(2t -

Ensemble of Fixed-Point Ref lect ion
Coefficiente(error-froe autocorrelat ion coeffs.)

K(1) -K(l) -K(l) -
K(1) -K{l) -K(t) .
K(1) -K(l) .
K(!.t -Ku) -

8.543698
8.59436S
8. s57739
0. s7l4l I
8.538761
8. 583984
ø.576660
8. SE39E4
8.598999
s.562133

Ensemble of Fixed-Point Spl i t Schur
Rcf lact ion Coef f icients

a(ll - ø.A48771 aet - 0.895263a(l) - ø.ø4S4Lg a(2) - 0.792368a{l) - S.S443lt el2l - 8.86499ø

Fi le fout printed on Ued Aug lg 13:84:19 lgET
---------:::-- Pase 2 or t

a(l) . 8.S465S6 e(2) . ø.B37ZBAa(l) . ø.ø45654 a'2) - s.917114a(l) - 8.d4l5æ aet. B.814637
e!11 - ø.ø4zzz4 aÒ, - ø.eãs6isaf¡l - ø.t3s672 a(Z) - s.BlS4Zga!!l - 0.s4s166 eet - s.7B38taa(l) - ø.A4ø4tS aet - 0.858æ2

lJordEize - 16 bite
No. of fractional bltE - 13

Fixedfoint Ref lectlon Coeff icient
ñeans and Variancaa

llean Var i anceK(11 8.9S67E718 ø.øøaøasseKlzt s.s7r3læø ø.aøasøLt8

APPENDD(D

Summary Tables for Ourput from the

Program in Appendix C

b var[N(Øl 104

Theoretical Experimental

8

10

t2

14

1670

104

6.51

0.407

5930

66.8

6.95

0.574

Table I: Comparison of theoretical and experimental results for the finiæ precision sym-

metric split Schur algorithm. Here p = 0.875 and 0 = 5o.

b var ¡ÁK(2)1 lga

Theoretical Experimentai

8

l0

t2

t4

116

7.24

0.453

0.0282

47

9.48

0.654

0.011I

Table II: Comparison of theoretical and experimenral resuits for the finite precision sym-

metric split Schur algorithm. Here p = 0.75 and 0 = 5o.

b var[AI(Ø] 104

Theorerical Experimenral

I
10

t2

t4

2.44

0.153

0.m9s

0.ws

2.60

0.151

0.0111

0.w2

Table lrr: comparison of theoretical and experimenml results for ttrc finite precision
symmeric split Schur algorithm. Herc p = 0.g75 and 0 = 45o.

b var[ò,KØ1 1ge

Theoretical Experimental

I
r0

12

t4

2.t9

0.r31

0.m81

0.ms

0.742

0.170

0.æ45

0.w3

Table rv: comparison of theoretical and experimental results for tltg finite precision
symmeuic split Schur algorithm. Here p = 0.g75 and 0 = 135o.

b vart\KØl t04

Theoretical Exprimental

8

l0

t2

l4

t460

91.3

5.71

0.357

1440

62.6

11.4

0.366

Table v: Comparison of theoretical and experimental results for the finite precision sym-

metric split Schur algorithm. Here p = 0.g75 and g = 175o.

b var¡tKØ1 1ga

Theoretical Experimental

I
l0

t2

t4

1m

6.40

0.4m

0.0249

27.2

3.96

0.170

0.0r58

Table VI: Comparison of theoretical and experimental resuhs for the finite precision

symmetric split Schur algorithm. Herc p = 0.75 and 0 = 175o.

APPENDIX E

Program to Compute the Theoretical Value of

VarlLK¡l for the Symmetric Split Schur

Algorithm

Frogram SYM_SCHIJR VAR

L lntroduction

The finite precision a¡ithmetic (twos complement) implemenration of the sym-
metric split schur algorithm of Delsarre and Genin [1] produces estimates É¿ of the

T.
(infinite precision) reflection coefficients Kk with error LKk (i.e.,

Kt = Kt + M¿). Equadons (10)-(12) of Za¡owski and Ca¡d [2] provide iterative
expressions for aK¿. Closed-form expressions for LK¡ a,re ha¡d to obtain, so a rec'r-
sive PASCAL program catled SYM-SCHUR-VAR is used to calculat e òK¡ for any t,
and any suitable sequence of normalized autocorrelation coefficients as input Thus,
we have produced a crude symbolic computation solution to the problem of estimating
VarIAK*l.

II. The Data Structures and program

We begin by stating the recursions
SYM_SCHUR_VAR. Since we are nor inreresred in
from (11) and (12) using (10). This gives us

evaluated by the progam
Varfcro1rl, we can eliminate Âc¿

(1a)

t_K,
ÃK¡= ffiar*_, - avr,o

v¿_,,e(l+K¿_1)

Âvr-r,o -v¿_,.6(1+K¿_1) 1+K*_,

Âvt*t,¡ = Lvt¿ * Âvt,i *r - c[¿Âu¿-1,¡*¡

rc.Þ+r'
,*-,,0-a'*-t'o * Î"*'¡i -

< k < n and0 <i < n-k-|. Initially,

Avo.o=Â16-0 ,

Q.¡

Ia,¿ * 4K,& ,

-*E¿,*,0
v k-l,0

vk-1,¡+t\a.,k ,

(tb)

where 1

Avs,¡=ZLr¡ (LS j <n),
Uu1,, = Ar¡ + Lr¡*r (0 <i < n-I)

A PASCAL record rype called DELTA is defined as follows:
DELTA = RECORD

K,J:INTEGER; { = È and 7, respectively }
SUCC_DK:PT_DELTA; {=ÅK¿_1 }
SUCC_DVK_0:pT_DELTA; [=Avr,o]
SUCC_DVKM1_0:pT_DELTA; [=Âv¿_r,o]
SUCC_DVK_J:PT_DELTA; (=Âv¿,j

)
SUCC_DVK_Jp1:pT_DELTA; { __ Åv¿,i*r }
SUCC_DVKM1_JP1:PT_DELTA; [=Avr_r,;*r]
SUCC_ETA_ALPHA_K:pT_DELTA; [=la*]
SUCC_ETA_K_K:pT_DELTA; {=Ir* }
SUCC_ETA_VKpI_J:PT_DELTA; { =e,..,; }

DK:DOIIBLE-REAL;

DVK_O:DOUBLE_REAL;

DVKMI_0:DOUBLE_REAL;

DVK_J:DOUBLE-REAL;

DVK_JPt:DOUBLE_REAL;

DVKM I _Jp I : DOTIB LE_REAL;
ETA.ALPHA-K : DOUB LE-REAL;
ETA_K_K:DOUBLE_REAL;

ETA_VKP 1 _J : DOUB LE_REAL;
END;

PT-DELTA is a pointer to a DELTA record. Notice rhar each field of type
PT-DELTA represenrs a re*n in one or borh of the equations (ra,b). The
DOUBLE-REAL types (double precision floating-point) are the coefficients in front of
the va¡iables (e.g., DK = (\-Kk)/(l+K¿-1) is the coefficient of term

^Kr_l
in (1a)

which'is represented by the pointer succ-DK). Nominal parameters such as Kp, a_¡
or vk'i ¿Ire computed by the procedure called NOMINALS. Nominal parameters are
made globally available for convenience. K (= &) is the level of the recursion, and J
(="r) is the i th coefficient at the &th level. The user specified value of k (which is
read in by procedure READ-PARAMETERS) is the top-most level of the recursion,

(2)

and so corresponds to the root nde of the rree (see berow).

The pointers pr_DELTA may be set to nil for one of th¡ee reasons:

(l) The varÍable to which the pointer corresponds is unused (e.g., equation (lb) does
not have a ÂK¿-1 terrn), in which.-¿se the associated coefficient is set to zero as
well.

(2) when K (¿) is õf such a varue rhat we have rerms like Åvs.s, avo,j , or Áv1.,
(which depend upon År; (see (2))), then the associated pointer is set to nil.

(3) SUCC-ETA-ALPHA-K, succ_ETA_K_K, ancJ succ_ETA_vKpr_J are
always set to nil since they are not recursively dependent upon anything.

Thus, nil pointers primarily ind.icate that we've reached terms in the expression for
ÂK¿ of the form Mj ,\o.t, îK,¿ or er**,,;. Like tenns in these variabres may then
be collected and saved by a suitabre tree traversar (see berow).

Each of (1a) and (1b) requires a recu¡sive procedure ro represent it. procedure
MAKE-DK represents equation (1a) and procedure MAKE-DV represents equation
(1b)' Procedure MAKE-DK calls itself (since (1a) contains a rerrn with ôK¿_r in iÐ
and procedure MAKE-DV (since (la) contains rerms with Âv¿,s and Âv¿_r,s in them).
Procedure MAKE-DV only calls itself since there is no rerm containing LKk_rin (lb).
A comparison of the MAKE-DK and MAKE-DV procedures with (la,b) should reveal
to the reader how they work in detail.

The tree consbrucred by MAKE_DK and MAKE_DV is rraversed by rhe pro.
cedure TRAVERSE, which collects and saves the like terms in the variables of the
form Q¡,v *d

^ti
as previously described. The fi¡st call of TRAVERSE (in the

MAINLINE part of the program) is

TRAV ERSE (TO P, 1.0,0,0,0);

where ToP points to the top of the Eee, and vALUE = 1.0 is the inirial value of any
term in the final expression for AK¿ (before atl like terms in a variable have been col-
lected by TRAVERSE). IID,IK, and U a¡e all arbitrarily ser to zero (0) initia¡y. If
PT is rlil then the IID number deærmines where VALUE is to be saved (by accumula-
tion (adding)). Note that as TRAVERSE traverses the tree, VALUE is multiplied by
the appropriate coefficient until a nil pointer is reached (pT = nil) whence vALUE is
added to a suitable location in one of the following ways:

DELTA_RI.] (= Arj) rf IID = 1,

ETA_ALPHA[.I (= rlc,¿) if IID = 2,

ETA_K[.] (= rlr*) if IID = 3,

ETA_VKPI[.,.] (= I,,*,,j) if IID = 4.

Thus, the arrays DELTA-R[.], ETA-ALPHA[.], erc., conrain the terms in the final for-
mula for ÅK¿ as a function of the variables Âri ,r1..0 , 4tr,¿ Íüd îrr,,,.r as we wish.
Squaring and summing the encries of these ¿urays yields

VarlLK¡l_q-
which corresponds to the variable vAzuANCE in the MAINLINE part of the program.

The program prints out VARIANCE x on2, where tî= + (see [2]). It does so for

b = 8,L0,12,14. The enries of the ¿urays DELTA_R[.], ETA_ALPHA[.], ETA_Kt.l
and ETA_VKPI[.,.] a¡e also printed out.

XII. Sources of [nefficiency

Procedu¡e TRAVERSE wastefully accumulares VALUE and then multiplies
VALUE by zero when it encounters an unused pointer. One way to avoid. this would
be to use rwo different record rypes; one for each of the equarions (la) and (1b).
However, this greatly complicates the traversal process and so is not a viable alterna-
tive' A better solution might be to flag unused pointers as suih and so avoid using
them during the traversal. For small to moderate values of & there seems to be little
advantage in doing this.

A much more significant source of inefficiency is the fact rþ:at a given term in the
expansion of the explession for AK¿ may appear many times. This corresponds to
"rep€ated b'ranches" in the tree representing the expansion of the equation for ÂK¿.
For example, when k = 3, the term Lrz,o appears 4 dmes. If È is large then much
storage could be consumed and much time wasted in constructing tree branches that
already exist somewhere else. A solution to this problem might involve flagging the
repeated terrns (repeated branches) somehow and creating them once only. Frowever,
this complicates the program (though probably nor enorrnously). The simpre, though
inefficient, solurion presenred works well enough for the purposes of the paper [2].

REF""ER,ENCES

lll P- Delsa¡te, Y. Genin, "On the Splitting of Classical Algorithms in Linear predic-
tion Theory," IEEE Trans. on Acoust., speech, and signal proc., vol. ASSp_35,
pp. 645-653, May 1987.

tLl C' I' 7-a¡owski, H. C. Card, "Finite Precision A¡ithmetic and the Split Schur
Algorithms," submirted to the IEEE ASSP rransacrions.

F¡le SYñ-SC¡{-H_VAR printed on Fri Aug 7 Ig:ZI:ll 1987 page I of 5Pdgc ¡ c
PROCRAN SYÌí-SCI,RJR-VAR (¡ ¡{S TI,PF, A-i IS IUFF) ¡

Í1 I!!" progre@ conputes theor6ticat reftection coefficientts 6¡ror ver¡ancea due to fixed_poìnt 2e complenent ar¡ thhêtic(s u.¡ th quant-ization due to rounbing.
l1 lh".yldg.lging algori thE that crõates the reftectionrE coeittc¡ontB ie the egnøetric spl i t Schur algori thm of(a 0e I ear te and Gen i n¡(t
le P. 0elsarte, y. Genin, .0n the Spt i tting of Classical(s Atsorithns,. IEEE Irane.-;. À;";;i.. Spãec¡,,-åãi-éîä.rr(e Proc.. vot. ASSP-3s. pp. SiS-eÈã.'úåu-iõõi."

v's ure"o¡
(s
(s BecauEE of the coøplexitg of ths recursions for the(a quantization arror sxprsõaions of the reflection
Í: :::tticientE, ¡ t ie nãt-poàãi¡lã'to"ãota¡n ctos€d_for@rs Error YArtAnc€ exÞreggiOnE. HenCe, it ie neCoeaarg-to
Ís conetruct a "".r"'ai"À-piofiau i;-;;oå¿"" thege reftection(s coefficicnt ðrror vâr¡äncõE. iÀ¡ã i"-"".onpt iehed bg this(e prograo.

sl
E)
E)
a)
ø,1

s)
rl
s)
rL,_
El
r)
a)
E)
a)
s)
s)
u)
al

rl
c0ilst

cLItt - 12'
TYPE

VAR

¡.¡ls TlqF, 0.J TS II-FF : TEX T ¡
V: I1ATR I X:

ETÂ-VKPI:llATRlX¡

(E l'latrix of v-paraneterg
a the aplit algorithm.
e V€ctor of reflectior

(a Terns in the fornula
(E ñorE terms in fornule

produced bg s)
*)

(g ¡laxieua nuqber of autocorrel. coeffs.
yçÇItr - ARRAv(0..CLrn¡ 0F rÐr.tsLE_REAL:

Ëî]3ll'; T$JJ?;, o ¡ n' s'' cr inl-op- õijÙelE-nenl'
OELTA . RECORD

K,J: lÌ'|TEGER:
SIJCC 0K: PT_OELTA:
SUCC_OVK_8: PT_OELTA¡
SUCC_OvKnl_A: pT_O€L Tn;
SUCC_0VK_J : p r_OËL rÀ ¡
g$q_qvK_-Pr rÞr oELÍ¡¡
succ_ovKnl_.P t : Þr ogui¡;
!l{çç_q IA_ALPHA _r : Þr_0€r- Í¡ ¡

!ü38 =E
Iî :í--5 i'_i-;S!Iê¿,

^,0K:OOUBLE REAL:
OVK-8: I}üJB-LE RÉnL,
OVKI1I _O: OOTJBLT REAL.
ovK_J;oougaË_neïI,-'
OvK_JPl:I]OUBLE REAL.
o vrñ r _-n i i óq.ñutlÈÅr_,
E T A-AL PHA

-K
: æueL]E

-RÈÃL ;h lA_K_K:OOUBLE REAL.
_e.r4 _vre r _J i oõHÈ_ñÈEr_ :
Ett0:

B I G_K. ALPHA . R: VEC I(F ¡

N: INTEGER:
lX.JX.B: INTEGER:
TOP: PT_0€LTA¡

0€LrA-R. EïA_ALpHA. ErÂ_K, JË.i8Ãj "^'"'

a VEctor,of rsilection coefficients. Eia epl i t Schur reflection coeffE.. ê' eiI nor6a I i zed autocorre I et i on coef fs. s)t. respectivelg.
g Nunbar of corre I at i on coef fs.
a Loop counters.
t Top of tree representing the

s)
s)
*l
s)* goupled recursiye error formulae. a)vAR I AIICE: tIü.tsLE_REÂL; (a Nth reflection coefficient

"".ãi' *i
sl

for VARIAIJCE. al
for vARIANCE. *)

PR0CEOURE REAO_PARA|€TERS(vAR R:vECTOR:vAR N: INTE6ER) ;
Í1 ih¡".p.ocãdr"e readE in the nornai ized autocorratationrE co€litctents froF a file along uith th€ numþer of such(r coefficients. The zsro-t;s-;ã";;it¡""i i; ;t"â;; ãiã""n¿(* so is not read in.

VA¡I
I: INTEGER:

PEQI! t* REA0_PARAñ€TERS al
lE9F I 1 I NsruFF;'connÈl_Coerrs. r :READ(INSIUFF.N}:
RtB) :. l.B:
FOR I :- I I0 N 00

BEG¡N

a)
*)
*)

F i le SYll_SCR.n_Ven pr inted on Fr i Aug 7 lg:21 : I I lSgT__:___________ ___ page 2 of
REAo (t¡{sTr.FF. Riii;;---
EM:

ElÐ; (a REA0_PARAfI€TERS e)

PR0CEUfiE t@t I NALS (VAR I I G_K, ALpHÁ. R : VEC TOR : vA.R v ¡ t1Á ïR I X; N : I NTE6ER) ;(s Ihis procedure coøputãs tne nooinãl values of BtG_K. ALpl-|,{, an¿
uoÁu

ot V uEing tho nornar ¡zo¿ ãuCããofiål"tion coefficients in R.
sl
s)

I,K: INTEGER:
8€GIN (t lgrtñtS E¡Vt8,Al :. Rt8t:
BIG_Kt8l :.8.8,
FOR K :. I IO N OO

8€6IN
y.t!,Kl ¿- Z.B e RIKt;
Et€:

FffiK:-ATON-l00
BEG¡N
y.qi.K¡ :. RtKt + RtK+lt;
EM]:

F(F I :- I T0 N tÐ
8EG¡N

üiËTjiì :: Ijå. 3'íiJ,hii ?)i,.,K :- 8:
L'HIIç ((K <-N _ I _ I) ANo (

8€6¡N
vtl+l ,Kl :- Vil,Kl + Vil,K+llK ¡- K + l:
EM]:

ErÐ;
EMI¡ (E NûñINALS *)

+ BIG_Ktl-1D:

K>-1))æ
- ALPHA tl I a v tl -l.K+ll :

8ffi5on.rilär#rjltiv: pT_oELTA¡ rK. JJ: TNTEGER) :
rJtTH PT_ov^ oo-

EEGIN
K :. ((.
J :. JJ;
IFKK.IIHEN

BE6IN
!!{ç_ovK_s :- NrL;
SUCC_OvKnl_8 ¡- NiL¡
!!.1çç_qvK_J :- NrL;
gl.1çç_qvK_,Pl :_ NiL¡
SUCC qvKñ!_-pl :-NtL¡

iffi 3:E li--0iË11¡0, :',i¿ :'
!Yl_8 ,- _v tKK_l,JJ+uiv tKK_t.8t :g.y5nl_s : - ALpnAiiÈlãúirr_i. jjiii zv rrr_r. al,OVK J ¡. l.B:
OvK_fl :. t.B:
9Y$11==Fl '

- -rpx¡ rrxl ¡
_E IA_ALPI{A_K : . _v tKK-l . JJ+l I ¡ETA_VKPI_J :. 1.0¡

ELSE
EEGIN
NE]J (SIÆT OVK 8) :
9Y5=a- t .--v tK?-i . JJ+l I /v tKK-t . 0t :
l4r(E_oy (succ_ovK_o,rx:l ,;;^ " -' 'IFKK-l-tr-xEm-

BEGIN
SLJCCt0vKtll_B :. NIL¡
OVKII¡_9 :. ALpt-rAtKKj a vtKK_l.JJ+ll / vtKK_l.Bl¡
ENO

ELSE
BEGIN

I-EIJ
(ST JCC_OvKtl I _0) ;gyllr=0 a. rr_pnn rirJ s..v{KK_l, JJ+l I / v rKK_l ,0t ;nÁKE_ov (succ ovKÈil d vv t ãt

EN0;-- '¡-srÀÀ-¡'o';
tlElJ (SUCC_OVK_J)

I
UVK_J :. l.B:
ilê[is3¡J'3çF_o,JTrj, KK_ r . JJ) :

ovK_Jpl i. f. S,
-' '

iÊ-F--:J'3',fttg¡¡-JPr . KK-r, JJ+r) :

i:]:-l]1=TT{-vAR printed on F,BEGrN ___:t_lg__l_ll:31:ll_ll'
succ bwn, Þr . r,,, P¿qts 3 of S

ñr;rlsl';fl*rrlifi, ¡ ----------:-:--:-
El'0

ELSE
EEGIN

ffi,{ry,#öTffig:,__,
. JJ+,, ;

n¡re o-
ENO; -

SIJCC ETÂ

åtr_'ffiËli¡¡Til*,,,.EtÐ:
gtJCC_0t(¡ _ NtL:

3*trlttJiuÍ-o' il ¡¡r r- ¡

È^Bj* ,_ 8.8¡
E^Ð; (s ñAKE_OV gt

i,$;i¡*+:
(P l-tx: Pï-'EL rA : KK : I NTEG€R) ¡

{ t' xr:
J ¡- 0:tt

ãð,n
I ir.€N

9l{ç_0(:- NrL;
Flfg_Lr-{_s :. NrL¡owL uvrñt .g ¡_ HIL:succ-Er¡"i¡
iræð:È ii_l.f"lå ; i,''.,0K : I' a. d,'
0vK_8 ¡- lr

ËtrÏt'ùiiî'tiri""i'-'
u"

ELSE
8EG¡N
NEIJ (SI,f,C-DK}

;

m¡'tgJ*tF-å11-[jfí:'
/ (t'ø + 8rG-K tKK-r t) ¡

OVK 8:---t-diiJ@. ^-
m-*i?si;-gff;å:f:iJl'' + BIG-K tKK-u)) ;

'n.ããil ' t î
8ffisf;_ï_e. :. NrL¡
E¡o''-"'- AtPl{AfKK¡l(v(KK-l,Bla(l.B

+ Bl6_K(KK_tJ),.ELS€ ----'r'rn-¡rIrr
EEGIII

Ëtr iiåffiffiik¿:;¡-,5:;1.o,s(, I + LG-K (KK-L,,

:*CTFSJIPHA_K ,. NrL:

flfliii*';'-i¡fl
tt' a + 8tG-K tKK-r I) ¡

._ffi*'
PROCEOUFE IRAVERSE (PT:PT-OÊLIA; VALI-E:OOUBLE-REALI

I IO, IK, IJ: INTE.ER) IIvALUE:00UBLE_REÂL;

Fi le sYfi-sct6JR-VA^R printed on Fri Aug 7 lg¡21:ll lggT page 4 or s
BEGIN (s TRAVERS€ E)
IF PT <> NIL TI-€N

EEGIN
t.JI TH PT^ TXl

BEGIN
TVALT€ :. VALLE E K¡
ÏRAVEFSE (S,EC-IX. TVALI..E. 8, K. J} ¡
TvÂLtE :- VALU€ e OVK_8;
TRAVERSE (SIJCC-OVK-9. TVALI,€. I. K, 8) ¡
IYALq€ ¡. vALU-iE "iúrnr_si'TRAVERSE (SæC qvKnl _8. TVALT-€. I . K_l .81 ;
IYALT-€ :. vrrlf€ a ov-K-J;
TRAYERS€ {g.EC_DVK J, TVALI.E. 1. K, JI :
IYALLE :- vALfE giúr__pÍi'
IRAVEES€ (SIJCC qVK_-Fl ;TyÂLt€. 1. K. J+l) ;
IYALTJ€ :- vrrLüE "ivrúr_¡pi;'-'''-ïRAVERSE (gJCC qvKñl _-p t lrv¡[r-c. I . K_l . J+l) :
IyeLE ¡- VALüE a eï¡_Ãipru_td'-''
IlAvEgs€ (gjcc qTA 4LprìA_K. TÍALL€.2. K. J) ¡
Iy$qq :- vAL.E " Eu_rlii
TRAVERSE (S{.€C_ETA_K_K, rin¡-lÆ. g. r, ¡l ;M!tr :. vALf,€ ,-Er-¡_vrÞi_J;-' ''-'
TRAVERSE (SIEC_ETA_VKpi_¡. rÍ¡r_æ.4. K+I. J) ¡
El'O¡

EhD
ELS€

BEGIN
IF IIO - I THEN

BEGIN
IF ((IK-8) AtÐ ilJ<>A)) THEN

8E6¡N
!ç!TA_RflJl :- UELTA_RilJt + Z.B * vALUE¡
ÊM):

IF IK-I TI€N
SEGITJ
IFIJ-8TI€N

BEG¡N

QFITA_RilJ+lt :. OELÏA_RilJ+lt + VALUE:
ENO

ELSE
BEG¡N

QE!IA_|tlJl :- OELTA_RttJl + vALUE;
9F!IA_RilJ+U :- D€LTA_RilJ+lt + VÁLUE:
EM);

Erül;
ENO;

IF ll0 .2 THEN
BE6IN
E-I4_ALH{A(lKl :- ETA_ALPHAilKt + VALUE:
EtS¡

IF¡IO.3TI"€N
BEGIN

E.T¡_l((lKl : - ETA_K ttKl + vfrltE;
Et€:

IFIIO.4TI€N
B€GIN

E.T¡_vKPl (lK.lJl :. ETA_vKpl ilK. IJ¡ + vALrJ€:
EM]:

EM];
EMI; (s TRAVERSE s)

(s nÂl¡{-lt€ PR(mAn a)

BEGIN
RETRI'rE_(0uTSTI-FF.' vAR t ANCES.) ¡
REAO-PARAIIETERS (R, N} ;

lig!'1 l!4!s (Bt c_K. ALPHA. R, v, ¡0 ;
NEIJ (TOP) :
ñ,1KE-0K(TOP,N) ¡ (a Construct tre€ repreeent ing ref lect ion error(s var i ance fornu.l a.
VARIANCE :- 8.8:
FOR¡X:.0T0N00

QEGIN (* Ini tiat I ization toop. a)
qELTA_Rt¡Xt :. 0.4;
ETA_ALPHA(lX! :.0.9;
ETA_K tlXl : - 0. B:
FOR JX ¡. 0 I0 N 00

BEGIN
Eln_vxpl ilx,JXl :- 0.Ø;

g)
sl

File SYil_SCt-fl.,R_VAR printed on Fri Aug 7 19:21: ll lgBT__-___________- __. page S of S
ErÐ:

EN0¡

.I¡¡YEFSE ! ræ, I .8.8, B, r) ¡

!!ITFLN (ûit'sTwF, '
.

0€LiA_R .) ¡FOR IX :. 0 T0 N'8[]
8E6IN
LFIIE (q.JtSTI-FF,OELTÂ_R ttXJ :16: lB) ¡
EIVO:

l{¡IELN (Cr.JTSTr-çF)
; t8t TELN (0tJTSTI.FF) :lJRl TELN (aJTSTurF. ; ÈlÀ_et_pgÅ-';j; ' '

FOP IX :- I T0 N'ffi
8E6IN
UR¡ IE (OUTST|FF,EÍA ALpt{Â ilXl ¡ 16: l0) ¡EM):

IRI TELN (OUTSIIJFF)
¡ tfil TELN ((ÐISftFF) t

IJR¡ TELN (dJTSTI-FF. ; ÈTÀ}
'-;i; '"

FORIX¡-8T0Nffi
BEGI N
lF I TE (ûJTSTLFF, ETA_K (_-Xl I 16: lB) ¡

lf Ii_Elli (qrTsTtFF) :rfir rELil (0tJTSTI_FF) :
!El TELN torJTStr.FF. ¡ ÈrÃ_Vipi'-ii,"'
FOR IX :. B T0 N'rIl

B€GIN
F08 JX :. I T0 N tX)

EEGIN
rnl TE (q-jTSTl-FF, ETA_VKPI (tX. Jll :16r l0) ¡i:-NJ:

l4i :EL¡¡ (û.JTSTI.,FF)
¡

Ëååtii- IlJtlbo[' #R
t tELr{ (cu TS TtrFF) :

vARlÁt-tCE :- VARIAIËE + DELTA_RilX¡sûEL
+ ErA AtPlLA(¡xlüETA-ÂLP*ili,Itlxl

+ ETA-Ktlxlú€TA-Kt¡x¡
FOR JX :- 0 T0 N 0O- --

BEGIN

ISlo*t ¡- vARlAr€E + ETA_vKpt (rx.JX¡*ETA_vKpl rrX.JX!:
Etül:

tNI IELN (üJTSTIFF. '
t¡RI TELN (OJISTLFFi :
B :- 8¡

Peflection Coefficient Error Variances ,l.

ml TE (dJÌSIUFF.B:21)
;rr{¡LE I <- 12 0o

EEGIN
B ¡- B + 2¡
tlRl IE (OUTSTtlFF. B: l4t ;EM)¡

lJRI TELN (CI.JTSII.F'FI !
l¡R I TE{üJISTLFF. . ' var f0((. . N. . } t - .) ;8:-8:
rð{¡LE B <- 14 E0

EEGIN

fj].J{t:]r'.FF.
(vAFtA¡€E a PûrER e.ø.-z.aa,t / 3.e):14:8r:

Etül:
IJFI TELN (ûJTSTUTF)

; €t ÌELN (ûJTStt.FF)
¡

APPENDD(F

Program to Produce Nominal Normalized Autocorrelation

Coefficients for 4th Order AR processes

Fi le AR_4TH printed on thu Aug 6 l3:27:S4 lgBT poge I of 3

PROGSAN AR-4TH (INSTUFF, OUISTIjFF) :

(¿ lh i s progran computes the nortra I i zed autocorre I at i on *l(s coefficionts for a 4th oîder autoregressiv6 procesg r¿i th s)
{s tuo conplex conjugate pole-paire. ihe reeuliing nunbers r)ta are sr¡tten to tha input file of the prograa called u)(a SYñ_SCI-{'R_VAR shich u6€6 thea to coapute ref lection s)(a coofficiont srror variancos. *)

CONST
CLIn.12t (g llax i ¡rua nuaber o f autocorrel. coêf fs. r)PIE - 3.141592654:

TYPE
VECTOR - AfiRAY t8..CLItl¡ 0F DG,ELE_REAL¡
C0ÎPLEX - R€COfiO (* Conplex nunb;r tgpe. rl

FEL:00|J8LE_REAL: (a Reat part. ü)
!f6:0ûJBLE_REAL; (e Imaginarg part. s)
EM)¡

VAR
I NSTLFF. &JTSTUFF : TEXT ¡

FUNCT I OtJ CAUI (X, Y: C0I1PLEX) : COt"tpLEX;(E This function adds t¡ro cooplex tgpes together.
BEGIN (a CAIU *l
CAOO.REL :- X.REL + y.REL:
CAOD. Il15 : - X. 116 + Y. ItG:
ENO; (E CA00 *)

FUNCT l0N CSLJg (X. Y: CO|IPLEX) : C&1pLEX;(* This function subtracts tuo complex numbens.
BEGIN (s CSUB qt
CSUE.REL:- X.REL - Y.REL¡
CSUB.Iñc :. X.l116 - Y. ltlG:
ENO: (r CSTJB *)

FUNCT I 0N ClllJL (X, Y: C0|'1PLEX) : C0ñPLEX¡(s ThiE function oul tipl ies tuo conplex tUpes together.
EEGIN (s CIÎJL a)
Clft{-.REL :- X.REL*Y.REL - X.lñGry.ItlG:
çl1gL. lñG :- X.REL*Y. ltf6 + X. tmGsy.RELi
ENO: (* ClllJL *)

FUNCTI 0N C0 ¡ v (X. Y: C0I'FLEX) : CfflpLEX;(s Thie function dividea tuo coopler
VAR

0EN0l1:0üJBLE REAL:
BEGIN (r ColV st
QEI)¿91 i - Y. RELEY. REL + Y. IllGEY. tl6:
CDIV.REL :. (X.R€L*Y.REL + X.II6si.tnG
COlv.lllG :- (X.ltlGsY.REL - X.RELsy.lñG
ENO; (s COIV a)

FUNCT ¡ 0N CEXP (X. y: O€UBLE_REAL) : COI,FLEX ¡(s Thia function conpuiee x oxp(jgl, j . sqrt(-l), x.g
VAR

S I NE:0&JBLE_REAL:
EEGIN (* CEXP g)
!!xE'- cOs(PtEl2.t - y);
CEXP. REL :.. X r COS (y) :
CEXP.lllG :. X s SINE:
END; {s CEXP s}

FUNCT ¡ 0N REAL_PART (x:C0|1PLEX) : O0.ELE-REAL¡
_ {û This function takes th6 real pa;t of x.
BEGIN (* REAL PART s)
REAL-PART :. i.nEL¡
EN0; (s REAL_pARI r)

FUNCTI0N lnAG_PART (X:COtIPLEX) : OCI.tsLÊ_REAL;
__{t Thie funãt¡on takes tne inaginãiv-pa.t of x.
BEGIN (E IñAG PART rl
IIIAC_PART ,- i. lnG:
ENO¡ (q lllAG PART s)

*)

E)

x)

r)tgpes.

)/ 0EN0Ì1¡
l/ 0EN0n¡

are rea I . Ê)

s)

s)

Fi le AR_4TH printed on Thu Aug 6 I3zZ7:S4 ISST paqe 2 of 3

PR0CE0UFE F I NO_{S (vAR RHo I . RHoz, THE rA I
:. I$.lA?¡ SIISLE_REAL ;

vAR VAR Ktt.KI3:C0¡FLEX; vAR N: INIEGERI;

Ilr T2, T3. T4. TS, IB, T7. T8:COiFLEX;
Xll,X13:C0I'1PLEX;
S I NE: OOUBLE_REAL :

BEGIN (E FlNÛ-KS r)LnITELN(. Signal llodel parametere .)¡
URITELN(' Enter pole ñodut i (rnol I i¡ro2) r .)

¡REAO (Rl+01. Rt-€Z) :

!¡IIELN(' Enter pole argunønts (thetal, theta2) in degrees: ,);REA0 (Tl-€TAl. T|ETA2) : -
!!!lqLN('Enter thE numbsr of coefficient lags desired: .):R€40 (N) ¡

IlqIAl :. THETAI s ptE /18Ø.Ei
T}€TAZ :- TI-ETAZ s ptE /tBø.ø;

9lt'l-E-i - COS (PIEI2.0 - THETAI) ¡ïl.REL z- Ø.62
Ii. lnc :. -mrOl¡fitilt/ e.tr6tNEa(1. B-Rl{0tafitJOl)) :T2 : - CEXP (l .8,3. BrTHEIAl l ¡T3 :. CSUB(CEXP(RHOI.THETAi),CEXP(RHOz.THETA2) } :f4 :- CSuE(CEXP(RHol,rsErnrr.cÈipinxoà,_rÈerÃzi i ;T5.REL:. l.B:
T5. ¡nG :- 0.Bi
]q '

. ç9!lq !Ig.çEXp (Rr+oldHot. Z.0aTHETA1 l) ¡

l/ '- ç9!.19 f I!.çqx? (RHol¡fi1.{02, TF€rA1+THET¡2) } :
.rö- : - CSUB (T5. CEXP (RHOI*fit€Z. tr€TAl _THETA2)) ;Xl 1 : . CñUL (Tl. TZ) .
Tl : - CñUL (T3. Í4) :Tl :- CIIUL(Tl.T6)rTl : - C|îJL (Tf. T7t ¡ï1 : . CIIUL (Tl. T8t aKll :- COlY(Xil.Tt);

9iNF_'- cOs (PIEI2.8 - TI-|ETAZ) ;Tl.REL:- t.B:
Tl . I ñG, : - -RHO?rfrtnZ / (2. B¡S I NEs (I . B-RI]02*RH02)) :T2 : - CEXP (l.0,3. BITF€TA2) ¡T3 : - csuB (cExp (RHo2.lltIA2) . cEXp (RHO1. THETAI)) ¡T4 :- CSUB (CEXP(RH02: THETAT),CÈipinsoi, _ft¡eiÀri i ;TS.REL :- l.B:
TS.¡lE :- 8.8:
]9 '- ç9!.19 lI9,çqxq ntÐ2Ãt{,z,z. gsTHETAz)) ¡lj '- ç:!.191i9.çEIl (Rr{oz¡frr-ÐI. n-tETA2+THErAi I } ¡
.Ll- : - cltJ8 (TS, CEXP (Rl€Zsfit€l . Tl.{Eî;Z_ THE TAI I } ;{13 :- Cllll_(Tl.tZt;Tl : - Clf,.JL (T3. T4):

'

ïl :. c¡r"L(T1.T6):Tl :- CllU-(Tl.T7,;Tl :. Cltf, (T1. T8);
ll9 r- C0lv(Xl3.Tl)¡
ENO¡ (a FIM)_KS a)

PROCEO{JRE AUTEOf,RELATE:
VAR

Kl I , Kl 3: Cû?LEX:
Rl€¡ . Rl.t0z. Tt€TAt. It€TA2:OüJBLE_REAL:
I.N: INTEGER:
R: VECTOR:
Tl . T3: C0ñPLEX:

BEGIN (s AUTOC0RRELATE E)
!çl{!r.lq (0uTSruFF.' C0fiREL_C0EFFS. I ;
l-lryg=lg (RHol, RH02. THETAI ;THETA2, Ki l, Kl 3, N) ;
IJR ¡ TELN (OUTSTI.FF, N) ¡
!J9¡_,- 2.Ø z (REAL_PART(Kll) + REAL_PARÍ(Kl3)I:
FOR I ¡- I tO N 0O

ëtLr l N

Il '
- çNUL (Kl l. CEXP {l . 8, THETAT çt)) ;T3-: - CIIUL (K13, CEXP (1. a. rxErnZEi i i iRill :- Z.Ø t (RçAL_|A|I(Tl) s poúER(RHol,I) +

Rq4!=IAFT(T3) q POUER(RHOz:r)):URI IELN (0UTSTUFF. (R (¡ I /R t8l) : 16: lS)i
ENO:

END¡ (E AUTOCORRELATE u)

Fi le AR_4TH printed on lhu Aug 6 13:27:54 tggT page 3 of 3--:---------

BE6IN
AUTOCORRELA TE :
ENO.

APPENDD(G

Program to Compute the Experimental Values of
vartxKr *

iï;ffrric
sprit schur

Fi le ain_spl i t printed on lJed AuS lg 13:15:øS lggT påge I oftseJv ¿ I

lnol i et
linclude <stdio.h>
Êinclude <math.h>
ll ist

Hdeflne CL¡n Lz
Hdet inø LI nl T nøBø

HdaÍ ine f i npar -PAff"
fldøtinø ffout 'F0JI.
FILE
FILE e/

lE l1ax. no. o f au t ocor . coe f .i
-- . s//ø llaxi num nu¡¡ber of data points s/

/v lnput data to the ainrulator vl/u Output data sequence 8/
ainpp¡ /,a decl are pointer to input data f ileaouppi /a declare pointer to ouiput ctata fi l6

double btofO¡

a i ggen (e i gna l, I eng th, rhol, rho2. the tal. the ta2)/û This function eodele a 4th order Afl proceEs sl/E l.rith tuo conplex pole pairs (noduli ir,ãi,.¡,oZ 8l/a arguøentE thetel,thetaZ (dagrees)). A ¿ih order al/E all-pol6 f¡lter ie driven o! a 4//a Gauscian noisa gensrato. .oútine based on the al/a al gor i thE described i n: 4/lE Rabinor and Gold..Theorg and Appl ication of s.//* 0igi tal Signal processiÃg. &/double eignal[);
doub I e *rhol. *rhoZ. sth€tal. *theta2¡int length¡
(

double tsigtLlñlTl;
double var.x.U.r¡;
double at,a?;
double pie¡
int i;
printf(' - SIGNAL ñOOEL PARAñETERS _ \n.)¡printf(' Enter desired noisa varianie: \n.)¡
scanf ('Íf',llvar) ¡printf(' Enter desired polø nodul i (rhol and rho2): \n.)¡scanf ('tf 1f ', rhol, rho2) ;printf(' Enter deeir6d pore argum6ntB (thetar and theta2) \n") ¡Pr int f (' in degrees: '--' 1^. r .
scanf ("f fÍf '. thetal, theta2) i
fprintÍforpp.'Ie','- 4th Ord6r AR process parameters _ \n.); .fprintf(oupp,'\n.):
fprintf (oupp.'tetl2.9l)"1.1 pote Eodutus rhol . ..*rhol)¡
fprintf loupp,lustlZ.g!]nl,l ôor" Fodutus rhoZ - .,*.¡,ããii
rprintr(oupp."tsfl2.Fl)r::l bore ansre (desrãesr i¡reïãI I -,*t¡retal)¡
fprintf (oupp,'tsflZ.6f\n.," þote a.,ire ra.i.õesi i;;i;ã - ":*th;i;ti;fprintÍÍorpp."fa ft2.6f \n"..' noiBe varianõo - ".;;;t;-fpr i nt f (oupp. n\n\n. t ¡
pie - 3.l6l59ZGS4¡
athotal . Ethetal ø piø /LBØ.0; /r convert to radi ans slûtheta2 - EthEta2 a pie /lEB.0i /a conre.t to radi ans sl
a! - -2.8acoE(sthetalls srhol:a2-grholEsrhol¡

for (i.8¡ i < length; ++i)
f
x - randlO¡
g - Bqrt (2.8*varalog lL.B/xl I ;iJ E .gûcos (2.t*piesrãndl O); /s ¡¡¡f (i -.8)

(

cignal ttl . u:
I

¡f (¡ -- I)
I
eignal (ll - u - al I eignal tBl ¡
I

if (i > I)
I
signalti) . ¡.¡ - al a eignat ti-l)
I

l

iE a noise poinl tl

-a2E sisnal Ii-2J:

Fi le siø_ept i t printed on lJed Aug lS l3:lS:gS lSgT

"\ - -7.0acoe(atheta2)e arho2;
a2-srho?ssrhoz¡

for (i-B: i < length¡ ++i)
f

teigtil - eìsnatIi];
I

for (i-B; i < length¡ ++il
I
s - tsig(il:
¡f (¡ .- ø)

(

eignal (Bl - u¡
I

¡f (¡ .- I)
f
eignal tll - u - al a eignat (BI ¡
l

if (¡ > I)
(

eignal ti) - u
I

page I ot 7

al a eignal ti-l) - a2 a eignal Ii-Zl¡

I

autocorre late (s.r, l. nco,nseg)
/a Coapute noa¡nal €nseñblo of noroal ized
/a autocorrolation coef f icients
/a (aust have length >- I a nseg).int l.r:co.nscA¡

douÞlo e (l,r [] tCLIñt ¡
f

double suml.sun2¡
int i, j.n¡

for (i-t¡ i < nseg¡ i++)
I
sua2 . 0.8..
for (n-8¡ n<-(l-ll : n++l

(

aunZ - sumz + e(n + isllao(n + iell¡
I

Eu¡n2 - aua7l l;
for (j-!¡ j<.nco. j++)

,.

euml - 8.8¡
for (n-0¡ n<-(l-j-l) : n++¡

I
sual. sual + o(n + iEl!4s(n + ial + jt:
I

euml-EURI/(l_jl¡
r(iJ tjl . aunl/eunZ:
I

rtil t8l - 1.0¡
I

l

quant(x,n) /e Argunent x ¡s a 2(n+al-b¡t numþer that ue uant to/ø round off to Za+n+l-bi ts.
/a lnø lract¡onal par.t of th€ quantìzed product is/s n-l-Oi te long. The integer part iB not al tered.
/* Arguaont x ia a .standarã for¡rat.
/ø 2(n+øl-b¡t product. Th¡€ function assuaos
/s that the conputer us€s 2s conplenent ari thnetic/ø for integer ari thaetic i tEel f. This funct¡on
lE can be.uaed for 'doublo-precision" nultiplg_. /E accuaulate oporat ¡ono.int x,n;

I
i nt q. na9k, roun;

if (x >.0)
I
nask . 8l ¡
oagk - aask << (n-2);
roun - 0:
if((aaEkdx)!-81

{

roun . l¡

E/
E/
8/

8/

a/

¿./
E/
t/
s/
*/
*/

File ein_eplit printed on [Jed Âuç lg 13:15:øS ISET page 3 of
tI

q.x>>(n-llt
qÉq+roun¡
I

e lee
I
q--x¡
q.q+I¡/sq
naEk - 81;
a€Sk . øAsk <<
roun - 0;
if ((oaak 6 q)

I
roun . li
I

q-q>>(n-l);
q-q+rOUn¡
q--q:
q-q+l;/sreEtore
I

return(q) ¡

true eign of q a/

f too (x. n)

. 2s coøpl. of x nou. sl
(n-2) ;

!. 0)

/a Convert thE double precision floating/a point nuÞb€r x into a ctandard foroaí/g !¡ord.

*/
a/
s/int n¡

double x¡
I

int i.c.nask.Beska.aign, ix;
doub I e fx¡

sign - @¡
if (x < B.8l

I
s¡gn - -l¡
x - -xi
I

ix . ¡. /s findfx . x - (double) ix¡ ls tindc.B:
nask . Bl¡
for (i.(n-2)¡ i>-0; i--)

I
lx - l.gs¡r'
maske - nagk << i.
i f (fx >- l.8l

I
fx ' fx - 1.8;
c-claaoka;
I

integer part of x cl
fractional part oÍ x El

ix-2.8Etx¿
il lÍx >- l.8l

I /8 Add uni tg to effect the rounoing operat ion slc - c + li
I

ix . ix << (n-1)i
c . c + ix¡
if (eign -- -l)

(

Co-C:
I

return(c):
I

double btof(x,n,a)

int n.n,x¡
II

/g Convert standard forhat x into double */lt precieion floating-point number. s/

int i. j, eign.aaek.naeker
double c;

c - 0.0;
eign - 8:
nask E Bl:
if (x < tl

f
s¡gn - -l¡

File sinr_split printect on lJed Aug lS l3:I5:øS lggT page q ot 7

X . -X:
)

fo¡ (i.(n-2)¡ i >- B¡ i--)
I

aaake . ha6k << ¡¡
if { (øaeko I x) l- A)

(

j - n - i - l¡
9 - c + pou(2.0.(douole)-j);
l

I
j-Bt
for (i-(n-l): i <- (n+e-l); i++l

(

aaska - nask << i ¡if ((aaeks E x) l. B)
I

9 - c + poul?. B. (douote) jl ¡
I

.¡ - ; + l:
l

if (ei9n.- -l)
I
cø-c;
t

re turn (c) :
I

divide(x.g.n. øl /a F ind the n+n-bi t, 2s conplenent/r fornat) coding oi x/g. x end U. /8 forriat n+E-Þ¡ t binarg nunbers.int x,g,n.n;
(

double xf.gf;

xf - 616¡ {x,n. n) ¡
Uf - btof(g.n,nl;
roturn (f toO (xflgf. n)) 3

{ s tandard E/
ere stendaîd ü/

E/

nain O lE Sln SPLII/s. (Finite Prccision Split Scnur Atgoritha Si6u¡.1..¡/E
/s Lle ueø fixed-point Ze conplenent ar¡thnetic (n+p _ bits,/.t inctuding aignl uith for¡ràt tsta"ãa"j iã"ruti,"/E ; ... x I x x x ... x/s -R ø'123 k/E r¡herE x is the s¡gn b¡t. aÃO n . k + l./s -Gr
/* lJe use integer . tupots to contain standard fornðt Þinarg/s numberg. Ttre rigtrtaost (least significant) uii-ot an/a integer tgpe coireapondB to x ./a k/a
l:]il:,pl9e"a1 siEutatee the spt i t Schur atso. for ssmm./a tocpt ¡ tz &atricoe undor fini te preciaion ãri thnetið/a condi tions.
/.a The eplit Schur ãlgor¡thE sioulated is taken fron the/ø paper:
/s
/s P. 0elsarta, y. Genin. .0n the Splitting of Ctassicat/.s Atgorithas in Linear prectiction îhe;;u.t iggË i"rnr.

. /.8 on Acoust.l_gpeec¡,. and Signat proã.. ""o1.-ÀõSp_gS.
/.¿ pp. 645 - 653. ñas 1987.
/a

/t nonnogativelg indoxed v-parameters 8//Ê (n+ø-h¡ I)- -^^\lenent) a//o no.,n"gai;";iv-i;ã",6d y-paran6tors ø//8 (double prgçieion floating-point) E/./E onaeqÞl€ of nornal ¡2"¿ a"iolå".ei. El/.E coøl ficients (nooinal I con"irrci"å 8//.ø lrgl-Eegñents of aignal0¡ 8//E rfil tj) - i - aegnãnt inåex sl

a/

s/
s,/
e/
a/
E/
z/
t/
s/
8/
4/
¿/
t/
s/
E/
a/
E/
8/
8/
8/
E/
a/
E/
s/

int f p_v (CLIñl (CLlnl;

doubl6 vtCLItll (CLlnl ¡

double r (CLIttl tCLInl;

File ain_optit printecf on [.Jod Aug lg l3:tS:ØS

ls-:-
I387 page 5 of 7

doubr6 ¡rean(cL'i /a øeañ or.Jrio.-tíil !åålÍ;.?i"ïin;^' i/
douÞr€ variÌcLrnr,'ì.i:::iy.::-:j,.,1,,..,ion coer,,.,..,'. :l/.ø in arrag fp_k0 0 aoout iÀei.-"ean E/
douÞre aisnarrL¡ñ¡,, , 'ii;î;::i å:"ål;"îjå bg eissen ,,..;;;^ rl/s (douole preciaior, itoaíing_pointt v/double no-k[cLfr] (cLlrlr¡ zE eiiåÀoiu-of no*¡.,ar rerreðtion E/
doubre no_arclril rcLril: iå ::::i¡i;"ll'.,o"¡,,"r .pr i; ,.;,,. ll
doubre bisk; i:::JJi:,;::.i:îjj';i::lî.n 0",., xl
doubrE arphak¡ íå ;;lll"ê:;1."::ÍÍ;:iî:: .;";ricient Zl
int rp_k(cLrn¡ rclrñ¡,'iiiÍË:ii"':i";i;îî"'j:::l::;:"i:*_.,,:i
int rp_a rc'-rñ¡ rcLrnr , 'ìi å.::J?:'i;ïî;Ì ,:";l::l:î:..?:jj:å,;aí

/.ø , 2s coaplenent) sp'l it Schur 8f
int rp_bisk¡ i; iijjå:;å?1,:":j'::;ilrJ",.uion or il
int rp_arphak; 'äi?i:3"_:3,lil*r".ooo. ,""uio., o, Xl
doubre rhot.rho2: 'ii;:i¿":iå"?itl?*o,n o,-¿". ¡n ,o¿.r :ldoubls thetal. theta2¡ /u pole iit"o."ts of 4th order Æl aodel */int hal f: Za ¡ta"¿ã-ä-iornat reprosentation of El
int ono¡ i: :i:"::::"i.1;1,

""p.ou",.,,t"tio., or :l
int i.j.k¡ ,; l::r':::lî"1 Jllî10,". rlint n.a¡ ¡E "ùi[ei-ãi-o¡ t" riÀ"irJi^g sìen bi tt E/
int rensth; i: ilJï j;':i;::;îi ¡¡ord ig ";;

- "
:lint l: ¿n """Ë"f ãi poÍn,, use¿ to get rU alint nco; Zn r".õJrt-iai

""tr. ANO atso the El/a nu¡ber of reflect.ion coeffs. to be sf
int prod¡ i: :::3:j::s intosor proc,uct ilint naeg; /E nuEåãr-oi aegre.rte of oignal (t used el/e to coaputo rl¡ 0 (tongth->_tiÃseg) ot
inpp - fopon(f inpar. "r.l;
oupp E fopen(ffout. "u'l;
Íocanl (inpp.'ld ld ld Xd ld Zd".6n,Ea.6tength,gt.6nco.gnseg) ¡ .

a i ggen (a i gna I . I eng th, 8rhol. lgrho2, ßthe tal, dthe taZ) :

au rocorr€ r a te (e i sna r, r. r. nco. nso st,
/ìi

;iff t;ï:i, l[iï:t",: l3 i3l" : il/s cos(ficients 4/

ith

fprintÍfo"pp.'fs fc! fs \n...fprintf(oupp.-IE lcl \n... ño.fpr int f (oupp,.\n\n.)
¡

llordsiz€ -'.n+8.. bits .l:
of lrect¡onal þits. ..n-ll:

fprint!!o"pp.'fE'." Enaeøble of Noninal and Nornalizedfprint!Íorpp,'fc.," Autocoireiãti"Ã Coeir¡ii"Ãt"---fprintf(oupp.,\n.):
for (i-8: i < nseg¡ i+-+)

I
for (k-8; k<-nco. k++)

f

\n'l :
\n') ¡

f pr in t f (oupp. "f s fd f s f,9.6 f
I

fpr intf (oupp. "\n.) ¡
I

fpr int f (oupp. .\n\n.)
¡

/a conpute 6ns€@ble of noeinal reflect¡on co€fficients E/
fpr int f (oupp.'fe'. " Eneeøbra of NoEinar Ref r ect ion coef f iciente \n.) ¡fprintf(oupp.'\n");
for (j.g¡ j < nceg¡ j++l

v(81 (81 - r(j¡tg¡¡
oigr - 8.0r
for (h-l: k<-nco; k++)

f
vtOlfxl -2.0E rtj)tkl¡

Fi le eia_spl i t printed on ued Aus lg 13: lS:tS IggT page 6 of 7

I

for (k-B; kcnco; k++)
{

v tl) tr.l . r tjl tkl + r tjJ tk+tl;
I

f or (i-1; i.<-nco: i++)
I
alphak - v(¡l tBllvti-lJ tal:
bigk _-, !.8 - {atphâk / {1.0 + bigk} } ¡no_å[jl Íi] - atphak¡
no_kIj) (il - bigk:
fprintf(oupp,'ietdiaflB,6!.," K (., ¡,,) - ".b¡gkl¡for (k-B¡ (k <- (nco-i-tll 8¿ (k > -l) ; k++)'

(

vIi+ll [k] - vIi] (rl + vti¡ (k+ll - atphak a vt¡_ll tk+ll:
I

I
fprintf(oupp,'\n");
I

fpr i nt f (oupp.'\n\n') :

/t output ensenble of noøinal epl i t Schur reflection/s coafÍicients

fprintf(oupp.' Enseable of Nor¡inal Spl it Schur Reftection \n.fprintf(oupp.. Coefficientg \n.fpr¡ntf(oupp.'\n'):
for(j-â¡j<nseglj++l

I
for (i-l; i<-nco ¡ i++)

{
fprintf (oupp.'Isld:allB.6f... a(.. ì.-) - ".no_atjl til);
l

fprintf(oupp,'\n'):
I

fpr int f (oupp,'\n\n') ;

/s compute ens€EÞle of fixed-point reflection coefficiente r/
{s aseuming thât thcrs is no quantization error in tÀe tl/* autocorrelation co€fficieni estinatcs except that due vl/t to rounding to n-þ¡ t. 2s conplemant nunbors ø/

fprintf(oupp,'fs'.' Ensembre of Fixed-point Refrection \n.);fprintf(oupp,'ts'.' Coefficients \n.)¡fprintf (oupp.'fs',' (error-free autocorr6lation coeffs.) \n-):fprintf(oupp.'\n')¡
on6 - øl¡
on6 È on€ << (n-l)¡
Íor (j-83 j < nseg; j++)

I
fp_v(81 [8] - ftob(rtjl t8l.n)¡
fp-bigk - 0:
for (k.li k<-nco; k++)

I
fp_v(Bl (k¡ . 2 s ftob(rtjl tkl,n)¡
I

for (k-B; k<nco ¡ k++l
f
fp_vu! tkl - ftob(r(jl tkl.nl + ftob(rtjl (k+ll.n):
I

for (i-l; i<-nco¡ i++l
{

fp_alphak - divide(fp_v(iJ IBI. fp_v(¡-l¡ tA¡.n.a];
!n-o1e!--_one - divide(fp_alphak.on€ + fp_bigk,n.ø)¡
fp_atjl fil - fp_atphak¡
fp_k(j¡ (iJ - fp_bi9k:
fprintf{oupp.'1sldtc1l8.6l", l K(., i,.) - ..btof (fp_bigk.n,m) l;fo¡'(k-0; (k <- (nco-¡-l), dA (k > -l) : k++l

(

prod - quant (fp_alphâksfp_vIi-l] [k+l],nl ;fp_v(i+ll tkl - fp_v(it tx) + fp_vtiJ (k+ll - prod:
I

I
fprintf(oupp.'\n'):
I

fpr int f (oupp.'\n\n') ;

/a output angðãblø of (ixed-point epl/t coølficientg

fprintf (oupp,' Ense¡rble of Fixcd-point

it Schur reflEction e/
s,/

Split Schur \n')¡

E/
s/

);
):

File Eim-aplit printed on !.led Aug l3 13:15:ø5 1987 page 7 ol 7

fpintf (oupp." REf lection Coeff icients \n')¡
løinlÍ (oupp, "\n') ;
f@(j-0:j<nseg¡j++)

I
for (i-l¡.iccnco: i++l

I
fprintf (oupp,'fEfd1afl8.6f ", " a (', i.') -'. btof (fp_a t jl Ii I .n,o)] ¡
¡

fprintf(oupp,'\n');
t

fp i nt f (oupp.'\n\n') ¡

/a coøpute and output the seans and variances of the sl
/E retlection coeff¡cients el

fprintf(oupp,'fe'." Fixed-Point Reflection Coefficient \n');
fpr¡nt f (oupp, 'Xo". " lleans and Var i anceg \n') ;
f print f (oupp,'\n') ;for {j-l; j <- nco ¡ j++)

1

Fseltjl - 9.0:
fr (i-8¡ i < neeg¡ i++)

I
oeanIjl E B6anIj] + btof(fp_ktil Ij],n,n]¡
I

Foañ[j¡ É ra€anIj]/neeg;
Ì

for (j.!: j <. nco ; j++)
I
væi[j] .8.8;
for (i-€¡ i < nseg¡ i++l

I
biçk - btof(fp_k(il tjl.n.nl:
vari Ijl - vâri tjl + (no_kti] tjl - bigk]u(no_kIil tj] - bigk):
I

væi tjl ø vâri ljl/nøøgz
I

fpr int f (oupp, 'le\n", " llean Var i ance ") ;for(j-t; j <. nco ; j++l
l
fpr intf (oupp.'faÍds 111.8f C14.8f \n','K (', j,')'. aean t¡) . var i t j)) ;
I

I

File fout printed on [Jed Aug lg 13:19:37 1987 page I of 2

;;;-il;;;-;R-p;;;;;;-ã;;;;;;;;-----------
pole modulua rhol ^ 0.5808ØØ
pols aodulus rho? - ø.SAøøøø
pole angle {dogreee) thetal . 1ø.øøøAøø
pol€ angle (degroes) thetaZ " 15.øøAA8ø
ftoiee variance - 1.0øø90ø

lJo¡.dsize - L8 b¡tg
No. of fractional bi tE - 7

Ensenble of Noninal and Norøal ized
Autocorre I at ¡ on CoEf f ic iente

r
r
r
r
I
r
r
r
r
r

K(l) -K(l) .
K{l) -
K(l) -
K(1) -K(l) .
K(l).
K(l) -
K(l) -
K(1) -

a(l) -
a(l) -
a(11 -
a(l) .
a(l) -
a(1) .
a(ll -
a(l) -
a(l) -
aû) -

2.S04156 a(4
2.43Ø877 ek
2.499631 a(4
2.442823 aß
2.52642Ø al4
2.3E3584 a(4
2.31322t a14
2.3316t3 a(4
2.%6127 aß

g. B:t9673
ø.117999
ø.12t979
8.149952
ø.172ø44
ø.t5t2ø7

-0.8t3518
0. ør l54l
ø.t2t?t3

-0.066566

ø.s21788
4.525215
8.5131rA
ø.s27SLø
ø.475774
4.617s68
9.6775r6
8.636735
ø.7ø847ø
9.723868

g
t
ø
I
I
I
0
o
g
ø

- I.8OOO8A r
- 1. BB0ØØ8 r
- L.8OØ8ØØ r
- l.ØØØBtØ r. 1.0ØØOO8 r
- 1.8Ø8888 r. 1. Ø8OBBO r. 1.64Ø888 r
- 1.080806 r
- l.OØØØØØ r

- 0.938136 r
- 0.931751 r
- 9.938758 r
- 8.937883 r
- 8.937781 r. 8.938130 r. 8.933854 r
- 8.931928 r
- 8.929398 r
- 0.938963 r

-9.42ø445 K&
-8.4ø45t7 K14
-9.499445 K(4
-8.379434 K(4
-4.425361 K(4
-ø.343tøø Kt4
-s.324859 K(4
-0.355E3ø K(4
-8.2769æ K{4
-8.314EE6 K(4

8.788623 rt 3
0.771818 rt 3
8.78942E rt 3
0.7865E4 rt 3
8.7E6t34 rt 3
0.788L47 rl. 3
O.774047 rl 3
8.773845 r (3
8.759295 r (3
8.769325 rt 3

8.683614 r
8.588631 r
O.6677L2 r
t.501938 r
t.6t2787 r
Ø.60425Ø r
8.583591 r
8.59?Ø44 r
8.5a9666 r
Ø.578342 r

ø.444ø46
8.426595
a. 435948
ø.423253
8.423ø33
ø.42813ø
ø.4A8362
8.433188
8.348183
8.489944

2
2
2
2
2
2
2
2
2
?

4
4
4
4
4
4
4
4
4
4

EnEenble of Noainal Refl ection CoefficiEnte

ø.762937 K(3) -
ø.73ø756 K(3' -
9.773485 K(31 .
9.77ø888 K (3) -
ø.772476 K(3! -
9.766736 K(3) .
0.746818 K(3) .
8.719686 K (3) .
8.766865 K{3} -
ø.7384013 K(3) -

-0.s38136 K{¿t -
-s.931751 K'zt -
-4.938758 K|.2) -
-0.937889 Kt?t -
-ø.9377AL K(?t -
-ø.938139 K|€I -
-8.933S64 K(2t -
-ø.931928 K(2) .
-s.929390 K|.zt -
-t.s38963 K12t -

EnsemolB of Nominal Spl i t Schur Reflection
CoefficientE

1.93E136 aQl -
I . 9317S1 a (21 -
1.93E7S8 al2l -
1.937Eø9 a?l -
1.937741 al2l -
1.938138 e?l -
1.933SS4 al2l -
1.931928 a(2) .
1.929398 a(21 -
1.93t963 el?l -

S.014665 a(3) -
0.S18375 a(3) .
5.513872 e(3) .
0.514248 a(3) -
ø.ø14174 a(31 -
9.514432 a(3) .
ø.ø17øtZ e(3) .
S.419881 a(3) .
S.816461 a(3) -ø.tl86ll a(31 -

ø,75øøø8 Kt3
s.664æ2 K (3
8.754øøø K(3
ø.75øøø8 K(3
ø.7SAÙøO Kt3
ø.75øBøø Kß
0.664862 K (3
9.664862 K(3
0.7E12S0 K(3
9.664862 K(3

2.275284 al4l

Enaembls of F¡xed-Po¡nt Ref lect ion
Coeffici€nts(error-free autocorrelat ion coef fs.)

K(1) -K(l) -
K(1) -K(l) -Ku) -
K(l) .
K(l) -
Ku) -K(ll .
K(l) -

-8.937584 K(2) -
-s.929687 K(2) -
-s.9375S9 Kt?' -
-ø.337s,49 K(zt -
-ø.937SAA Ktzl. -
-0.937548 Kl¿t -
-8.929687 K(2) -
-4.929687 KlÉt -
-s.929687 K(21 -
-8.929687 K(2) .

-ø.429687 K(4
-s.1al562 K(4
-8.429687 K(4
-ø.289æ2 Kk
-ø.283962 Kt4
-0.289ø62 K (4
-9. l0ts62 K(4
-ø.2ar3125 Kk
-8.486258 K(4
-ø.32ø312 Kt4

- ø.125øøø
- -9.414ø62. 0.3046E7
- -s. lø1562
- -9.25øøøø- -Ø.258ØAB- -ø. ræ375
- -9.946875. ø.156254. 8.195312

Ensemble of Fixed-Point Spt i t Schur
Ref loct ion Cocf f icients

a(ll .
au) -a(l) .
a(l) -a(l).

1.937589 aQl -
1.329687 a(21 -
1.9375S4 al?) -
1.937SSt a(2) -
1.3375SS a(21 -

a.Bl5625 a(31
Ø.t23437 al3l
B.Bl5625 a(3)
8.015625 a(31
8.8156?5 a(3)

?.5øAøøø at4) - ø.5øøøøø
1.835937 a(4) - 1.273437
2.SBAø8ø al4l - ø.398437
2.25øøAO a(4) - 8.TELZSø
2.25øøøø a(4! - 8.E98625

Fi le fout printed on lJed Âug 19 13¡lS:37 lgBT page ? of 2

a(ll - 1.9375S0 al2l - S.01S525 a(3) - Z.ZSøøøø a(4) - ø.89ø625
a(11 . 1.929687 a(2) - 9.t23437 a(3) . 1.835937 a(4) - t.øgøOøøa(l) - 1.929687 aQl - 9.8i23437 a(31 . Z.øAAB\A a(4) - A.83SS37a(l) - 1.92S687 a?l - 4.815625 ã(3) - 2.5øøøøø a(41 - ø.5øøøBB
a (l I - 1.929687 aQl . ø.923437 a(3) . 2.2{3125 a{4) . S.546875

Fixed-Point Ref lect ion Coef f i.cient
lleans and Variances

Var i ance
ø.øøøa624E
ø.Bt¿ø8ø76
8. t2125658
ø.ø746t5æ

ñeanK(l) -0.93359375RQ) g.7LE7S8S8
K (31 -S.28593759
K (4t -A. æ986259

APPENDD(H

Summary Tables for Ouþut from the

Programs in Appendices E and G

Theoretical Values 1x t04)

b I l0 t2 1.4

VarILK a]

VarILK 3]

VarIAK)

Var[AK]

5480

14,40

63.1

0.153

342

90.0

3.94

0.@5

21.4

5.63

0.246

0.m6

t.34

0.352

0.0r54

-0

Experimental Values 1x t04)

b 8 r0 12 t4

VarlLK al

Var [LI(3)

Var[A,K2)

Var[AK]

746

2t3

20.8

0.4248

415

136

2.85

0.æ23

10.5

4.88

0.1 89

0.0æ2

1.10

0.377

0.0125

-0

Table WI: Comparison of theoretical and experimental results for the finite precision

symmetric split Schur algorithm. Here p¡ = 0.5, pz= 0.5, 0r = 10", and 0z = l5o.

Theoretical Values 1x t04)

b I r0 t2 t4

VarlLK al

VarlA,K3)

VarlAK2l

Var[LR]

582m

107m

238

0.153

3æ0

666

14.9

0.0095

227

41.6

0.930

0.ffi

14.2

2.60

0.0581

-0

Experimental Values (x 104)

b 8 10 t2 l4

VarlLK al

Var[ò,K3]

Var[A,K2]

VarILK]

6450

705

21.0

0.0041

429

30.s

0.601

0.0001

27.0

2.18

0.040ó

-0

Table VIII: Comparison of theoretical and experimental results for the finite precision

symmetric split Schur algorithm. Here p1 = 0J5 , p2= 0.5 , 0t = 5o , and 02 = 45o.

Theoretical Values (x td)

b I 10 t2 t4

VarILK a)

VarlLK3l

VarIAK)

VarlÃI(l

4.51

8.81

0.2r2

0.153

0.281

0.551

0.0133

0.m95

0.0176

0.0'344

0.M8

0.m6

o.ml r

0.w22

0.mr

-0

Experimental Values (x t04)

b 8 l0 t2 l4

Var[LK a]

Var[N(3]

Var[N()

Var[N(]

10.5

8.4

0.0881

0.0660

0.728

0.494

0.010s

0.0026

0.0350

0.0338

0.æ12

0.ml

o.æ24

0.m34

-0

-0

Table IX: Comparison of theoretical and experimental results for the finite precision

symmetric split Schuratgorittrm. Here p1 =0.75 ,p2= 0.75,9¡.= g5o, and 0z= 90o.

APPENDIX I

Program to Test if j e 20,

File CE{-€CTI,R€ printed on l.led Sep 16 ll¡al:54 1987 page I of 3

PROCRATI COi¿-€C TLn€ (I NS TI-FF. qJ I S TI..FF) ¡

{E Tnie progt.aø têsta øU conj€cture concerning uhother or not a}
{E it iø poooiul6 to hay€ E'Ouadratic Finite Segøent p-adic gl
(g Nusber Sgeteø'. lt teBts uhether quadratic residues. i'e. s)
(E valueo j that sat¡øfg E)
(E?ral
(o j --l(aodp). sl
(ø arø euch that j bolonge to the 'hatted" eubset of the ring E)
(EZE)
(Ers)
(spsl
(o If p is a Gaueaian priøe then preciselg tuo valuos of j E)
(t ExiEt to catiøfg the aborr@ congruence and that b@long to s)
(v above ring. E)

cßfST
LlñlT . 188¡

TY?€
VECTOR - ARRAY T-I .. LINITI OF INTEGER;

YAR
¡ NS TI-FF, OJTSTLFF ¡ TEX T ¡

Ft-s€T¡ @{ P@J (X. Y: I NTEGER} ¡ INTEG€R¡
(E Raise poeitivø integer X to the Yth pouer
(ø intagerl.

VAfi
l. TEIP: INÍEG€R¡

BEGIH (g PBJ El
¡FY-8T}€N

BEGIN
PGJ :- l:
EMI¡

IFY-lTl€N
EEGIN
PÛJ :. X¡
ErO;

IF Y > 1 TI€N
8€GIN
TEIF : - X¡
FORl¡-lT0Y-læ

8€GIN
TEIF ¡- TElf c X¡
ErÐ:

PCIJ :- IEIF:
Er€;

El{]¡ (E PGJ sl

Ftå€T lßl 1€(!I (X. Y.t1: INTEGER¡ ¡ I?{TEGER¡
(a Relee X to the Yth poner øodulo ñ.

VAR
I, TEIP: INTEG€R¡

BEGIH (a ñF@ el
lElP ¡- X tlCtl ñ¡
F0fi I ¡. I T0 Y-l (X)

B€G¡N
TErF ¡. (TEtf ø xt t@) ñ¡
EMI¡

iF¡OJ ¡- ÌElf¡
El€¡ (a IFBJ el

PRæEOI-RE R€AOIN{vÂfi P.R.Jl..J2¡ INTE6€R) ¡(a Read in the fol louing para@6t€re:
(a P - Gauoaian priaa rr.røbor p.
(a R - th€ rth po¡¿€r of p {R - rl.
(s Jl - firot quadratic rosiduo if r - l.(¡- JZ - second quadratic røøidue if r. l.

B€GIN (s R€A0|N cl
RESEI (INSTI-FF, 'RESI&.ES'I :
R€40 (I r.,rsTl-FF. P. R. Jt . J2l ;
Et€¡ (e REAUIN a)

FlJs€T¡m ÛJAO-RES(P.R.J: INTEG€R) r INTEGER¡
(s Thie íunction finde ih€ qusdrstic roaidue íor p (- P) raiEeci Eì
(a to the rth (r - R) pouer givon the quêdretic reEidue el
(aj(-J)uhEnr-1. E)
(s al
(s Thiø function utitises thø theorEa in the âppsnd¡x of the Ê)
(a paperr øl
(a H. K. Jenklnø. J. V. Krogaeler, 'Ths Oeaign of Oual- s)

(Y iø positive s)
E)

a)

E)
Êl
E)
*)
¿)

File ctN'ECTtfiE printed on lJed sep 16 lr:41:s4 rggT pase 2 or 3

fY ñode Coaplex Siçnal proceaeorE gaeed on Ouadratic sl(a ñodular Nunber Codee." IEEE Trang.-9n Circ. and Sgst., r)
._ .!ø vot. CAS-34. pp. 354:36a.-Àp.i I lSB7. -

s)
VAR

__!,K.4. T1. T2, T3, 14¡ INIEGER¡
8€GlN (E tLJAO RES a)
A ¡- J;
ñ :. P0J(P,R):
FffiK¡-tT0R-læ

8€G¡N
Tl ¡- fA E A) tÐO ñ¡Tl r- (Tl + I) t1ü) tl:
T2 ¡ . IPGJ (2 ,P-2,t1t tT3 I . IPBJ {A, p-Z: ñ) :
!! t- t!2 s Tl) flæ'ñ¡
T4 t- (T4 a T3) t&l n;Â 3- (A - T4) l1&) t1:
EM];

Q.Jâ0_RES :- A:
ElÐ¡ (c QJAII'RES s)

FqFTIS FIÀ0_N (P,R: INTE6ER) : TNTEGER¡

l:
Þ¡nd tho targ€st poss¡r_...: N eatiefging

(E ZN +l<-p
VAR

sl
rl
*)

X¡IE-tsLE RE/rLr
EEGIN (r ¡¡-¡Ð t¡'al
X ¡. PüJ(P,R)i
I.:: 9onr((x - t.Ot/2.8 t3
Fl¡Ð_N : - TRt-[r€ (X) :EMI: (a FIIÐ N a)-

FqpT IS^159i-,n-.,.1, o: y.cT(F; N: r NTEGER) :800-EAN:(t lf RElltll/0t¡-ll iE an ordei-ñ rà.ã,J fract¡on then rettrrn E)
..- (E TRIE. otharuisa r€turn FALSE. a)VAR

l: INÍEGER:
BEGIN (s TEST a)
TEST :. FALSE:I ¡- l:
REPEAT

IF ((g <. ABS(REt'1il1)) AtÐ(a < A8S(0t¡_1ll) A¡Ð
SEGIN
TEST :- TRLÆ:
EM]:

I :- I + l¡
r_ñ¡f IL REnill - 0Et€; (a TEST E)

PRæEü..FE ELELI0 (p, R. Xl. X2: TNTEGER) :(¡ Hcrein the Kornerup-Grêgoru alóorithe for.finding the Fareg a)
.-. (t rraction correspond¡ng io ã ¡i;ii; "ing-er"uäÃi'i.'ïãrn¿. erVAR

t: INIEG€R¡
N. Jl, J2: INTEGER:

__REn. q..OT,0: vECTffi¡
BEGIT{ (c Et€Lt0 s}
N ¡ - Fl|€_N (P. R) ¡IFR>1TI€N

BEG¡¡{
Jl ¡. ü,J40_R€S(P.R.Xl) ¡J2 ¡ - Q.JA0_RES (P,R.XZt ;

ELSE
8EG¡N
Jl r. Xl;
J2 t- X2¿
El€¡

!{lilll't i.liJIgIlfF} ¡ tJRt IELN (oIJTSTI.FF)
¡ lJRt TELN (&JTST|-FF) ¡

l{IIELN(0UTSTI¡FF.' p . :,p:4,. r. - ;..¡i,qli -

E¡iqLllWIgirrFF;' N - ',¡¡ie,' p !q;"- ',eorre,nl,ar;LFITETN(OUTSTIJFF.' 2 - ;i,'
!{!IELNIflJTSTI.FF.. zN + I -,,\zE N s N + l):8);
lf lig!!,¡ (ouTSTrrFF, ' 2 ,t ;-
E¡IE!ryfquIsTr-FF.' ?Jlfll.,^1_l_-_:: i2*ru*t).i(N+ll + l) :B) ;Ln I TELN (A.JTSTLFF) ¡ tF I TELN (û.JTST[-FF i r

:'

ffillftil[tr13]#F;' j -',Jr¡8)¡

(ABS(REN(I]) <. N) AIü(ABS(oil-Iil<-N))Tt€N

Fi le CONJ€CTLRE printed on lJed Sep 16 1l:41:54 1987 page 3 of 3

REn t8l : . P(Þl (P, Rl ;
RE¡1 (11 : . Jl ¡0t8l :. 1¡
0t-ll :- B; .

LNI TELN (ü.JTSTI.FF. '
rNI TELN (OIJTSTI.FF, '
LRI TELN (üJTSTI-FF) ¡I :. l¡
ullLE REnill <> I m

BEGIN
RElltl + ll ¡. REÌltl - r¡ nü) REntll¡
tll-Olt¡l ¡- REllfl - 11 OlY F€Ì1(ll¡
0(ll ¡- OfI - 21 - q-€T(ll a Otl - ll¡
m ¡ TELN (AJTSTIFF, QË..{)T t I I : 8, REtl t I +l 1 : 8, 0 t I I : I) ¡I ¡- I + l¡
E!€;

LRI TELN (O.JTSII,FF) ¡
¡F TEST(REN,O.N} TI€N

BEGIN
lnI TELN (q,TSTlsF,'
EÀÍ)

ELS€
B€GIN
l8I TELN ((UTSII.FF.'

',J2:81 ¡

'.REntA¡ :8,' ' ,0 t-ll :8) ;
' . REll tl¡ :8. ' ' .0 t8l :8) ¡

a Hensel code I ')¡

no Hsnssl code. ');

",R€nt8l rE,' o ,0 t-11 :E) ;
',REntll ¡8,' '.0 tBl ¡8) ¡

j has a HonEøl code | ');

j hae no Heneel code. ')¡
EM);

LRI IELN (CXJTSTWFI ¡lfi I TELN (&JISIIFF) ¡

rnt TELN (qJTSÌT"FF,' j -
Lnl TELN (qJTSItFF) ¡
REntl¡ t- J2¡
18I TELN (q.JTSTI.FF.'
LR¡ IELN (q.JTSÌTFF. '
IfiI TELN (û.JTSTI.FFI :I :- l¡
I+IILE RENII¡ <> 8 TX¡

BEG¡N
REll(l + 1l :. RÊñ(¡ - 1l lü) RElltll;q.ATtll ¡. REÌ1tl - 1¡ OlV REllflI;
0tll r. 0(l - 2l - q-OTtll t Otl - 1l ¡
l8¡ IELN (OiJTSTIFF.A.OT tl1 :8.REl1f I+ll :8,0 il ! :8) ¡I ¡- t + l¡
Et€¡

ml TEL¡¡ ((UfSItFFl ¡
IF TEST (REN,O,N¡ T}€N

BEGIN
t8ITELN(@JTSTIFF,' j has
EÀÐ

ELSE
8EG¡N
l8lTELN(üJTSTUEf"' j hae
El€¡

EM); (s Et€Ll0 e)

PRæE&-N€ I T{VERSE-I1AP ;(s Th¡c proccdws usas ths Kornerup-Gregorg EucIidean ¿lgorithn s)
(a approach to oapping arì elee€nt of the ring to añ order-N E)
(a Fareg fract¡on. lJhether or not quadratic residue j has a s)
(a Heneel cod6 ¡E output bg this progrs@. g)

VAfi
¡,P,R.J¡,J2¡ INTEGER¡

BEGIN (E IUVERSE_ñAP e)
REIJRI TE (üJTSTISF, 'FAREY'} :
REAO I N (P. R. Jl , J2) ¡
FOR I :- I T0 R tXl

8EG ¡ N-
ELEL l0 (P. I , Jl . J2) ¡
EM];

El€¡ (s INVERSE_ñAP s)

BEGI N

I NVERSE-t1AF ¡
EÀÐ.

F¡ l6 FAREY print€d on lJ€d Sep 16 ll:43:33 1987 page I of 2

PÉ 13r- IÀr. 2pær.
2

A{ +l 9
a

2(H+l) + I . 19

j- s

13

l3
5

32
I
I
2

2
I

-2
3

-5

t-

s13
j hao no Hengel code.

13s
81

I 5 -1132
t2-3
l15
2ø-13

j hao no Hensel code.

Po 13r. ?
N- 9pæar-

2
?tl +l

2
2{N+l) + I -

j- 78

163

?gl

j hss no Henael code.

169

169 S7st
2n-?2L?S2S-t222æ?L-7ø2ø169

9f!ta

169
99

7g
29
t2

I
I
2
2
2
2
2

-l
2

-ss12
2 -23L7øs -163

j has no Heneol code.

13r- 3
33pær- 2L37

po
H.

i- 239

2197 ø239 1

946_9
5946
s I -239I I 2L97

j - 1958

2197 ø1ss8 I
1 239 _1
8469
59-46
s1239
3 I _2197

Fi le FAREY printed on lJed Sep 16 ll¡43:33 lggT pagø 2 ot Z

2
2ît +l - ?L7S

2
2(N+l) +l- Z3L3

j has no HenEel code.

j hae no HenEel code.

PE 13r- 4
N- 1l9par. 28S5t

2
2îl +l - 28323

2
2(N+l) +1- ZEBøL

- 239

28561
239

L2ø -119ll9 t2ø
I -2390 2ES5r

j has no Heneel code.

^ 28322

28551 ø28322 I
1 239 _1

. 118. 12ø 119I 119 -L?øltz39
ll9 r _28551

j hae no HenEel code.

119
I
I

119

APPENDD(J

Summary Table for Output from the

Program in Appendix I

p range of r l values (r=I case only)

5

13

t7

29

37

4t

53

257

1<r<6
I<r <4

1<r<3
L < r 33

l<r <2

l<r <2

L<r <2

l<r 32

', 2,

5,8

4,I3

12,L7

6,31

9,32

23,30

16,241

Table I: Sets of r and p showing that i n 20, .

