
Eliminating File system scan for Backup using a Pseudo vFS Driver

Varghese Devassy

A Thesis submitted to the Faculty of Graduate Studies of

The University of Manitoba

in parlial fulfilment of the requirements of the degree of

Master of Science

Department of Computer Science

University of Manitoba

Winnipeg, ManÌtoba, Canada

Copyright O 2009 by Varghese Devassy

by

THE UNIVERSITY OF N,IANITOBA

FACULTY OF GRADT]ATE STUDIBS

COPYIIIGHT P ERì\,TTSSION

Eliminating File system scan for Backup using a pseudo vFS Driver

Varghese Devassy

A Thesis/Pr'¿rcticurn submitted to the F:rculty of Gr:rtluate Studies of Thc University of

Manitoba in ¡rartial firlfillment of the requirement of the tlegrce

of

Master of Science

Va rghese Der,¿rssvO2009

Per¡nission h¿rs becn gr:rntetl to the University ol'NI¿rnitob¿ Libr¿rries to lend ¿ì copy of this
thesisi¡rr:rcticrtln, to LibrarS' and Archives Canatl¿r (LAC) to lend ¿ì cop\/ of tlìis thesis/practicum,
and to LAC's agent (UMI/ProQuest) to microfilm, sell co¡ries and to ¡rublish an abstract of this

thesis/practicum.

Tlris reprotluction ol'copy of this thesis has been rrrarlc ¿rr,:rilable [r5'a¡t[ority of the copyright
orvner solell' for the purpose of ¡rrivatc studl' and resc:rrch, arrrl rnal, only be re¡l.oducert aritl copietl

as permitted b¡' co¡lyright lan's or n,ith cxpress *,rittcn ¿ruthorization from thc co¡lyright orvnôl'.

B),

Thesis advisor

Dr. Rasit Eskicioglu

Author

Varghese Devassy

Eliminating File System Scan for Backup Using a Pseudo

VFS Driver

Abstract
A typical file system backup application operates in two phases. In the first phase,

called scan) a list of candidate files modified since the last backup is generated. These

files are then copied to some form of a secondary storage device in the second phase

called, backup. Although improvements in the speed of secondary storage devices

have reduced the time required for lhe baclrup phase, this is not the case with the

scøn phase. The scan phase must compare the modification time of a file with the

time of the previous backup before the file is selected as a backup candidate. On most

systems, getting the modification time of a file requires at least one system call. As

the number of files on a computer increases, the number of context switches resuiting

directly from the system calls executed during the scan phase increases proportionally,

resulting in lower system throughput. In this thesis, I introduce a novel method to

speed up the scarz phase through a pseudo Virtual File System (VrS) driver (referred

to as scandd). VFS is a framework available on modern UNIX operating systems that

allows the coexistence of different file system types. Ioctls provided by scand,d, can be

used to specify the list of file systems that scandd monitors, enabling it to generate

the list of modified files segregated by their file system. Using this metho d, the scan

Iil

Abstract

phase would use the list of modified files generated by scandd, thereby eliminating the

need to compare the modification times of individual files. This method can be used

for any file system that conforms to the VFS semantics. For reasons to be cited later,

the Solaris 10 operating system (OS) witl be used to demonstrate the performance

improvements obtained by this method.

Being a device driver, scandd has negligible impact on unmonitored file systems.

The tests conducted indicate that there is about 30% degradation in file creation

operations on monitored file systems. On dormant file systems such as the standard

Solaris file systems (/, /usr, /var and /opt) the gains observed are dramatic. For file

systems with directories containing greater than 1 million frIes scandd provided 60%

improvement even if all files in the file system were modified. For the deepest directory

containing 6 miilion files at 492 levels deep, scandd providedS0% improvement even

if all files were modified. Further, my tests indicate that the time taken for scan using

the list generated by scandd depends only on the number of files modified and the

pathname length of the modified files.

TV

Contents

Abstract iii
Table of Contents vi
List of Figures vii
List of Tables viii
Acknowledgments ix
Dedication x

1 Introduction 1

1.1 The Need for Faster Enumeration . . 2

1.2 Discussions of a Sample ,Scøn 4

1.3 TheMethod... 7

1.4 Thesis Overview 10

2 Related 'Work

2.I File System Caches

L2
12

15

19

20
27

2.2 Backup Methods using Newer File System Features ;

2.3 Summary of Related Work

S candd's Implementation DetailsSolution Strategy and
3.1 Solaris Device Driver F\rndamentals
3.2 Scøndd Installation 22

3.3 Configuration Values 23

3.4 Scandd Initialization 25

3.5 Intercepting File System Changes 26

3.6 Ioctl Interface 29

3.6.1 SCANDD-ADDJS

3.6.2 SCANDD_DEL_FS

3.6.3 SCANDD_IS_FS_TRACED

3.6.4 SCANDD_SYNC_CHANGED-FILES

3.6.5 SCANDD-GETIASTIRROR

to2J

30

30

31

32

353.7 How Monitored File Systems are Stored

VI

3.8 Identical File Name Elimination in the Modified File List
3.9 Error Conditions
3.10 Methodology
3.II Scandd Termination
3:12 Special Case

3.13 Driver Logs
3.14 Concluding Remarks

4 Correctness, Performance and Evaluation
4.I Testing Tools

4.7.I testioctls
4.I.2 test-f ind

4.2 Verification of Correctness
4.3 Can Scandd Miss Files?

ti'!#$r:';i; : :: :: :

4.4 Performance Evaluation
4.4.I System Information .

4.4.2 Scandd's Impact on Regular File Operations
4.4.3 Improvement on Standard File Systems
4.4.4 Improvement on File Systems with Many Files in one Directory
4.4.5 Improvement on File Systems with Deep Directories
4.4.6 Improvement on File Systems with Many Directories and Files

4.5 When does Scandd Perform Worse than Tladitional Scan?
4.6 Summary of Resúlts

5 Future Work and Conclusions
5.1 Future Work

5.1.1 Scandd as a Research Thesis
5.I.2 Scandd as a Backup Product

5.2 Thesis Conclusion

A Miscellaneous Information
4.1 Compiler Information .

4.2 Driver Development Tools Used
A.3AnImportantNoteforDriverDevelopmentonSolaris
4.4 Documentation Tools Used

Bibliography

Bibliography

38

44
44
46

47
48

48

49
49

50

50

51

52

52

54
56

56

56

57
60

64
68

69

72

t,f

74
74

74
77

81
81

82

83

83

List of F igures

1.1 Pseudo-code for a traditional scan algorithm
1..2 Block diagram showing the relationship between vnode and VFS

3.1 Data structure to store replaced vnodeops
3.2 Data structure for SCANDD-ADD-FS and SCANDD-DEL-FS ioctls
3.3 Data structure for SCANDD-IS-FS-TRACED i,octl

3.4 Data structure for SCANDD-SYNC-CHANGEDJILES zocúl

3:5 Data structure for SCANDD-GETIAST-ERROH i,octl

3.6 Data structure to save a monitored file system
3.7 Data structure for caching a list of modified files .

3.8 Data structure for a modified file entry
3.9 Flowchart showing addition/deletion of a file toffrom the cache

3.10 Flowchart depicting a sample 'iscan

5

8

26

30

31
t.)¿L

32

34

39

40

43

45

59

65

4.L
4.2
4.3

Plot of file creation times
PIot of scør¿ times for many files in one directory
Piot of the number of context switches during scan for many files in
one directory

4.4 Plot of the number of system calls during sco,n for many files in one

directory
4.5 Plot of scøn times for many files in many directories
4.6 Plot of the number of context switches during scan for many files in

many directories
4.7 Plot of the number of system calis during scz,n for many files in many

directories

bC)

70

7L

77

vll

List of Tables

4.7 Effect of scandd on file creation 58

4.2 Comparison of time between traditional scan and scandd 61

4.3 System calls and the context switches measured on a standalone system 62

4.4 Comparison of. scan times when many files in one directory r,¡/ere modified 65

4.5 Comparison of traditional scan time for a directory at various depths 68

4.6 Comparison of. scan times on file system with many directories 70

vll1

Acknowledgrnents

I would like to thank my advisor, Dr. Rasit Eskicioglu, for his guidance and

encouragement all these years. Being a part-time student and working as a full-time

employee in a software development firm, it was hard to motivate myself to complete

this thesis. Moreover, doing my thesis remotely, I missed some registration deadiines.

Dr. Eskicioglu, thank you for motivating me and for being patient with me all these

years.

I would like to acknowledge the following members of the Computer Science de-

partment for their help and advice. I take this opportunity to thank Dr. Peter

Graham for spending time with me brainstorming various ideas and implementation

hurdles. Dr. Neil Arnason for helping me elevate my writing style (although I am

still not there yet). Ms. Lynne Hermiston for processing my late registrations and

time extension forms without any further delay.

I am grateful to my employer, CommVault Systems Inc., for partly funding my

Master's studies at the University of Manitoba and allowing me to take time off to

attend lecture sessions.

Many people have spent time reading this thesis and provided valuable feedback.

Especially, Mr. Thomas Barnwell, Mr. Ian Austen, Mr. Kiran Koala and last but not

least my wife, Dr. Smita Pakhale. This thesis would not have been in this current

form without your valuable comments.

IX

Th'is thesi,s i,s dedi,cated to the system admi,ni,strators who spend hours

wai,ti,ng for completi,on status for thei,r large fiIe system backups.

Chapter 1-

Introduction

. The backup process is used to safeguard against unexpected data ioss due to

software or hardware failures. File system backup operates in one of three modes:

full, i,ncremental or di,fferenti.al. FuIl backup saves all files on a system to secondary

storage; 'incremental backup saves files modified since the last fuII, 'incremental or

di,fferenti,al backup, and d'ifferenti,al backlp saves all files modified since the Iast full

backup. Apart from the above three types, another backup type, namely, syntheti,c

full,, is available in some recent backup applications [1, 2]. Syntheti,c full backup

creates a full backup from a previous full backup and the subsequent incremental or

differential backups combined with any modified or ne\M files from the system. In

this method, most of the files are available from secondary storage, so a synthet'ic full

backup uses limited system resources. In addition, syntheti,c full backup dramatically

reduces the backup time, because files that were not modified are read from backup

storage.

Files to be backed up must be specified or selected from the list of files by a process

Chapter 1: Introducti,on

called enumerat'ion. To enumerate files for an'incremental or a di,fferentaøl backup,

the enumerati,on process must obtain the modification times of all files and compare

them with the time of the previous backup. To obtain the modification time of a

fiie, the enumerat'ior¿ process must issue a system call to the file system. Execution

of system calls by the enumeration process on each file affects the performance of

other applications running on the system due to the context switches they introduce.

In addition, the enumerat'ior¿ process can take a long time on extremely large file

systems and on file systems with deep directories. Section 1.2 explains the reasons

why enumerat'ion can be slow on large file systems and on file systems with deep

directories using a pseudo-code. In this thesis, I have developed a method whereby

files folincremental backups can be enumerated without comparing their modification

times thereby reducing the enumerati,on time.

1.1 The Need for Faster Enumeration

Backup of critical computer data is one of the most important elements of any

organization's disaster recovery planning. Most organizations rely on third party ap-

plications to perform this vital task. These backup applications save modified files at

a predetermined schedule to some form of secondary storage devices (most commonly

tape drives) connected to one or more backup servers. In a typical organization, the

number of systems to be backed up exceeds the number of backup servers and sec-

ondary storage devices. To accommodate all systems in an organization, most backup

applications automate backups to secondary storage devices using medium-changer

devices. The use of medium-changer devices accomplishes the movement of backup

Chapter 1: Introduction

media to and from drives without human intervention. Medium-changer devices typ-

ically consist of a set of storage slots where backup media are stored and a set of

drives where the backup media can be mounted and then read from or written to as

specified by the Small Computer System Interface (SCSI) standard [3].

The explosive growth of data has created numerous challenges for every organiza-

tion: one of them being the time required to complete backup within a predetermined

period. To reduce the amount of data to be backed up, vendors of backup applications

have devised novel methods. Chervenak et al. [4] describe some of the methods used

by these vendors. However, the growth of data has surpassed the advantages these

methods could deliver. To make matters worse, the total time available for backup,

called the backup window, remains constant.

A file system backup generally has two phases: scan and backup. The scan phase

enumerates files and the backup phase saves these files onto a secondary storage device

connected to a backup server. Over the years) the speed of secondary storage devices

has improved dramaticaliy, which has improved the performance of the backup phase.

However, the speed of the scøn phase largely depends on the performance of directory

lookup in file systems. Moreover, directory lookup speed reduces drastically as the

number of files in a directory increases. Phillips [5] cites some of the enhancements

in the ert? frle system resulting in faster directory lookup. Newer file systems use

Btees [6] and their variants to improve directory lookup. The method employed by

Phillips [5] uses hash keys to improve the directory lookup performance for which he

has coined the name "HTlee" [5]. Although such newer techniques have improved

the performance of directory lookups, Iarge directories still present a performance

Chapter 1: Introducti,on

bottleneck.

Large directories may not be a common occurrence in regular file systems. How-

ever, there are instances such as the cache directories of large web servers and direc-

tories containing the files created by various applications, where directories with large

numbers of files are common. It is also possible to come across large directories in sys-

tems used for archiving medical records and medieval records. In addition, researchers

working in the area of file system design andf or file system performance usually create

Iarge directories intentionally to study and to improve file system performance.

Even in the absence of large directories in a file system, scl,n may take a long time

(the exact amount of time depends on the number of files in a file system) on very

large file systems (file systems that house the home directories of the employees in

a large organization is a prime example of this). This is because, sc¿n must use at

least one system call per file for enumeration. As the number of files in a file system

increases, the amount of time taken by scøn increases proportionally. In addition, the

number of context switches resulting from these system calls reduces the throughput

of other applications running on the system.

L.2 Discussions of a Sample Scan

The method developed in this thesis focuses on improving the time taken for the

scan phase of an 'incremental backup. Figure 1. 1 shows how scan using the traditional

method operates. In this algorithm, scanO is the main function called to scan all

mounted file systems. For each mounted file system) scan invokes the traverse o

function, which performs a depth-first search of the selected file system listing the

Chapter 1: Introducti,on

names of files modified since the previous backup time (referred to as the "reference

time").

traverse (/s)

{
for each child ch of fs {

if ch is a directory {
traverse (ch)

I
J

obtain nodification time (mtime) of ch
if ntime of ch is greater than the reference time{

print ch
II

Ì
)

scarr()

{
for each mounted. file systen /s i

traverse (/s)

Ì

Figure 1.1: Pseudo-code for a traditional scøn algorithm

For the traverse O function in Figure 1.1 to compare modification times, it must

first obtain each file's modification time using a stat O system call. The stat o

system call retrieves the important attributes of a specified file such as: size, mod-

ification time (mtine), status change time (ctime), access time (atime), owner and

grouþ, etc. On UNIX systems, a system call allows a user process to request OS ser--

vices (VahaIialT, p. 31] describes the system call interface on UNIX systems). Access

to OS services however, comes with a price. To decide whether a file is selected for

Chapter 1: Introducti,on

backup in the algorithm above, the traverse O function must compare the results of

stat O with the reference time. A file system with a small number of files (number

of files ranging up to 100,000 files), can perform the above scan algorithm within a

few minutes (upper bound of 15 minutes on a standard UNIX system). However, the

time taken by the above algorithm increases proportionally as the number of files in

a file system increases. Scalability tests performed by Sweeney et al. [8] on lhe XFS

file system confirm this assumption. According to the test conducted by Sweeney

et al: [8], 6716 lookups/second can be done on a directory with 104 entries where as

only 66 lookups/second can be performed in a directory with 106 entries. This means

that the lookup performance also decreases proportionally as the number of files in a

directory increases.

Implementation of directories in file systems differ from those of files in that the

contents of a directory are the names of its children [9]. Directory lookup on large

directories are slow because, to lookup the name of a child in a directory, a file system

must search for the file name in the directory contents. However, as the number of

children in a directory increases, so does the time taken for a lookup because the

search space is much larger.

Although ne\Mer file systems such as ert? on Red Hat Linux, Re'iserFS on Suse

Linux and UFS on Solaris perform better than XF,9 due to the various caching

strategies implemented in them) scl,n still takes a long time on a system with very

large file systems, directories containing a large number of files (greater than 1 million

files), and/or file systems with deep directories. The exact amount of time it takes

to cornplete a scan) of course, also depends on factors such as the memory size, CPU

Chapter 1: Introduct'ion

speed, etc.

1.3 The Method

In modern operating systems, many file system implementations follow a standard

portable architecture, namely, vnodes [10]. Figure 1.2 shows a block diagram of a

sample vnode implementation. One of the design goals of the vnode architecture

was to split file system implementation into file system dependent and file system

independent modules. To effect this goal, the vnode was introduced to manage files

independent of the file system they reside in; the VFS was introduced to manage file

systems independent of their implementation. As a consequence, each file is repre-

sented in the kernel by a vnode and each file system by a VFS. AII file systems adhering

to the VFS architecture must define a set of predefined entry points, namely, vnodeops

(acronym for 'vnode operations'). These entry points are C-function pointers that

are initialized when a new file system is added to the system. The OS maintains an

array of function pointers for all file systems configured. This array is indexed by

the file system number, vf s-f stype, which is assigned by the OS when a file system

is configured. To perform a file-related operation, the OS determines the file system

number the file resides in, which is then used to access the function pointer specific

to the file system.

Chapter I : Introduct'ion

vfs_fstype (1)

v_vrsp
v_type
vjath
v_opl

name
open
close
read
write

name
open
close
read
write

Figure 1.2: Block diagram showing the relationship between vnode and VFS

Chapter 1: Introducti,on

In Figure I.2, a vnode refers to the file system that it is part of through the

v-vf sp pointer. The pointer, v-op, points to the vnodeops for the file system type.

Vnodes that beiong to file systems of the same type share a common vnodeops struc-

ture. Similarly, a VFS points to its file system specific functions through the pointer

vf s-op. File systems of the same type share a common ufsop strrcture, All file sys-

tems configured on the system are doubly-linked through the pointers: vf s-¡ext and

vfs-prev.

In this thesis, I have developed a ne\M method to enumerate files for i,ncremental

backup without the normal expensive enumerâtion process. Using this method, a

pseudo driver, scandd, is stacked between the VFS layers and the actual file systeras

configured on the system. At initialization, scandd replaces the vnodeops function

pointers defined by the configured file systems with its own functions. A file sys-

tem defines many vnodeops functions; scandd however, replaces only those functions

that modify a file's contents or a file's metadata (time, permissions, etc.). Once the

required functions are replaced, all file system access from the VFS layer is routed

through scandd. This enables scandd to determine which files are being modified and

to create a log of those files segregated based on the file system in which they reside.

After logging the names of the modified frIes, scandd calls the original file system

recipient function to complete the file system operation requested of the OS.

The Solaris 10 is selected as the platform for implementation because only Solaris

10 and later versions provide full pathname of a file modified as a member of the vnode

structure. VFS implementations on other operating systems and on earlier Solaris

versions either provide only the base-name of a file or do not even have the file name

Chapter 1: Introducti,on

as a member of the vnode structure. On some operating systems, such as Limrx, the

full pathname is available using certain internal kernel functions; on other operating

systems, there are no well defined kernel functions to obtain the full pathname from

the vnode of a file. As the full pathname of a file is provided by the Solaris 10 kernel

without invoking extra kernel functions, the Solaris 10 implementation should provide

the best performance improvement allowing me to demonstrate the full potential of

my approach.

To measure the performance improvements obtained by this method, I have de-

veloped file system scan utllftjes using both the traditional and the new methods. I

have used these utilities to compare the performance improvements obtained by the

new method on various file system configurations, such as: file systems containing

large numbers of files, file systems with directories containing large numbers of files,

and file systems with deep directories. These results are discussed in Chapter 4.

L.4 Thesis Overview

The rest of this thesis is organized as follows. Chapter 2 details the related work

in file systems, especially those which improve the performance of directory lookups;

some of the techniques commonly used by backup applications to bypass the scøn

phase, and concludes with a section describing why scan is slow on directories con-

taining large numbers of files. Chapter 3 explains the solution strategy and the

implementation details with particular emphasis on the data structures and the algo-

rithms used in the implementation. Chapter 4 details the methods that I have used

to evaluate the correctness of my thesis implementation and in addition, describes

10

Chapter 1: Introduct'ion

the measurements carried out to compare the performance of scøn using the method

that I have developed with the tladitional scan method. Chapter 5 details the future

work required and ofer some concluding remarks on this thesis.

11

Chapter 2

Related \AÃork

This chapter contains an overview of the various enhancements that have been

made to improve file system performance. Section 2.1 discusses caching strategies. As

memory gets cheaper, there is more emphasis on the use of larger caches to improve

file system performance. As Solaris is a UNIX variant, references to UNIX file system

concepts and caching techniques also apply to Solaris 10. In Section 2.2, I discuss some

of the novel methods used in some backup applications to eliminate scan altogether.

In the same section, I also introduce the NT file system (NTFS) change journal

developed by Microsoft Corporation [11].

2.L File Systern Caches

Implementers of early UNIX file systems noticed the impact of disk latency on

file system performance. Since then, operating system designers have used several

caching strategies to improve file system performance. Tannenbaum lI2, pages. 270-

12

Chapter 2: Related Worlt,

272] explains the use of a buffer cache in early UNiX file systems to improve read

and write performance. A buffer cache is a cache layer common to all file systems.

F\rnctionally, it resides between a file system and the hardware devices on which the

file system resides, usually disks. The buffer cache is designed to cache individual disk

blocks [13, p. 474]. Cache items pertaining to individual disks are kept as separate

lists [13, p. a82] in the buffer cache to facilitate searches for blocks of a given disk

in the buffer cache. Thus, an individual block in the buffer cache can be accessed

by the tuple [disk-i,d, block-no]. Before a file system reads a block from the disk, it

checks for the existence of the same block in the buffer cache. If the requested block

is present in the buffer cache, the read request is satisfied from the cache, avoiding a

disk access. However, if the requested block is unavailable in the buffer cache, it is

read from the disk through lhe buffer cache. In a similar manner, a write request to

the file system is written into the buffer cache.

In general, caches can be implement ed as wri.te-through or wri,te-behi,nd [7 , p. 285] .

In write-through caching, data is written to disk at the same time it is written to the

cache. In write-behind caching, data is written to the cache first; the cached, data is

written to disk at a later time. Write-through caching is simpler to implement than

write-behind caching. However, write-through caching results in an immediate write

of the cached disk block eliminating the benefits of caching. As disk access takes

much longer than rnemory access) delaying disk I/O improves the system throughput

as the CPU can be utilized for other tasks. Therefore, the UNIX buffer cache is

implemented, as a write-behind cache [7, p. 285].

Buffer cache entries are sorted in least-recently used (LRU) order. As the size

13

Chapter 2: Related Work

of the buffer cache is limited, LRU cache entries are purged in favor of newer blocks

accessed from the disk. The kernel process, fsfl,ush [14, p. 563], monitors the use of

the buffer cache to ensure that free blocks are available, and that the modified blocks

(dirty blocks) are synchronized to the disk. The fsflush process, at regular intervals,

cycles through the modified cache blocks and synchronizes them to the disk.

As the processing power of computers has increased, file systems have increased in

size and complexity. Use of the buffer cache by itself no longer provides the required

performance irnprovements on large file systems. In addition, as the buffer cache

resides below the file system layer, file system functions must be invoked to convert

a file offset to a disk block and then to determine whether that block resided in the

buffer cache [14, pages. 589-590]. Invoking file system functions to determine the

presence of a block in the buffer cache is expensive[I4, pages. 589-590]. Therefore,

modern operating systems use a different cache layer, namely, the page cache instead

of the buffer cache. Unlike the buffer cache,lhe page cache is designed to cache a file's

content and not disk blocks. Moreover, the page cache is designed to use all available

memory that is not used by applications running on the system. Vahalia [7] states

that rvitlr the introduction of the page cache, the buffer cache is only used to cache

file system metadata l7, p. 28a1. Modern OSes use some variant of the page cache.

Bar [15, pages. 29-32] explains the relevance of the buffer cache and page cache 115,

pages. 79-80] with regard to Linux fiie systems.

These caching strategies have substantially improved file system performance for

reads and writes. However VFS refers to a file using a vnode structure rather than

the file name. Prior to the introduction of the vnod.e architecture [tO], a file in a file

r4

Chapter 2: Related Work

system was uniquely represented by an inode. With the introduction of the vnode

architecture, a file is now represented by a vnode regardless of the file system it is part

of. However, the inode representation is still used in file system implementations.

Thus, within the VFS layer, a file is represented by a vnode and within specific file

system implementations, a file is represented by an inode. The VFS therefore must

convert a file/directory name to its vnode before any file/directory operation. In many

cases, files are accessed using the full pathname from the root directory. McKusick et

al. [16, p. 222), explain the actions required to translate a pathname to its vnode. To

convert a pathname to a vnode, the pathname is traversed component-by-component

(e.g., /a/b is converted by traversing /, /aandthen finally /a/b). To make pathname

to vnode lookup efficient, a cache has been implemented in modern UNIX operating

systems. This cache is called tlne Di,rectory Name Lookup Cache (DNLC) [14, pages.

554-5621in Solaris and the dentry cache [15, pages. 79-80] in Linux.

2.2 Backup Methods using Newer File System Fea-

tures

T.he Buffer cache, page cache, and Directory Name Looltup Cachef dentry cache

have greatly improved file system lookup performance. However, performance im-

provements derived from these caching techniques do not guarantee completion of

backups in the backup window. This is because, a traditional file system backup will

backup the entire contents of a file even though, only a single byte in a file was mod-

ified. Thus, the amount of data backed up in a traditional file system backup couid

15

Chapter 2: Related Work

be iarge even for the meager amount of file modifications in a system. Moreover, the

backup data might have to be sent across a network to be written to the secondary

storage media. Thus, the high volume of data in a traditional file system backup

results in high network bandwidth requirements and higher consumption of backup

media. Therefore, some backup vendors have introduced new backup methods such

as: block-level backup [17], backup using fiie system snapshot, file-level replication

techniques [1S] and single instancing [19, 20].

Block-level backup applications eliminate the aforementioned shortcomings of the

traditional file system backup by saving only the modified blocks in a file system. A

separate device driver may be required to enable access to the modified blocks in a file

system. Chervenak et al. [a] state that since block-level backup operates at the file

system block level, it cannot correlate an individual block to a file unless file system

specific information is included with the backup. Therefore, block-level backups are

file system specific and require additional effort to be usable on different file system

types. Moreover, depending on the block modification time, blocks pertaining to a

file may be backed up on different days in a block-level backup. Therefore, restore

of a single file from a block-level backup requires special processing and may take

longer than restoring the same file from a traditional fi.le system backup. This is

because, restores from block-level backups are done as individual disk blocks rather

than as individual files. In addition, block-level restores bypass file system code to

restore the modified blocks. Therefore, administrators must unmount file systems

before restoring from block-level backups.

Some newer file systems provide a snapshot feature [17]. IBM Corporation's

16

Chapter 2: Related Work

jfs2 frle system and the erts frIe system on Linux both support a snapshot feature.

Garimella [21] gives an overview of the different snapshot methods used. This feature

provides a read-only, point-in-time view of all files in a file system. To implement the

snapshot feature, file systems employs copA-on-uriúe scheme when modifying blocks.

When a block in a "snapped" file system is written, the file system preserves data

from the modified block by copying it to a new location. Once the copy is completed,

the new data is written to the original location. To provide a consistent view of

files in the "snapped" file system, references to the modified blocks are transparently

redirected to the preserved blocks. Prior to the availability of the snapshot feature in

file systems, critical applications had to be shut down before backing up their files.

However, as the snapshot provides a consistent view of the "snapped" file system, a

shut-down is no longer required.

File system snapshot can be combined \Mith block-level changes to implement

asynchronous file system level replication [22]. This method is also referred to as

"continuous data protection" [2t].The replicated data may reside locally or remotely.

This method uses the snapshot facility provided by file systems to create a reference

point for replication, which is also used to synchronize the replication target. Methods

such as remote copy can be used to synchronize the source snapshot with the target

system. Once the target is in sync with the source snapshot, all changes to the file

system since the snapshot was taken are applied asynchronously to the replication

target. If the file system cannot provide block-level changes since the snapshot was

taken, a device driver might be required to capture this information. Similar to

replication at the file system level, file-level replication is albo available. The only

T7

Chapter 2: Related Work

difference between the above two methods is in the way the changes are applied.

While the former applies block-level changes to the target, the iatter applies file-level

changes to the target. To provide fault tolerance, more than one destination site may

be specified, increasing data availability in case of a disaster. In addition to the above

replication techniques, replication may be built into the file system. Liskov et at. [18]

describe a file system in which, replication of file system data is achieved using NFS.

Replication built into the file system achieves the replication atomically as the writes

are synchronous. A replicated file system may be used as the secondary storage media

for backup thereby protecting the backed-up data itself.

In all of the above methods, compression may be employed to reduce the amount

of data sent across the network or to reduce the amount of data stored on the backup

media. However, the degree of compression achieved will depend on the contents of

a file and in some cases can expand the data. With the wide spread use of email

in the enterprise for communication, the same email or the same email attachments

may be sent to multiple recipients. In a similar manner, many user-level directories

may contain copies of the same file resulting in multiple copies of the same file being

backed up. Backup vendors have developed a single instance feature whereby only one

copy of a file is saved during the backup phase. Hong et al. 119] describe a file system

in which blocks that have the identical data are logically associated to a single block.

Bolosky ei al. [20] explain the implementation of single instancing in Windows 2000.

The implementation of single instancing on Windows provides support for backup

and restore applications to detect files that have been "single instanced". Using this

feature, backup applications can ensure that only a single copy of files with the same

18

Chapter 2: Related Work

content is saved during the backup phase.

Microsofb Corporation introduced a change journal in its NT file system (NTFS)

for their Windows 2000 operating system [11]. Each NTFS has its own change journal,

which is described as a database of changes made to the file system. This journal

contains entries for every file and directory modified, added, or deleted. Microsoft

envisions that the change journal will be used by services, virus scanners, and backup

applications. The change journal is implemented as a hidden file. Because the change

journal creates a hidden file on the file system being tracked, it takes away some space

from the file system.

2.3 Summary of Related 'Work

The size of file systems will keep increasing with the reducing price of hardware and

the increasing processing power of computers. Therefore, the traditional methods of

file system backup will not be able to complete backups in the prescribed time frame.

As we have seen in the previous sections, novel methods for backing up files are being

developed and file systems are absorbing these features continuously. It is only a

matter of time before the method developed in this thesis will be made available as

a standard feature in the coming years.

19

Chapter 3

Solution Strategy and Scønd,d's

ïrnplemerìtat ion Details

In this chapter, I explain the method that I have devised to speed up file sys-

tem scan. As explained in Section 1.3, this method requires the introduction of a

pseudo driver, sco,nd,d,. The various sections in this chapter are arïanged as follows:

Section 3.1 expiains Solaris device driver fundamentals and Section 3.2 details the

installation procedures required for installing scandd. Section 3.3 details scandd's

configuration values and Section 3.4 explains the initialization steps of scandd. The

mechanism by which scandd is stacked between the VFS layer and the file system

impiementation layer is explained in Section 3.5 and Section 3.6 explains lhe ,ioctls

provided by scandd for communication with user-level applications. A scan using

the method developed in this thesis uses these i,octls to monitor file systems and

enumerate the list of files for backup without issuing stat O system calls.

Section 3.7 details the data structures used to store the list of monitored file sys-

20

Chapter 3: Solution Strategy and, Scand,d,'s Implementat'ion Detai,Is

tems and the muteres used to serialize access to this list (a muter is a data structure

provided by the OS to implement mutual exclusion of critical sections in a kernel mod-

ule). While monitoring a file system, it is possible that some files/directories may be

modified more than once resulting in multiple entries for these files/directories in the

Iog created by scandd Section 3.8 details the data structures and method by which

scandd eliminates some of these duplicate entries in its log. Section 3.9 mentions the

two ioctls that applications may use to check for errors in the driver and Section 3.10

show how a sample application (referred to as i,scan) can be developed using the

method developed in this thesis. Section 3.12 highlights a special case in scand,d,'s

implementation.

3.1 Solaris Device Driver Fundamentals

Every device driver in the Solaris OS must conform to a specific standard man-

dated by the Solaris Driver Development Guide [23]. This standard specifies a set

of mandatory routines and a set of mandatory data structures that a device driver

must define and export before it can be activated on the Solaris OS. The mandatory

routines are: -init, -f ini and -info. The -init and -f ini routines provide the

initialization and termination functionalities for a device driver; the -info routine

provides information on one of the mandatory data structures exported by a driver,

modlinkage. The nodlinkage data structure, in turn, exports two other important

data structures, namely, dev-ops and cb-ops. The structure, dev-ops, specifies the

driver revision and the names of routines for some of the driver-related tasks such as:

attach, detach, reset, etc. On the other hand, the structure, cb-ops, provides infor-

21

Chapter 3: Soluti,on Strategy and Scandd's Implementat'ion Details

mation on routines related to the I/O funciionality of a driver including: open, close,

read,, write, 'ioctl, etc. A driver may choose the routines it exports depending on the

functionalities that it provides. All undefined routines in dev-ops and cb-ops must be

either set to NULL or to a predefined values as mandated by the Driver Development

Guide. For example, if a driver does not allow open on the device it controls, the open

routine in the cb-ops structure must be set to nodev, a predefined value indicating

tirat the device cannot be opened. To prevent name clashes with other driver's rou-

tines, driver developers are encouraged to use a prefix (usually the driver name itself)

in the routines or data structures a driver exports. Since scand,d, is a pseudo driver, the

only routines exported by dev-ops are scandd-attach and scandd-detach. I will be

focusing on the functionalities implemented by scandd-attach in Section 3.4 and by

the scandd-detach routine in Section 3.I1. Scandd exports only three routines from

the dev-ops structure, namely, scandd-open, scaadd-close and scandd-ioctl. The

above routines are the entry points for open, close and i,octl system calls respectively.

3.2 Scandd Installation

In this section, I describe the process of installing scandd On Solaris, all device

drivers that are not required during system startup and the files containing their

configuration values must be placed in the directory /usr/kernel/drv/sparcvg and

/usr /kernel/drv respectively. In the case of scandd, the installation script places the

driver binary, scandd, and the configuration file scandd. conf in the above mentioned

directories. In addition, the installation script places the entry 'type=ddi-pseudo;

name=scandd scandd'into the frIe /etc/devlink.tab. This line instructs the Solaris

22

Chapter 3: Soluti,on Strategy and Scandd's Implementation Detai,ls

OS to create the file, /dev/scandd, when scandd is loaded. The file, /dev/scandd, is a

device file used to communicate with scandd through the i,octl interface. Once scandd

and its configuration files have been copied to the above-mentioned directories, the

installation script invokes the command 'add-drv sca¡dd', which initiates the process

of loading scandd dynamically. The program, ad.d-drv, is a standard Solaris program

used to load device drivers dynamically. Once the driver is loaded into memory, the

Solaris kernel invokes the routines -init, -info and scandd-attach, in that order.

As mentioned in Section 3.1, the -init routine provides the kernel with the ad-

dress of the dev-ops and the cb-ops structures. It is through the dev-ops structure

that the kernel determines the address of the attach routine to be called, narnely,

scandd-attach. All the necessary initializations of scandd are performed by the

scandd-attach routine. The next section details the configuration values used by

scandd followed by the initialization actions performed by the scandd-attach rou-

tine.

3.3 Configuration Values

At present, scandd uses only one configuration value, SCANDD-TARGET-DIRECT0RY.

The above configuration value specifies the directory into which the files containing

the names of modified files are written. As mentioned in Section 1.3, file names from

different file systems are segregated into different files. Scandd expects the above

configuration value to be set to a directory that exists. Scandd will fail to load if this

condition is not met.

It is mandated that the directory specified by the configuration value, SCANDD--

ôo
.ú¿)

Chapter 3: Solut'ion Strategy and Scandd's lrnplementati,on Detai,ls

TARGET-DIRECTORY, be on a separate file system from the ones being monitored and

scandd will not monitor this file system due to the following reasons:

o If the modified file names from file systerns, fs1, fs2, etc., are allowed to be

written to files (mod-filesl, mod-fiÌe2, ...) in any file system monitored by

scandd, changes in these files will in turn result in newer change records, which

will cause an endless recursion in the kernel.

o I do not want other applications to take away the space reserved for updates

from the driver.

Free space requirement for the directory specified by the SCANDD-TARGET-DIR-

ECTORY configuration value is not directly dependent on the size of the file systems

monitored by scandd. Rather, it is dependent on the number of files in a file system,

the average pathname length of files in the file system and the frequency with which

these files change. In my test setup, the size of this file system was 10 GB. Fïom my

tests I observed that a file system containing 5 million files with pathname length of

1020 bytes (the maximum pathname length allowed being r0z4) occupied = b GB of

disk space on this file system when all files in the file system were modified exactly

once. Since it is unlikely that all files in a file system would change within a backup

period, the space requirement per file system can be reduced. A more logical approach

wouid be to reserve space for 70% of the files changing with an average pathname

length of 128 bytes per incremental cycle per file system. To accommodate any

unexpected space needs, the administrator should reserve some extra space in the file

system specifi.ed by the configuration value, SCANDD-TARGET-DIRECr0RY.

24

Chapter 3: Soluti,on Strategy and Scandd's Implementati,on Detai,Is 25

3.4 Scandd Initialization

This section details the actions performed by the sca¡rdd-attach routine during

scand,d,'s initialization. At the onset, scandd-attach calls the routine, ddi-create-rn-

inor-node. This device driver interface (DDI) function creates the device frIe, /dev/-

scandd, based on the entry inserted into the frIe, /etc/dev1ink.tab, during the

installation. The remaining initialization actions of scand,d, are performed by the

routine, scandd-init, which is called from scandd-attach.

The routine, scandd-init reads the configuration entry mentioned in the file,

/usr/kerneL/drv/scandd.conf. Reading the configuration is achieved by the stan-

dard DDI function, ddi-prop-lookup-string. Once read, scandd verifies whether

the above configuration string identifies a directory that exists . Scand,d, will fail to

load if this is not so. Scandd preserves the name of this directory in one of its in-

ternal data structures and in addition, obtains its vnode entry. \Mhen a vnode for

a file/directory is obtained, the kernel increments the reference count of the vnode

obtained, which is decremented when the vnode is released; a file system with active

vnodes (vnodes with referênce count greater than zero) cannot be unmounted. Thus,

to prevent unmounting of the file system in which the above directory resides, the

vnode for the above directory is not released untll scandd is unloaded.

Fhrther, scandd initializes lhe muteres that are used to control âccess to the list of

monitored file systems. Section 3.7 details the data structures used and the method

by wlrich the monitored file systems are stored and accessedin scandd. Ai this phase,

the dr-iver is ready to perform its last couple of initialization steps before it can start

intercepting file system calls, which are detailed in the next section.

Chapter 3: Soluti.on Strategy and Scandd's Implementati'on Detai,Is 26

3.5 Intercepting File System Changes

As shown in Figure 1.2 and as described in Section 1.3, every file system configured

under the VFS interface exports a list of function pointers that provides a list of file

related operations, namely vnodeops. Similarly, every file system configured in the

system is identified by a unique VFS C-language structure which, in turn, exports a

list of file system operations known as vfsops. Every active file on the system is

represented by a vnode; a vnode points to its vnodeops and to its VFS through the

pointers, v-op and v-vf sp, respectively.

typedef struct sca¡dd-savedvop
It

/* is vnodeops already saved? */
char sl-ot-taken;

/* location for the original vnodeops */
vnodeops-t vop;

) scandd-savedvop-t;

Figure 3.1: Data structure to store replaced vnodeops

During the initiali zati.onphase, scand,d" allocates an array of structures mentioned

in Figure 3.1. The number of such structures allocated is computed by travers-

ing the file systems configured on the system. As mentioned earlier, every config-

ured file system has a VFS structure; all VFS structures configured on the system are

linked together as a doubly-linked circular list. Solaris provides access to the above

linked list through a pointer to the VFS of the root file system, namely, rootvf s.

By traversing the list starting at the rootvf s pointer, scandd counts the number

Chapter 3: Soluti,on Strategy and Scandd's Implementat'ion Detai,Is

of file systems configured on the system and in turn allocates the same number of

scandd-savedvop structures. Once the array of structures has been allocated,, scandd

saves the vnodeops for all file system types encountered in the VFS linked list. This is

achieved by obtaining the root vnode for a file system through the vfs-root function

in vf sops. In addition, every VFS structure has a member, vf s-f stype, which spec-

ifies the type identifier for the fiie system type it implements; VFS structures for the

same file system type have the same value for the field, vf s-f stype. Scandd uses the

vf s-f stype member in the VFS structure to index into the array of scandd-savedvop

structures. Once scandd has saved the vnodeops for a file system, it sets the vari-

able, slot-taken, to 1 indicating that the vnodeops for that file system type have

already been saved. It then replaces only the functions that modify the content or the

metadata of a file or directory in the vnodeops with its own functions. Since these

operations modify critical kernel data structures, scandd acquires a write lock on the

VFS list by calling the function, vfs-list-1ock, until vnodeops for all file systems

have been inspected.

To intercept file modification calls for a file system, scandd must replace the

vnodeops function pointers with the pointers to its own functions in the vnod.eops

for that file system. This operation need to be done only once per file system type. In

addition, as scandd's functionality is limited to intercepting only the files or directories

that have been changed in a monitored file system, only pointers to the functions that

modify the contents of a file, directory or its metadata need to be replaced (e.g., write,

chmod, remove) mkdir, rename) link, symlink, etc.). Before replacing the function

pointers in the vnodeops for a file system type, scandd must save the original function

27

Chapter 3: Soluti,on Strategy and Scandd's Implementati,on Details

pointers. This is because, scandd must restore the replaced function pointers with

their original values when it is unloaded from memory. Scandd uses the data structure

in Figure 3.1 to save the vnodeops for a file system type.

Once the vnodeops functions for all file systems have been replaced, file modifi-

cation calls are routed through lhe scandd driver. Every vnodeops function called

receives a pointer to the vnode on which the file operation is done. It is through

this vnode pointer that scandd is able to access the remaining data structures to

perform its functions. In the replaced functions, scandd verifies whether the call is

for a file/directory in a monitored file system. If the file system is being monitored,

scandd must record the name of the modified file. Section 3.7 specifies the method

by which the modified files in a file system is recorded and the related data structures

used. Regardless of whether a file system is monitored or not, the original vnodeops

function must be called to complete the file operation. Scand,d, achieves this through

the original vnodeops function pointers saved in sca¡dd-savedvop. This is achievecl

as follows:

1. for every function Fn intercepted by scandd

2. obtain the VFS pointer for the file system through the vnode member v-vf sp

3. obtain vf s-f stype value from the VFS pointer

4. access the original file system call as scandd-savedvop lvfs-fstype] . function

(args)

Since scøndd intercepts some of the file system calls, it is extremely important

that failures from scandd's internal operations should not be translated as a failure in

28

Chapter 3: Solut'ion Strategy and Scandd's Implementat'ion Detai.ls

the file system call. Otherwise, file system operations may appear to report random

failures even though they were successful.

3.6 loctl Interface

This section explains the i,octls supported by scandd and the data structures an

application must use when invoking these i,octls. Section 3.10 explains how these i.octls

can be used to build an efficient scan method. As is customary on UNIX, these i.octls

return 0 for success and -1 for failure. In case of a failure, errno (a UNiX standard

variable used to return error codes from system calls and library functions) specifies

the error code.

In ali the structures mentioned in this section, MAXPATHLEN is a constant defined

in the system header files specifying the maximum pathname length in Solaris OS,

set to 1024.

3.6.1 SCANDD_ADD_FS

An application using this i,octl must use the structure shown in Figure 3.2. Ioctl

SCANDD-ADD-FS instructs scandd that the file system specified by the field, mntpt, be

added to the list of monitored file systems. Scandd returns the error, EEXISTS, if the

file system is already being monitored.

Upon successful completion, scandd creates a file to record the names of modified

files for the specified file system in the directory specified by the configuration value,

SCANDD-TARGET-DIRECT0RY. The file created is named by replacing all '/' characters

in the file system name with the '#' character. 8.g., if the file system, /a/b/c, is

29

Chapter 3: Soluti,on StrategE and Scandd's Irnplementat'ion Detai,ls 30

typedef struct sca¡dd-add-fs
Jt

/* ll¡: nâme of the mount point x/
char mntpt IMAXPATHLEN] ;

) scaadd-add-fs-t;

Figure 3.2: Data structure for SCANDD-ADD-FS and SC¡,IrI0D-DELJS ioctls

being added, scandd creates the file, #a#b#c. This method uniquely names the files

created for file systems, /usr and /a/usr.

3.6.2 SCANDD-DEL-FS

This i,octL uses the same structure used by the zocúl, SCANDD-ADD-FS, described in

Figure 3.2. Iocúl SCANDD-DEL-FS instructs scandd that the file system specified by

the field mntpt, be deleted from the list of monitored file systems. Upon successful

completion of this 'ioctl, aII files created by the driver to store the names of modified

files for the file system are removed.

3.6.3 SCANDD-IS-FS-TRACED

locúl SCANDD-ISJS-TRACED is used by an application to query whether a file system

is being monitored by scandd or not. Figure 3.3 shows the data structure used as an

argument to this 'ioctl. On successful completion, the field, is-traced, is set to 1 if

the file svstem is monitored and 0 otherwise.

Chapter 3: Solut'ion Strategy and Scandd's Implementati.on Detai,ls 31

typedef struct scandd-is-fs_traced
It

/x IU: nâme of the mount point x/
char mntpt IMAXPATHLEN] ;

/x OUt: is traced or not x/
int is-traced;

) scandd.-is-f s-traced ;

Figure 3.3: Data structure for SCANDD-IS_FS_TRACED 'ioctl

3.6.4 SCANDD-SYNC-CHANGED_FILES

Invoking lhis i,octl is an indication to scandd that the file used to record the

names of modified files be closed and a new file be opened to record the modified file

names. As will be described in Section 3.8, scandd caches the modified file names in its

memory and this i,octl instructs scandd to write the modified file names from its cache

to the change file. Since more than one 'incremental backup may be run between two

fullback'ups, scandd must segregate the files changed in each incremental into separate

files. To achieve this, scandd renames the file containing the modified fiie names to

a file appended with a version number. The version number is a running sequence

starting at 0 and incremented after each successful SCANDD-SYNC-CHANGED-FILES i,octl.

Figure 3.4 shows the data structure used by this i,octl. The field, chf ile-no-rev,

returns the full pathname of the change file without the version number; the field,

revision, specifies the version of the change file that was written and closed by

scandd; the field, error, returns any error that the driver may have encountered

while executing this i,octl.

Chapter 3: Soluti,on Strategy and Scandd's Implementati,on Deta,ils 32

typedef struct scandd-sync_changed_files

{
/x IIU: name of the nount point x/
char mntpt IMAXPATHTEN] ;

/x OUt: change file without revision
char chf iIe-no-rev IMAXPATHLEN] ;

/* OVt: l-atest revision saved x/
int revision;

/x OUt: any error in the driver */
int error;

s c andd-sync -changed_f i le s _t ;

Figure 3.4: Data structure for SCANDD-SYNC-CHANGED-FTLES i,octl

3.6.5 SCANDD-GET-LAST-ERROR

Figure 3.5 shows the data structure used for lhe i,octl, SCANDD-GET-LAST-ERR0R

ioctl. This ioctl returns any error condition from the driver.

typedef struct scandd_get_last_error
{

/* OVt: any error in the driver */
int error;

) scand.d-get-last-error-t ;

Figure 3.5: Data structure for SCANDD_GETIASTIRROR docúl

All of the describ ed ioctls except SCANDD-GET-LAST-ERR0R return the error ENSENT

if the specified file system does not exist on the system or if it is not monitored

Chapter 3: Soluti,on Strategy and Scandd's Implementat'ion Detai,Is

by scandd In addition, if the file system specified in calling any of Lhe i,octls is

the same as the file system on which the directory specified by the configuration,

SCANDD-TARGET-DIRECTORY, resides, scand,d, returns the error, EINVAL.

Chapter 3: Soluti,on Strategy and Scandd's Implementat'ion Detai'Is 34

/x structure that represent a single traced file system */
typedef struct scaldd-fs
{

/* rnount point of the file system */
char mntpt IMAXPATHLEN] ;

/x vnode of the file system being traced x/
vnode-t *fs-vp;

/* count of threads using this stru cture */
volatile int ref-count;

/x conditional variable to wait for ref-count x/
kcondvar-t cond-var;

/* variable indicating a thread is r^raiting to delete the FS */
int waiting-to-delete ;

/* If this fÍeld is non-zero the change list is u¡reliable x/
uint-t error;

/x device of the traced file system x/
dev-t fsid;

/x list of files changed x/
scandd-change-list-t cha-nge-Iist ;

/* pathname of the chaage file */
char cha¡ge-f ile IMAXPATHLEN] ;

/x vnode of the file to write the change list to */
vnode_t *change_vp;

/* version of the change fILe x/
int version;

/x pointer to the next traced file system tr/

struct sca¡dd-fs *next-fs;
) scand.d-f s-t;

Figure 3.6: Data structure to save a monitored file system

Chapter 3: Soluti,on Strategy and Scandd's lrnplementati,on Detai,ls 35

3.7 IIow Monitored F ile Systems are Stored

In this section, I explain the data structures used to store the monitored file

systems information and the metho ds scandd employs to efficiently verify whether

a file/directory modified is part of a monitored file system or not. Scandd uses the

struiture in Figure 3.6 to save the name of a file system monitored upon a successful

SCANDD-ADD-FS ioctl.

The field, f s-vp, refers to the vnod.e of the root directory of the monitored file

system. Reference to the root vnode is added when a file system is monitored by

scandd and deleted when the file system is removed ftom scandd's monitored list.

The field, ref -count, is for reference counting the number of kernel threads accessing

a file system structure. The reason for implementing a reference count is that, many

kernel threads may perform file modifications on the same file system at the same

instant. Therefore, using a lock to access an individual file system structure for the

entire duration of a file modification will degrade file system performance drastically.

Instead, the lock controlling access to the file structure is taken only for the duration of

time required to increment the ref -count field. The member, cond-var, is a variable

of type kcondvar-t, a conditional variable [23, Ch. 3] used to wake up kernel threads

waiting for the reference count, ref -count, to drop to zero. This may occur before a

file system is removed from the list of monitored file systems and the thread trying

to do so detects that the reference count for the file system is not zero. In this case,

the lhread trying to remove a file system data structure must sleep until all threads

referring to the same file system structure decrements the reference count, ref -count.

Before sleeping, the thread deleting the file system sets the field, waiting-to-delete,

Chapter 3: Solut'ion Strategy and Scandd's Implementat'ion Detai,ls

to 1 and sleeps on the conditional variable, cond-var. If waíting-to-del-ete is set,

scandd wakes up the sleeping thread whenever ref -count drops to zero. The field,

error) is set if there was an error for this file system, which is returned as part of

the processing of the i,octl, SCANDD-SYNC-CHANGED-FILES. The field, f sid, stores the

file system identifier (FSID) for a file system. FSID is a combination of the major

and minor numbers of the device from which a file system is mounted. Since every

file system is mounted from different devices, FSID is unique for each file system.

The field, change-list, stores the list of modified files until they are written to the

change-f ire (the file that stores the names of modified files) whose vnode is stored

in change-vp. Section 3.8 explains how scand,d, stores the list of modified files in its

memory. The field, nntpt stores the name of the file system and the field, version

stores the version of the file containing the modified file names last written for the file

system. Scandd stores the file systems monitored as a linked list; the field, next-f s,

points to the next file system in the list.

In response to the SCANDD-ADDIS.ioctl, scandd allocate the structure, scandd-

-f s-t, and copies the mount point information after initializing all the members to a

known state. Next, scandd obtains the file system identifier (FSID) for the file system

added. As described in Section 3.3, scandd verifies that the file system added is not the

same as the file system containing the directory specified by the configuration value,

SCANDD-TARGET-DIRECT0RY. Scandd verifies this by comparing the FSID obtained

with the FSID of the directory mentioned in the configuration field. The FSID for

the directory in SCANDD-TARGET-DIRECTORY is obtained by traversing the VFS from the

vnode for the directory saved during the initialization phases of scandd (as mentioned

36

Chapter 3: Soluti,on Strategq and Scandd's Implementat'ion Detai,ls

in Section 3.4).

Since scand,d, has replaced the vnodeops for file systems as part of its initialization,

every file modification call intercepted by scandd needs to verify if the file for which

the call is made is part of any file system in the monitored list. Therefore, scand.d,

must be able to lookup the list of monitored file systems efficiently. This is achieved

by storing the collection of monitored file systems as a hash table. The hash table

employed uses a number of buckets that is a power of two and the modulo operator

is used to efficiently locate the appropriate bucket for a file system. The current

implementation uses 16 buckets for the hash table and the hash value for a file system

is computed as 'FSID modulo 16'. Since the number of buckets is a power of two, the

modulo operation can be efficiently calculated using bitwise-AND operation (bitwise-

AND with 15 in this case). Scandd uses an array of pointers to scandd-f s-t as the

hash table. If more than one file systems hashes to the same bucket, they are linked

together into a list using the field, next-f s in the sca¡dd-f s-t structure. To serialize

the kernel threads adding or deleting file systems to or from a hash bucket, scandd

uses the same number of mutexes as the number of hash buckets. Scandd follows the

following steps for adding or deleting a file system:

1. Obtain the FSID of the file system by traversing the VFS from the vnode of the

file system's mount point.

2. Find the hash value for the FSID.

3. Acquire mutex for the hash bucket that the file system belongs to.

,lt

4. Verify whether the file system already exists in the hash bucket.

Chapter 3: Soluti,on Strategy and Scandd's Implementation Details

5. Perform addition/deletion of the file system to/from the hash bucket. If adding,

always add the new file system at the beginning of the list

Number '16' is selected for the number of buckets due to the following reasons:

e Most systems tend to have a small number of fite systems with a large number

of files in them and hence a small number of hash buckets should suffice to hash

them efficiently.

o The array of pointers to scandd-f s-t is declared as a global variable in the d,river

and I have selected a smaller value for the modulo operator there by balancing

the space requirement for the array and the performance of the driver.

" There are no studies available that portray the number of mounted file system

to make an informed selection on the number of buckets required. Fbom my

experience with Solaris systems, I have noticed that the number of mounted file

systems is often in the range 5-10.

3.8 Identical File Name Elimination in the Modi-

fied File List

As mentioned in Section L.3, scandd segregates the names of the modified files by

their file system. It may be that a list of files in an file system might be modified many

times resulting in identical entries for them in the list of modified file names. Scandd

tries to eliminate these identical entries by using a cache of modified file names; the

amount of identical file name reduction achieved depends on the file access pattern

38

Chapter 3: Soluti,on Strategy and Scandd's Implementati,on Deta,ils

of applications on a file system and is not generaily predictable. Therefore, scand,d,

makes no effort to predict any file access patterns. In this section, I discuss the

method scandd employs for identical file name elimination. In addition, this section

details the scenarios in which duplicate elimination is not possible.

In Figure 3.6, I had explained the data structure used to store a monitored file

system. The member, chaage-list, in the above structure is the primary data struc-

ture that implements the cache of modified files for a file system. Figure 3.7 show

this data structure in detail.

/x hash tabl-e structure of alt changed. entries */
typedef struct scandd-change-list
{

/x fírst iten in chaage list ordered by access */
scandd-change-f iIe_t *lru_f irst ;

/* last iten in chaage list ordered by access x/
sca¡dd-chaage-f ile_t *Iru_Iast ;

/x number of changed entries */
int num-entries;

/* mutex l-ock for entries in the change list x/
knutex-t change_list_lock ;

/* next offset to write x/
long long file_offset;

/x hash table of chaaged files x/
s c andd-chaage-f i 1 e-t x change-f i le s ISCANDD-IN0DE-HASH-NUMBER] ;

) scandd-change-1ist-t ;

39

Figure 3.7: Data structure for caching a iist of modified files

Chapter 3: Soluti,on StrategE and Scandd's Implementat'ion Deta'ils

/* structure to save a single fil-e nane that has been changed x/
typedef struct scandd-change-file
Jt

/+ pointer to the previous entry in the hash list */
struct sca¡dd-change-f ile *prev;

/x pointer to the next entry in the hash list x/
struct scandd-change-file *next ;

/* pointer to the previous entry in the LRU tist x/
struct scandd-change-f ile *Iru-prev;

/* pointer to the next entry in the LRU list x/
struct scandd-change-file tlru-¡ext ;

/x inode number -- va-nodeid in vattr x/
u-longlong-t inode;

/x síze of memory all-ocated including. space for file name x/
int size;

/* length of file na¡ne including the newline character x/
int name-Ien;

/* name of the f ile. r,¡ill be allocating the correct size f or
** the file name when allocating memory.

char f ile-nane [1] ;

) scandd-change-f ile-t ;

Figure 3.8: Data structure for a modified file entry

The list of modified files is stored as a hash table, change-f iles, which is an array

of pointers to scandd-ctraage-f ile-t shown in Figure 3.8. This hash table is similar

to the irash table used to store the list of monitored file systems with the exception

40

Chapter 3: Solut'ion Strategy and Scandd's Implementati,on Deta'ils

of the number of hash buckets used, 1024 (defined as SCANDD-IN0DE-HASH-NUMBER in

the source code). The hash bucket is located using the inode number of the modi-

fied file (inode modulo 1024). Similar to the hash table for file systems monitored,

the number of buckets must be a power of two for efficient hash computation. As

scandd-chaage-list-t is designed to store the list of modified file names, it requires

more buckets for faster lookup and hence consumes more memory than scandd-f s-t.

To make lookups efficient and to limit the memory usage to a deterministic value,

scand"d, stores only a maximum of 1024 entries at any given time in the above cache.

If the addition of a new entry into the cache would increase the number of entries

beyond the predefined value, 7024, scandd removes one entry from the cache and

writes the file name corresponding to the removed entry into the file where modified

file names are written for the file system. The entries in this cache are maintained in

least=recently-used (LRU) order where the members lru-first and lru-l-ast point

to the 'most recent' and the 'least recent' entries in the cache. Before adding a file

name into the cache, scandd checks if it is already present in the cache. If present,

scandd moves the cache entry corresponding to the file name to the beginning of

the LRU list. This is achieved by removing the entry from its current LRU location

and adding it to the location pointed to by lru-f irst. The field, 1ru-Ìast, points

to the location from which entries âre removed to make space when a ne\M entry is

added and the number of entries is already 1024. The members mrm-entries and

f ile-offset specifii the number of entries in the cache and the offset in the fiie

where the next modified file name is written. Every time an entry is written to the

clrange-list, scandd increments the member variable, f ile-of f set, by the file name

4I

Chapter 3: Soluti,on Strategy and Scandd's Implementati,on Deta,ils

length. For any modification in sca¡dd-chaage-list-t, scandd acquires the mutex,

change-list-1ock, to achieve mutuai exclusion between various kernel threads.

The structure, scandd-change-fiIe-t, contains the pointers lru-prev and fru-n-

ext, which point to the previous item and the next item in the LRU cache, respec-

tively. Similarly, the pointers prev and next point to the previous item and the next

in a hash bucket if more than one modified file hashes to the same bucket. Thus,

the modified files are arranged as a doubly-linked list, which allows scandd to do

quick addition or deletion of any entry from the cache in a constant time once an en-

try's location in the cache has been determined. In addition, scandd-change-f ile-t

contains the members: inode and f ile-name, which store the inode number of the

modified file and the name of the modified file.

When a file is removed from a file system monitored by scandd, it is removed from

the above cache entirely. The flowchart shown in Figure 3.9 shows the steps scandd

performs during a file addition or deletion to keep the cache in sync with fiie system.

Scandd uses the inode number of a file to verify if it is present in the cache.

As the cache size is limited, a file might have been removed from the cache to

make space for another fi.Ie. If a file removed from the cache is modified again, scand,d,

will reinsert a new entry for it. It is in such cases lhat scandd is not able to eliminate

identical file names even though the same file was modified more than once and hence,

the file containing the list of modified files may have identical entries . Scand,d,makes

no effort to remove these identical entries. Programs using the list of modified files

generated by scandd must remove these identical file names before backup. Removal

of identical file names can be accomplished using standard UNIX utilities such as

42

Chapter 3: Soluti,on Strategy and Scandd's Irnplementati'on Detai,ls 43

ye-: ,

v-- -- -

lf present, remove
the f¡le from the hash

bucket

Obtain inode for the
file and its hash

value

-Y-
Acquire mutex for
the hash bucket

'\..-
't"t.

ls the f¡le '\.\
'. being
.. removed

2.'

t--
I

I

Y

.no

.,)--_---l
I

I

.x
. yes Remove the entry

bucket

no

I
I

I

Y_

*i

Y

Release mutex for
the has bucket

l

v
stop

Add new entry at
Iru_first for the hash

bucket

I

I

v

Release mutex for
the hash bucket

_ __-Y-_ __-

stop
'!_,--------,-,,,,-,-,-/'

Figure 3.9: Flowchart showing addition/deletion of a file tof from the cache

chapter 3: soluti,on strategy and scøndd's Implementation Detai,ls

sort and uniq. The utility sort sorts the list of changed files so that all identical file

names occur together. The output of sort can be piped to the utility uig, which in

turn removes identical entries. E.g. a backup application can use ,sort -r I uniq,

to remove the identical file names. The '-r' option instructs the sort program to

perform a reverse sort to generate the tist of modified files in a depth-first manner as

performed by the traditional scan code shown in Figure 1.1.

3.9 Error Conditions

During normal operations, if scandd encounters any error conditions, it will set

an error flag; a scan program using scandd must first verify that there were no

errors flagged by the driver using the i,octl, SCANDD-GETIAST-ERR0R. If there rvas an

error' the list of modified files generated by scandd must be considered unreliable.

In addition, lhe i'octl, SCANDD-SYNC-CHANGE-FILES, also returns an indication of the

driver error enabling backup applications to check whether writing the modified file

names itself resulted in any error conditions in the driver. If scand,d, has flagged an

error in any of the above cases, the list of files generated by scand,d, cannot be used.

Backup applications must therefore switch to one of the traditional methods described

in Figure 1.1.

3.10 Methodology

The flowchart shown in Figure 3.10 shows the pseudo-code of an example ,iscan

application. In this code, 'iscan first checks to see if scand,d encountered any error

44

Chapter 3: Soluti,on Strategy and Scandd's Implementati,on Detai,ls 45

*. _,._-.tg-s-. _ _,__..'

Use the traditional ,

scan method for <---- * no

backing uP all file Ä--*""-\
systems.

\..
_-,' Has the ...

driver
reported .> -[-o- -.. an'\
. error? .. '

Y
Y

ls rhe t¡le \"

_ system
... . monitored?

_.,
'"a,.

yes

lnstruct driver to
write the modified file

name

yes

V

Has the '\.
driver

'\.
reported

'',.un tuo'?.,."''

Y

Remove identical file
names

Backup using
filenames obtained

__,_,Y__ _

stop

Figure 3.10: Flowchart depicting a sample i,scz,n

Chapter 3: Solut'ion Strategy and Scandd's Implementat'ion Detai,ls

conditions by invokingthe'ioctl, SCANDD-GETJAST-ERR0R. If scandd reported an error,

the traditional scan method must be used for all file systems. If scandd did not report

any errors, 'iscan performs the following operations for each file system. Regardless

of wlrether the backup is an 'incremental or a di,fferenti,al, scandd issues the i,octl,

SCANDD-SYNC-CHANGED-FILES that instructs the driver to write all modified file names

from the cache and return the version number for the last file written. If the backup

is an incremental backup, i,scan only needs to use the latest version of the modified

file. On the other hand, if the backup is a di,fferenti,al backrp, 'iscan must combine all

versions of the modified file list to a single file, the first version being 0 and last version

as returned by the zocúl, SCANDD-SYNC-CHANGED-FILES. In both cases, elimination of

identical file names, as described in Section 3.8, must be performed before the list of

modifi.ed files can be handed off to the backup process.

3.11 Scandd Termination

The termination actions performed by scandd are somerÃ/hat the reverse of those

performed during the initialization phase. With Solaris OS, a driver can be un-

loaded using the command 'rem-drv' and the argument to this command specifies

the driver to unload. As part of the unload procedure, the Solaris OS calls the rou-

tine, scandd-detach, to terminate and detach the driver from the devices its may

be controlling. In the case of scandd, scandd-detach invokes scandd-f ini, which

performs the following steps:

1. Checks to see if any file systems are being monitored. If so, it returns the error,

EBUSY, which indicates that the driver cannot be unloaded.

46

Chapter 3: Soluti,on Strategy and Scandd's Implementati,on Detai.ls

2. Restore the vnodeops pointers that were replaced during the initialization phase

of. scandd.

3. füee any kernel memory that was allocated lor scandd's internal use including

the memory allocated for storing the saved vnodeops pointers.

4. Fbee all mutexes that were allocated during the initialization phase.

5. Release the vnode for the directory specified by the configuration field, SCANDD--

TARGET-DIRECTORY that was obtained during the initialization phase of scandd,.

The function scandd-detach will succeed if and only if, all of the above steps

complete successfully. Once scandd-detach returns success, the kernel invokes the

routine -f ini to complete the unload of the driver from memory.

3.L2 Special Case

When a file is created in a directory, scandd must log the name of the newly

created file as well as the directory in which it was created. Because, the creation of

a file adds an entry to the directory, this changes the ctime on the directory itself.

My efforts to intercept the vnodeops function responsible for writing the d,irectory

contents resulted in several crashes and hence I opted to log both the names of the

file and the directory as part of a create. I have explained the reason for the crash in

Section 5.1.1.

47

Chapter 3: Solution Strategy and Scandd's Implernentat'ion Deta'ils 48

3.1-3 Driver Logs

Any errors from scandd are logged using the system logger. By defauit, all log

messages from kernel modules are written to the frIe, /var/adm/nessages and so are

the logs from scandd.

3.L4 Concluding Fl.emarks

In this chapter, I have discussed the implementation details of scandd including its

initialization and termination steps. In addition, I have detailed the i,octls defined by

scandd and discussed a sample i,scan application using these i,octls. The performance

comparison of the traditional method and i,scan is the topic of the next chapter.

Chapter 4,

Correctness, Performance and

Evaluation

For scandd to replace the scan phase in a backup, the list of modified files gener-

ated by scandd and that created by the scan program in a traditional backup must

be the same. Otherwise, there is potential for files to not be backup using the method

developed in this thesis. Therefore, verifying the correctness of scandd's implemen-

tation is an important evaluation step.

4.L Testing Tools

To test scandd's functionality, I have developed several different programs. They

include a program to exercise file system operation as well as a program to test

scandd's i,octls. Some of the important test programs I used for the verification of

scandd are:

49

Chapter l: Corcectness, Perforn'Lance and Eualuati,on

4.L.L testioctl-s

This program wa,s developed to test the ioctls supported by scandd Upon invo-

cation, this program enumerates all ioctls supported by scandd. The i,octls suppor-ted

by scandd were described in Section 3.6. Any individual i,octl ftom the above list may

be selected for testing. This program simply reads any arguments required by ttre

i,octl from stdin and prints the results on stdout

4.L.2 test-f ind

I developed this tool to verify the correctness of scandd in generating the list of

modified files. Although the UNIX utility, f ind, has an option -nelrrer that could list

files newer than a specified file, I was not able to use it for testing scandd. Because,

the option -ner¡rer lists modified files based on the mtime only. Whereas, the scan

phase in a backup must list files modified based on both ntine and ctine of a file.

The fields, ntine and ctine refer to the modification time and status change time

of a file, respectively. When a file's contents have been modified, the system updates

the mtine. On the other hand, when a file's permissions have changed, the system

updates the ctine.

Program, test-f ind, takes two arguments; the first argument can be one of

'-ct.ine', '-mtime' or '-both' which specifies what time on a file should be used

to verify if it newer and the second argument specifies the file whose mtine is to be

used as the reference time for comparing. The file system to list for modified files is

read from the standard input. This program employs a depth-first search of the file

system specified and uses the statO system call to obtain the ntine and ctine of

50

Chapter f : Corcectness, Perforn-Ll,nce and Eualuation

the files or directories it encounters. Depending on the first option to this program,

one or both of the times associated with each file are compared with the mtime on

the reference file (second argument). This program lists all files and directories whose

mtime/ctime is more recent compared to the reference file.

4.2 Verification of Correctness

To verify the correctness of scandd's implementation, I used the tools, test-f ind

and testioctls, just described. Steps in the verification process were as follows:

at the start of the verification process, use testioctls to monitor one or more file

system(s). Next, instruct scandd to synchronize its cache of modified files for the

file systems of interest using the i,octl, SCANDD-SYNC-CHANGED-FILES. The above ioctl

creates a ne\M version of the file containing the modified files and outputs its version

number (let's assume this version to be 1). We use the time on this file as the

reference time for listing the modified files by providing it as the second argument

to the test-f ind program. After some number of file modifications and namespace

changes on the file system, the 'ioctl, SCANDD-SYNC-CHANGED-FILES, is issued again to

create a newer version of the list of modified files (version 2). If scand,d, generates the

list of modified files correctl¡ the list of modified files generated by test-f ind and

the latest version (version 2) of the modified files generated by scand,d. must be the

same.

In my testing with testioctl-s and test-f ind, there are some cases where I found

differences between the list generated by scand,d, and test-f ind. Section 4.3 explains

the reasons for the differences and its potential effect on backups and restores.

5i

Chapter /r: Corcectness, Perfor"m,ance and Eualuati,on 52

4.3 Can Scøndd Miss Files?

Hard links and renaming of directories poses a significant technical challenge for

scandd resulting in some scénarios where the list generated by scandd will differ from

the list of files generated by a traditional scz,n program. In addition, scandd omits

special files such as block and character device files, and named pipes from its list of

modified files. This is because, the Solaris kernel does not provide the pathname for

the above file types when they are modified.

4.3.L Hard Links

In comparison with symbolic links, hard links are implemented differently in

UNIX. The main noticeable difference to a user is that hard links cannot cross file

system boundaries where as symbolic links can. Apart from the above, there is a

major implementation difference between hard links and symbolic links that poses

an implementation difficulty for scandd in some specific cases. Within a file system,

ali hard-linked files have the same inode number (which may be verified by the '-i'

option to the UNIX 'Is' command) whereas symbolic links to a file or directory have

different inode numbers.

If a file has many hard links and if one of the hard-linked files is removed, the

link count (representation of the number of hard links to a file) on the file changes,

which results in a change in the ctime of the file. As the ctine change is effected

through some internal file system call resulting from the invocation of the remove

operation, scand,d, cannot intercept the ctime change. As a result, there will be a

difference between the list of modified files generated by the traditional scan program

Chapter l: Correctness, Perforn'Lance and, Eualuat'ion

and scandd if some hard-linked files are removed. Since no file data was modified,

however, backup using the list generated by scandd will not cause any data loss.

Moreovet, the ctime change is irrelevant as the restore program can never set the

ctine to the original value. This is because, a restored file will always have the last

write time as its ctine.

If a file has many hard links and if only one of the files is modified, a traditional

scan program will list all of the hard-linked files as modified whereas scandd wllI

list only the actual file that was modified. In essence, a traditional backup program

will backup multiple copies of a hard-linked file whereas backup using the list of files

generated by scandd will backup only the files that were actually modified regardless

of whether the files were hard-linked or not. Since traditional backup saves multiple

copies of the same file, restore from a traditional backup will restore multiple copies

which are no longer hard-linked. This is because, in comparison to symbolic links,

backup programs cannot determine the link information of a hard-linked file. Scand,d,

too is not immune to the side effects of hard-linked files. Restore from a backup

with the list generated by scandd may also restore multiple regular files instead of

hard-linked files.

In addition, there is one case where scøndd can miss the modification of a hald-

linked file thereby causing possible data loss. This case occurs when a hard-linked file

is modified and deleted immediately after its modification. As the file was removed,

scandd deletes an¡r reference to the modified hard-linked file from its cache. As

all hard-linked files share the same inode, the modification will be visible through

the other hard links, which enables a traditional scan program to list them. The

53

Chapter l: Correctness, Performo,nce and Eualuati,on

current implementation of scandd has no mechanism for avoiding this situation. To

prevent any data \oss, scandd will flag an error on the specific file system when

any file with link count greater than one is removed; this error will be visible to the

application invoking the i,octl SCANDD-SYNC-CHANGED-FILES. As shown in the flowchart

in Figure 3.10, a scøn using scandd must check for any errors on the file system after

an application issued the above i,octl If. scandd has flagged an error on the file

system, scøn must be performed using the traditional scan method. Switching to the

traditional method prevents any data loss in this scenario.

4.3.2 Rename

The issue with rename is that the vnode for the renamed file/directory contains

the pathname before the rename rvas performed. This is a Solaris bug and there are

many references to this bug on the Internet and also at the official site where Solaris

updates are available, www.sunsolve.sun.con. Sun microSystems [2a] has issued an

update to resolve this issue. However, the update addresses only rename of files, not

directolies. Therefore, scandd is still vulnerable to this issue for renamed directories

and its children. Since scandd cannot identify whether a file/directory being modifi.ed

is the child of a renamed directory or not, it performs the following tests to verify if

a file/directory was either renamed or if it belonged to a renamed directory:

ø Scandd performs a lookup on the pathname obtained from the vnode of the

modified file/directory.

o If the lookup is successful, the pathname corresponds to an existing file. How-

ever, it may be possible that a file or a directory was renamed and another

54

Chapter l: Correctness, Perforn'Lz,nce and Eualuati,on

file/directory took its previous name and that the modification request is for

the new file/directory. To verify this conditíon, scandd compares the original

, vnodes and the vnode obtained from lookup. If the vnodes are different, then

the modification request is for a file/directory that took the name of a renamed

file/directory. In this ca.se) scandd sets an error for the file system specifying

that the list of modified files is unreliable, which can be detected by the scan

program. On the other hand, if the vnodes are the same, the pathname is

simply added to the list of modified files.

e If the lookup fails, the file/directory is the child of a renamed directory. In this

case too, scandd sets an error to flag to indicate that the list of modified files

is unreliable.

It is also possible that a user only renamed a directory but did not modify any

files under the renamed directory. If a traditional backup was performed in such

a situation, it will save all fileb under the renamed directory. This is because, a

system restored from the recent backup must bring back the file systems in the exact

same state as at the time of the backup. Although the current impiementation of

scandd generates the name of the renamed directory into the list of modifred files, the

backup phase cannot determine whether a directory was renamed or not. Therefore,

the current implementation of scandd and its associated test programs do not handle

renamed directories as traditional backup programs do. Section 5.1 discusses some

possible enhancements to scand,d, to handle renamed directories so that the backup

represents a true image of the system when restored.

55

Chapter l: Correctness, Perfornl,ance and Eualuati,on

4.3.3 Special Files

When special files such as character or block devices, and named pipes are mod-

ified, the pathname component in the vnode is NULL. Therefore, scandd cannot gen-

erate a pathname for such modified files. Instead, scandd flags an error on the file

system to indicate the unreliability of the list of modified files.

4.4 Performance Evaluation

This section lists the various performance evaluation steps that I performed to

evaluate scandd's performance. Some of the initial tests mentioned in this section do

not evaluate the performance of. scandd when used as a replacement for the tradi-

tional scan method, scandd's primary purpose. However, such tests are of primary

importance as these tests measure the impact of. scandd on the performance of the

system. This is because, scandd is a device driver and hence can adversely affect the

system performance if badly designed and/or implemented. Tests that measure the

performance of file system scan are listed later in this section.

4.4.L System Information

The characteristics of the system that I used to develop scand,d, and measure its

performance are as follows:

Model: SunBlade 150.

CPU: UItTaSPARC-Iie 550 MHz.

56

Chapter /r: Corcectness, Perforn'¿z,nce and Eualuat'ion ÉnJf

Number of CPUs: 1 CPU.

Memory: 512 MB.

Swap: 1GB.

Disks: Two IDE drives each of 74.5 GB capacity

used for all the system partitions and home

drive was reserved solely for testing scandd.

of which, the first one \Mas solely

directories. Whereas, the second

Update Level: System was up-to-date with all the latest updates as of May, 2009.

4.4.2 Scandd's Impact on Regular File Operations

I designed the first test in the performance evaluation series to measure the impact

of scandd on regular file/directory operations: create and mkdir. Table 4.1 shows

the time taken to create many files under a directory for three different scenarios:

scandd not loaded, scandd loaded but no file system monitored and scandd loaded

and monitoring the file system of interest. Figure 4.1 shows a plot of these three

cases. In each of the three cases, I ran the tests in 10 steps, starting with the creation

of 100,000 files, then incrementing the number of file created by 100,000 to create

200,000 files in the second step, and so on.

Flom Table 4.I, il can be seen that the time taken for the test is almost the same

between Cases I and II, which can be verified from the overlapping plots in Figure 4.1.

Tlre purpose of considering Case II is to measure the impact of scandd when loaded

with no file systems monitored. As mentioned in Section 3.5, when loaded, scandd

intercepts file system calls and hence this case measures any performance degradation

Chapter l: Correctness, Perforn'ùance and Eualuati,on 58

No. of Files

(x 100,000)

1

2

ù

4

5

6

7

8

I
10

Scandd Scandd loaded Scandd loaded
not loaded not monitoring and monitoring

Case I Case II Case III
Time in Seconds

25.4

52.0

77.7
104.6
131.1

159.3
185.6
272.5
238.4
269.3

29.2

51.8
77.9
106.0
1ÐO Dl-JJ.t)

161.1

185.8
276.0
240.6
267.8

33.4
65.8
101.2
735.7
767.7
202.5
235.8
27r.0
305.5
34L.4

Table 4.1: Effect of scandd on file creation

on file systems that are not monitored by scand,d, but as a result of scand,d, intercept-

ing the file system calls. If a file system is not monitored, the only operation the

intercepted call performs is to verify whether the vnode is part of a monitored file

system. As can be seen from Table 4.1 and from Figure 4.I, this operation causes

negligible effect on the performance on an unmonitored fi.le system. Some anomalies

can be noticed in case of rows 2 and 10, which I attribute to the caching of the test

program by the OS. This may have happened when I ran the same test program back

to back.

Case III shows the time taken for creating files in a monitored file system. In this

case) once scandd determines that the vnode is part of a monitored file system, the

file name is added to the list of modified files as described in the flowchart shown in

Figure 3.9. This involves operations such as allocating memory to save the file name)

checking whether the file name is already part of the 'Identical File Name Elimina-

Chapter /¡: Correctness, Perforynance and Eualuati,on 59

Effect of scandd on file creation
400

3s0

300

E zso
o
E zoo

.g 150
o
.E 100
t-

50

0

--+-Scandd not loaded

--€FScandd loaded FS not
monitored

--*-Scandd loaded and
FS monitored

L2345678910
Number of files (unit = 100,0001

Figure 4.1: Plot of file creation times

tion Cache' and if not, adding the file name to the above cache. The performance

degradation on a monitored file system varies between 14% for 100,000 frles and 27To

for 1 million files. One can easily visualize the increasing performance degradation as

the number of files created increases from Figure 4.1.

The variation in the degradation between the smallest and the largest times could

be due to the following factors. As mentioned in Section 3.8, memory is allocated

from the kernel to cache the file names and is later freed when the file names ar-e

written to the file containing the modified file names. This may cause the kernel

memory to be fragmented and hence it may be that a defragmentation operation

may be scheduled by the kernel which may steal some CPU cycles. Writing modified

file names will also result in the consumption of memory pages and later when they

are flushed to the disk, will result in disk I/O. As the size of the file containing the

modified files increases, the kernel daemon fsflush will become more active and steal

CPU cycles to synchronize cached pages to the disk. To give an example, the size of

the file containing the modified filenames when 100,000 files were created was 4 MB,

Chapter /¡: Corcectness, PerfornLance and, Eualuation

which results in about I4To degradation in the file system performance and in the

case of 1 million files created, the size of the file containing the modified file nâmes

was 40 MB, resulting in 27To degradation of the file system performance.

I used the results from this test primarily to fine tune scand,d, so that its impact

on the system is minimal. Using the results from this test, I was able to use the best

compiler optimization flags and inline certain code fragments to get the best results.

Comparing the results from various runs, I decided to use optimization level 3 (-08

) for compiling the driver sources and inline the function that returns the file system

structure (described in Figure 3.6) given a vnode. This is because, the function to

return the file system structure is invoked from the intercepted file system calls and

must be very efficient to,reduce its overhead since it is called frequently.

4.4.3 fmprovement on Standard File Systems

In this section, I focus on the improvements scand,d, provides over traditional

scan on standard file systems. Solaris requires five important directory trees for

its operation. They are: / , /usr, /var, /opt and /tnp. Tladitionally, they are

configured as separate file systems although, the ne\Mer Solaris installations tend to

put all the above directories under one file system. Of the above five directories,

the standard Solaris 10 installation constructs the /tmp directory tree off the swap

partition as it provides a file system whose contents are not retained across reboots

and hence is not important to be backed up to secondary storage. Although, files

in the above mentioned directories change very little (with the exception of /tnp),

backups include the above directories as they are vital for the correct operation of

60

Chapter f : Correctness, Perforrnance and Eualuati,on

the system.

To demonstrate the performance improvements using the methods developed in

this thesis on the above file systems, I have tabulated the number of files and direc-

tories in them and the performance metrics I have used to compare the two methods.

Table 4.2 details the performance figures using traditional scan and scan using scandd.

Using Scandd

61

File
System
Name

/usr
f var

lopt

Scan
Time
(Sec)

=0
tulrua

=0
=0

Table 4.2: Comparison of time between traditional scan and scandd

I measured the number of system calls and the number of context switches using

the Solaris-provided commands: trapstat [25] and vnstat [26]. The command,

trapstat, reports the traps occurring on the system. A trap is a mechanism provided

by modern CPUs to switch from one operating mode to another. Operating systems

use the trap instruction to switch from user mode to kernel mode while executing

system calls. Traps are used for the implementation of many other operating system

features, system calls being only one of them. The command, trapstat, provides

a convenient way to run a given command and report all traps that occurred on

the system resulting from the command. Similarl¡ the command, vmstat, reports

statistics on virtual memory such as page faults, context switches, etc.

To analyze the impact of traditional scan on the system, I measured the system

Tladitional Scan
o. of No. of Scan System Context
Dirs Files Time Calls Switches

(x 1,000) (x 1,000) (Sec) (x 1,000/Sec) (Per Sec)
1.5 3.7 3 5.1 331
8.6 126.7 33 5.8 737
11.9 16.8 38 2.8 737
7.7 120.7 33 5.3 763

Chapter f: Corcectness, Perforrnance and Eualuati,on

calls per second and the number of context switches per second on the same system

when scan waß not running. I have provided the results in Table 4.3. Comparing the

values from Tables 4.2 and 4.3, it can seen that the number of system calls per second

when traditional scan is run is about 30 times than that of a standalone system (when

scanwaß not run). Similarly, the number of context switches is about 3.5 times that

of a standalone system without scandd. The performance figures for the / file system

represent an outlier as the number of files and directories is too small to make a good

average reading of the above parameters.

System Context
Calls Switches

(Per Sec) (Per Sec)

Table 4.3: System calls and the context switches measured on a standalone system

It is interesting to note that the time taken by traditional scan on the /var frIe

system is comparable to that of /usr and /opt file systems even though the numbel

of files and directories combined under /var is only roughly 22% of the number of

files in /usr or /opt directories. The interesting fact about the /var file system is,

it has many more directories than the other file systems. In addition, the directory

structure under /var is deeper, the maximum depth being 18. As mentioned in

Section 2.1, Soiaris maintains a DNLC cache for optimizing lookup speed. In the

case of the /var file system, I presume that the increased time for performing scan

is due to the fact that the DNLC cache hit ratio drops as the number of directories

scanned increases. In the case of /usr and /opt,lookup is performed in the same

62

206190

Chapter ln: Corcectness, Perforn-Lance and Eualuation

directory for a longer duration as the ratio of files to directories is higher in these file

systems. Whereas, lookup on /var moves from one directory to another directory

at a much higher pace putting higher demand on the operating system services to

perform more page-ins and populate more DNLC entries. As lookup moves from

one directory to another, DNLC entries need to be populated for the new directory

encountered and in addition, the system needs to read the disk blocks containing the

information from the new directory. An earlier study by Tamches and Miller [27]

has confirmed the same results on DNLC misses and lookup performance when the

number of fiies/directories are large.

In the case of scan using scandd, all file systems except /usr take less than 1

second to process. This is because these file systems have very minimal changes

over a long period. Since, the granularity of time measurement was in seconcls, I

was not able capture any small amount of time scøn using scandd might have tal<en

on these file systems. Therefore, the time taken on these file systems have been

approximated to the nearest second in Table 4.2. Since scan using scand,d, d.oes

not invoke stat O system calls, the parameters I used for gauging performance of

traditional scan: context switches and system calls are not valid performance metrics

in this case.

As can be seen from the preceding discussion, standard file systems such as ,/,

/usr, /var and' /opt will benefit significantly from using the method deveÌoped in

this thesis. Similarly, there may be other file systems where the number of files

modified is very few compared to the total number of files in the file system. The

next section illustrates the improvement achieved on file systems with many files in

63

Chapter /r: Correctness, Perforrlance and Eualuati,on 64

a dir-ectory.

4.4.4 Improvement on File Systems with Many Files in one

Directory

To.validate the performance improvements on file systems with many files, I cre-

ated a file system of size 63 GB and created a folder with files under it. The test

was carried out starting with 1 million files until 5 million files in increments of 1

million. At each iteration, the previous files were removed and ne\M ones were created

in their place. Since the removal of files using rn took an extremely long time, I

resorted to recreating the file system between each iteration (removing 5 million files

took in excess of 4 hours). At each iteration, I measured the time for traditional scan

and scan using scandd. In addition, I evaluated the number of context switches and

the number of system calls per second to validate the system overhead when both

scan methods were running. Table 4.4 shows the results from the test. The baseline

context switches and system calls per second are already shown in Table 4.3. Fig-

ure 4.2 shows a graph of the time taken for traditional scan and scan using scandd,

Figure 4.3 shows a graph of the number of context switches incurred when traditional

scan and scan using scandd \¡rere run, and Figure 4.4 shows a graph of the the number

of system calls executed in each of these cases.

In the case of scandd, it does not matter whether the files are part of a single

directoly or whether they are scattered among different directories in a file system.

Therefore, I would argue that, with respect to scandd, this test simulates a large file

system (with many millions of files) in which 1 million to 5 million files are modified.

Chapter l: Correctness, Perforrnance and Eualuati,on 65

Traditional Scan
Scan Context System
Time Switches Calls
(Sec) (Per Sec) (x 1,000/Sec)
80 813 12.9

r73 767 11.9
24r 675 72.8

377 764 11.0
1910 500 2.8

No. of
Files

(x 1,000,000)
I
2

.f

4

5

Using Scandd
Context

Time Switches
(Sec) (Per Sec) (x

System
Calls

1,000/Sec
30

62

98
1ÐnIJI

178

320
299
253
277

302

0.7

0.7
0.6
0.7
0.6

Table 4.4: Comparison of scan times when many files in one directory were modified

Time for scan on large directory

!ç
o
q

,=
o
E
'Ë

2500

2000

1500

1000

500

0

--g-Time for traditional
SCan

-€l--Time for scan using
scandd

Figure 4.2: Plot of scan times for many files in one directory

As can be seen from Table 4.4 and,Figure 4.2, thetime for traditional scan exhibits

a non-linear increase in time beyond 4 million files. On the other hand, the time for

scan using scandd remains linear as do the number of context switches and the number

of system calls. In the case of traditional scan, it can be seen that the number of

context switches and the number of system calls per second dropped progressively

as the number of files increased. The drop in the number of system calls when the

number of files increased is because, stat O on files now takes longer, an argument I

used for a different enumeration method in Section 1.1. As the time for an individual

Chapter l: Correctness, Perforrnz,nce and Eualuati,on 66

900
tt
E 800

g 700

I eoo

E soo

.E 4oo

ã aoozp zoo

E 100

0

Context switches

-
Context switches
during traditional scan

-
Context swítches
dur¡ng scan using
scandd

Figure 4.3: PIot of the number of context switches during scan f.or many files in one

directory

140

3 rzo
oI roo
il

Ë80
E60
ol¿oc
o
9zo

0

System calls

-System
calls during

traditional scan

-System
calls durìng

scan using scandd

Figure 4.4: PIot of the number of system calls during scan for many files in one

directory

stat O increased, the number of context switches have reduced because the file system

has to spend more time processing an individual stat O system call. Moreover, as

the directory search space is larger, more directory pages will be required in memory

intr-oducing more page faults and page-ins to be processed by the kernel. As the

number of page faults and page-ins increases, the performance of other applications

running on the system may suffer (depending, of course, on the memory size of the

system).

Chapter f : Correctness, Perfonnance and, Eualuation

Using the -p option of vnstat, I was able check the paging activity on the system

while scan waß running. The -p option provides detailed information on the paging

activity of the system. Using this option, I was able to note that the parameter,

fpi, denoting the number of 'file system page-ins' was consistently larger - hovering

in the range of 5,000 to 8,000 page-ins (an idle system has occasional page-ins less

than 100). If there are more applications that require file system pages, traditional

scan wlII compete for file system pages and will result in lower throughput for those

applications. The large number of page-ins during scan is because the directory size,

as indicated by the Is command, is large (about 150 MB for a directory with 5

million files each files having names of 21 bytes in length) and the file system tries

to keep these pages in memory once they are read. However, some of the pages may

need to be evicted to make room for other pages from different applications or the

scøn itself. Therefore, the performan ce of. scan will depend greatly on the amount of

memory on the system and the number of applications competing for memory on the

system. The extra page-ins introduced by traditional scan will thus drastically affect

the throughput of other application running on the system.

Apart from the performance fiþures, the user experience on the system also con-

firms that the system throughput has dropped drastically. While traditional scl"n was

running, simple commands such as Is and vi took much longer than usual. In some

cases, I had to wait as much as 10 seconds for my interactive commands to be echoed

on the screen.

67

Chapter f : Correctness, Perforrnance and Eualuation

4.4.5 Improvement on File Systems with Deep Directories

Till now, most of the results presented are on a shallow file systems with many

files in them. Table 4.5 illustrates the time taken by traditio nal scan on a file system

that contains a directory with 5 million files at various depths. In all of the test cases,

the number of files is 5 million.

68

Directory
Depth

Pathname
Length

Scan Time
(Minutes)

2

42
LT2

230
490

18

720
260

500

L020

10.5

13.3

22.6
43.8

r32

Table 4.5: Comparison of traditional scan time for a directory at various depths

As can be seen from Table 4.5, time for traditional scl,n on the same directory

containing the same number of files increases as the depth of the directory increases.

In the most extreme case, scan of.5 million files with a directory depth of 490 took 2

hours and 72 minutes. It can be inferred that a system containing some file systems

with deep directories with many files may take an extremely long time for traditional

scan.

In the case of scøn using scandd, the time taken depends only on the number

of files modified. Even if all of the 5 million files were modified, the time for the

deepest case (490 directories deep) is half of the time taken by traditional scan, I

hour and 8 minutes. Virtually all of this time \Mas consumed by the sort program.

The user experience on the system was pleasant as compared to the user experience

Chapter f: Correctness, Perfornlz,nce and Eualuati,on

when. traditional scan waß running where long delays were noticed for interactive

commands run from a terminal. The low impact of. scandd on the system can be

further verified from the output of the UNIX time command, which outputs the real,

user and sys times for a command. In the case of scan using scandd, the real time

was 68.5 minutes, the user time was 52 minutes and the sys time was 6.5 minutes.

Fbom the above figure, the time spent is system call was only 10% of the total time.

An interesting observation I made when performing this test is that scan Look a

very long time because the stat O -s \¡/ere performed with the full pathname. In this

case, the kernel has to traverse many levels in the pathname. However, if the tradi-

tional scan program were to be rewritten such that it changed its current directory to

the directory being scanned and used relative pathnames for stat O, the time taken

for scan could be drastically reduced! For the deepest level, 490, the modified sc¿n

program took only 43 minutes instead of 132 minutes!

4.4.6 Improvement on File Systems with Many Directories

and Files

The idea behind the test in this section is to create a file system similar to those

that exist on large servers. In each run of the test, the number of files created is

fixed, 6 million, where as the number of directories varies from 10,000 to 50,000 in

increments of 10,000. The maximum directory depth is set at 20 in all runs. A depth

of 20 was selected because, most file systems average to a depth of 8 as per a study of

file system contents performed by Bolosky et al. [20]. That study was for file systems

on Windows systems and, in the absence of any other study detailing file system

69

Chapter l: Correctness, Perfoï'rnance and Eualuati,on 70

Scan Time for 5 million files in many directories

1800

1600

f raoo

$ rzoo

; looo

F goo

600

400

200

0

+lìfre ¡n Sec fo¡ tcd¡tioenl scan

-ø-Time in sec for s@n usinB

S6ndd

Figure 4.5: Plot of scan times for many files in many directories

contents and from what I have observed on Solaris system, I conservatively chose

tire value of 20 for the maximum depth in the test (the maximum depth of /var file

system was 18 on my test system.

Using Scandd
No. of

Directories
(x 10,000)

1

2

.)

4

5

Time
(Min)

c0,n ntext ystem
CallsSwitches

(Per Sec x 1,000/Sec
4.4
4.2

4.5
4.4
4.7

316
338

360
l)1.)
JId

357

0.6
0.6
0.5
0.6
0.5

Table 4.6: Comparison of scan times on file system with many directories

Table 4.6 shows the time taken for traditional scan and scan using scandd and

Figure 4.5 shows a graph of the time taken in each of these cases. In addition,

Figure 4.6 shows a graph of the number of context switches and Figure 4.7 shows a

ntext Svstem
Time Switches Calls
Min) (Per Sec) (x 1,000/Sec)
12.1 493 8.6
17 427 6.2
20.4 4L7 5.1

24 404 4.4
26 470 4.r

Chapter /¡: Correctness, Perforrnl,nce and Eaaluati,on II

600
ËcI sooo

I aoo

o
6 300

t-
zoo

oË 1oo
o(J

0

Context swithces

-
Context switches
during traditional scan

-
Context sw¡tches
during scan using
scandd

Figure 4.6: Plot of the number of context sv/itches during scan f.ü many files in many
directories

100

îso
è803zo
il
:z 60
f50
g40
G930
È
@)ñ

à10
0

-System
calls during

traditional scan

-System
calls during

scan using scandd

Figure 4.7: PIot of the number of system calls during scan for many files in many
directories

graph of the number of system calls executed during the execution of traditional scan

and scz,n using scandd, respectively. As can be seen from the table, the time taken

for traditional scan increases progressively as the number of directories increases.

Moteover, the number of system calls is reduced as the number of directories increases.

As discussed in Section 4.4.5, this is because, execution of a system calls now puts

higher resource requirements on the kernel. Contrasting this with scan using scandd,

it can be seen that the number of context switches and the number of system calls

Chapter f : Correctness, PerforrTlance and Eualuat'ion

are relatively low. In addition, the time taken f.or scan in this case is almost constant.

Comparing the time for traditional scan in this case with the tests performed in

Section 4.4.4, it can be seen that, even with 1 million fewer files traditional sc¿n took

longel if all files were in one directory. Extrapolating from the results on the /var

directory in Section 4.4.3, it can be surmised that the current test should have taken

about 50 times longer than the time taken for scan on /var,33 seconds, which was

the case.

4.5 .When
does Scandd Perform Worse than Tra-

ditional ,9can?

As mentioned in Section 4.4.5, slight modification of the traditional scon program

made it faster than scan using the list from scandd for the test case with the deepest

level. Although, this is for a case where all files in a file system were modified, it

reveals the conditions under which, traditional scan may be faster. Similarly, we

can visualize rnany other situations in which, traditional scan may be faster. These

include:

e The list of modified files generated by scandd being very large so that removing

duplicates from this list takes longer than traditional scan.

o The number of fiies modified in a file system are many and hence the cache for

identical file name elimination cannot eliminate many of the duplicates. When

this happens, the number of entries in the list of modified files will be much

greater than the number of files in a file system.

72

Chapter /n: Correctness, Perforn'¿ance and Eualuati,on t,f

4"6 Summary of Results

From the tests conducted on traditional scan and scan using scandd, I conclude

the following. As the number of files in a file system increases, the time taken for

traditional backup will increase as the time for individual stat O system calls will

add up. Moreover, parameters such as the number of files per directory will also affect

tlre performance of the scan phase in a traditional backup in a number of ways. For

example, crowding more than 5 million files in a single directory may not be the best

thing to do if the same file system needs to be backed up regularly. In such cases,

better results can be obtained if applications were to spread the files into multipie

directories. (E.g., considering Table 4.4., a scan of.5 million files in one directory took

31 minutes but, 6 million files scattered among 10,000 directories took only 12 minutes

to scan.) Similarly, deep directories can cause traditional backups to take longel than

the time taken if the directories were shallow as seen in Table 4.5. Another observation

is that as the directories scanned get larger, so do the system resources consumed by

scan. If scan has to compete for system resources with other applications running on

the system, the throughput of these applications will be reduced depending on the

size of the directories scanned.

Chapter 5

Fbture \Mork and Conclusions

5.1 F\rture'Work

In this chapter, I discuss the future of. scandd as an efficient file system scanner for

backup applications. By now, scandd has evolved from an idea to a Master's Thesis.

Howevet, there are some limitations in scandd that must be surpassed to make it

more usable and efficient. Moreover, I do see a possibility for scand,d, to be part of

future commercial file system backup applications. Since the emphasis of a Master's

Thesis and a commercial product are very different, I present them as two separate

subsections.

5.1.1 Scandd as a Research Thesis

Tlre current implementation of scand,d, is by no means complete. Some of the

slrortcomings of scøn dd are due to some limitations in the Solaris OS while some

others are due to items that came to light after the implementation phas e of. scand,d,

74

Chapter 5: Future Work and Conclus'ions

(rename of directory). h addition, there are some items that I chose not to tackle in

this initial implementation of scandd. I have already discussed the limitations of the

Solaris OS in Sections 4.3.2 and 4.3.3. Since scandd cannot work around these OS

issues, I will not discuss them again.

Although there are many different file system types available on Solaris, the cur-

rent implementation of. scandd intercepts file operations only from the [/F,9 file sys-

tem. As mentioned in Section 3.8, scandd requires the inode number of a file for

identical file name elimination and the function call needed to obtain the inode of a

file on Solaris, f op-getattr, crashes the system due to recursive call on a read-write

lock in the inode of the file. Initially, I was perplexed by this unexpected crash.

However, the availability of Solaris source files at the OpenSolaris site [28] helped me

solve the mystery. After browsing the kernel sources, I was able to deduce that every

inode has a read-write lock to serialize write and setattr operations on the file. The

crash was the result of f op-getattr, introduced by scandd, trying to acquire a read

lock on the file before a write lock on the same file was released. The above crash

happened in the initial implementation of scandd as mentioned in Section 3.12. Since

then, I have modifr,ed scandd to not intercept the vop-putpage calls and to use the

mâ,cros defined for the UFS frIe system to obtain the inode number of a file without

invoking the f op-getattr call.

The 'ioctl structure specified in Section 3.6.3 lacks a field to indicate to the scan

program the time when monitoring for a file system was initiated. The sc¿n program

could use this new field to compare the time of the last incrementai/differential/full

backup and make additional determination as to whether scandd can be used for

ryrt¿

Chapter 5: Future Work and Conclusions

listing files for backup. If monitoring was started after the previous backup, there is

a possibility scandd may have missed some of the modified files. The flowchart shown

in Figure 3.10 needs modification for checking this new field.

The hash table used for maintaining the list of file systems described in Section 3.7

is limited to sixteen buckets. Although this is suitable for most systems, it would be

ideal if the number of hash buckets were configurable through the driver configuration

frle, /etc/scandd.conf, for systems with many file systems that need to be moni-

tored. The driver would, of course, have to be reloaded for any configuration files

changes to tal<e effect.

Similarly, the number of buckets in the hash table for identical file name elimina-

tion mentioned in Section 3.8 should also be configurable. The current value of 1024

is adequate for most purposes and increasing this value will result in scandd consum-

ing more kernel memory a^s more instances of the structure described in Figure 3.8

will be allocated. Although the number of such structures allocated depends on the

number of file modifications happening on a monitored file system, the above number

mandates the upper limit on the number of structures allocated. Making the number

of buckets configurable provides a \May to reduce the memory footprint of. scøndd, if

required.

There is no mechanism to change the logging level of scandd in the current imple-

mentation. To change the logging level, scandd has to be recompiled and reloaded.

It would be much easier if the logging level were also configurable. However, there

may be situations where reloading the driver may not be possible and in that case,

an i,òctl to modify the logging level is highty desirable.

/lJ

Chapter 5: Future Work and Conclus'ions

5.L.2 Scandd as a Backup Product

As a component in a backup product, scandd must provide the following func-

tionalities in addition to the items mentions in Section 5.1.1:

o Provide the exact image of the system for restoring only the files that existed

on the system.

c Handling of renamed directories and its descendants.

To provide the above functionality, an implementation using scandd must move

away from writing into files directly. Rather, the implementation that would be

ideal is to have a producer-consumer setup between scandd and another user process.

Instead of writing modified file names into files, scandd would then send records that

consist of various information about modified files to the user process. The function

of the user process would be to wait for the availability of records from the driver and

populate a database with the received information. Scandd would have to provide a

new i,octl for the user process to obtain an individual record. Having a database will

enhance the functionality by supporting different queries based on the modification

time of a file. In such a scenario, for every modified fiIe, scandd would have to send

the following items:

o File/Directory Name: Pathname of the modified/deleted/created file

c Inode: Inode of the entity modified

ø File System ldentifier: this can be the combination of maj or and ninor number

of the device the file system is mounted from.

77

Chapter 5: Future Work ønd Conclus,ions 78

ø File Type: whether file, directory, character device, block device, pipe etc.

ø Modification Times: mtime and ctime of the file/directory

ø Operation on the File: creation/deletion/rename

ø Prior Name: applicable only in case of a rename

The cache mentioned in Section 3.8 can still be retained in scand,d, as it will reduce

the amount of updates coming into the user-level process if some files in the monitored

file system are being continuously updated.

For creation, the user-level process adds an entry for the file/directory into the

database and similarly, remove the entry for the file/directory for a removal. For

all other cases: writes, change of permission, etc., an entry must be inserted into

the database if not already present. However, if a modified file narne is already

present in the database, the modification times must be updated to reflect the recent

file modification time. In the case of a renamed directory, the user-level process

can correct the pathname of a directory and its descendants using database update

statements.

When a file system is to be monitored using scandd, a full scan of. the file system

is required for the first time. This is to populate all files in the file system into the

database. Once all files in the file system have been populated into the database,

the user-level process can continually update modification on the file system into

database.

Using this method and assuming that the driver has not reported any errors, all

files for backups including full can be obtained from the database using simple queries.

Chapter 5: Future Work and Conclus'ions

Special processing is required only for renamed directories. A possible implementation

may be as follows:

1. Save the current time (ú) and instruct scandd to flush its internal cache of

modified file names using the 'ioctl SCANDD-SYNC-CHANGED-FILES.

2. Make sure all change records for the file system whose modification time is less

recent than ú has been populated into the database.

3. Generate a list of renamed directories from the database whose rename time

(ctime) is greater than or equal to the reference time specified for the backup.

Let us assume that is list be /1.

4. Generate a list of all files and directories in the file system that have been

modified since the reference time minus the list of directories and its descendants

in 11. Let us call this list 12.

5. Concatenate lists 11 and 12 toform the list of files for backup.

6. Finally, sort the file name list and this is the final list for backup.

Apalt from the items in the record generated by scandd, the database would

require some additional fields. One of the fields required would indicate whether an

entr¡r was renamed or not, valid only for directories. In addition, carefully designed

indices would be important for the database table for efficient queries.

Similar to the method of generating modifies filenames for backup, an image of a

file systems monitoredby scandd (list of all files and directories existing on the file

system at the time of backup) can also be generated from the database. In this case,

79

Chapter 5: Future Work and Conclus'ions

it is enough to list all files in the file system whose modification time is greater than

or equal to zero using a database query.

5.2 Thesis Conclusion

In this thesis, I have developed and assessed a new method for enumerating files

for traditional backup. This method uses a pseudo device driver that intercepts file

operations in the kernel; the driver logs the full pathname of files modified, segregated

by their file systems. Currently, only Solaris 10 provides the full pathname of a

modified file in the kernel which is a requisite for the method developed in this thesis.

The improvements seen using the method developed in this thesis can reduce the time

for backup by hours on large servers. It is my hope that other operating systems will

provide the Solaris-like functionalities used in this thesis in the near future.

80

Appendix A

MisceXlaneous Information

Here I provide some information not directly related to the thesis such as the

resources and tools that helped me prepare this thesis and the applications used for

performance measurements in the thesis.

4.1 Compiler Information

When I started developing scandd,I was using the GNU C compiler (GCC) that

is distributed freeiy with Solaris 10. However, afber applying some OS updates, the

GNU compiler started giving compilation errors. This resulted from the OS updates

modifying some of the system header files, which rendered GCC useless for compiling

the driver. Since then, I used the Sun Studio 12 compiler that is also freely available

for download.

81

Appendi,r A: Mi,scellaneous Information 82

4.2 Driver Development Tools lJsed

The tools that I used for developing the driver were:

Compiler: Sun Studio 12.

Compiler Options Used:

o -x03 - for level 3 optimization

o -D-KERNEL - define required for kernel module compilation

ø -n64 - for 64 bit compilation as Solaris 10 is a 64 bit OS

ø -v - requests the compiler to perform stricter semantic checking.

Other Tools:

o add-drv - for loading of the driver

c rem-drv - for unloading the driver.

Debugging Tools:

e dbx - for debugging user level programs

o mdb - Solaris modular debugger for debugging kernel crashes

o adb - for debugging kernel crashes.

Appendi,r A: Mi,scellaneous Informati,on

4.3 An Important Note for Driver Development

on Solaris

Many times, a driver developer may want to test a driver he/she is developing.

To test the driver, it needs to be copied to the /usr/kerneL/drv/sparcv9 directory

before it can be loaded. However, if there are bugs in the driver, it may render the

system unstable and may cause it to crash. Moreover, when the system reboots after

a crash, the same driver will be loaded again causing successive crashes. To avoid

such situations, it is highly recommended that the driver binary be maintained under

the /tmp directory and a symbolic link be created to the actual location. If the system

crashes and reboots, the driver will then not be loaded again as Solaris cleans all files

under the /tmp directory.

4.4 Documentation Tools lJsed

All documentation was prepared on a Linux system using the following tools:

Kile: This is one of the best tools I have come across for preparing ffifdocuments

on Linux. It is a graphical integrated tool that understands ffifformatting, with

one click compilation options and many more features. Kile can be downloaded from

http : / /k¡le. sourcef orge . net/.

OpenOffice: I created all flowcharts and figures in this thesis using OpenOffice

2.4 on a system running Fedora 9 Linux.

83

Bibliography

[1] Streamlining backup and recovery operations using disk-based protection.

WWW page. http: / /www. dell . comldor^¡nloads/g1oba1/power/1q04-ved.

pdf.

[2] Veritas netbackup 5.0 server. http : / / evaL. veritas . com/nktginf o/prod,ucts/

Dat asheet s/Data-Protect i on/nbu-S0-server-ds . pdf .

[3] G. Bartlett. Scsi-2 specification. WWW page, Jul 2004. http: //scsi2.

garybartlett. con/.

[4] A L. Chervenak, V. Vellanki, andZ. Kurmas. Protecting File Systems: A Survey

of Backup Techniques.In Joi,nt NASA and IEEE Mass Storage Conference, 1998.

[5] D Phillips. A directory index for ext2. In Proceedi,ngs of the îth Annual L'inur

Showcase €! Conference, pages 77-20, Oakland, CA, USA, Nov 2001.

[6] Mikulas Patocka. An Architecture for High Performance File System i/O. In

INTERNATIONAL JOURNAL OF COMPUTER AND INFORMATION SCI-

ENCE AND ENGINEERING, pages I82-I87,2007.

84

Bi,bli,ographg

[7] U Vahalia. UNIX Internals-The New Frontiers. Prentice Hall, Upper Saddle

River, NJ, first edition, 1996.

[8] A Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, and G. Peck.

Scalability in the XFS file system. In Proceedi,ngs of the USENIX 1996 Techni,cal

Conference, pages 1-14, San Diego, CA, USA, Jan 1996.

[9] Ext2 directories. http: / /www. science.unitn .i:u/-f ioreLla/

guidel inux / tl-k / node9 9 . html.

[10] S. R. Kleiman. Vnodes: An architecture for multiple file system types in sun

unix. In USENIX Summer, pages 238-247,7986.

[11] J. Cooperstein and J. Richter. Keeping an eye on your ntfs drives:

The windows 2000 change journal explained. WWW page, Sep

1999. http : / /www.microsoft. con/te;hnet/prodtechnol/r¡indor"rs2OO0serv/

naintain/f eatusabil itylms j ntf s5 . nspx.

[12] A. S. Tannenbaum. Operati.ng Sgstems: Desi,gn and Implementati,on. Prentice-

Hall Inc., Englewood Cliffs, NJ, 1987.

[13] D. P. Bovet and M. Cesati. Understandi,ng the L'inur Kernel. O'Reilly, Se-

bastopol, CA, second edition, 2003.

[14] J. IVIauro and R. McDougall. Solari,s Internals-Core Kernel Archi.tecture. Sun

Microsystems, Inc., Palo Alto, CA, first edition, 2001.

[15] M. Bar. Linur F'ile Systems. Osborne/McGraw-Hill, Berkeley, CA, first edition,

2001.

85

Bibliography

[16] M. K. McKusick, K. Bostic, M. J. Karels, and J. S. Quarterman. The Des'ign

and Implementati,on of the /*.4 BSD Operati,ng System. Addison-Wesley, Reading,

N4A, first edition, 1996.

[17] S. Quinlan and S. Dorward. Awarded best paper! - Venti: A New Approach

to Archival Data Storage. In FAST '02: Proceedings of the 1st USENIX Con-

ference on Fi,le and" Storage Technologzes, Berkeley, CA, USA, 2002. USENIX

Association.

B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, and L. Shrira. Replication in

the harp file system.In ACM Symposi,urn on Operati,ng Sgsttem Pri,nciples, pages

226-238, Pacific Grove, California, United States, 1991.

B. Hong, D. Plantenberg, D. D. E. Long, and M. Sivan-Zimet. Duplicate Data

Elimination in a SAN File System. In Proceed,i,ng of the 21st IEEE/12th NASA

Goddard Conference on Mass Storage SEstems and Technologi,es (MSST), pages

301-314, 2004.

[20] W J. Bolosky, S. Corbin, D. Goebel, and J. R. Douceur. Single Instance Storage

in Windows 2000. In WSS'00: Proceedi,ngs of the lth Conference on USENIX

Wi,ndows Systerns Symposi,urn, 2000.

[21] N. Garimella. Snapshot technology overview. W\ ¡W page, Apr 2006. http:

/ / www - I2B. ibn . com/deve l- operworks / t ív ol-i / l-íbr ary / t-snapt sm 1 /.

122) R. H. Patterson, S. Manley, M. Federwisch, D. Hitz, S. Kleiman, and S. Owara.

Snapmirror: File-System-Based Asynchronous Mirroring for Disaster Recovery.

86

[18]

[1e]

Bi,bli,ography

In FAST '02: Proceed'ings of the lst USENIX Conference on Fi,le and Storage

Technologi,es, Berkeley, CA, USA, 2002. USENIX Association.

[23] Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, CA 95054, U.S.A.

Wri,ti.ng Deui,ce Driuers, Nov 2007. http: //docs.sun. com/app/docs/doc/

816-4854? I=en.

[24] Sun Microsystems. Sunos 5.10: kernel patch. WWW page, Aug 2007.

http : / / suns o lve . sun . com,/ s e arch/ advsearch . do ? c ol Ie ct i on=PATCH&type=

c o l1 e ct i ons&max:50&1 anguage=en&queryKeyS= 1 1 BB33&t oDo cunent=ye s.

[25] trapstat(1m). WWW page, May 2004. http: //docs.sun. con/app/docs/doc/

BL6 - 5166 / trapst at - lm? a=vi ew.

[26] vmstat(lm). WWW page. http : / /docs. sun. con/app/docs/doc/BI6-5I66/

vnstat- 1m?a=viel¡.

[27] Ariel Tamches and Barton P. Miller. Using dynamic kernel instrumentation

for kernel and application tuning. Internati,onal Journal of Hi,gh Performance

'C omput'ing Appli,catiorzs, 1 3 (3) : 2 63-27 6, Nov 1 999.

[2S] Open solaris. WWW page, Jun 2009. http: / /opensolaris. org/os/.

87

