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Abstract

Propagation and scattering of guided elastic waves in circular cylinders are investigated.
An analytical method is formulated to study wave propagation in laminated isotropic
cylinders while Rayleigh-Ritz type approximations are developed for laminated compos-
ite cylinders where the analytical solutions are unattainable. The effects of circumfer-
ential wavenumber, thickness to radius ratio, ply lay-up configuration, and layering on

dispersion characteristics of free guided waves are investigated through these techniques.

The problem of reflection of waves normally incident upon the free end of cylinders
is studied as a special case of wave scattering problems. A wave functions expansion
procedure is employed in developing least square and variational methods for the inves-
tigation. Numerical results demonstrate the successful application of the Rayleigh-Ritz
type approximation and the variational technique for the free end reflection problem in

laminated composite cylinders.

A hybrid method is presented to analyse the scattering of plane strain waves by load
or flaw in cylindrical cross-section. The domain of the cross-section is divided into two
regions, an interior region and an exterior region. The interior region which contains the
load or flaw is modelled by finite elements while a wave functions expansion is employed
for the exterior region. The numerical results for the scattered amplitudes from the load

and from flaw are presented for Zr-Nb pressure tube.
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Chapter 1

Introduction

1.1 Introduction to Composite Materials

Demand on materials imposed by today’s advanced technologies have become so diverse
and severe that they often cannot be met by simple single-component materials act-
ing alone. It is frequently necessary to combine several materials into a composite to
which each constituent not only contributes its share, but also the combination provides
new performances unacheivable by the individual constituents. Commonly, composite

materials are categorized into three types (Jones 1975):

e Fibrous composites
e Particulate composites

e Laminated composites.




1.1.1 Fibrous Composites

Fibrous composites are composed of fibres in a matrix. The fibres are characterized
geometrically by their near crystal-sized diameter. Naturally, fibres are of little use unless
they are bound together. The binder material is usually called a matrix. Typically, the
matrix has considerably lower density, stiffness and strength than the fibres. However,
the combination of fibres and a matrix can provide very high stiffness and strength, yet

low density. Some examples of a few selected fibre materials are shown in Table 1.1.

Fibre or wire Density | Tensile strength | Tensile stiffness
(kg/m®) | (GN/m?) (GN/m?)
Aluminum 26.3 .62 73
Titanium 46.1 1.9 115
Steel 76.6 4.1 207
E-glass 25.0 3.4 72
S-glass 24.4 4.8 86
Carbon 13.8 1.7 190
Beryllium 18.2 1.7 300
Boron 25.5 34 400
Graphite 13.8 1.7 250

Table 1.1: Examples of fibre materials (source : adapted from Dietz 1965)

1.1.2 Particulated Composites

Particulated composites consist of particles of one or more materials suspended in a ma-

trix. Both the particles and the matrices can either be metallic or nonmetallic. Exam-



ples of these composites are concrete (nonmetallic in nonmetallic composites), aluminum
paint (metallic in nonmetallic composites), Tungsten carbide (nonmetallic in metallic

composites), etc.

1.1.3 Laminated Composites

Laminated composites are composed of layers or laminae of two or more materials bonded
together. The properties that can be emphasized by lamination are strength, stiffness,
low weight, corrosion resistance, attractiveness, thermal insulation, acoustical insula-
tion, etc. Examples of laminated composites are bimetals, clad metals, laminated glass,
plastic based laminates and laminated fibrous composites or laminated fibre-reinforced

composites.

The classification scheme can be arbitrary and imperfect. Nevertheless, this introduc-
tory remark serves only to acquaint the reader with the broad possibilities of composite
materials. It should be noted that numerous multiphase composites exhibit more than
one characteristic class. For instance, laminated fibre-reinforced composites are laminat-
ed and fibrous composites. In this study, the emphasis will be placed mostly on laminated

and fibrous composites.

1.2 Fibrous and Laminated Composites

Basic terminologies of fibrous and laminated composites in the remainder of this thesis

will be introduced in this section.



Lamina with unidirectional fibres Lamina with woven fibres

Figure 1.1: Two principal types of laminae (source : Hull, D. 1981)

1.2.1 Fibrous Laminae

A fibrous lamina is a layer of unidirectional fibres or woven fibres in a matrix. Two
typical lamina are shown in Figure 1.1 . The fibres are typically strong and stiff. They
are the pricipal reinforcing or load-carrying parts. The role of the matrix is to maintain

alignments of the fibres, to protect the fibres and to perform as a load distribution

medium.

1.2.2 Laminates

A laminate is a stack of layers with different homogeneous elastic materials. Or it can also
be composed of fibrous laminae with various orientations of principal material directions
in the laminae. A major purpose of lamination is to construct the new material with

strength and stiffness matching the loading environment of the structural element.



1.2.3 Laminated Circular Cylinders

A laminated isotropic circular cylinder is a circular cylinder which is composed of perfect-
ly bonded isotropic elastic layers. The layers may have different mechanical properties,
as well as different thicknesses. A laminated composite circular cylinder, unless oth-
erwise stated, is define as a circular cylinder which is constructed from laminae with
various orientations of principal material axes in the laminae perfectly bonded together.
Manufacturing of laminated composite circular cylinders can be continuous pultrusion,
centrifugal casting, or filament winding as shown in Figure 1.2. It should be mentioned
herein that the contents of this thesis is directed to circular cylinders. For convenient

purpose, therefore, cylinders will refer restrictly only to circular cylinders.

1.3 Ultrasonic Testing

Cylinders are used in many applications such as pressure tubes in nuclear reactor, plat-
form struts, magnetometre boom and antenna-feed support struts in space structures
(Broutman and Krock 1974), etc. The presence and growth of flaws in the cylinders are
the major obstacles in their utilization and can have serious consequences during oper-
ation. In order to detect these flaws without impairing the usefulness of the cylinders,
nondestructive testing has been exploited. The essential parts of any nondestructive test
are (1) application of a testing or inspection medium, (2) modification of the testing or
inspection medium by defects or variations in the structures or properties of the material,
(3) detection of this change by a suitable detector, (4) conversion of this change into a
form suitable for interpretation, and (5) interpretation of the information obtained. The
testing technique itself may involve visual inspection, dye penetrant, magnetic particle,
radiography, eddy current or ultrasonics. Such nondestructive tests are costly due to the

high cost of the project’s downtime. To reduce this downtime, more precise tests and
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Figure 1.2: Manufacturing of laminated composite circular cylinder
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better data handling and processing are required. For ultrasonic testing, this includes

better understanding of propagation of waves and their interaction with flaws.

The unique possibility that the use of ultrasonic waves has for detecting inhomo-
geneities in metals appears to have been first suggested in 1929 (Frederick 1965). The
main idea of using ultrasonic in flaw detection is the reflection of waves by a crack or
other abrupt change in the elastic properties of the material in which the waves are trav-
elling. Figure 1.3 illustrates a block diagram of a typical ultrasonic flaw detector. A
pulsed continuous or modulated ultrasonic beam is sent through the specimen and the
amplitude of the transmitted waves measured. Inhomogeneity in the sample causes the
waves to scatter. The amplitudes of transmitted and reflected waves are measured by
receivers located on the surface of the specimen. The signals carry a substantial amount
of information of the size, shape, and location of the flaw. Ultrasonic flaw detection tech-
niques rely on the theoretical predictions of the amplitudes of transmitted and reflected
signals. It is, however, very crucial to have a theoretical model which can accurately

predict the scattering by flaws.

1.3.1 Guided Waves in Ultrasonic Testing for Laminated Cylinders

Several techniques have been used in ultrasonic testing such as: pulse echo, transmission,
resonance, frequency modulation, and acoustic image. It should be noted herein that
early techniques used body waves in ultrasonic test. New techniques employing guided
waves are under development. There are several advantages in using guided waves in
ultrasonic tests. First, their multimodal and dispersive behaviors can provide a large
number of data points in a given range of frequency. Second, the velocity of guided
waves is very sensitive to material properties of the cylinders. Finally, the velocity of

guided waves can be very accurately measured as a function of frequency.
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Figure 1.3: Schematic diagram of ultrasonic flaw detector.



In order to exploit guided waves in ultrasonic testing for laminated cylinders, dis-
persion characteristics of these waves need to be understood. The axially symmetric
vibration of harmonic waves in an infinitely long homogeneous isotropic elastic cylindri-
cal rod has been analytically investigated for over a century (Pochhammer 1876). The
vibration is governed by frequency or dispersion equation which implicitly relates the
frequency to the wavenumber. This requires the solution to satisfy the differential equa-
tions of linear elasticity throughout the cylinder and the traction free boundary conditions
on the lateral surfaces. Although the equations were introduced as early as 1876, only
in the past three decades have numerical results over a wide range of frequencies with
complex wavenumbers been reported (Onoe et al. 1962). These complex wavenumbers,
corresponding to non-propagating and evanescent modes, are essential in wave scattering
and end reflection problems. In an infinite cylinder, however, only real wavenumbers or

propagating modes are physically realisable.

Wave propagation in infinitely long homogeneous isotropic elastic hollow cylinders
was investigated using the linear theory of elasticity by Gazis (1959), Armenakas et al.
(1969), etc. With this theory, they were able to generate the solutions without stipu-
lation of axisymmetry. Various difficulties arise when the structure consists of a series
of annular isotropic cylinders bonded together. However, within the framework of this
elastic theory, many researchers successfully investigated the dispersion characteristics of
harmonic waves in infinite laminated isotropic rods (McNiven et al., 1963, Jai-Lue Lai,
1971, Armenakas, 1965). Harmonic wave propagation in two layered isotropic cylinders
was studied by Armenakas (1967, 1971). The displacements and the stresses at the in-
terface of each layer were analytically formulated. The dispersion relation was obtained
from the boundary and the continuity conditions. Analogous to the work of Armenakas,
Moore (1990) applied the stiffness method to study the wave propagation in laminated
isotropic rods and cylinders. The stiffness matrix which relates the stresses and the dis-
placements at the interface of each layer was analytically established. The assembling

process was then carried out in a subsequent layer.



Since the analytical formulation for laminated cylinders is intractible, several approxi-
mate techniques have been proposed to circumvent the problem. The most common ones
are shell theories in which the contitutive relation of radially inhomogeneous cylinders is
replaced by an integral form to reduce the problem to that of equivalent homogeneous
cylinders (Tsal and Roy 1971, Sun and Whitney 1974). A list of references on various
approximate cylindrical shell theories can be found in the paper by Barbero et al. (1990).
The Ritz techniques, the numerical approximations using discretization in the radial di-
rection to model radial inhomogeneity, have also been widely employed (Nelson et al.
1971, Huang and Dong 1984, Kohl et al. 1992). Nevertheless, efficient theoretical tech-
niques in studying wave propagation and more informations on dispersion characteristics
of waves in laminated cylinders are still required to fully utilize ultrasonic guided waves

in flaw detection.

1.3.2 Free Edge Reflection in Cylinders

The free edge of a cylinder can be considered as a through-thickness crack which is
an idealzed model of a normal edge crack. Hence, the reflection of waves at the free
end can also be considered as a special case of wave scattering problem. The free end
reflection of axisymmetric wave in an elastic rod was first investigated experimentally by
Oliver (1957). McNiven (1961) employed the approximate three-mode theory to predict
the existence of an end resonant frequency. His predicted value differed from Oliver’s
experimental results by 13 percent. Analogous to the work of McNiven, the problem was
reconsidered using the 5, 7, and 9-mode approximations by Zemanek (1972). It was found
that his result of the end resonant frequency with the 9-mode approximation differed
by 0.5 percent as compared to that obtained by Oliver. However, the Poisson’s ratio
employed in his study was 0.3317 against 0.29 which was used by McNiven. Recently,
Kim and Steele (1989) proposed a solution procedure which exploits the asymptotic

behavior for higher harmonics in the radial direction to solve the problem. During the
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same period, Gregory and Gladwell (1989) employed a least square technique to minimize
the difference between the energy of the incident wave and that of the reflected waves.
The end resonance phenomenon was also investigated and was found to depend strongly
upon the Poisson’s ratio. In their work, they predicted the end resonant frequency at

the Poisson’s ratio of 0.29 which differed from Oliver’s result by 2.5 percent.

The free end reflection of the extensional waves in homogeneous isotropic elastic hollow
cylinder was considered by McNiven and Shah (1967). The approximate three-mode
theory was employed in the study to predict the resonant frequency. They found that
the frequency of the end resonance for hollow cylinder was lower than that for solid
rod. To the best of the author’s knowledge, the free end reflection of waves in laminated

cylinders has not yet been reported.

1.3.3 Tubing Inspection

Tubing inspection, Figure 1.4 (McGonnagle 1961), is one of the techniques used to test
the longitudinal flaws in the cylinders. In such testings, waves are generated in the
tangent direction of the tubes and will travel along circumferential direction. If a defect
is encountered at the weld or crack, these waves will scatter and reflect back. Since waves
are travelling in the circumferential direction and not in other directions, the problem can
be considered as plane strain case. While there are numbers of theoretical investigation
on wave scattering by cracks in plates (Abduljabbar et al. 1983, Koshiba et al. 1984,
Karunasena et al. 1991), to the author’s knowledge, the work in the cylindrical case has

not yet been reported.

Not only can ultrasonics be utilized in flaw detection, it can also provide an effec-
tive means of characterizing elastic properties of composite or heterogeneous materials

(Karunasena 1992). In order to interpret ultrasonic test results, it is necessary to have

11
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Figure 1.4: Testing of weld in tubing (source : McGonnagle, W.J. 1961)

theoretical predictions for dispersion characteristics of guided waves as functions of the
properties to be characterized. Comparisons of test results with theoretical predictions
help in determining unknown properties. Karunasena demonstrated that dispersive be-
havior of laminated plates could be studied by using effective elastic properties. Kohl et
al. (1992) attempted to apply equivalent homogeneous properties to study the disper-
sion characteristic of laminated tubes. The results, however, illustrated that dispersive
and modal behaviors of laminated cylinders were not the same as those of equivalent

homogeneous ones at high frequencies.
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1.4 An Overview of the Present Study

The main purpose of the present study is to investigate propagation and scattering of
guided waves in laminated cylinders. An analytical method and Rayleigh-Ritz type
approximations are employed to study the dispersion characteristics of free guided waves
as well as the free end reflection problem. The investigation of this special case of
scattering problem, the free end reflection, is carried out in detail using least-square and
variational techniques. Plane strain wave scattering by cracks is studied by the hybrid

method.

1.4.1 Elastic Wave Propagation

Three models of wave propagation are presented in the study. The analytical formu-
lation, the propagator matrix method, is employed for laminated isotropic cylinders.
This method is proposed to circumvent the difficulties in obtaining the exact dispersion
relations of cylinders with arbitary number of isotropic layers. The results from this

analytical technique are used as a benchmark for the approximate methods.

Two Rayleigh-Ritz type of approximations are presented to apply where the analyt-
ical solutions are unattainable. In these methods, the laminae are divided into several
sublayers and the displacement distribution through the thickness of the sublayer is ap-
proximated by interpolation polynomials. These polynomial functions involve a number
of discrete generalized coordinates, which may be only displacements or displacements
and tractions at the interfaces between the adjoining sublayers. When the generalized
coordinates are only displacements, the method ensures only the continuity of the dis-
placements at the interfaces (nodal points). On the other hand, when the generalized
coordinates are displacements and tractions, the method ensures the continuity of both

the displacements and the stresses at the nodal points. The latter case of Rayleigh-Ritz

13




type of approximation is presented to ascertain the accuracy and the applicability of the

former case of approximation.

The objective of this part of study is to obtain the appropriate and reliable model in
order to apply to the wave scattering problems. Also the dispersion characteristics and
the factors effecting the wave propagation are investigated in order to establish the basic

knowledge for the wave scattering problems.

Numerical experimentations illustrate that the Rayleigh-Ritz type of approximation
with only displacement continuity yields sufficient accuracy in applying to the study of
wave scattering in the laminated cylinders. In addition, many factors, like circumferential
wavenumber, ply-lay up configurations, and the thickness to radius ratio which alter the

dispersion characteristics are very important in the scattering problems.

1.4.2 Reflection of Wave at Free Edge

A wave function expansion is employed to solve the reflection problem when time har-
monic elastic waves impinge upon the free end of semi-infinite laminated cylinders. The
reflected field is represented by the superposition of a finite number of wave functions.
The propagator matrix approach is applied to obtain the wave functions for laminated
isotropic cylinders while Rayleigh-Ritz type of approximation with displacement conti-
nuity is used for laminated composite cylinders. The least square technique as well as
the variational method are employed to evaluate the complex amplitudes and the ener-
gy fluxes associated with the reflected field. The accuracy and the effectiveness of the
method is illustrated by comparing the results with existing analytical results and the

satisfaction of the principle of energy conservation.

14



1.4.3 Plane Strain Wave Scattering by Cracks

A hybrid method is employed to solve the scattering problem of time harmonic elastic
plane strain wave in the laminated cylinders. The method incorporates finite element
formulation in a bounded interior region with a wave function expansion representation
in the exterior region. The bounded interior region is composed of flaws and/or loads
and a finite region of the cylinder surrounding these flaws and/or loads. The wave func-
tions are obtained by the Rayleigh-Ritz type of approximation with only displacement as
generalized coordinates. Continuity conditions for the displacements and the interaction
forces are imposed at the nodes lying along the boundaries between the two regions. This
results in a system of linear algebraic equations which is solved for the unknown wave
function amplitudes. This investigation is motivated from the application of ultrasonic in
tubing inspection. The numerical results for the scattered amplitudes from load and from
flaw are presented for Zr-Nb pressure tube used in CANDU Pressurized Heavy Water
reactors to illustrate the applicabilty and the accuracy of the method.

1.5 Organization of the Thesis

This thesis is mainly concerned with the investigation of propagation and scattering
of guided waves in laminated cylinders. An analytical model and approximate models
are proposed in Chapter 2 to study the dispersion characteristics of waves in laminated
cylinders and to obtain the appropriate method to apply in the scattering problems. The
effects of thickness to radius ratio, circumferential wavenumber, ply lay-up configuration
and anisotropy on the dispersion characteristics are elaborated in detail. The wave
scattering problems are presented in Chapters 3 and 4. Free end reflection problem, a
special case of wave scattering problem, is considered in Chapter 3. The formulation of

the hybrid method for plane strain wave scattering by flaws in cylindrical cross section
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is presented in Chapter 4. Conclusions and some recommendations for future study are

outlined in Chapter 5.
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Chapter 2

Elastic Wave Propagation in Laminated

Cylinders

2.1 General

In this chapter, elastic wave propagation in laminated cylinders is investigated in detail.
As mentioned in Chapter 1, three wave propagation models are presented: analytical
formulation and two Rayleigh-Ritz type approximations. In the analytical formulation,
a propagator matrix approach, the three-dimensional theory of isotropic elasticity is
exploited to formulate the relation of the stresses and displacements of one interface
of a layer to those of another interface. The propagator matrix, established from this
relation, generates the frequency equation of the cylinder. In the Rayleigh-Ritz type
approximations, the displacements are approximated by the interpolation of discrete
nodal (interface) generalized coordinates. These nodal coordinates may be displacements
only or displacements and stresses at nodal points. The frequency equation of the cylinder
in the form of an eigenvalue problem is formulated by applying Hamilton’s principle. The

main objective of presenting these models is to obtain the dispersion relations and thereby
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to study guided wave propagation in laminated cylinders. The effects on dispersion
characteristics from circumferential wavenumber, thickness to radius ratio of the cylinder,
number of layers in the cylinder, and degree of anisotropy are also investigated. The
numerical results from the two approximate models are compared to select the suitable
and reliable method to study some of the wave scattering problems which will be discussed

in Chapters 3 and 4.

2.2 Description of the Problem

Time harmonic elastic wave propagation in an infinite laminated cylinder is considered.
The layers may have distinct mechanical properties as well as different thicknesses. The
cylinder is in (r, 8, z) coordinate system as shown in Figure 2.1. The direction of wave
propagation is z. The two lateral surfaces of the cylinder (i.e. the inner and outer
surfaces) are free of traction. In the techniques adopted here, each layer is divided into
several sublayers although it is not necessary for the analytical method. The total number

of sublayers through the thickness, H, is N. The mean radius of the cylinder is R.

2.3 Analytical Method

In this section, analytical formulation model which in the remainder of this thesis will

be referred to as the propagator matriz method is presented.
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k=th sublayer
Typical lamina

Figure 2.1: Geometry of laminated cylinder
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2.3.1 Governing Equations

Since the main concern of this thesis is with cylinders having varying number of layers,
the analytical formulation will be constructed in such a way that the number and the
properties of layers can be arbitrarilly varied without any change in the solution pro-
cedure. Consider the &' isotropic sublayer bounded by r = r and » = re+1 surfaces.
With reference to the cylindrical coordinates, r, 8, and z, and the respective displacement

components u, v, and w, the displacement equations of motion are:

ot 2udw, Owg d%u
Ao Stk gwe _ 0U
( +2'u)37' r 08 +2u 0z P o
1014 ow, Ow, 9%
(/\+2#);5—0‘ —2,“*—2— +2N—57j‘ = Pom (2.1)
0t 2pdw, 2ud(wer)  Ow
R T a7

where A and p are Lamé’s constants, p is the mass density and ¢ denotes the time. ,

w,, wg, and w, are defined as:

8u+ﬁ+18v+8w
o et

—5;7
o, = 100 _ 0
T r 08 92’
du  Ow
o, — Vg 9v _10u
Ye = T e T e

The displacement components u, v, and w can be written in terms of the potentials

¢, H., Hp, and H, as (Armenakas et al. 1969):
deo 10H, OHy

R ST
19¢ OH, OH,

V= et 9z  or’ (23)
¢ 10 19H,

v = 5t )

where
¢ = f(r)eimee—z'(gz—wt)’
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H, = gr(r)eimﬁe-—i(fz—wt),
H9 — go(r)eimoe—i(fz—wt), (24)
Hz — gz(,],)eim()e—i(&z—wt)'

m is the circumferential wave number, w is the circular frequency, ¢ is the wave number

in the z—direction and ¢ = v/—1.

The displacement equations of motion, equations (2.1), are satisfied if:
2

N e T

r

19’—(M—ﬁ2)gr = 0, (2.5)

ro7 r2

g;, + '}g; - ('T:_ZZ - 32>gz = 07

gy +

where
2 _ W 2 _ W
o == ; pr=— =&, (2.6)
v2 V2
and gp(r) = —ig,(r). Prime denotes the differentiation with respect to r. v, and v, are

the velocity of dilatational and torsional waves, respectively, and are defined as follows:

vl = (/\ —;2M> ; w2 =E (2.7)

The general solutions to equations (2.5) in terms of Hankel functions are:
f(r) = AHY(ar) + BiH® (ar),
g:(r) = AoHp),(Br) + BoHLL (Br), (28)
g9:(r) = AsH((Br) + BsHY(Br).

Ay, Ay, As, By, By, and Bj are arbitrary constants for the layer. By substituting equa-
tions (2.8) into equations (2.4) and (2.3), together with the conventional stress-strain and

strain-displacement relations, the displacement and stress components at the interface

(U} {A}
{ (5 }_[D’“]{ (8) } 29
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where

{Ue}" =(ue ve wg) ; {Se}T =(ox 7 X&),

{A}T = (4, Ay As) ; {BY*=(B, B, Bs). (2.10)

Superscript T represents the transpose. o, 7, and x denote the stress components o,,, 0,4,
and o,,, respectively. Subscript k£ designates the nodal values at the &** interface. The six

by six matrix, [Dy], containing Hankel functions H{!) and H(?), is given in Appendix A.

By evaluating the displacement and the stress components at the surface r = ry;; of
the &* layer using the aforementioned procedure and incorporating equation (2.9), the

following relation can be obtained:
U, U,
Wen} | _ [ pk] LONE (2.11)
{Sks1} {5k}

[Pe] = [Dia][Di] 7" (2.12)

where

The six by six matrix [P;] is the propagator matrix for the k*® layer. Superscript —1
denotes the inverse of the matrix. Repeated application of equation (2.11) for every layer

in a cylinder consisted of N layers results in:
U U
W} [ p] LN (2.13)
{Sn41} {51}

[P]z[PN}[PN_lJ...[Pl}. (2.14)

The matrix [P] can be partitioned as:

where

(2.15)

Invoking the zero traction conditions at the inner and the outer radii of the cylinder
simplifies equation (2.13) to:
[Pl21{U1} = {0}. (2.16)
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The exact dispersion relation can then be obtained by equating the determinant of the

coeflicient matrix to zero. i.e.;

|[P]a1] = 0. (2.17)

This relation can be used to evaluate w for a given ¢, or alternately, for a given w it can

be solved for .

2.3.2 Solid Rods

For the solid rod problem, the Weber’s function, Y;,, becomes indeterminate when r
equals zero. Consequently, the general solutions, equations (2.8) becomes:
f(r) = Cidu(ar),
g-(r) = Cydmia(Br), (2.18)
g:(r) = CsJn(Br),
for the inner layer of the solid rod bounded by r = 0 and r = 7 surfaces where J,, is
Bessel function of the first kind. Cj, (s, and C; are arbitrary constants for this layer.

The displacement and stress components at the interface r = r; can be written in terms

of these constants as:

{ti} = [R{C},
{51} = [THCY, (2.19)

where
{CY=(C G Ca).

[R] and [T'] are three by three matrices, containing the Bessel function J,,, and are given
in Appendix A. The stiffness matrix, [K], relating the stresses and the displacements

can be obtained from equations (2.19) as:
{$1} = [T][R]"{U1} = [K|{UL}. (2.20)
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The propagator matrix in equation (2.13), nevertheless, can still be employed for the first
interface to the (V4 1)* interface. The insertion of equation (2.20) into equation (2.13)
yields:
{UN+1} [P]n + [P]m [K]
wy }- (2.21)
{SNH} [P]21 + {P]zz [K]
By invoking the boundary condition of the traction free surface at the outer radius of

the rod , the dispersion relation of the solid rod can be written as:

[[P)21 + [P]22[K]| = 0. (2.22)

2.4 Rayleigh-Ritz Type Approximations

Nelson et al. (1971) presented an extended Ritz technique using discretization in the
radial direction in order to model radial inhomogeneity. The technique was applied to
study dispersion in laminated cylinders with general orthotropic layers. Huang and Dong
(1984) expanded the study by applying the same method to laminated cylinders with
general anisotropic layers. The complex frequency spectrum for laminated composite
cylinders were presented in their study. Only modal behavior was considered in the
former of these studies. In this section, the method is extended to investigate the wave

propagation in laminated cylinders.

Consider the £*® anisotropic sublayer bounded by r = r and r = ryy surfaces. The
sublayer has anisotropic modulii C’;‘q (p,g=1,2,...,6) and density px. In general, fibre-
reinforced composites will have the form of material symmetry. However, when the fibres
make an angle with the coordinate direction, their properties will appear as transverse

isotropic. With reference to the cylindrical coordinates (r, 6, z), the stress-strain relation

24



for the k" sublayer is given by:

3 - T 0 3

Orrk Cﬁ Ciiz Ci{s Cﬁ Cics Ci(e €rrk
Took Oicz Czlz(:z Cga 0212{4 0112{5 05(6 €80k
Ozzk | Ci{ 3 Cgs C:I’fs 0113(4 C;fs Cge €zzk (2.23)
O6zk Cﬁ O%{z; C§4 0411(4 0}1(5 O}fs Yozk
Orzk Ci‘s Cgs Cg(s C}fs Ogs Gge Yrzk
Orok | L Ci{6 Cge Cll’fG 0}1{6 Cé(s Oge 1 U ree

2.4.1 Displacement Based Rayleigh-Ritz Type Approximation

Let the diplacement components u, v, and w be approximated by interpolation polyno-

mials in the radial direction as:

{U} =[NH{d}, (2.24)

where
(U} = (u v w), (2.25)
(@7 =(u o v um o™ W™ wf ol W), (2.26)

ng 0 0 ng 0 0 ng 0 O
NJ=10 ni 0 0 n, 0 0 ng 0 |. (2.27)
0 0 ny 0 0 %) 0 0 ng

In equations (2.24)-(2.26), the generalized displacements u®, u™, uf are taken at the
back (inner), middle, and front (outer) nodal surfaces of the sublayer. The interpolation

polynomials n; are quadratic functions given by:
ni=1-3n+4+20* ; ny=4np—49* ; nz3=—n+2n% (2.28)

where 7 = (r — ri)/hx, by being the thickness of the k** sublayer.

By using Hamilton’s principle, the Lagrangian, Ly, for the k' anisotropic sublayer is
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calculated as:

Iy = -;— /t / /0 {/ k+ [ {0V {0} = (@7 [ {e}]rdr Vdbdzdr.  (2.29)

Overbar and overdot denote complex conjugate and time differentiation, respectively.

{e} represents the strain vector with six strain components given in equation (2.23).

By substituting equation (2.24) into strain-displacement relations and these in turn
in equation (2.29), the Lagrangian can be written in term of generalized coordinates,
equation (2.26). Upon setting the first variation of the summation of the contribution

from all sublayers to zero, the governing equation for the entire cylinder is obtained as:

[K{QY + [KH{QY — [Ks{Q) — [M){Q} = 0. (2.30)

The matrices [M], [Ki], [K>], and [K3] are defined in Appendix B. Here [K;] and [M]
are real symmetric, [K] is skew-hermitian and [K3] is hermitian. Prime denotes differ-
entiation with respect to z. The vector {Q} contains the generalized nodal coordinates

for the cylinder.

A solution representing harmonic wave propagation for equation (2.30) can be assumed

in the form:
{Q} = {Qo}e* e, (2.31)

where {Qo} represents the nodal amplitude vector. Substitution of equation (2.31) into

equation (2.30) results in a set of linear homogeneous equations as:
{=€1a] — i€l1G] — 1G] + *[M]}HQo} = 0. (2:32)

For a nontrivial solution {Qo} the determinant of the coefficient matrix must be zero
and this results in quadratic algebraic eigenvalue problem for ¢ when w is specified. This

equation serves as the dispersion relation for the cylinder.
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2.4.2 Displacement and Stress Based Rayleigh-Ritz Type Approximation

In this section, the displacements at a point in the &*® anisotropic sublayer are approxi-

mated by interpolation polynomials as:
{U} = M@} + V] {q} (2.33)
where
{(j}T=<ub o vt ot wh W o WS T S Xf>. (2.34)

[V1] and [V;] are given in Appendix C. The generalized coordinates, {G}, which are
displacements and tractions are taken at the back (inner) and front (outer) nodal surfaces

of the sublayer.

By using Hamilton’s principle, following the procedure presented in section 2.4.1, the

governing equation for the cylinder is found to be:

K@Y + [GHQY" + {IBIHQY - (G4} +{[E{QY - (G {QY)
+ {[B{Q} + u){Q}} = 0. 259

The matrices [C1], [Cs], [M4], [K4], [K5], and [E1] through [F3] are defined in Appendix C.
Note that [C1] and [K}] are real symmetric, [M;], [E1], and [Es] are hemitian, and [Cy),
[K5], and [E,] are skew-hermitian. With the assumption of a solution to harmonic wave
propagation be in the form as in equation (2.31), a set of homogeneous equations can be

obtained from the above equation as:

{4 (K] +i€° [K5) — € [Ks) — i€ [K7] + [Ks] H{Qo} = 0, (2.36)
where
(K] = [Ea] +w?[C]
[K7] = [Ea] +w?[Cy) (2.37)

[Ks] = [Es]—w?[Mi]
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Again, for a nontrivial solution, the determinant of the coefficients matrix must be
zero. This results in the fourth order eigenvalue problem which serves as the dispersion
relation to solve for ¢ when w is specified. Alternatively, for a given £, the dispersion

relation can be written in the form of standard eigenvalue problem to solve for w as:

[Ke] {Qo} = w* [Me] {Qo} (2.38)

where
[Ke] = &Ky + i€ [Ks] — € [En] — ié [Ey] + [E5],
[Me] = [My] + € [Ch] +4€[C] . (2.39)

It should be noted here that the generalized coordinates (equation (2.26)) in section
2.4.1 are nodal displacement values. The method therefore ensures only the continuity
of displacements at the interfaces of the sublayers. Here, the generalized coordinates,
equation (2.34), are displacements and tractions at the nodal points. The method thus
assures the continuity of both the displacements and the stresses at the interfaces. For
convenience, in what follows in this thesis, the displacement based Rayleigh-Ritz type
approximation will be referred to as displacement continuity method whilst the stress
and displacement based Rayleigh-Ritz type approximation will be referred to as stress

continuity method.

2.5 Roots of Dispersion Equations

Dispersion equations obtained in sections 2.3 and 2.4 can be used to evaluate w for a
given ¢, or alternately, for a given w, they can be solved for £. Due to physical reasons,
only real values are acceptable for the frequency, w. The wavenumber, £, on the other
hand, can have the complex form. For z > 0, the complex wavenumber, £, is admissible

only in the form of:
¢ =& — 1, (2.40)
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where (g and {1 are real and imaginary parts of complex wavenumber, respectively.
From the viewpoint of the stability of the system, only & > 0 is admissible. The roots
with & = 0 and ég > 0 produce modes propagating in the positive z—direction. In
contrast, when (g = 0 and & > 0, the modes are non-propagating. When ég and ¢ are
both non-zero, the modes are evanescent for which edge vibrations occurs - that is, the
motions are confined near the edge. For an infinite cylinder, only propagating modes
exist from the physical standpoint of the system. The non-propagating and evanescent
modes, however, are significant in the problem of semi-infinite and finite cylinders with
prescribed end conditions. It can be shown that if £ is a root of the dispersion relation,
then —¢ is also a root. This conforms to the physical condition that waves may propagate

in either the positive or the negative z—direction.

The main interest here is to obtain the frequency spectrum (plot of frequency vs
wavenumber). Since the wavenumber can be in complex form, the frequency spectrum
has three different kinds of branches: real, imaginary, and complex (for detail see Mindlin
1960) corresponding to real, imaginary, and complex roots for ¢, respectively. The real
branches corresponding with the propagating modes are the branches which dominate
the dynamic response of the cylinder. The imaginary and complex branches represent

non-propagating and evanescent modes, respectively, and these modes decay with z.

An approximation to the frequency spectrum can be obtained by using Rayleigh-Ritz
type approaches. The real branches of the approximate spectrum can easily be plotted by
solving the standard eigenvalue problems given by equation (2.32) or (2.38). However,
if imaginary and complex branches of the approximate frequency spectrum are to be
obtained, then the quadratic, equation (2.32), or the fourth order eigenvalue problem,
equation (2.36), which involves greater amount of computer time and core memory, has to
be solved. It may be noted that, in solving for real branches, the stress continuity method
requires less computational time than the displacement continuity approach for the same

number of sublayers. This is because, with the same number of sublayers modelled, the
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number of degrees of freedom provided by the stress continuity method is less than that

provided by the displacement continuity approach.

For a fixed value of either w or ¢, the exact dispersion relations obtained in section 2.3
are transcendental functions of either ¢ or w, respectively. It is possible to evaluate the
roots of these equations by some search method. This approach will be computationally
formidable since the roots are sparsely scattered. Herein, Muller’s method (Muller 1956)
is employed to recover the exact roots in the propagator matrix approach. Approximate
roots obtained from either the displacement continuity or the stress continuity approach
are used as initial guesses in the Muller’s method. If the roots are required over a given
range of ¢ (or w), approximate roots from the Rayleigh-Ritz type approaches are required
only at the first step to use as initial guesses. At the next step, { (or w) is changed by a
small increment and the exact dispersion relation is solved taking the exact roots from
the previous step as initial guesses for the current step. The process is repeated until the

range of interest is scanned.

Note that the exact dispersion relation in section 2.3 contains the Hankel functions
for complex arguments. These Hankel functions are obtained from the relations between

solutions as (National Bureau of Standard 1964):

HD((r) = Jm((r) +iYn((r),
HP((r) = In((r) —i¥n((r), (2.41)

where (r denotes ar or fr in equation (2.8). IMSL subroutine (1984) is employed to
evaluate the Bessel function of the first kind for complex arguments, J,,({r). Following
the formula given in the National Bureau of Standard (1964), a computer code is written
to evaluate the Weber’s function, ¥, ({r) for complex arguments. This computer code is
validated against Walfram (1988). For a thin cylinder, however, where 7 is large compared
to the thickness, H, of the cylinder, the argument (r of the Hankel functions becomes

magnified. The Hankel functions for this case are evaluated by using the asymptotic
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expansion forms (National Bureau of Standard 1964):

HD(Cr) = [eig{ Blm, (r) +iF (m, (r) fe @emitn21/00,
HP((r) = /Z5{E(m,(r) — iF(m, ¢r) e eitm/241/2)m,

where E(m, (r) and F(m,(r) are given in Appendix D. Note that E(m,({r) and F(m, (r)

(2.42)

are well behaved for any argument of (r. However, the Hankel functions may not be
bounded due to the exponent terms. When [Im(({7)| is large, one of the Hankel functions
is exponentially magnified while another is comparatively very small. The numerical
evaluation for this case becomes inaccurate and causes singularity in the matrix [D;] in
equation (2.9). Since the value of ( is fixed for any pair of w and £, the only control
variable therefore is r. Multiplying H()(¢r) and H®)((r) by e ™ and e“™ (where 7,
is the mean radius of the layer), respectively, tranforms the exponent terms in equation
(2.42) to e*®l—ml  Since these multipliers are constant for each layer, they can then be

absorbed in the arbritary constants of the layer.

2.6 Numerical Results and Discussion

In this section, eight numerical examples for dispersion characteristics of homogeneous

and laminated cylinders are presented:

1. A homogeneous elastic rod.
2. A two-layered isotropic hollow cylinder.

3. A homogeneous elastic isotropic cylinder with the Poisson’s ratio v of 0.3, H/R of

1.5, and circumferential wavenumbers, m, of 1 and 3.

4. A 4ply [+30/—30], graphite/epoxy with H/R of 0.667 and circumferential wavenum-

bers, m, of 1 and 3.
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5. A 4 ply [+15/ — 15]; graphite/epoxy cylinder, H/R = 0.667, and circumferential

wavenumber, m, of 1 and 3.

6. A 4 ply [+15/ — 15]; graphite/epoxy cylinder, H/R = 0.10, and circumferential

wavenumbers, m, of 1 and 3.

7. A 16 ply [+15/ — 15]s graphite/epoxy cylinder, H/R = 0.10, and a circumferential

wavenumber, m, of 1.

8. A 12 ply [05/ + 45/ — 45/0,]s graphite/epoxy cylinder, H/R = 0.10, and a circum-

ferential wavenumber, m, of 1.

The first two examples are to illustrate the applicability and the efficiency of the prop-
agator matrix mehod. The wave propagation and modal behaviors of the two-layered
isotropic cylinder are investigated in the second example. The accuracy of the results
obtained by the Rayleigh-Ritz type approximations tested against the analytical solu-
tions is illustrated in the third example. The effect of circumferential wavenumber on
the dispersion characteristics of isotropic cylinder is also investigated. The last five ex-
amples compare the accuracy of the results obtained from the two Rayleigh-Ritz type
approximations for laminated composite cylinders. The factors effecting the dispersion

characteristics of laminated composite cylinders are also investigated in detail.

When the laminated composite cylinder is considered, it is assumed that the wave-
length is much larger than the fibre diameter and spacing between the fibres. Each layer
or lamina can therefore be modelled as a transversely isotropic medium with the symme-
try axis aligned with the fibre direction (Datta et al. 1984). For the laminated composite
cylinders considered in all examples, the elastic properties for each ply relative to their

natural elastic axes are (Huang and Dong 1984):

Ep = 13.9274 x 10"°N/m?, Er = 1.5169 x 101°N/m?;

(2.43)
GLT = GTT = 0.5861 x 101°N/m2, VT = Vpr = 0.21,
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where F and GG denote modulus of elasticity and shear modulus, respectively. v is the
Poisson’s ratio. Subscripts L and T represent the fibre and the transverse directions, re-
spectively. In all numerical results presented in this chapter, the frequency and wavenum-
ber, whenever referred, are the normalized frequency 2 and normalized wavenumber ~

with the forms of:

Q=" ;o= 57 (2.44)
Wref fref

where w,.y and &,.; are the reference frequency and the reference wavenumber, respec-

tively. For simplicity, all sublayers in cylinder are modelled with equal thicknesses.

2.6.1 Efficacy of the Propagator Matrix Approach

The applicability, the accuracy, and the efficiency of the propagator matrix method are
illustrated by the following two numerical examples. The wave propagation and modal

behaviors of the two-layered isotopic cylinder are also investigated.

Ezample 1

The axisymmetric vibration of the harmonic waves in a solid rod with Poisson’s ratio
of 0.31 is considered. The frequency spectrum is shown in Figure 2.2. The reference

frequency and reference wave number are, respectively;

ov, )
Wref = H ) gref = E)

where ¢ is the lowest nonzero root of J1(§) = 0, v, is the shear wave velocity and H is the
total thickness of the rod. The dashed lines show the complex branches and the circles
represent the results given by Onoe et al. (1962). By stipulating the axially symmetric
vibration, the longitudinal and torsional modes are uncoupled. Only the longitudinal
modes are illustrated herein. Onoe et al. presented the spectrum showing purely real,
imaginary and complex branches in which the complex branches were sketched approxi-

mately, except those near the coordinate planes. As seen in Figure 2.2, the discrepancy
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between the results from the present method and the approximate results presented by
Onoe et al. is pronounced for these complex branches except for those near the planes.
For the purely real and imaginary branches, the two results are in excellent agreement.

This confirms the applicability and the accuracy of the method.

Ezample 2

The vibration of harmonic waves in an infinite composite cylinder is considered. The
cylinder is composed of two isotropic layers perfectly bonded together. The mechanical
properties of the two layers are: 11 = v = 0.30; where v denotes the Poisson’s ratio;
p1/p2 = 1;p1/p2 = 2; hi/hy = 1. The subscripts 1 and 2 represent the inner and outer
layer, respectively. The ratio of the thickness to the mean radius of the outer layer,
ha/Rs, is 0.20. The circumferential wave number, m, is 1. The reference frequency and

the reference wavenumber are, respectively:

279 ) 2

Wref = H 3 fref = ﬁ,

where v, 1s the shear wave velocity in the outer layer.

Armenakas (1971) presented the results for the propagating modes (shown as circles in
Figure 2.3). It can be seen that the results from the present method and those obtained
by Armenakas are in excellent agreement. The spectrum of this cylinder showing real,

imaginary and complex branches is presented in Figure 2.4.

It can be noticed that the propagator matrix method does not require any change in
the computer codes in order to accommodate more layers of different material properties.
Unlike the stiffness method proposed by Moore (1990), the propagator matrix approach
requires the computation of only 4 x 4 (for rod problems) or 6 x 6 matrix (for hollow
cylinder cases). Since the formulation is based upon the three-dimensional theory of
elasticity, the roots are exact. To the best of the author’s knowledge, the exact complex

frequency spectrum of laminated isotropic cylinder has not yet been reported.
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Figure 2.2: Complex frequency spectrum of isotropic rod with v = 0.31.

( — present study; O Onoe et al. 1962)
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Figure 2.3: Frequency spectrum of two-layered isotropic cylinder

( — present study; O Armenakas, 1971)

36



vr 3"

Figure 2.4: Complex frequency spectrum of two-Layered isotropic cylinder.
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Figure 2.5: Displacement distribution for propagating modes at normalized
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Figure 2.5: Displacement distribution for propagating modes at normalized
frequency Q of 1.0 (— u, - - - v, - - w).
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Figure 2.6: Displacement distribution for non-propagating modes at normalized
frequency Q of 1.0 (—u, - - - v, - — w).
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Figure 2.7: Displacement distribution for evanescent modes at Q of 1.0 and

7 of 0.4392 — 0.6837; (— u, - - - v, - — w).
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Figure 2.5 shows the displacement distribution through the thickness of the cylinder for
normalized frequency, = 1.0. Figures 2.5a, 2.5¢, 2.5e and 2.5g show that the torsional
motion is insignificant for the first, third, fifth and seventh propagating modes. The radial
and axial motions are coupled for these modes. The radial motion predominates for the
first and the third propagating modes (Figures 2.5a and 2.5c), whereas for the fifth
and the seventh propagating modes the axial motion is predominant (Figures 2.5¢ and
2.5g). The presence of the torsional motion becomes paramount in the second, fourth,
and sixth propagating modes (Figures 2.5b, 2.5d, and 2.5f, respectively). Figure 2.5h
reveals that all motion is coupled in the eighth propagating mode. Armenakas (1971)
commented that the motion is concentrated in the inner layer. This is true for the first
and the second propagating modes, however, for the third and the fourth propagating

modes the motion is stronger in the outer layer.

One interesting characteristic of guided waves in the cylinder for the flexural case (m
= 1) is that some of the branches in the imaginary plane extend to zero frequency. The
behavior of these branches (Figure 2.4) is similar to that of the axisymmetric torsional
case (Mason, 1968). The investigation of the mode shapes of these non-propagating
modes (Figure 2.6) for Q = 1 reveals that the torsional motion predominates over the
radial and axial motions. On the other hand, for evanescent mode, the torsional motion

is negligible as seen in Figure 2.7 for ) = 1.

2.6.2 Accuracy of Rayleigh-Ritz Type Approximations

Ezample 8

The accuracy of the results obtained by the Rayleigh-Ritz type approximations is test-
ed against the analytical solution for propagation in a homogeneous cylinder with differ-

ent circumferential wavenumbers. The propagation of waves in homogeneous isotropic
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cylinder with the Poisson’s ratio v of 0.3 and the thickness to radius ratio, H/R, of 1.5
is considered in this example. Two circumferential wavenumbers m, which are 1 and
3, are considered. The reference frequency and the reference wavenumber are defined,

respectively, as:

TV, vis
Wref = ?’ Yref = ']'{“

Figures 2.8 show the frequency spectrum for these examples. The Rayleigh-Ritz type
approximations, the displacement continuity method (dashed lines) and the stress con-
tinuity (solid lines), yield excellent results in comparison with the analytical solutions
(circles) in the low frequency regimes. However, for higher modes, the discrepancy be-
tween the two approximate methods becomes noticeable. It can be observed that the
results obtained from the stress continuity are lower than those obtained by the displace-
ment continuity approach. Since both of the approximations employ the consistent mass

approach, the stress continuity will generate the results closer to the analytical solutions.

Armenakas et al. (1969) illustrated that the effect of the variation in circumferential
wavenumber on dispersion behavior of thin-walled isotropic cylinder is considerably neg-
ligible. For thick-walled cylinders, an inspection of Figures 2.8 reveals that the change in
circumferential wavenumber is quite pronounced only in low wavenumber regimes (Bra-
ga et al., 1990). A thorough investigation of thick cylinders shows that the rigid body
motion does not appear when the circumferential wavenumber is 3. The variation in cir-
cumferential wavenumber, however, does not affect the accuracy of the results obtained

by the approximate methods.

2.6.3 Factors Effecting the Dispersion Characteristics of Laminated Com-
posite Cylinders

Ezamples /-8
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Figure 2.8: Frequency spectrum for a homogeneous isotropic cylinder with

v=203, H/R=1.5,and (a) m =1, (b) m = 3.
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The last five examples are considered in an investigation of the factors effecting the
dispersion characteristics of laminated composite cylinders. Attention will be focussed
mainly on the dominant branches, which are real branches of the frequency spectrum.

The reference frequency and the reference wavenumber are, respectively:

vL ™
Wref = 'E ) f'ref - ﬁ;

where

Figures 2.9 to 2.13 illustrate the frequency spectrum for the cylinders in examples 4

to 8, respectively.
a) The Effect of Circumferential Wavenumber

The variation in the circumferential wavenumber has a similar effect on the dispersion
characteristics of a laminated composite cylinder as on those of a homogeneous cylinder.
The effects are mostly concentrated in the low wavenumber regions. The comparison of
Figures 2.9a to 2.9b and 2.10a to 2.10b for examples 4 and 5, respectively, reveals
that there is no rigid body motion for the circumferential wavenumber of 3. The process
of wave velocity reaching the constant phase velocity stage is also slow-down with the
higher circumferential wavenumber. For relatively thin tube, Figures 2.11 for example
6, the change in the circumferential wavenumber from 1 to 3 does not significantly alter

the dispersion characteristics of the cylinder.
b) The Effect of Thickness to Mean Radius Ratio

Figures 2.10 and 2.11 for examples 5 and 6, respectively, illustrate the influence of the
H/R ratio on the dispersion characteristics of laminated composite cylinder. It should be

noted that the higher the H/R ratio, the thicker the cylinder. With the circumferential
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wavenumber of 1, the variation in H/R ratio shows no significant influence on the disper-
sion behavior. The effect of H/R ratio becomes more pronounced for the circumferential
wavenumber of 3. It is noticed that the change in H/R ratio does affect the values of the
cut-off frequencies, i.e. the frequencies for zero wavenumber, in low frequency regimes
and the degree of weak coupling. The corresponding dispersion curves of a thin cylinder
have the typical configuration of weak coupling, namely, they come close together near
the region of intersection or contact of the dispersion curves (Armenikas et al. 1969).
The comparison of Figures 2.10a and 2.11a, and 2.10b and 2.11b demonstrates that the
thinner the cylinder, the higher the degree of weak coupling phenomenon. The effects,

however, are localized in the region of low wavenumbers.

¢) The Effect of Layering and Ansiotropy

Layering herein means the number of laminae in the laminated composite cylinder.
Figures 2.11a and 2.12 for examples 6 and 7, respectively, show that the effect of layering
1s very significant. Layering has a tendency of increasing phase velocities for high modes.
It is very interesting that for the sixteen ply of graphite/epoxy, the discrepancy of the
results obtained from both approximate methods become less in comparison to that for

the four ply cylinders.

When laminated composite cylinder is composed of many different orientations of
the lamina, the cylinder is considered to have high degrees of anisotropy. Figure 2.13
illustrates the frequency spectrum of a multi-angle symmetric laminated cylinder used
in the aerospace industry. It can be observed from Figure 2.13 for example 8 that the
wave velocities approach the constant phase velocity stage slower than in [+15 / — 15];
or [+30/ — 30], ply lay up tube. In comparing the frequency spectrum of the 12 ply
[02/+45/—45/0,], graphite/epoxy cylinder (Figure 2.13) with that of the 16 ply [+15/ —
15]s cylinder (Figure 2.12) it can be noticed that both spectra have a similar pattern,

especially in the region of small wavenumber, £. The cut-off frequencies as well as the
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Figure 2.9: Frequency spectrum for a 4 ply [+30/ — 30], graphite/epoxy cylinder with
H/R = 0.667, and (a) m = 1, (b) m = 3.
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Figure 2.9: Frequency spectrum for a 4 ply [+30/ — 30], graphite/epoxy cylinder with
H/R = 0.667, and (a) m = 1, (b) m = 3.
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Figure 2.10: Frequency spectrum for a 4 ply [+15/ — 15], graphite/epoxy cylinder with
H/R = 0.667, and (a) m =1, (b) m = 3.
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Figure 2.10: Frequency spectrum for a 4 ply [+15/ — 15], graphite/epoxy cylinder with
H/R = 0.667, and (a) m = 1, (b) m = 3.
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first propagating mode for both cylinders are almost identical.

2.7 Concluding Remarks

The elastic wave propagation in isotropic and laminated cylinders is investigated by the
propagator matrix method and the Rayleigh-Ritz type approximations. The propaga-
tor matrix is established from the relation of the stresses and displacements between
the two interfaces of the sublayer based upon the three-dimensional theory of elasticity
for isotropic materials. The dispersion relation of the cylinder is generated from this
relation. The Rayleigh-Ritz type approximations are employed to investigate the dis-
persion characteristics for laminated composite cylinders when the analytical solution is
unattainable. The methods divide the cylinder into several sublayers and approximate
the displacement distribution through the thickness of the sublayers by interpolation
functions in terms of discrete generalized coordinates. These generalized coordinates
may involve only displacements or both displacements and stresses at the nodal points.
The dispersion relations of the cylinder obtained by Rayleigh-Ritz type approximations
are in the forms of eigenvalue problem. It is shown that the dispersion behavior predicted
by the Rayleigh-Ritz type approximations agree well with the analytical solution. It may
be noted that although the stress continuity method yields more accurate results than
those obtained by the displacement continuity approach, the discrepancy of the result-
s from the two methods is considerably small. Observation made here further suggest
that the displacement continuity method can be exploited in solving the wave scattering

problems.

The results illustrate that the measurable changes in phase velocity are caused by
the variation of circumferential wavenumber, the thickness to radius ratio, the layering,
and the degree of anisotropy. Most of the effects, however, are quite appreciable at low

{requencies and low wavenumber regime.
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Figure 2.11: Frequency spectrum for a 4 ply [+15/ — 15], graphite/epoxy cylinder with
H/R =0.10, and (2) m = 1, (b) m = 3.
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Figure 2.11: Frequency spectrum for a 4 ply [+15/ — 15|, graphite/epoxy cylinder with
H/R =0.10, and (a) m = 1, (b) m = 3.
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Figure 2.12: Frequency spectrum for a 16 ply [+15/ — 15]s graphite/epoxy cylinder with
H/R = 0.10, and m = 1.
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Figure 2.13: Frequency spectrum for a 12 ply [0,/ +45/ —45/02], graphite/epoxy cylinder
with H/R = 0.10, and m = 1.
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Chapter 3

Free End Reflection of Waves in

Semi-infinite Cylinders

3.1 General

As mentioned in Chapter 1, the study of wave propagation in cylinders has many appli-
cations, such as nondestructive evaluation of material properties, flaw detection, and the
determination of resonance. Free end reflection problem, one of the scattering problems,
which is investigated in the present chapter also requires the basic knowledge of wave
propagation which was presented in Chapter 2. The present study of free end reflection in
cylinder will help in contriving suitable techniques to analyse more complicated problem

of wave scattering due to cracks in cylinder.

When a wave travels along a semi-infinite cylinder and strikes at the free edge of the
cylinder, an infinite number of reflected waves is generated. These reflected waves may
have real, imaginary, or complex wavenumbers. Only a finite number of these waves,

with real wavenumbers, propagate energy. The imaginary and complex modes carry
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no energy and their amplitudes exponentially decay with the distance. However, these
non-propagating and evanescent modes, the imaginary and complex modes, respectively,
are as significant as the propagating modes at the edge of the cylinder in satisfying the
traction free end condition. The reflected wave field is represented by the modal sum of
a finite number of wave functions (Karunasena et al., 1991). These wave functions or
eigenfunctions at discrete points through the thickness of the cylinder can be obtained
from the propagator matrix for laminated isotropic cylinders. On the other hand, the
Rayleigh-Ritz type approximation with displacement continuity, presented in Chapter
2, is employed where analytical solution is unattainable. The amplitudes of the wave
functions are determined by satisfying the traction free end conditions using the least

square and variational methods.

The validation and the accuracy of the methods are demonstrated by comparing the
results with existing results for a homogeneous isotropic elastic solid rod. The comparison
between the results obtained from the displacement continuity method and the propaga-
tor matrix approach illustrates the applicability of the Rayleigh-Ritz type approximation
in the free end reflection problem. Numerical results for a two-layered isotropic cylinder
and for a four ply graphite/epoxy cylinder are presented. In each case, the division of

energy among various reflected modes is also presented.

3.2 Description of the Problem

A semi-infinite laminated cylinder considered occupies the region z > 0 in the cylindrical
coordinates r, §, and z as shown in Figure 3.1. The layers or laminae may have distinct
mechanical properties as well as different thicknesses. These layers are assumed to be
perfectly bonded together. The thickness of the cylinder, H, is discretized into N sub-
layers to model the radial inhomogeneity and to compute the eigenvectors at discrete

points. The cylinder is excited at z = +o0o which generates the incident wave with an-
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gular frequency of w and wavenumber of &;,,. This time harmonic guided wave travels
in the negative z—direction and impinges upon the free end z = 0 of the cylinder. The
objective herein is to investigate the reflected waves generated after the incident wave

strikes the free edge of the cylinder.

3.3 Wave Functions

Wave functions required for the reflection analysis are obtained by considering the elastic
wave propagation in the corresponding infinite cylinder. For this purpose, each layer is
divided into several sublayers so that the total number of sublayers through the thickness,
H, is N. Two approaches are employed in the present chapter, viz. the propagator
matrix method for laminated isotropic cylinders, and the displacement based Rayleigh-
Ritz type approximation for laminated composite cylinders. The displacement continuity
method is preferred over the stress continuity approach mainly due to the fact that, for
given w, the stress continuity approach involves a fourth order eigenvalue problem whilst
the displacement continuity method contains only a quadratic eigenvalue problem. One
should note here that the fourth order eigenvalue problem requires much larger computer
time and core memory than the quadratic eigenvalue problem. Also, it is observed from
Chapter 2 that the discrepancy between the results obtained from both the approximate

methods is considered small.

As discussed in section 2.5, for a particular value of w, the roots of the dispersion

relations will have the form of complex wavenumber, equation (2.39), as:
{={r -1

The admissible ¢ for the reflected wave field in the semi-infinite cylinder are those real
roots with positive group velocity and those non-real roots with £ > 0. These conditions

ensure that the reflected waves produce bounded displacement and stress fields through-
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Figure 3.1: Geometry of semi-infinite laminated cylinder
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out the cylinder. In solving the transcendental functions, equations (2.17) and (2.22),
Muller’s method is employed. At the first step, beginning with the lowest frequency, the
cylinder is discretized into a sufficiently large number of sublayers and the approximate
roots are obtained via the displacement based Rayleigh-Ritz type approximation. Those
approximate roots lying in the first quadrant of the complex { —plane are used as initial
guesses to recover the exact roots. It should be noted that the division into sublayers is
not required to obtain the exact roots, but is used to compute the eigenvectors in the
modal expansion method. At the next step, w is increased by a small increment and
the exact roots from the previous step are taken as initial guesses for the current step.
The process is repeated until the frequency range of interest is scanned. As a check,
at some intermediate frequencies, the approximate roots from the displacement based
Rayleigh-Ritz type approximation are used as initial guesses in the Muller’s method to
obtain the exact roots as mentioned in section 2.5. After obtaining the wavenumbers, £,

the sign of the real wavenumbers are adjusted to have positive group velocities.

3.4 Reflected Wave Field and Incident Field

The reflection occurs after the wave strikes the edge z = 0 of the cylinder. The reflected
waves consist of a finite number of waves with real wavenumber and an infinite number of
waves with imaginary and complex wavenumbers. The displacement vector corresponding
to these reflected waves {q.},. at any arbitrary z has the form of:
{@:}re = 3 Ai{gi}e7 @0 2 > 0, (3.1)
i=0
where
{5} = (wi; vi; w1y - wey vy way . uvr); vvey wE) ) (3.2)
NP being the number of nodal points. The displacements uyj, vi;, and wy; at the k*®
nodal point associated with the j** mode can be obtained from equation (2.11) or (2.32).

The complex amplitude A; of the 7 mode is to be determined so that the associated
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stress field satisfies the free end condition. The factor e™!e™™? will be suppressed in the

following formulation.

For the purpose of numerical evaluation, the series in equation (3.2) is truncated
to J terms. Only the modes corresponding to the wavenumbers with small negative
imaginary part are superposed (Gregory and Gladwell, 1989). As mentioned earlier, the
wavenumbers having positive imaginary part are unbounded for large z and, therefore,
they are not admissible. In the wavenumber determination process, after obtaining the
wavenumbers ¢; for each frequency, only J number of roots are chosen. The selected roots
must include all the propagating modes. The real roots are ordered in the descending
order of the amplitude while the non-propagating and evanescent modes are ordered in

the ascending order of magnitude of their imaginary parts.

The reflected wave field at the edge z = 0, {go},., with J modes approximation can

then be written as:

{g0}re = [G1{A}, (3.3)

where
(Gl =[{a} {e} - {g} -+ {as}], (3.4)
{AY = (A1 Ay ... A .. Ay, (3.5)

The stress components (0, 0y,, and o,,) at discrete points on the surface z = constant
of the k™ sublayer can be obtained by the stress-strain and the strain-displacement

relations as:

Ory = 015 du + _Cl’lj(u +1mv) — 1£Casw + zC45(?w £v)
d
+C'55(“— —ofu) + Cse(zn‘u gg - ;),
d C ) )
Ty, = Cl4 du + _?Zé(u -+ zmv) 26034’1,0 -+ ’1,044('7;:&—’(1) - §’U)
d d
+O45(£ ~ iéu) + 046(2_7:,1“ + E—:’i - ET)—), (3.6)
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du C.
0y = Cham— + ﬁ(u +2mv) — 1éCaw + zC’34(—w £v)

dr
dw m dv v
+C35(d— —_ zfu) + 036(——u + E; — ;)

For the isotropic sublayer, with the propagator matrix approach, knowing the three
displacement components: u, v, and w; and the three stress components: ¢,,, 0,4, and

o,z; together with the above equations, the two required stress components can be written

as:
0o = —ibp + o,
.
A 20\
T = Gyt oy (et ime) = it (3.7)

In the Rayleigh-Ritz type approximation, with the interpolation polynomial functions,

the explicit form of the three stress components in equation (3.6) can be written as:
{5} = [N:[{d}, (3.8)

where

{S}T = <Urz 09z Jzz), (39)

{g} is the vector of generalized displacements and is defined in equation (2.26). The
matrix [V3] is given in Appendix E. Note that oy, and o,, may not be continuous at the
interfaces between the sublayers. The stress vector containing these stress components

due to the reflected field at the free end surface can be formulated as:

{R}re = [F]{4}, (3.10)
where
[F]=[{S1} {82} ... {Si} ... {S5}], (3.11)
{S;}7 = <Urz1j 09215 02215 «+-Orzkj Ofzkj Oszkj ---Ora(NP)j O9z(NP)j Uzz(NP)j>-

(3.12)

It must be mentioned here that when the circumferential wavenumber, m, is not

zero, the wavenumber {; and £ for propagating modes in the positive and negative

63




z—direction, respectively, are not the same for laminated composite cylinder unless the
material properties are symmetric with respect to 6. Once the wavenumber, £, for the
incident mode has been selected, it was found convenient to evaluate the incident field
quantities in the (r, &, z’) coordinates where ¢ = —0 and 2/ = —z. With this, the
incident field at the edge z = 0, {qo}in, with J modes approximation can be written in

the same form as equation (3.3) as:

{QO}in - Ain{Gin}7 (313)

Similarly, the stress vector due to the incident field at the free edge can be written as:

where A;, is the amplitude of the incident mode. The displacement and stress vec-
tors, {Gin} and {F3,}, respectively, are calculated from the wave corresponding to the

propagating incident mode.

The traction free condition at z = 0 requires that
{R} = {R}Te - {R}zn = 0. (315)

By minimizing the sum of the squares of the residuals of {R}, the least square solution

for complex amplitude {A} is obtained as:

{A} = An[[ MERGES| / A (B} rar], (3.16)

Ti

where r; and r, represent the inner and the outer radii of the cylinder, respectively.

An alternate approach of determining the complex amplitude {A} is to employ the
variational principle (Wu and Plunkett, 1967). Using the principle of virtual displace-
ment, one obtains:

§{%} {R} = 0, (3.17)
where 6 represents variation. The total displacement field {go} at the free end surface of

the cylinder is:
{20} = {q0}in + {q0}re, (3.18)
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in which
6{q0} = 6{qo}re- (3.19)

The solution is obtained by substituting equations (3.3), (3.15), and (3.19) into equation
(3.18). This leads to:

{A} = Au| / C @] a7 / " (6] (B} rar]. (3.20)
The normalized amplitude B; of the j** mode is defined by:
A,

Bj = 2.

(3.21)

Once the amplitude {A} is known, the displacement and stress fields anywhere in the

cylinder can be computed.

3.5 Energy Flux

One of the physical quantities of interest is the mean total energy flux. Reflected energy
is carried only by the various propagating modes which can exist at that particular
frequency. The instantaneous value of the energy flux, associated with the ;% reflected
propagating mode, per unit length in z—direction, through a cylinder cross section located

at any z (z > 0) is given by:

: d{q. a{q. |

E] = ;/ [{sz}T {qd]}re + {RzJ}T {QZ}TCJT'dT ; ] S NpT) (3_22)
where

{gzi}re = Ai{g}e” &0, (3.23)

{Rijtre = Aj{S;}eCmwtlgimd (3.24)

The {q.;}r. and {R.;},. represent, respectively, the displacement and the stress vectors
associated with the j** reflected mode at any cross section z. N, is the number of propa-

gating modes in the reflected field. The time-averaged value of the energy flux, associated
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with the j® reflected mode, per unit length in z—direction, through the cylinder cross

section is obtained by averaging E; over one cycle. This is given by:

1 27w
- . 2
By = o - /O Bdt (3.25)

After carrying out the integration in equation (3.25), E; can explicitly expressed as:
B = wl Al [ [ UFY (g} rdr)] 5 <N, (3.26)

The mean total energy flux is calculated from the sum of the energy fluxes carried by

reflected propagating modes. This is given by:

Npr
E..=> E.. (3.27)
7=1

The energy flux of the incident field can be written in the similar form as:
To

Ein = | Al I / [{Fn)" (@), rdr]]. (3.28)

The proportion of the incident energy transferred into the j*! reflected propagating

mode is:
B
I; = Ej .

Since the free end condition requires no energy dissipation when the wave reflects, the

(3.29)

percentage difference in energies carried by the incident and the reflected fields is then
given by:
Iel = I[Ezn - Ere]]-OO/Ean . (330)

The principle of energy conservation requires that |¢| = 0. The smallness of the value of

|e| is an useful index to assess the accuracy of the numerical results.

3.6 Numerical Evaluation and Discussion

To validate and to assess the accuracy and the application of the methods, the following

three numerical examples are considered:
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1. A homogeneous isotropic elastic rod.
2. A two-layered isotropic hollow cylinder.

3. A 4-ply [+15/ — 15/ + 15/ — 15] graphite/epoxy hollow cylinder.

In all examples, the frequency and the wavenumber, whenever referred, are the nor-

malized frequency, {2, and the normalized wavenumber, «, with the forms of:

w ¢
= oY=
Wref é'ref

where w,.y and &5 are the reference frequency and the reference wavenumber, respec-

tively.

The total number of sublayers N used to compute the discrete eigenvectors and the
number of modes J used in the modal expansion are very important factors for the
accuracy of the method. Reasonably good values of N and J aré chosen in such a way
that the amplitude {A} in equation (3.16) or (3.20) and the proportion of the energy

carried by each reflected mode I; in equation (3.29) converge.
Ezample 1

The reflection of the first axisymmetric wave in a solid rod with the Poisson’s ratio
v of 0.25 is considered. The reference frequency and the reference wavenumber are,
respectively;
Wref = %’ i brer = “]}{w
where v, is the velocity of dilatation wave. A full discussion of the frequency spectrum for
this case was given by Onoe et al. (1962). The first three cut-off frequencies are ) = 1.931,
2.069, and 2.212. The propagator matrix approach with 20 sublayers (corresponding to 42

degrees of freedom) and 21 modes are employed in this present example. Figure 3.2a and

3.2b show the normalized amplitude B; and the proportion of energy I; of each reflected
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mode. The comparison of the proportion of energy obtained by the present method with
that of Gregory and Gladwell (1989) is made. It can be seen that the method presented
herein yields results that are in exellent agreement with those obtained by Gregory and
Gladwell. For the range of Q) in Figure 3.2, |¢| is less than 0.5 %. From the numerical
experimentation, it is observed that there is no discrepancy between the results obtained
by the least square method and those obtained by the variational technique, equations

(3.16) and (3.20), respectively, in this example.

The numerical results confirmed that the end resonant frequency for this rod is 1.644

which is identical to the one obtained by Gregory and Gladwell.

Example 2

The reflection of the first propagating mode in a two-layered isotropic cylinder is
considered. The properties of the two layers are given in Chapter 2 i.e., v; = v; = 0.30;
p1/p2 = 1; p1/p2 = 2; hi/hy = 1. The subscripts 1 and 2 represent the inner and the
outer layer, respectively. The ratio of the thickness to the mean radius of the outer layer,
hz/R2, is 0.20. The circumferential wavenumber m is 1. The reference frequency and the
reference wavenumber are, respectively:

2T U, 2

Wref = o ; fref = E;

where vy, is the shear wave velocity in the outer layer. The frequency spectrum for
this cylinder was presented in Chapter 2. The first four cut-off frequencies are ) =
0.059, 0.145, 0.428, and 0.438. The propagator matrix approach and the displacement
based Rayleigh-Ritz type approximation are employed in this example to illustrate the
applicability and the accuracy of the Rayleigh-Ritz type approximation for the reflection
problem. In order that the two methods are to be comparable, the discretizations are
made in such a way that both methods have the same number of degrees of freedom. It is
found that 99 degrees of freedom (corresponding to 32 and 16 sublayers for the propagator
matrix approach and the Rayleigh-Ritz type approximation, respectively) and 30 modes
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Figure 3.2: Reflection in isotropic elastic rod (a) the normalized amplitude |B;|,

(b) the proportion of energy I;.
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provide reasonably good results.

Figures 3.3a and 3.3b illustrate the normalized amplitudes B; and the proportion
of energy I; of each reflected propagating mode, respectively. It can be observed that
the results from both methods are in excellent agreement. For the frequencies lower
than the first cut-off frequency, only one reflected propagating mode is possible. This
mode has the same absolute amplitude as that of the incident wave and carries all of
the energy back. At the first cut-off frequency, the second propagating mode becomes
predominant. The amplitude of this second cut-off frequency is comparatively large. This
phenomenon, however, is not very stable as the frequency is shifted away from the first
cut-off frequency. The first propagating mode recovers its dominacy as the frequency
increases. This mode is also predominant in the frequency range between the second and
the third cut-off frequencies. Between the third and the fourth cut-off frequencies, the
fourth propagating mode has very high amplitude. However, its amplitude is not high
enough to be considered as a resonant phenomenon. For the frequency greater than the
fourth cut-off frequency, the fifth propagating mode predominates all other modes except
in a small region around Q = 0.62 as shown in the inserts in the Figures. An investigation
in this particular region reveals that the first mode is the breathing mode, the second
and the fourth modes are torsional modes whilst the third and the fifth modes are the

modes coupling of the longitudinal motions.

For the range of () considered in Figures 3.3, |¢| is less than 0.5 %. Similar to the first
example, the results obtained from the least square method and those obtained by the

variational technique show negligible discrepancy.

FExample 8

The reflection of the first incoming propagating mode in a 4-ply [+15/—15/+15/ —15]

graphite/epoxy is considered. The elastic properties for each ply relative to their natural
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Figure 3.3: Reflection in two-layered isotropic cylinder (a) the normalized amplitude |B;,

(b) the proportion of energy I;.
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elastic axes are given in the previous chapter, equation (2.43), as:
Er, =13.9274 x 10"°N/m?* ; Er = 1.5169 x 101°N/m? ;

GLT = GTT = (.5861 x 1010]\7/772,2 sy Vo = VT = 0.21.

The normalized frequency and the normalized wavenumber are given, respectively, by:

VI, H
Wref = ﬁ ) é'ref - 7{_‘,
where
E
3
p

The circumferential wavenumber m and H/R are 1 and 0.667, respectively. As previ-
ously discussed, when the waves travel in the anisotropic cylinder with the circumferen-
tial wavenumber greater than zero, the wavenumber of waves travelling in the positive
z—direction differs from that of the waves travelling in the negative z—direction. Fig-
ure 3.4 shows the frequency spectrum for this cylinder. The solid lines represent the
waves travelling in the positive z—direction, while the dashed lines illustrate the waves
travelling in the negative z—direction. The first four cut-off frequencies are ) = 0.215,

0.295, 0.696, and 0.760.

Since the analytical solution is unattainable for laminated composite cylinders, the
displacement based Rayleigh-Ritz type approximation is employed in this example. The
cylinder is discretized into 16 sublayers (corresponding to 99 degrees of freedom) and 30

modes are considered.

Figures 3.5a and 3.5b show the normalized amplitudes B; and the proportion of energy
I; of each reflected propagating mode. Unlike the previous example, the propagating
modes in the positive and in the negative z—direcctions are different. Therefore, for
frequencies lower than the first cut-off frequency, the normalized absolute amplitudes
of the reflected wave need not be unity. However, the conservation of the energy still

holds, i.e. the energy carried by the incident wave is totally transferred to the reflected
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Figure 3.4: Frequency spectrum for 4-ply [+15/ — 15/ 4 15/ — 15] graphite/epoxy
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propagating wave as seen in Figure 3.5b. Similar to the case of layered isotropic cylinder,
at the first cut-off frequency, the second mode becomes predominant. In the range
between the second and the third cut-off frequencies, all three propagating waves are
essential in carrying energy back. Between the third and the fourth cut-off frequencies,
the patterns of both the normalized amplitude and the proportion of energy are very
irregular. After the fourth cut-off frequency, all propagating modes in the reflected waves
are contributing in the transfer of the energy. In this example, it is observed that the
numerical results obtained by the least square method are very inaccurate. For the range
of ) considered here, the variational technique yields the |e| of less than 0.5 % while the
least square method gives |¢| up to 15 %. The reason for the anomalous results is that
the least square method does not have a physical basis unlike the variational method
in which the energy is minimized. Although the sum of the squares of the residuals is
minimized in the least square method, the minimized residual sum could be large which

results in large error in |e.

A careful search was made for the end resonant frequency in examples 2 and 3 but
none could be found in the range of the frequency considered and no attempt was made

to search for the end resonant frequency outside this range.

3.7 Concluding Remarks

The free end reflection of waves in laminated cylinders are investigated by the wave
function expansion method. To obtain the required eigenfunctions at the discrete points
through the thickness of the cylinder, the propagator matrix approach is employed when
the analytical solution is obtainable and the displacement based Rayleigh-Ritz type ap-
proximation is used when analytical solution is unattainable. Numerical results confirm
the applicability and accuracy of the exploitation of the Rayleigh-Ritz type approxima-

tion in the free end reflection problem in laminated cylinders. The least square technique
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Figure 3.5: Reflection in 4-ply [+15/-15/+15/-15] graphite/epoxy cylinder,

(a) the normalized amplitude |B;], (b) the proportion of energy L.
75



as well as the variational method are employed in determining the complex amplitudes
of the reflected waves. It is found that the results from the least square method are not

reliable for the laminated anisotropic case.
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Chapter 4

Plane Strain Wave Scattering by Cracks in
Cylinders

4.1 General

CANDU Pressurized Heavy Water reactors contain hundreds of horizontally mounted
zirconium-niobium (Zr-Nb) pressure tubes. These tubes hold the natural uranium fuel
and are separated from the surrounding calandria tubes by garter springs. Having the
inside diameter of 103 mm and the wall thickness of 4.2 mm with 6 metres in length, these
Zr-Nb pressure tubes are designed to be accessed from either end via the end-fittings and

closure plugs. They are routinely refuelled on-power using the fueling machine.

Although the Zr-Nb material is not particularly damage-tolerant, the pressure tubes
are reliably designed for the primary pressure boundary. Nevertheless, defects, both
from manufacturing and during service, have occasionally occurred. These defects are
usually detected in-service using a focussed ultrasonic shear wave technique, the CIGAR

(Channel Inspection and Gauging Apparatus for Reactors) system (Dolbey, 1986). How-
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ever, 1t is difficult to obtain reliable information of flaw depth from this method alone.
Many approaches were reported to help provide the information on defect size (Silk 1977,
Achenbach et al. 1979, Golan et al. 1980, Tittman 1975, Coffey and Chapman 1983,
Bond and Punjani 1984). The reports, however, were concerned typically with defects on
the opposite face of a thick specimen. Hutchins and Moles (1991) proposed the hybrid
immersion technique to investigate cracks of thin wall tubes. One of the models was to
use two symmetrically positioned transducers generating ultrasonic waves and detecting
the scattered waves due to the defects. It is with this motivation that the plane strain
wave scattering due to defects in cylindrical cross-section is theorectically investigated in

this chapter.

For simplicity of the analysis, the waves are generated by a harmonic line load. The
cylinder is considered to be infinitely long in the longitudinal direction and, thus, the
effect of shear is negligible. The cylinder is composed of layers perfectly bonded together.
A hybrid method (Karunasena 1992) is presented in this chapter to solve the problem. In
this method, the cross-section is divided into two regions - namely interior and exterior
regions. The interior region which contains flaws or loads is modelled by finite elements.
The exterior region is represented by a wave function expansion. These wave functions
(eigenfunctions) are obtained by displacement based Rayleigh-Ritz type approximation
since the analytical solution is unattainable. Continuity conditions for the displacements
and interaction forces are imposed at the nodes lying on the boundaries between the two
regions. This results in a system of linear equations which can be solved for the unknown
wave function amplitudes. These complex amplitudes are used to calculate boundary
nodal displacements and, in turn, to obtain interior nodal displacements. Although the
method can be applied for general laminated composite cylindrical cross-section, only
the numerical results for Zr-Nb pressure tube are presented to illustrate the applicability

of the method.
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4.2 Description of the Problem

An infinitely long thin wall cylinder with a line notch in the z—direction as shown in Fig-
ure 4.1 is considered. The cylinder may be composed of layers of distinct mechanical prop-
erties and different thicknesses. A time harmonic line load is excited on the cylindrical
surface which generates elastic wave propagating in a circumferential, #—direction. This
line load is bounded by the artificial boundaries BT and B~ at § = 8% and 6 = 27 — 8-,
respectively. The waves, generated by the load, in the exterior region of the boundaries
are represented by wave functions expansion. When these waves strike the notch, the
scattering occurs. The notch located at the distance of 8 = 6 from the load is contained
in another artificial interior region with the boundaries St at 8§ = 6y + ¢*, and S~ at
0 = 0y — ¢~. A scattered field from the notch is also represented by the wave functions

expansion.

4.3 Finite Element for Interior Region

Consider a region bounded by artificial boundaries Rt and R~ at § = §* and § = 27 —0—,
respectively, as shown in Figure 4.2. It is noted that the boundaries R and R~ can be the
boundaries B* and B, or ST and S™, respectively, and 6+ and 6~ are greater than zero.
The region represents the interior region and may contain the line load or notch. This
interior region is modelled by nine noded isoparametric finite elements. The coordinates
r and 0, and the displacement components v and v in r— and #—directions, respectively,
at a point within a typical nine noded finite element (Figure 4.3) are approximated by

polynomial interpolations as:

9 9
r = Zerj ; HZZNjHj;
J=1

=1
9 9

u = ZN]"U,]' N ’UZZNJ"U]', (41)
=1 7=1
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Figure 4.1: Geometry of cylinder with harmonic line load and line notch
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Figure 4.2: An arbitrary interior region

where r;, 0; are nodal coordinates and u; and v; are nodal displacements. N;(j = 1,...,9)

are interpolation polynomials given as:

N o= 8a-Ha-q), N = -I1-8)1-7),
Ny = —FUH-m),  Ne = §0-i0+8), (42)
Ny = JA+H)1+7), N = 101-&)(1+4),
Ny o= -F0-H1+7), N = —E1-)(1-§),

No=(1-8)(1-17%,

¢ and 7 are non-dimensionalized coordinates system.

The strain vector, {€}, at a point is related to the displacement field through the

following equation:

{e} = [LH{U}, (4.3)

where

{G}T = <€T7' €90 779) P (44)
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Figure 4.3: Nine noded element in cylindrical coordinate system

2 0
L= ¢+ 12 (4.5)
10 8 _ 1
r 98 or T
(U} =(u v). (4.6)

In view of equation (4.1), the strain vector can be written in terms of nodal displacements

{e} = [Bl{¢°}, (4.7)

where

[B] = [L][N]. (4.8)

[N ] is the polynomial interpolation or shape function matrix which contains the shape
functions defined in equations (4.2) (Zienkiewicz 1977). {¢°} is the nodal displacement

vector for the element and is defined as:

(¢} =(w v w vy ... ug vg) . (4.9)

The total energy functional, #, per unit length in z—direction is in the form:
. 1 _ ~ 1, _
F=33 /9 / (& [CHS—pH{TY (U} ) rardb] - [{ar} ™ Pri+{ax} " {Pr}], (4.10)
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where

{r}T = {a}T {m}7),
{Pr}T = ({P}T {Pa}").

{¢r} and {Pr} are the nodal displacement and force vectors corresponding to the nodes

(4.11)

within the interior region, respectively, while {qr} and {Pgr} represent those quantities
vectors corresponding to the nodes lying on the boundaries. [C] is the elastic modulus
matrix, >, denotes the summation over all the finite elements and overbar represents the
complex conjugate. By substituting equations (4.1) and (4.7) into equation (4.10), and
after the conventional assembly process in the finite element method, the total energy

functional becomes:

= (e IS} ar) — 3 [{a) ™ (Pr) + {ar) (P}, (£12)
where
[S] = [K7] — w?[M7] = [ Bl Bl } : (4.13)
[Sri] [SrR]

[K7] and [Mr] in equation (4.13) are, respectively, the global stiffness and mass matrices
of the interior region resulting from the assembly process. The element stiffness and mass
matrices, [k°] and [m®], respectively, are defined as:
(k] = J, J,[BI"[C][Blrdrds,
] = Jy f, AN [N]rdrdo.

The governing equation of motions of the entire interior region can be obtained by min-

(4.14)

imizing the energy functional as:
§# = &{ar} [SHar} — 6{qr} {Pr} = 0, (4.15)

where ¢ is the first variation.

4.4 Wave Functions for Exterior Region

Wave functions required for the scattering problem are obtained by considering the e-

lastic plane strain wave propagation in the corresponding cylindrical cross-section. The
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Rayleigh-Ritz type approximation with displacement continuity at the nodal points (sur-
faces) is employed in the present study. The method divides the cross section into sev-
eral sublayers as shown in Figure 4.4. Consider the k*! sublayer bounded by r = ry and
7 = 141 surfaces. The nonvanishing displacement components v and v are approximated

by interpolation polynomials in the radial direction as:
{U} = [N]{3q} (4.16)

where
{q”}T:<ub vt um ™ uf vf>, (4.17)

=m0 e O (4.18)
0 n1 0 ny 0 ng
The generalized displacements u®, u™, and u’ in equation (4.17) are taken at the back
(inner), middle, and front (outer) nodal surfaces of the sublayer, respectively. The in-
terpolation polynomials, n;(7 = 1,2, 3) are quadratic functions given by equation (2.28)
as:

ni=1-3n+20% ; ny=4dyg—49 ; ns=—n+2% (4.19)

where 7 = (r — ri)/hg, hi, being the thickness of the k" sublayer.

The governing equation for the entire cylindrical cross section is obtained, by using

Hamilton’s principle, to be:
[KGH{OY + [K:){Q) — [K{Q} — [M){Q} = 0. (4.20)

The matrices [Ki], [K2], [K3], and [M] can be obtained from Appendix B with the
wavenumber ¢ = 0. It is noted that [K,], [K3], and [M] are symmetric, and [K,] is
anti-symmetric. The vector {Q} contains the generalized coordinates for the cylinder.

Prime and overdot denote differentiations with respect to # and ¢, respectively.

A solution for equation (4.20) can be assumed in the form of:

{Q} = {Qo}yeitm?=1), (4.21)
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Figure 4.4: Discretization in Rayleigh-Ritz type approximation
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where {Qo} represents the nodal amplitude vector, w the circular frequency, and m
the complex circumferential wavenumber. By substituting equation (4.21) into equation

(4.20), the following set of linear homogeneous equations is obtained:
{~m?[K1] — im[ ] — [Ks] + 0 [M]}H{Qo} = 0. (4.22)

For nontrivial solution of {Qo}, the determinant of the coefficient matrix must be ze-
ro. This results in quadratic algebraic eigenvalue problem. This equation serves as the

dispersion relation to evaluate m for a given w, or alternatively, w for a specifed m.

The wave functions at discrete nodal points for the j** mode, {¢;}, can be obtained

from the j®* mode eigenvector of the equation (4.22) as:

{q]'}T:<’LL1j Vij .- U Vi ... U(Np)j U(Np)j>, (4.23)

NP being the number of nodal points through the thickness.

4.5 Determination of Circumferential Wavenumber

Equation (4.20) obtained in section 4.4 serves as the dispersion relation of the cylinder
in the form of quadratic algebraic eigenvalue problem. This equation can be used to
evaluate the frequency, w, for a given circumferential wavenumber, m, or alternately, for
a specified w, it can be solved for m. Only real w are admissible due to physical reasons.
The circumferential wavenumber, m, on the other hand, can have the form of a complex
number as:

m=mg — imI, (424)

where mg and mjy are real and imagainary parts of the complex circumferential wavenum-
ber, m, respectively. From the viewpoint of the stability of the system, only m; > 0 is
admissible for 6 > 0. When m; = 0 and mg > 0, the roots produce modes propagating

in the positive §—direction. The modes are non-propagating when mg = 0 and m; > 0.
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The roots with non-zero mg and mp represent the evanescent modes. It can be shown
that if m is a root of the dispersion relation, then — is also a root. This illustrates
that the waves may propagate in either the positive or the negative f§—directions. It is
also noted that the dispersion equation may produce an infinite number of roots of which
only finite numbers are propagating modes. These propagating modes, the roots with
real wavenumbers, carry energy. Non-propagating and evanescent modes carry no energy
and their amplitudes exponentially decay with distance. However, these modes are as

significant as the propagating modes in satisfying the boundary conditions.

4.6 Wave Functions Expansion for Scattered Fields

The scattered displacements vectors, {g%; }sc and {gf_}s; and the scattered stresses vec-
tors, {SH: }sec and {S#_1}s. in the exterior region represented by J modes wave functions
expansion of the waves travelling in the positive §—direction at the boundaries R* and
R~ are in the forms of, respectively:

J

im0 —w
{qg+}sc = ZAj{q;‘}e (m;8 t)’
i=1
J . -
{qg—}sc = Aj{qf}e_’[mj(%"(? )—wt],
j=1
J .
(Shbe = T a7t -
j=1
J .
{SE—}SC P — ZA;‘{S;‘}e“’l[mj(27r—0")_wt]’
J=1
where
T
{‘]J+} - <Uil—] U{'} u;'; v,'; UEFNP)J‘ UEIEVP)j>7 o
{Sj}T N <a:-91j 03};1]- U:r‘”i ‘73—911‘ Ujo(NP)j U%(NP)J‘>.

The wave functions {g;} is the wave functions {g;} associated with the modes travelling

in the positive f—direction. The stresses oy; and oy; at the I'® nodal points associated
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with the j®* mode of wave travelling in the positive §—direction can be evaluated by using
the stress-strain and the strain-displacement relations. The negative sign of {S%_},. is
for consistency with the finite element procedure. The dependence e** will be suppressed

in the following formulation.

Similarly, the displacements vectors: {gg4}sc and {gz-}s; and the stresses vectors:
{Sg+}sc and {Sgz_}s represented by J modes wave functions expansion of the waves
travelling in the negative §—direction at the boundaries R* and R, respectively, are in

the forms of:

J
{qg+}sc = ZAj—{qj—}e—zmj(%r—()‘f’),
j==1
J o=
{gp-Yse = D Aj{gjte™",
=1
J gt
{Sartse = —ZA;{S;}e*imf(%— ) (4.27)
i=1

J
{Sp-}se = D AT{S; Y™,
j=1

where
{q]_} = <ui*j7 - U]Tj e 'U,?J_ - UI-I; e u?}\fp)_] — UE*]-VP)]> 5 (4 28)
{S;7} = <0r+e1j - U(jeu Ujazj ‘732)13‘ 0.7-'|t-9(NP)j U;@(NP)]'>°

After some algebraic manipulations, the scattered field at the boundaries R* and R~
represented by J modes wave functions expansion of the waves travelling in both positive

and negative §—directions can be written as:

J J
{art}e = Y AHg e ™ + 37 A7 {g7 Y™™ EM;,
j:1 j:1
J J
{an-}oo = AT Y™ EM; + 3 A7 {g7 3™,
7=1 =1
J J
{Srhe = L AH{ST ™ = 3 AT {S; Y™ EM;, (4.29)
j:1 j:1
J J
(Sahe = =3 AH(S e By 4 3 A5 (55 e
j=1 j=1

88



The complex amplitudes A;’ and A; associated with the 7 mode of wave propagating
in the positive and the negative §— directions, respectively, are to be determined from
the global solution which will be discussed in next section. EM; in the above equations

are defined as:

EM; = e~ ¥mimems(07+07), (4.30)

In constructing the nodal force vectors of the scattered field, consistent loads with
quadratic stress distributions are employed. The stress at a point in the k£ sublayer are

approximated by interpolation polynomials through the thickness of the sublayer as:
g = <TL1 Ty TL3> {O’N}, (431)

where
{on}T = (" o™ of), (4.32)
and the interpolation polynomials n; (7 = 1,2,3) are defined in equation (4.19). The

force vector {f} can then be written as:

(f} = / :"“ o dr. (4.33)

This, after the integration, results in the relations:

1 4 2 -1 ot
h
=y (=552 16 2|0 (4.34)
f! -1 2 4 of

Incorporation of equation (4.34) with the stresses vector in equation (4.29) yields the
forces vectors { Pg+ }sc and { Pg-}s. corresponding to the scattered fields represented by
J mode wave functions expansion of the waves travelling in both the positive and the

negative 0—direction at the boundaries R* and R, respectively, as:

J J
{PR+}SC = ZA;_{f;_}e_imjed}‘ - ZA]'_{fj—}e_zmja_EMj)
7=1 j=1
{Pr-}sc = —ZA;'{ff}e_zmﬂ EM; + ZA;{fJT'}e_’mja . (4.35)
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The first two equations of the equations (4.29) yield the displacement vector of the

scattered wave field at the nodes on the boundaries Rt and R~ as:

{{qm}sc }: G*] (GM7] {{D+}} (w30
{4r-}ec GM*] (6] | (D))
where
G*] = [{e&'} &} - g} - {dF}]
Gl = Hat {2} - gy - {g7}], (4.37)
GM*] = [{of EMi} {¢f EMs} ... {¢f EM;} ... {q¢f EM;}],
(GM™] = [{a EMi} {gs EM;} ... {¢; EM;} ... {q7 EM;}],
{p*}* = (Dt Df ... D} ... DI), (.38
{p-}* = (Dy D; ... D; ... D7),
DF = Ate-imif*
! 7 (4.39)
D7y = Aj_e_”nfe_,

Similarly, equation (4.35) provides the force vector of the scattered wave field at the

nodes on the boundaries R and R~ as:

{ { Pt }oe }: [F*] [FM7] { {D*} } (4.40)
(Pr}o FMr] (P || 07
where

P = {AY B - U D

[F7] = {mY &Y - Ay - A7), (4.41)

[FM*] = [{fif EMi} {fy EM2} ... {ff EM;} ... {ff EM;}],
(FM~] = [{fif BMi} {fy EM2} ... {f; EM;} ... {f7 EM,}],
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4.7 Determination of Amplitude Coefficients

The global solution is obtained by imposing the following continuity conditions on dis-

placements and tractions at the boundary nodal points:

{gr} = {gr}n + {ar}s, (4.42)
{Pr} = {Pr}in+{Pr}s,
where
{eadh = ({am}h {an-}0), (4.43)
(R}l = (e}l {aa-)T),
{Pr}L = ({Pre}l {Pr-}E), (4.44)

{Pr}l. = ({Pa}l {Pe-}E).
The subscript ¢n for displacement and force vectors represents those corresponding to the
incident field. Note that the quantities on the left hand side of the equality in equation
(4.42) are from the interior region whilst those on the right hand side correspond to the

exterior region.

Substitution of equations (4.11) and (4.13) into equation (4.15) together with the

incorporation of equation (4.42) results in:

@)™ [[Sullar} + [Stal({ar}se + {gr}in)]
+6{gr}YL[[Strl{ar} + [Srrl({ar}se + {ar}in)] (4.45)
—6{qr}™{Pr} — 8{qr}=.({Pr}sc + {Pr}in) = 0.

Rewriting the above equation in view of the equations (4.36) and (4.40) yields the system

{ {1} } _ { {Pr} — [Sir{qr}in }
{D} [G1"{ Pa}in — [G1" [Srr]{qR}in ,
(4.46)

of the following equations:

[Sti] [S1R][G]
[GI"[Sr1] [G1"([SrRIIG] — [F))
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where

G4 [6M]
D= e 6 |
| GM*] 6] | (47
(4] [FM7]
[F] = e
| (FMY [P
{DY = {({D"}T {D7}7). (4.48)

4.7.1 Time Harmonic Line Load

Consider the interior region of the time harmonic line load bounded by the boundaries
B* and B~ at § = 8% and § = 27 — 37, respectively. The subscripts Rt and R~, and
the angles 67 and 0~ in all the above equations are replaced by BT and B~, and 8% and
B, respectively. The displacement and the force vectors corresponding to the incident

waves vanish and the equation (4.46) is reduced to:

S SsllC] { far) } _ { (P} } (£.49)
o [T

[G1"[SB1] [G1" (1SB5)[G] - [F))
This results in two systems of linear equation as:

{g1} = [Sul 7 {Pr} — [Su] "} [S18][G){ D}, (4.50)
[G1"[(1Se5] — [SanSt " [S1B)IG] — [FI{D} = ~[GI"[S1s)[Srl " {Pr}. (451

The linear system of equations (4.51) can be solved for {D} for the input loading {Ps}.

Amplitudes A;f and A are obtained from equations (4.39). The nodal displacements in

the interior region {¢;} are then calculated from equation (4.50).

4.7.2 Scattering due to Crack

Consider the interior region containing line crack bounded by the boundaries S* and S~

at § = 0y + ¢* and 0 = 0y — ¢, respectively. The incident fields for this problem are
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in the forms of the equations (4.29) and (4.35) with (a) the replacement of #+ and 6~
by 0o + ¢t and 27 — 6y + ¢, repectively, and (b) A} and A calculated from previous
section. The problem is considered in a new coordinate system (r, ¢, z) where ' is located
at 0 = 0. With respect to this new coordinate system, the artificial boundaries S* and
S~ are at 0" = ¢+ and §' = 27 — ¢, respectively. All of the equations derived, with the
exception of those in section4.7.1, hold with the replacement of the subscripts Rt and
R, the angles 0% and 6, and the amplitudes A} and A; by S* and S, ¢* and ¢,
and C’f and C}, respectively. In this case, there is no internal force vector { P;} and the

equation (4.46) becomes:

[Sul [S1s](6] { {ar} }: { ~(SrsHas}en }
(G [Ss1] [GT*([Sssl[G] — [F1) {D} [G1™{Ps}in — (G [SssHas}in |
(4.52)
which leads to two systems of linear equation as:
{ar} = —[Sul 7 [SisHgs}in — [S1r) " [S1s][GI{ D}, (4.53)
[G17[([Sss] — [SsA[Srl ™ [Sis])G] — [FI[{D} = (4.54)

[GTT[([Ssr][Str) ™ [Srs] — [Sss]){as}in + { Ps}in)-
The incident fields {gs} and {Ps} are obtained by employing the amplitudes calculated
from equation (4.51) with appropriate angles 6y + ¢+ and 27 — 0y + ¢~. {D} for the
scattered field is evaluated from the equation (4.54) and this leads to the calculation of
the scattered amplitudes from equations (4.39). The nodal displacement vector for the

interior region which contains cracks can be obtained from equation (4.53).

4.8 Numerical Results and Discussion

To validate and to assess the accuracy and the capability of the method, the numerical

experimentation is performed for the Zr-Nb pressure tube. The isotropic elastic properties
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of the Zr-Nb are given as (Mair and Earl 1990):

E =91GPa, p=6.48gm/ml,
A =34GPa, p="T4GPa.

(4.55)

where E is the elastic modulus, A and p are the Lameé constants. The cylinder has the
total thickness, H, and the inner radius r;, of 4.2mm and 51.7Tmm, respectively. The
frequency spectrum for this cylinder - the plot between the circumferential wavenumber
and the frequency, is illustrated in Figure 4.5. In the figure, Q) is non-dimensionalized

frequency and is defined as:

= ,

Us

where v, is the shear wave velocity calculated from:

o

Vg = 4/ —.

p
The frequency spectrum in Figure 4.5 is shown only for the propagating modes. It can be
noticed that the real circumferential wavenumbers need not be integer. This is because
the complete circular cross section is considered as a multiply-connected body (Timo-
shenko and Goodier 1970), that is, a body such that some sections can be cut clear
across without dividing the body into two parts. Because of the non-integer wavenum-
bers condition, the multi-valued solutions will be obtained. To avoid such multi-valued
solutions, the condition of single-valued displacements and stresses is imposed, that is,

only 0 < @ < 27 is considered in all calculations.

Two loading cases are considered in this study as shown in Figure 4.6. The normalized
amplitude of the each harmonic load is taken as unity. For the cracked cross section, the
crack size investigated in this study is 1/10 of the total thickness of the cylinder. The
location of the crack is at § = 120°. The numerical results for each case are illustrated
for = 1.00 which has two propagating modes. The cylinder is divided into 10 sub-
layers for the wave function determination and 60 nine-noded elements are employed in
the finite element modelling for the interior region. Tables 4.1 and 4.2 illustrates the

numerical experimentations for vertical loading while Tables 4.3 and 4.4 show the results
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Figure 4.5: Frequency spectrum for Zr-Nb tube
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Figure 4.6: Two loading cases considered:

(a) vertical line load and (b) horizontal line load.

for horizontal loading. Three, five, and seven modes expansion (two propagating modes)
are employed in the investigation. The comparison of the results shows the convergence

of the results.

Tables 4.1 and 4.3 demonstrate the complex amplitudes and the normalized energy
fluxes associated with the scattered fields produced by the vertical and the horizontal
loads, respectively, in the uncracked cross-section. In the tables, E,. and E;, are the
energy fluxes from the scattered fields and the input load, respectively. It can be seen
from Table 4.1 that the amplitudes associated with the scattered fields for the vertical load
case are equal and in-phase for both boundaries of the interior region. This is expected

because the problem is symmetric. For the case of horizontal loading (Table 4.3), however,
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the amplitudes at one boundary are 180° out-of-phase of those at another boundary of the
interior region since the problem considered is anti-symmetric. The normalized energy
fluxes from each boundary are identical and the total sum from both boundaries is unity.
This demonstrates that the energy from the input load is divided into two equal parts
and propagate through both boundaries of the interior region. On the other hand, the

principle of energy conservation holds.

When the waves produced by the load travel along the circumferential direction and
strike a flaw, scattering occur. The numerical experimentations show the amplitudes
associated with the scattered fields (not reported herein) for the uncracked cross-section
are negligible in comparison with those produced by the loads. With the presence of the
crack, the amplitudes associated with the scattered fields are illustrated in Tables 4.2
and 4.4 for the vertical and the horizontal load cases, respectively. It is noticed that
although the complex amplitudes of the propagating modes associated with the scattered
fields differ in phases, the magnitudes are the same. This indicates that when the detector
probe is placed either on the left or right of the crack or load with the same distance from
the crack or load, the same magnitudes will always be detected. However, the phases of

the two waves will be different.

4.9 Concluding Remarks

The hybrid method is employed to solve the scattering problem of time harmonic elastic
plane strain waves in a cylinder. The load or crack is bounded by the interior region
which is modelled by the finite element. The exterior region are represented by the wave
function expansion. The hybrid method incorporates the interior region and the exterior
region using the continuity at the boundaries between the two regions. Unlike the plate
problem where the incident waves only propagate in one direction, the incident waves in

a cylindrical cross-section travel in both directions. The numerical experimentations
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mode A+ A- |A| | Ef/E, | E/Euw
1 (0.0113,—.0175) | (0.0113,—.0175) | 0.0208 | 0.00002 | 0.00002
2 (—.8940,1.1059) | (—.8940,1.1059) | 1.4220 | 0.49610 | 0.49610
3 (1.4030,0.0000) | (1.4030,0.0000) | 1.4030 | 0.00000 | 0.00000
4 (0.3028, —.3137) | (0.3028, —.3137) | 0.4360 | — -

5 (0.3028,0.3137) | (0.3028,0.3137) | 0.4360 | — -

6 (0.1648, —.2434) | (0.1648, —.2434) | 0.2940 | — -

7 (0.1648,0.2434) | (0.1648,0.2434) | 0.2940 | — -

Table 4.1: Amplitudes and energy for scattered fields produced by vertical load at

Q = 1.0 for uncracked cross-section.

mode At A~ | Al
1 (1.0254 x 1072, —1.5916 x 10~2) | (1.0256 x 102, —1.5915 x 10~2) | 0.0189
2 (2.9561 x 10-2, —3.6594 x 10-2) | (2.9585 x 102, —3.6575 x 10-2) | 0.0470
3 (—5.2573 x 1072, 0.0000) (—5.2592 x 1072,0.0000) —

4 (2.3099 x 1072,5.8217 x 1072) (2.3067 x 1072,5.8435 x 1072) —

5 (2.3099 x 1072, —5.8217 x 10~2) | (2.3067 x 10~?, —5.8435 x 1072) | —

6 (3.0341 x 1072,5.1948 x 1072) (3.5920 x 1072,5.2519 x 1072) —

7 (3.0341 x 1072, —5.1948 x 1072) | (3.5920 x 1072, —5.2519 x 107%) | —

Table 4.2: Amplitudes of scattered fields due to crack at § = 120° from
vertical load (2 = 1.0).

98




mode AT A~ |A] El/E;, E..|E:,
1 (0.7084,0.4564) | (—.7084,—.4564) | 0.8427 | 0.0905 0.0905

2 (0.5651,0.4568) | (—.5651, —.4568) | 0.5267 | 0.4138 | 0.4138

3 (1.3438,0.0000) | (—1.3438,0.0000) | 1.3438 | 0.0000 0.0000

4 (0.3300,0.1996) | (—.3300,—.1996) | 0.3857 | — —

5) (0.3300, —.1996) | (—.3300,0.1996) | 0.3857 | — —

6 (0.2385,0.0094) | (—.2385, —.0094) | 0.2565 | — —

7 (0.2385,—.0094) | (—.2384,0.0094) | 0.2565 | — .

Table 4.3: Amplitudes and energy for scattered fields produced by horizontal load at

Q) = 1.0 for uncracked cross-section.

mode At A~ A
1 (—3.3579 x 1073,5.2139 x 1073) | (—3.3598 x 1073,5.2122 x 10~ | 0.0062
2 (—9.6976 x 1073,1.2038 x 1072) | (—9.7377 x 10~3,1.2005 x 10-2) | 0.0155
3 (—1.7281 x 10~2,0.0000) (—1.7314 x 10~2,0.0000) —~

4 (—7.6097 x 1073, ~1.8910 x 1072) | (=7.5525 x 10~3, —1.9278 x 10-2) | —

5 (—7.6097 x 1073,1.8910 x 107%) | (—=7.5525 x 1073,1.9278 x 10~2) | —

6 (—7.8997 x 1072, ~1.7395 x 1072) | (—1.7079 x 1072, —1.8350 x 1072) | —

7 (—7.8997 x 1073,1.7395 x 1072) | (—1.7079 x 1072,1.8350 x 10~2) | —

Table 4.4: Amplitudes of scattered fields due to crack at § = 120° from
horizontal load (2 = 1.0).
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for the Zr-Nb pressure tube verify the accuracy and the applicability of the method.
Although the results are presented for only isotropic cylinder, the method presented in

this chapter can also be used for laminated composite case.
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Chapter 5

Conclusions and Recommendations

5.1 General Concluding Remarks

Three models of wave propagation in cylinders are developed in Chapter 2. Systematic
numerical experimentations are performed to investigate the dispersion characteristics of
cylinders and the factors effecting wave propagation in cylinders. The propagator ma-
trix method, based on three-dimensional elastic theory, can be used to obtain accurate
predictions of theoretical dispersion characteristics of laminated isotropic cylinders with
arbitrary number of layers. For laminated composite cylinders where the analytical for-
mulation is not possible, the displacement based and the displacement and stress based
Rayleigh-Ritz type approximations are developed. The numerical results obtained by
these approximations reveal excellent agreement with the analytical method for the lam-
inated isotropic cases. The investigation on dispersion behaviors of laminated cylinders
shows that the variations in circumferential wavenumber, thickness to radius ratio, and
degree of anisotropy have influences on dispersion characteristics of cylinders. It is found
that rigid body motion does not exist for circumferential wavenumbers higher than zero.

The effects of the change in circumferential wavenumber are localized mostly in the low
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wavenumbers regime and these effects are stronger in thick cylinders. The variation in
the thickness to radius ratio has an influence on cut-off frequencies and degree of cou-
pling. When the ratio decreases, the degree of coupling increases. The anisotropy, caused
by the orientation of fibres with respect to the direction of wave propagation or by the
number of layers, has a strong influence on dispersion characteristics of cylinders. It is
found that measurable changes in phase velocity are caused by increasing the degree of
anisotropy. The numerical experimentations also reveal that it is sufficient to employ
only the displacement based Rayleigh-Ritz type approximation to study wave scattering

problems.

The wave functions expansion is used to investigate the reflection of guided wave at a
free end of a laminated cylinder with an arbitrary number of laminae in chapter 3. The
results illustrate the applicability of the displacement based Rayleigh-Ritz type approxi-
mation in the study of the free end reflection problem in laminated composite cylinders.
It is found that, when the circumferential wavenumber is not zero in composite cylinders,
the wavenumbers of the waves propagating in the positive axial direction differ from that
of the waves travelling in the negative axial direction. This finding is very essential in the
study of wave scattering problems in composite cylinders. The numerical results show
that the least square technique as well as the variational method can be applied for the
free end reflection of guided waves in laminated isotropic cylinders. For laminated com-
posite cylinders, however, the least square technique demonstrates anomalous results.

The least square method should then be used with caution for reflection problems.

The hybrid method, presented in Chapter 4, shows the sucessful application to study
plane strain wave scattering due to a flaw in a cylindrical cross-section. Although the
numerical experimentation is performed only for an isotropic cross-section, the method
can be applied for a laminated cross-section with general anisotropic layers. It is found
that the circumferential wavenumber can be complex. The numerical investigation re-

veals that the magnitudes associated with the scattered propagating waves detected at
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the same distance on either side of a particular load or flaw are always the same regard-
less of the phase differences. It is noted, however, that the scattering problem considered
in the thesis is a highly idealised one. In order that the technique be useful for practi-
cal applications, a considerable amount of experimental work and additional theoretical

study is required.

5.2 Recommendations for Future Work

The following recommendations are made for futuer work.

1. The scope of this thesis is confined to the development of computationally efficient
models to study wave propagation and scattering problems in laminated compos-
ite cylinders. An experimentation program should be carried out to validate the

theoretical findings of the present study.

2. The numerical experimentations performed in the thesis are in low frequencies re-
gion, more numerical works should be carried out to verify the applicability and the

efficacy in high frequencies regime.

3. The plane strain wave propagation in circular cross-section needs to be thorough-
ly investigated both in theory and in experimental work in order to improve the

efficiency of the hybrid method in plane strain wave scattering problem.

4. The hybrid method should be extended to the three dimensional scattering problem
in the cylinder.
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Appendix A

Propagator Matrix

Defining;:

Ce(1,1) = %Zm(ar)—aZmH(ar),

Ck(l,Z) = €Zm+1(ﬂ7'):
Ce(1,3) = 22 (6r),

Cr(2,1) = %Zm(ar),

Ch(2.2) = it (fr),
Ce(2,3) = BZnsr(r) — = Zn(Br),

Ch(3.1) = —itZn(ar),

Ci(3,2) = —iBZ,(fr),

Ck(3,3) = 0,

s 1) = w{ (D (@ ) Zofor) + 2 @)}, (A1)

(m+1)

r

Cu(4,2) = 2ué{B2n(8r) - Zir (Br) },
2wm{(m — I)Zm(ﬂr) B ﬁZm+1(ﬂ7‘)},

Cre(5,1) = Zzﬂm{(m — 1)Zm(ar) -~ aZm+1(ar)},

T T

r r
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52 = e 2N 7,6 - 82,00},
m(m 28

c5,3) = wf{(# - ")z, 61 - 2 7o),
Cu(6,1) = Qiyf{aZmH(ar)—%Zm(aT)},
Cl6,2) = ip{ (8~ &) Zuuna(Br) — 2,50},
Cu(6,3) = ﬁ?ézm(ﬁr).

The elements of matrix [Dy] given in equation (2.9) are:

Di(,7) = Cu(s,5)  i=1,....6;5=1,....3; (A.2)

where Z,, and Z,,; are H() and H,‘,}il, respectively, and r = r;. The other three
columns, i.e, j = 4,...,6, can be obtained from the first three columns by replacing the

Hankel functions H{) and H,(,.}il by H?) and Hg_{l, respectively.

The elements of three by three matrices [R] and [T in equation (2.19) are:

B@5) = Ci(59),
T(i,5) = Cu(i+3,5), i=1,...,3;5=1,...,3; (A.3)

where Z,, and Z,41 denote J,, and J,,,1, repectively, and r = ry.
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Appendix B

Displacement Based Rayleigh-Ritz Type

Approximation

The matrices [M] , [K4], [K3], and [K3] in equation (2.30) are defined as:

) = ["p[NI" [N]rdr
H

) = [ 1817 (C)[b]rar, (B.1)
H T

) = [l ICTa]~ (@I [C (b)) rdr
H

] = [1alm[C[a]rdr
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a(5,3) = ny,
a(5,6) = n),
a(5,9) = ng,
a(6,1) = im2,
a(6,2) =ny — &,

where prime denotes the differentiation with respect to z.

The non-zero elements of 6 x 9 matrix [ b] in equation (B.1) are as follows:

6(373) = b(47 2) = 6(57 1) = N1,
b(3,6) = b(4,5) = b(5,4) = ns,
b(3,9) = b(4,8) = b(5,7) = ns.
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Appendix C

Displacement and Stress Based

Rayleigh-Ritz Type Approximation

The non-zero elements of 3 x 12 matrices [N] and [N5] of equation (2.33) are as follows:

N1(173) = ff3>

Ny(1,5) = £,

Ny(2,3) = £,

N1(275) = lefs’
N2(1a 1) = fl + %f]:)
Ny(1,2) = 222,

_ foPr
N2(1,3) =1 A:k+1’
N2(1>4) = f22137
Ny(1,5) = Zm%%?
N2(1,6) — f2212,
Nop(2,1) = 28 —im &2,
Ny(2,2) = f2u
No(2,3) = f + £ +im &P,

The parameters P, are given by:
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Forl1=1,2,3; 7=1+1:

Ci; Cis Cis
Pi=—|Cs; Css Cse |»
Csj Ces Ces
Forl=4,5,6; j=1—2:
Cu Ci; Cis
Pi= | Cy Cs; Css |
Ce1 Csj Ces

For{=17,..,10; =1-5:
(C.3)
Cnn Ci; Cis
P=—|Cs Cs; Css |,
Ce1 Cs; Ces
A = Po. (C.4)

Ay, is the cofactor of element Cp, of matrix A. Functions f,, (n = 1,2,3,4) are cubic

polynomials given by:

fi=32=3n+79%, fa=3E2+3n -1, (©5)
fa=t(1—n—n2+7?), fo=2(-1—n+n?+n?),
where
1

The matrices [C1] , [Co], [Mi], [K4], [Ks], and [E;] through [Es] in equation (2.35) are
given by:




4] = [ oM [N rdr

) = [Tl ()
K = [ a1 (b]rdr

Bl = [[[a(C1le] ~[BIT[C1(6]+ (] [C1(d]]rer

B = [ & [O108]~ (31" [C][a]]rar

7] = [1al"[C1[e]rdr

The non-zero elements of 6 x 12 matrix [ a | in equation (C.6) are as follows:

f2,r P .
a(l,1) = fi, + 32, a(4,1) = zmﬁ%,
a(172) = QzTZA.lL, a(472) — szAT127
forPt 2f2 Py
(1,(1,3) = im sz"’k ) a(473) = _TfkTP"7
a(l,4) = fufu a(4,4) = im&2lx
a(1,5) = imBz2, a(4,5) = —mBB 4 imh,
a(1,6) —  frBi 2612’ a(4, 6) — mezﬁrzz’
m P; rP
o= BHEREEL aB= A (©7)
+zm:£:, a5,2) = Lrpe,
— f2D11 A 1 YA N R &
a(2,2) = 251 4 im2Ei a(5,3) = iRt
a(2,3) = ”"Afi? GRS CROE S
+12f:) a(5,5) = flr—l—sz“P9
a(2,4) = B imfle, a(5,6) = F2zbn
a(2,5) = —ZEB LimbBl 4(6,1) = B(fo, — £) +im(L + o
a(2,6) = fzﬁ:z + sz2A23 +T];2, — j—:ki),
a(6,2) = éAlfi(fQ,T ) + szzAA“ a(6,4) = égl(fz,r ) + szzAA”'
a6,3) = fi, + 25 - f.—l - a(6,5) = —"gER timk (for — £),
m2 > 2
- Azkfl Arkr (f27" ) G(ﬁ, 6) = AAZQ(J[Z,T ) + meAAm

(C.8)
8fn
where the f,, represents _afr—'
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‘The non-zero elements of 6 x 12 matrix [ b ] in equation (C.6) are as follows:

b(1,3) = £olo b(4,3)
b(1,5) = L2al2 b(4,4) =
b(2,3) = &8s 4 im bl b(4,5) =
b@@=ﬁ5+m%ﬁ b(4,6) =
bﬁnz%% b(5,1)
b(3,2) = Lfu2, b(5,2)
b(3,3) = im&BLt, b(5,3)
b(3,4) = L82 b(5,4)
b(3,5) = fi +imBle, b(5,5)
b(3,6) = L2222 b(5,6)
b(4,1)=§§%_imf( +1), b(6,3)
b(4,2) = L2213 b(6,5) =

d
d 3,1) = —‘fz, d
d(3,3) = &b, ;
d(3,5) = £,

=f+L+imB(E 4L,

-
f2Aaa
V]
f2 ¢ P, P

J2Bos
A bJ

:f1+f2,r+127i1,

— fziu
3
(C.9)
f2rPo rPg + Zm]Zfl ’
szla
A
— f2rP8 +3 m%%
f2A12
= 222,
B ) 4 i,
B(for = L) +im B2
P,
3) — szs’
5) = f2 P
) AP ’ (C.10)
3) =45,
P
5) — szz,

where the remaining 6 columns of matrices [V1], [N2], [a ], [ 8], and [ d ] can be obtained

from the first 6 columns by replacing f1 by fs, f2 by fi, and ry by rpyq.
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Appendix D

Asymptotic Expansions of Hankel

Functions

The functions E(m,({r) and F(m,({r) in the asymptotic expansion forms of the Hankel
functions H{(¢r) and HP)(¢r) for the large argument in equation(2.41) are defined as:

_ (=D —9) , (p—1)(p—9)(p—25)(p—49)
= 1- 21(8(r)? 41(8(r)* = (D)
F(m,¢r) ~ z<—1)n(i(“2-’§%}),

n=0

(p—1) (p—1(p—9)(p—25) N

(8¢r)! 3H(8¢r)? S

where p = 4m?.
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Appendix E

Polynomial Interpolations for Stress

Components

The elements of 3 x 9 matrix [V3] in equation (3.8) are defined as:
N3(1,1) = Cisn) + (gfi —1€Css + iTmcse)nj,
N3(1,i4+1) = (%n—czs — iéCas — L) + Csenj,
N3(1,i+2) = (~i€Css 4+ 2Cys)n; + Cssnl;,
N3

(2,7) = Cun}+ (2t — itCys + 04 )n;,
N3(2,i+1) = (%Cs —16Cus — %8 )n; + Cyen};, (E.1)
N3(2,i+2) = (—iCas + ZCyy)n; + Cusni,
Ns(3,7) = Cianf+ (2 — itCss5 + 2 Cs)ny,
N3(3,i+1) = (ZCys — itCay — L8)n; + Chen,
N3(3,14+2) = (—itCss + Cs4)n; + Casnt,

where ¢ = 1,4,7 and j = 1,2,3, respectively. Prime denotes the differentiation with

respect to r.
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