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ABSTRACT

This is essentially a survey of all results pértaining to the
existence of certain symmetrical, confounded, factorial designs when
lower order interactions remain unconfounded. This survey is preceded
by the preliminary topics of finite fields, finite geometries and their
use in the construction of such designs.

A1l combinations of r factors, each at t levels, yiel@ t¥ distinct
treatments. A single replication of a symmetrical,.confounded factorial
design consists of £7 experimental blocks each receiving a different
set of t7 " treatments (so that each treatment appears exactly once).
The effects of some of the factor interactions are then confounded with
the block effects. In practice, the most important interactions are the
main effects and lower order interactions leading to the following
problem: What is the maximum number of factors possible in a (tr,tn)
design so that all interactions of up to f factors remain unconfounded?

The case of £ = 2 was solved initially by Sir R. A. Fisher (1942,
1945) using an algebraic approach. Subsequently, Dr. R. C. Bose developed
a powerful approach using finite Fuclidean geometries, which led to an
easy proof of Fiéher's result, as well as some others (1947). However,
the problem has proven to be difficult and not much more has been accom-

plished; for example, the complete solution for f = 3 is not yet known.
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CHAPTER I. FINITE FIELDS
This chapter defines the finite fields, characterizes them, gives
a representaticn by Galois Fields and presents soine examples.

kil

I. Definition of a Finite Fielid

Definition 1.1: A4 GROUP is a set, G, of elements and a rule of combinaticn,
"', satisfying the following properties:
a) CLOSURE: ¥%a, b e G, (a*b) e G.
b) ASSOCIATIVITY: Va, b e G, {a*b)*c = a*(b+c) where operations
in parentheses are performed first,

c) IDENTITY: Va ¢ G, & unique e ¢ G 3 e*a = a.

d) INVERSE: Va ¢ G, 7 unique 2' € G 3 a<a' = e.
Definiticn I.2: An ABELTIAN GROUP is a group with ﬁhe cunmutative property.

e) COMMUTATIVITY: va, be G, a*b = bea.
Definition T.3: A FIELD, F, is a set of elements such that:

i) the elements form an abelian group under addition, the rule of
addition is denoted by "+", the identity by "O" and the inverse of "a"
by "__an;

ii) the non-zero elements form an abelian group under multiplication,

the rule of multiplication is Genoted by "x”, the identity by "I", and

. wo—L
the inverse of "a" by "a ",

iii) the DISTRIBUTIVE iaw of multinlication over addition holds:

AY

Va, b, c e F :ax (b+c)=1{axDb)+ (axc)
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Note: 1) (b +c) xa=ax (b+c) by commutativity

1

(a x b) + {(a x ¢) by distrivutive law

(b x a) + (c x a) by commutativity.
2) Commutstivity of addition follows from the other properties
in the definition of a field [Segre, p.21].
3) Ina finite field the commutativity with respect to multi-
piication follows from the group properties [Segre, p.ok].
Definition I.4: FINITE FIELD is a field with a finite number of elements.

II. Characterization of Finite Fields

Let the finite field, F, have t elements, F ='{ao, aﬂ,...,at 1}.
L -1

The integers of F are: b. =0, b, =1, b

0 1 + 1 for j =2, 3,-h,.

, = Db, |
J J=-1
Since t is finite, the series of h's must repeat. Let k be the smallest

integer such that k¥ = m ~ n where b_n = bn, n > n.
1

THEOREM II.1l: Kk is a prime number (called the CHARACTERISTIC of the field)

m terms n terms (m-n) terms
Proof: bm ={1+I+ ...+ ={T+...+I)+(I+...+1I)vyasso-
ciativity, =b + Db by definition
n m-n
So bm = bn implies bm-n = 0 by uniqueness of additive identity
and k =m ~ n implies bk = 0,

Suppose k¥ = c+d with 1 < c <k, 1 < d < k. Then

O=bk =bc~d = (T +...+I)+ (T 4.0+ 1)+ .00 + (I +...+1I) (nere

there are ¢ sums of d terms each by asscciativity)

= bd + bd + ...+ bd by definition of b

= bd(i + .... + 1) by distributive

d

il

- s
bd bC by definition bc

= 0. _




But F - {0} is ap abelian group under multiplication and closed. There-
fore, b"bc ¢ F - {0}, a contradiction. Therefore, k must be prime.

Then we may write F = {bO’ b¢""’bk—l’ By 5ensa .

] Pl

- . e s £ s .
THEOREM IT.2: The number of elements in F is t = kX7 vhere k is a prime

and ¢ is some positive intager.

Proof: Define 0 x o = 0; va ¢ F.

.5 D } <F. £ there are no others, then the number

We know {bo, b 1l &

100

is t = k. If there is another element, G, say, then the elements in the seat

2
{bi x I + bj X agli, J=0,1,...,k-1} <F and are all distinct.
If there are no others, than t = kg. If there is another element, a

3

say, then the elements of the set

i

{b, x

i +b, Xa, +b xa,li, j, 8=0,1,...,k-1} ©F and are all

j 2 g 3—903
distinet. If there are no others, then t = k~.
Since t is finite, this process must terminate after adding some

. . 2

final element, say Gy and the number of elements is t = k",

THEOREM II.3: The multiplicative group of the finite field is cyclic.

Proof: There are (t-1) = (kz—l) elements in F - {0}. Let a e F - {0},

)

since the elements form a multiplicative group (o x bl), (o x v,.),..

2

e o x at—l) are 2ll the elements of ¥ - {0} in some order. Thereforse,

(a x bl) x (o % bg) X veee % (o x at»l) =b, Xxb, x ... ®a

t-1 , .

S = ohee & utativity).
and o X \bl * X at—l> (bl X X dt—l) (commutativity)
So at-l = 1 by unigueness of multiplicative identity.
- : o)
For a ¢ F - {0}, consider {a, o, a3,...,}. Since F is finite,
3 -

there exists a smallest power, j, for which o = 1; j is called the crder

cf o.



Suppose o =1 withr = nj + £, 0 <f < J: Then of =

= af = 1 implies £ = 0.

Since a® ™t = T Va ¢ F - {0}
then j|(t-1) Vo ¢ F - {0}.
Now let oy have order 11, a5 have order i, with L.C.M, (11, 12) = 1

then (alae)l = 1 since illi and i2]i by definition of L.C.M. On the

other hand (o =1 implies (ai)(ag) = 1 implies illr and izlr.

1%2
Since i1 is the minimum possible value, then i is the order of (dlag)-
Let bj have order ij’ J=1,...,k-1; let aj have order ij’
j=k,...,t-1. Let m = Least Common Multiple of'{il, iyseeesiy 1} Then
m is the smallest number for which il]m, i2]m,...,it_l|m are all true.
Then m is the order of the element (bl X b2 X eeae X at—l) and it 1is the
largest order and
ot =1 Ya € F - {0}.
By fundamental theorem of algebra, any equation of degree m has at most
m distinct roots. We know all (t-1) values in F - {0} are roots.
T. m > (t-1).
But ij|(t—l)' 7= 1, 2,05t
Somos (8-1) = (1),
.". there exists an element, b, with order (t-1). It is called a pri-

mitive element.

. F - {0} is cyclic.
We may now write F = {0, I, b, b2,...,bt—2}.
THEOREM II.4: The finite field, F, contains a sub-field, J, isomorphic

to the field, J', of integers modulo k.




Proof: J = {bos bl""’bkml} containsg the identities bo z 0, bl = 1.
i-1
The obvious isomorphism bi<»~>~i, i=0, 1,...,k=-1, holds between this
ubset of F and the field of the integers modulo k.
1 terms i terms
. U . 1-1
e.g. b, = (b, + bl R bl) ERE O S I R D I i
L e l'-l
Tt is easily checked that (bi + Db,) <> (i+k) mod k
1-1
(bi x bj) <> (i+3) mod k.
. -1
The set J =‘{b0, bl,.,.,bk_l} <> {0, 1,...,k~1} = J' and b, bas the

same properties and characteristics as the integer i, so J "acts like"

J'. It is convenient to use J' instead of J when working with the finite

field.

THEOREM II.5: The finite [ields of order kz are isomorphic to each
other, k prime and 2 a positive integer.

Proof: [Carmichael, p.250].

ITI. Representstion by Galois.Fields

Definition III.X: A POLYNOMIAL of degree & over & finite field,
J'" ={0, 1,...,k-1}, of k elements with k prime is
a sum of the form
3 o1

P{x) = c x + ¢

2 41X + .. + Cc.xX + ¢ where c; € J', 1 =0,...,2.

1 0
Definition IfI.2: An IRREDUCIBLE polynomial is one with no factors except
possibly constants or whole multiples of itself.
Definiticn TII.3: GF(kQ) denotes the set of residue classes of polyncmials
ver the finite field J' = {0, 1,...,k-1} of order

a prime k, modulo an irreducible polynomial of degree

2 over J'.




It follows that GF(kz) = {311 polynomials over J' of degree < 1}.
The number of such pclynomiasls ic k7 since there are 2 coefficients,
CO, Cli""cl«l each being able to assume any of the k- values in J'.
THEOREM TII.1l: There exists at least one irreducible polynomial of

degree & over any finite field of order k, a prime.
Proof: [Carmichael, p.248]. [Mann, 0.99].
Corollary: A éet GF(kz) exists for all primes k, and all pdsitive
integers 1.

THEOREM 11T.2: GF(kQ) is a finite field of order kﬁ. (The GALOIS FIELD).
Proof: [Carmichael, p.255]. [Mann, p.97].

By virtue of Theorems II.5, IIT.1, and IIT.2 we have finite
fields GF(kQ) existing for gll primes k and positive integers 2, all
finite fields of the same order k teing iscmorphic. ©So we may take

0
a GF(kg) as the representative of the finite fields of order k™.

IV. Bxamples

We use J' = {0, 1,...,k-1} instead of J = {0, i,...,?@:ij} as
notation.
IV.1l: GF(k) = set of polynomials of degree < & = 1 over finite fields
of k elements

= {0, 1,...,k-1}.

Addition and multiplication is modvio k.

2)

i

Iv.2: GF(2 set of polyromials of degree < £ = 2 over fileld of 2

elements

{0, 1, %, x+1}.

Addition: (mod 2) + | 0 1 x x+1
0 0 1 X x+1
1 1 0 x+1 X _
X X X+1 0] 1
x+1 X+l X 1 0
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Addition is simply modulo k, independent of any irreducible poly~
nomial.

Multiplication -is determined by an irreducible polymomial f{x). A
general procedure for finding all possible irreducible £(x) of degree %
is to consider all polynomials of degree & and remove those which can be
ovtained by multipiying members of the Galois Field.

In this case: =all possible polynomials of degree £ = 2 over finite

field of 2 are-{xg, X2+l, X2+x, x2+x+l}; Those obtained by multipli--

. 7 2
caticn from GF{2%) are

. o )
{xx = x2, (x+1)d = x> + 1, x{x+1) = x° + x}
o]
This leaves f(x) = x" + x + 1 as the only irreducible choice. Egquiva-
lently £(x) = 0 implies (x2 = x+1).
Multiplication: "' o1 x x+l
1 1 b'd x+1
X X x+1 1
x+1 x+1 1 X

Since GF is cyclic, we may present the multiplication using a

primitive element.

X Xd .-3
X x+1 1
2
(#1)  (x41)° ()3
x+1 X 1

One primitive element is found using trial and error and any others

are then easily found. In this case x, (x+1) both generate GF(2).

Iv.3: GF(23) = set of polynomials of degree < & = 3 over field of

size 2

{0, 1, x, x+1, x°, x2+x, x“+1, x2+x+l}.

Addition is modulo 2.




1--8

Multiplication is determined by an irreducible ©(x) of degree 3.
Usging the method of IV.2 we find evactly twc possiblities.
SN

1. f(x) =x 4 x+ 1 =0 implies x~ = (x+1). By trial and error we

Tind generator x and hy inspection of table below we see all elements

@]

except 1 are generators.

- - -
X x~ © xu x’ x6 x!
bid x2 x+1 x2+x x2+x+l x2+l 1
2. T(x) =~x3 + x2 + 1 = 0 implies x3rE (x2+l). As above we find sll

elements but 1 are generators.

- X X b'd X b4 X X

X x x +1 X +x+1 x+1 X +x 1

IV.h: GF(3%) = set of polynomials of degree < & = 2 ovar field of

= {0, 1, 2, x, 2x, x+l, x+2, Ox+1, 2x+2}.
Addition is modulo 3.
Multiplication is determined by irreducible f(x) of degree 2. Using
the method of IV.2, we find exactly three possibilities.
1. f(x) = x2+l = 0 implies x2 = 2. . Generator (x+l) by trial and =srror

and others 2x, 2x+2, x by inspection of table.

! = : K
(x+1) (1) (17 )t () ) 1) en)®
x+1 2x 2x+1 2 2x+2 X X+2 1

2 2
2. flx) =x"+x+2=0 implies x

i
1]

2{x+2) = 2x + 1. CGCenerator (x+1)

by trial and error and others x, 2x, 2x+2 by inspection.

(1) ()% (1) et ) e)® )T (1)

x+1 x+2 2x 2 2x+2 2x+1 X 1




- 2 ; . 2 _
3. f(x) = x" + 2x + 2 = G implies x° = 2{2x+2) = (x41). Cenerator
X by trial and error and others, 2x, x+2, 2x+1, by inspection.

e 3 bk 5 & 7 8

X X X X X X X

B

b'd x+1 2x+1 z 2x 2x+2 X+2 1

-

[For Galois Fields of orders up to k2 < 1060, see Bussey (19C9).]

2

)

‘

Remark: Thedrem II.5, page 5, also implies “hat these fields GF(3
obtalned by using different irreducible polynomials are

isomorphic.
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CHAPTER II. FINITE PROJECTIVE AND EUCLIDEAY GEOMETRIES

Introduction:

Any synthetic geometry is a system based on orimitive concepts,
axioms and deductive logic. The primitive concepts are point, line
and incidence. A point is a O-space; a line is a l-space énd-higher
spaces are defined recursively. For example, a plane is a 2-space
consishbing of {all points on the lines through a specified point and
any point of a specified linel}, and in general an n-space c¢onsists of
{all points on the line through a specified point and any point of a

specified (n-1)-space}.

An analytic model for s finite synthetic geometry gives geometric
names to certain sets of numbers in suck a way that each geometric
theorem is reduced to an algebraic theorem. The axioms and primitive
concepts are replaced by definitions using elements of a finite field.
[Coxeter, p.111].

In this section the properties of finite projective and Fuclidean
geometries are discussed, analytic models PG(r,t) and EG(r,t) are
defined which are unique up to isomorvhisms, counting results are
obtained and examples included.

I. Finite Synthetic Projeciive Geometries

These gecmetrizs have properties which are maintained under central

reojection. Certain Axioms of Incidence belonz to all svynthetic onro-
=]

jective geometry svstems. _
= <
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In the plane: -any two points lie on a unique line

-any two lines contain a unique point.

In a 3-space: -any 2 points lie on a unique line

~any 3 non-collinear points lie on a unique plane

~any line and point not lying in the line lie on a unique

plane

-any 2 planes contain a unigue line

-any 3 planes contain a unique point.

And so on for spaces of any dimension.

A certain property of incidence holds also:

-if sub-spaces of dimension m and n of an r-space inter-
sect in a space of dimension p and have as union a space of
dimension g thenm + n = p + q. [Segre, p.122].

The Principle of Duality is a consequence of the axioms. Any
axiom or\éheorem about points, lines,’planes,...,(r—l)-spaces in a
space of dimension r remain valid if these are interchanged with
(r-1)-spaces,...,points respectively and the words "lie in" and
"contain" are interchanged. So, for example, the axiom above "any
line and point, not lying in the line, lie in a unique plane" with the
interchanges would give the valid statement "any line and plane, not
containing the line, contain a unique point".

For a finite, r-dimensional (r > 2) synthetic projective geometry,
both Desargues' and Pappus' Theorem are consequences of the axioms of
incidence. It has been shown that this implies the uniqueness of the

geometry and that all such geometries are Desarguesian. TFor a finite,
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plane (2-dimensional) synthetic projective geometry, neither of these
results from the axioms of incidence. So, if one of these theorems is
taken as an axiom, the resultant geometry is unique. Thus there exists
only one such Desaqﬁuesian plane geometry (there do exist finite non-
Desarguesian projective plane geometries). [Veblen and Bussey, p.2kk,

p.24T].

For r > 2, if Desargue's Theorem holds and if each'line contains at
least three points, then the points of the geometry form a finite linear
space and all the results or ordinary linear algebra hold in the analytic
models below. [Segre, p.176, #122].

IT. Analytic Model, PG(r,t), for Finite Projective Geometries

Let GF(t) be the finite field of order t = k- , With k prime and %
a positive integer. The non-negative integer r is the dimension of the
space. The points of PG(r,t) are the equivalence classes of non-trivial
(r+l)—tgples with co-ordinates in GF(t), where whole multiples are iden-
tified. Thus a given (xo, xl,...,xr) would be a representation of the

points {p-(xo,...,xr)]p e (GF(t) - {0})}. The sub-spaces of dimension

(r-1) of PG(r,t) are the sets of solutions to linear equations of the
form-aoxo + alxl + ... + arxr = 0 with coefficients in GF(t), not all

zero. The sub-spaces of dimension (r-2) of PG(r,t) are the points

satisfying pairs of independent linear equations of the form

anX, + .00t a.x, = 0 and boxo + ...+ brxr = 0.
In general, the sub-spaces of dimension (r-m) of PG(r,t) are the
points satisfying sets of m independent linear equations. Subspaces

of PG(r,t) of dimension p are again PG(p,t)'s.

If we take as axioms those of incidence, along with Desargues
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Theorem for r = 2, then finite projective gsometries exist Vr > 2,Vt = k”
& prime power. Geometries with the same (r,t) are isomorphic (because
thie finite fields of order t are isomor?hic) and PG(r,t) is a represen-
tation for these geometries. The Principle of Duality is wvalid.
In PG(r,t) two points P;» P, determine a line, &, consisting of all
points which are linear combinations of these, % ='{A1Pl + AQPEI
2

) =15 <1,

Al, A, € GF(t), both not zero}. Number of choices for (Al, o

since Both canrot be zero. But each point has (t-1) representations.
Therefore, the number of points on & line = (tg-l)/(t—l) =t +1>3
(V(r,t)). Since each line has at least three points, then the points
of PG(r.t) form a finite linear space and all the results of ordinary
linear algebrs hold, In particular k points are linearly independent
iff the matrix of their co-ordirates has rank k.

This provides a convenient, equivalent representation for finite
projective gecmetries. All linear combinations, except the trivisl
one, of a set of (r+l) linearly independent points form a PG(r;t). Fach
such set of {(r+l) points in a PG(r,t) will generate that PG(r,t) and
is called a "basis" set. The "stsndard basis" is B = {BO, Bl”"’Br}

: = (g, pnen ' = =0 for j #i. A +1 int
where B, (Lio, 26500 25 = 1, €53 0 for j 3 \ny (k+1) points

of a basis is itself a basgis for a PG(k,t) < PG(r,t).

Carmichael (p.358) shows that any set of (r+2) points in PG(r,t)
containing a basis set may be transformed linearly into the set
{Bo, Bl,...,Br,U} vhere the (r+l)-tuple U = (1, 1,...,1).

IIT. Counting Results in PG{(r,tv).

TII.1: # points = # equivalence classes of (r+l)—tuples over GF(t),

whole multiples identified.
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+ - . .
# (r+1)-tuples = t¥ 1. 1 since each of (r+l) co-ordinates is

chosen from GF(t), but all zeroes are not allowed.
# representatives in each class = (t-1) since there are (t-1)

¥ multipliers in (GF(t) - {0}).

Therefore, # points = (tr+l -1)/(t-1) =1+t + ... + %,

By duality: # (r-1)-spaces = # O-spaces = 1 + t + ... + t7.

III.é: We have seen that the number of points lying on a line equals
t + 1. By duality, the number of (r-2)-spaces éontained in an (r-1)-
space equals (t+1).

IIT.3: # lines in PG(r,t): line determined by any two points

0,

t-1 t-1

- two points may be selected in ( - 1) ways;
~ each line has (t+l) points.

Therefore, the number of different pairs determining the same line is

r+l r+l
(t;l) = iﬁil%ﬁilu The number of different lines = (t 2_1)(t2 _t).
. (t°-1)(t"=t)
IIT.4: # different m-spaces in a PG(r,t):

Let N(r) = # ways of selecting (m+l) independent points PG(r,t). After
J points have been selected, we select the (j+l)st from the points
outside of the (j-1) space generated by the chosen j points.

# choices= (# points in PG(r,t)) - (# points in PG{j-1,t))

e N @=Ly o ]
t-1 t-1 t-1 ’
m tr+l_tj '
Therefore, N(r) = 1 ( ).

se0 L

But each m space will be counted here as many times as it is

possible to select (m+l) independent points in PG(m,t), namely

(tm+l—t3)/(t-l). Therefore the number of different m-spaces
O —

N{m) =

=8

J



II1-6

] m 'Y'+1 3

o opalegy o Mzl T ald

in PG(f,t) - N(m) - m \*lﬂ*'l _Lj

J.:O -y ~

f-{‘l__l

m = 0: # O-speces in PG(r,t) = # points = (= t-1 )
r+1 i

m = 1: # l-spaces in PG(r,t) = # lines = (t ”1)(t )
tgul ta-t

tr+1_]
m= p-1: # PG(r-1,t) in PG(r.t) = (“¥:f;;)'

Y

IT1.5: The number of m-spaces containing a given g-space in a PG(r,t).

Start with a PG(g,t); we add (m~q) independent points to give a
PG{m,t). We have (g*+1l) independent points generating PG(q,t). Ve may

choose from the (points in PG{r,t)) - (points in PG(g,t)) equals

(tr+l - tq-’-l) int
r—] points.
. me Tt J
J, # ways = 1 (—~E_l ).
J=q+l

But in PG(m,t), the number of ways to choose (m-q) independent points

not in a given ¢ space is

m r+l
1
J=q

- each m space has been counted this many times

m tr+1_tj Remark : This eqguals the number of (r-m-1)
* # ways = T —E:E“WT). spaces contained in a given
jughl BT _gd (r-q-1) space by DUALITY.

Corollary: # lines thiough a point = # l-spaces containing a O-space

I‘-—l) .

= (=) = (L4t + ...+t

Corcllary: # (q+l)-spaces containing a given g-~space in a PG(r,t)

1., q+2 +1. —(q+
= (g1 - g8y et |ty o (erl)-(a 1) 1)/(4-1)

Ve

(L ++ + ...+ 7700
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IV. Finite Synthetic Euclidean Geometries

Properties are maintained by parallel projection and perpendicu-
larity is defined. A finite synthetic REuclidean geometry of dimension
r may te cbtained from a finite synthetic projective geometry of
dimension v in the following manrer: A subspace of dimension (r-1)
of thé rrojective geometry is singled out and called the "space st
infinity". The Euclidean geometry consists of those points in the
original projective geometry minus those in the space at infinity.
Parallelism is defined as "incident in the space at infinity". Per-
pendicularity is defined by choosing an eliiptic polarity in the
space at infinity. [Coxeter, p.110]. The Euclidean spaces retain

all their properties as subsets of the projective geometry.

V. Analytic Model, EG(r,t), for Finite Fuclidean Geometries

Without loss of generality we take the space at infinity PG(r,t)

to be PG(r-1, t) with basis = {B,, B "’Br}’ from now on called

22"
PG {r-1, t). All points in PG (r-1, t) have first co-ordinates 0, and

(tr+l“l)— (tr"‘l A _J_l"
t-1 ’

the number of points of PG(r,t) - PG (r-1, t) = e A
[Bose and Kishen, p.2h]. But the number of points in PG(r,t) with
firgt cc-ordinates # 0 = tr so all points of EG(r,t) are all the points
of PG{r,t) with first co-ordinates # 0. Subspaces of EG(r,t) are
"parallel" if they are incident in PG (r-1, t), i.e., if their intersection
has all points with first co~ordinates 0.

Without loss of generality we select the representative of the
equivalénce class for a points in EG{r,t), to be the one with first
co—ordinate of 1. (When using Euclidean geometries one usually considers

EG(r,t) to consist simply of all t° r—tuples over GF(t).)
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Finally RG(»,t) is defined by selecting among all e¢llipses ceniered
. . . 2 2 2 ams
at the origin the one given by Xl + xg R xr = 1, and calling
it the "umit circle”. This provides units of measurement in all
direction and allows perpendicularity to be defined as "inner pro-
duct = 0".
There exists a 1-1. correspondence bhetween suvsets of tP polnts
n! 2 ® o m{ p
of EG(r,t) and subspaces PG (p,t) of PG {(r-1, t). In fact, these t
points are those with non-zero co-ordinates of some PG{p,t) < PG(r,t).
And, the t¥ points form an EG(v,t); so the relationship is

PG(p,t) = PG {p-1, t) U EG(p,t). This is also true for r:

PG(r,t) = PG (r-L, £) U BG(r,t). The points at infinity have all

pointes with first co-ordinstes zero, the Euclidean geometries have all
points with first co-ordinates non-zero.
So points in EG(r,t) are

.,Xr)]s £ (GF(t)—{O})}](x "Xr) e GF(t)7.

100 100

{{S(ls X
For example, EG(2,k) consists of

{{s(1, x e GF{k)?.

15 %) ls e (6F(x)-{01)} ]y, x

2
This is ordinary Cartesian/Fuclidean gecmetry with a finite number,

kg, of poinﬁs which are those with integral co-ordinates from {0, 1.

2,...,(k-1)}}. They could be plotted in a plane with (1, O, 0) as the

origin, and (1, 1, 0) and (1, 0, 1) as the axis directions.

VI. Ixamples

Example VI.1: ?G(z,t): # points = 24 s 43

. 2
# lines = 1t~ + ¢t + 1

{duality)

# points in a line = (L+1)
(duality)

# lines thrcugh a point = (t+1)




v

EC(2,5): # points = t~

gll triples with first entry = 1

Points at « = all points with firstentry = 0

2 (OS :”:la‘x2)
# points = Ezfi-; (t+1) = # points in PG(1.t)
‘ \ tu-l 2 3
Example VI.2: PG(3,t): # points = TS 1+t +t° + %

(duality)

# planes =1 + t + t2 + 3

# lines = (£%41)(1+t+t%)

# points on a line = (t+1) = # planes through
a line {duality)

# lines through a point =1 + t + t° = # lines

in a plane (duality)

]

# points in a plane

(duality in a plane)

Example VI.3: PG(L,t):
5
# points = EEE%'= T4t o+ 42440t tu = # 3-spaces (duality)
A .2 2 .3 b RN
# lines = {t7+1)(1 +t + t7 +t~ + ¢t ) = # planes (duality)

S

points cn a line = (t+l) = # 3-spaces through a plane {duality)

2 3

# lines through a point = 1 + t + 1t~ + t° = # planes in 3-space

(duality)

C ok t2 = # 3 spaces containing line

# points in a plane = 1 + ¢
(Guality)
. . Y~ 3 .
# points in 3 space = 1 + & + t~ + £t~ = # 3 spaces through a

point {duality)

# lines in a plane = 1 + t + £ = ¢ planes through a line (duality)
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# lines in 3 space = (t2+l)(l + % + t7) = # planes throuvgh & point
(duality)
Exsmple VI.L: PG(2,2): GF(2) = {0, 1}
 # points = 7 = # lines
# points on a line ='3 = # Zines through a point
(1,0,0) {0,1,0) (0,0,1) (i,l,o) (1,0,1) {0,1,1) (1,1,1)
EG(2,2): # points = 4
(1,0,0) (1,0,1) (0,1,0) ({(1,1,1)
Example VI.5: PG(r,2): GF(2) = {0, 1}

r+i

+
# points = 27 -1, # lines = (25 1-1)(

2-1)/3
# points on a line = 3, # lines through a point = (2°-1)

(r+1) tuples

(1,0,....,0)
(0,1,0,..,0)

(0,....,0,1)

r+l r+l r+l, _ r+l . (oYL
(1.1.0.. . .0) Co =0+ + (7)) = ()77 w1= (2771)
Lot stge ey
(191‘3' 9‘1)
EG(r,Q): # pnoints = 2r = those with first co-ordinste = 1
(1,0,....,1)
(1,1,....,0)
(1,0,1,..,0)
(1,0,..,0,1) 2T Ty . Ty ry _ r
g = (O) + (l) + (2, LA (r) = (1+1)" points
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PG{3,3): GF(3) = {0, 1, 2}
# points = L0 = # planes, # lines = 130
# points on a line = 4 = # planes containing a line
(Guality)
# lines through a point = 13 = # lines in a plane
Each point has (t~1) = 2 representatives.
EG(3,3): remove PG (2,3) with basis {(0,1,0,0},(0,0,1,0),
(0,0,0,1)}
r

# points =t~ = 27

We can list points cyclically.

(1,0,0,0) (1,1,2,1) (0,1,0,0)

(1,0,0,1) (1,1,2,2) (€,1,0,1)

(1,0,0,2) (1,2,0,0) (0,1,0,2)

(1,0,1,0) (1,2,0,1) (0,1,1,0)

(1,0,1,1) (1,2,0,2) (0,1,1,1)

(1,0,1,2) (1,2,1,0) (0,1,1,2)

(1,0,2,0) (1,2,1,1) (0,1,2,0)

(1,0,2,1) (1,2,1,2) (0,1,2,1)

(1,0,2,2) (1,2,2,0) (0,1,2,2)

(1,1,0,0) (1,2,2,1) zb,2,l,0)

(1,1,0,1) (1,2,2,2) (0,0,1,1)

(1,1,0,2) These 27 points (0,0,1,2)

(1,1,1,0) have first co- (0,0,0,l;

(1,1,1,1) ordirate of 1. Last 13 points have first
(1,1,1,2) These are points cc-ordinate of zero.

(171,250)

These are points of

PG (2,3).
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CHAPTER IIT. CONSTRUCTION OF CONFOUNDED SYMMETRICAL
FACTGRIAL DESIGNS VIA EUCLIDEAN GEOMETRIES

. o . LA , . ro.a
Introducticn: Each of r factors albl t different levels gives 17 - different

. . - r s . A .
treatment combinations. Forming ail t° combinations gives a factorial
experiment, which is symmetrical because each factor appears at the same
number, t, of levels. If, in such an experiment, these are assigned in

P o] n .. - - . .
groups.- cf © to t7 different blocks, we get a confounded design. This
. . - . r.n
is called a confounded, symmetrical factorial design, (%~ ,t ).

R % . \ . - .
If the number of levels t = k", with k prime and £ a positive in-
teger, then we may use the elements of

-1 2 t-2
2y {bys D b, .} =—— {0, 1, A, A ,...,A

IR o | by

GF(k
where A is a primitive element, to index the factor levels. Then each
of the t* distinét treatments is an r-~tuple, T(Xl’ X2""’Xr)’ with
Xi e GF(t), i = 1, 2,...,r, and there exists an obvious 1-1 correspondence

with the t¥ points of EG(r,t) of the form (xl, x ,xr), x; € GF (%),

prvee
i=1,...,7. [Base, 1938, 1940.]

I. Construction

DEFINITION I.l: A PENCIL, P(al, ap,,..ﬁar) with a; € GF(t), is a partition

of EG(r,t) into t parallel hyperplanes called the sub-
spaces of P. These are defined by

. g = i = (+.
Pi' bi tax ..+ ax 0, 1i=0,1,...,(t=-1).

There are (r~l) variables which may be assigned before the last is

completely determined. Fach of these takes any of the t velues in GF(t)

. . . r-1
so the number ¢f points in Pi iz % . The subspaces are mutually exclu-
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sive since the t egquations are cbviously linearly independnst. So

there are t{t' ~) = t* points, accounting for all the points of EG(r,t).
t-1
P N Pj = @ and U P = EG(r,t), hence {Po, Pl,...,Ptml} is a
¢ k=0

partition of EG(r,t).

" 1 2 LB . . .
A set of n pencils P°, P7,...,P” are lineasrly independent if the

matrix of co-ordinates below has rank n.
{

1 € 1
L
a2 a2 a2
A2 T
‘“ s
2y ay eee 2]

THEOREM T.1: Taking intersections of subspaces of n lineerly independent
. . s n o L r-n . .
pencils yields t° sets of t combinations each.

Proof: This is clear for n = 1 from the definition above. For n = 2:

Let P(al,...,ar), P'(ai,...,a;) be linearly independent. Taking the

intersection gives

P(a.l,.,.,ar)/“; P'(a]'_,...,ar") = {P. N PJ{ii, J e GF(t)-GF(t)}
o
consisting ¢f t7 sets. Points in Pifﬁ Pj satisfy
+ + oo tax = nd b, +alx, + ... +a'x =0,
bi a ¥y 8 X, 0 and Dj aj %y a X, 0]

These are linearly independent with (r-2) variables free to take values

in GF(t). Thus Pilﬂ Pj has trmg peints, and the points in all 2 sets

~
fod

are counted asg t7(t

a

-2 r . .
) = t7, accounting for sll points of EG{r.,t).

. . ‘ oy . 2 . r-2 .
So the intersection partitions EG(r,t) into +~ sets of t points each.
_ ; . 1 2 n . . P L s
For general n: Let P7, P ,...,P" be linearly independent. Taking

the intersection gives

n 1 > n n
Net = (P, NP L. NES )l(jl, 32,...,%) e X GF(4)}
i=1 J1 Jo Jn : 1

s ol n
consisting of £ sets.
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Points in each intersection satisfy n linearly independent equations,
and contain t% = points. The number of points.in all the intersections
is tn(tr—n) = t¥. So these partition the points of EG(r,t).
This completes the proof of Theorem I.l.

II. Properties of the (t*,t") Design as Constructed. [Bose, 1947]

The t° different combinations are denoted by
'{T(xl,...,xr)]xi e GF(t), i =1, 2,...,r}.

Definition IT.1: A linear function, L, of the freatments may be written

as L = z (% peeenx )oT(x ,0ee,x ).
(all points) 1 T 1 T

Definition II.2: Two linear functions, L = Ze(x ,...,x ) T(x;,...,x )
and L' = Zc'(xl,...,xr)-T(xl,...,xr), are orthogonal if and only

if Zc(xl,...,xr)-c'(xl,...,xr) = 0.

Definition II.3: The m linear functions, L(k) = Zc(k)(x ..,xr)-T(Xl,...,x ),

1’
k=1, 2,...,m, are linearly dependent if there exist constants

A, A A not all zero such that AT + a0 4 4o o®) 2o
m 1 2 m

12 Apaees

Equivalently, Zkkc(k)(xl,...,xr) = 0, for all points. Otherwise,
k
they are said to be independent.

Definition II.4: A linear function is a contrast if it is orthogonal

to the linear function G = ZT(xl,...,xr) where c(xl,...,xr) =1,
S0 the necessary and sufficient condition for a linear function to
be a contrast is Ze(x ,...,xr) = 0.

Definition II.5: The contrast between two sets of & treatments

U S COL NI e A @) 2"y 6 the 1inear
), 02 4 g _ o@D e )

function T

_There are only (t¥-1) independent contrasts among the t' treatments;

each one possesses a degree of freedom. The degrees of £reedom belonging
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to two contrasts are definad to be orthogonal if the contrasts are
orthogonal. - In any set of ccntrasts, if just p are independent, then
he set of confrasts possesses p degrees of freedom, which may be
considered to belong to any p independent contrasts of the set.

,ﬂ P

When the t° treatments are partitiored intc t sets of 4%

treatments esach by the subspaces of a pencil, P, then there are-only
(t-1) independent conirasts between these sets, Ior example, between any
fixed set and each of the remaining (t-1) sets. Thus the contrasts
between these sets possess just (t-1) degrees of freedom. The pencil
P may be said to carry (t-1) degrees of freedom.

THECREM II.1: Contrasts among subspaces of sz pencil, P, are orthogonal

to contrasts among subspaces of another pencil, P'.

t~1 t~1 t~1 t-1
Proof: L = g C‘Pi’ e, =0 L"'= 3 chi, b} ci = 0.
i=¢ * i=0 * i=0 * i=0
We must show > (product of coefficients) = 0. Consider

(211 points)

-0
P! se ¥ ints satisfyi 4+ Za =0 + ! = 0.
PJ Pj‘ the set of % points satisfying bk z ;X C, bj Zaixi 0

Points in this intersection receive ) in L and cj in L'. Therefore,
+ b3 (product coefficient) = I c,c! = (tr—g)’cl'c'.
P 0P p NP~ s
x J k J
Now sum over all points by summing over all intersecticns.
t~-1 t-1
z (preduct coefficient) = £ £ ( ¢ (product coefficient))
(21l points) k=0 j=0 P, N P3
t-1 ©t-1 b
= ¥ r (¢t “'ck=cl)
k=0 j=0 J
t-1 _— t-1
= 5 (t .Ck( zel))
k=0 J=0C
t-1

[}

0 since I c! = 0.
=0

3
L5
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An equivalent formulation of this result is that the (t-1)
degrees of freedom belonging to contrasts among subspaces of P are
orthogonal tc those (t-1) which hbelong to contrasts among sub-
spaces of P'.

This completes the proof of Theorem II.1.

Ty Pt et + 2 T mm i a A r 2y s
Definition IT.6: The confounded conirasts in the (% ,t ) design are

those between the t2 sets of the design. There are only (tg—l)

o)
independent such contrasts, so there are (£t°~1) confounded contrzsts

in this design. These degrees of freedom are said to be confounded.
T2 . . . . .
Lemma II.1: In a (t° ,t°) design constructed by taking intersections of
. N . s 1.2
subspaces of two independent pencils, the {t“-1) confounded
d.f. are precisely those carried by the generating pencils

and all linear combinations of them.

Proof: Let the subspaces of P be PO’ Pl,...,Pt_1 where Pi is given by
. 1
+ = 0. ; e - P ! 'y P! shere P!
bi iaka 0 Let the subspaces of P be PO’ Pl’ f,Pt_l where 3
r 815 Bgseeesd
is given by b, + Ia!X = 0., The matrix , N ,] has rank 2, and
J 1 278 aq> a2""’&rj

P,P' are linearly independent. P _ contains t¥~% pointe, (Pkfj Pé)

k

contains t¥ 2 points, kX, j = 0, .,...,(t=1).

Pk = (Pknpé) U (PkﬁPi) U...U (Pkﬂ P% )o k=0, 1,...,(t-1).

So the tr‘l points of Pk are distributed evenly cver t sets of the design.

-1

S0 any contras® between subspaces of P is also a contrast between

sets in the design and is aczcordinglv a confounded contrast. Thus all
(t-1) degrees of freedom carried by P are confounded in this design.
Similarly, the degress of freedom carried by P' are confounded.

Consider the linear combination P" = AlP + AQP' with subspaces
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PL, PY,...,P) | for A,, A, € GF(%t), nct both zero. P! is determined
0”1 51 1 e x
by 1 L [ - Y 1 T + Y = Q.

e B R Do+ Aa %, =0

For each bj e GF(t), (Albi) e GF(t) and there exists a unique
b, e GF(t) such that b_ = A b. + A.b.; in fact, (A 0.) = =(A.b, - b
J I 171 23 d

the additive inverse.

")

Thus some points of P!' satisfy: (A b, + Xzbj) + (A_a. + Aoal

k 171 11
"

+ ... + al = ) I8 1y o~
arx 0: so (Pi \PJ/L..PR

T
This is true for all t choices of b, e GF(t) accounting for

) -
TRy = T 1. all points of Pg.

t(t So the points of P; are spread
evenly over t of the sets in the design, for k = 06, 1,...,t~1. Then

any contrast between subspaces of P" = A\ P =+ XZP' is a contrast

1
between sets in the design and is accordingly confounded.
The number of such independent linear combinations, excluding *the
- . 2 . .
trivial case, is (t"-1)/(t-1) since each pencil has (t-1) revresen-
tations by whole multiples. Each of these pencils confounds (t-1)
degrees of freedom which are orthogonal by Theorem II.1. We have in
. 2 ' o . .
total (t“~1) confounded degrees of freedom which are 2all accounted for.
This completes the proof of Lemma II.1.
Definition II.7: The confounded contrasts in the (t¥,t%) design are
n . . !
those between the t sets in the design. There are only (% -1)

. n :
such independent contrasts, so there are (t7-1) confounded contrasts
in this design. These degrees of freedom are said to be confounded.

T _ r .n . e . .
THEOREM II.2: In a (%t ,t") design constructed by taking intersections
o A . n
of suhspaces of n independent pencils, the (t -1) con-
founded degrees of freedom are precisely those carried
by the generating pencils and all linear cembinations of

them.
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1) (2).
( p! ),.

Procf: We have n linearl: independent pencils P
Pty 3

with the matrix

s 3
1) (1) (1)
2y &, “a e
(2)  _(2) (2)
al c-.2 ar
Zn) (a) &n)
(®1 %2 r )
‘ ) )
of rank n. P(k) has subspaces P(h’, P(k/, .,P(k); k=1, 2,...,n,
0 1 t-1
+
‘ {1
with the subspace Pﬁk) given by bi + I ank)Xj =0;4i=1,...,(t-1).
. ) B j':l A
Each subspace Pj(h) has t° 1 points which are distributed evenly

over tn~l sets in the design, 1 = 0, 1,...,t-1. So any contrast

between subspaces of P(k) is also a contrast between sets in the
desigﬁ, and is accordingly a confounded contrast. Theﬁ all (t-1)
degrees of freedom carried by P(k) are confounded in this design,
k=1, 2,...,n.

2)

] Y
Consider the linear combination P = AlP(") + A2P< + ...+ AnP(l)

with A; e GF(t), 1 = 1, 2,...,n, not all zero.

=Y e~y ™ ko) . . R
Subspaces of P are Py Pl""’Lt—l' Pv is determlned by:
. (1) ., _(2) (n)
by + (\l 1t ATt e e a )y
a1, L (2) O
+ (Aay Aoyl )x
X (1) | (n) -
+ (Alar e+ Anar )xr =0
o} - \
For each set {bél), bga),...,bfn l)} there exists a unique bgn!
1 2 n-1 n
(1) (2) (n) )
so that b = Albi T+ Azbi + ... F A b ’ So points of Pv satisfy
v 1 2
(1) (2) (n), (1) (2) L
(hyb; ™7+ Azby i, Tt Anbin )+ gy Aoy T e F Aa Y
X (1) (2) " (n)y_ .
+ (x + Agar + 4 kﬂ N )xr 0



(1) (n

R - n- . -1 .
This is true fer all t choices {%b; ,...,bi >} accounting
1 n-1

Y-l r-]

e R . Tr-1 . . .
YT = g = g1l points of Pv' Thus the points of P,

for (t
are spread evenly over t of the sets in the design, v = 0, 1,...,t=1.
: . (1)
Then any contrast between subspaces of P = ¥ Aij ) is a contrast
k=1
between sets of ‘the design and is accordingly a confounded contrast.
The number of such independent linear combinaticns, excluding
P . 1. " . o / .
the trivial case, is (t -1)/(t-1) since each pencil has {(t-1) repre-
sentatives by whole multipliers. Each of these carries (t-1) con-
founded degrees of freedom which are orthogonal by Theorem II.1. We
. . I 3 X
have in total (t -1) confounded degrees of freedom which are all
accounted for.
This completes the proof of Theorem II.2.
Definition II.8: A contrast belongs to main effect of factor Fiﬁ
if the coefficients in the contrast depend only on the level
of factor Fi. A contrast belongs to two factor interactions of
F,, F, iff
L N
(a) the coefficients are dependent only cn levels of Fi’ Fj;
(v) it is orthogonal to all contrasts belonging 4o main effects

of F€§ F

5

Contrasts belong to f-factor interacticn of F. s Fi ""’Fi iff
1 2 £

(a) the coefficients are dependent only on levels of those factors
(b) it is crthogonal to all contrasts of interactions of all

subsets of the f-factors. -




THECREM II.3: A confounded interactiion inveolves exactly f-factors if

e

J

e

and on T the confounded pencil has exactly f non-zero coefficients.

Proof: Let pencil P = P(O;,..,aih 0,...,0) vhere ai is ‘the only non-zero
co-ordinate. Ther contrasts among subspaces of P belong to the main

effect of Fiﬁ since subspaces are determined from a,x, = bz,
k i

b, € {0, 1,...,5=1} = GF(t).

<

1-1 .
.'. subspaces ~-—-s- X5 the level of Fi

J.coefficients in contrast between subspaces are 1~-1 with level, X
of F,.
i
Let pencil P = P(O, ai,...,ai,...jO); 8y, a; are only non-zero
o

co-ordinates. Then contrasts among subspaces of P belong to the

. Since subspaces are determined from

2-factor interaction of Fi, Fj s

+ S P (
8 X, ajxj b2 e GF(t),

.", subspaces 1-1 <Xi’ xj), levels of Fi’ Fj

¢

.. coerfficients in contrast depend only on levels of Fi, F..

Contrast is orthogeonal to contrasts among subspaces of all other pencils.

contrast is orthogonal to all main effect contrasts of Fi, F..

1 d

Let P = P(al, a2,...,ar), where only non-zero coefficients are
By s By seeend. Then contrasts among subspaces of P belong to the
"1 = by
f-factor interaction of Fi . Fi ,...,Fi .
1 2 hi
_ u
Since subspaces determined from T ai xi = bQ e GF(t).
J=1 73 7
.. subspaces 1-1 (xi 2 Xy aeeeoXy ), levels of factors FooaeeesFy o
1 2 f 1 f
.. coefficients in contrasl depend only on levels of F.T ,...,Fi .
1 f

Contrasts are orthogonal to contrasts among subspaces of all other pencils.
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So the contrast is orthogonal to contrasts among subspaces of all other

pencils involving only subsets of the factors Fi ,...,Fi . (The 1-1
1 f

correspondence in the preceeding takes care of the "if and only".)

IIT. Degrees of Freedom

T ooy s s , r
There are only (¢ -L) independent contrasts among the t treatments;
each possesses a degree of freedom. These are carried in sets of (t-1)

by the (t+7-1)/(t-1) independent penc¢ils. The number of pencils with a

y FaF=89 3 . | - 3 . f : _ n \f"'l

non-zero -coefficient at a, , a, ,...,a. is (t-1)"/(t-1) = {(t-1) .
i, i, ia

Each of these carries (t-1) degrees of freedom, so there are (t-1)"

P
1 2
.,,,Fj , =1, 2,...,r. There are (?) different interactions involving
¢
L
exactly f-factors, and (?)(t—l)" degrees of freedom belonging to f-factor

degrees of freedom belonging te the f~factors interaction of F. 7o,
l 9 3

:

. . r . X
interactions. Thus the (t -1) degrees of freedom are partitioned:

32

r J6-1) + () e-1)% + L+ (D) (-1)%

t -1 = {

1R

2

v. §§§22£9§

IV.1: v(23, 2) confounded factorial design with r = 3 factors éach at

t = 2 levels in t° = 2 blocks of t© * = 4 treatments each. We identify
the 23 treatments with the points of EG(3,2), namely {(0,0,0), (1,0,0),
(0,1,0), (0,0,1), (1,1,0), (1,0,1), (0,1,1), (1,1,1)}. TIn the construction
we form 2 sets of 4 treatments each by taking subspaces of the single
generating pencil. This confounds 1 = (tnml) degree of freedom belonging
to the confounded contrast between subspaces of the generating pencil.

This involves a 3-factor interaction if and only if the pencil has exactly
3 non-~zero coefficients.

Pencil, P(al, 2ns a3) with G, € Gr(2) = {0, 11.
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P(1,1,1) has Subspaces P P x, tx, tx, =0 | P.:

|

' 1T e TR 1 1" e T Xy

‘ ,0,0), (1,1,0), (1,0,0), (0,1,0),
Blocks ]

| (1,0,1), (0,1,1). | (0,0,1), {(1,1,1).

Iv.2: (?2, 3) confounded factorial design, r = 2 factors each at

= 3 levels, with tn = 3 blocks of tr—n = 3 treatments each. We
identify the 32 treatments with the points of BG(2,3) namely {(1,0),
(0,1), (2,0), (0,2), (2,1), (1,2), {1,1), (2,2), (0,0)}. 1In the con-
struction we form 3 blocks of 3 treatments each by taking subspaces of
the single generating pencil. This confounds 2 degrees of freedom
belonging to the confounded contrasts between subspaces of the generating
pencil. These involve a 2-factor interaction if and only 1f the pencil
has exactly 2 non-zero coefficients.

Pencil, Pla ) with a; € GF(3) = {0, 1, 2}.

1’ %o
P(1,2) has Subspaces | P.: x +2x,.=0
o R )

{(2,2), {0,0)

(1,1)}

Pl: 1+xl+2x2=0 PB: 2+xl+2x2=0

{(2,0), (0,1) | {(z,0), (0,2)

Blocks i

(1,2)} (2,1)}
IV.3: '(33, 32) confounded factorial design, r = 3 factors each at
= 3 levels, with ¢ 3 blocks of t© = 3 treatments each. We
identify the 33 treatments with the points of EG(3,3) namely
{(0,0,0), (0,0,1), (0,0,2), (0,1,0), {0,1,1), (0,1,2), (0,2,0), (0,2,1),
(0,2,2), (1,0,0), (1,0,1), (1,0,2), {1,1,0), (1,1,1), (1,1,2), (1,2,0),
(1,2,1), (1,2,2), (2,0,0), (2,0,1), (2,0,2), (2,1,0), (2,1,1), (2,1,2),
(2,2,0), (2,2,1), (2,2,2)}.
In the construction we form 32 blocks of 3 treatments each Dby
taking all intersections of subspaces of 2 independent pencils. This

n PO . - - . - N )
confounds (t -1) = 8 degrees of freedom carried by the 2 generating
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~pencils and the 2 independent linear combinations of them. Take:
P_(l.,l,l)b P{1,1,2); each carries (t-1) = 2 degrees of freedom
belonging to a 3-factor interaction;
S P(1,1,1) + P(1,1,2) = P(2,2,0), carrying 2 degrees of freedom
belonging to a 2-factor interaction;
2p(1,1,1) + P(3,1,2) = P(0,0,1), carrying 2 degreces of freedom

for a main effect.

P{1,1,1): P(1,1,2):
PO: X + X, + x3 =0 Pé: % + X, + 2x3 =0
Pl; 1+ Xy + X, + x3 = 0 Pi: 1+ Xy + X5 + 2x3 =0
P2: 2 + Xl + x2 + x3 =0 Pé: 2 %+ kl + x2 + 2x3 = 0
\\P'\(l’lﬁg) P! p! pr
P(1,1,1) \\\\
(0,0,0) (0,1,2) (0,2,1)
P, (1,2,0) (1,0,2) {1,1,1)
(2,1,0) (2,2,2) (2,0,1)
(0,1,1) (0,2,0) (0,0,2)
P, (1,0,1) (1,1,0) (1,2,2)
(2,2,1) (2,0,0) (2,1,2)
(0,2,2) (0,0,1) {0,1,0)
P, (1,0,0} (1,2,1) (2,0,2)
(1,1,2) (2,1,1) (2,2,0)

The intersecticns of subspaces Pi f}Pjg i, j =1, 2, 3 give 9 blocks

of 3 treatments each.
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CHAPTER IV. COMBINATORIAL PROBLEM IN CONFOUNDING, mf(p,t),

AND RELATION TC FACTORIAL DESIGNS

I. Statement of the Combinatorial Problem, n.(p,t).

What is the maximum number r of factors possible in a (t~,%

r n)
symmefricalﬁ coﬁfounded factorial design so that no interactions invol-
ving less than or equal to f-factors are confounded. Call this number
mf(p,t), where T = p+n and t° is the number of treatments per block.
THEOREM I.1: mf(p,t) = the maximum number of columns that it is possible

to have in a p-rowed matrix, with elements in GF(t), such that no
f columns are dependent.
Coroliary I.1: mf(p,t) = the maximum number of points possible in a

finite projective geometry PG{p-1,t) so that no f of the peints

lie in s subspace PG(f-2,t).

Proof: Basis for PG(r,t) is B = {Bi = (ai s 04 ety ) o, = 1,
1 2 r i
o, =03 §#1i,1=0,1,...,r}. EG{r,t) = PG(r,5) - PG (r-1,t), all
>3

¥ points of EG(r,t) have first co-ordinate equal 1 and PGw(rnl,t) ig
generated by {B,, Boa-'->Br}' The equation defining PG (r-1,t) is Xy = 0.

1) We show first that there is a 1-1 correspondence bhetween

(+7,¢™) designs and PGw(rwn—l,t). A pencil, P(al, ag,...,ar) partitions
EG(r,t) with its. subspaces Pi determined by bi + ai%y + o0 F a X, = 0,
i=0, 1,...,t-1; GF{t) = {bO, bl,...,bt_l}.

There is a 1-1 correspordence bhetwsen the t subspaces Pi of EG(r,t)
and the t subspaces PG(r-1,t) of PG(r,t), nemely b, corresponds to

the PG(r-1,t) determined by bixo tagx, oL+ a x = 0. -The equiva-

1
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lence sets in this PG(r-1,%) with x. # O are the points of P, in EG(r,t),

¥

li

the peints of this PG(r-l,t) with x 0 belong to PG (r-1,t) and form

0

the PGm(r~2,t) determined by Xy = 0 and 2;% + ... +a x. = 0. This

[a)
PG (r-2,t) is thus determined uniouel by P(al,,,.

the vertex of the pencil P,

: (1) »(2) (n)

A set of n independent pencils P s seve,P partitions

. . . k . .
EG(r,t) vith intersections of subspaces, P£ ) determined by

(x) (k) . ,
5 + al Xl + oL v'ar Xr =0,1=0,1,...,t-1; k =1, 2444 ,n,

. n . . . L.
There is a 1-1 correspondence between the t° sets in this partition
P L

of EG{r,t) and the " subspaces PG(r-n,t) of PG{r,t), namely,

/ -
(Pgl)/\ Piz) M. n P§k)) determined by {bi + aik)xl -+
1 2 k k
.ot aik)xr =0, k=1, 2,...,n} corresponds to the PGi{r-n,t)
determined by {bi Xy * aiﬁ)xl oL aﬁk)xr =0, k=1, 2,...,n}.
k
The equivalence sets in this PG(r-n,t) with Xq # 0 are the points
n 74
of N P;&) in EG(r,t), the points of this PG(r-n,t) with X, = 0 belong
k=1 "k

to PG (r-1,t) and form the PG (r-n-1,t) Aetermined by x, = 0 and
{ai X, b a;k)xr =0, k=13,...,0}. This PG”(r-n-1,t) is thus

determined uniquely by the vertices of {P<l), P(Q),...,P(n)} and is

called the vertex of the parailel bundle of these vertices.

This shows that a (tr,tn) design vwhich is 1-1 with its set of n

generating pencils determines a unique PGm(r—n—l,t). Now we show the
converse.
Through a PGm(r—Q,t) of PG(r,t) pass exactly (1+t) - PG(r-1,t)'s.
r-1

For such a PG(r-1,t) there are exactly points in

(PG(r~1,t) - PGm(r~2,t)). Adding any of these tr_l points to a basis
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. COI .- . , - 5 o, .
~for PG (r-2,t) will lead %o the same PG(r-1,%) 3 PG (r-2,t). If one

]
-4 . N r
of these t points has a non-zero Xq> then they a1l do. Thus the t

poiitts of EG(r.t) are split into t sets of tr-l which give t of the
PG(r-1,t) D ¥G {r-2,t). This leaves one other which must have all

points at ., and in fact it is the PG (r-1,t). This partitioning of
EG(r,t) determines a unique pencil, or the PG (r-2,t) is the vertex

of a pniquely'deﬁermined pencil.
Through a PG (r-n-1,t) of PG(r,t) pass exactly (1L +t + ... + %)
PG(r-n,t)'s, [Chapter 2]. TFor such a PG(r-n,t) there are exactly

r-n ~-n

t points in (PG(r-n,t) - PGw(rnn~l,t)). Adding any of these tF
to & basis for PGw(r~n~1,t) will generate a PG(r-n,%t) :)PGm(r—n—l,t).

If one of these additional points hag a non-zero x then they all do.

O’
Thus the t' points of EG(r,t) are split into t" sets of t' " which give

t® of the PG(r-n,t) > PG (r-n-1,t). This lesves (1L + t + ... + t°71)

others which must have all points at . This partitioning of EG(r,t)
determines a unique set of pencils, or, the PGm(r—n-l,t) is the vertex
of a parallel bundle of uniguely determined vertices. Then the

PG (r-n~1,t) determines a unique (t”,t") design.
1-1 sets of n linearly 1-1

r.n w :
Summary: (t°,t") designs ~—— | Y —> PG (r-n-1,t).
* vio bt desig independent pencils ( )

ii) We know that contrasts among subspaces of a pencil, P, belong to
an f-factor interaction if and only if P has exactly f non-zero coeffi-
cients [Chapter 3]. Then the vertex of P is determined by

a, X + ... Fa, x, =0, =0
1M ety

and this vertex contains all (r-r) points of the basis for PG (r-1,t),

*0

{B Br}, except forv{Bi seeesB. .

s Boyeuns
1 2 1 lf

If all interactions with < f-factors are toc be unconfounded, then




o o ' . N
the PG (r—n—l,t) corresponding to

contained in a vertex of a pencil

Iv-L

Tony L. , .
the (t",t ) design must not be

with < f non-zero coefficients.

Therefore, the PG (r-n~1,t) must be contained only by PG (r-2,t)'s

which contein at most (x~-f-1) points of {Bl, B

"’Er}' Bquivalently,

277

the PGm(r—n~l,t) zarnot be contained by a PG (r-2,t) which passes

through (r~f) of the points of{Bl

iii) Let the PG {r-n-1,t) be generated by the r-n

s ByseoonBL )

p points in the

matrix
O dyys dypsreendyy
O, dQl’ ....... cads
O, d - yeveennns d
\9 pl’ ’pr
Any PGm(r—29t) containing only the points'{BA ,...,Bi } of the set
L
1 bl
N o i 1 = + ... F = 0.
{Bl, ’Br} will be determined by X 0 and ailxil aifxif 0

The necessary and sufficient

contain the PGm(r—n—l,t} are

a, d + o +a, 4, .
11 l,]l lf l,lf

ai dr 5 + o +a, 4 5
1 e e Tole

Equivalently, the columns numbered i

are dependent.

¢ 3
dyys dypoeeendyy
A = dQl’ ' ""’dQT
d G
. pl’ prj

conditions for the PGw\r-Q,t) to

of the matrix A

1> boaes ey
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£ * . - .
. mf(p,t) = the maximum number of columns possible in a p~rowed

matrix over GF(t)} such that no set of f columns are dependent.
If we regard columne as points in some PG(p-l,t), then f of
them will be dependent if and only if they lie in a PG(f-2,%).
. m.(p,t) = the meximum rumber of points possible in a PG(p-1,t)

so that no subset of f belong to a PG(f-2,t).

i

This completes the prcof of Theorem I.1.
II. mg(p,t) = maximum number cf points pcssible in a PG(p-1l.t)
so that ne two of them lie in a PG(0.t).

= pumber of points in a PG(p-1,t), so that no two

are the same

maximum number of columns possible in a p-rowed

i

matrix over GF(t) having no two colwuns dependent.
Since two columns are dependent iff they are multiples, excluding

the column of zerces and identifying the whole multiples in sets of

{t-1) we find

m,(p,t) = (t7-1)/(s-1).
NOTE: 4vThis result for £ = 2 was first obtained by Fisher (19Lk2, 1945).
Using an algebralc approach, he gave a procedure for constructiocn, but

did not give any proof that this proceduve did give the maximua.

Fisher's papers are rather difficult to follow; a proof of his

general construction is given by Finney (p.80, 81).
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CHAPTER V. 'm,(p, t)

The values for m3(3,t), m3(h,t) and m3(p,2) are known. Also

m3(5,3)‘= 20 and  upper and lower bounds are available for all other
values.
I. m {3,%
ng(3,%)
THEQREM I.1: m3(3,t) = ¢+ 1 t odd (Bose 104T)
t + 2 T even

Proof: (3,t) = maximum number of points possible in a PG(2,t) with

m

3
no three collinear. Let M be a maximal set with this property. Through
any point O ¢ M pass (t+l) lines in a PG{2,t), which exhaust all the

points of the PG(2,t). There can be at most cne cther point of M on

each line.

my(3,8) 1+ (s +1) =1t +2 (vt)
Case 1: T even.
The matrix, A, has 3 rows with elements over GF(t) = {0, 1, D,
b2,...,bt—2} and (t+2) columns, no three of which are depeandent.
(1 o 0 1 1 1 ...1 ]
A= |0 1 0 1 @b be ... bTE

A m3(35t) =1t + 2, t even.
Case 2 t odad.
Suppose we have (t+2) points, no three collinear. Then any

three of them form a basis for the plane, PG(2,t). There exists
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a8 linear transformation which will take these into the basis set
{(1,0,0), (0,1,0), (0,0,1)}. Let the columns of C below be the

set of (t+2) points, without loss of generality,

,

1 0 0 -cll 012 N cl,t—l
C = 0 1 0 021 c22 v cZ,t—l
0 0 1 c31 032 o C3,t—l

\

Since no three columns are dependent, then the partial determinant

formed from any three columns must be non-zero.

1 0 clj 1 0 c1j 0 o clj
10 1 cgj =.c3j, 0] 0] c2j = -C2j’ 1 0 c2j = Clj
0] 0 . 1
0 03j 1 C3J 0 c3j

Then c,, # 0, i =1, 2, 33 J =1, 2,...,t=-1.

1J
Since each point has (t-l) representatives, we may take cy5 = 1,
J=1, 2,...,t-1, giving the matrix
1 0 0 1 1 vee 1
D= O' 1 0 d21 d22 N d2,t—l
0] 0] 1 d31 d32 .o d3,t—l
| 0 1 1 0 1 1
b Ay ) = -(dgedag)s 100 dy dg | = (dy-d,).
0 dpy "dg . 1 dgy Ay
Then 4y # dgys Ay #dys for § # K, § =1, 2,000,810,
So {d2l""’d2,t—l} and {d31""’d3,t-l} are each the non-zero

elements of GF(t) in some order.

_ -2
pp T Porready p g =B

ip iy g
D heendy =

We may take dQl =1, d

and d3l =b 7, d32 =
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1 1 N 1]
| ol ( kel | T D O I S B |
e dgj Ay o= (o b b | = () (b J=(v ) (v 7)o
i i
- J~-1 ‘~h—ll
10 d3J Aoy 0 b b ,
So v o
g1 k-1
9] b . . - A
: — # ¥ JFk, =1, 2,...,t-1.
N

Then this

some order

Let S
and S
Then Sl an
Let {

4

Since v is
an integer

(zsl)

set of ratios contains the non-zero elements of GF(t) in

.

}

1 = {10, Toseensd, o

= {ig, (il—l)]mod(t—l), (i,-2) |mod(t-1),...,(i, ~(t-2))Imod(t-1)}.

2 t-2

d 5, are two different permutations of S = {0, 1, 2,...,t-2}.

IS) =0+ 1+ 2+ ...
odd, then (t-1) is even and (¥8) = (-
greater than O and less than (t-1).

= (zsg) mod(t-1) since IS, = £S.. But
L

2

(r3) = (zsl + 2S) mod(t-1).

2
Joo(z8) =

Jaomg(3,t)

O]mod(t—l). Contradiction.

< {t+1), t cdd.

The matrix A' has 3 rows with elements over GF(t) and (t+1)

colvmns with no three dependent

f-m3(3,t)

) -0

c D 1 b o, bt
: "
{0 1 1 b° bh ... boC u}

=t + 1, t ocdd.
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II. mB(h,t)

Definition II.1: A set of (t+l) points in a PG with no three collinear
is a (t+1)-CURVE.

Definition II.2: A set of (t+2) points in a PG with no three collinear
is a (t+2)-CURVE.

Lemma IT.1l: There is exactly one tangent to any point of a (t+1)-curve

in a PG(2,t).

Proof: Let P be a point of a (t+l)-curve C in PG(2,t). There are t

lines joining P fo the other points of C. Since there are (t+1)

lines through any point of a PG(2,t), there is exactly one line through
P wifh no other points of C. This line is called the TANGENT to C

at P. The other lines with exactly 2 points of C are called SECANTS

to C.

Lemma II.2: There are no tangents to a (t+2)-curve in a PG(2,t), t even.
Proof: Let P be a point of a (t+2)-curve D in PG(2,t). There are

(t+1) lines joining P to the other points of D accounting for all

(t+1) lines through P in a PG(2,t). All these lines contain exactly

2 points of D and are secants to D. There are no tangents to D.

THEOREM II.1: If t is odd, and Q is a point of PG(2,t) not in the
(t+1) curve C, then there are exactly 2 or O tangents

from Q to C.

Proof: ©Suppose there exists a tangent from Q to a point P of C. Each
of the t other lines through Q can contain at most 2 of the other t
points of C. If each contained exactly O or 2 then an even number
would be counted, which is a contradiction for t odd. So if there is

one tangent from Q to C, then there are at least two tangents from Q
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to C, The same reasoning applies to each of thé t positions for Q

on the tangent QP. So there is at least one tangent to each of the

t points of C - {P} from the t positions on QP. Then there is exactly

one from each position by Lemma IT.1l. Therefore, any Q ¢ C has either

0 or 2 tangents to C.

Lemma II.3: For t odd, t > 5, let C,» C, be (t+l)—curyes in PG(2,t).
If C;, C, have more than (t+1)/2 points in common, then
they are identical.

Proof: [Qvist, p.9].

THEOREM II.2: For t even, the tangents to a (t+l)-curve, C, meet in

a point.

Proof: Let Pl’ P, e Cand X ¢ C, with X on the line through Pl’ P

o
P2}, and (t-1) is odd, so there is

2
There are (t-1) points of C - {Pl,
at least one tangent from X to C since secants take 2 points each.

This applies to each of the (t-1) positions for X on P.P So there

12’
is exactly one tangent to C from every point X on the secant Png.
Thus two tangents cannot meet on a secant, that is, one cannot draw a
secant from the point of intersection of two tangents, then only
tangents can be drawn from the point of intersection of two tangents.
Thus there are (t+1) lines, all tangents, to the (t+1)-curve C from
the point Q where two tangents meet.

Corollary: For t even, anyf(t+l)-curve can be embedded in a (t+2)-curve.
Proof: Add the point Q where the tangents meet.
THEOREM IT.3: m(k,t) = (+% + 1) for t # 2.

Proof: Case 1: t odd. (Bose, 1947).

Let M be a maximal set of points in PG{(3,t) with no Three collinear.
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o
<
=3
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D
=
4
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o
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=
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T these can be in the same plane

PG{2,t). Let P, P. ¢ M. The line P.P has no other points of M.

-

N
)
[A®)

In PG(3,t) theve pass (t+1) planes through the line PlPZ which exhaust

all .the points of PG(3,t). Hach such plane can have at most (t-1)

. 2
P_}. Therefore, m,(i,t) <2+ (+1)(t-1) = % + 1.

points of M - {Pl, o

3

3,%), on the surface x° - Xy + Z2u =0 with k = nen-residue,

~

in PG
4- —n P s +2 3 - ) LY . 03 W
there are (£7+1) points, no three collinear, [Quist, p.24].

{b,t) =t + 1, t odd.

v @ Ll

3

Case 2: t even, t # 2. (Quist, Seiden: t = 4),

Let P be a point of a maximal set M, with no three points collinear.
There are (t2+t+l) lines through P which exhaust zil the roints of
PG(3,t). ®ach of these lines can heve at most one other point, Plﬁ
of M. Thus,
mB(A,t) <1+ (t2 ot + 1) = 2 4 t o+ 2.

Suppose m,{4,t) =t + 1 + 2. Then all lines through P are secants

3
and there are no tangents to M. Any plane meets M is C or (t+2) points
since there are no tangents by Lemma IT.2. The number of secants to M
equal the number of ways of choosing 2 points which equals
2 Lo L2 ’ ) ) : o mala 4 .

(t“+ t+ 2)(t° + £ + 1)/2, The number of lines in PG(3,t) equals
+t+1). For 4 > 1, there are more lines than secants, and
there exists a line, £, not meeting M. Each of +he planes through

2 meets M in 0 or exactly {t+2) points, so the musber of points in M

is a multiple of (t+2).




So (t+2)l(t2+t+;) implies (t+2)i((t2+t+2) + (t+2))
and (t2+t+2) + (£42) = t(+2) + L,

Then t+2|h implies © = 2

end m3(h,2) = t2 + 1t + 2 =08 (see Theorem III.1).

, . 2 .
For t » 2, even: Let M contain (¢ +a) points, a < t + 2. Suppose

b

. 2 2 ' N
a > 1; take M maximal. There are (t " +a~l) secants through P ¢ M,

there are (t2+t+l) lines through F. So

# tangents through P = # lines ~ # secants = (t-a+2).

Since a < (t+2), we can pick a tangent, T, through P. Each of the
(t+1) planes through T in PG(3,t) meet M in at most t other points
since (t+2) curves have no tangents. At least one plane, u, does
contain t other points; otherwise there would be <1+ (t+1)(t-1) = 2
points, a contradiction to a > 1. The (t+l) tangents to the (t+1) set
obtained from (p M M) meet in some point @ since t is even by Theorem IT.2.
If Q¢ (pN M), then Q £ M; so consider Joining Q to M. 1If all lines

, 2 . .
from Q were tangents to C, we would have (¢ +a+l) points with no three

collinear and M maximal, a contradiction. Thus there is a secant, S,

from Q to M. Consider the planes through S, determined by S and each

of the tangerts from Q. Each of these has a tangent to M lying in u,
: .

so none of these intersects M in (t+2) points and each of these has

at most (t-1) other points of C - {P,, Pg}.

Thus the number of points in M < 2 + (t+1)(t-1) = £2 4 1, a

contradiction tec a > 1. Thus
my(h,t) < 7 + 1.

In PG(3,t), on the surface X2 + y2 + kxy + Zu = 0, with k such
o)

that (x/y)~ + k(x/y) + 1 = 0 has no roots in GF(%), there-are (t2+l)



points with no three collinear. [Quist, p.25].

*om (k%) = o 1, t even, t # 2.

3

L

III. ", {p,2;.
o]

(Pa?) = P Vp > 3  (Bose, 1947)

THEOREM IIT.1: m3
Progf: Let M be a maximal set of points in PG(p-1,2) with no three
collinear. Through any peint P ¢ M there pass (2p~l—l) lines which

exhavst the points of PG(p~1,2). Each of the lines can have at most

one other point. of M. So

m(p,2) < 1+ (2P7ha1) = 227,
Consider the p-rowed matrix with elements over GF(2) = {0, 1}

with each column containing an odd number of ones. The number of
such columns is the nmumber of ways of choosing an odd number of po-

sitions ocut of

P b D
= ( - + e r r| = _‘_f‘
P ‘<1) F (3> + (Z)) where 7 = p if p odd
= p-1 if p even.
Since
- P = fP L 'P\ P _ P
(1 l) 0 \O) (l/ + (2) (3) .
then (() + (5) + + () = ((Q) + () + oo+ (5,) where
Z' = o if p even
= p-1 if p odd
P P P\ 1 ...l
and  (J) + (3) oo (L) = E.(2P> - Pl

A subset of 3 columns of this watrix are linearly dependent if

and only if a linear combination with coefficients in GF(2) is zero.
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Then the sum of tle three cclumns must be zers. In such a sum there
are only two cases, either three zerces or two ones and a zero will
add to zero. Then the total number of ones in *the three columns is
even, a contradiction since each cclumn has an odd number giving an
odd total.

Then no subset of three columns are linearly dependent and the
upper bound is attained.

2?'1 ‘ 3

mé(p,i’) Vp > 3

Iv. 'm3(5,3)

w. (5 3) = the meximum number of factors, m ossible in a
_j > 3 3

m o m- s - . o s
(£, t >) symmetrical, confounded, factorial design so
that no interactions involving less than or equal to
three factors are confounded.

THEOREM IV.1: (5,3) = 20

3
Proof: [Tallini (1961), p.23].

V. Upper Bounds: m3(p9t)

THEOREM V.1: my(pyt) <1 + (+2-1)/(x-1) t even
- (Bose, 1947).
or <1+ tP t odd
(These bounds have been improved , see ¥ below.)
Proof: t even: Let m be a maximal set of points in PG(p—l,t) with no
three collinear. Through & point P & M there pass (tp-l-l} (t-1) lines
which exhaust all the points of PG(p-l,t). ZXach of these lines can have

at most one other point of M. So m.{p,t) <1+ (tp"l - 1)/(t = 1).

3
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-2 , N
t 0dd: Through P.» P, ¢ M there pass (+F721)/ (4-1) planes

which exhaust all the points of PG(p-1,t). Each of these rlanes can

have at most (tml) other points of M by Thecrem I.1. So

D-2

my(p,t) 22+ (6= 1((sP72 - 1)/(8 = 1)) < 1+ P72

THECREM V.2: m. (p,t) < P21, £ 2, pss

-

Proof: [Tailini, 1956]. This bound has been improved. - (See ¥ below.)

THEORRY V.3: 1) m,(5,t) < t>; ¢ even
- . p-6 i
f 1) m(p,t) < tP77 -t T tT; 6 even, p > 6
i=0

(These bounds have been improved , see ¥ below. )

¥ The following bounds are the best known currently.

iii) m,(5,5) < 12k
3 - { 6
-2 Lo
iv) my(p,5) < 5P - 10| 2t -1 p>6,t=5
” \l:O /
D ' 5 6 7 8 9 10

-2 P22 i
v) my(p,t) < 27 o (£-5){ £ % J +1; p>5,%>7,t odd
7 - 1=0 - -
\FP
+ 5 6 7 8 .
T 342 2,286 15,994 116,850 cenn
9 726 6,522 58,786 528,162
11 | 1326 1k,570 160,250 :
13 | 2190 28,450 :
15 | 3366 .

Proof: [Barlotti, 1957].
THEORRM V.h: 1) my(p,3) < (3 + 23)/10, p > €

o | 6 7 8 9 10

m,(p,3) < f 76 211 659 1971 5908 ... -




2
ii) m3(5,u) < S | t > U, vt even
t ' L 6 8 10 12 1L
m (5,t) < | 63 215 511 999 1727 27k3
. N 2, .
i11) mo(p,t) < [(87-20=1) + ((6P-1)/(£-2)) (+-2) 1/ (t5t-1) +
o
for p > 6, t >4, t even
P
N 6 T 8 . .
‘ ™
k < 250 < 995 < 3,97k s
6 [<1289 < 7,725 < 146,336
8 <4088  <32,685 <152,375
Proof: [Bose and Srivastava, 1955]. There are the best bounds known
currently. The authors give a representation of the points in a

PG(p-1,t) which completely specifies the structure of a maximal set.

This-result along with Theoremns II.3 and I.1 are used to obtain the

bounds.

VI. Lower Bounds: m,(p,t)

1) my(3m2,t) > 670 4 (PR L0y (62 L), w1,
m3(3h+2,t) 3-(t2h“2)(5t2u2t+1)/é + (tgh“2~1)/(t2
" h>1, for t = kz, k 27 (mod 8) implies t =

11) my(3m3,t) > (677Pn1)/(6e1) — w(62P) /(61

> 67 (PR (6e1) - 6P /(e
h>1
111) m(3n+h) > (6%00)/(6%0); B> 1, b2
Proof: [Segre, 1957].

;_J




Examples:

(2) .

(a)

h=1, 2,
mB(S,t) > (5t2 -2t + 1)/2; t = 3 (mod L)
> 55 4 (7 - 1)/(t2 - 1)

% i 2 3 b 5 &€ 7 8 9 10 1l
m3(5,t) > f 9v <6 33 51 73 116 129 163 201 3h2
m,(6,t) > G0 - 1)/ - 1) - (2 - 1)/(87 - 1), t odd

> 2 (th - 1)/(8 = 1) - 882 - 1)/(4° - 1); t even
t ( 2 3 i 5 6 7 8 9 10
mo(6,t) > f 1T 37 97 151 289 393 6kl 811 1183
m(7,6) > (4% - 1)/(87 - 1), ks 2
t , 3 L 5 6 T 8 9 10
m (7,¢) > f 91 273 651 133  2ks51 61l 6643 11,111-mwm~_
m3(8,t) > t2(5t2 -2t + 1)/2 + (t2 ~1)/(t° - 1); t = 3 (mod k)
> th “+ (1;6 - 1)/(1;2 -~ 1) t otherwise

t ] 2 3 ) 5 6 7 8 9 10 11
m3(8,t) i 37 181 529 1276 2629 5685 8257 13,200 12,111 L1,383
m,(9,t) > (+° - 1)/{t - 1) - t(th - 1)/(62 - 1y, t odd

> tlL + (t6 - 1)/{t - 1) ~ t(th - l)/(t2 - 1); t even

t ; 2 3 " 5 6 7 8 9
m3(9,t) i 69 334 1553 3776 9109 1k 258 36,029 65,692
m3(1o,t) > (38 - 1)/(t2 - 1) t > 2

t % 3 L 5 6 -

> } 820 4369 16,276 47,985 ...



w13

ki, , h . o ,
(g) m, (11,t) >t k5t2 -2t +1)/2 % (£ - /(8% - 1);  t = 3 {moa L)
‘ > 9 4 (t8 - LY/t - 1), t otherwise
t 2 3 b

mg(llgt) 1k9 1630 8465

Remark: The hook of D. Ragavarao (1971), recently published, includes

many of these results in Chapter 13.
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The values for mh(h,t) and some values of mh(p,2) are known. Also

T mh(h,t)
Lemma T.1: mh(h,t) <t o+ 3 vt

Proof: Let M be a maximal set in PG(3,t) with no four points in a plane.
Through any points P,» P, € M there pass (t+1) planes which exhaust
the points of PG(3,t). Bach of these planes can have at most one
othef peint of M. So
1mu(h,t) <2+ (t+1)=1%t+ 3.
Corollary I.1l: mu(h52) =5 (Rao, Seiden, Bush).

Proof: By Lemms I.1 mh(h,Q) < 5. The b-rowed matrix, A, with elements

over GF(2) has five columns with no four dependent.

1 0 0o 0o 1)
A. |01 0 0o 1
0o 0 1 0 1
o o o 1 1

Thmi%(%2}=5-
Lemma I.2: m (4,t) <t +2, t odd
Proof: Let M be a maximal set in PG(3,t) no four on a plane. Suppose

P_ e M

the maximum of (t+3) of Lemma I.1 is attained. Through Pl’ 5

there pass exactly (t+l) planes, each with one other point of M.

Through Pl e M there pass (l+t+t£) lines; at least one of these has no
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other point of M, otherwise ((l+t+t2)+l) > t+3, a contradiction. Let
PlC be such s line, where there are t positions for C. Through PlC
there pass (t+1) planes; if one of these has a second point of M,
then it has a third by the dnitial assumpticu. Then each has either

0 or 2 more points of M. If & = # of planes with 2 more points,

then the (4+3) points of M are counted as (22+1). So & = t;g-implies
t even, a contradiction.

Jom (bot) < v+ 2, 6 odd.

Corollary I.2: mh(h,B) =5 (Bush, Gulati and Kounias).

Proof: By Lemma I.2, mb(M,B) < 5. The b-rowed matrix, A, with elements

over GF(E) has five columns no four dependent.

L o o o 1
L= |01 0 0 1
0o 0o 1 0 1
0O 0 0 1 1

'| mh(b’QB) = 5'

*

THEOREM I.1l: m)(L,h) =5 (Bush, Gulati and Kounias).

Proof: The L-rowed matrix, A above, with elements over

/

GF\22) = {0, 1, b, bd} has five columns, no four dependent. So

m

, (1) > 5,

Suppose we have a maximal set of six columns. Without loss of

generality we may take them tc be those of the matrix A': (p. II-L,

Chapter II).

1 o o o 1 4]

i

A= _Jo 1 0 0 1 aq,
lo 0 1 0 1 as

[o o 0 1 1 th
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No subset of four columns can be dependent. Then the last column.

must be all non-zero, otherwise a linear combination with 3 of the

first 4 columns would be zero. So we may take dl = 1. No ﬁair of

d's are the same, otherwise a linear combination with the fifth,

sixth and two of the first four columns would be zero. So d2, d3,

d e {b, b2}, an impossibility, and mh(h,h) < 6. Thus mh(h,h) =5,

Lemma I.3: For t odd. Every maximal set, M, of (t+l) points in PG(2,t)
no three collinear is contained in a unique irreducible
conic, whose (t+1) points are identical with those of M.

Proof: [Segre, 1955].

Definition I.l: An IRREDUCIBLE CONIC in PG(2,t) is of the form

Zainin, i<j,1=1, 2, 3 with the coefficients

not all zero. There are five unknown coefficients

since any one of the coefficients may be taken to be

1. The conic may then be determined by five points or

four points and a tangent.

THEOREM I.2: TFor t even,. every set, M, of (t+2) points in PG(3,t)

with no four dependent can be completed to form a set of
(t+3) points with no four dependent. (Gulati and Kounias).

Proof: (1) Through any P., P, € M there pass (t+1) planes which exhaust

all the points of PG(3,t). At least one of these has no other point of

M, otherwise the points in M would be counted as 2 + (t+l) > t + 2,

a contradiction. So, through any pair Pl’ P2 e M there pass exactly t

planes with exactly 1 other point of M, and exactly 1 plane with no

further point of M.




(2} Let Rys Bys Ry € M determine a plane T, < PG(3,t). Througn
. . - -~
. ass {t+l) lines in T ; ROR R_E vhich have exactly 2 vpointa
1 3 Titpr Tty N T
cf M, and (t~1) others, {RlP % < g <t + 2}, which have only Rl e M.

(3) Let R) € M, R, ¢ T.. Through R.R) passes exactly one plane,

Ty, with no other of M by (1). Since 2 planes meet in a line, then ),

intersects T, in one of the lines R.P . Since there are (t-1) choices

3 17 g
for R) there are in total (t-1) éistinct planes, {qub < g <t o+ 2},
intersecting T3 in one of the (t-1) distinct lines through Rl in T,
o}
L o< <t 4 2}
Ryp [ a6+ 2h

(k) Suppose y plsnes through Rqu have exactly 2 other points

of M and the remaining {t+l-y) planes through Rlpu have no other points

2

of M. The (t+2) points of ¥ are counted as (y+1) dmplying + = 2y-1,

3 1

an odd number, and o contradiction. Thus Rqu has at least one plane

through it with exactly 1 other point of M for esch b < g <t 2.
(5) Since there are only (t-1) planes to distribute over the

(t-1) lines by (3), and each line must receive at least one line by

('L'r)9 then there must be a 1-1 correspondence and each line RJPq is cut

by exactly one plane Tq with no other points of M for L < g < (t+2).

(€) Let the unique plane of (1) with no other point of M through
1Y

RlR‘ be X, through R1R2 ve Y, and through R2j3 be Z. There three planes

3
meet in a point Q ¢ M. Through R1Q pass (t+l) planes; suppose one of
these, T, has two other points of M, say Ri and Rj' Then RlQ will be
a line inka plane RlRiRj and there is only one plane through RlQ with
exactly one other point of M by (5). But X, Y both have exactly one
4

other point of M, a contradiction. So no plane through RlQ has 2 oth

points of M.

a
=

r




(7) Since the (t+1) planes through RlQ exhaust the points of
PG(3,t), all (t+1) other points of M must be distributed over these
(t+1} planes. Since no plane can have 2 more points of M by (6),
then each must have only 1 other point of M. The same reasoning holds
for RQ and'R3; s0 every plane through RlQ, REQ and R3Q has exactly
one other point of M.
5> R3. The unigue planes with no other
poirt of M through RiRZ’ RiR3 and R2R3 meet in the same point Q of

(7). By the same reasoning as in (6) znd (7T) every plane through

(8) Consider Ri’ R

R,Q has exectly one other point of M, for L < i < (¢+2). So the
planes RiRjQ’ i# 3,1, e d{l, 2,...,5+2} have no other point of M.
(9)

points in PG(3,t) with no 4 dependent. This set is maximal by

Add Q to the (t+2) points of M to form a set of {(t+3)

Lemms I.1.

THEOREM I.3: m\u(h,t) =t +1, t>5 (Gulati and Kounias).

Proof: In the first part we consider three different cases and find
an upper bound, in the second part we show this bound is attained.
Part I. Finding an upper bound.
Case {a): t = kg, k odd.

(1) Suppose we have a set, S, of (t+2) points in PG{3,t) no four

P,, P, € & determine a plane, T. Let P,Q € 8. The

2> "3
(t+1) points of S - {P} when projected from P onto the plane T give a

dependent. Pl,
non-collinear set of (t+1)-points in the plane T, TFor if 3 cof these
were on the same line, 2, in T, then the plane determined by 2 and P

would coatain 4 points of S, a contradiction. These (t+1) points in T
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are the poinbs of an irreducible conic, C, by Lemma I.3. Similarly,
the (t+1) points in T obtained by projecticn of § - {Q} onto T are

the points of an irreducible counic, 02.

(2) Now C.

1 02 have the 4 points P P P3, R 1in common where

‘15 *99
R is the projection of P from q (Q from P) onto T. The tangent to

T at R of Lemma II.1, Chapter V, is common to C. and Co: it is the

1
intérsection of T and the unique plane through PQ having no édditional
point of S (see Theorem I.2, partA(l)), o €, C, coincide by
definition I.1,
(3) Let P* on the conic bLe the projection of I through P, snd of

M tﬁrough Q. Then the plane determinsd by PQP* contains the 4 points
{P, Q, L, M}, a contradiction. Thus, such & set, S, of (++2) points
cannot exist. So mh(h.t) <t + 1, t oad.
Case (Ql; t = 22h, t even.

I(l) Let M be a maximal set of {t+3) points in PG(3,t), no four

dependent. Using the same reasoning as in Lemma I.2 we find that

‘ +2, i
through A ¢ M, . C ¢ m, there pass (2527 planes with exactly 2 points

of M ~ {A}, and (t+1 ~ 3220 = g-planes with no points of M - {A}.
(2) Let P, Pl, P, e M; let Q be on the line P.P, with Q ¢ M.

4

Throvgh QP; there pass (§-+ 1) planes with exactly 2 points of M - {Pi}
by (1), namely PiPlP2 and E—others. This is true for i = 3, L,...,t+3.
-

So the number of planes through QPi, i=3, h,....t+3 excepting

PiPngvis courtted as (%J(t+l). But each of these is counted three

times, once for each virtice. The number of such planes is counted

T+l . . .
as 5t —5—-whlcn must be an integer.
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‘ 2n 2h. 2h . .
) For t = 2°7, then 2 h(2 +1)/6 is an integer

N -] 2%
then 3|(22h 1y (2741,

Now 2% = (3-1)7 = 37 + (137 (1) + ...+ (1)3%-1)"
=1 r o L=l r
=307 o (DT ()
So 2" =1 {mod 2) if v even;

2 2 (mod 3) if r o0dd.

y 2}.‘1"1 ) ( QQI:"}‘:L) - (22h"l (

-z

2h

mod 3))e((27°+1) (mod 3))

1

(2)(2) (moa 3)

1 (mod 3), a contradiction.
So a maximal set of (4+3) cannot be attained.

(4) By Theorem 1.2, any set of (t+2) in PG(3,t) with no four
dependent can be completed to a set of (t+3). Since the latter does
not exist, then the former does not exist. So mu(h,t) <t o+ 1,

t = 22h: even.
Case (c): t = 2% , b even

(1) Let M be a maximal set of (t+3) points in PG(3,t), no four

. . _
dependent. There are (l+t+ta+t3) points in PG(3,t). Through two

(t+3

o ) lines; each has 2 points of M and (t-1)

points of M there pass
others not in M. . The number of points in M plus the number of lines

through 2 points of M is

Cee3) ¢ (1) (52 = (s

3+5t2+5t-6)/2 < (1+J+t‘+t3).

So theré exists a point R ¢ M, and R is not on any line through 2 points
of M,
(2) Let {P,, i =1, 2,...,t+3} be the points of M. Az in case

(b) (2), we find (t+2)/2 planes through the line PiR with exactly

no

2 points of M -~ {Pi}, i=1, ..,t+3. Each of these is counted

5.
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three times, once for each vertice. The number of such planes ig

cocunted as'(igg)( £%§J which must be an integer.
. 2h+1 2n+l
*+ : +2)(2" TH3) .
{3) For t = 22h ~, then (2 d)é ) is an integer;
z N 2; +
then 3](27P41) (277 3),

But (27%1)(2%P*3) = ((2%%42) (moa 3)) ((2™"H43) (mod 3))
= {2)(2)(mod 3)
=1 (mod 3), a contradiction.

So a maximal set of {(t+3) is not attainable.

() By Thecrem I.2 if a set of (t+3) is impossible, then so is

2h+1
, even.

a set of (t+2). So mu(h,t) < (t +1), t =2
Part II. The upper bound is attained.

. . . : 2 t-2

The l-rowed matrix, M, with elements in GF(t) = {0, 1, b, b seoesb T}

has (t+1) columns, no four of which are dependent.

1 0 1 1 1 ...1 ]
w- 00 1 bi : bZ;fh

0 0 1 1 b ...p"T

o 1 1 v b ... bBt—6J

Consider the pessible sub-matrices of 4 columns.

T 1 1 1
1 iQ s i . i{, i.
v oo o7 b ° p 3 v M| = 1 b d ),
1 5 i i, <k
2.1 2,72 2 2.7k
(b°) (v°) ) 3 (v°) 1
i i i o j,k=0,1, 2,3, L.
IR IR G I O R e il
0 1 1 1 ] Ly
. .
o 1l L2 3 iyl = 1 (6 Y- ),
M, = 0.t 2.1 2,73 I
0 >
(b )~ (b )i (b )J J, K = 05 l’ -3 3
. .Ll ( 3 > ~ 1
L o (%°) (v°) 3]
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11 1 1 7
i i i i, i
- 3
P L b 2 b > Mgl = 1 (b o 5y,
3 i, o i 5iq J<k
o (v®) (%) © (%) °
L i i, i Js k=1, 2, 3, L.
o )t HE hH3

i, i
. . k e s
These determinants are all non-zero since D J, b are distinct

non-zero elements of GF(t). So no set of 4 columns are linearly

dependent. So my (k,t) =t + 1, t > 5.

IT. m (5,t)
THEORM IT.1: m(5,3) = 11 (Gulati and Kounias)
Proof: Let M be a maximal set in PC(4,%) with no four on a plane. For
t odd, then Lemma I.2 gives at most (t+2) points of M in a PG(3,t).
Through any 3 points P, Py, P3 € M there pass (t+1) PG(3,t)'s which
exhaust all the points of PG(L,t). Bach of these PG(3,t)'s can have
at most (t+2)-3 = (t-1) other points of M. Then the number of points
in M < 3+ (£-1)(t+1) = £2 4 2, t odd. Thus mh(5’3) < 3%+ 2 = 11.

The 5-rowed matrix, A, with elements over GF(3) has 11 columns,

no four of which are dependent. This may be checked by observation

and simple enumeration. (Tallini, 1961).

1 0 0 0 0 1 ¢ i 1 1 1
0 1 0 0 c 1 1 0 1 2 2
A = G o 1 0 o 1 2 2 0 2 1
0 0 0 1 0 1 2 1 2 0 2
o 0 G o 1 1 1 2 2 1 0/

Thus mh(5,3) = 11.
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THEOREM [I.2: m(5,t) < t(c ~ 1), t >4, (Gulati and Kounias).
Proof: (1) Let M be a maximal set of points in PG(L,%), no four

dependent. Through P, P, P3 £ M there pass (t+l) PG(3,t)'s which

exhaust all the points of PG(4,t). Since mh(h,t) = $+1, each of these
PG(3,t)'s can have at most (%+1)-3 = t-2 other points of M. Thus
mh(S,t) < 3+ (£-2)(t+1) = £Potr,

(2) Suppese M attains the maximum of t2"t+l. Through

P., P, ¢ M there pass (t2+t+l) planes which exhaust all the points

1’ 72
of PG(L,t). At least one of these planes, T, has no other point of

M, otherwise the points in M would be counted as > (t2+t+l) +2 > (tgmt-

a contradiction.

(3) Let P ¢ T, through P.s P,, P pass exactly (t+1)-PG(R,t)'s

29

vhich exhaust all the points of PG{L,t). 1In order to attain a maximum
of (t2—t+l) every PG(3,t) which contains 3 points of M must contain

P P has

(t-2) others by (1). Thus each PG(3,t) containing Pl’ 5

either (t-1) or O more points of M.
(L) Suppose there are S with (t-1) more points of M. Then

the (tg-t+l) points of M are counted as S(t-2) + 2. Then

2

5= (t7t-1)/t-1 =t = (= -1)

must be an integer. This is a contradiction for t > L, so

mh(55t) <t -t + 1. Thus mh(S,t) < £2 - t = t(t-1), t > L.

THEOREM II.3: mh(S,t) < ((t-3) + (8t5+t2—6t+l)l/2)/(E(tul)) for t > 2.

Proof: (Bose, Rao). See Corollary II.1, Chapter VIII.
A simple algebraic comparison shows that IL.3 gives the beiter

bound for t > 5.

t, Iy 5 6 7 8 ...

Gulati and ' .
Kouniss Bound k2 56

Bose-Rac Bound. | 15 20 25 30 36 Ceea




IiI. mh(p,E)
THEOREM TII.1: m,(5,2) = 6; m (6,2) = 8; m, (7,2) = 11

(Rao, 1947; Seiden, 196k4).

Proof: By enumeration, assuming without loss of generality that the

. 2 - o/ 3 . _ P
p basis points {Bi =lags ag,eeea ), 8, = 1, aj =0, j#11i=0,
1,c..,p-1} beleng to the maximal set of points in PG(p-1,2) no four

on a plane. (See Corollary I.l, Chapter VII).

The following are examples of maximal sets:

1 0o o o o 1) 1 0o 0 0 O 0 1 1

c 1 0 0 0 1 0o 1 o o 0 0 1 1

o 0 1 0 0o 1 c o 1 o 0 0 1 1

0O 0 0 1 o0 1 o 0o o 1 o0 0 1

o 0 0 ©0 1 1 o 0o 0o 0 1 0 1 o0

O 0 0 0o 0 1 0 1

mu(Ssg) =6 J

mh(6,2) =8
i 0o o o o o0 0 1 o0 o0 1
0 1 ¢ 0 o0 O 0 1 0 1 o
c 0 1 ¢ o0 o6 0 1 0 1 1
c 0 o9 1 0 0O 0 1 1 o o0
¢ o0 o o0 1 o 0 1 1 o 1
c 0 0 O ©¢0 1 0 1 1 1 o0
6o 0 0 0 0 0 1 1 1 1 1
mh(T,Q) =11
THEOREM III.2: mu(8,2) = 17, mh(9”2) < 29; m) (p,2) < 3(2p"6~1)*8,

p > 10.
Proof: (Seiden, 196k).

I.et M be a maximal set in PG(pwl,Q), no four on a »plane. There

-6 .. - . .
are (2p -1)-PG(6,2)'s containing any PG(5,2),which exhaust all the
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points of PG(p-1,t). By Theorem III.1 mh(6,2) =8, mh(7,2) = 11.
Suppose our PG(5,2) has the maximum of 8 points of M. Then there
are at'most 11-8 = 3 more points of M in each of these. Thus
mh(p,2) < 8 + 3(2p:§ -1), p > 8.

For p = 8: mh(8,2) < 17. The 8-rowed matrix, A, with elements

in GF(2) has 17 columns with no four dependent.

r N

1 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0

©o 1. 0 o 0o 0 0 0 1 1 0 1 0 1 0 1

©o 0o 1L 0 0 0 0 0 1 1 0 0 1 1 1 o

A-]0 0 0 1 0o 0o 0o 0 1 1 1 0 0 1 o0 o0

©o 0 o o 1 0o 0 0 1 1 1 o0 1 o0 1 1

©o o 0 0 0 1 0 0 1 0 1 1 0 1 1 o

©o 0 0 o 0 0 1 0 1 0 1 1 1 1 o0 1

© o 0o 0 0o 0o 0o 1 o0 1 1 1 1 1 1 1

Thus mh(8,2) = 17.

For p = 9: mh(9,2) < 8+ 3(23 - 1) =8+ 3(7) = 29.
THEOREM TTT.3: m (p,2) < m where m(m+l) < 2272, p > 5.

Proof: (Bose, Rao). See Corollary II.1, Chapter VIII.

An algebraic comparison shows III.3 is better for p > 10.

D 8 9 10 11 12

‘m<8+3(®%1) |17 20 53 100 197

pt+l

m(mt1) < 2% -~ 2) [ 22 31 W 63 90

Iv. mh(p,t) maximum number of points possible in a PG(p-1,t) with

no four coplanar.

maximum number of columns in a p-rowed matrix with elements

of GF(t) with no four dependent

maximum number of factors, m, in a (t7,t" ) symmetrical,
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confounded, facteorial design so that no interactions
invelving less than or equal to four factors are
confounded.
fp-5 .)
THEOREM IV.1: b(p,b) < P72 - (s+1)| £ t9] + 1 for p>6, 1>k,
=1 B
Proof: Let M be o maximal set of points, no four collinear in PG(p-1l,t).
Through any PG(3,t) pass exactly (1+t+...+t5 ) “PG(L,t)fs. If we let
PG(3,t) have its meximun of {t+1) points of M, then there are at most

! / \ P . .
t(6~-1)~{t+1) = {£-2t-1) points of M in each of the PG(L,t)'s by

Theorem II.Z2.

. mh(pst) < {t+1) + (t2—2t-l)(l+t+ + £P72)
L2 P lp"5 a\
=t + (t°=t) £ t9 - (z+1)] 3 tvl + ]
0 o -
p-3 -l p~1 )
=t+ ptd <ozl t+1)[ z tJJ +1
2 1 c
p~3 , P -5
m (p,t) <t t +1, p>6,t >k (Gulati and Kounias).

t~3 L (86P4t2 6t+1)l/2
2(t=1) ’

Proof: (Bose, Rao). See Corollary II.l, Chapter VIII.

THEOREM IV.2: m (p,t) < p>6,t >k,
A simple algebraic comparison shows IV.2 gives the better bounds
for p > 6, t > L. TFor example:

t =4, p= 6 7 8 9

4’ 1" 1
Gulati and Lo

Kounias RBound 152 600 2392

Bose, Rao Bound | 30 60 120 2h1 ceen

G
-3
co

p::6"t:: l], 5

Gulati and
n in o 1,20 )
Kounias Bound t0 g0 168 280 432 .

Bose, Rao Bound | 30 Ll 61 81 103 =
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THEOREM IV.3: m (p,3) < 2 + 3773, p > 6.

Proof: Let M be a maximal set of points, no four coplanar in
PG(p-1,3). Through any PG(3,3) pass exactly l+3+32+...+3p—5
PG(4,3)'s. If we let PG(3,3) have its maximum of 5 points in M,

then there are at most 11-(5) = 6 points of M in each of the PG(L,3)'s
by Theorem II.1. Therefore, mh(p,3) <5+ 6(l+3+32+...+3p_5), p > 6.

Let X =1 +3+ ... +3°2, Then 38 =3+ ... #3° 3P”u,

o8 = (3p'h -1).

| o
Then m (p,3) < 5 + 6L17;;£J =5+ 303" 1) =334 0,
THEOREM TV.k: m (p,3) < (%(3P_1))1/2, b > L.

Proof: (Bose, Rao). See Corollary II.l, Chapter VIII.
An algebraic comparison shows that IV.l4 gives the better bound,
p > 5.

P L 5 6 T 8 9

-3

3F C+2 5 11 29 83 245 731

(%(3p-1))1/2 6 11 19 33 56 99

Remark: The original upper bound on mh(p,t) obtained by Bose, Rao
(1947) appears to remain as the best known for all but two of the
values which are not yet completely determined.

Seiden's bound on mh(p,E), P > 9, is better only for p = 9,
a reduction from 31 to 29.” The bound on mh(S,t),>t > b, of Gulati
and Kounias is better only for t = 4, an improvement from 15 to 12,
and these same authors bound on mh(p,t), t >4, p > 6 offers no
improvements over the original (1947) bound. This author used the

same technique on mh(p,B) only to meet a similar fate.
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Gulati and Kounias (1970) are incorrect in asserting that
Seiden's bound is the best known, and it is not élesr if either
the latlter or the former realized that their bounds were, in fact

>

not improvements on a previocus result.
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CHAPTER VII. m.(f+r,2)

Introduction: A sequential procedure is developed which leads to

all values of m = m (f+r,2) for whichm < 2f + r, f >bh, r>o,

f( .

and assigns to all other cases a lower bound of (2f+r+l), f > L,

r > 0. Gulati and Kounias (1969) state the Theorems 1, 2, 3 below,

but give no proofs, so the author has supplied his own. The author

is also responsible for the culmination of the procedure in its
logical conclusion, namely, the proof of the general result.

THEOREM I: m,(f+r,2) > f+r+l for £ > 2, r > O.

Proof: Without loss of generality the maximal set may be taken
to include the (f+r) points each with exactly one 1,
the standard basis for a PG(f+r-1,t) and any other, Ql'
Thus, mf(f+r,t) = f+r+g, g > 1. Let this maximal set

- be denoted by {Bl?vB2’ BB""’Bf+r’ Ql’ QQ""’Qg}'
THEOREM II: The necessary and sufficient conditions for the exis-
tence of Qi,'i =1, 2,...,8, is that the sum of any
J of the Q; with 1 < j < min {g,f} has at most
(r+3j-1) zero co-ordinates.

Proof: (Necessity). The restriction on our points is that no

set of f is linearly dependent. Since the elements come from GF(2),

the only linear combination of points is their sum modulo 2. So any

set of j points, 1 < J < f must have at least one 1 in the sum. Then
any set of 1 < j < min {g,f} of the {Ql, Qg""’Qg} must have at
least % ones in the sum where & is such that adding up to (f-j3)

members of {B., Bg"'

1 } to these j will still leave at least

"Bf+r
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one 1 in the sum. DNow the worst that could happen would be adding
(f-3) points each with a 1 where the sum of the j points hzs a 1.
£ n

“Then all (f-j) pesitions would revert to O in the grand sum.

There are (f+r) positions in any sum, so & > (f+j-1) and we

~

need at least (f-j+i) ones in the sum of any 1 < J < min {g,f}
from {Ql, Q2,~..,Qg}. Sc we can have at nost
(f4r) - (£-j+1) = (r+j-1) zeroes in the sum of any set of
1 fyj < min {g,f} from {Ql, QE""’Qg}'
| (Sufficiency), Clear from the construction involved sbove.

This completzs the proof,

Now consider finding the condition on f in order that Q2 exists.

We know Ql exists by Theorem 1. Let Ql = (al, aQ""’af+r>°
= T
Q, (blﬁ bz,...,bf+r). Let
S T R
0 1 0 1]
v o= :
2 | O 0 1 1
define the variables XO = # indices with ay = bh =0
Xl = # indices with a, = 1, bh =0
X2 = # indices with a, = 0, bh = 1
X? = # indices with a, = b, = 1.
3 h h
3
-Then ¥ Xi = 1 + r. By Theorem II, the following inegualities
i=0

-must hold for the existence of QQ:
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. ( 3
XO + Xl < Q2 i
X, + Q. |
1{D X2 °F l 1 ;
e < (r+ +Q,. |
Xg + Xy < (r+l) Q)+,
3
Adding over these inegualities: EXO + 95X, < (3r+l). The maximum
3 0" "3
value of IX. = (f+r) occurs for X. = 0, and IX. = f+r < 3r+l or
i 0 i -
0 0
f<2r + 1. '
NOW.XO = 0, Xl = X2 = r and X, = r+l setisfies all the restrictions

so that {2r+l) is the maximum value of £ for which Q, exists. Thus
mf(f+r,2) > f+r+2 for £ < 2r + 1.
But for £ > 2r + 1, Q2 does not exist and by Theorem I

m, (f+r,2) > f+r+l. Thus mf(f+l,2) = f+r+l, £ > 2r + 2, £ > L, r > 0,

i
For the cases with g > 3 we would follow this GENERAL PROCEDURE:
(1) Form 28-1 linear inequalities in 28 unknowns by Theorem II.

(2) Add over these inequalities to obtain the following linear

ineguality in IX, = (f+r):
- \ g=1
(28-1)x, + (25 Ll orx| < r(2Ba) + ((g-2)287F + 1)

(3) Add over the inequalities involving Xj to obtain the following

Linesr inequalities for X, j = 1, 2,...,(280).
81 ]

e - -0 - - ")

(25 2)XO + 28 ij (2B x ] < r(287h1) 4 (8232577 4 1)
0 J N . 2 g~1

for j =1, 2, 2 ,...,2

< r(28711) & ((g-2)287% & 1)
for J otherwise.
(4) The maximum value of (f+r) = ZXi oceurs for Xo = 0. Try the

maximum of Step 2 in Step 3. Lower the maximum for (f+r) from Step 2
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: . o s ~2-1 .
until a value ccnsistent with Step 3 is found. This involves (4€ ~1)
. = s g-1 .
cases, one for each possible value of r = § (wmod(2° 7-1)). (For proof
of these inequalities and the general solution, see Theorems IV, V, VI.)

For example, we find the conditicn on f for the existence of QS'

Let Q3 = (cl, CQ,...gcf+r). Let
- - .
KO Xl X, X3 xh XS X6 XT
- =1 { '1- E
\ 3 0 1 1 0 1 0 1 Lh
0 o 1 o 1 i b, 3
10 0 0 1 1 1 1 cy
T
define {X_ , X.,...,X_} as before. Then I X, = f+r. From Step 1 we
0 1 T s=g 1
form Zg—l = T linear inequalities.
+ 3 (
Xog v X 4 X o+ Xs <1 9
X+
Ko T Hp P H r X o %
+ + X, + + +
XO X3 Kh X7 <r 1 Q1 Q2
XO 4 X1 + X6 + XT <r+ 1 Q2+Q3
{ + X_ + + 1 +
R A R
+ + - - +
Kot Xy v Xg v Xpsr 42 Q) FRy1Rg
+ + +
XO Xl X2 X3 <r { Q3

I
From Step 2, adding over all inegualities yields 4X_ + 3 % X. < fr o+ 5.
0

7 0 i
From Step 3: 2¥X_ -+ 2X, + 37X, < 3r + 1 jJ=1,2, 4
0 J o 1~
f3r+3 «j=3959697°
- 7. Tr+5
From Step 4, Xy = 0 maximizes (f+r) = I 3=
. 0
7
Case 1: r = 0 (mod 3) implies r = 3p and f+r = ZXi < Tp + 1. Now
0

consider 2X, < (3r+l) - (1X,) < (9p+1) ~ (Tp+l)

v

2p so

Xj <P, Jj=1,2,2.
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‘And 2%, < (3r+3) - (ZX.) < (9p+3) ~ (9p+1) = 2p + 2. Thus

A

i
X, < (p+1), 3 =3, 5, 6, 7. Then the maximum value of
(f4r) = TX; = 2p + 1 is attained.

Case 2: r = 1 {mod 3) implies r = 3p+l and f4r = ZXi

t A
-3
fo]

+
=g
=
e}
=
=

consider 2Xj < 3(2p+l) + 1 - (Tp+h) = 2p. Thus Xj <p, J=1, 2, 2.

And QXJ < 3(3p+1) + 3 - (Tp+h) = 2p + 2. Thus Xj <p+l, §=23,5,06,T.
7
{

1

Then the maximum value of f+r = ZXi Top+l is attained.
0

Case 3: r = 2 (mod 3) implies r = 3p+2 and f+r = IX, < Tp+6. DNow

i
consider X, < 3(3p+2) + 1 - (Tp*6) = 2p + 1. Tms X, < p, § = 1, 2, 22,
And"zxj < 3(3p+2) + 3 - (Tp+6) = 2p + 2. Thus Xj <p+1,3=3,5,6,7T.
T
Then the maximum possible value of IX, = 3p + Y(p+l) = Tp + 4 < 7p + 6.
0

So the maximum value of (7p+6) is not attained. MNow reduce by 1 and try

the value of (f+r) = Tp + 5.
2Xj < 3(3p+2) + 1 ~ (Tp+5) = 2p + 23 s0 Xj <p+1l,J§=1, 2, 2%,
Xy < 3(3p+2) + 3 - (Tp+5) ; 2p + b so X, 2p*+2,5=3,5, 6, 7.
Then the maximum value of f+r = ZXi = Tp + 5 is attained. Let
fs(r) = (r+l) + E%EJ rOE 0, 1 (mod 3)
= 7 [zié] r = 2 (mod 3).

Then f3(r) is the maximum value of T for which QB exists. Thus

mf(f+r,2) > f+r+3 for f < f (r). But (f (r)+1) < T < (Pr+1) means Q

3

exists and Q? does not; thus mg(f+r,2) = f+r+2 for £ in this range.
i, L

Definitions:

)
1 1 0 {XO 1 {0
= z 11 - -
Ay =1 1 of, X —}Xo , I, = |1, Dy = [0
1 0 1 < 1 1
le

Then the system of inequalities at the top of page 3 may be written

as AQX <rl, +D,. We now prove this is true in general.
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Define:
A A ) T o .
g1 Tg-l {Lg-l el
= E =! =D +7
Ag Ag~l i g-—l 5 Ig iIg"l} 5 Dg ‘Jg—-.l_ J.g_ll
Lo L1 o
(x } ] .
_ .O vg__1 Jg~l
L= . s Vg =
o [ o 1
g
L 21
where A is A with the ones and zerces interchanged.
g-1 g-1

THEOREM II1: The system of linear inequalities for the existence of
Q may be written as A X < rI_+ D where A is g
g g - g g-1 g
(Qg—l)XQg matrix of zeroes and ones, each of its rows
with Zg_l zerces and ones, and each of its columns having
(ngl—l) ones and (Qg”l) zeroes, except for the first
cclumn which is a column of (28-1) ones.

Proof: By imduction. This is easily checked for g = 3. Assume true

up to (g-1). Consider treating three cases as indicated.

p
+

a) Aov A S FI,q v D,

) Agwl Ag—l X < rLg__ + Dg-l + Ig—l

c) 1 0 S o J

Case_z) The upper part of the set of inequalities. By the definition

of {X., X X } and the relationship between V_ and V , each
0 8_q 8 g-1

of these inequalities counts the zeroces in the sum of the same set of

l,...

points as in the case (g-1). For example, the first row of
A X < rI + D -1 counted the zeroes in QQ’ now the first row of

rIg ] + Dg 1 still counts the xeroes in Q. Before
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the X counted &1l places in which QQ and the points%Ql, QB,...,Q

0 g--1

had zeroces, Now XO counts all the places in which Q? and the points
Ql’ Q3,...,Q 10 Q_ have zerces and X counts all the places in
g~ g g
2°-1
which Q2 and the points QW, QB,...,Qg ; have zeroes and Qg has a one.

So (former X.) = (new X.) + X . In general:
0 0 o8 1
(former X.) = (new X,) + X ,.q. forall § =0, 1,e..,(2°77-1).
. (3+2577)
Case c¢) The bottom inequality is X + X, + ... + X < r. Thisg

corresponds to the bottom row of Vd which indicates where the zeroes

o

of Qg are. This inequality is that of Theorem II for Qg'

ggggﬁg) The lower portion of the set of inequalities. Here each ine-
quality counts the number of zeroes in the sum of (Qg + (the sum of

the same set of points as the case (g-1)). Adding one more point to

a set increases the upper bound of Theorem IT by one, since j is increased
by one. For example, the first of these inequalities counts the zeroes

formerly counted places which had zeroes

e . .
in vhe sum of (Qg+Q2). The XO

in Q2 and Ql, QB""’Qg—l’ now XO counts places having zeroes in Qg

as well. So the total for such places over points counted by XO is

still zero. But (X ) counts places with Ql’ PN a zero

o814y g-1

and Q_ a one, so the toal for such places over points counted by (X 1
g 287y
is now 1, and we do not want to count (X

[o =
o
(2

“+1)

4 have a zero in Q_, so a sum of zeroes

o 2

over a set remains a zero if Q is added. For X 1 so ok e which
& 28747 o€

have a 1 in Q , a sum of zero over a set becomes & one if Qg is added,

In general: XO, XJ,.

g-1
&

and a sum of one over a set becomes a zero if Qg is added. So inter-

changing the ones and zeroes in Ag 1 will take this into account and

AX<rl +1T is correct. -
- oy g
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What about the compositicn of Ag? Clearly Ap and A3 meet the
statement of the theorem. It is an eazy use of induction to establis

the general case. Assume true up to (g-1). Consider

jll. p).

el g-1
Ay = A 4 Eg_l
oz 0

The first cplumn is all ones, since Ag«l has first column all ones.
numﬁer.of rows in Ag = 2(# rows in Ag_l)+l = 2(2g—l—l)+l = 2%5.1. The
number of ones in each row of Ag is:

case a) 2(# ones in each row of Ag_l) = E(Zg_g) = 8L

" case b) (# ones in row of Ag—l) + (# ones each row of Kgml)
= 9872 4 o872 _ el D

case ¢) (# columns in Ag—l) = o871
The number of columns in Ag = 2(# columns in Ag—l) = Q(Qg-l) = 2%,
The.number of zeroes in each row of Ag = {(# columns of Ag) ~ (# ones

in each row A )
= 08 _ o8 o 8l

The number cof zeroes in each column of Ag is:

case 1) (first Eg_l): 2(# zeroes in column of Ag—l) = 2(2g«2) =

case 2) (second 2g-l): (# zerces in column of A Y + (# zeroces

g-ﬂ

column of Kg—l) + 1 = 2g—2 + (Qg—E—l) + 1= 2g—l.
The number of ones in each column of Ag = (# rows of Ag) - (# zeroes
in each column) = (285-1) - 2g—1 = (2g—l—l).
The theorem is true for g = 3; and if (it is true for g - 1, then it
true for g) is true; thus if is true for all g > L.

This completes the prcof of Theorem III as stated by Gulati and

Kounias.

h

The

is
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- The suthor 1s responsible for Thezorems IV, V, VI which culminate
in the general solution giving all values of m = mf(f+r,2) for which
m< 2f+r, £ > 2, r > 0. (It is clear that Gulati and Kounias had not
ceneral solution.since their conditions on existence of
Qg’ for g = 4, 5, are incorrect.)

THEOREM IV: Adding over all (Qgel) inegualities of Theorem II gives
1 251 g-1
(Eg—l)Xd + (28711) 3 X, < r(28-1) + (g-2)257F 4 1.

0
N R . -1 ..
Proof: First column has all ones, the number of rows is 28 giving

the term (Eg—l)Xo, The other columns have (Qg_l~l) ones giving the
term of (Qg_l—l)Xj for 3 =1, 2,...,(28-1).

In the right hand side Theorem II gives a bound of (r+j-1) for

each of the (?) different subsets of size j, j =1, 2,...,8. The
sum is (%)(r) + (g)(r+l) + (%)(r+2) ..+ (g)(r+g—l)
- (5 g g €y + o(8y 4+ 3(8 1V (8
el + Q)+ + (] + T(G) + 2(3) + 3()) + + (e-1)()]
- . g (8 g g + o(8YY _ ((8) 18
r[(1+1) ()] + [(2(3) + 3(5) + . g(g)\ ((3) +(3) +
7::
.+
\g))]
= r[28] + g[(5Th) + (BZH) + L.+ (BTD)] - [(142)8 - g - 1]
l 2 ) g-1 T

= r[28.1] + g(zg"l~1) - (28-g-1)

-1
r[of-1] + (g-2)287" 4+ 1.

THEOREM V: Summing only over inequalities which contain X, gives
2°-1
— — -—q - — —h
(257%)x, + 28 EXJ + (28751) 1 x <257 4 (302577 52
i=0

™~

otherwise.
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g-1

Proof: By construction of A , each ¢olumn has (2° "-1) ones giving
v v o (&)

g

the left hand side as shown. For the right hand side by induction,
this has been found true for g = 2, 3. Assume true up to (g-1).

-1), the new bound is

[

Case 1: For;Xi, i=0, 1,...,(2

oJ

[2(former bound) + (Eg—g—l) + 7]

For.j a power.of 2: = 2[r(2°7°-1) + (g—h)Qg_3 + 1] + 257 4+ »

= r(2871) + (g-b)2f % v 2 4 2972 L g
= r(2°"1-1) + (g—’j)eg"2 + 1.
For j not a power of 2: = 2[r(2g—2~l) + (g—3)25“3 + 1] + (Eg—gwl) + 1
= p(287h1) 4+ (2302872 4 0 4+ 0872 _
= r(257) + (g-2)2872 4 1

i =

(3

(257

Case 2: For X., +l),...,g2~l; the new bound is

J

{former bound - (former total of Corollary I - former bound)
+ 2872 1 4 2]

= r(2870) 4 (g-3)287F 4 1 4 (28721)

2,

= (2871 + (g-2)287° 4+ 1,

o681

Case 3: For Xj’ Jg = » the new bound is the former total of

Corollary I by coustructiocn of A
= r(2871) + (go3)2877 4 1.

This completes the proof.

At this point we see that our results now leave us with only

Step ! to complete. We do this in Theorem VI.



(r)+1) < £ < £,(r) and

THquEM VI: mf(f+r,2) = f+r+g for (fg+l 2
f>2,r>0,¢g>1 vhere fl(r) = o, fg(r) = 2r+l
and for g > 3,
‘. - rrg-la o = 182 g~ - |
(r4g-2) + [-==5=] sor r = (2575 (g-1)),..., (287" -2) Jmoa (287" 21)
. g~1 .
2 -1
f (r) = +o— S -
g ) (r4g-3) + S8 ror v 2 0, 1,...,(257% ) lnoa(2®711)
g~1
2 “]
g1 g-1 . o
and for r = (2° —(g-—l)),...,(2° -~2),mod(2° -1j.
(This is.equivalent to ”Qg exists iff £ < £ _{r)".)
-8

Proof: Thi=s éomplete Step 4 of the GENERAL PROCEDURE by showing that
the upper bounds of Theorems IV, V are consistent for

ro= (2872 (1)), .., (25 ) Imoa (2870
For r otherwise, the upper bound of Theorem IV must be reduced Dby
unity.

From Theorem IV:

281
(287 2) T x. < r(28-1) + (g-2)287F 41 - (2B)x.
o I~ 0
The maximum of ZXj = (f+r) will clearly occur only when XO = 0.
4 -
With Xg = 0, then (fir) = IX, < 2r + (g=2) + [—éj%sl].
1 28-1 = k+g-1
For r = k mod(287"-1):  zx, < (28-1)p + 2k + (g-2) + [—E72]. (1)
Jd - 8=
0 2 -1
T - K+
Now k < (257'(g+1)) implies (ktg-1) < (287 -2), =0 [—é:%49} = 0.
2 -1
- ~— \ 4
And k > (25 l—g) implies (k+g-1) > (o8 l—l), SO {—E?ELgﬂ =1
B B o8~y
Thus the upper bound on ZXj = (f+r) increases by 2 for each unit

increase in k except for k = (Qg_i«(g+l)) to k = (Eg"l—g) for which

an increase of 3 cececurs.
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Next, sum over the upper bouands of Theorem V incorporating the
upper bound above to find the maximum possible valus of ZXj.

From Thecorem V:

—f\ —‘I . — —9
57, < r(27h) ¢ (2302878 4 1 - (2572 (mx))
J
for j =1, 2, 2°,...,257L,
For'r = k mod(28 + 1); 28 2Xj < peo® . (k+g-1) - 2% 2
' -2 . ktg-
- (2877 ) el
~8-1
2 -1
-
(kig-1) - (257%1) [
So X, < (p-1) + R (
j - 82

o} o
Call this bound B, so Xj < Bfor j =1, 2, 2%,...,257",

A similar approach yields X, < B + 1 for j otherwise.
3 -
. _ s .. 2 g-1
Since there are g values in the set {1, 2, 2 4,2 }, there

are ((25-1) - g) other values so the maximum value of Xj will be
gB + ((28-1) - g)(B+1) = (28-1)(B+1) - g.
Let us consider four cases:

7

(a) k < (Egﬁé—g) implies (k+g-1) < (2g—2—1), SO

-1 2

[ k+g~lJ _

o A
S

o861

So ZXj ettains ((Zgnl)p - g) from (2).

-2, . g - ktg-1
(b) For (287%-(g-1)) < k < (287 T(ge1)), [-5FBzy o o, [Ef&zly o g,
-7 2871y 2E~2

So IX, sttains ((28-1)(p+1) - g) from (2).

So ZXj attains ((Eg—l)(p+l) - g) from (2).

n

+g-1
[ ] =
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o] +e-1 X+
(4) For k > (257"-(g-1)), [282%] = 1, [=E55] = 2
- 2g_l—-—l 2%"1_

A simple comparison shows that the bound of (1) is consistent with
"L

the results of cases (b) and (¢). Thus for

N -
PANE (23

_ -1 g1
~(g-1)),..., (257" g) |moa (2571.1),

the maximum value of

(f+r) = IX, is 2r + (g-2) + [-E387h7
! ]

Equivalently, a point Q_ exists for f < (r+g-2) + {_Eiézlq for r in
g )
this range.

Similarly, the results of cases (a) and (b) show that the upper
bound of {1) is not attainable. However, it is easily shown that
reducing the upper bound of (1) by unity yields a maximum value for
XXJ which is compatible with Theorem V.

IX, < {28.1)p + (2k+g-3) + [—HEL, (1)
J - 281

-2 1 -1 g-1
0, 1,...,(257%g), (287 _(g-1)),...,(28 -2) lmea (257 -1},

"t

for r

-2

257y < r(28710) ¢ (302877 4 1 (25721} (014 X, - 1)

— — — — .k -
For r = k (moa(2%7%-1); 287% < pe2®T" 4 (kige2) - (287on)[-Eenl

J _ Zg'—l_l
g=2 . ktg-1.
(ktg-2) = (257°-1) 2552
XJ <p+ ) 2 =1 (o)
2

Call this bound B' so X, < B for § =1, 2, 22,257 similariy,

we obtain Xj < B' + 1 for j otherwise.
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Let us consider the two remaining cases:

e ) ;
(25 -g); ZXJ attains ((28~l)(p+l) - g) from (2)¢,

A

{a) For X

(@) For k > (zg"lm(g—l)); ZX, attains ((28-1)(p+2) - g) from (2)'.

In each case the reduced bound of (1)* is attained. Thus for
_ ) E=2 zg~1 . g--1 A1
r =0, 1,...,(25%g), (257 a(g-1)), ..., (257 2) jmoa (257 )

the maximum value of

(f4r) = zxi is (2r+g-3) + [—Eiﬁii].

e
Equivalently, a point Qg exists for f < (r+g-3) + [—§:§~lﬂ for r in
2° 71

this range.

This complete the proof of Theorem VI.

The entries in the table are exact values or lower bounds for
mf(p,E), p=1Itr, £ >5,r>0. This partial table indicates how the
results are attained sequentially. Conditions for g = 2 yield more
than half of all results in the lower left of the table. Conditions

Fa

for g

]

3 yield the ray from top left to bottom right, and conditions

1

for g 4 give the six other values which are specified. The other
mf(f+r,2)'s, which are determined by Theorem VI, have f and r both

increasing as g increases. The remaining mf(f+r,2)'s receive the

lower bound of (2f+r) as indicated.
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f+1 f£+2 £43  f+4 P+5 £+5  £+7  £+8  £+9  £+10

O O O =X oN W

s 15 16 17 18 19 | 21 22 231 25 | »36
:
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- CHAPTER VIII. FURTHER RESULTS
Intreduction: Rao (19&6) defines a hypercube of strength f a2z follows:
If there are r factors each at. t levels, then there are t¥ combinations,

a subset of tP is called an (r,t,p) array. If all combinations of any

r-f P .
) of times in such an (r,t,p)

f factors occur an equal number (%
array, it is said to be a hypercube of strength f.
Rao (1946) showed also that hypercubes for a maximum auvmber of

. LT o r- . X C o
factors, r, lead to (t°,t p) symmetrical, confounded factorial designs

wiﬁh the nmumber of feactore at the maximm wvalue of mf(p,t). The
hypercube is in fact used to generate the corresponding design. It
is taken as the "keyblock", and the others are found by taking all
linear combinations of elements in this block.

By construction of the appropriate hypercubes of strength four
with the maximum number of factors, Rao (1947) showed that mh(h,E) =5,
m\q(S,E) = 6, mh(6,2) = 8 and mh(’(,E) = 11.

Bush (1952) proves, by construction, certain inegualities about
the maximum number of factors which may be accommodated in certain
hypercubes. These may be translated directly into results for mf(f,t).
I. mf(f,t)

mf(f,t) = the maximum number of points in PG{f-1,t) such that no

subset of £ lie in a subspace PG(f-2,t);

= the maximum number of columns in an f-rowed matrix such

that no f are dependent;




THEOREM I.1:

THEOREM I.2:

VIIiI-2

the maximum nmumber of factors in a (tr,t" ") confounded,

S etrical, factorial design such that no interaction
. 3> -

of up to f factors is confounded.

w, (f,t)

t+ 1<

t + 1 <

Proof: (Bush, 1952).

=t + 1 for all t < f, £ > L,

mf(f,t) < f o+

mf(f,t)

LA

£+ 13

-1, t o0dd, t > f

-2, t even, t > 7.

See appendix for partial table.

IT. A General Ineguality

THEOREM IT.1:

Let mf(p,t) = m

S}
P _

C —

Fay
I =

[ Y%

>

2u + 1, odd.

+ (3)(t»l)u for £ = 2u, even

my g, u m~Ly /., u+l "
+ (1) + | o ) (-1 for

Proof: Rao {1947) obtained this for hypercubes of strength f.

Bose (1947) took the viewpoint of finding bounds for m ({

£ p.t). This

solution assumes m points in PG(p-1,t) so that no f lie in a subspace

PG(f-2,%).

We show that any set of n < u of the m points must generate a

PG(n-1,t). Any set of n points can generate at most a PG(n-1,t);

this happens if sll

{

\n

) are linearly independent. If a subspace of

dimension < (n-1) were generated then the addition of any other

(2u-n) of the m points would give f in a subspace of dimension

< ((n-1) + (2u-n-1))

Case 1: f = 2u, even

(2u-2), a contradiction.

m . . - . . . , .
Each of the (é) different pairs determines a line with (t+1) points

in PG(p-1.,t).

%

points of n.

There are (t-1) points on each line excluding the two
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r

(t“+t+1) points in PG{p~1,t}. In each plane there are ((

points on linzes determined by the three points of m, which leaves

these lines.
. my . - . .
Each of the (h) different sets of four Jetermines & PG(3,t)

. 2. . . . . -
with (1+t+% vt3) points in PG{p-l,t). In each P2{3,%+) there are

((h 2 i

3 +,(2)(t—l) + L} points in planes determined by the Tour.

points of m, which leaves (l+t+t2+t3

) (£~1)

[»]
)~ (bt-2t+8) = (t—l)3 points in

PG(3,t) not belonging to any of these planes.

. . . . L , m
Following the same reasoning one could show that ezch of +the (q)
ES

n-~1
)

sets of n < 2u determines a PG{n-1,t) with {(1+t+...+t points in

2O (=) ) (51) P

PG(p-1,t). 1In each PG(n-1,t) there are N = [(n“1 -

...+(§)] points in the PG(n-2,t)'s determined by the a points of m. We
need to show that this leaves (t—l)nﬂl points in PG(n-1,%t) not belonging
to any of these PG(n-2,t)'s.

We use mathematical inductian: This is true for n = 2, our induction
hypothesis is that it is true up to n-1l, that is, we assume that
(6-1)"7 = (.. +t72) - [(PH)(6-1)™3 5 L, s ("79)1). Consider

n-2

/P) - (P"l).+ rP-1y then

\q a M\q‘l/: —
= (G602 e O -0 )+ () -1
- n—3 ¥ n~1 1= i
(pog) (270 e (0 (1) + () (e-))
1so, t%7 = (f6-1) + 1)PY = (5-1)T 4 (n:;>(t~1)n—2 ol (nil)(z~l) +1

Thus the difference = (1+t+ ... + t  ~) = N = {t-1
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. m o L =1 . . e
Furthar, the (D) sets of (t--1) peints are disjoint for n < u

3

otherwise there would be 2a points in a PG(2u-2,t), since each sét of
1 L) n £ B3 7 n“l -

n generates & PG(n-1,t). For it two of these sets of (t-1) inter-
sects there must be (n+l) points of m in one of the PG(n-1,t)'s which
leads to the contradiction above.

i So the number of distinect points obtained by counting up to n = u
cannot be greater than the number of points in PG(p-1,t).

() + De-1) + o+ (-5 < (6% - 1)/(e-1).
1 2 u -
Case 2: £ =2u+ 1, odd
; As in Case 1, we can count the points for n = 1, w,...,u. Now
Tix a single point in the set, choose any u from the remaining (m-1).
Each of the (m;l) sets plus this chosen point determines a
i PG(u,t) having (t-1)4 points not in any PG(u-1,t) determined by u of
i these points. This gives the inequality as in Case 1 as:
(D) + (D -1) + o+ O)e-1)" + (T (1) < (6P - 1)/(e-1),

concluding the proof.

. Corollary II.1: Let m =z m (p,t), £ = 4 = 2u implies u = 2.
b b

2 > 1+ (M (e-1) + () (6-1)°

1 2
2 (£-1)° (£-1)° p
- (- . ‘
5 m{~=5 (t-1)) (t 1) <0
;D
- T _.___-'\
n° - m(%:%? -2 iﬁ——ﬁg <0
: (£-1)°
(f_= (9.P 2 1/2
m<\tg)+ Bt +t°-6t+1) O
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g\ﬁ\‘ 5 6 7 8 9
2 T 10 15 22 31
3 11 19 33 56 99
L 15 30 60 120 2k],
5 20 LY 99 221 Lok
6 25 61 150 366 898
7 30 81 230 610 1613
8 36 103 357 827 23k0
9 43 129 386 1160 3479

Corollary IT.2: Let m = ms(p:t), f=5=2u+ 1 implies u = 2

> 1+ (D(e-1) + -7 + (T (e-1)3

2
g\ﬁ\ 6 7 8 9 10 11
2 8 11 16 23 32 45
3 |12 21 L8 82 142 :
L 116 32 61 121 171
S5 21 ks 100 222 Lol
6 |26 62 1k9
T {31 80 210

Corollary II.3: Let m = mé(p,t), f =6 =2u implies u = 3

> 1+ () e-2) + (G)(e-1)F + (513

no
\Q
—
-
-}
g
st
oo




Corollary IT.L: 1Tet m = mT(p,t), f=7z=2u+ 1 implies u = 3

1 2 3 3
\_p
£ 8 S 10
2 10 12 15
3 13 18 26

Corvollary T1.5: Let m = m8(p,t), f =8 = 2u implies u = 4

o 1 (1) + (-0 ¢ 3107+ ((s1)

9 10 11 .o

\p
N

12 18 e

L)

Corollary II.6: m5(6,3) = 12 (Bose, 1961)

Proof: By Theorem II.l, with m = m5(653)
6 i —
37 -1 (D2 (D2« (he?
- 1 2 2
728 > 2m + 2m(m~1) + 4(m-1)(m-2)

0> 1 (m-12)(m+10)

-10 < 12

B
iA

so m5(6,3) < 12

The six rowed matrix A below with elements over GF(3) has 12 columns,

no five of which are 1

inearly dependent.
1 ¢ 00 0c o001 1 1 1 I
01 000C 01011 2 2
A=00 1 0002102 2.1
00 01 001 1 2 1 2
c 00 01 01 2 2 1 0 1
0 0 0 0 0 1 1 i 2 1 0 -
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We conclude with an alterrative proof of Thecrem IT.1 (Bose,
19€1). This takes the viewpoint of choosing the maximum number of
columns in a y-rowed matrix over GF(t) so that no f are linearly
dependent.

Cage 1: f = 2u, even.

There exists a matrix, A, with no 2u columns dependent. Choosge

-

A 7 n .. . . .
any n < u columns of A; there are (t-1)" linear combinations with

- . R m
non-zero coefficients. Bince n columns can be chosen in (n) WaYys

I\
-

there are [(m)(t-l) ¥ (2)

o g 2
(t-1)° + ... + (E)(t—l) ] such lineasr com-
birnations. These must all be different, otherwise 2u of the columns
of A would be dependent, since the appropriate combination of the

{nl ] ng} columns involved would be zero, a contradiction. Since

this sum cannot exceed the number of all possible columns we have

(E'ﬂ)(t—l) + (2)@—1)2 ..+ (I;l)(t-]_)u < L

Case 2: £ = 2u + 1, odd.

There exists a matrix, A, such that no (2u+l) columns are linearly
dependent. Let ¢ be any particular column; for each of the (m;l)

utl .. . . .
)J linear combinations with

choices of u points there are (t-1
non-zero coefficients of the u chosen plus ¢. Other combinations

are counted as in Case 1 giving:

- \ 1
(-1 + oo (M (e-1)" (mul)(t-.l)u+~ <P o1,




VIIT-&

_CHAPTER VIII. REFERENCES

. BOSE, R. C. (1947). Mathematical Theory of the Symmetrical Fac-

torial Design, Sankhya, Vol. 8, Part 2, p.107-166.

BOSE, R. C. (1961). 0n Some Connections Between the Design of
Experiments and Information Theory, Bulletin de L'Institut Inter-—
nationa de Statistique, Vol. 28, p.257-271.

BUSH, Ko A, (1952). Orthogonal Arrays of Index Unity, Annals of
Mathematical Statistics (23), p.L26-43k,

RAO, C. R. (i946). Hypercubes of Strength "Q" Leading to Con-
founded Designs in Factorial Experiments, Calcutta Mathematical
Society Bulletin, Vol. 38, p.67-77.

RAO, C. R. (19L47). TFactorial Experiments Derivablé from Combi-
natorial Arrangements of Arrays, Journal of the Royal Statistical

Society, Supplement 9, p.128-139.




APPENDIX

TABLE 1

Partial table of wvalues for m2(p,t).

-,
¥

I
[

%>Ei 2 3 k4 5 6 7 8 9
2 1 3 7 15 31 63 127 255 1023
3 b 13 Lo 121 364 1093 3280 9841
L 5 21 83 341 1365 Shél 21,845 87,381
5 6 31 156 781 3906 19,531 97,856 488,281
6 T 43 259 1555 9331 55,987 335,523 2,015,539
T 8 57 Loo 2801 19,608 137,257 960,800 6,725,601
8 9 73 585 L6kl 37,bho 299,593 2,396,745 19,173,961
9 | 10 91 620 7381 66,430 597,871 5,280,8k0 L8, k27,561

f = 2 is the

mz(p,t)

(See Chapter

only value for which all values of mp(p,t) are known.
4

= {(t¥ - 1)/(t -1), Vp>2,t>2,

IV, Theorem II.1).




TABLE 2
Partial table of values for mB(pst).
A 4 5 6 7 8
- N
2 b 8 16 32 6L 128
3 L1020 37/76 01/211 181/659
b 6 17 33/63 97/250 273/995 529/397k
5 6 26 | 51/12h 1s1/61h  651/306)k 1276/15,31%
€ 8 37 73/215  289/1289  1333/7725 2629/46,336
7 8 50 99/3h2  393/2286  2451/15,99L 5685/116,850
8 10 65 |129/511  641/L088  L161/32,685 8257/152,375
9 10 82 | 163/726  811/6522  6643/58,786  13,204/528,162
(See Chapter V).
First columm, m3(3,L) =t + 1, t odd (Theorem I.1)
=t + 2, t even
Second column, m3(h,t) =12 41 (Theorem II.3)
First row, m_(p,2) = oP-1 (Theorem III.1)

3

m3(5,3) = 20 is given by Theorem IV.1.

Upper and lower bounds for all other cases appear in Sections V, V

-
1]




TABLE 3

Partial table of values for mg(pft)

P
t L 5 6 7 8 9

2 5 6 8 11 _17ﬁ} <29 ...

s |5 ml<e @33 o6 co

L 5 rgﬁe <30 60 120 2k

5 6 | <20 kb 99 221 Lok

6 7 | <25 61 150 365 - 898

T | 6 | <30 81 23 610 1613 ...

8 9 | <36 103 357 827 23h0

9 |10, <k3 129 386 1160 3L79

(See Chapter VI).

First column, Section 1; mh(h,t) =t +1,t>1%t, Theorem I.3
Second column, mu(5,3) = 11. Theorem II.1, Section 2

First row, mh(p,2) in Section 3.

-3

Secand row, mh(p,B) 3

A

+ 2, Lemma IV.1

Upper bounds on all other values from Corollary IT.1l, Chapter VIII,.




TABLE L

Partial table of values for m5(p,t),

Y z R
‘t\\ 5 0 T 8 9 10 .
o 6 7 ) 9 | 13/16  14/23  15/32 ....

3 6 g /21 /48 /82 /1b2

SN 1t

l 6 /16 /32 /61 /121 /171

5. 6 § /21 /hs /100 . /202 /19l

6 | 6/9 /26 /62 Jiko : '

7 6/10 /31 /80 /210

First rov (t = 2, p > 5) ~ see Chapter VII.

First column (p = 5, t > 2) - see Chapter VIIT, Section 1.
The value of m5(6.3) = 12 given by Chapter VIII, Corollary II.6.
Fer upper bounds on all other values sce Chapter VIII, Corollary II.2.

Only seven values have been completely determined.




TABLE 5

Partial table cf values for mf(f+r,2):“f > 5, r> 0.

f4+r
E\\\\\ £ Oofl 42 £43 el £+5 f+6  f+7 £+8 f£+9 £+10

5 | 6 7 9113/16 1k/23 15/32 16/4s 17/ 18/ 19/ 20/

6 7 8 9 ‘%MEI~1 16/18 17/ 18/ 19/ 20/ 21/ 22/

T 8 9 10 12 |18/ 19/ 20/ 21/ 22/ 23/ 24/

8 ° 10 11 12 ‘”iﬁlF“MMiE;‘m{ 0o/ 23/ 24/ 25/ 26/

9 1011 12 13 15 16 18 | 25/ 26/ 27/ 28/
10 11 12 13 1h 15 17 18 20| 28/ 20/ 30/
11 12 13 1b 15 16 18 19 21 | 30/ 31/ 32/
12 13 1k 15 16 17 18 20 21 22 |33/ 3b/
13 ik 15 16 17 18 19 21 22 23 25 36/
ih 15 16 17 18 19 20 21 23 24 25 WWE?__
15 16 17 18 19 20 21 22 oh 25 26 28
16 17 18 19 20 21 22 23 24 26 27 28
17 18 19 20 21 22 23 2k 25 27 28 29
18 19 20 21 22 23 2 25 26 27 29 30
19 20 21 22 23 2% 25 26 27 28 30 31
20 21 22 23 2k 25 26 27 28 29 30 32

For exact values and lower Dbounds for mf(f+r,2), £>5, r >0, see

Chapter VII.

Upper bounds may be determined by using Theorem II.1, Chapter VIII.



TABLE 6
Partial table of walues for mf(f,t): £ > 5.
Ns 6 1 8 9 10 11 12 13 1k 15
2 6 T 8 9 10 11 12 13 1k 15 16
3 | 6 7 8 9 10 11 12 13 14 15 16
4 6 T 8 9 10 11 12 13 1h 15 16
5 6 T 8 9 10 11 12 13 1k 15 16
6 ‘€7§mlwmzm~w 8 9 10 11 12 13 14 15 16
7T | 6/10 T/12 imii 9 10 11 12 13 1b 15 1
8 | 6/11 T/13 8/13 | 9 10 11 12 13 1k i5 16
S | 6/12 T7/1ik 8/14 9/16 | 10 11 12 13 1k 15 16
10 | 6/13 T/15 8/15 9/17 10/17 |11 12 13 1h 15 16
11 | 6/1k 7/16 8/16 9/18 10/18 'Ei/zonkw;§~bv 13 1h 15 16
12 { 6/15 T/i7 8/17 9/19 10/19 11/21 12/21% 13 14 15 16
13 | 6/16 T7/18 8/18 9/20 10/20 11/22 12/22'h1§751"1q35_~~ 15 16
14| 6/17 7/19 8/19 9/21 10/21 11/23 12/23 13/25 1h/25iﬁjii_~ 16
15 | 6/18 T/20 8/20 9/22 10/22 11/2h i2/2h 13/26 1kL/26 15/28, 16

These values are obtained from Theorems I.1, I.2 in Chapter VIIT.

mf(f,t) =t +1,Vt<f, £>h

T+ 1< mf(f,t) ST+t -1, to0dd,t >

A

t+2< mf(f,t) f+t-2,teven, t > 7



