Eliminating File System Scan for Backup Using a Pseudo VFS Driver

Varghese Devassy

A Thesis submitted to the Faculty of Graduate Studies of
The University of Manitoba

in partial fulfilment of the requirements of the degree of

Master of Science

Department of Computer Science
University of Manitoba

Winnipeg, Manitoba, Canada

Copyright © 2009 by Varghese Devassy

THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES

COPYRIGHT PERMISSION

Eliminating File System Scan for Backup Using a Pseudo VES Driver

Varghese Devassy

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University of
Manitoba in partial fulfillment of the requirement of the degree

of
Master of Science

Varghese Devassy©2009

Permission has been granted to the University of Manitoba Libraries to lend a copy of this
thesis/practicum, to Library and Archives Canada (LAC) to lend a copy of this thesis/practicum,
and to LAC's agent (UMI/ProQuest) to microfilm, sell copies and to publish an abstract of this
thesis/practicum.

This reproduction or copy of this thesis has been made available by authority of the copyright
owner solely for the purpose of private study and research, and may only be reproduced and copied
as permitted by copyright laws or with express written authorization from the copyright owner.

Thesis advisor Author

Dr. Rasit Eskicioglu Varghese Devassy

Eliminating File System Scan for Backup Using a Pseudo
VFS Driver

Abstract

A typical file system backup application operates in two phases. In the first phase,
called scan, a list of candidate files modified since the last backup is generated. These
files are then copied to some form of a secondary ‘storage device in the second phase
called,' backup. Although improvements in the speed of secondary storage devices
have reduced the time required for the backup phase, this is not the case with the
scan phase. The scan phase must compare the ﬁodiﬁcation time of a file with the
time of the previous backup before the file is selected as a backup candidate. On most
éystems, getting the modification time of a file requires at least one system call. As
the number of files on a computer increases, the number of context switches resulting
directly from the system calls executed during the scan phase increases proportionally,
resulting in lower system throughput; In this thesis, I introduce a novel ‘method to
speed up the scan phase through a pseudo Virtual File System (VFS) driver (referred
to as scandd). VFS is a framework available on modern UNIX operating systems that
allows the coexistence of different file system types. loctls provided by scandd can be
used-to specify the list of file systems that scandd monitors, enabling it to generate

the list of modified files segregated by their file system. Using this method, the scan

i

Abstract iv

phasé would use the list of modified files generated by scandd, thereby eliminating the
need to compare the modification times of individual files. This method can be used
for any file system that conforms to the VFS semantics. For reasons to be cited later,
the Solaris 10 operating system (OS) will be used to demonstrate the performance
improvements obtained by this method.

Being a device driver, scandd has negligible impact on unmonitored file systems.
The tests conducted indicate that there is about 30% degradation in file creation
operations on monitored file systems. On dormant file systems such as the standard
Solafis file systems (/, /usr, /var and /opt) the gains observed are dramatic. For file
systems with directories containing greater than 1 million files scandd provided 60%
improvement even if all files in the file system were modified. For the deepest, directory
containing 6 million files at 492 levels deep, scandd provided 50% improvement even
if all files were modified. Further, my tests indicate that the time taken for scan using
the list generated by scandd depends only on the number of files modified and the

pathname length of the modified files.

Contents

Abstract L e
Table of Contents v
List of Figures e
List of Tables
Acknowledgments
Dedication

1 Introduction

1.1 The Need for Faster Enumeration« v v v v v v v v v ..
1.2 Discussions of a Sample Scan e
1.3 TheMethod e e
1.4 Thesis Overview o o v it e e e e e e

2 Related Work

2.1 File System Caches o L.
2.2 Backup Methods using Newer File System Features
2.3 Summary of Related Work,
3 Solution Strategy and Scandd’s Implementation Details
3.1 Solaris Device Driver Fundamentals
3.2 Scandd Installation
3.3 Configuration Values
3.4 Scandd Initialization oo
3.5 Intercepting File System Changes B
3.6 Ioctl Interface
3.6.1 SCANDD_ADD.FS
3.6.2 SCANDDDEL.FS
3.6.3 SCANDD_ISFSTRACED.
3.6.4 SCANDD_SYNC_CHANGED_FILES.
3.6.5 SCANDD_GET_LASTERROR
3.7 How Monitored File Systems are Stored

Contents vi

3.8 Identical File Name Elimination in the Modified File List 38

3.9 Error Conditions 44
3.10 Methodology 44
3.11 Scandd Termination 46
312 Special Case 47

" 3.13 Driver Logs oL 48
3.14 Concluding Remarks 48

4 Correctness, Performance and Evaluation 49
4.1 Testing Tools 49
4.1.1 testioctls 50

412 testfind o0

4.2 Verification of Correctness 51
4.3 Can Scandd Miss Files? 52
431 HardLinks 52
432 Rename 54

43.3 Special Files 56

4.4 Performance Evaluation 56
4.4.1 System Information 56

4.4.2 Scandd’s Impact on Regular File Operations 57

4.4.3 Improvement on Standard File Systems 60

444 Improvement on File Systems with Many Files in one Directory 64

4.4.5 Improvement on File Systems with Deep Directories 68

. 446 Improvement on File Systems with Many Directories and Files 69

4.5 When does Scandd Perform Worse than Traditional Scan? 72
4.6 Summaryof Results 73

5 Future Work and Conclusions 74
5.1 Future Work S 74
5.1.1 Scandd as a Research Thesis 74

5.1.2 Scandd as a Backup Product. 77

5.2 Thesis Conclusion 80

A Miscellaneous Information 81
A1l Compiler Information 81
A.2 Driver Development Tools Used 82
A.3 An Important Note for Driver Development on Solaris. 83
A.4 Documentation Tools Used - 83
Bibliography 84

Bibliography - | 87

List of Figures

1.1
1.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3
4.4

4.5
4.6

4.7

Pseudo-code for a traditional scan algorithm
Block diagram showing the relationship between vnode and VFS

Data structure to store replaced vnodeops
Data structure for SCANDD_ADD_FS and SCANDD_DEL_FS ioctls
Data structure for SCANDD_IS FS_TRACED doctl
Data structure for SCANDD_SYNC_CHANGED_FILES soctl
Data structure for SCANDD_GET_LAST ERROR zoct!
Data structure to save a monitored file system
Data structure for caching a list of modified files
Data structure for a modified fileentry
Flowchart showing addition/deletion of a file to/from the cache

Flowchart depicting a sample iscan

Plot of file creation times Lo
Plot of scan times for many files in one directory
Plot of the number of context switches during scan for many files in
one directory e
Plot of the number of system calls during scan for many files in one
directory e e
Plot of scan times for many files in many directories
Plot of the number of context switches during scan for many files-in
many directories L. oL e
Plot of the number of system calls during scan for many files in many
directories e

vii

List of Tables

4.1
4.2
4.3
4.4
4.5
4.6

Effect of scandd on file creation 58
Comparison of time between traditional scan and scandd 61
System calls and the context switches measured on a standalone system 62
Comparison of scan times when many files in one directory were modified 65
Comparison of traditional scan time for a directory at various depths 68
Comparison of scan times on file system with many directories 70

viii

Acknowledgments

I would like to thank my advisor, Dr. Rasit Eskicioglu, for his guidance and
encouragement all these years. Being a part-time student and working.as a full-time
empl.oyee in a software development firm, it was hard to motivate myself to complete
this thesis. Moreover, doing my thesis remotely, I missed some registration deadlines.
Dr. Eskicioglu, thank you for motivating me and for being patient with me all these
years.

I would like to acknowledge the following members of the Computer Science de-
partment for their help and advice. I take this opportunity to thank Dr. Peter
Graham for spending time with me brainstorming various ideas and implementation
hurdles. Dr. Neil Arnason for helping me elevate my writing style (although I am
still not there yet). Ms. Lynne Hermiston for processing my late registrations and
time extension forms without any further delay.

I am grateful to my employer, CommVault Systems Inc., for partly funding my
Masfer’s studies at the University of Manitoba and allowing me to take time off to
attend lecture sessions.

Many people have spent time reading this thesis and provided valuable feedback.
Especially, Mr. Thomas Barnwell, Mr. Tan Austen, Mr. Kiran Koala and last but not
least my wife, Dr. Smita Pakhale. This thesis would not have been in this current

form without your valuable comments.

X

This thesis is dedicated to the system administrators who spend hours

waiting for completion status for their large file system backups.

Chapter 1

Introduction

.The backup process is used to safeguard against unexpected data loss due to
softvs}are or hardware failures. File system backup operates in one of three modes:
full, incremental or differential. Full backup saves all files on a system to secondary
storage; incremental backup saves files modified since the last full, incremental or
differential backup, and differential backup saves all files modified since the last full
backup. Apart from the above three types, another backup type, namely, synthetic
full, is available in some recent backup applications [1, 2]. Synthetic full backup
creates a full backup from a previous full backup and the subsequent incremental or
differential backups combined with any modified or new files from the system. In
this fnethod, most of the files are available from secondary storage, so a synthetic full
backup uses limited system resources. In addition, synthetic full backup dramatically
reduges the backup time, because ﬁles that were not modified are read from backup
storage.

Files to be backed up must be specified or selected from the list of files by a process

Chapter 1: Introduction 2

called enumeration. To enumerate files for an incremental or a differential backup,
the enumeration process must obtain the modification times of all files and compare
them with the time of the previous backup. To obtain the modification time of a
file, the enumeration process must issue a system call to the file system. Execution
of system calls by the enumeration process on each file affects the performance of
othef applications running on the system due to the context switches they introduce.
In addition, the enumeration process can take a long time on extremely large file
systems and on file systems with deep directories. Section 1.2 explains the reasons
why enumeration can be slow on large file systems and on file systems with deep
directories using a pseudo-code. In this thesis, I have developed a method whereby
files for incremental backups can be enumerated without comparing their modification

times thereby reducing the enumeration time.

1.1 The Need for Faster Enumeration

Backup of critical computer data is one of the most important elements of any
orgaﬁization’s disaster recovery planning. Most organizations rely on third party ap- -
plications to perform this vital task. These backup applications save modified files at
a predetermined schedule to some form of secondary storage devices (most commonly
tape drives) connected to one or more backup servers. In a typical organization, the
number of systems to be backed up exceeds the number of backup servers and sec-
ondary storage devices. To accommodate all systems in an organization, most backup
applications automate backups to secondary storage devices using medium-changer

devices. The use of medium-changer devices accomplishes the movement of backup

Chapter 1: Introduction : 3

media to and from drives without human intervention. Medium-changer devices typ-
ically consist of a set of storage slots where backup media are stored and a set of
drives where the backup media can be mounted and then read from or written to as
specified by the Small Computer System Interface (SCSI) standard [3].

The explosive growth of data has created numerous challenges for every organiza-
tion: one of them being the time required to complete backup within a predetermined
period. To reduce the amount of data to be backed up, vendors of backup applications
have.devised novel methods. Chervenak et al. [4] describe some of the methods used
by these vendors. However, the growth of data has surpassed the advantages these
methods could deliver. To make matters worse, the total time available for backup,
called the backup window, remains constant.

A file system backup generally has two phases: scan and backup. The scan phase
enumerates files and the backup phase saves these files onto a secondary storage device
connécted to a backup server. Over the years, the speed of secondary storage devices
has improved dramatically, which has improved the performance of the backup phase.
However, the speed of the scan phase largely depends on the performance of directory
lookup in file systems. Moreover, directory lookup speed reduces drastically as the
number of files in a directory increases. Phillips [5] cites some of the enhancements
in the ext? file system resulting in faster directory lookup. Newer file systems use
BTrees [6] and their variants to improve directory lookup. The method employed by
Phillips [5] uses hash keys to improve the directory lookup performance for which he
has coined the name “HTree” [5]. Although such newer. techniques have improved

the performance of directory lookups, large directories still present a performance

Chapter 1: Introduction ’ 4

bottleneck.

Large directories may not be a common occurrence in regular file systems. How-
ever,. there are instances such as the cache directories of large web servers and direc-
tories containing the files created by various applications, where directories with large
numbers of files are common. It is also possible to come across large directories in sys-
tems used for archiving medical records and medieval records. In addition, researchers
working in the area of file system design and/or file system performance usually create
large directories intentionally to study and to improve file system performance.

Even in the absence of large directories in a file system, scan may take a long time
(the exact amount of time depends on the number of files in a file system) on very
large file systems (file systems that house the home directories of the employees in
a large organization is a prime example of this). This is because, scan must use at
least one system call per file for enumeration. As the number of files in a file system
increases, the amount of time taken by scan increases proportionally. In addition, the
number of context switches resulting from these system calls reduces the throughput

of other applications running on the system.

1.2 Discussions of a Sample Scan

The method developed in this thesis focuses on improving the time taken for the
scan phase of an incremental backup. Figure 1.1 shows how scan using the traditional
method operates. In this algorithm, scan() is the main function called to scan all
mounted file systems. For each mounted file system, scan invokes the traverse()

function, which performs a depth-first search of the selected file system listing the

Chapter 1: Introduction 5

names of files modified since the previous backup time (referred to as the “reference

time”).

traverse(fs)
{ |
for each child ch of fs {
if ch is a directory {
traverse(ch)

}

obtain modification time (mtime) of ch
if mtime of ch is greater than the reference time{
print ch

}
}
}

scan()

{

for each mounted file system fs {
traverse(fs)

}

}

Figure 1.1: Pseudo-code for a traditional scan algorithm

For the traverse() function in Figure 1.1 to compare modification times, it must
first obtain each file’s modification time using a stat() system call. The stat()
system call retrieves the important attributes of a specified file such as: size, mod-
ification time (mtime), status change time (ctime), access time (atime), owner and
group, etc. On UNIX systems, a system call allows a user process to request OS ser-
vices (Vahalia [7, p. 31] describes the system call interface on UNIX systems). Access

to OS services however, comes with a price. To decide whether a file is selected for

Chapter 1: Introduction 6

backup in the algorithm above, the traverse() function must compare the results of
stat () with the reference time. A file system with a small number of files (number
of ﬁlés ranging up to 100,000 files), can perform the above scan algorithm within a
few minutes (upper bound of 15 minutes on a standard UNIX system). However, the
time taken by the above algorithm increases proportionally as the number of files in
a file system increases. Scalability tests performed by Sweeney et al. [8] on the XFS
file system confirm this assumption. According to the test conducted by Sweeney
et al: [8], 6716 lookups/second can be done on a directory with 10* entries where as
only 66 lookups/second can be performed in a directory with 10° entries. This means
that the lookup performance also decreases proportionally as the number of files in a
direcfory increases.

Implementation of directories in file systems differ from those of files in that the
contents of a directory are the names of its children [9]. Directory lookup on large
directories are slow because, to lookup the name of a child in a directory, a file system
must search for the file name in the directory contents. However, as the number of
children in a directory increases, so does the time taken for a lookup because the
search space is fnuch larger.

Although newer file systems such as extd on Red Hat Linux, ReiserF'S on Suse
Linux and UFS on Solaris perform better than XFS due to the various caching
strategies implemented in them, scan still takes a long time on a system with very
large file systems, directories containing a large number of files (greater than 1 million
files), and/or file systems with deep directories. The exact amount of time it takes

to complete a scan, of course, also depends on factors such as the memory size, CPU

Chapter 1: Introduction 7

speed, etc.

1.3 The Method

In modern operating systems, many file system implementations follow a standard
portéble architecture, namely, vnodes [10]. Figure 1.2 shows a block diagram of a
‘sampl'e vnode implementation. One of the design goals of the vnode architecture
was to split file system implementation into file system dependent and file system
independent modules. To effect this goal, the vnode was introduced to manage files
independent of the file system they reside in; the VFS was introduced to manage file
systems independent of their implementation. As a consequence, each file is repre-
sented in the kernel by a vnode and each file system by a VFS. All file systems adhering
to the VFS architecture must define a set of predefined entry points, namely, vnodeops
(acrohym for ‘vnode operations’). These entry points are C-function pointers that
are initialized when a new file system is added to the system. The OS maintains an
array of function pointers for all file systems configured. This array is indexed by
the file system number, vfs_fstype, which is assigned by ‘phe OS when a file system
is configured. To perform a file-related operation, the OS determines the file system
number the file resides in, which is then used to access the function pointer specific

to the file system.

Chapter 1: Introduction

visop vfsop
mount mount
unmount unmount
root root
e — statvfs statvfs e ——————
VFS VFS VFS
vis_next @ B vis_next @——1 vis_next
vfs_prev |« @ vis_prev «@——@ vis_prev
vfs_op vis_op vfs_op
vfs_fstype (1) vis_{stype (1) vis_fstype (2)
vnode vnode vnode
v_vfsp‘) v_vfsp‘ V_VfSP‘
v_type v_type v_type
v_path v_path v_path
v_op‘\ v_op K_op

NN

vnodeops vnodeops
name name
open open
close close
read read
write write

Figure 1.2: Block diagram showing the relationship between vnode and VFS

Chapter 1: Introduction 9

In Figure 1.2, a vnode refers to the file system that it is part of through the
v_visp pointer. The pointer, v_op, points to the vnodeops for the file system type.
Vnodes that belong to file systems of the same type share a common vnodeops struc-
ture. Similarly, a VFS points to its file system specific functions through the pointer
vis_op. File systems of the same fype share a common vfsop structure. All file sys-
tems configured on the system are doubly-linked through the pointers: vis_next and
vis_prev.

In this thesis, I have developed a new method to enumerate files for incremental
backup without the normal expensive enumeration process. Using this method, a
pseudo driver, scandd, is stacked between the VFS layers and the actual file systems
conﬁgured on the system. At initialization, scandd replaces the vnodeops function
pointers defined by the configured file systems with its own functions. A file sys-
tem defines many vnodeops functions;’ scandd however, replaces only those functions
that modify a file’s contents or a file’s metadata (time, permissions, etc.). Once the
required functions are replaced, all file system access from the VFS layer is routed
through scandd. This enables scandd to determine which files are being modified and
to create a log of those files segregated based on the file system in which they reside.
After logging the names of the modified files, scandd calls the original file system
recipient function to complete the file system operation requested of the OS.

The Solaris 10 is selected as the platform for implementation because only Solaris
10 and later versions provide full pathname of a file modified as a member of the vnode
structure. VFS-implementations on other operating systems and on earlier Solaris

versions either provide only the base-name of a file or do not even have the file name

Chapter 1: Introduction 10

as a member of the vnode structure. On some operating systems, such as Linux, the
full pathname 1s available using certain internal kernel functions; on other operating
systems, there are no well defined kernel functions to obtain the full pathname from
the vnode of a file. As the full pathname of a file is provided by the Solaris 10 kernel
without invoking extra kernel functions, the Solaris 10 implementation should provide
the best performance improvement allowing me to demonstrate the full potential of
my approach.

| To measure the performance improvements obtained by this method, I have de-
veloped file system scan utilities using both the traditional and the new methods. I
have used these utilities to compare the performance improvements obtained by the
new method on various file system configurations, such as: file systems containing
large numbers of files, file systems with directories containing large numbers of files,

and file systems with deep directories. These results are discussed in Chapter 4.

1.4 Thesis Overview

The rest of this thesis is organized as follows. Chapter 2 details the related work
in file systems, especially those which improve the performance of directory lookups;
someé of the techniques commonly used by backup applications to bypass the scan
phase, and concludes with a section describing why scan is slow on directories con-
taining large numbers of files. Chapter 3 explains the solution strategy and the
implémentation details with particular emphasis on the data structures and the algo-
rithms used in the implementation. Chapter 4 details the methods that I have used

to evaluate the correctness of my thesis implementation and in addition, describes

Chapter 1: Introduction 11

the measurements carried out to compare the performance of scan using the method
that I have developed with the traditional scan method. Chapter 5 details the future

work required and offer some concluding remarks on this thesis.

Chapter 2

Related Work

This chapter contains an overview of the various enhancements that have been
made to improve file system performance. Section 2.1 discusses éaching strategies. As
memory gets cheaper, there is more emphasis on the use of larger caches to improve
file system performance. As Solaris is a UNIX variant, references fo UNIX file system
concepts and caching techniques also apply to Solaris 10. In Section 2.2, I discuss some
of the novel methods used in some backup applications to eliminate scan altogether.
In the same section, I also introduce the NT file system (NTFS) change journal

developed by Microsoft Corporation [11].

2.1 File System Caches

Implementers of early UNIX file systems noticed the impact of disk latency on
file system performance. Since then, operating system designers have used several

caching strategies to improve file system performance. Tannenbaum [12, pages. 270—

12

Chapter 2: Related Work 13

272] explains the use of a buffer cache in early UNIX file systems to improve read
and write performance. A buffer cache is a cache layer common to all file systems.
- Functionally, it resides between a file system and the hardware devices on which the
file system resides, usually disks. The buffer cache is designed to cache individual disk
blocks [13, p. 474]. Cache items pertaining to individual disks are kept as separate
lists [13, p. 482] in the buffer cache to facilitate searches for blocks of a given disk
in the buffer cache. Thus, an individual block in the buffer cache can be accessed
By the tuple /disk-id, block-no]. Before a file system reads a block from the disk, it
checks for the existence of the same block in the buffer cache. If the requested block
is present in the buffer cache, the read request is satisfied from the cache, avoiding a
disk access. However, if the requested block is unavailable in the buffer cache, it is
read from the disk through the buffer cache. In a similar manner, a write request to
the file system is written into the buffer cache.

In general, caches can be implemented as write-through or write-behind [7, p. 285.
In write-through caching, data is written to disk at the same time it is written to the
cache. In write-behind caching, data is written to the cache first; the cached data is
written to disk at a later time. Write-through caching is simpler to implement than
write-behind caching. However, write-through caching results in an immediate write
of the cached disk block eliminating the benefits of caching. As disk access takes
much longer than memory access, delaying disk I/O improves the system throughput
as the CPU can be utilized for other tasks. Therefore, the UNIX buffer cache is
implemented as a Wfite-behind cache [7, p. 285)].

Buffer cache entries are sorted in least-recently used (LRU) order. As the size

Chapter 2: Related Work 14

of the buffer cache is limited, LRU cache entries are purged in favor of newer blocks
accessed from the disk. The kernel process, fsflush [14, p. 563], monitors the use of
the buffer cache to ensure that free blocks are available, and that the modified blocks
(dirty blocks) are synchronized to the disk. The fsflush process, at regular intervals,
cycles through the modified cache blocks and synchronizes them to the disk.

As the processing power of computers has increased, file systems have increased in
size and complexity. Use of the buffer cache by itself no longer provides the required
perférmance improvements on large file systems. In addition, as the buffer cache
resides below the file system layer, file system functions must be invoked to convert
a file offset to a disk block and then to determine whether that block resided in the
buffer cache [14, pages. 589-590]. Invoking file system functions to determine the
presence of a block in the buffer cache is expensive (14, pages. 589-590]. Therefore,
modern operating systems use a different cache layer, namely, the page cache instead
of the buffer cache. Unlike the buffer cache, the page cache is designed to cache a file’s
content and not disk blocks. Moreover, the page cache is designed to use all available
meonry that is not used by applications running on the system. Vahalia [7] states
that with the introducﬁion of the page cache, the buffer cache is only used to cache
file s_yvstem metadata [7, p. 284]. Modern OSes use some variant of the page cache.
Bar [15, pages. 29-32] explains the relevance of the buffer cache and page cache [15,
pages. 79-80] with regard to Linux file systems.

These caching strategies have substantially improved file system performance for
reads and writes. However VFS refers to a file using a vnode structure rather than

the file name. Prior to the introduction of the vnode architecture [10], a file in a file

Chapter 2: Related Work 15

system was uniquely represented by an inode. With the introduction of the vnode
architecture, a file is now represented by a vnode regardless of the file system it is part
of. However, the inode representation is still used in file system implementations.
Thus, within the VFS layér, a file is represented by a vnode and within specific file
system implementations, a file is represented by an inode. The VFS therefore must
convert a file/directory name to its vnode before any file/directory operation. In many
cases, files are accessed using the full pathname from the root directory. McKusick et
al. [1'6, p. 222], explain the actions required to translate a pathname to its vnode. To
convert a pathname to a vnode, the pathname is traversed component-by-component
(e.g., /a/b is converted by traversing /, /a and then finally /a/b). To make pathname
to vnode lookup efficient, a cache has been implemented in modern UNIX operating
systems. This cache is called the Directory Name Lookup Cache (DNLC) [14, pages.

554-562] in Solaris and the dentry cache [15, pages. 79-80] in Linux.

2.2 Backup Methods using Newer File System Fea-

tures

The Buffer cache, page cache, and Directory Name Lookup Cache/dentry cache
Have greaﬂy improved file system lookup performance. However, performance im-
provements derived from these caching techniques do not guarantee completion of
backups in the backup window. This is because, a traditional file system backup will
backup the entire contents of a file even though, only a single byte in a file was mod-

ified. Thus, the amount of data backed up in a traditional file system backup could

Chapter 2: Related Work 16

be large even for the meager amount of file modifications in a system. Moreover, the
backup data might have to be sent across a network to be written to the secondary
storage media. Thus, fhe high volume of data in a traditional file system backup
result.s in high network bandwidth requirements and higher consumption of backup
media. Therefore, some backup vendors have introduced new backup methods such
as: block-level backup [17], backup using file system snapshot, file-level replication
techniques [18] and single instancing [19, 20].

Block-level backup applications eliminate the aforementioned shortcomings of the
traditibnal file system backup by saving only the modified blocks in a file system. A
separate device driver may be required to enable access to the modified blocks in a file
system. Chervenak et al. [4] state that since block-level backup operates at the ﬁle’
system block level, it cannot correlate an individual block to a file unless file system
specific information is included with the backup. Therefore, block-level backups are
file system specific and require additional effort to be usable on different file system
types. Moreover, depending on the block modification time, blocks pertaining to a
file rﬁay be backed up on different days in a block—levellbackup. Therefore, restore
of a single file from a block-level backup requires special processing and may take
longer than restoring the same file from a traditional file system backup. This is
because, restores from block-level backups are done as individual disk blocks rather
than as individual files. In addition, block-level restores bypass file system code to
restore the modified blocks. Therefore, administrators must unmount file systems
before restoring from block-level backups.

Some newer file systems provide a snapshot feature [17]. IBM Corporation’s

Chapter 2: Related Work 17

7fs2 file system and the ezt$ file system on Linux both support a snapshot feature.
Garimella [21] gives an overview of the different snapshot methods used. This feature
provides a read-only, point-in-time view of all files in a file system. To implement the
snapshot feature, file systems employs copy-on-write scheme when modifying blocks.
When a block in a “snapped” file system is written, the file system preserves data
from the modified block by copying it to a new location. Once the copy is completed,
the new data is written to the original location. To provide a consistent view of
files in the “snapped” file system, references to the modified blocks are transparently
redirected to the preserved blocks. Prior to the availability of the snapshot feature in
file systems, critical applications had to be shut down before backing up their files.
However, as the snapshot provides a consistént view of the “snapped” file system, a
shut-down is no longer required.

File system snapshot can be combined with block-level changes to implement
asynchronous file system level replication [22]. This method is also referred to as
“continuous data protection” [21]. The replicated data may reside locally or remotely.
T his.method uses the snapshot facility provided by file systems to create a reference
point for replication, which is also used to synchronize the replication target. Methods
such as remote copy can be used to synchronize the source snapshot with the target
system. Once the target is in sync with the source snapshot, all changes to the file
system since the snapshot was taken are applied asynchronously to the replication
target. If the file system cannot provide block-level changes since the snapshot was
taken, a device driver might be required to capture this information. Similar to

replication at the file system level, file-level replication is also available. The only

Chapter 2: Related Work 18

difference between the above two methods is in the way the changeé. are applied.
While the former applies block-level changes to the target, the latter applies file-level
changes to the target. To provide fault tolerance, more than one destination site may
be specified, increasing data availability in case of a disaster. In addition to the above
repliéation techniques, replication may be built into the file system. Liskov et al. [18]
describe a file system in which, replication of file system data is achieved using NFS.
Replication built into the file system achieves the replication atomically as the writes
are synchronous. A replicated file system may be used as the secondary storage media
for backup thereby protecting the backed-up data itself.

In all of the above methods, compression may be employed to reduce the amount
of data sent across the network or to reduce the amount of data stored on the backup
media. However, the degree of compression achieved will depend on the contents of
a file and in some cases can expand the data. With the wide spread use of email
in the enterprise for communication, the same email or the same email attachments
may be sent to multiple recipients. In a similar manner, many user-level directories
may contain copies of the same file resulting in multiple copies of the same file being
backed up. Backup vendors have developed a single instance feature whereby only one
copy.of a file is saved during the backup phase. Hong et al. [19] describe a file system
in which blocks that have the identical data are logically associated to a single block.
Bolosky et al. [20] explain the implementation of single instancing in Windows 2000.
The implementation of single instancing on Windows provides support for backup
and restore applications to detect files that have been “single instanced”. Using this

feature, backup applications can ensure that only a single copy of files with the same

Chapter 2: Related Work 19

content is saved during the backup phase.

Microsoft Corporation introduced a change jburnal in its NT file system (NTFS)
for their Windows 2000 operating system [11]. Each NTFS has its own change journal,
which is described as a database of changes made to the file system. This journal
contains entries for every file and directory modified, added, or deleted. Microsoft
envisions that the change journal will be used by services, virus scanners, and backup
applications. The change journal is implemented as a hidden file. Because the change
journal creates a hidden file on the file system being tracked, it takes away some space

from the file system.

2.3 Summary of Related Work

The size of file systems will keep increasing with the reducing price of hardware and
the increasing processing power of computers. Therefore, the traditional methods of
file system backup will not be able to complete backups in the prescribed time frame.
As we have seen in the previous sections, novel methods for backing up files are being
developed and file systems are absorbing these features continuously. It is only a
matter of time before the method developed in this thesis will be made available as

a standard feature in the coming years.

Chapter 3

Solution Strategy and Scandd’s

Implementation Details

In this chapter, I explain the method that I have devised to speed up file sys-
tem scan. As explained in Section 1.3, this method requires the introduction of a
pseudo driver, scandd. The various sections in this chapter are arranged as follows:
Section 3.1 explains Solaris device driver fundamentals and Section 3.2 details the
installation procedureg required for installing scandd. Section 3.3 details scandd’s
configuration values and Section 3.4 explains the initialization steps of scandd. The
mechanism by which scandd is stacked between the VFS layer and the file system
implementation layer is explained in Section 3.5 and Section 3.6 explains the joctls
provided by scandd for communication with user-level applications. A scan using
the method developed in this thesis uses these ioctls to monitor file systems and
enumerate the list of files for backup without issuing stat () system calls.

Section 3.7 details the data structures used to store the list of monitored file sys-

20

Chapter 3: Solution Strategy and Scandd’s Implementatioﬁ Details 21

temsn and the mutezes used to serialize access to this list (a mutex is a data structure
provided by the OS to implement mutual exclusion of critical sections in a kernel mod-
ule). While monitoring a file system, it is possible that some files/directories may be
modified more than once resulting in multiple entries for these files/directories in the
log created by scandd. Section 3.8 details the data structures and method by which
scandd eliminates some of these duplicate entries in its log. Section 3.9 mentions the
two ioctls that applications may use to check for errors in the driver and Section 3.10
show how a sample application (referred to as iscan) can be developed using fche _
method developed in this thesis. Section 3.12 highlights a special case in scandd’s

implementation.

3.1 Solaris Device Driver Fundamentals

Every device driver in the Solaris OS must conform to a specific standard man-
dated by the Solaris Driver Development Guide [23]. This standard specifies a set
of mandatory routines and a set of mandatory data structures that a device driver
must define and export before it can be activated on the Solaris OS. Thé mandatory
routines are: _init, fini and _info. The _init and _fini routines provide the
initialization and termination functionalities for a device driver; the _info routine
provides information on one of the mandatory data structures exported by a driver,
modlinkage. The modlinkage data structure, in turn, exports two other important
data structures, namely, dev_ops and cb_ops. The structure, dev_ops, specifies the
drivér revision and the names of routines for_some of the driver-related tasks such as:

attach, detach, reset, etc. On the other hand, the structure, cb_ops, provides infor-

Chapter 3: Solution Strategy and Scandd’s Implementation Details 22

matibn on routines related to the I/O functionality of a driver including: open, close,
read, wﬁ'te, ioctl, etc. A driver may choose the routines it exports depending on the
functionalities that it provides. All undefined routines in dev_ops and cb_ops must be
either set to NULL or to a predefined values as mandated by the Driver Development
Guide. For example, if a driver does not allow open on the device it controls, the open
routine in the cb_ops structure must be set to nodev, a predeﬁned. value indicating
that the device cannot be opened. To prevent name clashes with other driver’s rou-
tines, driver developers are encouraged to use a prefix (usually the driver name itself)
in the routines or data structures a driver exports. Since scandd is a pseudo driver, the
only routines exported by dev_ops are scandd_attach and scandd_detach. I will be
focusing on the functionalities implemented by scandd_attach in Section 3.4 and by
the scandd_detach routine in Section 3.11. Scandd exports only three routines from
the dev_ops structure, namely, scandd_open, scandd_close and scandd_ioctl. The

above routines are the entry points for open, close and ioctl system calls respectively.

3.2 Scandd Installation

In this section, I describe the process of installing scandd. On Solaris, all device
drivers that are not required during system startup and the files containing their
configuration values must be placed in the directory /usr/kernel/drv/sparcv9 and
/usr/kernel/drv respectively. In the case of scandd, the installation script places the
driver binary, scandd, and the configuration file scandd. conf in the above mentioned
direcfories. In addition, the installation script places the entry ‘type=ddi_pseudo;

name=scandd scandd’ into the file /etc/devlink.tab. This line instructs the Solaris

.Chapter 3: Solution Strategy and Scandd’s Implementation Details 23

OS té create the file, /dev/scandd, when scandd is loaded. The file, /dev/scandd, is a
device file used to communicate with scandd through the ioct! interface. Once scandd
and its configuration files have been copied to the above-mentioned directories, the
‘ installation script invokes the command ‘add_drv scandd’, which initiates the process
of loading scandd dynamically. The program, add_drv, is a standard Solaris program
used to load device drivers dynamically. Once the driver is loaded into memory, the
Solaris kernel invokes the routines _init, _info and scandd_attach, in that order.
As mentioned in Section 3.1, the _init routine provides the kernel with the ad-
dresé of the dev_ops and the cb_ops structures. It is through the dev_ops structure
that the kernel determines the address of the attach routine to be called, namely,
scandd-attach. All the necessary initializations of scandd are performed by the
scandd_attach routine. The next section details the configuration values used by
scandd followed by the initialization actions performed by the scandd_attach rou-

tine.-

3.3 Configuration Values

At present, scandd uses only one configuration value, SCANDD_TARGET _DIRECTORY.
'The above configuration value specifies the directory into which the files containing
the names of modified files are written. As mentioned in Section 1.3, file names from
different file systems are segregated into different files. Scandd expects the above
configuration value to be set to a directory that exists. Scandd will fail to load if this
condition is not met.

It is mandated that the directory specified by the configuration value, SCANDD_~

Chapter 3: Solution Strategy and Scandd’s Implementation Details 24

TARGET DIRECTORY, be on a separate file system from the ones being monitored and

scandd will not monitor this file system due to the following reasons:

o If the modified file names from file systems, fs1, fs2, etc., are allowed to be
written to files (mod-filesl, mod-file2, ...) in any file system monitored by
scandd, changes in these files will in turn result in newer change records, which

will cause an endless recursion in the kernel.

e [do not want other applications to take away the space reserved for updates

‘ from the driver.

Free space requirement for the directory specified by the SCANDD_TARGET_DIR-
ECTORY configuration value is not directly dependent on the size of the file systems
monitored by scandd. Rather, it is dependent on the number of files in a file system,
the average pathname length of files in the file system and the frequency with which
thesé files change. In my test setup, the size of this file system was 10 GB. From my
tests I observed that a file system containing 5 million files with pathname length of
1020 bytes (the maximum pathname length allowed being 1024) occupied =~ 5 GB of
disk space on this file system when all files in the file system were modified exactly
once. Since it is unlikely that all files in a file system would change within a backup
period, the space requirement per file system can be reduced. A more logical approach
would be to reserve space for 10% of the files changing with an average pathname
length of 128 bytes per incremental cycle per file system. To accommodate any
unexpected space needs, the administrator should reserve some extra space in the file

system specified by the configuration value, SCANDD_TARGET_DIRECTORY.

Chapter 3: Solution Strategy and Scandd’s Implementation Details 25

3.4- Scandd Initialization

"This section details the actions performed by the scandd_attach routine during
scandd ’s initialization. At the onset, scandd_attach calls the routine, ddi_create_m-
inor_node. This device driver interface (DDI) function creates the device file, /dev/-
scandd, based on the entry inserted into the file, /etc/devlink.tab, during the
installation. The remaining initialization actions of scandd are performed by the
routine, scandd_init, which is called from scandd_attach.

The routine, scandd_init reads the configuration entry mentioned in the file,
/usr/kernel/drv/scandd.conf. Reading the configuration is achieved by the stan-
dard DDI function, ddi_prop_lookup_string. Once read, scandd verifies whether
the above configuration string identifies a directory that exists. Scandd will fail to
load if this is not so. Scandd preserves the name of this directory in one of its in-
ternal data structures and in addition, obtains its vnode entry. When a vnode for
a file/directory is obtained, the kernel increments the reference count of the vnode
obtained, which is decreménted when the vnode is released; a file system with active
vnodes (vnodes with reference count greater than zero) cannot be unmounted. Thus,
to prevent unmounting of the file system in which the above directory resides, the
vnode for the above directory is not released until scandd is unloaded.

Further, scandd initializes the mutezes that are used to control access to the list of
monitored file systems. Section 3.7 details the data structures used and the method
by which the monitored file systems are stored and accessed in scandd. At this phase,
the driver is ready to perform its last couple of initialization steps before it can start

intercepting file system calls, which are detailed in the next section.

Chapter 3: Solution Strategy and Scandd’s Implementation Details ‘ 26

3.5 Intercepting File System Changes

As shown in Figure 1.2 and as described in Section 1.3, every file system configured
undér the VFS interface exports a list of function pointers that provides a list of file
related operations, namely vnodeops. Similarly,vevery file system configured in the
system is identified by a unique VFS C-language structure which, in turn, exports a
list of file system operations known as visops. Every active file on the system is
represented by a vnode; a vnode points to its vnodeops and to its VFS through the

pointers, v_op and v_vfsp, respectively.

typedef struct scandd._savedvop

{
/* is vnodeops already saved? */
char slot_taken;

/* location for the original vnodeops */
vnodeops-t vop;
} scandd_savedvop_t;

Figure 3.1: Data structure to store replaced vnodeops

During the initializatibn phase, scandd allocates an array of structures mentioned
in Figure 3.1. The number of such structures allocated is computed by travers-
ing the file systems configured on the system. As mentioned earlier, every config-
ured file system has a VFS structure; all VFS structures configured on the system are
linked together as a doubly-linked circular list. Solaris provides access to the above
linked list through a pointer to the VFS of the root file system, namely, rootvfs.

By traversing the list starting at the rootvfs pointer, scandd counts the number

Chapter 3: Solution Strategy and Scandd’s Implementation Details 27

of file systems configured on the system and in turn allocates the same number of
scandd_savedvop structures. Once the array of structures has been allocated, scandd
saves the vnodeops for all file system typeé encountered in the VFS linked list. This is
achieved by obtaining the root vnode for a file system through the vfs_root function
in visops. In addition, every VFS structure has a member, vifs_fstype, which spec-
ifies the type identifier for the file system type it implements; VFS structures for the
same file system type have the same value for the field, vfs_fstype. Scandd uses the
vis_fstype member in the VFS structure to index into the array of scandd_savedvop
structures. Once scandd has saved the vnodeops for a file system, it sets the vari-
able, slot_taken, to 1 indicating that the vnodeops for that file system type have
already been saved. It then replaces only the functions that modify the content or the
metadata of a file or directory in the vnodeops with its own functions. Since these
operations modify critical kernel data structures, scandd acquires a write lock on the
VFS list by calling the function, vfs_list_lock, until vnodeops for all file systems
have been inspected.

To intercept file modification calls for a file system, scandd must replace the
vnod.eops function pointers with the pointers to its own func;tions in the vnodeops
for that file system. This operation need to be done only once per file system type. In
addition, as scandd’s functionality is limited to intercepting only the files or directories
that have been changed in a monitored file system, only péinters to the functions that
modify the contents of a file, directory or its metadata need to be replaced (e.g., write,
chmod, remove, mkdir, rename, link, symlink, etc.). Before replacing the function

pointers in the vnodeops for a file system type, scandd must save the original function

Chapter 3: Solution Strategy and Scandd’s Implementation Details 28

pointers. This is because, scandd must restore the replaced function pointers with
their original values when it is unloaded from memory. Scandd uses the data structure
in Figure 3.1 to save the vnodeops for a file system type.

Once the vnodeops functions for all file systems have been replaced, file modifi-
cation calls are routed through the scandd driver. Every vnodeops function called
receives a pointer to the vnode on which the file operation is done. It is through
this vnode pointer that scandd is able to access the remaining data structures to
perfqrm its functions. In the replaced functions, scandd verifies whether the call is
for a file/directory in a monitored file system. If the file system is being monitored,
scandd must record the name of the modified file. Section 3.7 specifies the method
by which the modified files in a file system is recorded and the related data structures
used. Regardless of whether a file system is monitored or not, the original vnodeops
function must be called to complete the file operation. Scandd achieves this through
the original vnodeops function pointers saved in scandd_savedvop. This is achieved

as follows:
1. for every function Fn intercepted by scandd
2. obtain the VFS pointer for the file system through the vnode member v_vfsp
3.- obtain vis_fstype value from the VFS pointer

4. access the original file system call as scandd_savedvop [vfs_fstype] . function

(args)

Since scandd intercepts some of the file system calls, it is extremely important

that failures from scandd’s internal operations should not be translated as a failure in

Chapter 8: Solution Strategy and Scandd’s Implementation Details 29

the file system call. Otherwise, file system operations may appear to report random

failures even though they were successful.

3.6 Ioctl Interface

This section explains the 7octls supported by scandd and the data structures an
application must use when invoking these zoctls. Section 3.10 explains how these toctls
can be used to build an efficient scan method. As is customary on UNIX, these 7octls
return 0 for success and -1 for failure. In case of a failure, errno (a UNIX standard
variable used to return error codes from system calls and library functions) specifies
the error code.

In all the structures mentioned in this section, MAXPATHLEN is a constant defined
in the system header files specifying the maximum pathname length in Solaris OS,

set to 1024.

3.6.1 SCANDD_ADD_FS

An application using this joct] must use the structure shown in Figure 3.2. Joctl
SCANDD_ADD_FS instructs scandd that the file system specified by the field, mntpt, be
added to the list of monitored file systems. Scandd returns the error, EEXISTS, if the
file system is already being monitored.

Upon successful completion, scandd creates a file to record the names of modified
files for the specified file system in the directory specified by the conﬁguratioh value,
SCANDD_TARGET_DIRECTORY. The file created is named by replacing all ¢/’ characters

in the file system name with the ‘#’ character. E.g., if the file system, /a/b/c, is

Chapter 3: Solution Strateqy and Scandd’s Implementation Details 30

typedef struct scandd.add_fs

{
/* IN: name of the mount point */
char mntpt [MAXPATHLEN] ;

} scandd.add fs_t;

Figure 3.2: Data structure for SCANDD_ADD_FS and SCANDD_DEL_FS ioctls

being added, scandd creates the file, #a#b#c. This method uniquely names the files

created for file systems, /usr and /a/usr.

3.6.2 SCANDD DEL_FS

This doctl uses the same structure used by the soctl, SCANDD_ADD_FS, described in
Figure 3.2. Joctl SCANDD_DEL_FS instructs scandd that the file system specified by
the field mntpt, be deleted from the list of monitored file systems. Upon successful
completion of this toctl, all files created by the driver to store the names of modified

files for the file system are removed.

3.6.3 SCANDD_IS_FS_TRACED

loctl SCANDD_IS_FS_TRACED is used by an application to query whether a file system
- is being monitored by scandd or not. Figure 3.3 shows the data structure used as an
argument to this soctl. On successful completion, the field, is_traced, is set to 1 if

the file system is monitored and 0 otherwise.

Chapter 3: Solution Strategy and Scandd’s Implementation Details 31

typedef struct scandd_is_fs_traced

{

/* IN: name of the mount point */
char mntpt [MAXPATHLEN] ;

/* OUT: is traced or not */
int is_traced;
} scandd_is_fs_traced;

Figure 3.3: Data structure for SCANDD_IS_FS_TRACED joctl

3.6.4 SCANDD_SYNC_CHANGED_FILES

Invoking this doctl is an indication to scandd that the file used to record the
names of modified files be closed and a new file be opened to record the modified file
names. As will be described in Section 3.8, scandd caches the modified file names in its
memory and this {oct! instructs scandd to write the modified file names from its cache
to the change file. Since more than one incremental backup may be run between two
full backups, scandd must segregate the files changed in each incremental into separate
files. To achieve this, scandd renames the file containing the modified file names to
a file appended with a version number. The version number is a running sequence
starting at 0 and incremented after each successful SCANDD_SYNC_CHANGED_FILES ioctl.

Figure 3.4 shows the data étructure used by this ioctl. The field, chfile no_rev,
returns the full pathname of the change file without the version number; the field,
revision, specifies the version of the change file that was written and closed by
scandd; the field, error, returns any error that the driver may have encountered

while executing this ioctl.

Chapter 8: Solution Strategy and Scandd’s Implementation Details 32

typedef struct scandd.sync_changed files

{
/* IN: name of the mount point */
char mntpt [MAXPATHLEN] ;

/* OUT: change file without revision */
char chfile no_rev[MAXPATHLEN];

/* 0UT: latest revision saved */
int revision; '

/* OUT: any error in the driver */
int error;
scandd_sync_changed files_t;

y g

Figure 3.4: Data structure for SCANDD_SYNC_CHANGED_FILES joctl

3.6.5 SCANDD_GET_LAST_ERROR

Figure 3.5 shows the data structure used for the soctl, SCANDD_GET_LAST_ERROR

toctl. This ioctl returns any error condition from the driver.

typedef struct scandd_get_last_error
/* OUT: any error in the driver */
int error;

} scandd_get_last_error_t;

Figure 3.5: Data structure for SCANDD_GET_LAST_ERROR ioctl

All of the described ioctls except SCANDD_GET_LAST_ERROR return the error ENOENT

if the specified file system does not exist on the system or if it is not monitored

33

Chapter 3: Solution Strategy and Scandd’s Implementation Details

by scandd. In addition, if the file system specified in calling any of the ioctls is
the same as the file system on which the directory specified by the configuration,

SCANDD_TARGET_DIRECTDRY, resides, scandd returns the error, EINVAL.

34

Chapter 8: Solution Strategy and Scandd’s Implementation Details

/* structure that represent a single traced file system */
typedef struct scandd_fs

{

/* mount point of the file system */
char mntpt [MAXPATHLEN];

/* vnode of the file system being traced */

- vnode_t *fs_vp;

/* count of threads using this structure */

volatile int ref_count;

© /* conditional variable to wait for ref_count */

kcondvar_t cond_var;

/* variable indicating a thread is waiting to delete the FS */

int waiting to_delete;

/* If this field is non-zero the change list is unreliable */
uint_t error;

/* device of the traced file system */

dev.t fsid;

/* list of files changed */
scandd._change_list_t change.list;

- /* pathname of the change file */

char change_file[MAXPATHLEN] ;

/* vnode of the file to write the change list to */

~ vnode_t *change vp;

/* version of the change file */
int version;

. /* pointer to the next traced file system */

struct scandd_fs *next_fs;

} scandd.-fs_t;

Figure 3.6: Data structure to save a monitored file system

Chapter 3: Solution Strategy and Scandd’s Implementation Details 35

3.7 How Monitored File Systems are Stored

In this section, I expla,in‘ the data structures used to store the monitored file
systems information and the methods scandd employs to efficiently verify whether
a file/directory modified is part of a monitored file system or not. Scandd uses the
structure in Figure 3.6 to save the name of a file system monitored upon a successful
SCANDD_ADD_FS toctl.

The field, fs;vp, refers to the vnode of the roof directory of the monitored file
systém. Reference to the root vnode is added when a file system is monitored by
scandd and deleted when the file system is removed from scandd’s monitored list.
The field, ref_count, is for reference counting the number of kernel threads accessing
a file system structure. The reason for implementing a reference count is that, many
kernel threads may perform file modifications on the same file system at the same
instant. Therefore, using a lock to access an individual file system structure for the
entire duration of a file modification will degrade file system performance drastically.
Instead, the lock controlling access to the file structure is taken only for the duration of
timeirequired to increment the ref_count field. The member‘, cond_var, is a variable
of type kcondvar_t, a conditional variable [23, Ch. 3] used to wake up kernel threads
Waiti_ng for the reference count, ref_count, to drop to zero. This may occur before a
file system is removed from the list of monitored file systems and the thread trying
to do so detects that the reference count for the file system is not zero. In this case,
the thread trying to remove a file system data structure must sleep until all threads
referring to the same file systerﬁ structure decrements the reference count, ref_count.

Before sleeping, the thread deleting the file system sets the field, waiting to_delete,

Chapter 3: Solution Strategy and Scandd’s Implementation Details 36

to 1 and sleeps on the conditional variable, cond_var. If waiting to_delete is set,
scandd wakes up the sleeping thread whenever ref_count drops to zero. The field,
errof, is set if there was an error for this file system, which is returned as part of
the processing of the toctl, SCANDD_SYNC_CHANGED_FILES. The field, fsid, stores the
file system identifier (FSID) for a file system. FSID is a combination of the major
and minor numbers of the device from which a file system is mounted. Since every
file system is mounted from different devices, FSID is unique for each file system.
The fleld, change_list, stores the list of modified files until they are written to the
change_file (the file that stores the names of modified files) whose vnode is stored
in change_vp. Section 3.8 explains how scandd stores the list of modified files in its
mem.ory. The field, mntpt stores the name of the file system and the field, version
stores the version of the file containing the modified file names last written for the file
system. Scandd stores the file systems monitored as a linked list; the field, next_fs,
points to the next file system in the list.

In response to the SCANDD_ADD_FS ioctl, scandd allocate the structure, scandd-
_fs_t, and copies the mount point inférmation after initializing all the members to a
known state. Next, scandd obtains the file system identifier (FSID) for the file system
added. Asdescribed in Section 3.3, scandd verifies that the file system added is not the
same as the file system containing the directory specified by the conﬁguration value,
SCANDD_TARGET_DIRECTORY. Scandd verifies this by comparing the FSID obtained
with the FSID of the directory mentioned in the configuration field. The FSID for
the directory in SCANDD_TARGET_DIRECTORY is obtained by traversing the VFS from the

vnode for the directory saved during the initialization phases of scandd (as mentioned

Chapter 8: Solution Strategy and Scandd’s Implementation Details 37

in Section 3.4).

Since scandd has replaced the vnodeops for file systems as part of its initialization,
every file modification call intercepted by scandd needs to verify if the file for which
the call is made is part of any file system in the moniﬁored list. Therefore, scandd
must be able to lookup the list of monitored file systems efficiently. This is achieved
by storing the collection of monitored file systems as a hash table. The hash table
employed uses a number of buckets that is a power of two and the modulo operator
is used to efficiently locate the appropriate bucket for a file system. The current
implementation uses 16 buckets for the hash table and the hash value for a file system
is computed as ‘FSID modulo 16’. Since the number of buckets is a power of two, the
modﬁlo operation can be efficiently calculated using bitwise-AND operation (bitwise-
AND with 15 in this case). Scandd uses an array of pointers to scandd_fs_t as the
hash table. If more than one file systems hashes to the same bucket, they are linked
together into a list using the field, next_fs in the scandd fs_t structure. To serialize
the kernel threads adding or deleting file systems to or from a hash bucket, scandd
uses the same number of mutexes as the number of hash buckets. Scandd follows the

following steps for adding or deleting a file system:

1. Obtain the FSID of the file system by traversing the VFS from the vnode of the

file system’s mount point.
2. Find the hash value for the FSID.
3. Acquire mutex for the hash bucket that the file system belongs to.

4. Verify whether the file system alréady exists in the hash bucket.

Chapter 3: Solution Strategy and Scandd’s Implementation Details 38

5. Perform addition/deletion of the file system to/from the hash bucket. If adding,

always add the new file system at the beginning of the list
Number ‘16’ is selected for the number of buckets due to the following reasons:

e Most systems tend to have a small number of file systems with a large number
of files in them and hence a small number of hash buckets should suffice to hash

them efficiently.

e The array of pointers to scandd_fs_t is declared as a global variable in the driver
and I have selected a smaller value for the modulo operator there by balancing

“the space requirement for the array and the performance of the driver.

e There are no studies available that portray the number of mounted file system
to make an informed selection on the number of buckets required. From my
experience with Solaris systems, I have noticed that the number of mounted file

systems is often in the range 5-10.

3.8 Identical File Name Elimination in the Modi-

fied File List

As mentioned in Section 1.3, scandd segregates the names of the modified files by
their file systém. It may be that a list of files in an file system might be modified many
timeé resulting in identical entries for them in the list of modified file names. Scandd
tries to eliminate these identical entries by using a cache of modified file names; the

amount of identical file name reduction achieved depends on the file access pattern

Chapter 3: Solution Strategy and Scandd’s Implementation Details

of applications on a file system and is not generally predictable. Therefore, scandd
makes no effort to predict any file access patterns. In this section, I discuss the

method scandd employs for identical file name elimination. In addition, this section

details the scenarios in which duplicate elimination is not possible.

In Figure 3.6, I had explained the data structure used to store a monitored file
system. The member, change_list, in the above structure is the primary data struc-

ture that implements the cache of modified files for a file system. Figure 3.7 show

this data structure in detail.

{

/* hash table structure of all changed entries */
typedef struct scandd.change list

/* first item in change list ordered by access */
scandd _change_file t *lru first;

/* last item in change list ordered by access */
scandd_change_file t *1lru_last;

/* number of changed entries */
int num_entries;

/* mutex lock for entries in the change list */
kmutex_t change list_lock;

/* next offset to write */
long long file_ offset;

/* hash table of changed files */

scandd_change file_t *change files[SCANDD_INODE_HASH_NUMBER] ;
| } scandd.change_list.t;

Figure 3.7: Data structure for caching a list of modified files

Chapter 3: Solution Strategy and Scandd’s Implementation Details 40

/* structure to save a single file name that has been changed */
typedef struct scandd_change file
/* pointer to the previous entry in the hash list */
struct scandd_change file *prev;

/* pointer to the next entry in the hash list */
struct scandd_change file *next;

/* pointer to the previous entry in the LRU list ;k/
struct scandd_change_file *lru_prev;

/* pointer to the next entry in the LRU list */
struct scandd_change_file *lru next;

/* inode number -- va_nodeid in vattr */
- u-longlong.t inode;

/* size of memory allocated including space for file name */
int size;

/* length of file name including the newline character */
int name_len;

/* name of the file. will be allocating the correct size for
** the file name when allocating memory.
*/
char file name[1];
} scandd_change file t;

Figure 3.8: Data structure for a modified file entry

The list of modified files is stored as a hash table, change files, which is an array
of pointers to scandd_change_file_t shown in Figure 3.8. This hash table is similar

to the hash table used to store the list of monitored file systems with the exception

Chapter 3: Solution Strategy and Scandd’s Implementation Details 41

of the number of hash buckets used, 1024 (defined as SCANDD_INODE_HASH,NUMBER in
the source code). The hash bucket is located using the inode number of the modi-
fied file (inode modulo 1024). Similar to the hash table for file systems monitored,
the number of buckets must be a power of two for efficient hash computation. As
scandd_change_list._t is designed to store the list of modified file names, it requires
more buckets for faster lookup and hence consumes more memory than scandd_fs_t.
To make lookups efficient and to limit the memory usage to a deterministic value,
scandd stores only a maximum of 1024 entries at any given time in the above cache.
If the addition of a new entry into the cache would increase the number of entries
beyond the predefined value, 1024, scandd removes one entry from the cache and
writes the file name corresponding to the removed entry into the file where modified
file names aré written for the file system. The entries in this cache are maintained in
least-recently-used (LRU) order where the mémbers lru first and lru_last point
to the ‘most recent’ and the ‘least recent’ entries in the cache. Before adding a file
name into the cache, scandd checks if it is already present in the cache. If present,
scandd moves the cache entry corresponding to the file name to the beginning of
the LRU list. This is achieved by removing the entry from its current LRU location
and adding it to the location pointed to by lru first. The field, 1ru_last, points
to thé location from which entries are removed tov make space when a new entry is
added and the number of entries is already 1024. The members num_entries and
.file._offset specify the number of entries in the cache and the offset in the file
where the next modified file name is written. Every time an entry is written to the

change-list, scandd increments the member variable, file_offset, by the file name

Chapter 3: Solution Strateqy and Scandd’s Implementation Details ' 42

length. For any modification in scandd_change_list_t, scandd acquires the mutex,
change_list_lock, to achieve mutual exclusion between various kernel threads.

The structure, scandd_change_file_t, contains the pointers lru prev and lrun-
ext, which point to the previous item and the next item in the LRU cache, respec-
tively. Similarly, the pointers prev and next point to the previous item and the next
in a hash bucket if more than ohe modified file hashes to the same bucket. Thus,
the modified files are arranged as a doubly-linked list, which allows scandd to do
quick addition or deletion of any entry from the cache in a constant time once an en-
try’s location in the cache has been determined. In addition, scandd_change file_t
contains the members: inode and file_name, which store the inode number of the
modified file and the name of the modified file. |

When a file is removed from a file system monitored by scandd, it is removed from
the above cache entirely. The flowchart shown in Figure 3.9 shows the steps scandd
performs during a file addition or deletion to keep the cache in sync With file system.
Scandd uses the inode number of a file to verify if it is present in the cache.

As the cache size is limited, a file might have been removed from the cache to
make space for another file. If a file removed from the cache is modified again, scandd
will reinsert a new entry for it. It is in such cases that scandd is not able to eliminate
idenﬁical file names even though the same file was modified more than once and hence,
the file containing the list of modified files may have identical entries. S’canc'id makes
no effort to remove these identical entries. Programs using the list of modified files
generated by scandd must remove these identical file names before backup. Removal

of identical file names can be accomplished using standard UNIX utilities such as

Chapter 8: Solution Strateqy and Scandd’s Implementation Details

43

A

i
!

i
1
1

L/

. Obtain inode for the

file and its hash
value

|

A/

Acquire mutex for
the hash bucket

If present, remove

 the file from the hash

bucket

!
\

A 4

Release mutex for
the has bucket

Figure 3.9: Flowchart showing addition/deletion of a file to/from the cache

!
|

.

< Isthefile
being N0
removed
?

\\‘

.
- lsthe file ™.
¢ in the N
~ hash)
™. bucket?

N

\7{/’
' no

A4

Add new entry at

yes ~ Remove the entry

from the hash
bucket

- Iru_first for the hash g

bucket

¥
t
H
I

Y

Release mutex for
the hash bucket

Chapter 3: Solution Strategy and Scandd’s Implementation Details 44

sort and uniq. The utility sort sorts the list of changed files so that all identical file
names occur together. The output of sort can be piped to the utility uniq, which in
turn removes identical entries. E.g. a backup application can use ‘éort -r | uniq’
to remove the identical file names. The ‘-r’ option instructs the sort program to
perform a reverse sort to generate the list of modified files in a depth-first manner as

performed by the traditional scan code shown in Figure 1.1.

3.9. Error Conditions

During normal operations, if scandd encounters any error conditions, it will set
an efror flag; a scan program using scandd must first verify that there were no
errors flagged by the driver using the ioctl, SCANDD_GET_LAST_FRROR. If there was an
error, the list of modified files generated by scandd must be considered unreliable.
In addition, the soctl, SCANDD_SYNC_CHANGE_FILES, also returns an indication of the
driver error enabling backup applications to check whether writing the modified file
names itself resulted in any error conditions in the driver. If scandd has flagged an
error in any of the above cases, the list of files generated by scandd cannot be used.
Backup applications must therefore switch to one of the traditional methods described

in Figure 1.1.

3.10 Methodology

The flowchart shown in Figure 3.10 shows the pseudo-code of an example iscan

application. In this code, iscan first checks to see if scandd encountered any error

Chapter 8: Solution Strategy and Scandd’s Implementation Details

45

~"Hasthe ™
) driver
e < reported >-no.
: an
y
_ error?
.

.
.

. : - ‘\»
Use the traditional : -~ Is the file .
no_ -
scan method for 4-——-~~~~-*‘~*—~*—~~-~\ system P
backing up all file \-\\ monitored? -~

systems. : . 7

R - ‘ ¢ Instruct driver to
; . write the modified file
name ;

,’/!\‘ .
i \\\
~" Hasthe ™\
yes - driver
“\ reported
\\an error? .~

. B

A

Remove identical file
names

Y

Backup using
filenames obtained

Figure 3.10: Flowchart depicting a sample iscan

Chapter 3: Solution Strategy and Scandd’s Implementation Details 46

conditions by invoking the 7octl, SCANDD_GET_LAST_ERROR. If scandd reported an error,
the traditional scan method must be used for all file systems. If scandd did not report
any errors, iscan performs the following operations for each file system. Regardless
of whether the backup is an incremental or a differential, scandd issues the ioctl,
SCANDD_SYNC_CﬁANGEDJ ILES that instructs the driver to write all modified file names
from the cache and return the version number for the last file written. If the backup
is an incremental backup, iscan only needs to use the latest version of the modified
file. On the other hand, if the backup is a differential backup, ¢scan must combine all
versions of the modified file list to a single file, the first version being 0 and last version
as returned by the ioctl, SCANDD_SYNC_CHANGED_FILES. In both cases, elimination of
identical file names, as described in Section 3.8, must be performed before the list of

modified files can be handed off to the backup process.

3.11 Scandd Termination

The termination actions performed by scandd are somewhat the reverse of those
performed during the initialization phase. With Solaris OS, a driver can be un-
loaded using the command ‘rem_drv’ and the argument to this command specifies
| the driver to unload. As part of the unload procedure, the Solaris OS calls the rou-
tine, sca_ndd_defach, to terminate and detach the driver from the devices its may
be éqntrolling. In the case of scandd, scandd_detach invokes scandd_fini, which

performs the following steps:

1. Checks to see if any file systems are being monitored. If so, it returns the error,

"EBUSY, which indicates that the driver cannot be unloaded.

Chapter 3: Solution Strategy and Scandd’s Implementation Details 47

2. Restore the vnodeops pointers that were replaced during the initialization phase

of scandd.

3. Free any kernel memory that was allocated for scandd’s internal use including

the memory allocated for storing the saved vnodeops pointers.
4. Free all mutexes that were allocated during the initialization phase.

9. Release the vnode for the directory specified by the configuration field, SCANDD -

TARGET_DIRECTORY that was obtained during the initialization phase of scandd.

The function scandd detach will succeed if and only if, all of the above steps
complete successfully. Once scandd_detach returns success, the kernel invokes the

routine _fini to complete the unload of the driver from memory.

3.12 Special Case

When a file is created in a directory, scandd must log the name of the newly
created file as well as the directory in which it was created. Because, the creation of
a file adds an entry to the directory, this changes the ctime on the directbry itself.
My efforts to intercept the vnodeops function responsible for writing the directory
contents resulted in several crashes and hence I opted to log both the names of the
file aﬁd the directory as part of a create. I have explained the reason for the crash in

Section 5.1.1.

Chapter 8: Solution Strategy and Scandd’s Implementation Details 48

3.13 Driver Logs

Any errors from scandd are logged using the system logger. By default, all log
messages from kernel modules are written to the file, /var/adm/messages and so are

the logs from scandd.

3.14 Concluding Remarks

In this chapter, I have discussed the implementation details of scandd including its
initialization and termination steps. In addition, I have detailed the ioctls defined by
scandd and discussed a sample iscan application using these toctls. The performance

comparison of the traditional method and iscan is the topic of the next chapter.

Chapter 4

Correctness, Performance and

Evaluation

For scandd to replace the scan phase in a backup, the list of modified files gener-
ated by scandd and that created by the scan program in a traditional backup must
be the same. Otherwise, there is potential for files to not be backup using the method
developed in this thesis. Therefore, verifying the correctness of scandd’s implemen-

tation is an important evaluation step.

4.1 Testing Tools

To test scandd’s functionality, I have developed several different programs. They
include a program to exercise file system operation as well as a program to test
scandd’s ioctls. Some of the important test programs I used for the verification of

scandd are:

49

Chapter 4: Correctness, Performance and Evaluation 50

4.1.1 testioctls

Tilis program was developed to test the ioctls supported by scandd. Upon invo-
cation, this program enumerates all ioctls supported by scandd. The ioctls supported
by scandd were described in Section 3.6. Any individual ioct! from the above list may
be selected for testing. This program simply reads any arguments required by the

toctl from stdin and prints the results on stdout.

4.1.2 test_find

I developed this tool to verify the correctness of scandd in generating the list of
modified files. Although the UNIX utility, find, has an option -newer that could list
files newer than a specified file, I was not able to use it for testing scandd. Because,
the option -newer lists modified files based on the mtime only. Whereas, the scan
phase in a backup must list files modified based on both mtime and ctime of a file.
The fields, mtime and ctime refer to the modification time and status change time
of a file, respectively. When a file’s contents have been modified, the system updates
the mtime. On the other hand, when a file’s permissions have changed, the system
updafes the ctime.

Program, test_find, takes two arguments; the first argument can be one of
‘—ctime’, ‘-mtime’ or ‘-both’ which specifies what time on a file should be used
to verify if it newer and the second argument specifies the file whose mtime is to be
used as the reference time for comparing. The file system to list for modified files is
read from the standard input. This program employs a depth-first search of the file

system specified and uses the stat () system call to obtain the mtime and ctime of

Chapter 4: Correctness, Performance and Evaluation 51

the files or directories it encounters. Depending on the first option to this program,
one or both of the times associated with each file are compared with the mtime on
the reference file (second argument). This program lists all files and directories whose

mtime/ctime is more recent compared to the reference file.

4.2 Verification of Correctness

To verify the correctness of scandd’s implementation, I used the tools, test_find
and .testioctlé, Just described. Steps in the verification process were as follows:
at the start of the verification process, use testioctls to monitor one or more file
system(s). Next, instruct scandd to synchronize its cache of modified files for the
file systems of interest using the joctl, SCANDD_SYNC_CHANGED_FILES. The above ioctl
creates a new version of the file containing the modified files and outputs its version
number (let’s assume this version to be 1). We use the time on this file as the
referénce time for listing the modified files by providing it as the second argument
to the test_find program. After some number of file modifications and namespace
changes on the file system, the ioct, SCANDD_SYNC_CHANGED_FILES, is issued again to
create a newer version of the list of modified files (version 2). If scandd generates the
list of modified files éorrectly, the list of modified files generated by test_find and
the latest version (version 2) of the modified files generated by scandd must be the
same.

In my testing with testioctls and test_f ind, there are some cases where I found
differences between the list generated by scandd and test_find. Section 4.3 explains

the reasons for the differences and its potential effect on backups and restores.

Chapter 4: Correctness, Performance and Evaluation 52

4.3 Can Scandd Miss Files?

Hard links and renaming of directories poses a significant technical challenge for
scandd resulting in some scenarios where the list generated by scandd will differ from
the list of files generated by a traditional scan program. In addition, scandd omits
special files such as block and character device files, and named pipes from its list of
inodiﬁed files. This is because, the Solaris kernel does not provide the pathname for

the above file types when they are modified.

4.3.1 Hard Links

In comparison with symbolic links, hard links are implemented differently in
UNIX. The main noticeable difference to a user is that hard links cannot cross file
system boundaries where as symbolic links can. Apart from the above, there is a
major implementation difference between hard links and symbolic links that poses
an ilﬁplementation difficulty for scandd in some specific cases. Within a file system,
all hard-linked ﬁles have the same inode number (which may be verified by the ‘-i’
option té the UNIX ‘1s’ command) whereas symbolic links to a file or directory have
different inode numbers.

If a file has many hard links and if one of the hard-linked files is removed, the
link count (representation of the number of hard links to a file) on the file changes,
which results in a change in the ctime of the file. As the ctime change is effected
through some internal file system call resulting from the invocation of the remove
operétion, scandd cannot intercept the ctime change. As a result, there will be a

difference between the list of modified files generated by the traditional scan program

Chapter 4: Correctness, Performance and Evaluation 53

and écandd if some hard-linked files are removed. Since no file data was modified,
however, backup using the list generated by scandd will not cause any data loss.
Moreover, the ctime change is irrelevant as the restore program can never set the
ctime to the original value. This is because, a restored file will always have the last
write time as its ctime.

If a file has many hard links and if only one of the files is modified, a traditional
scan program will list all of the hard-linked files as modified whereas scandd will
list only the actual file that was modified. In essence, a traditional backup program
will backup multiple copies of a hard-linked file whereas backup using the list of files
generated by scandd will backup only the files that were actually modified regardless
of whether the files were hard-linked or not. Since traditional backup saves multiple
copies of the same file, restore from a traditional backup will restore multiple copies
which are no longer hard-linked. This is because, in comparison to symbolic links,
backup programs cannot deterfnine the link information of a hard-linked file. Scandd
too is not immune to the side effects of hard-linked files. Restore from a backup
with the list generated by scandd may also restore multiple regular files instead of
hard¥linbked files.

In addition, there is one case where scandd can miss the modification of a hard-
linked file thereby causing possible data loss. This case occurs when a hard-linked file
is médiﬁed and deieted immediately after its modification. As the file was removed,
scandd deletes any reference to the modified hard-linked ﬁle from its cache. As
all hard-linked files share the same inode, the modification will be visible through

the other hard links, which enables a traditional scan program to list them. The

Chapter 4: Correctness, Performance and Fvaluation ' 54

currént implementation of scandd has no mechanism for avoiding this situation. To
prevent any data loss, scandd will flag an error on the specific file system when
any file with link count greater than one is removed; this error will be visible to the
application invoking the 7octl SCANDD_SYNC_CHANGED _FILES. As shown in the flowchart
in Figure 3.10, a scan using scandd must check for any errors on the file system after
an application issued the above ioctl. If scandd has flagged an error on the file
system, scan must be performed using the traditional scan method. Switching to the

traditional method prevents any data loss in this scenario.

4.3.2 Rename

The issue with rename is that the vnode for the renamed file/directory contains
the pathname before the rename was performed. This is a Solaris bug and there are
many references to this bug on the Internet and also at the official site where Solaris
updates are available, www.sunsolve.sun.com. Sun microSystems [24] has issued an
update to resolve this issue. However, the update addresses only rename of files, not
directories. Therefore, scandd is still vulnerable to this issue for renamed directories
and its children. Since scandd cannot identify whether a file/directory being modified
is the child of a renamed directory or not, it performs the following tests to verify if

a ﬁle/ directory was either renamed or if it belonged to a renamed directory:

e Scandd performs a lookup on the pathname obtained from the vnode of the

modified file/directory.

e If the lookup is successful, the pathname corresponds to an existing file. How-

ever, it may be possible that a file or a directory was renamed and another

Chapter 4: Correctness, Performance and Fvaluation 55

‘ﬁle/ directory took its previous name and that the modification request is for
the new file/directory. To verify this condition, scandd compares the original
“vnodes and the vnode obtained from lookup. If the vnodes are different, then
the modification request is for a file/directory that took the name of a renamed
file/directory. In this case, scandd sets an error for the file system specifying
“that the list of modified files is unreliable, which can be detected by the scan
program. On the other hand, if the vnodes are the same, the pathname is

simply added to the list of modified files.

e If the lookup fails, the file/directory is the child of a renamed directory. In this
case too, scandd sets an error to flag to indicate that the list of modified files

- 1s unreliable.

It is also possible that a user only renamed a directory but did not modify any
files under the renamed directory. If a traditional backup was performed in such
a situation, it will save all files under the renamed directory. This is because, a
system restored from the fecent backup must bring back the file systems in the exact
same state as at the time of the backup. Although the current implementation of
scandd generates the name of the renamed directory into the list of modified files, the
backup phase cannot determine whether a directory was renamed or not. Therefore,
the c.urrent implementation of scandd and its associated test programs do not handle
renamed directories as traditional backup programs do. Section 5.1 discusses some
possible enhaﬁcements to scandd to handle renamed directories so that the backup

represents a true image of the system when restored.

Chapter 4: Correctness, Performance and Evaluation 56

4.3.3 Special Files

When special files such as character or block devices, and named pipes are mod-
ified, the pathname component in the vnode is NULL. Therefore, scandd cannot gen-
erate a pathname for such modified files. Instead, scandd flags an error on the file

system to indicate the unreliability of the list of modified files.

4.4 Performance Evaluation

rI;his section lists the various performance evaluation steps that I performed to
evaluate scandd’s performance. Some of the initial tests mentioned in this section do
not evaluate the performance of scandd when used as a replacement for the tradi-
tional scan method, scandd’s primary purpose. However, such tests are of primary
importance as these tests measure the impact of scandd on the performance of the
system. This is because, scandd is a device driver and hence can adversely affect the
system performance if badly designed and/or implemented. Tests that measure the

performance of file system scan are listed later in this section.

4.4.1 System Information

The characteristics of the system that I used to develop scandd and measure its

performance are as follows:

Model: SunBlade 150.

CPU: UltraSPARC-IIe 550 MHz.

Chapter 4: Correctness, Performance and Evaluation 57

Number of CPUs: 1 CPU.
Memory: 512 MB.
Swap: 1 GB.

Disks: T'wo IDE drives each of 74.5 GB capacity of which, the first one was solely
“used for all the system partitions and home directories. Whereas, the second

drive was reserved solely for testing scandd.

Update Level: System was up-to-date with all the latest updates as of May, 2009.

4.4.2 Scandd’s Impact on Regular File Operations

I .designed the first test in the performance evaluation series to measure the impact
of scandd on regular file/directory operations: create and mkdir. Table 4.1 shows
the time taken to create many files under a directory for three different scenarios:
scandd not loaded, scandd loaded but no file system monitored and scandd loaded
and monitoring the file system of interest. Figure 4.1 shows a plot of these three
cases. In each of the three cases, I ran the tests in 10 steps, starting with the creation
of 100,000 files, then incrementing the number of file created by 100,000 to create
200,000 files in the second step, and so on.

From Tabie 4.1, it can be seen that the time taken for the test is almost the same
between Cases I and II, which can_be verified from the overlapping plots in Figure 4.1.
The purpose of considering Case II is to measure the impact of scandd when loaded
with no file systems monitored. As mentioned in Section 3.5, when loaded, scandd

intercepts file system calls and hence this case measures any performance degradation

Chapter 4: Correctness, Perfbrmance and Fvaluation 58

No. of Files | Scandd Scandd loaded Scandd loaded
not loaded not monitoring and monitoring
Case 1 Case 11 Case 111
(x 100,000) Time in Seconds
1 25.4 29.2 33.4
2 52.0 51.8 65.8
3 7.7 77.9 101.2
4 104.6 106.0 135.7
5 131.1 133.3 167.7
6 159.3 161.1 202.5
7 185.6 185.8 235.8
8 212.5 216.0 271.0
9 238.4 240.6 305.5
10 269.3 267.8 341.4

Table 4.1: Effect of scandd on file creation

on file systems that are not monitored by scandd but as a result of scandd intercept-
ing the file system calls. If a file system is not monitored, the only operation the
intercepted call performs is to verify whether the vnode is part of a monitored file
system. As can be seen from Table 4.1 and from Figure 4.1, this operation causes
negligible effect on the performance on an unmonitored file system. Some anomalies
can be noticed in case of rows 2 and 10, which I attribute to the caching of the test
program by the OS. This may have happened when I ran the same test program back
to back.

Case III shows the time taken for creating files in a monitored file system. In this
case, once scandd determines that the vnode is part of a monitored file system, the
file name is added to the list of modified files as described in the flowchart shown in
F igufe 3.9. This involves operations such as allocating memory to save the file name,

checking whether the file name is already part of the ‘Identical File Name Elimina-

Chapter 4: Correctness, Performance and Evaluation 59

Effect of scandd on file creation

400 4
350 -
300 ~

—&—Scandd not loaded

0

B 250 A

§ 200 - —&—Scandd foaded FS not
12 monitored

£ 150 A

w —&—Scandd loaded and

E 100 A FS monitored

50 1

i1 2 3 4 5 6 7 8 9 10

Number of files (unit = 100,000)

Figure 4.1: Plot of file creation times

tion Cache’ and if not, adding the file name to the above cache. The performance
degra,dation on a monitored file system varies between 14% for 100,000 files and 27%
for 1 million files. One can easily visualize the increasing performance degradation as
the number of files created increases from Figure 4.1.

The variation in the degradation between the smallest and the largest times could
be due to the following factors. As mentioned in Section 3.8, memory is allocated
from the kernel to cache the file names and is later freed when the file names are
written to the file containing the modified file names. This may cause the kernel
memory to be fragmented and hence it may be that a defragmentation operation
may be scheduled by the kernel which may steal some CPU cycles. Writing modified
file names will also result in the consumption of memory pages and later when they
are flushed to the disk, will result in disk I/O. As the size of the file containing the
modified files increases, the kernel daemon fsflush will become more active and steal
CPU cycles to synchronize cached pages to the disk. To give an example, the size of

the file containing the modified filenames when 100,000 files were created was 4 MB,

Chapter 4: Correctness, Performance and Evaluation 60

which results in about 14% degradation in the file system performance and in the
case of 1 million files created, the size of the file containing the modified file names
was 40 MB, resulting in 27% degradation of the file system performance.

I used the results from this test primarily to fine tune scandd so that its impact
on the system is minimal. Using the results from this test, I was able to use the best
compiler optimization flags and inline certain code fragments to get the best results.
Comparing the results from various runs, I decided to use optimization level 3 (-03
) for compiling the driver sources and inline the function that returns the file system
structure (described in Figure 3.6) given a vnode. This is because, the function to
return the file system structure is invoked from the intercepted file system calls and

must be very efficient to.reduce its overhead since it is called frequently.

4.4.3 Improvement on Standard File Systems

Iﬁ this section, I focus on the improvements scandd provides over traditional
scan on standard file systems. Solaris requires five important directory trees for
its operation. They are: /, /usr, /var, /opt and /tmp. Traditionally, they are
configured as separate file systems although, the newer Solaris installations tend to
put all the above directories under one file system. Of the above five directories,
the standard Solaris 10 installation constructs the /tmp directory tree off the swap
partition as it provides a file system whose contents are not retained across reboots
and hence is not important to be backed up to secondary storage. Although, files
iﬁ the above mentioned directories change very little (with the exception of /tmp),

backups include the above directories as they are vital for the correct operation of

Chapter 4: Correctness, Performance and Evaluation 61

the system.

To demonstrate the performance improvements using the methods developed in
this thesis on the above file systems, I have tabulated the number of files and direc-
tories in them and the pérférmance metrics I have used to compare the two methods.

Table 4.2 details the performance figures using traditional scan and scan using scandd.

Traditional Scan Using Scandd
File No. of No. of Scan System Context Scan
System Dirs Files Time Calls Switches Time
Name | (x 1,000) (x 1,000) (Sec) (x 1,000/Sec) (Per Sec) (Sec)
/ 1.5 3.7 3 5.1 331 ~
Jusr 8.6 126.7 33 5.8 737 ~1
/var 11.9 16.8 38 2.8 737 ~0
Jopt 7.1 120.7 33 . 5.3 763 ~0

Table 4.2: Comparison of time between traditional scan and scandd

I_megsured the number of system calls and the number of context switches using
the Solaris-provided commands: trapstat [25] and vmstat [26]. The command,
trapstat, reports the traps occurring on the system. A trap is a mechanism provided
by modern CPUs to switch from one operating mode to another. Operé,ting systems
use the trap instruction to switch from user mode to kernel mode while executing
system calls. Traps are used for the implementation of many other operating system
featﬁres, system calls being only one of them. The command, trapstat, provides
a convenient way to run a given command and report all traps that occurred on
the system resulting from the command. Similarly, the command, vmstat, reports
statistics on virtual memory such as page faults, context switches, etc.

To analyze the impact of traditional scan on the system, I measured the system

Chapter 4: Correctness, Performance and Fvaluation 62

calls per second and the number of context switches per second on the same system
when scan was not running. I have provided the results in Table 4.3. Comparing the
values from Tables 4.2 and 4.3, it can seen that the number of system calls per second
when traditional scan is run is about 30 times than that of a standalone system (when
scan was not run). Similarly, the number of context switches is about 3.5 times that
of a étandalone system without scandd. The performance figures for the / file system
represent an outlier as the number of files and directories is too small to make a good

average reading of the above parameters.

System Context

Calls Switches

(Per Sec) (Per Sec)
190 206

Table 4.3: System calls and the context switches measured on a standalone system

It is interesting to note that the time taken by traditional scan on the /var file
system is comparable to that of /usr and /opt file systems even though the number
of files and directories combined under /var is only roughly 22% of the number of
ﬁlés in /usr or /opt directories. The interesting fact about the /var file system is,
it has many more directories.than the other file systems. In addition, the directory
structure under /var is deeper, the maximum depth being 18. As mentioned in
Section 2.1, Solaris maintains a DNLC cache for optimizing lookup speed. In the
case of the /var file system, I presume that the incréased time for performing scan
is dué to the fact that the DNLC cache hit ratio drops as the number of directories

scanned increases. In the case of /usr and /opt, lookup is performed in the same

Chapter 4: Correctness, Performance and Evaluation 63

directory for a longer duration as the ratio of files to directories is higher in these file
systems. Whereas, lookup on /var moves from one directory to another directory
at a much higher pace putting higher demand on the operating system services to
perform more page-ins and populate more DNLC entries. As lookup moves from
one directory to another, DNLC entries need to be populated for the new directory
encoﬁntered and in addition, the system needs to read the disk blocks containing the
information from the new directory. An earlier study by Tamches and Miller [27]
has confirmed the same results on DNLC misses and lookup performance when the
number of files/directories are large.

In the case of scan using scandd, all file systems except /usr take less than 1
second to process. This is because these file systems have very minimal changes
over a long period. Since, the granularity of time measurement was in seconds, I
was not able capture any small amount of time scan using scandd might have taken
on these file systems. 'Therefore, the time taken on these file systems have been
approximated to the nearest second in Table 4.2. Since scan using scandd does
not invoke stat() system calls, the parameters I used for gauging performance of
traditional scan: context switches and system calls are not valid performance metrics
in this case.

As can be seen from the preceding discussion, standard file systems such as /,
/usr, /var and /opt will benefit significantly from using the method developed in
this thesis. Similarly, there may be other file systems where the number of files
modified is very few compared to the total number of files in the file system. The

next section illustrates the improvement achieved on file systems with many files in

Chapter 4: Correctness, Performance and Evaluation 64

a directory.

- 4.4.4 Improvement on File Systems with Many Files in one
Directory

To -validate the performance improvements on file systems with many files, I cre-
ated a file system of size 63 GB and created a folder with ﬁle’s under it. The test
was carried out starting with 1 million files unfil 5 million files in increments of 1
million. At each iteration, the previous files were removed and new ones were created
in their place. Since the removal of files using rm took an extremely long time, I
resorted to recreating the file system between each iteration (removing 5 million files
tookiin excess of 4 hours). At each iteration, I measured the time for traditional scan
and scan using scandd. In addition, I evaluated the number of context switches and
the number of system calls per second to validate the system overhead when both
scan methods were running. Table 4.4 shows the results from the test. The baseline
context switches and system calls per second are already shown in Table 4.3. Fig-
ure 4.2 shows a graph of the time taken for traditional scan and scan using scandd,
Figure 4.3 shows a graph of the number of context switches incurred when traditional
scan and scan using scandd were run, and Figure 4.4 shows a graph of the the number
of syétem calls executed in each of these cases.

In the case of scandd, it does not matter whether the files are part of a single
directory or whether they are scattered among different directories in a file system.
Therefore, I would argue that, with respect to scandd, this test simulates a large file

system (with many millions of files) in which 1 million to 5 million files are modified.

- Chapter 4: Correctness, Performance and Evaluation 65
Traditional Scan Using Scandd
No. of Scan Context System Scan Context System
~ Files Time Switches Calls Time Switches . Calls

(x 1,000,000) | (Sec) (Per Sec) (x 1,000/Sec) | (Sec) (Per Sec) (x 1,000/Sec)
1 80 813 12.9 30 320 0.7 :
2 173 767 11.9 62 299 0.7
3 241 675 12.8 98 253 0.6
4 377 764 11.0 137 277 0.7
) 1910 500 2.8 178 302 0.6

Table 4.4: Comparison of scan times when many files in one directory were modified

Tine in Seconds

2500 7
2000 1
1500
1000 -

500 A

Time for scan on large directory

Number of files (unit = 1 million)

~—&—Time for traditional
scan

~&—Time for scan using
scandd

Figure 4.2: Plot of scan times for many files in one directory

As can be seen from Table 4.4 and Figure 4.2, the time for traditional scan exhibits

a non-linear increase in time beyond 4 million files. On the other hand, the time for

scan using scandd remains linear as do the number of context switches and the number

of system calls. In the case of traditional scan, it can be seen that the number of

context switches and the number of system calls per second dropped progressively

as the number of files increased. The drop in the number of system calls when the

number of files increased is because, stat () on files now takes longer, an argument I

used for a different enumeration method in Section 1.1. As the time for an individual

Chapter 4: Correctness, Performance and Evaluation

66

200
800
700

500
400
300
200

Context switches per second

600 A

100

Context switches

—Context switches
during traditional scan

T —— e — -——Context switches

during scan using
scandd

Number of files {(unit = 1 million)

Figure 4.3: Plot of the number of context switches during scan for many files in one

directory

140
120

100/Sec)

100
80

20

System cails {unit

60 -
40 A

System calls

—System calls during
traditional scan

~System calls during
scan using scandd

2 3 4

Number of files (unit = 1 million})

Figure 4.4: Plot of the number of system calls during scan for many files in one

directory

stat () increased, the number of context switches have reduced because the file system

has to spend more time processing an individual stat() system call. Moreover, as

the directory search space is larger, more directory pages will be required in memory

introducing more page faults and page-ins to be processed by the kernel. As the

number of page faults and page-ins increases, the performance of other applications

running on the system may suffer (depending, of course, on the memory size of the

system).

Chapter 4: Correctness, Performance and Evaluation 67

Using the -p option of vmstat, I was able check the paging activity on the system
while scan was running. The -p option provides detailed information on the paging
activity of the system. Using this option, I was able to note that the parameter,
fpi, denoting the number of ‘file system page-ins’ was consistently larger — hovering
in the range of 5,000 to 8,000 page-ins (an idle system has occasional page-ins less
than 100). If there are more applications that require file system pages, traditional
scan will compete for file system pages and will result in lower throughput for those
applications. The large number of page-ins during scan is because the directory size,
as indicated by the 1s command, is large (about 150 MB for a directory with 5
million files each files having names of 21 bytes in length) and the file system tries
to keep these pages in memory once they are read. However, some of the pages may
need to be evicted to make room for other pages from different applications or the
scan itself. Therefore, the performance of scan will depend greatly on the amount of
mem.ory on the system and the number of applications competing for memory on the
system. The extra page-ins introduced by traditional scan will thus drastically affect
the throughput of other application running on the system.

Apart from the performance figures, the user experience on the system also con-
firms that the system throughput has dropped drastically. While traditional scan was
running, simple commands such as 1s and vi took much longer than usual. In some
cases, I had to wait as much as 10 seconds for my interactive commands to be echoed

on the screen.

Chapter 4: Correctness, Performance and Fvaluation 68

4.4.5 Improvement on File Systems with Deep Directories

Till now, most of the results presented are on a shallow file systems with many
files in them. Table 4.5 illustrates the time taken by traditional scan on a file system
that contains a directory with 5 million files at various depths. In all of the test cases,

the number of files is 5 million.

Directory Pathname Scan Time
Depth Length (Minutes)

2 18 10.5
42 120 13.3
112 260 22.6
230 500 43.8
490 1020 132

Table 4.5: Comparison of traditional scan time for a directory at various depths

As can be seen from Table 4.5, time for traditional scan on the same directory
containing the same number of files increases as the depth of the directory increases.
In the most extreme case, scan of 5 million files with a directory depth of 490 took 2
hours and 12 minutes. It can be inferred that a system containing some file systems
with deep directories with many files may take an extremely long time for traditional
scan.

Ih the case of scan using scandd, the time taken depends only on the number
of files modified. Even if all of the 5 million files were modified, the time for the
deepest case (490 directories deep) is half of the time taken by traditional scan, 1
hour and 8 minutes. Virtually all of this time was consumed by the sort program.

The user experience on the system was pleasant as compared to the user experience

Chapter 4: Correctness, Performance and Evaluation 69

when traditional scdn was running where long delays were noticed for interactive
commands run from a terminal. The low impact of scandd on the system can be
furthér verified from the output of the UNIX time command, which outputs the real,
user and sys times for a command. In the case of scan using scandd, the real time
was 68.5 minutes, the user time was 52 minutes and the sys time was 6.5 minutes.
From the above figure, the time spent is system call was only 10% of the total time.

An interesting observation I made when performing this test is that scan took a
very long time because the stat () -s were performed with the full pathname. In this
case, the kernel has to traverse many levels in the pathname. However, if the tradi-
tional scan program were to be rewritten such that it changed its current directory to
the directory being scanned and used relative pathnames for stat (), the time taken
for scan could be drastically reduced! For the deepest level, 490, the modified scaﬁ

program took only 43 minutes instead of 132 minutes!

4.4.6 Improvement on File Systems with Many Directories

and Files

The idea behind the test in this section is to create a file system similar to those
that .exist on large servers. In each run of the test, the number of files created is
fixed, 6 million, where as the number of directories varies from 10,000 to 50,000 in
increments of 10,000. The maximum directory depth is set at 20 in all runs. A depth
of 20 was selected because, most file systems average to a depth of 8 as per a study of
file system contents performed by Bolosky et al. [20]. That study was for file systems

on Windows systems and, in the absence of any other study detailing file system

- Chapter 4: Correctness, Performance and Evaluation 70

Scan Time for 6 million files in many directories

1800 4
1600 A
1400 +
1200

1000 ~~—Time in Sec for traditioanl scan

Time in Seconds

800
—8—Time in Sec for scan using

600 Scandd

400 4

200

Number of directories {unit = 10,000)

Figure 4.5: Plot of scan times for many files in many directories

contents and from what I have observed on Solaris system, I conservatively chose
the value of 20 for the maximum depth in the test (the maximum depth of /var file

system was 18 on my test system.

_ Traditional Scan Using Scandd
No. of Scan Context System Scan Context System
Directories | Time Switches Calls Time Switches Calls
(x 10,000) | (Min) (Per Sec) (x 1,000/Sec) | (Min) (Per Sec) (x 1,000/Sec)
1 12.1 493 8.6 4.4 316 0.6
.2 17 427 6.2 4.2 338 0.6
3 204 417 5.1 4.5 360 0.5
4 24 404 4.4 4.4 313 0.6
5 26 410 4.1 4.7 357 0.5

Table 4.6: Comparison of scan times on file system with many directories

Table 4.6 shows the time taken for traditional scan and scan using scandd and
Figure 4.5 shows a graph of the time taken in each of these cases. In addition,

Figure 4.6 shows a graph of the number of context switches and Figure 4.7 shows a

Chapter 4: Correctness, Performance and Evaluation 71

o 6007 Context swithces
o
S 500
Q
‘: \—_—_
g 400 -+ —— Context switches
@ T T N N— during traditional scan
£ 300 A
?3 200 ~—— Context switches
E during scan using
& 100 - scandd
8
0 ; : T T -
1 2 3 4 5
Number of directories (unit = 10,000)

Figure 4.6: Plot of the number of context switches during scan for many files in many
directories

100 1 System calls
§ 90 A
S 801
;. 70 -
g 60 1 —System calls during
2 50 traditional scan
=2 40
S 304 —System calls during
£ scan using scandd
% 20
& 10 -
0 : T : :)
1 2 3 4 5
Number of directorues {unit = 10,000)

Figure 4.7: Plot of the number of system calls during scan for many files in many
directories

graph of the number of system calls executed during the execution of traditional scan
and scan using scandd, respectively. As can be seen from the table, the time taken
for traditional scan increases progressively as the number of directories increases.
Moreover, the number of system calls is reduced as the number of directories increases.
As discussed in Section 4.4.5, this is because, execution of a system calls now puts
higher resource requirements on the kernel. Contrasting this with scan using scandd,

it can be seen that the number of context switches and the number of system calls

Chapter 4: Correctness, Performance and Evaluation 72

are relatively low. In addition, the time taken for scan in this case is almost constant.

Comparing the time for traditional scan in this case with the tests performed in
Sectiion 4.4.4, it can be seen that, even with 1 million fewer files traditional scan took
longer if all files were in one directory. Extrapolating from the results on the /var
direc_tofy in Section 4.4.3, it can be surmised that the current test should have taken
about 50 times longer than the time taken for scan on /var, 33 seconds, which was

the case.

4.5 When does Scandd Perform Worse than Tra-

ditional Scan?

As mentioned in Section 4.4.5, slight modification of the traditional scan program
made it faster than scan using the list from scandd for the test case with the deepest
level. Although, this is for a case where all files in a file system were modified, it
reveals the conditions under which, traditional scan may be faster. Similarly, we
can visualize many other situations in which, traditional scan may be faster. These

include:

e The list of modified files generated by scandd being very large so that removing

duplicates from this list takes longer than traditional scan.

e The number of files modified in a file system are many and hence the cache for
| identical file name elimination cannot eliminate many of the duplicates. When
this happens, the number of entries in the list of modified files will be much

greater than the number of files in a file system.

Chapter 4: Correctness, Performance and Evaluation 73

4.6 Summary of Results

From the tests conducted on traditional scan and scan using scandd, I conclude
the following. As the number of files in a file system increases, the time taken for
traditional backup will increase as the time for individual stat() system calls will
add lip. Moreover, parameters such as the number of files per directory will also affect
the performance of the scan phase in a traditional backup in a number of ways. For
example, crowding more than 5 million files in a single directory may not be the best
thing to do if the same file system needs to be backed up regularly. In such cases,
better results can be obtained if applications were to spread the files into multiple
directories. (E.g., considering Table 4.4, a scan of 5 million files in one directory took
31 minutes but, 6 million files scattered among 10,000 directories took only 12 minutes
to scan.) Similarly, deep directories can cause traditional backups to take longer than -
the time taken if the directories were shallow as seen in Table 4.5. Another observation
is that as the directories scanned get larger, so do the system resources consumed by
scan. If scan has to compete for system resources with other applications running on
the éystem, the throughput of these applications will be reduced depending on the

size of the directories scanned.

Chapter 5

Future Work and Conclusions

5.1 Future Work

In }this chapter, I discuss the future of scandd as an efficient file system scanner for
backup applications. By now, scandd has evolved from an idea to a Master’s Thesis.
However, there are some limitations in scandd that must be surpassed to make it
more usable and efficient. Moreover, I do see a possibility for scandd to be part of
futufe commercial file system backup applications. Since the emphasis of a Master’s
Thesis and a commercial product are very different, I present them as two separate

subsections.

5.1.1 Secandd as a Research Thesis

The' current implementation of scandd is by no means complete. Some of the
shortcomings of scandd are due to some limitations in the Solaris OS while some

others are due to items that came to light after the implementation phase of scandd

74

Chapter 5: Future Work and Conclusions 75

(rename of directory). In addition, there are some items that I chose not to tackle in
this initial implementation of scandd. 1 have already discussed the limitations of the
Solaris OS in Sections 4.3.2 and 4.3.3. Since scandd cannot work around these OS
issues, I will not discuss them again.

Although there are many different file system types available on Solaris, the cur-
rent implementation of scandd intercepts file operations only from the UFS file sys-
tem. As mentioned in Section 3.8, scandd requires the inode number of a file for
identical file name elimination and the function call needed to obtain the inode of a
file on Solaris, fop_getattr, crashes the system due to recursive call on a read-write
lock in the inode of the file. Initially, I was perplexed by this unexpected crash.
However, the availability of Solaris source files at the OpenSolaris site [28] helped me
solve thé mystery. After browsing the kernel sources, [was able to deduce that every
inode has a read-write lock to serialize write and setattr opera,tioné on the file. The
crash was the result of fop_getattr, introduced by scandd, trying to acquire a read
lock on the file before a, write lock on the same file was released. The above crash
happened in the initial implementation of scandd as mentioned in Section 3.12. Since
then, I have modified scandd to not intercept the vop_putpage calls and to use the
macros defined for the UFS file system to obtain the inode number of a file without
invoking the fop_getattr call.

The doctl structure specified in Section 3.6.3 lacks a field to indicate to the scan
program the time when monitoring for a file system was initiated. The scan program
could use this new field to compare the time of the last incremental/differential/full

backup and make additional determination as to whether scandd can be used for

Chapter 5: Future Work and Conclusions 76

listing files for backup. If monitoring was started after the previous backup, there is
a possibility scandd may have missed some of the modified files. The flowchart shown
in Figure 3.10 needs modification for checking this new field.

The hash table used for maintaining the list of file systems described in Section 3.7
is limited to sixteen buckets. Although this is suitable for most systems, it would be
ideal if the number of hash buckets were configurable through the driver configuration
file, / etc/scandd. conf, for systems with many file systems that need to be moni-
tored. The driver would, of course, have to be reloaded for any configuration files
changes to take effect.

Similarly, the number of buckets in the hash table for identical file name elimina-
tion mentioned in Section 3.8 should also be configurable. The current value of 1024
is adequate for most purposes and increasing this value will result in scandd consum-
ing more kernel memory as more instances of the structure describéd in Figure 3.8
will be allocated. Although the number of such structures allocated depends on the
number of file modifications happening on a monitored file system, the above number
mandates the upper limit on the number of structures allocated. Making the number
of buckets configurable provides a way to reduce the memory footprint of scandd, if
required.

There is no mechanism to change the logging level of scandd in the current imple-
mentation. To change the logging level, scandd has to be recompiled and reloaded.
It would be much easier if the logging level were also configurable. However, there
may be situations where reloading the driver may not be possible and in that case,

an goctl to modify the logging level is highly desirable.

Chapter 5: Future Work and Conclusions 77

5.1.2 Scandd as a Backup Product

As a component in a backup product, scandd must provide the following func-

tionalities in addition to the items mentions in Section 5.1.1:

e Provide the exact image of the system for restoring only the files that existed

on the system.

e Handling of renamed directories and its descendants.

To provide the above functionality, an implementation using scandd must move
away from writing into files directly. Rather, the implementation that would be
ideal is to have a producer-consumer setup between scandd and another user process.
Instead of writing modified file names into files, scandd would then send records that
consist of various information about modified files to the user process. The function
of the user process would be to wait for the availability of records from the driver and
populate a database with the received information. Scandd would have to provide a
new 4octl for the user process to obtain an individual record. Having a database will
enhance the functionality by supporting different queries based on the modification
time of a file. In such a scenario, for every modified file, scandd would have to send

the following items:
e File/Directory Name: Pathname of the modified/deleted /created file
e Inode: Inode of the entity modified

e File System Identifier: this can be the combination of major and minor number

of the device the file system is mounted from.

Chapter 5: Future Work and Conclusions 78

e. File Type: whether file, directory, character device, block device, pipe etc.

Modification Times: mtime and ctime of the file/directory

e Operation on the File: creation/deletion/rename

Prior Name: applicable only in case of a rename

The cache mentioned in Section 3.8 can still be retained in scandd as it will reduce
the amount of updates coming into the user-level process if some files in the monitored
file system are being continuously updated.

For creation, the user-level process adds an entry for the file/directory into the
database and similarly, remove the entry for the file/directory for a removal. For
all other cases: writes, change of permission, etc., an entry must be inserted into
the database if not already present. However, if a modified file name is already
present in the database, the modification times must be updated to reflect the recent
file modification time. In the case of a renamed directory, the user-level process
can correct the pathname of a directory and its descendants using database update
statements.

When a file system is to be monitored using scandd, a full scaﬁ of the file system
is required for the first time. This is to populate all files in the file system into the
database. Once all files in the file system have been populated into the database,
the user-level process can continually update modification on the file system into
database.

Using this method and assuming that the driver has not reported any errors, all

files for backups including full can be obtained from the database using simple queries.

Chapter 5: Future Work and Conclusions 79

Special processing is required only for renamed directories. A possible implementation

may be as follows:

1. Save the current time (¢) and instruct scandd to flush its internal cache of

modified file names using the ioct! SCANDD_SYNC_CHANGED_FILES.

2. Make sure all change records for the file system whose modification time is less

recent than ¢ has been populated into the database.

3. Generate a list of renamed directories from the database whose rename time
" (ctime) is greater than or equal to the reference time specified for the backup.

Let us assume that is list be [1.

4. Generate a list of all files and directories in the file system that have been
modified since the reference time minus the list of directories and its descendants

in {1. Let us call this list [2.
5. Concatenate lists 11 and [2 to form the list of files for backup.

6. Finally, sort the file name list and this is the final list for backup.

Abart from the items in the record generated by scandd, the database would
require some additional fields. One of the fields required would indicate whether an
entry was renamed or not, \A/alid only for directories. In additibn, carefully designed
indices would be important for the database table for efficient queries.

Similar to the method of generating modifies filenames for backup, an image of a
file systems monitored by scandd (list of all files and directories existing on the file

system at the time of backup) can also be generated from the database. In this case,

Chapter 5: Future Work and Conclusions 80

it is enough to list all files in the file system whose modification time is greater than

or equal to zero using a database query.

5.2' Thesis Conclusion

In this thesis, I have developed and assessed a new method for enumerating files
for traditional backup. This method uses a pseudo device driver that intercepts file
operations in the kernel; the driver logs the full pathname of files modified, segregated
by their file systems. Currently, only Solaris 10 provides the full pathname of a
modified file in the kernel which is a requisite for the method developed in this thesis.
The improvements seen using the method developed in this thesis can reduce the time
for backup by hours on la_rge servers. It is my hope that other operating systems will

provide the Solaris-like functionalities used in this thesis in the near future.

Appendix A

Miscellaneous Information

Here I provide some information not directly related to the thesis such as the
resources and tools that helped me prepare this thesis and the applications used for

performance measurements in the thesis.

A.1 Compiler Information

When I started developing scandd, I was using the GNU C compiler (GCC) that
is distributed freely with Solaris 10. However, after applying some OS updates, the
GNU compiler started giving compilation errors. This resulted from the OS updates
modifying some of the system header files, which rendered GCC useless for compiling
the driver. Since then, I used the Sun Studio 12 compiler that is also freely available

-for download.

81

Appendiz A: Miscellaneous Information 82

A.2 Driver Development Tools Used
The tools that I used for developing the driver were:

Corhpiler: Sun Studio 12.
Compiler Options Used:

e -x03 — for level 3 optimization
e -D_KERNEL - define required for kernel module compilation
e -m64 — for 64 bit compilation as Solaris 10 is a 64 bit OS

e -v — requests the compiler to perform stricter semantic checking.
Other Tools:

e add_drv - for loading of the driver

e rem _drv — for unloading the driver.
Debugging Tools:

e dbx — for debugging user level programs
e mdb — Solaris modular debugger for debugging kernel crashes

e adb — for debugging kernel crashes.

Appendiz A: Miscellaneous Information 83

A.3 An Important Note for Driver Development

on Solaris

Many times, a driver developer may want to test a driver he/she is developing.
To test the driver, it needs to be copied to the /usr/kernel/drv/sparcv9 directory
before it can be loaded. However, if there are bugs in the driver, it may render the
system unstable and may cause it to crash. Moreover, when the system reboots after
a crash, the same driver will be loaded again causing successive crashes. To avoid
such situations, it is highly recommended that the driver binary be maintained under
the /tmp directory and a symbolic link be created to the actual location. If the system
crashes and reboots, the driver will then not be loaded again as Solaris cleans all files

under the / tmp directory.

A.4 Documentation Tools Used

All documentation was prepared on a Linux system using the following tools:
Kile: This is one of the best tools I have come across for prepariﬁg ETEXdocuments
on Linux. It is a graphical integrated tool that understands IX¥TEXformatting, with
one click compilation options and many more features. Kile can be downloaded from
| http://kile.sourceforge.net/.
OpenOffice: I created all flowcharts and figures in this thesis using OpenOffice

2.4 on a system running Fedora 9 Linux.

Bibliography

-

[1] Streamlining backup and recovery operations using disk-based protection.
WWW page. http://www.dell.com/downloads/global/power/1q04-ved.

pdf.

[2] Veritas netbackup 5.0 server. http://eval.veritas.com/mktginfo/products/

Datasheets/Data_Protection/nbu_50_server_ds. pdf.

[3] G. Bartlett. Scsi-2 speciﬁcation.. WWW page, Jul 2004. http://scsi2.

garybartlett.com/.

[4] A.L. Chervenak, V. Vellanki, and Z. Kurmas. Protecting File Systems: A Survey

Qf Backup Techniques. In Joint NASA and IEEE Mass Storage Conference, 1998.

[5] D. Phillips. A directory index for ext2. In Proceedings of the 5% Annual Linuz

Showcase & Conference, pages 11-20, Oakland, CA, USA, Nov 2001.

[6] Mikulas Patocka. An Architecture for High Performance File System 1/0. In
INTERNATIONAL JOURNAL OF COMPUTER AND INFORMATION SCI-

ENCE AND ENGINEERING, pages 182-187, 2007.

84

Bibliography 85

[7] U. Vahalia. UNIX Internals—The New Frontiers. Prentice Hall, Upper Saddle

River, NJ, first edition, 1996.

[8] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, and G. Peck.
Scalability in the XF'S file system. In Proceedings of the USENIX 1996 Technical

Conference, pages 1-14, San Diego, CA, USA, Jan 1996.

[9] Ext2 directories. http://www.science.unitn.it/~fiorella/

guidelinux/tlk/node99.html.

[10] S. R. Kleiman. Vnodes: An architecture for multiple file system types in sun

unix. In USENIX Summer, pages 238-247, 1986.

[11] J. Cooperstein and J. Richter. Keeping an eye on your ntfs drives:
The windows 2000 change journal explained. WWW page, Sep
1999. http://www.microsoft. com/te{chnet/prodtechnol/windostOOOserv/

maintain/featusability/msjntfsb.mspx.

[12] A. S. Tannenbaum. Operating Systems: Design and Implementation. Prentice- -

Hall Inc., Englewood Cliffs, NJ, 1987.

[13] D. P. Bovet and M. Cesati. Understanding the Linuz Kernel. O’Reilly, Se-

bastopol, CA, second edition, 2003.

[14] J. Mauro and R. McDougall. Solaris Internals—Core Kernel Architecture. Sun

Microsystems, Inc., Palo Alto, CA, first edition, 2001.

[15] M. Bar. Linuz File Systems. Osborne/McGraw-Hill, Berkeley, CA, first edition,

2001.

Bibliography 86

[16]

[18]

[19]

[20]

[21]

[22]

M. K. McKusick, K. Bostic, M. J. Karels, and J. S. Quarterman. The Design
and Implementation of the 4.4 BSD Operating System. Addison-Wesley, Reading,

MA, first edition, 1996.

S. Quinlan and S. Dorward. Awarded best paper! — Venti: A New Approach
to Archival Data Storage. In FAST ’02: Proceedings of the 1st USENIX Con-

ference on File and Storage Technologies, Berkeley, CA, USA, 2002. USENIX

Association.

B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, and L. Shrira. Replication in
the harp file system. In ACM Symposium on Operating Systtem Principles, pages

226-238, Pacific Grove, California, United States, 1991.

B. Hong, D. Plantenberg, D. D. E. Long, and M. Sivan-Zimet. Duplicate Data

Elimination in a SAN File System. In Proceeding of the 21st IEEE/12th NASA
Goddard Conference on Mass Storage Systems and Technologies (MSST), pages

301-314, 2004.

W. J. Bolosky, S. Corbin, D. Goebel, and J. R. Douceur. Single Instance Storage
in Windows 2000. In WSS5°00: Proceedings of the 4th Conference on USENIX

Windows Systems Symposium, 2000.

N. Garimella. Snapshot technology overview. WWW page, Apr 2006. http:

//wwu-128.1ibm.com/developerworks/tivoli/library/t-snaptsml/.

R. H. Patterson, S. Manley, M. Federwisch, D. Hitz, S. Kleiman, and S. Owara.

Snapmirror: File-System-Based Asynchronous Mirroring for Disaster Recovery.

Bibliography 87

[24]

[26]

[28]

In FAST "02: Proceedings of the 1st USENIX Conference on File and Storage

Technologies, Berkeley, CA, USA, 2002. USENIX Association.

Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, CA 95054, U.S.A.
Writing Device Drivers, Nov 2007. http://docs.sun.com/app/docs/doc/

816-48b6471=en.

Sun Microsystems. Sunos 5.10: kernel patch. WWW page, Aug 2007.
http://sunsolve.sun.com/search/advsearch.do?collection=PATCH&type=

collections&max=50&language=en&queryKey5=118833&toDocument=yes.

trapstat(lm). WWW page, May 2004. http://docs.sun.com/app/docs/doc/

816-5166/trapstat-1im?a=view.

vmstat(lm). WWW page. http://docs.sun.com/app/docs/doc/816-5166/

vmstat-1m7a=view.

Ariel Tamches and Barton P. Miller. Using dynamic kernel instrumentation
for kernel and application tuning. International Journal of High Performance

Computing Applications, 13(3):263-276, Nov 1999.

Open solaris. WWW page, Jun 2009. http://opensolaris.org/os/.

