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Abstra.ct

Propagation and scattering of guided elastic waves in circular cylinders are investigated.

An anaiyticai method is formulated to study wave propagation in laminated isotropic

cyiinders while Rayleigh-Ritz type approximations are developed for laminated compos-

ite cylinders where the analytical solutions are unattainable. The effects of circumfer-

ential wavenumber, thickness to radius ratio, ply lay-up configuration, and layering on

dispersion characteristics of free guided .waves are investigated through these techniques.

The problem of reflection of waves normally incident upon the free end of cylinders

is studied as a special case of wave scattering problems. A wave functions expansion

procedure is employed in developing least squa e and variationai methods for the inves-

tigation. Numerical results demonstrate the successful application of the Rayleigh-Ritz

type approximation and the variational technique for the free end reflection problem in

laminated composite cylinders.

A hybrid method is presented to analyse the scattering of plane strain l¡/aves by load

or flaw in cylindrical cross-section. The domain of the cross-section is divided into two

regions, an interior region and an exterior region. The interior region which contains the

load or flaw is modelled by finite elements while a wave functions expansion is employed

for the exterior region. The numerical resuits for the scattered amplitudes from the load

and from flaw are presented for Zr-Nb pressure tube.
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1-.1- Introduction to Composite Materíals

Demand on materials imposed by today's advanced technologies have become so diverse

and severe that they often cannot be met by simple single-component materials act-

ing alone. It is frequently necessary to combine several materials into a composite to

which each constituent not only contributes its share, but also the combination provides

new performances unacheivable by the individual constituents. Commonly, composite

materials are categorized into three types (Jones 1975):

ø Fibrous composites

ø Particulate composites

ø Laminated composites.



1.1.L Fibrous Composites

Fibrous composites are composed of fibres in a matrix. The fibres are characterized

geometrically by their near crystal-sized diameter. Naturally, fibres are of little use unless

they are bound together. The binder material is usually called a matrix. Typically, the

matrix has considerably lower density, stiffness and strength than the fibres. However,

the combination of fibres and a matrix can provide very high stiffness and strength, yet

low density. Some examples of a few selected fibre materials are shown in Table 1.1.

Fibre or wire

Aluminum

Titanium

Steel

Density

(kgl*")

E-g1ass

S-glass

Carbon

26.3

Tensile strength

(GNlm2)

Beryllium

46.1

Boron

76.6

Graphite

25.0

.62

24.4

Tensile stiffness

(GNlm2)

1.9

13.8

Table 1.1: Examples of fibre materials (source : adapted from Dietz 1965)

4.7

18.2

I.7.2 Farticulated Composites

3.4

25.5

4.8

tù

13.8

1.7

115

Particulated composites consist of particles of one or more materials suspended in a ma-

trix. Both the particles and the matrices can either be metallic or nonmetallic. Exam-

2

7.7

207

3.4

72

r.7

86

190

300

400

250



ples of these composites are concrete (nonmetallic in nonmetailic composites), aluminum

paint (metallic in nonmetallic composites), Tungsten carbide (nonmetallic in metallic

composites), etc.

1.1.3 [,aminated Composites

Laminated composites are composed of layers or laminae of two or more materials bonded

together. The properties that can be emphasized by lamination are strength, stiffness,

low weight, corrosion resistance, attractiveness, thermal insulation, acoustical insula-

tion, etc. Exampies of laminated composites are bimetals, clad metals, laminated glass,

plastic based laminates and laminated fibrous composites or laminated fibre-reinforced

composites.

The classification scheme can be arbitrary and imperfect. Nevertheless, this introduc-

tory remark serves only to acquaint the reader with the broad possibilities of composite

materials. It should be noted that numerous multiphase composites exhibit more than

one characteristic class. For instance, laminated fibre-reinforced composites are laminat-

ed and fibrous composites. In this study, the emphasis will be placed mostly on laminated

and fibrous composites.

L.2 F ibrous and T,arr¡inated Cornposites

Basic terminologies of fibrous and laminated composites

will be introduced in this section.

in the remainder of this thesis
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Lamina with unidirectional f,bres

Figure 1.1: Two principal types of laminae (source : Huli, D. 1981)

L.z.L Fibrous Larninae

coo
ooo

A' f'brous lømina is a layer of unidirectional fibres orwoven fibres in a matrix. Two

typical lamina are shown in Figure 1.1 . The fibres are typicaily strong and stiff. They

are the pricipal reinforcing or load-carrying parts. The role of the matrix is to maintain

alignments of the fibres, to protect the fibres and to perform as a load distribution

medium.

L.2.2 Laminates

Lamina with woven fibres

A laminate is a stack of layers with different homogeneous elastic materials. Or it can also

be composed of fibrous iaminae with various orientations of principal material directions

in the laminae. A major purpose of lamination is to construct the new material with

strength and stiffness matching the loading environment of the st¡ucturai element.

4



1.2.3 Laminated Circular Cylinders

A laminated isotropic circular cylinder is a circuiar cylinder which is composed of perfect-

ly bonded isotropic elastic layers. The layers may have different mechanical properties,

as weil as different thicknesses. A larninated composite ci,rcular cylinder, unless oth-

erwise stated, is define as a circular cylinder which is constructed from laminae with

various orientations of principal material axes in the laminae perfectly bonded together.

Manufacturing of laminated composite circular cylinders can be continuous pultrusion,

centrifugal casting, or filament winding as shown in Figure 7.2. It should be mentioned

herein that the contents of this thesis is directed Lo circular cylinders. For convenient

purpose, therefore, cylinders will refer restrictly only to circular cylinders.

f-.3 Ultrasonic Testing

Cylinders are used in many applications such as pressure tubes in nuclear reactor, plat-

form struts, magnetometre boom and antenna-feed support struts in space structures

(Broutman and Krock 1,974), etc. The presence and growth of flaws in the cylinders are

the major obstacles in their utilization and can have serious consequences during oper-

ation. In order to detect these flaws without impairing the usefulness of the cylinders,

nondestructive testing has been exploited. The essential parts of any nondestructive test

are (1) application of a testing or inspection mediut", (2) modifi,cøtion of the testing or

inspection medium by defects or variations in the structures or properties of the material,

(3) detection of this change by a suitable detector, (4) conuersion of this change into a

form suitable for interpretation, and (5) interpretation of the information obtained. The

testing technique itself may involve visual inspection, dye penetrant, magnetic particle,

radiography, eddy current or ultrasonics. Such nondestructive tests are costly due to the

high cost of the project's downtime. To reduce this downtime, more precise tests and



continuous pultrusion

centrifugal casting

Figure 1.2: Manufacturing of laminated composite circular cylinder

(source : Broutman, L.J. and Krock, R.H. 1974)
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better data handling and processing are required. For ultrasonic testing, this includes

better understanding of propagation of waves and their interaction with flaws.

The unique possibility that the use of ultrasonic waves has for detecting inhomo-

geneities in metals appears to have been first suggested in Ig29 (Frederick 1965). The

main idea of using ultrasonic in flaw detection is the reflection of waves by a crack or

other abrupt change in the elastic properties of the material in which the waves are trav-

elling. Figure 1.3 illustrates a block diagram of a typical ultrasonic flaw detector. A

pulsed continuous or modulated ultrasonic beam is sent through the specimen and the

amplitude of the transmitted waves measured. Inhomogeneity in the sample causes the

waves to scatter. The amplitudes of transmitted and reflected waves are measured by

receivers located on the surface of the specimen. The signals carry a substantial amount

of information of the size, shape, and location of the flaw. Ultrasonic flaw detection tech-

niques rely on the theoretical predictions of the amplitudes of transmitted and reflected

signals. It is, however, very crucial to have a theoretical model which can accurately

predict the scattering by flaws.

1.3.1 Guided 'Waves in Ultrasonic Testing for Laminated Cylinders

Several techniques have been used in ultrasonic testing such as: pulse echo, transmission,

resonance, frequency modulation, and acoustic image. It should be noted herein that

early techniques used body waves in ultrasonic test. New techniques employing guided

waves are under development. There are several advantages in using guided waves in

ultrasonic tests. First, their multimodal and dispersive behaviors can provide a large

number of data points in a given range of frequency. Second, the velocity of guided

waves is very sensitive to material properties of the cylinders. Finally, the velocity of

guided rvaves can be very accurately measured as a function of frequency.
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In order to exploit guided rvaves in ultrasonic testing for laminated cylinders, dis-

persion characteristics of these lvaves need to be understood. The axially symmetric

vibration of harmonic waves in an infinitely long homogeneous isotropic elastic cylindri-

cal rod has been analytically investigated for over a century (Pochhammer 1876). The

vibration is governed by frequency or dispersion equation which implicitly relates the

frequency to the wavenumber. This requires the solution to satisfy the differentiai equa-

tions of linear elasticity throughout the cylinder and the traction free boundary conditions

on the lateral surfaces. Although the equations were introduced as early as 1876, oniy

in the past three decades have numerical results oveï a wide range of frequencies with

complex wavenumbers been reported (Onoe et al. 1962). These complex wavenumbers,

corresponding to non-propagating and evanescent modes, are essential in wave scattering

and end reflection problems. In an infinite cylinder, however, only real wavenumbers oï

propagating modes are physically realisable.

Wave propagation in infinitely long homogeneous isotropic elastic hollow cylinders

was investigated using the linear theory of elasticity by Gazis (1959), Armenàkas et aL

(1969), etc. With this theory, they were able to generate the solutions without stipu-

lation of axisymmetry. Various difficulties arise when the structure consists of a series

of annular isotropic cylinders bonded together. However, within the framework of this

eiastic theory, many researchers successfully investigated the dispersion characteristics of

harmonic waves in infinite laminated isotropic rods (McNiven eú al., 7963, Jai-Lue Lai,

1971, Armenàkas, 1965). Harmonic u/ave propagation in two layered isotropic cylinders

was studied by Armenàkas (7967,, 1971). The displacements and the stresses at the in-

terface of each layer were analytically formulated. The dispersion relation was obtained

from the boundary and the continuity conditions. Analogous to the work of Armenàkas,

Moore (1990) applied the stiffness method to study the wave propagation in laminated

isotropic rods and cylinders. The stiffness matrix which relates the stresses and the dis-

placements at the interface of each layer was analytically established. The assembling

process was then carried out in a subsequent iayer.



Since the analytical formulation for laminated cylinders is intractible, several approxi-

mate techniques have been proposed to circumvent the problem. The most common ones

are shell theories in which the contitutive relation of radially inhomogeneous cylinders is

replaced by an integral form to reduce the problem to that of equivalent homogeneous

cylinders (Tsai and Roy 1971, Sun and Whitney 1974). A list of references on various

approximate cylindrical shell theories can be found in the paper by Barbero et aI. (1990).

The Ritz techniques, the numerical approximations using discretization in the radial di-

rection to model radial inhomogeneity, have also been widely employed (Nelson eú ø/.

1971, Huang and Dong 1984, KohI et al. 1992). Nevertheless, efficient theoretical tech-

niques in studying wave propagation and more informations on dispersion characteristics

of waves in laminated cylinders are still required to fully utilize ultrasonic guided rvaves

in flaw detection.

L.3.2 Fbee Edge Reflection in Cylinders

The free edge of a cylinder can be considered as a through-thickness crack which is

an idealzed model of a normal edge crack. Hence, the reflection of waves at the free

end can also be considered as a special case of wave scattering problem. The free end

reflection of axisymmetric wave in an elastic rod was first investigated experimentally by

Oliver (1957). McNiven (1961) employed the approximate three-mode theory to predict

the existence of an end resonant frequency. His predicted value differed from Oliver's

experimental results by 13 percent. Analogous to the work of McNiven, the problem v/as

reconsidered using the 5, 7, and 9-mode approximations by Zernanek (1972). It was found

that his result of the end resonant frequency with the g-mode approximation differed

by 0.5 percent as compared to that obtained by Oliver. However, the Poisson's ratio

employed in his study was 0.3317 against 0.29 which was used by McNiven. Recently,

Kim and Steele (1989) proposed a solution procedure which exploits the asymptotic

behavior for higher harmonics in the radial direction to solve the problem. During the

10



same period, Gregory and Gladwell (1989) employed a least square technique to minimize

the difference between the energy of the incident wave and that of the reflected waves.

The end resonance phenomenon was also investigated and was found to depend strongly

upon the Poisson's ratio. In their work, they predicted the end resonant frequency at

the Poisson's ratio of 0.29 which differed from Oliver's result by 2.5 percent.

The free end reflection of the extensional waves in homogeneous isotropic elastic hollow

cylinder was considered by McNiven and Shah (1967). The approximate three-mode

theory was employed in the study to predict the resonant frequency. They found that

the frequency of the end resonance for ho11ow cylinder was lower than that for solid

rod. To the best of the author's knowledge, the free end reflection of waves in laminated

cylinders has not yet been reported.

1.3.3 T\rbing Inspection

Tubing inspection, Figure 1.4 (McGonnagie 1961), is one of the techniques used to test

the longitudinal flaws in the cylinders. In such testings, waves are generated in the

tangent direction of the tubes and will travel along circumferential direction. If a defect

is encountered at the weld or crack, these waves will scatter and reflect back. Since waves

are travelling in the circumferential direction and not in other directions, the problem can

be considered as plane strain case. While there are numbers of theoretical investigation

on wave scattering by cracks in plates (Abduljabhar et al. 1983, Koshiba et al. 1984,

Karunasena et al. 1991), to the author's knowledge, the work in the cylindrical case has

not yet been reported.

Not only can ultrasonics be utilized in flaw detection, it can also provide an effec-

tive means of characterizing elastic properties of composite or heterogeneous materials

(Karunasena 1992). In order to interpret ultrasonic test results, it is necessary to have

11



weld zone or crack

a portion of the sound reflects from the

weld back to the crystal

sound ffavels a complete
revolution and passes

under crystal

theoretical predictions for dispersion characteristics of guided waves as functions of the

properties to be characterized. Comparisons of test results with theoreticai predictions

help in determining unknown properties. Karunasena demonstrated that dispersive be-

havior of laminated plates couid be studied by using effective elastic properties. KohI et

al. (1992) attempted to apply equivalent homogeneous properties to study the disper-

sion characteristic of laminated tubes. The results, however, illustrated ihat dispersive

and modal behaviors of laminated cylinders were not the same as those of equivaient

homogeneous on-es at high frequencies.

Figure 1.4: Testing of weld in tubing (source : McGonnagle, W.J. 1961)

coaxial cable to reflectoscope

sound reflected from

sound travels

360 degrees

around tube

crystal

weld zone gate
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1,.4 An Overview of the Fresent Study

The main purpose of the present study is to investigate propagation and scattering of

guided waves in laminated cylinders. An analytical method and Rayleigh-Ritz type

approximations are employed to study the dispersion characteristics of free guided waves

as well as the free end reflection problem. The investigation of this special case of

scattering problem, the free end reflection, is carried out in detail using least-square and

variational techniques. Plane strain wave scattering by cracks is studied by the hybrid

method.

L.A.L Elastic'Wave Fropagation

Three models of wave propagation are presented in the study. The analytical formu-

lation, the propagator matrix method, is employed for laminated isotropic cylinders.

This method is proposed to circumvent the difficulties in obtaining the exact dispersion

relations of cylinders with arbitary number of isotropic layers. The results from this

anaiytical technique are used as a benchmark for the approximate methods.

Two Rayleigh-Ritz type of approximations are presented to apply where the analyt-

ical solutions a e unattainable. In these methods, the laminae are divided into several

sublayers and the displacement distribution through the thickness of the sublayer is ap-

proximated by interpolation polynomials. These polynomial functions involve a number

of discrete generalized coordinates, which may be only displacements or displacements

and tractions at the interfaces between the adjoining sublayers. When the generalized

coordinates are only displacements, the method ensures only the continuity of the dis-

placements at the interfaces (nodal points). On the other hand, when the generalized

coordinates are displacements and tractions, the method ensures the continuity of both

the displacements and the stresses at the nodal points. The latter case of Rayleigh-Ritz

13



type of approximation is presented to ascertain the accuracy and the applicability of the

former case of approximation.

The objective of this part of study is to obtain the appropriate and reliabie model in

order to apply to the wave scattering problems. Also the dispersion characteristics and

the factors effecting the wave propagation a e investigated in order to establish the basic

knowledge for the wave scattering problems.

Numerical experimentations illustrate that the Rayleigh-Ritz type of approximation

with only displacement continuity yields sufficient accuracy in applying to the study of

wave scattering in the laminated cylinders. In addition, many factors, like circumferential

wavenumber, ply-lay up configurations, and the thickness to radius ratio which alter the

dispersion characteristics are very important in the scattering problems.

1.4.2 R.eflection of 'Wave at Fbee Edge

A wave function expansion is employed to solve the reflection problem when time har-

monic elastic'¡/aves impinge upon the free end of semi-infinite laminated cylinders. The

reflected field is represented by the superposition of a finite number of wave functions.

The propagator matrix approach is applied to obtain the wave functions for laminated

isotropic cylinders while Rayleigh-Ritz type of approximation wiih displacement conti-

nuity is used for laminated composite cylinders. The least square technique as well as

the variational method are employed to evaluate the complex amplitudes and the ener-

gy fluxes associated with the reflected field. The accuracy and the effectiveness of the

method is illustrated by comparing the results with existing analytical results and the

satisfaction of the principle of energy conservation.

I4



1.4.3 Plane Strain'Wave Scattering by Cracks

A hybrid method is employed to solve the scattering problem of time harmonic elastic

plane strain wave in the lamìnated cylinders. The method incorporates finite element

formulation in a bounded interior region with a wave function expansion representation

in the exterior region. The bounded interior region is composed of flaws and/or loads

and a finite region of the cylinder surrounding these flaws and/or loads. The wave func-

tions are obtained by the Rayleigh-Ritz type of approximation with only displacement as

generalized coordinates. Continuity conditions for the dispiacements and the interaction

forces are imposed at the nodes lying along the boundaries between the two regions. This

results in a system of linear algebraic equations which is solved for the unknown wave

function amplitudes. This investigation is motivated from the application of ultrasonic in

tubing inspection. The numerical results for the scattered amplitudes from load and from

flaw are presented for Zr-Nb pressure tube used in CANDU Pressurized Heavy Water

reactors to illustrate the applicabilty and the accuracy of the method.

l-.5 Organization of the Thesis

This thesis is mainly concerred with the ìnvestigation of propagation and scattering

of guided waves in laminated cylinders. An analytical model and approximate models

are proposed in Chapter 2 to study the dispersion characteristics of waves in laminated

cylinders and to obtain the appropriate method to apply in the scattering problems. The

effects of thickness to radius ratio, circumferential wavenumber, ply lay-up configuration

and anisotropy on the dispersion characteristics are elaborated in detail. The wave

scattering problems are presented in Chapters 3 and 4. Free end reflection problem, a

special case of wave scattering problem, is considered in Chapter 3. The formulation of

the hybrid method for plane strain wave scattering by flaws in cylindrical cross section

15



is presented in Chapter 4. Conclusions and some recommendations for future study are

outlined in Chapter 5.
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Claapten 2

Ðåaståc Wave Fropagatåora åm F,amåmated

Cyååmdens

2.n General

In this chapter, elastic wave propagation in laminated cylinders is investigated in detail.

As mentioned in Chapter 1, three wave propagation models are presented: analytical

formulation and two Rayleigh-Ritz type approximations. In the analytical formulation,

a propagator matrix approach, the three-dimensional theory of isotropic elasticity is

exploited to formulate the relation of the stresses and displacements of one interface

of a layer to those of another interface. The propagator matrix, established from this

relation, generates the frequency equation of the cylinder. In the Rayleigh-Ritz type

approximations, the displacements are approximated by the interpolation of discrete

nodal (interface) generalized coordinates. These nodal coordinates may be displacements

only or dispiacements and stresses at nodal points. The frequency equation of the cylinder

in the form of an eigenvalue problem is formulated by applying Hamilton's principle. The

main objective of presenting these models is to obtain the dispersion reiations and thereby

T7



to study guided \Mave propagation in laminated cylinders. The effects on dispersion

characteristics from circumferential wavenumber, thickness to radius ratio of the cylinder,

number of layers in the cylinder, and degree of anisotropy are also investigated. The

numerical results from the two approximate models are compared to select the suitable

and reliable method to study some of the wave scattering problems which will be discussed

in Chapters 3 and 4.

2.2 Ðescription of the Frohlem

Time harmonic elastic r'¡/ave propagation in an infinite laminated cylinder is considered.

The layers may have distinct mechanical properties as well as different thicknesses. The

cylinder is in (r, 0, z) coordinate system as shown in Figur e 2.7. The direction of wave

propagation is z. The two lateral surfaces of the cylinder (i.e. the inner and outer

surfaces) are free of traction. In the techniques adopted here, each layer is divided into

several sublayers although it is not necessary for the analytical method. The total number

of sublayers through the thickness, 11, is N. The mean radius of the cylinder is -R.

2.3 .A.nalytical Vlethod

In this section, analytical formulation model which in the remainder of this thesis will

be referred l,o as the propagator matrir method is presented.
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Figure 2.1: Geometry of laminated cylinder

k - th subloyer

Typicol lamino

19



2.3.L Governíng Equations

Since the main concern of this thesis is with cylinders having varying number of layers,

the analytical formulation will be constructecl in such a way thai the number and the

propelties of layers can be arbitrarilly variecl without any change in the solution pro-

ceclure. Consider the kth isotropic sublayel boundecl by r : r¡ ancl ?' : ? k+1 surfaces.

With reference to the cylincL'ical coordinates, rr 0, and z, and the respective displacement

componenls 'u,, u , and w, the displacement equations of motion are:

/\ ^ ,Att 2p,Aw" , ô 0.0 02u
l^ +'2p) ar - ;-ùi + 2pË : p 

arz,

where À and LI are Lamé's constants, p is the mass density ancl f denotes the time. ú,

'tDr¡ lro¡ and w" are defined as:

(À+z¡ri# -rry +zp*
(^+2,r)#*TW-TW

The displacement componenls 1-!,, n, ancl u can be written in terms of the potentials

ó, H,, H6, and H, as (Armenàkas et al. 1969):

u:

2w, :

Zws :

2w' :

O"u: P*;,
ctt''
ð2u: P atr'

0u u l)u 0w_I_ r___.1__
0r r r00' 0z'
10w 0u

;ao- a"'
0u ðw
A, - Ar'
!-0, _L0"
,' 0r rÐ0'

whele

aó 7aH" )Ho
ar-; ao - a"
Iaö . aH, aH,
r00' 0, 0raó 70,u: fi+;*(,n')-

(2 1)

ó : f (r)e¿*o e-i(€z-ut) ,
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m

in

is the circumferential wave number, ¿¿ is the circular frequency, { is the wave number

the z-direction and i : J1'

The displacement equations of motion, equations (2.1), are satisfiecl if:

1,,+Lf,-e-o,\f :0,
T \r' /

,,,1, ,(^tt\2gi+:tl', -þ')n,: o,

í:+lt:"-#- r,')n": o,

where

H, : g,(r)e¿*o e

Hs : go(r)ei*o e

H" : g"(r)ei^o e

-i((z-ut)
)

-i({z-ut)
)

-i({z -wt)

and 96(r) : -ig,(r). Plime denotes the diffelentiation with respect

the velocity of dilatational and torsional waves, lespectively, ancl are

n U)2 .ôa": "-€" ;ui

The gener.al solutions to ecluations (2.5) in terms of Hankel functions are:

/(") : tuH$)@r)+&n$)@1,

g,?) : ArH!)Ir(þr) + arnfilrç7r1,

g"(r) : a"nf) @r) + n"n*) @Ò.

(2.4)

ú: (jl) ,

At, Ar, Az, Bt, 82, ancl Bs ale arbitrary constants fol the layer. By substituting equa-

tions (2.8) into ecluations (2.4) and (2.3), together rvith the conventional stress-stlain ancl

stlain-displacement relations, the displacement and stress components at the intelface

r : rk can be presentecl as:

o

a2-* ¿2lr - " -( r1t'

,¡. þ4r- 
- 

_ts 
- p

(2 5)

(2.6)

to r. uo and u" are

defined as follows:

(2 T)

{ur}

{-9r}

ì_
t- l"-] Jtar]

It't J'

2I

(2 8)

(2 e)



where

Superscript T represents the transpose. orr, and ¡ denote the stress components a,,, orp,

and o,", respectiveiy. Subscript k designates the nodal values at the kth interface. The six

by six matrix, [D¿], containing Hankel function s H$) and Hfi) , is given in Appendix A.

{u¡}r :(ue

{A}"r : (Al

By evaiuating the displacement and the stress

the kth layer using the aforementioned procedure

following relation can be obtained:

uk .n)

Az lz)
1.9rlr : (ot

{B}t : (Bt

where

The six by six matrix [P¿] is the propagator matrix for the kth layer. Superscript -1
denotes the inverse of the matrix. Repeated application of equation (2.1I) for every layer

in a cylinder consisted of ,n/ layers results in:

Tk

Bz

{ff1 }:i",r{lï:ï }

Xù,

&).

components at the surface r : r¡.u1 of

and incorporatìng equation (2.9), the

where

lo]:lo]lr,-,] l"]
The matrix [P] can be partitioned as:

(2.10)

lPnl : lD+rllDrl-'

lPl :

Invoking the zero traction conditions

simplifies equation (2.13) to:

1 tu'*,) ]
| {s"*'} J

:l"r{iil 
}

(2.11)

I trl,, 1"1,, I .

l[e],, lpl,, )
at the inner and the

(2.r2)

lPlrr{-Ur} : {0}.
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The exact dispersion relation can then be obtained by equating the determinant of the

coefficient matrix to zero. i.e.;

l[P]r'l : o' (2.17)

This relation can be used to evaluate ¿¿ for a given {, or alternately, for a given ¿¿ it can

be solved for {.

2.3.2 Solid R"ods

For the solid rod problem, the Weber's function, Y*, becomes indeterminate when r
equals zero. Consequently, the general solutions, equations (2.8) becomes:

for the inner layer of the solid rod bounded by r : 0 and r : rr surfaces where J* is

Bessel function of the first kind. Cr, Cr, and Cs are arbitrary constants for this layer.

The displacement and stress components at the interface r : rt can be written in terms

of these constants as:

f (r)

g,(r)

g"(')

Cl*(ar),

C2J*a1(Br),

CsJ^(Br),

where

[A] and [T] are three by three matrices, containing the Bessel function J*, and are given

in Appendix A. The stiffness matrix, [1(], relating the stresses and the displacements

can be obtained from equations (2.19) as:

{ut}

{,st}

[n]{c},

lrl{c},

{C}' : (C', Cz Cù.

(2.18)

{s,} : [r][Ê]-'{¿/, } : lr{l{u}.
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The propagator matrix in equation (2.13), nevertheless, can still be employed for the first

interface to the (,n/ + I )th interface. The insertion of equation (2.20) into equation (2.13)

yieids:

J {u**,} I _ i trl,, +[P]nu{l 
I

| {s"*,} I- ltrl,, +[P],,vq)
By invoking the boundary condition of the traction free

the rod , the dispersion relation of the solid rod can be w

2"4 Rayleigh-Ttitz Type Approximations

Nelson el ¿/. (1971) presented an ertended Ritz technique using discretization in the

radial direction in order to model radial inhomogeneity. The technique was applied to

study dispersion in lamìnated cylinders with general orthotropic layers. Huang and Dong

(1984) expanded the study by apptying the same method to laminated cylinders with

general anisotropic layers. The complex frequency spectrum for laminated composite

cylinders were presented in their study. Only modal behavior was considered in the

former of these studies. In this section, the method is extended to investigate the wave

propagation in laminated cylinders.

Consider the frth anisotropic sublayer bounded by r : r¡ and r : rk+7 surfaces. The

sublayer has anisotropic modúä Cfn (p, q : 7,2, . .. , 6) and density pr. Jn general, fibre-

reinforced composites will have the form of material symmetry. However, when the fibres

make an angle with the coordinate direction, their properties will appear as transverse

isotropic. With reference to the cylindrical coordinates (r,,0,2),the stress-strain relation

llPlr' +[P]2zlKll :0.

{ ru,r }

surface at

ritten as:

(2.21)

the outer radius of

(2.22)
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for the kth sublayer is given by:

orrk

ogok

A zzk

0ork

orzk

Or0k

Ch Ch

Cf, Cl,

C[" Ct"

Cfn C*n

Cfu C*u

CÍu Ctu

2.4"L Displacement Based Rayleigh-Ritz Type Á.pproximation

Ch CfN

Ch C*N

Cå CIN

C[n Ctn

Ctu Cts

CS CK

Let the diplacement components u, u, and tr be approximated by

mials in the radial direction as:

{u} : [¡/]{d},

CÍ' C[u

Clu C[u

Ctu Ct6

CT, CK

ay- ay^
- ò5 - btt

C[u Ct6

where

{U}'- (u u w),

{,i}t: (u' ,u u)b tr^ ,u^ ,u)* ,f uf -f ),

ln, 0 0 î'12 0 0 r\ 0 01tt
l¡/l:l o rL1 o o TL2 o o rL3 o l.

L0 0 nr 0 0 rL2 0 0 "rl
In equations (2.2a)-(2.26), the generalized displacements ,u,b,, ,u,*, r.LÍ

back (inner), middle, and front (outer) nodal surfaces of the sublayer.

polynomials n; are quadratic functions given by:

€rrk

€oo k

€zzk

'lezk

'lr zk

"lr0k

(2.23)

nt :7 - 3r¡ -l2r¡2 i nz: 4T - 4n2

where rÌ : (r - rx) lhx, å¡ being the thickness of the

interpolation polyno-

(2.24)

By using Hamilton's principle, the Lagrangian,
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(2.26)

1

kth

are taken at the

The interpolation

"zz:_T*2n2,

sublayer.

(2.27)

-L¡, for the kth anisotropic sublayer is

(2.28)



calculated as:

tu: I l,l, I,U'.'o*' lru {ú}' {ù} - {-}' [cu] 1,¡],a,]a0dzdt. (2.2s)

Overbar and overdot denote complex conjugate and time differentiation, respectively.

{e} represents the strain vector with six strain components given in equation (2.23).

By substituting equation (2.24) into strain-displacement relations and these in turn

in equation (2.29), the Lagrangian can be written in term of generalized coordinates,

equation (2.26). Upon setting the first variation of the summation of the contribution

from all sublayers to zero, the governing equation for the entire cylinder is obtained as:

The matrices [Ml, lI{L],ll{z], and [1(3] are defined in Appendix B. Here lKl and [Ml
are real symmetric,lKrl is skew-hermitian and l1(3] is hermitian. Prime denotes differ-

entiation with respect to z. The vectot {Q} contains the generalized nodal coordinates

for the cylinder.

lK,l{Q},, + lK,l{Q}, - lr{,){Q} - lMl{Q} : 0.

A solution representing harmonic rvave propagation for equation (2.30) can be assumed

in the form:

where {00} .ep."sents the nodal amplitude vector. Substitution of equation

equation (2.30) results in a set of linear homogeneous equations as:

{-e'tx,l - iilK,l- [1r,] + a'?fa4]1go] : 0.

For a nontrivial solution {Çs} the determinant of the coefficient matrix must be zero

and this results in quadratic algebraic eigenvalue problem for { when ø is specified. This

equation serves as the dispersion relation for the cylinder.

{Q} : {eo¡"-,1c,-ut) 
"imo 

,

(2.30)

(2.31)

(2.31) into
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2.4.2 Displacement and Stress Based Rayleigh-Ritz Type Approximation

In this section, the displacements at a point in the kth anisotropic sublayer are approxi-

mated by interpolation polynomials as:

where

[-n[] and [1/2] are given in Appendix C. The generalized coordinates, {4}, which are

displacements and tractions are taken at the back (inner) and front (outer) nodal surfaces

of the sublayer.

By using Hamilton's principie, following the procedure presented in section 2.4.7,, the

governing equation for the cylinder is found to be:

{4}' : ("u

{u} : [¡/r] {4}'+ [^¡r] {4} ,

ob ub ,b -b XJ uÍ oÍ uf rÍ LDÍ Xr>. Q.g4)

lKnl {Q}* + [Ku] {Q}"'+ { tE,l {Q}" - lc,l {Q},,} + {t+,l {Q}, - lc,l {Q},}

+ {tna Gl + lM,l{öl} : o. (z.sb)

The matrices [Cr], lCrl, [Mr], lKn],lKtl, and [Ei] through [Er] ur" defined in Appendix C.

Note that [C1] and lKal are real symmetric,[M7], [ft], and [83] are hemitian, and lC2],

fK5], and lÛ2l arc skew-hermitian. With the assumption of a solution to harmonic wave

propagation be in the form as in equation (2.31), a set of homogeneous equations can be

obtained from the above equation as:

(2.33)

where

{t tr<^l+ t€3 [K5] - €'lxul - i([Kzl+ In']]{80} : o,

lKul

tKr)

[1(']

lUrl + r'lcrl

lUrl + r'lczl

lØ"l -.'lMrl
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Again, for a nontrivial soiution, the determinant of the coefficients matrix must be

zero. This results in the fourth order eigenvalue problem which serves as the dispersion

relation to solve for { when ø is specified. Alternatively, for a given {, the dispersion

relation can be written in the form of standard eigenvalue problem to solve for ¿¿ as:

where

It should be noted here that the generalized coordinates (equation (2.26)) in section

2.4.I are nodal displacement values. The method therefore ensures only the continuity

of displacements at the interfaces of the sublayers. Here, the generalized coordinates,

equation (2.34), are displacements and tractions at the nodal points. The method thus

assures the continuity of both the displacements and the stresses at the interfaces. For

convenience, in what follows in this thesis, the displacement based Rayleigh-Ritz type

approximation will be referred to as displacement continuity rnethod whilst the stress

and displacement based Rayleigh-Ritz lype approximation will be referred to as slress

continui.ty method.

lKel : €n lKnl + i( [Ks] - €, lÛrl - it[Er] * lÐr),,

I,Mcl : lMrl + (' [Cr] + i€ lCzl "

tK€l {8'} : ,' lMd {Qo} ,

2"5 Roots of Dispersion Equations

(2.38)

Dispersion equations obtained in sections 2.3 and 2.4 can be used to evaluate w for a

given (, or alternateiy, for a given a,, they can be solved for {. Due to physical reasons,

only real values are acceptable for the frequency) u. The wavenumber, {, on the other

hand, can have the complex form. For z ) 0, the complex wavenumber, {, is admissible

only in the form of:

(2.3e)

{:€n-i€t,
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where {p and ft are real and imaginary parts of complex wavenumber, respectively.

From the viewpoint of the stability of the system, only {1 2 0 is admissible. The roots

with (1 : 0 and €n > g produce modes propagating in the positive z-direction. In

contrast, when {n : 0 and {1 > 0, the modes are non-propagating. When {s and {1 are

both non-zero, the modes are evanescent for which edge vibrations occurs - that is, the

motions are confined near the edge. For an infinite cylinder, only propagating modes

exist from the physical standpoint of the system. The non-propagating and evanescent

modes, however, are significant in the problem of semi-infinite and finite cyiinders with

prescribed end conditions. It can be shown that if { is a root of the dispersion relation,

then -f is also a root. This conforms to the physical condition that waves may propagate

in either the positive or the negative z-direction.

The main interest here is to obtain the frequency spectrum (plot of frequency vs

wavenumber). Since the wavenumber can be in complex form, the frequency spectrum

has three different kinds of branches: real, imaginary, and complex (for detail see Mindlin

1960) corresponding to real, imaginary, and complex roots for (, respectively. The real

branches corresponding with the propagating modes are the branches which dominate

the dynamic response of the cylinder. The imaginary and complex branches represent

non-propagating and evanescent modes, respectively, and these modes decay wilh z.

An approximation to the frequency spectrum can be obtained by using Rayleigh-Ritz

type approaches. The real branches of the approximate spectrum can easily be plotted by

solving the standard eigenvalue problems given by equation (2.32) or (2.38). However,

if imaginary and complex branches of the approximate frequency spectrum a e to be

obtained, then the quadratic, equation (2.32), or the fourth order eigenvalue problem,

equation (2.36), which involves greater amount of computer time and core memoîy, has to

be solved. It may be noted that, in solving for real branches, the stress continuity method

requires less computational time than the displacement continuity approach for the same

number of sublayers. This is because, with the same number of sublayers modelled, the
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number of degrees of freedom provided by the stress continuity method is less than that

provided by the displacement continuity approach.

For a fixed value of either ø or (, the exact dispersion relations obtained in section 2.3

are transcendental functions of either { or ø, respectively. It is possible to evaluate the

roots of these equations by some search method. This approach will be computationaliy

formidable since the roots are sparsely scattered. Herein, Muller's method (Mu11er 1956)

is employed to recover the exact roots in the propagator matrix approach. Approximate

roots obtained from either the displacement continuity or the stress continuity approach

are used as initial guesses in the Muller's method. If the roots are required over a given

range of { (or c,.'), approximate roots from the Rayleigh-Ritz type approaches are required

only at the first step to use as initial guesses. At the next step, { (or c.,) is changed by a

sma11 increment and the exact dispersion relation is solved taking the exact roots from

the previous step as initial guesses for the current step. The process is repeated until the

range of interest is scanned.

Note that the exact dispersion relation in section 2.3 contains the Hankel functions

for complex arguments. These Hankel functions are obtained from the relations between

solutions as (National Bureau of Standard 1964):

where (r denotes ar or Br in equation (2.8). IMSL subroutine (1984) is employed to

evaluate the Bessel function of the first kind for complex arguments, J*((r). Following

the formula given in the National Bureau of Standard (1964), a computer code is written

to evaluate the Weber's function, Y*((r) for complex a guments. This computer code is

validated against Walfram (1988). For a thin cylinder, however, where r is large compared

to the thickness, H, of the cylinder, the argument (r of the Hankel functions becomes

magnified. The Hankel functions for this case are evaluated by using the asymptotic
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expansion forms (National Bureau of Standard 1964):

where E(*,(r) and F(*,(r) are given in Appendix D. Note that E(m,(r) and F(m,(r)
are well behaved for any argument of (r. However, the Hankel functions may not be

bounded due to the exponent terms. 
.When 

lIm((r)l is large, one of the Hankel functions

is exponentially magnified while another is comparatively very small. The numerical

evaluation for this case becomes inaccurate and causes singularity in the matrix [D¡,] in

equation (2.9). Since the value of ( is fixed for any pair of ø and {, the only control

variable therefore is r. Multiplying HPGr) 
""d 

HØ((r) by e-iC,* arrd. eiC,* (where r-
is the mean radius of the layer), respectively, tranforms the exponent terms in equation

(2.42) 1o 
"*i(lr-r*|. Sitr"" these multipliers are constant for each layer, they can then be

absorbed in the arbritary constants of the layer.

HP (U) : {Tøut{n(m, er) } iF (m, þ)}ei3') e-i(m/2}7/a)r,

H9rcr) : r[Tt ur{ø(m,(r) - iF(m,þ)}e-;teo"i(n/z+t/a)r,,

2.6 Nurnerical Results and Ðiscussion

In this section, eight numerical examples for dispersion characteristics of homogeneous

and laminated cylinders a e presented:

(2.42)

1. A homogeneous elastic rod.

2. A two-layered isotropic ho1low cylinder.

3. A homogeneous elastic isotropic cylinder with the Poisson's ratio y of 0.3, H lR of

1.5, and circumferential wavenumbers, m, of 1 and 3.

4. A 4 ply [+30/-30]" graphite/epoxy with H I R of 0.667 and circumferential wavenum-

bers, rn, of 1 and 3.
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5. A 4 ply l+i5/ - 15]" graphite/epoxy cylinder, Hf R - 0.667, and circumferential

wavenumb er ) n'¿) of 1 and 3.

6. A 4 ply [+15/ - 15]" graphite/epoxy cylinder, Hf R - 0.10, and circumferential

wavenumbers)n'1,) of 1 and 3.

7. A 16 ply [+tS/ - 15]" graphite/epoxy cylinder,, Hf R - 0.10, and a circumferential

wavenumber, m, of 7.

8. A i2 plv l0zl +451 -451021" graphite/epoxy cylinder, Hf R:0.10, and a circum-

ferential wavenumber,, m, of I.

The first two examples are to illustrate the applicabiliiy and the efficiency of the prop-

agator matrix mehod. The wave propagation and modal behaviors of the two-layered

isotropic cylinder are investigated in the second example. The accuracy of the results

obtained by the Rayleigh-Ritz type approximations tested against the analytical solu-

tions is iilustrated in the third example. The effect of circumferentiai wavenumber on

the dispersion characteristics of isotropic cylinder is also investigated. The last five ex-

amples compare the accuracy of the results obtained from the two Rayleigh-Ritz type

approximations for laminated composite cylinders. The factors effecting the dispersion

characteristics of laminated composite cylinders are also investigated in detail.

When the laminated composite cylinder is considered, it is assumed that the wave-

length is much larger than the flbre diameter and spacing between the fibres. Each layer

or lamina can therefore be modelled as a transversely isotropic medium with the symme-

try axis aiigned with ihe fibre direction (Datt a et aI. 1984). For the laminated composite

cylinders considered in all examples, the elastic properties for each ply relative to their

natural elastic axes are (Huang and Dong 1984):

EL : 73.9274 x 7070Nfrn2, Er : 1.5169 x 70roNfm2;

G¡,r : Grr:0.5861 x I07oNf rn2, uLT: un:0.27,
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where E and G denote modulus of elasticity and shear modulus, respectively. z is the

Poisson's ratio. Subscripts ,L and Z represent the fibre and the transverse directions, re-

spectively. In all numerical results presented in this chapter, the frequency and wavenum-

ber, whenever referred, are the normalized frequency f) and normalized wavenumber 7

with the forms of:

where e,"¡ and €reJ are the reference frequency and the reference wavenumber, respec-

tively. For simplicity, all sublayers in cylinder are modelled with equal thicknesses.

2.6.L Efficacy of the Fropagator Matrix Approach

f): '
areJ

The applicability, the accuracy, and the efficiency of the propagator matrix method are

illustrated by the following two numerical examples. The wave propagation and modai

behaviors of the two-layered isotopic cylinder are also investigated.

Era,rnple 1

t
ç

1 t È -1
SreJ

The axisymmetric vibration of the harmonic waves in a solid rod with Poisson's ratio

of 0.31 is considered. The frequency spectrum is shown in Figure 2.2. The reference

frequency and reference wave number are, respectively;

''"r:+ i €'"r:+'
where ó is the lowest nonzero root of .Ã(á) : 0, u" is the shear wave velocity and 11 is the

total thickness of the rod. The dashed lines show the complex branches and the circles

represent the results given by Onoe et aI. (7962). BV stipulating the axially symmetric

vibration, the longitudinal and torsional modes are uncoupled. Only the longitudinal

modes are illustrated herein. Onoe et aI. presented the spectrum showing purely real,

imaginary and complex branches in which the complex branches were sketched approxi-

mately, except those near the coordinate planes. As seen in Figure 2.2, the discrepancy

It
r)rt
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between the results from the present method and the approximate results presented by

Onoe et o.l. is pronounced for these complex branches except for those near the planes.

For the purely real and imaginary branches, the two results are in excellent agreement.

This confirms the applicability and the accuracy of the method.

Erarnple 2

The vibration of harmonic waves in an infinite composite cylinder is considered. The

cylinder is composed of two isotropic layers perfectly bonded together. The mechanical

properties of the two layers are: I/t : t/2 : 0.30; where z denotes the Poisson's ratio;

ølpz: I;hlpz:2; hlhz: 1. The subscripts 1 and 2 represent the inner and outer

layer, respectively. The ratio of the thickness to the mean radius of the outer layer,

hrlRr, is 0.20. The circumferential wave number, m, is 1. The reference frequency and

the reference 1¡/avenumber are, respectively:

where u"z is the shear wave velocity in the outer layer.

Armenàkas (1971) presented the results for the propagating modes (shown as circles in

Figure 2.3). It can be seen that the results from the present method and those obtained

by Armenàkas are in excellent agreement. The spectrum of this cylinder showing real,

imaginary and complex branches is presented in Figure 2.4.

It can be noticed that the propagator matrix method does not require any change in

the computer codes in order to accommodate more layers of different material properties.

Unlike the stiffness method proposed by Moore (1990), the propagator matrix approach

requires the computation of only 4 x 4 (for rod problems) or 6 x 6 matrix (for ho11ow

cylinder cases). Since the formulation is based upon the three-dimensional theory of

elasticity, the roots are exact. To the best of the author's knowledge, the exact complex

frequency spectrum of laminated isotropic cylinder has not yet been reported.
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Figure 2.2: complex frequency spectrum of isotropic rod with u: 0.81.
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Figure 2.3: Frequency spectrum of two-layered isotropic cylinder

( - present study; Q Armenàkas, ig7l)
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Figure 2.5 shows the displacement distribution through the thickness of the cylinder for

normalized frequency, Íì : 1.0. Figures 2.5a, 2.5c, 2.5e and 2.5g show that the torsional

motion is insignificant for the first, third, fifth and seventh propagating modes. The radial

and axial motions are coupled for these modes. The radial motion predominates for the

first and the third propagating modes (Figures 2.5a and 2.5c), whereas for the fifth

and the seventh propagating modes the axial motion is predominant (Figures 2.5e and

2.5g). The presence of the torsional motion becomes paramount in the second, fourth,

and sixth propagating modes (Figures 2.5b, 2.5d, and 2.5f, respeciively). Figure 2.5h

reveals that all motion is coupled in the eighth propagating mode. Armenàkas (1971)

commented that the motion is concentrated in the inner layer. This is true for the first

and the second propagating modes, however, for the third and the fourth propagating

modes the motion is stronger in the outer layer.

One interesting characteristic of guided waves in the cylinder for the flexural case (m

: 1) is that some of the branches in the imaginary plane extend Lo zero frequency. The

behavior of these branches (Figure 2.4) is similar to that of the axisymmetric torsional

case (Mason, 1968). The investigation of the mode shapes of these non-pïopagating

modes (Figure 2.6) for f) : 1 reveals that the torsional motion predominates over the

radial and axial motions. On the other hand, for evanescent mode, the torsional motion

is negligible as seen in Figure 2.7 lor f) : 1.

2.6.2 ,A.ccuracy of Rayleigh-Ritz Type Approximations

Erample 3

The accuracy of the results obtained by the Rayleigh-Ritz lype approximations is test-

ed against the analytical solution for propagation in a homogeneous cylinder with differ-

ent circumferential wavenumbers. The propagation of waves in homogeneous isotropic
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cylinder with the Poisson's ratio u of 0.3 and the thickness to radius ratio, HlR, of 1.5

is considered in this example. Two circumferential wavenumb ers n'¿,) which are 1 and

3, are considered. The reference frequency and the reference wavenumber are defined,

respectively, as:

u,u¡:T, ,,"r: #.
Figures 2.8 show the frequency spectrum for these examples. The Rayleigh-Ritz type

approximations, the displacement continuity method (dashed lines) and the stress con-

tinuity (solid lines), yield excellent results in comparison with the analytical solutions

(circles) in the low frequency regimes. However, for higher modes, the discrepancy be-

tween the two approximate methods becomes noticeable. It can be observed that the

results obtained from the stress continuity are lower than those obtained by the displace-

ment continuity approach. Since both of the approximations employ the consistent mass

approach, the stress continuity will generate the results closer to the analytical solutions.

Armenàkas et aI. (1969) illustrated that the effect of the variation in circumferential

wavenumber on dispersion behavior of thin-walled isotropic cylinder is considerably neg-

ligible. For thick-walled cylinders, an inspection of Figures 2.8 reveals that the change in

circumferential wavenumber is quite pronounced only in iow wavenumber regimes (Bra-

ga et al., 1990). A thorough investigation of thick cylinders shows that the rigid body

motion does not appear when the circumferential wavenumber is 3. The variation in cir-

cumferential wavenumber, however, does not affect the accuracy of the results obtained

by ihe approximate methods.

2.6.3 Factors Effecting the Dispersion Characteristics of T,aminated Com-
posite Cylinders

Erarnples l-8
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Figure 2.8: Frequency spectrum for a homogeneous isotropic cyiinder with

u :0.3, HIR - 1.b, and (") * - 1, (b) m:3.
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The last five examples are considered in an investigation of the factors effecting the

dispersion characteristics of laminated composite cylinders. Attention will be focussed

mainly on the dominant branches, which are real branches of the frequency spectrum.

The reference frequency and the reference wavenumber are, respectively:

where

Figures 2.9 to 2.13 illustrate the frequency spectrum for the cylinders in examples 4

to 8, respectively.

a) The Effect of Circumferential Wauenumber

U--r
UL

-H )

The variation in the circumferential wavenumber has a similar effect on the dispersion

characteristics of a laminated composite cylinder as on those of a homogeneous cyiinder.

The effects are mostly concentrated in the low wavenumber regions. The comparison of

Figures 2.9a to 2.9b and 2.70a to 2.10b for examples 4 and 5, respectively, reveals

that there is no rigid body motion for the circumferential wavenumber of 3. The process

of wave velocity reaching the constant phase velocity stage is also slow-down with the

higher circumferential wavenumber. For relatively thin tube, Figures 2.11 for example

6, the change in the circumferential wavenumber from 1 to 3 does not significantly alter

the dispersion characteristics of the cylinder.

b) The Efrect of Thickness t,o Mean Radius Ratio

Ê
sreJ

,'r,:

7f:-
H,

Et
p

Figures 2.10 and 2.11 for examples 5 and 6, respectively, illustrate the influence of the

H f R ralio on the dispersion characteristics of laminated composite cylinder. It should be

noted that the higher the H I R ratio, the thicker the cyiinder. With the circumferential
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wavenumber of 1, the variati on in H I R ratio shows no significant influence on the disper-

sion behavior. The effect of HIR ratio becomes more pronounced for the circumferential

wavenumberof 3. It is noticed that the change in HIR ratio does affect the values of the

cut-off frequencies, i.e. the frequencies for zero wavenumber, in 1ow frequency regimes

and the degree of weak coupling. The corresponding dispersion curves of a thin cylinder

have the typical configuration of weak coupling, namely, they come close together near

the region of intersection or contact of the dispersion curves (Armenàkas et al. 1969).

The comparison of Figures 2.70a and 2.11a, and 2.70b and 2.11b demonstrates that the

thinner the cylinder, the higher the degree of weak coupling phenomenon. The effects,

however, are localized in the region of low wavenumbers.

c) The Effect of Layeri.ng and Ansi,otropy

Layering herein means the number of laminae in the laminated composite cylinder.

Figures 2.I7a and 2.12 for examples 6 and 7, respectively, show that the effect of layering

is very significant. Layering has a tendency of increasing phase velocities for high modes.

It is very interesting that for the sixteen ply of graphite/epoxy, the discrepancy of the

results obtained from both approximate methods become less in comparison to that for

the four ply cylinders.

When laminated composite cyiinder is composed of many different orientations of

the lamina, the cylinder is considered to have high degrees of anisotropy. Figure 2.13

illustrates the frequency spectrum of a multi-angle symmetric laminated cylinder used

in the aerospace industry. It can be observed from Figure 2.13 for example 8 that the

wave velocities approach the constant phase velocity stage slower than in l+15/ - 15]"

or f+30/ - 30]" ply 1ay up tube. In comparing the frequency spectrum of the 12 ply

l0rl+451 -45102]" graphite/epoxy cylinder (Figure 2.13) with that of the 16 p1y l+rc¡ -
15]" cylinder (Figure 2.12) it can be noticed that both spectra have a similar pattern,

especially in the region of small wavenumber, (. The cut-off frequencies as well as the
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0.0 0"5 1.0 1.5

(a)

Figure 2.9: Frequency spectrum for a 4 p1y [+so ¡ - 30]" graphiie/epoxy cylinder with
HIR:0.667, and (a) m: I, (b) nz - l.
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(b)

Figure 2.9: Frequency spectrum fo¡ a 4 ply l+ZO¡- 30]" graphite/epoxy cylinder with

HIR :0.667, and (a) rn : I, (b) nz : l.
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Figure 2.10: Frequency spectrum f.or a 4 ply [+t5/ - 15]" graphite/epoxy cylinder with

H lR :0.667, and (a) 'nz : 7, (b) nz : l.
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Figure 2.10: Frequency spectrum for a 4 pIy l+tS¡- i5]" graphite/epoxy cyiinder with

HIR:0.667,and(a) m=I, (b) m:3.
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first propagating mode for both cylinders are almost identical.

2.7 Concludíng R ernarks

The elastic wave propagation in isotropic and iaminated cylinders is investigated by the

propagator matrix method and the Rayleigh-Ritz type approximations. The propaga-

tor matrix is established from the relation of the stresses and displacements between

the two interfaces of the sublayer based upon the three-dimensional theory of elasticity

for isotropic materials. The dispersion relation of the cylinder is generated from this

relation. The Rayleigh-Ritz type approximations are employed to investigate the dis-

persion characteristics for laminated composite cylinders when the analytical solution is

unattainable. The methods divide the cylinder into several sublayers and approximate

the displacement distribution through the thickness of the sublayers by interpolation

functions in terms of discrete generalized coordinates. These generalized coordinates

may invoive only displacements or both displacements and stresses at the nodal points.

The dispersion relations of the cylinder obtained by Rayleigh-Ritz type approximations

are in the forms of eigenvalue problem. It is shown that the dispersion behavior predicted

by the Rayleigh-Ritz type approximations agree well with the analytical solution. It may

be noted that although the stress continuity method yields more accurate results than

those obtained by the displacement continuity approach, the discrepancy of the result-

s from the two methods is considerably small. Observation made here further suggest

that the displacement continuity method can t,e expioited in solving the wave scattering

problems.

The results illustrate that the measurable changes in phase velocity are caused by

the variation of circumferential wavenumber, the thickness to radius ratio, the layering,

and the degree of anisotropy. Most of the effects, however, are quite appreciable at low

frequencies and low wavenumber regime.
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Figure 2.11: Frequency spectrum for a 4 ply l+15/ - 15]" graphite/epoxy cylinder with

H lR : 0.10, and (") *: 1, (b) rn : 3.
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Figure 2.11: Frequency spectrum for a 4 ply [+t5/ - i5]" graphite/epoxy cylinder with

HIR - 0.10, and (") *: i, (b) m : 3.
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Figure 2.12: Frequency spectrum for a 16 p1v [+15/ - 15]" graphite/epoxy cyiinder with

HIR-0.10,andm:L.
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Figure 2.13: Frequency spectrum for a 12 ply l0rl +451 -4s102]l" graphite/epoxy cylinder

with HIR: 0.10, and m : I.
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Chapten &

Fh'ee Ðmd R effieatåosa of Waves å¡a

Seffi?å-åffiffiffiite CyååNad ers

3.1- General

As mentioned in Chapter 1, the study of wave propagation in cylinders has many appli-

cations, such as nondestructive evaluation of material properties, fl.aw detection, and the

determination of resonance. Free end reflection problem, one of the scattering problems,

which is investigated in the present chapter also requires the basic knowledge of wave

propagation which was presented in Chapter 2. The present study of free end reflection in

cylinder will help in contriving suitable techniques to analyse more complicated problem

of wave scattering due to cracks in cylinder.

When a wave travels along a semi-infinite cylinder and strikes at the free edge of the

cylinder, an infinite number of reflected waves is generated. These reflected waves may

have real, imaginary, or complex wavenumbers. Only a finite number of these waves,

with real wavenumbers, propagate energy. The imaginary and complex modes carry
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no energy and their amplitudes exponentially decay with the distance. However, these

non-propagating and evanescent modes, the imaginary and complex modes, respectively,

are as significant as the propagating modes at the edge of the cylinder in satisfying the

traction free end condition. The reflected wave field is represented by the modal sum of

a finite number of wave functions (Karunasena et al., 799I). These wave functions or

eigenfunctions at discrete points through the thickness of the cylinder can be obtained

from the propagator matrix for laminated isotropic cylinders. On the other hand, the

Rayleigh-Ritz Lype approximation with displacement continuity, presented in Chapter

2, is employed where analytical solution is unattainable. The amplitudes of the wave

functions are determined by satisfying the traction free end conditions using the least

square and variational methods.

The validation and the accuracy of the methods are demonstrated by comparing the

results with existing results for a homogeneous isotropic elastic solid rod. The comparison

between the results obtained from the displacement continuity method and the propaga-

tor matrix approach illustrates the applicability of the Rayleigh-Ritz type approximation

in the free end reflection problem. Numerical results for a two-layered isotropic cylinder

and for a four ply graphitef epoxy cylinder are presented. In each case, the division of

energy among various reflected modes is also presented.

3"2 Ðescriptior¡ of, the Froblerr

A semi-infinite laminated cylinder considered occupies the region z > 0 in the cyiindrical

coordinates r,0, and z as shown in Figure 3.1. The layers or laminae may have distinct

mechanical properties as well as different thicknesses. These layers are assumed to be

perfectly bonded together. The thickness of the cylinder, H, is discretized into l/ sub-

layers to model the radial inhomogeneity and to compute the eigenvectors at discrete

points. The cylinder is excited at z: +oo which generates the incident wave with an-
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gular frequency of ø and wavenumb er of (¿n. This time harmonic guided wave travels

in the negative z-direction and impinges upon the free end z : 0 of the cylinder. The

objective herein is to investigate the reflected waves generated after the incident wave

strikes the free edge of the cylinder.

3.3 -Wave Functions

Wave functions required for the reflection analysis are obtained by considering the elastic

rvave propagation in the corresponding infinite cylinder. For this purpose, each layer is

divided into several sublayers so that the total number of sublayers through the thickness,

,É1, is 1/. Two approaches are employed in the present chapter, viz. the propagator

matrix method for laminated isotropic cyiinders, and the displacement based Rayleigh-

Ritz type approximation for laminated composite cylinders. The dispiacement continuity

method is preferred over the stress continuity approach mainly due to the fact that, for

given ø, the stress continuity approach involves a fourth order eigenvalue problem whilst

the displacement continuity method contains only a quadratic eigenvalue problem. One

should note here that the fourth order eigenvalue problem requires much larger computer

time and core memory than the quadratic eigenvalue problem. Also, it is observed from

Chapter 2 lhal the discrepancy between the results obtained from both the approximate

methods is considered small.

As discussed in section 2.5, for a particular value of a.r, the roots of the dispersion

relations wili have the form of complex wavenumber, equation (2.39), as:

{ :4n - iËt.

The admissible { for the reflected wave fie1d in the semi-infinite cylinder are those real

roots with positive group velocity and those non-real roots with {l > 0. These conditions

ensure that the reflected waves produce bounded displacement and stress fields through-
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Figure 3.1: Geometry of semi-infinite laminated cylinder
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out the cylinder. In solving the transcendental functions, equations (2.17) and (2.22),

Muller's method is employed. At the first step, beginning with the lowest frequency, the

cylinder is discretized into a sufficiently large number of sublayers and the approximate

roots are obtained via the displacement based Rayleigh-Ritz type approximation. Those

approximate roots lying in the first quadrant of the complex (-plane are used as initiai

guesses to recover the exact roots. It should be noted that the division into sublayers is

not required to obtain the exact roots, but is used to compute the eigenvectors in the

modal expansion method. At the next step, ø is increased by a small increment and

the exact roots from the previous step are taken as initiai guesses for the current step.

The process is repeated until the frequency range of interest is scanned. As a check,

at some intermediate frequencies, the approximate roots from the displacement based

Rayleigh-Rilz type approximation are used as initial guesses in the Muller's method to

obtain the exact roots as mentioned in section 2.5. After obtaining the wavenumbers, {,
the sign of the real wavenumbers are adjusted to have positive gïoup velocities.

3"4 Reflected \Mave Field and lncident Field

The reflection occurs after the wave strikes the edge z: 0 of the cylinder. The reflected

waves consist of a finite number of waves with real wavenumber and an infinite number of

waves with imaginary and complex wavenumbers. The displacement vector corresponding

to these reflected waves {q"}," at any arbitrary zhas the form of:

where

{q¡}':(uy utj lrtj...ukj utj w*j...u(Np)j ulwp)i w(Np)j), Q.2)

l/P being the number of nodal points. The displacements ukj, ukj, and w¡¡ at the kth

nodal point associated with the 7th mode can be obtained from equaiion (2.11) or (2.32).

The complex amplitude A¡ of the jth mode is to be determined so that the associated
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stress field satisfies the free end condition. The factor 
"iut.im1 

will be suppressed in the

following formulation.

For the purpose of numerical evaluation, the series in equation (3.2) is truncated

to -/ terms. Only the modes corresponding to the wavenumbers with small negative

imaginary part are superposed (Gregory and Gladwell, 1989). As mentioned earlier, the

wavenumbers having positive imaginary part are unbounded for large z and, therefore,

they are not admissible. In the wavenumber determination process, after obtaining the

wavenumbers (¡ for each frequency, only J number of roots are chosen. The selected roots

must include all the propagating modes. The real roots are ordered in the descending

order of the amplitude while the non-propagating and evanescent modes are ordered in

the ascending order of magnitude of their imaginary parts.

The reflected wave field at the edge z : 0, {qo},., with J modes approximation can

then be written as:

where

The stress componenls (o,",, og. and o,,) aL discrete points on the surface z : constant

of the kth sublayer can be obtaìned by the stress-strain and the strain-displacement

relations as:

{qo},.: [G] {A},

[G] : [{q'} {qr} ... {q¡} .. . {qr}],

{A}' : (A, A2 ... A¡ ... ,at) .

-du6rr: Crcr l
AT

^ .dtn
+Css( ,

AT

du00" : Ut+,1
CTT'

.dw
lU¿s( ,'dr

An.

ffø i imu) - i(Cs5w -t iCas(?w - €r)

- i€u) -t Csa(Tu + + - \,Td,TT

?ø * imu) - i(C3aw -t iCaa(Yta - {r)

(3.3 )

T

,im du D.
-?,Ëu)iU'qøl-u* , --),. T d"T T.
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For the isotropic sublayer, with the propagator matrix approach, knowing the three

displacement components: u, u, and T.u; and the three stress components: or, o16, and

o,,l together with the above equations, the two required stress components can be written

AS:

60": -i(t u+U.,
T

À 2uÀo"' : 
(^ * rr)"" + T(u * imu) - i4¡f (w' (3'7)

In the Rayleigh-Ritz type approximation, with the interpolation polynomial functions,

the explicit form of the three stress components in equation (3.6) can be written as:

duCo." : cttff + y21@* imu) - i(Cssw * iCsa(ryw - (u)

.du du u.-FL'ss(, -¿€")*Csø(?u* , --).O,T T CIT T'

where

{q} it the vector of generalized displacements and is defined in equation (2.26). The

matrix [^{r] it given in Appendix E. Note that os" and o", may not be continuous at the

interfaces between the sublayers. The stress vector containing these stress components

due to the reflected field at the free end surface can be formulated as:

{s} : [^/r]i4],

where

{S}t : (o," os" o"") ,,

[F] : [{s'} {sr} . {s¡} ... {s",}J , (3.11)

{S¡}t : (or"ti osrti azzTi . . . arzki ovzki ozzkj . . .orz(Np)j oorlue¡¡ ozz(Np)j> .

(3. 12)

It must be mentioned here that when the circumferential wavenumbet) r'n) is not

zero, the wavenumber $ and €j for propagating modes in the positive and negative
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z-direction, respectively, are not the same for laminated composite cylinder unless the

material properties are symmetricwith respect to d. Once the wavenumber, {j, for the

incident mode has been selected, it was found convenient to evaluate the incident field

quantities in the (r, 0', z') coordinates where 0t : -0 ar'd z' : -2. With this, the

incident fie1d at the edge z : 0, {qo}n^, with -I modes approximation can be written in

the same form as equation (3.3) as:

{qo}r.: Ain{G.;^}, (3.13)

Similarly, the stress vector due to the incident field at the free edge can be written as:

{R}0" : Ain {Fo"}, (3.14)

where A¿n is the amplitude of the incident mode. The displacement and stress vec-

tors, {G¿'} and {4"}, respectively, are calculated from the \vave corresponding to the

propagating incident mode.

The traction free condition al, z :0 requires that

{Æ} : {Ê}"" - {Ê}¿" :0. (9.1b)

By minimizing the sum of the squares of the residuals of {R}, the least square solution

for complex amplitud" {A} is obtained as:

where r¿ and ro represent the inner and the outer radii of the cylinder,

An alternate approach of determining the complex amplitude {A}
variational principle (Wu and Piunkett, 1967). Using the principle of

ment, one obtains:

{A}: 'qo.ll,', [r]'trt ,d,,)-'U,'" lr]' 1ro.¡rdr],,

á{q¡}r{R} : o,

where á represents variation. The total displacement field

the cylinder is:

{qo}: {qo}¿"*{qo},.,
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respectively.

(3. 1 7)

{qo} ut the free end surface of

(3.18)

is to employ the

virtual displace-



in which

6{qo} :6{qo},". (9.19)

The solution is obtained by substituting equations (3.3), (3.15), and (3.19) into equation

(3.18). This leads to:

{A} : Ao.ll,'," lc]r lrl ,d,,]-'U,'," l"l' 7ro^¡,a,].

The normalized amplitude B¡ of the 7th mode is defined by:

B,: P. (s.21)" Ain

Once the amplitude {A} is known, the displacement and stress fields anywhere in the

cylinder can be computed.

3.5 Energy F lux

One of the physical quantities of interest is the mean total energy flux. Reflected energy

is carried only by the various propagating modes which can exist at that particular

frequency. The instantaneous value of the energy flux, associated with the jth reflected

propagating mode, per unit length in z-direction, through a cylinder cross section located

at any z (z ) 0) is given by:

uo : -T l,'" l{o,,}î"4* * {R,¡f"{þ],a, ; i < Np,,

where

(3.20)

The {q,¡}," and {R,¡}," represent, respectively, the displacement and the stress vectors

associated with the 7th reflected mode at any cross sectio n z. Np, is the number of propa-

gating modes in the reflected field. The time-averaged value of the energy flux, associated
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{q.¡}," : A¡{q¡}e-;(Ëiz-ut) 
"imo 

,

{R.¡}," : A¡{S¡}e-i(Ê¡z-ut) 
"imo 

,

(3.22)

(3.23)

(3.24)



with the 7th reflected mode, per unit length in z-direction, through the cylinder cross

section is obtained by averagi ng É¡ over one cycle. This is given by:

",: #tr lo'"'- n¡at. (3.25)

After carrying out the integration in equation (3.25), E¡ can explicitly expressed as:

Ej: rlA¡12 ImLl,'"Ár,]' {q¡}rdrl] ; i 1 Np,, (8.26)

The mean total energy flux is calculated from the sum of the energy fluxes canied by

reflected propagating modes. This is given by:

Np,

Er.:Ðn,

The energy flux of the incident field can be written in the similar form as:

Ein : a lA¿^¡ mll,'" l{F¿,}' {q},^ r drll.

The proportion of the incident energy transferred into the jth

mode is:

Ir: Ej
t Ein

Since the free end condition requires no energy dissipation when

percentage difference in energies carried by the incident and the

given by:

lel:lfU¿"- 8,"]700f E¿"1. (8.80)

The principle of energy conservation requires ihat le | : 0. The smallness of the value of

le I is an useful index to assess the accuracy of the numerical results.

3.6 Nurnerical Ðvaluation and Ðiscussiorì

To validate and to assess the accuracy and the application of the methods, the following

three numerical examples are considered:
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(3.27)

reflected propagating

(3.2e)

the wave reflects, the

reflected fields is then

(3.28)



1. A homogeneous isotropic elastic rod.

2. A two-layered isotropic hollow cylinder.

3. A 4-ply l+tSl -151 +151- 151 graphite/epoxy hollow cylinder.

In all examples, the frequency and the wavenumber, whenever referred, are the nor-

malized frequency, f,), and the normalized wavenumber, 7, with the forms of:

o- Ø ^,- €
"u- LÐreÍ ' '- €r"Í'

where a,"¡ and. €reJ are the reference frequency and the reference wavenumber, respec-

tively.

The total number of sublayers .ðy' used to compute the discrete eigenvectors and the

number of modes J used in the modal expansion are very important factors for the

accuracy of the method. Reasonably good values of 1/ and J are chosen in such a way

that the amplitude {A} in equation (3.16) or (3.20) and the proportion of the energy

carried by each reflected mode 1¡ in equation (3.29) converge.

Erample 1

The reflection of the first axisymmetric wave in a solid rod with the Poisson's ratio

u of 0.25 is considered. The reference frequency and the reference wavenumber are,

respectively;

,,"¡:# , €,"Í: +,
where uo is the velocity of dilatation wave. A full discussion of the frequency spectrum for

this case was given by Onoe et al. (7962). The first three cut-off frequencies are f) : 1.931,

2.069, and2.21.2. The propagator matrix approach with 20 sublayers (corresponding to 42

degrees of freedom) and 21 modes are employed in this present example. Figure 3.2a and

3.2b show the normalized amplitude B¡ atd the proportion of energy I¡ of eachreflected

o/



mode. The comparison of the proportion of energy obtained by the present method with

that of Gregory and Gladwell (1989) is made. It can be seen that the method presented

herein yields results that are in exellent agreement with those obtained by Gregory and

Gladwell. For the range of fl in Figure 3.2, lel is less than 0.5 %. From the numerical

experimentation, it is observed that there is no discrepancy between the results obtained

by the least square method and those obtained by the variational technique, equations

(3.16) and (3.20), respectively, in this example.

The numerical results confirmed that the end resonant frequency for this rod is 1.644

which is identical to the one obtained by Gregory and Gladwell.

Erample 2

The reflection of the first propagating mode in a two-layered isotropic cylinder is

considered. The properties of the two layers are given in Chapter 2 i.e., L/r : r/2: 0.30;

nlpz:7; hlpz:2; hlhz: 1. The subscripts 1 and 2 represent the inner and the

outer layer, respectively. The ratio of the thickness to the mean radius of the outer layer,

hrlRr, is 0.20" The circumferential wavenumber rn is 1. The reference frequency and the

reference wavenumber are, respectively:

2ru"2 , 2ru)"J: H i Ë'"J: H'
where u"2 is the shear wave velocity in the outer layer. The frequency spectrum for

this cylinder was presented in Chapter 2. The first four cut-off frequencies are f) :
0.059, 0.145, 0.428, and 0.438. The propagator matrix approach and the displacement

based Rayleigh-Ritz type approximation are employed in this example to illustrate the

applicability and the accuracy of the Rayleigh-Ritz type approximation for the reflection

problem. In order that the two methods are to be comparable, the discretizations are

made in such a rvay that both methods have the same number of degrees of freedom. It is

found that 99 degrees offreedom (corresponding to 32 and 16 sublayers for the propagator

matrix approach and the Rayleigh-Ritztype approximation, respectively) and 30 modes
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provide reasonably good results.

Figures 3.3a and 3.3b illustrate the normalized amplitudes B¡ and the proportion

of energy 1¡ of each reflected propagating mode, respectively. It can be observed that

the results from both methods are in excellent agreement. For the frequencies lower

than the first cut-off frequency, only one reflected propagating mode is possible. This

mode has the same absolute amplitude as that of the incident wave and carries ai1 of

the energy back. At the first cut-off frequency, the second propagating mode becomes

predominant. The amplitude of this second cut-off frequency is comparatively large. This

phenomenon, however, is not very stable as the frequency is shifted away from the first

cut-off frequency. The first propagating mode recovers its dominacy as the frequency

increases. This mode is also predominant in the frequency range between the second and

the third cut-off frequencies. Between the third and the fourth cut-off frequencies, the

fourth propagating mode has very high amplitude. However, its amplitude is not high

enough to be considered as a resonant phenomenon. For the frequency greater than the

fourth cut-off frequency, the fifth propagating mode predominates all other modes except

in a small region around 0 : 0.62 as shown in the inserts in the Figures. An investigation

in this particular region reveals that the first mode is the breathing mode, the second

and the fourth modes are torsional modes whilst the third and the fifth modes are the

modes coupling of the longitudinai motions.

For the range of 0 considered in Figures 3.3, le I is less than 0.5 %. Similar to the first

example, the results obtained from the least square method and those obtained by the

variational technique show negligible discrepancy.

Erample 3

The reflection of the first incoming propagating mode in a 4-p1y l+rc¡ -ßl+r5l -r5l
graphite/epoxy is considered. The elastic properties for each ply relative to their natural
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elastic axes are given in the previous chapter, equation (2.43), as

The normalized frequency and the normalized wavenumber are given, respectively, by:

Et : 13.9274 x 70ro Nf rn2 ; Er :1.5169 x 70to Nf m2 ;

Gzr : Grr:0.5861 x L}roNf m2 ; r./LT : urr:0.27.

where

The circumferential wavenumber rn and H f R are 1 and 0.667, respectively. As previ-

ously discussed, when the waves travel in the anisotropic cylinder with the circumferen-

tial wavenumber greater than zero, the wavenumber of waves travelling in the positive

z-direction differs from that of the waves travelling in the negative z-direction. Fig-

ure 3.4 shows the frequency spectrum for this cylinder. The solid lines represent the

waves travelling in the positive z-direction, while the dashed lines illustrate the waves

travelling in the negative z-direction. The first four cut-off frequencies are f) : 0.275,

0.295, 0.696, and 0.760.

D¡,ur"J: H ;

Hç --_SreJ - )î

,Ezuí: 
-.p

Since the analytical solution is unattainable for laminated composite cylinders, the

displacement based Rayleigh-Ritz type approximation is employed in this example. The

cylinder is discretized into 16 sublayers (corresponding to 99 degrees of freedom) and 30

modes are considered.

Figures 3.5a and 3.5b show the normalized amplitudes B¡ and the proportion of energy

1¡ of each reflected propagating mode. Unlike the previous example, the propagating

modes in the positive and in the negative z-direcctions are different. Therefore, for

frequencies lower than the first cut-off frequency, the normalized absolute amplitudes

of the reflected wave need not be unity. However, the conservation of the energy sti1l

holds, i.e. the energy carried by the incident wave is totally transferred to the reflected

1,
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propagating wave as seen in Figure 3.5b. Similar to the case of layered isotropic cylinder,

at the first cut-off frequency, the second mode becomes predominant. In the range

between the second and the third cut-off frequencies, all three propagating lr/aves are

essential in carrying energy back. Between the ihird and the fourth cut-off frequencies,

the patterns of both the normalized amplitude and the proportion of energy are very

irregular. After the fourth cut-off frequency, all propagating modes in the reflected waves

are contributing in the transfer of the energy. In this example, it is observed that the

numerical results obtained by the least square method are very inaccurate. For the range

of 0 considered here, the variational technique yields ihe le I of less than 0.5 % while the

least square method gives le I up to 15 %. The reason for the anomalous results is that

the least square method does not have a physical basis unlike the variational method

in which the energy is minimized. Although the sum of the squares of the residuals is

minimized in the least square method, the minimized residual sum could be large which

results in large error in lel.

A careful search was made for the end resonant frequency in examples 2 and 3 but

none could be found in the range of the frequency considered and no attempt was made

to search for the end resonant frequency outside this range.

3.7 Concluding R ernanks

The free end reflection of waves in laminated cylinders are investigated by the wave

function expansion method. To obtain the required eigenfunctions at the discrete points

through the thickness of the cylinder, the propagator matrix approach is employed when

the analytical solution is obtainable and the dispiacement based Rayleigh-Ritz type ap-

proximation is used when analytical solution is unattainable. Numerical results confirm

the applicability and accuracy of the exploitation of the Rayleigh-Ritz type approxima-

tion in the free end reflection problem in laminated cylinders. The least square technique
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as \Mell as the variational method are employed in determining the complex amplitudes

of the reflected waves. It is found that the resuits from the least square method are not

reliable for the laminated anisotropic case.
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C&aapten 4

Fåasae Straår¿ &Mave $cattenåNag by Cs'acks åsa

Cyãånadens

4.L General

CANDU Pressurized Heavy Water reactors contain hundreds of horizontally mounted

zirconium-niobium (Zr-Nb) pressure tubes. These tubes hold the natural uranium fuel

and are separated from the surrounding calandria tubes by garter springs. Having the

inside diameter of 103 mm and the wal1 thickness of.4.2 mm with 6 metres in iength, these

Zr-Nb pressure tubes are designed to be accessed from either end via the end-fittings and

closure plugs. They are routinely refuelled on-power using the fueling machine.

Although the Zr-Nb material is not particularly damage-tolerant, the pressure tubes

are reliably designed for the primary pressure boundary. Nevertheless, defects, both

from manufacturing and during service, have occasionally occurred. These defects are

usually detected in-service using a focussed ultrasonic shear wave technique, the CIGAR

(Channel Inspection and Gauging Apparatus for Reactors) system (Do1bey, 1986). How-

7T



ever, it is difficult to obtain reliable information of flaw depth from this method alone.

Many approaches were reported to help provide the information on defect size (Silk 1977,

Achenl:.ach et al. 1979, Golan et al. 1980, Tittman 1975, Coffey and Chapman 1983,

Bond and Punjani 1984). The reports, however, were concerned typically with defects on

the opposite face of a thick specimen. Hutchins and Moles (1991) proposed the hybrid

immersion technique to investigate cracks of thin wall tubes. One of the models was to

use two symmetrically positioned transducers generating ultrasonic waves and detecting

the scattered waves due to the defects. It is with this motivation that the plane strain

wave scattering due to defects in cylindrical cross-section is theorectically investigated in

this chapter.

For simplicity of the analysis, the waves are generated by a harmonic line 1oad. The

cylinder is considered to be infinitely long in the longitudinal direction and, thus, the

effect of shear is negligible. The cylìnder is composed of layers perfectly bonded together.

A hybrid method (Karunasena 1992) is presented in this chapter to solve the problem. In

this method, the cross-section is divided into two regions - namely interior and exterior

regions. The interior region which contains fl.aws or loads is modelled by finite elements.

The exterior region is represented by a wave function expansion. These wave functions

(eigenfunctions) are obtained by displacement based Rayleigh-Ritz type approximation

since the analyticai solution is unattainable. Continuity conditions for the displacements

and interaction forces are imposed at the nodes lying on the boundaries between the two

regions. This results in a system of linear equations which can be solved for the unknown

wave function ampiitudes. These complex amplitudes are used to calculate boundary

nodal displacements and, in turn, to obtain interior nodal displacements. Although the

method can be applied for general laminated composite cylindrical cross-section, only

the numerical results for Zr-Nb pressure tube are presented to illustrate the applicability

of the method.
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4.2 Ðescríptior¡ of the Problern

An infinitely long thin wall cylinder with a line notch in the z-direction as shown in Fig-

ure 4.1 is considered. The cylinder may be composed of layers of distinct mechanical prop-

erties and different thicknesses. A time harmonic line load is excited on the cylindrical

surface which generates elastic wave propagating in a circumferential, d-direction. This

iine load is bounded by ihe artificial boundaries B+ and B- at 0 : þ+ and á :2tr - þ-,
respectively. The waves, generated by the load, in the exterior region of the boundaries

are represented by wave functions expansion. When these waves strike the notch, the

scattering occurs. The notch located at the distance of 0 : á¡ from the load is contained

in another artificial interior region with the boundaries S+ at 0 : 0o + ó+, and S- at

0 : 0o - ó-. A scattered fleld from the notch is also represented by the wave functions

expansion.

4.3 F ir¡íte Elernent for lnterior R egion

Consider a region bounded by artificial boundaries .R+ and .R- at 0 : 9+ and 0 : 2r - 0- ,

respectively, as shown in Figure 4.2. It is noted that the boundaries -R+ and Ê- can be the

boundaries B+ and B-, or ^9+ and ^9-, respectively, and d+ and d- are greater than zero.

The region represents the interior region and may contain the line load or notch. This

interior region is modelled by nine noded isoparametric finite elements. The coordinates

r and 0, anð. the displacement components z and u in r- and d-directions, respectively,

at a point within a typical nine noded finite element (Figure 4.3) are approximaied by

polynomial interpolations as:

T : ÐN,',
j=1
I

u : ÐN,",
j=l

; 0:ÐNoe ;
j=l

q

; u:ÐNtr,,
j=1
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Line load

Figure 4.1: Geometry of cylinder with harmonic line 1oad and line notch
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where r¡, 0 ¡ are nodal coordinates and zr' and u¡ are nodal displacements. 1{¡(j : 1, . . . , 9)

are interpolation polynomials given as:

R.
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+

0'I ne

Figure 4.2: An arbitrary interior region

¡r1 : *o - g)(r - ø), ¡ú5 :
N2 : -ttt + €)(1 - ,i), 

^¡6 
:

¡/3 : *(t +4)(1 + ?), N7 :
Na : -*O - f¡1r + n), ¡/8 :

>>
"eo

Iún:(1 -i'Xr -ñ'),

and fi are non-dimensionalized coordinates system.ã(

The strain vector, {e}, at a

following equation:

where

-iQ-€')(1 -ñ),,

itt - ñ,)(1+ 0,
zo-P)0+ù,
-irr-ñ')o-Ð,

point is related to the

{.} : lLl{u},

{e}r : (e,, €l¡o 'y,e) ,

(4.2)

displacement field through the

(4 3)
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Figure 4.3: Nine noded

In

AS:

view of equation (4.1), the strain

element in cylindrical coordinate system

le o I

-l': rõ I

-l ; ;ag l, (4'5)

Iru a r l

L;ao a,-; )

{U}r : (u u). (4.6)

vector can be written in terms of nodal displacements

where

lLl

[Ñ] is the polynomial interpolation or shape function matrix which

functions defined in equations @.2) (Zienkiewicz 7977). {q"} is the

vector for the element and is defined as:

{q"}' : (ut u1 u2 u2 us ,n) .

v

{.} : [B]{q"},

The total energy functional , î,, per unit length

â : I l; l, l.({4"1c11. }- p,,{û}'{r/}) rd,rd,o]
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lBl : l¿]l¡til (4 8)

contains the shape

nodal displacement

(4.7)

in z-direction is in the form:

-)1*f {P,}+{q,}'{P'}] , (4.10)

(4 e)



where

{q¡} and {P¡} are the nodal displacement and force vectors corresponding to the nodes

within the interior region, respectively, while {qp} and {P¿} represent those quantities

vectors corresponding to the nodes lying on the boundaries. [C] is the elastic modulus

matrix, !" denotes the summation over all the finite elements and overbar represents the

complex conjugate. By substituting equations (a.1) and (a.7) into equation (4.i0), and

after the conventional assembly process in the finite element method, the total energy

functional becomes:

{qr}, : ({ør}, {ø"}r),
{Pr}' : ({rr}' 1r"}t).

where

[1Ç] and lMr) in equation (4.13) are, respectively, the global stiffness and mass matrices

of the interior region resulting from the assembly process. The element stiffness and mass

t : |tør|'[^ç]{q'} -}¡øf {pr} + {q'}'{P'}] ,

lsl : [1r"] - azlMrl- [ tsttt is*] 
I

| [,snrJ [^snn] l

matrices, [k"] and [rn"], respectively, are defined as:

lk"l : I, I,lBl, lclfBlrd,rd.o,

L*"1 : ïu [, plñ]'lñlrarar.
The governing equation of motions of the entire interior region can

imizing the energy functional as:

6fr : 6{4r}tlsl{qr} - á{qr}t{ Pr} :0,

where á is the first variation.

(4.11)

4.4 Wave F\-ar¡ctions for Extenion Regíon

Wave functions required for the scattering problem are obtained by considering the e-

lastic plane strain lÀ/ave propagation in the corresponding cylindrical cross-section. The

(4.12)

(4.13)

(4.14)

be obtained by min-

(4.15)
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Rayleigh-Ritz type approximation with displacement continuity at the nodal points (sur-

faces) is empioyed in the present study. The method divides the cross section into sev-

eral sublayers as shown in Figure 4.4. Consider the kth sublayer bounded by r : rk and

r : rk+1 surfaces. The nonvanishing displacement components z and u are approximated

by interpolation polynomials in the radial direction as:

where

The generalized displacements zö, u^, anduÍ in equation (4.17) are taken at the back

(inner), middle, and front (outer) nodal surfaces of the sublayer, respectively. The in-

terpolation polynomials, n;(i : \,2,3) are quadratic functions given by equation (2.28)

âS:

{4}t : ("u ub ,u,* u^ uÍ ,r) ,

t¡/l :f "' o nz o ns tl
L 0 T11 0 nz O ".J

{u} : t¡/l {4}

h:L-3r¡-f2r¡2 t nz:4rl-4112 I ns--T+2rt2 )

where ry: (r -rr)1fu, å¡ being the thickness of the frth sublayer.

The governing equation for the entire cylindrical cross section is obtained,

Hamiiton's principle, to be:

[K,]{Q}" + lK,l{Q}' - lK,lt7} - [Mltq} : o.

The matrices [1(] , lKr], [1(3], and [Ml can be obtained from Appendix B with ihe

wavenumber { : g. It is noted that [1fi], [113], and lMl are symmetric, and [1{2] is

anti-symmetric. The vector {Q} contains the generalized coordinates for the cylinder.

Prime and overdot denote differentiations with respect to d and f, respectively.

(4.16)

(4.17)

(4.18)

A solution for equation (a.20) can be assumed in the form of:

{Q} : {Qo}e-;@o-"),
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by using

(4.20)

(4.21)



sublayer

Figure 4.4: Discretization in Rayleigh-Ritz type approximation
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where {Çs} represents the nodal amplitude vector, u the circular frequency, and rn

the complex circumferential wavenumber. By substituting equation (4.21) into equation

(4.20), the following set of linear homogeneous equations is obtained:

For nontrivial soiution of {Qo}, the determinant of the coeficient matrix must be ze-

ro. This results in quadratic algebraic eigenvalue problem. This equation serves as the

dispersion relation to evaluate m for a given ø, or alternatively, ø for a specifed rn.

{-*2¡rc¡ - imlK2l- [K.] + a'zfnr1]1Ço] : s.

The wave functions at discrete nodal points for the jth mode, {qi}, can be obtained

from the jth mode eigenvector of the equation (4.22) as:

{q¡}' : (uro uti uti utj u(Np)j u(¡¡p)¡) ,

.A/P being the number of nodal points through the thickness.

4.5 Ðetermination of, Circurr¡.f,erentia1 -Wavenurnber

Equation (4.20) obtained in section 4.4 serves as the dispersion relation of the cylinder

in the form of quadratic algebraic eigenvalue problem. This equation can be used to

evaluate the frequency) Lù) for a given circumferential wavenumber, rn) et alternately, for

a specified a,it can be solved for m. Only real a are admissible due to physical reasons.

The circumferential wavenumb er) r'n) on the other hand, can have the form of a complex

number as:

(4.22)

where rr,-zp and rnl are real and imagainary parts of the complex circumferential wavenum-

ber, m, respectively. From the viewpoint of the stability of the system, only rn1 ) 0 is

admissible for á > 0. When rnr:0 and 7??R ) 0, the roots produce modes propagating

in the positive á-direction. The modes are non-propagating when rTL¡¡:0 and m1) 0.
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The roots with non-zero rLR and ml represent the evanescent modes. It can be shown

that if rn is a root of the dispersion relation, then -FI is also a root. This iilustrates

that the waves may propagate in either the positive or the negative d-directions. It is

also noted that the dispersion equation may produce an infinite number of roots of which

only finite numbers are propagating modes. These propagating modes, the roots with

real wavenumbers, carry energy. Non-propagating and evanescent modes carry no energy

and their amplitudes exponentially decay with distance. However, these modes aïe as

significant as the propagating modes in satisfying the boundary conditions.

4.6 trMave F\rnctions Ðxpansi.or¡ f,or Scattered F ields

The scattered displacements vectors, {q**}"" and iqfr-}""; and the scattered stresses vec-

tors, {^9fi+}"" and {^94-}"" in the exterior region represented by J modes wave functions

expansion of the waves travelling in the positive d-direction at the boundaries ,B+ and

.R- are in the forms of, respectively:

J

{qå* }"" : Ð li {qi}"-i(m¡o+ -ut) 
,

j=l
J

{qA- }"" : Ð li {qi}"-i[m¡(zr-0-)-'t],
j=l
J

{.9f;* }"" : Ð Ai {si}e-i(mi7+ -ut) , @.zs)
j=!

ra+ ì 
J

1o¿-Jsc : -ÐAi{Si}e-¿l*iQn-0-)-utl,
j=1

where

{ør+1r : ("1, u{¡ ufi ufi uf*rt¡ ,lr"lr) ,

lc+ìT /^+ -+ -+ -+ -+ -L \t¡¡' j- : \oiet¡ oàeU aioti otist¡ oiege¡¡ oàeçvr¡¡)'

The wave functions {ørt} it the wave functions {q¡} associated with the modes travelling

in the positive d-direction. The stresses ofi¿¡ and ofe¡¡ at the /th nodal points associated
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with the 7th mode of wave travelling in the positive d-direction can be evaiuated by using

the stress-strain and the strain-displacement relations. The negative sign of {.9$-}"" is

for consistency with the finite element procedure. The dependence ei't will be suppressed

in the following formulation.

Similarly, the displacements vectors:

{^9;*}"" and {.9;-}"" r"prer"nted by J

travelling in the negative á-direction at

the forms of:

J

{qã*}"" : Ð1-;{q;}"-im¡(zr-o+),
j=l
J

{qã_}"" : D ¡1 {q;}"-imio-,,
j=7

J

{,9;*}"": -Ðl;{s;}"-i^i?'-e+), e.27)
j=l

J

{,9;-}"" : Ð l; {S;}e-i^to- ,
j:t

{qã*}"" and {qR-}".j and the stresses vectors:

modes wave functions expansion of the waves

the boundaries -R* and ,B-, respectively, are in

where

/ ¡ J -r- -L r _",+ \\q¡ j : \"i¡ - u{¡ ufi - uf, u(wn¡ .@p)j/ t

fc-ì /-+ -+ + + r r \
tò¡ j : \oiet¡ - otinj oistj oàet¡ oir :ve¡¡ oàeçve¡¡) .

After some algebraic manipulations, the scattered field at the boundaries Ë+

represented by J modes wave functions expansion of the waves travelling in both

and negative d-directions can be written as:

JJ

{q¡+}"" : Ðlitqi¡"-im¡|+ +DAj {ø¡}"-i^ie- EM,,

{qa-}"" : Ðti tqi¡"-im¡ï+ EM¡ -tÐ t; {q;}"-im¡,-,

{,9¡+ }"" :

{Sa-}"" :

J:t
J

J=\ j=7
JJ

D Ai {si}e-i^¡e+ -D Aj {s;}e-¿^i,- EM¡,
j:7

JJ

-D, Ai tsile-i^¡e+ EM¡ *Ðr; {s¡ }"-o*¡e- .

J:7
J

.i=7

(4.28)

and -B-

positive

j=7
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of wave propagating

be determined from

the above equations

(4.30)

The complex amplitudes A;+ and A, associated with the jth mode

in the positive and the negative 9- directions, respectively, are to

the global solution which will be discussed in next section. EM¡ in

are defined as:

EMi : 
"-2m'r"tn¡(e++e-) '

consistent loads with

in the kth sublayer are

of the sublayer as:

(4.31)

In constructing the nodal force vectors of the scattered field,

quadratic stress distributions are employed. The stress at a point

approximated by interpolation polynomials through the thickness

{"r}t : (ou o^ ",) , @.J2)

and the interpolation polynomials n¿ (i : 7,2,3) are defined in equation (4.19). The

force vector {/} can then be written as:

{/} : f,'roÐ 
o Or. (4.3g)

This, after the integration, results in the relations:

{/}:{f} :*ll ::l']{ ïl (4r4,

Incorporation of equation (4.34) with the stresses vector in equation ( .29) yields the

forces vectors {P6+}"" and {P¡-}"" corresponding to the scattered fields represented by

J mode wave functions expansion of the waves travelling in both the positive and the

negative 9-direction at the boundaries -B+ and Ã-, respectiveiy, as:

{p¿+ }". : f of U;}e-i*¡e+ - i o; {f ;¡"-o*,,- EM,,
j=l j=7

{p"-}," : -f of U¡}e-i*ie+ EM¡ *f o;U;}e-i^¡e-. (4.85)
j=l j=7

o : (rt n2 ,.) {o¡r},

where
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The first two equations of the equations (4.29) yield the displacement vector of the

scattered wave field at the nodes on the boundaries ,B+ and ,R- as:

{{n*-}"" l: I tc.t tcM-11l tr.t }, (486)
| {n"-}"" I 

: 
L wM*t tc-r -l I t"-l J'

where

lc*l : I{ql} {ql} {qi} {q}}1,

lc-l : t{q. } {ql} {q¡ } {qi}1,

IGM*I : l,{q{ EMr} {ql EMr} {qI nrw¡} {qj ø¡wr}1, Ø37)

[GM-] : l{ql EM'} {ql EMr} {qj EM¡} {qj EMt}1,

{r*}' : (ol Dl DI Dj>,

{r-}' : (o; D; Dj Dj>,

DI : Afe-i*te+ ,

D j : A; e-i*ie- ,

Similarly, equation (4.35) provides the force vector of the scattered

nodes on the boundaries .B+ and fi- as:

! tro]"" I _ | [r+] tFM-t I / rrt l
I to"- j," J- ltru*t tr-t I I tr-t J'

where

lr+l : t{/f } {fi} {fi} {#}1,
tr-l : t{/¡} {r;} {f ;l {/;}1,

IFM*I : l{fl øu,} {fl EM,} {ff nu,¡ {fj EMr}], (4'4r)

[FM-] : l{fl EM1} {r; p¡urz} {f; øM¡} 1¡; EMt}l,

(4.38)

(4.3e)

wave field at the

(4.40)

90



4"7 Determinatíon

The global solution is obtained

placements and tractions at the

of Arnplítude Coeffi cierlts

where

by imposing the following continuity conditions on dis-

boundary nodal points:

{q"} : {q^}0"*{qn}"",

{P"} : {Pn}¿"*{Pn}"",

{q"}T, : ({ø"-}T, {ø"-}3^),

{q"}T" : ({ø"-}T" {ø"-}l) ,

{P"}7" : (te*li" {p"-}ä) ,

{P"}l : ({r"*}T" {P"-}1")
The subscript in for displacement and force vectors represents those corresponding to the

incident field. Note that the quantities on the left hand side of the equality in equation

(4.42) are from the interior region whilst those on the right hand side correspond to the

exterior region.

Substitution of equaiions (4.11) and (4.13) into equation (4.15) together with the

incorporation of equation (4.42) results in:

6{q'}t [ts"i{ø'} * [s¡n]({q*}"" + {q"}',)]
+a{qn}l [[s'"ì{ør} + [^enn]({qn}"" * {ø"}')] (4.45)

-á{qt}r{p.} - a{q;}l({p"}"" * {p6}¿,) : s.

Rewriting the above equation in view of the equations (4.36) and (a.40) yields the system

of the following equations:

I ts,,J [^s¡a][G] lltn,lì_f {pù_ lstnt{qn},^ I
| [e]'[s,,,] tGlr([,sA*][G] - IFI) I t t¡l J 

- I [G]'{p^}0,- [G]'[s"r1{ø*}n, J'
(4.46)

(4.42)

(4.43)

(4.44)
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where

4.7.L Time t{armonic [,ine [,oad

lcl :

tFl :

{r}'

I tc.t tGM-t| 
,

| [GM+] Ic-l j
I Ir*] tF M-11

lrr*l rr-r l
: ({a*}' {r-}') .

Consider the interior region of the time harmonic line load bounded by the boundaries

B+ and B- at 0: þ+ and d :2tr - B-, respectiveiy. The subscripts,B+ and -R-, and

the angles d+ and á- in all the above equations are replaced by B+ and B-, and B+ and

B-, respectively. The displacement and the force vectors corresponding to the incident

waves vanish and the equation (4.46) is reduced to:

I ts,t [^e¡r][c] lltr¡l_f {P,}l
Itel'[s",] [c]r([sB,]tcl -irl) lltrlJ-l{0} J

This results in two systems of linear equation as:

¡Glrlitsarl - t^9rrì[srr]-'[,9r"])tcl - Irl]{r}: -[G]t[^9r"][sr.]-'{pù. (4.b1)

The linear system of equations (4.51) can be solved for {D} for the input loading {Pr}.
Amplitudes Af and A, arc obtained from equations (4.39). The nodal displacements in

the interior region {qt} ur" then calculated from equation (4.50).

(4.47)

{q,} : [^9.ri-' {pù - [srr]-'[^9r¡][c]{r},

(4.48)

4.7.2 Scattering due to Crack

Consider the interior region containing line crack bounded by ihe boundaries ^9+ and S-

at 0 : 0o -l ó+ and d - eo - /-, respectively. The incident fields for this problem are
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in the forms of the equations (4.29) and (4.35) with (a) the replacement of 0+ and 0-

by 0o t /+ and 2î - 0s+ ó-, repectively, and (b) Al and A¡ calculated from previous

section. The problem is considered in a ne\v coordinate system (r,0'., z) where 9'is located

at 0 : á0. With respect to this new coordinate system, the artificial boundaries ^9+ and

,9- are at 0' : /+ and 0' : Ztr - ó- , respectively, Al1 of the equations derived, with the

exception of those in section4.7.1, hold with the replacement of the subscripts Ê+ and

-B-, the angles 0+ and0-,, and the amplitudes Art and A¡ by S+ and,9-, þ+ a¡td S-,
and Cf and C¡ , respectively. In this case, there is no internal force vector {P¡} and the

equation (4.46) becomes:

I tsrrl [^e¡s][c]

I tel'[s"'] IGlr([sss]tcl - trl)

which leads to two systems of linear equation as:

tclrf(l^sss1 - [.ssr]lsrr]-' [^e¡s])[c] - tFl] {D} :
tclr [(tssl][s..]-'[s."] - [^gss]){q"} ;. -t {Ps}¿.).

The incident fields {q5} and {P5} are obtained by employing the amplitudes calculated

from equation (a.51) with appropriate angles 0o -f ó+ and 2tr - 0o * ó-. {D} for the

scattered field is evaluated from the equation (4.54) and this leads to the calculation of

the scattered amplitudes from equations (4.39). The nodal dispiacement vector for the

interior region which contains cracks can be obtained from equation (4.5J).

t{

{q r} : - [srr] -t ls t tl {q t} o" - [Srr] -t [^9¡s] lcl {, },

{q,}

{D}
t_f
J-t

-Wttl{qt}n.
l?l'{P'}0, -

4.8 Nurnenical Resr¡lts and ÐiscÌ.rssiorl

ì
l.
l1

[G]' [S""] {øs}0" )
(4.52)

To validate and to assess the accuracy and the capability of the method, the numerical

experimentation is performed for the Zr-Nb pressure tube. The isotropic elastic properties

(4.53)

(4.54)
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of the Zr-Nb are given as (Mair and Earl 1990):

where E is the elastic modulus, À and p, are the Lamè constants. The cylinder has the

total thickness, fI, and the inner radius r¿n of 4.Zrnrn and 57.7rnrn, respectively. The

frequency spectrum for this cylinder - the plot between the circumferential wavenumber

and the frequency, is illustrated in Figure 4.5. In the figure, f) is non-dimensionalized

frequency and is defined as:

çl' :'H 
,

us

where u" is the shear wave velocity calculated from:

t¡
"": li'

The frequency spectrum in Figure 4.5 is shown only for the propagating modes. It can be

noticed that the real circumferential wavenumbers need not be integer. This is because

the complete circular cross section is considered as a multiply-connected body (Timo-

shenko and Goodier 1970), that is, a body such that some sections can be cut clear

across without dividing the body into two parts. Because of the non-integer wavenum-

bers condition, the multi-valued solutions will be obtained. To avoid such multi-valued

solutions, the condition of single-valued displacements and stresses is imposed, that is,

only 0 < 0 < 2r is considered in all calculations.

Two loading cases are considered in this study as shown in Figure 4.6. The normalized

ampiitude of the each harmonic load is taken as unity. For the cracked cross section, the

crack size investigated in this study is 1/10 of the total thickness of the cylinder. The

location of the crack is at d : 720o. The numerical results for each case are illustrated

for Í-) : 1.00 which has two propagating modes. The cylinder is divided into 10 sub-

layers for the wave function determination and 60 nine-noded elements are employed in

the finite element modelling for the interior region. Tables 4.1 and 4.2 illustrates the

numerical experimentations for vertical loading while Tables 4.3 and 4.4 show the results

94

E :97GPa, p :6.48gmlml,

À :34GPa, þ :74GPa.
(4.55)
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Figure 4.5: Frequency spectrum for Zr-Nb tube
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x

(a)

(a) vertical line load and (b) horizontai line 1oad.

for horizontal loading. Three, five, and seven modes expansion (two propagating modes)

are employed in the investigation. The comparison of the results shows the convergence

of the results.

(b)

Figure 4.6: Two ioading cases considered:

crack

Tables 4.1 and 4.3 demonstrate the complex amplitudes and the normalized energy

fluxes associated with the scattered fields produced by the vertical and the horizontal

loads, respectively, in the uncracked cross-section. In the tables, 8"" and E¿n are the

energy fluxes from the scattered fields and the input load, respectively. It can be seen

from Table 4.1 ihat the amplitudes associated with the scattered fields for the vertical load

case are equal and in-phase for both boundaries of the interior region. This is expected

because the problem is symmetric. For the case of horizontal loading (Tabie 4.3), however,

crack
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the amplitudes at one boundary are 180' out-of-phase of those at another bounclary of the

interior region since the problern considerecl is anti-symmetric. The normalizecl energy

fluxes from each boundary ar-e identical and the total surn from both boundaries is unity.

This dernonstrates that the energy frorn the input load is dividecl into two equal parts

and propagate through both boundaries of the interior region. On the other hand, the

principle of energy conservation holds.

When the waves producecl by the loacl travel along the circumferential direction ancl

strike a flaw, scattering occur. The numerical experimentations show the amplitucles

associated with the scatterecl fielcls (not reported herein) for the uncracked cross-section

are negligible in comparison with those produced by the loads. With the presence of the

crack, the arnplitudes associated with the scattered fields are illustrated in Tables 4.2

ancl 4.4 for the vertical ancl the horizontal load cases, respectively. It is noticed that

although the complex amplitudes of the propagating modes associated with the scattered

fields differ in phases, the magnitudes are the same. This inclicates that when the detector

probe is placed either on the left or right of the crack or loacl wiih the same distance frorn

the crack or load, the same magnitudes will always be detected. However, the phases of

the two waves will be clifferent.

4.9 Concluding R ernarks

The hybrid rnethod is ernployed to solve the scattering problem of tirne hannonic elastic

plane strain waves in a cylincler. The loacl or crack is bounded by the interior region

which is rnoclelled by the finite element. The exterior region are represented by the wave

function expansion. The hybricl rnethod incorporates the interior region anci the exterior

region using the continuity at the boundaries between the two regions. Unlike the plate

problem where the incident waves only propagate in one clirection, the incident waves in

a cylindrical cross-section travel in both clirections" The numerical experimentations
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mode

1

2

(0.0113, -.0175)

¡)
r)

A+

(-.8940,1.1059)

+

(1.4030,0.0000)

5

(0.3028, -.3137)

6

(0.3028,0.3137)

7

(0.0113, -.0175)

A_

(0.1648, -.2434)

(-.8940,1.1059)

(0.1648,0.2434)

(1.4030, 0.0000)

Table 4.1: Arnplitudes ancl energy for scatterecl fields produced by vertical load at

Í-l : 1.0 for uncracked cross-section.

(0.3028, -.3137)

lAl

(0.3028,0.3137)

0.0208

(0.1648, -.2434)

7.4220

E!"lEo,,

(0.1648, 0.24:J4)

0.00002

1.4030

0.4360

0.49610

mocle

0.4360

0.00000

EulEn,,

1

0.00002

0.2940

2

0.49610

0.2940

(r.0254 x 10-2,-1.5916 x 10-2)

I()

0.00000

(2.956r x 10-2, -3.6594 x 10-2)

4

(-5.2573 x 10-2, 0.0000)

5

A+

(2.3099 x 10-2, 5.8217 x 10-2)

6

(2.3099 x 10-2, -5.8217 x 10-2)

7

(3.0341 x 10-2,5.1948 x 10-2)

(3.0341 x 10-2, -5.1948 x 10-2)

(1.0256 x 10-2, -1.5915 x 10-2)

Table 4.2: Arnplitudes of scattered fields due to crack al, 0 :120' frorn

vertical load (0: 1.0).

(2.9585 x 10-2, -3.6575 x 10-2)

(-5.2592 x 10-2, 0.0000)

A-

(2.3067 xI0-2,5.8435 x i0-2)

(2.3067 x 10-2, -5.8435 x 10-2)

(3.5920 x 10-2, 5.251,9 x 10-2)

(3.5920 x 10-2,-5.2519 x 10-2)

lAl

0.0189

0.0470

98



lIìocle

1

2

(0.7084,0.4564)

,f

A+

(0.5651, 0.4568)

+

(1.3438, 0.0000)

5

(0.3300,0.1996)

b

(0.3300, -.1996)

7

(-.7084, -.4564)

(0.2385,0.0094)

A-

(-.5651, -.4568)

(0.2385, -.0094)

(- 1.3438, 0.0000)

Table 4.3: Amplitucles ancl energy for scattered fielcls procluced by horizontal loacl at

O : 1.0 for uncrackecl cross-section.

(-.3300, -.i996)
(-.3300,0.1996)

lAl

0.8427

(-.2385, -.0094)

0.5267

E!.lEo"

(-.2384,0.0094)

1.3438

0.0905

0.3857

0.4138

rnode

0.3857

0.0000

E*lEo"

I

0.2565

0.0905

2

0.2565

0.4138

(-3.3579 x 10-3, 5.2139 x 10-3)

ù

0.0000

(-9.6976 x 10-3,1.2038 x 10-2)

4

(-L728r x 10-2,0.0000)

5

A+

(-7.6097 x 10-3, -1.9910 x 10-2)

6

(-7.6097 x 10-3, 1.8910 x 10-2)

7

(-7.8997 x 10-3, -1.7395 x 10-2)

(-7.3997 x 10-3, 1.7395 x 10-2)

Table 4.4: Arnplitudes of scattered fielcls due to crack at 0 :120" frorn

horizontal loacl (f-l : 1.0).

(-3.3598 x 10-3, 5.2122 x 10-3

(-9.7377 x 10-3,1.2005 x 10-2)

(-L7314 x 10-2,0.0000)

A_

(-7.5525 x 10-3, -1.9278 x 10-2)

(-7.5525 x 10-3, r.9278 x 10-2)

(-1.7079 x 10-2, -1.9350 x 10-2)

(-L7079 x 10-2,1.8350 x 10-2)

lAl

0.0062

0.0155
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for the Zr-Nb pressure tube verify the accuracy and the applicability of the rnethocl.

Alihough the results are presented for only isotropic cylinder, the method presentecl in

this chapter can also be usecl for laminatecl cornposite case.
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C?aapter &

Cosacåqxsåosas affid R ecoss?ffi?effidatåoras

5.1- General Concluding Rernarks

Three models of wave propagation in cylinders are developed in Chapter 2. Systematic

numerical experimentations are performed to investigate the dispersion characteristics of

cylinders and the factors effecting wave propagation in cylinders. The propagator ma-

trix method, based on three-dimensional elastic theory, can be used to obtain accurate

predictions of theoretical dispersion characteristics of laminated isotropic cylinders with

arbitrary number of layers. For laminated composite cylinders where the analytical for-

mulation is not possible, the displacement based and the displacement and stress based

Rayleigh-Ritz type approximations are developed. The numerical results obtained by

these approximations reveal excellent agreement with the analytical method for the lam-

inated isotropic cases. The investigation on dispersion behaviors of laminated cylinders

shows that the variations in circumferential wavenumber, thickness to radius ratio, and

degree of anisotropy have influences on dispersion characteristics of cylinders. It is found

that rigid body motion does not exist for circumferential wavenumbers higher than zero.

The effects of the change in circumferential wavenumber are localized mostly in the low
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v/avenumbers regime and these effects are stronger in thick cylinders. The variation in

the thickness to radius ratio has an influence on cut-of frequencies and degree of cou-

pling. When the ratio decreases, the degree of coupling increases. The anisotropy, caused

by the orientation of fibres with respect to the direction of wave propagation or by the

number of layers, has a strong influence on dispersion characteristics of cylinders. It is

found that measurable changes in phase velocity are caused by increasing the degree of

anisotropy. The numerical experimentations also reveal that it is sufficient to employ

only the displacement based Rayleigh-Ritz type approximation to study wave scattering

problems.

The wave functions expansion is used to investigate the reflection of guided wave at a

free end of a laminated cylinder with an arbitrary number of laminae in chapter 3. The

results illustrate the applicability of the displacement based Rayleigh-Ritzlype approxi-

mation in the study of the free end reflection problem in laminated composite cylinders.

It is found that, when the circumferential wavenumber is not zero in composite cylinders,

the wavenumbers of the waves propagating in the positive axial direction differ from that

of the waves travelling in the negative axial direction. This finding is very essential in the

study of wave scattering problems in composite cylinders. The numerical results show

that the least square technique as well as the variational method can be applied for the

free end reflection of guided waves in laminated isotropic cylinders. For laminated com-

posite cylinders, however, the least square technique demonstrates anomalous results.

The least square method should then be used with caution for reflection problems.

The hybrid method, presented in Chapter 4, shows the sucessful application to study

plane strain wave scattering due to a flaw in a cylindrical cross-section. Although the

numerical experimentation is performed only for an isotropic cross-section, the method

can be applied for a laminated cross-section with general anisotropic layers. It is found

that the circumferential wavenumber can be complex. The numerical investigation re-

veals that the magnitudes associated with the scattered propagating waves detected at
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the same distance on either side of a particular load or flaw are always the same regard-

less of the phase differences. It is noted, however, that the scattering problem considered

in the thesis is a highly idealised one. In order that the technique be useful for practi-

cal applications, a considerable amount of experimental work and additional theoretical

study is required.

5.2 Recor¡rrnendations for F\utune Wonk

The following recommendations are made for futuer work.

1. The scope of this thesis is confined to the development of computationally efficient

models to study wave propagation and scattering problems in laminated compos-

ite cylinders. An experimentation program should be carried out to validate the

theoretical findings of the present study.

2. The numerical experimentations performed in the thesis are in low frequencies re-

gion, more numerical works should be carried out to verify the applicability and the

efficacy in high frequencies regime.

3. The plane strain wave propagation in circular cross-section needs to be thorough-

ly investigated both in theory and in experimental work in order to improve the

efficiency of the hybrid method in plane strain wave scattering problem.

4. The hybrid method should be extended to the three dimensional scattering problem

in the cylinder.
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Appeffidåx A

Fx"opagaÉon ft/Ãatnåx

Defining:

ck(I,7)

Ck(7,2)

Ck(I,3)

Ck(2,7)

Ck(2,2)

ck(2,3)

Ck(3,1)

Ck(3,2)

cÀ(3,3)

Ck(4,,r)

Ck(4,2)

Ck(4,3)

CÀ(5,1)

? z^çor) - aZ-¡1(crr),,

€Z^+r(0r),

Yz^UtÒ,

im-
-Z^(ar),
-i(Z^¡1(Br),

þZ*+r(0r) -lz,-çBr¡,
-i(Z^(ar),

-i B Z^(Br),

0,

r{e+P+ (€' - þ\) z*@,) *'i r**r(ar)},

z r,€ {tt z*(où - @}! t^+t(r,l},
Zip,mf(*-I)-,
'ïtt;= z*(oÒ - þz^+t(p,)\,
Zip,mr(*-I)-,
=îtï z*(o,r) - az*+t(o')),
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cr"(5',2) : ¿r|UÌ! z^+r(þr) - Pz^(þÒj,

c n(5 , r) : p{(p, - '*(*,-- 
t) 

) 
t^@Ò - T ,^*,(þ,)} ,

Ck(6,7) : 2i¡1.({az^+r(ar) - iz^(*')},
ck(6,2) : ¿p{(B' - €') z*+,(þ,) - T r^rp,)},

ck(6,s) : 4 t^{,tù

The elements of matrix lD¿] given in equation (2.g) are:

where Z* and Z^¡1 are ä#) urrd HSI1, respectively, and r : rk. The other three

columns, i.e, j - 4,. . . ,6, can be obtained from the first three columns by replacing the

Hankel functions -H(1) and HSI, by Hfi) and Hfil' respectively.

The elements of three by three matrices [Ã] and [?] in equation (2.19) are:

Dn(i,j):Cn(i,j) i:7,...,6; j :7,...,3;

R(i,i) : Cúi,i),

T(i,j): C¡(i+3,j), i:\,...,9 j j:1,...,3; (A.g)

where Z* and Z^41 denote J^ and J*¡1, repectively, and r : r!.

(4.2)
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Appexadix B

ÐåsplaceÍmeslt ffiased ffi.ayåeågh-ffi,åtz T'ype

Appooxåsaaatåos3

The matriceslMl ,lKtl,, [112], and [113] in equation (2.30) are defined as:

¡H
IMI : J, o[N)'lN]rd.r,

l,Krl : lru ,rl'[c] [b]rd.r,

l,K,l : 1"" ltbl' lcl lol - [ ¿]'I c llb)],d.,,

[1(.] : 1," lul, Ic ll ø]rd,r,

The non-zero elements of 6 x 9 matrix [ø ] in equation (8.1) are as follows:

ø(1,1) : n\, a(2,5) : imf,
ø(L,4) : r'r, a(2,7) : T,
a(1,7) : nL, a(2,8) : imf ,,

a(2.,7): T, a(4,J) : imf, 
(B'2)

a(2,,2) - iml, a(4,6) : irnff,
a(2,,4):7, a(4,9): irnf,,

772
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where prime denotes the differentiation with respect to z.

ø(5,3) : n\,

ø(5,6) : n',z,

ø(5,9) : nL,

ø(6,1) : iml,
a(6,2): nl - T,

The non-zero elements of 6 x 9 matrix [ ó ] in equation (8.1) are as follows:

ó(3,3) : b(4,2) : b(5,,1) : rr,
ó(3,6) : b(4,5) : ó(5, 4) : ,r,
ó(3,9) : b(4,8) : ó(5, 7) : n".

a(6,4): imf,
ø(6,5) :n'z-7,
a(6,7) : imf ,

ø(6,8) :nL-7,

(8.3)

(8.4)
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Åpperadåx C

Ðåspåa.cetrffi.exat asld Stress Based

Rayåeågh-ffi.åtz Typ* Approxåmatåo¡a

The non-zero elements of 3 x 12 matrices [,n[] and [1Vi] of equation (2.33) are as follows:

¡'¡r(1,3) : åË,

¡trr(1,5): tuP,

Nr(2,3) : hP,,

Nr(2,5): hP,

^L(1, 
1) : .f, + frft,

Nr(7,2) : h¿,

¡rr(1, s): imffi,
¡/r(1, Ð: b7Ë,

N.,(1.5\ - ¿pÍ'h .¡\ / t Ãf k,

Nr(2,1):#-i**,
Nr(2,2) : h*j-,

Nr(2,3) :,f' +*+i*ffi,
The parameters P¡ are given by:

¡r/r(3, 7) : -rr,
¡/r(3,3): hP,

¡fr(3, Ð: r"P.

¡/r(1, 6) : þP,

Nr(2,a) : hf,
N'(2.5\ : ¿v.Í?Pa .-\ / , /lTk,

Nr(2,6) : hP,
¡/r(3, r) -- #,
¡/r(3, 2) : hP,
Nr(3,2) : imffi,
Nr(3,,Ð: hP,
Nz(3,5) : ft + im o*&,

¡/r(3, q: rr#" .

(c.1)
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For/:L,2,31 i--I+t:

For/:4,5,6; i:l-2:

For / : 7,,...,70; i : I - 5:

Pt: -
Cu Cu Crc

Csj Cst Cse

Cøj Cuu Cuu

Pt:
Cn Cu Crc

Cst Csj Cut

Ca Caj Cas

Aon is the cofactor of element Crn of matrix A. Functions f" @:7,2,3,4) are cubic

polynomials given by:

P¡:-lCs1 Csj Cue

where

Cn Ct¡ Crc

h: iQ - srt * ?'), f, : 1(2 + Jn - n\,
/r: þit - rt -q2 +q3), fn:TeI-n-tT2 +n3),

Cat Caj Caa

A : Pio.

The matrices [ci] ,lcr],[Mt],lKn],,lKul, and [ft] through [Eu] i" equation (2.3b) are

given by:

n : **(rr- rk+1._ rr),

h¡ : rk+t_ rk.

(c.3)

lcl : lo" olur)'lN1lrd,r,

lcrl : lr' ,lllrl' t¡rrl - [^¡r]r lNll]rdr,

(c.4)

(c.5)
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lMrl

V{nl

V{rl

lErl

IEr]

lE'l

1,"

1,"

1,"

t;

1,"

1,"

p[ñr]r lN2lrdr,

ldl"f clld,lrd.r,

tdl'IC]lblrd,r,

fta I' tc tt

ltal"tclt

The non-zero elements of 6 x

a(1,1; :
a(7,2) :
ø(1,3):

a(7,4) :
a(I,5) :
ø(1,6):

a(2,7):

a(2,,2) :
a(2,3):

[¿]tf Cllalrdr,

o I - [6]'lc ]tó l+ [¿ ]'I c ]ld,Jf,d,,

t t fz., Pt
.lLr | ^^- t

' êth

fz,,Lna)
. f" -P,LTfuT-/jrk '
fr -4,"

a)
' f" -P"ïTTL:=!- -/JTk,

l" -A,,"a)
h t m2fz , ÍzPt
; -r rhr -r 

ArË,.

f"P"¡zmffit
Jz\tt t ;^ fz\n
A, f- LtrL-E-)

^2ÍrPn t im/t r

- Arr, -r ;\J1 Ï
, fzPt Irv; )t

ól-tbl'lcllal]rd.r,

12 matrix I a ] in equation (C.6) are as follows:

a(4.1\: imÍ-3P,*\ ^) ^./ """ Lr¡rt

a(4,2): ómhff,
a(4,3): -#,
a(4,4): i*hff,
ú(4,5): -#*imh,
a(4,6): imhff,
ø15. 1) : fz;'Pt

o'1u',r'¡ - ry, (c 7)

¿(5,3) : lmffi,
* a(5,4) : lu+- 

,

ø(5,5; : .fr,,+i*ff,
ø(5, 6) : lt+u,
a(6,1) : &U",, - *.1 +;*(* + #

+12- - l2u\.
'rkr rk /'

(c.6)

a(2,4¡: S + imbff,,
a(2,5): -# ¡ imftfr,
a(2,6): h#+imhff,

a(6,2¡ : *(fr,, - *-l + ;*þff, a(6,4) : *(rr,, - *l -t imJzff,
a(6,3) : fr,,++-+-# ø(6,b): -#+imft(fzr-*),

-# +;*ffi(fr,, - *), ø(6,6) : *ff,,, - *l + imbff,

where the fn,, represents ah
dr
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The non-zero elements of 6 x

ó(1,3) : k*,
ó(1,5) : b*,
b(2,3): # * imff,
b(2,5): wL -l imff,
ó(3,1) : H,
b(3,2) : hP,

12 matrix | ó ] in equation (C.6) are as follows:

b(4,3) :,f1 + ft + t*2ç* + ?),
b(4,4): åâo,

b(4,5): ¿*k(* + +),
b(4,6) : bP,
ó(5,i) :hlfz,,*ffi,

å(3,3) : i*ffi,
b(3,4) : hijl,

ó(3, 5) : ,f1 + imffi,
ó(3,6) : hP,
b(4,1):#-tmfr(j+l),
b(4,2): &âo,

The 6 x 12 matri" I d ] in equation (C.6) has non-zero elements as follows:

b(5,2) : h*,

ó(5,3) :bP+imffi,
b(5,4): åâo,

ó(5,5) :tuf-+imffi,
ó(5,6) : bP,
å(6,3) : *(f,,, - *l + imff,,
b(6,5) : t1r,, - *l + i*!#.

where the remaining 6 columns of matrices [1úr], [¡/r], [ "],lb ], and I d ] can be obtained

from the first 6 columns by replacing Í by h, frby fn, and r¿ by 
"¿+r.

d(3,1) : -fz,
d(3,3) : #,
d(3, 5) : hP,

(c.e)

d(4,3): þP,

d(4,5): hP,

d(5,3) : #,
d(5,5) : hP,

(c.10)
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AppeNadåx Ð

Asyxaaptotåc Ðxpasasåorus of ï{asakeå

F aaxactåoms

The functions E(rn,(r) and F(*,,(r) in the asymptotic expansion forms of the Hankel

functions HPGr) ""d HØ((r) for the large argument in equationQ.al are defined as:

E(m,(r) N 
"r_-t#,
, _ k'- t)(r' - e) . (r' - 1)(r'- e)(r'- 25)(r' - +e) 

_2!(8(r), ' 
(D'1)

F(m,(r) æ år-tr%HP,
k' - t) _ (p - 1)(p -e)(p -25),
G('tr @-'"' )

where g : 4rn2.
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Appesadåx Ð

Folyxaosaaåaå lmterpoåaÉåoxas for Stress

Coraapox"¿er¡ts

The elements of 3 x 9 matrix [1{r] i" equation (3.8) are defined as:

¡/.(1, i)

¡t/r(1,i + 1)

¡/r(1, i + 2)

M(2,i)
Ns(2.,i + 1)

N"(2,i + 2)

^¡3(3, 
i)

^h(3, 
i + 1)

^/r(3, 
i + 2)

Csn'j + (+ - i€Crr t ffC56)n¡,
(#Cu - i€Cn - ?)", ¡ Cs6n'¡,

(-i€Ctu * f Ca5)n¡ I Cssn'¡,

Ct¿n'j + (+ - i€Cnr t ffCa6)n¡,,
(iC* - i€Cnn - ?)", ! Ca6n¡, (8.1)

(-i€Ctn -l f,Caa)n¡ * C+sn'¡,

Cnn'j + (+ - i€C"u I ffC36)n¡,
(#Cu - i(C"n - ?)", ¡ Cs6n'¡,

(-i€Cr" i rf Qa)n¡ * Czsn¡,

respectively. Prime denotes the diferentiation withwhere i : 1,4,7 and j : I,2,J,

respect to r.
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