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ABSTRACT

This thesis is concerned with the solution of certain problems involving Toeplitz
matrices. Specifically, the inversion and/or LDU factorization, reflection coefficient
computation, and the solution of Toeplitz systems of equations are all of interest.
These Toeplitz matrix problems may be solved in many ways, but of particular interest
are the Schur and split Schur algorithms. A parallel-pipelined processor architecture
for the implementation of the Schur algorithm is due to Kung and Hu, and we simi-
larly develop an architecture for the split Schur algorithms. In both cases the parallel-
pipelined processor system is a linear array of O(n) processors (Toeplitz matrix is
order n). The resulting machines have time complexities of O (n). A Schur algorithm
for the Hermitian Toeplitz matrices of any rank profile is developed as well, and a
parallel processor implementation of it is considered. This latter algorithm is based
upon the Levinson-Durbin algorithm for such matrices developed by Delsarte, Genin
and Kamp. The behaviour of the Schur and split Schur algorithms under fixed-point
arithmetic implementation conditions is considered. It is found that they are numeri-
cally stable, but that one must beware of ill-conditioned input data. To handle the ill-
conditioned data cases, quantization error-free computation implementations of the
Schur algorithm are considered. It is shown that quantization error-free computation
should take place in finite rings and fields. Hensel codes and rational arithmetic are
shown to be unsatisfactory quantization error-free computation methods. Quantization
error-free computation in the finite ring of integers modulo p”, denoted Z_., is con-
sidered for the special cases of p = 2" + 1. Hardware structures for modulo p’ arith-
metic (addition, subtraction, and multiplication) are described, and a technique for
mapping integer data into Zpr without the need for integer division is presented. Com-
putation in the ring Zpr is advocated because it is easy to achieve a ring of large size
simply by increasing r while holding p fixed. Large rings are needed because the
quantization error-free solution of Toeplitz matrix problems produces numbers of large
size in general. Furthermore, large quadratic residue number systems can be con-
structed from Z,» when p is a Gaussian prime of the form 2” + 1. This is useful in
the complex-valued data case.
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Chapter I

INTRODUCTION

1. The Motivation

This thesis is concerned with a particular class of matrix algebra problems. The
matrices of interest here are finite-dimensional, nonsingular Toeplitz matrices, and
these may be real-valued or complex-valued. We are specifically interested in the
problems of Toeplitz matrix inversion and/or LDU factorization, Toeplitz system solu-
tion, and reflection coefficient computation. We refer to these problems as "Toeplitz
matrix problems" in the remainder of this thesis. Note that these problems are more

precisely defined in Chapter II.

As will be demonstrated in Chapter II, these Toeplitz matrix problems arise in
diverse ways and have enormous applications in all areas of science and engineering,
and for this reason they have been widely studied by many researchers for many years.
Thus, the study of Toeplitz matrix problems at a theoretical (i.e., inathematical) level is

certainly well motivated.

In the engineering literature especially, most of the theoretical studies of Toeplitz
matrix problems revolve around the issue of how to solve them in a computationally
efficient manner. The search for computationally efficient algorithms is often driven
by the need to solve Toeplitz matrix problems at a speed that is sufficient to meet the
needs of the application at hand. Studies in this area have yielded many fast algorithms
for the solution of Toeplitz matrix problems, and in the process have yielded much
insight into the properties of Toeplitz matrices. Note that classically it is intended that

such efficient algorithms shall run on conventional sequential processing systems.
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More recently, due to the need for real-ime solutions to Toeplitz matrix prob-
lems, there has been a search for algori;};ns that are amenable to parallel processing
system implefnentation. In this regard it has been discovered that some of the classical
algorithms for the solution of Toeplitz matrix problems are suitable for such an imple-

mentation while others are not-as suitable (see Chapter IV).

Since some Toeplitz matrix problems are ill-conditioned (see Chapter V), conven-
tional finite precision arithmetic implementations (ie., fixed-point or floating-point
arithmetic) of these algorithms will yield poor results (Chapter V). Thus, we are
motivated to investigate the quantization error-free implementation of solutions to the

Toeplitz matrix problems (see Chapters VI and VII).

Because of the high complexity of quantization error-free parallel processor
implementations of the algorithms for solving Toeplitz matrix problems, very large
scale integration (VLSI) technology, or even wafer scale integration (WSI) technology
will be needed to successfully implement them. Since quantization error-free computa-
tibn should take place in a finite ring or field (see Chapter VI), we are motivated to
examine VLSI/WSI implementable architectures for arithmetic in finite rings (see

Chapter VII).

2. Objectives

Given the motivations of the preceding section, this thesis seeks to study certain
algorithms for the solution of Toeplitz matrix problems, their finite precision arithmetic
propern'es,. and the quantization error-free parallel processor implementation of them
using arithmetic in finite rings. Note that the finite precision parallel processor imple-
mentations are very similar to the quantization error-free parallel processor implemen-

tations.
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3. Contributions of this Thesis

To the knowledge of the author, this thesis represents the first attempt at applying
quantization error-free computation techniques to the solution of Toeplitz matrix prob-

lems. Arising from a study of this problem, the contributions of this thesis are:

() A new derivation of the split Schur algorithms of Delsarte and Genin based upon
the Kung-Hu form of the Schur algorithm, rather than upon the Le Roux-Gueguen

form of the Schur algorithm (see Chapter II, section 2.5).

(ii) A demonstration of the fact that the Le Roux-Gueguen and Kung-Hu Schur algo-

rithms are actually the same algorithm (see Chapter I11, section 1).

(i) An inverse mapping from the split Schur variables to the Schur variables is

developed (see Chapter III, section 2).

(iv) A Schur algorithm for Hermitian Toeplitz matrices of any rank profile is

presented (see Chapter III, section 3).

(v) Parallel-pipelined processor arrays to implement the split Schur algorithms of

Delsarte and Genin are presented (see Chapter IV, section 3).

(vi) A parallel-pipelined processor implementation of the Schur algorithm for Hermi-

tian Toeplitz matrices of any rank profile is discussed (see Chapter IV, section 4).

(vii) The behaviour of the Schur and split Schur algorithms when implemented with
fixed-point arithmetic is studied using the method of Alexander and Rhee. It is
shown that the Schur and split Schur algorithms are numerically stable, although

one must beware of ill-conditioned Toeplitz matrices (see Chapter V).

(viii)It is shown that quantization error-free computation should only take place in a
finite ring or field, and that Hensel codes and rational arithmetic are ineffective

quantization error-free computation methods (see Chapter VI, sections 1 and 2).

(ix) Tﬁc quadratic residue number system is extended to include complex-valued data
with rational-valued real and imaginary parts (see Chapter VI, sections 4.1 and
4.2).
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(x) A conjecture concerning the structure of a certain subset of the finite ring Zyr is

stated, and certain evidence is presented that supports the conjecture (see Chapter

VI, secﬁon 4.3),

(x1) Quantization error-free forms of the Schur algorithm are developed (see Chapter

VII).

(xii) Serial and parallel VLSI/WSI implementable hardware structures for addition,
subtraction (via negation), and multiplication modulo p" when p =2" +1 are

presented (see Chapter VIII, section 1).

(xiii) A VLSI/WSI implementable architecture for mapping from the integers to the
finite ring Z,r is presented, and the problem of mapping data in Z,- back to the

integers is also considered (see Chapter VIII, section 2).

4. Thesis Organization

The subject matter of this thesis is organized into nine chapters. Chapter II
largely presents background material that is either essential to understanding the
remainder of this thesis, or else helps the reader to understand how this thesis relates
to the work on Toeplitz matrix problems that has already been done by others. In this
chapter all of the classical methods for solving Toeplitz matrix problems are presented,
and a listing of various areas where Toeplitz matrix problems arise is presented.
Chapter III presents some new results concerning Schur and split Schur algorithms.
Chapter IV describes various parallel-pipelined processor arrays for the implementation
of the Schur and split Schur algorithms. Chapter V considers the behaviour of the
Schur and split Schur algorithms under fixed-point arithmetic implementation condi-
tions, and shows that the Schur and split Schur algorithms are numerically stable.
Chaptgr VI describes the options available for implementing quantization error-free
computation, and rejects two of them leaving only computation in finite rings and
fields. Chapter VII presents quantization error-free forms of the Schur algorithm.
These forms are suitable for implementation with arithmetic in finite rings and fields.

Chapter VIII presents hardware architectures for arithmetic in the finite ring Z,r,and a
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means of mapping data from the integers into this ring (and vice versa). Chapter IX
considers the prospects for successfully implementing fault-tolerant designs of the sys-
tems that coinpute in Zp,, since these systems will be quite large in general (as is
shown in Chapter VII). Their large size will cause them to suffer from serious relia-
bility problems unless fault-tolerant design methods are employed to mitigate them.
Finally, Chapter X presents the conclusions and several directions that future work

may take.



Chapter II

BACKGROUND: ALGORITHMS FOR TOEPLITZ MATRIX
PROBLEMS

We now present, as background material, a discussion of the origin of Toeplitz
matrix problems, and classical algorithms for their solution, as well as a few more
modern approaches to the solution of these problems. Later chapters of this thesis will
often draw upon the material of this chapter. In particular, we shall see that some of
the algorithms to be presented are more amenable to parallel processor implementation

than others.

1. Toeplitz Matrix Problems Defined

In this thesis we are interested in the solution of three problems:
(i) Toeplitz matrix inversion and/or LDU factorization.
(i) The solution of Toeplitz systems of equations.
(iii) The computation of reflection coefficients.
The need to solve these problems arises in many different circumstances, as we’ll soon
see. A To¢plitz matrix T is simply

T = [tij)nriyxnet) = Ujidnatyenary -0Si,j <n

where T is (n+1) x (n+1), and it may be real or complex valued, and f;; is the ele-
ment in the ith row and jth column of T. Since ljj = t;_;, all of the elements along a
given diagonal of T are equal to each other: this is the meaning of Toeplitzness. The

LDU factorization of T is
T =LDU ,

where L is a lower triangular matrix, D is a diagonal matrix, and U is an upper
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triangular matrix. L and U consist entirely of ones on the main diagonal
U =[w],L = Uijl,uz =1; =1 for all i). Reflection coefficients will be defined
later on. We note that reflection coefficients are often alternatively called partial corre-

lation, or PARCOR, coefficients in the literature.

2. Algorithms for the Solution of Toeplitz Matrix Problems

Toeplitz matrix problems have been, and continue to be, the subject of intense
study. Some of the reasons for this are considered in section 3. New reasons to be
interested in Toeplitz matrix problems emerge periodically. As a result, many algo-
rithms for the solution of Toeplitz matrix problems have appeared over the years, and

we will consider some of these algorithms here.
2.1 The Levinson-Durbin Class of Algorithms

Consider the linear system of equations
T,a, =e, , (1)

where T, is a complex Toeplitz matrix of dimension (n+1) x (n+1), and we have the

complex vectors
a, =[a T g 2
n = 14p 0 Qn 1 an n ’ ( )
e, =[6,0 --- 0 ,

where a, is the (n+1) % 1 solution vector. Note that T, is not necessarily symmetric,
or even Hermitian. The Levinson-Durbin algorithm will be used to obtain a, and G,
given T,. We will let T, = [#j~i Jn+1)x(n+1) Where i is the row index and J 1is the
column index. Note that historically Levinson [1] only considered the case where T,
was real and symmetric, and @n0 =1 (this is merely a normalization convention).
Certain extensions were made by Durbin (2] to this original problem. The problem in
(1) is a well-known generalization of the early work in [1,2], and is in fact based upon
an exercise from the textbook [3] by Roberts and Mullis (see Problem 11.13 on page
551 of [3)).
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Define the (n+1) x (n+1) exchange matrix J, as the matrix consisting entirely of

ones along the main antidiagonal but with zeros elsewhere. For example,
[o 0 1]
Jo=1010] .
100

It is easy to see that .)',,2 =1, ((n+1)th order identity matrix). It may also be readily
verified that

T J, =TI . 3)
Property (3) is called persymmetry in Blahut [4] and in Datta and Morgera [5] (Note:
On page 362 of [4] it is said that JoT,J, =T,, but this is false !). If T » 1S Ssymmetric
then clearly J, T, J, =T,; this is called centrosymmetry [5].

Define the column vectors

e =lten - 1), S
L = Ugery ~ ) L
and so
T
Tk I Lo 1. :
= = , 5
Tiiq l:trr fo} L’: T, | (5)

A A . . -
where 1. =J,1., 1, =Jit,, so that the hat denotes a vector with its elements written

in reverse order. We may augment (1) as
Tk [ak bk] = [ek é\k] . (6)

We will let a, o = by o =1 (normalization). If we expand (6) we get

[ 1 bk ] [ 0
a1 b 0 0
T, | . =1 )
Ay k-1 bk,1 0 0
L Qi k L | [0 o

It is clear that
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G 0| _ e M
Tk+1 [O bkjl-.- [Yk é\kJ s (8)
where
- k . k
Me =tcbe = Yty ibes s Ve =tfa, = DR TRPIRI N 9)
i=0 i=0

via (5) and (6). Expanding (8) gives

1 0] [o ne]
a1 bk 0 0
Tew | - . =], .. (10)
Gp by 0 0
L0 1] [Ye O]

Postmultiplying (10) by

1 Kkr+1
.

where the reflection coefficients are

Y Nk
Kl =—, K[y =— , 12
[+1 o, k+1 Glc ( )
yields
Trst (kg Bra] = legyy &7 (13)
k+1 1@k Opyq €k+1 €1l
where
ka1 = O + MeKfoy = O + %K[y = 0,1 = K[, Kf.)) (14)
and
Bpori =i + Kb gori » (00 < k+1) (15)

brsri = by + Ky par; » (0 < i < k+1)

where @y = bg g =0, @110 = bre1o = 1. Thus, we have derived the Levinson-
Durbin algorithm for solving (1). This derivation is essentially the same as that in

Kung and Hu [6].
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We may summarize the previous algorithm in the form of pseudocode:

Gg =105
a0,0 = 1;
boo=1;

For k£ := 0 to n—1 do begin

k
Mk = 2l ee1y-i Beis
i=0

k
Ye = Zfi—(k+1)ak,z;
i=0

Nk

K[, =-——;
k+1 o,
Ye

K = -
kf+1 oy

ket = Ok (1 = K{ 1K 41);
Fori :=0 to k+1 do begin
B = Qi + Kby gris
berri = b i + KfGy o1
end;
end;
The input to this algorithm is T, from (1). Clearly, the algorithtﬁ has a time complex-
ity of O(n?) on a sequential processor. This is a more efficient means of solving (1)
than Gaussian elimination which reqﬁires 0 (n3) operations on a sequential processor.
The Levinson-Durbin algorithm yields a UDL decomposition of T,!. This may

be demonstrated as follows. Via (10) we may write
TWE=3F, LT, =3¥, (16)

where .
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a.

Qp—1,k-1 Qg1 k-2 - -

Ak

bk by
Okt k2 br i
1 by
0 1 _1
0 .00
1 .00
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ak.k—l - ak‘l 1

-~

-

oo 0
x Oy ..

X
X

-

0
0

X ..
X ..

G X |
0 Oy ..

0 ..
0..

0 0
0 O
o,;_l 0

X O |
X X
X X

Cpy ¥
0 Ok |

3

(17a)

(17b)

where the entries marked ’x’ denote ’don’t care’ entries. The second equation in (16)

follows from the fact that J,T,J,J,a, =&, which implies that TI8, =6, so

é‘[Tk = é‘,Z: or

From (16)

Ak ke Gk gy -

: ak'l I]Tk=[00 R

0o.] .

L{T U = LEsE = 5PU = D, = diag {co G, " Oy ck}

since LATE is lower triangular and TYUE is upper triangular. Thus,

or

T, = LH'D, WUB? ,

T = UEDCILE .

(18)

(19)

(20)

@1

Equation (21) is equation (2.8) in Kung and Hu [6]. Hence, given T, and Yi in

Tyx =y, we may solve for x, via (21). This will take O (k?) operations.

From (20), the determinant of T, is given by

and from (22)

k
det (Tk) = HO"- ’
i=0

(22)
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det (T}.)

S @3)

Thus, it is clear that the Levinson-Durbin algorithm will compute T,7! if and only if
det(Ty) # 0 for k =0,...,n. This implies that the Levinson-Durbin algorithm must be
terminated if and when o, = 0. If T, has singular leading principal sﬁbmam‘ces, and
yet T,7! exists, then the algorithm of Rissanen [7] may be used to compute T} in
O (n?) time on a sequential processor. If T, is Hermitian, so that T, = TH (H denotes
the Hermitian (complex-conjugate) transpose) then Delsarte, Genin and Kamp [8] have
shown how to modify the Levinson-Durbin algorithm to accommodate the singular

submatrix case.

It is worth considering the special case of Hermitian Toeplitz matrices separately,
since some simplifications in the previously presented Levinson-Durbin algorithm

arise, and this special case is particularly useful in practice. If T, is Hermitian then
I T J, =T, | 4)
where the bar denotes conjugation, and it is clearly true that ¢_; =E. This is the

centro-Hermitian symmetry property [5]. Because T, is Hermitian and persymmetric it

is called Hermitian persymmetric [5].

As before, Tya, =¢, =[6, 0 - - - 0]7 so that
A | _ &
Ty [OJ = }:YJ , (25)
where
k _
Ye = Dler1-iG; - (26)
i=0
Since

a e y
Jen1Ten [JJ = ,:Y:J = L\:j’

we can use (24) to write
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7—:lc+1Jk+l [Cg} = 7:;:+1 {‘%J = [;:J

which may be conjugated to yield

01._ Ve
Tk+1 [EJ = [&J . (27)

Combining (27) with (25) yields

a 0 € Ye
T =T + K = + K = . 28
k+1%%+1 k+1 [0 J k+1 [@J [YkJ k+1 [@\;‘J €r41 (28)

where
Yk
Keny=-——,
Ok
and so
Ok+1 = Ok + KWy =0, (1 = | Koy |9 . (29)

Clearly, o, is real for all k, since Oy = tg is real and | Ky | is the magnitude of

K} 41 Thus, the (k+1)th reflection coefficient is

Yk
Kk+l = —E— . (30)

k
From (28),
Uerti Ui + K@y, 0<i <k+1) €2y
where g, g =1, A+ =0forall k =0,1,..,n-1.

Thus we may summarize the Levinson-Durbin algorithm for Hermitian Toeplitz

matrices as follows:

G =1,
ao‘o = 1;
For k := 0 to n—1 do begin

k_
Ye = Zt(kﬂ)—iak.i;
i=0
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Ye
Ky =-—;
k+1 oy
Oksp = 0p (1 — | Kii [2);

For i :=0 to k+1 do begin

Apeli =i + Kp1Gp pois
end;

end;

The case where T, is real and symmetric follows trivially. This case is also discussed

in Roberts and Mullis [3] (see pp. 520-523).
Since Tya, = e, T, 8, =8, (via (24)), and so BITT = 8T which is &IT, = ¢T
and this yields
L{T, =3¢, (32)
where Lg* and £ have the same form as in (17b). As well, T, 8, = &, yields
T, =3fF (33)

where Z,f‘ has the same form as in (17a). Combining (32) and (33) gives
LT, Y = Pt =gzt =D, = diag{oo Tt O } : (34)

Thus,
Tl =@hHip Ly . (35)
The relatiohs in (22) and (23) continue to hold.

The Levinson-Durbin algorithm has been derived and extended in various alterna-
tive ways not covered here. Other derivations and extensions may be found in Blahut
[4], Honig and Messerschmitt [9], Friedlander [10], Carayannis [11], Robinson and
Trcitel‘ [12], Bruckstein and Kailath [13], and in Markel and Gray [14].

2.2 The Trench Algorithm and the Gohberg-Semencul Formula

Trench’s algorithm [15] is another popular "classical” approach to the solution of

Toeplitz systems of equations and Toeplitz matrix inversion. Zohar [16] argues that
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Trench’s original derivation is unnecessarily complex and so Zohar presents a
simplified derivation. Various extensions to the original Trench algorithm are to be
found in Akaike [17] and Zohar [18]. The derivation that we present below is essen-
tially that of Zohar [16]. Note that the Trench algorithm also presumes that the lead-
ing principal submatrices of T, are nonsingular. This is called strong nonsingulariry

in Zohar [16].

Define the column vectors

o =gy - 007, (36)
ot =t geary - 007,
so that
Tk z‘If+1

T, = ] 37
k+1 [(tlz-ﬁ-l )T tO ( )

Define

- M, biy,

Bk+1 =Tk+ll = [(bzﬁ-l )T bk(il (38)

Thus,

7. g = | TeMeHia O Tebg+b4 k., Jz [Ik O] =7 (39)
CTET 0 T Mg )T (o Y b +bato 0 1) texte

which implies that

TeMy + 160 G = 1 (40a)
TebEe + b 1f =0, (40b)
() My + o0, =0, (40c)
b +bQutg=1. (40d)

Premultiplying (40a,b) by B, gives

My =By = Byt (bf )T,
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= _p0
bgs1 = =biyiBitin
which combine to yield

bE (br )T
My =By + ——F1 (a1)
bri

Substituting (41) into (38) gives us

. bfa ®fy)T
bkqi-l bf+1
(b/:+1 )T bk0+1

k

By, = (42)

We know that J, T, J, = T{ and so J, TV, =TT which implies that JkBeJ, =Bl

i.e., By is persymmetric as is T,. This fact, combined with (42), enables us to write

b (gf-n )7

By = L L Gy | (43)
e+l B, + 261 0kn
b

If we let Bk = [bij,k](k+1)x(k+l) then via (42)

1 .
bijav1 = bijp + N [bfe1 BLa)T ), (0<i,j <k) (44)
k+1

where [X ],-j means ‘component ij of the matrix X’. From 43), ‘

1 ..
bistjriin = b+~ b L)l . O<ij <h). (45)
k+1

Subtracting (44) from (45) produces

1
bis1jsrh+1 = bijgar + ;O_'[gl:H (5\/&1 T = bfy () Tl (46)
k+1

and using (44) and (45) again we get

1
bi1j-1k+1 = by pay + b—o‘[b/fn LT - b (é\kcﬂ Mliijo 47)
k+1

where in this instance 1 <i,j < k+1.
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From (40b)
NeTeJ JibEey +bOJitfy =0
or
T/%fﬂ + b&ﬁu =0,

and so we have

A
ka1 =SBl (48)
which may be expanded as
r bleHT
Bk"l + 0 r A
< _p0 be b | K
k+1 — k+1 (bDT bko Leet

[ gc br(bC)T
k k\Ok) A ,
+ I + bty
ka ,b\:ko .
®OT 1 + by,

This can be rewritten as

b || bpepT
Bea 0O B2 bR (49)
bk0+l 0 (bf)T ka tk+l )
If we compute the product Bi41T4y using (37) and (38) then we get
| Ge) T + 02 @) =0 . (50)
From (50)
TeTi eI iebia + bty =0

or

A
Tebpo + bhtis =0

which implies that
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, A
5\“1 = b 1Bty

We may expand (51) to get

-

bE(hT T
B, + £(bg)

A
k+1 k+1 (blg)T ka t—(k+1)

r crir\T
br be(BD)" &,
+ L +bgt_
5 B0 D

= —p0
k+l (blf)T;Z + bkot-(lc+1)

This may be rewritten as

b || bgep”
b, _| e B b [ i ]
b2, 0 GOT b0 [Faweny]

Let us define certain normalized variables namely

We can use these definitions along with (49) and (52) to write

pe _ |E|_ @O +na o
S ) s v U

& (CE)T;Z“'I—(/:H) cE
el:-ﬁ-l = 0 - }"k 1 .

Now, all we need is a recursion for A, .

From (42) and (43)

1
bk0+1 = bOO.k + 0 [bkc+1 (b£+1 )T]OO ’
be+1

but bog, = b . From (49) and (52)

1)

(52)

(53)

(54a)

(54b)

(55)
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biio = -bS1 [BOTE + b0, | (56)
A
biso = —bd (BT + bt )] s

which are the first elements of the vectors bg, and bf,,, respectively. Thus, substi-

tuting (56) into (55) yields
b = b + b1 (BT + 5] [GDTH + by
= b0 + b GOACHTE + et (DT, +1 —(k+1)]
which reduces to

(DT + t_gany] [COTEE + 1,,]
Ay ’

Aes1 =X — (57

and this is the desired recursion for A¢. Equations (46) (or (47)), (54a,b), (57) and the
definitions in (53) constitute the Trench algorithm. Simply iterate using (54a,b) and
(57) untll k¥ = n~-1 and then use (53) and (46) (or (47)). The time complexity of the
Trench algorithm is O (n?) on a sequential processor.

We may initialize the Trench algorithm in the following manner. Consider the

case n = 1, then

Thus,
A=ty - sl =—,c§f =-— |, (58a)
Iy 0 Ly
or, alternatively,
r t"l c tl
b] =——2———,b1 S . (58b)
ty — gty ry -1yt

We now wish to obtain the Gohberg-Semencul Jormula [19], which is an alterna-
tive means of writing 7,,". The Gohberg-Semencul formula expresses T,7! as a sum of
products of upper and lower triangular Toeplitz matrices. This fact proves useful in

certain applications to be discussed later on in this chapter.
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We begin by noting that
- -

-1
O; b
X X .. _kl k.k
X X .. X Ok b i
B, =UBD; LA = : ' : ‘ . (59)
~1
¥ e SR O bey |-
Ok Qkk Ok Gi-1 - - Of ag of!

where we have used (17a,b) and (21). Comparing (59) with (42) reveals that

bl =co;! (60a)
bf = 0F" beg beg-r -+ brag begl’ (60b)
bf = o' (@ek G- " ary alc,l]T . (60c)

As well, Ay = o, via (53). Therefore, the Trench algorithm provides us with the same
information about T, as the Levinson-Durbin algorithm, but in a different way. This

turns out to provide useful insight into the structure of T,;! as we shall now see.
From (46) and (60a,b,c)
bivtjerk = bij e + 0" [ay jbpjig — b p-i ap ki1 (61)

where biO,k = G[Iak‘i ’ bOj.k = G;:lbk'j (ak'o = bk,() =1 from (43), and

0<i,j <k-1. From (61) we may write

10 .0 0f{1bey.besa bua 0 0. 0 0f|0@y, . %2a
Gy 1 . 00|[0 1 .bpabigy by 0.0 0f]l0 0 Ay G

oxT=| - . Sl . N T A N -] (62)
: Qe py B p-2 - 1 0{{0 O . 1 bk.l bk'z bg'g. 00 00 .0 ap
Gy Gppq-%a1[{0 0 . 0 bey bz -5 00 0 . 0 ¢ |

This is one form of the Gohberg-Semencul formula. Other forms may be found in

Kailath, Vieira and Morf [20]. We may write (62) compactly as
T = ot WUl - Ljury (63)
where L] and Ly are lower triangular Toeplitz matrices with first columns
(Naey - @y @]’ ,and 06y, - by by 7,

respectively, and U[ and U, are upper triangular Toeplitz matrices with first rows
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(Lbey = brp-1bepl and [Oap - a0y,

respectively.
2.3 The Schur Algorithm

We will now derive the Schur algorithm for T, in (1) via the method presented in
Kung and Hu [6]. We will illustrate the method for the special case of n = 3 as was

done in [6]. The extension to arbitrary n is straightforward.

Consider the augmented form of T, where we will let T = T,

talalog| o 5y 21
0 t3tg| Iy 1ty Iy 1
0 0 3t pr 912y
0 0 ¢

T = (64)
L3t o1 41
and so T is the rightmost four columns of T. We wish to compute (L*)~! and U in

(L*)'T = [X | U], where this may be expanded as follows

1 9 00 X X x | Uop “01 %02 U03
l101 00| _ [xxx| 0 #1%pu3
lyply 10 T =X 0 0 uy Uy (65)
{3013 1321 xxx|{ 0 0 ¢ U3
We may write
1 K100 F = V§2) Véz)vfz) véz) 0 v_(%) v_(%) 662)
K{ 100"~ [uPuPuP| 0 4,@,9,9| a
where
r_ t
kK{=-—, K{ =-— | (66b)
to [0

The first rows of (L") and U are obviously
[1000], and [ty 2, 2, ¢5] ,
respectively. From (66a) the second rows of (L*)™! and U  are, respectively,
k{100],and [0u® uD uD7 .

Because T is Toeplitz (and so is T), we can shift the second row of (66a) to get
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1KT00| 7 _ [v2v@v® 1 v@P v @y @ .
OK{10]" " [ 0 uPupP|uP0,0,0| 7
Thus,
L K2 11K 00| & _ (v v v v g o v (682)
K§ 1] [0K{10]" = [upuPu®| 0 0uQu®|
where
(2) )
—_ ul ro_ v"2
Kf = ok K5 = R (68b)
We have
1 K3 |[1Ki00|_ | 1 Ki+k{K5 K5
Kf 1| |0g{10 K{k{+K5k5 1 0 °
and so the third rows of (L*)™! and U are, respectively,
(K K{+KK5 10],and [00u® u D7 .
We may repeat the preceding process one final time producing
LRSI ILKIKIKS Ky ol v viv@® v 0 g (692)
KE 110 kf  k{+kiKE1]" T (ufufu®| 0 00,9 a
where
u® e
= 5= (69b)

and so the final (fourth) rows of (L')'1 and U are, respectively,
(K§ KE+KSKT+K{KS) K{+KK{+K5K4 1], and [00 0 ul®y.
Note that we have again employed shifting to obtain (69a).

From the preceding, we may write the Schur algorithm in the form of pseu-
docode:
Fori :=-n to n do begin

vD =y u M = t_;;

-—f

end;
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For k :=1to n do begin

(k)
Up
K = ——si,;
[ Vék)
(k)
l: — vk .
: s
u—(kll

Fori :=-n to n do begin
k) = K[v,-(k) + u®);
WED =y 0 4 ),
end;

end;

Since we have (L*)™'T = U, it is possible to write

1 u_(}) u_(? u—(-%r)x—l) uf}z)
u ou® @ L,
e I )
* Uz Uz _ ul
(Ln)—lTn - 0 0 2 .. (n—-1) n (70)
000 0 .. 0 ,um

But what is L, ?
Suppose T, =L,D,”'U,, where L, =L.D, , and U, =D,U,. Thus the proper
LDU factorization of T, is T, = L,D,U,. Note that the asterisk denotes a triangular

matrix with the main diagonal consisting entirely of ones. Define T, = T,,T , and so

T, =L,D'U, , and since TT = UIDILT, we conclude that

L,=Ul', D,=D,, U, =LT. (71)
Running the Schur algorithm with T,, as the input produces variables K[ K ‘S v}“ ,
and 1) that may be related to the variables K[, K{,v® , and u,® produced by the
Schur algorithm when T, is the input. We will now find this relationship, and in so
doing we will answer the question of the previous paragraph.

It is clear that t, =1r_; where t} is an element of T,,. For k =1, from the Schur

algorithm we have



.r
1

Thus we surmise that K[ = Ky and K,: = K/. In fact, we also have

5O = u )

v

id?

; (D
-1

k+1 > Y

k
© = v-(-x—-k+l

k)

(72)

and this may be proven inductively as follows. Suppose that (72) holds for k, so then

; (k) (k)
. Uy _ Vi o
ka‘"-(k) T Tm TR
Vo U k1
s (k k
K"r— V_(k) __ul()_K[
koo T vy
—k+1

As well,

& = k[‘}i(k) + 4

(k+1)

K
=KiuE, +v®, = VIZE+1w1 o

15;'(/”1) = ‘;i(k) + kk'ﬁszx)

=u®

and so (72) is true for k+1. Therefore, (72) is valid by induction.

k ]
ko) + KV, = u FEI VO

Because of (72), row j (0< j < n) of U, is

o - Ou_(lj',*'l) d_(.’l;**l)]:m O_véjﬂ)

But L, = UL from (71) and so

Since T, = L,D,7'U_ we must have

:
T
e

SRR

(73)
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D, = diag {vél) v - vé’”’l)} (74)
=diag {ufd u®P ... uli+h e
that is,
v =uk), . (75)

Finally, from (73) and (70),

i o Dyl g Dud  u®
. 0 (V(S ) .. 0 ué 1 . R
viPv@® g o o o 0 up u®
T,=| . . . . . . . (76)
v,;(l) v,(.z.)l . vé';“) 0 0 .. (\.r(S"‘;I))'l 0 0 . uf’,;‘“)__

This is equation (3.13a,b) in [6]. The proof of (76) that we have just presented is
essentially contained in Appendix A of [6].

If we compare (20) with (76) we see that
o = v§ED (77)

for k = 0,1,..,n. Hence the Schur algorithm will work only when the leading princi-
pal submatrices of T, are nonsingular. From (70) (Lg )IT, = U, and from (20)
L{T, = D (UP)™ and so L{ = (L))" (note that we are assuming T} is strongly non-
singular again). If we compare the elements in the lower left corners of L,‘C4 (see (17b))

and (L,: )L (generalize derivation in cqﬁations .54) - (69a,b) to arbitrary n) we get

K[ =ay,
From (15) K/ = Ak k> and so the reflection coefficients K [ produced by the Schur algo-
rithm are identical to the reflection coefficients K[ produced by the Levinson-Durbin
algorithm. It should be evident that K{ in the Schur algorithm equals K[ in the
Levinson-Durbin algorithm for all £ as well. This fact follows by using an argument
similar to the one used in proving that K{ = K{ and K[ = K.
If T,, is Hermitian then it can be shown that the Schur algorithm becomes:

Fori :=0to n do begin
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u® =y uW =y,
end;
| For k := 1 to n do begin
u®

o
u-gkll

K =~

Fori := 0 to n—k do begin
WGt = ufin + K59,
wED =k w0+ u®);
end;
end;
We have used the fact that L, = (UNHY, and v = u_(ﬁll so that

—(k
v = ufk)-m (78)

holds.
2.4 The Bareiss Algorithm

Bareiss [21] considers the solution of the Toeplitz system of equations Tx = b
where T is (n+1) x (n+1) and is not necessarily symmetric (i.e., T has the form of T,
in (1)), and b =[by - - - b,,]T is an arbitrary column vector. T may of course be
complex-valued. Brent and Luk [22] compactly write the Bareiss algorithm as fol-
lows:

TO =7, p© = p,
For k := 1 to n do begin
tk(,lo—k)

m_, = ;
k o

TR = kD) m_yZ_, T*-D;
b(‘k) = b(_k+1) - m_kZ_kb(k“l);
k-
’6./: b

m; = t('k) N
n,n

T® = T*-D _ 7, TEH),
b®) = p*=D) — 7, p R,
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end;

Z_; and Z; are shift matrices defined by
Za=0{"=08.11. Z, = ) = 18;u) » (79
where 0 is the Kronecker delta. If Z_ is applied to a matrix as indicated in the pseu-
docode above, that matrix will be shifted down by k rows and the top k& rows will be
filled in with zeros. Similarly, Z, applied to a matrix as indicated above will shift that
matrix up by k rows and will fill the bottom k rows with zeros. Thus Z_; is a down-

shift matrix, and Z, is an upshift matrix.
It is evident that the Bareiss algorithm produces a sequence of systems of linear

equations, namely

TEOx =pCD  TWx = p® | | Ty = pn) Ty = p) (80)
where T s upper triangular and T™) is lower triangular. The algorithm has a time
complexity of O (n?) (including the back-substitution step).

The operation of this algorithm becomes clearer if we consider an example. Let
us consider the special case of n = 3 as we did in section 2.3, and so T is as in (64).
The Bareiss algorithm will then produce the following sequence of parameters myy

and matrices 7).

©
t r_
e (812)
0 0
T =TO—py_z_ TO (81b)
to I I3 13 0 000 tg 1 f2 I3
Iy tp 1) 1 to tytaty| | o #fVefD gD
B LR R Y R P 7 % Bl PYC V) eV
fst ot gt fat1toh ,_@)tﬁi” 0 D
0
t t
i _ 4 (81c)

mE N T T
EERN

TM =TO® _ py 7, 76D (81d)
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r T r'
g 1y Ip 1, 0 D tl(—l) [{—1) ) [él) t§l)
t g 1y 1y tGY g Ve tD oy o 4P
faty to ty| T TUIGD G0 0 460 T 0y 0 |
3t ot 2 0 0 0 9 ] ty b, ty fo
5 e Gh
moy=—-=2 (82a)
Lo Lo
TG = 76D m_zz_zT(l) (82b)
SN CNE 000 0 to P P2 03
R e S I B I S
tGD 0 DD 220 0D 0, 0 tfPf?
£ GD tGH ) Pt 0 L 1§20 1§
= -———-té? ———tél) (82¢)
B 5P P
T(z) = T(l) - mZZZT(_z) (82d)
f0 0 gD eV 0 Oté-z)tf‘z) 0 o
1 — -2
P 1o o 1Y —m t590 o 1?2 t@ 1 0 0
t_(_%) I_(_{) ) 0 2 0 0O 0 [_(12) [_Sp Iy 0 ’
I3ty Iy lo 0 0 O 0 t3 1, t )

oy 58P

e &
0 0
T =Ty 7 7O (83b)
4 4 I t t 14
tg 1o f2 I3 000 0 o L0203
0 2§V ef DD 000 0 0 1§V eV efD
0 0 (22 |"™310000 |50 0 (5D
(o .
! §,3 1§
T =72 _ msZ T3 (83d)
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r B ’_ _
00 o 000t | 0 ¢ g
_ |51 % 0 0 ol 1000 0 | _ 120 5 0 0
T e 0 31000 0 |7 ;@D gy 0
t3 I, Iy fo-‘ 000 O taty t tOJ

The Bareiss algorithm works as long as the leading principal submatrices of T are

nonsingular. An LU factorization of T is

T=LU , (84)
where L = %—(T(”))TZ, and U =T, and where *T2’ denotes matrix transposition
0

about the main antidiagonal (see [22]).
2.5 The Split Schur Algorithms of Delsarte and Genin

Delsarte and Genin [23] have shown that the Levinson-Durbin algorithm, for the
case where T, is real and symmetric, is redundant in complexity by a constant factor.
Specifically, if the Levinson-Durbin algorithm of section 2.1 (real-symmetric T,)

2 multiplications (large n assumed), and if the split (symmetric or

requires c¢n
antisymmetric form) Levinson-Durbin algorithm requires c,n? multiplications, then
€, <. The method in [23] has been extended by Krishna and Morgera [24] to
accommodate the Hermitian Toeplitz case. As well, Delsarte and Genin [25] have
presented symmetric and antisymmetric split Schur algorithms for the case where T, is
real and symmetric. The split Schur algorithms of [25] are faster than the Schur algo-
rithm of section 2.3 by a constant factor, at least insofar as the computation of
reflection c‘oefﬁcients is concerned. We will only derive the symmetric split Schur

algorithm here, and we will simply state the antisymmetric split Schur algorithm, as its

derivation is so close to that of the symmetric case.
From the Schur algorithm for Hermitian T,, we have
ulP=1, (4 =01,.,n) (85a)
uf®

k I
u—(kll

K, =- (85b)
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—(511 ) = “£(1)+k>+1 + Keu (85¢)
D = Koy + X, (85d)

where the bars have been eliminated since we are now assuming that T, is real.

Define the variables
Vil = uH-l) tu ((l)+k)+l » (863)

Vk+1z = uz+? u—(z)+k)+-1 . (86b)
Variables v, ; are used in the construction of the symmetric split Schur algorithm, and
variables "l:.i are used in the construction of the antisymmetric split Schur algorithm.
We call v, ; the symmetric Schur variables, v,:“- the antisymmetric Schur variables,

and u‘-(") the Schur variables (as in [25]).

Using (85c,d) and the definition (86a) gives

(1 + Ky, = w*D 4 GO &7
From (85d) and (86a)
Ve = 4ED 4 (1 - Ke)ulQeyn - (88)
From (87)
(1 + K = u® +u®), k)1 - ‘ (89)

If we substitute (89) into (88) we get
Virri = (1= KA+ K v — w0 + 5 *+D 4 g, 0 (90)
But from (85¢) K, ®) = u )1 ~u%).;,,, and this may be substituted into (90) giv-
ing
Virri = (1= KA + Ky =@ + D 40 8D~y ® 00 01)

From (86a)

_ . (k k
Ve+1,i-1 = ui( ) + u—(( +iW2

k
Ve42,i-1 = ui( D+ u-(fﬁ,))«u

’
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and so (91) becomes
Viari = (L= KL+ Ky )Vi i = Vi o1 + Visaio
or

Ves2i = Vel T Vestier = Q% Vsl > (92)

where
o, =(1-K)1+K,_)) . 93)
We call o, the kth symmetric split reflection coefficient. Straightforwardly,

097

Kn=1-—nu-o-— 94
k 1+ K, &9
Sincek =1,..., n, we will let K4 =0 as a convention (as is done in [25)).

We need initial conditions, and we need an expression for the symmetric split
reflection coefficient in terms of the symmetric Schur variables. Clearly, from (86a)

and (85b)
Ve = 4O +ufh =1 -Kuk, =1 -K)o, | (95)

where we have also used (75) and (77). From the Levinson-Durbin algorithm
Or = (1 =KAo,y = (1 - K, )(1 + K)o,  Hence, o, =veol +K,)  or

Oi-1 = Vg o(1 + Ki_y). As a result, from (93),

Vk+1,0
o = (1 - K)(1 +K,_;) = =2 (96)
Yk,0
From (86a)
Vo = u,-(,rlf + uf,l) =65ty 0<i< n-1) , cn)

and  via  (85b) K, =-u{Dud =11, Sincee. K;=1-0; and

V2.0
Q) = —— = (fg+7,)/ty we must have v, 5 = ¢,. From (89)
V10 '

A+Kowvy; =uD+ud =2

orv,; =2t (1<i <n).
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Thus, the symmetric split Schur algorithm is:
Kg:=0; |
.V1.0 =g vy =2t (10 €n);
Voi =84+, (0<i <n-1);

For k := 110 n do begin

Fori := 0 to n—k do begin
Vir2i = Veati b Viariel — Ve i
end;
end;
We may reindex the variables of this pseudocode program to get:
Kyg:=0;
Voo =tos vo; =2 (1<i<n)
Vi =t +4, O<i<n-1)
For £ := 1 to n do begin

Veo
r
Vi-1,0

ap =

Kp=1-—2%
S Y
For i := 0 to n—k do begin
Vi+Li = Vi T Vel — QVeogivns
end;
end;
This is‘ essentially the symmetric split Schur algorithm of Table VI in [25]. The only
difference is that the innermost For-do loop of the above program continues until

I = n—k whereas the corresponding loop in the Table VI program of [25] only contin-

ues until i =n—k-1. This difference is insignificant, and is due to the use of a
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different form of the Schur algorithm as a starting point for the derivation of the split
Schur algorithms in [25]. We note that the Schur algorithm in [25] is essentially the
same as that in [6]. The Schur algorithm in [25] is that of Le Roux and Gueguen [26],
and is derived directly from the Levinson-Durbin algorithm via the derivation of
Markel and Gray [14], which is different from the Levinson-Durbin algorithm deriva-

tion of section 2.1.

We may state the antisymmerric split Schur algorithm in the notation of Delsarte
and Genin [25] as follows:
Kog:=0;
Voo =tg; vy =0(1<i<n)
Vii ==ty (0<i<n-ly

For k := 1to n do begin

&
« _ Ye0 |
ak T s 4
Vi-1,0
%
K 1 %
==l —_
¢ 1-K '

For i :=0 to n—k do begin
3 — % % x % .
Verli = Vi F Vel — 0 Ve_g 4
end;
end;
We call a,: the kth antisymmetric split reflection coefficient.

A comparison of the split Schur algorithms with the Schur algorithm reveals that
the split Schur algorithms use about half of the multiplications that the Schur algorithm
does in order to compute the reflection coefficients K. Itis still true though that both

types of algorithms have time complexities of O (n?.
2.6 Positive Definite Toeplitz Matrices

If T, is an autocorrelation matrix, then T, is positive semidefinite [3]. This is
often symbolized by writing T, > 0. For complex data, T,, will be Hermitian if it is

an autocorrelation matrix. From [3], a necessary and sufficient condition for the
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positive definiteness of T,, (symbolized by T,, > 0) is that
det(T},)>0 fork =0,1,..,n

If we recall equation (23) of section 2.1, the Levinson-Durbin algorithm has a built-in
test for positive definiteness. Since 6., = 6, (1 — | Ki.1 1% (equation (29)), then T,
is positive definite if and only if | K, | < 1, for k = 1,2,..,n. Clearly, if T, > 0O then

0<Gk+1£6k , k =20 as well.

It can be shown that the Schur variables, in the Hermitian Toeplitz autocorrelation
matrix case, satisfy I u[(") | < ty (see [25], or [26]). Similarly, the symmetric and
antisymmetric Schur variables satisfy | v, il <2, v,:,j | <2ty, and the split
reflection coefficients satisfy 0 < oy , oz,: < 4, (see [25]). The bounds satisfied by the
Schur and split Schur variables make the Schur and split Schur algorithms suitable for

fixed-point arithmetic implementation.
2.7 Other Algorithms

The list of algorithms for the solution of Toeplitz matrix problems that we have
so far presented is not complete. We can name others. All of the preceding algo-
rithms have time complexities of O (n2), but there exist algorithms with time complex-
ities of O (n log?n). These algorithms are not practical unless n is quite large, how-
ever. The reader should see Kumar [27], Brent, Gustavson, and Yun [28], and Bit-
mead and Anderson [29]. All three algorithms use so-called "doubling strategies".
Doubling strategies are introduced in Blahut [4]. Connections between Euclid’s algo-
rithm, Padé approximation and Toeplitz problems are discussed in [28]. A summary
of some of the results in [28] may be found in Gustavson and Yun [30]. Bitmead and

Anderson [29] employ the Gohberg-Semencul formula in their algorithm.

Some Toeplitz matrices are banded. This means that there are integers p and gq
such that 1 <p,g <n and t, #0, r_,#0buty;, =0fori >p and i <. If pis
of the same order as ¢, then Jain [31] presents an algorithm for solving T,x =y,
based upon the use of fast Fourier transforms (FFT), and the Trench algorithm, and it
has a time complexity of O (n log n +p?), on a sequential processor. Dickinson [32]

presents an algorithm that uses results from Trench [15] and Zohar [18]. It has a time
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complexity of O (pn + gn + (p+q)?) which is much faster than that of Jain if p and ¢

are fixed while n grows.

Many éoncepts that have been used to solve Toeplitz matrix problems can be
extended to solve certain non-Toeplitz matrix problems. For example, the Levinson-
Durbin algorithm can be extended to solve Toeplitz-plus-Hankel matrices as is shown
in Merchant and Parks [33]. If T is Toeplitz and H is Hankel, then T + H is a
Toeplitz-plus-Hankel matrix. H is Hankel if H = (A1 = [A;4;], that is, H is "Toeplitz
in its antidiagonals". Note that if H is Hankel, then JH is Toeplitz and so the algo-
rithms of the previous sections can potentially be used to solve Hx = y. Levinson-
Durbin-like algorithms can be found for the solution of systems of equations involv-
ing so-called diagonal innovations matrices (DIM), and peripheral innovations
matrices (PIM). This is shown in Carayannis, Kalouptsidis, and Manolakis [34]. Toe-
plitz matrices belong to the class of PIM matrices. The displacement rank theory of
Kailath, Kung and Morf [35,36] allows the extension of the Levinson-Durbin class of
algorithms to near-to-Toeplitz matrices. A matrix is near-to-Toeplitz if its displace-
ment rank is fixed compared with n, the size of the matrix. The reader should consult
[35,36] for an explanation of this idea. Applications of displacement rank theory can
be found in Friedlander, Morf, Kailath, and Ljung [37]. Improvements to the work in
[37] are suggested in Kalouptsidis, Manolakis, and Carayannis [38]. An extension of
the Levinson-Durbin algorithm to the covariance method of linear prediction can be

found in Morf, Dickinson, Kailath, and Vieira [39].

3. On The Origin of Toeplitz Matrix Problems
We have seen that many algorithms exist for the solution of Toeplitz matrix prob-
lems. Now we shall consider some examples of where Toeplitz matrix problems arise.
31 A Miscellany

We begin by presenting a list of applications with short explanations. Succeeding

sections will consider other examples in greater detail.
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(ii)

(ii1)

(iv)

)

(vi)

231

Complex-valued, block Toeplitz matrices arise in the analysis of diffraction grat-
ings (see Jull, Hui, Facq [40], and Facq [41]).

The discrete form of the Gel’fand-Levitan integral equation, which arises in geo-
physical applications, has a Toeplitz-plus-Hankel structure (see Merchant and
Parks [33], and Aki and Richards [42]).

The numerical solution of boundary value problems in ordinary differential equa-

tions leads to the need to invert banded Toeplitz matrices (see Usmani [43]).

Linear predictive deconvolution to remove reverberations in marine seismograms,
and Wiener filtering can involve the need to invert Toeplitz matrices (see Wood

and Treitel [44], Wiggins and Robinson [45]).

The linear predictive analysis of speech signals can involve the need to invert

Toeplitz matrices (see Schafer and Rabiner [46], and Markel and Gray [14]).

Reed-Solomon error control codes can be decoded via Toeplitz matrix inversion

(see Blahut [4,47,48]).

(vii) Finding the poles of an autoregressive (AR) system function can involve the need

to compute reflection coefficients (see Jones and Steinhardt [49)).

(viii) Parametric bispectrum analysis can involve the need to invert a nonsymmetric

(ix)
(x)

(xi)

Toeplitz matrix (see Raghuveer and Nikias [50)).

Linear interpolation can require the Gohberg-Semencul formula (see Kay [51]).
Moving average (MA) system identification problems can be solved by an itera-
tive aigorithm that uses Trench’s algorithm, and the resulting method is applicable
to the modeling of so-called 2-phase flows in fluid mechanics (see Ohsmann
(52)).

The identification of nonlinear systems can involve the need to solve Toeplitz

systems of equations, and this has applications in the modeling of nonlinear phy-

siological systems such as neurons (see Korenberg [53]).

(xii) Capon’s [54] maximum likelihood method (MLM) is used for wavenumber spec-

tral analysis for wave propagation with spatially distributed sensor arrays, and the
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Gohberg-Semencul formula can be used in the high-speed computation of
Capon’s MLM (see Musicus [55]). '
3.2 Padé Approximants

From Gragg [56], the Padé table of a power series

C(z) = i Cp 2™ (98)
m=0

is a doubly infinite array of rational functions

Pma(z) apg+ayz+ -+ +a,z"
Amn(2)  bo+biz + - +b, 2"

(99)

rmn(z) =

determined in such a manner that the Maclaurin expansion of r,,, agrees with C(z) as
far as possible, where m.n 2 0. It is possible that deg (p,,,) < m , and deg Qmn) < n.
C (z) is normal if, for each pair (m,n), this agreement is exact through to the power
z™*". Note that z, ¢,, ,q; and b; may be complex-valued in general. The conver-
gence of (98) is not essential. rmn(2) is a Padé form of type (m,n) for C(z) if
dmn(2) # 0 and

C(2)ma(2) = Pun(2) = O ™) (100)

O (z™*"*1) means that the right side is a power series beginning exactly with a power
2™ where 0 Sk S oop k = oo implies that Cgq,, - p,, =0. The Padé form
| approximates the power series C(z), and so is called a Padé approximant. Equation
(100) is equivalent to a linear system of m +n + 1 equations in m + n + 2 unknowns
ag,..., @ ,and by, ..., b,:

4G,i=0,...,m,

n
ZC"‘J' bfz{O, i=m+l,..., m+n , (101)
j=0

and this is a Toeplitz system of equations. Various results on the existence and

uniqueness of solutions, and how to find them, are found in [56].

It is beyond the scope of this thesis to consider the details of the theory of Padé

approximants and their relationship to Toeplitz matrix problems, Euclid’s algorithm,
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AR signal modeling, etc. The interested reader is refered to such publications as
Brent, Gustavson and Yun [28], Gustavson and Yun [30], Cybenko [57], Weiss and
McDonough '[58], and McEliece and Shearer [59]. The Padé approximant problem is
related to the minimal partial realization problem (see Imamura [60] or Kailath [61]
(pp. 322-326 or pp. 491-492)). The Padé approximant problem has applications in
system identification since, for example, C(z) might represent the impulse response of

some linear time-invariant system.
3.3 Pisarenko’s Harmonic Decomposition

Pisarenko’s harmonic decomposition (PHD) [62] is a spectral analysis technique
that involves the computation of eigenvalues and eigenvectors of autocorrelation
matrices. A summary of this method and a comparison of it with other spectral
analysis methods may be found in Kay and Marple [63], and the method is also dis-
cussed in Roberts and Mullis [3] (see pp. 535-538), albeit rather briefly. However,

we shall summarize the main concepts here.

The PHD method assumes that the signal, for which a spectral estimate is desired,
is composed of a finite sum of sinusoids plus white noise. Thus, the PHD approach
will yield a line spectral estimate of the signal in question. Specifically, given n real
sinusoids in additive white noise, and the autocorrelation matrix. (R) of order 2n + 1
for this signal, then the minimum eigenvalue of R is the variance of the noise (see
[31,[62-63]). The eigenvector corresponding to the minimum eigenvalue of R may be
used to construct a polynomial, the zeros of which have unity magnitude and the argu-
ments spcéify the frequencies of the sinusoids (see [62-63]). Once the noise variance
and frequencies of the sinusoids are known, it is possible to find the amplitudes of the
sinusoids (see [62-63]).

Iterative approaches to the computation of the minimum eigenvalue and
conesﬁonding eigenvector of R may be found in Hu and Kung [64], and in Hayes and
Clements [65]. The method proposed in [64] involves Toeplitz system solution and so
can use the parallel-pipelined architecture of Kung and Hu [6]. As a result, the time

complexity of the Toeplitz eigensystem solver in [64] is O (kn ), where k is the number
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of iterations. In the case of Hayes and Clements [65], the computation of reflection
coefficients is required, and the parallel-pipelined Schur algorithm machine in [6] can
be used here as well. In this instance, the time complexity of the Hayes-Clements

algorithm will also be O (kn), where k is again the number of iterations.
3.4 Gaussian Signal Detection

The problem of Gaussian signal detection is a fundamental one in pattern recogni-
ton theory (see Tou and Gonzalez [66]), and in communications theory (see Van
Trees [67]). It tumns out that the Gohberg-Semencul formula is applicable to the
design of linear time-invariant, and fast Gaussian signal detectors (see Kailath, Levy,

Ljung, and Morf [68]). We shall explain how this is so in the context of pattern

recognition,
Suppose that there exists a set of M pattern classes o, , .. ., Wy, and that we
have a measured signal vector x = [xo - -+ x,17 that originates from one of these

classes. We would naturally like to know from which class this vector originated. We
will assume, for simplicity, that the a priori probabilities for the occurrence of each
class are equal, and that p (x | ®;) is the probability density function of x given that x

came from ;. If we assume that plx | ;) is Gaussian, then

1

px | @) = eXp[—%(x - m)T R = my)], (102)

1
Q)2 (der (Ri))2

where R, is the covariance matrix of class ®;, and m; the corresponding mean vector.

R} is of order n+1. We have x e ®; if and only if

px | o)

——————— > 1 forevery j #i . (103)
pix | 0) v

From (102),

pix | @) {de:(k.f)

1
2 ___L_.T.'-x_,__hr‘-x_,
PG To) = da(R.,.)} exp{ 5 L@ =m)T R x-my) ~ (x-m, YT (RI)(x m,)]}. (104)

Taking the logarithm of (104), x < w; if and only if
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det (R))

Alx) = (e=m) Ry a=m;) = (x—m; Y R -m;) < In :
det (R,)

» (105)

for every j #i. Likelihood function A{x) must be computed and compared to a thres-
hold in order to ascertain from which class x is most likely to have coine. From (105)
it is clear that the principal operation involved in computing the likelihood function is

the evaluation of expressions of the form
S (106)

where T, is Toeplitz. As is noted in [68], the operation in (106) is in the form of a
linear time-variant filtering operation. However, it is also noted in [68] that the
Gohberg-Semencul formula can be used to rewrite (106) in the form of a linear time-
invariant filtering operation.

For real-valued data, T, will be real and symmetric. Thus, (63) will have the

form
T, = ot Wi - wpurny, (107)
where LJ is lower triangular Toeplitz, and U} is upper triangular Toeplitz. Hence,
(106) becomes
YITy = o7 WD YT @)y -~ Wry T ULy] . (108)
(L{ Yy and Uzy may be rapidly computed through the use of fast Fourier transforms
or fast convolution algorithms (see Blahut {4]). It is clear that these are linear time-
invariant filtering operations.
3.5 The Layered Earth Model - A Geophysical Application
We will consider a model of the stratified (layered) earth as in Figure 1(a). This

model, and the attendant notation, is from Robinson and Treitel [12]. From this exam-

ple it will be seen how the reflection coefficients K, of section 2 got their name.

In the model of Figure 1(a) each layer is assumed to have a thickness such that
the travel time through it is one-half time unit (i.c., the two-way travel time is one

unit). In other words, all layers have the same travel time. Interface O is the earth-air,
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or perhaps water-air, interface. The present model supports travelling-wave motion
from bottom to top (upgoing waves), and from top to bottom (downgoing waves). Par-
tial reflection and transmission of the waves occurs at the interface between the layers.
Let ¢, denote the reflection coefficient of interface n, and T, the transmission
coefficient. By convention, all wave motion is measured in physical units proportional
to the square root of energy (i.e., the square of the amplitude of a wave is in terms of
energy). A pulse is a narrow spike-like waveform associated with a particular
discrete-time instant. Thus, the present model is actually a discrete-time model, and

each pulse has an energy proportional to the square of its amplitude.

As in Figure 1(b) (left), a unit energy downgoing pulse is partially reflected and
partially transmitted. The reflected pulse has amplitude ¢,, and the transmitted pulse
has amplitude t,. By the law of conservation of energy, c,2+ t2=1 or

T, = V1 =2 (positive square root chosen by convention). The case of the upgoing

pulse incident upon the bottom of interface n is shown in the right of Figure 1(b).

Let z denote the unit time delay operator (electrical engineers would normally

choose z~! but we shall adopt the geophysicists’ conventions). Thus, a half unit delay
1

1
is z 2, and a half unit advance is z 2.

From Figure 1(c), let d,(¢) and u,(z) be the downgoing and upgoing waves,
respectively, at the top of layer », and let d "»(t) and u’, (r) be the downgoing and
upgoing waves, respectively, at the bottom of layer n (all at time ¢). Since waves pro-

pagate through a layer unchanged, it must be true that
1
d’,(t) z%? 0 d,(t)
[u}(:)} B KRS O I PROY I (109)
; 2
It may be readily shown that, at interface n,

u,(t)=c,d () + Taldn (), (110a)

dn1(t) = =Colty 11 (8) + 1,47, (¢) . (110b)
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(a) air
intartace 0
layer 1
interface 1
layer 2
intarface 2
o
@
-]
—intarface n-1
layer n

interface n

AU A
: interface n

(©

interface n-1
dn® J’ ) up '

. , layer n
dn ® T un(()‘

interface n

Figui'e 1: (a) Layered earth model; (b) Downgoing unit pulse (left), and upgoing
unit pulse (right) incident upon interface n (c, = square root energy reflection
coefficient, t, = square root energy transmission coefficient); (c) Upgoing and
downgoing waves at the top, and bottom of layer n.

Equations (110a,b) solve to yield

dp 1 () 1 |1 —¢. | |d°0)
[“nil(’)]z?’: [—C,, 1 :l [u’"(t):’ ’ (111)

and this combined with (109) gives us
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1
dyy@)| 7 2 z —Co | |d, (@)
Lnn(t)} - T, {—c,,z 1 J [un(,)] . (112)

We can relate the waves of layer n+1 to those of layer 1 using (112) as follows:

n

do®)| 2 2 [Py Oy| ldy)
[unH(I)J— n I:Qn Pn} ’rul(t)} ’ (113)

n
where T,, = J]r;, and

i=1
P: Q: _ zZ ~Cp z —Cy
[Q,, P,,J = [—c,,z 1 J T ’i-—clz 1 ] : (114)

It may be shown that P,:(z) = z"P,,(z‘l) s Q:(z) =z"Q,,(z‘1) (see Robinson and
Treitel [69]).

Let us now consider the marine seismogram (as in section V of [12]). We will
excite the layered system with a surface source. Assume that it is a downgoing unit
pulse 3, set off at ¢ = 0 just below interface 0 (surface). We have §, = 1if r = 0, and
8 =0 if t # 0 (Kronecker delta). We assume that the surface is a perfect reflector (a
water-air interface is a good approximation of this). As a result, | col =1 (so
co = *£1). Therefore, upgoing wave u,(r) (at the top of 'layer 1) is reflected at the sur-

face to yield downgoing wave —col(t). Thus,
di(t) =9, —cqu,(t) . (115)

It is clear that the first nonzero value of u(t) occurs at ¢t = 1, and so u,(r) is the time
‘series (1), u1(2) , u;(3), - - -, which has its first break (or arrival time ) at t = 1.
The downgoing wave dy(¢) is the time series 1, —cou1(1) , —cou (2), - -+ , which
has its first break at ¢ = 0 (see (115)). In general, it is easy to see that the first break
of upgoing wave u,,(t) at the top of layer n+1 occurs one time unit after the first
break of downgoing wave dn41(t) at the top of the same layer. Furthermore, the first
break of d,,,(t) is produced by the unit source pulse travelling down through the first
n layers directly from the surface and through interface n. The amplitude of this



2.39

n
) . ..on . .
pulse is then T,, = []t,, and its travel time is 7 units. Hence, the downgoing wave
i=1

d,,(t) is the time series d,,+1(%) : dn+1(% +1) ,d,,+1(% +2), -+ . Recall that
U, (t) arrives one time unit after dp,1(t). Thus, wu,,(t) is of the form

u,,H(% + 1), qu(—;l +2), -+ .Pulse u,,+1(—g— + 1) is the reflection of direct pulse
d,,+1(%) from interface n+1, and so u,,ﬂ(% + 1) has amplitude T, c,,;.

Given G (z), let us denote G(z“l) by G(z), or simply G. The z-transform of
(113) is

n

Dn,+1 Z——i Pr: Qr: Dl
= ] 11
[UMJ T [Qn PJ [Ul (116)
Replacing z by z7! in (116) yields
Un+1 Tn Qn Pn Ul .

Combining (116) and (117) gives

n
Dn+l gn+1 - Z 2 Pr: Qr: Dll_j_l . (118)
Un+1 DIH-I Tn Qn Pn Ul Dl ’
The determinant of (118) is
. — — -n —_ —
Dn+1Dn+1 - Un+lUn+1 = 3,2 (P:Pn - Q:Qn)(D 1D1 e U1U1) ’ (119)

n

where we have used the fact that det(kC) = k™det(C) (k is a scalar, and C is an

order m matrix). The determinant of (114) is

PuPy = 0,0, =2" TI(1 - ¢ =2z"T2 | (120)

i=1
and so (119) becomes

DpiiDpst = UniUpsy = D\Dy - U, (121)
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This may be interpreted to mean that the net downgoing energy in layer n+1 equals
the net downgoing energy in layer 1 (see Robinson and Treitel [69-70]). At infinite
depth U, = 0., and the net downgoing energy is then D_D_ which is in the form of a
spectral function (z-transform of an autocorrelation function - see [69-70]). That is,
Dml_); is the z-transform of the autocorrelation of d(t). Let this autocorrelation

function be ,. Thus,

R@z)= S r,z=D_D. .

¢
But by (121),
R =Dy Dyt = UpyUpsy =D,Dy - U,T,; . (122)
From (115) D) =1 - ¢qU, and so
DDy -U\Uy=(=ceU)1=coUy) - UTy=1- coUy —coUy, (123)
as c¢ = 1. Thus,
R=(1-coUy —coU, =Dy~ cylU, (124a)
R=(-coUp)-coU,=D; - coU,. (124b)

From (i24a,b) we have R =R (i.e., autocorrelation is symmetric about ¢ =0 as we

would expect).

Adding —c times (116) to (1 17) (suitably rearranged) gives

[“CoDn-u + (Zn+1:’ = z 2 l:P: Q:} ["CODl + [71] (125)

~€oUpn+1 + Dpyy Ty |[©@nPn] |-coU;+D,

n

From (125)

n

2

-~ 4
“€oUns1 +Dpyy =

T (Qn(=coDy + Uy) + Py(=coU, + D] . (126)

From (124a)

—coD + U, = —co(D, —coUy) =——coR ,
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where we have used cd =1, and from (124b), R =—c0U1+D_1, and so (126)

becomes

_ 2 ,
—'COUIH-I + Dn+1 = e (Pn - COQn)R . (127)
n
Let A, =P, - cy0,, and so (127) becomes
3
AR =T,22 (=cUp,yy + Dy, ). (128)

If we expand the right-hand side of (128), then
T,Z?(-C(;U,”l +D,)=. + T,,d”l(-’zi-é-l)z" + T+ . = Tlocanz™ - T,,cou,.d(%+2)z‘”2 +.. (129)

Note that the time-domain equivalent of (129) is zero for t =1,..., n. Hence,
operator A, acts upon R to annihilate r;, ..., r,. We can relate the present discus-

sion to the Levinson-Durbin algorithm in the following revealing way.

Consider the autocorrelation sequence r,, with ry =r_. An operator defined by

the parameters az g, a;,, - , @k (ago=1) acts upon r, to produce g, as fol-
lows:
k
&= X @ . ‘ (130)
s=0

We want g, =0 for ¢t = 1,...k, and 80 = 0. Clearly then, (130) is like (1) in section
2.1in this event (f; = r;). We recall from section 2.1 that the Levinson-Durbin recur-
sion c_omphtes @41 given g, (and a few other parameters) such that 8k+1 = 0. From
(130) then
k
8k+1 = szz:,or(kﬂ)-s Ay s (131)
which'is really ¥, in the pseudocode for the Levinson-Durbin algorithm in the Hermi-

. . 8k+1
tian Toeplitz case. Thus, K kel = — pm

Or 8p41 = —GkKk-H = —gOKIH-l' The z-domain

form of g, is
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TG H 80t a2 b g2y (132)
and this may be compared to (129) giving
g0=T2,
8nat = ~TlC0Cns1 = ~80C0Cns1 »
Or =g ¢Kn+1 = —80C0Cn41 implying that
Kol =CoCrsr - (133)

This kind of comparison is reasonable since AR from (128) is essentially the right-
hand side of (130). Evidently, the reflection coefficients produced by the Levinson-
Durbin algorithm are essentially the same as the “physical” reflection coefficients ¢, of

the layered earth model.
3.6 Lattice Filters

We now demonstrate a connection between Toeplitz matrix problems, and so-
called orthogonal polynomials. The central result will be that the solution of a Toe-
plitz matrix problem yields a class of digital filters called lattice filters. The results to
follow are taken from Markel and Gray [14], and from Gray and Markel [71].

We begin by presenting an alternative derivation of the Levinson-Durbin algo-
rithm for Hermitian Toeplitz matrices. What follows is based prifnarily upon results in
[14], but we note that [14] does not actually consider the Hermitian Toeplitz case.
Markel and Gray [14] only consider the case of a real and symmetric Toeplitz matrix,

and so the derivation to follow is somewhat more general than that in [14].

Suppose we are given a discrete-time sequence of complex-valued numbers, and
that these numbers are used to produce the complex-valued autocorrelation sequence
¢, i =0,1,..n. Let us assume the following model for this signal. Consider a digi-
tal filter with system function

o

H,(z) = )

(134a)

where
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n .
X, (z)= 3 x, ;2" s Xpo=1 . (134b)
i=0

Note that, exéept for x, o, x, ; are complex-valued in general. It is clearly true that the
impulse response sequence of H, (z), which we shall designate as h,, satisfies
n
hk = O'Bk - Z xn.Ihk—l s (135)
1=1
where 8, is the Kronecker delta. If the filter is stable, then the autocorrelation

sequence r; of output h, can be defined as
Tk = X hihiy = D> ki (136)
I = —oo I = —oo

where the bar denotes complex-conjugation. We have re =T_x. We may rewrite

(135) as

od, = _%x,,,‘-hk_,- . (137)
Multiplying (137) by k,_, and summing over all & yields
Ohiy= 3% Fiy . | (138)

From (135), hy = o, where we are assuming that the filter is causal so that he =0 for
k < 0. Thus, (138) becomes

n
Xxri=lo]?, (1392)
i=0
n
X XniTig =0, (k =1,.,n) . (139b)
i=0

n
an,ia' =6, , (1403)

n
2 X%iCik =0, (k=1,..,n) , (140b)
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where 6, = | ¢ |2 Clearly, (140a,b) is a Toeplitz system of equations of the same
form as (1) in section 2.1. Thus, our measured autocorrelation sequence is assumed to
have originafed from an all-pole filter 4, (z) that was "struck” with an impulse. A
system of equations like (140a,b) can also be obtained on the assumption that H,(z)is

being driven by white noise (see 9D.

fF@E)= 3 fiz* then let Fiz)= 3 fiz*. Let C(z) = 3 cez¥; this

k= k = —oo k = —oo
is the z-transform of the measured autocorrelation sequence, and it is a spectral func-

tion. From Laurent’s theorem (see Kreyszig [72], page 711)

1
2nv—1

=T, fc@)yz*1 4, (141)
r

fork =0,1,2,.. . T isa simple closed contour enclosing the origin of the complex

z-plane. This is essentially (12a) in [14]. From [14] we have the inner product

<F()G@z)>= 2n\1f——1 If_C(Z) Fl@)G @)l dz (142)
where
<CF(2),bG(2) + at (z)> = bT<F (2),G (z)> + aC<F ) H (z)> ,  (143a)
<z"F(2),2"G(2)>=<F (z),G(z)> , - (143b)
<F(2),G(z)>=<LF2)G(z)> . (143c)
We have
<zt zis = 21:*1[—7 IJ:C(z) kg =g, =T, (144)

Thus, (140b) becomes
T xgi<et > =<k S x> =<k x (2> =0, (145)
i=90 i =0

i

for k = 1,...n. In other words, X, (z) is orthogonal to z* for k = 1,..,n, and so is

called an orthogonal polynomial.



2.45

We may write
<2V x, (2> =<x](2), 27> = <z"lxl(2),z77 s 2 , (146)

where v = 1,...,n. Define

(Z)__zn+1xf(z)_ o — T 3 C A, el ol = ! J 147
Yulz) = ()= ¥ X,z = XXzt = Yoyay2l . (147)
i=0 j=1 =1

so that y, ; = Xn (n+1)-j and since x, o = 1, we have Ynn+1 = 1. Thus, (146) becomes
Ya(2)2">=0, (148)

for v=1,..n. y,(z) is another orthogonal polynomial, and its coefficients are the
same as those of x,(z) except that they are in reverse order and are complex-

conjugates. As well, the degree of Ya(z) is n+1, whereas the degree of x, (z) is n.

We want x,,,,(z) such that x,,,; 4 = 1 and <z’ Xx,q(z)>=0forv =1,..n+1. We

can construct such a function via
X, 12) =x,(z) + kny,(z) (149)

since deg{y,} = n+1, Yn0=0 and x,5=1. Thus, we must find k,. This can be

accomplished as follows:

0=<z"x, 1(2)> =< x (z) + Knyn(2)>

= <"l x, (2)> + k,<z**ly, (2)> (150)
= Bn +-knan *
Hence,
Bn
k, = ra (151)

Forn =0, g = <z,y(z)> =<z 2> = co, Bo=<zxp(z)>=<z,1>= ¢y, and we have

Xg,0 = 1. These are initial conditions.

We may write
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Br = <z™x,(2)> = <z, ¥ x, 2>
i=0

n ,
=<1, ¥ x, 27+
i=0

n+l
=<1, 3 X, (ne1y 270> (152)
j=1

n+l

an (R+1)-j <1 »Z j>
j=1

n+l1
= 2 X (n+1)-j Cj
i=1
n
=2Xc (n+1)i%Xn,i >
i=0
and this is equivalent to Y, in (26) of section 2.1. Similarly,
o, =<z "+l,y,,(z)> <Zn+l n+1 T(Z)>
=<lx, (z)>

= <x, (2),1> (153)

X, 27>
0

Ma

=<1,
i

n

Y X, <lz7>
i=0

]
Mas

xn,ici =0,
0

i

where the last equality is due to (140a). Note that

n . n
X ()% (2)> =< 3 %, 520, Y %, 20>
i=0 Jj =

n .
= 2 Xy <X, (2)2/>
o



where we have used (140a,b) again. Thus,
A, =<x,(2)X,(z)>=0G, .
From (153) a, =<x,(z),1> and so
Apyp = Oy = <X,41(2),1> = <x,(2),1>
= <X, (2) + by ¥, (2),1> — <x,(2),1>

= <1,xnr(z) + l_c;y,f(z )> = <x,(z),1>

-

<1 ,y,f(z >

= k,<z"*x f(2), 1>

"
h-

2<z"*lx (2)>

Bn

=k, (=0, k,)

I
oL

and so

an-&-l =an(1_ , kn 12) ’

(154)

(155)

or G,y =06,(1 - | k, |?). Since Op = ¢ is real, o, is real for all n and o, =0, is

real for all n. If we note that (149) is essentially the same as (31), since x; = a, then

we have in fact derived the Levinson-Durbin algorithm for Hermitian Toeplitz matrices

by a different means. However, the present orthogonal polynomial interpretation leads

to interesting (and useful) digital filter structures.

We have x,, ,,(z) = X, (2) + k,y,(z) (from (149)), so

yn+l(z) = zn+21nf+l (Z)
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= 2"l (2) + by, (@)

- Zn+2[z—(n+l)yn (z) + k‘nz-(nﬂ)xn ()] (156)

zy,(z) + /}:,zxn(z) .

We may combine (149) with (156) to get

X, (2 k x,(z

L:::EZ;J B [/?;Iz zn] L’:EZ;J ’ (157
where xo(z) =1, and yo(z) =z. Notice the similarity between (157) and (112) of
section 3.5. Given the results of this and the previous section, we should not be
surprised. Interpreting z as a unit time delay operator, we may use (157) to construct
the digital filter of Figure 2(a,b). This is essentially the lattice nth order predictor of
Figure 4.9 in Honig and Messerschmitt [9] (see p. 102). It is a structure due to Gray
and Markel [71]. We shall not investigate the origin of the term “predictor” here, but

shall instead refer the reader to [9] for an explanation. It is evident that the reflection

coefficients k, parametrize the lattice filter.

@ X f2)
1 kk
k k Z z
Zz >
Yke£?)
(b)
input X0 __:"
STAGE STAGE putput
0 n-1
z > —> > > —>
Yo Y1 Yk Ye1 Y1 Yn

Figure 2: (a) Correspondence between the 2 x 2 matrix operator of equation

(157) and a filter section; (b) Gray-Markel lattice nth order predictor.

The filter of Figure 2(b) implements the denominator polynomial x,(z) of H,(z)
in (134a). From the standpoint of a VLSI implementation it is evident that this filter

has desirable features. The filter is composed of a single basic building block (as
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shown in Figure 2(a)), and it can be readily pipelined for high throughput applications.

The filter also has a regular linear layout.

It is pos.sible to construct a lattice filter to realize H,(z), the all-pole filter. How-
ever, we shall not show how to do this here. Instead, we refer the reéder to Gray and
Markel [71], or to [9]. We note as well that lattice pole-zero filters can be constructed
(see [9] or [71]). These filters are known to be superior to direct form digital filters
under finite precision arithmetic implementation conditions (see Markel and Gray [73],
or Gray and Markel {74]).

The Gray-Markel orthogonal filter structures that we have discussed here have
been generalized in many ways. Generalizations may be found in Delsarte, Genin and
Kamp [75], Lev-Ari and Kailath [76], Lev-Ari, Kailath and Cioffi [77], and in Honig
and Messerschmitt [9], Friedlander [10], and Delsarte and Genin [25]. We emphasize

that this list of references is far from complete.
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Chapter III

SOME FURTHER RESULTS ON SCHUR AND SPLIT SCHUR
ALGORITHMS

In Zarowski and Card [1] it is shown that the Schur algorithm of Le Roux and
Gueguen [2] is equivalent to the Schur algorithm of Kung and Hu [3]. To our
knowledge, this has not been noted previously. This equivalence, which we have
stated in Chapter II, shall be demonstrated in this chapter. The symmetric split Schur
algorithm of Delsarte and Genin [4] was rederived in [1] using the Schur algorithm in
Kung and Hu [3], rather than the algorithm of Le Roux and Gueguen [2]. The
rederivation was presented in Chapter II of this thesis (see section 2.5). In [1] an
inverse mapping from the split Schur variables to the Schur variables is obtained, as
no such mapping was derived by Delsarte and Genin [4]. This inverse mapping is
important in the context of a parallel-pipelined processor implementation of the split
Schur algorithms (see Chapter IV), and so we shall include it here. Finally, we shall
present the derivation of a Schur algorithm for Hermitian ‘Toeplitz matrices of any rank
profile. This algorithm is due to Zarowski and Card [5], and it is derived using the
Levinson-Durbin algorithm of Delsarte, Genin and Kamp [6] for such matrices, and the
Kung-Hu Schur algorithm [3] for strongly nonsingular Hermitian Toeplitz matrices

(see Chapter II, section 2.3).

1. The Le Roux-Gueguen and Kung-Hu Schur Algorithms are Equivalent

Let us assume that T, is a real and symmetric Toeplitz matrix (so

Tp =[] j_i |Jn+1)x(n+1)- The Le Roux-Gueguen [2] Schur algorithm is summarized
in Table II of [4], and we repeat it here:
Fori := 0 to n do begin

€oi = h; €o =1
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end;
For k := 1 to n do begin

Ck-1k

Kk = - ’
€k-1,0

Fori :==0ton -k - 1do begin
Chri = €y + K€ 1443

Criri+l =Ky ) oy + €y privs
end;

end;
From [2], Schur variables e ; are defined as
eri =<2\ (z)> )

where this expression is taken from Chapter II, section 3.6 (with trivial notational
changes). Recall that the material of section 3.6 in Chapter II is adapted from Markel
and Gray [7]. Equation (1) then expands as

k
ki = 20 |G - 3
j=0

Although the similarity of the above algorithm to the Kung-Hu algorithm of Chapter
I, section 2.3 is evident, because of the manner in which the variables €, are
obtained in [2], it is not clear how they relate to the elements ui(") of the LDU decom-
position of T,,. However, from Chapter II, section 2.3 we have

Lt =U, , (3)

where Lf is defined in (17b) (Chapter II, section 2.1), and Uy, is the right hand side of
(70) (Chapter 1I, section 2.3). Equation (3) expands to become

k-1
ulp) = 2| jrickel [Georj - ¥
j=0

Thus, we can compare (2) with (4), and this yields
ek‘,- = ui(_k/:-l) . (5)

We may therefore conclude that the Schur algorithm of Le Roux and Gueguen [2], and
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of Kung and Hu [3] are equivalent.

2. An Inverse Mapping

Given v, ; (symmetric Schur variables of Chapter II), we might want u®), the
elements of U,. Thus we need an inverse mapping from values Ve to values u; ),
From (86a) (Chapter II, section 2.5) v;,,;_; = u,**D 4 &, and this may be sub-
stituted in to (87) (Chapter II, section 2.5) giving

u = wihe + (1 + Ke)Visri = Vis2io1 (6)

where 0<k <n, 1<i <n-k since we want the elements of U, in (70) (Chapter
I, section 2.3). Equation (6) is recursive, and for a given k we need
u_(’(‘,-*;lk)m lici = ukd = Ok. This is an initial condition. Recall from Chapter II, sec-

tion 2.5 that 6, = v, o(1 + K}).

For the purpose of computing reflection coefficients, the split Schur algorithms
require approximately half of the number of multiplications that the Schur algorithm
does. However, if we are to use the split Schur algorithms to LDU factorize T,, then
the number of multiplications is about the same in both cases. It is the presence of a
multiplication operation in (6) that makes the number of multiplications comparable.
There appears to be no way of eliminating this extra multiplication. Thus, there is no
apparent advantage in using the split Schur algorithms to LDU factorize Toeplitz
matrices. However, in Chapter IV we shall see that this conclusion is false in the con-
text of a parallel-pipelined processor implementation of the split Schur algorithms.
That is, the extra multiplications due to (6) causes no trouble in this context. Only in
the case of a sequential processor implementation of the split Schur algorithms is the

presence of these extra multiplications a problem.

3. A Schur Algorithm for Hermitian Toeplitz Matrices of Any Rank Profile

Delsarte, Genin and Kamp [6] have derived an extended form of the Levinson-
Durbin algorithm for Hermitian Toeplitz matrices. Their algorithm is able to cope

with the case when one or more of the leading principal submatrices of the matrix is
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singular. Recall from Chapter II, section 2.1 that the classical form of the Levinson-
Durbin algorithm described therein must terminate when a singular submatrix is
encountered. In this section we shall use the algorithm of [6] and the Kung-Hu Schur
algorithm of [3] to derive a Schur algorithm for the singular submatrix case. The
result will be a Schur algorithm for Hermitian Toeplitz matrices of any rank profile.
In the derivation to follow we adopt the notation of [6], which differs slightly from the
notation of Chapter II. However, this will facilitate any comparisons of the results in

this section to those in [6] that the reader might wish to make.
3.1 A Summary of the Delsarte, Genin and Kamp Algorithm

Let there be an m xm Hermitian Toeplitz matrix

co Cm—1

o] Co .. Cm-2
C,=| . ) ) , @

m-1Cm—2 - . Co
where cg is real, ¢; (1 <i Sm-1) are complex, and c_; =¢;. Let C, = leizjlexe
(i = row index, j = column index) denote the kth order submatrix of C,, so

1<k <m and 0<i,j <k-1. Let fi =det(Cy), with fy=1 by convention. Let

By = (@10 Gy 0 @pog )T satisty

Ceary=[10 --- 0 , (8a)
and let x, ) = [xe 10Xy - X )7 satisfy

CeXgey =0, 0 - - O (8b)
where @;_; o = ijl:i—l » Xkp=1and o, = 7;51— We may construct the Levinson and

predictor polynomials, respectively,

k . k ,
ak(z) = Zak'iz‘ R xk(z) = Zxk';z‘ , (9)
i=0 =0

Xy
and g, _; = —:y;l (assuming o, # 0). The reciprocal of a, (z) is 3k (z) = z"Ek(z—'l).
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Index r is called a right singular point as fr#0, but f, .1 =0. Similarly, index

n is called a left singular point since f, # 0 but Fn-1=0. It is known that
n-r=2, (10)
where / is called the lohvidov index (see [6]1,[8D).

The algorithm of Delsarte, Genin and Kamp [6] may be summarized in pseu-
docode form as:
k:=0; 0pq i=cps X (2) = 1; a1(z) =0
While k£ < m-2 do begin
If Oy, # O then begin

1 k
ZC(k+1)—ixk,i§
k+1 i=0

Kpyy = -

Og42 = Op (1l — , K IZ);

.—— xk(Z).
alz) = Ck+1

Xes1(2) =X (2) + Ky 28, (2);
k =k +1;
end
else begin {r =k}
Find smallest / satisfying Tix, o + Cr1%,., + - + Guy X, , 20;
If r = 0 then begin
Y =5, (0<i <)

Q; = Cryi (OSI S[),

end
else begin

r-1 .

Vi = 2 Cyij@y; (00 <)
j=0
r *

Q; = ZC,H,,_;_jx,'j (O <i £ 1),
j=0

end;
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r 17 o

G 0 g |Po Vi

G Gy 0| |Py Vi
Solve | . . . el

(O Oy 0| [Py | | Vo |

A _
(@)= 2 piz' Oy =P
i=0

Bo = —:1—;n =k +2l;
Do

8,-1(2) = Bgz' % (2);
X, (2) = Bolz' @e1(2) + p ()0, ()]s
Ons1 = | Bo I%lpy + By + a1 (O)];
k=n;
end;
end;
Note that this program assumes C,, is nonsingular, otherwise if at any stage no / satis-

fying

r
2.C4i% i 20 (11
i=0

can be found, then the program must be modified to terminate.
3.2 The Kung and Hu Schur Algorithm

We may restate, for convenience, the Schur algorithm of Chapter II using the
notation ofA section 3.1 (this chapter) above:
For i := 0 to m-1 do begin
ulP =7 uW =

For k := 1 to m-1 do begin

u{®)
Fori :=0to m-k-1 do begin
w&h = u® + K8,
w®D = K a Qi + u);
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end;
end;
It is clear frorn the results of Chapter IT that we have
C. =Ufipc'u,
cl=LfpsL,

where

Dk =diag {010'2 O'k} s

[ o] -

ugd w®  ud xl 0

0 4 u, L1

Up = , Ly = . .
0 0 . U _(/'c) Xe-2,k-2 Xk-2k~3 - -
N k) | Xk—1,k-1 X162 * °

and where ¢, = u_(’,ﬁll. As well,
Ly =D UM,
LCp = Uy

and the latter equation expands to give us

k-1
k - —
u—(i) = ch+i—k+1xlc—l.j
j=0
k-1

= ch—i—j—lxk-l.j
j=0

3.3 The Desired Result

(12a)
(12b)
(13a)
0 O_
0 0
|, (13b)
1 O
Xe-1,1 IJ
(14a)
(14b)
(15)

We must relate the variables in the Delsarte, Genin and Kamp algorithm summar-

ized in section 3.1 above, to the Schur variables in order to find the required Schur

algorithm.

Using (15) it is straightforward to verify that
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r r
“Sfrt})) = ZC—(1+5)Xr,i = ch+ixr,i ) (16a)
i=0 i=0
u) =G = . .= 1
—(i-1-1) = Y, Zcr+1—t—jar—l.j =6y , (16b)
j=0 .
r
w{D = Zcr+1+i-—jxr,j =o; . (16¢)
Jj=0

Thus, (16a) may be used to find / , the Iohvidov index, and (16b,c) may be used to find

V; and o, respectively.

We want to compute the order n and n+1 Schur variables 1™ and TAGA

respectively, if possible. Thus, from the algorithm of section 3.1,

4n1(z) = B5'z'x, (2) (17a)
(@)= Bolz'ap 1) + p2) %, (2)] | (17b)
where £ = r. We have
b1 =Cray  =[10 -+ OF | (182)
Yn = CpiXy =[0G 0 - -+ 0 . (18b)

Hence we may substitute (17a) into (18a) and get

, .
bn1i =B6' Xltsjix j, 0O<i<n-1) . (192)
Jj=0

Similarly, substituting (17b) into (18b) produces

: —r-1 2 r
Yni = Bo C14j-i%-1; + Bo XD, 2Cjoi%;, (0Si<n) . (19b)
Jj=0 v=0 ;=0

We can use (15) again to express vectors b; and y; in terms of Schur variables.

Therefore,
by 1i =By 1ui(—’(;'i)z) , (20a)
= B L ST 20b)
Yni = BO U; r+i3+1 + vaul—(ﬂ-v) . (
G, v=0

We have u,-(o)=0 @l i) since a_1(z) =0. We also have, from (18a) and (18b),
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respectively,
n-—l___ n
bn1i = 2 Ciilp1j o Yni = XCjiXn . 21
j=0 j=0

The equations in (21) can be expressed in terms of Schur variables as

w01 s Vi = um) 22)

1
n-1i = a
There is clearly a technical problem involving the expression for b,_y; in (22) how-

n

ever. Since G, = and f,_; =0, we have 0, =*e. Hence, we cannot write

n-1

GLu,-(_",,)H = B5'u, %Yy (obtained by combining (20a) with the first equation in (22)).
n

Thus, ;") is unobtainable, although we do have
= | 1
ui(—nn+l) = BO {?u( r+i+1 + va z—(r+v)} (23)

which is obtained by combining the second equation in (22) with (20b). Equation (23)
is to be evaluated for i = 0,~1,...n—-m+1 and i = n,..,n-1 in general.

Although we cannot get u,-("), b,,_l',- exists and is finite (see (21)). This fact is
useful since if 6,,; =0, then the else case of the "If O # 0 then" statement is exe-

cuted again, wherenow k =n + 1 and r = n. The problem is that

1 )
Vi=—ulpd, ) Osisi (24)
Gn
in this case. Butb,_,; = El——u‘-@,,)ﬂ , and so
n
Yati—i Sbp_yi s or Wy =b, 1,0 . (25)
From (20a)
Vnsi-i = Bo u;(-’(tu) or y; = Bglufih . (26)
Wewanty, -+ y,andsoi =n, -+ n+ in (26). Thus,

Vo = Bolugitd, - = Bty (27
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Since 1,1 exists, we can obtain V; as in (27). Note that it is genuinely possible that
On+1 = 0. An example with this propenty is presented in [6]. We emphasize that the
variables / aﬁd r in (26) and (27) have the values that they had ‘st prior to the com-

putation of o, ,(=0). Similarly, B, in (26) and (27) is that value used to obtain

Cn+1-

Equations (16a,b,c) and (23) represent the Schur algorithm for the case where
Ok+1 =0 in the algorithm of section 3.1. The algorithm does not allow us to deter-
mine 1,72 ... 4™ and so some of the rows of U, in (13b) are missing as a
result. The size of the resulting gap, which we shall call a singular gap, is
n—-r+2)+1=21-1 (121 (using (10)). It is possible to use the known Schur
variables, and (14a) (nonsingular case) to find the polynomials a,_;(z) and x,(z) how-

€ver.

We may finally summarize the Schur algorithm for Hermitian Toeplitz matrices
of any rank profile using pseudocode: ’
k=15 0 =co; uP =7 ,u®:=¢c, 0<i <m-1):
While £ < m-1 do begin
If o, # O then begin
u(®

Z 3
u-(klx

Kk = -

Fori :=0 to m—k-1 do begin
wltdy =ub, + k5%
w D = k7 + )
end;

Oper = u D

k=k+1;

end

else begin {r =k - 1)
Find smallest / such that » (¥]), # 0;

If r = 0 then begin



end;
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Vi 22_8,"1 (OSl S[),

o, =¢,; 021 L)),

end
else begin
1 .
Y = — ﬁzl)_l__l) (OSI Sl),

U
G,

o =uftVO0<i<);

end;
0 0 .0 ||Po Y
o % 0 ||P) Vi
Solve . ] =— . ;
Oy &y - O f | Py Vo
Proi =P (11 1)
B0:=_L;n =2l +k ~1;
Do

—_ 1 2!
ui(—n:l) = BO {?ui(’r#)ﬂ + vaui(—r(:i)v)J
r v=0

O2i2n-m+l,n<i <m-1);

— 1
Cpv1 = | Bo 12 [p; +1; + ;‘“] ;

r

(replace El" by 0 if r = 0}

.
k=n+1;

end;

The pseudocode omits to account for the case where G,+1 = 0. This is done to sim-

plify the presentation of the algorithm. As a final remark, it may be readily shown

that the above algorithm and that of Delsarte, Genin and Kamp [6], both have time

complexities of O (m?) (on a sequential processor).

3.4 Numerical Examples
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We may clarify the operation of the algorithm of the section 3.3 with the aid of

two numerical examples.
Example 1

Consider the order m = 5 matrix

andsocO=2,c1=j,c2=1,c3=—1,c4=1. If we execute the algorithm of sec-

tion 3.1 we get:

01=2, xO(z)=l, a_1(2)=0

1, 3 xo(z) 1 1
K, =—3 , Oy = 5 yao(z) = o, -2— » X1Z)=x¢(z) + K z,?o(z) =1- —2—jz s
x@z) 2 1.
Kz—-—l,0'3-0,a1(z)— ;2 =? —3—2 xz(z)—xl(z)-i—Kzzfl(z)—l—jz—22.

,
Since 63 = 0 we have r =2, and the smallest value of / for which 37¢;;x, ; # 0 is
i=0

[ =1. It may be readily shown that

=-——2—-—-—1—' =1
Yo 3 31,‘411 )

G=-1-2j, ay=j

Therefore, B, = Tl— =1-2j, since

Po

S, 8,2 1 2
5/ P1= a5t sl Pam o5 -5

Uu‘»-‘

Po=

At this point in the algorithm of section 3.1, ¥ =2 and so n = k +2l =4, It is also

straightforward to show that

a3(z) = Bylaxy(z) = (§+§nz + (Z_-L,)z +(—§-§1>z ,
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x4(2) = Bolza (z) + p(2)x4(2)]

@il (2B 8 T34,
~—1+(5+5/)z +(15 1Sj)z +( 5 151)2 +( 5+5/)z ,
— 34
os=| B IZ[P1+P1+G1(0)]=T5" :

If we now use the Schur algorithm of section 3.2, then
@ =1,u® =-1,uD =1, =—j,uf’ =2(=0y ,

ufd =juf) =1, ufd =1, 0 =1,

. 3
Ky=-2j, u@ =-1- J,u_‘§’—1+~f,u.(%)=——1,u_‘%’=—2(—02),
D=0 4@=3 ,o___ D14 L
ug O, u —E,ué -1 - =j,uf 1+Ej ,

Ky=-1,u@ =j,ul =1-2,u@=0(=qy ,
uf =0, u® =-1-2j uP=j .

Since 63 =0, r =2 as before. From (16a) u_(%)+2) =0if / =0, but u? #0 and so

! = 1. From (16b,c) the values of V; and o are correctly produced. From 23)
e N2,D L - G
4 = (1 +2j) (4 + Truyl
v=0

34

which yields ) = T ( = 05). We can now write

I T 1

1.

3. 1.
ug uPuD u u 5 Lz -1-2

2
3
0 u@uﬁ%’uﬁg) uﬁ) 0 2 2 2
Us=10 0 uQuPu@|=]0 0 0 1= j ,
0 0 o ,@,®
0 O —3 %4 0 o0 0 X X
0 4
- 1000 0 o0 34
i 15 |

where the x denotes an unknown value. In summary, the Schur algorithm of section

3.3 produces results in agreement with those produced by the algorithm of section 3.1,
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as we expect.
Exgrnple 2
Now consider the order m = 4 matrix
0-110
-10-11

1 -10-1}"
01-10

C4=

where ¢y =0,cy=-1,c,=1, c¢3=0. Let us again begin by executing the algo-

rithm of section 3.1. Clearly, o, = ¢op=0and so » =0. The smallest value of ! such

0
that 37¢;,;x0; 20 is [ = 1. Thus, y; = =5; 1, and so W =0, y; = -1. As well,
i=0

Q; =Ci4, giving 0y =-1,; = 1. Therefore, Po=-1,py=-1,p,=1. Hence,
BO = "1, and
ay(z) = Bglaxgz) = -z ,
xy(z) = Bolza_,(2) + p()xg(z)] =1 +2 — 22 |
3= | Bo I%lp1 + 5y +a @] =-2 .
We have n =k +2/ =0+2-1=2. At this point £ becomes n, so k =2. Since
o3 # 0,
1 2
Ky=-—3csixy =1,
3i=0

os=031-| K3 |H=0,

@) 11, 1,
Gy 2 2 2 ’

a,(z) =

x3(2) =x9(z) + K3285(z) = 1 + 23 .

Now let us use the Schur algorithm for Hermitian Toeplitz matrices of any rank

profile. We have

u_(%)zO,u_(_é)zl,u_(%) =—1,u51)=0(=0‘1) ,
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ufV =-1,ufd =1,ufV =0 ,

and so ¢) =0 implying that » = 0. Quantities v; , a; ,!,n ,p(z) and B, are there-
fore going to be computed correctly and will take on the values of the previous para-

graph. We don’t know ui(z), but via (23),

2
w3 =-3p,u® =y O 4 ) —uY
v={

and this gives us
u® =2 ug) =0 ,
uf =0, u® =2 .

Now k = 3, and we may use the Schur algorithm of section 3.2. Hence,

(3)
u
L

3 = =
e

’

4y _ @ —@3
ufay = uQy + K45

-3
ui(4) =K 3u—(( i)+2) + ui(+3f
For i = O, the latter two cquations giVC

u® (=0)=0, uf® =0 .

Finally,
[ m,m, 0]
w | [0-110
U. = 0 Urujyyuz| 10 x x x
10 0,049 |00 20
0 0 0000
_ 0 uf)
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Chapter IV

PARALLEL-PIPELINED PROCESSOR ARCHITECTURES FOR
THE SCHUR AND SPLIT SCHUR ALGORITHMS

In this chapter we present parallel-pipelined processor implementations of the
Schur and split Schur algorithms described in the previous two chapters. As we have
seen, on a sequential processor, these algorithms have a time complexity of O (n?)
(nth order matrix). The Schur and split Schur algorithms can be implemented, in
parallel form, on a linear array of O (n) processors. In this situation these algorithms
will run in O (n) time. As will be seen, in many cases it is possible to arrange the
computations so that processors in the array need only communicate with their nearest
neighbors. This is done through the use of pipelining.  Thus, the need for global
communications can often be eliminated. The parallel-pipelined processor implementa-
tion of the Schur algorithm is due mainly to Kung and Hu [1], but partly to Brent and
Luk [2]. The parallel-pipelined processor implementation of the split Schur algorithms
is due to Zarowski and Card [3], as is the implementation of the Schur algorithm for

Hermitian Toeplitz matrices of any rank profile.

1. Primary Issues in the VLSI Implementation of Parallel-Pipelined Processing

Systems

We shall begin by discussing the formulation of parallel algorithms to solve prob-
lems. In this regard we shall first note that algorithms which are efficient on sequen-
tial machines are not necessarily efficient on parallel machines. For example, we have
seen in Chapter II that the Levinson-Durbin and Schur algorithms both have a time
complexity of O (n?) on a sequential processor. However, it is noted in Kung and Hu
[1] that the Levinson-Durbin algorithm, when implemented on a linear array of proces-

sors, will have a time complexity of O (n log n). On the other hand, the Schur
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algorithm will have a time complexity of O(n). This is due to fundamental
differences in the structure of the two algorithms. In particular, the Levinson-Durbin
class of algorithms all possess inner product operations, i.e., operations of the form

n

25y

i=1
On a linear array of n processors this operation can be performed in log n time at
best. Clearly, the products X;y; can be computed in O (1) time. The bottleneck is due
to the need to sum the products, and this takes logarithmic time on a linear array of n
processors. The Schur-type algorithms possess no inner product operations and so are
completely unconstrained by this operation. As a result, in formulating algorithms to
solve arbitrary problems in parallel, very close attention must be paid to algorithm
structure. It is reasonable to state that the theory of algorithms is more important in a

parallel-processing context than it is in a sequential processing context.

In a sequential processing environment, computational complexity is traditionally
measured in terms of the number of arithmetic operations required by the algorithm.
However, we have seen that some algorithms are more amenable to parallel implemen-
tation than others, even when they all possess the same time complexity (operations
count) on a sequential machine. Thus, operations count is not a valid criterion for
Jjudging which algorithm is most amenable to parallel implement;ition. Kung and Hu
[1] suggest that throughput rate replace operations count as the performance criterion
of a parallel solution to a problem. We shall adopt this criterion here. We may there-
fore state that in formulating a parallel algorithm, structure the algorithm to achieve
the maximum parallelism (concurrency) and, therefore, the maximum throughput
rate. According to this criterion, the Schur-type algorithms are superior to the
Levinson-Durbin-type algorithms at solving Toeplitz problems (defined in Chapter 1I,

section 1).

In Chapter I other algorithms, besides the Levinson-Durbin and Schur algo-
rithms, were described. Specifically, the Trench and Bareiss algorithms were also

derived. The presence of inner product operations in the Trench algorithm leads us to
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conclude that it is a poor candidate for parallel processor implementation. However,
the Bareiss algorithm is shown by Brent and Luk [2] to be a good candidate for such
an implemenfation. In fact, they show that in some respects the Bareiss algorithm is
superior to the Schur algorithm of [1] in this context. For example, the Schur algo-
rithm can LDU factorize and compute the reflection coefficients of a nonsymmetric
Toeplitz matrix. But the parallel processor implementation of it requires that the
reflection coefficients of this form of the Schur algorithm be globally broadcasted to all
other processors in the array. This is undesirable, especially in the context of a VLSI
(very large scale integration) implementation. The parallel implementation of the
Bareiss algorithm proposed by Brent and Luk (2] does not have this problem, i..,
communications between processors can be strictly local. Note however, that the
Bareiss algorithm is no better than the Schur algorithm when the Toeplitz matrix is
either symmetric, or Hermitian. It is only these latter two cases that are of interest to
us in this chapter. It appears that these are the most useful cases in practical applica-

tions.

It is well known that contemporary VLSI technology is limited by communica-
tions constraints (see Mead and Conway (4], or Kung, Whitehouse, and Kailath [5D).
A parallel algorithm can be readily implemented with VLSI technology only if com-
munications is localized (i.e., between neighboring processors only). Architectures
such as the systolic array ([4],[5]), and the wavefront array processor ([5],(6]) employ
localized interprocessor communications, and so are viable candidates for VLSI imple-
mentation. " Thus, if possible, we must arrange a computation so that communica-
tions constraints are satisfied, and processing throughput rate is simultaneously
maximized. The parallel-pipelined processor implementations of the Schur algorithm
in [1] and the split Schur algorithms in (3] satisfy this requirement quite well. The
communications constraint is satisfied by pipelining. Notice that in general the
requirement of satisfying communications constraints conflicts with the requirement of
maximizing throughput. Thus, a compromise may be necessary. If such a comprom-
ise proves unacceptable, then it will be necessary to find a better algorithm. Unfor-

tunately, it may well be that no such algorithm exists and so compromises may be
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unavoidable afterall.

Note that the criterion of the preceding paragraph neglects the problem of data
input and output to the VLSI chip. This is a significant consideration in practice since
all VLSI chips have a finite number of /O pins. It turns out howe\)er_, that the prob-
lems of interest to us in this thesis have pin 1/O requirements which are fixed and
independent of n, the size of the problem. This fact shall become obvious to the

reader in the remainder of this chapter.

2. Parallel-Pipelined Architectures for the Schur Algorithm

In this section we describe the parallel-pipelined processor implementation of the
Schur algorithm due to Kung and Hu [1], along with a certain improvement suggested
by Brent and Luk [2]. Although the material of this section is found in [1,2], the
presentation of this section is more complete and detailed, and we believe that the
present exposition is easier to understand than that in [1,2]. As in Kung and Hu [1],
we shall assume that T, is an (n+1) x (n+1) symmetric Toeplitz matrix. The exten-
sion to the Hermitian Toeplitz case is straightforward (simply take conjugates at the
appropriate places). Furthermore, we shall consider the special case of n = 3, as gen-
eralization to arbitrary n is straightforward, and special cases are easier to visualize

than the general case.

Figure 1(a) shows the linear array of processors suggested by Kung and Hu [1]
for the parallel implementation of their form of the Schur algorithm. The processors
are rcpresénted as larger boxes containing two smaller boxes. The smaller boxes
denote storage locations for the numbers u®),, .\ and %,%). Number u i
appears in cell i, while u; (1 appears in cell i+1. Cell O is represented by a double
box. This is to signify the fact that this is the only cell that must be capable of per-
fomnng division. Recall that division is used to produce the reflection coefficients K,
but division will also be used in certain back-substitution operations to be described

later in this section.
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Figure 1: (a) Linear array of processors used to execute tl}e Schur algorithm of
Kung and Hu; (b) Computation of the Schur variables without pipelining; (c)
Computation of the Schur variables with pipelining.

It is important to note that we can interpret indices & and i in w;®) as time and
space (or.cell) indices, respectively. With this interpretation in mind, Figure 1(b)
shows the flow of the Schur variables through the machine of Figure 1(a). At time
t =0 the initial state of the machine is shown. It is clear that the machine can be ini-
tialized in O (n) time. The reader must visualize the computation, and broadcasting to
all ceils (processors), of the reflection coefficient K. between r =k and ¢ = k+1

(k 2 0). Since
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D u® u®

1 o ee——— 5 2 = — . 3 = ,
ugb u® u®

K is computed in cell 0, hence the need for this cell to be capable of performing divi-
sion. Since to compute u;*+V requires K, and 1%, it is necessary that K, be avail-
able to all processors at any given 7 in Figure 1(b), hence the apparent need to glo-
bally broadcast K. It is important to note that the Schur variables in a given cell,
say cell i, are functionally dependent upon the Schur variables of cells i and i+1

exclusively (from one ¢ to the next) via

u—(l(cit-lk)) _ |1 K u—(lfz)+k)+1 D
“i(k+1) Ke 1 ui(fl) ’

which is taken from the innermost For-do loop of the Schur algorithm (see Chapter II,
section 2.3). Thus, aside from the global broadcasting of reflection coefficients, inter-
processor communications is localized. Clearly, a Toeplitz matrix will be factorized in

O (n) time on the machine of Figure 1(a).

The global broadcasting of reflection coefficients can be eliminated entirely by the
use of pipelining, as is demonstrated in [1]. We thus satisfy our communications con-
straints  (i.e., local communications requirements) without reducing processing
throughput rate. This is illustrated in Figure 1(c). Here K, is computed between
t =0and r =1, K, between ¢ =2 and ¢ =3,and K3 between t =4 and ¢t = 5. Dur-
ing r =1, K, is used to obtain u? and u§?, and is simultaneously broadcasted to
cell 1. During r =2, K| is used to compute u® and uf? (K is in cell 1 now), and
K, is simultaneously sent to cell 2. During ¢ =3, K, is used to compute u_(:%) and
ug?, while K| is used to compute 4.2 and ug? since K, is in cell 0, and K, is in
cell 2. Simultaneously, K is sent to cell 3, and K 2 1s sent to cell 1. Similar opera-
tions are applied to obtain the remaining Schur variables. Notice that in Figure 1(b),
the Schur variables ,® are all computed during ¢ = 1, the Schur variables w3 are
computed during ¢ = 2, and so on. In Figure 1(c) on the other hand, the Schur vari-
ables u;®) are produced staggered in time, as are 4 and @, Despite this staggering

of the outputs, the matrix T, will be LDU factorized in O (n) time. In addition, about
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half of the cells in Figure 1(c) are inactive for a given z. As we shall soon see, it is
possible to use these inert processors to perform useful work.
Often we wish to solve
Tox, =y, @)

for a given T, and y,. Since the Schur algorithm LDU factorizes T,, we can com-

pute x,, via two successive back-substitutions. From Chapter II
T, =U;D;'U, , 3
where U, is in (70) (Chapter II), and D, is in (74) (Chapter II). Thus, (2) may be
written as
UiDy ' UnXy =y, @
and if we define b, = D, 'U, x,, then
Uiby =Yy (52)
D U,x, =b, . (5b)
If we also define b, = D, b, then (5b) can be replaced by
U,x, =b, . (6)

Equations (5a,b) show that x,, can be computed in two successive back-substitution
operations, given U, (D, is the main diagonal of U,), and y,,.

We will begin by considering the first back-substitution represented by (5a). This

one is of the form
Loxp =yn )
where L, = [lijl(n+1)x(n+1) ¢ = rOW index, j = column index) is lower triangular,
X, =[x, 0 xn,n]T, Yo = Do = yn,n]T. The following algorithm readily
solves the first back-substitution problem in (7) (hence in (5a)):
First Back-Substitution Algorithm:

YA = Yy s
For £ := 0 to n do begin
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Fori :=k+1ton do begin
Yt = y k) WLTE
end;
end;
On a sequential processor this algorithm has a time complexity of O (n2). There is a
linear systolic array parallel processor solution to this problem in Mead and Conway
[4] (see pp. 285-288), with a time complexity of O(n), and Figure 2 illustrates its

development for n = 3. Figure 2(a) assumes that it is possible to allow global broad-

casting of the numbers X,k to all cells. In this case

) , 3
Y4, EBEN: Zr, vy
x3,0=“[ ’X3‘1-‘“[ »x3,2—“1 ’X3.3—ﬁl )
0,0 1,1 2.2 33

and so cell 0 is the only cell that must be capable of performing division. In Figure
2(a), x, , is computed and broadcasted to all other cells between ¢ = k and r = k+].
Elements in cell ;i are updated using the contents of cell i+1 at any given . Thus,
aside from the global broadcasting of Xp k> COmMmunications is strictly localized. As in
the case of the Schur algorithm, pipelining may be used to eIimipate the need for glo-
bally broadcasting X, k- This is illustrated in Figure 2(b), and the result is essentially

the linear back-substitution array in [4].
IfL, = UT, then

— (8)

and the First Back-Substitution Algorithm may be rewritten using (8), and by replacing
X, with b, as per equation (5a). Thus,

k
yn(.k)
D

®)

g k
bn,k :yn(,k) ’ bn,k =

where we have used the First Back-Substitution Algorithm with the suggested variable

name changes. Figure 2(b) then becomes Figure 3, which shows that the first back-
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Figure 2: (a) Back-substitution using global communications; (b) Back-
substitution with pipelining to eliminate global communications.
substitution of (5a) can be carried out concurrently with the computation of U,. Alter-

natively, variables y,,("‘,-) can be computed when a cell is otherwise inactive.

Now let us consider the second and final back-substitution operation represented

by (6), which came from (5b). Equation (6) has the form
UnXo =y, (10)

where U, = [u‘-j](,,ﬂ)x(nﬂ) (i = row index, j = column index) is upper triangular,
with x, and y, as in (7). The following algorithm readily solves the second back-

substitution problem of (10) (hence of (6)):

Second Back-Substitution Algorithm:

Y=y

Fork :=0to n do begin
(k)

. n.n—-k .
n.n—-k ’
Wn—kn—k

X
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Figure 3: The first back-substitution may be carried out concurrently with the
generation of U,,.
Fori :=0 to n—k-1 do begin
yn({ciﬂ) = yn(,/i') ~ Xnon—kUin-k >
end;
end;
As with the First Back-Substitution Algorithm, a sequential processor implementation

will have a time complexity of O (n?), and the linear systolic array solution with have
a time complexity of O(n).

There are two ways of incorporating the second back-substitution represented by
(6) into the array of Figure 1(a). One of these methods is suggested by Kung and Hu
(1], and the other is suggested by Brent and Luk [2]. We shall first describe the

Kung-Hu solution.

Kung and Hu [1] suggest the stacking of the elements of U, (from
T, = U,ZD,‘"IU,,) as indicated in Figure 4. The element 5,1',‘ can be stored in cell
n—k during the first back-substitution phase. As a result, all of the necessary parame-

ters will be in place for the final back-substitution phase. The second back-substitution
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Is shown in Figure 5, assuming the global broadcasting of X k> and where w;; = i i*h)

1n the Second Back-Substitution Algorithm. Comparing Figure 5 with Figure 4 reveals
that the elements of U,, when stacked as indicated in Figure 4, will indeed be avail-

able at the proper place and time for the second back-substitution.

cell 0 cell 1 cell 2 cell 3

(A ) e i
stacks 43 i3 Jg X

42 W X X

1)
g X X X
~
Doy, (1 Y
ugh uld wly X3 [130
1 5 0 11_(21) u_(%) uﬁ%) X3 b3
= - = ~
3= 03 8 8 uuP| x5 b3
0 4@ xn] |5,

Figure 4: Storage of U, on stacks to facilitate the second and final back-
substitution. Illustrated is the state of the stacks after the first back-substitution,

and before the second back-substitution.

The Kung-Hu solution has the advantage of simplicity, but it has the obvious
disadvantage of requiring O (n?) storage. If n is large then this could be a serious
drawback. It has been shown by Brent and Luk [2] that the O (n?) storage problem
can be avoided by regenerating the elements of U, as they are needed during the
second back-substitution. This can be accomplished with only O (n) storage and some

extra computations. One way to do this is to store
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Figure 5: Second back-substitution assuming global broadcasting of X, x (kth
element of the solution vector X, ).

uéi) , u_(‘,.,) (Isi<n+l), K; (1<i<n)

in cell n—i+1 during the LDU factorization (Schur algorithm) phase. It is then possi-

ble to use, for 1 <k <n , 0<i < n—k,

k k
u _((‘)+k 1 1 1 Ky u —((i++lk)) (11)
k - - < ’
uE) I Y PP

which is derived from (1), to regenerate the Schur variables uff‘)‘([ 2 0) as they are

needed during the final back-substitution phase.

Figure 6(a) shows the sequence in which the Schur variables are computed using
(11). Note that the prestored variables are contained in boxes and the computable
variables are contained in circles. Figure 6(b) shows the desired locations, for a given
t, of the prestored Schur variables wl, and the reflection coefficients K;, during the

course of the regeneration operation illustrated in Figure 6(a).

3. Parallel-Pipelined Architectures for the Split Schur Algorithms

Now we present the parullel-pipelined processor architecture which may be used
to implement either of the split Schur algorithms in O (n) time. We will only consider

the case of the symmetric split Schur algorithm; the antisymmetric case follows with
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Figure 6: (a) Elements of U, can be regenerated by storing a certain set (see
text) of O(n) values during the execution of the Schur algorithm. This figure il-
lustrates the relevant dependencies; (b) Position of K; and ud?) at any time during
the regeneration of U, .
trivial modifications. In this section we will use the symmetric split Schur algorithm
of Delsarte and Genin [7], namely:
Voo =ro Ky =0;
For j ;= 1to n do begin
Vo, = 2r);
end;
For j := 0 to n-1 do begin

:=rj +rj+];

% 1./
end;

For £ := 110 n do begin
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O = Ve o/Ve1,00 K = 1=04 /(14K _y);
For j :=0to n—k-1 do begin
Vkalj TS Vet Vi e T vy e
end;
end;
Recall that the only difference between the above algorithm and that of Chapter II is in
the duration of the innermost For-do loop. The symmetric split Schur algorithm of

Chapter II has an innermost For-do loop that terminates at n—k.

Figure 7(a) depicts the parallel-pipelined processor which is used to implement
the symmetric or antisymmetric split Schur algorithms. The machine consists of »n
processors in a linear array (labeled CELL O, ..., CELL J ..., CELL n-1)
which are used to compute o, and Vi.j» Plus one additional processor (box labeled K)
that computes K,. All processors must be capable of performing addition/subtraction,
and other operations to be specified presently‘ The processor CELL 0 is in bold lines.
We distinguish CELL 0 in this way in order to symbolize the fact that CELL 0 must
be capable of performing division so that it may compute o,. Processor K must also
perform division, but CELL 1 to CELL n-1 need only perform multiplication.
CELL j (0 <j <n-1) contains two boxes, one of which symbplizes a storage loca-
tion for Vg,j and the other symbolizes a storage location for Ve+1,j- A storage location

must also be provided for o, in each cell, but this is not shown.

For the special case of n =4, Figure 7(b) depicts the flow of data through the
machine of Figure 7(a). Note that J 1s interpreted as a space (cell) index, and & is
interpreted as a time index. The basic unit of time is the duration of a multiply-add or
a divide-add step. For k =0 in Figure 7(b), the initial state of the processor array is
depicted. In between the time instants for each value of & depicted two things must
happen. First of all, o, must be computed by CELL 0 and broadcast to all other cells
(including K). This is assumed to take one time unit. Next, each processor computes
Veety for 0<j < n—k-1 according to the innermost For-do loop of the split Schur

algorithm. This will take one time unir. Hence, each value of £ shown in the figure
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Figure 7: (a) Parallel-pipelined processor array to implement the split Schur algo-
rithms; (b) Flow of data through the machine assuming global broadcasting of the
split reflection coefficients (not shown).
represents two basic time units, During the first time unit quantity 1+ K,_; may be
computed by processor K. During the second time unit X may compute
Ke=1=0,/1 +K,_,).
Aside from the apparent need to globally broadcast split reflection coefficients,
communications between the processors of Figure 7(a) is strictly local, i.e., between

neighboring processors only. Through pipelining, it is in fact possible to eliminate
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global data transfers altogether. For n = 4, Figure 8 shows the flow of data through
the machine of Figure 7(a), assuming the use of pipelining, and assuming that the
machine is initialized as indicated (time =0 entry of Figure 8). Figure 8 depicts the
flow of the split reflection coefficients explicitly. The unit of time in Figure 8 is the
basic time unit previously stated. ‘.Notc that the machine may be initialized in O (n)

time quite readily.

time cell
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X X X X
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Figure 8: Pipelined flow of data through the machine of Figure 7(a) eliminating

all global data transfers.

It is not necessary to fully initialize the machine before computation can begin.
For n =4, Figure 9 depicts the flow of data without initialization. Figure 9 depicts

two successive sets of inputs. The first set is {vo, » V1) and the second set
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{vo, » vy,;} s denoted by barred variables to distinguish it from the first set. The out-
puts due to the second set of inputs are similarly barred. It is necessary, in this
scenario, for all cells to be able to perform division. It is assumed, for simplicity, that
oy is immediately output to processor K upon its creation, but this may be avoided by
further pipelining. It is clear that the overall throughput of the machine is now deter-
mined by the length of our basic time unit. As a result, a high throughput is possible

with the arrangement of Figure 9.

From the inverse mapping of equation (6) in Chapter III, it is possible to obtain
the Schur variables u¥) from the split Schur variables v, ;, and so to obtain the ele-
ments of matrix U, in T,, = U,ITD,I‘IU,,. An inspection of (6) (Chapter III) reveals that
the Schur variables may be computed when the processors of Figure 7(a) are inactive
during the times indicated in Figure 8. A processor is inactive if it is not computing a

split Schur variable.

From the standpoint of the computation of reflection coefficients and the compu-
tation of the elements of U,, the split Schur algorithms are more efficient than the
Schur algorithm, in the context of a parallel-pipelined processor implementation.
Although the inverse mapping from the split Schur variables to the Schur variables
requires extra multiplications, these multiplications may be performed when the pro-
cessors in the array of Figure 7(a) are otherwise inactive. Recall ‘that these extra mul-
tiplications rendered the split Schur algorithms no more efficient at computing the ele-
ments of U, than the Schur algorithm, in the context of a sequential processor imple-
mentation (ﬁee Chapter III, section 2). However, in the context of a parallel processor

implementation, this limitation is lifted.

4. Parallel-Pipelined Architectures for the Schur Algorithm for Hermitian Toe-

plitz Matrices of Any Rank Profile

We will now consider the parallel-pipelined processor implementation of the
Schur algorithm for Hermitian Toeplitz matrices of any rank profile derived in section

3 of Chapter III. The relevant algorithm is summarized in the form of pseudocode in
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X X X X X X X X
X X Voo Vo, Vo2 Voa Voo Yo,
2 o X X Vie | Vir | V12 ] Via | Vip | Vi
x X oy X x X X X
X V1o | Yor | Vo2 | Vo3 | Yoo | Yo1 | Vo2
3 X Vao | Yir [ V12 | Vi3 | Vio | Yy | Via
X oy oy X x X X X
Vio | Yia | Vo2 | Vo3 | Yoo | You | Vo2 | Voa
4 043 Voo | Vai | Viz | via | Vi o] Vi | Vis
(053 oy [¢ 5] X X X X x
Voo | Yix | Viz | Yoo | You | Vo2 | Vo3 X
5 V30 Vz‘l V2‘2 VlO vl,l V12 V13 X
o, Qay o2 X X X X X
V2o | Vau | Yoo | Yoi | Vo2 | Vo3 X X
6 G3Q1 | Vo | Var | Vig | Vig | Via | vis | X X
[0 5 (0.5 al X X X X
vao | Y10 | Vor | Vo2 | Vo3 | x % x
7 Vao | V20 | Vit | Viga | Vi3 X X X
Q3 al 5(1 X X o X x
Vio | Yl | Yo2 | Vo3 X % X X
8 ey | Va0 | Vau | Vi | Vi | X X X X
az al al X X X X
V20 | Vi1 | Vi2 X X X X X
9 ;’-3.0 VZ.I V2'2 X X X X X
a, o, o X X X X X
V20 | Vau X x X X X X
10 [*2} Vio | Va; X X X x X X
EJ az X X X X X X
V3o X X X X X X X
11 Vap | X X X x X X X
s X X X X X X X
X X X X X X X X
12 0y X x X X X X X X
X X X X X X X X

Figure 9: Flow of data through the machine of Figure 7(a) without the use of a
separate initialization phase.
section 3.3 of Chapter III. For the sake of brevity, we shall refer to this algorithm as
the Schur algorithm in the remainder of this section. It is apparent that the Schur algo-

rithm may be most plausibly implemented on a linear array of processors like that in
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Figure 1(a).

In the Schur algorithm, the processor array of Figure 1(a) must cope with two
cases: 0 # 0, which gives rise to what we usually mean by the Schur algorithm (i.e.,
Chapter II Schur algorithm), and 0, =0 which gives rise to modiﬁcétiyons that facili-
tate “jumping over the singular gap”. Since Oy = ufﬁl is computed in cell 0, it is
cell 0 that must determine which case applies. Furthermore, it must communicate
whether or not 6, = 0 to the other processors in the array in order that they may take
the proper course of action. As long as o, # 0, the array may run in the usual way
(e.g., as depicted in Figure 1c)). If o, =0, the array must compute the Schur vari-
ables Y - WD & =r + 1,7 is the right singular point), and it is necessary to
save the variables ;") and ;" *Y, in the cells in which they were created, since they
are used to jump over the singular gap (see the Schur algorithm for the case where
O =0). Thus, when cell 0 detects that O, =0, it must notify the remaining proces-
sors that they are only going to compute the Schur variables of up to order r+1, that
is, 4;"*D. It is then necessary to execute the "If o, # 0 then" statement of the Schur
algorithm for the case where O, = 0. This will involve computing / (Iohvidov index),
O , ¥ P, By, 0,4 and the order n+1 Schur variables, u,"*D. We will discuss, in

greater detail, the computation of these parameters below.

In what follows we shall assume that the processor (cell) which computes
r,l,o,, orBgis allowed to globally broadcast the result to all other processors. It
turns out that cell 0 computes r , 6, , and Bo, while cell [ computes /. In practice,
such limited global communications simplifies the parallel implementation of the Schur

algorithm.

It will be useful to consider Toeplitz matrices C,, with many singular gaps. For
example, consider a C,, with leading principal submatrices C,, ..., C,, where,

recalling that f = der(Cy) (Chapter I1I),
f1#20.f2=0,f320, - ,fay=0,f, %0 . (12a)

For this to make sense m must be odd and m > 1. Thus we have the sequence of

right singular points
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ry=l,ro=3, - r._, =m=2, (12b)

[1=1,12=1,"’,[m_1:1. ‘ (12C)

A sequence of left singular points (n;) is also generated (n; = r; + 20 via (10) in

Chapter III). Notice that

m-1

2

S L=0(m) . (13)
=1

i
Equation (13) simply says that the size of all singular gaps combined is of the order of
m (the size of the Toeplitz matrix). Note that we are assuming that a mawix C,, with
the properties of (12a,b,c) exists (forallodd m , m > 1). This might not be so. More

generally, C,, has many singular gaps if it possesses an Iohvidov index sequence satis-

fying

X L=0m), S°=0@m) , (14)
ieS

where $° = the number of elements in the index set S. The example of C,, satisfy-
ing (12a,b,c) is intended merely to indicate how such a matrix might arise. It is clear
though that the existence problem remains since we do not know if there exists a C,,

satisfying (14) for all m. We will simply conjecture that such matrices exist.

It is important to note that Toeplitz matrices satisfying (14) represent the worst-
case scenario. If C,, satisfies (14), then the "else" case of the "If 6, # O then" state-
ment in the Schur algorithm will be executed often enough to dominate the complexity
of the overall algorithm. Hence, a complexity analysis of the Schur algorithm (or that

in [6]) must consider this case, and this case alone.

If 6, =0 then it is first necessary to compute /, before we can find p; , 1,"*D),
etc. Recall that [ is the smallest positive integer such that u_(f,‘:l)) # 0. The order r+1
Schur variable u (’“)) resides in cell /. One way to find / is as follows. Since cell 0

-(r+

has computed r, and broadcasted this knowledge to all other processors, all of the
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processors know that they are to do nothing until / is found (other than to continue
computing the order r+1 Schur variables). Cell 0 has »“*1 = 0, and it can notify cell

1 of this fact. If )y =0 (this is in cell 1) then cell 1 notifies cell 2 of this fact,

and so on, until cell / is reached where w7l = 0 holds. At this point cell [ knows

what [ is, and it can globally broadcast / to all of the remaining processors. Since in
the worst possible case (14) holds, a total of no more than O (m) clock cycles are used
by the processor array in computing and broadcasting each value /;. Thus, the compu-
tation and communication of Iohvidov indices does not lead to a parallel processing

bottleneck.

Having computed [, it is now necessary to compute p; for i =0,1,...,2/. This

requires the parameters o; and \y; which are Schur variables. Recall that

1
o =,y = S Wl (159)

r

if r # 0, and that
O =Cryi s W =0, (15b)

if r =0, fori =0,1,.../. The location of these parameters in the cells of Figure 1(a)

is depicted in Figure 10. To compute p; requires solving

% 0 9 bo Vi
Gy &% .0 |Py Vi1

= — . , (16)
& Oy . g | Py Yo

and we have p;,; = -p;_; (i =1,..,0). It is clear that (16) can be solved via the First
Back-Substitution algorithm (see section 2 of this Chapter). From Figure 10, the
parameters y; and o; must be relocated in order to facilitate the execution of this
algorithm. Specifically, y; should be located in cell [-i, and o; should be located in
cell /. However, from the figure we initially have y; in cell /-i+1, and o; is in cell
[+i. Clearly, all that we need to do is to shift the elements o; in cells [ to 2/ left-
wards by / cell positions. This will take / clock cycles. Similarly, the elements \; in

cells 1 to /+1 need only be shifted leftwards by one cell position. This will only take
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one clock cycle. Since cell 0 is capable of performing division, by comparison with
Figure 2, the First Back-Substitution algorithm may proceed in the usual manner.
Parameters py, ..., p, (in this order) will then emerge from cell 0. It is suggested
that p; be stored in RAM (random access memory) in cell 0. The reasons for this will
become apparent later on in this section. It is clear that p; (all i) will be computed in
O(l) time. This includes both the shifting into their proper cell positions of the
parameters o; and y;, and the back-substitution operation itself. Once again, since

(14) holds in the worst case, this will not result in a parallel processing bottleneck.

(@) cello  coll 1 cell-1  cell | cell I+1 cell 21
— l— o6 o © —0 % ay e o o — | O
€o ¢y €11 =C =C1p1 =Cy
cell 0 cell 1 celll-1 cell | cell 1+1
Ve L .. V2w | VYo
(B) ceto  connt celll-1 cell | cell I+1 cell 21
— —— 8 @ 0 ] O — al e o o &
=y (retl gy (rel =y (r+?
B B L Uy
celi0 cell 1 celll-1  cell | celli+1
W o o o V2 | Y Yo
=u g') =0 O oy 0] |oy ©
I-1 | 1+1

Figure 10: Positions of the parameters V; and @; in the cells of Figure 1(a) be-

fore shifting them into their proper cell positions. (a) case r = 0; (b) case r = 0.

The order n+1 Schur variables 1"+ are computed via

— 1 2
D = Bo [c l‘i(’r+1)+1 + vaui(-'(ﬂ)v)J , (17)
r v=0

for 02/ 2n-m+1, n <i <m-1. The summation term of (17) is a convolutional

summation. As such, it can be put into "matrix form", where the matrix will have a
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Toeplitz (or possibly Hankel) structure. Thus, for 0 2 i > n—m+1, (17) becomes

u G iy u_‘i*” ol g
== |+ B ' 1 as

o, . .

1 +1 1
““(?r: )1) “l(-I21+2 i é;—m)+l ) _(:,:.f Doy
and forn <7 <m-1, (17) becomes
ué"“) (R ué;ﬂ) u6r+1) Po
HO _ . -

=<5 | . |t R ' ‘ . (18b)

("-:1)1 " | mere u(’_tl_) : u(’_f,l_) P

From (18a,b) we see that to compute all order n+1 Schur variables requires all of the
order r+1 Schur variables and certain order r Schur variables. The order r+1 Schur
variables are present in cells 0 through to m-r-1. The order r Schur variables
u_(f,)ﬂm e Ltl(_’,,),+2 are in cells / to [+m-n-1, respectively. The order r Schur
variables u,{) - - - 1, -1 are contained in cells /+1 to [+m-n, respectively. We
want the order n+1 Schur variables u GV -+ w @Dy and w00 g
cells O to m—n—1, respectively. Thus, the order » Schur variables in (18a,b) must be

shifted into these cell positions, since they are used to determine the order n+1 Schur

variables. This shifting operation will take no more than O ({) time.
Letp ={pg - -- pzl]T, let the matrix in (18a) be 4, and let the matrix in (18b)

be T. Both H and T are (m -n) %X (2/+1) matrices. Inspections of 4 and T reveal

that they are Hankel and Toeplitz, respectively. Define,
*=Tp, u"=Hp . (19)

The vectors 1™ and 1~ are the results of matrix-vector products. Matrix-vector pro-
ducts may be implemented on linear systolic arrays in O (w) time, where w is the
matrix bandwidth (see [4], pp. 274-276). The bandwidth of a matrix is here defined as
the sum of the number of rows and columns minus unity. We will briefly digress to

explain the linear systolic implementation of a matrix-vector product.

Often (as in (19)) we wish to perform matrix-vector multiplication:



y =Ax . (20)

Here y=bo o yaudl L x =[xy A O and A = [ ]sm
(i =0,1,.,n-1, J =0,1,...,m=1). Figure 11 depicts systolic matrix-vector multiplica-
tion for the special case where n = m = 3. The systolic array is, as We have noted, a
linear array of n +m — 1 processors (cells). Vector x is fed into the array at its
left-hand end (cell 0), and vector Y =0 is fed into the array at its right-hand end (cell
n+m=2 =4). The solution y appears at the left-hand end beginning with the com-
ponent yg at n + m — 1 clock cycles after we began feeding data into the array. The
elements of matrix A are fed into the ‘tops” of the cells. For example, a, feeds into
cell 0, ay, and ay, feed into cell 1, @33, ayy and ag feed into cell 2, etc. Thus, A is
fed into the array "diagonal-wise". The flow of data through the machine is shown in
Figure 11. To understand this flow, consider the progress of the element Yo through
the array. At time = 0, Yo enters cell 4 (with an initial value of zero), and after every
clock cycle it moves to the left by one cell position. When it reaches cell 2 at time =

2, cell 2 performs
Yo=DYot ap¥g »
and passes this new value for Yo on to cell 1, where cell 1 then performs
Yo=Yo+tapx, ,
and this value is passed on to cell 0, where cell 0 performs
Yo =Yotagx; .
Attime = 5, y, emerges from cell 0 with the final value
Yo = agoXo + agixXy + agpx,

which is the correct value for Yo in the vector y = Ax. Similar reasoning applies to
the vector components yiand y,.
We may apply the systolic array of Figure 11 to the problem of computing 1+

and 4~ in (19). Since the elements of A feed into the array diagonal-wise, it is desir-

able for A to be Toeplitz, since then all of the elements of A on a given diagonal are



422
242 321
302 a 220
&01 a10
300
H ~
X — — — .
time celf 0 cell t cell 2 cell 3 cell 4
Yo
o]
X5
Yo
1
X0
Y Y
> ag 0 1
X1 Xo
Yo Y4
3 209 240
Xy X9
Yo Y1 Y2
4 20 a4y 220
Xz X1 Xo
Y Y y
5 0 a2 ! a3 2
X2 X.l
Y Y
6 ! a,, 2
X2 Xy
7 Y, 2
X2
8 Y2
*2

Figure 11: Linear systolic array for matrix-vector multiplication.

the same. Clearly, T in (19) is Toeplitz, but H is not. However, we can write
u"=HHUp) , 2D

where HJ is Toeplitz, and Jp = [py py_y -+ poll (p with the elements in reverse
order). Recall that J is our symbol for the exchange matrix (see Chapter II, section
2.1).

As an example, let us consider H and T for m =7 ,r=2,/=1, and so

n = 4. Thus, from (18a,b)
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H=uRuQu@|, T=|uPuPud| (22)
u@u®yd uf uP u P

Figure 12(a) shows the locations of the Schur variables, in the array of Figure 1(a),
that make up T and A prior to the computation of the order n+1 Schur variables.
Clearly,

wQuPud

uBLu uP| . (23)
uQudud

HJ

To compute ™ we use HJ, since the elements of it are located in the proper cell posi-
tions to facilitate the systolic multiplication of HJ by Jp. That is, p must be fed into
cell 0 in reverse order (i.e., p,; first, then P2y, - and finally pg). This is illustrated
in the middle of Figure 12 (see Figure 12(b)). Since the elements of T are in their
proper cells, Tp may be computed in the usual way (see the bottom of Figure 12(b)).

The reader can now see the desirability of storing p; in RAM in cell 0.

In Figure 11 notice that processors are inactive half of the time, and on alternat-
ing cycles. In other words, it is possible to interleave the computation of two matrix-
vector products. This is advantageous in our present problem since we wish to com-
pute the two products Hp and Tp. By interleaving the computation of Hp and Tp we

can compute (18a) and (18b) éimultaneously.

The order n+1 Schur variables of (18a) will be produced by cell 0 in the order

unrh o uf?,,fl_)l). Similarly, the order n+1 Schur variables of (18b) will be pro-
duced in the order u{**V - .. w{D | Recall that we want wlael o uf?,:l_)l) to

be finally located in cells 0 to m-n-1, respectively, and similarly, we want
udrth.o "D 1o be finally located in cells 0 to m-n—1, respectively. It shall
take O (m—n) clock cycles to ensure that this is SO.

Since T and H are (m-n) x (2[+1), the order n+1 Schur variables can be com-

puted on the linear systolic array in O (m-n+2l) = O (m-r) time. Recall that the

bandwidths of H and T determine the time complexity, and their bandwidths are
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Figure 12: Example of the computation of WD form =7, r =21 = I, n =4,

(a) Contents of the cells before the computation of 1,%*V; (b) Systolic matrix-

vector multiplication to compute «* and 1™ which are used to determine u,-<_",,”).
m-n +§1 (see [4], page 274). If C,, satisfies (14), then the amount of time that the
array spends in computing the order n+1 Schur variables is

Sm=-r)=0m? . (24)
iedS
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Evidently this presents a serious problem since the machine of Figure 1(a) will then
perform no better (asymptotically) than a sequential processing machine. In other
words, it appears that the computation of order n+1 Schur variables is a parallel pro-

cessing bottleneck.

Is it possible to overcome this bottleneck ? Unfortunately, we shall see that we
cannot remove this bottleneck while using systolic matrix-vector multiplication. How-
ever, there remains the possibility that other matrix-vector multiplication schemes exist

that do not give rise to the bottleneck to be described below.

In Figure 1(c) we note that it is possible to commence computing the order k+1
Schur variables only two clock cycles after commencing the computation of the order
k Schur variables. The computation of Schur variables of all orders may then be said
to be overlapped. 1t is because of overlapping that the machine of Figure 1(a), when
operated as in Figure 1(c), continues to have a time complexity of O (m), just as it did
when it was operated as in Figure 1(b). If we could overlap the computation of the
order n+1 Schur variables with the Schur variables of all other orders, much as in Fig-
ure 1(c), then the bottleneck could be removed. Note that it would be acceptable for
the instant we begin to compute order & Schur variables to be separated from the
instant we begin to compute the order k+1 Schur variables by O (/) clock cycles.
Such a separation would only occur when singular gaps are -encountered however.
This is vital since before we could begin to compute the order n+1 Schur variables it

was necessary to spend O (/) clock cycles computing the parameters p;.

Recall that it takes at least m+n—1 clock cycles before the first component of the
product vector appears, in a matrix-vector product, given that the matrix A is n x m.
This delay we shall call the latency of the systolic array. Thus, in our present prob-
lem, it will take at least m—n+2/ = m~r clock cycles to produce the first order n+1
Schur variable. Hence it will also be at least m—r clock cycles before we can begin
computing the order n+2 Schur variables (using the usual form of the Schur algorithm,
which would assume that Cn+1 # 0). Because it takes so long to begin the computa-

tion of the order n+2 Schur variables, it will take a total of O(mz) clock cycles to
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compute the order n; + 1 Schur variables associated with each singular gap i (as in
(24)). It is =ow clear that to successfully eliminate the bottleneck requires a means of
computing tHe matrix-vector products of (19) with a latency of not more than o)
clock cycles, rather than O (m-r) clock cycles. Furthermore, the new method (assum-
ing that it exists), must never require that all of the order r+1 Schur variables be avail-
able simultaneously, or else overlapping would once again be precluded. As well, the
new method should run on a linear processor array (i.e., we do not want to change the
array topology). It is not known whether such a method exists. Thus, for the present

at least, the bottleneck is impossible to remove.

It is important to note that alternative matrix-vector multiplication schemes do
exist (e.g., methods involving wavefront array processors [5,6]), and that it may be
possible to adapt these methods to our present problem and so eliminate the unfor-
tunate bottleneck. However, it is anticipated that significant extra work shall be
required in this area, and so we shall leave this as an open problem. Other open prob-
lems exist in the area of implementing the Schur algorithm in a parallel processing

environment. These are summarized in Chapter X.

Since we must conclude (tentatively) that the bottleneck is unremovable, we are
in fact stating that the Schur algorithm is inherently sequential. But this of course
assumes that C,, satisfies (14), and this is the worst-case scenario. Suppose that we
now assume S° = O(1). In other words, assume that the number of singular gaps in
C,, is independent of m. If m is large, then C,, will have very few singular gaps. In
this case the complexity of the Schur algorithm will be dominated by the complexity
of the usual form of the Schur algorithm. Hence, no bottleneck will exist, and the
parallel-pipelined processor implementation of the Schur algorithm will run in O (m)
time, despite our present inability to properly overlap the computation of the Schur
variables. Furthermore, the pipelining of such parameters as r and / to all processors
can be undertaken without any increase in the time complexity of the implementation.
Thus, in this instance, all global communications can certainly be eliminated. It is
now clear that the success of the Schur algorithm in its parallel form strongly depends

upon the number of singular gaps (not their size) in C,, relative to the order of C,.
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Chapter V

THE BEHAVIOUR OF THE SCHUR AND SPLIT SCHUR
ALGORITHMS UNDER FIXED-POINT ARITHMETIC
CONDITIONS

So far we have considered the Schur and split Schur algorithms (of Chapter II)
without regard to the practical matter of how these algorithms behave when imple-
mented using finite precision arithmetic. It is clear that the issue of finite precision
arithmetic effects is important, as there is no point in implementing an algorithm that
is numerically unstable. As well, it is also important to identify ill-conditioned prob-
lem instances. In the present chapter we shall therefore present a finite precision arith-
metic analysis of the Schur and split Schur algorithms. Some simulation results will
also be presented as a check of the analytical results. We shall confine our attention to
Toeplitz matrices that are real-valued, positive definite autocorrelation matrices. Furth-
ermore, we shall only consider fixed-point arithmetic. Recall from Chapter II (section
2.6) that the Schur and split Schur variables satisfy certain bound§ that make the Schur
and split Schur algorithms particularly desirable from the standpoint of a fixed-point
arithmetic implementation. This is beneficial from an economic point of view as
floating-point arithmetic hardware is generally more expensive than fixed-point arith-
metic hardware. The fixed-point arithmetic analyses and simulations of the Schur and

split Schur algorithms are due to Zarowski and Card [1,2].

1. Literature Review

Béfore we present the analyses of the behaviour of the Schur and split Schur
algorithms under fixed-point arithmetic conditions, it is informative to consider the
behaviour of the Levinson-Durbin algorithm under finite precision arithmetic condi-

tions. The results on the Levinson-Durbin algorithm to follow are due to Cybenko
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[3,4] and to Alexander and Rhee [5]. Since we may derive the Schur algorithm from
the Levinson-Durbin algorithm (recall Le Roux and Gueguen [6]), we might reason-
ably expect that the numerical properties of the Schur and Levinson-Durbin algorithms
will be qualitatively similar. Similarly, as the split Schur algorithms are derivable
from the Schur algorithm, we would expect that the split Schur algorithms have
numerical properties similar to those of the parent Schur algorithm. By the end of the
chapter we shall see that this is so.

Cybenko [3,4] considers Toeplitz matrices R, = [r[ ij |lnxn that are real, sym-
metric and positive definite, and they are normalized so that ro=1 (hence
I T l<1,i> 1). Autocorrelation matrices for real-valued data are real and sym-
metric, and they are often positive definite as well. Recall that, in general, if R, is an
autocorrelation matrix it will at least be positive semidefinite (see Roberts and Mullis
[71). Under the assumption of positive definiteness, the reflection coefficients K; asso-

ciated with R, will satisfy, for all i,
I K | <1 . (1)

The Durbin algorithm [3], or the Levinson-Durbin algorithm as it is called in [4], is

used to solve

Ria, =~[ry - r,T =-r, . ‘ (2)

Equation (2) is somewhat different from equation (1) in Chapter II, but it turns out that
there is no significant difference between the Levinson-Durbin algorithm of [4] and
that in Chapter II (for the special case of T, considered here). The solution vector q,

of (2) has the form a,, = [a, , a,, - - a, 1.

Cybenko [3,4] presents results on the condition number of R, , and on the numeri-
cal stability of the Levinson-Durbin algorithm. We will first summarize Cybenko’s
results concerning the condition number of R,. First of all, it is well known (see
Golub and Van Loan [8]) that the condition number of a matrix A is given by
@A) =l A [l || AV ||, where || A4 || is the norm of A (any suitable matrix

norm will do). If x(A) is large, then no algorithm operating under finite precision
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arithmetic conditions can reasonably be expected to yield an accurate solution to
Ax =y. A matrix with a large condition number is said to be ill-conditioned. In [4]

Cybenko only considers 1-norms (he summarizes 2-norm results in [3D). If x is an n-

n .
vector then the I-nomof x is [ x || = 3| x |. IfA isann x n matrix, then the
i=1

L-norm of 4 is || 4 1= | S¥ _ [] ax [|. From (4]
1<|IR, || sn , (3a)

and from Theorem 3.1 in [4]

n-1(1 K.
max | — 1 L — 1 S]]Rn—lﬂsn%—;—:—[zf_—%. (3b)
qa - K nla -K;) j=1 Y
= ]=

Equations (3a,b) and the definition of condition number readily yield bounds on K(R,,).
From (3b) it is clear that K(R,) is large if any reflection coefficient is "large" (i.e.,
close to unity in magnitude). Cybenko [4] observes that it is necessary for reflection
coefficients to be quite large before the effects of ill-conditioning become very evident.

However, this observation was made for rather small n (n on the order of 10).

We shall now summarize the results of Cybenko [4] concerning the numerical
stability of the Levinson-Durbin algorithm. Both fixed-point and floating-point arith-
metic results are to be found in [4], but we shall only examine the fixed-point case.
The fixed-point and floating-point results are qualitatively the same. Let us begin by
describing the quantization error model involved in obtaining the results in [4]). For

fixed-point arithmetic, the rounding error model is (in the notation and language of [4])
fx(a+b)=a+b,fx(ab)=ab+§,fx(-g—)=%+§, @)

where @ and b are fixed-point numbers, and fx(.) is the fixed-point representation of
the argument. Quantities & and { are so-called local rounding errors satisfying
[ ¢, E | <A, where A depends upon the wordlength and method of truncation.
Suppose a,, is the true solution (infinite precision solution) to (2). The computed solu-

tion will be denoted by &, =a, +a,, where o, is the perturbation of the true
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solution due to the cummulative effects of all of the local rounding errors. Thus,

Ry8, =R, (a, +0,)=-r, +3,
SO

R,0, =8, , or o, =R15 . (5)
Cybenko [3,4] calls 8, the residual vector. A bound on [l 8, |l (1-norm) may be
obtained, and this bound determines the numerical stability of the Levinson-Durbin
algorithm. Thus, from Theorem 4.1 in [4],

n 3
HS,,HSALHGHK, I)J("T+%n2+n>+0m2>, (6)
1

where O (A?) symbolizes the fact that only first order errors are considered in the
derivation of (6). Cybenko [4] argues that higher order terms are insignificant, in the
course of deriving (6). The bound in (6) is largest when X; is large (as defined in the
previous paragraph). However, despite this, the bound in (6) shows that the Levinson-
Durbin algorithm is numerically stable. This is so because, as is argued in [4], the
bound in (6) is comparable to that for the Cholesky algorithm (LU decomposition, see
[8]). The Cholesky algorithm is known to be numerically stable. Thus, the Levinson-
Durbin algorithm performs poorly only when it is exposed to ill-conditioned data. In

this sense it performs no better or worse than any other method.

A more recent analysis of the Levinson-Durbin algorithm is due to Alexander and
Rhee [5], However, their analysis technique is quite different from that of Cybenko
[3,4]. Their method is an adaptation of the method commonly used to compute
roundoff noise gains and variances in digital filter structures (see Roberts and Mullis
[7], Chen [9], or Oppenheim and Schafer [10]). The analyses of the Schur and split
Schur‘algorithms in Zarowski and Card [1,2] also make use of this technique. We
shall now briefly summarize the results of Alexander and Rhee [5] concerning the

Levinson-Durbin algorithm.

Alexander and Rhee [5] utilize a statistical model for roundoff errors (as is sug-

gested for digital filters in [7,9,10]). If x is an infinite precision variable, and Q[x] is



5.5

the quantized (finite precision) value of x, then £ = Q[x]=x +mn,, where N, is the
error due to quantization. The error is modeled as a random variable (see, for exam-
ple, Chen [9]‘ (Chapter 11)). From Chapter II, section 3.6 we know that the reflection
coefficients parametrize certain digital filter structures, such as the all-pole lattice filter.
It is known (see [7]) that if | K; | <1 for all i then the all-pole, or pole-zero lattice
filters will be stable (stability theory for digital filters is discussed in {7,9,10]). Insta-
bility results if | K; | > 1 for any i. Alexander and Rhee [S] derive formulae that can
be used to estimate the value of Var [AK;] (subject to certain assumptions that will be
specified later), the variance of the error AK; in the ith reflection coefficient due to the
cummulative effects of all rounding errors. Such results can be used in investigating
the stability of lattice filters under finite precision arithmetic conditions, for example.
Note that Alexander and Rhee [5] assume the use of fixed-point arithmetic only. The
method of [5] takes into account the presence of quantization errors in the normalized
autocorrelation sequence ry, - - - ,r, (sequence is normalized if ro =1). The error

due to quantization in r; is denoted by Ar;. From [5]

Var [Ary] + 4r {Var [Ar ] + o2

Var[AK,] =
1 -riy
8rf'+4r12+2r22+2 ) .
= - ol , 7
(1-rg)?

where c% is the variance of the quantization error of a single product or quotient.
From (7) it is clear that the finite precision estimate of X, is likely to be poor if
ry — 1. It is shown in [5] that this will happen when R, is due to either a nar-
rowband highpass or lowpass input signal. It is straightforward to show that K, = r,
(by the conventions in [3,4,5]), so (7) is large if K is large. In other words, it is ill-
conditiened input data that lead to poor estimates of the reflection coefficients, and so
the results in [5] actually agree with those in [3,4]. It is worth noting that ill-
conditioned data can readily arise in practice. For example, Markel and Gray [11]
sometimes observed the effects of ill-conditioning in their experiments with linear

predictive (speech signal) vocoders that employ the Levinson-Durbin algorithm.
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2. Analysis Assumptions

In this section we present the assumptions behind the analyses of the Schur and
split Schur algorithms under fixed-point arithmetic conditions. These results appear in
sections 3 and 4 of this chapter. The analysis assumptions are esséntially those of

Alexander and Rhee [5].

We shall assume (as in [5]) that R, is an autocorrelation matrix, and that it is
positive definite. Alexander and Rhee [5], as we have already noted, take into account
quantization errors in the estimates of r; (normalized autocorrelation coefficients).
Thus, their results involve the analysis of a particular autocorrelation sequence estima-
tor under finite precision arithmetic conditions. The estimator that they chose (and that
we choose) was

1 L-i-1
R(i)=—L—:—i— k§0 sk) stk +1i) 8)
for i =0,1,..,n, where s(k) is a real-valued signal. In computing (8), the signal s (k)
is windowed, and so we may assume that s(k) is zero for k <0 and k > L. We will

let

_RG)
S RO ©)

fori =0,1,..n,and so | r; | <1 for all i. Equation (9) is the definition of the lag i
(or ith) normalized autocorrelation coefficient. Other estimators (besides (8)) could
have been chosen. However, the estimator in (8) is desirable in practice as it is
unbiased and the variance of the estimates that it produces approach zero as L — oo,
assuming that s (k) is ergodic (see Chen [9], pp. 388-390). Hence, the estimator is sta-
tistically consistent (see [9]). Thus, we shall assume that L 3 n to ensure good esti-
mates.

Let x be any infinite precision (nominal) variable. Let £ be the quantized form

of x. Then, as before,
£=0kxl=x+n, , (10)

where 1, is the quantization error. We will assume Q[ ] to be a roundoff quantizer.
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We will also assume that all quantization errors are zero mean, uncorrelated and uni-
formly distributed over the quantizer bin width. The quantizers themselves are uni-
form and produce a b-bit binary word for any variable x with the dynamic range
“Xmax S X S Xpax. Note that this assumption will be slightly modified in section 4.
Thus, the quantization error variance 62 is

9-2b
3

oZ=EM2 =x2,

(11)

where E[] is the statistical expectation operator. For us, Xmax =1 holds (e.g.,
| u | <ry=1).

Multiplication and division produce roundoff errors that may be modeled as
Qlyl=xy +1, , (12a)
o)1=+, . (12b)

y y

We are assuming that the roundoff error is uniformly distributed over the interval
[-277,27%] which gives (11) (tpa =1). As in [5], M with a suitable subscript
denotes the quantization error of a single product or quotient (local rounding error in
the language of [3,4]), and Ax denotes the error in some variable x due to the cummu-
lative effects of quantization error. Second order products such as Ax Ay or Ax 1
will be ignored as they arise in the computation of expressions for such parameters as

AK; since they are small relative to first order errors like Ax c: 1.

From Alexander and Rhee [5], Ar; = £ —r; and

A = Mg, — Mg, N 13
i STLRO My, (13)

fori = 1,...,n, where
EMil=I[L - i) RH)Pc2 , (14a)
EM3]=[L RO)*c? , (14b)

E[ﬂr%] - (y% , (14¢)
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—~2b

and 0'% = 23-— Equation (13) uses the assumption that L > n.

3. Fixed-Point Arithmetic Properties of the Schur Algorithm

In this section we use the model and assumptions of the previous section to
analyse the Schur algorithm. The results to follow are from Zarowski and Card [1].

3.1 Analysis

We will begin by presenting some analytical results. For this we need to apply
the model of section 2 to the infinite precision form of the Schur algorithm of Chapter

II. Thus, according to this model, the Schur algorithm becomes:
2D = 0D =4, ;

Fori :=1 to n do begin
R =009 7,

Fork :=0ton —i do begin

1
05 = 080 + QIR AD ;

2D = Q[[e 28 a1+ 2%
end;

end;

This is the finite precision Schur algorithm.

It is now possible to obtain error expressions for the reflection coefficients X ; and

the Schur variables u,c(i). Thus, from the finite precision Schur algorithm it is easy to

see that

ul® + Aul®
;o - +‘n N (15)
‘ ul, +Aul) K

—i+1

and so-

Au{® + K Au ),
(‘) +T1K,i . (16)

U it

AK[ =£""K,-='—

Similarly,
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[‘\-(‘(ZB) =ulifdy + Al + K aud, + AR + Nu i > (17a)
BV = D+ Al + K Au AKuS iy + My - (17b)
From (17a,b) we get
Aufly = 8ul) iy + Kiaul) + AK ) Mo (18a)
Al = Au® v K aub) ,, + AKuG i+, (18b)
We can use (16), and (18a,b) in combination with the infinite precision Schur algo-
rithm of Chapter II (which gives us the nominal parameters K; and u{)) to get
closed-form expressions for AK;. This is practical only for small i, since for large |

the expressions are extremely unwieldy and hard to obtain because of the large effort

involved.
Let us first consider the case of i = 1. From (16) it is clear that
AKy =-Arp+ng, . 19
We can compute an estimate of the variance of this error, and the result is
Var[AK ] = Var[Ar,] + 0',% .
From [5], Var[Ar] = [1 + 2r{]o? (use (13) and (14a,b,c)), and so
Var[AK,] = 2[1 + r 162 . ) (20)

From (19), if Ar, = 0, then Var [AK ] = o2 Thus, much of the error in our finite pre-
1 1 n

cision arithmetic estimate of K, is due to error in the estimate of ry.
We can repeat the above analysis for the special case of i =2. Once again, from

(16), and with the aid of (18a,b),

Ar, 2ry[ry = 1]Ar,

AK, =
o [r?2 - 12

@1)

+r1[r2—1]n N MNu,1 . rz—rlzn o
e Y R

The variance of AK, will consist of two parts denoted by P, and P, (so that
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Var{AK,] = P, + P,). The first part will involve the first two terms of (21), and will
give the variance due to errors in the estimation of ry and r,. The second part
involves the iast four terms of (21), and gives the error due to the quantization of pro-
ducts and quotients in the course of executing the finite precision Schur algorithm.

From (5], Var [Ar,] = [1 + 2r}]62, and so

[1+2rF10r = 112+ 4r[ry = 177[1 + 2r 2]

2
= o5, 22a
‘ r? -t " e
p. T2 = 1P+ 1y = r PP+ [rf = 1 + 7} - 112 o2 o2b)
2 r? -1 n

For a second order AR (autoregressive) process with poles at z = pe*/® it is straight-

forward to show that

2 - 02 i
r = 2p c0526 ’ r2=£ (sin 392 p. sin 6) _ 23)
1+p (1+p“)sinB

Such a process may be generated by passing white noise (zero-mean) through an all-
pole filter with the said pole locations. Note that the filter must be stable, and so
0 <p < 1. Equations (23) is obtained via the method described in Chen [9] (see
Chapter 10, pp. 346-353). If 6 — 0, and p—1,thenr, - 1, and vr2 — 1. A signal
such as this is a narrowband lowpass signal. Similarly, if 8 — x, and p — 1, then
ry— -1, and r, — 1, and the result is a narrowband highpass signal. Either type of
signal will lead to a large value for Var[AK 2], implying a poor estimate of K; for
I 2 2. This may be readily seen by considering (22a,b).
3.2 Discussion and Simulation

We will now present some simulation results. These results confirm the validity
of the previous analysis. We will also discuss how the present results concerning the

Schur algorithm relate to the Levinson-Durbin results found in [3,4,5].

We will begin by describing the method of simulation. A series of 2nd order AR
signals were constructed by passing zero-mean, white Gaussian noise through a 2nd

order all-pole filter with poles at z = pe®/® In all of the experiments performed, ten
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1000-point signals were constructed for various values of p and 6. Floating-point
arithmetic wés used to construct the test signais, and to compute the nominal values of
the normalized autocorrelation coefficients. Floating-point arithmetic was then used to
compute the nominal reflection coefficient values. The nominal values are taken to be
the “infinite precision" values. Quantized normalized autocorrelation coefficients were
produced by rounding the nominal normalized autocorrelation coefficients to b-bit 2s
complement numbers. The resulting quantized coefficients were used to obtain the
fixed-point reflection coefficients. Appendix A contains the C program used to per-
form the simulations (on the Data General Eclipse MV/8000 computer - all simulations
in this thesis were performed on this machine), along with a page of typical program
output. Note however that the reflection coefficients are indexed differently in the pro-
gram output from the indexing that we have used so far. Specifically, K (i) in the pro-
gram output is K;_; in the notation above. The experimentally derived variance esti-
mates were obtained by squaring the difference between the nominal and fixed-point
reflection coefficient estimates and averaging over the number of experiments (ten in
this case). Appendix B contains tabular summaries of various experiments with

lowpass signals (highpass results omitted).

Because of the manner in which quantized autocorrelation coefficients were
obtained, equation (22a) must be modified. Specifically, Var [Arl] =Var[Ar,] = G%

now. Thus,
Var[AKpsz’l + P, , (24)
where

[rg =112 +4r?[r, - 1

rg -1

o2 . (25)

P’1= n

Hence, equation (24) becomes the expression for the "theoretical variance" of the 2nd
reflection coefficient. The simulation results are compared with the results provided by
(24) in the tables of Appendix B. Note that the nominal normalized autocorrelation

coefficients needed by (24) are obtained using (23).
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Each of Tables LI and III in Appendix B represents simulation results for a par-
ticular combination of p and 8. In general, there is good agreement between the
theoretical prédictions and the experimental (simulation) results in the sense that the
discrepancies seem to decrease as b increases. This is reasonable since as b increases
the assumption of uncorrelated quantization errors becomes more accurate. A com-
parison of the results in all of the tables confirms that the reflection coefficient error

variance does indeed increase as p — 1 and 8 — 0.

If we compare the expressions for Var [AK 2l due to the Schur algorithm with the
similar expression for the Levinson-Durbin algorithm (see (7)), we conclude that the
two algorithms are qualitatively the same in terms of their finite precision arithmetic
behaviour. In other words, the Schur algorithm is numerically stable. However, the
expressions for Var [AK,] in (24) and (22a,b), not surprisingly, indicate once again that
narrowband lowpass and highpass signals yield ill-conditioned autocorrelation matrices.
This of course agrees with Cybenko’s results in [3,4]. As a result, the Schur algo-
rithm performs no worse than any other algorithm for LDU factorization (such as

Cholesky’s algorithm) when exposed to ill-conditioned input data.

4. Fixed-Point Arithmetic Properties of the Split Schur Algorithms

As we did in section 3, in this section we shall use the model and assumptions of
section 2 to analyse the split Schur algorithms (symmetric and antisymmetric forms)
with real, symmetric, positive definite autocorrelation matrices as input, under fixed-

point arithxhetic conditions. The results to follow are from Zarowski and Card [2].
4.1 Analysis

We will again begin by presenting analytical results. As in section 3.1, applica-
tion of the model of section 2 to the infinite precision symmetric split Schur algorithm

yields the finite precision form:

00’0 = "\O;
l’?o Z=0

Doj =2F (1<j<n);
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Ol.j :=9j +f\j+1 0<j<n-1);
For k := 1 to n do begin
| & = Q[0 /P10l ;
Re :=1- 016,01 + R, ;
Forj:=0ton -k - 1 do begin
Oerr =P+ B jor - Q8 by jl s
end;
end;
This is the finite precision symmetric split Schur algorithm. Similarly, .:e antisym-
metric split Schur algorithm has the finite precision form:
08.0 =Fo;
ﬁo =0;
05'1- =0 (1<j<n);
Pli=F =Fa O<j<n-1);
For k := 1 to n do begin
b =000/ 10]
Re = -1+ 01801 - R 1 ;
Forj :==0ton -k — 1 do begin
91:+1.j = ol:.j + 0;,j+1 - Q[&I:OI:—IJH] ;
end;
end;

This is the finite precision antisymmetric split Schur algorithm.

We will now derive analytical results for the symmetric split Schur algorithm.
Naturally, we need iterative expressions for the errors due to quantization of the vari-
ables O, Vg,; and K. These errors are denoted by Ac, AK} and Av; ;, in conformity
with the notational conventions of section 2. We shall determine closed-form expres-
sions for Var[Aa,] and Var[AK,]. Closed-form expressions for A, and AK, shall
also be found, from which expressions for the variances of these errors may be readily

determined.
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From the error model of section 2, and from the finite precision symmetric split

Schur algorithm

Aay =By — o = —207 V0 kO, n
=0 — oy = - ok
Ve-10 Y AVi_10 Voo
Avg o — 0 Ave_1
= -+ na.k (26)

Vi-1,0
for k = 1,..,n, where we have assumed that Vi-1,0 1S much larger than Avg_yo. Simi-
larly, it is easy to show that

(- K AR, — Ay,

AK
k 1+ K,

+ Nk« (27)

for k = 1,..,n. We have assumed that 1 + K1 is much larger than AK,_, in the

derivation of (27). Finally,
AVirrj = AV + AV oy = 0 AV iy = Ve j A0y + MNvonj o (28)

where k = 1,..,n and j = 0,1,....n—k-1.

From the initiallization phase of the finite precision symmetric split Schur algo-

rithm,
AK():O, AV0'0=O, AV1,0=AF1 .
As well, Ko =0and vog = 1. Thus, fork = 1 we may use (26) to obtain

Avyp - 0Avg,
Aay = vos TNy =Ary+ Mgy 29)

where o) = 1 + ry. Similarly, via (27),
AKy = —Aoy + Mg 1 = =Ary =Ny +Ngp s (30)
where K| = —r,. Using the fact that
Var[Ar;]1 =1 +2r# o2 , (31)

(see [5]), we have
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Var[Aay] = Var[Ar ] + o2 = 21 + rf)o? (32a)
Var[AK ] = Var[Ary] + 262 = (3 + 2rf)o2 . (32b)
Clearly, much of the error in the estimation of a, and K, is due to error in the est-

mate of the normalized autocorrelation coefficient r,. This is especially true when r,

is close to £1.
Now let us consider the case k = 2. Using (28)
Av,yo = —4r\Ary + Ar, - 2rMgy + My (33)
where we have used Av,, = Ar; + Ar, and Avgy =24r; (vg, =2r;) which follow

from the initiallization parts of the finite precision symmetric split Schur algorithm.

Therefore, substituting (33) into (26) and simplifying gives
DAy =~2r +4r; +ry+ 11Ar; + (1 + r)Ar, (34)
—2r(L+rMaq + (1 +7 )M+ (1 + rMug, o

where D= (1 +r;)% An expression for Var[Aoy] may now be obtained, but for

brevity we will not state it explicitly. It is enough to see from (34) that

Var[Aay] = = if ry — -1 .
For a second order AR process with poles at z = pe"’f 8, and Such that p— 1 and
8 — =, then r; = -1 (as we know from section 3 - see (23)). Hence, if the input to

the finite precision symmetric split Schur algorithm is from a narrowband highpass

process, then large errors in the estimates of o (kK 2 2) can be expected.

From (27) with k =2, substituting in the appropriate values, and simplifying

gives
DKy =[(1 = r@rf —ry = DA +r )2+ (L= r$)2rE +4ry + ry + D]Ar,
-1 +rpQA -rdar,
+ (L =rp@r = ry= D1 +r)2+ 25,1 +r A - rHMes

= (1 +r)1 = r¥)ng, , (35)
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+ (1 =rp+ry=-2r2)1 + rMk
+ (L=rp=r$)A + rphg,
—(+rpd=rim,,

where Dy = (1 - r )1 - rf‘)(l + rl)z. Again, it is easy (though tedious) to obtain an
expression for Var [AK,], but for brevity we shall once again decline to state it expli-

citly. From (35)
Var[AK)] — e if r{ — #1 .

Thus, Var[AK,] — o if the input is from either a narrowband highpass or lowpass
process. Obviously, we can expect large errors in the estimates of K, for k > 2 for

such signals as well. This is so since AK, is a function of AKX, k-1-

We will simply state the results for the antisymmetric split Schur algorithm as the
process of obtaining them is identical to that used to obtain the above results for the
symmetric split Schur algorithm. Thus, the expressions analogous to (26), (27) and

(28) are

%

Avig - o Ave_1 o

Aoy = . g (362)
Vk-1,0
(1 + K )AK_ + Aoy,
k= +Nkk > (36b)
1=Ky
Aveyyj = Ave; + Avg g - Ok AVE_1 j41 — Ve-1,j+1 A0 + L (36¢c)

where k = 1,..,n and j = 0,1,...,n—k—1. Using (36a,b,c) it can be shown that
Aoy =—Ary + Mg (37a)
AK ) =-Ary + Mg + Mgy (37b)
| D3Acy = (1 = r)Ary = (1 = r)Ary + (1 — F) Mg g + (1 - romy;, . (370
D AKy =2ri(1 = r)(1 = ryAry = (1 = r )1 - r2)Ar,

A=) =rge  + (1 =)l =ring ,
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FA=rdd=r)Mey+ A= rHU=r )0 +rng,  (37d)
(L -r)=rm,
where Dy = (1 — rl)2 and Dy = (1 - rlz)(l - r1)2(1 +ry).
From (37¢) it is evident that
Var[Aa,] — = ifri—>1,

and this will happen if the input data are from a narrowband lowpass process. This is
in contrast with the results for Var [Aa,] since Var[Aa,] — e for a narrowband

highpass process. As well,
Var[AK;] — e if ry — #1

and so errors in the estimation of K 2 (and of X, k > 2) will be large if the input data
are from a narrowband highpass or lowpass process. This result is qualitatively the

same as the result for Var [AK,] in the case of the symmetric split Schur algorithm.
4.2 Discussion and Simulation

We will present simulation results for the finite precision symmetric split Schur
algorithm. These results will confirm the validity of the analysis in section 4.1. We
will also discuss how the present results relate to those for the Schur algorithm in sec-

tion 3.

Because the variables O, and v, ; in general possess a nonzero integer part, the

simulations which follow use twos complement binary words of the form
Xy - X_(XogX1 - Xp-1 s (38)

where x; € {0,1}, and X_m 1is the sign bit. Thus Q[ ] quantizes nominal values down
to m+b -bit numbers (in sections 2 and 3 we had m = 0). The integer parts of all pro-

ducts and quotients shall of course be retained. However, fractional parts will be

~25
quantized by rounding to b-1 bits. Hence, O'% = 2—3— just as it was in sections 2

and 3. In all of the simulations that follow we pick m =2. Thus, the total

wordlength is 5+2 bits with b—1 fractional bits.
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In one set of simulations, a series of second order AR signals were constructed by
passing zero-mean, white Gaussian noise through a second order all-pole filter with
poles at z = beif ®. In all of the experiments, ten 1000-point signals were constructed
for each of the various sets of p and 6. Floating-point arithmetic was used to con-
struct the test signals and to compute the nominal normalized autocorrelation
coefficients. Floating-point arithmetic was then used to compute the nominal reflection
coefficient values, since we are interested specifically in comparing the experimentally
measured values of Var[AK,] with the theoretically predicted values. All nominal
values derived via floating-point arithmetic were taken to be "infinite precision” values.
Quantized normalized autocorrelation coefficients were produced by rounding the nom-
inal normalized autocorrelation coefficients to b+2-bit twos complement numbers of
the form in (38). Thus, Var [Ar,] = G,% for £k 2 1. This condition also held for the
second set of simulation experiments to be described below. The resulting quantized
coefficients were used to obtain the fixed-point reflection coefficients. The C program
used to produce the theoretical and experimental results is to be found in Appendix C.
Typical program output is included. Appendix D contains Tables I to VI which sum-
marize the results of certain experiments using this program. These results test the
validity of the expression for AK 2 (which we know yields Var[AK,]) in (35). In gen-

eral, the agreement between theory and experiment is good.

The reader may be disturbed by the fact that we have not presented closed-form
expressions for AKX, when k > 2. This is simply due to the fact that such expressions
are difficult to derive (note the complexity of (35)). Fortunately, it is not necessary to
derive such expressions which would, if they were available, be useful as design equa-
tions (for the selection of a suitable 5). It is possible to use recursive programming to
“implement" the equations (26-28) in the form of software. Such a program has been
written in PASCAL, and it may be found in Appendix E. Roughly speaking, a tree
data structure is created (via dynamic allocation) such that each node in the tree (a
PASCAL record type) contains the terms of the equations (26-28). Pointers from one
node to the next symbolize the individual terms in (26-28). A suitable traversal of the

tree may then be used to "collect like terms” in the variables Arg Mok » Mg, and
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. The program requires the nominal normalized autocorrelation coefficients as
Vk+lJ p gr

input. These may be produced by another PASCAL program in Appendix F (for
fourth order AR models).

A second set of experiments was performed using fourth order vAR‘ signals con-

structed by passing zero-mean, white Gaussian noise through a 4th order all-pole filter

76, 0,

with poles p,e and pje The theoretical variance estimates (Var [AK,]) are
obtained using the nominal normalized autocorrelation coefficients produced by the
program in Appendix F as input to the program in Appendix E. The C program in
Appendix G computes the experimental variance estimates. Typical output from this
program is to be found in Appendix G. Results for various experiments with the pro-
grams of Appendix E and G are to be found in the form of Tables VII to IX in
Appendix H. Once again, in all of the simulations, ten 1000-point signals were con-
structed for each set of p, , p;, 6, , 6, and b stated in order to produce the entries in
the experimental columns of the tables. As before, the agreement between theory and

experiment is reasonably good.
It is worth noting the possible sources of the discrepancies between the experi-

mental and theoretical results. We have the following list of possibilities:

(i) The assumption of uncorrelated errors is clearly not completely valid, but it is

necessary for reasons of analytic tractability.

(i) Only ten 1000-point sequences were used to generate each experimental column
entry in the tables.

(iii) The values of b used in the experiments may be too small for the assumption of
uncorrelated errors to hold very accurately.

(iv) We have neglected any second order error terms that may have arisen in the

course of deriving expressions for AK,.

(v) The pseudorandom number generator is not perfectly random, and this could
cause some deviation between the theoretical predictions and experimental results,

since there may be hidden periodicities in the pseudorandom sequence.
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(vi) The use of floating-point estimates to represent infinite precision values carries
some risk (but is expedient).

Points (iv-vi).arc likely to be rather insignificant. It is the first three points that no

doubt matter the most. The above six possible discrepancy sources also apply to the

results in section 3 of course.

It is clear from the results of this section that the symmetric split Schur algorithm
is qualitatively similar to the Schur algorithm under fixed-point arithmetic implementa-
tion conditions. That is, the symmetric split Schur algorithm is numerically stable, and
any poor estimates of K are due to the use of ill-conditioned input data. Similar con-
clusions can safely be reached concerning the antisymmetric split Schur algorithm.

We may finally conclude that the Levinson-Durbin, Schur, and split Schur algo-
rithms are all numerically stable, and that poor reflection coefficient estimates are due

to ill-conditioned inputs.

REFERENCES

[11 C. J. Zarowski, H. C. Card, "Finite Precision Arithmetic and the Schur Algo-
rithm," submitted to the IEEE Trans. on Acoust., Speech, and Signal Proc.

(2] C. J. Zarowski, H. C. Card, "Finite Precision Arithmetic and the Split Schur
Algorithms," submitted to the IEEE Trans. on Acoust., Speech, and Signal Proc.

[3] G. Cybenko, "Round-off Error Properties in Durbin’s, Levinson’s, and Trench’s
Algorithms," Proc. 1979 Int. Conf. on Acoust., Speech, and Signal Proc., Wash-
ington, D.C., April 2-4, 1979, pp. 498-501.

[4] G. Cybenko, "The Numerical Stability of the Levinson-Durbin Algorithm for Toe-
plitz Systems of Equations," SIAM J. Sci. Stat. Comp., vol. 1, Sept. 1980, pp.
303-319.

[51 S. T. Alexander, Z. M. Rhee, "Analytical Finite Precision Results for Burg’s
Algorithm and the Autocorrelation Method for Linear Prediction,” IEEE Trans.
on Acoust., Speech, and Signal Proc., vol. ASSP-35, May 1987, pp. 626-635.



5.21

[6] J. Le Roux, C. Gueguen, "A Fixed Point Computation of Partial Correlation
Coefficients," IEEE Trans. on Acoust., Speech, and Signal Proc., vol. ASSP-25,
Jan. 1977, pp. 257-259.

(71 R. A. Roberts, C. T. Mullis, Digital Signal Processing. Reading, Massachusetts:
Addison-Wesley, 1987.

[8] G. H. Golub, C. F. Van Loan, Matrix Computations. Baltimore, Maryland: Johns
Hopkins University Press, 1983.

[91 C.-T. Chen, One-Dimensional Digital Signal Processing. New York, New York:
Marcel Dekker, 1979.

[10] A. V. Oppenheim, R. W. Schafer, Digital Signal Processing. Englewood Cliffs,
New Jersey: Prentice-Hall, 1975.

(11] J. D. Markel, A. H. Gray, Jr., "Fixed-Point Truncation Arithmetic Implementation
of a Linear Prediction Autocorrelation Vocoder," IEEE Trans. on Acoust.,

Speech, and Signal Proc., vol. ASSP-22, Aug. 1974, pp. 273-282.



Chapter VI

THE QUADRATIC RESIDUE NUMBER SYSTEM, FAREY
FRACTIONS, AND HENSEL CODES

As we know, some problem instances are ill-conditioned (e.g., narrowband high
and lowpass signals give ill-conditioned autocorrelation matrices), and some algorithms
are numerically unstable. It is desirable to consider the solution of such problems
using arithmetic in finite number systems that enable the computation to proceed free
of quantization errors. This is the meaning of error-free computation. While the
Schur algorithm is numerically stable, it will give poor estimates of Schur variables
and reflection coefficients when the input is ill-conditioned (see Chapter V). The
Schur algorithm for Hermitian Toeplitz matrices of any rank profile (Chapter II)
requires testing for zero, a risky operation to implement with any form of finite preci-
sion arithmetic (be it fixed-point or floating-point). Thus, such algorithms are candi-
dates for error-free computation implementation. There are three principal means of
performing error-free computations: (i) by rational arithmetic,. (ii) by Hensel code
arithmetic, and (iii) by computing in finite rings and fields. In this chapter we shall
show why we reject options (i) and (ii), thus leaving us with computation in finite
rings and fields as our only option. Our rejection of option (ii) is based upon results
from Zarowski and Card [1]. We shall review the concept of a quadratic residue
number system (QRNS), a well-known means of performing error-free computation
with complex-valued data in an efficient way. We shall straightforwardly extend the
usual ‘QRNS to accommodate fractional (meaning non-integer) data, as in Zarowski

and Card [2].
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1. Rational Arithmetic
In this form of error-free computation, all numbers are represented in the form %

(a,b € Z, the set of integers). Thus, the addition and multiplication. of such numbers

proceeds as follows:

Similar reasoning applies to subtraction and division. It is clear that rational arithmetic
1s very inefficient as, for example, addition requires three integer multiplications.
Furthermore, as we do not quantize results, numbers can grow in size at a geometric
rate. Note that this problem is common to all error-free computation methods. How-

ever, the growth in size of rational numbers is likely to be particularly great, since a

result % may be of the form

That is, the numerator and denominator may contain common factors (i.e.,
ged(a,b) # 1). This means that ¢ and b may be unnecessarily large. Eliminating
common factors is computationally laborious, as it involves employing Euclid’s algo-
rithm to find k. Thus, we can readily reject rational arithmetic as a viable means of

performing error-free computation.

2. Hensel Codes

The Hensel codes are defined in Krishnamurthy, Rao and Subramanian [3], and in
Gregory and Krishnamurthy [4]. As well, the basic operations of addition, subtraction
(via negation), multiplication and division of Hensel codes is also defined. The Hensel
codes‘of [3,4] are in one-to-one correspondence with a certain finite subset of the
rational numbers Q, and it is intended that arithmetic with Hensel codes should
correspond to arithmetic with the numbers in this subset. Let this subset of the ration-

als be denoted by Fyy\UX. Fy is the set of order-N Farey fractions, and X is the set of



6.3

invalid order-N Farey fractions which is a finite subset of Q (see section 2.1 below).
Let H denote the set of Hensel codes corresponding to the members of Fy, and let Hy
denote the sét of Hensel codes corresponding to the members of X. Then X UHy
denotes the set of Hensel codes corresponding to the set FyyUX. Gorgui-Naguib and
King [5] have shown that addition and multiplication of Hensel codes in A UHy, using
the arithmetic in [3,4], does not always correspond to addition and multiplication in
FyUX. Specifically, let a,b € FyUX, and let H(p ,r.a), H(p,rb)e HUHy, then
even if a+b,abeF NyUX, it will not necessarily be the case that
Hp,ra)+H@p,rb), Hp,ra)Hp,rb)e HUHy. We show that this difficulty
never arises provided that the input data and final results of a computation with those

inputs lies entirely within the set Fy.

Gorgui-Naguib and King [5] have also shown how to modify the operations of
addition and multiplication on H UHy originally defined in [3,4] in order that the
correct results are produced. However, their method involves mapping operands in
H UHY back to the set FjyUX when it is discovered that an incorrect Hensel code will
be produced by a sum or product of those operands. The operands in Fyy\UX are then
mapped back to H UHy, but this time r (the number of Hensel code digits) is larger
than before. It is clear that this mapping back and forth precludes a special purpose
hardware implementation of the methods in [5], although a sot:tware implementation
may be more practical. It is worth noting that in many practical cases it is not a seri-
ous limitation if the inputs and final outputs are restricted to the set Fy (see [4]). This
is particularly true if the only operations involved are addition, subtraction and multi-
plication. Furthermore, the hardware cost of such a restriction will often be minimal
compared with the cost of implementing the schemes in [5].

We also demonstrate that the concept of Hensel codes becomes redundant when
we resﬁict ourselves to using operands from the set Fy alone. This is because of the
fact that there is a finite ring of Hensel codes containing A such that this ring is iso-
morphic to the ring Z,» ={0,1,...,p"~1} under modulo p” addition and multiplica-

tion.
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Thus, we wish to find an alternative method of reintroducing the set X as
operands (and final results), that precludes the need to map back and forth between
HUHy and FNuX as is done in [5]. This is the final objective accomplished in this
section. However, it turns out that in order to avoid mapping back and forth, very long
Hensel code words will be required in general. As a result, our approach is probably
no more practical than that of [5]. It does however provide an alternate perspective on

the problem.

2.1 The order-N Farey Fractions and Ring Z,

Here we define the order-N Farey fractions Fy, the invalid order-N Farey frac-

tions X, and their relationship with the finite ring Zy .

Let Z be the set of integers, and let p be any prime positive integer. Let O be

the set of rational numbers. Define the following subset of Q:
0 = {% | gcd(®,p) = 1} .

It is easily demonstrated that é is a commutative ring with identity under the usual
definition of addition and multiplication that it inherits from the field of rationals Q
(see [4], page 25). Set Zpr = {0,1,...p" -1} forms a finite ring under modulo p" addi-
tion and multiplication. If x e Z, then let | x | o denote the modulo p” reduction of

x: |- o | Z - Z,. . We may extend the mapping | - | pr in the following manner,

Let —Z— eé, then

a - -1
-b— Ip’ - I ab p’ ’

where b~! (modulo p” ) exists since b is mutually prime to p. It may be readily pro-

ven that | - | o | [ Z,- is a ring homomorphism (see [4], pp. 25-26). Let

ka{%tel% pr = },
pr-1

and so clearly é = \J Q- Each Q, is called a generalized residue class. Ideally, we
k=0
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would like to establish a one-to-one correspondence between a single representative
from each Q, and a member of Z,- . Unfortunately, we can identify such a unique
element in only some of the generalized residue classes, but not all of them. These

elements are specified by
Definition 1 « The finite subset of O

FNz{%eé\ | ged@b)=1,0<]a|<N,0<]|b ISN}

where N > 0 is an integer, is called the set of order-N Farey fractions.
This is Definition 5.13 of [4] (see page 27). Also from [4] we have
Theorem 1 « Let N be the largest integer satisfying the inequality
2N?2+ 1< p"
and let the generalized residue class Q; contain the order-N Farey fraction
x =alb. Then x is the only order-N Farey fraction in Q.-

The proof is on page 27 of [4]. We shall always assume that N satisfies Theorem 1

from now on. Theorem 1 motivates the definition of set

A a a
Zpr = {l -B— Ipr I —b" (3 FN} N
and fpr CZ,- . From Theorem 5.17 of [4] (see p. 28), | - lpr | Fy — fpr is

one-to-one and onto. Thus, we can state the immediate
Theorem 2 - Addition and multplication in Z,- corresponds to addition and
multiplication in Fy provided that the input data and final results of the arith-
metic in Fy lie entirely within the set Fy.
Proof « | - lpr I Q — Z,, is a ring homomorphism, and Fy c é
fpr CZ, ,and | - Ip, | Fy — fpr is one-to-one and onto.
It will prove useful later on to have

Definition 2  The finite subset of Q
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X‘—‘-{%EQ | ged(@,b)=1,b =cp (ceZ),OSIaISN,O<lblSN}

where N is as in Definition 1, is called the set of invalid order-N Farey fractions.

From Definition 2, b = cp and so b~ (mod p”) does not exist. Clearly,
FyUX = {% | gcd(ab)=1,0<]a|<sN,0<]|b | SN} :

As well, X"Fy = O (empty set), and Xmé\ =,

2.2 The Field of p-adic Numbers Qp

Here we will present a working definition of the p-adic numbers as well as the
arithmetic operations upon this set that contribute to making it a true algebraic field.
We note that it is the ring structure of the p-adic numbers that interests us most, and
so we will largely ignore the operation of division. A good introductory treatment of
the p-adic numbers is in Koblitz [6]. However, some of the material that follows is
summarized from Gregory and Krishnamurthy [4] (see sections 1 - 3 of Chapter II).

The field of p-adic numbers Q, is the completion of the rational numbers with
respect to the p-adic metric, which is induced by the p-adic norm. If o = a/b e 0 is

nonzero, and ged(a,b) = 1, then it can be expressed uniquely as

¢ n
o=— 1
PR )

where p is any prime number, gcd(c,d) = ged(c,p)=gecd(dp)=1. The p-adic
norm is defined as follows (see [4], Theorem 2.3, page 64).

Theorem 3 « The mapping || - || ,| @ — R (field of real numbers) defined
by

p, a#0
Hall,=To  ano
i1s a norm on Q.

The proof is in Koblitz [6] (see Proposition on page 2). The p-adic metric induced by
the p-adic norm is simply d(x,y) = || x -y || p (x.y € Q). The completion of Q
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with respect to || - [] , is discussed in Koblitz [6] (Chapter I), and so will not be

considered here. However, we are interested in one of its consequences, namely

Theorem 4 - Any rational number o € Q has the unique p-adic expansion
a= a; p’
Jj=n

where each coefficient (digit) a; is an integer in {0,1,...,p—1}, and n is such that
Hell,=p™
In other words, the infinite series converges to a € Q in the p-adic metric. Theorem
4 is a corollary to Theorem 2.15 in [4] (see page 67). As an example,
L+p2+p*+ -+ converges to (1 - p?)! in the p-adic metric. However, in the
more familiar absolute value norm (| x | =x if x 20, | x | =—x if x < 0), it is
obvious that the same series diverges.
We are interested primarily in p-adic expansions of the members of é, and hence
of Fy. Ifa e é\ , then its p-adic expansion has the form
a=§ajpj=a0+a1p+ ot a, p"tyapt+ oo (2a)
j=0
We can dispense with the need to display the powers of p explicitly by employing a

p-adic point (as is done in [3,4]):
ax=.apa; - a4, " . (2b)
Ifoe é\ then a has the form in (1) with n 2 0. Thus, || o || p is as in Theorem

3 which implies that n 2 0 in Theorem 4. As a result, ; =0 for 0 <i < n-1 will

hold in (2a,b).

It is possible to do arithmetic with the p-adic numbers since we have stated that
they form a field. We will concentrate on negation, addition, subtraction (via nega-

tion), and multiplication.

First consider negation. Let

O =ap" + 8, p"t 4 a, "y
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then
_a':bnpn +bn+1pn+l +bn+?pn+2+ T,

where b, =p-a, ,b; =(p - 1) - a; for j >n. The proof is straightforward and is
contained in {4] on page 69.
Now consider addition. Let o e é be as in (2a), and let B e é be
B=ijpj=b0+blp+"'+bm—lpm_l+bmpm+"' ’
j=0

where || B Il , =p™ and m 2 0. Thus,

a + B = Zajpf + ijp‘/

j=0 j=0
=(agtbg) + (@y+b)p + -+ + (@, + b )p* + - -
=so+sp+ o +spk+

where
a;+b;+ci=s;+ciyp (G20),
and 0 <s; <p, cj,; is the carry out of position j, and ¢o=0.. Via Theorem 4, the

p-adic sum ZSjpj is the unique p-adic expansion of a + B. Subtraction is accom-
j=0

plished by negating the subtrahend and adding it to the minuend: o~f = o + (-B).
Lastly, we consider multiplication. Let o and B be defined as in the previous

paragraph, then

o fg 3

j=0

‘S

i [ bk ]P’
k=0

j=0
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=Y p;ip! .
j=0
where
iak bi_y + G=pjtcigp (G20,
k=0
such that 0 < Pj <P, ¢j is the carry out of position j, and ¢o=0. Via Theorem 4,

the p-adic sum ijpj is the unique p-adic expansion of of. We may therefore
j=0

define the mapping ¢ | é — O, as the operation of p-adically expanding the elements
of the ring é We are of course at liberty to write ¢(a) = a because of Theorem 4
and the way in which the addition and multiplication of p-adic numbers is defined. In

fact we have
Lemma 1+ ¢ | é — Q, is a ring homomorphism. That is, for any o e é ,
oo+ B) = ¢(c) + 6(B) ,
o(@p) = ¢(c)o(B) .
Proof - Follows automatically from the definition of p-adic addition and multipli-
cation defined above, and Theorem 4.
As well, we have
Lemma 2 o Let ¢(Q) ={oe Qp | a= o(a) for some a € é}, then ¢(é) is a
subring of the field Q,.
Proof - It is a basic property of all ring homomorphisms that the image set of the
ring homomorphism is itself a ring.
Because of Theorem 4 ¢ | é - cb(é) is one- to-one as well as onto (isomorphism).

Division in Qp is discussed in [4,6]. We will not consider it here as our primary
concern is with the operations of addition and multiplication in Qp. The addition and
multiplication operations on Hensel codes, which we shall define in the next section,
are directly inherited from the corresponding operations on the p-adic numbers that we

have defined in this section.
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2.3 Hensel Codes (Finite Segment p -Adic Numbers)

In this section we define the Hensel codes, or finite-segment p-adic numbers as

they are alternatively called, and we define arithmetic on the Hensel codes.

We begin by defining the mapping v | q;(é) - Z ., where d)(é) is the image

of é in Qp under ¢ (see section 2.2). Leta e é, then ¢(a) = Zajpj € (1)(@), and
j=0

r—1 .
V(o) = Y a;p! =ag+ap + -+ +a,_p"le Z, (3)
j=0
where || a || p =p 7", and if n 2 r then y(¢(w)) = 0. In other words, the mapping
y formally truncates the p-adic sum (expansion) of o € é We have

Lemma 3 « v | ¢()) — Z,- is a ring homomorphism. That is, for any

apBe o),
y(o+B) =y + yP) ,
y(ap) = y(ewP) .
- 1s a ring as defined in section 2.1. Let

Proof « ¢(Q) is a ring (Lemma 2). z,
oBe ¢(é ) such that
a=Yap/, B=3b;pl
j=0 j=0

Thus,

r-1 . r-1 . r-1 . r-1 .
V+YB) = Fa;p’ + Y b;p! = ¥ (a;+b;)p! = Ts;p) = y(o+P),

j=0 j=0 j=0 j=0
since

aj+bj+cj=sj+cj+1p (OS] sr-1) ,

where 0 <s5; <p, ¢j+1 1s the carry out of position j, cq =0 and we ignore c,.
We have employed the definition of addition in the ring Z,» when the members
of Z,. are given the radix-p representation in (3). This representation is readily

proven to be unique. Similarly,
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r-1 . r-1 . r-114 j r-1 .

y(yP) = { ajPJJ [ bijJ =) {Zakbj—kJ = 2pip’ = y(ap),
j=0 j=0 J=0 (k=0 Jj=0

since

iakbj_k +Cj =pj +Cj+lp (OS_] .<_r-‘1) ,
k=0

where 0 SPj <P, ¢jy is the carry out of position j, co =0 and we ignore c,.
We have employed the definition of multiplication in Z,, when the members of
Z,- are given in a radix-p representation as in 3).

We also have
Lemma 4 - y maps ¢(é) onto Z, .

Proof - Let o e Zp, , then we may write
r-1 .
o= 3ap’.
j=0
If a = Zc_z'jpj then y(a) = a, where Ej =a; for 0 <j <r-1, but Ej can be
j=0
arbitrary for j 2 r. That is, for any o € Zpr there is an q 4)(@) such that
y(a) = a.
We may define another mapping ¥ | ¢(é) — Hy as follows. Let o € q;(é ) where
Q=.ap2ia; " @168, -
and it is of course possible thata; =0 for 0 <i < n—1 withn > r. We write
() =.apa1ay -+ a,_| .
Welet Hy = (P(@) | a e ¢(é)}. We may define addition and multiplication on this
set and so make it into a commutative ring with identity. This we do as follows.
Let a=ag - gy, and b=by - b,_, belong to Hy. Addition is
defined as

a+b=.a0 ﬂr_1+.b0 b,._li"-.SO S,

where
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a,~+bl~+c,~=s,-+c‘-+1p 0 <i <r-l1)

such that 0 <5; < p, ¢;4y is the carry out of position i, co=0 and we ignore c,.
Multiplication is defined as
ab=(ag ~+ a, )by - - b,_)=py - p,_y,

where

i
Zakbi,_k + ¢ =p; + Ci1P (O i < r"‘l)
k=0

such that 0 < p; < p, ¢, is the carry out of position i, ¢y =0 and we ignore c,.
Thus, we may state

Lemma 5« ¥ | ¢(0) » H w is an onto ring homomorphism.

Proof  Similar to the proof of Lemmas 3 and 4.

Lemma 6.6 | Hy — Z,. as defined by
r—1 .
8Caca; -+ a,)) = Ta;p’
i=0

is a ring isomorphism.

Proof » Addition and multiplication in 4 y is the same as addition and multiplica-
tion in Z,. except for trivial notational differences: H y uses positional notation,
and Zp' uses radix-p representations. As well, 9 is clearly a one-to-one onto
mapping.

We have Fy ¢ é , O(Fy) Q)(é), and we may define

H = {‘P(Ot) | e ¢(FN)}

which gives us H < Hy. It may be readily seen that H = (H(p,r,a) | a e Fy) as
well. H(p,r,a) denotes the Hensel code (see [4]) for o, where r is the number of p-

adic digits after the p-adic point that we retain (the digits are the g; in (2a,b)). Thus,

1
—3‘—6 Fy,p =5, and r =4, then
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¢(%)=.23131313

and H(5,4,1/3) = .2313. ¢(10) =.02000 - - -, and H(5,4,10) = .0200. It is actually
possible to find Hensel codes for any o € Q as specified by Theorem 4.5 in [4] (see
pp. 80-81). We will let

Hy = {H(p,r,a) | ae X}

denote the Hensel codes for the invalid order-N Farey fractions X. When a e X is
written as in (1) we get n < 0. As a result, the p-adic expansion of o« contains nega-
tive powers of p (see Theorem 4). Hy is obtained by truncating the p-adic expansions

of all of the members of X as described in [4]. Thus, HNHy = @.

The following lemma makes it possible to equivalently add, subtract, or multiply

in Fy , fpr , or H.
Lemma 7 « Mapping | - |,. | Fy — fp, is equivalent to the composite map-
ping Woo | Fy =27, (=yo¢(Fy). That is, yo o) =] |- for all
a. € Fy, both mappings are one-to-one and onto (so épr =2 ’pr).

Proof « | - | o | Fy — £pr is one-to-one and onto (Theorem 5.17, page 28 of

[4D. Ifa = % e Fy, then

o= % =§:00,-p" = o() ,
and so
g—=(a0+a1p + o +a,_p"H+p'R,
or
a=b@y+ap+ - +a,_p"H+bp'R,
Hence

lal, =lb@y+ap+ - +a,_ph o
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which implies that

e, magtap+ o te =] al,

r—1 .
But yoo(@)= Fa;p/ and so yoo(o) =] a |,» for all ae Fy. Thus,
Jj=0

Voo | Fy - f’pr is one-to-one and onto, and fp, = f’p,.
The proof of Lemma 7 is similar to the proof of Theorem 4.5, pages 80-81 of [4].
We are now in a position to state

Theorem 5 « Arithmetic with the elements of F N~ can be equivalently performed
with the elements of fpr , or with the elements of H, provided that the input
data and final results of arithmetic with the elements of F ~ lie entirely within F),.

By arithmetic we mean addition, subtraction, and multiplication.

Proof « Since Fy = 0, 0(Fy) <o), 2, Z, and H C Hy, the result

follows from the use of the previous lemmas. We omit the details.

We have defined many sets and mappings between sets. These sets and mappings

are summarized in Figure 1 for the convenience of the reader.

What we have proven is that the ring Zpr and the ring Hy are the same. As a
result, there is little reason to map addition, subtraction or multiplication in the ring
Z,r to similar operations in Hy. It would seem then that t};e concept of Hensel
codes is redundant from a practical standpoint. As we have already noted in the Intro-
duction, Gorgui-Naguib and King [5] have shown that it is hazardous to compute with
the members of the set H UHYy, unless special steps are taken. Specifically, they have
shown how to redefine the operations of addition and multiplication of Hensel codes so
that the correct results are obtained even though the input data and final results may
correspond to invalid order-N Farey fractions. Unfortunately, their methods are not
very ﬁractical since one is effectively forced (in general) to map from FyUX to
HUHy and vice versa, perhaps several times, during the course of a computation.

This effectively precludes using any form of special purpose hardware to implement

the methods described in [5]. Thus, from a practical standpoint one is forced to shun



Figure 1: A summary of the various sets and mappings in sections 2.1 - 2.3,

the use of invalid Farey fractions as operands, but this eliminates the usefulness of the
Hensel code concept. We are thus led to ask if it is possible to include the elements
of the set X as operands but eliminate the need to map back and forth between the
rationals and the Hensel codes during the course of a computation. It is possible to do
this, as we’ll soon see, although not in a very practical way in the general case.

To conclude this section, it is possible to divide with the elements of F N

(Fy < Q the field of rational numbers), but this is potentially troublesome, since if
a,b € Fy, then % € X is possible. We note that addition, subtraction, and multipli-
cation of the elements of Fy will never produce an element of X (Fy é the com-
mutative ring such that X N é = @). Thus, division with the elements of H, as
defined in [4] (pp. 92-93), is potentially troublesome too, although addition, subtraction
and multiplication are not.

2.4 Restoring the Elements of X as Valid Operands
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In this section we show how to compute with the Hensel codings of H "UHy’
(these sets are defined below), such that the results of these computations correspond
to the correct element of FyyUX. By computation we mean, as usual, addition, sub-

traction and multiplication.

We may naturally extend the mapping ¢ | é = Q, of section 22 to
6l Q0 — Qp (via Theorem 4) except that n <0 is now possible. Once again,
bl 0 — Qp is a ring homomorphism (in fact, ¢ | 0 — ¢(Q) is an isomorphism).
We must of course modify (slightly) the operations of negation, addition and multipli-
cation on the members of ¢(é\) c Qp that were defined in section 2.2 in order to

accommodate the fact that n < 0 may now hold.
Actually, negation need not be modified: simply allow n < 0 to hold. As for
addition, let a,p € ¢(Q) such that
o= iajpf , B= i‘bjpj , 4)
j=n j=m
and assume, without loss of generality, that n < m. Note that a, #0, and b, #0
according to the notational conventions of this section. Thus,

a+f= Zajpj + ijpj = Z(aj-f-bj)pj = Zsjpj ,
Jj=n j=m j=n j=n.
where by =0forn <j <m-1 and

aj +bj +Cj =Sj +Cj+1p (] Zn)
such that 0 <5; <p, Cj41 18 the carry out of position j, and ¢, = 0. It is clear that if
n 2 0 then the above definition of addition coincides with the previous one. Similarly,

for multiplication

[ijpj] =p™ty [ﬁan+kbm+j—k }Pj = ¥ pipt
j=m

j=0 (k=0 i=n+m

aff = [iajpj
j=n

where i = j+n+m and
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ian+kbm+j—k + cj+n+m =pj+n+m + Cj+n+m+lp (/ 2 0)
k=0

such that 0 _<_-p,‘ <P, Cjin+m+1 18 the carry out of position j+n+m, and Cpam = 0. If
n 20,m 20 then this definition of multiplication coincides with the previous one.
Since n < 0 is possible in (4), we want to know the largest value of | n | for all

a € X. This is determined by N, which specifies the maximum size of the input

operands and final results. Knowing N fixes r (for a given p) via Theorem 1. Thus,

if%e Fy UX, then

.
Ial,lbISN=[ & _1J<p2-

~

Lo
Therefore, the largest p* which divides [ a | or | b | isp2 assuming that r is

even which we shall do from now on for simplicity. Naturally, » 22, and if r =2
then k¥ = 0. Thus, we shall need —;:— — 1 digits to the left of the p-adic point in order
to find the full p-adic expansion of any a € X. As well, there will never be more
than —;— — 1 zeros to the right of the p-adic point.

The set Hy corresponds to the Hensel codes of X is defined in [3,4]. If
@=a,a,,y " aay - a._ya, --- ,and o € X, then the Hensel code for it
in Hy is obtained by taking the first r nonzero digits of its p-adic expansion. As a

result, the first digit of the Hensel code will be a,. The position of the p-adic point

must of course be maintained. Hence

Hy = {a,, Tt @y uay | a= Zajpj € ¢(X)},

Jj=n
where '—-% +1<n <0. We have

Lemma 8 - The elements of Hy are in one-to-one correspondence with the ele-

ments of X.
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Proof « This result follows from Theorem 4.5, pages 80-81 of [4].

We may extend the mapping ¥ | Q)(é) — Hy. Let

o= Fap! e o(Q)

Jj=n
and so let ¥ | ¢(Q) — H, be defined by
Y(a) = QnQpyy " A_1Qgy - ap_y »

where n € Z and £ 2 1. Specifically, if o € q)(é) then n 2 0, otherwise n < 0. As a
result, ¥(o) is | n | + # digits long if n < 0, otherwise it is £ digits long. If f =r
then ¥ | 6(0) — Hy and ¥ = ¥ in this case. As well, ¥ o 6 | Fy — H holds.

Let us define addition and multiplication on 4 ¢ as follows. Negation is defined

in the obvious way. First, consider addition. Let
a=a, - - aay - ap_, B=.b,,, bbby € Hy , (5)
and assume without loss of generality that n < m. Then,
a+B=s, oo osysg s

where bj =0forn £j <m-1, and

aj+bj+ci=s5;+ciup (n<j<P-1)
such that 0 < §j <P, Cj41 is the carry out of position j, ¢, = 0 and we ignore c,. As
for multiplication,

OB = PrsPrimsr P1Po " Py

where

J
Zan+kbm+j-k + Cj+n+m =Djin+m + Cj+n+m+1p 0= J s f'\-rz—m—-l)
k=0
such that 0 S p; < p, Cj+n+m+1 1S the carry out of position j+n+m, c,,, =0, and we

ignore Cp.
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Hyg is not a commutative ring with identity under the above operations since

there is no associative law for multiplication. For example, the reader should try multi-
plying a = d_l.aoal »b = boby,c=c_jcoc; where £ =2 and it will be seen that
(@b)e #a(bc). As well, even if Hy were a rng, ¥ | ¢(0) - Hgy is not a
homomorphism since ¥(af) # ¥ ()¥(B). For example, letp =5, £ = r =4, with

5,_ oL\ _
‘Po¢(z)_.o433,li’ ¢(15)_2.3131,

1 5 1 1
then .04 23131 = 3423. But ¥ —)=.3424 and =~ . — = — and
n 33 x 2.313 u o ¢( 12) an T D and so

.3423 is the wrong answer.

Let us define two new sets, namely

H’={‘§‘o¢(a) | ae FN}cH.,,,and

HX’={‘I’0¢(a)lan}cH.¢, )

Note that H =H " if P = r.
Because of Lemma 8, the elements of Hy " are in one-to-one correspondence with
the elements of X. In fact we have
Lemma 9« ¥ o ¢ | FyUX — H UHy " with f = r is one-to-one and onto.
Proof « ¥ o 0] | Fy — H is one-to-one and onto, and use Lemma 8. Clearly,
H'NnHy =@ ,FynX = @,
Since ¥ | &(Q) —» H  is not a homomorphism, ¥ o ¢ | 0 — H ¢ is obviously not a
homomorphism either. Thus, despite Lemma 9, we cannot perform arithmetic in
H "UHy * such that it corresponds to arithmetic in F ~UX, unless £ is sufficiently large
with respect to r. How large # should be depends upon the number and kind of arith-

metic operations to be performed.

For example, if we wish to find off (B as in (5)), then £ = %—1 is needed,

. r - -
since n,m 2> ——é—+l, and to correctly compute digits n+m to r—1 of af it is necessary
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that we know the digits of the p-adic expansion to position %54. Consider

P =5,r=4s0 P =35, with
5 1
%o ¢(Z) =.04333 , %o ¢’(i?) =2.31313

and so .04333 x 2.31313 = .3424x. We have omitted to compute the digit labeled x
since .3424 is enough to identify the product as being %2— In fact, with £ = —2—-1 we

cannot in general compute x correctly. Thus, any succeeding products involving
.3424x as an operand cannot be guaranteed to produce the correct result (unless we
increase f'\). If we wish to find o+ B, then P =r will work. Consider

p=5,F=r =4 with

vkoq)(-%)..smz %o ¢(-—)—24131

and so 3.3222 + 2.4131 = 0.3404 and ¥ o ¢(-—) = .3404 which is the correct result

16 13 » .
—— + _— = —, , P = ,
since 1 O T z In general, if r, then

Yoo+ B)=9o o) +¥o o),
and so it is multiplication that causes difficulties, as we’ve already noted.

Thus, we must select £ so that if n < 0 for some result & € H "UHy ’, the first r
digits of o must be correct, and if n > 0 then the first 7 digits to the right of the p-
adic point must be correct. Thus, it will be necessary in practice to select a large

value for P, especially if multiplication is to be performed often.

The discussions and analyses of this and the preceding sections underscores the
importance of the following principle. Given two rings R and S such that we wish to
perform addition and multiplication in S so that it corresponds to the same operations
in R, it is necessary that we have a mapping ¢ | R — S such that ¢ is a ring
homomorphism. Since ¢ is many-to-one and into in general, it is also necessary that

we identify subseis A < R and B < S such that ¢ | A = B is one-to-one and onto.
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Thus, our attempt at including the elements of X as valid operands and final
results is limited since Hg is not a ring, and ¥ o ¢ | 0 — Hy is not a homomor-
phism. Furth'ermore, there appears to be no reasonable way of augmenting Fy with X

and yet obtain a suitable ring structure in the sense specified in the previous paragraph.
2.5 Conclusions

We have demonstrated that arithmetic with Hensel codes as defined in Krish-
namurthy, Rao and Subramanian [3] and in Gregory and Krishnamurthy [4] will work
provided that the input data and final results correspond to order-N Farey fractions.
By arithmetic we mean negation, addition, subtraction (via negation), and multiplica-

tion.

We have also shown that by excluding the invalid Farey fractions from considera-
tion we eliminate the need for the Hensel code concept. This is due to the fact that
Z,» and Hy are isomorphic rings, and that the differences between them are purely

notational.

Finally, we have shown how to include the invalid Farey fractions as operands
and results such that in computing with their Hensel codes, it is not necessary to map
back and forth between the Hensel codes and the rationals. Unfortunately, the pro-
posed solution is generally impractical as it requires the use of Hensel codes of very

large size.

3. Finite Rings and Fields

We have seen in section 2 that mapping computations involving rational data into
Hensel codes (finite segment p -adic numbers) is of little, if any, practical use. Thus,
having also rejected rational arithmetic, we are compelled to conclude that error-free
computation should only be performed in finite rings or fields. We shall see in this
and the next section that various choices exist when it comes to selecting a suitable
ring or field. We have already seen one choice in section 2 where, via Theorem 2,
arithmetic (meaning addition, subtraction and multiplication only) with a suitable sub-

set of the rationals can be performed in the finite ring Z,, where m =p” (p is a
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positive prime, r is a positive integer).

Thus, in general, the set Z,, = {0,1,....,m—1} forms a finite ring under modulo m
addition and.multiplican'on. It is possible for m to be composite, but if it is prime
then Z, forms a finite field (more usually denoted by GF(m)). A ring Z,, may be
called a single modulus residue number system (SMRNS) [4], where m is the modulus.

If we are interested in computing with a subset S,. of the integers Z, where

-1 m-—1
S = _L 3 e e ey _1$ ’1 Poe e ey T ’
: { - 0 . } ®

(m odd) then such a computation may be mapped into the ring Z, , provided that the
input data and final answer are from S, (see [4]). If x € Snm and x 2 0 then x maps
toxinZ,. Ifx € S, butx <O then x maps to x +m in Z,-

Suppose now that m =mum, - - my, and gcd(m‘-,mj)=1 (@ =j) for all i

and j, then Z,, can be made isomorphic to the product ring

Ly X Ly X v X Zp N

my my

We call m; the ith modulus. The product ring in (7) is often refered to as a muliple
modulus residue number system (MMRNS). If x Z,, then x maps to a unique k-
tuple (xy,x4,....x;) € Zp X -+ XZ, , where x; =x (mod m;). We will discuss the
inverse mapping from the product ring back to Z,, below, but let us now consider

arithmetic in (7). Gy, oo, x), 0y, ..., y) e Zp X -+ XZ,, then
(x,,...,xk)@(yl,...,yk)=(z1,..., B)E€E Ly X - XZ, ,  (83)
where ’ @ ’ represents addition, subtraction or multiplication in the product ring, and

Z; =X; °Y; (Sb)

b4

where.’ o * represents addition, subtraction or multiplication modulo m;. Thus, arith-
metic in the product ring is performed component-wise. That is, no carry information
is propagated from one component to the next, in contrast with conventional weighted
binary arithmetic schemes. Note that it is carry propagation that often dominates the

time taken to perform basic arithmetic operations. It is primarily for this reason that
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the MMRNS has been proposed as a means of implementing certain digital signal pro-
cessing (DSP) algorithms (see [7,8]), and error-free computation algorithms (see [4]) at
high speed. DSP algorithms that have been implemented with MMRNS schemes
include FIR filtering [9], IIR filtering [10], and number theoretic transforms (NTTs)

[11], which may be used to perform error-free circular convolutions and correlations.

An element of the product ring (7) may be mapped back to its corresponding

unique member of Z,, via either:

(i) the Chinese Remainder Theorem (CRT), or

(i1) the mixed-radix number representation (MRNR).

The CRT is explained in such books as McClellan and Rader [8], and Blahut [12], and
the MRNR is explained in Gregory and Krishnamurthy [4], and Taylor [7], but we

shall review the main points here.

k
Let us begin with the CRT. Suppose M =JIm; (so M =m), and that

i=1
M; =M/Im;, and if we know the residues X =x (mod m;) (x e Z,) for all
I =1,..,k, then we can recover x via
k
x =Y x;M;N; (mod M) (%a)
i=1
such that N; satisfies the diophantine equation

N“M" + n;m; = 1 . (9b)

The Euclidean algorithm [4,8,12] can be used to solve (9b) for n; and N;. The proof
of (9a,b) may be found in [12]. It is clear that the inverse mapping of (9a) is quite
complex from a computational standpoint. It is also complex from the viewpoint of a
special purpose hardware implementation. As is argued in [12] (see page 60), it is
only worthwhile mapping a computation in S, (or, equivalently, in Z,,) to the product
ring if the computation in S, is complicated (i.e., has many steps) in relation to the
complexity of the inverse mapping in (9a). Intermediate results can remain in the pro-

duct ring and only the final answer must be mapped back to S,,.
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The MRNR [4,7] is an alternative means of mapping a product ring element back
to Z,. This mapping is generally accepted as being superior to the CRT (see [4,7]),
cither in terms of computational speed or because special purpose hardware implemen-
tations of the MRNR are more efficient than equivalent CRT implementations. The
MRNR is known to be particularly convenient to work with for certain combinations
of moduli, such as my=2"~1, my=2", and m3=2"+1 (see [7]). We may

describe the MRNR as follows. Let {ri,ra. -++ .} be a set of radices. Let

k
R =T]r;. Every integer y such that 0 < Y <R can be uniquely expressed as

i=1

YEY1¥yaritysrira+ s v yriry o rey (10a)

where y; ,y,, -+, y, are the mixed-radix digits (see [4], pp. 17-18), such that
O<sy;<r, i=1..k . (10b)
fGxy,..., x)e Ly X to X Z,, then by assigning r; = m; it is possible to map
(x1,..., x;) to a representation like that in (10a). Such a mapping can be performed

with residue arithmetic. This mapping is explained in detail in [4] (see pp- 19-23)
where examples are also given. Special purpose hardware structures for the MRNR
may be viewed in [7]. |

Even though the MRNR may represent a better means of cairying out the inverse
mapping from the product ring of (7) to Z,, compared to the CRT, it is clear that the
MRNR s still quite complicated from a computational and implementational stand-
point. Thus, it is primarily the complexity of the inverse mapping problem that limits
the applicability of MMRNSs. However, we have already noted that certain moduli
and combinations of moduli make the MRNR relatively easy to work with, thus mak-

ing MMRNS arithmetic practical, at least in certain applications.

4. The Quadratic Residue Number System and Farey Fractions

Herein we extend the definition of a quadratic residue number system (QRNS) to
accommodate complex numbers with real and imaginary parts that are members of the

set of order-N Farey fractions, a special subset of the rationals (see section 2.1). On
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the basis of Theorem 6 (below), and some computer search results, we conjecture that
J ¢ é\p,, Le., that j does not correspond to an order-N Farey fraction, where j e Zp,
is a solution to j2=-1 (mod p"). This presumes that p is prime, and
p =4k +1 (k >0). The results of sections 4.2 and 4.3 below are from Zarowski
and Card [2].

4.1 The Conventional Quadratic Residue Number System

We will begin by describing what is classically understood to be the quadratic
residue number system.

We may define a Gaussian ring Zpr[i] ={a+ib|lape Zpr }, where | = \/:,
and where the ring operations are

addition: (@ + ib) + (¢ +id) =(a + c)mod p" +i(b +d) mod p’,

multiplication: (@ + ib)(c + id) = (ac - bd) mod p” + i(ad + bc) mod p’
This ring is often called a complex residue number system (CRNS). Note that multipli-
cation in Z,- [i] involves four multiplications in the ring Z,- in general. If there is
no j e Zpr such that j2 = -1 (mod p"), then -1 is called a quadratic nonresidue,
otherwise it is called a quadratic residue (see Taylor [ 13], Jenkins and Krogmeier [14],
Jullien, Krishnan and Miller [15], Dudley [16] (p. 85), or Hillman and Alexanderson
[17] (p. 422)). It is well known that -1 is a quadratic residue if p is prime and of the
form 4k+1 (k > 0) (see [13-17]). Similarly, -1 is a quadratic nonresidue if p is prime
but of the form 4k+3. Ifp =4k + 1 and is prime, then it is called a Gaussian prime.

If -1 is a quadratic residue then there are precisely two distinct solutions to
x%=-1 (mod p”), and these solutions are additive and multiplicative inverses of each
other. The theorem in the appendix of [ 14] shows how to solve this equation, given
the two solutions two x% = -1 (mod p). This latter equation is easy to solve if
p=2"+1(n>1)since thenx =22 or x =27 — on12 | 1. This makes sense if and

only if n is even (see Theorem 2 in [14]).

We may define the product ring Zy xZy ={(ab) ] ab e Z,: }, where the

ring operations are
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addition: (a,b) + (c.d)=(a +c (mod p") ,b +d (mod pT)) ,
multipliqation: (@,b)(c.d) = (ac (mod p") , bd (mod ™) .
Note that multiplication in Z,r X Zp, only involves two multiplications in the ring
Zpr . When p = 4k + 1, we may define the mapping ¢ | Z, [i] —>} Z,r X Zp, as
¢l@ +ib)=(a +jb (mod p")a — jb (mod p7)) , (11a)
where
J2=-1 (mod p*) . (11b)
It tumns out that ¢ is a ring isomorphism, and so a computation in Z,- [i] can be
mapped into an equivalent one in Z,r X Z,r . It is clear that the main advantage in
doing so is that the number of multiplications in Z,- is reduced from four to two.
Since ¢ is an isomorphism, ¢! | Zp, X Zp, - Zp, [i] exists and is
o @b) =x +iy (12a)
where
x =27a +b) (mod p") , (12b)
y=2""a - b) (mod p) .

When p is a Gaussian prime, Z,» X Z,- forms what is commonly called a quadratic
residue number system (QRNS). The properties and applications of the QRNS are
further explored in Leung [18], Vanvwormhoudt [19], Baraniecka and Jullien [11], and
Krogmeier and Jenkins [20], in addition to [13-15].

4.2 How To Include Rational Data

We now propose extensions to the results summarized in the previous section.
The extensions allow efficient computation with complex numbers that have rational-

valued real and imaginary parts from the order-N Farey fractions.

We may define the Gaussian ring Q[i]={a +ib | ab e Q ,i =V=1}. It is
straightforward to verify that Q[i] = (a+iblabed,i= V1) is a subring of
Q[i]. The operations defined on Q[i] and inherited by é[i] are analogous to those
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for Z, [i] in secion 4.1 Ses Fyli] (<Ol 2, (i](c Z, i), and

fp, X fp, (c Zp, X Zp, ) are defined in the obvious way.

It is necessary to extend the mapping | - | o l é — Z,r of section 2 to

| - lp, | é[i] — Z,. [i]. This extended mapping is defined as

where x +iy e é[i l,soxye é This extended mapping for modulo p” reduction
is clearly a ring homomorphism. It is also straightforward to verify that
-] oo | Fylil = fp, [i] is one-to-one and onto. Hence, a computation with input

data and final results in Fy [i] may be mapped equivalently into the finite ring Zyr [i].

It is also clear that ¢ | fp, [i]- fp, xfp, is one-to-one and onto, since
o | Z, [i]—> Z,r X Z,- is a ring isomorphism. We can map a computation with
inputs and final results in 21,» [i] to an equivalent computation in Z,r X Z,- . Thus,
we have formally extended the QRNS to accommodate complex rational data. Figure 2
summarizes the mappings and sets involved in the extension process.

We note that the ability to accommodate rational data is valuable as, for example,
the Schur algorithm for Hermitian Toeplitz matrices requires the division operation.
Even with Hermitian Toeplitz matrices with Gaussian integer entries only, the Schur
variables and reflection coefficients will generally be rational in their real and ima-
ginary parts.

4.3 What Elements are in fpr ?

It appears that there are no results concerning what elements of Zpr are to be
found in fp, . Certainly, no results are to be found in [3.4,21]. Naturally, given a
particular member of a particular Z_, , one could use the inverse mapping algorithm
in [4,21] to determine whether or not it maps to a Farey fraction. However, this is

highly inefficient if p” is large, and it offers no insight into the structure of set fpr .

We do not propose to solve this problem completely here, but nevertheless we

can state
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r Z'
0li] Z,1i] % ¥ %

Figure 2: A summary of sets and mappings in sections 2.1, 4.1 and 4.2.

Theorem 6 - j éfp, where p =2 + 1, r=1,n € {1,2,3,...}, and j satisfies
(11b).
Proof « According to the theorem in the appendix of [14], there are precisely two

distinct solutions to (11b). These are readily shown to be
j=20 22 —r y
From Theorem 1 of section 2.1 we have
N <2712 < on

We can carry out the inverse mapping algorithm on pp. 42-46 of [4] in order to

ascertain whether or not the above values of j belong to £pr . Thus, for j = 2"

we have the table



22 4] 0
28 1
2 1 —on
2" 0 pX N

n

Hence j = 2" maps to the rationals 21— or -—-éln—. Neither of these rationals is a

valid order-N Farey fraction. Thus, J =2" is not in fpr . Similarly, for

Jj = 22 _on 4 we have the table

22" + 1 0
220 _om 4 1
1 2" -1
2" -1 1 2"
2n 0 —(1 427
2n _ »n n
Therefore, j = 2% — 27 4 ] maps to the rationals —2———2—1—1— , _Z or L

1 1 gn
None of these rationals is a valid order-N Farey fraction. Thus, j = 22" - 2" 4+ |
is not in fpr .

It is possible to construct an alternate proof with the aid of

Theorem 7 < Let j,, j, e Z,- be the solutions to (11b). If j, ¢ fpr , then
jr€2,.

Proof - Without loss of generality we may consider j;. Assume that j 1 € é\pr .
We have | le I pr = J1, 1e., all members of the generalized residue class Q;,
rﬁaps to j, € Zp, . The inverse mapping algorithm in [4,21], that maps the ele-
ments of 2pr to F, produces a finite sequence of elements from Q. given j,
and p”. If it were true that Ji € fpr then the finite sequence would contain the

element of Fy that maps to j,. But since j 1 & fpr ,» no such element will be
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found by the inverse mapping. Since j, = j 7Y (mod p"), applying the inverse
mapping to j, will produce a finite sequence of elements from Q;, that are
reciproc-als of elements from le. None of the elements of le is an order-N
Farey fraction, and so therefore none of the elements of Q;, is an order-N Farey
fraction. Thus, if j; & fp, , then j, & fpy .

Appendix I contains the PASCAL program used to obtain the results in Table I of

Appendix J. Table I shows several sets of p and r illustrating that j ¢ fp, . Note

that the theorem in the appendix of [14] was used to compute j satisfying (11b) in all

cases. The inverse mapping of [4,21] was then used to test whether or not J € fp, .

No case of j € fpr was ever found. On the basis of this admittedly scant computer

search evidence, and upon Theorem 6, we conjecture that j & fpr , where p is a

Gaussian prime, r is a positive integer, and J satisfies (11b).
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Chapter VII

AN ERROR-FREE FORM OF THE SCHUR ALGORITHM

In Chapter V we found that although the Schur algorithm is numerically stable,
applying the algorithm to ill-conditioned input data can give poor results. In Chapter
VI we considered various arithmetics for error-free computation, as error-free computa-
tion can be used to successfully handle ill-conditioned data. In Chapter VI the term
"arithmetic" generally meant addition, subtraction and multiplication, but not division.

This is because division is potentially quite troublesome. For example, if a b € Fy

then % €F)y was possible (section 2.3 of Chapter VI). In addition, if the input data is

integer-valued and from S, (defined in Chap'ter VI, section 3), then division will yield
non-integer (rational) results. Since we wish to map computations with data from S,
to residue number systems (SMRNS or MMRNS), the division operation will conflict
with this requirement. Thus, we seek to modify the Schur algorithm of Chapter II to
defer the division operation such that it may be performed under more convenient cir-
cumstances. The meaning of this will become clear as the reader studies this chapter.
In this chapter we shall focus exclusively on the problem of LDU factorizing the Toe-
plitz matrix T,, and the computation of its reflection coefficients. These results are

taken from Zarowski and Card [1].

1. Options

The type of error-free computation number system to employ will depend at least
in part on the elements of the Toeplitz matrix T,. In a digital signal processing con-
text, T,, will usually consist of elements that are fixed-point weighted binary numbers.
Such numbers, if they contain fractional parts, can be scaled to become integers.

Hence, in this case we can map the elements of T, to S,, < Z, for m sufficiently
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large. A computation with the elements of Sm can then be mapped into a suitable

residue number system (see Chapter VI, section 3).

On the other hand, if the elements of T, are rational numbers that have no exact
finite precision weighted binary number representation, it may be uéeful to map the
elements of T, to a suitable set of order-N Farey fractions. This will simply involve a
suitable choice for p and r (subject to the constraint in Theorem 1 of Chapter VI, and
the definition of Fy (Definition 1, Chapter VI)). The computation with elements of
Fy may then be mapped into the finite ring Z,r (see Chapter VI, section 2). The divi-
sion operation required by the Schur algorithm may be carried out by the computation
of modulo p” inverses, since we are mapping rational operands into the finite ring Z,.
However, such inverses won’t always exist in Zp, as the number to be inverted might
contain the factor p, although the likelihood of encountering a noninvertible operand
decreases as p increases (see Thomas and Parker [2]). When mapping results in Z,
back to the Farey fractions, the answer will be in lowest terms (i.e., no common factor
between numerator and denominator). However, if p” is large, mapping from Z,r
back to Fy will be a very onerous task. Fortunately, it is still possible to scale the
entries of T, such that it becomes a matrix of integers, and so the option in the previ-
Ous paragraph remains open to matrices with rational entries. Note that to scale the
entries of T, ideally requires knowledge of the least common multiple of the denomi-

nators of ¢;.

Recall that, as always, when mapping any computation into a finite ring or field it
is necessary that the ring or field be large enough to contain the input data and the
final results. It should also be clear that, if T, is complex-valued, then the use of a

QRNS (Chapter VI, section 4) becomes possible.

2. Error-Free Schur Algorithm: Nonsymmetric Toeplitz Matrix Input
We will assume with little loss of generality that T, is a Toeplitz matrix of
integers from S,,. This is reasonable given the discussion of the previous section. We

are also assuming that T, is not complex-valued, as this case will be discussed later on
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(Hermitian Toeplitz case only). In addition, T, will be nonsymmetric. Since we wish
to LDU factorize T, in an error-free manner with residue arithmetic, and division in a
residue number system 1is difficult, we should like to rearrange the computations
involved in executing the Schur algorithm so that division is avoided. We shall show

how to do this here.

Since T, is nonsymmetric we are considering the Schur algorithm for this case in
Chapter II (see the pseudocode immediately following equation (69a,b)). Since the

entries of T, are integers we may write

(k) (k)
(k) — i . (k) — ___a‘ (1
v; , U T )
Ci k

where {,\‘_(k ), l},-(k) » C¢ and d, are integers. It is therefore possible to write the inner-

most For-do loop of the pseudocode as

- -
p,e+1) _ a0 | [o®w
| | —
Ces1 | _ 1 Cka—(ki-l Ck @)
k+1) | = k k) | o
gD N e B I &%
di 41 d PP dy
or equivalently as
k+1 k k k
’:OI(:l)J = [afk)? —Oik)j, [oi(k)] (3a)
GED] T (-2 o | (4R
k k
Cerr = G000 L e = 0 . (3b)
It is clear that ¢, =d, = 1 and that
Vi(l) = 0‘(1) = t—i s ui(l) = 0“(1) = t—i . (3(:)
It is also true that
k k
K[:-ul(k)_—__ckol() K£=_l'(£)-=__di?é‘)_ ) )
vk dk{}ék) u$f) Ckafii-l

Equation (3a,b,c) constitutes the unsimplified error-free form of the Schur algorithm.

The final simplified form appears below. Equation (4) can be used to obtain the
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reflection coefficients as they are needed. This of course involves division, but this
operation can be carried out after c; , dj, , 6‘,-(1‘ ), and [?i(k) are determined. It is clear
that division has been deferred, but at the expense of additional multiplications.

It is possible to show that ¢, = dj for all k, and so (1) and (36) simplify. We

have the following
Lemma - v{*) = ul), forall k.

Proof - Follows simply from the fact that T, =L,D,;'U,, where L, =L,D, and
U, =D,U,. The quantities v{*) and u%), lic on the main diagonals of L, and
U,, respectively (see Chapter II, section 2.3).
From this Lemma we immediately deduce that ¢, = d, for all k, and that
Oék ) = Q_(Q,_l. Thus, the error-free form of the Schur algorithm becomes:
cp:=1;
Fori :=-n to n do begin
G =05 60 =y,
end;
For k :=1to n do begin
Cis1 = Ckﬁ—(ﬁl ;
For i :=—n to n do begin
BED = _p®p) 4 pE) pe

i+1 >
k+1) . A(k) Ak k) (k
oi( W= a—(klloi( = 0—(15)9[2-1) ;
end;
end;
For k := 1 to n do begin
2o o8&
Kf=-——: K= —u0;
k k
o 2%,
end;
For k := 1to n do begin
Fori :==-n ton do begin
(k+1) (k+1)
y &) o b ;D o &

’

C+t C+1
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end;
end;
Note that if we are not interested in obtaining the Schur variables u;*) and v;®), then

we can omit the computation of c,, and the computation of the last nested For-do

loop. It may even be appropriate to keep the reflection coefficients in the form

% , (@b € §,,), and so division can be eliminated entirely in this case.

3. Error-Free Schur Algorithm: Symmetric Toeplitz Matrix Input

We shall assume that T, is as it was in section 2, except that now it is sym-

metric.

Because T, is symmetric, we must now consider the Schur algorithm for this spe-
cial case. The relevant Schur algorithm is in Chapter II (section 2.3) between equa-
tions (77) and (78) (ignore the complex conjugation operations). Via the straightfor-
ward extension of the results in section 2 above, the error-free form of the Schur algo-
rithm is:

cp:=1;

Fori := 0 to n do begin
G =1, 2D = 5
end;

Fork :=1to n do begin
Cre1 = Cklz—(ﬁl ;

Fori :=0 1t n - k do begin

k+1 k k k) (k
0—((;“)) = kallaf(k)nyu ‘121( )ﬁi(ﬂ) )

k+1) _ k) (k k k) .
HED = -0 28y + 29,09
end;

end;
For k := 1 to n do begin
2®

¢ = - .

k ?r
{4\-(/(11
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end;
For k := 1 to n do begin
' Fori :=0ton -k do begin

0.(k+1) Q(k+l
(k+1) . ., (k1) —k+t)
U; = v Upvi) = ’
Ck+1 C+1
end;

end;

The operations in the nested For-do loop used to compute ﬁ‘-(") can be written in

b | _ (8% 2] [0,
LEV T 0 2%, | 2% |- ®

i+]

matrix form as

Note that the 2 x 2 matrix in (5) is circulant. It can therefore be diagonalized by a 2-

point DFT (discrete Fourier transform) and we can eliminate two multiplications.

Thus,
[M%l -agk)]:z-l [11] {aﬁzz-aw 0 J 11
-2 % 1-1 0 29, +0®| L1-1

~k+1

If % ¢ Z,, then 27 € Z,, if m contains no factor of value two. The benefit in
using the factorization in (6) can be maximized if m is chosen such that 27! is a
"nice" number, such as an integer power of two. For example, if m = 2%* + 1 , then

271 = 2271 Iy a case like this, multiplication by 27! becomes shifting modulo m.

4. Error-Free Schur Algorithm: Hermitian Toeplitz Matrix Input

We will now assume that T, is Hermitian with Gaussian integer entries of the
formx +iy ,xy e Spm. Straightforwardly, the error-free form of the Schur algo-
rithm is now:

cp:=1;
Fori :=0to n do begin
[2(1) = Q(l) — ;’

end;
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For £k := 1 to n do begin
k
Chs1 = Cka\—(kll ;

Fori :=0ton - & do begin

k+1) _ Ak k kA (k)
[‘\—(k+i) = —(—(k)HHIQ() ] [‘\1()»

—k+1 1+1
k+1) . _ (k) k K
A = _ZZ—(k+i)+1Q1( . 0:'11)[‘\-(/(11 ;

end;
end;
For k := 1 to n do begin
G
end;

For k := 1 to n do begin
Fori :=0ton -k do begin

(k+1) (k+1)
Le+1) [2‘ (24 [‘\-(kﬂ) .
U; = s UZ(k+l) = ;

Ch+1 Cr+1

end;
end;
Note that ¢, € S, for all &, as [t\fﬁll € §,, for all k. This latter fact is consistent

with
240 = QPR - 00 12, 0 e s,

This is obtained from the above pseudocode. It is clear that computation in a QRNS
will result in a significant savings in the number of multiplications to be performed.
The nested For-do loop where l?i(k) is computed involves 12 multiplications in the ring
Z,- per iteration of the loop, if the computation is performed in a CRNS. Only 8 mul-

tiplications are required if the computation is performed in a QRNS.

The problem of developing an error-free form the of the Schur algorithm for Her-
mitian Toeplitz matrices of any rank profile (Chapter III) remains open. For the
present, one can consider the elements of 7, to be of the form x + iy ,x,y € Fy,

and map the computation into an extended QRNS (extended as in Chapter VI, section
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4.2). As we have noted, this carries the risk of not being able to divide, as not all
members of Zyr X Zp, have modulo p” inverses. However, as we have also noted, this
risk declines as p increases in value. Another open problem is that the back-
substitution algorithms of Chapter IV must somehow be "integrated" into the Schur
algorithm in an error-free manner. This is necessary to facilitate the error-free solution

of Toeplitz systems of equations.

5. Size of Modulus Needed

How big should modulus m be ? Not only must m be big enough so that
‘ € Spp for all k, but m must also be big enough so that £&) | $,&) | ¢ € S,, for all
i and k. In this section we consider T, to satisfy the assumptions of section 2.

We can use (3a) to arrive at a pessimistic upper bound for the values ¢, , 0‘-(1‘) ,

and £°). From (3a)

LD T <129, 1168 [+109 1108 |, (72)
| 2% D < 2® || o0 4| 089 11281 (7b)

Define
t=max{|tk|},tkes,,,. : (8)

Thus, | |, | 2% | <¢ for all i. From (7a,b) it is evident that
[ 6P | <str+sr=22,
|29 | <ttt +rr=22,
and similarly
101,189 | <2 @272,

[ 691,169 <20 @2y |

and so on. In general it may be shown that
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iy k=2 b ket
| 01,1 0% | <027 22 = 2 g2 ©)
=0

. n .
for k > 2. Since Cpil = Hﬁ_(ill (using the section 2 pseudocode) we can use (9) to
i=1 :

write
R i
| Cppr | S0 T2 2271 (10)
i=2
We must have | ¢ ., | < m-l and | 0§D | | gD | < m-l as well. This
n+l1 2 k k 2
gives
no. i .
m > max {2: [1e37 2271 207 2 -1} . 11)
i=2

If we assume n =9, =27 (not unusual values) then m > 24080 \which implies
that we need a dynamic range of at least 4080 bits. This is a very large value, and is
likely to be larger than what is actually necessary. Thus, there is a need for a much
tighter bound on m. An alternative means of determining m involves the use of com-
puter simulations of the error-free form of the Schur algorithm. One can produce ran-
domly generated sets of autocorrelation coefficients for the classes of input signals of
interest, and run the error-free Schur algorithm using these data’sets to estimate how

large the Schur variables and parameters ¢; actually are.

It is obvious that the large numbers produced by the error-free versions of the
Schur algorithm will limit the size of matrix (n) that can be considered. Unfor-
tunately, there is no way to avoid this problem. This is especially true of problems
involving Hermitian Toeplitz matrices with singular leading principal submatrices,
since in this case quantization error is completely intolerable (the problem is extremely
ill-conditioned (reflection coefficients with unity magnitude are present) due to the
need to test for equality to zero). In the case of Toeplitz matrices without singular
leading principal submatrices, the conventional form of the Schur algorithm (Chapter
IT) applies. In this case, one could compromise by using error-free computation until

the numbers reach some intolerably large size, and then the results could be scaled
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down to a reasonable size. Error-free computation could then resume untl the
numbers become intolerably large again. Clearly, quantization errors will be intro-
duced in a scheme such as this, but the rate at which such errors accumulate would be
greatly diminished, relative to conventional finite precision arithmetic implementations,
when the input is badly ill-conditioned (reflection coefficients with a magnitude close - -

to, but not equalling unity).
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Chapter VIII

SOME DESIGNS FOR COMPUTATION IN Zyr

In Chapters VI and VII we have often refered to computation in the finite ring
Z,- . Since we are interested in the VLSI implementation of the error-free forms of
the algorithms in Chapter VII, and these are to be implemented in the form of parallel
processing systems similar to those in Chapter IV, we shall consider the hardware
implementation of addition and multiplication in Z,- . Results on this subject are
taken from Zarowski and Card [1] (see section 1 below). The problem of mapping
integer data (i.e., data from Z) into Zpr was considered in Zarowski and Card [2] and

will be presented here as well (see section 2).

1. Serial and Parallel Architectures for Addition and Multiplication in Z,

Recall that Z,, denotes the finite ring of integers {0,1,...,m~1} under modulo m
addition and multiplication, and that it forms a so-called single modulus residue
number system (SMRNS). As well, if m =mymy -+ me and ged(m;,m;) =1

(i #j) for every i and j, then Z,, can be made isomorphic to the direct product ring
Zm!me2x~--mek. (1)

The product ring in (1) is often refered to as a multiple modulus residue number sys-
tem (MMRNS). f xe2Z, then x maps to a unique
(xp, "  ox) e Zp X -+ XZ,, where x; =x (mod m;). An element of the pro-
duct ring may be mapped back to its corresponding unique member of Z,, via either
the Chinese Remainder Theorem (CRT) (see [3,4]), or the mixed-radix number
representaton (MRNR) (see [5]).
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Gy, 0 ox), 0 Yi) € Zmlx mek then
(xl’ e rxk)@(yl’ ’}’k)=(21, ) e Zm‘X me , (2a)
where ’ @ ’ represents addition, subtraction or multiplication in the product ring, and
i =X 0y, (2b)

where ’ o’ represents addition, subtraction or multiplication modulo m;. Thus arith-
metic in the product ring is performed component-wise, and no carry information is
propagated from one component to the next. Recall that for this reason the multiple
modulus residue number system has been proposed as a means of implementing certain
digital signal processing (DSP) algorithms at high speed (such as in [6,7,8]).

We also know that the possibility of the high speed implementation of algorithms
is certainly not the only reason to perform computations in a finite ring. The other
main reason is that computation in any finite ring is exact; there is no quantization
error.  Thus, it is possible to implement algorithms with reduced, or even without,
quantization error, depending upon the algorithm. For example, circular convolution
algorithms based on NTTs terminate in a finite number of steps, and so it is possible
to completely eliminate all quantization error with suitable scaling of the input data
and suitable choice of ring (see [8]). IIR filtering algorithms never terminate in princi-
ple, and so intermediate results must be scaled to prevent overﬂovs; (see [7]). Overflow
occurs when a result is produced that cannot be uniquely represented in the chosen

ring. Overflow is refered to as pseudo-overflow in [5].

Some algorithms are numerically unstable in that quantization errors tend to accu-
mulate as the computation proceeds, regardless of the nature of the input. Such
unstable algorithms can be stabilized by using error-free computation with a finite ring.
Other problems are ill-conditioned in that the final solution is highly sensitive to small
perturbétions in the input data. In particular, many linear algebra problems are of this
class, such as the problems discussed in Chapter V. The use of error-free computation

with finite rings applied to other linear algebra problems may be found in [5].
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- We have already alluded to the fact that overflow in an RNS system must be
avoided. That is, we must select the ring Z,, such that all input data and final results
are uniquely 'representable in Z,, (or its product ring equivalent in (1)). As a result of
this requirement, it is possible that m may be extremely large, as we’ve seen in

Chapter VII. Any number in Z,, can be represented by an R-bit binary number, where

n = [logym] . 3)
As a rough guide, extremely large may be taken to mean that n > 100.

The need to compute in a large ring poses serious problems. Clearly, one solu-
tion is to isomorphically map our computational problem in Z,, to an equivalent prob-
lem in the product ring of (1). We thus conveniently break the problem into &
independent, and smaller parts. Arithmetic modulo m; is likely to be much simpler
and faster than arithmetic modulo m since m; is typically much smaller than m , and it

is often possible to select convenient values for m;.

Mapping a computation_ in Z,, to an equivalent computation in the product ring is
not a panacea, however. For one thing, the inverse mapping from the product ring
back to Z,, via the CRT, or even via the MRNR, is a difficult operation. The
hardware complexity of these inverse mappings is rather high. Hardware implementa-
tions of the MRNR and the CRT are described in [9] and (6], respectively. In addi-
tion, if k is large (i.e., there are many mutually prime moduli), then many different
modulo m; arithmetic units must be designed. This is inconvenient, and potentially
costly, in the context of VLSI designs, since it will be necessary to maintain a large

library of different computational circuit blocks.

Many of the hardware designs proposed as a means of implementing arithmetic
modulo m involve the use of lookup tables. These tables may be implemented using
RAM or ROM (usually ROM). We refer the reader to references [6,11] for examples
of this practice. As well, ways have been suggested of avoiding or at least reducing
the use of lookup tables. We refer the reader to references [12,13] for examples.
Arguments against the use of lookup tables are to be found in Taylor [12]. Although

memory density and speed are high, the cost of fast and dense memory is also high
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enough to discourage their widespread use. Power dissipation is also a drawback. It
is also possible to argue that, despite the existence of high density memory, the
memory intensive approach to RNS system implementation is very expensive in terms
of chip area requirements when compared with combinatorial logic implementations.
This is likely to be significant in the context of the VLSI implementation of RNS sys-
tems.

In view of the preceding remarks it has been suggested that computation should
occur in rings of the form Zpr (see Ramnarayan and Taylor [14], or Thomas and
Parker [15,16] for example). Clearly, for a fixed P, unlimited dynamic range can be
achieved by increasing r (a positive integer). If x e Z,- then x can be uniquely writ-

ten as a radix-p number
X=xg+Xx;p +xp2+ - +x,_prl | 4

where x; € {0,1,...p—1}. When the members of Z,- are expanded as in (4), arith-
metic with such numbers is similar to arithmetic in a weighted binary arithmetic sys-
tem, as has been noted in [14,15]. This is due to the propagation of carry information
from digit to digit. The digits are the x; variables in (4). We shall describe addition,

negation and multiplication in Z,- in a later section of this chapter.

Because of the need to manage carry information, special purpose hardware for
computation in Zpr is likely to be slower than equivalent special purpose hardware
for computation in a product ring of similar size, at least provided that m is not too
large. However, the relative ease of obtaining a large dynamic range in Z,- makes

computation in Z,- highly attractive.

In the present chapter we propose serial and parallel architectures for the addition,
subtraction (via negation), and multiplication modulo p” of numbers in the form of
(4). By serial architectures we mean processors that accept operands one digit x; at a
time, and which produce outputs one digit at a time. These architectures are similar to
those presented in Lyon [17], and in Jackson, Kaiser and McDonald [18] for two’s
complement arithmetic. The resulting machines are highly modular, readily cascade-

able, and the flow of data through them is highly regular. In the case of serial modulo



8.5

p’ multiplication, the cells making up the multiplier only communicate with their
nearest neighbors. Thus, the machines that we propose are highly suitable for VLSI
implementatidn. By virtue of their serial design, their main drawback is a high latency
and low throughput (see section 1.5). That is, it will take O (r) clock cycles to com-
pute any new sum or product (the length of a clock cycle will depend upon p). It is
possible, however, to obtain a reasonable throughput via pipelining, at least for some
applications. As well, one should note that present technology places rather stringent
upper limits on the number of I/O pins that a chip may have, and on the size of
parallel-input, parallel-output ALU that can realistically be built. These constraints
will cause us to favour the use of serial machines despite their slow speed, especially
if m is to be extremely large, and the desire for numerical stability and the suppression

of ill-conditioned data effects, takes precedence over operating speed.

In this thesis we shall consider p to have the form 2" + 1 since it is generally
accepted that such numbers yield the most practical modulo p arithmetic units, other
than the choice of p = 27 (which is trivial). Furthermore, none of our designs make
use of lookup tables. Thus, we eliminate the drawbacks of lookup table based designs
previously cited.

We shall also present asymptotic area and time complexity estimates for the
designs proposed, and compare them to the asymptotic area and‘time complexities of
certain parallel modulo p” arithmetic processors; the latter are also to be described in

this chapter.
1.1 Hardware for Modulo p Arithmetic

It is necessary to have hardware that can perform modulo p arithmetic before one
can construct modulo p” arithmetic hardware. In this section we present hardware
structures for addition, negation and multiplication modulo p when p=2"%+1(nisa
positivé integer) and p > 3.

Let us first consider modulo p addition. Let g; , b; € Z,J and ¢; € {0,1}. We

can write
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a; +b; +ci =5, +cip (5)

where ¢;,; € {0,1}, and O <s; <p. This follows from the division algorithm for
integers. Thus, s; =a; + b; + ¢; (mod p). Later on, ¢; and ¢;,; shall represent car-
ries into and out of the ith position of a parallel modulo p” adder, respectively. This

is the reason for the use of the i subscript.

a; b,
i i
€. .C.
c in® “i
/ out
7 + -
1 Adder #1 1
—t N
P
, N
test | 3i+B+C; 1 + =0
block - ¥ <~
= Adder #2 1
out
(ignore) LN
1 oy CH.
G,y < A MUX
select

T

Figure 1: Modulo p adder with carry output (¢; ).

If p=2"+1 then q;,b; and 5; can be represented as N = n+1 bit positive
integers. Similarly, if p = 2" — 1 then a;,b; and s5; can be represented as N = n bit
positive integers. In this chapter all operand and result digits shall be so represented.

Figure 1 depicts a modulo p adder similar to the offset adders described in Tay-
lor [13]. The modulo p adder is composed of two ordinary adders (Adder #1 and
Adder #2) which are symbolized in this and all following figures by a box with a plus
sign (+). The carry out of Adder #1 and the N -bit output of it are tested by the test
block to determine whether or not a;tbj+c; 2 p. If aj+b;+c; 2 p then Ciy1 = 1, oth-
erwise ¢;.; = 0. The N-bit output of Adder #1 is added to —p (= two’s complement
of p) using Adder #2. The output of Adder #2 feeds into the Channel 1 input of the
multiplexer (MUX box). The Channel 0 input of the MUX is the N -bit output of
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Adder #1. Channel 1 is selected if Ci41 = 1, otherwise Channel 0 is selected. The

MUX output is s;, while the test block output is of course Citl-

a +bi+c¢ | a+b +c¢; (mod p)
0000 000
0001 001
0010 010
0011 011
0100 100
0101 000
0110 001
0111 010
1000 011
1001 100

Table I: Table of all possible values taken on by a;+b;+c; forp =22+ 1.

A study of Tables I and II yields the test blocks depicted in Figure 2: Figure 2(a)
shows the test block for p =2" + 1, and Figure 2(b) shows: the test block for
p=2"~-1.If p =2" +1 then a;+b;+c; 2 p if bit n+1 is 1, or bit n is 1, provided
that a;+b;+c; # 2". Note that the bits are indexed from 0 (LSB) to n+1 (MSB). This
convention shall be followed throughout this chapter. The large n+1 bit AND gate
with the inputs inverted detects the special case where a;+b;+c; = 2" and forces
Ci+1 =0. Input n+l1 of the test block is the carry output c,,, from Adder #1. If
P =2" ~ 1 then aj+b;+c; 2 p if bit n is 1, or if g;+b;+c; =p. The n-input AND
gate detects the special case where a;+b;+c; = p and forces ¢;,; = 1. Input n of the

H

test block is c,,, from Adder #1.

Let us now consider modulo p multiplication. Figure 3 depicts a2 modulo p mul-

tiplier for p = 2" + 1. Figure 4 depicts a modulo p multiplier for p = 2" - 1,
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a4 +b+c; | a;+b; +c¢; (mod p)
0000 000
0001 001
0010 010
0011 011
0100 100
0101 101
0110 110
0111 000
1000 001
1001 010
1010 011
1011 100
1100 101
1101 110

Table II: Table of all possible values taken on by a;+b;+c; forp =23 - 1.

Any product of @ ,b € Z, may be written in the form
ab =c +zxp 6)

where 0 S ¢ <p,and 0 < x <p-2. Thus, we shall want a circuit that produces x and
¢ as outputs for the inputs @ and b. The circuits of Figures 3 and 4 perform this

function.

Let us consider Figure 3 first. The modulo p multiplier consists of an ordinary
positivé integer multiplier, which is symbolized by a box with a multiplication sign
(%), a modulo p adder of the type in Figure 1, which is symbolized by a box with a
ring-sum sign ( @ ), a modulo p negator (to be described later on), which is symbol-

ized by a box with NEG written in it, an ordinary subtractor, which is a box with a
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(a) n+tnntl 0 (b) n n1n2 o

P= 2n+ 1
Ci+1 p=2".1
Ci+1
Figure 2: (a) Test block for the adder of Figure 1 (p =2" + 1); (b) Test block
for the adder of Figure 1 (p = 2" - 1).
minus sign (-), and some additional logic circuitry. We may write the binary (radix-2)

expansion of product ab as

ab =P = 022412, P2n-1 """ Prs1PrPr1 ‘" P1Po s Q)

where p; € {0,1}. We may define certain positive integers

Py =py, (8a)
PM =P " Pn » (8b)
Pp=p,y -+ pg. ' (8b)

We interpret p, to be the LSB of positive integer Py, and p,,_, to be the MSB of it.

A similar interpretation applies to Pp. From McClellan and Rader [3] (see pp. 14-15)
C=PL"‘PM (modp), (9)
unless Py = 1 in which case ¢ = 1. The combinational logic of Figure 3 accounts for

this latter special case. Clearly, x = | Epﬁ ] and

xp =ab —ab (mod p)=ab - ¢ . (10)

It is straightforward to show that x = Pp - c. The multiplier of Figure 3 is similar to

the multiplier in Figure 6 of [13].



8.10

a b
et r——A—
l@@@l 10@0 l
— L0 0 n--o 1 01
Py Py PL
A A
2nef2n'Zny V. nint md ... 1 o
ionore ¥
anore 0 | oooe
AT 0
NEG °ee6
nnt.,, 10
0
© e o ‘L
n n-y 1 0 Nt i 0
1 1
Cout+—/—- @ k—p— 0
(ignore) Sy
n n1 1 0
Ln n1 « . 1 0 ,
¢ = ab (mod p)

Figure 3: Modulo p = 2" + 1 multiplier with quotient output (x).

Let us now consider Figure 4. The notational conventions of this figure are the

same as those of Figure 3. We may write the weighted binary expansion of ab as

ab =p=pypPyy -

pn+1pnpn—l t Po

and, as in (8a,b,c), we may define the positive integers

Py =Poacy " Pn s

PpL=ppy - pg .

Once again, from pp. 14-15 of [31,

C=PL+PH (modp) ,

and it is straightforward to show that x = ¢ — Py .

an

(12a)

(12b)

(13)
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a b
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ighere y v 4
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(ignore) c .
n-t n2 ° 1 0 n
bl T
[ /
-V
¢ = ab (mod p)

Figure 4: Modulo p = 2" — 1 multiplier with quotient output (x).
Finally, let us consider modulo p negation since it is needed by the multiplier of

Figure 3. LetA e Z, and its binary expansion is
A=AA,;1 - A, . (14)
We have
-A (modp)=p-A=(2”+1)+Z+1=2"+:4;+2, (15)

where A is the bit-wise complement of A in (14). If weletS = A + 2, then it may be

readily seen that, forn = 4, and A = 0,

So=A4g,

SI=Z1®1_A1’

S2=.—2@X1 , (16)
S3=AA, @ A;,

where * @ ’ denotes the exclusive-OR operation here. If A =0 we want -4 = 0, and
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and 0 < 5; <p, ¢;y is the carry out of digit position i, ¢y = 0, and we ignore c,. As
in (5), ¢; € {0,1} for all i.

Now let us consider negation. Let a be as in (18) but where a; =0 for
I =0,.,e~1 (if e =0 then ag#0). Let b be as in (18) but where b -= —a (mod p").
Thus, b; =0 fori <e, b, =p —a,,and b; = (p — 1) —g; foralli >e.

Finally, let us consider multiplication. With ¢ and b as in (18),

=l : r-1 . r-1 )
ab (mod p") = L ajp’] [ijij =Ypipl | (20a)
=0 j=0 j=0
where
J
2Zabj g +ri=pi+riyp (0<j<r-1), (20b)
k=0

and 0 S pj <p,rj, is the carry out of digit position J» ro =0 and we ignore r,.
1.3 Parallel Hardware for Modulo p” Arithmetic

In this section we describe certain parallel modulo p” adders and multipliers.
Specifically, we describe a parallel modulo p” adder that is analogous to a parallel
binary adder, where the latter is essentially the same as the adder depicted in Figure
2(a) of [14]. However, we also present a carry-lookahead array for it, and we show
that it is possible to develop a Brent-Kung [19] modulo p” adder. In addition we
present a ripple-through modulo p” array multiplier, and a pipelined modulo p” array
multiplier of a design similar to the pipelined positive integer multiplier in Figure 1 of
McCanny and McWhirter [20]. These designs will later be compared, in terms of

asymptotic area and time complexities, with the serial designs of the next section.

From the modulo p” addition algorithm of (19a,b) we obtain the ripple-through
parallel modulo p” adder array of Figure 6(a). The structure of Figure 6(a) is a linear
array of modulo p adders of the type shown in Figure 1. As in Figures 3 and 4,
modulo p adders are depicted as a box with a ring-sum sign ( @ ) written in it. It is
evident that the ripple-through adder will be quite slow. Thus, a carry-lookahead unit

may prove to be a useful way of speeding up the summation process. Naturally, one
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so this yields the logic network of Figure 5(a). The generalization to arbitrary n is
straightforward. The negator of Figure 5(a) is essentially that of Figure 4 in [13].
4 3 2 1 0 40

. ®)

@) 3 2 1 0 30
v V] v
= >R X% % X% R
1 -E
G000e, YTV
4 3 2 1 0

Figure 5: (a) Modulo p = 2% + 1 negator; (b) Modulop =2 -1 negator.
For the sake of completeness, a modulo (2" - 1) negator is illustrated in Figure

3(b) for the special case of n = 4. Once again, if A e Zp, then
-A (mod p)=p —-A=Q" - 1D)+A+1=2"+4 (17)
which implies that —~A = A, unless A = 0 in which case -4 = 0.
1.2 Arithmetic in Zyr

In this section we describe addition, negation and multiplication modulo p” when
the members of Z,- are represented as in (4). It will then become possible to discuss

hardware structures for modulo p” arithmetic.

First we consider addition. Let

r-1 X r-1 .
a=Yap', b= Y. b;pt (18)
i=0 i=0
be elements of Zpr . Then
r-1 .
a+b (mod p’)y=s = d.spt, (19a)
i=0

where

a; +b; +c¢; =5 +cyp (19b)
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could also use carry-lookahead units of conventional design to speed up the summation

process within the modulo p adder cells themselves.

(@) briar by a; by ag
Nt N N {N1 N+ $N1
1 1
c, Dt oo Pt B -+ o
Cr.q Co Cq Cc
;[T N NEONE O
y S f) S r-1 S1 So
nore
(b ) b 0 by ? bg (c)
% —" - T ps.
ignore «— T 0 a . b
4 ? =14 | .
ignore Lo Po X] Tc
Cout « Cin
32 ou E
v
ignore «<— — 0 Py !
! PSout
P2

Figure 6: (a) Ripple-through parallel modulo p” adder; (b) Unpipelined modulo

p’ array multiplier; (c) basic cell of (b).

Define the test function

I, x+y2«a
NN =10y 1y <a 1)

This function will be used to produce signals analogous to carry propagate and carry

generate signals. We have
Co= 0
c1 = t,(apbyp)

€y = tp(al,bl) U (tp_l(al,bl) M C) 22)
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Civ1 = 1y (a;.0;) U (tp1(ainb;) M ;)

where a and b are as in (18) and we are of course computing s =a + b. In the

expressions for ¢;, {_j means logical OR and (M means logical AND. Thus,
8 = tp (ai 7bi) ’ (23)
pi =t (a;.b;)

are the carry generate and propagate conditions at position i+1, respectively. If r = 4,

then
co=0
¢y =1,{(apbgy
C2=5(anb) U G(andy) M 4, (apby)
€3 = 1 (@b U, _1(@2.b )M, (@ 1,b IR (2, -y (@b DM -1@ 1.6 )M, (@0,b0))

which gives us the carry-lookahead array of Figure 7.

ba 2, by a, by ag

= = ||

l

¢ 3 ¢ 2 ¢

Figure 7: Carry-lookahead circuit for the adder in Figure 6(a).

The Brent-Kung [19] parallel adder can be adapted to the present modulo p”

summation problem. The o-operator of [19] is
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EprPI=GUublNeg)IwNNP).

Note that the prime ( “) does not denote logical complement. Symbols (U and
have the same meanings that they did in (22). There is little danger of confusion

between the carry propagate p and the p in Z,- . The following lemmas apply to this

operator:
Lemma 1 - Let
E&o:Po) ifi=0
GiFi) = {(gi POGi_Piy) if1<i <r-1.
Then
Civ1 = Gy
fori =0,....,r~1.

Lemma 2 - The o0-operator is associative.

These lemmas may be proven in exactly the same manner as their counterparts in [19]

and so we shall not present the proofs here.

The above lemmas yield the structure of Figure 8 (which is essentially the same
as Figure 5 in [19]) for r = 8. Note, however, that the left-most column of processors
that produce ¢y may be eliminated as Cg is not needed when r = 8. Variables g; and
D; are as defined in (23). The black and white processors, described at the bottom of
Figure 8, perform the same operations as their counterpart black and white processors
in Figure 4 of [19].

Figure 6(b) is a ripple-through modulo p” array multiplier (for » = 3). The pro-
2 .
duct output is Y p;p‘. This multiplier is adapted from the positive integer array multi-
i=0
plier depicted in Figure 8.30 of Rabiner and Gold [21]. However, its cell complexity
is much higher than that of the positive integer array multiplier of [21]. The cell that
makes up the modulo p” multiplier is shown in Figure 6(c). This cell is itself com-
posed of a modulo p multiplier of the type shown in Figures 3 or 4, and of a cell

denoted by a box with a sigma sign (). This sigma-cell will be described in greater
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Figure 8: Brent-Kung carry generation array for the adder in Figure 6(a).

detail shortly.

It is obvious that the ripple-through array multiplier will be ~very slow in terms of
throughput. However, the throughput can be considerably increased (and made
independent of r) by pipelining the array multiplier in the manner depicted in Figure
9. This pipelined modulo p” array multiplier is similar to the pipelined positive
integer multiplier of Figure 1 in [20]. The darkened circles (e) of Figure 9 are the
latches (delays) used to achieve pipelining. It is clear that the throughput of the pipe-
lined multiplier is determined by the propagation delay of signals through the cells of
which i't is composed. This delay is a function of p but is independent of r. The
cells making up the multiplier of Figure 9 are identical to those making up the multi-
plier in Figure 6(b).

It is now appropriate to discuss the sigma-cell in Figure 6(c). Let us consider the

case where a and b are as in (18) but r = 3. We can write the modulo p3 product of
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Figure 9: Pipelined modulo p” array multiplier.

a and b in "pencil- and-paper" fashion as follows:

b,y b, bo

® a, a; ay

aghby agb; aghy

apb; abg

P2 D Do

This product should be compared with the structure of the array multiplier in Figure
6(b). This is because the array multiplier approach to multiplication closely follows
the pencil-and-paper method. The product components p; are obtained as described in
(20b). The sigma-cell sums the product ab, the carry out from the column of cells to
the right c;,, and the partial sum out from the row of cells immediately above, ps,,.
The sum of all ¢;,’s that contribute to pj is equal to r; in (20b). Thus, the sum com-

puted by the sigma-cell is
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ab + ¢y, + DSin = DSou + CoueD (24)

where ps,,, and c,,, are the output from the sigma-cell. As in section 2, the modulo
p multiplier, symbolized by a box with a ring-product sign ( ® ), produces outputs x

and ¢ from the inputs @ and b, where as before

ab =c +xp . (25)
We have
PSour = PSin + Cin + ¢ (mod p) , (26a)
Sin + €y + €
co,,,=x+Lp"‘ - 1. (26b)

p
The sigma-cell computes ps,,, and Cow according to (26a,b), and is depicted in Figure

10. In Figure 10 we have the following correspondences between variables:

x=x,
PSout = DPSiy1 s
PSin =ps; , 27)
c=p;,
Cin = Ci
Cour = Ciy1 -

Note that the box with the HA written in it is an ordinary half-adder. It uses the carry

Sin + Cin + C _
- @ J. The ordinary N -

outputs of the two modulo p adders to compute | P

bit adder then sums the half-adder output and x in order to compute c,,, (c;,; in the
figure). We can have N = N or, alternatively, if p =2" + 1 we can have N = n

(instead of N = n + 1) and use the carry out of the ordinary adder.
1.4 Serial Hardware for Modulo p” Arithmetic
In this section we present architectures for serial modulo p” addition, negation

and multiplication. The machines to be described are modifications of the serial

weighted binary arithmetic schemes presented in [17] and [18].
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PSI.Pi
N ‘i’N
c 1
out
D = o
L1 L
7 NT ¢

1
c:out<‘/“ + ‘+‘0

(ignore) ®in

c . ps

i+1 i+1

Figure 10: Sigma-cell of Figure 6(c).

Figure 11(a) depicts the serial modulo p’ adder. It is composed of a single
modulo p adder of the type in Figure 1, and of a single bit of -storage to hold carry
outputs from the current digit position. The delay element is denoted by a box with a
triangle (A). Naturally, the operands enter the machine in a digit serial fashion, least
significant digit (ag,bg) first. The output also appears in digit serial fashion, least
significant digit (s ) first.

Figure 11(b) depicts the serial modulo p" negator. It is based upon the negation
algorithm of section 3. Table II specifies the operation of the control box. The
operands enter the negator in digit serial fashion, least significant digit (@) first, and
the result leaves the negator in digit serial fashion, least significant digit (by) first. The

initial state of the control unit is zero 0.

Figure 12 illustrates the serial modulo p” multiplier. Figure 12(a) shows the

inner details of the r identical cells making up the serial multiplier, which are
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Z | present state | switch position (A B,C) | next state

0 0 C 0
0 1 B 1
1 0 A 1
1 1 B 1

Table III: State transition table for the control box of the serial modulo p” nega-

tor.
(a) ® 5
A

i
c. 1
p-1
| M TN b,
i — p-1- a,

b; ——-—-;‘N——- S, ) c
ai 40
z
— D=+—conTrol
1
N-input OR

‘]:— 1
Reset
Figure 11: (a) Serial modulo p” adder; (b) Serial modulo p” negator.
connected in the manner indicated in Figure 12(b). The darkened circles of Figure

12(b) denote the optional latches (delays) for pipelining.

Each cell consists of a modulo p multiplier of the type in Figures 3 or 4, a
sigma-cell of the type in Figure 10, plus some switching circuitry and storage. Regis-
ters A;. and B; save the digits of the operands which are input digit-wise, least
significant digit first, at the ports labeled oy and By (psg =0). The product output
appears in digit serial fashion least significant digit first at ps,. Register Q; is a single
bit control register, the state of which determines the position of the switches indicated

in the cell. Register C; saves the carry outputs that make up the variables labeled r
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9]

(b)
Cell 0 Cell 1 Cell r-1
o | P r. — o> O
Bo — o °- — e B,
PSy — lo— @ — @ PS,

Figure 12: (a) Basic cell of the serial modulo p” multiplier; (b) Serial modulo p”
multiplier as a cascade of the cells in Figure 12(a).
in (20b). Figure 13 shows the flow of data and control through anr = 3 cell machine.
The contents of registers C(,C,; and C, are not shown. Figure 13 assumes ripple-
through operation. Because of the relatively high time complexities of the modulo p
multiplier and sigma-cells, pipelining of the type depicted in Figure 12(b) will likely
be essential in practice.

1.5 Asymptotic Area and Time Complexities

In this section we evaluate the relative costs of the previously described designs
in terms of their asymptotic area and time complexities. We shall use the definitions
of functional latency (T), and functional period (P) found in Capello and Steiglitz
[22,23]. We refer the reader to references [22,23] for the definition statements. We

shall denote the area by 4.
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AO E A1 A2
0 B, 2
Qqy Q, Q,
Time Output (ps )
a 3
010 0 0
o bolo 0 0 0
0 1 1 1
a5 0 0
1 byl 0 3 by
mod
1o 1 1 (mod )
45|24 a4 0
2 b2 bo ‘E 0 ao b1+a1 b0+r1
1] 0 1 (mod p)
a 4, )
3 Bg by 05 a b2_4_a1 b1+32bo+r2
111 1 1 (mod p)

Figure 13: Flow of data through the serial modulo p” multiplier of Figure 12.

The modulo p arithmetic units are used to construct modulo p” arithmetic units,
and the modulo p arithmetic units are in turn constructed using "conventional" binary
arithmetic units. Thus, Table IV lists the asymptotic area and time complexities of the
Brent-Kung adder [19], the McCanny-McWhirter pipelined array multiplier [20], the
Luk recursive multiplier ([24], pp.317-326), and the pipelined Dadda multiplier
[23,25]. Other multiplier designs could have been added to the list: for example,
Lyon’s- serial multiplier [17], or the various DFT-FFT based designs of Brent and
Kung [26], and of Preparata ([24], pp. 311-316). However, we regard these designs as
being either too slow (serial multiplier), or not practical (DFT-FFT based multipliers)
for the reasons discussed in [24,26]. We shall assume that the serial and parallel

modulo p” arithmetic units of the previous sections are composed exclusively of the



8.24

Binary circuits A T
Brent—Kung adder O(nlogn) | O(log n) o
Multipliers :
McCanny -McWhirter 0 (n?% O(n) o (1)
Luk O (n%log?n) | O(log2n) | O(1)
Dadda O(n*logn) | Oog n) | O(1)

Table IV: Asymptotic area and time complexities of the basic building blocks

making up the modulo p and modulo p” arithmetic units.

binary arithmetic units in Table IV.

Mod p” arith. circs. A T P
Brent—Kung adder O(rnlog n+rlog r) | O(log n + log r) o)
McCanny et al. array:
McCanny ~McWhirter 0 (r’n? O (rn) o)
Luk O (r’n%log?n) O (r log*n) o)
Dadda O (r’n%og n) O(r log n) 0 (1)
Serial adder O (n log n) O (r log n) O(r log n)
Serial mult. (pipelined):
Array O (rn? O(rn) O(rn)
Luk O (rn?log®n) O (r log?n) O (r log?n)
Dadda O (rn®log n) O(r log n) O(r log n)

Table V: Asymptotic area and time complexities of the serial and parallel modulo

p'" arithmetic units.
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Therefore, from the entries of Table IV, we can construct Table V. This table
contains the asymptotic area and time complexity expressions for the serial and parallel
modulo p” arithmetic units. The Brent-Kung adder entry of Table V is the modulo p’
adder of Figure 6(a), but with the carries generated by the Brent-Kung array of Figure
8. As we have already noted, the modulo p adders themselves are constructed using
ordinary Brent-Kung adders (of size n + 1 bits if P =2" + 1, and of size n bits if
p=2"-1.

The McCanny-McWhirter array multiplier entry of Table V is the pipelined
modulo p” array multiplier of Figure 9. The three subentries labeled McCanny-
McWhirter, Luk and Dadda assume that the basic cells of Figure 9 are composed of
O (n) bit binary McCanny-McWhirter, Luk and Dadda multipliers, respectively. Pipe-
lining to the fullest extent possible is assumed so that in all cases P = O(1). The

resulting machines are completely pipelined as defined in Capello and Steiglitz [22,23].

The serial adder entry of Table V has P = O(r log n), and so it is not com-
pletely pipelined. This is because the cycle time (see [22,23]) is O(log n), and the
number of cycles separating corresponding bits of successive inputs (elements of

Zp, ), or outputs, of the addition function is O(r).

The serial multiplier (pipelined) entry of Table V has thrc?e subentries labeled
Array, Luk and Dadda. The serial modulo p’ multiplier is pipelined as in Figure
12(b). The Array subentry assumes that the modulo p cell is composed of an ordinary
O (n) bit unpipelined array multiplier, since pipelining it would serve no useful pur-
pose. Similarly, the Luk and Dadda subentries assume that the modulo p multiplier
cell is composed of unpipelined O (n) bit Luk and Dadda multipliers. Thus, for the
serial modulo p” multiplier, P = O(r log n) is the smallest possible period. In this
case the cycle time takes on its smallest possible value of O (log n). Hence, the serial
modulo p” multiplier is not completely pipelined either. Note that the serial modulo
p” multiplier, with a Dadda multiplier cell, has the same T and P as the serial modulo

p" adder (to within a constant factor).
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Some comparisons are worth making. The parallel modulo p” arithmetic units,
which are based upon the McCanny-McWhirter [20] design, have a high throughput
(P = O(1)), but they also have a large area (O (r*n%log n) 2 A 2 0 (r%n?) , depend-
ing upon which multiplier from Table IV is used). The serial modﬁlo p’ arithmetic
units, which are based upon Lyon’s serial multiplier design [17], have a low
throughput (i.e., high P) since P can vary from O (r log n) to O (rn) (see Table V),
but they have a relatively low area since A varies from O (rn? log n) to O (rn? (see
Table V). As well, their latency is comparable to the parallel modulo p” arithmetic
units (O(r log n) ST <O (rn)). It seems reasonable to conclude that the parallel
units are the most desirable when a high throughput is needed and one is willing to
pay the price in chip area.

The digit serial units are most desirable when a fast response (low T') is needed, a
low area design is required, and one is willing to compromise on throughput. Note
that the digit serial approach to modulo p” arithmetic can have an asymptotically
lower T than a completely bit serial approach. A completely bit serial modulo p”
multiplier would have Ty, = O (nr), but a digit serial modulo p” multiplier, using a

Dadda multiplier cell, has T, =O(r log n) and thus

for sufficiently large n. Note that the asymptotic upper bounds for T (and for A and
P) are tight in all cases that we have covered. That is, they are accurate for large n
and r to within a constant factor. Similarly, Pyrs =0 (nr) and Py = O (r log n), and

SO

for sufficiently large n. In addition, Aps =0 (nr) and Ay = O(r n?log n) which

gives
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Ay
Abs

=cy4 n logn

Hence, in return for an improvement in P and T, the digit serial modulo p” multiplier
requires a larger area than the completely bit serial modulo p” multiplier. Similar
results can be obtained for completely bit serial modulo p” addition and digit serial
addition.

1.6 A Note Concerning the Quadratic Residue Number System

From Chapter VI, the quadratic residue number system (QRNS) of Leung [27]
(see also Jenkins and Krogmeier [28], Jullien, Krishnan, and Miller [29], or Taylor
[13]) may be constructed out of prime numbers of the form 4k + 1. Recall that if
p =2" + 1, then p has the form 4k + 1 if and only if n is even (see [28], Theorem
2), and in fact a QRNS can be constructed using Zp' for any such p even if r > |
holds (see [28]). Thus, the architectures for arithmetic in ZP, have potential applica-
tions in the construction of QRNSs with a large dynamic range. Furthermore, if the
parallel modulo p” arithmetic unit designs are employed, then high throughputs can be
expected.

2. Mapping From the Integers to the Finite Ring Z,r

In this section we consider the problem of mapping an integer to a number of the
form in (4). That is, we consider the problem of mapping certain elements of Z (ring
of integers under the usual operations) to the elements of Z,- . The method described
herein does not use integer division. We only consider p =2" + 1. The case p = 2"
is trivial. In addition, the problem of mapping the elements of Z,- back to the

integers is briefly considered.

It is useful to begin by defining certain sets and ideas which we shall use in
succeeding sections.
The input data to a computational problem in a finite ring often originate from a

finite subset of the integers Z. This subset is usually rather small. Let this subset be

denoted by S. In computing with the elements of S, the final solution(s) may lie in a
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larger subset of Z. Let this subset be denoted by

r__ r_
s,={—p21,---,—1,0,1,---,p 1}. 28)

Thus we have S c Spr cZ.

We shall therefore map the computation in S,» to an equivalent one in Z,- in
the usual way (see Gregory and Krishnamurthy (5], pp. 9-10). Thus, if x e S,r and
x 20thenx e Z, ,butifx € Spr and x <0, then x mapstox +p” e Z, . We

shall want to place the elements of S, the input data set, in the form shown in @).

If we want to express x € S, with x 2 0, in the form of (4), we need only com-
pute the first few (2 or 3 usually) digits, since the remaining digits will be zero. This
is so since the members of S consist of relatively small integers, often in the range of

8 to 16 bits. Thus, we can expect simplifications in the mapping from S to Zyr
2.1 Casep =2" +1

Let us assume X € S with X 2 0 (case X < 0 will be considered later). As we
have stated, we want to map X tox € Zpr with x in the form shown in (4). We can
write

X =Xo+2"X +2"Xp+ - +20X, + .. (29)
Thus, X; € {0,...,2"-1}.
From now on we shall proceed by example. Let us assume that
X =Xy+2"X, +27Xx, , (30)
soX; =0fori 23 holds. Sincep =2" +1, X will map to
X =xg+xp +x,p% , (31)
since x; =0 for i > 3.
It is straightforward to verify that

X =[(X;=2X)2" + X¢~X,)] + X,p? , and
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(X1=2X2)2" + X=X )) = X=X +X,) + (X 1—2X5)p
via the rule for integer division. Thus,
X = X=X 1+X)) + X 1-2X )p + X p? . (32)
It is clear that further work is needed in order to obtain Xo.X) and x,. Clearly,
Xo-X1+Xy=xg+rg ,
ro+ X1 -2Xy=x1+rp , (33)
ri+X,=xy+rop ,

but we ignore r, as it will be zero. Thus, we must find ro and ry in order to compute

Xo.X1 and x,. Let <x>, denote the remainder (residue) of x divided by p. Hence,
Xo=<Xog=-X;+Xp>, ,
x1=<r0+X1—2Xz>p , (34)
Xy=<r;+ X2>p

It is evident that r( and r; will be small integer multiples of p. In fact, it is readily

shown that

ro € {—I,O,l} T € {—3,-2,—1,0,1,2} : (35)

in the worst possible case.

Since x; is n + 1 bits long, we make X; n +1 bits long by Juxtaposing a zero
(0) to the most significant bit position of X;. Clearly, this does not affect the value of

X;. As well, we consider r; to be n + 1 bits long. Define
fo=Xo-X1+X)-xo=rp , (36a)
' Ly =(ro+ X -2Xp) ~x,=rp
where

Yo =1onlon-1 """ to1too » (36b)
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h=thnlipe-1 0 it
and tq; ,t,; € {0,1}. Equation (36b) represents the binary expansion of ¢y and ¢,.
We will assume a twos complement representation in particular.

By examining the possible values for rop at the bit level, knowing that ro

satisfies (35), we conclude that
A A - A
To=Ttonton-1 * " 201200 »fon =loofon > (372)
where the juxtaposition of too and t_o',, is the logical AND of the arguments, and Lon

is the logical complement of to,. Similarly, by examining the possible values for ryp

at the bit level, knowing that r satisifies (35), we conclude that

A A —
LS linbia-1 "7 a1 » i S 0iatip + 0000, (37b)

where '+’ is the logical OR operation. Thus, simple logical operations on t4 and )

suffice to determine r and r,.

r°+X I—ZX 2

R%—-L
—_—
T
>
)
|
11—
¥

r—
Nd
N+
M

<Xo"x l+x2>p —& 0 <r°+X x‘2Xz>P 1 <l'1+x2>p
+n+1 n+1 ? n+1

X X X
0 1 2

Figure 14: Machinetomap X € S forX 20 to Z, forp =2" + 1.

Figure 14 depicts an architecture that may be used to implement the preceding
mapping algorithm. Tﬁe boxes labeled R and R, produce ry and r, respectively,
according to (37a,b). Notice that the least significant digits are produced first. This is
useful when the modulo p” arithmetic operations are to be performed in a digit serial

fashion.
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22 Casep =2" -1
We will again proceed by example. As before, assume that X € S and that

X 2 0 such that (30) is satisfied. Since p =2" -1, X will map to
X =Xg+xXp +xp%+ x9p3 . (38)
Via the method used to obtain (32) we can write |
X=Xo+X1+X)+ (X, +2Xp +Xp? . 39)
As in (33) we have
Xo+ X +Xy=xp+rep ,
ro+ X1 +2X,=x,+ryp , (40)
ri+X,=x9+ryp ,
ro=Xx3+rsp ,
but we ignore r5 as it will be zero. As in (34),
Xo=<Xg+ X, +Xp>, ,
Xp=<ro+X;+2X>, (41)
Xp=<ri+Xyp»>, ,
X3=7rq .

In the worst case

ro,ri € {0,1,2,3} , Ty € {0,1} . (42)

X; and r; are n bits long, since x; is n bits long. Define by analogy with (36a)
o= Xo+ X1 +X) —xo=rgp ,
t1=(r0+X1+2X2)—x1=rlp , (43a)
L= +X) —xy=ryp ,

where
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fo = ton-1ton-2 " to1too .
I :.tl.n—ltl,n—Z RS RUS T v (43b)
12 = tantlona “ " ty1tag , |

and ry; »f1i .82 € {0,1}). The n bit binary rcpréscntation of pisl1l --- 1 (n

ones).

By examining the possible values for rop ,rp , and rop at the bit level, know-

ing that they satisfy (42), we conclude that
ro = twos complement of t |,
| = twos complement of t, , (44)
Ty =1twos complement of 1, .

Note that ¢; is n bits long.

Figure 15 depicts an architecture, like that of Figure 14, that may be used to
implement the preceding mapping algorithm. The boxes labeled NEG compute rg , r,
and r, according to (44). As in Figure 14, the least significant digits are produced

first.

<2<
4
+———
¥y
.
4

- XX +Xy | ¢ oK +2X, S SO
+ + +
O Pe G
L <X o+X 1+X >, _.<.- ro _.: < o¥X 42X >, ___‘,‘ r1 <+ X2, H,- r 2
4 N 1N 4+ N n
v v v
X0 ol X X3

Figure 15: Machine to mapX € S forX >0 to Z, forp =2" - 1.
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If X e S and X <0, then simply map | X | (absolute value of X) to Zp,
according to the methods described in this and the previous section. Finally, negate
the result modulo p". Modulo p” negation is straightforward (see [15]).

2.3 Mapping from Z,r 10Z |

Thus far we have considered how to map from Z to Z,» . Now we consider the

inverse problem of mapping from Z, back to Z.
In principle one could use Horner’s rule for polynomial evaluation to map x in
(4) to an integer in Z, i.e.,
X =Xo+pXy+pay+pxy) (45)

if r =4, for example. Equation (45) is evaluated starting with the innermost

r

p-1
2

parentheses. However, since x > corresponds to a negative integer in Z, this

approach must be modified.

r

p -1
2

One way would be to test if x > holds, and if this is SO, compute

[ x | == (mod p”), and so map —x (mod p") to a positive integer via (45). The

sign could then be readily corrected. It may be readily shown that

r-1 . pr -1 .
y=Zyp' = (46a)
i=0

for

2L p=2ran
i = (46b)

2"l -, p=2n-1

(all i). Thus, to check if x e Z,» corresponds to a negative integer, we must com-
pare it to y in (46a) whose digits satisfy (46b).

Mégnitude comparison in Z,r 1is straightforward, provided that we interpret all

of the elements of Z,- as nonnegative integers. This will be the case when we com-

pare any x € Z,, againsty in (46a,b) to see if x corresponds to a negative integer.

Let us consider arbitrary magnitude comparison with an example. Let
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X =xo+Xp +xp>+xp3 47)

Yy =yo+yw +ypl+yp?,

where x,y € Zp, . Define test functions

1, a=5b,

e(@ab) = {O 2%b, (48a)
1, a >b,

g@ab)= {0’ a <h (48b)

We are assuming that a,b € {0,1,....p=1}. Such test functions could be constructed in

the usual manner (see Mano [30], pp. 164-167). Let

I, x>y,
Tr—1= O, X _<_y’ (49)

where x,y € Z,., and so x and y are r digits long (in our current example r = 4).
It is straightforward to verify that for x and y in (47)
T3=g3+esgy+eserg; +esese8g, (50a)
where
8i =8y e =elxy). _ (50b)
T,_; can be recursively computed via
T; =g(x.y) + e'(xi’yi) Tioy wTo=gxoyo) » (S
where 0 < <r-1. |

Equation (50a,b) is analogous to the expression for (4 > B) at the bottom of page
165 in [30]. Equation (51) makes it possible to compare x and y in digit serial
fashion'beginning with the least significant digit. Since y satisfies (46a,b) in our prob-
lem, the comparator structure will simplify. This is especially true of the structure to
implement g (a,b). However, we omit the details. Note that once we have obtained

| x |, scaling by a power of p is trivial.
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Chapter IX

FAULT-TOLERANT DESIGN

When Z, is a large ring (ie., large p"), the arithmetic units used to perform
modulo p” operations, and the units to map from Z to Zpr and vice versa will occupy
a large chip area. Indeed, the area required may be so large that such technologies as
wafer-scale integration (WSI) may be necessary in order to successfully construct such
systems. We know that errors in finite ring computations are intolerable in general,
especially if the ring is a product ring. Yet it is also known that the yield (fraction of
chips or wafers fabricated that are fully functional) falls rapidly as areas increase, and
can be close to zero for large area systems. Clearly then, unless special steps are
taken, it will not be possible to compute in a very large ring at all since it will not be
possible to build working hardware, Furthermore, even if such hardware could be
built, it is likely to have reliability problems. Thus, we must be able to design fault-
tolerant systems. However, it is beyond the scope of the present work to consider this
problem in detail. Instead we will outline the problem and att;:mpt to evaluate the

prospects of arriving at a successful solution to it.

1. Types of Faults

An integrated circuit (IC) may be afflicted by two classes of faults. These are:
(i) hard faults, and
(ii) soft faults.

Hard faults are due to physical failures in the circuitry itself. These faults can
occur during fabrication, or when the IC is operating in the field (ie., wear-out
failures). Physical failures in ICs are discussed in greater detail in Pradhan [ 1] (see
pp. 6-15).
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Soft faults (errors) can be caused in at least three ways (Savaria et al. [2]);
() ionizing radiation (e.g., alpha particles),
(ii) electromagnetic interference,
(iii) electrical noise (e.g., thermal noise, shot noise, etc.).
Soft faults are of a transient nature, and so are hard to detect. We shall consider the
phenomenon of charge leakage to be a hard fault. Note that hard faults (such as
charge leakage) can be of an intermittent nature as well, and so can mimic soft faults.
In designing a system for computation in a large ring, it will be necessary in gen-

eral to design the system to tolerate both hard and soft faults.

2. Fault Tolerance in VLSI Based Systems

The motivation for incorporating fault tolerance into a system is actually twofold
(see [1], pp. 547-549):
(1) yield enhancement, and
(i) reliability improvement.
Fault-tolerant system design involves the use of hardware redundancy. In this section
we briefly outline various strategies for fault tolerance, some of which are applicable

to arbitrary design problems, and some of which are peculiar to residue number sys-

tems.
2.1 Testing and Restructuring

Testing and restructuring strategies are discussed in [1] (see Chapter 7, section
7.9), and we summarize a few concepts from [1] on this subject here. Note that
design for testability (DFT) is a vital consideration if the test and restructure philoso-
phy is.to be employed in the construction of fault-tolerant hardware. DFT is discussed
in [1] (Chapters 1 and 2) and so we will not consider it here. However, we
emphasize that testing does not indicate that no faults are present. It can only indicate
if faults are present. This means that some faults will inevitably escape detection. The

challenge then is to reduce the level of undetected faults to an acceptable minimum.
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Since faults can occur during fabrication, yield enhancement can be achieved by
incorporating spare elements on the chip or wafer to replace those elements that are
tested and found to be defective. Such testing and replacement is performed during
production testing (i.e., before the chip or wafer is sent out into the field for use).
Yield enhancement is therefore achieved by making it possible to use defective cir-

cuits.

Reliability improvement is achieved by replacing defective elements with properly
operating spares while the chip or wafer is out in the field. Such replacements may
even occur while the chip or wafer is in operation. Note that in the field, the chip or
wafer is not directly accessible as it is at the production facility prior to assembly.
Thus, strategies for fault tolerance as a means of achieving reliability improvement are
generally different from strategies for achieving yield enhancement. Fault tolerance

for reliability improvement will often require the chip or wafer to test itself.

An important point concerning the test and restructure strategy is that there is a
basic tradeoff between yield and speed/performance, as is argued in [1] (see pp. 565-
567). When defective elements are replaced (bypassed), the path lengths between the
working elements often increases, and this causes a degradation in the system’s
speed/performance. Thus, given a fixed speed/ performance requirement, one cannot
permit arbitrarily large numbers of elements on a wafer withdut reducing the total
yield.  Conversely, given a fixed total yield requirement, the allowable
speed/performance degradation due to element replacement may have to increase with

the number of wafer elements.
2.2 Triple Redundancy With Voting

Figure 1 illustrates the principle of triple redundancy with voting, also called tri-
ple modular redundancy (TMR). Suppose f(x) € {0,1} is a Boolean function, where
x is a Boolean input vector. The circuit implementing f is duplicated three times
(blocks labeled A,B, and C). If the output of one of the three circuits disagrees with
that of the other two, then the voter circuit will select the output to be that of the two

circuits that agree with each other. A VLSI bit serial adder and multiplier by
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Kanopoulos [3] uses this method of achieving fault tolerance, Clearly, the method has
disadvantages. For one thing, the voter is a critica] circuit; it cannot be allowed to
fail. Faults at the input x cannot always be corrected. The method has a hish area
overhead since it occupies an area of more than three times that of the nonredundant
implementation of function f. The circuit is also somewhat slower than that of the

nonredundant implementation of f.

TMR can be used for reliability improvement. We will examine its possible role

in yield enhancement here.

X f(x)
f voter —>

C

Figure 1: Triply redundant implementation of Boolean function J (x) with a vot-

ing circuit.

Suppose Af is the area of the circuit that implements f nonredundantly, and A,
is the area of the voting circuit. We can reasonably model yield in the following way,
at least to a first approximation. If there are N fatal flaws per unit area on a chip of

area A, then the probability of a bad chip is (see [4], pp. 45-46)
P=1-¢N (1)

It is assumed that the fatal flaws are randomly distributed over the wafer. Thus, if the

circuit for implementing f is implemented nonredundantly, it has a failure probability

of
Pp=1-¢M (2a)

'

If f is implemented redundantly as in Fig. 1, it has a failure probability of
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Py =1 3(1 = e NI ~WA; ~NA. _ =3NA; -NA,

=1 3e—N(?A, +A,) + 2e—N(3Af +A,) (2b)

k4

where we assume that the three copies of f and the voter circuit fail independently.
For simplicity, let A, =0, and let o = ™™ (= probability that the éifcuit which

implements f nonrcdu‘ndantly works). Thus
Pr=1-a, (3a)
Pp=1-3a%+2a3 . (3b)
A sketch of P; and Pj; versus o may be seen in Figure 2. It is clear that P, < P, for

?21— <a <1 Thus yield is enhanced if and only if —;: < a <1 in our present model.

P
Infact,ifa—althen—’-——wo,anda--)lifNAf — 0.
/i

v

Figure 2: P; and P versus a.

Assume that NA s and NA, are small enough so that we may accurately approxi-

mate e* by 1 + x. Then, using (2a) and (2b),

Py Af

4)
Py A,

Thus, since we want P; > P;;, we must have Af > A,. Thus, a significant enhance-

ment of yield will occur if NA; is small and A, is much less than Ag. This suggests
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that TMR as a means of achieving enhanced yield should only be used at low levels in
a design, i.e., at the level of circuits with a small area relative to the area of the entire

design.

Another point of importance is that, on a wafer of a given size, the number of
redundantly implemented functions f that can fit onto it is much less than the number
of nonredundantly implemented functions. In the present case, the redundantly imple-
mented function is more than three times larger than the nonredundant function.
Clearly then, the increase in the yield of functions per wafer due to the use of redun-
dancy must offset the loss in yield of functions per wafer due to the larger area of the
redundantly implemented functions. Thus the large area of a redundantly implemented

function will likely discourage the use of TMR as a yield enhancement strategy.

We emphasize that the yield model of (1) is known to be rather simplistic. For
example, it is known that yield varies radially with distance from the edge of the wafer
(see Ferris-Prabhu et al. [5]). A better model is based upon the use of the so-called
generalized negative binomial distribution [6,7], since it accounts for the tendency of

faults to cluster.

As a historical note, TMR was originally conceived by Von Neumann {8]. The
method is an example of an error masking strategy. Another error masking strategy is
called quadded logic, which is a quadruple redundancy method. It was developed by
Tryon ([9], pp. 205-228; also see Kohavi [1op.

2.3 Error Control Coding Theory Approaches

Error control coding theory is known to be useful in digital communications sys-
tems since errors that occur in data transmitted over a communications channel may be
corrected at the receiver provided that the data was suitably coded at the transmitter
and the channel capacity is not exceeded (see Blahut [11] or MacWilliams and Sloane
[12]). It was realized in the 1950’s (e.g., see [8] or Peterson and Rabin [13]) that cod-
ing theory could also be applied to the problem of fault-tolerant system design, since a
processing unit resembles a communications channel, and in particular, a faulty proces-

sor resembles a noisy communications channel. Thus, Figure 3 illustrates the principle
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behind the error control coding theory approach to fault-tolerant system design.

In Fig. 3 output z is some function of the inputs x and Y. Inputs x and y are
encoded as U(x) and V (y), respectively. Instead of processing x and y directly, the
processor operates on the coded inputs U(x) and V(y) giving coded output W(z).
W(z) is then decoded as z, the true output, by the decoder block. Clearly, for this
scheme to succeed, the processor must produce a valid codeword output for a valid

codeword input. This naturally constrains the coding methods that can be employed.

U(x)
X
—>{ encoder W(z)
processor decoder |
z
—>  encoder
y
V(y)

Figure 3: Illustration of the error control coding approach to fault-tolerant sytem

design.

Perhaps the simplest example of the coding theory approach to fault-tolerant sys-
tem design is parity prediction (see [1], pp. 344-359). In this method the parity of the
result of some operation is predicted by a parity prediction circuit, and compared with
the true parity of the result that is actually produced. If there is a disagreement
between the predicted parity and the actual parity then an error signal is generated.
This concept can be employed in adders, multipliers, dividers, and even in arbitrary
combinational logic circuits. The area of a circuit with parity prediction is roughly
twice that of a circuit without it.

Arithmetic codes are error control codes used to check arithmetic operations (see
(1], pp. 312-319, and pp. 337-344). Since the algorithms considered in this thesis are
very arithmetic intensive, such codes may be very useful in solving the reliability

enhancement problem. One type of arithmetic code involves the use of residue
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arithmetic. Let N represent a positive integer. Let
R =N mod A ,

so R 1is the residue of N modulo A. The concatenation of N and R, denoted (NR), is
called a residue code (see [1], pp. 339-340). The modulus A is called a check base.
With this code errors may be detected in the following way. Suppose that N 1 and N,

are positive integers with modulo A residues R, and R, respectively. Then
Ny 2Ny mod A =R, 2Ry mod A
(N\Ny) mod A =(RR,) mod A

Checking involves the comparison of the residues of the operations on N, and N, with
the residues of the operations on R 1 and R,. Any discrepancy indicates the presence
of an error. The choice of check base influences the implementational complexity of
the residue code. So-called low-cost codes arise when one considers a check base of
the form A4 =2% - 1 (see [1], pp. 340-341, or Avizienis [34]).

Reed-Muller codes (see [11,12]) may be employed in the construction of fault-
tolerant combinational logic (see [1] pp. 319-321, Pradhan and Reddy [14], and
Pradhan [15]). A Reed-Muller code of blocklength 2™ and of order i (0 <i < m) has

. L = . 2m—i ]
a minimum Hamming distance of 2™~ and so it can correct t (—~—————) 1 errors

2

and detect 2~ errors. The central result of [14] is a lemma:
Lemma (Pradhan and Reddy [14]): If x and y exist in an ith order Reed-
Muller code, then x * y exists in a 2ith order Reed-Muller code, where * s

any two variable function, performed bit-by-bit.

m=2i __
Thus, the technique in [14] can correct up to I_Q-z—l—-)—_] errors and detect

2™-2-1 errors in the output of the processor (see [14], Theorem 2). Note that with
this approach the decoder is critical and so a failure in it is not tolerable. The decod-

ing operation involves the use of majority logic and exclusive-OR gates (see [11,12]).
Based upon certain assumptions (see [14], section II), the maximum efficiency of

. : . k
any error control scheme that can either detect or correct errors in W(z) is 5 (= e
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k = number of information bits, n = blocklength of the code). The Reed-Muller
scheme of Pradhan and Reddy [14] asymptotically approaches this efficiency, for a
code with a given minimum distance specification, as # = 2™ — e, The area over-
head of the Pradhan and Reddy strategy for fault tolerance is not evaluated in either
[14] or [15]. It will depend upon the areas of the encoding and decoding circuits, and
upon the efficiency of the particular code chosen. However, it seems reasonable to
assume that the area of a processor with Reed-Muller coding for fault tolerance will be
at least twice as large as a processor without such a scheme. It is also clear that the
speed of a circuit that uses Reed-Muller coding will be lower than that of one which
does not use it.

Checksum techniques can be applied to error detection and correction in processor
arrays for the solution of certain linear algebra problems. This fact is demonstrated in

Huang and Abraham [16], and in Jou and Abraham [17].
If A is an n x m matrix such that A = (a;j]nxm» Where a;; may be integer or
floating-point, and 1 <i <n , 1<, <m, then the column checksum matrix A, of A

may be defined as the matrix 4 augmented with an (n+1)th row e A (T is transpose),

wheree? =11 --- 11is a 1 x n vector all of ones. Symbolically,
A
A = T (5a)
Similarly, the row checksum matrix of A is
A,=,AlAe’, (5b)

where Ae is the (m+1)th column used to augment A, and the full checksum matrix A £
of A is defined as the column checksum matrix of A,. These definitions are from
[16]. In [16] it is shown that certain operations performed on checksum matrices
result m valid checksum matrices. For example, from Theorem 4.1 in [16], if C = AB

(matrix product), then
Cf = ACB,. , (63)

since
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A AB ABe
AB, = | = IBIBe’: l (6b)
‘ eTA eTAB ~ eTABe

A more genex"al version of this checksum encoding scheme, called the weighted check-
sum coding (WCC) scheme, may be found in Jou and Abraham [17]. The WCC is
more powerful than the scheme in [16] since it is more general in that it can correct
and detect multiple errors. It is important to note that these techniques are applicable
at high levels in a system, i.e., at the processor level. As such, the method is to be
used in solving the reliability enhancement problem, rather than the yield enhancement
problem. WCC is only applicable to a limited (though vital) class of matrix algebra
problems. Parity prediction and the Reed-Muller coding method are applicable at

lower levels in a design, and so are more universally applicable.

There is of course a time and area overhead involved in the use of checksum
schemes for fault-tolerant system design. For example, consider the problem of multi-
Plying two n x n matrices on a mesh-connected processor array (see Fig. 2 in [16]).
The array without the simple checksum scheme of [16] requires n? processors. If the
simple checksum scheme of (6a,b) is used, then an additional 25 + 1 processors are
needed. On such an array, the two martrices are multiplied in O (n) time, but an addi-
tional O (log n) time units are needed in order to detect any errors that may have
occurred [16]. ‘

2.4 Techniques Peculiar to Residue Number Systems

Certain techniques have been developed for the design of fault-tolerant RNS com-
puters. Often these methods are based upon the use of redundant residue digits.
Examples of this practice may be found in Mandelbaum [18], Barsi and Maestrini [19],
or Ramachandran [20]. The redundant residue concept is extendable to computing in
quadratic residue number systems (see Krogmeier and Jenkins [21]). Hardware struc-
tures to implement the redundant residue schemes are discussed in Jenkins [22,23].
The convolution of finite length sequences over finite fields can be made fault-tolerant
using results from the theory of cyclic error control codes {(see Redinbo {24,25] and
LaMacchia and Redinbo [26]).
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A redundant residue number system (RRNS) may be described in the following
way (see [18]). Ordinarily, the nonnegative integers x in the range [0,M), where
M =mm, m, and ged(m;m;) =1 for all i #j, are mapped to the n-tuple
(1Xg o x,), where x; = | x |, (= residue (remainder) obtained upon dividing
x by modulus m;). In an RRNS the nonredundant moduli my,..., m, are aug-
mented by r additional redundant moduli Mpsys ooy My, Thus, x € [OM) is
mapped to the (n+r)- tuple (x,,..., Xn s Xnsl s« o s Xpyp). The digits x; for
1 <i <n are called nonredundant digits, while the digits for n+1 <i < n+r are

called redundant digits. Note that, from [18],

Mpir > 200 DMy >my > -+ >my @
but this restriction is actually relaxed in Barsi and Maestrini [19]. In [18] it is shown
that an RRNS with r redundant moduli will detect r errors and correct | —;—J errors

in any ith residue digit (1 <i < n+r). It is important to note that input data and the
results of computations in an RRNS must be restricted to range [0,M), not
(OMm, .y -+ m,,,), as numbers in the range from M to Mm,,, -+ m,,, -1 will
be considered as the result of errors by the RRNS error detection and correction cir-
cuits. The implementation techniques discussed in [18-23] are all quite complex from

the hardware implementational standpoint.

We shall not consider the fault-tolerant convolution schemes in [24-26] since we
are not directly concerned with convolution in this work. However, we note that the
methods in [24-26] are applicable to the design of fault- tolerant correlators for
sequences over finite fields. Recall that correlation coefficients often constitute the
input data to the Schur (and other) algorithms. It may be worth noting that binary
multiplication can be considered as the convolution of finite length sequences over a
finite field with a ‘carry release” operation (see Brent and Kung [27], or Preparata in
[28] on pp. 311-316). Thus, Redinbo’s cyclic coding schemes could conceivably be
used in the design of fault-tolerant binary multipliers, except that some scheme other
than a cyclic coding one would be needed to make the carry release circuitry fault-

tolerant. This is likely to be a difficult problem, however.
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2.5 Soft-Error Filtering (SEF)

In Savaria, Hayes, Rumin and Agarwal (2], and in Savaria, Rumin, Hayes and
Agarwal [29], it is argued that soft errors (faults) will be the dominant factor determin-
ing the reliability of VLSI and WSI circuits with submicron feature sizes. In fact,
they argue that soft errors will exceed errors due to hard faults. They propose a
method, called soft-error filtering (SEF), as a means of controling errors caused by

ionizing radiation, and electrical noise or interference.

The finite state machine of Figure 4 is a widely applicable model for digital
machines, and so when SEF is applied to this circuit, the method can be readily
extended to other circuits (e.g., pipelined machines). The model in Fig. 4 is taken
from Fig. 1 in [2,29] and assumes a two-phase nonoverlapping clock scheme (clock
signals are ¢1 and ¢ 2). The outputs of the latches follow the inputs when the clock

signals are high.

¢1 o2
inputs outputs
— —3
combinational
logic
latches latches

Figure 4: Dlustration of the soft-error filtering (SEF) concept circuit model.

A soft error can occur in either the latches, or the combinational logic network.
SEF assumes intrinsically soft error tolerant latches (static latches), and so soft errors
can only result from transients injected into the combinational logic. Such injected
transients will appear as transients in the output of that logic (i.e., at the inputs to the
output latches, which are clocked with ¢ 2). It is readily seen that if the transient is of

a duration less than the setup time of the output latches, then the transient will not
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pass through the output latches. Thus, the principle of SEF is to increase the latch
setup times sufficiently to reduce soft error rates to acceptable levels. Evaluation of
the effectiveness of SEF, the design of SEF latches for CMOS technology, and an
evaluation of the area and time overheads involved in the use of the method may be
found in [2,29]. It is concluded in [2,29] that SEF is likely to be a superior way of
controlling soft errors when compared with classical approaches based upon such
methods as TMR, and error control coding theory approaches. It is important to note
that SEF does not work with dynamic logic; it is intended for use with static circuits
only. As well, SEF obviously gives no protection against hard faults, unless their

effects are of sufficiently short duration (which is unlikely of course).

3. The Prospects for Reliable Computation in Large Finite Rings

On the basis of what we have seen so far, is it likely that reliable computation in
large finite rings can be achieved ? We shall attempt to answer this question here.
The phrase "reliable computation" shall be taken to mean the following. If we can
build hardware for computation in large finite rings with an acceptable yield, and if the
resulting hardware has a sufficiently high probability of working for some prespecified
length of time without failures (hard or soft) that result in errors, then we have
achieved reliable computation. For us, a finite ring will be large if hardware for com-
putation in it must be built with WSI technology, or at least with VLSI technology
possibly employing submicron feature sizes, multiple layers of metal, polysilicon, etc.,
and/or large die sizes. The use of the vague term "likely" is deliberate. We use it
because it is not possible, in the present work, to definitively prove that reliable com-
putation in a large finite ring can be achieved. Definitive proof will necessarily require
the design, fabrication, and testing of real physical systems, and this will be a very

arduous task.

Let us first address the yield enhancement problem. From the arguments of sec-
tion 2.2 it is unlikely that such approaches as TMR, quadded logic, or even the error
control coding methods (with the possible exception of low-cost coding schemes) can

be used successfully in solving the yield enhancement problem. This is due to the
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relatively large area overhead involved in using these methods. The redundant residue
schemes of section 2.4 are not useful either since they are used at the system level
(ie., at a high level in the design) and occupy a large area. SEF obviously can’t
enhance yield. Thus, it appears that we are left with the test and restructure methodol-
ogy of section 2.1. This strategy is advocated in Koren and Pradhan [7], and is
reviewed in Moore [30]. In [30] it is concluded that VLSI chips with a one-
dimensional array architecture (the structures of interest to us here) could successfully
exploit the test and restructure methodology. This conclusion is partly based upon
results presented in Manning [31], and in Finnila and Love [32]. In [32] a whole-
wafer linear array processor was proposed for radar tracking and general arithmetic
applications. Discretionary wiring was used to interconnect working processing ele-
ments on the wafer. Discretionary wiring involves the testing of processing elements
and the use of a metallization layer dedicated to the task of interconnecting working
processors. Since faults can occur in this metallization layer, electronic switching was
also incorporated in order to isolate faulty cells. In [31], cellular grids that can be pro-
grammed to link themselves into working systems were investigated, and the systems
either had a one-dimensional topology (i.e., were linear arrays) or had a tree topology.
In both cases the operations performed by the cells were not highly complex. Thus,
the success of these test and restructure methods seems to hing€ on the simplicity of
the constituent cells (processors) since simple and regular processing elements are
more testable than complex and irregular processing elements. Since the cells compos-
ing the modulo p” arithmetic units are simple and regular, the prospects of success-
fully employing such test and reconfigure schemes appears to be reasonably good.
References to more recent examples of the successful exploitation of test and
reconfigure methods in systolic processors may be found in [1] (see page 567), and
also in-Kuhn [33].

As we have seen, many approaches exist for solving the reliability problem (e.g.,
TMR, error control schemes, etc.). Many of these methods yield systems tolerant to
both soft and hard faults. However, it seems the best method of achieving tolerance to

soft faults (in static circuits) is the soft-error filtering (SEF) method of Savaria et al.
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[2,29]. Error control coding methods may well be the most efficient way of achieving
tolerance to hard faults, especially since this approach can be applied at all levels in a
system. The overheads appear reasonable when compared with classical "brute force"
strategies such as TMR and quadded logic. The redundant residue schemes of section
2.4 are likely to be of little use. - This is because the redundant moduli are so large
compared with the nonredundant moduli thus adding enormously to the area and time

overhead.

Thus, we tentatively conclude that reliable computation in large finite rings is
now, or will soon be, possible. Acceptable yields will be achieved mainly through the
use of test and restructure schemes. Reliable operation will be achieved through SEF
(for soft faults) and through error control coding methods (for soft or hard faults). In
view of the large areas required by implementations of the architectures in this thesis,
it is recommended that a systematic study of the schemes for fault tolerance outlined

above be included in further work on this topic.
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Chapter X

CONCLUSIONS AND SUGGESTIONS FOR FUTURE
RESEARCH

1. Summary and Conclusions

We have investigated the solution of certain problems involving Toeplitz
matrices. These problems were: (i) Toeplitz matrix inversion and/or LDU factoriza-
tion; (ii) Toeplitz system solution; (iii) reflection coefficient computation. The Toeplitz
matrix problems were examined from several different viewpoints. The main points
may be summarized as follows. We have considered the Schur and split Schur algo-
rithms for the solution of Toeplitz matrix problems, and in the process a Schur algo-
rithm for Hermitian Toeplitz matrices of any rank profile (ie., the singular leading
principal submatrix case) was developed. VLSI/WSI implementable linear parallel-
pipelined processor arrays consisting of O (n) processors (n is the order of the matrix)
were presented to implement the Schur and split Schur algorithms. These had a time
complexity of O (n), except in the singular leading principal submatrix case where the
time complexity may be as high as O.(n2). The split Schur algorithms, when imple-
mented on a sequential processing system, represent a more efficient means of comput-
ing reflection coefficients than the Schur algorithm, but are not well suited to the prob-
lem of LDU factorization. This is because the inverse mapping from the split Schur
variables to the Schur variables increases the number of multiplications needed, and
this makes the split algorithms no more efficient for this application than the Schur
algorithm. However, the inverse mapping presents no problem in the context of a
parallel processor implementation. The fixed-point arithmetic properties of the Schur
and split Schur algorithms were considered, and the algorithms were found to be

numerically stable. Only ill-conditioned input data gives poor results. To cope with
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the ill-conditioned data cases, error-free computation was advocated. In particular,
computation in finite rings was shown to be better than computation with Hensel codes
or with rational numbers. The finite ring of integers modulo p’, denoted Z,-, was stu-
died for the cases where p = 2" + 1. The ring Z,» was advocated mainly because of
the ease with which its size can be increased; simply increase r while holding p fixed.
As well, large quadratic residue number systems (QRNSs) can be created when p is a
Gaussian prime of the form p = 2" + 1. This is potentially useful in the complex data
case. To handle complex-valued data with rational-valued real and imaginary parts,
the conventional QRNS was extended. Hardware structures for modulo p” arithmetic
(addition, subtraction, multiplication), and for mapping integer data into Zpr without
integer division were presented. These structures are VLSI/WSI implementable.
Error-free forms of the Schur algorithm were presented to facilitate their implementa-
tion with arithmetic in finite rings.

We conclude that error-free computation must be used to handle the ill-
conditioned Toeplitz matrix cases. These cases arise when reflection coefficients have
magnitudes at or near unity. Thus, the singular leading principal submatrix case is
severely ill-conditioned, and error-free computation is essential to successfully solve
such a problem. Furthermore, to solve Toeplitz matrix problems as rapidly as possi-
ble, parallel-pipelined processor arrays of the type discussed in this thesis must be
employed. Because rings of large size are needed, the ring Z,- is a logical choice.
Finally, we tentatively conclude that fault-tolerant design methods are, or will soon be,
sufficiently advanced to permit the actual VLSI/WSI implementation of the Toeplitz

matrix problem solution methods that appear in this thesis.

2. Suggestions for Future Research

There is much potential for further work. We have already noted certain open

problems, the most important of which are:

(1) It is necessary to investigate means of multiplying matrices by vectors other than

the linear systolic array such that the Schur algorithm for Hermitian Toeplitz
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(3

4
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matrices of any rank profile will have a time complexity of no worse than O (n)
(see Chapter IV, section 4).

An error'-free form of the Schur algorithr ‘or Hermitian Toeplitz matrices of any
rank profile would be useful. |

Error-free forms of the First and Second Back-Substitution Algorithms (Chapter
IV) should be “integrated" with the error-free forms of the Schur algorithm
(Chapter VTI).

The problem of fault-tolerant system design in the context of the problems con-
sidered in this thesis needs to be intensively investigated, and this includes design

for testability issues as well.

However, many other open problems exist. We list a few more here:

&)

(6)

Q)

8

®

The Levinson-Durbin algorithm of Delsarte, Genin and Kamp [1] produces Levin-
son polynomials a,(z), and predictor polynomials x;(z). The Schur algorithm of
Chapter III, section 3 can be modified to produce these polynomials without the
need for inner product computation. A parallel processor implementation of the
resulting modified Schur algorithm would be desirable.

Split Schur algorithms for the Hermitian Toeplitz case h‘ave yet to be developed.

The results in Krishna and Morgera [2] may help to solve this problem.

Rissanen’s algorithm [3] is applicable to both Hankel and Toeplitz matrices, but it
has not yet been investigated to see if it is amenable to parallel processing system

implementation. Note that this algorithm applies to the singular submatrix case.

It would be worthwhile to find Schur-like algorithms for the near-to-Toeplitz

matrix problems noted in section 2.7 of Chapter II.

An error-free form of the Bareiss algorithm would be useful.

(10) Can the Bareiss algorithm be modified to cope with the singular leading principal

submatrix case ?

(11) Investigate error-free forms of Jain’s algorithm [4] for banded Toeplitz matrices.
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(12) An inverse scattering theory framework has been developed by Bruckstein and
Kailath [5] for the systematic development of Schur and Levinson-Durbin algo-
rithms to solve one-dimensional inverse scattering problems (the geophysical
example of Chapter II, section 3.5 fits this description). The Gohberg-Semencul
formula (see Chapter II, section 2.2) fits into this framework (see Kailath, Bruck-
stein, Morgan [6]), and so it is reasonable to suspect that Trench’s algorithm does
so too (this is not shown in [6], and so it needs to be verified formally). Brent
and Luk [7] observe that the Trench and Bareiss algorithms are "related", but they
do not define this precisely. Thus, is it possible that the Bareiss algorithm may

be derived in the inverse scattering theory framework of Bruckstein and Kailath ?

(13) Can abstract algebra reveal methods of solving Toeplitz matrix problems in an

error-free manner when the entries of the matrix are irrational numbers ?
(14) Prove (or disprove) the conjecture of Chapter VL

(15) How about extending the results of this thesis to handle block-Toeplitz matrix

problems ?

(16) Suppose a parallel processing array is too small to handle the Toeplitz matrix that
it is given, and that we cannot make the array larger (due to economic or other

constraints). How can we partition the problem to fit the avgilable array ?

(17) It would be interesting to apply the finite precision arithmetic analysis method of
Cybenko [8] to the Schur and split Schur algorithms, and to Bareiss’s algorithm

as well.

(18) Do the split algorithms of Delsarte and Genin [9,10] and of Krishna and Morgera
[2] fit into the inverse scattering theory framework of Bruckstein and Kailath ? If
so, then how ?

(19) Develop a method to synthesize Toeplitz matrices of any rank profile. This
would be a useful means of generating test matrices.

(20) Can Dadda’s multipliers [11] be adapted to the problem of modulo p” multiplica-

tion ?
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(21) Hardware structures for division (mod p” inverses) in Zp, need to be obtained.
(22) The problem of mapping from the product ring

Zpi X Zpi X ZpS

where py =2" +1,p,=2" , p; =2" — 1, back to the ring of integers needs to
be studied, as does the problem of scaling in such a product ring.

(23) Computation in Z,r for p =2" £k (k = small and odd positive integer other
than unity) should be examined.

(24) The constant factors and lower order terms of the asymptotic area and time com-
plexity expression of Chapter VIII, section 1.5 should be worked out. A good

first approximation can be found by counting gates and levels of gates.
(25) Hardware structures for the inverse mapping from Z, to Fy require development.

(26) It might be best to implement any error-free form of the Schur algorithm for Her-
mitian Toeplitz matrices of any rank profile in a multimicroprocessor-based paral-
lel processing system. Traditional microprocessor designs are not optimized to
support error-free computation. Thus, it might prove useful to develop a
microprocessor optimized for error-free computation problems. Such a micropro-
cessor would be useful in many other kinds of problems where computation in
finite rings and fields is performed.

(27) Can free accumulation (defined in Cappello and Steiglitz [12]) be used to remove
the parallel processing bottleneck that the inner product operation in the
Levinson-Durbin algorithm represents ?

This concludes our list of future research topics. No doubt many others could be

added to the list.
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APPENDIX A
Finite Precision Arithmetic Simulator

for the Schur Algorithm
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Hnolist
Hinclude <stdio.h>
#include <math.h>

Hlist

H#define cLin 18 /= Max. no. of autocor. coeffs. w/
#define LINLT. 12088 /# Maximum number of data points %/
H#define finpar “PAR™ /% Input data to the simulator %/
Hdefine ffout *FouTt" /= Qutput data sequence %/
FILE xinpp; /x declare pointer to input data file =/
FILE ®xoupp; /% declare pointer to output data file %/

double btof();

siggenlsignal.length.rho.theta)
/% This function modals a 2nd order AR process =/

/% with a single complex pole pair {(modulus rho, w/
/® argument theta (degrees)). A 2nd order all-polex/

/= filter is driven by a Y4
/x Gaussian noise genarator routine based on the z/
/% algorithm described in: «/
/¥ Rabiner and Gold,“Theory and Application of %/
/& Digital Signai Processing* %/

double signal();
double mrho,xtheta;
int length;

{

double var,x,y,u;
double al,az;
double pie;

int i

printf(* - SIGNAL MODEL PARAMETERS - \n"});
printf(® Enter desired noise variance: \n");
scanf("%f",&var);

printf(" Enter desired pole modulus: \n");
scanf("%f", rho);

printf(" Enter desired pole argument (degrees): \n");
scanf("%f", theta);

fprintf(oupp,“%s",” - 2nd Order AR Process Parameters - \n");
fprintf (oupp, "\n");

fprintf(oupp,“Xs X12.6f \n",* pole modulus = Y, %rho);
fprintf(oupp, "%s %12.6f \n"," poles angle (degrees) = ", xtheta);
fprintf (oupp, “Xs %12.6f \n"," noise variance = “,var);
fprintf (oupp, "\n\n");

pie = 3,141592654;

stheta = wxtheta = pie /188.8; /% convert to radians =/
al « -2.8%cos{xthata)z =rho;

a2 = %rho = =rhos

for (i=8; i<s{length - 1); ++i)
{

X = randl();
Y = sqrt(2.8xvarslog(l.8/x}));
4 = yacos(2.8spiemrandl ()); /% w is a noise point %/
if (i «=
{
rignal[ﬁ] = W3

if (§ieal)
{ .
signal (1] = w - al x signal [8];
}
if (i>1)
{

signal (il = w - al = signatli-1] - a2 = signal {i-2];
) .

autocorrelatel(s,r, |, ,nco,nseq)
/%= Compute nominal ensemble of normalized w/
/% autocorrelation coefficients =/
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int I.nco,nseq;

printed on Hed Aug 19 1Z:16:34 13887

?ouble s{l,elJICLINM;

double suml,sum2;

int i,j,ng

for (i=8; i<={nseg-1) ; i++)

sumZ = B.8;

for (n=8; n<ali-1) ; ne+)

{
sum? = gum?
)

suml = sum2/1!;

+ 8ln + imllusin + ixl);

for (jal; j<=nco; j++)
{

suml < 8.8;

for (n=8; n<={i-j-1) ; n++}

sunl = suml + sln + ixllssln + i%l + jls

suml = guml/(} - j);
rlil{j] = suml/sum2;
}

;[i](ﬂ] = 1.8;
i

quant {x,n) /%
/%
/%
/%
/%
/%
/%

int x,n;
int q,mask,roun;
if (» >= @)
{

mask = 91;

Argument x is a 2n-bit number that we want to

w/

round off to n-bits. Argument x is a "standard %/

format"” 2n-bit number. This function assumes

x/

that the computer uses 2s complement arithmetic =/

for integer arithmetic itself, This function
can be used for “"double-precision” multipiy-
accumulate operations.

mask = mask << {n-2);

roun = @;

if { (mask & x) 1= B )
{

roun = 1;

= x > (n-1)
= q + roung

a

O~ ~0 0

LS
q+1; /=
mask = 81;

L0
L]

q = 23 compl. of x nouw. %/

mask = mask << (n-2);

roun = @;

if ( (mask & q) !'= 8 )
{

roun = 1;

« q >» (n-1}
= g + roun;
aq+l;: /=

~Do000

return(qg):

ftob (x, n)

int n;
double x;
{

.
H

restore true sign of g =/

/= Convert the double precision floating =/
/% point number % into a standard format =/
/% uord. %/

int i,c,mask,masks,sign, ix;

double fx;

x/
w/
*/
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sign = @;
if (x < 8.8)
{

ix = x; /% find integer part of x =/
fx = x - {(doublelix; /% find iractional part of x =/
c = 8;
mask = B1;
for {ia(n-2); i>=@; i--)

{

fx = 2.8xfx;
23sk8 = mask << i
if (fx >= 1.8)

{

fxx = fx - 1-8:
C = c | masks;
}

}
fx =« 2.8 x fx:
if (fx >= 1.8)
/% Add unity to effact the rounding operation %/

{
c=c + i;
]

ix = ix << (n-1);

C = Cc + ixg

if ( 8ign =e -1 )
{

C = -C3
}
returnic);

double btofly,n) /= Convert standard format y into float x/
/x type. =/

int n,y;

{

int i,j,sign,mask,masks;
double c;

c = 8.8;
sign = 9;
mask = @1;

if { ({mask << (n-1}) & y} '= B8 )
{
sign « -1;
}

for (ie(n-2); i>=B; i--)

masks = mask << i;
if ( (masks & y) '= @)

{
j=n -1 -1
C = c + poul(2.8, (doubie) -j);
}

}
if {sign == -1)

{

c e ~1.8+c;
1
returnic};

divide{x,y,n) /% Find the n-bit, 2s complement {standard format) =/
/& coding of x/y. x and y are standard format nos. x/
int x,y,n;
{

double xf,yf;

xf = btofix,n);
yf = btofly,n);
return(ftobixf/yf,n));




File fp_schur_sim printed on Wed Aug 19 12:16:36 1387 page 4 of §

main ()} /= FP_SCHUR_SIN w/
/e (Finite Precision Schur Algorithm Simulator) w/
Iz x/
/# Ue Use fixed-point 2s complement arithmetic (n-bits, %/
/= including sign) with format (standard format): =/
/8 % | x o x ... x . w/
/& 8 123 k w/
/% uhere x is the sign bit, and n = k + 1. ®/
/% 8 =/
/% Ue use integer types to contain standard format binary =/
/% numbers. The rightmost (least significant) bit of an %/
/% integer type corresponds to x . w/
/& 3 =/
/% %/
/% This program simuiates the Schur algorithm for symmetric u/
/2 Toeplitz matrices under finite precigsion arithmetic w/
/% conditions. The purpose of this program is to test the =/
/% theoretical predictions derived in the paper: w/
/% w/
/% C. J. Zarouski, H. C. Card, "Finite Precision x/
/% Arithmetic and the Schur Algorithm," to be submitted =/
/a to the IEEE Trans. on Acoust., Speech, and Signal =/
14 ] Proc. =/

{
int fp_ul [CLIM) (CLIMY: /% negatively indexed u-parameters w/
/% (n-bit, 28 complement) =/
int fp_uulCLIM] (CLIM): /% nonnegatively indexed u-parameters %/
/% {n-bit, 2s complement) w/
double ul [CLIM) [CLIM}; /% negatively indexed u-parameters w/
/% (double precision floating-point) =/
double uu{CLIM) (CLIM]; /% nonnegatively indexed u-parameters «/
/% (double precision floating-point) =/
double r [CLIM} [CLIMI; /% ensemble of normalized autocorrel. x/
/% coefficients (nominal) constructed %/
/& from segments of signal[]l; =/
/% rlillj] - i = segment index =/
/& - j = jth coeff. of seg. i =/
double mean (CLIM]; /% mean of reflection coefficients in %/
/% array fp_k{1 1} x/
double vari [CLIM]; /= variance of reflection coefficients =/
: /% in array fp_k(][] about their mean =/
/% values in meanl|) */
doubie signal [LIMIT]; /= signal generated by siggen function =/
/% (double precision floating-point) wh.
doubie no k [CLIMIICLIM)I; /=& ensemble of nominal reflection %/
/% coefficients =/
double bigks /= double precision floating-point ®/
/® reflection coefficient w/
int fp_k{CLIM)(CLIM); /= ensemble of finite precision (n-bit, %/
/= 28 complement) reflection coeffs. x/
double rho; /% pole modulus of 2nd order AR model %/
double theta; /% pole argument of 2nd order AR mode! =/
double rl,r2: /& theoretical values for rlll,r (2] %/
’ /% assuming 2nd order AR process w/
double var_bigk_3; /% theoretical variance of index 3 =/

/% raflection coefficient assuming no x/
/= error in our knouledge of r(l),r (2] =/

double t1,t2,denom; /% temporary variables =/
int i,j,k; /% loop counter variables %/
int ng /% number of bits (including sign bit) x/
int length; /% length of signal (] %/
int Ig /% number of points used to get r(} %/
int ncos /% larg:st lag value AND also the %/

/% number of reflection coeffs. to be =/

/% computed =/
int prodl,prod2; /= temporary integers %/
int nseg; /% number of segments of signall] used =/

/= to compute r () (] (length >alxnseq) %/

inpp = fopen{finpar,"r");
oupp = fopen{ffout,“u"):

facanf(inpp, "%d %¥d %d %d %d",8&n,8length,&1,8&nco, &nseg};
siggen(signal, length,8rho,&8theta);: /% construct the test signal =/

autocorrelate(signal,r,l,nco,nseg): /% find floating-pt. autocorr. =/
/% coefficients =/
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fprintfloupp, "¥s",* Theoretical Index 3 Reflection Coefficient \n");

fprintf{oupp, "¥s", " Yariance \n"};

fprintf (cupp, "\n");

rl = 2arhosces(theta) /(1 + rhosrho);

denom = (1 + rhoxrho) = sin(theta);

r2 = rhoxrhot(ain(3ttheta)-rhoarhoaain(theta))/denom:

forintfloupp,“%s ¥18.6¢ \n"," thaoratica! rl{l] = ", rl);

fprintf(oupp,"%s %10.6¢ \n",® theorstical r{2] = ".r2)s

tl <« rlerle(r2-1)e(r2-1) « (r2-risrl)x(r2-rlzrl);

t2 « (rFlarl - Llel(rlerl - 1)l + (rlerl - Dzlrlaer] - 1)),

var_bigk_3 = (t1 + t2) = pou(2.8,-2.8=(float)n) /3.0;

tl = {rlzrl - 1) % {rlarl - 1) = (rlxrl - 1} = (rlerl - 1);

var_bigk_3 = var_bigk_3/tl;

tl = (rlzrl - D=irlsar]l - 1);

t2 = (t1 + 4arlerls(r2 - 1)=(r2 - 1})/7(t] = tl);

t2 = t2 = pou(2.8,-2.8x(float)n }/3.9;
/% t2 is the component of var_bigk_3 that is due to =/
/% rounding of the nomina! normalized autocorrel. u/
/% coefficients a/

var_bigk 3 = var_bigk_3 + t2;:

fprintf{oupp,"¥s £14.18f \n"," varianca = ".var_bigk_3):

fprintf (oupp, "\n\n");

fprintfloupp,“"%8",” Ensemble of Nominal and Normalized \n"“);
fprintf{oupp, "¥s"," Autocorreiation Coefficients \n"};
fprintf(oupp,"\n"};
for (i=8; i < nseg; i++)
{
for (keB; k<anco; k++)
{

fprintfloupp,“¥s %d %s %3.6f *,"r(",k,"] = ".rlil{k]),
fp:intf(oupp.'\n'):
fplintf(oupp."\n\n'):
/= compute ensemble of nominal reflection coefficients %/

fprintf{oupp,“%s”," Ensemble of Nominal Reflection Coefficients \n");
fprintf{oupp, "\n");
for (j=8; j < nseg;: j++)

for (k=8; k<anco; k++)
{

ul {11 k] = rj](k);
ru(l](k]-- rjllk];

fo? (iel; i<encos i++)
bigk = -uulil {13/ul i} (i-1);
no_k{jl{i+l) = bigks
tprintf (oupp, "4s%d%s%18.6¢°,° K(",i+1,") = ",bigk);
for (keB; k<e(nco~i); ke+)
{
ul[i+1] kil = ul il (kei-1) + bigksuulil (kel]:
uuli+ll (k) = bigkeul (i) (kei-1] + uvuli) (k+l):
}

}
fprintf (oupp, “\n");
}

fprintf (oupp, “\n\n");
/= compute enseable of fixed-point reflection coefficients x/
/% assuming that there is no quantization error in the =/
/x autocorrelation coafficient estimates except that due =%/
/% to rounding to n-bit, 2s complement numbers w/
fprintf (oupp, "%s"," Ensemble of Fixed-Point Reflection \n");
fprintf (oupp, “"%s"," Coefficients \n");

fprintf (oupp, "%s"," {error-free autocorrelation coeffs.} \n"};
fprintf(oupp, "\n"); ‘
tl = 1.8 - pow(2.8,-( (float)n - 1.8 ¥
for (j=8; j < nseg; j++}
{

for (k=8; k<anco; k++)
{
fp_ul (1) k] & ftob(rlj](k]l,n);
fp_uull) (k) = ftob(r(j]Ik]l.n);
fp_ul{1)1(8] = ftob(tl,n);
fp_uulll (@) = ftob(tl,n);
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e o e e e e e e e e e e e e e e e e e e et e

for {iel; i<=nco; i++)

fp k{j)(i+l] = divide{~fp_uulil (1], fp_ul (il (i-1),n);
fprintfloupp, "%¥9%Xd%s¥18.6¢"," K(*,i+l,") = “.btoflfp k(jl{i+l),n));
for {ke=B; k<alnco-i); ke+)

{

prodl = quant(€p_k[j] [i+1)=ufp_uulil [k+1],n);

prod2 = quant(fp k (j] li+d)afp_ul [i) (k+¢i-1],n);

fp_ultliel) (keil = fp_ul(i] [kei-1] + prodl;

fp_uuli+l] (k] = prod2 + fp_uulil [k+l];:

}

}
fprintf (oupp, "\n");
1

fprintfloupp, "\n\n");
fprintf{oupp,“¥s %d ¥s \n","” Wordsize = “.n," bits ");
fprintf {oupp, "\n\n");

/% compute and output the means and variances of the x/
/% reflection coefficients w/

fprintf{oupp, “%s", " Fixed-Point Reflection Coefficient \n");
fprintf (oupp, "%s"," Means and Yariances \n");
fprintf{oupp, *\n");

fo: (j=2; j<slnco+l) ; jes+)

mean(j] - 8.8;

for (i=8; i < nseg; i++)
{
meanljl = mean(jl + ptof(fp_k(il[jl,n);
}

mean(j] « meanl(j]/nsegq;
}
for (je2; j<={nco+l) ; j++)
variljl - 8.9;
for (i=8; i < nseg; i++}
{
bigk = btof(fp _kli)l{j},n);
variljl = variljl + (no_kli)[j) - bigk)alno k(i) [j] - bigk):
}
variljl = varilj]l/nseg;
}

fprintf{oupp, "¥s\n"," Hean Variance "}y
for (j=2; j<elnco+l); j++)
{

fprintf(oupp, "$8X¥d%s ¥11.8¢ %14.8¢ \n',“K('.j.')”.mean(j],vari[j)):
}




~ 2nd Order AR Process Parameters -

pole moduius = 8.7580088
pole angle (degress) = 5. 062208
noise variance - 1.888888

Theoretica! Index 3 Reiiection Coefficient
Variance

theoratical r{l) = 0.956346
theoratical r (2} = B.866561
variance = 8.08085873122

Ensemble of Nomina! and Normalizad
Autocorrelation Coefficients

r{8) - 1.888888 r( ) J = 8.953886 r[ 2] . 8.876623
r{ 81« 1.pesegs r{ 1 J = B8.952875 r(2] = 8.8600852
r{81) - 1.000008 r[ 11 - ©8.958227r(2] = 8.871839
r{ 8] - 1.8800088 r{ | ) = B8.955363 r(2] - 8.864753
r(8) - 1.980008 r[ i J = B8.956813r({2] w 8.864884
r(81) - 1.g8@003 r[ 1 ] = 8.957482 r[ 2] . 8.878561
r{ 81 - 1.9000088 r( 11 8.952398 r[ 2] - 8.856361
rl81 - 1.000008 {1 ] . 8.954387 r{ 2] « B.884344
r{@8] - 1.000008 r[ 11 = 8.98484 r[ 2] a 8.848388
r(81] = 1.0000808 r( 11 - 9.955039 r{ 2] a 8.865224

Ensemble of Nominal Reflection Coefficients

K(2) -8.953886 K(3) 8.569323
K (2} -8.952875 K(3) 8.528708
K(2) -8.958227 K(3) 8.576527
K (2} -8.955363 K (3) 8.578178

K{2) =

K{2) = -8.957482 K (3) 8.552373
- 8.545239
= 8.521881
- 8.584127

8.535235

K(2) -8.852398 K (3)
K (2) -8.954367 K (3)
K(2) -8.948484 K (3)

-8.956819 K(3) = 9,68983]
K (2) -8.955839 K(3) -

Ensemble of Fixed-Point Reflection
Coefficients
(error-free autocorrelation coeffs.)

8.632812
8.582831

K{(2)
K(2)

-8.851171 K(3)
-8.957831 K (3)

K(2) = -8.968937 K(3) - 8.583843
K(2) = -8.355878 K(3) - 8.578125
K(2) = -8.368937 K(3) 8.666815
K(2) « -8.957831 K(3) = 8.582831
K(2) = -8.958384 K(3) « 8.658283
K(2) = -8.958384 K(3) « 8.585937
K(2) = -8.955878 K(3) - 8.623046
K(2) = -8.957831 K(3) « 8.582931

Hordsize = 18 bits

Fixed-Point Reflection Cosfficient
Heans and Variances

Mean Yariance
K(2) -8.385722658 0.8608008463
K{3) 8.68800781 8.82306308



APPENDIX B
Summary Tables for Qutput from the
Program in Appendix A



Wordlength (bits) var[AK ¥ 10*

Theoretical | Experimental

6 38.1 34300 --

8 2.38 15.5

10 0.149 0.960

12 0.0093 0.0768

14 0.00058 0.0042

16 0.000036 0.0001

Table I: Comparison of theoretical and experimental results for the finite precision Schur

algorithm. Here p = 0.9375 and 0 = 45°,

Wordlength (bits) var [AK ¥ 10
Theoretical | Experimental
10 899 24100
12 5.62 20.5
14 0.351 1.63
16 0.022 0.106

Table II: Comparison of theoretical and experimental results for the finite precision

Schur algorithm. Here p = 0.875 and 6 = 5°.




Wordlength (bits) var [AK®] 104

Theoretical | Experimental
8 94.1 | 5060
10 5.88 30.7
12 0.367 2.00
14 0.023 0.0633
16 0.0014 0.0078

Table II: Comparison of theoretical and experimental results for the finite precision

Schur algorithm. Here p = 0.75 and 6 = 5°.



APPENDIX C
Finite Precision Arithmetic Simulator
for the Symmetric Split Schur Algorithm

(Checks Expression for Var [AK,])
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fnolist .
#include <stdio.h>

#include <math.h>

Rlist

Hdefine CLIN 12 /% Max. no. of autocor. coeffs, =/
Hdefine LINIT 12888 /2 Maximum number of data points w/
#define finpar “PAR® /% Input data to the simulator =/
Hdefine ffout "FoUT® /& Qutput data sequencs z/
FILE zinpp:s /% declare pointer to input data file — - =/
FILE zoupp: /= declare pointer to output data file =/

double btof();

siggen(signal, length,rho, theta)
/% This function models a 2nd order AR process =/
/2 with a single complex pole pair (modulus rho, u/
/% argument theta (degrees)). A 2nd order all-pole=/

/% filter is driven by a =/
/% Gaussian noise generator routine based on the =/
/% algoritha described in: =/
/= Rabiner and Gold,"Theory and Application of %/
/= Digital Signa! Processing” =/

double signal(l;
doubls mrho,ztheta;
int length;

{

double var,x,y,u;
double al,a2;
double pie;

int i;

printf(* - SIGNAL MODEL PARAMETERS - \n")3
printf(" Enter desired noise variance: \n"};
scanf ("Xf", &var);

printf (" Enter desired pole modulus: \n");

scanf (“Xf", rho);
printf (" Enter desired pole argument (degrees): \n"};

scanf ("%f", theta);

fprintf(oupp,“¥8",® - 2nd Order AR Process Parameters - \n"}:
fprintf (oupp, "\n");

fprintf(oupp."¥%s %12.6¢ \n",® pole modulus = ®,=zrhol;
fprintf(oupp,“%¥s %12.6f \n",® pole angle (degrees) = ",xtheta):
fporintf (oupp,"¥s X12.6¢ \n",® noise variance = ",var);

fprintf (oupp, “\n\n®);

pie = 3.141592654;
xtheta = mtheta z pie /188.8; /% convert to radians %/

al = -2.8=zcos(ztheta)z =mrho;
a2 = mrho % =rhog

for (i=8; i<a(length - 1); ++i)
{
% = randl();
y = sart(2.8zvarziog(l.8/x});
W = ywcos(2.8xpiesrandl()); /= u is a noise point =/
if (i «=8)
t
signal [B8) = w3
}
if (i ==al1)
{
signal (1] = u - 3l % signal [8];
}
if (i >1)
{

signal [i] = w - al = signal(i-1] - a2 x signal [i-2];

autocorrelatels,r,!,nco,nsag)
/u Compute nominal ensemble of normalized w/
/% autocorralation coefficients z/



Fite fp_split_schur_sim printed on Wed Aug 18 13:84:83 1387
/e (must have length >= | x nseg) .

int |,nco,nsag;

double sll,r{](CLIN];

{

double sunl,éuuZ:
int i,j,n;

for (i=8; i<={nsag-1) : i+s)

sum2 = 8.8;
for (n=8; n<s(i-1) ; n#+t)
{
;umz = sum2 + sln + ixllasln + izll;

suml = sum2/1!;
for (j=l; j<=nco; j++)
{

suml « 8.8;
for (n=8; n<=(i-j-1) ; nes)

surl = guml + sln + ixllasin + ixi + il
}

suml = suml/ (1 -~ j);
;[i][j] = guml/sum2;

;[i][B] = 1.8:;
}

quant(x,n} /& Argument x is a 2(n+m)-bit number that we uwant to
/% round off to 2m+n+l-bits.
/= The fractional part of the quantized product is
/% n-1-bits fong. The integer part is not altered.
/% Argument x is a "standard format"
/e 2(n+m)-bit product. This function assumes
/= that the computer uses 2s complement arithmetic
/% for integer arithmetic itself. This function
/% can be used for “"double-precision” Bsultipliy-
/% accumulate operations.

int x,n;

{

int g,mask,roun;

if (x >= @)
{

mask = Bl;

mask = mask << (n-2);

roun = @;

if ( (mask & x) != @ )}
{

roun = 13
}
q = x > (n-1);
? e § + rouns
else
{
q = ax;
9=q+1; /% q =28 compi. of x nou. =/
mask « @1;
mask = mask << (n-2);
roun = @;
if‘( (mask & q) 1= 8 )

roun = 1;

= q > (n-1);
= q + roun;
= ~q;

= q + 1; /& restors true sign of q =/

~oo0n0o0

returnigl;

ftob(x,n) /m Convert the double precision floating =/
/% point number x into a standard format =/
/% word. =/
int n;

double x;

z/
z/

=/
=/
=/
%/
x/
%/
x/

page 2 of 7
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int i,c,mask,masks, 8ign, ix;
double fx;

sign = g;
if (x < 8.9)
{

8ign = -1:
X & -x3
}
ix o x; /& find integer part of x =/
fx = % - (double)ixs /& find fractional part of x »/
c = 8;
mask = B1;
for (i=a{n-2}; i>=@; i--)
{

fx = 2,.8%fx;
masks = magk << i;
if (fx >« 1,8)

{

fx = fx - 1.8;
C = ¢ | masks;

}

fx = 2.8 % fx;

if ( fx >= 1.8)
{ /% Add unity to effect the rounding operation =/
f = Cc+ 1;

ix = ix << (n-1);

C=¢C + ixg

if { 8ign == -1 )
{

C = -3
}
returnic);

double btof(x,n,m) /% Convert standard format x into double =/
/% precision floating-point number. x/
int n,m,x;
{
int i,j,8ign, mask,masks;
double c;

c = 8.8;

sign « 8;

mask = @1;

if {(x < 8)
{

sign = -1,
X = -y
}
fo? (i=a(n=-2); i >= B; i--)

m3sks = mask << i;
if { (masks & x) !'= @)

n-i-1;
€ + pou(2.8, (double)-j);

haadl ¢ [ TR

j = 8;
for { {-(n-l): i <o (nem-1)3 i4+)

-~

masks « mask << i;
if ( (masks & x) i= @)
{

Cac ¢ pou(Z.B.(double)j);
j i i+l
if!( sign =e -1 )
S

i
returnic);



divide{x,y,n,n) /2 Find the n+m-bit, 23 complement (standard w/
/e format) coding of x/y. x and y are standard =/
/% format n+m-bit binary numbers. =/

int x,y,n,m:
double xf,yf;
xf = btoflx,n,m);

yf = btofly,n,m);
return(ftob{xf/yf,n));

2ain () /= FP_SPLIT_SCHUR_SINM w/
/« (Finite Precision Spiit Schur Algorithm Simulator) =/

/= =/

/s Ue use fixed-point 2s complement arithmetic (n+m - bits, %/

/= including sign) with format (standard format): =/

/= x eee X | M M o® ..., x . x/

/e -m 8 123 k w/

/% uhere x is the sign bit, and n = k + 1, w/

/= -m w/

/% Ue use integer types to contain standard format binary =/

/% numbers. The rightmost (least significant} bit of an x/

/% integar type corrasponds to x . x/

/& k w/
/a %/

/% This program simulates the split Schur algo. for symm. =/
/= Toeplitz matrices under finite precision arithmatic =/
/% conditions. %/
/% The split Schur algorithm simulated is taken from the =/
/% paper: ) =/
/% x/
/& P. Delsarte, Y. Genin, "On the Splitting of Classical u/
/% Algorithms in Linear Prediction Theory,* IEEE Trans. =/
/% on Acoust., Speech, and Signal Proc., vol. ASSP-35, w/
/u pp. 645 - 653, May 1987, %/
/% u/
{

int fp_vICLIM)(CLIM); /% nonnegatively indexed v-parameters =/
/z (n+m-bit, 23 complement) =/

double v(CLIM) [CLIM); /% nonnegatively indexed v-parameters /.
/% (double precision floating-point) u/

double r [CLIM) (CLIM); /% ensemble of normalized autocorrel. =/
/% coetficients {nominal) constructed %/

/& from segments of signal []; =/

/= r[i][j? - i = segment index 74

/= - j = jth coeff. of seg. i =/

double mean(CLIM]; /% mean of raflection coefficients in u/
/%= array fp_k()1 (] %/

double vari(CLIM]; /% variance -of refiection coafficients =/
/& in array fp_k(]1[] about their mean =/

/% values in meanl) w/

double signal (LIMIT); /x gignal generated by siggen function =/
/% (double precision floating-point) n/

double no_k [CLIMI [CLIMI; /% ensemble of nominal reflection w/
/% coefficients w/

double no_a(CLIM) [CLIM]; /= ensemble of nominal split Schur =/
/m reflaction coefficients =/

double bigk; /% double precision floating-point %/
’ /% raflection coefficient w/

double alphak; /% split Schur reflection coefficient =/
/% (doubie precision floating~-point) =/

int fp_k[CLIMIICLIM); /= ensemble of finite precision {nem-bitx/
/&= , 28 complement) reflection coeffs. =/

int fp_alCLIM) [CLIM); /% ensemble of finite precision (n+a-bitz/
/% , 28 complement) split Schur =/

/% refiection coefficients =/

int fp_bigks /% fixed-point, 2s comp. version of %/
/& variable bigk =/

int fp_alphak; /% fixed-point, 28 comp. version of =/
/= variable alphak =/

doubla rho; /= pole modulus of 2nd order AR modei u/
doubie theta; /® pole argument of 2nd order AR model =/
double rl,r2; /% theoretical values for rll],r(2] x/
/% assuming 2nd order AR process w/
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int one: /% standard format representation of =/
/= tha number 1 (one) - x/
int i,j,k; /= loop counter variables %/
int n,m; /e number of bitg lincluding sign bit) =/
. /2 in tha fixed-point uord is n+m %/
int length; /% length of signail) =/
int 1; /% number of points used to get r () x®/
int nco: /% largest lag value AND also the x/
/2 number of reflection coaffs. to be =/
/% computed ®/
int prod; /% temporary intager product . u/
double denom: /= temporary variable %/
double trl,tr2,t1,t2,t3; /% more temporary variables w/
double t4, tS; /% 8till more temporary variables w/
double var_bigk_2; /& theoretical variance of the 2nd a/
/= reflection cosfficient z/
int nsag; /% number of segments of signal (] used =/

/%= to compute r (] (] {length >=iznseg) =/

inbp = fopen(finpar,®r”);
oupp = fopen(ffout, "u");

fscanf (inpp,*%d ¥d ¥d %d %d Zd'.&n.ﬁm.&length.&l.&nco,&nseg);

aiggen(signal.length.&rho.&theta): /% construct the test signal =/
autocorralate(aignal.r.I.nco.naeg): /% find floating-pt. autocorr, =/

/% coefficients =/
fprintf{oupp, "%s", ® Theoretical 2nd Reflection Coefficient \n");
fprintf(oupp, "¥s", * Error Variance \n");

fprintf(oupp.'\n“);

rl = 2zrhoxcos(thata}/ (1 + rhozrho);

denoam = (1 + rhoxrho) =z sin{theta);

r2 = rhotrhot(sin(3xtheta)-rhotrhotsin(theta))/denom:

fprintf (oupp, "%¥s X18.5f \n", " thacretical r{l] = ".rll;

fprintf(oupp, "%¥s X18.6¢ \n",* theoretical r(2] = ".r2);

denom « (1.B—rl)t(l.a-rltrl)t(l.8+r1)t(1.8+r1);

trl = (Z.Gtrltrl-rZ-l.B)t(l.8+r1)x(1.0+r1) +
(1.B-rltrl)*(2.8:r1:r1+4.8:r1+r2+1.8);

tr2 = (1.8—r1:r1)x(1.8+r1);

tl = (Z.erltrl-rz-l.8)t(1.8+r1):l1.8+r1) +

2.8:r1:(1.8+r1)t(1.B-rltrl):

t2 = (1.8+r1)t(1.8+r1)*(1.8—r1tr1):

t3 = (1.8+r2-2.8:r1:r1)t(1.B+r1)t(1.e+r1);

té = (1.B—rl)x(l.a-rltrl)t(1.8+r1)t(1.6+r1):

tS = (1.8+r1)x(1.8-rixrl);

var _bigk_2 e (trlltr1+tr2&tr2+tlttl+t2*t2+t3*c3+t4$t4+t5&t5) .

/ (denomxdenoa) ;

var_bigk 2 = var_bigk_2 = pow(2.8,-2.8x(double)n) / 3.8;

fprintf(oupp, "¥s %14.8f \n®," Yariance of K(2) = ".var_bigk_2};

fprintf(oupp.‘\n\n'):

fprintf(oupp,“¥s®,” Ensembls of Nominal and Normalized \n"};
fprintf (oupp, "¥s", ® Autocorrelation Coefficients \r");
fprintf (oupp, *\n");
for (i=8; i < nsag; i++)
{
for (ke8: k<onco: k++)
{
fprintf(oupp,"%s Yd ¥s ¥S.6f "k, "] a ".rlilIk]),
}
;printf(oupp.“\n'):
fprintf (oupp, *\n\n");
/% compute ensembls of nominal reflection coefficients u/

fprintf(oupp,'%s',' Ensemble of Nominal Refiection Coefficients \n*);
fprintf (oupp, "\n");
for (j=8; j < nseg;: j++)

{

v(8] (8] = r(jIIB];

bigk = 8,8

for (k=l; k<=nco; k++)
viBl k]l =« 2.8 = r[j](k];
}

for (ke8; k<nco ; k++)
{

r[l][k] = r i3Ik + r(j](kel];
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for (i=l; i<enco; i++)

alphak = v[il{B)/v[i-111(8];

bigk = 1.8 - (aiphak / (1.8 + bigk)};

no_aljl (il = alphak:

no_k[jl1{i] = bigk;

fprintf (oupp, "L8%d¥s%18.6¢"," K{*®,i,*)

for (keB; (k <= (nco-i-1}) &8 (k > -1)
{
vii+l] k) = v{i) (k] ¢ v{il (k1] - alphak = v[i-1] (k+1];
} .

= ",bigk);
¢ ket)

}
fprintf (oupp, “\n");
}

fprintf (oupp, "\n\n"};

/% output ensemble of nominal split Schur reflection =/
/% coefficients =/

fprintf(oupp,® Ensemble of Nominal Split Schur Raflection \n®);
fprintf (oupp,” Coefficients \n®);
fprintf (oupp, "\n");
for (j=B8; | < nseg : j++)
{
for (i=l; i<=nco ; i++)
fprintf (oupp, "%8Xd%s%18.6¢%," a(",i,“) = “,no_aljl(il};
}
fprintf(oupp, “\n");
}
fprintf (oupp, “\n\n");

/= compute ensembls of fixed-point reflection coefficients =/

/% assuming that there is no quantization error in the %/
/% autocorreiation coefficient estimates axcept that due =/
/2 to rounding to n-bit, 28 complement numbers x/

fprintf (oupp, "%s8”, " Ensemble of Fixed-Point Reflection \n"):
forintf (oupp, “%8", " Coefficients \n");
fprintf {oupp, "%s"," (error-free autocorrelation coeffs.) \n");
fprintf (oupp, "\n");

one = @1;

one = one << {n-1);

for {j=8; j < nseg; j++)

fp_vi(B1 (8] = ftob(r(;](B),n);
fp_bigk = 8 .
for (kel; k<=nco; k++)

{

;p_vfallk] a 2uftob(r{j] [k),n);

fo? (keB; ke<nco ; ke+)
fp_v(ll [k} = ftobl{r(jlIk),n} + ftob(r(j]{k+ll,n);
}
for (iel; i<enco; i++)
fp_alphak = divide(fp_v{il (@), fp_v(i-1)(8).n,m);
fp_bigk = one - divide(fp_alphak,one + fp_bigk,n,m);:
fp_aljl (il « fp_alphak;
fp_k(jllil = fp_bigks
fprintf (oupp, "¥s%d%e%18.6¢"," K(",i,") = ®,btof(fp_bigk,n,m});
for (keB; (k <o (nco-i-1)) 88 ( k > -1) : ke+)
{

prod = quant{fp_alphakafp_v[i-1] [k+1],n)y
fp_vli+l) k) = fp_vlil{k] + fp_v(il{kel] - prod;
}

}
fprintf (oupp,*“\n"):
}

fprintf (oupp, “\n\n");

/% output sneemble of fixed-point split Schur reflaction %/

/% coefficients =/
fprintf(oupp,” Ensemble of Fixed-Point Split Schur \n");
fprintf(oupp, Reflection Coefficients \n");

fprintf{oupp,"\n");
for {(j=8; j < nsag i j++)
{

for (iel; i<enco ; i++)
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fprintf (oupp, "¥e¥d%s%18.6¢7," af®,i,"} = *, ptofl{fp_aljl(il,n,a));
}

fprintf (oupp, "\n");

}

fprintf{oupp, “\n\n"};
forintf{oupp, %8s %d %8s \n"," Hordsize = ",n+m,” bits "};
fprintfloupp,”%a %d \n",” No. of fractional bite = °,n-1);
fprintf (oupp, "\n\n");

/% compute and output the means and variances of the =/
/2 reflection coefficients u/

fprintf (oupp, "¥s", " Fixed-Point Reflection Coefficient \n");
fprintf {oupp, “¥8", " Means and Variances \n®);
fprintf (oupp, “\n");

fo? (j=l; j <= nco § j+e)

nean(j] - 8.8;
fo: (i=8; i < nseg; i++)
?ean[j] = mean(jl + btof(fp_k(il{jl,n,m);

rean(j] = mean(j]l /nseg;
fo? (jel: j <= nco ; j++)
vari(jl = 8.8;
for (i=8; i < nseg; i++)
{
bigk = btof(fp _k(il{jl.n,am);
vari(jl = variljl + (no_klil[j] - bigk)x(no_k{il[j] - bigk);
}
variljl = variljl/nsag;
}

fprintf (oupp, "%s\n"," HMean Yariance ")
for{jel; j <= nco ; j++)
{

forintf(oupp, "%e¥%d¥s ¥11.8f %14.8f \n","K(",],") %, mean(j],varil;});
}
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pole moduius = 8.750888
pole angle (degreas) = 175.880808
noise variance = 1.0800808

Theoretical 2nd Reflection Coefficient
Error Yariance

theoretical r(l] = -8.956346
theoretical ri2) = 8.866561
Variance of K(2) = 8.888688243

Ensemble of Nominal and Normalized
Autocorrelation Coefficients

r{@) < 1.800808 r[ 1] = -8.959196 r({ 2
r{81 - 1.800800 r{ 1] = -8.954644 r{ 2
r(8) - 1.000008 r{ 1] « -8.955647 r( 2
r{81] = 1.000808 r( 1] = -8.953463 r[ 2
r(8) - 1.800008 r{ 1] = -8.954328 r( 2
r{81 - 1.200888 r[ 1] « -8.958454 r{ 2
r(8J = 1.808008 r[ 1] = -8.957228 r([ 2
r(8) - 1.800088 r{ 1] = -8.968358 r( 2
r(B8) - 1.800008 r{ 1) = -8.954882 r[ 2
r{8]1 = 1.000008 r[ 1] = -8.959615 r[ 2

Ensemble of Nominal Reflection Coefficients

K(1) = 8.959196 K(2) = 9.542869
K(l) =« 8.354844 K(2) = 8.538087
K{(l) -« 9.955647 K(2) = 8.558391
K(l} = 98.953469 K(2) = 8.578331
K(l) = 9.954328 K(2) = 8.538663
K{1}) = 8.958454 K({2) = B8.5827@4
K(l) = 8.957228 K(2) = B.574666
K(1) = 9.968356 K(2) = B.584826
K(1) = 8.954882 K(2) =« 8.581837
K{1) = 8.359615 K(2) = 8.5629@8

Ensemble of Nominal Split Schur Reflection
Coefficients

a(l) = 9.948883 a(2) - 8,835688
a(l) = 9.845355 a(2) = 8.783661
a(l) = 8.844352 a(2) = B.867548
al(l) = 9.0846538 a(2) = 9.838171
a(l) = 8.845671 a(2) = B.917237
afl) =  8.841545 a(2) = 8.817254
all) = 8.842779 a(2) = 8,832471
al{l) =« 8.939643 a(2) = 9.813889
al(l) = B.845117 a(2) = 8.779925
all) = 8.840384 al2) = B.856538

Ensemble of Fixed-Point Reflection
Cosfficients
(error-free autccorralation coeffs.)

K(1) = 8.959228 K(2) = 8.543238
K(l) = -8.954583 K(2) = @.534368
K(1) = 9.3955888 K(2) = @.557739
K(1}) = 8.35349] K(2) = 8.571411
K{l) = 8.954345 K{2) = 8.538761
K(1) = 8.958496 K(2) = 8.583984
K(1) =« @.957275 K{(2) = 8.576568
K(1) = 8.360327 K{2) = 8.5833984
K(1) = 9,954833 K{2) = 8.538333
K{l) = 8.9539534 K(2) = 9.562133

Ensemble of Fixed-Point Split Schur
Reflection Coefficients

all) = 9.84877]1 a(2) = 8.835263
a(l) = B.B45418 a(2) = 8.792968
af{l) = 8.846311 2(2) = 8.854338

8.876658
8.858507
8.865801
8.857283
8.863378
8.871223
B8.868155
B.876835
8.858738
8.876313
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a(l) = 9.846588 a(2) = B.837288
all) = B8.845654 a(2) = 8.917114
all) < 8.841583 a(2) - 8.814697
afl) = 8.842726 a(2) = 2.828613
a{l) = 8.6839672 a(2) = 8.815423
a(l) = B,845166 a(2) = 8.783813

8.840485 a(2) 8.858832

Uordsize = 16 bits
No. of fractional bits = 13

Fixed-Point Reflaction Coefficisnt
Means and Variances

Mean Variance
K{l) 8.35678718 8.900008088
K(2) 8.578312¢8 0.080089158



APPENDIX D
Summary Tables for Output from the
Program in Appendix C



b var [AK (2)] 10*

Theoretical | Experimental

8 1670 5930
10 104 66.8
12 6.51 6.95
14 0.407 0.574

Table I: Comparison of theoretical and experimental results for the finite precision sym-
metric split Schur algorithm. Here p = 0.875 and 6 = 5°.

b var [AK (2)] 104

Theoretical | Experimental

8 116 47
10 7.24 9.48
12 0.453 0.654
14 0.0282 0.0111

Table II: Comparison of theoretical and experimental results for the finite precision sym-

metric split Schur algorithm. Here p = 0.75 and 0 = 5°,



b var [AK @] 104 j

Theoretical | Experimental

8 2.44 2.60
10 0.153 0.151
12 0.0095 0.0111
14 0.0005 0.0002

Table III: Comparison of theoretical and experimental results for the finite precision
symmetric split Schur algorithm. Here p =0.875 and 6 = 45°,

b var [AK @] 104

Theoretical | Experimental

8 2.09 0.742
10 0.131 0.170
12 0.0081 0.0045
14 0.0005 0.0003

Table IV: Comparison of theoretical and experimental results for the finite precision

symmetric split Schur algorithm. Here p =0.875 and 6 = 135°,



b var[AK @] 10*

Theoretical | Experimental

8 | 1460 1440
10 91.3 62.6
12 5.71 11.4
14 0.357 0.366

Table V: Comparison of theoretical and experimental results for the finite precision sym-

metric split Schur algorithm. Here p = 0.875 and 6 = 175°.

b var [AK @7 10*

Theoretical | Experimental

8 102 272
10 6.40 3.96
12 0.400 0.170
14 0.0249 0.0158

Table VI: Comparison of theoretical and experimental results for the finite precision

symmetric split Schur algorithm. Here p = 0.75 and 8 = 175°.



APPENDIX E
Program to Compute the Theoretical Value of
Var [AK, ] for the Symmetric Split Schur
Algorithm




Program SYM_SCHUR_VAR

L Introduction

The finite precision arithmetic (twos complement) implementation of the sym-
metric split Schur algorithm of Delsarte and Genin [1] produces estimates KA,C of the
ttue (infinite precision) reflecton coefficients K, with emor AK, (e,
1@ =K, + AK,). Equations (10)-(12) of Zarowski and Card [2] provide iterative
expressions for AK,. Closed-form expressions for AK), are hard to obtain, so a recur-
sive PASCAL program called SYM_SCHUR_VAR is used to calculate AK, for any k,
and any suitable sequence of normalized autocorrelation coefficients as input. Thus,
we have produced a crude symbolic computation solution to the problem of estimating
Var[AK, ].

IL The Data Structures and Program

We begin by stating the recursions evaluated by the program
SYM_SCHUR_VAR. Since we are not interested in Var [Aay ], we can eliminate Aa,
from (11) and (12) using (10). This gives us

1K, AK 1 A (1a)
= - v a
k 14K, k1 Ve-r0(1+K; )~ <0

O 1
+ AVe 10 = ——MNgix + Mg s »
vk_1'0(1+Kk_1) k 1,0 1+Kk..l ok K.k

Avk+1'j = Av,w- + Avk'jﬂ - akAVk_l'j,H - Avk'o (lb)

Vi-1,j+1

+oy AVe1,0+ Mo i = Ve-1,j+1Mok »

Vk-1,0
where 1 <k <n and 0 <J €n-k-1. Initially,

AVO'():AI'O:O R



Avo;=20r, (1<) <n) @)

A PASCAL record type called DELTA is defined as follows:
DELTA = RECORD

K,J:INTEGER; { =k and j, respectively }.
SUCC_DK:PT _DELTA; { =AK,_, }
SUCC_DVK_0:PT_DELTA; { =4y, }
SUCC_DVKMI1_0:PT_DELTA; {=Avey, }
SUCC_DVK_J:PT_DELTA; { =4y, j }
SUCC_DVK_JP1:PT DELTA; {=Avg iy }
SUCC_DVKM1_JP1:PT DELTA; {=Aveyjn }
SUCC_ETA_ALPHA_K:F’I‘_DELTA; { =Ngx }
SUCC_ETA_K_K:PT DELTA; {=NMgs )

SUCC_ETA_VKP1_J:PT _DELTA:; (=1,
DK:DOUBLE_REAL.:
DVK_0:DOUBLE_REAL;
DVKMI1_0:DOUBLE_REAL;
DVK_J:DOUBLE_REAL;
DVK_JP1:DOUBLE REAL;
DVKM1_JP1:DOUBLE_REAL:
ETA_ALPHA_K:DOUBLE_REAL:
ETA_K_K:DOUBLE _REAL;
ETA_VKP1_J:DOUBLE_REAL;
END;

PT_DELTA is a pointer to a DELTA record. Notice that each field of type
PT_DELTA represents a term in one or both of the equations ( la,b). The
DOUBLE_REAL types (double precision floating-point) are the coefficients in front of
the variables (e.g., DK = (I—Kk)/(1+Kk_1) is the coefficient of term AK,_, in (la)
which.is represented by the pointer SUCC_DK). Nominal parameters such as X, o,
Or v, ; are computed by the procedure called NOMINALS. Nominal parameters are
made globally available for convenience. K (=k) is the level of the recursion, and J
(=) is the jth coefficient at the kth level. The user specified value of k£ (which is
read in by procedure READ_PARAMETERS) is the top-most level of the recursion,



and so corresponds to the root node of the tree (see below).
The pointers PT_DELTA may be set to nil for one of three reasons:

(1) The variable to which the pointer corresponds is unused (e.g., equation (1b) does
not have a AK,_; term), in which -ase the associated coefficient is set to zero as

well.

(2) When K (k) is af such a value that we have terms like Avgg s Avo,j » Or Avy j
(which depend upon Arj (see (2))), then the associated pointer is set to nil.

(3) SUCC_ETA_ALPHA K, SUCC_ETA_K K, and SUCC_ETA_VKP1 J are
always set to nil since they are not recursively dependent upon anything.

Thus, nil pointers primarily indicate that we’ve reached terms in the expression for
AK} of the form Ar; \ Mg »Mgx OF My,,,.j- Like terms in these variables may then

be collected and saved by a suitable tree traversal (see below).

Each of (1a) and (1b) requires a recursive procedure to represent it. Procedure
MAKE_DK represents equation (la) and procedure MAKE DV represents equation
(1b). Procedure MAKE _DK calls itself (since (1a) contains a term with AKy_ in it)
and procedure MAKE_DV (since (1a) contains terms with Avi o and Av,_, ¢ in them).
Procedure MAKE_DV only calls itself since there is no term containing AK;_; in (1b).
A comparison of the MAKE_DK and MAKE_DV procedures with (1a,b) should reveal
to the reader how they work in detail.

The tree constructed by MAKE DK and MAKE DV is traversed by the pro-
cedure TRAVERSE, which collects and saves the like terms in the variables of the
form ny y and Ar; as previously described. The first call of TRAVERSE (in the
MAINLINE part of the program) is '

TRAVERSE (TOP ,1.0,0,0,0);

where TOP points to the top of the tree, and VALUE = 1.0 is the initial value of any
term in the final expression for AK} (before all like terms in a variable have been col-
lected by TRAVERSE). IID,IK, and I are all arbitrarily set to zero (0) initially. If
PT is nil then the IID number determines where VALUE is to be saved (by accumula-
tion (adding)). Note that as TRAVERSE traverses the tree, VALUE is multiplied by
the appropriate coefficient until a nil pointer is reached (PT = nil) whence VALUE is
added to a suitable location in one of the following ways:



DELTA R[] (= Ar;) if IID = 1,
ETA_ALPHA[] (=1g,) if ID = 2,
ETA_K[] (=mg,) if IID = 3,

ETA_VKPI[..] (=m,, ;) if IID = 4.

Thus, the arrays DELTA R[], ETA_ALPHAL[], etc., contain the terms in the final for-
mula for AK}, as a function of the variables Ar; ,Mar » Mgy and Ny,.,.j 3 we wish.

Squaring and summing the entries of these arrays yields

Var[AK, ]
2
Oq

which corresponds to the variable VARIANCE in the MAINLINE part of the program.
~2b

The program prints out VARIANCE x o2, where o} = 2 (see [2]). It does so for

b =8,10,12,14. The entries of the arrays DELTA_R[.], ETA_ALPHA[ ], ETA_K[.]
and ETA_VKP1[.,.] are also printed out.

III. Sources of Inefficiency

Procedure TRAVERSE wastefully accumulates VALUE and then multiplies
VALUE by zero when it encounters an unused pointer. One way to avoid this would
be to use two different record types; one for each of the equations (la) and (1b).
However, this greatly complicates the traversal process and so is not a viable alterna-
tive. A better solution might be to flag unused pointers as such and so avoid using
them during the traversal. For small to moderate values of k£ there seems to be little

advantage in doing this.

A much more significant source of inefficiency is the fact that a given term in the
expansion of the expression for AK, may appear many times. This corresponds to
"repeated branches" in the tree representing the expansion of the equation for AK,.
For example, when k = 3, the term Av, appears 4 times. If k is large then much
storage could be consumed and much time wasted in constructing tree branches that
already exist somewhere else. A solution to this problem might involve flagging the
repeated terms (repeated branches) somehow and creating them once only. However,
this complicates the program (though probably not enormously). The simple, though
inefficient, solution presented works well enough for the purposes of the paper [2].
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(x This program computes theoretical reflection coefficient %)
(x error variances due to fixed-point 28 complement arithmetic =)
(% with quantization due to rounding. =)
(= The underlying algorithm that creates the reflection %)
(x coefficients is the symmetric split Schur algorithm of =)
{x Delsarte and Genin: %)
(= %}
(2 P. Delsarte, Y. Genin, "0On the Splitting of Classical %)
(= Algorithms,® IEEE Trans. on Acoust., Speech, and Signal %)
{x  Proc., vol. ASSP-35, pp. B45-853, HMay 1987, x)
¢ %)
(= Because of the complexity of the recursions for the %)
(= quantization error expressions of the raflection =)
(= coefficients, it is not poseible to obtain closad-form %)
{« error variance expressions. Hence, it is necessary to =)
(x construct a recursive program to produce these reflection %)
(= coefficient error variances. This is accomplished by this )
(% program. %)

CONST

. gélﬂ e 12; (2 Maximum number of autocorrel. coeffs. &)

Y

YECTOR =~ ARRAY(B..CLIM] OF DOUBLE _REAL ;
MATRIX ARRAY(8..CLIN,8..CLIN} OF OOUBLE _REAL ;
PT_DELTA = ~DELTA;
DELTA = RECORD
K,J: INTEGER;
SUCC_DK:PT_DELTA;
SUCC_DVYK_B:PT_DELTA;
SuCC OVKM1_@:PT_DELTA;
SUCC_DVK_J:PT_DELTA;
Succ OVK_JP1:PT_DELTA:
succ DVKM1 _JP1:PT_DELTA;
SUCC_ETA_ALPHA K: PT_DELTA;
SuUcc ETA_K_K:PT_DELTA;
SUCC_ETA_VKPI_J:PT_DELTA;
OK: DOUBLE_REAL;
OVK_8:DOUBLE_REAL ;
DVKM1 _@:DOUBLE_REAL ;
OVK _J: DOUBLE _REAL ;
OVK_JP1:DOUBLE_REAL ;
UVKHI_JPI:DOUBLE_REAL:
ETA_ALPHA_K:DOUBLE_REAL;
ETA_K_K:DOUBLE_REAL:

ETA_VKP1_J:DOUBLE_REAL; .s
END;
YAR
INSTUFF , BUTSTUFF : TEXT;
V:MATRIX; (« Matrix of v-parameters produced by )
(= the split algorithm. %)

BIG_K,ALPHA,R: VECTOR; (s Yector of reflection coefficients, =)
(2 eplit Schur reflection coeffs., & =)
(= normalized autocorrelation coeffs. =)

(= , respectively. %)
N: INTEGER; (% Number of correlation coeffs. x)
IX, JX,B: INTEGER; (x Loop counters, =)
TOP:PT_DELTA; (2 Top of tree representing the %)

(2 coupled recursive error formulae. %)
VARIANCE : DOUBLE_REAL ; (& Nth reflection coefficient error =)
varianca. %}

(=
DELTA_R.ETA_ALPHA.ETA_K:VECTOH:
(= Terms in the formula for VARIANCE. =)

ETA_VKP1:MATRIX; (x More terms in formula for VARIANCE. x)

PROCEQURE READ_PARAMETERS (VAR R:YECTOR; VAR N: INTEGER} ;

(e This procedure reads in the normalized autocorrelation %)

(x coefficients from a file along with the number of such *)

(x coefficients. The zero lag cosfficient is always one and =)

(x 80 is not read in. =)
YAR

1: INTEGER;

BEGIN (= READ_PARAMETERS =)
RESET (INSTUFF | * CORREL_COEFFS'};
READ (INSTUFF,N) ;
R(B) := 1.8;
FOR 1 := 1 TO N DO

BEGIN



READ(INSTUFF,RI{1]):
END;
END; (% READ_PARAMETERS )

PROCEDURE NOMINALS (VAR BIG_K,ALPHA,R: VECTOR: VAR V:HATRIX;N: INTEGER) ;
(z This procedure computes the nominal values of BIG_K, ALPHA, and x)
(% of V using the normalized autocorrelation coefficients in R. %)

1,K: INTEGER;
BEGIN (= NOMINALS =)
vVi8,8] := RIB];
BIG K (8] := 8.8
FOR K := 1 TO N DO
BEGIN
VI8,K]l := 2.8 & RIK};
END;

FOR K := 8 TO N-1 0O
BEGIN
YI1,Kl :=a RIK] + RIK+1];
ENO;

FOR I := 1 TON DO
BEGIN
ALPHAI[I] :a VII,el/vil-1,8);
BIGKI!I] := 1.8 - ALPHAL11/(1.8 + BIG K(I-11);
K := 8;
HHILE ( (K <= N =1 = 1 ) ANO (K > -1) ) DO
BEGIN
VII+1,K) :a VII K] + VII.K+1] - ALPHAII} = VII-1,K+1);
Kite K+ 1;
ENO;
END;
ENDO; (& NOMINALS =)

PRCCEDURE hAKE_DV(PT_DV:PT_DELTA:KK.JJ:INTEGER):
BEGIN (= MAKE_DV =)
WITH PT_OV~ DO

BEGIN

K :a KK;

J e JJ;

IF KK = 1 THEN

BEGIN

SUCC_DVK_ 8 := NIL;
SUCC_DVKM1_8 := NIL:

SUCC_DVK_J := NIL;

SUCC_OVK_JP1 :e NIL; .
SUCC_DVKM1_JP1 :=NIL:

SUCC_ETA_ALPHA K :e NIL;

SUCC_ETA_VKP1_J := NIL;

DYK 8 := -VIKK-1,JJ+11/V [KK-1,8];

OVKM1_8 :w ALPHA[KK]:V[KK-I.JJ+1]/V[KK-1.B]:

OVK_J := 1.8;

DVK_JP1 :w 1.8;

DVKM1_JP1 := -ALPHA [KK];

ETA_ALPHA K := ~VIKK-1,JJ+1);

ETA_VKP1_J := 1.8;

END

ELSE
BEGIN
NEW(SUCC_DYK_@) ;
DYK 8 ;e -V(KK—I.JJ+1]/V[KK-1.B];
HAKE_DV(SUCC_DVK_B.KK-I.Q):
IF KK-1 = 1 THEN
BEGIN
SUCC_OVKML_8 :w NIL;
OVKM1_8 := ALPHA (KK) = VIKK-1,J0+11 / VIKK-1,8];
END
ELSE
BEGIN
NEW (SUCC_DVKM1_8) ;
OVKM1 @ := ALPHA (KK] = VIKK-1,J0+11 / YIKK-1,8];
HAKE_DV(SUCC_OVKHI_B.KK—I.8):
END;
NEH (SUCC_DVK_) ;
OYK_J := 1.8;
HAKE_DV(SUCC_DVK_J.KK-I.JJ):
NEU(SUCC_UVK_JPI):
OVK_JP1 :a 1.9;
MAKE_Ov (succ DVK_JPI.KK-I,JJ+1);

IF KK-1 = | THEN



SUCC_OVKHI_JPI t=a NIL;
OvkMl_»1 7o -ALPHA (XK1,
END

ELSE
BEGIN
NEU(SUCC_DVKHI,JPI):
OvKM1_PT sa - PHA (KK ;
HAKE_DV(SUCC_DVKNI_JPI.KK—I.JJ+1):
END;
SUCC_ETA_ALFHA_K = NIL;
SUCC_ETA_VKPI_J ta NIL;
ETA_ALPHA K ;2 “VIKK-1, JJ+1]
ETA_VKP1_J ;. 1.8;
END;

SUCC DK 1= NIL;
SUCC_ETA K K :e NIL,
0K := 9.8;

ETA K K 1= 8. g,

END;
END; (o MAKE_DV a)

PROCEDURE MAKE Dk
BEGIN (x MAKE [k
NITH PT_pk~ GG
BEGIN
K := K,
J e 9
IF KK = 1 THEN
BEGIN :
SUCC_ DX :w NIL;
SUCC OVK 8 :« NIL;
SUCC_DVKHI_B te NIL;
SUCC_ETA ALPHA K :e NIL;
SUCC_ETA KK :a NIL;
8.

OK :w s
DVYK 8 :» ~1.8/V[KK-1.8]
DvkMl g ;. ALPHA [KK] /v [
ETA_ALPHA_K te -1.8;
ETA_K_K te 1.08;
ENO
ELSE
BEGIN
NEH(SUCC_DK):
DK := (178 - BIG_K (kx3
HAKE_DK(SUCC_DK.KK—I):
NEU(SUCC_DVK_B):
DVK 8 ;= -1.8/(VIKK-1.313(1.8 + BIG K
(SUCC_DVK_B.KK 1,J)
@ THEN

iy

3
KK-1,8];

- .
[} *

BEGIN
SUCC_DvkM1_g
OVKNI_g ,
END

ELSE
BEGIN
NEU(SUCC_DVKHI_B):
OVKMl 8 7. ALPHA(KK]/(VIKK—I.B):(I.
HAKE_DV(SUCC_OVKHI_?.KK-Z.J):

END;

SUCC ETA_ALPHA K ;a NIL;
ETAALPHA K :o™-1.8/(1.8 + BIG_K [KK-]
KK := NIL;

s NIL;

1.8

NIL:

e NIL;

t= NIL;
1= NIL;

SUCC_Dvk” P
SUCC_DVKHI_JPI
SUCC_ETA_VKPI_J
OVK_J :a .9
DVK_uP1 ;o 8.8;
OVKN1_JP1 ;. 8.8;
ETA_VKPI_J t= 8.08;
END

END: ' (x MAKE DK )

PRSCEDURE TRAVERSE(PT:PT_DELTA;VALUE:DOUB
YA
TVALUE:DOUBLE_REAL:

(PT_DK:PT_DELTA:KK:INTEGER):
%}

1/71.8 + BIG K (kk-11),

KK-11));

= ALPHA(KK]/(V(KK-1.8]=(1.8 + BIGKI[KK-11)),

8+ BIG K(kk-11)),

1);

LE_REAL;IID.IK.IJ:INTECER):
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IF PT <> NIL THEN
BEGIN
WITH PT~ 0O

BEGIN
TVALUE := VALUE %= DK;
TRAVERSE {SUCC_DK, TVALUE, 8,K, J);
IVALUE := VALUE % DVK_@;
TRAVERSE (SUCC_0OVK _8, TVALUE, 1,K,.8) ;
TVALUE 1= VALUE = DVKM1_8;
TRAVERSE(SUCC_OVKHI_B.TVALUE.I.K—I.B):
TVALUE := VALUE = DVK_J;
TRAVERSE (SUCC_DVK_J, TYALUE,1,K, ) :
TVALUE := VALUE = DVK_JP1;
TRAYERSE (SUCC_DVK_JP1, TYALUE,1,K, J+1);
TVALUE := VALUE = OVKM1_JP1;
TRAVERSE(SUCC_DVKHI_JPI.TVALUE.I.K-I.J+1):
TYALUE 1= VALUE = ETA_ALPHA K;
TRAVERSE(SUCC_ETA_ALPHA_K.TVALUE.Z.K.J):
TVALUE :a VALUE = ETA_K_ K3
TRAVERSE (SUCC_ETA X _K, TVALUE,3.K, J);
TVALUE := VALUE & ETA_VKP1_J;

gSSVERSE(SUCC_ETA_VKPI_J.TVALUE.@.K+1.J):

END
ELSE
BEGIN
IF 110 =« 1 THEN
BEGIN
IF ({IK=8) AND (1J<>8)) THEN
BEGIN
OELTA_R{I1J] := DELTA_RIIJ] « 2.8 = VALUE;
END;

IF 1K=l THEN
BEGIN
IF 1J = 8 THEN
BEGIN
OELTA_R{IJ+1] := DELTA_RI(IJ+#1] + VALUE;
END

ELSE
BEGIN
OELTA RI(IJ) := DELTA_RIIJ] + VALUE;
DELTA_R{1J+1) := DELTA_R{IJ+1] + VALUE:
END;
END;
END;
IF 110 = 2 THEN
BEGIN
ELS_ALPHA[IK] := ETA_ALPHA[IK] + VALUE;

END;
IF 11D « 3 THEN
BEGIN
EﬁS_K[XK] 1= ETA_KI[IK] + VALUE;

END;
IF 11D =» 4 THEN
BEGIN
ETA_VKPI (IK,1J] :e ETA_VKPL{IK.IJ] + VALUE;
ND-

END;
END; (= TRAVERSE )

(= ..... HAINLINE PROGRAN ..... =)

BEGIN

REWRITE (QUTSTUFF, "VARIANCES' ) ;
READ_PARAMETERS (R, N) ;

NOMINALS (BIG_K,ALPHA,R,V,N) ;
NEW (TOP) ;

MAKE_DK (TOP,N)}; (% Construct tres reprasenting reflection error =)

(& variance formula.
YARIANCE := 8.8;
FOR IX :« B TO N DO
BEGIN (= Initiallization loop. =)
DELTA_R(IX] := 9.8;
ETA_ALPHA[IX] := B.8;
ETA_K(IX] := B8.8:
FOR JUX := 8 TO N DO
BEGIN
ETA_VKPL1[IX,UX]) :< 8.8;
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TRAVERSE(TDP 1.8,8,8,8);
UR!TELN(OU'ISTLFF ' DELTA_R )
FOR IX := 0 TO N 00O

BEGIN

WA TE (QUTSTUFF, DELTA_RIX]:16: 18);
IJRITELN(OUTSTUFF) s WRITELN(OUTSTUFF) ¢
WRITELN (OUTSTUFF,* ETA _ALPHA ),
FOR IX := 8 TO N'DO

BEGIN

URITE(UUTSTUFF.ETA_ALPHAUX]318218);

END;

WRITELN (QUTSTUFF) ; IR TELN (OUTSTUFF) ;
URITELN(OUTSTUFF,* ETAK *);
FOR 1>I<N-=. e 10 N'Do

g?cl)TE(OUTSTLFF ETA_K( X):16:18);

WRITELN (OUTSTUFF) s URTTELN (QUTSTUFF) 5
NR!TELN(OUTSTLFF *TETA _YKP1L ")
FOR IX :« 8 TON DO
BEGIN
FOR JX := @ TO N DO
BEGIN
LRITE(UJTSTU’-'F ETA_VKP1 (1X,JX}:16:18);

‘ h

WR; :_I:N(DUTSTUFF) :
END;

URITELN(OUTSTUFF) s WRITELN(CUTSTUFF) ¢
FDg é)( =« QTON 00
13
VARIANCE :- VARIANCE + DELTA RIIXI=DELTA RIIX) + ETA KIXI=ETA_K[IX]}
+ ETA_ALPHA (IX12ETA _ALPHATIX];
FOR UX := 8 TO N B0
BEGIN
VARIANCE :e« VARIANCE + ETA_VKPL [IX, JX1 «ETA_VKP] [IX, JX];
END;
END;
URXTELN(OUTSTLFF ' Reflection Coefficiant Error Yariances ');
URITE{B_N(OUTSTLFF)' .
URITE(GJTSTUFF B:21);
WHILE B <= 12 0O
BEGIN .
B :a8 4+ .
URITE(OUTSTUFF B:14);
END;

LRI TELN (OUTSTUFF) ;
léJRITE(OUTSTUFF ‘ Var(DK(' N,*)1 = ")y
te 8
LJHélE.(E;IB <= 14 DO
LRITE (OUTSTUFF, (YARIANCE = POUER (2. 8,-2.8x8) / 3.8):14:8);
1= B o+ 2;
END;
WRITELN (QUTSTUFF) s WRITELN (QUTSTUFF) ;
END.



APPENDIX F
Program to Produce Nominal Normalized Autocorrelation

Coefficients for 4th Order AR Processes
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PROGRAM AR_4TH(INSTUFF,QUTSTUFF);

{x This program computes the normalized autocorrelation x}
(x coefficients for a 4th order autoregressive process with )
{x tuo complex conjugate pole-pairs. The resul ting numbers %)

(¢ are uritten to the input fila of the program called %)
(% SYM_SCHUR_VAR uhich uses them to compute reflection %)
{a coefficient error variances. - %)
CONST -
CLIM = 12; (% Maximum number of autocorrel. coeffs. %)
PIE = 3.141592654;
TYPE

VECTOR = ARRAY [8..CLIM] OF DOUBLE_REAL;
COMPLEX = RECOROD (% Complex number type. %)

REL :DOUBLE_REAL: (% Real part. %)
[MG:DOUBLE_REAL; (% Imaginary part. =)
END;

YAR

INSTUFF, OUTSTUFF : TEXT;

FUNCTION CADD (X, Y:COMPLEX) : COMPLEX;
(x This function adds two complex types together, %)
BEGIN (= CADD =)
CADD.REL :« X.REL + Y.REL:
CADD.IMG := X.IMG + Y.IMG:
ENO: (= CADD =)

FUNCTION CSUB (X, Y:COMPLEX) : COMPLEX;
(s This function subtracts tuo comp!ex numbers. %)
BEGIN (x CSUB =)
CSUB.REL := X.REL - Y.REL:
CSUB.IMG := X.IMG - Y.IMC:
END: (= CSUB x)

FUNCTION CHUL (X, Y:COMPLEX) : COMPLEX;
(2 This function muitiplies tuo complex types together. %)
BEGIN (= CMUL =)
CMUL.REL := X.REL=Y.REL - X.IMC=Y.IMG:
CHUL.IMG := X.REL=Y.IMG + X.IMGaY.REL;
END: (x CHUL =)

FUNCTION CDIV(X,Y:COMPLEX) : COMPLEX:

v {x This function divides two complex types. %)
AR
OENOM: DOUBLE _REAL ;

BEGIN (= CDIV =)

DENOM := Y.REL&Y.REL + Y.IMGaY.[NG:

COIV.REL := ( X.REL=Y.REL + X.IMGxY.IMG )/ DENOM:

COIV.IMG :» { X.IMGuY.REL - X.REL=Y.IMG }/ DENOM;

END; (= CDIV #)

FUNCTION CEXP (X, Y:DOUBLE_REAL) : COMPLEX;

{« This function computes x expfjy), j = eqrt(-1), %,y are real.

VAR

SINE:DOUBLE _REAL;
BEGIN (= CEXP =)
SINE :« COS(PIE/2.8 - Y);
CEXP.REL := X % COS(Y):
CEXP,IMG := X & SINE;
END; (& CEXP =)

FUNCTION REAL_PART(X:COHPLEX):UUUBLE_REAL:
{« This function takes the real part of x. x)
BEGIN (= REAL_PART =)
REAL_PART := X.REL;
END; ~ (= REAL_PART x)

FUNCTION IMAG_PART (X:COMPLEX) : DOUBLE_REAL ;
(= This function takes the imaginary part of x. x)
BEGIN (=& IMAG_PART x)
IMAG_PART := X.IMG;
END: (% IMAG_PART =)

x)
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PROCEDURE FIND_XS (VAR RHO1,RHOZ, THETAL, THETA2: DOUBLE_REAL ;
VAR K11,K13:COMPLEX; VAR N:INTEGER);:
YAR
Tl,TZ.T3.T4.TS,TG,T7.T8:CONPLEX;
X11,X13:COMPLEX;
SINE:DOUBLE _REAL;
BEGIN (= FIND_KS =)
WRITELN(® Signal Mode! Parameters ')
WRITELN(' Enter pole moduli (rhol & rho2): ')
READ (RHO1, RHG2} ;
HRITELN(® Enter pole arguments (thetal, theta?) in degrees: ');
READ (THETAL, THETA2) ;
WRITELN(' Enter the number of cosfficient lags desired: °');
READ(N) ;

THETA]l := THETAl = PIE /188.8;
THETA2 := THETA2 = PIE /188.8;

SINE := COS(PIE/2.8 - THETAL):

T1.REL := 8.8,

T1.IMG := -RHO1#RHO1/ (2. B=SINEx (1. B8-RI{01xAHO1) ) ;
T2 := CEXP(1.8,3.8xTHETAL) ;

13 := CSUB(CEXP(RHOI.THETAI).CEXP(RHOZ.THETAZ)):
T4 :a CSUB(CEXP(RHOI.THETAI).CEXP(RHOZ.—THETAZ)):
TS.REL := 1.8;

TIS5.IMG := B.0;

16 := CSUB (TS, CEXP (RHO1=RHO1, 2. B2THETAL) ) ;

17 := CSUB (15, CEXP (RHO1%RHO2, THETAL+THETA2) ) ;

T8 := €SUB (TS, CEXP (RHO1%RHO2, THETAL -THETA2) ) ;
X11 := CHUL(T1,T2);

Tl :e CHUL(T3,T4);

Tl := CHUL(TL,TB);

Tl te CHUL(T1,T7);

Tl := CHMUL(T1,78);

K11l := CDIVIX11,TD);

SINE := COS(PIE/2.8 - THETA2);

T1.REL := B.8;

T1.IMG := -RHO2xRH02/ (2. BxSINEx (1. 8-RHOZ2#RHO2) ) ;
72 := CEXP(1.8,3.BxTHETA2);

13 := CSUB (CEXP (RHO2, THETA2) , CEXP (RHO1, THETAL) ) ;
T4 := CSUB (CEXP (RHO2, THETA2) ,CEXP (RHOL, ~THETAL) }
TS.REL := 1.8;

1S.IMG := 8.8;

16 := CSUB (TS, CEXP (RHO2#RHO2, 2. 8xTHETA2) ) ;

17 := CSUB (15, CEXP (RHO2#RHO1, THETAZ+THETAL) ) ;

18 := CSUB (TS, CEXP (RHO2%RHO1, THET,.2-THETAL) ) ;
X13 :a CMUL(TL,T2);

Tl = CHMUL(T3,T4);

Tl :e CMUL(TL,T6);

Tl ta CHUL(TL,T7);

T1 :a CHUL(TL,T8);

K13 := CDIV(X13,71);

END; (= FIND_KS =)

PRSCEDURE AUTOCORRELATE;
YA
K11,K13:COMPLEX;
RHO1,RHO2, THETAL, THETA2: DOUBLE_REAL ;
1,N: INTEGER;
R:VECTOR;
T1, T3: COMPLEX:
BEGIN (= AUTOCORRELATE =)
REHRI TE (QUTSTUFF, *CORREL_COEFFS')
FIND_KS (RHO1,RHO2, THETAL, THETA2,K11,K13,N) ;
WRITELN (OUTSTUFF N ¢
RIB] := 2.8 x (REAL_PART(K11) + REAL_PART(K13));
FORI := 1 TONDO
BEGIN
Tl :e CMUL(K11,CEXP (1.8, THETALel));
T3 := CMUL(K13,CEXP (1.8, THETA2s]) ) ;
RI1 := 2.2 = ( REAL_PART(T1) & POWER(RHO1,1) +
REAL_PART(T3) = POWER(RHO2.1) ):

URITELN(OUTSTUFF.(R(I]/R[B)):lS:l@);
END;
END; {x AUTOCORRELATE %)

(x ..... MAINLINE PROGRAM ..... %)
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BEGIN
AUTCCORRELATE;
END.
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Hinclude <atdio.h>
Hinclude <math,h>

Riist

Hdefine CLIH 12 /% Max. no. of autocor. coefis. =/
#define LIMIT 120889 /% Maximum number of data points w/
Hdefine finpar “PAR" /% Input data to the simulator w/
Hdefine ffout "FouUT* /% Qutput data sequence x/
FILE xinpp; /% declare pointer to input data file %
FILE zoupp; /% declare pointer to output data file x/

double btof();

siggen(signal, length,rhol,rho2, thetal, theta2)
/% This function models a 4th order AR process =/
/% with tuo complex pole pairs (moduli rhol,rho2  x/
/& arguments thetal, theta? (degreses)). A 4th order %/

/% all-pole filter ie driven by a x/
/% Gaussian noise generator routine based on the =/
/% algorithm described in: x/
/% Rabiner and Goid, "Theory and Application of x/
/®= Digital Signal Processing” w/

double signal({);

double xrhol,srho2, zthetal, stheta;
int length;

{

double tsiglLIMIT):
double var,x,y,u;
double al,a2;
double pie;

int i;

printf(" - SIGNAL MOOEL PARAMETERS - \n"};

printf(® Enter desirsd noise variance: \n"};

scanf ("%f", &var);

printf(* Enter desired pole moduli (rhol and rho2): \n");

scanf ("Yf%f", rhol,rho2);

printf(* Enter desired pole arguments (thetal and theta2) \n*);
printf(" in degrees: \n%};
scanf ("¥f%¢", thatal, thata2);

fprintf(oupp,“%s8",® ~ 4th Order AR Process Parameters - \n®); .
fprintf{oupp, "\n"):

forintf{oupp, "¥8%12.6f\n"," pole modulus rhol = ".xrhol);
fprintf{oupp, “%8%12.6¢\n",* pole modulus rhoZ = ", xrho2};
forintf{oupp, “¥8%12.6¢\n",® pole angle (degrees) thetal = ", sthetall:
fprintf(oupp, "¥s%12.6¢\n",* pole angle (degrees) theta2? = *,sthetal):
fprintf(oupp,“%s X12.6¢ \n*,® noise variance = ®,var);

fprintf (oupp, "\n\n");

pie = 3.141592654;
=thetal = =xthetal = pie /1808.8; /% convert to radians =/
zthetal = utheta? = pis /1808.8; /% convert to radians =/

al = -2.8zcos(zthetal)s &rhol;
a2 = mrhol = srhol;

for (i=B; i < length; ++i)
x = randl();
Yy = sqrt(2.8xvarxlog(l.8/x)};
W = 'yscos(2.Bxpiezxrandl()); /= u is a noise point %/
if (i «aad)
signal [B8) = u;
}
if { i =aa 1)
{
signal [1] = u - al % signal(B);
}
if (i>1)
{

signalli] = w - al =« signal [i-1) - a2 = signal [i-2];
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al = -2.8scoa{zthetal)s =rho2;
aZ = 2rho2 # mrho2;

for (i=8: | < length; ++i)
{
tsiglil = gignai (il
}

for (i«8; i < tength; ++i}
{
w e taiglil;
if { i «=a@)
{
signal (8] = u;
}

if (i eal )
{
signal [1] = u - al = signal (8];
}

if (i>1)
{

signal [i} « u - al % signalli-1] - a2 = signal{i-2I;
}

autocorrelate(s,r, !,nco,nseq)
/# Compute nominal ensemble of normalized
/= autocorrelation coefficients
/& {must have length >= | = nseg).

int |,rco,nsegq:

?ouble s{l,r{](CLIMI;

double suml, sum2;
int i,j,n;

for (i=8; i < nseg; i++)

{

sum? « 8.9;

for (ned; n<=(!-~1) : n++)
{
8um2 « sum2 + sln + izl)lasln + ixl);
}

sum? = gum2/1;

for (jel; j<enco; j++)
1

;uml = 8.8;

for (ne@; n<a(l-j-1) : ne+)
{
suml = suml + sln + isllasln + izl + jI;
}

suml = suml/ (1 - j);

;(i](j] = suml/sum2;

r{i) (8] = 1.8;
I
}

quant(x,n} /z Argument x is a 2{n+m)-bit number that we want to
/m round off to 2men+l-bits.
/2 The fractional part of the quantized product is
/% n-1-bite long. The integer part is not altered.
/= Argument x is a "standard format”
/2 2{n+m}-bit product. This function assumes
/& that the computer uses 23 complement arithmetic
/2 for integer arithmetic itself. This function
/% can bs used for "double-precision” multiply-
- /& accumulate operations.
int x,n;

int q,mask, roun;
if (x > 8)
{

mask = 81;

mask = mask << (n-2);

roun e« 8

if ( (mask & x) 'a @ )
{

roun = 13

=/
=/
x/

x/
=/
w/
=/
=/
=/
w/
=/
=/
=/
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}
q = x > (n-1);
q = q + rounyg
} .
elsa
{
q = ~x;
9=qg+1; /2 q =23 compl. of x nou. =/
mask = B1;
mask = mask << (n-2);
roun = 8;

if ( {mask & q! 1= 8 )
{

roun = 1;

}
q = q > {(n-1);
q = q + roung
q = ~q;

Q= q + 1; /% restore true sign of q =/
}

return(q);

ftobix,n) /= Convert the double precision fioating =/
/2= point number x into a standard format =/
/% word. x/

int n;

?oubla x3

int i,c,mask,masks,sign, ix;
double fx;

sign = @;
it (x < 8.8
{

sign = -1;

X ® -xy

)
ix a x; /% find integer part of x &/
fx @ x - (double)ix; /& find fractional part of x =/
c = B8;
mask = 81;
for (i=(n-2); i>aB; ij--)

fx = 2,Bxfx;
maska = mask << i
if (fx > 1.8)

{

fx = fx - 1.8;
f = ¢ | masks;
}
fx = 2.8 n fx;
if (fx >= 1.8)
{ /%= Add unity to effect the rounding operation =/
c=c+l;
}

ix = ix << (n-1};

Ca ¢ + ixg

if { sign == -1 )
{

C e -c;
}
return(c):

double btofi{x,n,m) /% Convert standard format x into double x/
/= precision floating-point number. =/
int n,m,x; .

int i, j,8ign,mask, maske;
doubie c;

c = 0.0;

sign = B;

mask = @1;

if (x < 8)
{

sign = -1;

page 3 of 7
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for {ie(n=2); i >= 8; i--)
{

masks = mask << i;
if ( (masks & x}) != 8 )

{
jen- -1
€ =c + pow(2.8, (double)-j);
}
}
ji=8
for ( ieln-1); i <= (nem=1); i+s)
{

nasks = mask << i
if ( (masks & x) !
{

= g)
f = ¢ + pou(2.8, (double) j};
jo=jo+1;
}
if ( sign == -1 )
{
C = -¢;

}
returni(c);

divide{x,y,n,m} /= Find the n+m-bit, 2s complement (standard =/
/= format) coding of x/y. x and y are standard =/
/= format n+m-bit binary numbers. =/

int x,y,n,m;
{
double xf,yf;

xf = btoflx,n,m);
yf = btofly,n,m);
return(ftob{xf/yf,n});

main () /= SIn_SPLIT
/= (Finite Precision Split Schur Algoritha Simulator)
/%

/% Ue use fixed-point 28 compiement arithmetic (n+m - bits,
/% including sign) with format (standard format):

/e X vee X | M x % ... x .
/e -a a8 123 K
/% uhere x is the sign bit, and n = k + 1.
/= -a

/% Us use integer types to contain standard format binary
/= numbers. The rightmost (least significant) bit of an
/= integer type corrasponds to x .

/a k

/=

/% This program simulates the split Schur algo. for symm.
/= Toeplitz matrices under finite precision arithmetic

/% conditions,

/% The split Schur algorithm simulated is taken from tha

/% paper:

/=

/= P. Delsarte, Y. Genin, “0On the Splitting of Classica!l
/e Algorithas in Linear Prediction Theory,* 1EEE Trans.

/% on Acoust., Speech, and Signal Proc., vol. ASSP-3S,
/= pp. 645 - 653, Hay 1987.

/%
{
int fp_vI[CLIMI (CLIM); /% nonnegatively indexed v-parameters
/e {n+m-bit, 23 complemant)
double vI{CLIM) (CLIMI; /% nonnegatively indexed v-paramaeters
/% (double precision floating-point)
double r (CLIM]I{CLIM); /% ensemble of normalized autocorrel.

/% coefficients {nominal) constructed
/& from segments of signal {];
/8 rlillj] - i = segment index

=/
‘w/
%/
z/

%/
=/
=/
%/
=/
=/
%/
w/
=/
=/
=/

x/
=/
=/
%/
w/
174
u/
%/
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/= = j = jth coeff. of seqg. i =/

double mean (CLIM]; /= mean of reflection coefficients in =/
. /% array fp_k{] (] w/

double vari (CLIM); /m variance of reflection coefficients =/
/8 in array fp_kI[1 (] about their mean  x/

/% values in mean() =/

double signat (LIMIT); /= signal generatead by siggen function &/
: /e {double precision floating-point) w/

double no_k [CLIM ICLIM); /& ensemble of nominal reflection =/
/= coefficients =/

double no_alCLIMI (CLIMI; /= ensembla of nominal split Schur &/
/% ratlection coefficients =/

double bigk; /% double precision floating-point a/
/2 reflection coefficient =/

double alphak; /= 8split Schur reflaction coefficient =/
/= (double precision floating-point) /

int fp_x [CLIN] (CLIN); /= engemble of finite pracision (n+m-bita/
/2 , 28 complement) reflaction coeffs, =/

int fp_alCLIN] [CLINM); /= ensemble of finite precision (n+m-bitze/
/s , 28 complement) spiit Schur =/

/= reflaection coefficients =/

int fp_bigk; /& fixed-point, 23 comp. version of w/
/e variable bigk =/

int fp_alphak; /8 fixed-point, 2s comp. version of z/
/= variable alphak z/

double rhol,rho2; /& pole moduli of 4th order AR mode | u/
double thatal, theta2; /= pole arguments of 4th order AR modal =/
int half;: /% standard format reprasentation of z/
/2 the number 0.5 w/

int one; /2 standard format representation of =/
/% the number 1 (one) w/

int i,j,k; /8 loop counter variables =/
int n,m; /% number of bits {including sign bit) o/
/2 in the fixed-point word is nem «/

int langth; /% length of signal (} =/
int I; /= number of points used to get rl] =/
int nco; /% targest lag value AND also the e/
/% number of reflection coeffs. to be =/

/& computed =/

int prod; /= temporary integer product =/
int nseg; /2 number of gegments of signal (] used =/

/e to compute r (][} (length >«{unseg) u/

inpp = fopen{finpar,"r®);
oupp = fopen(ffout, "w");

fscanf (inpp,“%d ¥d ¥d %d %d Zd'.&n,&a.&length,&l.&nco.&nseg); .
aiggen(signal.Iength,&rhol.&rhoZ.&thetal.&thetaZ):
/% construct the test signal =/
autocorrelate(signal,r.l.nco.nseg): /= find floating-pt. autocorr. =/
/% coefficients =/

fprintf (oupp, °“%s %¥d %s \n"," Uordsize = ".n+m," bits “);
fprintf (oupp, "¥s %d \n®,° No. of fractiona! bits = ".n-1);
fprintf(oupp,“\n\n');

fprintf{oupp,“%s",* Ensemble of Nominal and Normalized \n®);
fprintf (oupp,"%s*," Autocorreiation Coefficiants \n");
fprintf(oupp, "\n");
for (i«8; i < nsag; i++)

{

for (ke8;: k<enco; ki<+)

fprintf(oupp,"%s ¥d ¥s %9.6¢ B S Y B S NS A T
}
fprintf (oupp, *\n°);
}
fprintf{oupp, *\n\n®);

/® compute ensemble of nominal reflection coafficients =/
fprintfloupp, "¥s"," Enseabla of Nominal Reflaection Coefficients \n");
fprintf{oupp, "\n");
for (j=8: j < nseg; j++)

{

v(8l (8] = rlj)(B];
bigk « 8.8;

for (kal; k<onco: k++)

{
viBl (k] = 2.8 = r(j)(k];
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for (ke8; k<nco ; k++)
{

VI K] = r(j)IK] + () [kel];
I
for (iel; icanco; i++)

{

alphak = v(i)(8]/v(i-1)(8];

bigk = 1.8 - (alphak / (1.8 + bigk}};

no_aljl i) = alphak;

no_ k{jl{il = bigk;

tprintf(oupp, "XeXd¥Xs¥%18.6¢"," K(°,i,") = “.bigkl:

for (ke8; (k <o {nco-i-1)) &8 (k > =1) ; kest)
{
v0ii+ll (k] = v{il (k] + v{il(k+l) - alphak =z vli-1)[kell;
}

I
fprintf (oupp, "\n");
}

fprintfloupp, "\n\n");

/% output ensemble of nominal split Schur reflection =/
/& coefficients u/

fprintfloupp,” Enseable of Nominal Split Schur Reflection \n"};
fprintf(oupp,” Cosfficients \n®);
fprintf{oupp,®“\n");
for (jeB; j < nseg ; j++)

{

for (i=l; i<enco ; i++)

fprintfloupp, "¥sXd¥sX18.6¢"," a(",i,") = “.no_aljllil);
}
fprintf{oupp,*\n");
i
fprintf(oupp, "\n\n"};

/% compute ensembie of fixed-point reflection coefficients =/

/= assuming that there is no quantization error in the =/
/= autocorrelation coafficient estimates except that due =/
/x to rounding to n-bit, 2s complement numbers =/
fprintf (oupp, "%s"," Ensemble of Fixed-Point Reflection \n"};
fprintf (oupp, “Xs",* Coefficients \n"});
fprintf{oupp, “Xs"," (error-free autocorrelation coeffs.) \n®);
fprintf(oupp, "\n*);
one = @1; —

one = one << (n-1);
for (j=8; j < nseg; j++)

fp_viB] (8] = ftob(r(jl1(8),.n);
fp_bigk = 8;
for (kel; k<anco; k¢+)
{
fp_v(Bl (k] « 2 & ftob{r{jl(kl,n);
}

for (keB; k<nco ; ke+)
fp_vIlI (k] = ftob{r{jl{k),n} + ftob(r(j] [kel), n};
}

for (i=sl; i<enco: i++)

fp_alphak = divide(fp_v{il (8], fp_v(i-1}1(8).n,m);
fp bigk = one - divide(fp_alphak,one + fp_bigk,n,m};
fp_aljl (il = fp_alphak;
fp_ k{j1{i] = fp_bigk;
fprintf{oupp, "XeXdXeX18.6¢"," K(*,i,") = “.btoflfp_bigk,n,r));
for” (k=8; (k <= (nco-i~1)) &8 ( k > -1) ; k++}

{

prod = quant({fp_alphakafp_v{i-1] [k+l],n):

fp_vli+ll (k] = fp_v{il k) + fp_v(i) [k+l) - prod:

: :

}
fprintf {oupp,™"\n");
i

fprintfloupp, "\n\n");

/% output ensemble of fixed-point split Schur reflection =/
/= coefficients =/

fprintf(oupp,® Ensemble of Fixed-Point Spiit Schur \n");
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fprintfloupp,” Reflaection Coefficients \n"};
fprintf (oupp, *\n");
for (j=B; j < nseg ; j++)

{

for (i-l::i<nnco s i)
fprintf (oupp, "¥s¥d¥s%18.6¢"," a(",i,") = “,ptofi{fp_aljllil,n,m)};
fp:intf(oupp.'\n“):
fp:intf(oupp.'\n\n'):

/% compute and output the means and variances of tha %/
/% reflection coefficients &/

fprintf (oupp, "¥s8",” Fixad-Point Reflaection Cosfficient \n");
fprintf (oupp, "%s", " Heans and Variances \n®);
fprintf (oupp, *\n");

for {jel; j <= nco ; j++)

mean(j] = 8.08;

for (i=8; i < nseg; i++)
¢
wean(j] = mean(j] + btof{fp_k{il{jl,n,m};
}

rean[j] = mean(j]/nseg;
for (jel; j <= nco ; j++)

variljl = 8.8;

for (i=0; i < nsag: i1++)
{
bigk = btof(fp_k(il[jl,n,m};
variljl = variljl + (no_klil(j] - bigk)xlno_k{i}[j] ~ bigk);
}

;ari[j] = varil(jl/nseg;

fprintf (oupp, "¥s\n"," Hean Variance ")s
for(jel; j <= nco ; j++)
{

:printf(oupp.'%a%dls %11.8¢ %£14.8¢ \n","K(",j,")",mean(j),variljl);
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Order AR Process Parameters -

modulus rhol =
modulus rho2 =

noise variance =

Hordsize =
of fractional! bitg =

No.

18 bits

8.5088088
8.588889
angle {degresss) thatal =
angle (degrees) thetal =

1.0080208

7

Ensemble of Nominal and Normalized
Autocorrelation Coefficientsa
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Ensemble of Nomina! Reflection Coefficients

K1)
K{(1)
K (1)
K(1}
K (1)
K{1)
K(1}
K(1)
K1}
K (1)

K(2)
K (2}
K(2)
K{2)
K(2)
K(2)

-8.938138
-8.331751
-8.338758
-8.337883
~8.337781
-8.938138
-8.833854 K(2)
-8.831328 K(2)
-8.923338 K(2)
-8.338363 K(2)

K (3}
K(3)
K(3)
K(3)
K {3}
K(3)

8.762937
8.738756
8.773485
8.778888
8.772476
8.766736
8.746818 K(3)
8.713686 K(3)
8.766865 K(3)
8.738483 K (3)

Ensemble of Nominal Split Schur Reflection
Coefficients

all)
a(l)
al(l)
a(l)
all)
all)
afl)
a(l)
a(l)
a(l)

1.938136 a(2)
1.831751 a(2)
1.938758 a(2)
1.937883 a(2)
1.937781 a(2)
1.8938138 a(2)
1.833854 a(2)
1.9313928 a(2)
1.923398 a(2)
1.938363 a(2)

8.814665 a(3)
8.81837S a(3)
0.013872 a(3)
8.014248 a(3)
8.814174 a(3)
8.014432 a(3)
2.81708@2 a(3)
8.813081 a(3)
8.016461 a(3)
0.818611 a(3)

Ensemble of Fixed-Point Reflection
Coefficients
(error-free autocorreliation coeffs.)
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-8.937588 K (2)
-8.923687 K(2)
~8.337588 K(2)
-8.337588 K(2)
-8.9375088 K (2}
-8.337588 K (2)
-8.923687 K(2)
-8.923687 K(2)
-8.3823687 K(2)
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Ensemble of Fixed-Point
Reflection Coefficients

a(l)
all)
afl)
a(l)
a(l)

1.837508 a(2)
1.8239687 a(2)
1.837588 a{2)
1.937500 a(2)
1,837588 a(2)

8.758808
8.664862
8.758008
8.758088
8.750008
8.7580808
8.664862
8.664862
8.781258
8.664862

K (3}
K(3)
K (3}
K(3)
K(3)
K{3)
K(3)
K(3)
K (3}
K(3)

Split Schur

8.815625
8.823437
8.815625
8.015625
8.815625

al(3)
al(3)
a(3)
a(3)
a(3)

-8.420445
-B.484517
-8.483445S
-8.373434
-8.425361
~-3.349100
-8.324853
-8.355830
-8.2763863
-8.314886

~8.423687
-8.181562
~-8.423687
-8.283862
-8.283862
-8.283062
-8.181562
-8.283125
-8.486258
-8.328312

2.504156
2.436877
2.433631
2.442823
2.526428
2.383584
2.313228
2.331683
2.256127
2.275284

2.580088
1.835937
2.5800800
2.258088
2.258800

8.788623 r{
8.771818 r(
8.783428 r{
8.786584 r 1
8.786834 rl
8.788147 r(
8.774847 rl
B8.773845 r{
8.75328S r(
8.763325 rl(

K (4)
K{4)
K 4)
K{4)
K(4)
K{4)
K{4)
K{4)
K {4)
K{4)

al4)
al4)
als)
als)
al4)
al4)
als)
al4)
als)
afs)

K{4)
K(4)
K (4)
K (4}
K{4)
K (4}
K{4)
K {4}
K(4)
K{4)

afs)
a(4)
al4)
al4)
alé4)

WWhWWWWwWwWwww
et ot Mk b Bt et Sk bt bt ot

a8 &8 n » 08 880D

8.683614
8.588631
8.687712
8.681938 r{
8.602787 r(
8.684258 r [
8.583581 r(
8.532844 r{
8.543666 r(
8.578342 r(

8.0383673
8.117383
8.128373
8.143852
8.172844
0.851287

~-8.803518

8.811541
8.0208219

-8. 856566

8.521788
8.525215
8.513119
8.527518
8.475774
8.617568
8.677516
8.636735
8.7088470
8.723868

8.125888

-8.6414862

B.384687

-0.181562
-8.258008
-8.258088
-8.183375
-8.0846875

8.156258
B.195312

8.588088
1.273437
8.3398437
8.781250
8.838625

LR ol R AR R S X
N s Mt bt b b d st St s
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8.444846
8.426535
8.435848
8.423253
8.423833
8.428130
8.488362
8.433188
8.348183
8.483344
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"""" - 1.937508 a(2) -

= 1.929687 a(2) =

a{l) = 1.329687 a(2) = 8.823437 a(3)

1.923687 al(2)
1.923687 a(2)

8.815625 a(3)
8.823437 a(3)

8.815625 a(3)
8.623437 a(3)

Fixed-Point Reflection Coafficient
Means and Yariances

Mean
K(1) -8.933538375
K(2) 8.71875888
K(3) -8.28593758
K(4) -8,.83986258

Variance
8.00088248
0.88288876
8.82125658
0.87461526

2.250008
1.835337
2.800808
2.500008
2.283125

als)
al4)
al4)
al4)
al4)

8.83862S
1.888808
8.835337
8.588008
8.546875
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APPENDIX H
Summary Tables for Output from the
Programs in Appendices E and G



Theoretical Values (x 10%

b 8 10 12 14

Var[AK,] | 5480 342 214 | 134
Var[AK;) | 1440 | 90.0 563 | 0.352
Var[AK,] | 63.1 394 | 0246 | 0.0154

Var[AK,] | 0.153 | 0.0095 | 0.0006 ~0

Experimental Values (x 10%)

b 8 10 12 14

Var [AK 4] 746 415 10.5 1.10

Var [AK 4] 213 136 488 | 0377
Var [AK 5] 20.8 2.85 0.189 | 0.0125
Var[AK,] | 0.0248 | 0.0023 | 0.0002 ~0

Table VHI: Comparison of theoretical and experimental results for the finite precision

symmetric split Schur algorithm. Here p; = 0.5, p, = 0.5, 6; = 10°, and 8, = 15°.



Theoretical Values (x 10%

b 8 10 12 14

Var[AK,] | 58200 3640 227 14.2
Var[AK,] | 10700 666 41.6 2.60
Var [AK ;] 238 14.9 0.930 | 0.0581

Var{AK,] | 0.153 | 0.0095 | 0.0006 -0

Experimental Values (x 10%

b 8 10 12 14
Var[AK 4] - 6450 429 27.0
Var [AK 5] - 705 30.5 2.18
Var [AK 5] - 21.0 0.601 0.0406
Var[AK ] - 0.0041 | 0.0001 -0

Table VIII: Comparison of theoretical and experimental results for the finite precision

symmetric split Schur algorithm. Here p; = 0.75, p; =0.5, 6; = 5°, and 6, = 45°,



Theoretical Values (x 10%)

b 8 10 12 14

Var[AK, | 4.51 0.281 | 0.0176 | 0.0011
Var[AK,) | 8.81 0.551 | 0.0344 | 0.0022
Var[AK,]) | 0.212 | 0.0133 | 0.0008 | 0.0001
Var[AK] | 0.153 | 0.0095 | 0.0006 ~0

Experimental Values (x 10%)

b 8 10 12 14

Var [AK 4] 10.5 0.728 | 0.0350 | 0.0024
Var [AK 4] 8.4 0.494 | 0.0338 | 0.0034
Var[AK,] | 0.0881 | 0.0105 | 0.0012 ~0
Var[AK,] | 0.0660 | 0.0026 | 0.0001 ~0

Table IX: Comparison of theoretical and experimental results for the finite precision

symmetric split Schur algorithm. Here p; = 0.75 , p, = 0.75 , 8y =85°, and 6, = 90°.



APPENDIX I
Program to Test if j € 2pr
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PROGRAN CONJECTURE (INSTUFF,QUTSTUFF) ;

(z This program tests my conjecture concerning whether or not =)
(% it is possible to have a ° Quadratic Finits Segment p-adic =)

{2z Nusber System °. [t tests whether quadratic residuass, i.e. =)
{z values j that satisfy =)
(= ’ 2 r =)
(= j @<«1 (mod p ) , =)
(2 are such that j balongs to the "hatted” subset of the ring =)
(e z . _ =)
(= r %)
(= p =)
(2 [f p is a2 Gaussian prime then precisely two values of j =)
(% exist to satisfy the above congruence and that balong to %)
(= above ring. )
CONST

LINIT = 188;

TYPE

VARVECTm = ARRAY (-1 .. LIMIT) OF INTEGER:
INSTUFF, QUTSTUFF: TEXT;

FUNCTION POU (X, Y: INTEGER) : INTEGER;
(% Raise positive integer X to the Yth pouer (Y is positive z)

(= integer). =)

I, TEMP: INTEGER;
BEGIN (x POU =)
IF Y = 8 THEN
BEGIN
POUW := 1:
END;
IF Y =1 THEN
BEGIN
POM = X:
END;
IF Y > 1 THEN
BEGIN
TEMP := X:
FOR ! :« 1 TO Y-1 DO
BEGIN
TEMP 1= TEMP z X;
END; .
POU :« TEMP; .

END:
END; (s POM w)

FUNCTION MPOU (X, Y,MN: INTEGER) s INTEGER;
VA}gt Relse X to the Yth power modulo H. %)
I, TEMP: INTEGER;
BEGIN (= rPQY =)
TEMP 1= X MO0 N;
FOR I := {1 TO V-1 DO
BEGIN
TEMP 1= (TEMP = X) HOO M
END;
MPOW 1= TEMP;
END; (= MPOM w)

PROCEDURE READIN(VAR P,R,J1,J2: INTEGER);

{(z Read in the follouing paraasaeters: =)
(= P - Gauesian prime number p. %)
(= R - the rth pouer of p (R = r). =)
(¢ Jl - firet quadratic residue if r = 1. =)
(- J2 - second quadratic residus if r = 1. %)
BEGIN (= READIN =)
RESET (INSTUFF, "RESIDUES* ) ;

READ (INSTUFF ,P,R, J1,J2);
END; (= READIN =)

FUNCTION QUAD_RES (P,R, J: INTEGER) : INTEGER;
{« This function finde the quadratic residue for p (= P} raised =)

{2 to ths rth {(r =« R) power given the quadratic residue #)
(2 j (=« J) uhen r = 1. ®)
(= =)
(2 Thie function utilises the theorem in the appendix of tha %)
(= papar: =)

(= 4. K. Jenkins, J. V. Krogmeier, *The Deaign of Dual- =)
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(= Hode Complex Signal Processors Based on Quadratic
(= Hodular Number Codes,” IEEE Tranms. on Circ. and Syst.
(= Yol. CAS-34, pp. 354-364, April 1987.

M,K,A, T1,72,73, T4: INTEGER;

BEGIN (& QUAD_RES z)

A 1o J;

M :1e POUP,R);

FOR K 1= 1 TO R-1 DO
BEGIN
Tl 1= (A = A) MOD H;
Tl ta (T1 + 1) MOD M;
T2 1= MPOU(2,P-2,H);
13 := HMPOU(A,P-2,M);
T4 1a (T2 = T1) MOD H;
T4 ta (T4 = T3) MOD H:
A :e (A - T4) MOD M;
END;

QUAD_RES := A;

END; (= QUAD_RES =)

FUNCTION FIND_N(P,R: INTEGER) : INTEGER;
(z Find the largest possir.s N satisfying
(= 2 r
(= N + 1 <ap

VAR
X1 00UBLE_REAL ¢

BEGIN (& FIND_N =)

X 1= POU(P,R);

X :a SORT( (X - 1.81/2.8 );

FIND N := TRUNC (X);

END;: (= FIND_N =)

FUNCTION TEST (REM, D: VECTOR; N: INTEGER) : BOOLEAN;
(« 1f REM{II/0(I-1] is an order-N Farey fraction then return
A};t TRUE, otheruise return FALSE.

I+ INTEGER;
BEGIN (= TEST =)
TEST := FALSE;:

to

REPEAT'

IF ( ( 8 <= ABS(REMI[I]) ) AND ( ABS(REM{I]) <= N ) AND
(8 < ABS(O[I-1]) ) AND ( ABS(O[I-11} <= N )} ) THEN
BEGIN
TEST := TRUE;
ENO;

[ ta ] 4+ 1;
UNTIL RENI(I) = 8
END; (% TEST =)

PROCEOURE EUCLIOD(P,R,X1,X2: INTEGER) ;

, %)

%)}

%)
%*)
%)

%)
%)

(2 Herein the Kornerup-Gregory algoritha for finding the Farey %)

(x fraction corresponding to 3 finite ring element is found.
R

1: INTEGER;
N, J1, J2: INTEGER:
REM, QUOT,D: VECTOR:
BEGIN (= EUCLID =)
N t= FIND_N(P,R);
IFR > 1 THEN
BEGIN
J1 := QUAD_RES(P,R,X1);
éjfn“ QUAD_RES (P,R,X2);

ELSE -
BEGIN

JI e X1

J2 1= X2

END;
WRITELN(CUTSTUFF) ;R TELN (QUTSTUEF) s HRITELN (QUTSTUFF) ¢
KRITELN(CUTSTUFF,' p & *,P:4," t = 'L Rit);
WRITELN(OUTSTUFF,* N = ', N:8,° p=r " POU(P,R):8);
WRITELN(QUTSTUFF, * 2 *
WRITELN(OUTSTUFF,® 2N =+ 1 = ", {28 Ns N+ 1):8);
WRITELN (OUTSTUFF, * 2 ’
WRITELN(DUTSTUFF,® 2(N+1) + 1 = ° 2x(N+1) 5 (N+1) + 1):8);
WRITELN (QUTSTUFF) ; WRI TELN (QUTSTUFF) 5

WRITELN(QUTSTUFF,® j = *,J1:8);
WRITELN(OUTSTUFF) ¢

);
A
):
.
}s

&)

page 2 of 3
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REM (8] := POW(P,R);
REM{1] := Ji:

D(8) :a 1;

0{-11 :=8;

WRITELN (QUTSTUFF, * °,RENIB}:8,° °,0(-1):8);
WRITELN (QUTSTUFF, * ° REMI[1]:8," *,0(8):8);

WRITELN (BUTSTUFF) 5

I :2 13
WHILE REMII] < 8 00
BEGIN
REM{I + 1] := REM(I - 11 MOD REM(I);
QUOTI(I] := REM(I - 1) DIV REM{I];
D{l) := O(1 - 21 - QUOT(I} = DIl - 1};
liRXTElI.N(UiJTSTLFF L,QUOT(1):8,REM(1+11:8,0(11:8);
e [+ 13
END;
WRITELN (QUTSTUFF) ;
IF TEST(REM,0,N)} THEN
BEGIN
léRMgTELN(OUTSTLFF.' j has a Hensel coda ! 'J);

ELSE
BEGIN
WRITELN(QUTSTUFF," j has no Hensel code. ');

END;
LRITELN(OUTSTUFF) ; LRI TELN(QUTSTUFF) 3

WRITELN(QUTSTUFF,® } = °,J2:8):
WRITELN(OUTSTUFF) ;
REM(1] = J2;
HRITELN(CUTSTUFF, " ' REM(B]:8,° ',0(-11:8);
WRITELN(QUTSTUFF, * ' REM(1):8," *,0(8):8);
lilﬂl TEIIN (OUTSTUFF) ;
WHILE REM(I) <> 8 0O
BEGIN

REMII + 11 := REMI(I - 11 MOD REMII];
QUOTI(I} := REMII - 1] DIV RENII];
DI} := O(1 - 2) - QUOT(I) = O(1 - 1];
llJRITEII_N(CXJTSTLFF.QUOT[I]:8,RE!'1[I+1]:8.D[I]:8):
) + 13
END;
WRITELN (QUTSTUFF) §
IF TEST(REM,D,N) THEN
BEGIN
LE%TELN(GJTSTLFF.' j has a Henssl cods ! ');

ELSE
BEGIN
%TELN(GJTSTLFF.' j has no Hensel code. ');
H
END; (= EUCLID =)

PROCEQURE INVERSE_MAP;
(z This procedure uses the Kornerup-Gregory Euclidean zigorithr %)

(= approach to mapping an element of the ring to an order-N %)
(= Farey fraction. Whather or not quadratic residue j has a =)

VAF(: Hensal code is output by this prograsm. =)
1,P,R,J1,J2: INTEGER;

BEGIN (= INVERSE_HMAP =)
REWRITE (OUTSTUFF, "FAREY") ;
READIN{P,R,J1,J2);
FOR | := 1 TOR DO
BEGIN’
EUCLID(P.!.JI.JZ):

NO;
END; (= INVERSE_MAP %)

BEGIN
INVERSE _MAP;
END.
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p= 13r=- 1
N = 2pemr oa 13
2
2N ¢ 1 a 3
2
2(N+1) ¢+ 1 = 19
j = S
13 8
S 1
2 3 -2
1 2 3
1 1 -5
2 8 13
j has no Hensel code.
j - 8
' 13 8
8 1
1 S -1
1 3 2
1 2 -3
1 1 S
2 8 -13
j has no Hensel code.
P e 13 r = 2
N = Spxxr = 163
2
2N+ 1 ® 163
2
2(N+1) + 1 281
j = 78
169 8
78 1
2 23 -2
2 12 S
2 S -12
2 2 29
2 1 -78
2 8 163
} has no Hensal! cods.
je 33
1638 8
33 1
1 78 -1
1 29 2
2 12 -5
2 S 12
2 2 -23
2 1 78
2 8 -163

j has no Hensa! code.

p= 13r = 3
N = VB pmmr - 2197
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je 239
2197 8
233 1
3 48 -3
5 3 46
S 1 -239
S 8 2197

j has no Hensel code.

is= 1358
2197 %]
1858 1
1 233 -1
8 46 S
S S -48
S 1 239
3 8 -2197

j has no Hensel code.

p = 13r = 4
N = 119 p == r = 28561

2N+ 1 - 28323
2
2(N+1} +1 = 28881

N

j= 233

28561 8
239 1

118 128 -119
1 119 128
1 1 -239
113 8 28561

j haes no Hensel cods.

j = 28322

28561 8

28322 1

1 233 ~1

. 118 - 128 113

1 119 -128

1 1 233

119 8 -28561

j has no Henssl cods.



APPENDIX J
Summary Table for Output from the
Program in Appendix I



p range of r | j vélues (r=1 case only)
5 1<sr<6 2,3

13 1<r<4 5,8

17 1<r<3 4,13

29 1<r<3 12,17

37 Isr< 6,31

41 1<r<2 9,32

53 1sr<2 23,30
257 1<sr<2 16,241

Table I: Sets of r and p showing that j & fp, .



